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This dissertation summarizes studies directed at a deeper understanding of the AdS/CFT

correspondence, its origin and its dynamics. First, classical strings in AdS were con-

sidered and a general method for constructing string solutions was developed. The

method is based on the reduction of string sigma models to integrable equations

of sinh-Gordon or more generally Toda type. These equations are characterized by

soliton type solutions from which the string configurations are constructed with a one-

to-one correspondence between solitons of the field theory and spikes of the string.

Through this correspondence the most general class of dynamical string solutions

can be generated. In the case of AdS3, these general spiky strings are characterized

by an arbitrary number n of spikes and two arbitrary holomorphic functions. After

fixing the conformal frame, only the soliton moduli remain, giving a specification of

the string moduli. This moduli space is particle-like and it is shown that the spikes

follow a closed set of equations describing the dynamics of the moduli space providing

a 0-brane picture of the AdS string.

In the second part of the dissertation we pursue the direct construction of the AdS

theory from the large N collective dynamics of its moduli. We accomplish this fully in

the simplest sub-sector corresponding to the bi-local system of n = 2 spikes. It is seen

that higher spin massless particles originate from the cusps of the spiky strings. The

large N collective construction establishes the proposal of Klebanov and Polyakov

that higher-spin AdS gravity of Vasiliev’s type appears as a dual to the O(N) vector

model. For this an explicit mapping of the AdS4 spacetime (and of higher-spin fields)

was given from collective (bi-local) fields. This construction was deduced through the

identification of isometries of SO(2, 3) with the conformal generators of the CFT3 in

the light-cone quantization. This mapping gives an explicit derivation of the extra

spatial dimension in the AdS spacetime and reconstruction of the bulk AdS theory.
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Chapter 1

General Introduction

One of the most notable developments in Theoretical Physics in the last several

decades was the realization that some of the most fundamental physical forces, such

as Gravity and String Theory emerge in the large N limit of Conformal Field Theory

(CFT). This scheme known as the AdS/CFT duality is characterized by the fact

that the field theory is defined in d dimensional Minkowski spacetime while the dual

gravitational theory is in the d+1 dimensional curved Anti-de Sitter (AdS) spacetime.

Typical studies of the correspondence were performed in the holographic scheme

where the correlators are evaluated at the boundary of AdS. One would then like to

have a more fundamental understanding of the duality which does not rely on the

projection of the extra dimension and where the emergence of the bulk AdS theory

can be fully established. This dissertation describes research performed towards that

goal.

The presentation in this dissertation is broken down into two major parts. The

first part of the dissertation concerns developing methods to generate classical string

1
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solutions in AdS as well as studying their dynamics. Using a particular reduction, the

nonlinear string sigma model in AdS3 can be reduced to the sinh-Gordon equation

which possesses solitonic excitations. The inverse scattering technique was employed

to generate string solutions provided the sinh-Gordon soliton profiles. We found that

a soliton configuration with a singularity at its location translates into a spike at the

string level. This leads to a significant simplification, where the use of relevant (collec-

tive) coordinates gives the picture of N -body “partons”. This investigation therefore

identifies the sub-structure of the AdS string itself. The second part of the disser-

tation describes work on reconstructing gravity and spacetime from the established

partonic sub-structure. The manner in which continuum phenomena such as gravity

are reconstructed from the microscopic dynamics is argued to be associated with the

phenomenon of collective motions. Studying the simplest partonic composite, con-

sisting of a bi-local system of two particles, turned out to already produce a striking

result: the appearance of one extra AdS dimension and of a sequence resonance of

growing integer spins. Specifically an explicit mapping of the AdS4 spacetime plus

higher-spin fields is established from the (bi-local) collective fields of conformal field

theory.

1.1 The AdS/CFT correspondence

The AdS/CFT correspondence [1, 2, 3] relates type IIB string theory on the curved

background AdS5 × S5 with N = 4 Super Yang-Mills (SYM) theory in four dimen-

sions (see [4, 5, 6, 7] for a review). It is a strong-weak duality with the precise

correspondence given by

g2
Y MN = λ =

R4

α′2 ,
1

N
=

4πgs

λ
(1.1)
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where gY M is the Yang-Mills coupling constant, α′ is the inverse string tension, λ

is the effective ’t Hooft coupling constant in the large N limit, gs is the topological

expansion parameter in string theory and R is the radius of the AdS5×S5 background.

1.1.1 Maldacena’s conjecture

According to Maldacena [1], the ’t Hooft limit of N = 4 d = 3 + 1 SYM theory

at the conformal point contains type IIB strings on AdS5 × S5. This is shown by

taking a low-energy limit of D3-branes in string theory, where the field theory on the

brane decouples from the bulk. Starting with type IIB string theory with fixed string

coupling gs and consider N parallel D3-branes separated by some distance r, at low

energies, we take the limit

α′ → 0,
r

α′ = fixed, (1.2)

where the second condition is to keep the mass of the stretched strings fixed. At

this decoupling limit, we bring the branes together but the Higgs expectation values

corresponding to this separation remain fixed. The resulting theory on the brane is

four dimensional N = 4 U(N) SYM theory.

In more details, we consider the supergravity solution carrying D3-brane charge

ds2 = f−1/2dx2
|| + f1/2(dr2 + r2dΩ2

5), (1.3)

where f = 1 + R4/r4, R4 ≡ 4πgsNα
′2 and x|| denotes the four coordinates along

the world-volume of the three-brane. In the near horizon region r � R, we can

approximate f ∼ R4/r4 and the geometry becomes AdS5 × S5. Now we define the
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new variable U = r/α′ and write the metric (1.3) in terms of U as

ds2 = α′
[ U2

√
4πgsN

dx2
|| +

√

4πgsN
dU2

U2
+

√

4πgsNdΩ
2
5

]

. (1.4)

This metric describes the radius of AdS5 × S5 as

R2

α′ =
√

4πgsN. (1.5)

This radius is quantized because the flux of the five-form field strength on the five

sphere is quantized. We can trust the supergravity solution when gsN � 1. When

N is large, we have approximately ten dimensional flat space in the neighborhood of

any point.

Next we consider a near extremal black D3-brane solution in the decoupling limit

(1.2) and keep the energy density on the brane world-volume theory µ fixed. We find

the metric

ds2 = α′
[ U2

√
4πgsN

[−(1−U4
0 /U

4)dt2 + dx2
i ] +

√
4πgsNdU

2

U2(1− U4
0 /U

4)
+

√

4πgsNdΩ
2
5

]

, (1.6)

where U4
0 = 27

3
π4g2

sµ. Since U0 remains finite when we take the α′ → 0 limit, we

should consider fields that propagate on the AdS background. Since the Hawking

temperature is finite, there is a flux of energy from the black hole to the AdS space-

time. SinceN = 4 d = 3+1 U(N) SYM is a unitary theory we conclude that, for large

N , it includes in its Hilbert space the states of type IIB supergravity on AdS5 × S5.

In summary, we have started with a quantum theory and seen that it includes

gravity as it is natural to think that this correspondence goes beyond the supergravity

approximation. Then we are led to the conjecture that N = 4 U(N) Super Yang-Mills

theory in 3+1 dimensions is dual to type IIB superstring theory on AdS5×S5. From



5

the physics of D-branes, we know that the SYM coupling is given by the (complex)

IIB string coupling through

1

g2
Y M

+ i
θ

8π2
=

1

4πgs
+ i

χ

8π2
, (1.7)

where χ is the expectation value of the Ramond-Ramond scalar.

The supersymmetry group of AdS5×S5 is known to be the same as the supercon-

formal group in 3+1 dimensional spacetime, so the supersymmetries of both theories

are the same. Notice the correspondence is non-perturbative in gs and the SL(2, Z)

symmetry of type IIB would follow as a consequence of the SL(2, Z) symmetry of

SYM. It is also a strong-weak coupling correspondence in the following sense: when

the effective coupling gsN becomes large we cannot trust perturbative calculations in

the Yang-Mills theory but we can trust calculations in the supergravity on AdS5×S5.

The nontriviality of Maldacena’s proposal is contained in the fact that the two

theories contain very different field degrees of freedom and are defined in different

spacetime dimensions. A scheme to perform comparisons between the two theories

is defined by Gubser, Klebanov, Polyakov [2] and Witten [3], known as the “holo-

graphic” map according to which one is to project AdS amplitudes to the boundary

of AdS spacetime and find an agreement with the CFT correlation functions. This

holographic scheme was used for establishing and verifying the AdS/CFT correspon-

dence in a number of examples, even though it gives little insight into the mechanism

of the duality, the origin of bulk interactions and of the extra AdS radial dimension.
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1.1.2 Correlation functions

The AdS/CFT gives a precise correspondence between conformal field theory observ-

ables and those of supergravity: correlation functions in conformal field theory are

given by the dependence of the supergravity action on the asymptotic behavior at

infinity. In particular, dimensions of operators in conformal field theory are given

by masses of particles in supergravity. This proposal is effective and gives a prac-

tical recipe for computing large N conformal field theory correlation functions from

supergravity tree diagrams.

The partition function of the AdS theory (with suitably prescribed boundary

conditions for the fields) equals the generating functional of the boundary conformal

field theory. Schematically, one has

ZAdS [φ0] =

∫

φ0

Dφ exp(−I [φ]) = ZCFT [φ0] =
〈

exp
(∫

∂Ω

ddx[φ0O]
)〉

. (1.8)

The path integral on the LHS is calculated under the restriction that the field φ

asymptotically approaches φ0 on the boundary. On the other hand, the function

φ0 is considered as a current, which couples to the scalar density operator O in the

boundary conformal field theory. Calculating the LHS thus allows one to explicitly

obtain correlation functions of the boundary conformal field theory.

Consider the Euclidean version of the Poincaré patch of AdSd+1 with the metric

ds2 =
dx2 + dz2

z2
(1.9)

where xi = (x1, · · · , xd) and we have set the AdS radius to 1. Let φ(z, x) be a bulk
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scalar with mass m and consider the action [3, 8]

I(φ) =
1

2

∫

dd+1x
√
g[gµν∂µφ∂νφ+m2φ2],

=
1

2

∫

ddxdzz−d+1[(∂zφ)2 + (∂iφ)2 +
m2

z2
φ2], (1.10)

the equations of motion are

1√
g
∂µ(
√
ggµν∂νφ)−m2φ = 0. (1.11)

Its asymptotic behavior near the boundary of AdSd+1 is

φ(z, x)|z→0 ≈ z∆−φ0(x) + z∆+A(x) (1.12)

where the scaling dimensions

∆± =
d

2
± 1

2

√
d2 + 4m2. (1.13)

The functions φ0(x) and A(x) are the two necessary boundary data to determine the

solution of the second-order bulk equation of motion for φ(z, x). Quantizing φ(z, x)

with boundary condition A(x) = 0 (φ0(x) = 0) would give the generating functional

of the boundary operator O(x) with dimension ∆+ (Õ(x) with dimension ∆−). The

above ambiguity does not show up in most studied cases of AdS/CFT where the

operator Õ(x) has dimension below the unitarity bound ∆− < d/2− 1.

Nevertheless, there exist important cases where both ∆± are above the unitarity

bound. Then the quantization ambiguity is present even when the asymptotic behav-

ior of φ(z, x) is determined by one arbitrary boundary data when one requires that

the bulk solution vanishes in the far interior (z →∞) of AdS. In such a case the two
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functions appearing in (1.12) are related by

A(x) =
Γ(∆+)

πd/2Γ(ν)

∫

ddy
1

(x− y)2∆+
φ0(y), (1.14)

with ν = ∆+−d/2. Then the application of AdS/CFT correspondence yields either a

functional W [φ0] of φ0(x) or a functional J [A] of A(x). The first generates correlation

functions of O(x) and the second of Õ(x). However, the two functionals are related

by a Legendre transform

W [φ0] + 2ν

∫

ddxφ0(x)A(x) = J [A],
δW [φ0]

δφ0(x)
= −2νA(x). (1.15)

Going back to the equations of motion (1.11), explicitly, one has

zd+1 ∂

∂z

[

z−d+1 ∂

∂z
φ(z, x)

]

+ z2 ∂
2

∂x2
φ(z, x)−m2φ(z, x) = 0. (1.16)

Witten [3] has constructed a Green’s function solution which explicitly realizes the

relation between the field φ(z, x) in the bulk and the boundary configuration φ0(x
′).

The solution to (1.16) is then related to the boundary data by

φ(z, x) =
Γ(∆+)

πd/2Γ(∆+ − d/2)

∫

ddx′
z∆+

(z2 + |x− x′|2)∆+
φ0(x

′). (1.17)

Plugging into the action (1.10), we find

I(φ0) = −(∆+ − d/2)Γ(∆+)

πd/2Γ(∆+ − d/2)

∫

ddxddx′
φ0(x)φ0(x

′)

|x− x′|2∆+
. (1.18)

This determines the two-point function of a conformal operator O with dimension

∆+. Varying twice of the action (1.18) with respect to φ0 we find that the two-point
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function of the corresponding operator is

〈O(x)O(x′)〉 =
(2∆+ − d)Γ(∆+)

πd/2Γ(∆+ − d/2)
1

|x− x′|2∆+
. (1.19)

This evaluation can be generalized to the n-point functions.

1.2 Giant magnons

Insight into the AdS/CFT correspondence can be gained even at the semiclassical

level. In particular, the semiclassical limit of string theory provides answers for the

strong coupling regime of gauge theory. This has been most successfully demonstrated

for the case of N = 4 Super Yang-Mills theory where an exact Bethe ansatz solution

is available [9], bridging the weak and strong couplings. The anomalous dimensions

of the N = 4 SYM operators with large R-charge can be computed using the dilata-

tion operator [10, 11, 12], more efficiently, using a certain spin chain in the planar

limit [13, 14, 15]. These spin chains have fundamental “magnon” excitations which

obey a dispersion relation that is periodic in the momentum of the magnons. Using

supersymmetry, the dispersion relation was found to be [16]

E − J =

√

1 +
λ

π2
sin2 p

2
. (1.20)

The result is exact, i.e. the one-loop superstring correction vanishes [17]. Note that

the periodicity in p comes from the discreteness of the spin chain. At large ’t Hooft

coupling, the energy behaves as

E − J ∼
√
λ

π

∣
∣
∣sin

p

2

∣
∣
∣ . (1.21)
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Since this is a strong coupling result, it should be possible to reproduce it on

the string theory side. Hofman and Maldacena [18] identified these magnons on the

string theory side and showed how to reconcile a periodic dispersion relation with

the continuum world-sheet description. The crucial idea is that the momentum is

interpreted in the string theory side as a certain geometrical angle. Furthermore,

the dispersion relation (1.21) is reproduced by considering a classical string in the

following limit

J →∞, λ = g2N = fixed, p = fixed, E − J = fixed. (1.22)

This is different from the BMN limit [19] where λ was taken to infinity and n = pJ

was kept fixed. One nice feature of this limit is that it decouples quantum effects,

which are characterized by λ, from finite J effects or finite volume effects on the string

world-sheet.

1.2.1 Physical gauge

Now we consider the motion of strings in R× S2, the metric is

ds2 = −dt2 + dθ2 + sin2 θdϕ2 (1.23)

where ϕ is the coordinate shifted by the angular momentum J . The string ground

state with E − J = 0 corresponds to a light-like trajectory that moves along ϕ with

ϕ − t = constant, that sits at θ = π/2 and at the origin of the spatial directions of

AdS5.
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Figure 1.1: Giant magnon solution. The momentum of the state is given by the angular distance
between the endpoints of the string, which are located on the equator and move at the speed of
light.

Fixing the gauge by

t = τ, ϕ− t = ϕ′ = σ, (1.24)

and we consider a configuration where θ is independent of τ . The Nambu-Goto action

becomes

S =

√
λ

2π

∫

dτdσ

√

(ẊX ′)2 − (Ẋ)2(X ′)2

=

√
λ

2π

∫

dtdϕ′
√

cos2 θ θ′2 + sin2 θ. (1.25)

One can easily derive the equation of motion

sin θ cos θ θ′′ − (1 + cos2 θ) θ′2 − sin2 θ = 0. (1.26)

Integrating the equation of motion, we get

sin θ =
sin θ0

cosϕ′ , −(
π

2
− θ0) ≤ ϕ′ ≤ (

π

2
− θ0) (1.27)

where 0 ≤ θ0 ≤ π/2 is an integration constant.
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The solution is plotted in Figure 1.1, we see that the difference in angle between

the two endpoints of the string at a given time t is

∆ϕ′ = ∆ϕ = 2(
π

2
− θ0). (1.28)

It is easy to compute the energy

E − J =

√
λ

π
cos θ0 =

√
λ

π
sin

∆ϕ

2
. (1.29)

Identifying ∆ϕ = p, we get

E − J =

√
λ

π

∣
∣
∣sin

p

2

∣
∣
∣ (1.30)

in perfect agreement with the large λ limit of (1.20). The sign of p is related to the

orientation of the string. In summary, the string solution in physical gauge is









t

ϕ

θ









=









τ

τ + σ

sin−1[sin θ0/ cos σ]









. (1.31)

1.2.2 Conformal gauge

We can rewrite the solution (1.31) in a time-like conformal gauge









t

ϕ

θ









=









τ

τ + tan−1[cot θ0 tanh σ̃]

cos−1[cos θ0 sechσ̃]









(1.32)

where σ̃ ≡ σ−sin θ0 τ
cos θ0

. In this case we see that the range of σ is infinite. Moreover,

the energy density is a constant E =
√

λ
2π

. Easily, we can calculate the spacetime
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coordinate

X =









sin θ cosϕ

sin θ sinϕ

cos θ









=









tanh σ̃ sin τ

tanh σ̃ cos τ

sechσ̃









. (1.33)

Using the sine-Gordon connection [20], we get

α ≡ cos−1[(∂σX)2 − (∂τX)2] = 4 tan−1[exp(γ(σ − vτ ))] (1.34)

where v ≡ sin θ0 and γ ≡ (1 − v2)−1/2. Notice that a boost on the sine-Gordon side

translates into a non-obvious classical symmetry on the R × S2 side. The solution

(1.34) is exactly the one-soliton solution of the sine-Gordon equation with the energy

Esoliton = γ. (1.35)

Interestingly, if we define the energy of a magnon as E − J , we have

Emagnon ≡ E − J =

√
λ

π

1

γ
, (1.36)

which is inversely proportional to the energy of the sine-Gordon soliton. This will

have an interesting effect on the scattering phase shift of giant magnons.

1.2.3 Scattering of giant magnons

Now we consider a soliton anti-soliton pair and compute the time delay for their

scattering. Since x and t coordinates are the same in the two theories, the time delay

is precisely the same for the string theory magnons and for the sine-Gordon solitons.
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The sine-Gordon scattering solution in the center of mass frame is

α = 4 tan−1

[
1

v

sinh γvt

cosh γx

]

. (1.37)

The time delay is

∆Tcm =
2

γv
ln v. (1.38)

The fact that the sine-Gordon scattering is dispersionless implies that the scatter-

ing of magnons is also dispersionless in the classical limit (we also expect it to be

dispersionless in the quantum theory).

We now boost the configuration (1.37) to a frame where we have a soliton moving

with velocity v1 and an anti-soliton with velocity v2, where v1 > v2. Then the time

delay that particle 1 experiences as it goes through particle 2 is

∆T12 =
2

γ1v1
ln vcm (1.39)

where vcm is the velocity in the center of mass frame

2 ln vcm = ln

[
1− cos p1−p2

2

1− cos p1+p2

2

]

. (1.40)

We can compute the phase shift from the formula

∂δ12(ε1, ε2)

∂ε1
= ∆T12 (1.41)

and obtain

δ12 =

√
λ

π

{[

− cos
p1

2
+ cos

p2

2

]

ln

[
1− cos p1−p2

2

1− cos p1+p2

2

]}

− p1

√
λ

π
sin

p2

2
. (1.42)

Note that, even though the time delay is identical to the sine-Gordon one, the phase
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shift is different, due to different expressions for the energy. This implies, in particular,

that the phase shift is not invariant under the sine-Gordon boosts.

1.3 Gluon scattering amplitudes at strong coupling

Classical string solutions in AdS can also be used for evaluation of Yang-Mills scatter-

ing amplitudes. Alday and Maldacena [21, 22, 23] gave a prescription for computing

gluon scattering amplitudes inN = 4 SYM theory at strong coupling using AdS/CFT

through Wilson loops (see [24] for a review). This prescription is equivalent to find-

ing a classical string solution with boundary conditions determined by the gluon

momenta. The value of the scattering amplitude is then related to the area of this

solution

A ∼ eiScl = e−
√

λ
2π

(Area)cl (1.43)

where Scl denotes the classical action of the classical solution of the string world-sheet

equations.

On the gauge theory side, Bern, Dixon and Smirnov (BDS) [25] gave a very

interesting conjecture for the all order form of the n gluon MHV scattering amplitudes.

As for the four point amplitude, the conjecture takes the form

A4 = Atree
4 exp

[

(IR divergent) +
f(λ)

8

(

ln
s

t

)2

+ (constant)

]

(1.44)

where s, t are the Mandelstam variables, f(λ) is the cusp anomalous dimension and

the IR divergent terms are well characterized by Sudakov-like factors. At strong
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coupling, the anomalous dimension reads

f(λ) =

√
λ

π
+ · · · . (1.45)

1.3.1 Four gluon scattering amplitude

Consider the Lorentzian AdS5 metric in Poincaré coordinates

ds2 = R2

[
dx2

3+1 + dz2

z2

]

, (1.46)

we place a D-brane at a large value zIR as the cutoff. In order to state most simply

the boundary conditions for the world-sheet it is convenient to describe the solution

in terms of T-dual coordinates yµ defined in the following way. Starting with a metric

that contains

ds2 = ω2(z)dxµdx
µ + · · · (1.47)

where ω is the wrap factor, we define T-dual variables yµ by

∂αy
µ = iω2(z)εαβ∂βx

µ. (1.48)

In the regime under consideration the T-dual coordinates are real and the world-

sheet is Euclidean. In addition, the boundary condition for the original coordinates

xµ, which carry momentum kµ, translates into the condition that yµ has “winding”

∆yµ = 2πkµ. The T-dual metric is again AdS5 after defining r = R2/z,

ds̃2 = R2

[
dyµdy

µ + dr2

r2

]

. (1.49)
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Notice now the boundary is located at rIR = R2/zIR. As we take the limit zIR →∞,

we find that the boundary of the worldsheet moves to the boundary of the T-dual

metric (1.49) at r = 0.

For four gluons, we label the momenta as ki, i = 1, · · · , 4, where the subindex

indicates the color ordering. We consider the region where particles 1 and 3 are

incoming and particles 2 and 4 are outgoing. We label by k the center of mass energy

or momentum of each incoming particles and we denote by ϕ the scattering angle in

the center of mass frame; then the usual Mandelstam variables are

s = −(k1 + k2)
2 = −2k1 · k2 = −4k2 sin2 ϕ

2
, (1.50)

t = −(k1 + k4)
2 = −2k1 · k4 = −4k2 cos2 ϕ

2
. (1.51)

We will focus on the region where s, t < 0 which corresponds to space-like momentum

transfer.

Figure 1.2: Wilson loop with four light-like boundaries. This figure lives at r = 0.

Next we consider a Wilson loop containing four light-like edges (see Figure 1.2).

In order to write the Nambu-Goto action it is convenient to consider the Poincaré

coordinates (r, y0, y1, y2) while setting y3 = 0, and parametrize the surface by its

projection to the (y1, y2) plane. We consider first the case with s = t where the
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projection of the Wilson lines is a square. The solution reads

y0(y1, y2) = y1y2, r(y1, y2) =
√

(1− y2
1)(1− y2

2). (1.52)

In terms of embedding coordinates, the surface is given by the equations

Y3 = 0, Y4 = 0, Y0Y−1 = Y1Y2. (1.53)

In fact, this solution is related to the single cusp solution [26] by a SO(2, 4) trans-

formation. The solution for general s and t can be obtained by a simple boost, for

example, in the 04 plane

Y4 − vY0 = 0, Y−1γ(Y0 − vY4) = γ−1Y0Y−1 = Y1Y2, Y3 = 0. (1.54)

Let us now write the solutions in terms of worldsheet coordinates in conformal

gauge. The induced metric on the world-sheet can be computed as

ds2 =
dy2

1

(1− y2
1)

2
+

dy2
2

(1− y2
2)

2
= du2

1 + du2
2, (1.55)

where yi = tanh ui and the metric is Euclidean. The solution with s = t becomes

y1 = tanh u1, y2 = tanh u2, r =
1

coshu1 cosh u2
, y0 = tanh u1 tanh u2. (1.56)

Performing the boost (1.54) and a simple rescaling we find the solution for s 6= t

r =
a

coshu1 cosh u2 + b sinh u1 sinh u2
, (1.57)

y0 =
a
√

1 + b2 sinhu1 sinhu2

coshu1 cosh u2 + b sinh u1 sinh u2
, (1.58)
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y1 =
a sinhu1 coshu2

coshu1 cosh u2 + b sinh u1 sinh u2
, (1.59)

y2 =
a coshu1 sinhu2

coshu1 cosh u2 + b sinh u1 sinh u2
, (1.60)

where b = vγ < 1. The parameter a sets the overall scale of the momentum. Here a

and b encode the kinematical information of the scattering as follows

−s(2π)2 =
8a2

(1− b)2
, −t(2π)2 =

8a2

(1 + b)2
,

s

t
=

(1 + b)2

(1− b)2
. (1.61)

A common regularization scheme for computing minimal areas in AdS is to intro-

duce a cutoff in the radial direction. The correct procedure is to impose the boundary

conditions at some small r = rc. It turns out, however, that in order to compute the

finite piece as rc → 0 it suffices to use the original solution and cut the integral giving

the area at r = rc defined by

a

cosh u1 cosh u2 + b sinhu1 sinhu2
= rc. (1.62)

The resulting integral simplifies when using the light-cone variables u± = u1 ± u2.

By expanding the integrand in power series of rc/a and integrating term by term, we

arrive at the final expression for the area

iS = −
√
λ

2π
A, A =

1

4
ln2

( r2
c

−8π2s

)

+
1

4
ln2

( r2
c

−8π2t

)

− 1

4
ln2

(s

t

)

− π2

3
, (1.63)

which agrees perfectly with the BDS ansatz [25] including the finite constant piece.

The planar gluon scattering amplitudes at strong coupling has a dual conformal

symmetry which is enough for determining the four and five gluon scattering ampli-

tudes. The BDS ansatz fails for more gluons (n ≥ 6) amplitudes. For more recent
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developments of calculating gluon scattering amplitudes using classical strings, please

refer to [27]. These calculations employ the same inverse scattering technique that

we will develop in the next chapter.



Chapter 2

String Dynamics in AdS

To generate classical string solutions in AdS spacetime, we use a Pohlmeyer type

reduction. In this framework we find a correspondence between spikes of strings in

AdS3 and soliton profiles of the sinh-Gordon equation. This connection turns out to

be most fruitful for the construction of dynamical multi-spike solutions. The inverse

scattering technique was employed to generate string solutions provided the sinh-

Gordon soliton profiles. We constructed the most general set of string solutions with

arbitrary number of spikes using the n-soliton solution of the sinh-Gordon equation.

These general spiky strings are characterized by two arbitrary holomorphic functions

and a discrete set of moduli representing the soliton singularities. After fixing the

conformal frame, only the soliton moduli remain, giving a specification of the string

moduli.

21
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2.1 Introduction

For states of Super Yang-Mills theory given by single trace operators with insertions

of (covariant) derivatives the relevant string configurations were identified by Gubser,

Klebanov and Polyakov (GKP) [28] as rotating folded strings.1 Kruczenski gave the

extension to regular n-spike configurations in [31]. These configurations in some sense

represent the ground state configurations of the theory and it is of definite relevance

to construct (and understand the dynamics) of more general non-static solutions

[32, 33]. Ultimately one has the goal of formulating a complete dynamical picture of

the moduli of strings moving in AdS × S spacetimes.

We approach the classical problem of constructing string solutions in AdS space-

time through a conformal gauge and the Pohlmeyer reduction [34] of the associated

classical nonlinear sigma model. This technique was applied previously to the con-

struction of solutions in de Sitter spacetime [35] and extended to soliton and spiky

Minkowski worldsheet solutions in a series of papers [36, 37]. For the case of minimal

surfaces with Euclidean worldsheet extension is applicable [38, 39]. The Pohlmeyer

reduction reduces the nonlinear sigma model equations to a coupled system consisting

of integrable Toda type equations and a conformal pair obeying the Cauchy-Riemann

conditions.

In the Minkowski case, the integrability of the (Toda type) theories provides

(singular) soliton type solutions which were identified with spikes in [36, 37] (see

also [40]). Integrability of string theory on AdS5 × S5 allows the use of algebraic

methods to construct solutions of the nonlinear equations of motion. We use the

inverse scattering method to construct string solutions corresponding to sinh-Gordon

1A semiclassical treatment of quantum fluctuations around this solution has been performed by
Frolov and Tseytlin [29]. See [30] for a review of spinning strings.
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solitons, antisolitons, breathers and soliton scattering solutions. We also show that the

spikes of the long GKP string can be mapped to sinh-Gordon solitons at the boundary

of AdS. The sigma model solutions can be constructed in terms of wavefunctions of

the Pohlmeyer reduced model [41].

The advantage of this method is that it allows us to construct a string solution

starting from any sinh-Gordon solution. All one has to do is to solve a linear system

with coefficients depending on the chosen sinh-Gordon solution. Notice that in the

dressing method [42] one is also solving a linear system, but the difference is that

in the dressing method the coefficients of the system depend on the chosen vacuum

solution of the string equations, whereas in this method the coefficients depend only on

the sinh-Gordon or reduced system solution. This is advantageous because any sinh-

Gordon solution is generally simpler than the corresponding sigma model solution.

2.1.1 AdS string as a σ-model

We will concentrate in what follows on string dynamics in purely AdS spacetime. In

general, string equations in AdSd+1 spacetime (in conformal gauge) are described by

the non-compact nonlinear sigma model on SO(2, d). Defining the AdSd+1 space as

Y 2 = −Y 2
−1 − Y 2

0 + Y 2
1 + · · · + Y 2

d = −1, the action reads

A =

√
λ

4π

∫

dτdσ
(

∂Y · ∂Y + Λ(σ, τ )(Y · Y + 1)
)

, (2.1)

where τ, σ are the Minkowski worldsheet coordinates, the equations of motion are

∂∂̄Y − (∂Y · ∂̄Y )Y = 0, (2.2)
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with z = (σ − τ )/2, z̄ = (σ + τ )/2 and ∂ = ∂σ − ∂τ , ∂̄ = ∂σ + ∂τ . In addition to

guarantee the conformal gauge we have to impose the Virasoro conditions

∂Y · ∂Y = ∂̄Y · ∂̄Y = 0. (2.3)

It was demonstrated a number of years ago (by Pohlmeyer [34]) that nonlinear

sigma models subject to Virasoro type constraints can be reduced to integrable field

equations of sine-Gordon or more generally Toda type. This reduction is accomplished

by concentrating on SO(2, d) invariant sub-dynamics of the sigma model. The steps

of the reduction were well described in [35, 36] and consist in the following. One

starts by identifying first an appropriate set of basis vectors for the string coordinates

ei = (Y, ∂Y, ∂̄Y, B4, · · · , Bd+2), i = 1, 2, · · · , d + 2, (2.4)

where Bi form an orthonormal set Bi · Bj = δij, Bi · Y = Bi · ∂Y = Bi · ∂̄Y = 0.

Defining the scalar field α and two sets of auxiliary fields

α(z, z̄) ≡ ln[∂Y · ∂̄Y ], (2.5)

ui ≡ Bi · ∂̄2Y, (2.6)

vi ≡ Bi · ∂2Y, (2.7)

one can derive the equations of motion

∂∂̄α − eα − e−α

d+1∑

i=4

uivi = 0, (2.8)

∂ui =
∑

j 6=i

(Bj · ∂Bi)uj, (2.9)

∂̄vi =
∑

j 6=i

(Bj · ∂̄Bi)vj. (2.10)
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In the case of AdS3, there is only one vector B4 so that ∂u = 0, ∂̄v = 0. Therefore,

the equation of motion for the scalar field α is simplified to be

∂∂̄α− eα − e−αu(z̄)v(z) = 0. (2.11)

This is the generalized sinh-Gordon equation with two (anti)-holomorphic functions

u(z̄) and v(z). In order to get the standard sinh-Gordon equation, we first shift the

field

α(z, z̄) = α̂(z, z̄) + ln
√

−u(z̄)v(z), (2.12)

and then do a (conformal) change of variables

dz̄′ =
√

2u(z̄)dz̄, dz′ =
√

−2v(z)dz, (2.13)

such that the equation of motion for α̂ satisfies

∂ ′∂̄ ′α̂(z′, z̄′)− sinh α̂(z′, z̄′) = 0. (2.14)

2.1.2 Spikes vs Solitons

The classical motion describing a rigid rotation of a folded closed string is given by

the ansatz t = c τ , θ = c ω τ and ρ = ρ(σ). The Virasoro constraints give

ρ′2 = c2(cosh2 ρ − ω2 sinh2 ρ) (2.15)

where the scaling constant c is adjusted to define the period of σ. We can set c = 1

and denote the position of the fold (spike) as σ0. To demonstrate the stated corre-

spondence with solitons we expand the solution (2.15) near the spike with ω = 1+2η,
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where η � 1, one finds

ρ′
2 ∼ e2ρ(e−2ρ − η). (2.16)

Denoting u = e−ρ, we have u′2 ∼ u2 − η. Consider the boundary condition u0 = e−ρ0

at σ = σ0, one finds

ρ(σ) = − ln
(√

η cosh(σ − σ0)
)
, (2.17)

so that the sinh-Gordon field becomes

α ≡ ln(∂Y · ∂̄Y ) = ln(2ρ′2) = ln(2 tanh2 σ). (2.18)

This is exactly the one-soliton solution to the generalized sinh-Gordon equation (2.11)

with uv = −4. Therefore, we conclude that the finite GKP solution is a two-soliton

configuration of sinh-Gordon system in which the solitons are located near the bound-

ary of AdS. We will next describe its construction starting from the solutions of the

sinh-Gordon system.

2.2 Constructing string solutions from sinh-Gordon

solutions

One can next work out the equations obeyed by the elements of the basis, the deriva-

tives of the vectors (2.4) can be expressed in terms of the basis itself

∂̄ei = Aij(z, z̄)ej, ∂ei = Bij(z, z̄)ej, (2.19)
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where the matrices are

A =












0 1 0 0

0 ∂̄α 0 u

eα 0 0 0

0 0 −ue−α 0












, B =












0 0 1 0

eα 0 0 0

0 0 ∂α v

0 −ve−α 0 0












. (2.20)

One finds therefore a linear system of differential equations for the vectors. The

integrability condition ∂A− ∂̄B+[A,B] = 0 is then seen to generate the equations of

motion corresponding to a generalized sinh-Gordon theory. The vector equations on

the other hand define the motion (and coordinates) of the string itself, they have to

be solved, which leads to a scattering problem of Dirac type. These equations exhibit

SO(2, 2) symmetry, and can be further simplified by redefining an orthonormal basis

as

e1 = B, e2 =
∂̄Y + ∂Y√

2eα/2
, e3 =

∂̄Y − ∂Y√
2ieα/2

, e4 = iY. (2.21)

One now exploits the fact that SO(2, 2) = SO(2, 1) × SO(2, 1), expanding the A,B

matrices in terms of two commuting sets of SO(2, 1) generators

A = wi
1,(+)Ji + wi

1,(−)Ki, B = wi
2,(+)Ji + wi

2,(−)Ki, (2.22)

with i = 1, 2, 3 and the coefficient vectors are found to be

~w1,(±) =
( i

2
∂̄α,
−i√

2
(ue−α/2∓ eα/2),

−i√
2
(ue−α/2± eα/2

)

, (2.23)

~w2,(±) =
(−i

2
∂α,

i√
2
(ve−α/2± eα/2),

−i√
2
(ve−α/2 ∓ eα/2

)

. (2.24)

Remembering SO(2, 1) = SU(1, 1), we can rewrite this problem in terms of the

spinor representation of the SU(1, 1) group. Defining two spinors φ and ψ satisfying
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the differential equations

∂̄φ = wi
1,(+)σiφ = A1φ, ∂φ = wi

2,(+)σiφ = A2φ, (2.25)

∂̄ψ = wi
1,(−)σiψ = B1ψ, ∂ψ = wi

2,(−)σiψ = B2ψ, (2.26)

where σi are the anti-Hermitian generators of the SU(1, 1) group. The spinors φ and

ψ are normalized φ†φ = φ∗
1φ1 − φ∗

2φ2 = 1, ψ†ψ = ψ∗
1ψ1 − ψ∗

2ψ2 = 1. The matrices

A1, A2, B1, B2 become

A1 =






−i
2
√

2
(ue−α/2 + eα/2) i

4
∂̄α− 1

2
√

2
(ue−α/2 − eα/2)

− i
4
∂̄α − 1

2
√

2
(ue−α/2 − eα/2) i

2
√

2
(ue−α/2 + eα/2)




 , (2.27)

A2 =






−i
2
√

2
(ve−α/2 − eα/2) − i

4
∂α+ 1

2
√

2
(ve−α/2 + eα/2)

i
4
∂α+ 1

2
√

2
(ve−α/2 + eα/2) i

2
√

2
(ve−α/2− eα/2)




 , (2.28)

B1 =






−i
2
√

2
(ue−α/2 − eα/2) i

4
∂̄α − 1

2
√

2
(ue−α/2 + eα/2)

− i
4
∂̄α − 1

2
√

2
(ue−α/2 + eα/2) i

2
√

2
(ue−α/2 − eα/2)




 , (2.29)

B2 =






−i
2
√

2
(ve−α/2 + eα/2) − i

4
∂α+ 1

2
√

2
(ve−α/2− eα/2)

i
4
∂α+ 1

2
√

2
(ve−α/2− eα/2) i

2
√

2
(ve−α/2 + eα/2)




 . (2.30)

In other words, given a solution α(z, z̄), u(z̄) and v(z) of the sinh-Gordon equation,

we can find φ and ψ such that they solve the above linear system. Then the string

solution is constructed through

Z1 ≡ Y−1 + iY0 = φ∗
1ψ1 − φ∗

2ψ2, (2.31)

Z2 ≡ Y1 + iY2 = φ∗
2ψ

∗
1 − φ∗

1ψ
∗
2. (2.32)
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2.3 Special string solutions

Next let us see some explicit examples. Starting with soliton solutions of the sinh-

Gordon, we construct open string solutions which touch the boundary of AdS and the

spikes are located in the bulk of AdS. A one-to-one correspondence between solitons

of sinh-Gordon and spikes of AdS string is established which turns out to be useful

for the construction of general n-spike string solutions.

2.3.1 Vacuum

The first example is the sinh-Gordon vacuum u = 2, v = −2, α0 = ln 2, the results of

solving the linear system (2.25, 2.26) are

φ1 = e−iτ , φ2 = 0, ψ1 = cosh σ, ψ2 = − sinh σ. (2.33)

Then the Minkowski worldsheet solution is given by (see Figure 2.1)

Z1 = eiτ coshσ, (2.34)

Z2 = eiτ sinhσ. (2.35)

This is the infinite string limit of the spinning string [28].

The Euclidean worldsheet solution is obtained by making a wick rotation τ →−iτ .

Then Y0 and Y2 become imaginary, thus effectively exchanging places. Therefore the
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Figure 2.1: The vacuum solution in (a) Minkowskian and (b) Euclidean worldsheet plotted in
AdS3 coordinates. (c) Top view of Minkowskian vacuum solution. The boundary of the worldsheet
touches the boundary of AdS space.

Euclidean vacuum solution reads

~YE =












cosh σ cosh τ

sinh σ sinh τ

sinhσ cosh τ

coshσ sinh τ












. (2.36)

This is the solution found in [26] and used by the authors of [21] to calculate the

scattering amplitude for four gluons.

Introducing the global coordinates

Y =












cosh ρ cos t

cosh ρ sin t

sinh ρ cos θ

sinh ρ sin θ












, (2.37)
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the metric of AdS3 can be written as

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dθ2. (2.38)

If we denote φi = (t, ρ, θ), the Lagrangian density becomes

L =

√
λ

2π

1

2
∂µφ · ∂µφ, (2.39)

so that the energy and angular momentum (densities) can be easily derived as

Pτ
t =

∂L
∂ṫ

=

√
λ

2π
cosh2 ρ ṫ, (2.40)

Pτ
θ =

∂L
∂θ̇

=

√
λ

2π
sinh2 ρ θ̇, (2.41)

E =

∫

dσ Pτ
t =

√
λ

2π

∫

dσ cosh2 ρ ṫ, (2.42)

S =

∫

dσ Pτ
θ =

√
λ

2π

∫

dσ sinh2 ρ θ̇. (2.43)

For the vacuum solution, we set t = τ , θ = τ , ρ = σ, and the angular momenta are

Pτ
t =

√
λ

2π
cosh2 σ, Pτ

θ =

√
λ

2π
sinh2 σ. (2.44)

The energy and angular momentum are divergent, introducing a ultraviolet cutoff

Λ� 0, we have

E =

√
λ

π

∫ Λ

−Λ

dσ cosh2 σ =

√
λ

π

(1

4
sinh(2σ) +

1

2
σ
)
|Λ−Λ ≈

√
λ

4π
e2Λ, (2.45)

S =

√
λ

π

∫ Λ

−Λ

dσ sinh2 σ =

√
λ

π

(1

4
sinh(2σ)− 1

2
σ
)
|Λ−Λ ≈

√
λ

4π
e2Λ. (2.46)
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The dispersion relation becomes

E − S =

√
λ

π

∫ Λ

−Λ

dσ =

√
λ

π
2Λ ∼

√
λ

π
ln

4π√
λ
S, (2.47)

which agrees with the GKP solution [28].

The n-static spike solution can also be obtained by exploiting a free parameter

during the process of solving the Dirac wave-equations. The more general wave-

functions are

φ1 = cosh ρ0 e
−iτ , φ2 = sinh ρ0 e

iτ , ψ1 = cosh σ, ψ2 = − sinh σ. (2.48)

The string solution becomes

Y =












cosh σ cos τ cosh ρ0 + sinhσ cos τ sinh ρ0

cosh σ sin τ cosh ρ0 − sinh σ sin τ sinh ρ0

sinhσ cos τ cosh ρ0 + cosh σ cos τ sinh ρ0

sinhσ sin τ cosh ρ0 − cosh σ sin τ sinh ρ0












. (2.49)

Here ρ0 has the physical meaning of the number of spikes n through the formula

sinh ρ0 = cot
π

n
, (2.50)

where n = 2 corresponds to the GKP case. The dispersion relation becomes

E − S ∼ n

√
λ

2π
lnS, (2.51)

which agrees with the n-spike solution by Kruczenski [31].
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2.3.2 One-spike solutions

The solutions obtained in the previous subsection are static in the rotating frame.

In this subsection, we will describe dynamical string solutions corresponding to one-

soliton solution of the sinh-Gordon equation.

Starting with the one-soliton solution

αs = ln 2 + ln(tanh2 σ). (2.52)

The matrices entering into the linear system (2.25, 2.26) are given by

A1 =






−i coth 2σ (i− 1)csch2σ

−(i+ 1)csch2σ i coth 2σ




 , (2.53)

A2 =






i coth 2σ −(i+ 1)csch2σ

(i− 1)csch2σ −i coth 2σ




 , (2.54)

B1 =






−icsch2σ icsch2σ − coth 2σ

−icsch2σ − coth 2σ icsch2σ




 , (2.55)

B2 =






icsch2σ −icsch2σ − coth 2σ

icsch2σ − coth 2σ −icsch2σ




 . (2.56)

The spinors that solve the linear system are

φ1 = e−iτ cosh(
1

2
ln tanh σ), (2.57)

φ2 = −e−iτ sinh(
1

2
ln tanh σ), (2.58)

ψ1 = (τ + i) cosh(
1

2
ln sinh 2σ)− τ sinh(

1

2
ln sinh 2σ), (2.59)

ψ2 = −(τ + i) sinh(
1

2
ln sinh 2σ) + τ cosh(

1

2
ln sinh 2σ). (2.60)
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Figure 2.2: The one-soliton solution in (a) Minkowskian worldsheet plotted in AdS3 coordinates.
(b) Top view of the Minkowskian one-soliton solution. Please note the curvature of the string changes
with the evolution of time.

Then we use (2.31, 2.32) to find the corresponding string solution (see Figure 2.2)

Zs
1 =

eiτ

2
√

2 cosh σ

(
2τ + i(cosh 2σ + 2)

)
, (2.61)

Zs
2 =

eiτ

2
√

2 cosh σ

(
−2τ − i cosh 2σ

)
. (2.62)

One can easily compute the energy and angular momentum

E =

∫ Λ

−Λ

dσ

√
λ(1 + 8τ 2 + 4cosh 2σ + cosh 4σ)

16π cosh2 σ
≈
√
λ

π
(
1

8
e2Λ + τ 2), (2.63)

S =

∫ Λ

−Λ

dσ

√
λ(1 + 8τ 2 − 4 cosh 2σ + cosh 4σ)

16π cosh2 σ
≈
√
λ

π
(
1

8
e2Λ + τ 2). (2.64)

If we neglect the τ dependence since the exponential term is much larger than the

square term, we have

E − S =

∫ Λ

−Λ

√
λ

2π
cosh 2σ sech2 σdσ ∼

√
λ

π
ln

8π√
λ
S. (2.65)
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The energy is not conserved because there is momentum flow at the asymptotic ends

of the string and the string itself is not closed.

Similarly, the one-antisoliton string solution corresponding to αs̄ is given by

Z s̄
1 =

eiτ

2
√

2 sinh σ

(
2τ − i cosh 2σ

)
, (2.66)

Z s̄
2 =

eiτ

2
√

2 sinh σ

(
−2τ + i(cosh 2σ − 2)

)
. (2.67)

Notice this solution is singular at the point σ = 0.

2.3.3 Two-spike solutions

The two-soliton solutions of the sinh-Gordon equation can be obtained via the Bäcklund

transformation: Let ϕ be a solution of the sinh-Gordon model (here ϕ = (α− ln 2)/2),

its image under a Bäcklund transformation with spectral parameter µ is the field

ϕ̂ = Bµ · ϕ implicitly defined by the following differential equations

∂(ϕ̂+ ϕ) = 2µ sinh(ϕ̂− ϕ) (2.68)

∂̄(ϕ̂− ϕ) = 2µ−1 sinh(ϕ̂+ ϕ) (2.69)

If ϕ solves the sinh-Gordon equation, so does the transformed field ϕ̂. A remarkable

property of the Bäcklund transformation is that the four solutions ϕ0, ϕ1, ϕ2, ϕ3 are

linked by a purely algebraic relation

tanh
(ϕ3 − ϕ0

2

)
=

(µ1 + µ2

µ1 − µ2

)
tanh

(ϕ2 − ϕ1

2

)
. (2.70)

This is called the tangent rule.
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Starting with following two one-soliton solutions

α1 = ln(2 tanh2 σ − v1τ
√

1− v2
1

), α2 = ln(2 coth2 σ − v2τ
√

1− v2
2

) (2.71)

and let v1 = v, v2 = −v, we get the two-soliton solution

αss,s̄s̄ = ln 2± ln
[v coshX − cosh T

v coshX + cosh T

]2

(2.72)

where X ≡ 2γσ, T ≡ 2vγτ . For αss, the spinors are

φ1 = eiτ γ
−1 coshT + iv sinh T

√

cosh2 T − v2 cosh2X
(2.73)

φ2 = eiτ v sinhX
√

cosh2 T − v2 cosh2X
(2.74)

ψ1 =
(γ−1 coshX + i sinhT ) coshσ − sinhX sinhσ

√

cosh2 T − v2 cosh2X
(2.75)

ψ2 =
(−γ−1 coshX + i sinh T ) sinhσ + sinhX cosh σ

√

cosh2 T − v2 cosh2X
(2.76)

The two-soliton string solution is

Zss
1 = e−iτ vchT chσ + chXchσ − γ−1shXshσ + iγ−1shT chσ

chT + vchX
, (2.77)

Zss
2 = e−iτ vchT shσ + chXshσ − γ−1shXchσ + iγ−1shT shσ

chT + vchX
. (2.78)

Figure 2.3 shows the shape of the two-soliton string at two different global time

instants. In Figure 2.3(a), the string is folded along the x axis, whereas in Figure

2.3(b), we find the usual bulk spikes.

The two-antisoliton string solution can be constructed in the same way and it

only differs from the two-soliton solution by three signs: the second and third terms
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Figure 2.3: The Minkowskian two-soliton solution with v = 1
√

5
at different global time (a) t = 0,

(b) t = π/4.

in the numerator and the second term in the denominator which makes the solution

singular.

Secondly, choose the other two one-soliton solutions

α1 = ln(2 tanh2 σ − v1τ
√

1− v2
1

), α2 = ln(2 tanh2 σ − v2τ
√

1− v2
2

) (2.79)

and let v1 = v, v2 = −v, we get the soliton-antisoliton solution

αss̄,s̄s = ln 2± ln
[v sinhX − sinh T

v sinhX + sinhT

]2

. (2.80)

For the soliton-antisoliton solution, the string solution is

Zss̄
1 = e−iτ vshT chσ ± shXchσ ∓

√
1− v2chXshσ + i

√
1− v2chT chσ

shT ± vshX , (2.81)

Zss̄
2 = e−iτ vshT shσ ± shXshσ ∓

√
1− v2chXchσ + i

√
1− v2chT shσ

shT ± vshX . (2.82)

Similarly, the above solutions are singular.
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In (2.80), take v to be imaginary: v = iw, we get the breather solution to the

sinh-Gordon equation

αB,± = ln 2± ln
[w sinhXB − sinTB

w sinhXB + sin TB

]2

(2.83)

where XB ≡ 2σ√
1+w2

, TB ≡ 2wτ√
1+w2

. The string solutions corresponding to the breathers

are

ZB
1 =

e−iτ

sinTB ± wshXB

{
−w sinTBshσ ± shXBshσ

∓
√

1 + w2chXBchσ + i
√

1 + w2 cosTBshσ
}
, (2.84)

ZB
2 =

e−iτ

sinTB ± wshXB

{
−w sinTBchσ ± shXBchσ

∓
√

1 + w2chXBshσ + i
√

1 + w2 cosTBchσ
}
. (2.85)

All these solutions are singular.

2.4 General n-spike construction

We now turn to the general construction of the AdS3 case. We had the fact that the

classical strings in AdS3 can be reduced to a generalized sinh-Gordon model coupled

to two arbitrary functions u(z̄) and v(z) which together represent a free scalar field.

These functions are central to the string theory interpretation of the sinh-Gordon

equation, they represent the freedom of performing general conformal transforma-

tions which are the symmetry of the conformal gauge string. In the system of cou-

pled equations describing the Lax pair they can be transformed by a combination of

conformal and gauge transformations.

After the conformal change of variables (2.13) and omitting the primes of the new
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fields, we can write down the two Lax pairs as

∂̄φ(z, z̄) = A1φ(z, z̄), ∂̄ψ(z, z̄) = B1ψ(z, z̄), (2.86)

∂φ(z, z̄) = A2φ(z, z̄), ∂ψ(z, z̄) = B2ψ(z, z̄), (2.87)

where the matrices are given by

A1 =
1

4






−iλc+1 i∂̄α̂+ i
2

u′(z̄)
u(z̄)
− λc−1

−i∂̄α̂− i
2

u′(z̄)
u(z̄)
− λc−1 iλc+1




 , (2.88)

A2 =
1

4






i 1
λ
c+2 −i∂α̂− i

2
v′(z)
v(z)
− 1

λ
c−2

i∂α̂+ i
2

v′(z)
v(z)
− 1

λ
c−2 −i 1

λ
c+2




 , (2.89)

B1 =
1

4






−iλc−1 i∂̄α̂+ i
2

u′(z̄)
u(z̄)
− λc+1

−i∂̄α̂− i
2

u′(z̄)
u(z̄)
− λc+1 iλc−1




 , (2.90)

B2 =
1

4






i 1
λ
c−2 −i∂α̂− i

2
v′(z)
v(z)
− 1

λ
c+2

i∂α̂+ i
2

v′(z)
v(z)
− 1

λ
c+2 −i 1

λ
c−2




 , (2.91)

with definitions for simpler expressions

c+1 ≡ 4

√
u

−ve
− 1

2
α̂ + 4

√

−v
u
e

1

2
α̂, c−1 ≡ 4

√
u

−ve
− 1

2
α̂ − 4

√

−v
u
e

1

2
α̂, (2.92)

c+2 ≡ 4

√

−v
u
e−

1

2
α̂ + 4

√
u

−ve
1

2
α̂, c−2 ≡ 4

√

−v
u
e−

1

2
α̂ − 4

√
u

−ve
1

2
α̂. (2.93)

Here we introduced the spectral parameter by rescaling z → λz, z̄ → 1
λ
z̄, which is

the standard way of introducing the spectral parameter in the Lax formulation.

Our next task is to establish a relationship between the Lax pairs (2.88-2.91)
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found in the sigma model and the standard Lax pair of the sinh-Gordon theory

U =






−iζ 1
2
∂̄û

1
2
∂̄û iζ




 , V =

i

4ζ






cosh û − sinh û

sinh û − cosh û




 , (2.94)

which satisfies the Dirac equations

∂̄ϕ(z, z̄) = Uϕ(z, z̄), ∂ϕ(z, z̄) = V ϕ(z, z̄). (2.95)

Here ζ is the spectral parameter and the sinh-Gordon field û satisfies the equation

∂∂̄û(z, z̄)− sinh û(z, z̄) = 0. (2.96)

Defining the gauge transformation as

A1 = g−1
A (U − ∂̄)gA, A2 = g−1

A (V − ∂)gA, (2.97)

for the A matrices, the transformation matrix is found to be

gA =

√
i

2






i
(

8
√

u
−v
e−

1

4
α̂ − 8

√
−v
u
e

1

4
α̂
) (

8
√

u
−v
e−

1

4
α̂ + 8

√
−v
u
e

1

4
α̂
)

i
(

8
√

u
−v
e−

1

4
α̂ + 8

√
−v
u
e

1

4
α̂
) (

8
√

u
−v
e−

1

4
α̂ − 8

√
−v
u
e

1

4
α̂
)




 , (2.98)

with the identification û = −α̂, λ = −2ζ. Similarly, for the B matrices, we find

gB = − i
2






i
(

8
√

u
−v
e−

1

4
α̂ + i 8

√
−v
u
e

1

4
α̂
) (

8
√

u
−v
e−

1

4
α̂ − i 8

√
−v
u
e

1

4
α̂
)

i
(

8
√

u
−v
e−

1

4
α̂ − i 8

√
−v
u
e

1

4
α̂
) (

8
√

u
−v
e−

1

4
α̂ + i 8

√
−v
u
e

1

4
α̂
)




 , (2.99)

with the identification û = −α̂, λ = −2iζ.

The general solution to the sinh-Gordon equation (2.96) with n solitons can be



41

obtained using the inverse scattering method [43] (see appendix A for details)

û(z, z̄) = sinh−1
[4ζ

i

∂(ϕ1ϕ2)

(ϕ1)2 − (ϕ2)2

]

, (2.100)

where the components of spinor ϕ are

ϕ1(ζ, z, z̄) = −
( n∑

j,l=1

λj

ζ + ζj
(1− A)−1

jl λl

)

eiζz̄−iz/4ζ , (2.101)

ϕ2(ζ, z, z̄) =
(

1 +
n∑

j,l,k=1

λj

ζ + ζj

λjλl

ζj + ζl
(1− A)−1

lk λk

)

eiζz̄−iz/4ζ , (2.102)

with the definitions

Aij =
∑

l

ailalj, ail =
λiλl

ζi + ζl
, λk =

√

ck(0)e
iζkz̄−iz/4ζk . (2.103)

Here ck(0) and ζk are two sets of constants related to the initial positions and momenta

of the n solitons.

Starting with the simplest case with n = 1, we have the spinor ϕ

ϕ1 =
c1(0)(2ζ1)

2e2iζ1z̄+iz/2ζ1

(ζ + ζ1)(c21(0)e
4iζ1z̄ − 4ζ2

1e
iz/ζ1)

eiζz̄−iz/4ζ , (2.104)

ϕ2 =

[

1− c21(0)(2ζ1)e
4iζ1z̄

(ζ + ζ1)(c
2
1(0)e

4iζ1z̄ − 4ζ2
1e

iz/ζ1)

]

eiζz̄−iz/4ζ . (2.105)

Plugging into (2.100), we get the sinh-Gordon field

û(z, z̄) = − sinh−1

[
8c1(0)ζ1(c

2
1(0)e

4iζ1z̄ + 4ζ2
1e

iz/ζ1)e2iζ1z̄+iz/2ζ1

(c21(0)e
4iζ1z̄ − 4ζ2

1e
iz/ζ1)2

]

, (2.106)

where c1(0) and ζ1 are purely imaginary in order to make the field real.
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Next we proceed to write down the first spinor φ

φ = g−1
A ϕ, û = −α̂, ζ = −λ/2, (2.107)

and find

φ1 =
(1 + i)

2
√

2
e−

1

2
(iλz̄−iz/λ)

{
8

√

−v
u
e

1

4
α̂ (c1(0)(2ζ1 + λ)e2iζ1z̄ − 2ζ1(2ζ1 − λ)eiz/2ζ1)

(2ζ1 − λ)(c1(0)e2iζ1z̄ + 2ζ1eiz/2ζ1)

+ 8

√
u

−ve
− 1

4
α̂ (c1(0)(2ζ1 + λ)e2iζ1z̄ + 2ζ1(2ζ1 − λ)eiz/2ζ1)

(2ζ1 − λ)(c1(0)e2iζ1z̄ − 2ζ1eiz/2ζ1)

}

, (2.108)

φ2 =
(1− i)
2
√

2
e−

1

2
(iλz̄−iz/λ)

{

− 8

√

−v
u
e

1

4
α̂ (c1(0)(2ζ1 + λ)e2iζ1z̄ − 2ζ1(2ζ1 − λ)eiz/2ζ1)

(2ζ1 − λ)(c1(0)e2iζ1z̄ + 2ζ1eiz/2ζ1)

+ 8

√
u

−ve
− 1

4
α̂ (c1(0)(2ζ1 + λ)e2iζ1z̄ + 2ζ1(2ζ1 − λ)eiz/2ζ1)

(2ζ1 − λ)(c1(0)e2iζ1z̄ − 2ζ1eiz/2ζ1)

}

. (2.109)

For real λ, the components of the spinor φ are normalized to be φ∗
1φ1 − φ∗

2φ2 = 1.

Similarly, for the second spinor ψ, we find

ψ1 =
1

2
√

2

[

e−
1

2
(λz̄+z/λ)a1 + e

1

2
(λz̄+z/λ)b1

]

, (2.110)

ψ2 =
1

2
√

2

[

e−
1

2
(λz̄+z/λ)a2 − e

1

2
(λz̄+z/λ)b2

]

, (2.111)

where

a1 ≡
{

8

√

−v
u
e

1

4
α̂ (c1(0)(2iζ1 + λ)e2iζ1z̄ − 2ζ1(2iζ1 − λ)eiz/2ζ1)

(2iζ1 − λ)(c1(0)e2iζ1z̄ + 2ζ1eiz/2ζ1)

+i 8

√
u

−ve
− 1

4
α̂ (c1(0)(2iζ1 + λ)e2iζ1z̄ + 2ζ1(2iζ1 − λ)eiz/2ζ1)

(2iζ1 − λ)(c1(0)e2iζ1z̄ − 2ζ1eiz/2ζ1)

}

, (2.112)

b1 ≡
{

i 8

√

−v
u
e

1

4
α̂ (c1(0)(2iζ1 − λ)e2iζ1z̄ − 2ζ1(2iζ1 + λ)eiz/2ζ1)

(2iζ1 + λ)(c1(0)e2iζ1z̄ + 2ζ1eiz/2ζ1)

+ 8

√
u

−ve
− 1

4
α̂ (c1(0)(2iζ1 − λ)e2iζ1z̄ + 2ζ1(2iζ1 + λ)eiz/2ζ1)

(2iζ1 + λ)(c1(0)e2iζ1z̄ − 2ζ1eiz/2ζ1)

}

, (2.113)

a2 ≡
{

i 8

√

−v
u
e

1

4
α̂ (c1(0)(2iζ1 + λ)e2iζ1z̄ − 2ζ1(2iζ1 − λ)eiz/2ζ1)

(2iζ1 − λ)(c1(0)e2iζ1z̄ + 2ζ1eiz/2ζ1)
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+ 8

√
u

−ve
− 1

4
α̂ (c1(0)(2iζ1 + λ)e2iζ1z̄ + 2ζ1(2iζ1 − λ)eiz/2ζ1)

(2iζ1 − λ)(c1(0)e2iζ1z̄ − 2ζ1eiz/2ζ1)

}

, (2.114)

b2 ≡
{

8

√

−v
u
e

1

4
α̂ (c1(0)(2iζ1 − λ)e2iζ1z̄ − 2ζ1(2iζ1 + λ)eiz/2ζ1)

(2iζ1 + λ)(c1(0)e2iζ1z̄ + 2ζ1eiz/2ζ1)

+i 8

√
u

−ve
− 1

4
α̂ (c1(0)(2iζ1 − λ)e2iζ1z̄ + 2ζ1(2iζ1 + λ)eiz/2ζ1)

(2iζ1 + λ)(c1(0)e2iζ1z̄ − 2ζ1eiz/2ζ1)

}

. (2.115)

For real λ, the components of the spinor ψ are normalized to be ψ∗
1ψ1 − ψ∗

2ψ2 = 1.

Recalling the change of variables (2.13), the one-spike string solution is then found

to be

Z1 =
e

1+i
2

(iλz̄′−z′/λ)

2(c1(0)e2iζ1z̄′ − 2ζ1eiz′/2ζ1)

{

2ζ1e
iz′/2ζ1(1 + eλz̄′+z′/λ)

+c1(0)e
2iζ1z̄′ (2ζ1 − λ)((2iζ1 + λ)2 + eλz̄′+z′/λ(2iζ1 − λ)2)

(2ζ1 + λ)(4ζ2
1 + λ2)

}

, (2.116)

Z2 =
ie

1+i
2

(iλz̄′−z′/λ)

2(c1(0)e2iζ1z̄′ − 2ζ1eiz′/2ζ1)

{

2ζ1e
iz′/2ζ1(1− eλz̄′+z′/λ)

+c1(0)e
2iζ1z̄′ (2ζ1 − λ)((2iζ1 + λ)2 − eλz̄′+z′/λ(2iζ1 − λ)2)

(2ζ1 + λ)(4ζ2
1 + λ2)

}

, (2.117)

It is interesting to note that u(z̄) and v(z) only come into z̄′ and z′, respectively.

This is the residual conformal symmetry which can be further used to fix the time-

like conformal gauge.

Now we consider the general case with arbitrary number n solitons. The first

spinor φ is solved to be

φ1 = −(1 + i)

2
√

2
e−

1

2
(iλz̄−iz/λ)

{
8

√

−v
u
e

1

4
α̂(ϕ̃2 − ϕ̃1)

1
− + 8

√
u

−ve
− 1

4
α̂(ϕ̃2 + ϕ̃1)

1
−

}

,

φ2 = +
(1− i)
2
√

2
e−

1

2
(iλz̄−iz/λ)

{
8

√

−v
u
e

1

4
α̂(ϕ̃2 − ϕ̃1)

1
− − 8

√
u

−ve
− 1

4
α̂(ϕ̃2 + ϕ̃1)

1
−

}

,

where

(ϕ̃2± ϕ̃1)
1
± = 1±

∑

j,l

λj

±λ
2

+ ζj
(1−A)−1

jl λl +
∑

j,l,k

λj

±λ
2

+ ζj

λjλl

ζj + ζl
(1−A)−1

lk λk. (2.118)
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The subscript ± corresponds to the ± before the spectral parameter λ. The second

spinor ψ is solved to be

ψ1 = − 1

2
√

2

{
8

√

−v
u
e

1

4
α̂
[

e−
1

2
(λz̄+z/λ)(ϕ̃2 − ϕ̃1)

2
+ + ie

1

2
(λz̄+z/λ)(ϕ̃2 − ϕ̃1)

2
−

]

+i 8

√
u

−v e
− 1

4
α̂
[

e−
1

2
(λz̄+z/λ)(ϕ̃2 + ϕ̃1)

2
+ − ie

1

2
(λz̄+z/λ)(ϕ̃2 + ϕ̃1)

2
−

]

, (2.119)

ψ2 = − i

2
√

2

{
8

√

−v
u
e

1

4
α̂
[

e−
1

2
(λz̄+z/λ)(ϕ̃2 − ϕ̃1)

2
+ + ie

1

2
(λz̄+z/λ)(ϕ̃2 − ϕ̃1)

2
−

]

−i 8

√
u

−ve
− 1

4
α̂
[

e−
1

2
(λz̄+z/λ)(ϕ̃2 + ϕ̃1)

2
+ − ie

1

2
(λz̄+z/λ)(ϕ̃2 + ϕ̃1)

2
−

]

, (2.120)

where

(ϕ̃2± ϕ̃1)
2
± = 1±

∑

j,l

λj

± iλ
2

+ ζj
(1−A)−1

jl λl +
∑

j,l,k

λj

± iλ
2

+ ζj

λjλl

ζj + ζl
(1−A)−1

lk λk. (2.121)

Similar to (2.118), the subscript ± corresponds to the ± before the spectral parameter

λ. The n-spike string solution is given by

Z1 =
1− i

4
e

1

2
(iλz̄′−iz′/λ)

{

i(ϕ̃2 − ϕ̃1)
1
+

[

e−
1

2
(λz̄′+z′/λ)(ϕ̃2 + ϕ̃1)

2
+ − ie

1

2
(λz̄′+z′/λ)(ϕ̃2 + ϕ̃1)

2
−

]

+(ϕ̃2 + ϕ̃1)
1
+

[

e−
1

2
(λz̄′+z′/λ)(ϕ̃2 − ϕ̃1)

2
+ + ie

1

2
(λz̄′+z′/λ)(ϕ̃2 − ϕ̃1)

2
−

]}

, (2.122)

Z2 =
1 + i

4
e

1

2
(iλz̄′−iz′/λ)

{

i(ϕ̃2 − ϕ̃1)
1
+

[

e−
1

2
(λz̄′+z′/λ)(ϕ̃2 + ϕ̃1)

2
+ + ie

1

2
(λz̄′+z′/λ)(ϕ̃2 + ϕ̃1)

2
−

]

+(ϕ̃2 + ϕ̃1)
1
+

[

e−
1

2
(λz̄′+z′/λ)(ϕ̃2 − ϕ̃1)

2
+ − ie

1

2
(λz̄′+z′/λ)(ϕ̃2 − ϕ̃1)

2
−

]}

. (2.123)

Let us summarize the properties of the general solution we just constructed. This

general string configuration is characterized by two arbitrary functions u(z̄), v(z) and

a discrete set of moduli representing the soliton singularities (coordinates). After

fixing the conformal frame only the soliton moduli remain giving a specification of

the dynamical string moduli. These represent general motions of the spikes and their

locations.
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2.5 Summary

We have introduced a picture where the soliton solutions are seen to be in a one-

to-one correspondence with the spike solutions of the AdS string. This picture leads

to some simple classical solutions for strings moving in AdS spacetime. We have

studied in depth the so-called spiky string configurations and their properties. The

identification of string spikes with soliton configurations explains the usefulness of

the inverse scattering technique in constructing string configurations. We present the

construction of general (spiky) string solutions associated with the most general n-

soliton configurations on an infinite line. Our general solution is given in terms of two

arbitrary functions representing the conformal frame and a discrete set of (collective)

coordinates representing the solitons.



Chapter 3

Intermezzo

The investigation of classical string dynamics in AdS spacetime revealed the following

structure. General classical motions can be characterized by the number of spikes, this

number does not change under perturbations and remains conserved. As such it has

the characteristics of a topological quantum number for solitons, where the number of

solitons remains conserved in classical and quantum dynamics. The existence of this

conservation number leads to the existence of superselection sectors with fixed number

of spikes. This leads to great simplification of the nonlinear string dynamics in AdS

spacetime. One can concentrate on a particular sector with fixed (and conserved)

number of spikes, where the dynamical variables characterizing the motion are the

locations of the spikes. This moduli space is particle-like and in the sector with n-

spikes the moduli space becomes that of n-particles characterizing the spike locations.

It is these moduli (or collective coordinates) that follow a closed set of equations

describing the dynamics of the moduli space. This dynamical system provides a 0-

brane picture of the AdS string and it is then expected that the full string can be

reconstructed from the collective dynamics of its moduli.

46
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3.1 Sinh-Gordon soliton dynamics

The sinh-Gordon soliton dynamics can be summarized by an associated n-body prob-

lem [44]. One way to deduce the dynamics of sinh-Gordon solitons is to follow the

poles of the Hamiltonian density [45]. Here we denote the sinh-Gordon field as φ and

use the variables t, x, the general solution to the sinh-Gordon equation can be written

in the form

φ = ln(f/g)2. (3.1)

Plugging the above ansatz into the Hamiltonian density, we find

H =
2

f2g2

[

(fgx − gfx)
2 + (fgt − gft)

2 +
1

4
(f2 − g2)2

]

. (3.2)

One has the poles of the Hamiltonian density located at

fg = 0. (3.3)

Firstly, let us consider the one-soliton solution to the sinh-Gordon equation

φs,s̄ = ± ln
[

tanh
(x− x0)− vt

2
√

1− v2

]2

, (3.4)

where x0 is the initial position of the soliton and v is the velocity of the soliton.

The motion of poles are easily determined by (3.3) and we get x(t) = x0 + vt, which

represents a free motion of the pole. The rest mass of the soliton diverges at x = 0.

However, in this whole analysis of dynamics, the rest mass turns out to be an overall

multiplier and we can set m = 1.
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Secondly, for the two-soliton solution in the center-of-mass frame

φss = ln
[v cosh(γx)− cosh(γvt)

v cosh(γx) + cosh(γvt)

]2

, (3.5)

where γ = (1− v2)−1/2 and v is the relative velocity of the two solitons, the poles are

located at

fg = v2 cosh2(γx)− cosh2(γvt) = 0, (3.6)

so that the trajectories are

x(t) = ±1

γ
cosh−1

[1

v
cosh(γvt)

]

. (3.7)

These trajectories are the same as the sine-Gordon solitons [45]. Similarly, the time

delay of two-soliton scattering can be easily worked out as

∆t = lim
L→∞

(
1

γv
cosh−1[v cosh(γx)]|L−L −

2L

v

)

=
2

γv
ln v. (3.8)

A classical relativistic particle is most conveniently described not with its custom-

ary momentum p and position x, but rather with is rapidity θ and the canonically

conjugate generalized position q, which are defined by

p ≡ sinh θ, x ≡ q/ cosh θ. (3.9)

We see that the trajectories and time delays are the same with those of the sine-

Gordon theory. The dynamics therefore can be summarized by a n-body Hamiltonian

of Ruijsenaars and Schneider [46] form

H =
N∑

j=1

cosh θj

∏

k 6=j

f(qj − qk). (3.10)
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In the case of two particles, one defines the center-of-mass variables

s = q1 + q2, ϕ = 1
2
(θ1 + θ2), (3.11)

q = q1 − q2, θ = 1
2
(θ1 − θ2), (3.12)

the soliton dynamics is governed by the reduced Hamiltonian

Hr = cosh θ W (q). (3.13)

The potential for soliton-soliton scattering is given by

W (q) =
∣
∣
∣coth

(q

2

)∣
∣
∣ . (3.14)

A quick way to see the above potential gives the time delay (3.8) is to note first that

(3.13) implies

q̇2 +W 2(q) = H2
r . (3.15)

Now Hr is a constant of motion, so that we may plug in the potential (3.14) and get

q̇2 + 1/ sinh2(q/2) = E, (3.16)

where E = H2
r − 1 = sinh2 θ. Then the time delay is calculated as

∆t = lim
L→∞





∫ L

−L

dq
√

sinh2 θ − 1/ sinh2[q/2]
− 2L

tanh θ



 =
2

sinh θ
ln[tanh θ], (3.17)

which agrees with (3.8) by noticing v = tanh θ.
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The generators

H = P 0 = 2coshϕ cosh θ W (q), (3.18)

P = P 1 = 2 sinhϕ cosh θ W (q), (3.19)

J = −(q1 + q2) = −s, (3.20)

closes the 2D Poincaré algebra. A manifestly relativistic description of this system

can be given as follows. Consider the coordinates x
(i)
µ , i = 1, 2 and the constraints

p2
1 −M2[(x1 − x2)

2] = 0, (3.21)

p2
2 −M2[(x1 − x2)

2] = 0. (3.22)

Here M(x2) is a function of relative distance to be specified later. In the center-of-

mass frame, defining the variables P = 1
2
(p1 + p2), p = 1

2
(p1 − p2), X = x1 + x2,

x = x1 − x2, the constraints become

P 2 + p2 −M2(x2) = 0, (3.23)

P · p = 0. (3.24)

The commutation of (3.23) and (3.24) leads to an extra constraint

P · x = 0 (3.25)

This description involves two times: x
(1)
0 and x

(2)
0 . The second class constraints (3.24)

and (3.25) can be used for elimination of x
(1)
0 −x(2)

0 and the corresponding momentum
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and allow a single time x0 = 1
2
(x

(1)
0 + x

(2)
0 ) description. Specifically,

xµ = Pµū+ bµu, (3.26)

pµ =
Pµ

P 2
π̄ + bµπ, (3.27)

with b ·P = 0 reduces the constraints (3.24, 3.25) to ū = π̄ = 0. What remains is the

center-of-mass variables Xµ, Pµ and the relative {π, u} = 1 degrees of freedom plus

the equation

P 2
µ + π2 −M2(u2) = 0. (3.28)

To deduce the function M(u2) just take the Ruijsenaars-Schneider Hamiltonian and

find

P 2
0 − P 2

1 = cosh2 θ +
cosh2 θ

q2
. (3.29)

Identifying π = sinh θ, u = q
cosh θ

, this has the form of (3.28) with

M2(u2) = 1 +
1

u2
. (3.30)

This shows how the two-body sine-Gordon system is described in manifestly relativis-

tic terms with constraints (3.23, 3.24, 3.25).

3.2 String dynamics in flat spacetime

It is useful to summarize the construction of a much simpler case of flat three dimen-

sional string representing the R → ∞ limit of the AdS spacetime. In this case the

reduced theory is given by the Liouville equation [47, 48] whose general solutions are

explicitly given.
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The conformal gauge equations of motion for strings in flat spacetime are

∂+∂−X = 0, (3.31)

as well as the Virasoro constraints

(∂+X)2 = (∂−X)2 = 0, (3.32)

where Xµ = (X0, X1, X2) with the flat metric ηµν = {−1, 1, 1}. Here we follow

the notation σ± = τ ± σ so that ∂± = (∂τ ± ∂σ)/2, where τ, σ are the Minkowski

worldsheet coordinates of the string. Defining the scalar field

α(σ+, σ−) ≡ − ln[∂+X · ∂−X], (3.33)

we find the equation of motion for α to be

∂+∂−α(σ+, σ−) − u(σ+)v(σ−)eα = 0, (3.34)

where u(σ+) and v(σ−) are two arbitrary functions. The general solution to the

Liouville equation (3.34) reads

α = ln
[ 2

u(σ+)v(σ−)

f ′(σ+)g′(σ−)

[f(σ+) + g(σ−)]2

]

. (3.35)

In order to understand the most general form of the string solution we note that in

the conformal gauge one still has a residual symmetry. Both the equations of motion

(3.31) and the Virasoro constraints (3.32) are invariant with respect to the conformal

transformations σ+ → f(σ+), σ− → g(σ−). We can, without loss of generality, specify
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the conformal frame by the following conditions

Ẋ2
,+ = u2(σ+), Ẋ2

,− = v2(σ−). (3.36)

The general solution to the equations of motion (3.31) satisfying the Virasoro con-

straints (3.32) is now constructed following [47] as

Xµ(σ+, σ−) = ψµ
+(σ+) + ψµ

−(σ−), (3.37)

where ψ
′µ
+ and ψ

′µ
− being the isotropic vectors

(ψ′
±)2 = 0. (3.38)

The prime implies the differentiation with respect to the function argument. Substi-

tuting (3.37) into (3.36), we obtain one more condition on ψµ
±

(ψ
′′

+)2 = u2(σ+), (ψ
′′

−)2 = v2(σ−). (3.39)

The conditions (3.38) and (3.39) can easily be satisfied by expanding the vectors ψ
′µ
±

in a special basis. In the case of three dimensions, we choose the basis

e1 =
1√
2









1

1

0









, e2 =
1√
2









1

−1

0









, e3 =









0

0

1









. (3.40)

The expansion for ψ′
±(σ±) in this basis can be written as

ψ′
+(σ+) = +

u(σ+)

f ′(σ+)

[

e1 +
1

2
f2(σ+)e2 + f(σ+)e3

]

, (3.41)

ψ′
−(σ−) = − v(σ

−)

g′(σ−)

[

e1 +
1

2
g2(σ−)e2 − g(σ−)e3

]

. (3.42)
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The spikes are located at (X ′)2 = −2e−α = 0, which generates the condition

f(σ+) + g(σ−) = 0. (3.43)

As an example, take the spiky string solution in [31], we have

ψ+(σ+) =









λ(n − 1)σ+

λ cos((n − 1)σ+)

λ sin((n− 1)σ+)









, ψ−(σ−) =









λ(n − 1)σ−

λ(n− 1) cos(σ−)

λ(n − 1) sin(σ−)









, (3.44)

so that

u = λ(n − 1)2, v = λ(n − 1). (3.45)

Using the representation (3.41) and (3.42), we find

f(σ+) =
√

2 cot
(n− 1)σ+

2
, g(σ−) = −

√
2 cot

σ−

2
. (3.46)

The condition (3.43) generates the locations of spikes

(n− 1)σ+ − σ− = 2πm, (3.47)

which of course agrees with [31].

As we have understood that spikes in the string configuration are associated with

locations of solitons (singularities) in the scalar field solution. For the Liouville theory

a detailed study of the dynamics of singularities was given in [48]. They are deter-

mined by the equation (3.43) giving a description of the world lines of dynamical

particles. This interpretation is suggested by the time-like nature of the singularity

lines and the fact that each line is characterized by the initial data σ0
j and vj. Ex-

plicitly, if σj(τ ) is the equation of the j-th singularity line, then we have σj(0) = σ0
j ,
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σ̇j(0) = vj.

To summarize the discussion of [48], one starts with arbitrary functions f(σ+)

with NA singularities and g(σ−) with NB singularities

f(σ+) =

NA∑

j=1

cj
yj − σ+

, g(σ−) =

NB∑

j=1

dj

zj − σ− , (3.48)

where cj , dj, yj, zj are constants. The number of singularities determined by (3.43) is

N = NA +NB − 1, which we denote by σ±
i (τ ), where τ is the variable parameterizing

the lines, and for convenience we assume that

σ±
i (0) = ±σ0

i , σ̇±
i (0) = 1± vi, i = 1, 2, · · · , N. (3.49)

Thus, we obtain the system

NA∑

j=1

cj
yj − σ+

i

+

NB∑

j=1

dj

zj − σ−
i

= 0, i = 1, 2, · · · , N. (3.50)

The constants cj, dj , yj, zj in this system must be determined from the initial data

of the Liouville field. Here, this can be seen directly. We differentiate (3.50) with

respect to τ ,

σ̇+
i

NA∑

j=1

cj
(yj − σ+

i )2
+ σ̇−

i

NB∑

j=1

dj

(zj − σ−
i )2

= 0, i = 1, 2, · · · , N. (3.51)

Setting now τ = 0 in (3.50) and (3.51) and using (3.49), we obtain a system of

2N = 2(NA+NB)−2 equations for determining the 2(NA+NB) constants cj, dj , yj, zj.

The remaining two-parameter arbitrariness exactly coincides with the arbitrariness

of the restricted Bianchi transformation.
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To obtain the dynamical equations of motion whose solutions are to be these

singularities lines, we can differentiate further (3.51) with respect to τ . These really

are the equations of motion, since the constants cj, dj, yj, zj can be expressed in

accordance with (3.50) and (3.51) in terms of σ+
i , σ̇

+
i , σ

−
i , σ̇

−
i not only for τ = 0 but

also at any time τ , in particular the time at which we consider the system equations

of motion.

Turning now to the string solution, it was given generally by (3.41, 3.42) with two

arbitrary functions f(σ+) and g(σ−) and the functions u(σ+) and v(σ−) representing

the conformal frame. After fixing these, one can in principle integrate (3.41, 3.42)

to determine the string solution. A particular interesting class of these functions

are those with singularities described above. These singularities in field theory will

translate to spikes in string theory. To exemplify this connection, we will describe

the simplest cases with one and two singularities, i.e., one and two spikes.

In the case of one singularity, set N = NA = NB = 1 in (3.48), using the initial

data (3.49), we can solve for the constants

c1 = −d1
1 + v1

1− v1
, y1 =

2σ0
1

1− v1
+ z1

1 + v1

1− v1
. (3.52)

so that the trajectory of the singularity is

σ1(τ ) = σ0
1 + v1τ. (3.53)
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By integrating (3.41) and (3.42), we get the string solution

X0 =
u√

2d1ṽ1

(1

3
(σ̃+)3 +

1

2
d2

1ṽ
2
1σ̃

+
)

+
v√
2d1

(1

3
(σ̃−)3 +

1

2
d2

1σ̃
−
)

, (3.54)

X1 =
u√

2d1ṽ1

(1

3
(σ̃+)3 − 1

2
d2

1ṽ
2
1σ̃

+
)

+
v√
2d1

(1

3
(σ̃−)3 − 1

2
d2

1σ̃
−
)

, (3.55)

X2 =
u

2
(σ̃+)2 +

v

2
(σ̃−)2, (3.56)

where, for simplicity, u and v are chosen to be constants and the redefinitions

σ̃+ ≡ σ+ − 2σ0
1

1− v1
− z1

1 + v1

1− v1
, σ̃− ≡ σ− − z1, ṽ1 ≡

1 + v1

1− v1
. (3.57)

We can generalize the above case to the ‘periodic’ case with the identity

cot
x

2
=

∞∑

n=−∞

2

x+ 2πn
, (3.58)

and find

f(σ+) =
d1ṽ1

2
cot

σ̃+

2
, g(σ−) = −d1

2
cot

σ̃−

2
. (3.59)

After the integration, the string solution is found to be

X0 = −
√

2u

d1ṽ1

(

(σ̃+ − sin σ̃+) +
d2

1ṽ
2
1

8
(σ̃+ + sin σ̃+)

)

−
√

2v

d1

(

(σ̃− − sin σ̃−) +
d2

1

8
(σ̃− + sin σ̃−)

)

, (3.60)

X1 = −
√

2u

d1ṽ1

(

(σ̃+ − sin σ̃+)− d2
1ṽ

2
1

8
(σ̃+ + sin σ̃+)

)

−
√

2v

d1

(

(σ̃− − sin σ̃−)− d2
1

8
(σ̃− + sin σ̃−)

)

, (3.61)

X2 = u cos σ̃+ + v cos σ̃−. (3.62)

It is interesting to notice the special case where

v1 = 0, ṽ1 = 1, d1 = 2
√

2, (3.63)
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the string solution (3.60-3.62) reduces to the spiky strings in [31] with two spikes

(n = 2) if we identify

σ̃+ =
π

2
− σ+, σ̃− =

π

2
− σ−, u = λ, v = λ. (3.64)

3.3 AdS space dynamics

Here we focus on two simple examples where the energies can be explicitly evaluated.

First, for one soliton, we choose the parameters to be

u(z̄) = 2, v(z) = −2, c1(0) = −2ζ1 = −iṽ1, (3.65)

where ṽ1 ≡
√

(1− v1)/(1 + v1) and v1 is the velocity of soliton on the worldsheet.1

This will correspond to the one-soliton solution of the sinh-Gordon equation

α = ln
[

2 tanh2
[ σ − v1τ
√

1− v2
1

]]

. (3.66)

In terms of the worldsheet coordinates τ and σ, the string solution is given by

Z1 =
eiτ

e(σ−τ )/ṽ1 + e−(σ+τ )ṽ1

{

e(σ−τ )/ṽ1 coshσ

+e−(σ+τ )ṽ1
(1− iṽ1)

2((1 + ṽ2
1) cosh σ + 2ṽ1 sinhσ)

1− ṽ4
1

}

, (3.67)

Z2 =
−ieiτ

e(σ−τ )/ṽ1 + e−(σ+τ )ṽ1

{

e(σ−τ )/ṽ1 sinhσ

+e−(σ+τ )ṽ1
(1− iṽ1)

2((1 + ṽ2
1) sinh σ + 2ṽ1 cosh σ)

1− ṽ4
1

}

. (3.68)

1Notice, in general, the worldsheet time τ is different from the global time t.
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The momenta densities are calculated as

Pτ
t =

√
λ

2π
Im(Ż∗

1Z1), Pσ
t =

√
λ

2π
Im(Z

′∗
1 Z1), (3.69)

Pτ
θ =

√
λ

2π
Im(Ż∗

2Z2), Pσ
θ =

√
λ

2π
Im(Z

′∗
2 Z2), (3.70)

where λ is the coupling constant. One can explicitly check Pσ
t and Pσ

θ vanish asymp-

totically at σ = ±∞ as long as the string solution is regular. That is, in the singular

case when v1 = 0, we found nonvanishing momentum flow with τ dependence at the

boundary of the string [36].

By the current conservation ∂τPτ
t,θ − ∂σPσ

t,θ = 0, we can calculate the energy and

angular momentum at any convenient τ . For instance, the energy and momentum

densities at τ = 0 are simplified to be

Pτ
t =

√
λ

2π(eσ/ṽ1 + e−σṽ1)2

{

e2σ/ṽ1 cosh2 σ + e−2σṽ1

(cosh σ + ε−1
1 sinhσ

v1

)2}

, (3.71)

Pτ
θ =

√
λ

2π(eσ/ṽ1 + e−σṽ1)2

{

e2σ/ṽ1 sinh2 σ + e−2σṽ1

(sinhσ + ε−1
1 coshσ

v1

)2}

, (3.72)

where ε1 ≡ (1 − v2
1)

−1/2 is the energy of the soliton. Introduce a cutoff Λ for the σ

integration, up to the subleading term, the energy and angular momentum are

E =

∫ Λ

−Λ

Pτ
t dσ ∼

√
λ

2π

[ 1

4(1 + ε−1
1 )

e2Λ + Λ
]

, (3.73)

S =

∫ Λ

−Λ

Pτ
θ dσ ∼

√
λ

2π

[ 1

4(1 + ε−1
1 )

e2Λ − Λ
]

. (3.74)

Therefore, the difference between E and S can be calculated as

E − S =

√
λ

2π

∫ Λ

−Λ

cosh[2ε1σ]

1 + cosh[2ε1σ]
dσ ∼

√
λ

2π

[

ln
8πS√
λ

+ ln(1 + ε−1
1 )− ε−1

1

]

. (3.75)

Measuring the energy from the infinite GKP string, the dispersion relation can be
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written as

E − S = E0 +

√
λ

2π

[1

2
ln

1 + ε−1
1

1− ε−1
1

− ε−1
1

]

(3.76)

with the excitation energy

E1
spike(ε1) ≡ E − S −E0 =

√
λ

2π

[1

2
ln

1 + ε−1
1

1− ε−1
1

− ε−1
1

]

. (3.77)

The inverse power in the soliton energy shows a similarity with the case of giant

magnons on R × S2 [18] where the excitation energy of the string (and the giant

magnon) is equal to the inverse of the sine-Gordon soliton energy.2 Here in the AdS

case we find extra logarithmic terms pointing to a more complicated dynamical system

governing the spike dynamics in AdS as compared with R× S2.

Our next explicit example is for two solitons, where the parameters are chosen to

be

c1(0) = 2ζ1
ζ1 + ζ2
ζ1 − ζ2

, c2(0) = 2ζ2
ζ1 + ζ2
ζ1 − ζ2

, ζ1 = − i
2
ṽ1, ζ2 =

i

2
ṽ−1

2 , (3.78)

where ṽ1,2 ≡
√

(1− v1,2)/(1 + v1,2) and v1,2 are the magnitudes of the velocities of

the two solitons moving towards each other. The exact expressions for the momenta

densities are lengthy to write them down, but the leading terms at τ = 0 are

Pτ
t ∼

√
λ

2π

[1

4

(1− ṽ1

1 + ṽ1

)2

e2σ +
1

4

(1− ṽ2

1 + ṽ2

)2

e−2σ +
1

2

]

, (3.79)

Pτ
θ ∼

√
λ

2π

[1

4

(1− ṽ1

1 + ṽ1

)2

e2σ +
1

4

(1− ṽ2

1 + ṽ2

)2

e−2σ − 1

2

]

. (3.80)

In the special case where v1 = v2 = v, the dispersion relation is

E − S =

√
λ

2π

[

ln
8πS√
λ

+ ln
1 + ε−1

1− ε−1
− 2ε−1 + · · ·

]

. (3.81)

2There one uses a time-like gauge t = τ .
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For different velocities, using the symmetric ρ regularization, we obtain the result

E − S =

√
λ

2π

[

ln
8πS√
λ

+
1

2
ln

1 + ε−1
1

1− ε−1
1

+
1

2
ln

1 + ε−1
2

1− ε−1
2

− ε−1
1 − ε−1

2

]

. (3.82)

Following the definition of spike energy (3.77), the excitation energy of the two-spike

solution is given by the sum of two individual spike energies

E2
spike(ε1, ε2) = E1

spike(ε1) + E1
spike(ε2). (3.83)

In the center of mass frame v1 = v2 = v, the energy is E2
spike(ε) = 2E1

spike(ε).

In general the sinh-Gordon singularities behave as particles and follow interacting

particle trajectories. Through our explicit transformations this dynamics translates

into the spike dynamics of the AdS3 string. Concretely, given the trajectories of N

solitons xi(t), i = 1, 2, · · · , N , we can in principle by direct substitution (2.122, 2.123)

with σi(τ ) construct the trajectories of N spikes by

Z i
1(τ ) = Z1(τ, σi(τ )), Z i

2(τ ) = Z2(τ, σi(τ )), (3.84)

where τ acts like the proper time. We therefore have a mapping where on the left

hand side the index i labels the string spikes while on the right side it denotes the

solitons/singularities. This construction is straightforward in principle, with the map

provided by the known wavefunctions of the scattering problem.

Some general features of the dynamics that emerge from the construction can be

deduced. First of all theN -body field theory dynamics being integrable it is automatic

that the corresponding string theory system defined by our inverse scattering map

is also integrable. The soliton N -body interactions have the characteristic that they

are of Calogero type (as compared to the Toda, nearest neighbor interactions). It
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is not obvious, and remains to be established which of these two possible integrable

schemes are associated with the spike dynamics of closed AdS strings. Here we also

have the analogy and lessons from the recent study of N -body description of magnons

on R × S2. In the magnon case the map between the soliton dynamical system and

the “string” system was established in [49]. It involves the multi-Hamiltonian and

multi-Poisson structures of the integrable N -body Ruijsenaars-Schneider system [50].

Our present construction implies that such a correspondence is also expected to hold

in the AdS case.

3.4 Spikes and Singletons

A group theoretic description of the spikes was given by Sundell et. al. [51] in terms

of singletons. Singletons are ultra-short unitary irreducible representations (UIR) of

so(2, d) whose weights form single lines in weight space. This phenomena was first

discovered by Dirac [52] in the case of the scalar and spinor singletons in d = 3.

Since SO(2, 3) can be realized as the group of the isometries of AdS4, singletons play

a key role in the study of AdS physics. Singletons also play an important role in

higher-spin gauge theory, where the presently known full higher-spin field equations,

due to Vasiliev, are based on gauging higher-spin algebras given by subalgebras of

the enveloping algebra of so(2, d) obtained by factoring out ideals given by singleton

annihilators.

The main characteristic of singletonic particles is that they are unobservable in the

bulk of AdS and, as isolated objects, they can only be observed on the boundary. They

can be naturally described by a conformal particle on the zero radius limit of AdS,

known as Dirac’s hypercone, leading to an sp(2)-gauged sigma model. However, their



63

composites are indeed observable in the bulk, since they are the ordinary massless and

massive particles in AdS. In fact, a fundamental result for quantum field theory in

AdS space is the compositeness theorem by Flato and Fronsdal [53] that the product

of two (scalar or spinor) singleton representations decomposes into an infinite sum

over all possible massless representations. This result can be interpreted by saying

that any massless particle in AdS is a composite object made of two singletons.

Writing the generators of the SO(2, 3) group as Lαβ, an UIR of so(2, 3) is denoted

byD(E0, s) where E0 is the lowest energy eigenvalue of L05 and s is the spin eigenvalue

of L12. (The elements L05, L12 generate a compact Cartan subalgebra.) Massless

particles in AdS space are composite: Each state of a massless particle, with arbitrary

spin, may be regarded as a state of two Dirac singletons. The two positive energy

Dirac singletons are called Di and Rac

Di = D(1, 1/2), Rac = D(1/2, 0). (3.85)

The spectrum of the Cartan subalgebra is given by

Di : E = J +
1

2
, J =

1

2
,
3

2
,
5

2
, ... (3.86)

Rac : E = J +
1

2
, J = 0, 1, 2, ... (3.87)

Here J is the total angular momentum defined by L2
12 + L2

23 + L2
31 = J(J + 1). The

dimension of each L05-eigenspace is precisely 2J + 1.

Massless particles are associated with the family D(s+1, s) and D(2, 0). In these
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representations, the spectra of the Cartan subalgebra are given by

D(s + 1, s) : E = J + 1, J + 2, ... s > 0, (3.88)

D(1, 0) : E = J + 1, J + 3, ... (3.89)

D(2, 0) : E = J + 2, J + 4, ... (3.90)

and J = s, s+1, ... in every case. All these representations are unitary and irreducible.

The singletons have the following wonderful properties

Di⊗ Di = ⊕s=1,2,...D(s + 1, s)⊕D(2, 0) (3.91)

Di⊗ Rac = ⊕2s=1,3,...D(s + 1, s) (3.92)

Rac⊗ Rac = ⊕s=0,1,2,...D(s + 1, s) (3.93)

which can be naively proven by calculating the characters.

3.4.1 The Rac and composites

The Rac is the unitary, irreducible representation D(1/2, 0). The anti-Rac or Rac is

the corresponding negative-energy representation D(−1/2, 0). These representations

are related to the “massless” representations D(s + 1, s) by the formulas

Rac⊗ Rac = ⊕sD(s + 1, s), (3.94)

Rac⊗ Rac = ⊕sD(−s− 1, s). (3.95)

The Rac particle is a particle on the cone u2 = u2
0 + u2

5 − ~u2 = 0, it satisfies the

equations

∂2
uφ = gαβ∂α∂βφ = 0, (uα∂α +

1

2
)φ = 0. (3.96)
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Parametrizing the cone as

u0 = U sin t, u5 = U cos t, ~u = Uû, (3.97)

and use the ansatz φ(u) = U−1/2φ(t, û), we find the equation of motion in three

dimensional subspace

(∂2
t + ~L2 +

1

4
)φ(t, û) = 0. (3.98)

This equation can be obtained by variation of the invariant action

A =

∫

S1×S2

dtdû
1

2

[

φ2
t − φ2

θ −
1

sin2 θ
φ2

φ −
1

4
φ2

]

. (3.99)

The positive energy, stationary solution is

φlm(t, û) = (2l + 1)−1/2e−it(l+1/2)Ylm(û) (3.100)

where Ylm(û) are the spherical harmonics.

Naively, the 2-Rac field Φ(u, v) is a bi-local scalar field satisfying the system of

equations

(u · ∂u +
1

2
)Φ = (v · ∂v +

1

2
)Φ = 0,

∂2
uΦ = ∂2

vΦ = 0. (3.101)

A close examination shows adding one more constraint ∂u · ∂vΦ = 0 will get rid of

the mixed eigenstates of energy and angular momentum in Rac ⊕ Rac. Therefore,

the 2-Rac field carrying the unitary representation (Rac⊕Rac)⊗ (Rac⊕Rac) must



66

satisfy the following set of equations

(u · ∂u +
1

2
)Φ = (v · ∂v +

1

2
)Φ = 0,

∂2
uΦ = ∂2

vΦ = ∂u · ∂vΦ = 0. (3.102)

3.4.2 Two singletons equals massless higher spin particles

To describe a particle in AdS with spin, one can use a two-particle system corre-

sponding to the two-Rac’s. This model possesses two gauge symmetries expressing

strong conservation of the phase-space counterparts of the second- and fourth-order

Casimir operators for so(2, 3). We have the generators

JAB = yAp
y
B − yBp

y
A + zAp

z
B − zBp

z
A. (3.103)

where yA and zA represent two separate objects and A,B = 0, 1, 2, 3, 5 with the metric

ηAB = diag(−,+,+,+,−). The second- and fourth-order Casimir operators are given

by

Ω1 =
1

2
JABJ

AB = y2p2
y − (y · py)

2 + z2p2
z − (z · pz)

2

+2(y · z)(py · pz)− 2(y · pz)(z · py), (3.104)

Ω2 =
1

4
JABJ

B
CJ

C
DJ

DA − 1

2

(1

2
JABJ

AB
)2

= +y2(p2
z(zpy)

2 + p2
y(zpz)

2 − 2(pypz)(zpy)(zpz))

+z2(p2
z(ypy)

2 + p2
y(ypz)

2 − 2(pypz)(ypy)(ypz))

+y2z2((pypz)
2 − p2

yp
2
z) + (yz)2(p2

yp
2
z − (pypz)

2)

−(ypz)
2(zpy)

2 − (ypy)
2(zpz)

2 + 2(ypy)(ypz)(zpy)(zpz)

+2(pypz)(ypy)(yz)(zpz) + 2(pypz)(ypz)(yz)(zpy)

−2p2
y(ypz)(yz)(zpz)− 2p2

z(ypy)(yz)(zpy). (3.105)
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They are constrained to

Ω1 + E2
0 + s2 = 0, (3.106)

Ω2 + E2
0s

2 = 0. (3.107)

A solution to the constraints leads to

y · py = −E0, (3.108)

y · pz = 0, (3.109)

p2
z = 0, (3.110)

z · pz = s, (3.111)

p2
y = 0, (3.112)

py · pz = 0. (3.113)

The massless case corresponds to E0 = s+ 1. These constraints will be seen to agree

with Fronsdal’s covariant formulation of higher-spin theory that will be explored in

the next chapter.

3.5 Summary

In this middle chapter we have presented a heuristic discussion of various aspects of

the spiky string configuration moduli space. We have mainly concentrated on the

simplest n = 2 (two-body) case describing its Hamiltonian dynamics and also a pos-

sible group theoretic interpretation in terms of “singletons” of Dirac and Fronsdal.

Through this insight one is led to an emerging higher-spin picture that bound single-

tons (or spikes) dynamically generate massless, higher spin degrees of freedom in AdS
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spacetime. This picture is only heuristic, it is based on the compositeness argument

of Flato and Fronsdal where a direct product of two simple (Rac) representations

generates an infinite sequence of states with growing spins. What is lacking in this

picture is a dynamical mechanism for the formation of bound states. Such dynamical

mechanism will be provided by the large N collective field theory framework intro-

duced in the 80’s for systematically representing field theories with large (N → ∞)

degrees of freedom. It will be seen that for a many body problem of large number

of spikes, or a large number of scalar fields, a collective picture results in generation

of a curved AdS spacetime (with one extra dimension) and of the interacting Higher

Spin Gravity.



Chapter 4

Higher Spin Anti-de Sitter Gravity

The second part of the Dissertation describes work on reconstructing gravity and

spacetime from the partonic sub-structure. We will first give a review of the higher

spin gauge theory. The Lagrangian description of free higher-spin fields was found

by Fronsdal. The gauge invariance of the free equation of motion can be shown by

requiring the tensor fields to be symmetric and double traceless. The cubic interaction

was proposed by Fradkin and Vasiliev following by writing the higher-spin fields using

the spinor notation and following the MacDowell-Mansuri action of Einstein gravity.

Extension to the full nonlinear level is a highly nontrival problem. However, the

full set of nonlinear equations of motion was later found by Vasiliev. By taking the

Vasiliev’s equations to linear order, we recover Fronsdal’s free equation of motion.

69
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4.1 Fronsdal’s free higher-spin gravity

The theory of free massless fields of all spins is now developed in full detail. Note

that in d = 3 + 1 flat spacetime, the physical fields of spin s ≤ 2 are part of the

family of the symmetric tensors. Their well know equations of motion and gauge

transformations are reproduced below in a form suitable for the generalization to the

case of higher spin fields

• s = 0: φ(x)-scalar fields, ∂µ∂
µφ = ∂2φ = 0, matter field, no gauge symmetry;

• s = 1: Aµ(x)-Maxwell field, ∂µFµν = ∂2Aν − ∂ν∂µA
µ = 0, δAµ = ∂µξ(x);

• s = 2: gµ1µ2
(x)-graviton, Rµ1µ2

= 0, δgµ1µ2
= Dµ1

ξµ2
+ Dµ2

ξµ1
, where Dµ =

∂µ + Γρ
µν is the covariant derivative and Γµν,ρ = 1

2
(∂ρgµν − ∂µgνρ − ∂νgµρ) is the

Christoffel connection.

Except for the scalar fields, all other massless fields are gauge fields. So it is natural

to assume that all massless higher spin fields are gauge fields. In the case of AdS

space, the partial derivative ∂ is replaced by the covariant derivative 5.

The higher spin field with spin s is described using the symmetric tensor field

of rank s: hν1...νs . The quadratic actions S
(2)
s for free higher-spin fields can be fixed

unambiguously (up to an overall factor) by the requirement of gauge invariance under

the transformations δhν1...νs = 5{ν1
εν2...νs} with the parameters εν1...νs−1

being traceless

ερρν3...νs−1
= 0. The final result is [54]

S(2)
s =

∫ √−gd4x
[1

2
gµν(5µh) · (5νh)−

1

2
s(5 · h) · (5 · h)

+
1

2
s(s− 1)(5 · h′) · (5 · h)− 1

4
s(s− 1)gµν(5µh

′) · (5νh
′)
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−1

8
s(s− 1)(s− 2)(5 · h′) · (5 · h′)− ρ

2
(s2 − 2s− 2)h · h

+
1

4
s(s− 1)(s2 − 3)h′ · h′

]

, (4.1)

where ρ is the curvature parameter of the AdS space, h′ is the single trace of h and

the double trace h′′ vanishes identically. The gauge invariant free equation of motion

can be deduced from the quadratic action and we get

�h−
∑

1

5(5 · h) +
1

2

∑

1

5
∑

1

5h′ + (s2 − 2s − 2)ρh

+
∑

2

g[55 h −�h′ − 1

2

∑

1

5(5 · h′)− (s2 − 3)ρh′] = 0, (4.2)

where � is the covariant d’Alembertian. The sums are over all unequal orderings of

the indices; thus
∑

1 contains s terms and
∑

2 contains 1
2
s(s−1) terms, since h and g

are symmetric. A more digestable form of the free equation of motion can be written

as [55]

5ρ5ρ hµ1...µs − s5ρ 5µ1
hρ

µ2...µs
+

1

2
s(s− 1)5µ1

5µ2
hρ

ρµ3...µs

+2(s− 1)(s+ d− 3)hµ1...µs = 0. (4.3)

4.1.1 Covariant gauge

In covariant formulation, the gauge conditions are

gµνhµν... = 0, gµν 5µ hν... = 0. (4.4)
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Using the embedding coordinates yαyα = y2
0− y2

1− y2
2− y2

3 +y2
5 = 1/ρ, the new tensor

fields kα··· are related to hµ··· by

hµ···(x) = y α
µ · · · kα···(y(x)), (4.5)

where y α
µ = ∂yα/∂xµ. In order to guarantee the same degrees of freedom, the tensor

fields k must satisfy the transversality and homogeneity conditions

yαkα··· = 0, k(λy) = λNk(y). (4.6)

Furthermore, the gauge condition (4.4) can be written neatly as

∂αkα··· = 0. (4.7)

Now we can reformulate the results using h in terms of k. The double traceless

condition h′′ = 0 directly translates to k′′ = 0. The degree of homogeneity of k is

fixed by (4.6) so that

(N̂ −N)k = 0, (4.8)

where N̂ = y · ∂y = yα(∂/∂yα). This condition is consistent with the wave equation.

In the case of s = 0, the only non-vanishing Casimir operator is

Q =
1

2
LαβLαβ, (4.9)

where Lαβ is the symmetry generators of the SO(2, 3) group. The wave equation

reads

(Q− 〈Q〉)k = 0, (4.10)
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where 〈Q〉 is the value of Q in D(E0, 0)

〈Q〉 = E0(E0 − 3). (4.11)

Then the wave equation (4.10) takes the explicit form

[(N̂ + E0)(N̂ − E0 + 3)− y2∂2]k = 0. (4.12)

In the general case s 6= 0, it is not enough to fix the values of Q and N̂ . If E0

is large enough, then the representation D(E0, s) is carried by the subspace of fields

that satisfy

(Q− 〈Q〉)k = 0, (N̂ −N)k = 0, (4.13)

∂ · k = 0, y · k = 0, k′ = 0, (4.14)

where

〈Q〉 = E0(E0 − 3) + s(s+ 1). (4.15)

The other Casimir operators are fixed by these equations and need not to be consid-

ered separately.

In order to describe all integer spins, we introduce another set of variables zα

(α = 0, 1, 2, 3, 5) and let K(y, z) denote the formal series

K(y, z) =
∑

s

zα1 · · · zαskα1···αs(y). (4.16)

The complete set of wave equations and subsidiary conditions for all integer spins can
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now be re-expressed in terms of the field K

y · k = 0 ⇐⇒ y · ∂zK = 0 (transversality), (4.17)

∂ · k = 0 ⇐⇒ ∂y · ∂zK = 0 (gauge conditions), (4.18)

k′ = 0 ⇐⇒ ∂2
zK = 0 (tracelessness). (4.19)

The Casimir operator 〈Q〉 −Q takes the form

(〈Q〉 −Q)K = [y2∂2
y + 2y · z∂y · ∂z + z2∂2

z + (n̂ − N̂ − 2)(n̂+ N̂ + 1)]K, (4.20)

where n̂ = z · ∂z. Therefore, the representation ⊕s[D(s + 1, s) ⊕ D(−s − 1, s)] is

realized on the space of solutions of

(〈Q〉 −Q)K = 0, (n̂+ N̂ + 1)K = 0,

∂y · ∂zK = 0, y · ∂zK = 0, ∂2
zK = 0 (4.21)

modulo the space of gauge solutions.

4.1.2 The intertwining map

We shall construct an operator F : K → Φ that intertwines between the representa-

tion (Rac⊕Rac)⊗ (Rac⊕Rac), realized on bi-local fields satisfying (3.102), and the

representation ⊕s[D(s+1, s)⊕D(−s−1, s)], realized on a formal series that satisfies

(4.21). Specifically, the map is given by

Φ(u, v) = (FK)(y, z) (4.22)
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where y = u+ v, z = u− v and the kernel is

F =
∑

k

(4kk!)−1(z · ∂y)2k/(n̂+ 1)(n̂ + 2) · · · (n̂+ k). (4.23)

It is easy to show that

(y · ∂y + z · ∂z + 1)K = 0⇒ (u · ∂u + v · ∂v + 1)Φ = 0. (4.24)

Furthermore, by using the identity Fzαy · ∂z = (u− v)α(u · ∂u − v · ∂v)F , one finds

y · ∂zK = 0⇒ (u · ∂u − v · ∂v)Φ = 0, (4.25)

From (4.24, 4.25), we have

(u · ∂u +
1

2
)Φ = (v · ∂v +

1

2
)Φ = 0. (4.26)

The equation of motion, gauge condition and the traceless condition

∂2
yK = ∂y · ∂zK = ∂2

zK = 0, (4.27)

together translates into

∂2
uΦ = ∂u · ∂vΦ = ∂2

vΦ = 0, (4.28)

using the mapping (4.22). In summary, one can show the correspondence

{
y · ∂zK = 0

(n̂+ N̂ + 1)K = 0

}

⇐⇒
{

(u · ∂u + 1
2
)Φ = 0

(v · ∂v + 1
2
)Φ = 0

}

, (4.29)

{
(Q− 〈Q〉)K = 0

∂2
zK = ∂y · ∂zK = 0

}

⇐⇒
{
∂2

uΦ = ∂2
vΦ = 0

∂u · ∂vΦ = 0

}

. (4.30)
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This finishes the proof of two singletons generate the massless higher spin fields, at

the free level.

4.2 The interaction problem

We have seen that free massless fields of higher spin are gauge fields. In order to

preserve gauge invariance, we need to formulate the dynamics of higher spin fields on

the AdS background in a form which is convenient for finding the symmetry of the

higher spins [56]. In the case of four dimensions, it is convenient to use the formalism

of two-component spinors (see appendix B for the conventions). Lower or upper

indices denoted by a single letter are understood to correspond to symmetrization.

Instead of writing Aα1...αs, we shall write Aα(s). For example, the quantity B
β(m)

α(n)

denotes the multi-spinor

1

n!m!
{B β1...βm

α1...αn
+(n!−1) permutations of α+(m!−1) permutations of β}. (4.31)

4.2.1 Linearized curvature for physical fields

In general, the Lorentz-covariant curvatures linearized on an AdS background for the

systems of fields corresponding to spin s have the form

RL
νµ,α(n),β̇(m)

= [DL
ν ωµ,α(n),β̇(m)+λ(nhναδ̇ω

δ̇
µ,α(n−1),β̇(m)

+mhνγβ̇ω
γ

µ,α(n) ,β̇(m−1)
)]−[ν ↔ µ],

(4.32)
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where λ is the inverse of the AdS radius and the spin s is related to the indices by

n+m = 2(s−1), DL
ν is the Lorentz-covariant derivative for the background connection

DL
ν ωµ,α(n),β̇(m) = ∂νωµ,α(n),β̇(m) + nwναγω

γ

µ,α(n−1) ,β̇(m)
+mw̄νβ̇δ̇ω

δ̇
µ,α(n),β̇(m−1)

. (4.33)

The gauge transformation corresponding to the curvature (4.32) has the form

δLων,α(n),β̇(m) = DL
ν ξα(n),β(m) + λ(nhναδ̇ξ

δ̇
µ,α(n−1),β̇(m)

+mhνγβ̇ξ
γ

µ,α(n) ,β̇(m−1)
). (4.34)

The action for a free massless field of spin s on the AdS background is

S(2)
s =

γs

2

∑

n,m

in+m+1

n!m!
δ(n+m− 2(s− 1))ε(n−m)

∫

d4xενµρσRL
νµ,α(n),β̇(m)

RL α(n),β̇(m)
ρσ ,

(4.35)

where γs is some normalization coefficient and ε(n−m) picks up the sign of n −m.

This form of the action follows closely the MacDowell-Mansuri action of Einstein

gravity [85] (see appendix B for more details).

An important property of this quadratic action is that its variation with respect

to ω(n,m) with |n−m| > 2 vanishes identically due to the Bianchi identities

ενµρσDL
ρR

L
νµ,α(n),β̇(m)

= −λενµρσ(nhραδ̇R
L δ̇
νµ,α(n−1),β̇(m)

+mhργβ̇R
L γ

νµ,α(n) ,β̇(m−1)
). (4.36)

This means the action contains only fields ω(n,m) with |n−m| ≤ 2. In the bosonic

case, these fields are ω(s−2, s), ω(s, s−2), ω(s−1, s−1). The corresponding equations

of motion read

ενµρσhραδ̇R
L δ̇
νµ,α(s−1),β̇(s−2)

= 0, (4.37)

ενµρσhργβ̇R
L γ

νµ,α(s−2) ,β̇(s−1)
= 0, (4.38)
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ενµρσ[hραδ̇R
L δ̇
νµ,α(s−2),β̇(s−1)

− hργβ̇R
L γ

νµ,α(s−1) ,β̇(s−2)
] = 0. (4.39)

The first two equations are equivalent to the equation

RL
νµ,α(s−1),β̇(s−1)

= 0, (4.40)

which is analogous to the equation of zero curvature in gravitation. The fields ω(s, s−

2) and ω(s−2, s) are the analogs of the Lorentz connection and the field ω(s−1, s−1)

is the analog of the tetrad. Similar to what occurs in gravitation for the Lorentz

connection, the fields ω(s, s − 2) and ω(s − 2, s) are auxiliary fields up to a purely

gauge piece, which corresponds to the parameters ξ(s+1, s−3) and ξ(s−3, s+1) and

drops out of the equations of motion, can be expressed in terms of the first derivatives

of the dynamical fields ω(s − 1, s − 1) by solving (4.37, 4.38) or equivalently (4.40).

Plugging into (4.39), one obtains a second-order equation for the dynamical field

ω(s− 1, s− 1) which describes a massless field of spin s.

When the interaction is switched on “naively” the variation of the action with

respect to the “extra” fields ω(n,m) with |n−m| > 2 is nonzero, so the extra fields

correspond to essentially nonlinear equations. It is desirable that the extra fields

somehow can be expressed in terms of the physical fields already at the linearized

level. This can be done by requiring that the fields ω(n,m) satisfy the following

system of motions

RL
νµ,α(n),β̇(m)

= 0, n > 0, m > 0, n+m = 2(s − 1) (4.41)

ενµρσRL
νµ,α(2s−2),β̇(0)

h α
ρ β̇

= 0, (4.42)

ενµρσRL
νµ,α(0),β̇(2s−2)

h β̇
ρα = 0. (4.43)

It can be shown that these equations contain the equations for the physical fields
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and express all the extra fields in terms of the physical fields without imposing any

additional constraints on the latter. At the linearized level the role of (4.42-4.43) can

be replaced by the equations

ενµρσRL
νµ,α(n),β̇(m)

h α
ρ β̇

= 0, m ≥ n ≥ 1, (4.44)

ενµρσRL
νµ,α(n),β̇(m)

h β̇
ρα = 0, n ≥ m ≥ 1. (4.45)

The solution leads to recurrence relations which express successively all “extra fields”

in terms of the dynamical fields [56]. A consequence of this mechanism is that higher-

spin interactions for the dynamical fields contain higher derivatives. The same mecha-

nism leads to the non-analyticity of the interaction terms in the cosmological constant.

4.2.2 Linearized curvature for auxiliary fields

Consistent linearized curvatures describing auxiliary fields were constructed in [57],

which contain systems of auxiliary fields aν,α(n),β̇(m) with n ≥ 0, m ≥ 0, n −m = k

where k = 0,±1,±2... is an arbitrary fixed integer

Aνµ,α(n),β̇(m) = DL
ν aµ,α(n),β̇(m)−iλhνγδ̇a

γ δ̇

µ,α(n) ,β̇(m)
+iλnmhναβ̇aµ,α(n−1),β̇(m−1)−(ν ↔ µ)

(4.46)

where DL
ν is the background Lorentz covariant derivative

DL
ν aµ,α(n),β̇(m) = ∂νaµ,α(n),β̇(m) + nwναγa

γ

µ,α(n−1) ,β̇(m)
+mw̄νβ̇δ̇a

δ̇
µ,α(n),β̇(m−1)

. (4.47)

Linearized (abelian) gauge transformations read

δaν,α(n),β̇(m) = DL
ν ηα(n),β̇(m) − iλhνγδ̇η

γ δ̇

α(n) ,β̇(m)
+ iλnmhναβ̇ηα(n−1),β̇(m−1). (4.48)
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The curvatures (4.46) are consistent in the sense that they are invariant under the

gauge transformation (4.48). In addition, they satisfy the Bianchi identities

εµνρσDL
µAρσ,α(n),β̇(m) = iλενµρσ[hµγδ̇A

γ δ̇

ρσ,α(n) ,β̇(m)
− nmhµαβ̇Aρσ,α(n−1),β̇(m−1)]. (4.49)

The gauge invariant action takes the form

Suv =
i

2λ

∞∑

n,m=0

1

n!m!
δ(n−m−u+v)θ(u+v−n−m)

∫

d4xενµρσAνµ,α(n),β̇(m)A
α(n),β̇(m)

ρσ, +h.c.

(4.50)

One can see that the action really contains only the fields a(u, v), a(u + 1, v + 1)

and their conjugates b(v, u), b(v + 1, u+ 1). The equations of motion for a(u, v) and

a(u+ 1, v + 1) are

ενµρσA γ δ̇

νµ,α(u) ,β̇(v)
hργδ̇ = 0, (4.51)

ενµρσAνµ,α(u),β̇(v)hραβ̇ = 0. (4.52)

For arbitrary integer u ≥ 0, v ≥ 0, the action describes the systems of auxiliary fields,

i.e. that the number of independent functions of three spatial coordinates is reduced

to zero after imposing of full gauge invariance. In order to have a closed system of

equations for the whole set of fields a(n,m) with n ≥ 0, m ≥ 0, n −m = k for any

fixed k, one can impose the following constraints

ενµρσAνµ,α(n),β̇(m)hραβ̇ = 0. (4.53)

We suppose now that the constraints (4.53) are imposed simultaneously with the

dynamic equations (4.51, 4.52) for u = k, v = 0 or u = 0, v = −k. It is clear that for

k 6= 0 all fields a(n,m) with n −m = k will be auxiliary. Indeed, (4.52) is contained
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among (4.53) and provides no new information. As for (4.51), one can show by virtue

of the Bianchi identity (4.49) that the following equations must be satisfied

Aνµ,α(n),β̇(m) = 0, n > 0, m > 0, n−m = k 6= 0, (4.54)

ενµρσAνµ,α(k),β̇(0)hραβ̇ = 0, k > 0, (4.55)

ενµρσAνµ,α(0),β̇(−k)hραβ̇ = 0, k < 0, (4.56)

which reminds us (4.41-4.43). This is seen most easily by induction. At the linearized

level, for some n = n0 > 0, m = m0 > 0, the roles of last two equations (4.55-4.56)

can be played by

ενµρσh αβ̇
ρ Aνµ,α(n),β̇(m) = 0, (4.57)

ενµρσhραβ̇Aνµ,α(n),β̇(m) = 0, (4.58)

which is similar to (4.44-4.45).

4.2.3 The complete description

A complete description of the linearized equations of motion (4.41-4.43) should include

two auxiliary fields C and C̄ (which are conjugate to each other) [58]

RL
νµ,α(n),β̇(m)

= δ(m)h γ

ν β̇
h γβ̇

µ Cα(n)γ(2) + δ(n)h δ̇
νγ h γδ̇

µ C̄β̇(m)δ̇(2). (4.59)

The fields ω are assumed to obey the hermiticity conditions (ων,α(n),β̇(m))
† = ων,β(m),α̇(n).

These gauge fields are assumed to be (anti-) commuting if the number of spinor in-

dices n + m is (odd) even. It follows from the consistency conditions that C and C̄
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obey the restrictions

ενµρσh γ

ν β̇
h γβ̇

µ DL
ρCα(n)γ(2) = 0, (4.60)

ενµρσh δ̇
να h αδ̇

µ DL
ρ C̄β̇(m)δ̇(2) = 0. (4.61)

It is not difficult to make sure the above two equations are equivalent to

DL
ρCα(n),β̇(m) − ih γδ̇

ρ Cα(n)γ,β̇(m)δ̇ + inmhραβ̇Cα(n−1),β̇(m−1) = 0, (4.62)

DL
ρ C̄α(n),β̇(m) − ih γδ̇

ρ C̄α(n)γ,β̇(m)δ̇ + inmhραβ̇C̄α(n−1),β̇(m−1) = 0. (4.63)

Any spin s is described by the fields ω(n,m) with n + m = 2(s − 1) when s ≥ 1,

C(n,m) with n −m = 2s and C̄(n,m) with m − n = 2s. Physical spin-s fields are

identified with the 1-forms ω(n,m) at |n−m| ≤ 1 when s ≥ 1 or with C(2s, 0) and

C̄(0, 2s) when s < 1. All other fields belonging to the chains above can be expressed

algebraically in terms of the physical fields and their derivatives by means of the

equations (4.59,4.62,4.63).

Let us now demonstrate that free equations of motion for the auxiliary fields

aν,α(n),β̇(m) can be dealt with in a quite similar fashion. Linearized curvatures for

these fields satisfy the equation

AL
νµ,α(n),β̇(m)

= δ(m)θ(n− 2)hναδ̇h
δ̇

µα Dα(n−2) + δ(n)θ(m− 2)hνγβ̇h
γ

µ β̇
Eβ̇(m−2). (4.64)

Here D(n−2, 0) and E(0, m−2) are “auxiliary Weyl 0-forms” which can be viewed as

some new independent variables analogous to the higher-spin Weyl 0-forms introduced

previously. Quite similar to the case of massless fields, one can make sure that (4.64)
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leads to the following chains of consistency conditions

DL
ρDα(n),β̇(m) + nhραδ̇D δ̇

α(n−1),β̇(m)
+mhργβ̇D γ

α(n) ,β̇(m−1)
= 0, (4.65)

DL
ρEα(n),β̇(m) + nhραδ̇E

δ̇
α(n−1),β̇(m)

+mhργβ̇E
γ

α(n) ,β̇(m−1)
= 0. (4.66)

Note that these two equations contain no additional dynamic conditions and merely

express all 0-forms D(n,m) and E(n,m) in terms of D(k, 0) and E(0, l).

Next we observe the structure of the equations and find that both 1-forms (ω, a)

and Wyel 0-forms (C, C̄,D, E) belong to the adjoint representation of some Lie super-

algebra shsa(1) incorporating both the massless fields and the auxiliary fields. This

infinite-dimensional superalgebra gives rise to the set of gauge fields ω AB
ν, α(n),β̇(m)

with the indices A,B taking values 0 or 1. The curvatures of shsa(1) read

R AB
νµ, α(n),β̇(m)

=
(

∂νω
AB

µ, α(n),β̇(m)
+

1

2

∑

p,q,s,k,l,t,C,D,F,G

δ(n− p− q)

×δ(m− k − l)δ(|A+ C + F |2)δ(|B +D +G|2)

×is+t−1(−1)F (p+s)+G(k+t) n!m!

p!q!s!k!l!t!

×ω CD
ν, α(p)γ(s),β̇(k)δ̇(t)

ω
FG γ(s) δ̇(t)

µ, α(q) ,β̇(l)

)

− (ν ↔ µ), (4.67)

where |n|2 = 0 for n = 2k and |n|2 = 1 for n = 2k + 1. The fields ωAA(n,m)

with A = 0, 1 are identified with the massless fields, while the fields ωAB(n,m) with

A + B = 1 are auxiliary fields. This identification is due to the fact that, after

linearization, the curvature (4.67) leads to (4.59) when A = B and (4.64) when

A+B = 1. All the Weyl 0-forms introduced above will be assumed to belong to the

adjoint representation of shsa(1) which is described by the quantities CAB
α(n),β̇(m)

.

One can now rewrite all the linearized equations for massless and auxiliary fields
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in the following uniform way

RL AB
νµ, α(n),β̇(m)

+ η1δ(n)δ(|A+B|2)C |A+1|2B

α(0),β̇(m)δ̇(2)
h δ̇

νγ h γδ̇
µ

+η̄1δ(m)δ(|A+B|2)CA|A+1|2
α(n)γ(2),β̇(0)

h γ

ν δ̇
h γδ̇

µ

−η1δ(n)m(m− 1)δ(|A+B + 1|2)CBB
α(0),β̇(m−2)

hνγβ̇h
γ

µ β̇

−η̄1δ(m)n(n− 1)δ(|A +B + 1|2)CAA
α(n−2),β̇(0)

hναδ̇h
δ̇

µα = 0, (4.68)

DL
ν C

AB
α(n),β̇(m)

= 0, (4.69)

where DL
ν includes three terms: the covariant derivative DL

ν plus two background

terms.

4.2.4 The cubic interaction

An extension of the quadratic action (4.35), which will describe the interactions of

massless higher spin fields, does exist at least in the first nontrivial order [59, 60].

The corresponding curvature and infinitesimal gauge transformations with parameter

ε are

Rνµ,α(n),β̇(m) = ∂νωµ,α(n),β̇(m) − ∂µων,α(n),β̇(m)

+
∞∑

p,q,s,k,l,t=0

is+t−1 n!m!

p!q!s!k!l!t!
δ(n− p− q)δ(m− k − l)

×λ1+ 1

2
(|n−m|−|p+s−k−t|−|q+s−l−t|)

×δ(|(p+ k)(q + l) + (p+ k)(s+ t) + (q + l)(s+ t) + 1|2)

ων,α(p)γ(s),β̇(k)δ̇(t)ω
γ(s) δ̇(t)

µ,α(q) ,β̇(l)
, (4.70)

δων,α(n),β̇(m) = ∂νεα(n),β̇(m)

+

∞∑

p,q,s,k,l,t=0

is+t−1 n!m!

p!q!s!k!l!t!
δ(n− p− q)δ(m− k − l)

×λ1+ 1

2
(|n−m|−|p+s−k−t|−|q+s−l−t|)
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×δ(|(p+ k)(q + l) + (p+ k)(s+ t) + (q + l)(s+ t) + 1|2)

ων,α(p)γ(s),β̇(k)δ̇(t)ε
γ(s) δ̇(t)

α(q) ,β̇(l)
, (4.71)

where we use the notation δ(n) = 1 for n = 0, zero otherwise; θ(n) = 1 for n ≥ 0,

zero otherwise. The proposal for the action is

S =
1

2

∑

n+m>0

in+m+1 1

n!m!
β(n+m)ε(n−m)λ−|n−m|

∫

d4xενµρσRνµ,α(n),β̇(m)R
α(n),β̇(m)

ρσ, ,

(4.72)

where β[2(s − 1)] is a normalization coefficient for the free action of spin s. This

action is a generalization of the MacDowell-Mansouri action for a (super) gravity with

a cosmological term. The part of the action which depends on only the gravitational

fields ω(n,m) with n+m = 2 is the same as the action of the pure gravity.

As we mentioned before, an important property of the action is that in the

quadratic approximation its variation over all the “extra” fields ω(n,m) with |n−m| >

2 vanishes identically. As a result, the free higher spins are described exclusively by

“dynamic” ω(n,m) with |n −m| ≤ 2. When the interaction is turned on, however,

the variation of the action in terms of the extra fields is nonzero, so that it cannot

be interpreted in a reasonable way if the extra fields are assumed to be independent

dynamic variables. A way out of this difficulty is to express all the extra fields from

the outset in terms of dynamical fields by means of certain constraints. Constraints

making this possible at a linearized level are (4.44-4.45). Remarkably, even the lin-

earized constraints are sufficient to prove the invariance of the action (4.72) in the

cubic approximation. The extra fields appear only in nonlinear combinations of the

type Rlωω, so that it is sufficient to know their linearized expressions in the cubic ap-

proximation. In summary, the action (4.72) supplemented by constraints (4.44-4.45),

gives a non-contradictory description of the dynamics of all massless fields with higher

spins in the cubic approximation.
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4.3 Vasiliev’s full nonlinear theory

The extension of the cubic action to the full nonlinear level is highly nontrivial.

However, the full nonlinear set of equations of motion was found by Vasiliev [61]. To

describe on-shell higher-spin dynamics in d = 3 + 1, we introduce the following set of

generating functions

W = dxνWν(x|y, ȳ, z, z̄), (4.73)

S = dzαSα(x|y, ȳ, z, z̄) + dz̄α̇S̄α̇(x|y, ȳ, z, z̄), (4.74)

B = B(x|y, ȳ, z, z̄), (4.75)

where Y = (yα, ȳα̇) and Z = (zα, z̄α̇) are two independent sets of auxiliary spinor

variables and x denotes the spacetime coordinates. The Vasiliev’s equation for higher-

spin fields are

dW = W ∗W, (4.76)

dB = W ∗B −B ∗W, (4.77)

dS = W ∗ S − S ∗W, (4.78)

S ∗ S = −i{dzαdz
α[1 + F (B) ∗ κ] + dz̄α̇dz̄

α̇[1 + F̄ (B) ∗ κ̄]}, (4.79)

S ∗B = B ∗ S, (4.80)

where the operator d = dxν(∂/∂xν) and the star-product is defined as

f(Y, Z) ∗ g(Y, Z) =

∫

d4Ud4V ei(uαvα+ūα̇ v̄α̇)f(Y + U,Z + U)g(Y + V, Z − V ), (4.81)

where U = (uα, ūα̇) and V = (vα, v̄α̇) are the integration variables.
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The operators κ and κ̄ takes the form

κ = k exp(i〈z, y〉), κ̄ = k̄ exp(i〈z̄, ȳ〉). (4.82)

By definition, the Klein operators k and k̄ anticommute with all undotted and dotted

spinors, respectively,

kf(z, z̄, y, ȳ; dz, dz̄;K) = f(−z, z̄,−y, ȳ;−dz, dz̄;K)k, (4.83)

k̄f(z, z̄, y, ȳ; dz, dz̄;K) = f(z,−z̄, y,−ȳ; dz,−dz̄;K)k̄. (4.84)

In addition, it is required that

k2 = k̄2 = 1, [k, k̄] = 0, [k, dxν ] = [k̄, dxν ] = 0. (4.85)

The equations (4.76-4.80) are explicitly invariant under the gauge transformations

δW = dε−W ∗ ε+ ε ∗W, (4.86)

δB = ε ∗B − B ∗ ε, (4.87)

δS = ε ∗ S − S ∗ ε. (4.88)

The field variables W,B, S are assumed to obey the (anti)hermiticity (reality) condi-

tions

W † = −W, B† = B, S† = −S, (4.89)

defined by the relations

(zα)† = −z̄α̇, (dzα)† = dz̄α̇, (yα)† = ȳα̇, (dxν)
† = dxν , k† = k̄. (4.90)
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To complete the explanation of the Vasiliev’s equations, F (B) and F̄ (B) are

arbitrary functions of the form

F (B) =
∞∑

n=0

1

n!
fnB ∗ ... ∗B︸ ︷︷ ︸

n

, F̄ (B) =
∞∑

n=0

1

n!
f̄nB ∗ ... ∗B︸ ︷︷ ︸

n

, (4.91)

where fn are arbitrary complex coefficients. We will mainly study the minimal

Vasiliev’s theory where F (B) = f1B, F̄ (B) = f̄1B.

4.3.1 Linear approximation

In this subsection, we will expand Vasiliev’s full nonlinear theory to the linearized

order and find agreement with Fronsdal’s free higher-spin theory. First of all, the

vacuum solution is

B0 = 0, (4.92)

S0 = dzαzα + dz̄α̇z̄α̇, (4.93)

W0 =
1

4i
[ω αβ

0 (x)yαyβ + ω̄ α̇β̇
0 (x)ȳα̇ȳβ̇ + 2h αβ̇

0 (x)yαȳβ̇], (4.94)

where ω0, ω̄0, h0 describe the background AdS spacetime.

The first-order equations are

dW (1) = W0 ∗W (1) +W (1) ∗W0, (4.95)

dB(1) = W0 ∗B(1) − B(1) ∗W0, (4.96)

dS(1) = W0 ∗ S(1) − S(1) ∗W0 +W (1) ∗ S0 − S0 ∗W (1), (4.97)

S0 ∗ S(1) + S(1) ∗ S0 = −i{dzαdz
αf1B

(1) ∗ κ+ dz̄α̇dz̄
α̇f̄1B

(1) ∗ κ̄}, (4.98)

S0 ∗B(1) = B(1) ∗ S0. (4.99)
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The last equation (4.99) says

[S0, B
(1)]∗ = −2i

(

dzα ∂

∂zα
+ dz̄α̇ ∂

∂z̄α̇

)

B(1) = 0. (4.100)

Therefore, the first-order B field is independent of Z as we denote it as

B(1)(Z;Y ;K|x) = C(Y ;K|x), (4.101)

which satisfy the second equation (4.96) of the first-order equations

dC = W0 ∗ C −C ∗W0. (4.102)

The field S is purely auxiliary with the first-order takes the form

S(1) = dzαS(1)
α + dz̄α̇S̄

(1)
α̇ = −dzαS

(1)α − dz̄α̇S̄
(1)α̇. (4.103)

Notice the anti-commuting of spinorial differentials, the left hand side of the fourth

equation (4.98) can be written as

S0 ∗ S(1) + S(1) ∗ S0 = −2i
(

dzαdz
α ∂

∂zα
S(1)α + dz̄α̇dz̄

α̇ ∂

∂z̄α̇
S̄(1)α̇

)

, (4.104)

where we emphasize that the four α or α̇ are the same and summed over 1,2. There-

fore, comparing to the right side of the fourth equation, one gets

∂

∂zα
S(1)α = f1C(−z, ȳ;K)k exp(i〈z, y〉), (4.105)

∂

∂z̄α̇
S̄(1)α̇ = f̄1C(y,−z̄;K)k̄ exp(i〈z̄, ȳ〉), (4.106)

where we used the property of star product that κ changes y → −z, z → −y, similarly
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for κ̄. Using the formula

∂

∂zα
fα(z) = g(z) =⇒ fα(z) =

∫ 1

0

dttzαg(tz), (4.107)

the first-order S field which can be evaluated in terms of C as

S(1) =

∫ 1

0

dtt[dzαzαf1C(−tz, ȳ;K)k exp(it〈z, y〉)+dz̄α̇z̄α̇f̄1C(y,−tz̄;K)k̄ exp(it〈z̄, ȳ〉)].

(4.108)

The field W can be splitted into Z-independent part ω and the Z-dependent part.

From the third equation (4.97), the Z-dependent part satisfies the equation

[S0,W
(1)]∗ = −2i

(

dzα ∂

∂zα
+ dz̄α̇ ∂

∂z̄α̇

)

W (1) = −dS(1) + [W0, S
(1)]∗. (4.109)

The general solution to the equation (∂/∂zα)ϕ(z) = χα(z) satisfying the condition

(∂/∂zα)χα(z) = 0 is

ϕ(z) =

∫ 1

0

dtzαχα(tz). (4.110)

The integration over dS(1) vanishes because zαzα = z̄α̇z̄α̇ = 0. Therefore, the first-

order W field can be written as

W (1)(Z;Y ;K) = ω(Y ;K)+
i

2

∫ 1

0

dt{zα[W0, S
(1)
α ]∗(tz, z̄;Y ;K)+z̄α̇[W0, S̄

(1)
α̇ ]∗(z, tz̄;Y ;K)}.

(4.111)

Now we are in the position to calculate various star products. It turns out to be

convenient to split the field C(k, k̄) into even or odd functions of k, k̄. Consider the

expansion

C(k, k̄) = C00 + kC10 + k̄C01 + kk̄C11, (4.112)
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we introduce

C(−k,−k̄) = C00 − kC10 − k̄C01 + kk̄C11. (4.113)

Therefore, plugging

kC10 + k̄C01 =
1

2
[C(k, k̄) −C(−k,−k̄)], (4.114)

C00 + kk̄C11 =
1

2
[C(k, k̄) + C(−k,−k̄)], (4.115)

into (4.108, 4.111) and finally the first equation (4.95), the field ω(Y ;K) satisfies the

equation

dω(Y ;K) = W0 ∗ ω(Y ;K) + ω(Y ;K) ∗W0

+
i

8

(

f1h
β̇

α ∧ hαδ̇k
∂

∂ȳβ̇

∂

∂ȳδ̇
[C(0, ȳ; k, k̄)− C(0, ȳ;−k,−k̄)]

+f̄1h
α
β̇
∧ hγβ̇ k̄

∂

∂yα

∂

∂yγ
[C(y, 0; k, k̄)− C(y, 0;−k,−k̄)]

−f1h
β̇

α ∧ hαδ̇kȳβ̇ȳδ̇[C(0, ȳ; k, k̄) + C(0, ȳ;−k,−k̄)]

−f̄1h
α
β̇
∧ hγβ̇ k̄yαyγ[C(y, 0; k, k̄) + C(y, 0;−k,−k̄)]

)

. (4.116)

To make contact with the conventional formulation of the dynamics of massless fields

one should insert the expansions of the fields ω and C (which satisfy the equations

(4.116, 4.102)) in powers of the auxiliary variables

f(Y ;K|x) =
1∑

A,B=0

∞∑

n,m=0

1

2in!m!
(k)A(k̄)Byα1

...yαnȳβ̇1
...ȳβ̇m

fABα1...αn,β̇1...β̇m(x),

(4.117)

which results in (4.68) and (4.69). Here massless fields are described by the fields ωAA

and CA 1−A while auxiliary fields are described by ωA 1−A and CAA. This finishes the

derivation of the free theory from the linear order of the Vasiliev’s nonlinear equations

of motion. For other relevant work, review and recent developments on higher spin

theory, please refer to [62] for more details.



Chapter 5

Collective Field Reconstruction of

Higher-Spin Gravity

In this chapter, we pursue the construction of higher-spin theory in AdS4 from CFT3

in terms of canonical collective fields. In null-plane quantization an exact map is

established between the two spaces. The coordinates of the AdS4 space-time are

generated from the collective coordinates of the bi-local field. This, in the light-

cone gauge, provides an exact one-to-one reconstruction of bulk AdS4 space-time and

higher-spin fields.

5.1 Introduction

The AdS/CFT correspondence is characterized by the conjectured emerging dimen-

sions of space-time. In N = 4 Super Yang-Mills theory the D = 10 of the string in

AdS5 × S5 background emerges. While the main understanding of the duality itself

92
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is provided by ’t Hooft’s large N expansion (which establishes 1/N as the string cou-

pling constant) the origin of the extra spatial dimension is less clearly understood,

one speaks of them as being holographic and have a relationship (in the case of radial

AdS dimension) with renormalization group scaling parameters.

One framework for analytical understanding of the large N limit in general intro-

duced several decades ago is based on the notion of collective fields [63]. They capture

the relevant degrees of freedom and a general method for describing their effective dy-

namics both at the Hamiltonian and Lagrangian level was given. This approach has

been successful in analytical treatment as well as in exhibiting the relevant physics

in various model theories. In the c = 1 matrix model collective dynamics naturally

led to (one) extra dimension relevant in establishing the model as a 2D non-critical

string theory [64]. It has re-emerged in the sub-dynamics of the N = 4 Yang-Mills

problem in the 1/2 BPS sub-sector. Through certain matrix model truncations (of

N = 4 Yang-Mills theory) the construction of dual string theory Hamiltonian was

attempted [65].

For further understanding of this mechanism it is useful to concentrate on ex-

actly solvable theories. The simplest field theory model for which one can build the

AdS/CFT correspondence is that of N -component vector theory. It was originally

pointed out by Klebanov and Polyakov [66] that the conformal fixed points of the

theory are naturally described in four dimensional AdS space-time. In particular, the

expected dual is to be given by Vasiliev’s higher spin theory. (For other relevant work,

see [67].) An impressive comparison of three-point boundary correlators between the

two theories was performed recently by Giombi and Yin [68].

The relevance of collective fields for higher-spin holography was discussed by Das

and Jevicki [69]. There the framework of covariant bi-local collective fields was em-



94

ployed and it was shown that they decompose into an infinite sequence of integer spin

fields in one extra dimension. In [70], we sharpened this picture concentrating on

the canonical formulation with the goal of establishing the correspondence directly

at the Hamiltonian level. It will be advantageous to work in null-plane quantization,

since it gives a physical description of higher-spin gauge theory. In this framework,

we produced an exact one-to-one map between (collective) coordinates of the large N

field and the AdS4 coordinates of the higher-spin theory. It is shown how collective

fields provide a construction of bulk (rather than boundary) fields of the AdS the-

ory. In particular it is demonstrated that all the bulk AdS space-time transformation

symmetries are recovered from transformations of the bi-local collective field.

5.1.1 Collective vs conformal fields

The basis of the holographic map is in a (complete) set of primary operators of the

SO(2, d) group. They are built as composite operators from the basic fields of the

theory and obey current conservation once the field equations are used. They are used

as sources at the boundary and their correlators are then shown to be in agreement

with the AdS amplitudes projected to the boundary of AdS space. The N -component

vector model field theory with the Lagrangian

L =

∫

ddx
1

2
(∂µφ

a)(∂µφa) + v(φ · φ), a = 1, ..., N (5.1)

possesses two critical points: the UV fixed point at zero value of the coupling and an

IR fixed point at nonzero coupling. For the UV case corresponding to the free theory

where the potential v = 0, a full set of conformal currents is explicitly given by [68]

O(~x,~ε) = φa(x− ε)
∞∑

n=0

1

(2n)!

(
2ε2
←−
∂x ·
−→
∂x − 4(ε · ←−∂x)(ε ·

−→
∂x)

)n
φa(x+ ε) (5.2)
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where ~ε is a null polarization vector ~ε 2 = 0. These currents are conserved and in

the holographic scheme of GKP-W [2, 3] their correlators are compared with the AdS

boundary amplitudes.

Collective fields for large N theories are introduced in a very different manner.

They are to represent a (complete) set of invariants under the O(N) or U(N) (gauge)

symmetry group. The meaning of completeness is established in two not unrelated

ways. First one has completeness in group theoretic terms, namely that any other

invariant can be expressed in terms of them. Second is the requirement of closure

under (quantum) equations of motion. This leads to the most important fact, namely

that they provide a complete dynamical description [63] of the large N theory where

1/N is seen to emerge as the natural expansion parameter.

In the O(N) vector model one simply has the bi-local collective field

Ψ(xµ, yµ) =
N∑

a=1

φa(x) · φa(y) (5.3)

in the covariant formalism [69, 71]. It is the case for the O(N) model, and also more

generally that the set of collective fields is actually over-complete. This property has

significant implications on the emerging space-time, when implemented it naturally

leads to space-time cutoffs and ultimately non-commutativity.

As far as the relationship between the conformal and collective fields we have the

following. Clearly any conformal field is contained in the collective (bi-local) field, one

has a prescription with derivatives given above. But the converse is not true, collective

fields represent a more general set. This property will have important implications on

the bulk vs boundary description of the theory. It has already seen in approximate

manner [69] that the relative coordinate in the bi-local field into angles generating
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a sequence of spins and the radial part which plays the role of an extra dimension.

What prevented a precise identification however was the fact that higher-spin is a

gauge theory, whose dynamical form depends on the gauge chosen. Consequently for

establishing a precise one-to-one map, one has to bring both theories to the same

gauge. This will be accomplished in the present work in a canonical description.

The canonical formalism for collective fields is based (in equal-time quantization)

on the observables

Ψ(t; ~x, ~y) =
∑

a

φa(t, ~x) · φa(t, ~y) ≡ Ψxy (5.4)

which are local in time but bi-local in d − 1 dimensional space. These observables

(collective fields) are characterized by the fact that they represent a complete set of

O(N) invariant canonical variables (obtained through scalar product). To deduce the

dynamics obeyed by these fields, one performs an operator change of variables [63]

from φa(t, ~x) to the bi-local field Ψ(t; ~x, ~y) using the chain rule

δ

δφ(~x)
=
δΨ(~y, ~z)

δφ(~x)

δ

δΨ(~y, ~z)
. (5.5)

Starting from the canonical Hamiltonian

H =

∫ (

−1

2

δ

δφa(~x)

δ

δφa(~x)
+

1

2
5x φ

a5x φ
a + v(~φ · ~φ)

)

d~x, (5.6)

one deduces an equivalent representation in terms of collective variables

H = 2Tr(ΠΨΠ) +
N2

8
TrΨ−1 +

∫

d~xv(Ψ(x̃, ỹ)|x̃=ỹ)

+
1

2

∫

d~x[−52
x Ψ(x̃, ỹ)|x̃=ỹ] + ∆V (5.7)
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where we have the conjugate momentum denoted by

Π(~x, ~y) = −i δ

δΨ(~x, ~y)
(5.8)

and ∆V summarizes ordering terms which are lower order in 1/N

∆V = −N
2

(∫

dxδ(0)
)

TrΨ−1 +
1

2

(∫

dxδ(0)
)2

TrΨ−1. (5.9)

The product of two bi-local fields is defined by

AB =

∫

d~yA(~x, ~y)B(~y, ~z) (5.10)

and the trace of a bi-local field means

Tr(A) =

∫

d~xA(~x, ~x). (5.11)

For more details on this representation, including the fact that it generates correctly

the large N Schwinger-Dyson equations, the reader should consult Refs. [63, 72].

5.1.2 Expansion

The main feature of the collective representation in terms of the Hamiltonian (5.7) is

that it can be expanded in series of 1/N with an infinite number of polynomial vertices

to generate systematically the 1/N expansion. This is seen by a simple rescaling of

field variables: Ψ→ NΨ, Π→ Π/N whereby N factorizes in front of the action. The

terms in ∆V are seen to be of lower order, consequently they provide counter-terms

in the systematic 1/N expansion.
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To generate the expansion, one first evaluates the static large N background

ψ0(~x, ~y) obtained from the time-independent equations of motion

∂V

∂Ψ(~x, ~y)
= 0, (5.12)

where we have set v = 0 and the effective potential reads

V =
1

8
TrΨ−1 +

1

2

∫

d~x[−52
x Ψ(x̃, ỹ)|x̃=ỹ]. (5.13)

One performs a shift

Ψ = ψ0 +
1√
N
η, Π =

√
Nπ (5.14)

generating an infinite sequence of vertices

TrΨ−1 = Trψ−1
0 +

∞∑

n=1

(−1)n

N
n
2

Tr(ψ−1
0 (ηψ−1

0 )n). (5.15)

The quadratic and cubic terms in the Hamiltonian are seen to be given by

H(2) = 2Tr(πψ0π) +
1

8
Tr(ψ−1

0 ηψ−1
0 ηψ−1

0 ), (5.16)

H(3) =
2√
N

Tr(πηπ)− 1

8
√
N

Tr(ψ−1
0 ηψ−1

0 ηψ−1
0 ηψ−1

0 ). (5.17)

The higher order vertices are obtained directly from the expansion (5.15).

We now discuss the evaluation of the spectrum which follows from diagonalization

of H(2). In doing this we follow closely [72]. Using a Fourier transform

ψ0
xy =

∫

d~kei~k·(~x−~y)ψ0
k, (5.18)
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with

ψ0
k =

1

2
√

~k2
, (5.19)

and for the fields

ηxy ≡
∫

d~k1d~k2e
−i~k1·~xe+i~k2·~yηk1k2

, (5.20)

πxy ≡
∫

d~k1d~k2e
+i~k1·~xe−i~k2·~yπk1k2

, (5.21)

the quadratic Hamiltonian now becomes

H(2) = 2

∫

d~k1d~k2ψ
0
k1
πk1k2

πk1k2
+

1

16

∫

d~k1d~k2ηk1k2
(ψ0

k1

−2
ψ0

k2

−1
+ ψ0

k2

−2
ψ0

k1

−1
)ηk1k2

.

(5.22)

Redefining

πk1k2
→ 1

2
ψ0

k1

−1/2
πk1k2

ηk1k2
→ 2ψ0

k1

+1/2
ηk1k2

(5.23)

one has the quadratic Hamiltonian

H(2) =
1

2

∫

d~k1d~k2πk1k2
πk1k2

+
1

8

∫

d~k1d~k2ηk1k2
(ψ0

k1

−1
+ ψ0

k2

−1
)2ηk1k2

(5.24)

from which one reads off the frequencies

ωk1k2
=

1

2
ψ0

k1

−1
+

1

2
ψ0

k2

−1
=

√

~k2
1 +

√

~k2
2. (5.25)

To summarize, the quadratic Hamiltonian and momentum can be written in use of

bi-local fields as

H(2) =

∫

d~xd~yΨ†(~x, ~y)
(√

−52
x +

√

−52
y

)

Ψ(~x, ~y), (5.26)

P (2) =

∫

d~xd~yΨ†(~x, ~y)(5x +5y)Ψ(~x, ~y). (5.27)
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In the light-cone quantization, we have the quadratic Hamiltonian

P−(2) = H(2) + P (2) =

∫

dx−1 dx
−
2 d~x1d~x2Ψ

†
(

−5
2
1

2p+
1

− 5
2
2

2p+
2

)

Ψ. (5.28)

Here Ψ(x+; x−1 , x
−
2 ; ~x1, ~x2) is a bi-local field where 1, 2 refer to the two space points.

5.2 Conformal transformations of the collective fields

Our goal is to demonstrate that the collective field contains all the necessary infor-

mation and is in a one-to-one map with the physical fields of the higher-spin theory

in AdS4. For this comparison to be done it is advantageous to work in the light-cone

gauge, where the physical degrees of freedom of a gauge theory are most transparent

[73]. Our strategy is to compare directly the action of the conformal group of the

d = 3 field theory with that of the Anti-de Sitter higher spin field. This comparison

is similar to the study in D-brane case and N = 4 Super Yang-Mills theory per-

formed in [74]. In this direct comparison we will see that as expected we have very

different set of space-time variables and a different realization of SO(2,3). The num-

ber of canonical variables however will be shown to be identical and one can search

for a (canonical) transformation to establish a one-to-one relation between the two

representations.

One can work out the conformal transformations in light-cone notation (x+ = t)
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for any dimension d. As for the linear momenta, we have

P− = H =

∫

d~x
(

−1

2
(∂iφ)2

)

, (5.29)

P+ =

∫

d~x
(
π2

)
, (5.30)

P i =

∫

d~x
(
π∂iφ

)
, (5.31)

where π = ∂+φ is the conjugate momentum and i is the transverse index (for the

specific case when d = 3, the index i runs over a single value). Similarly, for Lorentz

transformations, the conserved charges are

M+− = tH −
∫

d~x
(

x−π2
)

, (5.32)

M+i =

∫

d~x
(

tπ∂iφ− xiπ2
)

, (5.33)

M−i =

∫

d~x
(

x−π∂iφ− xi H
)

, (5.34)

M ij =

∫

d~x
(

xiπ∂jφ− xjπ∂iφ
)

. (5.35)

The Dilatation operator takes the form

D = tH +

∫

d~x
(

π(dφ + xi∂i)φ+ x−π2
)

, (5.36)

where dφ = d−2
2

is the scaling dimension of the φ field. The special conformal gener-

ators are

K− =

∫

d~x
(

x− D − 1

2
(2tx− + xjxj)H−

1

2
dφφ

2
)

, (5.37)

K+ = tD −
∫

d~x
(1

2
(2tx− + xjxj)π

2
)

, (5.38)

Ki =

∫

d~x
(

xi D − 1

2
(2tx− + xjxj)π∂iφ

)

, (5.39)

where D and H are the densities of these two operators.
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The dynamical variables in the light-cone formulation are (x−, xi). The momen-

tum conjugate to x− is p+. In the massless case, the energy can be expressed as

p− = −p
ipi

2p+
. (5.40)

To define the mode expansion, we perform a Fourier transform of the fields φ(x−, xi)

and π(x−, xi) along the x− direction. The creation and annihilation operators are

defined in terms of

φ(x−, xi) =

∫ ∞

0

dp+

√
2π

1√
2p+

(

a(p+, xi)eip+x−
+ a†(p+, xi)e−ip+x−

)

, (5.41)

π(x−, xi) = −i
∫ ∞

0

dp+

√
2π

√

p+

2

(

a(p+, xi)eip+x− − a†(p+, xi)e−ip+x−
)

. (5.42)

The actions of linear momenta now take the form

P− : δa(p+, xi) =
∂2

i

2p+
a(p+, xi), (5.43)

P+ : δa(p+, xi) = p+a(p+, xi), (5.44)

P i : δa(p+, xi) = i∂ia(p
+, xi). (5.45)

For the Lorentz generators, one has

M+− : δa(p+, xi) =
(

t
∂2

i

2p+
− i

√

p+
∂

∂p+

√

p+
)

a(p+, xi), (5.46)

M+i : δa(p+, xi) =
(

it∂i − xip+
)

a(p+, xi), (5.47)

M−i : δa(p+, xi) =
(

−∂i
∂

∂p+
− ∂jx

i∂j

2p+

)

a(p+, xi), (5.48)

M ij : δa(p+, xi) =
(

ixi∂j − ixj∂i

)

a(p+, xi). (5.49)
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and the Dilatation operator

D : δa(p+, xi) =
(

t
∂2

i

2p+
+ i

[

dφ + xi∂i +
√

p+
∂

∂p+

√

p+
])

a(p+, xi). (5.50)

Finally, for the special conformal generators

K− : δa(p+, xi) =
{

−∂jx
ixi∂j

4p+
−

√

p+
∂

∂p+

∂

∂p+

√

p+ − xi∂i
∂

∂p+

−dφ
1√
p+

∂

∂p+

√

p+
}

a(p+, xi), (5.51)

K+ : δa(p+, xi) =
{

t2
∂2

i

2p+
+ it(dφ + xi∂i)−

1

2
xixip+

}

a(p+, xi), (5.52)

Ki : δa(p+, xi) =
{

t
∂jx

i∂j

2p+
+ t∂i

∂

∂p+
− i

2
xjxj∂i + ixi

[

dφ + xj∂j

+
√

p+
∂

∂p+

√

p+
]}

a(p+, xi). (5.53)

We next deduce the transformation for the collective fields. In creation-annihilation

form A(x−1 , x
−
2 , ~x1, ~x2) = a(x−1 , ~x1)a(x

−
2 , ~x2), we have δA(1, 2) = δa(1)a(2)+a(1)δa(2)

and any conformal generator

G =

∫

dx−1 dx
−
2 d~x1d~x2A

†ĝA =

∫

dx−1 dx
−
2 d~x1d~x2A

†(ĝ1 + ĝ2)A. (5.54)

Denoting the conjugate momenta as (p+
1 , p

+
2 , p

i
1, p

i
2), we can write down the following

generators

p̂− = p−1 + p−2 = −
(pi

1p
i
1

2p+
1

+
pi

2p
i
2

2p+
2

)

, (5.55)

p̂+ = p+
1 + p+

2 , (5.56)

p̂i = pi
1 + pi

2, (5.57)
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m̂+− = tp̂− − x−1 p+
1 − x−2 p+

2 , (5.58)

m̂+i = tp̂i − xi
1p

+
1 − xi

2p
+
2 , (5.59)

m̂−i = x−1 p
i
1 + x−2 p

i
2 + xi

1

pj
1p

j
1

2p+
1

+ xi
2

pj
2p

j
2

2p+
2

, (5.60)

m̂ij = xi
1p

j
1 − xj

1p
i
1 + xi

2p
j
2 − xj

2p
i
2, (5.61)

d̂ = tp̂− + x−1 p
+
1 + x−2 p

+
2 + xi

1p
i
1 + xi

2p
i
2 + 2dφ, (5.62)

k̂− = xi
1x

i
1

pj
1p

j
1

4p+
1

+ xi
2x

i
2

pj
2p

j
2

4p+
2

+ x−1 (x−1 p
+
1 + xi

1p
i
1 + dφ)

+x−2 (x−2 p
+
2 + xi

2p
i
2 + dφ), (5.63)

k̂+ = t2p̂− + t(xi
1p

i
1 + xi

2p
i
2 + 2dφ)− 1

2
xi

1x
i
1p

+
1 −

1

2
xi

2x
i
2p

+
2 , (5.64)

k̂i = −t
(

xi
1

pj
1p

j
1

2p+
1

+ xi
2

pj
2p

j
2

2p+
2

+ x−1 p
i
1 + x−2 p

i
2

)

−1

2
xj

1x
j
1p

i
1 −

1

2
xj

2x
j
2p

i
2 + xi

1(x
−
1 p

+
1 + xj

1p
j
1 + dφ)

+xi
2(x

−
2 p

+
2 + xj

2p
j
2 + dφ). (5.65)

5.3 Mapping to AdS4

The correspondence introduced in [66] is specific for CFT3↔ AdS4. We will from now

on consider the case of d = 3 for the vector model. In the light-cone notation, there

is only one transverse dimension xi = x and xµ = (x+, x−, x). The AdS4 spacetime

coordinates in the light-cone notation (x+ = t) are denoted with the Poincaré metric

ds2 =
2dtdx− + dx2 + dz2

z2
. (5.66)

The lowercase transverse index i = 1 denotes x only, while the uppercase transverse

index I = (1, 2) denotes (x, z). In AdS4 higher-spin theory, the generators were

worked out by Metsaev in [73] which we now summarize.
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5.3.1 Conformal generators from higher-spin theory

The four-dimensional case has the unique property that, after fixing light-cone gauge

[75], the only physical states are the ±s helicity states [76]. Let us now explain how

to fix the light-cone gauge. Starting from the covariant notation

|Φ〉 =
∞∑

s=1

Φµ1...µsa†µ1
...a†µs

|0〉. (5.67)

where µ = (0, 1, z, 3) in the case of AdS4, one fixes the light-cone gauge in two steps.

First, we drop the oscillators a± = a0 ± a3 and keep only the transverse oscillators

aI , a†J including the z component. The oscillators satisfy the commutators

[aI, a†J ] = δIJ , [aI, aJ ] = [a†I, a†J ] = 0. (5.68)

The spin matrix of the Lorentz algebra now takes the form

M IJ = a†IaJ − a†JaI. (5.69)

The next step is to impose a further constraint

T |Φ〉 = 0, T = aIaI (5.70)

so that only two components will survive. With the complex oscillators

α =
1√
2
(a1 + ia2), α† =

1√
2
(a†1 + ia†2), (5.71)

ᾱ =
1√
2
(a1 − ia2), ᾱ† =

1√
2
(a†1 − ia†2), (5.72)
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we find the simple expansion for |Φ〉

|Φ〉 =
∞∑

λ=1

(

Φ(λ)(ᾱ
†)λ + Φ̄(λ)(α

†)λ
)

|0〉. (5.73)

This expansion obviously satisfies the constraint

T |Φ〉 = 0, T = ᾱα. (5.74)

The spin matrix M = α†ᾱ − ᾱ†α also reduces to (5.69). In four dimensions, the

only non-vanishing spin matrix is Mxz. One can represent α = eiθ, ᾱ = e−iθ. In a

coherent basis, the operator Mxz becomes ∂
∂θ

. Then we have Φ(xµ, z, θ) or in light-

cone notation Φ(x+, x−, x, z; θ). The generators can be written as

G =

∫

dx−dxdzdθ Φ̄ĝΦ. (5.75)

Denoting the conjugate momenta as (p+, px, pz , pθ), one has [73]

p̂− = −p
xpx + pzpz

2p+
, (5.76)

p̂+ = p+, (5.77)

p̂x = px, (5.78)

m̂+− = tp̂− − x−p+, (5.79)

m̂+x = tpx − xp+, (5.80)

m̂−x = x−px − xp̂− +
pθpz

p+
, (5.81)

d̂ = tp̂− + x−p+ + xpx + zpz + da, (5.82)

k̂− = −1

2
(x2 + z2)p̂− + x−(x−p+ + xpx + zpz + da)
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+
1

p+

(
(xpz − zpx)pθ + (pθ)2

)
, (5.83)

k̂+ = t2p̂− + t(xpx + zpz + da)−
1

2
(x2 + z2)p+, (5.84)

k̂x = t(xp̂− − x−px − pθpz

p+
) +

1

2
(x2 − z2)px

+x(x−p+ + zpz + da) + zpθ, (5.85)

where the scaling dimension da = 1 in the case of AdS4.

5.3.2 The map: canonical transformation

We will now show how the two pictures are related by a canonical transformation.

At this point, we will give the classical transformation (it can be specified in its full

quantum version also). So in what follows we do not compare terms with dφ which

will receive quantum corrections (due to ordering).

By relating (5.56-5.59) to (5.77-5.80), one can easily solve for

x− =
x−1 p

+
1 + x−2 p

+
2

p+
1 + p+

2

, (5.86)

p+ = p+
1 + p+

2 , (5.87)

x =
x1p

+
1 + x2p

+
2

p+
1 + p+

2

, (5.88)

px = p1 + p2. (5.89)

From (5.76, 5.81, 5.82, 5.84), we get

z2 =
(x1 − x2)

2p+
1 p

+
2

(p+
1 + p+

2 )2
, (5.90)

pzpz =
(p1p

+
2 − p2p

+
1 )2

p+
1 p

+
2

, (5.91)
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zpz =
(x1 − x2)(p1p

+
2 − p2p

+
1 )

(p+
1 + p+

2 )
, (5.92)

pθpz = (x−1 − x−2 )(p1p
+
2 − p2p

+
1 ) + (x1 − x2)

(p+
2 (p1)

2

2p+
1

− p+
1 (p2)

2

2p+
2

)

. (5.93)

The solution to (5.90-5.93) can be written as

z =
(x1 − x2)

√

p+
1 p

+
2

p+
1 + p+

2

, (5.94)

pz =

√

p+
2

p+
1

p1 −
√

p+
1

p+
2

p2, (5.95)

pθ =
√

p+
1 p

+
2 (x−1 − x−2 ) +

x1 − x2

2

(
√

p+
2

p+
1

p1 +

√

p+
1

p+
2

p2

)

. (5.96)

A nontrivial check of the consistency is given by comparing (5.83, 5.85) with (5.63,

5.65). We now turn to the construction of θ. The condition that θ Poisson commutes

with px implies θ is a function of x1− x2 and the condition that θ Poisson commutes

with p+ implies that θ is a function of x−1 − x−2 . Requiring that θ Poisson commutes

with x−, x, z and pz as well as θ and pθ Poisson commute to give 1 we obtain

θ = 2arctan

√

p+
2

p+
1

. (5.97)

An important consistency check on the correctness of the map that we have con-

structed is that all the Poisson brackets of the derived variables (like z and pz etc.)

take the canonical form with distinct canonical sets commuting with each other. One

can confirm the Poisson brackets {x−, p+} = {x, px} = {z, pz} = 1 and others vanish.

Finally, as a consequence of the above map it follows that the wave equation

in the collective picture has a map [77] to the wave equation of higher-spin gravity

in four-dimensional AdS background. This follows from the generators (5.55) and
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(5.76) coinciding after the canonical transformation. The canonical transformation

can be understood as a point transformation in the momentum space (if we interpret

θ as momentum (5.97), the other momenta are given by (5.87, 5.89, 5.95)). Conse-

quently, the transformation between the higher-spin field and bi-local field is simple

in momentum space

Φ(x−, x, z, θ) =

∫

dp+dpxdpzei(x−p++xpx+zpz )

∫

dp+
1 dp

+
2 dp1dp2δ(p

+
1 + p+

2 − p+)δ(p1 + p2 − px)

δ
(

p1

√

p+
2 /p

+
1 − p2

√

p+
1 /p

+
2 − pz

)

δ
(
2 arctan

√

p+
2 /p

+
1 − θ

)
Ψ̃(p+

1 , p
+
2 , p1, p2) (5.98)

where Ψ̃(p+
1 , p

+
2 , p1, p2) is the Fourier transform of the bi-local field Ψ(x−1 , x

−
2 , x1, x2).

5.4 Origin of the extra dimension

The main contribution here is an explicit one-to-one map between the collective field

(in the case of the O(N) vector model) and the field of higher-spin gravity in 4D AdS

space-time. This map is defined by the canonical transformation which establishes the

relationship between the coordinates of the bi-local collective field and the coordinates

of the AdS4 space-time plus spin variables. The map is one to one, in particular the

most telling formula is the one for the extra radial coordinate of AdS space-time z.

Here we have an explicit expression, in terms of the collective coordinates con-

tained in the bi-local field. The physical picture for this extra dimension is much like

the (collective) coordinates of solitons, which are contained in the field itself but are

nontrivial to exhibit. Their origin is again through a canonical map from the existing
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field degrees of freedom. Naturally, if the boundary conditions are too restrictive then

these degrees will be absent. In more recent phenomenological studies of scattering

processes in QCD, a dipole picture [78] was used which can have a relation to the

construction presented. It is interesting to confront this collective mechanism for the

emerging dimension with other viewpoints such as holographic [79], Feynman dia-

grams [80] and stochastic quantization [81]. There is also the important question of

locality in the bulk of AdS [82].

The collective field theory gives a bulk Hamiltonian representation for the higher-

spin gravity which is bi-local in Minkowski spacetime. It specifies an infinite set

of bulk interacting vertices, which can be explicitly evaluated. These can be com-

pared with the higher spin approaches, in particular Vasiliev’s and we expect to find

agreement. Therefore in this construction the complete Higher Spin Gravity (in a

particular gauge) is seen to emerge. The interactions are seen to be given by the

1/N parameter of the O(N) vector theory. This contains definite implications on the

question of loop and quantum corrections in Higher Spin Gravity.

Our collective field construction gives a strong operator representation of AdS

bulk higher spin fields. It contains the extra radial AdS dimension z explicitly and

an important check on the validity of this off-shell construction is the projection of

our formula to z = 0. We now demonstrate that the collective field indeed correctly

reduces to the conformal primary operators of the vector model field theory. In the

light-cone gauge, these primary operators for a particular spin s take the form [83]

Os =
s∑

k=0

(−1)kΓ(s+ 1/2)Γ(s + 1/2)

k!(s− k)!Γ(s − k + 1/2)Γ(k + 1/2)
(∂+)kϕ(∂+)s−kϕ. (5.99)

On the other hand at z = 0, through the bi-local mapping (5.98), the collective field
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reduces to

Φ(x−, x, z, θ) =

∫

dp+
1 dp

+
2 e

ix−(p+
1 +p+

2 )δ(θ − 2 tan−1
√

p+
2 /p

+
1 )Ψ(p+

1 , p
+
2 , x, x). (5.100)

Expanding the delta function in Fourier series, we find the binomial expansion

(√

p+
1 − i

√

p+
2

)2s

=
(−1)k(2s)!

(2k)!(2s − 2k)!
(p+

1 )k(p+
2 )s−k . (5.101)

This expansion agrees with (5.99) up to an overall normalization constant by noticing

the identity

(2s)!

(2k)!(2s − 2k)!
=

s!Γ(s+ 1/2)Γ(1/2)

k!(s− k)!Γ(s− k + 1/2)Γ(k + 1/2)
. (5.102)

We therefore see that the collective field at z = 0 reduces to the conformal primary

operators.

5.5 A symmetric gauge

To establish the full agreement between higher spin and collective theory, it is useful

to exhibit a symmetric gauge formulation of Vasiliev’s theory. Such a formulation

exists and is given as the W = 0 gauge. Starting with the nonlinear equations of

motion

dW = W ∗W, (5.103)

dB = W ∗B − B ∗ W̃ , (5.104)

dS = W ∗ S − S ∗W, (5.105)
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S ∗ S = dzαdz
α(i+B ∗ κ) + dz̄α̇dz̄α̇(i+B ∗ κ̄), (5.106)

S ∗B − B ∗ S̃ = 0, (5.107)

where κ = eizαyα

, κ̄ = eiz̄α̇ȳα̇

and ∼ changes a sign of all undotted spinors

f̃ (dz, dz̄; z, z̄, y, ȳ) = f(−dz, dz̄;−z, z̄,−y, ȳ). (5.108)

Since W is a flat connection in spacetime, at least locally we can always go to a gauge

in whichW is set to zero. We will denote by S ′ and B ′ the corresponding master fields

in this gauge. The equations of motion then states that S ′ and B ′ are independent of

the spacetime coordinate xµ, and are functions of Y, Z only. Explicitly, we can write

W (x|Y, Z) = g−1(x|Y, Z) ∗ dxg(x|Y, Z), (5.109)

S(x|Y, Z) = g−1(x|Y, Z) ∗ S ′(Y, Z) ∗ g(x|Y, Z), (5.110)

B(x|Y, Z) = g−1(x|Y, Z) ∗B ′(Y, Z) ∗ π(g(x|Y, Z)). (5.111)

The equations for S ′ and B ′ now take the form

S ′ ∗ S ′ = dzαdzα(i+B ′ ∗ κ) + dz̄α̇dz̄α̇(i+B ′ ∗ κ̄), (5.112)

S ′ ∗B ′ = B ′ ∗ π(S ′). (5.113)

This system has the residual gauge symmetry

S ′(Y, Z) = g−1(Y, Z) ∗ S ′′(Y, Z) ∗ g(Y, Z), (5.114)

B ′(Y, Z) = g−1(Y, Z) ∗B ′′(Y, Z) ∗ π(g(Y, Z)). (5.115)
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Omitting the primes and shift of the S field as

Sα = zα + Ŝα, S̄α̇ = z̄α̇ + ˆ̄Sα̇, (5.116)

we find the equations of motion in components

i∂αS
α − Sα ∗ Sα = B ∗ κ, (5.117)

i∂̄α̇S̄
α̇ − S̄α̇ ∗ S̄α̇ = B ∗ κ̄, (5.118)

i∂αS̄β̇ − i∂̄β̇Sα − [Sα, S̄β̇]∗ = 0, (5.119)

i∂αB − Sα ∗B − B ∗ π(Sα) = 0, (5.120)

i∂̄α̇B − S̄α̇ ∗B − B ∗ π̄(S̄α̇) = 0, (5.121)

where we omitted the hats and rescaled both fields S,B by a factor of 2. A useful

symmetry property for the bosonic case is

π(Sα) = −π̄(Sα), π(S̄α̇) = −π̄(S̄α̇). (5.122)

The last two equations of the B field is not independent. Using the solution for

the B field from the first two equations, one can verify that the B equations are

automatically satisfied. Therefore, one can totally get rid of the B field and find five

equations for the S field

Fαβ̇ ≡ i∂αS̄β̇ − i∂̄β̇Sα − [Sα, S̄β̇]∗ = 0, (5.123)

(i∂αS
α − Sα ∗ Sα) ∗ κ− (i∂̄α̇S̄

α̇ − S̄α̇ ∗ S̄α̇) ∗ κ̄ = 0. (5.124)
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Next we introduce an ansatz

S1 = −iM−1 ∗ ∂1M, S2 = −iM̄ ∗ ∂2M̄
−1, (5.125)

S̄1 = −iM̄ ∗ ∂̄1M̄
−1, S̄2 = −iM−1 ∗ ∂̄2M, (5.126)

where we used the notation M † = M̄ . This ansatz solves the F12̇ = F21̇ = 0 equations

automatically. The other two equations F11̇ = F22̇ = 0 give a simple form

∂̄1(J
−1 ∗ ∂1J) = 0, (5.127)

∂2(J
−1 ∗ ∂̄2J) = 0, (5.128)

where we have defined the gauge invariant quantity J = M ∗ M̄ . The last equation

F11 ∗ κ− F22 ∗ κ̄ = 0 gives

∂2(J
−1 ∗ ∂1J) ∗ κ+ ∂̄1(J

−1 ∗ ∂̄2J) ∗ κ̄ = 0, (5.129)

where we used the symmetry property M(Y, Z) = M(−Y,−Z) in the bosonic case.

We have presented a completely symmetric reformulation of Vasiliev’s Higher Spin

Gravity in terms of a single (bi-local) scalar field J(Y, Z). This formulation consists

of an equation of motion and two additional constraints. It can be shown that the

additional constraints reduce the dimensionalities of the Y and Z spaces from 4 + 4

to 3 + 3. This then agrees with the dimensionality of the bi-local collective field

constructed from CFT3. Further studies of this nonlinear system of equations can

then establish a full nonlinear map between the two formulations of the theory. This

can be accomplished by a nonlinear field redefinition. Once established the field

correspondence will provide an exact demonstration of the AdS/CFT correspondence

in a particular case of 3D conformal field theory.



Chapter 6

Conclusion

This dissertation presents an in-depth study of the AdS/CFT correspondence. In

the first part, a detailed investigation of the classical string and its dynamics in AdS

spacetime was performed. General methods (for construction of classical solutions)

were developed and applied in detail to the case of AdS3. For this the inverse scat-

tering technique was adopted and a useful correspondence with field theoretic soliton

solutions was formulated. As a result a most general set of “spiky” string configura-

tions was obtained. Based on the explicit solutions we were able to discuss the form

of the moduli space and its dynamics. Locations of spikes provided the collective

coordinates for describing the moduli of the general string solutions, it was estab-

lished that there is a one-to-one correspondence with the locations of solitons in the

corresponding reduced field theory of sinh-Gordon type. This produced a “partonic”

picture of the AdS string, where the partons are localized at the locations of “spikes”

and can be described in terms of an n-body dynamics. Through the inverse scattering

construction it was seen that this n-body dynamics is related to the n-body dynamics

of soliton coordinates of the sinh-Gordon field theory.
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The second part of the dissertation describes work on constructing AdS gravity

from the large N partonic system. The manner in which continuum phenomena such

as gravity are reconstructed from the microscopic dynamics is argued to be associated

with the phenomenon of collectivemotions. Studying the simplest partonic composite,

consisting of a bi-local system of two particles turned out to produce a striking result:

the appearance of one extra AdS dimension and of a sequence resonances of growing

integer spins. Specifically an explicit mapping of the AdS4 spacetime plus higher-spin

fields is given from the (bi-local) collective fields of the free conformal theory. Higher

spin massless fields were seen to be associated with the cusps of the spiky strings.

The main result described in the second part is an explicit one-to-one map between

bi-local collective field (of the 3D O(N) vector model) and the fields of higher-spin

gravity in 4D AdS spacetime. This construction is based on equating the isometries

of SO(2, 3) with the conformal generators of the CFT3 in the light-cone gauge. The

mapping itself gives a general understanding on the (collective) origin of the extra

spatial dimension in the AdSd+1/CFTd correspondence. It is to be compared with the

“holographic” approaches where the extra spatial dimension of the AdS spacetime is

typically projected out or argued to be related to the renormalization group scale. Our

construction demonstrates explicitly the origin of the extra AdS dimension and the

emergence of Higher-Spin General Relativity in AdS spacetime. It has the potential

for a complete demonstration of the AdS/CFT correspondence in the case of the 3D

vector model.



Appendix A

Inverse scattering and the spinors

In this appendix, we summarize the inverse scattering method [43] to solve the Lax

pair equations (2.95) with the matrices (2.94). Choose the boundary condition of the

field as û, ∂̄û→ 0 as z̄ → ±∞. The spinor ϕ can be written as an integral form

ϕ(ζ, z̄) =






0

1




 eiζz̄ +

∫ ∞

z̄

K(z̄, s)eiζsds, (A.1)

where the kernel satisfies the GLM equation

K̄(z̄, y) +






0

1




F (z̄ + y) +

∫ ∞

z̄

K(z̄, s)F (s+ y)ds = 0, (A.2)

with the function F (x) defined to be

F (x) =
1

2π

∫ ∞

−∞
r(k)eikxdk − i

N∑

j=1

cje
iζjx, (A.3)
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where r(k) is the reflection coefficient, cj and ζj are constants. In the case of sinh-

Gordon with real field û, the kernels are

K =






K1(z̄, s)

K2(z̄, s)




 , K̄ =






K2(z̄, s)

K1(z̄, s)




 , (A.4)

with K1 and K2 real.

Now we try to solve the GLM equation (A.2) by some ansatz. Consider the soliton

solutions to the sinh-Gordon equation which has r(k) = 0 and plug in the ansatz

Ki(z̄, s) =
N∑

j=1

√
cjfij(z̄)e

iζjs, i = 1, 2, (A.5)

we get

f1j = i
N∑

k=1

(1− A)−1
jk λk, (A.6)

f2j = −i
N∑

l,k=1

λjλl

ζj + ζl
(1− A)−1

lk λk, (A.7)

where the matrix A is defined as

Aij =
∑

l

ailalj, ail =
λiλl

ζi + ζl
, λk =

√
cke

iζkz̄. (A.8)

The wavefunctions are solved to be

ϕ1(ζ, z̄) = −
(∑

j,l

λj

ζ + ζj
(1− A)−1

jl λl

)

eiζz̄, (A.9)

ϕ2(ζ, z̄) =
(

1 +
∑

j,l,k

λj

ζ + ζj

λjλl

ζj + ζl
(1− A)−1

lk λk

)

eiζz̄. (A.10)
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Adding the z dependence, we get

ϕ1(ζ, z, z̄) = −
(∑

j,l

λj

ζ + ζj
(1−A)−1

jl λl

)

eiζz̄−iz/4ζ , (A.11)

ϕ2(ζ, z, z̄) =
(

1 +
∑

j,l,k

λj

ζ + ζj

λjλl

ζj + ζl
(1− A)−1

lk λk

)

eiζz̄−iz/4ζ , (A.12)

with cj(z) = cj(0)e
−iz/2ζj . The sinh-Gordon field û(z, z̄) is found to be

û(z, z̄) = sinh−1
[4ζ

i

∂(ϕ1ϕ2)

(ϕ1)2 − (ϕ2)2

]

. (A.13)



Appendix B

Einstein gravity

In this appendix, we review various formulations of Einstein gravity.

The first order veilbein formulation:

The natural vielbein variables are the 1-forms ea = dxµea
µ and the Lorentz affinities

wab = dxµwab
µ = −wba, where a, b denote Lorentz indices running from 0, ..., d−1 and

µ, ν are world indices also ranging from 0, ..., d− 1. The torsion tensor is defined as

T a
µν = Dµe

a
ν −Dνe

a
µ (B.1)

where covariant Lorentz derivatives are given by

Dµv
a = ∂µv

a + vbw a
µb . (B.2)
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Taking two derivatives one obtains

[Dµ, Dν ]v
a = −R a

µν bv
b (B.3)

where the Riemann tensor is defined as

R b
µνa = ∂µw

b
νa − ∂νw

b
µa − w b

µ cw
c

νa + w b
ν cw

c
µa . (B.4)

Contracting once and twice with the veilbein gives Rµa = e ν
b R

b
µνa and R = eaµRµa

respectively. The first order action we start with is [84]

κ2S = 〈ωab
µ ∂ν(ee

µν
ab ) +

1

2
ω ab

µν ee µν
ab 〉, (B.5)

where e = det ea
µ, e

µν
ab = eµ

ae
ν
b − eν

ae
µ
b and ω ab

µν = ω ac
µ ω b

ν c−ω bc
µ ω a

ν c. Variations with

respect to eµ
a lead to

R a
µ −

1

2
ea

µR = 0 (B.6)

and variations with respect to ω ab
µ yield

Dν [ee
abµν] = eT ab,µ = eeaνebρT µ

νρ = 0 (B.7)

showing that the torsion vanishes.

To make contact with the metric formulation of gravity, one must assume that the

frame ea
µ has maximal rank d so that it gives rise to the non-degenerate metric tensor

gµν = ηabe
a
µe

b
ν . From the torsion-free equation Ta = 0, one solves this constraint and

expresses the Lorentz connection in terms of the frame field w = w(e, ∂e). It can be

checked that the tensor Rρσ,µν = ea
µe

b
νRρσ,ab is then expressed solely in terms of the

metric, and is the Riemann tensor.
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Gravity as a gauge theory:

It is well known that gravity can be interpreted as a gauge theory corresponding to

an appropriate space-time symmetry algebra g. Vierbein h a
ν and Lorentz connection

ω ab
ν can be identified with the connection 1-forms of g. For example, in the four-

dimensional space-time one can choose g to be the AdS algebra so(2, 3), which gives

rise to the gauge field A âb̂
ν = −A b̂â

ν with â, b̂ = 0 ÷ 4, and one can set ω ab
ν = A ab

ν

and h a
ν = λ−1A a4

ν with a, b = 0÷ 3. The so(2, 3) Yang-Mills strengths read in these

terms

R ab
νµ = ∂νω

ab
µ + ω a

ν cω
cb

µ + λ2h a
ν h

b
µ − (ν ↔ µ), (B.8)

R a
νµ = ∂νh

a
µ + ω a

ν ch
c

µ − (ν ↔ µ). (B.9)

From (B.9) one recognizes that R a
νµ has a form of the torsion tensor in the vierbein

formulation of gravity. The constraint R a
νµ = 0 expresses the Lorentz connection ω ab

ν

in terms of (derivatives of) the vierbein h a
ν provided that h a

ν is a non-degenerate

matrix. Substituting these expressions back into the Lorentz components of the field

strength (B.8), one can make sure that, up to the cosmological-type terms λ2hh, R ab
νµ

coincides with the Riemann tensor in gravity. Then one observes that the equations

R ab
νµ = 0 and R a

νµ = 0 describe AdS space of radius λ−1. In fact, this is the way

how AdS space appears as a vacuum solution of the higher-spin equations considered

below.

A remarkable observation by MacDowell and Mansouri [85] is that Einstein-

Hilbert action with the cosmological term can be formulated in terms of the curvatures

(B.8) in the form

SMM = − 1

4κ2λ2

∫

d4xενµρσεabcdRνµ,abRρσ,cd. (B.10)



123

Let us note that the terms proportional to λ−2 in SMM , which involve higher deriva-

tives, combine into a topological term and do not affect the equations of motion. The

λ-dependent term and the term proportional to λ2 reduce to the scalar curvature and

the cosmological term, respectively.

Gravity in spinor notation:

A useful form of the Einstein gravity which can be generalized to higher-spin

case is summarized in [86] using the formalism of two-component spinors. The spinor

indices are α, β = 1, 2 and α̇, β̇ = 1, 2. They are raised or lowered using the symplectic

forms

Aα = εαβAβ, Aα = −εαβA
β , Bβ̇ = εβ̇α̇Bα̇, Bβ̇ = −εβ̇α̇B

α̇, (B.11)

where the Levi-Civita symbols are

εαβ = εα̇β̇ = εαβ = εα̇β̇ =






0 1

−1 0




 . (B.12)

The corresponding curvatures can be written as

Rνµα(2) = ∂νωµα(2) − ∂µωνα(2) + 2ωναγω
γ

µα + 2λ2hναδ̇h
δ̇

µα , (B.13)

R̄νµβ̇(2) = ∂ν ω̄µβ̇(2) − ∂µω̄νβ̇(2) + 2ω̄νβ̇δ̇ω̄
δ̇

µβ̇
+ 2λ2hνγβ̇h

γ

µ β̇
, (B.14)

Rνµαβ̇ = [∂νωµαβ̇ + ωναγh
γ

µ β̇
+ ω̄νβ̇δ̇h

δ̇
µα ]− [ν ↔ µ]. (B.15)

The fields ωνα(2) and ω̄νβ̇(2) in the spinor terms describe the Lorentz connection ων,ab

and the field hναβ̇ describes the tetrad hν,a. The parameter λ is inverse of the radius

of the AdS space.
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The action (B.10) can be written in the form

S = − i

4κ2λ2

∫

d4xενµρσ[Rνµα(2)R
α(2)

ρσ − R̄νµβ̇(2)R̄
β̇(2)

ρσ ], (B.16)

where ε0123 = 1. This action is invariant under the Lorentz gauge subgroup of the

original AdS group. The fields ωνα(2) and ω̄νβ̇(2) can be expressed in terms of the

tetrad ωναβ̇ using the corresponding equations of motion Rνµαβ̇ = 0. AdS background

is described by a tetrad and connection satisfying the equations

Rνµα(2) = 0, R̄νµβ̇(2) = 0, Rνµαβ̇ = 0. (B.17)

One can solve these equations and fix the fields ωναβ̇ , ωνα(2), ωνβ̇(2) where we denote

them as hναβ̇ , wνα(2), w̄νβ̇(2).
1 Treating the fields h, w, w̄ as background fields and

assuming that the deviations of the fields ω from them are small, we can expand the

curvatures (B.13-B.15) in powers of these deviations and keep only the linear terms.

The substitution of the corresponding linearized curvatures into the action (B.16)

gives the action for a massless field of spin 2 in the AdS space.

1Please distinguish ω and w.
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