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PREFACE 
 

One of the central questions driving the field of genetics asks how genotype contributes 

to phenotype. A simple, single gene trait can be explained as dominant, where one 

allele determines a phenotype by masking another allele; recessive, where two alleles 

are required to observe a phenotype; or additive, where the heterozygote lies between 

the two parental phenotypes. While simple, single gene traits are straightforward, they 

are not representative of the majority of traits that are polygenic (many genes). 

Identifying the genetic factors that make up these polygenic traits (genetic architecture) 

is challenging because in addition to alleles having additive and dominance effects on 

the resulting phenotype, pairwise interactions (epistasis) between alleles and 

environmental effects also have important contributions (MANOLIO et al. 2009). Higher-

order effects, like genotype x environment, genotype x genotype, and genotype x 

genotype x environment interactions (MONTOOTH et al. 2010; ZHU et al. 2014; MOSSMAN 

et al. 2016) are also a mainstay of these complex traits and further complicate our ability 

to assess the impact of genetic factors affecting polygenic (complex) traits.  

 

The challenge of uncovering the genetic architecture of complex traits lies in the 

context-dependent and highly interconnected networks of alleles that interact with each 

other and the environment to produce a resulting phenotype. It is not possible to 

generate and test every combination of alleles to assess their individual effects on a 

phenotype. Instead we must rely on alternative approaches that can estimate how 

genotype contributes to phenotype. Genome Wide Association Studies (GWAS) are 

often used for genotype-phenotype mapping to narrow down a large number of possible 
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genetic factors affecting a trait for more targeted secondary study. Here, a diverse panel 

of genotypes is used to identify regions of the genome that associate with phenotypic 

variation. This method is most commonly used to identify additive effects, though other 

methods leverage similar inputs or the resulting associations and can parse out other 

effects’ contribution to the genetic architecture of a trait (PURCELL et al. 2007; NAKKA et 

al. 2016; CRAWFORD et al. 2017; REYNA et al. 2018). A separate approach lies in 

mitochondrial-nuclear (mito-nuclear) introgressions for understanding the contribution of 

higher-order interactions (genotype x genotype x environment) to phenotypic variation. 

These introgressions contain mitochondrial and nuclear genomes from genetically 

divergent species, sub-groups, or lineages. By subjecting these individuals to different 

environmental conditions, we can better study how higher-order effects contribute to 

phenotypic variation.  

 

Using these two approaches, we build on the existing literature to understand the 

genetic architecture of complex traits by studying adult insect locomotion. Insects, 

namely Drosophila melanogaster, serve as a genetically tractable model for surveying 

the genetic architecture of complex traits. Their short generation time, breadth of 

genetic and computational resources, and strong molecular crossover to humans make 

them an appealing model for understanding an array of traits with biological and 

biomedical implications (BELLEN et al. 2010; JIN et al. 2016; CHOW AND REITER 2017). In 

adult insects, locomotion is important for the life history of an individual and can be 

broken down into two sub-categories: aerial (flight) and terrestrial (climbing). Both are 

energetically demanding and require well-developed and finely tuned morphological, 
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neuromuscular, metabolic, and homeostatic systems (MONTOOTH et al. 2000; 

RHODENIZER et al. 2008; JONES AND GROTEWIEL 2011; LEHMANN AND BARTUSSEK 2017). 

We divide these two locomotor traits into four chapters; the first two survey the genetic 

modifiers of flight performance ability and variability using a GWAS with the Drosophila 

Genetics Reference Panel (DGRP) lines, while the second two place mito-nuclear 

introgressions in an exercise conditioning program to assess their ability to benefit from 

exercise conditioning as measured by an attenuation of an aging-associated decline in 

climbing performance. 

 

The first chapter, “Natural Variation in the Regulation of Neurodevelopmental Genes 

Modifies Flight Performance in Drosophila” focuses on the genetic modifiers of flight 

performance. Flight is an important life history trait for a fly, enabling it to forage, 

disperse, migrate, find mates, and evade predators among other roles (BRODSKY 1994; 

MARCUS 2001). While several individual genes with larger effects are known to affect 

flight performance (MONTOOTH et al. 2000; SUAREZ 2000; VIGOREAUX 2001; FRYE AND 

DICKINSON 2004), no recent study has used the available genetic and computational 

tools to comprehensively survey its genetic architecture. To address this gap in 

knowledge, we performed a GWAS for flight performance with 197 DGRP lines, a panel 

of inbred Drosophila melanogaster that represent a snapshot of natural variation in a 

wild population and are commonly used for genotype-phenotype mapping (MACKAY et 

al. 2012; HUANG et al. 2014; MACKAY AND HUANG 2018). Using a flight column (BENZER 

1973; BABCOCK AND GANETZKY 2014), we quantified each genotypes’ ability to react and 

respond to an abrupt drop as a function of the mean landing height. We identified 3015 
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genes identified from additive, marginal, and epistatic variants; whole genes; and 

altered sub-networks of genes. Many of the genetic modifiers we identified played 

important roles in general development and neural development and function. 

Interestingly, we identified a previously unrealized role for the mechanosensory gene 

pickpocket 23 (ppk23) in mediating flight performance through proprioception and 

several epistatic interactions with ppk23 that may point toward important biomedical 

targets for neurological damage-detecting Acid Sensing Ion Channel (ASIC, human 

homolog) genes in humans (HUANG et al. 2015; ORTEGA-RAMIREZ et al. 2017).This study 

also introduced PEGASUS_flies to the growing battery of genetic tools available for 

surveying the genetic architecture of complex traits. PEGASUS_flies is a version of the 

human-focused PEGASUS platform adapted for Drosophila, capable of identifying 

significant whole genes (NAKKA et al. 2016).  

 

The second chapter, “The Genetic Architecture for Robustness of Flight Performance in 

Drosophila” worked to expand on the first chapter by investigating the genetic modifiers 

affecting the consistency, or robustness, of flight performance within inbred lines of 

Drosophila melanogaster. Using a similar experimental design as the first chapter, we 

performed a GWAS on the coefficient of variation (mean-normalized standard 

deviation), which served as a proxy for phenotypic robustness (micro-environmental or 

non-genetic variation). We identified additive, marginal, and epistatic variants, as well as 

whole genes associated with robustness in flight performance. Our results suggest 15-

20% of the genes and variants that associated with overall flight performance in the first 

chapter were also important for affecting the consistency of performance, and that the 
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majority of genes and variants associated with each study were largely distinct. From 

this study, we uncovered additional genes involved in neurodevelopmental processes, 

including cell-cell adhesion molecules that co-opt stochastic developmental processes 

to pattern more interconnected neural networks (AYROLES et al. 2015; HIESINGER AND 

HASSAN 2018). We also identified a number of pleiotropic (affecting multiple 

phenotypes) genes uncovered in independent DGRP screens for genetic modifiers of 

micro-environmental variation (MORGANTE et al. 2015), courtship behavior (TURNER et al. 

2013; GAERTNER et al. 2015), and wing morphology (PITCHERS et al. 2019) that may 

speak to interesting connections underlying evolutionary pressures affecting shared 

structures (wings and hairs). 

 

The third chapter “Mito-Nuclear Interactions Modify Drosophila Exercise Performance” 

focuses on the mito-nuclear genetic interactions that modulate flies’ exercise capacity. 

The mitochondrion, powerhouse of the cell, is maternally inherited and contains its own 

genome that encodes ~37 genes involved in aerobic metabolism. It must coordinate 

with its symbiotic partner, the nuclear genome, to coordinate the genes required to 

generate enough cellular energy to sustain energetically demanding processes (RAND et 

al. 2004). The genetic interactions underlying their partnership are essential and 

contribute to reproductive fitness, longevity, and certain diseases (WALLACE 2005; 

WALLACE 2010). In collaboration with the Wessell’s lab at Wayne State University, we 

sought to understand how different pairings of distantly related mitochondrial-nuclear 

genotype combinations (MONTOOTH et al. 2010; MA AND O'FARRELL 2016) impacted an 

energetically demanding trait: exercise performance (PIAZZA et al. 2009; JONES AND 
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GROTEWIEL 2011; TINKERHESS et al. 2012). We found evidence for both beneficial and 

deleterious effects of different mito-nuclear pairings, and demonstrated a novel example 

of genotype x genotype x environment interactions.  

 

The fourth chapter “FreeClimber: Automated High Throughput Quantification of 

Climbing Performance in Drosophila, with Examples from Mitonuclear Genotypes” 

presents a novel, image analysis pipeline that improves on the methods used in the 

third chapter and expands on the mitochondrial-nuclear genotypes panel used to 

include two more distantly related mitochondrial haplotypes: D. mauritiana and D. 

yakuba.  Negative geotaxis (climbing) assays are among the most frequently used tools 

used in Drosophila to asses whole animal health, where they take advantage of flies’ 

reliable and instinctive response to climb upward when startled. Traditional methods 

startle flies by knocking them down and record photos or videos of them climbing. 

These are then processed manually by measuring the average height they climb after a 

prescribed time limit (2-4 seconds), or the percent that cross an arbitrary line after a 

time interval (GARGANO et al. 2005; PIAZZA et al. 2009). These methods are accessible 

and easy to perform, but are equally tedious and prone to human error. Our platform, 

FreeClimber, returns reliable and reproducible results that quantify the most linear 

portion of a mean vertical-position vs. time (velocity) curve using a local linear 

regression. The platform is also capable of working with inconsistent backgrounds 

where most background pixels are otherwise static to enable other labs with less 

sophisticated recording set ups take advantage of the tool. FreeClimber is open-source 

and written in Python, available with a Tutorial on GitHub: 
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https://github.com/adamspierer/FreeClimber.	We applied our novel method to a 

longitudinal study of six mitochondrial haplotypes from across three Drosophila sub-

groups (D. melanogaster, D. simulans, and D. yakuba) and found the most distantly 

related pairing, a D. yakuba mitochondrial genome paired with a D. melanogaster 

nuclear genome had the greatest exercise capacity and slowest age-associated decline 

in performance. This finding corroborates a past finding that this introgression shows 

increased vigor, evidenced by its increased longevity over the native pairing (MA AND 

O'FARRELL 2016). 

 

We expand our understanding of the complex architecture underlying physiologically 

demanding traits related to locomotor performance by uncovering novel associations 

between genetic modifiers, establishing causal links between variation in certain genes 

and variation in performance, and lending support to initial observations throughout the 

literature. As our knowledge of complex traits continues to grow, so too will our ability to 

treat complex diseases: it is our hope that in addition to the knowledge this body of work 

generates, it will continue to assist others in making important discoveries through use 

of the open source and freely available computational platforms we developed 

(PEGASUS_flies and FreeClimber). We look forward to seeing how others build on the 

knowledge we uncovered and utilize the tools we developed. 
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Abstract 

The winged insects of the order Diptera are colloquially named for their most 

recognizable phenotype: flight. These insects rely on flight for a number of important life 

history traits, like dispersal, foraging, and courtship. Despite the importance of flight, 

relatively little is known about the genetic architecture of variation for flight performance. 

Accordingly, we sought to uncover the genetic modifiers of flight using a measure of 

flies’ reaction and response to an abrupt drop in a vertical flight column. We conducted 

an association study using 197 of the Drosophila Genetic Reference Panel (DGRP) 

lines, and identified a combination of additive and marginal variants, epistatic 

interactions, whole genes, and enrichment across interaction networks. We functionally 

validated 13 of these candidate genes’ (Adgf-A/Adgf-A2/CG32181, bru1, CadN, 

CG11073, CG15236, CG9766, CREG, Dscam4, form3, fry, Lasp/CG9692, Pde6, Snoo) 

contribution to flight, two of which (fry and Snoo) also validate a whole gene analysis we 

introduce for the DGRP: PEGASUS_flies. Overall, our results suggest modifiers of 

muscle and wing morphology, and peripheral and central nervous system assembly and 

function are all important for flight performance. Additionally, we identified ppk23, an 

Acid Sensing Ion Channel (ASIC) homolog, as an important hub for epistatic 

interactions. These results represent a snapshot of the genetic modifiers affecting drop-

response flight performance in Drosophila, with implications for other insects. It also 

draws connections between genetic modifiers of performance and BMP signaling and 

ASICs as targets for treating neurodegeneration and neurodysfunction. 
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Introduction	

Flight is one of the most distinguishing features of winged insects, especially the 

taxonomic order Diptera. Colloquially named “flies,” these insects rely on their 

namesake for many facets of their life history: dispersal, foraging, evasion, migration, 

and mate finding (BRODSKY 1994). Because flight is central to flies’ life history, many of 

the most critical genes for flight are strongly conserved (EDWARDS 1997; UGUR et al. 

2016). 

 

These “flight-critical” genes are necessary for flight, even as the structures and neural 

circuits they form are co-opted for other phenotypes, like courtship song and display 

(PAVLOU AND GOODWIN 2013; WEITKUNAT AND SCHNORRER 2014). For example, Wingless 

is an important developmental patterning gene necessary for wing formation (QUIJANO 

et al. 2010) and Act88F is one of the main actin isoforms in the indirect flight muscles 

(NONGTHOMBA et al. 2001). We will designate these types of genes that play outsized 

roles in enabling flight “flight critical” genes, since altering their sequence or expression 

profile is more likely to result in large flight performance deficits. On the other hand, we 

will designate “flight-important” genes as those with more modest effects on flight, since 

they are important but not critical. In an evolutionary context, purifying selection would 

act on flight-critical genes more strongly than flight-important genes, meaning flight-

important genes can harbor natural variants that might otherwise vary the flight 

phenotype. These genes are found across systems, including metabolism (MONTOOTH 

et al. 2003), muscle function (KAO et al. 2019), neuronal function (FRYE AND DICKINSON 

2004a; LEHMANN AND BARTUSSEK 2017), and anatomical development (MARCUS 2001; 
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OKADA et al. 2016). Genes filling multiple roles across systems are pleiotropic, and 

those with sufficient natural variation are likely to contribute to complex traits and 

disease (LOBELL et al. 2017; WATANABE et al. 2019). These traits and diseases’ 

independent, yet interconnected, genetic architecture make them inherently challenging 

to study because they are comprised of several modifiers of small to moderate effect 

size (MCCARTHY et al. 2008; MANOLIO et al. 2009; MCCLELLAN AND KING 2010). 

 

We can leverage natural variants in flight-important genes to uncover novel associations 

between genotype and phenotype that otherwise modify flight-critical genes’ function, 

via Genome Wide Association Study (GWAS). The Drosophila Genetics Reference 

Panel (MACKAY et al. 2012; HUANG et al. 2014) (DGRP) is a common resource for 

performing this type of analysis. The DGRP is a panel of 205 genetically distinct D. 

melanogaster lines represents a snapshot of natural variation. Previous studies on 

complex and highly polygenic, quantitative traits identify several candidate loci 

contributing to insect- and Drosophila-specific traits (CHOW et al. 2013; ARYA et al. 2015; 

BATTLAY et al. 2018), as well as traits affecting human health and disease 

(MONTGOMERY et al. 2014; CARBONE et al. 2016; CHOW et al. 2016; ZHOU et al. 2016).  

 

Accordingly, this study was designed to identify the genetic modifiers of flight 

performance and map the underlying genetic architecture. We screened males and 

females from 197 of the 205 DGRP lines and analyzed both sexes, as well as the 

average and difference between sexes. Traditional association studies focus on the 

contribution of additive and dominant variants, however, these fail to identify different 
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types of modifiers with different effect sizes. Accordingly, we took several approaches to 

identify modifiers at the individual variant, whole gene, and network levels. Accordingly, 

we identified 180 additive variants, 70 marginal variants, 12161 unique epistatic 

interactions, and nine interaction sub-networks containing 539 genes contributing to 

flight performance. We also identified 72 whole genes using PEGASUS_flies, a novel 

modification of the human-based PEGASUS program (NAKKA et al. 2016) that we 

modified to work with Drosophila and DGRP studies <https://github.com/ramachandran-

lab/PEGASUS_flies> (File S4). 

 

Taken together, our results strongly suggest variation in flight performance across 

natural populations is affected by cis- and trans-regulatory elements’ role in modifying 1) 

development of wing morphology, indirect flight musculature, and sensory organs; and 

2) the connectivity between the peripheral and central nervous systems. These results 

are further supported by functional validations of 13 candidate genes, many with known 

roles in altering neurogenesis and development. Overall, our results suggest important 

roles for modifiers of BMP signaling in neurodevelopment and pickpocket 23 (ppk23)—a 

degenerin/epithelial sodium channels (DEG/ENaC) homologous in humans with Acid 

Sensing Ion Channels (ASIC)—in altering affecting flight performance. These findings 

address an underexplored body of literature (XIONG AND XU 2012; PINTO et al. 2013; 

HUANG et al. 2015b; DESHPANDE et al. 2016) calling for genetic and pharmacological 

targets of BMP signaling genes and ASIC for treating neuroinjury and 

neurodegenerative diseases in humans.
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Methods 

Drosophila Stocks and Husbandry 

All stocks were obtained from Bloomington Drosophila Stock Center 

(https://bdsc.indiana.edu/), including 197 Drosophila Genetic Reference Panel (DGRP) 

lines (HUANG et al. 2014), 23 Drosophila Gene Disruption Project lines using the 

Mi{ET1} construct (METAXAKIS et al. 2005a; BELLEN et al. 2011a), and two genetic 

background lines (w1118 and y1w67c23; Table S1). 

 

Flies were reared at 25° under a 12-h light-dark cycle. Stocks were density controlled 

and grown on a standard cornmeal media (ELGIN AND MILLER 1978). Two to three days 

post-eclosion, flies were sorted by sex under light CO2 anesthesia and given five days 

to recover before phenotyping. 

 

Flight performance assay 

Flight performance was measured following the protocol refined by Babcock and 

Ganetzky (BABCOCK AND GANETZKY 2014). Briefly, each sex-genotype combination 

consisted of 100 flies, divided into groups of 20 flies across five glass vials. These vials 

were gently tapped to draw flies down, and unplugged before a rapid inversion down a 

25 cm chute. Vials stopped at the bottom, ejecting the flies into a 100 cm long x 13.5 cm 

diameter cylinder lined with a removable acrylic sheet coated in TangleTrap adhesive. 

Free falling flies instinctively right themselves before finding a place to land, which 

ended up immobilizing them at their respective landing height.  
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After all vials in a run were released, the acrylic sheet was removed and pinned to a 

white poster board. A digital image was recorded on a fixed Raspberry PiCamera (V2) 

and the x,y coordinates of all flies were located with the ImageJ/FIJI Find Maxima 

function with a noise tolerance of 30 (SCHINDELIN et al. 2012). For each sex-genotype 

combination, the mean landing height was calculated for only the flies that landed on 

the acrylic sheet. 

 

High-speed video capture of flight column 

High-speed videos of flies leaving the flight column were recorded at 1540 frames per 

second using a Phantom Miro m340 camera recording at a resolution of 1920 x 1080 

with an exposure of 150 µs (Data available in File S1). The camera was equipped with a 

Nikon Micro NIKKOR (105 mm, 1:2.8D) lens and Veritas Constellation 120 light source. 

 

Estimating heritability 

Individual fly landing heights were adjusted for covariate status by adding the difference 

between the DGRP webserver’s adjusted and raw line means for each sex, and added 

them back to the individual landing height of the respective sex and genotype. Using 

these adjusted landing heights by sex, we performed a random effects analysis of 

variance using the R (v.3.5.2) package lme4 (v.1.1.23): Y ~ µ + L + ε. Here, Y is the 

adjusted flight score, µ is the combined mean, L is the line mean, and ε is the residual. 

From this, sex-specific broad sense heritability (H2) estimates were calculated from the 

among line (σL
2) and error (σE

2) variance components: H2 = σL
2 / (σL

2 + σE
2). 
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Genome wide association mapping 

Flight performance scores for males and females were submitted to the DGRP2 GWAS 

pipeline (http://dgrp2.gnets.ncsu.edu/) (MACKAY et al. 2012; HUANG et al. 2014) and 

results for each sex, and the average (sex-average) and difference (sex-difference) 

between them were all considered (Table S3). In total, 1,901,174 variants with a minor 

allele frequency (MAF) ≥ 0.05 were analyzed (Data available in File S2). All reported 

additive variant P-values result from a linear mixed model analysis, including Wolbachia 

infection and presence of five major inversions as covariates. Variants were filtered for 

significance using the conventional P ≤ 1E-5 threshold (MACKAY AND HUANG 2018). 

Effect size estimates were calculated as one-half the difference between the mean 

landing heights for lines homozygous for the major vs. minor allele. The contribution of 

individual variants to the overall effects was estimated as the absolute value of an 

individual variant's effect size divided by the sum of the absolute values for all 

conventionally significant (P < 1e-5) variants' effect sizes.   

 

Candidate gene disruption screen 

Candidate genes were validated using insertional mutant stocks generated from Gene 

Disruption Project (BELLEN et al. 2011b). These stocks contain a Minos enhancer trap 

construct Mi{ET1}(METAXAKIS et al. 2005b) and were built on either w1118 or y1 w67c23 

backgrounds (BDSC_6326 and BDSC_6599, respectively). 

 

Control and experiment line genetic backgrounds were isogenized with five successive 

rounds of backcrossing the insertional mutant line to its respective control. Validation of 
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flight phenotypes was done using offspring of single-pair (1M x 1F) crosses between the 

control and insert lines. Heterozygous flies from these crosses were mated in pairs and 

the homozygous offspring lacking the insertion were collected as the control. Candidate 

heterozygous/homozygous positive lines were mated as pairs once more and lines 

producing only homozygous positive offspring were used as experimental lines (Figure 

S1). Experimental lines were checked for a GFP reporter three generations later to 

confirm their genotype. The finalized recombinant backcrossed control and 

experimental lines for each sex-genotype combination were assayed for flight 

performance, and tested for significance, via Mann-Whitney U-tests.  

 

Calculating gene-score significance 

Gene-scores were calculated using Precise, Efficient Gene Association Score Using 

SNPs (PEGASUS) (NAKKA et al. 2016). Originally implemented with human datasets, we 

modified the program to work with Drosophila datasets, which we call PEGASUS_flies. 

It also contains default values adjusted for Drosophila, a linkage disequilibrium file, and 

gene annotations drawn from the FB5.57 annotation file, available on the DGRP 

webserver. PEGASUS_flies is available at: https://github.com/ramachandran-

lab/PEGASUS_flies, and as File S4. 

 

Identifying altered sub-networks of gene-gene and protein-protein interaction networks 

Returned gene-scores were filtered for genes of high confidence using the Twilight 

package (v.1.60.0) in R (Scheid and Spang 2005). Here, we estimated the local False 

Discovery Rate (lFDR) of all previously output gene scores using the twilight function. 
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Taking the inflection point of the (1 – lFDR) curve, our high-confidence gene scores 

ranged from 0.65 – 0.73 for the four, sex-based phenotypes (Table S8). High 

confidence genes were –log10 transformed, while the remaining were set to 0.  

 

Hierarchical HotNet was used to identify altered sub-networks of interacting 

genes or proteins (REYNA et al. 2018) based on network topology generated from 

several gene-gene or protein-protein interaction networks. The four adjusted, sex-based 

gene-score vectors were mapped in the program to fifteen interaction networks obtained 

from High-quality INTeractomes (HINT)(DAS AND YU 2012), the Drosophila Interactions 

Database (Droidb)(YU et al. 2008; MURALI et al. 2011), and the Drosophila RNAi 

Screening Center (DRSC) Integrative Ortholog Prediction Tool (DIOPT)(HU et al. 

2011a). Consensus networks were calculated from 100 permutations of all four gene-

score vectors on each of the fifteen interaction networks and filtered to include at least 

three members. The largest sub-network and the remaining eight sub-networks were 

passed to Gene Ontology enRIchment anaLysis and visuaLizAtion tool (GOrilla) to 

identify enrichment for gene ontology (GO) categories (EDEN et al. 2007; EDEN et al. 

2009). 

 

Screening for epistatic interactions 

Epistatic hub genes were identified using MArginal ePIstasis Test (MAPIT), a linear 

mixed modeling approach that tests the significance of each SNP’s marginal effect on a 

chosen phenotype. MAPIT requires a complete genotype matrix, without missing data. 

SNPs were imputed using BEAGLE 4.1 (BROWNING AND BROWNING 2007; BROWNING AND 
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BROWNING 2016) and then filtered for MAF ≥ 0.05 using VCFtools (v.0.1.16) (DANECEK 

et al. 2011). MAPIT was run using the Davies method on the imputed genome (File S2), 

DGRP2 webserver-adjusted phenotype scores for each sex-based phenotype (Table 

S2), DGRP2 relatedness matrix, and covariate file containing Wolbachia infection and 

the presence of five major inversions. 

 

Resulting marginal effect P-values (data available File S3) were filtered to a Bonferroni 

threshold (P ≤ 2.56e-8) and tested for pairwise epistatic interactions in a set-by-all 

framework against the initial 1,901,174 SNPs (unimputed; MAF ≥ 0.05) using the PLINK 

–epistasis flag (v.1.90)(PURCELL et al. 2007). Results were filtered for all P-values 

that exceeded a Bonferroni threshold, calculated as 0.05 / (the number of Bonferroni 

marginal effect P-values x 1,901,174 SNPs). 

 

Annotating FBgn and orthologs 

Flybase gene (FBgn) identifiers were converted to their respective D. melanogaster 

(Dmel) or H. sapiens (Hsap) gene symbols using the Drosophila RNAi Stock Center 

(DRSC) Integrative Ortholog Prediction Tool (DIOPT)(HU et al. 2011b). FBgn were 

filtered for all high to moderate confidence genes, or low confidence genes if they 

contained the best forward and reverse score. 

 

Calculating an empirically simulated significance threshold 

We sought to simulate an empirically derived significance threshold that was unique to 

our data set and separate from the traditional DGRP and Bonferroni thresholds used in 
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other studies. Using the genotype-phenotype matrix, two separate datasets were 

simulated (n = 1000) for each sex-based phenotype. The first randomized the genotype-

phenotype matrix using all available line means, while the second randomized subsets 

of 150 genotype-phenotype pairs. 

 

Simulated associations were run with PLINK (PURCELL et al. 2007)(v.1.90) on each 

dataset type for each sex-based phenotype. The 5th percentile most-significant P-value 

across all permutations in a simulation type was deemed the “empirically simulated 

significance threshold.” 

 

GO term analysis 

GOWINDA (KOFLER AND SCHLÖTTERER 2012) was implemented to perform a Gene 

Ontology (GO) analysis that corrects for gene size in GWA studies. We conducted this 

analysis for male (n=418), female (n=473), sex-average (n=527), and sex-difference 

(n=214) candidate SNPs exceeding a relaxed P < 1E-4 significance threshold, against 

the 1,901,174 SNPs with MAF ≥ 0.05. We ran 100,000 simulations of GOWINDA using 

the gene mode and including all SNPs within 2000 bp. 

 

Gene Ontology enRIchment anaLysis and visuaLizAtion tool (GOrilla)(EDEN et al. 2007; 

EDEN et al. 2009) was run on PEGASUS_flies gene-scores and Hierarchical 

Hotnet sub-networks using the default commands and a gene list compiled from all 

genes available in the FB5.57 annotation file. 
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Weighted Gene Co-expression Network Analysis 

To test whether ambient adult transcriptomes could explain the observed phenotypic 

variation, we turned to the publically available DGRP2 microarray data, downloaded 

from the DGRP2 webserver (HUANG et al. 2014). These data represent the 

transcriptomes for untreated young adult flies of each sex. We performed Weighted 

Gene Co-expression Network Analysis (WGCNA) analyses using the available R 

package (LANGFELDER AND HORVATH 2008) to cluster and correlate the expression 

profiles of genes from 177 shared, DGRP lines. This analysis was run using the 

following parameters: power = 16 (from soft threshold analysis ≥ 0.9), merging threshold 

= 0.0, signed network type, maximum blocksize = 1000, minimum module size = 30. 

 

 

Data availability 

All data required to rerun the outlined analyses either publically available through 

FlyBase (http://flybase.org/) (GRUMBLING et al. 2006; CHINTAPALLI et al. 2007b; DOS 

SANTOS et al. 2015), the DGRP2 webserver (http://dgrp2.gnets.ncsu.edu/), or available 

as a Supplemental File. 	
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Results 

Variation in flight performance across the DGRP 

Cohorts of approximately 100 flies from 197 lines of the DGRP (Table S1) were tested 

for flight performance using a flight column (BABCOCK AND GANETZKY 2014) (Figure 1A). 

We confirmed the repeatability of our assay by retesting 12 lines of varied ability reared 

10 generations apart. We observed very strong agreement between generations (r = 

0.95; Figure S1), affirming a role for genetic, rather than environmental or experimental, 

variation in driving phenotypic variation. We recorded high-speed videos for a weak, 

intermediate, and strong genotype entering the flight column (Figure 1B-D; File S1) and 

concluded this assay is best for studying the reaction and response to an abrupt drop. 

There was strong agreement between sex-pairs’ mean landing height for each genotype 

(r = 0.75; Figure 1E), suggesting the genetic architecture is mostly shared between the 

sexes. As expected, there was a modest degree of sexual dimorphism in performance, 

with males outperforming females (male: 0.80m ± 0.06 SD; female: 0.73m ± 0.07 SD; 

Figure 1F; Table S2), though the broad sense heritability (H2) for each sex was nearly 

the same (H2
Male = 13.5%; H2

Female = 14.4%). In addition to males and females, we also 

investigated the phenotypic variation in the average (sex-average) and difference (sex-

difference) between sexes (Figure S2). 

 

Before running the association analysis, we tested whether flight performance was a 

unique phenotype. We compared our phenotype scores for males and female against 

publically available phenotypes on the DGRP2 webserver. We found no significant 

regression between flight performance and any of the phenotypes in either sex after 
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correcting for multiple testing (P ≤	1.85E-3; Table S3). This negative result suggests our 

measure of flight performance is a unique phenotype among those reported. 

 

Association of additive SNPs with flight performance 

We conducted a Genome Wide Association Study (GWAS) to identify genetic markers 

associated with flight performance. We performed an analysis with 1,901,174 common 

variants (MAF ≥ 0.05) on the additive genetic effects of four sex-based phenotypes: 

males, females, sex-average, and sex-difference. Some phenotypes covaried with the 

presence of major inversions (Table S4), so we analyzed association results using a 

mixed model (Figure 2A) to account for Wolbachia infection status, presence of 

inversions, and polygenic relatedness (Figures S3-4). Annotations and unreferenced 

descriptors of genes’ functions, expression profiles, and orthologs were gathered from 

autogenerated summaries on FlyBase (GRUMBLING et al. 2006; DOS SANTOS et al. 2015). 

These summaries and descriptors were compiled from data supplied by the Gene 

Ontology Consortium (ASHBURNER et al. 2000; CARBON et al. 2019), the Berkeley 

Drosophila Genome Project (FRISE et al. 2010), FlyAtlas (CHINTAPALLI et al. 2007b), The 

Alliance of Genome Resources Consortium (CONSORTIUM 2020), modENCODE (DOS 

SANTOS et al. 2015), PAINT(GAUDET et al. 2011), the DRSC Integrative Ortholog 

Prediction Tool (DIOPT) (HU et al. 2011b), and several transcriptomics and proteomic 

datasets (CHINTAPALLI et al. 2007b; KARR 2007; MUMMERY-WIDMER et al. 2009; BROWN 

et al. 2014; OKADA et al. 2016; CASAS-VILA et al. 2017; KAO et al. 2019).  
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We filtered additive variants with a strict Bonferroni threshold (P ≤ 2.63E-8). Taking a 

MinSNP approach, which identifies significant genes if their lowest (most significant) 

variant P-value crosses a threshold (NAKKA et al. 2016), we identified six unique 

variants, five of which mapped to six genes (CG15236, CG34215, Dscam4, Egfr, 

fd96Ca, Or85d) (Table 1). Variants mapping to Egfr and fd96Ca also contained known 

embryonic cis-regulatory elements (transcription factor binding sites (TFBS) and a 

silencer) (NEGRE et al. 2011). Of note, Dscam4 was deemed “damaged” in 38 of the 

lines tested (MACKAY et al. 2012); however, the difference between mean landing 

heights of the damaged vs. undamaged lines was less than 1 cm (P = 0.32, Welch’s T-

test). 

 

Using the traditional DGRP significance threshold (P ≤ 1E-5) (MACKAY AND HUANG 

2018), we identified 180 variants across all four sex-based phenotypes (Figures 2B and 

S5, Table S5). The individual additive variant with the largest effect size contributed 

0.045 meters (or 0.97% of the sum of all significant variants) for males and 0.064 

meters (1.1% of the sum of all significant variants) for females. For reference, the 

variant with the smallest significant effect size was 1.7E-4 meters (or 0.0036% of the 

sum of all significant variants) for males and 5.7E-3 meters (or 0.095% of the sum of all 

significant variants) for females. All but 19 variants mapped to intergenic or non-coding 

regions, which are generally indicative of cis-regulatory regions. Of the non-coding 

variants, 149 mapped to 136 unique genes across the sex-based analyses (Table 2). 

These included development and function of the nervous system (aru, CadN, ChAT, 

chinmo, chn, CNMaR, CSN6, DIP-delta, Dscam4, Egfr, fd96Ca, form3, fry, hll, htk, jeb, 
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kek2, klg, klu, Mbs, Mmp2, nompC, Or46a, Or85d, Pdp1, Ptp10D, pyd, Rbp6, rut, Sdc, 

SK, SKIP, Spn, Snoo, Tmc), neuromuscular junction (fend, Gad1, Gαo/Galphao, jeb, 

Sdc, Syt1), muscle (bru1, bves, CG17839, jeb, Lasp, Pdp1, rhea), cuticle and wing 

morphogenesis (CG15236, CG34220, CG43218, Egfr, frtz, fry, Tg), endoplasmic 

reticulum (CG33110, CG43783, tbc, Vti1b) and Golgi body functions (Gmap, Rab30, 

Vti1b), and regulation of translation (mip40, mxt, Rbm13, Wdr37). Approximately half of 

all variants were present in two or three sex-based analyses, though the remainder 

were unique to one (Figure 2B). Several variants mapped to transcription factors (Asciz, 

Camta, CG18011, chinmo, chn, Eip78C, fd96Ca, Pdp1, run) broadly affecting 

development and neurogenesis (GRUMBLING et al. 2006; DOS SANTOS et al. 2015). 

Despite the enrichment for several annotations, we failed to identify any significant gene 

ontology (GO) categories using GOwinda (KOFLER AND SCHLÖTTERER 2012), a GWAS-

specific gene set enrichment analysis. 

 

General development and neurodevelopmental genes validated to affect flight 

performance 

We performed functional validations on a subset of the genes mapped from variants 

identified in the Bonferroni and sex-average analysis. We identified 21 unique candidate 

genes for which a Minos enhancer trap Mi{ET1} insertional mutation line (METAXAKIS	et	

al.	2005b) was publically available (BELLEN et al. 2011b) (Table S1; Adgf-A/Adgf-

A2/CG32181, bru1, CadN, CG11073, CG15236, CG9766, CREG, Dscam4, form3, fry, 

Lasp/CG9692, Pde6, Snoo). Three additional stocks for CadN, Dscam4, and CG11073 

were also tested for their strength of association. Finally, an insertion line for CREG was 
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also included as a negative control, since it was not significant in the additive or 

subsequent analyses. 

 

Candidate genes were functionally validated by comparing the distribution in mean 

landing heights of stocks homozygous for the insertion and their paired control 

counterpart (Figure S6) using a Mann-Whitney-U test (Figures 2C; Table S6). Several 

were involved in neurodevelopment (CadN, CG9766, CG11073, CG15236, Dscam4, 

form3, fry, and Snoo), muscle development (bru1 and Lasp), and transcriptional 

regulation of gene expression (Pde6 and CREG). Both CG9766 and CG11073 are 

unnamed candidate genes. In validating roles for both these genes, we are naming 

them tumbler (tumbl) and flapper (flap), respectively, based on the tumbling and 

flapping motions of weaker flies struggling to right themselves in the flight performance 

assay. 

 

Association of gene-level significance and interaction networks with flight performance 

The minSNP approach on the additive variants prioritizes the identification of genes 

containing variants with larger effects (NAKKA et al. 2016). However, this approach 

ignores linkage blocks and gene length, which can bias results. It is important to 

account for gene length because many neurodevelopmental genes can be lengthy and 

exceed 100kb (CadN, 131kb). One alternative approach is Precise, Efficient Gene 

Association Score Using SNPs (PEGASUS), which assesses whole gene significance 

scores based on the distribution of a gene’s variant P-value distributions with respect to 

a null chi-squared distribution (NAKKA et al. 2016). This approach enriches for whole 
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genes of moderate effect and enables the identification of genes that might go 

undetected in a minSNP approach.  

 

While PEGASUS is configured for human populations, we developed PEGASUS_flies, 

a modified version for Drosophila <https://github.com/ramachandran-

lab/PEGASUS_flies>. This platform is configured to work with DGRP data sets, and can 

be customized to accept other Drosophila-based or model screening panels. From our 

additive variants, PEGASUS_flies identified 72 unique genes across the all sex-based 

phenotypes, whose gene scores passed a Bonferroni threshold (P ≤ 3.03E-6; Table 

S7). These genes were present on five of the six chromosome arms tested (Figure 3A). 

They were generally different from those identified in the additive approach’s minSNP 

analyses (Figure 3B and S7), though 15 overlapped (CG17839, CG32506, CG33110, 

Gmap, Mbs, Pdp1, Rab30, VAChT, aru, bves, fry, mip40, mxt, oys, sdk). The relatively 

low overlap between these two gene sets is to be expected, since they prioritize 

variants of large effect vs. whole genes of moderate effect. Overall, genes annotations 

were enriched for neural development and function (aru, bchs, CG13506, ChAT, Ccn, 

daw, dsf, Dip-δ, dpr6, fry, fz2, Mbs, Pdp1, sdk), wing and development (CycE, daw, dsx, 

egr, fry, fz2, Gart, HnRNP-K, Mbs, sno), Rab GTPase activity (ca, CG32506, Gmap, plx, 

Rab30), and regulators of transcription (dsf, fry, HBS1, luna, MED23, mip40, Pdp1, 

Rab30, SAP130, Tgi). Different sex-based phenotypes varied in how unique certain 

whole genes were to a given phenotype (Figure 3C). Genes identified in the sex-

average analysis were generally shared with the male and female phenotypes, while 

genes in the sex-difference analysis were generally unique. Interestingly, Ccn was 
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present in both the male and sex-difference, and dsf and sdk were both present in the 

sex-average and sex-difference. 

 

Taking advantage of the gene-level significance scores, we leveraged publicly available 

gene-gene and protein-protein interaction networks to identify altered sub-networks of 

genes that connect to the flight performance phenotype. A local False Discovery Rate 

(lFDR) was calculated for each sex-based phenotype (Table S8), for which gene-scores 

were either –log10 transformed if they passed or set to 0 if they did not. Transformed 

scores for each sex-based phenotype were analyzed together in Hierarchical 

HotNet (REYNA et al. 2018), which returned a consensus network consisting of nine 

sub-networks of genes (Table S9). The largest network identified 512 genes and was 

significantly enriched for several GO terms, including transcription factor binding, 

histone and chromatin modification, regulation of nervous system development, and 

regulation of apoptosis (Table S10). The other eight networks were comprised of 27 

genes, which together had several significant GO terms, including regulation of gene 

expression through alternative splicing, maintenance of the intestinal epithelium, and 

the Atg1/ULK1 kinase complex (Table S11). 

 

Association of epistatic interactions with flight performance 

Epistatic interactions account for a substantial fraction of genetic variation in complex 

traits (HUANG et al. 2012) but they are statistically and computationally challenging to 

identify. To circumvent the barriers associated with performing an exhaustive, pairwise 

search across all possible combinations (n = 1.81E12), we turned to MArginal ePIstasis 
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Test (MAPIT) to focus the search area. MAPIT is a linear mixed modeling approach that 

identifies variants more likely to have an effect on other variants. These putative hub 

variants represent more central and interconnected genes in a larger genetic network 

proposed by the Omnigenic Inheritance model (BOYLE et al. 2017; LIU et al. 2019). 

Accordingly, we identified 70 unique significant marginal variants exceeding a 

Bonferroni threshold (P ≤ 2.56E-8) across male, female, and sex-average phenotypes. 

The sex-difference analysis yielded no significant variants (Figure S8; Table S12). From 

these, only 14 had significant epistatic interactions with other variants in the genome 

(Table S13), which we will discuss in order of the male, female, and sex-average results 

and contextualized with their epistatic interactions. 

 

In males, there were seven significant marginal variants that mapped to five genes 

(CG5645, CG18507, cv-c, sog, Ten-a). Of the variants, only one (X_15527230_SNP) 

that mapped to a novel transcription start site in the BMP antagonist of short 

gastrulation (sog; human ortholog of CHRD) had significant interactions. This marginal 

SNP interacted with 42 other variants across 28 unique genes (Table S13). Several of 

these genes are important in neuron development, signaling, and function (CG13579, 

Dh31, nAChRalpha4, Sdc simj, sqz, and trio), supporting accumulating evidence of a 

neurodevelopmental basis for variation in flight performance. 

 

In females, there were 14 significant marginal variants that mapped to six genes 

(CG6123, CG7573, CG42741, ppk23, Src64B, twi). Of these variants, five mapped to 

two genes (CG42671 and ppk23) with epistatic interactions. One intronic SNP 
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(3L_11217593_SNP) mapped to CG42671. Little is known about this gene and there 

are no human orthologs, but we can gain insights into its function based on the 51 

epistatic variants that mapped to 37 genes with annotations for regulation of gene 

expression (arx, bi, CG6843, Ches-1-like, dve, HDAC1, Moe, and RpL26, Sdc, Tgi), and 

neural development, signaling, and function (cact, CG13579, HDAC1, ed, ngl3, nrm, 

numb, Sdc). The other four variants (X_17459818_SNP, X_17459830_SNP, 

X_17460743_DEL, X_17460820_SNP) mapped to a 1002 bp region downstream of 

pickpocket 23 (ppk23; human homologs in ASIC gene family). ppk23 is a member of the 

degenerin (DEG)/epithial Na+ channel (ENaC) gene family that functions as subunits of 

non-voltage gated, amiloride-sensitive cation channels. It is involved in chemo- and 

mechanosensation, typically in the context of foraging, pheromone detection, and 

courtship behaviors (ADAMS et al. 1998; LU et al. 2012). These marginal variants 

significantly interacted with 2162 variants, which mapped to 1042 genes that were also 

largely found in the sex-average analysis. 

 

The sex-average phenotype had 62 significant marginal variants (11 also found in 

females) mapping to 21 genes (Art2, CG10936, CG15630, CG15651, CG18507, 

CG3921, CG42671, CG42741, CG5645, CG6123, CG9313, CR44176, cv-c, Fad2, 

natalisin, ppk23, Rbfox1, Rgk1, Src64B, twi). Of the 62 marginal variants, 18 had 

significant epistatic interactions: nine were intergenic, seven mapped to ppk23, and the 

remaining four mapped to single genes: CG42671, CG10936, CG9313, and CG15651 

(Table S13). Previously identified in the female analysis, ppk23 had the greatest 

number of interactions, placing it close to the center of a highly interconnected genetic 
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landscape (Figure 4A). The seven marginal variants interacted with 4895 variants 

across 2010 unique genes, 11 of which mapped to genes that also contained significant 

marginal variants (A2bp1, cv-c, Fad2, CG9313, CG10936, CG42741, Rgk1, sog, 

Src64B, twi, Ten-a). The 2010 unique genes had significant GO term enrichment for 

neuronal growth, organization and differentiation (Table S14). One of ppk23’s 

interactors was CG42671, itself a gene with a significant marginal variant in the sex-

average epistasis screen and previously mentioned in the female epistasis screen. For 

the sex-average epistasis screen, CG42671 interacted with 1013 variants across 616 

genes. These genes were significantly enriched in a gene set enrichment analysis for 

genes involved in neurodevelopment, particularly neuron growth and movement (Table 

S15). While this gene is understudied and lacks substantive annotations, but based on 

its interactors’ significant GO categories, it is very likely CG42671 is involved in growth 

and neuronal target finding. CG10936 has few annotations, though it was identified in a 

screen for nociception (NEELY et al. 2010). It paired with 29 genes annotated for 

neurogenesis and function (CG42788, Dh31, fru, hiw, lilli, nAChRalpha4), as well as 

regulation of gene expression through chromatin modification (Etl1 and lilli) and 

alternative splicing (Srp54 and	U2af38). One SNP (2R_16871314_SNP) was mapped to 

both the 3’ UTR of CG9313 and 29 bp downstream of CG15651. CG9313 (orthologous 

to human DNAI1) is an ATP-dependent microtubule motor and is involved in the 

sensory perception of sound in Drosophila and proprioception, as well as sperm 

development (ZUR LAGE et al. 2019). CG15651 is predicted to localize to the rough 

endoplasmic reticulum and Golgi body during embryogenesis, early larval, and late 

pupation stages where it is expressed in the central nervous system. Its human 
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ortholog, FKRP (fukutin related protein), is implicated in intellectual disability and it is a 

candidate gene therapy target for muscular dystrophy (BROCKINGTON et al. 2001; INLOW 

AND RESTIFO 2004; VANNOY et al. 2017). These genes’ shared function in nervous 

system development is reflected in the variants that map to 87 genes with annotations 

for neuron development, patterning, and function (5-HT2B, cwo, dally, dx, Dysb, enok, 

erm, mbl, Ngl1, nmo, Sdc, Sema1a, sNPF, tup,). Several genes were also annotated for 

endoplasmic reticulum function (bark, CG5885, CG15651, Fatp3, PAPLA1, Trc8, Uggt); 

chromatin remodeling (CG43902, enok, erm, lncRNA:roX1, tim); transcription and 

alternative splicing (cwo, bru3, CG6841, CG9650, CG15710, enok, luna, mbl, tim, tup); 

and gene product regulation (bru3, cwo, CG5885, CG9650, CG15710, luna, tRNA:Arg-

TCT-2-1, tup). Finally, there was a 669 bp region with six intergenic variants 

(chr3L:6890373 - 6891042). This region lacked regulatory annotations, yet collectively 

interacted with 513 variants mapping to 309 genes, many of which were shared with 

ppk23, CG42671, and CG10936. Similarly, these genes had significant GO term 

enrichment for neurodevelopment and neuron function (Table S16).  

 

There were epistatic interactions between several of the genes identified from marginal 

variants (Figure 4A). Since marginal variants represent those more likely to interact with 

other variants, their interaction with one another suggests a highly interconnected 

genetic architecture underlying flight performance. Additionally, the breadth of epistatic 

interactions from a small, focused subset of marginal variants supports an important 

role for epistasis in the genetic architecture of flight performance. There are likely many 

more variants that interact with one another. But based on strong enrichment for 
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neurodevelopmental genes from the very limited subset of marginal variants we tested, 

we hypothesize that flight performance in wildtype Drosophila is modulated by neural 

function and circuitry. 

 

No evidence for adult transcriptome variation affecting flight performance 

Since many variants mapped to cis-regulatory elements and trans-regulatory genes, we 

sought to test whether regulatory variation was affecting developmental or adult 

homeostasis. Accordingly, performed a Weighted Gene Co-expression Network 

Analysis (WGCNA)(LANGFELDER AND HORVATH 2008) using 177 publically available 

DGRP transcriptomic profiles for young adults of both sexes (HUANG et al. 2015a). We 

clustered genes by similarity in expression profile, then correlated those clusters’ 

eigenvalues with the mean and standard deviation of flight performance, as well as the 

proportion of flies that fell through the column over the total assayed. No clusters across 

sex or phenotype had a significant correlation. This result squares well with our previous 

observation that many of the significant variants map to genes involved in pre-adult 

development, rather than genes that maintain adult homeostasis (Figure S9). 

 

Flight performance is modulated by an interconnected genetic architecture 

The genetic architecture of flight performance is comprised of many different types of 

genetic modifiers. Many of the variants map to genes that are found across analytic 

platforms (Figure 4B). Most variants were unique to a single analysis, suggesting that 

association studies should consider using multiple different analyses to enhance the 

power to detect variants and genes in their study. However, many genes and genes 
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identified from variants were identified in two (148) or three (23) analyses. Those 

involved in three analyses include: aru, CG2964, CG13506, CG15651, CG17839, 

CG42671, CycE, daw, Diap1, Egfr, fz2, Gart, Gmap, Mbs, MED23, mip40, mxt, Pdp1, 

Rab30, rhea, sog, sona, Tgi) analyses. This suggests that individual genes can contain 

variants with different types of effects or have differential contributions to the overall 

genetic architecture. A complete lookup table of all genes and genes identified from 

variants is available (Table S17).  
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Discussion 

We tested flight performance of 197 DGRP lines, identifying several additive and 

marginal variants, epistatic interactions, whole genes, and a consensus network of 

altered sub-networks that associated with variation our phenotype. We identified many 

cis-regulatory variants mapped to genes with annotations for wing morphology, indirect 

flight muscle performance, and neurodevelopment of sensory and neuromuscular 

junctions.  

 

Variation in gene regulation drives variation in flight performance 

Variation in gene expression is a major contributor to phenotypic variation (OLEKSIAK et 

al. 2002; CHEATLE JARVELA AND HINMAN 2015). Association studies with the DGRP lines 

often map variants to intergenic and non-coding regions of genes (WITTKOPP et al. 2004; 

CHOW et al. 2013; MACKAY AND HUANG 2018). These regulatory elements can be cis-

regulators, like transcription factor binding sites (TFBS), enhancers, or silencers; or they 

can be trans-regulatory, like transcription factors, splicosomes, or chromatin modifiers. 

In the present study, the vast majority of variants in the additive, marginal, and epistatic 

analyses mapped to introns or within 1kb of a gene, suggesting a cis-regulatory role.  

 

When cis-regulatory elements lie in important developmental genes, their effects can be 

magnified as the organism continues through development. The most significant 

additive variant we identified mapped to an epidermal growth factor receptor (Egfr; 

human homolog EGFR) intron. Encoding a key transmembrane tyrosine kinase 

receptor, Egfr is a pleiotropic gene affecting developmental and homeostatic processes 
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throughout the life and anatomy of the fly. It is well known for its role in embryonic 

patterning and implications in human cancers (SIBILIA et al. 2007; CROSSMAN et al. 

2018). The variant also mapped to several overlapping TFBS for transcription factors 

known to affect embryonic development in a highly dose-dependent manner (bcd, da, 

dl, gt, hb, kni, Med, prd, sna, tll, twi, disco, Trl). Variation in patterning cells fated to 

become tissues and organs can be magnified through the adult stage, especially when 

that receptor is also known to affect other developmental processes (PAUL et al. 2013). 

Other intronic variants were identified in Egfr through the epistatic interactions with 

ppk23, illustrating how different types of genetic modifiers can exist within the same 

gene. 

 

The role of cis- and trans-regulatory elements goes even further when there is variation 

in cis-regulatory elements of trans-regulatory genes. One of the Bonferroni additive 

variants mapped to an intronic region of Forkhead domain 96Ca (fd96Ca; human 

homologs FOXB1 and FOXB2), a TFBS for dorsal (dl), and a silencer for histone 

deacetylase 1 (HDAC1). fd96Ca is a fork head box transcription factor expressed in 

neuroblasts along the longitudinal axis of the embryo and in some sensory neurons in 

the embryonic head (HACKER et al. 1992). Trans-regulators, like fd96Ca, are proposed 

to have a large impact on phenotypic variation under the Omnigenic Inheritance model 

(BOYLE et al. 2017; LIU et al. 2019). Similar to Egfr, regulatory variation in a gene that 

helps determine cell fates can have larger effects if not enough cells are allocated for 

differentiation later in life. This can begin a cascade that amplifies downstream (ALBERT 
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AND KRUGLYAK 2015) and may hint at why trans-regulators were significant Gene 

Ontology (GO) terms in the consensus network. 

 

There are likely non-coding regions of the genome that correspond with more cryptic 

regulatory regions. Six intergenic, marginal variants in a 669bp stretch (chr3L:6890373 - 

6891042) had a number of significant epistatic interactions with developmental and 

neurodevelopmental genes. These variants lacked regulatory annotations in the DGRP2 

annotation file, however these annotations were collected during embryogenesis 

(NEGRE et al. 2011) so it is possible these sites are activated by trans-regulators during 

different times in development. Nonetheless, based on its epistatic interactions, it is 

likely an important cis-regulatory region that affects general development from an early 

stage in the fly life cycle. 

 

Our results suggest genetic variation in regulatory (non-coding) regions has a greater 

affect on variation of flight performance than variation in protein coding regions. While 

non-synonymous variants can have large effects on flight performance (DRUMMOND et 

al. 1991; MAUGHAN AND VIGOREAUX 1999; HAIGH et al. 2010), they were uncommon in 

our screen compared with variation in non-coding regions. This may be a result of 

strong purifying selection acting against them in a natural setting. Many of the candidate 

modifiers of flight are more commonly expressed during development (CHINTAPALLI et al. 

2007b; BROWN et al. 2014; CASAS-VILA et al. 2017). This observation is supported by our 

lack of evidence for adult transcriptomic variation correlating with flight performance. 

Additionally, the flight phenotype was highly heritable, suggesting our phenotype was 
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not an artifact of environmental or experimental variation. Finally, the constructs we 

used to validate candidate genes created genetic variation in intronic regions, rather 

than post-transcriptionally modifying gene expression with an RNAi construct. Our 

successful validation of several candidate genes suggests variation in the non-coding 

regions of the candidate genes is sufficient for observing phenotypic differences. 

Further, insertion of the constructs into intronic regions both positively and negatively 

affected performance, even when done at independent sites in the same gene, 

suggesting a more nuanced impact of genetic variation in cis-regulatory regions. We 

conclude that modifiers of cis- and trans-regulation in pre-adult stages are more likely to 

modify flight performance in wild populations than variation in coding sequence. 

 

  

Variation in wing and indirect flight muscle development contributes to variance in flight 

performance  

Flight performance is a complex trait comprised of coordination across several smaller 

developmental and functional, complex traits(ENNOS 1989; MARCUS 2001; PITCHERS et 

al. 2019). The central role of Egfr in development means it can have wide range of 

functional effects on adult morphology. Natural variants in Egfr are known to cause 

developmental differences in wing morphology that can significantly alter flight 

performance (PAUL et al. 2013; PITCHERS et al. 2019), in part through interactions with 

the Bone Morphogenetic Protein (BMP) signaling pathway (MARCUS 2001; PAUL et al. 

2013; HEVIA et al. 2017). BMP signaling is also an established modifier of wing 

development, as it forms dose-dependent gradients that pattern the wing size and 
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shape (YU et al. 1996; CRUZ et al. 2009), as well as sensory and neuromuscular circuits 

(BALL et al. 2010; QUIJANO et al. 2010). We identified several modifiers of BMP signaling 

(cmpy, Cul2, cv-2, cv-c, dpp, dally, daw, egr, gbb, hiw, kek5, Lis-1, Lpt, lqf, ltl, Mad, 

nmo, scw, srw, Snoo, tkv, trio) across all analyses and functionally validated Snoo—

discussed below. Among the modifiers of BMP signaling, short gastrulation (sog; human 

homolog Chordin) stood out as a known source of natural variants that modifies flight 

performance in natural populations (MARCUS 2001). sog affects wing morphology 

through its role as a dpp antagonist in patterning the dorsoventral axis of the wings (YU 

et al. 1996; O'CONNOR et al. 2006; WHARTON AND SERPE 2013). sog is also noteworthy 

for its interconnectedness to other genes containing both a significant marginal variant 

and variants that had epistatic interactions with other significant marginal variants: 

ppk23 and CG42671 (formerly CG18490 and CG34240)—discussed below. Marginal 

variants represent a class of variants that are statistically more likely to interact with 

other variants (CRAWFORD et al. 2017), via epistasis. Their identification hints at a more 

interconnected role in the genetic architecture. In this case, identification of sog 

suggests a more interconnected role for this antagonist of BMP signaling in modifying 

flight performance. 

 

In addition to wing morphology, we identified several modifiers known to affect flight 

muscle function. The indirect flight muscles (IFM) power flight through the alternating 

dorsoventral and dorsolongitudinal muscle contraction to deform the cuticle and move 

the wings (DICKINSON AND TU 1997; LEHMANN AND DICKINSON 1997), while the direct flight 

muscles control flight through precise adjust of the wing angle (KOZOPAS AND NUSSE 
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2002). We identified two genes with known roles in flight (FERNANDES AND SCHOCK 2014; 

SPLETTER et al. 2015) from the additive screen that we successfully validated: Lasp and 

bru1. Lasp (human ortholog LASP1), is the only nebulin family gene in Drosophila, and 

shown to modify sarcomere and thin filament length, and myofibril diameter (FERNANDES 

AND SCHOCK 2014). We also identified bruno 1 (bru1 or aret; human homolog CLEF1 

and CLEF2), a transcription factor that controls alternative splicing of myofibrils in the 

IFM (SPLETTER et al. 2015; KAO et al. 2019), among other developmental processes. 

bru1 had two intronic variants, one of which mapped to a TFBS for twi—one of the 

genes identified from a significant marginal variant. 

 

Using our newly developed platform PEGASUS_flies to find significant whole genes, 

we also identified tropomodulin (tmod; human homolog TMOD1) and Glycerol-3-

phosphate dehydrogenase 1 (Gpdh1; human homolog GPD1). These two genes were 

previously validated for their roles in flight performance (MARDAHL-DUMESNIL AND 

FOWLER 2001; MONTOOTH et al. 2003) and are responsible for muscle function and 

metabolism within muscles, respectively. The identification and previous validation of 

tmod and Gpdh1 is noteworthy because neither had a significant variant exceed the 

additive screen’s significance threshold (P ≤ 1E-5). This finding demonstrates a 

successful proof-of-principle for PEGASUS_flies’ ability to identify genetic modifiers 

that would otherwise be overlooked in a traditional minSNP approach in an additive 

screen. Additionally, we successfully validated fry, identified in both the additive and 

whole gene screens. Taken together, the prior and current validation of these genes 
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establishes PEGASUS_flies as a verified platform for identifying modifiers of complex 

traits. 

 

Neurodevelopmental genes play an important role in modifying flight performance 

Many neurodevelopmental genes with diverse functions were identified across 

analyses. Because neurodevelopmental genes can play several roles, many of which 

are unannotated in GO databases, GO term enrichment analyses can be 

underpowered. This may explain why we failed to identify any GO terms for additive 

variants in the GOwinda analysis (CHOW et al. 2013). However, their identification 

through other GO analyses on the epistatic and network-based analyses is 

encouraging. 

 

Several neurodevelopmental genes overlapped between the additive minSNP and 

PEGASUS_flies whole gene approach. These genes (aru, ChAT, Ccn, DIP-δ, dsf, dsx, 

fry, Mbs, sdk, VAChT), lend additional support to the likelihood these genes were not 

false positives. For example, fry and Sidekick (sdk) both coordinate dendritic target 

finding functions with DSCAM family genes (YAMAGATA AND SANES 2008; FUERST AND 

BURGESS 2009). This is in agreement with several significant GO terms for axon 

guidance and neuronal targeting in the consensus network’s largest sub-network (Table 

S11) and for the genes identified from epistatic interactions with ppk23, CG42671, and 

an intergenic region (chr3L:6890373 - 6891042)(Tables S14-16). Accordingly 

neurodevelopmental genes are present throughout our study, and represent a highly 

interconnected group of genes that likely plays an important role in flight performance.  
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Underscoring this interconnectedness is the identification of several 

neurodevelopmental genes that mapped to epistatic interactions with a common, 

significant marginal variant in sog. This variant was significant in males and mapped to 

a new transcription start site. In addition to affecting wing morphology, sog also plays a 

role in neurodevelopment (CG13579, dib, Hk, lncRNA:rox1, nAChRα4, Sdc, simj, sqz, 

Toll-4, trio) (ASHBURNER et al. 2000; BALL et al. 2010; WHARTON AND SERPE 2013; 

CARBON et al. 2019). Several of these genes were involved in neuromuscular growth 

and function (CG13579, Hyperkinetic (Hk), nicotinic acetylcholine receptor α 4 

(nAChRα4), Syndecan (Sdc), squeeze (sqz), trio) (FONTAINE et al. 1988; HEWES AND 

TAGHERT 2001; ALLAN et al. 2003; UEDA AND WU 2009; BALL et al. 2010; NGUYEN et al. 

2016), suggesting an important connection between neurodevelopmental phenotypes 

and their role in activating direct and indirect flight muscles. However, some of the 

genes interacting with sog can affect sensory neurons as well. For example, trio is also 

present in sensory neurons and is capable of modifying chemosensation (ARYA et al. 

2015). Other sog variants that had epistatic interactions with marginal variants in 

CG42671 (formerly CG18490 and CG34240) and ppk23—discussed below, two genes 

with known or putative roles in developing the peripheral nervous system (PNS). 

 

In addition to neuromuscular genes, we validated genes involved in patterning the PNS. 

One of the Bonferroni variants from the additive screen mapped to Down Syndrome Cell 

Adhesion Molecule 4 (Dscam4; human ortholog DSCAM). DSCAMs are a conserved 

family of extracellular, immunoglobin proteins that promote cell-cell adhesion. They are 
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found in complex (type IV) dendrite arborization neurons that promote dendritic target 

recognition and dendrite self-avoidance in the developing PNS (DOS SANTOS et al. 2015) 

and in the brain and central nervous system (CNS) (NEVES et al. 2004; ZHAN et al. 

2004). Type IV dendritic arborization neurons transduce signals from sensory neurons 

(e.g. photoreceptors, chemosensors, and mechanosensors), to the CNS (STOCKER 

1994; SMITH AND SHEPHERD 1996; NEVES et al. 2004; TADROS et al. 2016). Dscams are 

expressed differentially and combinatorally in different neurons, which allows them to 

create highly interconnected neural circuits (NEVES et al. 2004). They also work with 

other cell-cell adhesion proteins, like cadherins, in patterning the nervous system. 

Cadherin-N (CadN or N-cad) interacts with Dscam2 and Dscam4 in patterning olfactory 

receptor neurons (ORN), like Or46a (significant additive hit) and Or59c (significant 

epistatic hit with ppk23) (HUMMEL et al. 2003; HUMMEL AND ZIPURSKY 2004; SOBA et al. 

2007; TADROS et al. 2016). Given their importance in patterning sensory neuron circuits 

and strong significance in the additive screen, we independently validated Dscam4 and 

CadN using two separate insertional mutants for each. Both pairs of insertional mutants 

in both genes were significant, though the direction of effect was reversed, reiterating 

how cis-regulatory regions can differentially affect genes’ expression levels. Our double 

validation for each supports a greater level of confidence in Dscam4 and CadN as 

modifiers of the peripheral nervous system important for flight performance. 

 

We validated two other dendrite patterning genes that also help to form sensory organs 

on the wing and body that contribute to proprioception: furry (fry; human homolog 

FRYL) and Sno oncogene (Snoo or dSno; human homolog SKI). These two conserved 
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proteins are expressed along the same types of sensory neurons as Dscams and 

cadherins that promote dendrite field patterning, dendrite self-avoidance, and 

development of sensory organs (EMOTO et al. 2004). fry assists Dscams and cadherins 

in dendritic tiling of chemosensors (olfaction or gustation) and mechanosensors 

(proprioception) (EMOTO et al. 2004; SOBA et al. 2007; MATSUBARA et al. 2011) that 

directly connect to sensory microchaete (hairs or bristles) organized along the wing and 

body in specific patterns (CONG et al. 2001). Meanwhile, Snoo interacts with the 

wingless pathway (QUIJANO et al. 2010; FISCHER et al. 2012), and is an important 

antagonist of Medea (Med or dSmad4; human homolog Smad4)—an important 

regulatory of the BMP-to-activin–β pathway (TAKAESU et al. 2006). Snoo is known to 

modify wing shape (TAKAESU et al. 2006), dendritic tiling, and the development of 

sensory organs (microchate and campaniform sensilla) on the wing (QUIJANO et al. 

2010; LUO 2017). These sensory organs play different roles; wing chaete can function 

as chemosensors (olfaction and gustation) and mechanosensors (STOCKER 1994; 

FURMAN AND BUKHARINA 2008), while campaniform sensilla measure strain on the 

deformed wing blade (DICKINSON 1990; DICKINSON et al. 1997; AINSLEY et al. 2003; 

YAMASHITA et al. 2018). Together, these sensory organs aid in proprioception of flight 

(LEHMANN AND BARTUSSEK 2017) and delineate a direct connection between the role of 

proper development of the wings’ sensory organs and the proper development of the 

neural circuitry connecting them to the CNS in modifying flight performance. 

 

We functionally validated two candidate genes with only tangential evidence of their 

function that we are naming flapper (flap, formerly CG11073) and flippy (flip, formerly 
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CG9766). flapper is expressed in the peripodial epithelium cells of the eye, leg, and 

wing imaginal discs (FIRTH AND BAKER 2007). It is expressed at very high levels during 

16-18 hours of embryogenesis, pupariation (CASAS-VILA et al. 2017) and in the head, 

eyes, and carcass in the adult stage (CHINTAPALLI et al. 2007a). It was previously 

identified as a candidate gene in a screen for modifiers of circadian rhythm (HARBISON et 

al. 2019) and was significantly upregulated in flies bred for aggressive behavior (DIERICK 

AND GREENSPAN 2006), but both studies failed to functionally validate the gene. flapper 

was also implicated in the downregulation of amyloid-β peptides (PAGE et al. 2012) and 

in late life fecundity (DURHAM et al. 2014) suggesting it may play a basic role in 

development that affects several phenotypes. Accordingly, we hypothesize it plays 

some role in patterning neural circuitry of sensory neurons on the cuticle and eyes, and 

facilitates neural circuit assembly in the brain. The other gene, flippy (human homolog 

FANK1), is pleiotropic with important roles in neuroanatomical development (MUMMERY-

WIDMER et al. 2009; NEUMULLER et al. 2011) and sperm development (BROWN et al. 

2014). It is important in the development of trichogen cells, which are precursors to the 

chaete flies use for mechanosensation. In humans, FANK1 plays roles in 

spermatogenesis and apoptosis, and is a putative evolutionary target of balancing 

selection (ZHENG et al. 2007; DEGIORGIO et al. 2014). Given flippy’s pleiotropic role in 

neurodevelopment and gametogenesis, it may also be under stabilizing selection 

brought about by contrasting selective pressures for neural function and fitness. 

 

Finally, qualitative observations of differentially performing DGRP lines support a role 

for proprioception as a modifier of flight performance. High-speed videos of strong, 
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intermediate, and weak lines show strong lines react quicker to an abrupt free fall and 

are better at controlling their descent than the intermediate fliers, and much more than 

weak fliers. This direct evidence corroborates with the validation screen and inferential 

association analyses to support a role for natural variants in genes that affect 1) sensory 

neural circuit connectivity, 2) development and function of neuromuscular junctions, and 

3) the integration of these two onto wings of varying morphologies for modifying flight 

performance in a natural population. 

 

Important implications for acid sensing ion channels in flight performance and neural 

function flight 

Pickpocket genes encode a conserved group of degenerin/epithelial sodium channels 

(DEG/ENaC) that function as non-voltage gated, amiloride-sensitive cation channels 

(ADAMS et al. 1998). They are found in the brain, thoracic ganglion (LU et al. 2012; 

THISTLE et al. 2012), neuromuscular junctions(BEN-SHAHAR 2011; THISTLE et al. 2012), 

and trachea (LIU et al. 2003), though pickpocket family genes are most commonly found 

along type IV dendrite arborization sensory neurons that connect chemo- or 

mechanosensory organs to the CNS (GRUEBER et al. 2003; EMOTO et al. 2004; KUO et 

al. 2005; SOBA et al. 2007; MATSUBARA et al. 2011; THISTLE et al. 2012; GORCZYCA et al. 

2014; NG et al. 2019) on the head, legs, and wings (PAUKERT et al. 2004; BEN-SHAHAR 

2011; LU et al. 2012; ZELLE et al. 2013; MAUTHNER et al. 2014; JEONG et al. 2016). 

Chemosensing microchaete can contain olfactory receptor neurons (ORN), gustatory 

receptor neurons (GRN), and ionotropic receptors (IR), which are useful for foraging 

and pheromone detection (FRYE AND DICKINSON 2004b; PAUKERT et al. 2004; SHERMAN 
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AND DICKINSON 2004; TAYLOR AND KRAPP 2007; BEN-SHAHAR 2011; LU et al. 2012; ZELLE 

et al. 2013; MAUTHNER et al. 2014; JEONG et al. 2016; LEHMANN AND BARTUSSEK 2017). In 

this study, we identified six pickpocket genes (ppk1, ppk8, ppk9, ppk10, ppk12, ppk23), 

10 gustatory receptors (Gr10a, Gr10b, Gr28b, Gr36b, Gr36c, Gr39a, Gr59a, Gr59d, 

Gr61a, Gr64a), 12 olfactory receptors and binding proteins (Or24a, Or45a, Or46a, 

Or49a, Or59b, Or59c, Or67d, Or71a, Or85d, Obp8a, Obp28a, Obp47a), and 13 

ionotropic receptors (Ir41a, Ir47a, Ir47b, Ir51a, Ir56b, Ir56c, Ir56d, Ir60d, Ir60f, Ir62a, 

Ir64a, Ir67b, Ir75d) from the additive, marginal, epistatic, and network approaches. 

Or85d was identified from the 2nd most significant additive variant and only non-

synonymous SNP that passed a Bonferroni threshold in the additive search. And yet, 

despite a combined 41 pickpocket, gustatory receptor, olfactory receptor, and ionotropic 

receptor genes, only six (ppk10, ppk12, Gr59d, Or24a, Ir41a, and Ir60d) overlapped 

with an olfactory screen testing for genetic associations across 14 odors (ARYA et al. 

2015). Accordingly, we hypothesize a more nuanced role for these chemosensors in 

aiding proprioception during flight.  

 

The magnitude of significant marginal variants and epistatic interactions that mapped to 

ppk23 suggests this ion transporter has a much more interconnected role in the genetic 

architecture of flight performance than previously thought. ppk23 is a modifier of flies’ 

ability to track odors during free flight, but not a modifier of odorless flight (HOUOT et al. 

2017). Our results support a role for ppk23 in modifying flight, along with all but eight 

(Or46a, Or49a, Or85d, Gr36b, Gr36c, Ir60d, Ir60f, ppk10) of the 41 previously listed 

pickpocket and chemoreceptor genes that ppk23 interacted with. Like sog, ppk23 is 
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likely a central modifier of performance based on the number of epistatic interactions 

with variants mapping to genes identified in the marginal variant screen (A2bp1/	Rbfox1, 

cv-c, Fad2, CG9313, CG10936, CG42741, Rgk1, sog, Src64B, twi, Ten-a).  Some of 

these play roles in sensory signal processing (A2bp1/	Rbfox1, CG9313, CG10936, 

Fad2, Rgk1), neuron growth (sog and Src64b), neuromuscular junction development 

(cv-c, Src64b, Ten-a), and transcription factors (A2bp1/	Rbfox1, CG42741, twi) (JIN et 

al. 2016; SHUKLA et al. 2017), several of which had significant epistatic interactions of 

their own. Of these, CG10936 is proposed to be involved in sensory perception (JIN et 

al. 2016), but has limited annotations otherwise. Our work supports this hypothesized 

function. ppk23, in addition to these interactions, is known to modulate physiology and 

lifespan (GENDRON et al. 2014), broadening its canonical roles in chemo- and 

mechanosensation. Taken together, ppk23 likely has strong connections to many 

systems beyond detection of stimulation that have deeper connections to organismal 

biology.  

 

The interconnectedness of ppk23 also provides clues about the sexual dimorphism 

observed in flight. While males generally outperform females, likely due to differences in 

weight, sex failed to explain ~25% of the variation between the two groups. Like most 

pickpocket family genes, ppk23 is well established as an important factor in 

chemosensation, pheromone detection, and courtship (LU et al. 2012; THISTLE et al. 

2012; GORCZYCA et al. 2014)—highly sex-specific phenotypes. One of ppk23’s epistatic 

interactions mapped to fruitless (fru; human homolog ZBTB24), a transcription factor 

responsible for sex-specific neural phenotypes involved in courtship and pheromone 
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detection (KIMURA et al. 2005) that co-localizes with ppk23 differentially between sexes, 

on the leg and wing microchaete (BEN-SHAHAR 2011; LU et al. 2012; THISTLE et al. 2012; 

PAVLOU AND GOODWIN 2013; GENDRON et al. 2014). In addition to the PNS, ppk23 and 

fru have sex-specific co-localization patterns in the thoracic ganglion. This cluster of 

neurons central to the “escape” response, allowing for ultra-fast processing of and 

response to flight-associated cues (STRAUSFELD 2009; LEHMANN AND BARTUSSEK 2017). 

Males show more connections between ppk23 and fru in the thoracic ganglion, and co-

localization in neurons crossing the midline between the two sides of the anterior-most, 

pro-thoracic ganglion (LU et al. 2012; THISTLE et al. 2012). fru is also expressed in vMS2 

motor neurons connecting the thoracic ganglion to the flight musculature, likely involved 

in courtship song generation and aggression behaviors (EWING 1979; YU et al. 2010). 

The connection between sensory neurons, ppk23, fru, and motor neurons involved in 

wing motion draw a clear connection between a potential mechanism delineating the 

sex-difference phenotype we observed. Given the prior connections between ppk23, 

sog, and the epistatic interactions between them that annotate to sensory neurons and 

motor neuron neuromuscular junctions, there are likely other important connections 

underlying the ability of flies to process proprioceptive signals that are relayed directly to 

the flight musculature during our assay that have yet to be uncovered. Some of these 

connections may lie in the genes identified using PEGASUS_flies’ for the sex-

difference analysis, like doublesex (dsx), an interactor of fru and ppk1 in patterning sex-

specific neural networks for courtship; dissatisfaction (dsf), a modifier of courtship 

behavior (FINLEY et al. 1997b; YU et al. 2010; REZAVAL et al. 2012; SHIRANGI et al. 2016); 

and several other genes: blue cheese (bchs), Ccn, CG13506, defective proboscis 
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extension response 6 (dpr6), pollux (plx), sidekick (sdk), eiger (egr) (FINLEY et al. 1997a; 

BILLETER et al. 2006; PAVLOU AND GOODWIN 2013; DOS SANTOS et al. 2015). Further 

study of these genes may yield promising insights into the sex-differences we observed 

in flight performance, as well as sex-specific behavioral traits. 

 

A proposed model for understanding the genetic architecture of flight performance 

Flight performance is likely an epiphenomenon of several interconnected complex traits. 

While we are unable to identify every modifier, we likely identified the main components 

of the genetic architecture. Accordingly, we propose the following model to synthesize 

our findings (Figure 4C). 

 

Epidermal growth factor receptor is a key gene in a canonical developmental pathway. It 

can affect wing morphology, sensory organ development, and neurodevelopment, on its 

own and through the BMP signaling pathway. Proper development of these structures 

and circuits enables well-connected sensory neurons to receive external stimuli 

regarding proprioception. These signals are transduced through the thoracic ganglion, 

with sex-specific differences potentially modulated through ppk23, fru, and dsx. The 

thoracic ganglion processes these signals and activates motor neurons, which innervate 

the direct (control) and indirect (power) flight musculature at neuron muscular junctions. 

Activating these muscles allows the properly developed wings to flap and generate lift.  
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Implications for BMP signaling and pickpocket genes in neuroinjury and 

neurodegeneration 

The complexity of congenital, neurodegenerative diseases lies in the mix of genetic 

elements with very modest effect size. Association screens with Drosophila present a 

compelling model for identifying these sources of variation, especially in neuron-centric 

traits (CARBONE et al. 2016; CHOW AND REITER 2017; LAVOY et al. 2018; MACKAY AND 

HUANG 2018). Our results present a strong link between flight performance and BMP 

signaling—a proposed candidate pathway for therapeutic interventions in several 

neurodegenerative diseases (BAYAT et al. 2011; PINTO et al. 2013; DESHPANDE et al. 

2016). Mutations in thickveins (tkv) human homologs BMPR1A and BMPR1B are linked 

to familial Alzheimer’s Disease (KANG et al. 2014), while mutants of Superoxide 

dismutase 1 (dSOD1; human homolog SOD1) associated with Amyotrophic Lateral 

Sclerosis (ALS) can be rescued by activators of BMP signaling expressed in 

proprioceptive and motor neurons (HELD et al. 2019). Our validation of the BMP 

antagonist Snoo confirms BMP signaling plays a role in flight performance. Given the 

number of epistatic interactions between ppk23 and BMP signaling genes, it is very 

likely our data uncovers important modifiers of the BMP pathway that affect 

neurodysfunction in humans. 

 

In addition to BMP signaling, we propose an expanded role for ppk23, and pickpocket 

family genes more generally, in neurobiology and neurodysfunction therapeutics. Acid 

Sensing Ion Channel (ASIC) family genes, the human homolog of the pickpocket family, 

can function as neuronal damage sensors. They detect drops in pH around neurons, 
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often caused injury, damage, and dysfunction, which can elicit an inflammation 

response (HUANG et al. 2015b; ORTEGA-RAMIREZ et al. 2017). These channels are found 

all over the brain and spinal column, supporting a functional and protective role 

following traumatic brain injury (concussion) and cerebral ischemia (stroke) (XIONG AND 

XU 2012; HUANG et al. 2015b). They are also identified as a potential target for genetic 

and/or pharmacological interventions of neurodegeneration and neuroinflammation 

(ORTEGA-RAMIREZ et al. 2017). Accordingly, our results break ground in identifying 

candidate genetic interactions that might be useful for such interventions.   
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Supplemental Results 

 

Establishing an empirically defined significance threshold 

While the Bonferroni significance threshold is conservative, the conventional P = 1E-5 

threshold might be considered lax. Accordingly, we simulated two sets of genotype-

phenotype matrices; one set “shuffled” the genotype-phenotype matrix while the other 

set randomly “subsampled” 150 of the 197 lines.  

 

The significance threshold for each sex-based phenotype in each simulation was 

determined by taking the 5th percentile of the most significant P-value across 1000 

permutations (DOERGE AND CHURCHILL 1996). Despite these efforts, the resulting 

significance thresholds were even more stringent than the Bonferroni (Table S18) and 

resulted in only one variant (2R_2718036_DEL) mapping to CG15236 and CG34215 in 

the shuffled sex-difference set. CG15236’s function is not well known, but it is 

expressed during embryogenesis and pupariation in the developing brain and central 

nervous system and putatively affects the wing veins (KRUPP et al. 2005; VONESCH et al. 

2016). CG34215 is less understood, though it is expressed at varying levels throughout 

developmental and adult stages (DOS SANTOS et al. 2015) and contains a single domain 

Von Willebrand factor type C domain—thought to play a role in anti-viral capabilities 

(CHEN et al. 2011).  
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Table 1. Six additive variants surpassed the Bonferroni significance threshold. 
These variants represented all four sex-based phenotypes and were typically near the 
minor allele frequency (MAF) > 0.05 limit. All but one mapped to a gene in Drosophila 
(Dmel), and three had human orthologs (Hsap). Additionally, two SNPs mapped to 
transcription factor binding sites (TFBS) and a silencer region. 
 

 
 

Variant 

 
 

MAF 

Annotation 

Gene  
(Dmel) 

Gene 
(Hsap) 

Regulatory Region 

2R_17433667_SNP 0.05128 Egfr (intron) EGFR TFBS (bcd, da, dl, gt, hb, kni, 
Med, prd, sna, tll, twi, disco, Trl) 

2R_2718036_DEL 0.05641 CG15236 (intron) 
CG34215 (downstream, 
764 bp) 

- 
- 

- 

3L_8237821_SNP 0.0829 Dscam4 (intron) DSCAM - 
3R_20907854_SNP 0.06557 fd96Ca (upstream, 

552bp) 
FOXB1/
FOXB2 

TFBS (dl) 
Silencer (HDAC) 

3R_4379159_SNP 0.05263 Or85d (non-
synonymous, C277Y) 

- - 

3R_9684126_SNP 0.1514 - - - 
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Table 2. Aggregated gene and variant counts by sex-based phenotype for each 
analysis. Each analysis identified different genetic modifiers (variants, genes, 
networks). For each analysis, the different variant-, gene-, and network-based analyses 
identified separate genetic features associated with flight performance.  
 
Additive analysis 

 Male Female Sex-Average Sex-Different 
Bonferroni variants 

(P ≤ 2.63-8) 
1 4 3 1 

Bonferroni MinSNP genes 
(P ≤ 2.63-8) 

1 4 3 2 

 Conventional variants  
(P ≤ 1.00e-5) 

68 85 85 16 

Conventional MinSNP genes 
(P ≤1E-5) 

56 73 69 11 

 
Marginal analysis  

 Male Female Sex-Average Sex-Different 
 Bonferroni Variants  

(P ≤ 2.56e-8) 
7 13 62 0 

 MinSNP Genes  
(P ≤ 2.56e-8) 

5 7 21 0 

 
Epistatic analysis 

 Male 
(P ≤ 3.75E-9) 

Female 
(P ≤ 2.02E-9) 

Sex-Average 
(P ≤ 4.24e-10) 

Sex-Different 

Paired Primary Variants 1 5 18 0 
Paired Primary Genes 1 2 6 0 

Paired Secondary Variants 42 2188 6139 0 
Paired Secondary Genes 28 1061 2419 0 

 
Whole gene analysis 

 Male Female Sex-Average Sex-Different 
Bonferroni (P ≤ 3.01E-6) 23 29 25 23 

 
Network analysis 

 All sex-based phenotypes 
Sub-Networks 9 
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Supplemental tables 1-18 are available online: 

• https://doi.org/10.26300/v4rm-sa82 

 

Supplemental files 1-3 are available online: 
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Figure 1. DGRP lines show differences in flight performance across lines. (A) 
Flight performance assay measures the average landing height of flies as they fall 
through a flight column. Vials of flies are sent down the top chute and abruptly stop at 
the bottom, ejecting flies into a meter-long column. Falling flies will instinctively right 
themselves and fly to the periphery, doing so at different times depending on their 
performance ability. (B-D) Collapsed z-stacks of high-speed video frames from the top 
quarter of the flight column illustrate these performance differences in (B) weak, (C) 
intermediate, and (D) strong genotypes. (E) There is sexual dimorphism within 
genotypes (deviation of red dashed regression line from y = x solid gray line), though 
sexes are well correlated (r = 0.75, n = 197). (F) Sexually dimorphic performances are 
also viewable in the distribution of performances for each male (cyan) and female (red) 
genotype pair (mean ± S.E.M.). Sex-genotype pairs are sorted in order of increasing 
male mean landing height. Genotype performances for genotypes in B-D are indicated 
on the distribution with the corresponding color-coded asterisk (*) above the respective 
genotype position.  
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Figure 2. Variation in flight performance associated with several additive variants, 
some of which were functionally validated. (A) An additive screen for genetic 
variants identified several variants that exceeded the traditional DGRP (P ≤1E-5) 
threshold (gray line). These points (red points) were spread throughout the genome on 
all but chromosome 4. Sex-average variants pictured, though other sex-based 
phenotypes had similar profiles. (B) Approximately half of all variants were shared with 
at least one other sex-based analysis, while the other half of all variants was exclusive 
to a single analysis. (C) Candidate genes were selected based on the genes that the 
most significant variants mapped to. Both sexes were tested for flight performance. 
Validated genes were determined if there was a significant difference between 
experimental lines homozygous for an insertional mutant in the candidate gene and 
their background control lines lacking the insertional mutant (red points, Mann-Whitney-
U test, P ≤ 0.05). Very significant candidate genes (CadN, CG11073/flapper, and 
Dscam4) each had two independent validation lines. 
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Figure 3. PEGASUS_flies identifies different genetic modifiers than the additive 
screen. (A) PEGASUS_flies results plotted as a Manhattan plot. For the sex-average 
phenotype, several genes (red points, labeled with gene symbol) exceed a strict 
Bonferroni significance threshold (gray dashed line, P ≤ 3.43E-6) identified several 
genes. (B) PEGASUS_flies prioritizes genetic modifiers of moderate effect, taking into 
account linkage blocks and gene length. Significant PEGASUS_flies (red) compared 
against genes significant under a minSNP approach for additive variants (blue) have 
very little overlap between the two sets (purple). (C) Many of the genes 
PEGASUS_flies identifies are unique to a sex-based phenotype, though the sex-
average genes were generally found in other analyses. 
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Figure 4. Flight performance is a larger complex trait comprised of several 
smaller traits. (A) The genetic architecture of epistatically interacting genes generally 
coordinated through ppk23. A few other genes mapped to from marginal variants had 
epistatic interactions with marginal variants in ppk23. (B) Genes or genes mapped to 
from variants across different analyses were not identified in more than three analyses. 
Roughly half or more genes were unique to each analysis. (C) Fight performance has a 
complex genetic architecture, with the key developmental gene Egfr and BMP signaling 
pathway contributing to wing and neurodevelopment. These processes are both 
important for structuring the sensory organs that enable the fly to use mechanosensory 
channels for proprioception. Signals from the sensory organs on the wing, head, and 
body travel to the brain and thoracic ganglion, which sends signals through the motor 
neurons to the direct and indirect flight musculature that is also differentially assembled 
and innervated to generate power and control the wing angle during flight. 
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Figure S1. DGRP lines’ mean flight performance is highly repeatable across 
generations. Set of genotypes (n = 12) reared 10 generations apart show very strong 
agreement (r = 0.95) in mean flight performance scores. The regression line (red line) 
through the point pairs (black points) has nearly the same slope and y-intercept as the x 
= y line (gray dashed line). 
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Figure S2. Sex-average and sex-difference phenotypic distributions are amenable 
to an association study. Distribution in mean landing height (m) for (A) sex-average 
and (B) sex-difference phenotypes suggest ample phenotypic variation exists to run an 
association study. Each plot is sorted in order of increasing phenotype score, 
independent of one another.  
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Figure S3. QQ-plots show enrichment for some additive variants across each of 
the sex-based phenotypes. Plots comparing the theoretical vs. observed P-value 
distribution across (A) males, (B) females, (C) sex-average, and (D) sex-difference 
phenotypes. Red line denotes y = x. 
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Figure S4. Top additive associations are spaced throughout the genome. Top 
additive variants, those reported in DGRP2 webserver file with the `top.annot` suffix, are 
largely free of linkage blocks. There is a larger block on X, corresponding with 10 
variants that map to intronic and one synonymous coding site in CG32506. The heat 
component corresponds with likelihood of being in a linkage block from less (0 - blue) to 
more likely (1 - red). 
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Figure S5. Additional sex-based phenotype Manhattan plots for additive analysis. 
(A) Males, (B) females, and (C) sex-difference phenotypes all have significant additive 
variants pass a traditional DGRP threshold (P ≤ 1E-5, gray solid line, red points), and at 
least one variant pass a Bonferroni threshold (P ≤ 2.63E-8, gray dashed line, red dot 
with black outline). Variants are arranged in order of relative genomic position by 
chromosome and plotted by the –log10 of the P-value. The sex-average is displayed in 
text. 
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Figure S6. Genetic crosses performed for deriving experimental and control stocks 
used to validate candidate genes. All crosses are represented with females on the left 
and males on the right. Ten single pair crosses of a female genetic control, either w1118 
(pictured) or y[1] w[67c23], in white boxes were crossed with the respective Mi{ET1} 
insertional mutant line in green boxes. After the initial cross, heterozygous flies were 
backcrossed to the respective genetic control for five generations. In the sixth 
generation, single pairs of heterozygous flies were crossed. Progeny without the 
Avic\GFPE.3xP3 marker were collected as homozygous nulls, while several vials of 
putatively homozygous mutants (no progeny without marker) were crossed again to 
confirm genotype. Stocks were monitored for two additional generations to confirm 
mutant carrier status before a homozygous mutant stock was selected as an 
experimental line. 
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Figure S7. Significant whole genes are distributed throughout the genome and 
sex-based phenotypes. Whole gene analyses conducted with PEGASUS_flies for (A) 
males, (B) females, and (C) sex-difference phenotypes showed enrichment for 
significant whole genes across these three, and the sex-average (displayed in text). 
Each dot represents a whole gene, ordered by position across the chromosomes and 
plotted as the –log10 of the gene-score. Points above the Bonferroni threshold (P ≤ 
3.03E-6, gray line) are colored in red.	
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Figure S8. Significant marginal variants are unevenly distributed across sex-
based phenotypes. (A) Males had very few significant variants pass a Bonferroni 
threshold (P ≤ 2.56E-8, gray solid line, red points), while (B) females had more and (C) 
sex-average had the most. (D) Sex-difference had no significant marginal variants. 
Variants are arranged in order of relative genomic position by chromosome and 
significance scores –log10 transformed. 
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Figure S9. Trait-relationship correlation matrix shows no correlation between 
measured phenotypes and young adult transcriptome. Neither sexes’ mean landing 
height, standard deviation in landing height, or proportion of flies that fell through the 
column (fallen) were significant with a cluster of similarly expressed genes in a 
Weighted Gene Co-expression Network Analysis (WGCNA). Colored modules on the 
left represent WGCNA-generated clusters of genes and the color of each table cell 
corresponds with the magnitude of correlation coefficient (top number in cell). The 
bottom number in each cell is the significance of the correlation. No clusters were 
significantly correlated with any sex-phenotype combination. 
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Abstract 

A central challenge of quantitative genetics is to partition phenotypic variation into 

genetic and non-genetic components. While external environmental factors are 

traditionally considered the most important sources of non-genetic variation, 

developmental noise resulting in developmental instability can also contribute 

significantly to phenotypic variation within and among genetically identical individuals. 

Accordingly, more robust traits have more consistent phenotypes, resulting from 

developmental stability buffering against stochastic developmental processes. The 

genetics of robustness are poorly understood, though evidence points to genetic factors 

that promote developmental stability, as well as leverage developmental noise to create 

more interconnected neural networks. Accordingly, we sought to expand the 

understanding of robustness by performing an association study on a previously 

studied, whole organism trait: flight performance. Using 197 of the Drosophila Genetic 

Reference Panel (DGRP) lines, we surveyed whole genes and variants from additive, 

marginal, and epistatic analyses that associated with the genetic architecture of 

robustness for flight performance. Of the 1229 genes we identified, many had 

annotations for developmental and neurodevelopmental processes and a sizable 

fraction of genes were identified from associations that differed between sexes. 

Additionally, many genes were pleiotropic, with several annotated for fitness-associated 

traits (e.g. gametogenesis and courtship). Our results corroborate with a previous study 

for genetic modifiers of micro-environmental variation, and have sizable overlap with 

studies for modifiers of wing morphology, embryonic central nervous system 

development, and courtship behavior. These results point to an important and shared 

role for genetic modifiers of robustness affecting development and behavior.  
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Introduction 

Evolution acts on the genetic variation underlying phenotypic variation among 

individuals and populations. While many research programs focus on understanding 

genetic factors that contribute to phenotypic variation, fewer focus on non-genetic 

factors. The phenomenon of non-genetic (micro-environmental) variation describes the 

phenotypic variation that occurs in the absence of genetic variation, best studied in the 

genetically identical individuals. Non-genetic variation can arise from external 

(environmental) or internal (developmental) factors. Phenotypic variation caused by 

environmental factors (e.g. temperature) can result in phenotypic plasticity. Plastic 

phenotypes are considered canalized or robust if they are resilient (consistent) when 

faced with external factors (KLINGENBERG 2019). Robustness can also refer to a 

phenotype’s ability to resist internal factors and stressors. Here, developmental 

instability, caused by developmental noise in stochastic molecular processes (e.g. 

important transcripts or signals in very low abundance), can lead greater phenotypic 

variation (ALBAYRAK et al. 2016; SCHOR et al. 2017; KLINGENBERG 2019) that is separate 

from phenotypic plasticity.  

 

Depending on the affected developmental process, developmental instability can alter 

an organism’s developmental trajectory. This phenomenon is observable as phenotypic 

variation across genetically identical individuals (MORGANTE et al. 2015; VOGT 2015), 

such as deviations from bilateral symmetry (fluctuating asymmetry) (VALEN 1962; SOTO 

et al. 2008), which are hypothesized to be negatively associated with fitness (QUINTO-

SANCHEZ et al. 2018; LAJUS et al. 2019). Buffering systems exist to maintain phenotypic 
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robustness in the presence of these stressors. Some proteins, like chaperonins 

(HSP90), buffer against noise and stress by maintaining a protein’s structure 

(RUTHERFORD AND LINDQUIST 1998; CHEN AND WAGNER 2012). Similarly, the 

mitochondrial unfolded protein response is associated with maintaining homeostasis 

and promoting longevity (PELLEGRINO et al. 2013; JOVAISAITE et al. 2014). Other 

proteins, like certain neurodevelopmental cell-cell adhesion molecules (DSCAMs and 

teneurins), leverage developmental noise to create more robust neural networks, which 

can drive repeatable non-genetic phenotypic variation in behavioral responses 

(AYROLES et al. 2015; HIESINGER AND HASSAN 2018; HONEGGER AND DE BIVORT 2018). 

Organisms also co-opt non-genetic phenotypic to their advantage; the parthenogenic, 

marbled crayfish exhibits phenotypic variation in several life history traits, which may 

ultimately serve as a bet hedging strategy for colonizing different environments (VOGT et 

al. 2008; HIESINGER AND HASSAN 2018).  

 

Genes that modulate a system’s ability to resist developmental noise or a stressor are 

hypothesized evolutionary targets (WAGNER 2008; VOGT 2015; MENEZES et al. 2018). 

This suggests non-genetic phenotypic variation can be affected by genetic variation, 

though the genetic factors affecting non-genetic variation are not well understood. One 

approach leverages phenotypic variation for trait robustness across genetically identical 

individuals in a Genome Wide Association Study (GWAS) framework. Previous studies 

demonstrate this strategy’s feasibility and are successful in identifying genetic modifiers 

of robustness (KAIN et al. 2012; AYROLES et al. 2015; MORGANTE et al. 2015; MENEZES et 

al. 2018; ROMAN et al. 2018).  
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Accordingly, we sought to contribute to the elucidation of these genetic factors by 

studying a highly functional life history trait: flight performance. We turned to the 

Drosophila Genetic Reference Panel (DGRP) lines, a collection of 205 genetically 

distinct and inbred lines of D. melanogaster that represent a snapshot of natural 

variation in a wild population (MACKAY et al. 2012; HUANG et al. 2014). Using a flight 

column to test flies’ ability to react and respond to an abrupt drop (BENZER 1973; 

BABCOCK AND GANETZKY 2014), we tested 197 DGRP lines for their mean-normalized 

standard deviation (coefficient of variation) in flight performance. For this study, the 

coefficient of variation serves as a proxy for understanding phenotypic robustness for 

groups of genetically identical individuals, which we used to identify additive, marginal, 

and epistatic variants, as well as whole genes, across four sex-based phenotypes 

(males, females, and the average (sex-average) and difference (sex-difference) 

between sexes). We also successfully validated several candidate genes (bru1, CadN, 

CG15236, CG32181/Adgf-A/Adgf-A2, CG3222, CG9766, CREG, Dscam4, flapper, 

Form3, fry, Lasp/CG9692, Pde6, Snoo), which also validated roles in affecting overall 

flight performance (SPIERER	et	al.	2020). Our results broaden the genetic modifiers of 

phenotypic robustness to include many genes with general and specific developmental 

and neurodevelopmental roles, several of which overlap with a previous screen for 

micro-environmental plasticity (MORGANTE et al. 2015), as well as screens for wing 

morphology (PITCHERS et al. 2019) and courtship behaviors (TURNER et al. 2013; 

GAERTNER et al. 2015). Our results support a role for several genetic modifiers 
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contributing to phenotypic robustness, and they identify novel associations between 

known and unknown genetic modifiers affecting non-genetic phenotypic variation.  
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Methods 

Drosophila Stocks and Husbandry 

197 Drosophila Genetic Reference Panel (DGRP) lines (HUANG et al. 2014) and 24 

stocks used in the validation experiment were obtained from Bloomington Drosophila 

Stock Center (Table S1; https://bdsc.indiana.edu/). Flies were grown on a standard 

cornmeal media (MOSSMAN et al. 2016) at 25° under a 12h:12h light-dark cycle. Two to 

three days post-eclosion, they were sorted by sex under light CO2 anesthesia and given 

five days to recover before assaying flight performance. 

 

Flight performance assay 

We tested approximately 100 flies of each sex from 197 DGRP genotypes (Table S1) 

using a refined protocol (BABCOCK AND GANETZKY 2014) for measuring flight 

performance (BENZER 1973). For each sex-genotype combination, groups of 20 flies in 

five glass vials were knocked down, uncorked, and rapidly inverted down a fixed length 

chute. The vials traveled until they reached a stop, at which point flies were ejected into 

a 100 cm long by 13.5 cm wide tube. Freefalling flies instinctively attempt to right 

themselves and land. A transparent acrylic sheet coated in TangleTrap adhesive lined 

the inside of the tube and immobilized flies at their respective landing height. The sheet, 

was removed, pinned to a white poster board, and photographed using a Raspberry Pi 

(model 3 B+) and PiCamera (V2). The positional coordinates were extracted using 

ImageJ/FIJI’s `Find Maxima` feature with options for a light background and noise 

tolerance of 30 (SCHINDELIN et al. 2012). The distributions of landing heights for each 

sex-genotype combination were used to calculate the mean and standard deviation. 
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The coefficient of variation, or the mean-normalized standard deviation, was used as 

the final phenotype value to represent robustness.  

 

Genome wide association mapping 

Robustness phenotypes (Table S2) were submitted to the DGRP2 webserver for the 

additive association analysis (http://dgrp2.gnets.ncsu.edu/) (MACKAY et al. 2012; HUANG 

et al. 2014), which returned association results for four sex-based phenotypes: males, 

females, average between sexes (sex-average) and difference between sexes (sex-

difference). We analyzed 1,901,174 common variants (minor allele frequency ≥ 0.05) 

using a mixed effect model to account for Wolbachia infection status and presence of 

five major inversions. Since certain inversions covaried with the robustness phenotype 

(Table S3), only significance scores from a linear mixed model accounting for 

Wolbachia status and the presence of five major inversions were considered. 

 

Validating candidate genes 

Candidate genes (Table S1B) were selected if they were identified from variants 

identified in the sex-average additive variant screen for mean landing height and if there 

were publicly available lines containing a Minos enhancer trap ( Mi{ET1} ) mutational 

insertion (METAXAKIS et al. 2005) generated by the Drosophila Gene Disruption Project 

(BELLEN	et	al.	2011). Experimental and control lines were derived from common 

isoparental crosses for each candidate gene stock backcrossed five times to the 

respective w1118 or y1w67c23 background. Isoparental crosses between the resulting 

heterozygous offspring were partitioned for absence (control line) or presence 
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(experimental line) of the construct. Experimental lines were verified for homozygosity if 

all progeny contained the insertion after several rounds of culturing. Validations were 

conducting in the flight performance assay described above. The distributions in landing 

heights were assessed for significance if they passed a P ≤ 0.05 significance threshold 

in a Kolmogorov-Smirnov test comparing control and mutant genotypes. 

 

Calculating gene-score significance 

Gene-level significance scores (gene-score) were determined using PEGASUS_flies 

(SPIERER	et	al.	2020), a Drosophila-optimized method for the human-based platform 

Precise, Efficient Gene Association Score Using SNPs (PEGASUS) (NAKKA et al. 2016). 

This analysis calculates gene-scores for each gene as a test of whether the distribution 

of additive variants within a gene (accounting for linkage disequilibrium) deviates from a 

null chi-squared distribution. Variants from the additive association screen were 

considered and mapped onto gene annotations and linkage disequilibrium files available 

with the PEGASUS_flies package—derived initially from the DGRP2 webserver. 

 

Screening for epistatic interactions 

Marginal variants, corresponding with variants more likely to interact with other variants, 

were identified using MArginal ePIstasis Test (MAPIT) (CRAWFORD et al. 2017). This 

approach uses a linear mixed modeling framework to test the marginal effect of each 

variant against a focal phenotype. MAPIT requires a complete genotype-phenotype 

matrix so the DGRP genome was imputed for missing variants using BEAGLE 4.1 
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(BROWNING AND BROWNING 2007; BROWNING AND BROWNING 2016) and filtered for MAF ≥ 

0.05 using VCFtools (v.0.1.16) (DANECEK et al. 2011).  

 

MAPIT was run using the `Davies` method on the DGRP2 webserver’s adjusted 

phenotype scores, 1,952,233 imputed and filtered variants (File S1), and relatedness 

and covariate status files available on the DGRP2 webserver 

(http://dgrp2.gnets.ncsu.edu/data.html). Marginal effect P-values for each sex-based 

phenotype (File S2) were filtered for a Bonferroni threshold (P ≤ 2.56e-8) and served as 

a focused subset for targeted pairwise epistasis testing against the unimputed variants 

(n = 1,901,174). Epistatic interactions were calculated using the `–epistasis` test in a 

`–set-by-all` framework in PLINK (v.1.90) (PURCELL et al. 2007). Significant 

epistatic interactions were considered if they passed a Bonferroni threshold: 0.05 / ( n x 

1901174 variants), where `n` represents the number of significant marginal variants 

tested in a sex-specific subset (Table 2). 

 

Annotating FBgn and orthologs 

FB5.57 annotations for FlyBase gene numbers (FBgn) were converted to FB_2020_01 

annotations using the FlyBase tool `Upload/Convert IDs` (THURMOND et al. 2019). 

Updated FBgn (Dmel) were mapped to human orthologs (Hsap) using the Drosophila 

RNAi Stock Center (DRSC) Integrative Ortholog Prediction Tool (DIOPT)(HU et al. 

2011) tool, with the additional filtering parameter: “Return only best match when there is 

more than one match per input gene or protein.” Annotations for various genes without a 

citation were done so with auto-generated summaries and unreferenced descriptors of 
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genes’ functions, expression profiles, and orthologs from FlyBase (GRUMBLING et al. 

2006; DOS SANTOS et al. 2015). These descriptors were compiled from data supplied by 

the Gene Ontology Consortium (ASHBURNER et al. 2000; CARBON et al. 2019), the 

Berkeley Drosophila Genome Project (FRISE et al. 2010), FlyAtlas (CHINTAPALLI et al. 

2007), The Alliance of Genome Resources Consortium (CONSORTIUM 2020), 

modENCODE (DOS SANTOS et al. 2015), Drosophila RNAi Screening Center (DRSC) 

Integrative Ortholog Prediction Tool (DIOPT) (HU et al. 2011), and Phylogenetic 

Annotation and INference Tool (PAINT) (GAUDET et al. 2011). 

 

Data availability 

All phenotype data required to run the outlined analyses are available in the 

Supplement or using the DGRP2 webserver (http://dgrp2.gnets.ncsu.edu/). 	
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Results and Discussion 

We sought to identify the genetic modifiers of robustness in a whole organism 

phenotype: flight performance. Using the Drosophila Genetic Reference Panel (DGRP) 

lines, we identified several additive, marginal, and epistatic variants, as well as whole 

genes that associate with genotypes’ robustness in response to a flight challenge. In the 

sections that follow we describe the variant-based, gene-based, and epistatic analyses 

in turn. Results and discussion of findings are combined to avoid redundancy and 

facilitate interpretation. 

 

Variation in flight performance across the DGRP 

We screened 197 DGRP lines (Table S1) for their flight ability in response to an abrupt 

drop (Figure 1A). Qualitative observations made in a previous study of strong, 

intermediate, and weak genotypes in the flight assay suggests stronger fliers react 

faster and with better coordination than weaker fliers (SPIERER et al. 2020). The mean 

and standard deviation in landing height were calculated for each sex-genotype 

combination, along with the mean-normalized standard deviation (coefficient of 

variation), which served as our metric for robustness (Figure S1; Table S3). Genotypes 

that have a lower coefficient of variation (more consistent) are more robust for flight 

performance (KLINGENBERG 2019). On average, flight performance was more robust in 

males than females (males: 0.17 A.U. ± 0.055 SD vs. females: 0.22 A.U. ± 0.075 SD; 

Figures 1B and S2) and it was related between sexes (r = 0.55; Figure 1C). This 

observation suggests robustness of flight performance is sexually dimorphic and that we 

expect to see differences in the genetic architecture between sexes.  
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Robustness of flight performance was not significantly correlated with any of the 

DGRP2 webserver’s datasets for either sex (Table S3), suggesting it is a unique trait. 

To study this trait more in depth, we took distinct approaches to identify the additive, 

marginal, and epistatic variants that associated with robustness in flight performance, as 

well as an approach that identified whole genes (Table 1). Each approach is targeted to 

identify different feature types in the overall genetic architecture.  

 

Several variants of large effect associate with robustness in flight performance 

We performed a Genome Wide Association Study (GWAS) to calculate the significance 

of variants’ additive effects, and subsequently whole gene significance scores. We 

analyzed the effects of 1,901,174 common variants (MAF ≥ 0.05) across for four sex-

based phenotypes (males, females, the sex-average, and sex-difference; Figures 1D 

and S3-5). Two of the major inversions covaried with our phenotype scores (Table S4), 

so we used a mixed model to account for Wolbachia infection status, presence of 

inversions, and polygenic relatedness. 

 

Under the Bonferroni threshold (P ≤ 2.63E-8), eight variants were significant for either 

the male, female, or sex-average analysis, but not sex-difference (Tables 2-4; Table 

S5). Three of these variants (2R_17433667_SNP, 3R_4379159_SNP, 

3R_9684126_SNP) were also significant additive variants passing a Bonferroni 

threshold in the screen for mean landing height in flight performance (SPIERER et al. 

2020). These variants mapped to Epidermal Growth Factor Receptor (Egfr; human 
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homolog EGFR), Odorant receptor 85d (Or85d) and an intergenic region on 

chromosome 3R, respectively. Egfr is a tyrosine kinase receptor involved in several 

developmental and homeostatic processes. It is a known source of natural variants that 

can modify wing shape and affect flight performance (PAUL et al. 2013; PITCHERS et al. 

2019). This intronic variant also mapped to a region with several annotated early 

embryonic transcription factor binding sites (TFBS; bcd, da, dl, gt, hb, kni, Med, prd, 

sna, tll, twi, disco, Trl) (NEGRE et al. 2011). Disrupted regulation of dose-sensitive 

developmental patterning signals (like those involving Egfr) can create developmental 

noise (ALBAYRAK et al. 2016). Since this process would likely happen early in 

development, it can cause disrupt signal gradient-dependent cell differentiation and 

amplify during ontology. Accordingly, Egfr signaling may be an important factor 

contributing to developmental instability, which typically manifests as decreased 

robustness for a given trait (HIESINGER AND HASSAN 2018; KLINGENBERG 2019). Since the 

TFBS annotations only cover embryogenesis (NEGRE et al. 2011), it is possible this site 

is acted on by other transcription factors later during development and homeostasis. 

Next, the non-synonymous variant in Or85d, an odorant receptor expressed on the 

antennae and maxillary palp (COUTO et al. 2005), results in a cytosine to tyrosine 

transition (C277Y). This site is highly conserved (Figure S6) (SIEPEL et al. 2005; SIEPEL 

AND HAUSSLER 2005) citation, though analysis with the PROVEAN webtool (CHOI AND 

CHAN 2015) suggests this mutation is neutral (scored -2.312 with -2.5 as deleterious). 

Our previous screen for mean landing height in flight performance identified an outsized 

role for several chemosensory receptors, like Or85d, as putative mediators of 

proprioception. Finally, the intergenic region lacked any embryonic TFBS annotations, 
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suggesting it may interact with transcription factors or epigenetic factors later during 

development or homeostasis. The remaining Bonferroni additive variants mapped to 

genes that were also identified from additive Bonferroni variants in the mean flight 

performance screen (Dscam4 and flapper) or were otherwise strongly significant 

(Snoo). All three of these genes have known or hypothesized roles in developing robust 

neural circuits (QUIJANO et al. 2010; TADROS et al. 2016; SPIERER et al. 2020). The 

identification of these genes in both screens suggests they have a dual role in affecting 

genotypes’ ability and variability in flight performance.	

 

We also took a less conservative approach and used the traditional DGRP association 

threshold (P ≤ 1E-5). Here, we identified 163 unique, significant variants (Table S5), 18 

of which mapped to coding regions (Table 4). These include a novel transcriptional start 

site (CG43707) in a gene affecting muscle architecture and flight performance 

(SCHNORRER et al. 2010) and six non-synonymous SNPs (CG12517, CG13794, 

CG34215, Or85d, Spn, Tif-IA). Some of these affect neural phenotypes, like the 

olfactory receptor Or85d and CG13794, a neurotransmitter (COUTO et al. 2005; 

ROMERO-CALDERON et al. 2007), while others affected multiple traits (pleiotropic). 

CG12517 and Tif-IA are involved in the stress response of the fat body and insulin-

based metabolism, respectively, and both are involved in development of the germline 

(YATSU et al. 2008; TOOTLE et al. 2011; TSUZUKI et al. 2012; GHOSH et al. 2014). Spn 

(Spinophilin; human homolog PPP1R9A), a pre-synaptic regulator of neurons 

(MUHAMMAD et al. 2015), affects flight performance (SCHNORRER et al. 2010), male 

aggression (EDWARDS et al. 2009), odor response (SAMBANDAN et al. 2006), and is also 
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found in sperm (WASBROUGH	et	al.	2010). These annotations represent a broader trend in 

our data, where neural and pleiotropic genes play an important role in the genetic 

architecture of robustness of flight performance.  

 

Variation in protein coding regions is often overshadowed by variation in non-coding 

(presumably regulatory) regions across the genetic architecture of many complex traits 

(BOYLE et al. 2017). Similarly, the majority of variants in the additive and subsequent 

analyses were highly enriched for intergenic and non-coding regions, with most 

mapping to non-coding regions within 1kb of a gene (Table 4). Many of these genes had 

annotations for flight (neto) and locomotion (Mbs, sbb, Syt1, Ten-a, Tmc, Trim9). There 

were also several annotations for genes affecting flies’ ability to process external stimuli, 

like light (Bsg, bun, cdm, chn, CNMaR, Egfr, Lar, Mbs, Miga, Moe, Nrg, pnt, sbb, Trim9), 

chemicals (Dyrk2, Egfr, Ir48c, Ir92a, MiP, mtgo, Or85d, Ten-a, vn), touch (brv2 and 

Tmc) and sound (nrv3). Certain structures, such as chaete and wing hairs (chn, ds, fry, 

kmr, Mbs, pyd, Snoo), are responsible for chemo- and mechanosensation, which are 

connected to the central nervous system through properly assembled neural networks 

(CG44153, chn, Dscam4, fry, Nrg, shot, Snoo, Spn, Tmc) that transduce signals using 

neurotransmitters (ChAT, CG13794, Syt1, Sytbeta, VAChT). These signals are 

processed in the brain and ganglia, and can pass out to motor neurons and 

neuromuscular junctions (cdm, ChAT, Lar, Neto, nmo, Nrg, Ptp10D, Sdc, Syt1, Ten-a) 

to activate muscles (bru1, bves, Casp52, chn, Lasp, Neto, pnt, Pyk, shot, ths, vn) for an 

appropriate response. In flight, the indirect flight muscles generate power by deforming 

the thoracic cuticle (ckd, CrebA, Eip75B) to move the well-developed wing structures 
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(ds, Egfr, fry, Mbs, Mrtf, nmo, pnt, pyd, sbb, shot, vn) (DICKINSON et al. 1997; FRYE AND 

DICKINSON 2004; DICKINSON et al. 2005; FONTAINE et al. 2009), while the direct flight 

muscles perform finer adjustments to change the angle of the wing. Regulation for many 

of these processes occurs through trans-regulatory elements (bru1, bun, bur, CG8312, 

chinmo, chn, CrebA, Eip75B, fry, Hers, mamo, Moe, Mrtf, mxt, otp, pnt, RpL21, sbb, 

Sfmbt, Tif-IA, toc, Zasp52) that are generally active during development (ASHBURNER et 

al. 2000; GRUMBLING et al. 2006; GAUDET et al. 2011; DOS SANTOS et al. 2015; CARBON 

et al. 2019). Several genes are pleiotropic and are found in the testes or involved in 

spermatogenesis (Bsg, CG9692, Lar, Lasp, mamo, toc, vn), found in ovaries or involved 

in oogenesis (bun, CG12517, Egfr, Eip75B, Lar, Mbs, Sfmbt), and required for sex 

identity (chinmo and Mip). These genes represent a number of developmental and 

functional processes affecting flight performance, which may also provide an 

explanation for the observed sexual dimorphism. Annotations for these genes’ functions 

were compiled from auto-generated summaries and Gene Ontology (GO) terms 

available through FlyBase (DOS SANTOS et al. 2015; THURMOND et al. 2019) and are 

available for all genes found in the current study as a master lookup table (Table S10). 

 

Functional validation of candidate genes supports a role for neurodevelopment affecting 

robustness of flight performance 

We functionally validated several genes’ roles in affecting robustness of flight 

performance. Using the candidate genes identified from the mean landing height 

screen, we tested for differences in the distribution of landing heights for using a 

Kolmogrov-Smirnov test. We validated 11 single genes (bru1, CadN, flippy (CG9766), 
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CG15236, CREG, Dscam4, flapper (CG11073), form3, fry, Pde6, and Snoo), and two 

constructs that fell in multiple genes (Adgf-A/Adgf-A2/CG32181 and CG9692/Lasp) 

(Figures 2 and S7; Table S6). These genes were also validated in the mean flight 

performance screen, indicating these genes likely play dual roles modifying the ability 

and variability of flight performance. 

 

Analyses of whole-gene effects identifies distinct factors affecting robustness  

A conventional minSNP approach deems a gene significant if its most significant variant 

passes a significance threshold. However, this approach is biased toward longer genes 

(many neural genes can exceed 100kb (KING et al. 2013; SUGINO et al. 2014; GABEL et 

al. 2015)) and does not account for linkage between sites. To counteract these biases, 

we employed PEGASUS_flies (SPIERER et al. 2020), a Drosophila version of the 

human-focused PEGASUS platform (NAKKA et al. 2016), to assess a whole gene’s 

significance. Because this method takes a more holistic approach, testing the 

distribution of variants in a gene against a null chi-squared distribution, it can detect 

significant genes that would be missed otherwise in a minSNP approach. 

 

Using PEGASUS_flies, we identified 45 unique genes (Table S7) across all four sex-

based phenotypes that passed a Bonferroni threshold (P ≤ 3.43E-6; Figures 3A and 

S8). Two were present in the additive screen (nmo and Sdc) and accompany 27 other 

genes (ana3, barc, Br140, caps, CG5921, CG5937, CG12163, CG44774, Crz, ct, ctrip, 

Dop2R, Dys, ena, ham, Nckx30C, Oct-TyR, olf186-F, PsGEF, Ptp4E, rad, rodgi, row, 

tou, TTLL5, tutl, wde) with annotations for neurodevelopment and function. Some genes 
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also affected muscle, chaete, or general development (caps, CG5937, CG31635, 

CG32521, CG3277, CG43333), while others facilitated gametogenesis or promoted 

reproductive success (ana3, CG1632, CG5937, CG12163, CG44774, CHES-1-like, Crz, 

ct, Dop2R, Dys, ena, Gbs-70E, PsGEF, tou, wde). These results largely corroborated 

the annotations from the genes in the additive search and expanded the number of 

genetic variants that associate with robustness in flight performance. 

 

Association of marginal variants with robustness in flight performance 

Complex traits derive much of their complexity from the epistatic, or pairwise, 

interactions that act as a context-specific effectors (HUANG et al. 2012). However, 

traditional epistasis analyses face large computational and statistical hurdles. We 

circumvent these limitations by focusing our search for pairwise epistatic interactions 

with MArginal ePIstasis Test (MAPIT) (CRAWFORD et al. 2017). This linear mixed 

modeling approach identifies marginal variants, which represent genetic hubs as they 

are more likely to have epistatic interactions other variants. Using this informed set of 

marginal variants, we can perform a set-by-all epistasis search, rather than testing all 

possible combinations. Doing so, we identified 104 significant marginal variants 

exceeding a Bonferroni threshold (P ≤ 2.56E-8; Figures 2B and S8) that mapped to 66 

genes across all sex-based phenotypes (Table 5). Most variants mapped to intergenic 

or non-coding regions, underscoring the importance of gene regulation in modifying 

phenotype (MACKAY AND HUANG 2018). But of the coding variants, one 

(2R_15214612_SNP) mapped a putatively neutral (-0.403 PROTEAN score) (CHOI AND 

CHAN 2015) non-synonymous site in GTPase Rad, Gem/Kir family member 1 (Rgk1; 
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human homolog RRAD) in the sex-average analysis. Rgk1 is pleiotropic, with roles in 

central nervous system development, olfactory-based learning (MURAKAMI et al. 2017), 

sperm, muscle, and generalized developmental (KARR 2007; SCHNORRER et al. 2010). 

This variant had no epistatic interactions, but four other variants in Rgk1 

(2R_15202880_SNP, 2R_15202883_SNP, 2R_15212327_DEL, and 

2R_15212584_DEL) had epistatic interactions with PKC-δ and ush in the sex-difference 

epistasis screen.		

	

Among the 66 marginal minSNP genes, seven (Bx, CG9313, CG15651, CG9171, PKC-

δ/Pkcdelta, jvl, ush) were identified from 19 marginal variants that had epistatic 

interactions. In total, 6313 epistatic interactions passed sex-specific significance 

thresholds, and mapped to 1081 genes (Table 2)—the largest set of genes identified in 

any analysis. Interestingly, several of the marginal genes (identified from marginal 

variants) had epistatic interactions with other marginal genes (marginal-marginal 

epistatic interactions; Figure 4A), suggesting a highly interconnected genetic 

architecture underlies robustness for flight performance. Broadly, epistatic interactions 

were enriched for neurodevelopment and general development. There are too many 

epistatic interactions to comprehensively describe below (Table S8), so we will instead 

focus on the marginal variants that mapped to genes and some of their noteworthy 

epistatic interactions.	
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Many marginal variants in female and sex-average epistatsis analyses map to 

pleiotropic genes 

While the male marginal variant mapped to an intergenic region, there were several 

marginal genes identified from the female and sex-average analyses that were also 

pleiotropic. Among these was Beadex (Bx; human homolog LMO1), a LIM-only protein 

that interacts with other LIM-homeodomain proteins. It is known to interact with apterous 

(ap) in the wing discs, where ap contributes to wing morphogenesis and neuronal 

pathfinding (MILAN et al. 1998). Bx is also involved in dorsoventral patterning of the wing 

blade, the hypothesized wing blade axis that other studies have identified as the main 

driver of morphological variation (MUNOZ-MUNOZ et al. 2016; PITCHERS et al. 2019). 

CG9171 (human homolog B4GAT1) is a glucuronosyltransferase predicted to localize to 

the Golgi and perform O-linked mannosylation. It is known to affect flight performance 

(SCHNORRER et al. 2010) and has a putative role in muscular dystrophy (BUYSEE et al. 

2013). Similarly, CG15651 (human homolog FKRP) is also predicted to affect O-linked 

mannosylation in the Golgi complex and is linked to muscular dystrophy as well 

(BROCKINGTON et al. 2001). The marginal variant associated with CG15651 also 

overlapped with CG9313, a axonemal outer arm dynein intermediate chain involved in 

sperm mobility and audiosensation in the Johnston’s organ (ZUR LAGE et al. 2019). 

Finally, a marginal variant mapped to javelin-like (jvl), important for actin and 

microtubule organization, mechanosensing macrochaete formation, muscle formation in 

flight, and oogenesis (TILNEY et al. 2003; SCHNORRER et al. 2010).  

 



 95 

Just like these genes, their epistatic interactors also map to genes broadly affecting 

wing morphology, muscle development, neural circuit assembly and neuronal function, 

and interestingly, sex-related behaviors and sex-specific tissues (Table S8). 

 

Epistatic interactions associating with the sex-difference phenotype  

The marginal variants in the sex-difference epistasis search had four times as many 

epistatic interactions as the next closest sex-based phenotype (females). Protein Kinase 

C-δ (PKC-δ or Pkdc; human homologs PRKCD and PRKCQ) drove this trend, 

accounting for over half (3211 of 6313) of all epistatic interactions in our study, some of 

which were with variants in other marginal genes (Figure 3C), suggesting a more central 

and interconnected role within the genetic network. PKC-δ is a member of the Protein 

Kinase C family and is known to modulate flies’ ability to learn from their environment, 

especially during flight (COLOMB AND BREMBS 2016; GETAHUN et al. 2016; GOROSTIZA et 

al. 2016). Flies’ inability to learn from proprioceptive cues corresponds increased 

variation in their flight path (HESSELBERG AND LEHMANN 2009; LEHMANN AND BARTUSSEK 

2017), similar to what we observe. 

 

Of the genes identified from epistatic variants, six had annotations for flight (Gem3, fliI, 

klar, Neto, SERCA, Tbh) and several others were involved in learning and memory, 

which is likely facilitated by genes modulating dendritic and synaptic growth, via cell-cell 

adhesion (bdl, beat-Vc, CadN, caps, Ccn, CG34353, CG4333, CG44153, cora, 

Dscam3, ed, Fam21, glec, kirre, Lac, Lar, Nlg1, sli, Ten-a, Tig, tkv, trio, uzip). 

Importantly, the presence of three specific families of cell-cell adhesion genes identified 
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here, and in other analyses, has a greater importance in varying behavioral phenotypes. 

Down Syndrome Cell Adhesion Molecules (DSCAM; Dscam3 and Dscam4), cadherins 

(Cad87A, CadN, CadN2), and teneurin (Ten-a) family genes play roles in growth and 

patterning of complex (type IV) dendritic arborization neurons, commonly found in the 

peripheral and central nervous systems (HONG et al. 2012; KISE AND SCHMUCKER 2013; 

LI et al. 2020). They contribute to differential wiring of diverse neural networks through 

dendritic self-avoidance (KISE AND SCHMUCKER 2013) in the brain, sensory organs of the 

wing, and many other areas (NAGAI AND MIZUNO 2014). Ten-a was previously identified 

and validated in a screen for individuality in locomotor handedness (AYROLES et al. 

2015), and we validated CadN and Dscam4 in the present study for their contribution to 

robustness of flight performance. These genes’ role in modulating phenotypic variation 

through differential circuit assembly is hypothesized to function as a bet-hedging 

strategy (HIESINGER AND HASSAN 2018; HONEGGER AND DE BIVORT 2018); a select group 

of genes or variants can generate greater behavioral variation, which might boost 

populations’ ability to survive a selection bottleneck. Accordingly, the identification of 

these gene families in the sex-difference screen supports a role for differential neural 

wiring affecting the sexual dimorphism observed in robustness of flight performance. 

 

Another marginal variant from the sex-difference epistasis screen was the 

developmental transcription factor u-shaped (ush; human homolog ZFPM1), which 

mediates neurodevelopment and thoracic (FROMENTAL-RAMAIN et al. 2010). It also 

regulates scute (sc), which has roles in the sex-determination pathway (WRISCHNIK et al. 

2003), and both sc and achaete (a/ac) in the SC-A complex that contributes to 
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development of mechanosensating chaete and sensory organs on the wing (SKEATH 

AND CARROLL 1991; CUBADDA et al. 1997). As expected, many of the genes ush 

interacted with had annotations for gravitaxis and locomotion (CASK, CG34353, dnc, 

InR, ITP, mid1, Neto, nmo, Syn2, unc-104), sensory organ development (aPKC, 

CG9313, Dl, dpr1, dpr9, dpr10, fry, fz, Gyc88E, mew, mib, rdgA), dendrite 

morphogenesis and self-avoidance (acj6, CadN, Cbp53E, Cont, cv-c, fru, fry, hdc, 

mAChR-B, Mob2, mtt, Nedd4, Prosap, pum, shn, Tm1, unc-104), and learning and 

memory (aPKC, CASK, cher, dnc, gom, klg, lillo, Mob2, Nep4, Rkg1, pum, scrib, sNPF-

R, teq). There were also epistatic interactions with genes annotated for courtship 

behaviors (Btk29A, CASK, dnc, fru, gom, Rgk1). In particular, fruitless (fru) was 

identified in the previous flight performance screen as an epistatic interactor with ppk23 

(SPIERER et al. 2020). fru also genetically interacts with doublesex (dsx), identified in our 

previous screen from the whole gene approach, where they pattern sex-specific circuits 

along the neurons that connect leg and wing chaete (functioning as contact 

chemosensors for pheromone detection) to the thoracic ganglion (flight control center) 

and brain, and out along motor neurons to the flight musculature (for visual flagging and 

courtship song) (YU et al. 2010; PAVLOU AND GOODWIN 2013; SHIRANGI et al. 2016).  

 

Flight and courtship share morphological structures and genetic modifiers 

Genes involved in courtship and robustness of flight performance may play more of a 

shared role than previously thought. In addition to the genes associated with the sex-

difference epistasis screen, we also identified factor of interpulse interval (fipi) in the 

sex-average marginal variant screen. fipi, which regulates the intervals of courtship 
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song (FEDOTOV et al. 2018), was also previously identified in an independent screen for 

micro-environmental variation (MORGANTE et al. 2015), supporting a role for genes 

affecting trait canalization also affecting courtship and flight. With respect to courtship-

specific traits, we identified several genes shared with other DGRP courtship screens, 

including (CG1358 and Dif) (TURNER	et	al.	2013) and (bru-3, CG13024, CG42784, Fur1, 

shot, SKIP, Ubx, wuc) (GAERTNER	et	al.	2015). From these screens, Dscam (Dscam1 vs. 

Dscam3 and Dscam4) and Beat family (beat-Ib and beat-IIIc vs. beat-IIb, beat-VI, and 

beat-Vc). In addition to these, we also identified several genes with annotations for sex 

determination, courtship behavior, and sex-specific neural patterning (Alh, bab1, 

Btk29A, CASK, chinmo, dnc, dysb, fipi, fru, gom, lov, Mip, Nrg, Sh, Tbh), as well as 

many genes that had dual roles in somatic and germ development. Enrichment for 

these genes leads us to hypothesize that pleiotropic genes associated with courtship, 

and fitness in general, may also contribute to variation in robustness of flight 

performance. 

 

We base this hypothesis on the observation that many of the morphological structures 

and neural circuits that promote flight performance are also important for courtship. In 

flight, well-structured wings are important for generating lift (MARCUS 2001) and chaete 

are important for proprioception (FURMAN AND BUKHARINA 2008; QUIJANO et al. 2010), 

while courtship requires wings for visual flagging and courtship song (SADAF et al. 2015) 

and chaete for chemosensing pheromones (THISTLE et al. 2012; PAVLOU AND GOODWIN 

2013). Similarly, neural circuits that innervate the dual chemo- and mechanosensory 

chaete require strong neural networks wired with type IV dendritic arborization neurons. 



 99 

Differential neural patterning by Dscams and other cell-cell adhesion molecules 

(cadherins and teneurins) ensure these circuits are well connected to the CNS (HONG et 

al. 2012). These circuits can also differ between sexes; fru and dsx co-localize to many 

of these sensory and CNS neurons, which can have important implications in differential 

detection of pheromones and courtship behaviors (YU et al. 2010; PAVLOU AND GOODWIN 

2013). These differentiated circuits extend to the brain and thoracic ganglion (flight 

control center) and out along motor neurons and neuromuscular junctions that innervate 

the direct (fine motor movement) and indirect (power generating) flight muscles.  

 

Since flight and courtship are both important for wildtype flies, and courtship behaviors 

differ between sexes, selection for genes that modify these behaviors can become 

caught in an evolutionary tug-of-war. When contrasting evolutionary forces act individual 

variants or genes, it can create intralocus sexual dimorphism or conflict. Here, what is 

beneficial for one sex may be neutral or disadvantageous for the other. This 

phenomenon is observed in insects in the context of locomotor performance, courtship 

behavior, and fitness (BERGER et al. 2014; BERGER et al. 2016). In studies where male 

flies were allowed to genetically “win” the sex conflict and evolve, males have increased 

locomotor activity (LONG AND RICE 2007), wing morphological variation (ABBOTT et al. 

2010), and fitness increased, while females are all decreased.  

 

Variation in wing morphology is an important phenotype in the context of trait 

robustness because it is sensitive to factors that buffer against developmental noise and 

serves as a strong proxy for developmental stability (SOTO et al. 2008; KLINGENBERG 
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2019), and hypothesized to be under stabilizing selection (MUNOZ-MUNOZ et al. 2016; 

SZTEPANACZ et al. 2017). Reduced genetic variation may play a larger role in their 

system as a bet hedging strategy, similar to those used in neural wiring. If a select 

group of genes shared between traits have some ability to create more phenotypic 

variation in a system, then populations may still have phenotypic variation on the other 

end of a genetic bottleneck (HIESINGER AND HASSAN 2018). This strategy in 

parthenogenetic crayfish supports a role for genes with the ability to generate 

phenotypic variation in the absence of genetic variation, and their ability to colonize new 

ecological niches speaks to the success of this strategy (VOGT et al. 2008). 

 

Genetic architecture of robustness is comprised of different types of modifiers 

Each analysis we conducted sheds light on different areas of the genetic architecture 

(Table 1). The additive variant analysis identified single variants with larger effects on 

the phenotype, while the whole gene analysis identified genes of moderate effect based 

on the distribution of additive variants in a gene. The marginal variant analysis identified 

single variants that were more likely to interact with other variants, while the epistasis 

analysis identified those specific interactions. Of the variant-based analyses, all additive 

variants were exclusive, though the marginal variants and epistatic interactions had 

some overlap, as expected (Figure 4B), demonstrating the importance of using multiple 

analytical methods to uncover the larger genetic architecture. When mapping these 

variants to genes, all analyses identified genes that were shared with at least two other 

analyses (Figure 4C). This result suggests that genes contain different types of variants 
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that affect separate facets of the genetic architecture. For a complete list of all genes 

identified in this study and which analysis they were present in, see Table S10. 

 

Overlap between robustness and other DGRP studies 

Genes and variants shared between the present study and other studies sheds light on 

how the genetic architecture of complex traits in general may share some of the same 

modifiers. Comparison the screens for variants associating with overall flight 

performance (mean) against robustness for flight performance (coefficient of variation), 

we consistently identified approximately 15-20% overlap between variants and their 

mapped genes (Figure 4D-H; Table S10). However, we found no overlap between 

whole gene analyses (Figure 4I). Together, these results suggest that while certain 

main features of the genetic architecture are shared between traits, they have largely 

separate genetic architectures. 

 

Similarly, we found commonalities between robustness in flight performance and other 

DGRP studies conducted beyond the flight phenotype. In particular, a micro-

environmental plasticity screen for startle response, resistance to starvation, and chill 

coma recovery (MORGANTE et al. 2015) shared 37 genes (Bsg25D, CARPB, CG17716, 

CG31690, CG32767, CG33981, CG4168, CG42322, CG42324, CG43901, CG5853, 

Diap1, dpr6, dpr8, E2f1, ed, Eip63E, FAM21, fipi, fred, fru, IA-2, Lac, Lmpt, 

lncRNA:CR32773, lncRNA:iab8, Moe, mtgo, nub, Pde9, PsGEF, Ptp99A, pum, Pvf3, 

rdgA, Rgk3, Src64B) and a wing morphology screen (PITCHERS et al. 2019) shared 16 

genes (bru1, Bx, CG1358, CG14926, Con, dally, dar1, Dgk, ds, Dys, Egfr, Lar, luna, pip, 
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RhoGEF64C, Sp1). The overlap between these studies suggests that modifiers of 

robustness for flight performance also impact other traits, raising the importance of 

further studying variance-based phenotypes. 
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Conclusions 

High-speed videos of flight trajectories elicited in the abrupt drop of the flight 

performance screen qualitatively show that stronger and more robust genotypes react 

and respond faster than their counterparts. Because neural-intensive traits (reaction 

time, proprioception, and reaction) play prominent roles in modulating flight 

performance, this study likely identifies genetic modifiers of neural circuits and function 

more so than modifiers of wing morphology that have functional impacts on flight. 

However, these modifiers of wing morphology serve as a strong lens for understanding 

genes that may impact developmental stability, and by extension robustness. We 

present results from four analyses in four sex-based phenotypes surveying different 

facets of the genetic architecture. Several of the variants were shared between sexes, 

though many more differed between them. Future studies should consider evaluating 

both the mean and coefficient of variation for their focal phenotype to better understand 

modifiers affecting robustness in a specific complex trait, as well as robustness in 

complex traits more generally. In doing so, higher-order, multivariate analyses can be 

conducted across DGRP studies to survey common trends in genetic modifiers across 

the genetic architecture that may share a common basis. 
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Table 1. Different approaches uncover different types of genetic 
modifiers affecting the focal phenotype. No single screen will identify all 
modifiers; so four overlapping approaches were conducted to better survey 
the genetic architecture of robustness of flight performance.  

Screen type Target modifier type Analysis platform 
Additive  Variants of large effect DGRP2 webserver/FastLMM 
Marginal  Interconnected variants MAPIT 
Epistatic interactions Connections between variants PLINK 
Whole gene Genes of moderate effect PEGASUS_flies 
  



 113 

 
 
  

Table 2. Eight additive variants passed the Bonferroni threshold. In the additive 
approach, eight variants passed the strict Bonferroni significance threshold (P ≤ 
2.63E-8). These common variants were typically near the Minor Allele Frequency 
(MAF) threshold of 0.05. Nearly all variants mapped to genes, three of which had 
human homologs. Non-coding variants mapped to introns or upstream of the gene’s 
coding region, however three variants also contained transcription factor binding sites 
(TFBS) annotated active during the embryonic stage (NEGRE et al. 2011). 

Variant MAF Variant type Annotation 

Gene symbol Embryonic TFBS 
Dmel Hsap 

2L_7949902_SNP 0.053 Intron Snoo SKI  
2L_7949906_SNP 0.053 Intron Snoo SKI - 
2R_17433667_SNP 

0.051 Intron 

Egfr EGFR bcd, da, dl, gt, hb, kni, 
Med, prd, sna, tll, twi, 
disco, Trl 

2R_17987191_SNP 0.067 Upstream (152 bp) flapper  - dl 
2R_17987203_SNP 0.062 Upstream (164 bp) flapper - dl 

3L_8237797_DEL 0.084 Intron Dscam4 DSCAM - 
3R_4379159_SNP 0.053 Non-synonymous Or85d - - 
3R_9684126_SNP 0.15 Intergenic  - - 
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Table 3. Each analysis and sex-based phenotype identified varying 
enrichment for genetic modifiers. (A) Additive loci (variants and the genes 
they map to) at Bonferroni and traditional DGRP GWAS thresholds differ in 
enrichment by an order of magnitude. (B) Marginal variants mapped to several 
genes, and were tested for (C) epistatic interactions. Marginal variants were 
only tested for epistatic interactions if they passed MAF ≥ 0.05 in the 
unimputed genome. Finally, (D) whole genes were identified consistently 
across all sex-based phenotypes 
 
(A) Additive Loci 

 Male Female Sex-Average Sex-Different 
 Variants  

(Bonferroni; P ≤ 2.63e-8) 
2 5 4 0 

Genes 
(Bonferroni; P ≤ 2.63e-8) 

1 3 3 0 

 Variants  
(Traditional DGRP; P ≤ 1.00e-5) 

75 76 76 21 

Genes 
(Traditional DGRP; P ≤ 1.00e-5) 

49 62 58 17 

 
(B) Marginal Loci  

 Male Female Sex-Average Sex-Different 
Variants  

(Bonferroni; P ≤ 2.56e-8) 
1 53 19 45 

Genes  
(Bonferroni; P ≤ 2.56e-8) 

0 30 11 32 

 
(C) Epistatic Loci 

 Male 
(P ≤ 2.63E-8) 

Female 
(P ≤ 5.06E-10) 

Sex-Average 
(P ≤ 1.34e-9) 

Sex-Different 
(P ≤ 5.90e-10) 

Paired Primary  
Variants 

1 7 3 8 

Paired Primary  
Genes 

0 3 1 2 

Paired Secondary  
Variants 

20 428 611 2019 

Paired Secondary  
Genes 

13 193 243 763 

 
(D) Gene-scores 

 Male Female Sex-Average Sex-Different 
Whole genes 

(Bonferroni; P ≤ 3.43E-6) 
10 22 20 10 
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Table 4. Significant variants are non-uniformly distributed across site 
classes. Variants mapped to several site classes in the genome. Across all 
variant-based analyses, intergenic (variants lacking FBgn annotations) and 
genic (sites with FBgn annotations) sites were both represented. Some genic 
variants mapped to multiple FBgn (Genic—mapped). These genic variants 
mapped to 12 different site classes. 

Site class 
Additive 
(P ≤ 2.63E-8) 

Additive 
(P ≤ 1E-5) 

Marginal 
(P ≤ 2.56E-8) 

Epistatic 
(variable) 

Intergenic 1 25 21 608 
Genic—unique 7 138 66 2443 

 Genic—mapped 7 217 97 3275 
    Novel start site 0 1 0 9 

    Splice site region 0 0 0 1 
Codon change plus codon 

insertion 0 0 0 2 
Codon deletion 0 0 0 1 

    Non-synonymous coding 1 6 1 81 
    Exon (candidate region) 0 3 1 61 

    Synonymous coding 0 8 7 238 
    Upstream 2 47 9 462 

    Downstream 0 24 15 592 
    Intron 4 121 62 1683 

    5' UTR 0 1 0 50 
    3' UTR 0 6 2 95 
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Table 5. Summary of top marginal variants, representing these variants more 
likely to interact with other variants, significant for robustness for flight 
performance. Reported top variant IDs that pass a Bonferroni threshold (P ≤ 2.56E-8) 
and map within 1kb of a gene. Variants tied in significance are listed on separate lines 
and if their variant type is different, are accompanied with a vertical bar (| ). The 
number of variants (#) identified overall for each FlyBase gene numbers (FBgn) are 
listed with the respective D. melanogaster (Dmel) gene symbol and predicted H. 
sapiens (Hsap) ortholog. If multiple games mapped to the same intron, then rows 
within a cell correspond for variant type, #, Dmel, and Hsap. The sex is listed in bold for 
the reported P-value, and if another sex-based phenotype was also significant past the 
Bonferroni threshold, then it is listed in the default style. See Table S9 for a complete 
list of significant marginal variants. 

ID Variant Type # FBgn Dmel Hsap Sex P-value 
2L_13665283_SNP UPSTREAM 2 FBgn0028527 CG18507 TMEM268 A 1.30E-08 

2L_15118901_SNP DOWNSTREAM 
UPSTREAM 1 

1 
FBgn0001978 
FBgn0264435 

stc 
lncRNA:CR43853 

 NFX1 
 

F 2.20E-09 

2L_17858284_SNP INTRON 1 FBgn0262018 CadN2 CDH family D 8.41E-09 

2L_18376890_SNP INTRON 1 FBgn0000636 Fas3 NECTIN3 D 2.64E-09 

2L_18405116_INS 
2L_18405122_SNP 

DOWNSTREAM 3 FBgn0265680 lncRNA:CR44487   D 9.82E-09 

2L_3813243_SNP INTRON 1 FBgn0031573 CG3407   D 9.04E-09 

2L_4744991_SNP INTRON 2 FBgn0031627 fipi NCAM1 & 2 A & F 3.20E-09 

2L_520870_SNP 
2L_520873_SNP 
2L_520875_SNP 

INTRON 4 FBgn0003963 ush ZFPM1 D 1.85E-08 

2L_5789592_SNP INTRON 4 FBgn0031738 CG9171 B4GAT1 F 1.28E-09 

2L_6255045_SNP INTRON 
UPSTREAM 2 

1 
FBgn0053531 
FBgn0031791 

Ddr 
AANATL2 

DDR2 
 

D 1.54E-08 

2L_6837786_SNP SYNONYMOUS_CODING 1 FBgn0051632 sens-2 GFI1B F 2.54E-08 

2R_15214612_SNP NON_SYNONYMOUS_CODING 2 FBgn0264753 Rgk1 RRAD A & F 6.62E-09 

2R_16329683_SNP INTRON 1 FBgn0086604 side-VIII   D 7.25E-09 

2R_16871314_SNP DOWNSTREAM 
UTR_3_PRIME 1 

1 
FBgn0034567 
FBgn0034566 

CG15651 
CG9313 

FKRP 
DNAI1 

A 1.12E-08 

2R_17237364_SNP INTRON 1 FBgn0034624 CG17974 R3HDML F 2.32E-08 

2R_17881811_SNP INTRON 1 FBgn0085399 CG34370   D 2.56E-08 

2R_18317818_SNP DOWNSTREAM 1 FBgn0034730 ppk12 ASIC2 F 7.95E-09 

2R_18901796_SNP INTRON 1 
1 

FBgn0261705 
FBgn0003900 

CG42741 
twi 

KLF8 
TWIST1 

A & F 2.20E-16 

2R_18942230_SNP UPSTREAM 1 FBgn0265187 Fatp2 SLC27A4 F 1.58E-08 

2R_9370228_SNP INTRON 
DOWNSTREAM 1 FBgn0000119 arr 

cbc 
LRP6 
CLP1 

F 1.68E-08 

2R_9482083_SNP SYNONYMOUS_CODING 1 FBgn0033859 fand XAB2 F 7.24E-09 

3L_10477242_SNP INTRON 1 FBgn0052062 Rbfox1 RBFOX1 D 1.09E-08 

3L_11307007_SNP DOWNSTREAM 1 FBgn0036153 CG7573 ZMPSTE24 F 2.52E-09 

3L_12128004_SNP | 
3L_12128115_SNP 

INTRON |  
SYNONYMOUS_CODING 2 FBgn0036254 CG5645 KRI1 A & F 9.17E-09 

3L_12261406_SNP SYNONYMOUS_CODING 1 FBgn0052100 CG32100   F 6.15E-09 

3L_12816254_SNP SYNONYMOUS_CODING 1 FBgn0260965 CG42588 GTF3C2 D 1.26E-08 

3L_14984696_SNP UTR_3_PRIME 
UPSTREAM 1 

1 
FBgn0002778 mnd 

Zip71B 
SLC7A7 
SLC39A5 

D 1.52E-08 
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3L_15528436_SNP UPSTREAM 1 FBgn0004396 CrebA CREB3L2 D 1.23E-08 

3L_15606096_SNP UPSTREAM 2 FBgn0036520 CG13449   D 9.44E-09 

3L_15606096_SNP 
3L_15606118_SNP 

DOWNSTREAM 2 FBgn0259236 comm3   D 9.44E-09 

3L_18652370_SNP INTRON 1 FBgn0036801 MYPT-75D PPP1R16A 
& B 

F 2.22E-08 

3L_2124762_SNP INTRON 1 FBgn0052311 zormin   F 7.36E-09 

3L_4614543_SNP INTRON 8 FBgn0262733 Src64B SRC A & F 2.20E-16 

3L_6787706_SNP DOWNSTREAM 1 FBgn0086680 vvl POU3F2 - 4 F 2.33E-08 

3R_10255142_DEL INTRON 1 FBgn0285955 cv-c DLC1 F 1.59E-08 

3R_10571744_SNP INTRON 
DOWNSTREAM 1 FBgn0263929 

FBgn0038257 
jvl 
smp-30 

 
RGN 

F 9.67E-09 

3R_10653019_SNP INTRON 1 FBgn0266756 btsz SYTL4 F 1.76E-08 

3R_14535017_SNP 
3R_14535554_SNP 

INTRON 2 
2 

FBgn0000303 
FBgn0270928 

ChAT 
VAChT 

CHAT 
SLC18A3 

D 3.35E-09 

3R_1760833_SNP INTRON 2 FBgn0083949 side-III NPHS1 D 7.73E-09 

3R_17798817_DEL INTRON 1 FBgn0264490 Eip93F LCOR & 
LCORL 

D 2.24E-08 

3R_19043498_SNP INTRON 1 FBgn0262975 cnc NFE2L1 & 2 D 2.12E-09 

3R_20094952_SNP INTRON 1 FBgn0011225 jar MYO6 D 2.09E-08 

3R_20997431_SNP  
3R_20997437_SNP 
3R_20997471_SNP 

INTRON 3 FBgn0083946 lobo DRC7 D 8.66E-09 

3R_21094714_SNP INTRON 
EXON 
DOWNSTREAM 

1 
1 
1 

FBgn0266741 
FBgn0039307 
FBgn0263002 

asRNA:CR45214 
CR13656 
CR43310 

  D 2.33E-08 

3R_21260509_SNP INTRON 2 FBgn0004509 Fur1 FURIN D 5.14E-09 

X_12027308_INS INTRON 1 FBgn0267001 Ten-a TENM3 D 2.39E-08 

X_12327550_SNP INTRON 4 FBgn0259680 Pkcdelta PRKCD D 4.83E-09 

X_15377082_DEL INTRON 1 FBgn0030648 CG6340 RSRC2 D 4.09E-09 

X_17611389_INS INTRON 1 FBgn0261570 raskol DAB2IP & 
RASAL2 

F 9.23E-09 

X_18221352_SNP SYNONYMOUS_CODING 1 FBgn0030913 CG6123   A & F 8.99E-09 

X_18460258_SNP INTRON 
DOWNSTREAM 1 

1 
FBgn0265598 
FBgn0052546 

Bx 
tRNA:Pro-CGG-2-1 

LMO1 F 8.77E-09 

X_4690532_SNP DOWNSTREAM 1 FBgn0029728 CG2861   D 1.74E-08 

X_5716556_SNP INTRON 1 FBgn0029814 CG15765   F 1.90E-08 

X_5868574_DEL INTRON 1 FBgn0029830 Grip GRIP1 F 2.48E-08 

X_8085024_SNP INTRON 1 FBgn0261873 sdt MPP5 D 1.26E-08 
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Supplemental tables 1-10 are available online: 

• https://doi.org/10.26300/nfaa-m737 

 

Supplemental files 1-2 are available online: 

1.  https://doi.org/10.26300/yfm8-9383 

2. https://doi.org/10.26300/cxjw-6q95 

  



 119 

 
Figure 1. The Drosophila Genetic Reference Panel lines demonstrate variation for 
robustness in flight performance across genotypes and sexes. (A) Flies were 
assayed for flight performance using a meter-long flight column (BABCOCK AND 
GANETZKY 2014). The coefficient of variation (mean-normalized standard deviation) is a 
proxy for robustness; more robust genotypes have less variation in landing height 
around the mean. Flies that passed through the column were excluded from the 
analysis. (B) The phenotypic distribution of sex-genotype pairs, ordered by increasing 
male score, demonstrates the DGRP lines have variation in their robustness for flight 
performance. Genotypes demonstrated phenotypic variation for robustness in both 
sexes. (C) Males were generally more robust than females, though the two were related 
(r = 0.55; regression line in red). Sexual dimorphism is observed by the intersection of 
the regression line and y = x line (gray). (D) Additive variants in the sex-average 
analysis, visualized as a function of the –log10 of variants’ P-value illustrates several 
variants (red) passed the traditional DGRP significance threshold (P ≤ 1E-5; gray solid 
line), and three (red with black outline) passed Bonferroni significance threshold (P ≤ 
2.63E-8, gray dashed line). Variants that did not pass the significance threshold are 
colored in black or gray by chromosome. 
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Functional validation of candidate genes 

 
Figure 2. Several genes validated for robustness of flight performance. Flies 
homozygous for Mi{ET1} insertion constructs inserted in candidate genes (experiment) 
were tested against their background control (control). Comparisons between control 
and experiment lines were assessed for significance using a Klomogrov-Smirnoff test (P 
≤ 0.05; red points and bold text). Values to the left of the midline suggest control 
genotypes were more robust than experimental lines, while the opposite is true for 
values to the right of the line. (A) Seven constructs were significant in males, (B) while 
13 were significant in females. Some candidate genes were tested more than once 
(CadN, Dscam4, and flapper) because they were strongly significant in the sex-average 
additive association screen. Separate constructs are denoted by a suffix containing a  
`MB` code. 
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Figure 3. Several genetic variants positively associate with flight performance 
across different types of analyses. (A) Manhattan plot for sex-average whole gene 
analysis suggests several genes (red) were significant above a Bonferroni threshold (P 
≤ 3.43E-6, gray line). (B) Manhattan plot for sex-average marginal analysis suggests 
several variants (red) were significant above a Bonferroni threshold (P ≤ 2.56E-8, gray 
line). For each plot, points are arranged by relative chromosome (genomic) position and 
all points are –log10 transformed. 
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Figure 4. Robustness of flight performance is comprised of an interconnected 
genetic architecture. (A) There were several interactions between genes identified 
from marginal variants. In particular, PKC-δ had the greatest number of interactions with 
other marginal genes, while CG15651 and CG9313 were next. There was a marginal 
variant that overlapped with CG15651 and CG9313, so all edges connecting to 
CG15651 also connect to CG9313, however there was an independent variant in 
CG9313 that did not overlap with CG15651 that interacted in the sex-difference screen 
with PCK-δ and ush. Intergenic regions that also interacted with genic marginal variants 
are not displayed. (B) For the additive, marginal, and epistatic variants identified, 
additive variants were unique, while marginal and epistatic variants had some overlap. 
This overlap was expected since the marginal variants served as a subset in searching 
for epistatic variants. (C) Genes and genes mapped from variants had some overlap 
between analyses, though most genes were unique to a single analysis. When 
comparing variants and unique genes across (D-E) additive, marginal (F-G), and 
epistatic (H) analyses, there was roughly 15-20% overlap between the shared group 
and all those identified. However, there was no overlap between the (I) whole genes 
identified using PEGASUS_flies. 
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Figure S1. Coefficient of variation is near-normally distributed across sexes. 
Genotypes’ coefficient of variation is a measure of the standard deviation divided by the 
mean, representing a normalized measure of variation across genotypes. The 
distribution for each sex (males more so) was near-normally distributed, though there 
was a tail to the distribution favoring greater coefficients of variations. Lower coefficients 
of variation correspond with a greater degree of robustness for flight performance. 
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Figure S2. Phenotypic distributions for sex-average and sex-difference 
phenotypes. (A) Sex-average and (B) sex-difference phenotypes exhibit phenotypic 
variation for the coefficient of variation in flight performance. Each distribution is 
independently arranged by increasing phenotype score. The sex-difference scores 
represent females – males. 
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Figure S3. Significant variants in additive analysis by sex-based phenotype. 
Several additive variants were identified across the (A) male, (B) female, and (C) sex-
difference phenotypes. Variants that passed a traditional DGRP significance threshold 
(P ≤ 1E-5; gray solid line) are in red, while those that passed a Bonferroni threshold (P ≤  
2.63E-8; gray dashed line) are red with black outline. Points ordered by their relative 
position across each chromosome (labeled) and plotted against the –log10 of their 
significance score. 
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Figure S4. Quantile-quantile (QQ) plots suggest several additive variants 
associate with robustness in flight performance. QQ-plots illustrating the distribution 
in observed vs. expected P-values for the (A) male, (B) female, and (C) sex-average 
phenotypes, and (D) sex-difference phenotypes. These plots suggest each sex-based 
phenotype has several significant variants based on the deviation from the red line 
representing a 1:1 (expected : observed) relationship. 
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Figure S5. Significant additive variants are broadly distributed across the 
genome. Heat map illustrating the chromosomal location of each of the DGRP2 
webserver’s putative `top hits` (returned from DGRP2 webserver) colored from 
decreasing (blue, 0) to increasing (red, 1) linkage score. Most variants were distributed 
throughout all but chromosome 4, with some variants in linkage blocks (multicolored 
squares). 
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Validation crossing scheme 

 
Figure S7. Drosophila crossing scheme used to generate control and 
experimental lines for candidate gene validation. All crosses take place between 
females on the left and males on the right. White boxes represent the background 
control line, either w1118 (or y1w67c23), while green boxes represent the construct. The first 
generation cross generated females heterozygous for the construct, which were then 
backcrossed for five consecutive generations to the respective background control line. 
Isoparental crosses between heterozygotes for the construct were screen for flies 
without the construct (control) or heterozygous/homozygous for the construct. The latter 
group was self crossed within the same vial and the resulting crosses that contained no 
flies without the reporter were deemed homozygous for the construct (experiment). Both 
control and experiment lines were maintained for 2 generations to confirm their 
genotype before testing. Figure reproduced with permission (SPIERER et al. 2020). 
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Figure S8. Several whole genes were identified across each sex-based phenotype 
using PEGASUS_flies. In total, 45 unique genes were found in (A) males, (B) 
females, (C) and sex-difference. Significant genes (red points) passed the Bonferroni 
threshold (P ≤ 3.43E-6; gray line), while the remaining did not (black and gray). Points 
are arranged in order of relative position on each chromosome (labeled), and plotted 
against the –log10 of their significance score. 
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Figure S9. Significant marginal variants were identified across each sex-based 
phenotype. Several marginal variants were identified across the (A) male, (B) female, 
and (C) sex-difference phenotypes. Significant variants (red) passed a Bonferroni 
threshold (P ≤ 2.56E-8; gray solid line), while those that did not are colored in black or 
gray. Points are ordered by their relative genomic position and their significance score  
–log10 transformed. 
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A B S T R A C T

Endurance exercise has received increasing attention as a broadly preventative measure against age-related
disease and dysfunction. Improvement of mitochondrial quality by enhancement of mitochondrial turnover is
thought to be among the important molecular mechanisms underpinning the benefits of exercise. Interactions
between the mitochondrial and nuclear genomes are important components of the genetic basis for variation in
longevity, fitness and the incidence of disease. Here, we examine the effects of replacing the mitochondrial
genome (mtDNA) of several Drosophila strains with mtDNA from other strains, or from closely related species, on
exercise performance. We find that mitochondria from flies selected for longevity increase the performance of
flies from a parental strain. We also find evidence that mitochondria from other strains or species alter exercise
performance, with examples of both beneficial and deleterious effects. These findings suggest that both the
mitochondrial and nuclear genomes, as well as interactions between the two, contribute significantly to exercise
capacity.

1. Introduction

Endurance exercise is increasingly recognized as an intervention
that profoundly reduces the incidence of multiple important age-related
diseases, including cancer, diabetes, and cognitive decline (Cassilhas
et al., 2016; Thomas et al., 2017; Zanuso et al., 2017). Despite the
pervasive benefits of exercise, the molecular mechanisms driving these
effects are only just beginning to be understood. One important me-
chanism mediating the effects of endurance exercise is thought to be
maintenance of mitochondrial integrity and quality (Bo et al., 2010;
Kang et al., 2013; Laker et al., 2014b).

Mitochondrial dysfunction increases with age in humans (Dai et al.,
2012) and model organisms (Kang et al., 2013; Owusu-Ansah et al.,
2013), leading to reduced respiratory function, and increased accu-
mulation of reactive oxygen species (Chan et al., 2010). These deficits
have been associated with increased incidence of cardiovascular (Liang
and Kobayashi, 2015) and neurodegenerative (Moran et al., 2012)
diseases, as well as general metabolic dysfunction (Ziegler et al., 2015).

Endurance training has long been known to stimulate mitochondrial
biogenesis (Irrcher et al., 2003). More recently, it has become clear that
training also improves mitochondrial quality (Yan et al., 2012), and this
improvement is dependent on induction of mitophagy (Venditti et al.,

2013). This mechanism appears to be broadly conserved, as it has been
observed in both vertebrate (Booth et al., 2015) and invertebrate (Laker
et al., 2014b) models.

Effective mitochondrial activity depends on cooperative function
between proteins encoded by the nuclear and mitochondrial genomes
(Rand et al., 2004; Tranah, 2011). Coordination between the products
of these genomes is essential for proper function under normal condi-
tions, or during stressful conditions such as endurance exercise (Ryan
and Hoogenraad, 2007). While endurance exercise has been observed to
induce substantial changes to chronic expression of nuclear genes
(Coffey and Hawley, 2007; Sujkowski et al., 2015), less is known about
the coordination of these changes with the mitochondrial genome.

Substantial individual variation in the response to identical en-
durance exercise paradigms exists within the human population
(Bouchard et al., 2012; Puthucheary et al., 2011) and between strains of
model organisms (Britton and Koch, 2001; Mendez et al., 2016). With
increasing interest in personalized genomic approaches to medicine,
understanding the genetic bases of this individual variation is an im-
portant goal. One important source of this variation could be interac-
tions between the mitochondrial and nuclear genomes. Here, we seek to
gain greater understanding of the contributions of the mitochondrial
and nuclear genomes to exercise adaptation using unique populations
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of “mito-switch” Drosophila. These lines harbor mitochondria from
exogenous fly lines of three types: (1) a line selected for greater long-
evity over many generations, (2) different strains of Drosophila mela-
nogaster, (3) other species from the Drosophila genus.

Using a negative geotaxis-based paradigm for endurance exercise
(Piazza et al., 2009a; Tinkerhess et al., 2012a), we assessed the baseline
speed, endurance, flight and cardiac performance of wild-type Droso-
phila. We then compared them to flies with an identical nuclear
genome, but different mitochondrial genomes (hereafter mitotypes or
mtDNAs). We further compared the ability of each combination of
mitotype/nucleotype to adapt to 3 weeks of chronic endurance exercise.

We find that mitochondria derived from longevity-selected flies
were able to confer substantial performance improvements on their
original parental line. Mitochondria from exogenous strains or from
other Drosophila species had complex and variable effects, with both
mitotype and nucleotype having significant effects on most assays.
These results are consistent with the ideas that both the mitochondrial
and nuclear genomes, as well as interactions between the two, play
important roles in determining exercise capacity.

2. Materials and methods

2.1. Drosophila stocks and maintenance

w1118 and OregonR were obtained from the Bloomington Drosophila
stock Center (BDSC). Ra, La, RaLa(m), and LaRa(m) were described in
(Arking, 1987; Soh et al., 2007). OreR(m);OreR, siI(m);OreR,
sm21(m);OreR, Zim53(m);OreR, w1118(m) ;w1118, siI(m);w1118, sm21(m);w1118,
OreR(m);w1118, Zim53(m);w1118, and Zim53(m);Zim53, hereafter referred
to as the ‘mitoswitch’ lines, were described in (Zhu et al., 2014). Note
that the RaLa(m) and LaRa(m) stocks list the nuclear genomes first and
the mtDNA (m) second, whereas the ‘mitoswitch lines list the mtDNA
(m) first and the nuclear genome second, separated by a semicolon
(e.g., OreR(m);w1118).Flies were cultured and housed on standard 10%
sucrose 10% yeast medium at 25 °C, 50% humidity under 12 h light/
dark cycle. All stocks were confirmed by PCR to be Wolbachia-free at
the time of measurement.

2.2. Exercise training

Exercise training was performed as in Piazza et al. (2009a). Briefly,
cohorts of at least 880 male flies were collected under light CO2 an-
esthesia within 2 h of eclosion and separated into vials of 20. Flies were
then further divided into 2 cohorts of at least 440 flies designated
“exercised” or “unexercised”. Every morning prior to training, both
exercised and unexercised cohorts were flipped onto fresh vials of 10%
sucrose, 10% yeast food. Unexercised flies were treated identically to
exercised siblings, but had a foam stopper placed low in the vial during
exercise training to prevent running while on the exercise apparatus.
The exercise device drops the fly vials every 15 s in order to repetitively
induce negative geotaxis. Exercised flies are free to run to the top of the
vial. A program of gradually increasing daily exercise generates sig-
nificant improvements in mobility (Damschroder et al., 2018).

2.3. Climbing speed

Each day prior to exercise training, flies were assessed for climbing
performance using a rapid iterative negative geotaxis (RING) assay as in
Gargano et al. (2005). Flies were transferred to individual poly-
propylene vials in a RING apparatus and allowed to equilibrate for
1min. Negative geotaxis was elicited by sharply rapping the RING
apparatus four times in rapid succession. The positions of the flies were
captured in digital images taken 2 s after eliciting the behavior. Images
were analyzed using ImageJ (Bethesda, MD). The relative distance
climbed by each fly was converted into quadrants using Microsoft
Excel. The performance of 20 flies was calculated as the average of four

consecutive trials to generate a single datum. Flies were tested long-
itudinally 5 times per week for 3–5 weeks to assess decline in negative
geotaxis speed with age. Data were further consolidated into pre- and
post-training performance normalized to the starting climbing index of
each individual cohort. Summary histograms are presented as the
average climbing speed of a single cohort during week 1, and after
3 weeks of endurance training. Between assessments, flies were re-
turned to food vials and housed until the following RING test. Statistical
tests and modeling are described in Statistical Analyses.

2.4. Endurance

Climbing endurance was measured using the fatigue assay described
previously (Damschroder et al., 2018; Tinkerhess et al., 2012a). At least
eight vials of 20 flies from each cohort were subjected to the fatigue
assay at two time points. Before exercise, flies are tested once on day 5
of adulthood. The cohort is then split into exercised and unexercised
groups and tested again on day 25 of adulthood. For each assessment,
the flies were placed on the Power Tower exercise machine and made to
climb until they were fatigued, or no longer responded to the negative
geotaxis stimulus. Monitored continuously, a vial of flies was visually
determined to be “fatigued” when five or fewer flies could climb higher
than 1 cm after three consecutive drops. A minimum of 8 vials con-
taining 20 flies each was used for each fatigue assessment with each vial
plotted as a single datum. Summary histograms are presented as the
average runspan of a single cohort during week 1, and after 3 weeks of
endurance training. Each experiment was performed in duplicate or
triplicate, and runspans were scored blindly when possible. The time
from the start of the assay to the time of fatigue was recorded for each
vial, and the data analyzed using log-rank analysis in GraphPad Prism
(San Diego, CA, USA). In addition, two-way ANOVA was performed in R
(R, 2016) comparing genotype x training and nucleotype x mitotype for
exercised and unexercised cohorts for all orthogonal experimental
groups. Additional log-rank analyses were performed in Prism. Tables
and graphs depict a single, representative cohort.

2.5. Pacing

At the conclusion of the training period, 25-day old flies were re-
moved from the study and subjected to electrical pacing as in Wessells
et al. (2004). Briefly, flies are placed between two electrodes touching
conductive jelly spread over the electrodes and the heart is paced with a
square wave stimulator at 40 V and 6 Hz for 30 s. The percentage of fly
hearts that responded to pacing with either fibrillation or arrest was
recorded as “% failure”. Percent failure is a marker for stress sensitivity
and characteristically declines with age (Piazza et al., 2009b; Wessells
and Bodmer, 2004). Endurance exercise reduces cardiac failure rate
across ages in trained male Drosophila (Piazza et al., 2009a; Sujkowski
et al., 2015). Pacing experiments were performed in duplicate with
n≥ 68 for all pacing experiments. Data were analyzed using chi-
squared tests for probabilities with Yates' continuity correction. Tables
and graphs depict a single, representative cohort.

2.6. Flight performance

Flight analysis was performed on day 25 after training was com-
plete. Flight was analyzed as in Sujkowski et al. (2015). Triplicate co-
horts of at least 71 flies were exercise trained in narrow vials housing
groups of 20 age-matched siblings. Acrylic sheeting with paintable
adhesive was placed in the flight tube, and fly cohorts were ejected into
the apparatus to record flight performance and subsequent landing
height after release. Fly cohorts were introduced to the flight tester one
vial at a time using a gravity-dependent drop tube in order to reduce
variability. After a full cohort of flies was captured on the adhesive, the
sheeting was removed to a white surface in order to photograph landing
height of each fly. Flies with damaged wings were censored from final
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analysis to control for mechanical stress not related to training per-
formance. Images were analyzed using ImageJ. Landing height graphs
depict mean +/− SD with Tukey post-hoc test between all pairwise
comparisons. Asterisks indicate significantly different groups. Tables
represent 2-way ANOVA factoring nucleotype x training in all geno-
types, and mitotype x nucleotype in trained and untrained groups se-
parately. Tables and graphs depict a single, representative cohort.

2.7. Lysotracker

Similar to cardiac pacing and flight, Lysotracker staining of adult fat
bodies was performed as in Sujkowski et al. on day 25 (Sujkowski et al.,
2012). Adult flies separated by treatment were dissected, ventral side
up, in room temperature PBS. Partially dissected flies with their fat
bodies exposed were rinsed 1× in fresh PBS. Lysotracker green (Mo-
lecular Probes, Eugene, OR) was diluted to 0.01 μM in PBS and applied
to dissected preps for 30 s. Samples were washed 3 times in fresh PBS.
Stained fat bodies were subsequently removed and mounted in Vecta-
shield reagent (Vector Laboratories, Burlingame, CA, USA). Confocal
work was done at the Microscopy, Imaging and Cytometry Resources
Core at Wayne State University, School of Medicine on a Zeiss Laser
Scanning LSM 780 (Jena, Germany) using a 40× oil immersion ob-
jective. Images were analyzed using ImageJ (Bethesda, MD). 10 sam-
ples were analyzed for each sample and duplicate biological cohorts
were assessed for each group. Lysotracker graphs depict mean +/−
SEM with Tukey post-hoc test between all pairwise comparisons. As-
terisks indicate significantly different groups. Tables represent 2-way
ANOVA factoring nucleotype x training in all genotypes, and mitotype x
nucleotype in trained and untrained groups separately. Tables and
graphs depict a single, representative cohort.

2.8. Citrate synthase activity

Triplicate biological replicates of 8 age-matched adult male flies of
each genotype were homogenized in 400 μL ice-cold Cellytic M buffer
(Sigma Catalog Number C2978). Protein concentration of each sample
was determined using BCA (Pierce BCA Protein Assay Kit
(ThermoFisher cat. 23,225) according to manufacturer's protocol with
the following modification: The volume of homogenate pipetted from
each biological replicate was reduced from 20 μL to 5 μL per well in
order to stay within range of the standard curve. Sample volumes were
adjusted so all had equal protein. Citrate Synthase activity was de-
termined using the assay kit according to protocol (Sigma Catalog
number CS0720). Briefly, an assay mix of 176 μL 1× assay buffer, 2 μL
10mM DNTB, 2 μL 30mM AcCoA and 10 μL sample was added per well
and read on a kinetic program at 412 nm every 30 s for 4min and 30 s
to determine baseline. 10 μL 10mM Oxaloacetate (made fresh in 1×
assay buffer) was added to all wells, and the plate was read again as
described above. Change in slope was calculated to determine activity/
min/mg of total protein.

2.9. Statistical analyses

The negative geotaxis (Climbing Speed) data were analyzed using
mixed effect models in the R statistical package. The data reported in
Table 1 were based on four replicate vials of 20 flies for each genotype.
Each vial was quantified for climbing on successive days as repeated
measures. While individual flies were not quantified, the proportion of
flies in each vial was quantified on successive days, so the vial is the
unit of repeated measure. Because there were very few deaths in each
vial, this is a more appropriate way to capture variation due to Age than
to treat it as a survivorship analysis.

Statistical analyses followed two general three-way models:
Climbing Index ~ G+T+A+GxT+GxA+TxA+GxTxA +

error, where G, T and A are the terms in the model for Genotype,
Treatment (Exercised vs. Unexercised) and Age (different days as shown

in Fig. 1), respectively, plus all interaction terms.
We also separated the Nuclear and mtDNA components of Genotype

in additional models that were run separately on the Exercised and
Unexercised treatments:

Climbing Index ~ N+M+A+NxM+NxA+MxA+NxMxA +
error, where N, M and A are the terms in the model for Nuclear gen-
otype, mtDNA genotype and Age, respectively, plus all interaction
terms.

To correct for the autocorrelation structure across the repeated
measures of the Age effect in these three-way models, we used the R
libraries car and nlme, and the gls and lme functions, with the au-
tocorrelation correction as “correlation = corAR1(form = ~ Age |
ReplicateVial)”. This treats the replicate vials as random effects
with a lag time of 1, which captures the successive days of climbing
analyses. A unique auto correlation value was estimated for each model
and data set using the ACF function in R: ACF(model, form = ~1 |
ReplicateVial). The Results were summarized using the anova
(model) and Anova(model) functions, which display F-values and
Chi-Square tests, for analyses of variance, and deviance, respectively.
The values reported for the analysis of deviance quantify the effects of
comparing a fixed effect model to the model with the random effect of
replicate vial corrected for autocorrelation. The R scripts describing
these analyses are provided in the Supplemental material, and are
modified from those reported by S. Mangiafico (http://rcompanion.
org/handbook/I_09.html).

Statistical analyses for the data presented in Figs. 3, 6 and 7 fol-
lowed the same strategy with very similar models. The Ra/La lines are a
matched set of genotypes where each mtDNA is represented on each
Nuclear genome, so tests of Genotype can be partitioned orthogonally
for tests of Nuclear x mtDNA interactions.

The mitoswitch lines include 10 genotypes, three of which are ori-
ginal isofemale lines (OreR, w1118 and Zim 53), and the w1118 mtDNA
and the Zim53 nuclear genome are not paired with all other genotypes.
Thus analyses were of two types: ANOVAs among the 10 Genotypes
testing for interactions with Training effects, and ANOVAs for a subset
of eight genotypes where four mtDNAs (D. melanogaster mtDNA OreR
and Zim53, and D. simulans mtDNAs sm21 and siI) are each paired with
the two nuclear genomes (D. melanogaster OreR or w1118). For these
eight mitonuclear genotypes three-way ANOVAs were possible to test
for Nuclear x mtDNA x Training interactions. Finally, within the eight
orthogonal mitoswitch genotypes, two-way ANOVAs were performed
separately for the Unexercised and Exercised samples, testing for
Nuclear x mtDNA interactions.

Mitoswitch lines are analyzed twice in Table 2, once with only one
repetition for each type, and another time with multiple repetitions of
three groups pooled in the model. Thus, the degrees of freedom for each
term does not change between the two analyses, but the total residual
DF does. Both analyses gave qualitatively similar results.

For each phenotype, the following models were run in the R sta-
tistical package, using the aov and lm functions, and reporting results
using the summary(model) and Anova(model) commands. Type II
sum of squares were reported, but in most cases the data sets were
balanced.

For the Ra/La and 10 mitoswitch lines, the following general 2-way
model was tested.+ + +Phenotype~G T GxT error

For the orthogonal Ra/La and 8 mitoswitch lines, the following 3-
way model was tested:+ + + + + + +Phenotype~N M T NxM NxT MxT NxMxT error

And within either the Unexercised or Exercised samples of flies, the
following 2-way model was tested:+ + +Phenotype~N M NxM error

In these models, G= the term for genotype (i.e., joint mito-nuclear
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Table 1
Repeated measures analysis of climbing speed by genotype, training and age.
Ra/La Analysis of variance Analysis of Deviance

Combined Term in models DF F-value p-value Chisq Pr(> Chisq)

(Intercept) 1 21,709.05 <0.0001
Genotype 3 30.75 <0.0001 92.24 < 2.2E-16
Training 1 23.60 <0.0001 23.60 1.184E-06
Age 1 1842.70 <0.0001 1842.70 < 2.2E-16
Genotype:Training 3 14.99 <0.0001 44.98 9.344E-10
Genotype:Age 3 34.56 <0.0001 103.67 < 2.2E-16
Training:Age 1 8.35 0.0041 8.35 0.0038662
Genotype:Training:Age 3 6.46 0.0003 19.37 0.0002298
Residuals 400

Unexercised DF F-value p-value Chisq Pr(> Chisq)
(Intercept) 1 9584.20 <0.0001
Nuclear 1 0.01 0.9237 0.01 9.236E-01
mtDNA 1 99.86 <0.0001 99.85 < 2.2E-16
Age 1 1009.07 <0.0001 1009.07 < 2.2E-16
Nuclear:mtDNA 1 0.09 0.763 0.09 7.627E-01
Nuclear:Age 1 5.54 0.0195 5.54 1.855E-02
mtDNA:Age 1 64.36 <0.0001 64.36 1.038E-15
Nuclear:mtDNA:Age 1 10.89 0.0011 10.89 0.0009668
Residuals 200

Exercised DF F-value p-value Chisq Pr(> Chisq)
(Intercept) 1 12,346.02 <0.0001
Nuclear 1 23.20 <0.0001 23.20 1.464E-06
mtDNA 1 5.15 0.0244 5.14 0.023317
Age 1 837.15 <0.0001 837.15 < 2.2E-16
Nuclear:mtDNA 1 4.69 0.0316 4.69 0.030367
Nuclear:Age 1 26.95 <0.0001 26.95 2.09E-07
mtDNA:Age 1 7.24 0.0077 7.24 7.115E-03
Nuclear:mtDNA:Age 1 6.59 0.011 6.59 1.023E-02
Residuals 200

Percent Change (Fig. 2A) DF F-value Sum Sq Pr(> F)
Nuclear 1 0.44 8.1 0.51
mtDNA 1 228.22 4225.8 < 2.2E-16
Nuclear:mtDNA 1 80.22 1485.3 1.62E-13
Residuals 76 1407.20

Residual standard error: 4.303 on 76 degrees of freedom
Multiple R-squared: 0.8025,
Adjusted R-squared: 0.7947
F-statistic: 103 on 3 and 76 DF, p-value: < 2.2e-16

Mitoswitch Analysis of variance Analysis of Deviance
10 Genotypes Term in models DF F-value p-value Chisq Pr(> Chisq)

(Intercept) 1 25,807.94 <0.0001
Genotype 9 16.45 <0.0001 157.34 < 2.2E-16
Training 1 0.88 0.3485 0.88 3.483E-01
Age 1 2900.16 <0.0001 2900.16 < 2.2E-16
Genotype:Training 9 1.31 0.228 11.68 2.322E-01
Genotype:Age 9 9.70 <0.0001 87.27 5.725E-15
Training:Age 1 3.20 0.074 3.19 7.388E-02
Genotype:Training:Age 9 0.55 0.8362 4.98 8.365E-01
Residuals 1864

8 Genotypes DF F-value p-value Chisq Pr(> Chisq)
(Intercept) 1 20,061.80 <0.0001
Genotype 7 19.73 <0.0001 147.09 < 2.2E-16
Training 1 0.32 0.5708 0.32 5.707E-01
Age 1 2224.39 <0.0001 2224.39 < 2.2E-16
Genotype:Training 7 1.20 0.2997 8.32 3.053E-01
Genotype:Age 7 11.98 <0.0001 83.88 2.217E-15
Training:Age 1 2.48 0.1156 2.48 1.154E-01
Genotype:Training:Age 7 0.56 0.7905 3.90 7.907E-01
Residuals 1488

Unexercised DF F-value p-value Chisq Pr(> Chisq)
(Intercept) 1 11,351.95 <0.0001
Nuclear 1 42.20 <0.0001 45.40 1.606E-11
mtDNA 3 4.03 0.0074 11.09 1.127E-02
Age 1 1389.44 <0.0001 1390.81 < 2.2E-16
Nuclear:mtDNA 3 3.33 0.0193 9.96 1.889E-02
Nuclear:Age 1 7.90 0.0051 7.76 5.354E-03
mtDNA:Age 3 6.65 0.0002 19.96 1.730E-04
Nuclear:mtDNA:Age 3 8.46 <0.0001 25.38 1.286E-05
Residuals 744

(continued on next page)
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genotype), T= the term for Training (Unexercised vs. Exercised) and
M= the term for mtDNA (either Ra or La mtDNA), or one of the four
mtDNAs from D. melanogaster or D. simulans stated above.

In each case, we test the hypothesis that Genotype, Training re-
gimen, or Nuclear or mtDNA genotype explains significant levels of
variation across treatments. Of additional interest is the strength of the
interaction terms in these models, as they reflect the consistency, or
context-dependence, of the main experimental variables we built in to
this overall experiment.

It should be noted that the data in Fig. 3 appear as a time-course of
survivorship format, but the data actually represent an attrition profile
across 8 replicate vials, due to fatigue over time. As such, the vials were
independent and were not treated as repeated measurements. Replicate
sets of 8 vials of 20 flies for each genotype and Training treatment were
subjected to climbing assays over the course of a given day. When fewer
than 5 flies in a vial showed climbing activity, the time that vial was
marked as ‘fatigued’ was taken as the response variable. Each ‘curve’ in
Fig. 3 has 8 points on it, representing the 8 initial vials and the time
each one failed to climb. These time point data were normally dis-
tributed across the data set, and were treated as independent data ob-
servations in the ANOVAs described above.

ANOVAs are reported in Tables 1 and 2, with the Ra/La lines and
mitoswitch lines shown separately. Test results report Sum of Squares
(Type II), F-value, and P-value, with the R-squared and associated de-
grees of freedom.

2.10. Data and reagent availability

All raw data and reagents will be made available to other re-
searchers upon request.

3. Results

3.1. Longitudinal climbing performance

La flies are selectively bred for longevity from their parental Ra line
(Arking, 2001; Arking et al., 2002; Arking et al., 1996). RaLa(m) and
LaRa(m) flies are reciprocal isogenic lines containing heterologous mito-
nuclear combinations, with the nucleotype indicated first followed
immediately by mitotype, as indicated by the subscript (m) (Soh et al.,
2007).

La flies perform better than Ra flies in an acute test of climbing
speed measured longitudinally across 5 weeks as reported previously

(2-way ANOVA, genotype effect, p < 0.0001) (Fig. 1A) (Piazza et al.,
2009a; Sujkowski et al., 2015). In all genotypes, climbing performance
declines normally with age, but Ra flies respond to exercise with in-
creased climbing speed relative to age-matched, unexercised siblings as
previously observed (2-way ANOVA, exercise effect, p≤ 0.0273). In
contrast, age-matched La cohorts receive no further training benefit
(Fig. 1A), also observed previously (Sujkowski et al., 2015). LaRa(m)
flies improve negative geotaxis speed in comparison to unexercised
controls with exercise training (2-way ANOVA, exercise effect,
p < 0.0001) (Fig. 1B). Similar to La flies, RaLa(m) lines show a reduced
decline in negative geotaxis speed with age, resulting in enhanced
climbing speed compared to Ra with or without training (2-way
ANOVA, genotype effect, p < 0.0001) (Fig. 1B, compare 1A to 1B).

The next lines tested were three wild type strains of D. melanogaster
with their own mtDNA (Oregon R, w1118 and Zimbabwe 53), as well as
additional mito-switched lines with one of several types of mtDNA
placed on to the Oregon R (OreR) or w1118 nuclear chromosomal back-
grounds. Mitochondria were either from D. simulans (siI-from a Hawaii
strain, or sm21-from strain C167.4 which is the siI haplotype) or from D.
melanogaster (OreR, w1118, or Zimbabwe, (Zim53). These lines are no-
tated with the mitotype first, indicated by a subscript (m), followed by
the nucleotype (Zhu et al., 2014). Both OreR and w1118 wild type flies
improve negative geotaxis speed across ages with endurance exercise
(2-way ANOVA, exercise effect, p≤ 0.0030, p≤ 0.0280, respectively),
but OreR flies perform comparatively better and decline less rapidly
with age than w1118, independent of training status (2-way ANOVA,
genotype effect, p < 0.0001) (Fig. 1C).

OreR flies with sil mitochondria (e.g., siI(m);OreR) increase negative
geotaxis speed across ages with endurance training (2-way ANOVA,
exercise effect, p≤ 0.0081), but do not reach improvement equivalent
to OreR with matched mitochondria (2-way ANOVA, exercise effect,
p < 0.0001, genotype effect p < 0.0001) (Fig. 1D), OreR with sm21
mitochondria, however, receive no benefit from exercise training, and
even become a little slower (2-way ANOVA, exercise effect, p≤ 0.0276)
(Fig. 1E). w1118 flies with siI mitochondria reduce speed with exercise
but surpass performance of trained w1118 flies whether exercised or not
after day 25 (2-way ANOVA, exercise effect, p < 0.0001, genotype
effect p < 0.0001) (Fig. 1F). w1118 flies with sm21 mitochondria also
fail to improve climbing speed with training but resemble untrained
w1118 flies at young ages (2-way ANOVA, genotype effect, p=0.2526)
and climb slightly better than wild-type untrained flies after day 20 (2-
way ANOVA, genotype effect, p≤ 0.0471) (Fig. 1G). However, w1118
flies with OreR mitochondria respond to exercise with increased speed,

Table 1 (continued)

Ra/La Analysis of variance Analysis of Deviance

Combined Term in models DF F-value p-value Chisq Pr(> Chisq)

Exercised DF F-value p-value Chisq Pr(> Chisq)
(Intercept) 1 8986.16 <0.0001
Nuclear 1 47.05 <0.0001 50.14 1.435E-12
mtDNA 3 5.25 0.0014 16.08 1.090E-03
Age 1 905.04 <0.0001 906.61 <2.2E-16
Nuclear:mtDNA 3 6.74 0.0002 20.44 1.379E-04
Nuclear:Age 1 11.16 0.0009 11.18 8.281E-04
mtDNA:Age 3 4.42 0.0043 13.25 4.119E-03
Nuclear:mtDNA:Age 3 4.17 0.0061 12.50 5.855E-03
Residuals 744

Percent Change (Fig. 2D&E) DF F-value Sum Sq Pr(> F)
Nuclear 1 149.20 1439.8 < 2.2E-16
mtDNA 3 130.93 3790.4 < 2.2E-16
Nuclear:mtDNA 3 99.53 2881.4 < 2.2E-16
Residuals 152 1466.8

Residual standard error: 3.106 on 152 degrees of freedom
Multiple R-squared: 0.8469,
Adjusted R-squared: 0.8398
F-statistic: 120.1 on 7 and 152 DF, p-value: < 2.2e-16
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similar to OreR (2-way ANOVA, exercise effect, p≤ 0.0120) (Fig. 1H),
while w1118 flies with Zim53 mitochondria had a modest response to
exercise in week 1 only (2-way ANOVA, exercise effect, p < 0.0001)
(Fig. 1H). Similarly, Zim53 melanogaster with their own mtDNA do not
improve climbing speed with exercise, indeed performing worse at
some individual time points (2-way ANOVA, exercise effect,
p≤ 0.0478) and OreR flies with Zim53 mitochondria also reduce
climbing speed with training (2-way ANOVA, exercise effect,
p < 0.0001) (Fig. 1I).

In order to better visualize the response to exercise, independent of
differences in starting speed or changes with age, we graphed the dif-
ference between the speed of exercised and unexercised flies (from
Fig. 1) of the same subtype, at both the beginning and end of the ex-
ercise protocol. On day 5 of adulthood, La flies have higher negative

geotaxis scores in an acute test of climbing speed than age-matched Ra
flies (ANOVA with Tukey post-hoc test, p=0.0014) (Fig. 2A), as pre-
viously reported (Piazza et al., 2009a; Sujkowski et al., 2015). Day-5
climbing speed of RaLa(m) flies is statistically indistinguishable from La
cohorts of the same age, while LaRa(m) flies resemble Ra cohorts
(Fig. 2A). We next subjected Ra, La, RaLa(m) and LaRa(m) flies to our 3-
week ramped endurance training protocol (Piazza et al., 2009a;
Tinkerhess et al., 2012a). Exercised Ra flies increase climbing speed
12% relative to unexercised control Ra flies (Fig. 2B). La flies, which
have a much higher baseline speed, do not gain further additive benefit
from training (Fig. 2B). LaRa(m) flies show greater improvement in
climbing speed than RaLa(m) cohorts after exercise (Fig. 2B).

Thus, the unexercised speed of these lines is strongly predicted by
their mitotype, while nucleotype also has a significant effect (Table 1).

Fig. 1. Mito-nuclear interactions differentially modulate climbing speed during endurance exercise (A) Exercised (EX) Ra flies are protected against declining
negative geotaxis speed with age compared to unexercised (UN) siblings. La flies have higher negative geotaxis speed than Ra. (B) Exercised LaRa(m) flies are
protected against declining negative geotaxis speed with age compared to unexercised siblings. RaLa(m) flies have higher negative geotaxis speed than LaRa(m). (C)
Both exercised OreR and w1118 flies are protected against declining negative geotaxis speed and OreR flies perform better than w1118 flies whether exercised or not. (D)
siI(m);OreR flies are protected against declining negative geotaxis speed compared to unexercised siblings, but do not reach performance equal to exercised OreR flies.
(E) sm21(m);OreR flies do not enhance negative geotaxis speed with training, and resemble trained OreR lines. (F) siI(m);w1118 lines reduce climbing speed with
exercise in weeks 2–4 relative to unexercised siblings, but climb faster than trained w1118 flies after day 25.(G) Exercised sm21(m);w1118 flies reduce climbing speed in
weeks 2 and 3 compared to untrained siblings, and perform better than untrained w1118 flies in weeks 3 and 4. Climbing speed does not reach performance of trained
w1118 flies with matched nuclear and mtDNA. (H) OreR(m);w1118 flies are protected against declining negative geotaxis speed with age compared to unexercised
siblings, but Zim53(m);w1118 lines are not. (I) Unexercised Zim53(m);OreR flies have increased climbing speed in the first 3 weeks of adulthood before a rapid decline in
performance. Exercised Zim53(m);OreR flies climb significantly more slowly than unexercised siblings until week 5. Zim53 flies do not improve climbing speed with
exercise training. n≥ 100 for all climbing experiments. Graphs are representative of a single repetition of at least duplicate cohorts. Error bars indicate SEM. ANOVAs
reporting main and interaction effects are presented in Table 1.
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Table 2
ANOVAs of Endurance by Genotype and Training.a”
Ra/La

Combined Term in models DF Sum Sq F-value Pr(> F)

Genotype 3 741,754 140.68 < 2E-16
Training 1 102,800 58.49 2.940E-10
Genotype:Training 3 106,176.00 20.14 5.590E-09
Residuals 56 98,422.00

Residual standard error: 41.92 on 56 degrees of freedom
Multiple R-squared: 0.9062,
Adjusted R-squared: 0.8945
F-statistic: 77.28 on 7 and 56 DF, p-value: < 2.2e-16

Term in models DF Sum Sq F-value Pr(> F)
Nuclear 1 18,057 10.2739 0.00233
mtDNA 1 717,197 408.0703 <2.2E-16
Training 1 102,800 58.4913 2.94E-10
Nuclear:mtDNA 1 6500 3.6986 0.05955
Nuclear;Training 1 3379 1.9223 0.1711
mtDNA:Training 1 97,266 55.3423 6.05E-10
Nuclear;mtDNA;Training 1 5532 3.1474 0.08149
Residuals 98,422 56

Residual standard error: 41.92 on 56 degrees of freedom
Multiple R-squared: 0.9062,
Adjusted R-squared: 0.8945

Unexercised Term in models DF Sum Sq F-value Pr(> F)
Nuclear 1 2907 2.408 0.1319
mtDNA 1 671,351 556.0972 <2E-16
Nuclear:mtDNA 1 20 0.0162 0.8997
Residuals 28 33,803

Residual standard error: 34.75 on 28 degrees of freedom
Multiple R-squared: 0.9523,
Adjusted R-squared: 0.9471
F-statistic: 186.2 on 3 and 28 DF, p-value: < 2.2e-16

Exercised Term in models DF Sum Sq F-value Pr(> F)
Nuclear 1 18,528 8.0284 0.008445
mtDNA 1 143,113 62.0122 1.41E-0.08
Nuclear:mtDNA 1 12,013 5.2051 0.030326
Residuals 28 64,619

Residual standard error: 48.04 on 28 degrees of freedom
Multiple R-squared: 0.7288,
Adjusted R-squared: 0.6997
F-statistic: 25.08 on 3 and 28 DF, p-value: 4.36e-08

Mitoswitch
aSingle replicate Term in models DF Sum Sq F-value Pr(> F)

Genotype 9 1,970,323 17.65 < 2E-16
Training 1 122,047 9.8396 0.002082
Genotype:Training 9 341,335 3.0577 0.002254
Residuals 140 1,736,515

Residual standard error: 111.4 on 140 degrees of freedom
Multiple R-squared: 0.5836,
Adjusted R-squared: 0.5271
F-statistic: 10.33 on 19 and 140 DF, p-value: < 2.2e-16

Term in models DF Sum Sq F-value Pr(> F)
Genotype 9 2,937,788 25.7026 <2E-16
Training 1 297,622 23.4348 2.688E–0.06
Genotype:Training 9 408,360 3.5727 0.0004016
Residuals 188 2,387,600

Residual standard error: 112.7 on 188 degrees of freedom
Multiple R-squared: 0.6041,
Adjusted R-squared: 0.5641
F-statistic: 15.1 on 19 and 188 DF, p-value: < 2.2e-16

aMultiple replicate Term in models DF Sum Sq F-value Pr(> F)
Genotype 12 3,003,960 19.8597 <2.2E-16
Training 1 297,622 23.6071 2.54E-06
Genotype:Training 12 435,446 2.8785 0.001167
Residuals 182 2,294,342

Residual standard error: 112.3 on 182 degrees of freedom
Multiple R-squared: 0.6196,

(continued on next page)
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Because flies with the Ra mitotype increase their speed after training to
match the flies with the high-speed Lamitotype (Figs. 1B, 2B), the effect
of mitotype, and the nucleotype/mitotype interaction are only mar-
ginally significant after training (Table 1).

For the wild type and mitochondrial introgression strains, day 5
climbing speed was similar with the exception of Zim53 wild type flies,
which have increased negative geotaxis scores in comparison to all
groups (ANOVA with Tukey post-hoc test, p≤ 0.0214) (Fig. 2C). After
3 weeks of endurance exercise, both w1118 and OreR flies responded to
training with increased climbing speed relative to unexercised control
siblings (Fig. 2D, E). In contrast, none of the mitochondrial introgressed
lines increased post-training climbing speed in either the w1118 (Fig. 2D)
or OreR (Fig. 2E) nuclear backgrounds. Thus, the results fall into two
classes, with wild-type lines robustly responding to exercise with in-
creased speed, and mitoswitched lines showing a blunted or absent
response. This suggests that mito-nuclear compatibility plays an im-
portant role in modifying exercise-induced speed increases. Consistent
with this observation, the nuclear x mito effect was significant in ex-
ercised and unexercised groups (Table 1).

3.2. Endurance

Endurance was measured using a fatigue tolerance assay in which
flies are placed on the exercise machine in vials of 20 and allowed to
run to exhaustion (Tinkerhess et al., 2012a). Vials are scored as fatigued
when fewer than 5 flies remain running and data are analyzed similarly
to a survival curve, referred to here as “runspan”. After 3 weeks of
endurance exercise, trained Ra flies extended endurance in comparison
to unexercised control Ra siblings (log-rank, p < 0.0001) (Fig. 3A). La
flies have enhanced post-training runspan whether exercised or not
(log-rank, Ra UN vs La UN, p < 0.0001, La UN vs La EX, p=0.6427)
(Fig. 3A), as previously observed (Sujkowski et al., 2015). LaRa(m) flies
increase endurance after exercise training (log-rank, p < 0.0001)
(Fig. 3B) while RaLa(m) flies have high endurance whether exercised or
not (log-rank, LaRa(m) UN vs RaLa(m) UN, p < 0.0001, RaLa(m) UN vs
EX, p=0.6136) (Fig. 3B). Thus, endurance either before or after ex-
ercise correlates strongly with the mitotype in these lines (Table 2),
although the nucleotype also becomes significant in the exercised co-
horts (Table 2).

OreR, w1118 and Zim53 flies with matched nuclear and mitochon-
drial DNA increase endurance after exercise training relative to age-
matched, unexercised siblings (Fig. 3C, E, F, G, I). When sm21 or sil

Table 2 (continued)

Mitoswitch
aSingle replicate Term in models DF Sum Sq F-value Pr(> F)

Adjusted R-squared: 0.5673
F-statistic: 11.86 on 25 and 182 DF, p-value: < 2.2e-16

Combined Term in models DF Sum Sq F-value Pr(> F)
Genotype 17 1,260,238 13.2686 2.29E-12
Training 1 52,124 3.8416 0.05248
Genotype:Training 7 288,620 3.0388 0.005787
Residuals 112 1,519,660

Residual standard error: 116.5 on 112 degrees of freedom
Multiple R-squared: 0.513,
Adjusted R-squared: 0.4478
F-statistic: 7.866 on 15 and 112 DF, p-value: 8.66e-12

Combined Term in models DF Sum Sq F-value Pr(> F)
Nuclear 1 1,110,981 81.8801 5.16E-15
mtDNA 3 30,103 0.7395 0.530637
Training 1 52,124 3.8416 0.5248
Nuclear:mtDNA 3 119,154 2.9272 0.036869
Nuclear;Training 1 245 0.018 0.8934
mtDNA:Training 3 70,392 1.7293 0.165052
Nuclear;mtDNA;Training 3 217,983 5.3552 0.001751
Residuals 112 1,519,660

Residual standard error: 116.5 on 112 degrees of freedom
Multiple R-squared: 0.513,
Adjusted R-squared: 0.4478
F-statistic: 7.866 on 15 and 112 DF, p-value: 8.66e-12

Unexercised Term in models DF Sum Sq F-value Pr(> F)
Nuclear 1 539,123 48.6235 3.83E-09
mtDNA 3 80,235 2.4121 0.7632
Nuclear:mtDNA 3 314,700 9.4609 3.75E-05
Residuals 56 620,912

Residual standard error: 105.3 on 56 degrees of freedom
Multiple R-squared: 0.6007,
Adjusted R-squared: 0.5508
F-statistic: 12.03 on 7 and 56 DF, p-value: 2.952e-09

Exercised Term in models DF Sum Sq F-value Pr(> F)
Nuclear 1 572,103 35.6471 1.70E-07
mtDNA 3 20,260 0.4208 0.7388
Nuclear:mtDNA 3 22,437 0.466 0.7072
Residuals 56 898,748

Residual standard error: 126.7 on 56 degrees of freedom.
Multiple R-squared: 0.4062, Adjusted R-squared: 0.332.
F-statistic: 5.472 on 7 and 56 DF, p-value: 7.959e-05.
a” Single replicate” analysis includes one cohort of 8 vials of each group performed at the same time. a“Multiple replicates” model includes all data from single

replicate model plus an additional cohort of 8 vials for OreR, Zim53 and w1118 from Fig. 3. See methods for detailed description of statistical models.

A. Sujkowski et al.

140



mitochondria are introduced into flies with OreR or w1118 nucleotype,
the exercise response was severely blunted (Fig. 3D–G). Flies with w1118
nucleotype and OreR mitotype had baseline endurance similar to OreR,
but did not improve with exercise (Fig. 3H). Flies with w1118 nucleotype
and Zim53 mitotype responded to exercise with improved endurance
(log-rank, p=0.0094), but both pre- and post-exercise endurance were
similar to w1118 and much lower than Zim53 alone (compare Fig. 3H to
3C and I). By contrast, flies with OreRmitotype and Zim53mitotype had
high endurance, similar to the parental Zim53, but did not improve with
exercise, even showing reduced endurance after training (log-rank,

p=0.0090) (Fig. 3I). The overall effect of nucleotype on endurance
was much stronger than that of mitotype in the mitoswitch group
(Table 2).

To better visualize exercise response independent of baseline en-
durance, we graphed the difference between maximum endurance of
each line, before or after a three-week training program. The mitotype
strongly predicted the endurance and the strength of the exercise effect
in the closely related Ra La group (Fig. 4A, B), but nucleotype was a
better predictor of endurance in the more divergent mitoswitch group
(Fig. 4 C–E). This is likely due to the complex interaction between

Fig. 2. Acute climbing speed is affected by both nuclear and mitochondrial genotype in Drosophila (A) La flies have higher climbing index in comparison to the
parental Ra line at day 5 of adulthood. RaLa(m) flies have higher climbing index relative to LaRa(m) flies and perform similarly to La flies. LaRa(m) and Ra flies climb
with similar speed (p=0.3361). (B) After exercise training, Ra, RaLa(m) and LaRa(m) flies all improve climbing speed in comparison to untrained control siblings. (C)
At day 5 of adulthood, w1118, OreR, siI(m);w1118, siI(m);OreR, sm21(m);OreR, OreR(m);w1118, and Zim53(m);OreR lines climb with similar performance (p=0.2320), but
Zim53 climbing index is enhanced in comparison to each group. Additional statistically significant pairwise comparisons are indicated with brackets. Following
endurance exercise, only w1118 (D) and OreR (E) increase climbing speed across ages relative to untrained siblings. n≥ 100 for all negative geotaxis experiments.
Graphs are representative of a single repetition of at least duplicate cohorts for all experiments presented in the manuscript. Error bars indicate SEM. ANOVAs
reporting main and interaction effects are presented in Table 1.
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mitotype and exercise, where some mitotypes appear deleterious and
others appear beneficial. Taken together, these results suggest that both
mitotype and nucleotype play important roles in modifying endurance
during training, and the relative strength of each role is context de-
pendent.

3.3. Cardiac performance

We have previously established that endurance exercise reduces
cardiac failure in response to external electrical pacing (Piazza et al.,
2009a; Sujkowski et al., 2015). External pacing is a cardiac stress assay
that paces Drosophila hearts to twice their normal heart rate, then
measures the percentage of flies that undergo arrest (Wessells and
Bodmer, 2004), a phenotype that is highly age-dependent (Wessells
et al., 2004) and acts as a marker for overall cardiac health. Failure rate
in OreR and w1118 flies is normal at day 25 of adulthood. Endurance
exercise exerts a protective effect on both lines, reducing the percentage
of cardiac failure rate in response to external pacing (Fig. 5A–D).

Flies with mitochondrial genotypes derived from D. simulans had
varied responses to cardiac pacing following endurance exercise.
siI(m);OreR flies did not improve cardiac performance with exercise
training (Fig. 5A, Chi-squared= 0.1418, p=0.706479) Only

sm21(m);OreR flies reduced pacing-induced cardiac failure after exercise
training. (Fig. 5B, Chi-squared= 13.7221, p=0.0002). Cardiac failure
in siI(m);w1118 flies was higher than average independent of training
status (Fig. 5C, Chi-squared= 5.6004, p=0.0179). sm21(m);w1118 did
not receive any cardiac benefit from endurance exercise, but had
baseline cardiac performance that resembled trained w1118 control
siblings whether exercised or not (Fig. 5D, Chi-squared=0.2197,
p=0.6329).

In contrast, flies with mitochondrial genotypes derived from D.
melanogaster strains retained cardiac protection conferred by endurance
training. Both OreR(m);w1118 and Zim53(m);w1118 lines reduced cardiac
failure in response to pacing stress after exercise, (Chi-
squared=20.1719, p < 0.0001, Chi-squared=5.7736, p=0.0162,
respectively). Zim53 flies have a lower-than-average failure rate at day
25 of adulthood, and do not derive further benefit from exercise
(Fig. 5F, compare to OreR, w1118 EX) (Zim53 UN vs OreR EX: Chi-
squared=0.1479, p=0.7005, vs w1118 EX: Chi-squared=0.1841,
p=0.6679) and Zim53(m);OreR have low cardiac failure rate whether
exercised or not. (Fig. 5F, compare to OreR, w1118 EX) (Zim53(m);OreR
UN vs OreR EX: Chi-squared=0.4705, p=0.4927, vs w1118 EX: Chi-
squared=3.5733, p=0.0587).

When considered across all lines tested in Fig. 5, both nucleotype

Fig. 3. Exercise training increases endurance in Drosophila with matched nuclear and mitochondrial genotypes (A) Ra flies increase endurance after exercise
(EX) training. La flies have increased endurance in comparison to trained and untrained (UN) parental Ra flies, but do not receive further benefit from exercise. (B)
LaRa(m) flies increase endurance after exercise training, while RaLa(m) flies have enhanced endurance independent of training status. (C) w1118 and OreR flies have
better endurance after exercise training, and untrained OreR flies have higher runspan than untrained w1118 flies (p=0.0103), and trained OreR flies outperform
trained w1118 cohorts (p=0.0150). Neither siI(m);OreR (D) nor sm21(m);OreR (E) increase endurance with exercise training like OreR flies with matched nuclear and
mtDNA. Similarly, siI(m);w1118 (F) and sm21(m);w1118 flies (G) do not improve endurance with exercise training like w1118 flies (F,G). (H) Zim53(m);w1118 lines improve
endurance with exercise training, but OreR(m);w1118 flies do not. (I) Untrained Zim53(m);OreR flies have greater endurance than trained siblings, but exercised Zim53
flies improve endurance after exercise. n=8 vials of 20 flies for all endurance experiments. Graphs are representative of a single repetition of at least duplicate
cohorts. p-values are determined by log-rank. ANOVAs reporting main and interaction effects are presented in Table 2.
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and mitotype had highly significant effects on cardiac pacing response
(Table 3). The nucleotype had a stronger effect on post-training pacing
response, although mitotype was also significant (Table 3). In general,
these mitonuclear epistatic interactions are genotype-dependent. For
example, the sm21 mtDNA is responsive to training in the OreR nuclear
background but not in the w1118 nuclear background (Fig. 5B and D),
but either of the D. melanogaster mtDNAs are responsive to training in
the w1118 nuclear background (Fig. 5E).

3.4. Flight performance

We have previously established that endurance training sig-
nificantly improves flight index in wild-type Drosophila (Sujkowski
et al., 2015). Both OreR and w1118 lines increase flight performance
with exercise training (Fig. 6A–D). Although siI mitotype flies in the
OreR background do not improve landing height with exercise
(Fig. 6A), siI mitotype flies in the w1118 nuclear background have in-
creased flight performace compared to the w1118 nucleotype in both
unexercised (ANOVA with Tukey post-hoc test, p=0.0002) and ex-
ercised (ANOVA with Tukey post-hoc test, p < 0.0001) groups

Fig. 4. Exercise increases endurance independent of mito-nuclear mismatch (A) La flies have increased endurance in comparison to the parental Ra line at day 5
of adulthood. RaLa(m) flies have better endurance than LaRa(m) flies and perform similarly to La flies (p=0.9707). LaRa(m) and Ra flies have equivalent endurance
(p=0.9909). (B) After exercise training, Ra and LaRa(m) flies improve endurance compared to untrained cohorts. (C) At day 5 of adulthood, w1118, OreR, siI(m);w1118,
siI(m);OreR, sm21(m);w1118, sm21(m);OreR, OreR(m);w1118, and Zim53(m);OreR lines have similar endurance (p=0.1140), but Zim53(m);w1118 and Zim53 have com-
paratively better endurance. Following endurance exercise, the majority of w1118 (D) and OreR mitotypes (E) increase endurance in comparison to unexercised
siblings, with the exception of OreR(m);w1118 (D) and Zim53(m);OreR (E). n= 8 vials of 20 for all endurance experiments. Graphs are representative of a single
repetition of at least duplicate cohorts for all experiments presented in the manuscript. Error bars indicate SEM.
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(Fig. 6C). Flies with the sm21 mitotype fail to adapt to exercise training
with increased landing height in either the OreR or w1118 nuclear
background (Fig. 6B, D). Neither OreR(m);w1118 nor Zim53(m);w1118 flies
increase flight with exercise training (Fig. 6E). Zim53 lines have strong,
exercise-independent flight performance, and Zim53(m);OreR flies im-
prove flight performance with exercise (Fig. 6F, ANOVA with Tukey
post-hoc test, p < 0.0001).

When mitoswitch groups were considered together, both nucleotype

and mitotype were significant, although the interaction (nucleotype-by-
mitotype) was highly significant only in post-training flight (Table 3).

3.5. Lysosomal activity

Exercise training increases Lysotracker staining in adipose tissue of
wild-type male flies (Sujkowski et al., 2015; Sujkowski et al., 2012).
siI(m);OreR, sm21(m);w1118 and siI(m);w1118 do not increase fat body

Fig. 5. Mito-nuclear incompatibility negatively impacts cardiac health (A) Exercise (EX) significantly reduces pacing-induced cardiac failure in OreR and
sm21(m);OreR flies (B) in comparison to age-matched unexercised (UN) siblings, but siI(m);OreR flies (A) do not receive cardiac benefits from endurance exercise. (C)
siI(m);w1118 flies do not receive cardiac protection from endurance training and have unusually high pacing-induced cardiac failure rate. (D) sm21(m);w1118 flies had
significantly less cardiac failure than age-matched unexercised w1118 flies whether exercised or not. Exercised w1118 flies received cardiac protection from pacing-
stress post-training (C, D). (E) Both OreR(m);w1118 and Zim53(m);w1118 flies had reduced cardiac failure compared to age-matched unexercised siblings and (F) Zim53
and Zim53(m);OreR flies had low cardiac failure in response to pacing whether exercised or not. n≥ 67 for all pacing experiments. Graphs are representative of a
single repetition of at least duplicate cohorts. p-values generated by Chi-squared analysis, error bars indicate SEM. ANOVAs reporting main and interaction effects are
presented in Table 3.
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Table 3
Post-training assessment.
Pacing Degrees of freedom Chi-squared n P-value

Nucleotype 2 28.914 ≥149 <0.0001
Mitotype 4 50.051 < 0.0001

Unexercised Nucleotype 2 23.799 ≥79 <0.0001
Mitotype 4 30.802 < 0.0001

Exercised Nucleotype 2 8.2195 ≥72 <0.0001
Mitotype 4 43.839 0.01641

Flight Degrees of
freedom

Sum of
squares

F-value n

Pr(> F)

Nuclear 1 202 0.3295 ≥149
0.5660228

mtDNA 3 8028 4.3719
0.0045025

Training 1 20,947 34.2248
6.022E-09
Nuclear:m-
tDNA

3 14,604 7.9535

2.913E-05
Nuclear:T-
raining

1 8534 13.9434

0.0001955
mtDNA;Training 3 8348 4.5462 0.0035343
Nu:mtDNA:Train 3 5976 3.2548 0.029496
Residuals 1495 915,024
Residuals: Sum of Squares: 915024

Residual standard error: 24.74 on 1495 degrees of freedom
Multiple R-squared: 0.06828, Adjusted R-squared: 0.05893
F-statistic: 7.304 on 15 and 1495 DF, p-value: 8.681e-16

Unexercised Degrees of
freedom

Sum of
squares

F-value n

Pr(> F)

Nucleotype 1 3425 7.1972 ≥78
0.007478

Mitotype 3 6821 4.7787
0.002647

Interaction 3 2712 1.9001 0.12208
Residuals: Sum of Squares: 325936

Residual standard error: 21.81 on 685 degrees of freedom
Multiple R-squared: 0.03759, Adjusted R-squared: 0.02775
F-statistic: 3.822 on 7 and 685 DF, p-value: 0.0004379

Exercised Degrees of
freedom

Sum of
squares

F-value n

Pr(> F)

Nucleotype 1 5389 7.4103 ≥71
0.006624
Mitotype 3 9529 4.3676

0.004624
Interaction 3 17,868 8.1895 2.249E-05
Residuals: Sum of Squares: 589088

Residual standard error: 26.97 on 810 degrees of freedom
Multiple R-squared: 0.05226, Adjusted R-squared: 0.04407
F-statistic: 6.38 on 7 and 810 DF, p-value: 2.546e-07

Lysotracker Degrees of
freedom

Sum of
squares

F-value n

Pr(> F)

Genotype 9 937.19 9.5159 20
8.210E-12

Training 1 395.15 36.1096
1.011E-08

Interaction 9 1660.08 16.8558
<2.2E-16

(continued on next page)
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lysosomal activity after exercise training as seen in exercised OreR and
w1118 flies with matched nuclear and mtDNA (Fig. 7A–C). Exercise-
trained sm21(m);w1118 flies, however, upregulate fat body Lysotracker
normally (Fig. 7D, ANOVA with Tukey post-hoc test, p=0.0007). Or-
eR(m);w1118 have low fat body Lysotracker staining, and Zim53(m);w1118
flies also show atypical Lysotracker staining (Fig. 7G). Zim53 and
Zim53(m);OreR lines have low Lysotracker staining in adipose tissue
whether or not they are exercise trained (Fig. 7F). Both mitotype and
nucelotype had significant effects on Lysotracker staining, although
mitotype was much stronger (Table 3).

3.5.1. Mitochondrial function
Because the effect of mitotype is strongest in the closely related Ra

and La lines, we examined mitochondrial function in these lines before
and after exercise. We were unable to detect significant differences that
tracked with performance in pairwise comparisons for either ATP
production, mtDNA/nuclear DNA ratio or in Complex II activity of
isolated mitochondria (Supplemental Tables S1–S3). However, we
found a strong difference in whole-fly citrate synthase activity between
Ra and La mitotypes (Fig. 8). This difference was independent of nu-
cleotype and was affected by training only in the Ra mitotype (Fig. 8),
paralleling the climbing speed and endurance results (Figs. 1, 3).

Citrate synthase acitvity reflects increased TCA cycle activity and
has been previously shown to increase in trained muscle of mammals
(Ferreira et al., 2010; Li et al., 2011), without necessarily increasing
mitochondrial number (Vigelso et al., 2014). Therefore, it seems plau-
sible that increased citrate synthase activity in the La mitotype may
have functional significance to the increased endurance of flies carrying
this mitotype. Future work will be necessary to uncover the molecular

mechanism by which the activity of this nuclear-encoded enzyme is
modified by mitotype.

In summary, mitotype played its strongest role in the closely related
Ra and La lines, but was also significant in the more divergent mi-
toswitch lines. Among the more divergent lines, the D. melanogaster
Zim53 and D. simulans sil mitotypes demonstrate a clear influence on
performance that the D. simulans sm21 mitotype does not, despite the
fact that Zim53 and siI come from different species and sm21 and siI are
more similar in mtDNA sequence. This suggests that specific sequences
within the mtDNA are likely to be important, as degree of divergence by
itself does not fully explain the observed mitonuclear interactions. The
upregulation of citrate synthase activity in a high-performance mito-
type suggests that upregulation of TCA cycle activity is likely to be a
key downstream effect of the relevant mtDNA sequences.

4. Discussion

4.1. Mitochondria and exercise training

Recent findings in several organisms, including humans (Irrcher
et al., 2003; Powers et al., 2014; Yan et al., 2012), mice (Lantier et al.,
2014; Lira et al., 2013; Matsakas et al., 2010), Drosophila (Laker et al.,
2014b; Piazza et al., 2009a) and C. elegans (Laranjeiro et al., 2017;
Restif et al., 2014) have supported the idea that chronic endurance
exercise increases mitochondrial health. It has been previously ob-
served that strains with nucleotype and mitotype derived from different
progenitor strains have profound alterations in the dietary effects on
longevity and development time in Drosophila (Mossman et al., 2016;
Zhu et al., 2014) and on metabolism and aging in mice (Latorre-Pellicer

Table 3 (continued)

Lysotracker Degrees of
freedom

Sum of
squares

F-value n

Pr(> F)

Residuals: Sum of Squares: 1969.73
Residual standard error: 3.308 on 180 degrees of freedom
Multiple R-squared: 0.603, Adjusted R-squared: 0.5611
F-statistic: 14.39 on 19 and 180 DF, p-value: < 2.2e-16

Unexercised Degrees of
freedom

Sum of
squares

F-value n

Pr(> F)

Nucleotype 1 44.88 5.3977 10
0.02299

Mitotype 3 601.99 24.1345
6.457E-11

Interaction 3 231.09 9.2646
2.939E-05
Residuals: Sum of Squares: 1718.27

Residual standard error: 3.454 on 144 degrees of freedom
Multiple R-squared: 0.5799, Adjusted R-squared: 0.5361
F-statistic: 13.25 on 15 and 144 DF, p-value: < 2.2e-16

Exercised Degrees of
freedom

Sum of
squares

F-value n

Pr(> F)

Nucleotype 1 62.37 4.0108 10
0.0489765

Mitotype 3 342.72 7.3464
0.0002306

Interaction 3 870.84 18.6667
4.649E-09
Residuals: Sum of Squares: 598.63

Residual standard error: 2.883 on 72 degrees of freedom
Multiple R-squared: 0.5946, Adjusted R-squared: 0.5552
F-statistic: 15.09 on 7 and 72 DF, p-value: 5.763e-12
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et al., 2016). Here, we examine the idea that replacement of mi-
tochondria with exogenous mitochondria derived from other strains or
other species would confer changes in exercise capacity.

The strains used have widely divergent baseline exercise capacities,
with La having the highest and w1118 the lowest among them. Zim53 has
an unusual profile, with a baseline capacity similar to OreR, but with a
slower age-related decline that is not responsive to exercise training.
Indeed, the Zim53 group behaved as an outlier in almost every assay.

We find that exogenous mitochondria can, in fact, change the
baseline capacity of a given strain (e.g. RaLa(m)). However, in other

cases, baseline capacity is unaltered by introduction of exogenous mi-
tochondria (e.g. OreR(m);w1118). Despite their divergent baseline capa-
cities, all the wild-type strains carrying their own mitochondria re-
sponded to exercise training with the characteristic changes to speed,
endurance, etc.

We find a general trend that strains with exogenous mitotypes have
a reduced quantitative response to exercise training in several assays,
including speed, endurance, cardiac stress resistance, and adipose
Lysotracker staining. The fact that exercise response is more negatively
affected by exogenous mitochondria than baseline capacity suggests

Fig. 6. Enhancements in flight performance are weakly affected by mito-nuclear interactions (A–D) Both OreR and w1118 flies improve landing height after
endurance exercise (EX). (A) siI(m);OreR, (B) sm21(m);OreR, and (D) sm21(m);w1118 and fail to improve flight performance after endurance exercise. (C) siI(m);w1118 flies
have enhanced flight compared to trained and untrained (UN) w1118 lines whether exercised or not. (E) Neither OreR(m);w1118 nor Zim53(m);w1118 flies increase flight
performance after exercise training. Zim53 flies have training-independent enhanced flight performance, and exercised Zim53(m);OreR flies increased landing height
compared to unexercised control siblings. n≥ 71 for all cohorts. p-values generated by ANOVA with Tukey post-hoc comparison, error bars indicate SD. Graphs are
representative of a single repetition of at least duplicate cohorts. ANOVAs reporting main and interaction effects are presented in Table 3.
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that mito-nuclear compatibility is an important factor during exercise
adaptations. This seems to be the case even when baseline capacity is
not altered. Because chronic exercise induces mitochondrial biogenesis
and mitophagy, it is likely that incompatibilities that may be innocuous
in sedentary animals are highlighted under conditions where mi-
tochondria are undergoing active replication and fission. Consistent
with this idea, variation in mitochondrial tRNA sequence has been
identified as a molecular mechanism for mito-nuclear incompatibility in
temperature adaptation (Hoekstra et al., 2013; Zhang et al., 2017).

Despite the evident importance of mitotype as a determinant of
exercise capacity and response to exercise training, it is clear that the
nuclear genome also has an important role to play. Microarrays have
identified conserved pathways that are altered transcriptionally by

exercise in mice (Ort et al., 2007; Teran-Garcia et al., 2005) and Dro-
sophila (Sujkowski et al., 2015). Furthermore, conserved single-gene
candidates have been identified that are capable of conferring benefits
of exercise, including PGC1-α (Diop et al., 2015; Tinkerhess et al.,
2012b; Xiong et al., 2015), as well as invertebrate-specific factors, such
as Mthl-3 in Drosophila (Sujkowski et al., 2015). Epigenetic markers
have also been linked to exercise, including markers that can be passed
by maternal heredity in mice (Laker et al., 2014a).

Different assays clearly showed different sensitivity to mitotype and
nucleotype across cohorts. For example, lysosomal activity was more
sensitive to mitotype, whereas endurance in mitoswitch groups was
more sensitive to nucleotype. The variety of effects clearly suggest that
systemic adaptation to increased daily exercise involves multiple

Fig. 7. Mito-nuclear interactions strongly affect lysosomal activity in Drosophila fat body after endurance exercise (A) OreR and w1118 flies upregulate fat
body lysosomal activity after endurance training (EX), but in siI(m);OreR (A), sm21(m);OreR (B), and siI(m);w1118 flies (C) lysosomal activity in the fat body remains low.
(D) Only sm21(m);w1118 flies have increased fat body Lysotracker staining after endurance exercise. (E) Similarly, OreR(m);w1118 and Zim53(m);w1118 do not upregulate
fat body lysosomal activity after exercise. In fact, Lysotracker is higher in unexercised (UN) Zim53(m);w1118 flies than in exercised siblings. (F) Zim53 and
Zim53(m);OreR, flies have low Lysotracker staining in the fat body whether exercised or not. n=10 for all cohorts. p-values generated by ANOVA with Tukey post-hoc
comparison, error bars indicate SEM. Graphs are representative of a single repetition of at least duplicate cohorts. ANOVAs reporting main and interaction effects are
presented in Table 3.
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interactions between the mitochondrial and nuclear genomes in various
tissues. Thus, it seems clear that nuclear factors, mitochondrial factors,
and the interactions between them are all of importance in driving the
exercise response.

4.2. Mitochondria from selected lines, wild strains and divergent species

The clearest effect of mitotype on exercise capacity and exercise re-
sponse was seen in the lines derived from Ra and La. One potentially
important difference between these lines and the others used in the study
is that these lines share a common progenitor, as La was created by se-
lection for longevity from the original Ra (Arking, 1987). Thus, they are
more closely related than any other combination used here. Previous work
has demonstrated that mitochondria from La flies predict the longevity of
the line under dietary restriction (Soh et al., 2007), suggesting that mi-
tochondrial genes, whether nuclear or mitochondrially encoded, are part
of the selection effect. It is further notable that the introgression of a
mtDNA from a different species (D. simulans mtDNA in D. melanogaster
chromosomes) does not produce a consistently more dysfunctional fly
genotype, as might be expected from the breakdown of a co-adapted mi-
tonuclear genetic interaction. Most of the variation across mtDNAs in
baseline performance or response to exercise was attributable to variation
between mtDNA within a species (Zim53 vs. OreR, or siI vs. sm21). These
findings are consistent with fitness assays using many of these same mi-
tonuclear genotypes (Montooth et al., 2010), and a larger set of in-
dependent mtDNA introgression strains (Mossman et al., 2016). The siI
and Zim53 mtDNAs were more likely to contribute beneficial effects, and
there was some indication that this was more pronounced in the w1118
nuclear background, than in the OreR nuclear background (see Figs. 3, 4
and 6). This is consistent with other studies of mitonuclear epistatic in-
teractions, where beneficial and deleterious combinations are common,
but not predictable by the main effects of either nuclear or mitochondrial
genome.

Microarray experiments demonstrated that 65% of the transcrip-
tional changes between Ra and La are identical to the changes between
Ra and exercised Ra (Sujkowski et al., 2015). Thus, the selection pro-
cess that created the La line was inadvertently similar to the process of
exercise-training. This raises the fascinating idea that introgressed mi-
tochondria from the La line may be functionally equivalent to in-
troducing mitochondria from an exercise-trained Ra back into a se-
dentary Ra fly. The common origin between the mitotype and
nucleotype of the RaLa(m) and LaRa(m) may be reflected in better mito-
nuclear compatibility, allowing the effect of the mitochondria to be
more clearly demonstrated.

4.3. Gene x gene x environment interactions

Interactions between mitochondrial and nuclear genome have been
demonstrated to play an important role in the response to dietary re-
striction (Mossman et al., 2016; Zhu et al., 2014) and hypoxia
(Mossman et al., 2017) in Drosophila. Here, we find further evidence
that major environmental changes, such as chronic endurance exercise,
are dependent on interactions between the mitochondrial and nuclear
genomes.

A growing body of literature has focused on individual differences
in exercise response, both in model organisms (Britton and Koch, 2001;
Koch et al., 2012; Mendez et al., 2016) and in humans (Bouchard et al.,
2012; Puthucheary et al., 2011). While these differences are presumed
to derive from genetics, relatively few conserved single genes have been
identified that promote efficient exercise adaptations (Bostrom et al.,
2013). Of those that have been identified, such as PGC1-α (Laker et al.,
2014a; Tinkerhess et al., 2012b), a common thread is regulation of
either mitochondrial biogenesis or autophagy/mitophagy. As these
processes require cooperation between mitochondrial and nuclear
genes, it seems likely that mito-nuclear interactions are an important
factor in the efficiency of individual exercise adaptation across the
animal kingdom. Given the increased interest in mitochondrial re-
placement therapy for the treatment of mtDNA-encoded disease, the
unpredictable nature of the outcomes in these experiments indicates
that further study is needed to identify the mechanisms underlying
high-fitness mitonuclear interactions.

While great progress has been made using model organisms to
better understand responses to diet (Mossman et al., 2016; Ort et al.,
2007; Rera et al., 2011), the response to chronic activity is much less
well understood. Like diet, exercise is an important environmental
variable with broad effects on metabolism and physiology. Now that
multiple exercise models have been developed in Drosophila (Mendez
et al., 2016; Piazza et al., 2009a; Tinkerhess et al., 2012a) and C. elegans
(Laranjeiro et al., 2017), the stage is set to better explore these inter-
actions using the strengths of intertebrate genetics.
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Abstract 

Negative geotaxis (climbing) performance is a useful metric for quantifying the health 

and vigor of Drosophila across experimental treatments and conditions. Manual 

methods to compute climbing performance are slow and tedious, while available 

computation methods have inflexible hardware or software requirements. We present 

an alternative with our open-source program FreeClimber. This Python-based 

method performs a very quick background subtraction step to allow for more accurate 

spot detection on a heterogeneous background. FreeClimber quantifies the most 

linear portion of a velocity curve for each specified vial by performing a local linear 

regression. Output files report results as either pre-calculated slopes, or as individual 

spot locations that can be processed further for predictive linking (tracking). We 

demonstrate FreeClimber’s utility in a longitudinal study for endurance exercise 

performance using six distinct mitochondrial haplotypes paired with a common w1118 

nuclear background.   
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Introduction 

Drosophila are a genetically tractable model system to explore the functional bases of 

traits at organismal, cellular and molecular levels (Chow and Reiter, 2017). The 

resources available for manipulation of genetic, cellular, physiological and genomic 

analyses are extensive (Bellen et al., 2011; Bellen et al., 2010; Lenz et al., 2013; 

Mackay et al., 2012) providing great opportunities for integrative research spanning the 

organismal-to-molecular scales. 

 

One of the most common Drosophila health metrics is locomotor capacity, easily 

measured using a negative geotaxis (climbing) assay (Gargano et al., 2005; Jones and 

Grotewiel, 2011). Here, flies are gently knocked to the bottom of a vial where their 

movements are captured by image or video as they instinctively climb upward 

(Ganetzky and Flanagan, 1978; Gargano et al., 2005). Climbing performance is typically 

reported as some measure of the flies’ position vs. time: mean position at a time cutoff 

(Gargano et al., 2005; Lavoy et al., 2018) or time until a percentage of flies reach a set 

height (Ma et al., 2014; Podratz et al., 2013; Tsai et al., 2016; Xu et al., 2008).  

 

The climbing assay’s popularity is largely due to its accessibility. Experimental setups 

are easily engineered from common laboratory items, meaning they are relatively 

inexpensive to implement. Data collection is straightforward requiring simple image 

capture tools and basic software available on most computers. However, this assay’s 

simplicity is offset by its tedious and time-consuming nature. 
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Several publications describe protocols for automating the conversion of visual media 

into data, but these are not always accessible to the general community. Some of these 

platforms are detectors, while others are trackers. Detectors identify the x,y-coordinates 

of flies (spots) across frames, which can be evaluated as a function of position vs. time 

(ex. RflyDetection R module (Cao et al., 2017) and an ImageJ-based approach 

(Podratz et al., 2013)). Trackers are also detectors but incorporate a predictive linking 

step to connect points between frames based on their proximity and likelihood of being 

connected (ex. the Hillary Climber tracks single fly vials (Willenbrink et al., 2016), the 

iFly system tracks multiple flies in a single vial (Kohlhoff et al., 2011), and the DaRT 

system tracks multiple flies in multiple enclosures (Faville et al., 2015; Taylor and 

Tuxworth, 2019)). Trackers are challenging to automate because they generally require 

supervision to discern flies with erratic vertical motions (jumps and falls) or flies that 

interact laterally with other flies (bump on the same plane or eclipse on separate planes 

(issue reducing 3D to 2D))(Chenouard et al., 2014). Published methods for detectors 

and trackers generally require a clean and custom setup, are written in proprietary 

languages (MATLAB), and/or are only made available locally to the author lab groups 

and collaborators. Because of these and other factors, no single platform is widely 

accepted by the Drosophila-research community, despite the assay’s ubiquity.  

 

We created FreeClimber to addresses some of these major issues, correct for 

common biases in traditional manual approaches, and facilitate the generation of 

accurate, repeatable, and biologically meaningful data and analyses. This Python 3-

based platform can be run interactively, via Graphical User Interface (GUI), and is 
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capable of automation with high-throughput batch processing, via the modular 

command line tools. FreeClimber utilizes an efficient background subtraction step, so 

it excels when given videos with high contrast between flies and a clean static 

background. It also performs respectably with heterogeneous backgrounds with minor 

movement in a minority of frames. Additionally, our detector implements a local linear 

regression model for calculating velocity of a group of flies (Olito et al., 2017), which we 

demonstrate is more biologically meaningful in circumventing violated assumptions 

associated with traditional, manual analysis. Finally, we demonstrate the utility of our 

platform for longitudinal Drosophila screens analyzing two original data sets of exercise 

conditioned and unconditioned mitochondrial-nuclear (mito-nuclear) introgression flies. 

Ultimately, we highlight the usefulness of the FreeClimber platform and its ability to 

quantify subtle differences in phenotype across sample-rich studies, like those 

frequently conducted in Drosophila research.  
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Materials and Methods 

Drosophila husbandry and generation of lines 

Six mitochondrial haplotypes (mtDNAs or mitotypes) were derived from three different 

Drosophila species: D. melanogaster (strains: OregonR and Zimbabwe53), D. simulans 

(subtypes: siI, siII, and mauII (which is equivalent to siIII), and D. yakuba (subtypes: 

yakuba) (Montooth et al., 2010; Mossman et al., 2016; Zhu et al., 2014). These 

mitotypes were each placed on a common, D. melanogaster w1118 nuclear background 

using balancer chromosome crosses and subsequent recurrent male backcrossing 

using w1118 males (Zhu et al., 2014), with D. simulans mauII and D. yakuba lines 

created by microinjection of cytoplasm donor into an egg (Ma et al., 2014).  

 

Stocks were density controlled for two generations whereby 20 females and 20 males 

were allowed to lay eggs for three days per brood. Fly cultures were held at 25°C on 

standard lab food (Mossman et al., 2016) and maintained on a 12h:12h light:dark 

schedule. Adult males were collected three days post-eclosion using light CO2 

anesthetization and separated into vials of 20 flies. Flies were assayed four days later 

and transferred to new food every day. 

 

Video recording set up 

While FreeClimber does not require a custom set up, we employed one to 

standardize filming distance, lighting, and timing video capture as we demonstrated the 

utility of our platform (Figure S1B). This setup uses a MakerBeam (Utrecht, 

Netherlands) frame with a mounted Raspberry Pi 3 Model B+ connected to an 8 



 157 

megapixel PiCamera (V2). The camera is held a fixed distance from an LED-light board 

(Huion model L4S, 10.7 lumens/inch2) and custom rig was anchored between the 

camera and light board. The rig was made of polycarbonate and rubber O-rings to hold 

six glass vials loaded with 10-25 flies each. It could freely slide vertically along two 

aluminum rods attached to a polycarbonate base. The rig was dropped from the lowest 

height to elicit a consistent response (7 cm), which triggered a photosensor to begin 

recording a video. Five-second videos (.h264) were recorded at 29 frames per second 

and then analyzed with the FreeClimber software after all videos were captured. 

 

Overview of FreeClimber modes 

The following steps (Figure 1A) are completed by FreeClimber, available at 

https://github.com/adamspierer/FreeClimber/tree/dissertation_release, though the most 

updated version is available on the master branch: 

https://github.com/adamspierer/FreeClimber/. The platform can be run in two modes: a 

Graphical User Interface (GUI) for optimizing detection parameters, and a command 

line set up for high-throughput batch processing. Both modes run through similar steps, 

though the GUI outputs optimization plots that the command line tool does not. For the 

purposes of outlining this method, we will walk through options with the GUI, which can 

be run with the command (from the main FreeClimber folder):	
pythonw ./scripts/FreeClimber_gui.py --video_file ./example/w1118_m_2_1.h264 

 

See File S1 or the link above for a complete tutorial guide on installation and running 

FreeClimber, as well as tips and tricks for increasing data quality.  
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Video preprocessing and background subtraction 

Videos are read into integer-based n-dimensional arrays (nd-array) using the FFmpeg-

python package (v.4.0.4; https://github.com/kkroening/ffmpeg-python). Following user-

defined parameters, videos are cropped for the appropriate frame range and positional 

region of interest (ROI) (Figure 1B), before being converted to gray scale. An output file 

with the suffix `.ROI.png` is generated to show this region. A matrix representing the 

static background is calculated from the median pixel intensity of each x,y-coordinate 

across a user-defined number of frames (default is all frames). This background matrix 

is subtracted from each individual frame’s pixel intensity matrix, resulting in a new nd-

array corresponding with only regions of movement (flies) in the video (Figure 1C).  

 

Detector optimization 

The background-subtracted frames are passed to a Python-implementation of the 

Crocker and Weeks particle-tracking algorithm TrackPy (v.0.4.2; http://soft-

matter.github.io/trackpy/dev/index.html)(Crocker and Grier, 1996) for spot detection. 

Candidate spots are identified by clusters of pixels that meet user-defined parameters 

for the expected spot diameter (diameter), maximum diameter (maxsize), and minimum 

integrated brightness (minmass). Each candidate spot receives a roundness (ecc; 

eccentricity), mass and signal score (Figure 1D). Spots must pass minimum mass 

(minmass) and signal threshold values to be considered a `True` spot. The signal 

threshold can be provided by the user, or FreeClimber will calculate an appropriate 

one using the SciPy (v.1.4.1) functions: peak_prominences and find_peaks. A 

visualization of these metrics is created in `file_name.spot_check.png`. 
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Spot detection 

As the program runs, a data frame containing the spatio-temporal data for each spot 

and its accompanying metrics are saved with the file suffix `.raw.csv`. This file can be 

used as an input for TrackPy to track or predictively link spots (see Step 3: “Link 

features into particle trajectories”, http://soft-

matter.github.io/trackpy/dev/tutorial/walkthrough.html).   

 

Spot coordinates are transformed and processed for more accurate estimation of group 

climbing velocity. The raw data set is filtered for only true spots, described above. Y-

coordinates are inverted to account for images being indexed from upper-left to lower-

right, instead of lower-left to upper-right (Figure 1E). Spots are auto-assigned to vials by 

dividing the space between the left-most and right-most spots into the specified number 

of bins. The data frame containing these points and their vial assignments is saved as 

`.filtered.csv`. 

 

Calculating climbing velocity, via local linear regression 

The mean y-position for all spots in a vial is calculated for each frame. A sliding window, 

corresponding with user-specified number of frames it takes for a fast group of flies to 

climb in the linear portion of a position vs. time curve, is applied to the velocity curve. A 

linear regression is calculated for each window and the slope of the most linear 

segment (greatest regression coefficient) is considered that vial’s velocity (Olito et al., 

2017) for a given video (Figure 1E). This method is also known as a local linear 
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regression. In videos where the slope of the regression line is not significantly different 

from 0 (P > 0.05), the slope is set to 0, since this generally indicates flies were present 

but could not climb.  

 

If conversion factors for pixels-to-cm and frames-to-seconds are supplied and the box is 

checked to convert the output to cm per second, the program will do so for accurate 

comparison across research groups and studies.  

 

Files containing regression results (including slopes) for each vial in a video are saved 

with the `.slopes.csv` suffix. Once FreeClimber processes all videos with the 

specified suffix in a parent directory, it will concatenate the files with the `.slopes.csv` 

suffix into a master `results.csv` file in the `path_project` folder that can be used for 

separate statistical analysis.  

 

Automated, high-throughput detection of climbing velocity across many videos 

Once the detector is optimized, it can be run from the command line:  

python ./scripts/FreeClimber_main.py --config_file ./example/example.cfg 

 

Using the configuration file created in the GUI, the same settings can be applied over all 

the videos with the specified `file suffix` nested in the `path_project ` path. This mode 

will only create the following files with suffixes: `.raw.csv`, `.filtered.csv`, and 

`.slopes.csv`, `.diagnostic.png`. 
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Power Tower: the Drosophila treadmill 

The Power Tower automates the process of eliciting the negative geotaxis (climbing) 

startle response, effectively acting as a treadmill (Figure S1C) (Sujkowski et al., 2018; 

Tinkerhess et al., 2012). Up to two trays of 100 vials each could be strapped down to 

the device. An arm attached to a motor turning at 4 RPM would contact a seesaw-like 

lever with a pivot on the ground and the other end placed under the Power Tower. The 

turning arm would depress the lever and cause the mobile portion of the Power Tower 

to rise. When the arm lost contact with the lever while the Power Tower was still lifted, 

the vials of flies would drop and flies would begin to climb. 

 

Experimental and control flies on the Power Tower were set up in glass vials with food. 

Flies allowed to “exercise” were placed in vials with the foam stopper at the top to allow 

climbing, while their “unexercised” control siblings were placed in vials with the foam 

stopper 1 cm from the food to limit mobility. 

 

Longitudinal exercise training program 

A longitudinal study over the course of three weeks was conducted with male flies from 

six mitochondrial haplotypes listed above. Male flies, aged three days post-eclosion, 

were divided into two groups of 12 vials containing 20 flies under light-CO2 anesthesia. 

Flies were conditioned on weekdays for 2 hours the first week, 2.5 hours the second 

week, and 3 hours the third week, and assayed for climbing performance using the 

RING assay (Gargano et al., 2005) at the same time each training day before being 

exercised. Flies were assayed and tested on weekdays and given weekends to recover. 
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Endurance exercise fatigue testing 

A separate cohort of flies was used to study the mitotypes’ ability to resist endurance 

climbing fatigue. Here, four vials containing 20 flies were set up on the Power Tower 

(similar to above) and either allowed to exercise (fatigued) or not allowed to exercise 

(rested). Flies’ initial climbing performances were assayed before being placed on the 

Power Tower for six consecutive hours and then assayed hourly.  

 

Statistical analysis on longitudinal data 

ANOVA of repeated measures was conducted using the statsmodels (v.0.10.0) 

module in Python. The ANOVA was used to quantify significant differences between 

mitochondrial haplotypes, exercise conditions, and the interaction between the two. This 

test was conducted using the absolute velocities and the normalized climbing index, 

which represents the climbing velocity for each vial normalized by the average velocity 

from the initial time point.  
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Results and Discussion 

Local linear regression outperforms a time-based cutoff for climbing velocity 

The mean vertical position vs. time curve is generally sigmoidal (Figure 2A-C). There is 

an occasional lag in the few frames (up to a second) as flies react to the stimulus, and a 

plateau at the end as flies reach the top of the vial. Taking the mean vertical position at 

2-seconds (or any time point) overestimates the cohorts’ velocity because it assumes 

flies increase vertical position linearly. Flies don’t necessarily climb in a straight line, and 

flies can also have a delayed reaction to the stimulus and causes a brief hesitation. This 

analytical method also assumes flies start at the bottom of the vial, which is not always 

the case. Some flies jump when startled (which will create biological noise if only a 

single frame is considered) and begin at a non-zero starting height. Regardless, even 

for genotypes that all begin at the bottom of the vial, reducing a 3D object down to a 2D 

image causes issues as depth is translated into height. This means that flies starting at 

the bottom of the vial in the front have a different starting height than those starting in 

the back.  

 

One way to address these issues is by calculating climbing velocity directly from the 

position vs. time curve using a local linear regression. Here, a sliding window is applied 

to the velocity curve and the slope of the most linear segment (greatest regression 

coefficient) is selected as the velocity. The sliding window represents the approximate 

number of frames that “fast” flies climb in the linear portion of the asymptotic or 

sigmoidal curve. For climbing in a standard narrow glass vial, we estimate a roughly 2-

second window was appropriate across strong, moderate, and weak climbers. This 
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method generates more repeatable and reliable results across vials and is biologically 

more meaningful than the time-based cutoff. Additionally, this method can handle 

unpredictable climbing behaviors (jumping or falling) because the average position of 

flies in each frame means each fly has a fractional contribution to the group’s position. 

By using a regression to find the slope, each frame’s mean vertical position is 

considered in the context of the frames around it.  

 

Climbing performance easily quantified for longitudinal studies 

In addition to more accurately estimating the climbing velocity of a group of flies, our 

method is well adapted for high-throughput screens. FreeClimber can autonomously 

process videos once detection parameters are optimized. Previous studies demonstrate 

climbing performance can be affected by genotype (Gargano et al., 2005; Holmbeck et 

al., 2015; Lavoy et al., 2018), environment (Piazza et al., 2009; Tinkerhess et al., 2012), 

and genotype x environment effects (Holmbeck et al., 2015; Sujkowski et al., 2018). 

Accordingly, we chose to test a set of six, phylogenetically diverse (Ballard, 2000; 

Montooth et al., 2009), mitochondrial introgression flies (mitotypes; Figure 3A). These 

mitotypes were derived from three different Drosophila species: D. melanogaster 

(subtypes: OregonR (OreR) and Zimbabwe53 (Zim)), D. simulans (subtypes: siI, sm21, 

and mauII), and D. yakuba (yak) and paired with a D. melanogaster w1118 nuclear 

background. Four of these lines (OreR;w1118, siI;w1118, sm21;w1118, and Zim;w1118) 

were previously shown to have weak to moderate climbing performance abilities 

(Sujkowski et al., 2018), while two (yak and mauII) were previously untested. 
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We conducted a longitudinal experiment where we sought to test whether mitochondrial 

haplotypes responded differently to an exercise conditioning program. We exercise 

conditioned 12 cohorts of 20 male flies following a prescribed training protocol 

(Sujkowski et al., 2018; Tinkerhess et al., 2012), and compared cohorts’ daily climbing 

performance against unexercised controls. Flies experienced age-associated declines 

in climbing performance (Figure 3B) that was significant by mitotype. While we also 

observed a significant mitotype x conditioning effect, we failed to identify a significant 

first-order conditioning effect (Figure S2A, Table S2). These significance terms were 

unchanged, even after testing the normalized climbing index—which normalizes each 

cohorts’ (unique vial of flies) performance against the average of their initial climbs. 

While there was no significant exercise conditioning effect, the unconditioned flies 

generally outperformed their conditioned counterparts. This would suggest exercise 

training is stressful and not always beneficial for the flies. A previous exercise 

conditioning study with the w1118 nuclear background suggests it is not sensitive 

background to exercise conditioning effects (Sujkowski et al., 2018), which our results 

support.  

 

Under the disrupted coevolution hypothesis (Montooth et al., 2010; Rand et al., 2004), 

we would expect to see a negative relationship between the divergence between a mito-

nuclear pairing and its climbing performance. More distantly related pairings have 

greater opportunity to accumulate mito-nuclear incompatibilities, which would hinder 

performance. However, those that were most closely related, OreR;w1118 and Zim, 

;w1118, were intermediate performers. One divergent line, siI;w1118, performed the 
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worst, supporting the hypothesis, but the two most divergent pairings, mauII;w1118 and 

yak;w1118, performed the best. A separate study also observed yak;w1118 was longer 

lived compared to its native mitochondrial-nuclear pairing (Ma and O'Farrell, 2016), 

providing independent result support against the disrupted coadaptation hypothesis. 

This finding is surprising, since the D. melanogaster and D. yakuba sub-species are 

reproductively incompatible. 

 

Finally, we tested a separate cohort of the same mitotypes’ ability to resist fatigue in a 

six-hour fatigue assay. We followed a similar Power Tower protocol as the longitudinal 

study, but instead used four cohorts and had the flies on the Power Tower for one six-

hour stretch. We measured climbing performance at the start and after each hour. We 

observed significant mitotype and fatigue effects for both the absolute velocities and 

normalized climbing indexes, but no two-way mitotype x fatigue interaction (Figure S2B, 

Table S2). This fatigue resistance test demonstrates that while the Power Tower may 

be stressful in a multi-day longitudinal study, it still effectively elicits a consistent 

climbing phenotype that can slowly fatigue flies over a prolonged period. Interestingly, 

rested yak;w1118 were strong performers, though their fatigued counterparts had the 

greatest variation between time points of any other mito-nuclear pairing. It is possible 

that yak;w1118 are strong climbers when undisturbed, but more variable in the climbing 

performance when stressed.  
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Conclusion 

FreeClimber is a free and easy-to-use platform for quantifying the climbing velocity 

for cohorts of flies. It is flexible in the videos it can process so it can be adopted by any 

lab. It automates the tedious process of detecting and counting flies, and reliably 

quantifies a biologically relevant climbing velocity. Our results demonstrate the utility of 

using FreeClimber to quantify climbing performance over a traditional time-based 

cutoff metric. Finally, we applied our platform to measure the longitudinal climbing 

performances during an exercise-conditioning program and during a resistance to 

endurance fatigue assay across six mito-nuclear introgression lines. We demonstrate 

this proof-of-principle for our detector’s ability to identify both strong and subtle 

differences between genotypes, and the platform’s ability to work with longitudinal data 

sets, like those commonly used in Drosophila aging research.  
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Table S1. Experimental variables available for modification in FreeClimber. List 
of variables names and their respective data types and corresponding attribute/role in 
the FreeClimber pipeline. These variables are generated in a `file_name.cfg` 
configuration file when running the Graphical User Interface (GUI), or can be modified 
directly from the provided example file. 

Variable name Data type Corresponding attribute 
x  Integer Leftmost pixel of Region of Interest (ROI) 
y  Integer Topmost pixel of ROI 
w  Integer Width of ROI 
h  Integer Height of ROI 
frame_0 Integer First frame to view 
blank_0  Integer First frame of range to subtract background 
blank_n  Integer Last frame of range to subtract background 
threshold  Integer Threshold for filtering against points 
diameter Integer Estimated spot diameter 
minmass Integer Minimum spot mass 
maxsize  Integer Maximum size of spot diameter to consider 
vials Integer Number of vials in video 
window Integer Number of frames for sliding window 
pixel_to_cm Integer Conversion factor for pixels to centimeters 
frame_rate Integer Video frame rate 
vial_id_vars Integer Number of variables in naming convention that are consistent 

across a time measure (ex. genotype, sex) 
naming_convention String Experimental conditions corresponding with experimental 

conditions in the file name. 
path_project 
 

String Path to parent folder containing experimental files 

file_suffix String Suffix of video being processed 
convert_to_cm_sec Boolean True if converting output slope to centimeters per second 
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Table S2. Mitochondrial haplotype significantly impacted climbing 
performance. ANOVA of repeated measured for (A-B) exercise conditioning over 
an 18-day training period showed a significant first order effect for mitochondrial 
haplotype in both the (A) absolute velocity and (B) normalized climbing index 
(velocity for a time point/average velocity of the first time point, different for each 
unique vial). There was no significant first order effect for exercise training, but 
there was a significant second order effect for mitochondrial haplotype x exercise 
conditioning. (C-D) Resistance to endurance fatigue had significant first order 
effects for both mitochondrial haplotype and flies’ resistance to endurance fatigue 
for both the (C) absolute velocity and (D) normalized climbing index. However, the 
second order effect was not significant.  
 
Interaction term significance key:  P ≤ 0.05 (*); P ≤ 0.005 (**);  P ≤ 0.0005 (***) 
A 

Exercise conditioning – velocity 
Interaction Terms F Value DF Den DF Pr > F 

Mitochondrial haplotype 59.6481 5 35 0.0000 *** 
Exercise conditioning 2.7977 1 7 0.1383 
Mitochondrial haplotype x Exercise  
conditioning 

6.5415 5 35 0.0002 *** 

B 
Exercise conditioning – normalized climbing index 

Interaction Terms F Value DF Den DF Pr > F 
Mitochondrial haplotype 14.2193 5 35 0.0000 *** 
Exercise conditioning 0.0117 1 7 0.9171 
Mitochondrial haplotype x Exercise 
conditioning 7.3355 5 35 0.0001 *** 

 
C 

Resistance to endurance fatigue – velocity 
Interaction Terms F Value DF Den DF Pr > F 

Mitochondrial haplotype 14.9928 4 24 0.0000 *** 
Resistance to fatigue 22.7888 1 6 0.0031 ** 
Mitochondrial haplotype x Resistance to 
fatigue 1.2479 4 24 0.3176 
D 

Resistance to endurance fatigue – normalized climbing index 
Interaction Terms F Value DF Den DF Pr > F 

Mitochondrial haplotype 10.0989 3 18 0.0004 *** 
Resistance to fatigue 23.193 1 6 0.003 ** 
Mitochondrial haplotype x Resistance to 
fatigue 1.0273 3 18 0.404 
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Supplemental file 1 is available online: 

1. https://doi.org/10.26300/7x8z-5z81 

• NOTE: An GitHub repository for this version of FreeClimber is available 

online 

(https://github.com/adamspierer/FreeClimber/tree/dissertation_release), 

though the most current version of the program is available at: 

https://github.com/adamspierer/FreeClimber. 
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Figure 1. Overview of FreeClimber platform. (A) Flow diagram of processes the 
FreeClimber performs when analyzing a video. The Graphical User Interface (GUI) 
is designed for parameter optimization (See accompanying Tutorial page for usage), 
while the command line tool is designed for high throughput processing of many 
videos with similar detection parameters. (B) Screenshot of GUI with Region of 
Interest (ROI) drawn on with a red box. (C) Output in `file_name.processed.png` for 
optimizing ROI and background frame range. The top image is the cropped and 
grayscaled image used in later scatterplots as a background, the middle image is the 
background matrix, and the bottom frame is the resulting image generated by 
subtracting the top and middle frames. FreeClimber detects spots using images like 
the bottom frame and plots x,y locations of points on images like the top frame. (D) 
Output in the `file_name.spot_check.png` file corresponding with the distribution and 
locations for each spot and its respective metric: eccentricity (ecc, roundness), mass, 
and signal). (E) Output from `file_name.diagnostic.png` showing the x,y-coordinates, 
color coded by vial, for the first (top-left) and last (top-right) frames of the most linear 
portion of the local linear regression curve for all points in the video. (Lower-left) The 
most linear portion (darker shade) of the mean-vertical position vs. frame curve 
plotted over all frames (lighter shade). (Lower-right) All x,y-coordinates throughout the 
video are plotted on a single frame. 
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Figure 2. Method comparison demonstrates a local linear regression is more 
biologically relevant than quantifying height after 2 seconds of climbing. Mean 
vertical-position vs. time (velocity, solid gray line) plots for a cohort of flies measured at 
(A) 3, (B) 9, and (C) 19 days post-eclosion can be analyzed for climbing velocity two 
separate ways. The slope of the standard, time-based cutoff at 2 seconds (black 
dashed line) has a steeper slope than the line of best fit (red dashed line) during the 
most linear two seconds (50 frames) of a five second (125 frames) climb (red solid line).  
 
  

A	 B	 C	
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Figure 3. Mitochondrial haplotypes show a differential response to endurance 
exercise training and resistance to endurance fatigue. (A) Phylogenetically distinct 
mitochondrial haplotypes were derived from three clades (D. melanogaster in red, D. 
simulans in blue, and D. yakuba in purple). Figure modified from (Ballard, 2000). (B) 
These haplotypes, on a common (D. melanogaster w1118) nuclear background, were 
subjected to a three-week endurance exercise training program. Flies were tested on 
weekdays (light gray) before exercise conditioning on a PowerTower, and allowed to 
rest on weekends (dark gray). Since there was no significant conditioning effect, 
conditions were averaged together. Most mitotypes began at roughly the same starting 
velocity, though siI;w1118 started slightly lower, and experienced different rates of age-
associated decline in performance. All decreased in their performance overtime, 
though yak;w1118 (yellow) and maII;w1118 (blue) were the strongest overall, while 
siI,w1118 was the weakest.  

A	 B	
Longitudinal	performance	across	six	mitochondrial	haplotypes	Phylogeny	of	mitochondrial	haplotypes	

II	
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Figure S1. Experimental set ups for exercise conditioning Drosophila and 
assaying climbing performance. (A) Exercised flies were assayed for climbing 
performance using a custom setup to standardize conditions for this manuscript. Here, a 
MakerBeam frame held a Raspberry Pi Model 3 B+ and PiCamera V2 a fixed distance 
away from the stage. A light board placed behind the climbing rig backlit flies as they 
climbed. A light trigger, receiving a signal from the light board or disrupted by a piece of 
tape on the rig, was constructed from a photoresistor and analog-to-digital converter. 
When the rig was raised, the system became armed; when the rig was lowered, the 
system triggered a five second video recording, which eliminated human error in the 
recording process. The rig (B) was constructed from polycarbonate materials and slid 
along aluminum rod tracks. Rubber O-rings along the top of each vial slot held vials in 
place during the assay. (A) The Power Tower is designed to elicit a negative geotaxic 
startle response in Drosophila. Up to two trays of 100 flies are strapped to the Power 
Tower. An arm connected to a motor turning clockwise at 4 RPM, depresses a lever. 
The lever pivots around the fulcrum and the other end connects to the bottom platform 
of the mobile portion of the apparatus. As the motor turns, the vials are lifted. When the 
arm loses contact with the lever, the vials drop, causing the flies to climb. 
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Figure S2. Individual mitotype performance vs. time curves.  Exercised (trained or 
fatigued, solid line) flies and unexercised flies (Not exercised or rested, dashed line) had 
different effects across mitochondrial haplotypes (colored by sub-species: D. 
melanogaster, red; D. simulans, blue; D. yakuba, purple). (A) Longitudinal climbing 
performance had a significant mitochondrial haplotype effect (F = 59.6, P < 0.0001) and 
two-way interaction between exercise training and mitochondrial haplotype (F = 6.5, P < 
0.0005), no significant effect for exercise training (F = 2.8, P = 0.14). (B) Resistance to 
endurance fatigue assay, measuring the progressive decline over hours of repeated 
climbing, had significant mitochondrial (F = 15.0, P < 0.0001) and exercise effects (F = 
22.8, P < 0.005), but no two-way interaction between the two (F = 1.25, P = 0.32). 
Separate sets of flies were used between the two experiments. 
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