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Abstract of “Two Problems in Viscous Flow: Fluid-Structure Interaction and Contact Drop For-
mation” by Bian Qian, Ph.D., Brown University, May 2010

This thesis deals with two problems in viscous flow.

In the first part, fluid-structure interactions were investigated, with connections to swimming

microorganisms. Motivated by a numerically proposed swimming mechanism, we studied an elas-

tic straight rod rotating on an imaginary cone. The shapes of the rod which rotates at either

prescribed torques or speeds were experimentally measured and theoretically calculated. The rod

undergoes a discontinuous transition to a helical shape at a critical torque, with increased propul-

sion force. A simple model was presented to capture and explain the essential physics. In addition,

the longstanding hypothesis of hydrodynamic synchronization was investigated using a scale model

experiment. We demonstrated that hydrodynamic interactions can cause synchronization between

rotating paddles driven at constant torque if the shafts supporting the paddles have some flexibility.

The synchronization state depends on the symmetry of the paddles and the torque mismatch. Ex-

cellent agreements were shown between the experiments and the regularized stokeslets simulations.

And a simple analytic theory was built to predict the synchronization time as a function of paddle

separation.

In the second part, contact drop formation on a hydrophobic surface was examined experimen-

tally and theoretically. A wide range of droplet sizes can result from the same syringe by varying

the dispensing speed. Three dispensing regimes were identified according to the motion of the

contact line, a line coexisting between liquid/vapor/solid interfaces. In the fixed and the expanding

contact-line regimes, a power dependence of the drop sizes on the dispensing speeds was observed

experimentally and obtained theoretically. In the receding contact-line regime, the contact-line

motion consists of two stages: a slow retraction at the beginning and a rapid retreation immedi-

ately prior to drop breakup. The dispensing process was modeled as a stretching liquid bridge with

a free moving contact-line. A quasi-static analysis and numerical calculations were performed to

accurately predict the initial evolution of the liquid bridge and the final breakup respectively. The



influences of the contact-line movement on the onset instabilities of liquid bridges and thus the

deposited drop sizes were discussed.
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Preface

This dissertation consists of studies of the fluid-structure interactions in a viscous environment and

the dynamics of liquid bridges stretching on a partial wetting surface. The contents are as follows:

Chapter 1. Introduction. Included are descriptions of the features in microorganisms swim-

ming and contact drop dispensing, discussions of the fundamental questions arising therefrom, and

reviews of the previous research works.

Chapter 2. “Shape transition and propulsive force of an elastic rod rotating in a viscous

fluid” by Bian Qian, Thomas R. Powers and Kenneth S. Breuer. Physical Review Letters, 100,

078101, 2008. Experiments were conceived, executed and analyzed by Qian with Breuer’s assistance.

Theoretical calculations were carried out by Qian with Powers assisting in theoretical modeling.

The simple lumped model was proposed by Breuer and analyzed by Powers. The summary of

results was composed by Powers, Breuer and Qian.

Chapter 3. “Minimal model for synchronization induced by hydrodynamic interactions” by

Bian Qian, Hongyuan Jiang, David Gagnon, Kenneth S. Breuer and Thomas R. Powers. Physical

Review E, 80(6), 061919, 2009. The project was conceived by Powers, Breuer and Qian. Exper-

iments were executed and analyzed by Qian and Gagnon. Numerical simulations and analytical

modeling were carried out by Jiang and Powers. Results were interpreted and summerized by

Powers, Breuer and Qian.

Chapter 4. “Micron-scale droplet deposition on a hydrophobic surface using a retreating

syringe” by Bian Qian, Melissa Loureiro, David Gagnon, Anubhav Tripathi and Kenneth S. Breuer.

Physical Review Letters, 102, 164502, 2009. The project was conceived and designed by Loureiro,

Tripathi, Breuer and Qian. Experiments were executed and analyzed by Qian and Loureiro with

Gagnon’s assistance. Theoretical analyses and numerical calculations were carried out by Qian.

Results were interpreted and summarized by Breuer and Qian.

Chapter 5. “The motion, stability and breakup of a stretching liquid bridge with a receding

v



contact line” by Bian Qian and Kenneth S. Breuer. submitted to Journal of Fluid Mechanics,

2010. Experiments, theoretical analyses and numerical simulations were carried out by Qian with

Breuer assisting in interpreting and summarizing.

Chapter 6. Conclusion. Final remarks and recommendations for future work.
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Chapter 1

Introduction

The motion of fluid is governed by Navier-Stokes equations which are derived from the conservation

of mass and momentum for an arbitrary control volume. For an incompressible flow of a Newtonian

fluid with constant density ρ and constant viscosity η, the dimensionless form of the Navier-Stokes

equations is

∂u

∂t
+ u · ∇u = 1

Re
(−∇p + ∇2u), (1.1a)

∇ · u = 0, (1.1b)

where t is the time, u is the flow velocity, and p is the pressure. The relevant dimensionless

parameter in the equations of motion is the Reynolds number, which is defined as Re = ρLU/η. L

and U is the characteristic length and the characteristic flow velocity. The Reynolds number gives

a measure of the relative importance of inertial forces, ρU2L2, to viscous forces, ηUL. The fluid

flow where inertial forces are negligible in comparison to viscous forces, Re � 1, is called viscous

flow or Stokes flow. Viscous flows exist when the length scales involved are pretty small. Examples

include swimming of microorganisms and flows in microchannels. In this thesis, we considered two

problems in viscous flow. One is the fluid-structure interaction, with connections to swimming of

1
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Figure 1.1: Fluorescent flagellar filaments of E.coli. Reprint from [6].

microorganisms. Another one is the contact drop formation, with applications to microdispensing.

1.1 SWIMMING OF MICROORGANISMS

Motile microorganisms have been studied for a long time and are still of great interest to date due

to their significance in industry and technology. In industry, bacteria in combination with yeasts

have long been used for preparing fermented foods. The ability of bacteria to degrade organic

compound has also been widely used in waste water treatment and bioremediation. Recently, the

potential use of bacteria has been explored in a variety of microfluidics systems and biomedical

applications. Flagellated bacteria are ideal actuators for enhancing mixing and transportation

of flows in microchannels [1, 2]. The chemotactic ability of bacteria can be used for detecting

specific chemicals of interest [3, 4]. Moreover, bacteria as well as micro-scale artificial swimmers

are promising workhorses for delivering drug and chemicals [5]. These applications take advantage

of the swimming motions of microorganisms and motivate intensive experimental and theoretical

investigations of microorganisms motility.

Many microorganisms propel themselves by exploiting the motions of flagella attached in their

bodies. These filamentous appendages can be semi-rigid helix or rod-like flexible filaments. For

example, Esherischi coli is a swimmer based on helical flagella which are randomly distributed
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Figure 1.2: Images of bull spermatozoa swimming in shallow chambers. (a) an activated sperm
in a viscous fluid. (b) a hyperactivated sperm in a viscous fluid. (c) a hyperactivated sperm in a
viscoelastic fluid. Reprint from [7].

around its cell body (Fig.1.1). Each filament is connected to a molecular motor via a hook. When

all of the motors rotate counter-clockwise, the filaments gather to form a tight bundle that pushes

the cell forward. When one or more motors spin clockwise, the filaments leave the bundle and the

cell body displays a “tumble” motion [3]. Spermatozoa swim, as distinct from E. coli, using the

beating deformation of its flexible flagellum, which is actuated by the motors distributed along the

filament (Fig. 1.2-a). The beat patterns of flagella are not only determined by the actuation but

also affected by the surrounding flows. Evidence for this is that the swimming pattern of a sperm

in a Newtonian fluid is different from that in a complex fluid (Fig. 1.2). Since the beat pattern

affects the swimming motion, it is important to understand how the filamentous structures interact

with the surrounding fluids and how these fluid-structure interactions lead to locomotion.

1.1.1 Swimming at low Re number

In contrast with fish swimming by imparting momentum to the surrounding fluid, microorganisms

use viscous forces to propel themselves. This difference in swimming mechanisms can be understood

by taking a look at the Reynolds number. A fish swimming in water (ρ ≈ 103 kgm−3, η ≈ 10−3 Pa

s) with a speed, U ≈ 0.1m/s, and a body length, L ≈ 0.1m, has a Reynolds number Re = 104.
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Therefore, the flow around its body is dominated by inertial forces. For bacteria, such as E. coli with

U ≈ 10μms−1 and L ≈ 1 − 10 μm, the Reynolds numbers are pretty small, Re ≈ 10−5 − 10−4. In

the limit of Re � 1, the viscous term becomes dominant and the inertial term can be appropriately

ignored, for which the governing equations (1.1) simplify to Stokes equations,

−∇p + ∇2u = 0, (1.2a)

∇ · u = 0. (1.2b)

The time-independence and the linearity of Stokes equations lead to the “scallop theorem” which

states that any reciprocal body deformation does not contribute to the average motion regardless

of the rate at which the body deforms [8].

To escape the scallop theorem, many microorganisms deform their flexible flagella to generate

non-reciprocal motions. One example of such organisms is Spermatozoon, an uniflagellar sperm

having a 50μm long tail. The core of its tail is an axoneme, which consists of two central micro-

tubules and nine outer microtubules doublets. The relative sliding of the neighboring microtubule

doublets causes the tail to bend [9]. This bending motion like a wave propagates along the tail,

producing a net propulsion force. Another example is provided by Chlamydomonas. This biflagel-

lated alga sweeps its flagella in a non-reciprocal fashion [10]. Each cycle motion consists of a rigid

power stroke and a relaxed recovery stroke. During the power stroke, the straight flagella beat

stiffly and experience large friction. As they pull back during the recovery stroke, the flagella fold,

thereby offering lower resistance. The difference of viscous drag during these two strokes results in

a movement.

The propulsion generated by flagellar deformation has motivated some theoretical modeling. In

an early work, Machin [11] considered a filament passively actuated by angular oscillation of the

proximal end. The deformation of the filament was determined by balancing the bending force

with the viscous drag from the fluid. To simplify the modeling, Machin assumed the filament was
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vanishingly thin and its deflection from the straight state was small. With these simplifications,

he derived a hyper-diffusion equation for the shape of the filament. The solution of this equation

indicated that a bending wave propagates from the proximal end to the distal end with exponential

decay of the amplitude. Noting that the resulting wave form did not agree with the experimentally

observed one, Machin concluded that there must be active actuating elements existing along the

length of the flagellum. Another important finding in Machin’s work is that the wave length and the

damping distance of the bending wave were proportional to a scale length l0 = (A/ξ⊥ω)1/4. This

scale length depends on the bending modulus of the filament A, the actuation frequency ω, and

the perpendicular viscous coefficient ξ⊥ [12]. The ratio of the filament length to this scale length,

Sp = L/l0, is a relevant dimensionless number which is often called the ‘sperm number’. The ‘sperm

number’ Sp represents the relative importance of viscous to elastic stress on the filament, and it

governs the shape of the filament and thus the propulsion force. When Sp � 1, the filament behaves

like a rigid rod and no propulsion is generated. In the limit of Sp � 1, the filament undulates

appreciably. Further examination of Machin problem showed that the optimal propulsion force was

around Sp ≈ 2 [13], and this observation was confirmed in a table-top experiment [14].

Another related fluid-structure interaction problem, an elastic filament rotating on a cone driven

by a torque, was investigated by Manghi et al. [15, 16]. Using numerical methods, they calculated

the equilibrium shapes and the rotational speeds of the filament at prescribed driven moments.

At low torque, the filament rotates slowly and rigidly. As torque increases, the filament bends to

balance the viscous drag. Since the friction is larger at the free end, the filament adopts a curved

shape. At a critical torque, the free end of the filament abruptly jumps close to the rotational axis

and the filament takes a helical shape. This shape bifurcation induces a dramatic increase in the

rotational speed and the propulsion force. Motivated by these observations, we built an experimen-

tal system to realize this design. The equilibrium shapes of the filament have been measured either

at prescribed torques or at rotational speeds. A theoretical model was built to predict the filament

shape and the propulsion force. In Chapter 2 of this thesis, the experiment results are presented
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and compared along with the theoretical predictions, and the observed behaviors are interpreted

via a simple physical model.

1.1.2 Coordinated motions at low Re number

Coordination is ubiquitous in swimming motions of microorganisms. One example of such phenom-

ena is the in-phase beating of flagella. Chlamydomonas reinhardtii, a biflagellated alga, switches

between whip-like and folded beating. When both flagella beat synchronously, the non-reciprocal

deformation of the flagella produce a net force pulling the cell body. In contrast, out-of-phase

beating causes a force mismatch in the moving direction and results in a moment to reorient the

cell body, which is the mechanism used by Chlamydomonas for steering [17, 18]. Similar in-phase

beating, but in a different form, occurs as individual spermatozoa cells come into close proxim-

ity [19]. Another example is provided by swimming Paramesium whose body is covered by densely

packed hair-like cilia [20]. These cilia, though actuated independently, beat at a constant phase

difference with respect to their neighbors and exhibit a directional traveling wave, which is termed

a metachronal wave. The metachronal wave propels and directs the surrounding fluid in a contin-

uous way, which is critical for many biological processes such as sweeping mucus out of the lungs,

transporting sperm during fertilization [21], and breaking organ symmetry in developing vertebrate

embryos [22].

The origin of these coordinative behaviors is one of the central questions of microorganism

swimming. A long proposed mechanism is that these synchronous motions are mediated by the

surrounding fluid which functions like the supporting beam in synchronization of pendulums [23].

The theoretical investigation of this hypothesis was initiated by G. I. Taylor [24]. Motivated by

the in-phase beating of spermatozoa flagella, Taylor studied two infinite sheets nearby undulate in

a sinusoidal form. He found that whatever the initial phase difference between the sheets there is

a force that arises from hydrodynamic interaction which drives the sheets into phase. The energy

dissipation also achieves a minimum in synchrony. In contrast to the fixed undulation in Taylor’s
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model, the beating motion of an individual flagellum (or cilium) is modulated by the flow induced by

the neighbors. The fact of dynamic change of the beating motion was included into the modeling in

the subsequent studies of collective motions of cilia. Via a phenomenological model of the internal

force of cilia, numerical simulation has successfully reproduced the metachronal wave observed

in ciliary movement [25, 26]. In the spirit of modeling a cilium as a discreet phase oscillator, a

simple model has been developed recently to analytically study the phase-lock between neighboring

cilia [27]. The most important modification in this model, comparing to the previous work [28],

is the inclusion of some kind of flexibility so that the phase oscillator allows to be perturbed

from the prescribed trajectory, which has agreements with the previous numerical simulation of

hydrodynamic interaction between rigid helices [29, 30].

Although more and more theoretical and numerical works have provided evidences in support

of the conjecture of hydrodynamic synchronization, there are few experiments that can be used to

test the existing theories. For this reason, we set up a scaled experiment to find out the minimum

ingredient required for hydrodynamic synchronization and quantify the dependence of synchroniza-

tion on system parameters. In Chapter 3, the model system is described, and the experimental

results are discussed along with numerical and analytical calculations.

1.2 CONTACT DROP DISPENSING

Contact drop dispensing is a technique that produces small liquid drops by deforming and breaking

a liquid column entrapped between two solid surfaces. The dispensing process consists of two steps.

First, a wetted tip is brought into contact with a substrate. When in contact, a liquid bridge forms

between the tip and the substrate (Fig. 1.3). Secondly, the tip is raised to stretch the liquid bridge.

At a critical height, the liquid bridge becomes unstable and then breaks up, which leaves a drop on

the substrate. Contact drop dispensing has broad applications in industry and technology. It is an

integral part of a number of industrial processes, such as ink-jet printing, assembling and packaging
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Figure 1.3: Sequence of images of drop dispensing on a hydrophobic surface.

of integrated circuit, manufacture of particles and microcapsules. The drop-based microarrays

have emerged as powerful tools for DNA and biochemical analysis [31]. Most recently, contact

drop dispensing has been adapted for nanostructure fabrications, such as direct scanning probe

lithography [32] and micromachined fountain-pen techniques [33]. Given the current importance

of biochip analysis and microfluidics, the deposited drops should be monodisperse and amenable

to miniaturization, and the dispensing process should be repeatable and fast. These requirements

present challenges to the current technique and motivate a number of experimental and theoretical

investigations of contact drop formation.

Study of drop formation is a challenging problem for experimentalists, theoreticians, and com-

putational scientists. In experiment, to capture the rapid motions of liquid-bridge ruptures requires

ultrafast imaging systems. The up-to-date fastest imaging system is capable of taking 100 million

pictures per second [34] but it is costly. Additionally, strong illumination is needed for this imaging

system and the heat from the illumination might have undesired effects on the liquid. Moreover,

to capture the final stage of drop pinch-off, the imaging system must have high optical resolutions,

which demands higher illumination input. In theory, studies of contact drop formation are based

on a simplified model, in which the dispensing process is modeled as a stretching liquid bridge with

imposed boundary conditions. The equations for modeling a stretching liquid bridge are highly

nonlinear and intractable analytically. The solutions of these equations mainly rely on the numeri-
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cal calculations. Several numerical algorithms have been developed and have achieved successes in

predictions of breakup features and liquid-bridge evolutions. However, it is numerically challenging

to capture the finite-time singularity exhibited in liquid-bridge breakup. Moreover, the boundary

effects, such as flow inside the syringe and dynamic wetting on the substrate, are still not clear due

to the difficulties of modeling and numerical treatment.

1.2.1 Dominant dimensionless parameters

Although an accurate prediction is difficult, we can get some physical insights into this complex

problem through dimensional analysis. During stretching, the liquid bridge is subject to gravi-

tational, inertial, viscous, and capillary forces. Performing dimensionless analysis leads to three

relevant dimensionless numbers: Weber number We ≡ ρU2R/γ, Bond number Bo ≡ gρR2/γ, and

capillary number Ca ≡ μU/γ. Here U is the syringe speed, R is the syringe diameter, g is the

gravity constant. ρ, μ and γ is the density, the viscosity and the surface tension of liquid. These

three dimensionless groups represent the relative importance of inertial force/surface tension, grav-

ity/surface tension and viscous force/surface tension respectively. Note that in the capillary number

the syringe speed U is used as the typical flow speed, which is correct during bridge stretching. If

we form a capillary number using the capillary wave speed, ucp =
√

γ/ρR, instead of the syringe

speed, we arrive at the Ohnesorge number, Oh ≡ μucp/γ, which is a better measure of the relative

importance of viscous force/surface tension during bridge breakup. In this thesis, we were inter-

ested in drop dispensing in micron scale. Therefore, with a typical syringe speed U = 0.01m/s,

the dimensionless numbers have values, We ∼ O(10−4), Bo ∼ O(10−3), and Ca ∼ O(10−3). These

small values implicate that during bridge stretching only the capillary forces are important and the

bridge evolution is considered to be quasi-static.
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1.2.2 Static liquid bridge with a fixed contact line

The static liquid bridge has been investigated intensively due to its applications to crystal growth.

The main goal of studying static liquid bridge is to predict the stabilities of the liquid bridge.

Two approaches have been used to achieve this goal. The first approach is using perturbation

techniques to investigate the influences of small perturbations to a cylindrical liquid column in the

“Plateau-Rayleigh” limit. The “Plateau-Rayleigh” limit is named after Plateau and Rayleigh for

their pioneering works in studying the stabilities of liquid jets [35, 36]. Plateau observed that the

ratio of the maximum stable length of a cylindrical liquid jet to the jet radius is a constant 2π [37]

and the theoretical derivation of the observed maximum stable length was given subsequently by

Rayleigh using linear stability analysis [36]. Based on the works of Plateau and Rayleigh, the

influences of perturbations like small volume changes, disk rotation, and microgravitational effects,

have been extensively studied for an axisymmetric liquid bridge supported between two equal

disks [38, 39, 40]. Soon after, the influence of unequal disks was examined [41]. The perturbation

analyses give intuitions how the bridge stabilities depend on the parameters like volume changes

but are invalid for large variations of parameters. In contrast, the second approach based on finding

the local energy minimum [42] allows to investigate the stabilities of liquid bridges for a wide range

of parameters. With this method, the stable heights of an axisymmetric liquid bridge on equal

disks were calculated for volume changes [43] . And the influences of of gravity and asymmetric

supporting were investigated [44, 45].

1.2.3 Dynamic liquid bridge with a fixed contact line

Although the static theory has a good prediction of the onset instability, it can not solve the dynam-

ics of bridge breakup, during which Oh ∼ O(1) indicates the viscous stresses become comparable

to capillary forces. Using a one-dimensional inviscid slice model, Mesequer first investigated the

time variation of liquid-bridge interface and the fluid velocity field inside the liquid bridge [46].
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The model is based on the assumption of radial-independent axial flow and therefore the radial

momentum equation is decoupled from the governing equations. This manipulation simplifies the

model equation and allows for calculations with standard numerical algorithms. However, the

model is only applicable to inviscid liquid bridges. Based on the same assumption, another similar

one-dimensional model, but derived from slender-jet approximation, was developed by Eggers [47].

Eggers’ model is able to handle both viscous and inviscid cases. Consequently, it was applied

to the studies of stretching liquid bridges [48, 49]. The representative work by Zhang et al. ex-

haustively investigated the dependence of bridge breakup on the stretching speed and the liquid

properties with both experimental and numerical methods [48]. Excellent agreements between

experiments and simulations were obtained when comparing the breakup features for moderate

stretching speeds. However, discrepancies were observed at higher stretching speeds due to the

limitation of the slender-jet approximation. To improve the prediction accuracy, the 2D model

equations must be solved. For this purpose, a sophisticated and reliable numerical algorithm was

designed based on the finite element method. Subsequently, this numerical algorithm was extended

for investigating asymmetric liquid bridge [50] and the effects of surfactants [51, 52]. Most recently,

the rapid advances in parallel computing and numerical modeling enable the mesoscopic and mi-

croscopic calculations of liquid-bridge rupture. Examples include Monte Carlo simulation based on

the lattice gas model [53] and molecular dynamic simulation [54]. The advantage of these particle-

based methods is that the pinch-off singularity is removed within the microscopic descriptions and

thus it allows the prediction of the dynamic behaviors after ruptures.

1.2.4 Liquid bridge with a moving contact line

Most of the previous theoretical studies of contact drop formation mainly rely on an overly simplified

liquid-bridge model in which the wetting phenomenon is not included. This simplification prevents

the study of a stretching liquid bridge with a moving contact line on the substrate. The dynamic

moving contact line is a commonplace observation in many applications of contact drop dispensing
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Figure 1.4: Typical sequence of images of drop dispensing at syringe speeds of (I) 15μm/s, (II)
35μm/s and (III) 400μm/s. The syringe radius is 205μm.

and its motion plays an important role in the dispensing process. Evidence has been provided in a

recent experiment in which a quill pin microarraying system was used to print features on a gold-

coated glass slide [55]. It showed that a broad range of feature sizes can be printed by varying the

substrate wettability while keeping other system parameters the same and the feature sizes increase

with the surface wettablities. Another evidence is given in a simpler table-top experiment [49]. In

this experiment, drops were dispensed on a hydrophobic surface via a small size syringe. The syringe

was mounted on a motorized microstage to allow for changing the dispensing speed. Experiments

showed that by changing the dispensing speed, one can control the contact line motion. At slow

retraction speeds, the contact line expands and large droplets can be achieved (Fig. 1.4-I). At

moderate needle speeds, a quasi-cylindrical liquid bridge forms resulting in drops approximately

the size of the needle (Fig. 1.4-II). Finally, at high speeds, the contact line retracts and droplets

much smaller than the syringe diameter are observed (Fig. 1.4-III). Through these means, one can

generate a broad range of drop sizes using a single syringe. These observations motivated us to find

out what controls the contact line motions and how the contact line movements affect the dispensing
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process and the drop size. In Chapter 4, we presented the experimental measurements of the drop

sizes and the contact-line movements, identified dispensing regimes, and discussed the dominant

mechanisms in different dispensing regimes. Further analyses and discussions of stretching liquid

bridge with a “receding” contact line were presented in Chapter 5.



Chapter 2

Shape transition and propulsive

force of an elastic rod rotating in a

viscous fluid

Bian Qian, Thomas R. Powers and Kenneth S. Breuer. Phys-

ical Review Letters, 100, 078101, 2008.

The deformation of an elastic rod rotating in a viscous fluid is considered, with applications

related to flagellar motility. The rod is tilted relative to the rotation axis and experiments and theory

are used to study the shape transition when driven either at constant torque or at constant speed. At

low applied torque, the rod bends gently and generates small propulsive force. At a critical torque, the

rotation speed increases abruptly and the rod forms a helical shape with increased propulsive force.

We find good agreement between theory and experiment. A simple physical model is presented to

capture and explain the essential behavior.

14
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2.1 INTRODUCTION

Understanding how flagella and cilia work is a central aim of the field of cell motility. The problem

may be split into two parts: the means of actuation, and the fluid-structure interaction. In this

article we consider the fluid-structure interaction for thin filaments in a viscous fluid. At micron

scales, viscous effects dominate inertia, and the fluid-structure interaction problem simplifies be-

cause the Stokes equations governing the fluid motion are linear. Gray and Hancock used this

linearity to develop a simple theory that successfully predicted the swimming speed of a sperm

cell with a load-independent pattern of bending waves propagating along the flagellum [12]. Soon

after, Machin considered the fluid-structure interaction [11]. He argued that the motors must be

distributed along the length of the flagellum, since, for small amplitudes, a passive flexible rod

waved at one end has an exponentially decaying envelop of deflection, whereas the amplitude of

deflection in real flagellar bending waves increases slightly with distance from the head [11]. The

shapes and propulsive forces of a passive rod actuated at one end have recently been examined

theoretically [13, 14] and experimentally [14]. Although sperm flagella are not passive, the results

of [11, 13, 14] are important for modeling real flagella since the modes that Machin found also enter

models in which the flagellum is actuated along its entire length [56].

Rotating flagella are also common. For example, nodal cilia [57] have an internal structure

similar to that of sperm flagella. However, instead of beating in a plane like most sperm flagella,

nodal cilia rotate along the surface of an imaginary cone. The flow set up by these flagella has been

implicated in the formation of left-right asymmetry in developing embryos (see [57] and references

therein). Bacterial flagella provide another example. These flagella are helical, much thinner than

eukaryotic flagella, and driven by a rotary motor embedded in the cell wall. Fluid-structure inter-

actions are important for polymorphic transformations in swimming bacteria [6] and the bundling

of multiple flagella [58].

Complementary to the problem of understanding how biological flagella work is the problem of
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Figure 2.1: Orthogonal images of steady-state shapes of rotating rod with torque just below (a)
and just above (b) the critical torque. The motor (not shown) is at the top, with rotation axis
along z. Gravity points down. In (a) and (b), the left panel is the side view, and the right panel is
the front view. The rod is marked with white dots for contrast. The axes in (b) are the same as in
(a). The curved arrow in (b) denotes the sense of rotation of the rod.

building an artificial microscopic flagellum-propelled swimmer, recently demonstrated by Dreyfus et

al. [59], who used a rotating external magnetic field to generate propagating planar bending waves in

a filament composed of a string of colloidal magnetic particles. A challenge in building an artificial

microscopic swimmer is the means of actuation. Manghi et al. proposed a mechanism in which a

microscopic flexible rod rotates along the surface of an imaginary cone [15, 16]. Using numerical

methods, they predicted that at a critical driving torque the rod will undergo a discontinuous

transition to a helical shape with significant propulsive force, independent of the sense of rotation.

In the rest of the manuscript, we present a macroscopic experimental realization of this system, as

well as new theoretical results that complement previous hydrodynamic calculations [15, 16]. In

addition, we present a simple physical model which captures the essential physics, and helps in the

interpretation of the the observed behavior.
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Figure 2.2: Lumped parameter model consisting of two rigid links connected by a torsional spring
(open circle). The top link is clamped. All drag is concentrated at the two filled circles.

2.2 EXPERIMENT

In our experiment, a servo motor rotates a flexible rod in highly viscous silicone oil. The rod is

connected to the motor shaft such that the base of the rod makes a fixed angle with the rotation

axis (Fig. 2.1a). The motor may be operated either at constant speed, or at constant torque.

The range of torques explored was 0.5 to 8 mN-m, and the maximum rotation frequency was less

than 0.3Hz. The rod is a steel extension spring wrapped in TeflonTM tape; the tape stiffens the

rod to minimize sagging. The diameter of the rod is a =2.5mm, and the bending modulus is

A ≈ 3 × 10−3 N·m2. Rod lengths L from 210mm to 290mm were tested. The silicone oil has

viscosity η ≈ 110 N·s/m2 and is held in a tank 420 mm on each side. With these parameters, the

Reynolds number Re = ρvL/η ≈ 10−2, where ρ ≈ 103 kg/m3 is the fluid density, v ≈ 10−1 m/s

is the typical velocity of the free end of the rod, and L ≈ 10−1 m. Front and side images of the

steady-state three-dimensional shape of the rotating rod at each torque were captured using a single

camera and a single mirror. The imaging system was carefully calibrated to account for perspective,

achieving an accuracy of ±2 mm.

At low torque, the rotation speed is relatively slow and the rod bends slightly (Fig. 2.1a). Above
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a critical torque, the rod adopts a helical shape and rotates much faster (Fig. 2.1b). To illustrate

the physics, we first present a simple analysis of this shape transition using the lumped parameter

model shown in Fig. 2.2. The rod is modeled by two rigid links of unit length connected by a

torsional spring. The link OP is fixed at angle θ between the rotation axis ẑ and the base of the

rod in our experiment. Since the Reynolds number is small, we take Re=0. Thus, we may work in

the rod’s rotating rest frame without introducing fictitious forces. The flow in this frame at point

r is ωẑ × r.

2.3 SIMPLE MODEL FOR ROTATING ROD

The torsional spring represents the bending resistance, and is only sensitive to changes in the angle

between the vectors OP and PQ. Assuming θ � 1 and K is sufficiently large, the moment about

P on PQ from the spring is Mb ≈ K(OP × PQ) ≈ K(y, 2θ − x, 0), where K is the torsional spring

constant, and (x, y, 2) ≈ rQ is the position of the point Q to leading order in θ. To find the steady-

state position of Q, equate the moment on PQ due to the torsional spring to the moment on PQ

due to the flow. Assuming all drag on PQ is concentrated at Q (Fig. 2.2), the viscous moment

about P is Mv ≈ −ζω(x, y, 0), where ζ is a resistance coefficient. Solving moment balance for x and

y yields x = 2θ/[1 + (ζω/K)2] and y = xζω/K. As ω increases from zero, the link PQ deflects and

y increases, which causes Q to experience a viscous force in the negative x direction. These forces

push Q toward the rotation axis, and tend to cause the rod in our experiment to wrap around the

z axis. As ω increases further, Q moves closer to the rotation axis, and y begins to decrease. There

is also some drag on the link OP, concentrated a distance d from O. The moment about O due to

flow is

MO = ζωθ2

(
d2 +

4

1 + ζ2ω2/K2

)
. (2.1)

For d2 < 1/2, we find that the moment first increases with ω, then decreases as the link folds in

toward the rotation axis where the flow is slow. The moment then increases again as the drag from
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Figure 2.3: Dimensionless motor torque MmL/A was measured as a function of dimensionless speed
χ for L = 250 mm (©) and L = 290mm (
) with angle θ = 26◦. For L = 250mm, speed was
measured as a function of increasing torque (�) and decreasing torque (�). Note the hysteresis.
The linear (–) and nonlinear (-) predictions are shown. The insets show examples of the steady
state filament shapes in the low (left) and high (right) speed regimes.

the base link OP dominates. If MO is plotted vs. ω, then we find an S-shaped curve, just as in our

experiment (Fig. 2.3), with discontinuous transitions in shape and speed as moment varies.

2.4 THEORY

2.4.1 Theoretical model

We now turn to a more complete quantitative analysis. We will continue to prescribe ω rather than

motor torque Mm and we limit the analysis to steady-state shapes. Unlike Manghi et al. [15, 16],

we disregard hydrodynamic interactions between distant parts of the rod and use resistive force

theory to model the force per unit length f acting on the rod [12, 60]:

f = ζ⊥(v − rsrs · v) + ζ‖rsrs · v, (2.2)
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where ζ⊥ = 4πη/[log(L/a)+1/2] and ζ‖ = 2πη/[log(L/a)−1/2] ≈ ζ⊥/2, r(s, t) is the position of the

point on the rod centerline with arclength s at time t, v(s, t) is the velocity of the undisturbed flow

relative to the velocity of the rod at s, and rs = ∂r/∂s is the tangent vector to the rod centerline.

There is also a hydrodynamic torque distributed along the rod which induces twist [61, 62, 63].

However, the effects of this torque are smaller by a factor of (a/L)2 relative to effects due to

translation of the rod [61] and will henceforth be disregarded. The constitutive relation for the

elastic rod is

M = Ars × rss, (2.3)

where M is the moment due to internal stresses exerted on the cross-section of the rod at s, and A

is the bending modulus [64]. The shape of the rod is determined by force and moment balance,

Fs + f + fg = 0 (2.4)

Ms + rs ×F = 0, (2.5)

where F is the force due to internal stresses acting on the rod cross section at s, Fs = ∂F/∂s, and

fg = (μrod − πa2ρoil)gẑ is the buoyancy force per unit length due to the density difference between

the rod (linear density μrod = 0.0478kg/m with oil inside) and silicone oil (ρoil = 970kg/m3). The

boundary conditions are r(0) = 0, rs(0) = x̂ sin θ + ẑ cos θ, F(L) = 0, and M(L) = 0 [64]. As in

the lumped parameter model, v = ωẑ× r at steady state in the rod frame.

2.4.2 Dominant dimensionless number

The primary dimensionless groups governing the rod shape are the angle θ and the dimensionless

rotation speed χ = ηωL4/A = (L/�)4, where � = [A/(ηω)]1/4 is the characteristic length scale

determined by bending resistance and viscous drag [11, 13]. In addition, the aspect ratio L/a and the

non-dimensional gravitational force gμrodL
3/A are included in the analysis, but not parametrically
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explored since they play a minor role. Figure 2.3 shows that experimental measurements, using

two rod lengths, collapse well onto a single curve when dimensionless speed, χ, is plotted against

dimensionless motor torque, MmL/A. The open symbols represent constant velocity rotation and

trace out the entire S-shaped curve. The filament shape is stable at every prescribed value of χ,

and the shape changes continuously from the slightly bent shape to a helical shape as χ increases.

The closed symbols represent constant torque operation. When driven at constant torque, there

is a discontinuity in rotation speed and filament shape at two different torque values, depending

if torque is ascending or descending. For descending torque, the time to reach steady state is

prohibitively long, and the diamond symbols lying above the curve in Fig. 2.3 represent shapes

that are relaxing slowly to steady state.

2.4.3 Linear model equation

The nonlinear behavior of the speed-torque curve displayed in Fig 2.3 can be qualitatively explained

using linear approximations valid for small rod deflections. For small θ, the rod is aligned mainly

along the z-axis and, disregarding gravity, the deflection r⊥(z) = (x(z), y(z)) obeys

−A
∂4r⊥
∂z4

+ ζ⊥ωẑ × r⊥ = 0. − �4
∂4r⊥
∂z4

+ ẑ× r⊥ = 0. (2.6)

The solution to Eq. (2.6) is a generalization of Machin’s solution to the in-plane bending prob-

lem [11], and of the same form as the solution for a flexible rod held parallel to but some distance

from the axis of rotation [65].
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Figure 2.4: (Color online) Steady-state shapes of a rotating rod from experimental measurements
for (χ = 1.38) (©), 4.25 (�), 5.91 (♦) (before transition), and 164.63 (�) (after transition), along
with the shapes calculated from the nonlinear (-) theory. The rod has (L = 210)mm and (θ = 20◦).
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2.5 RESULTS AND DISCUSSIONS

To calculate the torque Mm required to rotate the rod at speed ω, observe that the moment due

to viscous drag must equal the elastic moment at the base of the rod:

Mm = −ẑ ·
∫

r × fds = −Aẑ · rs × rss(0). (2.7)

The second equality of (2.7) follows from (2.4–2.5). The results of the linear calculation for driving

torque vs. speed are shown in Fig. 2.3 along with the experimental data for θ = 26◦. For small

χ, Mm increases linearly with χ. For large χ, Eq. (2.6) implies that the shape of the rod is helical

with an envelope that decays exponentially with length scale �. Assuming isotropy x ∼ y and using

force balance (2.6), the viscous force per length f ∼ ηωy ∼ Ay/�4, which implies a total viscous

moment MvL/A ∼ Ly2/�3. On the other hand, the bending moment at the base of the rod scales

as MbL/A ∼ yL/�2. Equating Mv and Mb yields y ∼ � = Lχ−1/4 [66]. Thus, for χ � 1, the

motor torque must scale as MmL/A ∼ χ1/4. Fig. 2.3. Unfortunately, our experiment cannot access

this high-speed regime due to limitations in the torque-speed characteristic of our motor. We also

observe an intermediate scaling, MmL/A ∼ χ1/2. This scaling arises since in this sub-asymptotic

regime the deflection y ∼ Lχ−1/4, but the scale for bending of the rod is still L and not � .

For large θ, the deflection of the rod is significant even for small χ, and the linear theory is inac-

curate. However, the nonlinear equations (2.2–2.5) are readily solved with shooting methods [67].

The nonlinear theory gives a more accurate prediction for the speed-torque relationship in the high-

speed regime where the linear and nonlinear theories differ (Fig. 2.3). As θ increases, the general

appearance of the torque-speed relationship remains unchanged although both the critical torque

and the jump in speed at the transition increase (not shown here). Finally, for large χ, the linear

scaling analysis presented above remains valid, and the moment scales like χ1/4 for χ � 1.

Fig 2.4 shows the steady-state rod shapes for four different values of χ, comparing experimental

data (symbols) with the nonlinear theory (solid line). The agreement between theory and experi-



24

10
−1

10
−4

10
−3

(MmL)/A

F
p

A
/L

10
−0.9

10
−0.8

Figure 2.5: Theoretical calculation of the dimensionless propulsion force Fp as a function of di-
mensionless Mm for θ = 20◦, using the nonlinear equations for the ideal case of zero gravity. The
arrows denote the transition for ascending (↑) and descending torque (↓).

ment is good. Note that the y-z projection shows how y(L) first increases with χ and then decreases,

in accord with our intuitive argument.

We can calculate the thrust, or axial force, from the shape of the rod using Fp = ẑ · ∫ fds =

−ẑ · F(0). The kinematic reversibility of Stokes flow implies that a rigid rod rotating along the

surface of a cone generates zero propulsive thrust. For small χ, the elastic rod deforms slightly

and generates little thrust. Above the critical torque, as the helical shape develops, the thrust

increases abruptly (Fig. 2.5). Since the shape of an actuated elastic filament cannot be decoupled

from swimming kinematics [68], it would be an interesting generalization of our work to build an

artificial swimmer driven by a rotating elastic rod, tilted at the base to the rotation axis.



Chapter 3

Minimal model for synchronization

induced by hydrodynamic

interactions

Bian Qian, Hongyuan Jiang, David Gagnon, Kenneth S. Breuer

and Thomas R. Powers. Physical Review E, 80(6), 061919,

2009.

Motivated by the observed coordination of nearby beating cilia, we use a scale model experiment

to show that hydrodynamic interactions can cause synchronization between rotating paddles driven at

constant torque in a very viscous fluid. Synchronization is only observed when the shafts supporting

the paddles have some flexibility. The phase difference in the synchronized state depends on the

symmetry of the paddles. We use the method of regularized stokeslets to model the paddles and

find excellent agreement with the experimental observations. We also use a simple analytic theory

based on far-field approximations to derive scaling laws for the synchronization time as a function

25
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of paddle separation.

3.1 INTRODUCTION

One of the central aims in the field of cell motility is to understand how a collection of beating cilia

coordinates, or, on a larger scale, how a collection of swimming organisms form coherent patterns.

For example, Paramecium swims by propagating waves of ciliary beating along its surface [20].

The alga Chlamydomonas beats its two flagella in synchrony to swim straight and asynchronously

to change its orientation [17, 18]. At the level of a population of cells, sea urchin spermatozoa

spontaneously form vortex patterns in the absence of cell signaling [69]. Coordination of cilia is

also important in the transport of fluid. The coordination of nodal cilia in developing vertebrate

embryos has been implicated in the determination of left-right asymmetry of the organism [22].

The cilia lining the human airway must beat in a coordinated manner to sweep foreign particles up

the airway. Beating cilia may also play a role in the transport of sperm and egg during fertilization

in mammals [21].

These examples are instances of the general tendency for the emergence of synchronization

in a broad array of physical and biological systems [70]. In this article we investigate the long-

standing hypothesis that the coordination observed in nearby beating cilia or swimmers is due to

hydrodynamic interactions between these objects [71, 72]. In recent years there have been many

computational and theoretical studies to support this hypothesis [73, 25, 74, 75, 29, 28, 76, 77,

27, 78]. The key physical fact underlying all of these studies is that at the small scale of the cell,

where the Reynolds number Re � 1, the velocity field arising from a deforming body falls off slowly

with distance, leading to significant hydrodynamic forces between nearby bodies. Furthermore, the

development of a fixed phase difference between two bodies—phase-locking—requires some kind of

compliance in which the deforming body can adjust its beat pattern in response to hydrodynamic

forces from other nearby bodies.
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Figure 3.1: Schematic of the model system for hydrodynamic synchronization. Left: A pair of
symmetric paddles in a fluid with viscosity η are rotated with constant torques M1 and M2. The
shafts are rigid but have flexible couplings that allow the paddles to tilt. Right: asymmetric paddles.

The nature of this compliance is subtle. In the case of two rotating rigid helices driven with fixed

torques (the “deformation” here is rotation), the freedom of the phase of each helix to speed up or

slow down to maintain the fixed torque for all phase differences does not lead to phase-locking [30].

Theoretical calculations suggest that additional degrees of freedom are required for phase-locking,

or synchronization. For example, synchronization develops if the shafts of the rotating helices are

connected to fixed points by stiff springs, allowing the axes of the helices to translate or tilt [29].

The directions of these small motions depend on whether the hydrodynamic forces are attractive

or repulsive, which in turn depends in detail on the phase difference (cf. the case of nearby

swimmers [79, 80]).

The complexities of designing experiments that include both hydrodynamic interactions and

controlled elastic deformation at very low Reynolds numbers have hindered experimental studies of

hydrodynamic synchronization; therefore, we built a scale model system that captures the essential

physics, allows for detailed measurements, and is amenable to modeling. This article presents

results from experiments (§3.2), numerical simulations (§3.3), and a theoretical model (§3.4 and
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§3.5) that together outline a coherent framework for describing hydrodynamic synchronization.

3.2 EXPERIMENT

Figure 3.1 illustrates the experimental configuration. Two thin paddles are immersed in a large

tank (60 × 60 × 60 cm) filled with a viscous fluid (η = 110Ns/m2), separated at their closest

approach by a small gap, δ = 3.6mm. We study two different paddle configurations: symmetric

and asymmetric. The symmetric paddle has the axis of rotation through the paddle center and

dimensions h = 60mm, w = 2R = 30 mm, and thickness t = 6 mm. The asymmetric paddle

has the axis of rotation through one edge and dimensions of 60 × 20 × 6 mm. The paddles are

small compared to the size of the tank. By repeating some of the experiments with the paddles at

different positions within the tank, we confirmed that the side walls did not affect the results in

any appreciable manner.

The paddles are supported by shafts that are hardened steel, of diameter 6.35mm and length

� = 120mm, connected to the motors via flexible couplings that allow the paddles to tilt. The

shafts are so rigid that bending due to hydrodynamic forces is negligible, but the couplings act

as torsional springs with spring constant kT = 8000mN-m/rad, leading to an equivalent spring

constant for lateral shifts of the paddles of k = kT/�2. This flexibility allows the paddles to

tilt slightly in response to hydrodynamic forces. We also tested shafts without an intermediate

coupling, in which the ability of the paddles to tilt effectively vanished. The bearing assemblies are

supported on separate stages to minimize any mechanical communication beyond hydrodynamic

interactions [23], and to allow for precise control of the distance of closest approach, δ. Since

δ/h � 1, the resultant flow is mostly two-dimensional, in the plane perpendicular to the axes of

rotation.

The two paddles are driven at constant torque using a DC servo motor, digital encoder, load

cell, and feedback controller. Each paddle is driven by a servo motor which is encased in a housing.
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To measure the torque delivered by the motor, the housing is supported by bearings and prevented

from rotating by a rigid, ≈ 10 cm-long torque arm. Due to the bearings, the entire reaction torque

on the housing is transmitted by the torque arm to a precision load cell. The load cell output

signal is used as a feedback to a PID controller that adjusts the voltage driving the servo motor,

thus maintaining a defined torque. The PID controller updates at approximately 100Hz—500

times faster than the typical rotational frequency of the paddles in the experiment (0.2Hz). The

position of the paddle is recorded from the output of the digital encoder at each update of the PID

controller. Velocity is calculated from the position using high-order finite differences. The system

was calibrated by measuring the rotational speed vs. voltage for an isolated paddle over a range

of torques and using the theoretically-known torque-speed relationship to associate the measured

load cell voltage with a specific torque. The accuracy and stability of the system was verified by

measuring (i) the torque fluctuation for an isolated paddle rotating at constant speed, and (ii) the

velocity fluctuation of an isolated paddle rotating at constant torque. In both configurations, we

confirmed that the system was stable to better than 1.5% of the set point. Typical driving torques

range from 4 mN-m to 25 mN-m, corresponding to rotation frequencies no more than 0.2Hz.

At these conditions, the Reynolds number, Re = ρωR2/η ≈ 10−3, is small enough to justify the

neglect of inertial forces. This was confirmed experimentally by noting that if the paddle rotation

was initiated with a constant velocity, the time taken to reach constant torque was less than 250ms.

For these Stokes flows, the characteristic velocities scale linearly with the motor torques (M1, M2),

and the state of the system is determined by the angles of the two paddles (θ1 , θ2) (Fig. 3.1) and the

small shifts of the paddles due to the flexible couplers. In the high-stiffness case, the paddles did not

synchronize in any measurable time; instead, the phase of each paddle increased roughly linearly

with driving torque, (θ1, θ2) ∝ (tM1, tM2), independent of the initial phase difference (Fig. 3.2a,

b). However, paddles with flexible couplers and small distance of closest approach locked phases

in 10–20 revolutions (Fig. 3.2c). Note that we measure time in units of T0 = 6πηR3/M , (M is the

mean torque) which is roughly one tenth of a rotation period. The data we display in this article is
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Figure 3.2: Phase difference Δθ = θ2 − θ1 vs. dimensionless time t/T0 (T0 = 6πηR3/M) for
symmetric paddles with (a) M1 = M2 and stiff shafts, (b) (M2 − M1)/M1 ≈ 0.003 and stiff shafts,
and (c) M1 = M2 and shafts with flexible couplers.
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Figure 3.3: Dimensionless synchronization time vs. dimensionless gap size δ/R for symmetric
paddles (circles) and asymmetric paddles (squares). For symmetric paddles, the dimensionless
synchronization time is measured from the moment of phase difference Δθ = 0.1 to the time of
the first stable state Δθ = π/2. For asymmetric paddles, the dimensionless synchronization time
is defined as the time from Δθ = 0.8 to Δθ = 0. The uncertainty comes from the low frequency
fluctuation in Δθ due to the system noise. Time is normalized by T0 = 6πηR3/M .
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for a dimensionless gap size δ/R = 0.24. We also varied δ/R for both kinds of paddles from ≈ 0.1

to ≈ 0.6, and found that the time to synchronize increased with spacing, with longer times and a

faster increase for the symmetric paddles (Fig. 3.3).

For M1 = M2, the symmetric paddles locked phases at Δθ ≡ θ2−θ1 = π/2, and the asymmetric

paddles settled at Δθ = 0 (Fig. 3.4). These two states represent the conditions that roughly

maximize the distance of closest approach of the two paddles. Since the paddles would minimize

their distance of closest approach if they maintained their typical initial phase differences (Δθ = 0

for the symmetric paddles, Δθ = π for the asymmetric paddles), the rotation speed of each paddle

rises as the paddles synchronize. Denoting the rotation speed of an isolated paddle by ω0, we

found that the speed of both symmetric paddles rises from 0.72ω0 to 0.85ω0 as synchronization

develops, whereas the speed of both asymmetric paddles rises from 0.75ω0 to 0.93ω0. While these

synchronized states are stable, there is a consistent and repeatable phase fluctuation (Fig. 3.4-

inset) corresponding to the variation in rotational speeds as the hydrodynamic interactions between

the paddles wax and wane during a cycle. The fluctuation amplitude in the asymmetric case is

larger than in the symmetric case because there is a larger variation in the distance between the

asymmetric paddles during a period. These observations qualitatively agree with the results of

numerical calculations on rotating rigid helices with flexible couplers [29]. In our experiments the

phase fluctuations and rise in velocity as synchronization develops are more dramatic since the

variation in the hydrodynamic interaction between paddles over a period is greater than in the case

of helices.

The final state of synchronization was found to be independent of the initial orientation of

the paddles. The time to synchronize scales with T0, perhaps with a weak dependence on torque

(Fig. 3.5). The number of paddle revolutions needed to synchronize is therefore roughly constant,

15 in the case of symmetric paddles, and 20 for asymmetric paddles. In the synchronized state,

however, the dimensionless rotation period T/T0 increases slightly with torque (Fig. 3.5, inset).

When the symmetric paddles are operated with a torque mismatch between the two motors, the



33

Δ
θ/

π

t/

(a)

(d)

(e)

(c)

(b)

0 200 400 600 800 1000 1200

0.5

1.0

1.5

T0

Figure 3.6: Phase difference vs. dimensionless time for symmetric paddles with δ/R = 0.24 and
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synchronized phase difference increases with ΔM , although for a large mismatch, ΔM/M1 = 3%,

the synchronized state is only marginally stable and the phase difference can jump abruptly by

Δθ = π (Fig. 3.6).

3.3 NUMERICAL CALCULATION

These experiments give strong evidence that the phase-locking of the paddles is due to hydrody-

namic interactions. We tested this hypothesis by using the method of regularized Stokeslets [81]

to model the flows induced by the paddles. Each paddle is replaced by a rectangular array of

regularized Stokeslets Sb
μν with strength fν , where μ and ν label the Cartesian coordinates x, y,

and z. The flow from the Stokeslet at x′ is given by

vμ(x) =
∑

ν

Sb
μν(x, x′)fν , (3.1)
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with associated pressure

p(x) =
∑

ν

pb
ν(x, x′)fν

8π
. (3.2)

The Stokeslet Sb
μν satisfies

∑
ν

∂Sb
μν/∂xν = 0 (3.3)

∇2Sb
μν(x, x′) − ∂pb

ν/∂xμ = −8πδμνφb(x− x′), (3.4)

where φb(x − x′) is a smooth approximation to the Dirac delta function with spread b,

φb(x− x′) =
15b4

8π (r2 + ε2)
7/2

, (3.5)

and r = |x − x′|. The number of stokeslets and the spread b are chosen to give good agreement

between the measured and simulated resistance coefficient for a single rotating paddle at the center

of the tank. The spread b is large enough to make the regularized stokeslets overlap, which prevents

fluid from leaking through the paddles. We model the flexibility of the couplers with springs

of torsional spring constant kT. For simplicity we suppose that the shafts are always vertical,

but can undergo slight shifts in the horizontal plane. With the assumption that the paddles

are rigid, the degrees of freedom are the angles (θ1, θ2) of the paddles and the positions of the

shafts. Balancing forces and torques leads to coupled nonlinear differential equations which we solve

numerically. Figure 3.4 shows the excellent agreement between the experiments and the simulations

for both the asymmetric and the symmetric paddles. The simulation accurately captures the

frequency and amplitude of the oscillations associated with the rotation of the motors, as well as

the slower evolution of the phase-locking. When the driving torque is varied over the range used

in the experiment, the simulations yield that the dimensionless time to synchronize Ts/T0 remains

approximately constant, with a weak dependence on torque, in accord with Fig. 3.5. Simulations

with infinite spring constant kT show no phase-locking. Since the paddles in the simulation are
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coupled only through the hydrodynamic interaction, we conclude that the cause of the phase-locking

is the hydrodynamic interaction and not any stray mechanical coupling that might be present in

the experimental apparatus.

3.4 SIMPLE MODEL FOR ASYMMETRIC PADDLES

3.4.1 Oseen tensor model

We can gain more insight into the mechanism of phase-locking by developing a simple theory along

the lines of reference [27]. A minimal model for the asymmetric paddles is to replace each paddle

with a sphere of radius a attached to one end of a rod of length R (Fig. 3.7). The rod is rigid

and does not disturb the fluid. The other end of the rod is attached to a stationary point by a

spring with spring constant k. The rods are rotated by moments M1 and M2 which are applied

at the ends of the rods attached to the springs, where we can imagine shafts perpendicular to the

plane of the page. The spring is stiff, with k � M1/R2. Denote the positions of the balls by

ri = ∓(D/2)x̂ + xi + Rρ̂i, where the minus sign applies for i = 1, the plus sign applies for i = 2,

and ρ̂i = (cos θi, sin θi). Note that θi is defined as the angle the rod makes with the x-axis, not the

angle ri makes with the x-axis. The vectors x1 = (x1, y1) and x2 = (x2, y2) are the displacements

of the shafts from the stationary points (−D/2, 0) and (D/2, 0), respectively. If we suppose the

balls are far apart, with D � a, then the leading-order interaction between the two balls is given

by the Oseen tensor [82]:

v1 =
f1

6πηa
+

1

8πη

[
f2

|r12| +
(f2 · r12)r12

|r12|3
]

(3.6)

v2 =
f2

6πηa
+

1

8πη

[
f1

|r12| +
(f1 · r12)r12

|r12|3
]

, (3.7)

where vi = dri/dt = ṙi is the velocity of the ith ball, f1 and f2 are the forces exerted by the balls

on the fluid, and r12 = r1 − r2.
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Figure 3.7: Model for asymmetric paddles. The figure is not to scale; note that a � R � D.

Since the spring is assumed linear and the motion of the rod incurs no drag force, the balance

of forces on each paddle is −fi − kxi = 0. We must also enforce moment balance. Since inertia is

unimportant at Re = 0, we may compute moments about the points xi for each paddle:

Mi + ẑ · (Rρ̂i) × (−fi) = 0. (3.8)

3.4.2 Separation of time scales

The analysis of the equations of motion is simplified by the recognition that our problem has three

well-separated time scales: (i) a short time scale Tk = ηa/k (recall k = kT/�2) that controls the rate

of relaxation of the springs, (ii) an intermediate time scale T1 = 6πηaR2/M1
1 that controls the

period of an isolated ball driven by torque M1, and (iii) a long time scale Ts that characterizes the

time for phase-locking to develop. Since the springs are stiff, Tk � T1. Since the interaction between

the paddles is weak, T1 � Ts. The goal of the simple model is to give a clear derivation of how

Ts depends on the parameters of the problem. Since the phase-locking arises from hydrodynamic

interactions, which vanish when a/D → 0, we expect Ts to scale as some power of D/a for large

D/a.

1Note that the period of an isolated paddle of width R (as in Fig. 3.1) scales as T0 = 6πηR3/M1, whereas
T1 = 6πηaR2/M1 is a more appropriate scale for the period of a ball of radius a moving on an orbit of approximate
radius R and driven by torque M1.
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3.4.3 Dimensionless far-field equations of motion for θi and xi

Since the balls are far apart, we expand the equations of motion in powers of 1/D, assuming that

a � D and R � D. Measuring length in units of R, time in units of T1, and using force balance

to eliminate fi leads to the dimensionless equations of motion,

(Ẋ + Θ̇) = −HX/ε. (3.9)

In Eq. (3.9), ε = M1/(kR2) � 1, X and Θ̇ are 4×1 vectors with

X =

⎛
⎜⎜⎝

x1

x2

⎞
⎟⎟⎠ , Θ̇ =

⎛
⎜⎜⎝

θ̇1θ̂1

θ̇2θ̂2

⎞
⎟⎟⎠ , (3.10)

where θ̂i = (− sin θi, cos θi). The 4×4 matrix H is the Oseen tensor to leading order in a/D,

H =

⎡
⎢⎢⎣

I
3
4

a
D (I + x̂x̂)

3
4

a
D (I + x̂x̂) I

⎤
⎥⎥⎦ , (3.11)

where I is the 2×2 identity matrix and x̂x̂ is the 2×2 matrix with unity in the upper left-hand

corner and zeros elsewhere.

Using M1 as the unit for torque, the moment balance equations (3.8) take the form

1 + (x1/ε) · θ̂1 = 0 (3.12)

1 +
ΔM

M1
+ (x2/ε) · θ̂2 = 0, (3.13)

where ΔM = M2 − M1. From these equations we conclude that xi is O(ε). Note that the shafts

have a nonzero displacement xi even when the paddles are isolated.
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3.4.4 Far-field equations of motion for average angular speed and phase

difference

To understand phase-locking, it is not necessary to resolve the motion of the paddles on the short

time scale Tk. In dimensionless variables, these short-scale motions are characterized by transients

of the form exp(−t/ε). By considering dimensionless times t � ε we may neglect these transients

and treat εẊ as small. Physically, this approximation reflects the fact that once the transients have

decayed, the drag forces incurred by the small motions X arising from the extension of the springs

are small, but not negligible, compared to the drag forces due to the rotation Θ̇ of the balls about

the shafts. Therefore, we solve Eq. (3.9) for X using iteration, finding

X ≈ −εH−1Θ̇ + ε2H−1 d

dt

(
H
−1Θ̇

)
. (3.14)

In terms of θi, we have

X ≈ ε

⎛
⎜⎜⎝
−θ̇1θ̂1 + 3

2
a
D θ̇2θ̂2

−θ̇2θ̂2 + 3
2

a
D

θ̇1θ̂1

⎞
⎟⎟⎠ + ε2

⎛
⎜⎜⎝
−θ̇2

1ρ̂1 + 3
2

a
D θ̇2

2ρ̂2

−θ̇2
2ρ̂2 + 3

2
a
D

θ̇2
1ρ̂1

⎞
⎟⎟⎠ , (3.15)

where we have only retained terms of O(a/D).

In Eq. (3.15), we have discarded terms of the form θ̈i, since they are O(a2/D2). To see why,

observe that for time scales longer than Tk, the motion is characterized by two well-separated time

scales, T1 and Ts. The form of the interaction suggests that Ts ∝ D/a. To explicitly account for

the multiple scales T1 and Ts, write [83]

θ1,2 = ω(τ )t ∓ Δθ(τ )/2, (3.16)

where τ = at/D describes the slowly-varying time dependence of the rotational frequency and the

phase difference. Note that ω(τ ) is the average angular speed, and Δθ is the average phase differ-
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ence. The angular speed and phase difference also have rapidly vary parts with zero average, but

these are lower order in a/D [83]. Equation (3.16) shows that the leading term of θ̈i is (a/D)ω′(τ ).

But since the average rotation speed ω is constant in the absence of interactions, ω′(τ ) must be at

least O(a/D). Thus, θ̈i is at least O(a2/D2).

To find the governing equations for angular speed ω and phase difference Δθ, substitute the

shaft displacements xi from Eq. (3.15) into moment balance, Eqs. (3.12–3.13). Finally, average

the resulting equations over a period, treating the slowly-varying variables ω and Δθ as constants

under the average. We find that the average dimensionless speed is given by

ω = 1 +
ΔM

M1
+

9

8

a

D
cosΔθ. (3.17)

The interacting paddles turn faster than they would in isolation. This result is in contrast with

our paddle experiments, where we saw in §3.2 that the asymmetric paddles rotated more slowly

compared to an isolated paddle. It is too much to demand that our far-field theory captures every

aspect of the paddle experiments, since the paddles are close to each other in the experiment and

the theory is valid when they are far apart.

The dimensionless phase difference obeys

dΔθ

dt
= −9

2
ε

a

D
sin Δθ +

ΔM

M1
. (3.18)

These results (3.17–3.18) are equivalent to the results of reference [27]. For equal driving torques,

ΔM = 0, Eq. (3.18) shows that the paddles synchronize to Δθ = 0, independent of the initial value

of Δθ, in (dimensional) time Ts ∼ (D/a)(kR2/M1)T1, or

Ts ∼ D

a

kR2

M1

6πηaR2

M1
. (3.19)

When M1 �= M2, the paddles phase-lock with a nonzero phase difference, which increases to π/2
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in the steady state as the torque difference increases to the critical value given by ΔM/M1 =

(9/4)(a/D)M1/(kR2). Note that the factor of a/D and the smallness of ε = M1/(kR2) mean that

M2 must be very close to M1 for the phase difference Δθ to have a fixed point. Thus, in the

derivation of Eqs. (3.17–3.18) we considered ΔM/M1 and T1Δθ̇ to be O(εa/D).

This simple theory predicts that Ts/T1 varies inversely with torque, whereas the experiments

show that Ts/T1 depends at most weakly on torque (Fig. 3.5). Again, the resolution of this discrep-

ancy is that the simple theory is valid in the far-field limit with D � a, whereas the experiments

are carried out in the near-field regime where Ts/T1 is independent of torque.

3.4.5 Physical explanation for phase locking

Each of the terms of Eq. (3.15) has a simple interpretation. First consider the limit of an isolated

paddle, a/D = 0. To leading order in ε, the ball on the end of the rod undergoes circular motion.

This motion leads to a drag in the −θ̂i direction, which stretches the spring along −θ̂i, which in

turn leads to an O(ε) component of the ball’s velocity parallel to the rod, along the ρ̂i direction (see

the left ball in Fig. 3.8a). In our dimensionless units, the ball exerts an O(1) force on the liquid in

the θ̂i direction, and an O(ε) force on the liquid in the ρ̂i direction. To get the displacement X,

we multiply these forces by ε, and thus get the O[(a/D)0] terms of Eq. (3.15). Now consider the

hydrodynamic interactions. For a given paddle, each of the forces just described induces a Stokeslet

flow, falling off inversely with distance, and leading to the O(a/D) terms in Eq. (3.15).

The drag forces on each paddle induced by the motion of the other are shown in Fig. 3.8. From

this figure we can see why the paddles synchronize. Suppose that the second paddle slightly lags

the first. Since the spring is flexible, the ball of the paddle on the left has a velocity component of

εθ̇1 along the rod as well as the component θ̇1 perpendicular to the rod (blue arrows, Fig. 3.8a, left).

This motion induces drag forces on the ball on the right (red dotted arrows, Fig. 3.8a, right), which

in our dimensionless units are down by a factor of a/D from the velocities. The components of

these forces perpendicular to the rod (green arrows, Fig. 3.8a, right) contribute to the hydrodynamic
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Figure 3.8: Physical explanation for synchronization. The figure is not to scale and the paddles
have been moved artificially close. (a) On the left we show the components of velocity of the first
ball (blue arrows). On the right, we show the components of the drag induced on the second
ball by the motion of the first ball (red dotted arrows), and the components that contribute to
the hydrodynamic torque on the second paddle (green arrows). (b) The same situation as (a),
but showing the velocity components of the second ball and the induced forces on the first. The
difference in the hydrodynamic torques tends to make Δθ = 0.



42

torque on the paddle. Likewise the motion of the paddle on the right (blue arrows, Fig. 3.8b, left)

induces forces that lead to hydrodynamic torques on the left paddle. The phase difference Δθ is

governed by the difference of the torques, which for small Δθ is given by the difference of the small

(green) arrows in Figs. 3.8a and b. The torque difference makes Δθ = 0 a stable fixed point (for

ΔM = 0).

3.4.6 Power dissipation

We may readily examine the question of power dissipation using our simple model. First note

that for fixed driving torques, the power dissipated decreases when the hydrodynamic resistance of

the paddles increases. Therefore, when Δθ = 0, the drag is minimized and the dissipation rate is

maximized. As ΔM increases, the increase in Δθ leads to greater resistance and therefore lower

dissipation rate. To leading order in ε, we may use Eq. (3.17) to show that the dimensionless power

averaged over one period, P = M1θ̇1 + M2θ̇2, takes the form

P

M1
= 2 +

9

4

a

D
cosΔθ. (3.20)

In general, the phase difference chosen by the system does not minimize the power dissipated.

The same conclusion has been reached for the hydrodynamic phase-locking of nearby swimming

sheets [78].

3.5 SIMPLE MODEL FOR SYMMETRIC PADDLES

3.5.1 Oseen model and nondimensionalization

To understand why the symmetric paddles lock phases with Δθ = π/2 when ΔM = 0, we model

the paddles as dumbells (Fig. 3.9). Each dumbell consists of two balls connected by a rod that does

not disturb the fluid as it moves. The midpoint of each rod is attached to a fixed point by a stiff
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Figure 3.9: Model for symmetric paddles. The figure is not to scale; note that a � R � D.

spring, and the balls at the ends of the rods have positions

r1± = −(D/2)x̂ + x1 ± Rρ̂1 (3.21)

r2± = (D/2)x̂ + x2 ± Rρ̂2, (3.22)

where xi is the displacement of the midpoint of the ith rod from the corresponding fixed point.

Denoting by fi± the forces that the balls on the ith dumbell exert on the fluid, the balance of forces

on each dumbell implies

−fi+ − fi− − kxi = 0, (3.23)

and the balance of torques implies

Mi + ẑ · (Rρ̂i) × (−fi+) + ẑ · (−Rρ̂i) × (−fi−) = 0. (3.24)

Assuming all balls are far apart, we again use the Oseen model, Eq. (3.7), this time extended to

the four balls labeled α = 1−, 1+, 2−, 2+:

vα =
fα

6πηa
+

1

8πη

∑
β �=α

[
fβ

|rαβ| +
(fβ · rαβ)rαβ

|rαβ|3
]

, (3.25)

where rαβ = rα − rβ. This is valid when R � a and D � a, but we will also assume D � R.

The θi �→ θi + π symmetry of the dumbells makes the hydrodynamic interaction between the
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dumbells more subtle than the asymmetric case. First observe that the spring of an isolated rotating

dumbell does not stretch since the net hydrodynamic force on the balls vanishes. Thus, xi = 0

when D → ∞. However, for finite D/R, the flow induced by the rotation of one dumbell causes

the spring of the other dumbell to stretch. To estimate the amount of stretch, consider the flow

induced by dumbell 1 at dumbell 2. The far-field flow is an asymmetric force dipole, also known as

a rotlet, falling off inversely with the square of distance [84]. Thus, the flow v21 induced at dumbell

2 is approximately v21 ∼ f1R/(ηD2), leading to drag on dumbell 2 of about ηav21 ∼ af1R/D2 ∼

aM1/D2. This drag causes the spring of dumbell to stretch, with a displacement

|x2|
R

∼ a

R

R2

D2

M1

kR2
. (3.26)

As in the previous section, it is convenient to measure length in units of R and time in units of

T1 = 6πηR2a/M1. Thus, the dimensionless displacement is |x2| ∼ εa/D2.

3.5.2 Far-field equations of motion

For each spring of a pair of rotating dumbells, the leading order stretch of the spring is second

order in D−1. However, to derive equations describing phase-locking of symmetric dumbells, we

will see that we must expand the displacements xi to O(D−3). These third order displacements

arise from reflections of the dipole force. For example, the O(D−2) deflection of spring 2 from the

dipole originating at dumbell 1 induces a point force at dumbell 2. This point force causes an

O(D−3) displacement at dumbell 1. As we will see, to find xi to O(D−3) we need only expand the
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Oseen tensor to second order in D−1. Thus, to second order in D−1, Eq. (3.25) becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1 + θ̇1θ̂1

ẋ1 − θ̇1θ̂1

ẋ2 + θ̇2θ̂2

ẋ2 − θ̇2θ̂2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1+

f1−

f2+

f2−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.27)

where H is the 8 × 8 Oseen tensor evaluated at x1 = x2 = 0 and expanded to O(D−2).

Before describing H, it is convenient to re-express Eq. (3.27) in terms of the sums and differences

of forces on each paddle, fi = fi+ + fi− and Δfi = fi+ − fi−, respectively. Note that in terms of

these variables, the dimensionless force-balance equation (3.23) becomes

−fi − xi/ε = 0, (3.28)

and the dimensionless moment-balance equations become

1 − Δf1 · θ̂1 = 0 (3.29)

1 +
ΔM

M1
− Δf2 · θ̂2 = 0, (3.30)

where M1 is the unit for torque. Returning to Eq. (3.27), we add and subtract the appropriate

rows of Eq. (3.27) and rearrange to find

Ẋ =
1

ε
AX + BΔF (3.31)

Θ̇ =
1

ε
CX + DΔF. (3.32)

where X and Θ̇ are defined as before in Eq. (3.10); the 4 × 4 matrices A, B, C, and D are given in
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the appendix; and

ΔF =

⎛
⎜⎜⎝

Δf1

Δf2

⎞
⎟⎟⎠ . (3.33)

Expanding in powers of D−1, we find (see Appendix)

A = A
(0) + D−1

A
(1) + O(D−3) (3.34)

B = D−2
B

(2) + O(D−3) (3.35)

C = D−2
C

(2) + O(D−3) (3.36)

D = D
(0) + O(D−3). (3.37)

Likewise, we expand X and ΔF in powers of D−1:

X = X(0) + D−1X(1) + D−2X(2) + · · · (3.38)

ΔF = ΔF(0) + D−1ΔF(1) + D−2ΔF(2) + · · · . (3.39)

Since B and C are O(D−2) at leading order, our order of expansion is sufficient for determining

X to O(D−3) and ΔF to O(D−5). At zeroth order, we find X(0) = 0, as expected, and ΔF(0) =

[D(0)]−1Θ̇, with

Δf
(0)
i =

2θ̇iθ̂i

1 − 3a/8
. (3.40)

Substituting Δf (0) into the moment balance equations (3.29–3.30), taking their sum and difference,

using Eq. (3.16) to eliminate θ1 and θ2 in favor of ω and Δθ, and integrating over one period yields

the dimensionless average speed and phase difference,

ω(0) = 1/2 (1 − 3a/8) (3.41)

Δθ̇(0) = (1 − 3a/8)ΔM/M1. (3.42)
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Since ω(0) and Δθ̇(0) are independent of D, they are the average speed and phase-difference, re-

spectively, for non-interacting dumbells. There is no phase-locking if there is no interaction, and

the phase difference increases in proportion to the difference in driving torques, ΔM .

Note that the factors of 3a/8 in Eq. (3.40) are due to the interaction between the two balls of

a given dumbell: one ball induces a disturbance flow of magnitude (6πηaθ̇)/(8πη2) = 3aθ̇/8 at the

other ball. This disturbance flow hinders the motion of the other ball.

The leading order displacements of the shafts are given by

Ẋ(2) =
1

ε
A

(0)X(2) + B
(2)ΔF(0). (3.43)

As in the case of the asymmetric paddles, this equation is readily solved to O(ε2); however, the

full expression is so cumbersome that we only report the result to leading order in ε and a in the

appendix. The next order contribution to the force difference is given by

0 =
1

ε
C

(2)X(2) + D
(0)ΔF(4). (3.44)

Again, the full expression for ΔF(4) is so cumbersome that we only report the leading order terms

in the appendix. Using ΔF(4) in the difference of the moment equations and averaging yields terms

proportional to Δθ̇, which do not lead to phase-locking. The average of the sum of the moment

equations leads to a decrease in the average rotation speed, which together with Eqn. (3.41) yields

ω =
1

2
− 3a

16
− 153

16

a2

D4
. (3.45)

The interacting paddle turn more slowly than they would in isolation.

The third-order displacement of the shafts is determined by

Ẋ(3) =
1

ε
A

(1)X(2) +
1

ε
A

(0)X(3). (3.46)
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Solving for X(3) (see Appendix for leading terms), and substituting into

0 =
1

ε
C

(2)X(3) + D
(0)ΔF(5) (3.47)

yields ΔF(5) (see Appendix for leading terms), which has terms that lead to phase-locking. Using

moment balance Eqs. (3.29–3.30) and averaging, together with the leading order result (3.40), yields

Δθ̇ =
1

2
ΔM +

243

8
ε

a3

D5
sin 2Δθ (3.48)

Equation (3.48) is the main result of this section. The (dimensional) synchronization time for

the symmetric paddles scales as

Ts ∼ D5

a3R2

kR2

M1

6πηaR2

M1
. (3.49)

When ΔM = 0, Eq. (3.48) has a stable fixed point at Δθ = π/2, in accord with our experiments

and the more accurate regularized stokeslet simulation of §3.3. As in the case of the asymmet-

ric paddles, the torque difference must be small for phase-locking to occur. The critical torque

difference, above which phase-locking cannot occur, is ΔMcrit = (243/4)εa3/D5. Note that the

average phase-difference in the phase-locked state depends on ΔM . Note also that the time for

phase-locking depends more strongly on separation for the symmetric paddles compared to the

asymmetric paddles. It is not easy to give a simple physical picture for why the paddle separation

D enters the synchronization time with a fifth power. We simply note two effects: (1) the flow

induced by the force dipole of one paddle reflects off the other paddle, and then again off the first

paddle, leading to four powers of D−1, and (2) the torque exerted by a flow on the paddle arises

from the difference in the flow at the two ends of the paddle, leading to another factor of D−1.

Our case is reminiscent of the fifth power that appears in the reorientation of oscillating dumb-

ells [79]. Although our experiments were not carried out in the far-field regime, we found that the

synchronization time depends more strongly on separation in the symmetric case compared to the
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asymmetric case (Fig. 3.3). Finally, we note that to leading order in D−1, the power dissipated in

the synchronized state is independent of Δθ, since the average rotation speed ω in the synchronized

state is independent of Δθ (Eqn. 3.45).

3.6 CONCLUSION

To summarize, we have presented perhaps the simplest experimental realization of the phenomenon

of hydrodynamic synchronization at low Reynolds number. The requirements for synchronization

are subtle: the system must have a slight flexibility to allow small shifts in the positions of the

paddles. Since this flexibility is generic, we expect that conditions allowing hydrodynamic synchro-

nization will commonly arise in a wide range of systems at low Reynolds number. On the other

hand, our work indicates that hydrodynamic synchronization is not robust, since it requires that

the driving moments be fine-tuned to be close to each other.



Chapter 4

Micron-scale droplet deposition on

a hydrophobic surface using a

retreating syringe

Bian Qian, Melissa Loureiro, David Gagnon, Anubhav Tri-

pathi and Kenneth S. Breuer. Physical Review Letters, 102,

164502, 2009.

Droplet deposition onto a hydrophobic surface is studied experimentally and numerically. A wide

range of droplet sizes can result from the same syringe, depending strongly on the needle retraction

speed. Three regimes are identified according to the motion of the contact line. In Region I, at

slow retraction speeds, the contact line expands and large droplets can be achieved. In Region II,

at moderate needle speeds, a quasi-cylindrical liquid bridge forms resulting in drops approximately

the size of the needle. Finally, at high speeds (Region III), the contact line retracts and droplets

much smaller than the syringe diameter are observed. Scaling arguments are presented identifying

50
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the dominant mechanisms in each regime. Results from nonlinear numerical simulations agree well

with the experiments, although the accuracy of the predictions is limited by inadequate models for

the behavior of the dynamic contact angle.

4.1 INTRODUCTION

Contact dispensing methods of fluids are widely used in a variety of applications including direct

scanning probe lithography [32], micromachined fountain-pen techniques [33, 85], electrowetting-

assisted drop deposition [86] and biofluid dispensing applications [87, 88]. The process is, at first

glance, straightforward and is initiated by the formation of a liquid bridge between the substrate

and a dispensing syringe. As the syringe retreats, the liquid bridge stretches, grows and breaks,

leaving a drop on the substrate. A seemingly simple question can be asked - how does the drop size

depend on the syringe geometry, speed and the fluid properties? A comprehensive answer must

consider the stability of the liquid bridge and the physics of the moving contact line at the liquid-

air-solid interface - both difficult problems. Theoretical studies of liquid bridge stability date back

to Rayleigh [36], and have been extended to include gravity and non-cylindrical geometries [89, 41].

In addition, the nonlinear dynamics have been solved numerically, using both 2-D (axisymmetric)

[51] and 1-D (slender-jet) [90, 48] models. Previous work has concentrated on geometries in which

the contact line is pinned at both ends of the liquid bridge [91, 48], and there are only a few results

that couple the liquid bridge with a moving contact line [92, 52]. A possible reason for this is the

difficulty in solving the flow near the contact line where the continuum equations are invalid [93, 94]

and a microscopic description must be imposed (e.g. [95]). In this letter, we focus on the physics of

drop dispensing on a flat, smooth, hydrophobic substrate in which the contact line is free to move

and is inherently coupled with the liquid bridge stability. Experiments and numerical simulations

are used to identify a range of complex flow phenomena which enable the deposited drop size to

vary by two orders of magnitude as the syringe retraction speed is changed.
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4.2 EXPERIMENT

In our experiment, a stainless steel syringe (typical radius, R = 200μm) is mounted vertically on a

computer-controlled stage. The syringe is connected by a small tube to a 10cc barrel mounted on

the same stage. This configuration maintains a constant hydrostatic head, H , at the syringe tip

(H ∼ 4cm). The fluid (a 85-15 mixture by volume of glycerol and water) has viscosity μ = 84cP

and surface tension γ = 0.063N/m. The fluid exhibits a static contact angle of ∼ 90◦ with the

substrate, a smooth glass slide coated with a monolayer of octadecyltrichlorosilane (OTS). The

syringe is brought down towards the substrate, stopping ∼ 40μm above the surface so that the

meniscus touches the substrate and spreads, partially wetting the surface to form a stable drum-

shaped liquid bridge (Fig. 4.1). As the syringe retracts at a constant speed, U , the liquid bridge

elongates and evolves due to the changing height, h, fluid flowing into the bridge through the

syringe, (characterized by an inflow velocity, uf , and the motion of the contact line between the

bridge and the substrate (characterized by a contact line position, r, and speed, uc). At a critical

height, hp, the liquid bridge becomes unstable and pinches off rapidly, leaving a drop on the surface.

A high speed camera (Photron APX) equipped with a 5X Mitutuyo lens was used to capture the

motion of drop dispensing at frames rates up to 10kfps, with a resolution of 3.33μm/pixel. The

experiment was carried out using several syringe diameters, hydrostatic pressures and retraction

speeds, and conducted multiple times to ensure repeatability.

Given the simplicity of the experiment, the resulting drop size, rd, shows a surprisingly complex

dependence on the syringe speed (Fig. 4.1). The data can be divided into three regions, categorized

according the to motion of the contact line. At low retraction speeds (Fig. 4.1-I), the flow from the

syringe into the liquid column is relatively high, and a bulging liquid bridge forms. The contact

angle on the surface exceeds its equilibrium value, and the contact line expands outwards. In this

regime, arbitrarily large drops can be formed, with the drop radius scaling with U−1/2. As one

increases the syringe speed (Fig. 4.1-II), the bridge elongation balances the incoming flow and the
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Figure 4.1: Typical sequence of images of drop dispensing at syringe speeds of (I) 15μm/s, (II)
35μm/s and (III) 400μm/s. The syringe radius is 205μm. (b) Dispensed drop radius, rd vs.
syringe speed, U , illustrating the three regions: expanding contact line (I), pinned contact line (II)
and retreating contact line (III).
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contact line becomes stationary. In this regime, a quasi-cylindrical liquid bridge forms, finally

pinching off as it becomes unstable. The resultant drop size still scales with U−1/2. However, there

is a jump in the drop size between the fixed and expanding contact line regimes due to a jump

in the pinch-off height, hp, (Fig. 4.2). A third regime is achieved by increasing the syringe speed

further (Fig. 4.1-III) The liquid bridge initially adopts a catenoidal shape, but as its contact angle

falls below the equilibrium value, the contact line retreats inward until, at some critical point, the

liquid bridge become unstable and pinches off. The rapid pinching motion drags the contact line

inwards at a very high speed (∼ 100 times the syringe speed), and due to this rapid retreating

motion, a small drop is deposited, with a diameter that continues to decrease until a minimum

drop size is reached, independent of retraction speed, with a diameter approximately one tenth

that of the dispensing syringe.
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4.3 SCALING ARGUMENT

We focus first on region II where the contact line is stationary, and the bridge near-cylindrical. In

this region the syringe speed is much smaller than the capillary wave speed, U/
√

γ/ρR = O(10−4),

viscous and inertial forces are small, and the liquid bridge can be considered as quasi-static. Since

the Bond number, Bo ≡ gρR2/γ, is small (O(10−2)), the hydrostatic pressure in the column is

approximately constant, dominated by the Laplace pressure set by the needle curvature, γ/R.

This state is amenable to the the classical Rayleigh stability analysis, which predicts that the

height-to-radius, Λ = hp/R, must be less than 2π to maintain stability [36]. Furthermore, for a

marginally-stable liquid bridge (i.e. Λ/2π = 1 + ε), the dimensionless volume, V ≡ vp/πR2hp, is

given by V = 1 + 2ε + 5ε2/2 + O(ε3) [89]. Rearranging this equation gives V = (Λ/2π)2 + O(ε2),

from which we find that vp ∼ h3
p. Assuming that the liquid flow from the syringe into the liquid

bridge, uf , is constant (driven by the net pressure difference, ρgH − γ/R), both the volume and

the height increase linearly with time: v ∼ uf t; h ∼ Ut, from which it is easily derived that the

pinch-off height at which the bridge becomes unstable, hp, scales like U−1/2, that the breaking time,

tp, scales like U−3/2, and that the drop radius, rd, scales like U−1/2. The experiments support this

scaling argument very well (Figs. 4.1-b,4.2, and 4.3).

4.4 NUMERICAL MODEL

In region I, where the contact line expands, the bridge is no longer cylindrical and the Rayleigh

stability criteria can be modified by a small parameter, δ = (1−w2)/(1+w2), where w = r(h)/r(0)

is ratio of the upper and lower contact line radii [41]. In agreement with the theory, we do see a

decrease in the pinch-off height, Λ, just as the contact line begins to expand (w < 1), although

δ quickly becomes too large for the perturbation analysis to remain valid. To address this, we

employ a numerical model, previously used in studying jet breakup and the stretching of a pinned

liquid bridge [90, 48] with modified boundary conditions to include moving contact lines. The
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Figure 4.3: Normalized drop sizes, rd/R, at different scaled syringe speeds U/uf for three syringe
radii: 205 μm (�), 255μm (©) and 320μm (�). The driving pressure, Δp = ρgH − (γ/R) is
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non-dimensionalized equations for conservation of mass and momentum are given by:

∂tr + ur′ = −ru′/2, (4.1)

(∂tu + uu′) = −κ′ +
3Oh

r2
[(r2u′)′] − Bo, (4.2)

while the evolution of the mean curvature, κ, (included to accurately predict the breakup beyond

the validity of slender-jet approximation [90, 50]) is described by:

κ =
1

r(1 + r′2)1/2
− r′′

(1 + r′2)3/2
. (4.3)

Here, u(z, t) and r(z, t) are the axial flow speed and column radius, normalized by the capillary wave

speed, ucp =
√

γ/ρR and the syringe radius, R respectively. Time, t, is normalized by the capillary

time,
√

ρR3/γ. A prime denotes the partial derivative with respect to the axial coordinate, z.

For our experiments, Ohnesorge number Oh ≡ μ/
√

ρRγ ≈ O(1). Note that the Weber number,
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the corresponding final drop size. (b) Corresponding numerical solution.

We = U/ucp
2
, should be small for the equations to remain valid [50].

The boundary conditions require that at the top of the liquid bridge, h = Ut, and that the

contact line is pinned, r(h) = R. The pressure here is the hydrostatic head minus the pressure

drop due to the flow: p(h) = ρgH − 8μufL/R2 (L is the length of the syringe), where the inflow

velocity, uf , is evaluated as uf = u(h). At the substrate, z = 0, a solid-wall boundary condition is

imposed, u(0) = 0. This last boundary condition is quite subtle, since the contact line may move

with time, and this must be consistent with the solution of the model equations. For a fixed contact
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line, r(0) is a constant and the apparent contact angle varies between (θa, θr) - the advancing and

receding equilibrium contact angles. For a moving contact line, the contact angle deviates from

the equilibrium contact angle in order to balance the viscous drag. In general this is a function

of the contact line speed, uc = ∂tr. Predicting the contact line behavior and the dynamic contact

angle is an area of active research (e.g. [95]). For simplicity, we use constant values for (θa, θr) of

100◦ and 80◦ respectively. The equations (4.1)-(4.3) were solved numerically [90]. Fig. 4.2 indicates

excellent agreement achieved between the numerical solutions and the experimental measurements

of the pinch-off height, bridge shape, and dependence on the syringe speed.

4.5 RESULTS AND DISCUSSIONS

4.5.1 Scaling velocity for dispensing speed

The speed at which liquid flows into the bridge, uf , is a critical scaling velocity, affecting the

pressure boundary condition at the top of the bridge and the rate at which the bridge volume

grows (which in turn plays a central role in the bridge stability and subsequent pinch-off). We can

estimate uf assuming Poiseuille flow through a syringe of length L, radius R, and driven by the

net pressure difference, Δp = ρgH − γ/R. This estimate differs by only a few percent from the

value predicted by the 1-D equations, The appropriateness of this scaling is confirmed in Fig. 4.3

which shows the resultant drop size rd/R, versus the scaled retraction speed, U/uf , for a series of

experiments obtained using three syringe sizes and three hydrostatic pressures (yielding values of

uf that ranged from 46-414μm/s).

4.5.2 Contact line speeds for retreating contact lines

The physics of the drop deposition changes abruptly in region III where the contact line begins to

retreat. High speed imaging was used to measure the contact line position r(0, t) from which its

speed, uc, was calculated (Fig. 4.4(a)). Initially, the contact line is at its maximum (r(0)/R ≈ 1),
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and has zero speed. As the syringe begins to retreat, there is a short period of acceleration, after

which time the contact line moves inward with approximately constant speed. However, at a critical

radius, approximately r(0)/R ∼ 0.5, we see a dramatic acceleration with uc/U reaching O(100)

immediately prior to pinch-off. In the constant speed region, uc/ucp � 1, inertial and viscous

forces are negligible and the contact line speed is thus determined solely from the mass balance and

pressure equilibrium in the bridge. Applying this balance, and the fact that our estimate for uf

does not depend on U , it is easy to show geometrically that uc/U ∼ 1 − uf/U , a trend confirmed

in both the experiments and simulations (Fig. 4.4).

The high-speed contact line phase is driven by the pinch-off instability, during which time a

strong capillary force pulls the contact line inward at increasing speed. As uc/ucp approaches unity,

the viscous forces become significant, and the contact line acceleration decreases immediately prior

to pinch-off. We also see that the radial location at which the pinch-off instability initiates moves

inward as U increases, and that this affects the final drop size (Fig 4.4a-inset). A detailed stability

analysis of the asymmetric liquid bridge with a moving contact line explains that the smaller bridge

volume corresponding to the higher syringe speed postpones the pinch-off instability, resulting in a

smaller drop [96]. However, as the syringe speed increases further, the location at which the contact

line begins its rapid acceleration moves back out, and the drop size increases (Fig. 4.4(a) inset).

A possible reason for this may be that the dynamic contact angle decreases, which destabilizes

the liquid bridge earlier [96]. The numerical model yields good comparisons with the experimental

results (Fig. 4.4b), capturing the general behavior in the constant speed region (including the

increase in uc/U with U) as well as the onset of rapid acceleration prior to pinch-off. However,

the model predicts the critical radius to be larger than that seen in the experiment. We believe

that the reason for this discrepancy is that the numerical simulation uses a static retreating contact

angle, θ = 80◦, while the contact angle observed in the experiment varies, from a value larger than

85◦ prior to the critical point, to a value as low as 60◦ during the acceleration phase. Furthermore,

these angles appear to depend on the syringe speed, U , and have a strong effect on the resultant
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dynamics [96]. A second reason for the degraded agreement between experiment and simulation may

be due to high radial velocities observed which violate the assumptions in the the one-dimensional

numerical approach considered here, although despite this, the numerical predictions are suprisingly

faithful.

4.6 CONCLUSION

In summary, the retraction speed of the syringe can exert a huge influence on the size of the resulting

droplet that remains on the substrate, with the transition between the three regimes identified being

determined by the balance between the flow into the liquid bridge and the onset of the pinch-off

instability. At the highest retraction speeds, the small droplet size appears to be determined by the

contact line speed, raising the possibility that even smaller droplets might be achieved on surfaces

that are smoother and/or exhibit higher contact angles. The numerical model provides surprisingly

accurate predictions of the dynamices, even in the regimes where the contact line motion and the

presence of viscous and inertial forces make the one-dimensional assumptions questionable.



Chapter 5

The motion, stability and breakup

of a stretching liquid bridge with a

receding contact line

Bian Qian, and Kenneth S. Breuer. submitted to Journal of

Fluid Mechanics, 2010.

The complex behavior of drop deposition on a hydrophobic surface is considered by looking a a

model problem in which the evolution of a constant-volume liquid bridge is studied as the bridge is

stretched. The bridge is pinned with a fixed diameter at the upper contact point, but the contact

line at the lower attachment point is free to move on a smooth substrate. Experiments indicate that

initially, as the bridge is stretched, the lower contact line slowly retreats inwards. However at a

critical radius, the bridge becomes unstable, and the contact line accelerates dramatically, moving

inwards very quickly. The bridge subsequently pinches off, and a small droplet is left on the substrate.

A quasi-static analysis, using the Young-Laplace equation, is used to accurately predict the shape

61
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of the bridge during the initial bridge evolution, including the initial onset of the slow contact line

retraction. A stability analysis is used to predict the onset of pinch-off, and a one-dimensional

dynamical equation, coupled with a Tanner-law for the dynamic contact angle, is used to model

the rapid pinch-off behavior. Excellent agreement between numerical predictions and experiments

is found throughout the bridge evolution, and the importance of the dynamic contact line model is

demonstrated.

5.1 INTRODUCTION

Contact drop dispensing is the process by which a liquid drop may be deposited on a substrate by

touching the surface with a wetted tip, such as a needle or a syringe. Although there are a variety

of approaches, the basic dispensing process is initiated by bringing a tip close to a flat substrate

so that a liquid bridge is formed between the substrate and the dispensing syringe, as sketched

in Fig. 5.1. As the syringe retreats, the liquid bridge stretches, grows, and breaks, leaving a drop

on the substrate. The technique has many industrial applications, including the printing industry

and dispensing of glue for packaging. Most recently, it has been adapted for a variety of novel

uses at small scales, such as direct scanning probe lithography [32], micromachined fountain-pen

techniques [33, 85] and in the formation of micro-arrays of biological materials [31]. Despite the

simplicity of the operation, the exact control of the dispensing drop size is complicated by several

factors, such as the syringe geometry, the dispensing speed, the liquid properties and the surface

wettability. For the accurate prediction of drop sizes, precise knowledge of how these factors affect

the dispensing process is required. In particular, an accurate prediction of the stability and the

breakup of the liquid bridge is needed.

The study of liquid bridges was pioneered over one hundred years ago by Plateau who experi-

mentally investigating the stability of an infinite vertical falling water jet [35], in which he observed

that the maximum ratio of the stable length to the jet diameter is about a constant π. The theo-
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Figure 5.1: Geometry and coordinate system for an axisymmetric liquid bridge with a free moving
contact line on the substrate.

retical derivation of the observed stable length limit was given by Rayleigh with a linear stability

analysis [36], which is known as Rayleigh-Plateau limit. Later broad applications of liquid bridges in

industry inspired intensive studies of the stability of a static weightless axisymmetric liquid bridge

confined between two circular disks, in which the critical height of the bridge as a function of the

bridge volume was theoretically calculated and experimentally tested [97, 98, 99, 100, 43]. The

influences of gravity and supporting disks unequalness on the stable limit were also investigated

during the past two decades [46, 44, 43, 41, 44, 45]. Although the study of static liquid bridges has

reached a level of maturity, the investigation of the dynamic stretching of a liquid bridge has to

wait until quite recently, due to the difficulties in experimentally recording the rapid bridge breakup

as well as the complexities associated with the mathematical treatments in theory [46, 101, 102].

The representative work by Zhang et al. [48] exhaustively investigated the dependence of breakup

features on the stretching speed and the liquid properties with both experimental and numerical

methods, and directly compared experiments with theory, finding quantitative agreement, despite

the fact that the the calculations were restricted to moderate stretching speeds due to the limitation
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of the 1D approximate model [47]. More recently, the numerical calculations have been extended

using two-dimensional models and used to investigate, among other things, the effects of different

supporting geometries [50] and the effects of surfactants [51, 52] on the breakup of a dynamically

stretching liquid bridge. All these previous studies, however, concentrated on geometries in which

both the upper and lower contact lines are pinned. In contrast, the contact drop dispensing prob-

lem is characterized by the fact that the lower contact line is free to move. This modification to

the liquid bridge breakup has not been addressed, perhaps due to the lack of accurate models for

the dynamic contact line behavior. However, this frontier too has seen recent progress, including

numerical simulations using a diffusive interface model [92], Navier slip boundary condition while

maintaining a constant contact angle [103], and an approach using an empirical, velocity-dependent,

dynamic contact angle model [52]. These studies have shown that the dynamic contact line is cru-

cial for the breakup dynamics of a stretching liquid bridge and for these reasons, we assume that

it has a strong effect on the drop size in the contact dispensing problem.

Previous experiments by our group concerning drop generation on a hydrophobic surface have

shown that, by changing the speed of the retracting needle, one can control the contact line motion,

and through these means, one can generate a broad range of drop sizes using a single syringe [49].

The drop dispensing physics can be divided into three regions: expanding contact line, fixed contact

line and receding contact line. For low syringe retraction speeds, U , the contact line slowly expands,

and arbitrarily large drops can be generated. In these regions, the drop sizes, rd, were shown to

vary as U−1/2, and due to the low syringe speed and the slow contact line motion, the bridge

evolution and breakup was well-predicted by quasi-static theory using Rayleigh-Plateau instability

theory, and its extensions for non-cylindrical bridges [41, 89, 45]. However, for higher values of U ,

the contact line recedes, and the process is more complex, and was observed to be comprised of two

phases [49]: an initial phase characterized by a slow (quasi-static) contact line retraction, followed

by a very rapid phase in which the contact line speed is comparable to the capillary wave speed,

and during which the contact line angle is seen to depend on the speed, and to be significantly
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lower than its quasi-static value.

The retreating contact line mode of droplet deposition is of great technical interest, since it allows

micron-scale droplets to be deposited using millimeter-scale hardware. However, the complexities

of the governing physics are considerable and several questions were left unanswered by the original

experiments of Qian et al. [49]. These questions include determining when the contact line starts

to move, at what point does the bridge become unstable and begins to pinchoff, and lastly how the

final drop size depends on the liquid-surface interaction. In this article, we address these questions

by studying in detail the drop dispensing in the receding contact line region using both experimental

and numerical tools. To facilitate the study, we have simplified the drop dispensing problem in one

aspect, and we consider drops dispensing from a constant-volume liquid bridge, instead of a bridge

defined by a constant pressure at the upper boundary (fed by the flow from a reservoir through a

syringe). In our experiment, the dispensing drop sizes and the contact line motions were measured

for different dispensing speeds and liquid volumes. Our theoretical analysis is divided into three

components: (a) a quasi-static analysis using the Young-Laplace equation to describe the initial

bridge evolution (although, still allowing for slow contact line motion); (b) a stability analysis to

predict the onset of the bridge pinchoff process and finally (c) a quasi-one dimensional dynamic

analysis to model the rapid contact line motion and pinchoff process. In this last stage, we employ

a moving contact line model with a dynamic contact angle.

The article is organized as follows: the experimental setup is depicted in Sec. 5.2. The equilib-

rium (quasi-static) and accompanying stability analysis is stated in Sec. 5.3.1, while the dynamic

model and relevant boundary conditions are described in Sec. 5.3.2. Experimental results present

in Sec. 5.4.1. The stable state of the liquid bridge with a moving contact line is determined in

Sec. 5.4.2. Numerical calculations are shown and discussed in Sec. 5.4.3.
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5.2 EXPERIMENTAL SETUP

The experiment setup (Fig. 5.1) is similar to the one in our previous study [49], but modified for

constant volume dispensing. A cylindrical rod (diameter 510μm) is mounted to a 3D motorized

stage which is capable of moving at speeds U = 10 − 1000μm/s with sub-micron accuracy. The

liquid used is 85/15 (volume) glycerin/water mixture which has density ρ = 1.222 × 106 (g/m3),

viscosity μ = 84cp and surface tension γ = 63 (g/s2). The substrate is a piece of smooth glass

slide coated with a monolayer of OTS, on which the liquid exhibits a contact angle ∼ 90◦ ± 5◦.

Limited experiments were conducted on a less hydrophobic substrate. The small volume of liquid

(typical volume 0.2μL) is loaded on the substrate with constant pressure dispensing [49]. The

loaded liquid drop is vertically aligned with the dispensing rod which is moved horizontally by a

motorized stage. As the rod approaches to the liquid drop, a small constant volume liquid bridge is

formed. For measurements at one volume value, multiple dispensing are taken on the same spot of

the substrate so that the liquid only needs to be loaded once, which reduces the effect of potential

volume variations induced by liquid loading. The size of the liquid bridge is monitored during

the data acquisition and it was confirmed that the maximum volume variation due to evaporation

is less than 1%. A high-speed camera (Photron APX) equipped with a 5X Mitutuyo lens was

used to capture the evolution of liquid bridges at frames rates up to 10 kfps, with a resolution of

3.33μm/pixel. The recorded images analyzed using MATLAB.

In our experimental system, there are three governing dimensionless numbers: Weber number

We ≡ ρU2R/γ ∼ O(10−6), Bond number Bo ≡ gρR2/γ ∼ O(10−2), and Ohnesorge number

Oh ≡ μ/
√

ρRγ ∼ O(1). These three dimensionless groups represent the relative importance of

inertial force/surface tension, gravity/surface tension and viscous force/surface tension respectively.

The Ohnesorge number can be view as a Capillary number Ca ≡ μucp/γ based on the capillary

wave speed ucp =
√

γ/ρR and it is used to compare viscous force/surface tension for liquid bridge

breaking. However, before the bridge breaking, the flow speed inside the stretching bridge has
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the order of the rod speed U and therefore the capillary number Ca≡ μU/γ based on the the rod

speed is a more appropriate measure of the relative importance of viscous force/surface tension.

For our setup, the Weber number We∼ O(10−6) and the Capillary number Ca∼ O(10−3) are small

so that the inertial and the viscous force in this phase are negligible compared to the surface force.

Therefore, the bridge shape is considered to be in equilibrium at each instant of time and the

stretching can be treated quasi-statically.

5.3 THEORETICAL CONSIDERATIONS

5.3.1 Stability of an equilibrium static liquid bridge

Based on the coordinate system defined in Fig. 5.1, the static equilibrium profile of an axisymmetric

liquid bridge is described by the Young-Laplace equations,

r′′(s) = −z′(s)β′(s), (5.1a)

z′′(s) = r′(s)β′(s), (5.1b)

β′(s) = −z(s) + P−P0√
ρgγ

− z′(s)
r(s)

(5.1c)

with appropriate initial conditions r(0), r′(0) = cos(θ), z(0) = 0, z′(0) = sin(θ), β(0) = θ. Here s is

the arc length of the free surface with its origin on the substrate and a prime denotes differentiation

with respect to the arc length. r(s) is the radius of the liquid bridge, z(s) is the vertical distance

from the substrate, and β(s) is the angle between the radial axis and the tangent to the interface.

ρ and γ is the liquid density and surface tension. g is the standard gravity constant. The pressure

difference (P − P0) across the liquid interface at the coordinate origin is adjustable to make the

solution satisfy the boundary condition of r(s∗) = R, in which s∗ is the point at the rod (z = h).

For a liquid bridge having a volume v and a height z(s∗) = h, only one of the two initial conditions:

the contact line radius r(0) and the contact angle θ should be specified to determine the shape and
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the other is a free parameter to fulfill the volume constraint:
∫ h

0
r2dz = v. Which initial condition

is to be specified depends on the motion state of the contact line: pinned or receding.

The stability of an equilibrium liquid bridge can be determined according to the method intro-

duced by [42], which is an eigenvalue problem

Lϕ0 + ν = αϕ0 (0 ≤ s ≤ s∗) (5.2a)

ϕ0(0) = 0, ϕ0(s
∗) = 0,

∫ s∗

0
rϕ0ds = 0, (5.2b)

Lϕ1 + 1
r2 = αϕ1 (0 ≤ s ≤ s∗), (5.2c)

ϕ1(0) = 0, ϕ1(s
∗) = 0. (5.2d)

Here

Lϕ ≡ −ϕ′′ − r′

r ϕ′ − a(s)ϕ, (5.3a)

a(s) = −r′(s) − β′2(s) −
(

z′(s)
r(s)

)2

. (5.3b)

ν is an unknown constant beforehand, and primes denote derivatives with respect to s. ϕ0 and ϕ1

correspond to the axisymmetric perturbations and the most dangerous nonaxisymmetric perturba-

tion to the liquid bridge respectively. α is the eigenvalues of Eq. 5.3. A positive sign of the smallest

eigenvalue signifies a stable equilibrium liquid bridge and a vanishing smallest eigenvalue represents

the critical state of a liquid bridge. The stability boundary for a bridge with given contact line

radius, r(0), can be computed following the numerical algorithm described in [43] and then the

stability of the calculated liquid bridge is known.

The liquid bridge is assumed to stretch through a sequence of quasi-static states. At each state,

the bridge height is specified and the stable equilibrium bridge profile can be solved. Successively

applying the calculation for varying heights by a small step, we can track the evolution of the

bridge. This tracking process is terminated when the bridge stretches to a critical height at which no
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equilibrium solution exists or the solution becomes unstable. The critical height can be pinpointed

by iterating with a refined height step.

5.3.2 Numerical model of a dynamic stretching liquid bridge

Beyond the critical equilibrium state, the bridge starts breaking and its shape deforms quickly.

This is no longer on a quasi-static condition. To simulate the dynamic breakup, 2D Navier-Stokes

equations need to be solved with appropriate kinematic and traction boundary conditions [50]. To

simplify the mathematical treatment, Eggers used the slender-jet approximation to truncated the

high order terms in the 2D governing equations to arrive a set of 1D model equations [90],

∂tr + urz = −ruz/2, (5.4a)

(∂tu + uuz) = −γ
ρκz + 3μ

r2 [(r2uz)z] − g. (5.4b)

Here u(z, t) and r(z, t) are the axial flow speed and column radius. g is the gravity constant. The

full mean curvature, κ,

κ =
1

r(1 + r2
z)1/2

− rzz

(1 + r2
z)

3/2
, (5.5)

is maintained to precisely predict the bridge shapes. This model has been successfully applied

to studying jet breaking [90] and liquid bridge stretching [48, 49]. Comparisons in the numerical

results for stretching bridges with fixed contact lines, r(0)/R = 1, between the exact 2D model

and the approximated 1D model showed that the 1D model gives an accurate prediction of the

macroscopic features of the bridge breakup as long as the ratio of the stretching speed, U , to the

capillary wave speed, ucp =
√

γ/ρR, is much less than one [50]. In our experiment, a typical

capillary wave speed is 10 cm/s, which is much larger than the used stretching speeds. Although

close to the bridge pinch-off the high radial speed violates the assumption of the 1D model, we

nevertheless use this model to simulate the dispensing process, and will discuss its accuracy and
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limitations.

To solve the 1D equations (5.4 - 5.5), boundary conditions at both ends of the bridge should

be specified. At the top of the liquid bridge, the contact line is pinned, r(h) = R, and no flow

penetrates the rod surface, u(h) = 0. On the substrate, the axial flow speed is zero, u(0) = 0. Since

the contact line allows to move freely, r(0, t) is unknown and the contact angle rz(0, t) = cot(θ)

must be prescribed. The simplest way to model the contact angle is to define θ(t) as a constant.

However, the fixed contact angle model is not able to capture the contact angle dependence on the

contact line speed, uc = rt(0, t), [104, 95]. An improvement, thus, is to relate the contact angle to

the contact line speed using an empirical equation [105, 106]

uc = λ(θ − θr)
n. (5.6)

Here (θ − θr) is the deviation of the dynamic contact angle from the static receding angle. λ

is an empirically determined constant that is a measure of the contact line speed. n is another

empirical constant which was experimentally observed to be between 1 and 3 [106]. This dynamic

contact angle model has been successfully applied to simulate the spin coating [107] and pin-tool

printing [52]. In this paper, we adopted this model as a boundary condition into the numerical

calculation.

5.4 RESULTS AND DISCUSSIONS

5.4.1 Overall behavior of constant volume deposition

The general behavior of the drop deposition experiment is reviewed here, and summarized graphi-

cally in Fig. 5.2. As the rod retracts (and the bridge height, Λ = h/2R, increases), the liquid bridge

stretches, developing axial curvature (and hence negative pressure inside the liquid volume). The

measured receding contact line speed, uc/U , versus the contact line radius, Υ = r(0)/R, is shown
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Figure 5.2: (a) Typical sequence of images of drop dispensing on a hydrophobic surface with a
receding contact line. Two stages of contact line motions were observed: a slow retreating at the
beginning (top row) and a rapid retraction prior to the bridge pinch-off (bottom row). The rod is
510μm in diameter and it lifts at a constant speed 100 μm/s. (b) Corresponding measured contact
line locations Υ = r(0)/R as a function of bridge’s heights Λ = h/2R. The inset shows the contact
line speeds uc/U measured from the evolution of the contact line.
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for several retraction speeds, U , in Fig. 5.3 (for convenience, the contact line speed is defined as

positive when the contact line contracts). As discussed earlier, we identify two phases of the bridge

evolution. Initially, the contact line moves at a low speed which is comparable to the stretching

speed, uc/U ≈ 1. Below a critical radius the contact line accelerates quickly to a speed comparable

to the capillary wave speed . Although this behavior is generically similar to that observed in

constant pressure dispensing [49], we see two chief differences. Firstly, during the low-speed phase

of constant pressure dispensing, the normalized contact line speed, uc/U , shows a weak dependence

on U , whereas in the constant-volume case the speed collapses with no further dependence on the

stretching speed. This scaling confirms the assumption of quasi-static stretching during this phase,

since the contact line location, r(0), as well as the bridge shape, is solely determined by the bridge

height, h. In the constant pressure case, the weak dependence on U is due to the fact that the

bridge volume increases with time. Secondly, in the constant-pressure case, both the critical radius

at which the contact line starts to accelerate and the radius at which the contact line reaches its

maximum speed decrease with the retraction speed, U . In contrast, for the current case, there is

no discernible change in the critical radius as a function of U , and the variation in the maximum

contact line speed location is more moderate than was observed in the constant-pressure case.

In the rapid-retraction phase, plotting the dimensionless contact line speed (inset of Fig. 5.3) as

a function of the time to bridge breakup, tm, shows a power-law dependence, uc/ucp ∼ (tm/tcp)
−3/4.

Similar power-law behaviors have been observed in drop coalescence and wetting [108, 109, 110] who

also found that the scaling exponent depends on the type of force resisting drop deformation [111]

and the static equilibrium contact angle [110]. Note that the speed and time scale, ucp =
√

γ/ρg and

tcp =
√

ρR3/γ, are determined only by the liquid properties which is fixed in the experiment and

thus the dimensional maximum contact line speed weakly relies on the dispensing speed. However,

the dimensional contact line speed at the starting acceleration point does change with U and it

is approximately equal to U . Therefore, the time taken to accelerate to the maximum contact

line speed, and the distance that contact line retreats within that time both decrease with U .



73

Υ = r(0)/R

u
c
/
U

100

101

102

tm/tc

u
c
/
u

c
p

0.40.2 0.6 0.8

10−2

10−3

10−4

102100

Figure 5.3: Experimentally measured non-dimensional contact line speeds from constant volume
dispensing for U = 35(�), 80(
), 125(�), 200(�), 400(�) and 600(�)μm/s. The inset shows the
dimensionless contact line speed as a function of time to the breakup, tm. Speed and time is scaled
by ucp =

√
γ/ρg and tc =

√
ρR3/γ.

Combined with the fact that the critical radius is weakly dependent on the dispensing speed, we

can conclude that the deposition drop size should increase with the dispensing speed for constant

volume dispensing.

Drop size

This expected dependance of the drop size on the retraction speed is confirmed in Figure 5.4, which

shows the change in the dispensed drop size as a function of the rod speed for several different liquid

volumes. As argued above, for a given volume, the drop size increases as the rod speed increases.

This contrasts to that observed in constant-pressure dispensing, in which drop sizes dramatically

decreases with increasing syringe speed, reaching a minimum the drop size, after which rd starts

to increase slowly [49]. Comparison of drop sizes between different bridge volumes reveals that

enlarging the volume causes the drop size to increase, and furthermore, that the increase with U

is more apparent for the larger initial volumes. Additionally, some data (not presented here) from

experiments using a less hydrophobic surface (θr = 70◦ ± 10◦) shows that the drops generated on

the less hydrophobic surface are larger than on a more hydrophobic surface for the same bridge
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Figure 5.4: Experimentally measured dispensing drop sizes vary with rod speeds for three bridge
volumes. The liquid bridges have a static receding contact angle θr ∼ 85◦ on the surface. Also
shown are drops dispensing on a less hydrophobic surface θr ∼ 70◦(�) for one volume value V = 0.42.
The rod has a diameter 510μm.

volume. Unfortunately, difficulties in preparing consistent surfaces with a variety of contact angles

prevented us from systematically investigating the effects of surface wettability on the resultant

drop size.

5.4.2 Stability of static liquid bridge

Having described the overall behavior of the drop deposition, the following sections use the analyt-

ical methods described earlier to quantitatively model the details of both the static, and dynamic

phases of the process. In this section, we use the calculation procedure, described in sec. 5.3.1, to

predict the point at which the contact line first moves inward, and the critical contact line radius

at which the bridge becomes unstable.

The first movement of a contact line

The stable state of a liquid bridge with a fixed contact line can be determined in a plane of

dimensionless bridge height, Λ = h/2R, and volume, V = v/πR3 (Fig. 5.5). Initially, the liquid

bridge is cylindrical, with the contact line at Υ = r(0)/R = 1 and the contact angle at 90◦,
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Figure 5.5: Starting moving point of a fixed contact line Υ = 1 on the (Λ, V ) plane under a
constraint of the contact angle θ ≥ θr . The solid line is the stable limit of an axisymmetric liquid
bridge with Υ = 1 and no contact angle constraint. The dash line is the level line on which the
bridges have the same contact angle θ. The dotted line shows the evolution path of a stretching
liquid bridge of constant volume.

represented by the left-most contour. The experimental evolution follows a horizontal line, starting

at this left-most line, and moving towards the right (indicated by the dotted arrows). As the rod

retracts, the liquid bridge stretches and the contact angle at the substrate changes, first decreasing,

and then increasing again. However, the bridge cannot be extruded indefinitely, and the stability

boundary at which a statically stable bridge can no longer exist (Eq. 5.3) is shown as the solid line

on the right side of Fig. 5.5. Crossing this boundary marks the onset of the rapid retraction phase.

This example is only valid for the bridge whose contact line is pinned at Υ = 1. If there exists an

additional wetting angle constraint, θ ≥ θr , the contact line may move before the bridge pinchoff.

In this situation, as Λ increases, and it crosses the contour at which the static contact angle, θ,

equals the receding contact angle, θr, the contact line will start to retreat, at which point a new

series of Λ − V maps, each representing the instantaneous value of Υ need to be consulted.



76

bridge height Λ = h/2R

Υ
=

r(
0
)/

R

0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0 5◦

25◦

41◦

35◦

45◦

65◦

85◦

Figure 5.6: Static calculation of the locations of a free moving contact line Υ as a function of the
bridge height Λ under a contact angle constraint θ ≥ θr . Calculated evolution curves (solid line)
are shown for different limiting wetting angles θr . The doted line shows the theoretical possible but
not practically feasible contact line locations. The dash-dot line shows the boundary across which
the transition takes place from the fixed-receding-fixed contact line to the fixed-receding contact
line.

Evolution of freely moving contact lines

As the contact line moves, it is more convenient to analyze the problem in terms of the contact

line position, Υ = r(0)/R, versus the bridge height, Λ. For a given volume in the liquid bridge, the

limiting wetting angles define three types of contact line behavior, and they can be identified on the

(Λ, Υ) plane: always-fixed contact line, fixed then receding contact line, and fixed-receding-fixed

contact line (Fig. 5.6). For a low limiting wetting angle, for example 5◦, the contact angle never

falls below the critical value, and the contact line is always pinned at its initial position Υ = 1 until

the bridge becomes unstable. During the stretching, the contact angle decreases initially and then

increases again (as predicted by Fig 5.5).

For large minimum wetting angle, such as θ = 65◦, the contact line is initially fixed, but as Λ

increases, the contact angle reaches its limiting wetting angle and the contact line start to recede.

The radius of the contact line continues to decrease monotonically with Λ (with the contact angle

at its limiting value). However, at a critical height, there exists no statically stable solution (the
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Figure 5.7: Evolution of contact lines from static calculation (solid) compared to those from exper-
iments at three different stretching speeds U (dash) . The insets show the comparison of calculated
bridge shapes (white line) to that imaged from experiment at a stretching speed U = 35μm/s.

evolution path becomes vertical), and the bridge breaks. Note that for a given contact angle, θ,

there exists a second static equilibrium solution (dotted lines) for the same height Λ, but with a

different contact line radius, Υ. However, in our experiments the contact line recedes smoothly and

no“radius jumping” was observed, so the lower branch of the static solution (dotted line) was not

practically accessible.

For intermediate limiting wetting angles, for example, θ = 35◦, the initial contact line behavior

is as before: fixed initially, then retreating. However, for these cases, the theory predicts that when

the bridge elongates to a certain height, the contact line reaches a minimum radius and then starts

to expand (dotted line). In practice, however, contact angle hysteresis will result in a different

observed path, and the contact line will stop moving while the contact angle grows above the

receding angle (a horizontal line on the Λ−Υ plane). One might then observe a situation in which

the contact angle grows to its limiting advancing value, at which point the contact line would then

expand, now on a different θ line.

In our experiment, the liquid on the substrate exhibited a high static receding contact angle

(∼ 85◦) and so only the fixed-receding type of contact line behavior was observed. From the
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Figure 5.6, it is clear that at a high limiting wetting angle the evolution path has a steeper slope

and the contact line radius, Υ, reduces faster with the stretching height. The end point of a evolution

path denotes the critical radius at which the bridge breaks. For the fixed-receding contact lines,

the breaking height and the critical radius both increase with the reducing wetting angle.

The prediction for θr = 82◦ is compared with our experimental data (Figure 5.7) for three

retraction speeds. The angle chosen for calculation is slightly lower than the static receding angle

(∼ 85◦) observed in experiment due to the fact that the dynamic receding contact angle is always

a little lower than the static angle. The dynamic contact angle is velocity-dependent [106, 105, 95]

and it varies during the bridge stretching. However, during the quasi-static phase, the contact

line speed is so small that the variations in the dynamic contact angle variation are too small

to significantly affect the evolution path, and the static theory gives an excellent prediction of the

contact line motion and the overall bridge profile for all three rod speeds. Close to the critical state,

the contact line speed is much faster and the dynamic contact angle decreases more noticeably from

its equilibrium value. This behavior results in an increase of the breaking height with higher rod

speed. Additionally, as the rod speed increases, the viscous forces inside the liquid bridge are larger,

which help to stabilize the stretching bridge and further postpone the breakup [48]. For both these

reasons, the agreement between the experiment and the simple static theory is compromised in this

region.

Effects of volumes and minimum wetting angles on the critical radius

The critical radii at which the contact line starts to move, defined as Υ∗, are shown as a function of

the minimum wetting angles for four different bridge volumes in Figure 5.8). For each volume, there

exists a wetting angle below which the critical radius remains at Υ∗ = 1, meaning that contact

angle never reaches the minimum wetting angle and the contact line does not retreat during the

bridge stretching process. For these fixed contact line cases, the neutrally-stable state of the liquid

bridge is determined only by the bridge volume and height (V, Λ) [43]. However, if the wetting angle
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Figure 5.8: Calculated critical radius Υ∗ = r∗(0)/R as a function of limiting wetting angles θr from
static theory. Calculation are shown for four liquid volumes V = 0.42(�), 0.6(◦) , 1.0(�) , 1.6(♦).

is higher than this threshold, the critical radius monotonically decreases as the limiting wetting

angle rises. Since the higher limiting wetting angle is equivalent to lowering the surface wettability,

the bridge starts breaking at a smaller value of Υ on a more hydrophobic surface, which partially

accounts for smaller deposition drops (Fig. 5.11). Moreover, the comparison in critical radius

between different values of the bridge volume shows that, for the same minimum wetting angle, the

smaller the volume, the smaller the critical radius that can be reached.1

5.4.3 Dynamics of the stretching liquid bridge

The static theory discussed above yields good predictions of the evolution of the liquid bridge prior

to the critical state but, not surprisingly, it fails beyond this equilibrium boundary. To accurately

model the dynamic bridge breakup and the contact line motion after the critical state, numerical

calculations were performed using the one-dimensional model described in sec. 5.3.2. Both boundary

conditions - the fixed contact angle and the dynamic variable contact angle - were implemented

in numerical simulations to explore the effects of the velocity-dependent dynamic contact angle on

1For constant pressure dispensing, increasing the stretching speed is equivalent to lowering the rate at which the
volume increases, and thus decreasing the critical radius. Therefore, raising the syringe speed creates smaller drops
until the rod speed is much higher compared to the speed of fluid into the drop, at which the volume variation is
negligible and the effect of the dynamic contact angle variation becomes dominant.
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Figure 5.9: Calculated dispensing drop sizes (solid line) compared to experiment (symbols) for
three bridge volumes. Here a dynamic contact angle model was included in the calculations with
chosen parameters, λ = 0.02, n = 1, θr = 85◦. Also shown are dispensing drop sizes from fixed
contact angle calculation with θr = 80◦ for one volume V = 0.42 (dash line).

the drop dispensing process.

Predicting drop size

Figure 5.9 compares the calculated final drop sizes (solid line) for different rod speeds with those

obtained from experiments (symbols) for three bridge volumes. The dynamic variable contact angle

model was adopted in the numerical calculation, and the model parameters were adjusted to obtain

good agreement between theory and experiment. Given this, it is perhaps not surprising that the

numerical results agree well with the experiments, although it is reassuring that using a single set

of parameters (θr = 85◦, λ = 0.02, n = 1) we are able to capture both the trend in which the drop

size increases with rod speed, as well as the quantitative values obtained from experiment. Only at

large bridge volumes do the predictions deviate in any significant manner from the measurements.

For comparison, using a static contact angle, θr , (dashed line) in the calculations gives very poor

agreement with the corresponding measurements (squares) predicting drop sizes that are much

smaller and only weakly dependent on the rod speed.
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Contact line speed

The discrepancy between the predictions obtained using the fixed and the dynamic variable angle

calculations can be explained by the behavior of the contact line motion (Fig. 5.10-a). The contact

line speeds from the dynamic contact angle calculation (solid lines) are plotted along with a single

example from the fixed contact angle calculation (dashed line). Both calculations capture the

general behavior observed in experiment. In the slowly-receding stage, calculations using both

boundary conditions show only slight differences and both show little dependence on retraction

speed (due to small variations in the receding angles). However, upon entering the high-speed

stage, the contact line with a fixed contact angle moves much faster and the maximum contact

line speed is ten times higher than that obtained using the dynamic angle calculation. The higher

contact line speed leads directly to a smaller predicted drop size. In contrast, the contact line speed

obtained using the dynamic contact angle calculation agrees with the experimental measurement

not only in the slowly-receding stage but also in the high speed stage (Fig. 5.10-a). It is therefore

not surprising that the dynamic contact angle model has a good prediction of dispensing drop sizes

(Fig. 5.9). Comparing the maximum speeds found at different rod speeds shows that the radius at

which contact line speed achieves its maximum increases slightly with U , in agreement with the

experimental observation and the earlier discussion in sec. 5.4.1.

Also shown (Fig. 5.10-b) are the contact line speeds for three different bridge volumes, all

obtained using the dynamic contact angle calculation. It is obvious that the larger volume liquid

bridge experiences the sharp contact line acceleration at an earlier(i.e. larger) value of Υ, and

reaches a slightly lower maximum speed. Both of these contribute to the increase in the resultant

drop size as a function of bridge volume (Fig. 5.9).

Effects of surface wettability on drop sizes

The effects of different static receding angles on the dynamics of drop dispensing were not accessible

in our experiments due to the difficulty of obtaining high quality surfaces with different surface
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85◦ (solid line) and the fixed contact angle model θr = 80◦ (dash line). (a) Computed contact
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contact angle is applied as a boundary condition with parameters λ = 0.02, n = 1, θr = 85◦.
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characteristics. However, this is easily explored in the simulations by changing θr (keeping the

other parameters in the model fixed at λ = 0.02, n = 1). Figure 5.11 shows the contact line speed,

and resultant drop sizes for three static receding contact angles (V = 0.42, U = 200μm/s). It is

clear that as θr decreases (i.e. increasing wettability), the liquid bridge becomes unstable at a larger

critical radius, as predicted by the static analysis. However, in the dynamic pinch-off process, the

stronger viscous drag prevents the contact line from following the rapid traction of the liquid bridge,

which results in a lower maximum contact line speed and larger resultant drop size (Fig. 5.11).

Sensitivity of drop sizes to the model parameters

Finally, we have already seen that the predictions of the resultant drop size obtained using the

dynamic contact angle model are significantly more accurate than those obtained using the fixed

contact angle model, and so it is not surprising that the results obtained from the numerical

simulations are quite sensitive to the details of the dynamic contact angle model (parameters λ and

n) used (Fig. 5.12). For a fixed value of λ, the drop size increases with n at the same stretching

speed and this behavior is more pronounced at higher stretching speeds. The size increase with n

can be explained from the structure of the model (Eq. 5.6) by the fact that the maximum angle
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Figure 5.12: Influences of model parameters on the numerically calculated drop sizes. For λ = 0.03,
n = 1(�), 2(�) and 3(©). For n = 1, λ = 0.02(�) and 0.05(�). Here the liquid bridge has a
dimensionless volume V = 0.42.

variation, (θ−θr), is less than one as the contact line recedes. For the same angle difference (θ−θr),

increasing n causes the contact line speed uc to decrease, which, as we have seen above, leads to a

smaller resultant drop. As n → 0 the contact line moves with less dependence on the contact angle,

with which the drop size is expected to change slightly with the stretching speeds. For a fixed n,

raising λ causes drop sizes to decrease because the contact line speed uc is linearly proportional

to λ. Numerical experiments with varying λ for n = 3 shows that the drop size changes slowly

with λ as the contact line speed uc has a linear dependence on λ but is dominated by the power

term: (θ− θr)
n. In the limit of λ → 0, the contact line becomes immobile, which is identical to the

stretching bridge with a fixed contact line.

5.5 CONCLUSION

We have used experimental and theoretical methods to understand the role of volume and surface

wettability in the breakup of a stretching liquid bridge with a moving contact line. Unlike previous

studies in which both contact lines are fixed, this system is strongly influenced by the details of

the dynamic contact angle at the lower boundary, which controls the contact line motion and,
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through this, the point at which the bridge becomes unstable to pinchoff. The configuration has

many practical applications associated with drop dispensing from a syringe (constant pressure

dispensing), although in the current case constant volume dispensing was studied in order to simplify

the problem. Experimental measurements are reproduced with excellent accuracy using (i) a quasi-

static analysis to predict the initial evolution of the bridge and the onset of contact line motion,

(ii) a stability analysis to predict the onset of the rapid pinchoff of the column and (iii) a one-

dimensional dynamical model, incorporating a variable contact line model, to predict the unsteady

evolution of the bridge during the rapid pinchoff process.

For constant volume dispensing, a slight increase in the resultant drop size was observed as the

bridge was stretched faster, an increase which can be attributed to the reduction in the time between

the point at which the contact line starts to accelerate inwards and the point at which the liquid

bridge breaks. Also drop size dependence on liquid volume was observed in experiment and can

be explained (using the stability analysis) by the change in the critical radius as a function of the

bridge volume. In addition, the effects of the equilibrium wetting angle on the critical radius were

investigated within the framework of the the stability analysis and confirmed by both experiments

and numerical calculations.

The combined effects of volume and dynamic break help to interpret the observed trend of the

drop changing with the syringe speed in constant pressure dispensing, which shows a dramatic

decrease in drop size at the beginning and down to a minimum the drop size slightly increases

with the syringe speed. When the flow speed is still comparable to the syringe speed, the liquid

volume determines the critical state of the liquid bridge and the role of the dynamic angle is

insignificant. However, up to some point, the syringe speed is much higher than the flow speed and

it can be assumed the volume change due to syringe speed is negligible. Similar to constant volume

dispensing, the drop size slightly increases with syringe speed. The competition between the effects

of volume and dynamic contact angle leads to a minimum drop size at an optimized syringe speed.

We also quantitatively investigated the influence of the dynamic contact angle on drop dispensing
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by comparing the numerical results from calculations with conditions of fixed contact angle and

dynamic variable contact angle. Although calculations with both conditions capture the essential

features of the contact line motion, the numerical results from a dynamic contact angle model

showed much better quantitative agreements with the experimental measurements. In the fixed

contact angle calculation, the maximum contact line speed calculated is ten times higher than that

observed in experiment, a discrepancy that leads to the prediction of smaller drop sizes that are

observed in practice. Although the numerical calculation with a dynamic contact angle model

matches well with experiments, this agreement is achieved by adjusting the model parameters, and

it should be admitted that there is no general criteria for choosing the model parameters which

may change from case to case. Moreover, the 1D model can not solve for the radial flow which

will be significant when the contact line retreats at high speed. Exact numerical prediction of

the dispensing drop size requires solving the full (two-dimensional) governing equations with an

accurate model of the dynamic contact line, which couples length scales from microscopic (dynamic

contact line) to macroscopic(liquid bridge).



Chapter 6

Conclusion

Through the first part of the manuscript, we studied two problems of fluid-structure interaction at

low Re number. We first investigated the deformation of an elastic filament rotating in a viscous

fluid. Its dynamic behaviors at various rotational moments were measured and compared with

theoretical calculation. In addition, the governing dimensionless number was identified and its

relation to the propulsion efficiency was calculated. Secondly, we used a simple model, a pair

of rigid paddles, to demonstrate that hydrodynamic interaction indeed leads to synchronization.

And the dependences of synchronization on model parameters were explored experimentally and

analytically.

These studies can be extended to further examinations of microorganism locomotion. One

natural extension is to investigate the hydrodynamic interaction between multiple rotating paddles,

with connections to metachronal beating motions of cilia array. Another possibility is to investigate

the interplay of shape deformation and hydrodynamic coordination. The locomotion in complex

fluid is another area of future research, an area received increasing attention recently. Finally, the

influence of environmental and actuation noise, resembling the thermal fluctuation and biochemical

fluctuation of molecular motor for real bacteria, might be examined.

In the second part, we investigated contact drop dispensing on a hydrophobic surface. We

87
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measured the changes of drop size with the dispensing speed, identified three dispensing regions, and

proposed a scaling law governing drop dispensing. The mechanism in different dispensing regions

has been interpreted with the aid of contact line measurement, stability analysis and numerical

calculations. In particular, the dependence of liquid-bridge stability on the contact line movement

was thoroughly discussed.

However, several issues related to contact drop dispensing remain unresolved. The first and most

important one is the physical modeling of the rapid contact-line motions during bridge breakup.

Another important issue is how the fluid properties affect the drop dispensing process, especially

the influence of non-Newtonian rheology and dynamic surface tension in applications containing

complex fluid. Finally, the pressure distributed inside the dispensing and the dynamic dispensing

pressure control are crucial for determining and controlling the deposited drop size.



Appendix A

Oseen tensor for symmetric

paddles

For H evaluated at xi = 0 and the matrices A, B, C, and D defined in Eqs. (3.31–3.32), expanding

in powers of D−1 yields
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for the blocks on the diagonal of the Oseen tensor. For the blocks off the diagonal, we have

B =
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The second order spring deflection to leading order in ε and a is

X(2) = aε

⎛
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The fourth order force difference to leading order in a and ε is
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The third order spring deflection, leading order in ε and a,
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9
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Finally, again to leading order in ε and a,
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