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CHAPTER 1

Introduction

The subject of this thesis lies at the interface of integrable systems, cluster algebras

and statistical mechanics. At the heart of it are the dimer cluster integrable sys-

tems, a beautiful class of algebraic integrable systems introduced by Goncharov and

Kenyon [GK12].

The dimer model was developed by the statistical physicists Kasteleyn [Kas67],

Temperley and Fischer [TF61] in the 1960’s. The dimer model on the square grid is

dual to domino tilings, that is, tilings with 2 × 1 and 1 × 2 rectangles. In [EKLP],

Elkies, Kuperberg, Larsen and Propp introduced the domino-shuffling algorithm,

a discrete time random dynamical system on domino tilings to enumerate domino

tilings of certain regions of the square grid called Aztec diamonds. Underlying this

algorithm is a certain three dimensional recurrence called the octahedron recurrence,
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whose solutions exhibit the Laurent phenomenon [Spey04]. By analogy, Propp in-

troduced the cube recurrence [Propp01] and conjectured that it also has the Laurent

property. The cube and octahedron recurrences were part of the motivation behind

Fomin and Zelevinsky’s introduction of cluster algebras [FZ01].

Fock and Goncharov [FG03b] defined cluster varieties, which are dual geometric

objects to cluster algebras. Cluster varieties come in pairs, called the X and A clus-

ter varieties. The X cluster variety comes with a canonical Poisson structure. An

integrable system is a Hamiltonian system with a maximal set of functions, called

Hamiltonians, that mutually commute with respect to the Poisson structure. Gon-

charov and Kenyon [GK12] showed that the X cluster variety associated to the dimer

model on a torus, with its canonical Poisson structure, is an integrable system, where

the Hamiltonians are given by certain dimer partition functions.

In chapter 3, we study generalizations of the domino-shuffling algorithm on the

square lattice to other biperiodic planar bipartite graphs. They form a group, called

the cluster modular group, and is the group of automorphisms of the dimer inte-

grable system. This group was studied by Fock and Marshakov [FM16], who gave

an explicit conjecture for its isomorphism type. The main result is a proof of this

conjecture. This chapter has an appendix by Giovanni Inchiostro.

Resistor networks are graphs with a non-zero complex number associated to each

edge, called its conductance. They provide the setting for discrete potential theory
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and are intimately related to random walks, spanning trees and discrete geometry.

If the graph is embedded on the torus, we say that it is biperiodic. Resistor networks

have a cluster-variety-like structure, with the cluster mutation replaced by the Y-∆

move (equivalently the cube recurrence). The fundamental operator in the study of

networks is the discrete Laplacian. Associated to the discrete Laplacian on a biperi-

odic network is its spectral data: a curve C and a collection of points in C, that is, a

divisor. In chapter 4, we show that this divisor is always a point in the Prym variety

of C, and that the spectral data gives a birational isomorphism from the space of

networks to a family of Prym varieties. These results for networks parallel Fock’s

results for the dimer model [F15].

The limit shape phenomenon is a “law of large numbers” for random surfaces:

the random surface looks macroscopically like the “average surface". The first result

of this kind was the celebrated arctic circle theorem for domino tilings of the aztec

diamond, proved using the domino shuffling algorithm. The limit shape has macro-

scopic regions with different qualitative behavior, called phases and the arctic curve

is the boundary separating the phases. The work of Kenyon, Okounkov, Sheffield

[KOS06] and others has shown that periodic lattices with non-trivial Newton poly-

gons lead to rich arctic curves with many frozen and gaseous phases. Groves are

another statistical mechanical model, associated to resistor networks, that exhibits

an arctic circle theorem, proved by Petersen and Speyer [PS06] using the cube recur-

rence. In chapter 5, we extend their proof to compute arctic curves for groves with

non-trivial Newton polygons, using points on the associated resistor network cluster
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variety that are periodic under an element of the cluster modular group. We provide

a description of asymptotic edge probabilities, combining the singular integral anal-

ysis of Baryshnikov and Pemantle [BP11] with some geometric ideas of Kenyon and

Okounkov [KO07].



CHAPTER 2

Background

2.1 The dimer model

2.1.1 Some basic notation

Let T be a torus, and let T := H1(T,Z)∗ ⊗ C∗ be the algebraic torus with group

of characters H1(T,Z). Given an convex integral polygon N ⊂ H1(T,R), that is, a

convex polygon whose vertices are in H1(T,Z), we denote by VN and EN the vertices

and edges of N respectively. A vector in H1(T,R) whose end-points are in H1(T,Z)

is called integral. We say that an integral vector is primitive if it contains no integral

points other than its end-points. Let |EN | be the number of edges of N , and for an

edge Eρ ∈ EN , let |Eρ| be the integral length of Eρ, that is the integer ` such that

Eρ = `eρ with eρ a primitive parallel vector. Let uρ be the primitive integral vector

5
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(a) A convex integral polygon N . (b) A minimal bipartite graph Γ with Newton
polygon N . The zig-zag paths of Γ are col-
ored according to the corresponding edges of
the Newton polygon N . Here and elsewhere,
we draw zig-zag paths as loops in the medial
graph of Γ.

Figure 2.1: A bipartite torus graph.

normal to Eρ, oriented so that it points to the interior of N .

2.1.2 Bipartite torus graphs

A bipartite graph is a graph whose vertices are colored black or white, such that

each edge is incident to one black and one white vertex. A bipartite torus graph is

a bipartite graph Γ embedded in T such that the faces of Γ, that is the connected

components of T \ Γ, are contractible. We denote by B(Γ) and W (Γ) the black and

white vertices of Γ respectively.



7

A dimer cover (or perfect matching) M of Γ is a subset of E(Γ) such that each

vertex of Γ is incident to exactly one edge of M , that is the edges in M match each

black vertex with a white vertex. Orienting edges in a dimer cover from the black

vertex to the white vertex, we obtain from each dimer cover a 1-chain in Γ which we

denote also by M . If we fix a dimer cover M0 of Γ, called the reference dimer cover,

for each dimer cover M we obtain a homology class:

M 7→ [M −M0] ∈ H1(T,Z).

The Newton polygon N(Γ) of Γ is defined to be the convex hull of the homology

classes of all dimer covers of Γ:

N(Γ) := Conv{[M −M0] : M is a dimer cover of Γ} ⊂ H1(T,R).

Changing the reference dimer cover M0 results in a translation of N(Γ).

2.1.3 Boltzmann probability measures

An edge-weight on Γ is a function wt : E(Γ) → R>0. Given an edge-weight wt, the

weight of a dimer cover is given by ∏e∈M wt(e). The Boltzmann probability measure

Pwt on the set of dimer covers is defined to be

Pwt(M) := wt(M)
Z

,

where

Z :=
∑

dimer covers M
wt(M),
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(a) Spider move. (b) Shrinking/expanding 2-valent
white vertices.

Figure 2.2: Elementary transformations of bipartite torus graphs.

is a normalization constant called the partition function. Two edge-weights wt1, wt2

on Γ are said to be gauge equivalent if there exists bv ∈ R>0, for all v ∈ V (Γ) such

that

wt1(e) = bvwt2(e)bv′ ,

where v, v′ are the edges incident to e. Since M is a dimer cover, there is exactly

one edge of M incident to each vertex of Γ, and therefore Pwt1 = Pwt2 .

2.1.4 Zig-zag paths and minimality

A zig-zag path in Γ is an oriented path in Γ that turns maximally left at white ver-

tices and maximally right at black vertices (with respect to the orientation on the

T induced by the one on the fundamental rectangle). The medial graph of Γ is the

4-valent graph that has a vertex for each edge of Γ and edge when two edges of Γ

are incident to a vertex and consecutive in cyclic order. Associated to a zig-zag path

is a strand which is an oriented path in the medial graph that passes consecutively

through the edges of the zig-zag path. The components of the complement of the

strands in T are colored black, white or gray according to whether they contain a
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black vertex, white vertex or face of Γ.

Γ is minimal if in the lift Γ̃ of Γ to the plane, zig-zag paths have no self-

intersections and there are no parallel bigons, that is, pairs of zig-zag paths oriented

the same way intersecting at two points. For a minimal bipartite graph, the Newton

polygon has a description in terms of zig-zag paths. Each zig-zag path defines a

homology class in H1(T,Z). The primitive integral vectors forming the boundary of

the Newton polygon are in bijection with the homology classes of zig-zag paths.

There are two local rearrangements of bipartite torus graphs called elementary

transformations:

1. Spider moves (Figure 2.2a);

2. Shrinking/expanding 2-valent white vertices (Figure 2.2b).

Theorem 2.1.1 (Goncharov and Kenyon, 2012 [GK12, Theorem 2.5]). Given a

convex integral polygon N , there is a family of minimal bipartite torus graphs, each of

whose Newton polygon is N . Any two minimal bipartite surface graphs with Newton

polygon N are related by a sequence of elementary transformations.

2.1.5 Triple point diagrams

A triple point diagram in a disk D2 is a collection of oriented arcs called strands,

defined up to isotopy, such that:

1. Three strands meet at each intersection point.
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(a) Expanding the 4-valent black
vertices.

(b) Minimal triple point diagram in
T.

Figure 2.3: Construction of the minimal triple point diagram in T from Γ.

2. The end points of each strand are distinct boundary points.

3. The orientations on the strands induce consistent orientations on the comple-

mentary regions.

Each strand starts and ends in ∂D2, so if there are n strands, there are 2n points

in ∂D2, whose orientations alternate “in" and “out" as we move along ∂D2. A triple

point diagram is called minimal if the number of triple intersections is minimal if

strands have no self intersections and parallel bigons.

There is a local move called a 2-2 move on triple point diagrams (see Figure 2.4).

Theorem 2.1.2 (Thurston, 2004 [Thur04], Postnikov, 2006 [Post06]). 1. If there

are 2n points on the boundary of the disk, all n! matchings of “in" and “out"

points are achieved by triple point diagrams.
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Figure 2.4: The 2-2 move.

2. Any two minimal triple point diagrams are related by 2-2 moves.

2.1.6 Triple point diagrams in T

A triple point diagram in T is a collection of oriented curves called strands in T,

determined up to isotopy, such that:

1. Three strands meet at each intersection point.

2. Each strand has non-trivial homology in T.

3. The orientations on the strands induce consistent orientations on the comple-

mentary regions.

A triple point diagram in T is minimal if the lift of any strand to the plane has no

self intersections and the lifts of any two strands to the plane has no parallel bigons.

We recall the eqiuvalence between minimal triple point digarams in T and minimal

bipartite torus graphs from [GK12]:

1. To convert a minimal bipartite graph to a triple point diagram, first perform a

sequence of moves inverse to shrinking a 2-valent white vertex to get a bipartite
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Figure 2.5: Equivalence of elementary transformations and 2− 2 moves.

graph in which all black vertices are 3-valent. Draw all zig-zag strands so that

the black complementary regions are now triangles. Shrink all these black

triangle regions into points to get a triple point diagram.

2. To go from triple point diagrams to bipartite graphs, resolve each triple point

into a counterclockwise triangle. Put a black vertex in each complimentary

region that is oriented counterclockwise and a white vertex in each complimen-

tary region that is oriented clockwise. Edges between black and white vertices

are given by the vertices of the resolved triple point diagram. Faces of the

bipartite graph will be the regions where the orientations alternate.

Under this correspondence, the elementary transformations on bipartite graphs cor-

respond to 2-2 moves as shown in Figure 2.5.

2.2 Cluster structure

We recall the construction of the dimer cluster variety from [GK12].
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2.2.1 Seeds

A seed s is a triple (Λ, (·, ·), {ei}), where

• Λ is a lattice;

• (·, ·) is a skew symmetric integral bilinear form on Γ;

• {ei} is a collection of non-zero vectors in Λ.

By thickening the edges of the bipartite torus graph Γ, we can view it as a ribbon

graph. The data of a ribbon graph is equivalent to the data of a cyclic order of edges

around each vertex of the graph. We construct a new ribbon graph Γ̂ by reversing

the cyclic order at all white vertices. The oriented surface graph ŜΓ obtained from

Γ̂ by gluing in discs for faces is called the conjugated surface.

Since Γ̂ is the same as Γ as a topological space, we have a canonical isomorphism

H1(Γ̂,Z) ∼= H1(Γ,Z). Let us denote this lattice by ΛΓ. The embedding Γ̂ ↪→ ŜΓ

induces a homomophism of homology groups H1(Γ̂,Z) → H1(ŜΓ,Z). The pullback

of the intersection pairing on ŜΓ gives a skew symmetric integral bilinear form (·, ·)Γ̂

on ΛΓ. For a face F of Γ, let γF ∈ ΛΓ denote the cycle ∂F , the oriented boundary

of F . The seed sΓ associated to Γ is (ΛΓ, (·, ·)Γ̂, {γF}).

2.2.2 Seed tori

To a seed s, we can associate a complex algebraic torus Xs := Hom(Λ,C∗) called the

seed torus. The coordinates Xi on Xs corresponding to ei are called cluster variables.
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For the seed sΓ associated to Γ, the seed torus is the space of edge-weights mod-

ulo gauge equivalence. While the positive-real-valued edge-weights are important

for geometric and probabilistic applications, for the construction of the dimer inte-

grable system we consider more general edge-weights that take values in C∗. Such

an edge-weight is the same thing an element of Z1(Γ,C∗), and two edge-weights

are gauge equivalent iff they differ by a coboundary. Therefore the space of gauge

equivalence classes of edge-weights is identified with H1(Γ,C∗), which we denote

by LΓ. Alternately we may view a gauge equivalence class of edge-weights as a

C∗(= GL1(C))-local system on Γ. The positive-real-valued points LΓ(R>0) of LΓ

parameterize the Boltzmann probability measures.

The monodromy m(L) of an edge-weight wt around an oriented loop L is the

product of edge-weights of edges in the loop. These monodromies generate the

algebra of regular functions H0(OLΓ). The intersection form (·, ·)Γ̂ gives rise to a

Poisson structure on H0(OLΓ):

{m(L1),m(L2)} := (L1, L2)Γ̂m(L1)m(L2).

Let γx, γy be loops in Γ generating H1(T,Z). For a face F of Γ, let ∂F ∈ H1(Γ,Z)

denote the boundary of F , oriented counterclockwise. Let us denote XF := m(∂F )

and z := m(γx), w := γy. Then

H0(OLΓ) = C[z±1, w±1, X±1
F : F is a face of Γ]/

〈 ∏
faces F

XF = 1
〉
,

These coordinates provide an isomorphism LΓ ∼= (C∗)number of faces of Γ+1.
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2.2.3 Mutations

Given a seed s, a mutation of s in the direction ek is a new seed µek(s) given by a

new collection of vectors {e′i}:

e′i :=


ei + (ei, ek)+ek if i 6= k;

−ek if i = k.

A mutation µek induces a Poisson birational map between seed tori µek : Xs 99K

Xµek (s) defined on cluster variables by

µ∗ek : Xi 7→ Xi(1 +Xk)−(ei,ek).

Mutations in the dimer model arise from elementary transformations of bipartite

torus graphs. Shrinking/expanding 2-valent vertices Γ → Γ′ gives a canonical iden-

tification between the seeds sΓ and sΓ′ , whereas for the spider move we have:

Lemma 2.2.1 (Goncharov and Kenyon, [GK12] Lemma 4.5). A spider move Γ→ Γ′

at a face F gives a mutation of seeds µγF : sΓ → sΓ′.

2.2.4 The cluster X variety

The Poisson scheme obtained by gluing the seed tori using the birational maps in-

duced by mutations is called the cluster X variety.

Given a convex integral polygon N ⊂ H1(T,R), we glue together the seed tori LΓ

for all graphs Γ associated to N in Theorem 2.1.1 to get a Poisson scheme XN . This

will be the phase space of the dimer integrable system. Mutations involve subtraction



16

free rational functions and therefore, XN inherits a well-defined notion of positive-

real-valued points from the LΓ, which we denote by X (R>0). We emphasize that we

only glue together cluster charts related by spider moves, that is mutations at square

faces rather than all possible mutations.

2.2.5 The cluster modular group

A seed cluster transformation is a compostion of seed isomorphisms and mutations.

Mutations induce birational maps while seed isomorphisms σ induce isomorphisms

between the seed tori:

σ∗(Xσ(i)) = Xi.

Composing the birational maps induced by mutations and seed isomorphisms, a

seed cluster transformation gives a birational map between seed tori, called a cluster

transformation. A seed cluster transformations s→ s is trivial if the induced cluster

transformation is the identity. The groupoid Gs whose objects are seeds that are

related to s by a seed cluster transformation and morphisms are seed cluster trans-

formations modulo trivial seed cluster transformations is called the cluster modular

groupoid. The fundamental group Gs of Gs based at s is called the cluster modular

group. The cluster transformations associated to elements of Gs give birational au-

tomorphisms of X .

Seed isomorphisms of sΓ correspond to graph automorphisms of Γ. By Theo-

rem 2.1.1, all seeds are related by elementary transformations. Therefore the cluster
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Figure 2.6: The fundamental rectangle R

modular group of XN is canonically associated to N , that is, it does not depend on

the choice of base seed. We denote the cluster modular group of XN by GN .

We emphasize that like in the construction of XN , we consider only the sub-

set of mutations consisting of elementary transformations when defining the cluster

modular group.

2.3 Algebraic complete integrability

Let R be a fundamental rectangle of T, so that T is obtained by gluing together op-

posite sides of R. Let γz, γw the sides of R generating H1(T,Z), oriented as shown in

Figure 2.6. Let 〈·, ·〉T be the intersection pairing on T. Let z, w denote the Poincare

duals of γz, γw giving an isomorphism T ∼= (C∗)2. For each edge e of Γ, we associate

a character z〈e,γz〉Tw〈e,γw〉T .

A Kasteleyn sign is an edge-weight κ : E(Γ)→ C∗, such that the the monodromy
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of κ around a loop L is −1 (respectively 1) if the number of edges in L is 0 mod

4 (respectively 2 mod 4). Given an edge-weight wt and a Kasteleyn sign κ, the

Kasteleyn operator is the C[z±1, w±1]-algebra homomorphism defined as follows:

K(z, w) : C[z±1, w±1]B(Γ) → C[z±1, w±1]W (Γ)

(2.1)

K(z, w)vw,vb =
∑

e∈E(Γ) incident to vb,vw
wt(e)κ(e)z〈e,γz〉Tw〈e,γw〉T , for vb ∈ B(Γ), vw ∈ W (Γ).

(2.2)

Theorem 2.3.1 (Kasteleyn 1967, [Kas67]).

det K(z, w) = zi0wj0
∑

Mdimer cover of Γ
sign(M)wt(M)ziMwjM ,

where sign(M) ∈ {±1} is a sign that depends on the homology class [M −M0] and

κ. Here (iM , jM) ∈ Z2 is the homology class of [M −M0] in the basis of H1(T,Z)

given by (−γw, γz) and zi0wj0 is an unimportant monomial.

P (z, w) := det K(z, w)/wt(M0) is called the characteristic polynomial, and its

vanishing locus {P (z, w) = 0} ⊂ (C∗)2 is called the spectral curve. From Theorem

2.3.1, we see that NΓ is the Newton polygon of P (z, w), justifying the name.

We rewrite the sum in (2.1) as:

P (z, w) = zi0wj0
∑

(i,j)∈NΓ∩Z2

Hi,jz
iwj,

where Hi,j := ∑
M :[M−M0]=(i,j) sign(M)wt(M)/wt(M0) enumerates dimer covers with

homology class (i, j). The Hi,j associated to the interior points of NΓ are the Hamil-

tonians of the dimer integrable system.
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(a) Edge-weights and Kasteleyn signs.
(b) Newton polygon and zig-zag paths.

Figure 2.7: A fundamental domain for the square lattice.

The Poisson center of OLΓ is generated by monodromies around zig-zag paths

of Γ. For a zig-zag path α, we denote by Cα the monodromy around it. These are

the Casimirs. The symplectic leaves are the common level sets of all the Casimirs.

The dimension of the generic symplectic leaf is 2g, where g is the number of interior

points of NΓ.

Theorem 2.3.2 (Goncharov and Kenyon, [GK12] Theorem 3.7). The Hamiltonians

Hi,j for interior points (i, j) ∈ NΓ∩Z2 are independent and commute with respect to

the Poisson bracket on LΓ. There are g of them, which is half the dimension of the

generic symplectic leaf.

Let us work out an explicit example. Consider the square lattice with the edge-

weights and Kasteleyn signs shown in Figure 2.7a. Let us take the reference dimer

M0 to be the one with weight ac. We have:
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K(z, w) =

b0 b1
a− ez b− g/w w0

−d+ hw c− f/z w1

,

P (z, w) = 1 + bd

ac
+ ef

ac
+ gh

ac
− dg

ac

1
w
− bh

ac
w − f

c

1
z
− e

a
z.(2.3)

The Casimirs are given by:

Cα = bh

ce
, Cβ = af

bh
, Cγ = dg

af
, Cδ = ce

dg
,

and they satisfy the relation ∏ρCρ = 1 in H1(Γ,C∗), where the product is over all

zig-zag paths. The Newton polygon has a single interior point, and the Hamiltonian

corresponding to it is H = 1 + bd
ac

+ ef
ac

+ gh
ac
.

2.4 The spectral transform

2.4.1 Toric surfaces

A toric surface is a normal algebraic variety of dimension 2 containing the algebraic

torus (C∗)2 as a dense open subset, such that the action of (C∗)2 on itself extends.

A convex integral polygon N gives rise to a projective toric surface XN , along with

an ample divisor DN , such that the linear system |DN | is identified with curves

defined by vanishing of Laurent polynomials with Newton polygon N . A generic

curve C ∈ |DN | has genus g equal to the number of interior lattice points in N . The

complement of the algebraic torus in XN is a union of P1s, called lines at infinity,
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parameterized by the edges of N , and intersecting according to the combinatorics of

N . We denote the line at infinity corresponding to Eρ ∈ EN by Dρ. For C ∈ |DN |,

we have |C ∩Dρ| = |Eρ|, where the points in C ∩Dρ are counted with multiplicity.

2.4.2 The spectral transform

We follow [GK12, Section 7]. A parameterization of a divisor C = ∑k
i=1 nici by a

set S is a function ν : S → {c1, ..., ck} such that |ν−1(ci)| = ni. A spectral data is a

triple (C, S, ν) where C ∈ |DN | is a genus g curve, S is a degree g effective divisor

on C ∩ (C∗)2 and ν = {νρ} are parameterizations of the divisors Dρ ∩C. Let SN be

the moduli space parameterizing the spectral data related to N .

Fix a minimal bipartite graph Γ with Newton polygon N , and a white vertex w0

of Γ. There is a rational map, called the spectral transform, defined by Kenyon and

Okounkov [KO03],

κΓ,w0 : XN(C) ⊃ LΓ(C) 99K SN

wt 7→ (C, S, ν),

defined as follows:

1. C is the spectral curve.

2. S is a degree g effective divisor on C defined as follows: The cokernel ofK(z, w)

is the pushforward of a line bundle on C for generic wt ∈ LΓ(C). The restriction

to C of the image of δw0 gives a section of this line bundle. S is the divisor of

this section.
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3. ν is the parameterization of the points at infinity by zig-zag paths given as

follows: Consider the restriction K|α of the Kasteleyn operator to the zig-zag

path α. The point at infinity associated to α is the point where K|α is singular.

Let us compute the spectral transform for the example in Figure 2.7. The spectral

curve C is given by the vanishing of P (z, w) in (2.3). Here g = 1, so the divisor

S = (p, q) is a single point on C. We can compute it explicitly by looking for the

simultaneous vanishing of the w0-column of the adjugate matrix of K, that is, it is

given by:

c− f

z
= −d+ hw = 0,

so (p, q) = (f
c
, d
h
). Since there is only one zig-zag path in each homology direction in

this example, the parameterization ν is irrelevant.

The main properties of the spectral transform are:

1. The spectral transform is a birational change of coordinates for XN (Theorem

2.4.1).

2. The birational automorphisms of XN induced by seed cluster transformations

are linearized in these coordinates (Theorem 2.5.2).

We have:

Theorem 2.4.1 (Fock, 2015 [F15], George, Goncharov and Kenyon [GGK]). The

spectral transform is a birational isomorphism.
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Figure 2.8: The discrete Abel map computed with d(w0) = 0 for the square lattice.
The zig-zag paths are labeled by their corresponding sides of the Newton polygon
on the right.

2.5 Linearization on the Jacobian

The discrete Abel map

Let Γ̃ be the lift of Γ to the plane. Let Div∞(C) denote the divisors at infinity of C,

i.e. Z-linear combinations of the points in ∪ρDρ ∩ C. We define the discrete Abel

map d following Fock [F15] by the following rules:

d : Vertices of Γ̃→ Div∞(C)

d(w0) = 0,

d(v2)− d(v1) =
∑

Zig-zag paths α
〈α, γ〉Tν(α),

for any path γ from v1 to v2. Locally d is described by the following rule, which is

usually how we compute it: If bw is an edge, with zig-zag paths α, β containing bw,
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then

d(w) = d(b)− ν(α)− ν(β).

We have an embedding

H1(T,Z) ↪→ Div∞(C)

m 7→ div χm|C =
∑

Zig-zag paths α
〈α,m〉Tν(α),

where χm is the character of T = (C∗)2 associated to m ∈ H1(T,Z). In coordinates,

if m = (i, j), then χm = ziwj. d is H1(T,Z)-equivariant:

d(v +m) = d(v) +m,

so d(v) is a well defined divisor class in C for each vertex v of Γ.

Example 2.5.1.

In Figure 2.8, we compute the discrete Abel map for the square lattice. The

embedding H1(T,Z) ↪→ Div∞(C) is given by

(1, 0) 7→ −α + β + γ − δ;

(0, 1) 7→ −α− β + γ + δ.

Let t : sΓ → sΓ be a seed cluster transformation. If ν is a parameterization

of points at infinity of C̄ and zig-zag paths of Γ, then there is an induced param-

eterization νt after doing t; the monodromy around a zig-zag path is preserved by

elementary transformations. Similarly, t also induces a new discrete Abel map dt; for
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Figure 2.9: The relative positions of zig-zag paths for a seed cluster transformation.

any side Eρ of N , the zig-zag paths in Γ̃ divide the plane into an infinite collection

of strips. The discrete Abel map of a vertex tells which of these strips contain the

vertex. Since zig-zag paths corresponding to the same edge Eρ do not cross each

other during elementary transformtions, there is a bijection of strips before and after

t, which gives us dt.

Theorem 2.5.2 (Fock, 2015 [F15, Proposition 1]). The following diagram commutes:

XN SN

XN SN

κΓ,w0

µt

κΓ,w0

,

where the map on the left is (C, S, ν) 7→ (C, St, νt), where St is the (generically)

unique degree g effective divisor satisfying

St = S + d(w0)− dt(w0), in Picg(C).
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Figure 2.10: The black point on the left is the divisor on the amoeba of the spectral
curve. The points at infinity of the curve are in bijection with zig-zag paths and
colored according to Figure 2.9. The seed cluster transformation in Figure 2.9 maps
the black point to the pink point. Fock [F15] shows that this map is the translation
shown above in the Jacobian variety of the spectral curve.

Therefore, cluster modular transformations are translations on a cover of the Jaco-

bian variety of C.

Example 2.5.3.

Consider t to be the cluster modular transformation of Figure 2.9 for the square

lattice. Recall that we computed the discrete Abel map in Example 2.5.1. From the

relative positions of zig-zag paths in Figure 2.9, we can see that the induced discrete

Abel map at w0 is given by

dt(w0) = α− β.

Therefore Theorem 2.5.2 tells us that St = S − α + β, as illustrated in Figure 2.10.



CHAPTER 3

The cluster modular group of the dimer

model

Domino-shuffling is a technique introduced in [EKLP] to enumerate and generate

domino tilings of the Aztec diamond graph, and was used to give the first proof of

the arctic circle theorem [JPS]. Domino tilings are dual to the dimer model on the

square grid. There are generalizations of domino-shuffling for other biperiodic bipar-

tite graphs and the cluster modular group is a group whose elements correspond to

these shufflings. This group was studied by Fock and Marshakov [FM16], who gave

an explicit conjecture for its isomorphism type. The goal of this chapter is to study

generalized shufflings, and in particular, to compute the cluster modular group for

any biperiodic bipartite graph. The natural framework for this is the dimer inte-

grable system XN associated to a convex polygon N .

27
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Generalized shufflings are dynamical systems on the space of edge-weights. Let Γ

be a bipartite graph on a torus T and let LΓ be the space of edge-weights on Γ (mod-

ulo gauge transformations, see Section 2.2.2 for the precise definition). There are

two types of local rearrangements of bipartite graphs called elementary transforma-

tions (see Figure 5.2). Each elementary transformation comes with a transformation

of edge weights, characterized by the property that it preserves the dimer partition

function (see for example [GK12, Theorem 4.7]). Given a sequence of elementary

transformations such that the initial and final graphs are both Γ (called a seed clus-

ter transformation), composing the induced transformations of edge weights gives

an automorphism of LΓ. The seed cluster transformation is trivial if the induced

map on edge weights is the identity. The cluster modular group is the group of seed

cluster transformations modulo the trival ones (cf. section 2.2.5).

A zig-zag path in Γ is a path that turns maximally left at white vertices and

maximally right at black vertices (cf. Section 2.1.4). Associated to any biperiodic

bipartite graph is a convex integral polygon N called its Newton polygon, whose

primitive edges correspond to homology classes of zig-zag paths. The cluster modular

group only depends on the polygon N . Our main result is the following conjecture

of Fock and Marshakov [FM16]:

Theorem 3.0.1 (cf. Theorem 3.3.4). If the Newton polygon N has an interior lattice

point, the cluster modular group GN is isomorphic to the group

ZEdges of N
0 /H1(T,Z),



29

Figure 3.1: A dynamical system associated to the dimer model.

Figure 3.2: The relative positions of zig-zag paths for the seed cluster transformation
from Figure 3.1. The arrow on the left shows the Newton polygon and φ associated
to this seed cluster transformation.
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defined in the paragraph below. When there is no interior lattice point, the cluster

modular group is a smaller finite group.

Corollary 3.0.2. When N contains an interior lattice point, the rank of GN is

|EN | − 3, where |EN | is the number of edges of the polygon N . When N has no

interior lattice points, the rank is 0.

Elementary transformations have a description in terms of zig-zag paths (see

Figure 2.5). Let Γ̃ be the planar biperiodic graph whose quotient is Γ. If we superpose

Γ̃ over itself after a seed cluster transformation, each zig-zag path is superposed over

one that is a translate of it. Following Fock and Marshakov [FM16] we can associate

an integer function φ from the edges of the Newton polygon N as follows: For any

edge E of N , the inverse image in the universal cover of the torus of all zig-zag paths

corresponding to E is an infinite number of parallel zig-zag paths in Γ̃, let us label

them by (αiE)i∈Z, ordered from left to right. Consider the zig-zag path α0
E: after

the seed cluster transformation, if we superpose Γ̃ over itself, α0
E is superposed over

a parallel zig-zag path, say αjE. Then we define φ(E) := −j, the distance that any

zig-zag path corresponding to E in Γ̃ is translated by the seed cluster transformation.

This function satisfies

∑
Edges E of N

φ(E) = 0.

Let us denote by ZEdges of N
0 the group of integral functions on the edges of N with

sum zero over the edges. φ is not a well defined function since we can translate Γ̃ by

the homology H1(T,Z) of the torus before we superpose. Therefore we define φ to

be an element of ZEdges of N
0 /H1(T,Z), where the embedding is given by the distance
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zig-zag paths in Γ̃ are translated by elements of H1(T,Z):

H1(T,Z) ↪→ ZEdges of N
0

m 7→ (E 7→ 〈E,m〉) ,

where 〈·, ·〉 is the intersection pairing in H1(T,Z). Figure 3.2 shows the relative

positions of a zig-zag path of each homology class before and after the seed cluster

transformation from Figure 3.1.

The point of Theorem 3.0.1 is to provide a framework to extend results about the

dimer model on the square lattice derived using domino-shuffling to general biperi-

odic dimer models. A drawback of working in this level of generality is that the

theorem does not provide an explicit way to produce a cluster modular transforma-

tion associated to a given element of ZEdges of N
0 /H1(T,Z). This is to be expected; the

family of minimal bipartite graphs associated to a convex integral polygon is also

not explicit; both constructions rely on an existence result for triple point diagrams

due to Thurston [Thur04] (cf. Section 2.1.5).

The proof of Theorem 3.0.1 has two parts. In Section 3.2, we show surjectivity,

i.e. every element of ZEdges of N
0 /H1(T,Z) arises from a seed cluster transformation.

This part is purely combinatorial. Translations by H1(T,Z) are clearly trivial seed

cluster transformations. The second part is to show that these are the only trivial

seed cluster transformations. The induced transformation of edge-weights of a seed

cluster transformation is a complicated rational function, and it seems difficult to
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Figure 3.3: The black point on the left is the divisor on the amoeba of the spectral
curve. The points at infinity of the curve are in bijection with zig-zag paths and
colored according to Figure 3.2. The seed cluster transformation in Figure 3.2 maps
the black point to the pink point. Fock [F15] shows that this map is the transla-
tion shown above in the Jacobian variety of the spectral curve. This translation is
determined by the function φ shown in Figure 3.2.

check when this function is the identity. However, there is a birational change of

coordinates under which this transformation becomes linear.

Kenyon and Okounkov [KO03] defined the spectral transform (cf. Section 2.4)

of wt ∈ LΓ to be a triple (C, S, ν), where C ⊂ (C∗)2 is a curve called the spectral

curve and S is a divisor, that is a formal linear combination of points in C. C is the

vanishing locus of a Laurent polynomial P (z, w) which is a signed homology-class-

weighted version of the partition function for dimer covers. The spectral transform

is a birational isomorphism [F15,GGK], so we can view (C, S, ν) as coordinates on

XN . In these coordinates, the seed cluster transformation acts by a translation of

the divisor S in (a cover of) the Jacobian variety of C, as shown by Fock [F15] (see

Section 2.5 and Figure 3.3).
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This reduces the question of which seed cluster transformations are trivial to the

following problem:

Theorem 3.0.3 (cf. Theorem A.0.11). Assume N has an interior lattice point. If L

is a non-trivial line bundle on the projective toric surface XN associated to N , then

for a generic spectral curve C, we have L|C � OC.

This is proved by Giovanni Inchiostro in the appendix.

In the last paragraph of [FM16, Section 7.3], Fock and Marshakov provide an

alternate description of the group GN ; it is the group of divisor classes on the toric

surface XN that restrict to degree 0 divisors on C. However this is only true as

stated for polygons whose sides are all primitive, that is, no side contains a lattice

point other than the end points. Recently Treumann, Williams and Zaslow [TWZ18]

gave a different version of linearization of cluster modular transformations under the

spectral transform, replacing the toric variety XN by a toric stack. Associated to

N is a stacky fan Σ (see Section 3.3.1) which can be used to construct a stacky

toric surface XN compactifying (C∗)2. Let Dρ be the toric divisor associated to the

edge Eρ of N . Let Lρ denote the line bundle O( 1
|Eρ|Dρ), where |Eρ| is the number

of primitive vectors in Eρ. The birational automorphism of XN induced by a seed

cluster transformation corresponds to the tensor product action on the pushforward

of OC(S) to XN by the line bundle

L :=
⊗
ρ

L⊗φ(Eρ)
ρ ∈ Pic0(XN),

where Pic0(XN) denotes the subgroup of the Picard group satisfying ∑ρ φ(Eρ) = 0.
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The group Pic0(XN) is explicitly computed in [BH09] where they show that φ 7→⊗L⊗φ(Eρ)
ρ is an isomorphism ZEdges of P

0 /H1(T,Z) ∼= Pic0(XN).

Theorem 3.0.4. When the Newton polygon N has an interior lattice point, GN is

isomorphic to Pic0(XN).

In Section 3.4, we study the torsion subgroup of GN . We show that:

Theorem 3.0.5. In the family of minimal bipartite graphs associated to N , there

is a subfamily that has maximal possible translation symmetry related by elementary

transformations that respect this symmetry.

This gives the following characterization of the torison subgroup of GN :

Lemma 3.0.6. The torsion subgroup of the cluster modular group is the group of au-

tomorphisms induced by translations of any maximally translation invariant bipartite

graph.

Triangles

For triangular N , [IU15] Proposition 11.3 tells us that there is a unique bipartite

graph with Newton polygon N and its lift to the plane is the honeycomb lattice.

Since this graph does not admit any elementary transformations, the only cluster

modular transformations are translation symmetries. We also see this from the

explicit cluster modular group. By Corollary 3.0.2, the cluster modular group has

zero rank and therefore by Lemma 3.0.6, it consists of translation symmetries.
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Quadrilaterals

Corollary 3.0.2 tells us that the cluster modular group has rank one. The dimer

models that have quadrilateral Newton polygons coincide with those that arise from

the Speyer’s “crosses and wrenches" construction [Spey04]. The octahedron recur-

rence studied there is the (essentially unique) non-torsion cluster modular trans-

formation (on the A cluster variety). Other incarnations of this cluster modular

transformation are Hirota’s bilinear difference equation [Miwa82], the domino shuf-

fling algorithm [EKLP,Propp03], the shuffling studied in [BF18] for the suspended

pinch point graph and the pentagram map [FM16, Section 8.5].

The octahedron recurrence can be used to compute arctic curves [PS06,DFS14].

We observed in [G18] that part of the data needed for this technique of computing

arctic curves is a cluster modular transformation along with edge weights that are

periodic under the induced birational map. We hope that understanding the cluster

modular group will help generalize this method beyond the quadrilateral Newton

polygon case. Since higher degree polygons have cluster modular groups with rank

greater than one by Corollary 3.0.2, we expect a family of arctic curves, one for each

non-torsion cluster modular transformation.

Higher degree polygons

Cluster modular transformations for the dP2 quiver, which has a pentagon Newton

polygon, were explicitly studied in [GLVY16]. The dP3 quiver with a hexagonal

Newton polygon has been studied in [LMNT14,LM17,LM19]. The cube recurrence
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studied in [CS04,PS06] arises as the restriction to RP of a cluster modular transfor-

mation on the dP3 graph [GK12, Section 6.3].

3.1 The conjecture of Fock and Marshakov

We follow [FM16, Section 7.3]. Let ZEN0 be the group of integer valued functions

f on EN such that ∑ρ f(Eρ) = 0. Let 〈∗, ∗〉T : H1(T,Z) × H1(T,Z) → Z be the

intersection pairing on T. We have an embedding

j : H1(T,Z) ↪→ ZEN0

∗ 7→
∑
ρ

〈|Eρ|uρ, ∗〉TEρ

Let Γ be a bipartite torus graph and let T be its triple point diagram. A

seed cluster transformation of Γ is given by a sequence of triple point diagrams

T = T1 → T2 → · · · → Tn−1 → Tn ∼= T , where Ti+1 is obtained from Ti by perform-

ing a 2-2 move. Let {αi} be the strands of T . The sequence can be realized by a one

parameter family of curves αi(t), t ∈ [0, 1] with αi(0) = αi such that the intersections

remain triple at all but n− 1 parameter values where we have a quadruple intersec-

tion in the course of a 2-2 move. Using the isomorphism of triple point diagrams

T1 ∼= Tn, we glue the end points of the parameter interval [0, 1] to get an S1. Each

strand α in T1 traces out a 2-chain Si := αi(S1) in T× S1.

Let Eρ be an edge of N and let {αiρ} be the strands of T corresponding to Eρ,

and let Sρi be the 2-chains they trace out. The seed cluster transformation induces a

bijection of {αiρ}, and therefore ∂(∑i S
i
ρ) = 0.Moreover, ∑ρ

∑
i S

i
ρ is a 2-boundary; it
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is the boundary of the 3-chain in T×S1 traced out by the regions of T corresponding

to white vertices of Γ. Therefore in H2(T× S1,Z), we have

∑
ρ

∑
i

[Siρ] = 0.

Let {γx, γy} be a basis for H1(T,Z) and γz for H1(S1,Z). By the Künneth

formula, H2(T × S1,Z) ∼= Λ2
Z[γx, γy, γz]. If each zig-zag path associated to Eρ is

translated by aiργx + biργy, we have

[Siρ] = (Xiγx + Yiγy) ∧ (aiργx + biργy + γz)

= (biρXi − aiρYi)γx ∧ γy +Xiγx ∧ γz + Yiγy ∧ γz.

Define a function on EN by g(Eρ) = ∑
i b
i
ρXi− aiρYi, where we take the sum over

all zig-zag paths αi associated to Eρ. In other words, each zig-zag path is translated

in the plane to a parallel zig-zag path by the seed cluster transformation. g(Eρ) is

the number of steps in the direction of the normal to Eρ pointing into the Newton

polygon that any zig-zag path associated to Eρ is translated. Since ∑ρ

∑
i[Siρ] = 0,

we have ∑Eρ∈EN g(Eρ) = 0, that is g ∈ ZEN0 .

The above construction gives us a group homomorphism

ψN : {Seed cluster transformations sΓ → sΓ} → ZEN0 → ZEN0 /jH1(T,Z).
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3.2 Surjectivity of ψN

In this section we show that ψN is surjective, that is, any element of ZEN0 can be

realized by a seed cluster transformation.

We recall the construction of a minimal bipartite graph corresponding to a poly-

gon N from [GK12]. Start with a torus T constructed by gluing opposite sides of a

rectangle R. We label the sides of R by ∂RN , ∂RW , ∂RS, ∂RE respectively. For each

edge Eρ of N , draw loops {αiρ}
|Eρ|
i=1 , each with homology class (X i

ρ, Y
i
ρ ) := Eρ/|Eρ|.

Isotope the loops so that the intersections of the loops with each side of R alternate

in orientation. Now we use Theorem 2.1.2 in R to isotope the loops to obtain a

minimal triple crossing diagram in R and follow the construction outlined in Section

2.1.6 to get the corresponding minimal bipartite graph.

We require the following lemma:

Lemma 3.2.1 (Goncharov and Kenyon, 2012 [GK12]). The relative order along the

boundary of R of strands associated to the same edge of N is fixed. The relative

order of two incoming or outgoing strands associated to different edges of N can be

interchanged by 2− 2 moves and isotopy.

Theorem 3.2.2. ψN is surjective.

Proof. It suffices to show that the for adjacent edges E1, E2 ∈ EN of the Newton

polygon with vertices V1, V2 and V3 , so that E1 = V1V2 and E2 = V2V3, we can
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(a) Initial configuration. (b) Configuration after isotopy.

Figure 3.4: Local configuration of strands near the NE corner of R in case 1. The
blue strand is si1 ,the red strand is tim and u is green.

construct a seed cluster transformation that ψN maps to the function (1,−1, 0, .., 0) ∈

HP , since these functions generate the group ZEN0 . Let (Xρ, Yρ) be the coordinates

of Eρ. Changing the fundamental rectangle R corresponds to an action of SL(2,Z)

on the homology classes of zig-zag loops. SL(2,Z) is generated by

s :=

0 −1

1 0

 , t :=

1 1

0 1

 .

The action of s is rotation by π/2 and t is a shear. Acting by t or

1 0

1 1

 we

may assume that E1 is neither horizontal nor vertical. Then rotating using s, we

can make X1, Y1 > 0. Now using t or

1 0

1 1

, we can assume that E2 is neither

horizontal nor vertical.

The idea is to create a simple configuration of strands near a corner of R by

isotoping strands and 2− 2 moves and then pushing this configuration past ∂R.
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The collection of loops {αiρ}
|Eρ|
i=1 form in R a collection of strands of a minimal

triple point diagram in R with end points in ∂R. Let (si1 , ..., sin) and (tj1 , ..., tjm) be

the strands in R of the loops {αk1}
|E1|
k=1 and {αk2}

|E2|
k=1 respectively, in the natural cyclic

order coming from their embedding in R. We want to show that we can use 2-2

moves and isotopy to change the cyclic orders of these strands to (si2 , ..., sin , si1) and

(tim , ti1 , ..., tim−1) respectively, while leaving the cyclic orders of all other strands fixed

and such that if you forget the identity of the strands, the triple crossing diagram is

identical to the initial one.

In the construction of the minimal bipartite graph above, we have a choice when

we isotope the loops making the intersections with ∂R alternate in orientation.

Therefore we may assume that intersection points of si1 with ∂R are the highest

point in ∂RW and the leftmost point in ∂RN .

We now have four cases to consider:

1. X2, Y2 > 0. Since the Newton polygon is a closed polygon, we must have

an edge E3 with coordinates (X3, Y3) such that Y3 < 0. By the action of

t ∈ SL(2,Z), we can also make X3 < 0 while preserving our assumptions on

E1 and E2. By repeatedly applying Lemma 3.2.1, we make the intersections of

tim with ∂R the lowest “out" point in ∂RE and the rightmost “in" point in ∂RN .

Since ∂N is a closed path, the total homology of all loops∑ρ,i α
i
ρ is zero. There-

fore the intersection number of the loops with any side of R is zero, that is,
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(a) Initial configuration. (b) Configuration after isotopy.

Figure 3.5: Local configuration of strands near the NW corner of R in case 2. si1 is
blue and ti1 is red.

we have an equal number of “in" and “out" points in any side of R, alternating

in orientation as we move along the side. By our assumption on si1 , the inter-

section point of si1 with ∂RS is the leftmost point in ∂RS and its orientation

is “in". Therefore, the rightmost point in ∂RS is an “out" point, which means

there is an “out" point to the right of tim in ∂RS. For the same reason, there is

an “in" point below tim in RE. Repeatedly using Lemma 3.2.1, we can make a

strand u corresponding to E3 pass through both these points. Using Theorem

2.1.2, we can make u and tim run parallel to the boundary. Again using The-

orem 2.1.2, we can make the three strands si1 , tim , u meet just adjacent to the

NE corner of R to obtain the local picture shown in Figure 3.4a near the NE

corner. We isotope the triple point across the corner to obtain the configura-

tion in Figure 3.4b. This achieves the change of cyclic orders. We can now use

Lemma 3.2.1 and Theorem 2.1.2 in R to get back to the original triple point

diagram up to this change of cyclic order.
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2. X2, Y2 < 0.

Repeatedly using lemma 3.2.1 we can make the strand ti1 the leftmost “in"

strand in ∂RN and the topmost “out" strand in ∂RW and use Theorem 2.1.2

to make si1 , ti1 run parallel to the boundary to obtain the local picture shown

in Figure 3.5a near the NW corner. We can then isotope to the configuration

in Figure 3.5b.

3. X2 < 0, Y2 > 0.

We can use t ∈ SL(2,Z) to make X2 > 0, reducing to case 1.

4. X2 > 0, Y2 < 0.

This case is ruled out by convexity of N .

3.3 Trivial seed cluster transformations

By Theorem 3.2.2, ψN is surjective. To complete the proof of Theorem 3.0.1, we

need to find the kernel of ψN . From Theorem 2.5.2, a seed cluster transformation t

is trivial if and only if νt = ν and d(w0)− dt(w0) = 0 in Pic0(C) for a generic curve

C ∈ |DN |. We note that dt and νt depend only on the positions of zig-zag paths

before and after doing t, and since these depend only on ψN(t), we get the important

corollary:
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Corollary 3.3.1. The birational automorphism µt of XN induced by t factors through

ψN(t):

{Seed cluster transformations sΓ → sΓ} ZEN0 /jH1(T,Z)

Bir(XN)

ψN

t7→µt
,

where Bir(XN) is the group of birational automorphisms of XN .

We also observe that :

Corollary 3.3.2. Let t be a seed cluster transformation t such that ψN(t) is a non-

zero torsion element. Then µt is non-trivial.

Proof. νt 6= ν.

We will use Theorem 2.5.2 to identify trivial seed cluster transformations. As a

reality check, we see that translation by m ∈ H1(T,Z) is trivial: it induces νt = ν

and dt(w0) ≡ d(w0) − div χm ≡ d(w0). Therefore by Corollary 3.3.1, if ψN(t) = 0,

then t is a trivial seed cluster transformation, so we have:

Lemma 3.3.3. ker ψN ⊆ {Trivial seed cluster transformations}.

The main theorem of this section is:

Theorem 3.3.4. If g = 0, the cluster modular group is

GN
∼= ZEN0 /{f ∈ ZEN0 : f(Eρ) is divisible by |Eρ| for all ρ}.

If g 6= 0, then

GN
∼= ZEN0 /jH1(T,Z).
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Proof. When g = 0, S = ∅, so µt is determined by the action of t on ν. Therefore t

is trivial if an only if νt = ν, which happens if and only if ψN(t)(Eρ) is divisible by

|Eρ| for all ρ.

When g 6= 0, if t is a seed cluster transformation such that ψN(t) 6= 0, then either:

1. ψN(t) is a non-zero torsion element:

Corollary 3.3.2 says that it is non-trivial.

2. ψN(t) is not a torsion element:

Consider the seed cluster transformation tn, where n = k
∏
ρ |Eρ|, k ∈ Z. Then

from Theorem 2.5.2 applied to tn, we have:

Lemma 3.3.5. The action of tn on spectral data is given by:

(C, S, ν) 7→ (C, S ′, ν),

where S ′ is the generically unique degree g effective divisor satisfying S ′ ≡

S +D|C, where D = n
∑
ρ
ψN (t)
|Eρ| Dρ.

For sufficiently large k, OXN (D) is a line bundle, which we call L [CLS11,

Proposition 4.2.7]. Since ψN(t) is not a torsion element, the divisor D =

n
∑
ρ
ψN (t)
|Eρ| Dρ is not a torsion element of the divisor class group of XN ei-

ther; indeed if lD is a principal divisor for some l ∈ Z, then lD is the di-

visor of a character χm for some m ∈ H1(T,Z). However this means that

ψN(tln) ∈ jH1(T,Z), contradicting the assumption that ψN(t) is not a torsion
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element.

Therefore L � OXN , hence by Theorem A.0.11, we get L|C � OC for a generic

spectral curve C. Therefore by Lemma 3.3.5, tn is a not a trivial seed cluster

transformation, hence t is also not a trivial seed cluster transformation.

Therefore ker ψN = {Trivial seed cluster transformations sΓ → sΓ}. By Theorem

3.2.2, ψN is surjective, so by the first isomorphism theorem, the cluster modular

group

GN
∼= ZEN0 /jH1(T,Z).

3.3.1 Picard group of the toric stack

Associated to N is a stacky fan Σ = (Σ, Σ̂, β) where:

1. Σ is the normal fan of N in H1(T,Z)∗ ⊗ R;

2. Σ̂ is a fan in an auxiliary lattice Z|EN |, formed by the walls of the positive

orthant;

3. Let {eρ} be the standard basis of ZEN . β : Z|EN | → H1(T,Z)∗ is the ho-

momorphism defined by β(eρ) = |Eρ|uρ. Note that β gives a combinatorial

correspondence between cones of Σ̂ and Σ.

Just as the normal fan Σ of N can be used to construct toric surface XN , the

stacky fan Σ gives rise to a stacky toric surface XN . XN has coarse moduli space the
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toric variety XN ; let us denote by π : XN → XN the projection. Let OXN

(
1
|Eρ|Dρ

)
be the unique line bundle on XN satisfying

OXN

(
1
|Eρ|

Dρ

)⊗|Eρ|
∼= π∗OXN (Dρ).

Just as the class group of XN is generated by the toric divisors, the Picard group

of XN is generated by the line bundles OXN

(
1
|Eρ|Dρ

)
.

Theorem 3.3.6 (Borisov and Hua, 2009 [BH09, Proposition 3.3]). The following is

an isomorphism of groups:

ZEN/M → Pic (XN)

f 7→ OXN

(∑
ρ

f(Eρ)
|Eρ|

Dρ

)

Corollary 3.3.7. This isomorphism identifies ZEN0 /jH1(T,Z) with the subgroup of

Pic (XN) of line bundles OXN
(D) where D = ∑

ρ bρDρ, satisfying

∑
ρ

|Eρ|bρ = 0.

There is a version of Theorem 2.5.2 which illuminates this correspondence.

Theorem 3.3.8 (Treumann, Williams and Zaslow, 2018 [TWZ18]). Let t be a seed

cluster transformation. Let C = C ×XN XN and let i : C ↪→ XN be the embedding.

We have:

OC (St) ∼= OC (S)⊗ i∗OXN

(∑
ρ

ψN(Eρ)
|Eρ|

Dρ

)
.
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3.4 Torsion subgroup of the cluster modular group

In this section, we study the torsion subgroup of the cluster modular group and

show that it corresponds to translations in a certain sub-family of bipartite graphs

in the family associated to N . Since torsion elements have degree 0, we have

ZEN0 /jH1(T,Z)tor ∼= ZEN/jH1(T,Z)tor. Let us denote ZEN/jH1(T,Z) by A.

3.4.1

The idea here is to use the embedding H1(T,Z) j−→ ZEN to identify each torsion

element of A with a fractional homology class.

Let L̂ be the kernel

0→ L̂→ ZEN π−→ A/Ator → 0.

Since rank A = |EN |−2, by additivity of rank in exact sequences, we have rank L̂ = 2.

By flatness of Q, tensoring H1(T,Z) j−→ ZEN with Q gives an injection

H1(T,Q) ∼= H1(T,Z)⊗Z Q
j⊗Z1
↪−−→ ZEN ⊗Z Q ∼= QEN .

Lemma 3.4.1. L̂ is contained in j ⊗Z 1(H1(T,Q)).

Proof. Let x ∈ L̂. Since π(x) ∈ Ator, there is an n ∈ Z such that nx ∈ jH1(T,Z);

let m ∈ H1(T,Z) such that j(m) = nx. Then j ⊗Z 1
(
m⊗Z 1

n

)
= x.
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Therefore L := (j ⊗Z 1)−1(L̂) is a rank 2 lattice in H1(T,Q) that contains

H1(T,Z).

Example 3.4.2.

Let us label the edges of the Newton polygon in Figure 2.1a by E1, E2, E3, E4

in cclw order starting from the blue edge. The homomorphism j : M → ZEN is

represented by the matrix

B =



−1 −1

1 −1

1 1

−1 1


.

The Smith decomposition is B̃ = UBV , where

B̃ =



1 0

0 2

0 0

0 0


, U =



−1 0 0 0

−1 −1 0 0

1 0 1 0

0 1 0 1


, V =

1 −1

0 1

 .

Therefore we have

A = Z2 ⊕ Z2;

L̂ = ZU−1(1, 0, 0, 0)T + ZU−1(0, 1, 0, 0)T

= Z(−1, 1, 1,−1)T + Z(0,−1, 0, 1)T ;

L = Z(1, 0)T + Z
(
−1

2 ,
1
2

)T
.
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3.4.2 Maximally translation invariant bipartite graphs

We construct a sub-family of minimal bipartite graphs with Newton polygon N that

is invariant under translations by L.

Theorem 3.4.3. There exists a family of minimal bipartite graphs associated to N

that is invariant under translations by L.

Proof. Let γ̃1, γ̃2 be generators of L. For each edge Eρ of N , we obtain a vector

wρ = 〈j ⊗Z 1(γ̃2), eρ〉γ̃1 − 〈j ⊗Z 1(γ̃1), eρ〉γ̃2 ∈ L,

where 〈∗, ∗〉 is the canonical pairing ZEN ×ZEN → Z, and {eρ} is the standard basis

of ZEN . Since the image of j ⊗Z 1 is in ZEN0 , we can put together the vectors {wρ}ρ

in cyclic order to obtain a convex integral polygon Ñ ⊂ L⊗R. Using Theorem 2.1.1

with the polygon Ñ , we obtain a family of minimal bipartite graphs in the torus

L⊗R/L. H1(T,Z) ⊂ L induces a covering map T→ L⊗R/L. The lift of a minimal

bipartite graph with Newton polygon Ñ in L⊗R/L is a minimal bipartite graph in

T with Newton polygon N that is invariant under translations by L.

Corollary 3.4.4. If u ∈ ZEN0 /jH1(T,Z)tor, and Γ is a graph that is invariant under

L-translations, then there is a seed cluster transformation t based at Γ induced by an

L-translation such that ψN(t) = u.

Example 3.4.5.

Let us apply this construction to the polygon N from Example 3.4.2. Let us take
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(a) The polygons N and Ñ . The lattice
L consists of all the points and the sub-
lattice M consists of the black points.

(b) The fundamental parallelograms of L
and M .

Figure 3.6: A maximally translation invariant bipartite torus graph.

generators γ̃1 = (1, 0)T , γ̃2 =
(
−1

2 ,
1
2

)T
of L. We have

w1

w2

w3

w4


=



0 1

−1 −1

0 −1

1 1



γ̃1

γ̃2

 .

The polygon Ñ is shown in Figure 3.6a and a maximally translation invariant

bipartite graph is shown in Figure 3.6b. In this case, the square lattice is maximally

translation invariant.



CHAPTER 4

Spectra of biperiodic planar networks

4.1 Introduction

A planar resistor network is a pair (G̃, c̃) where G̃ is a planar graph and c̃ is a con-

ductance function that assigns a non-zero complex number to each edge of G̃, defined

up to multiplication by a global constant. It is said to be biperiodic if translations

by Z2 act on (G̃, c̃) by isomorphisms. This is equivalent to the data of the quotient

(G, c) := (G̃, c̃)/Z2, where G is a graph on a torus. Hereafter we assume that our

networks are on a torus.

The fundamental operator in the study of networks is the discrete Laplacian. It

has a certain spectrum, defined below, and the main goal of this paper is to show

51
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that this is a birational isomorphism with a certain moduli space of curves and divi-

sors and therefore provides a way to classifiy networks. While in typical geometric

or probabilistic applications the conductances are always positive real numbers, the

algebraic nature of the problem leads us to consider general non-zero complex con-

ductances.

There is a natural equivalence relation on networks, defined by certain local re-

arrangements of the graph and its conductances, which preserves the spectrum. To

define this equivalence relation, let us start by defining a zig-zag path. A zig-zag path

on G is a path that alternately turns maximally left or right. A resistor network G

is minimal [CdV94,CIM98] if the lifts of any two zig-zag paths to G̃ do not intersect

more than once and any lift of a zig-zag path has no self intersections. Minimality is

a mild assumption on networks since any network may be reduced to a minimal one

by certain elementary moves without affecting its electrical properties. The Newton

polygon of a minimal resistor network is the unique integral polygon whose primi-

tive edges are given by the homology classes of zig-zag paths in cyclic order. Since

zig-zag paths come in pairs related by flipping the orientation, the Newton polygon

of a network is always centrally symmetric.

There is a local rearrangement of resistor networks called a Y-∆ move that pre-

serves all electrical properties outside the region where the rearrangement takes place

(see Section 4.2.1 and Figure 5.2). We say that two minimal networks (G1, c1) and

(G2, c2) are topologically equivalent if there is a sequence of Y −∆ moves that takes
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the underlying graph G1 to the graph G2. Topological equivalence classes of networks

are parameterized by centrally symmetric Newton polygons [GK12]. In particular,

any two minimal resistor networks with the same Newton polygon are related by a

sequence of Y −∆ transformations.

Two networks (G1, c1) and (G2, c2) are electrically equivalent if there is a sequence

of Y −∆ moves that takes the network (G1, c1) to the network (G2, c2). Goncharov

and Kenyon [GK12] constructed the resistor network cluster variety RN that param-

eterizes electrical equivalence classes of resistor networks that lie in the same topolog-

ical equivalence class associated to the polygon N as follows: A centrally symmetric

integral polygon N determines a finite collection of minimal resistor networks whose

Newton polygon is N , related by Y −∆ transformations. To each minimal resistor

network G is associated a complex torus (C∗)number of edges of G−1, which parameterizes

conductance functions on G. The Y − ∆ move G1 → G2 induces a birational map

between the complex tori associated to G1 and G2. RN is obtained by gluing the

complex tori using these birational maps.

Goncharov and Kenyon further showed thatRN can be identified with an isotropic

subvariety of an algebraic completely integrable Hamiltonian system XN associated

to the dimer model. Let SN be the moduli space of triples (C, S, ν) where C is the

vanishing locus of a Laurent polynomial P (z, w) with Newton polygon N , S is a

degree g effective divisor on C (where g = number of interior lattice points in N)

and ν is a parameterization of the points at infinity of C. Goncharov and Kenyon
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constructed the spectral map XN → SN and showed that it is a birational isomor-

phism. Fock [F15] constructed an explicit inverse map in terms of theta functions

on the Jacobian of C. In this construction, the elementary transformation in dimer

model (the spider move) is described by Fay’s trisecant identity.

Associated to the Laplacian on a biperiodic planar network is its spectrumRN →

SN , where SN is defined as in the previous paragraph, but with the divisor S now of

degree g = number of interior lattice points in N -1. Let S ′N be the subspace where

P (z, w) satisfies

1. P (1, 1) = 0 and the point (1, 1) is a node;

2. σ : (z, w) 7→ (1
z
, 1
w

) is an involution on C,

and the divisor S satisfies

(4.1) S + σ(S)− q1 − q2 = K
Ĉ
in Pic2g−2(Ĉ),

where Ĉ is the normalization of C, g is the geometric genus, q1, q2 are the points in

the fiber of the node at (1, 1) and K
Ĉ
is the canonical divisor class on Ĉ. Our main

result is the following complete classification of biperiodic planar resistor networks

in terms of their spectral data:

Theorem 4.1.1. The spectral transform is a birational isomorphism RN → S ′N .

The main new contribution of this paper lies in showing that the spectral divisor

satisfies (4.1). Along the way, we provide an explicit description of oriented cycle

rooted spanning forests of G (OCRSFs) whose homology classes are boundary lattice
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Figure 4.1: The divisor S on the amoeba of the spectral curve.

points of N (Theorem 4.3.1), analogous to results for dimers in [Bro12,GK12]. In

particular, we see that every OCRSF corresponding to a boundary lattice point is a

union of cycles (Corollary 4.3.2).

We construct an explicit inverse spectral map (see (4.11)). Formally this con-

struction is the same as Fock’s construction for the dimer model. We replace the

Jacobian with the Prym variety and the Y −∆ transformation is described by Fay’s

quadrisecant identity [Fay89]. Further we show that the inverse map is compatible

with Y −∆ transformations (Theorem 4.6.1).

The Y − ∆ move involves subtraction free rational expressions, and therefore

the set of positive-real-valued points of the cluster variety is well defined, which



56

we denote by RN(R≥0). This subspace is important for probabilistic applications.

For a positive real valued point, the spectrum (C, S, ν) has the following additional

properties (see [K17]):

1. C is a simple Harnack curve as in [Mikh00]. Compact ovals (connected com-

ponents) of C are in bijection with interior lattice points of N .

2. The oval corresponding to the origin is degenerated to a real node.

3. S has a point in each of the other compact ovals.

The spectral curves of genus zero correspond to the isoradial networks studied in

[K02]. In this case, the inverse spectral map recovers Kenyon’s results expressing

the conductances in terms of tangents, and the quadrisecant identity reduces to the

triple tangent identity. For a different generalization of isoradial networks to the case

of the massive Laplacian on isoradial graphs, see [BdeTR17].

Consider the map C(C) → A(C), (z, w) 7→ (log |z|, log |w|) ⊂ R2 from the

C−valued points of C to its amoeba A(C). For a simple Harnack curve, this map

is a homeomorphism from the compact ovals to the boundaries of the holes of the

amoeba, and therefore provides a way to depict the divisor S (see Figure 4.1 for an

example, where the network is a 2×1 fundamental domain of the triangular lattice).

A sequence of Y − ∆ moves that takes a graph G to itself gives rise to a bi-

rational automorphism (called a cluster modular transformation) of RN , where N

is the Newton polygon of G. A cluster modular transformation provides a discrete
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integrable system on RN . For example, if we consider the honeycomb lattice, and do

the Y −∆ move at the downward triangles, we obtain the cube recurrence studied

by Carroll and Speyer ([CS04], see also [GK12] Section 6.3). We show that cluster

modular transformations are linearized on the Prym variety of C (Theorem 4.7.1).

In the case of positive real conductances, we may view this as moving each point

along the boundary of the corresponding hole in the amoeba.

4.2 Resistor networks

4.2.1 The resistor network cluster variety

A resistor network is a pair (G, c) where G is a surface graph on T and c : E(G)→ C∗

is a function defined modulo global multiplication by a non-zero scalar. Associated

to each surface graph G is the space RG of conductance functions on it. RG is non-

canonically isomorphic to the complex torus (C∗)|E(G)|−1.

A Y − ∆ transformation [Kenn1899] G1 → G2 is given by replacing a Y in the

graph G1 with a triangle as shown in Figure 5.2. Any two minimal resistor networks

(the definition of minimality was given in the introduction) with Newton polygon

N are related by Y −∆ moves. A Y −∆ move G1 → G2 induces a birational map

RG1 → RG2 , given in the notation of Figure 5.2 by

A = bc

a+ b+ c
, B = ac

a+ b+ c
, C = ab

a+ b+ c
.
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Gluing the RG for all G with Newton polgyon N using these birational maps, we

obtain a Poisson scheme RN , called the resistor network cluster variety.

4.2.2 The line bundle Laplacian

A surface graph Γ on a torus T is a graph embedded on T such that each face is

contractible. A line bundle with connection (V, φ) on Γ is the data of a complex

line Vv ∼= C at each vertex v of Γ along with isomorphisms called parallel transport

φvv′ : Vv → Vv′ for each edge 〈v, v′〉 such that φv′v = φ−1
vv′ . Two line bundles with

connection (V, φ) and (V ′, φ′) are gauge equivalent if there exists isomorphisms ψv :

Vv → V ′v such that for all edges, the following diagram commutes.

Vv Vv′

V ′v V ′v′

φvv′

ψv ψv′

φ′
vv′

If L is an oriented loop in Γ, the monodromy m(L) of (V, φ) around L is the com-

position of the parallel transports around L. A line bundle with connection is flat if

the monodromy around the boundary of any face of Γ is trivial.

The moduli space of line bundles with connection on Γ modulo isomorphisms is

denoted LΓ. Let LflatΓ be the subspace of flat connections. The monodromies around



59

loops in Γ give rise to isomorphisms such that the following diagram commutes:

LflatΓ LΓ

H1(T,C∗) H1(Γ,C∗)

∼= ∼=

Let (G, c) be a resistor network and let i ∈ LG be a line bundle with connection on

G. The line bundle Laplacian is the linear operator ∆ = ∆(c, i) : CV (G) → CV (G)

defined by

∆(f)(v) :=
∑

e:v′→v
c(e)(f(v)− ief(v′)),

where the sum is over all edges of G oriented towards v. An oriented cycle rooted

spanning forest (OCRSF) γ of G is a collection of edges of G such that each connected

component of γ has the same number of vertices and edges (so that each connected

component has a unique cycle), along with a choice of orientation for each cycle in

γ. Since two distinct cycles in γ cannot intersect, if η is a cycle in γ, every cycle has

homology class ±[η]. The weight of an OCRSF γ is defined to be wt(γ) = ∏
e∈γ c(e).

The following result generalizes Kirchhoff’s matrix tree theorem to the line bundle

Laplacian:

Theorem 4.2.1 (Kenyon, 2010 [K10]).

det ∆ =
∑

OCRSFs γ
wt(γ)

∏
Cycles η∈γ

(1−m(η)),

where m(η) is the monodromy of i along the cycle η.
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An OCRSF γ∨ on G∨ is dual to an OCRSF γ on G if no edge of γ∨ crosses an edge

of γ. It is easy to see that γ∨ has the same number of cycles as γ and each cycle has

homology class ±[η], where η is any cycle in γ. An OCRSF γ has 2k duals where k

is the number of cycles in γ, one for each choice of orientation of the dual cycles.

Given a pair (γ, γ∨) of dual OCRSFs, define its weight to be wt(γ, γ∨) := wt(γ). To

each pair we associate a homology class,

[(γ, γ′)] := 1
2

∑
Cycles η in γ∪γ∨

[η] ∈ H1(T,Z).

The Newton polygon of the resistor network is

N = Conv {[(γ, γ∨)] ∈ H1(T,Z) : (γ, γ∨) is a pair of dual OCRSFs}.

(γ, γ′) 7→ [(γ, γ′)] associates to each pair of dual OCRSFs an integer lattice point in

the Newton polygon. N is always centrally symmetric and therefore we can center

it at the origin.

Let R be a fundamental rectangle for T, so that T is obtained by gluing together

opposite sides of R. We label the curves in T forming the sides of R by γz, γw,

oriented as shown in Figure 4.2a. For z, w ∈ C∗, we define a flat line bundle with

connection on G that is compatible with the choice of fundamental rectangle R as

follows:

i(e) = z〈e,γz〉Tw〈e,γw〉T for all e ∈ E(G),
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(a)
(b)

Figure 4.2: A fundamental rectangle for a resistor network on T and its Newton
polgyon. The line bundle with connection is indicated by the arrows and the con-
ductances are labeled by a, b, c, d.

where 〈, 〉T is the intersection pairing on T.

We choose the basis (−γw, γz) of H1(T,Z) to get an isomorphism H1(T,Z) ∼= Z2.

We can rephrase Theorem 4.2.1 as

(4.2) det ∆(z, w) =
∑

OCRSFs γ
wt(γ)

∏
Cycles η∈γ

(1− ziηwjη),

where (iη, jη) ∈ Z2 is the homology class of η. P (z, w) := det ∆(z, w) is called the

characteristic polynomial. The Newton polygon of the characteristic polynomial is

Conv{(i, j) ∈ Z2 : Coefficient of ziwj is non-zero in P (z, w)},

and it coincides with the Newton polygon of the resistor network.

Let us compute the Laplacian and the characteristic polynomial for the network
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(a)
(b)

Figure 4.3: An oriented zig-zag path on the network in Figure 4.2 drawn as a dashed
loop in its medial graph and the corresponding primitive integral vector on the
boundary of N .

in Figure 4.2. The Laplacian is given by the matrix

(4.3) ∆(z, w) =

a+ b+ c(2− w − 1/w) −a− bz

−a− b/z a+ b+ d(2− w − 1/w).


Taking the determinant, we get

P (z, w) = cd

(
(1− w)2 +

(
1− 1

w

)2)
+ ab

(
(1− z) +

(
1− 1

z

))

+ (ac+ bc+ ad+ bd)
(

(1− w) +
(

1− 1
w

))
,

enumerating the 12 OCRSFs of this network.

4.2.3 Zig-zag paths and minimality for resistor networks

An (oriented) zig-zag path on a resistor network G is a path that alternately turns

maximally right or left at each vertex (see Figure 4.3a). Zig-zag paths on G come

in pairs with opposite orientations. We denote the set of zig-zag paths on G by ZG,

and when G is unambiguous, by just Z. We say that G is minimal if the lift of any
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zig-zag path to the universal cover of T does not intersect itself and if the lifts of two

different zig-zag paths intersect at most once.

If G is a minimal resistor network, associated to each α ∈ ZG is its homology class

[α] ∈ H1(T,Z). These homology classes are in (non-canonical) bijection with integral

primitive vectors on the boundary of the Newton polygonN in counterclockwise order

(see Figure 4.3b).

4.3 External OCRSFs

4.3.1

We say that a pair of dual OCRSFs F is external if [F ] is a boundary lattice point of

N . It is extremal if [F ] is a vertex of N . We note that if F = [(γ, γ∨)] is external, then

the orientations of γ and γ∨ are uniquely determined by [F ] and [γ] = [γ∨] = [F ].

Therefore we can define external and extremal OCRSFs on G instead of pairs of

dual OCRSFs.

4.3.2

For a vertex v ∈ G, we define the local zig-zag fan Σv at v to be the complete fan of

strongly convex rational polyhedral cones in H1(T,R) whose rays are generated by

the homology classes of zig-zag paths through v that turn maximally right at v.
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(a) γ(0,2).

(b) The zig-zag fan Σ along with the 2-
dimensional cone σ (shaded) correspond-
ing to the vertex (0, 2) of the Newton
polygon in Figure 4.2b.

Figure 4.4: An extremal OCRSF corresponding to the newtork in Figure 4.2.

The fan Σ whose rays are generated by the homology classes of all zig-zag paths on

G is called the global zig-zag fan of G. We have the natural map of fans iv : Σ→ Σv

for each v ∈ G. If σ is a 2-dimensional cone in Σ, iv(σ) is contained in a unique two

dimensional cone in Σv, which we shall denote by σv. σv determines a unique edge

e adjacent to v that is oriented away from v: e is the edge that contains the two

zig-zag paths corresponding to the rays of σv. Let γσv be the 1-chain that is 1 on e,

−1 on −e and 0 on all other edges. We define

γσ :=
∑

v∈V (G)
γσv .

To a zig-zag path α ∈ ZG we associate a 1-chain ωα that is 1 on edges e in α that

are oriented in the same direction as α and 0 on edges not in α. If γ is external, [γ]

lies on an edge E of N , which corresponds to a family of zig-zag paths {αk}. Let

E = 〈V1, V2〉, where V1, V2 are vertices of N such that V2 is the vertex after V1 when

the boundary of N is traversed counterclockwise.

The following theorem explicitly describes all external OCRSFs and is key to
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several later results.

Theorem 4.3.1. γV := γσ is the unique extremal OCRSF on G such that [γV ] is the

vertex V of N that corresponds to σ.

Let A be a subset of the family of zig-zag paths {αk} corresponding to E. The

external OCRSFs on E are of the form

γA := γV1 +
∑
αk∈A

ωαk .

In particular, γV2 = γV1 + ∑
k ωαk , and the number of OCRSFs corresponding to a

boundary lattice point of N is a binomial coefficient.

We also need the following result later.

Corollary 4.3.2. Every external OCRSF is a disjoint union of cycles.

Let us compute the extremal OCRSF of the network in Figure 4.2 corresponding

to the vertex (0, 2) of its Newton polygon (see Figure 4.4). The global zig-zag fan

Σ has rays generated by (−1, 2), (−1,−2), (1,−2), (1, 2) and coincides with the local

zig-zag fans Σv1 ,Σv2 . Let us consider v1. σ is the 2-dimensional cone with rays

generated by (−1, 2) and (−1,−2). Since iv1 : Σ→ Σv1 is the identity map, σv1 = σ.

Therefore γσv1 is the 1-chain that is 1 on the edge with conductance c, oriented

upwards. Similarly γσv2 is the edge with conductance d oriented upwards. γ(0,2) is

the OCRSF given by the union of these two oriented edges (Figure 4.4a). As we

expect from Corollary 4.3.2, it is a union of (two) cycles.
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4.3.3

While its possible to prove Theorem 4.3.1 directly, it is easier to use Temperley’s

bijection to relate it to corresponding statements about the dimer model. The re-

sults of this section are not used anywhere else in the paper, and therefore may be

skipped on a first reading. Let Γ be a bipartite surface graph on T, that is the vertices

of Γ are colored black or white, and each edge of Γ is incident to a vertex of each color.

A dimer cover (or perfect matching) of Γ is a collection of edges of Γ such that

every vertex is adjacent to a unique edge in the collection. A dimer coverM on Γ gives

a 1-chain ωM on Γ. IfM0 is another dimer cover, ωM −ωM0 is a 1-cycle and therefore

determines a homology class inH1(Γ,Z). Under the projectionH1(Γ,Z)→ H1(T,Z),

we obtain a homology class [M ] ∈ H1(T,Z). The Newton polygon of Γ is

N := Conv {[M ] ∈ H1(T,Z) : M is a dimer cover}.

N depends on the choice of reference dimer coverM0. Changing the reference match-

ing corresponds to translating the polygon N . M 7→ [M ] gives a well defined map

from the set of dimer covers to the integer lattice points in N .

Zig-zag paths on bipartite graphs and minimality

A zig-zag path on a bipartite torus graph Γ is a path that turns maximally right at

black vertices and maximally left at white vertices. Let us denote by ZΓ the set of

all zig-zag paths in Γ. We say that Γ is minimal if in the universal cover Γ̃, zig-zag

paths have no self intersections and no pairs of zig-zag paths oriented in the same
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direction meet twice.

Suppose Γ is a minimal bipartite graph on a torus. Each path α ∈ ZΓ gives us a

homology class [α] ∈ H1(T,Z) which is an integral pimitive vector on a side of the

Newton polygon N . The zig-zag paths taken in cyclic order correspond to cyclically

ordered primitive integral vectors in the boundary of the Newton polygon. Therefore

an edge of N corresponds to a family of zig-zag paths, each with homology class equal

to the primitive integral edge vector of the edge.

Temperley’s bijection on the torus

Associated to G is a bipartite graph ΓG obtained by superposing G and its dual

graph G∨. The vertices and faces of G become the black vertices of ΓG and the edges

of G become the white vertices of ΓG. Applying Euler’s formula on T to G we see

that ΓG has equal number of white and black vertices.

Let G be a resistor network and let ΓG be the associated bipartite graph.

Lemma 4.3.3 (Goncharov and Kenyon, 2012 [GK12]). The Newton polygon N of

the resistor network G coincides with the Newton polygon of the dimer model on ΓG.

Moreover, there is a canonical homology-class-preserving bijection between zig-zag

paths on G and zig-zag paths on ΓG.

Given a pair of dual OCRSFs F = (γ, γ∨) on G, we can construct a dimer cover

MF on ΓG using the rule: The oriented edge e = 〈u, v〉 is in F if and only if the edge

〈u, e〉 is in MF .
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Theorem 4.3.4 (Temperley’s bijection on torus; Kenyon, Propp and Wilson, 2000

[KPW00]). Let (G, c) be a resistor network on a torus. F 7→MF is a bijection from

pairs of dual OCRSFs on G to dimer covers on ΓG such that [F ] = [MF ] in N .

External dimer covers

In this section, we collect some results about dimer covers from [Bro12,GK12]. Let

Γ be a minimal bipartite graph on a torus. We say that a dimer cover M is extremal

if [M ] is a vertex of the Newton polygon. If b is any black vertex in Γ, we define the

local zig-zag fan Σb at b to be the complete fan of strongly convex rational polyhe-

dral cones in H1(T,Z) whose rays are generated by homology classes of those zig-zag

paths in Γ that contain b.

The global zig-zag fan of Γ is the fan whose rays are generated by the homology

classes of all zig-zag paths on Γ. The identity map in H1(T,Z) defines a map of fans

ib : Σ → Σb. If σ is any two dimensional cone in Σ, ib(σ) is contained in a unique

two dimensional cone in Σb which we call σb. σb corresponds to a unique edge 〈w, b〉

incident to b, given by the intersection of the two zig-zag paths through b whose rays

in Σb form the boundary of σb. Define the 1-chain ω(σb) to be 1 on the edge 〈w, b〉

and 0 on all other edges. Define

ω(σ) =
∑

b∈V (Γ) black
ω(σb).

Two dimensional cones in Σ are in bijection with vertices of the Newton polygon: If

σ is a two dimensional cone in Σ, let E1 and E2 be the edges of N whose associated
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rays form the boundary of σ in Σ. Then E1 and E2 occur in cyclic order and therefore

there is a vertex V between them in N .

Lemma 4.3.5 (Broomhead, Goncharov-Kenyon, 2012 [Bro12,GK12]). ωV := ω(σ)

is the unique extremal dimer cover associated to the vertex V of N that corresponds

to σ.

We say that a dimer cover M is external if [M ] is a boundary lattice point of

N . To a zig-zag path α we associate a 1-form ωα that is 1 on edges e in α that are

oriented the same way as α and 0 on edges not in α. If M is external, [M ] lies on an

edge E of N , which corresponds to a family of zig-zag paths {αk}. Let E = 〈V1, V2〉,

where V1, V2 are vertices of N such that V2 is the vertex after V1 when the boundary

of N is traversed counterclockwise.

Lemma 4.3.6 (Broomhead, Goncharov-Kenyon, 2012 [Bro12,GK12]). Let A be a

subset of the family of zig-zag paths {αk} corresponding to E. The external dimer

covers on E are of the form

ωA := ωV1 +
∑
αk∈A

ωαk .

In particular, ωV2 = ωV1 +∑
k ωαk , and the number of dimer covers corresponding to

a boundary lattice point of N is a binomial coefficient.

Proof of Theorem 4.3.1. We use Temperley’s bijection (Theorem 4.3.4), Lemmas

4.3.5 and 4.3.6, and the canonical bijection between zig-zag paths on G and ΓG.

Proof of Corollary 4.3.2. Suppose γσ is an external OCRSF and let v be a vertex

of G. By construction, there is a single outgoing edge from v. We show that there
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is also a single incoming edge. Consider the fan −Σv whose rays are generated by

homology classes of zig-zag paths that turn maximally left at v and let i′v : Σ→ −Σv

be the natural map. i′v(σ) is contained in a unique two dimensional cone σ′v which

corresponds to a unique edge e oriented towards v. Define the 1-chain γ′σv to be 1 on

e and 0 on all other edges and define the 1-chain

γ′σ :=
∑

v∈V (G)
γ′σv .

Let e = 〈u, v〉 be an edge in G and let α1 and α2 be the two zig-zag paths through

e that turn maximally left at v. Then α1 and α2 turn maximally right at u and

therefore we have σ′v = σu which implies γ′σv = γσu . Summing over all vertices, we

get γ′σ = γσ. It is clear from the definition of γ′σ that every vertex has a unique

incoming edge. It follows that γσ is a union of cycles.

By Theorem 4.3.1, every external OCRSF is obtained from an extremal OCRSF γV

by adding cycles corresponding to some zig-zag paths and therefore is also a union

of cycles.

4.4 Spectral data

4.4.1

Following the definition of the dimer spectral data in [GK12], we define spectral

data for resistor networks. A convex integral polygon N determines a toric surface
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N along with an ample divisor DN on it. The global sections of DN can be canoni-

cally identified with Laurent polynomials with Newton polygon N . Let |DN | be the

linear system of curves on N given by the vanishing loci of global sections of DN . Let

g = number of interior lattice points in N − 1. The genus of a generic curve from

|DN | is g + 1.

The complement of (C∗)2 in N is a union of P1s, called lines at infinity, param-

eterized by the edges of N and intersecting according to the combinatorics of N .

For an edge E of N , let DE denote the corresponding line at infinity. A generic

curve C ∈ |DN | meets DE in |E| points, called the points at infinity, where |E| is

the number of primitive integral vectors in E. Therefore the number of points at

infinity on DE agrees with the number of zig-zag paths associated to E, but there is

no canonical bijection between these sets. A parameterization ν = {νE} of the points

at infinity of C by zig-zag paths is a collection of bijections νE between zig-zag paths

in G associated to E and points at infinity in C ∩DE.

4.4.2

Let SN be the moduli space of triples (C, S, ν) such that C is a curve in |DN |, S is a

degree g effective divisor on C and ν is a parameterization of the points at infinity

of C by zig-zag paths. Let G be a minimal resistor network associated to N and let

v be a vertex of G. The resistor network spectral transform is the rational map

ρG,v : RN → SN ,
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described on the affine chart RG as follows:

1. C is the compactification of C0 obtained by taking the closure of the spectral

curve C0 := {(z, w) ∈ (C∗)2 : det ∆(z, w) = 0} in N .

2. Let i : C0 ↪→ (C∗)2 denote the inclusion. The Laplacian sits in the following

exact sequence of sheaves on (C∗)2:

(4.4)
⊕
v∈V
O(C∗)2

∆−→
⊕
v∈V
O(C∗)2 → L → 0.

Lemma 4.4.1. For a generic conductance, i∗L is a line bundle on C0.

Proof. i∗L has one dimensional fibers over the non-singular points of C0 [CT79,

Theorem 2.2]. The fiber of i∗L at (1, 1) is the vector space of discrete harmonic

functions on G. This space is one dimensional because by the maximum prin-

ciple, the only harmonic functions are the constant functions. Since C0 is

integral for a generic conductance and i∗L is a coherent sheaf of constant fiber

dimension one, it is locally free of rank one.

The image of the section δv gives a section of i∗L. S is the divisor of zeroes of

this section. Let Q be the adjugate matrix of ∆. S is given by the simultaneous

vanishing of the v0-column of Q. In fact, since corank ∆ is one, it suffices to

consider the simultaneous vanishing of any two entries of the v0-column of Q.

3. ν is the parameterization of the points at infinity of C by zig-zag paths on G

such that the coordinate of the point at infinity associated to a zig-zag path is

determined by the product of conductances around that zig-zag path.
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4.4.3

Let W ⊂ |DN | be the linear system of curves defined by sections P (z, w) of DN

satisfying the following conditions:

1. P (1, 1) = 0, and the point (1, 1) is a node.

2. σ : (z, w) 7→ (1
z
, 1
w

) is an involution on {P (z, w) = 0}.

Let S ′N be the moduli space of triples (C, S, ν) such that C is a curve in W , S is

a degree g effective divisor on C \ (1, 1) satisfying

(4.5) S + σ(S)− q1 − q2 = K
Ĉ
in Pic2g−2(Ĉ),

where Ĉ is the normalization of C, K
Ĉ
is the canonical divisor class of Ĉ, and ν is a

parameterization of the points at infinity. The presence of the node (1, 1) means that

a generic curve in W has geometric genus g, one less than that of a generic curve in

|DN |.

We determine the image of the spectral transform:

Theorem 4.4.2. We have ρG,v(RN) ⊆ S ′N .

Proof. Consider the following commuting diagram:

Ĉ0 C0 (C∗)2

Ĉ C N

φ i

π

,

where φ and π are the normalization maps. We pull back (4.4) using φ∗i∗ and use
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right-exactness of pullback to get the following exact sequence on Ĉ0:

(4.6)
⊕
v∈V
O
Ĉ0

φ∗i∗∆−−−→
⊕
v∈V
O
Ĉ0
→ φ∗i∗L → 0.

Theorem 4.4.3 (Kenyon, 2017 [K17]). For the space RN(R>0) of positive-real-valued

points of RN , we have (C0, S, ν) ∈ S ′N . Moreover C0 is a simple Harnack curve.

1. P (z, w) = P (1
z
, 1
w

) follows immediately from ∆(z, w) = ∆(1
z
, 1
w

)T .

2. P (1, 1) = 0 follows from the observation that ∆ has non-zero kernel at (1, 1),

indeed these are the constant functions, which are discrete harmonic.

3. Differentiating the expression (4.2) for P (z, w), we see that

∂P (1, 1)
∂z

= ∂P (1, 1)
∂w

= 0,

hence (1, 1) is a singular point. For all positive real points, Theorem 4.4.3 tells

us that (1, 1) is a node. Since nodes are characterized by non-vanishing of the

Hessian, an open condition, (1, 1) is a node for all points in a Zariski open

subset of RN .

4. deg S = g is proved in Corollary 4.4.10.

5. S + σ(S)− q1 − q2 = K
Ĉ
is Corollary 4.4.9.
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The condition (4.5) may be interpreted as saying that there is a meromorphic

1-form on Ĉ that has zeroes at the 2g points S + σ(S) and poles at q1, q2. We can

write down this 1-form explicitly.

Lemma 4.4.4. Let Q(z, w) be the minor of ∆(z, w) with the row and column corre-

sponding to v0 removed. The meromorphic 1-form

ω = φ∗

Q(z, w)dz
zw ∂P (z,w)

∂w

 ,
satisfies

div
Ĉ
ω = S + σ(S)− q1 − q2.

Proof. For smooth (z, w) ∈ C, we have corank ∆(z, w) = 1. Therefore we can

write adj ∆(z, w) = U(z, w)V (z, w)T for some U(z, w) ∈ Ker ∆(z, w), V (z, w) ∈

Coker ∆(z, w). By definition, S is the set of points in C0 where the component

V (z, w)·δv0 of V (z, w) vanishes. We have Ker ∆(z, w) ∼= Coker ∆(z, w)T = Coker ∆(1
z
, 1
w

),

so σ(S) are the points where the component U(z, w) · δv0 vanishes. Since Q(z, w) =

(U(z, w) · δv0)(V (z, w) · δv0), we have

divC0Q(z, w) = S + σ(S),

Since C has a node at (1, 1), ∂P (z,w)
∂w

has a simple zero at (1, 1) and so ω has

simple poles at q1, q2. Therefore, the divisor of ω on the complement of the points

at infinity is S + σ(S)− q1 − q2, which has degree 2g − 2. It remains to identify the

zeros and poles of ω at the points at infinity.
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The order of vanishing of the 1-form

ωij := zi−1wj−1dz
∂P (z,w)
∂w

at the point at infinity corresponding to the primitive integral edge E is given by

the twice the signed area of the triangle formed by E and the point (i, j) minus one

(where area is positive for points (i, j) inside N). Q(z, w) is the partition function

of CRSFs on the graph G′ obtained from G by deleting the vertex v0. By Corollary

4.3.2, the Newton polygon of Q(z, w) is strictly contained in N . Therefore the order

of vanishing of ω must be non-negative at all points at infinity, that is ω has no poles

at these points. The divisor of ω on the complement of the points at infinity has

degree 2g − 2 (Corollary 4.4.10), which is the degree of K
Ĉ
. Therefore ω must have

an equal number of zeroes and poles at the points at infinity and therefore ω has no

zeroes at infinity either.

4.4.4 Discrete Abel and Abel-Prym maps

We denote the zig-zag path oriented opposite to α by α′. Define d′ : V (G̃)∪F (G̃)→

ZZ as follows:

Set d′(v) = 0 for some vertex v. For any vertex or face u, let γ̃ be a path from v

to u in G̃ and let γ be its image under the projection G̃→ G. Let

d′(u) = d′(v) +
∑
α∈Z

([α], [γ])Tα,

where (·, ·)T is the intersection pairing on H1(T,Z).
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Figure 4.5: The discrete Abel map for the newtork in Figure 4.2. The labels for zig-
zag paths are shown next to their corresponding edges in boundary of the Newton
polygon.

Define the inclusion

H1(T,Z) ↪→ ZZ

h 7→
∑
α∈Z

([α], h)Tα.

If h = (i, j), from toric geometry we have

∑
α∈Z

([α], h)Tα = div
Ĉ
ziwj.

Abusing notation, we will denote the homology class h and its image in ZZ by the

same letter h. Observe that d′ is equivariant with respect to the H1(T,Z) action,

that is,

d′(h · u) = h · d′(u),

for all u ∈ V (G̃) ∪ F (G̃).
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We define the discrete Abel map [F15] d : V (G) ∪ F (G̃)→ ZZ as follows:

We identify the fundamental domain of G with the lift to G̃ that contains v0 and let

d(v) to be d′(v). We observe that for all edges e : u→ v of G with pairs of oriented

zig-zag paths α, α′, β, β′ through e, we have

d(v)− d(u) = −α− β + α′ + β′ − div
Ĉ
z(e,γz)Tw(e,γw)T .

We compute the discrete Abel map for the network in Figure 4.2 in Figure 4.5.

We also compute H1(T,Z) ↪→ ZZ :

(1, 0) 7→ −2α− 2β + 2α′ + 2β′(4.7)

(0, 1) 7→ α− β − α′ + β′.(4.8)

For later purposes, we also define here the discrete Abel-Prym map

dP : V (G̃) ∪ F (G̃)→ Pr(Ĉ, σ)

dP = 1
2IP ◦ d.

Recall the definition of the line bundle (rather its sheaf of sections) O
Ĉ

(D) associated

to a divisor D on Ĉ:

O
Ĉ

(D)(U) := {t ∈ K(Ĉ)∗ : div|U t+D|U ≥ 0} ∪ {0}, for all U ⊂ Ĉ open.
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Each rational function t ∈ O
Ĉ

(D)(Ĉ) corresponds to a regular section t̃ of O
Ĉ

(D)

with divisor div t+D.

The usefulness of the discrete Abel map stems from the following lemma:

Lemma 4.4.5. The following is an extension of (4.6) to a morphism of vector bun-

dles on Ĉ:

(4.9)

0→ M̃ →
⊕
v∈V
O
Ĉ

(
d(v)−

∑
α∈Z:v∈α

α− d(v0)
)

∆̃−→
⊕
v∈V
O
Ĉ

(d(v)− d(v0))→ L̃ → 0,

where ∆̃vu is the section of

Hom
(
O
Ĉ

(
d(u)−

∑
α∈Z:v∈α

α− d(v0)
)
,O

Ĉ
(d(v)− d(v0))

)

∼= OĈ

(
d(v)− d(u) +

∑
α∈Z:v∈α

α

)
,

corresponding to the rational function ∆vu.

Proof. We need to show that for each v, w ∈ V , the component ∆̃vu is a regular sec-

tion ofO
Ĉ

(d(v)− d(u) +∑
α∈Z:v∈α α) i.e. that div ∆vu+d(v)−d(u)+∑α∈Z:v∈α α ≥ 0.

By definition, we have

∆vu(z, w) =


∑
e:v′→v:v′ 6=v c(e) +∑

e:v→v c(e)(1− z〈e,γz〉w〈e,γw〉), if v = u;

−∑e:u→v c(e)z〈e,γz〉w〈e,γw〉, otherwise.

When v 6= u, recall that for each edge e : u → v we have from the definition of

the discrete Abel map that

d(v)− d(u) = −β − δ + β′ + δ′ − div z〈e,γz〉w〈e,γw〉,
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where β, δ, β′, δ′ are the oriented zig-zag paths through e, with β, β′ and δ, δ′ the

oppositely oriented pairs. From this we get

div z〈e,γz〉w〈e,γw〉 + d(v)− d(u) +
∑

α∈Z:v∈α
α =

∑
α∈Z:v∈α,α 6=β,δ,β′,δ′

α ≥ 0,

so each z〈e,γz〉w〈e,γw〉 is a regular section of O
Ĉ

(d(v)− d(u) +∑
α∈Z:v∈α α). Since ∆vu

is a linear combination of these, the same holds for it as well.

When v = u, ∆vu is a sum of constant terms in z, w and terms involving z〈e,γz〉w〈e,γw〉

as in the case u 6= v. d(v) − d(u) + ∑
α∈Z:v∈α α = ∑

α∈Z:v∈α α ≥ 0 implies that the

constant terms are also regular sections of O
Ĉ

(d(v)− d(u) +∑
α∈Z:v∈α α).

The extension ∆̃ has the nice property:

Lemma 4.4.6. We have det ∆̃ ∈ H0(Ĉ,O
Ĉ

(DN |Ĉ)), where

det ∆̃ :
∧
v∈V
O
Ĉ

(
d(v)−

∑
α∈Z:v∈α

α− d(v0)
)

∆̃−→
∧
v∈V
O
Ĉ

(d(v)− d(v0))

is the determinant line bundle.

Proof. Recall that DN = ∑
E edge of N aEDE, where aE ∈ Z is the distance from the

origin to E along the primitive normal vector to E. Therefore

DN |Ĉ =
∑

E edge of N
aEDE ∩ Ĉ

=
∑

E edge of N

∑
α∈Z:[α]||E

aEα

.
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The determinant line bundle is isomorphic to

Hom
( ∧
v∈V
O
Ĉ

(
d(v)−

∑
α∈Z:v∈α

α− d(v0)
)
,
∧
v∈V
O
Ĉ

(d(v)− d(v0))
)

∼= OĈ

(∑
v∈V

(d(v)− d(v0))−
∑
v∈V

(
d(v)−

∑
α∈Z:v∈α

α− d(v0)
))

,

so we need to show that

∑
v∈V

(d(v)− d(v0))−
∑
v∈V

(
d(v)−

∑
α∈Z:v∈α

α− d(v0)
)

= DN |Ĉ .

Let ρ be a zig-zag path, let (i1, i2) be a vertex of N incident to the edge of N

corresponding to ρ and let F be the corresponding extremal OCRSF. From our

description of extremal OCRSFs (Theorem 4.3.1), we know that for each vertex

u ∈ V , there is a unique outgoing edge eu and that if ρ contains u, then eu ∈ ρ. We

pair vertices of G using ev to rewrite the sum as

∑
e:u→v∈F

d(v)− d(u) +
∑

α∈Z:u∈α
α.

Now we observe that if e ∈ ρ, then ρ appears twice in the summand with opposite

signs and if e /∈ ρ, then ρ does not appear in the summand, modulo contributions

from the edges of F intersecting γz, γw. This latter contribution is given by

−
∑
e∈F

div z〈e,γz〉w〈e,γw〉 = −z〈i1,γz〉wi2,γw〉

= aE.

Let Q, Q̃ denote the adjugate matrices of ∆, ∆̃ respectively. We obtain:

Corollary 4.4.7. div
Ĉ
Quv ≥ DN − d(v) + d(u)−∑α∈Z:u∈α α.
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Proof. Q is the rational function corresponding to the section Q̃ of

O
Ĉ

(
DN |Ĉ − d(v) + d(u)−

∑
α∈Z:u∈α

α

)
.

Going back to our example in Figure 4.2, we check that the Laplacian that we

computed in (4.3) extends to a morphism of vector bundles:

(4.10) O(−α− β − α′ − β′)⊕O(−2α− 2β)→ O⊕O(−α− β + α′ + β′).

We have ∆(z, w)v1v2 = −a − bz, which we wish to show corresponds to a regular

section of O(2α + 2β). We check:

div a+ 2α + 2β = 0 + 2α + 2β ≥ 0,

div bz + 2α + 2β = (−2α− 2β + 2α′ + 2β′) + 2α + 2β ≥ 0,

where we have used div z = −2α − 2β + 2α′ + 2β′ from (4.7). The other entries of

∆(z, w) may be checked in the same way.

In this example DN = 2α+2β+2α′+2β′. On the other hand, from (4.10) we see

that the determinant line bundle is O(2α+ 2β + 2α′+ 2β′), verifying the conclusion

of Lemma 4.4.6.
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Corollary 4.4.7 provides an inequality for the divisor of Quv but we need a more

careful analysis of the behaviour of Quv at infinity to determine its divisor ex-

actly. This is the goal of this section. We denote by s̃u, t̃v the sections of M̃∨ ⊗

O
Ĉ

(d(u)−∑α∈Z:v∈α α− d(v0)), O
Ĉ

(d(v) − d(v0)) ⊗ L̃ respectively, given by the u-

entry of the kernel map and the v-entry of the cokernel map.

Lemma 4.4.8. We have:

div
Ĉ
s̃u = σ(Su) +

∑
α∈Z:u/∈α

α;

div
Ĉ
t̃v = Sv,

where Sv is the effective divisor given by the vanishing of the v-column of Q.

Proof. Let α be an oriented zig-zag path. Let x be a local parameter in a neighbor-

hood U of α disjoint from the other points at infinity with a simple zero at α. We

trivialize the line bundles in (4.9) as follows:

O(−kα)(U)
∼=−→ O(U)

f 7→ x−kf

Let z = axm + O(xm+1) and w = bxn + O(xn+1) be the expansions in the local

coordinate x. Let us order the vertices so that the vertices on the zig-zag path

appear first. Then the Laplacian matrix at α has the following block form:

∆̃ =

∆1 B

xA ∆2

+O(x),
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where ∆1 is the restriction of the Laplacian to the zig-zag path α and ∆2 is the

restriction to the rest of the graph, and where z and w are replaced with a and b

respectively. Since we are at α, ∆1 is singular. For smooth Ĉ, dim Ker ∆1 = 1 and

∆2 is invertible.

Let v ∈ Ker ∆∗1. Then we have

Ker ∆̃∗ = (v,−(∆∗2)−1B∗v) +O(x).

Since generically none of the entries in Ker ∆̃∗ is 0, and since these entries are the

cofactors of ∆, we see that t̃v has no poles or zeros at α. Since α was arbitrary, t̃v

has no zeroes or poles at infinity.

Now let v ∈ Ker ∆1. We have

Ker ∆̃ = (v,−x∆−1
2 Av) +O(x),

from which we see that s̃u has a simple zero at α for u /∈ α and no other zeroes or

poles at α for u ∈ α.

Corollary 4.4.9. We have div
Ĉ
Quv = Sv + σ(Su)−DN |Ĉ + d(v)− d(u) +∑

α∈Z α,

and therefore

S + σ(S)− q1 − q2 = K
Ĉ
in Pic2g−2(Ĉ).



85

Proof. Since Q̃uv = s̃ut̃v, we have

div
Ĉ
Q̃uv = Sv + σ(Su) +

∑
α∈Z:u/∈α

.

From Corollary 4.4.7, we know that Q is the rational function corresponding to the

section Q̃ of O
Ĉ

(
DN |Ĉ − d(v) + d(u)−∑α∈Z:u∈α α

)
, from which we obtain the first

statement.

The canonical divisor of the toric variety N is given by −∑E DE. Therefore the

adjunction formula for nodal curves [ACGH85, Appendix A.8] gives K
Ĉ

= (∑E DE+

DN)|
Ĉ
− q1 − q2, from which we get the second statement.

Corollary 4.4.10. deg Sv = g for all v ∈ V (G).

Proof. We take degrees on both sides of Sv+σ(Sv)−q1−q2 = K
Ĉ
, and use deg K

Ĉ
=

2g − 2.

Corollary 4.4.11. The cokernel line bundle L̃ ∼= OĈ(Sv0). Moreover

Sv + d(v)− d(u) = Su in Picg(Ĉ),

for all u, v ∈ V (G).

Proof. t̃v0 which is the image of the regular section δv0 under the cokernel map is a

regular section of L̃, so L̃ ∼= OĈ(Sv0).

Similarly, the image of the rational section δv for v ∈ V (G) is a rational section of

L̃, and has divisor Sv + d(v)− d(v0).
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Now that we have identified the cokernel line bundle, we can find the cokernel map.

Each component of the cokernel map is given by a rational section of O(S) with

prescribed order of vanishing at infinity. These can be written down explicitly in

terms of Prym theta functions and the prime form (see Appendix for notation).

Let e = 1
2π1(I(S) − I(q1) − I(q2) − π∗∆C) + dP (v0) (see Lemma B.1.2). Define

for each vertex v ∈ G,

ψv(x) := η(x+ dP (v)− e)
η(dP (v)− e) Ed(v)−d(v0)(x),

where dP is the discrete Abel-Prym map (see Section 4.4.4).

Lemma 4.4.12. The cokernel map is given by δv 7→ ψv.

Proof. If D is a generic degree g effective divisor, the Jacobi inversion theorem

(Theorem B.0.2) implies that H0(Ĉ,O(D)) is 1-dimensional. The cokernel map

in (4.9) is given by a collection of global sections of Hom(O(d(v)− d(v0)),O(S)) ∼=

O(S + d(v0)− d(v)) ∼= O(Sv), and therefore uniquely determined up to scaling each

component once we specify the image of δv for all v. The scaling is fixed by the

requirement that the cokernel at q1 and q2 be (1, 1, ..., 1).

4.5 Inverse spectral map

In this section, we construct the inverse of the spectral map. We begin by describing

the normalization map π in terms of the prime form.



87

Figure 4.6: Vertices, faces and zig-zag paths in the definition of the conductance
function.

Lemma 4.5.1. The following diagram commutes:

Ĉ

C0 (C∗)2

C N

x 7→(E(1,0)(x),E(0,1)(x))

π

Proof. The functions z and w on (C∗)2 restrict to rational functions on C, which

pull back to rational functions π∗z and π∗w on Ĉ. We have

div
Ĉ
π∗z = div

Ĉ
E(1,0)(x),

so they agree up to multiplication by a constant. Since E(1,0)(q1) = π∗z(q1) = 1, the

constant is 1, and therefore we have π∗z = E(1,0)(x). By the same argument applied

to w, we get π∗w = E(0,1)(x).

Let uv be an edge in G̃, f1 and f2 be the faces adjacent to uv and let α, β be the

zig-zag paths as shown in Figure 4.6. Define the conductance function

(4.11) cu,v := η(dP (u)− e)η(dP (v)− e)
η(dP (f1)− e)η(dP (f2)− e)

E(α, β)
E(α, β′) .

We note the similarity of (4.11) with [GK12, (58)].
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Lemma 4.5.2. cu,v has the following properties:

1. cu,v = cv,u;

2. cu,v is compatible with taking the dual graph, that is, cf1,f2 = 1/cu,v.

3. cu,v is H1(T,Z)-periodic and therefore descends to a conductance function c on

G.

Proof. 1. Follows from the symmetry E(α, β) = E(α′, β′).

2. Clear.

3. Let h ∈ H1(T,Z). We have

IP (dP (u+ h)− dP (u)) = 1
2π1I(h) = 0,

since h = (i, j) = div
Ĉ
ziwj.

Theorem 4.5.3. The rational map ρG,v0 : (C, S, ν) 7→ V (c) is the inverse of κG,v0.

Therefore RN is birational to S ′N .

Proof. 1. κG,v0 ◦ ρG,v0 = id:

Let u be a vertex in Γ and let v1, ..., vn be the vertices adjacent to u in G. Let

α1, ..., αn be the zig-zag paths as shown in Figure 4.7. Note that

i−1
v,uψv(x) = ψu(x).

Using Theorem B.1.3 with z = q1, t = dP (u)− e, xk = αk, we get

(4.12)
∑
vk∼u

cu,vk =
η
(
dP (u)− e−∑k

i=1 αk
)
η(dP (u)− e)2∏n

k=1 η(dP (u)− e− αk)

n∏
k=1

E(αk, αk+1)
E(αk, α′k+1) .
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Figure 4.7: Local configuration near a vertex u.

Using Theorem B.1.3 with z = x, t = dP (u)− e, xk = αk and (4.12), we get

∑
vk∼u

cu,vk(ψu(x)− i−1
vk,u

ψvk(x)) = 0,

so the following is sequence is exact:

0→ Ker φ∗i∗∆T 17→(ψv)v−−−−−→
⊕
v∈V
O
Ĉ

(−d(v)+d(v0)) φ∗i∗∆T

−−−−→
⊕
v∈V
O
Ĉ

(−d(v)+
∑

α∈Z:v∈α
α+d(v0)).

Since this is the transpose of (4.9), the cokernel map in (4.9) is δv 7→ ψv and

we recover S = div
Ĉ0
ψv0 as the divisor.

2. ρG,v0 ◦ κG,v0 = id:

Suppose c′ is a conductance function such that κG,v0(c′) = (C, S, ν). By Lemma

4.4.12, the cokernel map is determined by S and is given by δv 7→ ψv. Taking
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Figure 4.8: Y-Delta transformation.

transpose, the equation of φ∗i∗∆T becomes

∑
vk∼u

c′u,vk(ψu(x)− i−1
vk,u

ψvk(x)) = 0.

Since the coefficients of the quadrisecant identity are uniquely determined up to

a constant, comparing with Theorem B.1.3 with z = x, t = dP (u)− e, xk = αk,

we see that c′ agrees with c up to a multiplicative constant.

4.6 Compatibility with Y −∆ transformations

A Y −∆ transformation is induced by sliding a zig-zag path through the crossing of

two other zig-zag paths as shown in Figure 5.2. Therefore discrete Abel and discrete

Abel-Prym maps d, dP on G1 induce discrete Abel and discrete Abel-Prym maps on

G2, which we will also denote by d, dP respectively.

Theorem 4.6.1. Let G1 → G2 be a Y − ∆ transformation and let v1 and v2 be
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vertices of G1 and G2 respectively. The following diagram commutes:

RN

S ′N S ′N

κG2,v2κG1,v1

s

The birational map s is defined as (C, S1, ν1) 7→ (C, S2, ν2), where

1. There is a natural bijection between zig-zag paths on G2 and G1 induced by

Y −∆ transformation. ν2 is obtained by composing this bijection with ν1.

2. S2 is the generically unique degree g effective divisor satisfying S2 ≡ S1 +

d(v1)− d(v2).

Proof. The Y −∆ transformation preserves the spectral curve. The local picture is

shown in Figure 5.2. Let e = 1
2π1(I(S1)− I(q1)− I(q2)− π∗∆C) + dP (v1). We show

that κ−1
G1,v1 = κ−1

G2,v2 ◦ s. We have

a = κ−1
G1,v1(C, S1, ν1)uv1 = η(dP (u)− e)η(dP (v1)− e)

η(dP (f2)− e)η(dP (f3)− e)
E(β, γ)
E(β, γ′) ;

b = κ−1
G1,v1(C, S1, ν1)uv2 = η(dP (u)− e)η(dP (v2)− e)

η(dP (f1)− e)η(dP (f3)− e)
E(γ, α)
E(γ, α′) ;

c = κ−1
G1,v1(C, S1, ν1)uv3 = η(dP (u)− e)η(dP (v3)− e)

η(dP (f1)− e)η(dP (f2)− e)
E(α, β)
E(α, β′) .

Note that by the definition of s,

1
2π1(I(S2)− I(q1)− I(q2)− π∗∆C) + dP (v2)

= 1
2π1(I(S1 + d(v1)− d(v2))− I(q1)− I(q2)− π∗∆C) + dP (v2)

= e.
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Therefore

A = κ−1
G2,v2 ◦ s(C, S2, ν2)v2v3 = η(dP (v2)− e)η(dP (v3)− e)

η(dP (f0)− e)η(dP (f1)− e)
E(γ, α′)
E(γ, α) .

Equation (4.12) becomes

a+ b+ c = η(dP (u)− e)2η(dP (f0)− e)
η(dP (f1)− e)η(dP (f2)− e)η(dP (f3)− e)

E(α, β)E(β, γ)E(γ, α)
E(α, β′)E(β, γ′)E(γ, α′) .

Plugging in these expressions, we see that bc
a+b+c = A, which is the transition map

between the G1 and G2 affine charts.

4.7 Discrete integrable systems from Y −∆ moves

Let T be a sequence of Y − ∆ moves on a graph G such that the resulting graph

T · G is isomorphic to G as graphs. Let φT : G → T · G be the isomorphism. The

composition

RN ⊃ RG → RT ·G
'−→ RG ⊂ RN

defines a birational automorphism of RN , which we denote by µT . It is a cluster

modular transformation as defined in [FG03b]. Using Theorem 4.6.1, we construct

the follwing commuting diagram:

RN ⊃ RG RT ·G RG ⊂ RN

S ′N S ′N S ′N

κG,v

µT

κ
T ·G,φ−1

T
(v)

'

κG,v

s t

,

where s is the map in Theorem 4.6.1 and t is the natural map induced by the
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graph isomorphism φT , that is (C, S, ν) 7→ (C, S, ν ′), where ν ′ is obtained from ν by

composing with φT . We have shown:

Theorem 4.7.1. The following diagram commutes:

RN RN

S ′N S ′N

µT

κG,v κG,v

sT

,

where the birational map sT is defined as (C, S, ν) 7→ (C, ST , νT ) where ST is the

(generically) unique degree g effective divisor satisfying ST ≡ S + d(v) − d(φ−1
T (v))

and νT = ν ◦ φ−1
T .

For a fixed C, the fiber of the projection (C, S, ν) 7→ C over C is a cover of the

space of degree g effective divisors on C satisfying (4.5), which is birational to a

cover of Prym(Ĉ, σ). Therefore, along with Lemma B.1.2, Theorem 4.7.1 tells us

that the discrete integrable system arising from T is linearized on a finite cover of

Prym(Ĉ, σ).

4.8 Further questions

We end by listing some directions that we believe deserve further study.

1. Liouville integrability: Goncharov and Kenyon [GK12] proved that the dimer

cluster variety is an algebraic integrable system, with its natural Poisson struc-

ture. We expect the same to be true for the resistor network cluster variety.

Find a Poisson structure compatible with the Y-∆ transformation that makes
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the resistor network cluster variety an algebraic integrable system and with re-

spect to which the fibration by Prym varieties given by the spectral transform

is Lagrangian. More generally, the Y-∆ move belongs to the framework of Lam

and Pylyavskyy’s Laurent phenomenon algebras [LP16], for which we can ask

the same question.

2. Massive Laplacian: Boutillier, de Tilière and Raschel [BdeTR17] proved anal-

ogous results for the massive Laplacian in the isoradial case, that is in the case

where the spectral curve has genus one. We expect that there is a common

generalization of their results and this paper to the massive Laplacian where

the spectral curve has arbitrary genus. We expect that the massive Y-∆ move

might be described by a generalization of the Beauville-Debarre quadrisecant

identity [BD87].

3. Relation to the dimer spectral transform: Let G be a minimal resistor network,

ΓG be the associated bipartite graph. Recall the dimer spectral data κΓG,v :

XN → SN as defined in [GK12, Proposition 7.2]. By [GK12, Theorem 1.4] or

[F15], κΓG,v is a birational isomorphism. We conjecture that the map t that

makes the diagram below commute is (C, S, ν) 7→ (C, S + (1, 1), ν).

RN S ′N

XN SN

κG,v

t

κΓG,v

4. Connections to representation theory: Fock and Marshokov [FM16] showed

that the dimer integrable sytems coincide with integrable systems on the Poisson-

Lie groups P̂GL. Is there an analogous construction for resistor networks?



CHAPTER 5

Arctic curves for groves from periodic

cluster modular transformations

5.1 Introduction

A function f : Z3 → C satisfies the cube recurrence (also known as the Miwa equation

or the discrete BKP equation [Miwa82]) if for all (i, j, k) ∈ Z3

fi,j,kfi−1,j−1,k−1 = fi−1,j,kfi,j−1,k−1 + fi,j−1,kfi−1,j,k−1 + fi,j,k−1fi−1,j−1,k.

We denote by F the set of functions satisfying the cube recurrence. Define the lower

cone of (i, j, k) ∈ Z3 to be C(i, j, k) := {(i′, j′, k′) ∈ Z3
≤0 : i′ ≤ i, j′ ≤ j, k′ ≤ k}.

Let L be a subset of Z3
≤0 such that Z3

≤0 \ L is finite and if (i, j, k) ∈ L then we

have C(i, j, k) ⊆ L. Let U := Z3
≤0 \ L. A set of initial conditions is defined to be

95
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I := {(i, j, k) ∈ L : (i + 1, j + 1, k + 1) /∈ L}. Let I denote the set of all sets of

initial conditions. The set of initial conditions corresponding to L = {(i, j, k) ∈ Z≤0 :

i+j+k ≤ 1−n} will be denoted by I(n) and is called the standard initial conditions

of order n.

If we assign formal variables fi,j,k := xi,j,k for (i, j, k) in a set of initial conditions

and solve for fi,j,k where (i, j, k) ∈ U , we obtain rational functions in xi,j,k. In

[FZ01], Fomin and Zelevinsky showed using cluster algebra techniques that these

rational functions are Laurent polynomials in xi,j,k with coefficients in Z.

In [CS04], Carroll and Speyer studied a more general version of the cube recur-

rence, which they call the edge-variable version. Define edge variables ai,j, bi,k, ci,j

for each i, j, k ∈ Z≤0. A function g : Z3
≤0 → R>0 satisfies the edge-variable version of

the cube recurrence if

gi,j,kgi−1,j−1,k−1 = bi,kci,jgi−1,j,kgi,j−1,k−1+ai,kci,jgi,j−1,kgi−1,j,k−1+aj,kbi,kgi,j,k−1gi−1,j−1,k,

for (i, j, k) ∈ Z3
≤0. Carroll and Speyer constructed combinatorial objects called groves

(See Figure 5.1 (a) for an example), which they showed are in bijection with the

monomials in the Laurent polynomial generated by the edge-variable version of the

cube recurrence. This was used to give a combinatorial proof of the Laurent property.

Groves on the standard initial conditions I(n) are in bijection with spanning

forests of a portion of the triangular lattice where each component of the forest con-

nects boundary vertices in a prescribed manner (see Figure 5.1 (b)). Petersen and

Speyer [PS06] proved an arctic circle theorem for groves: For large n, a uniformly
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(a) A grove on I(3). (b) The corresponding sim-
plified grove.

Figure 5.1

random simplified grove on I(n), rescaled by a factor of n so that it is now supported

on the unit triangle, appears deterministic outside the circle inscribed in the triangle.

In the present paper, we extend the arctic circle theorem to a large class of probabil-

ity measures on groves. There are two natural probability measures one can consider

on groves:

• Given a positive real-valued function f satisfying the cube recurrence, we can

put a probability measure on groves where each grove gets a probability propor-

tional to the value of the monomial associated to it in the bijection of Carroll

and Speyer. We denote this probability measure by PfI .

• We can define a conductance function C, a positive real-valued function on

the edges of the triangular lattice, and consider the Boltzmann distribution,

assigning to a grove G the probability,

PCI (G) ∝
∏

Edges e∈G
C(e).
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(a)

(b) The arctic curve, along with macroscopic regions labeled
according to the points of the Newton polygon that correspond
to the EGM describing local statistics in the region.

Figure 5.2
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This is the natural measure to put on spanning forests from the point of view

of statistical mechanics and generalizes the spanning tree measure.

There is a way to associate a conductance function Cf to a function f : Z3 → R

due to Fomin and Zelevinsky ([FZ01], see also [GK12]), such that the cube recurrence

for f becomes the resistor network Y-∆ transformation (due to Kennelly [Kenn1899])

for Cf . We show that under this change of variables, the probability measures PfI
and PCI coincide (see Theorem 5.2.4) and that the map f 7→ Cf is surjective. This

lets us define our class of probability measures on groves in terms of conductance

functions, but still allows us to exploit the algebraic structure of the f variables

and the cube recurrence to compute the edge probability generating functions as in

[PS06].

The class of probability measures we consider comes from periodic conductance

functions on the triangular lattice. This however leads to an infinite system of lin-

ear equations for the edge-probability generating functions. We further impose the

condition that the conductance function is periodic under a cluster modular trans-

formation (defined in Section 5.3.5) to obtain a finite linear system (Theorem 5.4.1).

Starting from any conductance function that is periodic in both these senses, we

derive asymptotic edge probabilities using the machinery developed by Baryshnikov,

Pemantle and Wilson [PW02,PW04,BP11,PW13]. We obtain generating functions

that have isolated singularities with degree greater than 2 and therefore fall outside

the class of quadratic singularities considered in [BP11], but for specific examples, we
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see that their techniques still work. This in particular leads to explicit computations

of arctic curves (see for example Figure 5.2.2).

By analogy with the dimer model [KOS06,KO07], a generic conductance function

on a Z2-periodic resistor network is expected to give rise to a limit shape where

there are macroscopic regions corresponding to each lattice point in the Newton

polygon of the resistor network (see sections 5.3.2 and 5.3.6). Figure 5.2 suggests that

although the class of conductances functions we consider lies in a closed subvariety

of Z2-periodic conductances, it is still sufficiently general to exhibit all the possible

macroscopic phases.

5.2 Groves and the cube recurrence

5.2.1 Groves

We recall some some terminology and basic properties of groves from [CS04]. A

rhombus is any set in one of the following three forms for (i, j, k) ∈ Z3
≤0:

ra(i, j, k) := {(i, j, k), (i, j − 1, k), (i, j, k − 1), (i, j − 1, k − 1)}

rb(i, j, k) := {(i− 1, j, k), (i, j, k), (i, j, k − 1), (i− 1, j, k − 1)}

rc(i, j, k) := {(i, j, k), (i− 1, j, k), (i, j − 1, k), (i− 1, j − 1, k)}.
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Figure 5.3: The connectivity of a grove.

We call the edges Ea(i, j, k) := {(i, j−1, k), (i, j, k−1)} and ea(i, j, k) := {(i, j, k), (i, j−

1, k − 1)} the long diagonal and the short diagonal of the rhombus ra(i, j, k), and

define analogously the edges Eb, eb, Ec and ec, where the pattern of −1 shifts is easily

evinced from the equations above. We denote the set of all diagonals of rhombi by

D.

Let ΓI be the graph with vertex-set I and edge-set constituted by the long and

short diagonals appearing in each rhombus in I. Then an I-grove is a subgraph G

of ΓI with the following properties:

• The vertex-set of G is all of I.

• For each rhombus in I, exactly one of the two diagonals occurs in G.

• There exists an integer N such that, if all the vertices of a rhombus satisfies

i+ j + k < −N , the short diagonal occurs.

• For N large enough, every component of G contains exactly one of the following

sets of vertices, and each such set is contained in a component of G (Figure
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5.3),

– {(0, p, q), (p, 0, q)}, {(p, q, 0), (0, q, p)}, and {(q, 0, p), (q, p, 0)} for all p, q

with 0 > p > q and p+ q ∈ {−N − 1,−N − 2};

– {(0, p, p), (p, 0, p), (p, p, 0)} for 2p ∈ {−N − 1,−N − 2};

– {(0, 0, q)}, {(0, q, 0)}, and {(q, 0, 0)} for q ≤ −N − 1.

It is shown in [CS04] that groves on standard initial conditions I(n) are completely

determined by their long-diagonal edges. Therefore, we can represent groves as a

spanning forest of a finite portion of the triangular lattice (see Figure 5.1), which is

called a simplified grove.

Suppose I ∈ I is a set of initial conditions. The edge-variable version of the cube

recurrence gives g0,0,0 as a rational function in the variables {aj,k, bi,k, ci,j, gi,j,k}(i,j,k)∈I .

The following is the main result of [CS04].

Theorem 5.2.1 (Carroll and Speyer, 2004 [CS04]).

g0,0,0 =
∑

G∈G(I)
M(G),

where

M(G) =
 ∏
ea(i,j,k)∈E(G)

aj,k

 ∏
eb(i,j,k)∈E(G)

bi,k

 ∏
ec(i,j,k)∈E(G)

ci,j

mg(G)

and

mg(G) =
∏

(i,j,k)∈I
g
deg(i,j,k)−2
i,j,k ,

where deg(i, j, k) is the degree of the vertex (i, j, k) in the (unsimplified) grove G.
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Now suppose f : Z≤0 → R>0 satisfies the cube recurrence. Since fi,j,k are positive

real numbers, by Theorem 5.2.1,

PfI(G) := mf (G)
f0,0,0

defines a probability measure on G(I). Therefore any function f that satisfies the

cube recurrence induces a family of probability measures {PfI}I∈I.

5.2.2 Conductance variables and the Y-∆ transformation

A function C : D → C satisfying C(Eq(i, j, k)) = 1/C(eq(i, j, k)) for all q ∈

{a, b, c}, (i, j, k) ∈ Z≤0 is called a conductance function. We simplify notation by writ-

ing Cq(i, j, k) = C(Eq(i, j, k)) and cq(i, j, k) = C(eq(i, j, k)). A positive real-valued

conductance function C determines a family of Boltzmann probability measures on

groves {PCI }I∈I:

PCI (G) := w(G)
Z

,

for G ∈ G(I), where w(G) = ∏
Eq(i,j,k)∈GCq(i, j, k) is the product of the conductances

of the long edges appearing in G and ZI is the partition function,

ZI =
∑

G∈G(I)

∏
Eq(i,j,k)∈G

Cq(i, j, k).

Let us denote

∆(i, j, k) := 1
Cb(i, j, k)Cc(i, j, k) + Ca(i, j, k)Cc(i, j, k) + Ca(i, j, k)Cb(i, j, k) .
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Figure 5.4: The Y-∆ transformation.

A conductance function C is Y-∆ consistent if for all q and (i, j, k), we have

Ca(i, j, k)ca(i− 1, j, k) = 1
∆(i, j, k) ;

Cb(i, j, k)cb(i, j − 1, k) = 1
∆(i, j, k) ;

Cc(i, j, k)cc(i, j, k − 1) = 1
∆(i, j, k) .(5.1)

We will denote by C the set of Y-∆ consistent conductance functions.

Let f ∈ F and let us define a conductance function Cf (see Figure 5.4),

Cf
a (i, j, k) = fi,j−1,kfi,j,k−1

fi,j,kfi,j−1,k−1
,

Cf
b (i, j, k) = fi−1,j,kfi,j,k−1

fi,j,kfi−1,j,k−1
,

Cf
c (i, j, k) = fi−1,j,kfi,j−1,k

fi,j,kfi−1,j−1,k
.(5.2)
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It was observed in [FZ01,GK12] that the Y-∆ equations (5.1) for Cf reduce to the

cube recurrence for f , and therefore Cf is Y-∆ consistent. Therefore we obtain a

function

p : F → C

f 7→ Cf .

Lemma 5.2.2. p : F → C is surjective.

Proof. Given C ∈ C, we can construct a function f such that p(f) = C as follows:

We define for all i, j, k ∈ Z≤0,

f(i, 0, 0) = f(0, j, 0) = f(0, 0, k) = 1.

The equations (5.2) now uniquely define f on (i, j, 0), (0, j, k), (i, j, 0) for i, j, k ∈ Z≤0.

We define f everywhere else using the cube recurrence.

5.2.3 Grove Shuffling

Let C be a Y-∆ consistent conductance function. Note that

∆(i, j, k) = (Cb(i, j − 1, k)Cc(i, j, k − 1) + Ca(i− 1, j, k)Cc(i, j, k − 1)

+ Ca(i− 1, j, k)Cb(i, j − 1, k)),

as a consequence of (5.1).

Grove shuffling is a local move that generates groves with measure PCI (G) and

couples the probability measures for different initial conditions in a convenient way

(see Figure 5.5). Grove shuffling takes a cube, removes it and replaces a configuration
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(a)

(b)

(c)

Figure 5.5: Grove shuffling
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on the left in Figure 5.5 with a corresponding configuration on the right. The only

random part is (a) where the configuration on the left is replaced with one of the

configurations on the right with probabilities indicated on the arrows.

We can generate a random grove on initial conditions I as follows. Start with the

unique grove on {(i, j, k) ∈ Z3
≤0 : max{i, j, k} = 0}. Use grove shuffling to remove

cubes until you end up with initial conditions I. The following lemma shows that

this can always be done.

Lemma 5.2.3 (Carroll and Speyer, 2004 [CS04]). Suppose (0, 0, 0) ∈ I. Then there

exist i, j, k ≤ 0 such that (i−1, j, k), (i, j−1, k−1), (i, j−1, k), (i−1, j, k−1), (i, j, k−

1), (i− 1, j − 1, k) ∈ I (and so (i, j, k) ∈ U)

We define a generalization of the edge-variable version of the cube recurrence:

gi,j,kgi−1,j−1,k−1 = 1
∆(i, j, k)(Cb(i, j − 1, k)Cc(i, j, k − 1)gi−1,j,kgi,j−1,k−1

+ Ca(i− 1, j, k)Cc(i, j, k − 1)gi,j−1,kgi−1,j,k−1

+ Ca(i− 1, j, k)Cb(i, j − 1, k)gi,j,k−1gi−1,j−1,k),

for (i, j, k) ∈ Z3
≤0. The key input in the computation of the limit shape is the

following theorem that generalizes Theorem 5.2.1.

Theorem 5.2.4. Suppose C is a Y-∆ consistent conductance function and let f

be the solution to the cube recurrence such that p(f) = C from lemma 5.2.2. The

following are true:
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• The generalized cube recurrence satisfies for all I ∈ I,

g0,0,0 =
∑

G∈G(I)
PCI (G)mg(G).

• Grove shuffling generates groves with probability measure PCI , regardless of the

order in which the cubes are shuffled.

• The probability measures PCI and PfI are the same.

•

ZI =
∏

∆(i, j, k),

where the product is over all (i, j, k) such that the cube at (i, j, k) is removed

to reach I.

Proof. The proof is by induction on |U|. If U = ∅ then it is clear. Suppose U is

not empty. Choose (i, j, k) as in lemma 5.2.3. We obtain the initial conditions I by

shuffling the cube with vertex (i, j, k) in I ′. We first show that

ZI = ZI′∆(i, j, k).

Consider any I grove G. Since (i − 1, j − 1, k − 1) belongs to three rhombi, it has

degree 3, 2 or 1.

Suppose (i− 1, j− 1, k− 1) has degree 1. Then G belongs to a triple of I groves, say

{G1, G2, G3} in the order shown in Figure 5.5 (a), all of which are obtained from a
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single I ′ grove G′ by shuffling. We have

w(G1) = Cb(i, j − 1, k)Cc(i, j, k − 1)w(G′),

w(G2) = Ca(i− 1, j, k)Cc(i, j, k − 1)w(G′),

w(G3) = Ca(i− 1, j, k)Cb(i, j − 1, k)w(G′).

Therefore

w(G1) + w(G2) + w(G3) = w(G′)∆(i, j, k).

Suppose (i− 1, j − 1, k− 1) has degree 3. Then there are three I ′ groves, say G1,G2

and G3 (in the order in Figure 5.5 (b)) that upon shuffling the cube at (i, j, k) yields

G. We have

w(G) = w(G1)
Cb(i, j, k)Cc(i, j, k) ,

= w(G2)
Ca(i, j, k)Cc(i, j, k) ,

= w(G3)
Ca(i, j, k)Cb(i, j, k) .

Therefore

w(G) = w(G1) + w(G2) + w(G3)
Cb(i, j, k)Cc(i, j, k) + Ca(i, j, k)Cc(i, j, k) + Ca(i, j, k)Cb(i, j, k)

= (w(G1) + w(G2) + w(G3))∆(i, j, k).

Suppose (i− 1, j − 1, k − 1) has degree 2. Up to simple symmetry considerations, it
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is sufficient to concentrate only on the first situation in figure 5.5(C). We have

w(G) = w(G′)Ca(i, j, k − 1)
Ca(i, j, k)

= w(G′)
Cb(i, j, k)Cc(i, j, k) + Ca(i, j, k)Cc(i, j, k) + Ca(i, j, k)Cb(i, j, k)

= w(G′)∆(i, j, k).

Since each of them is multiplied by the same factor, we have shown that

ZI = ZI′∆(i, j, k).

Now we will check that PC = Pf . Suppose (i− 1, j − 1, k − 1) has degree 1 and

let {G1, G2, G3} be the triple of groves obtained from a single I ′ grove G′ shown in

Figure 5.5 (a).

PfI(G) = mf (G1)
f0,0,0

= mf (G′)
f0,0,0

fi−1,j,kfi,j−1,k−1

fi−1,j−1,k−1fi,j,k

= PfI′(G′)
fi−1,j,kfi,j−1,k−1

fi−1,j−1,k−1fi,j,k

= PCI′C(G′)fi−1,j,kfi,j−1,k−1

fi−1,j−1,k−1fi,j,k

= w(G′)
ZI′

Cb(i, j − 1, k)Cc(i, j, k − 1)
∆(i, j, k)

= w(G)
ZI

= PCI (G),



111

where we have used

Cb(i, j − 1, k)Cc(i, j, k − 1)
∆(i, j, k) = fi−1,j,kfi,j−1,k−1

fi−1,j−1,k−1fi,j,k
,

which may be checked by direct substitution.

Since each shuffle is independent, the probability of obtaining G1 is

PCI′(G′).
Cb(i, j − 1, k)Cc(i, j, k − 1)

∆(i, j, k) = PCI (G).

The last thing to check is that g0,0,0 has the stated form. Let g′0,0,0 be the expression

obtained by solving the generalized cube recurrence on I ′. By induction hypothesis,

g′0,0,0 =
∑

G′∈G(I′)
PCI′(G′)mg(G′),

and g0,0,0 is obtained from g′0,0,0 be substituting the generalized cube recurrence for

gi,j,k. We know that

mg(G1) = mg(G′)
gi−1,j,kgi,j−1,k−1

gi−1,j−1,k−1gi,j,k

PCI (G1) = PCI′(G′)
Cb(i, j − 1, k)Cc(i, j, k − 1)

∆(i, j, k) ,

and similarly for G2 and G3. Therefore we see that PCI (G1)mg(G1)+PCI (G2)mg(G2)+

PCI (G3)mg(G3) is obtained from PCI′(G′)mg(G′) by substituting the generalized cube

recurrence for gi,j,k.

The argument when the degree of (i− 1, j − 1, k − 1) is 2 and 3 is similar.

Let us denote by EI the expectation with respect to the measure PI . Recall that

the exponent of the variable gi0,j0,k0 in g0,0,0 is deg(i0, j0, k0)−2 (Theorem 5.2.1). We
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immediately obtain:

Corollary 5.2.5. Let (i0, j0, k0) ∈ I.

EI [deg(i0, j0, k0)− 2] = ∂g0,0,0

∂gi0,j0,k0

∣∣∣∣∣∣
g|I=1

.

5.2.4 Creation rates

Let (i, j, k) ∈ Z≤0. Let I be a set of initial conditions such that ra(i, j, k) ⊂ I and

let G have distribution PI . Define the long-edge probabilities

p(i, j, k) = PI(Ea(i, j, k) ∈ G).

These are well defined since if I ′ is another set of initial conditions, then we can

use grove shuffling to move between I and I ′ leaving the rhombus ra(i, j, k) intact.

Similarly define

q(i, j, k) = PI(Eb(i, j, k) ∈ G);

r(i, j, k) = PI(Ec(i, j, k) ∈ G),

and the creation rates

E(i, j, k) = 1− p(i, j, k)− q(i, j, k)− r(i, j, k).

It was shown in [PS06] that

E(i0, j0, k0) = EI [deg(i0, j0, k0)− 2] ,
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and therefore by Corollary 5.2.5,

(5.3) E(i0, j0, k0) = ∂g0,0,0

∂gi0,j0,k0

∣∣∣∣∣∣
g|I=1

.

The following result lets us obtain the generating function for p(i, j, k) from that

of E(i, j, k). Let us introduce for convenience the notation:

U(i, j, k) = Cb(i, j − 1, k)Cc(i, j, k − 1)
∆(i, j, k) ,

V (i, j, k) = Cb(i, j − 1, k)Cc(i, j, k − 1)
∆(i, j, k) ,

W (i, j, k) = Cb(i, j − 1, k)Cc(i, j, k − 1)
∆(i, j, k) .

Lemma 5.2.6 (Petersen and Speyer, 2005 [PS06], Theorem 2). The edge probabilities

are given recursively by

p(i, j, k) = p(i+ 1, j, k) + (V (i+ 1, j, k) +W (i+ 1, j, k))E(i+ 1, j, k);

q(i, j, k) = q(i, j + 1, k) + (U(i, j + 1, k) +W (i, j + 1, k))E(i, j + 1, k);

r(i, j, k) = r(i, j, k + 1) + (U(i, j, k + 1) + V (i, j, k + 1))E(i, j, k + 1).

5.2.5 Creation-rate generating functions

Given a Y-∆ consistent conductance function C, for all µ = (i0, j0, k0) ∈ Z3
≤0, we

define a conductance function Cµ by:

Cµ
q (i, j, k) = Cq(i+ i0, j + j0, k + k0).
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Let gµ denote the corresponding solution to the generalized cube recurrence and

Eµ, pµ, qµ, rµ the corresponding creation rates and edge probabilities. Let F µ(x, y, z) =∑
i,j,k≥0E

µ(−i,−j,−k)xiyjzk be the generating functions for the creation rates.

Lemma 5.2.7. Let (i1, j1, k1) and (i2, j2, k2) be such that (i1, j1, k1) is in the lower

cone C(i2, j2, k2). Then

∂gµi2,j2,k2

∂gµi1,j1,k1

∣∣∣∣∣∣
gµ|I=1

= Eµ+(i2,j2,k2)(i1 − i2, j1 − j2, k1 − k2).

Proof. Translate so that (i2, j2, k2) goes to (0, 0, 0).

Theorem 5.2.8. F µ(x, y, z) satisfy the following infinite system of linear equations

over C(x, y, z):

F µ + xyzF µ+(−1,−1,−1) − Uµ(0, 0, 0)(xF µ+(−1,0,0) + yzF µ+(0,−1,−1))

− V µ(0, 0, 0)(yF µ+(0,−1,0) + xzF µ+(−1,0,−1))

−W µ(0, 0, 0)(zF µ+(0,0,−1) + xyF µ+(−1,−1,0))) = 1,

for all µ ∈ Z3
≤0.

Proof. Let (i, j, k) ∈ Z3
≤0 and (i0, j0, k0) ∈ C(i, j, k). Differentiating the generalized

cube recurrence with respect to gµ(i0, j0, k0), setting gµ|I = 1 and using lemma 5.2.7,
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we obtain

Eµ+(i,j,k)(i0 − i, j0 − j, k0 − k) + Eµ+(i−1,j−1,k−1)(i0 − i+ 1, j0 − j + 1, k0 − k + 1)

= Uµ(i, j, k)(Eµ+(i−1,j,k)(i0 − i+ 1, j0 − j, k0 − k)

+ Eµ+(i,j−1,k−1)(i0 − i, j0 − j + 1, k0 − k + 1))

+ V µ(i, j, k)(Eµ+(i,j−1,k)(i0 − i, j0 − j + 1, k0 − k)

+ Eµ+(i−1,j,k−1)(i0 − i+ 1, j0 − j, k0 − k + 1))

+W µ(i, j, k)(Eµ+(i,j,k−1)(i0 − i, j0 − j, k0 − k + 1)

+ Eµ+(i−1,j−1,k)(i0 − i+ 1, j0 − j + 1, k0 − k))).

Letting i0 − i = r, j0 − j = s, k0 − k = t and relabeling µ+ (i, j, k) as µ, we have for

all r, s, t < 0, µ ∈ Z3
≤0:

Eµ(r, s, t) + Eµ+(−1,−1,−1)(r + 1, s+ 1, t+ 1)

= Uµ(0, 0, 0)(Eµ+(−1,0,0)(r + 1, s, t) + Eµ+(0,−1,−1)(r, s+ 1, t+ 1))

+ V µ(0, 0, 0)(Eµ+(0,−1,0)(r, s+ 1, t) + Eµ+(−1,0,−1)(r + 1, s, t+ 1))

+W µ(0, 0, 0)(Eµ+(0,0,−1)(r, s, t+ 1) + Eµ+(−1,−1,0)(r + 1, s+ 1, t)).(5.4)

Near the boundary, for (r, s, t) ∈ ∂Z3
≤0, equation (5.4) holds if we set Eµ′(r′, s′, t′) = 0

for µ′ ∈ Z3
≤0 and (r′, s′, t′) /∈ Z3

≤0. Upon multiplying by xryszt, summing up over all

(r, s, t) ∈ Z3
≤0, we obtain the linear equations for F µ.
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(a) The fundamental do-
main with a conductance
function.

(b) Newton polygon.

Figure 5.6: The graph T1,2.

5.3 The resistor network model on a torus

5.3.1 Quotients of the triangular lattice

Consider the triangular lattice T embedded in the plane x+ y + z = −1 in R3 with

vertices at {(i, j, k) ∈ Z3 : i+j+k = 0}. We have a Z2-action defined by translations

τ(1,0) · (i, j, k) = (i− 1, j + 1, k),

τ(0,1) · (i, j, k) = (i, j + 1, k − 1).

Let Tm,n := T/(mZ × nZ) be the quotient. It is a finite graph on a torus T with

mn vertices and forms an m × n-cover of T1,1. The parallelogram with vertices at

(0, 0, 0), (−m,m, 0), (0, n,−n), (−m,m+ n,−n) gives a fundamental domain for the

torus. Figure 5.6 (a) shows the fundamental domain for T1,2.
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5.3.2 The vector bundle Laplacian

The notion of the vector bundle Laplacian was introduced and studied in [K10]. We

report here the facts that we need in this paper. Let Γ be a finite graph on a torus

embedded such that every face is a topological disk. Let c be a conductance function

on Γ, i.e. a positive real-valued function on the edges of Γ defined modulo global

scaling. A pair (Γ, c) is called a resistor network. A line bundle with connection

(V, i) on Γ is the data of a complex line Vv at each vertex v of Γ along with an

isomorphism, called parallel transport ivv′ : Vv → Vv′ for each edge 〈v, v′〉 such that

iv′v = i−1
vv′ . Two line bundles with connection (V, i) and (V ′, i′) are isomorphic if

there exists a collection of isomorphisms ψv : Vv → V ′v such that for all edges vv′,

the following diagram commutes.

Vv Vv′

V ′v V ′v′

iv,v′

ψv ψv′

i′
v,v′

A connection is flat if the monodromies around the faces of Γ, that is, the products

of the ivv′ ’s in cyclic order around the face, are trivial. The Laplacian is a linear

operator ∆ : ⊕v Vv →
⊕

v Vv defined by

∆(f)(v) :=
∑
v′∼v

c(v, v′)(f(v)− iv′vf(v′)).

If the monodromies of all (contractible) faces are trivial, the monodromies z, w

in the two homology directions of the torus are univocally defined. Suppose we have

a flat connection. Then P (z, w) := det∆(z, w) is a Laurent polynomial and is called

the characteristic polynomial. The compactification of the curve {(z, w) ∈ (C∗)2 :
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P (z, w) = 0} is called the spectral curve. The convex integral polygon

N = Conv{(i, j) ∈ Z2 : ziwj has non-zero coefficient in P (z, w)}

is called the Newton polygon. It is always centrally symmetric.

A zig-zag path on Γ is an unoriented path that alternately turns maximally left or

right at each vertex. Each zig-zag path gives rise to a pair of homology classes ±[α] ∈

H1(T,Z), where [α] is the homology of the path α equipped with an orientation.

There is a unique centrally symmetric integral polygon N(G) ⊂ H1(T,Z) ∼= Z2

centered at the origin such that the sides of N(G) are given by the vectors ±[α].

Lemma 5.3.1 (Goncharov and Kenyon, 2012 [GK12]). N(G) coincides with the

Newton polygon.

For the graphs Tm,n, we choose the connection as follows: For every oriented

edge vv′, we will have ivv′ = zαwβ, with α, β ∈ {0,±1}. If an edge crosses the

side (0, 0, 0), (−m,m, 0) of the fundamental parallelogram, we multiply by a factor

of w. If an edge crosses the side (−m,m, 0), (−m,m + n,−n), we multiply by z.

Consistently with the rule ivv′ = i−1
v′v, if an edge crosses the sides of the parallelogram

parallel to the ones above for the case z and w, we multiply by a factor of z−1 or

w−1 respectively. The Laplacian may then be represented by a matrix with entries

in C[z±1, w±1]. The Newton polygon of Tm,n is a hexagon with vertices at

(±n, 0), (0,±m), (n,m), (−n,−m).

For T1,2 with conductance function as shown in Figure 5.6 (a), the Laplacian is



119

Figure 5.7: Generalized Temperley’s bijection for T1,2.

∆(z, w) =

a+ b+ d+ e+ f(2− z − 1
z
) −aw − bzw − d− e

z

− a
w
− b

zw
− d− ez a+ b+ d+ e+ c(2− z − 1

z
)

 ,
and the Newton polygon is the hexagon in Figure 5.6 (b).

5.3.3 Templerley’s bijection

Given a resistor network Γ embedded on a torus T, the generalized Temperley’s trick

[KPW00] gives a bipartite graph GΓ on T as follows:

Superimpose Γ and its dual graph, declare the vertices of Γ and its dual black and

put a white vertex at intersections of the edges of Γ and its dual. For T1,2, the

resulting bipartite graph is shown in Figure 5.7.
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5.3.4 Cluster Poisson variety associated to the resistor net-

work model

We recall the resistor network cluster Poisson variety as defined by Goncharov and

Kenyon in [GK12]. The moduli space of line bundles with connection on GΓ modulo

isomorphisms is denoted LGΓ . Let ĜΓ be the conjugate surface graph obtained by

reversing the cyclic order of edges at each white vertex. The Poisson structure on

O(LGΓ) is defined to be the canonical Poisson structure on O(L
ĜΓ

) coming from the

intersection pairing on ĜΓ under the natural isomorphism

LGΓ
∼= L

ĜΓ
.

The monodromies WF around the faces of Γ along with the monodromies around

generators of H1(T2,Z) form a coordinate system on LΓ, subject to the single rela-

tion ∏F WF = 1.

A conductance function c on Γ determines V (c) ∈ LGΓ as follows:

The fiber over each vertex is identified with C. The connection is defined to be the

identity map if the edge comes from the incidence of a face and edge of Γ. If the

edge of GΓ goes from a vertex of Γ to the mid point of an edge E in Γ, then the

connection is defined to be ∗ 7→ ∗ × cE. The moduli space of line bundles with

connections arising from conductance functions forms a subvariety RΓ ⊂ LGΓ .

A graph Γ is minimal if, in the universal cover, the lifts of any two zig-zag paths
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Figure 5.8: The cluster modular transformation T on T1,2. We have colored in green
a zig-zag path with homology (0, 1) to show that it goes around the torus. Zig-zag
paths with other homology classes have no net displacement. The first step is a Y-∆
move at each downward triangle, the second step is a translation of the entire graph
by the vector (−

√
3

2 ,−
1
2) and the third step is taking the dual graph.

intersect at most once and the lift of any zig-zag path has no self intersections.

Theorem 5.3.2 (Goncharov and Kenyon, 2012 [GK12]). Any two minimal graphs

with the same Newton polgygon are related by Y-∆ moves up to taking the dual graph.

A Y-∆ transformation Γ→ Γ′ induces a birational isomorphism

µY−∆ : RΓ 99K RΓ′ .

Gluing the RΓ with the Newton polygon N using these birational maps gives the

cluster Poisson variety of the resistor network model RN .

5.3.5 Cluster modular transformations

A birational automorphism of RN induced by a sequence of Y-∆ moves taking Γ to

itself up to taking the dual graph is called a cluster modular transformation. The

group of cluster modular transformations is called the cluster modular group (see

[GK12], Section 6.2).
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Cluster modular transformations are easier to describe in terms of zig-zag paths.

A Y-∆ move is induced by moving a zig-zag path across the crossing of two other

zig-zag paths. For each centrally symmetric pair of edges E,E ′ of N , we have zig-zag

paths (αi)ki=1 in cyclic order in the fundamental domain of the torus with homology

class given by the vector of the edge E up to orientation. By minimality, these

paths do not intersect. Isotope them cyclically around the torus in the direction

specified by the outward normal (out from N) to the edge vector of E, so that

(α1, ..., αk)→ (α2, ..., αk, α1) or (α1, ..., αk)→ (αk, α1, α2, ..., αk−1), leaving the other

strands unchanged. This induces a sequence of Y-∆ moves corresponding to moving

αi through simple crossings of two zig-zag paths, which transforms Γ back to itself.

The composition of the birational maps induced by these Y-∆ moves gives a cluster

modular transformation TE. Note that TE′ = T−1
E .

We are interested in the cluster modular transformation T := T〈(−n,0),(−n,−m)〉 on

the graph Tm,n. In the case of T1,2, this cluster modular transformation is illustrated

in Figure 5.8. In the coordinates of Figure 5.6, it is given by:

T (a, b, c, d, e, f) = (a∆abc, b∆abc, f∆def , d∆def , e∆def , c∆abc) ,

where

∆abc = 1
ab+ bc+ ac

, ∆def = 1
de+ ef + df

.

The cluster modular transformation T is said to be N-periodic if TN = id. Since

conductances are defined modulo scaling, this means that TN leaves the conduc-

tance function invariant modulo scaling and in particular, preserves the probability
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measure.

5.3.6 Ergodic Gibbs measures

Let Γ̃ be the lift of Γ to the universal cover of the torus. An essential spanning

forest (ESF) on Γ̃ is a spanning forest in which every component is infinite. Kenyon

proved the following classification for ergodic Gibbs measures (EGMs) on ESFs on

Γ̃, extending to groves models the results in [KOS06] for the dimer model.

Theorem 5.3.3 (Kenyon 2017, [K17]). For each centrally symmetric pair ((s, t), (−s,−t)) ∈

N(P ), there exists a unique EGM on ESFs of Γ̃ with components having average den-

sity (s, t) in the two coordinate directions.

An ergodic Gibbs measure is in the solid phase if some edge correlation is deter-

ministic. It is in the liquid phase if the edge correlations decay quadratically with

distance and gaseous if the decay is exponential. The solid phases are in bijection

with boundary lattice points of the Newton polygon, and the gaseous phases are in

bijection with the interior lattice points, unless the corresponding compact oval in

P (z, w) degenerates to a real node, in which case it is in the liquid phase (see [K17]).

This always happens for the central point, which corresponds to the UST measure.

For what concerns our running example, T1,2, the Newton polygon is in Figure 5.6

(b). Therefore, there are four EGMs in the solid phase and one EGM in the gaseous

phase. By analogy with dimer limit shapes (see [KOS06,KO07]), we expect to see

macroscopic regions where the local statistics are described by each of the solid and

gaseous EGMs in a generic limit shape.
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5.4 Edge-probability generating functions

Starting with a conductance function Ct on the Tm,n that is N -periodic under the

cluster modular transformation T , we construct a conductance function on Z3 which

is Y-∆ consistent as follows:

Fix a scale factor for Ct and define C|{i+j+k=−1} = Ct. Extend to all of Z3 using the

Y-∆ transformation.

From TNCt = Ct up to scaling, we have for all k,

Uµ+k(−N,0,0) = Uµ,

V µ+k(−N,0,0) = V µ,

W µ+k(−N,0,0) = W µ,

which implies that

F µ+k(−N,0,0) = F µ.

Moreover, since Ct comes from Tm,n, we also obtain for all k ∈ Z,

Cµ+k(−m,m,0) = Cµ,

Cµ+k(0,n,−n) = Cµ,
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from which we get,

F µ+k(−m,m,0) = F µ,

F µ+k(0,n,−n) = F µ.

Let us introduce an equivalence relation ∼ on Z3: For all k,

µ ∼ µ+ k(−N, 0, 0),

µ ∼ µ+ k(−m,m, 0),

µ ∼ µ+ k(0, n,−n).

M := Z3/ ∼ parameterizes the distinct F µ. The infinite linear system of equations

in Theorem 5.2.8 reduces to a finite linear system and so we obtain a matrix A =

(A[µ],[ν]) for [µ], [ν] ∈M, such that the linear system may be written as

A(F [µ])[µ]∈M = 1,

where 1 is the constant vector of 1s.

Let

Gµ
p(x, y, z) =

∑
i,j,k≥0

pµ(−i,−j,−k)xiyjzk,

Gµ
q (x, y, z) =

∑
i,j,k≥0

qµ(−i,−j,−k)xiyjzk,

Gµ
r (x, y, z) =

∑
i,j,k≥0

rµ(−i,−j,−k)xiyjzk,

be the generating functions for edge probabilities.
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Theorem 5.4.1. The edge probability generating functions satisfy the following lin-

ear system of equations:

A
(
G[µ]
p

)
[µ]∈M

= x

1− x(Q[µ](0, 0, 0) +R[µ](0, 0, 0))[µ]∈M,

A
(
G[µ]
p

)
[µ]∈M

= y

1− y (P [µ](0, 0, 0) +R[µ](0, 0, 0))[µ]∈M,

A
(
G[µ]
p

)
[µ]∈M

= z

1− z (P [µ](0, 0, 0) +Q[µ](0, 0, 0))[µ]∈M.(5.5)

Proof. We will derive the first equation, the other two may be derived in the same

way. Let α[µ](i, j, k) = p[µ](i − 1, j, k) − p[µ](i, j, k). By Lemma 5.2.6, α[µ](i, j, k) =

(V [µ](i, j, k) +W [µ](i, j, k))E[µ](i, j, k). We have

α[µ−v](r + v, s+ v, t+ v)

= (V [µ−v](r + v, s+ v, t+ v) +W [µ−v](r + v, s+ v, t+ v))E[µ−v](r + v, s+ v, t+ v)

= (V [µ](r, s, t) +W [µ](r, s, t))E[µ−v](r + v, s+ v, t+ v).

In particular, we observe that the factor (V [µ](r, s, t) +W [µ](r, s, t)) does not depend

on v. Therefore from equation (5.4), we obtain

α[µ](r, s, t) + α[µ+(−1,−1,−1)](r + 1, s+ 1, t+ 1)

= Uµ(0, 0, 0)(α[µ+(−1,0,0)](r + 1, s, t) + α[µ+(0,−1,−1)](r, s+ 1, t+ 1))

+ V µ(0, 0, 0)(α[µ+(0,−1,0)](r, s+ 1, t) + α[µ+(−1,0,−1)](r + 1, s, t+ 1))

+W µ(0, 0, 0)(α[µ+(0,0,−1)](r, s, t+ 1) + α[µ+(−1,−1,0)](r + 1, s+ 1, t)).

Therefore the generating functions H [µ](x, y, z) = ∑
i,j,k≥0 α

[µ](−i,−j,−k)xiyjzk
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satisfy the linear system of equations,

A(H [µ])[µ]∈M = (Q[µ](0, 0, 0) +R[µ](0, 0, 0))[µ]∈M.

From α[µ](i, j, k) = p[µ](i− 1, j, k)− p[µ](i, j, k), we have

G[µ]
p (x, y, z) = x

1− xH
[µ](x, y, z) +

∑
(0,j,k)∈Z3

≥0

p[µ](0,−j,−k)yjzk.

Observe that for all j, k ≥ 0, p[µ](0,−j,−k) = 0 and therefore we get

∑
(0,j,k)∈Z3

≥0

p[µ](0,−j,−k)yjzk = 0.

5.5 Arctic curves

Following the theory of asymptotics of multivariate generating functions developed

in [PW02,PW04,BP11,PW13], we compute the asymptotic edge probabilities in the

grove model.

Solving the linear system (5.5), we obtain

G(0,0,0)
p (x, y, z) = x

1− x
Pp(x, y, z)
Q(x, y, z) ,

where Pp and Q are polynomials and Q = det(A). Note that the matrix A is always

singular at x = 1, y = 1, z = 1 because the sum of the columns of A vanishes. We

denote by P̃ and Q̃ the homogeneous parts of these polynomials at the singular point

(1, 1, 1).

We are interested in the behavior of the coefficients p[(0,0,0)](−i,−j,−k) ofG[(0,0,0)](x, y, z)
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for (i, j, k) large i.e. we are interested in computing the limit,

p(r̂) = lim
i,j,k→∞

(−i,−j,−k)√
i2+j2+k2→r̂

p[(0,0,0)](−i,−j,−k),

for r̂ ∈ R3
≤0 such that |r̂| = 1.

For a homogeneous polynomial f(x, y, z) in three variables, let Z(f) be the plane

curve {P ∈ P2
C : f(P ) = 0} and let C(f) ⊂ C3 be the affine cone over Z(f). The

dual cone to C(f) is denoted C∨(f) and is equal to C(f∨) where by f∨ we mean the

projective dual of f , which may be computed by setting z = −ux− vy in f(x, y, z)

and eliminating x and y from the system of equations,

f = 0, ∂f

∂x
= 0, ∂f

∂y
= 0.

.

The computation of asymptotic edge probabilities leads to explicit expressions for

arctic curves. We consider simplified groves on standard initial conditions of order

n, so that they are supported on an equilateral triangle in the plane i+ j + k = −n

with vertices at (−n, 0, 0), (0,−n, 0) and (0, 0,−n). We rescale so that the vertices

are now at (−1, 0, 0), (0,−1, 0) and (0, 0,−1), obtaining an equilateral triangle ∇ in

the plane i+ j+k = −1. For n large, we observe macroscopic regions in the triangle

with different qualitative behavior (see Figures 5.2, 5.9 and 5.11). The arctic curve

is the boundary separating the macroscopic regions in different phases.
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(a) Simulation of a uniformly ran-
dom grove on I(100).

(b) The arctic circle.

Figure 5.9: Uniform groves on T1,1.

5.5.1 T1,1

On T1,1, N = 1 is forced. Let us take the conductance function on T1,1 to be the

constant function 1. This gives rise to the uniform probability measure on groves.

See Figure 5.9 for a simulation of a random (simplified) grove on standard initial

conditions of order 100. Equation (5.5) gives

G[(0,0,0)]
p (x, y, z) = 2x

3(1− x)
1

1 + xyz − 1
3(x+ y + z + yz + xz + xy) .
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Here Pp(x, y, z) = 2
3 and Q(x, y, z) = 1 + xyz − 1

3(x + y + z + yz + xz + xy). The

homogeneous parts at the singular point (1, 1, 1) are

P̃p(x, y, z) = 2
3 ,

Q̃(x, y, z) = 2
3(yz + xz + xy).(5.6)

The dual curve is Q̃∨(u, v, w) = vw+uw+uv− 1
2(u2 +v2 +w2). Let K be the region

bounded by the cone C(Q̃∨).

Theorem 5.5.1 (The (weak) arctic circle theorem, Petersen and Speyer, 2005

[PS06]). p(−i,−j,−k) → 0 exponentially fast outside convex-hull(K ∪ {(u, v, w) ∈

R3 : v = w = 0}).

Let us denote by P (r̂) the point in ∇ obtained by intersecting the line in the

direction r̂ with the plane u+v+w = −1. r̂ 7→ P (r̂) is clearly a bijection. Let C∨ be

the curve inscribed in ∇ obtained by the intersection of C(Q̃∨) with u+v+w = −1.

Observe that for a point P (r̂) outside the region bounded by C∨, there are two

(real) tangents through P (r̂) to C∨ while from a point inside C∨, there are no (real)

tangents to C∨. What is happening is that as we approach the boundary of C∨ from

the outside, the two real tangents merge into a pair of complex conjugate tangents.

Under projective duality, this pair of complex conjugate tangents gives us two com-

plex conjugate points t1, t2 on Z(Q̃), where we assume t1 has positive imaginary part.

Theorem 5.5.2 (Baryshnikov and Pemantle, 2011 [BP11])). For (i, j, k) ∈ Z3 large
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such that for

r̂ = (−i,−j,−k)√
i2 + j2 + k2 ,

P (r̂) is in the interior of C∨, we have

p(−i,−j,−k) = 1
2πi

∫
δ(r̂)

ω +O

(
1√

i2 + j2 + k2

)
,

where in the affine coordinates X = x
z
, Y = y

z
, ω is the meromorphic 1-form

(5.7) ω = P̃p(X, Y, 1)dX
X ∂Q̃(X,Y,1)

∂Y

.

The chain of integration δ(r̂) is a simple path from t1 to t2 passing through the arc

between [0 : 1 : 0] and [0 : 0 : 1] containing [1 : 0 : 0] in the real part of Z(Q̃). In

particular, we have

p(r̂) = 1
2πi

∫
δ(r̂)

ω.

Note that the only dependence on r̂ is through the chain of integration. Note

also that this shows that C∨ is the strict boundary for exponential decay of two of

the asymptotic edge probabilities. In particular, this shows that the arctic curve is

C∨.

In our case, plugging in (5.6), we obtain the 1-form

ω = dX

X(X + 1) ,

which has poles at [0 : 1 : 0] and [0 : 0 : 1] with residues −1 and 1 respectively. We

are led to the following description of the arctic curve: As P (r̂) approaches the curve
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C∨, the two complex tangents from P (r̂) to C∨ merge into a real double tangent.

Under projective duality, on Z(Q̃), the two points t1 and t2 merge into a point on

the real part of Z(Q̃) and therefore δ(r̂) becomes a closed loop. Using the residue

theorem, the asymptotic edge probabilities in the frozen region P (r̂) approaches may

be read from the residue divisor of ω.

If we take a non-constant conductance function on T1,1, it was shown in [PS06] that

the arctic curve is an ellipse inscribed in the triangle ∇.

5.5.2 T1,2 with N = 1

In this section, we work out the computation of the arctic curve for a specific T-

invariant conductance function on T1,2, although the approach works for all such

conductance functions. Consider as an example the following T-invariant conduc-

tance function on T1,2 given in the notation of Figure 5.6 (A) by:

a = 1
2; b = 1

8; c = 3
2; d = 1

8; e = 1
2; f = 3

2 .

The linear system from (5.5) is:

(5.8) −3x
16 −

xy
16 −

3y
4 + 1 xyz − 3xz

4 −
3yz
16 −

z
16

xyz − 3xz
16 −

3yz
4 −

z
16 −xy

16 −
3x
4 −

3y
16 + 1


 G(0,0,0)(x, y, z)

G(0,0,−1)(x, y, z)

 = x

1− x

13
16

1
4

 .
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We compute

P̃p(x, y, z) = 185x
256 + 13y

32 ,

Q̃(x, y, z) = 1
256(255x2y + 255xy2 + 104x2z + 370xyz + 104y2z).

The dual curve is

Q̃∨(u, v, w) = 6619392u4 − 47099520u3v + 97021584u2v2 − 47099520uv3+

6619392v4 − 38301120u3w − 3164400u2vw − 3164400uv2w−

38301120v3w + 73033700u2w2 + 6779600uvw2 + 73033700v2w2

−57655500uw3 − 57655500vw3 + 27635625w4.

Z(Q̃) is singular with a node at [0 : 0 : 1] (See Figure 5.10 (A)). This is outside

the class of quadratic singularities studied in [BP11], but as observed in Section 7 of

that paper, the techniques used still go through with minor modifications. Theorem

5.5.1 still holds, so we still have exponential decay outside the dual curve (see [BP11],

Proposition 2.23).

We need the following notions from [KO07]: A degree d real algebraic curve

C ⊂ P2
R is winding if:

• it intersects every line L ⊂ P2
R in at least d − 2 points counting multiplicity,

and

• there exists a point p0 ∈ P2
R \C called the center, such that every line through

p0 intersects C in d points.



134

[1:0:0][0:1:0]

[0:0:1]

(a) C(xQ̃)∩{(x, y, z) ∈ R3 : x+y+z = −1} illustrating
the geometry near the singular point (1, 1, 1).

(b) The residue divisor of ω on X ∼= P1
C. The

blue curve is the real part of X and is isomor-
phic to P1

R

Figure 5.10: Q̃(x, y, z) and its normalization X.
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(a) Simulation of a random grove on
I(100).

(b) The arctic curve C∨.

Figure 5.11: T1,2 with N = 1.

The dual of a winding curve C is called a cloud curve. C∨ separates P2
R into two

regions, formed by the lines that intersect C in d and d− 2 points, which we call the

exterior and interior respectively. A cloud curve C∨ has a unique pair of complex

conjugate tangents through any point in its interior which under projective duality

gives a pair of complex conjugate points on C.

Theorem 5.5.3. The curve Z(Q̃) is winding. Let π : X → Z(Q̃) be the normal-

ization of Z(Q̃), where we denote by [0 : 0 : 1]1 and [0 : 0 : 1]2 the two points in

X in the fiber above the node [0 : 0 : 1] of Z(Q̃), such that in cyclic order, we have

[0 : 1 : 0], [1 : 0 : 0], [0 : 0 : 1]1, [0 : 0 : 1]2 in the real part of X.

Let r̂ be as in Theorem 5.5.2. Let t1, t2 be the pair of points in Z(Q̃) corresponding,

under projective duality, to the unique pair of complex conjugate tangents. The con-

clusions of Theorem 5.5.2 hold with the following modifications:
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• The 1-form ω (defined in (5.7)) is replaced by its pullback to X.

• The chain δ(r̂) is also pulled back to X so that it is now a simple path from

π−1(t1) to π−1(t2) passing through the arc between [0 : 1 : 0] and [0 : 0 : 1]1. In

particular, the asymptotic edge probability is given by

p(r̂) = 1
2πi

∫
π−1δ(r̂)

π∗ω.

Proof. The curve Z(Q̃) is a winding curve, where we may take the center to be

[1 : 1 : 1] (This is also easily seen from the dual picture: C∨ is a cardioid (Figure

5.11 (b)) and there is a unique real tangent to C∨ from a point in its interior, whereas

there are three real tangents from its exterior). Therefore, for any point P (r̂) in the

interior of C∨ we have a pair of complex conjugate points t1, t2 on Z(Q̃). This is

exactly the hypothesis needed in the proof of Lemma 6.15 in [BP11] to determine

the boundary of δ(r̂).

Since

η = P̃p(X, Y, 1)dX
∂Q̃(X,Y,1)

∂Y

,

is a holomorphic 1-form, and ω = 1
X
η, the poles of ω are supported on the intersec-

tion of Z(Q̃) with the line Z(x), which is a finite number of points. By computing

Puiseux expansions at these points, we see that π∗ω has the residue divisor shown

in Figure 5.10 (b). We can explain the new frozen region as follows: As P (r̂) ap-

proaches that region, π−1(t1) and π−1(t2) merge into a point on the real part of X
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on the arc between [0 : 0 : 1]1 and [0 : 0 : 1]2, thereby enclosing a pole with residue
1
2 .

Note that we don’t see a macroscopic region in the gaseous phase. The reason

is that our choice of conductance is not generic and on the T -invariant subvariety,

the compact oval in the spectral curve P (z, w) corresponding to the gaseous phase

degenerates to a real node. Therefore we need to consider conductances that have a

higher T -periodicity to see generic limit shapes.

5.5.3 T1,2 with N = 2.

By a simple computation, we can see that there are no T −2−periodic solutions that

are not T -invariant for T1,2, and therefore this case is subsumed by the previous one.

5.5.4 T1,2 with N = 3

The following analysis works for any choice of a T -3-periodic conductance function,

but for clarity and ease of computation, we only work out a specific example here.

Consider the T -3-periodic conductance function on T1,2 given in the notation of Fig-

ure 5.6 (a) by:

a = 1
2; b = 1

3; c = 1; d = 10
3 ; e = 1

4; f = 2
43 .
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In the linear system from (5.5), we have:

A =



1 xyz −x
2 −

y
3 − z

6 −xy
6 −xz

3 −
yz
2

xyz 1 −5z
6 −20x

129 −
y
86 −xz

86 −
20yz
129 −5xy

6

−43xy
53 −4xz

53 −
6yz
53 1 xyz −6x

53 −
4y
53 −43z

53

−3xz
53 −

40yz
53 −10xy

53 xyz 1 −10z
53 −40x

53 −
3y
53

−6x
53 −

4y
53 −43z

53 −43xy
53 −4xz

53 −
6yz
53 1 xyz

−10z
53 −40x

53 −
3y
53 −3xz

53 −
40yz
53 −10xy

53 xyz 1



,

(
G[µ]
p

)
[µ]∈M

=



G(0,0,0)

G(−2,0,−1)

G(−1,0,0)

G(0,0,−1)

G(−2,0,0)

G(−1,0,−1)



and (Q[µ](0, 0, 0) +R[µ](0, 0, 0))[µ]∈M =



1
2

109
129

47
53

13
53

47
53

13
53



.

We obtain

P̃p(x, y, z) = (−8376157535x3 − 27465850948x2y − 37792606090x2z − 32422312230xy2

− 81250160702xyz − 41078137290xz2 − 12081677400y3 − 37378399260y2z

− 26396541912yz2)/2035744098;
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(a) A plot of C(Q̃)∩ {(x, y, z) ∈ R3 : x+ y+ z = −1}.
The three dots are the points [1 : 0 : 0], [0 : 1 : 0] and
[0 : 0 : 1], as in Figure 5.10 (A).

(b) The residue divisor of ω on X and the chain of
integration δ(r̂) when P (r̂) is on the irreducible com-
ponent bounding the gaseous region. The blue curves
are the two irreducible components of Q̃(x, y, z) viewed
as a real algebraic curve in P2

R.

Figure 5.12: Q̃(x, y, z) and its normalization X.
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Q̃(x, y, z) = (−2195435870x4y − 4213162175x4z − 8636813573x3y2 − 26901515220x3yz

− 18270472400x3z2 − 8949558855x2y3 − 44782155243x2y2z − 62350371390x2yz2

− 19642088100x2z3 − 2785734900xy4 − 25376048920xy3z − 53016222846xy2z2

− 27385424860xyz3 − 4027225800y4z − 12459466420y3z2

− 8798847304y2z3)/678581366.

As a real algebraic curve, we observe that Q̃(x, y, z) is winding with center (1, 1, 1)

and has two irreducible components (see Figure 5.12). Let us denote by V1 the com-

ponent that contains the axes and by V2 the other one. Under duality, we obtain

two dual real components V ∨1 and V ∨2 , where V ∨2 is in the interior of V ∨1 (see Figure

5.2 (B)). The region bounded by V ∨2 is a gaseous phase. The local statistics in this

region are expected to be described by the ergodic Gibbs measure of slope (1, 0).

Let K be the cone over the region in the interior of V ∨1 . Then it follows from

[BP11] (see also [PW13], Theorem 11.3.8) that p(−i,−j,−k) decays exponentially

quickly outside convex-hull(K ∪ {(u, v, w) ∈ R3 : v = w = 0}).

Z(Q̃) has genus 1 and therefore its normalization is topologically a torus. The

1-form π∗ω in Theorem 5.5.3 has the residue divisor shown in Figure 5.12 (B). We

observe that as P (r̂) approaches V ∨2 ∩ {(u, v, w) ∈ R3 : u+ v +w = −1}, the points

π−1(t1) and π−1(t2) merge to a point on the inverse image of V1 in X and therefore

δ(r̂) becomes a loop with non-trivial homology on the torus (see Figure 5.12 (B)).
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5.6 Further questions

We are able to compute several interesting examples of arctic curves but there are

several questions that remain.

• The projective duals of curves arising as limit shapes in the grove model and

in the dimer model are expected to be winding. In dimers, in cases where

Q̃(x, y, z) is rational, this is proved in [KO07]. In [K17], groves were shown

to satisfy a variational principle that is algebraically identical to the one in

[CKP01] for dimers, and therefore the same holds. Can we prove that the

polynomials Q̃(x, y, z) are winding for all genus from the generating function?

• We have seen that Lemma 6.15 from [BP11] can be extended to tackle our

examples and that the necessary assumption was that Q̃(x, y, z) is winding.

This motivates the following problem: Extend the machinery of [BP11] to

describe the asymptotics of generating functions with higher degree isolated

singularities where the local geometry is described by a winding curve.

• Periods of the 1-form ω encode asymptotic probabilities of the different solid

and gaseous phases. Since we know what these measures are, these asymptotic

probabilities are easy to compute from and depend only on the Newton polgyon.

Can we prove a description of the residue divisor of ω for general Tm,n and N

in terms of the Newton polygon?

• Can we generalize the results of this paper to groves on other Z2-periodic

networks?
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• What can we say about the subvariety of T -N -periodic points of RN?



APPENDIX A

Toric surfaces ruled by lines, by Giovanni

Inchiostro

The goal of this appendix is to relate the Picard group of a projective toric surface X,

with an equivariant embeddingX → Pn, with the one of a generic hyperplane section.

This will be achieved in Theorem A.0.11. Since one can study such a projective toric

surface by looking at its associated polygon, we will use the combinatorics of the

polygons to prove Theorem A.0.11.

In this appendix, all polygons will be convex, integral and in R2.

Definition A.0.1. We define a building block polygon to be a polygon ∆ ⊆ R2 with

a single interior lattice point, and with at most five lattice points.

A building block polygon has either three or four edges (see Figure A.1).
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Figure A.1: The four building block polygons modulo lattice equivalence.

Our first goal is to show that given any polygon P with an interior lattice point,

one can find a building block polygon ∆ with ∆ ⊆ P (Proposition A.0.4). We will

find ∆ as a polygon with the least number of lattice points among all polygons which

are both contained in P and have at least one interior lattice point.

We begin with a few preparatory lemmas.

Lemma A.0.2. Consider a polygon P with an lattice interior point. Then there is

a polygon Q ⊆ P which has an interior lattice point and at most four edges.

Proof. Let x be an interior lattice point of P . Pick a polygon Q ⊆ P which is minimal

among all polygons contained in P containing x as an interior lattice point, with the

partial order being the inclusion, and we aim at showing that Q has either three or

four edges. If not, let a1, ..., an be the edges of Q with n > 4, labeled in clockwise

order. Consider the segments joining a1 with a3, and a3 with a5. They divide Q into

three smaller polygons, each with fewer lattice points, and these segments intersect

only at a3, since by assumption a5 is distinct from a3 and a1. Therefore x is an

interior point of one of these three sub-polytopes, contradicting the minimality of

Q.

Lemma A.0.3. Consider a polygon P with an interior lattice point. Then there is

a polygon Q ⊆ P which has a exactly one interior lattice point.
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Proof. Consider Q a subpolygon of P , which has at least two interior lattice points,

x and y. Up to shrinking Q, we can assume from Lemma A.0.2 that either Q is a

triangle or it has four edges.

If Q is a triangle, consider the line through x and y. It must meet an edge ` of

Q and let a and b be the vertices of `. Up to swapping x and y, we can assume that

the distance between x and ` is less than the distance between y and `. Then the

triangle with vertices y, a and b, with an interior point (namely x) has fewer interior

lattice points than Q (y is not an interior point).

If Q has four edges, consider the two diagonals of Q. They have a single inter-

section point, so there must be a diagonal ` which does not contain both x and y.

Then ` divides Q into two smaller polygons, and one of them must have an interior

point.

Therefore, if we consider a polygon which is minimal for the inclusion and has

an interior point, it must have a exactly one interior point.

Proposition A.0.4. Given any polygon P with an interior lattice point, one can

find a building block polygon ∆ such that ∆ ⊆ P .

Proof. Consider a polygon Q ⊆ P . From Lemma A.0.3 and Lemma A.0.2, we can

assume, up to shrinking Q, that Q has at most four edges, and a single interior point

x. If Q has four edges and five points, we are done, otherwise there is an edge ` with

a point y ∈ ` which is not a vertex. Let a, b be the two vertices of Q not contained in

`. Then the segments ya and yb intersect only at y, and divide Q into three smaller

polygon. One of them must contain x in its interior. Therefore if Q is minimal and

has four edges, it must be a building block polygon.
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If instead Q is a triangle, assume it has more than five lattice points. Then there

are two lattice points p, q which are on the boundary of Q, but are not vertices. If

they belong to the same edge `, let a be the vertex of Q not contained in `. Then the

segments `1 := ap and `2 := aq meet only at a, and divide Q into smaller polygons.

Then there must be one among `1 and `2 which does not contain x, and which is the

side of a smaller polygon contained in Q and with an interior point. Similarly if p

and q do not belong to the same edge, let a be the vertex not contained in the edge

containing p. Then the segments `1 := ap and `2 := aq intersect only at a and divide

Q into smaller polygons. One of them must have an interior point.

Lemma A.0.5. Consider X the projective toric surface corresponding to the polygon

P , and let Q ⊆ P a subpolygon of P , with corresponding projective toric surface Y .

The two polygons give projective embeddings X ⊆ Pn and Y ⊆ Pm. There is a linear

projection Pn 99K Pm which gives an equivariant rational map X 99K Y , which is an

isomorphism on (C∗)2.

Proof. Consider the characters χ0, ..., χn corresponding to the points in P , and let

χ0, ..., χm be those corresponding to the points in Q, with m < n. Then one can

consider the map Φ : (C∗)2 → Pn sending p 7→ [χ0(p), ..., χn(p)]. The variety X is the

closure of the image of Φ, and Y is the closure of the map Φ : (C∗)2 → Pm sending

p 7→ [χ0(p), ..., χm(p)]. Then the projection from the last n − m coordinates gives

the desired rational map.

Theorem A.0.6. Consider a projective toric surface corresponding to a building

block polygon P , with the points of P corresponding to the characters χ0, ..., χn. Then

there is no line ` ⊆ Pn passing through the identity of T := (C∗)2 ⊆ X.
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Proof. We can write any line in Pn as the intersection of n− 1 linearly independent

hyperplanes H1, ..., Hn−1. When we restrict these to the torus T , they can be written

as (Hi)|T = ∑
j ai,jx

iyj where (x, y) are the coordinates on (C∗)2. Now, if f is the

equation of `|T , then we can factor (Hi)|T = fgi for gi ∈ C[x±, y±]. We can then

consider the Newton polygon Pf associated to f : if we write f := ∑
ci,jx

aiybj , Pf is

the convex hull of the points (i, j) such that ci,j 6= 0. Similarly, if we denote with Pi

the one associated to gi, from [Ost76, Theorem VI] we have that Pf +Pi has vertices

corresponding to the points χi,j. In particular,

Pf + Pi is a subpolygon of P .

Now, since the hyperplanes Hi are linearly independent, the set ⋃i Pi has at least

n− 1 elements, say x1, ..., xn−1. Moreover, since f vanishes on the identity, f has at

least two non-zero coefficients, so Pf contains a segment s. Therefore the segments

xi + s belong to P . Checking the four building block polygons, one can see that this

is not possible.

Corollary A.0.7. Any projective toric surface X whose polygon P has an interior

point is not ruled by lines.

Proof. From Proposition A.0.4, there is a building block polygon Q ⊆ P correspond-

ing to a toric surface Y . From Lemma A.0.5, there is a rational map π : X 99K Y ,

which sends lines to lines. So if X is ruled by lines, there is a line ` passing through

the identity of the torus in X. Then π(`) would be a line through the identity,

contradicting Theorem A.0.6.

We are finally ready to prove the main theorem of this appendix:
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Proposition A.0.8. Consider a projective toric surface X, equivariantly embedded

into Pn, with a non-trivial line bundle L. Assume that the polygon of the embedding

X ↪→ Pn has an interior point. Then there is an hyperplane section C ⊆ X such

that L|C is not trivial, and C is irreducible and smooth.

Proof. We have:

Lemma A.0.9 ([Lop91, Lemma II.2.4]). An irreducible non-degenerate surface S ⊂

Pn, n ≥ 3, has an (n− 1)-dimensional family of reducible hyperplane sections if and

only if S is either ruled by lines, or is the Veronese surface, or its general projection

in P4, or its general projection in P3 (the Steiner surface).

The Veronese surface is toric and corresponds to the Newton polygon with vertices

Conv{(0, 0), (2, 0), (0, 2)},

and so has no interior points. Its general projections have hyperplane sections of

zero genus. Since the generic hyperplane sections of X have genus 1, it is not the

Veronese or its projections. Therefore by Lemma A.0.9 and Corollary A.0.7, we

can find a generic pencil of hyperplane sections with all the members irreducible,

and with generic member which is smooth. Such a pencil Π gives a rational map

X 99K P1, we can blow-up the toric surface π : Y → X to resolve the indeterminacy

locus, and have a morphism f : Y → P1 with fibers the members of the pencil Π.

Such a morphism is flat since it is dominant with target a smooth curve, proper

since the source is proper and the target separated, and generically smooth since the

generic member of Π is smooth. We want to show that f∗(OY ) = OP1 . For that, first

observe that f∗(OY ) is a torsion free sheaf, since Y is integral. Therefore, since the
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local rings of OP1 are DVRs and torsion free modules over a DVR are free, the sheaf

f∗(OY ) is locally free: it is a vector bundle. To check its rank, observe that there is

a fiber Yp of f at a point p which is smooth and connected (the smooth member of

Π). Therefore h0(OYp) = 1, and from [Vak17, 28.1.1] there is an open subset U ⊆ P1

such that for x ∈ U we have h0(OYx) = 1. Then from [Vak17, 28.1.5] this is the rank

of f∗(OY ) at x. In particular, the latter is a line bundle. But from the definition

of push forward, H0(P1, f∗(OY ) = H0(Y,OY ) ∼= C: we have that f∗(OY ) is a line

bundle on P1 with a single global section. From the description of the line bundles

on P1 we have the desired isomorphism f∗(OY ) ∼= OP1 .

Now, assume that for every member C of Π we have L|C ∼= OC . The members of

Π are the fibers of f , thus for every fiber F of f we have π∗(L)|F ∼= OF . Then from

[Vak17, Proposition 28.1.11], there is a line bundle G on P1 such that π∗(L) ∼= f ∗(G).

Now we can proceed as in the second paragraph of [Sta16].

In particular, there is a fiber F of f such that π∗(L)|F is not trivial. Then from

Lemma A.0.10, there is an open subset U ⊆ P1 where for every p ∈ U we have

π∗(L)|Yp is not trivial, and Yp is smooth (since being smooth is an open condition).

The following Lemma is well known, we provide a proof for completeness.

Lemma A.0.10. Consider a flat proper morphism X → B with integral fibers, and

let L be a line bundle on X. Then the set {b ∈ B such that L|Xb ∼= OXb} is closed.

Proof. From the upper-semicontinuity theorems [Vak17, 28.1.1] the set b ∈ B where

h0(L|Xb) > 0 and h0(L−1|Xb) > 0 is closed. It suffices to prove that if one has a line
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bundle G on an integral proper (over C) scheme Y , then h0(G) > 0 and h0(G−1) > 0

imply G ∼= OY . This is the first paragraph of the proof of the Seesaw theorem

[Mum74].

Theorem A.0.11. With the same assumptions of Proposition A.0.8, assume that

the embedding X → Pn is non-degenerate. Then if C is the generic hyperplane

section, we have L|C 6= OC.

Proof. If we denote with (Pn)∨ the projective dual projective space of Pn, we can

construct the generic hyperplane section H ⊆ Pn × (Pn)∨ as

{(x,H) ∈ Pn × (Pn)∨ : x ∈ H}.

We have the closed embedding X ↪→ Pn which in turn gives the closed embedding

X × (Pn)∨ ↪→ Pn × (Pn)∨. We can construct the fibred product C := H ×Pn×(Pn)∨

X × (Pn)∨. Observe that C → H is a closed embedding as well, since being a closed

embedding is stable under base change. Moreover, H → (Pn)∨ is proper. So the

composition π : C → (Pn)∨ is proper as well.

We understand the space C via its morphism π : C → (Pn)∨: a fiber of π over

the point of (Pn)∨ corresponding to the hyperplane H is the intersection H ∩X, i.e.

it is a hyperplane section in X. To check that the morphism π is flat, it suffices to

check that all the fibers have the same Hilbert polynomial [Vak17, 24.7.A, (d)]. But

for every hyperplane section H, we have an embedding OPn(−1)→ OPn , which gives

the following exact sequence where C := X ∩H, since X is non-degenerate:

0→ OX(−1)→ OX → OC → 0.
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Then by definition of Hilbert polynomial, we see that the Hilbert polynomial of C

does not depend onH. Therefore all the fibers of π have the same Hilbert polynomial,

so π is flat.

We can take the pull-back of L to X × (Pn)∨ and to C to get a line bundle G on

C which along each fiber C = H ∩X of π restricts to L|C . From Proposition A.0.8,

there is a smooth fiber F of π such that G|F � OF . We can replace (Pn)∨ with the

locus U ⊆ (Pn)∨ where π is smooth (which is open, and contains the fiber F ). Then

Lemma A.0.10 applies, giving the desired result.
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Curves and their Jacobians

Let C be a smooth proper connected complex algebraic curve of genus g. Let

(Ai, Bi)gi=1 be a canonical basis for H1(C,Z), so that

Ai · Aj = 0, Bi ·Bj = 0, Ai ·Bj = δij,

where · is the intersection pairing on C. Let (ωi)gi=1 be the dual basis of H0(C,KC):
∫
ai
ωj = δij.

We have the period map

H1(C,Z) ↪→ Cg

σ 7→
(∫

σ
ωi

)g
i=1

,
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identifying H1(C,Z) with a lattice in Cg, called the period lattice. The Jacobian

variety of C is defined as

J(C) := Cg/H1(C,Z).

If p0 is a basepoint, we define the Abel map:

I : C → J(C)

p 7→
(∫ p

p0
ωi

)g
i=1

modulo H1(C,Z).

The d-fold symmetric powers of C is defined as C(d) := Cd/Sd, the quotient of Cd

by the natural action of the symmetric group or equivalently, the set of degree d

effective divisors on C. The Abel map naturally extends to:

I : C(d) → J(C)
d∑
i=1

pi 7→
d∑
i=1

(I(pi)).

Theorem B.0.1 (Abel’s theorem). Two effective divisors D and D′ of degree d on

a smooth curve C are linearly equivalent if and only if I(D) = I(D′). Equivalently,

the fibers of the Abel map are complete linear systems:

I−1(I(D)) = |D|.

Theorem B.0.2 (Jacobi inversion). Let C be a smooth curve of genus g. Then

I : C(g) → J(C) is surjective and birational. Therefore for a generic degree g effective

divisor D, the complete linear system I−1(I(D)) = |D| is one dimensional.
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B.1 Prym varieties

For background on the material collected here, see [Fay73, Fay89, Mum1, Mum2,

Taim97]. Let π : Ĉ → C be a ramified double covering of genus ĝ of a smooth curve

of genus g with branch points q1, q2. By the Riemann-Hurwitz theorem, ĝ = 2g.

Let σ : Ĉ → Ĉ be the involution permuting the branches of the covering with fixed

points at q1, q2 and let x′ = σ(x) denote the conjugate point of x ∈ Ĉ. We can choose

a canonical homology basis for H1(Ĉ,Z)

A1, B1, A2, B2, ..., A2g, B2g,

such that (π∗(Ai), π∗(Bi))gi=1 is a basis for H1(C,Z) and such that

σ(Ak) + Ak = σ(Bk) +Bk = 0, 1 ≤ k ≤ g.

If the dual basis of holomorphic differentials on Ĉ is

u1, ..., u2g,

then for 1 ≤ k ≤ g we have

σ∗uk + ug+k = 0.

A holomorphic differential ω on Ĉ is called a Prym differential if σ∗(ω) +ω = 0. For

1 ≤ k ≤ g,

ωk = σ∗uk + uk
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is a basis for Prym differentials on Ĉ. Let Π be the matrix of periods of the Prym

differentials around the b-cycles of Ĉ:

Πjk =
∫
Bk

uj.

The Prym variety Pr(Ĉ, σ) is defined to be

Cg

Zg + ΠZg .

Let J(Ĉ), J be the Jacobian of Ĉ and let I : Ĉ → J(Ĉ) be the Abel map with

base-point q0 ∈ Ĉ. The involution σ induces an involution σ∗ : J(Ĉ)→ J(Ĉ): Given

ζ ∈ J(Ĉ), let D ∈ Ĉ(2g) (which exists by Jacobi inversion) such that I(D) = ζ and

let σ∗(ζ) = I(σ(D)). In coordinates, σ∗ is given by

(z1, ..., z2g) 7→ (−zg+1, ...,−z2g,−z1, ...,−zg).

The Prym variety is embedded by φ : Pr(Ĉ, σ) ↪→ J(Ĉ) :

(z1, ..., zg) 7→ (z1, ..., zg, z1, ..., zg).

. We also have the projection π1 : J(Ĉ)→ Pr(Ĉ, σ) given by

π1(z1, ..., z2g) = (z1 + zg+1, ..., zg + z2g).

Define the Abel-Prym map with base-point q1:

IP : Ĉ → Pr(Ĉ, σ)

x 7→
(∫ x

q1
ω1, ...,

∫ x

q1
ωg

)
modulo Zg + ΠZg, for x ∈ Ĉ.



156

Note that IP = π1 ◦ I. Let η(z) be the theta function on Pr(Ĉ, σ). Note that for

e ∈ Pr(Ĉ, σ), we have

e = 1
2π1(φ(e)).

Theorem B.1.1. If e ∈ Pr(Ĉ, σ), then either η(IP (x) − e) ≡ 0 for all x ∈ Ĉ or

div
Ĉ
η(IP (x)− e) = D is a degree ĝ effective divisor satisfying

φ(e) = I(D)− I(q1)− I(q2)− π∗∆C in J(Ĉ),

where ∆C ∈ J(C) is the vector of Riemann constants on C, and

D + σ(D)− q1 − q2 = K
Ĉ
,

where K
Ĉ
is the canonical class of Ĉ. Moreover, such a D is uniquely determined by

these conditions.

Lemma B.1.2. If D ∈ Ĉ(ĝ) such that

D + σ(D)− q1 − q2 = K
Ĉ
,

then

I(D)− q1 − q2 − π∗∆C ∈ φ(Pr(Ĉ, σ)).
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Proof. By definition φ(Pr(Ĉ, σ)) = {ζ ∈ J(Ĉ) : σ∗ζ + ζ = 0}. We have

I(D)− q1 − q2 − π∗∆C + σ∗(I(D)− q1 − q2 − π∗∆C)

= I(D + σ(D))− 2q1 − 2q2 − 2π∗∆C

= I(K
Ĉ
− q1 − q2)− I(π∗KC)

= 0,

where we have used σ∗π∗∆C = π∗∆C , I(KC) = 2∆C and K
Ĉ

= π∗KC − q1 − q2.

Let E(x, y) denote the prime form on Ĉ. E(x, y) has the symmetry E(x, y) =

E(x′, y′) for all x, y ∈ Ĉ. For a divisor D = ∑
i ai −

∑
j bj on Ĉ, we define

ED(x) :=
∏
iE(x, ai)∏
j E(x, bj)

.

It is a section of the line bundle O
Ĉ

(D) with divisor D.

Theorem B.1.3 (Fay’s quadrisecant identity [Fay89]). Let t ∈ Pr(Ĉ, σ), z ∈ Ĉ and

suppose xk ∈ Ĉ for k ∈ Z/nZ.
n∑
k=1

η(t+ IP (z)− IP (xk)− IP (xk+1))
η(t− IP (xk))η(t− IP (xk+1))

E(xk, xk+1)
E(xk, x′k+1)

E(z, x′k)E(z, x′k+1)
E(z, xk)E(z, xk+1)

=
η
(
t−∑k

i=1 IP (xk)
)
η(t+ IP (z))∏n

k=1 η(t− IP (xk))

n∏
k=1

E(xk, xk+1)
E(xk, x′k+1) .
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