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Chapter 1: General Introduction 

Visual selective attention develops over the first decade of human life (Amso & 

Scerif, 2015; Oakes & Amso, 2018). This selective process allows us to filter out irrelevant 

information in the service of our goals. As a consequence, It has been shown to be 

important for the development of object perception (Amso & Johnson, 2006), numerical 

cognition (Ansari, Lyons, van Eimeren, & Xu, 2007) and executive functions (Colombo & 

Cheatham, 2006; Fox & Calkins, 2003; Garon, Bryson, & Smith, 2008; Posner, Rothbart, 

& Rueda, 2014). Attention may be allocated to a specific location and/or visual feature, 

such as orientation, color and motion. In this way, attention binds an object’s constituent 

visual features to its location in space and enhances visual perceptual processing at the 

attended location (Carrasco, 2011). Neurally, both visuo-spatial and feature-based attention 

influence cortical visual processing (Ling & Carrasco, 2006; Ling, Liu, & Carrasco, 2009) 

through feedback connections from higher-order brain regions (i.e., frontoparietal & high-

level visual regions) (Bichot, Heard, DeGennaro, & Desimone, 2015; Chelazzi, Miller, 

Duncan, & Desimone, 2001). It follows that the integrity of visual processing may thus 

shape attentional allocation. Child development thus provides a unique window to examine 

this notion because visual processing, like visual attention, improves across childhood, 

both behaviorally and within the visual cortex (Gomez et al., 2019; Gomez, Natu, Jeska, 

Barnett, & Grill-Spector, 2018; Knoblauch, Vital-Durand, & Barbur, 2001; Leat, Yadav, 

& Irving, 2009). There has been little consideration for how developmental change in 

visual processing impacts the development and function of visual attention. Here, I 

examine visual attention development through the lens of visual processing. The 

hypothesis driving this work is that visual attention development maybe be driven by visual 
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processing development across the first decade of life (Amso & Scerif, 2015; Kim & 

Kastner, 2019). 

Visual features are processed in parallel across the visual field and visual attention 

binds these features to a specific location to support object perception (Treisman & Gelade, 

1980). Parallel visual feature processing is demonstrated in ‘pop-out’ feature search where 

a search target defined by one feature value (e.g., red) is presented among homogenous 

distractors of a different feature value on the same dimension (e.g., green). In this case, the 

red target is processed preattentively and recognized quickly. However, attention is 

required in conjunction search where a search target, defined by two or more feature values 

(e.g., a red T), is presented among heterogeneous distractors of different feature value 

conjunctions from the same feature dimensions (e.g., red Ls and green Ts). Here, 

participants must integrate multiple visual features as they search amongst targets and 

distractors. During conjunction search, search times for the target increases with increases 

in distractor number and target recognition therefore takes time, suggesting stimuli are 

serially processed using feature integration. 

Broadly, visual features are processed in relatively distinct, parallel cortical visual 

processing streams (Felleman & Van Essen, 1991; Ungerleider & Haxby, 1994; S. M. Zeki, 

1978a). Whereas some visual features are processed in relatively distinct pathways, others 

are processed within the same pathway. Two of these, the dorsal and ventral visual 

pathways, support visuospatial and motion processing, and color and object processing, 

respectively. Both color and motion information are processed separately within striate 

visual cortex (V1) and are then routed to separate higher-level extrastriate cortical areas 

human visual region 4 (hV4) and human middle temporal area (hMT), respectively 
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(Gegenfurtner, 2003; Seymour, Clifford, Logothetis, & Bartels, 2009; Shipp & Zeki, 1995; 

Sincich & Horton, 2005). However, luminance information proceeds, with motion 

information, from striate cortex to hMT. Thus, feature integration may occur across 

separate visual pathways (e.g., color and motion) or within the same visual pathway (e.g., 

luminance and motion).  

After an initial feedforward sweep, feedback connections from fronto-parietal and 

high-level visual processing regions combine signals from distinct visual processing 

streams (Rockland & Knutson, 2000; Rockland & Virga, 1989; S. Zeki & Shipp, 1988) 

and are thought to mediate the influence of top-down attention on visual processing  

(Chelazzi et al., 2001; McAdams & Maunsell, 2000; Motter, 1994). Adult non-human 

primate work shows that allocating attention to an object modulates feature-specific 

processing in hMT, hV4, and V1 (McAdams & Maunsell, 1999, 2000; Treue & Maunsell, 

1996; Treue & Trujillo, 1999), and connectivity between striate and extrastriate regions, 

including between V1 and V4 (Bosman et al., 2012), between V1 and MT (Saproo & 

Serences, 2014), to support processing of an object’s constituent visual features. This 

suggests that attention to different combinations of features may modulate connectivity 

between distinct regions that code distinct visual features (e.g., color, motion). One might 

predict that attention therefore modulates connectivity between the dorsal and ventral 

visual pathways (e.g., hV4, hMT). However, connectivity between these visual regions 

changes with age across childhood. While functional connectivity across the striate and 

extrastriate cortices is overall weaker in children relative to adults (Jolles, Van Buchem, 

Crone, & Rombouts, 2011), recent work suggest connectivity strength increases across 

childhood (Kipping, Tuan, Fortier, & Qiu, 2017). Non-human primate work suggests that 
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within visual pathway functional connectivity changes across early development in a 

hierarchical, caudal-to-rostral manner (Kovacs-Blaint et al., 2018). Yet, it remains unclear 

whether functional connectivity between the dorsal and ventral visual pathways changes 

across childhood.  

In the first study, I examined the development of dorsal and ventral visual pathway 

integration across middle childhood using a network-level approach to resting-state fMRI. 

Specifically, I tested whether connectivity between visual pathways changes across 

childhood (4 – 12 years old). I predicted that between pathway integration would develop 

differently than within pathway integration. I show that between pathway integration 

followed a non-linear developmental trajectory across childhood. 

Behaviorally, children’s visual search abilities resemble adult-like patterns of 

behavior, increases in RT with additional distractors for conjunction search, but not such 

increase with ‘pop-out’ feature search. Across childhood, overall processing speed 

improves and children become less influenced by increasing distractor number with age 

(decrease in RT slope) (Donnelly et al., 2007; Gerhardstein & Rovee-Collier, 2002; 

Lobaugh, Cole, & Rovet, 1998; Trick & Enns, 1998). This improvement occurs across 

middle childhood (7 to 10 years) for color and orientation conjunctions (e.g., oriented color 

bar; Donnelly et al., 2007) and luminance and shape (e.g., black circle; Merrill & 

Lookadoo, 2004). However, these studies examine conjunctions of visual features within 

the ventral visual pathway. One could then predict that integrating visual feature between 

the dorsal and ventral pathways might develop differently than within pathway integration. 

In the second study, I examined the development of visual attention (4 – 10 years 

old) for feature combinations that may require integration between or within dorsal and 
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ventral pathways. Specifically, using a conjunction search task, I tested children’s ability 

to search for color-motion and luminance-motion defined targets presented among varying 

number of distractors. I predicted that attention to targets whose features are coded in 

distinct visual pathways should develop differently relative to targets with feature coded 

within the same visual pathway. I show that feature integration and conjunction search for 

feature coded across the dorsal and ventral visual pathways may develop differently than 

for feature coded within the dorsal pathway. 

 Yet, it remains unclear whether improvements in visual feature processing, per se, 

underlie  changes in visual attention across child development. Visual feature processing 

occurs at multiple levels of analysis across both the dorsal and ventral visual pathways. At 

a specific location within the visual field, stimulus-driven deviations in visual feature 

contrast (e.g., color, luminance) are coded within V1 and measured behaviorally as contrast 

sensitivity (Albrecht & Hamilton, 1982). Visual feature are coded at multiple scales across 

the visual field as receptive fields increase along the visual pathway (e.g., Albrecht & 

Figure 1. Developmental model of Visual Processing and Attention.  
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Hamilton, 1982; Movshon, Thompson, & Tolhurst, 1978). During childhood, both 

chromatic and luminance contrast sensitivity improve with age (Almoqbel, Irving, & Leat, 

2017; Knoblauch et al., 2001; for review see, Leat et al., 2009). Children also become faster 

with age to detect a pop-out search target defined by color, orientation, and size. (Donnelly 

et al., 2007; Gerhardstein & Rovee-Collier, 2002; Trick & Enns, 1998).  

In study three, I examined the relationship between these improvements in visual 

feature processing and visual selective attention abilities across childhood (4 – 9 years old) 

for feature combinations that may require integration between or within dorsal and ventral 

pathways. For both color and luminance features I measured children’s 1) contrast 

sensitivity, 2) pop-out feature search performance, and 3) conjunction search performance 

where children searched for color-motion or luminance-motion defined targets.  

I first tested whether children’s contrast sensitivity and ‘pop-out’ search 

performance improves with age and whether this developmental change depends on visual 

feature. Similar to Study 2, I then tested whether children’s conjunction search abilities 

depend on visual feature combinations. Throughout visual search tasks I tested whether 

children’s ability to integration motion with either color or luminance depended on the task 

goal (i.e., search for red target vs. search for moving red target). Lastly, I tested whether 

contrast sensitivity and feature integration predict conjunction search performance. I 

predicted that contrast sensitivity and pop-out search performance for both visual features 

would improve across childhood. Moreover, I predicted that contrast sensitivity and top-

down feature integration abilities would influence conjunction search performance across 

childhood specifically for the color-motion condition, whose feature are presumable coded 

in distinct visual pathways.   
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Chapter 2 

2. Characterizing developmental trajectories of dorsal-ventral visual pathway 

integration across childhood 

2.1 Abstract 

Functional brain networks change across the first decade of life. I aimed to 

characterize developmental changes in human cortical functional connectivity across 

childhood both within and between the dorsal and ventral visual pathways. I identified 6 

visual networks including the dorsal and ventral visual pathways, as well as early visual 

regions, that reflected the underlying topographical and hierarchical organization of striate 

and extrastriate cortices. I found that only right dorsal network integration changed across 

childhood, with decreases from early to middle childhood and increases from middle to 

late childhood. This right dorsal network integration was driven by a change across 

childhood in the number of connections with the right ventral pathway as well as in the 

number of connections with early visual regions. This work has value for understanding 

developmental change in feature integration across dorsal and ventral visual pathways, and 

accordingly developmental improvements in visual attention.  

2.2 Introduction 

Visual attention improves and functional brain networks change across the first 

decade of life (Fransson, Åden, Blennow, & Lagercrantz, 2011; Gao et al., 2011; Hwang, 

Hallquist, & Luna, 2013; Marek, Hwang, Foran, Hallquist, & Luna, 2015; Oakes & Amso, 

2018). A principle argument of the prominent Feature Integration Theory (FIT) is that an 

object’s constituent visual features (e.g., shape, color, motion direction) are first processed 
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separately but in parallel, and only integrated for the object’s identification during 

subsequent attentive processing (Humphreys, 2016; Treisman & Gelade, 1980; Wolfe, 

2014). Neurally, visual feature processing can be localized within distinct visual cortical 

pathways (e.g., ventral pathway for color, dorsal pathway for motion) (Felleman & Van 

Essen, 1991; Ungerleider & Haxby, 1994; S. M. Zeki, 1978a). Computationally, across a 

visual scene, visual salience models process constituent visual features within individual 

feature channels, which are subsequently integrated (e.g., Itti & Koch, 2001). Behaviorally, 

for both children (Lynn, Festa, Heindel, & Amso, 2020) and older adults  (Festa et al., 

2005), integration of visual features processed across the dorsal and ventral visual 

pathways is poorer than integration of visual features processed within a pathway. 

Moreover, recent works shows that patients with Alzheimer’s Disease, which is 

characterized disrupted corticocortical connectivity, show greater behavioral disruption in 

binding feature across the dorsal and ventral pathways. Together, these data raise the 

possibility that functional connectivity between the dorsal and ventral visual pathways and 

within each pathway may follow different developmental trajectories. Here, I examine the 

development of functional integration of the dorsal and ventral visual pathways across 

childhood.  

Adult human and non-human primate work shows that visual information is 

processed across a distributed set of hierarchically organized, parallel cortical pathways 

(e.g., Felleman & Van Essen, 1991; Ungerleider & Haxby, 1994; S. M. Zeki, 1978a). The 

dorsal and ventral pathways are thought to represent visuospatial and object processing, 

respectively (Mishkin, Ungerleider, & Macko, 1983; Ungerleider & Mishkin, 1982). Small 

receptive fields represent simple, local visual features across striate cortex (V1) and 
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increasingly larger receptive fields represent increasingly complex, global visual features 

across increasingly higher levels of the extrastriate cortex (e.g., V4, V5/MT+) (Hubel & 

Wiesel, 1974; A. T. Smith, 2001; S. M. Zeki, 1978b). Further, the strength of functional 

connectivity follows a topographic organization, such that striate regions are more strongly 

connected to extrastriate regions in a way that maintains visual field topography (Vincent 

et al., 2007; Wang, Mruczek, Arcaro, & Kastner, 2015). While the structural architecture 

of the visual cortex is established early in development (e.g., Baldwin, Kaskan, Zhang, 

Chino, & Kaas, 2012), cellular development across childhood is protracted (e.g., 

Huttenlocher & de Courten, 1987; Huttenlocher, de Courten, Garey, & Van der Loos, 

1982). Characterizing developmental changes in functional connectivity throughout 

childhood may provide insight into how information in integrated across the striate and 

extrastriate cortex.  

The connectomics literature often parcels whole brain functionally connectivity 

into networks thought to support self-referential thought (i.e., default mode network, 

DMN), cognitive control (i.e., frontoparietal network, FPN), motor control (i.e., 

sensorimotor network SMN), and attention (i.e., dorsal and ventral attention networks, 

DAN/VAN), as well as visual processing (i.e., visual network, VIS) (Power et al., 2011; 

Thomas Yeo et al., 2011). Functional network ‘hubs’, which underlie cortical information 

flow, shift from primary sensory cortex (i.e., visual cortex) in infancy to association cortex 

in childhood, where they remain throughout adolescence and adulthood (Fransson et al., 

2011; Gao et al., 2011; Hwang et al., 2013). Across childhood and adolescence, 

information is transferred within and between functional networks with increasing 

efficiency (Collin & Van Den Heuvel, 2013; Supekar, Musen, & Menon, 2009). This is 
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likely supported by decreases in network segregation and increases in network integration 

(Fair et al., 2007, 2009; Supekar et al., 2009; Vogel, Power, Petersen, & Schlaggar, 2010), 

potentially through changes in connectivity strength (Collin & Van Den Heuvel, 2013). 

Indeed, while functional networks show adult-like organization by late childhood, within-

network connectivity decreases across childhood and adolescence, and between-network 

connectivity first decreases from childhood into adolescence and then increases from 

adolescence into adulthood (Hwang et al., 2013; Marek et al., 2015). However, this whole-

brain network focus overlooks the development of functional connectivity across the dorsal 

and ventral visual pathways.   

Functional connectivity across the striate and extrastriate cortices is weaker in 

children relative to adults (Jolles et al., 2011), but  increases across childhood (Kipping et 

al., 2017). However, it is unclear whether these findings reflect changes between the dorsal 

and ventral visual pathways or within each pathway. Indeed, non-human primate work 

suggests that visual pathway functional connectivity changes across early development in 

a hierarchical, caudal-to-rostral manner (Kovacs-Blaint et al., 2018). Here, researchers 

longitudinally examined the development of the dorsal and ventral visual pathways from 

birth to 3 months in rhesus macaques. Within a given visual pathway, they found evidence 

of strong functional connectivity in caudal visual regions and poorer functional 

connectivity in rostral regions.  

In the present study, I use graph theory to characterize developmental changes in 

human visual functional connectivity across childhood, both within and between the dorsal 

and ventral visual pathways. I first verified that the underlying functional connectivity 

mirrors the known structural and topological organization of cortical regions (e.g., Wang 
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et al., 2015). I then tested whether between pathway functional integration would develops 

more slowly relative to within pathway integration.  

2.3 Methods 

2.3.1 Participants 

Seventy-eight 4- to 12-year-old children (M = 7.17, SD = 2.37, 37 female) 

completed a neuroimaging battery including T1-weighted anatomical and resting-state 

scans. Data used in this study were drawn from the ongoing Brown University Assessment 

of Myelination and Behavioral development Across Maturation (BAMBAM) study of 

neurotypical brain and cognitive development. From the BAMBAM cohort, 78 children 

between 4 and 12 years of age were selected for inclusion in this study. Only children with 

known major risk factors for developmental abnormalities at enrollment were excluded. 

These included: in utero alcohol, cigarette or illicit substance exposure; Preterm (<37wks 

gestation) birth; small for gestational age or less than 1500g; fetal ultrasound abnormalities; 

preeclampsia, high blood pressure, or gestational diabetes; 5-minute APGAR scores <8; 

NICU admission; neurological disorder (e.g., seizure disorder); and psychiatric or learning 

disorder, parents or siblings (including maternal depression requiring medication in the 

year prior to pregnancy).  

2.3.2 Data Acquisition and Preprocessing 

Neuroimaging data were acquired on a 3T Siemens Trio scanner with a 12-channel 

head RF array. T1-weighted magnetization-prepared rapid acquisition gradient echo 

anatomical data were acquired with an isotropic voxel volume of 1.2x1.2x1.2mm3, 

resampled to 0.9 x 0.9 x 0.9mm3 Sequence specific parameters were: TE=6.9ms; 
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TR=16ms; inversion preparation time=950ms; flip angle=15 degrees; BW=450Hz/Pixel. 

The acquisition matrix and field of view were varied according to child head size in order 

to maintain a constant voxel volume and spatial resolution across all ages (Dean et al., 

2014).  

Resting-state functional MRI (rsFMRI) data were acquired with eyes open and the 

following parameters: TE=34ms, TR=2.5s, flip angle=80 degrees, field of 

view=24x24cm2, imaging matrix=80x80, and 32 interleaved 3.6mm slices (for a voxel 

resolution: 3x3x3.6mm3). BW=751Hz/pixel, and GRAPPA acceleration factor of 2. I 

acquired approximately 164 volumes for a total acquisition time of about 7 minutes.   

T1-weighted magnetization-prepared rapid acquisition gradient echo anatomical 

data were acquired with an isotropic voxel volume of 1.2x1.2x1.2mm3, resampled to 0.9 x 

0,9 x 0.9mm3 Sequence specific parameters were: TE=6.9ms; TR=16ms; inversion 

preparation time=950ms; flip angle=15 degrees; BW=450Hz/Pixel. The acquisition matrix 

and field of view were varied according to child head size in order to maintain a constant 

voxel volume and spatial resolution across all ages (Dean et al., 2014). Using a multistep 

registration procedure (O’Muircheartaigh et al., 2014), a series of study- and age-specific 

anatomical T1-weighted templates were created corresponding to 48, 60, 72, 84, 96, 108 

month ages. At least 10 boys and 10 girls were included in each template. An overall study 

template was then created from these age templates, which was aligned to the MNI152 

template (Lancaster et al., 2007). Each child’s anatomical T1-weighted image was 

transformed into MNI space by first aligning to their age-appropriate template and then 

applying the pre-computed transformation to MNI space, with the calculated individual 

forward and reverse transformations saved and used for the volumetric analysis described 
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below. All template creation and image alignment was performed using a 3D nonlinear 

approach (ANTS; Avants et al., 2014) with cross-correlation and mutual information cost 

functions.  rsFMRI data were first registered to individuals T1 anatomical  images using 

FSL FLIRT  (S. M. Smith et al., 2004) and ANTS (Avants et al., 2014). 

2.3.2.1 Nuisance regression and motion censoring. I used the CONN-fMRI 

toolbox for SPM 12 (Whitfield-Gabrieli & Nieto-Castanon, 2012) in MATLAB to denoise 

rsFMRI data. Using the implemented CompCor strategy (Behzadi, Restom, Liau, & Liu, 

2007), the effect of nuisance covariates including BOLD signal fluctuations from CSF, 

white matter and their derivatives. Following previously established methods 

(Satterthwaite et al., 2013; Yan et al., 2013), I include 24-movement parameters derived 

from individual subject realignment (i.e., x, y, z, roll, pitch, yaw, derivatives,  quadradic 

expansion). I also included global signal regression, including the derivative, and 

simultaneous band-pass filtering (0.008<f<0.09HZ). Finally, I  censored (“scrubbed”) 

volumes if there was significant motion during data acquisition (i.e., DVARS > 5  or FD 

were > .5)  (Power et al., 2014). 

2.3.3 Resting-State Functional Connectivity Processing 

For each child, using CONN-fMRI toolbox (Whitfield-Gabrieli & Nieto-Castanon, 

2012), I calculated Fisher-transformed bivariate correlation matrices for pairwise 

correlations of  spontaneous BOLD activity between each region of interest (see below). 

When reported, individual matrices were thresholded at multiple network densities (1% - 

25%, 1% steps) using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010).   

2.3.3.1 Visual network parcellation (Regions of Interest, ROI). I chose an adult-

derived probabilistic atlas of topography (Wang et al., 2015). This adult atlas was first 
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transformed to our child atlas using FSL FLIRT and FNIRT (S. M. Smith et al., 2004). I 

included right (R) and left (L) lateralized regions separately. I included bilateral dorsal-

lateral and ventral-temporal regions only. Throughout I refer to TO1 as human middle-

temporal complex (hMT) (Amano, Wandell, & Dumoulin, 2009) . Unfortunately,  due to 

the initially small size of region temporal-occipital 2 (TO2), I decided against including 

this region because of interpolation restraints. This resulted in a total of 32 ROIs. These 

include 8 dorsal-lateral regions, bilaterally: V1 dorsal (V1d), V2d, V3d, V3a, V3b, lateral-

occipital 1 (LO1), LO2, and hMT; and ventral-temporal regions, bilaterally: V1 ventral 

(V1v), V2v, V3v, human V4 (hV4), ventral-occipital 1 (VO1), VO2, parahippocampal 

cortex 1 (PHC1), PHC2. 

2.3.3.2 Graph theory metrics. I used the Brain Connectivity Toolbox (BCT) to 

derive network metrics. I choose metrics to support our goals of describing the visual 

network functional architecture (i.e., modularity) across childhood and examining network 

integration (i.e., participation coefficient).  

2.3.3.2.1 Network partitioning and modularity. I used Newman’s Q-algorithm 

(Newman, 2006) in the BCT to determine visual network structure and modularity of the 

mean connectivity across all children (group-mean connectivity). I used a representative 

10% network density thresholded graph in order to maintain graph connectedness while 

examining only the strongest connections between ROIs. The Q-algorithm algorithm takes 

a thresholded network connectivity matrix and assigns each node (i.e., ROIs) to a 

subnetwork with the goal of maximizing the number of Within-Network connections and 

minimized the number of Between-Network connections. This results in a modularity 

metric (Q), which represents the degree to which the network can be divided into clearly 
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defined subnetworks. I use this group-mean derived network structure as our representative 

functional architecture for network integration analyses. Throughout I refer to these 

subnetworks as visual networks. 

 2.3.3.2.2 Participation coefficient. A node’s Participation Coefficient (PC) 

represents the degree to which it is connected to regions in other networks. PC ranges from 

0 – representing only Within-network connections, to 1 – representing a wide distribution 

of connections with Between-networks (Guimerà & Amaral, 2005). As described below, I 

examine the mean PC collapsed across nodes within each network to understand the 

development of visual network integration. 

 2.3.3.2.3 Network degree. A node’s Degree (D) is simply the number of edges it 

shares with other nodes. I distinguish between the of Within-Network and Between-

Network Degree (number of connections) for each network. The network-level Within- 

and Between-Network Degree is the mean Degree across all nodes within a given 

network. 

2.4 Results 

2.4.1 Network Architecture  

I characterized network architecture using the mean functional connectivity matrix 

across all children. I divided the visual striate and extrastriate cortex into networks of 

densely connected nodes across a range of network densities (1% to 25%, 1% steps) using 

Newman’s Q-algorithm (Newman, 2006) in the Brain Connectivity Toolbox (Rubinov & 

Sporns, 2010). To delineate a representative network, I chose a network density of 10% to 

maintain a connected network.  



 16 

I detected six networks with an overall visual cortical modularity of Q = .5546. The 

first sub-network, which I labeled ‘Early Visual,’  comprised bilateral dorsal and ventral 

subdivisions of area V1 (i.e., R V1d, L V1d, R V1v, L V1v). The second sub-network, 

labeled ‘R Dorsal,’ comprised right lateralized dorsal visual pathway regions (i.e., R V2d, 

R V3d, R V3A, R V3B, R LO1, R LO2, R hMT). Similarly, the third network, labeled ‘L 

Dorsal,’ comprised left lateralized dorsal pathway regions (i.e., L V2d, L V3d, L V3A, L 

V3B, L LO1, L LO2, L hMT). The fourth network, labeled ‘R Ventral,’ comprised right 

lateralized ventral pathway regions (i.e., R V2V, R V3v, R hV4, R VO1, R VO2, R PHC1, 

R PHC2). The fifth network, labeled ‘L Ventral,’ comprised left lateralized ventral pathway 

regions (i.e., L V2V, L V3v, L hV4, L VO1, L VO2, L PHC1, L PHC2).  

Figure 1 shows functional connectivity between each network node. Here, I plot 

the group mean connectivity matrix across all children for the representative network (10% 

Figure 1. Graphical depictions of representative visual network architecture. A) Group mean graph (10% 
density). Nodes and edges are plotted in a hierarchical manner, with Early Visual regions confined to the 
source layer of this hierarchy. The hierarchy then proceeds leftward. Each node color represents a different 
network, which are then highlighted by matching colored shapes. B) Group mean functional connectivity. 
Values are Fisher transformed correlation coefficients averaged across all children. 
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network density), with Early Visual regions confined to the first (‘Source’) layer (e.g., 

Gansner, Koutsofios, North, & Vo, 1993). Layered graphs reveal the inherent hierarchical 

nature of the nodes within the graph. Edge lengths were drawn to minimize ‘edge crossing’ 

and aid visualization. From this depiction it becomes clear that, during childhood, both 

dorsal and ventral pathway regions are nested within Early Visual regions. This 

hierarchical relationship of the functional architecture reflects the known hierarchical 

structural relationship of the visual cortical system (Van Essen & Maunsell, 1983; Wang 

et al., 2015). 

2.4.2 Network Integration 

 I next examined whether and how these visual networks are integrated with one 

another across childhood. I use the graph theory metric Participation Coefficient (PC) 

which measures how connections (i.e., edges) for a given node are distributed across 

networks. PC ranges from  0 – representing only Within-network connections, to 1 – 

representing a wide distribution of connections Between-networks (Guimerà & Amaral, 

2005). To reduce bias introduced by selecting a network density (and therefore connectivity 

strength) I calculated the mean PC for each brain region across multiple network densities 

(1% - 25%, 1% steps). I then averaged across brain regions within each network to obtain 

a mean PC for each visual network as previously determined from the mean connectivity 

matrix across all children. Additionally, in each analysis I control for subject-level motion 

using individual’s mean Framewise Displacement (mean FD). 

To characterize the developmental trajectories of network integration, I fit linear, 

inverse, and quadratic Age models using a curve estimation approach to linear regression 

on the mean PC for each network. For each model I included children’s mean FD as a 
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covariate. The quadratic model included both linear Age and quadradic Age terms. I 

determined the best model fit by choosing the model with the lowest AIC. For the Early 

Visual, L Dorsal, and R Ventral Networks all models were non-significant (all p’s > .08). 

For the L Ventral network, the best model was the Ageinverse model (R2 = .08, p = .051). 

However, when controlling for FD, the Ageinverse effect was not significant, t(75) = -1.32, p 

Figure 2. R Dorsal network integration changes across childhood. A) R Dorsal network 
Participant Coefficient changes quadratically across childhood. B)  R Dorsal – Early Visual 
Degree changes quadratically across childhood. C) R Doral – R Ventral Degree changes 
quadratically across childhood. D) The mean R Doral – R Ventral Degree and the mean R Dorsal 
– Early Visual Degree are positively correlated with R Dorsal network Participation Coefficient. 
Unstandardized Residuals represent the given dependent measure when controlling for subject 
motion.  
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= .189. These data indicate that there is not significant developmental change in Early 

Visual, Ventral and L Dorsal function network integration across childhood. 

For the R Dorsal network, the best model was the Agequadratic model (R2 = .13, p = 

.017). There was no effect of mean FD per subject, t(76) = -1.39, p = .17. When controlling 

for subject motion, I found that both the Agelinear t(75) = -3.04, p = .003, and the Agequadratic 

term, t(75) = 3.08, p = .003, were significant. Figure 2A shows that R Dorsal network 

integration decreases from early to middle childhood and then increases into late childhood.   

These findings demonstrate that R Dorsal Network integration with other networks 

changes across childhood. However, it remains unclear whether these developmental 

changes in network integration reflect integration between the R Dorsal network and 1) the 

Ventral pathways as I hypothesized, 2)  the contralateral Dorsal network, or 3) the Early 

Visual network.  

2.4.3 Network Degree 

Recall that PC reflects the distribution of Between-Network connections. From a 

graph theory perspective, Degree represents the number of edges connected to a given 

node. I further characterize the developmental trajectories of R Dorsal network integration 

by examining mean Degree across multiple network densities (1% to 25%, 1% steps) for 

Within-Network and Between-Network interactions. Here I focus on age-related changes 

in network degree between both the R Dorsal and every other network. Network Degree 

was non-normally distributed for some network interactions, so I added a constant of 1 (to 

allow a log transformation of zero) to all Degree measures and then log transformed this 

measure. 
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I first examine developmental changes in R Dorsal Within-Network Degree. 

Controlling for subject motion (mean FD), I tested for both Agelinear and Agequadradic changes 

in log R Dorsal Within-Network Degree. I found that R Dorsal Within-Network Degree 

did not change with age above and beyond individual differences in FD (all p’s > .8). This 

finding demonstrates that the average number of connections within the R Dorsal network 

may remain stable across middle childhood.  

I next examined whether R Dorsal Between-Network Degree changes across 

childhood. For each network, controlling for subject motion (mean FD), I tested for both 

Agelinear and Agequadradic changes in the log R Dorsal Between-Network Degree. Neither R 

Dorsal – L Dorsal nor R Dorsal – L Ventral  Between-Network Degree changed with age 

(all p’s > .3). However, R Dorsal – R Ventral Between-Network Degree also changed 

quadratically  (r(74) = .275, p = .016), but not linearly (r(74) = -.197, p = .363) with age 

(Figure 4B). R Dorsal – Early Visual Between-Network Degree changed quadratically (r(74) 

= .232, p = .043), but not linearly (r(74) = -.055, p = .634) across age (Figure 4B). These 

findings demonstrate that the number of connections between R Dorsal and R Ventral 

Network, and between R Dorsal and Early Visual Networks decreases from early to middle 

childhood, but then increases from middle to late childhood. Figure 4B and 4C show that 

the number of connections between the R Dorsal, and the R Ventral and Early Visual 

Networks changes across middle childhood.  

Together these findings suggest that developmental changes in R Dorsal network 

integration (i.e., Participation Coefficient, Figure 4A) may be reflected in changes in R 

Dorsal Between-Network Degree across middle childhood (Figure 4B and 4C). I therefore 

regressed both R Dorsal – Early Visual, R Dorsal – R Ventral Degree, Agelinear, Agequadradic,  
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and mean FD on R Dorsal Network Integration (R2 = .724, p < .0001). I found that, when 

controlling for mean FD and Age-related changes in R Dorsal Network integration, both R 

Dorsal – Early Visual Network Degree (rpart= .341, p < .0001) and R Dorsal – Ventral 

Network Degree (rpart= .518, p < .0001) were positively correlated with R Dorsal Network 

Integration. Figure 4D shows the that the positive relation between R Dorsal Network 

integration and the number of connections between the R Dorsal Network and the R 

Ventral and Early Visual Networks.  

2.5 Discussion 

The current study examined developmental changes in dorsal and ventral visual 

pathway integration across childhood. I first characterized the functional architecture of 

striate and extrastriate networks during childhood. Based on the group-mean functional 

connectivity matrix (10% density), I found 5 networks including early (primary) visual 

regions as well as the dorsal and ventral visual pathways that were consistent with the 

known topographical and hierarchical organization of the visual cortex (Wang et al., 2015). 

I next characterized the developmental trajectories of network integration for each visual 

network. I found that only R Dorsal network integration changes across childhood, with 

decreases from early to middle childhood and increases from middle to late childhood 

(Figure 2). This R Dorsal network integration was driven by a change across childhood in 

the number of connections with the R Ventral pathway and Early Visual regions.  

Our group-level characterization of network functional architecture shows that 

extrastriate cortex was divided into lateralized dorsal and ventral visual pathway networks 

(Figure 1). On average, interhemispheric connectivity within each visual pathway is 

weaker than connectivity within a hemisphere. The earliest visual processing regions 
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(striate cortex, V1) across the dorsal and ventral pathways were functionally integrated 

across middle childhood, suggesting at the earliest stage of the hierarchy, dorsal and ventral 

visual pathways are functionally integrated. One could predict that, given our data, from 

childhood to adolescence, perhaps, V2/V3 would become functionally integrated, possibly 

integrated into the V1 network. Conversely, one could also predict that from infancy to 

childhood the earliest levels of the functional hierarchy are functionally segregated. This 

developmental trend would be in line with Kovacs-Blaint and colleagues whom examined 

the development of connections between successive hierarchical stages within a visual 

pathway, and found that functional connectivity changed across early development in a 

hierarchic, caudal-rostral gradient.  

Across childhood, developmental changes in functional connectivity between the 

dorsal and ventral visual pathways may support integration of visual features coded in these 

distinct pathways. Our principle hypothesis was that functional integration between the 

dorsal and ventral visual pathways would change across childhood. I found that R Dorsal 

network integration first decreased from early- to middle-childhood, but then increased 

from middle- to late-childhood. This change in network integration was reflected in 

changes in the number of connections between the R Dorsal and both the R Ventral 

pathway and Early Visual regions. These data indicate that integration between the dorsal 

and ventral visual pathways continues to develop throughout childhood.  

 Feature Integration Theory argues that visual attention to a visual field location 

binds the visual features of the object at that location.  Across childhood, developmental 

improvement in behavioral color-motion feature integration is protracted relative to 

luminance-motion feature integration (Lynn et al., 2020).  When considering the 
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hierarchical, parallel structure of the striate and extrastriate cortices, it follows that 

developmental change in functional connectivity between the dorsal and ventral visual 

pathways (e.g., motion and color) may follow a different developmental trajectory relative 

to functional connectivity within a visual pathway (i.e., ventral). Indeed, adult non-human 

primate work has shown that, attention modulates neural synchronization between V4 and 

the V1 (Bosman et al., 2012), as well as motion processing in hMT (Treue & Maunsell, 

1996; Treue & Trujillo, 1999). Future work will examine the possibility that the observed 

developmental changes in dorsal-ventral visual pathway functional integration may 

support feature integration within these distinct pathways.  
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Chapter 3 

3. What Underlies Visual Selective Attention Development? Evidence that Age-

related Improvements in Visual Feature Integration Influence Visual Selective 

Attention Performance 

3.1 Abstract 

Visual selective attention (VSA) improves across childhood. Conjunction search 

tasks require integrating multiple visual features in order to find a target among distractors 

and are often used to measure VSA. Motivated by the visual system’s architecture and 

developmental changes in neural connectivity, I predicted that feature integration across 

separate visual pathways (e.g., color and motion) should develop later than feature 

integration within the same visual pathways (e.g., luminance and motion). Eighty-nine 4- 

to 10-year-old children completed a visual search task that manipulated whether feature 

integration was between separate, parallel visual pathways or within the same visual 

pathway. I first examined whether color-motion integration was associated with a 

performance cost relative to luminance-motion integration across childhood. I found that 

color-motion integration was worse than luminance-motion integration in early childhood, 

but that this difference decreased with age. I also examined whether luminance-motion and 

color-motion and visual search performance developed differently across childhood. 

Reaction time (RT) visual search slopes for the luminance-motion condition were both 

stable across childhood and overall steeper than the color-motion condition. In contrast, 

RT search slopes for the color-motion condition became steeper across childhood. Finally, 



 25 

I found that age-related improvements in color-motion integration, relative to luminance-

motion integration, was associated with longer color-motion search rates across childhood. 

These data suggest that age-related improvements in color-motion feature integration may 

increase competition between color-motion targets and distractors, thereby increasing the 

amount of time needed to process distractors as non-targets during the selection process. 

3.2 Introduction 

Visual selective attention (VSA), in which certain visual objects or locations are 

selected in the presence of competing others (Desimone & Duncan, 1995; Treisman & 

Gelade, 1980), typically improves during childhood, through adolescence, and peaks in 

early adulthood (e.g., Hommel, Li, & Li, 2004; Trick & Enns, 1998). VSA has been found 

to be a critical component of effective learning and memory in both infants (Markant, 

Ackerman, Nussenbaum, & Amso, 2016; Markant & Amso, 2013) and children (Markant 

& Amso, 2014). Yet, the mechanisms underlying the development of this key process are 

not well understood. Here, I ask whether age-related changes in visual feature integration 

shape VSA. 

Visual search tasks, often used to study VSA, require participants to search for a 

target among competing distractors (e.g., Treisman & Gelade, 1980). Targets and 

distractors vary along one or more visual feature dimensions (e.g., color, orientation). 

During a “conjunction search,” a target defined by two or more visual features (e.g., a red 

bar oriented at 60°) is presented among distractors that share one value along one feature 

dimension, but differ in value along a second feature dimension (e.g., red bars oriented at 

90° and green bars oriented at 60°). Thus, participants must integrate multiple visual 

features as they search amongst targets and distractors. Typically, the response time to find 
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conjunction targets increases linearly as distractor number increases (RT slope), reflecting 

attentional engagement and visual search rate (e.g., Treisman & Gelade, 1980; Wolfe, 

1994). 

Developmental studies of VSA that employ visual search tasks reveal general 

improvements in processing speed, but also nuances in VSA as a function of task demands  

(Lobaugh et al., 1998; Trick & Enns, 1998). Beginning in infancy and toddlerhood, 

conjunction visual search performance shows patterns consistent with adult patterns in 

corresponding visual search tasks, but children’s search rates (RT slope) become faster 

across toddlerhood (Gerhardstein & Rovee-Collier, 2002). Similarly, studies have found 

that, while conjunction search rate for color-defined oriented bars was slower in children 

relative to adults, search rates became faster from middle (7 years) to late childhood (10 

years) (Donnelly et al., 2007). Similarly, conjunction search rate for a luminance-defined 

shape (e.g., black circle) was slower in middle childhood relative to late childhood which 

was slower than in adulthood (Merrill & Lookadoo, 2004). However, search rates became 

adult-like by late childhood when researchers varied the amount of distractor competition 

by holding one distractor type constant (e.g., black square) while increasing only the 

second distractor type (e.g., grey circle). Here I asked whether developmental 

improvements in feature integration are an agent of change in conjunction visual search 

performance from early, across middle, and into late childhood (4-10 years).  

Given that conjunction visual search requires integrating multiple visual features, 

it is important to consider that visual features are processed in a distributed set of 

hierarchically organized, parallel neural pathways  (e.g., Felleman & Van Essen, 1991; 

Ungerleider & Haxby, 1994; S. M. Zeki, 1978a). While some visual features are processed 
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in relatively distinct pathways, others are processes within the same pathway. For example, 

color and motion information are processed in relatively distinct, but overlapping layers in 

cortical areas V1 and V2  and then routed to separate higher-level extrastriate cortical areas 

V4 and MT, respectively (Gegenfurtner, 2003; Seymour, Clifford, Logothetis, & Bartels, 

2009; Shipp & Zeki, 1995; Sincich & Horton, 2005). However, luminance information 

proceeds with motion information along the visual hierarchy from V1, through V2, to MT. 

Thus, feature integration may occur across separate visual pathways (e.g., color and 

motion) or within the same visual pathway (e.g., luminance and motion). In this example, 

both across and within pathway feature integration requires motion processing. However, 

here I ask whether, relative to within pathway integration, across pathway integration may 

incur additional processing costs because color is processed in the ventral stream, while 

with motion is processed in the dorsal stream. 

Feature integration relies on efficient connectivity between visual processing 

regions (e.g., Festa et al., 2005). While feature integration within a visual pathway likely 

relies on short, local connections within each region of the visual hierarchy, feature 

integration across visual pathways, in addition, likely relies on more distant, distributed 

connections between visual processing regions. Coincidentally, connectivity exhibits 

dynamic changes, from short- to long-range, across child development (Cao, Huang, & He, 

2017; Fair et al., 2007, 2009; Supekar et al., 2009; Uddin, Supekar, & Menon, 2010), 

providing a unique opportunity to examine distinct feature integration across the visual 

cortical hierarchy. Together this suggests that, earlier in childhood, integrating features 

processed in separate pathways (e.g., color and motion) may come with an additional 

processing cost relative to integrating features processed within the same visual pathway 
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(e.g., luminance and motion). Put another way, the additional processing cost of integrating 

features across visual pathways may decrease across childhood. Within the same child, an 

additional cost for color-motion integration, relative to luminance-motion integration, 

should differentially impact conjunction visual search performance depending on the visual 

features that define the targets and distractors. This result would strongly suggest that 

developing visual function is an agent of change in VSA development (Amso & Scerif, 

2015). In order to isolate the change in color-motion feature integration relative to global 

improvements in information processing, I examine color-motion feature integration 

performance in relation to luminance-motion feature integration.  

 In the current study, 4- to 10-year-old children performed a visual search task. In 

two conditions, children were asked to search for a moving target that varied by either color 

or by luminance, placing more or less demand on feature integration across the visual 

pathways. In both Feature conditions, targets are presented with no distractors, or with 2 

or 4 distractors. In the absence of distractors, performance reflects baseline feature 

integration abilities. In the presence of distractors, performance reflects visual selective 

attention abilities; specifically, the change in performance with an increase in distractor 

number (i.e., search slope). I first predicted that color-motion integration would be 

associated with a performance cost, relative to luminance-motion integration, and that this 

cost would decrease with age as color-motion integration improves from early to middle 

childhood. I next predicted that, across early to middle childhood, VSA for color-motion 

would change more than VSA for luminance-motion. Finally, I predicted that individual 

differences in developing feature integration may be associated with developmental 

changes in VSA. Specifically, developmental improvements in feature integration should 
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be associated with steeper visual search slopes, and this should be more evident for the 

color-motion than luminance-motion visual search conditions. As children become better 

at integrating color and motion, sensitivity to the conjunction of features that define 

competing distractors should increase. This would result in a greater amount of time needed 

to resolve visual competition during target selection.  

3.3 Methods 

3.3.1 Participants 

Eighty-nine 4- to 10-year-old children (Overall: M = 7.17, SD = 1.82, Range = 4.14 

– 10.75, 39 female; Female: M = 7.44, SD = 1.99, Range = 4.14 – 10.75; Male: M = 6.96, 

SD = 1.66, Range = 4.18 – 10.26) comprised the final sample. Children were normally 

distributed across age (Skewness Z = 0.62). An additional 12 children were tested, but 

excluded due to non-compliance (n = 4), experimenter or technical error (n = 3), or color 

blindness (n = 5). I removed 5 children as multivariate outliers and 4 children as univariate 

outliers, and 10 children that did not contribute data for selective attention trials (e.g., no 

correct Set Size 3 or 5 trials, see below). Children and their parents were recruited through 

advertisements and were all local community members. Children provided assent and 

adults provided consent in accordance with the University IRB. Families were 

compensated 15 US dollars for their time. 

Children’s race make-up included 78% White, 7% Multi-racial, 8% Black/African-

American, 6% “Other”, and 2% declined to answer. Ethnicity make-up included 84% non-

Hispanic, 14% Hispanic, and 2% declined to answer. Participants’ average IQ, as 

determined by the Woodcock-Johnson Brief Intelligence Assessment (Woodcock, 
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McGrew, & Mather, 2007), was M= 109.53, SD= 16.08 points. One child did not complete 

IQ testing. 

 3.3.2 Stimuli & Apparatus 

Stimuli consisted of red, green, white, and black circles (approximately 1.25° in 

diameter) that moved either vertically or horizontally in phase synchrony. Circles oscillated 

approximately 1.25° in either direction around their initial starting point at a speed of 

approximately 3° s-1. Using a ColorCal MKII colorimeter (Cambridge Research Systems), 

I measured the luminance (Y) and Commission Internationale de l’Eclairage (CIE) 

coordinates (x, y) of the stimuli. Luminance-matched red (Y = 19 cd/m2; x = 0.60; y = 

0.34) and green circles (Y = 19 cd/m2; x = 0.32, y = 0.51) appeared on a black background 

(Y = 0.25 cd/m2; x = 0.26; y = 0.26). Chromaticity-matched black (Y = 0.25 cd/m2; x = 

0.26; y = 0.26) and white circles (Y = 185 cd/m2; x = 0.33; y = 0.32) appeared on a gray 

background (Y = 16.10 cd/m2; x = 0.314; y = 0.342). Circles were presented in one of six 

concentric locations equidistant from the screen center (approximately 6°), where an 

orange cartoon clown fish (“Nemo”) served as a fixation point. Children were allowed to 

move their eyes freely throughout the trials. Within a given trial, children saw a search 

display (Figure 1) for up to 3500ms. If a response was recorded, the search display was 

removed. Following each search display, a cartoon fish was presented for 1000ms, to direct 

children’s attention to the center of the screen. 

3.3.3 Procedure 

Children were first screened for color blindness using the Ishihara tests for color-

deficiency. All children in the final sample passed these tests and showed no evidence of 
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color blindness. Prior to the trials of interest, children were also asked to point to, or 

verbally discriminate between, red and green, and black and white circles, as well as 

vertical (or ‘jumping’) and horizontal (or ‘sideways’) motion. Children were instructed to 

“press the button as quickly as you can”, once they found the target on target-present trials, 

and were instructed to “not press the button” on target-absent trials. Next, children 

completed two practice trials to ensure they understood the instructions. This procedure 

was repeated if children failed to correctly indicate a color or motion direction, or if they 

incorrectly responded to either practice trial. Children were then asked to verbally indicate 

the target stimulus identity (“a jumping red/black circle”) to the experimenter.  Children 

then searched for a vertically moving target circle among distractor circles. Across two 

Feature conditions, I manipulated which visual feature required integration with motion. 

In the luminance-motion Feature condition, the target was a vertically moving black circle, 

and distractors were vertically moving white circles and horizontally moving black circles. 

In the color-motion Feature condition, the target was a vertically moving red circle, and 

distractors were vertically moving green circles and horizontally moving red circles. Thus, 

children were required to integrate motion with either luminance or color information. I 

also manipulated the number of stimuli presented within each Feature condition. Across 

three Set Size conditions, stimuli were presented in sets of 1, 3 or 5. Target circles were 

present in 50% of trials and absent in 50% of trials. Target locations was randomly selected. 

Feature conditions (luminance-motion and color-motion) were blocked and 

counterbalanced. Set Size conditions (1, 3, 5) were pseudorandomly ordered. In total, 

children completed 96 trials, 48 for each Feature condition (luminance-motion and color-

motion) and 16 (8 target-present, 8 target-absent) for each Set Size within each Feature 
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condition. Each child was offered a short break every 24 trials. Figure 1 illustrates sample 

search displays for each Feature, Set Size and Trial Type (target-present, target-absent).  

3.3.4 Dependent Measures 

For each Feature and Set Size condition, I recorded RTs on target-present trials 

and calculated target detection sensitivity (d’) across target-present and target-absent 

trials. Initial data inspections revealed that accuracy was at ceiling in many cases, across 

many conditions. Thus, I applied a log-linear correction to the calculation of d’ (Hautus, 

1995; Stanislaw & Todorov, 1999). Briefly, .5 was added to both Hit Rates and False 

Alarm Rates and 1 was added to both the number of target present and target absent 

Figure 1. Illustrations of search displays for Feature and Set Size conditions for both Target-
Present and Target-Absent trials. The left-most columns depict target-present and target-
absent color-motion integration trials. The right-most columns depict target-present and 
target-absent luminance-motion integration trials. Rows depict Set Size trials, within an 
increase in distractors from top to bottom. The top row depicts Feature Integration trials. 
The bottom two rows depict Visual Selective Attention trials. Target stimuli are highlighted 
by a dotted yellow circle. White arrows were not presented to participants, but instead 
represent motion direction. Distractors could differ from the target in either color or 
luminance, but share vertical motion. Or, distractors could differ in motion direction, but 
share either color or luminance value. Each display was presented until the child responded 
(up to 3500 ms) and was followed by a fixation display (1000 ms).  
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trials. I then calculated d’ by subtracting the normalized False Alarm Rate from the 

normalized Hit Rate. 

3.3.4.1 Feature Integration Performance. I define feature integration as the 

detection sensitivity for a target defined by multiple visual features (e.g., Treisman, 

1998), without spatially competing distractors. Children were instructed to press a button 

when they found the target stimulus. Targets were either present (e.g., vertically moving 

red circle) or absent (e.g., horizontally moving red circle or vertically moving green 

circle). I generated a target detection sensitivity (d’) value for each Feature condition, 

when targets were presented without distractors (Set Size 1).  

I also created a Feature Integration Index to measure the added cost of integrating 

color and motion features relative to luminance and motion features. To do this, I 

subtracted each participant’s luminance-motion from color-motion integration 

performance value. A larger negative Feature Integration Index reflects greater 

performance cost for color-motion relative to luminance-motion feature integration, while 

a positive reflects greater performance cost for luminance-motion relative to color-motion 

feature integration. A value of zero thus reflects no performance cost for either color-

motion and luminance-motion feature integration. Since this index was significantly 

skewed (Z = -2.95), I rank this measure to reduce skewness (Z = -0.65).  

3.3.4.2 Visual Selective Attention Performance. I measure visual selective attention (VSA) 

performance as the change in children’s performance as a function of distractor number (i.e., search 

slope). I thus calculated the performance slope for both reaction time (RT) and target detection 

sensitivity (d’) as the ratio of change in performance across Set Size over the change in Set Size. I 

then control for age-related differences in manual dexterity across our wide age range by dividing this 
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performance slope value by performance on Set Size 1 trials. This estimates the visual search rate 

(e.g., RT slope) proportional to each individual child’s baseline performance. Thus, larger RT search 

slope values reflect slower visual search rates, while smaller RT search slope values reflect faster 

visual search rates. In contrast, smaller d’ search slope values reflect greater influence of distractors 

on accuracy, while larger d’ search slope values reflect smaller influence of distractors on accuracy. 

3.4 Results 

3.4.1 Feature Integration Performance 

Following the removal of outliers, additional outliers were revealed and Feature 

Integration measures remained skewed (color-motion d’: Z = -7.79, luminance-motion d’: 

Z = -8.69, color-motion RT: Z = 3.90, luminance-motion RT: Z = 5.55). To reduce the 

potential influence of outliers and skewness I first collapsed across Feature conditions and 

then rank-transformed each Feature Integration measure, resulting in less skewed 

distributions (color-motion d’: Z = -2.39, luminance-motion d’: Z = -3.54, color-motion 

RT: Z = -0.11, luminance-motion RT: Z = 0.10). 

I predicted that color-motion Feature Integration would be associated with a 

performance cost, relative to luminance-motion integration, and that this cost would 

decrease with age as color-motion integration improves from early to middle childhood. 

To test this prediction, I submitted both Feature Integration performance measures  (Set 

Size 1 ranked RT for correct target-present trials only and Set Size 1 ranked target detection 

sensitivity) to separate repeated measures ANCOVAs with Feature condition (color-

motion, luminance-motion) as a within-subjects variable and Age (in years) as a continuous 

variable. See Table 1 for dependent variable descriptive statistics, collapsed across age. 
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For correct target-present RTs, I only found a main effect of Age, F(1,87)=57.073, 

p < .001, partial eta = .396, all other p’s > .865. I thus submitted the unranked (raw) mean 

RTs, collapsed across Feature conditions, to Spearman’s ranked correlations and found that 

that RTs decreased with age rs(89) = -.608, p < .001. This indicates that children become 

faster to correctly detect a target across childhood.  

For d’, there was a main effect of Feature condition, F(1,87) = 9.454, p = .003, 

partial eta = .098, where color-motion integration was worse than luminance-motion 

integration (Table 1). There was also a main effect of Age, F(1,87) = 27.112, p < .000, 

partial eta = .238, where overall target detection sensitivity improved across early to middle 

childhood, rs(89) = .564, p < .001. As predicted, there was additionally an Age by Feature 

condition interaction, F(1,87) = 6.362, p = .013, partial eta = .068. To understand the 

interaction, I submitted raw (unranked) d’ measures to Spearman’s ranked correlations and 

found that, while both Feature conditions show age-related improvement, Age was 

correlated with color-motion integration, rs(89) = .529, p < .001, to a greater extent than 

luminance-motion integration, rs(89) = .255, p = .016. 
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Figure 2 shows that color-motion integration is worse than luminance-motion 

integration in early childhood, but feature integration becomes equivalent by middle 

childhood. This finding is consistent with our prediction that color-motion feature 

integration would be associated with a performance cost relative to luminance-motion 

integration. However, the added cost of binding color and motion across visual pathways 

decreases across childhood. In other words, color-motion integration, relative to luminace-

motion integraiton improves across childhood. 

3.4.2 Visual Selective Attention Performance 

3.4.2.1 Age-related changes. I predicted that, across childhood, visual search 

performance for color-motion targets would change more than search for luminance-

motion target. To test this prediction, I submitted baseline-corrected search slopes for each 

Figure 2. Age-related changes in Feature Integration 
accuracy, as measured by target detection sensitivity (d’) for 
Set Size 1 trials. Color-motion target detection sensitivity 
increased with Age to a greater extent than luminance-
motion target detection sensitivity.  
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dependent variable (RT and d’) in separate repeated measures ANCOVAs with Feature 

condition (luminance-motion, color-motion) as a within subject variable and Age (in years) 

as  a continuous variable. I found no effects for the baseline-corrected d’ search slopes, all 

p’s > .06.  

For baseline-corrected RT search slopes, I found a main effect of Feature condition, 

F(1,87) = 5.236, p = .025, partial eta = .057, where search rates were slower for luminance-

motion relative to color-motion conditions. There was also a main effect of Age, F(1,87) 

= 13.315, p < .001, partial eta = .133. Pearson correlations showed that, an increase in 

distractor number was associated with greater slowing for search with Age, r(89) = .364, 

p < .001. Critically, there was also an Age by Feature condition interaction, F(1,87) = 

4.917, p = .029, partial eta = .053, suggesting luminance-motion and color-motion visual 

search change with Age differently across childhood. Figure 3A shows that color-motion, 

r(89) = .432, p < .001, but not luminance-motion, r(89) = .125, p = .242, visual search 

performance changed across early to middle childhood. These data suggest, as predicted, 

that luminance-motion visual search is stable earlier than color-motion. Moreover, the 

pattern of results shows that children have steeper color-motion RT slopes with Age, 

indicating that they become more sensitive to additional distractors with Age in the color-

motion search condition only.  

3.4.2.2 Individual differences in Feature Integration. I predicted that individual 

differences in Feature Integration may influence VSA across childhood. In particular, 

stronger visual feature integration should strengthen both target and distractor processing 

and therefore increase competition with increasing distractor number. This would result in 

slower visual search as distractor number increases.  
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To test this prediction, I submitted baseline-corrected search slopes for each 

dependent variable (RT and d’) to separate repeated measures ANCOVAs with Feature 

condition (luminance-motion, color-motion) as a within subject variable and the ranked 

Feature Integration Index (i.e., difference score between Set Size 1 d’ color-motion – 

luminance-motion) as a continuous variable. See Table 1 for descriptive statistics for each 

condition. For baseline-corrected d’ search slopes, I found no significant effects, all p’s > 

.169.  

For RTs, I found a main effect of Feature condition, F(1, 87) = 5.779, p = .018, 

partial eta = .062, with slower search rates for the luminance-motion condition relative to 

the color-motion condition. There was no main effect of Feature Integration Index, p = 

.294. However, there was  a Feature condition by Feature Integration Index interaction, 

F(1, 87) = 5.800, p = .018, partial eta = .062. Figure 3B shows that when luminance-motion 

Feature Integration is better than the color-motion, luminance-motion RT visual search 

slopes are steeper. Within the same child, as color-motion Feature Integration performance 

approached luminance-motion performance, this difference in visual search RT slope 

values decreased. Thus, as color-motion Feature Integration performance approached 

luminance-motion performance, visual search RT slopes increased for the color-motion, 

rs(89) = .243, p = .022, but not for luminance-motion condition, rs(89) = -.067, p = .533 

(Figure 3B). Thus, improvements in color-motion Feature Integration, relative to 

luminance-motion, resulted in greater slowing for color-motion search.  

So far, I have shown that (1) Feature Integration performance for color-motion 

targets improves with Age (Figure 2), (2) VSA performance on color-motion trials reflects 

increased sensitivity to distractors with Age (Figure 3A), and (3) improvement in color-
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motion, relative to luminance-motion, Feature Integration is associated with greater 

sensitivity to color-motion distractors during visual search (Figure 3B). These findings 

indicate that the relationship between Age, Feature Integration, and VSA in our age-range 

is specific to the color-motion visual search condition. To directly test this claim, I 

submitted baseline-corrected RT search slopes to a repeated measures ANCOVA with 

Feature condition (luminance-motion, color-motion) as a within subject factor and the Age 

by Feature Integration Index interaction as a covariate (or continuous variable). As before, 

I found a main effect of Feature condition, F(1,86) = 7.882, p = .006, partial eta = .083, 

where search rates were slower for luminance-motion search relative to color-motion 

search. I also found a Feature condition by Age by Feature Integration interaction, F(1,86) 

Figure 3. A) Age-related changes in Visual Selective Attention Performance. Color-motion visual search rates 
slowed across childhood, but this effect is not evidence in luminance-motion visual search. B) Individual differences 
in Feature Integration predict Color-motion Visual Selective Attention Performance. Worse color-motion 
integration, relative to luminance-motion integration, is associated with slower color-motion visual search rates. 
Raw Feature Binding Index is plotted for easier interpretation. 
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= 8.475, p = .005, partial eta = .089. These results suggest that, regardless of a child’s age, 

when luminance-motion integration is better than color motion integration, luminance-

motion search rates are slower overall. In contrast, as color-motion feature integration 

comes to approximate luminance-motion feature integration with age, color-motion search 

rates become slower. When feature integration is equal, however, both search rates are 

similar and color-motion search rates slow with age. Thus, age-related changes in color-

motion integration may increase children’s sensitivity to color-motion distractors, as 

revealed by steeper visual search RT slopes.  

3.5 Discussion 

I examined whether children’s feature integration and visual selective attention 

abilities for objects in motion change with age. First, I found that, while feature integration 

improved with age, this effect was larger for color-motion integration relative to 

luminance-motion integration. This suggests that while color-motion integration was worse 

than luminance-motion integration in early childhood,  the two become equivalent by 

middle childhood. Second, while RT search slopes were, on average, steeper for the 

luminance-motion condition, slopes increased with age for the color-motion condition. 

This result revealed that while luminance-motion search performance was robust across 

childhood, older children were more influenced by additional color-motion distractors. 

Third, when luminance-motion integration was better than color-motion integration, 

luminance-motion RT search slopes were steeper, indicating that children were more 

sensitive to the addition of luminance-motion distractors that competed with the to-be 

selected target. In contrast, age-related improvements in color-motion feature integration 

were associated with steeper RT search slopes.  
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Our results add to the visual search developmental literature in two important ways.  

First, I demonstrate that, in the absence of distractors, younger children are worse at 

integrating multiple visual features relative to older children. This pattern was especially 

evident for color-motion integration relative to luminance-motion integration. Prior work 

found that, in the absence of distractors, both children and adults were slower at detecting 

a target defined by two features compared to a target defined by one feature (Trick & Enns, 

1998). Our results are consistent with the interpretation that younger children, relative to 

older children, are slower to integrate feature information during conjunction visual search. 

I add that integrating feature information across parallel visual streams may be costlier 

early in childhood relative to integrating feature information within a visual stream. 

Second, the present study examined how differences in feature integration impact 

visual selective attention. To our knowledge, ours is the first study to examine, conjunction 

visual search performance as a function of variable feature integration demands across or 

within visual pathways within the children. Previous work in adults has shown that visual 

search performance varies by visual sensitivity (Hunter, Godde, & Olk, 2018; Li, Sampson, 

& Vidyasagar, 2007). Previous work in children has shown that distractor number 

(Donnelly et al., 2007; Gerhardstein & Rovee-Collier, 2002) and top-down cues 

(Lookadoo, Yang, & Merrill, 2017; Merrill & Lookadoo, 2004) impact developmental 

visual search trajectories. Still other work has shown that basic oculomotor information 

processing and improvement in visuospatial abilities impact visual search development 

across adolescence (Burggraaf, van der Geest, Hooge, & Frens, 2019). Our work is also 

consistent with recent work showing that the ability to track a moving target among 

distractors improves across late childhood (Wolf et al., 2018). I found that, relative to the 
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color-motion visual search, children were slowed by increasing distractor set size more 

when searching for luminance-motion targets, but this effect was constant across the 4-10-

year-old age-range. In contrast, color-motion visual search became slower with additional 

distractors with age, and this slowing was associated with age-related improvements in 

color-motion feature integration. Visual search performance, thus, depends on many 

factors, which may differentially influence this ability at different times in development. 

Moreover, together these findings show that there is no single visual search developmental 

trajectory, but multiple developmental trajectories that likely interact across development. 

Future work will consider whether feature integration across and within visual pathways is 

stable by adolescence, and if so whether visual search slopes would then show a decline 

with age, perhaps reflecting general information processing mechanisms. 

These data suggest that the development of the attentional mechanisms that support 

learning and memory (Markant & Amso, 2014; Markant, Worden, & Amso, 2015; 

Werchan, Lynn, & Kirkham, 2019) may be impacted by the changes in robustness of visual 

processing across childhood (Amso & Scerif, 2015). The present study provides evidence 

that, across early to middle childhood, as the ability to integrate color and motion visual 

features improves, competition between targets and distractors may increase, thereby 

increasing the time needed to resolve this competition by processing additional distractors 

during the target selection process. Thus, developmental changes in visual feature 

integration abilities may be important for developmental changes in VSA. These findings 

have important implications for developmental work showing that learning and memory 

for features processed in separate visual pathways may follow distinct developmental 

trajectories (Lange-Küttner & Küttner, 2015), which may be related to visual processing 
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development (see, Braddick & Atkinson, 2011). Indeed, visual acuity, luminance and 

chromatic contrast sensitivity (e.g., Bradley, Arthur and Freeman, 1982; Ellemberg, Lewis, 

Hong Liu, & Maurer, 1999; Knoblauch et al., 2001), and global motion direction sensitivity 

(e.g., Ellemberg, Lewis, Maurer, Brar, & Brent, 2002; Hadad, Maurer, & Lewis, 2011) all 

improve across childhood. Moreover, some suggest that luminance thresholds necessary 

for form perception improve from middle to late childhood (Bertone, Hanck, Guy, & 

Cornish, 2010). Future work will examine the impact of visual feature processing 

development on feature integration abilities across early to middle childhood. 

Our findings also mirror those from patients with Alzheimer’s disease (AD), whose 

cortical connectivity is disrupted (see, Delbeuck, Linden, & Collette, 2003). AD patients 

exhibit greater age-related slowing for conjunction visual search when compared to healthy 

elderly adults (Foster, Behrmann, & Stuss, 1999). AD patients are better at detecting global 

motion that requires feature integration within one visual pathway relative to feature 

integration between distinct, parallel visual pathways (Festa et al., 2005). Thus, greater 

improvement in color-motion feature integration across childhood, relative to luminance-

motion feature integration, may suggest that integration across relatively distinct visual 

pathways may develop later in childhood than integration features processed within a 

single visual pathway. This age-related improvement in pathway integration is in line with 

developmental patterns of network connectivity (Cao et al., 2017; Fair et al., 2007, 2009; 

Hagmann et al., 2010; Supekar et al., 2009; Uddin et al., 2010) and increasing coherence 

across visual cortices during childhood (Kipping et al., 2017). Future work will also 

examine whether feature integration reflects underlying functional connectivity within and 

between visual pathways. 
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Chapter 4 

4. Examining the Relationship between Visual Feature Processing, Feature 

Integration, and Visual Selective Attention 

4.1 Introduction 

In Study 2 I examined the influence of visual feature combination on the 

development of visual attention (4 – 10 years old). Specifically, using a conjunction search 

task, I tested children’s ability to search for color-motion and luminance-motion defined 

targets presented among a varying number of distractors. I predicted that attention to targets 

whose features are coded in distinct visual pathways should develop differently relative to 

targets with features coded within the same visual pathway. Study 2 showed that 

integrating motion with luminance may develop earlier than with color, and thus 

differentially impacts target-distractor similarity during the visual selective attention 

process across childhood. As color-motion integration improved across childhood, 

selective attention slowed with increasing distractor number, suggesting competition 

between color-motion defined targets and distractors increased. Mechanistically, as color-

motion feature integration improves across the visual scene, increases in distractor number 

may results in more locations competing for selection.  

Thus, there is value in understanding how different visual feature combinations, the 

building blocks of the visual scene, may impact visual attention and its development. This 

also suggests that differences in visual feature processing (e.g., color, luminance, motion) 

may impact visual attention development. Therefore, I created a battery of psychophysical 

and visual search tests to measure visual feature processing and integration, and visual 

selective attention within each child (4 – 9 years old). For both color and luminance, 



 45 

children completed a contrast sensitivity task, pop-out search task and a conjunction search 

task. I also manipulated motion information across visual search tasks to examine feature 

integration development. 

Study 3 was designed to better parse the precise mechanisms underlying differences 

in the development trajectories of feature integration and visual attention depending on 

visual feature combinations (Lynn et al., 2020). I included a ‘pop-out’ search task where 

target and distractors varied by a single feature rather than a combination of features (i.e., 

Treisman & Gelade, 1980). Within a pop-out search task, I measure baseline feature 

integration performance during trials without concurrent distractors (Set Size 1).  I further 

manipulated stimulus motion across two Motion Present conditions (static, moving) where 

motion information was irrelevant to finding the target. When children searched for a color- 

or luminance-defined target during the moving condition, motion information was not 

relevant and may be incidentally integrated with either color or luminance to support target 

selection. Critically, visual information during moving pop-out search trials without 

concurrent distractors (Set Size 1) matched visual information during conjunction search 

without distractors. The only difference between these conditions was the instruction to 

search for a target defined by one feature (pop-out search) or for a target defined by two 

features (conjunction search). But, motion information was relevant during conjunction 

search and may be  deliberately integrated with either color or motion to support target 

selection. By parsing the feature integration process in this way allowed us to capture the 

influence of visual feature combinations on incidental and deliberate feature integration 

across childhood. 
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Our goal was to better understand the relationship between visual feature 

processing, feature integration, and visual selective attention across childhood. Here, I 

examined the development of visual feature processing (i.e., contrast sensitivity and pop-

out search) for color and luminance feature channels across childhood. I also examined 

whether two types of feature integration change with age. More specifically I tested 

whether incidental integration develops differently than deliberate integration depending 

on whether motion is integrated with either color or luminance. Similar to Study 2, I also 

examined whether visual selective attention develop differently depending on these visual 

feature combinations. Finally, I examine our critical hypothesis that visual feature 

processing and integration may influence visual selective attention across childhood. And, 

that this relationship may differ as a between feature combinations (e.g., color-motion, 

luminance-motion).  

 I predicted that 1) both contrast sensitivity and pop-out search performance would 

improve with age similarly for both color and luminance 2) overall feature integration 

would improve with age, but 3), color-motion feature integration would improve more with 

age relative to luminance-motion feature integration, but this would be specific to 

incidental motion integration,  4) conjunction search performance will change with age for 

the color-motion but not luminance-motion condition, and 5) contrast sensitivity and 

feature integration abilities would be related to children’s color-motion conjunction search 

abilities, potentially accounting for developmental improvements.  
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4.2 Methods 

4.2.1 Participants  

Ninety-two 4- to 9-year-old children (53 female) comprise the final sample. Each 

child completed a contrast sensitivity task, a feature search task, and a conjunction search 

task. I remove 2 children who did not contribute a full set of contrast sensitivity data and 9 

children who were univariate or multivariate conjunction search outliers. Preliminary data 

conjunction search data exploration revealed 9 children with outliers in one or more cell 

mean (e.g., color-motion, Set Size 5). I therefore remove these children from subsequent 

Figure 1. Example of Study Flow. 
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analyses. Children’s race make-up included 83.7% White, 3.3% Black/African-American, 

3.3% Asian or Pacific Islander, 4.3% Multi-racial,  4.3% Other, and 1% declined to answer. 

Ethnicity make-up included 87% non-Hispanic, 12% Hispanic, and 1% declined to answer. 

Children and their parents were recruited through advertisements and were all local 

community members. Children provided assent and adults provided consent in accordance 

with the University IRB. Families were compensated 15 US dollars for their time.  

4.2.3 Equipment & Calibration  

I used a NVIDIA Quadro FX1800 and EIZO CG2420 ColorEdge monitor to obtain 

10-bits-per-channel color resolution. This allowed for presentation of much finer-grain 

color differences than would be possible under standard 8-bit rendering and therefore 

greater precision in the psychophysical measurements. To precisely control color and 

luminance feature information I created a look-up table (LUT) to then be used in stimulus 

generation. Briefly, I first measured the chromaticities and gamma functions of the red, 

green and blue monitor primaries using a ColorCal MkII and Minolta CS200. 

Chromaticities for each color primaries were converted tristimulus values. I then created a 

5000-step tristimulus-RGB conversion matrix - a 3x3 matrix which when matrix-

multiplied by a tristimulus triplet returns an RGB triplet. Since this conversion assumes a 

linear relationship between the primary (RGB) value and the output (luminance, Y, in 

cd/m^2), I then applied a gamma-correction. The resulting 5000-step LUT allowed 

conversion from MacLeod-Boynton color space to RGB for use in stimulus generation.  
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4.2.4 Contrast Sensitivity Task 

 Children completed a contrast sensitivity task presented using PsychToolbox and 

MATLAB. Children were asked to rest their head on a chin rest in an effort to reduced 

head motion during the task. During breaks children were reminded to hold still if they 

frequently moved their head during testing. Children completed the procedure outlined 

below three times, once for each feature (i.e., color-LM, color-S, luminance). Children 

were asked to indicate the orientation of contrast modulated Gabor patches Spatial 

frequency (2cpd) and phase were held constant across all Gabor patches. See Figure1 for a 

schematic representation of the order of tasks and counterbalance. 

4.2.4.1 Stimuli. Stimuli were either color- or luminance-contrast modulated Gabor 

patches. Color-contrast modulated Gabor patches varied along either the LM or S axis. To 

isolate color information, color-contrast modulated Gabor patches (both LM and S 

Figure 2. Illustration contrast sensitivity trials. Color-LM probe trial presented with 
luminance noise. Luminance probe trials presented without noise. Temporal noise masks 
were presented between each probe to disrupt respective feature channel. Color-S trials not 
shown. Children completed 64 trials for each visual feature condition. 
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channels) were embedded in luminance noise (Figure 2; 10 pixel squares, 45cd/m2 and 

55cd/m2). The mean luminance of each stimulus was about 50cd/m2. I used the QUEST+ 

adaptive psychometric procedure to modulate Gabor patch contrast at the trial level 

(Watson, 2017).  QUEST+ was initiated this algorithm as follows: contrast ranged from -

40 to 0 dB; slope ranged from 2 to 5, guess rate was held constant at 0.5, and attentional 

lapse rate ranged from 0 to 0.04. On each trial, the algorithm was updated with children’s 

previous trial accuracy to determine the contrast-level to be presented on the following 

trial. Generally, a higher contrast Gabor patch was more likely to be presented following 

error, and a lower contrast patch was more likely to be presented following a correct 

response. This procedure proceeded in a way that optimized the contrast-level on a given 

trial to maximize the ability to determine the psychometric function.  

4.2.4.2 Procedure. Children first completed the instruction phase in which a 

schematic representation of a Gabor patch was oriented to one of two cartoon fish reference 

images (Figure 2). During the instruction phase, the experimenter explained that vertical 

lines were “going up-and-down” and horizontal lines were “going side-to-side” to ensure 

children understood the direction of vertical and horizontal lines. Following this 

instruction, children viewed a series of vertical and horizontal schematic Gabor patches 

and were asked to verbally indicate whether the lines were “going up-and-down” or “going 

size-to-side.” Next, children saw a series of vertical and horizontal schematic Gabor 

patches. This time, to facilitate their understanding of the task, I provided luminance-

normalized cartoon fish reference images (e.g., “Nemo” and “Dory”). Children were asked 

to indicate which cartoon image the “lines are pointing to” by press the corresponding 

button (i.e., vertical or horizontal orientation). I provided children with two blue buttons 
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(xKeys Orby Switch, ~6.3cm,). Buttons were attached to a response pad with the cartoon 

reference images presented directly below the corresponding button. This response pad 

was simply to serve as a reminder for children.  

Following the instruction phase, children then completed 6 randomly ordered 

practice trials. Practice trials were presented at 25%, 50% and 100% contrast in order to 

demonstrate to children that the contrast would vary. Following practice trials, children 

completed 64 experimental trials. Each trial began with a fixation cross embedded in a full-

screen 5Hz temporal noise mask matching the target feature (e.g., color-LM, color-S, 

luminance) to disrupt the feature processing and reduced possible after-image effects. For 

example, on color-LM trials, four masks of red and green checks were presented across the 

800ms ITI. Following the temporal noise mask, children viewed a contrast-modulated 

Gabor patch and then pressed one of two buttons corresponding to horizontal or vertical 

orientation. Both color-LM and color-S contrast-modulated Gabor patches were embedded 

in luminance noise across the entire screen (10-pixel squares, approx.) that approximated 

the same spatial frequency (2cpd) of the Gabor patch.  

4.2.4.3 Dependent Measures. By using the QUEST+ adaptive psychometric 

procedure, I was able to estimate the threshold and slope of the contrast sensitivity function. 

I primarily focus our analyses on differences in contrast sensitivity thresholds between the 

three Feature Channel conditions across our age range. I also briefly examine the slope and 

proportion of attentional lapses. 

4.2.5 Visual Search Task 

Children completed two visual search tasks, a pop-out feature search and a 

conjunction search. In the pop-out search, the target was defined by one visual feature (e.g., 
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color) and in the conjunction search the target was defined by a combination of visual 

features (e.g., motion and color). Children were instructed to “press the button as fast as 

you can when see” a target and “don’t press the button if you don’t see” a target. Targets 

were present (required button press) on half of all trials or absent (no button press, wait for 

trial to time out) on half of all trials. Across both visual search tasks, target location was 

randomly selected among 12 possible locations. Distractors were pseudorandomly 

assigned to the remaining locations, with the requirement that one distractor be adjacent to 

the target. Children were allowed to move their eyes freely throughout trials.  

For both types of search, I manipulated Visual Feature and Set Size. In the color 

condition targets and distractors were red and green. In the luminance condition targets and 

distractors were black and white. I defined the background for each color and luminance 

condition in a way that equated color or luminance contrast between stimuli and the 

background. Stimuli were presented in varying Set Sizes (1, 3, 5, 7, 9, and 11). On target 

present trials, only one target was presented. For Set Size 1, either a target or a distracter 

was presented (no concurrent distractors). Pop-out search displays were presented for a 

maximum of 2s and conjunction search displays for a maximum of 3s. On each trial, if a 

response was recorded the search terminated. The remaining trial duration time was then 

added to the ITI (min 1.5s). Following each search display, a cartoon fish was presented 

for 1000ms to direct children’s attention to the center of the screen.  

4.2.5.1 Pop-out Search. Children completed a pop-out feature search task in which 

they search for red or black target circle presented among distractors across two Visual 

Feature conditions (color and luminance, respectively). The search display was presented 

for up to 2000ms. Across all blocks, stimuli were presented in Set Sizes 1,3,5,7,9, and 11 
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and were randomly ordered, with the constraint that no more than three of the same Set 

Size conditions were presented consecutively. Set Size trials were distributed equally 

across all conditions. Visual Feature conditions were presented in blocks of 96 trials and 

counterbalanced. See Figure 3 for an illustration of pop-out search conditions and trial 

types. 

Within each Visual Feature condition, I manipulated motion information in two 

Motion Present conditions (static, moving). Static and moving conditions were presented 

in blocks and counterbalanced. For each Visual Feature condition, children completed 48 

static and 48 moving trials across two blocks. Within the moving condition only, I also 

manipulated stimuli Motion Type (heterogeneous, homogeneous). In the homogeneous 

condition, stimuli were moving in phase synchrony in the same direction. In the 

heterogeneous condition, about half the stimuli moved vertically while the other half 

moved horizontally. Homogeneous and heterogeneous trials were randomly ordered within 

Figure 3. Illustration of pop-out search Conditions. Only Set Size 7 trials are 
depicted. Yellow dashed circles highlight the target. White arrows represented 
motion direction. Only target present trials are presented. Target absent trials 
were the same except the target is replaced with a distractor. 
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moving condition blocks. Children were 

offered a break between each block of 

trials. Critically, motion information was 

not required detect the color- or 

luminance-defined target.  

4.2.5.2 Conjunction Search 

Task. Across two Visual Feature 

conditions (color-motion, luminance-

motion), children completed a 

conjunction search task in which they 

search for a vertically moving color- or 

luminance-defined target presented 

among vertically and horizontally 

moving color- or luminance-defined 

distractors. The search display was 

presented for up to 3000ms. Across all 

blocks, stimuli were presented in Set 

Sizes 1,3,5,7,9, and 11 and were randomly ordered. Visual Feature conditions were 

counterbalanced. For each Visual Feature condition, children completed 4 blocks of 24 

trials. Children were offered a break between each block of trials. Critically, motion 

information was required to be integrated with either color or luminance information for 

target selection. The adjacent distractor type (e.g., vertically moving green circle, 

Figure 4. Illustration of Conjunction Search 
Conditions. Yellow dashed circles highlight the 
target. White arrows represented motion 
direction. Only target present trials are 
presented. Target absent trials were the same 
except the target is replaced with a distractor. 
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horizontally moving red circle) was counterbalanced across all trials. See Figure 4 for an 

illustration of conjunction search conditions and trial types.  

4.2.5.3 Stimuli. Stimuli consisted of red, green, white, and black circles 

(approximately .5° in diameter). Circles were either static (static Motion Present condition) 

or oscillated approximately .5° in either direction around their initial starting point at a 

speed of approximately 1° * s-1 (moving Motion Present condition, conjunction search). 

Red and green colors were matched for luminance. Black and white colors were matched 

for chromaticity. Circles were presented in one of 12 concentric locations equidistant from 

the screen center (approximately 8°), where an orange cartoon clown fish (‘‘Nemo”) served 

as a fixation point. 

Stimulus color values were extracted from the LUT I created during monitor 

calibration. I equated the luminance contrast between the background and the stimuli for 

each Feature Condition (i.e., red & green circles, black & white circles) independently. For 

example, the absolute value of the contrast between background luminance and black and 

white circles was equal to the contrast between the background luminance and red and 

green circles.  

4.2.5.4 Dependent Measures. I measured children’s performance using the inverse 

efficiency score for correct responses only. To calculate IES  I divided children’s RT by 

their hit rate for each condition. This measure represents efficient processing speed. I then 

took the log of this measure because IES distributions were skewed. A higher logIES score 

is interpreted as overall worse performance (i.e., slower). 
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4.3 Results 

4.3.1 Visual Feature Processing 

I first examined whether contrast sensitivity improved with age across childhood. 

During a contrast sensitivity task, children saw a vertically or horizontally oriented 

centrally-presented 2cpd Gabor patch across three Visual Feature conditions (color-LM, 

color-S, luminance). I used the QUEST+ function to systematically manipulate stimulus 

contrast and to estimate contrast sensitivity (threshold), slope, and attentional lapses for 

each Visual Feature condition. I converted children’s contrast threshold (dB) to Michelson 

contrast, then calculated contrast sensitivity (1/contrast threshold) for each child. I 

predicted that both color and luminance contrast sensitivity would improve with age, but 

that color sensitivity would be lower than luminance sensitivity across childhood. 

4.3.1.1 Does Contrast Sensitivity Improve Across Childhood? I submitted contrast 

sensitivity values (1/contrast threshold) to a repeated measures MANCOVA with Visual 

Feature condition as a within-subjects factor, and Age as a continuous variable. I found a 

main effect of Age, F(1,90) = 39.001,  p < .0001, partial eta-squared = .302, suggesting 

contrast sensitivity improves with Age. I also found a Visual Feature by Age interaction, 

F(2,89) = 16.928,  p < .0001, partial eta-squared = .276, suggesting contrast sensitivity 

changes with Age differently between Visual Feature conditions (Figure 5).  However, I 

did not find a main effect of Visual Feature, F(1,89) = 1.359,  p = .262, partial eta-squared 

= .030. 

A Helmert contrast revealed that this interaction was driven by the difference across 

age between luminance and the aggregate of color Visual Feature conditions (color-LM 

and color-S), F(1,90) = 34.218,  p < .0001, partial eta-squared = .275, and not by the 
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difference between each color Visual Feature condition, F(1,89) = .408,  p = .525, partial 

eta-squared = .005. This suggests that luminance and color contrast sensitivity improve at 

difference rates across childhood. Post-hoc tests showed that luminance contrast sensitivity 

more with age, r(103) = .545, p < .0001, relative to both color-LM, r(103) = .329, p = .001, 

and color-S contrast sensitivity, r(103) = .426, p < .0001. 

These findings show that while both luminance and color contrast sensitivity improve 

across middle childhood, luminance contrast sensitivity improves more with age relative 

to color contrast sensitivity. 

4.3.1.2 Does Incidental Motion Information Impact Pop-Out Search 

Performance Across Childhood? Recall that during a pop-out search task, children 

searched for a color- or luminance-defined target across two Visual Feature conditions. 

Within each of these conditions, targets and distractors were presented across multiple Set 

Figure 5. Developmental Improvement in Contrast Sensitivity across Luminance and Color Feature 
Channels. A) Luminance contrast improves with age at a greater rate with age relative to color-LM 
and color-S contrast sensitivity. B) Color-LM and color-S conditions improved similarly with age. 
Color conditions are depicted in both panels A and B for easier comparisons with the luminance 
condition and with each other. Overall contrast sensitivity improves with age for all visual feature 
conditions. Black = luminance; Red = color-LM, Blue = color-S. 

A. B. 
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Size conditions (3,5,7,9,11). Children saw either a target presented among distractors 

(target present) or an array of distractors (target absent) and were instructed to press a 

button when they had found a target.  

I further manipulated stimulus motion across two Motion Present conditions (static, 

motion) to examine the influence of integrating motion with either color or luminance 

during salience processing. During static pop-out search no motion was present, but targets 

and distractors differed by color or luminance. During motion feature search, circles were 

in motion, but this motion information was irrelevant to children’s search goal. Thus, any 

change in performance between Motion Present conditions reflects incidentally integrating 

motion with either color or luminance, either between or within respective visual 

processing pathway. Across these conditions, I measured children’s performance using 

logIES (correct responses only), which incorporates RT and hit rate into one measure of 

efficient processing speed. A higher logIES score is interpreted as overall worse 

performance (i.e., slower).  

Figure 6. Color and Luminance Pop-out Search Performance. A) Pop-out search performance did not differ 
depending on the number of distractors. B) While overall pop-out search performance improved with age, 
color pop-out performance improved slightly faster with age. LogIES = log(RT/HitRate). 
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I predicted that integrating motion information with either color would change with 

age differently than integrating motion with luminance, reflecting differences in between 

and within pathway visual processing. I lastly predicted that better contrast sensitivity 

would support better pop-out search performance across childhood for both color and 

luminance. 

I submitted pop-out search logIES values to an omnibus repeated measures 

MANCOVA with Visual Feature, Motion Present, and Set Size (3 – 11) conditions as 

within-subject factors, and Age as a continuous variable. I specifically tested for a linear 

Set Size effect and interactions. I found a main effect of Age, F(1,90) = 40.952, p < .0001, 

partial eta squared = .313, suggesting that overall pop-out search performance improved 

with Age (Figure 6B). However, I did not find any other effects or interaction (all p’s > 

.07) (Figure 6A). Together these findings suggest that both color and luminance pop-out 

search performance improve across childhood, but does not appear to be influenced by 

incidental motion information or number of distractors. 

4.3.1.3 Does Contrast Sensitivity Predict Pop-out Search Performance Across 

Childhood? Using a linear regression approach, I tested whether contrast sensitivity and/or 

Age predict children’s pop-out search performance for each Visual Feature condition 

separately (overall performance mean, collapsed across Set Size condition). For the color 

condition, I found that together Age and color-LM contrast sensitivity accounted for a 

significant portion of individual differences in color pop-out search performance, R2= .368, 

F(2,91) = 25.874, p < .00001. While age predicted mean color pop-out search performance, 

b = -.572, t = -6.413, p < .0001, color-LM contrast sensitivity did not, b = -.087, t = -.972, 

p = .334. For the luminance condition, I also found that together Age and luminance 
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contrast sensitivity accounted for a significant portion of individual differences in 

luminance pop-out search performance, R2= .242, F(2,91) = 14.223, p < .0001. While Age 

significantly predicted mean luminance pop-out search performance, b = -.364, t = -3.213, 

p = .001, luminance contrast sensitivity did not, b = -.187, t = -1.701, p = .092. Together, 

these findings suggest that contrast sensitivity, our metric of visual feature processing, and 

pop-out search performance were independent across childhood. That is, better contrast 

sensitivity did not translate to better performance on the pop-out search task above and 

beyond age. 

4.3.1.4  Summary. Together these findings suggest that both contrast sensitivity 

and pop-out search performance improve across childhood, for both color and luminance 

features. Luminance contrast sensitivity improves at a greater rate, relative to color contrast 

sensitivity across childhood. Improvements in contrast sensitivity and visual salience 

remain independent across this age range. 

4.3.2 Feature Integration 

I measured feature integration in two ways, using Set Size 1 trials (no concurrent 

distractors). In pop-out search Set Size 1 trials, children searched for a color or luminance-

defined target across two Motion Present conditions (static, moving). During static pop-

out search no motion was present. During moving pop-out search, circles were in motion, 

but this motion information was irrelevant to finding the target. Thus, any change in 

performance between Motion Present conditions reflects integrating motion with either 

color or luminance incidentally. In contrast, in conjunction search Set Size 1, children were 

instructed to search for a color-motion or luminance-motion target. Critically, visual 

information between conjunction search and motion present pop-out search conditions 
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remained the same, except whether motion was relevant for finding the target. In a sense, 

this manipulation allowed us to distinguish between incidental feature integration at the 

visual processing level and deliberate feature integration based on task instructions. I 

examined these two feature integration measures for both color and luminance Visual 

Feature conditions. I predicted that color-motion integration would be worse than 

luminance-motion integration, but this difference would decrease with age, reflecting 

developmental changes in between relative to within-pathway integration (Lynn et al., 

2020).  

4.3.2.1 Does Feature Combination Differentially Impact Incidental Motion 

Integration Across Childhood? I submitted logIES values to a repeated measures 

ANCOVA with Visual Feature (color, luminance) and Motion Present (static, motion) 

conditions as within-subject factors, and Age as a continuous variable. I predicted that a 

Motion Present effect would be present in the color but not luminance condition. I found a 

main effect of Age, F(1,90) = 51.266, p < .0001, partial eta squared = .363, suggesting that 

overall logIES improved with age. I did not find a main effect of Visual Feature, F(1,90) = 

.282, p = .597, partial eta squared = .003, or a Visual Feature by Age interaction, F(1,90) = 

.269, p = .605, partial eta squared = .003.  

However, I found a main effect of Motion Present, F(1,90) = 6.563, p = .012, partial 

eta squared = .068, suggesting performance was worse in the motion condition relative to 

the static condition. I also found a Motion by Age interaction, F(1,90) = 4.426, p = .038, 

partial eta squared = .047, a Visual Feature by Motion interaction, F(1,90) = 4.705, p = .033, 

partial eta squared = .050, and a marginal Visual Feature by Motion by Age interaction, 
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F(1,90) = 3.599, p = .061, partial eta squared = .038. This suggests that motion integration 

differs between color and luminance and this difference may change with age. 

To further understand this interaction, followed up by examining the Motion 

Present effect in each Visual Feature condition separately, with Age as a continuous 

variable. In the color condition, I found a main effect of Motion, F(1,90) = 8.889, p = .004, 

partial eta squared = .090, and a Motion by Age interaction, F(1,90) = 6.359, p = .013, 

partial eta squared = .066. But, in the luminance condition, neither the main effect of 

Motion, F(1,90) = .093, p = .761, partial eta squared = .001, nor Motion by Age interaction, 

F(1,90) = .024, p = .877, partial eta squared = .000, were significant. Figure 7A shows a 

motion effect in the color condition, but not the luminance condition. Together, these 

findings suggest that overall incidental motion integration with either color or luminance, 

changes with age, but that this change may be specific to integrating motion with color.  

I had reasoned that any change in performance between Motion Present conditions 

must then be due to integrating motion with the respective visual feature. However, the 

Figure 7. Bottom-up Feature Integration A) Bottom-up feature integration effects for color-
motion but not luminance-motion stimuli. B) Color-motion bottom-up feature integration 
improves with age, but luminance-motion integration is stable. LogIES = log(RT/HitRate). 
Bottom-up feature integration index is calculated as static pop-out performance minus 
irrelevant motion pop-out performance (Set Size 1 trials only). 
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data indicate that rather than incidentally integrate motion with color/luminance, motion 

may have been more distracting to young children in the color condition. To visualize this 

effect, I then calculated an incidental feature integration index by subtracting static from 

moving pop-out search Set Size 1 performance for each Visual Feature condition 

separately. Thus, a larger positive incidental feature integration index reflects a larger 

performance slowing when irrelevant motion is present relative to when it is not present. 

Figure 7B shows that color-motion target detection improves with age, but luminance-

motion does not. Here, younger children were slower for color-motion relative to 

luminance-motion detection, but this performance difference is negligible by late 

childhood.  

4.3.2.2 Does Feature Combination  Differentially Impact Deliberate Motion 

Integration Across Childhood? Next, I submitted Set Size 1 mean logIES values to a 

repeated measures ANCOVA, with Visual Feature (color, luminance) and Condition 

(moving pop-out search, conjunction search) as within-subject factors and Age as a 

continuous variable. I predicted a condition effect would be present in the color condition, 

but not the luminance condition because the former requires between-pathway integration. 

I found a main effect of Age, F(1,90) = 55.463, p < .0001, partial eta squared = .363, 

suggesting that overall logIES improved with age. I also found a marginal Condition by 

Age interaction, F(1,90) = 3.643, p = .06, partial eta squared = .039, suggesting that overall 

deliberate feature integration performance may change with age. I did not find any other 

effects of or interactions (all p’s > .13).  

To visualize this effect, I then calculated a deliberate feature integration index by 

subtracting moving pop-out search performance from conjunction search performance. For 
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consistency I plot Visual Feature conditions separately. Thus, a larger positive deliberate 

feature integration index reflects slower performance when motion was relevant relative to 

when it is incidental to target detection. Figure 8 shows that top-down color-motion feature 

integration worsens with age, but luminance-motion integration does not. Here, older 

children are slowed by deliberate feature integration for target detection requiring a 

conjunction of features, relative to when motion is incidental to target detection. This graph 

also suggests that the data are underpowered to detect the Visual Feature by Search by Age 

interaction. While overall performance improves for Set Size 1 trials, the difference 

between motion present pop-out and conjunction search performance shows that top-down 

feature integration between motion color worsens with age.  However, these effects are 

small and therefore suggest that overall both color-motion and luminance-motion top-down 

integration similarly change across middle childhood. 

Figure 8. Top-Down Feature Integration. Overall top-down feature integration improves 
with age. Here, color-motion top-down integration is costlier with increasing age, but 
luminance-motion integration is stable. Top-down feature integration index is calculated 
as irrelevant motion pop-out performance minus conjunction search performance (Set 
Size 1 trials only). 
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4.3.2.3 Does Feature Combination Differentially Impact Conjunction Search 

Feature Integration Trial Performance Across Childhood? Next, I submitted Set Size 1 

mean logIES values for conjunction search only to a repeated measures ANCOVA, with 

Visual Feature (color-motion, luminance-motion) as within-subject factors and Age as a 

continuous variable. I predicted an Age effect would be present in the color-motion 

condition, but not the luminance-motion condition because the former requires between-

pathway integration. I found a main effect of Age, F(1,90) = 40.587, p < .0001, partial eta 

squared = .311, suggesting that overall logIES improved with age. But, I did not find any 

other effects of or interactions (all p’s > .9).   

Similar to our previous study (Lynn et al., 2020), I also submitted rank-transformed 

d’prime values to a repeated measures ANCOVA, with Visual Feature (color-motion, 

luminance-motion) as within-subject factors and Age as a continuous variable. Again, I 

found a main effect of Age, F(1,90) = 40.587, p < .0001, partial eta squared = .193, 

suggesting that overall d’prime improved with age. But, I did not find any other effects of 

or interactions (all p’s > .5).  Thus, in contrast to Study 2, I found no evidence that color-

motion feature integration develops differently than luminance-motion integration. 

4.3.2.4 Summary. These findings show that incidental feature integration improves 

across childhood for color-motion relative to luminance-motion feature combinations. 

Younger children were overall slower for color moving pop-out search relative to color 

static-pop out search, but this difference is not evident by late childhood. Moreover, 

deliberate feature integration may change with age similarly for between and within 

pathway features coded. Interestingly, this I found that color-motion deliberate feature 

integration worsens with age. However, when examining conjunction search Set Size 1 
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trials separately from moving pop-out search trials, I found that both color-motion and 

luminance-motion integration changed with age similarly. Together these findings suggest 

that our observed differences in color-motion deliberate feature integration maybe driven 

by changes in incidental motion integration with color across childhood. Indeed, within the 

color condition,  incidental and deliberate feature integration values were highly correlated, 

r(92) = -.707, p < .0001.  

4.3.3 Visual Selective Attention 

Here I first examined whether feature combinations differentially impact visual 

selective attention development. I then examined whether visual processing and feature 

integration explain age-related developmental change in visual selective attention across 

childhood. In a conjunction search task, children searched for a vertically moving color- or 

luminance-defined target across two Visual Feature conditions. Within each of these 

conditions targets and distractors were presented across multiple Set Sizes (3,5,7,9) 

conditions. Preliminary results revealed that performance did not change linearly, but 

quadratically, with Set Size. Figure 8 shows that Set Size 11 seems to be responsible for 

this quadradic effect. Indeed, Set Size 11  hit rates for both color-motion and luminance 

motion conditions were below 65%.  Since our hypotheses are specific to a linear effect of 

Set Size, I exclude Set Size 11 from our selective attention analysis, examining a linear 

effect of Set Size for sets 3 through 9. Across these conditions, I measured children’s 

performance using logIES (correct responses only), which incorporates RT and hit rate into 

one measure of efficient processing speed. A higher logIES score is interpreted as overall 

slower performance. To measure selective attention, I fit each child’s logIES to a linear 
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model to extract the slope across Set Size 3 through 9. Steeper slopes reflect greater slowing 

with increasing distractor number. 

Based on previous work (Donnelly et al., 2007; Merrill & Lookadoo, 2004; Trick 

& Enns, 1998) I predicted that visual selective attention would improve with age (decrease 

in slopes). However, based on Study 2 findings, I predicted that target detection would be 

slower in the color-motion relative to the luminance-motion condition and that color-

motion search slopes would increase with age. Lastly, I predicted that together contrast 

sensitivity and feature integration would predict conjunction search slopes, but that feature 

integration would be a stronger predictor of selective attention performance.  

4.3.3.1 Does Conjunction Search Performance Improve across childhood? I 

submitted logIES values to an omnibus repeated measures MANCOVA, with Visual 

Feature and Set Size conditions as within-subject factors, and Age as a continuous variable. 

I specifically tested a linear contrast for Set Size effects and interactions. I found a main 

effect of Age, F(1,92) = 49.088, p < .0001, partial eta squared = .348, suggesting that overall 

conjunction search performance improved with age. I found a main effect of Visual 

Feature, F(1,92) = 18.549, p = .0004, partial eta squared = .168, and a Visual Feature by 

Age interaction, F(1,92) = 13.873, p = .0003, partial eta squared = .131, suggesting that, as 

in Study 2, conjunction search performance changed with age differentially between color-

motion and luminance-motion conditions.  

I also found a linear effect of Set Size, F(1,90) = 16.754, p < .0001, partial eta 

squared = .157, a Visual Feature by Set Size linear interaction, F(1,90) = 6.917, p = .01, 

partial eta squared = .071, and a Visual Feature by Set Size linear by Age interaction, 

F(1,90) = 4.844, p = .03, partial eta squared = .051. Figure 9A shows that linear Set Size 
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effect is larger in the color-motion condition relative to the luminance-motion condition. I 

then correlated children’s slope for each Visual Feature condition with their age. I found 

that color-motion slopes decreased with age (r(92) = -.245, p = .018), but luminance-motion 

slopes did not change (r(92) = -.035, p = .740). Figure 9B shows that color-motion 

performance slopes decrease with age, but luminance-motion slopes are stable. 

These findings suggest that conjunction search performance slows with increases 

in distractor number more for color-motion relative to luminance-motion search, and this 

feature-specific distractor effect decreases across childhood. These findings show that 1) 

conjunction search performance improves overall with age, 2) color-motion selective 

attention is slower than luminance-motion selective attention, but 3) this feature 

combination difference decreases with age. 

4.3.3.2 Does Contrast Sensitivity and/or Feature Integration Support Color-

Motion Conjunction Search Across Childhood? I calculated conjunction visual search 

performance as the logIES slope across Set Size 3 through 9. Since I found developmental 

Figure 9. Conjunction search performance. A) Performance as a function of Set Size. Color-motion was 
slower than luminance-motion search and is effect increased with distractor number. B) Search performance 
slopes as a function of age. Color-motion selective attention improves across childhood. LogIES = 
log(RT/HitRate). 
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improvements in conjunction search performance for the color-motion but not luminance-

motion condition, I aim to predict the developmental change in color-motion selective 

attention relative to luminance-motion selective attention. Our variable is therefore the 

individuals’ difference between color-motion relative to luminance-motion Set Size slope.  

Using a linear regression approach, I tested whether color contrast sensitivity and 

our two measures of feature integration on Set Size 1 trials (incidental, deliberate) had 

predictive value for changing visual search slopes. For feature integration I submitted 

individuals’ difference between color-motion relative to luminance-motion feature 

integration scores as predictor variable. This therefore reflects the degree to which each 

feature integration type was influenced by feature integration within each child. Together 

with age, color contrast sensitivity, and incidental and deliberate feature integration 

account for a significant portion of individual differences in color-motion conjunction 

search slopes, R2= .188 , F(5,91) = 3.991, p = .003. Neither color contrast sensitivity nor 

incidental feature integration predicted pathway-specific color-motion conjunction search 

slopes. But, Age and deliberate color-motion feature integration relative to luminance-

motion integration predicted pathway-specific color-motion conjunction search slopes. See 

Table X for results. These findings show that robust, deliberate color-motion feature 

integration is  associated with steeper color-motion conjunction search slopes.  
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As a control, I also tested whether age, color contrast sensitivity, and incidental and 

deliberate color-motion feature integration relative to luminance-motion integration predict 

color pop-out search performance, which improves with age. Together these variables 

accounted for a significant proportion of individual differences in color pop-out search 

performance R2= .369, F(4,91) = 12.707, p < .0001. However, only Age predicted pop-out 

search performance, b = -5.68, t = -6.227, p < .0001. All other predictors were not 

significant (all p’s > .3). This suggests that neither contrast sensitivity nor feature 

integration support pop-out search performance across childhood.  

4.3.3.3 Summary. These findings show that 1) while conjunction search 

performance improves overall with age, color-motion search is slower than luminance-

motion search, but 2) this feature combination  difference decreases with age, suggesting 

color-motion and luminance-motion conjunction search performance is similar by late 

childhood. Or, put another way, while luminance-motion search performance remains 

stable, color-motion search performance continues to improve across middle childhood. 

Moreover, I show that stronger deliberate color-motion feature integration is associated 
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with less efficient (i.e., steeper performance slopes) indicating more performance cost as 

the number of color-motion distractors increases.  

4.4 Discussion 

In the present study I found that both contrast sensitivity and pop-out feature search 

performance improve with age. I also found distinct developmental changes across two 

types of feature integration, specifically for color-motion integration. While color-motion 

incidental feature integration improves across childhood, color-motion deliberate feature 

integration may become slower with age. Similarly, color-motion conjunction search is 

slower with more distractors than luminance-motion conjunction search. Moreover, color-

motion conjunction search becomes less influenced by increasing distractor number with 

age, but luminance-motion search remains similarly influenced by distractors across 

childhood. Interestingly, better deliberate color-motion feature integration is associated 

with less efficient color-motion conjunction search, relative to luminance-motion search. 

This suggests that, above and beyond age, feature combinations may differentially impact 

feature integration and selective attention, and feature integration influences selective 

attention across childhood. 

4.4.1 Visual Processing 

Developmental psychophysical studies show that luminance contrast sensitivity 

improves across early childhood and may reach adult-like levels as early as 7 years old 

(Ellemberg et al., 1999) or as late as 12 years old, depending on spatial frequency, method 

of measurement (e.g., staircase, ssVEP, etc), and stimulus orientation (e.g., vertical vs 

diagonal)  (Almoqbel et al., 2017; Beazley, Illingworth, Jahn, & Greer, 1980; Mayer, 
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1977). However, while color vision improves across infancy (e.g., Brown, 1990), it is less 

clear how chromatic sensitivity changes across childhood. Knoblauch and colleagues 

(Knoblauch et al., 2001) tested infants, children and adults on a forced-choice preferential 

looking or pointed (depending on age) task. They found that across multiple color axes, 

chromatic sensitivity improved until about 16 years old. In the present study, within each 

child, I utilized an adaptive algorithm validated for use in children (Farahbakhsh, Dekker, 

& Jones, 2019) to estimate contrast sensitivity across both luminance and chromatic 

channels,  controlling for task demands and spatial frequency. Consistent with the reviewed 

literature, I found that luminance sensitivity developed at a greater rate across childhood, 

relative to chromatic sensitivity. Moreover, I show that contrast sensitivity for both the LM 

and S color pathways improve similarly across childhood. And, as expected, color-S 

sensitivity was overall lower than both color-LM and luminance sensitivity.  

Pop-out search performance also improves across childhood for orientation, color, 

shape, and size (Donnelly et al., 2007; Grubert, Indino, & Krummenacher, 2014; Sun et 

al., 2018). Donnelly and colleagues (2007) show that 6 and 7 year-old children find color 

targets faster than orientation targets, but 9 and 10 year-old children and adults find color 

and orientation targets equally fast. Since children were instructed to find the ‘odd-one-

out’ during pop-out search and the pop-out feature changed (e.g., color, orientation) from 

trial to trial (Donnelly et al., 2007; Grubert et al., 2014), younger children may not readily 

adopt a strategy to detect a deviant location independent of the visual feature, thought this 

tendency develops around mid- to late-childhood (Grubert et al., 2014). In line with this 

literature I found that pop-out search performance improved with age across childhood, but 

this improvement did not depend on visual feature. This discrepancy is likely due 
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differences in task design. In the present study, I instructed children to search for a red or 

black circle and therefore provided a top-down goal during pop-out search. Children may 

more readily adopt a strategy of detecting a deviant feature signal at a given location and 

respond accordingly, rather than identify the target feature value prior to responding. 

Moreover, children completed pop-out search in blocks of visual feature trials which may 

continuously prime detection of the target on the following trials within the block (Grubert 

et al., 2014).  

4.4.2 Feature Integration 

Feature integration performance represents children’s ability to bind visual features 

to a visual field location in the service of target selection (Treisman, 1998; Treisman & 

Gelade, 1980). I measured feature integration performance while children searched for a 

target without concurrent distractors (Set Size 1) (Lynn et al., 2020). Our previous work 

demonstrated that color and motion integration was weaker than luminance and motion 

integration in younger children, but integration was similar for both feature combination 

by late childhood. Others have found that, in the absence of distractors, both children and 

adults are slower to detect a target defined by two feature relative to a target defined by a 

single feature (Trick & Enns, 1998). This suggests that integration of multiple visual 

feature to support a goal may be costlier than one feature. I distinguished between 

incidental and deliberate feature integration to highlight that integration may occur at the 

visual-processing level or at the cognitive level via a goal provided through task 

instructions. When holding children’s goal constant, but varying the visual information 

presented I measured incidental feature integration as the change in Set Size 1 pop-out 

search performance when a target stimulus was moving relative to when it was static. When 
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holding visual information constant, but varying children’s goal, I measured deliberate 

feature integration as the change in performance between conjunction search (two features 

in mind) and  pop-out search (one feature in mind) when stimuli were moving. I found that 

incidentally integrating motion with color information improved across childhood. This 

developmental difference was not found for luminance-motion integration. These findings 

are consistent with our previous work that shows color-motion feature integration develops 

across childhood, but luminance-motion integration does not (Lynn et al., 2020). Younger 

children may have found the irrelevant motion more distracting than older children and 

were therefore slower to detect the moving color target during pop-out search. Relative to 

conjunction search, the ability to suppress the irrelevant motion information during pop-

out search may improve faster across childhood resulting in an apparent change in color-

motion deliberate integration. Either way, this unexpected finding suggests that, across 

childhood, the ability to hold two visual features in mind may depend on whether features 

are integrated between or within visual pathways. The specificity of developmental 

differences in incidental feature integration to color-motion may also reflect that 

integrating feature information across parallel visual streams may be costlier early in 

childhood relative to integrating feature information within a visual stream, even when the 

constituent features are not behaviorally relevant. 

4.4.3 Selective Attention 

Conjunction search is typically slower with increases in distractor number, but this 

effect typically decreases with age across childhood (Donnelly et al., 2007; Gerhardstein 

& Rovee-Collier, 2002; Trick & Enns, 1998), indicating more efficient visual search and 

better selective attention performance. Overall, the extant developmental literature shows 
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improvements across childhood for visual search for targets defined by features mostly 

coded within the ventral visual stream (i.e., color, orientation, objects) (Donnelly et al., 

2007; Gerhardstein & Rovee-Collier, 2002; Merrill & Lookadoo, 2004; Trick & Enns, 

1998). I found that children become faster to find conjunction of both color-motion and 

luminance-motion conjunction targets with age. However, color-motion but not 

luminance-motion selective attention becomes more efficient with age. Our findings 

highlight that selective attention may develop differently depending on the visual feature 

combinations, suggesting that integrating visual feature between visual pathways may be 

more costly relative to within pathways (Festa et al., 2005; Lynn et al., 2020).  

It is important to note the present findings are in contrast to our previous work 

where I found that color-motion selective attention became less efficient with age (Lynn et 

al., 2020). In both studies’ luminance-motion selective attention remained stable across 

childhood. I suspect that this difference is likely due to more set size conditions and thus a 

better estimate of selective attention abilities in the present study. Alternatively, these 

discrepant findings may suggest color-motion selective attention follows a non-linear 

developmental trajectory across childhood, suggesting there is no single visual search 

developmental trajectory, but multiple developmental trajectories that likely interact across 

development. Future work should explore color-motion and luminance-motion selective 

attention in younger children and adolescence, to determine whether visual search slopes 

change quadratically with age. 

 Critically, the current study shows that changes in deliberate feature integration 

may influence visual selective attention across child development. Specifically, I found 

that, relative to luminance-motion, better deliberate color-motion feature integration is 
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associated with less efficient color-motion selective attention. Previous work showed that 

improvements color-motion feature integration was associated with less efficient selective 

attention, suggesting better integration increased the competition across the visual field 

(Lynn et al., 2020). In the present study, I show that this feature integration effect may be 

specific to integrating motion with color information to support a top-down goal. However, 

because I compare conjunction search trials to pop-out search trials when motion 

information may be distracting to children, it remains unclear whether this effect is specific 

to integrating motion with color within working memory or inhibiting irrelevant motion 

information.  
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Chapter 5: Conclusions 

Motivated by the structural and functional organization of the visual cortex, the 

primary aim of this dissertation was to test whether visual feature processing and feature 

combinations differentially impact visual attention development. Rather than examining 

visual attention development as a finite discernible network of attentional processes with a 

uniform developmental trajectory (Petersen & Posner, 2012), I view visual attention 

through the lens of the hierarchical organization of cortical visual pathways and their 

emerging functionality (Amso & Scerif, 2015). The hypothesis driving this work is that the 

integrity of visual processing may shape visual attention development across childhood. 

Attention binds visual features to a location in space to support object perception (Treisman 

& Gelade, 1980), which in turn enhances visual perceptual processing and cortical visual 

processing at the attended location (Carrasco, 2011; Ling & Carrasco, 2006; Ling et al., 

2009),  through feedback connections from higher-order brain regions (Bichot et al., 2015; 

Chelazzi et al., 2001). In this way, visual attention development may be conceptualized as 

a biased competition computation (Amso & Scerif, 2015; Desimone & Duncan, 1995; Kim 

& Kastner, 2019).  

In the first study, I examined whether functional integration between the dorsal and 

ventral visual pathways develops differently than within pathway integration across middle 

childhood (4 – 12 years old). I utilized a network-level, graph theoretical approach to 

resting-state fMRI to show that functional integration of the right-lateralized dorsal visual 

pathway with the rest of the visual cortex changes with age across childhood, with 

decreases from early to middle childhood and increases from middle to late childhood. This 

developmental change was driven primarily by the number of functional connections 
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between the right dorsal pathway and the right ventral pathway. This study provides 

preliminary evidence that, at the neural level, dorsal and ventral visual pathway integration 

changes across childhood. 

In the second study, I examined whether feature combinations that may require 

integration between or within dorsal and ventral pathways differentially impact the 

development of visual attention (4 – 10 years old). Using a conjunction search task in which 

children searched for color-motion and luminance-motion defined targets, I showed that 1) 

color-motion integration was worse than luminance-motion integration in early childhood, 

but that this difference decreased with age, 2) while luminance-motion search performance 

was robust across childhood, older children were more influenced by additional color-

motion distractors, and 3) age-related improvements in color-motion feature integration 

were associated with steeper color-motion search slopes. This study suggests that visual 

attention may depend on visual feature integration, which differentially influences 

selective attention abilities at different times in development and indicates that there is no 

single developmental trajectory of visual attention, but multiple developmental trajectories 

that likely interact. 

In study three, I examined whether visual feature processing and visual selective 

attention abilities changes across childhood (4 – 9 years old) depending on feature 

combinations, again, that may require integration between or within dorsal and ventral 

visual pathways. I created a battery of psychophysical and visual search tasks to measure 

color and luminance feature processing, color-motion and luminance-motion integration 

and visual selective attention within each child (4 – 9 years old). I found that color and 

luminance feature processing improved with age. By adding a manipulation to the pop-out 
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search task, I showed that 1) incidentally processing motion information specifically 

impacts color processing for younger children relative to older children  and 2) integrating 

motion with color to support a top-down goal was slower in older children relative to 

younger children. I also found that color-motion conjunction search efficiency improved 

across childhood (relative to luminance-motion search). Critically, better top-down, 

deliberate color-motion feature integration predicted less efficient color-motion 

conjunction search. This study suggests that visual feature integration, rather than visual 

feature processing per se, may underlie visual selective attention development across 

childhood. More specifically, these findings suggest that integrating features to guide 

visual search goals, rather than incidentally integrating features to support visual 

perception, may influence visual selective attention efficiency. 

Together, these studies provide evidence that the integrity of visual feature 

integration, which may be influenced by functional connectivity, may shape visual 

attention development. As the connectivity between and within visual pathways changes 

across childhood, the output of these feedforward projections may force the need for top-

down attentional modulation of these visual pathways. Put another way, as visual feature 

processing and integration improve, competition between targets and distractors may 

increase, resulting in more locations competing for selection across the visual scene. After 

visual competition is resolved though bottom-up mechanisms such as visual salience and 

grouping, the remaining competition must be resolved through top-down feedback to these 

visual pathways (Kim & Kastner, 2019). Children with relatively better between visual 

pathway integration may, therefore, be more sensitive to color-motion distractors relative 

to luminance-motion distractors. These findings suggest that there is value in 
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conceptualizing visual selective attention development as a biased competition 

computation (e.g., Desimone & Duncan, 1995) that is carried out within the visual cortex, 

potentially by a multiple networks underlying different attentional processes (Petersen & 

Posner, 2012). 

Future work is needed to further understand the relationship between visual 

processing and both top-down and bottom-up attentional mechanisms. In this dissertation 

I primarily focused on the top-down processes of conjunction search and feature 

integration. Recent works suggests that older children may spontaneously subset 

conjunction search arrays to help reduce target-distractor competition, and younger 

children are able to adopt this strategy when instructed to do so (Lookadoo et al., 2017). 

The ability for a child to subset a search array to a specific feature may be limited by the 

integrity of children’s visual feature processing for that feature dimension. For example, 

when searching for a vertically moving red circle among horizontally moving red circles 

and vertically moving green circles, a child may choose to focus their attention on the 

subset of red stimuli. When doing so effectively, the search array is reduced to a set of red 

circles, only one of which is moving vertically. However, this may be limited by the child’s 

ability to discriminate red from green (i.e., chromatic contrast sensitivity) and vertical from 

horizonal movement. Thus, one goal of future work is to determine how visual feature 

processing abilities are related to children’ ability to deploy top-down goals based on the 

same feature dimension. This principle also applies to bottom-up attentional mechanisms. 

Younger children are less likely than older children to perceive illusory contours formed 

by Pacman shapes (Nayar, John, Adolph, & Kiorpes, 2015). The current model would 

predict that children’s ability to perceive an illusory square among 4 Pacman shapes would 
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be related to children’s contrast sensitivity, and that this may depend on the visual feature 

(e.g., color) that defines the local features responsible for the illusion. That is to say, if 

luminance contrast sensitivity continues to improve across childhood relative to color 

contrast sensitivity, within the same child, illusory contours defined by color may be more 

readily detected relative to those defined by luminance.  
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