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Preface

This dissertation explores di�erent topics on health economics. The �rst chapter

quanti�es the supply response of primary care physicians to a reimbursement bonus,

the Physician Scarcity area bonus, introduced by Medicare between 2005 and 2008. The

bonus represented a 5% increase in reimbursement and it was paid to healthcare providers

working in underserved areas of the U.S. I test whether this incentive attracted more

physicians to these areas, if it a�ected the number of patients served, and if it changed

the quantity of care provided by physicians. This is a relevant question as the country faces

a shortage of primary care physicians that is expected to increase in the future. Using

Medicare claims data between 2000 and 2010 combined with a di�erence-in-di�erence

strategy, I �nd that the bonus had either a weak or undetectable impact on these outcomes.

Descriptive studies and surveys suggest that the results could be explained by lack of

information about the bonus and its small relative size.

In the second chapter I explore health e�ects of the Flint water crisis on the elderly

population. The water crisis of 2014-2015 exposed the residents of the city to high levels

of lead and other contaminants. Much of the existing evidence of lead exposure comes

from studies focused on children, as brains during childhood are more vulnerable than

during adulthood. In April 2014, the city of Flint changed its water source from Lake

Huron to Flint River, exposing its residents to high levels of bacterial and chemical con-

taminants, including lead. For approximately a year and a half, local authorities reassured

residents that the water was safe for human consumption. Finally, in December 2015 the

Mayor of Flint declared state of emergency. Using the universe of Medicare bene�ciaries

living in Michigan between 2012 and 2016, and the CDC's National Detailed Mortality

Files between 2010 and 2017, combined with a di�erence-in-di�erence strategy and syn-

thetic controls methodology, I estimate the e�ect of the change in the water supply on

hospitalization and mortality rates. My results suggest a weak increase in all-cause and
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kidney disease hospitalization rates in Flint after the start of the crisis, and an increase in

all-cause mortality rates. However, these results are usually smaller than what has been

suggested by the epidemiological literature and the graphical evidence does not strongly

support them.
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CHAPTER 1

FINANCIAL INCENTIVES AND MEDICAL PRACTICE IN

UNDERSERVED AREAS

1.1 Introduction

The U.S. faces a shortage of primary care physicians (PCPs). According to an analysis

from the U.S. Department of Health and Human Services, the di�erence between demand

and supply of PCPs was equal to 7,880 physicians in 2013, and it is expected to increase

to 23,640 physicians by 2025.1 Across the country this problem manifests itself in a

heterogeneous way, with some areas being considered as underserved in terms of health

care provision. Many policies attempt to address this issue by increasing the training of

new physicians, alleviating student debt if choosing to work in these areas, or by providing

�nancial incentives to health care professionals, like Medicare programs o�ering bonus

payments to physicians working in underserved areas. Although there is evidence of a

positive relationship between health care supply and reimbursement rates, the literature

has not looked at this relation in the particular context of underserved areas and how this

could be a�ecting the development of federal incentive programs.

In this paper I study if �nancial incentives shape medical practice in these areas by

looking at a particular Medicare program called Physician Scarcity Area (PSA) bonus.

This program ran between 2005 and 2008 and implied a 5% increase in payments to

providers working in underserved areas. Physician scarcity areas were de�ned using the

ratio of physicians to Medicare providers at the county level. A cuto� in this ratio created

two groups of counties, those where providers received the bonus and those where providers

did not, providing a setting with a control and treatment group that allows me to study

1The report considers the following medical specialties: General and Family Medicine, General Internal
Medicine, Geriatrics, and General Pediatrics.
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the e�ects of the bonus.

I use Medicare claims data to construct a measure of health care supply that is com-

parable across di�erent services. This measure is based on all the resources needed to

provide each medical service, from an o�ce visit to a major surgery. The data also allow

me to identify the number of providers and patients in di�erent areas. My study popula-

tion is a 20% random sample of Medicare bene�ciaries between 2000 and 2010. I observe

every service billed to Medicare and patient characteristics, including the zip code where

services were provided.

To obtain an estimate of the causal e�ect of �nancial incentives on health care supply

in underserved areas, I combine the data with a di�erences-in-di�erence strategy. In

particular, I compare the quantity of health care supplied in counties that were and were

not subject to the PSA bonus, before and after the start of the program in 2005. The

absence of di�erences in the pre trends of outcome variables between the two groups of

counties validates the use of this strategy.

Despite previous evidence, I �nd that �nancial incentives do not seem to impact the

provision of health care in underserved areas. My results suggest that during the period

the bonus was in place, the quantity of health care provided in underserved areas slightly

increased, while the number of physicians working in those areas, and the number of

visits to the doctor did not change. However, I �nd suggestive evidence of responses

concentrated on more elective health procedures.

Previous literature on �nancial incentives and treatment choice shows a positive re-

lationship between health care supply and reimbursement rates. In particular, Clemens

and Gottlieb (2014) exploit a geographic reimbursement shock that a�ected physicians

participating in Medicare in 1997. They �nd an elasticity of aggregate health care supply

of around 1.5 with respect to reimbursement rates. In the context I study this would

imply an increase of around 7.5% in aggregate health care after the introduction of the

bonus. I am able to reject this result with my estimates.
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Two potential mechanisms could be driving my results. Survey and descriptive evi-

dence suggests that the saliency and relative amount of these incentives are key issues

impacting providers and their behavior. Understanding how these mechanisms interact

with each other is important in order to put my results in the context of the literature

and to think about the design of future incentive programs. This evidence points out to

the role of information frictions as a determinant of the degree of response to incentives

in this context.

This paper contributes to a small and descriptive literature on �nancial incentives

and physician retention in rural areas (Shugarman et al., 2003; Shugarman et al., 2001;

Rabinowitz et al., 2001). It also contributes to a large literature about �nancial incentives

and medical treatment choice (Alexander, 2015; Clemens and Gottlieb, 2014; Coey, 2013;

Grant, 2009; Hadley et al., 2009; Hadley et al., 2001; Gruber et al., 1999; Yip, 1998;

Keeler and Fok, 1996; Dranove and Wehner, 1994). These papers generally �nd a positive

relation between supply of medical services and reimbursement rates.

The rest of this paper is organized as follows. Section 1.2 discusses the background of

the PSA bonus. Section 1.3 presents the data. Section 1.4 presents the empirical strategy.

Section 1.5 presents the primary results on the changes in health care and labor supply

in response to the bonus. Section 1.6 discusses mechanisms for this e�ect and Section 1.7

concludes.

1.2 Background on Physician Scarcity Area Bonus

Section 413(a) of the Medicare Modernization Act put in place a 5 percent bonus pay-

ment for physicians (primary care and specialties) practicing in PSAs. According to the

Congressional Record �The new �ve percent bonus for physicians in either primary care

scarcity counties or specialty care scarcity counties will increase �nancial incentives for

physicians to provide care to Medicare bene�ciaries in these areas with a shortage of physi-

cians. This bonus payment will make it easier to recruit and retain physicians in these
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scarcity areas.� (Cong. Rec. H12043, 2003). In an address to the House, U.S. Represen-

tative for Illinois John Shimkus said �Mr. Speaker, there is a shortage of physicians in

Illinois because of medical malpractice, and physicians are leaving the State. At least in

the Medicare prescription drug bill, there is help for keeping some of those� (Cong. Rec.

H1487, 2004).

Shortage of physicians, especially PCPs providing care in underserved areas, is a grow-

ing problem in the U.S. that is expected to increase given the current trends in population

growth and aging. The lack of professionals providing this type of care is particularly im-

portant as primary care practice is a key element of the health care system. It provides the

�rst contact between patients and health care professionals, it provides continuity of care

over time, it has a focus on the whole patient rather than one particular organ or illness,

and provides coordination with other parts of the system (Star�eld, 1998). Moreover,

existing literature shows that access and use of primary care services and practitioners

is associated with better health outcomes, more e�cient use of care and lower spending

levels (Baicker and Chandra, 2004; Star�eld et al., 2005; American College of Physicians,

2008; Chang et al., 2011).

The PSA bonus is not the �rst attempt at using �nancial incentives to in�uence

providers' behavior. Since 1991 Medicare pays the Health Professional Shortage Area

(HPSA) bonus, a 10% payment for primary and mental health care providers. Factors

a�ecting the designation of a HPSA, which can change from one year to another, include

the ratio of population to full-time equivalent (FTE) physicians (at least 3,500 to 1 FTE

for primary care, and 30,000 to 1 FTE for mental health care), whether or not the area

is �rational� for the delivery of medical care services (relatively self-contained geographic

unit with respect to the provision of primary care services), and whether medical care

professionals are overutilized or inaccessible to the area under consideration. Another

example is the Primary Care Incentive Payment Program (PCIP), a bonus equal to 10%

of the amount paid for primary care services to primary care practitioners if those ser-
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vices accounted for at least 60% of the practitioner's total allowed charges in a given

year.2 This program ran between 2011 and 2015 as part of the A�ordable Care Act. In

2015, payments for these two programs represented around $821 millions or 0.1% of total

Medicare spending, covering approximately 140,000 providers (MedPac 2017).

This paper focuses on primary care PSAs. CMS together with the Health Resources

and Services Administration (HRSA) de�ned PSAs as counties with the lowest ratio of

PCPs to Medicare bene�ciaries up to covering 20% of the national Medicare population.

This bonus covered 7,539,659 Medicare bene�ciaries and 24,719 primary care physicians

(Graham Center One-Pager # 55, 2008). PCPs rendering services in PSAs received a 5%

bonus over the amount paid by Medicare for professional services and it was paid on a

quarterly basis between January 1st, 2005 and June 30th, 2008.3 Primary care specialties

eligible for the bonus were General practice, Family medicine, Internal medicine, and

Obstetrics/Gynecology.

For my analysis I focus on areas where physicians got an automatic payment of the

bonus. At the end of 2004 CMS published a list of all PSA designated ZIP codes and

counties. This list remained constant for the whole period the bonus was in place. Pay-

ments were automatically made for services provided in ZIP codes areas that (a) fully fell

within a PSA designated county, (b) partially fell within a PSA county and were con-

sidered to be dominant for that county according to the USPS determination, or (c) fell

within rural census tracts of a metropolitan statistical area identi�ed through the latest

modi�cation of the Goldsmith Modi�cation that was determined to be a PSA. If the ZIP

code where the physician rendered services was not included on the PSA automated pay

ZIP code �le, but was in the county list, the doctor had to use a modi�er to claim the

2This bonus was paid to physicians (family medicine, geriatric medicine, pediatric medicine, and
internal medicine) and other practitioners (nurse practitioners, clinical nurse specialists, and physician
assistants).

3If the physician billed for a service that had both a professional and technical component, only the
professional component received the bonus payment. The technical component represents the cost of the
equipment, supplied and personnel to perform a procedure, while the professional component represents
the supervision and interpretation of the service provided by the physician.
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PSA bonus payment.

To perform my analyses I use as a control group the set of counties that did not received

the PC PSA bonus. Depending on the speci�cation, this group will include counties

receiving only the Specialty PSA bonus (and not the PC PSA bonus) plus counties without

any scarcity designation, or only the former group of counties. Figure 1.1 shows the

geographical distribution of these areas across the country. There are 486 Specialty-only

PSA counties, 103 PC-only PSA counties, 1338 Specialty and Primary Care PSA counties,

and 1214 counties without scarcity designation.

1.3 Data

I use data from claims submitted by providers to Medicare for reimbursement, from a 20

percent random sample of the Medicare Part B bene�ciary population for each year from

2000 through 2010. Additionally, I obtain demographic information about the bene�ciary

sample from the Bene�ciary �les. Panel A of Table 1.1 shows some basic summary

statistics of these characteristics. Overall, the di�erent groups of counties used in the

analysis look similar in terms of these measures.

To study the e�ects of the bonus on the number of physicians serving particular coun-

ties, I exploit the fact that health care providers are identi�ed using either the Unique

Physician Identi�cation Number (UPIN) or the National Provider Identi�er (NPI) de-

pending on the year of the sample. The number of procedures per patient are identi�ed

using the Healthcare Common Procedure Coding System (HCPCS). Patients are identi-

�ed using their bene�ciary identi�cation code, while visits are constructed by counting

the times a patient appears in the sample in di�erent dates.

To compute the aggregate quantity of health care supplied to this sample of bene�cia-

ries, I use Relative Value Units (RVUs). RVUs are the scaling of individual services used

by CMS to reimburse providers, varying across di�erent services. They are supposed to
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measure all the resources needed to provide a particular service.4 These resources include

physician work (time, skills, mental e�ort), practice expense (o�ce space, supplies, sta�),

and professional liability insurance (malpractice insurance premiums). On average, the

�rst two components account for 52 and 44 percent of total Medicare expenditures on

physician services, respectively. For example, a diagnostic colonoscopy has more work

RVUs than an intermediate o�ce visit because the former service is estimated to require

more time (75 vs 40 minutes, considering pre and post periods), skills, and e�ort.

The data also include a standard classi�cation system known as Betos categories that

allows me to map speci�c medical services and procedures to broad categories. They

include Evaluation and Management (e.g., o�ce visits), Testing, Imaging, and Procedures.

Panel B of Table 1.1 shows basic summary statistics of these outcomes at the county-

year level. Counties di�er in terms of number of patients and therefore visits, particularly

counties with no scarcity designation, however the rest of measures of care look similar

between the groups.

Finally, since extra payments were associated with the location where procedures were

provided, I assigned services to counties using providers' ZIP codes.

1.4 Empirical strategy

To obtain an estimate of the causal e�ect of �nancial incentives on health care supply in

underserved areas, I use di�erent versions of a di�erences-in-di�erence strategy. In par-

ticular, I compare the quantity of health care supplied measured using di�erent outcomes

in counties that were and were not subject to the PSA bonus during the period it was in

place, to a weighted average of the periods before and after its introduction and elimina-

4Following Clemens and Gottlieb (2014), the provider's fee for service j, supplied in payment area a
is approximately

Reimbursementa,j,t = Conversion Factort × RVUsj ×Geographic Adjustment Factora

The Conversion Factor is a national adjustment factor, that is updated annually and usually constant
across di�erent services, while the Geographic Adjustment Factor corresponds to the federal government's
adjustment for di�erences in input costs across payment regions.
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tion. I also present results from an speci�cation that allows me to separately identify the

e�ects of the bonus start and end, and full parametric di�erences-in-di�erence estimations

to test for absence of pre trends between control and treatment groups.

My main results come from the following estimating equation:

Ys(i)t = α + β · PSAi · I [2005 ≤ t ≤ 2007] + δt + γi + ηst + ρXit + εit (1.1)

where Ys(i)t is the outcome of interest in county i located in state s during year t. I look

at two sets of outcomes. The �rst one focuses on the e�ects of the bonus on the number

of providers per patient, number of visits, and my aggregate measure of healthcare supply

in county i during year t. I believe the �rst two outcomes are more closely related to the

primary goal Congress had in mind when it established the bonus (see Section 1.2), while

the last one allows me to compare results with previous literature. Using the second set of

outcomes, I disaggregate the measure of healthcare supply into di�erent components, and

I explore potential intensive and extensive margin responses. All outcomes are measured

in logs, allowing me to interpret the coe�cients as elasticities and to compare them to

results from the literature.

The dummy variable PSAi is equal to 1 if county i was designated as Primary Care

Physician Scarcity Area, and 0 otherwise. Depending on the speci�cation, non-PC PSA

areas will include both non-designated areas and Specialty PSAs, or only the later set

of counties. I will present results using both de�nitions of control group. I also include

county �xed e�ects, γi, year �xed e�ects, δt, and state-by-year �xed e�ects, ηst. As the

bonus ran from January 2005 until the �rst half of 2008, I consider 2005-2007 the relevant

period for the bonus.

I control for county characteristics Xit that may be important determinants of the level

of care received by Medicare bene�ciaries in each county. These variables include indica-

tors for di�erent age ranges, gender, race, ethnicity, and indicators for chronic conditions.
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The coe�cient of interest is β, which captures the e�ect of the bonus in PSA counties

between 2005 and 2007, to a weighted average of 2000-2004 and 2008-2010. Throughout

the analysis, I cluster the standard errors at the county level, and I weight the county-level

observations using population aged 65 and older from the 2000 Census.

In order to capture di�erential e�ects of the start and end of the bonus, I estimate the

following equation:

Ys(i)t = α + β1 · PSAi · I [t ≥ 2005] + β2 · PSAi · I [t ≥ 2008]

+ δt + γi + ηst + ρXit + εit (1.2)

where I [t ≥ 2005] is an indicator variable equal to 1 for years 2005 and after, and

I [t ≥ 2008] is equal to 1 for years 2008 and after. I then interact these indicators with

the dummy PSAi.

The interaction with I [t ≥ 2005]measures the e�ects on the di�erent outcomes in PSA

counties, relative to non-PSA areas, during the bonus was in place, relative the period

just before that. On the other hand, the interaction with I [t ≥ 2008] will capture any

e�ect on the outcomes on PSA counties, relative to non-PSA ones, after the bonus was

eliminated, relative to the period when it was on place. I also present results from the

test of the hypothesis that the parameters associated with the two interactions are the

same but of opposite sign.

To interpret the e�ect causally, the key assumption in the context of di�erence-in-

di�erences-style estimations is that the outcome trends would be the same in both groups

of counties in the absence of the bonus. To test for the presence of parallel trends, that I

present graphically, I run the following regression

Ys(i)t = α + βt · PSAi · δt + δt + γi + ηst + ρXit + εit (1.3)

I omit t = 2004 so that each βt is estimated relative to the year immediately preceding
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the introduction of the bonus.

1.5 Results

I �rst present event study graphs that motivate the regression analyses that follow. My

estimates of the e�ect of the PC PSA bonus on aggregate quantities of healthcare, number

of doctors, and number of visits, outcomes more closely related to the goal of the bonus,

are shown in Figure 1.2. The di�erent panels show the time path of the respective outcome

in PSA counties, relative to non-PSA counties, conditional on the regressors from equation

(1.3). The panels provide support for the validity of the design as there is little evidence

of di�erential trends in the outcomes between control and treatment groups before 2005.

There is a small and weak increase in the aggregate quantity of healthcare supply after

the introduction of the bonus, while doctors and visits were una�ected by the increase in

reimbursement.

Tables 1.2 and 1.3 show the baseline estimates for the e�ect of the PSA bonus on the

�rst set of outcomes. The main di�erence between these two tables is the composition

of the control group. Table 1.2 considers only counties that received the Specialty PSA

bonus (and not the primary care one) as control group, while Table 1.3 adds counties that

were not designated any type of PSA. I consider the �rst control group a better control, as

all counties are subject to some degree of scarcity of healthcare practitioners, regardless of

their specialty. However, as Figure 1.1 shows, scarcity areas were spread roughly evenly

across the country. Therefore, in a second speci�cation I include non-PSA counties to

asses the robustness of my results.

Panel A of Table 1.2 reports coe�cients and standard errors associated with the inter-

action PSAi ·I [2005 ≤ t ≤ 2007] from equation (1.1). Panel B shows results derived from

equation (1.2), reporting coe�cients and standard errors associated with the interactions

with start and end date of bonus, while the last row shows the results from the test that

the start and end date coe�cients are equal and opposite in sign. Small counties appear
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with gaps in my Medicare sample, which means that I only observe them for a subset

of years. To deal with this issue, the �rst three columns of Table 1.2 present results

considering only counties that I observe for the whole 2000-2010 period, larger in terms

of population, while the last three columns show results including counties with gaps, in

which case I impute zero to the outcome.

The results from Table 1.2 show that, in either speci�cation, the bonus slightly in-

creased the aggregate amount of health care supply, as measured by the log of total RVUs,

between 2005 and 2007 in counties subject to the bonus relative to those not exposed to

it. The point estimates imply a supply elasticity of around 0.013, which means that the

increase of 5% on reimbursement rates generated a 0.065% increase on health care supply

during this period. In a related work, Clemens and Gottlieb (2014) study the relation

between reimbursement rates and health care supply, using a geographic reimbursement

shock that a�ected Medicare physicians in 1997. They estimate an elasticity of health

care supply of 1.5 with respect to reimbursement rates, which in the context I study would

imply a 7.5% increase on care provision. My con�dence intervals expressed as percentage

go from around -0.0003% to 0.145%, rejecting the result from the literature. My results

also suggest that the number of physicians per patient decreased by around 0.01%, while

the number of doctor visits increased by roughly 0.1%, however these estimates are not

statistically signi�cant.

Results from Panel B align with those from the previous panel. They indicate that

most of the e�ect is concentrated around the introduction of the bonus rather than during

the phasing out. The �nal row shows the results from a test that the start and end

coe�cients are equal and of opposite sign. The hypothesis cannot be rejected in most

cases with the exception of the case for aggregate care supply when focusing on counties

observed in the data for the whole 2000-2010 period.

Table 1.3 shows the results using every county not subject to the PC PSA bonus as

comparison group. Overall, these results are in line with the ones presented in the previous
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table, as point estimates indicate either non statistically signi�cant or weak results. The

supply elasticity of care ranges from -0.05% to 0.05%, rejecting again the results from

Clemens and Gottlieb (2014). The number of physicians per patient decreased by around

0.005%, and results for the number of doctor visits indicate a reduction of 0.15% but these

estimates are not statistically signi�cant.

Regarding the comparison with results from the literature, it is important to keep in

mind that the authors show that most of the e�ect they �nd comes elective procedures

being particularly relevant medical services that involve high levels of technology and

capital investment like MRIs. The nature of services provided by PCPs is much more

labor intensive than other specialties (around 90% of services provided are o�ce visits,

Table 1.1), therefore a small e�ect on health care provision is not surprising in this context,

specially given the small size of the bonus.

To analyze di�erential response to incentives by type of service, I divide my measure

of care supply into Evaluation and Management, Tests, and Imaging services, using Betos

categories. Figure 1.3 shows the results from equation (1.3) using these outcomes, keeping

the aggregate measure in Panel A. In general, di�erent services follow similar patterns to

those shown on Panel A. The supply of care measure through di�erent types of services

slightly increases after the introduction of the bonus, however the magnitudes are not

economically relevant. It is worth noting that the response of tests and imagining, as

opposed to E&M, shows statistical signi�cance, in line with the importance of elective

procedures found by Clemens and Gottlieb (2014).

I further explore the composition of supply responses along di�erent dimensions re-

porting results in Figure 1.4. Panels B and C divide the log RVUs per patient, presented

on Panel A, into log RVUs per procedures and log procedures per patient. The �rst mea-

sure captures the intensity of the average procedure patients receive, while the second one

captures the extensive margin of the response. The results suggest that the total e�ect

comes from an increase in the number of procedures provided per patient rather than
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from an increase in intensity.

The remaining panels of Figure 1.4 focus on margins such as the number of patients,

and RVUs per physician. Both outcomes are una�ected by the bonus, suggesting that

�nancial incentives of this size are not a key determinant of whether or not a Medicare

bene�ciary receives care in a given year, and of the intensive margin of RVUs per physician.

1.6 Mechanisms behind e�ect

The previous section showed that the PSA bonus had a small or null e�ect on di�erent

health related outcomes such as availability of providers, number of patients getting access

to care, and several measures of health care per patient. Behind these results, two main

explanations arise. The �rst one is related to the level of information providers have

regarding these incentives, while the second is about the relevance of the payment.

According to the Kaiser Family Foundation/Commonwealth Fund 2015 National Sur-

vey of Primary Care Providers, which interviewed a nationally representative sample of

1,624 primary care physicians and 525 midlevel clinicians (nurse practitioners and physi-

cian assistants) working in primary care practices between January and March on 2015,

49% of physicians accepting Medicare patients were not aware of the Primary Care In-

centive Payment Program that implied a 10% increase in Medicare payments to PCPs.

Moreover, 47% of physicians accepting Medicaid patients were not aware of a temporary

increase in Medicaid payments for primary care to match Medicare rates which began

in 2013. This survey evidence indicates that physicians have limited information about

�nancial incentives that directly a�ect them and that CMS e�orts to spread this infor-

mation may not be working as expected.

The survey also provides evidence about the perceived relevance of these incentives for

the sample of physicians that were aware and actually received them. Only 5% of PCPs

accepting Medicare patients said the 10% bonus made a big di�erence in their ability to

serve their patients, while 48% said the bonus made no di�erence at all. Regarding the
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Medicaid payment increase, 41% said it made no di�erence and 22% said it made a big

di�erence in their ability to treat Medicaid bene�ciaries. As this bonus was equal to 10%

while the PSA was only 5%, it is be expected that smaller �nancial incentives would be

equally or even more irrelevant in the decision making process of physicians when treating

their patients.

Another piece of evidence comes from early studies focusing on the HPSA bonus.

Shugarman et al. (2001, 2003) show a declining trend during the 1990s in the use of

Medicare bonus payments by physicians serving rural patients, suggesting that they failed

to claim these extra payments available to them. The authors argue that some of the

underlying factors explaining this trend are the level of information physicians have about

these payments, their perceived value, how easy it is to get them, and concerns about the

risk of audits.

Results from economic literature indicate a strong relation between �nancial incentives

and di�erent measure of health care supply. Evidence from descriptive literature and

from surveys, plus the �ndings presented in this paper, points out to the importance of

awareness and bonus size when studying the e�ects of �nancial incentives in underserved

regions.

1.7 Conclusions

This paper studies how �nancial incentives designed to address the shortage of primary

care physicians a�ect their labor and health care supply in underserved areas. I focus on

the Physician Scarcity Area bonus, a 5% extra payment provided between 2005 and 2008

by Medicare to PCPs rendering services in areas with such designation. Despite the large

body of literature showing a positive relation between �nancial incentives and several

measures of care supply in di�erent contexts, I �nd that the bonus had no impact on the

availability of physicians, the number of patients seen in these areas, and the number of

visits to the doctor. I also �nd a positive but weak and small e�ect on the overall provision
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of health care, with estimates that allow me to reject results from previous literature.

The key policy issue motivating this paper is how to deal with the shortage of PCPs

across the U.S. The paper shows that providing �nancial incentives to health care pro-

fessionals, a policy widely used by Medicare and Medicaid during recent years, may not

be the most e�cient way to address this problem, at least not with its current design.

Physicians surveys and previous literature suggest that the level of awareness regarding

these bonus payments is low, and that their relative value is not enough to actually a�ect

providers, in line with the magnitudes of the e�ects presented in this paper. These design

characteristics are therefore crucial and should be addressed in future policy proposals

involving the provision of monetary incentives.
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1.8 Figures

Figure 1.1: Primary care and Specialty Physician Scarcity Areas, 2005-2008

only sp
only pc
sp and pc
no values

Notes: This �gure presents the geographic distribution of Primary care and Specialty Physician

Scarcity Areas. Counties in light blue received the Specialty PSA bonus, counties in dark blue received

the Primary Care PSA bonus, counties in green recevied both the Specialty and Primary Care PSA

bonus, and counties in white did not receive any designation.
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Figure 1.2: Impact of PSA bonus on aggregate care supplied, doctors, and visits

Panel A. Log RVUs per patient
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Notes: These graphs show coe�cients and standard errors from OLS regressions at the county level in

which log of RVUs per patient, log of doctors per patient, and log of visits to the doctor are the

dependent variables. These outcomes are regressed on a dummy variable equal to 1 if the county

received the PSA bonus and 0 otherwise, interacted with indicator variables for each year. These

regressions control for county �xed e�ects, year �xed e�ects, and state-by-year �xed e�ects. They also

control for the fraction of bene�ciaries aged 65-69, 70-74, 75-79, and 80-84, black, Hispanic, female

eligible for Medicare due to end-stage renal disease or disability, with 2 or more, 3 or more, 4 or more,

and 6 or more chronic conditions. Regressions are weighted using the population aged 65 and older

from the 2000 Census. Standard errors are clustered at the county level.
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Figure 1.3: Supply response by service category

Panel A. All care
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Panel B. Evaluation and

management
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Panel C. Tests
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Panel D. Imaging
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Notes: These graphs show coe�cients and standard errors from OLS regressions at the county level in

which the quantities of health care supplied in di�erent service categories are the dependent variables,

measured in Relative Value Units. These outcomes are regressed on a dummy variable equal to 1 if the

county received the PSA bonus and 0 otherwise, interacted with indicator variables for each year. These

regressions control for county �xed e�ects, year �xed e�ects, and state-by-year �xed e�ects. They also

control for the fraction of bene�ciaries aged 65-69, 70-74, 75-79, and 80-84, black, Hispanic, female

eligible for Medicare due to end-stage renal disease or disability, with 2 or more, 3 or more, 4 or more,

and 6 or more chronic conditions. Regressions are weighted using the population aged 65 and older

from the 2000 Census. Standard errors are clustered at the county level.
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Figure 1.4: Potential margins of response

Panel A. Log RVUs per patient
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Panel B. Log RVUs per procedure
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Panel C. Log procedures per

patient
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Panel D. Log number of patients
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Panel E. Log RVUs per physician
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Notes: These graphs show coe�cients and standard errors from OLS regressions at the county level in

which di�erent measures of healthcare supply are the dependent variables. These outcomes are

regressed on a dummy variable equal to 1 if the county received the PSA bonus and 0 otherwise,

interacted with indicator variables for each year. These regressions control for county �xed e�ects, year

�xed e�ects, and state-by-year �xed e�ects. They also control for the fraction of bene�ciaries aged

65-69, 70-74, 75-79, and 80-84, black, Hispanic, female eligible for Medicare due to end-stage renal

disease or disability, with 2 or more, 3 or more, 4 or more, and 6 or more chronic conditions.

Regressions are weighted using the population aged 65 and older from the 2000 Census. Standard errors

are clustered at the county level.
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1.9 Tables

Table 1.1: Summary statistics

Panel A: Demographics, county-by-year

PC PSA counties SP PSA counties Non-PSA counties

Mean SD Mean SD Mean SD

Fraction aged 65-69 0.28 0.04 0.27 0.04 0.28 0.03

Fraction aged 70-74 0.23 0.03 0.23 0.02 0.23 0.02

Fraction aged 75-79 0.19 0.02 0.19 0.02 0.19 0.01

Fraction aged 80-84 0.14 0.02 0.14 0.02 0.14 0.01

Fraction female 0.56 0.03 0.56 0.03 0.57 0.02

Fraction black 0.06 0.12 0.04 0.09 0.06 0.09

Fraction Hispanic 0.01 0.03 0.01 0.03 0.01 0.02

Fraction eligible due to ESRD or DI 0.09 0.04 0.08 0.03 0.08 0.02

Fraction with 2 or more chronic conditions 0.68 0.06 0.66 0.07 0.68 0.06

Fraction with 3 or more cc 0.53 0.07 0.51 0.08 0.53 0.07

Fraction with 4 or more cc 0.39 0.07 0.37 0.08 0.39 0.07

Fraction with 6 or more cc 0.17 0.05 0.16 0.05 0.17 0.04

Panel B: Outcomes, county-by-year

Total RVUs per patient 5.19 2.58 5.99 2.12 6.43 1.74

E&M RVUs per patient 4.70 2.38 5.38 2.00 5.78 1.61

Test RVUs per patient 0.05 0.08 0.06 0.07 0.07 0.06

Imaging RVUs per patient 0.09 0.19 0.09 0.14 0.13 0.13

Physicians per patient 0.07 0.12 0.08 0.12 0.05 0.05

Visits 2271.34 5273.28 2219.82 2444.12 20461.77 39387.04

RVUs per procedure 0.94 0.36 1.04 0.29 1.06 0.19

Procedures per patient 5.18 2.33 5.77 1.87 6.05 1.30

Patients 413.84 932.90 407.04 456.46 3484.43 5672.46

RVUs per physician 118.59 102.97 114.40 87.28 132.09 66.39

Observations 15059 5302 13035

Notes: This table reports summary statistics on demographics (Panel A) and outcome variables (Panel

B) at the county-year level for Primary Care PSA counties, Specialty PSA counties, and counties with

no scarcity designation.
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Table 1.2: E�ect of PSA bonus, selected outcomes - other scarcity counties as control group

Counties observed whole period All counties
RVUs Doctors Visits RVUs Doctors Visits

A. Estimated e�ect of bonus

PSA · I[2005 ≤ t ≤ 2007] 0.0125∗ -0.0012 0.0167 0.0148∗∗ -0.0025∗ 0.0258
(0.0064) (0.0012) (0.0167) (0.0072) (0.0014) (0.0202)

B. Estimated e�ect of bonus start and end

PSA · I[t ≥ 2005] 0.0206∗∗ -0.0015 0.0212 0.0147∗ -0.0032∗ 0.0087
(0.0081) (0.0016) (0.0240) (0.0088) (0.0018) (0.0270)

PSA · I[t ≥ 2008] 0.0009 0.0006 -0.0092 -0.0151 0.0013 -0.0541∗

(0.0090) (0.0017) (0.0240) (0.0112) (0.0019) (0.0301)

H0:Bonus start=-Bonus end (p-value)
0.061 0.715 0.738 0.974 0.469 0.264

Observations 18073 18073 18073 20361 20361 20361

Notes: This table shows coe�cients and standard errors from OLS regressions at the county level in which log of RVUs per patient, log of doctors per patient, and log of visits to the doctor are the
dependent variables. The control group are counties that received only the Specialty PSA bonus. The �rst three columns focus on counties that are observed without gaps during the 2000-2010 period,
while the last three columns include counties with gaps. In Panel A, the outcomes are regressed on a dummy variable equal to 1 if the county received the PSA bonus and 0 otherwise, interacted with
indicator variables for years between 2005 and 2007. In Panel B, the outcomes are regressed on the PSA dummy variable interacted with indicators of the start and end year of the bonus. This panel
also includes p-values from tests that the two coe�cients are equal, but of opposite sign. These regressions control for county �xed e�ects, year �xed e�ects, and state-by-year �xed e�ects. They also
control for the fraction of bene�ciaries aged 65-69, 70-74, 75-79, and 80-84, black, Hispanic, female eligible for Medicare due to end-stage renal disease or disability, with 2 or more, 3 or more, 4 or more,
and 6 or more chronic conditions. Regressions are weighted using the population aged 65 and older from the 2000 Census. Standard errors are clustered at the county level.
∗ p < 0.10, ∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 1.3: E�ect of PSA bonus, selected outcomes - all counties as control group

Counties observed whole period All counties
RVUs Doctors Visits RVUs Doctors Visits

A. Estimated e�ect of bonus

PSA · I[2005 ≤ t ≤ 2007] -0.0006 -0.0006 -0.0346∗∗∗ 0.0003 -0.0013∗∗ -0.0321∗∗∗

(0.0048) (0.0005) (0.0096) (0.0050) (0.0006) (0.0112)

B. Estimated e�ect of bonus start and end

PSA · I[t ≥ 2005] -0.0108 0.0008 -0.1140∗∗∗ 0.0169∗∗ -0.0001 -0.1310∗∗∗

(0.0066) (0.0007) (0.0146) (0.0068) (0.0008) (0.0165)
PSA · I[t ≥ 2008] -0.0158∗∗ 0.0030∗∗∗ -0.0936∗∗∗ -0.0280∗∗∗ 0.0033∗∗∗ -0.1270∗∗∗

(0.0067) (0.0007) (0.0141) (0.0072) (0.0008) (0.0170)

H0:Bonus start=-Bonus end (p-value)
0.004 0.000 0.000 0.000 0.004 0.000

Observations 31009 31009 31009 33396 33396 33396

Notes: This table shows coe�cients and standard errors from OLS regressions at the county level in which log of RVUs per patient, log of doctors per patient, and log of visits to the doctor are the
dependent variables. The control group are all counties that did not received the PC PSA bonus. The �rst three columns focus on counties that are observed without gaps during the 2000-2010 period,
while the last three columns include counties with gaps. In Panel A, the outcomes are regressed on a dummy variable equal to 1 if the county received the PSA bonus and 0 otherwise, interacted with
indicator variables for years between 2005 and 2007. In Panel B, the outcomes are regressed on the PSA dummy variable interacted with indicators of the start and end year of the bonus. This panel
also includes p-values from tests that the two coe�cients are equal, but of opposite sign. These regressions control for county �xed e�ects, year �xed e�ects, and state-by-year �xed e�ects. They also
control for the fraction of bene�ciaries aged 65-69, 70-74, 75-79, and 80-84, black, Hispanic, female eligible for Medicare due to end-stage renal disease or disability, with 2 or more, 3 or more, 4 or more,
and 6 or more chronic conditions. Regressions are weighted using the population aged 65 and older from the 2000 Census. Standard errors are clustered at the county level.
∗ p < 0.10, ∗ p < 0.05, ∗∗∗ p < 0.01.
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CHAPTER 2

HEALTH EFFECTS OF THE FLINT WATER CRISIS ON THE ELDERLY

POPULATION

2.1 Introduction

The dangers of lead exposure and poisoning are well known and understood within the general and

specialized public. However, most of the evidence comes from studies focusing on infant health as brains

during childhood are more vulnerable than during adulthood.

Correlational and causal evidence draw from epidemiological and economic studies has found a strong

relation between levels of lead in blood or measures of lead exposure during childhood and outcomes

such as attention-de�cit/hyperactivity disorder (ADHD) and intellectual impairment (Nigg et al., 2010;

Chandramouli et al., 2009; Lanphear et al., 2005; Can�eld et al., 2003; Wasserman et al., 1997); cognitive,

math, and language test scores (Aizer et al., 2018; Rau et al., 2015; Ferrie et al., 2012); and behavioral

and criminal problems (Aizer & Currie, 2019; Reyes, 2015; Reyes, 2007).

In adults, epidemiological studies have found a positive relationship between blood or bone lead

levels, even at low magnitudes, and health problems such as high blood pressure and cardiovascular

disease, kidney disease, and cognitive deterioration (Vaziri, 2008; Jain et al., 2007; Weisskopf et al., 2007;

Ekong et al., 2006; Menke et al., 2006; Navas-Acien et al., 2006; Schober et al., 2006; Weisskopf et al.,

2004; Muntner et al., 2003; Lustberg & Silbergeld, 2002). In a recent paper, Lanphear et al. (2018)

use a nationally representative cohort for the US to quantify the relative contribution of environmental

lead exposure to all-cause and cardiovascular disease mortality. They �nd that around 18% of all deaths

every year are attributable to lead exposure, and 28% of all cardiovascular disease deaths. Elderly adults

have been alive for a longer period of time, which means their chances of lead exposure while working

in unregulated occupations or of having encountered high levels in the environment on a daily basis are

higher. This is in line with �ndings from epidemiological studies that have found higher blood and bone

lead levels in older adults compare to younger ones (Vig & Hu, 2000).

In this paper I use the Flint water crisis in Michigan to study the causal e�ect of lead exposure on the

health of elderly population. In April 2014, the city of Flint changed its water source from Lake Huron to

Flint River, exposing its residents to high levels of bacterial and chemical contaminants, including lead.

For approximately a year and a half, local authorities reassured residents that the water was safe for

human consumption. Finally, in December 2015 the Mayor of Flint declared state of emergency. Adult
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Flint residents have reported to the press of new high blood pressure diagnoses, among other health

problems (Maher, 2016; Glenza, 2018).

The characteristics of the water crisis also allow me to study other health e�ects. Around the

same time of the water switch, Flint also experienced an outbreak of Legionnaires' disease that previous

scienti�c evidence has linked to the change in water source (Zahran et al., 2018). Authorities have set

the o�cial death toll for the outbreak at 12 people. This disease manifests as a type of pneumonia, and

the �nal diagnostic is only possible if speci�c tests are run. Therefore, I study how hospitalizations and

deaths for pneumonia changed after the crisis, to study if some Legionnaires' disease cases were diagnosed

as pneumonia.

I exploit the within-state variation in exposure to contaminated water. I use a di�erence-in-di�erences

model and synthetic control methods to compare outcomes in Flint after the start of the crisis to outcomes

in Flint before the start and to other cities in Michigan. Contaminated water only reached households

within the city limits of Flint, leaving the rest of the cities in Michigan and their residents una�ected. Ad-

ditionally, the scarce information provided by authorities and the relative short period of contamination,

18 months, provides a context where I do not expect large avoidance responses. In order to get bottled

water, older Flint residents have manifested the existence of barriers, including lack of transportation

and lack of ability to carry water packages (AARP, 2016).

Using the universe of Medicare bene�ciaries living in Michigan between 2012 and 2016, and the

CDC's National Detailed Mortality Files between 2010 and 2017, I estimate the e�ect of the change

in the water supply on hospitalization and mortality rates. Results from di�erence-in-di�erences and

synthetic controls speci�cations suggest a weak increase in all-cause and kidney disease hospitalization

rates in Flint after the start of the crisis, and an increase in the all-cause mortality rates. However,

these results are usually smaller than what has been suggested by the epidemiological literature and the

graphical evidence does not strongly support them. Results for hospitalizations or deaths for pneumonia

are not signi�cant, suggesting no misdiagnoses of Legionnaries' disease.

An important caveat of my analysis is the lack of objective measures of lead exposure in the data,

such as levels of lead in blood or bones, and the short period of time after the crisis that I have available.

This post period of only 2 or 3 years could be too short to see e�ects, specially for an outcome as extreme

as mortality. Future work should address these questions again when new data become available.

My paper contributes to the previously mentioned group of literature that has established a correlation

between lead exposure and negative health e�ects in adult populations. Additionally, it more directly

contributes to a growing body of literature studying health and economic e�ects of the Flint crisis.

Researchers have documented increased blood lead levels in children (Hanna-Attisha et al., 2016; Zahran
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et al., 2017), negative impacts on maternal and birth outcomes (Abouk & Adams, 2018, Grossman &

Slusky, 2019, Jenkins & Danagoulian, 2019), and an increase in bottled water sales and decline in home

values (Christensen et al., 2019).

2.2 Flint Water Crisis

In 2011, the Governor of Michigan appointed Darnell Earley as the �rst of a series of emergency managers

for the city of Flint. This appointment was made after a Michigan Treasury Department review found

that the city had a severe structural de�cit in its �nances.

Emergency managers have the power to make unilateral changes in order to reduce �nancial distress

in cities. One of the cost cut measures contemplated by the authority was to switch Flint's water source

from the Detroit Water and Sewerage Department (DWSD) to an independent supply from Lake Huron,

as DWSD rates were rising. The construction of the pipeline began in March 2013, which would take

more than two years to complete. In the meantime, the city decided to terminate the DWSD contract

and in April 2014 it started sourcing its drinking water from the Flint River until the completion of the

new pipeline. The switch was done despite warnings from county o�cials and plant supervisors (Fleming,

2018; Taddonio, 2019).

Changes in the water quality did not take long to become apparent. Flint residents voiced concerns

about water color, taste, and odor, but during May and June 2014 local authorities, including the Michi-

gan Department of Environmental Quality (MDEQ), the Mayor of Flint, and the emergency manager,

assured them the water was safe to drink (Fonger, 014a; Fonger, 014b). Between August and Septem-

ber 2014, three water boil advisories were issued due to high levels of fecal coliform, while authorities

increased chlorine level in treatment to deal with this issue. A month later, General Motors stopped

using Flint's water citing high corrosion levels due to chlorine was damaging engine parts (Fonger, 014c;

Fonger, 014d). In January 2015, the MDEQ issued a notice of violation of the Safe Drinking Water

Act for maximum contaminant levels for trihalomethanes, chemicals formed as byproduct of disinfecting

water.

In February 2015 high lead levels in water started to be reported to authorities, including the U.S.

Environmental Protection Agency (EPA). Some residential water samples contained more than 100 times

the EPA lead limit (Semuels, 2015). By September 2015, two reports from independent research groups

had shown high residential water lead levels, and an increase in the number of children with elevated

blood lead levels (Hulett, 2015). After these events, local authorities declared a public health emergency

on October 1, 2015, and the city reconnected to the DWSD shortly after. In January 2016, the Governor
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of Michigan and President Obama issued states of emergency, authorizing federal and state aid to the

city.

In January 2016, it was announced by the Governor of Michigan that cases of Legionnaries' disease,

a deadly pneumonia caused by Legionella bacteria, had spiked in Flint and Genesee County around the

time of the water switch. Between June 2014 and November 2015, 87 cases were reported, with 10 cases

resulting in death. In previous years, cases reported were less than one fourth of those reported between

2014 and 2015. However, by the time of the Governor's announcement, no government agency had tested

the water supply for Legionella bacteria (Bernstein & Dennis, 2016; Ford, 2016). Legionnaries' disease

is transmitted from the environment, when contaminated water vapor is inhaled or when the water is

used in invasive medical procedures. Schwake et al. (2016) found high levels of Legionella bacteria in

large buildings in Flint during 2015, including hospitals, while Zahran et al. (2018) used di�erence-in-

di�erences models and linked the timing of the disease outbreak with the switch in water supply. A

recent investigation from FRONTLINE, a PBS journalist team, has suggested that the actual death toll

of the outbreak could be around 70 deaths, by analyzing pneumonia deaths during the same period. The

medical community was noti�ed of the outbreak only halfway through it, and as Legionnaries' disease

manifests as a severe case of pneumonia, healthcare providers without the right information or experience

could have misdiagnosed patients with the disease (Bellware, 2019; Childress, 2019).

2.3 Data

To implement my evaluation strategy, I use individual-level hospitalization and mortality data to construct

city-level inpatient rates for the 2012-2016 period and mortality rates for the 2010-2017 period for the

state of Michigan. I focus on the 15 largest non-Flint cities in Michigan: Ann Arbor, Dearborn, Detroit,

Farmington Hills, Grand Rapids, Kalamazoo, Lansing, Livonia, Rochester Hills, South�eld, Sterling

Heights, Troy, Warren, Westland, and Wyoming.

Hospitalization variables come from Medicare administrative data. My sample includes all bene�-

ciaries 65 and older living in the state of Michigan, accounting for around 98 percent of state elderly

residents. Age and zip code of residence are obtained for all bene�ciaries from the 2012-2016 Medicare

enrollment �les. Health care use is derived from the Medicare Provider Analysis and Review (MedPAR)

File, which reports information on each inpatient stay in a hospital or skilled nursing facility for any

bene�ciary enrolled in fee-for-service (FFS) Medicare.1 MedPAR observations are derived from facility

(Medicare Part A) service claims corresponding to that stay and include the date of admission, length of

1I exclude bene�ciaries enrolled in Medicare Advantage plans as I don't observe their whole healthcare
utilization.
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stay, and total cost of the stay. They also include a principal diagnosis code that allows me to distinguish

between di�erent causes of inpatient admission.

I calculate quarterly hospitalization rates per 1000 population as:

HRct =
TotalAdmissionsct
MedicarePopct

· 1000 (2.1)

where c indices city, and t the quarter and year. TotalAdmissionsct is calculated considering all inpatient

admissions during a particular quarter using Medicare records, while MedicarePopct corresponds to the

total number of Medicare bene�ciaries in a given year, derived from the enrollment �les. Principal

diagnoses included in the inpatient �les allow me to construct all-cause, cardiovascular disease, ischemic

disease, kidney disease, and pneumonia hospitalization rates.

The mortality data are constructed using the National Mortality Detail Files. These data contain

abstracted death certi�cate information including the city and county of residence, age, sex, and diagnosed

cause of death for all deaths in the U.S. To ensure con�dentiality, the city is listed only for those individuals

who reside in a city of over 100,000 in population. This means I can only observe people living in Ann

Arbor, Detroit, Flint, Grand Rapids, Lansing, Sterling Heights, and Warren. I restrict my sample to

residents of Michigan who are at least 65 years old.

I calculate quarterly mortality rates per 100000 population as:

MRct =
TotalDeathsct

Population65plusct
· 100000 (2.2)

where c indices city, and t the quarter and year. TotalDeathsct comes from the mortality �les, while

Population65plusct comes from US Census Bureau estimates. Diagnosed causes of death included in the

mortality �les allow me to construct all-cause, cardiovascular disease, ischemic disease, kidney disease,

and pneumonia mortality rates.

Additionally, to implement synthetic controls I use socioeconomic characteristics of cities derived

from the American Community Survey (1-Year estimates).

2.4 Empirical Strategy

To obtain an estimate of the causal e�ect of the Flint water crisis on hospitalization and mortality rates,

I use di�erent versions of a di�erences-in-di�erences strategy and synthetic controls. In particular, I

compare hospitalization and mortality rates between Flint and other large cities in Michigan, before and

after the switch in the water source.
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First, I estimate city-by-quarter di�erence-in-di�erences regressions of the following form:

Yct = αc + δt + β · I {c = Flint} · I {t ≥ 2014q2}+ εct (2.3)

The variable Yct represents one of the di�erent hospitalization or mortality rates for city c and quarter

t. The model includes city �xed e�ects (α), quarter-year �xed e�ects (δ), and an error term (ε) that

is assumed to be uncorrelated with other unobserved determinants of the outcome variable. Standard

errors are clustered at the city level.

The key coe�cient of interest is β, which is the di�erence-in-di�erences estimate of the e�ect of the

Flint crisis. This coe�cient is identi�ed by comparing outcomes in Flint after the crisis to outcomes in

Flint before the crisis and to other cities in Michigan. The key identifying assumption is that outcomes

in Flint would not have evolved di�erently to other cities in the state in the absence of the crisis.

The state of emergency was declared in December 2015. Therefore, it is expected that any impact on

hospitalizations should be concentrated between the water switch and the emergency declaration, given

the public health measures undertaken afterwards. To focus on this period, I estimate the following

regression for hospitalization rates:

HRct = αc + δt + β · I {c = Flint} · I {2014q2 ≤ t ≤ 2015q4}+ εct (2.4)

To test for the key identifying assumption of di�erence-in-di�erences, I estimate the following equa-

tion:

Yct = αc + δt + βt · I {c = Flint} · I {t = 2010q1, 2010q2, ..., 2017q4}+ εct (2.5)

All variables are de�ned as above in equation (2.3) but βt is a vector which takes a unique value for each

quarter from 2010q1-2017q4 (2012q1-2016q4 for hospitalization rates). The base year is 2014q1, the last

quarter before the change in the water source.

Additionally, I supplement my previous analysis using synthetic control methods (Abadie & Gardeaz-

abal, 2003; Abadie et al., 2010). The main idea behind this methodology is to construct a synthetic match

for Flint by using the other cities in the control group such that the synthetic Flint behaves similarly

to actual Flint before the water switch in April 2014. Speci�cally, let the index c = (0, 1, ..., C) denote

cities. The value c = 0 corresponds to Flint and c = (1, ..., C) correspond to each of the other C states

that are candidate contributors to the control group (the donor pool). De�ne F0 as a kx1 vector with

elements equal to the outcome of interest (hospitalization or mortality rate) in Flint in each quarter be-
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tween 2010q1 and 2014q1 (between 2012q1 and 2014q1 for hospitalization rates) plus additional year-level

covariates predictive of the outcome. Similarly, de�ne the kxC matrix F1 as the collection of comparable

data vectors for each of the C cities in the donor pool.

The synthetic control method identi�es a convex combination of the C cities in the donor pool that

best approximates the pre-treatment data vector for the treated city. De�ne the Cx1 weighting vector

W = (w1, w2, ..., wC) such that
∑C

c=1 wc = 1, and wc ≥ 0 for c = (1, ..., C). The product F1 ·W then

gives a weighted average of the pre-treatment vectors for all cities omitting Flint, with the di�erence

between Flint and this average given by F0 − F1 ·W . The synthetic control method chooses a value for

the weighting vectorW that yields a synthetic comparison group (consisting of an average of some subset

of donor cities) that best approximates pre-treatment Flint. The weighting vector is chosen by solving

the following minimization of the mean squared prediction error (MSPE):

W ∗ = argminW (F0 − F1W )′V (F0 − F1W ) st

C∑
c=1

wc = 1, wc ≥ 0, for c = (1, ..., C) (2.6)

where V is a kxk, diagonal positive-de�nite matrix with diagonal elements equal to relative weights for

the contribution of the square of the elements in the vector F0 − F1 ·W to the objective function.

After obtaining the weighting vector W ∗, both pre and post-treatment values for the outcome can

be calculated for synthetic Flint using the corresponding weighted average for each quarter using the

donor cities with positive weights,
∑C

c=1 w
∗
cYct for a given t from the study period. The post-treatment

values for synthetic Flint serve as the counterfactual outcomes for Flint. Computing the post-treatment

di�erence between the dependent variables of Flint and synthetic Flint provides the synthetic control

estimate of the treatment e�ect attributable to the water switch in that city for any given quarter t,

α̂0t = Y0t −
∑C

c=1 w
∗
cYct. In addition to including all pre-treatment values of the dependent variable

in F0 and F1, I also include the share of nonwhite population, share of population 25 years and over

with at least high school diploma, unemployment rate, and median household income. These additional

covariates are measured yearly between 2010 and 2014 (between 2012 and 2014 for hospitalization rates).

To test the signi�cance of any observed relative e�ect in Flint's outcomes, I apply the permutation

test suggested by Abadie et al. (2010) to the synthetic control estimate α̂0t. This tests consists on taking

every unit from the donor pool, assuming it was treated at the same time, and �nding their synthetic

comparison group based on the solution to the minimization problem in equation (2.6). The results from

the permutation tests are then used to construct a distribution of placebo estimates. Then, the e�ect

of the treatment on the unit a�ected by the intervention is considered to be signi�cant if its magnitude

is extreme relative to the permutation distribution. Following Galiani & Quistor� (2017), suppose the
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distribution of placebo e�ects is α̂PL
0t = {α̂ct : c 6= 0}. The two-sided p-value is then

p-value = Pr
(
| α̂PL

0t |≥| α̂0t |
)

=

∑
c 6=0 1

(
| α̂PL

ct |≥| α̂0t |
)

C
(2.7)

If treatment is randomized, then the p-value has the standard interpretation from classical randomization

inference. Otherwise, it can be interpreted as the proportion of control units with an estimated e�ect

as large as that of the treated unit. In cases where units were not matched well in the pre-treatment

period, placebo e�ects can be too large, causing p-values to be too conservative. One way to address this

is to divide all estimates by the corresponding pre-treatment match quality, or pre-treatment root mean

squared prediction error (RMSPE), obtaining an standardized p-value.

In order to assess the joint signi�cance of e�ects across all post-treatment periods, the authors suggest

using the ratio of post/pre-treatment RMSPE for all cities. This ratio should be high for the actual treated

city, suggesting a good �t in the pre-treatmet trends (small RMSPE) but a failure at replicating post-

treatment trends (large RMSPE). Using the share of cities with a ratio as large as the treated city Flint,

allows me to examine whether the e�ect on the water switch is large relative to the distribution of e�ects

for cities not exposed to the treatment.

2.5 Results

Figures 2.1 and 2.2 show raw quarterly trends in hospitalization and mortality rates respectively for di�er-

ent diagnoses, comparing Flint with other large Michigan cities. Figure 2.1 shows a systematic di�erence

between Flint and other Michigan cities with respect to inpatient admissions, with Flint presenting higher

hospitalization rates either for all-cause or for speci�c diagnoses. Also, because Flint is smaller relative

to the other cities taken together, hospitalization trends present more volatility. In terms of mortality

rates, Figure 2.2 still shows higher volatility for Flint. However, in particular for all-cause, cardiovascular,

and ischemic mortality rates, Flint presents similar levels to those from other Michigan cities. Table 2.1

shows summary statistics of the socioeconomic characteristics used in the synthetic controls analysis and

of outcomes during the pre-intervention period. There are di�erences in the characteristics of Panel A

between treatment and control groups, which re�ects the heterogeneity of the cities in the control group.

However, the outcomes reported in Panel B look similar between groups.

It is important to note that the raw data presented in Figures 2.1 and 2.2 do not show any evidence

of changes happening in Flint after the crisis. Either before and after the second quarter of 2014,
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hospitalization and mortality rates trends appear to behave similarly. To account for seasonality and

have a graphical representation of the main trends underlying hospitalization and mortality rates, I �t

separate local quadratic regressions on both sides of the event for Flint and the control group.2 Using

theses estimates, I constructed quarter-speci�c trends which I show against the raw data in Figures

2.3 and 2.4. These graphs show that overall hospitalization and mortality rates present either �at or

downward trends across time with the exception of hospitalizations for cardiovascular disease that has

an upward trend.

Panel A of Table 2.2 shows the di�erence-in-di�erences estimates derived from equations (2.3) and

(2.4) for hospitalization rates. I estimate that after the crisis, Flint observed 1.8 more all-cause hospi-

talizations per 1,000 elderly people per quarter, which represents a 1.7% increase with respect to the

pre-intervention mean of the dependent variable. Ischemic and kidney disease hospitalization rates also

present signi�cant results. Their magnitudes imply a 16% decrease in ischemic disease hospitalization

rates and a 11% increase in kidney disease hospitalization rates. Estimates for cardiovascular disease and

pneumonia are not statistically signi�cant. Additionally, results are consistent between the two speci�ca-

tions from equations (2.3) and (2.4). Figure 2.3 is useful to understand these estimates. The increase in

all-cause hospitalizations seems to be driven by an increase during 2014q2 and 2015q1, while the increase

in kidney disease hospitalizations looks to be driven by a fall in 2014q1, right before the start of the crisis.

Panel B of Table 2.2 shows the di�erence-in-di�erences estimates derived from equation (2.3) for

mortality rates. I estimate that after the crisis, Flint observed 61 more all-cause deaths per 100,000

elderly people per quarter, which represents a 5% increase with respect to the pre-intervention mean of

the dependent variable. Kidney disease mortality also presents a signi�cant result with an increase equal

to 14% of the pre-intervention mean of the outcome. As with hospitalizations, Figure 2.4 shows evidence

that these results are driven by particular observations during the post-intervention period, suggesting at

most a short-lived e�ect rather than a permanent one. Cities used in the mortality analysis are a subset

of those available when looking at hospitalization rates. Di�erence-in-di�erences results are qualitative

the same for hospitalizations when using the subset of cities.

2Let Yct be an outcome in city c at quarter t, Flint a dummy variable equal to 1 if c = Flint, Post
a dummy variable equal to 1 if t >= 2014q2, and t a variable representing quarters from 2014q2. I then
run the following equation:

Yct = α0 · (1− Flint) + α1 · t · (1− Post) · (1− Flint) + α2 · t · Post · (1− Flint) + α3 · Post · (1− Flint)
+ α4 · t2 · (1− Post) · (1− Flint) + α5 · t2 · Post · (1− Flint)
+ β0 · Flint+ β1 · t · (1− Post) · Flint+ β2 · t · Post · Flint+ β3 · Post · Flint
+ β4 · t2 · (1− Post) · Flint+ β5 · t2 · Post · Flint
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Recent epidemiological evidence has found that increases in lead exposure are associated with a 25

to 46% increase in all-cause mortality (Lanphear et al., 2018; Menke et al., 2006; Schober et al., 2006;

Lustberg & Silbergeld, 2002), 39 to 70% increase in cardiovascular disease mortality (Lanphear et al.,

2018; Menke et al., 2006; Lustberg & Silbergeld, 2002), 10 to 89% increase in ischemic disease prevalence

(Navas-Acien et al., 2006), and 9% increase in kidney disease prevalence (Muntner et al., 2003). Mortality

results from Table 2.2 as percentage of the pre-intervention mean of the outcome for all-cause, cardiac,

and ischemic disease mortality rates are all smaller than what is expected from previous epidemiological

results. Additionally, the literature has found a positive relation between lead exposure and ischemic

disease mortality, while both my hospitalization and mortality results suggest a negative relation. For

kidney disease hospitalizations, my estimate implies an increase of 11% after the crisis which is in line

with the 9% in prevalence found in the epidemiological literature.

Regarding potential misdiagnoses of Legionnaries' disease, hospitalization and mortality results for

pneumonia are not signi�cant. This suggests that pneumonia cases did not experience any particular

change in Flint after the water crisis, implying no Legionnaries' disease misdiagnoses.

Figures 2.5 and 2.6 plot the coe�cients (βt) on Flint-speci�c quarter �xed e�ects for each group

of outcomes (hospitalization and mortality rates) generated from equation (2.5). The solid vertical line

denotes the last quarter before the start of the crisis. Results for hospitalization rates from Figure 2.5 are

noisy and question the validity of the parallel trends assumption for these outcomes. On the other hand,

results for mortality rates from Figure 2.6 provide evidence in favor of the presence of parallel trends.

To address the issue of parallel trends and provide a robustness exercise for the previous analysis, I also

implement synthetic control methods. I begin with Figures 2.7 and 2.8 showing a graphical presentation

of the Flint hospitalizations and mortality rate trends and the comparable trends in synthetic Flint.

Focusing �rst on hospitalization rates, Figure 2.7 reveals that the synthetic control group does a better

job at matching pre-intervention trends in Flint than the raw data used in the di�erence-in-di�erences

analysis shown in Figure 2.1. For mortality rates, synthetic Flint trends from Figure 2.8 look similar

to the raw data from Figure 2.2. Table 2.3 shows the cities that received positive weights to create the

synthetic control for di�erent outcomes.3

Figures 2.9 and 2.10 show the data needed to conduct the permutation tests of the signi�cance of

the relative changes in Flint. Speci�cally, for each of the cities in the donor pool as well as for Flint, the

�gures display the quarter-by-quarter di�erence between the outcome variable for the treated city and

the outcome variable for the synthetic control. The di�erences for each of the donor cities are displayed

3Medicare data allow me to identify more cities than the mortality data, therefore I use a larger donor
pool when analyzing hospitalization rates. Results are qualitative the same if I use a smaller donor pool.
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with gray lines, while the di�erence for Flint is displayed by the black line. As with the raw data from

Figures 2.1 and 2.2, graphical evidence presented in Figures 2.9 and 2.10 does not suggest any noticeable

change in Flint after the water crisis.

Tables 2.4 and 2.5 summarize Figures 2.9 and 2.10, and provide information on the signi�cance

of the e�ects estimated using synthetic controls. Table 2.4 shows in each column the magnitude of

the di�erence between Flint and synthetic Flint for di�erent hospitalization rates across all quarters of

the post-intervention period, with their corresponding standardized p-value derived from equation (2.7).

Additionally, the last two columns show the average a�ect across post-intervention quarters and the p-

value of the ratio of post/pre-treatment RMSPE respectively. The magnitudes of the average e�ects are

in general close to those from the di�erence-in-di�erences analysis, with the average e�ect for all-cause

and cardiovascular disease hospitalization rates falling within the con�dence intervals derived from Panel

A in Table 2.2. The p-values for the ratios of post/pre-treatment RMSPE indicate that synthetic control

estimates of the Flint water crisis on hospitalization outcomes are not signi�cant at standard levels.

However, the two outcomes with the lowest ratio p-values, all-cause and kidney disease, are the ones

that present signi�cant quarter-level estimates, and also signi�cant e�ects in the di�erence-in-di�erences

analysis from Table 2.2.

Table 2.5 has the same structure as Table 2.4 but for mortality rates. Similar to the previous

table, average mortality e�ects are close to those from the di�erence-in-di�erences analysis, and with

the exception of kidney disease, they all fall into the con�dence intervals derived from Panel B in Table

2.2. The p-values for the ratios of post/pre-treatment RMSPE indicate that synthetic control estimates

of the Flint water crisis on mortality rates are signi�cant for all-cause mortality, and at higher levels of

signi�cance for cardiovascular disease mortality.

Taken together, the results from di�erence-in-di�erences and synthetic controls analyses suggest that

the Flint water crisis had a weak impact on all-cause and kidney disease inpatient admissions, and on

all-cause mortality rates; however, these results are usually smaller than what has been suggested by

the epidemiological literature and the graphical evidence does not strongly support them. E�ects on

cardiovascular and ischemic disease are undetected, as well as e�ects on hospitalizations or deaths for

pneumonia, suggesting no misdiagnoses of Legionnaries' disease.

2.6 Conclusion

This paper presents results from a study of the health impacts on the elderly population of the Flint

water crisis. I �nd weak evidence suggesting an increase in all-cause and kidney disease hospitalization
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rates, and an increase in all-cause mortality rates.

The main limitation of this study is that previous evidence has shown that lead builds up in the

body over time. By focusing on elderly adults I expect they have been exposed to high levels of lead

while working in particular unregulated occupations or by having encounter high levels of contamination

in the environment. However, I don't have an objective measure of lead exposure before the crisis for this

population, and the length of the post-intervention period could be too short to �nd stronger results.

The previous limitation is also relevant to understand the timing of the e�ects and the relation

between hospitalizations and deaths. In the short run, I would expect the sickest patients, as measured

by higher levels of lead in blood or bones at baseline, to be the ones driving any change in mortality

rates, while those with lower levels of exposure should be driving most of hospitalization rates changes as

they start becoming sick. In the medium and long run, lead would accumulate and increase in the bodies

of those with lower baseline levels, potentially driving increases in hospitalization and mortality rates.

Another limitation of this study is that it could be subject to a competing risks problem. The main

hypothesis that I test in this paper is that lead exposure increases the prevalence of cardiac and kidney

disease, which I measure through hospitalizations and deaths caused by those diagnoses. If lead is in fact

a risk that a�ects both diseases, the unobserved durations until hospitalization or death will be dependent

between diagnoses, and observing one will likely in�uence the chance of observing the other one. But,

under the assumption the hypothesis is true, I would expect to observe a signi�cant result for at least

one of the diagnoses. In particular, taking into account the results from epidemiological studies, I would

expect that competing risks imply signi�cant results for cardiovascular disease. However, if anything, the

results from di�erence-in-di�erences and synthetic controls analyses show the opposite.

Most of the causal evidence on health e�ects of lead exposure has been focused on children's out-

comes. Unfortunately, as lead problems have been recently reported in di�erent cities across the country

(Schwartz & Wines, 2016; Corasaniti et al., 2019), it is important to understand how lead contamination

a�ects di�erent population groups.
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2.7 Figures

Figure 2.1: Hospitalization rates in Flint vs other cities in Michigan, quarterly trends
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Notes: Sample includes all adults ages 65 and older. The red vertical line indicates the second quarter

of 2014 when the crisis started. Other cities include Ann Arbor, Dearborn, Detroit, Farmington

Heights, Grand Rapids, Kalamazoo, Lansing, Livonia, Rochester Hills, South�eld, Sterling Heights,

Troy, Warren, Westland, and Wyoming.
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Figure 2.2: Mortality rates in Flint vs other cities in Michigan, quarterly trends
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Notes: Sample includes all adults ages 65 and older. The red vertical line indicates the second quarter

of 2014 when the crisis started. Other cities include Ann Arbor, Detroit, Grand Rapids, Lansing,

Sterling Heights, and Warren.
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Figure 2.3: Adjusted hospitalization rates in Flint vs other cities in Michigan, quarterly
trends
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Notes: Sample includes all adults ages 65 and older. Black and white dots show raw quarterly trends

for Flint and Other cities, respectively. Dashed and solid lines are quadratic �ts derived after running

separate local quadratic regressions on both sides of the event for Flint and Other cities, respectively.

The red vertical line indicates the second quarter of 2014 when the crisis started, around which the

x-axis is centered. Other cities include Ann Arbor, Dearborn, Detroit, Farmington Heights, Grand

Rapids, Kalamazoo, Lansing, Livonia, Rochester Hills, South�eld, Sterling Heights, Troy, Warren,

Westland, and Wyoming.
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Figure 2.4: Adjusted mortality rates in Flint vs other cities in Michigan, quarterly trends
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Notes: Sample includes all adults ages 65 and older. Black and white dots show raw quarterly trends

for Flint and Other cities, respectively. Dashed and solid lines are quadratic �ts derived after running

separate local quadratic regressions on both sides of the event for Flint and Other cities, respectively.

The red vertical line indicates the second quarter of 2014 when the crisis started, around which the

x-axis is centered. Other cities include Ann Arbor, Detroit, Grand Rapids, Lansing, Sterling Heights,

and Warren.
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Figure 2.5: Graphic analysis parallel trends - Hospitalization rates
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2014 with respect to which the coe�cients were estimated.
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Figure 2.6: Graphic analysis parallel trends - Mortality rates
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Figure 2.7: Trends in hospitalization rates - Flint and synthetic Flint
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Figure 2.8: Trends in mortality rates - Flint and synthetic Flint
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Figure 2.9: Di�erence in hospitalization rates relative to synthetic control group, all cities
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2014. Flint is displayed with the black line while cities in the donor pool appear in gray.
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Figure 2.10: Di�erence in mortality rates relative to synthetic control group, all cities
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2014. Flint is displayed with the black line while cities in the donor pool appear in gray.
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2.8 Tables

Table 2.1: Summary statistics

Flint Other cities

Mean SD Mean SD

Panel A: Socioeconomic characteristics, city-by-year, 2010-2014

Median HH income 24592.2 1965.857 50629.97 17169.84

Share nonwhite 0.596 0.012 0.323 0.219

Share high school diploma or more 0.824 0.006 0.888 0.056

Unemployment rate 0.261 0.041 0.115 0.057

Observations 5 70

Panel B: Outcomes, city-by-quarter, 2010q1-2014q1

Hospitalization rates

All-cause 102.238 2.904 84.078 15.509

Cardiovascular 17.878 1.497 12.216 3.117

Ischemic 5.562 0.832 3.803 1.17

Kidney 4.186 0.916 2.422 0.938

Pneumonia 3.404 0.696 2.74 0.731

Observations 9 126

Mortality rates

All-cause 1191.248 95.917 1247.938 231.602

Cardiovascualr 485.644 64.211 469.593 108.638

Ischemic 237.09 59.015 232.693 73.589

Kidney 40.504 16.484 25.612 11.835

Pneumonia 23.421 15.223 26.808 12.46

Observations 17 102

Notes: This table reports summary statistics on socioeconomic characteristics used in the synthetic control analysis (Panel

A) and outcome variables (Panel B). Variables are measured during the pre-intervention period at year level for city

characteristics (2010-2014), and quarter level for outcomes (2010q1-2014q1/2012q1-2014q1). As hospitalization rates are

only available from 2012 but the data allow me to identify more cities, there is a di�erence in the number of observations

between hospitalization and mortality rates. Other cities include Ann Arbor, Dearborn, Detroit, Farmington Heights,

Grand Rapids, Kalamazoo, Lansing, Livonia, Rochester Hills, South�eld, Sterling Heights, Troy, Warren, Westland, and

Wyoming (Ann Arbor, Detroit, Grand Rapids, Lansing, Sterling Heights, and Warren for mortality outcomes).
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Table 2.2: E�ect of Flint crisis on hospitalizations - Other Michigan cities

All-cause Cardiovascular Ischemic Kidney Pneumonia

Panel A: Hospitalization rates

Flint x post 2014q2 1.806*** 0.153 -0.917*** 0.463*** -0.165

(0.550) (0.143) (0.114) (0.0680) (0.101)

Flint x (2014q2-2015q4) 3.267*** -0.765** -0.908*** 0.287*** -0.0364

(0.626) (0.281) (0.108) (0.0786) (0.0840)

Mean of dependent variable 102.2 17.8 5.5 4.1 3.4

Observations 300 300 300 300 300

Panel B: Mortality rates

Flint x post 2014q2 61.05* 24.84 -10.52 5.830** 1.251

(30.96) (13.84) (9.801) (2.021) (1.482)

Mean of dependent variable 1191 485.6 237.1 40.5 23.4

Observations 224 224 224 224 224

Notes: This table presents the di�erence-in-di�erences results using Medicare (2012-2016) and Mortality �les data

(2010-2017), where the dependent variables are hospitalization and mortality rates by di�erent causes. Regressions include

city and quarter-year �xed e�ects. Robust standard errors, clustered at the city level, in parenthesis. * p<0.10, **

p<0.05, *** p<0.01.

Table 2.3: Cities receiving positive weights for the synthetic control groups

All-cause Cardiovascular Ischemic Kidney Pneumonia

Panel A: Hospitalization rates

Lansing Warren Detroit Detroit Detroit

Detroit Detroit Dearborn Dearborn Dearborn

Dearborn

Livonia

Panel B: Mortality rates

Ann Arbor Lansing Lansing Sterling Heights Lansing

Detroit Ann Arbor Ann Arbor Detroit Ann Arbor

Detroit Detroit Detroit
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Table 2.4: E�ect of Flint crisis on hospitalization rates, 2014q2-2016q4

2014q2 2014q3 2014q4 2015q1 2015q2 2015q3 2015q4 2016q1 2016q2 2016q3 2016q4 Average Ratio

e�ect RMSPE

All-cause 8.528 3.575 -0.543 11.768*** 3.962 6.822 1.934 -7.391 0.519 1.330 -3.119 2.489

p-value 0.214 0.428 0.928 0.000 0.357 0.214 0.500 0.357 0.928 0.928 0.571 0.285

Cardiovascular 0.353 -0.281 0.521 0.989 0.624 0.325 -0.649 -1.305 -1.236 -0.343 -0.388 -0.126

p-value 0.928 0.857 0.928 0.571 0.785 0.928 0.928 0.571 0.714 0.857 0.928 1.000

Ischemic -0.236 0.057 -1.161 0.220 -0.263 -0.163 0.141 -0.426 0.037 0.215 1.412 -0.015

p-value 0.571 0.928 0.428 0.714 0.714 0.785 0.714 0.571 1.000 1.000 0.071 0.857

Kidney 1.261 1.089 1.169 1.458 1.455 0.304 0.526 0.318 1.656*** 0.553 0.450 0.931

p-value 0.142 0.357 0.285 0.214 0.214 0.714 0.642 0.785 0.000 0.642 0.714 0.428

Pneumonia 0.630 0.362 0.867 1.562 0.197 0.389 -0.213 0.647 1.007 -0.500 0.235 0.471

p-value 0.142 0.500 0.285 0.285 0.714 0.285 0.785 0.428 0.142 0.500 0.714 0.500

Notes: This table shows in each column the magnitude of the di�erence between Flint and synthetic Flint for di�erent hospitalization rates across

all quarters of the post-intervention period, with their corresponding standardized p-value derived from equation (2.7). Additionally, the last two

columns show the average a�ect across post-intervention quarters and the p-value of the ratio of post/pre-treatment RMSPE respectively. * p<0.10,

** p<0.05, *** p<0.01.
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Table 2.5: E�ect of Flint crisis on mortality rates, 2014q2-2016q4

2014q2 2014q3 2014q4 2015q1 2015q2 2015q3 2015q4

All-cause 130.355 264.590*** 126.718 155.872*** 261.908*** 196.483*** 10.308

p-value 0.333 0.000 0.500 0.000 0.000 0.000 0.833

Cardiovascular -7.550 87.829 105.980 70.151 83.953 120.074*** -16.030

p-value 1.000 0.333 0.166 0.500 0.333 0.000 0.833

Ischemic -21.886 -25.808 -9.444 61.429 -11.790 37.168 -82.803***

p-value 0.666 0.500 0.833 0.500 0.500 0.666 0.000

Kidney 38.255 0.638 -23.360 18.497 -1.455 7.726 39.372

p-value 0.166 0.833 0.166 0.666 1.000 0.666 0.166

Pneumonia -4.349 22.208 0.354 18.224 14.685 -8.447 -16.715

p-value 1.000 0.166 1.000 0.166 0.333 0.333 0.666

Notes: Continues in next page.
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E�ect of Flint crisis on mortality rates, 2014q2-2016q4 (cont.)

2016q1 2016q2 2016q3 2016q4 2017q1 2017q2 2017q3 2017q4 Average Ratio

E�ect RMSPE

All-cause 146.095*** 194.414*** 151.831 -65.433 92.301 119.440 -48.906 -38.088 113.192

p-value 0.000 0.000 0.166 0.500 0.333 0.333 0.666 0.666 0.000

Cardiovascular 22.796 128.010*** 187.357*** -12.899 50.619 3.194 -37.627 -101.225*** 45.642

p-value 0.666 0.000 0.000 1.000 0.333 0.833 0.500 0.000 0.166

Ischemic -33.799 -30.095 72.466*** -2.177 -35.824 -29.852 -10.657 -39.347 -10.828

p-value 0.666 0.666 0.000 1.000 0.666 0.500 1.000 0.333 0.666

Kidney 17.693 24.190*** 25.363 16.055 27.824*** -15.587 14.474 12.885 13.504

p-value 0.166 0.000 0.166 0.500 0.000 0.666 0.500 0.833 0.500

Pneumonia -23.839 -16.695 -8.699 8.489 2.831 12.663 -15.785 -9.035 -1.607

p-value 0.166 1.000 0.166 0.333 1.000 1.000 0.333 0.833 0.666

Notes: This table shows in each column the magnitude of the di�erence between Flint and synthetic Flint for di�erent hospitalization rates across

all quarters of the post-intervention period, with their corresponding standardized p-value derived from equation (2.7). Additionally, the last two

columns show the average a�ect across post-intervention quarters and the p-value of the ratio of post/pre-treatment RMSPE respectively. * p<0.10,

** p<0.05, *** p<0.01.

49



BIBLIOGRAPHY

AARP (2016). City of �int senior needs assessment: How does the �int water crisis impact its older
citizens? July, 2016.

Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case stud-
ies: Estimating the e�ect of california's tobacco control program. Journal of the American statistical

Association, 105(490), 493�505.

Abadie, A. & Gardeazabal, J. (2003). The economic costs of con�ict: A case study of the basque country.
American economic review, 93(1), 113�132.

Abouk, R. & Adams, S. (2018). Birth outcomes in �int in the early stages of the water crisis. Journal of
public health policy, 39(1), 68�85.

Aizer, A. & Currie, J. (2019). Lead and juvenile delinquency: New evidence from linked birth, school
and juvenile detention records. Review of Economics and Statistics, 101(4), 645�657.

Aizer, A., Currie, J., Simon, P., & Vivier, P. (2018). Do low levels of blood lead reduce children's future
test scores? American Economic Journal: Applied Economics, 10(1), 307�41.

Alexander, D. (2015). Does physician pay a�ect procedure choice and patient health? evidence from
medicaid c-section use.

Baicker, K. & Chandra, A. (2004). Medicare spending, the physician workforce, and bene�ciaries' quality
of care. Health A�airs, (pp. W184).

Bellware, K. (2019). There may have been dozens more deaths linked to the �int water crisis than
previously known. The Washington Post, September 12, 2019.

Bernstein, L. & Dennis, B. (2016). Did �int's contaminated water cause deadly legionnaires' outbreaks?
The Washington Post, February 27, 2016.

Can�eld, R. L., Henderson Jr, C. R., Cory-Slechta, D. A., Cox, C., Jusko, T. A., & Lanphear, B. P.
(2003). Intellectual impairment in children with blood lead concentrations below 10 µg per deciliter.
New England journal of medicine, 348(16), 1517�1526.

Chandramouli, K., Steer, C. D., Ellis, M., & Emond, A. M. (2009). E�ects of early childhood lead
exposure on academic performance and behaviour of school age children. Archives of Disease in

Childhood, 94(11), 844�848.

Chang, C.-H., Stukel, T. A., Flood, A. B., & Goodman, D. C. (2011). Primary care physician workforce
and medicare bene�ciaries' health outcomes. Jama, 305(20), 2096�2104.

Childress, S. (2019). We found dozens of uncounted deaths during the �int water crisis. here's how. PBS
Frontline, September 10, 2019.

Christensen, P., Keiser, D., & Lade, G. (2019). Economic e�ects of environmental crises: Evidence from
�int, michigan. Unpublished Manuscript.

Clemens, J. & Gottlieb, J. D. (2014). Do physicians' �nancial incentives a�ect medical treatment and
patient health? American Economic Review, 104(4), 1320�49.

Coey, D. et al. (2013). Physician incentives and treatment choices in heart attack management. Technical
report.

50



Corasaniti, N., Kilgannon, C., & Schwartz, J. (2019). Lead crisis in newark grows, as bottled water
distribution is bungled. The New York Times, August 14, 2019.

Dranove, D. & Wehner, P. (1994). Physician-induced demand for childbirths. Journal of Health Eco-

nomics, 13(1), 61�73.

Dummit, L. A. (2009). Relative value units (rvus). In The Basics Natl Health Policy Forum.

Ekong, E., Jaar, B., & Weaver, V. M. (2006). Lead-related nephrotoxicity: a review of the epidemiologic
evidence. Kidney international, 70(12), 2074�2084.

Ferrie, J. P., Rolf, K., & Troesken, W. (2012). Cognitive disparities, lead plumbing, and water chemistry:
Prior exposure to water-borne lead and intelligence test scores among world war two us army enlistees.
Economics & Human Biology, 10(1), 98�111.

Fleming, L. N. (2018). Expert: Flint plant not ready before water switch. The Detroit News, February
5, 2018.

Fonger, R. (2014a). State says �int river water meets all standards but more than twice the hardness of
lake water. MLive Michigan, May 23, 2014.

Fonger, R. (2014b). City adding more lime to �int river water as resident complaints pour in. MLive

Michigan, June 12, 2014.

Fonger, R. (2014c). Flint �ushes out latest water contamination, but repeat boil advisories show system
is vulnerable. MLive Michigan, September 14, 2014.

Fonger, R. (2014d). General motors shutting o� �int river water at engine plant over corrosion worries.
MLive Michigan, October 13, 2014.

Ford, M. (2016). A legionnaires' disease outbreak in �int. The Atlantic, January 13, 2016.

Galiani, S. & Quistor�, B. (2017). The synth_runner package: Utilities to automate synthetic control
estimation using synth. The Stata Journal, 17(4), 834�849.

Glenza, J. (2018). Flint crisis, four years on: what little trust is left continues to wash away. The

Guardian, April 25, 2018.

Grant, D. (2009). Physician �nancial incentives and cesarean delivery: new conclusions from the health-
care cost and utilization project. Journal of health economics, 28(1), 244�250.

Grossman, D. S. & Slusky, D. J. (2019). The impact of the �int water crisis on fertility. Demography,
Forthcoming.

Gruber, J., Kim, J., & Mayzlin, D. (1999). Physician fees and procedure intensity: the case of cesarean
delivery. Journal of health economics, 18(4), 473�490.

Hadley, J., Mitchell, J. M., & Mandelblatt, J. (2001). Medicare fees and small area variations in breast-
conserving surgery among elderly women. Medical Care Research and Review, 58(3), 334�360.

Hadley, J., Reschovsky, J., Corey, C., & Zuckerman, S. (2009). Medicare fees and the volume of physicians'
services. Inquiry, (pp. 372�390).

Hanna-Attisha, M., LaChance, J., Sadler, R. C., & Champney Schnepp, A. (2016). Elevated blood lead
levels in children associated with the �int drinking water crisis: a spatial analysis of risk and public
health response. American journal of public health, 106(2), 283�290.

51



Hulett, S. (2015). High lead levels in michigan kids after city switches water source. NPR, September
29, 2015.

Jain, N. B., Potula, V., Schwartz, J., Vokonas, P. S., Sparrow, D., Wright, R. O., Nie, H., & Hu, H.
(2007). Lead levels and ischemic heart disease in a prospective study of middle-aged and elderly men:
the va normative aging study. Environmental health perspectives, 115(6), 871�875.

Jenkins, D. & Danagoulian, S. (2019). Maternal health and pregnancy exposure to lead: A case study of
�int, michigan. Unpublished Manuscript.

Keeler, E. B. & Fok, T. (1996). Equalizing physician fees had little e�ect on cesarean rates. Medical Care

Research and Review, 53(4), 465�471.

Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., Can�eld, R. L.,
Dietrich, K. N., Bornschein, R., Greene, T., et al. (2005). Low-level environmental lead exposure and
children's intellectual function: an international pooled analysis. Environmental health perspectives,
113(7), 894�899.

Lanphear, B. P., Rauch, S., Auinger, P., Allen, R. W., & Hornung, R. W. (2018). Low-level lead exposure
and mortality in us adults: a population-based cohort study. The Lancet Public Health, 3(4), e177�e184.

Lustberg, M. & Silbergeld, E. (2002). Blood lead levels and mortality. Archives of internal medicine,
162(21), 2443�2449.

Maher, K. (2016). Flint's water woes make residents feel like the walking dead. The Wall Street Journal,
January 21, 2016.

Medicare Payment Advisory Commission (MEDPAC) (2017). Physician and other health professional
services.

Menke, A., Muntner, P., Batuman, V., Silbergeld, E. K., & Guallar, E. (2006). Blood lead below 0.48
mmol/l (10 mg/dl) and mortality among us adults. Circulation, 114(13), 1388�1394.

Muntner, P., He, J., Vupputuri, S., Coresh, J., & Batuman, V. (2003). Blood lead and chronic kidney
disease in the general united states population: results from nhanes iii. Kidney international, 63(3),
1044�1050.

Navas-Acien, A., Guallar, E., Silbergeld, E. K., & Rothenberg, S. J. (2006). Lead exposure and cardio-
vascular disease�a systematic review. Environmental health perspectives, 115(3), 472�482.

Nigg, J. T., Nikolas, M., Mark Knottnerus, G., Cavanagh, K., & Friderici, K. (2010). Con�rmation and
extension of association of blood lead with attention-de�cit/hyperactivity disorder (adhd) and adhd
symptom domains at population-typical exposure levels. Journal of Child Psychology and Psychiatry,
51(1), 58�65.

Rabinowitz, H. K., Diamond, J. J., Markham, F. W., & Paynter, N. P. (2001). Critical factors for
designing programs to increase the supply and retention of rural primary care physicians. Jama,
286(9), 1041�1048.

Rau, T., Urzúa, S., & Reyes, L. (2015). Early exposure to hazardous waste and academic achievement:
evidence from a case of environmental negligence. Journal of the Association of Environmental and

Resource Economists, 2(4), 527�563.

Reyes, J. W. (2007). Environmental policy as social policy? the impact of childhood lead exposure on
crime. The BE Journal of Economic Analysis & Policy, 7(1).

52



Reyes, J. W. (2015). Lead exposure and behavior: e�ects on antisocial and risky behavior among children
and adolescents. Economic Inquiry, 53(3), 1580�1605.

Schober, S. E., Mirel, L. B., Graubard, B. I., Brody, D. J., & Flegal, K. M. (2006). Blood lead levels and
death from all causes, cardiovascular disease, and cancer: results from the nhanes iii mortality study.
Environmental health perspectives, 114(10), 1538�1541.

Schwake, D. O., Garner, E., Strom, O. R., Pruden, A., & Edwards, M. A. (2016). Legionella dna markers
in tap water coincident with a spike in legionnaires' disease in �int, mi. Environmental Science &

Technology Letters, 3(9), 311�315.

Schwartz, J. & Wines, M. (2016). Unsafe lead levels in tap water not limited to �int. The New York

Times, February 8, 2016.

Semuels, A. (2015). Aging pipes are poisoning america's tap water. The Atlantic, July 29, 2015.

Shugarman, L. R. & Farley, D. O. (2003). Shortcomings in medicare bonus payments for physicians in
underserved areas. Health A�airs, 22(4), 173�178.

Shugarman, L. R., Farley, D. O., Taylor, P., & Ashwood, J. S. (2001). Trends in Bonus Payments for

Physician Services to Rural Medicare Bene�ciaries. Technical report, RAND CORP SANTAMONICA
CA.

Star�eld, B. (1998). Primary Care: Balancing Health Needs, Services, and Technology. Oxford University
Press, USA.

Star�eld, B., Shi, L., & Macinko, J. (2005). Contribution of primary care to health systems and health.
The milbank quarterly, 83(3), 457�502.

Taddonio, P. (2019). Flint's deadly water: 8 key takeaways from frontline's investigation of the �int water
crisis. PBS, September 11, 2019.

U.S. Department of Health and Human Services, Health Resources and Services Administration, National
Center for Health Workforce Analysis (2013). National and regional projections of supply and demand
for primary care practitioners: 2013-2025.

Vaziri, N. D. (2008). Mechanisms of lead-induced hypertension and cardiovascular disease. American

Journal of Physiology-Heart and Circulatory Physiology, 295(2), H454�H465.

Vig, E. K. & Hu, H. (2000). Lead toxicity in older adults. Journal of the American Geriatrics Society,
48(11), 1501�1506.

Wasserman, G. A., Liu, X., Lolacono, N. J., Factor-Litvak, P., Kline, J. K., Popovac, D., Morina, N.,
Musabegovic, A., Vrenezi, N., Capuni-Paracka, S., et al. (1997). Lead exposure and intelligence in
7-year-old children: the yugoslavia prospective study. Environmental health perspectives, 105(9), 956�
962.

Weisskopf, M. G., Proctor, S. P., Wright, R. O., Schwartz, J., Spiro III, A., Sparrow, D., Nie, H., & Hu,
H. (2007). Cumulative lead exposure and cognitive performance among elderly men. Epidemiology,
18(1), 59�66.

Weisskopf, M. G., Wright, R. O., Schwartz, J., Spiro III, A., Sparrow, D., Aro, A., & Hu, H. (2004).
Cumulative lead exposure and prospective change in cognition among elderly men: the va normative
aging study. American journal of epidemiology, 160(12), 1184�1193.

Yip, W. C. (1998). Physician response to medicare fee reductions: changes in the volume of coronary
artery bypass graft (cabg) surgeries in the medicare and private sectors. Journal of health economics,
17(6), 675�699.

53



Zahran, S., McElmurry, S. P., Kilgore, P. E., Mushinski, D., Press, J., Love, N. G., Sadler, R. C., &
Swanson, M. S. (2018). Assessment of the legionnaires' disease outbreak in �int, michigan. Proceedings
of the National Academy of Sciences, 115(8), E1730�E1739.

Zahran, S., McElmurry, S. P., & Sadler, R. C. (2017). Four phases of the �int water crisis: Evidence
from blood lead levels in children. Environmental research, 157, 160�172.

Zerehi, M. R. (2008). How is a Shortage of Primary Care Physicians A�ecting the Quality and Cost of

Medical Care?: A Comprehensive Evidence Review. American College of Physicians.

54


	Title Page
	Copyright
	Vita
	Acknowledgments
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Financial incentives and medical practice in underserved areas
	Introduction
	Background on Physician Scarcity Area Bonus
	Data
	Empirical strategy 
	Results
	Mechanisms behind effect
	Conclusions
	Figures
	Tables

	Health effects of the Flint water crisis on the elderly population
	Introduction
	Flint Water Crisis
	Data
	Empirical Strategy
	Results
	Conclusion
	Figures
	Tables

	References

