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Chapter 1 

O1O Overview and Introduction 

Materials with small dimensions have become ubiquitous in technology and are 

increasingly driving research towards simultaneous realization of further size reduction, 

improved performance and better understanding of material behavior in the presence of 

surfaces, interfaces, and constraints. The application of such small dimensional materials 

is to be seen everywhere. Material selection in such systems is usually based on 

electronic, magnetic or optical properties of material and the design is often decided by 

the functionality. Ultrathin, submicron Copper/Aluminum films on Silicon substrate is 

one such system, now widely used in microelectronic circuits. Although electronically 

suitable, this system often suffers from mechanical stresses through a variety of 

mechanisms such as intrinsic stress during deposition, thermal mismatch, lattice 

mismatch and interface stresses [1]. Continued size reduction is accompanied with film 

stresses which exceed the material limiting values causing inelastic deformation or 

permanent failure through cracking. The inelastic deformation manifests itself in the form 

of dislocation activity within grains and diffusional flow between free surface and grain 

boundaries (GBs) of the film [2-5]. These can have an undesirable effect on the 
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performance and structural integrity during service and warrants research and improved 

understanding. 

In this thesis-work, we focus on three systems: (i) thin film deposition with mass 

transport between free surface and GBs as the dominant mechanism, (ii) stress evolution 

and subsequent pulverization in Lithium (Li) alloy battery electrodes during charging-

discharging operations, based on the interstitial diffusion mechanism, and (iii) dislocation 

shielding of a cohesive crack. 

1.1 Volmer-Weber thin film growth 

Our interest here is in studying the mechanism of diffusional flow between free surface 

and grain boundaries (GBs) in the context of stress development during thin film 

deposition. The broader aim behind the study is to enhance our understanding of the 

stress generating mechanisms during film growth process. Gao and co-workers [6-10] 

have shown that constrained diffusional creep in thin films causes material to be 

transported from the film surface into the GBs to form GB diffusion wedges, and that a 

crack-like singular stress field develops near the roots of the GB diffusion wedges [6-7]. 

The constrained GB diffusional creep mechanism captured the stress-temperature 

behavior of unpassivated thin copper films on substrate [11] and provided so far the only 

feasible explanation for experimentally observed glide dislocations on planes parallel to 

the film-substrate interface [12]. Compared to thermal cycling of as-grown films, thin 

metal films grown by the Volmer-Weber (V-W) mode can exhibit even more complex 

stress histories, which can be detected by measuring the substrate curvature and using 

Stoney’s formula [13]. The nature of stress in the film is related to three stages of V-W 

growth: (i) nucleation and growth of discrete islands; (ii) coalescence of existing islands 
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and formation of GBs leading to a continuous film; (iii) thickening of the continuous film 

with complete coverage of the substrate surface. For high mobility materials, the three 

stages of V-W growth have been associated with experimentally observed initial 

compressive stress, tensile stress and final compressive stress regimes as shown in Figure 

1.1 [14-17]. 

             

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: Schematic illustration of stress evolution during high mobility Volmer-Weber growth 
– interruption. 

 

Surface tension effects and adatom-substrate interactions are considered as possible 

mechanisms for initial compressive stress during the first stage of V-W growth [18-21]. 

The intermediate tension during the second stage of V-W growth has been linked to 

island coalescence [22-24]. Origins of the final compressive stress during the third stage 

of V-W growth are still being debated, with various proposed mechanisms attributed to 

surface stress effect due to change in adatom populations during growth [20-21], trapping 

of adatoms in interstitial sites near step edges/ledges [25] and excess chemical potential 

at the film surface due to high adatom concentrations during growth [26-28]. In Chapters 

3-4, using the mechanism of excess surface chemical potential during growth [26-28] in 
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conjunction with constrained GB diffusional creep model [6], we will study the effects of 

GB mobility on stress evolution during the third stage of V-W growth. The predictions 

are compared with experiments, with results in support of the proposed mechanism of 

“mass transfer between surface and GBs” for stress evolution during stage three of the V-

W thin film growth. 

1.2 Stresses and cracking in Li battery electrodes 

 
 
Figure 1.2: SEM micrographs of germanium films after (a) 1, (b) 10, and (c) 110 
discharge/charge cycles and optical micrograph of the sample after 300 cycles (d) [29]. 

 
The ever dwindling fossil-fuel supplies, related pollution effects and projected future 

energy needs of humanity have combined to make the development of radically improved 

energy storage systems a worldwide imperative. Rechargeable Lithium-ion (Li-ion) 

battery cells is one such device used widely as a secondary battery systems for portable 

electronic devices due to their high energy density, high operating voltages, low self 

discharge, and low maintenance requirements compared to conventional aqueous 

rechargeable cells such as nickel–cadmium and nickel metal hydride [30]. Li-ion batteries 

are based on the classical intercalation reaction during which lithium is inserted into or 
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extracted from both cathode and anode. Significant research has been directed towards 

finding materials with ever greater capacity for accommodating Li atoms to increase 

battery efficiency [31]. Graphitized carbon, the most common anode for Li-ion batteries, 

exhibits relatively small volumetric change, stable working voltage and good cycle 

performance. However, the chemical compound LiC6 limits the theoretical capacity of 

Li-C anodes to 372 mAhg-1 [32], which is deemed insufficient for high power 

applications [33]. Compared to the Li-C anodes, a variety of Li-alloy (LixM, M:= Sn, Si, 

Ge, Al) anodes show substantially higher theoretical capacity, high Li packing density 

and safe thermodynamic potential [33]. For example, as a potential candidate for anode in 

Li-ion batteries, silicon has a theoretical capacity of 4200 mAh g–1 with the formation of 

Li4.4Si alloy [34], which is substantially higher than that of carbon [29]. However, Si 

electrodes suffer from serious irreversible capacity and poor cyclability due to huge 

volume changes associated with the lithium ion insertion/extraction processes. This 

volume change compounded with high Li packing density often results in fast 

disintegration (cracking or ‘crumbling’) of the material [29,35-37] (Figure 1.2). This 

phenomenon, commonly referred to as “decrepitation”, has become a major obstacle for 

practical applications of Si and other high capacity materials in rechargeable Li-ion 

batteries. Existing strategies to prevent decrepitation of Si have mainly focused on using 

composite materials and reducing the alloy particle size. In the former approach, an 

electrochemically active phase is homogeneously dispersed within an electrochemically 

inactive matrix [33,38-39], with the inactive phase designed to accommodate the large 

strains generated by the active phase while maintaining the structural integrity of the 

composite electrode during the alloying/de-alloying processes. In the latter approach, the 
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emphasis is on reducing the size and experimenting with the geometry of the electrode. It 

has been shown that cracking of LixSn can be avoided in multiphase anodes with small 

particle sizes [40]. Nanostructured Si and Ge thin films exhibited superior performance 

during charge/discharge cycling compared to their bulk counterparts [41-42]. Anodes 

made of Cu nanorods plated with Fe3O4 showed an improvement by a factor of six in 

power density over planar electrodes while maintaining the same discharge time [43]. 

Recently, silicon nanowire electrodes of diameter less than 100nm have been found to 

accommodate volumetric strains as large as 400% without pulverization, while 

maintaining a discharge capacity close to 75% of its theoretical capacity with little fading 

during cycling [44]. These experiments are strongly suggesting that size reduction is an 

effective strategy in creating fracture resistant, high capacity battery electrodes. In 

Chapter 5, we will model the insertion/extraction of Li during galvanostatic (constant 

current) operation in an electrode as diffusion of interstitial atoms at the continuum level 

[45-50], while employing the cohesive zone technique [51-57] to investigate crack 

nucleation in an initially crack-free electrode due to diffusion induced stresses (DIS). 

1.3 Dislocation shielding of a cohesive crack 

Permanent failure of thin films through cracking or void formation as a stress relieving 

mechanism often occurs at the interfaces and has motivated much work on crack 

nucleation/propagation and understanding interfacial toughness of known critical 

interfaces in these systems [1]. On the modeling front, cohesive models of fracture 

originally developed to remove the crack tip stress singularity by accounting for cohesive 

interactions [51] or plastic deformation [52] have gradually evolved as an attractive tool 

to model crack initiation and propagation without an ad hoc failure criterion [53-57]. 
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More recently, cohesive models of fracture have been increasingly used to study crack 

propagation in cases where plasticity is accounted for by modeling individual discrete 

dislocations. This capability is especially important for modeling crack nucleation and 

growth in confined small scale structures like thin films on substrates and/or under cyclic 

fatigue conditions caused by thermal cycling. Discrete dislocation (DD) plasticity has a 

natural length scale (the Burgers vector) which is absent in conventional length-scale 

independent continuum plasticity models. Many experimentally observed trends have 

been captured by DD-cohesive fracture models [58-65]. The effect of dislocations to 

reduce the stress intensity factor of a crack tip is referred to as shielding and analytical 

expressions are derived for a mathematically singular crack by Lin and Thomson [66] 

and Weertman [67]. A natural question arises as to whether the concept of dislocation 

shielding of a singular crack is directly applicable to that of a cohesive crack and what the 

corresponding conditions are. If different, how does it impact the use and interpretation 

of cohesive models in modeling crack initiation and propagation? In Chapter 6, we will 

make an attempt to clarify the above questions through consideration of a Dugdale 

cohesive crack interacting with dislocations under mode I dominant conditions.  

1.4 Organization of this thesis 

The rest of the thesis is organized as follows. In Chapter 2, we present the basic 

formulation used throughout the thesis. In Sections 2.1 and 2.2 we discuss integral 

equation methods and cohesive zone models. In Section 2.3, diffusion at interfaces viz. 

GBs, and bulk diffusion is illustrated in relation to the stress in the system. In Chapter 3, 

we formulate the V-W growth problem under constrained GB diffusion model. In Section 

3.1, we summarize the experimental observations, and set up the model through 
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appropriate governing equations, initial conditions and boundary conditions in Section 

3.2. In Sections 3.3 and 3.4, the model is specialized to finite-inhomogeneous or infinite 

GB mobility with numerical algorithm and/or analytical solutions. In Chapter 4, the 

results are presented based on the numerical algorithm and the analytical solutions of the 

previous Chapter. Section 4.1 deals with a finite-inhomogeneous GB mobility, with Sub-

Sections 4.1.1 and 4.1.2 devoted to the formation of GB diffusion wedges and 

compressive stress evolution during thin film growth, respectively. In Section 4.2, the 

infinite GB mobility solution is compared with the Sn film deposition and growth 

interruptions experiments [28]. In Chapter 5, crack nucleation studies are performed in 

strip and cylindrical electrodes due to diffusion induced stresses (DIS) during 

galvanostatic opearation. In Section 5.1, we discuss the background for the study and in 

Section 5.2, DIS is evaluated for both strip (SubSection 5.2.1) and cylindrical geometries 

(SubSection 5.2.2) under galvanostatic boundary conditions. Section 5.3 sets up the 

cohesive model for crack nucleation and condition for localization spacing in the 

electrode. In Section 5.4, the critical conditions for crack nucleation are discussed for thin 

strip and cylindrical electrodes. In Chapter 6, the problem of dislocation shielding of a 

cohesive crack is studied. In Section 6.1, the dislocation shielding of a mode I Dugdale is 

analyzed. In Sub-Sections 6.1.2, the limiting solutions under very high and low cohesive 

strengths are derived and numerical analysis covers the intermediate cohesive strength 

regime in Sub-Section 6.2.2 through a couple of representative examples. In Section 6.2, 

the asymptotic formula (Appendix G) based on the analytical solutions of the previous 

Section are compared with the prediction of DD simulations1 for a large number of 

                                                 
1 DD simulations are carried by Dr. Audrey Chng, of Institute of High Performance Computing, Singapore. 
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dislocations interacting with a cohesive crack governed by the Trapezoidal traction-

separation law [54]. Appendices A-G, provide supplementary information dealing with 

details of numerical solutions encountered in Chapters 3-6. Finally in Chapter 7, the most 

important results of this thesis are summarized and possible avenues for future research 

are discussed. 
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Chapter 2  

2.Basic mathematical techniques and 

Formulation 

Stress-diffusion coupling and cohesive zone models in fracture mechanics are two central 

concepts underlying all the problems attempted in the thesis. The models developed with 

these concepts are formulated using the well-established integral equation methods in 

fracture mechanics. The first three sections provide an introduction to these concepts, 

methods, and solution techniques, which serve as a background for the particular 

problems covered in subsequent chapters. 

2.1 Integral equation method in fracture mechanics 

Integral equation method is one of the most widely used techniques to solve crack 

problems in fracture mechanics [68]. Its attractiveness over alternative numerical 

schemes such as finite element method stems from the ability to deal with mixed-

boundary value problems, efficiency (it reduces a partial differential equation in two-

dimension to a one-dimensional integral equation) and accuracy. 
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We first demonstrate the general procedure of formulating and solving crack 

problems using integral equation method through a finite straight crack (Griffith crack) of 

length a2  in an infinite elastic isotropic plane and subjected to a far-field tension ∞σ  as 

shown in Figure 2.1. The problem undertaken here is one of the simplest in its class with 

a well-known analytical solution [69], but is comprehensive enough to demonstrate the 

ideas such as dislocation density, Green’s function, Cauchy kernel, and singular integral 

equation. 

 

Figure 2.1: Crack of length 2a in an infinite plane with a far field stress ∞σ . The problem can be 
solved by superposition of a uniform stress and a crack with no far field loading but with crack 
face pressure equal to ∞σ . 
 
Due to the completely linear nature of the problem, we can apply superposition and split 

the original problem into a plane with no crack (Figure 2.1a) and a crack in the plane 

subjected to pressure (Figure 2.1b). The key idea behind the split is to obtain a problem 

with a known traction distribution on crack faces. Next we make use of dislocations, 

another well-known defect [70] to account for the crack opening due to the applied 

tractions on its face. This idea to represent crack opening using dislocations was 

= +
2a 
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∞σ

y 

x 2a 
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∞σ
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∞σ

∞σ
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pioneered by Bilby and Eshelby [71] and has since then being developed and used widely 

in the fracture mechanics community [67-68]. The dislocations considered here are 

fictitious i.e. they don’t actually represent plastic deformation and the Burgers vector 

magnitude varies continuously with position as opposed to the real Burgers vector whose 

magnitude and orientation are dictated by the crystal structure in the metals. The gradient 

of Burgers vector is called dislocation density and is denoted by ( )ξB  in the formulation 

below. Thus the crack problem in Figure 2.1b is transformed to calculating an appropriate 

dislocation density that accounts for the traction on its faces. Finally in order to relate the 

dislocation density to the traction on the crack faces, we make use of the Green’s function 

solution: the stress field produced at ( )yx,  by a dislocation with unit Burgers vector 

located along the crack line in the medium of interest. In Figure 2.1, the Green’s function 

along the x-axis due to a dislocation with Burgers vector ( )1,0  located at ( )0,ξ  along the 

crack line in an infinite isotropic elastic plane is given as [70] 

( ) ( ) )(
1

14
, 2 ξπ
ξ

−−
=

xv
ExG .                                                                                (2.1) 

Using linearity of the problem, the pressure along the crack faces in Figure 2.1b can be 

expressed as 

( ) ( ) ;, ∞
−

−=∫ σξξξ
a

a

dBxG              axa ≤≤− ,                                                     (2.2) 

or 

( ) ( ) ;14
)(

1 2

∞
−

−
−=

−∫ σπξξ
ξ E

vdB
x

a

a

               axa ≤≤− .                                    (2.3)   

The term ( ) 1−− ξx  in the Green’s function is called Cauchy kernel and the point ξ=x  is 

referred to as the singular point (i.e. as x→ξ , the Cauchy kernel tends to infinity). This 
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singular nature of the Green’s function is common to all crack problems and is an 

outcome of the singular nature of the dislocation stress field. Equation (2.3) is hence 

called as the singular integral equation with unknown dislocation density ( )ξB . In 

general the singular integral equation has the following form, 

( ) ( ) ( ) ( );,
)(

1 xgdBxkdB
x

a

a

a

a

=+
− ∫∫

−−

ξξξξξ
ξ

       axa ≤≤− .                                  (2.4)         

The function ( )ξ,xk  is the smooth-bounded part of the Green’s function and ( )xg  is a 

known function that depends on the tractions on the crack surface. Before moving 

further, we have to take into account the singularity of ( )ξB  at the crack-tips [68]. For 

Figure 2.1a, ( )ξB  has singularities at both crack ends and hence can be expressed as 

( ) 221 aR ξξ −  where ( )ξR   is a smooth function in ξ . Thus Equation (2.3) can be 

rewritten as, 

( ) ( ) ;14

1)(
1 2

22 ∞
−

−
−=

−−∫ σπξ
ξ

ξ
ξ E

vd
a

R
x

a

a

           axa ≤≤−                              (2.5)  

Even though the Cauchy term becomes infinite at x=ξ  and the dislocation density itself 

becomes infinite as a±→ξ , the integral in Equation (2.5) is well-defined in terms of the  

Cauchy Principal Value. This is a mathematical reflection of the fact that stress field in 

the interior of the crack face is finite. The crack-opening displacement can be expressed 

in terms of displacement density as, 

( ) ( ) ( )
∫∫

−
==Δ

a

x

a

x

d
a

RdBxu ξ
ξ

ξξξ
221

          axa ≤≤− ,                                        (2.6)  

where we have made use of the fact that crack-opening displacement is zero at the end 

ax = . This places a constraint on the dislocation density,  
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( ) ( )
∫∫
−−

=
−

=
a

a

a

a

d
a

RdB 0
1 22

ξ
ξ

ξξξ .                                                                         (2.7)  

Equations (2.5-2.7) are normalized over the interval [-1,1] to facilitate numerical 

integration. Thus with axx →ˆ , aξξ →ˆ  and ( ) ( ) ( )[ ]21ˆˆ νσξξ −→ ∞ERR , Equations (2.5-

2.7) become, 

( ) ;4ˆ
ˆ1

ˆˆ

)ˆˆ(
11

1
2

πξ
ξ

ξ
ξ

−=
−−∫

−

dR
x

     1ˆ1 ≤≤− x ,                                                         (2.8)  

( )
( )

( )
∫

−
=

−
Δ

∞

1

ˆ
22

ˆ
ˆ1

ˆ

1
ˆ

x

dR
a

xuE ξ
ξ

ξ
νσ

     1ˆ1 ≤≤− x ,                                                          (2.9)  

( )
∫
−

=
−

1

1
2

0ˆ
ˆ1

ˆˆ
ξ

ξ

ξ dR .                                                                                              (2.10)  

Equation (2.8) can be inverted in closed form, but this is usually difficult for generally 

encountered crack problems and we often have to resort to numerical methods. The 

numerical treatment of Equations (2.8-2.10) is done through discretization of the interval 

[-1,1] into finite number of points N . Equation (2.8) is imposed at 1−N  points 

1,...,1,ˆ −= Nixi  called as the collocation points and the integrals are evaluated using the 

points Njj ,...,1,ˆ =ξ  called as the integration points. All the existing numerical 

integration methods (quadrature) are based on such discretization and differ only through 

the respective location of the points [72]. Amongst these, the Gaussian quadrature 

methods are found to be most efficient in terms of accuracy for the same number of 

points N  [72]. The presence of square-root singularity doesn’t present any numerical 

difficulty as it is treated as a weight in the Gauss-Chebyshev quadrature [68,72] and can 

be very accurately integrated depending on the number of points N  and behavior of 
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( )ξ̂R̂ . For the integrals in Equations (2.8-2.10), the collocation and integration points are  

( ) 1,...,1,cosˆ −== NiNixi π  and ( )( ) NjNjj ,..,1,5.0cosˆ =−= πξ , respectively, based on 

the Gauss-Chebyshev quadrature, leading to the integration rule 

∑∫
=−

≅
−

N

j
jf

N
df

1

1

1
2

)ˆ(ˆ
ˆ1

)ˆ( ξπξ
ξ

ξ ,                                                                              (2.11) 

Thus the discretized version of Equations (2.8) and (2.10) is 

( )
;4

)ˆˆ(

ˆˆ

1

π
ξ

ξπ
−=

−
∑
=

N

j ji

j

x

R
N

           1,...,1,ˆ −= Nixi                                                   (2.12) 

( ) 0ˆˆ
1

=∑
=

N

j
jR

N
ξπ ,                                                                                                (2.13)  

which together comprises a system of NN ×  linear equations in the unknowns ( )jR ξ̂ˆ .  

Once the values of ( ) NjR j ,...,1,ˆˆ =ξ  are known, the crack-opening displacement is 

calculated based on Equation (2.9) as, 

( )
( ) ( ) ( )∑

=∞

=
−
Δ N

j
jj Rxk

Na
xuE

1
2

ˆˆ,ˆ
1

ˆ
ξξπ

νσ
,                                                                     (2.14) 

where  

( )
⎪⎩

⎪
⎨
⎧

≤≤

<≤−
=

1ˆˆ1

ˆˆ10ˆ,ˆ
ξ

ξ
ξ

x

x
xk .                                                                                     (2.15) 

The stress-field of the original problem in Figure 2.1 is given as 

( ) ( ) ( )∫
−

+=
a

a
ij

a
ijij dByxGyx ξξξσσ ,,, ,                                                               (2.16) 

where 22 ji
a
ij δδσσ ∞=  is the solution of part (a) and ( )ξ,, yxGij  is the thij stress component 

at ( )yx,  due to a dislocation at ( )0,ξ  with Burgers vector ( )1,0  in an infinite isotropic 



      16     

 

elastic plane [70]. Another very important quantity in Linear Elastic Fracture mechanics 

is the stress-intensity factor K , which can be expressed in terms of the crack-opening 

displacement gradient using Irwin’s asymptotic relationship [69]  

( ) ( ) ( ) ( ) ( ) ( )0,2Lim
14

0,2Lim
14 22 xBxaEx

x
uxaEK

axaxaxI −
−

=⎟
⎠
⎞

⎜
⎝
⎛

∂
Δ∂

−−
−

=
→→=

π
ν

π
ν

,    (2.17) 

or in terms of normalized variables, 

( )
4
1R̂

a
K

ax

I =
=∞ πσ

.                                                                                          (2.18) 

Similarly, the stress-intensity factor at the other end can be expressed as, 

( )
4

1ˆ −
−=

−=∞

R
a

K

ax

I

πσ
.                                                                                   (2.19) 

The values of ( )1ˆ ±R  can be calculated using the known values ( ) NjR j ,..,1,ˆˆ =ξ by Krenk’s 

interpolation formula [73] 

( ) ( )( )[ ]
( ) ( )[ ] ( )∑

= −
−−

=
N

j
jR

Nj
NjN

N
R

1

ˆˆ
25.0sin
5.05.0sin11ˆ ξ

π
π ,                                                     (2.20) 

( ) ( )( )[ ]
( ) ( )[ ] ( )∑

=
−+−

−−
=−

N

j
jNR

Nj
NjN

N
R

1
1

ˆˆ
25.0sin
5.05.0sin11ˆ ξ

π
π .                                            (2.21) 

The nature of singularity for the dislocation density depends on many factors like the 

physical situation or the type of crack i.e. centre/edge under investigation. Based on the 

singularity, the location of integration-collocation points jξ̂ - ix̂  and the expressions in 

Equations (2.11, 2.20-2.21) will change and are noted accordingly in the Appendices. In 

Chapter 3, we will encounter a Green’s function kernel with singularity 3)(1 η−x , which 

is stronger than Cauchy singularity due to the exponent being greater than 1. The 

methods of this section will require modification and are discussed in Appendix A.  
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In summary, an integral equation applied to crack problems requires finding the 

traction distribution on crack faces, appropriate Green’s function (which depends on the 

geometry and material properties of the medium) and identifying the singularity behavior 

of the dislocation density distribution. Once these things are in place, numerical methods 

[68] described here can be applied for the solution of a given problem. 

 

 

Figure 2.2: (a) Ahead of a crack tip, the surface separation δ  is related to the cohesive stress 
( )δσ  with the maximum cohesive stress cσ  referred to as the cohesive strength of material. 

When the tip opening displacement tδ  is equal to the maximum cohesive interaction distance cδ , 
crack growth is assumed to occur. Γ  is the cohesive energy and the cohesive zone size is L. (b) 
Cohesive zone technique applied to the centre crack problem of Figure 2.1. Cohesive zone acts in 
the region [ ]caa +−− ,  and [ ]aca ,−  with a given cohesive zone law ( )δσσ = . 
 

2.2 Cohesive zone models 

The original Griffith theory of fracture ignores the unphysical prediction of infinite stress 

at a crack tip and invokes thermodynamics through energy balance to obtain a fracture 

criterion [74]. Barenblatt [51] proposed an alternative, where the surface just ahead of the 

crack interacts through atomic or molecular cohesive forces opposing separation, as can 

be seen from Figure 2.2a. The relationship between the cohesive forces σ  and the 

separation δ  is called the cohesive law with cohesive energy ( )∫=Γ
c

d
δ

δδσ
0

. Crack 

extension occurs when the crack tip opening tδ  equals the maximum cohesive interaction 

2a 

∞σ

c c 

( )δσ

δ

( )δσ

δ

(b) 

δ = Separation distance 

δt = Tip opening displacement 

( )δσ

cδ
δ

cσ

(a) 

Γ

L 



      18     

 

range cδ . The maximum cohesive stress is called the cohesive strength cσ  and bounds 

the stress in the vicinity of the crack-tip. First principle calculations can be used to infer 

the exact form of the cohesive law ( )δσσ = . Nevertheless, it is often found that, once the 

cohesive energy Γ  and the cohesive strength cσ  are given, the exact profile of the 

cohesive law is immaterial. In literature, the popular cohesive laws are 

Dugdale/rectangular [52], trapezoidal [54], polynomial/exponential [53], triangular [75]. 

Historically, Dugdale [52] proposed the cohesive zone model around the same time as 

Barenblatt, but in an entirely different context. In an effort to model plastic deformation 

ahead of a crack-tip in a metal sheet, Dugdale assumed that yielding is confined in a 

narrow zone directly ahead of the crack tip and analyzed the model by viewing the effect 

of yielding as making the crack longer by an amount equal to the plastic zone size L , 

with cohesive stresses in the plastic zone acting on the extended crack surface so as to 

restrain the opening.  In his picture, the cohesive strength cσ  corresponds to the yield 

strength yσ  of material. Both the applied load and the cohesive stresses create inverse 

square root singularities at the outer tip of the plastic zone, but these singularities are of 

opposite sign and the zone size L  is chosen so that they cancel each other and bounded 

stresses result at the outer tip. Cohesive models of fracture have also been extensively 

used to model crack nucleation in an initially crack-free material [53-57]. In such models, 

a traction-separation law is assumed to act between separating surfaces and the criterion 

of crack nucleation is based on the maximum surface separation within the cohesive zone 

reaching a critical value.  

In the following, we will modify the integral equations developed in the previous 

section to deal with cohesive cracks through the example of centre crack in an infinite 
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plane discussed previously (Figure 2.2b). The crack surfaces now interact through 

cohesive zones at the crack ends with size c and cohesive zone law ( )δσσ =  between the 

surfaces. Making use of the superposition principle to account for the cohesive stress and 

noting that the surface separation ( )xuΔ=δ  (Equation (2.6)), the traction condition of 

Equation (2.3) becomes 
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Noting Equations (2.6, 2.18, 2.20), the cohesive zone size based on the cancellation of 

crack-tip singularity and crack extension criterion translate to, 

( )( )[ ]
( ) ( )[ ] ( ) 0ˆˆ

25.0sin
5.05.0sin1

1

=
−

−−∑
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−
=−Δ ∫

−
221

.                                                                    (2.24)  

The maximum cohesive interaction cδ  can be eliminated using the cohesive energy Γ , 

which itself is equal to the surface energy in the absence of any plastic deformation [74]. 

Although Equations (2.23-2.24) are based on the right crack-tip, the symmetry of the 

example (Figure 2.2c) automatically ensures satisfaction of corresponding conditions at 

the left crack end. The functional form of the cohesive law determines the linearity/non-

linearity of Equation 2.22 and needs to be solved together with Equations (2.23-2.24).  
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2.3 Coupling between stress and diffusion 

In our study, we are interested in exploring the interconnection between mass transport 

and stress. Deposition of high mobility thin films and charging-discharging in Lithium 

ion batteries to be studied in the thesis can be cited as examples of the interdependence 

between mass transport and stress. The mass transport process is modeled as a diffusion 

process at the continuum level, which can be bulk diffusion, meaning throughout the 

whole medium or localized diffusion like grain boundary diffusion. 

                         

Figure 2.3: A Closed contour lying on a surface. 

2.3.1 Mass conservation, driving force and kinetic laws of diffusion 

Figure 2.3 shows a surface that can either be a free surface or a grain boundary. The 

normal to the surface element is denoted as nr . An arbitrary contour lies on the surface, 

with the curved element dl and the unit vector mr . At a point on the contour, mr  and nr  are 

perpendicular to each other, and both are normal to the tangent vector of the curve at that 

point. 

The atomic flux, J
r

, is a vector field on the interface, such that mJ rr
⋅  is the number of 

atoms crossing  the contour per unit length per time. Let ξ&  be the number of atoms added 

mr

dl

nr
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to a unit area of the interface in unit time. Consider the interface area enclosed by the 

contour in Figure 2.3. Atoms move only on the interface, so that in the absence of any 

source, the number of atoms added to the area equals the number of atoms flowing across 

the contour. Thus 

0. =+ ∫∫ dlmJdA
A

rr&ξ .                                                                                          (2.25) 

The first integral extends over the area of the interface enclosed by the contour, and the 

second along the contour. Equation 2.25 is the global form of mass conservation and 

holds for any contour on the interface. Applying the Gauss divergence theorem, 

∫∫ ⋅∇=
A

dAJdlmJ rr. , where ∇  is the surface gradient operator. Thus   

( ) 0=⋅∇+∫
A

dAJξ& ,                                                                                            (2.26) 

which upon application of the Localization theorem [76] gives, 

0=⋅∇+ Jξ& .                                                                                                     (2.27) 

We can go through a similar exercise, if the process is bulk diffusion, except that the 

dimension of the Equation (2.25) is increased by one. Thus nJ rr
⋅  refers to the number of 

atoms crossing the interface per unit area per time and c&& =ξ  is the rate of change of 

concentration c , which is the number of atoms added to a unit volume of the medium. 

The movement of atoms across the interface affects the free energy of the system. The 

driving force F  is defined as the reduction of the free energy associated with one atom 

moving a unit distance on the interface. Using the Nernst-Einstein relation, the flux of the 

atoms can be related to F  as, 

( )[ ]
( )[ ]⎩

⎨
⎧ −Ω

=
bulkFkTDc

boundarygrainFkTD
J

δ
,                                                            (2.28) 
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where D  is the diffusivity, δ  is the effective thickness of the grain boundary, Ω  is the 

volume per atom, k  is Boltmann’s constant and T  is the absolute temperature. The 

diffusivity is further related to temperature through the Arrehenius relation 

[ ]( )kTQDD −= exp0 , where 0D  is a pre-exponential parameter, and Q  the activation 

energy.  

2.3.2 Chemical potential 

The chemical potential μ  of a diffusing element is defined as the increase of the free 

energy associated with the addition of one atom to the element.  Equating the change in 

free energy on account of the chemical potential as the driving force leads to 

μ−∇=F ,                                                                                                         (2.29) 

i.e. the driving force is the negative of the gradient of the chemical potential. As 

expected, atoms diffuse from a location with higher chemical potential to one with lower 

chemical potential. 

 2.3.3 Grain boundary diffusion 

In this thesis, a grain boundary is assumed to be in local equilibrium, with the atoms 

inserted into the grain boundary instantaneously attaining equilibrium, rendering the 

atomic structure of the grain boundary invariant. The inserted atoms may add to either of 

the two grains. Evidently, ξ&  only determines the relative motion of one grain with 

respect to other, but not the migration of the grain boundary itself. Denote the normal 

velocity of one grain relative to another by nυΔ , it being positive when the two grains 
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recede from each other. The atoms added to a grain boundary element cause the two 

grains to drift apart at velocity ξυ &Ω=Δ n . From Equation (2.27), 

0=•∇Ω+Δ Jnυ .                                                                                            (2.30) 

Let gbσ  be the normal stress component on the grain boundary. To insert one atom to the 

grain boundary, the normal stress does work Ωgbσ , leading to chemical potential 

GBGB σμμμ Ω−== 0 ,                                                                                      (2.31) 

where 0μ  is the reference chemical potential. Atoms diffuse along the grain boundary 

from an element of low-normal stress to an element of high-normal stress. Combining 

Equations (2.28, 2.30, 2.31) for homogeneous grain boundary diffusivity gives 

GBn kT
D σδυ 2∇

Ω
−=Δ .                                                                                       (2.32) 

This partial differential equation governs the normal-stress distribution in the grain 

boundary. 

2.3.4 Bulk diffusion 

From Equation (2.27), 

0=⋅∇+
∂
∂ J

t
c .                                                                                                   (2.33) 

Driving force for the bulk movement of atoms is provided by the gradient of the chemical 

potential, which for an ideal solid solution is expressed as [77] 

ckT ln0+=μμ .                                                                                                 (2.34)                

In writing this expression, we have not considered the influence of hydrostatic stress 

( ) 3zzyyxxh σσσσ ++= , which if accounted, contributes the term hσΩ−  to the right hand 

side of Equation (2.34). Atoms diffuse from a region of high concentration to a region of 
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low concentration. Combining Equations (2.28, 2.33, 2.34) and assuming homogeneous 

diffusivity leads to 

cD
t
c 2∇=
∂
∂ .                                                                                                      (2.35) 

This is the famous heat equation [78] which governs the concentration distribution in the 

medium. 
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Chapter 3 

.Volmer-Weber thin film growth: Formulation 

3.1 Compressive stress evolution during Volmer-Weber growth 

Steady state stress in the final compressive stress regime of Volmer-Weber (V-W) growth 

(Stage III in Figure 1.1) depends on the growth rate: its magnitude tends to be lower at 

higher growth rates [26,28,79]. Experiments have also shown that the final compressive 

stress reverts back to tension if the growth is interrupted in high mobility materials, and 

then rapidly returns back to compression when growth is resumed [14-17,26,28]. In 

contrast, low mobility materials do not show a compressive stress regime; they continue 

to evolve in the tensile stress regime with a saturation value [14-17]. Deposition 

interruption in films of low mobility materials causes little stress relaxation and these 

films usually remain in the tensile stress regime [14-16]. At higher deposition 

temperatures, low mobility materials showed a transition towards the three stages of 

stress evolution similar to those in high mobility materials [14]. The fact that temperature 

induced transition seems to be an important factor in the evolution of the final 

compressive stress suggests that atomic diffusion might be playing a significant role. 

Experiments of Pd deposition onto single-crystal Pt showed only tensile stress due to 
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heteroepitaxy on the Pt substrate. In contrast, when grown on a polycrystalline Pt 

substrate, the initial tension in Pd was followed by the development of a net compressive 

stress [80]. Pao et al. [81] have conducted molecular dynamic simulations of the growth 

of polycrystalline Ni and showed that adatoms are incorporated into GBs in direct 

correlation with compressive stress generation. These observations amply demonstrate 

the role of GBs in compressive stress generation.  

Chason et al. [26] and Guduru et al. [27] proposed a model for compressive stress 

generation based on the assumption that a higher chemical potential near the film surface 

during deposition provides a driving force for adatoms to flow into the GBs. This model 

captured the effect of deposition rate on stress evolution and showed development of 

compressive stress during room temperature growth. The model of Chason et al. [26] 

exhibits reversibility as the decreased chemical potential of surface due to the stoppage of 

deposition would lead to reversal of atomic flow causing a switch in stress from 

compression to tension. Numerical modeling of the V-W thin film growth has also 

provided impetus to the role of GB's. Tello and Bower [82] conducted two-dimensional 

FEM simulations of stress development inside the grains of a polycrystalline thin film 

during coalescence and growth, with predicted Stress-Thickness versus thickness 

behavior similar to that found in experiments on thin films grown via the V-W mode. 

Their simulations showed a three-stage growth process consisting of a stress-free pre-

coalescence stage, a rapid tensile rise at coalescence, and an eventual transition to a 

steady-state which can be tensile or compressive, depending on the deposition rate, the 

grain size, and the properties of the film.  

Although Guduru et al. [27] generalized the constrained GB diffusion model by Gao 
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et al. [6] to growing films, that study was exclusively focused on the compressive stress 

evolution during film growth. On the other hand, during the film growth, the tensile 

coalescence stress in the film associated with GB formation can cause the atoms to 

diffuse into the GBs, leading to the formation of crack-like GB diffusion wedges similar 

to the case of film annealing under thermal stress.  Also, in a thin film deposition process, 

the grain boundary diffusivity may not be uniform. The atomistic simulations of Pao et al. 

[81] showed that adatom density in the GBs is not homogeneous, with extra atoms 

crowded near the surface. It thus seems possible that adatoms may experience increasing 

resistance as they diffuse from near the film surface towards the film-substrate interface.  

In this chapter we formulate the constrained GB diffusion model during film growth 

to account for the inhomogeneous GB mobility. The equations are non-dimensionalized 

and numerical algorithm for their solution is presented. The integro-differential equation 

set-up is then specialized in the limit of infinite GB diffusivity. In this special case, we 

present closed form analytical solution capable of describing transient stress evolution in 

films grown under arbitrary growth rates, including growth interruptions. 

3.2 Problem formulation 

Figure 3.1 shows the two dimensional model of a polycrystalline film growing on a 

substrate. Initially, the film is flat and consists of two-dimensional grains with uniform 

length L  and columnar GBs of height 0h  (i.e. film thickness) perpendicular to the 

substrate. This geometry is supposed to represent the state of the film immediately after 

complete coalescence. We neglect possible anisotropic elastic properties and assume 

plain strain deformation in the film. Since surface diffusivity is usually much higher than 
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GB diffusivity, we focus our attention on the GB diffusion which is expected to be the 

rate-limiting process in the problem of interest. The effect of GB grooving is assumed to 

be minimal so that the film surface remains flat throughout the growth. The film is 

assumed to be initially under uniform tension 0σ  as a result of island coalescence [22-

24]. For convenience, the initial stress is assumed to be uniformly distributed along the 

thickness. Other initial stress profiles can be easily incorporated in the model by changing 

the initial condition.  

σ
L

( )thσ

O

z

Deposition flux

Film
Substrate

y

 
 
Figure 3.1: Schematic illustration of a growing polycrystalline thin film with grain size L  and 
increasing film thickness ( )th  on a substrate. During the film growth, atoms diffuse into the GBs 
due to the tensile coalescence stress in the film associated with GB formation, leading to the 
formation of crack-like GB diffusion wedges. Furthermore, the higher chemical potential at the 
film surface can overdrive adatoms into GBs and result in a final compressive stress in the film 
[26-27]. 

 

The chemical potential at a point in the GB relative to a flat, free surface (Equation 

(2.31))         

Ω−= ),(),( tztzGB σμ                                  (3.1) 
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where ),( tzσ  is the normal traction on the boundary at that point and Ω  is the atomic 

volume. The chemical potential of the film surface during deposition is expressed as 

Ω−= sdS σμ , where sσ  is a negative constant during deposition usually taken to be a 

fraction of Ω− TkB  [27]. Thus the chemical potential difference between the adatoms 

on the surface and in the GB at 0=z  is  

          [ ]Ω−=−=Δ sdGBSd tt σσμμμ ),0(),0( .                                                              (3.2) 

A kinetic relation for the atomic flux (per unit out-of-plane thickness) into the GB can be 

written as [26-27] 

            [ ]
kT

C
e

C
J dsskTss

SG
d

μμ Δ

Ω

Γ
≈−

Ω

Γ
= Δ−

3/13/1

2
1

2                                                               (3.3) 

where sC  is the surface concentration of adatoms on the free surface, kT  is the product 

of Boltzmann’s constant and temperature and ( )kTGss
*exp Δ−=Γ ν  is the rate of atoms 

jumping into the GB,  sν  being the attempt frequency of adatoms at the surface and *GΔ  

the activation barrier shown in Figure 3.2. In Equation (3.3), we have assumed 

1<<Δ kTdμ  in linearizing the exponential term, and the number of atoms into the GB is 

determined by dμΔ  while the rate of transfer is controlled by the product ssC Γ . 

When growth is stopped, the chemical potential of the film surface is assumed to be 

reduced to Ω−= siσμS  due to the change in chemical environment on the surface. In the 

absence of growth, the chemical potential difference between atoms in the GB and atoms 

on the surface is  

[ ]Ω−=−=Δ )()( sii tt SGB σσμμμ ,                                                                   (3.4)           

which is assumed to lead to a net flux of atoms out of the GB, 
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kT
C

J igg
GS

μΔ
Ω

Γ
= 3/1

2
,                                                                                             (3.5) 

with similar meanings as Equation (3.3). Here, gC  denotes the concentration of atoms in 

the GB, and ( )kTGgg
*exp Δ−=Γ ν ,  gν  being the attempt frequency of atoms in the GB 

and *GΔ  the same activation barrier of diffusion between surface and GB. 

                                         
Figure 3.2: Energy landscape of atoms near the surface-GB junction for the process of adatom 
insertion into a GB, where dμΔ  is the chemical potential between surface and the GB, and ∗ΔG  
is the activation barrier of diffusion between surface and GB. 
 

The chemical potential difference between the surface and the GBs causes material to 

be inserted into the GBs from the film surface. Insertion of material into the GB from the 

film surface can be modeled as a continuous array of dislocations in the GB with 

dislocation intensity ztzu ∂∂− ),(2 , where ),(2 tzu  is the width of inserted material at 

GB position z  at time t . The normal stress along the GB due to the inserted material in 

the GB can thus be expressed as 

∫ ∂
∂

−=
∗ h

dtuzPEtz
0

0
),(),(

2
),( ς

ς
ςς

π
σσ ,                                                                (3.6) 

dμΔ

∗ΔG

flux 
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where 0σ  is the initial traction in the film, ∗E  is the plane strain modulus and ),( ςzP  is 

a kernel function associated with the Green’s function for the normal stress along the GB 

due to an array of edge dislocations of unit Burgers vector in the y-direction that are 

located at position ς  along the z-axis and periodically distributed along the y-axis with a 

period equal to the grain size L . The kernel function ),( ςzP  can be explicitly expressed 

as [6-7] 
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where L  is the grain size. The average stress σ  along the GB can be related to the 

average stress in the film fσ  through [83] 

⎟⎟
⎠

⎞
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⎝

⎛
⎥⎦
⎤

⎢⎣
⎡−−=

h
L
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h

f 4
tanh4)( 00 σσσσ .                                                                (3. 8) 

3.3 Finite and inhomogeneous GB diffusivity 

Based on the chemical potential in the GB, the corresponding atomic flux at a 

particular point in the boundary is (Equations (2.28), (2.29)) 

z
tz

kT
zD

tzj GBGBGB

∂
∂

Ω
−=

),()(
),(

μδ
                                                                       (3.9) 

where )(zDGBGBδ  is the product of the GB thickness and atomic diffusivity in the 

boundary. Mass conservation requires 

z
tzj

t
tzu

∂
∂

Ω−=
∂

∂ ),(),(2 .                                                                                   (3.10) 
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Combining Equations (3.1), (3.9) and (3.10) yields 
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We note that Equation (3.11) reduces to Equations (2.32) in the limit of homogeneous 

diffusivity. For a constant deposition rate h& , the film thickness grows as 

   thhth &+= 0)(          (3.12) 

Taking the time derivative of Equation (3.6) and inserting Equation (3.11) leads to the 

following integro-differential equation 

∫∫ ∂
∂

−
∂

∂
∂

∂Ω
=

∂
∂

•
∗∗ )(

0

)(

0
2

2 ),(),(
2

),(),()(
4

),( thth

GB
GB dtuzQhEdtzPD
kT

E
t

tz ς
ς
ςς

π
ς

ς
ςσ

ς
ςς

π
δσ  

                        
ς

σ
ςπ

δ
∂

∂
∂

∂Ω
+

∗ ),0()0,()0(
4

tzPD
kT

E
GB

GB .                                                   (3.13) 

where ),( ςzQ  is the rate of change of  ),( ςzP  with respect to the film thickness )(th  at a 

fixed point along the GB and is given by 
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The integro-differential governing Equation in (3.13) is valid for film growth under 

arbitrarily inhomogeneous GB diffusivity and can be reduced to Equation (7) in [6] and 

Equation (10) in [7] in the case of uniform GB diffusivity and annealing, and to Equation 

(33) in [27] for the case of uniform GB diffusivity ( )GBGB DzD =)(  and growth.  
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The boundary conditions for the present problem are 

0)),((
=

∂
∂

z
tthσ ,                                                                                               (3.15) 
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tthσ , 0)),(( =tthu ,                                                                       (3.16) 

[ ]),0(),0( tA
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∂
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0)0,( σσ =z ; 0)0,( =zu ,                                                                                 (3.18) 

where 

)0(
2 0

3/2

GBGB

s

D
hC

A
δ

ΓΩ
= .                                                                                             (3.19) 

We note that Equation (3.15) corresponds to the condition of no flux across the film-

substrate interface; Equation (3.16) ensures no relative sliding at the well bonded film-

substrate interface and Equation (3.17) is the flux continuity condition at the GB-free 

surface junction; Equation (3.18) sets the initial state for the transient problem. Based on 

the process i.e. deposition/interruption, appropriate value for { }sisds σσσ ,=  is used for 

Equation (3.17). As pointed out in [6], the GB diffusion wedge is expected to adopt a 

crack-like opening profile near hz =  due to constraint at the film-substrate interface. The 

resulting stress intensity factor )(tK  can be calculated as (Equation (2.17)) 
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=
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In numerical implementations of Equations (3.11-3.13), it will be convenient to adopt 

the following normalized variables 
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is the characteristic time.  

In terms of these normalized variables, Equation (3.12) is expressed as 

ττ HH &+= 1)( ,                                                                                                (3.23) 

Equations (3.13) and (3.11) are recast as 
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and Equations (3.15-3.17) become 
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Equations (3.24) and (3.25) define a coupled evolution problem for ),(ˆ τσ x  and 

),(ˆ τxu  under initial conditions 1)0,(ˆ =xσ  and 0)0,(ˆ =xu  from Equation (3.18). The 

kernel function ),( ηxP  is Cauchy singular with singularity of the form )(1 η−x , and 
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22 ),( ηη ∂∂ xP  shows a hyper singularity of 3)(1 η−x . Integral equations with kernels 

nx )(1 η−  ( 1>n ) are called hypersingular and special numerical techniques are needed 

to solve such problems [84]. Details of the numerical method for solving Equations 

(3.24) and (3.25) are given in Appendix A.  

3.4 Infinite GB diffusivity 

In the limit of infinitely fast GB diffusion, atomic flux in a GB is assumed to be fast 

enough to eliminate any gradient in the normal stress ),( tzσ  along the GB so that we can 

treat ),( tzσ  as a variable which only depends on time, i.e. )(),( ttz σσ = . Since the GB 

diffusivity GBGB Dδ  tends to infinity and the GB traction gradient tends to zero, we cannot 

directly evaluate the flux into GB from Equation (3.9). In this case, it is more convenient 

to equate the net increase of atomic mass in the GB to the net flux into the GB, 
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Equations (3.6) and (3.28) are to be solved with the boundary and initial conditions given 

by Equations (3.16b) and (3.18) respectively. 

3.4.1 Analytical solution 

The solution to equation (3.6) has the general form 
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where ( )Lhhzf ,  defines the GB displacement profile with ( ) 0,1 =Lhf  in accordance 

with Equation (3.16b). Combining Equations (3.28) and (3.29), we obtain the governing 
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equation for GB stress evolution as 
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where 
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represents the time for the insertion of an atomic layer into the GB during deposition and 

( ) ( )∫=
1

0

ˆ,ˆ zdLhzfLhλ ,                                                                                   (3.32)  

 ( ) ( )
( )Lh

Lh
L
hLh
λ
λδ '

=                                                                                     (3.33)  

are two auxiliary universal functions that only depend on the ratio between the film 

thickness and grain size. To determine the universal function ( )Lhλ , we insert Equation 

(3.29) into Equation (3.6) and obtain an integral equation 
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π

dLhfLhLzP                                                        (3.34) 

over hz ≤≤0 . For a given value of Lh , this integral equation can be solved to determine   

the crack-like GB displacement profile ( )Lhhzf ,  and then to obtain ( )Lhλ  by 

integrating the result according to Equation (3.32).  

Figure 3.3a plots the calculated universal function ( )Lhλ  along with a fitting function 
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It is seen that ( )Lhλ  rises quickly within the range 210 ≤≤ Lh  and asymptotically 

approaches its limiting value ( ) 2/1=∞λ . For example, ( ) 416.021 =λ , which is already 
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within 20% of the limiting value ( ) 21=∞λ . In contrast, the asymptotic limit of ( )Lhδ  is 

( ) 0=∞δ . Figure 3.3b shows that ( )Lhδ  can be fitted with the function 
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Once the universal functions ( )Lhλ  and ( )Lhδ  are calculated and the film growth 

history ( )th  is given, Equation (3.30) can be integrated to obtain the GB stress evolution 

under the initial condition 0)0( σσ = . 

 
Figure 3.3: Two auxiliary universal functions in the analytical model of compressive stress 
evolution during growth of a thin film. The functions (a) ( )Lhλ  and (b) ( )Lhδ  along with their 
fitting function given in Equations (3.35) and (3.36) respectively [85]. 
 

In the experiments by Shin and Chason [28], the aspect ratio between the film 

thickness and grain size is larger than 21 . For 21≥Lh , we have  416.05.0 ≥≥ λ  and 

0178.0 ≥≥ δ . Our numerical solutions (next chapter) indicate that the variations of λ  

and δ  can be neglected in this range so that ( )Lhλ  and ( )Lhδ  can be approximated by 

their corresponding limiting values ( ) 21=∞λ  and ( ) 0=∞δ , so that Equation (3.30) is 

simplified as 

 

                    Numerical 
                    Equation (3.36) 

                  Numerical 
                  Equation (3.35) 
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Under a constant deposition rate h& (Equation (3.12)), the solution to Equation (3.37) is 
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where 
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is the steady state stress during deposition. This expression is actually identical to that 

derived by Chason et al. [26] based on a different set of assumptions and shows that the 

steady-state stress depends on the deposition rate, with value ranging from 0σ  to sdσ . In 

the model of Chason et al. [26], GBs are assumed to slide freely along the film-substrate 

interface whereas here the GB displacement is constrained at the film-substrate interface 

in accordance with the constrained GB diffusion model [6]. At high deposition rates, the 

film stress is equal to 0σσ =ss   as there is insufficient time for adatom diffusion into the 

GB. At low deposition rates, we have sdss σσ =  as the adatom diffusion has plenty of 

time to fully equilibrate between the surface and GB.  

When growth is interrupted at a specified film thickness h , the stress evolution 

equation becomes 

si
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t
t
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and the solution is 
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where i0σ  is the stress state at the moment deposition is stopped and 

gg
I CE
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= ∗ 3/42
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denotes the time required for the removal of an atom layer out of the GB when growth is 

interrupted. Thus the analytical model predicts exponential stress recovery during growth 

interruption with time constant  

3/1Ω
=

htt I
R ,                                                                                                        (3.43) 

which evidently depends on the film thickness.  

Equation (3.38) and (3.41) together describe stress evolution during a cycle of 

deposition and growth interruption for thin film growth in the limit of infinite surface and 

GB diffusivities. 

3.4.2 Numerical solution 

Numerical methods can also be used to solve Equations (3.6) and (3.28) for a given 

history of film growth. In numerical calculations, it will be convenient to normalize the 

variables in the present problem as 
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For a constant growth rate, Equation (3.12) is normalized as   
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 Combining Equations (3.6) and (3.28) in terms of the normalized variables leads to 
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which is an integro-differential equation in ητη ∂∂ ),(û . The time derivatives are resolved 

through finite difference and the integrals are evaluated using Gauss-Chebyshev 

quadrature. Further details regarding the numerical method for solving such type of 

integral equation can be found in Appendix A. At each time step, the displacement 

solution from Equation (3.46) is substituted back into Equation (3.6) to obtain the GB 

stress. 
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Chapter 4 

3. Volmer-Weber thin film growth: Results 

4.1 Finite and inhomogeneous GB diffusivity 

 

Figure 4.1: Inhomogeneous GB diffusivity profiles represented by the Dirac function 
( ) ( )[ ]0exp10.2 hzzg β+= . The higher the value of β , the more inhomogeneous the GB 

diffusivity becomes. 
 

In this section, we examine the effects of deposition and inhomogeneous GB diffusivity 

on the formation of GB diffusion wedges and stresses in the film using the algorithm 

discussed in the Section 3.3. Although the formulation is valid for arbitrarily 

inhomogeneous grain boundary mobility, here we focus our attention on a class of 

inhomogeneous GB mobility profiles described by the Dirac function,  
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( )[ ]0exp1
0.2)(

hz
zg

β+
=                                                                                 (4.1) 

which is shown in Figure 4.1 for different values of β . It can be seen that )(zg  decays 

with depth z  into the grain boundary depending on the value of β , with 0=β  

corresponding to the case of homogeneous GB diffusivity. Thus β  represents the degree 

of GB inhomogeneity: the higher the value of β , the stronger the GB inhomogeneity. 

4.1.1 Formation of GB diffusion wedges during thin film growth 

To investigate the phenomenon of GB diffusion wedge during thin film growth, we 

consider a film growing at a deposition rate H&  according to Equation (3.23) and monitor 

the evolution of GB normal traction and GB width at different time instants during the 

growth. In addition to the characteristic time scale GBt  (Equation (3.22)), the growth 

process introduces an additional time scale represented by H&1 (Equation (3.21)). The 

deposition rate H&  is found to control the effect of GB diffusion on the GB traction. If H&  

is smaller or comparable to 1, GB diffusion is found to strongly influence the GB 

traction, otherwise the GB stress is largely unaffected and remains tensile. This 

deposition rate allows sufficient time for atoms to diffuse into the GBs during the growth 

process. 

Figure 4.2 shows the GB normal traction and width profile at different time instants of 

growth for a film of uniform GB diffusivity at a deposition rate of 1=H& . This deposition 

rate allows sufficient time for atoms to diffuse into the GBs during the growth process.   
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(b) 

Figure 4.2: Formation of a GB diffusion wedge during film growth ( τHH &+=1 ) under uniform 
GB diffusivity ( 0=β ). Evolutions of (a) the GB traction and (b) the GB wedge profiles at 
different time instants during deposition for parameter choices of  1=H& , 1=A , 5.00 =Lh . The 
stress has been normalized as ( ) ( )ss σσσσσ −−= 0ˆ  and the GB opening displacement has 
been normalized as ( )[ ]shuEu σσπ −= ∗

002ˆ , where 0σ  is the initial film stress, sσ  is stress 
corresponding to the excess surface chemical potential during deposition and 0h  is the initial film 
thickness. The time has been normalized as GBtt=τ  where GBt  is given by Equation (3.22) [86]. 
 

Similar to the formation of GB diffusion wedges under annealing in [6], we found 

û  

σ̂  
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that the normal stress along the GB (Figure 4.2(a)) decays with time (and with increasing 

film thickness in the present case) and eventually equilibrates with sσ , the stress 

corresponding to excess surface chemical potential, at steady state. The GB diffusion 

wedge during deposition (Figure 4.2(b)) also resembles a mode I crack profile similar to 

GB diffusion wedges under annealing conditions [6]. In faster growing films, there is less 

diffusion into the GBs and less evidence of a diffusion wedge.  
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(b) 

Figure 4.3: Formation of a GB diffusion wedge during film growth ( τHH &+=1 ) under strongly 
inhomogeneous GB diffusivity ( 4=β ). Evolutions of (a) the GB traction and (b) the GB wedge 
profiles at different time instants during film deposition for parameter choices of 1=H& , 1=A , 

5.00 =Lh . The stress has been normalized as ( ) ( )ss σσσσσ −−= 0ˆ  and the GB opening 
displacement has been normalized as ( )[ ]shuEu σσπ −= ∗

002ˆ , where 0σ  is the initial film 
stress, sσ  is stress corresponding to the excess surface chemical potential during deposition and 

0h  is the initial film thickness. The time has been normalized as GBtt=τ  where GBt  is given by 
Equation (3.22) [86]. 
 

In Figure 4.3, we consider the effect of inhomogeneous GB diffusivity on the evolution 

of GB diffusion wedges during growth. Figures 4.3(a) and 4.3(b) shows the GB traction 

and width profile for a thin film growing with a deposition rate of 1=H&  and an 

inhomogeneous GB diffusivity parameter 4=β . We observe that, similar to the 

homogeneous GB diffusivity case, the GB stress (Figure 4.3(a)) decays with increasing 

film thickness, but the decay rate is slower due to the lower average GB mobility. After 

the film thickness is doubled via deposition, significant portion of the GB has been 

equilibrated with sσ , but the portion of GBs closer to the substrate still retains a 

significant fraction of the initial stress. The GB diffusion wedge (Figure 4.3(b)) also 

adopts a crack like opening profile during deposition, similar to the case of uniform GB 

diffusivity. However, compared to the uniform GB diffusivity case, the GB diffusion 

wedge exhibits a smaller slope, indicating a lack of diffusion activities along the GBs 

once atoms are incorporated. 

Buehler et al. [10] have shown that the stress intensity factor near the tip of GB 

diffusion wedges can be used as a criterion for dislocation nucleation and demonstrated 

that the theoretical predictions are in good agreement with the molecular dynamics 
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simulations. Therefore, the stress intensity factor associated with the GB diffusion wedge 

is a very important indicator of dislocation plasticity in thin films.  
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Figure 4.4: Evolution of the normalized stress intensity factor near the tip of a GB diffusion 
wedge with the increasing film thickness under different deposition rates and uniform GB 
diffusivity ( 0=β ). Other parameters used in the calculations are 1=A  and 5.00 =Lh . The 
stress intensity factor has been normalized as ( )00

ˆ hKK πσ= , and the deposition rate has been 

normalized as ( )GBthhH 0
&& = , where 0σ  is the initial film stress, 0h  is the initial film thickness 

and GBt  is given by Equation (3.22) [86]. 
 

In Figures 4.4 and 4.5, we consider the effects of film growth and inhomogeneous GB 

diffusivity on the evolution of stress intensity factor at the tip of the diffusion wedge. 

Figure 4.4 shows the evolution of stress intensity factor at different deposition rates 

during film growth under uniform GB diffusivity. For the same film thickness, higher 

deposition rate means less diffusion into the GB and lower stress intensity factor. For 

100=H& , the GB is virtually closed and the stress intensity factor is close to 0 . The stress 

intensity factor also decreases with increasing inhomogeneity parameter β  of GB 

diffusion (Figure 4.5). This can again be understood from the fact that lower mobility 

K̂  
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leads to less GB diffusion which in turn leads to reduced stress intensity. We thus 

conclude that the GB stress intensity factor in a growing film depends on the deposition 

rate and the GB mobility. For slowly growing high mobility films, the singular stress 

concentration at the roots of GB wedges is comparable to that of a GB diffusion wedge 

under annealing conditions and can lead to nucleation of dislocations, as previously 

shown by molecular dynamics simulations [10] and experiments [12]. The dislocation 

nucleation can cause additional stress relaxation and affect the measured stress evolution 

in the film during growth. 
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Figure 4.5: Effect of inhomogeneous GB mobility on the evolution of the normalized stress 
intensity factor near the tip of a diffusion wedge with increasing film thickness at the deposition 
rate of 1=H& . Other parameters used in the calculation are 1=A  and 5.00 =Lh . The stress 
intensity factor has been normalized as ( )00

ˆ hKK πσ= , and the deposition rate has been 

normalized as ( )GBthhH 0
&& = , where 0σ  is the initial film stress, 0h  is the initial film thickness 

and GBt  is given by Equation (3.22) [86]. 
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4.1.2  Effect of inhomogeneous GB diffusivity on compressive stress evolution 

during thin film growth 

H&

)(τH

1

2τ1τ
τ

1

 

Figure 4.6: A film deposition and growth interruption process. The thin film is deposited at a 
normalized deposition rate of ( )GBthhH 0

&& =  from an initial thickness of 1 up to time 1τ  followed 
by growth interruption till time 2τ . The time has been normalized as GBtt=τ  where GBt  is 
given by Equation (3.22). 0h  is the initial film thickness. 
 

In order to study the effect of inhomogeneous GB diffusivity on compressive stress 

evolution during thin film growth, we have conducted numerical simulations, based on 

the theoretical framework laid down in Section 3.3, for a cycle of film deposition 

followed by growth interruption as shown in Figure 4.6. We vary the GB inhomogeneity 

parameter β  in Equation (4.1) and study its effect over a range of deposition rates. The 

results are shown in Figures 4.7(a) and 4.7(b) for slower and faster deposition rates. 

At a slower deposition rate of 1=H&  in Figure 4.7(a), atoms have sufficient time to 

diffuse into the GB and the Stress-Thickness plot for 2,1=β  during deposition is not 

much different from the uniform GB diffusivity case, while for 4=β , the strongly 

inhomogeneous GB diffusivity leads to slower stress relaxation and higher Stress-

Thickness values. The effect of GB inhomogeneity is more apparent in the subsequent 

stress recovery during growth interruption shown in the right panel of Figure 4.7(a). The 
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greater the value of β , the smaller the stress recovery is, which is consistent with the 

effect of GB mobility on experimentally observed stress relaxation behaviors during 

deposition-growth interruption [14-16]. For the case of 4=β , there is virtually no stress 

recovery, indicating the limit of very low mobility material [14-17].  At the higher 

deposition rate of 100=H& , atoms have less time to diffuse into the GB and the Stress-

Thickness curves become insensitive to β  with a tensile steady state stress, as shown in 

the left panel of Figure 4.7(b). During growth interruption, the tensile stress in the film is 

relaxed to various degrees, with smaller values of β  leading to faster stress relaxation.  

 

(a) 
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(b) 

Figure 4.7: Evolutions of stress-thickness during one cycle of deposition followed by growth 
interruption with varying degrees of GB inhomogeneity represented by different values of β  in 
Equation (4.1). The results are shown at (a) a slower deposition rate of 1=H&  and (b) a faster 
deposition rate of 100=H& . The deposition rate and time have been normalized as ( )GBthhH 0

&& =  
and GBtt=τ  respectively, where 0σ  is the initial film stress, 0h  is the initial film thickness and 

GBt  is given by Equation (3.22). Other numerical parameters used in the calculation are 
MPa700 =σ , MPasd 26−=σ , MPasi 0=σ , 1=A , 5.00 =Lh [86]. 

 

Figure 4.8 shows the steady state stress as a function of deposition rate for 0=β  

(uniform GB diffusivity) and  4,1=β  (inhomogeneous GB diffusivity).  In all three 

cases, the steady state stress varies from compressive to tensile value as we increase the 

deposition rate. The tensile value at very high deposition rates is independent of the GB 

diffusivity, while the compressive stress at lower deposition rates is strongly influenced 

by it. These trends are qualitatively similar to experimental observations for Ag [26] and 

Ni [79]. 
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Figure 4.8: Variation of the steady state stress with deposition rate during film growth under 
varying degrees of GB inhomogeneity represented by different values of β  in Equation (4.1). 
The deposition rate has been normalized as ( )GBthhH 0

&& = , where 0h  is the initial film thickness 
and GBt  is given by Equation (3.22). Other numerical parameters used in the calculation are 

MPa700 =σ , MPas 26−=σ , 1=A , 5.00 =Lh  [86]. 
 

Table 4.1. GB diffusivities of Ag, Cu and Sn at room temperature. 

 

Film Ag Cu Sn 

)( 3 smDGBGBδ  28108.9 −× [87] 30106.3 −×  [88] 22106.3 −× [89] 

 

4.2 Infinite GB diffusivity 

In this section, the analytical solution (Equations (3.38) and (3.41)) and the numerical 

solution (Equation (3.46)) in the limit of infinite GB diffusivity are compared with the 

experimentally measured compressive stress evolution during deposition and growth 

interruption of Sn films on substrate [28] 

Sn is a high mobility material. The room temperature for Sn corresponds to 60% of its 

melting temperature. Table 4.1 shows that the GB diffusivity of Sn is several orders of 

magnitude higher than other high mobility materials such as Ag and Cu at room 

temperature. The experiments by Shin and Chason [28] consist of three cycles of 

electrodeposition of mμ2  of Sn on Sn/Si substrate at a rate of snm /7.2 , each followed 

by 10 minutes of growth interruption. In the experiments, a 1μm thickness Sn was 

initially vapor deposited on Si substrate (i.e. mh μ10 = ). Electrodeposition on top of this 

seeding layer ensures that the starting material always had the same initial stress and 

grain structure.  This eliminated the nucleation and island coalescence stage and enabled 
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us to directly model the compressive stress evolution during the third stage of growth 

[28]. The assumption of infinite GB and infinite surface diffusivity in our model can be 

checked by comparison of the relevant time scales during Sn film deposition [28]. In our 

model, the relevant time scales are 
GBGB

GBD DE
LkTh

δ
τ ∗Ω

=
2

 for GB diffusion [6-7,27] and 

hhD
&=τ  for surface deposition. The ratio  

GBGBD

GBD

DE
hkThL

δτ
τ

∗Ω
=

&
                                                                                           (4.2)                 

is estimated to be around 0.1 for Sn under the experimental conditions in [28]. This 

confirms that the GB diffusion time scales are indeed small compared to that associated 

with deposition. To the best of our knowledge, there is no reported measurement for 

surface diffusivity ( )SD  of Sn at room temperature. Philibert [90] gave an empirical 

relation for surface diffusivity of fcc metals as: 

( )
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75.07exp14.0
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where TM is the melting temperature. Although Sn (TM = 505K) has a tetragonal structure, 

as a rough estimate we use Equation (4.3) to obtain an approximate estimate for the 

surface diffusivity of Sn at room temperature to be smDS
2101007.1 −×= . We assume 

the characteristic time for surface diffusion as SS DL2=τ . For the Sn film in [28], the 

ratio ( )hDhL SDS
&2=ττ  is estimated to be around 5x10-5, which supports our assumption 

of infinite surface diffusivity. 

Figure 4.9 shows excellent agreements among Stress-Thickness curves predicted from 

the analytical solution, numerical analysis and corresponding experimental data from 
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three cycles of electrodeposition and growth interruption of Sn film [28]. The parameters 

used in the theoretical models are listed below: 

• Plane strain modulus GPaE 58=∗ , 

• Atomic volume 3291028.1 m−×=Ω , 

• Deposition time in a cycle ssnmmTD 740/7.2/2 == μ [28],  

• Stoppage time in a cycle sTS 600= [28], 

• Initial stress MPa700 =σ , 

• MPasd 15−=σ , 

• MPasi 9.1=σ , 

• Grain size mL μ2= , 

• Scaled deposition rate 003.0=H& . 

 

Figure 4.9: Comparison of the predicted Stress-Thickness curve from analytical and numerical 
solutions with corresponding experimental data measured during a three cycle depositon-
interruption experiment on Sn film deposited on Sn/Si substrate at room temperature [28,85]. 
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Based on 003.0=H&  and Equation (3.44), Dt  during deposition, is estimated to be 

s4106.2 −× . The time It  during growth interruption is found to be s31027.4 −× . From 

these values and Equations (3.31) and (3.42), it is estimated that ssC Γ = 141029.9 −× s  and 

ggC Γ = 131066.5 −× s , with ( ) ( ) 16=ΓΓ ggss CC . This can be attributed to different 

concentrations and attempt frequencies of atoms at the surface and within GBs.  

 
Figure 4.10: Comparison of steady state stress versus deposition rate from analytical model and 
experiments on growth of Sn film on Sn/Si substrate at room temperature [85].  
 

During the cyclic electrodeposition and growth interruption, both theoretical and 

experimental results indicate that, as soon as the deposition is initiated, the Stress-

Thickness drops quickly and approaches a steady-state linear variation with film 

thickness. Comparison between the analytical predictions and experimental 

measurements supports the proposed mechanism of atomic diffusion into GBs. During 
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deposition, the film always attains the same steady state stress so that the Stress-

Thickness is linearly proportional to the film thickness (Figure 4.9).  

Figure 4.10 compares the relationship between the steady state stress and deposition 

rate of Sn film predicted from Equation (3.39) and experimental measurement [28]. The 

analytical model correctly predicts compressive steady state stresses at slow deposition 

rates and tensile stresses at higher deposition rates. Therefore, for high mobility materials 

like Sn, the steady state stress is only a function of deposition rate and independent of the 

film thickness. Also, the influence of film thickness on transient stress behaviors during 

deposition and growth interruption is predicted by the analytical model. In particular, the 

characteristic time required to reach the steady state is predicted to increase with film 

thickness, in agreement with experiment (Figure 4.9). 
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Chapter 5 

5. Crack nucleation in battery electrodes under 

diffusion induced stresses 

5.1 Background 

In the literature, the insertion/extraction of Li in an electrode has often been modeled as 

diffusion of interstitial atoms at the continuum level [45-50]. Most of the existing studies 

have focused on analysis of stresses induced by the diffusion of Li in a host particle, a 

subclass of problems more broadly referred to as the diffusion induced stresses (DIS) 

[48-50,77,91-93]. Relatively few theoretical studies have explicitly considered the 

mechanisms of crack nucleation and propagation. Huggins and Nix [94] considered a 

bilayer plate structure in which the top layer is subjected to a swelling transformation 

strain while the bottom layer contains a pre-existing crack. They showed that the swelling 

in the top layer causes a biaxial tensile stress in the bottom layer and used the Griffith 

criterion to predict a terminal thickness of the plate below which the pre-existing crack 

will not propagate. 
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Experiments have shown that crack nucleation usually occurs during the first 

intercalation-deintercalation cycle for the high capacity electrodes. However, the 

condition for crack nucleation under diffusion induced stresses in an initially crack-free 

electrode has not been addressed previously. Motivated by the increasing importance of 

this problem, here we develop a cohesive model of crack nucleation under diffusion 

induced stresses in battery electrodes under galvanostatic charge and discharge. 

Compared to the Huggins-Nix model [94], the electrode in our analysis is assumed to be 

initially crack-free, and the dynamic evolution of DIS and crack nucleation under 

galvanostatic (constant current) charging/discharging conditions will be explicitly 

modeled. We adopt the triangular traction-separation law [75] in modeling crack 

nucleation under DIS. In this model, if the maximum stress in the electrode is less than 

the cohesive strength of the material, there exists no cohesive zone at all. When the 

maximum stress exceeds the cohesive strength, the deformation in the electrode starts to 

localize into an array of cohesive zones. Such localized deformation is thought to be 

initially reversible, and crack nucleation is assumed to occur only when the maximum 

surface separation within the cohesive zone reaches a critical value. We will focus on 

crack nucleation under the most severely loaded state, which will be shown to correspond 

to a steady state phase after the initial transient has passed but before the maximum 

stoichiometric solute concentration of the host material is reached. Thin strip and 

cylindrical geometries are considered for the electrode. The latter geometry is important 

due to the development of various forms of cylindrical electrodes such as nanorods, 

nanopillars and nanowires [43-44] and allows us to understand three dimensional (3D) 
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geometry effects on the crack nucleation phenomenon when compared with strip 

geometry (2D) results.  

5.2 Diffusion induced stresses in electrodes 

The transport of solute in the electrode is modeled as a concentration driven bulk 

diffusion process (Section 2.3.3), 

cD
t
c 2∇=
∂
∂

,                                                                                                      (5.1) 

where D  is the diffusivity and c  is the molar concentration of solute and ∇  is the 

gradient operator. The initial condition is solute free electrode ( )0=c  and the boundary 

condition along the surface of the electrode depends on the mode of battery operation. 

Under potentiostatic (constant voltage) control  

scc = ,                                                                                                                 (5.2) 

where sc  is the known concentration on the surface. Under galvanostatic (constant 

current) control (Equations (2.28), (2.29), (2.31)),  

F
IcDJ nn −=∇−=⋅= nJ ,                                                                                   (5.3)   

where I  is the known current density on the surface and molCF 7.96486= is the 

Faraday’s constant. The electrode material is considered an isotropic linear elastic solid 

and the deformation is assumed quasi-static, as atomic diffusion in solids is a slower 

process compared to elastic deformation. Following an analogy between Diffusion 

induced stress (DIS) and thermal stresses [48-50,77,91-93], the stress-strain relations can 

be expressed in index notations as [76],  
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δδνσσνε

3
11 Ω

+−+=                                                                    (5.4) 

where ijε  are strain components, ijσ  are stress components, E  is the Young’s modulus, 

ν is the Poisson’s ratio, 3cΩ  is the swelling transformation strain caused by the insertion 

of solute atoms into the host. Equation (5.4) can be expressed in terms of stress 

components, 

( )
ijkkijij c δμλλεμεσ ⎟

⎠
⎞

⎜
⎝
⎛ +Ω

−+=
3

232                                                                 (5.5) 

where ( )νμ += 12E  and  ( )( )[ ]νννλ 211 −+= E  are Lame’s constant. Strain-displacement 

relations for small strain theory are given as [76] 

( )ijjiij uu ,,2
1

+=ε                                                                                               (5.6) 

and the static equilibrium equations in the absence of body forces, are [76] 

0, =jijσ .                                                                                                             (5.7)                         

In these expressions, index after comma denoting partial differentiation with respect to 

the appropriate coordinate, i.e., jiji xuu ∂∂=, . Thus given a molar concentration field 

based on the solution of Equation (5.1) under appropriate boundary conditions (Equations 

(5.2-5.3)), stress in an elastic body can be calculated using Equations (5.4-5.7). 

5.2.1 Strip electrode 

Figure 5.1 shows a two-dimensional (2D) strip electrode with width h2 , subject to 

insertion and extraction of an interstitial species such as Li along the thickness (y) 

direction. The diffusion equation (5.1) for strip geometry simplifies as, 
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Figure 5.1: Schematic illustration of crack nucleation in a strip electrode of width h2  during 
galvanostatic solute (a) intercalation and (b) extraction, modeled as diffusion along the thickness 
direction (y-axis). The crack nuclei are uniformly spaced with period p  and modeled as cohesive 
zones obeying the triangular traction-separation law (Equation (5.30)).  
 
Solving Equations (5.5.-5.7), leads to following axial stress in the electrode [95], 
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We consider the variations of solute concentration and the corresponding DIS during 

charging and discharging. Under galvanostatic boundary conditions (Equation (5.3)) and 

initially solute free electrode, as shown in Figure 5.1,  
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the solute concentration during insertion can be found as [78] 
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and the associated DIS is 
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At the end of charging, the stress approaches a steady state while the solute concentration 

rises steadily with time. This situation persists until the saturation limit of material is 

reached. The steady state solution then acts as the initial condition for the extraction 

process, 
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where  

Fh
Itc c=1 ,                                                                                                      (5.14)  

ct  denoting the charging time. During extraction, the solute concentration evolves as  
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with the associated DIS 
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Figure 5.2 plots the variations of solute concentration and the associated DIS during the 

first charging and discharging cycle. Due to the symmetry of the problem, the results are 

plotted only over half of the strip width. During insertion, the solute concentration 

continuously rises with time (Figure 5.2a) while the stress approaches a steady state with 

tension near the center and compression near the free surface of the electrode (Figure 

5.2b). The peak tensile stress occurs at the centre with magnitude equal to (Figure 5.2b) 
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( )FDIhEI
peak νσ −Ω= 118                                                                              (5.17) 

when reaching the steady state. During extraction, the surface current is reversed, and the 

solute concentration continuously decreases with time (Figure 5.2c) while the stress 

approaches a steady state with compression near the center and tension at the surface of 

the electrode. In this case, the peak tensile stress at the surface reaches (Figure 5.2d) 

( )FDIhEE
peak νσ −Ω= 19                                                                                (5.18) 

at steady state.  

 
(a)                                                                                             (b) 

 

(c)                                                                                             (d) 

Figure 5.2: Snapshot profiles of solute concentration and diffusion induced stress in a strip 
electrode. (a) Concentration during insertion, (b) DIS during insertion, (c) concentration during 
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extraction and (d) DIS during extraction. The concentration is normalized as ( )IhcFDc =ˆ  during 
insertion and  ( ) ( )IhFDccc 1ˆ −=  during extraction (Equations (5.11) and (5.15)), while DIS is 
normalized as ( ) ( )IhEFD Ω−= σνσ 13ˆ  (Equations (5.12) and (5.16)) [96]. 
 

To appreciate the level of diffusion induced stress in high capacity electrodes, we 

consider silicon nanowire electrodes with an average diameter of 89nm. Recent 

experiments have shown such electrodes can be charged to the near theoretical capacity 

of 4227 mAh g–1 at a charge and discharge rate of 20 hours per half cycle [44], 

corresponding to a surface current density of 2011.0 mAI = . With concentration change 

in LixSi from x = 0 to 5.4, reaching a volume change as large as 59 %, the partial molar 

volume of Li can be estimated as [48] 

molm102
4.4
4 35

max

−×==Ω
c

                                                                        (5.19) 

where 34
max mol/m100152.2 ×=c  is the stoichiometric maximum concentration of Li [34]. 

Other material properties are listed in Table 5.1. If the lower limit of Young’s modulus of 

fully lithiated Si is used, the peak tensile stress is estimated to be 0.1 GPa during Li 

insertion and 0.2 GPa during Li extraction. For faster charge and discharge rates, the 

nanowire electrodes begin to show irreversible capacity losses even during the first cycle 

[44]. For example, at the charge and discharge rate of 5 hours per half cycle, there is an 

irreversible capacity loss at the first cycle, but the capacity is then stabilized at 3500 mAh 

g–1 for the subsequent 20 cycles [44]. In this case, the surface current density is 

2036.0 mAI = , corresponding to a peak stress of 0.35 GPa during Li insertion and 0.7 

GPa during Li extraction.  

Note that the above solutions to DIS neglect a number of nonlinear coupling effects 

and may be oversimplified in a number of ways. The reader is referred to Christensen and 



64 
 

 

Newman [46-47] for some detailed discussions. By introducing a coupling between 

internal stresses and activation energy for diffusion, Haftbaradaran et al. [97] also 

discovered a class of nonconventional solutions to DIS with a surface choking instability 

once the product between electrode dimension and charging rate exceeds a critical value. 

 

Table 5.1. Material properties of Si and operating parameters. 

Parameter Symbol 

(dimension) 

Value Source 

Young’s modulus (lithiated Si) E  (GPa) 30-80  

Poisson’s ratio ν  0.22 [1] 

Diffusion coefficient D  (m2/s) 18102 −×  [29] 

Stoichiometric maximum concentration maxc  (mol/m3) 4100152.2 ×  [34] 

Fracture energy Γ  (J/ m2) 2  

 

5.2.2 Cylindrical electrode† 

Figure 5.3 shows a cylindrical electrode with diameter cr2  subject to insertion and 

extraction of an interstitial species such as Li. Under the assumption of diffusion along 

radial (r) direction of the electrode, Equation (5.1) reduces to [78], 

 ⎟
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⎜
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∂
∂

∂
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=
∂
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r
cr

rr
D

t
c 1

,                                                                                       (5.20) 

and the corresponding axial stress in the electrode based on Equations (5.4-5.7) is [95], 
                                                 
† Results for cylindrical electrodes are submitted for publication and currently under review 
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Figure 5.3: Schematic illustration of crack nucleation in a cylindrical electrode of diameter 2rc 
during galvanostatic (a) intercalation and (b) extraction, modeled as diffusion along the radial 
direction (r-axis). The axisymmetric crack nuclei are uniformly spaced with period p  and 
modeled as localized cohesive zones obeying the triangular traction-separation law (Equation 
(5.30)). 

 

Similar to strip electrode, we consider the variations of solute concentration and the 

corresponding DIS during charging and discharging of a cylindrical electrode. The initial 

solute concentration in the electrode is assumed to be zero. Under galvanostatic boundary 

conditions (Equation (5.3)) and initially solute free electrode, as shown in Figure 5.3,  

F
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−
r
cD ,                                                                       (5.22) 

the solute concentration during insertion can be found as [78] 
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and the associated DIS is  
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where ( )rJ0  is the Bessel function of the first kind and nα  are the roots of ( )α1J . At the 

end of charging, the stress approaches a steady state while the solute concentration rises 

steadily with time. This situation persists until the saturation limit of material is reached. 

The steady state solution then acts as the initial condition for the extraction process, 
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where  
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ct  denoting the charging time. During extraction, the solute concentration evolves as  
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with the associated DIS 
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Figure 5.4 plots the variations of solute concentration and the associated DIS during 

the first charging and discharging cycle. During insertion, the solute concentration 

continuously rises with time (Figure 5.4a) while the stress approaches a steady state with 

tension near the center and compression near the free surface of the electrode (Figure 
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5.4b). The peak tensile stress occurs at the centre when reaching the steady state, with 

magnitude equal to (Figure 5.4b) 

( )FDIrE cpeak νσ −Ω= 112 .                                                                             (5.29) 

During extraction, the surface current is reversed, and the solute concentration 

continuously decreases with time (Figure 5.4c) while the stress approaches a steady state 

with compression near the center and tension at the surface of the electrode. The peak 

tensile stress occurs at the surface with the same magnitude as Equation (5.29) when 

reaching the steady state (Figure 5.4d). 

 
(a)                                                                       (b) 

 

 
 (c)                                                                       (d) 

 
Figure 5.4: Snapshot profiles of solute concentration and diffusion induced stress in a cylindrical 
electrode. (a) concentration during insertion, (b) DIS during insertion, (c) concentration during 
extraction and (d) DIS during extraction. The concentration is normalized as ( )cIrcFDc =ˆ  
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during insertion and  ( ) ( )cIrFDccc 1ˆ −=  during extraction (Equations (5.23) and (5.27)), while 
DIS is normalized as ( ) ( )cDD IrEFD Ω−= σνσ 13ˆ  (Equations (5.24) and (5.28)). 
 

Analogous to strip electrode, we can estimate the peak stress for the cylindrical 

electrode based on the Equation (5.29) with reference to the recent experiments on silicon 

nanowire electrodes [44]. For a charge and discharge rate of 20 hours per half cycle [44], 

corresponding to a surface current density of 2011.0 mAI = , peak tensile stress during 

insertion and extraction is estimated to be 0.16 GPa. For a faster charge and discharge 

rates of 5 hours per half cycle, the surface current density is 2036.0 mAI = , 

corresponding to a peak stress of 0.53 GPa during Li insertion and extraction. 

The estimated peak tensile stresses in strip and cylindrical electrodes are close to the 

theoretical strength of pure silicon and have most likely exceeded the cohesive strength 

of Lithiated silicon. Why can the Si nanowires sustain such extreme mechanical stresses 

without fracture? In the following section, we consider crack nucleation under diffusion 

induced stresses in an initially crack-free electrode. 

5.3 Cohesive model of crack nucleation in the electrode 

Figure 5.1 and 5.3 show an emergent array of cohesive zones in the initially crack-free 

electrode. The cohesive zones are uniformly spaced at a period of p  near the center of 

the electrode during solute insertion and at the edge of the electrode during solute 

extraction. The cohesive zone is assumed to obey the triangular traction-separation 

( δσ − ) law [75], 

( )
⎩
⎨
⎧

>
≤−

=
c

ccc

δδ
δδδδσ

σ
0

  1
,                                                                          (5.30) 
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where cσ  is the cohesive strength of the electrode material and cδ  is the maximum range 

of cohesive interaction. The fracture energy of the material, 2cc δσ=Γ , is assumed to 

be a material constant typically on the order of surface energy in the absence of 

significant plastic deformation.   

The emergent cohesive zones are modelled as continuous distributions of dislocations 

[71]. Similar to the Dugdale model [52], the cohesive zone size is determined based on 

the condition that there exists no singularity at the tip of the cohesive zone and crack 

nucleation is assumed to occur when the maximum surface separation reaches 

cc σδ /2Γ= . Finally, the spacing p  between the cohesive zones will be determined by 

the condition that the stress everywhere in the electrode must not exceed the cohesive 

strength.  

5.3.1 Strip electrode 

During solute insertion, the cohesive zones would develop at the centre of the electrode 

as soon as the axial stress exceeds the cohesive strength. Within the cohesive zone, the 

traction and the surface separation follows Equation (5.30), i.e. 
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where the first term ( )tyD ,σ  is the diffusion induced stress and the second term is the 

stress associated with localized deformation within the cohesive zones modeled as 

continuous distributions of infinitesimal dislocations with density ),( tB η  satisfying  

0),( =∫
−

a

a
dtB ηη .                                                                                             (5.32) 
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The kernel function ),( ηyP  in Equation (5.31) corresponds to the axial stress at location 

( )y,0  induced by an array of edge dislocations of unit Burgers vector in the −x direction, 

located at position η  along the y-axis and periodically distributed along the x-axis with a 

period equal to p . The expression for ),( ηyP  is given in Appendix B. The requirement 

of no singularity at the tip of cohesive zone and the crack nucleation condition based on 

the maximum surface separation leads to 
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,                                                                                    (5.33) 
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During solute extraction, the tensile stress region is shifted to the surface of the 

electrode while the centre of the electrode is under compression. Therefore, in this case 

the emergent cohesive zones are placed periodically along the edge of the electrode with 

governing equation 
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In this case, the size of the cohesive zones is determined based on 

( ) 0,lim =+−
−→

ahtB
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ηη
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,                                                                         (5.36) 

and the corresponding crack nucleation condition is  

c
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h
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−
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Normalizing all stress variables by cσ  and all length variables by h  in Equations (5.12), 

(5.16) and (5.31)-(5.37), we can identify a characteristic length scale as 
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5.3.1.1 Localization spacing p  

In the present cohesive model, the deformation in the electrode is spontaneously localized 

into a periodic array of cohesive zones along the length of the strip if the peak DIS in the 

electrode exceeds the cohesive strength of material. The strain localization leads to stress 

relaxation in the vicinity of each cohesive zone. Therefore, the post-localization stress 

distribution depends on the localization spacing p . If the localization spacing is too 

large, the stress between two adjacent cohesive zones will not be brought down to the 

level of cohesive strength. Oppositely, if the localization spacing is too small, the region 

between two adjacent cohesive zones will be over-shielded such that the maximum stress 

falls below the cohesive strength.  

 
(a)                                                                     (b) 



72 
 

 

                           
                                                            (c) 
Figure 5.5: Effect of localization spacing p  on the distribution of axial stress xσ  in the region 
between two adjacent cohesive zones of length 7.0=ha  during insertion in a strip electrode 
(Figure 5.1a). (a) At the spontaneous localization spacing 36.2=hp , the maximum axial stress 
between two adjacent localization zones is equal to the cohesive strength cσ . (b) If the 
localization spacing is taken to be 5=hp , the maximum axial stress between two adjacent 
localization zones is seen to be greater than the cohesive strength cσ .  (c) If the localization 
spacing is taken to be 1=hp , the maximum axial stress between two adjacent localization zones 
is seen to be lower than the cohesive strength cσ [96]. 
 

This is illustrated in Figure 5.5 with contour plots of axial stress in the electrode for the 

cohesive zone length 7.0=ha  during insertion. Due to the symmetry of the problem, the 

results are plotted only over a quarter of the region between two adjacent cohesive zones. 

When the cohesive zones are too widely spaced, as shown in Figure 5.5b for 5/ =hp , 

the maximum stress in the intermediate region between two adjacent cohesive zones is 

greater than the cohesive strength. When the cohesive zones are too narrowly spaced, as 

shown in Figure 5.5c for 1/ =hp , the stress in the intermediate region is over-relaxed to 

below the cohesive strength. We assume that the localization process would naturally 

select the cohesive zone spacing such that the maximum stress in the region between two 

adjacent cohesive zones is exactly equal to the cohesive strength cσ . In the case shown in 
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Figure 5.5, this critical spacing is found to be 36.2/ =hp  (method to determine hp /   

will be discussed shortly), as can be seen in Figure 5.5a.  

For the formation of centre cohesive zones during solute insertion (Figure 5.1a), the 

maximum axial stress in the region between two adjacent cohesive zones occurs along 

the axis of the strip right in the middle of the two localization zones. Hence, in this case 

the cohesive zone spacing p  is determined by solving 
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−

,,0,2,00,2                                         (5.39) 

together with Equations (5.31-5.34). The kernel function ),,( ηyxH  corresponds to the 

axial stress at ( )yx,  induced by an array of edge dislocations of unit Burgers vector in the 

−x direction located at position η  along the y-axis and periodically distributed along the 

x-axis with a period equal to p . The expression for kernel function ),,( ηyxH  is given in 

Appendix B. For a given cohesive strength cσ , we solve Equations (5.31-5.34), followed 

by checking Equation (5.39) and employing the method of bisection to determine p .  

For the formation of edge cohesive zones during solute extraction (Figure 5.1b), the 

maximum axial stress in the region between two adjacent cohesive zones occurs along 

the free surface at the midpoint between the two localization zones. The cohesive zone 

spacing p  is then determined by solving 

( ) ( ) ( ) ( )[ ] ( ) c

h

ah
Dx dtBhpHhpHthhp σηηηησσ =−−+= ∫

−

,,,2/,,2/,,2            (5.40) 

together with Equations (5.35-5.37). Figures 5.6a and 5.6b plot the cohesive zone spacing 

as a function of the cohesive strength during solute insertion and extraction, respectively.  



74 
 

 

 
(a)                                                                     (b) 

Figure 5.6: Localization spacing p  as a function of the normalized cohesive strength for the 
formation of (a) centre cohesive zones during solute insertion and (b) edge cohesive zones during 
solute extraction, in a strip electrode. In both (a) and (b), the cohesive strength cσ  is normalized 
by the peak stresses ( )[ ]FDIhEI

peak νσ −Ω= 118  during solute insertion and 

( )[ ]FDIhEE
peak νσ −Ω= 19  during solute extraction [96]. 

 

Once the localization spacing p  is determined, the critical conditions for crack 

nucleation are obtained from Equations (5.31-5.34) for center cracks during solute 

insertion and from Equations (5.35-5.37) for edge cracks during solute extraction by a 

numerical scheme detailed in Appendix C. 

When the peak DIS exceeds the cohesive strength, corresponding to the normalized 

cohesive strength smaller than unity, strain localization occurs spontaneously as a 

periodic array of cohesive zones with spacing given by Figure 5.6. When the peak DIS is 

smaller than the cohesive strength, corresponding to the normalized cohesive strength 

exceeding unity, strain localization does not occur spontaneously. However, in this case 

there may exist metastable solutions with isolated localization zones. This type of failure 

may occur at locations with pre-existing defects/weaknesses. The governing equations 

and numerical algorithm for such metastable, isolated localizations are similar to those 
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for spontaneous, periodic localizations, except the Green’s function kernel is replaced 

with ),( ηyK  which corresponds to the axial stress at location ( )y,0  induced by a single 

edge dislocation at ( )η,0  with a unit burgers vector in the −x direction [98]. The 

expression for ),( ηyK  is given in Appendix D. Figure 5.8 indicates that the critical strip 

width and cohesive zone size transition smoothly between multiple localization to 

isolated localization regimes.  

5.3.2 Cylindrical electrode 

The emergent cohesive zones (Figure 5.3) are axi-symmetric and modeled using 

prismatic dislocation loops. During solute insertion, the cohesive zones would develop at 

the centre of the electrode (Figure 5.3a) as soon as the stress exceeds the cohesive 

strength. Within the cohesive zone, the traction and the surface separation obey Equation 

(5.30), i.e. 

( ) aRdRtRBdRtRBRrPtr
a

r

c
c

a

D ≤≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Γ
−=+ ∫∫ 0,),(

2
1),(),(,

0

σσσ                (5.41)  

where the first term ( )trD ,σ  is the diffusion induced stress and the second term is the 

stress associated with localized deformation within the cohesive zones modeled as 

continuous distributions of prismatic dislocation loops of radius R with density ),( tRB . 

The kernel function ),( RrP  in Equation (5.41) corresponds to the axial stress at location 

( )0,r  induced by an infinite array of coaxial prismatic dislocation loops of unit Burgers 

vector in the z-direction and radius R, located at positions ∞−∞== ..,,; nnpz  along the 

axis. In practice, since the stress field associated with a prismatic loop in a cylinder 



76 
 

 

decays cubically [99] with distance along the axis of the cylinder, we determine ),( RrP  

from 5 prismatic loops with spacing p  along the cylindrical axis. Similar approximation 

has been adopted previously in studying interaction among periodic array of cracks in a 

layer [100]. The expression for ),( RrP  is given in Appendix E. The non-singulairty 

condition at the cohesive zone tip and the crack nucleation condition based on the 

maximum surface separation lead to, 

( ) 0,lim =−
→

ratrB
ar

,                                                                                        (5.42) 

c

a

dRtRB σ/2),(
0

Γ=∫ .                                                                                        (5.43) 

During solute extraction, the tensile stress region is shifted to the surface of the 

electrode while the centre of the electrode is under compression. Therefore, the emergent 

cohesive zones are placed periodically along the edge of the electrode with governing 

equation 

( ) ( ) ( ) ( ) cc

r

ar

c
c

r

ar
D rRardRtRBdtRBRrPtr

c

c
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≤≤−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Γ
+=+ ∫∫

−−

,,
2

1,,, σ
σησ               (5.44) 

In this case, the size of the cohesive zones is determined based on 

( ) 0,lim =+−
−→

arrtrB carr c
,                                                                          (5.45) 

and the corresponding crack nucleation condition is  

c

ar

r

c

c

dRtRB σ/2),( Γ=∫
−

.                                                                                     (5.46) 
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5.3.2.1 Localization spacing p  

Consistent with our assumption for the cohesive zone spacing in strip electrode, 

localization process would naturally select the spacing in cylindrical electrode such that 

the maximum axial stress in the region between two adjacent cohesive zones is exactly 

equal to the cohesive strength cσ . For the formation of centre cohesive zones during 

solute insertion (Figure 5.3a), the maximum axial stress in the region between two 

adjacent cohesive zones occurs along the axis of the cylinder right in the middle of the 

two localization zones. Hence, the cohesive zone spacing p  is determined by solving 

( ) ( ) ( ) ( ) c

a

Dz dRtRBRpHtp σσσ =+= ∫
0

,,2,0,02,0                                          (5.47) 

together with Equations (5.41-5.43). The kernel function ),,( RzrH  corresponds to the 

axial stress at ( )zr,  induced by an array of five coaxial circular prismatic dislocation 

loops of unit Burgers vector in the −z direction and radius R , located at 

2..,,2; −== nnpz  along the axis. The expression for kernel function ),,( RzrH  is given in 

Appendix E. For a given cohesive strength cσ , we solve Equations (5.41-5.43), followed 

by checking Equation (5.47) and employing the method of bisection to determine p . 

For the formation of edge cohesive zones during solute extraction (Figure 5.3b), the 

maximum axial stress in the region between two adjacent cohesive zones occurs along 

the free surface at the midpoint between the two localization zones. The cohesive zone 

spacing p  is then determined by solving 

( ) ( ) ( ) ( ) c

r

ar
ccDcz

c

c

dRtRBRprHtrpr σσσ =+= ∫
−

,,2/,,2,                                     (5.48) 
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together with Equations (5.44-5.46). Figures 5.7a and 5.7b plot the cohesive zone spacing 

as a function of the cohesive strength during solute insertion and extraction, respectively. 

Once the localization spacing p is determined, the critical conditions for crack nucleation 

are obtained from Equations (5.41-5.43) for center cracks during solute insertion and 

from Equations (5.44-5.46) for edge cracks during solute extraction by a numerical 

scheme detailed in Appendix F. 

 

(a)                                                                  (b) 

Figure 5.7: Localization spacing p  as a function of the normalized cohesive strength for the 
formation of (a) centre cohesive zones during solute insertion and (b) edge cohesive zones during 
solute extraction, in a cylindrical electrode. In both (a) and (b), the cohesive strength cσ  is 
normalized by the peak DIS ( )[ ]FDIrE cpeak νσ −Ω= 112 . 

 

Metastable solution in the form of nucleation of isolated localization zone also exists 

for cylindrical electrodes. The governing equations and numerical algorithm for such 

metastable, isolated localizations are similar to those for spontaneous localizations, 

except the Green’s function kernel is replaced with ( )RrS ,  which corresponds to the axial 

stress at location ( )0,r  induced by a single coaxial circular prismatic dislocation loop of a 

unit burgers vector in the −z direction and radius R  with center located at 0=z . The 
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expression for ( )RrS ,  is given in Appendix E. Figure 5.9 indicates that the critical radius 

and cohesive zone size undergo smooth transition between multiple localization to 

isolated localization regimes. 

5.4 Critical conditions for crack nucleation 

The results are shown as blue solid lines relating the normalized electrode dimension and 

the cohesive strength scaled by the corresponding peak stress in the electrode in Figures 

5.8a-b, 5.9a-b for strip and cylinder geometry respectively. A comparison of the results 

between strip and cylindrical electrodes reveals that the geometry does not alter the 

relationships between cohesive strength, characteristic electrode size and cohesive zone 

size qualitatively. For given values of electrode dimension and cohesive strength, crack 

nucleation is predicted to occur along and above the blue lines in the sense that there exist 

a solution with maximum surface separation within the localization zones exceeding the 

cohesive interaction range cδ . If the normalized values of electrode dimension and 

cohesive strength are below these lines, crack nucleation is predicted not to occur, not 

because of the absence of strain localization but because the maximum surface separation 

in the cohesive zone cannot reach cδ . In this case, the localized deformation within the 

cohesive zone is fully reversible and material would recover as soon as the diffusion 

induced stress in the electrode is reduced. For given values of the normalized cohesive 

strength and electrode dimension, the corresponding sizes of cohesive zone at crack 

nucleation are shown as green dashed lines.  
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(a)                                                                        (b) 

 

(c)                                                                        (d) 

Figure 5.8: The critical conditions for crack nucleation expressed as relationships between the 
normalized half-width of electrode, the normalized cohesive strength and the normalized critical 
size of cohesive zone at nucleation.  The blue lines plot the critical dimension of electrode while 
the dashed green lines plot the critical size of cohesive zone at crack nucleation as functions of 
the normalized cohesive strength. (a, c) plot the critical conditions for nucleation of center 
cohesive zones of length a2  under solute insertion while (b, d) plot those of symmetric edge 
cohesive zones of length a  under solute extraction, in a strip electrode of width h2 . In (a) and 
(b), the cohesive strength is normalized by the peak stresses ( )[ ]FDIhEI

peak νσ −Ω= 118  during 

solute insertion and ( )[ ]FDIhEE
peak νσ −Ω= 19  during solute extraction. In (c) and (d), the 

cohesive strength is normalized by the size-independent reference stress 
( )[ ]FDIE ftref νσ −Ω= 118l   where ftl  is the characteristic length scale defined in Equation 

(5.38) [96]. 
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(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 5.9: The critical conditions for crack nucleation expressed as relationships between the 
normalized radius of electrode, the normalized cohesive strength and the normalized critical size 
of cohesive zone at nucleation.  The blue lines plot the critical dimension of electrode while the 
dashed green lines plot the critical size of cohesive zone at crack nucleation as functions of the 
normalized cohesive strength. (a, c) plot the critical conditions for nucleation of center cohesive 
zones of radius a  under solute insertion while (b, d) plot those of edge annular cohesive zones of 
size a  under solute extraction, in a cylindrical electrode of radius cr . In (a), (b), the cohesive 
strength is normalized by the peak DIS ( )[ ]FDIrE cpeak νσ −Ω= 112 . In (c) and (d), the cohesive 
strength is normalized by the size-independent reference stress ( )[ ]FDIE ftref νσ −Ω= 112l   

where ftl  is the characteristic length scale defined in Equation (5.38). 
 

Most interestingly, Figures 5.8 and 5.9 shows that, during both solute insertion and 

extraction, there exists a critical electrode dimension below which crack nucleation 

becomes impossible irrespective of the cohesive strength of the material.  This critical 



82 
 

 

dimension is found to be ft
I
crh l3.7= , ft

I
crr l3.7=  during solute insertion and ft

E
crh l5.6= , 

ft
E

crr l2.8=  during solute extraction; see Figures 5.8a-b and 5.9a-b. Therefore in strip 

geometry, crack nucleation is more likely to occur at the surface of electrode during 

solute extraction, as opposed to nucleation at the center of electrode during solute 

insertion. In cylindrical geometry, we find that crack nucleation is more likely to occur at 

the center of electrode during solute insertion, as opposed to nucleation at the edge of 

electrode during solute extraction. In reality, stress concentration induced by surface 

roughness may further facilitate crack nucleation at the surface of electrodes during 

solute extraction. Combining these results, a critical dimension for flaw tolerant 

electrodes is identified as 

                              ( )( )
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l .                  (5.49) 

The significance of this equation is that it predicts an initially crack-free electrode would 

remain crack free below the critical dimension. Once the electrode dimension exceeds 

this critical dimension, nucleation of cracks during solute transport would become 

possible.  

Our results significantly extends and generalizes the previous analysis by Huggins 

and Nix [94] who considered a bilayer plate structure in which the top layer is subjected 

to a swelling transformation strain Te  while the bottom layer contains a pre-existing 

crack. They showed that the swelling in the top layer causes a biaxial tensile stress in the 

bottom layer and used the Griffith criterion to predicted a critical thickness                                        

( ) 2
1323

⎟⎟
⎠

⎞
⎜⎜
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⎛ −
=−

T
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nh Ee

KH ν
π

                                                                  (5.50) 
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of the plate below which the pre-existing crack will not propagate. Here ICK  is the 

fracture toughness of the plate. Using the relation ( )21 ν−Γ= EKIC , we can rewrite the 

Huggins-Nix critical length as 

( )
( ) 21

1207

T
nh eE

H
ν
ν

π +
−Γ

=−                                                             (5.51) 

Comparing Equation (5.51) and our result in Equation (5.49), we can see some qualitative 

similarities. Both models predict that the critical electrode dimension for fracture resistant 

electrode should scale with the ratio between the fracture energy and Young’s modulus of 

the material. However, the scaling is linear in the Huggins-Nix model while it is 

nonlinear with a power index of 1/3 in our model.  

Figures 5.8a-b and 5.9a-b show that the critical dimension for flaw tolerant electrodes 

corresponds to the minimum dimension of the electrode required to prevent crack 

nucleation irrespective of the cohesive strength of the material. This is a “fail safe” or 

“design for robustness” concept. If the cohesive strength of the material is known, the 

critical dimension of the electrode for crack nucleation may be higher than that predicted 

by Equation (5.49). The plots in Figures 5.8a-b and 5.9a-b are based on cohesive strength 

normalized by the peak tensile stresses during solute insertion and extraction. Since these 

peak stresses also depend on the electrode size, as shown in Equations (5.17-5.18), 

(5.29), it is difficult to see from Figures 5.8a-b and 5.9a-b the actual critical dimension 

for crack nucleation as a function of the cohesive strength. In order to decouple the effect 

of electrode size and cohesive strength, we introduce size-independent reference stress 

( ) ( ){ }FDIEFDIE ftftref ννσ −Ω−Ω= 112,118 ll  for the strip and cylinder geometry 

respectively. The results based on a new normalization of the cohesive strength with 
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respect to refσ  are shown in Figures 5.8c and 5.8d for strip geometry and Figures 5.9c 

and 5.9d for cylindrical geometry. Figures 5.8c-d and 5.9c-d indicate that the critical 

dimension for crack nucleation increases almost linearly with cohesive strength at large 

values of refc σσ / . It is interesting that the critical dimension also increases at small 

values of refc σσ / . This is because, under the assumption of constant fracture energy 

2ccδσ=Γ , the cohesive interaction range cδ  increases as cσ  decreases. The “fail safe” 

electrode size defined in Equation (5.49) corresponds a specific combination of cδ  and 

∗= cc σσ  that is most susceptible to crack nucleation. When ∗> cc σσ , the electrode 

becomes more resistant to cracking due to higher strength of the material. In contrast, 

when ∗< cc σσ , the increasing resistance to cracking is due to higher interaction range cδ , 

which makes it difficult to separate cohesive surfaces. In this sense, crack nucleation can 

be referred to as “strength-controlled” in the range ∗> cc σσ  and “separation-controlled” 

in the range ∗< cc σσ . 

Take the material parameters listed in Table 5.1. For silicon nanowires electrodes to be 

charged to near theoretical capacity at a charge-discharge rate of 20h per half cycle 

without fracture, the critical dimension for flaw tolerant electrodes, ftL , is estimated to be 

413 nm. The nanowire electrodes adopted in experiments by Chan et al. [44] indeed fall 

in this range. At faster charge-discharge rates, this critical dimension scales with 

increasing surface current density according to 3/2−I .  For the nanowires of 89nm in 

diameter adopted in experiments [44], we estimate that crack nucleation would occur at 

the surface of the nanowire at the charging-discharging rate of 2h per half-cycle.  Indeed, 
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the voltage profiles at different power rates show that significant capacity loss begins at 

the charging/discharging rate between 5h and 10h per half cycle [44].  While the reason 

for such capacity loss is not completely clear, the observation would be more or less 

consistent with our analysis if the formation of surface cracks during discharging is 

assumed to be a significant cause. Earlier experiments have also shown that decrepitation 

was suppressed in amorphous Si films about 100 nm in thickness [41] and in amorphous 

Ge films around 60-250 nm in thickness [42], leading to superior charge/discharge 

cycling performance compared to the bulk materials. The broad agreement between 

experiments and our analysis for the critical electrode dimension for crack nucleation 

points to the fact that crack nucleation can indeed be suppressed in nanostructured 

electrodes and design of fracture resistant electrodes can greatly improve the cycling 

performance of Li batteries.  
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Chapter 6 

Dislocation shielding of a cohesive crack 

In the classical problem of dislocation shielding of a singular crack, the effective stress 

intensity factor effK  at the crack tip is expressed as 

⊥∞ += KKK eff ,                                                                                                 (6.1) 

where ∞K  and ⊥K  are stress intensity factors induced by the externally imposed loading 

and dislocations, respectively. Since crack growth occurs when effK reaches a critical 

value cK , the crack is said to be shielded by dislocations when 0<⊥K  and anti-shielded 

when 0>
⊥

K . Lin and Thomson [66] and Weertman [67] derived analytical solutions of 

⊥K  for a singular crack to quantify the shielding effects of dislocations. However, a 

recent trend is to use cohesive crack models to study crack initiation and propagation 

using discrete dislocation plasticity [58-65, 101-102]. In spite of an extensive and 

growing literature, fundamental questions remain unanswered: in the presence of 

dislocations, does a cohesive crack behave differently from a mathematically sharp 

singular crack? If different, how does it impact the use and interpretation of cohesive 

models in modeling crack initiation and propagation?   
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The present chapter is an attempt aimed to clarify the above questions. We focus on a 

Dugdale cohesive crack interacting with dislocations under mode I dominant conditions 

and derive closed form analytical solutions. The practical significance of the theoretical 

study for fracture in metals is demonstrated by DD simulations of a large number ( 310> ) 

of edge dislocations interacting with a cohesive crack described by the trapezoidal 

traction-separation law of Tvergaard-Hutchinson [54]. 

6.1 Dugdale cohesive crack 

6.1.1 Problem Formulation  

O

σ

cδ

cσ

δ

ΓjR

jθ
O

L

O′

cσ−

∞
IK y

x

( )jj bb φφ sin,cos

 

                                                (a)                                                         (b) 

Figure 6.1: A Dugdale cohesive crack interacting with a number of dislocations. (a) The crack 
lies in an isotropic elastic medium and is subjected to a remote mode-I loading ∞

IK . The crack tip 
cohesive zone size is L . N  edge dislocations with Burgers vectors ( ) Njbb jj K1,sin,cos =φφ , 

are located at positions ( )jjR θ,  with respect to the cohesive zone tip O . The cohesive zone 
starts at O′  where the crack-opening displacement is calculated and compared to cδ  as the 
condition for crack initiation. (b) Dugdale’s (rectangular) cohesive law with cohesive strength 

cσ , work of separation Γ , and critical displacement cc σδ Γ= . 
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Consider a semi-infinite crack located along the negative x  axis in an isotropic elastic 

medium (Figure 6.1a) with a plane strain modulus ( )21 ν−=∗ EE , E  and  ν  being the 

Young’s modulus and Poisson’s ratio, respectively. The crack is subjected to a far-field 

loading characterized by a mode-I stress-intensity factor ∞
IK . The rectangular cohesive 

law of Dugdale [52], with work of separation per unit area Γ , cohesive strength cσ  and 

critical opening displacement cc σδ /Γ=  (Figure 6.1b), is assumed to govern the traction 

within the cohesive zone OO’ of length L  (to be determined). The origin of the yx −  

coordinate system (point O) is located at the tip of the cohesive zone. We consider N  

edge dislocations ( Nj ,,1K= ) with Burgers vectors ( )jj bb φφ sin,cos  located at 

distances jR from the cohesive zone tip and inclined at angles jθ  with respect to the 

crack plane.  

Following Dugdale [52], crack initiation is assumed to occur when the crack opening 

displacement Tδ  at the beginning of the cohesive zone O′  exceeds the range of cohesive 

interaction cδ , i.e. when cT δδ ≥ ,  and the length L  of the cohesive zone is determined 

based on the removal of singularity at O . The stress intensity factor at O  and the crack 

opening displacement at O′  are calculated as 

            0=++ ⊥∞
I

c
II KKK ,                                            (6.2a) 

cσ
δ Γ

==Δ+Δ+Δ ⊥
′′

∞
′ cO

c
OO uuu ,                                          (6.2b) 

where superscripts "∞ , c , ⊥ ” denote, respectively, contributions from (i) the far-field 

loading characterized by stress-intensity factor ∞
IK , (ii) the cohesive tractions acting 

inside the cohesive zone OO ′  (Fig. 1a), and (iii) the dislocation-crack interaction.  
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We now evaluate the various terms in Equation (6.2). The crack opening displacement 

at O′  due to the far field stress-intensity factor ∞
IK  is (e.g. [74]) 

 
π2

8)( L
E
KLu I

O ∗

∞
∞
′ =−Δ  .                                                                   (6.3) 

The mode I stress intensity factor and the crack-opening displacement for a semi-infinite 

crack subjected to a distribution of normal traction )(xp  [69] along the crack surfaces  
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In the Dugdale model, the cohesive traction is c)( σ−=tpc  for 0≤≤− tL  and vanishes 

over the rest of the crack faces. The corresponding stress intensity factor at O  and crack 

opening displacement at O′ are: 

π
σ LK c
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c−= ,                                                            (6.5a) 
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The normal traction )(tp⊥  induced by N  dislocations is the sum of tractions generated 

by the self stress field of each dislocation along the crack faces. For the thj  dislocation at 

position (Rj, θj) (Figure 6.1a), the normal traction )(tp j
⊥  is given by [70] 
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where b  is the magnitude of the Burgers vector and jφ  its orientation with respect to the 
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x-axis. We assume that the net interaction between the N dislocations and the cohesive 

crack is mode I dominant and neglect the effect of shear tractions. From Equations (6.4) 

and (6.6), the stress intensity factor and the crack opening displacement due to )(tp⊥  are 

found by the method of residues to be 
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where 
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Generally speaking, the displacement field of a dislocation is not uniquely defined, 

because the displacement jump associated with a dislocation is defined uniquely only 

when the source position of that dislocation is known. In writing Equation (6.7c), we 
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have implicitly assumed there is no dislocation-induced displacement jump within the 

cohesive zone. If a dislocation-induced displacement jump occurs within the cohesive 

zone, our model will need to be modified; in particular, Equation (6.7c) will need to be 

modified by adding an additional contribution associated with the displacement jump. 

However, we argue that this case is physically unstable for most practical cases. For 

example, considering dislocation nucleation from a crack tip, it would be energetically 

more favorable to have the slip plane of the emitted dislocation intersect the end of, rather 

than within or near the tip of, a cohesive zone in order to avoid leaving behind a residual 

dislocation core which will be a high energy defect. This case is similar to that of 

dislocation nucleation from the tip of a diffusion wedge considered by Buehler et al. [10] 

where it was shown that dislocation nucleation from a diffusion wedge, which has the 

same stress singularity as a crack, is almost twice more difficult as that from a crack tip. 

We thus expect dislocation nucleation at the end of the cohesive zone, or, as occurs in 

atomistic simulations, that the crack and cohesive zone advance ahead of the source after 

the dislocation is nucleated.  A similar situation occurs when a dislocation glides to a 

cohesive zone. The resulting high energy configuration can be easily released by having 

the cohesive zone advance ahead of the dislocation, so that the core energy is completely 

released.   

For the case of an edge dislocation directly ahead of the crack tip and created by some 

sort of climb process, the displacement jump corresponding to the extra plane of atoms 

would lie along the crack line and would physically correspond to a blunted crack.  The 

two planes of atoms at the now-blunted crack tip would become potential cohesive 

planes, and the shielding effects due to stresses would be nearly identical to those 
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considered here – as if the dislocation had been moved just above or below the crack line 

by one plane spacing.  This latter change would be quite negligible except when the 

dislocation is very, very close to the crack tip. 

Using Equations (6.3), (6.5) and (6.7), Equation (6.2) can be rewritten as 
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We make two observations about Equation (6.9). First, for the cohesive crack in the 

absence of dislocations, we recover the classical solution of Dugdale [52]  
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Second, we observe that all length scales in Equation (6.9) can be normalized by 

( ) Γ∗ 2bE , the cohesive strength cσ  by bΓ , and the toughness ∞
IK  by Γ∗E . 

Introducing the following dimensionless parameters, 
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Equation (6.9) can be recast in the following form 
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which can be solved simultaneously for L̂  and IK̂ , given jR̂  and cσ̂ .  Therefore, as the 

first main result of our study, we identify that the solution to Equation (6.9) can be 

completely characterized in terms of 3 dimensionless parameters jR̂ , cσ̂ , IK̂  (after L̂  is 

eliminated). 

6.1.2 Limiting solutions for high and low cohesive strengths 

In the limit of high cohesive strength ∞→cσ̂ , we have vanishing cohesive zone length 

0ˆ →L  and the Dugdale cohesive crack solution in Equation (6.12) reduces to the Lin-

Thomson solution for a singular crack in Equation (6.13)  
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In order to investigate how a finite cσ̂  changes the behaviour of dislocation-crack 

interaction, let us first consider the limit of low cohesive strength 0ˆ →cσ . In this limit, 

the cohesive zone size becomes very large, as shown in Equation (6.10), while the 

product 2ˆˆ
cLσ  remains finite, in which case Equation (6.12) is reduced to  
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Solving Equations (6.14a) and (6.14b) simultaneously for IK̂  leads to  
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An important observation can be immediately drawn from Equation (6.15): in the low 

strength limit, dislocations always shield the crack irrespective of the sign of the Burgers 

vector, i.e. 1ˆ
I >K . Therefore, we have arrived at the second contribution and the main 

theme of the present work: in the limit of low cohesive strength, the interaction between 

dislocations and a cohesive crack is fundamentally different from the classical singular 

crack solution.  

 
6.1.3 Numerical results for Dugdale cohesive crack 
 
To illustrate the transition between high cohesive strength (Lin-Thomson) and low 

cohesive strength shielding, we consider a few simple representative examples resulting 

in pure mode I loading on the crack. Figure 6.2a shows the geometry and the numerically 

calculated net shielding effect 1ˆˆ −=Δ II KK  of a single edge dislocation in front of a 

Dugdale crack and Figure 6.2b shows similar results for two edge dislocations located 

symmetrically on slip-planes inclined at o60±  with respect to the crack plane. The 

distance between the cohesive zone tip O  and the dislocation is taken to be =R 100 nm, 

10nm, 5nm, and the normalized fracture toughness IK̂  is numerically solved as a function 

of the normalized cohesive strength cσ̂  from Equation (6.12). For GPaE 157=∗ ,  

nmb 25.0=  and 22 mJ=Γ , the corresponding values of R̂  are {20.382, 2.0382, 

1.0191}. Based on Equations (6.13) and (6.15), the high and low strength limiting 

solutions for the geometry in Figure 6.2a are 
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and for the geometry in Figure 6.2(b) are 
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Figure 6.2: Dislocation shielding IK̂Δ  of a Dugdale (rectangular) cohesive crack by (a) a single 
edge dislocation in front of the crack-tip and (b) two edge dislocations symmetrically located on a 
slip-plane inclined at o60±  with respect to the cohesive zone tip and crack plane. The results are 
plotted as a function of the normalized cohesive strength cσ̂  for different distances 

nm100,nm10,nm5=R  between the dislocation and the cohesive zone tip O . For high 
cohesive strengths, the cohesive crack behaves like a singular crack and the selected dislocation 
structures anti-shield the crack, while for very low cohesive strengths, the same dislocation 
structures act to shield the cohesive crack with the value evaluated through Equation (6.16) [103]. 
 

 Figures 6.2a and 6.2b clearly show a transition in the net shielding between the Lin-

Thomson solution, which is antishielding in all of these cases, to the low strength solution 

in which a dislocation always shields the crack. For sufficiently high strengths 0.1ˆ ≥cσ , 

dislocations affect the toughness of a cohesive crack in a similar way as a singular crack. 

A normalized cohesive strength of 1.0ˆ ≈cσ  is selected for characterizing the transition 

from high strength (singular crack) to low strength regimes. For nmb 25.0=  and 

22 mJ=Γ , 1.0ˆ =cσ  corresponds to MPac 008=σ . This indicates that a fairly high 

cohesive strength will be required for a cohesive crack to behave as a singular crack in 

the sense of Lin-Thomson [66] analysis. The generality of this conclusion will be 

demonstrated by some practical DD simulations shortly.  Also, as R  increases the 

cohesive crack behaviour remains similar to the Lin-Thomson solution over a wider 

range of cohesive strengths. This trend is consistent with our expectations that, as R  

increases, the character of the crack tip (singular or cohesive) become less important.  

We may also interpret Figures 6.2a and 6.2b in terms of the characteristic cohesive 

zone length DL  defined in Equation (6.10) if we express the normalised cohesive strength 

as  
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is similarly defined as L̂  in Equation (6.11). Therefore, the normalized cohesive strength 

cσ̂  is directly related to the normalized cohesive zone length DL̂ . Hence, Figures 6.2a 

and 6.2b also shows that the cohesive crack behaviour tends towards that of a singular 

crack as DL̂  decreases with respect to the characteristic length ( ) Γ∗ 2bE . 
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Figure 6.3: The ratio between the actual cohesive zone length L  and the characteristic cohesive 
zone length DL  defined in Equation (6.10) for a Dugdale (rectangular) cohesive crack in the 
presence of a single edge dislocation in front of the crack-tip. The results are plotted as a function 
of the normalized cohesive strength cσ̂  for different distances nm100,nm10,nm5=R  between 
the dislocation and the cohesive zone tip O . Interestingly, L  remains comparable in magnitude 
to DL  for the full range of cohesive strengths and approaches DL  in the high strength limit 
[103]. 
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Figure 6.3 shows the variation of the normalized cohesive zone length DLL  of the 

Dugdale crack by a single edge dislocation in front of the crack-tip with respect to the 

normalized cohesive strength cσ̂ . Interestingly, the actual cohesive zone length L  

remains comparable in magnitude to the characteristic cohesive length DL  defined in 

Equation (6.10) over a wide range of cohesive strength, and approaches DL  in the high 

strength limit. 
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Figure 6.4: Variation of the net shielding IK̂Δ  of two dislocations in front of a crack-tip with 
cohesive strength GPac 1=σ  as a function of distance 2R  of the second dislocation, while the 
first dislocation remains fixed at a distance nmR 101 = . Here, exactK̂Δ  is the exact solution, 

appxK̂Δ  is calculated by superposing toughness contributions from each individual dislocation 

treated separately and LTK̂Δ  is the prediction from the Lin-Thomson solution [103]. 
 

 Equations (6.12) are evidently non-linear, so superposition of the shielding from 

multiple dislocations does not hold, in contrast from the singular crack limit where 
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elasticity and superposition do hold.  To examine superposition, we consider two 

collinear dislocations in front of the crack, as shown in Figure 6.4. We vary the position 

of the second dislocation while keeping the cohesive strength and the distance between 

the first dislocation and the origin O  fixed at nmRGPac 10,1 1 ==σ . Figure 6.4 shows  

exactK̂Δ , appxK̂Δ  and LTK̂Δ , corresponding to the exact solution to the normalized 

fracture toughness in the presence of two dislocations, an approximate solution obtained 

by superposing the toughness due to each dislocation treated separately, and  the classical 

Lin-Thomson solution, respectively. When the second dislocation is far away from the 

crack, its effect is small relative to the first dislocation. As the second dislocation is 

brought closer to the crack, the reasonable match between exactK̂Δ  and appxK̂Δ  suggests 

that the superposition principle can still be used to characterize multiple dislocations 

interaction with a cohesive crack with reasonable accuracy. For dislocations close to the 

crack, i.e. in Figure 6.4 when the second dislocation is at 2R  < 50nm, superposition 

clearly fails. 

6.2 Discrete Dislocation Simulations‡ 

Our analysis based on the Dugdale cohesive crack suggests that the cohesive strength cσ  

plays a critical role in the transition between the Lin-Thomson solution and the low 

strength solution given in Equation (6.15). Although our analytical solutions have been 

derived based on the Dugdale cohesive crack model, we expect that the basic conclusions 

should be generally valid for dislocations interaction with cohesive cracks. The generality 

                                                 
‡ The DD simulation results reported in this chapter are carried out by Dr. Audrey Chng from Institute of 
High Performance Computing, Singapore and included here for the sake of completeness. 
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of our analysis and the practical significance of our findings is demonstrated through a 

comparison with Discrete Dislocation (DD) simulation [103], where a cohesive crack 

described by the trapezoidal traction-separation law of Tvergaard and Hutchinson [54] 

(TH) interacts with a large number (1200) of immobile dislocations following the DD 

framework developed by van der Giessen and Needleman [101]. In the simulation, a 

dislocation structure formed after some crack growth under a particular cohesive strength 

is frozen and further crack growth is examined as a function of variation in cohesive 

strength under constant cohesive energy [103].  

Figure 6.5 shows the effect on the net dislocation shielding K̂Δ  of lowering the 

cohesive strength cσ  of the TH trapezoidal cohesive law from 7.2GPa, where the LT 

result ( )2662.0ˆ =Δ LTK  is accurate, down to 0.9GPa under constant cohesive energy. 

Raising cohesive strength has the effect of decreasing the difference between the 

cohesive ( K̂Δ ) and singular ( LTK̂Δ ) crack predictions, but LTKK ˆˆ Δ−Δ  remains 

significant even at cσ  = 3.6GPa. The dislocation closest to the origin is located at a 

distance minR  = 62.5nm from the cohesive zone tip. Estimating the length of the cohesive 

zone using 2ˆ8σπ ELD Γ= , Figure 6.5 suggests 50/min >DLR  before LTKK ˆˆ Δ→Δ  in 

the presence of a large number of dislocations. These conclusions involving a large 

number of dislocations interacting with a TH cohesive zone are consistent with those for 

a single dislocation or a pair of dislocations interacting with the Dugdale cohesive zone. 

In general, regardless of the number of dislocations or the exact form of traction-

separation law, the cohesive crack tends to the singular behaviour as cohesive strength 

increases or as dislocations move away from the crack tip. 
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Based on the asymptotic solutions of dislocations interaction with a cohesive crack in 

the high and low strength limits, a simple asymptotic interpolation scheme is adopted in 

the Appendix G to derive a general approximate solution of dislocations interaction with 

a cohesive crack. Predictions of the approximate solution are also shown in Figure 6.5, 

and the agreement with the DD simulations is quite good. Our asymptotic solution 

significantly improves upon the Lin-Thomson solution in providing a more reasonable 

estimate of dislocation shielding of a cohesive crack for all cohesive strengths. 
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Figure 6.5: Simulated dislocation shielding K̂Δ  of a trapezoidal cohesive crack of Tvergaard and 
Hutchinson [54] at various cohesive strengths cσ . The Lin-Thomson solution predicts a net 

shielding of 2662.0ˆ =Δ LTK . Although K̂Δ  tends to LTK̂Δ  at very high cσ , significant 

deviations ( )LTKK ˆˆ Δ−Δ  exists even at cσ  = 3.6GPa. The DD simulation results [103] are 
compared with the asymptotic interpolation solution derived in the Appendix G, with the net 
shielding obtained by adding contribution from individual dislocations given in Equation (G.6), 
where the cohesive zone size L  is taken to be the characteristic cohesive zone size DL   (Equation 
6.10). The elastic material is assumed to have Young's modulus E  = 140GPa, Poisson's ratio ν  
= 0.33, and plane strain modulus *E  = 157GPa. The TH trapezoidal cohesive law has constant 

energy Γ  = 1.125J/m2, cδδ 25.01 = , cδδ 5.02 = , and  fracture toughness KI,c= Γ*E = 

0.42 mMPa  [103]. 

IK̂Δ  
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It is important to note that our comparison above, is based on a frozen dislocation 

structure. The toughening that emerges from a DD simulation involves the evolution of a 

dislocation structure in the presence of a particular cohesive zone. Thus, in addition to 

differences in shielding for a particular dislocation structure, changing the cohesive zone 

strength may also change the dislocation structure itself, and thus modify the overall 

toughness. In previous DD modelling of fracture in thin films, Chng et al. [64] found that 

the overall toughness was nearly independent of cohesive zone strengths in the range 

0.9GPa to 1.8 GPa. 
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Chapter 7 

8. Concluding remarks 

A fundamental understanding of inelastic deformation mechanisms and stresses in small 

structures is essential in view of their importance in nearly all modern technologies. The 

subject is not only important from the standpoint of reliability but also from the point of 

understanding material behavior as length dimension gets smaller. In the work presented 

in this thesis, we have tried to analyze material response at small length scales for a 

number of systems. The main conclusions of the work are summarized as follows: 

Stress evolution in Volmer-Weber thin film growth:  

The thin film growth model developed here is based on a rigorous integro-differential 

equation formulation of constrained GB diffusion [6-7] and follows the proposed 

mechanism of excess surface chemical potential during deposition which drives adatoms 

into grain boundaries [26-28]. 

1. A numerical algorithm has been developed to treat the hypersingular integro-

differential equations that arise as a result of inhomogeneous GB diffusivity in the 

thin film growth model. 
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2. Crack-like GB diffusion wedges are shown to form during the thin film growth. 

The stress-intensity factor near the tip of a wedge in a slowly growing high 

mobility film is comparable to that of a GB wedge under annealing conditions, 

and can affect the stress evolution in the film during growth through additional 

stress relaxation. 

3. In the limit of infinite GB diffusivity, an analytical model has been developed to 

describe compressive stress evolution which shows excellent agreement with 

numerical solution of the problem as well as experimentally measured Stress-

Thickness evolution during periodic deposition and growth interruption of Sn 

films on Si/Sn substrates [28]. 

4. The finite and infinite GB mobility simulation results have successfully 

reproduced the experimentally observed effects of GB mobility and film thickness 

on transient Stress-Thickness behaviors during both deposition and interruption 

stages, as well as the steady state stress as a function of deposition rate and film 

thickness. 

5. Apart from the mechanism proposed by Chason et al. [26-28], other important 

competing theories for the post coalescence compressive stress evolution during 

high mobility thin film deposition include (a) surface stress effect due to change 

in adatom population during growth [20-21]; (b) trapping of adatoms in interstitial 

sites near step edges and ledges [25]. Although these mechanisms qualitatively 

explain the post coalescence compressive stress and subsequent relaxation during 

growth interruption, they lack the predictive features and have so far failed to 

quantitatively explain experimental observations on the effects of GB mobility, 
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deposition rate and film thickness on the stress evolution and recovery behaviors. 

In contrast, the success of constrained GB diffusion model in providing a unified 

explanation of stress-temperature behaviors [11] and parallel glide dislocations 

observed in thin films under thermal cycles [12], and Stress-Thickness behaviors 

during film growth and stoppage [17,26,79] provides a strong evidence that 

atomic transport between film surface and GBs may play a crucially important 

role in stress evolution during thin film deposition. 

6. Mechanisms like dislocation activity and bulk diffusion in the interior of crystal 

[104] and surface diffusion [7,82] not treated in our model can also influence the 

material response. Atomistic simulations to study surface chemical potential in 

the presence of deposition may help to provide a better physical representation for 

surface kinetic parameters A , ssC Γ  and ddC Γ  in our continuum model. These 

topics provides avenue for further research in the topic of stress evolution during 

deposition. 

Crack nucleation under diffusion induced stresses in battery electrodes:  

We have developed a cohesive model of crack nucleation in an initially crack-free 

electrode under galvanostatic intercalation and deintercalation processes for strip and 

cylindrical geometry. 

1. Our analysis shows that nanoscale size is indeed a key to suppressing crack 

formation under large diffusion induced stresses in high capacity battery 

electrodes such as Si. The results for cylindrical electrode are similar to the strip 

one, implying relatively small influence from electrode geometry.  
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2. An important outcome of our analysis is a critical length scale 

( ) ( )[ ]{ } 312222 1113 IEDFH ft Ω+−Γ= νν  for the electrode to remain flaw tolerant. 

When the characteristic dimension of the electrode is below this length scale, 

crack nucleation becomes impossible irrespective of the cohesive strength of 

material. 

3. Our model shows that the critical length scale for flaw tolerance should scale 

inversely with the density of charging current. The faster the charging, the higher 

the stress and the more likely the crack will be nucleated. This is consistent with 

experimental observations. Based on the flaw tolerant dimension ftH , a potential 

design criterion for flaw tolerant electrode is crit3/2 ≤HI , where I  is the 

operating current and H the dimension of electrode. For a “fail-safe” design of 

electrode, one might first determine the allowable value of HI 3/2  by a standard 

testing protocol and then design the actual electrode dimension and current 

density according to the scaling relation.  

4. We would like to point out a number of limitations in our current model. First, we 

have only considered highly idealized electrode geometry. Even for such simple 

geometry, we have not yet investigated the stability of the crack after it is 

nucleated, where it might be necessary to consider different boundary conditions 

on the newly formed crack surfaces (which are reported to form solid electrolyte 

interphase and degrade the battery performance). Second, the effect of hydrostatic 

stress can influence the chemical potential [48,77,92] as well as the activation 

energy for diffusion [105], introducing strongly non-linear terms in the governing 

equation and boundary conditions. The full coupling between stress and diffusion 
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is expected to be important to model electrode in a strongly confined 

environment. Once the coupling is introduced, the crack nucleation problem will 

have to be treated in a more sophisticated nonlinear framework, which would 

substantially increase the complexity of the problem. Third, the current 

formulation is strictly valid only in the limit of dilute solutions since otherwise the 

distribution of Li ions may significantly alter the physical properties of the 

material such as the elastic modulus. Fourth, the lithiation induced phase changes 

needs to be further studied. Although not treated in the current study, phase 

changes during lithiation are another major cause for stresses in addition to DIS. 

The micrometer length of electrode is important in this context, as a critical 

thickness of 2 μm is required for the crystallization of amorphous Si to crystalline 

Li15Si4 [106]. All these issues may significantly affect the electrode failure 

process in some way. Nevertheless, the simple model adopted here may serve as a 

first step to bring out some essential features of an appropriate length scale and 

the associated scaling laws for crack nucleation. 

Dislocation shielding of cohesive cracks 

We have conducted analytical and numerical studies on dislocations shielding of a 

Dugdale cohesive crack.  

1. Our theoretical analysis shows that the normalized toughness Γ= ∗∞ EKK II
ˆ  is 

completely characterized by the normalized distance of dislocations from the 

cohesive zone tip 2ˆ bERR jj
∗Γ=  and the normalized cohesive strength 

Γ= bcσσ cˆ . 
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2. We have derived closed form asymptotic solutions in the limits of high and low 

cohesive strengths, and constructed an approximate general solution based on an 

asymptotic interpolation scheme. 

3. Based on these solutions, we have shown a surprising result that, while the 

classical singular crack model predicts that a dislocation shields or anti-shields a 

crack depending on the sign of the Burgers vector, at low cohesive strengths a 

dislocation always shields a crack irrespective of the Burgers vector. Thus, there 

exist qualitative differences between the cohesive and singular crack solutions. 

Our results suggest that the classical Lin-Thomson solution serves as an upper 

bound to the amount of anti-shielding for a cohesive crack. 

4. The practical significance of our findings is demonstrated through a comparison 

of the asymptotic solution with DD simulation§, where the net shielding effect of 

a large number ( 310> ) of edge dislocations on a cohesive crack described by the 

Tvergaard-Hutchinson trapezoidal traction-separation law is analyzed. The 

simulated shielding showed increasing deviations from the classical Lin-Thomson 

predictions as we reduce the cohesive strength cσ  from 7GPa to around 1GPa, 

indicating increasing importance of the crack tip character as the cohesive zone 

size exceeds about 2% of the distance of the nearest dislocation from the cohesive 

zone tip. 

5. While the analysis deals with Dugdale and trapezoidal cohesive laws, we expect 

that the basic conclusions to remain true for other types of cohesive laws. 

 
                                                 
§ DD simulations are carried by Dr. Audrey Chng, IHPC, Singapore. 
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Appendix A 

A. Numerical algorithm for hypersingular 

integral equations 

We describe below the numerical algorithm for solving the coupled integral equations 

described by Equations (3.24) and (3.25). As discussed in Section 3.3 of Chapter 3, that 

the GB wedge profile is expected to adopt a crack-like opening profile near hz = , which 

implies that xu ∂∂ ˆ  and x∂∂σ̂  will have the asymptotic behaviors  2/1)1(~ˆ −−∂∂ xxu  

and 2/3)1(~ˆ xx −∂∂σ  as 1→x . Following [84], we can express the unknown function 

x∂∂σ̂  as 

( )∑
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where ( ) )sin()1(sin)( xxjxU j +=  are Chebyshev polynomials of the second kind. The 

series is truncated at N  terms in the actual numerical implementation. 

The unknown function xu ∂∂ ˆ  can be expressed as 
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where ),( τxRu  is a smooth function in ]1,0[ . 

For a stable algorithm, an implicitly discretized form of ττσ ∂∂ ),(ˆ x  and ττ ∂∂ ),(ˆ xu  

are approximated by  
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Combining Equations (3.24-3.27) and (A.1-A.4), we have 
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Note 22 ),( ηη ∂∂ xP  can be decomposed into hypersingular and regular term as 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
∂

∂
+

−
=

∂
∂

32

2

32

2

)(
2),(

)(
2),(

ηη
η

ηη
η

x
xP

x
xP .                                                       (A.9) 

                Hypersingular             Regular 



111 
 

 

Integrals involving regular term in Equation (A.7) are computed using the Gauss-

Legendre quadrature [72]. The hypersingular integral in Equation (A.7),  

∫ −
−
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2/32
3 )1(
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d
x
U j , 1,..,1,0 −= Nj , 

is evaluated in closed form using the analytical formulae derived in [84]. Integrals 

involving ),( τxRu  in Equations (A.5) and (A.6) are evaluated using the Gauss-

Chebyshev quadrature [68] by extending the integral range [ ]1,0  to [ ]1,1−  via even 

continuation 

),(),( ττ xRxR uu =−    ]1,0[∈x .  

Using 12 +N  points Gauss-Chebyshev quadrature, we have 
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where the integration points are given by  
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In Equation (A.5), ),(),( ηη xQxK =  and 0)0,( =xQ ; while in Equation (A.6)     
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At each time step, Equations (A.5) and (A.6) are enforced at N  collocation points for 

N2  unknowns { }),(, τη juj Rd leading to a system of NN 22 ×  linear equations.  

Knowing { }),(, τη juj Rd , ),(ˆ τσ x  and ),(ˆ τxu  are evaluated using Equations (3.26) and 

(3.27) and the solution is advanced by iteration. The collocation points are given by 

⎥⎦
⎤

⎢⎣
⎡

+
=

12
cos

N
ixi
π  Ni ,...,2,1= .                                                                      (A.13) 

In Equation (A.6) ),( τiu xR  at collocation point is approximated by integration points jη  

through Lagrange interpolation. Our experience with numerical simulations showed that 

displacements obtained using this algorithm were less reliable close to the free surface. 

We found that this problem can be removed by recalibrating the displacements at each 

time step directly from Equations (3.6) and (3.27) using the stress solution obtained from 

the above algorithm. 
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Appendix B 

Green’s function kernel in a strip (Periodic 
case) 
 

 

 

 

 

 

Figure B.1: A periodic array of edge dislocations with Burgers vector (1, 0) located at position 
( )η,np±  ( ....,2,1,0=n ) in an isotropic elastic strip. (a) and (b) depict two sub-problems used 
to calculate the stress field for the original problem by the superposition principle. 
 

The Green’s function kernel ( )η,yP  for the periodic array of edge dislocations with a unit 

Burgers vector ( )0,1  in an isotropic elastic thin strip is calculated using the superposition 

principle as shown in Figure B.1. The original problem is divided into two sub-problems. 

In the first sub-problem shown in Figure B.1(a), the stress field of the periodic array of 

dislocations in an infinite isotropic elastic plane is determined. In the second sub-problem 

shown in Figure B.1(b), the surface tractions ( )hxyy ±∞ ,σ , ( )hxxy ±∞ ,σ  along hy ±=  from the 

first sub-problem are negated to recover the traction free boundary conditions in the 
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original problem. The two dimensional traction boundary value problem in the sub-

problem (b) is treated using Airy Stress function approach [95]. 

 The stress field of a periodic array of edge dislocations with a unit Burgers vector 

( )0,1  in an isotropic elastic infinite plane is [70] 
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The resulting non-zero tractions along hy ±=  are expressed in the series form as, 
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To evaluate the solution to sub-problem (b), we make use of the following four auxiliary 

problems with boundary conditions and corresponding Airy stress function ( )yx,φ  [95] as 

(i)  ( ) ( )xhxy ασ 2cos, =± , ( ) 0, =±hxxyσ  , 
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(ii) ( ) ( )xhxy ασ 2cos, ±=± , ( ) 0, =±hxxyσ  , 
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 (iv) ( ) 0, =±hxyσ , ( ) ( )xhxxy ασ 2sin, ±=± , 
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Application of Equations (B.12-B.15) to the traction boundary condition given in 

Equations (B.4-B.7) leads to the solution to sub-problem (b). Finally, combined with the 

solution of sub-problem (a) in Equations (B.1-B.3) and removing the mean axial stress in 

the strip, the axial stress component ( )xσ  at location ( )yx, , denoted by ( )η,, yxH , is 

found to be 



116 
 

 

( ) ( )
( )( )

( )( ) ( )[ ]
( ) ( )( ) ( ) ( )( )[ ]

( )( ) ( )[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−

−−−−
+

−−
−

−
−

= 222

22

222
coscosh

coshcos2cosh
coscosh

2sinh
14

,,
pxpy

pypxpy
p

y
pxpy

py
p

EyxH
πηπ

ηππηπηπ
πηπ

ηπ
ν

η

( )
( )[ ] ( ) ( ) ( ){ }[

( ) ( ) }]
∑
∞

= +

−
++

1 2sinh2sinh2

2cosh22sinh2cosh
44sinh

2cos2

m

m

pphmpymym

pphmhmphmpym
phmphm

pxmB

πππ

ππππ
ππ

π
 

 
( )

( )[ ] ( ) ( ) ( ){ }[

( ) ( ) }]
∑
∞

= +

−
−+

1 2cosh2cosh2

2sinh22cosh2sinh
44sinh

2cos2

m

m

pphmpymym

pphmhmphmpym
phmphm

pxmC

πππ

ππππ
ππ

π
 

( )
( )[ ] ( ) ( ) ( ){ }[

( ) ( ) }]
∑
∞

= +

−
−+

1 2sinh2cosh

2cosh2sinh2sinh
44sinh

2cos4

m

m

pphmpymym

pphmhmphmpym
phmphm

pxmA

πππ

ππππ
ππ

π
 

( )
( )[ ] ( ) ( ) ( ){ }[

( ) ( ) }]
∑
∞

= +

−
++

1 2cosh2sinh

2sinh2cosh2cosh
44sinh

2cos4

m

m

pphmpymym

pphmhmphmpym
phmphm

pxmD

πππ

ππππ
ππ

π
 (B.16) 

              ( ) ( )
( )

3

22

22 14
3

12 h
hy

p
E

hp
E −

−
−

−
−

η
ν

η
ν

. 

The Green’s function ( )η,yP  is obtained by substituting 0=x  into Equation (B.16), 
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Appendix C 

Numerical scheme for integral equations in a 

strip 

Here we outline the numerical algorithm adopted to solve Equations (5.31-5.37), where 

the localization spacing p  and the cohesive zone size a  are treated as input parameters 

while the corresponding normalized cohesive strength and critical strip thickness are 

calculated as the results.  

For crack nucleation at the centre of electrode during solute intercalation (Figure 

5.1a), the length dimension in Equations (5.31-5.34) is normalized as 

                                                           
aa

yy ηη == ˆ,ˆ ,                                                      (C.1) 

both defined over ]1,1[−  to facilitate numerical analysis. The singular nature of 

dislocation density at both crack-tips can be represented as 
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where ( )tR ,η̂  is a smooth function of η̂ . Integrals involving square root singularity are 

evaluated using the Gauss-Chebyshev quadrature as [68], 
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where ( )( ) NjNjj ,..,1,5.0cosˆ =−= πη  are integration points. Equation (5.31) is imposed 

at 1−N  collocation points given by ( ) 1,...,1,cosˆ −== NiNiyi π . The condition of 

removal of singularity in Equation (5.33) becomes ( ) 0,1 =± tR , which can be expressed in 

terms of the integration point values of R  using Krenk’s extrapolation formulae [73], 
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For crack nucleation near an edge of electrode during solute extraction (Figure 5.1b), the 

length dimensions in Equations (5.35-5.37) are normalized over ]1,1[−  as 
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The singular nature of dislocation density at the crack-tip can be represented as 
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η
ηηη
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= tRtB                                              (C.7) 

where ( )tR ,η̂  is a smooth function of η̂ . Integrals involving ( ) ( )ηη ˆ1ˆ1 +−  can be 

evaluated using Gauss-Chebyshev quadrature as [68], 
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where ( )( ) NjNjj ,...,1,122cosˆ =+= πη  are integration points. Equation (5.35) is imposed 

at N  collocation points given by ( ) ( )( ) NiNiyi ,...,1,1212cosˆ =+−= π . Equation (5.36) 

representing the condition of removal of singularity translates to ( ) 0,1 =− tR , which can 

be expressed in terms of the integration point values of R  using Krenk’s extrapolation 

formula [73], 
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 The triangular cohesive law (Equation 5.30) introduces non-linearity in Equations 

(5.31) and (5.35) and we solve Equations (5.31-5.34) and (5.35-5.37) iteratively using 

Newton-Raphson method untill convergence is achieved. In most cases, convergence is 

obtained within six to eight iterations.
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Appendix D 

Green’s function kernel for a single dislocation 

in a strip 

The Green’s function kernel ( )η,yK  for a single edge dislocation with a unit Burgers 

vector ( )0,1  in a thin strip can be obtained from Appendix B by letting the period between 

dislocation approach to infinity. An alternative form of the solution has been given by 

Fotuhi and Fariborz [98], which is found to be consistent with the solution given in 

Appendix B. Here we list the alternative solution by Fotuhi and Fariborz [98]: 
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νκ 43−=  

The infinite integral in ( )η,yK  is numerically evaluated using Gauss–Laguerre 

quadrature [72].
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Appendix E 

Green’s function kernel for a circular 

dislocation loop in a cylinder 

 

 

 

 

 

 

Figure E.1: A circular prismatic dislocation loop of unit Burgers vector in the z-direction and 
radius R  with center located at position ( )0,0 z  in an isotropic elastic cylinder. (a) and (b) depict 
two sub-problems used to calculate the stress field for the original problem by the superposition 
principle. 
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The Green’s function kernel ( )RrS ,  for a circular prismatic dislocation loop with a unit 

Burgers vector (0,0,1) in an isotropic elastic cylinder is calculated using the superposition 

principle as shown in Figure E.1. The original problem is divided into two sub-problems. 

In the first sub-problem shown in Figure E.1(a), the stress field of the circular prismatic 

dislocation in an infinite isotropic elastic solid is determined. In the second sub-problem 

shown in Figure E.1(b), the surface tractions ( )zrcr ,∞σ , ( )zrcrz ,∞σ  along crr =  from the 

first sub-problem are negated to recover the traction-free boundary conditions in the 

original problem. Note that ( )zrcr ,∞
θσ  is identically zero due to circular symmetry. The 

axisymmetric problem of circular cylinder subjected to the action of forces applied to the 

lateral surface in the sub-problem (b) is treated using Love’s stress function approach 

[95]. 

The stress field of an arbitrary curved dislocation is given by the line integral [70] 
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where rr rr
−′=ρ , ( )321 ,, xxxr =

r  denoting the point where the stress is calculated and 

( )321 ,, xxxr ′′′=′
r  the points along the dislocation line C. For our problem, the burgers vector 

( )1,0,0=b
r

 and C is a circle of radius R  with center at 0z . After some manipulation, the 

stress components are found to be [107-108], 
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Here ( ) ( )20
22 zzrRRrk −++=  ; ( )kK  and ( )kE  are complete elliptic integrals of the 

first and second kind, respectively: 

                       ( ) ∫
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0
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dkK           and     ( ) ∫ −=
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0

22 sin1
π

θθ dkkE . 

Cai and Weinberger [109] have calculated the fourier transform of the resulting non-zero 

tractions ∞
rσ , ∞

rzσ  along crr =  as 
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with 

( ) ( ) ( ) ( ) ( )[ ]Rr
c

Rr
c

Rr
c

RrRr

c
cr JHrJRHrmJHrJRHimJH

r
ERimrf ccccc

1100
2

1001112 12
18

, −+++−−
−

−
= ν

ν
π ,       (E.8) 

                                     ( ) ( )[ ]Rr
c

Rr
cz JHrJRHREmmrf cc

10012

2

18
, +

−
=

ν
π .                                     (E.9) 

( )imRJJ R
00 = , ( )imRJJ R

11 =  are Bessel functions and ( ) ( )c
r imrHH c 1

00 = , ( ) ( )c
r imrHH c 1

11 =  

are Hankel functions of the first kind. 

To evaluate the solution to sub-problem (b), we make use of the following two 

auxiliary problems with boundary conditions and corresponding stress function ( )zr,φ  

[95] expressed as 

(i)  ( ) ( )mzzrcr cos, =σ , ( ) 0, =zrcrzσ  
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(ii)  ( ) 0, =zrcrσ , ( ) ( )mzzrcrz sin, =σ  
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                                                                                                                                    (E.13) 

The axial stress zσ  and the stress potential φ are related as  
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Application of Equations (E.10-E.13) to the traction boundary condition in Equations 

(E.6-E.9) leads to the solution to sub-problem (b). Finally, with the solution of sub-

problem (a) in Equations (E.2-E.5), the axial stress component ( )zσ  at location ( )zr, , 

denoted by ( )0,,, zRzrh , is found to be 
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Green’s function ),( RrS  is obtained by substituting 00 == zz  into the Equation (E.15). 

Following the approximation of five co-axial loops for periodic configuration as 

discussed in section 3 of the text, the kernel function ),,( RzrH  and ),( RrP  are given as 
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In the calculations, the Poisson’s ratio of Silicon is taken to be 22.0=ν .
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Appendix F 

Numerical scheme for integral equations in a 

cylinder 

Here we outline our numerical algorithm adopted to solve Equations (5.41 - 5.46), where 

the localization spacing p  and the cohesive zone size a  are treated as input parameters 

to calculate the corresponding normalized cohesive strength and critical strip thickness.  

For crack nucleation at the centre of electrode during solute intercalation (Figure 5.3a), 

the length dimension in Equations (5.41-5.43) is normalized as 

                                               2 2ˆˆ ,r a R ar R
a a
− −

= = ,                                              (F.1) 

both defined over ]1,1[−  to facilitate numerical analysis. The singular nature of 

dislocation density at both crack-tips can be represented as 

                                                     ( ) ( )
R
RtRftRB ˆ1

ˆ1,ˆ,ˆ
−
+

=                                                (F.2) 
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where ( )tRf ,ˆ  is a smooth function of R̂ . Integrals involving square root singularity are 

evaluated using the Gauss-Chebyshev quadrature as [68], 
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where ( ) ( )( )ˆ cos 2 1 2 1 , 1,..,jR j N j Nπ= − + =  are integration points. Equation (5.41) 

is imposed at N  collocation points given by ( )( )ˆ cos 2 2 1 , 1,...,ir i N i Nπ= + = . The 

condition of removal of singularity in Equation (5.42) becomes ( ) 0,1 =tf , which can be 

expressed in terms of the integration point values of f  using Krenk’s extrapolation 

formulae [73], 
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For crack nucleation near the edge of electrode during solute extraction (Figure 5.3b), 

the length dimensions in Equations (5.44-5.46) are normalized over ]1,1[−  as 

                                              2 2 2 2ˆˆ ,c cr a r R a rr R
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+ − + −
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The singular nature of dislocation density at the crack-tip can be represented as 
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where ( )tRf ,ˆ  is a smooth function of R̂ . Integrals involving ( ) ( )RR ˆ1ˆ1 +−  can be 

evaluated using Gauss-Chebyshev quadrature as [68], 
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where ( )( )ˆ cos 2 2 1 , 1,...,jR j N j Nπ= + =  are integration points. Equation (5.44) is 

imposed at N  collocation points given by ( ) ( )( )ˆ cos 2 1 2 1 , 1,...,ir i N i Nπ= − + = . 

Equation (5.45) representing the condition of removal of singularity translates to 

( ) 0,1 =− tf , which can be expressed in terms of the integration point values of f  using 

Krenk’s extrapolation formula [73], 
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The triangular cohesive law (Equation (5.30)) introduces non-linearity in Equations 

(5.41) and (5.44) and we solve Equations (5.41-5.43) and (5.44-5.46) iteratively using the 

Newton-Raphson method until convergence is achieved. In most cases, convergence is 

obtained within six to eight iterations.  

The image stress integrals in ( )RrP ,  and ( )RzrH ,,  are numerically evaluated using 

Gauss–Laguerre quadrature [72], which works well except for the evaluation of axial 

stress at the electrode surface ( )2, prc  during the extraction case (See Equation (5.48)). 

The numerical quadrature scheme does not converge for crR → , because of the very slow 

decay of the image stress integrals with m . To resolve this problem, we split the integral 

into three parts, 
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where ( ) 1,,Lim ===
∞→

∞ mrrrNN ccrmr  and ( ) 2,,Lim ===
∞→

∞ mrrrNN cczmz . The first integral on 

the right hand side is now accurately evaluated using Gauss–Laguerre quadrature due to 

the rapidly decaying integrand. The second integral on the right hand side is normalized 

to [-1,1] and calculated using Gauss-Legendre quadrature [72]. The integrand ∞
rf  and 

∞
zf  in the last integral are series expansions of rf  and zf  in the limit as ∞→m , 
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Finally, Equations (F.11-F.12) are combined with the expressions given below to 

evaluate the last integral on the right side of Equations (F.9-F.10) in closed form. 
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where },1{ ibaEi +  is the exponential integral.
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Appendix G 

 Asymptotic interpolation solution for 

dislocation interaction with a cohesive crack 

Equations (6.13) and (6.15) represent two limiting solutions of dislocation interaction 

with a Dugdale cohesive crack (Figure 6.1a) at high and low cohesive strengths, 

respectively. In this section, we propose a general approximate solution to dislocation 

shielding of a cohesive crack based on an asymptotic interpolation of the limiting 

solutions for a Dugdale cohesive crack. 

From Equation (6.12a), the normalized cohesive zone length L̂  can be expressed as 
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Combining Equations (6.12b) and (G.1) leads to  
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An asymptotic expansion of Eq. (A2) in the limit of 0ˆ →cσ  yields 
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where the first term represents the low strength solution given in Equation (6.15) and the 

second term is the first order expansion term. Similarly, in the limit of ∞→cσ̂ , an 

asymptotic expansion of Equation (G.2) in cσ̂1 leads to 
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The Lin-Thomson solution corresponds to the first term in Equation (G.4). Based on the 

asymptotic solutions given in Equations (G.3) and (G.4), we propose the following 

asymptotic interpolation solution for dislocations interaction with a cohesive crack: 
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are obtained by expanding Equation (G.6) in terms of cσ̂  and cσ̂1 in the low and high 

strength limit and comparing the result with the asymptotic solutions given in Equations 

(G.3) and (G.4). The term φσ 22
3 cosˆˆ Rc c  is an ad hoc term added to prevent a redundancy 

problem in case that the Burger’s vector is oriented horizontally ( )0=φ , in which case 

01 =c . The coefficient 3c  can be obtained by fitting the prediction of Equation (G.6) to 

the actual solution of a dislocation near a Dugdale cohesive crack with, say, 

22,157,25.0,0,3 mJGPaEnmb =Γ==== ∗φπθ . For distances { }nmnmnmR 5,10,100=  

between such a dislocation and the cohesive zone tip O , the best fit is found to be 

7.23 =c . Figure G.1 compares the prediction of Equation (G.6) for a dislocation in front 

of the cohesive crack, a case discussed in section 6.2.3. It can be seen that the asymptotic 

interpolation solution in Equation (G.6) compares reasonably well with the exact 

numerical solution, although it tends to underestimate IK̂Δ  for intermediate values of the 

cohesive strength. Similar behaviour was also observed when Equation (G.6) was 

compared with the rest of the examples discussed in section 6.2.3.  

To further examine the effectiveness of the asymptotic interpolation solution, we have 

analysed the toughness predicted from Equation (6.6) based on the dislocation structure 

used in the DD simulation** of section 6.3. The net contribution of the dislocation 

ensemble to toughness is computed for each dislocation individually and then 

superposed.  The result is plotted in Figure 6.5 together with the DD simulation results 

obtained for a trapezoidal cohesive crack. The cohesive zone length L  at a given 

cohesive strength is taken to be the characteristic cohesive zone length DL  (Equation 

                                                 
** DD simulations are carried by Dr. Audrey Chng of IHPC, Singapore. 
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(6.10)). Other material properties are taken to be GPaE 157=∗ ,  nmb 25.0=  and 

2125.1 mJ=Γ , the same as those used in the DD simulations [103] reported in section 

6.3. Comparison with the DD simulations indicates that the asymptotic interpolation 

solution significantly improves upon the Lin-Thomson solution in providing a more 

reasonable estimate of dislocation shielding of a cohesive crack. 
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Figure G.1: Comparison of the numerically calculated shielding IK̂Δ  of a Dugdale (rectangular) 
cohesive crack (Equation 6.12) by a single edge dislocation in front of the crack-tip and the 
corresponding asymptotic interpolation solution (Equation G.6). The distance between the 
dislocation and the cohesive zone tip is taken to be nmR 10= , while the material properties are 

GPaE 157=∗ , nmb 25.0=  and 22 mJ=Γ [103].
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