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Abstract of “ Essays on Weak Identification ” by Zhaoguo Zhan, Ph.D., Brown
University, May 2011

Recent developments in econometrics have revealed weak identification in empirical

studies. The linear Instrumental Variable (IV) regression with weak instruments is an

example that has received sizable attention; when instruments are weak, conventional

asymptotics fail to function, and empirical results based on conventional asymptotics

are unreliable. The problem of weak identification, however, is not limited to the

linear IV regression or the Generalized Method of Moments (GMM) framework. In

a broad range of economic models, the quality of inference depends on the treatment

of weak identification.

In my dissertation, I consider three issues related to weak identification. The

first chapter proposes a method to detect whether weak identification exists. The

objective of this chapter is to develop an intuitive tool which can be universally used

in IV and GMM applications. The second chapter investigates the empirical studies

of the Capital Asset Pricing Model (CAPM) and Consumption CAPM, in which

various risk factors are suggested to explain the variation in asset returns. I find that

irrelevant risk factors may still appear useful in explaining the variation, because of

the weak identification problem induced by irrelevant factors. The third chapter

targets the ongoing debate on whether technology shocks increase the hours worked.

The debate derives from the highly persistent time series of hours, which makes

the impact of technology shocks on hours weakly identified. I construct confidence

intervals for this impact by adopting an approach robust to weak identification.
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CHAPTER One

Detecting Weak Identification by Bootstrap

1
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1.1 Introduction

The Instrumental Variable (IV) regression and Generalized Method of Moments

(GMM) are becoming the standard toolkit for empirical economists, and it is now

well known that both IV and GMM applications may suffer from the problem of weak

identification. An example that has received sizable attention is the linear IV regres-

sion with weak instruments studied in Staiger and Stock (1997). When the strength

of identification is weak, the finite sample distribution of IV/GMM estimators is

poorly approximated by the normal distribution, which further induces the malfunc-

tion of conventional inference methods that rely on the property of asymptotic nor-

mality.1 Two approaches co-exist to handle weak identification: the first approach is

to use the robust methods in Anderson and Rubin (1949), Stock and Wright (2000),

Kleibergen (2002)(2005), and Moreira (2003), which can produce confidence inter-

vals/sets with the correct coverage, regardless of the strength of identification; the

second approach that is popular in practice is to rule out weak identification by

pretesting. Although identification-robust methods are available, excluding weak

identification in IV/GMM applications has practical importance: if identification is

not weak, then the rich set of conventional methods is applicable, making statistical

inference and economic decisions much easier. For instance, other than its confidence

interval, the point estimator of a parameter is usually preferred by policy makers,

but it is not consistent or meaningful unless weak identification is excluded.

In this chapter, I propose a method based on bootstrap resampling to detect

whether weak identification exists in IV/GMM applications. This method has the

unique feature of providing a graphic view of the strength of identification. In the

econometric literature, there exists a group of tests on identification that this chap-

1See the article by Stock et al. (2002) for a survey.
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ter is in line with: for example, in the linear IV model, Hahn and Hausman (2002)

and Stock and Yogo (2005) provide tests for the null of strong instruments and weak

instruments respectively, and the first stage F test with the F > 10 rule of thumb pro-

posed in Stock and Yogo (2005) is widely used; in Hansen (1982)’s GMM framework,

which nests the linear IV model, the suggested tests include Wright (2002)(2003),

Inoue and Rossi (2008), Bravo et al. (2009), etc.

The proposed method is illustrated by Figure 1.1. The exact finite sample dis-

tribution of IV/GMM estimators is generally unknown, but can be approximated

either by the limiting normal distribution or by the bootstrap distribution. When

the IV/GMM models are strongly identified, these two approximation methods are

both valid, i.e. both the normal distribution and the bootstrap distribution are close

to the exact distribution, and in practice, they can be used exchangeably. Conse-

quently, strong identification implies that the bootstrap distribution is not far away

from the normal distribution. When the bootstrap distribution is substantially dif-

ferent from the normal distribution, inference based on these two distributions might

contradict; in this situation, it is inappropriate to consider the identification strength

as strong. As a result, whether or not weak identification exists can be inferred by

comparing the bootstrap distribution with the normal distribution.

Since its introduction by Efron (1979), the bootstrap has become a practical tool

for statistical inference. The properties of the bootstrap are explained using the

theory of the Edgeworth expansion in Hall (1992), and its econometric applications

are illustrated in Horowitz (2001). As an alternative to the limiting distribution, the

bootstrap approximates the distribution of a targeted statistic by resampling the

data, and there is considerable evidence that it performs better than the first-order

limiting distribution in finite samples.2 However, the bootstrap does not always

2See, for example, Horowitz (1994).
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work well. When the IV/GMM models are not well identified, for instance, the

bootstrap is known to be problematic when it is used to approximate the commonly

used t/Wald statistic, as explained in Hall and Horowitz (1996). Nevertheless, the

fact that the bootstrap fails still conveys useful information: as illustrated by Figure

1.1, the substantial difference between the bootstrap distribution and the normal

distribution indicates that it is problematic to approximate the exact finite sample

distribution of IV/GMM estimators by the normal distribution; in other words, the

identification strength is weak.

Given the above introduction, it is tempting to apply normality tests, e.g. the

Kolmogorov-Smirnov test, to examine whether the bootstrap distribution is normal

in order to investigate the strength of identification. However, this route is not pro-

ductive, when normality tends to be rejected as the number of bootstrap replications

becomes large. This is due to the fact that, in general, the bootstrap distribution

coincides with the normal distribution only at the limit where there are an infi-

nite number of data points. In an IV/GMM application with a finite sample, the

bootstrap distribution is not equivalent to the normal distribution, hence the null

hypothesis for normality tests that the bootstrap distribution is identical to the nor-

mal distribution does not hold in empirical applications. Although normality tests

do not work well, empirical researchers can still eyeball the graph of the bootstrap

distribution to evaluate the strength of identification, and the test proposed in this

chapter does not impose the equivalence of the bootstrap distribution and the normal

distribution; only a substantial difference of these two distributions would induce the

rejection of strong identification.

The rest of the chapter is organized as follows: weak identification and the boot-

strap strategy are illustrated in Section 2; in Section 3, the bootstrap-based method

for determining whether weak identification exists is proposed; the linear IV regres-
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sion model is used as an example in Section 4, with an application to Card (1995);

in Section 5, Monte Carlo results are presented; Section 6 concludes. Although the

linear IV model is employed in this chapter for expository purposes, the proposed

method can be extended to the more general GMM framework.

Throughout the chapter, the following notations are used: for an m by n matrix

A, Ai (sometimes ai is used when A is a vector) is its ith row, and PA = A(A′A)−1A′,

MA = Im − PA, Im is the m by m identity matrix; vec(A) is the column vector con-

taining the column by column vectorization of elements in A; for an object O, O∗ is

its bootstrap counterpart; ⇒ stands for weak convergence;
p→ stands for convergence

in probability; N(µ, σ2) is the normal distribution with mean µ, variance σ2; ⊗ is

the Kronecker product; ||.|| is the Euclidean norm.

1.2 Motivation and Strategy

1.2.1 Weak Identification, Rank Tests

Let θ denote the population parameter of interest in an IV/GMM application, and θ̂n

is the estimator for θ, e.g. the two stage least squares estimator. The subscript n for

θ̂n refers to that θ̂n is computed by finite sample of n observations. Assuming that the

rank condition and other regularity conditions are satisfied (cf., Wooldridge (2002)),

the conventional first-order asymptotic theory yields that θ̂n is
√
n−consistent, and

asymptotically normally distributed:

√
n(θ̂n − θ) ⇒ N(0, σ2), and there exists σ̂

p→ σ (1.1)
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As surveyed by Stock et al. (2002), the exact finite sample distribution of
√
n(θ̂n−

θ) can be substantially different from the normal distribution N(0, σ2), especially

when the rank condition is weakly satisfied. The scenario that (1.1) does not provide

a good approximation in finite sample applications is known as weak identification.

It is helpful to distinguish weak identification from identification/noidentification:

identification/noidentification refers to whether θ can be identified at the population

level, hence it is unrelated to the sample size n; in contrast, weak identification

targets that the first-order asymptotic theory may provide a poor approximation in

finite samples. When θ is identified in the population, it is possible that the first-

order approximation of (1.1) under a given sample3 does not function well, hence

weak identification may exist even though there is identification; the case that θ is

unidentified is also nested by weak identification, since the first-order approximation

of (1.1) also breaks down under noidentification. Loosely speaking, if the first-order

approximation based on (1.1) is poor, then weak identification is concerned.

Since the conventional result of (1.1) breaks down under weak identification, it

is important to investigate the identification strength in IV/GMM applications. A

natural way is to examine the rank condition, as weak identification is more likely to

exist when the rank condition is only weakly satisfied. There are rank tests available

to serve this purpose. For example, in the linear IV model with a single endogenous

regressor, the rank condition corresponds to that the correlation of the endogenous

regressor and the instruments is non-zero, and Stock and Yogo (2005) propose the F

test to examine this correlation: if the F statistic is greater than the tabled critical

values, typically around 10 for small number of instruments, then the rank condition

is considered strongly satisfied, and weak identification is excluded.

3Even when the sample size is very large, weak identification could exist, e.g. in some regressions
of Angrist and Krueger (1991), there are 329000 observations, but their instruments are weak.
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The approach of examining the rank condition, however, has some limitations

when it is extended to the more general GMM framework: first of all, the rank

statistic in the non-linear GMM may depend on the weakly identified parameters,

hence could not be consistently estimated, see, e.g. Wright (2003); secondly, it is not

clear how large the rank statistic needs to be in order to decide that identification in

GMM is not weak, to the best of my knowledge. In the linear IV model, which can

be seen as a special case of GMM, although the tabled critical values of the F test are

available, they are derived under the i.i.d and homoscedasticity assumptions, hence

it is not appropriate to apply them if heteroscedasticity or non-i.i.d. takes place.

Given the importance of detecting weak identification in IV/GMM applications,

and the limitations of the rank test, a question naturally arises: is there a tool that

does not have these limitations, and is universally applicable to both IV and GMM

applications? This chapter suggests that the bootstrap could be the tool.

1.2.2 Test Strategy by Bootstrap

Let θ̂∗n denote the bootstrap estimator of θ, and θ̂∗n is the counterpart of θ̂n. θ̂n is

computed by the data sample of the IV/GMM application, while θ̂∗n is computed by

resampling the data sample or the model estimated from the data. The bootstrap

counterpart of
√
n(θ̂n − θ) is

√
n(θ̂∗n − θ̂n).

When identification is not weak, together with mild regularity conditions, the

bootstrap distribution of
√
n(θ̂∗n− θ̂n) asymptotically coincides with the distribution

of
√
n(θ̂n − θ) (cf., Horowitz (2001)):

√
n(θ̂∗n − θ̂n) ⇒ N(0, σ2) (1.2)
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There are now three objects: the exact distribution of
√
n(θ̂n − θ), the normal

distribution N(0, σ̂2), and the bootstrap distribution of
√
n(θ̂∗n − θ̂n). By (1.1) and

(1.2), both of which hold under mild conditions, these three distributions are asymp-

totically equivalent.

The proposed bootstrap strategy for detecting weak identification is to compare

the bootstrap distribution of
√
n(θ̂∗n − θ̂n) with the normal distribution N(0, σ̂2),

or equivalently, compare the standardized bootstrap distribution of θ̂∗n−θ̂n
σ̂/

√
n

with the

standard normal distribution. Since the difference between these two distributions

is negligible when identification is strong, a substantial difference is the evidence

against strong identification.

I find that this bootstrap strategy is appealing: (i) it provides a simple and in-

tuitive way to detect weak identification, i.e. empirical researchers can draw the

graph of the bootstrap distribution and compare it with the normal distribution to

evaluate the strength of identification; (ii) it is universally applicable to IV/GMM

applications, i.e. although the data of IV/GMM applications may not be i.i.d. and

homoscedastic, there exist various bootstrap methods to construct the bootstrap dis-

tribution, e.g. the block bootstrap in Hall and Horowitz (1996) for time series data in

GMM, the pair and wild bootstrap used in Davidson and MacKinnon (2010) for het-

eroscedasticity in IV. By the bootstrap strategy, as long as it is feasible to construct

the bootstrap distribution, detecting weak identification reduces to the comparison

of two distributions: the bootstrap distribution, and the normal distribution.

Definition 1. Conditional on the sample of the observed data, the standardized

bootstrap estimator X = θ̂∗n−θ̂n
σ̂/

√
n
follows a distribution with c.d.f. F (x). From now on,

the bootstrap distribution refers to F (x) in this chapter.

Normality tests appear to be the intuitive choice, since comparing the bootstrap
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distribution with the normal distribution is proposed to infer the strength of iden-

tification. However, applying normality tests here will almost always induce the

rejection of normality, and lead to the conclusion of weak identification.

Take the classic Kolmogorov-Smirnov (KS) test for example. With B bootstrap

replications, let Xi =
θ̂∗in −θ̂n
σ̂/

√
n
, i = 1, ..., B denote the i.i.d. bootstrapped estimators

after standardization. To test the hypothesis that Xi, i = 1, ..., B are B points

drawn from the standard normal distribution Φ(x), theKS statistic is the supremum

distance between Φ(x) and the empirical c.d.f. F̂ (x), scaled by the square root of the

number of points. As B → ∞, the KS statistic goes to infinity, instead of converging

to the Kolmogorov distribution:

KS =
√
B sup

x
|F̂ (x)− Φ(x)| → ∞

where F̂ (x) = 1
B

∑B
i=1 1(Xi ≤ x) = 1

B

∑B
i=1 1(

θ̂∗in −θ̂n
σ̂/

√
n

≤ x).

This is because the hypothesis F (x) = Φ(x) does not hold when n < ∞. In

other words, in empirical applications where the sample size is finite, F (x) differs

from Φ(x), although the difference may not be substantial, e.g. by the Edgeworth

expansion in Horowitz (2001), F (x) − Φ(x) = O(n−1/2). Consequently, even when

the difference between F (x) and Φ(x) is minor, as B → ∞, KS → ∞, i.e. the KS

test tends to reject normality when the bootstrap replication gets large.

Said differently, the bootstrap distribution is not identical to the normal dis-

tribution, although it can be asymptotically equivalent to the normal distribution.

The KS test is for testing the hypothesis that the bootstrap distribution is identical

to the normal distribution. For the purpose of examining whether the bootstrap

distribution is close to the normal distribution, it is inappropriate to apply this test.
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Instead of verifying the equivalence of the bootstrap distribution and the normal

distribution by normality tests, this chapter provides a quantitative measure of the

difference/distance between these two distributions: if the measure shows that the

difference is substantial, then identification is considered as weak ; on the contrary, if

the measure shows that the difference is negligible, then identification is considered

as strong.

The measure results from the comparison of two confidence intervals (C.I.): the

conventional C.I. derived by inverting the t/Wald test, and the bootstrap percentile

C.I.. Consider the practical task of constructing a confidence interval for θ, the

parameter of interest. The 100(1 − α)% C.I. of θ derived by inverting the t/Wald

test is written as:

Ct ≡ (θ̂n − z1−α/2
σ̂√
n
, θ̂n + z1−α/2

σ̂√
n
) (1.3)

where z1−α/2 is the 1− α/2 quantile of Φ(x). For example, when α = 5%, z1−α/2 ≈

1.96, and the 95% C.I. of θ is approximately (θ̂n − 1.96 σ̂√
n
, θ̂n + 1.96 σ̂√

n
).

Alternatively, a C.I. can also be constructed by the bootstrap percentile method:

order the bootstrapped estimators {θ̂∗in , i = 1, ..., B}, write the ordered sequence as

{θ̂∗(i)n , i = 1, ..., B}, where θ̂∗(i)n is the ith smallest of {θ̂∗in , i = 1, ..., B}; define θ̂∗n,α/2
and θ̂∗n,1−α/2: θ̂∗n,α/2 ≡ θ̂

∗(⌈Bα/2⌉)
n , θ̂∗n,1−α/2 ≡ θ̂

∗(⌈B(1−α/2)⌉)
n , where ⌈x⌉ denotes the

integer ceiling of x. The bootstrapped 100(1− α)% C.I. of θ is:

Cb ≡ (θ̂∗n,α/2, θ̂
∗
n,1−α/2) (1.4)

The two intervals in (1.3) and (1.4) are asymptotically equivalent when identi-

fication is not weak. To see this, equalizing the boundaries of these two intervals
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yields:
θ̂∗n,α/2 − θ̂n

σ̂/
√
n

= −z1−α/2,
θ̂∗n,1−α/2 − θ̂n

σ̂/
√
n

= z1−α/2

These two equalities approximately hold if the distribution of θ̂∗n after standardiza-

tion, i.e. subtracting the estimate and dividing by the standard error, is close to the

standard normal distribution.

In practice, the above two methods of constructing the 100(1−α)% C.I. for θ are

both commonly used. From a practical point of view, no matter which method em-

pirical researchers use, the correspondent intervals need not be substantially different

from each other. If these two intervals do substantially differ, then it is difficult to

make reliable economic inference: for instance, one interval may include zero while

the other one does not, hence decisions of whether θ is significantly different from

zero based on the two different C.I.’s could contradict.4 The difference between the

two intervals in (1.3) and (1.4) boils down to the difference between the bootstrap

distribution and the normal distribution. If these two intervals are substantially

different, it indicates the bootstrap distribution is substantially different from the

normal distribution, hence the identification strength is weak.

The idea of comparing alternative C.I.’s to investigate the identification status

comes from Wright (2002), where he compares the interval derived by inverting the

robust tests with the conventional interval derived by inverting the t/Wald test.

Different from Wright (2002), I use the bootstrap to construct a C.I. for comparison;

in addition, Wright (2002) provides an identification test, while in this chapter, I

target weak identification instead of identification.

Based on the comparison of the two intervals in (1.3) and (1.4), a measure of the

4This problem is encountered in the empirical example of Card (1995).
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difference between the bootstrap distribution and the normal distribution, as well as

a quantitative definition of weak identification, is provided below.

Definition 2. Define D as the measure of the difference between the bootstrap dis-

tribution F (x) and the standard normal distribution Φ(x):

D ≡
q1−α/2 − qα/2

2z1−α/2
− 1

where z1−α/2 is the 1− α/2 quantile of Φ(x), qα/2, q1−α/2 are assumed to be the two

unique quantiles of the continuous c.d.f. F (x), i.e. F−1(α/2) = qα/2, F
−1(1−α/2) =

q1−α/2.

D is the relative difference of the lengths between the α/2, 1 − α/2 quantiles of

the two distributions. D = 0 if F (x) = Φ(x). The deviation of D from 0 indicates

the deviation of F (x) from Φ(x), and hence suggests existence of weak identification.

Definition 3. Suppose there is a cutoff γ > 0. The identification strength is con-

sidered as weak in this chapter if |D| > γ, otherwise the identification strength is

strong.

It is important to set a non-zero γ: if γ = 0, then identification tends to be

considered as weak, because F (x) is not exactly normal except in the limit of n→ ∞.

For the same reason, it is inappropriate to apply normality tests, which impose γ = 0

under their null hypothesis.

D can be estimated by the relative difference of (1.3) and (1.4):

D̂ =
q̂1−α/2 − q̂α/2

2z1−α/2
− 1 =

θ̂∗
n,1−α/2

−θ̂n
σ̂/

√
n

−
θ̂∗
n,α/2

−θ̂n
σ̂/

√
n

2z1−α/2
− 1 =

θ̂∗n,1−α/2 − θ̂∗n,α/2
2z1−α/2σ̂/

√
n

− 1
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Empirical researchers may have a certain tolerance level for D, which is the

threshold5 γ. For example, a researcher may consider it acceptable if |D| ≤ γ = 0.25,

i.e. the relative difference of the two C.I.’s is less than a quarter. If |D| goes above

this tolerance level, then it is not unreasonable to determine that the identification

strength is weak.

To summarize, this chapter proposes to use the difference D between the boot-

strap distribution F (x) and the standard normal distribution Φ(x) to evaluate the

strength of identification. If |D| is greater than a given threshold, identification is

weak.

1.2.3 An Alternative

To my knowledge, Stock and Yogo (2005) is the first to provide a quantitative def-

inition of weak instruments/identification. Like Stock and Yogo (2005), the quan-

titative Definition 3 of weak identification is also practically motivated: from the

practical perspective, it is not appropriate to consider identification as strong if the

bootstrap and the limiting normal distribution provide substantially different con-

fidence intervals. Unlike Stock and Yogo (2005), Definition 3 is not directly related

to the bias of the conventional IV/GMM estimator or the size of the t/Wald test,

while Stock and Yogo (2005) define identification as weak if the relative bias of the

conventional estimator or the size distortion of the t/Wald test exceeds a thresh-

old. Although quantitatively different, the definition in this chapter is qualitatively

similar to the one in Stock and Yogo (2005): both definitions of weak identification

indicate that the distributions of the conventional IV/GMM estimators are poorly

approximated by the normal distribution, or said differently, the conventional ap-

5A choice of the threshold γ is suggested in the later part of Monte Carlo studies.
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proximation of (1.1) breaks down.

In this chapter, I follow the idea in Wright (2002) to use D, the relative difference

of the lengths of two alternative C.I.’s, to measure the strength of identification.

Alternatively, we could follow Stock and Yogo (2005) and define D as the difference

of coverage:

Da ≡ F (z1−α/2)− F (zα/2)− (1− α)

Note that Da is zero if the bootstrap distribution F (x) coincides with the standard

normal distribution Φ(x). Following Stock and Yogo (2005), we can use γa = 5%,

and define identification as weak if |Da| > γa = 5%.

These definitions of (D, γ) and the alternative (Da, γa) are two sides of the

same coin: both the difference in length and the difference in coverage indicate the

bootstrap distribution and the normal distribution are different, and there is no clear

advantage if either definition is used. For the rest of this chapter, I use (D, γ)6.

Note that weak identification refers to the severe disparity between the exact dis-

tribution and the normal distribution, while its quantitative definition stated above

rests on the disparity between the bootstrap distribution and the normal distribu-

tion. In essence, the bootstrap strategy for detecting weak identification is to use the

difference between the bootstrap distribution and the normal distribution as a proxy

for the the difference between the exact distribution and the normal distribution.

The so-called bootstrap principle (or the bootstrap analogy) in Hall (1992) can

help clarify the proposed strategy. The bootstrap principle states that the mapping

from the population to the sample (1st mapping) is similar to the mapping from

the sample, which is also the bootstrap population, to the bootstrap resample (2nd

6The empirical and MC results are found to be similar, when (Da, γa) is used.
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mapping). By this principle, the identification strength in the 2nd mapping is ex-

pected to be similar to the identification strength in the 1st mapping. Consequently,

the bootstrap strategy for detecting weak identification is to use the identification

strength in the 2nd mapping as the proxy for the identification strength in the 1st

mapping: the substantial disparity between the bootstrap distribution and the nor-

mal distribution corresponds to the weak identification strength in the 2nd mapping,

which further suggests the weak identification strength in the 1st mapping, i.e. the

disparity between the exact distribution and the normal distribution is also severe.

The advantage of the bootstrap strategy is clear: the bootstrap population is

the given sample, hence the identification strength in the 2nd mapping is known or

recoverable. The only randomness in this mapping comes from the randomness of

bootstrap resampling, and if the number of bootstrap replications is sufficiently large,

this randomness is negligible. Once the identification strength in the 2nd mapping

is recovered, it is used to infer the identification strength in the 1st mapping, since

they are expected to be similar by the bootstrap principle.

1.3 Estimation and Test

With the quantitative definition as well as the advantage of the bootstrap test strat-

egy, detecting weak identification becomes straightforward. By definition, |D| > γ

implies weak identification. D, the distance between the bootstrap distribution and

the standard normal distribution, needs to be estimated.

Draw B i.i.d. observations from F (x) by bootstrap: Xi =
θ̂∗in −θ̂n
σ̂/

√
n
, i = 1, ..., B.

The bootstrap distribution F (x) can be estimated by the empirical c.d.f. F̂ (x) almost
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surely:

F̂ (x) =
1

B

B∑
i=1

1(Xi ≤ x) =
1

B

B∑
i=1

1(
θ̂∗in − θ̂n
σ̂/

√
n

≤ x)
a.s.→ F (x)

Consequently, D can be estimated almost surely, by the continuous mapping

theorem:

D̂ =
q̂1−α/2 − q̂α/2

2z1−α/2
− 1

a.s.→ D

It would be ideal if B could be made infinity. For the given B realizations from

F (x), though B can be arbitrarily large, whether |D| exceeds γ needs to be tested,

and a test serving this purpose is presented next.

Assume the following conditions hold for an IV/GMM model with the conven-

tional estimator θ̂n, associated with standard error σ̂√
n
:

Assumption 1. There exist {θ̂∗in , i = 1, ..., B}, the i.i.d. draws of the bootstrapped

estimator θ̂∗n; conditional on the sample, the standardized random variable X = θ̂∗n−θ̂n
σ̂/

√
n

has a continuous density function f(x) that is non-zero in a neighborhood of the two

quantiles qα/2, q1−α/2, and can be consistently estimated by the non-parametric kernel

estimation: f̂(x)
p→ f(x).

Comments:

1. Under Assumption 1, the joint distribution of the two quantile estimators,

namely, q̂α/2 =
θ̂∗
n,α/2

−θ̂n
σ̂/

√
n

, q̂1−α/2 =
θ̂∗
n,1−α/2

−θ̂n
σ̂/

√
n

, is asymptotically normal condi-

tional on the sample, as B → ∞ (see David and Nagaraja (2003)):

√
B

 θ̂∗
n,α/2

−θ̂n
σ̂/

√
n

− qα/2
θ̂∗
n,1−α/2

−θ̂n
σ̂/

√
n

− q1−α/2

⇒ N


 0

0

 ,Ω


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where

Ω =

 (1−α/2)α/2
f(qα/2)

2

(α/2)2

f(qα/2)f(q1−α/2)

(α/2)2

f(qα/2)f(q1−α/2)
(1−α/2)α/2
f(q1−α/2)

2



2. Silverman (1998) provides high level assumptions for the consistency of the

non-parametric kernel density estimator, while f̂(x)
p→ f(x) is directly as-

sumed here for simplicity. As
θ̂∗
n,α/2

−θ̂n
σ̂/

√
n

p→ qα/2, f(qα/2) is consistently estimated

by f̂(
θ̂∗
n,α/2

−θ̂n
σ̂/

√
n

); similarly, f(q1−α/2) is consistently estimable. The covariance

matrix Ω is thus consistently estimable: there exists Ω̂
p→ Ω. The normal ker-

nel and Silverman’s rule of thumb for choosing the bandwidth are used in the

empirical application and simulation studies of this chapter.

Theorem. Under Assumption 1, and conditional on the sample, the following result

holds as B → ∞:

√
B(D̂ −D) ⇒ N(0,

Ω11 + Ω22 − 2Ω12

4z21−α/2
) (1.5)

where Ωi,j is the element of Ω at row i, column j.

The quantitative definition of strong and weak identification implies the following

decision rule: reject the null of strong identification when |D| > γ. There are

two cases that would induce the rejection, D > γ and D < −γ. Consequently,

strong identification is rejected when D̂ is significantly greater than γ (Case 1), or

significantly less than −γ (Case 2) in the test statistics below.

Case 1: strong identification is rejected at 5% if

b1 =
√
B

D̂ − γ

[(Ω̂11 + Ω̂22 − 2Ω̂12)/(4z21−α/2)]
1/2

> z95%
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Case 2: strong identification is rejected at 5% if

b2 =
√
B

D̂ + γ

[(Ω̂11 + Ω̂22 − 2Ω̂12)/(4z21−α/2)]
1/2

< −z95%

Combining these two cases, reject strong identification at 5% if

|D̂| > γ + z95%

√
Ω̂11 + Ω̂22 − 2Ω̂12

4Bz21−α/2

As B → ∞, the test above ends up with a rule of thumb: reject strong identi-

fication if |D̂| > γ, hence this test can be substituted by the rule of thumb under

sufficiently large B. From now on, this test is referred to as the b test, since it is

based on the bootstrap.

1.4 IV and Bootstrap

In this section, a linear IV regression model is used as a specific example to further

illustrate the bootstrap approach for detecting weak identification, with an applica-

tion to Card (1995). Most of the analytical results are well known, for example, the

convergence results in (1.1) and (1.2) under mild conditions, and proofs of the listed

results are attached in the appendix. The main objective of this section is to show

that the difference between the bootstrap distribution and the normal distribution

is a suitable proxy for the difference between the exact distribution and the normal

distribution, hence it is a reasonable indicator of the identification strength.
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1.4.1 Model Setup

 Y = Xθ + U

X = ZΠ+ V

Y = (Y1, ..., Yn)
′, X = (X1, ..., Xn)

′ are n×1 vectors of endogenous observations, and

Z = (Z1, ..., Zn)
′ is the n × k matrix of instruments, k ≥ 1. U = (u1, ..., un)

′, V =

(v1, ..., vn)
′, where the error term (ui, vi)

′, i = 1, ..., n, is assumed to have mean zero,

and to be i.i.d., homoscedastic with covariance matrix Σ =

 σ2
u ρσuσv

ρσuσv σ2
v

. The

parameter of interest is θ, and θ̂n is the IV estimator of θ:

θ̂n = (X ′PzX)−1X ′PzY

It is central to derive the distribution of θ̂n for statistical inference. The ex-

act finite sample distribution of θ̂n, however, is unknown without making further

distributional assumptions. Instead, two alternative methods are often used to ap-

proximate the exact distribution in econometric applications: the limiting normal

distribution, and the bootstrap distribution.

Under the conventional asymptotic theory where the k × 1 vector Π is modeled

as non-zero and fixed, the IV estimator θ̂n is asymptotically normally distributed as

the sample size n gets large. In contrast, to explore the distribution of θ̂n when the

instruments are only weakly related to the endogenous variable, Staiger and Stock

(1997) develop weak instrument asymptotics, i.e. Π is modeled as local to zero.

Assumption 2. (a) Π = Π0 ̸= 0, and Π0 is fixed; (a’) Π = Πn = C√
n
, and C is

fixed.
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The asymptotics under Assumption 2(a) are called Strong Instrument Asymp-

totics, and the asymptotics under Assumption 2(a’) are called Weak Instrument

Asymptotics. (a)(a’) are two alternative rank conditions, and in (a’) the rank

condition is only weakly satisfied. The following results and notations are used:

Z ′Z/n
p→ Qzz ≡ E(Z ′

iZi), (
Z′U√
n
, Z

′V√
n
) ⇒ (Ψzu,Ψzv), and (Ψzu,Ψzv)

′ is distributed

N(0,Σ⊗Qzz). The validity of these results follows from law of large numbers and a

central limit theorem, after assuming the existence of second moments. By the sim-

ilar derivation as in Staiger and Stock (1997), the following two well-known results

hold.

Under Strong Instrument Asymptotics :

√
n(θ̂n − θ) ⇒ (Π′

0QzzΠ0)
−1Π′

0Ψzu ∼ N(0, (Π′
0QzzΠ0)

−1σ2
u) (1.6)

Under Weak Instrument Asymptotics :

θ̂n − θ ⇒ [(QzzC +Ψzv)
′Q−1

zz (QzzC +Ψzv)]
−1(QzzC +Ψzv)

′Q−1
zz Ψzu (1.7)

If k = 1, i.e. the model is exactly identified, then (1.7) reduces to:

θ̂n − θ ⇒ (QzzC +Ψzv)
−1Ψzu

The conventional result of (1.6) indicates that when instruments are strong, the

IV estimator θ̂n is both consistent and asymptotically normally distributed. In con-

trast, the result of (1.7) indicates that the IV estimator θ̂n is neither consistent nor

asymptotically normally distributed, if the rank condition is weak. As the magni-
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tude of Π increases, however, the distribution of θ̂n in (1.7) gets closer to the normal

distribution in (1.6). In the extreme case that C =
√
nΠ0, (1.6) and (1.7) coincide.

Π, the vector of nuisance parameters, is thus the driving force of the linear IV re-

gression model: it determines whether θ can be consistently estimated, and whether

the estimator θ̂n can be well approximated by the normal distribution.

As a function of Π, the concentration parameter µ2 is a unit-less measure of the

identification strength in the studies of weak instruments:

µ2 =
Π′Z ′ZΠ

σ2
v

The greater µ2, the stronger the identification of the parameter θ, and the distri-

bution of θ̂n gets closer to the normal distribution, as shown in Rothenberg (1984).

In addition, Stock and Yogo (2005) suggest that there is a threshold of the con-

centration parameter for the set of weak instruments, i.e. instruments as well as

identification are considered weak if µ2/k is under the threshold. The first stage

F test is suggested in Stock and Yogo (2005) to check whether the threshold is ex-

ceeded: if the F statistic is greater than the tabled critical values, typically around

10 for small k, then instruments as well as identification are not weak:

F =
Π̂′
nZ

′ZΠ̂n/k

σ̂2
v

where Π̂n = (Z ′Z)−1Z ′X, σ̂2
v = (X − ZΠ̂n)

′(X − ZΠ̂n)/(n− k).

As an alternative to the limiting normal distribution, the bootstrap provides

another way of approximating the distribution of θ̂n. For the linear IV regression

model under homoscedasticity, the residual bootstrap is a commonly used bootstrap

method. See, for example, Moreira et al. (2009). This bootstrap procedure or algo-
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rithm is described as follows.

1. Û , V̂ are the residuals induced by θ̂n, Π̂n in the linear IV model:

Û = Y −Xθ̂n, V̂ = X − ZΠ̂n

2. Re-center Û , V̂ to yield Ũ , Ṽ , by pre-multiplying a constant matrix Me, where

Me = In − Pe, and e is the n by 1 vector of ones:

Ũ =MeÛ , Ṽ =MeV̂

3. Sampling the rows of (Ũ , Ṽ ) and Z independently n times with replacement,

and let (U∗, V ∗) and Z∗ denote the outcome. The dependent variables (X∗, Y ∗)

are generated by:  Y ∗ = X∗θ̂n + U∗

X∗ = Z∗Π̂n + V ∗

4. As the counterpart of the IV estimator θ̂n, the bootstrapped IV estimator θ̂∗n

is computed by the bootstrap resample (X∗, Y ∗, Z∗):

θ̂∗n = (X∗′Pz∗X
∗)−1X∗′Pz∗Y

∗

5. Re-do Steps 2-4 B times, and {θ̂∗in , i = 1, ..., B} are B i.i.d. estimators.

The bootstrap data generation process (D.G.P.) above aims to mimic the D.G.P.

of the linear IV regression model: when instruments are strong, the equation Π̂n =

Π+Op(n
−1/2) indicates that Π̂n is not substantially different from Π; in addition, the
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variance of the bootstrap error term (u∗i , v
∗
i ) converges to Σ, the variance of (ui, vi).

Consequently, it is natural to expect that the mimicking process works well under

strong instruments, and the distributions of θ̂∗n and θ̂n are alike. This conjecture on

the bootstrapped estimator θ̂∗n is confirmed by the result below.

Under Strong Instrument Asymptotics :

√
n(θ̂∗n − θ̂n) ⇒ (Π

′

0QzzΠ0)
−1Π

′

0Ψzu (1.8)

The result of (1.8) motivates the usage of the bootstrap as a tool to detect the

identification strength: under strong identification, the distribution of
√
n(θ̂∗n − θ̂n)

is asymptotically identical to the distribution of
√
n(θ̂n − θ), and the asymptotic

distribution is normal; if the distribution of
√
n(θ̂∗n− θ̂n) is found to be substantially

different from normal, then it indicates that identification is weak.

The bootstrap mimicking process also helps explain why the bootstrap becomes

problematic when instruments are weak: first of all, if Π is local to zero, then the

connection Π̂n = Π + Op(n
−1/2) implies that the difference between Π̂n and Π be-

comes substantial, hence the identification strength in the bootstrap resample is

substantially different from the identification strength in the sample; secondly, when

θ̂n does not consistently estimate θ under weak instruments, the residual Û does not

converge to the error term U , since Û = U − X(θ̂n − θ). Both of these two facts

contribute to that the bootstrap D.G.P. does not mimic the D.G.P. of the linear IV

model well under weak instruments, and consequently, the distributions of θ̂∗n and θ̂n

are different.
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To compare the identification strength in the bootstrap resample (X∗, Y ∗, Z∗)

with the identification strength in the sample (X, Y, Z), consider the concentration

parameter µ2∗, the bootstrap counterpart of µ2:

µ2∗ =
Π̂

′
nZ

∗′Z∗Π̂n

σ2∗
v

,where σ2∗
v =

V ∗′V ∗

n

Under Strong Instrument Asymptotics :

µ2 → ∞, and µ2∗ → ∞ (1.9)

Under Weak Instrument Asymptotics :

µ2 p→ C ′QzzC

σ2
v

, and µ2∗ ⇒ C ′QzzC + 2C ′Ψzv +Ψ
′
zvQ

−1
zz Ψzv

σ2
v

(1.10)

The result of (1.9) states that when identification is strong, µ2 and µ2∗ go to

infinity, implying that the distributions of θ̂n and θ̂∗n are both asymptotically nor-

mal, as stated in (1.6) and (1.8). On the contrary, the result of (1.10) states that

when identification is weak, µ2∗ and µ2 do not go to infinity, and are asymptotically

different, which implies that the distributions of θ̂n and θ̂∗n are both asymptotically

non-normal, and their asymptotical distributions are not identical. The asymptotic

difference in µ2 and µ2∗ is 2C′Ψzv+Ψ
′
zvQ

−1
zz Ψzv

σ2
v

: under homoscedasticity, it has mean k.

Table 1.1 reports the difference between µ2 and µ2∗ when k = 1 by Monte Carlo

studies: the relative difference is found to be substantial when µ2 is small, and

negligible when µ2 is large; overall, µ2∗ is greater than µ2. Another interpretation of

(1.10) is that, loosely speaking, the F statistic of the bootstrap resample is above the
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F statistic of the sample by 1, because of the relation E(F ) ≈ µ2/k+1 in Stock et al.

(2002).

The comparison of µ2∗ and µ2 indicates a useful result in the linear IV model

where µ2/k and µ2∗/k are measures of the identification strength: on average, the

identification strength in the bootstrap resample is similar to, and slightly stronger

(plus 1) than the identification strength in the sample; consequently, if the identifi-

cation strength in the bootstrap resample is weak, then the identification strength

in the sample must also be weak. In this sense, the proposed bootstrap strategy for

detecting weak identification is conservative.

The Edgeworth expansion provides another look at the bootstrap strategy for de-

tecting weak identification. For the purpose of this chapter, it suffices to consider the

two-term expansion of the standardized estimator θ̂n−θ
σ/

√
n
, where σ2 = (Π′

0QzzΠ0)
−1σ2

u.

Define Ri = (ZiXi, ZiYi, vec(Z
′
iZi)

′)′, µ = E(Vi) = (QzzΠ, QzzΠβ, vec(Qzz)
′)′.

Rewrite θ̂n−θ
σ/

√
n
in the form of

√
nA(R̄), where R̄ = 1

n

∑n
i=1Ri, and A(µ) = 0. The

following result is the application of the smooth function model and Theorem 2.2 in

Hall (1992). A similar result is available in Moreira et al. (2009).

Theorem. Under Assumption 2(a), and assume two conditions: (i) E(||Ri||3) <∞,

(ii) lim sup||t||→∞|Eexp(it′Ri)| < 1, θ̂n−θ
σ/

√
n
and its bootstrap counterpart admit two-

term Edgeworth expansions uniformly in x:

P (
θ̂n − θ

σ/
√
n

≤ x) = Φ(x) + n−1/2p(x)ϕ(x) + o(n−1/2) (1.11)

P (
θ̂∗n − θ̂n
σ̂/

√
n

≤ x) = Φ(x) + n−1/2p∗(x)ϕ(x) + o(n−1/2) (1.12)

where p(x) is a polynomial of degree 2, with coefficients depending on θ,Π, and mo-

ments of Ri up to order 3, p∗(x) is the bootstrap counterpart of p(x) with coefficients



26

depending on θ̂n, Π̂n, and moments of R∗
i .

Figure 1.2 is drawn based on the results of the Edgeworth expansion. The dis-

tance between the exact distribution of θ̂n−θ
σ/

√
n
and the standard normal distribution

has order O(n−1/2), which is the same as the order of the distance between the boot-

strap distribution of θ̂∗n−θ̂n
σ̂/

√
n

and the standard normal distribution. Compared with

the normal distribution, the bootstrap distribution has the well known property of

asymptotic refinement: it is closer to the the exact distribution, as the distance has

order O(n−1), which results from p∗(x) − p(x) = O(n−1/2): θ̂n, Π̂n, and moments of

R∗
i approach θ,Π, and moments of Ri at rate n

−1/2.

As discussed above, the bootstrap strategy for detecting weak identification is to

use the distance between the bootstrap distribution and the normal as a proxy of the

distance between the exact distribution and the normal distribution. This strategy is

supported by the Edgeworth expansion in two ways: firstly, these two distances have

the same order O(n−1/2); secondly, the price of using the proxy is low, i.e. the proxy

error is O(n−1), because [P ( θ̂n−θ
σ/

√
n
≤ x)− Φ(x)]− [P ( θ̂

∗
n−θ̂n
σ̂/

√
n
≤ x)− Φ(x)] = O(n−1).

To summarize, the bootstrap distribution is a good proxy for the exact distri-

bution for the purpose of this chapter. Under the null hypothesis of strong iden-

tification, the disparity between the exact distribution and the normal distribution

is reflected by the disparity between the bootstrap distribution and the normal dis-

tribution. If the bootstrap distribution is found to be substantially different from

normal, then it is appropriate to conclude that the exact distribution is substantially

different from normal as well, hence the identification strength is weak.

So far, the discussion is restricted to the linear IV model under the homoscedas-

ticity assumption. However, it is well understood that this assumption is unlikely
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to hold in practice: for example, E(u2i |Zi) may not be constant, but depend on Zi.

As a result, it is common that empirical researchers need to take the existence of

heteroscedasticity into consideration.

Once the homoscedasticity assumption is loosened, the validity of the popular F

test for detecting weak instruments/identification is under doubt: the way in which

Stock and Yogo (2005) derive the critical values of the F test crucially depends

on the homoscedasticity assumption. Consequently, it is not clear whether these

critical values can still be used when heteroscedasticity instead of homoscedasticity

takes place.

The validity of the bootstrap test approach, on the contrary, stays unaffected,

when the pair bootstrap replaces the residual bootstrap. Freedman (1984) shows

that the pair bootstrap of the IV estimator remains valid under heteroscedasticity:

the IV estimator and its bootstrap counterpart asymptotically have the same normal

distribution under strong instruments. The idea of the pair bootstrap is to directly

resample the data. In the special case of k = 1, the pair bootstrap is to draw

the bootstrap resample (X∗, Y ∗, Z∗) from the empirical distribution of (X,Y, Z).

Compared with the residual bootstrap above, the pair bootstrap is non-parametric,

and it preserves the possible heteroscedastic relations in the IV model, as proved in

Freedman (1984). Consequently, if heteroscedasticity is concerned, the bootstrap test

procedure involves two minor modifications: (i) use the pair bootstrap to compute

θ̂∗n; (ii) use a heteroscedasticity-robust estimator for σ̂.
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1.4.2 An Empirical Example: Card (1995)

In this section, an empirical application is investigated to illustrate the bootstrap

approach for detecting weak identification. The same data as in Card (1995) is used.

By employing the IV approach, Card (1995) answers the following question: what is

the return to education? Or specifically, how much more can an individual earn if

he/she completes an extra year of schooling?

The dataset is ultimately taken from the National Longitudinal Survey of Young

Men between 1966-1981 with 3010 observations, and there are two variables in the

dataset that measure college proximity: nearc2 and nearc4, both are dummy vari-

ables, and are 1 if there is a 2-year, 4-year college in the local area respectively.

See Card (1995) for the detailed description of the data. To identify the return to

education, Card (1995) considers a structural wage equation as follows:

lwage = α+ θedu+W ′β + u

where lwage is the log of wage, edu is the years of schooling, the covariate vector W

contains the control variables, and u is the error term. Among the set of parameters

(α, θ, β′), θ measuring the return to education is of interest.

In the basic specification, Card (1995) uses five control variables: experience,

the square of experience, the dummy for race, the dummy for living in the south,

and the dummy for living in the standard metropolitan statistical area (SMSA).

To bypass the issue that experience is also endogenous, Davidson and MacKinnon

(2010) replace experience, the square of experience with age, the square of age.

Following Davidson and MacKinnon (2010), I used age, square of age, and the three

dummy variables as control variables, hence edu is the only endogenous regressor. In
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addition, an extra instrument nearc2 ∧ nearc4 is constructed: nearc2 ∧ nearc4 is a

dummy variable, and is 1 if there are both a 2-year and a 4-year college in the local

area. Unlike Davidson and MacKinnon (2010), I use the three instruments, nearc2,

nearc2 ∧ nearc4, nearc4, one by one as the single instrument for edu to better

illustrate the approach discussed in this chapter, while Davidson and MacKinnon

(2010) simultaneously use more than one instrument.

The identification strength under the three potential IV’s is examined by the

first stage F test in Stock and Yogo (2005): if nearc2 is used as the IV, F ≈ 0.54; if

nearc2∧ nearc4 is used as the IV, F ≈ 6.98; if nearc4 is used as the IV, F ≈ 10.22.

According to the rule of thumb F > 10 suggested in Stock and Yogo (2005), these

F statistics suggest that nearc4 is a strong IV, nearc2, nearc2 ∧ nearc4 are not.

Table 1.2 reports the point estimate and 95% confidence interval of θ under each

of these instruments. If the point estimate of the return to education is of interest,

0.0936 derived by nearc4 is more reliable, compared with the other point estimates.

Based on these empirical results, an additional year of education increases the wage

by about 9.36%; however, the possibility that this effect is zero can not be rejected

at 95%.

As proposed in this chapter, the bootstrap can help evaluate the identification

strength. To allow for heteroscedasticity, the pair bootstrap is employed, and the

IV estimator of θ is computed B = 9999 times, using the three instruments one

by one: specifically, the bootstrap resample is directly drawn from the sample with

replacement, and the size of the resample is equal to the number of observations; the

bootstrapped IV estimator is computed by each bootstrap resample, and this process

is replicated B times. To make it comparable to the standard normal variate, the

bootstrapped estimator is standardized by subtracting the IV estimate and dividing

by the standard error of the IV estimator, where the standard error is computed in
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the way of White (1980). The p.d.f and quantiles of the bootstrapped IV estimator

after standardization are plotted against the standard normal variate in Figure 1.3.

Figure 1.3 shows that, the bootstrap distribution is closer to the normal distribution,

when the instrument is stronger. The figure of the bootstrap distribution and the

Q-Q plot7 hence are useful tools to help detect weak identification, since they provide

empirical researchers a graphic evaluation of the identification strength.

Table 1.2 reports the 95% C.I. of the return to education by the bootstrap

percentile method, in addition, the identification-robust conditional likelihood ra-

tio (CLR)8 test by Moreira (2003) is also applied to construct a C.I. for comparison.

Instead of the F test, the proposed b test is applied to determine whether the strength

of identification is strong or weak, with the tentative threshold γ = 0.25.

nearc2: the bootstrap C.I. of the return to education is (−4.3279, 4.8868), while

the C.I. by t/Wald is (−0.8188, 1.8346); the relative difference is significantly larger

than the threshold with D̂ ≈ 2.46 > γ, b1 ≈ 12.09 > z95%, hence the null of strong

identification under nearc2 is rejected.

nearc2 ∧ nearc4: the bootstrap C.I. of the return to education is found to be

(0.0019, 0.4664), while the C.I. by t/Wald is (−0.0099, 0.2692); the relative difference

is significantly larger than the threshold with D̂ ≈ 0.66 > γ, b1 ≈ 6.36 > z95%, hence

the null of strong identification under nearc2 ∧ nearc4 is rejected.

nearc4: the bootstrap C.I. of the return to education is found to be (0.0034, 0.2579),

while the C.I. by t/Wald is (−0.0027, 0.1899); the relative difference is significantly

larger than the threshold with D̂ ≈ 0.32 > γ, b1 ≈ 2.71 > z95%, hence the null of

7Compared to the p.d.f., the Q-Q plot is known to be a better way of comparing distributions.
8Note: The IV model under consideration is just identified, hence CLR is equivalent to the AR

test in Anderson and Rubin (1949) and K test in Kleibergen (2002).
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strong identification under nearc4 is rejected.

To conclude, both the F test and the bootstrap based b test can detect the weak

instrument nearc2, nearc2∧nearc4 and support the view that nearc4 is the strongest

among the three potential instruments. The difference is, the b test considers nearc4

as weak, while the F test treats nearc4 as strong (but just across the threshold).

It is surprising that, although F > 10 holds under nearc4, the relative difference of

the C.I. by t/Wald and the bootstrap C.I. is as large as 0.32. It thus indicates that

the F > 10 rule is not strict enough, i.e. the disparity between the two C.I.’s is still

severe, although F > 10 holds in this example.

The b and F tests are proposed on different grounds, i.e. the b test is based on

the comparison of the length of confidence intervals, while the F test is based on the

threshold of the rank condition, hence it is not surprising that these two tests can

imply different outcomes. In contrast with the F test, the b test has its advantages:

firstly of all, it provides a graphic view of the identification strength, i.e. the Q-Q

plot in Figure 1.3 shows that the bootstrap distribution is not very close to the

normal distribution, hence the identification strength appears weak; secondly, unlike

the F test, the b test does not rely on the restrictive homoscedasticity assumption,

and has the potential of being extended to the generalized GMM framework.

1.5 Simulation

This section presents Monte Carlo results to evaluate the power of the proposed

b test. The disparity between the two intervals, (1.3) and (1.4), is reported. The

threshold γ is calibrated to the F > 10 rule.
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The linear IV model described in Section 1.4.1 is employed in the D.G.P., with

the following choice of parameters:

 ui

vi

 ∼ NID


 0

0

 ,

 1 ρ

ρ 1


, where

ρ ∈ {0.99, 0.50, 0.01} to introduce high, moderate and low degrees of endogeneity,

respectively; θ = 0; zi ∼ NID(0, 1), i = 1, ..., n, and n = 1000.

A sequence of µ2, µ2 ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 40, 60, 80}, is chosen by

assigning different values to Π. For each µ2, the data of (X,Y, Z) is generated by

the linear IV model with the parameters specified above, and the bootstrapped IV

estimator θ̂∗n is computed B = 9999 times by the residual bootstrap. The number of

replications equals 1000.

The results of the Monte Carlo studies are reported in Table 1.3.

C0 vs. Ct: C0 denotes the interval derived by taking the 2.5%, 97.5% quantiles of

θ̂n. Ct is the 95% C.I. derived by inverting the t test. Table 1.3 reports the relative

difference in lengths of these two intervals: the median absolute difference in the

lengths of C0, Ct weighted by the length of Ct is reported. The departure of Ct from

C0 is more severe for larger ρ, and as expected, the departure of Ct from C0 shrinks

as µ2 increases. It is found that the relative difference can be as high as 0.62 when

µ2 = 10. This is a bit surprising since the identification strength under µ2 = 10 is

generally not considered as very weak: as reported in the table, there is about half

chance that the F test will consider the identification under µ2 = 10 as strong. In

other words, although the F test and its decision rule may treat the identification

strength under µ2 = 10 as strong, the departure of Ct from C0 can still be severe.

Cb vs. Ct: the 95% C.I. Cb by the bootstrap is compared with Ct. Table 1.3

reports the median absolute value of the relative difference in the lengths of Cb, Ct.
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As expected, the difference shrinks as µ2 increases. In particular, when µ2 > 10, the

relative difference does not exceed 0.50 in absolute value; when µ2 ≥ 20, the relative

difference does not exceed 0.25 in absolute value; when µ2 ≥ 80, the difference is

negligible.

b test: the proposed b test is applied to test the null of strong identification, and

the percentage of rejecting strong identification is reported. Two tentative cutoffs,

γ = 0.25, 0.50 are considered. Under the stricter rule of γ = 0.25, the b test rejects

the null more often.

F test: the F test and its decision rule in Stock and Yogo (2005) are applied to

provide a benchmark for the b test. Table 1.3 reports the percentage of concluding

weak identification by the F test (the frequency of the F statistic is less than its

critical value) for different ρ’s. As discussed above, the F test examines whether

µ2/k exceeds the cutoff, hence it does not depend on ρ, the degree of endogeneity.

By comparing the performance of the b test with the F test, γ = 0.25 appears

to be a reasonable choice. It corresponds to µ2 around 10 with endogeneity close

to zero. With this threshold, the frequency of concluding weak identification by the

b test is comparable to the F test, although b rejects strong identification slightly

more often. This chapter hence suggests γ = 0.25 as the quantitative threshold for

distinguishing strong and weak identification, and this simple rule is not off the mark

for practical reasons.
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1.6 Conclusion

This chapter suggests that the bootstrap is a useful tool for detecting weak identifi-

cation in IV/GMM applications. The distinguishing feature of the bootstrap based

approach is that it provides a graphic view of the identification strength. By eye-

balling the graph of the bootstrap distribution, and comparing it with the normal

distribution through the Q-Q plot, empirical researchers can evaluate whether or

not weak identification exists. The underlying reason is simple: strong identification

implies the bootstrap distribution is close to, and asymptotically identical to the

normal distribution.

A quantitative threshold for distinguishing strong and weak identification is sug-

gested based on the comparison of two C.I.’s for the parameter of interest: the C.I.

by inverting the t/Wald test and the bootstrap percentile C.I.. The difference of

these two C.I.’s boils down to the difference between the bootstrap distribution and

the normal distribution, and exceeding the threshold implies that the relative dif-

ference of the two C.I.’s is at least as large as a quarter. For practical purposes,

the identification strength is considered as weak in this chapter once this thresh-

old is exceeded. Monte Carlo experiments show that this threshold is comparable

to and slightly stricter than the F > 10 rule of thumb in Stock and Yogo (2005).

Even in the i.i.d. and homoscedasticity setting, F > 10 is found to be not strict

enough, when it comes to the comparison of C.I.’s: the relative difference of the two

commonly used C.I.’s named above can be very large, even when F > 10 holds; an

application to Card (1995) also makes the same point.
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Figure 1.1: Three Related Distributions

Normal Distribution

Bootstrap Distribution

Exact Distribution

Figure 1.2: Expressions and Distances

Notes: The normal distribution and the bootstrap distribution are two approximations to

the exact distribution of IV/GMM estimators. If the exact distribution of θ̂n−θ
σ/

√
n
is well

approximated by the normal distribution N(0, 1), then the bootstrap distribution of
θ̂∗n−θ̂n
σ̂/

√
n

is well approximated by N(0, 1) as well, because of the same magnitude O(n−1/2)

of the approximation error. A substantial difference between θ̂∗n−θ̂n
σ̂/

√
n

and N(0, 1) indicates

the difference between θ̂n−θ
σ/

√
n
and N(0, 1) is also substantial, hence provides the evidence

of weak identification.
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Table 1.1: A Monte Carlo study of µ2 and µ2∗

µ2

2 4 6 8 10 12 14 16 18 20 40 60 80

µ2∗ 3.1 5.1 7.1 9.1 11.2 13.2 15.2 17.2 19.2 21.2 41.4 61.5 81.6

Notes: This table compares the concentration parameter µ2 with µ2∗, the bootstrap
counterpart of µ2, by a Monte Carlo study. For each µ2, the data of X, Z, V are
generated by xi = ziΠ+ vi, where: (i) xi, zi, vi are the ith elements of X, Z, V ; (ii)
zi ∼ NID(0, 1), vi ∼ NID(0, 1), i = 1, ..., 1000; (iii) Π is determined by the value of µ2.
The reported µ2∗ is the sample average of 1000 replications; in each replication, the
residual bootstrap is conducted 1000 times.

Table 1.2: Return to Education

IV nearc2 nearc2 ∧ nearc4 nearc4

F statistic 0.54 6.98 10.22

θ̂n 0.5079 0.1297 0.0936
95% C.I. by t/Wald (-0.8188, 1.8346) (-0.0099, 0.2692) (-0.0027, 0.1899)

by bootstrap (-4.3279, 4.8868) (0.0019, 0.4664) (0.0034, 0.2579)
by AR/CLR/K (−∞,−0.1750] ∪ [0.0867,+∞) [0.0133, 0.5253] [0.0009, 0.2550]

Notes: This table presents the estimate θ̂n and confidence interval for return to education
using the data of Card (1995). The first stage F statistic is reported for the three
instrumental variables, nearc2, nearc2 ∧ nearc4, nearc4, which are used one by one for
the endogenous years of schooling. The included control variables are age, square of age,
and three dummy variables for race, living in the south, living in the SMSA.
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Figure 1.3: The bootstrap distribution, p.d.f and Q-Q plot
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Notes: The p.d.f. and Q-Q plot of the bootstrap distribution are presented, under three
instrumental variables in the application of Card (1995). 1st row: nearc2 as IV; 2nd

row: nearc2 ∧ nearc4 as IV; 3rd row: nearc4 as IV; Left: p.d.f of the bootstrapped IV
estimator after standardization (dotted) against the standard normal (solid); Right: the
Q-Q plot. 9999 bootstrap replications are conducted.
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Table 1.3: The performance of b, F for detecting weak identification

µ2

2 4 6 8 10 12 14 16 18 20 40 60 80

Comparison of C.I.

C0 vs. Ct:

ρ = 0.99 5.24 1.64 1.37 0.80 0.62 0.60 0.50 0.41 0.38 0.37 0.22 0.18 0.14

0.50 2.62 1.10 0.83 0.62 0.41 0.38 0.33 0.29 0.29 0.26 0.15 0.13 0.11

0.01 1.90 0.95 0.53 0.39 0.32 0.27 0.23 0.21 0.21 0.19 0.12 0.10 0.08

Cb vs. Ct:

ρ = 0.99 1.87 1.61 1.10 0.86 0.61 0.45 0.37 0.33 0.27 0.23 0.11 0.07 0.05

0.50 1.56 1.06 0.72 0.47 0.37 0.29 0.22 0.19 0.16 0.14 0.07 0.05 0.03

0.01 1.45 0.97 0.61 0.40 0.29 0.22 0.18 0.15 0.13 0.12 0.05 0.04 0.03

Rejection freq. of b

γ = 0.50:

ρ = 0.99 90.1 84.3 75.9 65.4 53.9 40.3 30.4 22.9 14.4 10.1 0.1 0.0 0.0

0.50 83.3 69.8 57.7 43.5 34.0 24.3 16.9 13.6 9.0 5.7 0.0 0.0 0.0

0.01 81.4 68.2 52.3 38.3 27.4 18.2 12.3 7.7 4.7 3.0 0.0 0.0 0.0

γ = 0.25:

ρ = 0.99 96.4 96.0 94.4 89.7 81.7 73.3 63.1 56.6 44.7 35.5 1.6 0.0 0.0

0.50 93.6 87.5 82.6 67.6 60.3 49.5 37.9 29.0 23.8 17.9 0.6 0.0 0.0

0.01 92.2 87.1 77.2 62.2 50.2 39.2 29.5 22.6 15.7 11.5 0.2 0.0 0.0

Rejection freq. of F

ρ = 0.99 94.1 82.7 70.5 53.0 43.3 32.1 22.6 16.1 12.5 7.9 0.0 0.0 0.0

0.50 93.9 82.1 66.3 56.9 42.9 32.7 22.4 15.7 12.5 8.2 0.0 0.0 0.0

0.01 93.4 83.7 69.4 54.9 45.7 33.3 22.3 15.2 11.6 7.4 0.0 0.0 0.0

Notes: This table presents the Monte Carlo results of comparing the bootstrap based b
test proposed in this chapter with the F test of Stock and Yogo (2005). The frequencies
of concluding weak identification by the b test is reported for each µ2, and the frequencies
of concluding weak identification by the F test is also reported. µ2 is the concentration
parameter, and the greater µ2 is, the stronger the strength of identification; ρ is the
correlation coefficient, and the greater ρ is, the stronger the endogeneity; C0, Ct and Cb
are the C.I. derived by taking the 2.5%, 97.5% quantiles of θ̂n, the 95% C.I. by inverting
t, the 95% C.I. by the bootstrap respectively, and their relative difference in length (the
median absolute value) is reported; γ is the threshold, identification is considered as weak
by the b test if the relative difference between Ct and Cb exceeds γ.
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Appendix

Proof. (1.5)

By the joint normal distribution of quantile estimators, the difference of two quantile

estimators is also normally distributed:

√
B

[(
θ̂∗n,1−α/2 − θ̂n

σ̂/
√
n

−
θ̂∗n,α/2 − θ̂n

σ̂/
√
n

)
− (q1−α/2 − qα/2)

]
⇒ N(0,Ω11 +Ω22 − 2Ω12)

Rewrite the LHS:

√
B

[(
θ̂∗n,1−α/2 − θ̂∗n,α/2

2z1−α/2σ̂/
√
n

− 1

)
−
(
q1−α/2 − qα/2

2z1−α/2
− 1

)]
·2z1−α/2 ⇒ N(0,Ω11+Ω22−2Ω12)

The result follows after the substitution of D̂ =
θ̂∗
n,1−α/2

−θ̂∗
n,α/2

2z1−α/2σ̂/
√
n

−1, D =
q1−α/2−qα/2

2z1−α/2
−1.

Proof. (1.6)

X ′PzX

n
=

X ′Z(Z ′Z)−1Z ′X

n

= X ′Z(Z ′Z)−1Z
′Z

n
(Z ′Z)−1Z ′X

p→ Π′
0QzzΠ0

X ′PzU√
n

= X ′Z(Z ′Z)−1Z
′U√
n

⇒ Π′
0Ψzu

√
n(θ̂n − θ) = (

X ′PzX

n
)−1X

′PzU√
n

⇒ (Π′
0QzzΠ0)

−1Π′
0Ψzu
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Proof. (1.7)

X ′PzX =
X ′Z√
n
(
Z ′Z

n
)−1Z

′X√
n

= (
Z ′Z

n
C +

Z ′V√
n
)′(
Z ′Z

n
)−1(

Z ′Z

n
C +

Z ′V√
n
)

⇒ (QzzC +Ψzv)
′Q−1

zz (QzzC +Ψzv)

X ′PzU =
X ′Z√
n
(
Z ′Z

n
)−1Z

′U√
n

⇒ (QzzC +Ψzv)
′Q−1

zz Ψzu

θ̂n − θ = (X ′PzX)−1X ′PzU

⇒ [(QzzC +Ψzv)
′Q−1

zz (QzzC +Ψzv)]
−1(QzzC +Ψzv)

′Q−1
zz Ψzu

If exactly identified :

θ̂n − θ = (Z ′X)−1Z ′U

⇒ (QzzC +Ψzv)
−1Ψzu

Proof. (1.8)

Π̂∗
n ≡ (Z∗′Z∗)−1Z∗′X∗

= Π̂n + (
Z∗′Z∗

n
)−1Z

∗′V ∗

n

= Π0 + (
Z

′
Z

n
)−1Z

′
V

n
+ (

Z∗′Z∗

n
)−1Z

∗′V ∗

n
p→ Π0

Z∗′U∗
√
n

⇒ Ψzu by Lyapunov’s Central Limit Theorem:
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Let mi = Z∗′
i u

∗
i , rewrite

Z∗′U∗
√
n

=
∑n

i=1 Z
∗′
i u

∗
i√

n
=

∑n
i=1mi√
n

. By construction, m′
is are inde-

pendent with mean µi = 0, variance σ2i = Z′Z
n

Ũ ′Ũ
n , and σ2i

p→ Qzzσ
2
u under Strong Instru-

ment Asymptotics. To verify the Lyapunov’s condition: for 1 > δ > 0, the expected values

E[|mi|2+δ] <∞, and limn→∞
1

(
∑n

i=1 σ
2
i )

2+δ
2

∑n
i=1 E[|mi − µi|2+δ] = limn→∞

Op(n)

Op(n+
nδ
2
)
= 0.

Combining the two results above:

√
n(θ̂∗n − θ̂n) =

[
X∗′Z∗(Z∗′Z∗)−1Z

∗′Z∗

n
(Z∗′Z∗)−1Z∗′X∗

]−1

X∗′Z∗(Z∗′Z∗)−1Z
∗′U∗
√
n

=

[
Π̂∗′
n

(
Z∗′Z∗

n

)
Π̂∗
n

]−1

Π̂∗
n

Z∗′U∗
√
n

⇒ (Π
′
0QzzΠ0)

−1Π
′
0Ψzu
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Proof. (1.9)

µ2 =
Π′Z ′ZΠ

σ2v

= Op(n)

→ ∞

Π̂n
p→ Π, σ2∗v

p→ σ2v ,
Z∗′Z∗

n

p→ Qzz

µ2∗ =
Π̂

′
nZ

∗′Z∗Π̂n
σ2∗v

= Op(n)

→ ∞

Proof. (1.10)

µ2 =
C ′Z′Z

n C

σ2v
p→ C ′QzzC

σ2v

µ2∗ =
[C + (Z

′Z
n )−1Z′V√

n
]
′ Z∗′Z∗

n [C + (Z
′Z
n )−1Z′V√

n
]

σ2∗v

⇒ C ′QzzC + 2C ′Ψzv +Ψ
′
zvQ

−1
zz Ψzv

σ2v
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2.1 Introduction

The Fama-MacBeth (FM) procedure analyzed by Shanken (1992) is widely used in

empirical studies of the (C)CAPM. This two-pass procedure involves a first stage

time series regression to derive β, the correlation matrix of financial assets with risk

factors, and a second stage cross-sectional regression using β estimated from the first

stage as regressors. The R2 at the second stage is typically reported by empirical

researchers to illustrate how much cross-sectional variation of asset returns can be ex-

plained by their proposed factors, and it often increases dramatically when a new fac-

tor is added: see, e.g., Jagannathan and Wang (1996), Lettau and Ludvigson (2001),

Acharya and Pedersen (2005), Lustig and Van Nieuwerburgh (2005), Li et al. (2006),

Santos and Veronesi (2006), Hansen et al. (2008). Although it is common to eval-

uate how well models fit real data by looking at the R2, what is surprising is that

the empirical (C)CAPM literature heavily depends on the usage of the R2 for model

comparison. The various versions of the (C)CAPM with new risk factors are favored,

at least partially due to their large R2.

This chapter shows that the R2 of the FM two-pass procedure can be large even

when risk factors are irrelevant, hence a large R2 does not imply risk factors are

relevant. The underlying reason is, when factors are irrelevant, the β matrix at the

first stage does not have full rank, which further induces a spurious distribution of the

R2 at the second stage. I call this problem weak identification, because it displays the

similar feature as the weak instrument problem surveyed by Stock et al. (2002): the

validity of the FM procedure crucially depends on the quality of regressors generated

from its first stage; if irrelevant factors are included, the rank condition of the second

stage is violated, hence the outcome of the FM procedure is no longer reliable.



45

I start by taking the influential work by Lettau and Ludvigson (2001) for ex-

ample to illustrate the main point of this chapter. Lettau and Ludvigson (2001)

report larger values of R2 after adding a conditioning variable, the log consumption-

wealth ratio cay, as a new factor. I consider four specifications of the (C)CAPM in

Lettau and Ludvigson (2001), and replace cay with caysim, where caysim is randomly

drawn from a normal distribution; the other settings remain unchanged. Table 2.1

presents the R2 under cay and caysim, and it shows that the R2 under caysim is com-

parable to the R2 under cay. In other words, the irrelevant risk factor caysim can

also dramatically improve the R2. In this chapter, I explain why the result in Table

2.1 could happen, by deriving the distribution of the R2 under irrelevant factors; in

addition, I use the rank test of Kleibergen and Paap (2006) as a tool to investigate

whether irrelevant risk factors commonly exist in empirical studies of the (C)CAPM.

Although the formal analysis of the R2 is rare, the inadequacy of the FM two-

pass procedure has been examined in several aspects. Kan and Zhang (1999) study a

single irrelevant factor model, and provide theoretical results and simulation evidence

to show the existence of bias in the second stage statistical tests and overflation in

the cross-sectional R2. Employing techniques from the weak identification literature,

Kleibergen (2009) shows that the statistical inference based on the FM two-pass

estimator is misleading when β is equal or close to zero. Lewellen et al. (2010) find

that the R2 of the FM two-pass procedure is not informative and offer suggestions

to improve its performance, but their main point is not on the magnitude of β.

This article extends this discussion by deriving the distribution of the R2 of a linear

multifactor pricing model, and the findings cast doubt on the success of the recent

conditional versions of the (C)CAPM: an increase in the R2 could be a byproduct

of introducing irrelevant risk factors, hence are not strong evidence to support the

conditional (C)CAPM.
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I evaluate the performances of some recent versions of the (C)CAPM, including

the following: Lettau and Ludvigson (2001), Lustig and Van Nieuwerburgh (2005),

Yogo (2006), Santos and Veronesi (2006), Li et al. (2006). Previous studies indicate

that risk factors proposed in these papers are successful in explaining the cross-

sectional variation in asset returns. However, I can not rule out these factors are in

fact irrelevant.

The rest of the chapter is organized as follows: the linear factor model is set

up in Section 2; a rank test is suggested in Section 3; the distribution of the cross-

sectional R2 based on the FM two-pass procedure is derived in Section 4; in section

5, the performances of several versions of the (C)CAPM are evaluated; Section 6

concludes. The following notations are used throughout this chapter: “
d→” indicates

convergence in distribution, and “
p→” indicates convergence in probability. For a T×

n matrix A = (a1, ..., an), PA = A(A′A)−1A′, MA = IT −PA, IT is the T ×T identity

matrix, ιT is the T×1 vector of ones, vec(A) = (a′1, ..., a
′
n)

′, vecinvn((a
′
1, ..., a

′
n)

′) = A,

and ⊗ is the Kronecker operator.

2.2 Model and Fama-MacBeth

2.2.1 Linear Factor Model

The linear factor model is constructed by three equations:

E(Rt) = ιnλ1 + βλF (2.1)

cov(Rt, Ft) = βvar(Ft) (2.2)

E(Ft) = µF (2.3)
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where excess asset returns Rt, market risk factors Ft, are n by 1, k by 1 vectors

respectively.

Equation (2.1) reflects Sharpe (1964) and Lintner (1965)’s view: in equilibrium

average returns should be priced by the risk measure β, plus the risk free return λ1.

Equation (2.2) defines β as the n by k correlation matrix of asset returns and risk

factors. See Cochrane (2001) for a book-length discussion.

The unconditional version of CAPM considers the market return as the sin-

gle factor, hence k = 1; in the unconditional CCAPM, the single factor is non-

durable consumption growth. Fama and French (1992)(1993) show that a single

factor model could only explain a small fraction of the total cross-sectional vari-

ation. The failings of the unconditional (C)CAPM have induced researchers to

introduce new risk factors. For instance, a conditional version of the (C)CAPM

adds at least a conditioning variable to Ft, hence k ≥ 2. There exists a size-

able empirical literature on the (C)CAPM, suggesting various factors can success-

fully explain the cross-sectional variation of asset returns, and these factors in-

clude: the consumption-to-wealth ratio in Lettau and Ludvigson (2001), the labor

income-to-consumption ratio in Santos and Veronesi (2006), the housing-collateral

ratio in Lustig and Van Nieuwerburgh (2005), the investment growth rate in Li et al.

(2006), the growth in durable consumption in Yogo (2006), the consumption risk in

Parker and Julliard (2005), the housing expenditure in Piazzesi et al. (2007), etc.

Equations (2.1)(2.2)(2.3) imply the following model:

Rt = ιnλ1 + βλF + βvt + ut

= ιnλ1 + β(F̄t + λF ) + ϵt

Ft = µF + vt
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where ut, vt are n×1, k×1 vectors of errors, F̄t = Ft− 1
T

∑T
t=1 Ft, ϵt = ut+β

1
T

∑T
t=1 vt,

and ut, vt are uncorrelated because of Equation (2.2).

The data observed by empirical researchers are Rt, Ft, t = 1, ..., T . To make

expressions neat and facilitate the econometric analysis of the R2, define matrices

R, F , and a vector R̄:

Rn×T = (R1, R2, ..., RT )

Fk×T = (F1, F2, ..., FT )

R̄n×1 =
1

T

T∑
t=1

Rt

2.2.2 Fama-MacBeth

The commonly used FM two-pass procedure in empirical studies of the (C)CAPM is

as follows: (i) at the first stage, estimate β in a time series regression, i.e. regressing

Rt on Ft with intercepts; (ii) estimate the risk premium λF using β̂ in a second stage

cross-sectional regression, i.e. regressing R̄ on β̂ with intercepts. Shanken (1992)

provides a detailed econometric analysis of this approach. The expressions of β̂, λ̂F ,

and the R2 of the FM two-pass procedure are given below, where MιT ,Mιn are two

projection matrices of constants (see Appendix A):

β̂ = RMιTF
′(FMιTF

′)−1 (2.4)

λ̂F = (β̂′Mιnβ̂)
−1β̂′MιnR̄ (2.5)

R2 =
R̄′Mιnβ̂(β̂

′Mιnβ̂)
−1β̂′MιnR̄

R̄′MιnR̄
(2.6)

Given the setup of the model, a large value of the cross-sectional R2 is expected
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in empirical studies of the (C)CAPM. This is because the R2 converges to 1 in large

samples (see Appendix B), when the risk factors chosen by empirical researchers

coincide with the factors in the above model. Consequently, a small value of the R2

suggests that the chosen risk factors do not coincide with the factors in the model,

hence are not useful in explaining the variation of asset returns.

2.3 A Rank Test

Note that the validity of the FM two-pass procedure relies on the full rank of the

matrix β: in the second stage regression, the n×k matrix β is the matrix of regressors.

If the rank of β is less than k, the rank condition of the ordinary least squares

estimator is violated, and the validity of the FM two-pass procedure demonstrated

by Shanken (1992) collapses.

When only a single factor is considered, k = 1, then the rank condition fails if this

single factor is irrelevant, which is unlikely to happen. However, as the empirical

literature on the (C)CAPM starts to propose various multifactor models, k ≥ 2,

there is a larger chance that β does not have full rank. For example, if one of the

k factors is irrelevant, then a column of β is zero, hence its rank is reduced; more

generally, if one column of β can be written as a linear combination of the other

columns, then the rank condition fails to hold.

There exist several rank tests to examine the rank condition, given a consis-

tent estimator β̂ of the matrix β is available by the first-pass of the FM pro-

cedure: see Anderson (1951), Cragg and Donald (1996), etc. The rank test of

Kleibergen and Paap (2006) is used in this chapter as this novel test overcomes some
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deficiencies of other tests: it is robust to heteroscedasticity, while homoscedasticity

is assumed in Anderson (1951); in addition, it is easier for implementation, while the

rank test of Cragg and Donald (1996) involves numerical optimization.

If the rank test of Kleibergen and Paap (2006) suggests that β does not have

full rank, it indicates the violation of the rank condition, and further casts doubt

on the validity of the risk premium estimator and the cross-sectional R2 from the

second-pass of the FM procedure. Specifically, if an irrelevant factor is introduced

by empirical researchers, then the rank of β in the empirical model is not full, hence

the FM two-pass procedure is no longer valid; the rank test of Kleibergen and Paap

(2006) helps determine whether this is the case.

Despite of its importance, the necessity of a rank test has not been recognized in

empirical studies of the (C)CAPM, to the best of my knowledge. I now use the rank

test of Kleibergen and Paap (2006) to show it is helpful for excluding irrelevant risk

factors.

Take a specification of the conditional CAPM from Lettau and Ludvigson (2001)

for example: the log consumption-wealth ratio cay, the value weighted return Rvw,

and the interaction term cay · Rvw are the three factors. The estimate of β, the

associated t statistic and p value using 25 size and book-to-market sorted portfolios

are presented in Table 2.2. A feature observed from Table 2.2 that has motivated

this chapter is that, Rvw is significantly related to all of the 25 portfolio returns,

while cay is insignificant at 5% except for 2 portfolios only. The small magnitude of

the estimate of β for cay induces the suspicion that the column of β corresponding to

cay is zero, hence β does not have full rank. The result of the Kleibergen and Paap

(2006) rank test is in line with Table 2.2: it tests the null that the rank of the β

matrix (its dimension is 25 by 3 in this example) is 2, and reports a p value around
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0.77. The large p value implies the failure of rejecting the null at 5% significance

level, indicating that the rank condition is violated.

Table 2.3 presents the rank test results for three specifications of the (C)CAPM

suggested in Lettau and Ludvigson (2001), together with the unconditional (C)CAPM,

and the Fama-French three factor model. I can not reject that the three versions of

the conditional (C)CAPM violate the rank condition, as their p values are large. In

contrast, p values for the unconditional (C)CAPM and the Fama-French three factor

model are all close to zero, indicating that the rank condition is satisfied for these

models.

2.4 Distribution of R2

As discussed above, if at least one risk factor is irrelevant, the rank condition is

not satisfied. In this situation, the FM estimator of risk premium is inconsistent,

as shown in Kleibergen (2009); however, it is not clear how the commonly used

cross-sectional R2 behaves. The presumption may be that irrelevant risk factors

could not dramatically increase the R2 at the second stage. This section shows this

presumption is incorrect: the R2 converges to a random variable if β does not have

full rank, hence it could be large, even when factors are irrelevant.

Kan and Zhang (1999) have analytical results for the distribution of the R2 under

k = 1, which is generalized here to consider k ≥ 1, because multifactor models are

favored in recent empirical studies of the (C)CAPM. I am interested in answering

the following question: if an irrelevant risk factor is used together with some relevant

factors, how may the R2 be affected?
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To visualize the asymptotic distribution of R2, Monte Carlo simulations are con-

ducted to draw the densities of the risk premium estimator λ̂F and the R2. In the

underlying data generating process (D.G.P.), n = 25 as the 25 Fama-French size and

book-to-market sorted portfolios are the focus of many empirical studies. The risk

premium λF is fixed to 1 if it exists, and the variance of errors are obtained from

Lettau and Ludvigson (2001). 10000 replications are conducted. For simplicity, a

three factor model is used in D.G.P. of the Monte Carlo study, unless otherwise

stated.

2.4.1 Assumption

The same assumption as in Kleibergen (2009) is made. Assumption 1 is a statement

of a central limit theorem, which implies that R̄ and β̂ follow two independent normal

distributions as stated in Lemma 1. Proof of this lemma is contained in the appendix

of Kleibergen (2009).

Assumption 1: 1√
T

∑T
t=1


 1

Ft

⊗ (Rt − ιnλ1 − β(F̄t + λF ))

 d→

 φR

φβ



Lemma 1:
√
T

 R̄− ιnλ1 − βλF

vec(β̂ − β)

 d→

 ψR

ψβ


where ψR(n× 1), ψβ(nk× 1) are two independent normally distributed random vari-

ables with mean 0, and covariance matrices Ω, V −1
FF ⊗Ω. Ω = var(ϵt), VFF = var(Ft),

(φ′
R, φ

′
β)

′ ∼ N(0, V ), V = Q⊗ Ω, Q = E


 1

Ft


 1

Ft


′.
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Lemma 1 describes the distributions of R̄ and β̂, the main components of the R2

in Equation (2.6). The asymptotic distribution of the R2 is derived in terms of the

distributions of R̄ and β̂.

2.4.2 Four Cases

I consider four cases, depending on the values of β.

Case 1: If (ιn
...β)′(ιn

...β) has full rank, and risk factors used in the empirical study

coincide with those in the model, then R2 p→ 1.

In this ideal setting, as the sample size T increases to ∞, λ̂F converges to λF ,

and the R2 goes to 1. See Figure 2.1(a)(b). Figure 2.1(a)(b) present the densities of

λ̂F and R2 as the sample size T increases. Figure 2.1(a) shows that λ̂F shrinks to

the true value λF = 1, and Figure 2.1(b) shows that the cross-sectional R2 converges

to 1.

Case 1 illustrates the foundation of reporting the R2 in practice: if the same risk

factors Ft as in the underlying model are chosen, then the sample R2 tends to be

large. As a result, a large value of the cross-sectional R2 is a positive indicator, since

it suggests that the correct risk factors have been discovered. The R2 thus serves as

a criterion for model comparison in the empirical (C)CAPM literature: risk factors

that yield larger R2 are generally favored.

Not surprisingly, the way of using the R2 to compare models has its pitfalls,

many of which are documented in Lewellen et al. (2010). In this chapter, I focus on

the problem induced by the magnitude of β: the second stage regression fails if β is
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not large enough, and the R2 consequently becomes a misleading measure. Case 2

describes an extreme case: useless factors can yield large values of the R2.

Case 2: If β = 0 and E(R̄) = c, then R2 d→
c′PMιnΨβ

c

c′Mιnc
. Specially, if c = ιnλ1, then

R2 d→
ψ′
RPMιnΨβ

ψR

ψ′
RMιnψR

, where Ψβ = vecinvk(ψβ), PMιnΨβ
=MιnΨβ(Ψ

′
βMιnΨβ)

−1Ψ′
βMιn .

This is the extreme setting that all k factors included in the model are irrelevant,

in the sense that these factors are uncorrelated with asset returns. Although it is

tempting to think that in this setting the R2 is zero as all factors have no power of

pricing average asset returns, in fact the sample R2 can be close to 1 even in large

samples. See Figure 2.1(c)(d). Figure 2.1(c) shows that λ̂F does not converge to a

point when the sample size increases, instead it stays randomly centered around 0.

Similarly, Figure 2.1(d) shows that the R2 does not converge to 0 or 1, but stays as

a random variable, as Case 2 states.

The behaviors of the R2 in Figure 2.1(b) and 2.1(d) are different: in Figure 2.1(d),

the R2 stays as a random variable, instead of converging to a fixed point. The

randomness of the R2 in the limiting distribution makes it a misleading criterion

for model comparison, i.e. irrelevant factors have a positive probability of yielding

large R2 even in large samples, hence a model made of irrelevant factors always has

a chance of being favored by empirical researchers, if the R2 is the sole criterion of

model comparison.

In practice, it is unlikely that all of the factors used by empirical researchers are

unrelated with asset returns, hence the settings in Case 2 that β is zero for all k

factors are very restrictive. What is possible, however, is that β is sizeable for most

factors, but close to zero for one factor (or more). Case 3 corresponds to the setting
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that a factor uncorrelated with asset returns is included in the model, together with

several other relevant factors. The question under consideration is, if an irrelevant

factor is introduced into the model as the conditioning variable, what will happen

to the cross-sectional R2 in the conditional (C)CAPM?

Case 3: Suppose k1 + 1 factors with β̃ = (βk1
...0) are chosen in the empirical

model, where βk1 is n × k1, 0 is n × 1, k1 < k,
√
T ( ˆ̃β − (βk1

...0))
d→ ψ̃β, Ψβ =

vecinvk1+1(ψ̃β) = (Ψk1

...Ψ1), and E(R̄) = c, then:

R2 d→ c′Mιn(V1 + V2 + V3 + V4)Mιnc

c′Mιnc

where random variables V1, V2, V3, V4 are defined as follows:

V0 ≡ (β′
k1
Mιnβk1 − β′

k1
MιnΨ1(Ψ

′
1MιnΨ1)

−1Ψ′
1Mιnβk1)

−1

V1 ≡ βk1V0β
′
k1

V2 ≡ −βk1V0β′
k1
MιnΨ1(Ψ

′
1MιnΨ1)

−1Ψ′
1

V3 ≡ −Ψ1(Ψ
′
1MιnΨ1)

−1Ψ′
1Mιnβk1V0β

′
k1

V4 ≡ Ψ1((Ψ
′
1MιnΨ1)

−1 + (Ψ′
1MιnΨ1)

−1Ψ′
1Mιnβk1V0β

′
k1
MιnΨ1(Ψ

′
1MιnΨ1)

−1)Ψ′
1

This setting corresponds to the scenario that an irrelevant factor is added to

an empirical model with other k1 relevant factors. Case 3 states that adding an

irrelevant factor causes the limiting distribution of the R2 to be spurious. As shown

by simulation, the value of the R2 could be increased even if the added factor is

irrelevant. See Figure 2.1(e)(f). The Fama and French (1993) three factor model is

used in the D.G.P. of the simulation for Figure 2.1(e)(f). A single factor from the

D.G.P., and an extra useless factor are chosen to compute the R2 in Figure 2.1(f).
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The useless factor is constructed by a normally distributed variate independent of

other variables. Figure 2.1(e) plots the density of λ̂F corresponding to the useless

factor, and Figure 2.1(f) shows that the R2 converges to a random variable after a

useless factor is added.

The restriction in Case 3 can be loosened to allow the added factor to be weakly

related to assets, i.e. β corresponding to this added factor is close, but not strictly

equal to zero. This is considered in Case 4. The result is similar: the R2 after

including a nearly irrelevant factor is still random in its limiting distribution.

Case 4: Suppose k1 + 1 factors with β̃ = (βk1
... b√

T
) are chosen in the empirical

model, where βk1 is n × k1, b is n × 1, k1 < k,
√
T ( ˆ̃β − (βk1

... b√
T
))

d→ ψ̃β, Ψβ =

vecinvk1+1(ψ̃β) = (Ψk1

...Ψ1), and E(R̄) = c, then:

R2 d→ c′Mιn(Ṽ1 + Ṽ2 + Ṽ3 + Ṽ4)Mιnc

c′Mιnc

where random variables Ṽ1, Ṽ2, Ṽ3, Ṽ4 are defined as follows:

Ψ̃1 ≡ b+Ψ1

Ṽ0 ≡ (β′
k1
Mιnβk1 − β′

k1
MιnΨ̃1(Ψ̃

′
1MιnΨ̃1)

−1Ψ̃′
1Mιnβk1)

−1

Ṽ1 ≡ βk1Ṽ0β
′
k1

Ṽ2 ≡ −βk1Ṽ0β′
k1
MιnΨ̃1(Ψ̃

′
1MιnΨ̃1)

−1Ψ̃′
1

Ṽ3 ≡ −Ψ̃1(Ψ
′
1MιnΨ̃1)

−1Ψ̃′
1Mιnβk1Ṽ0β

′
k1

Ṽ4 ≡ Ψ̃1((Ψ
′
1MιnΨ̃1)

−1 + (Ψ̃′
1MιnΨ̃1)

−1Ψ̃′
1Mιnβk1Ṽ0β

′
k1
MιnΨ̃1(Ψ̃

′
1MιnΨ̃1)

−1)Ψ̃′
1

Case 3 and 4 help explain the success of the conditional versions of the (C)CAPM.

If the conditioning variable has β close to zero, then adding a conditioning variable
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to the model is similar to adding an irrelevant factor, which causes the R2 to fail

to converge, hence it is not surprising to get large R2’s in empirical studies, even

though risk factors are irrelevant. The motivating example presented in Table 2.1 in

the introduction section makes the same point: irrelevant factors can appear useful

in explaining the cross-sectional variation of asset returns.

To summarize, the analytical results in this section formalize the view that the

R2 is a misleading measure for the empirical studies of the (C)CAPM, if the rank

condition on β is not satisfied. With irrelevant or nearly irrelevant factors, it is not

surprising to find a sizeable value of the R2, because the limiting distribution of the

R2 is spurious.

2.5 Examples of (C)CAPM

In the early part of this chapter, I show that for the specifications of the (C)CAPM

in Lettau and Ludvigson (2001), the possibility of violating the rank condition can

not be ruled out. Does this concern commonly exist in the empirical (C)CAPM

literature, or is it just unique in Lettau and Ludvigson (2001)? To answer this

question, I evaluate several versions of the (C)CAPM in this section by checking

whether the rank condition is satisfied. As discussed above, a large p value of the

Kleibergen and Paap (2006) rank test suggests the violation of the rank condition.

The 25 Fama-French size and book-to-market sorted portfolios are used as as-

sets. Quarterly returns are compounded by monthly returns obtained from Kenneth

French’s web site, together with the Fama-French three factors, Rm-Rf, SMB, and

HML. Details of constructing the portfolios and benchmark factors are available on
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the web site.

I use the following factors: the nondurable consumption growth △cNdur and

the durable consumption growth △cDur in Yogo (2006), the housing-collateral ra-

tio myfa in Lustig and Van Nieuwerburgh (2005), the labor income-to-consumption

ratio sw in Santos and Veronesi (2006), the investment growth rate in the house-

hold sector HHOLDS, the nonfinancial corporate business NFINCO, and the finan-

cial cooperations FINAN in Li et al. (2006). The data of these factors are either

directly offered by the authors, or constructed following the descriptions in their

paper. 1952Q1-2001Q4 is the time period within which all of the factors have data

available.

One specification of the (C)CAPM from each paper listed above is used as an

example in Table 4. The p value of the suggested rank test by Kleibergen and Paap

(2006) is reported, together with estimation results based on the ordinary least

squares (OLS), generalized least squares (GLS) (see Lewellen et al. (2010) for the

GLS method).

The OLS R2 in Table 4 is encouraging: all of the models explain at least 41%

of the cross-sectional variation in average portfolio returns, when the FM two-pass

procedure is applied. However, the results of the rank test are discouraging: except

the benchmark Fama-French three factor model, all the other models have large p

values.

The evaluation based on the GLS R2 supports the outcome of the rank test: only

the Fama-French three factor model has a large GLS R2, while all the other models

have the GLS R2 under 20%. Compared to the OLS R2, the GLS R2 is much smaller

for most models, except for the Fama-French model. These results hence support
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the view in Lewellen et al. (2010): the GLS R2 appears to be a better criterion than

the OLS R2.1

Overall, the violation of the rank condition can not be ruled out. Since introduc-

ing an irrelevant or nearly irrelevant factor into the linear multifactor model would

make the R2 spurious, as demonstrated in the last section, the large values of the

OLS R2 based on the FM two-pass procedure are not reliable.

2.6 Conclusion

This chapter cautions that if irrelevant risk factors are included in the empirical

studies of the (C)CAPM, they may appear useful in explaining the cross-sectional

variation of asset returns. With one or more irrelevant risk factors in a linear multi-

factor model, the full rank condition of the β matrix no longer holds, which further

induces the spurious limiting behavior of the cross-sectional R2. Consequently, the

value of the sample R2 can be large, even though factors are irrelevant.

From the perspective of the empirical (C)CAPM literature, this chapter high-

lights the necessity of applying a rank test on the β matrix, which helps make em-

pirical results more reliable. The empirical findings are easy to summarize: I can not

rule out the possibility that some recent versions of the (C)CAPM violate the rank

condition, while the only model that remains trustworthy is the Fama and French

(1993) three factor model.

1Lewellen, Nagel, and Shanken (2008) also use these factors as examples, and they use a different
time period, 1963-2004, with 30 extra industry portfolios to expand the test assets.
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Appendix

A. The cross-sectional R2 based on the FM two-pass procedure

Equations (2.1)(2.2)(2.3) imply the following model:

Rt = ιnλ1 + βλF + βvt + ut

Ft = µF + vt

where ut, vt are n× 1, k× 1 vectors of errors, and ut, vt are uncorrelated. The model

implies the following:

Rt = ιnλ1 + β(λF + Ft − µF ) + ut

= (ιnλ1 + βλF − βµF ) + βFt + ut

Use R = (R1, R2, ..., RT ), F = (F1, F2, ..., FT ), U = (u1, u2, ..., uT ):

R = ι′T ⊗ (ιnλ1 + βλF − βµF ) + βF + U

MιTR
′ = MιTF

′β′ +MιTU
′

Hence the OLS estimator β̂ is:

β̂ = [(FMιTF
′)−1FMιTR

′]′ = RMιTF
′(FMιTF

′)−1
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Similary, λ̂F = (β̂′Mιn β̂)
−1β̂′MιnR̄, where R̄ = 1

T Σ
T
t=1Rt. By definition:

R2 =
(Mιn β̂λ̂F )

′(Mιn β̂λ̂F )

(MιnR̄)
′(MιnR̄)

=
λ̂′F β̂

′Mιn β̂λ̂F
R̄′MιnR̄

=
R̄′Mιn β̂(β̂

′Mιn β̂)
−1β̂′Mιn β̂(β̂

′Mιn β̂)
−1β̂′MιnR̄

R̄′MιnR̄

=
R̄′Mιn β̂(β̂

′Mιn β̂)
−1β̂′MιnR̄

R̄′MιnR̄

=
R̄′PMιn β̂

R̄

R̄′MιnR̄

where PMιn β̂
=Mιn β̂(β̂

′Mιn β̂)
−1β̂′Mιn .

B. Proof of Case 1

Start from Equation (2.1):

E(Rt) = ιnλ1 + βλF

MιnE(Rt) = Mιnιnλ1 +MιnβλF

MιnE(Rt) = MιnβλF

(MιnβλF )
′(MιnβλF )

(MιnE(Rt))′(MιnE(Rt))
= 1

In the ideal setting, as T → ∞, β̂
p→ β, λ̂F

p→ λF and R̄
p→ E(Rt), by Slutsky’s

theorem:

R2 =
(Mιn β̂λ̂F )

′(Mιn β̂λ̂F )

(MιnR̄)
′MιnR̄

p→ (MιnβλF )
′(MιnβλF )

(MιnE(Rt))′(MιnE(Rt))
p→ 1

C. Proof of Case 2

If β = 0 and E(R̄) = c, Lemma 1 reduces to:
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√
T

 R̄− c

vec(β̂)

 d→

 ψR

ψβ


Hence, the following are true:

MιnR̄
p→ Mιnc

√
T β̂

d→ vecinvk(ψβ) = Ψβ

Apply the continuous mapping theorem:

R2 =
R̄′Mιn β̂(β̂

′Mιn β̂)
−1β̂′MιnR̄

R̄′MιnR̄

d→
c′MιnΨβ(Ψ

′
βMιnΨβ)

−1Ψ′
βMιnc

c′Mιnc

d→
c′PMιnΨβ

c

c′Mιnc

As a special case, if c = ιnλ1, then:

√
TMιnR̄ =

√
TMιn(R̄− ιnλ1)

d→ MιnψR

Apply the continuous mapping theorem:

R2 =
R̄′Mιn β̂(β̂

′Mιn β̂)
−1β̂′MιnR̄

R̄′MιnR̄

d→
ψ′
RMιnΨβ(Ψ

′
βMιnΨβ)

−1Ψ′
βMιnψR

ψ′
RMιnψR

d→
ψ′
RPMιnΨβ

ψR

ψ′
RMιnψR

D. Proof of Case 3

If β̃ = (βk1 : 0) and E(R̄) = c, Lemma 1 reduces to:
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√
T

 R̄− c

vec(
ˆ̃
β − (βk1 : 0))

 d→

 ψR

ψ̃β


Hence, the following are true:

R̄
p→ c

√
T (

ˆ̃
β − (βk1 : 0))

d→ Ψβ = (Ψk1 : Ψ1)

ˆ̃
β = (βk1 +Ψk1/

√
T + o(T− 1

2 ) : Ψ1/
√
T + o(T− 1

2 ))

This gives the expression of R2 as:

R2 =
R̄′Mιn

ˆ̃
β(

ˆ̃
β′Mιn

ˆ̃
β)−1 ˆ̃β′MιnR̄

R̄′MιnR̄

=

R̄′Mιn
ˆ̃
β

 β′k1Mιnβk1 +O(T− 1
2 ) β′k1MιnΨ1/

√
T + o(T− 1

2 )

Ψ′
1Mιnβk1/

√
T + o(T− 1

2 ) Ψ′
1MιnΨ1/T + o(T−1)


−1

ˆ̃
β′MιnR̄

R̄′MιnR̄

The formula of inverse of a block matrix states, with SD = A−BD−1C:

 A B

C D


−1

=

 S−1
D −S−1

D BD−1

−D−1CS−1
D D−1 +D−1CS−1

D BD−1


Introduce new notations to make expressions neat:

 A B

C D


−1

=

 A∗ B∗

C∗ D∗


Apply the formula and rearrange terms:

R2 =
R̄′Mιn(βk1A

∗β′
k1

+ βk1B
∗Ψ′

1/
√
T +Ψ1C

∗β′
k1
/
√
T +Ψ1D

∗Ψ′
1/T +O(T− 1

2 ))MιnR̄

R̄′MιnR̄
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Derive asymptotic distributions of the four leading terms above:

A∗ d→ (β′k1Mιnβk1 − β′k1MιnΨ1(Ψ
′
1MιnΨ1)

−1Ψ′
1Mιnβk1)

−1 ≡ V0

β1A
∗β′k1

d→ βk1V0β
′
k1 ≡ V1

β1B
∗Ψ′

1/
√
T

d→ −βk1V0β′k1MιnΨ1(Ψ
′
1MιnΨ1)

−1Ψ′
1 ≡ V2

Ψ1C
∗β′1/

√
T

d→ −Ψ1(Ψ
′
1MιnΨ1)

−1Ψ′
1Mιnβk1V0β

′
k1 ≡ V3

Ψ1D
∗Ψ′

1/T
d→ Ψ1(Ψ

′
1MιnΨ1)

−1(1 + Ψ′
1Mιnβk1V0β

′
k1MιnΨ1(Ψ

′
1MιnΨ1)

−1)Ψ′
1 ≡ V4

Apply the continuous mapping theorem:

R2 d→ c′Mιn(V1 + V2 + V3 + V4)Mιnc

c′Mιnc

E. Proof of Case 4

If β̃ = (βk1 : b√
T
) and E(R̄) = c, Lemma 1 reduces to:

√
T

 R̄− c

vec(
ˆ̃
β − (βk1 : b√

T
))

 d→

 ψR

ψ̃β


Hence, the following are true:

R̄
p→ c

√
T (

ˆ̃
β − (βk1 :

b√
T
))

d→ Ψβ = (Ψk1 : Ψ1)

ˆ̃
β = (βk1 +Ψk1/

√
T + o(T− 1

2 ) : (b+Ψ1)/
√
T + o(T− 1

2 ))

Define Ψ̃1 ≡ b+Ψ1, and follow the steps in the proof of Case 3.
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Table 2.1: A motivating example, R2 under cay and caysim

cay caysim
Specification (4) 0.31 0.44

(5) 0.31 0.29
(6) 0.77 0.72
(7) 0.75 0.69

Notes: This table presents the values of the cross-section R2 of the Fama-MacBeth
two-pass procedure using the versions of the (C)CAPM in Lettau and Ludvigson (2001).
R2’s under cay are identical to those reported in Table 1 of Lettau and Ludvigson (2001),
and the results are replicated using the same data as in Lettau and Ludvigson (2001).
R2’s under caysim are the average of 10000 simulations: caysim is randomly drawn from a
normal distribution, with the same mean and variance as cay. In each simulation, we
compute the R2 replacing cay with caysim, and take the average of 10000 simulations.
Each row in this table corresponds to a specification of the (C)CAPM in Table 1 of
Lettau and Ludvigson (2001). For instance, Specification (6) corresponds to a five-factor
version of the (C)CAPM: the log consumption-wealth ratio cay, the value weighted return
Rvw, the labor income growth △y, and the interaction terms cay ·Rvw, cay · △y; in the
simulation, we use caysim, Rvw, △y, caysim ·Rvw, caysim · △y to generate the R2 under
caysim. This table shows that the irrelevant caysim can increase the R2, just like cay does.
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Table 2.2: An example of the β matrix in Lettau and Ludvigson (2001)

cay Rvw cay ·Rvw
25 portfolios βcay t p βRvw t p βcay·Rvw t p

1 0.02 0.30 0.76 1.60 17.17 0 0.21 0.31 0.76

2 0.03 0.47 0.64 1.43 17.48 0 0.27 0.45 0.66

3 0.02 0.30 0.76 1.32 17.64 0 0.31 0.56 0.58

4 0.02 0.31 0.76 1.25 16.93 0 0.08 0.14 0.89

5 -0.01 -0.09 0.93 1.28 14.74 0 0.60 0.92 0.36

6 0.03 0.56 0.57 1.54 21.81 0 0.07 0.14 0.89

7 0.02 0.35 0.73 1.35 21.97 0 -0.20 -0.44 0.66

8 0.01 0.30 0.76 1.24 22.99 0 0.00 0.01 1.00

9 0.02 0.63 0.53 1.14 21.44 0 0.29 0.73 0.47

10 -0.04 -0.83 0.41 1.18 17.49 0 0.65 1.29 0.20

11 0.04 1.04 0.30 1.43 26.61 0 -0.32 -0.79 0.43

12 0.07 2.21 0.03 1.21 27.24 0 0.02 0.05 0.96

13 0.03 0.87 0.39 1.10 25.72 0 0.02 0.06 0.95

14 0.03 0.82 0.41 1.03 23.73 0 0.47 1.46 0.15

15 -0.02 -0.47 0.64 1.09 17.49 0 -0.01 -0.02 0.99

16 0.06 1.95 0.05 1.25 30.45 0 -0.27 -0.89 0.37

17 0.03 1.05 0.29 1.16 35.03 0 -0.33 -1.35 0.18

18 -0.01 -0.30 0.77 1.05 31.86 0 0.27 1.10 0.27

19 -0.01 -0.48 0.63 1.02 25.52 0 0.75 2.50 0.01

20 -0.04 -0.95 0.34 1.11 19.35 0 1.05 2.44 0.01

21 -0.05 -2.09 0.04 1.04 30.46 0 0.30 1.17 0.24

22 0.02 0.89 0.37 0.95 33.89 0 0.19 0.91 0.36

23 0.04 1.44 0.15 0.77 22.93 0 -0.25 -1.01 0.31

24 -0.01 -0.36 0.72 0.83 24.80 0 0.10 0.40 0.69

25 -0.04 -0.96 0.34 0.80 14.81 0 0.16 0.39 0.70

Notes: This table presents the estimate of the correlation matrix
β = (βcay, βRvw , βcay·Rvw), and its associated t statistic and p value, from the first stage
time series regression of the Fama-MacBeth two-pass procedure. The three risks factors
are the log consumption-wealth ratio cay, the value weighted return Rvw, and the
interaction term cay ·Rvw in Lettau and Ludvigson (2001). The quarterly returns of 25
Fama-French size and book-to-market sorted portfolios are from 1963Q3 to 1998Q3.
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Table 2.3: p value of the rank test for 6 specifications in Lettau and Ludvigson (2001)

cay Rvw △y SMB HML cay·Rvw cay·△y △c cay·△c R2 p value

1 -0.32 0.01 0.00
(0.96)

2 0.22 0.16 0.00
(0.18)

3 1.33 0.47 1.46 0.80 0.00
(1.59) (0.10) (0.12)

4 -0.52 -0.06 1.14 0.31 0.77
(3.28) (1.47) (0.46)

5 -0.44 -1.99 0.56 0.34 -0.17 0.77 0.55
(0.45) (1.58) (0.44) (0.32) (0.12)

6 -0.13 0.02 0.06 0.70 0.33
(0.40) (0.16) (0.02)

Notes: This table presents p values of the rank test in Kleibergen and Paap (2006), for 6
specifications of the (C)CAPM. A large p value indicates that the rank condition is likely
violated. These 6 specifications are: the unconditional CAPM is Specification 1, the
unconditional CCAPM is Specification 2, the Fama-French three factor model is
Specification 3, and the other three specifications are from Lettau and Ludvigson (2001).
We use the same data as Lettau and Ludvigson (2001), hence the OLS estimates of the
risk premium and the R2 are identical to Lettau and Ludvigson (2001). Standard errors
with Shanken (1992) correction are in brackets. The quarterly returns of 25 Fama-French
size and book-to-market sorted portfolios are from 1963Q3 to 1998Q3.
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Table 2.4: p value of the rank test for 5 specifications of (C)CAPM

Model Factors R2 p value

Fama-French (1993) RM SMB HML
OLS -1.06 0.46 1.34 0.73 0.00

(1.30) (0.11) (0.15)

GLS -1.50 0.59 1.06 0.79
(0.98) (0.06) (0.11)

Lustig-Nieuwerburgh (2005) myfa △c myfa△c
OLS 0.02 0.14 0.05 0.74 0.54

(0.03) (0.33) (0.03)

GLS -0.01 -0.05 0.02 0.18
(0.01) (0.12) (0.01)

Li-Vassalou-Xing (2006) HHOLDS NFINCO FINAN
OLS 0.03 0.01 0.09 0.58 0.57

(0.02) (0.01) (0.04)

GLS 0.01 -0.01 0.01 0.19
(0.01) (0.01) (0.02)

Santos-Veronesi (2006) RM sw

OLS 0.53 -2.38 0.41 0.96
(1.73) (1.14)

GLS -0.99 -0.15 0.04
(0.68) (0.29)

Yogo (2006) RM △cNdur △cDur
OLS 0.06 0.68 -0.12 0.54 0.78

(1.70) (0.38) (0.30)

GLS -1.03 -0.01 -0.03 0.03
(0.69) (0.10) (0.12)

Notes: The table presents the OLS, GLS estimates of risk premium, the R2, and p value
from the rank test of Kleibergen and Paap (2006). 5 specifications of the (C)CAPM are
considered, including the benchmark Fama-French three factor model. For each
specification, the OLS, GLS estimates of the risk premium with the corresponding R2

separated by rows are reported: OLS in the first row, GLS in the second row. Standard
errors with Shanken (1992) correction are in brackets. The quarterly returns of 25
Fama-French size and book-to-market sorted portfolios used for this table are from
1952Q1 to 2001Q4.
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Figure 2.1: Densities of λ̂F and R2
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Notes: This figure presents the densities of λ̂F and R2 as the sample size T
increases. T = 1400(dotted), 14000(dash-dotted), 70000(dashed), 140000(solid).
Case 1 is in Row 1, where factors are correctly chosen; Case 2 is in Row 2, where
all factors are irrelevant; Case 3 is in Row 3, where one irrelevant factor is chosen
with one relevant factor.
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3.1 Introduction

1Structural Vector Autoregressions (SVAR) have recently been employed to investi-

gate the impact of technology shocks on production inputs, e.g. the hours worked.

The empirical findings are conflicting, and there is currently a debate on whether

a positive technology shock would increase or decrease hours: for example, Gali

(1999), Shea (1999), Francis and Ramey (2005) find that a positive technology shock

decreases hours at short horizons, while Christiano et al. (2003) report the increase

in hours after a positive technology shock. The sign of the impact of technology

shocks on hours is of interest, because real business cycle models have the typical

implication that the hours worked will increase after a positive shock to technology,

while the implication of models with sticky prices is often the opposite: see, e.g.

Rebelo (2005).

The widely used identification strategy of the aforementioned empirical studies

in SVAR is to impose the same restriction that only technology shocks have the long

run effect on labor productivity, see e.g., Gali (1999). In addition, it is found that

empirical outcome crucially depends on whether the time series of hours are specified

in levels or in first differences: as stated in Pesavento and Rossi (2005), the decrease

in hours is typically found in the first difference specification of hours, while the

increase is often found in the level specification. Since the series of hours is highly

persistent, and unit root tests are often not powerful enough to determine which

specification should be chosen, Pesavento and Rossi (2005), Gospodinov (2010) etc.

model hours as local-to-unity, an instrument to nest both the level and difference

specifications. However, it has been shown that identification through the long-

run restriction becomes weak when the variables that enter the model are highly

1This chapter is based on a joint project with Sophocles Mavroeidis.
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persistent, and under the local-to-unity asymptotics, Gospodinov (2010) proves that

the structural parameters as well as the impulse response functions (IRF) of interest

can not be consistently estimated: this failure in estimation is interpreted as a weak

identification problem in Gospodinov (2010), by using the framework of the linear

instrumental variable (IV) regression in Staiger and Stock (1997).

From the weak identification perspective, although a consistent point estimator

may not exist, it is often feasible to construct a confidence interval for the parameter

of interest. In this chapter, we propose two tests to construct such confidence inter-

vals, and we consider these intervals as robust, because no matter whether the true

specification of hours is in levels or in first differences, these intervals would cover the

structural parameter of interest with the probability at least as high as the nominal

coverage rate. Given the robust intervals for structural parameters are derivable,

and the IRF is a function of structural parameters, we consequently construct the

bounds for the IRF to investigate whether a positive technology shock would increase

or decrease the hours worked. The empirical findings are as follows: the impact of a

positive technology shock on hours is likely positive at short horizons, but the 95%

confidence interval of the contemporaneous effect also includes a negative region.

The rest of the chapter contains the following parts: the VAR(p + 1) model is

described in Section 2; our robust approach of deriving the confidence intervals are

presented in Section 3; Section 4 contains the empirical findings; Section 5 concludes.
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3.2 Model

Following the convention, we use the following notations throughout this chapter: let

lt, ht denote labor productivity and the hours worked respectively; structural shocks

ϵt = (ϵzt , ϵ
d
t )

′, where ϵzt is the technology shock and ϵdt is the non-technology shock; the

object of interest is the IRF
∂ht+j

∂ϵzt
, i.e. the response of hours to positive technology

shocks, and we would like to explore whether its sign is positive or negative for small

j’s; in the special case that j = 0, ∂ht
∂ϵzt

is the contemporaneous effect of the technology

shock on the hours worked.

3.2.1 VAR

We consider the same setup as in Gospodinov et al. (2009), which is an extension

of the model in Gospodinov (2010). Ỹt =

 lt

ht

, t = 1, ..., T , are assumed to be

generated by a bivariate VAR(p+ 1) model of (3.1) with assumptions i− iv:

Ψ(L)(I − ΦL)Ỹt = ut (3.1)

where Ψ(L) = I −
∑p

i=1 ΨiL
i =

 ψ11(L) ψ12(L)

ψ21(L) ψ22(L)

 ,Φ =

 1 β(ρ− 1)

0 ρ

.

i. ut =

 u1,t

u2,t

 is i.i.d. with covariance Σu =

 σ2
1 σ12

σ12 σ2
2

 and finite fourth

moments;

ii. the largest roots of the system are contained in Φ with the conditions that

lt has a unit-root, while ht follows a local-to-unity process, i.e. ρ = 1 + c
T
,
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and c is a fixed constant: this device nests both the first difference and level

specifications of ht, depending on whether c = 0 or c < 0;

iii. |Ψ(z)| = 0 has roots outside the unit circle and Ψ(z)−1 is one-summable;

iv. there is an off diagonal element β(ρ− 1) in Φ.

Gospodinov et al. (2009) and Gospodinov (2010) both emphasize that it is ap-

propriate to use the model of (3.1) to study the impact of technology shocks on

hours, and the off diagonal element β(ρ − 1) in Φ is crucial: β ̸= 0 allows the low

frequency co-movement between lt and ht in the level specification of ht, and this

co-movement is assumed to be removed by the first difference filter, i.e. when c = 0,

Φ reduces to an identity matrix. Gospodinov et al. (2009) offer arguments for why

β(ρ− 1) needs to be in place. For example, if technology shocks have lasting effects

on the labor market, then the low frequency co-movement between lt and ht may be

plausible. Following Gospodinov et al. (2009), the lower-left element in Φ is set to

zero, to avoid that ht is I(2) when c = 0 or I(1) when c ̸= 0. If β = 0, (3.1) reduces

to the model considered in Gospodinov (2010), hence (3.1) is an extension of the

setup in Gospodinov (2010).

3.2.2 Long Run Restriction

Rewrite (3.1) as A(L)Yt = ut, with A(L) = Ψ(L)

 1 β(1− ρ)L

0 1− ρL

, Yt =

 △lt

ht

.
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A(L)Yt = ut is thus equivalent to:

 ψ11(L) ψ12(L)

ψ21(L) ψ22(L)


 1 β(1− ρ)L

0 1− ρL


 △lt

ht

 =

 u1,t

u2,t



Premultiplying the equation above by B0 =

 1 −b12

−b21 1

 yields the SVAR

B(L)Yt = ϵt, with B(L) = B0A(L), ϵt = B0ut:

 1 −b12

−b21 1


 ψ11(L) ψ12(L)

ψ21(L) ψ22(L)


 1 β(1− ρ)L

0 1− ρL


 △lt

ht

 =

 ϵzt

ϵdt



The identification restriction that ϵdt has no long run effect on lt implies two

different expressions for the structural parameter b12, depending on whether c = 0

or not:

i. if c ̸= 0:

Let M1(L) =

 1 −b12

−b21 1


 ψ11(L) ψ12(L)

ψ21(L) ψ22(L)


 1 β(1− ρ)L

0 1− ρL

, then

the long run restriction corresponds to that M1(1) is lower-triangular, i.e.

the upper-right element of the 2 by 2 matrix M1(1) is zero, implying b12 =

ψ12(1)+βψ11(1)
ψ22(1)+βψ21(1)

;

ii. if c = 0:

LetM2(L) =

 1 −b12

−b21 1


 ψ11(L) ψ12(L)

ψ21(L) ψ22(L)

, then the long run restric-



76

tion corresponds to that the upper-right element in M2(1) is zero, implying

b12 =
ψ12(1)
ψ22(1)

.

Gospodinov et al. (2009) use the above discontinuity in the solution of b12 to

explain why the level specification and the first difference specification of ht pro-

duce substantially different IRF’s in empirical studies: the IRF’s are functions of the

structural parameters; using a different specification of ht implies a different iden-

tification condition for b12, as described above, hence it is not surprising that IRFs

substantially differ when the specifications of ht differ, if β ̸= 0.

The condition β ̸= 0 is thus crucial to help reconcile the conflicting empirical

results: the discontinuity in the solution of b12 disappears once β = 0 is imposed, i.e.

b12 =
ψ12(1)
ψ22(1)

, no matter whether c = 0 or c ̸= 0. Gospodinov (2010) proposes to infer

b12 by ψ12(1)
ψ22(1)

, after imposing β = 0; without imposing β = 0, Gospodinov (2010)’s

approach of deriving b12 through ψ12(1)
ψ22(1)

is no longer applicable in the current setup.

In the later part of this chapter, we will propose methods to construct C.I.’s for b12,

without assuming β = 0.

3.2.3 Model Simplification

Define Ã(L) = Ψ(L)(I − ΦL), A∗(L) = L−1(I − Ã(L)) = A∗
0 + A∗

1L + ... + A∗
pL

p,

A∗∗
i = −

∑p
j=i+1A

∗
j .

The Vector Error Correction (VEC) form of (3.1) is as follows:

△Ỹt = (A∗(1)− I)Ỹt−1 +

p∑
i=1

A∗∗
i−1△Ỹt−i + ut
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More explicitly:

 △lt = (ψ12(1) + βψ11(1))
c
T
ht−1 +

∑p
i=1 a

∗∗
i−1,11△lt−i +

∑p
i=1 a

∗∗
i−1,12△ht−i + u1,t

△ht = (ψ22(1) + βψ21(1))
c
T
ht−1 +

∑p
i=1 a

∗∗
i−1,21△lt−i +

∑p
i=1 a

∗∗
i−1,22△ht−i + u2,t

To simplify the VEC form above, project△lt, △ht and ht−1 on the predetermined

variables △lt−1, ..., △lt−p, △ht−1, ..., △ht−p, and save the residuals from projection

as △l̃t, △h̃t and h̃t−1, i.e. regress △lt, △ht and ht−1 on △lt−1, ..., △lt−p, △ht−1, ...,

△ht−p, and the residuals are denoted by △l̃t, △h̃t and h̃t−1. By projection, the VEC

form is simplified to (up to op(1) terms):


△l̃t = (ψ12(1) + βψ11(1))

c
T
h̃t−1 + u1,t

△h̃t = (ψ22(1) + βψ21(1))
c
T
h̃t−1 + u2,t

(3.2)

Let c∗ ≡ (ψ22(1) + βψ21(1))c, and use the condition b12 = ψ12(1)+βψ11(1)
ψ22(1)+βψ21(1)

implied

by the long run restriction, we get:


△l̃t = b12

c∗

T
h̃t−1 + u1,t

△h̃t = c∗

T
h̃t−1 + u2,t

(3.3)

Note that the condition b12 = ψ12(1)+βψ11(1)
ψ22(1)+βψ21(1)

holds only when c ̸= 0, hence (3.3)

is derived under c ̸= 0. However, this simplified model remains correct when c = 0:

c = 0 implies c∗ = 0, hence b12c
∗ = 0, no matter which expression of b12 is used.

In other words, no matter whether or not c equals 0, it is valid to simplify (3.1) to

(3.3).



78

Premultiplying the VEC form byB0 yields the structural form below, withB∗∗
i−1 =

B0A
∗∗
i−1:

B0△Ỹt = B0(A
∗(1)− I)Ỹt−1 +

p∑
i=1

B∗∗
i−1△Ỹt−i + ϵt

Impose the long run restriction and write the structural form more explicitly:


△lt = b12△ht +

∑p
i=1 b

∗∗
i−1,11△lt−i +

∑p
i=1 b

∗∗
i−1,12△ht−i + ϵzt

△ht = b21△lt + b∗22ht−1 +
∑p

i=1 b
∗∗
i−1,21△lt−i +

∑p
i=1 b

∗∗
i−1,22△ht−i + ϵdt

where b∗22 = [(ψ22(1) + βψ21(1)) − b21(ψ12(1) + βψ11(1))]c/T . After projecting out

the lags, the structural form reduces to:


△l̃t = b12△h̃t + ϵzt

△h̃t = b21△l̃t + b∗22h̃t−1 + ϵdt

(3.4)

3.3 Tests

3.3.1 AR

For a given c, a confidence interval for b12 can be constructed by inverting AR test.

Consider the auxiliary regression below for testing H0 : b12,0 = b12. Under H0, θ = 0:

△l̃t − b12,0△h̃t = θh̃t−1 + ϵzt
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The tAR statistic is the t statistic for testing θ = 0 in the auxiliary regression

above:

tAR(b12,0) =
(
∑T

t=2 h̃
2
t−1)

−1
∑T

t=2 h̃t−1(△l̃t − b12,0△h̃t)
(
∑T

t=2 h̃
2
t−1)

−1/2σ̂ϵ

where σ̂ϵ
2 is the sample variance of the OLS residual.

Theorem. Under assumptions i − iv, and H0 : b12 = b12,0, tAR has the asymptotic

distribution that depends on c:

tAR =⇒ ρvϵτc +
√

1− ρ2vϵz

where ρvϵ is the long run correlation of vt and ϵzt , vt ≡
∑p

i=1 a
∗∗
i−1,21△lt−i + u2,t,

τc ≡
(∫ 1

0
Jc(s)

2ds
)−1/2 ∫ 1

0
Jc(s)dW (s), z is a standard normal variate.

Proof.

tAR(b12,0) =
(
∑T

t=2 h̃
2
t−1)

−1
∑T

t=2 h̃t−1ϵ
z
t

(
∑T

t=2 h̃
2
t−1)

−1/2σ̂ϵ

=
(
∑T

t=2 h̃
2
t−1)

−1/2
∑T

t=2 h̃t−1ϵ
z
t

σ̂ϵ

Apply two results in Hansen (1995), with a(1) ≡ ψ22(1) + βψ21(1):

1

T 2

T∑
t=2

h̃2t−1 ⇒ a(1)−2σ2
v

∫ 1

0

J c(s)2ds

1

T

T∑
t=2

h̃t−1ϵ
z
t ⇒ a(1)−1σvσϵ

(
ρvϵ

∫ 1

0

J c(s)dW (s) + (1− ρ2vϵ)
1/2

∫ 1

0

J c(s)dW †(s)

)
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tAR(b12,0) =⇒
(∫ 1

0

Jc(s)
2ds

)−1/2(
ρvϵ

∫ 1

0

Jc(s)dW (s) +
√

1− ρ2vϵ

∫ 1

0

Jc(s)dW
†(s)

)
=⇒ ρvϵτc +

√
1− ρ2vϵz

3.3.2 Wald

A joint confidence set for (b12, c
∗) can be constructed by inverting Wald test.

Let ϕT (b12,0, c
∗
0) =

 (
∑T

t=2 h̃
2
t−1)

−1
∑T

t=2 h̃t−1△l̃t − b12,0
c∗0
T

(
∑T

t=2 h̃
2
t−1)

−1
∑T

t=2 h̃t−1△h̃t − c∗0
T

. The Wald statis-

tic is:

W (b12,0, c
∗
0) = ϕT (b12,0, c

∗
0)

′

[
Σ̂−1
u

T∑
t=2

h̃2t−1

]
ϕT (b12,0, c

∗
0)

Theorem. Under assumptions i − iv, and H0 : b12 = b12,0, c
∗ = c∗0, W (b12,0, c

∗
0) has

the asymptotic distribution dependent on c:

W (b12,0, c
∗
0) =⇒ (ρv2τc + (1− ρ2v2)

1/2z2)
2 + (ρv1−2τc + (1− ρ2v1−2)

1/2z1)
2

where ρv2 is the long run correlation of vt and u2,t, ρv1−2 as the long run correlation

of vt with u1−2, z1, z2 are independent standard normal variates, and u1−2 results

from the decomposition of u1,t = σ1(
ρu
σ2
u2,t+ (1− ρ2u)

1/2u1−2), ρu is the correlation of

u1,t, u2,t .

Proof. Decompose u1,t:

u1,t = σ1(
ρu
σ2
u2,t + (1− ρ2u)

1/2u1−2)
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where ρu is the correlation of u1,t and u2,t, and u1−2 is uncorrelated with u2,t: the sub-

script indicates that it comes from u1,t after excluding u2,t; in addition, the variance

of u1−2 is 1.

Let D1 denote the convergence outcome of (
T∑
t=2

h̃2t−1)
−1/2

T∑
t=2

h̃t−1u1−2:

(
T∑
t=2

h̃2t−1)
−1/2

T∑
t=2

h̃t−1u1−2 ⇒ D1

where D1 = ρv1−2τc+(1−ρ2v1−2)
1/2z1, and z1 is a standard normal variate. Similarly:

(
T∑
t=2

h̃2t−1)
−1/2

T∑
t=2

h̃t−1u2,t ⇒ σ2D2

where D2 = ρv2τc + (1− ρ2v2)
1/2z2, and z2 is a standard normal variate independent

of z1.

With the above notations, rewrite (
T∑
t=2

h̃2t−1)
−1/2

T∑
t=2

h̃t−1u1,t as:

σ1

[
(
T∑
t=2

h̃2t−1)
−1/2

T∑
t=2

h̃t−1(
ρu
σ2
u2,t + (1− ρ2u)

1/2u1−2)

]

= σ1

[
ρu
σ2

(
T∑
t=2

h̃2t−1)
−1/2

T∑
t=2

h̃t−1u2,t + (1− ρ2u)
1/2(

T∑
t=2

h̃2t−1)
−1/2

T∑
t=2

h̃t−1u1−2

]
⇒ σ1

[
ρuD2 + (1− ρ2u)

1/2D1

]
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Now the Wald statistic becomes:


(
T∑
t=2

h̃2t−1)
−1/2

T∑
t=2

h̃t−1u1,t

(
T∑
t=2

h̃2t−1)
−1/2

T∑
t=2

h̃t−1u2,t


′

Σu
−1


(
T∑
t=2

h̃2t−1)
−1/2

T∑
t=2

h̃t−1u1,t

(
T∑
t=2

h̃2t−1)
−1/2

T∑
t=2

h̃t−1u2,t


⇒

 σ1
[
ρuD2 + (1− ρ2u)

1/2D1

]
σ2D2


′

Σu
−1

 σ1
[
ρuD2 + (1− ρ2u)

1/2D1

]
σ2D2



⇒

 σ1
[
ρuD2 + (1− ρ2u)

1/2D1

]
σ2D2


′ σ2

2 −σ12

−σ12 σ2
1


 σ1

[
ρuD2 + (1− ρ2u)

1/2D1

]
σ2D2


σ2
1σ

2
2 − σ2

12

⇒ D2
1 +D2

2

We are ultimately most interested in the IRF
∂ht+j

∂ϵzt
: the effect of a positive

technology shock on the hours worked. Once we get b12 by inverting AR or Wald,

we derive
∂ht+j

∂ϵzt
in the following manner.

Given b12, there is a correspondent b21: b21 = b12σ22−σ12
b12σ12−σ11 . This relation holds

because the covariance matrix E(ϵtϵ
′
t) of the structural shocks is diagonal, and

B0E(utu
′
t)B

′
0 = E(ϵtϵ

′
t). Consequently, B0 =

 1 −b12

−b21 1

 can be recovered.

Combining B0 with A1, ..., Ap+1, which are estimated by VAR(p + 1) of Yt =
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 △lt

ht

, the IRF
∂ht+j

∂ϵzt
can be derived through the companion matrix F :

F =



A1 A2 ... Ap+1

I

...

I



Take the jth power of F , and denote the up left 2 by 2 matrix of F j by F̃ j, then

∂Yt+j

∂ϵt′
= F̃ jB−1

0 , and
∂ht+j

∂ϵzt
is the (2, 1) element of

∂Yt+j

∂ϵt′
.

As an example, when j = 0, the contemporaneous effect of ∂ht
∂ϵzt

is:

∂ht
∂ϵzt

=
b21

1− b12b21

=
b12σ22 − σ12

2b12σ12 − σ11 − b212σ22

Once a robust confidence interval of b12 is available, we derive the confidence in-

terval for
∂ht+j

∂ϵzt
by using the point estimates of A1, ..., Ap+1,Σu, and all possible values

of b12 in its confidence interval: the maximum/minimum value of
∂ht+j

∂ϵzt
becomes its

upper/lower bound, respectively.
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3.4 Application

The same data as in Christiano et al. (2003) and Pesavento and Rossi (2005) is used

in our empirical application: the quarterly data of labor productivity and the hours

worked (denoted by lt, ht respectively in this chapter) between 1948Q1−2001Q4 are

from the DRI Economics Database; labor productivity is measured by the output

per hour in the business sector, while hours is measured by the hours worked in the

business sector divided by the population; both labor productivity and hours are in

natural logarithm. See Christiano et al. (2003) for further details.

Although Christiano et al. (2003) and Pesavento and Rossi (2005) use the same

dataset, their conclusions contradict each other: Christiano et al. (2003) argue that

the level specification of hours should be chosen over the difference specification, and

report that a positive technology shock will drive hours up, while Pesavento and Rossi

(2005) employ an agnostic procedure which works for both the level and difference

specifications of hours, and report that a positive productivity shock drives hours

down.

The recent work by Gospodinov et al. (2009), Gospodinov (2010) suggest that it

is appropriate to use the model of (3.1) to investigate the impact of technology shocks

on hours, and we adopt the robust approach for (3.1) to construct the confidence

interval for the response of hours to technology shocks. Since we are using the same

dataset, it will be interesting to compare our results with Christiano et al. (2003),

Pesavento and Rossi (2005), etc.

As a starting point, we consider the two specifications of hours, in levels and

in first differences. The conventional identification procedure (see, e.g., Gali (1999))

under the restriction that only technology shocks have a long run effect on labor pro-
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ductivity is applied for the two specifications, respectively: following Christiano et al.

(2003), a VAR model with a drift and four lags is employed, where lt is specified in

first differences, ht is specified either in levels or in first differences.

The response of the hours worked to the positive technology shocks is plotted in

Figure 3.1, and it is consistent with the current debate: at short horizons, the effect

of a positive technology shock on the hours worked is found positive under the level

specification of hours, and this effect is negative under the difference specification.

The 95% confidence bounds are constructed by the bootstrap.

For future use, we estimate the following matrices: (i) the coefficient matrix

A1, A2, A3, A4 in the VAR(4) model of

 △lt

ht

; (ii) the covariance matrix Σu of

the reduced error ut; (iii) the long run matrix Ψ(1).

i. Â1, Â2, Â3, Â4: estimate a VAR(4) model with a drift for

 △lt

ht

, Â1, Â2, Â3, Â4

are the OLS estimates of the coefficients before the first, second, third, fourth

lag, respectively; the companion matrix F =



A1 A2 A3 A4

I 0 0 0

0 I 0 0

0 0 I 0


is thus
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estimated by:

F̂ =



−0.1008 0.0698 0.0317 −0.2719 −0.0616 0.0858 −0.0286 0.1344

0.1611 1.4193 0.2083 −0.4265 0.1303 0.0131 0.0503 −0.0329

1.0000 0 0 0 0 0 0 0

0 1.0000 0 0 0 0 0 0

0 0 1.0000 0 0 0 0 0

0 0 0 1.0000 0 0 0 0

0 0 0 0 1.0000 0 0 0

0 0 0 0 0 1.0000 0 0



ii. Σ̂u: save the residuals of the VAR(4) model above, and Σ̂u =

 0.8707 0.0015

0.0015 0.5390


is the sample covariance matrix of the residuals.

iii. Ψ̂(1): estimate a VAR(3) model with a drift for

 △lt

△ht

, Ψ̂1, Ψ̂2, Ψ̂3 are the

OLS estimates of the coefficients before the first, second, third lag, respectively,

and:

Ψ̂(1) = 1− Ψ̂1 − Ψ̂2 − Ψ̂3 =

 1.0895 0.2986

−0.4372 0.4970



Using the same dataset, Pesavento and Rossi (2005) report that the CADF (Co-

variate Augmented Dickey-Fuller) statistic is around −3.072, and the 95% confidence

interval of ρ is (0.897, 0.997). When T = 216 in the application, it implies that the

95% C.I. of c is: (cl, cu) = (−22.2480,−0.6480).

Take the following steps to invert AR and construct C.I. for the IRF:

1. For each c ∈ (cl, cu), invert tAR for a C.I. of b12;
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2. Bonferroni: take the union of C.I.’s of b12 from above;

3. For each b12 in its C.I., compute
∂ht+j

∂ϵzt
;

4. Upper/lower bounds of C.I. come from max/min of
∂ht+j

∂ϵzt
.

Similarly, take the following steps to invert Wald test and construct C.I. for the

IRF:

1. For each (b12,0, c
∗
0), compute the Wald statistic, and save (b12,0, c

∗
0) ifW (b12,0, c

∗
0)

does not exceed the critical value;

2. Construct the C.I. of b12,0 by projection;

3. For each b12 in its C.I., compute
∂ht+j

∂ϵzt
;

4. Upper/lower bounds of C.I. come from max/min of
∂ht+j

∂ϵzt
.

The response of the hours worked to the positive technology shocks by AR and

Wald is plotted in Figure 3.2. It is found that the IRF lies mostly in the positive re-

gion at short horizons, although at 95%, we can not reject that the contemporaneous

effect is negative.

3.5 Conclusion

We contribute to the current debate on whether a positive technology shock will

bring the hours worked up or down by providing new robust results: this effect on

hours is found most positive at short horizons, although we do not rule out the

possibility that the contemporaneous effect is negative at 95%.
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Figure 3.1: IRF under level and first-difference
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Notes: this figure reports the IRF
∂ht+j

∂ϵzt
, i.e. the effect of positive technology shocks

on the hours worked, and the IRF is constructed under the long run restriction by
the same approach as in Christiano et al. (2003). The solid line is the point
estimate, with ht in levels in the upper panel, and ht in first differences in the low
panel; the dashed line is the 95% upper and lower bounds by the bootstrap.
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Figure 3.2: IRF bounds by AR and Wald
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Notes: this figure reports the 95% bounds of the IRF
∂ht+j

∂ϵzt
, i.e. the effect of positive

technology shocks on the hours worked, and the bounds are constructed by the AR and
Wald approach proposed in this chapter.
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