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The finite element method (FEM) is an extremely successful approach to numerically

approximating solutions to partial differential equations (PDEs) arising from many

real-world scenarios [17]. Accuracy and convergence are generally achieved by refin-

ing the mesh (h-version), increasing the polynomial order on the individual elements

(p-version), or a combination of the two (hp-version). Raising the polynomial order

offers several advantages over pure h-version FEM; chief among them is exponential

convergence to the true solution resulting in shorter time-to-solution [22,67] even in

cases involving singularities and boundary layers [32, 54].

The advantages of high-order methods come at a price of poor conditioning of

the mass and stiffness matrices. Early endeavors into the construction of high order

bases, such as Lagrangian and Peano bases, quickly fell out of favor due partly to

the condition numbers of the resulting elemental matrices [73]. The current bases

of choice are the hierarchical or Dubiner bases [22,28,47] whose mass (and stiffness)

matrix has condition numbers which grow at O(p4(d−1)) or faster, where d is the

dimension, as we increase the order [5, 52, 56]. Recall that the convergence of all

iterative methods, such as conjugate gradient, depends on the condition number,

hence an enormous amount of effort have been dedicated to constructing efficient

preconditioners, but only for the stiffness matrix.

The domain decomposition preconditioner developed by Babuska et al. [12] was

shown to reduce the growth of the condition number of the stiffness matrix to O(1+

log2 p) in two dimensions on both quads and triangles. Subsequent works extended

these ideas to include preconditioners for the stiffness matrix in higher dimensions,

hp-version finite element methods, boundary element methods, along with the use of

more efficient approximate solvers on the subspaces [2,7,18,39,60]. Despite the rather

extensive work on the analysis and construction of preconditioners for the stiffness

matrix, virtually no attention has been paid to the question of preconditioning the



3

mass matrix, especially on simplices.

The construction of efficient, domain decomposition type preconditioners for the

p-version mass matrix is of practical interest, particularly when one turns to appli-

cations beyond Poisson-type problems, and this has not escaped the attention of

the community completely. Early (unpublished) work of Smith [72] looked at pre-

conditioners for the p-version mass matrix quadrilateral elements in two dimensions

using tensor product type arguments. There has also been work generalizing mass

lumping to high order elements, but they generally fall short in terms of robustness

in p [45, 46].

Chapters 2 and 3 consider the problem of preconditioning the p-version mass ma-

trix on meshes of triangular and tetrahedral elements (respectively). In both cases,

a judicious choice of hierarchical basis allows one to construct a preconditioner in-

volving only diagonal solves giving rise to a preconditioned system for which the

condition number is bounded independently of the polynomial order p and the mesh

size h. The analyses are performed in the framework of an Additive Schwarz Method

(ASM) [19, 71, 77] and requires the construction of new polynomial extension theo-

rems, similar to those that were derived in the analysis of the stiffness matrix in [12].

However, in the case of the mass matrix it is necessary to look at traces and ex-

tensions from the space L2 (rather than H1) and to make sense of the traces of

polynomials regarded as functions in L2.

With the development of the mass matrix preconditioners on both triangles and

tetrahedra, the construction of a preconditioner on tensor product elements is a

straightforward extension, due to the properties of the L2 inner-product under a

tensor product, which we pursue in Chapter 4. We are able to construct ASM

preconditioners for any tensor product element, including quads, hexes and prisms.
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In Chapter 5, we first explore the choices of different nodal basis functions in the

context of the preconditioner presented in Chapter 2. We next exploit the fact

that both the 2D mass matrix preconditioner and stiffness matrix preconditioner of

Babuska et al. [12] were built under a similar framework; this allows us to propose

an efficient preconditioner for any linear combination of mass and stiffness matrix

on triangles.

Finally, we turn from theory to practice in Chapter 6 where we primarily dis-

cuss how to implement the 2D mass matrix preconditioner from Chapter 2 in an

efficient manner. The proposed solution relies on Bernstein polynomials, a hallmark

of computer-aided geometric design (CAGD) and splines among others [30, 31], as

the basis for hp-FEM. As it turns out, using the Bernstein polynomials allows one to

perform essentially all computations related to finite element analysis ranging from

matrix-free matrix multiply [3], quantity-of-interest computation, visualization and

preconditioning in O(p3) in 2D.
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2.1 Introduction

We start by considering the problem of preconditioning the p-version mass matrix

on meshes of (possibly curvilinear) triangular elements in two dimensions. Through

a judicious choice of hierarchical basis, it is shown that a preconditioner involving

only diagonal solves on the vertices, edges and element interiors gives rise to a pre-

conditioned system for which the condition number is bounded independently of the

polynomial order p and the mesh size h.

The chapter is organized as follows. In section 2, we define the basis functions

on a simplex. In section 3, we present the preconditioner, analyze its cost, and state

the main theorem. In section 4, we present several illustrative numerical examples.

In section 5, we use domain decomposition techniques to prove the key theorems.

In section 6, we prove the technical lemmas and estimates required. We finish in

section 7 with a conclusion.

2.2 Basis Functions

2.2.1 Basis functions on a triangle

Let T be the reference triangle in R2 with vertices v1 = (−1,−1), v2 = (1,−1), v3 =

(−1, 1), and the edges of T be denoted by γi for i = 1, 2, 3 such that γi is opposite

of vertex vi; see Figure 2.1. Let p ≥ 3 be a given integer which is fixed throughout,

and let Pp(T ) = span{xαyβ : 0 ≤ α, β, α + β ≤ p} denote the space of polynomials

of total degree p on T . Finally, for i = 1, 2, 3 we let λi ∈ P1(T ) be the barycentric

A version of this chapter has been previously published in [8].
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coordinates on T , i.e. the unique polynomial such that λi(vj) = δij.

1

1

v1 v2

v3

γ1

γ3

γ2 x

y

Figure 2.1: Figure of reference triangle T

The classical Jacobi polynomials on [−1, 1] are denoted by P (α,β)
n , where n is the

order of the polynomial and α, β > −1 are weights [1]. These will be used to define

the basis functions on triangle T as follows:

Interior Basis Functions

The orthogonalized, interior modified principal functions [47] are given by

ψij(x, y) = 1− s
2

1 + s

2 P
(2,2)
i−1 (s)

(
1− t

2

)i+1 1 + t

2 P
(2i+3,2)
j−1 (t)

for 1 ≤ i, j, i+ j ≤ p− 1, where

s = λ2 − λ1

1− λ3
, t = 2λ3 − 1

and λ1, λ2, λ3 are the barycentric coordinates of (x, y) ∈ T . Note that {ψij} vanishes

on the boundary of T and gives a basis for Pp(T ) ∩H1
0 (T ).
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Edge Basis Functions

On edge γ1, we define

χ(1)
n (x, y) = 4λ2λ3P

(2,2)
n (λ3 − λ2)

for n = 0, . . . , p − 2 with (x, y) ∈ T . We note that the factor λ2λ3 means that χ(1)
n

vanishes on edges γ2 and γ3. The basis functions χ(2)
n , χ(3)

n on edges γ2, γ3 are defined

in an analogous fashion. The key property dictating this particular choice of basis

is that χ(i)
n |γi = (1− s2)P (2,2)

n (s) where s ∈ [−1, 1] is a parametrization of γi.

Vertex Basis Functions

On vertex vi for i = 1, 2, 3, we define

ϕi(x, y) = (−1)bp/2c+1

bp/2c λiP
(1,1)
bp/2c−1(1− 2λi), (x, y) ∈ T.

Note that ϕi(vj) = δij. One could replace bp/2c by p and still obtain a basis for

Pp(T ). The reason for choosing bp/2c rather than simply p will become clear later;

a partial discussion presented in Lemma 2.6.3 and a full discussion on the choice of

nodal basis function is available in chapter 5.

It is not difficult to verify that the functions defined above are linearly indepen-

dent. Moreover, there are 3 dofs from the vertices, 3p − 3 dofs from the edges and
1
2

(
p2 − 3p+ 2

)
from the interior of T which sums to 1

2(p + 1)(p + 2) = dimPp(T ).
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Hence, we have a basis for Pp(T ) with the following decomposition:

Pp(T ) = span{ϕi}3
i=1 ⊕

3⊕
i=1

span{χ(i)
n }

p−2
n=0 ⊕ span{ψij}1≤i,j,i+j≤p−1. (2.1)

This basis bears some similarities to existing [69] bases used for high order FEM and

differs slightly in the choice of edge functions, but uses quite non-standard vertex

functions. Our choice of vertex function is crucial in what follows. For instance, if the

usual hat functions were to be used for the vertices, then the resulting preconditioner

would result in a condition number which grows as O(p2); see Figure 2.2. For a full

discussion on the choice of the nodal basis functions, we refer the reader to Chapter 5.

We enumerate the basis functions in the following order:

1. the vertex functions {ϕi}3
i=1,

2. the edge functions {χ(1)
n }

p−2
n=0, {χ(2)

n }
p−2
n=0, {χ(3)

n }
p−2
n=0

3. the remaining dofs correspond to {ψij}1≤i,j,i+j≤p−1,

then the mass matrix on T will have a block form

M̂ =


M̂V V M̂V E M̂V I

M̂EV M̂EE M̂EI

M̂IV M̂IE M̂II



where M̂V V = [
∫
T ϕiϕj dx] for i, j = 1, 2, 3 and M̂V E = [

∫
T ϕiχ

(j)
n dx] for i, j = 1, 2, 3

and n = 0, . . . , p− 2 etc. Likewise, the element load vector ~f and solution vector ~x
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take the partitioned forms

~f =


~fV

~fE

~fI

 , and ~x =


~xV

~xE

~xI

 .

The condition number of the mass matrix M̂ grows as O(p4); Figure 2.2 shows

the variation of the condition number versus p. If diagonal scaling is applied as a

preconditioner for M̂, then the condition number now grows as O(p2); Figure 2.2

also shows the condition number of the diagonally scaled mass matrix (denoted as

M̂S). Our objective is to construct a preconditioner for which the condition number

remains bounded.

2.2.2 Basis functions on partitions

Let Ω be a bounded two-dimensional domain, and let T be a triangulation of Ω. We

assume that each element K ∈ T is the image of the reference element T under a

bijective map FK (not necessarily linear) such that the Jacobian DFK is bounded

uniformly in the sense that there exists non-negative constants θ,Θ such that for all

K ∈ T there holds

θ|K| ≤ |DFK | ≤ Θ|K|. (2.2)

We remark that this condition places no constraints on the shape regularity of the

mesh, and, in particular, allows for “needle” elements.

The basis functions on each element K ∈ T are defined in terms of the basis
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functions on the reference element in the usual way; for example, the first vertex

basis functions is defined as

ϕ1,K(x) := ϕ1(F−1
K (x)).

Thanks to the decomposition of the basis into interior contributions and bound-

ary contributions that are only supported on a single entity (i.e. edge or vertex),

C0 global conformity is enforced by matching the corresponding edge and vertex

functions.

2.3 Preconditioner and Statement of Main Theo-

rem

2.3.1 Preconditioning on the reference element

We begin by constructing a preconditioner for the mass matrix M̂ on the reference

element T . Let I3 be the 3× 3 identity matrix, D̂V V = 1
p4 I3 and

D̂EE = block diag(D̂(1)
EE, D̂

(2)
EE, D̂

(3)
EE)

where D̂(i)
EE, i = 1, 2, 3 is the diagonal matrix D̂(i)

EE = diag(qj), with

qj := 2
(p+ 4 + j)(p− j + 1)

∫ 1

−1
(1− x2)2P

(2,2)
j (x)2 dx

= 64(j + 1)(j + 2)
(p+ 4 + j)(p− j + 1)(2j + 5)(j + 3)(j + 4)

(2.3)
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for j = 0, . . . , p − 2. We define our preconditioner, in the case of the reference

element, in terms of its action when applied to a vector ~f in Algorithm 1.

Algorithm 1 Preconditioner on the Reference Element
Require: M̂, ~f as partitioned in Section 2.2

1: function
2: ~xI := M̂−1

II
~fI . Interior solve

3: ~xE := D̂−1
EE

(
~fE − M̂EI~xI

)
. Edges solve

4: ~xV := D̂−1
V V

(
~fV − M̂V I~xI

)
. Vertices solve

5: ~xI := ~xI − M̂−1
II M̂IV ~xV − M̂−1

II M̂IE~xE . Interior correction
6: return ~x := ~xI + ~xE + ~xV
7: end function

Direct manipulation reveals that Algorithm 1 defines a linear mapping ~f → ~x :=

P̂−1 ~f where P̂−1 = Q̂−TD−1Q̂−1,

Q̂ :=


I 0 M̂V IM̂−1

II

0 I M̂EIM̂−1
II

0 0 I

 , and D :=


D̂V V 0 0

0 D̂EE 0

0 0 M̂II

 .

Clearly, Q̂ and D are invertible, hence

P̂ = Q̂DQ̂T . (2.4)

We now state a key result:

Theorem 2.3.1. There exist positive constants ĉ and Ĉ independent of p such that

ĉP̂ ≤ M̂ ≤ ĈP̂.1 Hence,

cond(P̂−1M̂) ≤ Ĉ

ĉ
.

1We use the notation that A ≤ B implies B−A is semi-positive definite.
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The proof of Theorem 2.3.1 is postponed to Section 2.5.

2.3.2 Preconditioning on a mesh

The global mass matrix M on a partition T is obtained by the standard finite element

sub-assembly procedure

M =
∑
K∈T

ΛKMKΛT
K

where MK is the element mass matrix, and ΛK the local assembly matrix. For the

global mass matrix, we assume the dofs are numbered in a similar fashion to the one

used on a single element, viz.:

1. vertex basis dofs are (first in any order),

2. edge basis dofs grouped by the edge they are supported on, and ordered by the

index on the Jacobi polynomial,

3. interior basis dofs grouped by the element on which they are supported.

Thanks to Equation (2.2), it follows that

c
|K|
|T |

M̂ ≤MK ≤ C
|K|
|T |

M̂ ∀K ∈ T

where the constants c and C depend only on θ and Θ. By the same token, we define

a local preconditioner on K in terms of P̂

PK = |K|
|T |

P̂ = |K|
|T |

Q̂DQ̂T (2.5)
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where the second equality follows from Equation (2.4). The global preconditioner P

is then obtained using sub-assembly to give:

P =
∑
K∈T

ΛKPKΛT
K .

Let the local assembly matrix ΛK be written in block form

ΛK =


ΛK,V

ΛK,E

ΛK,I



where the blocks correspond to the vertex, edge and interior basis functions on

element K, and let

Q =


I 0 M̊V I(M̊II)−1

0 I M̊EI(M̊II)−1

0 0 I



where M̊EI = ∑
K∈T ΛK,EM̂EIΛT

K,I with M̊II , M̊V I defined analogously. Observe

that if the physical elements K are all affine images of the reference element, then

M̊II , M̊EI will coincide with the global mass matrix blocks MII ,MEI .

The following identity will prove useful in deducing the action of P−1:

Lemma 2.3.2. For any element K ∈ T , we have that

ΛKQ̂ = QΛK . (2.6)
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Proof. It is clear that ΛKQ̂~f = QΛK
~f if ~f = [~fV ; ~fE;~0]2 since, in that case,

ΛKQ̂[~fV ; ~fE;~0] = [ΛK,V
~fV ; ΛK,E

~fE;~0] = QΛK [~fV ; ~fE;~0].

It remains to show the relation holds for vectors of the form [~0;~0; ~fI ]. Observe that

the interior basis functions are supported on one and only one element. Hence M̊−1
II =∑

K∈T ΛK,IM̂−1
II ΛT

K,I , and ΛT
K,IΛK′,I = δKK′I for K,K ′ ∈ T . Direct computation

then shows,

QΛK


0

0
~fI

 =


M̊V IΛK,IM̂−1

II
~fI

M̊EIΛK,IM̂−1
II
~fI

ΛK,I
~fI

 =


ΛK,V M̂V IM̂−1

II
~fI

ΛK,EM̂EIM̂−1
II
~fI

ΛK,I
~fI

 = ΛKQ̂


0

0
~fI

 .

In view of Lemma 2.3.2 and Equation (2.5), we can rewrite P in the form

P = Q

∑
K∈T

ΛK
|K|
|T |

DΛT
K

QT .

Moreover, since D is diagonal, we can rewrite

∑
K∈T

ΛK
|K|
|T |

DΛK = block diag(DV V ,DEE, M̊II).

where

DV V =
∑
K∈T

|K|
|T |

ΛK,V D̂V V ΛT
K,V and DEE =

∑
K∈T

|K|
|T |

ΛK,ED̂EEΛT
K,E.

In particular, note that both DV V and DEE are diagonal matrices. It follows that P
2 We use the notation where [~a;~b;~c] denotes the column vector [~aT ,~bT ,~cT ]T .
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is invertible, and the action of P−1 on a global right hand side is given by Algorithm 2.

A key property of Algorithm 2 is that the global preconditioner requires only diagonal

solves over the edges, interior and vertices.

Algorithm 2 Preconditioner for Global Mass Matrix
Require: M global mass matrix, ~f residual vector

1: function
2: ~xI := M̊−1

II
~fI

3: ~xE := D−1
EE

(
~fE − M̊EI~xI

)
4: ~xV := D−1

V V

(
~fV − M̊V I~xI

)
5: ~xI := ~xI − M̊−1

II M̊IV ~xV − M̊−1
II M̊IE~xE

6: return ~x := ~xI + ~xE + ~xV
7: end function

The next result complements Theorem 2.3.1 by showing that P is a uniform

preconditioner for the mass matrix on the entire mesh T :

Corollary 2.3.3. There exists a constant C independent of h, p such that

cond(P−1M) ≤ C.

Proof. Bounds Equation (2.2) and a change of variables show that θM̂ ≤ MK ≤

ΘM̂. Then by standard sub-assembly and Theorem 2.3.1

ĉθP = ĉθ
∑
K∈T

ΛKPKΛT
K ≤

∑
K∈T

ΛKMKΛT
K = M ≤ ĈΘ

∑
K∈T

ΛKPKΛT
K = ĈΘP

where ĉ, Ĉ are the constants from Theorem 2.3.1. Hence cond(P−1M) ≤ ĈΘ
ĉθ

.
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2.3.3 Cost of Applying the Preconditioner

Line 2 to line 4 of Algorithm 2 all involve inversion of diagonal matrices. Conse-

quently, each interior block can be inverted at a cost of 1
2(p−1)(p−2) operations, each

edge block at a cost of p− 1 operations, and the vertex block costs 3|V| operations

where |V| is the number of vertices in mesh T . The dominant cost of the algorithm

lies in the matrix-vector multiplication Mpre
EI~xI , which costs O(p3) operations, hence

the overall cost of our algorithm is O(p3).

2.4 Numerical Examples

In this section, we present results obtained by applying Algorithm 2 to solve linear

algebraic systems arising in some representational examples.

2.4.1 Condition number on reference triangle

We start by illustrating the performance of the preconditioner on the reference ele-

ment (see Theorem 2.3.1). In Figure 2.2, we plot the condition number of M̂, the

condition number of the diagonally scaled mass matrix M̂S where

M̂S = diag(M̂)−1/2M̂ diag(M̂)−1/2,

and the condition number of the preconditioned mass matrix P̂−1/2M̂P̂−1/2.

Figure 2.2 also shows the results obtained if the vertex functions in the choice of
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basis is replaced by the “full-order” vertex basis functions

ϕ̈i(x, y) = (−1)p+1

p
λiP

(1,1)
p−1 (1− 2λi), (x, y) ∈ T

to partially illustrate why the choice bp/2c was made. We will call the preconditioned

mass matrix constructed using ϕ̈i as P̂−1/2M̈P̂−1/2 It is observed that the condition

number no longer remains bounded; see Theorem 5.3.1 for an explanation. Finally,

the figure also shows the results obtained if the vertex functions were replaced with

the commonly used hat functions

ϕ̆i(x, y) = λi, (x, y) ∈ T.

We call the preconditioned mass matrix constructed using ϕ̆i as P̂−1/2
L M̆P̂−1/2

L ; the

only difference between P̂ and P̂L is a more appropriate scaling for D̂V V . Figure 2.2

shows the growth of the condition number is of order O(p2).

We note that the mass matrix M̂ and the scaled mass matrix M̂S both exhibit

algebraic growth with the order p which is typically the case for such basis [5], while,

by contrast, the preconditioned system P̂−1/2M̂P̂−1/2 remains constant with p as

predicted by Theorem 2.3.1 (with an asymptotic value of 24 as p→∞) .

2.4.2 Condition number on multi-element mesh

We next illustrate Corollary 2.3.3 by considering the mesh shown in Figure 2.3 which

consists of 239852 affine elements. We construct the global mass matrix M explicitly

and use ARPACK to approximate the extreme eigenvalues of the preconditioned sys-

tem to a relative tolerance of 10−4. In Table 2.1, we display the extreme eigenvalues
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Figure 2.2: The condition numbers of M̂, M̂S, cond(P̂−1/2
L M̆P̂−1/2

L ), P̂−1/2M̂P̂−1/2

and P̂−1/2M̈P̂−1/2 are plotted on a log-log axis for p = 5, 10, . . . , 95. The algebraic
growth of cond(M̂) and cond(M̂S) with p are consistent with [5], and the bound-
edness of cond(P̂−1/2M̂P̂−1/2) is predicted in Theorem 2.3.1. Finally, we note the
importance of our choice of vertex function: the “full-order” vertex basis system
cond(P̂−1/2M̈P̂−1/2) grows and the hat functions systems cond(P̂−1/2

L M̆P̂−1/2
L ) ex-

hibits O(p2) growth.

and condition number of the preconditioned mass matrix on the multi-element mesh,

along with the corresponding quantities for the preconditioned mass matrix on the

reference element. The condition numbers on the multi-element mesh are bounded

by those on the reference element as predicted by Corollary 2.3.3 for affine elements.

Table 2.1: Table to illustrate Corollary 2.3.3 by comparing the extreme eigenvalues
of the global mass matrix M of the mesh as shown in Figure 2.3, to the single element
case M̂. The eigenvalues are approximated using ARPACK to a relative tolerance
of 10−4 for M and to machine precision for M̂.

Multi-Element Mesh M Single Element M̂
p #DOF λmin λmax λmax/λmin λmin λmax λmax/λmin
3 1084371 0.0518 2.6077 50.341 0.0518 2.6124 50.386
4 1925541 0.0922 2.3033 24.982 0.0920 2.3064 25.061
5 3006563 0.0793 2.9154 36.764 0.0791 2.9198 36.887
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Figure 2.3: Plot of the mesh used to illustrate Corollary 2.3.3; see Table 2.1 for the
results.

2.4.3 Explicit time-stepping

We now illustrate the use of the preconditioner in the numerical solution of the wave-

equation where the time stepping scheme requires the inversion of the mass matrix

at each step. Let u(x, y, t) be defined in Ω = [−7, 7]× [−7, 7] be the solution to the

wave equation

utt = ∆u, (x, y) ∈ Ω, t > 0

with Neumann boundary condition; the initial condition [16] is

u(x, y, 0) = 4 tan−1 exp(x+ 1− 2 sech(y + 7)− 2 sech(y − 7)), ut(x, y, 0) = 0.

For the spatial discretization, we use a uniform triangulation of the square. For

the time discretization, we use a 4th order Nyström method [40, p. 285], which

entails three mass matrix solves per time step; for example, the first substep consists
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of solving

~un+1
1 := M−1 (−S~un)

where S is the stiffness matrix. For each solve, we use the preconditioned conjugate

gradient (PCG) with an appropriate initial guess; recall that the error ~ek at iteration

k of preconditioned conjugate gradient satisfies

‖~ek‖ ≤

√κ− 1√
κ+ 1

k‖~e0‖ . (2.7)

where κ is is the condition number of the preconditioned matrix and ~e0 is the error

of the initial iterate [35, p. 636]. In Table 2.2, we show the minimum, median and

max iteration count of PCG over the entire simulation of 10 seconds with ∆t = 0.01.

Corollary 2.3.3 and Equation (2.7) guarantees that the iteration count will not

increase with p or with h refinement. In fact, we note that the median iteration

count actually decreases as we increase p and refine h. This is due to Equation (2.7)

being an estimate which only relates the condition number to the error bound, but

does not take into account the possible improvements from clustering of eigenvalues.

Furthermore, the estimate does not take into account a good initial iterate, which

improves as we increase the number of dofs.

2.4.4 Implicit time-stepping

Finally, we illustrate the use of the preconditioner in the solution of the heat equation

where the time-stepping scheme requires the inversion of a perturbed mass matrix

at each step. Let u(x, y, t) be defined in Ω = [−1, 1]× [−1, 1] be the solution to the
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Table 2.2: Table illustrates the performance of the preconditioned iterative method
of the mass matrix at each time step by displaying the [min, median, max] iteration
count of all 3000 PCG solves from using the Nyström method for a period of 10
seconds with a ∆t = .01 on utt = ∆u in a uniformly triangulated square. The
iteration count does not increase as predicted in Corollary 2.3.3 and Equation (2.7).

Order 16 Elements 64 Elements 256 Elements
4 [21, 27, 34] [20, 25, 34] [17, 23, 31]
8 [17, 23, 29] [16, 21, 30] [16, 21, 26]
12 [17, 22, 27] [16, 18, 26] [16, 17, 25]
16 [16, 18, 25] [15, 18, 24] [15, 15, 23]
20 [16, 18, 24] [15, 15, 23]

heat equation

ut = ∆u, (x, y) ∈ Ω, t > 0

with Neumann boundary condition; we use a simple initial condition

u(x, y, 0) = exp(−(x2 + y2)).

The time stepping scheme we use is the Crank-Nicolson method:

(
M + ∆t

2 S
)
~un+1 =

(
M− ∆t

2 S
)
~un

where S is the stiffness matrix. By Schmidt’s inequality [43], there exists a c inde-

pendent of p, h such that

0 ≤ S ≤ c
p4

h2 M =⇒ M ≤M + ∆t
2 S ≤

(
1 + 1

2c∆t
p4

h2

)
M. (2.8)

The preconditioned system will have condition number of

cond
P−1

(
M + 1

2∆tS
) = O

(
1 + ∆t p

4

h2

)
. (2.9)
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Observe that if we were to use a fully explicit scheme, then the CFL condition

is ∆t ∼ h2

p4 thanks again to Schmidt’s inequality being sharp. If we use the choice

∆t ∼ h2

p4 for the implicit scheme, then Equation (2.9) shows that the iteration count

will not increase as we increase p. In practice however, one generally chooses ∆t ∼ h2

p2

in which case Equation (2.9) shows that the condition number will grow at a rate

of at most O(p2); hence the iteration count will also increase. These conclusions are

illustrated in Table 2.3. In the first two columns, we start with an initial iterate

of ~0 in each PCG method. In the other two columns, we use the solution from the

previous time step as the initial iterate, which results in drastic decreases in iteration

counts.

We conjecture Equation (2.9) could be improved to O(1 + log2 p) in Chapter 5

but it would require a significant increase in computational cost.

Table 2.3: Table to illustrate the performance of the preconditioned iterative method
to the matrix resulting from Crank-Nicolson scheme by displaying the [min, median,
max] iteration count of all PCG solves from using Crank-Nicolson for a period of
1 seconds on 16 elements for ut = ∆u in a uniformly triangulated square. For the
latter two columns, the initial guess is the previous time-step. The behaviors as we
increase p is predicted by Equation (2.9).

Initial Iterate: ~0 Initial Iterate: ~un
p ∆t ∼ h2

p4 ∆t ∼ h2

p2 ∆t ∼ h2

p4 ∆t ∼ h2

p2

4 [35, 36, 37] [35, 36, 37] [34, 34, 36] [34, 34, 36]
8 [38, 39, 39] [66, 67, 73] [9, 17, 35] [49, 51, 73]
12 [34, 35, 35] [87, 91, 103] [4, 8, 29] [51, 55, 101]
16 [32, 33, 33] [108, 114, 127] [2, 7, 24] [48, 55, 124]
20 [16, 19, 19] [129, 130, 151] [1, 1, 9] [47, 55, 149]

2.5 Additive Schwarz Theory

Thanks to Corollary 2.3.3, the analysis of the preconditioner reduces to bounding

the condition number on the reference element as in Theorem 2.3.1. Consequently,
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for the remainder of this article we confine our attention to the reference triangle.

Let X := Pp(T ) be equipped with the standard L2 inner-product denoted by

(·, ·) with the respective norm denoted by ‖·‖, and let XI := H1
0 (T ) ∩ Pp(T ) be the

interior space equipped with the L2(T ) inner-product. The orthogonal complement

of the (closed) subspace XI in X is denoted by X̃B, i.e.

X = XI ⊕ X̃B, XI ⊥ X̃B. (2.10)

We begin by exploring the structure of the space X̃B. Let Pp(∂T ) denote the

space of traces of Pp(T ) on the boundary ∂T of the reference triangle:

Pp(∂T ) = {u : u = v|∂T for some v ∈ Pp(T )}. (2.11)

The next result shows that there is a one-to-one correspondence between X̃B and

Pp(∂T ).

Lemma 2.5.1. For every u ∈ Pp(∂T ), there exists a unique ũ ∈ X̃B which satisfies

ũ = u on ∂T , and (ũ, v) = 0 for all v ∈ XI . Furthermore, ũ is a minimal L2

extension of u in the sense that for all w ∈ Pp(T ) with w|∂T = u we have ‖ũ‖ ≤‖w‖.

Proof. Let u ∈ Pp(∂T ) be given. According to Equation (2.11), u is equal to the

trace of a polynomial in Pp(T ), which we again denote by u. We can construct a

ũ ∈ X̃B with the claimed properties as follows.

Let

uI ∈ XI : (uI , vI) = −(u, vI) ∀vI ∈ XI .
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Set ũ = u+ uI ; clearly ũ|∂T = u and (ũ, vI) = 0 for all vI ∈ XI ; this gives existence.

For uniqueness, let w̃ ∈ Pp(T ) : w̃|∂T = u, (w̃, vI) = 0 for all vI ∈ XI , then

(ũ− w̃, vI) = 0 ∀vI ∈ XI .

Hence ũ − w̃ = 0 as ũ − w̃ ∈ XI . The minimal L2 extension property follows from

the Pythagorean identity.

We say that ũ is the “minimal L2 extension” or “minimal extension” of u ∈

Pp(∂T ). Lemma 2.5.1 shows that ũ is uniquely determined by the boundary values

of u and the degree of the space.

We decompose the space X̃B further. Let ϕ̃i and χ̃(i)
n be the minimal extension,

constructed as described in Lemma 2.5.1, of the vertex basis function and edge basis

function defined in Section 2.2 respectively. Let

X̃V = span{ϕ̃i : i = 1, 2, 3}

and

X̃Ei = span{χ̃(i)
n : n = 0, . . . , p− 2}, i = 1, 2, 3.

By the construction of the basis functions on the boundary and, thanks to Equa-

tion (2.1) and Equation (2.10), we have

X = XI ⊕ X̃V ⊕
3⊕
i=1

X̃Ei . (2.12)

Let ~ϕ = [ϕ1;ϕ2;ϕ3] where ϕi are the vertex basis functions with ~ψ defined simi-
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larly for the interior basis functions, and, using the notation of Section 2.2, define

~̃ϕ = ~ϕ− M̂V IM̂−1
II
~ψ. (2.13)

Then for ~u ∈ R3, we have for all XI 3 w = ~wT ~ψ,

(~uT ~̃ϕ, w) =
(
~uT ~̃ϕ, ~wT ~ψ

)
=
(
~uT (~ϕ− M̂V IM̂−1

II
~ψ), ~wT ~ψ

)
= ~uTM̂V I ~w − ~uTM̂V IM̂−1

II M̂II ~w = 0.

Hence {ϕ̃1, ϕ̃2, ϕ̃3} ∈ X̃B, and as a consequence forms a basis for X̃V (since ϕ̃i|∂T =

ϕi|∂T ). A basis for X̃Ei with i = 1, 2, 3 can be constructed in the same fashion.

Next, we define the bilinear forms on each subspace in the decomposition (2.12):

• Interior space XI :

aI(u,w) := (u,w), u, w ∈ XI .

• Vertex space X̃V :

aV (u,w) := 1
p4

3∑
i=1

u(vi)w(vi), u, w ∈ X̃V

where v1, v2, v3 are the vertices of T .

• Edge spaces X̃Ei (i = 1, 2, 3):

aEi(u,w) :=
p−2∑
n=0

qnµn(u)µn(w), u, w ∈ X̃Ei
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with qn defined as in Equation (2.3), and µn is the weighted moment given by

µn(u) := (2n+ 5)(n+ 3)(n+ 4)
32(n+ 1)(n+ 2)

∫ 1

−1
χ(i)
n (x)u(x) dx

where we use a linear parametrization such that γi = [−1, 1].

The spaces and inner-products defined above give rise to an Additive Schwarz

Method (ASM) preconditioner [19,71,77] whose action on a given residual f ∈ X is

defined as:

(i) uI ∈ XI : aI(uI , vI) = (f, vI) ∀vI ∈ XI .

(ii) uV ∈ X̃V : aV (uV , vV ) = (f, vV ) ∀vV ∈ X̃V .

(iii) For i = 1, 2, 3, uEi ∈ X̃Ei : aEi(uEi , vEi) = (f, vEi) ∀vEi ∈ X̃Ei .

(iv) u := uI + uV +∑3
i=1 uEi is our solution.

2.5.1 Matrix Formulation of the ASM

In practice, it is convenient to reformulate steps (i)-(iv) in terms of matrix operations.

1) Recall that XI = span{ψij} and let uI = ~uTI
~ψ where ~ψ is the column vector of all

the interior basis functions. The matrix form of (i) is

M̂II~uI = aI(uI , ~ψ) = (f, ~ψ) = ~fI .

2) Let uV = ~uTV ~̃ϕ where ~̃ϕ is the basis for X̃V in column form. As ϕ̃i(vj) = δij, we
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have

1
p4 IV V ~uV = aV (uV , ~̃ϕ) = (f, ~̃ϕ).

Inserting identity Equation (2.13) in the right hand side gives

(f, ~̃ϕ) = (f, ~ϕ)−MV IM−1
II (f, ~ψ)

= ~fV − M̂V IM̂−1
II
~fI .

3) Let uE1 = ~uTE1
~̃χ where ~̃χ is the basis for X̃E1 in column form. By the orthogonality

properties of P (2,2)
i (x) in Equation (2.3), the weighted moments in aV (·, ·) of (iii)

simplifies to µn(χ̃i)µn(χ̃j) = δij, and hence we have

D̂(1)
EE~uE1 = aE1(uE1 , ~̃χ) = (f, ~̃χ).

The same reasoning holds for edges γ2, γ3. The right-hand side modification

follows from 2).

4) The vector solution ~xV to step (ii) corresponds to the function ũV := ~xTV ~̃ϕ. Ap-

plying identity Equation (2.13) again, we have

ũV = ~xTV
(
~ϕ− M̂V IM̂−1

II
~ψ
)
.

Therefore, our minimal energy solution contains interior functions of the form

−M̂−1
II M̂IV ~xV which we have to add back to ~xI . A similar correction term is

needed for the three edge terms.

Theorem 2.5.2. The abstract Additive Schwarz Method defined above corresponds

to Algorithm 1.



29

Proof. Steps 1), 2), 3), 4) above corresponds to line 2, line 4, line 3 and line 5

respectively from Algorithm 1.

2.5.2 Proof of Theorem 3.1

We apply the standard theory [19,71,77] for the analysis of additive Schwarz methods

to the scenario as described above. In particular, we will follow the framework as

laid out in [77, §2].

Lemma 2.5.3 (Local Stability). For a constant C independent of p, each of our

local bilinear forms are coercive in the sense that

(u, u) = aI(u, u) ∀u ∈ XI ,

(u, u) = aEi(u, u) ∀u ∈ X̃Ei , i = 1, 2, 3,

(u, u) ≤ 3CaV (u, u) ∀u ∈ X̃V .

Proof. The first equality holds as XI is a subspace of X and inherits the inner-

product. For X̃Ei , identity Equation (2.16) of Lemma 2.6.4 gives us the equality

aEi(u, u) =
p−2∑
n=0

qnµn(u)2 =‖u‖2 .

Finally, for u ∈ X̃V , we rewrite u = ∑3
i=1 u(vi)ϕ̃i. Using the triangle inequality and

the estimate ‖ϕ̃i‖2 ≤ Cp−4 of Lemma 2.6.3, we have

‖u‖2 ≤ 3
3∑
i=1

∥∥u(vi)ϕ̃i
∥∥2 ≤ 3C

p4

3∑
i=1
|u(vi)|2 = 3CaV (u, u).
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The next result gives an estimate for the largest eigenvalue, and is an immediate

consequence of the triangle inequality and Lemma 2.5.3:

Lemma 2.5.4. There exists a constant C independent of p such that for all u ∈ X,

the unique decomposition

u = uI + uV +
3∑
i=1

uEi ,

with uI ∈ XI , uV ∈ X̃V , uEi ∈ X̃Ei, satisfies

‖u‖2 ≤ C

aI(uI , uI) + aV (uV , uV ) +
3∑
i=1

aEi(uEi , uEi)
 .

The final ingredient is the following bound for the smallest eigenvalue of the

additive Schwarz operator, whose proof is the subject of Section 2.6:

Theorem 2.5.5 (Stable Decomposition). For all u ∈ X, with the decomposition as

in Lemma 2.5.4, there exists a constant C independent of p such that

aI(uI , uI) + aV (uV , uV ) +
3∑
i=1

aEi(uEi , uEi) ≤ C‖u‖2 .

The proof of Theorem 2.3.1 is now an immediate consequence of Lemmas 2.5.3

and 2.5.4 and theorem 2.5.5 thanks to Theorem 2.7 of [77].

2.6 Technical Lemmas

In this section, we present the technical lemmas that were used in the proof of

Theorem 2.3.1. For notational purposes, we let ‖·‖ω define the L2-norm over a
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domain ω, and we shall omit the subscript in the case ω = T the reference element.

We begin with a bound relating the vertex values of a polynomial to its L2 norm

over the triangle. The constant appearing in Lemma 2.6.1 is the best one possible;

a related result was proved in [79].

Lemma 2.6.1. For u ∈ Pp(T ), we have that

max
i∈{1,2,3}

|u(vi)| ≤
1

2
√

2
(p+ 1)(p+ 2)‖u‖ .

Proof. For 0 ≤ i, j, i+ j ≤ p define

Ψij(x, y) =
√

(2i+ 1)(i+ j + 1)
2 P

(0,0)
i (ξ)

(
1− η

2

)i
P

(2i+1,0)
j (η), (2.14)

where ξ = 2(1+x)
1−y − 1 and η = y [47, §3]. These functions form an orthonormal basis

for Pp(T ). Hence, u ∈ Pp(T ) can be written in the form u = ∑
i+j≤p uijΨij and

‖u‖2 = ∑
i+j≤p u

2
ij. It suffices to prove the inequality in the case of vertex (−1,−1).

Using Cauchy-Schwarz gives

|u(−1,−1)|2 =
 ∑
i+j≤p

(−1)i+juij

√
(2i+ 1)(i+ j + 1)

2

2

≤
∑
i+j≤p

u2
ij

∑
i+j≤p

(2i+ 1)(i+ j + 1)
2 = 1

8(p+ 1)2(p+ 2)2‖u‖2 .

Next, we prove an equality needed to bound the minimal extension of the vertex

functions.
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Lemma 2.6.2. Define

ξp(x) = (−1)p+1

p(p+ 1)P
′
p(x)(1− x) = (−1)p+1

p

1− x
2 P

(1,1)
p−1 (x), x ∈ [−1, 1]

where Pp is the Legendre polynomial. Then

∥∥∥ξp∥∥∥2

[−1,1]
= 4

(p+ 1)(2p+ 1) . (2.15)

Proof. We note that ξp(−1) = 1, ξp(1) = 0, and ξp(xi) = 0 where xi, i = 2, . . . , p are

the roots of P ′p(x). Hence, using the (p+ 1) point Gauss-Lobatto quadrature gives

∫ 1

−1
ξ2
p(x) dx = w1 +

p∑
i=2

wiξ
2
p(xi) + E

where E is the error term

E = −(p+ 1)p322p+1[(p− 1)!]4
(2p+ 1)[(2p)!]3

d2p

dx2p ξ
2
p(x)

∣∣∣
x=η

, η ∈ [−1, 1].

for some η ∈ [−1, 1]. Direct calculation shows that E = − 2
(2p+1)(p+1)p which, along

with the fact that w1 = 2
p(p+1) , gives the result claimed.

Using the function defined in Lemma 2.6.2, we can bound the minimal extensions

of the vertex functions.

Lemma 2.6.3. The minimal extension of the vertex basis function of degree p sat-

isfies the bound

c

p4 ≤‖ϕ̃i‖
2 ≤ C

p4

where c and C are positive constants independent of p.
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Remark. Surprisingly, if bp/2c is replaced with the full order p, then the above

estimate no longer holds. Instead, we show in Lemma 5.7.3 that c
p4 ≤ ‖ϕ̃i‖2 ≤

C log p
p4 implying that the condition number of the preconditioned system will grow as

O(log p).

Proof. Without loss of generality, assume that i = 1 which corresponds to v1 =

(−1,−1) of the reference triangle T . Using the minimal L2 property of ϕ̃1, and

Qbp/2c ⊂ Pp where Qr = {xαyβ : 0 ≤ α, β ≤ r}, gives:

‖ϕ̃1‖2 = min
u=ϕ1 on ∂T

u∈Pp

‖u‖2 ≤ min
u=ϕ1 on ∂T
u∈Qbp/2c

‖u‖2 .

Consider the polynomial ζr ∈ Q2r defined by

ζr(x, y) = ξr(x)ξr(y)− ξr(−x)ξr(−y)

where ξr(x) is defined in Lemma 2.6.2. By construction, ζbp/2c = ϕ1 on ∂T , and

using Equation (2.15) gives

∥∥∥ζbp/2c∥∥∥2
= 4(2bp/2c − 1)
bp/2c2(bp/2c+ 1)2(2bp/2c+ 1) ≤

C

p4

which proves the upper bound.

The lower bound is an immediate consequence of Lemma 2.6.1 (choosing u =

ϕ̃i).

Remark. The bp/2c order on the vertex functions is crucial here to guarantee that

Qbp/2c is a smaller space than Pp. Using p as the order on the Legendre polynomial

will result in a growing condition number; see Figure 2.2 of Chapter 5 for more

information.
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The next result gives an explicit expression for the norm of a minimal extension

of an edge function:

Lemma 2.6.4. Let u ∈ Pp(γ) be a polynomial on edge γ ⊂ ∂T , which vanishes at

the endpoints, be written in the form

u(x) = (1− x2)
p−2∑
i=0

wiP
(2,2)
i (x),

where x ∈ [−1, 1] is a parametrization of γ. Then the norm of the the minimal

energy extension ũ ∈ Pp(T ), satisfying ũ = 0 on ∂T \ γ and u = ũ on γ, is given by

‖ũ‖2 =
p−2∑
i=0

2µiw2
i

(p+ i+ 4)(p− i− 1) (2.16)

where µi =
∫ 1
−1(1− x2)2P

(2,2)
i (x)2 dx = 32

2i+5
(i+1)(i+2)
(i+3)(i+4) .

Proof. Without loss of generality, take the edge to be γ = {(x, y) : y = −1,−1 ≤

x ≤ 1} of the reference triangle. We construct a basis for the space of polynomials

which vanish on ∂T \ γi and express ũ in the form

ũ(x, y) = (1− ξ2)
(

1− η
2

)2 ∑
i+j≤p−2

ũijP
(2,2)
i (ξ)

(
1− η

2

)i
P

(2i+5,0)
j (η)

for suitable coefficients {ũij ∈ R : i + j ≤ p − 2} where ξ = 2(1+x)
1−y − 1 and η = y.

The L2 norm to minimize can be expressed in terms of {ũij}

‖ũ‖2 =
∫ 1

−1

∫ 1

−1
ũ2(x, y)

(
1− η

2

)
dηdξ =

∑
i+j≤p−2

ũ2
ijµiνij

where νij =
∫ 1
−1

(
1−η

2

)2i+5
P

(2i+5,0)
j (η)2 dη = 1

i+j+3 and µi as defined in the lemma
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statement. The requirement for ũ = u on γ means that

ũ(x,−1) = (1− x2)
∑

i+j≤p−2
(−1)jũijP (2,2)

i (x) =⇒ wi =
p−2−i∑
j=0

(−1)jũij.

The Cauchy-Schwarz inequality gives

w2
i ≤

p−2−i∑
j=0

ν−1
ij

p−2−i∑
j=0

ũ2
ijνij

 = 1
2(p− i− 1)(p+ i+ 4)

p−2−i∑
j=0

ũ2
ijνij (2.17)

with equality if there exists a constant λ, such that for all j ∈ [0, p− 2− i] and fixed

i, such that (−1)jũijν1/2
ij = λν

−1/2
ij , or equally well, ũij = (−1)jλ(i + j + 3). The

choice λ = wi∑p−2−i
j=0 i+j+3

gives wi = ∑p−2−i
j=0 (−1)jũij. Hence, the case of strict equality

in Equation (2.17) is achieved.

Direct computation reveals that

‖ũ‖2 =
p−2∑
i=0

µi

p−2−i∑
j=0

ũ2
ijνij =

p−2∑
i=0

µiw
2
i

1
2(p− i− 1)(p+ i+ 4)

and the result follows.

The next result gives a bound on the norm of the minimal extension of a poly-

nomial supported on a single edge of a triangle:

Lemma 2.6.5. Let u ∈ Pp(T ), such that u(vi) = 0 for vi the vertices of T . Let γ be

any edge of T , and let U ∈ Pp(∂T ) such that U |γ = u|γ and U = 0 on the remaining

two edges. Let Ũ denote the minimal L2 extension of U , then there exists a constant

C independent of p such that

∥∥∥Ũ∥∥∥ ≤ C‖u‖ .
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Proof. Without loss of generality, we assume γ = {(x, y) : y = −1,−1 ≤ x ≤ 1}

and let Ψij be given by Equation (2.14). Since {Ψij}0≤i,j,i+j≤p forms a basis, we may

write u = ∑
i+j≤p uijΨij, and denote

f = u|γ =
∑
i+j≤p

(−1)juij

√
(2i+ 1)(i+ j + 1)

2 P
(0,0)
i (x).

Our technique is to express f as a sum of (1−x2)P (2,2)
i , i = 0, . . . , p− 2, and to then

use Lemma 2.6.4 to calculate
∥∥∥Ũ∥∥∥. Define

vi =
p−i∑
j=0

(−1)juij

√
(2i+ 1)(i+ j + 1)

2 , (2.18)

then in order to use Lemma 2.6.4, we seek coefficients wi such that

f =
p∑
i=0

viP
(0,0)
i (x) = (1− x2)

p−2∑
i=0

wiP
(2,2)
i (x).

Observe that since u vanishes at the vertices of T , we have u(±1,−1) = 0, which

in turn implies ∑p
i=0 vi = 0 and ∑p

i=0(−1)ivi = 0, or equally well

p∑
i=0,even

vi = 0,
p∑

i=1,odd
vi = 0. (2.19)

Consequently, we can rewrite f as

f =
p∑

i=2,even
(P (0,0)

i − P (0,0)
i−2 )Si +

p∑
i=3,odd

(P (0,0)
i − P (0,0)

i−2 )Si
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where

Si = vi + vi+2 + · · ·+


vp

vp−1

=


v0 + · · ·+ vi−2 if i even

v1 + · · ·+ vi−2 else

depending on the parity.

Using the identity

− 1− x2

2(n− 1)

(
(n+ 1)(n+ 2)

2n P
(2,2)
n−2 −

n− 1
2 P

(2,2)
n−4

)
= P (0,0)

n − P (0,0)
n−2 , n ≥ 2

which follows from identities (22.7.15) to (22.7.19) from [1] where Pn−4 is understood

to be 0 for n < 4, we have

p∑
i=2

(
−(i+ 1)(i+ 2)

4i(i− 1) P
(2,2)
i−2 + 1

4P
(2,2)
i−4

)
Si =

p−2∑
i=0

wiP
(2,2)
i

and we deduce that wi = Si+4
4 −

(i+3)(i+4)
4(i+1)(i+2)Si+2. Writing Si+4 = Si+2 − vi+2, we have

wi = −vi+2

4 − 5 + 2i
2(i+ 1)(i+ 2)Si+2. (2.20)

The Cauchy-Schwarz inequality applied to Equation (2.18) gives

v2
i ≤

p−i∑
j=0

u2
ij

p−i∑
j=0

(2i+ 1)(i+ j + 1)
2 = (2i+ 1)(i+ p+ 2)(p− i+ 1)

4

p−i∑
j=0

u2
ij.

which in turn gives

p∑
i=0

4v2
i

(2i+ 1)(i+ p+ 2)(p− i+ 1) ≤
p∑
i=0

p−i∑
j=0

u2
ij =‖u‖2 . (2.21)
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Using Lemma 2.6.4 and the inequality w2
i ≤

v2
i+2
8 + 1

2k
2
i S

2
i+2 where ki = 5+2i

2(i+1)(i+2)

deduced from Equation (2.20), we have

∥∥∥Ũ∥∥∥2
=

p−2∑
i=0

2µiw2
i

(p+ i+ 4)(p− i− 1)

≤ C

p−2∑
i=0

v2
i+2

(p+ i+ 4)(p− i− 1)(2i+ 5) +
p−2∑
i=0

k2
i S

2
i+2

(p+ i+ 4)(p− i− 1)(2i+ 5)

 .
Turning to the first term, thanks to Equation (2.21), we have

p−2∑
i=0

v2
i+2

(p+ i+ 4)(p− i− 1)(2i+ 5) ≤
1
4

p∑
i=0

4v2
i

(2i+ 1)(i+ p+ 2)(p− i+ 1) ≤ C‖u‖2 .

For the second term, we first denote

S̃i =


|v0|+ · · ·+ |vi−2| if i even

|v1|+ · · ·+ |vi−2| else

so that S2
i ≤ S̃2

i . We first note that ki ≤ 2
i+1 and change the index of the summation,

then using Lemma 3.4.10 in the case of j = 1 and Equation (2.21), we obtain

p∑
i=2

S2
i

(i− 1)2(2i+ 1)(p+ i+ 2)(p− i+ 1)

≤
p∑
i=2

S̃2
i

(i− 1)2(2i+ 1)(p+ i+ 2)(p− i+ 1)

≤ C
p∑
i=0

v2
i

(2i+ 1)(i+ p+ 2)(p− i+ 1) ≤ C‖u‖2

and the result follows as claimed.

Finally, we are in a position to give the proof of Theorem 2.5.5:
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Proof. The first step is to construct a suitable decomposition for u ∈ X. Let

uV =
3∑
i=1

u(vi)ϕ̃i ∈ XV

be the interpolant to u at the vertices using the minimal L2 vertex functions.

Consequently (u − uV )|∂T ∈ Pp(∂T ) vanishes at the element vertices, and can

therefore be written in the form

u− uV |∂T = U1 + U2 + U3

where Ui ∈ Pp(∂T ) is supported on edge γi. We then let

uEi ∈ XEi

be the minimal L2 extension of Ui into the triangle. It follows that

u− uV −
3∑
i=1

uEi = uI ∈ XI

Thus u = uV + ∑3
i=1 uEi + uI is a decomposition of u. It remains to show the

decomposition is uniformly bounded.

Firstly, by Lemma 2.6.1:

aV (uV , uV ) = 1
p4

3∑
i=1

u(vi)2 ≤ 3
p4 max

i∈{1,2,3}
u2(vi) ≤ 3C‖u‖2 . (2.22)
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For the edge contributions, we use Lemma 2.6.5 to bound

aEi(uEi , uEi) =
∥∥∥uEi∥∥∥2

≤ C‖u− uV ‖2 ≤ 2C
(
‖u‖2 +‖uV ‖2

)
,

and then use the estimate ‖uV ‖2 ≤ CaV (uV , uV ) from Lemma 2.5.3 and Equa-

tion (2.22), to deduce ‖uV ‖2 ≤‖u‖2 and hence aEi(uEi , uEi) ≤ C‖u‖2.

Finally, as uV + ∑3
i=1 uEi ∈ X̃B, Lemma 2.5.1 gives us

(
uI , uV +∑3

i=1 uEi
)

= 0,

hence

aI(uI , uI) =‖uI‖2 ≤‖uI‖2 +

∥∥∥∥∥∥uV +
3∑
i=1

uEi

∥∥∥∥∥∥
2

=‖u‖2 ,

and our result follows.

2.7 Conclusions

The current chapter has developed an Additive Schwarz method which results in

a uniform condition number in both mesh size h and polynomial order p on the

triangle. The key idea is the construction of a new basis which is used to define the

subspace decomposition for the Additive Schwarz method. It is not our intention to

suggest that this basis be adopted thoroughly; e.g. for Poisson-type problems for

which the mass matrix is absent and only the stiffness matrix appears. The key point

is that, although the spaces used in the description of the ASM are constructed using

the specific basis described in Section 2.2, the resulting abstract form of the ASM

means that the preconditioner can be applied to whatever basis the reader may care

to use through applying a change of basis. For instance, Chapter 6 shows how the

algorithm can be applied to the Bernstein basis at a cost of O(p3) operations.
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3.1 Introduction

We now turn preconditioning the p-version mass matrix on tetrahedra. Much as

in the previous chapter, we develop a new high-order basis with the usual property

that the individual functions can be associated with distinct geometric entities of

the tetrahedron; the distinguishing new property is that the resulting mass matrix is

spectrally equivalent to its own diagonal with constants independent of h, p. The basis

can then used as the foundation for an Additive Schwarz method (ASM), implying

that one only needs to implement an appropriate change-of-basis in existing codes

to utilize the preconditioner.

With the result (p uniformity) and theoretical framework (ASM) both mimicking

the 2D case, this begs the question of the triviality of the present chapter; the 3D

is far from a simple consequence of the 2D case. For one, the techniques used to

prove the stable decomposition on the face spaces has no correspondence in the 2D

case and is quite technical. In addition, the question of how to extend edge and

nodal basis functions onto faces is highly nontrivial. In fact, if one were to use the

tetrahedron basis as a template for the triangle case, one can obtain a preconditioner

whose condition number is more than half of those presented in the previous chapter.

The remainder of the chapter is organized as follows. In section 2, we define

the basis functions and state the main result. In section 3, we present illustrative

numerical examples such as singularly perturbed problem and time-stepping. Finally

in section 4, we prove the inequalities and polynomial extension lemmas needed for

the main result.
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3.2 Basis Definition and Main Result

Let T be the reference tetrahedron in R3 with vertices v1 = (−1,−1,−1), v2 =

(1,−1,−1), v3 = (−1, 1,−1), v4 = (−1,−1, 1), and let F1 and E1 be the face and

edge given by

F1 := T ∩ {z = −1},

E1 := T ∩ {z = −1} ∩ {y = −1}.

Let p ≥ 4 be a given integer, and let Pp(D) be the space of polynomials of total

degree p on a domain D. Let X := Pp(T ), and λi ∈ P1(T ) for i = 1, 2, 3, 4 be the

barycentric coordinates of T associated with vertex vi; i.e. λi(vj) = δij.

We begin by introducing a particular basis for Pp(T ) which, as usual, consists

of functions associated with vertices, edges, faces and the interior of the tetrahe-

dron. However, the actual choice of functions differs from those typically used in the

literature.

3.2.1 Basis functions

The classical Jacobi polynomials [1] on [−1, 1] are denoted by P (α,β)
n , where n is the

order of the polynomial and α, β > −1 are weights, and satisfy

∫ 1

−1

(
1− x

2

)α (1 + x

2

)β
P (α,β)
n (x)2 dx = 2(α + n)!(β + n)!

n!(α + β + 2n+ 1)(α + β + n)! .
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For non-negative integers m, q, let Φ(m)
q (x) ∈ Pq([−1, 1]) be defined by

Φ(m)
q (x) := (−1)q

q + 1 P
(m,1)
q (x), (3.1)

and Ξq ∈ Pq([0, 1]2) be given by

Ξq(l1, l2) := P (2,2)
q

(
2l2

l1 + l2
− 1

)
(l1 + l2)q. (3.2)

Interior Basis Functions

Let

ωijk := λ1λ2λ3λ4Ξi(λ1, λ2)P (2i+5,2)
j

(
2λ3

1− λ4
− 1

)
(1− λ4)j P (2i+2j+8,2)

k (2λ4 − 1)

for 0 ≤ i, j, k, i + j + k ≤ p − 4. Note that ωijk vanishes on the boundary of T due

to the factor λ1λ2λ3λ4. The set {ωijk} is an orthogonal basis for XI := X ∩H1
0 (T )

with respect to the L2(T ) inner product (see Lemma 3.4.1).

Face Basis Functions

The basis functions associated with the face F1 are defined by

ψ
(1)
ij := λ1λ2λ3Ξi(λ1, λ2)P (2i+5,2)

j

(
2λ3

1− λ4
− 1

)
(1− λ4)j Φ(2i+2j+8)

p−3−i−j (2λ4 − 1)

for 0 ≤ i, j, i + j ≤ p − 3. In particular, the presence of the factor λ1λ2λ3 means

that these functions vanish on the remaining three faces. The basis functions on the

remaining faces are defined in an analogous fashion to give the face spaces XFk :=
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span{ψ(k)
ij }. The functions provide an orthogonal basis for XFk (e.g. (ψ(k)

ij , ψ
(k)
mn) ∝

δij,mn where (·, ·) is the L2 inner-product over T ); see Lemma 3.4.1.

Edge Basis Functions

The basis functions associated with the edge E1 are chosen as follows:

χ
(1)
i := λ1λ2Ξi(λ1, λ2)

(
qi(λ3, λ4) + qi(λ4, λ3)

2

)
, 0 ≤ i ≤ p− 2,

where the function qi is given by

qi(l1, l2) := Φ(2i+5)
j

(
2l1

1− l2
− 1

)
(1− l2)j Φ(2i+2j+6)

p−2−i−j (2l2 − 1) (3.3)

with j = b(p − i − 2)/2c. The basis functions on the remaining edges are defined

analogously to give the edge spaces XEk := span{χ(k)
i }.

The edge basis functions have the following properties:

1. locally supported: vanish on the two faces which do not contain edge E1 (owing

to the factor λ1λ2);

2. symmetry: the values on the two non-zero faces satisfy the condition that

χ(r, s, t, 0) = χ(r, s, 0, t) for all r, s, t;

3. orthogonality: (χ(k)
i , χ

(k)
j ) ∝ δij (see Lemma 3.4.1).



46

Vertex Basis Functions

The function associated with the vertex v1 is given by

ϕ1 := 1
3λ1

(
q(λ2, λ3, λ4) + q(λ3, λ4, λ2) + q(λ4, λ2, λ3)

)

where

q(l1, l2, l3) := Φ(2)
i

(
2l1

1− l2 − l3
− 1

)
(1− l2 − l3)i Φ(2i+3)

j

(
2l2

1− l3
− 1

)

× (1− l3)j Φ(2i+2j+4)
p−1−i−j (2l3 − 1),

(3.4)

with i = bp2c and j = b i2c. The basis functions on the remaining vertices are defined

in an analogous manner to give the vertex spaces XVk := span{ϕk}.

The vertex basis functions have the following properties:

1. local support: ϕ1(v1) = 1 and vanishes at the remaining vertices;

2. symmetry: ϕ1(r, s, 0, 0) = ϕ1(r, 0, s, 0) = ϕ1(r, 0, 0, s) for all r, s.

It is not difficult to see that the basis functions are linearly independent and a

simple counting argument shows that the union of the sets give a basis for X.

Basis Functions on a Mesh

Let Ω be a bounded three-dimensional domain, and let P be a partitioning of Ω

into the union of disjoint tetrahedra such that the intersection of any two distinct

elements is either a single common vertex, edge or face. Each element K ∈ P is the
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image of the reference element T under a (possibly non-affine) map FK such that

there exists positive constants θ,Θ such that the Jacobian DFK satisfies

θ|K| ≤ |DFK(x)| ≤ Θ|K| ∀x ∈ K. (3.5)

It is worth noting that this condition does not place constraints on the shape regu-

larity of the mesh, and, in particular, allows for “needle” or “slab” elements.

The basis functions on an element K ∈ P are defined to be pull-backs using the

map FK in the usual manner, e.g.

ϕ1,K(x) := ϕ1(F−1
K (x)), x ∈ K.

The fact that the basis functions are associated with vertices, edges and faces, to-

gether with the symmetry properties means that enforcing global conformity follows

the same procedure for hierarchic bases. In particular, one needs to number the

degrees of freedom in a systematic manner to ensure that the edge and face basis

functions will be oriented correctly. The standard finite element sub-assembly gives

the global mass matrix

M =
∑
K∈P

ΛKMKΛT
K

where ΛK is the local assembly matrix and MK is the element mass matrix expressed

using the above basis. For more details about the assembly process, see [6].
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3.2.2 Main result

The main result states that the diagonal of the mass matrix is spectrally equivalent

to the full matrix:

Theorem 3.2.1. There exists constants c, C independent of h, p such that

c diag(M) ≤M ≤ C diag(M).

Proof. Let M̂ be the mass matrix on the reference element, then Equation (3.5)

implies that

θ|K|M̂ ≤MK ≤ Θ|K|M̂. (3.6)

We shall show below that the following condition holds with constants c, C inde-

pendent of p:

c diag(M̂) ≤ M̂ ≤ C diag(M̂). (3.7)

Thus, standard sub-assembly together with Equation (3.6) and Equation (3.7) shows

that

c diag(M) = c
∑
K∈P

ΛKdiag (MK) ΛT
K ≤ c

∑
K∈P
|K|ΛKdiag

(
M̂
)

ΛT
K

≤
∑
K∈P
|K|ΛKM̂ΛT

K

≤ C
∑
K∈P
|K|ΛKdiag

(
M̂
)

ΛT
K ≤ C

∑
K∈P

ΛKdiag (MK) ΛT
K = C diag(M).

It remains to show that condition Equation (3.7) holds: that is, there exists
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constants c, C independent of p such that

c~uTdiag(M̂)~u ≤ ~uTM̂~u ≤ C~uTdiag(M̂)~u, ∀~u.

Let u ∈ X be the function corresponding to ~u so that ~uTM̂~u =‖u‖2 where ‖·‖ is

the standard L2 inner-product over T . The vector ~u can be decomposed as follows:

~u = [~uI , ~uF1 , . . . , ~uF4 , ~uE1 , . . . , ~uE6 , ~uV1 , . . . , ~uV4 ]

where ~uI corresponds to the coefficients of the interior basis functions ωijk or, equally

well, a function uI ∈ XI etc. This partitioning induces a partitioning of the mass

matrix into subblocks. Moreover, the orthogonality of the basis functions within

each block (not between different blocks) means that

diag(M̂) =



M̂I

M̂F1

. . .

M̂V4


.

Thus,

~uTdiag(M̂)~u =‖uI‖2 +
4∑
i=1

∥∥∥uFi∥∥∥2
+

6∑
i=1

∥∥∥uEi∥∥∥2
+

4∑
i=1

∥∥∥uVi∥∥∥2

where uI ∈ XI , uFi ∈ XFi , uEi ∈ XEi and uVi ∈ XVi .

Condition Equation (3.7) hence reduces to showing that for all u ∈ X, there exist
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positive constants c, C independent of p such that

c

‖uI‖2 +
4∑
i=1

∥∥∥uFi∥∥∥2
+

6∑
i=1

∥∥∥uEi∥∥∥2
+

4∑
i=1

∥∥∥uVi∥∥∥2
 ≤‖u‖2 ≤

C

‖uI‖2 +
4∑
i=1

∥∥∥uFi∥∥∥2
+

6∑
i=1

∥∥∥uEi∥∥∥2
+

4∑
i=1

∥∥∥uVi∥∥∥2
 .

(3.8)

The upper-bound follows at once thanks to the triangle inequality. The proof of

the lower bounds is less straight forward and relies on a number of technical estimates

whose proof is postponed to Section 3.4.

Lemma 3.4.4 and the fact that ‖u‖∞ ≤ Cp3‖u‖ [79] gives a bound on the vertex

portions:

∥∥∥uVi∥∥∥ =
∥∥u(vi)ϕi

∥∥ ≤‖ϕi‖‖u‖∞ ≤ C‖u‖ , i = 1, . . . , 4.

Now, by Lemma 3.4.5, we obtain

∥∥∥uEi∥∥∥ ≤ C

∥∥∥∥∥∥u−
4∑
i=1

uVi

∥∥∥∥∥∥ ≤ C‖u‖ , i = 1, . . . 6.

We next apply Corollary 3.4.7 to each individual face

∥∥∥uFi∥∥∥ ≤ C

∥∥∥∥∥∥u−
4∑
i=1

uVi −
6∑
i=1

uEi

∥∥∥∥∥∥ ≤ C‖u‖ , i = 1, 2, 3, 4.

Finally, a bound for uI follows bbfrom triangle inequality

‖uI‖ ≤ C

∥∥∥∥∥∥u−
4∑
i=1

uVi −
6∑
i=1

uEi −
4∑
i=1

uFi

∥∥∥∥∥∥ ≤ C‖u‖ .

Collecting these estimates establishes the lower bound in Equation (3.8).
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3.3 Numerical Examples

3.3.1 Preconditioned mass matrix

We first illustrate Theorem 2.3.1 for a single (reference) element, and for a mesh

obtained by partitioning the cube into 24 elements. Let

M̂s := P̂−1/2M̂P̂−1/2, Ms := P−1/2MP−1/2

where P̂ = diag(M̂), M is the global mass matrix corresponding to partitioning the

cube into 24 elements, and P = diag(M). In Section 3.3.1, we show the condition

numbers of both M̂s and Ms. As predicted by Theorem 2.3.1, the condition numbers

of both remain bounded for all p.
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Figure 3.1: Figure illustrates the condition number of M̂s and Ms. The bounded
condition number of the preconditioned system is predicted in Theorem 2.3.1.
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Figure 3.2: Cross-section of the solution to Equation (3.9) for ε2 = 10−4 and p = 10
on a corner of the cube. Observe the presence of a boundary layer.

3.3.2 Singularly Perturbed Problem

The utility of the preconditioner is not confined to the pure mass matrix. Consider

the following problem

u− ε2∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(3.9)

where 0 < ε� 1 and f ∈ L2(Ω) which is prototypical of several problems arising in

mechanics [11, 38]. The p-version Galerkin discretization of Equation (3.9) leads to

an algebraic problem of the form

(M + ε2S)~u = ~f (3.10)

where S is the stiffness matrix and ~f is the load vector corresponding to f . Solutions

to the above problem generally exhibit boundary layers which become steeper as

ε→ 0; see Figure 3.2 for a plot of the solution for f = 1.



53

Figure 3.3: Figure illustrating the mesh for the singularly perturbed problem on an
octant of the cube. The inset shows the submesh of elements in the corner. Note the
needle and slab elements of width O(pε) encompassing the boundary of the cube.

In order to resolve the boundary layers present in the solution, anisotropic ele-

ments are needed to obtain robust convergence. It suffices [68] to use a single layer of

anisotropic elements of width O(pε) around the boundary to obtain robust exponen-

tial convergence in p independent of ε. An undesirable side-effect of the anisotropic

elements is that the condition number of Equation (3.10) will grow meteorically as

ε→ 0 due to the increasing aspect ratio of the anisotropic elements. This difficulty

has not gone unnoticed by other researchers: Toselli and Vasseur [75,76] developed a

domain decomposition preconditioner for tensor product elements with a condition

number independent of ε and only growing as 1 + log2 p. However the types of mesh

considered here differ from those of [75,76] which rely strongly on the tensor product

structure and only hold on a geometrically graded mesh rather than the (optimal),

single layer mesh advocated in [68].

An alternative approach [9], was applied in two dimensions on meshes with a

single layer of (needle) anisotropic elements, based on the following norm equivalence
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Table 3.1: Condition number of the singularly perturbed matrices obtained using
the preconditioner for the pure mass matrix. Observe the condition number exhibits
moderate growth in p but remains independent of ε.

ε2 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9
1e-3 22.61 21.17 30.65 30.02 39.20 39.04
1e-5 23.24 22.09 32.75 31.41 42.32 40.15
1e-7 23.31 22.25 33.08 31.67 42.78 40.38
1e-9 23.31 22.27 33.11 31.70 42.83 40.41

obtained from applying a scaling argument to Schmidt’s inequality [23] in conjunction

with Theorem 2.3.1:

c diag(M) ≤M + ε2S ≤
(

1 + Cε2 p4

(pε)2

)
M ≤ Cp2diag(M).

The same estimate remains valid in three dimensions on meshes containing both

“needle” and “slab” elements with aspect ratio ε. If the mass matrix preconditioner

is used to precondition the system Equation (3.10), then the condition number of

the preconditioned system grows as O(p2) but, crucially, remains independent of ε,

even on an unstructured mesh.

To illustrate the effectiveness of this strategy, we consider problem Equation (3.9)

with f = 1 and Ω = (−100, 100)3. Due to symmetry of the problem, it suffices to

only consider the octant of the cube given by (0, 100)3. Figure 3.3 illustrates the

discretization of the domain with a single layer of anisotropic elements bordering the

Dirichlet boundary condition. The condition number of the preconditioned matrices

diag(M)−1/2
(
M + ε2S

)
diag(M)−1/2

is reported in Table 3.1 where it is seen that the condition number is independent

of ε. Interestingly, the asymptotic O(p2) growth is not seen for orders for p < 10.

Results for the 2D case [9] shows that O(p2) growth is obtained for p > 15.
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3.3.3 Time-Stepping

Finally, we discuss applying our preconditioner to time-stepping applications. Let

A(µ, ν) := µM + ν∆tS.

For a fully explicit scheme ν = 0, and Theorem 2.3.1 implies that the preconditioner

will be uniform in the polynomial order p. For a implicit scheme ν > 0, we once

again take advantage of Schmidt’s inequality to deduce that

µM ≤ A(µ, ν) ≤ (µ+ CSp
4ν∆t)M ≤ 2 max

(
µ,CSp

4ν∆t
)

M

where CS is the constant arising from Schmidt’s inequality. In other words, precon-

ditioning using the diagonal of the mass matrix gives

cond(Ã(µ, ν)) ≤ 2 max
(

1, CSν∆t
µ

p4
)

(3.11)

where Ã(µ, ν) = diag(M)−1/2A(µ, ν)diag(M)−1/2; in practice one does not see the

O(p4) growth owing to the small multiplicative factor CSν∆t/µ.

For a concrete example, consider a system of nonlinear reaction-diffusion equa-

tions [36] on the hemisphere which exhibits pattern formation [61]:

∂u

∂t
= −uv2 + α(1− u) + du∆u

∂v

∂t
= uv2 − (α + β)v + dv∆v

(x, y) ∈ Ω, t > 0, (3.12)

where α = .05, β = .02, du = 2× 10−5, dv = 10−5 and Ω a hemisphere with radius 1.

Section 3.3.3 illustrates the solution u at t = 1500.
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Using a standard Galerkin approximation in the spatial dimensions and an IMEX

scheme [66] for the temporal dimension, one arrives at the follow linear systems:

M~un+1 −M~un

∆t = −~gn + α~1− αM~un+1 − du
2
(
Sun+1 + Sun

)
M~vn+1 −M~vn

∆t = ~gn − (α + β)M~vn+1 − dv
2
(
Svn+1 + Svn

) (3.13)

where ~un, ~vn is the finite element approximation at time step n and ~gn is the nonlinear

moment associated with uv2 at time step n.

The first equation of Equation (3.13) involves inverting the matrix A
(
1 + α∆t, du/2

)
at each time step. In this example µ � ν whilst numerical evidence suggests that

the constant CS < 1
5 [58], hence the constant in front of the O(p4) growth in Equa-

tion (3.11) is quite small. In Section 3.3.3 we show the condition number of the

preconditioned system Ã
(
1 + α∆t, du/2

)
with different ∆t and order p. In practice,

one generally chooses ∆t depending on p, but for illustrative purposes here, we vary

∆t and p independently. Note that the condition number for p ≤ 10 does not yet

attain the asymptotic O(p4) growth even for incredibly large values of ∆t. Results

presented for the case ∆t = 5 also exhibits a transition from constant condition

number to a slight growth with p as predicted by Equation (3.11).

3.3.4 Applicability to Other Types of Basis

The discussion thus far might leave the reader with the (false) impression that our

preconditioner is only applicable provided one chooses the basis presented in Sec-

tion 3.2.1. This is not the case and the preconditioner is applicable to any choice of

basis. Indeed, our preconditioner can be regarded as an Additive Schwarz method

(ASM) [19,77].
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Figure 3.4: Figure illustrating the condition number of the preconditioned system
arising from the discretization of the reaction-diffusion system on the hemisphere
consisting of 60 elements. Note that we do not yet observe the O(p4) growth for
p ≤ 10 even for very large ∆t.

The ASM is defined by the following subspace decomposition:

X = XI ⊕
4⊕

k=1
XFk ⊕

6⊕
k=1

XEk ⊕
4⊕

k=1
XVk ,

where, in the parlance of ASM methods, an exact solver is used on each subspace.

Specifically, given a residual f ∈ X, the action of the ASM is defined as follows:

Figure 3.5: Plot of u from above in the Gray-Scott equations Equation (3.12) with
p = 6 on a mesh of the hemisphere with 1159 elements at t = 1500 with ∆t = 1.
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• uI ∈ XI : (uI , vI) = (f, vI) ∀vI ∈ XI ,

• uFk ∈ XFk : (uFk , vFk) = (f, vFk) ∀vFk ∈ XFk ,

• uEk ∈ XEk : (uEk , vEk) = (f, vEk) ∀vEk ∈ XEk ,

• uVk ∈ XVk : (uVk , vVk) = (f, vVk) ∀vVk ∈ XVk ,

and returns u := uI + ∑4
k=1 uFk + ∑6

k=1 uEk + ∑4
k=1 uVk . The proof that the ASM

gives rise to an uniform bound on the condition number follows from the fact that

the constants c, C in Equation (3.8) are independent of p [77, Theorem 2.7].

The action of the preconditioner for a general choice of basis begins by statically

condensing out the interior degrees of freedom. Lemma 3.4.3 states that XI is L2

orthogonal to the remaining subspaces:

XI ⊥
4⊕

k=1
XFk ⊕

6⊕
k=1

XEk ⊕
4⊕

k=1
XVk

which means that one can first reduce the system to the Schur complement matrix.

Once the Schur complement is in hand, a change of basis can be applied on the

interface to map to the spaces XFk , XEk and XVk corresponds to the preconditioner

presented here. Further details in the 2D setting can be found in [9].

3.4 Technical Lemmas

In this section, we turn to the proof of the technical results which were used in

proving Theorem 2.3.1.
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3.4.1 Orthogonality

The Duffy transformation [47, §3.2] given by

ξ := 2λ2

1− λ3 − λ4
− 1, η := 2λ3

1− λ4
− 1, θ := 2λ4 − 1

maps the reference tetrahedron T onto the cube {(ξ, η, θ) : −1 ≤ ξ, η, θ ≤ 1}. For

reference, the edge E1 = {(ξ, η, θ) : −1 ≤ ξ ≤ 1, η = −1, θ = −1} and the face

F1 = {(ξ, η, θ) : −1 ≤ ξ, η ≤ 1, θ = −1}.

We begin by establishing the orthogonality properties of the basis functions:

Lemma 3.4.1. The functions {ωijk}, {ψ(k)
ij }, {χ

(k)
i } provide an L2-orthogonal basis

for XI , XFk , XEk respectively.

Proof. It suffices to show that

(ωi1j1k1 , ωi2j2k2) ∝ δi1j1k1,i2j2k2 , (ψ(1)
i1j1 , ψ

(1)
i2j2) ∝ δi1j1,i2j2 , (χ(1)

i1 , χ
(1)
i2 ) ∝ δi1,i2 .

Transforming the basis functions using the Duffy transformation gives

ωijk = 1− ξ
2

1 + ξ

2 P
(2,2)
i (ξ)

(
1− η

2

)i+2 1 + η

2 P
(2i+5,2)
j (η)

×
(

1− θ
2

)i+j+3 1 + θ

2 P
(2i+2j+8,2)
k (θ),

ψ
(1)
ij = 1− ξ

2
1 + ξ

2 P
(2,2)
i (ξ)

(
1− η

2

)i+2 1 + η

2 P
(2i+5,2)
j (η)

×
(

1− θ
2

)i+j+3

Φ(2i+2j+8)
p−3−i−j (θ),

χ
(1)
i = 1− ξ

2
1 + ξ

2 P
(2,2)
i (ξ)

(
1− η

2

)i+2 (1− θ
2

)i+2

F (η, θ)
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where F (η, θ) is a polynomial in η and θ.

The Jacobian of the Duffy transformation is given by

J = 1− η
2

(
1− θ

2

)2

,

and, as a consequence, we find

∫
T
ωi1j1k1ωi2j2k2 dx =

∫ 1

−1

(
1− ξ

2

)2 (1 + ξ

2

)2

P
(2,2)
i1 P

(2,2)
i2 dξ

×
∫ 1

−1

(
1− η

2

)i1+i2+5 (1 + η

2

)2

P
(2i1+5,2)
j1 P

(2i2+5,2)
j2 dη

×
∫ 1

−1

(
1− θ

2

)i1+i2+j1+j2+8 (1 + θ

2

)2

P
(2i1+2j1+8,2)
k1 P

(2i2+2j2+8,2)
k2 dθ

= Cδi1,i2δj1,j2δk1,k2 .

The result for the edge ψ(1)
ij and face χ(1)

i functions follows the same lines.

The next lemma enumerates the pertinent properties of the function Φ(m)
p which

was used in several places in defining the basis functions:

Lemma 3.4.2. For non-negative integers m, q, the polynomial defined in Equa-

tion (3.1) has the following properties:

1. Φ(m)
q (−1) = 1,

2. Weighted norm

Im,q :=
∫ 1

−1

(
1− x

2

)m (
Φ(m)
q (x)

)2
dx = 2

(q + 1)(m+ q + 1) , (3.14)
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3. Orthogonality property

∫ 1

−1

(
1− x

2

)m 1 + x

2 Φ(m)
q (x)w(x) dx = 0

for all w ∈ Pr([−1, 1]) with r < q.

Proof. The first property comes from the fact that P (m,1)
q (−1) = (−1)q

(
q+1
q

)
[1,

§22.2.1], and the third property follows straight from the orthogonality property of

P (m,1)
q . For the second result, relation (22.7.19) in [1] gives us

2q +m+ 1
q +m+ 1 P

(m,0)
q − q +m

q +m+ 1P
(m,1)
q−1 = P (m,1)

q .

Equation Equation (3.14) in the case of q = 0 trivially holds. Suppose that Equa-

tion (3.14) holds in the case of q − 1, then

Im,q = 1
(q + 1)2

∫ 1

−1

(
1− x

2

)m
P (m,1)
q (x)P (m,1)

q (x) dx

= 1
(q + 1)2

∫ 1

−1

(
1− x

2

)m ((2q +m+ 1)2

(q +m+ 1)2 P
(m,0)
q (x)P (m,0)

q (x)
)
dx

+ 1
(q + 1)2

(q +m)2

(q +m+ 1)2 q
2Im,q−1

= 1
(q + 1)2

(2q +m+ 1)2

(q +m+ 1)2
2

2q +m+ 1 + 1
(q + 1)2

(q +m)2

(q +m+ 1)2 q
2 2
q(m+ q)

= 2
(q + 1)(q +m+ 1)

and the result Equation (3.14) holds by induction.

The above result implies that the interior basis functions are orthogonal to the

face/edge/vertex functions:
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Lemma 3.4.3. Let XB = ⊕4
k=1XFk ⊕

⊕6
k=1XEk ⊕

⊕4
k=1XVk , then the space X can

be decomposed as X = XI ⊕XB such that XI ⊥ XB.

Proof. Recall Ξi, qi and q from Equations (3.2) to (3.4) respectively, and define

χ̄
(1)
i , ϕ̄1 as

χ̄
(1)
i := λ1λ2Ξi(λ1, λ2)qi(λ3, λ4)

= 1− ξ
2

1 + ξ

2 P
(2,2)
i (ξ)

(
1− η

2

)i+2

Φ(2i+5)
j (η)

(
1− θ

2

)i+j+2

Φ(2i+2j+6)
p−2−i−j (θ),

ϕ̄1 := λ1q(λ2, λ3, λ4)

= 1− ξ
2 Φ(2)

i (ξ)
(

1− η
2

)i+1

Φ(2i+3)
j (η)

(
1− θ

2

)i+j+1

Φ(2i+2j+4)
p−1−i−j (θ).

(3.15)

By permutation of the barycentric coordinates, it suffices to show that for any

interior basis function ωlmn with 0 ≤ l,m, n, l + m + n ≤ p − 4, the inner product

vanishes

(ϕ̄1, ωlmn) = 0,

(χ̄(1)
i , ωlmn) = 0, i = 0, . . . , p− 2,

(ψ(1)
ij , ωlmn) = 0, 0 ≤ i, j, i+ j ≤ p− 3.



63

Calculating the inner-product for the face functions first:

(ψ(1)
ij , ωlmn) =

∫ 1

−1

(
1− ξ

2

)2 (1 + ξ

2

)2

P
(2,2)
i (ξ)P (2,2)

l (ξ) dξ

×
∫ 1

−1

(
1− η

2

)i+l+5 (1 + η

2

)2

P
(2i+5,2)
j (η)P (2l+5,2)

m (η) dη

×
∫ 1

−1

(
1− θ

2

)i+l+j+m+8 (1 + θ

2

)
Φ(2i+2j+8)
p−3−i−j (θ)P (2l+2m+8,2)

n (θ) dθ

∝ δilδjm

∫ 1

−1

(
1− θ

2

)2i+2j+8 (1 + θ

2

)
Φ(2i+2j+8)
p−3−i−j (θ)P (2l+2m+8,2)

n (θ) dθ.

The inner-product vanishes if i 6= l, j 6= m. Assuming otherwise, we have that

p− 3− i− j > n as l+m+n ≤ p− 4, hence the inner-product is 0 by Lemma 3.4.2.

For the edges, we have

(χ̄(1)
i , ωlmn) ∝ δil

∫ 1

−1

(
1− η

2

)i+l+5 1 + η

2 P
(2i+5,1)
j (η)P (2l+5,2)

m (η) dη

×
∫ 1

−1

(
1− θ

2

)i+j+l+m+7 1 + θ

2 P
(2i+2j+6,1)
p−2−i−j (θ)P (2l+2m+8,2)

n (θ) dθ.

The inner product is trivially zero if i 6= l or m < j. Assuming otherwise, we have

for the θ variable

∫ 1

−1

(
1− θ

2

)2i+2j+6 1 + θ

2

(1− θ
2

)1+m−j

P (2l+2m+8,2)
n (θ)

P (2i+2j+6,1)
p−2−i−j (θ) dθ.

The above vanishes if

1 +m− j + n < p− 2− i− j

which follows from the fact that l +m+ n ≤ p− 4.
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Finally, we have

(ϕ̄1, ωlmn) ∝
∫ 1

−1

(
1− ξ

2

)2 1 + ξ

2 P
(2,1)
i (ξ)P (2,2)

l (ξ) dξ

∫ 1

−1

(
1− η

2

)i+l+4 1 + η

2 P
(2i+3,1)
j (η)P (2l+5,2)

m (η) dη

∫ 1

−1

(
1− θ

2

)i+j+l+m+6 1 + θ

2 P
(2i+2j+4,1)
k (θ)P (2l+2m+8,2)

l (θ) dθ.

If i > l, then there is nothing to prove, otherwise the η integral can be written as

∫ 1

−1

(
1− η

2

)2i+3 1 + η

2

(1− η
2

)1+l−i

P (2l+5,2)
m (η)

P (2i+3,1)
j (η) dη

which vanishes if j > 1 + l − i + m. Finally, assuming otherwise, the θ integral can

be written as

∫ 1

−1

(
1− θ

2

)2i+2j+4 1 + θ

2

(1− θ
2

)l+m−i−j+2

P (2l+2m+8,2)
n (θ)

P (2i+2j+4,1)
p−1−i−j (θ) dθ.

The above quantity vanishes if

l +m− i− j + 2 + n < p− 1− i− j

which follows from the fact that l +m+ n ≤ p− 4.

Now we show the stability of the subspace decomposition.

3.4.2 Vertex Contributions

The following lemma corresponds to Lemma 5.4 and 6.1 of [8] and allows us to bound

the vertex contribution:
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Lemma 3.4.4. The vertex basis functions of degree p satisfy the bound

cp−3 ≤‖ϕ‖ ≤ Cp−3

for constants c, C independent of p.

Proof. Note that

‖ϕ1‖ =
∥∥ϕ̄1/3 + λ1q(λ3, λ4, λ2)/3 + λ1q(λ4, λ2, λ3)/3

∥∥
≤
∥∥ϕ̄1/3

∥∥+
∥∥λ1q(λ3, λ4, λ2)/3

∥∥+
∥∥λ1q(λ4, λ2, λ3)/3

∥∥ =‖ϕ̄1‖

where ϕ̄1 is defined in Equation (3.15).

Using Lemma 3.4.2,

‖ϕ̄‖2 =
∫ 1

−1

(1− ξ)2

4 Φ(2)
i dξ

∫ 1

−1

(
1− η

2

)2i+3

Φ(2i+3)
j dη

×
∫ 1

−1

(
1− θ

2

)2i+2j+4

Φ(2i+2j+4)
p−1−i−j dθ

= 8
(i+ 1)(i+ 3)(j + 1)(2i+ j + 4)(p− i− j)(i+ j + p+ 4) ≤ Cp−6.

For the lower bound, let 0 ≤ i, j, k, i+ j + k ≤ p and define

Ψijk := cijkP
(0,0)
i (ξ)

(
1− η

2

)i
P

(2i+1,0)
j (η)

(
1− θ

2

)i+j
P

(2i+2j+2,0)
k (θ), (3.16)

where cijk = 1
2

√
(2i+ 1)(i+ j + 1)(2i+ 2j + 2k + 3). These functions form an or-

thonormal basis for X hence ϕ can be written in the form ϕ = ∑
i+j+k≤p uijkΨijk

where uijk are the appropriate coefficients and ‖ϕ‖2 = ∑
i+j+k≤p u

2
ijk. It suffices to
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prove the inequality in the case of ϕ1. Cauchy-Schwarz gives

1 = |ϕ(−1,−1,−1)|2 =
 ∑
i+j+k≤p

(−1)i+j+kcijkuijk

2

≤
∑

i+j+k≤p
u2
ij

∑
i+j+k≤p

c2
ijk = (p+ 1)2(p+ 2)2(p+ 3)2

48 ‖ϕ‖2 .

We now proceed to the edge contributions.

3.4.3 Edge contributions

The following lemma bounds the contribution on an edge:

Lemma 3.4.5. Let u ∈ X be such that u vanishes at the vertices of T . Let γ be

an arbitrary edge of T and let U ∈ XEγ such that U |γ = u|γ. Then there exists a

constant C independent of p such that

‖U‖ ≤ C‖u‖ . (3.17)

Proof. Without loss of generality, we assume that γ := E1. Let U = ∑p−2
i=0 wiχ

(1)
i

where the coefficients wi are chosen such that U |γ = u|γ. It is more convenient

to work with the function χ̄
(1)
i defined in Equation (3.15). Observe that χ̄(1)

i |E1 =

χ
(1)
i |E1 , and (χ̄(1)

i , χ̄
(1)
j ) ∝ δij. Let Ū = ∑p−2

i=0 wiχ̄
(1)
i , then Ū = U on edge γ and

‖U‖ ≤
∥∥∥Ū∥∥∥ as

∥∥∥∥χ(1)
i

∥∥∥∥ =
∥∥∥∥χ̄(1)

i /2 + λ1λ2pi(λ2 − λ1)qj(λ4, λ3)/2
∥∥∥∥

≤
∥∥∥∥χ̄(1)

i /2
∥∥∥∥+

∥∥∥λ1λ2pi(λ2 − λ1)qj(λ4, λ3)/2
∥∥∥ =

∥∥∥∥χ̄(1)
i

∥∥∥∥ ,
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thus it suffices to show that
∥∥∥Ū∥∥∥ ≤ C‖u‖.

To this end, recall the orthonormal basis Ψijk defined in Equation (3.16), then

we may write u = ∑
i+j+k≤p uijkΨijk. Let

f := u|γ =
p∑
i=0

viP
(0,0)
i (x)

where

vi :=
p−i∑
j=0

p−i−j∑
k=0

(−1)j+k
2 uijk

√
(2i+ 1)(i+ j + 1)(2i+ 2j + 2k + 3), (3.18)

Furthermore, since u vanishes at the vertices of T , then f(±1) = 0 thus

p∑
i=0,even

vi = 0,
p∑

i=1,odd
vi = 0. (3.19)

Consequently, we can rewrite f = ∑p
i=2(P (0,0)

i − P (0,0)
i−2 )Si where

Si = vi + vi+2 + · · ·+


vp

vp−1

=


−v0 − · · · − vi−2 if i even

−v1 − · · · − vi−2 else

depending on the parity.

Turning to the coefficients wi, we must have on edge γ

Ū |γ = 1− ξ
2

1 + ξ

2

p−2∑
i=0

wiP
(2,2)
i (ξ) =

p∑
i=2

(P (0,0)
i − P (0,0)

i−2 )Si

Recall the following identity from Lemma 6.6 of [8]

− 1− x2

2(n− 1)

(
(n+ 1)(n+ 2)

2n P
(2,2)
n−2 −

n− 1
2 P

(2,2)
n−4

)
= P (0,0)

n − P (0,0)
n−2 , n ≥ 2
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where Pn−4 is understood to be 0 for n < 4, then we have

p−2∑
i=0

wiP
(2,2)
i =

p∑
i=2

(
−(i+ 1)(i+ 2)

i(i− 1) P
(2,2)
i−2 + P

(2,2)
i−4

)
Si

and we deduce by matching coefficients that

wi = Si+4 −
(i+ 3)(i+ 4)
(i+ 1)(i+ 2)Si+2

= −vi+2 −
2(5 + 2i)

(i+ 1)(i+ 2)Si+2.

(3.20)

With Equation (3.20) in hand, we can now analyze
∥∥∥Ū∥∥∥ and ‖u‖. The Cauchy-

Schwarz inequality applied to Equation (3.18) gives

v2
i ≤

p−i∑
j=0

p−i−j∑
k=0

u2
ijk

p−i∑
j=0

p−i−j∑
k=0

(2i+ 1)(i+ j + 1)(2i+ 2j + 2k + 3)
4

= 1
16(2i+ 1)(i− p− 2)(i− p− 1)(i+ p+ 2)(i+ p+ 3)

p−i∑
j=0

p−i−j∑
k=0

u2
ijk,

hence, rearranging and summing over the index i, we have a lower bound for ‖u‖

p∑
i=0

16v2
i

(2i+ 1)(i− p− 2)(i− p− 1)(i+ p+ 2)(i+ p+ 3)

≈
p∑
i=0

v2
i

(i+ 1)(i− p− 1)2(i+ p+ 1)2 ≤‖u‖
2 .

(3.21)

Using Lemma 3.4.2, the fact that j = bp−i−2
2 c, and Cauchy-Schwarz on Equa-
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tion (3.20) gives

∥∥∥Ū∥∥∥2
=

p−2∑
i=0

2(i+ 1)(i+ 2)w2
i

(i+ 3)(i+ 4)(2i+ 5)
2

(j + 1)(2i+ j + 6)
2

(p− i− j − 1)(i+ j + p+ 5)

≈
p−2∑
i=0

w2
i

(i+ 1)
1

(p− i+ 1)(p+ i+ 1)
1

(p− i+ 1)(i+ p+ 1)

≤ C

p−2∑
i=0

v2
i+2

(i+ 1)(p− i+ 1)2(p+ i+ 1)2 + S2
i+2

(i+ 1)3(p− i+ 1)2(p+ i+ 1)2

 .
The first term is bounded easily by using Equation (3.21)

p−2∑
i=0

v2
i+2

(i+ 1)(p− i+ 1)2(p+ i+ 1)2 ≤ C
p∑
i=0

v2
i

(i+ 1)(i− p− 1)2(i+ p+ 1)2 ≤ C‖u‖2 .

Hence, the theorem follows if there exists a constant C independent of p such that

p−2∑
i=0

S2
i+2

(i+ 1)3(p− i+ 1)2(p+ i+ 1)2 ≤ C
p∑
i=0

v2
i

(i+ 1)(i− p− 1)2(i+ p+ 1)2 ,

but this follows by applying Lemma 3.4.10 with j = 2.

3.4.4 Face contributions

Finally, it remains to show that the face contributions are bounded. Let F be

an arbitrary face of T , and let S be a subset of the remaining faces of T . We

remark that S ∪ F need not necessarily coincide with the set of all faces of T . Let

YF = {u ∈ X : u = 0 on all the edges of F}, and define the operator ES,F : YF 7→ YF

by

ES,Fu = argmin
v|F=u|F
v|S=0
v∈YF

‖v‖2 . (3.22)



70

Existence to the minimization problem is trivial, while uniqueness comes from the

strict convexity of the squared L2 norm. Clearly,

∥∥∥ES\F ′,Fu∥∥∥ ≤∥∥∥ES,Fu∥∥∥ , ∀F ′ ⊂ S

since ES,Fu = u on F and also vanishes on S \ F ′. The proof that the converse

inequality is independent of p is less obvious:

Lemma 3.4.6. Let F be an arbitrary face of T , and let S be a subset of the remaining

faces of T . There exists a constant C independent of p such that

∥∥∥ES,Fu∥∥∥ ≤ C
∥∥∥ES\F ′,Fu∥∥∥ , ∀u ∈ YF ,

for all F ′ ⊂ S.

Before giving the proof, we note the following consequence of Lemma 3.4.6 which

was used in the proof of Theorem 2.3.1:

Corollary 3.4.7. Let Fi be any face of T and u ∈ YFi, then there exists a polynomial

U ∈ XFi such that U |Fi = u|Fi and

‖U‖ ≤ C‖u‖

where C is independent of p.

Proof. Choosing S = ∂T \ Fi, F ′ = S, and let U = ES,Fiu. Clearly, U ∈ XFi as U

vanishes on S the three remaining faces. Furthermore, Lemma 3.4.6 gives the bound

‖U‖ =
∥∥∥ES,Fiu∥∥∥ ≤ C

∥∥∥ES\F ′,Fiu∥∥∥ ≤ C‖u‖ .
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All that remains is to prove Lemma 3.4.6; to this end, for l,m, n ∈ {0, 1} define

the polynomials

ζ
(l,m,n)
ij =

(
1− ξ

2

)m (1 + ξ

2

)n
P

(2m,2n)
i (ξ)

(
1− η

2

)i+m+n (1 + η

2

)l

× P (2i+2m+2n+1,2l)
j (η)

(
1− θ

2

)j+i+m+n+l

Φ(2(j+i+m+n+l)+2)
p−i−j−m−n−l (θ)

(3.23)

for 0 ≤ i, j, i+ j ≤ p− l −m− n.

Lemma 3.4.8. The following properties hold:

1. ζ(l,m,n)
ij ∈ X,

2. ζ(1,1,1)
ij vanishes on {ξ = ±1, η = 1}, ζ(0,1,1)

ij vanishes on {ξ = ±1} etc.,

3. ζ(1,1,1)
ij = ψ

(1)
ij , our face basis functions,

4. {ζ(l,m,n)
ij } are orthogonal on T for a fixed l,m, n,

5. {ζ(l,m,n)
ij |F1} spans Pp(F1) ∩H1

0 (F1).

Proof. The first three statements can be deduced by inspection. For the orthogonal-

ity property, we note that

(ζ(l,m,n)
i1j1 , ζ

(l,m,n)
i2j2 ) ∝ F (θ)

∫ 1

−1

(
1− ξ

2

)2m (1 + ξ

2

)2n

P
(2m,2n)
i1 P

(2m,2n)
i2 dξ

×
∫ 1

−1

(
1− η

2

)i1+i2+2m+2n+1 (1 + η

2

)2l

P
(2i1+2m+2n+1,2l)
j1 P

(2i2+2m+2n+1,2l)
j2 dη.

The quantity vanishes if i1 6= i2 or j1 6= j2.
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The last statement follows from linear independence, and recognizing that the

restriction of the 3D Duffy transformation onto F1 reduces to the 2D Duffy trans-

formation.

The following lemma gives an explicit expression for the operator ES,F defined in

Equation (3.22):

Lemma 3.4.9. Let u ∈ YF1 then

ES,F1u =
∑

i+j≤p−l−m−n
u

(l,m,n)
ij ζ

(l,m,n)
ij (3.24)

where u(l,m,n)
ij are determined by the condition

∑
i+j≤p−l−m−n

u
(l,m,n)
ij ζ

(l,m,n)
ij (ξ, η,−1) = u(ξ, η,−1) (3.25)

and the coefficients l,m, n are given by one of the following conditions depending on

S:

1. S = {ξ = −1} ∪ {ξ = 1} ∪ {η = −1}, m = n = l = 1.

2. S = {ξ = −1} ∪ {ξ = 1}, m = n = 1, l = 0.

3. S = {ξ = −1} ∪ {η = −1}, m = 1, n = 0, l = 1.

4. S = {ξ = 1} ∪ {η = −1}, m = 0, n = l = 1.

5. S = {ξ = −1}, m = 1, n = l = 0.

6. S = {η = −1}, m = n = 0, l = 1.

7. S = {ξ = 1}, m = 0, n = 1, l = 0.

8. S = ∅, m = n = l = 0.
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Proof. Clearly, the coefficients u(l,m,n)
ij are uniquely defined by Equation (3.25) thanks

to properties 4 and 5 of Lemma 3.4.8. For the sake of notation, we will drop the

(l,m, n) notation in the remainder of the proof. It suffices to show that the right

hand side of Equation (3.24) solves the minimization problem Equation (3.22).

By statement 4 of Lemma 3.4.8, and statement 2 of Lemma 3.4.2, we can calculate

∥∥∥∥∥∥
∑

i+j≤p−l−m−n
uijζij

∥∥∥∥∥∥
2

=
∑

i+j≤p−l−m−n
u2
ij

∥∥∥ζij∥∥∥2

=
∑

i+j≤p−l−m−n
u2
ijµiνj

2
(p− i− j −m− n− l + 1)(p+ i+ j +m+ n+ l + 3)

(3.26)

where

µi =
∫ (

1− x
2

)2m (1 + x

2

)2n

(P (2m,2n)
i )2 dx

νj =
∫ (

1− x
2

)2i+2m+2n+1 (1 + x

2

)2l

(P (2i+2m+2n+1,2l)
j )2 dx.

We will show below that
∥∥∥ES,F1u

∥∥∥2
equals the above quantity Equation (3.26).

For i+ j + k ≤ p− l −m− n, let

Ψijk :=
(

1− ξ
2

)m (1 + ξ

2

)n
P

(2m,2n)
i (ξ)

(
1− η

2

)i+m+n (1 + η

2

)l

× P (2i+2m+2n+1,2l)
j (η)

(
1− θ

2

)i+m+n+l+j

P
(2(i+m+n+l+j)+2,0)
k (θ).

By construction, Ψijk vanish on S and are orthogonal to each other, hence there

exists coefficients ũijk such that ES,F1u = ∑
i+j+k≤p−m−n−l ũijkΨijk with

∥∥∥ES,F1u
∥∥∥2

=
∑

i+j+k≤p−m−n−l
ũ2
ijkµiνjρk
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where

ρk =
∫ (

1− x
2

)2(i+m+n+l+j)+2

(P (2(i+m+n+l+j)+2,0)
k )2 dx.

We now turn to the relationship between uij and ũijk. First, note that ζij|F1 =

Ψijk|F1 hence in order to satisfy the constraint that ∑uijζij|F1 = ∑
ũijkΨijk|F1 , we

have

uij =
p−i−j−m−n−l∑

k=0
ũijkP

(2(i+m+n+l+j)+2,0)
k (−1) =

p−i−j−m−n−l∑
k=0

(−1)kũijk. (3.27)

By Cauchy-Schwarz inequality, we have that

u2
ij ≤

p−i−j−m−n−l∑
k=0

ũ2
ijkρk

p−i−j−m−n−l∑
k=0

ρ−1
k (3.28)

which implies a lower bound for the norm of the extension in terms of uij

∥∥∥ES,F1u
∥∥∥2

=
∑

i+j+k≤p−m−n−l
ũ2
ijkµiνjρk

≥
p−m−n−l∑

i=0
µi

p−m−n−l−i∑
j=0

νj
u2
ij∑p−i−j−m−n−l

k=0 ρ−1
k

.

(3.29)

In fact, equality can be achieved in Equation (3.28) if we let

ũijk = (−1)kρ−1
k

 uij∑p−i−j−m−n−l
k=0 ρ−1

k

 .
One can verify that with this choice of coefficients that Equation (3.27) is still sat-
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isfied. As ρk = 2
2(i+j+l+m+n)+2k+3 , thus

p−i−j−m−n−l∑
k=0

ρ−1
k = 1

2(p− i− j − l −m− n+ 1)(i+ j + l +m+ n+ p+ 3).

Comparing Equation (3.29) with Equation (3.26), we see that they are indeed equal.

Finally we are in a position to give the proof of Lemma 3.4.6:

Proof. We first prove the case where F ′ consists of a single face. Without loss

of generality, we can assume that F = F1 = {θ = −1} the reference face, and

F ′ = {η = −1}. There are three cases corresponding to S \ F ′ consisting of the

empty set, a single face or two faces:

Case 1. If S = F ′, we choose m = n = 0.

Case 2. If S \ F ′ is a single face, we choose m = 0, n = 1 or m = 1, n = 0.

Case 3. If S \ F ′ consists of the two remaining faces, we choose m = n = 1.

Let α, β ∈ X of form

α =
∑

i+j≤p−1−m−n
αijζ

(1,m,n)
ij , β =

∑
i+j≤p−m−n

βijζ
(0,m,n)
ij

with coefficients αij, βij such that α and β coincides with u on face F1 (i.e. u|F1 =

α(ξ, η,−1) = β(ξ, η,−1)). Lemma 3.4.9 implies that

α = ES,F1u, β = ES\F ′,F1u,
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and it suffices to show that there exists a C independent of p such that‖α‖ ≤ C‖β‖.

Using orthogonality of the basis functions and Lemma 3.4.2 gives

‖α‖2 =
∑

i+j≤p−1−m−n

2(i+ 2m)!(i+ 2n)!α2
ij

i!(2i+ 2m+ 2n+ 1)(i+ 2(m+ n))!

× (j + 1)(j + 2)
(i+ j +m+ n+ 2)(2i+ j + 2m+ 2n+ 3)(2i+ j + 2(m+ n+ 1))

× 2
(p− i− j −m− n)(i+ j +m+ n+ p+ 4)

≈
∑

i+j≤p−1−m−n

2(i+ 2m)!(i+ 2n)!α2
ij

i!(2i+ 2m+ 2n+ 1)(i+ 2(m+ n))!

× (j + 1)2

(i+ j + 1)3
1

(p− i− j)(i+ j + p)

(3.30)

and

‖β‖2 =
∑

i+j≤p−m−n

2(i+ 2m)!(i+ 2n)!β2
ij

i!(2i+ 2m+ 2n+ 1)(i+ 2(m+ n))!

× 1
i+ j +m+ n+ 1

2
(p− i− j −m− n+ 1)(i+ j +m+ n+ p+ 3)

≈
∑

i+j≤p−m−n

2(i+ 2m)!(i+ 2n)!β2
ij

i!(2i+ 2m+ 2n+ 1)(i+ 2(m+ n))!

× 1
i+ j + 1

1
(p− i− j + 1)(i+ j + p) .

(3.31)

We thus have to show for all 0 ≤ i ≤ p−m− n− 1 that

p−1−m−n−i∑
j=0

(j + 1)2α2
ij

(i+ j + 1)3
1

(p− i− j)(i+ j + p)

≤ C
p−m−n−i∑

j=0

β2
ij

i+ j + 1
1

(p− i− j + 1)(i+ j + p) .
(3.32)

Now, we turn to the relationship between the coefficients αij and βij. First, note

that since u ∈ YF1 , it vanishes on the edges of F1; in particular u|F1∩{η=−1} = 0. We

have α|F1∩{η=−1} = 0 as ζ(1,m,n)
ij vanishes on η = −1, but the basis functions of β
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does not vanishes trivially on η = −1. We see that

β|F1∩{η=−1} =
∑

i+j≤p−m−n

(
1− ξ

2

)m (1 + ξ

2

)n
P

(2m,2n)
i (ξ)(−1)jβij

=
p−m−n∑
i=0

(
1− ξ

2

)m (1 + ξ

2

)n
P

(2m,2n)
i (ξ)

p−m−n−i∑
j=0

(−1)jβij,

hence by linear independence,

p−m−n−i∑
j=0

(−1)jβij = 0 (3.33)

in order for β|F1∩{η=−1} to vanish.

Now returning to the face F1, let γ = 2i+ 2m+ 2n+ 1, then

α|F1 =
p−1−m−n∑

i=0

(
1− ξ

2

)m (1 + ξ

2

)n
P

(2m,2n)
i (ξ)

(
1− η

2

)i+m+n

×
p−1−m−n−i∑

j=0

(
1 + η

2

)
P

(γ,2)
j (η)αij

By Equation (3.33), βp−m−n,0 = 0 hence

β|F1 =
p−m−n∑
i=0

(
1− ξ

2

)m (1 + ξ

2

)n
P

(2m,2n)
i (ξ)

(
1− η

2

)i+m+n p−m−n−i∑
j=0

P
(γ,0)
j (η)βij

=
p−m−n−1∑

i=0

(
1− ξ

2

)m (1 + ξ

2

)n
P

(2m,2n)
i (ξ)

(
1− η

2

)i+m+n p−m−n−i∑
j=0

P
(γ,0)
j (η)βij.

As α|F1 = β|F1 , then we must have that for a fixed 0 ≤ i ≤ p− 1−m− n

p−m−n−i−1∑
j=0

αij

(
1 + η

2

)
P

(γ,2)
j (η) =

p−m−n−i∑
j=0

βijP
(γ,0)
j (η).
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By telescoping the sum, we have

p−m−n−i∑
j=0

βijP
(γ,0)
j (η) =

p−m−n−i∑
j=0

Sij(P (γ,0)
j+1 (η) + P

(γ,0)
j (η)) (3.34)

where Sij = ∑j
k=0(−1)k+jβik with Si,p−m−n−i = 0 due to Equation (3.33).

Combining (22.7.16) and (22.7.19) of [1] gives the following relation

P
(γ,0)
j+1 (x) + P

(γ,0)
j (x) = x+ 1

2

(
(γ + j)
j + 1 P

(γ,2)
j−1 (x) + γ + j + 2

j + 1 P
(γ,2)
j (x)

)
(3.35)

for non-negative j where we assume that P (γ,2)
−1 = 0. Hence, substituting Equa-

tion (3.35) into Equation (3.34), we have

p−m−n−i∑
j=0

βijP
(γ,0)
j (η) =

p−m−n−i∑
j=0

Sij
η + 1

2

(
(γ + j)
j + 1 P

(γ,2)
j−1 (η) + γ + j + 2

j + 1 P
(γ,2)
j (η)

)
.

Matching coefficients, we have that

αij = γ + j + 2
j + 1 Sij + γ + j + 1

j + 2 Si,j+1 = γ + j + 1
j + 2 βi,j+1 + γ + 2j + 3

(j + 1)(j + 2)Sij.

Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we have that

α2
ij ≤ 2

(
γ + j + 1
j + 2

)2

β2
i,j+1 + 2

(
γ + 2j + 3

(j + 1)(j + 2)

)2

S2
ij.

Inserting the above into Equation (3.32), it suffices to show that there exists a
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constant C independent of p and i such that

p−1−m−n−i∑
j=0

(j + 1)2
(
γ+j+1
j+2

)2

(i+ j + 1)3
β2
i,j+1

(p− i− j)(i+ j + p)

≤ C
p−m−n−i∑

j=0

β2
ij

i+ j + 1
1

(p− i− j + 1)(i+ j + p) .

and

p−1−m−n−i∑
j=0

(j + 1)2
(

γ+2j+3
(j+1)(j+2)

)2

(i+ j + 1)3
S2
ij

(p− i− j)(i+ j + p)

≤ C
p−m−n−i∑

j=0

β2
ij

i+ j + 1
1

(p− i− j + 1)(i+ j + p) .

For the first expression, we note that γ + j + 1 ≈ i + j + 1 hence the inequality

follows trivially. As for the second expression, we note that

(
γ + 2j + 3

(j + 1)(j + 2)

)2

≈ (i+ j + 1)2

(j + 1)4

Hence, we wish to show that

p−1−m−n−i∑
j=0

S2
ij

(j + 1)2(i+ j + 1)
1

(p− i− j)(i+ j + p)

≤ C
p−m−n−i∑

j=0

β2
ij

i+ j + 1
1

(p− i− j + 1)(i+ j + p) .

By Corollary 3.4.11, there exists a C independent of p and i, and we are done with

the case of F ′ consisting of a single face.

In the case where F ′ consists of two or three faces, we can simply bootstrap the
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argument. For example, if F ′ = F ′1 ∪ F ′2 where F ′1, F ′2 are two distinct faces, then

∥∥∥ES,Fu∥∥∥ ≤ C
∥∥∥ES\F ′1,Fu∥∥∥ ≤ C

∥∥∥ES\(F ′1∪F ′2),Fu
∥∥∥ = C

∥∥∥ES\F ′,Fu∥∥∥ .

3.4.5 Hardy Inequalities

It remains to prove the Hardy inequalities used.

Lemma 3.4.10. Let {vi}pi=0 ∈ R satisfy

p∑
i=0

vi = 0, (3.36)

then for j a positive integer, there exists a constant C(j) independent of p such that

p∑
i=0

S2
i

(i+ 1)3(i+ p+ 1)j(p− i+ 1)j ≤ C
p∑
i=0

v2
i

(i+ 1)(i+ p+ 1)j(p− i+ 1)j

where Si = ∑i
k=0 vk.

Proof. By Equation (3.36), we have that Si = −∑p
k=i+1 vk, our inequality follows if

p/2∑
i=0

(∑i
k=0 vk

)2

(i+ 1)3(i+ p+ 1)j(p− i+ 1)j ≤ C
p/2∑
i=0

v2
i

(i+ 1)(i+ p+ 1)j(p− i+ 1)j (3.37)

and

p∑
i=p/2+1

(
−∑p

k=i+1 vk
)2

(i+ 1)3(i+ p+ 1)j(p− i+ 1)j ≤ C
p∑

i=p/2+1

v2
i

(i+ 1)(i+ p+ 1)j(p− i+ 1)j

(3.38)
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both hold with the constant C independent of p.

Hardy’s inequality for weighted sums states that for non-negative ak, bi, ci,

∞∑
i=0

 i∑
k=0

ak

2

bi ≤ C
∞∑
i=0

a2
i ci (3.39)

with C ≤ 2
√

2A where A := supn∈N (∑∞i=n bi)1/2
(∑n

i=0 c
−1
i

)1/2
< ∞ [50, p. 57]. For

Equation (3.37) our result follows if we set ai = |vi|, b−1
i = (i+ 1)3(i+ p+ 1)j(p− i+ 1)j

and c−1
i = (i+ 1)(i+ p+ 1)j(p− i+ 1)j for i = 0, . . . , p/2, and let ai = 0, bi = 0, ci =

1 for i > p/2. It remains to show that A does not grow with p.

We note that

n∑
i=0

c−1
i ≤ p2j

n∑
i=0

(i+ 1) ≈ n2p2j.

Furthermore, the supremum can be reduced to over the interval n ∈ [0, p/2] due to

the padding of zeros, hence

A2 ≈ sup
n∈[0,p/2]

n2p2j
p/2∑
i=n

1
(i+ 1)3(i+ p+ 1)j(p− i+ 1)j

≤ sup
n∈[0,p/2]

n2p2j
∫ p/2

n

1
(x+ 1)3(p− p/2 + 1)jpj dx

≈ sup
n∈[0,p/2]

n2
(

1
2(n+ 1)2 −

2
(p+ 2)2

)
<∞.

For Equation (3.38), we first transform the sum such that the index starts at 0

by mapping the indices i→ p− i, k → p− k

p/2−1∑
i=0

(
−∑i−1

k=0 vp−k
)2

(p− i+ 1)3(2p− i+ 1)j(i+ 1)j ≤ C
p/2−1∑
i=0

v2
p−i

(p− i+ 1)(2p− i+ 1)j(i+ 1)j .
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Our result follows if we set ai = |vp−i|, b−1
i = (p− i+ 1)3(2p− i+ 1)j(i+ 1)j, c−1

i =

(p− i+ 1)(2p− i+ 1)j(i+ 1)j for i = 0, . . . , p/2 − 1, and let ai = 0, bi = 0, ci = 1

for i ≥ p/2. It remains to show that A does with not grow with p.

Proceeding similarly as before, note that ∑n
i=0 c

−1
i ≤ (2p)j+1∑n

i=0(i + 1)j ≈

pj+1nj+1. The supremum can be reduced to over the interval n ∈ [0, p/2 − 1] as

before. Calculating, we have

A2 ≈ sup
n∈[0,p/2−1]

nj+1pj+1
p/2−1∑
i=n

1
(p− i+ 1)3(2p− i+ 1)j(i+ 1)j

≤ sup
n∈[0,p/2−1]

nj+1p
∫ p/2

n

1
(p− p/2 + 1)3(x+ 1)j dx

≈ sup
n∈[0,p/2−1]

nj+1

p2


2(n+1)(p+2)j−2j(p+2)(n+1)j

2(j−1)(n+1)j(p+2)j j > 1

log
(
p

2n

)
j = 1

<∞.

Lemma 3.4.10 deals with the general case j ∈ N and in addition proves explicitly

that C(j) is independent of p.

The following Hardy inequality is required for the face extension inequalities:

Corollary 3.4.11. Let {vi}p−ki=0 ∈ R where k is an integer 1 ≤ k ≤ p, and Si =∑i
j=0(−1)jvj, then there exists a constant C independent of p, k such that

p−k∑
i=0

S2
i

(i+ 1)2(i+ k)(p− k − i+ 1)(p+ k + i) ≤ C
p−k∑
i=0

v2
i

(i+ k)(p− k − i+ 1)(p+ k + i)

Proof. Since the proof technique is the same as Lemma 3.4.10, we will only tersely
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discuss the details below.

As before, split the inequality into two, similar to Equations (3.37) and (3.38).

For the first sum, we set ai = |vi|, b−1
i = (i+ 1)2(i+ k)(p− k − i+ 1)(p+ k + i)

and c−1
i = (i+ k)(p− k − i+ 1)(p+ k + i) for i = 0, . . . , p−k2 . Then, ∑n

i=0 c
−1
i ≤

(p + k)(p − k)∑n
i=0(i + k) ≈ (p + k)(p − k)(n2 + kn) and the following calculation

gives that A is bounded:

A2 ≈ sup
n∈[0, p−k2 ]

(p+ k)(p− k)(n2 + kn)
p−k

2∑
i=n

1
(i+ 1)2(i+ k)(p− k − i+ 1)(p+ k + i)

≤ sup
n∈[0, p−k2 ]

(n2 + kn)
∫ (p−k)/2

n

1
(x+ 1)2(x+ k) dx

≤ sup
n∈[0, p−k2 ]

n2
∫ p−k

2

n

1
(x+ 1)3 dx+ kn

∫ p−k
2

n

1
(x+ 1)2(x+ k) dx <∞.

For the second sum, first transform the sum to start the index 0 again. Next, set

ai = |vp−k−i|, b−1
i = (p− k − i+ 1)2(p− i)(2p− i)(i+ 1), c−1

i = (p− i)(2p− i)(i+ 1)

for i = 0, . . . , p−k2 − 1. Calculating, we have ∑n
i=0 c

−1
i ≤ p2∑n

i=0(i + 1) ≈ p2n2 and

thus

A2 ≈ sup
n∈[0, p−k2 −1]

p2n2

p−k
2 −1∑
i=n

1
(p− k − i+ 1)2(p− i)(2p− i)(i+ 1)

≤ sup
n∈[0, p−k2 −1]

pn2
∫ p−k

2

n

1
(p− k − (p− k)/2 + 1)2(p− (p− k)/2)(x+ 1) dx

≈ sup
n∈[0, p−k2 −1]

pn2

(p− k)2(p+ k) log
(
p− k

2n

)
<∞.
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3.5 Appendix: Triangle Basis Functions

In Chapter 2, we defined the triangle vertex and edge basis functions, and also the

notion of “minimal L2 extension” (or simply “minimal extension”). The minimal

extensions were implicitly constructed in the preconditioner by using the Schur com-

plement, and is needed in the theory at multiple instances in Chapter 2 to prove the

existence of a stable decomposition.

Through the experience of developing the 3D preconditioner, we are able to

now define new vertex and edge basis functions which themselves are explicitly the

minimal L2 extension. This was mentioned in the introduction of the chapter, with

the claim that the condition number using this basis is better than those presented

in Chapter 2, which we will list for completeness here.

Recall the reference triangle T (c.f. Figure 2.1) with vertices v1 = (−1,−1), v2 =

(1,−1), v3 = (−1, 1) and barycentric coordinates λi. The vertex basis function asso-

ciated with v1 of T is defined as

ϕ1 = 1
2λ1(q(λ2, λ3) + q(λ3, λ2)) (3.40)

where

q(l1.l2) = Φ(2)
i

(
2l1

1− l2
− 1

)
(1− l2)i Φ(2i+3)

p−i−1 (2l2 − 1)

with i = bp/2c. The basis functions associated with the edge E1 := {y = −1} ∩ T

are chosen as follows:

χ
(1)
i := λ1λ2P

(2,2)
i

(
2λ2

1− λ3
− 1

)
(1− λ3)iΦ(2i+5)

p−i−2(2λ3 − 1), 0 ≤ i ≤ p− 2,



85

The basis functions on the other two edges are defined by a permutation of the

barycentric coordinates. Similar to Lemma 3.4.3, it is not difficult to show that the

above basis is orthogonal to all interior basis functions. Furthermore, one can show

that ‖ϕ1‖2
T ≈ Cp−4 by direct calculation, thus by Theorem 5.3.1, the preconditioner

using the above basis is uniform in p.



Chapter

FOUR

Tensor Product Elements
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4.1 Stable Decomposition on Tensor Products El-

ements

An Additive Schwarz method (ASM) is defined by a subspace decomposition, and a

choice of inner product on each subspace [19, 77]. In the case of the mass matrix,

Chapters 2 and 3 developed ASM preconditioners for triangles and tetrahedra with

condition numbers independent of the polynomial order p. A reasonable question

now is how do we develop preconditioners for the mass matrix on tensor product

elements such as quads, hexes and prisms with a condition number that is also

bounded in p.

It is useful to first recall the structure and the estimates one has to prove in

the case of the simplicial elements before proceeding. Let K be a single reference

triangle or tetrahedron and X := Pp(K). In each case Chapters 2 and 3, we defined

a number of non-overlapping subspaces {Xi}ki=1 each associated with a geometric

entity of K with the property that ⊕ki=1Xi = X; an exact solver is used on each of

the subspaces. The key estimates one needed to prove in the simplicial cases is the

following: for all u ∈ X, there exists a decomposition ∑k
i=1 ui = u with ui ∈ Xi such

that there exists constants c, C independent of p such that

c
k∑
i=1
‖ui‖2

K ≤‖u‖
2
K ≤ C

k∑
i=1
‖ui‖2

K (4.1)

where‖·‖K is the L2 norm over K. The condition number of the ASM preconditioner

is then C/c by standard ASM theory (see [77, Theorem 2.7]). The generalization to

a mesh of elements readily follows by a subassembly argument.

We will also follow the above simple, yet effective, framework in the case of
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tensor product elements: a non-overlapping subspace decomposition of the poly-

nomial space (e.g. Qp) each associated with an exact solver. The effectiveness of

a tensor product mass matrix preconditioner then reduces to the ratio of C/c in

Equation (4.1).

The upper bound C is obtained easily due to an application of the triangle

inequality. The lower bound, sometimes known as a stable decomposition in the par-

lance of ASM [77, Assumption 2.2], is the difficult aspect of the proofs in Chapters 2

and 3. This difficulty can be actually be avoided for a tensor product element as the

following lemma shows:

Lemma 4.1.1. Let K be a geometric entity (e.g. interval, triangle etc.) and let X

be polynomial space defined on K. Assume that there exists a subspace decomposition

{Xi}ki=0 of X with ⊕ki=0Xi = X such that ∀u ∈ X, we have

k∑
i=0
‖ui‖2

K ≤ CK‖u‖2
K (4.2)

with ui ∈ Xi, and ∑k
i=0 ui = u. Furthermore, let L be another geometric entity and let

Y be the polynomial space on L. Assume that there exists a subspace decomposition

{Yi}li=0 of X with ⊕li=0Yi = Y such that ∀v ∈ Y , we have

l∑
i=0
‖vi‖2

L ≤ CL‖v‖2
L (4.3)

with vi ∈ Yi and ∑l
i=0 vi = v. Then for all w ∈ Z := X ⊗ Y defined on the element

P = K ⊗ L, there exists a decomposition satisfying

k∑
i=0

l∑
j=0

∥∥∥wij∥∥∥2

P
≤ CKCL‖w‖2

P

with wij ∈ Zij := Xi ⊗ Yj, and ∑k
i=0

∑l
j=0wij = w.
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Proof. Let MK ,ML be the mass matrices on entities K,L over spaces X, Y respec-

tively. The subspaces {Xi}ki=0, {Yi}li=0 induce a natural partitioning of the mass

matrices

MK :=


MK,11 · · · MK,1k

... . . . ...

MK,k1 · · · MK,kk

 ML :=


ML,11 · · · ML,1l

... . . . ...

ML,l1 · · · ML,ll



with the MK,ij block corresponding to the interaction between subspace Xi, Xj etc.

Furthermore, we may pick a basis such that the blocks lying on the diagonal (e.g.

{MK,ii}ki=0, {ML,ii}li=0) are themselves diagonal.

Let ~u be the vector corresponding to u ∈ X such that ‖u‖2
K = ~uTMK~u and

analogously for ~v to a function in v ∈ Y . The vectors ~u,~v can be decomposed

similar to the mass matrices

~u = [~u1, . . . , ~uk] ~v = [~v1, . . . , ~vl]

with ~u1 corresponding to a function in X1 etc, hence ~uT1 MK,11~u1 =‖u1‖2
K etc.

Define the diagonal matrices

DK := diag(MK), DL := diag(ML),

then the statements Equations (4.2) and (4.3) can be rewritten as

~uTDK~u ≤ CK~u
TMK~u, ~vTDL~v ≤ CL~v

TML~v

for all ~u,~v; hence λmin(D−1
K MK) ≥ 1

CK
and λmin(D−1

L ML) ≥ 1
CL

.
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Turning to P , the corresponding mass matrix MP := MK ⊗ML is simply the

Kronecker product owing to the tensor product structure of P . For any w ∈ Z, let

~w be the corresponding vector such that ~wTMP ~w =‖w‖2
P . Similar to before, we can

decompose ~w as

~w = [~w11, . . . , ~w1l, ~w21, . . . , ~w2l, ~w31, . . . , ~wkl]

where ~wij corresponds to a function in Zij. By the properties of Kronecker product

[35], we have that

λmin((DK ⊗DL)−1 (MK ⊗ML)) = λmin

((
D−1
K ⊗D−1

L

)
(MK ⊗ML)

)
= λmin

((
D−1
K MK ⊗D−1

L ML

))
≥ 1
CKCL

hence DK ⊗DL ≤ CKCLMP .

Finally, note that since Zij is the tensor product of Xi and Yj then the mass

matrix corresponding to Zij is MK,ii⊗ML,jj, which is also a diagonal matrix. Hence,

~wT (DK ⊗DL) ~w =
k∑
i=0

l∑
j=0

∥∥∥wij∥∥∥2

P

and we are done.

4.2 Applications of Lemma 4.1.1

With the above lemma, it suffices to define the subspaces on lower dimensional

objects, such as the interval, and prove Equations (4.2) and (4.3) on it.
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4.2.1 Stable Decomposition on an Interval

It is useful to first define decompositions on the reference interval Î = [−1, 1] which

one can apply Lemma 4.1.1 to. Let ϕV1 ∈ Pp(Î) be a nodal basis function such that

1. ϕV1(−1) = 1, ϕV1(1) = 0,

2. there exists a constant C independent of p such that ‖ϕV1‖Î ≤ Cp−1.

Let ϕV2(x) = ϕV1(−x), then define the vertex spaces as XV1 = span{ϕV1} and

XV2 = span{ϕV2}. Finally, let XI = span{(1−x2)P (2,2)
i (x)}p−2

i=0 be the interior space.

It is trivial to see that XV1 ⊕XV2 ⊕XI = Pp(Î).

Lemma 4.2.1. For all u ∈ Pp(Î), then there exists a constant C independent of p

such that

‖uV1‖
2
Î +‖uV2‖

2
Î +‖uI‖2

Î ≤ C‖u‖2
Î

where uV1 = u(−1)ϕV1 ∈ XV1 , uV2 = u(1)ϕV2 ∈ XV2 , uI = u− uV1 − uV2 ∈ XI .

Proof. For the two nodal functions, recall that‖u‖∞ ≤ p‖u‖Î [79] and‖ϕV1‖Î ≤ C/p,

hence

‖u1‖Î ≤‖ϕV1‖Î‖u‖∞ ≤ C‖u‖Î .

The same holds for u2. By triangle inequality‖uI‖Î ≤‖u− uV1 − uV2‖Î ≤ C‖u‖Î .

Lemma 4.2.1 implies that a large class of stable decompositions exists on the

interval which are characterized by the choice of nodal function. A key question
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is which nodal basis function should one choose if one were to use a hybrid mesh

consisting of both quads and triangles (e.g. Figure 4.2).

To this end, let us recall the nodal basis functions for the preconditioner on the

triangle. Let T be the a triangle with vertices v1, v2, v3, and let λi be the barycentric

coordinates of T . For positive integer k, let

ξk(x) := (−1)k+1

k

1− x
2 P

(1,1)
k−1 (x), (4.4)

then the nodal basis function defined in Chapter 2 is ξbp/2c(1−2λi). By Lemma 2.6.3,

we have
∥∥∥ξbp/2c∥∥∥

Î
≤ Cp−1, hence the following decomposition is stable on the interval:

XV1 = span{ξbp/2c(x)}

XV2 = span{ξbp/2c(−x)}

XI = span{(1− x2)P (2,2)
i (x)}p−2

i=0 .

(4.5)

4.2.2 Quad and Hex Elements

Suppose K = L = [−1, 1], X = Y = Pp(I) with the stable decomposition on Pp(I)

given by 4.5. Let Q̂ = K ⊗ L the reference quadrilateral, and let

ZV1 = XV1 ⊗XV1 , ZV2 = XV1 ⊗XV2 , ZV3 = XV2 ⊗XV1 , ZV4 = XV2 ⊗XV2

ZE1 = XV1 ⊗XI , ZE2 = XV2 ⊗XI , ZE3 = XI ⊗XV1 , ZE4 = XI ⊗XV2

ZI = XI ⊗XI

be the four vertex spaces, four edge spaces, and interior spaces of Qp(Q̂) respectively.

The above decomposition gives rise to an ASM if we associate each subspace with
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an exact local solve as follows: given a residual f ∈ Qp(Q̂), the action of the ASM

is find

1. For i = 1, 2, 3, 4, uVi ∈ ZVi : (uVi , vVi) = (f, vVi),∀vVi ∈ ZVi

2. For i = 1, 2, 3, 4, uEi ∈ ZEi : (uEi , vEi) = (f, vEi),∀vEi ∈ ZEi

3. uI ∈ ZI : (uI , vI) = (f, vI),∀vI ∈ ZI

where (·, ·) is the L2 inner-product over Q̂, and return u = uI +∑4
k=1 uVi + uEi .

The proof that the above ASM preconditioner is uniform in p is a simple appli-

cation of Lemma 4.1.1:

Corollary 4.2.2. Let u ∈ Qp(Q̂), then there exists constants c, C independent of p

such that

c

 4∑
i=1

∥∥∥uVi∥∥∥2

Q̂
+
∥∥∥uEi∥∥∥2

Q̂
+‖uI‖2

Q̂

 ≤‖u‖2
Q̂ ≤ C

 4∑
i=1

∥∥∥uVi∥∥∥2

Q̂
+
∥∥∥uEi∥∥∥2

Q̂
+‖uI‖2

Q̂



with uVi ∈ ZVi , uEi ∈ ZEi , uI ∈ ZI and u = ∑4
i=1 uVi + uEi + uI .

Proof. The upper bound follows immediately from an application of the triangle

inequality while the lower bound follows from an application of Lemma 4.1.1 to the

stable decomposition on the interval Equation (4.5).

The use of a non-traditional nodal basis ξbp/2c(x) might seem odd, but whose

choice is more apparent on a mesh consisting of quads and triangles. For example,

consider the simplified mesh Section 4.2.2 which consists of two elements, one quad

element and a triangle element, sharing the inter-elemental edge γ and vertex v.
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Suppose one uses the nodal function ϕT := ξbp/2c(1 − 2λ) on v as advocated by [8]

in order to precondition the mass matrix on the triangle; how would this choice

influence the nodal basis on the quad? The nodal basis function for v on the quad

is simply ϕQ := ξbp/2c(x)ξbp/2c(y) ∈ ZVi . It is clear that conformity is now enforced

as ϕT |γ = ϕQ|γ.

On the other hand, we also presented the nodal basis ϕi in Equation (3.40) at the

end of Chapter 3; what if we had chosen that nodal basis to be our preconditioner on

the triangle? In this case, the use of ξbp/2c(x) is inappropriate, and a new nodal basis

for the interval needs to be defined. Recall the definition of Φ(m)
q (x) ∈ Pq([−1, 1])

Φ(m)
q (x) := (−1)q

q + 1 P
(m,1)
q (x) (4.6)

where q,m or non-negative integers. Let

f(x) := 1
2

1− x
2 Φ(2)

i (x) +
(

1− x
2

)i+1

Φ(2i+3)
p−1−i(x)

 .
Note that ϕ|γ = f , then if we choose the subspaces of the interval as

XV1 = span{f(x)}

XV2 = span{f(−x)}

XI = span{(1− x2)P (2,2)
i (x)}p−2

i=0 .

(4.7)

and proceed as before, we arrive at another ASM preconditioner for the quad. By

Lemma 4.2.1, it suffices to prove that‖f‖Î ≤ Cp−1, but this follows from the inverse

inequality from an edge [79] and the fact that ‖ϕi‖T̂ ≤ Cp−2:

‖f‖Î ≤ p‖ϕi‖T̂ ≤ Cp−1.
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Section 4.2.2 illustrates the performance of a preconditioner utilizing both the

tensor product preconditioner utilizing ξbp/2c(x) above and the triangle precondi-

tioner Chapter 2; note that the condition number stays bounded as predicted. The

generalization to hexahedral elements is a analogous to the above exposition.

γ

v

Figure 4.1: Figure of a simple hybrid mesh to illustrate the issue of choice of nodal
basis functions.

4.2.3 Prism Elements

Now suppose K = [−1, 1], X = Pp(Î) paired with the same subspace decomposition

as Equation (4.5), and consider L = T̂ the reference triangle and Y = Pp(T̂ ). Let

{YVi}3
i=1, {YEi}3

i=1, {YI} be the three nodal spaces, three edge spaces and the interior

space defined in Chapter 2. Let P̂ := Î ⊗ T̂ be the reference prism and Z =

PP (Î) ⊗ Pp(T̂ ) the corresponding polynomial space. Define the subspaces of Z as

follows:

1. Six nodal spaces ZVi due to the permutations of XVi ⊗ YVj ,

2. Nine edge spaces ZEi due to the six permutations of XVi ⊗ YEj and the three

permutations of XI ⊗ YVi ,

3. Five face spaces ZFi due to the two permutations of XVi ⊗ YI and three per-

mutations of XI ⊗ YEi

4. One interior space ZI arising from XI ⊗ YI .
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Figure 4.2: Figure of mesh consisting of both quads and triangular elements.

The ASM is thus defined by the subspace decomposition above, with an exact local

solve on each individual subspace. For completeness, we again give the action of the

preconditioner on a residual f ∈ Z,

1. For i = 1, · · · , 6, uVi ∈ ZVi : (uVi , vVi) = (f, vVi),∀vVi ∈ ZVi

2. For i = 1, · · · , 9, uEi ∈ ZEi : (uEi , vEi) = (f, vEi),∀vEi ∈ ZEi

3. For i = 1, · · · , 5, uFi ∈ ZFi : (uFi , vFi) = (f, vFi),∀vFi ∈ ZFi

4. uI ∈ ZI : (uI , vI) = (f, vI),∀vI ∈ ZI

where this time, (·, ·) is the L2 inner-product over P̂ , and return ∑6
i=1 uVi+

∑9
i=1 uEi+∑5

i=1 uFi + uI .

The ASM is uniform in p due to the following lemma whose proof follows from

triangle inequality and Lemma 4.1.1:

Corollary 4.2.3. Let u ∈ PP (Î)⊗Pp(T̂ ), then there exists constants c, C independent
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Figure 4.3: Figure illustrates the condition number of the preconditioned mass matrix
on Figure 4.2; note that the condition number stays bounded for all p. The oscillatory
behavior is also observed in Chapter 2, and is due to the floor function in the nodal
basis function.

of p such that

c

 6∑
i=1

∥∥∥uVi∥∥∥2

P̂
+

9∑
i=1

∥∥∥uEi∥∥∥2

P̂
+

5∑
i=1

∥∥∥uFi∥∥∥2

P̂
+‖uI‖2

P̂

 ≤‖u‖2
P̂ ≤

C

 6∑
i=1

∥∥∥uVi∥∥∥2

P̂
+

9∑
i=1

∥∥∥uEi∥∥∥2

P̂
+

5∑
i=1

∥∥∥uFi∥∥∥2

P̂
+‖uI‖2

P̂



with uVi ∈ ZVi , uEi ∈ ZEi , uFi ∈ ZFi , uI ∈ ZI and u = ∑6
i=1 uVi+

∑9
i=1 uEi+

∑5
i=1 uFi+

uI .
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5.1 Introduction

A key step in the substructuring preconditioner Chapter 2 is that vertex basis func-

tions are chosen to be

φ? = (−1)p+1

p
λP

(1,1)
r−1 (1− 2λ). (5.1)

where λ is the usual barycentric coordinate on the triangle, r is chosen to be the

integer part of p/2 and P (1,1)
r denotes the Jacobi polynomials of degree r. In contrast,

the choice of the edge and interior functions is (as we shall later show) not crucial

and one is free to exercise one’s own preference.

One might well ask what would happen if a more standard choice of vertex

function was used rather than Equation (5.1)? A finite element practitioner would

probably prefer to use the barycentric coordinate λ as the vertex function whilst an

aficionado of spectral elements might well prefer to use the function Equation (5.1)

in conjunction with the choice r = p. The first part of the chapter shows that, with

the above two choices, the condition number of the preconditioned mass matrix will

now grow as O(p2) and O(1 + log p) respectively. These results are special cases of

a more general result which is actually shown here: if the vertex function is chosen

to be φ, then the condition number will grow as O(p4Υp(φ)) where

Υp(φ) = min
u=φ on ∂T
u∈Pp(T )

‖u‖2
L2 . (5.2)

The main part of the current chapter is then devoted to developing a robust

substructuring type preconditioner for high order approximation of the problems for
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which the element matrix takes the form

Aκ := (1− κ)L + κM (5.3)

where κ ∈ (0, 1) and M,L are the mass and stiffness matrices respectively. Leaving

aside the case of the pure mass matrix (κ = 1), one can simply use the substructuring

preconditioner for the stiffness matrix developed in [12] as a preconditioner for cases

where κ ∈ [0, 1), resulting in the same O(1 + log2 p) bound on the condition number

mentioned earlier. However, whilst undoubtedly correct, this conclusion fails to rec-

ognize that the hidden constant in this bound is dependent on κ and may degenerate

badly for κ values close to 1; e.g. corresponding to the stepsize tends to zero in an

implicit timestepping scheme or the singular perturbation parameter tends to zero

in a singularly perturbed problem. The concern is that the scheme may fail to be

robust in the limit κ→ 1. We show that such concerns are well-founded in the sense

the best uniform bound in κ that one can hope for is actually O(p2). More precisely,

we prove that the upper envelope of the bound Cκ(1 + log2 p) is Cp2 for all κ.

This serves as motivation for the final part of this work where we turn to the

question of what can be done to obtain a preconditioner that is robust for all κ ∈

[0, 1]. The solution turns out to be a relatively minor modification of the basic

substructuring algorithm [12]: one simply augments the preconditioner with a Jacobi

smoothener over the coarse grid degrees of freedom expressed using the basis function

φ?. This is numerically shown to result in a condition number bounded by O(1 +

log2 p) where the constant is independent of κ ∈ [0, 1].

Finally, for good measure, we provide a generalization of this result for the reader

who would prefer to use a more standard choice of vertex function φ for the vertex

smoothener rather than φ?. The condition number is then conjectured to be bounded
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by O(max{1 + log2 p, (1 + log p)p4Υp(φ)}) where, as before, the constant is indepen-

dent of κ and Υp(φ) is the same quantity Equation (5.2) which arose in the analysis

of the pure mass matrix.

The remainder of this chapter is organized as follows. In section 2, we give a brief

introduction to substructuring preconditioners in the context of p-FEM. In section

3, we discuss the effects of the choice of nodal basis function in the cases of the pure

mass matrix. In section 4, we generalize the previous section to the case of Aκ. In

section 5, we present two numerical examples. We finish with section 6 and 7 which

contains the proofs and technical lemmas, and a conclusion in section 8.

5.2 Model problem and substructuring precondi-

tioners

5.2.1 Model problem

In view of the foregoing discussion, we consider the issue of preconditioning the

operator Aκ. The case where κ→ 0 corresponds to the pure stiffness matrix, while

κ→ 1 corresponds to the pure mass matrix. We seek to construct a preconditioner

for Aκ which is, as far as possible, robust in κ, h and p. We first restrict our analysis to

a single reference element, and generalize to multiple element meshes in Section 5.4.1.

Let T̂ be the reference triangle in R2 with vertices v1 = (−1, 1), v2 = (1,−1), v3 =

(−1,−1) and edges γ1, γ2, γ3 where γi is opposite vi; see Figure 2.1. For a fixed

integer p ≥ 3, let X := Pp(T̂ ) = span{xαyβ : 0 ≤ α, β, α + β ≤ p} be the space of

A version of this chapter has been submitted for publication.
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polynomials of total degree p on T̂ .

5.2.2 Preconditioners for Aκ

We shall construct an additive Schwarz method (ASM) preconditioner [19,71,77] for

Equation (5.3) based on the decomposition

X = XI︸︷︷︸
Interior space

⊕XE1 ⊕XE2 ⊕XE3︸ ︷︷ ︸
Edge spaces

⊕ XV︸︷︷︸
Vertex space

(5.4)

whereXI denotes the interior spaceX∩H1
0 andXEi = {u ∈ X : u = 0 on ∂T̂ \γi}, i ∈

{1, 2, 3} denote the edge spaces. The vertex space is defined as XV = span{ϕi}3
i=1

where ϕi ∈ X such that ϕi(vj) = δij for i, j ∈ {1, 2, 3}. Possible choices for ϕi range

from the affine hat functions popular with the finite element community [73] through

to the high order polynomials which vanish at quadrature points commonly adopted

for spectral element methods [59]. The specific choice of ϕi plays a crucial role in

the performance of the ASM preconditioner which will be studied in detail for the

above (and other) cases.

The decomposition Equation (5.4) naturally leads to a partitioning of Aκ into

blocks as follows:

Aκ =


AV V AV E AV I

AEV AEE AEI

AIV AIE AII

 .

The blocks involving the edge space XE := ⊕3
i=1XEi (e.g. AEE,AV E) can be further

decomposed into subblocks corresponding to the three individual edge spaces of the
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triangle, viz. AV E = [AV E1 ,AV E2 ,AV E3 ].

The interior block AII corresponds to basis functions which are supported locally

on T̂ and hence can be eliminated locally (even in the case of a mesh of elements).

The static condensation of interior dofs leads to a reduced system in which the vertex

and edge degrees of freedom are coupled by the Schur complement matrix:

Sκ :=

AV V AV E

AEV AEE

−
AV I

AEI

A−1
II

[
AIV AIE

]
=

SV V SV E

SEV SEE

 .

This procedure of eliminating the interior degrees of freedom, also known as sub-

structuring, has been utilized since the early days of finite element analysis [25, 80]

initially simply as a means of reducing the number of global unknowns in the linear

system. Subsequently, it was realized that [15, 27] the Schur complement matrix

arising from substructuring methods can be effectively preconditioned using block-

Jacobi preconditioners of the form

Pκ :=

SV V 0

0 blockdiag(SEE)

 (5.5)

where blockdiag(SEE) is the block diagonal matrix with entries SEiEi , i ∈ {1, 2, 3}.

Remark. The choice of blockdiag(SEE) corresponds to simply discarding the off-

diagonal blocks SEiEj with i 6= j, resulting in a decoupling of interactions between

distinct edges whilst maintaining full interaction of the basis functions within each of

the edge spaces XEi . In other words, the preconditioner depends only on the space

XEi and not on the particular choice basis for XEi .

Using Pκ as a preconditioner gives rise to a condition number which can be

bounded analytically using the standard ASM framework as described, for instance,
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in [19,71,77].

The earliest example of such a preconditioner for the p-version FEM arises in [12]

which leads to a condition number which grows as O(1 + log2 p) in the case of where

the stiffness matrix dominates (κ → 0). Conversely in the mass matrix dominated

case (κ → 1), an ASM preconditioner was constructed in Chapter 2 and shown to

have a condition number which is uniformly bounded in p. The key idea in Chapter 2

was the use of a non-standard choice for the vertex functions ϕi used to define the

space XV . In the next section, we investigate how the preconditioner would perform

for one of the more standard choices of ϕi mentioned earlier.

5.3 Influence of the choice of nodal basis on the

condition number

The performance of the preconditioner Equation (5.5) depends on the choice of basis

for the nodal space XV but not on the choice of basis for the remaining spaces used

in the decomposition Equation (5.4).

In particular, it is easy to see that the condition number is independent of the

choice of basis for XI . The elimination of the interior basis functions results in the

partial orthogonalization between XI , and the vertex and edge spaces; specifically,

the linear system after elimination is


AV V AV E AV I

AEV AEE AEI

AIV AIE AII


Elimination−→


SV V SV E 0

SEV SEE 0

AIV AIE AII

 ,



105

where the block zero matrices in the first two rows imply that the vertex and edge

basis functions are now orthogonal to XI . The condition number is independent of

the choice of bases for XEi thanks to the discussion in Section 5.2.2. Hence, only the

choice of a basis for XV can affect the value of cond(P−1
κ Sκ).

5.3.1 The pure mass matrix case

We begin by numerically illustrating the impact of different choices of basis for XV

in the case of the pure mass matrix; as we are strictly examining the case of κ = 1,

we will drop the κ notation from P and S.

The standard nodal basis used in the finite element community is

φLi = λi, i ∈ {1, 2, 3} (5.6)

where λi is the barycentric coordinate on T̂ associated with the ith vertex. Denote

the resulting Schur complement and preconditioner by SL and PL respectively. Fig-

ure 5.1 shows a quadratic growth O(p2) of the condition number cond(P−1
L SL) for

this choice of nodal function.

A spectral element code might well use [63] a nodal basis function whose value

at a node is unity and is zero on the Gauss-Lobatto quadrature points on the edges

φGLi := (−1)p+1

p
λiP

(1,1)
p−1 (1− 2λi), i ∈ {1, 2, 3}. (5.7)

Denote the resulting Schur complement and preconditioner by SGL and PGL re-

spectively. The results in Figure 5.1 suggest a logarithmic growth of the condition

number cond(P−1
GLSGL).
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While the preconditioner associated with φGL is a drastic improvement over the

hat functions λ, it is certainly not uniform with respect to the polynomial order p.

In order to achieve a uniform preconditioner, Chapter 2 considers a basis given by

φ?i := (−1)bp/2c+1

bp/2c λiP
(1,1)
bp/2c−1(1− 2λi), i ∈ {1, 2, 3}. (5.8)

Note that this is the same formula as the one used to define φGL apart from the

(essential) difference that p is replaced by bp/2c. We denote the resulting Schur

complement and preconditioner by S? and P? respectively. It was shown in Chap-

ter 2 that this combination is in fact optimal and does not exhibit any growth (i.e.

cond(P−1
? S?) = O(1)); see Figure 5.1 for a plot of the condition number. Further-

more, Chapter 6 showed that the preconditioner can be implemented efficiently at a

cost of O(p3) in a matrix-free manner.

In the next section, a general result relating the growth of the condition number

to the choice of nodal basis functions will be given in Theorem 5.3.1. Corollary 5.3.2

provides a theoretical confirmation of the numerical results observed in this section.
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Figure 5.1: Figure illustrating the growth of the condition numbers of the vari-
ous preconditioned Schur complement system in the case κ = 1. It is clear that
cond(P−1

? S?) remains bounded for all p, while cond(P−1
GLSGL) exhibits logarithmic

growth and cond(P−1
L SL) exhibits O(p2) growth.
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5.3.2 Theoretical explanation for the mass matrix case

We begin by stating the main result (whose proof is delayed until Section 5.6) which

gives the explicit dependence of the condition number of the ASM preconditioner on

the choice of the basis function for XV for the mass matrix:

Theorem 5.3.1. Let ϕ ∈ XV be any nodal basis function, and let

Υp(ϕ) = min
u=ϕ on ∂T

u∈X

‖u‖2 (5.9)

where ‖·‖ denotes the L2 norm on the triangle T̂ . Let Sϕ and Pϕ be the Schur

complement and preconditioner constructed using ϕ as the nodal basis function. Then

there exists a constant C independent of p such that the condition number of the

preconditioned system satisfies

cond(P−1
ϕ Sϕ) ≤ C(1 + p4)Υp(ϕ)

Equally well, one could use the equivalent definition Υp(ϕ) = ‖ϕ− Πϕ‖2 where

Π is the L2 orthogonal projection of X onto XI .

Theorem 5.3.1 shows that it suffices to estimate Υp(ϕ) in order to gauge the

effect of using ϕ as the nodal basis function in the substructuring preconditioner.

Lemmas 5.7.3 and 5.7.4, and Lemma 6.3 of Chapter 2 show that

Υp(φGL) ∼ p−4 log p, Υp(φλ) ∼ p−2, Υp(φ?) ∼ p−4

respectively. An immediate application of Theorem 5.3.1 results in the following:
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Corollary 5.3.2. There exists a constant C independent of p such that

cond(P−1
GLSGL) ≤ C(1 + log p), cond(P−1

L SL) ≤ Cp2, cond(P−1
? S?) ≤ C.

The results proven in Corollary 5.3.2 agree with the numerical observations in

the previous section.

Theorem 5.3.1 can also be used to predict the performance of other choices of

nodal basis. Recently, there has been some interest in the use of Bernstein polyno-

mials for high order finite element analysis [3, 49]. The Bernstein vertex functions

are given by

φBi = λpi , i ∈ {1, 2, 3}. (5.10)

How will the Bernstein basis fair in the context of the substructuring preconditioner?

Denote the resulting Schur complement and preconditioner as SB and PB respec-

tively. We show in Lemma 5.7.7 that Υp(φB) ≤ Cp−3, hence by Theorem 5.3.1, the

condition number of the preconditioner grows as cond(P−1
B SB) = O(p). Figure 5.2

shows the predicted linear growth of the condition number cond(P−1
B SB).

5.4 Preconditioner for 0 < κ < 1

We now turn to the problem of developing a preconditioner which is robust in κ ∈

(0, 1) for the matrix Aκ. Figure 5.3 shows that the preconditioner for the pure mass

matrix described in the previous section fails to be robust in the limit κ→ 0. Equally
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Figure 5.2: Figure illustrating the linear growth of the condition number of the pre-
conditioned Schur complement system constructed using the Bernstein nodal basis
for the mass matrix.

well, Figure 5.4 shows that the BCMP preconditioner [12] for the pure stiffness matrix

fails to be robust in the limit κ→ 1.

101 102
101

102

103

104

105

106

p

C
on

di
tio

n
nu

m
be

r

κ = 0.0001
κ = 0.01
κ = 0.25
κ = 0.5
κ = 0.75
κ = 0.99
κ = 0.9999

Figure 5.3: Figure illustrating the growth of the condition numbers of the precon-
ditioned Schur complement system constructed using φ? with respect to κ. Note
that while the condition number is quite good for the mass-dominant cases of κ ≥ .5
based on Chapter 2, the condition number scales poorly as κ→ 0.

More precisely, the BCMP preconditioner performs well asymptotically with re-

spect to p for a fixed κ. It seems that for a fixed κ, BCMP has condition number

which has an asymptotic growth of O(1 + log2 p). However, as the value of κ ap-

proaches unity κ → 1, the condition number exhibits a growth at a rate O(p2) in

the pre-asymptotic regime before tapering off to O(1 + log2 p) growth as p→∞ as
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shown in the following result:

Theorem 5.4.1. Let Sκ,L be the Schur complement constructed using the hat func-

tions, and let Pκ,L be the associated substructuring preconditioner as in Equation (5.5).

For κ ∈ [0, 1], there exists constants C1, C2, C3 independent of κ and p such that

cond(P−1
κ,LSκ,L) ≤


min{C1

κ
1−κ(1 + log2 p), C2p

2} κ ≥ 0.5

C3(1 + log2 p) κ ≤ 0.5
.
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κ = 0.99999
κ = 0.9999999

Figure 5.4: Figure illustrating the growth of the condition numbers of the precon-
ditioned Schur complement system constructed using λ vertex basis for different κ
(i.e. BCMP). The condition number is quite good for the more stiffness-dominant
case as expected. In the mass-dominant case, the condition number grows as O(p2)
before tapering off to O(log2 p) growth (Theorem 5.4.1).

In search of a uniform in κ preconditioner, first let

Sκ,L =

SV V,L SV E,L

SEV,L SEE

 and Sκ,? =

SV V,? SV E,?

SEV,? SEE



denote the Schur complement constructed using the hat functions and φ? basis func-

tions respectively. Then, there exists a transformation matrix Γ ∈ R3,3(p−1) such
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that

Sκ,? =

I Γ

0 I

Sκ,L

 I 0

ΓT I

 .

Details regarding the construction of Γ can be found in Chapter 6. We describe the

action (i.e. the inverse) of the preconditioner on the Schur complement Sκ,L. The

new preconditioner for Sκ,L is defined as

P̄−1
κ,? :=

S−1
V V,L 0

0 blockdiag(S−1
EE)

+

 I 0

ΓT I


diag(SV V,?)−1 0

0 0


I Γ

0 I

 . (5.11)

The first term in Equation (5.11) is simply the BCMP substructuring preconditioner

whilst the second term constitutes an additional smoothing step on the vertex com-

ponents (after an appropriate change of basis to φ?). Figure 5.5 shows the condition

number cond(P̄−1
κ,?Sκ,L) for various κ versus p for the preconditioner Equation (5.11).

Observe that the simple expedient augmentation with a nodal smoothening step re-

sults in an improvement of the condition number by a factor up to two orders of

magnitude. We conjecture that the condition number grows as C(1 + log2 p) where

the constant C is independent of κ and p.

Of course, one is free to use a different choice of nodal basis function such as

those discussed in Section 5.3.1 (e.g. φGL, φB), and obtain a different preconditioner

by changing Γ and SV V,? appropriately. We conjecture that the resulting condition

number is bounded below where, by analogy to Theorem 5.3.1, the condition number

is governed by Υp(ϕ).

Conjecture 5.4.2. Let ϕ ∈ XV be any nodal basis function. For any κ ∈ [0, 1],

there exists a constant C independent of p and κ such that the condition number
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Figure 5.5: Figure illustrating the growth of the condition numbers of the precon-
ditioned Schur complement system constructed using Equation (5.11). We observe
O(1 + log2 p) growth in the condition number with no κ degeneration.

using preconditioner Equation (5.11) with ϕ satisfies

cond(P̄−1
κ,ϕSκ,L) ≤ C max{1 + log2 p, (1 + log p)p4Υp(ϕ)}.

If one assumes that Conjecture 5.4.2 is true, then using the bounds for Υp ob-

tained before:

Corollary 5.4.3. There exists a constant C independent of κ and p such that

cond(P̄−1
κ,GLSκ,L) ≤ C log2 p, cond(P̄−1

κ,BSκ,L) ≤ Cp log p.

where P̄−1
κ,GL is the preconditioner constructed with φGL and P̄−1

κ,B is the preconditioner

constructed with φB.

Figure 5.6 and Figure 5.7 shows the actual condition numbers obtained using

nodal smootheners based on the Gauss-Lobatto and Bernstein vertex functions re-

spectively.
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Figure 5.6: Figure illustrating the growth of the condition numbers of the precondi-
tioned Schur complement system using both linear and φGL vertex solves. We observe
that the condition number is bounded by C(1 + log2 p) from above as predicted by
Conjecture 5.4.2 and c(1 + log p) from below.

5.4.1 Extension to Meshes

The foregoing results were stated in the context of a single element. We can readily

generalize the results above to a mesh with multiple elements. Let T be a partition

of a domain Ω into the union of non-overlapping triangular elements such that the

non-empty intersection of any two distinct elements is either a common vertex or

a single common edge. We further assume the mesh is: shape-regular, there exists

constant τ > 0 such that ρK ≥ hK/τ for all element K ∈ T where ρK , hK is the

inradius and diameter respectively; and quasi-uniform, there exists a constant 1 > c

such that hK ≥ cmaxK∈T hK . Let FK : T̂ → K be a mapping from T̂ to an element

K ∈ T for which there exists constants θ,Θ such that, for all K,

θh2
K ≤ |DFK | ≤ Θh2

K ,
θ

h2
K

I ≤ DF−1
K DF−TK ≤ Θ

h2
K

I (5.12)

where DFK is the Jacobian of FK and |DFK | is its determinant.
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Figure 5.7: Figure illustrating the growth of the condition number of the precondi-
tioned Schur complement system using both linear and φB vertex solves. We observe
that the condition number is bounded by C(1 + log p)p from above as predicted by
Conjecture 5.4.2, and c(1 + log2 p) from below.

Let u ∈ Pp(K) then by a straightforward change of variables there holds

θh2
K‖û‖

2
T̂ ≤‖u‖

2
K = |DFK |‖û‖2

T̂ ≤ Θh2
K‖û‖

2
T̂

θ2‖∇û‖2
T̂ ≤‖∇u‖

2
K = |DFK |

∥∥∥DF−T∇û∥∥∥2

T̂
≤ Θ2‖∇û‖2

T̂ .

(5.13)

where x = FK x̂, û(x̂) = u(FK x̂), and ‖·‖2
ω is the L2-norm on domain ω.

Now let u ∈ V = {u ∈ H1(Ω) : u|K ∈ Pp(K),∀K ∈ T }. Applying Equa-

tion (5.13) to each element gives

∑
K∈T

cK‖û‖2
κL,T̂
≤‖u‖2

κ,Ω ≤
∑
K∈T

CK‖û‖2
κU ,T̂

where

CK = Θ2(1− κ) + Θh2
Kκ, κU = Θh2

kκ

CK
, cK = θ2(1− κ) + θh2

Kκ, κL = θh2
kκ

cK

and ‖·‖2
κ,ω = (1 − κ)‖∇·‖2

ω + κ‖·‖2
ω. Note that as θ < Θ implies that κU < κL, we
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have ‖û‖2
κU ,T̂
≤ (1− κU)/(1− κL)‖û‖2

κL,T̂
giving

∑
K∈T

cK‖u‖2
κL,T̂
≤‖u‖2

κ,Ω ≤
∑
K∈T

CK
1− κU
1− κL

‖u‖2
κL,T̂

. (5.14)

The preconditioner on the mesh is then defined by

P̄ =
∑
K∈T

ΛKP̄κL,ϕΛ
T
K

where ΛK is the usual subassembly operator mapping global degrees of freedom to

local degrees of freedom on element K.

Assuming the conjecture holds on a single element, then the following result

shows that P̄ is robust in κ on a mesh:

Corollary 5.4.4. There exists a constant C independent of h, p, κ

cond(P̄−1S) ≤ C max{1 + log2 p, p4Υp(ϕ)(1 + log p)}

where S is the Schur complement on the mesh T .

Proof. By quasi-uniformity of the mesh, θ2(1− κ) + cθh2κ ≤ cK , and direct manip-

ulation results in

CK
1−κU
1−κL
cK

≤ Θ((c− 1)h2κ+ (κ− 1)Θ)
θ((1− c)h2κ+ (κ− 1)θ) ≤

Θ2

θ2 .

Let Sκ,K be the local Schur complement matrix, then Equation (5.14) with the above
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implies

∑
K∈T

ΛKSκ,KΛT
K ≈

∑
K∈T

ΛKSκL,T̂ΛT
K

with constant independent of h. Finally, Conjecture 5.4.2 implies that

P̄κL,ϕ ≤ SκL,T̂ ≤ C max{1 + log2 p, (1 + log p)p4Υp(ϕ)}P̄κL,ϕ,

hence the result follows by taking the summation over the elements.

5.5 Applications

In this section, we illustrate the performance of the preconditioner Equation (5.11)

for two representative applications.

5.5.1 Implicit Time Stepping

First, consider the Gray-Scott system [37, 61], a model of autocatalytic chemical

reactions which consists of finding u(t), v(t) such that

∂u

∂t
= −uv2 + α(1− u) + du∆u

∂v

∂t
= uv2 − (α + β)v + dv∆v

(x, y) ∈ Ω, t > 0, (5.15)

where α, β, du, dv are constants and Ω is the discretization of the surface of a torus

with major radius of 1 and minor radius of 1
2 (see Figure 5.8 for the meshes). Note

that since we are solving the system on a closed surface of a torus, there is no
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Figure 5.8: Figure to illustrate the meshes used to compute the Gray-Scott example.
From left to right, the mesh is of 148, 592 and 2368 triangular elements.

Figure 5.9: Plot of the variable u of the Gray-Scott equations for the constants
α = 0.1, β = .05 on the mesh with 592 elements of order 4, 8, 16 respectively at
t = 10000 with ∆t = 1.

boundary on which conditions need to be imposed. We take du = 2×10−5, dv = 10−5

and initial conditions as specified in [61]; see Figure 5.9 for a plot of the solutions.

An IMEX scheme [66] is used to evolve the solution in time:

M~un+1 −M~un

∆t = −~gn + α~1− αM~un+1 − du
2
(
Lun+1 + Lun

)
M~vn+1 −M~vn

∆t = ~gn − (α + β)M~vn+1 − dv
2
(
Lvn+1 + Lvn

) (5.16)

where ~un, ~vn is the finite element approximation at time step n and ~gn is the nonlinear

moment associated with uv2 at time step n. Observe that Equation (5.16) entails

solving systems at each time step involving the matrices

M + ∆t
(
αM + du

2 L
)

and M + ∆t
(

(α + β)M + dv
2 L

)
, (5.17)
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each of which is mass-dominated for ∆t→ 0.

In Tables 5.1 to 5.3, we display the condition number of the preconditioned system

of the first matrix in Equation (5.17) for ∆t = 1, 100, 10000 respectively for varying

mesh size and polynomial order. The condition number does not degenerate in the

number of elements as stated in Corollary 5.4.4. Finally, comparing the condition

numbers between the three tables, little change is observed in the condition number

as the preconditioner is robust in κ.

Table 5.1: Table illustrates the condition number of the preconditioner P̄−1
κ,? applied

to the Gray-Scott problem on the torus for ∆t = 1.

Order 148 Elements 592 Elements 2368 Elements
4 27.00 26.61 25.11
8 23.09 21.36 18.42
12 20.57 17.66 14.57
16 18.46 15.09 13.30
20 16.72 13.69 13.10

Table 5.2: Table illustrates the condition number of the preconditioner P̄−1
κ,? applied

to the Gray-Scott problem on the torus for ∆t = 100.

Order 148 Elements 592 Elements 2368 Elements
4 24.01 21.10 17.45
8 17.76 13.37 12.41
12 14.31 11.99 13.16
16 13.36 12.33 13.94
20 13.15 12.99 14.95

Table 5.3: Table illustrates the condition number of the preconditioner P̄−1
κ,? applied

to the Gray-Scott problem on the torus for ∆t = 10000.

Order 148 Elements 592 Elements 2368 Elements
4 23.58 20.56 16.74
8 17.15 12.83 12.46
12 13.93 11.97 13.23
16 13.20 12.41 14.03
20 13.10 13.16 15.09
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5.5.2 Hierarchical Modeling

We now illustrate how the preconditioner can be applied to the hierarchical modeling

of thin plates [67]. Let Ωt = Ω× (−t, t) ⊂ R3 where Ω ⊂ R2, the diameter of Ω is of

order 1 and t� 1, and suppose we are solving

−∆u = 1 in Ωt,

subject to u = 0 on ∂Ω× (−t, t),

and ∂u
∂z

∣∣∣
z=±t

= f± on Ω.

(5.18)

where f± ∈ L2(Ω). The bilinear form associated with Equation (5.18) is

B(u, v) =
∫ t

−t

∫
Ω

grad u · grad v dxdydz (5.19)

where u, v ∈ H(Ωt) = {w|w ∈ H1(Ωt), w = 0 on ∂Ω× (−t, t)}.

We perform a standard hp-FEM discretization of the space H1
0 (Ω) paired with a

modal expansion of degree n in the transverse coordinate z. That is to say, we seek

an approximation from the space

V n
p = {v : v =

n∑
i=0

αi(x, y)ψi(z/t) : αi ∈ V ∩H1
0 (Ω), ψi ∈ Pi([−1, 1])}.

Inserting test functions from V n
p into the bilinear form, we can simplify Equa-

tion (5.19)

(ψi, ψj)
 n∑
i=0
∇αi(x, y),

n∑
i=0
∇βi(x, y)

+ 1
t2

(ψ′i, ψ′j)
 n∑
i=0

αi(x, y),
n∑
i=0

βi(x, y)
 .
(5.20)

Let Mψ = (ψi, ψj),Lψ = (ψ′i, ψ′j) be the 1D mass and stiffness matrix associated with
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{ψi}ni=0, then the matrix-vector formulation of Equation (5.20) is a sum of Kronecker

products

Mψ ⊗ L + 1
t2

Lψ ⊗M.

Rather than working with the matrix above directly, we perform the following

simplification: we use the polynomials ~χ = Q~ψ where Q is the matrix of the eigen-

vectors of the following generalized eigenvalue problem

Lψq = λiMψq (5.21)

with the normalization such that qTMψq = 1. Using the transformed basis {χi}ni=0

will result in the following matrix

Iψ ⊗ L + 1
t2

Λψ ⊗M (5.22)

where I is the identity matrix and Λ is the diagonal matrix of the eigenvalues.

We first note that Equation (5.22) is a block diagonal matrix with entries L+ λi
t2

M

on the diagonal. The eigenvalues λi of Equation (5.21) include 0 and grow as O(n4),

hence for large model orders, the diagonal blocks can easily range from the pure

stiffness matrix to heavily mass-dominated operators. An effective preconditioner for

Equation (5.22) is a block-diagonal preconditioner with P̄κ,? on its diagonal where

we set κ appropriately.

In Table 5.4, we display the condition number of the preconditioned system using

four elements on the domain Ω = (−1, 1)2 with t = 1/100. The condition number

does not degenerate as we increase the model order as our preconditioner P̄κ,? is
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Table 5.4: Condition number of the preconditioned system arising from the hierar-
chical modeling example with t = 1/100. The condition number does not degenerate
as we increase model order n.

p n = 5 n = 10 n = 15
4 23.24 23.24 23.24
8 21.95 21.97 21.97
12 21.24 21.33 21.33
16 20.65 20.89 20.90
20 20.07 20.58 20.62

robust for all eigenvalues of Equation (5.21) as shown in Conjecture 5.4.2.

5.6 Proofs of the main results

Proof of Theorem 5.3.1. We first define the appropriate subspaces needed for the

ASM framework. Following Equation (2.10), we define X̃ where X = XI ⊕ X̃ and

XI ⊥ X̃ with respect to the L2 inner-product. We further decompose X̃ as

X̃ = X̃V ⊕ X̃E1 ⊕ X̃E2 ⊕ X̃E3 (5.23)

where X̃Ei := {(I − Π)uEi : uEi ∈ XEi}, X̃V := {(I − Π)uV : uV ∈ XV } and Π is

the L2 orthogonal projection into XI . Since we condensed out the interiors and are

solving the Schur complement system, we seek the solution in the space X̃.

Let (·, ·) denote the standard L2 inner-product on T̂ . The preconditioner Equa-

tion (5.5) can then be defined as the following ASM preconditioner

(i) uV ∈ X̃V : (uV , vV ) = (f, vV ) ∀vV ∈ X̃V .

(ii) For i ∈ {1, 2, 3}, uEi ∈ X̃Ei : (uEi , vEi) = (f, vEi) ∀vEi ∈ X̃Ei .
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(iii) u := uV +∑3
i=1 uEi is our solution.

We first give a specific decomposition for all u ∈ X̃ in the manner of Equa-

tion (5.23). Let X̃V 3 uV = ∑3
i=1 u(vi)ϕ̃i where ϕ̃i = (I − Π)ϕi, hence u − uV

vanishes on the vertices and can be written as uE1 + uE2 + uE3 = u − uV where

uEi ∈ X̃Ei .

Combining the above decomposition for u ∈ X̃ and triangle inequality, we obtain

‖u‖2 ≤ C

‖uV ‖2 +
3∑
i=1

∥∥∥uEi∥∥∥2
 .

The dependence on p of the condition number of our ASM preconditioner is then

simply Λ(p) [77], where Λ(p) is the function such that for all u ∈ X̃

‖uV ‖2 +
3∑
i=1

∥∥∥uEi∥∥∥2
≤ Λ(p)‖u‖2 .

By Lemma 2.6.1,

‖uV ‖2 ≤ C‖ϕ̃‖2 max
i∈{1,2,3}

|uV (vi)|2 ≤ Cp4Υp(ϕ)‖u‖2 .

For the edge terms, we use Lemma 2.6.5 which states that
∥∥∥uEi∥∥∥ ≤ C‖u− uV ‖,

∥∥∥uEi∥∥∥2
≤ C‖u− uV ‖2 ≤ C(‖u‖2 +‖uV ‖2) ≤ C(1 + p4Υp(ϕ))‖u‖2 ,

hence Λ(p) = C(1 + p4Υp(ϕ)).

Proof of Theorem 5.4.1. We first prove the result in the case of κ ≥ 0.5. Schmidt’s
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inequality gives us

κ‖u‖2 ≤‖u‖2
κ := (1− κ)‖∇u‖2 + κ‖u‖2 ≤ (C(1− κ)p4 + κ)‖u‖2

hence ‖u‖2
κ is equivalent to the L2 norm with a constant depending on Cp4 1−κ

κ
+ 1.

Let p? =
(

κ
C(1−κ)

)1/4
. For p ≤ p?, we have that ‖u‖2

κ ≈‖u‖
2, thus we use the results

from Section 5.3.2 regarding the barycentric nodal basis: the condition number of

the ASM method grows as O(p2).

For the case where p > p?, we first note that the proof for Lemma 3.3 of [12]

easily holds for the H1 norm (BCMP is actually a preconditioner for the full H1

norm corresponding to M + L). Next, we trivially note that

(1− κ)‖u‖2
H1 ≤‖u‖2

κ ≤ κ‖u‖2
H1 .

Hence, ‖u‖2
κ is equivalent to the H1 norm with the constant κ

1−κ . Thus the growth

of applying BCMP will be bounded by κ
1−κC1(1 + log2 p) where C1 is the constant

from Lemma 3.3 of BCMP.

As for the κ ≤ 0.5 case, we first define the subspaces and inner-products for

the ASM. We now associate X with the norm ‖·‖κ = (1 − κ)‖∇·‖2 + κ‖·‖2 and

denote (·, ·)κ as the associated inner-product. Similar to the proof of Theorem 5.3.1,

we define X̃ such that X = X̃ + XI and X̃ ⊥ XI with respect to the (·, ·)κ inner

product. We further decompose X̃ as

X̃ = X̃L +
3∑
i=1

X̃Ei (5.24)

where X̃Ei = {(I − Πκ)uEi : uEi ∈ XEi}, and X̃L = {(I − Πκ)v : v ∈ P1} where

Πκ : X → XI is the orthogonal projection onto XI with respect to the (·, ·)κ inner-
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product. A critical property of X̃ and its subspaces is that for all u ∈ X̃

‖u‖2
κ = min

v=u on ∂T̂ ,v∈X
‖v‖2

κ . (5.25)

As we performed static condensation, we again seek the solution in the space X̃.

The action of BCMP for f ∈ X̃ is given by u defined as follows

(i) uL ∈ X̃L : (uL, vL) = (f, vL) ∀vL ∈ X̃L.

(ii) for i = 1, 2, 3: uEi ∈ X̃Ei : (uEi , vEi) = (f, vEi) ∀vEi ∈ X̃Ei .

(iii) u := uL +∑3
i=1 uEi .

Similar to the proof of Theorem 5.3.1, we wish to find a function Λ(p) such that for

all u ∈ X̃

‖uL‖2
κ +

3∑
i=1

∥∥∥uEi∥∥∥2

κ
≤ Λ(p)‖u‖2

κ .

By [12], there exists functions u∗L, u∗Ei ∈ X (not necessarily in X̃L, X̃Ei due to the

difference in norms) such that for all u ∈ X̃

‖∇u∗L‖
2 +

3∑
i=1

∥∥∥∇u∗Ei∥∥∥2
≤ C(1 + log2 p)‖∇u‖2 . (5.26)

Define uL ∈ X̃L and uEi ∈ X̃Ei such that uL|∂T̂ = u∗L|∂T̂ and uEi |∂T̂ = u∗Ei|∂T̂ .

By Equation (5.25), Equation (5.26) and an application of Poincare’s ienquality, we
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have for i = 1, 2, 3

∥∥∥uEi∥∥∥2

κ
≤
∥∥∥u∗Ei∥∥∥2

κ

= (1− κ)
∥∥∥∇u∗Ei∥∥∥2

+ κ
∥∥∥u∗Ei∥∥∥2

≤ (1− κ)
∥∥∥∇u∗Ei∥∥∥2

+ Cκ
∥∥∥∇u∗Ei∥∥∥2

≤ C(1 + log2 p)‖∇u‖ ≤ C(1 + log2 p)‖u‖2
κ .

Finally, by an application of triangle’s inequality, we have that

‖uL‖2
κ =

∥∥∥∥∥∥u−
3∑
i=1

uEi

∥∥∥∥∥∥
2

κ

≤ C(1 + log2 p)‖u‖2
κ

and we are done.

Sketch of of Conjecture 5.4.2. We again define the appropriate spaces for the ASM

framework. Let X̃ be such that X = X̃ +XI and X̃ ⊥ XI with respect to the (·, ·)κ

inner product. We further decompose X̃ as

X̃ = X̃L +
3∑
i=1

X̃Vi +
3∑
i=1

X̃Ei (5.27)

where X̃Ei = {(I − Πκ)uEi : uEi ∈ XEi}, X̃L = {(I − Πκ)v : v ∈ P1} and X̃Vi =

range{(I − Πκ)ϕi} where Πκ : X → XI is the orthogonal projection onto XI with

respect to the (·, ·)κ inner-product.

The action of the preconditioner Equation (5.11) for f ∈ X̃ is given by u defined

as follows
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(i) u0 ∈ X̃L : (u0, v0) = (f, v0) ∀v0 ∈ X̃L.

(ii) for i = 1, 2, 3: uVi ∈ X̃Vi : (uVi , vVi) = (f, vVi) ∀vVi ∈ X̃Vi .

(iii) for i = 1, 2, 3: uEi ∈ X̃Ei : (uEi , vEi) = (f, vEi) ∀vEi ∈ X̃Ei .

(iv) u := u0 +∑3
i=1 uVi +∑3

i=1 uEi .

For the case of κ ≥ .5, which is the mass dominated case, we proceed much as

the proof of Theorem 5.3.1. We need to first define the decomposition

u = u0 +
3∑
i=1

(
uVi + uEi

)

for every u ∈ X̃ where u0 ∈ X̃L, uVi ∈ X̃Vi , uEi ∈ X̃Ei .

Let u0 = 0 and uVi = u(vi)ϕ̃i ∈ X̃Vi where ϕ̃i = (I − Πκ)ϕi. Furthermore,

let ϕ̃i,L2 = (I − Π)ϕi where Π is the L2 projection on XI as before; note that∥∥∥ϕ̃i,L2

∥∥∥2
= Υp(ϕ) by definition, and that ϕ̃i = ϕ̃i,L2 on ∂T̂ . We have for i = 1, 2, 3

∥∥∥uVi∥∥∥2

κ
= min

v=uVi on ∂T̂ ,v∈X
(1− κ)‖∇v‖2 + κ‖v‖2

≤ (1− κ)
∥∥∥u(vi)∇ϕ̃i,L2

∥∥∥2
+ κ

∥∥∥u(vi)ϕ̃i,L2

∥∥∥2

≤ (1− κ)‖u‖2
L∞

∥∥∥∇ϕ̃i,L2

∥∥∥2
+ κ‖u‖2

L∞

∥∥∥ϕ̃i,L2

∥∥∥2

≤ (1− κ)‖u‖2
L∞ p

4Υp(ϕ) + κ‖u‖2
L∞ Υp(ϕ)

≤ C(1− κ)(1 + log p)‖u‖2
H1 p

4Υp(ϕ) + κp4‖u‖2 Υp(ϕ)

≤ C(1 + log p)p4Υp(ϕ)‖u‖2
κ .

where we used Schmidt’s inequality to bound
∥∥∥∇ϕ̃i,L2

∥∥∥2
with p4Υp(ϕ), Theorem 6.2

from [12], Lemma 2.6.1.
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We see that u1 := u − ∑3
i=1 uVi vanishes at the vertices, hence by triangle in-

equality ‖u1‖2
κ ≤ C(1 + log p)p4Υp(ϕ)‖u‖2

κ. Unfortunately, we do not have an ex-

tension theorem for the edges similar to Theorem 7.4 of [12] or Lemma 2.6.5 of

Chapter 2. Without such an estimate, we are only able to bound the edge con-

tributions in a suboptimal way: let uE∗i be the 2D Munoz-Sola extension [42, 55]

such that u∗Ei |γi = u1|γi . Theorem 3.2 of [42] states that
∥∥∥u∗Ei∥∥∥2

≤ ‖u1‖2
γi

where

‖·‖2
γi

is the L2 norm over the edge γi, and Theorem 6.6 and 7.4 of [12] states that∥∥∥u∗Ei∥∥∥2

H1
≤ (1 + log2 p)‖u‖2

H1 . Let uEi|∂T̂ = u∗Ei |∂T̂ , then by Equation (5.25), inverse

inequality on the edge ‖u1‖γi ≤ p‖u1‖ [79], and the inequalities above, we have

∥∥∥uEi∥∥∥2

κ
≤
∥∥∥u∗Ei∥∥∥2

κ
= (1− κ)

∥∥∥∇u∗Ei∥∥∥2
+ κ

∥∥∥u∗Ei∥∥∥2

≤ (1− κ)
∥∥∥u∗Ei∥∥∥2

H1
+ κ‖u1‖2

γi

≤ (1− κ)(1 + log2 p)‖u‖2
H1 + κp2‖u1‖2

γi

≤ (1− κ)(1 + log2 p)‖u‖2
H1 + p2‖u1‖2

κ

≤ (1− κ)(1 + log2 p)‖u‖2
H1 + (1 + log p)p6Υp(ϕ)‖u‖2

κ

≤ C max{1 + log2 p, (1 + log p)p6Υp(ϕ)}‖u‖2
κ

for each i = 1, 2, 3. Note that this does not reflect the numerical results, and the

poor bound is due to the lack of an extension result which is independent of κ.

For the case of κ ≤ .5, which is the stiffness dominated case, we only use the

subspaces X̃0, X̃Ei . Since the preconditioner is equivalent to the result in Theo-

rem 5.4.1, the result follows trivially and the condition number is strictly bounded

by O(1 + log2 p), independent of the choice of the augmented nodal basis.
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5.7 Technical Lemmas for the calculation of Υp

In this section, we estimate Υp(ϕ) for φGL, λ, and φB.

5.7.1 Gauss-Lobatto Vertex Function

We first prove two auxiliary lemmas needed to calculate Υp(φGL).

Lemma 5.7.1. For i ≥ 1, j > 0, we have the following equality if j ≥ i− 1

Ii−1,j :=
∫ 1

−1
(1− x)2(1 + x)P (2,1)

i−1 P
(2,2)
j dx = (−1)j−i+1 16i

(j + 3)(j + 4)

else Ii−1,j = 0.

Proof. For j < i − 1, Ii−1,j = 0 by orthogonality. For j ≥ i − 1, first let cnm :=∫ 1
−1(1− x)2(1 + x)P (2,1)

n P (2,1)
m dx = δnm

16
2n+4

n+1
n+3 . From [24], we have that

P (2,2)
n = anP

(2,1)
n − bnP (2,2)

n−1

where an = 2n+4
n+4 and bn = n+2

n+4 . Substituting the identity into the integral

∫ 1

−1
(1− x)2(1 + x)P (2,1)

i−1 P
(2,2)
j dx = ajci−1,j − bj

∫ 1

−1
(1− x)2(1 + x)P (2,1)

i−1 P
(2,2)
j−1 dx

= −bjIi−1,j−1

...

= (−1)j−i+1ai−1ci−1,i−1Πj
k=ibk

where we iterate this process until Ii−1,i−2 = 0. Direct simplification yields the result.
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Lemma 5.7.2. For i ≥ 1, j > 0, we have the following equality

Ji−1,j :=
∫ 1

−1
(1− x)2(1 + x)P (1,1)

i−1 P
(2,2)
j dx =



(−1)j−i+1 16i
(j+3)(j+4) j ≥ i− 1

− 16(i−1)i
(2i+1)(i+1)(i+2) j = i− 2

0 j < i− 2

else Ji−1,j = 0.

Proof. From [24], we have that

P
(1,1)
i−1 = i+ 2

2i+ 1P
(2,1)
i−1 −

i

2i+ 1P
(2,1)
i−2 .

Hence

Ji−1,j =
∫ 1

−1
(1− x)2(1 + x)

(
i+ 2
2i+ 1P

(2,1)
i−1 −

i

2i+ 1P
(2,1)
i−2

)
P

(2,2)
j dx

= i+ 2
2i+ 1Ii−1,j −

i

2i+ 1Ii−2,j.

From here, we distinguish between three cases depending on Ii−1,j. If j ≥ i − 1,

then Ii−1,j is non-zero, and Ji−1,j = i+2
2i+1Ii−1,j − i

2i+1Ii−2,j = (−1)j−i+1 16i
(j+3)(j+4) . If

j = i − 2, then Ii−1,j = 0, and we have Ji−1,j = − i
2i+1Ii−2,j = − 16(i−1)i

(2i+1)(i+1)(i+2) .

Otherwise for j < i− 2, we have that integral is 0.

With the above integrals, we can bound the norm of the minimal extension of

the Gauss-Lobatto basis functions.
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Lemma 5.7.3. The Lobatto basis function of degree p satisfies the bound

Υp(φGL) ∼ p−4 log p

Proof. First, let p be even and let q = p/2. Let wj be coefficients such that

φGL − φ?|γ = (1− x)
(
cpP

(1,1)
p−1 − cqP

(1,1)
q−1

)
=

p−2∑
j=0

wj(1− x2)P (2,2)
j (x)

where γ = {(x,−1) : −1 ≤ x ≤ 1} and cp = (−1)p+1

2p . Due to orthogonality, we have

that

wj =

∫ 1
−1(1− x)

(
cpP

(1,1)
p−1 − cqP

(1,1)
q−1

)
(1− x2)P (2,2)

j dx∥∥∥∥(1− x2)P (2,2)
j

∥∥∥∥2

[−1,1]

= (2j + 5)(j + 3)(j + 4)
32(j + 1)(j + 2) (cpJp−1,j − cqJq−1,j).

Using Lemma 5.7.2, we have that

1. j = 0, . . . , q − 3: wj = 0.

2. j = q − 2: wj = (2q+1)(q+1)(q+2)(−cqJq−1,q−2)
32q(q−1) = (−1)q+1

4q

3. j = q − 1, . . . , p− 3: wj = −cqJq−1,j
(2j+5)(j+3)(j+4)

32(j+1)(j+2) = (−1)j+1(2j+5)
4(j+1)(j+2) .

4. j = p− 2: wp−2 = (2j+5)(j+3)(j+4)
32(j+1)(j+2) (cpJp−1,p−2 − cqJq−1,p−2) = (−1)p+1(p+2)

4(p−1)p .

Using Lemma 2.6.3, we can calculate

Υp(φGL − φ?|γ) ∼ p−4 +
p−3∑
j=q−1

1
j3p(p− j − 1)

∼ p−4 + 1
p

∫ p−3

p/2−1

1
x3(p− x− 1) dx ∼

log(p)
p4 .
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The asymptotics follows by recalling that Υp(φ?) ∼ p−4, Lemma 2.6.5 and using the

triangle inequality. For odd values of p, the result follows in an analogous manner

with q = bp/2c.

5.7.2 Barycentric Vertex Functions

We can now easily bound Υp(φλ) using Υp(φGL).

Lemma 5.7.4. The barycentric coordinates satisfies the bound

Υp(φλ) ∼ p−2

Proof. We proceed similarly to Lemma 5.7.3 and seek wj such that

φλ − φGL|γ = (1− x)
(

1
2 − cpP

(1,1)
p−1

)
=

p−2∑
j=0

wj(1− x2)P (2,2)
j (x)

where γ = {(x,−1) : −1 ≤ x ≤ 1} and cp = (−1)p+1

2p . Due to orthogonality, we have

for j = 0, . . . , p− 2

wj =

∫ 1
−1(1− x)

(
1
2 − cpP

(1,1)
p−1

)
(1− x2)P (2,2)

j dx∥∥∥∥(1− x2)P (2,2)
j

∥∥∥∥2

[−1,1]

=
8(−1)j

(j+3)(j+4) − cpJp−1,j
32(j+1)(j+2)

(2j+5)(j+3)(j+4)

.

Hence by Lemma 5.7.2, wj = (−1)j(2j+5)
4(j+1)(j+2) for j = 0, . . . , p− 3 and wp−2 = (−1)p(p+2)

4(p−1)p .



132

Using Lemma 2.6.3

Υp(φλ − φGL|γ) ∼ p−4 +
p−3∑
j=0

1
(j + 1)3p(p− j − 1)

∼ p−4 + 1
p

∫ p−3

0

1
(x+ 1)3(p− x− 1) dx ∼

1
p2 .

The results follows as Υp(φGL) ∼ p−4 log p.

5.7.3 Bernstein Vertex Functions

We will need the following two lemmas to bound the Bernstein polynomial nodal

functions

Lemma 5.7.5. For all p ≥ 2,

(
1− x

2

)p
−
(

1− x
2

)
= (1− x2)

p−2∑
j=0

cpjP
(2,2)
j

where

cpj = −
(−1)j

(
2p+1
p−2−j

)
4(2p+ 1)

(
2p
p−1

) (2j + 5)(j2 + 5j + p+ 6)
(j + 1)(j + 2) .

Proof. We proceed with an inductive proof on the polynomial order p. For p = 2, it

is trivial to verify. Assume that we have proven the identity for p, we consider the

P
(2,2)
j expansion of

(1− x
2

)p+1

−
(

1− x
2

)−
(1− x

2

)p
−
(

1− x
2

) = −2−p−1(x+ 1)(1− x)p

= (1− x2)
p−1∑
j=0

dpjP
(2,2)
j .
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By orthogonality, we have that

dpj = −
∫ 1
−1(1− x)p(1 + x)(1− x2)P (2,2)

j dx

2p+1
∥∥∥∥(1− x2)P (2,2)

j

∥∥∥∥2 .

The numerator can be evaluated using identity 18.17.36 of [24]. Finally, it is straight-

forward manipulation to verify that cpj + dpj = cp+1
j .

Lemma 5.7.6. For j = 0, . . . , p− 2, let

Qj := 1− (j2 + 5j + p+ 6)
(2p+ 1)

(
2p
p−1

) (
2p+ 1
p− 2− j

)
.

Then Qj ≤ 1 for all j = 0, . . . , p − 2. Furthermore, suppose that (j + 1)(j + 2) ≤
1
2(p+ 1), then Qj ≤ (j+1)(j+2)

p
.

Proof. We note that Q0 ≤ 1. Furthermore, it is not hard to show that (j2 + 5j+ p+

6)
(

2p+1
p−2−j

)
is a decreasing sequence in j, hence Qj ≤ 1.

For the second inequality, first bring Qj to a common denominator of p
(

2p+1
p

)
,

then the numerator is

p

(
2p+ 1
p

)
− p

(
2p+ 1
p− 2− j

)
︸ ︷︷ ︸

A

− (j + 2)(j + 3)
(

2p+ 1
p− 2− j

)
︸ ︷︷ ︸

B

.

Examining A at a greater detail, we have

A = p
j+1∑
r=0

(
2p+ 1
p− r

)
−
(

2p+ 1
p− r − 1

)
= p

p+ 1

j+1∑
r=0

(r + 1)
(

2p+ 2
p− r

)
.

Now using the identity ∑n+1
j=1 jcj = (n+ 1)2cn+1 +∑n

j=1 j(jcj − (j + 1)cj+1), then A
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is equal to

p(j + 2)2

p+ 1

(
2p+ 2
p− j − 1

)
+ p

p+ 1

j∑
r=0

(r + 1)
(r + 1)

(
2p+ 2
p− r

)
− (r + 2)

(
2p+ 2
p− r − 1

)
= p(j + 2)2

p+ 1

(
2p+ 2
p− j − 1

)
+ p

(p+ 1)(2p+ 3)

j∑
r=0

(r + 1)(2r2 + 6r + 3− p)
(

2p+ 3
p− r

)
.

We note that (j + 1)(j + 2) ≤ 1
2(p+ 1) =⇒ 2j2 + 6j + 3− p ≤ 0, hence

A ≤ p(j + 2)2

p+ 1

(
2p+ 2
p− j − 1

)
.

Finally, note that by simplification,

A+B ≤ p(j + 2)2

p+ 1

(
2p+ 2
p− j − 1

)
+B = (j + 1)(j + 2)

(
2p+ 1
p− j − 1

)
.

Hence,

Qj ≤
(j + 1)(j + 2)

(
2p+1
p−j−1

)
p
(

2p+1
p

) ≤ (j + 1)(j + 2)
p

.

Now, we can bound the Bernstein nodal basis.

Lemma 5.7.7. The minimal extension of the degree p nodal Bernstein polynomial

satisfies the bound

Υp(φB) ≤ Cp−3.
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Proof. Proceeding as before, let wj such that

λp − φGL|γ =
(1− x

2

)p
−
(

1− x
2

)−
(1− x

2

)
− (−1)p+1

2p (1− x)P (1,1)
p−1


= (1− x2)

p−2∑
j=0

wjP
(2,2)
j .

Combining Lemma 5.7.5 and the expansion in Lemma 5.7.4, we have that for

j = 0, . . . , p− 3

wj = (−1)j(2j + 5)
4(j + 1)(j + 2) −

(−1)j

4(2p+ 1)
(

2p
p−1

)( 2p+ 1
p− 2− j

)
(2j + 5)(j2 + 5j + p+ 6)

(j + 1)(j + 2)

= (−1)j(2j + 5)
4(j + 1)(j + 2)

1− (j2 + 5j + p+ 6)
(2p+ 1)

(
2p
p−1

) (
2p+ 1
p− 2− j

) = (−1)j(2j + 5)
4(j + 1)(j + 2)Qj

and j = p− 2 we have

wp−2 = −
(−1)p(p+ 2)(p−

(
2p
p−1

)
)

4(p− 1)p
(

2p
p−1

) ∼ 1/p.

Now, using the fact that √p ≤ 1
2(p+ 1), Qj ≤ 1 and Lemma 5.7.6, we have

Υp(φB − φGL) ≤ O(p−4) +
√
p∑

j=0

Q2
j

(j + 1)3(p+ j + 1)(p− j − 1) +
p−3∑
j=√p

1
j3(p+ j)(p− j − 1)

≤ O(p−4) + 1
p4

√
p∑

j=0
j + 1

p

∫ p−3

√
p

1
x3(p− x− 1) dx ≤ O(p−3)

The results follows from recalling Υp(φGL) ∼ p−4 log p.
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5.8 Conclusions

The current work first analyzed the impact of the nodal space in the construction

of substructuring preconditioners for the mass matrix, and developed an ASM pre-

conditioner Equation (5.11) which is robust in κ for Aκ. We concluded that Υp(φ)

is the key quantity which affects the quality of the mass matrix preconditioner. As

for the preconditioner for Aκ, we showed that simply complementing the existing

BCMP preconditioner [12] with an appropriate Jacobi smoothening step allowed one

to obtain robustness in κ. Surprisingly, Υp(φ) also plays an impactful role in the

condition number of Equation (5.11).

We also wish to mention the computational drawbacks of the preconditioner

Equation (5.11). Unlike in Chapter 6, there does not yet exist efficient methods

to invert the interior dofs for Aκ or edges in the Schur complement. Thus, the

preconditioner is more costly than the pure mass matrix preconditioner and, in

our experience, we recommend the mass matrix preconditioner as implemented in

Chapter 6 for the transient problems.



Chapter

SIX

Efficient Implementation of p-FEM

in 2D
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6.1 Introduction

Finally, we turn the implementation aspects of hp-FEM. The root cause of many

issues of hp-FEM can often be traced to the selection of an appropriate basis for the

implementation. Early endeavors into the construction of high order bases such as

Lagrangian and Peano bases quickly fell out of favor due to the condition numbers of

the resulting mass and stiffness matrices [73]. Although the current bases of choice

are the hierarchical or Dubiner bases [22,28,47], recently attention has been drawn to

favorable properties of the Bernstein polynomials [3,49]. The Bernstein polynomials

[30] are widely used in the spline literature [62], computer aided geometric design

(CAGD) [31], and computer graphics (e.g. PS/TT fonts) [41] but have hitherto not

been widely adopted as a basis for high order finite element approximations.

One immediate benefit of using the Bernstein basis is the ease with which one

can visualize and post-process finite element solutions owing to the ubiquitous usage

of the Bernstein basis in CAGD and the computer graphics community. Generally,

visualization and post-processing, including computing iso-surfaces and gradients, of

a high order approximation is considerably more complicated than for a low order

approximation [64]. For example, visualizing a high order approximation expressed

using hierarchical bases typically requires the explicit evaluation of Jacobi polynomi-

als at large number of points which can become prohibitively expensive [47]. Never-

theless, if the approximation is expressed in Bernstein-Bézier form, then techniques

developed in the CAGD community enable one to visualize a degree p approximation

in O(p3) operations as described in Section 6.3.

The suitability of the Bernstein basis for finite element approximations is less

clear-cut. Here, among other things, one needs to compute moments of the data
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with the basis functions (e.g. when constructing the load vector) which, along with

the assembly of the element matrices can dominate the computational costs. In the

case of tensor product elements, one can use the sum factorization approach, pio-

neered by Orszag [57], to efficiently compute matrix-vector products and, although

less well-known, to evaluate moments of the data. Standard hierarchical bases on a

triangle do not naturally have a tensorial structure and are therefore not amenable

to sum factorization approaches. Tensorial hierarchical bases [28,47] circumvent this

difficulty, but lack rotational symmetry and are sub-optimal when it comes to the

evaluation of the element matrices. Perhaps surprisingly, the Bernstein basis was

shown in [3] to naturally have the tensorial property, which is needed for the sum

factorization approach, despite having been known for decades prior to the realiza-

tion of the importance of the tensorial property. We briefly discuss how the AAD

algorithms [3] can be used to construct moments efficiently, and enable the evalua-

tion of the element matrices in optimal complexity in Section 6.3.5. In particular,

we show that these algorithms can be used to calculate quantities of interest of the

solution in O(p3) operations per element.

The aforementioned computational properties of the Bernstein basis come at a

price: the ill-conditioning of the resulting matrices. For example, the mass matrix

for the Bernstein basis has a condition number which grows as O(22pp−1/2) [51],

whereas the mass (and stiffness) matrix for hierarchical bases has condition numbers

which grow at O(p4) or faster as we increase the order [5,52,56]. The preconditioner

in Chapter 2 is basis independent, and therefore applies to both hierarchical and

Bernstein bases. In Section 6.4, we present algorithms which implement the ASM

preconditioner in O(p3) operations in the case of the Bernstein basis. We exploit

a number of properties of the Bernstein basis to reduce computational costs. A

key component of the algorithm is the static condensation of the interior degrees of
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freedom on each element: we present an algorithm which allows one to achieve this

in O(p3) operations.

In section 2, we present some canonical applications and use them to highlight

some of the specific difficulties that one encounters when attempting to use a high

order scheme to approximate their solutions. The above developments mean one can

tackle each of these problems by using the Bernstein basis at an overall complexity of

O(p3) operations. Finally, in section 5 we return to the canonical examples described

in section 2, and illustrate the performance of the above procedures when applied to

these cases.

6.2 Model Problems, Finite Element Formulations,

and Computational Challenges

We consider three prototypical problems which theory suggests should be amendable

to high order FEM approximations yet each problem exhibits features which present

challenges in terms of the efficient implementation of a high order scheme.

In each case Ω ⊂ R2 is a polygonal domain which is partitioned into the union

T of non-overlapping triangular elements with the standard assumptions that the

nonempty intersection of any two distinct elements from T is either a common vertex

or a single common edge. More generally, we consider a family of partitions which

is assumed to be shape regular in that there exists a number c > 0 such that for all

partitions, each triangle T contains an incircle with radius r ≥ hT/c where hT is the

diameter of T .
A version of this chapter have been previously published in [9].
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Let Pp(T ) = span{xαyβ : 0 ≤ α, β, α + β ≤ p} denote the space of polynomials

of total degree p on T ∈ T . Define the standard H1-conforming finite element

space X = {u ∈ H1(Ω) : u|T ∈ Pp(T ), ∀T ∈ T } and the H1
0 -conforming space

X0 = X ∩ H1
0 (Ω). Let {ϕi}Ni=1 be a basis for X, so that any u ∈ X or X0 can be

written as u = ~uT ~ϕ for ~u ∈ RN , where ~ϕ is the vector whose components are the

basis functions. Let M and S be the associated mass and stiffness matrices.

6.2.1 Sine-Gordon Equation

The sine-Gordon equation arises in a range of applications, including differential

geometry [78] and modeling the dislocation of crystals [14,26], and consists of seeking

u such that
∂2u

∂t2
= ∆u− sin u, (x, y) ∈ (−7, 7)2, t > 0 (6.1)

subject to initial conditions given, for example, by [16]

u(x, y, 0) = u0(x, y) = 4 arctan exp(x+ 1− 2 sech(y + 7)− 2 sech(y − 7))

∂
∂t
u(x, y, 0) = w0(x, y) = 0

along with homogeneous Neumann boundary conditions. The variational form of

the problem consists of seeking u(t) ∈ H1(Ω), t > 0 such that

∂2

∂t2
(u, v) = −(∇u,∇v)− (sin u, v) ∀v ∈ H1(Ω) (6.2)

where u(0) = u0 and ∂
∂t
u(0) = w0. The solution is smooth (see Figure 6.1), and thus

should be amenable to approximation using higher order methods [67].

Let up(t) ∈ X be the Galerkin approximation to Equation (6.2) subject to the
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Figure 6.1: Contour plot of the solution of the sine-Gordon equation with the initial
conditions from Section 6.2.1 at t = 5.

initial conditions up(0) = u0p and ∂
∂t
up(0) = w0p where u0p, w0p ∈ X satisfies

(u0p, v) = (u0, v) ∀v ∈ X

(w0p, v) = (w0, v) ∀v ∈ X.
(6.3)

Writing up(t) = ~u(t)T ~ϕ for ~u(t) ∈ RN , the semi-discrete problem takes the form

M d2

dt2~u(t) = −S~u(t)− (sin up(t), ~ϕ).

A fully discrete scheme can be obtained by using a Nyström method [40, p. 285]
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to discretize the temporal derivative:

z = ~un

M~un+1
1 = −S~w − (sin z, ~ϕ)

z = ~un + (∆t)~unt /2 + (∆t)2~un+1
1 /8

M~un+1
2 = −S~w − (sin z, ~ϕ)

z = ~un + (∆t)~unt + (∆t)2~un+1
2 /2

M~un+1
3 = −S~w − (sin z, ~ϕ)

~un+1 = ~un + (∆t)~unt + (∆t)2(~un+1
1 /6 + ~un+2

1 /3)

~un+1
t = ~unt + ∆t(~un+1

1 /6 + 2~un+1
2 /3 + ~un+1

3 /6)

(6.4)

where ~un = ~u(n∆t), ~ϕT~u 0 = u0p, and ~ϕT~u 0
t = w0p. Implicit time-stepping schemes

will be considered later.

The first difficulty encountered in the implementation of Equation (6.4) is the

computation of the nonlinear moment (sin z, ~ϕ) whose efficiency is essential as it

has to be evaluated at every sub-step. A straightforward treatment of the vector

(sin z, ~ϕ) would entail using a quadrature rule with O(p2) quadrature points for each

of the O(p2) entries incurring a cost of O(p4) in basis function evaluations [3]. For

most hierarchical bases, function evaluation involves evaluations of univariate Jacobi

polynomials using a recursion at a cost of O(p) operations per point [1, 69]. It is

possible to use precomputed arrays, in which the values of the basis functions at

quadrature points are cached, but the current computing platforms lean towards the

view that memory access is costlier than CPU cycles [65].

The second difficulty is that one needs to solve three systems involving the mass

matrix M at each time-step. The mass matrices obtained using hierarchical bases
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have condition numbers which grow as O(p4), or faster, even for tensor product

elements [5, 52, 56]. In [5, 52], it was shown that applying diagonal scaling as a

preconditioner for the mass matrix results in a reduction of the condition number to

O(p2). Nevertheless, there is a significant cost involved in solving systems involving

the mass matrix. Fortunately an Additive Scharz Method (ASM) preconditioner

was recently developed for the mass matrix which results in a uniformly bounded

condition number independent of p Chapter 2. We shall pursue this further in

Section 6.4 when we consider how to address the efficient inversion of the mass

matrix.

Quite apart from issues of conditioning, efficient iterative methods also require

fast matrix-vector multiplication. There are two ways to compute matrix-vector

products. The first is the explicit construction of the mass and stiffness matrices,

which will incur a cost of O(p6) basis function evaluations if performed in a naive

fashion [3], and to then compute the matrix-vector products directly. The second way

is to use a matrix-free approach which enables the computation of the matrix-vector

product in O(p3) provided that a tensorial basis is used on the triangle [47].

6.2.2 Brusselator

The Brusselator system is a model of an autocatalytic chemical reaction [40, p. 248]

and consists of seeking (u(t), v(t)), t > 0 such that

∂u

∂t
= 1 + u2v − 4.4u+ 0.002∆u

∂v

∂t
= 3.4u− u2v + 0.002∆v

(x, y) ∈ (−1, 1)2, (6.5)
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Figure 6.2: Contour plot of the solution of the v component of the Brusselator
equation with the initial conditions from Section 6.2.2 at t = 10.

subject to homogeneous Neumann boundary conditions, and initial conditions given,

for example, by

u(x, y, 0) = u0(x, y) = 0.5 + y

v(x, y, 0) = v0(x, y) = 1 + 5x.

The corresponding variational formulation is to seek u(t), v(t) ∈ H1(Ω), t > 0 such

that

∂

∂t
(u,w) = (1, w) + (u2v, w)− 4.4(u,w)− 0.002(∇u,∇w)

∂

∂t
(v, w) = 3.4(u,w)− (u2v, w)− 0.002(∇v,∇w)

(6.6)

for all w ∈ H1(Ω). Although the solution is smooth (see Figure 6.2), it does exhibits

steep interior layers whose location changes as the solution evolves.

Let up(t), vp(t) ∈ X be the Galerkin approximations to Equation (6.6) for u, v
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respectively, subject to initial conditions satisfying

(up(0), w) = (u0, w) ∀w ∈ X

(vp(0), w) = (v0, w) ∀w ∈ X.

Let ~u(t) ∈ RN be the vector such that up(t) = ~u(t)T ~ϕ and likewise for ~v(t) ∈ RN ,

then the semi-discrete problem is

M ∂
∂t
~u(t) = (1, ~ϕ) + (u2

p(t)vp(t), ~ϕ)− 4.4M~u(t)− 0.002S~u(t)

M ∂
∂t
~v(t) = 3.4M~u(t)− (u2

p(t)vp(t), ~ϕ)− 0.002S~v(t)
.

To arrive at the fully discrete scheme, we use an IMEX scheme [66] for the time

discretization as follows:

M~un+1 −M~un

∆t = (1, ~ϕ) + (u2
nvn, ~ϕ)− 4.4M~un+1 − 0.002

2 (S~un+1 + S~un)

M~vn+1 −M~vn

∆t = 3.4M~un − (u2
nvn, ~ϕ)− 0.002

2 (S~vn+1 + S~vn)
(6.7)

where ~un is the approximation at n∆t, and (u2
nvn, ~ϕ) is shorthand for the nonlinear

term (u2
p(t)vp(t), ~ϕ) at time t = n∆t. Observe that if we were to use a fully explicit

scheme, the CFL condition for stability is ∆t ≤ C h2

p4 which, owing to the rapid

decrease with p, is generally regarded as being overly restrictive for practical com-

putations. Instead, one typically sees ∆t ∼ h2

p2 being used in practice in conjunction

with an implicit scheme.

The efficient application of a high order scheme to the solution of the Brusselator

system encounters all of the difficulties which we noted for the sine-Gordon equation.

In addition, the Brusselator system involves the repeated inversion of the matrices

M+0.001∆tS and 5.4M+0.001∆tS, as opposed to the pure mass matrix. Previously,
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we alluded the availability of an ASM preconditioner for the mass matrix. Can this

preconditioner for the pure mass matrix play a useful role in the case of implicit

schemes?

The two dimensional version of Schmidt’s inequality [23] implies there is a con-

stant c, independent of h and p, such that 0 ≤ S ≤ c p
4

h2 M, hence we have

M ≤M + 0.001∆tS ≤
(

1 + c
p4∆t
h2

)
M.

Let P−1 denote the uniform preconditioner for the mass matrix described in

Chapter 2. Then, using P−1 to precondition the implicit scheme gives a condition

number satisfying

κ(P−1(M + 0.001∆tS)) ≤ C
p4∆t
h2 .

Observe that if one uses a time step which satisfies the CFL condition for the explicit

scheme (i.e. ∆t ∼ h2

p4 ), then the condition number will be uniformly bounded.

Alternatively, taking a step size of ∆t ∼ h2

p2 results in the condition number of

the operator growing as O(p2). Therefore a preconditioner for the mass matrix

also provides a useful preconditioner for the systems arising from an implicit time

stepping scheme.

Finally, a difficulty (pertinent also to the case of the sine-Gordon equation) which

often remains unacknowledged in high order finite elements analysis is the cost of

post-processing and visualization of the resulting finite element solution. A straight-

forward approach to visualization based on evaluating the solution at sufficiently

many points and using a standard graphics package, would require the evaluation

of the solution at O(p2) points. At each of those points, we need to evaluate the
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Figure 6.3: Contour plot of the solution of the singularly perturbed problem with
ε2 = 10−3 and f = 1.

solution (a vector with with O(p2) entries) meaning a total of O(p4) Jacobi polyno-

mial evaluations are needed to evaluate u. The same costs apply if one wishes to

visualize a component of the gradient etc. We discuss the issue of visualization and

post-processing in Section 6.3.

6.2.3 Problems Exhibiting Boundary Layers

Let 0 < ε� 1 be a parameter, and consider the problem on Ω = (0, 1)2

u− ε2∆u = f x ∈ Ω

u = 0 x ∈ ∂Ω

where f ∈ L2(Ω). This is an example of a singularly perturbed problem in which the

solution exhibits steep layers of width O(ε) in the neighborhood of the boundary [54];

see Figure 6.3 for a plot of the solution for ε2 = 10−3 with f = 1. This problem

serves as a prototype for a large class of problems arising in mechanics including, for

example, the linear elastic response of thin bodies [38].
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The variational form consists of seeking u ∈ H1
0 (Ω) such that

(u, v) + ε2(∇u,∇v) = (f, v) ∀v ∈ H1(Ω).

In fully discrete form, we arrive at the linear system

(M + ε2S)~u = ~f (6.8)

where ~f = (f, ~ϕ). Whilst the operator M+ε2S has, at first glance, the same structure

as the operators which arose in the Brusselator example, viz M + c∆tS, the present

case poses an additional layer of difficulty which we shall now explain.

The anisotropic behavior of the solution in the neighborhood of the boundary

means that, in order to obtain a robust scheme in ε, anisotropic or stretched elements

should be used at the boundary in conjunction with regular elements on the interior

[11]. Moreover, whilst the solution has boundary layers, it is analytic and as such

high order methods can exhibit exponential rates of convergence provided that the

anisotropy of the elements is properly combined with the polynomial order p [68].

The correct combination of anisotropic and p consists of using anisotropic ele-

ments of width O(pε) along the boundary as illustrated in Figure 6.4 [68]. This

approach gives robust exponential convergence with respect to ε and, as such, will

outperform a pure h-version or pure p-version method [54]. Of course, using a single

layer of anisotropic elements around the boundary means that we drop our earlier

assumption that the family of partitions is shape uniform.

The fresh computational issue that arises is that the aspect ratio of anisotropic

elements has a detrimental effect on the conditioning of the stiffness matrix S [48]

resulting in issues with iterative solvers [54]. Existing preconditioners for anisotropic
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Figure 6.4: Plot of the mesh to approximate the boundary layer problem Sec-
tion 6.2.3. The needle elements around the boundaries have thickness of pε in order
to resolve the rapid changes [54,68].

elements are either inapplicable to the meshes from [54, 68] described above [74] or

give condition numbers dependent on the factor ε [53].

The above difficulties notwithstanding, we again propose to simply use the mass

matrix preconditioner P−1 from Chapter 2 to precondition the systems arising from

meshes such as the one shown in Figure 6.4. A scaling argument applied to the

usual two dimensional Schmidt’s inequality [23] on isotropic elements can be used to

deduce that

M ≤M + ε2S ≤
(

1 + cε2 p4

p2ε2

)
M (6.9)

≤ (1 + cp2)M. (6.10)

Consequently, using the mass preconditioner P−1 from Chapter 2, we have κ(P−1(M+

ε2S)) ≤ Cp2 with C independent of p, ε and the number of elements. The key ad-

vantage of using the mass matrix is that the condition number is independent of ε

whereas alternative approaches result in a condition number depending on ε−1 � 1.
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6.2.4 Summary

In summary, applying high order methods to tackle the above prototypical problems

encounters the following challenges:

1. Calculation of the nonlinear moments, such as (u2
nvn, ~ϕ) and (sin z, ~ϕ), is po-

tentially inefficient. As discussed previously, bases which can utilize the sum

factorization technique are adept at computing moments and matrix-vector

products. In Section 6.3.5, we will briefly discuss how the Bernstein polyno-

mials can use algorithms presented in [3] to calculate the nonlinear moments

and the residuals in O(p3) operations.

2. Transient problems will require the use of a time stepping scheme, which results

in the need to invert either the mass matrix or a perturbation thereof. We pro-

pose to solve such systems efficiently by implementing the ASM preconditioner

developed in Chapter 2 using the Bernstein basis in Section 6.4. Furthermore,

the foregoing discussion showed for the treatment of the matrices arising in

implicit time stepping schemes and from problems where anisotropic elements

are used, preconditioning the mass matrix can be an effective approach.

3. Finally, once the simulation is complete, one typically wishes to either visualize

the solution or carry out post-processing to calculate quantities of interest. We

will exposit algorithms which can easily visualize and post-process the solutions

obtained using the Bernstein basis in Section 6.3.
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6.3 Visualization and Post-Processing

Bernstein-Bézier polynomials have played a fundamental role in the development

of computer graphics, splines, PS/TT fonts and computer-aided geometric design

(CAGD), resulting in a wealth of elegant and effective algorithms for the visualiza-

tion and graphical post-processing of polynomials written in Bernstein form [29,30].

In this section, we formally introduce the Bernstein polynomials and give a brief

overview of efficient O(p3) algorithms for the implementation of post-processing pro-

cedures which are pertinent to finite element analysis (e.g. point evaluation, visual-

ization, and evaluations of quantities of interest).

6.3.1 Bernstein Polynomials

Let T be a non-degenerate triangle in R2 with vertices v1, v2, v3. For a fixed integer

p ≥ 3, we define the domain points as

Dp(T ) =
{

1
p

(α1v1 + α2v2 + α3v3) : (α1, α2, α3) ∈ Ip
}

where the index set Ip = {α := (α1, α2, α3) ∈ Z3
+ : ∑3

k=1 αk = p}. It is natural to

classify the domain points into vertices, edges or interior points. The interior domain

points are those associated with α ∈ Ip with strictly positive components. The vertex

domain points are associated with the indices (p, 0, 0), (0, p, 0) and (0, 0, p). Finally,

the edge domain points are the remaining domain points; see Figure 6.5.

The barycentric coordinates λi ∈ P1(T ), i ∈ {1, 2, 3} of T are affine functions

such that λi(vj) = δij for i, j ∈ {1, 2, 3}. The bivariate Bernstein polynomials of
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degree p associated with triangle T are then defined by

Bp
α = p!

α1!α2!α3!
λα1

1 λ
α2
2 λ

α3
3 , α ∈ Ip.

There is a natural one-to-one correspondence between Bernstein polynomials, domain

points and the index set Ip. Every Bernstein polynomial on a triangle can be readily

classified as an interior, an edge or a vertex polynomial in much the same way as

domain points. We denote by Bp
V , B

p
E, B

p
I as the sets of all vertex, edge and interior

Bernstein polynomials; see Figure 6.5.

V

E

E

V E E V

E

E

I

Figure 6.5: Figure showing domain points for degree p = 3 along with some plots
of a typical Bernstein polynomial corresponding to the domain points. V stands for
vertex, E stands for edge and I stands for interior.

Every polynomial u ∈ Pp(T ) can be expressed in terms of degree p Bernstein

polynomials:

u =
∑
α∈Ip

cpαB
p
α

the so-called B-form of u. The coefficients cpα are usually referred to as the B-net or

control points by the graphics community [29].

Likewise, one can define the univariate Bernstein polynomials: let λ1, λ2 be the

barycentric coordinates of a point on the interval [a, b], then the univariate Bernstein
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polynomials of degree p on the interval are defined as

Bp
i =

(
p

i

)
λi1λ

p−i
2 , i = 0, . . . , p.

6.3.2 Point Evaluation using de Casteljau Algorithm

The de Casteljau algorithm is an elegant and stable recursive scheme for the eval-

uation of a polynomial written in terms of Bernstein polynomials [29]. Given the

control points {cpα} of a polynomial u in B-form, we fix a point P ∈ T at which we

want to evaluate u, and let λ1, λ2, λ3 be the values of the barycentric coordinates

of P . The de Casteljau algorithm consists of recursively defining points {ckβ} for

k ∈ [0, . . . , p− 1] and β ∈ Ik by

ck(β1,β2,β3) := λ1c
k+1
(β1+1,β2,β3) + λ2c

k+1
(β1,β2+1,β3) + λ3c

k+1
(β1,β2,β3+1).

The recursion terminates with a single coefficient c0
000 at a cost of O(p3) operations

which, remarkably, coincides u(P ); see Figure 6.6 for an example in the case p = 3.

c3
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c3
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c3
030 c3

021 c3
012 c3
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c3
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011 c2

002
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011 c2
002
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c1
100

c1
010 c1

001

c1
100

c1
010 c1

001

c0
000

Figure 6.6: Example of applying de Casteljau algorithm to p = 3 case

The de Castlejau algorithm is the archetypal example of a pyramid algorithm

[34]. Specifically, if we stack the coefficients appearing in Figure 6.6 as shown in

Figure 6.7, in which each layer corresponds to the recursion level, we obtain a pyramid

of coefficients with cpα on the bottom and c0
000 at the summit.
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A key property of the de Castlejau algorithm is that the coefficients which emerge

on its three vertical faces of the pyramid satisfies the blossoming property. In order

to explain what this means, we first label the vertices corresponding to domain points

c3
300, c

3
030, c

3
003 (i.e. the vertices of the triangle) as A,B,C respectively and again fix

the point P ∈ T corresponding to barycentric coordinates λ1, λ2, λ3 as before (recall

u(P ) = c0
000).

Blossoming is the property whereby the B-form polynomial defined by the coef-

ficients laid out in Triangle 1 in Figure 6.8 (the left face in Figure 6.7) equals the

restriction of u to the region 4ABP , i.e.

u1|4ABP = u|4ABP .

The same property holds true for 4BCP with coefficients as in Triangle 2, and for

4ACP with coefficients from Triangle 3. In other words, we have

u(x)|4ABC =



u1(x) x ∈ 4ABP

u2(x) x ∈ 4BCP

u3(x) x ∈ 4ACP

.

A pseudo-code implementation of de Casteljau algorithm with the blossoming

coefficients stored can be seen in Algorithm 3. Note that the blossoms for the faces

are a natural by-product of applying the de Casteljau algorithm.
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Figure 6.7: Rearranging the de Casteljau algorithm to a pyramid in the p = 3 case.
The interior coefficients (such as c3

111) are left out for clarity.

Triangle 1: u1(x)
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Triangle 2: u2(x)
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Triangle 3: u3(x)
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Figure 6.8: Example of blossoming

6.3.3 Visualization

While the de Casteljau algorithm is stable, using it to evaluate large numbers of

points for plotting is not an efficient strategy (e.g O(p3) operations are required for

reach of the O(p2) points netting an overall cost of O(p5)). Consequently, a standard

technique to the rendering of Bernstein-Bézier surfaces in the computer graphics

community consists of plotting the surface obtained by linearly interpolating the

coefficients {cpα} of the Bernstein polynomial [29]. This B-net is a convex hull for

the polynomial, and approximates the surface. If higher resolution is needed than

provided by the original B-net of the solution, then the subdivision algorithm can be

invoked to create a finer net which then can be rendered in the same fashion.
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Algorithm 3 de Casteljau Algorithm (with blossoming coefficients)
Require: abc 2D array of the B-net of the polynomial of degree p

1: function decast(λ1, λ2, λ3, abc)
2: apc, abp := zeros((p+ 1, p+ 1)) . Stores blossoming data
3: apc = abc[:, 0] . Store first rows before overwriting
4: abp = abc[0, :]
5: for k = 0, . . . , p− 1 do
6: for i = 0, . . . , p− k − 1 do
7: for j = 0, . . . , i do . de Casteljau step
8: abc[j, i−j] = λ1abc[j, i−j]+λ2abc[j+1, i−j]+λ3abc[j, i−j+1]
9: end for

10: end for
11: apc[0 : p− k, k + 1] = abc[0 : p− k, 0] . Store the blossoming

coefficients before progressing to the next level
12: abp[k + 1, 0 : p− k] = abc[0, 0 : p− k]
13: end for
14: . apc and abp contains the B-net for triangles APC and ABP

respectively. See Figure 6.8.
15: return abc, apc, abp . abc contains the coefficients for pbc
16: end function

The subdivision algorithm consists of dividing the original triangle into four tri-

angles representing the same polynomial1; see Figure 6.9. Although the original func-

tion remains unchanged, the B-net representing u now contains roughly four times as

many B-net points obtained at the cost of just four applications of the de Casteljau

algorithm with storage of the blossoming coefficients (see Algorithm 4) [33, §8.1]; see

Table 6.1 for a comparison in the cost of visualization in terms of the number of op-

erations needed per point when using de Casteljau algorithm versus the subdivision

algorithm.

The subdivision algorithm converges quadratically in the number of subdivision

levels `, in the sense that for a given triangle T with diameter hT , the error at the
1We note that the de Casteljau algorithm with blossoming coefficients divides the triangle into

three triangles representing the same polynomial (assuming the point lies in the interior of the
triangle).
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A

B C

T

R

S

Figure 6.9: The subdivision algorithm: given the control points on4ABC, we divide
it into four triangles4ATS,4TRS,4TBR, and4SRC whose control points equals
the same polynomial.

Table 6.1: Table to illustrate the benefit of using subdivision algorithm by displaying
the cost per point of visualization assuming O(1) number of subdivisions; typically,
only two or three subdivisions are needed for visual fidelity.

Method Number of Points Cost per Point Total Cost
de Casteljau O(p2) O(p3) O(p5)
Subdivision O(p2) O(p) O(p3)

`th level of subdivision is

‖u− ū`‖∞ ≤
C

2`‖∆u‖∞

for C independent of h, where u ∈ Pp(T ) and ū` is the linear interpolation of the `th

level subdivided B-net [20,21]. In Figure 6.10, we plot a B-net and its subdivisions;

we observe that two or three subdivisions is usually more than enough for visual

fidelity.

Once the subdivision step is completed, one can save the resulting B-net and the

domain points as VTK files in order that sophisticated visualization software akin to

Paraview or VisIt can easily process it. From here, robust algorithm in those software

packages can post-process the approximation including plotting contour lines.

The efficient rendering of the B-net can be accomplished using OpenGL “evalu-

ators” (see glEvalMesh2 in [70]). These OpenGL evaluators are defined on a rect-
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Algorithm 4 Subdivision Algorithm on a single triangle
Require: abc array of the coefficients of B-form polynomial of degree p

1: function subdivision(c)
2: , abr, arc = decast(0, .5, .5, abc) . We use the blossoming coefficients from

Algorithm 3; the notation means we do not use the result.
3: tbr, , = decast(.5, .5, 0, abr) . Obtain triangle TBR from Figure 6.9
4: src, ars, = decast(.5, 0, .5, arc) . Obtain triangle SRC from Figure 6.9
5: trs, , ats = decast(1, 1,−1, ars) . point T is outside of 4ARS; this step

gives us the last two triangles of the subdivision.
6: return ats, trs, tbr, src
7: end function

Figure 6.10: Figures showing the refinements of the subdivision algorithm for p = 12
and 16 elements on the square for the initial condition of the sine-Gordon example.
In general, the number of refinements needed is only 2 or 3 depending on the order
and size of the elements.

(a) 0 subdivisions (b) 1 subdivision (c) 2 subdivisions

angular patch but a simple transformation of the coefficients on a triangle to the

rectangle can be employed [44, 81]. Unfortunately, in many implementations, there

is vendor and hardware dependent constant, namely GL MAX EVAL ORDER, which sets

the maximum order that OpenGL can plot, which is often set to just p < 8.

6.3.4 Computation and Visualization of Gradients and Higher

Derivatives of the Solution

We now describe how to easily compute and visualize the gradient and higher order

derivatives from a B-form polynomial. The gradient of a Bernstein polynomial can



160

Figure 6.11: Example vector plot of gradients for the sine-Gordon example at t = 5
with 2 subdivisions. Note that the gradient glyphs are superimposed over the plot
of the sine-Gordon solution.

be expressed as a sum of Bernstein polynomials

∇Bp
α = p

3∑
k=1

Bp
α−ek∇λk (6.11)

where the sum is over when α − ek is a valid multi-index [4]. Let u be a given

polynomial expressed in B-form, then by Equation (6.11)

∇u =
∑
α∈Ip

cpα

p 3∑
k=1

Bp
α−ek∇λk

 =
∑

β∈Ip−1

~c p−1
β Bp−1

β

where

~c p−1
β = p

3∑
k=1

cβ+ek∇λk ∀β ∈ Ip−1.

Hence, to compute the gradient, we compute ~c p−1
β from cpα at a cost of O(p2) oper-

ations. One can then use the subdivision algorithm on ~c p−1
β componentwise to plot

the gradient. This results in a smaller B-net than by plotting the function values

(i.e. α ∈ Ip but β ∈ Ip−1).

In order to obtain the B-net of the gradient on the same set of control points as the



161

original approximate u, one would apply the Bernstein 2D degree raising algorithm

(Algorithm 16) component-wise which allows one to express ~c p−1
β for β ∈ Ip−1 as

~c pα for α ∈ Ip; the cost of degree raising is O(p2). See Figure 6.11 for an example

of superimposing the gradients over the solution, and Algorithm 5 for the general

visualization algorithm. In fact this procedure can be generalized to arbitrary order

derivatives; for example, to visualize the Hessian and superimpose it on the solution,

one would have to first calculate the coefficients c p−2
β appropriately, degree raise

twice, then use the same subdivision algorithm component-wise.

Algorithm 5 Function and Gradient Plotting Algorithm
Require: cpα coefficients of Bernstein polynomials

1: function Visualize(cpα)
2: Calculate ~c p−1

β from cpα
3: ~c pα = DegreeRaise2D(~c p−1

β ) . Perform degree raising component-wise
4: Apply subdivision to cpα and component-wise to ~c pα
5: Plot the resulting Bézier net from the subdivision algorithms
6: end function

6.3.5 Evaluation of Quantities of Interest and Nonlinear Mo-

ments

In many practical problems, the quantity of interest is not point values but rather

some integral quantity of the solution u such as the L2 energy
∫

Ω u
2 dx, H1 energy∫

Ω(u2 + |∇u|2) dx, the average displacement 1
|Ω|
∫

Ω u dx etc [13]. In general, quantities

of interest can be expressed as

Q[u] =
∫

Ω
η(u,∇u) dx

for η a given, possibly non-linear, function.
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The quantity Q[u] can be computed efficiently by exploiting the tensorial nature

of the Bernstein basis (Lemma 1 of [3]). Given the control points cαp of the approx-

imate u, we can apply algorithm 1 and eq (3.6) of [3] to directly compute Q[u] for

each element at a cost of O(p3) operations. Furthermore, the tensorial property

allows one to compute the residual and matrix-vector products in O(p3) also. The

following theorem from [3] is the key:

Theorem 6.3.1. In two dimensions, the nonlinear moments

~µT (u, f) =
∫
T
Bp
α(x)f(x, u,∇u) dx ∀α ∈ Ip

where T is a simplex and f is an arbitrary nonlinear function can be computed with

a cost of O(p3).

Here, we want to emphasize that Theorem 6.3.1 allows us to calculate the non-

linear evaluation such as (sin z, ~ϕ) or (u2
nvn, ~ϕ) from Section 6.2 in O(p3). It is a

straightforward application of the algorithm in Corollary 3 of [3].

Furthermore, we can calculate matrix-vector multiplication using µT ; for exam-

ple, the mass matrix product can be calculated as

~µT (u, 1) =
∫
T
Bp
α(x)u(x) dx =

∫
T
Bp
α

( ∑
β∈Ip

cpβB
p
β

)
dx = (M~u)α ∀α ∈ Ip

where (M~u)α is the column corresponding to row α. We refer to [3] for efficient

techniques for the evaluation of matrix-vector products against the stiffness matrix

etc.
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6.4 Linear Solver and Preconditioning

In Section 6.3, we discussed computation of the residual and visualization in O(p3)

using the Bernstein basis; all that remains is inverting the mass matrix (or a small

perturbation thereof) in order to time-step. An unfortunate fact of the Bernstein

basis is that its mass matrix condition number is O(22pp−1/2) [51]; an iterative solver

will struggle, and direct solvers will lose many digits of accuracy. In this section, we

present the implementation of a uniform preconditioner in both h and p Chapter 2

for the Bernstein basis mass matrix with a cost of O(p3) operations.

We claim that we can simulate and post-process transient problems using an

explicit time-stepper (e.g. Section 6.2.1) in O(p3) operations. Recall the error at

iteration n for conjugate gradient is bounded by

(√
κ− 1√
κ+ 1

)n
‖~e0‖

where κ is the condition number of the preconditioned system and ~e0 is the initial

residual vector [35, p. 636]. As the condition number κ of the preconditioned mass

matrix is bounded uniformly, the number of iterations needed by conjugate gradi-

ent to converge to a given tolerance ε is also bounded uniformly by a constant K

independent of p and h

K ≤ log ε

‖~e0‖
/ log

√
κ− 1√
κ+ 1

Hence, to time-step up to time T using an ` step explicit time-stepper with ∆t would

require

T

∆t`N · O(p3)→ O(p3)
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operations total, including post-processing procedures.

6.4.1 Jacobi Polynomials

We use the standard definition of 1D Jacobi polynomial [1] for P (a,b)
p where p is the

order and a, b > −1 are the weights. The orthogonality property is such that

∫ 1

−1
(1− x)α(1 + x)βP (α,β)

m (x)P (α,β)
n (x) dx

= 2α+β+1

2n+ α + β + 1
(n+ α)!(n+ β)!
(n+ α + β)!n! δnm.

A key identity relating Jacobi polynomials and 1D Bernstein polynomials together

is

P (a,b)
p =

n∑
i=0

(
p+a
i

)(
p+b
p−i

)
(−1)p−i

(
p
i

)Bp
i . (6.12)

6.4.2 Additive Schwarz Preconditioner for Mass Matrix

We present a short review of the additive Schwarz preconditioner presented in Chap-

ter 2 for the mass matrix on a triangulation T of the domain Ω. Let X = {u ∈

H1(Ω) : u|K ∈ Pp(K),∀K ∈ T }. Define XK,I := Pp(K) ∩H1
0 (K) which is the space

of polynomial bubble functions on element K, and let XI = ∪K∈TXK,I . We note

that the interior Bernstein polynomials Bp
I is a basis for XI .

For each edge e ∈ T , let Ki be the elements such that e ∈ ∂Ki. Let

Xe := span {Bp
α : α domain points strictly in e}
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and define the edge spaces

X̃e :=
{
u ∈ Xe : (u,w) = 0 ∀w ∈ XI

}
.

A key property is that each element in X̃e and Xe can be uniquely determined by its

value restricted to e (see Lemma 5.1 of Chapter 2).

For x ∈ [−1, 1], let

ν(x) = (−1)bp/2c+1

bp/2c
1− x

2 P
(1,1)
bp/2c−1(x). (6.13)

For each vertex v ∈ T , let Ki be the elements such that v ∈ ∂Ki, let λi be the

barycentric coordinate of Ki such that λi(v) = 1. Define

ϕv(x) =


ν(1− 2λi) x ∈ ∪iKi

0 else

which has the property that ϕv(v) = 1, and ϕv(x) = 0 for all x ∈ Ω \ ∪iKi. Further-

more, ϕv(x) on the edges on which it is supported is a scaling of ν. Now define

XV := span {ϕv : v ∈ T }

and

X̃V := {u ∈ XV : (u,w) = 0 ∀w ∈ XI}

Similar to X̃e, the space X̃V is uniquely determined by the values on the vertices.
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We can decompose X as

X = XI ⊕ X̃V ⊕
⊕
e∈T

X̃e.

We now define the bilinear form on the subspaces in the decomposition:

• Interior space XI :

aI(u,w) := (u,w), u, w ∈ XI .

• Vertex space X̃V :

aV (ũ, w̃) := 1
p4

∑
v∈T

cvũ(v)w̃(v), ũ, w̃ ∈ X̃V .

where cv = ∑
Ki

area(Ki)
2 where Ki are the elements such that v ∈ ∂Ki.

• Edge spaces X̃e for all e ∈ T :

ae(ũ, w̃) := ce

p−2∑
n=0

qnµn(ũ)µn(w̃), ũ, w̃ ∈ X̃e

where ce = ∑
Ki

area(Ki)
2 where Ki are the elements such that e ∈ ∂Ki,

qn := 2
(p+ 4 + n)(p− n+ 1)

∫ 1

−1
(1− x2)2P (2,2)

n (x)2 dx

= 64(n+ 1)(n+ 2)
(p+ 4 + n)(p− n+ 1)(2n+ 5)(n+ 3)(n+ 4)

(6.14)

and µn is the weighted moment given by

µn(u) := (2n+ 5)(n+ 3)(n+ 4)
32(n+ 1)(n+ 2)

∫ 1

−1
(1− x2)P (2,2)

n (x)u(x) dx
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where we use a linear parametrization such that e = [−1, 1].

Given f ∈ X, the additive Schwarz method from Chapter 2 is:

(i) uI ∈ XI : aI(uI , vI) = (f, vI) ∀vI ∈ XI .

(ii) uV ∈ XV : aV (ũV , ṽV ) = (f, ṽV ) ∀ṽV ∈ X̃V .

(iii) For all edges e in T , ũe ∈ X̃e : ae(ũe, ṽe) = (f, ṽe) ∀ṽe ∈ X̃e.

(iv) u := uI + ũV +∑
e∈T ũe is our solution.

The key result regarding the condition number is the following:

Theorem 6.4.1. The condition number of the above additive Schwarz method is

bounded by a constant C independent of h and p (Theorem 3.1 from Chapter 2).

In the following sections, we discuss the implementation of each of the steps of

the ASM preconditioner using a Bernstein basis. Let ~Bp
V , ~B

p
E, ~B

p
I be respectively the

vectors such that its entries are the vertex, edge and interior Bernstein polynomials

on the mesh. We enumerate the basis analogous to Chapter 2:

1. the vertex functions ~Bp
V in any order

2. the edge functions grouped by edges, and ordered by the multi-indices

3. the interior functions grouped by the element which they are supported on

We can construct the mass matrix for the Bernstein basis on T in the following block
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form

M =


MV V MV E MV I

MEV MEE MEI

MIV MIE MII



where the subscripts indicate the interaction between vertices (V), edges (E) or

interiors (I); the residual against the Bernstein polynomials ~f and solution ~x vector

can be blocked in a similar way as

f̄ =


~fV

~fE

~fI

 and x̄ =


~xV

~xE

~xI

 .

6.4.3 Interior Spaces

In this section, we give an efficient algorithm which was communicated in [10] to

solve

aI(u,w) = (f, w) ∀w ∈ XI . (6.15)

As XI is the direct sum of bubble functions on each individual element, we can simply

discuss the implementation on the reference element. For the sake of conciseness, we

leave all proofs in this section to the appendix.

We recall an orthogonal basis for Pp(K)∩H1
0 (K) is given by (see §2.1 of Chapter 2)

ψij(x, y) = 1− s
2

1 + s

2 P
(2,2)
i−1 (s)

(
1− t

2

)i+1 1 + t

2 P
(2i+3,2)
j−1 (t)
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for 1 ≤ i, j, i+ j ≤ p− 1, where

s = λ2 − λ1

1− λ3
, t = 2λ3 − 1

and λ1, λ2, λ3 are the barycentric coordinates of T . If we let

u(x, y) =
p−1∑
i=1

p−1−i∑
j=1

uijψij(x, y)

for coefficients uij, then plugging u(x, y) into Equation (6.15) with the test functions

w = ψlm(x, y), we see that uij = (f,ψij)

‖ψij‖2 , hence the solution to Equation (6.15) is

simply

u(x, y) =
p−1∑
i=1

p−1−i∑
j=1

(f, ψij)
‖ψij‖2 ψij(x, y) =

∑
|α|=p

cpαB
p
α. (6.16)

Since we are working with the Bernstein polynomials, the question is now a matter

of converting from the ψij basis to the Bernstein basis.

First, we rewrite the basis functions ψij as a multiple of λ1λ2λ3, and make a

change of variables on the indices obtaining

ψij|r=i−1,m−r=j−1 = λ1 λ2 λ3 P
(2,2)
r (s)

(
1− t

2

)r
P

(2r+5,2)
m−r (t),

for 0 ≤ r ≤ m and 0 ≤ m ≤ p− 3. The next lemma gives allows one to rewrite the

interior basis functions as a sum of Bernstein polynomials.

Lemma 6.4.2. Let 0 ≤ r ≤ m and 0 ≤ m ≤ p− 3. Then, it holds

P (2,2)
r (s)

(
1− t

2

)r
P

(2r+5,2)
m−r (t) =

∑
|α|=m

amrα Bm
α (x, y),
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where, for |α| = m

amrα =


νmrα3 γ

r,m−α3
α2 , for α3 ≤ m− r,

0, otherwise,

and

νmrα3 = (−1)m−r−α3

(
m+r+5
α3

)(
m−r+2
m−r−α3

)
(
m
α3

) ,

γr,m−α3
α2 =

m−r−α3∑
l=0

γrα2−l

(
m−r−α3

l

)(
r

α2−l

)
(
m−α3
α2

) ,

γrj = (−1)r−j
(
r+2
j

)(
r+2
r−j

)
(
r
j

) ,

for j = 0, . . . , r. Note that γrj are the Bernstein-Bézier coefficients of the one-

dimensional Jacobi polynomial P (2,2)
r .

To obtain the Bernstein-Bézier coefficients cpα of u(x, y), we apply Lemma 6.4.2

to Equation (6.16), obtaining

u(x, y) = λ1λ2λ3

p−3∑
m=0

m∑
r=0

∑
|α|=m

amα
(f, λ1λ2λ3B

m
α )

‖ψmr‖2
∑
|β|=m

amrβ Bm
β (x, y). (6.17)

We remark that the form given as above is the sum of Bernstein polynomials of

different orders; hence care must be taken to ensure that we express u(x, y) as a sum

of pth order Bernstein polynomials.

Considering that we are given the Bernstein moments fpα = (f,Bp
α) of degree p

of a function f , we break down the calculations into 5 steps:
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Step 1. Compute moments

f̃p−3
α = (f, λ1λ2λ3B

p−3
α ),

for the data fp.

Step 2. Compute

Smr =
∑
|α|=m

amrα
f̃mα
‖ψmr‖2 , for r = 0, . . . ,m, m = 0, . . . , p− 3.

Step 3. Compute

Tmβ =
m∑
r=0

Smramrβ , for |β| = m, m = 0, . . . , p− 3.

Step 4. Compute coefficients cmα by raising the coefficients cm−1
α (if m > 0) to degree

m and adding them to Tm.

Step 5. Compute coefficients cpα from coefficients cp−3
α by multiplying by the interior

bubble function, i.e.

∑
|α|=m

cpαB
p
α = λ1λ2λ3

∑
|α|=p−3

cp−3
α Bp−3

α .

We will observe in the following sections that the costs of Steps 1, and 5 are of

O(p2), and Step 4 is of O(p3). If we compute the sums in Steps 2 and 3 naively, we

end up with a cost of O(p4). This is of course not optimal in the sense that it does

not match the computational complexity of other algorithms in this paper. In the

following subsections we present algorithms computing Steps 1-5, in particular the

algorithms for Steps 2 and 3 use recurrence relations in the computations that allow

us to achieve an optimal order. In summary, we obtain an algorithm for computing

the Bernstein-Bézier coefficients cpα of u(x, y) of computational complexity of O(p3).



172

6.4.3.1 Computation of Step 1.

Since the residual vector ~fI = (f,Bp
α) for α the index set corresponding to the interior

domain points, we then note that f̃p−3
α is obtained by

(f, λ1λ2 λ3B
p−3
α ) = (α1 + 1)(α2 + 1)(α3 + 1)

(p− 2)(p− 1)p fpα+(1,1,1).

for |α| = p− 3 as

λ1λ2λ3B
p−3
α = λ1λ2λ3

(p− 3)!
α! λα1

1 λ
α2
2 λ

α3
3 = (α1 + 1)(α2 + 1)(α3 + 1)

(p− 2)(p− 1)p Bp
α+(1,1,1).

(6.18)

6.4.3.2 Computation of Step 2

We assume that f̃p−3
α is given from Step 1, then we compute Smr for r = 0, . . . ,m

and m = 0, . . . , p− 3. Plugging in the definition of amrα , we have

Sm,r = 1
‖ψmr‖2

∑
|α|=m

amrα f̃mα = 1
‖ψmr‖2

m−r∑
α3=0

νmrα3

∑
α1+α2=m−α3

γr,m−α3
α2 f̃mα

:= 1
‖ψmr‖2

m−r∑
α3=0

νmrα3 Q
mr
α3 .

The key to decreasing the number of operations is to use recurrence relations of the

coefficients and moments. We claim that we can compute Qmr
α3 and Smr with the

following strategy:

1. Compute Qmr
α3 and Smr for α3 = 0, . . . ,m− r, r = 0, . . . ,m and m = p− 3.

This has a cost of O(p3) as we have to iterate over α3 and r for each Qmr
α3 , then

compute a sum of O(p). We remark that while we can precompute and store
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the coefficients γr,m−α3
α2 , we can compute these coefficients using a 1D degree

raising algorithm (see Lemma 6.7.2).

2. Compute recursively for m = (p− 3)− 1, . . . , 0:

Qmr
α3 = α3 + 1

m+ 1Q
m+1r
α3+1 + m+ 1− α3

m+ 1 Qm+1r
α3 , α3 = 0, . . . ,m− r,

Smr = 1
‖ψmr‖2

m∑
α3=0

νmrα3 Q
mr
α3 ,

for r = 0, . . . ,m.

This step also has a cost of O(p3) as we have to loop over m, r, α3 to calculate

Qmr
α3 ; Smr requires us to loop over m, r and sum over m.

We prove this recurrence relation in the appendix.

6.4.3.3 Computation of Step 3.

Similar to Step 2, we compute the terms Tmβ for each m using the following strategy:

1. Compute Tmβ for |β| = m and β3 = 0.

Since we are looping over |β| = m such that β3 = 0, this loop is of O(p). We

also have to calculate the sum for Tmβ at each loop, which incurs a cost of O(p).

Finally, we would have to do this for each m, meaning the final cost is of O(p3).

2. Compute for β3 = 0, . . . ,m− 1

Tmβ+e3 = −
(
β1 + 3
β3 + 3T

m
β+e1 + β2 + 3

β3 + 3T
m
β+e2

)
,

for β2 = 0, . . . ,m− β3 − 1.
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The cost here is clearly O(p3) as we need to loop over m, then over β2, β3.

6.4.3.4 Computation of Step 4.

We compute the coefficients cm by adding Tm and cm−1
α . We observe that cm−1

α

corresponds to coefficients of degree m − 1, then we use two dimensional degree

raising to carry out the operation (Algorithm 16). The 2D degree raise algorithm

has a cost of O(p2); we need to do this for all m < p− 3, hence a cost of O(p3).

6.4.3.5 Computation of Step 5.

Similarly to Step 1, we obtain the coefficients cpα by using Equation (6.18)

cpβ+1 = (β1 + 1)(β2 + 1)(β3 + 1)
(p− 2)(p− 1)p cp−3

β ,

for |β| = p− 3.

We outline the procedure for computing the coefficients in algorithms 6 and 7.

Algorithm 6 Inversion of interior Bernstein mass matrix
Require: Interior Bernstein moments fpα = (f,Bp

α), for |α| = p, and 0 < α < p
1: function M−1

II (fpα)
2: for |α| = p− 3 do . Step 1
3: f̃p−3

α = (α1+1)(α2+1)(α3+1)
(p−2)(p−1)p fpα+1

4: end for
5: cp−3

α = InteriorInverse (f̃p−3
α )

6: for |α| = p− 3 do . Step 5
7: cpα+1 = (α1+1)(α2+1)(α3+1)

(p−2)(p−1)p cp−3
α

8: end for
9: return cpα

10: end function
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Algorithm 7 Computing interior coefficients
1: function InteriorInverse(f̃p−3

α )
2: n = p− 3 . For convenience
3: for r = 0, . . . , n do . Step 2: Initialize Qnr and Snr

4: γr,r = Jacobi (2,2)-Bernstein coefficients of degree r
5: α3 = n− r
6: Qn,r

α3 = γr,r · f̃n·,α3

7: for α3 = n− r − 1, . . . , 0 do
8: γr,n−α3 = DegreeRaise(γr,n−α3−1)
9: Qn,r

α3 = γr,n−α3 · f̃n·,α3

10: end for
11: Sn,r = ∑n−r

α3=0 ν
n,r
α3 Q

n,r
α3 /‖ψnr‖

2

12: end for
13: for m = n− 1, . . . , 0 do . Step 2: Recursive portion
14: for r = 0, . . . ,m do
15: for α3 = 0, . . . ,m− r do
16: Qm,r

α3 = (α3+1)
m+1 Q

m+1,r
α3+1 + (m+1−α3)

(m+1) Qm+1,r
α3

17: end for
18: Sm,r = ∑m−r

α3=0 ν
m,r
α3 Q

m,r
α3 /‖ψnr‖

2

19: end for
20: end for
21: for m = 0, n do
22: Tm·,0 = ∑m

r=0 S
m,rνm,r0 γr,m . Step 3: Initialize

23: for β3 = 0,m− 1 do
24: for β1 = 0,m− β3 − 1 do
25: β2 = m− (β3 + 1)− β1 . Step 3: Recursive portion
26: Tmβ+e3 = − (3+β1)

(3+β3)T
m
β+e1 −

(3+β2)
(3+β3)T

m
β+e2

27: end for
28: end for
29: cm+ = Tm . Step 4
30: if m < n then
31: cm+1 = DegreeRaise2D(cm)
32: end if
33: end for
34: return cp−3

α

35: end function
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6.4.4 Edge Spaces

In this section, we give efficient algorithms to solve ae(ũ, ṽ) = (f, ṽ) for all ṽ ∈ X̃e

for a given edge e. Without loss of generality, we assume that e = [−1, 1] and that

ce = 1. The key to the efficient solver on the edge space is to note that the bilinear

form ae only depends on the value restricted to e which allows us to reformulate the

problem over the space Xe rather than X̃e.

We break down the edge solver into four distinct steps

Step 1. Reduce the variational form to Xe

Step 2. Compute the residual

Step 3. Compute ae(~ϕ, ~ϕ) by using a change of basis

Step 4. Find the corresponding solution in X̃e.

6.4.4.1 Step 1.

Decompose ũe, ṽe ∈ X̃e into edge functions and bubble functions

ũe = ue + ub ṽe = ve + vb

where ue, ve ∈ Xe, ub, vb ∈ XI and (ub, wI) = −(ue, wI) for all wI ∈ XI , and

analogously for vb.
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On the right hand side

(f, ṽe) = (f, ve) + (f, vb)

= (f, ve) + (uI , vb)

= (f, ve)− (uI , ve) + (uI , ṽe) = (f, ve)− (uI , ve).

where uI is the solution to (uI , wI) = (r, wI) for all wI ∈ XI (i.e. the solution to

the interior problem in Section 6.4.3). We also used the fact that (wI , ṽe) = 0 for all

wI ∈ XI by definition of X̃e.

For the bilinear form, we note that

ae(ũe, ṽe) = ae(ue, ve) = ae(ue|e, ve|e) ∀ṽe ∈ X̃e

where ue|e is the restriction onto e. Hence, we can first find ue ∈ Xe such that

ae(ue, ve) = (f, ve)− (uI , ve) ∀ve ∈ Xe, (6.19)

then use the orthogonality property to find ũe ∈ X̃e.

6.4.4.2 Computation of Step 2.

Let ~Bp
e be the Bernstein edge polynomials corresponding to the domain points on e

(i.e. a basis for Xe), then we see that the right hand side of Equation (6.19) is

(f, ~Bp
e )− (uI , ~Bp

e ) = ~fe −MeI~uI
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where MeI the the mass matrix block corresponding to the interaction between
~Bp
e and the interior Bernstein basis, and ~uI is vector B-form of the solution to

(uI , wI) = (f, wI) for all wI ∈ XI (Section 6.4.3). We incur a cost of O(p3) here due

to the matrix multiply of MeI~uI .

6.4.4.3 Computation of Step 3.

Let

~ϕe =


(1− x2)P (2,2)

0
...

(1− x2)P (2,2)
p−2

 ;

~ϕe spans the same space as the univariate “interior” Bernstein polynomials (i.e. space

spanned by {Bp
1 , . . . , B

p
p−1}). Due to orthogonality of Jacobi polynomials,

ae(~ϕe, ~ϕTe ) := Dee = diag(qn)

for 0 ≤ n ≤ p− 2 where qn is from Equation (6.14) (see §5.1 of Chapter 2).

We use the crucial fact that bivariate Bernstein polynomials restricted to the

boundary are simply the univariate Bernstein polynomials [29]; henceXe restricted to

e is simply the span of univariate interior Bernstein polynomials {Bp
1 , B

p
2 , . . . , B

p
p−1}.

Let us introduce the change of basis matrix Γe such that ~ϕe = Γe( ~Be|e) on e, then

Dee = ae(~ϕe, ~ϕTe ) = ae(Γe( ~Be|e), (Γe( ~Be|e))T ) = Γeae( ~Be, ~B
T
e )ΓT

e .

The bilinear form under the Bernstein basis ae( ~Be, ~Be) corresponds to Γ−1
e DeeΓ−Te .



179

In order to invert this, we need efficient ways to compute Γe and ΓT
e .

Rather than store the matrix Γe, we present algorithms which can compute their

actions. For the action of Γe, we note that given a function f on e

~ϕe = Γe( ~Be|e) =⇒ (f, ~ϕe) = Γe(f, ( ~Be|e)),

hence the operator Γe converts the residual from the 1D Bernstein basis to the

residual with respect to ~ϕe basis:

Γe :


(f,Bp

1)
...

(f,Bp
p−1)

→


(f, (1− x2)P (2,2)
0 )

...

(f, (1− x2)P (2,2)
p−2 )



and likewise ΓT
e is the operator which converts the coefficients of a polynomial ex-

panded with ~ϕe into the B-form coefficients as follows:

ΓT
e : (1− x2)

p−2∑
j=0

wjP
(2,2)
j (x)→

p−1∑
j=1

cjB
p
j (x).

The key identity to an efficient implementation of Γe is

(1− x2)P (2,2)
n = 4

n∑
i=0

(
n+2
i

)(
n+2
n−i

)
(−1)n−i

(
n
i

) i+ 1
n+ 1

n− i+ 1
n+ 2 Bn+2

i+1 , (6.20)

which is obtained from Equation (6.12) and Equation (6.25), hence

(f, (1− x2)P (2,2)
n ) = 4

n∑
i=0

(
n+2
i

)(
n+2
n−i

)
(−1)n−i

(
n
i

) i+ 1
n+ 1

n− i+ 1
n+ 2 (f,Bn+2

i+1 ).

Thus, knowing (f,Bp
1), . . . , (f,Bp

p−1) allows us to calculate (f, (1− x2)P (2,2)
p−2 ). A de-
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gree lowering operation (see Algorithm 15) can then be used to obtain (f,Bp−1
1 ), . . . , (f,Bp−1

p−2)

which allows us to calculate (f, (1− x2)P (2,2)
p−3 ). We can recursively do this to figure

out the rest of the residuals. The following function performs Γe:

Algorithm 8 Γe: Converts (f,Bp
i ) into (f, (1− x2)P (2,2)

i )

Require: ~b, a vector of length p− 1
1: function Gamma(b)
2: for i = p− 2 to 0 do
3: for j = 0, . . . , i do
4: o[i] = o[i] + 4(i+2

j )(i+2
i−j)

(−1)i−j(ij)
j+1
i+1

i−j+1
i+2 b[j]

5: end for
6: ~b := DegreeLower(~b) . Degree lower moments; cost of O(p)
7: end for
8: return ~o
9: end function

We note that Gamma clearly has a cost of O(p2).2

The key to computing ΓT
e is to use Equation (6.20) again. Starting with w0, we

can find the coefficients with respect to B2
1 . We perform a degree raising operation

on the B2
1 coefficient to obtain the coefficients in B3

1 , B
3
2 . Now, we can use w1 to

find the coefficient with respect to B3
1 , B

3
2 and sum. We keep on degree raising, and

using Equation (6.20) to obtain the following algorithm for ΓT
e :

2The coefficients can be computed with little cost by noting that

4
(

i+2
j

)(
i+2
i−j

)
(−1)i−j

(
i
j

) j + 1
i+ 1

i− j + 1
i+ 2 = 4

(
i+ 2
j

)
i− j + 1

(j + 2)(−1)i−j

hence one can either pre-computing the binomial coefficients up to order p, or updating the binomial
coefficients in the for loop for i on the fly while calculating Gamma
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Algorithm 9 ΓT
e : Converts the coefficients of a Jacobi polynomial to a B-form

coefficients
Require: w, a vector of length p− 1

1: function Gammatran(w)
2: Initialize o of length 1
3: for i = 0, . . . , p− 1 do
4: for j = 0, . . . , i do
5: o[i] = o[i] + 4(i+2

j )(i+2
i−j)

(−1)i−j(ij)
j+1
i+1

i−j+1
i+2 w[j]

6: end for
7: o = DegreeRaise(o) . Degree raise B-net; cost of O(p)
8: end for
9: return o

10: end function

Again, we see that Gammatran also have a cost of O(p2) as the coefficients can

be calculated as before. Hence, we can easily compute ΓT
e D−1

ee Γe with cost of O(p2)

and efficiently compute the solution to the variational problem Equation (6.19)

~ue := ΓT
e D−1

ee Γe(~fe −MeI~uI).

6.4.4.4 Step 4.

Finally, we recall ~ue from above corresponds to

ue ∈ Xe : ae(ue, ve) = (f, ve)− (uI , ve) ∀ve ∈ Xe

but the solution we need is ũe in X̃e with ũe = ue + ub. Recall that (ub, wI) =

−(ue, wI) for all wI ∈ XI , hence the interior correction can be computed by

~ub = −M−1
II MIe~ue.

This has a cost of O(p3) if we use Algorithm 6.
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6.4.5 Vertex Spaces

In this section, we discus how to solve the variational problem aV (ũv, w̃v) = (f, w̃v)

for ∀w̃v ∈ X̃V . We proceed similarly to the edge solves.

Step 1. Reduce the variational form to XV

Step 2. Perform change of basis, and calculate the residual

Step 3. Compute the bilinear form

Step 4. Find the corresponding solution in X̃V

6.4.5.1 Step 1.

Decompose ũv = uv + ub where uv ∈ XV , ub ∈ XI with a similar decomposition for

the test function w̃v. By the orthogonality property of X̃V , we have that

(uv, wb) = −(ub, wb) ∀wb ∈ XI . (6.21)

and we also recall that

(uI , wb) = (f, wb) ∀wb ∈ XI . (6.22)
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For the right hand side, we have again

(f, w̃v) = (f, wv) + (f, wb)

= (f, wv) + (uI , w̃v)− (uI , wv)

= (f, wv)− (uI , wv).

As aV (ũv, w̃v) = aV (uv, wv), we can find uv ∈ XV

aV (uv, wv) = (f, wv)− (uI , wv) ∀wv ∈ XV (6.23)

then use orthogonality properties to find ũv ∈ X̃V .

6.4.5.2 Step 2.

Unfortunately, XV is not simply the span of the Bernstein polynomials. For an

arbitrary vertex v ∈ T , we note that we can rewrite the basis function ϕv as a linear

combination of Bernstein polynomials

ϕv = Bp
v + ~φTv ~B

p
E + ~χTv ~B

p
I (6.24)

where Bp
v is the Bernstein vertex basis at vertex v, ~φv and ~χv are vectors of appro-

priate coefficients. We will see that we need to compute ~φv, but not ~χv.

On the right hand side, using Equation (6.22) for an arbitrary vertex v ∈ T and
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the fact that (uI , wI) = (f, wI) for all wI ∈ XI ,

(f, ϕv)− (uI , ϕv) = (f,Bp
v + ~φTv

~Bp
E + ~χTv

~Bp
I )− (uI , Bp

v + ~φTv
~Bp
E + ~χTv

~Bp
I )

= (f,Bp
v)− (uI , Bp

v) + (f, ~φTv ~B
p
E)− (uI , ~φTv ~B

p
E)

= (~fV )v − (MV IuI)v + ~φTv (~fE −MEIuI)

where (~fV )v and (MV IuI)v is the row corresponding to Bp
v . The key here is that the

interior component does not matter in the computation.

We need to compute ~φTv for all vertices v which are the coefficients such that

Bp
v + ~φTvB

p
E on the edges equals ϕv. Without loss of generality, given a vertex v,

assume an edge e from v is parametrized to be [−1, 1]. We recall that ϕv restricted

to the edge is Equation (6.13), hence using Equation (6.12), and factoring in the

(1− x)/2 term,

ϕv(x)|e = (−1)bp/2c+1

bp/2c

(
1− x

2

)
P

(1,1)
bp/2c−1(x)

= 1
bp/2c

bp/2c−1∑
j=0

(
bp/2c

bp/2c − 1− j

)
(−1)jBbp/2cj (x)


= Bp

0(x) +
p−1∑
j=1

c̃jB
p
j (x).

Hence the coefficients we want are c̃j, which are the result of using the degree raising

formula on
(
bp/2c

bp/2c−1−j

)
(−1)j.

Let φφφ be the matrix with columns the vector ~φv; Algorithm 10 calculates φφφ by

first computing the coefficients for Bbp/2cj , degree raising it to the appropriate order

Bp
j , then place the coefficients in the appropriate degrees of freedom in φφφ. We note

that in line 9, we remove the first and last term as that corresponds to the vertex

terms. φφφ can be precomputed.
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Algorithm 10 Computing the values of φφφ
1: φφφ = zeros(numbers of dofs on edges, number of vertices) . Initialize Matrix
2: q := bp/2c
3: for i = 0 to q do
4: ~c[i] = (−1.0)i

q

(
q

q−1−i

)
. Generate lower-order coefficients

5: end for
6: for i = 0, . . . , p− q − 1 do
7: ~c = DegreeRaise1D(~c)
8: end for
9: ~c = ~c[1 : p− 1] . Remove first and last term; length of p− 1

10: for K ∈ T do
11: for vertex vi in K do
12: Let vj, vk be the two other vertices of K
13: ~d1 := DOFs on edge from vertex vi to vj
14: ~d2 := DOFs on edge from vertex vi to vk
15: φφφ[~d1, dof of vi] = ~c . Set an array equal to another array
16: φφφ[~d2, dof of vi] = ~c
17: end for
18: end for

6.4.5.3 Step 3.

The matrix form of the bilinear form is trivial as

aV (ũv, w̃v) = aV (uv, wv) = 1
p4 cv

where cv is a diagonal matrix with cv as its entries. With the matrix φφφ computed,

we can solve for Equation (6.23) with the following

1
p4 cv~ϕv = ~fV −MV I~uI + φφφT (~fE −MEI~uI).

The cost to compute ~ϕv is dependent on the number of vertices, but the main cost

is O(p3) due to the matrix-vector multiply of MEI~uI .
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6.4.5.4 Step 4.

Finally, the solution vector ~ϕv is under the ϕv basis of XV so we have to manipulate

this solution in order to find the corresponding solution in X̃V expanded with the

Bernstein basis.

Using Equation (6.24), the coefficient ~uv for Bp
V is simply ~ϕv, and the coefficients

for the edge Bernstein polynomials are ~uE = φφφ~ϕv.

As for the interior bubble functions, we recall the orthogonality condition Equa-

tion (6.21). Hence, we do not need to compute ~χTv , but only the following variational

problem for all wb ∈ XI

(~uTvB
p
V + ~uTEB

p
E, wb) = −(~uTb B

p
I , wb) =⇒ MIV ~uv + MIE~uE = −MII~ub

and and hence ~ub = −M−1
II MIV ~ϕv −M−1

II MIEφφφ~ϕv. The cost to compute this is

O(p3) if we use Algorithm 6.

6.4.6 Matrix Formulation

Collecting the algorithms above, we can finally display the algorithm to precondition

the mass matrix of the Bernstein basis. Let the local assembly matrix ΛK be written

in block form

ΛK =


ΛK,V

ΛK,E

ΛK,I


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where the blocks correspond to the vertex, edge and interior basis functions on

element K, then let the matrices DEE and DV V be diagonal matrices defined as

DV V =
∑
K∈T

|K|
2p4 ΛK,V ΛT

K,V and DEE =
∑
K∈T

|K|
2 ΛK,ED̂EEΛT

K,E

where

D̂EE = block diag(D̂(1)
EE, D̂

(2)
EE, D̂

(3)
EE)

for D̂(i)
EE, i = 1, 2, 3 is the diagonal matrix D̂(i)

EE = diag(qj), with qj defined from

Equation (6.14) for j = 0, . . . , p−2. We let ΓEE and ΓT
EE simply be the applications

of algorithms Γe,ΓT
e repeatedly for each edge.

Then, we can formulate the additive Schwarz preconditioner as

Algorithm 11 P: Preconditioner for the Bernstein Basis Mass Matrix
Require: M global mass matrix, ~f residual vector

1: function
2: ~xI := M−1

II
~fI . Interior solve using Section 6.4.3

3: ~xE := Γ−TEED−1
EEΓ−1

EE

(
~fE −MEI~xI

)
. Edges solve

4: ~xV := D−1
V V

(
(~fV −MV I~xI) + φφφT

(
~fE −MEI~xI

))
. Vertices solve

5: ~xE := ~xE + φφφ~xV
6: ~xI := ~xI −M−1

II MIV ~xV −M−1
II MIE~xE . Interior correction

7: return x := [~xV ; ~xE; ~xI ]
8: end function

6.4.7 Schur Preconditioner

In this subsection, we present a variation of the above algorithm which is more suited

for explicit time-stepping such as the Nyström method or an explicit Runge-Kutta

method. We first let M be the global mass matrix with the Bernstein basis, and
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block the matrix as follows

A =

MV V MV E

MEV MEE

 ,B =

MV I

MEI

 , and C =
[
MII

]
.

One way of solving M~x = ~f is to use the Schur complement method (otherwise

known as static condensation [80]) by first solving the boundary values:

S̈

~xV
~xE

 =

~fV
~fE

−BC−1 ~fI =

~fV −MV IM−1
II
~fI

~fE −MEIM−1
II
~fI



where S̈ = A−BC−1BT , then substitute the solution back to solve for the interior

~xI .

In the case of an explicit time-stepping scheme, we are able to solve for the right-

hand side (e.g. ~fV −MV IM−1
II
~fI) exactly using Section 6.4.3 and work with the exact

Schur complement of the mass matrix.3 Hence, rather than using conjugate gradient

over the mass matrix, we can simply iterate (and precondition) on the smaller Schur

complement then substitute back into the interior dofs. This idea was first mentioned

in Remark 2.7 of [15].

The Schur complement preconditioner is the “middle” portion of Algorithm 11

and is presented in Algorithm 12 independently. Here, we again emphasize that

using the Bernstein basis allows for matrix-free computation of the matrix-vector

product [3], which coupled with the inversion of the interior blocks Section 6.4.3

allows for matrix-free Schur complement products. Finally, the preconditioner for

the whole mass matrix based on preconditioning the Schur complement is presented
3This is contrasted against an implicit time-stepping scheme where the right hand side in the

Schur complement method will requires (MII +cSII)−1 which cannot be as easily computed exactly
as MII .
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in Algorithm 13.

Algorithm 12 P̈−1: Preconditioner for Schur Complement
Require: ~f residual vector

1: function
2: ~xE := Γ−TEED−1

EEΓ−1
EE

(
~fE
)

. Edges solve
3: ~xV := D−1

V V

(
~fV + φφφ~fE

)
. Vertices solve

4: ~xE := ~xE + φφφ~xV
5: return x := [xV ;xE]
6: end function

Algorithm 13 P̃: Preconditioner for Mass Matrix using P̈−1

Require: M global Bernstein mass matrix, S̈ Schur complement of Bernstein basis,
~f residual vector

1: function
2: ~xI := M−1

II
~fI . Interior solve

3: f̃V = ~fV −MV IM−1
II f̄I . Find right-hand sides for Schur complement

4: f̃E = ~fE −MEIM−1
II f̄I

5: [~xV ; ~xE] := pcg(S̈, [f̃V ; f̃E],Preconditioner = P̈−1) . Iterate the boundaries
6: ~xI := ~xI −M−1

II MIV ~xV −M−1
II MIE~xE . Interior correction

7: return x := xI + xE + xV
8: end function

6.5 Illustrative Numerical Examples

6.5.1 Brusselator and Implicit Time-Stepping

We now illustrate the use of the preconditioner in the numerical solution of the

Brusselator system. Let u(x, y, t) and v(x, y, t) be the solution to the Brusselator

system with initial conditions and time-stepping scheme as described in Section 6.2.2.

The spatial discretization is a uniform triangulation of the square with 256 elements.
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In Table 6.2, we show the [min, median, max] of the iteration counts of the

preconditioned conjugate gradient (PCG) method required to solve for both u(x, y, t)

and v(x, y, t) separately. We note that while we are preconditioning a perturbation

of the mass matrix, the choice of ∆t ∼ h2

p2 and a good initial iterate seems to allow

us to have non-increasing iteration counts as opposed to the O(p2) growth shown in

Section 6.2.2. This is partly due to the fact that the diffusion coefficient is so small,

and the fact that we are using the previous time-step as the initial iterate for PCG.

We also will use this case study to showcase the advantages of using the Bernstein

basis in calculating the critical nonlinear moments at each time-step as mentioned in

Section 6.3.5. In Figure 6.12, we plot the average number of milliseconds required to

calculate the nonlinear moment (u2
nvn, ~ϕ) at each time step.4 We note that while [3]

indicated that the asymptotic cost is O(p3), in the range of p ∈ [3, . . . , 20], we instead

see a better cost growth of only O(p2).

Table 6.2: Table to illustrate the performance of the preconditioned iterative method
to the matrix resulting from a IMEX scheme by displaying the [min, median, max]
iteration count of the PCG solves for the variable u and v in a period of 10 seconds
on 256 elements for the Brusselator in a uniformly triangulated square. Our scaling
for ∆t is such that ∆t ∼ 1

p2 .

p ∆t Iteration count u Iteration count v
4 1/10 [22, 25, 28] [24, 27, 31]
8 1/40 [19, 22, 26] [20, 23, 27]
12 1/90 [18, 21, 24] [20, 22, 26]
16 1/160 [18, 21, 26] [19, 23, 26]
20 1/250 [18, 22, 27] [20, 23, 27]

4Timings were done using Python 3 with the key kernels from [3] written in Cython on an Ryzen
5 1600 processor and 16GB of Ram
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Figure 6.12: The average time required to compute the non-linearity in the Brusse-
lator system is plotted on a log-log axis. We note that for the orders we are examin-
ing, the growth is O(p2) rather than the asymptotic growth of O(p3) from [3]. The
asymptotic growth is observed for p > 30 (see [3]).

(a) p = 4 (b) p = 8 (c) p = 16

Figure 6.13: Plots of the solution to the Brusselator example at t = 5 with the z-axis
scaled by a factor of .1 and time-steps as in Table 6.2.

6.5.2 Sine-Gordon and Explicit Time-Stepping

We now illustrate the use of the preconditioner in the numerical solution of the sine-

Gordon equation, using an explicit time-stepping scheme which requires the inversion

of the exact mass matrix at each step. Let u(x, y, t) be the solution to the sine-

Gordon equation using the fourth order Nyström method [40, p. 285] as described

in Section 6.2.1. We use a uniform triangulation of the square [−7, 7]× [−7, 7] in the

spatial dimension.
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In order to time-step, we use PCG with the initial iterate to be the previous

time step (or sub-step). In Table 6.3, we display the [min, median, max] iteration

count for all 3000 PCG calls required to time step 10 seconds. As in Chapter 2, we

expect the number of iterations to not increase as we refine the mesh or increase

p. Indeed, we see that the median iteration counts in Table 6.3 is the same as the

iteration counts as in the linear wave equation considered in Chapter 2; this is not an

unexpected result as only the residuals have changed from the linear heat equation.

While the above result is certainly favorable, the case of explicit time-stepping

allows for the use of the preconditioner of just the Schur complement as described

in Section 6.4.7. In Table 6.4, we display the iteration count of solving the Schur

complement (i.e. the iteration counts of line 5 of Algorithm 13) in the period of 10

seconds for solving the sine-Gordon equation. We note that the iteration count does

not increase as we refine h or p which we prove in Section 6.7.1.

Finally, we will use the Sine-Gordon example to demonstrate that PCG is achiev-

ing the required accuracy. In Section 6.5.2, we plot the residual of each iteration from

PCG of the first linear solve at t = 0 for 64 elements; the residual decreases quite

nicely and we achieve a tolerance of 10−9 easily. In fact, we note that the number of

iterations decreases as p increases which matches Table 6.3 and Table 6.4.

Table 6.3: Table illustrates the performance of the preconditioned iterative method
of the mass matrix at each time step by displaying the [min, median, max] iteration
count of all 3000 PCG solves from using the Nyström method for a period of 10
seconds with a ∆t = .01 in a uniformly triangulated square for the sine-Gordon
equation.

Order 16 Elements 64 Elements 256 Elements
4 [21, 26, 32] [20, 25, 34] [17, 23, 31]
8 [17, 23, 29] [16, 21, 30] [16, 21, 26]
12 [17, 22, 27] [16, 18, 26] [17, 17, 24]
16 [16, 18, 25] [15, 18, 24] [15, 15, 22]
20 [16, 18, 24] [15, 15, 23]
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Table 6.4: Table illustrates the performance of the preconditioner based on the Schur
complement of the mass matrix at each time step by displaying the [min, median,
max] iteration count of the Schur complement solve (line 5 of Algorithm 13) from
using the Nyström method for a period of 10 seconds with a ∆t = .01 in a uniformly
triangulated square for the sine-Gordon equation.

Order 16 Elements 64 Elements 256 Elements
4 [22, 27, 33] [21, 26, 35] [18, 24, 32]
8 [18, 24, 30] [17, 22, 31] [17, 22, 27]
12 [18, 23, 28] [17, 19, 27] [17, 18, 25]
16 [17, 19, 26] [1, 19, 25] [16 ,16, 23]
20 [1, 18, 25] [1, 16, 24]
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Figure 6.14: Plot of the residuals resulting from the preconditioned conjugate gra-
dient method applied to the Sine-Gordon example at t = 0 and 64 elements.

6.5.3 Boundary Layer Problems

We now illustrate the use of the preconditioner in the numerical solution of a bound-

ary layer problem. Let u(x, y) be the solution to the problem as described in Sec-

tion 6.2.3 with f = 1. In Chapter 2, we remarked that our mass preconditioner

allows for needle elements, hence we showcase this capability by using the mesh as

shown in Figure 6.4.

In Figure 6.15, we plot the condition number of the preconditioned system
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P−1/2(M + ε2S)P−1/2. We observe that the growth of the condition numbers grows

as p2 as Equation (6.9) suggests, and that for ε small enough, that the condition

numbers do not depend on ε.
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Figure 6.15: The condition numbers of the preconditioned system for the boundary
layer problem using the mesh in Figure 6.4 are displayed for varying ε and p in a log-
log scale. We note that the growth of the condition number satisfies the Schmidt’s
inequality estimate, and that as we decrease ε, the condition number seems to con-
verge to a curve.

6.6 Conclusions

The current work described the efficient implementation of a p-version mass matrix

preconditioner using the Bernstein basis, alongside useful post-processing procedures

such as visualization and gradient evaluations. Of particular note is an algorithm to

invert the interior blocks of the mass matrix in O(p3) operations. This allowed us to

perform the preconditioning step with a total cost of O(p3), hence, combined with

the results from [3], allows for one to construct the mass and stiffness matrices, time

step, and perform post-processing of nonlinear transient problems all with a cost of

O(p3). While preconditioning the mass matrix will offer no advantages for problems
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where only the stiffness matrix is present, we also showed that certain challenging

elliptic problems such as the singularly perturbed problem can be handled by a

preconditioner for the mass matrix. Some of the algorithms does extend naturally

to tetrahedrons such as the de Casteljau algorithm, and the Bernstein basis matrix

construction and multiplies from [3]. Unfortunately, the interior inversion algorithm

does not extend as easily to 3D and will be the subject of a forthcoming work.

6.7 Appendix

6.7.1 Schur Complement Preconditioner

In this section, we present a short proof that the preconditioner for the Schur comple-

ment (Algorithm 12) has bounded condition numbers. Like in Chapter 2, it suffices

to show the result on the reference triangle. Let X̃B, X̃V and X̃Ei , i = 1, 2, 3 be the

minimal L2 extension space as defined in §5 of Chapter 2, with the inner-products

as aV (·, ·) and aEi(·, ·) from the same section.

The additive Schwarz method preconditioner which arises is given f̃ ∈ X̃B, find

u as follows:

1. uV ∈ X̃V : aV (uV , vV ) = (f̃ , vV ) ∀vV ∈ X̃V .

2. For i = 1, 2, 3, uEi ∈ X̃Ei : aEi(uEi , vEi) = (f̃ , vEi) ∀vEi ∈ X̃Ei .

3. u := uV +∑3
i=1 uEi is our solution.

Note that it is simply what we had in Chapter 2, except the interior solve is not
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there; this leads to a simple corollary.

Corollary 6.7.1. The abstract additive Schwarz method defined above corresponds

to Algorithm 12 under the Bernstein basis. Furthermore, there exists a constant C

independent of h, p such that cond(P̈−1S̈) ≤ C.

Proof. Let us first prove that the abstract ASM has uniform condition number. We

see that Lemma 5.3, Lemma 5.4 and Theorem 5.5 can be easily modified to reflect the

ASM method above by removing the interior portions from each of the statements;

hence this is simply a consequence of Theorem 2.7 of [77].

Finally, applying the exact same techniques from Section 6.4.4 and Section 6.4.5,

keeping in mind that we are given f̃ ∈ X̃B, we see that the ASM method corresponds

to Algorithm 12.

6.7.2 Dirichlet boundary condition

The enforcement of Dirichlet boundary conditions is trivial to implement for the pre-

conditioner. In Algorithm 11, before the interior correction term (line 6), simply set

the degrees of freedom in ~xV , ~xE corresponding to the Dirichlet boundary condition

equal to the appropriate Bernstein basis values; in our case for the boundary layer

case study, this was simply 0.

The more mathematically accurate way would be to modify the diagonal scaling

matrices DV V ,DEE to be 1 at the Dirichlet boundary condition dofs and also use the

modified mass matrix (zeroing out the rows and columns and leaving a one on the
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diagonal) for Dirichlet boundary conditions, the fact that the edge solve and vertex

solve are diagonal allows us to use the procedure above.

6.7.3 Degree Raising Algorithms

The degree raising formula for the 1D Bernstein polynomials is easily derived:

Bp
i (x) = (λ1 + λ2)Bp

i (x) = p+ 1− i
p+ 1 Bp+1

i (x) + i+ 1
p+ 1B

p+1
i+1 (x). (6.25)

This allows us to express a Bernstein basis polynomial of degree p as one of degree

p+ 1 as such

p∑
i=0

cpiB
p
i (x) =

p+1∑
i=0

cp+1
i Bp+1

i (x).

The following subroutine computes cp+1
i in O(p):

Algorithm 14 Degree Raising Operator
Require: ~c corresponding to the B-net of the polynomial of degree p

1: function DegreeRaise1D(~c)
2: ~o = zeros(p+ 2) . Coefficients for degree p+ 1
3: for i = 0, . . . , p do
4: o[i]+ = (p+ 1− i)c[i]/(p+ 1)
5: o[i+ 1]+ = (i+ 1)c[i]/(p+ 1)
6: end for
7: return ~o
8: end function

An equally useful operation is the “degree-lowering operation,” which is the op-

posite of the degree raising operation. This is only used when we are working with

inner-products; for example, for a function g, we can deduce (g,B3
i ) for i = 0, . . . , 3

given (g,B4
j ) for j = 0, . . . , 4. The degree lowering operator also has a cost of O(p)
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as it is simply the degree raising operator backwards.

Algorithm 15 Degree Lowering Operator
Require: ~c corresponding to the inner-products (f,Bp+1

i ) of Bernstein polynomial
of degree p+ 1

1: function DegreeLower(~c)
2: ~o = zeros(p+ 1) . Coefficients for degree p
3: for i = 0, . . . , p do
4: o[i] = ((p+ 1− i)c[i] + (i+ 1)c[i+ 1])/(p+ 1)
5: end for
6: return ~o
7: end function

In two dimensions, the Bernstein polynomials also satisfy a degree raising oper-

ation. Let ek ∈ R3 be one at the kth index, and zero elsewhere. We have that

Bp
α = (λ1 + λ2 + λ3)Bp

α = α1 + 1
p+ 1 B

p+1
α+e1 + α2 + 1

p+ 1 B
p+1
α+e2 + α3 + 1

p+ 1 B
p+1
α+e3 .

If we store the control points {cpα} in a 2D array, then the following algorithm per-

forms degree raising in O(p2):

Algorithm 16 2D Degree Raising Operator
Require: c array of the B-net of the polynomial of degree p

1: function DegreeRaise2D(c)
2: o = zeros((p+ 2, p+ 2)) . Coefficients for degree p+ 1
3: for i = 0, . . . , p do
4: for j = 0, . . . , p− i do
5: k = p− i− j
6: o[i, j]+ = (k + 1)/(p+ 1) ∗ c[i, j]
7: o[i+ 1, j]+ = (i+ 1)/(p+ 1) ∗ c[i, j]
8: o[i, j + 1]+ = (j + 1)/(p+ 1) ∗ c[i, j]
9: end for

10: end for
11: return ~o
12: end function

There are many more mathematical and computational properties of Bernstein

polynomials which we do not not need; a general reference can be found in [29].
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6.7.4 Proofs for Section 6.4.3

In this subsection, we prove the lemmas used in Section 6.4.3. We first prove

Lemma 6.4.2.

Proof of Lemma 6.4.2. We begin observing that Equation (6.12) gives

P 2r+5,2
m−r (t) =

m−r∑
α3=0

(−1)m−r−α3

(
m+r+5
α3

)(
m−r+2
m−r−α3

)
(
m−r
α3

) Bm−r
α3 (t)

=
m−r∑
α3=0

νmrα3

(
m

α3

)
(λ1 + λ2)m−r−α3 λα3

3 ,

and

P (2,2)
r (s)

(
1− t

2

)r
=

r∑
α2=0

(−1)r−α2

(
r+2
α2

)(
r+2
r−α2

)
(
r
α2

) Br
α2(s)

(
1− t

2

)r

=
r∑

α2=0
γrα2

(
r

α2

)
λr−α2

1 λα2
2 .

Using the binomial formula and with the convention γri = 0 for i < 0 and i > r, we

can write

(λ1 + λ2)m−r−α3P (2,2)
r (s)

(
1− t

2

)r

=
m−r−α3∑
l=0

(
m− r − α3

l

)
λm−r−α3−l

1 λl2

r∑
α2=0

γrα2

(
r

α2

)
λr−α2

1 λα2
2

=
m−r−α3∑
l=0

(
m− r − α3

l

)
r+l∑
α2=l

γrα2−l

(
r

α2 − l

)
λm−α3−α2

1 λα2
2

=
m−α3∑
α2=0

m−r−α3∑
l=0

γrα2−l

(
m−r−α3

l

)(
r

α2−l

)
(
m−α3
α2

)
(m− α3

α2

)
λm−α3−α2

1 λα2
2 .



200

Therefore,

P (2,2)
r (s)

(
1− t

2

)r
P 2r+5,2
m−r (t)

=
m−r∑
α3=0

νmrα3

m−α3∑
α2=0

γr,m−α3
α2

(
m− α3

α2

)(
m

α3

)
λm−α3−α2

1 λα2
2 λ

α3
3

=
m−r∑
α3=0

νmrα3

m−α3∑
α2=0

γr,m−α3
α2 Bm

α (x, y),

which proves the identity.

6.7.4.1 Proofs for the recursive computation of Smr (and Qmr
α3 )

We first show an auxiliary result concerning the coefficients γrjα2 from Lemma 6.4.2.

Lemma 6.7.2. Consider γrjα2, j = r, . . . ,m and r = 0, . . . ,m introduced in Lemma 6.4.2.

Then,

γr,j+1
α2 = α2

j + 1γ
r,j
α2−1 + j + 1− α2

j + 1 γr,jα2 , for α2 = 0, . . . , j + 1,

i.e. ~γr,j+1 = R(~γr,j) for j = r, . . . ,m − 1., where R denotes the degree raising

operator in one dimension (Algorithm 14).

Proof. By the properties of the binomial coefficients, we have that

α2

j + 1γ
r,j
α2−1 + j + 1− α2

j + 1 γr,jα2 =
j−r∑
l=0

γrα2−1−l

(
j−r
l−1

)(
r

α2−1−l

)
(
j+1
α2

) +
j−r∑
l=0

γrα2−l

(
j−r
l

)(
r

α2−l

)
(
j+1
α2

)
=

j+1−r∑
l=1

γrα2−l

(
j−r
l−1

)(
r

α2−l

)
(
j+1
α2

) +
j−r∑
l=0

γrα2−l

(
j−r
l

)(
r

α2−l

)
(
j+1
α2

)
=

j+1−r∑
l=0

γrα2−l

(
r

α2−l

)
(
j+1
α2

)
(j − r

l − 1

)
+
(
j − r
l

) = γr,j+1
α2
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which completes the proof.

Lemma 6.7.3.

Qmr
α3 = α3 + 1

m+ 1Q
m+1r
α3+1 + m+ 1− α3

m+ 1 Qm+1r
α3 ,

for α3 = 0, . . . ,m and r = 0, . . . ,m.

Proof. We use the two dimensional degree raise operator on the coefficients f̃mα and

and Lemma 6.7.2

Qmr
α3 =

∑
α1+α2=m−α3

γr,m−α3
α2 f̃mα

=
∑

α1+α2=m−α3

γr,m−α3
α2

(
α1 + 1
m+ 1 f̃

m+1
α+e1 + α2 + 1

m+ 1 f̃
m+1
α+e2 + α3 + 1

m+ 1 f̃
m+1
α+e3

)

= m+ 1− α3

m+ 1
∑

α1+α2=m+1−α3

(
α1

m+ 1− α3
γr,m−α3
α2 + α2

m+ 1− α3
γr,m−α3
α2−1

)
f̃mα

+ α3 + 1
m+ 1Q

m+1 r
α3+1

= m+ 1− α3

m+ 1
∑

α1+α2=m+1−α3

γr,m+1−α3
α2 f̃m+1

α + α3 + 1
m+ 1Q

m+1 r
α3+1

= m+ 1− α3

m+ 1 Qm+1 r
α3 + α3 + 1

m+ 1Q
m+1 r
α3+1 .

6.7.4.2 Proofs for the recursive computation of Tmβ

We first need to prove a fact for the coefficients amrα .

Lemma 6.7.4. Consider the coefficients amrα , r = 0, . . . ,m. Then, the following
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identity holds

(α1 + 3)amrα+e1 + (α2 + 3)amrα+e2 + (α3 + 3)amrα+e3 = 0,

for |α| = m− 1.

Proof. We observe that the statement is indeed equivalent to

(m− α3 − α2 + 2)γr,m−α3
α2 +(α2 + 3)γr,m−α3

α2+1 = −(α3 + 3)
νmrα3+1
νmrα3

γr,m−α3−1
α2

= (m− α3 + r + 5)(m− α3 − r)
m− α3

γr,m−α3−1
α2 ,

which we now prove.

For any 0 ≤ α2 ≤ m − 1, we proceed by induction on α3 = 0, . . . ,m − 1 − r

(equivalently m− α3 = r + 1, . . . ,m) as amrα = 0 for α3 > m− 1− r. We first prove

the statement for m− α3 = r + 1, i.e., we prove the identity

(r + 3− α2)γr,r+1
α2 + (α2 + 3)γr,r+1

α2+1 = 2(r + 3)
r + 1 γr,rα2 .

We first note that γr,rα2 = γrα2 . We note that

γrα2−1 = − (α2 + 2)
(r + 3− α2)γ

r
α2 , for α2 = 1, . . . , r + 1,

and by Lemma 6.7.2

γr,r+1
α2 = α2

r + 1γ
r
α2−1 + r + 1− α2

r + 1 γrα2 , for α2 = 0, . . . , r + 1.
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Thus, it follows

(r + 3− α2)γr,r+1
α2 + (α2 + 3)γr,r+1

α2+1

= (r + 3− α2)
(

α2

r + 1γ
r
α2−1 + r + 1− α2

r + 1 γrα2

)
+ (α2 + 3)

(
α2 + 1
r + 1 γrα2 + r − α2

r + 1 γ
r
α2+1

)

= 2(r + 3)
r + 1 γrα2 .

We now assume the statement is true for n > r, i.e.,

(n+ 2− α2)γr,nα2 + (α2 + 3)γr,nα2+1 = (n+ r + 5)(n− r)
n

γr,n−1
α2 ,

and we prove it for n+ 1, i.e., we prove the identity

(n+ 3− α2)γr,n+1
α2 + (α2 + 3)γr,n+1

α2+1 = (n+ r + 6)(n+ 1− r)
n+ 1 γr,nα2 .

Arrangement of the inductive hypothesis gives

γr,nα2−1 = 1
(n+ 3− α2)

(
(n+ r + 5)(n− r)

n
γr,n−1
α2−1 − (α2 + 2)γr,nα2

)
,

γr,nα2 = 1
(α2 + 3)

(
(n+ r + 5)(n− r)

n
γr,n−1
α2 − (n+ 2− α2)γr,nα2

)
.
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Thus using Lemma 6.7.2 repeatedly, we have

(n+ 3− α2)γr,n+1
α2 + (α2 + 3)γr,n+1

α2+1

= 1
n+ 1

(
(n+ 3− α2)

(
α2γ

r,n
α2−1 + (n+ 1− α2)γr,nα2

)
+ (α2 + 3)

(
(α2 + 1)γr,nα2 + (n− α2)γr,nα2+1

))
= 1
n+ 1

(
α2

((n+ r + 5)(n− r)
n

γr,n−1
α2−1 − (α2 + 2)γr,nα2

)
+ (n+ 3− α2)(n+ 1− α2)γr,nα2

+ (α2 + 3)(α2 + 1)γr,nα2 + (n− α2)
((n+ r + 5)(n− r)

n
γr,n−1
α2 − (n+ 2− α2)γr,nα2

))

= 1
n+ 1

(
(n+ r + 5)(n− r)

(
α2

n
γr,n−1
α2−1 + n− α2

n
γr,n−1
α2

)
+ γr,nα2 (2n+ 6)

)

= 1
n+ 1

(
(n+ r + 5)(n− r)γr,nα2 + γr,nα2 (2n+ 6)

)
= (n+ r + 6)(n+ 1− r)

n+ 1 γr,nα2 ,

which completes the proof.

Lemma 6.7.5. The following identity hold for |β| = m− 1

Tmβ+e3 = −
(
β1 + 3
β3 + 3T

m
β+e1 + β2 + 3

β3 + 3T
m
β+e2

)
.

Proof. By definition of Tmβ for |β| = m− 1 and applying Lemma 6.7.4, it follows

Tmβ+e3 =
m∑
r=0

Smramrβ+e3

= −
m∑
r=0

Smr
(
β1 + 3
β3 + 3a

mr
β+e1 + β2 + 3

β3 + 3a
mr
β+e2

)

= −
β1 + 3
β3 + 3

m∑
r=0

Smramrβ+e1 + β2 + 3
β3 + 3

m∑
r=0

Smramrβ+e2

 .
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[13] I. Babuška and A. Miller, The post-processing approach in the finite ele-
ment methodâĂŤ Part 1: calculation of displacements, stresses and other higher
derivatives of the displacements, International Journal for numerical methods
in engineering, 20 (1984), pp. 1085–1109.

[14] A. Barone, F. Esposito, C. Magee, and A. Scott, Theory and applica-
tions of the sine-Gordon equation, La Rivista del Nuovo Cimento (1971-1977),
1 (1971), pp. 227–267.

[15] J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The construction of pre-
conditioners for elliptic problems by substructuring. I, Math. Comp., 47 (1986),
pp. 103–134.

[16] A. G. Bratsos, The solution of the two-dimensional sine-Gordon equation
using the method of lines, J. Comput. Appl. Math., 206 (2007), pp. 251–277.

[17] S. Brenner and R. Scott, The mathematical theory of finite element meth-
ods, vol. 15, Springer Science & Business Media, 2007.

[18] M. A. Casarin, Quasi-optimal Schwarz methods for the conforming spectral
element discretization, SIAM J. Numer. Anal., 34 (1997), pp. 2482–2502.

[19] T. F. Chan and T. P. Mathew, Domain decomposition algorithms, in Acta
numerica, 1994, Acta Numer., Cambridge Univ. Press, Cambridge, 1994, pp. 61–
143.

[20] E. Cohen and L. L. Schumaker, Rates of convergence of control polygons,
Comput. Aided Geom. Design, 2 (1985), pp. 229–235. Surfaces in CAGD ’84
(Oberwolfach, 1984).

[21] W. Dahmen, Subdivision algorithms converge quadratically, J. Comput. Appl.
Math., 16 (1986), pp. 145–158.

[22] L. Demkowicz, Computing with hp-adaptive finite elements. Vol. 1, Chap-
man & Hall/CRC Applied Mathematics and Nonlinear Science Series, Chap-
man & Hall/CRC, Boca Raton, FL, 2007. One and two dimensional elliptic and
Maxwell problems, With 1 CD-ROM (UNIX).

[23] Z. Ditzian, Multivariate Bernstein and Markov inequalities, J. Approx. The-
ory, 70 (1992), pp. 273–283.



207

[24] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release
1.0.25 of 2019-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S.
Cohl, and M. A. McClain, eds.

[25] R. H. Dodds Jr and L. Lopez, Substructuring in linear and nonlinear anal-
ysis, International Journal for Numerical Methods in Engineering, 15 (1980),
pp. 583–597.

[26] P. G. Drazin and R. S. Johnson, Solitons: an introduction, Cambridge
Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989.

[27] M. Dryja, B. F. Smith, and O. B. Widlund, Schwarz analysis of itera-
tive substructuring algorithms for elliptic problems in three dimensions, SIAM
journal on numerical analysis, 31 (1994), pp. 1662–1694.

[28] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput.,
6 (1991), pp. 345–390.

[29] G. E. Farin, Curves and Surfaces for CAGD: A Practical Guide., vol. 5th ed of
The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling,
Morgan Kaufmann, 2002.

[30] R. T. Farouki, The Bernstein polynomial basis: a centennial retrospective,
Comput. Aided Geom. Design, 29 (2012), pp. 379–419.

[31] R. T. Farouki and V. T. Rajan, Algorithms for polynomials in Bernstein
form, Comput. Aided Geom. Design, 5 (1988), pp. 1–26.

[32] M. Feischl and C. Schwab, Exponential convergence in H1 of hp-FEM
for Gevrey regularity with isotropic singularities, Numer. Math., 144 (2020),
pp. 323–346.

[33] J. Gallier, Curves and Surfaces in Geometric Modeling: Theory and Algo-
rithms, Morgan Kaufmann, 2000.

[34] R. Goldman, Pyramid algorithms: A dynamic programming approach to
curves and surfaces for geometric modeling, Elsevier, 2002.

[35] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3, JHU Press,
2012.

[36] P. Gray and S. Scott, Autocatalytic reactions in the isothermal, continuous
stirred tank reactor: Oscillations and instabilities in the system a + 2b - 3b; b
- c, Chemical Engineering Science, 39 (1984), pp. 1087 – 1097.

[37] P. Gray and S. Scott, Autocatalytic reactions in the isothermal, continuous
stirred tank reactor: Oscillations and instabilities in the system a+ 2bâĘŠ 3b;
bâĘŠ c, Chemical Engineering Science, 39 (1984), pp. 1087–1097.



208

[38] A. E. Green and W. Zerna, Theoretical elasticity, Dover Publications, Inc.,
New York, second ed., 1992.

[39] B. Guo and W. Cao, An additive Schwarz method for the h-p version of the
finite element method in three dimensions, SIAM J. Numer. Anal., 35 (1998),
pp. 632–654.

[40] E. Hairer, Solving Ordinary Differential Equations I: Nonstiff Problems,
Springer, 2011.

[41] Y. Haralambous, Parametrization of postscript fonts through metafont: an
alternative to adobe multiple master fonts, Electronic Publishing, 6 (1993),
pp. 145–157.

[42] N. Heuer and F. Leydecker, An extension theorem for polynomials on
triangles, Calcolo, 45 (2008), pp. 69–85.
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