
Abstract of “Teaching Old Dogs New Tricks: Incremental Multimap Regression for Interactive Robot

Learning from Demonstration” by Daniel H Grollman, Ph.D., Brown University, May 2010.

We consider autonomous robots as having associated control policies that determine their actions in

response to perceptions of the environment. Often, these controllers are explicitly transferred from a

human via programmatic description or physical instantiation. Alternatively, Robot Learning from

Demonstration (RLfD) can enable a robot to learn a policy from observing only demonstrations of

the task itself. We focus on interactive, teleoperative teaching, where the user manually controls the

robot and provides demonstrations while receiving learner feedback. With regression, the collected

perception-actuation pairs are used to directly estimate the underlying policy mapping.

This dissertation contributes an RLfD methodology for interactive, mixed-initiative learning of

unknown tasks. The goal of the technique is to enable users to implicitly instantiate autonomous

robot controllers that perform desired tasks as well as the demonstrator, as measured by task-specific

metrics. With standard regression techniques, we show that such “on-par” learning is restricted

to policies typified by a many-to-one mapping (a unimap) from perception to actuation. Thus,

controllers representable as multi-state Finite State Machines (FSMs) and that exhibit a one-to-

many mapping (a multimap) cannot be learnt. To be able to do so we must address the three

issues of model selection (how many subtasks or FSM states), policy learning (for each subtask),

and transitioning (between subtasks). Previous work in RLfD has assumed knowledge of the task

decomposition and learned the subtask policies or the transitions between them in isolation.

We instead address both model selection and policy learning simultaneously. Our presented

technique uses an infinite mixture of experts and treats the multimap data from an FSM controller

as being generated from overlapping unimaps. The algorithm automatically determines the number

of unimap experts (model selection) and learns a unimap for each one (policy learning). On data

from both synthetic and robot soccer multimaps we show that the discovered subtasks can be

used (switched between) to reperform the original task. While not at the same level of skill as

the demonstrator, the resulting approximations represent significant improvement over ones for the

same tasks learned with unimap regression.

Teaching Old Dogs New Tricks: Incremental Multimap Regression for Interactive Robot Learning

from Demonstration

by

Daniel H Grollman

Sc.M Computer Science, Brown University

B.S. Electrical Engineering and Computer Science, Yale University

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2010

c© Copyright 2010 by Daniel H Grollman

This dissertation by Daniel H Grollman is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Odest Chadwicke Jenkins, Advisor

Recommended to the Graduate Council

Date
Tom Dean, Reader

Google Inc.

Date
Manuela Veloso, Reader

Carnegie Mellon University

Date
Daniel Lee, Reader

University of Pennsylvania

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Curricula Vita

Daniel H Grollman was born June 28, 1981 in New York, NY. A product of the NYC public school

system, he was “magnetized” in fifth grade, and eventually attended The Bronx High School of

Science. While in high school he began doing academic, scientific research at Cornell Medical School

in 1998, investigating the role of adhesion molecules in inflammation. At Yale University he switched

to Electrical Engineering and Computer Science and graduated with a combined B.S. in 2003,

after building a robotic rat for his senior project. From there he enrolled in the Brown University

Department of Computer Science’s PhD program, and obtained his Master’s en route in 2005 for

work in robotic perception. In addition to these locations, Dan has gained experience working for the

University of Edinburgh, Microsoft Corporation, iRobot Corporation, and the Fraunhofer Institute.

While at Brown, Dan’s research has led to publications in several conferences, workshops and

journals, including the International Conference on Robotics and Automation, the International

Conference on Development and Learning, Neural Information Processing Systems, the International

Conference on Intelligent Robots and Systems, and the Journal of Field Robotics. His work has led

him to be selected as a Young Pioneer in Human-Robot Interaction twice, and garnered a best video

and best poster award. Further, he has appeared in the Brown Annual Report, the Brown Alumni

Magazine, and on the Cartoon Network.

While a graduate student, Dan has mentored several high school interns, undergraduates and

master’s students, aiding in their selection and development of various projects. In a classroom

setting, Dan has given guest lectures and demonstrations to current and prospective students, both

at Brown and other institutions. He has also assisted in the development and teaching of graduate-

level courses on Machine Learning and Cryptography. After completing his degree, Dan will be

serving as a post-doc at the École Polytechnique Fédérale de Lausanne, continuing research into

robot learning from demonstration.

iv

Preface and Acknowledgments

I, literally, could not have completed this dissertation without the help, support, and prior work of

many. As an overview of the academic work related to my dissertation is given in Chapter 2, I will

take this space to point out the less academic, but no less important, contributions of others.

Firstly, my family, who have been supporting my curiosity from early on, allowing me to disas-

semble and explore whatever I could get my hands on, and providing books and classes for those

things I could not. Schoolteachers as well, too numerous to mention, fanned the flames of inquiry,

but I must especially thank Mr. Rockfeld, who let me run wild in the computer lab, and Mrs. Reidy,

who threatened to fail me unless I committed a year of my life to research.

Doing that research with Dr. Muller exposed me to rigorous scientific experimentation for the

first time. He and the other researchers taught me many of my good lab habits, such as not eating

at the workbench. At college, I continued academic work with Drs. Hudak, Peterson, McDermott

and Scassellati, who gave me my first taste of robotics. I’ve since been hooked on using computers

to interact with the physical world, and thank them for getting me involved in such an exciting field.

At Yale and Brown both, I have been able to surround myself with like-minded individuals who

have fostered my intellectual development, in addition to taking classes that extended my sphere

of knowledge outside of my discipline. Particularly, without the members of the Yale Precision

Marching Band, The Purple Crayon of Yale, Brown University Gilbert and Sullivan, and the Brown

Tae Kwon Do club, I do not think I would be where or who I am today.

Here in graduate school, from the initial days of the Albino Kangaroo Society, my friends and

coworkers have been one and the same. My officemates and housemates put up with me daily, and

the members of RLAB and Brown # have provided unfailing support, particularly Jesse Butterfield,

who came through in a pinch. Special thanks also go to Micah Lapping-Carr and Daniel Byers, who

developed the graphical front end for my system, as well as providing some sweet sax playing and

videography services. Likewise, my cohorts on the machine learning side were Sharon Goldwater

and Frank Wood, to whom nonparametric, Bayesian models are like mother’s milk.

The departmental tstaff and astaff have provided exemplary support for my work. Over the years

they have assisted me with a wide variety of practical requests, from installing shelves to buying

scotch. My committee, particularly my adviser, likewise provided wide-ranging academic support,

allowing me to explore my own ideas, while keeping me from going off the deep end. Finally, this

work was made possible in part by the NSF (IIS-0534858), Brown Salomon, and readers like you.

v

Contents

1 Introduction 1

1.1 Dissertation Scope . 3

1.1.1 Beyond Consideration . 4

1.2 Human-Robot Policy Transfer . 5

1.2.1 Teleoperation . 6

1.2.2 Coding . 6

1.2.3 Learning . 7

1.2.4 Comparison . 8

1.3 Learning from Demonstration . 10

1.3.1 Correspondences . 10

1.3.2 Learning Approaches . 11

1.3.3 Data Collection . 11

1.3.4 Multimap Policies . 13

1.4 Dissertation Overview . 17

1.4.1 Contributions . 20

1.4.2 Outline . 21

2 Background 22

2.1 Robot Platform . 22

2.1.1 Perception and Actuation . 24

2.2 Decision Making . 25

2.2.1 Policy Form . 25

2.2.2 Policy Model . 28

2.2.3 Mapping . 30

2.3 Learning Control Policies . 31

2.3.1 Reward Based Learning . 31

2.3.2 Demonstration Based Learning . 33

2.3.3 Regression . 34

2.4 Human-Based Data Collection . 35

2.4.1 Control Interface . 36

vi

2.4.2 Transparency . 37

2.4.3 Tutelage . 38

2.5 Robot Learning . 39

2.5.1 Inverse Reinforcement Learning . 40

2.5.2 Confidence Based Autonomy . 40

2.5.3 Gaussian Mixture Regression . 41

2.6 Summary . 42

3 Dogged Learning 43

3.1 Platform . 44

3.2 Demonstrator . 46

3.2.1 Feedback . 46

3.2.2 Control . 47

3.3 Decision Making . 48

3.3.1 Learner . 49

3.3.2 Default Controller . 49

3.3.3 Arbitration . 50

3.4 Analysis . 51

3.4.1 Platforms . 52

3.4.2 Demonstrator Interfaces . 55

3.5 Discussion . 59

3.5.1 Data Collection . 60

3.5.2 Internal State . 61

4 Realtime Overlapping Gaussian Expert Regression 62

4.1 Model . 64

4.1.1 Input Space Density Estimation . 67

4.1.2 Model Selection . 68

4.1.3 Expert Output Regression . 70

4.2 Algorithm . 72

4.2.1 Inference . 73

4.2.2 Prediction . 73

4.2.3 Batch Inference . 75

4.3 Analysis . 76

4.3.1 Square Root Dataset . 76

4.3.2 Incremental vs Batch . 77

4.3.3 Comparison with LWPR . 78

4.4 Discussion . 82

4.4.1 Model Selection . 83

4.4.2 Temporality . 84

vii

4.5 Review . 85

5 Evaluation 87

5.1 Unimap Goal Scorer . 91

5.1.1 Conclusion . 92

5.2 Multimap Goal Scorer . 92

5.2.1 Open Loop . 95

5.2.2 Mean Square Error . 96

5.2.3 Features of Learning Algorithms . 96

5.2.4 Subtask Switching . 99

5.2.5 Conclusion . 100

5.3 Multimap Learning . 100

5.3.1 Analysis . 101

5.3.2 Evaluation . 102

5.3.3 Conclusion . 104

5.4 Goalie . 104

5.4.1 Analysis of errors . 105

5.4.2 Shoot out . 105

5.4.3 Conclusion . 107

6 Discussion and Conclusion 108

6.1 Dogged Learning . 109

6.1.1 Strengths . 110

6.1.2 Limitations . 111

6.2 Realtime Overlapping Gaussian Expert Regression 113

6.2.1 Strengths . 113

6.2.2 Limitations . 115

6.3 Summary . 116

6.3.1 Strengths . 117

6.3.2 Limitations . 118

6.3.3 Future Work . 118

6.4 Conclusion . 119

Bibliography 120

? The use herein of photographs, algorithms, figures and quotations does not constitute support

or approval of this work by the copyright holders. This dissertation was almost titled “Rogering

the Dog,” but eventually good taste won out.

viii

Chapter 1

Introduction

In ten years Rossum’s Universal Robots will produce so much corn, so much cloth, so

much everything, that things will be practically without price. There will be no poverty.

All work will be done by living machines. Everbody will be free from worry and liberated

from the degradation of labor. Everbody will live only to perfect himself.

Karel Čapek, R.U.R, 1921, page 15

We take as a goal of robotics the extension of our computing capabilities into the physical

world. That is, as modern computers allow non-specialist users to automate the manipulation and

management of digital data, robotics aims to enable those same users to exert similar control over

their physical environment. Consider, for example, recent video and image editing software, which

enable novice users to modify their data in ways that, previously, only experts could. We likewise

seek, in this dissertation, to aid these users in controlling their environment, through robots, in ways

that currently only skilled roboticists can.

Currently, decades of work in artificial intelligence and robotics has lead to high-end consumer

(a) Packbot (b) Robonaut (c) R2D2 (d) Olivaw

Figure 1.1: A sampling of robots both real (a,b) and fictional (c,d).
Copyrights: iRobot, NASA, LucasFilms, BantamBooks.

1

2

and research robots such as those in Figures 1.1a and 1.1b. However, these robots tend to be

domain specific, exhibit limited autonomy, and be difficult to adapt to new applications. In other

words, while there exist robots that perform complicated and useful tasks, they often perform only

in a particular environment, and/or possibly require excessive human supervision or special training

to operate. These shortcomings can be traced to issues of robot behavior, as opposed to robot

embodiment. The very fact that robots can perform these tasks (under supervision) argues for

the sufficiency of their forms. What is lacking must then lie in how that form is used, in the

perceptual, actuational, and decision making systems that map from raw information extracted

from the environment to robot-effected changes. Terming this aspect the robot’s control system, we

argue that while robots may be physically capable of performing many desired tasks, the autonomous

control systems necessary for executing them in varying conditions are difficult to develop, and often

lacking. We therefore seek improved techniques for instantiating autonomous robot control policies.

More generally, we may be moving towards so-called “universal” robots: Multi-purpose, robust,

adaptable systems that interact with humans in an intuitive manner and perform a wide variety of

tasks. Examples of such robots abound in fiction, such as those seen in Figures 1.1c and 1.1d. These

robots are able to assist humans in a multitude of settings, receiving input from speech and gestures

just as a human would, and acting safely alongside us. They further exhibit decision making and

problem solving, often determining the correct sequence of actions to bring about a desired result.

In addition to such autonomy, over their (long) lifetimes universal robots exhibit adaptability to

new situations and tasks, perhaps by learning new skills or discovering additional uses for old ones.

However, while autonomous control policies themselves are required, it is not so that they must

exhibit learning and adaptation. It is conceivable that all the behaviors and autonomy required by

the robot over its lifetime can be designed (hardwired or preprogrammed) into the robot, and never

require updating or modification. These fixed behaviors would then determine the robot’s every

move, in response to environmental stimuli. They may also enable robots to adapt to changes in

their physical structure, due to damage or willful modification. This approach to robot control can

be seen as analogous to innate behaviors or instincts in biology. For some lifeforms, these born-in

abilities are all that is necessary for a full life, similar to a single-purpose, preprogrammed robot.

For other species, such as ourselves, and for robots that will have to deal with a wide variety of

unknown situations, the ability to develop new behaviors may be advantageous.

Even if not necessary for the tasks themselves, learning may greatly simplify the challenge of

developing autonomous control policies for robots. We take this view here, and point out two ways

in which it may occur. Firstly, by using learning from demonstration, the field of robot control policy

instantiation may become accessible to users other than traditional programmers. More varied types

of users may lead to new approaches to difficult problems and result in higher quality solutions than

those derived by scientists [64]. Secondly, interactive learning, where the user corrects improper

behavior and the robot request more demonstrations as needed, may enable the development of

controllers that address the particular situations that arise, and perform well enough in most cases.

These controllers could then be extended to add support for rarer edge cases when and if they occur.

3

We thus contribute a framework for performing interactive robot learning from demonstration,

or tutelage, as referred to herein. The framework is designed to be run over the entire lifetime of

the robot, blending autonomous behavior with the learning of new tasks. Within this framework we

further contribute a new learning algorithm for multivalued regression to avoid requiring that users

pre-segment their desired task into distinct subtasks. Performing such segmentation may require

analysis beyond that of the end user, either due to a lack of the necessary skills, or the complexity of

the task. Our algorithm instead automatically determines an appropriate number of subtasks and

learns individual policies for them. We cast this process as learning the individual machine states

of a finite state machine controller, where previous approaches have taken these states as given.

In the rest of this chapter, we discuss some of the challenges facing robot design, both of the

physical form and the control system. The issues of human-robot policy transfer and multimap

policies are introduced, and our approaches sketched out. We conclude with a summary of our

contributions and an outline of this dissertation.

1.1 Dissertation Scope

When designing a robot, there are many issues to consider and challenges that must be overcome,

such as the robot’s physical form, computational architecture, and control policy. This dissertation

only addresses one of them, that of Human-Robot Policy Transfer (HRPT), the transitioning

of a control policy from a human user’s mind onto a robot. Our approach is to use a combination

of interactive learning from demonstration and multimap regression. Interactive learning

from demonstration is a technique where the robot learns the task as demonstration takes place and

provides feedback on the learned policy to the user. That is, the user can teach a task, observe robot

performance of it, and provide additional, corrective demonstrations at interactive rates. A tutelage

paradigm may allow for the generation of more targeted demonstration data, where portions of the

task that are harder to learn are demonstrated more often than those that are learnt faster.

We use multimap regression to address the issue of perceptual aliasing (PA) in the demon-

stration data, where the current perceived state does not map to a unique correct action. PA can

arise when portions of the state, required for the task at hand, are unobservable, or hidden. This

hidden state may be due to inconsistent demonstrations, insufficient perception, or a change in task

objective. A change in objective could be associated with a switch to a new subtask or reward func-

tion. Rather than combining the multiple observed outputs into one, we instead learn a one-to-many

mapping directly in perception-actuation space.

To focus on the decision making aspects of robot control responsible for goal-directed behavior,

this dissertation takes as given a complete robot, both physical and computational systems. With

a known physical embodiment, sensors and perceptual capabilities, effectors and actuation control

systems, we are interested in how the control policy can be transitioned from a human user onto the

robot such that the robot performs the desired task in the manner expected. We focus on robots that

are able to perform a variety of tasks that are demonstrable by humans, and thus do not consider

4

tasks that that humans themselves cannot do. While this focus may limit the applicability of our

proposed techniques, future development may expand our contributions to the learning of tasks that

humans themselves cannot perform well. Further, we note that many common desired tasks are

human demonstrable, it is just that humans would rather not perform them themselves.

1.1.1 Beyond Consideration

As one of our goals is to develop a system that can be used to teach robots to perform previously

unknown tasks, we strive to avoid incorporating task-specific knowledge. However, we do make the

assumption that we have a robot that can physically perform tasks as desired by the user and on

which we can instantiate desired control policies. An issue that we then do not address here is that

of robot embodiment. This topic relates to the precise shape of the robot and the materials it is

made of, and we particularly make no claims as to what these properties of the robot should be.

Research in related fields such as materials science, physics, and chemistry has resulted in an

increase in the number of options available to robot designers. Specifically, there is now a wider

variety of robots in terms of size, shape, sensors and effectors than there was before. While once

“trash-can” robots with three or four wheels and sonar rings were state of the art, we now have

robots that can climb walls [108] and utilize trinocular vision [120]. The increase in available em-

bodiment options has led to a corresponding increase in the possible tasks that robots can perform.

Additionally, research in psychology has lead to a better understanding of how humans perceive

robots, and changed their outward appearance and behavior. Faces and other affective indicators

are common [20], and studies have indicated how robot behaviors can be adjusted to suit individual

personalities [136]. Thus how the robot performs a task is also a concern rife with possibilities.

However, no matter what the physical structure of the robot, the task it performs, and how it

should be performed, the robot must be supplied with some method of control. That is, there must

be some “cognitive” procedures that generate the control signals for the effectors based on obser-

vations or sensory signals. The mapping between the observations and control may be arbitrarily

complicated, and the control system may make use of information in addition to the instantaneous

sensory readings. Designing the controller can itself be a challenging task, and there are many differ-

ent paradigms that may be applicable. At a low level, there are a plethora of possible computational

architectures that can run on a robot, and more are being developed [76]. As with physical form, the

choice of computing architecture and controller paradigm may make it easier for a robot to perform

certain tasks over others, and novel desired tasks may require the development of new techniques.

Often, the robot’s task and the environment in which it will be performed will inform the em-

bodiment, and a robot’s physicality is sometimes designed with certain tasks in mind. For instance,

a home care robot for the elderly will likely look and feel much different from an interplanetary

explorer robot. The former may be socially expressive, humanoid, and physically compliant, while

the latter needs none of those properties and may instead be boxy and shielded against radiation.

These are only two of the possible desired robot tasks, which may go beyond the stereotypical “Dirty,

Dangerous and Dull” and change with time as perceptions of robots alter [137].

5

The interaction of a robot with a user can be broadly considered under the umbrella of usability,

another topic which we do not directly address. In particular, as robots interact more with humans,

intuitive interfaces and socially-correct interaction may become increasingly important. In order

to guage the public’s perception of robotic systems, we require user studies that have naive users

interacting with and evaluating new designs in robots and interfaces. While such a user study is

outside of the scope of this dissertation, we note that a desire for a more intuitive HRPT interface

does guide our work, in our focus on learning from demonstration.

In terms of learning control policies themelves, we focus on interpolation between demonstrations

to related situations, rather than extrapolation to completely novel scenarios. In order to do so, we

depend on having demonstration data that covers the state and action space related to the task.

Gathering the data itself is not a main focus of this dissertation, but we will discuss a distributed

internet-based approach in Section 3.5.1. Inspired by “crowdsourcing” and “human computation,”

we aim to eventually collect the necessary massive datasets from a distributed userbase [6].

1.2 Human-Robot Policy Transfer

We roughly categorize HRPT techniques into 3 types, illustrated in Figure 1.2: teleoperation, pro-

cedural specification (which we will refer to as coding1), and learning, all of which are valid means

of instantiating control policies for desired tasks onto robots. In any approach, a policy is taken to

be a mapping from perceived state of the world to robot actions, and we assume that a human user

has an appropriate control policy for the task and seeks to transition it onto the robot. We say that

the policy itself is latent in the user’s mind, and the user requires some means to computationally
1All approaches may require some sort of explicit coding, to instantiate the learning system or teleoperative
interface. What we refer to as coding here is that on the part of the end user, not the robot designer/developer.

(a) Teleoperation (b) Coding (c) Learning

Figure 1.2: Three methods for Human-Robot Policy Transfer. Teleoperation requires the user’s
continuous attention and Coding requires mastery of a secondary skill set. Learning may combine
the ease of teleoperation with the autonomy of coding while avoiding these disadvantages.
Copyrights: NASA, University of Iowa, University of Massachusetts.

6

express it. The different techniques for HRPT can be seen as leveraging different information from

the user, and each have their their own strengths and weaknesses as discussed below:

1. Teleoperation (Figure 1.2a) - A human directly controls the robot at all times by manually

specifying actions that cause the robot perform the task.

2. Coding (Figure 1.2b) - A human explicitly writes a computer program or otherwise specifies

some technique to automatically map robot perception to actuation.

3. Learning (Figure 1.2c) - The robot’s control policy is implicitly derived from experience, guided

in part by the human user.

1.2.1 Teleoperation

In teleoperation, a human is directly supervising the robot’s decision making at all times. While

there are many issues facing interface design and control mapping [117], the basic concept is that

the robot’s state (perhaps as extracted from sensor information) is presented to a human user, who

then provides the control signals for the robot’s actuators. This approach to HRPT is often the most

manageable to set up and operate, as there are almost no secondary skills such as programming that

must be learnt before such a system can be used. Once the user learns the teleoperative interface,

they are able to control the robot to perform the task. Often, users are already familiar with

teleoperative control from experience with remote controlled toys or video games [86]. However,

more complicated interfaces are possible and may require more time to master [91].

Using teleoperation, it is often easy for the user to adjust the robot’s behavior, as feedback is

immediate. By directly observing the effects of their control decisions, the user can quickly make

adjustments. This property is often desirable in research in human-robot interaction, where the

human’s response is the major focus of study. So called “Wizard of Oz studies” enable researchers to

test out robot behaviors without having to explicitly program them. However, a major disadvantage

to teleoperation is that it requires that the user be present at all times when the robot is in operation.

For long periods of activity, exhaustion is an issue. Further, while operating the robot, the user must

gain and maintain situation awareness of the robot’s state and environment. Becoming immersed in

the robot’s situation can often lead to losing cognizance of the user’s own environment, which can

in turn lead to unintended, and perhaps undesirable outcomes [28].

In terms of the amount of knowledge that must be explicitly obtained from the user, teleoperation

is the most minimal of the three approaches to HRPT. Instead of directly defining the control policy,

users instead implicitly specify it by providing the appropriate control signals to perform the task.

Humans may thus use teleoperation for HRPT without having to analyze the task itself.

1.2.2 Coding

At the other end of the spectrum, in multiple senses, are coding techniques. The first difference

between the two is that coding approaches attempt to make the robot behave autonomously, or

7

without the constant human supervision required in teleoperation. In this scenario, the robot is

designed to operate by themselves, allowing the human user to attend to other tasks. This freedom

is paid for, however, by the high set-up costs associated with this type of policy transfer. Instead of

using a teleoperative interface, autonomous behavior through coding requires that the policy must

be instantiated in some robot executable/computable form. Often these policies take the form of

a program, or computer code, but alternative forms such as hardwired circuits are possible. For

the case of a program, writing good control code can be an arduous procedure, involving multiple

rounds of testing and debugging. Adjusting the behavior to fit new circumstances may then involve

rewriting code, which can incur significant downtime.

A further difference between teleoperation and coding is the amount of time that needs to be

invested in learning the policy specification interface in the first place. While teleoperative devices

are somewhat mainstream, and arguably intuitive, the same cannot be said of coding environments.

Current techniques such as visual [39] or verbal [115] programming may alleviate this issue somewhat,

but cannot remove it entirely. Achieving proficiency in coding in general, and a specific language

and robot architecture in particular, can take years. Currently, only a subset of the population

(computer scientists and hobbyists) have made this investment.

Lastly, coding requires that the user think about their latent control policy in an analytical,

mathematical manner, in further contrast with teleoperation. Again, only a small subset of the

general population has the skills necessary for this analysis, limiting the utility of this approach

to HRPT. However, despite these drawbacks, coding is still arguably the preferred method of the

three. Major contributing factors include the autonomous execution of behaviors and the robustness

of well-designed policies. Looking forward, as robots and their policies become more complicated,

performing the analysis required to write suitable controllers may become more difficult and alternate

methods of HRPT may be more desirable.

1.2.3 Learning

Learning techniques span the distance between these two extremes, as illustrated in Figure 1.3,

with various learning techniques making different tradeoffs between explicit policy information and

initial supervision. With a learning architecture, a user can interact with a robot and teach it to

eventually perform an (unknown) task autonomously. This interaction phase may be the analytical

specification of goals and observation of eventual performance, or constant attention and control,

as in teleoperation. However, once the task has been learned, the user can attend elsewhere as in

the coding scenario. Note, there is still the set-up cost of programming the learning system, but

this is incurred by the robot manufacturer, not the end user. Further, it is possible to enable a

user to teach tasks in manners that do not require the user to master a large set of secondary skills,

thus relieving them of all explicit coding responsibility. For instance, tasks may be taught simply

by performing them, or demonstrating [14], while the robot observes. Alternatively, the user may

reward [60] the robot when it behaves desirably.

Reward-based learning, or reinforcement learning (RL) [123], is a popular learning paradigm,

8

Figure 1.3: An illustration of the different approaches to HRPT. Teleoperation requires constant
user interaction, but no explicit definition of the policy. Coding is very much the opposite, allowing
for autonomous behavior, but requiring both skills and analysis. Learning techniques can span
the difference, mixing different levels of explicit information and initial supervision, and eventually
resulting in autonomous behavior.

where the robot attempts to determine a policy that is optimal with respect to rewards and punish-

ments. An example in the case of navigation would be a robot that is rewarded when it reaches the

goal, but punished for each step it takes. The robot is then incentivized to reach the goal as quickly

as possible. In this scenario, users must supply the rewards and punishments. They can either

do this directly, by observing the robot and administering the appropriate signals, or indirectly, by

determining a mapping from the robot’s state to rewards and punishments. However, specifying an

appropriate reward function may be non-trivial and require the same sort of analysis that writing

the complete policy would entail. Conversely, administering rewards directly may require the kind

of focused attention that teleoperation does.

Learning from demonstration seeks to leverage more of the information obtainable from the

user, by asking them not for scalar rewards, but for indications of what the appropriate action is

to perform at a given time. However, this approach to HRPT has as a drawback that only tasks

demonstrable by the user can be learned. In contrast, reinforcement learning can enable robots to

learn tasks that are not directly performable by humans. Hybrid combinations of the two techniques

may leverage the advantages of both, while overcoming their limitations.

1.2.4 Comparison

We do not claim that, in general, one of these approaches to HRPT is better than the others. Of the

three, however, we note that work in learning is relatively less mature. Coding techniques, specifically

programming, have several decades of computing behind them, and teleoperation interfaces are

standard procedure for may robot installations.

Which of the techniques is ultimately used for a given application depends on a number of

factors, including the tasks being performed, the robot being used, and the user in question. We

can view general users as following the “path of least resistance,” or doing the least amount of

9

work necessary to get an acceptably acting robot. This view leads us to consider the return on

investment (ROI) as a measure of HRPT, which measures the ratio of robot performance to user

time: ROI(π) = V (π)/T (π). Informally, we will consider an abstract, unitless ROI, where a value of

1 represents “equality” in return and investment. In terms of performing some task, this equality

point corresponds to the human user doing the task themselves.

Using ROI, we can sketch out an argument as to how improved robot learning techniques can lead

to broader adoption and development of autonomous robots. With ROI it is important to see that it

is not just the accuracy of the robot’s control policy that matters, but also the amount of time it takes

to develop it. Let us, for argument’s sake, assume that for any learned policy (πL) there is a coded

policy (πC) that outperforms it with regard to some measure of value, or ∃πC : V (πC) > V (πL),∀πL.

We can further suppose that the time it takes to code πC for a skilled coder is less than the amount

of time it takes to learn πL: Tcode(πC) < Tlearn(πL). The choice then appears clear, coding is always

preferable to learning, as in terms of ROI, V (πC)/T (πC) > V (πL)/T (πL).

However, the above case only holds for users who know how to code. For others, the time it takes

to develop πC would also have to include the amount of time it takes to learn to code in the first

place. For some users, the resulting ROI may be too low, V (πC)/(Tlearn(code)+Tcode(πC)) < 1, and

they would instead prefer to perform the task themselves (possibly using a robot via teleoperation).

These users might, instead, choose to use learning to implement an autonomous robot control policy,

if learning resulted in control policies whose value was high enough to make V (πL)/Tlearn(πL) > 1.

Currently, average users whose ROI for learning is less than 1 are limited in what their robots

can do, relying on teleoperation or autonomous controllers developed by others. They are further

unable to modify the autonomous policies in ways not thought of by the original designers. Partic-

ularly, while built-in flexibility may allow for some adaptation, the coders may not have sufficiently

anticipated the user’s desired changes. As only a subset of the population has the skills necessary for

coding, the onus for instantiating and editing autonomous robot control policies rests on them, cre-

ating a bottleneck. As education norms change, it may be that more and more users have the needed

secondary skills and this bottleneck may disappear. Still, we argue that learning is an alternative

that could emerge as the paradigm of choice.

Additionally, if this bottleneck is (partially) to blame for the current lack of multi-purpose

autonomous robots, enabling more people to design and develop robot control policies may help spur

growth in the field. Thus, we see this work as attempting to open up robotics to a wider audience.

In this endeavor, we take inspiration from the synergy between computer graphics research and the

graphic arts. There, computer scientists have provided the tools to perform 3D rendering, texture

mapping, and the like, and a broad spectrum of content developers (companies, students, researchers

in other fields, etc) use these tools to create high-end content. Similarly, we believe that, given the

ability to perform HRPT, new developers will come forth and the field will flourish.

10

1.3 Learning from Demonstration

We investigate Learning from Demonstration (LfD) for HRPT, where a robot learns a task from an

expert performer [61]. During the user’s demonstration of the task, the robot collects state-action

pairs and infers the underlying control policy, or mapping from states to actions. As mentioned,

one benefit of LfD for HRPT is that that no further training for the user is necessary beyond that

necessary to perform the task itself; if the user can perform the behavior, they can attempt to teach

a robot to do the same. Whether or not they are able to depends on many issues, some of which are

discussed below. We also note that LfD as described here is not meant to be a universal solution for

instantiating autonomous control policies. For certain robots, tasks, and users, other options, such

as explicit coding or statement of objectives, may be easier to perform and lead to better policies.

LfD is another choice, that in some cases may be a useful alternative. Our research seeks to make

it applicable in more cases.

1.3.1 Correspondences

Many of the issues that must be dealt with when using LfD relate to establishing correspondences

between the demonstrator and learner. Some are purely physical, such as knowing which part of the

robot (the gripper) corresponds to which part of the demonstrator (a hand). Other correspondences

can be behavioral, associating observed poses and motions with available motion primitives. Actually

recognizing the appropriate parts and motions of the demonstrator is an issue in its own right as

well [69]. Common approaches outfit the demonstrator with sensors to reduce ambiguity, but may

hinder free performance of tasks, although such systems are improving [151]. Generally, the physical

and behavioral correspondences can be given a priori, or learned through experience. However, if

they are not sufficient, it is possible that the demonstrator can perform tasks that the robot cannot.

Additionally, there are perceptual correspondences that must exist. Primarily, it must be the

case that the learner is capable of extracting from the environment the information necessary to

perform the task. For example, if the task is temperature dependent, the learner must have means

of sensing temperature. Additionally, if the learner and demonstrator have differing viewpoints,

ambiguities can result. Perspective matching [24, 144] may help resolve them, but differences in

physical location and observable properties of the world may result in the demonstrator knowing

information that is necessary for control, but not available to the learner.

We seek to avoid correspondence issues by using a teleoperative interface, where a user controls

the robot to perform the desired task whilst only observing a representation of the robot’s perceptual

space. Such a setup aims to ensure that the task is robot performable (in that the robot itself

performs the task) and robot decidable (in that the information present from the perceptual processes

of the robot are sufficient). In the nomenclature of [10], both our record and embodiment mappings

are the identity mapping, in that we assume no further processing needs to be done on the data

to make it suitable for learning. Using this sort of scenario effectively combines the accessibility of

teleoperative interfaces with the autonomous behavior of explicitly programmed robots. That is,

11

teleoperation is all that is needed to develop autonomous control policies. While it is true that this

setup may require some training of the user before they can demonstrate tasks, many potential users

are already familiar with our interfaces from current consumer products. In addition, our learning

approach does not rely on the teleoperative interface, so as systems are developed that address the

correspondence issues discussed above, they can be incorporated into our framework.

1.3.2 Learning Approaches

Having sidestepped issues of correspondence, we focus on the learning algorithm itself. Given ap-

propriate data, we need to specify how the control policy is actually estimated. While there are

many possible methods, we choose to attempt to learn the robot control policy using Direct Pol-

icy Approximation (DPA) techniques [118]. Taking the policy as a mapping between perception

and action spaces, we seek to form an approximation of it directly from the data.

An alternate approach would be to apply reinforcement learning and use the demonstrations

to place constraints on an underlying latent reward signal that the user is assumed to attempt to

maximize. Sometimes called Inverse Reinforcement Learning (IRL), there are several techniques

that can be used to find a policy that maximizes this discovered reward in the case where the reward

is linear with respect to observable features [95]. An advantage to using RL techniques is that

by modeling the reward function directly, robots can learn to outperform their demonstrators, in

terms of that reward. Ideally, the learned reward function captures the desired task, and the task

performance itself is also improved.

Within DPA, one approach is to take as known a parametric model of the task, and estimate the

parameters that best fit a user’s demonstration. Model approximations may be dealt with by learning

additional higher-level task-specific parameters [13]. However, when learning unknown tasks models

are, by definition, unavailable. Further, unknown tasks may have unknown or unlimited parameter

spaces. We therefore instead use nonparametric non-linear approximation techniques, in an attempt

to place fewer restrictions on the form of policies that can be learnt from demonstration. Specifically,

they need not be linear in the perceptual features, or conform to a known parametric model.

1.3.3 Data Collection

We chose an incremental approach to the collection of training data, noting that it is often difficult

to determine, in advance, what data will be sufficient for learning. For a given task, it may be

that portions of the task are harder to learn than others, and thus require more data to learn, in

that multiple demonstrations, each slightly different, may be required for sufficient generalization

over perception-action space. This difficulty may arise due to the particular combination of task,

platform, and learning, and be impossible to predict without a thorough understanding of all three.

In a traditional batch data collection scenario, all data is gathered before learning. However,

without the full understanding of the complete system, we must rely upon user intuition as to

which parts of the task require more data. In addition to the danger that the resultant dataset

12

is lacking necessary information, it could also contain extraneous points as well. This additional

data is wasteful twice over, as the user must first spend time generating it, and then wait while the

learning system processes it before the robot is usable.

To generate only sufficient and necessary data, we could instead build up the training dataset

incrementally, evaluating the learned policy repeatedly along the way. The idea is that by observing

the learned performance, the user can target additional data on the parts of the policy that are not

yet learned, while not demonstrating the parts that are. The training paradigm then becomes a

series of “demonstrate, train, test” cycles, where the user gathers data, then the learner processes,

and the user uses an evaluation of the (updated) policy to guide their next demonstration. Such an

approach could result in smaller overall datasets that are targeted with respect to the desired task

and lead to reduced learning times.

In the extreme, a learner could update their learned policy after each datapoint is generated. If

the policy update technique operated as fast as the data generation system, learning would occur

in realtime, and the learner would be ready to use as soon as demonstration ended. The resulting

dataset would be targeted in the sense of incremental generation, and also eliminate the wait asso-

ciated with processing. The time it takes to develop a fully autonomous policy using this approach

may thus be less than in both the batch and incremental frameworks. We call this method of data

generation interactive training, or tutelage.

For tutelage to take place, inference, or the policy update stage, must be as fast as or faster

than data generation. Therefore, we initially focus on incremental learning techniques that build up

learned policies by considering each data point in turn. Given a current policy estimate π̂t, we want

an approach that updates it using only the next datapoint xt+1 to produce a new policy estimate

π̂t+1. We could also use batch learning and learn the complete policy anew after each datapoint is

generated, if the full processing is fast enough. As computational hardware develops and improves,

we expect that more processing will be possible while retaining realtime interaction.

Tutelage Concerns

As mentioned, we use a teleoperative interface to directly control the robot to perform a task and

avoid correspondence issues. Providing more demonstration data during tutelage then involves

taking over physical control of the robot. Interacting with the learned autonomy in this manner can

be seen as a form of sliding autonomy [40], where the degree of autonomy of the robot is controlled

by the user. In particular, during demonstration the autonomy of the robot is shut off entirely, as

the user makes all of the actuation decisions. An alternative would be to allow mixed autonomy,

where the learned system’s outputs still effect the robot’s behavior in some fashion.

Another concern is that simple observation of the robot’s behavior may not include enough

information to guide the user in creating more demonstration data. Specifically, the user may be

aided by feedback as to what the robot has learned [25]. By revealing the internal state of the

learner, for instance, a teacher can more accurately understand what errors are being made [38].

Alternatively, the learner can report a confidence score, indicating how sure it is that it has learned

13

Figure 1.4: An illustration of mixed-initiative control. While control of the physical robot is shared
between the user and learning system, only one has command at a given time. Both parties have the
ability to take or give control to the other, as they deem necessary. If both attempt to take control
at the same time, an arbitratory process decides who gets it. Likewise, if neither wants control, a
default controller may take over.

the policy correctly, for a particular state, or overall. Such confidence measures can be used to

prompt the user for more demonstration, in a form of active learning [43].

This dissertation provides a framework for robot tutelage that incorporates Mixed-Initiative

control (MIC) for performing aspects of both sliding autonomy and active learning [3]. Illustrated

in Figure 1.4, MIC enables both the user and the learned autonomy to take and give control of the

physical robot based on their confidence in their policy. When the autonomous system’s confidence

is low, it gives control to the user (active learning). Conversely, the user can take control away

from the autonomous system (sliding autonomy) to provide corrective demonstration. Likewise, the

autonomous system can take control, and the user can give control when desired. If both the user

and the autonomy want control of the robot, arbitration between the control signals is necessary.

Arbitration can be as simple as a “higher wins” multiplexer, or as complicated as control fusion [97].

1.3.4 Multimap Policies

The decision making control policies themselves can take many forms. Viewed as a mapping π(ŝ)→ a

from perceived state ŝ to action a, we concern ourselves with the two possibilities shown in Figure

1.5. In a univalued mapping (unimap), each perception leads to a single actuation that should be

performed, although multiple perceptions can lead to the same actuation. A multivalued mapping

(multimap), in contrast, allows for there to be multiple correct actuations associated with a single

perception. Again, multiple perceptions can map to the same (sets of) actuations. Additionally, in

both situations, there may be actuations that are not associated with any perception.

14

(a) Unimap (b) Multimap

Figure 1.5: The two forms of mappings from precepts {1 2 3 4} to actions {A B C D E} that we
are concerned with for control policies. The only difference in the diagrams is the line from 3 to C
in the multimap case, resulting in the highlighted multimap scenario. Correspondingly, multimaps
allow multiple actions to be mapped to by a single perception, while unimaps allow for only one. In
both, some actions {B} may not be mapped to at all.

Actually learning the mapping from collected data D = {ŝi,ai}, i ∈ 1 : N is an example of

regression, or learning the relationship (π) between independent (ŝ) and dependent (a) variables.

However, as discussed above, we do not assume a known parametric model for π, nor do we assume

a linear relationship between ŝ and a. In this case, both parametric and linear regression techniques

are inapplicable, and we instead consider nonlinear, nonparametric approaches. A common approach

is to model the observed data as corrupted by noise, perhaps Gaussian, as in

a = π(ŝ) +N (0, σ2)

Other noise models are possible, and may be appropriate for different settings. Putting this model

in distributional terms, we can define the likelihood of an action being associated with a given

perception as

a∗ ∼ P (a|ŝ) = N (π(ŝ), σ2) (1.1)

Performed actions, a∗, are drawn from this distribution by the demonstrator or learned controller.

To estimate π with this model, a Gaussian distribution is fit to the observed actions for a given

perception. Computationally, they are averaged together to estimate the mean of the correct policy

output distribution; we ignore here the calculation of σ2. This approach to policy learning, as most

other standard regression techniques, makes the assumption that there is one correct output for a

given input. In other words, it performs unimap regression, and uncovers a unimap policy. To

see this assumption, consider a multimap policy under which π(ŝ′)→ [a1 or a2]. The above model,

when queried with ŝ′ will return from N (a1+a+2
2 , σ2), assuming that both observed outputs are

noise-corrupted versions of the true target.

The unimap assumption is equivalent to assuming that the policy is Markovian, or that the

current state estimate contains all the information necessary to determine the correct action to

perform. However, in many control policies the Markovian assumption is false, due to hidden state.

By hidden state we mean state information about the world that is necessary for choosing the

15

appropriate action, but is not present in ŝ. The hidden state itself can be physical, and not detectable

by the robot’s sensors, or mental, that is, latent in the demonstrator. Due to the resulting lack of

knowledge, two perceived states may appear the same, but correspond to different true states. If

the true states require different actions, the resulting mapping is a multimap.

In a multimap, the underlying distribution of actions given a perception is multimodal. If there

is no noise, there is an impulse at each possible output. Compare this with the unimap case, which

has a single impulse at the correct output. When corrupted by Gaussian noise, the unimap’s single

impulse becomes a Gaussian distribution, while the multimap scenario results in instead a mixture

of Gaussians, one for each possible output. Note that the noise model has not changed, it is still a

single Gaussian, which becomes multimodal when convolved with a multimap policy. The resulting

model is thus:

a∗ ∼ P (a|ŝ) =
1
Z

K∑
k=1

N (πk(ŝ), σ2) (1.2)

where πk(ŝ) are the K possible actions for this perception and Z is an appropriate scaling factor.

For DPA, we must then fit a multimodal distribution to the observed data, and one issue that must

be addressed is how to determine K.

The above described multimap scenario is exactly that of perceptual aliasing [152], where

perceptually similar states require different actions. One approach to dealing with multimaps is

to redefine the state space so that the Markov property holds, and thus unimap regression can be

applied. This redefinition can often be accomplished by considering a history of previous perceptions

in addition to the current one [16]. However, there is then the question of how much history to

consider. In addition, each additional history step increases the dimensionality of the perception

space, which can then lead to both data sparsity and data storage problems.

Alternatively, we can operate with the multimap itself, and estimate K directly. For example, in

RL, Partially Observable Markov Decision Processes (POMDPs) deal with hidden state explicitly by

modeling the connection between true state and perceived state via an observation mapping [148].

The agent then uses observations to update a belief of the true state, and learns a policy from beliefs

to actions. To determine K, algorithms such as U-Tree [88] discover perceptually aliased states and

expand the belief space.

A different approach is to break the policy itself into subpolicies or subtasks, each of which is

Markovian. Again, unimap regression can then be applied at the subtask level, and the subtasks

ordered or combined to accomplish the overall task. In a distributional view, each of the subtasks

would be one of the πk. Estimating K can be performed by any technique that performs model

selection in a multimodal distribution [65].

In addition to hierarchical tasks, multimap policies are also related to the issue of feature selec-

tion. Specifically, the existence of a multimap indicates that necessary features are missing. Thus,

their presence could be used to guide feature selection systems. If a multimap occurs, new features

must be added to render the underlying policy un-aliased. Conversely, if the removal of a feature

does not result in a multimap policy, then the feature is not needed for control.

16

Returning to our approach, recall that we assumed that the perceptual process of the robot

provides enough information to decide the desired task. In fact, our teleoperative interface seeks

to ensure this assumption. The existence of multimap policies then would indicate that this is not

the case as by definition necessary information is missing. This information must then reside in

the user’s mind, possibly due to advanced perceptual processing, the use of memory, or additional

task-specific knowledge. It is the purpose of multimap regression to uncover not necessarily what the

information is, but how it affects the observed outputs. That is, we do not seek to learn a statement

such as “The demonstrator has a latent variable named V that takes on the values v1...vn,” but

rather one such as “The demonstrator has a latent variable, and for some of its values we observe

the action a1 and for others we observe a2 associated with the perception ŝ”.

Finite State Machines

We chose to view the policy as composed of subtasks and model it as a Finite State Machine (FSM),

where the overall task is composed of one or more subtasks, each of which can be composed of more

subtasks, etc. Without loss of generality, we consider here only FSMs whose subtasks are Markovian,

as any hierarchical FSM can be “flattened” to a single level. Learning a full FSM from demonstation

can be broken into three steps, as depicted in Figure 1.6a:

1. Learn the number of subtasks. (model selection)

2. Learn each subtask’s policy. (policy learning)

3. Learn to transition between subtasks. (transition learning or action selection)

An optional additional step is to improve the policy past that of the demonstrator, which can be

performed at both the subtask and total policy level.

Each of these steps corresponds to a portion of using the model in Equation 1.2, as annotated

below. Step 1 is the estimation of K, Step 2 is the learning of the individual πk, and Step 3

indicates which of the K possible actions should be returned. As written, this equation simply

samples stochastically from the full multimodal distribution.

Techniques already exist for performing some of these steps, given certain portions of the full

FSM. For example, our discussion above on unimap regression highlights one approach to Step 2

[58]. Similarly, other techniques can be used to learn the individual subtask policies [95], but they

17

(a) Full FSM learning (b) Transition learning (c) Policy learning (d) Multimap Regression

Figure 1.6: (a) The three steps in learning an FSM: Learn the subtasks (boxes), their policies (let-
ters), and the transitions between them (lines). Dashed lines and question marks indicate unknown
quantities. Previous work has learned transitions given policies (b), or policies given transitions (c).
We propose to perform both model selection and policy learning with multimap regression(d).

all require that the data already be separated out by expert. Alternatively, given the subtasks, the

transitions between them can be learned by establishing pre and post conditions for the execution of

each one [96] (Figure 1.6b). Or, by assuming a known task decomposition it is possible to allocate

data and learn the subtask policies themselves [130] (Figure 1.6c).

Approaches to Step 1 are rarer, and such an approach is one of the primary contributions of

this dissertation. Specifically, we approach both Steps 1 and 2 directly (Figure 1.6d), by treating

the policy as a multimap and using an infinite mixture of experts to automatically determine the

number of subtasks, assign data to them, and learn their policies. Techniques for Step 3 could then

use these learned subtasks and infer the required transitions for complete FSM learning.

1.4 Dissertation Overview

We claim that a current significant challenge on the path to autonomous, multi-purpose robots is

that of HRPT, transforming control policies latent in users’ minds into forms that can be computed

by robots. Traditionally, HRPT for autonomous policies is done by explicitly coding the policy, but

robot learning, and LfD in particular, may represent an approach that enables more users to develop

satisfactory control policies in less time. A long term goal of this work is to enable non-programmers

to transfer policies at levels comparable with those transferred via coding. For example, imagine a

user purchasing a team of robots, demonstrating how to play soccer in one form or another, and

having the robots be able to play competitively against a hand-coded team using the same strategy.

Our first hypothesis is thus:

Hypothesis 1: Assuming a platform capable of performing a particular task, robot

tutelage using standard regression is a viable method for HRPT for that task, and

can result in policies on par with their coded counterparts in terms of action error

and task-specific metrics.

18

(a) Human demonstration (b) Learning (c) Autonomous execution (d) Further tutelage

Figure 1.7: Use of Dogged Learning. The user first demonstrates the behavior (a) while real-time
learning approximates the underlying policy (b). Upon observing autonomous execution of the
estimated controller along with feedback from the learning system (c), the user can chose to provide
additional tutelage (d).

To test this hypothesis, we have developed the Dogged Learning (DL) framework, the use of

which is depicted in Figure 1.7. Robot sensor-action data is gathered as a human teleoperatively

controls it to perform a desired task. Real-time learning updates the robot’s learned autonomy as

the demonstration takes place and reports a confidence rating. The user can, at any time, stop

demonstrating and the robot’s autonomy will take over and perform the task as learnt. Further

demonstration can be given as desired by the user, and even asked for by the robot.

Using standard sparse incremental regression techniques (Locally Weighted Projection Regression

[149] and Sparse Online Gaussian Processes [42]), we train a Sony AIBO on a variety of soccer related

tasks, including the goal scoring and goalie behaviors shown in Figures 1.8 and 1.9. The goalie

behavior is successfully approximated, as are portions of the goal scorer. However, the complete

scoring behavior is not learned, due to issues of perceptual aliasing, but an alternate formulation

that avoids perceptual aliasing is. From these experiments we conclude:

(a) Seek (b) Trap (c) Aim (d) Kick

Figure 1.8: A finite-state-machine control policy for robot soccer goal scoring, learned herein. A
multimap scenario occurs in (c), when the robot cannot detect the ball’s location. It is then unsure
if it should seek the ball (a), or kick to score (d).

19

(a) Search (b) Lock (c) Block (d) Clear

Figure 1.9: The goalie behavior. Not a multimap, thus it is learnable using standard regression.

Conclusion 1: For unimap controllers without perceptual aliasing, standard re-

gression can infer control policies from interactive learning from demonstration that

perform comparably to their demonstrator. However, the same techniques are unable

to learn multimap policies.

To more generally address the issue of hidden state in demonstrated control policies, we use

multimap regression. Casting policies as FSMs, our approach addresses both the issue of model

selection and policy learning simultaneously. That is, we assume that the data is generated by a

collection of lower-level subtasks, each of which is Markovian, that are switched between to perform

the overall task. Looking again at Figure 1.8, this policy cannot be learnt with unimap regression,

as knowledge of which subtask to perform is not perceived by the robot. We aim to estimate both

the number of these subtasks and their individual control policies from unsegmented data, and thus

hypothesize:

Hypothesis 2: From unsegmented demonstrated multimap data, an infinite mix-

ture of experts approach can automatically infer a number of subtasks, and their

individual policies, that can then be used to reperform the demonstrated task at a

level unobtainable with standard unimap regression.

We developed the ROGER (Realtime Overlapping Gaussian Expert Regression) model, which

consists of an infinite mixture of experts, where each expert is a hypothesized subtask. Inputs for

each expert are assumed to come from a Gaussian in input space, and outputs are generated from

sparse Gaussian process regressors. The number of experts that contribute to the model (K in the

above notation) is determined by the Chinese Restaurant Process, an incremental procedure for

producing sequences of numbers, where common ones become more likely, but there is always the

possibility of producing a new number (or expert) [140].

When applying ROGER to the multimap goal-scorer of above, we discover a number of experts

20

and their policies that when switched between appropriately have been shown to perform the overall

task. In our current system the learned controller is not as good as the demonstrator, but these

residual errors may be due to simplifying assumptions made in both our model and implementation.

Future development may improve results, and we thus conclude:

Conclusion 2: Multimap data from an FSM robot controller can be automatically

partitioned into subtasks using incremental multimap regression. The resulting sub-

tasks can be used to replicate the controller at a level beyond that of one learned

with standard regression.

As an example of the limitations of the current system, we only currently consider Gaussian

distributions in input space, and require that all experts share the same parameters. Further, we

point out that ROGER only addresses two of the three steps to learning complete FSMs. In our

experiments we used a coded switcher to select the appropriate expert for execution when performing

the task. To improve its usefulness, ROGER will need to be combined with an approach to learning

the transitions between experts themselves.

1.4.1 Contributions

In pursuing this research and answering these hypothesis, we make two major contributions to the

field of robot learning:

1. Dogged Learning (DL): An architecture for interactive, mixed-initiative robot

lifelong learning from demonstration for unknown tasks.

2. Realtime Overlapping Gaussian Expert Regression (ROGER): An incremental

multimap regression algorithm suitable for robot tutelage.

The Dogged Learning architecture incorporates ideas of interactive learning, mixed initiative

control, feedback, transparency and confidence for RLfD. Further, it has been designed to be ag-

nostic, allowing different possibilities to be instantiated for the platform, demonstration interface,

learning algorithm, and even arbitration scheme. The complete system and our developed modules

are available for general academic use.

Using DL, we can perform direct comparisons between different possibilities by switching one

module and holding the others constant. For example, we have been able to directly compare

different learning algorithms for use on the same platform and task. While we only tested statistical

regression techniques, the methodology itself is abstract and can be used with other forms of learning.

21

ROGER has been developed to address a need for learning multimaps. From our initial exper-

iments, we concluded that perceptual aliasing causes multimaps, and the resulting control policies

cannot be learned with standard unimap regression. Available techniques for learning tasks com-

posed of subtasks rely on some prior knowledge of the task structure, such as subtask policies or

transition locations. By learning multimaps directly, we seek to enable the learning of FSM-style con-

trollers without the need for this information. ROGER is designed to be used in the DL framework,

and thus is incremental and sparse.

Again, our long-term goal is to enable non-programmers to instantiate robot control policies at

the same level of expertise as programmers. While the work presented here is a step on that path,

this goal has still not been attained as our approach is not a method for complete FSM learning,

as in Figure 1.6a. However, as we can now provide the subtasks and their policies, it is possible

that techniques for doing transition learning, as in Figure 1.6b, can be combined with our approach

to achieve full FSM learning. Additionally, our current work assumes that the demonstrator is a

source of correct (even optimal) data, from which our system generalizes to new situations. However,

demonstrators, and human demonstrators in particular, are not perfect, and often make errors, or

suboptimal decisions. Extending our methodology to incorporate both positive and negative rein-

forcement may allow learners to leverage higher goal-directed information, and learn to outperform

the demonstrator themself, or learn policies not performable by the demonstrator at all.

1.4.2 Outline

This chapter introduced the dissertation and situated the work with respect to the greater robotics

community. Chapter 2 expands on some of the related work in Robotics, Machine Learning and

Human-Robot Interaction. Chapter 3 describes our first contribution, Dogged Learning, and pro-

vides implementation details. Chapter 4 describes our second contribution, ROGER, and reviews

related approaches to regression. We present our experiments in Chapter 5, demonstrating that

tutelage and regression can be used to teach unknown tasks to robots without explicit coding. How-

ever, certain FSM control policies are not learnable with unimap regression, so we use multimap

regression to infer a number of subtasks and their policies from unsegmented data, which can then

be leveraged to perform the original task. In Chapter 6 we discuss the advantages and limitations

of our current system, lay out directions for future work, and conclude.

Chapter 2

Background

Computers today exceed human intelligence in a broad variety of intelligent yet nar-

row domains such as playing chess, diagnosing certain medical conditions, buying and

selling stocks, and guiding cruise missiles. Yet human intelligence overall remains far

more supple and flexible.

Ray Kurzweil, The Age of Spiritual Machines, 1999, page 2

We argue that one method for achieving greater flexibility in what tasks robots perform, how

they do them, and more generally how control policies are instantiated, is to improve robot learning

from demonstration. In our pursuit of better RLfD techniques, we heavily overlap with research

in the fields of machine learning and human-robot interaction, which address, respectively, how a

control policy is inferred from data, and how the data itself is gathered from humans. In this chapter

we survey related previous work from these two areas and also from the area of robotics, specifically

different techniques for representing and instantiating control policies.

2.1 Robot Platform

A robot’s interaction with the world can be framed as control loop, as in Figure 2.1, where informa-

tion flows from the environment, through sensors and perceptual processing, to the robot’s decision

making capabilities. Once an action to perform has be determined (in some fashion), it is transmitted

back into the environment, via actuational processes and the effectors themselves. Within this loop,

our primary concern is with decision making, how information extracted from the physical world is

mapped by the robot into actions. We call this mapping the robot’s control policy, π, but before we

discuss the various forms and abstractions that can be used to define policies, it may be useful to

examine the possible computational architectures in which they may be embedded. To some extent,

these choices are less important than those of the robot’s embodiment, discussed in Section 1.1.1

and displayed on the left of Figure 2.1, as suitably designed interfaces should enable any policy to

operate the embodiment through any architecture. However, in practice, different architectures lend

22

23

Figure 2.1: The basic robot control loop. Sensors and effectors, part of the robot’s physical em-
bodiment, interact directly with the environment. Decision making, embedded in a computational
architecture, performs task-specific control. Perception and actuation, which may be either com-
putational or embodied, transform data to and from the space of decision making, while reflexes
bypass decision making all together. If perception and actuation do not exist, decision making occurs
directly in the raw sensor and effector spaces.

themselves more easily to some policies than others, and the choices for embodiment, architecture,

and decision making can all be interrelated.

We focus now on the computational portion of the robot, on the right of Figure 2.1. At the

lowest level of the architecture, where it interfaces with the embodiment, is the actual computing

hardware. Limiting ourselves only to modern electronic, digital computers, there are multiple options

that have been used for robot “brains,” such as standard consumer machines, custom-built boxes,

or single-board computers. Each of these choices has associated with it additional options, such

as the address-size (32 or 64, for example), memory size, ports, etc. If no consumer system is

appropriate, perhaps due to required interfaces or desired capabilities being lacking, custom-made

systems, designed from the chips up, may be used as well.

On top of the hardware runs the robot’s operating system (OS). By this we mean not only the

OS that runs the hardware, but also the “environment” in which the control program runs, if it

is separate. Again, options abound, and choosing one can limit the capabilities of the robot, or

the pool of developers. Standard OSes may be appropriate as is, although for robotics realtime or

custom variants such as QNX1 or Robobuntu [84] may be necessary. There have also been some

extensions developed specifically to ease the creation of robot control policies that can then be used

on multiple robots, such as Microsoft Robotics Developers Studio2 and ROS [109]. The latter is an

open source effort, designed to enable researchers to develop reusable modules. Alternatively, some

robots, such as our Sony AIBO, have proprietary systems3, which require special development tools.
1http://qnx.com

2http://msdn.microsoft.com/en-us/robotics/default.aspx

3The AIBO’s is OPEN-R: http://www.aibo.com/openr

24

The data flow through the lower levels can put limits on the framework that is used to define

control policies. For example, some robot systems may be push-driven, where changes in sensors

are sent directly to the control system. The robot controller would then have to have a set of

appropriate interrupt handlers, and possibly a main computation loop that incorporates information

from multiple readings. An alternative is to have a pull-based architecture, where sensor readings

are not generated until the control system requests it. The control system then has to explicitly

poll the sensors to get inputs. The output side of the equation can be similarly split, with effectors

requiring updates and interrupting to obtain them, or only reacting to sent commands. Hybrid

approaches can blend these two extremes, where perhaps some portions of the robot are interrupt

driven, and others not.

For this work, we have designed Dogged Learning to abstract away the robot’s embodiment and

computational architecture, and focus on the control policy itself. However, it is within the chosen

robot platform that the control policy must exist, building on top of all the previous design decisions.

The plethora of choices that have to be made up to this point can contribute to the difficulty in

replicating results in robotics research, and reusing previously developed systems. Particularly, in

our area of research, individual learning systems are often tied closely to their robot’s physical

embodiment, computational architecture, and possibly the specific tasks it performs as well. It then

becomes troublesome to reproduce results that were obtained on different systems, or even transfer

approaches to new robots. Careful use of abstraction and the adoption of standards could alleviate

this problem somewhat.

2.1.1 Perception and Actuation

In addition to the raw sensors and actuators of the robot, our control loop in Figure 2.1 allows for

perception and actuation processes that are independent of decision making. These processes are

responsible for transforming data from the low-level representation of the underlying hardware to a

higher-level representation suitable for decision making. Examples include vision systems that turn

raw camera pixels into objects or faces, or Proportional-Derivative-Integral controllers that turn

desired positions into motor torques. Note, that these processes can be instantiated either as part

of the embodiment (in hardware) or computation (software).

Theoretically, it is possible to make policy decisions based only on the raw data, without further

processing, as all the necessary information is, by definition, present. Practically, however, perception

and actuation processes are used to simplify controller development. Bear in mind that using

these processes can unintentionally bias decision making, by making some control policies easier to

instantiate than others. Perception acts as a feature selection system, removing some data from

consideration while highlighting others when making command decisions. Likewise, actuation can

be seen as providing motor primitives, making some actions easy to perform while forbidding others.

While any connection between perception and actuation is technically a form of behavior, or

decision making, we distinguish between those that are built into the robot, and those under the

control of the (learned) autonomy. Those built in can be seen as connecting perception directly to

25

actuation, bypassing the decision making component of the system entirely. These couplings are

therefore similar to reflexes, in that the control policy cannot effect them, although it can leverage

them in its activities. Inverted pendulum robots, for example, often have built in balancing reflexes,

which navigation utilizes by shifting the center of mass of the robot, instead of directly driving

the wheels [78]. The reflexes themselves can be implemented computationally, as separate running

processes or subroutines, or in the embodiment itself, with circuits and physical connections.

2.2 Decision Making

Conceptually, the act of controlling a robot can be divided into three stages: Sense, when new

information from the environment is detected; Think, when computation is performed; and Act,

when signals are sent to the actuators. The actual order and manner in which these stages take

place defines the form of the robot’s control policy, or the robot control architecture that is used to

implement it. We distinguish this from the model of the control policy, which is how the decision

making process itself is conceived. While we consider the two aspects in isolation, the choice of one

can effect the choice of the other.

2.2.1 Policy Form

We discuss four main forms of architectures for robot control policies, as shown in Figure 2.2. When

choosing one to use, a major concern is the amount of time between when something is sensed and

appropriate action is taken. Generally, as more time is spent processing, more in-depth ramifications

of possible actions can be considered. However, increased delay means that the environment may

have changed in the meantime, rendering the processing moot.

Deliberative Controllers

Policies that search over possible outcomes are termed deliberative policies, referring to the fact that

the robot considers many possible actions and deliberates on which is best. Shown in Figure 2.2a,

policies of this form collect data from the world, process it all, and then generate actions to perform.

These approaches are typified by long computational times, and thus may be inappropriate for highly

dynamic situations. Because decisions are made by considering all of the possibilities and using all

available data, deliberative systems are sometimes said to be examples of “top-down” control.

Planning is one form of deliberative control, where the robot precomputes an entire sequence

of actuations to achieve its goal [77]. To do so, a robot may build a precise model of the world,

in the form of a map [142], which it can then use for both for navigation and localization, as in

SLAM (Simultaneous Localization and Mapping) [120]. The main advantage of deliberative policies

is that they can consider long term effects of actions, and formulate control that will optimize desired

features such as travel time or energy use. That is, they can often “think their way out of” difficult

situations. Consider navigation, where loops and hazards in the environment may make getting to

26

(a) Deliberative (b) Reactive

(c) Behavior Based (d) Hybrid

Figure 2.2: Various forms that a robot control policy can take. Deliberative policies (a) can de-
termine global strategies, but may not be able to deal with highly dynamic situations. Reactive
controllers (b) make the opposite tradeoffs, responding rapidly but with minimal processing. Shown
is a subsumption controller, where higher-level reactions subsume on lower level ones. In a behavior
based architecture (c), the final policy emerges from the combination of multiple behaviors. Hybrid
controllers (d) use deliberation to select reaction.

a goal location difficult. A deliberative system is able to avoid these trouble spots by planning a

global path. Being able to determine it, however, requires accurate models (both of the world and

the noise in it), and sufficient processing time.

Reactive Controllers

At the other end of the computation time spectrum are reactive controllers, which attempt to

minimize the “think” portion of the cycle. In this dissertation, we seek to learn reactive policies,

where the estimated state of the world is translated directly into robot action, without planning

or deliberation. Such policies can be viewed as direct couplings between perceptual variables and

actions, where what is immediately observed directly and completely determines the action taken

[74]. As computation time is minimized, reactive controllers are more suitable for highly dynamic

situations, when the environment changes rapidly. However, as they do not consider the global

situation, they can get stuck in sub-optimal behavior. In the navigation task above, a reactive

controller, returning to the same location via a loop in the environment, will perform the same

action as it did before, and may get stuck infinitely looping.

Reactive controllers are very similar to the reflexes discussed above, as both directly connect

sensing to acting. We therefore again distinguish between capabilities that are built into the robot,

and those that are being actively developed for performing some task. The line between the two

is ambiguous, and can be drawn in different places by different researchers, or even by the same

researcher in different cases. For instance, our robots have LEDs that indicate the status of various

parts of the robot (battery level, wireless reception, etc). These behaviors were not built into the

27

robot, so we had to develop them ourselves. However, as they are not relevant to the tasks we

are concerned with learning and are not accessible to the controllers, we consider them reflexes. If,

instead, they were part of the behavior that we were trying to teach, and the control system had

access to the LEDs, we would consider them part of decision making.

As one reactive controller represents a direct coupling from preception to actuation, a collection

of reactive controllers represents a set of possible reflexes. To choose between them, they could be

arranged hierarchically, as in Figure 2.2b. The result is a subsumption architecture, where higher-

level reactions subsume on lower-level ones, modifying their inputs to generate desired outputs [26].

As the overall policy is then built out of a collection of individual reactors, each of which relies on

those below it, subsumption architectures are often said to be designed “bottom-up.”

Behavior Based Controllers

Another way of looking at a collection of individual controllers is to treat each as an individual

behavior. Acting at the same time, the overall policy itself then emerges from their interaction [11].

Again, a method for choosing the actual action taken from among the proposals from all behaviors

must be included, as in Figure 2.2c. Two possibilities are arbitration, where one behavior is given

control, and fusion, where the multiple outputs are merged to create a new one. Note, that the

subsumption architecture described above is one particular choice of behavior output combination.

Because the overall robot behavior is broken into multiple, parallelly active, components, behavior

based forms of control policies are well suited to distributed systems. Each behavior could be in a

separate thread of computation, possibly on a different processor, and would receive inputs from the

sensors it requires, and send outputs to the combiner. The entire robot controller would then result

from the asynchronous communication between components.

Hybrid Controllers

In a behavior based architecture, it is possible for the various behaviors to operate on different

timescales. In the extreme, one behavior could be a deliberative planner, while another in the same

robot can be reactive reflex. The result would then be a hybrid controller, which attempts to combine

deliberation and reaction to get the advantages of both without their disadvantages. Another type

of hybrid controller is a Three-Layer Architecture (3LA) [51] where a sequencing component uses

the plan from deliberation to chose reactive controllers to execute, as shown in Figure 2.2d.

The resulting controller can be the best of both worlds. The active reactive component handles

the rapid dynamics of the environment, while the deliberative component plans the overall behavior.

Such a setup has been used in autonomous vehicle navigation [121], where the reactive controller

handles low-level issues like staying on the road and avoiding unforeseen obstacles, while the planner

sets the overall trajectory to reach the goal location. Separately, the two components may not be

able to accomplish the task efficiently, or at all. For example, the reactive controller alone might

get stuck in cul-de-sacs and be unable to navigate around them, while the deliberative component

would be unable to adjust to a deer darting across the road.

28

2.2.2 Policy Model

Separate from the instantiation of the controller is the computational model used to describe it.

As an example of the distinction between the two, consider a controller for a mobile manipulation

task. The same controller can be implemented in multiple ways, in, for instance, a subsumption,

three-layer, or behavior based fashion. If the world is sufficiently static, a deliberative architecture

could be used as well. However, all the different possible implementations would behave the same

and can furthermore all be described, abstractly, using the same model, such as a decision tree.

Models are then in some sense equivalent, and the choice of the particular one used for a given

controller can be made to ease analysis or implementation, or highlight certain aspects of the control

policy. We will examine two models here: Markov chains which directly map states of the world

to actions, and finite state machines, which break the overall task into subtasks. In our discussion

of how the issue of multimap control policies manifests itself in each, we will take Ŝ to be the set

of states that our robot can detect, and A to be the actions it can perform. The evolution of the

world is given by P = P (ŝt+1|at, ŝt, ..., a0, ŝ0), the probability of the robot observing ŝt+1 given

its complete history of perceptions and actions. The corresponding robot control policy is then

π = P (at+1|ŝt+1, at, ŝt, ..., a0, ŝ0), the distribution over actions to perform. For generality we have

described the probabilistic case where full history matters, but other models, such as one with a

completely deterministic P and π, could be used as well.

Markov Chain

A Markov Chain (MC) simplifies our above model by making the Markov assumption, that all nec-

essary information about the world is contained in the current state. This assumption is equivalent

to saying that history is not relevant, or that P = P (ŝt+1|at, ŝt) and π = P (at|ŝt). A policy then

only considers the current state when choosing an action, and for discrete state and action spaces

can be stored as a table, of size |Ŝ| × |A|, assuming that enough memory is available. If memory

is insufficient to store π, or if states and/or actions are continuous, other representations such as

approximate functions may be necessary [133].

Often, Markov chain controllers are the result of learning in a Markov Decision Process (MDP),

where in addition to the states, actions, and transition function, there is also a reward mapping

that associates scalar rewards with every state of the world, or state-action pair. Learning the final

control policy involves finding the policy that maximizes reward, and is thus an example of reward-

based learning as will be discussed in Section 2.3.1. In keeping with the literature, we will discuss

variations in MC controllers in terms of the MDP variants from which they derive.

The basic MDP and MC models as described deals with noise in the performance of an action by

having a distribution over the next state of the world. That is, if the robot executes a walk forward

action, the chance that it might actually move sideways, or not at all, is reflected in P . Likewise,

noise in the perception that leads it to decide to walk is handled by having a probabilistic policy.

For a given state, the possibility that the robot is actually in another state and should perform a

different action is captured in π. This distribution also deals with situations where, in a given state,

29

the action that should be performed is uncertain. These cases are examples of perceptual aliasing.

Another approach to uncertainty in sensors, and one that directly considers that states may

be perceptually aliased, is that of Partially Observable MDPs (POMDPs) [71]. This abstraction

considers that there may be differences between what the robot perceives, ŝt, and the true state

of the world, st. This difference is modeled with an observation function that maps perceptions to

distributions (or beliefs) over true states, O(ŝ)→ b = P (s). Decisions are then made with respect to

b, instead of ŝ. To do so, the transition function P must be over true states as well, so the system can

propagate its belief forward. When two true states require different actions, but are both perceived

the same, the observed mapping between perception and action would be a multimap.

Consider a robot in a room with a box, where a human enters and places an object in the

box, and once the human leaves the robot needs to perform some action depending on the box’s

contents. In the MDP model, the robot cannot perceive the contents of the box, and a MC policy

from perception to actuation would have to have the same distribution no matter what the contents.

Even though the robot watched the box being filled, once the box was closed the robot would not

be able to determine an appropriate action. Using a POMDP, however, the robot could maintain a

belief about what was in the box, and act accordingly. Another way of saying this is that the robot

explicitly tracks the hidden state, corresponding to what is in the box. To do so, it needs to know

that this information exists, and that it is relevant to the task. A similar effect could be achieved

by expanding the robot’s perception space to include previous observations, without knowing which

parts will be important. Instead of making the first order Markov assumption, this approach makes

an N -order Markov assumption, where N is the amount of history that should be considered. An

issue that then must be addressed is choosing N .

Another technique that can be used to deal with multimaps is to allow actions to be extended

in time [46]. One approach, termed semi-Markov, provides a set of options (O), in addition to the

primitive actions (A) [135]. Originally designed to allow for the simplification of high-level control,

each option has associated with it its own policy, which takes over control of the robot when that

option is active. For example, a “go to red” option would take control of the robot once activated,

and guide it towards red objects, while a “run from red” option would do the opposite. Both options

could be valid for the same perceptions, but give different outputs. Thus, the control policy for a

given state, st, may be different depending on if an option was selected in the past and is still active.

Again, consider our robot and the box. With a semiMC policy, the robot would activate different

options when it saw the box being filled. These options would be time-extended, and continue to

generate appropriate actions for the robot until they terminated. Thus, when the human left the

room, a content-appropriate action would be performed.

While MCs are closely related to reactive controllers, in that they intrinsically frame the robot

control problem as a direct connection between what the robot perceives and how it acts, semiMCs

can be seen as a move to a hierarchical model. Particularly, the overall policy is now broken into

subsections, or options, which may be mutually applicable in some states. The complete controller

may then lend itself more to being implemented in a behavior based fashion, where each behavior

30

is an option and the combiner chooses which should be active.

Finite State Machines

Another hierarchical way of thinking about robot controllers is to model them as Finite State

Machines (FSMs). An FSM can be viewed as a set of K subtasks, with a separate policy for each

one. On top of these policies is a transition matrix that specifies when the active subtask changes.

When a particular subtask (k) is active, its policy (πk) determines the robot’s activity, until the

system transitions to a new subtask [106].

Consider our robot soccer goal-scorer in Figure 1.8, it is an FSM with 4 subtasks: Seek, Trap,

Aim, and Kick. The seek subtask, for example, has a policy that drives the robot to locate and

approach the ball. Once the robot is close enough to the ball, the system transitions into the trap

subtask. Additionally, multiple subtasks’ policies may have different actions associated with the

same perception. For the two mentioned subtasks, this situation occurs when the ball is in the area

in which it can be trapped. The seek controller, if active, would attempt to control the robot to

position it better with respect to the ball, while the trap controller would move the head to initiate

the trap motion. This situation is then a multimap in the overall policy.

In this respect, FSMs at this level are similar to semiMCs. The FSM’s subtasks are analogous to

the semiMC’s options, and the top-level MC would define the appropriate transition matrix, deter-

mining when each subtask should be active. Both abstractions similarly deal with perceptual aliasing

in the present by having different policies, chosen in the past, controlling the robot. However, both

approaches raise questions about how the subpolicies are derived. That is, how are the semiMC’s

options or the FSM’s subtasks chosen? Additionally, how many are there? A difference between

the two models is that in a semiMC, the options are thought of as being primitives, on which the

control policy, the MC, is built. In an FSM, the subtasks are part of the policy itself. These two

possible interpretations parallel to the two ways in which direct perceptual-actuation couplings can

be viewed: as part of the architecture (semiMC options), or part of the policy (FSM subtasks).

Taking the parallel between FSMs and MCs further, if each of the underlying world states has its

own subtask (K = |S|), then the FSM becomes an MC. Essentially, each subtask’s policy’s output

is the output from the associated MC’s policy (πs = π(s)). The FSM transition matrix would then

be equivalent to the transition matrix of the underlying state space, P.

2.2.3 Mapping

The approaches discussed so far represent various methods of instantiating and designing a robot

control policy, and it is often the case that the same policy can be described and developed in multiple

ways. At a higher level, when viewing the control policy from the outside, the exact specifics of how

the computation gets done are somewhat irrelevant. Put bluntly, when observing only the behavior

of the robot, the techniques used to control it may be indistinguishable. No matter what style of

processing goes into determining what is done, all that is observed is that in situation ŝ, the robot

performs action a.

31

Taking this view, we argue that at its most abstract, a robot’s control policy is just a mapping,

from perceptual inputs to actuation outputs. Applying this concept to HRPT, what we are seeking

is then a method transferring this overall mapping, π, specifying what the robot should do in each

state of the world that it can detect, from a human. The exact form and model used to describe the

resulting policy on the robot may thus be different from the one used by the user.

2.3 Learning Control Policies

Rather than designing and instantiating a control policy by hand, we are instead interested in

learning the policy from collected data. We here consider two possible methods for generating the

data used. One, reward-based learning or learning from guidance, is to associate a reward, or cost,

with each of the robot’s decisions. Learing is then focused on determining a policy that maximizes

reward or minimizes cost. In the following, we will only consider maximizing reward, as all of

the approaches are analogously defined for minimizing cost. An alternate approach is learning from

demonstration, where examples of the task policy itself are collected, perhaps as trajectories through

the robot’s perception and action space. In this case, learning attempts to estimate (either explicitly

or implicitly) what the goal of the task is, and perform appropriately in novel situations.

Recall that both types of learning are learning a policy that maps perceptual features to actions.

An issue that must be considered is then that of feature selection, or choosing which features to learn

on [146, 62]. This issue is also related to that of hidden state, in that if the appropriate features are

not selected, necessary state may be hidden from the robot. The combination of features and learning

algorithm can significantly ease or complicate learning. In general, with sufficient perception and

actuation processes, simple learning algorithms such as linear or nearest-neighbor regression may

suffice [122]. However, the needed high-level features and motion primitives (such as object identities

and appendage trajectories) may be too closely tied a particular behavior, preventing the robot from

learning other tasks. In contrast, lower-level features and actions such color histograms and generic

grasps may allow for more varied tasks to be learnt, but often have more complicated (e.g. nonlinear)

relationships to the control outputs.

2.3.1 Reward Based Learning

In traditional reinforcement learning, data takes the form of scalar rewards coupled to each state

of the robot, or perhaps state-action pairs. During training, the robot experiences different states

and receives the associated reward. The goal of learning is then to develop a policy that maximizes

the total (discounted) reward [45]. Given a reward function (R(ŝ)→ r), we can state the value of a

policy π as

V π = E

[
N∑
i

γiR(ŝn)

]
where γ is a discount factor and the N ŝ are obtained by following π. The π with the highest value

is the optimal policy, and can be used to control the robot.

32

One of the arguments for reward-based learning is that the reward function may be a more

compact representation of the robot’s policy than the actual mapping itself. As such, it may be

easier to specify for a human user. While this fact may be true for states that are clear goals (like

checkmate in a game of chess), other states (particular board positions) are not as easily assigned

scalar values. Doing so is related to the credit assignment problem [21], where it is not clear which

decisions in the past are directly responsible for the current situation.

Assuming that a reward function is given, one approach to learning is value iteration, where the

value function is maximized iteratively, via the Bellman update equations (or temporal difference

learning). Techniques for value iteration exist in both discrete [125] and continuous [107] domains.

If the full value function cannot be stored (as, for example, a discrete table), approaches exist

to approximate it using, for example, proto-functions [83] or a Radial Basis network [134]. An

alternative model is to consider the Q-function, which maps states and actions to expected reward

(Q(S × A) → r), instead of considering the policy as a whole. The optimal policy can then be

derived by choosing the action with the highest expected reward at each state. The Q function itself

can be learned in continuous spaces as well [90].

Rather than learning one of these secondary functions [133], the policy itself can be learnt directly.

Generally termed policy iteration techniques, these approaches formulate a complete policy, test it,

and then change the policies parameters to improve behavior, as determined by accumulated reward.

One technique is to use genetic algorithms [139], where simulated evolutionary processes “mate”

and “mutate” good policies in the hopes of achieving better ones. If the policy’s value function is

derivable, gradient ascent is another choice [130].

While function approximation techniques allow RL to be applied to the continuous domain,

as the state and action spaces of the robot continue to grow, these approaches themselves become

intractable. Hierarchical RL represents an attempt to deal with these growing spaces by decomposing

the overall task into smaller, more easily learnable ones [15]. Doing so directly parallels the shift

from MDPs to semiMDPs, where a top-level MDP can have as actions complete policies in lower-

level ones. Often, the decomposition of the overall task into subtasks is given, and the same learning

techniques are applied at all levels [101].

An issue that arises in RL is that of exploration versus exploitation [85]. That is, once an agent

has a good policy, it must decide whether to exploit this policy for good performance, or explore

alternate actions in the hopes of finding an even better policy. Basic ε-greedy approaches take a

fixed percentage of random actions, to always explore other possibilities [56]. However, this choice

can lead to degraded overall performance, since the final learned policy needs to account for the

possible catastrophic effects of these random actions. Alternatively, simulated annealing decreases

the percentage of exploratory actions over time, but ends at a policy that has none. Additionally, as

the state and action spaces grow, the probability of finding high-reward areas by random exploration

decreases. This problem is one of the aspects of the curse of dimensionality.

33

2.3.2 Demonstration Based Learning

In contrast to learning from collected rewards, control policies can instead be learnt from demonstra-

tions of the control policy itself. In this approach, data takes the form of matched (ŝ,a) tuples, with

the added assumption that a represents an appropriate action to perform when ŝ is perceived. This

assumption serves to bootstrap the exploration problem discussed above, as the robot is directly

provided with examples from desired (high-reward) regions of the state-action space.

Inverse Reinforcement Learning (IRL) techniques perform learning from demonstration by first

transforming the problem into a reward-based learning one. They use the data to infer an underlying

reward function that is latently guiding the demonstrator, and proceed as above [111]. One benefit

of this approach is that differences between users can be framed as differences in how they reward the

various features of the space. By learning a user-specific reward function, different demonstration

styles can be mimicked. However, estimating the reward function itself is a regression problem, but

the actual target values are hidden. To constrain the search, R is often taken to be linear with

respect to the state, leading to issues of feature selection. Further, the state variables themselves

define a control basis, where each variable has a behavior that attempts to maximize it, thus further

limiting the space of performable actions. Alternate, nonparametric, techniques may be able to learn

more general reward functions, although we know of no work in this area.

Rather than first inferring a reward function and then attempting to maximize reward, we can

approximate the policy, as a mapping, directly. That is, we can view the policy as π(ŝ) → a and

attempt to derive an approximation π̂ straight from the data. Such approaches are termed Direct

Policy Approximation (DPA) or Direct Policy Learing (DPL) [118].

Similar to RL, if the form of the policy is known, parametric regression can be used to fit the

parameters [13]. In this case the goal is to minimize the difference between what is predicted by

the approximator and what is commanded by the demonstrator, instead of maximizing an external

reward function. In this respect, LfD approaches can be seen as having an intrinsic reward function

that rewards behaving like the demonstrator.

If the form of the policy is not known, nonparametric algorithms can expand the parameter space

as needed [66]. However, as above, as the state and action spaces grow and the policies become more

intricate, a hierarchical decomposition of the task can prove useful, especially if there is hidden state.

This switch is akin to changing from a single reactive controller to a behavior based one, where the

subtasks are portions of the overall task or lower-level behaviors. For instance, the lower level policies

can be basic navigation and manipulation capabilities, and a higher-level policy is responsible for

modulating or sequencing them. By “gating” data to the different policies, each can be learned in

isolation, as is done with neural networks in [138]. Similar to hierarchical reinforcement learning,

the decomposition is taken as known.

This approach can also be viewed as an FSM, where the lower-level policies are the subtasks. If

they are given, learning a complete policy directly from demonstration can be done by learning the

appropriate sequence of subtasks to perform. To do so, each subtask can monitor its activity during

demonstration and learn pre- and post-conditions for transitioning to others [96]. Alternatively, it

34

may be necessary to fuse the policies from multiple subtasks, again according to their applicability

[97]. By further tracking the applicability of each subtask during autonomous execution, [99] learns

a rough topological map of the environment, similar in spirit to [59]. These maps can then be used

to address hidden state by incorporating a planner, moving more towards a 3LA.

We can also view a hierarchical decomposition of a task into subtasks as a mixture of experts

model [68], where each subtask is an expert in its domain, and the full policy is formed by mixing,

or gating, their outputs. If the domains of the experts overlap, a multimap control policy results,

as hidden state is required to choose the appropriate expert. The approaches described above take

the experts as known, and learn the mixing parameters. If, however, the subtask decomposition

is not known, it must be estimated from the data. This estimation gets at the heart of multimap

regression, where the presence of a multimap scenario must be differentiated from noise. Rather

than taking the number of subtasks as fixed, and learning their domains of expertise, we can instead

consider a possibly infinite number of components and learn the number of active ones from data

[113]. In Markov Chain terms, this approach is an infinite hidden Markov model [18]. We combine

this approach with individual subtask policy learning to address both model selection and policy

learning at the same time [112], given only demonstration data.

2.3.3 Regression

Our specific approach to learning from demonstration with direct policy approximation is a form of

regression. Regression, generally, is the estimation of a mapping f(x) = y from known input-output

pairs {xi, yi}, i ∈ 1 : N , where x is termed the independent, and y the dependent variable. For us,

x is the state of the world, and y is the robot’s action.

Usually, x and y are continuous variables, as classification techniques may be more appropriate if

they are discrete. In regression, techniques can be divided into two groups: Parametric approaches,

which take as given the form of the target mapping, and nonparametric ones, which do not.

A common parametric technique is to fit a known polynomial form to the data, such that y =

a0 + a1x + a2x
2 + a3x

3 + ... + adx
d up to the order of the desired polynomial, d. If d = 1, linear

regression is achieved. The fit can often be performed by Least Squares regression, or minimizing

the squared error between predicted and known outputs. This method is equivalent to assuming

that the observed data comes from the model

yi = f(x) +N (0, σ2)

where observed outputs are distributed in a Gaussian fashion around the true target.

Nonparametric approaches, on the other hand, do not take as known the form of the mapping.

That is not to say they do not have parameters, instead nonparametric methods can be thought of

as those where the data itself are the parameters, or the parameterization grows with the data. One

example would be if the degree of the polynomial model above were to grow with the data, such

that d = N . Nonparametric models can thus grow in complexity with the data, but also run the

risk of overfitting.

35

Given that our data is continuous and the mapping is of unknown form, we consider nonpara-

metric regression. Of course, as the parameterization can grow with the data, an algorithm may

require unlimited data storage. We must then focus on approaches that explicitly limit the growth

of the parameterization, or sparse nonparametric regressors, that do not require all previous data

to make a prediction. Even within this subset of techniques, there are many possible methods for

learning π̂ in an interactive, scalable, robust approach.

We initially considered Locally Weighted Projection Regression (LWPR) [149], which has been

previously used for robot learning. LWPR is a local approximator, in that it fits the overall mapping

by dividing the input space into multiple, overlapping regions called receptive fields (RF). Each RF

performs a local projection and linear regression on the data in that region, and predictions from

multiple RFs can be combined to form the total system’s output. LWPR is sparse in that only the

sufficient statistics for the RFs need to be kept, so that once a datapoint has been incorporated, it

can be discarded. Incorporation of new data (inference) is incremental, through the use of partial

least squares regression in each RF, and an incremental update to the area of the RFs themselves.

LWPR has the added benefit of explicitly considering that there may be unnecessary dimensions in

the data, and seeks to project them out.

Other possible nonparametric regression algorithms that have been used for learning robot control

include K-Nearest Neighbors [128], Neural Nets [138], and Gaussian Mixture Regression [30]. Herein

we will use the global approximator Sparse Online Gaussian Processes (SOGP) [41]. It is a form of

kernel regression, where each datapoint has influence over an area of space near it, ensuring that

data close by in input space have similar outputs.

Separate from the issue of parametric versus nonparametric regression is that of unimap versus

multimap regression. All of the approaches discussed above are unimap regressors, where it is

assumed that there is one correct output for a given input, which is observed in a noise-corrupted

form. We can achieve multimap regression by considering multiple overlapping unimaps, which is

again a mixture of experts model [68]. Also again, both parametric and nonparametric approaches

to multimaps exist. That is, the number of possible outputs for a given input can be taken as known

a priori, or also inferred from the data.

In order to be as general as possible, we apply nonparametric multimap regression, where the

number of possible outputs, form of the individual unimaps, and the unimaps themselves are all

estimated from the data. A drawback of being nonparametric in this way is that more data is

required to perform the additional estimation. Further, as overfitting is a very serious concern, data

is needed not only for training the model, but additional data is needed for testing. As we are

learning from human demonstation, these data must come from the demonstrators.

2.4 Human-Based Data Collection

As our work involves the teaching of robots tasks by human demonstrators, it necessarily incorporates

several aspects of Human-Robot Interaction (HRI). Specifically, from the field of HRI we draw

36

techniques to obtain the needed data from human controllers. In doing so, our human-robot interface

must balance two competing goals. First, we wish the transferred policy to perform as well as

possible. Secondly, we wish to make the interaction usable for the human, meaning that performing

HRPT should minimize excessive training, cognitive load, or time. In general, however, the more

time spent on HRPT, the better the resulting policy will perform. Balancing these two goals depends

on finding a point where policy correctness and user ease are in equilibrium.

Both policy correctness and user ease can be calculated in multiple fashions, quantitatively and

qualitatively. What we are truly interested in is the tradeoff between the two, sometimes called

Return on Investment. ROI can be thought of as the ratio of policy correctness to user effort, with

appropriate units. As an example, a robot controller that performed at 90% of optimal after 9 hours

of user time would have a lower ROI than a controller that performed at 80% optimality after only

4 hours of user time, if the hours spent were equivalent. By switching to LfD from explicit coding,

we seek to increase the ROI for non-programmers performing HRPT, although the exact policies

instantiated may not be as good.

While we are interested in LfD, specifically from human teleoperative control, this same tradeoff

must be considered in RL. For example, the reinforcement signals themselves may be ambiguous

[155], and getting more specific ones may require a more involved interface, leading to increased user

cognition. Specifically, humans may not give reinforcement only when good behavior is observed,

but also when it is anticipated [141], leading to the two types having to be disambiguated. Further,

collecting sufficient reinforcement data for learning may require large amounts of interaction [72].

2.4.1 Control Interface

When teleoperating a robot, a human user provides control signals that drive the robot to perform

the intended task. At the simplest, the user may control every actuator individually, but the interface

may also allow for higher-level control. For instance, the user may have access to provided or learned

reflexes, as discussed in Section 2.2. Alternatively, the subtasks or action options as in Section 2.2.1

may be known, and the user needs only select one to be active, or indicate parameters such as

waypoints for them. Or, given sufficiently high-level autonomous subtasks, the user may only have

to indicate transitions between them [40, 63]. In this limited case, a user’s attention could be split

between multiple robots [4], but it is still the human’s responsibility to set each robot’s behavior in

a manner consistent with the task at hand.

No matter what the level of control, the user must have access to portions of the robot’s state,

or sensory experience, as part of the interface. This information is necessary to enable the user to

make any decisions at all. However, the way this information is presented is very important, as it

impacts the user’s ability to control the robot [91]. In fact, presenting the same information to the

user in different ways can often effect task performance [98]. Consider two representations of speech

data, one as an image of the waveform on the screen, and another as rendered through a speaker.

While both contain the same information, untrained users may require more time to extract that

information from the graphical representation. Poor design of displays and controls, which require

37

more cognitive effort on the part of the user to use, has been linked to severe errors in the past [100].

Complementary to the display of robot perception is the extraction of control signals from the user

via some sort of control device. Graphical user interfaces (GUIs) are one such approach, where the

user points and clicks, and possibly types, to give commands to the robot. Research in assistive and

rehabilitative robotics has lead to a wide variety of interfaces that may be used for users of different

skills and cognitive capabilities [145]. Future control interfaces may automatically adapt themselves

for display on different devices, for different users’ needs [50]. Alternatively, brain-machine interfaces,

may enable users to control robots without any physical movement at all [147].

As all interaction between the robot and the human is mediated by the teleoperative interface,

the two need not be co-located [104]. Indeed, the display of perception and gathering of actuation

data may be distributed over multiple locations, and possible multiple users [54]. Using a distributed

data gathering framework over the internet may be one way to simplify data collection for teaching

robots from demonstration. That is, users who would not usually have access to a robot could

generate data from afar, leading to larger and more varied data sets.

2.4.2 Transparency

While providing appropriate actions for extracted perception data, users can improve the quality of

their teaching by leveraging information about the learning process itself. Called transparency, the

availability of this knowledge can enable users to understand which portions of the task have been

successfully learned, and which have not. Users can then focus their teaching efforts appropriately

[141]. In the context of training a robot by demonstration, transparency can be as simple as just

observing the robot’s behavior, and targeting more demonstrations where it is incorrect.

A training scenario thus usually becomes a series of train-test phases. The expert first demon-

strates the task or portion thereof, the robot performs learning, and then the robot uses the learned

policy to act. The user then observes the robot’s behavior, and when appropriate (after the task is

finished or an error occurs), generates a new demonstration. This cycle is repeated as necessary.

Often, however, just observing the failure case of the robot is not enough, as the reasons for the

failure are not clear. Multiple repeat demonstrations may then be necessary, until the user generates

data that addresses the underlying error. In this situation, more specific feedback from the robot can

help shape the demonstrations that the human provides [102]. One form this feedback can take is a

measure of confidence, of how reliable the system believes its learned autonomy to be in the current

situation. Using this information, the user can select future demonstrations specifically to target

low confidence areas. Note, that confidence does not necessarily mirror poor task performance, as

the robot could do the wrong action confidently, or the correct action with low confidence. Thus,

confidence and task error are complementary information channels. Confidence can further be used

to enable the learning system to be active, or ask for more demonstration from the user, when

confidence is low.

We have so far discussed feedback from the robot to the user, with the aim of enabling the user to

generate better demonstration data. There is also the opposite direction of information flow, where

38

the user gives feedback to the learning system to enable it to make better use of the data it has.

One method is to enable the user to provide high-level feedback, or critiques, to the robot instead of

more demonstrations [7]. That is, after observing robot behavior, the user indicates which portions

of the task were performed well with the current policy, and which portions should be improved.

Learning can then focus on the appropriate areas.

A similar technique allows users to modify the data after they generate it [8]. That is, the learned

system is given advice, such as “go faster here,” and the underlying data from which the policy is

learned is changed to reflect that fact. This method is especially applicable in domains where the

robot is potentially a better performer of the task than the human demonstrator. In this respect,

feedback from humans to robots is similar to reinforcement learning.

One last way in which bidirectional feedback between human teachers and robot learners can be

leveraged is in situations of scaffolding [116]. In scaffolding, a learner is initially trained on an easier

version or portion of the goal task, and then incrementally introduced to the desired overall behavior,

with a goal of decreasing the total learning time with respect to learning the complete behavior all

at once. Feedback from the robot can help the user determine an appropriate scaffolding order, as

portions that are hard to learn could be simplified and taught separately. Similarly, feedback to the

robot could be used to indicate where previously learned, scaffolded subportions could be applied.

2.4.3 Tutelage

As introduced in Section 1.3.3, robot tutelage arises when learning is suitably fast and interleaved

with evaluation in an interactive teaching paradigm [67]. Feedback in both directions can also be

incorporated. The main draw of tutelage is that it may free the demonstrator from the need to

produce multiple demonstrations of the entire task ahead of time, as only the areas of the policy

that are learned poorly would need to be redemonstrated. A hierarchical approach is also possible,

where after the overall task is learned, individual low-level modifications are introduced [75].

Outside of robotics, tutelage has been used to adapt other learned systems to users in real time.

For example, [132] describes an email program that will automatically generate folders and sort

mail for a user. If a user is unhappy with the resulting organization, they provide counterexamples

(demonstrations) of how they would prefer it, and the learned system is retrained. Because the

system is retrained after each example, often only a few demonstrations are needed from the user.

More generally, programming by demonstration is a paradigm that has been used in attempts to

simplify routine tasks for general computer users. By keeping a trace of a user’s activities, repetitive

tasks can be extracted and formed into macros. The version space algebra is one approach, that

forms macros in the background as users behave normally, and offers to complete common tasks

when they are detected [80]. If the completion is incorrect, the user can override it, and the learned

macro is edited with the new information.

39

Mixed-Initiative Control

As our demonstrations come from teleoperation, we must deal with the potential for conflicting

commands from the learned autonomy and demonstrator. Particularly, if both sources are generating

control outputs, we must determine the actual actions performed by the physical robot. Our solution

uses confidence measures to arbitrate between the two, enabling mixed-initiative control, where the

controller with less confidence gives control to, or has control taken away by, the other.

This approach is not the only way in which a user and autonomous system can interact. Rather

than giving control of the robot fully to one or the other, they could share it. Adjustable Autonomy

[40] is one such approach, where the user can decide to take over partial control of the robot, making

it less autonomous. They can then guide the robot to perform a particular aspect of the task, with

which it may have had trouble, while the autonomy continues to run other portions of the overall

behavior. Take as an example the robot task of walking in a circle while tracking a ball. Our MIC

approach requires that both walking and tracking be demonstrated simultaneously. An adjustable

approach might let autonomy control the legs while the demonstrator used the head, or vice versa.

With MIC, we are also concerned with the user suddenly being thrust into control of the robot,

if the autonomy has low confidence. At issue is that the user may not be paying attention, or have

their attention focused elsewhere, or on another task. They then may lack situation awareness [28]

of the robot and its environment. By the time they acquire it and are able to provide appropriate

control, the environment may have changed, so that instruction is no longer needed.

Along the same lines, by having control of the robot thrust upon them, whatever the user was

attending to before that may suffer. Further, if this situation arises often, the system may be

perceived as bothersome or overly interrupting [93]. Approaches that monitor a user’s activities and

determine appropriate times to request their attention may alleviate this issue, enabling robots to

weigh the potential gain in policy performance against any annoyance that may befall the user.

2.5 Robot Learning

We are not the first to perform interactive robot learing from demonstration, nor are we the first

to attempt to learn to play robot soccer. The Brainstormers [114], for example, used hierarchical

reinforcement learning to learn a simulation Robocup team. Individual robot subtasks (which were

given) were learned as MDPs, and the overall team policy was treated as a multi-agent MDP

over these subtasks. A central value function, approximated by a neural net and representing the

likelihood of scoring a goal in the current state, drives learning. Due to the RL framework, random

policies are initially needed to explore the state and action space of the team to discover goals. Later

work transitioned a learned policy for intercepting the ball from simulation onto a real robot [92].

More similar to our approach is [128], which uses memory-based learning of a continuous function

to determine when a simulated robot should kick or pass. The policy itself is learned by storing

memory of previous attempts, and using nearest-neighbor lookup to determine the action in novel

states. The continuous function learned is the probability of scoring as a function of defender

40

location, the actions chosen are discrete, either pass or shoot.

We used a similar nearest-neighbor procedure in our 2006 DemonstraDogs team [81], but applied

to real robots and learning continuous state to continuous action mappings. In that system we

collected data representative of correct behavior in batch, and achieved sparsity (and thus realtime

prediction) by selecting an appropriately sized random subset for storage. During play, a robot’s

current perception was matched with a KD-Tree to the nearest perception in memory, and the

corresponding action performed. The DemonstraDogs team lost all of their games, in part because

all the robots would walk off the field and end up penalized. Despite this behavior, at times the

team showed a “glimmer” of intelligence, reacting the the ball.

2.5.1 Inverse Reinforcement Learning

Closer to our desired goal of intelligently learning unknown tasks from human user demonstration,

recent work in Inverse Reinforcement Learning has successfully been used to learn to fly an aerobatic

helicopter [1], drive in parking lots [2], and traverse uneven terrain with quadrupeds [75]. While

the approach itself is thus proven to be applicable to multiple domains, a major limitation is that

the features for each domain must be hand selected. In particular, as their system learns a reward

function that is linear in a set of features, the features must therefore be appropriately high-level.

Examples include a “measure of distance between a driving trajectory and the lane” in the parking

lot task and “several features capturing the roughness and terrain slope at several different spatial

scales around the robot’s feet” in the quadruped task. IRL can also be performed with lower-level

features, such as position and orientation in the helicopter task. Still, however, the control policy

is linear in these features, leading to concerns about the space of possible policies covered by the

resulting control basis.

The main difference between this work and our own is that we consider approximating the policy

directly, instead of inferring an underlying reward function. By using RL, they leverage the claim

that the reward function is often a more compact representation of the policy. Further, their use

of RL allows them to learn to outperform the human user. However, their representation relies on

high-level, task-specific features, of which they only consider linear combinations. We instead utilize

nonlinear approximators, which may enable the same tasks to be learnt from lower-level features.

Additionally, we explicitly address the issue of hidden state and perceptual aliasing without a known

task decomposition, although work such as [87] and [70] may enable IRL to do the same by building

the state space incrementally. Lastly, we desire to operate in an entirely interactive framework, while

their system requires batch data collection.

2.5.2 Confidence Based Autonomy

The Confidence Based Autonomy (CBA) algorithm utilizes a notion of confidence to perform mixed-

initiative robot learning from demonstration [36]. There they use a set of Gaussian Mixture Models

(GMMs), one per discrete action, to divide the state space of the robot into regions where the different

41

actions are appropriate. The GMMs are updated incrementally, as data arrives, using the Akaike

Information Criterion to discover the number of mixture components in each one. This criterion is a

form of penalized log likelihood, where overfitting (by having more mixture components) is weighed

against the gains in likelihood of the model. They have successfully shown multiple robots learning

a collaborative task using this framework [35].

Confidence comes into play as the robot observes new data. If the current model confidently

predicts the appropriate action, it is executed autonomously. Otherwise, the robot pauses and

requests a new demonstration from the user. This behavior is similar to our default behavior, which

intervenes when learner confidence is low to trigger active learning. CBA also allows for corrective

demonstration, as we do, allowing the user to provide new data as desired. By utilizing different

confidence thresholds in different areas of the state space, their technique can adapt to different

distributions of data [34]. Similar to our work, they are interested in perceptual aliasing, and use

confidence to detect areas of ambiguity, where multiple actions are possible, and the demonstrator is

inconsistent. They then hypothesize a new option class that incorporates the multiple actions [33].

While this work is similar to ours in several respects (the use of confidence, tutelage and address-

ing perceptual aliasing), the major difference is that CBA operates in a classification domain. That

is, a finite set of actions exists, and the perceptual space of the robot is divided into classification

regions, where the label on a region indicates what action to perform. In contrast, we operate in a

continuous action space, and thus use regression to approximate the mapping. Further, we approach

ambiguity differently. CBA considers creating a new class that represents the union of two or more

actions, and then selects an action uniformly from them at execution. We, by performing multimap

regression, instead represent each action separately, and draw from the distribution over actions

when needed. Lastly, our approaches to model selection differ. CBA divides the state space using

a set of GMMs, where each action (the number of which is known a priori) has its own GMM with

the number of components chosen with AIC. We also use a GMM to divide the state space, but

consider only one with an infinite number of components.

2.5.3 Gaussian Mixture Regression

Also utilizing GMMs to perform incremental robot learning from demonstration is [29]. They,

however, utilize Gaussian Mixture Regression (GMR), which is more similar to our approach then

the classification-based CBA. They further explicitly consider dimensionality by projecting the data

into a latent, lower-dimensional space (which includes time) using principal component analysis

(PCA). In the reduced space they fit a GMM model to the data, using the Bayesian Information

Criterion (BIC) to determine the number of components. Similar to the AIC, the BIC is a penalized

log likelihood which discourages overfitting. As time is included in the state, executing an action

corresponds to predicting the robot’s pose at a given time in the action execution. To accomplish this,

all demonstrations of a task are resampled to take the same amount of time. Using motion capture

and kinesthetic teaching, this technique has been used to learn a series of free space movements.

For object-oriented movements, the method is extended to consider task as well as joint space

42

[30]. In addition to the robot’s motors, features of the environment related to the task, such as the

relative locations of particular objects, are included in the state space. By fitting a GMM to multiple

demonstrations of the same task, the important features at each time in the task are detected by

considering the variance of the demonstrator at that time.

This work departs from those above, and ours, in explicitly considering time. While we learn

a reactive policy, mapping from the current state to a desired action, they learn a time-extended

motion, which is a mapping from time in the task to a desired location in joint/task space. To do

so they need to map all demonstrations of a task into the same length of time. Their approach is

incremental in the sense that new demonstrations of the entire task can be incorporated to refine

task performance. However, our approach is incremental in that the task itself can be demonstrated

incrementally, or a portion at a time. For multi-state tasks, this ability may be advantageous.

2.6 Summary

An autonomous robot requires many parts. The physical embodiment, sensors, effectors, computa-

tional architecture and perceptual and actuation processes are all parts of the substrate on which

the control policy operates. We take all of them as given and focus on the process whereby a human

instantiates the robot’s behavior. The control policy itself can be formulated and implemented in

multiple fashions, but at its most abstract we view it as a mapping from robot perception to ac-

tion. Using learning, we estimate policy mappings from demonstration data collected interactively

through tutelage. We further employ mixed initiative control to share command of the physical

robot between the learner and teleoperative demonstrator in support of the tutelage framework.

Chapter 3

Dogged Learning

Robot systems are now installed, debugged, and updated by trained specialists, who

measure and prepare the workspace and tailor job- and site-specific control programs.

Few jobs are large and static enough to warrant such time-consuming and expensive

preparations. If mobile robots for delivery, cleaning, and inspection could be unpacked

anywhere and simply trained by leading them once through their task, they would find

thousands of times as many buyers.

Hans Moravec, Robot, 1999, page 92

Towards the goal of enabling non-specialists to more easily instantiate autonomous robot control

policies, we present here our architecture for interactive robot lifelong learning of unknown tasks from

demonstration with mixed initiative control [57]. Shown in overview in Figure 3.1 and algorithmi-

cally in Algorithm 3.1, our architecture is designed to work with different demonstrators, platforms

(robots), learners and arbitration schemes. This flexibility has allowed us to directly compare the

performace of different learning algorithms, and rapidly apply them to new robots. Further, as the

approach allows for the interleaving of autonomous activity with training, it is appropriate to be

Figure 3.1: The Dogged Learning architecture. The platform interacts directly with the environment
and extracts perceptions (ŝ), an estimate of the true state of the world. Decision making generates
an actuation (a) by arbitrating between the demonstrator’s policy (π), the learned approximation
thereof (π), or a default controller, based on their confidences (ς).

43

44

Algorithm 3.1 The Dogged Learning Procedure
loop

Receive perception (ŝ) from platform
Display perception to user {Feedback}
Receive estimated action (aL) and confidence (ςL) from learner (π̂)
Get commanded action (aD) and confidence (ςD)from demonstrator (π) {Control}
if aD is NULL then {No input from demonstrator}
ςD ← 0

Arbitrate using confidences (ςL, ςD) and select action (a) and confidence (ς)
if ς < τ , the default limit then

Get a from default controller
ς ← τ

if a 6= aL then
Update learner with (ŝ,a)

Send a to platform
Display results of arbitration to user {Secondary Feedback}

run over the entire lifetime of the robot, to enable lifelong learning [143]. As after a task has been

learned satisfactorily, the user simply stops teaching and the learned autonomy takes over, there is

always the potential for the user to resume teaching and modify the robot’s behavior in new ways.

Conceptually, DL defines the way in which the tutelage process arises from the interaction be-

tween four entities: the environment, the platform, the autonomous decision making and the demon-

strator, paralleling the robot control loop in Figure 2.1. The demonstrator is new, and serves as

the source of the latent control policy that trains the robot’s autonomy. Information flows from the

environment through the platform, where it is processed and then presented to decision making.

Decision making generates a response, possibly calling upon the demonstrator to do so, which is

passed back through the platform, processed, and emitted into the environment, where it causes

changes that continue the cycle.

The architecture itself is not tied to any particular system, and can be implemented in many

different ways. As we focus on real, physical robots, our environment of choice is the real world,

and thus no computational effort is needed to instantiate it. We now discuss the other constituent

entities in more detail, and then describe our experiences with various implementations.

3.1 Platform

The platform represents a robot, or more generally an agent, embedded in the environment. We

abstract away the low-level details of platforms, such as physical structure and computational ar-

chitecture, and take as given fixed preception and actuation capabilities. That is, we assume the

platform is able to extract an estimate of the world’s state from its sensors and turn desired actions

into effector activity. Specifically, given a world state s and sensors that extract information z = g(s)

from it, the platform is responsible for producing ŝ = g′(z) containing, ideally, all the information

necessary for the task at hand. Note that sensing and perception are not assumed to be inverse

45

actions, so that ŝ = g′(g(s)) 6= s. It is this difference between what the true state of the world is and

what is extracted from the robot’s sensors, perhaps due to noise or insufficient sensing, that gives

rise to the form of perceptual aliasing with which we are concerned.

After a proper action response (a) has been selected by decision making, the platform is then

responsible for turning it into control signals u = h(a). The actuators themselves then cause the

environment to change to s∗ = τ(u). Like with sensing, noise can result in a difference between

the action commanded and the resultant change. Further, physical limitations of the platform can

render portions of the environment unchangeable. For instance, a short robot may not be able to

reach a high shelf. In Figure 3.1, perception and actuation are shown dashed, to indicate that they

are not required. Indeed, the perceptual and actuation mappings may be identities, and learning

can take place directly on sensor data and actuator control signals, as discussed in Section 2.2.

The dimensionality of ŝ and a are platform dependent, and can in principle vary over time. For

example, a vision system could extract the coordinates of all visible faces, so the resulting perception

vector would have to be different lengths depending on how many faces were detected. We simplify

somewhat and assume fixed dimensionality for a given platform, although future development may

allow for variable sized-vectors. Current systems can approximate variable lengths by assuming

a maximum number and returning a null value as necessary. However, care must be taken when

defining the null value, so that it cannot be confused with a valid one.

Further, we assume that dimensions are unordered yet non-exchangeable. Unordered refers to

the property that there is no information in the order in which the perceptions and actuations are

stored; the dimensions can be randomly permuted to no ill effect. Alternatively, the ordering could

indicate information such as relative importance. Non-exchangability means that no two dimensions

are equivalent, and thus dimensions cannot be swapped. Practically, these assumptions mean that

we take the order of the dimensions to be fixed, but do not use the ordering when making decisions.

For generality, we allow both discrete1 and continuous values for perception and actuation di-

mensions. However, to simplify learning somewhat, we require scaling parameters, representative of

the maximum and minimum values for each dimension. As all dimensions are tied to some physical

process with finite limits (in the robot itself), these values are often easy to obtain.

It is important that in the DL architecture, platforms are defined not by their physical char-

acteristics, but by their perception and actuation spaces. This fact means that the same physical

robot with different perceptual or actuation capabilities is treated as a different platform. On the

other hand, if two different robots have identical spaces, they are in effect the same. We could, for

instance, provide a legged humanoid and a wheeled trash-can robot with identical object detection

and location control systems. Then, as their perception and actuation spaces match, policies learnt

on one could be directly used on the other.
1Either multi-valued or binary one-of-n encoding.

46

3.2 Demonstrator

The platform subsystem of Dogged Learning encapsulates all interaction with the actual robot, and

through it the environment. Similarly, the demonstrator subsystem is responsible for interacting

with the expert, or latent control policy. Recall that we aim for our robots to learn from human

demonstration of a desired task, but choose to not address the issue of mapping observed human

poses and behaviors onto a robot’s capabilities. Thus, instead of allowing a human to free-form

demonstrate in the world, we require them to physically guide the robot though the task. Users

usually perform this guidance using teleoperation, although we have also experimented with kines-

thetically guiding the robot as well.

Likewise, we seek to avoid issues of perspective matching by only providing the user with the

state information extracted by the robot’s perception routines. By requiring that the human be

able to perform the task in this fashion we ensure that the task is, in principle, decidable using only

the information present in the robot’s perception and performable using only the robot’s actuation.

However, we as of yet know of no way to limit the user’s use of higher cognitive functions, such as

memory. The use of these abilities gives rise to hidden state, information not available to the robot.

The presentation of the perceptions and extraction of actuations to and from the user are dependent

both upon the platform and the interaction devices used. A platform developer must therefore,

in addition to developing the platform module described above, also develop a user interface. We

separate the UI into two components, that of Feedback (presenting the perception data to the user)

and that of Control (getting actuation data from the user).

3.2.1 Feedback

The primary purpose of feedback is to limit the user’s knowledge of the robot’s state to that known to

the robot itself. Even then, displaying the information in a manner that the user can rapidly interpret

and respond to is a non-trivial problem. As described in Section 2.4.1, the same information can be

presented in multiple fashions, effecting the ease with which the user determines their response.

Generally, all of our platforms use a computer screen for feedback, although we have experimented

with other modalities such as audio and tactile vibration. As we are not UI designers, we attempt

to follow best practices [86], but our resulting displays are by no means the best possible. While

the resulting perception displays may be robot dependent, often similar techniques, such as general

layout of the display and certain imagery, can be used for multiple platforms. Further, as the data

is represented abstractly, there is the possibility that the same display can be used for all platforms,

assuming no platform-specific information is in the display. An example of a general feedback display

is a text stream, where all perceptions are displayed as space-deliminated floating point numbers.

While general, this particular display is often hard for humans to utilize for robot control.

47

Secondary Feedback

To enable users to make use of information from the decision making component itself, we allow for

a secondary feedback channel. One item of interest may be the result of arbitration, described in

Section 3.3.3, which indicates which proposed actuation, or combination thereof, is actually being

sent to the platform. Additional information from the learner, such as its confidence, could also be

used to guide demonstration.

While algorithm-specific information could be passed, we instead use the secondary feedback

channel to convey the general notion of confidence in the learned policy. Such a measure, indicating

roughly how well the learner has learned the correct action for the current perception, is available

for many learning algorithms. The demonstrator can then focus demonstration on areas of low

confidence, and allow autonomous activity when it is high.

As with the primary feedback, multiple modalities are possible for providing this secondary

information to the user. As it is often used to evaluate robot performance of the task, we have

chosen to present it on the robot itself, so the user can see it while observing task performance. For

users that are distally located, it may be more appropriate to display this information on the screen

along with the perception data.

3.2.2 Control

The opposite of displaying perception to the user is getting task-appropriate actuation from them.

Again, a variety of interfaces and modalities can be used. Providing multiple control interfaces may

give potential users options, allowing them to chose the one they are most comfortable with. As with

feedback, the platform developer must define the mapping from control interface to robot actuation.

A major concern when designing the control interface is how to map a user’s actions onto a poten-

tially higher degree-of-freedom actuation space. Similar to how different perceptual representations

can make information easier or harder to access for a user, different actuation mappings can make

particular actions easier or harder to perform. For example, using a 2 degree of freedom mouse to

control the 3 dimensional location of the robot’s head necessarily leaves one degree under-controlled.

One option would be to use an adaptive teleoperation interface, where the level of control changes

with the task [126].

Another possibility is kinesthetic control, where the robot itself is manipulated. By doing so,

each degree of freedom of the robot is directly accessible to the user. However, as the user now

interacts with the robot itself, it is often difficult to limit their perception to the displayed feedback.

Alternatively, we could use a duplicate robot, allowing the user to manipulate it to control the robot

engaged in the actual task. In both situations, the coordination necessary to provide correct control

for all of the joints in real time is often lacking. There is, however, the possibility of having multiple

users, each controlling a portion of the robot, and collectively providing demonstration data.

48

Alternate Demonstrators

As both perceptual feedback and actuation control interfaces may limit the user’s ability to demon-

strate tasks, their proper design and implementation may be research areas in their own rights.

Further, their use is only for human demonstrators, who require alternate methods of accessing the

data. For demonstrators that are more computational in nature, it may be possible to utilize the

perception and actuation data structures directly.

Conceptually, such a demonstrator could be a learning system that has already learned the desired

task, and is now teaching it to another system. An alternative would be a hand-coded controller

(HCC), written by a programmer. However, the use of such a controller raises a question: “If we

have code that drives the robot to perform the task, why not just use that, instead of teaching?”

The first reason to do so, and the reason we use them here, is for testing and development.

Coded controllers, like simulators, allow for more control over unintended noise, and perhaps for

faster-than-real-time data generation. An HCC, hooked up to a simulated robot through the DL

architecture could be used to test the scalability of the system to learning from data that would take

months to collect from human demonstrators. Further, HCCs can be designed to provide consistent

actions for given perceptions, which many humans cannot do. Additionally, for tasks that require

hidden state, a HCC can be written that explicitly provides this information, which may not be

immediately accessible to a human demonstrator.

A second reason may be to enable adaptation of the policy itself. Writing an HCC that handles all

possible situations may be difficult, as all rare edge cases must be considered. An alternative would

be to write a simple controller that handles the most common cases, and then use that controller

to train an adaptable learned system. Support for the edge cases could then be added via tutelage,

as they arise. Similarly, if learning is able to improve the policy beyond that of the demonstrator,

easily-written, but suboptimal, controllers could be used to bootstrap the process.

In both cases, the tutelage framework can be utilized with HCCs by allowing human users to

toggle them on and off. That is, while the user does not control the content of the instruction, they

control its presence, shutting it off to evaluate the learned autonomy. Such a combined Human-

Gated Controller (HGC) keeps the human in the loop, and may also provide a method of probing

the utility of the interactive teaching style itself.

3.3 Decision Making

The decision making component is the last part of the dogged learning architecture. It mediates

the interaction between the platform and the demonstrator, and encapsulates the actual learning.

If the demonstrator instead connected directly to the platform, or if learning did not take place, we

would have a regular teleoperated robot.

As it is a mediator, the decision making component itself only requires knowledge of the di-

mensionality of the perception and actuation spaces of the platform. That is, no other knowledge

as to which platform is being used, what the perceptions and actuations correspond to, or if the

49

platform is real or virtual, is needed. Decision making only views abstract perceptions coming in,

and abstract actuations going out. It is for the demonstrator (and eventually the learner) to imbue

them with meaning by showing the correct way in which they should relate to each other.

Abstractly, decision making itself can be viewed, as is the demonstrator, as taking in platform-

generated perceptions and outputting actions appropriate for the task being performed. The differ-

ence is that from the decision making component we can obtain actions that are derived from the

demonstrator, the learned autonomy, a default controller, or some combination of the three. We

have already described the demonstrator in Section 3.2, now we discuss the other two sources of

actuation outputs and the connections between them.

3.3.1 Learner

The learning portion of decision making is responsible for actually utilizing the demonstrator’s gener-

ated preception-actuation pairs to form an approximation of their latent control policy. In addition,

it must use that approximation to control the robot when the demonstrator is not demonstrating.

The learner must then operate in two modes, which we call inference and prediction.

In inference mode, the inputs to the learner are the same ŝ that were displayed to the demon-

strator, and the a that the demonstrator returned. Internally, the learner updates its approximation

of the policy, and generates no output. We have focused on incremental, sparse learning, where the

new policy (πt) is derived from the previous one (πt−1) and the data (ŝ,a) is discarded after the

update. However, there is nothing in the concept of the learner that precludes other approaches.

That is, the learner could be a batch learner, store all of the data it is shown, and recompute the

policy from scratch each time.

The main reason to favor sparse incremental approaches over batch ones is that they are often

faster and interruptible, and due to the tutelage paradigm, the learner is expected to be able to take

control of the platform at any time. Control involves performing prediction, where the learner is

given only ŝ, and must generate an appropriate action. In the DL procedure in Algorithm 3.1, we

interweave both prediction and inference. Given a perception, first prediction is called, to generate a

possible output while we wait for the demonstrator to react. If the demonstrator provides a suitable

action, it is used instead and the learner performs inference to update its policy.

Similar in spirit to our platform abstraction, the learning component of the DL architecture

thus abstracts over the internals of various possible learning algorithms. Sparse, incremental, batch,

parametric, nonparametric, Bayesian, or heuristic, all approaches can be used, as long as they im-

plement inference and prediction. In this respect, DL can be used to perform empirical comparisons

between different learning algorithms, similar to [32].

3.3.2 Default Controller

One of the optional components of the DL architecture is a default controller in the decision making

subsystem. The idea is that it is a controller that is always active and will control the platform

50

in situations when both the learner and demonstrator are unwilling or unable. One such situation

arises right after the system is started, before the demonstrator has demonstrated anything, and the

learner is untrained. Another possibility is that the learner has learned poorly and is attempting to

control the robot in an unsafe manner. The default controller thus can be seen as instantiating self-

protective behavior, as it prevents an untrained (or ill-trained) learner from damaging the platform.

The default controller can also be thought of as providing prior information about desired robot

behavior. That is, in the absence of demonstration to the contrary, the default controller provides an

appropriate action for every perception. If the learner is allowed to learn from the default controller,

data generated in this fashion will bias the learned autonomy.

The default behavior itself can range from being a simple constant controller, that always does

the same thing, to a fully developed control policy. Further, it may be platform specific, as different

values may be appropriate for different platforms. The main difference between the default controller

and general HCCs is that the default controller contains no task-specific information. It, instead,

provides control signals for when there is no task to perform. Possible default controllers include

random exploration (if reinforcement learning is possible), continuing to do the same thing, or

stopping all activity and awaiting instruction. We chose to do the last one, and use a default

controller that always returns zeros for all actuation values, for all platforms.

3.3.3 Arbitration

Since the demonstrator, default controller, and learner may all be attempting to control the same

physical platform, some form of determining the actual actuation (a) used is needed. In our work,

we arbitrate between the possibilities using the concept of confidence. That is, not only do the

controllers produce outputs for query inputs, but we require them to have an associated measure

of how sure they are that this is the correct action to perform. Confidence is a general notion, and

there are various ways in which it can be derived. For a statistical learning algorithm, it could be a

measure of variance in the predicted output. Alternatively, a measure of how well the state-action

space is explored around the area of interest may be used. For a human, a more intuitive definition

suffices, and we ask for a number between 0% (unsure) and 100% (completely sure). For comparison

between the three controllers, we map all confidences to the human scale.

Actual arbitration itself can take many forms as well. We could, for example, normalize the

confidences to sum to 1 and draw a controller probabilistically from the resulting distribution.

Instead, we use a winner-take-all strategy, where the most confident controller gains control of the

platform. In a general sense, this scheme allows for a confident learner to take control away from an

less confident demonstrator, or a highly confident default controller (perhaps because of impending

robot damage) to usurp them both.

We further simplify arbitration by using fixed confidences for the demonstrator and default

controller. Specifically, the demonstrator is taken to be 100% confident if an action is generated,

and 0% confident if not. By doing so we ease control somewhat, as the user does not need to provide

the confidence directly. For the default controller, we use a constant τ , in our experiments τ = 10%.

51

Confidence Demonstrator Present (100%) Demonstrator Absent (0%)

Learner > τ Demonstrator controls Learner controls
Learner < τ Demonstrator controls Default / Demonstration requested

Table 3.1: Our arbitration matrix. The user, if providing control output, has command.

While this setting may allow a confident learned autonomy, or irresponsible demonstrator, to control

the robot to cause itself harm, we have not found this to be the case.

Our resulting arbitration matrix is shown in Table 3.1. The results of arbitration, the selected

action to be performed, is then passed on to the platform for execution and the learner for instruction.

Note that in the absence of a demonstrator, the learner will receive signals from, and learn to mimic,

the default controller, leading to the bias discussed earlier. To avoid feedback, where the learner’s

confidence grows without bound, we prevent the learning subsystem from learning from itself. If the

arbitrator chooses the learner’s output for enaction, the policy update does not take place.

3.4 Analysis

We have not rigorously analyzed Dogged Learning, as formal user studies are outside the scope of this

dissertation. However, during its development our DL system has interacted with various users in

multiple venues, such as scholastic projects, conference and symposia demonstrations, and research

collaborations. Further, we have carried out several “proof-of-concept” experiments that, while

not extensive, point out some fashions in which DL may be employed. We present here anecdotal

evidence from these experiences, noting that platform developers, UI designers, machine learning

researchers, human demonstrators, and other users interact with the system in different fashions.

During the work associated with this dissertation, we have implemented the DL architecture

several times, in various fashions, the evolution of which is summarized in Table 3.2. Initially, our

system was tied to one robot and particular tasks. Over time, as the research developed, the code

was refactored to enable the easy inclusion of new platforms and controllers. More recently, we have

added support for distributed interaction, where the demonstrator and learner need not be in the

same physical location.

Currently, the development of our system focuses on making it easier to apply it to new robots

and learning algorithms, so that it can be used to perform comparative studies. To that end we are

moving towards a framework where each portion of the architecture (platform, control, feedback,

Name Description

1 Prototype A set of distinct programs that communicated over pipes in synchrony
2 Dogged Learning A monolithic, multithreaded program
3 RGame A server/client model for collecting data over the internet
4 Unnamed A distributed system with cross-platform asynchronous communication

Table 3.2: Dogged Learning Instantiations

52

(a) AIBO (b) SMURV (c) Harvey

Figure 3.2: Instantiated robot platforms, the Sony AIBO, Brown SMURV and Harvard Harvey.
AIBO image copyright Sony Corporation.

learning) can be developed and run separately. One concern we have is with maintaining synchrony

of the robot’s perception and human’s demonstration. In order to learn, we must correctly associate

a commanded actuation with the perception that caused the human to perform it. However, if the

system is fragmented and running over a network, lags make cause the various parts to come out of

synch. We have addressed this problem somewhat in our current server/client system, which collects

perceptions and actuations at a central point for synchrony.

3.4.1 Platforms

During development and testing of the DL architecture, we have implemented a variety of platforms,

both robotic and virtual. Three of the physical robot platforms are shown in Figure 3.2, and their

corresponding perception and actuation spaces in Table 3.3. Originally, our prototype DL system was

tied to the AIBO, but since Version 2 support for multiple platforms has been possible. Currently,

implementing a new platform consists of writing two C++ classes, one that handles communication

with the robot, extracting perception from the sensors and translating actuation into appropriate

actuator commands, and the other that interacts with the user, defining how perception is displayed

and actuation obtained. We are continuing to streamline this process, and present here our main

platform, along with our experiences in implementing others.

Platform Perception Actuation

AIBO
24D: 6 Colors × 3D (image X Y and size) 10D: Walk Parameters (X Y and α)

+ 4 head motors + 4 head motors + 2 tail motors
+ 2 tail motors + kick/block (discrete)

SMURV
26D: 6 colors × 4 bounding box corners 2D:

+ left and right bumpers Drive and Rotate
Harvey 6D: 3 colors × 2D (X and Y in the plane) 3D: Drive and Rotate, PickUp

Table 3.3: Platform perceptual and action spaces

53

AIBO

Our primary robot is the AIBO, pictured in Figure 3.2a. Developed by Sony and sold commercially

for many years, the AIBO was used in the Robocup competitions from 1999 to 2008. To assist in this

usage, Sony released an SDK, allowing programmers access to many low-level aspects of the robot.

The robot itself has 18 degrees of freedom, a color camera, binaural microphones, touch sensors on

the feet, chin, back and head, and 3 IR distance sensors. In addition, several LEDs on the head,

back and face as well as a speaker are available for giving feedback to the user. Program code and

data are stored on a removable “SmartDisc,” with up to 256MB of space.

The low level proprietary operating system of the AIBO operates on a 32ms2 frame rate, roughly

30Hz, making it well suited for human-interactive tasks. We use the onboard CPU to process raw

sensor values and extract state estimates which are sent to a desktop processor over wireless ether-

net (UDP). In our implementation state estimation, or perception, consists of color segmentation of

the camera image to identify six colored blobs: black, orange, green, yellow, blue, and white. Seg-

mentation and blobbing is performed by a custom vision library and the blob locations (in camera

coordinates) and sizes, along with the motor angles of the head and tail make up the 24-D continuous

perception space of this platform.

Similarly, the on board processor handles actuation, in response to commands received over wire-

less. The actuation space for this platform is 10-D, and consists of 3 walking directions (left/right,

forward/back, turn) and the same 6 motors as in the state estimate. In addition, we use a discrete

action indicator that triggers a pre-recorded kick or blocking motion. All control of the legs, for

both walking gait and pre-recorded motions, occurs on board, and the leg positions themselves are

in nither the perception or actuation space. For gait generation we use the UPenn gait algorithm

[37] to generate leg positions from walk velocities, and motions are represented as a time-extended

set of poses. Actual motor control itself is handled by a PID (Proportional-Integral-Differential)

position controller built into the robot.

Note, that in not providing access to certain low-level values such as the leg positions and raw

camera image, we may be limiting the capabilities of the platform. Additionally, we do not utilize

the IR distance sensors, touch sensors, microphones, speakers, or LEDs, which could possibly be of

use in some tasks. However, while including additional sensors and actuators may ease learning and

performance of certain tasks, by revealing previously hidden state and enabling more control of the

environment, we argue that there will always be tasks for which the current sensor configuration is

insufficient for complete knowledge of the state of the world, and the current actuators insufficient

for complete control.

SMURV

We have also implemented a DL-platform for the Brown SMall Universal Robotic Vehicle, or

SMURV3. As the robot itself is developed in-house, use of the SMURV was designed to test the
2Actuator commands are handled in sets of 4, making the available resolution of position control 8ms.

3http://robotics.cs.brown.edu/projects/smurv

54

flexibility of the DL architecture in general, and our particular implementation. The robot itself,

pictured in Figure 3.2b, was designed to be a low cost educational robot platform, suitable for floor-

level manipulation and navigation. Built on an iRobot Create base, it uses a mini-ITX4 computer

for processing, data storage, and wireless ethernet communication. A webcam is the major sensor,

and there are two bump sensors that provide contact information (front left and right only). Ad-

ditionally, downward facing IR cliff sensors can detect stairs while a forward-facing IR emitter and

360 degree top-mounted IR receiver can be used for communication between robots. All sensors are

processed on board via the Player/Stage framework [53].

Color vision is similar to that of the AIBO, in that 6 colors are used to detect objects. However,

instead of our in-house segmentation library we used OpenCV [23], and instead of blob locations we

extract bounding boxes. The sensor space of the SMURV is thus 26-D (6 color boxes with 4 corners

and left and right bumpers). Note that, like in the AIBO platform, there are unused sensors (the

cliff sensors) that could be used in the future. Actuation is 2-D, as the user controls forward/back

motions and rotation, which is converted on board into control signals for the left and right wheels.

We highlight that the sensor and action spaces of the SMURV are different from that of the AIBO,

both in dimensionality and content. In fact, while the object information (colors) is the same, it is

presented in different manners. We further note that the methods used to perform perception are

somewhat irrelevant. While both platforms use color segmentation to detect objects, they could just

as easily use shape recognition or SIFT/SURF [17]. Using the DL framework, these differences are

abstracted out, and the underlying perceptual system could be changed at a later date, without any

needed modifications to DL, or the policies learned on the robots.

After implementing the SMURV, we ran quick learning experiments to show that the already

existing algorithms could be immediately applied to this new platform. Using joystick teleoperation

and interactive tutelage, we were able to train a SMURV to locate and approach green objects,

and to back away from contact with walls. To do so, we needed to make no changes to any other

component of the DL architecture, showing that our system is agnostic to the platform, as intended.

Harvey

Both the AIBO and SMURV are mostly limited to pushing balls around on the floor. To further

examine the extensibility of our system, and to show its applicability to other tasks, we included

in our system support for the Harvard Harvey humanoid robot, shown in Figure 3.2c. In contrast

to the SMURV and AIBO robots, whose systems were almost entirely developed in house, Harvey

was developed at another institution, for research independent of this dissertation, but still related

to robot learning. The robot itself is a small wheeled robot, with two arms that serve as a gripper,

enabling it to pick up and manipulate small objects.

Like the SMURVs, Harvey uses a color webcam to extract information about the world. However,

due to the limited processing capabilities, the captured image is transmitted over wireless ethernet

and processed offboard. The actual perceptual process is also more advanced than our other robots’,
4Newer versions use the ASUS eeePC.

55

as Harvey tracks objects even when they are out of view. Using global localization and odometry

in conjunction with vision, three colored objects are tracked in the space around Harvey and their

locations in robot-centered coordinates make up the 6-D perception space of this platform. For

actuation, Harvey has a 3-D space, corresponding to the left and right wheels, and a discrete pick-

up motion. An object is determined to be held, or “picked-up” if it is in view before the pickup

motion is executed, and not in view after, and is then taken to be at the same location as the robot.

Note, again, the different representations of the same data. In particular, Harvey makes use of

increased perceptual capabilities to reduce the dimensionality of the perception space. The same

information about objects that Harvey uses (2D location in the plane with respect to the robot)

could also be extracted from the AIBO’s color blobs or SMURV’s bounding boxes. Reducing the

perception space in this fashion may simplify learning of certain tasks, and make learning others

harder or impossible. For example, Harvey cannot be used to learn tasks that require knowledge of

the actual size of the observed objects, while both the AIBO and SMURV platforms can. Deciding

on the appropriate level of abstraction is tantamount to deciding where to draw the line between the

control policy and the computational architecture, determining which perceptual processings count

as innate, and which are learned. By improving a robot’s ability to learn arbitrary mappings from

perception to actuation on its own, we hope to decrease the amount of high-level processing that

must be assumed, and enable learning of a wider variety of tasks on a given platform.

Inclusion of Harvey into our system took around 5 hours for two researchers (the author and

the developer of Harvey). Mostly, time was spent wrapping existing code and dealing with network

issues. After completion, all aspects of DL were available for use on Harvey. We successfully used

the same learning techniques to interactively teach Harvey to pick up and transfer the balls from

location to location, again without any additional modifications to the other aspects of the system.

Virtual

We have also extended our system into the virtual domain. Doing so requires us to model the envi-

ronment, but as they do not require a real running robot, these platforms are useful for performing

quick tests of the system, and evaluating new features or additions. Alternatively, we can have more

abstract platforms, one that we use often has both perception and actuation consisting of a single

random number in the range [−1, 1]. With it, we have taught a variety of mathematical functions to

our learning algorithms, including the square root multimap, as will be discussed in Section 4.3.1.

Further, the use of virtual systems shows how learned policies can be applied to different robots

with the same perception and actuation spaces. In particular, we have simulated versions of both

Harvey and the SMURV. Using the simulations, we have trained a controller for the SMURV, and

then run that controller directly on the real robot.

3.4.2 Demonstrator Interfaces

Considering the interface that the end user will use to provide demonstration, we have worked both

with graphic designers and potential users to improve it. Our current feedback display for the AIBO

56

Figure 3.3: A screenshot of our AIBO feedback display. The extracted state estimate (color blob
location and motor poses) is displayed to the user so that they can control an appropriate response.

is shown in Figure 3.3, and has a “video-game” feel. Color blob data is presented centrally, and

motor pose information utilizes a model of the robot. As you can see, we present the data in the

context of a game, robo soccer, in an attempt to make teaching the robot fun and exciting [5].

In terms of learning, we display secondary feedback on the robot itself, so that it is immediately

accessible while observing the robot’s performance. Shown in Figure 3.4, we use LEDs on the AIBO’s

ears to indicate the result of arbitration, and the LEDs on the back to indicate the associated

confidence level.

For control, we have instantiated support for several devices, shown in Figure 3.5. Initially, we

used the a two-joystick control pad in Figure 3.5a. However, we used the right joystick to control

the head position, but as it only has 2 degrees of freedom, only two of the motors can be controlled

at a time. The other two are accessed by “clicking” the joystick down. In feedback from users,

this scheme was described as difficult to use, as it doesn’t allow the user to control the tilt of the

neck and chin at the same time, which is necessary for manipulating the ball. We then developed a

control interface based on the wiimote (Figure 3.5b), which allows for more “natural” control of the

robot [79]. For comparison with standard video game interfaces, we also implemented a keyboard

57

(a) High Confidence, Correct! (b) Low Confidence, Error!

Figure 3.4: The ear and back LEDs of the robot are used to make the learning process transparent,
conveying information about arbitration results and confidence levels to the user

and mouse based controller, although in our experience all users prefer one of the other devices.

The mappings for each of the devises was fine-tuned based on feedback collected at public demon-

strations. During demonstrations we distributed instructions for the current system and allowed un-

trained users to control the robots, as shown in Figure 3.6. As the control interface is kept distinct

from other aspects of the system, desired changes can often be made quickly, to allow the user that

proposed the change to evaluate it. In one case, a discovered bug in the interface was fixed in the

time it took the robot to reboot.

Global Perception

During many demonstrations, we heard from users that they found the feedback display too restric-

tive. Instead, they often chose to watch the robot itself during teleoperation. By doing so, they were

able to utilize information not available to the robot (such as global localization) to inform control

decisions. In terms of the diagram in Figure 3.1, operating in this fashion would be equivalent to

drawing an arrow connecting the environment directly to the teacher’s feedback input.

(a) Control Pad (b) Wiimote (c) Keyboard

Figure 3.5: The user input devices we have experimented with. Copyrights: Logitech, Nintendo, Cymotion

58

Figure 3.6: Top: Instructions for using the control interfaces for our demos. Some users do not need
them, and others require some additional verbal information, but most are able to control the robot
in under a minute. Bottom: Novice users utilizing our control interfaces to teleoperate robots. If
their perception were limited to that of the robot, we could learn policies from their data.

59

In this scenario, the abundance of hidden state often precludes successful policy learning. This

failure is evidenced by the robot’s performance of seemingly random actions, as it attempts to

generalize over apparently contradictory demonstrator data. Learning in the presence of hidden state

is one of the goals of this dissertation, and the approaches we expouse herein may eventually be able

to address this scenario. Alternative means to approaching this issue would be to make the interface

more compelling, utilizing work in HRI and UI design, physically separating the demonstrator and

robot so that the user must use the feedback provided, or allowing the demonstrator to explicitly

provide hidden information.

3.5 Discussion

Put together, the Dogged Learning architecture is an abstract description of the information flow

during robot learning. It is then similar in many respects to the General Task Learning Framework

(GTLF) of [154]. Both have as a goal to describe a system for enabling the development of au-

tonomous robot controllers without explicit coding, while being as agnostic as possible to the robot,

task, and learning system.

The GTLF is, in some senses, more general than DL. For instance, GTLF allows for learning

to take place through insight, trial and error and instruction, in addition to the observation (or

demonstration) that we do here. We have already discussed the addition of reinforcement learning

techniques to DL to enable improvement of learned policies beyond the level of demonstration, which

could be seen as instantiating the trial-and-error aspect. Insight and instruction techniques may also

be incorporable.

GTLF also allows for reconfiguration of the perception and actuation space to ease task per-

formance. This adaptation is accomplished by inserting filters in between the raw spaces of the

platform and the ones on which learning operates. When learning indicates (perhaps through confi-

dences) that an area of task performance is difficult, the filters can be modified to allow for improved

learning. In DL, these filters are equivalent to the perceptual and actuation levels of the platform.

We currently take them as fixed, but allowing them to be changed as needed may be an avenue of

future development.

Further, GTLF is designed for episodic learning, where time-extended performance trials are exe-

cuted before learning takes place. That is, data from a learning episode, consisting of demonstration

data in our case, is only processed (in batch) after demonstration ceases. However, as mentioned

both there and here, incremental learning, where learning occurs after each datapoint is generated,

can be seen as a limiting case of episodic learning.

Batch processing, however, may lead to better learning, as the data can be considered more

holistically. We have thus been considering an adaptation of DL that incorporates both incremental

and batch processing. The main concept is that during demonstration, incremental learning takes

place, but the data is logged as it is processed. Using the incrementally approximated policy,

the robot can behave autonomously as soon as the user stops demonstrating. However, during

60

“down time,” when there is additional processing power available, batch processing can be run, to

improve the approximated policy. We note that for many learning algorithms, including the ones we

examine here, prediction is much faster than inference. Thus, during autonomous execution, there is

additional, unused processing power that could be utilized in this fashion. An alternative would be to

have the batch processing occur when the robot is inactive, perhaps docked for charging. Alternating

fast approximate learning and slow improving processing can be seen as a sort of sleep/wake cycle,

where the robot improves what it has learned by further processing without user intervention. This

approach is similar to those where the robot improves by “practicing” the task in the absence of the

user, to improve without further interaction [19].

3.5.1 Data Collection

One issue that we have only hereto discussed tangentally is how the data for learning is actually

gathered. We predict that for learning to perform arbitrary tasks in varied environments, large

amounts of data may be required. Using simulated robots and HCCs is one way to generate the

needed data, but the development of an HCC is the very task we are trying to avoid. Additionally,

the use of simulators is not guaranteed to result in a policy that can be used on a real robot,

depending on the fidelity of the simulator.

We must, then, collect data from human users. Traditional methods for doing so involve either

bringing users to the robot (into the lab) or robots to the users (at demos, home visits, etc). We

have used both approaches, but they each have drawbacks, as robots and the learning system may

not be easily portable, and users who are willing to come to the lab may be scarce. Further, the

collection of large data sets either requires much time from a few users, or many users for less time.

Towards this second approach, an alternative that we have started to explore is collecting data

over the internet, a form of distributed human computation [5]. Such approaches, taping into the idle

processing power of millions of humans that might be otherwise engaged in solitaire, has successfully

been used to generate other large datasets, such as image labels and transcribed documents. Our

idea, and the motivation behind Version 3 of our system, is to enable users to remotely demonstrate

robot control policies from anywhere in the world. Thus, nither the robots nor the demonstrators

need to travel, and users may be engaged for as much time as they wish.

The concept is that users will log in and be presented with the perception data from a robot

running in our laboratory. By keeping the robots under local observation, they can be serviced

as necessary. On the user’s side, they would use whatever interface device they wish (keyboard,

Wiimote, iPhone), to generate actuation commands to accomplish some task, perhaps framed as a

game. From multiple users we may get data representative of different approaches to the same task.

All data would be logged, and used to train autonomous policies. One concern is how to combine

the data from the various demonstrators, some of whom may be more reliable than others [9]. The

learned controllers can further be evaluated by having them “compete” against the humans.

61

3.5.2 Internal State

A key theme of this dissertation is learning in the presence of internal state, information that is known

to the demonstrator but not the learning system. It arises most obviously when the demonstrator

directly perceives things that the robot cannot, as when the user has global perception as in Section

3.4.2. However, it can also arise due to processes internal to the user, such as advanced perceptual

capabilities and memory. Using the distributed data collection technique described above, hidden

state is limited to this latter sort.

One method to address internal state no matter what the cause is to make it explicit, and

available to the learning algorithm, which can then use this information to make control decisions.

If we were to extend the actuation and perception vectors to include this state and draw a vertical

line in Figure 3.1 between the actuation and perception channels, we could pass this hidden state

into the decision making subsystem at the next timestep. An alternative would be to emit the state

into the world, modifying it in some fashion that would be detectable, as a form of stigmergy [55].

In our experiments with unimap regressors, extending the actuation and perception of the plat-

form in this manner has been used to turn a multimap policy into a unimap. That is, given the

necessary internal state, perceptual aliasing is resolved, and the mapping from perceptions to actions

becomes many to one. However, this approach to hidden state is not generally applicable.

Firstly, the identified state variables, their number and possible values, are often task-specific.

This fact is in contrast with our stated goal, which is to develop learning for unknown tasks. Secondly,

human demonstration often lacks explicit representation of these state variables. That is, while

learning may be able to discover the evolution of the hidden state variables from demonstration,

it requires demonstrated values for the variables to learn from. It may be possible to ask humans

to provide this information in addition to their control signals, but doing so may require them to

analyze the task in exactly the fashion we are trying to avoid. Further, there is no guarantee that

the user-derived hidden state variables will be those needed for learning.

We instead seek to develop a learning algorithm that obviates the need for “passing around” this

state, or getting it from humans. It can be seen as discovering perceptually aliased states in the

execution of the demonstrated task and hypothesizing state variables that disambiguate them. The

number of state variables and their values are all derived from the data, any may not correspond to

those provided by users, but are sufficient for task performance.

Chapter 4

Realtime Overlapping Gaussian

Expert Regression

In a sense, artificial intelligence will be the ultimate tool because it will help us build

all possible tools. Advanced AI systems could maneuver people out of existence, or they

could help us build a new and better world. Aggressors could use them for conquest, or

foresighted defenders could use them to stabilize peace. They could even help us control

AI itself. The hand that rocks the AI cradle may well rule the world.

K. Eric Drexler, Engines of Creation, 1990, page 76

This chapter introduces ROGER (Realtime Overlapping Gaussian Expert Regression), an incre-

mental multimap regression model and algorithm for interactive robot learning from demonstration.

Shown in overview in Figure 4.1, the model represents a multimap as a collection of overlapping

unimaps, and key to the algorithm is its approach to model selection, or determining how many

unimaps there are. By always considering the possibility that a datapoint is representative of a

previously unseen unimap, ROGER effectively places no bound on the modality of the output dis-

tribution at a given input.

To reiterate the need for multimap regression, consider the toy example in Figure 4.2. Similar

to the object avoidance task of [33], the demonstrator has indicated two possible outputs for the

robot’s current state. In contrast to [33], we consider that the options may not be truly equivalent,

that the choice between them may depend on state not available to the robot, such as higher-level

objectives or user preference. Using a unimap regressor, neither of these options will be learned, as

performing unimap regression is equivalent to assuming that the observed outputs are unimodally

distributed around the true target. Fitting a Gaussian (one choice of unimodal distribution) to

the observations would result in their average being taken as the noise-free action. Parameterized

by angle of turn, the two observed outputs are θ = 30◦ and θ = −30◦, and the two contradictory

demonstrations will be averaged so that π̂(puddle) = 0◦, leading to incorrect behavior. Multimap

regression, in contrast, seeks to learn that there are two possibilities, and return one or the other.

62

63

Figure 4.1: ROGER represents a distribution over all possible partitions of the data with a weighted
particle set (left). A single particle (center) contains a set of experts in input space (Gaussian Mixture
Model), along with a potential empty expert (dashed). Data (stars) are assigned to individual
experts. Every expert (right) itself is a nonparametric SOGP regressor that maps from inputs to a
Gaussian distribution over outputs using a sparse basis set.

We have the following desiderata for a multimap regression algorithm for robot tutelage.

1. Interactive speed: The ability to update the learned policy as data is generated (inference),

and control the robot in realtime (prediction). Both software and hardware effect speed.

2. Scalability: The ability to handle data sets of size on the order of the lifetime of the robot.

Particularly, the final speed of computation should be data-size independent.

3. Noise: The ability to deal with noise in perception, actuation, and demonstration.

4. Unknown parameterization: There is no reason to assume that the mapping from perception

to actuation is of a known form, i.e, linear or unimodal.

ROGER has been designed to address these issues, and thus be suitable for use in a robot tutelage

setting, particularly the DL architecture. In developing ROGER, we note that the above aspects of

Figure 4.2: When presented with demonstrations of multiple actions for a given perception, unimap
regression combines them together to estimate the assumed one correct output. The resulting
mapping may then lead to incorrect behavior. ROGER, a multimap regressor, seeks to learn that
there are multiple correct actions, associated perhaps with different objectives. Pleo copyright Ugobe

64

an algorithm are interrelated. For instance, an algorithm may initially run at interactive speeds, but

slow down as it scales to larger datasets. In contrast, we desire an algorithm that continues to be

interactive even as the data size grows. We have thus chosen to make ROGER an incremental, sparse

algorithm. Incremental in the sense that it updates the current approximation π̂ to incorporate new

data as it arrives, instead of recomputing it anew, and sparse in that it does not require that all

previous data be kept for future consideration.

We note that the speed of a learning algorithm depends not only on its time and space complexity,

but on the underlying hardware as well. That is, batch algorithms, that process all data after each

new datapoint arrives and thus require that all data be stored, can be interactive, if the underlying

computational and memory devices are fast enough. However, we argue that in the limit, as robots

operate over longer lifetimes, the amount of data generated will overwhelm any batch algorithm

with finite storage and computational power. For fixed-lifetime robots, this may not be an issue,

and advances in computational and memory hardware may alleviate this problem to a certain degree.

In terms of noise, we acknowledge that a robot’s sensors and actuators are inherently noisy.

Thus, the control policy and its learned approximation must be robust to motors that do not do

what is commanded, and world states that appear different over time. A further concern is that the

noise may be nonstationary, or dependent upon the values of the variables themselves, or even time.

The human demonstrator is also source of potentially nonstationary noise. That is, while human

users may be attempting to perform optimal control for the task at hand, the outputs they generate

may be corrupted by some error. It is unlikely that technological progress will be able to remove

this concern, thus the learning system must operate in the presence of this noise, and attempt to

learn what the demonstrator means to accomplish.

Lastly, we do not wish to assume a known model for the mapping itself, as we desire robots

that can learn unknown tasks over their entire lifetime. Simply performing multimap as opposed to

unimap regression addresses this concern partially. We will also, however, consider the mappings of

the individual unimaps of which the overall multimap is comprised, and eschew linear and parametric

models in favor of nonlinear and nonparametric ones. However, by avoiding known models, we must

conted even more so with noise, as it will be harder to separate out the signal without knowing the

mapping’s form. We thus rely on a preponderance of data to enable successful learning, and put

an emphasis on interpolation between observed data rather than extrapolation beyond the limits of

what has been seen. Also, note that ROGER is not without assumptions as to what mappings are

more likely, which may still lead to biases in learning.

4.1 Model

ROGER can be viewed as a set of overlapping unimap regressors, each of which captures one of the

multiple possible outputs in an underlying multimap. It is then a Mixture of Experts (MoE) model,

where each unimap regressor is an expert [68]. For the unimap regression in each expert we use

SOGP, a sparse nonparametric regressor [42]. Datapoints are assigned to experts, or gated, using a

65

(a) Truth (b) LWPR (c) SOGP (d) ROGER

Figure 4.3: A function space view of regression. True multimap data corresponds to a multimodal
distribution over functions (a). LWPR (b) averages the multimap data with a set of linear regressors
with Gaussian areas of influence in input space. The result is a single point estimate in function
space. SOGP (c) instead has a unimodal (Gaussian) distribution over the mappings, providing
variance in the prediction, and uses Gaussian kernels in the joint space. ROGER (d) associates each
kernel point with a particular unimap, and approximates the full distribution over functions with
a set of point estimates. For all algorithms, the number of fields, kernels, and unimaps is derived
nonparametrically from the data.

Gaussian Mixture Model (GMM), where each expert holds sway over a Gaussian-shaped region of

input space. When these regions overlap, multimap scenarios occur.

Rather than setting the number of experts in advance, or deriving it in a brute-force or ad-hoc

manner, we place a Dirichlet process prior over the number of experts, effectively considering an

infinite number of them [105]. The input space gating then becomes an Infinite Gaussian Mixture

Model [113], and the overall ROGER model an example of an Infinite Mixture of Gaussian Process

Experts [112]. Inference in this model then performs both model selection, discovering an appropriate

number of experts, and policy learning, or unimap regression, in each one.

A similar model has previously been used to address both multimap regression and nonstationary

noise in a batch framework [89]. For robot tutelage, we require an incremental formulation and thus

developed a corresponding sequential technique [153]. In doing so, we sacrificed the ability of the

model to deal with nonstationary noise in favor of using conjugate priors to speed up learning,

although it may be possible to incorporate both aspects at a later date.

As ROGER is primarily a regression algorithm, it can be seen as as attempting to determine

66

the relationship of dependent variables (outputs) to independent variables (inputs). Another view,

presented in Figure 4.3, is to see it as trying to find, in the space of all functions, those functions

f(x) that fit the observed data (x,y). In the function spaces of Figure 4.3, functions are nearer to

those that produce similar outputs for all inputs.

Given a true distribution from a multimap (Figure 4.3a), non-Bayesian approaches, such as

continuum regression [127] or LWPR [150], find a single point-estimate, a “best fit,” that ideally lies

at the most likely function (Figure 4.3b). Such an approach is the same as assuming that the true

underlying distribution is unimodal, and trying to find the peak. However, incremental approaches,

such as gradient ascent [130] or expectation maximization [131], can get caught in local maxima and

find less optimal solutions.

Alternatively, Bayesian approaches such as SOGP or GPR (Figure 4.3c) track the distribution as

a whole, possibly assuming a known unimodal form. In SOGP, this form is Gaussian, with a mean

function and associated variance. This assumption means that functions with outputs that differ

significantly from the output of the mean function for a given input must necessarily be much less

likely. By tracking the distribution instead of just a single point, incremental Bayesian approaches

may be able to escape from local optima, and discover better approximate functions. Additionally,

the distribution can be used to associate error bars, or variances, with predictions.

ROGER, and other multimap regression algorithms, instead assume a multimodal distribution

in function space, where functions with highly different outputs can be equally likely, as occurs in

multimap scenarios. However, as ROGER does not know the true number of modes, it does not use

a smooth curve to track the distribution, as SOGP does. Instead, a finite number of samples, drawn

from the distribution, make up the approximation via Monte-Carlo integration (Figure 4.3d).

While a potentially infinite number of experts (or modes of the distribution) are implicitly con-

sidered, at any particular point in time only a finite number, K, of them matter, corresponding

to those experts which have actually generated data. In the limit then, K cannot be greater than

N , the total number of data points seen, if each has been generated by a distinct unimap. Often,

however, K << N , and ROGER makes use of a set of latent indicator variables (z) indicating which

of the experts gave rise to each particular input/output pair. The z represent a partitioning of the

data and are themselves generated by a Chinese restaurant process (CRP) [105] with concentration

parameter α. The concentration parameter puts a prior over the number of experts, and how uniform

the assignment of input/output pairs to experts is thought to be (large α implies many experts).

Each of theK experts is an SOGP regressor and a corresponding multivariate-normal input model

(the gate). In other words, there are K multivariate-normal classes that generate input points, and

an SOGP expert for each class which is responsible for generating outputs given the inputs. Each

input space component is a multidimensional Gaussian that has mean parameter µk and covariance

parameter Σk. These parameters themselves are drawn from a normal-inverse-Wishart conjugate

prior. This choice of prior allows the user to influence how input space is partitioned by the model,

without having to specify it exactly. Further, because it is a conjugate prior, all possible values for

the parameters can be analytically integrated out.

67

The generative model underlying ROGER can be summarized in the following equations:

zi ∼ CRP(α)

Σ′k ∼ Inverse-Wishartν0(Λ0)

µ′k ∼ Multivariate-normal(µ0,Σk/κ0)

xi|zi ∼ Multivariate-normal(µ′zi
,Σ′zi

)

yk|Xk, θ ∼ Multivariate-normal(0,Qk)

(4.1)

From this it is straightforward to write down the joint distribution of the inputs X, outputs y,

and class labels z defined by ROGER:

P (X,y, z; Ω) = P (X|z; Ω)P (z|Ω)
K∏
k=1

P (yk|Xk,Ω). (4.2)

Here Ω = {α, µ0, κ0,Λ0, ν0, θ}, is the collection of all parameters, and (Xk,yk) = (Xi,yi)∀i, zi = k

are the data associated with each expert. The GP parameters, θ, are shared by all experts.

Each part of this joint corresponds to portion of the overall model in Figure 4.1. P (X|z) is

the input Gaussian Mixture Model (center), and will be examined in Section 4.1.1. P (z) gives us

the distribution over partitions (number of experts and the assignment of data to them), which is

represented as a set of particles (left) and will be discussed in Section 4.1.2. Lastly, P (yk|Xk) is the

distribution over mappings in one particular expert (right), and corresponds to the SOGP regressor

explained in Section 4.1.3.

4.1.1 Input Space Density Estimation

The input space model, or gating network, of ROGER is a Gaussian Mixture Model (GMM), where

the possible parameters for the individual model components have been integrated out. Starting

with a standard GMM and assuming K components for now, the initial gating network is

P (X|z) =
K∏
k=1

P (Xk|µk,Σk) =
K∏
k=1

mk∏
m=1

P (xkn|µk,Σk) (4.3)

mk is the number of datapoints assigned to expert k and the probability of a datapoint under its

expert is the standard Gaussian distribution

P (x|µ,Σ) =
1

(2π)(D/2)|Σ|(1/2)
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
(4.4)

where D is the dimensionality of the input space.

Instead of providing particular values for the gating parameters, they are instead drawn from

the prior distributions shown in Equation 4.1. The inverse-Wishart prior is:

P (Σ|Λ, ν) =
|Λ|(ν/2)|Σ|−((ν+D+1)/2) exp(tr(ΛΣ−1)/2)

2(νD/2)ΓD(ν/2)
(4.5)

and ΓD is the multivariate Gamma function.

68

Combining Equations 4.4 and 4.5, the probability of an input point under an expert whose mean

and variance parameters are drawn for the corresponding priors is

P (x|Λ, ν, µ0, κ0, µ,Σ) = P (x|µ,Σ)P (µ|µ0,Σ/κ0)P (Σ|ν,Λ) (4.6)

The first term of Equation 4.6 is the probability of the datapoint with particular expert param-

eters (Equation. 4.4), the second term is the probability of the expert’s mean parameter under the

prior (Equation. 4.4) and the third term is the probability of the expert’s variance parameter under

the prior (Equation. 4.5).

As these prior distributions are conjugate, it is possible to analytically integrate over all possible

values for µ and Σ. Conjugacy is the property that the posterior distribution that results from

combining the likelihood and prior has the same form as the prior itself, so that the posterior can

then be used as a prior in the next incremental step. Performing the integration, the resulting input

space model for ROGER is then

P (X|z; Λ, ν, µ0, κ0) =
K∏
k=1

P (Xk|Λ, ν, µ0, κ0) =
K∏
k=1

(
κ0

κk

)D
2

2
D
2 (νk−ν0) |Λ0|

v0
2
∏D
d=1 Γ(νk+1−d

2)

|Λk|
vk
2
∏D
d=1 Γ(ν0+1−d

2)
(4.7)

where we follow [52] in making the following variable substitutions

κk = κ0 +mk

µk =
κ0

κk
µ0 +

mk

κk
x̄k

νk = ν0 +mk

Λk = Λ0 + Sk +
κ0mk

κk
(x̄k − µk)(x̄k − µk)T (4.8)

Sk =
∑
j:zj=k

(xj − x̄k)(xj − x̄k)T

x̄k =
1
mk

∑
j:zj=k

xj

The individual datapoints are then drawn from the distribution P (xi|zi = k,Xk) = Student-

td(a,B) with degrees of freedom d = νk−D+1, mean a = µk, and scale matrix B = Λk(κk+1)/(κkd).

4.1.2 Model Selection

The above describes a finite GMM, where the number of components, K, is taken as known. If

it is not, we can instead posit a distribution over K, and track this distribution over the number

of components as data arrives. In doing so we can consider multiple possible orders of models

simultaneously, to discover the number of experts that best fits the data.

ROGER uses a Dirichlet Process (DP) prior to generate the number of experts in its mixture of

experts model. Like a Gaussian Process, a DP is a distribution over distributions, G ∼ DP (α,G0).

From G the individual expert assignments zn are drawn, and the resulting z defines a partitioning

69

of the data, which includes the number of partitions, K. Integrating over all G that can be drawn

from the DP gives rise to a distribution over partitions that is equivalent to the one that the Chinese

Restaurant Process creates, with the probability of the partitioning represented by z equal to:

P (z|α) =
Γ(α)αK

Γ(α+N)

K∏
k=1

Γ(mk) (4.9)

The CRP itself can be described as a sequential process that generates sequences of integers

where the probability that the next integer in the sequence is k is proportional to the number of

times k has already appeared in the sequence. The probability that the next integer takes on a new

value of k is proportional to α.

P (zi = k|z−i;α) =

{
mk

N+α−1 , k ≤ K
α

N+α−1 , k = K+
(4.10)

K+, the number of experts that must be considered, is thus the number of unique values that appear

in z, plus one, for the new, empty expert.

This CRP view of the DP is more amenable to a sequential implementation, since the individual

components of z can be generated in a sequence. However, the resulting distribution over z is

equivalent to that determined by alternate constructions, such as stick-breaking [140]. There the

values of the mk are computed directly.

The utility of this view may be best seen via the CRP metaphor, which has an infinite stream of

customers arriving at and choosing seats in a Chinese restaurant with an infinite number of tables,

each with infinite seating capacity. Each customer sits at a table with probability proportional to

the number of customers already at that table (k ≤ K), and with some probability sits at a new

table (k = K+). At any given time, after N customers have been seated, the next customer only has

to consider K+ tables when making their choice, as all of the infinite empty tables are equivalent.

We note that in using the CRP, the rate at which experts form is non-uniform. At the beginning,

when α > mk∀k, it is more likely that a new expert will be hypothesized. Later, once more data

has been seen, it is more likely that a new datapoint will be assigned to an already extant expert.

This fact biases the learning process, but we consider it to be an appropriate bias. Over the lifetime

of a robot, we expect it to initially have to learn many new subtasks, while later in life it will reuse

them and not have to learn many more.

Returning to the GMM input space model of ROGER, using the CRP to generate the assignment

of data to experts effectively allows for the consideration of an infinite number of experts. At any

given time, only K experts, those with data assigned to them, and an additional empty expert, need

to be considered. As new data arrives and is processed, points may be assigned to previously empty

experts, increasing K.

70

4.1.3 Expert Output Regression

The distribution of outputs given inputs in the ROGER model is again a mixture of experts, where

each expert generates outputs for the data gated to it by the input model. ROGER uses a sparse ap-

proximation to Gaussian Process Regression (GPR) [82] which tracks a Gaussian Process (Gaussian

distribution over functions) over all functions that could have generated the data. Before explaining

the approximations that must be made to achieve sparsity, we describe GPR itself.

A GP is defined by mean and covariance function and describes a normal distribution over

possible functions, N (f,Σ). Starting with a mean zero prior, and given a set of data (X,y), GPR

first defines a kernel function which represents similarity between two points in input space. A

popular kernel that we use in our work is the squared exponential, or Radial Basis Function (RBF)

RBF(x,x′;σ2
k) = exp

(
−0.5 ∗ ||x− x

′||2

σ2
k

)
(4.11)

where σ2
k is termed the kernel width, and controls how strongly nearby points interact.

A posterior distribution over functions is then defined

f(x′) = k>x′C
−1α (4.12)

Σ(x′) = k∗ − k>x′C
−1kx′ (4.13)

where kx′ is shorthand for [k1, k2...kN], ki = RBF(x′,xi;σ2
k), or the kernel distance between the query

point and all previously seen points X = {xi}Ni . α is the output vector, which in this case equals the

known data’s outputs, y, and C is the covariance matrix of the data, where Cij = k(xi,xj)+δ(i ==

j)σ2
0 . This second term, σ2

0 , represents observation noise (modeled as a Gaussian with mean 0 and

variance σ2
0). The first term, without the noise, is the Gram matrix (Q), or all-pairs kernel distance.

In terms of the joint probability in Equation 4.2, the probability of the observed outputs given

the inputs for expert k is:

P (y|X; θ) =
mk∏
m=1

P (ym|xm; X/m,y/m, θ) =
mk∏
m1

N (ym; f(xm),Σ(xm)) (4.14)

However, as calculating these probabilities involves using C−1, and as C occupies O(N2) space

and requires O(N3) time to invert, GPR is not directly suitable for our learning scenario. Using

the partitioned inverse equations, C−1 can be computed directly and incrementally as data arrives,

removing the inversion step [82]. The space requirements must be dealt with separately using one

of a variety of approximation techniques [110].

Many of these techniques operate by approximating the full posterior distribution (based on N

points) with one based on fewer (β < N). These fewer points are called the basis set, or the basis

vectors (BV). This reduction limits the size of the Gram and covariance matrices to β2, which can be

tuned for desirable properties, such as speed of computation or percentage of system memory used,

for each particular implementation. The approximating distribution itself is chosen to minimize the

KL-divergence with the true distribution.

71

Algorithm 4.1 Sparse Online Gaussian Processes
Inference

Require: Training pair (x, y)
Basis Vectors (BV), model (α,C−1,Q)
GP parameters (θ = {σ2

k, σ
2
0})

capacity (β),|BV| < β
Ensure: Updated model and BV, |BV| < β

add x to BV and update α,C−1Q
if |BV| > β then

for b = 1 : |BV| do
εb = αb/C−1

b,b

Delete j from BV, j = argminj εj

Prediction
Require: Query point (x)

Basis Vectors (BV), model (α,C−1)
GP parameters (θ = {σ2

k, σ
2
0})

capacity (β),|BV| < β
Ensure: predicted output ŷ, stddev σ2

for b = 1 : |BV| do
kb = RBF(BVb,x′;σ2

k)
k∗ = RBF(x′,x′;σ2

k)
ŷ = k>α
σ2 = σ2

0 + k∗ − k>C−1k

It should be noted that all the discussion of GPs in this section, and the output model of ROGER

in general, is with respect to scalar outputs. We can apply these techniques to vector outputs by

providing a interdependence matrix, or, as we do here, assuming independence between the outputs.

This assumption, while almost always false, often provides good results, and has done so in our case.

Future work could look into including dependencies between output dimensions, perhaps learning

the interdependence matrix from the data [22].

SOGP

We use the Sparse Online Gaussian Process (SOGP) algorithm proposed by [42] to perform

an incremental approximation to the entire GP. The use of GP or SOGP, or another approximate

method, is transparent to the rest of the ROGER algorithm, so we explain it briefly here. In

essence, when the β + 1 point arrives, SOGP initially includes it as a basis vector. All points are

then assigned a score corresponding to the residual error between the distribution based on all points

and the distribution based on all points except the one being considered. The point with the lowest

score is selected for removal. An overview of the algorithm can be seen in Algorithm 4.1, and full

details of the derivation of the score equation are in [41].

A naive implementation of sparsity simply removes the deleted data. However, information

from the removed points can still be used to adjust the distribution approximated by BV. This

modification is accomplished by changing the outputs associated with each basis vector, and also

editing the covariances between them. The approach is similar to that of using pseudo-inputs [124],

where totally new basis vectors are derived in batch. For us, we must now make a distinction between

the output vector α and the BV’s outputs y, as the “edited” outputs are no longer the same as those

observed. Likewise, C no longer tracks Q + Iσ2
0 and the two must be stored separately. While now

two matrices must be stored, they are both of size β2, so total memory usage is still O(β2).

72

Algorithm 4.2 Realtime Overlapping Gaussian Expert Regression
Inference

Require: Training pair (x, y)
P particles (P) and weights (w)
Hyperparameters (Ω = {α, µ0,Σ0,Λ0, κ0, θ})

Ensure: Updated particles and weights
for p = 1 : |P| do

for k = 1 : K+(p) do
Weigh putative particle ρpk by 4.15

Sample P putative particles and weights
Assign data to appropriate experts

Prediction
Require: Query point (x)

P particles (P) and weights (w)
Hyperparameters (Ω = {α, µ0,Σ0,Λ0, κ0, θ})

Ensure: predicted output ŷ, stddev σ2

p∗ = argmaxp wp
for k = 1 : K+(p) do
ek = P (z′ = i|z(p))P (x′|µ0,Σ0,Λ0, κ0)

Sample e∗ according to e
Predict from expert e∗ as in SOGP

4.2 Algorithm

ROGER consists of not only the model described above, but also an algorithm for performing both

inference and prediction. Observe that inference is the process of finding values for the latent

variables, or an assignment of datapoints to experts, z, that maximizes the joint probability of

Equation 4.2. Prediction is using the current values of z,X, and Y to generate new data, either full

(x,y, z) pairs, or parts thereof. We most often generate (y, z) given an x, corresponding to choosing

an action to perform based on the current perception from among the possibly multiple applicable

subtasks. Alternatively, we could also generate y given (x, z), which assumes that we already know

which subtask is active. Lastly, we could also “hallucinate” a perception leading to a known action.

Multiple algorithms could possibly be used to infer the underlying distribution on z, although we

tend towards Bayesian ones to leverage the distributional properties of the model. One brute-force

approach would be to enumerate all of the possible partitions of the data and calculate the joint

likelihood of the observed variables for each one. However, the combinatorics of the partitioning

makes this approach unsuitable for all but the smallest datasets. For example, with only 1000

datapoints, or roughly 30 seconds of data, there are ∼ 2× 1031 possible sizes of partitions alone, not

counting the different assignments of data to those partitions.

In keeping with our desire for incremental estimation, we chose to base our algorithm, shown in

pseudocode in Algorithm 4.2, on the concept of a particle filter [47]. As the form of the distribution

over possible partitions is unknown, it is represented using a finite set of P weighted particles as

discussed in Section 4.1.2. We use a weighted particle set rather than an unweighted one to achieve

increased breadth in our representation of the distribution. As an illustration of the advantage,

consider representing a distribution over the integers, using only 5 samples. In an unweighted

particle set, a more likely integer must appear more times, as in the set {3, 3, 3, 2, 4}, which states

that the number 3 is three times as likely a 2 or 4, which are both more likely than all other

integers. A weighted particle set, on the other hand, such as {33, 21, 42, 10.5, 50.3} contains a finer

representation of the distribution with the same number of particles.

In ROGER, each particle maintains a separate estimate of the assignment of datapoints to

73

experts z(p), and thus also a separate estimate of the total number of experts, K(p). With z(p)

and the observed data it is possible to derive all the necessary values for calculating the joint itself.

However, to speed up computation and allow for sparsity, ROGER also tracks in each particle the

individual SOGP regressors as well.

4.2.1 Inference

During inference, a new datapair, (x′,y′) is to be added to the model, updating the current dis-

tribution over functions. Because the members of z are discrete and finite, all possible values for

z′, the expert responsible for this new data, can be considered. ROGER thus initially temporarily

assigns the datapoint to all possible experts, in all current particles. This enumeration results in

Pp =
∑P

1 K
+(p) putative particles being considered. Each possible assignment is given a weight

using the joint:

P (z′ = k|x′,y′, z(p),X,Y; Ω) ∝ wp ∗P (z′ = k|z(p), α)P (x′|µ0,Σ0,Λ0, κ0,X
(p)
k)P (y′|x′, ˆ

X(p)
k ,

ˆ
Y(p)
k , θ)

(4.15)

where wp is the current weight of the parent particle and the other components are computed as in

Equations 4.1. Note that although the input and output space distributions depend on all of the

previously seen data, the actual data itself does not need to be kept. For the input space distribution,

only sufficient statistics (the sum of squares and mean of Equation 4.9) need to be stored. Likewise,

for the output space component, only β datapoints are contained in X̂ and Ŷ, the basis set.

These putative particles then represent the distribution over the assignment of the new datapoint

to an expert, taking into account the previous distribution over the number and content of experts

as well. To limit the growth of the particle set, only P of these Pp putative particles are selected

and reweighed for use in the next iteration. One approach to choosing the P particles would be

to sample them directly according to their weight. This scheme, however, may result in the same

putative particle being sampled multiple times, leading more towards an unweighted representation,

and reducing the breadth of the particle set overall.

Instead, ROGER utilizes the optimal resampling technique of [48], which minimizes the expected

error in expectations computed using a weighted particle set of size P downsampled from weighted

particle set of size Pp > P . The method involves retaining a number of particles whose weights

are above an optimal threshold c and using stratified resampling to resample from the rest. By

choosing the threshold for retention of particles optimally, the particle set is guaranteed to have no

duplications, or two or more particles with the same partitioning of the data. The overall inference

algorithm for ROGER is shown pictographically in Figure 4.4.

4.2.2 Prediction

We take prediction as being the generation of an appropriate output, y′, for a given input x′.

Viewed as a whole, ROGER’s particle set represents a multimodal distribution of unknown order

over functions supported by the data seen so far. However, for predictive purposes, it may be

74

Figure 4.4: Inference in ROGER. New data is provisionally assigned to all possible experts, including
previously empty ones, resulting in a set of putative particles. This set is sorted by likelihood under
the joint, and a threshold value c is determined with the optimal resampling technique of [48]. All
particles above the threshold are carried over, and the remainder are sampled from to fill out the
new particle set. Data is only incorporated into each expert after the final assignments have been
determined.

easier to consider it as instead a distribution over multimaps of unknown order. That is, instead of

sampling a (unimap) function directly for prediction, we will first sample a multimap, and then use

that multimap to sample a function.

Consider the particles themselves. Each particle is a sample from the partition space, both in

terms of the number of partitions and the exact partitioning. While no two particles have the same

partitioning, or all z(p) are distinct, it is possible for multiple particles to share the same number of

partitions, or for K(p) to be the same for several p. Choosing a particle is then choosing a partitioning

that defines a set of possibly overlapping experts. For a given input point, multiple experts may be

applicable, resulting in a multimap.

This multimap then defines a multimodal distribution over possible outputs for the given input.

To generate an appropriate output we must sample from this distribution. One method would be

to first sample a mode (unimap), and then sample the output from that mode.

This approach is exactly how ROGER performs prediction, as indicated in Figure 4.5: We first

sample a particle, and then an expert from that particle, and finally sample from the distribution

over outputs generated by that expert. However, each of these sampling steps can be accomplished

in multiple fashions. Different schemes may result in different predictions being generated for the

same inputs, even given the same set of particles.

To choose the predictive particle, p∗, we use the current weights of the particles as calculated

during the last inference cycle. The most direct method, which we use, is to always select the particle

with the highest weight, representing the most likely partitioning. A more correct method may be

to select particles according to their weight. However, we have noted that the distribution over

particles is often highly peaked, meaning that the most likely particle greatly outweighs the others,

75

Figure 4.5: To predict in ROGER we first select the most likely particle, corresponding to the
partitioning that maximizes the joint likelihood of the data. We then choose an expert stochastically
based on the likelihood of the input point under the gating Gaussian mixture model. The output is
the result of the expert’s mean function, and confidence is given by the associated variance.

and would therefore almost always be chosen anyways.

Within the particle, we must choose an expert. Calculating ek = P (x′|z′ = k), k ∈ 1 : K+(p∗),

the likelihood of the query point being generated by each expert in the chosen particle, results in a

distribution over experts. While the most likely option could be selected in all cases, as was done

with particles, such a scheme would result in incorrect behavior in multimap scenarios. Recall that

a multimap with two options has a mode for each. If the most likely mode is always chosen, one

of the possible correct options will never be returned for the query point. Instead, the distribution

over experts can be normalized, and the expert to be used (e∗) selected stochastically.

The expert itself is an SOGP regressor, and as such generates a Gaussian distribution over

possible outputs y′. Sampling directly from from the resulting distribution would introduce some

additional variance in the outputs produced. Instead, ROGER returns the mean of the Gaussian as

its prediction, and the associated variance as a measure of confidence. This confidence value is the

one used during arbitration in the DL architecture. In effect, predictions for datapoints for which

the predictive distribution is broader and flatter are deemed less confident than for those whose

distributions are more sharply peaked and less variant.

One sampling scheme that we have not talked about is performing weighted averaging between

the particles and/or experts. That is, predictions can be generated from all of them and then

combined to generate the final outputs. Generally, this approach is undesirable, as it would sacrifice

the multimap nature of the distribution. That is, two outputs from equally likely modes would be

averaged together to create a potentially inappropriate output, as in Figure 4.2.

4.2.3 Batch Inference

As an alternative to the sequential particle filter based approach described above, we consider batch

techniques to deriving the best partitioning of the data. One option is Gibbs sampling [94], where

76

changes to the current partitioning are proposed, and stochastically accepted. In terms of the CRP

metaphor, this approach is to equivalent to taking an initial seating arrangement, and randomly

evicting patrons from the restaurant, who then reenter and chose a seat as usual.

This sampling scheme is used by [89]. Overall, their technique differs from ours in three fashions:

1. Incrementality: We perform inference using a particle filter instead of Gibbs sampling.

2. Conjugate Priors: We place conjugate priors over the parameters of the input space partition-

ing, allowing us to analytically integrate over all possible Gaussians.

3. Sparsity: We use sparse experts (SOGPs) insted of GPs to limit the computation time and

memory space of each expert.

These three modifications are all aimed at enabling realtime learning from demonstration. First,

by using a particle filter instead of Gibbs sampling, new data can be incorporated as it arrives,

instead of requiring that all data be collected before performing inference. Secondly, the use of

conjugate priors decreases the number of possibilities we must consider. Instead of each particle

tracking both a possible assignment of data to experts, and the parameters for each expert, we only

track the possible assignments, and integrate over all possible parameters. In this fashion ROGER

can approximate the full joint probability with fewer particles, leading to sparsity. The use of sparse

experts further sparsifies our technique, although if the SOGP capacity, β, is set high enough (or to

infinity), SOGP and GP experts are equivalent.

4.3 Analysis

We intially experimented with ROGER on some non-robot data sets, drawn from standard functions

and relevant work in machine learning. Our goal is to compare ROGER’s performance with that

of standard regression techniques and batch inference approaches. We are particularly interested in

determining if ROGER can correctly learn multimaps, and what, if any, sacrifices or gains are made

in using an incremental instead of batch approach.

4.3.1 Square Root Dataset

To validate ROGER’s multimap learning capabilities, we used the the square root example shown

in Figure 4.6. For training data we generate input (x, y) pairs where x is distributed uniformly at

random in [-1,1] and y = ±
√
x+ ε, a noisy square root mapping whose sign is uniformly random as

well. We apply both unimap (SOGP) and multimap (ROGER) regression to the data and predict ŷ

for a further random set of x′. As seen in figure 4.6a, the unimap regressor averages both possible

outputs, and predicts 0 for all x. ROGER, instead, automatically determines that there are two

experts, assigns data to each, and learns separate models. At prediction time, one of the two experts

produces an appropriate output, as seen in Figure 4.6b.

77

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

input
prediction

(a) Unimap regression

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

input
expert 1
expert 2

(b) Multimap regression

Figure 4.6: The square root, a multimap. Unimap regression (a) averages the two outputs, while
multimap regression (b) learns a separate function for each branch.

4.3.2 Incremental vs Batch

To compare incremental versus batch approximation techniques, we ran the particle filter and Gibbs

methods on the synthetic dataset of [89] in Figure 4.7. This dataset contains both a multimap

scenario and a gap with missing data, over which interpolation must be performed. We trained

500 particles incrementally, and also performed 500 batch Gibbs updates and compare the learned

models. The results of the two techniques are very similar, both in terms of the MAP prediction of

new outputs, and the overall distribution.

In addition, our experiments suggest that the incremental approach may perform better in re-

source constrained environments. Running both the incremental and batch formulations on this

data, we varied the number of particles and sampling steps. Using this variable as a proxy for com-

putational cost, the log probability of the discovered model is plotted versus computational cost in

Figure 4.3.2. All data is shown averaged over 5 random seeds. While both approaches perform well

with lots of computational time (batch slightly better), particle filters outperform batch processing

when computational power is limited. As robots are typically resource constrained (in terms of

memory and computational speed), algorithms that can perform in such environments may be more

suitable for robot applications. Based on these results, we only use incremental inference in the rest

of our experiments.

One drawback to the sequential approach to model selection is that once a particular assignment

of a datapoint to an expert is present in all particles, it can never be undone. The batch method

can escape from this situation by evicting the datapoint and reallocating it. This fact may lead to

the slight underperformance of the sequential method at the right of Figure 4.3.2. It may then be

advantageous to combine the two techniques. Such an approach may also better leverage available

computational time as discussed in Section 3.5. That is, the incremental particle filter approach could

78

−20 0 20 40 60 80 100 120
−120

−100

−80

−60

−40

−20

0

20

40

60

80

mean

+/− 2 std. dev.

−20 0 20 40 60 80 100 120
−120

−100

−80

−60

−40

−20

0

20

40

60

80

mean

+/− 2 std. dev.

−20 0 20 40 60 80 100 120
−120

−100

−80

−60

−40

−20

0

20

40

60

80

−20 0 20 40 60 80 100 120
−120

−100

−80

−60

−40

−20

0

20

40

60

80

Figure 4.7: Top row: maximum aposteriori (MAP) models of synthetic data. The left figure shows
the MAP model from 500 incremental estimation particles, the right figure from 500 batch samples.
The black symbols are the training input/output observations and the vertical dashed lines indicate
the areas of input space where each expert’s likelihood is greatest. Bottom row: horizontally jit-
tered samples drawn from the entire estimated posterior at regularly spaced input points for both
incremental (left) and and batch (right) estimators.

be used to incorporate new data as it is generated with a small number of particles. Then, during

prediction or other downtime, Gibbs sampling would be performed to counteract approximation

issues that arise from the limited particle set.

4.3.3 Comparison with LWPR

We also compared against another popular robot learning algorithm, Locally Weighted Projection

Regression (LWPR) [149] on nonlinear regression and multimap data. LWPR bears some similarity

to ROGER, in that it is also an infinite mixture of experts technique. However, the method of

determining how many experts, and performing regression in each of those experts, is very different.

Further, experts are defined only in input space (outputs are not considered during assignment) and

thus LWPR is a unimap regression algorithm. However, extensions that allowed for differentiation

79

10
0

10
1

10
2

10
3

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

Number of Particles / Samples

Lo
g

Jo
in

t P
ro

ba
bi

lit
y

MCMC
SMC

Figure 4.8: A comparison of Sequential (SMC) and Batch (MCMC) estimation in the ROGER
model, showing negative log probability as a function of computational effort. In resource constrained
settings, sequential techniques may outperform batch ones.

based upon the outputs as well might make it suitable for multimap regression.

LWPR is a local linear function approximation technique, in that it attempts to model a po-

tentially nonlinear function with a collection of linear regressors. Each regressor or expert, called a

Receptive Field (RF), has its own parameters and makes its own predictions. The final nonlinear

prediction is made by weighing and combining the predictions from all of the RFs. LWPR also deals

explicitly with high dimensional input spaces, as each RF projects data into a lower-dimensional

subspace for processing. New RFs are created as needed to ensure acceptable prediction quality.

More formally, an RF is defined by a center point (c) and a Gaussian area of influence described

by a covariance matrix (D). The weight, or activation, of a point (x) under this RF is calculated:

w(x) = exp(−0.5(x− c)>D(x− c)) (4.16)

In addition, each RF maintains a set of projection directions (U), correction vectors (to preserve

orthogonality) (P) and linear regression coefficients (β) which are computed using Partial Least

Squares (PLS) and used in prediction. Initially data is projected into 2 dimensions, so there are

R = 2 of these in each RF, but R is increased automatically to adapt to the data.

The LWPR algorithm is summarized in Algorithm 4.3. When incorporating a new data point,

RFs are generated based on a hand-set generation threshold, wgen, which controls the amount of

overlap between RFs. For prediction on a novel point (x′), each RF computes a local prediction

by projecting into a reduced dimensional space using U and P and regressing linearly with β. A

80

Algorithm 4.3 Locally Weighted Projection Regression
Inference

Require: Training pair (x, y)
K receptive fields (RF)
generation threshold (wgen)
initial distance matrix (D∗)

Ensure: K updated receptive fields (RF)
for k = 1 : K do
wk = exp(−0.5(x− ck)>Dk(x− ck))
Update local model (Dk,uk,pk, βk)

if all wk < wgen then {Create new RF}
K = K + 1
cK = x
DK = D∗

initialize uK,pK, βK with 2 dimensions.

Prediction
Require: Query point (x′)
K receptive fields (RF)
Blending boolean

Ensure: predicted output ŷ, stddev σ2

for k = 1 : K do
wk = exp(−0.5(x− ck)>Dk(x− ck))
Compute (ŷk) via Equation. 4.17

if Blending then
ŷ =

∑K
i=1 wkŷk/

∑K
i=1 wk

else
ŷ = ŷj , j = argmaxj wj

Calculate σ2

loop-based algorithm for doing so is provided in [150], but is equivalent to a linear matrix operation:

ŷ = Λx′ + β0 (4.17)

Λ = βU> +
R∑
r=2

βru
>
r

 1∑
s1...sr−1=0

−1
Pr−1

i=1 si

r−1∏
i=1

(pr−1u
>
r−1)si − I

Final predicted output can be performed in two manners. The first is a blended method, where

the outputs of all RFs are weighted and combined. Alternatively, the prediction of the RF with the

highest activation for the query point can be returned. The calculation of the confidence bounds

(variance) at the prediction is similarly involved, and we refer the reader to [150] for full details.

Roughly, it is a measure of the error of the prediction of each local expert from the global prediction,

combined with the running error of each expert (computed incrementally) and weighed by each

expert’s activation.

As the training and prediction steps of LWPR can be alternated, it is suitable for tutelage.

In addition, note that sparsity is achieved not only by creating RFs only as needed, but also by

only storing the sufficient statistics (U,P, β) in each RF and discarding datapoints once they are

incorporated. Lastly, the projection step has the potential to further reduce memory requirements

by detecting and ignoring extraneous dimensions in the data.

Experiments

As LWPR is a unimap regressor, we compare it to the unimap regressor in ROGER, which is

SOGP. A comparison of the two based on our desired attributes is shown in Table 4.3.3. Using

the cross dataset of [149] we compare them quantitatively, the results of which are in Figure 4.9. A

R2 → R regression problem, the cross function has several nonlinearities that provide a good test for

nonlinear function approximators. To make a more equal comparison between the two algorithms,

81

Attribute LWPR SOGP

Incremental Yes Yes
Sparse RFs remain fixed once created BVs are replaced as needed
Scalability RFs created as needed Fixed number of BVs
Noise Model Gaussian Gaussian
Approximation Locally Linear Globally Gaussian

Table 4.1: A comparison of attributes of LWPR and SOGP

we require that LWPR and SOGP have the same “computational capacity,” which we control by

limiting the number of local models in each. As LWPR automatically determines the number of

receptive fields needed, we use that determined number (27) as the maximum capacity parameter

(β) in the SOGP algorithm. Results indicate both techniques to be comparable in terms of learning

capability. However, we note that we are running LWPR in a somewhat crippled fashion. That

is, in order to get full benefit of the projection scheme, LWPR must be run over the complete

dataset in multiple passes. For this 2D dataset, it is unnecessary, but on higher-dimensional robot

data it may improve regression. However, doing multiple passes through the data sacrifices the

incrementality and sparsity of the approach, as all of the data must now be kept, and the entire

dataset reprocessed after each datapoint arrives. We choose not to run in this fashion and thus

sacrifice any approximation advantages that could be gained.

We also ran LWPR on the synthetic multimap, and ROGER on the cross data, the results of

which can be seen in Figure 4.10. On the synthetic data, LWPR performs averaging in the multimap

region, resulting in outputs that may not be appropriate. Note that the behavior of both ROGER

and LWPR in the gap region is similar, where a discontinuity appears when the nearest local center

(RF or BV) changes. The local linear nature of LWPR can be seen in the data surrounding this

discontinuity as well.

As for the cross data, we point out that this is not a true test of the multimap regression

algorithm. This data is a unimap, and therefore only one expert is needed to fit it. In that case,

ROGER collapses to the SOGP algorithm, and obtains similar results. We further examine this

phase shift in Table 4.2, where we summarize results from the cross and synthetic data sets, as well

as analysis on the Boston data set from the UCI machine learning dataset repository [12]. This data

(a) Random Noisy Data (b) Ground Truth (c) LWPR, MSE = 0.0200 (d) SOGP, MSE = 0.0150

Figure 4.9: SOGP and LWPR compared on the 2D input, 1D output cross function. We limit
SOGP’s capacity to the number of RFs used by LWPR (27).

82

−20 0 20 40 60 80 100 120
−120

−100

−80

−60

−40

−20

0

20

40

60

80

LWPR

IMGPE

(a) Synthetic

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−0.5

0

0.5

1

1.5

(b) Cross

Figure 4.10: LWPR compared with ROGER on the two test datasets. (a) A local linear model,
LWPR requires more experts (dots) to fit the synthetic data, and as a unimap regressor averages
the multimap region. (b) ROGER collapses to the SOGP algorithm on unimap data.

set has a 13 dimensional input space, higher than that of the synthetic and cross data, to give a sense

of how the algorithms will scale. Results are shown in terms of mean-squared error and indicate that

on unimap regression, LWPR and ROGER perform similarly (and thus, by extension, so do SOGP

models). However, on multimap data, ROGER significantly outperforms LWPR. When calculating

MSE on multimap data, error is taken as the distance to the closer of the multiple possible outputs.

4.4 Discussion

We have developed ROGER with an eye towards performing direct policy approximation for robot

control policies from interactive tutelage. However, there are other techniques that can be used

to address the underlying multimap regression problem. Specifically, while we have a particular

generative model for the data and a particular approach to model selection and subtask policy

learning, other choices are possible. Since we have factored our joint and separated the input and

output space distributions, it should be possible to change one or the other, assuming appropriate

methods for calculating the required values.

For example, our output space distribution is currently Gaussian, as modeled by our SOGP

Dataset LWPR ROGER

Boston [12] 73.1 68.5
Cross [119] 0.017 0.004

Synthetic [89] 92.9 22.2

Table 4.2: Comparison of LWPR and ROGER on various datasets. Shown are average mean squared
error of predictions on held-out data.

83

Figure 4.11: With only Gaussian-shaped experts, ROGER may need several (red, black and green
solid lines) to fit data originating from one subtask (black stars), when the distribution is non-convex.
Using an alternate input model may allow for one expert (dashed black line) to be used instead.

experts. Other regressors, such as the partial least squares regressors of LWPR, or LWPR itself,

might be appropriate, as well as making different assumptions about the observation noise. To use

one of these, or other, regressors in our model, we would need to be able to calculate P (y|X), as in

Equation 4.14. The other portions of the joint would remain unchanged.

Likewise, we currently use a Gaussian mixture model to assign regions of input space to experts,

meaning that the input for a particular subtask must originate from a single Gaussian area of

perception space. Making this assumption maybe overly limiting, as it means that a subtask with a

non-Gaussian input region would have to be fit by multiple Gaussian shaped experts, as shown in

Figure 4.11. One possibility that we have started to consider is letting the input gate for each expert

be, itself, a mixture of Gaussians, so that each of these component Gaussians would be associated

with the same expert. Alternatively, some other density estimator could be used to generate non-

Gaussian gates. Again, only the a portion of the full joint, the input space distribution, would

change, the rest of the calculations would be untouched.

4.4.1 Model Selection

One of the touted advantages of ROGER is its approach to model selection, or determining how many

experts are represented in the data. By maintaining a distribution over the partitioning of the data,

ROGER tracks models with different numbers of experts, up to the possibility that each datapoint

comes from its own expert (effectively infinite experts). Further, ROGER also represents variability

between multiple models with the same number of experts, by considering different assignments of

84

data to each expert.

Like the input and output models, the distribution over partitions can be changed independently

of the rest of the joint. Rather than using the CRP, a different approach to determining an appro-

priate number of experts would be to calculate the likelihood of the data (inputs and outputs) under

models with varying numbers of experts. To avoid overfitting, models can be penalized according

the the number of free parameters, using, for example, the Bayesian Information Criterion:

BIC = −2 ln(P (X,Y, z) +K∗ ln(N)

where K∗ is the number of free parameters. While related to the number of experts, it also depends

on the dimensionality of the data, and the exact parameterization of the experts themselves.

To give infinity the same sort of consideration as ROGER, the proposed BIC-based approach

would have to run EM to fit a finite mixture model to the data for models of all orders from 1 to

N . The likelihood of the resulting data would be calculated and penalized, and the resulting most

likely model would give us the “optimal” number of experts to use. While described here as a batch

approach, the models could be trained incrementally, with a new model being added each time a

new datapoint was received.

However, when training a mixture model with EM (particularly incrementally), there’s a pos-

sibility of the algorithm getting stuck in local optima. To counteract this, starts from multiple

random seeds are often used. This BIC-based approach can then be seen as filling in a large table of

probabilities, of size N × R, where R is the number of random seeds. For computational efficiency

with large N , a coarser granularity (1,5,10..., as opposed to 1,2,3,4...) may be necessary, which could

result in the “true” optimal number of experts being missed. Techniques such as binary search over

the number of experts may address this concern, but can still be considered a “brute-force” method.

In contrast, ROGER’s current approach to model selection can be seen as filling in only P cells

of this N × R table, where R → ∞, and approximating the entire distribution over the number of

experts from these cells. Further, ROGER considers the distribution over all possible partitions of

the data for a given number of experts, while the finite approach above tracks at most R. Also,

prior information as to the partitioning (specifically as to the rate at which new experts appear) is

possible with the CRP, but not the BIC technique. And lastly, by tracking the entire distribution over

partitions, ROGER leaves the door open for changing the assignment of points to improve modelling

and escape from local optima, using perhaps the MCMC approaches as discussed in Section 4.3.2.

4.4.2 Temporality

Currently, the temporal nature of the data is not used effectively in determining the partitioning.

While ROGER says something about the expected number of experts over time, each datapoint

itself is considered independently, without regard to the experts to which its temporal neighbors

were assigned. Theoretically, the complete dataset can be randomly permuted with no effect on the

discovered partitioning. In practice, this is not the case as both the sparsity of the experts (where

data is discarded) and the finite number of particles introduce order-dependent effects.

85

For tasks like the square root of Section 4.3.1, where the data come randomly from both experts,

ignoring temporality is appropriate, as the temporal relationship between points has no further

information. However, for robots, we do not expect this to be the case. Instead, we expect data

from a latent FSM robot controller to have temporal continuity, where contiguous subsections of the

data all come from the same expert. Our current model relies on the fact that data from the same

expert occupy similar positions in input-output space to group them together.

Likewise, when controlling the robot (performing prediction), we would expect to sample repeat-

edly from the same expert for some time, until the subtask it represents is complete, or interrupted.

Then we would begin to draw from another expert, and so on. Our current model does not incorpo-

rate this idea, and instead chooses the current active expert independently of the one before it. In

terms of robot behavior, this may lead to rapid oscillation between subtasks. For the case when the

subtasks represent two different approaches to the same problem, as in Figure 4.2, rapidly switching

between them may result in the robot effectively averaging their commands, due to physical inertia.

This issue, of ensuring expert continuity, is tied to that of inferring transitions in an FSM

built over the experts discovered by ROGER. One approach to ensuring similar temporal structure

between inference and prediction is to look at the expert assignments as discovered by ROGER

itself. From the sequence of experts over time we can determine the transition probabilities, and use

those during prediction.

However, this method still does not leverage the temporal information in the data. For a tem-

porally aware ROGER (T-ROGER), it might be better to change the distribution over partions, to

favor those where temporal continuity is perserved. One technique, discussed in Section 6.2.2, might

be to change the CRP evolution equation, so that the probability of sitting at the same expert as

the previous patron is increased, as in the “sticky-HMM” [49].

4.5 Review

We have introduced ROGER, an incremental approach to multimap regression. It seeks to decom-

pose a multimap (where one input can have multiple appropriate outputs) into a set of unimaps,

inferring the appropriate number from the data. For prediction, outputs come from only one of the

applicable unimaps, resulting in multimap behavior, instead of averaging.

We have compared ROGER to a variety of other regression techniques, the algorithms discussed in

this chapter are laid out in a plot in Figure 4.12. As stated, there are a number of desirable properties

we seek in a learning algorithm for our interactive robot learning scenario. On the horizontal axis we

have “computational feasibility,” a rough measure of how appropriate the algorithm is for tutelage-

based RLfD. This feature is mostly related to the speed of the algorithm, but also incorporates ideas

of sparseness, incrementality, and scalability. We indicate a shift from techniques that store all of

the data seen on the left, to those that learn sparse models on the right.

The vertical axis of the graph indicates the quality of estimation. This metric includes not

only the accuracy with which the the algorithm learns the underlying policy, but also its ability to

86

Figure 4.12: Algorithms discussed in this section, compared with respect to computational feasibility
(speed, sparsity, incrementality, scalability) and estimation quality (accuracy and confidence). For
robot learning of unknown tasks from tutelage we seek a sparse multimap algorithm such as ROGER.

determine when the estimate is good or not (confidence). We divide these algorithms into those

that learn unimap policies, and those that learn multimaps. ROGER and its possible temporally

conscious successor occupy locations in the top right of the graph, as they are sparse, incremental

multimap regressors.

Looking forward, the next necessary step is to include temporal information in the model and

algorithm. In terms of finite state machines as introduced in Section 1.3.4, ROGER currently only

performs model selection and policy learning, determining the subtasks of an FSM. Leveraging the

temporal information will enable it to determine the transitions as well, and perform full FSM

learning. As FSMs are used in a variety of domains, such map-building [44], ROGER may then be

applicable to other areas, not just robot learning from demonstration.

Chapter 5

Evaluation

Games are deep in the heart of us. From solitaire to the Super Bowl we’re nourished

on games, those abstract expressions of real life where we know the rules and can test

our wits against an opponent or against chance, or watch our agents do it for us. Real

life, of course, is never that tidy. Games let us work up to life.

Pamela McCorduck, Machines Who Think, 1979, page 146

We wish to learn, from demonstration, robot control policies similar to those that are today

currently hand-coded. The previous two chapters have introduced our robot tutelage architecture,

as well as several learning algorithms for use in therein. In this chapter, we set forth our experiments

in learning a robot soccer team, like those that have been programmed for the Robocup1 competition.

In the Robocup standard platform league, teams of identical robots compete in robot soccer

games. Until recently, the platform was the Sony AIBO, which we use here. By requiring all teams

to use the same robots, winning is thus framed as a problem solely of software: algorithms, design,

and development. While advanced teams consider the set of robots as a whole and use techniques

such as coordinated plays [27] and dynamic role allocation [129], first year teams often consider each

robot in isolation and utilize little, if any, inter-robot communication. A standard technique, used

for example in [81], is a so-called “swarm team,” where each robot, except for the goalie, individually

attempts to get the ball and score with it. It is called a swarm team because the resulting behavior

is that all of the robots “swarm” around the ball, fighting for control. As all of the fieldsbots run

the same controller, only the goalie needs to be developed separately.

Despite the simplicity of the strategy, such a team can still take months to develop. While much

of that time is usually spent on lower-level development such as vision, localization and locomotion,

a fair portion is dedicated to the development of the high-level behaviors. It is the development of

the behavior, given low-level perception and actuation, that we are focused on here. Our platform,

showing the assumed perceptual capabilities and actuation modalities discussed in Section 3.4.1 is

shown in Figure 5.1.
1http://www.robocup.org

87

88

Figure 5.1: Our evaluation robot platform, a Sony AIBO equipped with rudimentary vision (color
segmentation and blobbing) and walk-gait generation. Control policy estimation involves approxi-
mating the observed policy mapping from state estimate INPUTs to action OUTPUTs.

Figure 5.2 shows simplified versions of the swarm-style robocup soccer behaviors. Specifically, we

are ignoring concerns as to other players on the field, the ball-holding penalty limit of three seconds,

and global localization on the field. We also present two different approaches to goal scoring. The

first policy, in Figure 5.2a, is designed to be amenable to unimap regression. To be so, we avoid

ambiguous sensor states, or perceptual aliasing, which may lead to incorrect behavior when standard

regression is used to directly estimate the control policy from demonstrated perception-actuation

pairs. The second approach, in Figure 5.2b, is more representative of the control policies that were

developed for the Robocup competition in its early years. However, on our platform this more

effective policy contains perceptually aliased state estimates, resulting in multimap scenarios.

To collect data to train these behaviors, we experimented with three different approaches. First,

a standard batch approach, where all training data is collected before learning takes place. Second,

an interactive approach, where a human user toggles an HGC until they are satisfied with the learned

controller or believe it to no longer be improving. Lastly, learning from interactive human demon-

stration, where the human user teleoperates the robot to perform the task, again until satisfaction

or no additional improvement.

The evaluation of the learned policies themselves can also take multiple forms. Qualitatively, a

human observer can watch the learned controller in action, and subjectively decide if it is performing

the task correctly. More quantitatively, we can use task-level metrics such as the number of goals

scored (or blocked) in a given time period, of from specific locations. We can also evaluate the

approximate policy at the action level, by comparing the commanded actuation outputs with those

89

(a) Unimap Fieldsbot

(b) Multimap Fieldsbot

(c) Goalie

Figure 5.2: The robot soccer behaviors we learn herein. Unimap goal scoring (a) specifically avoids
perceptual aliasing, to enable learning with standard regression. Learning the more successfully
policy in (b) requires multimap regression, such as ROGER. The goalie (c) rounds out our swarm-
style team.

of the demonstrator, and calculating the mean squared error.

For task-level evaluation of the policies, we use 13 locations, distributed across the field as

in Figure 5.3. The exact locations of the ball and robot in each trial is corrupted by additional

placement noise. We ran each of the coded policies (HCC) on these locations for 2.5 minutes and

computed their effectiveness, in terms of the percentage of goals scored or blocked. The results are

shown in Table 5.1, along with those of learned controllers. To give a sense of the capabilities of

each controller, we also indicate the results from each of the 13 test locations.

Recall that our goal is to learn policies that perform as well as the demonstrator. From this

summary, we can see that SOGP can be used to learn the two unimap policies, approaching to

within 10% of the efficacy of the demonstrator. However, on the multimap policy, SOGP fails

to develop a useful approximation. With ROGER, the resulting policy is still not at the level of

demonstration, but it is much improved over the one learnt by SOGP. We now provide more details

and analysis of our experiments in learning these controllers.

90

Figure 5.3: The field setup for training and testing our soccer team. Not to scale, the yellow square is
the goal, orange circles are initial ball positions, white ovals are initial robot locations/orientations.

Location 1 2 3 4 5 6 7 8 9 10 11 12 13 %
Unimap Scorers

HCC 0/3 3/3 0/3 2/3 1/3 0/3 3/3 0/3 3/3 3/3 0/3 3/3 0/3 46
SOGP 0/3 3/3 0/3 0/3 0/3 0/3 3/3 0/3 3/3 3/3 0/3 3/3 0/3 38

Multimap Scorers

HCC 1/3 3/3 0/3 2/3 3/3 3/3 3/3 2/3 3/3 1/3 2/3 3/3 1/3 69
SOGP 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0
ROGER 0/3 2/3 0/3 1/3 2/3 1/3 2/3 0/3 1/3 0/3 1/3 2/3 0/3 31

Goalies (Unimap)

HCC 2/5 4/5 4/5 4/5 5/5 3/5 3/5 2/5 5/5 4/5 4/5 1/5 4/5 69
SOGP 3/5 5/5 4/5 3/5 5/5 3/5 1/5 5/5 2/5 2/5 2/5 0/5 5/5 62

Table 5.1: Comparison of the efficacy of the various robot soccer tasks, both as coded and learned. In
addition to percentages of success, we show the results of multiple trials from each of the 13 locations
in Figure 5.3 in terms of successes (scores or blocks) over attempts. On unimap controllers, SOGP
successfully learns policies, but it fails on the multimap policy, where ROGER is needed.

91

Algorithm 5.1 Unimap Goal Scorer (UGS)
Require: Perceptual variables BALL and GOAL
Ensure: Action output ACTION

loop
Update BALL and GOAL
if isLinedUp(BALL,GOAL) then

if isKickable(BALL) then
ACTION ← “kick”

else
ACTION ← “approach ball”

else if isVisible(BALL) AND isVisible(GOAL) then
ACTION ← “sidestep”

else if isVisible(BALL) then
ACTION ← “circle”

else
ACTION ← “spin”

5.1 Unimap Goal Scorer

Given that we will be using unimap regression techniques, we specifically develop a unimap goal

scoring policy (UGS), shown in Figure 5.2a and in pseudo-code in Algorithm 5.1. Conceptually,

we can think of the controller as having four stages. The first stage is the ball-location stage, and

rotates the robot in place until the ball is in view. Then, the robot walks around the ball (to the

right in a circle with the ball at its center), until the goal is in view behind the ball. The robot

then approaches the ball, and when in range, kicks. During execution, if the ball or goal should be

moved, the robot immediately adapts, switching stages if necessary.

While we can think of this policy as having four distinct steps, in actuality the control algorithm

is a set of nested if-else loops, with no internal state. That is, the current inputs (observed ball and

goal location) are all that is necessary to determine what the outputs (walk parameters and kick)

should be. It is this direct, reactive mapping, that enables the immediate adaptation.

Testing this control policy on the 13 ball locations of Figure 5.3, we find it 46% effective. The

policy has the most trouble from positions near the edge of the field, where the sharp angle between

the ball and the goal makes it difficult to line the two up. Additionally, for positions on the left side

of the field, the robot must circle all the way behind the ball before it can be lined up, taking more

time and increasing the chance that the robot will become stuck on the way (on the wall or carpet).

Using SOGP (wk = 0.1, σ2
0 = 0.1, β = 300), we train a controller with data from one shot from

each of the locations. Because we use an SOGP, this is not equivalent to storing all of the data

for future comparison. Instead, only β = 300 of the ∼ 28, 000 total points are kept to represent

the distribution over mappings. Testing the learned controller from each location, we find it 38%

effective, just slightly worse than the HCC. Experiments with interactive training obtained similar

results, although we had decreased effectiveness when learning directly from human teleoperation,

most likely due to increased noise and errors in the demonstration data.

92

5.1.1 Conclusion

Using unimap regression, we are able to transfer autonomous control policies onto robots with fixed

perception and actuation, from both hand coded controllers and interactive human teleoperation,

where the learned policy performs nearly as well as the demonstrator. However, the policy discused

here is a unimap policy, devoid of perceptual aliasing. In the next section we will examine a multimap

control policy that is more representative of those actually programmed by first-year robocup teams,

and which will require multimap regression to learn.

5.2 Multimap Goal Scorer

The multimap goal scorer (MGS), shown in Figure 5.2b, can also be thought of as having four

stages. In the first stage, the robot turns in place to locate the ball, similar to the UGS controller,

but then approaches the ball directly, without regard to the goal location. Once the ball is reached,

the MGS controller executes a trap motion to put the ball under the robot’s chin, so that it can be

manipulated. The third stage turns with the ball towards the goal, and the last stage checks the

goal’s location and kicks if it is lined up.

In contrast to the UGS controller, where the 4 stages were only conceptual distinctions, the MGS

controller actually consists of four separate subtask controllers, arranged in an FSM as shown in

Figure 5.4. Thus, in addition to the subtask controllers themselves, we specify transition conditions,

indicating when the active subtask should change. These conditions impose an amount of inflexibility

on the MGS controller, as it cannot always change stages immediately, as the UGS controller does.

Figure 5.4: The multimap goal-scoring (MGS) task as a finite state machine. Without knowledge
of the correct subtask to perform, perceptual aliasing occurs.

93

For instance, if the ball, robot, or goal are moved during the trap stage, the complete trap motion

must still be finished before transitioning to a new subtask.

Our initial attempts to learn this behavior with unimap regression failed. That is, the task could

not be taught to user satisfaction in half an hour of interactive training using a HGC. Instead of

proper task performance, we observed the robot performing portions of the different subtasks at

inappropriate times. For instance, whilst navigating to the ball, the robot would sporadically trap.

We hypothesize that in some portions of the perception space there is not enough information to

correctly determine the appropriate action. That is, perceptual aliasing causes outputs from multiple

subtasks to be combined, resulting in the observed incorrect behavior.

To test this hypothesis, we focused on learning the first two individual subtasks in isolation,

shown in Figures 5.5a and 5.5b, without the transitions between them, as well as their combination

in Figure 5.5c. We also examined some related tasks, shown in Figures 5.5(d-f), to further probe

the utility of the DL architecture and the learning algorithms we can use therein. A summary of the

tasks, brief descriptions, and the two-letter abbreviations by which they will be referred are in Table

5.2. In the experiments presented in this section, we used the same parameters for the algorithms

across all tasks: LWPR (wgen = 0.2, D∗ = 100) and SOGP as above.

Task Name Description

BA Ball-Approach
Rotate in place until the ball is seen, then walk towards it. While
walking, lower the head to keep the ball in view, and stop when the
ball is directly under the nose.

TR TRap
Lift the head fully, and attempt to “scoop” the ball under the chin.
Using the mouth, detect if the ball is locked in place. If so, stop,
otherwise attempt to trap it again.

AQ ball-AcQuire A combination of the above two tasks. Approach the ball, and when
stopped, execute the trap.

AQ+ AQ with state
Same as above, but the perception and actuation space of the plat-
form have been extended to explicitly indicate which of the subtasks
is being executed

HT Head-Tail Using only the motor sensors, move the head to mirror the tail.

BT Ball-Track Move only the head to keep the orange ball centered in view.

GC Goal-Charge Rotate in place to locate the goal, then approach it and stop when
it fills the view.

WK WalK Execute a cyclic walk gait to move the robot forward. This motion
pattern is taken as part of the platform.

KI KIck Execute a kick by bumping the chest into the ball. This pre-
determined motion is taken as part of the platform, as is a block.

Table 5.2: The various tasks discussed in this section, where they are referred to by their 2 letter
abbreviation. Ball-Approach is the same as the seek subtask of the multimap goal scorer.

94

(a) Ball Approach or Seek

(b) Trap

(c) Ball Acquire = Seek + Trap

(d) Head-Tail mirror

(e) Ball Track

(f) Goal Charge

Figure 5.5: The Goal Scoring subtasks and some related skills learned. Not shown are the walk
(WK) and kick (KI) skills, which are initially learned, and then taken as part of the platform.

95

Component 1

C
om

po
ne

nt
 2

(a) Demonstrated

Component 1

C
om

po
ne

nt
 2

(b) Observed

Component 1

C
om

po
ne

nt
 2

(c) Learned

Figure 5.6: Learning the Walk controller. The HCC demonstrator generates the open loop sequence
shown in (a), giving rise to the observed data in (b). The learned controller results in the sequence
in (c). All data are projected onto the first 2 principle components of the motor space.

5.2.1 Open Loop

Two of the tasks in this section, WK and KI, are not learnt from human demonstration, because

the teleoperative interface does not allow for them to be produced. Both of these tasks involve

coordinated movement of the robot’s legs. For this reason, we take them as given and have included

them as actuation options in our platform. However, before doing so we first showed that they were,

themselves, learnable from demonstration.

Both of these tasks’ HCCs are actually open loop controllers, where the commanded motor

positions are unrelated to the perceptual input. In Figure 5.6 we show results from learning the

walking task. While the open loop HCC generates the same commands each cycle, the learned

controller is more reactive to the environment, and generates more varied data.

Trap

Similar to the above actuations, the TR subtask involves a pre-determined sequence of motor po-

sitions. Designed to give the robot control of the ball, the technique is to lift the head and chin

up, reach the chin out, and pull the ball back so that it is trapped against the robot’s chest. We

considered including the trap motion as an intrinsic capability of the platform, but chose instead to

learn it, as our teleoperative interface allows for humans to demonstrate the entire behavior.

The data space is 2D, corresponding to the two motors of the head (neck and chin) that are

used, and is shown in Figure 5.7, along with the commanded, observed, and learned trajectories.

Like WK and KI, TR’s controller provides the same commanded motor positions each cycle, and

the observed perceptions are smoothed by physical forces. The learned trajectory falls in between.

We also indicate trap success (green) and failure (red), which will be required for transitioning from

the trap into one of the other subtasks.

96

Neck Angle

C
hi

n
A

ng
le

(a) Demonstrated

Neck Angle

C
hi

n
A

ng
le

(b) Observed

Neck Angle

C
hi

n
A

ng
le

(c) Learned

Figure 5.7: Learning to trap. Similar to walking, we show the open-loop commands (a), observed
motor positions (b), and learned controller (c). The space is the 2 used motors of the head, along
with a success/failure indicator.

5.2.2 Mean Square Error

The other tasks, such as the BA and GC tasks, are fully closed-loop controllers, where the generated

outputs at each timestep depend on what is actually perceived. In these two cases, the robot turns in

place until the object of interest (ball or goal) is detected, and then walks forward. In the BA task,

the robot’s head and neck track the ball, eventually pointing directly downward at it, at which point

forward motion ceases. For GC, the robot’s head does not move, but the robot stops approaching

the goal when it has reached a threshold distance (as determined by the size of the visible goal).

While learning these tasks, we also introduce two simple closed-loop controllers as test cases.

The HT task ignores all visual input, and only controls the head’s pan and tilt to match that of the

tail. The BT task, on the other hand, is a visual servoing task, where the robot’s head moves to

keep the ball centered in view.

Learned controllers for all of these subtasks (HT, BT, TR, BA, GC) were generated with LWPR

and SOGP from HGCs and teleoperation, save for GC, which we used as a “pure” test of the human

teleoperative learning aspect. Quantitative results in terms of MSE and learner confidence are in

Figure 5.8. All results are shown averaged over 5-folds, where we train each controller on 4/5ths of

the demonstration data (collected in batch) and test it on the remaining fifth. LWPR, overall, has

higher MSE, which may be reduced by parameter tuning.

5.2.3 Features of Learning Algorithms

As discussed in Chapter 4, two desirable features of learning algorithms for robot tutelage are speed

and robustness to noise. Particularly, we want the algorithms to maintain realtime capability as

a lifetime of data is collected. Further, we expect that data to come from human demonstration,

which we do not assume to be perfect.

97

HT TR BT BA AQ GC
0

0.05

0.1

0.15

0.2

0.25

M
ea

n−
S

qu
ar

ed
 E

rr
or

LWPR
SOGP

(a) Train MSE

HT TR BT BA AQ GC
0

20

40

60

80

100

C
on

fid
en

ce

(b) Train Conf

HT TR BT BA AQ GC
0

0.05

0.1

0.15

0.2

0.25

M
ea

n−
S

qu
ar

ed
 E

rr
or

LWPR
SOGP

(c) Test MSE

HT TR BT BA AQ GC
0

20

40

60

80

100

C
on

fid
en

ce

(d) Test Conf

Figure 5.8: MSE and confidence of each algorithm on the training data sets and on leave-one-out
testing. All results are averaged over 5 folds and 1 standard deviation error bars are shown.

Speed

To test the speed of the algorithms, we collect a further 5000 datapoints, roughly 2.5 minutes,

from the HCCs for several tasks. Training both LWPR and SOGP learners, we record the speed of

incorporating each point in hertz, shown with respect to data size in Figure 5.9a.

Both algorithms display asymptotic behavior, although the limit appears to be task-dependent.

We posit that this relates to the difficulty of representing the control policy, and that once the control

policy is well represented, further data is incorporated with little additional effort. For instance, the

TR task, as a pre-determined trajectory of motor poses, is learnt quickly. The BA task, in contrast,

requires coordinating locomotion with observed ball position and may require more representational

power on behalf of the algorithms.

We also note that the asymptote for SOGP on the more difficult tasks appears fixed, which is

98

0 500 1000 1500 2000 2500 3000 3500 4000
10

0

10
1

10
2

10
3

10
4

Number of points

H
er

tz

LWPR
SOGP
HT
TR
BT
BA
AQ

(a) Speed as a function of dataset size

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

5

Ball Position (horizontal pixel)

H
ea

d
P

an
 D

iff
er

en
ce

Human Demonstration
Coded Controller

(b) Human Data vs HCC data

Figure 5.9: a) The speed of the algorithms as a function of the amount of data trained on. Dotted
line represents 30Hz, or realtime performance. b) Humans are much noisier demonstrators than
hand-written code. We seek to, and successfully, learn from this noisy data.

related to the capacity of the algorithm. We have deliberately chosen β = 300 to keep this limit near

30Hz, the speed of our system. In contrast, the task dependence of LWPR’s limit provides no such

guarantee, although careful selection of parameters may keep the algorithm realtime. These reasons

are some of the ones why we have chosen to base ROGER on SOGP experts. Particularly, as the

final speed of inference is independent of data set size (through the hard capacity limit), SOGP will

not slow down beyond this limit, even as a lifetime of data is collected.

Noise

To illustrate the noisy demonstrations that arise from human teleoperation, we plot the control

signals for the BT task from both the HCC and human teleoperator in Figure 5.9b. The HCC

provides very clean data, excellent for learning. Of course, to challenge the learning algorithms, we

could add additional noise to this signal.

In contrast, the human demonstrator’s data exhibits nonstationary noise. Not only is the noise

input dependent, but certain values are preferred over others. It is unclear then what noise model

should be used if we were to attempt to simulate it in our HCCs. Additionally, some of this noise

may be due to our interface, which may make it easier for the user to express certain values over

others. Still, we argue that no matter what the interface, noise such as this will exist. The fact that

we can learn from this data tells us that our algorithms are up to the challenge. However, for ease

of experimentation and development, we often prefer to use HGCs.

99

Figure 5.10: Data from the seek/trap transitions of the AQ task. Raw inputs and outputs, with
extraneous dimensions removed, are shown in the middle, as is the true subtask indicator (light is
seek, dark is trap). Six subtask transitions are shown. One datapoint on either side of the first
transition is highlighted and shown graphically. Inputs, or state estimate (head pose and perceived
ball location) are on the left, and outputs, or actions (commanded head pose [walk velocities are
zero]), on the right. For similar perceptions on either side of the transition, different actuations are
demonstrated, leading to perceptual aliasing.

5.2.4 Subtask Switching

The ball-acquire (AQ) task is the first subportion of the goals-scoring behavior that is also an FSM,

as indicated in Figure 5.4. AQ can be seen as a composition of the BA and TR tasks, where the

robot first locates and approaches the ball and once the ball is in the right location, it performs the

trap maneuver. Attempts to learn this task with SOGP and LWPR failed. However, as the subtasks

themselves were learnt in the previous section, this failure indicates that it is the transition between

them that is causing problems.

We therefore focus on data from the transition between seeking and trapping in the AQ policy,

to highlight the features that make it difficult to learn with a unimap regressor. Figure 5.10 (center)

shows raw data from around this transition, with extraneous dimensions such as non-ball color blobs

and tail position removed. We highlight one transition and examine more closely the data on either

side, when the controller has switched from performing the seeking subtask to the trapping subtask.

On the left we show the perception inputs, with the head and ball positions. Both states have very

similar inputs, and on the right we show the corresponding outputs. When seeking, the controller

keeps the head down, and the walk parameters are zero. When trapping, the walk parameters are

still zero, but instead the head is raised (to initiate the trap).

When performing unimap regression, there is an implicit assumption that data that is similar in

input space is similar in output space as well. In both LWPR and SOGP, this is formalized by the

squared exponential, or radial basis function:

k(x,x′) = exp

(
− 1

2d

d∑
i=1

||xi − x′i||2

σ2
i

)
(5.1)

100

which computes the similarity between two datapoints. We see that for the two points on either

side of the transition, the RBF measure is 0.9978. LWPR and SOGP both then assume that the

outputs would be similarly similar, which is not the case. Instead, the outputs have a measure of

0.1295 between them.

If, however, the hidden state were observed and included in the perception of the system, these

two inputs would be separated in perception space. Their similarity would become 0.4866, and as

the inputs are less similar, their associated outputs can be differentiated more, and unimap learning

may be able to learn the appropriate mapping.

Explicit State

We extended the perception and actuation of the platform to include this explicit state, as discussed

in Section 3.5.2. Specifically, we add one more discrete dimension to both that indicates which of

the subtasks is being performed. Note, that now the learning system has to learn not only the

perception to actuation mapping, but also the state evolution. In terms of learning a finite state

machine, we are essentially taking as given the subtasks, and learning their individual policies and

the transitions between them.

We call the AQ task with extended perception and actuation AQ+, and successfully train a

learned controller using a HGC and SOGP. Because of the need for an explicit state variable, direct

human teleoperation is untenable. We can conceive of an interface where the user explicitly indicates

which of a number of subtasks they are currently performing, and that information is used in learning.

However, requiring such information would necessitate that the user analyze the desired task, which

may be beyond their ability.

5.2.5 Conclusion

Unimap regression is unsuitable for policies with perceptual aliasing that arises from the switching

between multiply applicable subtasks. Instead of correctly performing one of the appropriate actions,

controls from all subtasks are merged, resulting in inappropriate behavior. Explicitly using internal

state may enable such policies to be learnt, by turning the underlying multimap into a unimap, but

requires that the user provide such state. In its absence, multimap regression is needed to determine

the number of possible subtasks and their individual policies.

5.3 Multimap Learning

We use ROGER to perform multimap regression on data from the multimap goal scorer’s hand

coded controller. While collecting data from demonstrations, we also log the true subtask indicator

used by the demonstrator to make decisions. Anticipating a bias towards subtasks that have more

data, we use only 1000 points of each subtask. Using the ground truth subtask indicator we color

the input data (projected into 3D using PCA for visualization) in Figure 5.11a.

101

Seek
Trap
Aim
Kick

(a) Human (b) ROGER (c) Grouped

Figure 5.11: Data from the multimap goal scoring controller projected into 3D with PCA. Color
indicates the subtask or expert to which each point is assigned. a) The ground truth coloring uses
the known subtask indicator. b) ROGER automatically determines a number of experts (85), and
assigns data to each. c) Grouping the experts according to subtask shows that the discovered experts
accord with the ground truth.

Using ROGER (α = 0.5, κ = 0.1,Λ = 1, β = 300, P = 10, w = 0.1, n = 0.1) we are able to

automatically determine a number of experts, the assignment of data to experts, and their individual

policies. The resulting assignments are shown, projected into the same PCA space, in 5.11b.

5.3.1 Analysis

ROGER discovers 85 experts in our data, which is more than the 4 that were codded in the HCC.

However, this difference is not an indication that ROGER has failed. Rather, the discovered experts

may just represent an alternate partitioning of the overall task into subtasks than that which we

used when coding.

To examine the data assignments, we plot them per expert in as a stacked histogram in Figure

5.12 along with a zoomed in view. On the horizontal axis is the expert number, and the vertical

axis is the number of datapoints assigned to each expert. The data is colored to indicate which of

the ground truth subtasks generated it.

We first note that almost all of the data from the kick subtask is assigned to one datapoint,

number 43, corresponding to our a priori segmentation of the task. The data associated with this

subtask is thus sufficiently similar to itself (in terms of inputs and outputs), and different from the

data from other tasks that it is isolated and assigned to an expert. However, not all data from

this subtask is in this expert, and this expert contains data from other subtasks as well. The data

assigned to other experts can be thought of as outliers from this subtask, data which is sufficiently

different that the gating GMM and output SOGP do not well describe it. Likewise, data from other

subtasks that are included in this expert can be thought of as overlap data, from the regions where

two (or more) subtasks are equally applicable.

Concerning the aiming subtask, the data is assigned predominantly to two experts, numbers 37

102

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

Expert allocation

Expert Number

D
at

a
C

ou
nt

Seek
Trap
Aim
Kick

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100
Expert allocation

Expert Number

D
at

a
C

ou
nt

Seek
Trap
Aim
Kick

Figure 5.12: The ROGER discovered experts and the data assigned to them, colored by subtask.
The right image is a zoomed in view of the left.

and 42. Examining the plot in Figure 5.11b we see that one expert, colored orange, corresponds

to one side of the data, and the other expert (green) to the other side. These sides correspond

physically to the situations when the robot has the ball and must turn left to the goal, and the one

where it must turn right. Upon consideration, this is a reasonable distinction to make. While the

hand-coded control policy treats these two cases as the same, and labels them as part of the same

subtask, it could also have contained different subtasks for each. ROGER is thus able to discover

distinctions not originally thought of by the demonstrator. This property is key, as it will allow

ROGER to determine subtasks even when the demonstrator is unaware of them.

Regarding the other subtasks (seek and trap) we note that data for these subtasks are not

distributed randomly over experts, but rather split over a series of them. That is, all of the experts

contain data from predominantly one subtask, rather than a blend. Exceptions are rare, and likely

correspond to regions where the subtasks themselves are very similar. Extrapolating from our

previous point, we posit that ROGER is finding distinctions in the data that are not as obvious to

us as the left/right split of the aiming task. Thus, a problem here may be that ROGER is finding

too many distinctions, rather than not learning to distinguish. Future work, discussed in Chapter 6,

considers methods to reduce the number of experts discovered, while improving task performance.

5.3.2 Evaluation

Given the disparity in the number of experts discovered by ROGER and the number sufficient for the

task as designed, we investigate the resulting partitioning more deeply. To do so we consider both

the quality of the partitioning under the model, and the utility of the learned experts for performing

the task.

103

Joint Probability

In terms of the model, we can calculate the joint probability of the data {X,Y, z} (inputs, outputs,

and latent subtask indicators), under our parameters Ω. Doing so, we compute the negative log

joint probability of the data and the ROGER-discovered latent assignments to be 81359. Using

the hand-coded controller’s subtask assignments, we find that the NLP of the joint is 81983. The

ROGER-discovered assignments have a lower NLP, meaning that these assignments are more likely

than the ground truth, given our model and the parameters.

We note that our model makes many simplifications and assumptions that are not true in reality,

which may combine to make the discovered assignments more likely than the ground truth. For

instance, we use a spherical prior in the input model, and equal kernel widths in all dimensions,

thus ignoring the differences between them. In addition, we assume that the GP parameters are

fixed across all experts. In doing so, we may need multiple experts to fit a region of data, where one

expert, with different parameters, may suffice.

Task Performance

With regards to task performance, we can use learned subtask policies to perform the complete

multimap goal scoring policy. However, in order to evaluate the learned subtask experts as part of

a whole policy, a significant amount of hacking must be performed. Because we do not learn the

transitions between the experts, we must provide a hand-coded transitioning system. Evaluation

of the total policy then becomes, in part, an evaluation of the transitioning. To control for this

confusion, we can use the same transitioning system that was utilized in the HCC. Both policies

should then transition the same, leaving us with an evaluation of the underlying subtasks instead.

However, as the learned experts do not match up one-to-one with the coded subtasks, we must

instead provide a mapping of some sort.

We therefore created meta-experts corresponding to the subtasks used in the HCC’s transitioner

by combining multiple discovered experts. To do so, we assigned each expert, i ∈ [1, 85], to one

of the transitioner’s subtasks, j ∈ [1, 4], depending on the ground-truth source of the data in each

expert. That is, if the plurality of expert i’s data comes from the execution of subtask j, expert

i is assigned to subtask j. All data associated with the experts assigned to a particular subtask

were combined and used to train the meta-expert for that subtask. The assignment of data to

meta-experts is shown in Figure 5.11c, where visual inspection indicates that they accord well with

the HCC’s subtask assignments, although with some misclassifications.

This approach is just one method for making the discovered experts work with the coded transi-

tioner, and it undoubtedly introduces errors. Experiments with the resulting controller are thus not

true evaluations of the underlying learned experts, although they will be lower bounds. Alternate

approaches to expert selection are also possible, and may give different results. For example, instead

of training meta-experts, we could select an expert from within the group stochastically, based on

the input model likelihood.

We tested the resulting ROGER-learned controller on the same 13 locations as before, and

104

achieved a 31% success rate. While much less than the efficacy of the HCC, this result still represents

a significant improvement over learning with SOGP, which succeeded in 0% of trials. A better

technique for selecting experts may improve these results, without any modifications to ROGER.

Analysis of Errors

With 69% of goals missed, there is much room for improvement in the learned goal scorer. Some

of these errors (at least 30%) are due to a poor demonstrator, who would miss the same shots.

Additionally, we have errors due to improper switching and poor learning.

Improper switching errors are the most common, and reflects on our “hackish” meta-expert and

transitioning methodology. An example of this error occurs when the robot approaches the ball,

but does not transition to the trap when the ball is in the correct location. Or, once executing

the trap, the success of the trap is not accurately detected, and the robot transitions incorrectly.

These particular errors are due to our transitioner, which assumes specific values for the inputs and

outputs at transition points, which may not result during autonomous execution. To address this

issue, we could rewrite the transitioner, or learn the appropriate transition matrix from the data, so

that we can use the learned experts directly.

Improper subtask learning can be further attributed to two sources. The first is in the learning of

each expert, where SOGP can fail to generalize properly, due perhaps to lack of data. Additionally,

mis-allocation of a point to an expert by ROGER can result in cross-contamination of the experts.

That is, one expert can contain data from multiple subtasks, and the resulting policy for that expert

will perform incorrect averages, as when we used SOGP to learn the multimap goal scoring policy

as a whole. Adaptations to ROGER, such as changing the shape of the input space gates, and

improved data collection, perhaps from full tutelage, may reduce these errors.

5.3.3 Conclusion

As the multimap control policy outperforms the unimap version, we would like to be able to learn

such policies from demonstration. Using standard unimap regression, this is not at all possible.

With ROGER, we can automatically determine a number of subtasks and assign data to them, such

that the individual learned subtasks policies, with proper switching, can be used to perform the

overall task. Improvements to ROGER as well as utilizing the tutelage framework more thoroughly

may improve the learned behavior to the level of the original demonstrator.

5.4 Goalie

To round out our learned swarm-team inspired robot soccer team, we learn the goalie behavior

shown in Figure 5.2c. The robot starts centered in the goal, and initially sweeps its head to locate

the ball. Once the ball has been found, the robot locks on to it and rotates in the goal towards it.

If the ball approaches too closely (as defined by a threshold on the blob’s size), the robot executes

the block behavior. Additionally, if the ball is very close, the goalie attempts to kick it away.

105

From the 13 field locations in Figure 5.3, we collect 5 shots on goal from each, in random order.

The balls were “kicked” by a human2, from each location towards the center of the goal, attempting

to maintain constant velocity over all trials. The resulting efficacy of the HCC was 69%, meaning

that it blocked 69% of the shots.

The total collected data has ∼ 22,000 datapoints, representing ∼12 minutes of training. Training

on all of the data, as we did with the UGS policy, would also take 12 minutes. Rather than doing so,

we generate a new dataset, interactively using the tutelage framework. From only 4000 datapoints,

or only 2 minutes of interaction, we trained a learned goalie that qualitatively performed as well

as the HCC. Testing the learned policy from the same 13 locations, we evaluate this learned policy

quantitatively, and achieve 62% efficacy, on par with the HCC demonstrator. While these results

are not conclusive, they indicate that the the tutelage approach to robot learning may result in

policies that perform as well as those learned from batch collection, but requiring smaller datasets

and therefore less time.

5.4.1 Analysis of errors

There are two sources of remaining errors in our learned goalie. First, there are the errors that the

demonstrator makes, where we cannot expect the learner to be better. Examples include situations

where the robot is incorrectly positioned with respect to the shot, and while the robot executes

the block motion, the arms are not able to block the ball completely. Likewise, the HCC rarely

successfully clears the ball, as after the block it tends to roll away.

Further issues relate to the learning itself. A major source of poor behavior is in the location

phase, where the robot is supposed to sweep its head side to side to locate the ball. Occasionally,

the learned controller stops mid-sweep, and never locates the ball, leading to a goal being scored.

Additional training data may alleviate this problem, but we also believe it may be an issue of mul-

timap demonstration. That is, for similar perceptions (no ball visible), the demonstrator sometimes

sweeps left, and sometimes right. In the learner, these two options are averaged so that the robot’s

head stays still.

5.4.2 Shoot out

To approximate robot soccer, we run a 1-on-1 game3, where our learned multimap goal scorer faces

off against the learned goalie. Similar to a penalty shootout, we start the fielder and goalie in their

locations, and reset them after each goal attempt. Extrapolating from the results in our individual

trials, we can predict the results of this experiment in two different fashions. First, based on the

percentages of successful shots on goal and saves, we would expect ∼ 30% of the shots to go in if

there were no goalie present, and ∼ 60% of those to be blocked, for a total of 4 shots on goal, 2

of which are blocked, and 2 of which score. Understanding that the success or failure of both goal
2Jesse Butterfield, member of the 2007 champion Robocup AIBO team.

3Technical limitations, mainly wireless bandwith issues, prevent us from running more robots.

106

Players 1 2 3 4 5 6 7 8 9 10 11 12 13
ROGER × X × × X × X × × × × X ×
SOGP X X X X X X × X × × × × X
1on1 NS Block NS NS Block NS Score NS NS NS NS Score NS

Table 5.3: Location-based predictions for our one-on-one shootout, using the learned ROGER meta-
experts as the scorer, and the learned SOGP system as the goalie. Based on the experiments with
the individual controllers, results simplified and reproduced above, we predict the outcomes in the
last line, where NS means “No Shot.” During actual experimentation, no shots on goal were taken,
for reasons discussed in the text.

scoring and blocking may be location dependent, we could also predict which locations will result in

scores or saves by comparing the behaviors of the two controllers in isolation, as in Table 5.3. In this

case, the two techniques agree that 4 shots on goal will be taken, with our location-based analysis

further specifying that the two from locations 7 and 12 will score, while those from locations 2 and

5 will be blocked by the goalie.

When we ran the two learned controllers simultaneously, our observed results fell short of these

predictions, as no shots on goal were taken. Therefore the efficacy of the goalie cannot be examined,

and we instead focus on the scorer. In addition to the sources of error discussed in Section 5.3.2, we

consider two additional ones that arose during the shootout, one technical, the other theoretical.

On the technical side, our experimental setup has both robots transmitting segmented images

back to a desktop computer for processing 30 times a second. With more robots, bandwith becomes

an issue, and for more than two robots, the resulting increase in dropped packets renders them

unusable. With even only two robots, the increase in lag is noticeable, and could cause the learned

policy to incorrectly respond to perceptions that the robot is no longer having. This lag underscores

the need for realtime, synchronous inference and prediction.

Theoretically, as the policies were trained in the absence of the opposing robot, it may be that

the very presence of the robot has changed the perceptual space enough that the learned autonomy

cannot generalize appropriately. While we have not calibrated the robots to perceive each other,

their glossy finish reflects a wide variety of colors, and may be causing “ghosts” to appear in the

other’s visual field. Additionally, for the scorer, the goalie’s presence alters the view of the goal, by

blocking portions of it, casting shadows upon it, or even physically moving it. These changes can

make the goal appear offset from where it truly is, smaller and further away, or altogether absent.

With no goals being scored, we present a more qualitative analysis of the 1-on-1 experiment. A

sequence of stills from one of the attempts, illustrating both correct and incorrect behavior, is shown

in Figure 5.13. We see that the both controllers started off behaving appropriately, with the scorer

navigating in a ball-directed fashion and the goalie orienting itself for a block. However, as errors

accumulate and the scorer repeatedly fails to transition appropriately, both robots lose track of the

ball, and the trial ends with the ball very nearly in the goal, but not quite.

107

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.13: Video sequence from a learned one-on-one attempt. Initially (a-b), the goalie has locked
onto the ball as the scorer approaches. In (c-d), the goalie incorrectly blocks (perhaps due to the
shadow cast on the ball by the scorer), and the scorer’s coded transition fails to trigger the trap.
After blocking, the goalie looses track of the ball, turning into the goal (e-g). Meanwhile, the scorer
re-acquires the ball, and, transitioning correctly, moves it towards the goal. The scorer fails to kick
in (f-g), perhaps due to inadequate demonstration of what to do when the goalie is present. The
trial ends with both controllers unable to locate and react to the ball (h).

5.4.3 Conclusion

With the addition of the goalie behavior, we have learned, from demonstration, the component

controllers for a swarm-style robot soccer team. The various tasks, and the learning algorithms

used to learn them, were varied independently, leveraging the abstract formulation of the Dogged

Learning architecture. Furthermore, our experiments encompass multiple sources of data, humans

and HCCs, and methods of gathering that data, batch and incremental.

For unimap learning, the transitioned control policies were on par with their demonstrated ver-

sions. For the multimap policy, our learned controller lags behind, but still represents an improve-

ment over using standard unimap regression, which cannot learn the policy at all. In both cases,

the demonstrated policies themselves were not the best, and improving the demonstration is one

approach to improving the learned controllers, which are currently not robust enough to perform in

game-like environments. Other approaches to improving learning, focused on reducing or eliminating

the limitations of our current techniques, are discussed in the next chapter.

Chapter 6

Discussion and Conclusion

What if these theories are really true, and we were magically shrunk and put into

someone’s brain while he was thinking. We would see all the pumps, pistons, gears

and levers working away, and we would be able to describe their workings completely,

in mechanical terms, thereby completely describing the though processes of the brain.

But that description would nowhere contain any mention of thought. It would contain

nothing but descriptions of pumps, pistons, levers!

Gottfried Wilhelm Leibniz

This dissertation has focused on the issue of Human-Robot Policy Transfer (HRPT), or how

users instantiate control policies that are latent in their minds onto robots. Specifically, we have

considered learning as an approach that enables implementation of desired autonomous robot con-

trollers without explicitly coding or otherwise procedurally analyzing the task. By using Learning

from Demonstration (LfD), only task-appropriate perception-actuation pairs need to be provided,

no other task-specific information is needed. However, for some tasks, data of this form may have

multiple actuations associated with one perception, giving rise to perceptual aliasing, where the

robot’s inputs do not contain enough information to determine the correct output. Such situations

can occur in Finite-State Machine (FSM) based robot controllers, where multiple machine states

(subtasks) may be used for the same perception at different times. FSM controllers with perceptual

aliasing cannot be learned using standard Direct Policy Approximation (DPA) techniques (regres-

sion) as they violate the “vertical line test.” Instead, state of the art approaches require additional

information from the user related to the decomposition of the overall task into subtasks, namely

either the subtasks themselves or indications of the transitions between them.

We have performed RLfD using our Dogged Learning (DL) architecture, described in Chapter

3. Designed to be abstract, it specifies only the data flow between the environment, platform, au-

tonomous decision making, and demonstrator, and is thus usable with multiple platforms, learning

algorithms, and demonstration interfaces. Further, DL provides for interactive training, or robot

tutelage, by using Mixed-Initiative Control (MIC), where a user provides data demonstrating por-

tions of the task when they observe incorrect behavior, or when requested by the learning system.

108

109

To address perceptual aliasing arising from subtask switching in FSM controllers, we developed

Realtime Overlapping Gaussian Expert Regression (ROGER), described in Chapter 4. Treating

the problem as one of multimap regression, ROGER estimates a sufficient number of subtasks for

the controller by tracking the distribution over all possibilities, up to an infinite number of them.

Individual subtask policies are learned using nonparametric regression, as the form of the mapping

from perception to actuation is not known in advance. Inference is performed in an incremental,

sparse fashion, making ROGER the first multimap regression algorithm appropriate for tutelage.

Using these contributions, we have learned robot control policies representative of a beginner

swarm-style AIBO robocup team. This team consists of two separate behaviors, a goalie and fielder,

which were trained only by changing the demonstrator, no other aspect of the learning system was

modified between tasks. With DL, we compared different regression learning algorithms on these

and other tasks, again by only changing the appropriate aspect of the system. For tasks without

perceptual aliasing, standard regression techniques are sufficient for learning autonomous controllers

that are on par with the demonstrator. However, for behaviors with multiple, overlapping subtasks,

such as a more robust goal scorer, multimap regression is required.

This chapter will discuss our two main contributions and the work as a whole. Highlighting the

strengths of the approaches, we indicate further hypothesis to which they can be applied. We also

mention some limitations of the techniques, and our implementations thereof, and point out areas

of needed future development. This chapter, and the dissertation, concludes with a brief summary

and vision of the future.

6.1 Dogged Learning

Dogged Learning is our approach to mixed-initiative, interactive robot tutelage of unknown tasks

via human teleoperative demonstration. We take as given a robot platform with known sensor

and effectors, embodied in a fixed environment, as well as perceptual and actuational processes that

transform the raw sensor and effector data into the perception and action space of the control policy.

Decision making operates in these spaces, yielding a mapping from perception to actuation that

originates from the demonstrator, but is eventually approximated by the learner. We enable mixed

initiative control by using the idea of confidence-based arbitration, where the controller (learner or

demonstrator) that is more confident has control of the platform.

In considering DL, we distinguish between the abstract architecture and our particular imple-

mentation. In writing our system we have made several simplifications and design decisions that

ease the running of our experiments, but may cause the current code to fall short of the full potential

of the architecture. We are continuing to develop the code, adding more capabilities and removing

component-specific functionality as we incorporate more platforms, algorithms, and interfaces.

There are also simplifications that while initially made to ease implementation, may be more

difficult to remove. As an example, we currently only consider perception and actuation spaces

of fixed dimensionality, with known scaling coefficients. These assumptions enable us to use many

110

off-the-shelf machine learning algorithms, without having to tune their parameters for different tasks

or platforms. However, as discussed in Section 3.1, other platforms may have perception-actuation

spaces of variable dimensionality, or unknown scale. While the DL architecture’s specification allows

for those platforms to be used, the current implementation is not easily adapted to them.

We are also developing the system to improve applicability and adoption outside of our own

research lab. Our current implementation relies on libraries for all possible components being known

at compile time. This fact means that all researchers using DL must have the libraries for all learning

algorithms, demonstration interfaces and platforms that exist, even if they do not use them. We

are working on a more run-time friendly system, where only the components needed for a particular

experiment need to be implemented and present. Such modularity may also allow us to distribute

the activity of the DL system, so that demonstrators, learners, and platforms need not be co-located.

6.1.1 Strengths

Considering DL as an architecture, its main strengths are its abstract definition of the data flow,

and its ability to support interactive learning. Leveraging its abstractness, we directly compared

different learning algorithms and human and hand-coded controllers for use in the robot tutelage

paradigm in Sections 5.2.2 and 5.2.3. Using the interactive nature of the tutelage paradigm, we

were able to quickly home in on the aspects of the multimap goal-scoring task that made learning

impossible with standard regression in Section 5.2.4.

More broadly, we see DL as a general LfD framework, that could be applied in various manners.

In addition to running on more robots and tasks with different interfaces, it can also be applied to

non-robotic platforms. Specifically, as the architecture only requires that the platform sense and

effect the environment, the platform can be purely software instead of physical. Virtual robots in

simulation are an obvious possibility, but other, programmatic environments such as text editing or

email sorting may also be applicable.

We also consider DL as being suitable for use in Human-Robot Interaction (HRI) research.

Through the use of real-time interactive learning, DL can be used to rapidly “prototype” behaviors

for use in user studies, and even adapt them as the users are present. By doing so, time and effort

that would otherwise be spent programming the behavior or running the robot in a “Wizard-of-Oz”

setting can be allocated elsewhere. Further, because DL is designed to enable non-programmers to

instantiate control policies, there is the possibility that the users could edit the robot’s behavior

themselves, providing additional feedback as to how they would prefer the robot behave. The

resulting autonomous control policy could also continue to operate after the user leaves.

Future Experiments

This dissertation has focused on using DL to examine different learning algorithms for robot tutelage.

Our experiments in learning robot soccer behaviors led us to focus on perceptual aliasing, and dealing

with the presence of hidden state and multimap scenarios. However, with the above in mind, we

can formulate some other experiments for which DL would be a useful tool.

111

The first experiment would be a continuation of the work we did with SOGP and LWPR, and

examine several other learning algorithms. A large empirical study of the state-of-the-art in regres-

sion approaches, a well as the publication of the resulting data sets and algorithm implementations,

would enable researchers to better choose the algorithm that fits their needs, and point out areas

of regression (such as multimaps) that require more work. Using DL, algorithms can all be applied

to exactly the same platform and task, although the interactive training portion would have to be

sacrificed if the exact data is reused.

On the interactive side, while we have used tutelage to teach our robots, our desire to do so is

based only on personal experience. An evaluation of the approach on a broader set of users is a

necessity if the technique is to be shown useful. Hypothesis that can be tested include: Does tutelage

result in smaller datasets for a particular level of robot competence? Do users prefer interactive

teaching to batch data collection? Does mixed initiative control result in improved performance?

Considering users, we have focused on machine learning, and somewhat neglected the design of

our user interfaces. We have been guided in our development by the intuition that more immersive

devices (wiimote as opposed to joystick as opposed to keyboard) are better, but again a user study

would be able to prove or disprove this hypothesis. As with learning, different interface components

can be developed in isolation, and then tested on the same platform.

6.1.2 Limitations

In addition to the limitations of our implementation discussed above, the DL architecture itself is

limited in what and how it can learn. In particular, by learning unknown tasks only from user

demonstrations of that task, DL can only learn behaviors that the user can themselves perform, and

can only learn to perform them as the user does. It is, then, in general limited to being as good at

the task as the user is themselves. Slight improvements are possible given that learning algorithms

attempt to filter out noise in demonstration, but as we saw in Section 5.2.3, human demonstration

may be full of unmodeled noise.

Other RLfD approaches have enabled better-than-demonstrator learning by incorporating task-

specific knowledge into the system, such as indications of desired goal states [13, 74]. They then

use reinforcement learning, or other reward-based techniques, to optimize the initial policy learnt

from demonstration with respect to those goals. More generally, an entire reward function can be

provided, and the demonstrated policy used as a seed for standard RL techniques such as policy

iteration by gradient ascent. To utilize these approaches in DL, methods for obtaining the necessary

information from the user must be developed.

Related to reliance only upon demonstration is the fact that DL only allows for the user to

demonstrate appropriate actions for the current perception. That is, the action that the user is

commanding is assumed to be the appropriate response for the perception that the platform is

currently observing. Lag in the system due to network latency, code execution, and human synapse

firings is generally not a problem, as the robot’s movement through perception space tends to be

even slower. However, if the environment is sufficiently dynamic, the human response time may be

112

too slow to effectively demonstrate the desired task. Further, if the user makes a mistake in the

demonstration, they cannot correct it until the robot once again has the necessary perception.

This last issue raises a new one, which is that DL relies solely upon positive demonstration.

Like other LfD techniques, it assumes that the user is demonstrating appropriate actions for the

task. However, mistakes in demonstration nonwithstanding, it may actually be easier for the user

to demonstrate what not to do, perhaps because the set of forbidden actions is smaller than those

allowed. While reinforcement learning has considered negative rewards, regression approaches have

traditionally not.

Future Development

To address these issues, future work in developing DL will focus on incorporating aspects of RL.

Specifically, DL needs additional channels of information flow from the demonstrator to the decision

making system, other than just an appropriate action and confidence. Modifications to the learning

system itself may be required to take advantage of this new information.

As an example, consider adding a reward channel to DL, where during autonomous execution, the

user can provide positive or negative reward (perhaps through vocal prosody [73] or a clicker [72]).

To fully utilize this channel, the autonomous behavior must contain some aspect of exploration,

instead of only exploiting the demonstration. One method, for use in ROGER and SOGP, would be

to sample from the output distribution, instead of only returning the mean and using the variance

as confidence. This approach would have the added benefit that areas of high confidence, where the

policy mapping is known with greater surety, would be subject to less exploration.

Incorporating the reward into the learner itself is nontrivial. When an explored action is positively

rewarded, one approach would be to add it to the learner, as if the perception-actuation pair had

been generated by the demonstrator themselves. The resulting distribution over actions would then

shift to cover both the original demonstration, and the recently explored and positively rewarded

one. By weighing the data differently, the learning algorithm can be made to favor demonstration or

exploration-generated data. From the data it may even be possible to infer which is more trustworthy

[9]. However, if an explored action generates a negative signal, it is unclear how the underlying

distribution over actions should change. One option would be to shift the distribution away from

the negative point, but keep the modality the same. Another possibility would be to “split” the

distribution, introducing a new peak, with a corresponding valley at the negative example.

As an alternative to providing point rewards for individual perceptions or perception-action

pairs as they occur, users could provide more overarching feedback. Again, a method for getting

this information from the user is needed, but they could, for example, indicate that a particular

situation is the goal of the current task. In that case, we would likely need a reinforcement learning

technique running in parallel with regression to develop the policy.

Lastly, if the user can indicate future reward by identifying goal states, they could likely also

provide feedback on previously performed actions as well, addressing the synchrony limitation. As in

[8], a user could be presented with a trace of the robot’s path through perception-action space, and

113

assign rewards or provide demonstrations after the fact. Further, they could also indicate appropriate

modifications to the policy (advice) to improve it’s efficacy beyond that of the demonstrator.

6.2 Realtime Overlapping Gaussian Expert Regression

ROGER addresses the issue of perceptual aliasing that can arise when attempting to learn FSM-

based controllers from demonstration. In particular, as only perception-actuation pairs are observed,

the machine state, or subtask, which gave rise to a particular datapoint is unknown. ROGER

explicitly attempts to infer these latent subtask indicator variables, modelling each subtask as a

expert with a Gaussian area of influence in perception space, and a Gaussian distribution over

possible mappings from perception to actuation. Using the Chinese Restaurant Process (CRP),

datapoints are sequentially assigned to experts, always considering the possibility that a new expert

may need to be created. Thus, in terms of the FSM, ROGER performs both model selection and

subtask learning as it determines the appropriate number of experts and their individual mappings.

Like with DL, our implementation of ROGER makes some simplifications to the true model

for ease of implementation and experimentation. Mostly, we have altered the parameterization, by

assuming that Λ, the covariance of the input space prior, is spherical, and that the kernel width

is isotropic. Additionally, we assume that the output dimensions are independent of one another.

These approximations relieve us of having to specify many hundreds of additional parameters, but

may have had an adverse effect on our results.

Rather than hand setting the full (or reduced) parameter set, we can extend the inference pro-

cedure of ROGER to automatically tune them during training. Small gradient ascent steps can be

inserted after datapoints are incorporated to adjust the input space hyperparameters. Expectation-

maximization approaches for setting Gaussian process parameters already exist and could likewise

be included. Using such a technique would also address another simplification that we made, which

is to assume that all experts share the same parameters.

However, increasing the amount of computation that needs to be performed at inference will nec-

essarily slow down the process. To maintain realtime, interactive computation, we must streamline

and improve our code. Regular optimization techniques can be applied, and we are investigating

faster math libraries and methods to reduce overhead and data replication. Further sparsification

techniques, such as automatically changing the number of particles or basis vector size on the fly,

may also be necessary.

6.2.1 Strengths

ROGER’s major strengths stem from the fact that it is a Bayesian, nonparametric approach. By

being Bayesian, ROGER leverages uncertainty in the form of distributions to enable it to consider

multiple possibilities for the number of subtasks, the exact partitioning of the data, and even the

mappings in the experts themselves. Further, additional information over what these values may

be can be incorporated in a principled manner, via priors. Through the use of nonparametrics,

114

ROGER can adapt to data of any form, with up to an infinite number of experts and arbitrarily

shaped mappings in each one.

These two aspects of ROGER are somewhat independent, but their use is intertwined. We could

have developed a multimap regressor that is Bayesian but not nonparametric, one that modeled

uncertainty over partitions with a fixed number of experts, or assumed a known form for the map-

pings. Alternatively, a nonparametric but not Bayesian approach would use heuristics to determine

when a new expert should be generated or the mapping should change form. Using both techniques

combines their strengths (uncertainty and adaptability) to make an approach that is more powerful

and flexible than either individually.

Specifically, by performing model selection within an infinite (nonparametric) Bayesian model,

ROGER has an advantage over techniques that assume known models or determine an appropriate

ones in a brute-force, heuristic, or ad-hoc method. Primarily this benefit is because the entire

distribution over possibilities (partitions and mappings) is approximated, instead of a single point

estimate. It is important to note that the approximation is done with a set of points, so in the worst

case ROGER with one particle is the same as a single point “best” estimate, which can get stuck in

local optima just like the non-Bayesian approaches. However, with more than one particle, ROGER

maintains a weighted set that is optimally chosen to represent the entire distribution.

Future Experiments

As a Bayesian model, ROGER is amenable to multiple inference and prediction algorithms. As

shown in Section 4.3.2, our incremental particle filter approach may be more suitable than batch

techniques in resource constrained settings, such as robot tutelage. However, as our approach inher-

ently generates a sparse approximation of the entire distribution, it is possible that the determined

partitioning is suboptimal. In fact, when resources are available, the batch inference technique may

be better. A logical experiment would be to examine if the two techniques can be combined, where

slow batch updates are interspersed within the fast incremental inference. By running the batch

updates during processor “down time,” the resulting system may better approximate the demon-

strated policy (in terms of accuracy and time to learning), with minimal impact on the interactive

nature of demonstration.

We would also like to apply ROGER to additional tasks, outside of the domain of robot soccer. In

this dissertation we have shown that ROGER is suitable for learning a particular FSM-style controller

that was previously unlearnable using regression-based LfD. However, the limits of ROGER have

not been probed. Other datasets, with more subtasks or closer overlap between them, may prove

more difficult to deal with. Automatic parameter tuning, discussed above, may be necessary to learn

tasks whose subtasks vary widely in noise, mapping, and input distribution.

Lastly, ROGER may be applicable outside of robot tutelage. Abstractly, we have equated mul-

timap regression with model selection and subtask learning in an FSM, and thus could apply ROGER

to any FSM learning problem, provided that the transitions can be learned separately. Beyond

FSMs, multimaps may arise in other situations, when provided features are insufficient to determine

115

appropriate outputs. By fostering relationships within and without the greater machine learning

community, we may find other datasets and problems to which ROGER can be applied.

6.2.2 Limitations

In the context of our work, that of inferring FSM robot controllers, ROGER’s greatest limitation

is in its lack of using temporal information. While the CRP does generate expert assignments

sequentially, and there are thus temporal dependencies between assignments, the overall partitioning

is independent of the order of the datapoints. Note, that the numbers assigned to experts are

inconsequential, used only for bookkeeping, and can be permuted to no ill effect. Truly leveraging

the information present in the sequence of datapoints would correspond to estimating the transition

matrix between the discovered subtasks.

A further limitation of our model, although not as serious of one, is that we assume that inputs for

a particular expert are distributed Gaussianly in perception space. For certain platforms, features,

and tasks, this assumption may not be true, and an alternate model may be more appropriate.

Continuing with our nonparametric approach, a generalized kernel density estimator may enable

ROGER to adapt to arbitrarily shaped input distributions. Currently, however, our infinite mixture

model approach allows non-Gaussian distributions to be modeled with multiple experts.

Another aspect of some concern is the current noise model in ROGER. The Gaussian Process

experts of which it is composed each assume that observations are corrupted by stationary Gaussian

noise. Noise, particularly from human demonstration, may exhibit nither of these properties, taking

a different form and also being dependent on the particular location of the data, as seen in Figure

5.9b. Nonstationary Gaussian process models [103] may be “swapped” in for our current output

model to address this issue, leveraging the modularity of our system.

Future Development

Our current work on ROGER focuses on incorporating temporality into the model. First attempts

used an ad-hoc post-processing approach that calculated the transition probabilities between experts

in the demonstration data, and then used those probabilities during prediction. This technique did

not lead to stable transitioning or acceptable task performance. Currently, we are investigating

approaches that modify the inference algorithm itself, to infer both the expert assignments and

transition matrix simultaneously. One possible adaptation would be to change the distribution over

partitions, as in

P (zi = k|z−i;α) =

β

N+α−1 k = zi−1

mk−β
N+α−1 , k ≤ K, k 6= zi−1

α
N+α−1 , k = K+

 (6.1)

By making it more likely that a point is assigned to the same expert as the datapoint immediately

preceding it, we can encourage the formation of chains of datapoints that represent temporally-

extended subtask execution. The trace of subtask activity over time would then accord with our

116

intuition that in FSM controllers, rapid subtask oscillation does not occur. However, modifying only

the CRP to effect this change may not be enough, as we would also need to take into account the

datapoint’s relative locations in perception space.

By performing transition and partition estimation at the same time, we hope to also address

oversegmentation, where ROGER subdivides subtasks into many different experts. Oversegmenta-

tion is not an issue in and of itself, as so long as the experts are transitioned between correctly it

does not matter how many there are. However, oversegmentation may be indicative of overfitting,

where the model so tightly adjusts to the training data that it fails to generalize properly to new

situations. Reducing oscillation between experts may also reduce their total number

Changing the input model may also reduce oversegmentation, although its effects on overfitting

are less obvious. As mentioned in Section 4.4, using a non-Gaussian input model may enable one

expert to fit data that would require multiple, smaller Gaussian experts. By having all of the data

in one, possibly non-convex, expert, the output mapping may better generalize to new situations

covered by the non-Gaussian distribution. However, nonparametric density estimation may result

in an input gate that overfits the data in another sense, in that the borders of the distribution can

be arbitrarily close to all of the data, preventing any generalization at all.

6.3 Summary

In this dissertation, we have used DL and ROGER to investigate the applicability of direct policy

approximation techniques to learning autonomous robot control policies from interactive demon-

stration. From our experiments with SOGP and LWPR on a set of Robocup-inspired soccer-related

tasks, including a complete swarm team, we determine that standard regression approaches are

suitable for learning unimap controllers directly from perception-actuation data. The results are

summarized in Figure 6.1, showing that for these unimap tasks, the learned behaviors are on par

with those of the demonstrator.

However, for data from an FSM controller, which consists of multiple subtasks that are mutually

applicable in certain perceptual states, standard regression is not suitable, and the learned policy

that results from using them fails to perform the task at all. Our analysis indicates that the

overlap between subtasks in perception space leads to perceptual aliasing, where one perception

has associated with it multiple, conflicting actions in the demonstration data. Standard regression,

assuming unimodally distributed outputs for a given input, incorrectly averages these possibilities.

Applying multimap regression, we learned a set of subtask controllers that when executed ap-

propriately, reperform the demonstrated task (multimap fieldsbot), albeit not at the same level of

the demonstrator. Key to the approach we used is that both the number of subtasks and their

policies were automatically determined, without additional information from the user, such as when

transitions occurred. The discovered subtasks may or may not match how a human would segment

the task, but are sufficient to perform the task.

117

 Unimap Fieldsbot Multimap Fieldsbot Goalie (Unimap)
0

10

20

30

40

50

60

70

80

90

100

Task

E
ffe

ct
iv

en
es

s
of

 p
ol

ic
y

(%
)

HCC
SOGP
ROGER

Figure 6.1: A summary of learning the swarm tasks. For the unimap tasks, unimap regression
(SOGP) learns a controller that is on par with the demonstrator, in terms of task effectiveness.
However, for the improved multimap scorer, SOGP fails to learn at all. Using multimap regression
(ROGER) to discover subtasks, we can learn an improved controller.

6.3.1 Strengths

The above result illustrates the primary strength of the work presented in this dissertation, that we

learn FSM robot controller subtasks incrementally from unsegmented demonstration data, which

to the best of our knowledge has never been done before. Previous approaches to FSM learning

have always taken the subtasks as known, either explicitly (by being given the subtask policies

themselves), or implicitly (by knowing when transitions occur). ROGER is also the first multimap

regression algorithm to be formulated specifically for, and be applicable to, interactive inference,

such as that which occurs during robot tutelage.

Despite being developed for robotics, the techniques developed herein are not tied to this domain.

Our developed code, which will be made freely available for academic use, is modular and abstract,

to enable other researchers to build off of our work. Already, our Dogged Learning architecture has

118

been applied outside of our lab, and our learning algorithms have been used in alternate settings,

such as combinatorial optimization. By providing an abstract interface (Dogged Learning), as well

as initial building blocks (virtual robots, ROGER, keyboard/screen interface), we have contributed

tools that others may find useful to extend this, and their own, research.

6.3.2 Limitations

While we have shown the applicability of our approaches to learning FSM controllers, our experimen-

tation is not exhaustive. Using mainly one robot, and one domain of tasks, our work has primarily

focused on showing that standard regression techniques are not suitable for learning FSMs from

demonstration, but that multimap techniques are. Our investigation of the perceptual aliasing that

occurs during subtask switching, and the resulting combination of possible alternatives that occurs

in unimap regression, constitutes a proof by analysis that unimap regression is not applicable. Our

experiments with learning the multimap goal scorer constitute a proof by example that multimap

approaches can be used to infer an appropriate subtask segmentation.

However, our experimentation does not support the conclusion that ROGER is more generally

applicable than in this case. We may have “gotten lucky” with our choice of platform, task, param-

eters, and even data. Recall that we used equal amounts of data from each of the subtasks when

training. Applying ROGER more broadly may alleviate this concern, or indicate changes that are

necessary to create a more general multimap regressor, or characteristics of data that are necessary

for effective learning. Likewise, our DL architecture has only been tested with a handful of plat-

forms, learning algorithms, and demonstrators, and a broader set of experiments would lay to rest

concerns about its applicability as well.

6.3.3 Future Work

In addition to the experiments discussed in Sections 6.1 and 6.2, we are interested in using DL

and ROGER to learn a wide variety of tasks from many users over long periods of time. Aside

from testing the general nature of the techniques, such an experiment would also examine their

applicability to lifelong learning, where a robot must learn multiple tasks and perform them over

its entire existence. We must then measure time in years, not minutes, and consider datasets that

number in the millions or billions of points (1010 for one year’s worth of data at 30 hertz).

DL and ROGER are well suited for use in lifelong learning. The interactive, mixed-initiative

control aspect of DL means that learning effectively never stops. Once the user has trained the

robot to perform one task to satisfaction, they simply stop demonstrating, but the DL system itself

can be left running. Then, if the user desires the robot to perform a new task, they can seamlessly

transition back to demonstration.

Determining the existence of multiple tasks in the robot’s lifelong data set can be seen as inferring

subtasks in an overarching “life” task. Further, if these life-subtasks are themselves composed of

subtasks or skills, there is the potential for skill sharing, where individual skills are used in multiple

119

higher-level subtasks. Using ROGER in a hierarchical fashion may then be a method for transfer

learning [31], where skills learned for one subtask are used or refined in the performance of another.

Our RGame interface, described in Section 3.5.1, is one step towards performing the scalability

experiments discussed in this subsection. By enabling users, from wherever they are in the world,

to demonstrate tasks to robots that are not colocated, we can greatly increase the size of our user

base. From such a diverse set of users, we can gather the needed billions of datapoints in a shorter

amount of time than if we generated them ourselves. Further, different users may demonstrate the

same task in multiple fashions, providing further variance in the data. Using this data we will be

able to better explore what qualities are needed for successful HRPT using current techniques, and

where new technique development should focus.

6.4 Conclusion

This dissertation started by examining the concept of a universal robot, one that could adapt

itself to users’ needs as they changed. We argued for the use of learning for Human-Robot Policy

Transfer as a means to allow users without programming or analytical expertise to instantiate desired

autonomous control policies. Focusing on interactive demonstration, our experiments with Dogged

Learning showed that using state-of-the-art regression techniques for direct policy approximation

limits such users to developing controllers that are unimaps in the underlying perception-action

space. Learning alternate (multimap) controllers either required additional information derived

from procedural analysis, or a modification of the platform in a task-specific manner. With ROGER

(Realtime Overlapping Gaussian Expert Regression), we have shown that it is possible to learn

subtasks sufficient for recreating multimap policies directly from unsegmented data.

Bibliography

[1] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. An application of rein-

forcement learning to aerobatic helicopter flight. In Neural Information Processing Systems,

pages 1–8, Vancouver, CAN, December 2006.

[2] Pieter Abbeel, Dmitri Dolgov, Andrew Y. Ng, and Sebastian Thrun. Apprenticeship learning

for motion planning with application to parking lot navigation. In International Conference

on Intelligent Robots and Systems, pages 1083–1090, Nice, France, September 2008.

[3] Julie A. Adams, Pramila Rani, and Nilanjan Sarkar. Mixed initiative interaction and robotic

systems. Technical Report WS-04-10, Vanderbilt University, 2004.

[4] Michael A.Goodrich, Timothy W. McLain, Jeffrey D. Anderson, Jisang Sun, and Jacob W.

Crandall. Managing autonomy in robot teams: observations from four experiments. In Inter-

national Conference on Human-Robot Interaction, pages 25–32, Arlington, VA, March 2007.

[5] Luis von Ahn. Human computation. In International Conference on Knowledge Capture, pages

5–6, Whistler, BC, Canada, October 2007.

[6] Luis von Ahn and Laura Dabbish. Designing games with a purpose. Communications of the

ACM, 51(8):58–67, August 2008.

[7] Brenna Argall, Brett Browning, and Manuela Veloso. Learning by demonstration with critique

from a human teacher. In International Conference on Human-Robot Interaction, pages 57–64,

Arlington, VA, March 2007.

[8] Brenna D. Argall, Brett Browning, and Manuela Veloso. Learning robot motion control with

demonstration and advice-operators. In International Conference on Intelligent Robots and

Systems, pages 399–404, Nice, France, September 2008.

[9] Brenna D. Argall, Brett Browning, and Manuela Veloso. Automatic weight learning for multi-

ple data sources when learning from demonstration. In International Conference on Robotics

and Automation, pages 226–231, Kobe, Japan, May 2009.

[10] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot

learning from demonstration. Robotics and Autonomous Systems, 57(5):469 – 483, May 2009.

120

121

[11] Ronald Arkin. Behavior-Based Robotics. MIT Press, 1998.

[12] Arthur Asuncion and David J. Newman. UCI machine learning repository.

http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

[13] Chris Atkeson and Stefan Schaal. Robot learning from demonstration. In International Con-

ference on Machine Learning, pages 12–20, Nashville, TN, July 1997.

[14] Paul Bakker and Yasuo Kuniyoshi. Robot see, robot do: An overview of robot imitation. In

AISB Workshop on Learning in Robots and Animals, pages 3–11, Brighton, U.K., April 1996.

[15] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement

learning. Discrete Event Dynamic Systems, 13(1-2):41–77, January 2003.

[16] Elizabeth A. Basha, Sai Ravela, and Daniela Rus. Model-based monitoring for early warning

flood detection. In ACM Conference on Embedded Network Sensor Systems, pages 295–308,

Raleigh, NC, November 2008.

[17] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust

Features. Computer Vision and Image Understanding, 110(3):346–359, June 2008.

[18] Matthew J. Beal, Zoubin Ghahramani, and Carl Edward Rasmussen. The infinite hidden

Markov model. In Neural Information Processing Systems, pages 577–584, Vancouver, CAN,

December 2001.

[19] Darrin C. Bentivegna, Christopher G. Atkeson, and Gordon Cheng. Learning tasks from

observation and practice. Robotics and Autonomous Systems, 47(2-3):163–169, June 2004.

[20] Cindy L. Bethel and Robin R. Murphy. Affective expression in appearance constrained robots.

In International Conference on Human-Robot Interaction, pages 327–328, Salt Lake City, Utah,

USA, March 2006.

[21] Bruce Blumberg, Marc Downie, Yuri Ivanov, Matt Berlin, Michael Patrick Johnson, and Bill

Tomlinson. Integrated learning for interactive synthetic characters. In Conference on Computer

Graphics and Interactive Techniques, pages 417–426, San Antonio, Texas, July 2002.

[22] Edwin V. Bonilla, Kian Ming A. Chai, and Christopher K. I. Williams. Multi-task Gaussian

process prediction. In Neural Information Processing Systems, pages 153–160, Vancouver,

CAN, December 2007.

[23] Gary Rost Bradski and Adrian Kaehler. Learning OpenCV. O’Reilly, 2008.

[24] Cynthia Breazeal, Matt Berlin, Andrew G. Brooks, Jesse Gray, and Andrea L. Thomaz. Us-

ing perspective taking to learn from ambiguous demonstrations. Robotics and Autonomous

Systems, 54(5):385–393, May 2006.

122

[25] Cynthia Breazeal, Andrew Brooks, Jesse Gray, Guy Hoffman, Corey Kidd, Hans Lee, Jeff

Lieberman, Andrea Lockerd, and David Chilongo. Tutelage and collaboration for humanoid

robots. International Journal of Humanoid Robotics, 1(2):315–348, June 2004.

[26] Rodney A. Brooks. Intelligence without reason. In International Joint Conference on Artificial

Intelligence, pages 569–595, Sydney, Australia, August 1991.

[27] James Bruce, Stefan Zickler, Mike Licitra, and Manuela Veloso. CMDragons: Dynamic passing

and strategy on a champion robot soccer team. In International Conference on Robotics and

Automation, pages 4074–4079, Pasadena, CA, May 2008.

[28] Jennifer L. Burke, Robin R. Murphy, Michael D. Coovert, and Dawn L. Riddle. Moonlight in

miami: a field study of human-robot interaction in the context of an urban search and rescue

disaster response training exercise. Human-Computer Interaction, 19(1):85–116, June 2004.

[29] Sylvain Calinon and Aude Billard. Incremental learning of gestures by imitation in a humanoid

robot. In International Conference on Human-Robot Interaction, pages 255–262, Arlington,

VA, March 2007.

[30] Sylvain Calinon and Aude Billard. A probabilistic programming by demonstration framework

handling constraints in joint space and task space. In International Conference on Intelligent

Robots and Systems, pages 367–372, Nice, France, September 2008.

[31] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, July 1997.

[32] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning

algorithms. In International Conference on Machine Learning, pages 161–168, Pittsburgh, PA,

June 2006.

[33] Sonia Chernova and Manuela Veloso. Learning equivalent action choices from demonstration.

In International Conference on Intelligent Robots and Systems, pages 1216–1221, Nice, France,

September 2008.

[34] Sonia Chernova and Manuela Veloso. Multi-thresholded approach to demonstration selection

for interactive robot learning. In International Conference on Human-Robot Interaction, pages

225–232, Amsterdam, The Netherlands, March 2008.

[35] Sonia Chernova and Manuela Veloso. Teaching collaborative multi-robot tasks through demon-

stration. In International Conference on Humanoid Robots, pages 385–390, Daejeon, S. Korea,

December 2008.

[36] Sonia Chernova and Manuela Veloso. Interactive policy learning through confidence-based

autonomy. Journal of Artifical Intelligence Research, 34(1):1–25, January 2009.

123

[37] Sachin Chitta and James P. Ostrowski. New insights into quasi-static and dynamic omnidirec-

tional quadrupedal walking. In International Conference on Intelligent Robots and Systems,

pages 2306–2311, Wailea, Hawaii, October 2001.

[38] Marco Colombetti and Marco Dorigo. Training agents to perform sequential behavior. Adaptive

Behavior, 2(3):247–275, January 1994.

[39] Philip T. Cox and Trevor J. Smedley. Visual programming for robot control. In IEEE Sym-

posium on Visual Languages, pages 217–224, Nova Scotia, CAN, September 1998.

[40] Jacob W. Crandall and Michael A Goodrich. Experiments in adjustable autonomy. In Interna-

tional Conference on Systems, Man, and Cybernetics, pages 1624–1629, Tuscan, AZ, October

2001.

[41] Lehel Csató. Gaussian Processes - Iterative Sparse Approximations. PhD thesis, Aston Uni-

versity, March 2002.

[42] Lehel Csató and Manfred Opper. Sparse Online Gaussian Processes. Neural Computation,

14(3):641–669, January 2002.

[43] Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni. A general agnostic active learning algo-

rithm. In Neural Information Processing Systems, pages 353–360, Vancouver, CAN, December

2007.

[44] Thomas Dean, Dana Angluin, Kenneth Basye, Sean Engelson, Leslie Kaelbling, Evangelos

Kokkevis, and Oded Maron. Inferring finite automata with stochastic output functions and

an application to map learning. Machine Learning, (1):81–108, 1995.

[45] Thomas Dean, Ken Basye, and John Shewchuk. Machine Learning Methods for Planning and

Scheduling, chapter 1: Reinforcement Learning for Planning and Control. Morgan Kaufmann,

1992.

[46] Thomas G. Dietterich. The maxq method for hierarchical reinforcement learning. In Interna-

tional Conference on Machine Learning, pages 118–126, Madison, WI, July 1998.

[47] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte carlo sampling

methods for bayesian filtering. Statistics and Computing, 10(3):197–208, July 2001.

[48] Paul Fearnhead. Particle filters for mixture models with an unknown number of components.

Statistics and Computing, 14(1):11–21, January 2004.

[49] Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky. An HDP-HMM

for systems with state persistence. In International Conference on Machine Learning, pages

312–319, Helsinki, Finland, July 2008.

124

[50] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S. Weld. Automatically generating user

interfaces adapted to users’ motor and vision capabilities. In ACM Symposium on User Inter-

face Software and Technology, pages 231–240, Newport, Rhode Island, USA, October 2007.

[51] Erann Gat. Artificial Intelligence and Mobile Robots, chapter : On Three-layer Architectures.

AAAI Press, 1997.

[52] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B Rubin. Bayesian data analysis.

Chapman & Hall, 1995.

[53] Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The Player/Stage Project: Tools

for Multi-Robot and Distributed Sensor Systems. In International Conference on Advanced

Robotics, pages 317–323, Portugal, June 2003.

[54] Kenneth Y. Goldberg, Billy Chen, Rory Solomon, Steve Bui, Bobak Farzin, Jacob Heitler,

Derek Poon, and Gordon Smith. Collaborative teleoperation via the internet. In International

Conference on Robotics and Automation, pages 2019–2024, San Francisco, CA, April 2000.

[55] Robert L. Goldstone and Marco A. Janssen. Computational models of collective behavior.

Trends in Cognitive Sciences, 9(9):424–430, September 2005.

[56] Eduardo Rodrigues Gomes and Ryszard Kowalczyk. Dynamic analysis of multiagent q-learning

with ε-greedy exploration. In International Conference on Machine Learning, pages 369–376,

Montreal, Quebec, Canada, June 2009.

[57] Daniel H Grollman and Odest Chadwicke Jenkins. Dogged learning for robots. In International

Conference on Robotics and Automation, pages 2483 – 2488, Rome, Italy, April 2007.

[58] Daniel H Grollman and Odest Chadwicke Jenkins. Learning robot soccer skills from demon-

stration. In International Conference on Development and Learning, pages 276–281, London,

UK, July 2007.

[59] Daniel H. Grollman, Odest Chadwicke Jenkins, and Frank Wood. Discovering natural kinds

of robot sensory experiences in unstructured environments. Journal of Field Robotics, 23(11-

12):1077–1089, November–December 2006.

[60] Mance E. Harmon and Stephanie S. Harmon. Reinforcement learning: a tutorial. Wright

Laboratory, Centerville OH, 1996.

[61] Gillian Hayes and John Demiris. A robot controller using learning by imitation. In Interna-

tional Symposium on Intelligent Robotic Systems, Grenoble, France, July 1994.

[62] Xiaofei He, Deng Cai, and Partha Niyogi. Laplacian score for feature selection. In Neural

Information Processing Systems, pages 507–514, Vancouver, CAN, December 2005.

125

[63] Frederik W. Heger and Sanjiv Singh. Sliding autonomy for complex coordinated multi-robot

tasks: Analysis and experiments. In Robotics: Science and Systems, pages 17–24, Philidelphia,

PA, August 2006.

[64] Hannah Hickey. Computer game’s high score could earn the nobel prize in medicine.

http://uwnews.org/article.asp?articleID=41558, May8 2008.

[65] Xuelei Hu and Lei Xu. Investigation on several model selection criteria for determining the

number of cluster. Neural Information Processing. - Letters and Reviews, 4(1):1–10, July 2004.

[66] İlhan Uysal and H. Altay Güvenir. An overview of regression techniques for knowledge dis-

covery. Knowledge Engineering Review, 14(4):319–340, December 1999.

[67] Tetsunari Inamura, Masayuki Inaba, and Hirochika Inoue. Acquisition of probabilistic behavior

decision model based on the interactive teaching method. In International Conference on

Advanced Robotics, pages 523–528, Tokyo, Japan, October 1999.

[68] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive

mixtures of local experts. Neural Computation, 3(1):79–87, Spring 1991.

[69] Odest C. Jenkins, German Gonzalez, and Matthew M. Loper. Interactive human pose and

action recognition using dynamical motion primitives. International Journal of Humanoid

Robotics, 4(2):365–385, June 2007.

[70] Nicholas K. Jong and Peter Stone. State abstraction discovery from irrelevant state variables.

In International Joint Conference on Artificial Intelligence, pages 752–757, Edinburgh, U.K.,

August 2005.

[71] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting

in partially observable stochastic domains. Artificial Intelligence, 101(1–2):99–134, May 1998.

[72] Frédéric Kaplan, Pierre-Yves Oudeyer, Enikö Kubinyi, and Ádám Miklósi. Robotic clicker

training. Robotics and Autonomous Systems, 38(3–4):197–206, September 2001.

[73] Elizabeth S. Kim and Brian Scassellati. Learning to refine behavior using prosodic feedback.

In International Conference on Development and Learning, pages 205–210, London, UK, July

2007.

[74] Jens Kober, Betty Mohler, and Jan Peters. Learning perceptual coupling for motor primitives.

In International Conference on Intelligent Robots and Systems, pages 834–839, Nice, France,

September 2008.

[75] J. Zico Kolter, Pieter Abbeel, and Andrew Y. Ng. Hierarchical apprenticeship learning, with

application to quadruped locomotion. In Neural Information Processing Systems, pages 769–

776, Vancouver, CAN, December 2007.

126

[76] James Kramer and Matthias Scheutz. Autonomous Robots, 22(2):101–132, February 2007.

[77] James J. Kuffner Jr. and Steven M. LaValle. RRT-Connect: An efficient approach to single-

query path planning. In International Conference on Robotics and Automation, pages 995–

1001, San Francisco, CA, April 2000.

[78] Scott R. Kuindersma, Edward Hannigan, Dirk Ruiken, and Roderic A. Grupen. Dexterous mo-

bility with the ubot-5 mobile manipulator. In International Conference on Advanced Robotics,

Munich, Germany, June 2009.

[79] Micah Lapping-Carr, Odest Chadwicke Jenkins, Daniel H Grollman, Jonas N Schwertfeger,

and Theodora R Hinkle. Wiimote interfaces for lifelong robot learning. In AAAI Spring

Symposium, Menlo Park, CA, USA, March 2008.

[80] Tessa Lau. Programming by Demonstration: a Machine Learning Approach. PhD thesis,

University of Washington, May 2001.

[81] Ethan Leland, Odest Chadwicke Jenkins, Brendan Dickenson, Dan Grollman, and Mark Mose-

ley. The Brown University Robocup 2006 four-legged league team report. Master’s thesis,

Brown University, May 2006.

[82] David J.C. Mackay. Neural Networks and Machine Learning, chapter Introduction to Gaussian

Processes. Springer-Verlag, 1998.

[83] Sridhar Mahadevan. Proto-value functions: developmental reinforcement learning. In Inter-

national Conference on Machine Learning, pages 553–560, Bonn, Germany, August 2005.

[84] Adriano Mancini, Emanuele Frontoni, Andrea Ascani, and Primo Zingaretti. RoboBuntu: a

Linux distribution for mobile robotics. In International Conference on Robotics and Automa-

tion, pages 2544–2549, Kobe, Japan, May 2009.

[85] Ruben Martinez-Cantin, Nando de Freitas, Arnaud Doucet, and José A. Castellanos. Active

policy learning for robot planning and exploration under uncertainty. In Robotics: Science

and Systems, pages 321–328, Atlanta, GA, USA, June 2007.

[86] Bruce Maxwell, Nicholas Ward, and Frederic Heckel. Game-based design of human-robot in-

terfaces for urban search and rescue. In Computer-Human Interaction Fringe, Vienna, Austria,

April 2004.

[87] Andrew Kachites Mccallum. Reinforcement learning with selective perception and hidden state.

PhD thesis, The University of Rochester, May 1996.

[88] R. Andrew McCallum. Overcoming incomplete perception with utile distinction memory. In

International Conference on Machine Learning, pages 190–196, Amherst, MA, USA, June

1993.

127

[89] Edward Meeds and Simon Osindero. An alternative infinite mixture of Gaussian process ex-

perts. In Neural Information Processing Systems, pages 883–890, Vancouver, CAN, December

2005.

[90] Francisco S. Melo and M. Isabel Ribeiro. Reinforcement learning with function approximation

for cooperative navigation tasks. In International Conference on Robotics and Automation,

pages 3321–3327, Pasadena, CA, May 2008.

[91] M. Alejandra Menchaca-Brandan, Andrew M. Liu, Charles M. Oman, and Alan Natapoff.

Influence of perspective-taking and mental rotation abilities in space teleoperation. In In-

ternational Conference on Human-Robot Interaction, pages 271–278, Arlington, VA, March

2007.

[92] Heiko Müller, Martin Lauer, Roland Hafner, Sascha Lange, Artur Merke, and Martin Ried-

miller. Making a robot learn to play soccer using reward and punishment. In German Confer-

ence on Advances in Artificial Intelligence, pages 220–234, Osnabrück, Germany, September

2007.

[93] Bilge Mutlu and Jodi Forlizzi. Robots in organizations: the role of workflow, social, and

environmental factors in human-robot interaction. In International Conference on Human-

Robot Interaction, pages 287–294, Amsterdam, The Netherlands, March 2008.

[94] Radford M. Neal. Markov chain sampling methods for Dirichlet process mixture models.

Technical Report 9815, University of Toronto, 1998.

[95] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In Interna-

tional Conference on Machine Learning, pages 663–670, Stanford, CA, June 2000.

[96] Monica Nicolescu and Maja J. Matarić. Natural methods for robot task learning: Instructive

demonstration, generalization and practice. In International Joint Conference on Autonomous

Agents and Multi-Agent Systems, pages 241–248, Melbourne, AUS, July 2003.

[97] Monica N. Nicolescu, Odest C. Jenkins, Adam Olenderski, and Eric Fritzinger. Learning

behavior fusion from demonstration. Interaction Studies, 9(2):319–352, June 2008.

[98] Curtis W. Nielsen, Michael A. Goodrich, and Robert W. Ricks. Ecological interfaces for

improving mobile robot teleoperation. Transactions on Robotics, 23(5):927–941, October 2007.

[99] Stefano Nolfi and Jun Tani. Extracting regularities in space and time through a cascade

of prediction networks: The case of a mobile robot navigating in a structured environment.

Connection Science, 11(2):129–152, June 1999.

[100] Donald A. Norman. The Design of Everyday Things. Basic Books, 1998.

128

[101] Sarah Osentoski and Sridhar Mahadevan. Learning state-action basis functions for hierarchical

MDPs. In International Conference on Machine Learning, pages 705–712, Corvalis, Oregon,

June 2007.

[102] Nuno Otero, Aris Alissandrakis, Kerstin Dautenhahn, Chrystopher Nehaniv, Dag Sverre

Syrdal, and Kheng Lee Koay. Human to robot demonstrations of routine home tasks: explor-

ing the role of the robot’s feedback. In International Conference on Human-Robot Interaction,

pages 177–184, Amsterdam, The Netherlands, March 2008.

[103] Christopher J. Paciorek and Mark J. Schervish. Nonstationary covariance functions for Gaus-

sian process regression. In Neural Information Processing Systems, pages 273–280, Vancouver,

CAN, December 2003.

[104] Angelika Peer, Sandra Hirche, Carolina Weber, Inga Krause, Martin Buss, Sylvain Miossec,

Paul Evrard, Olivier Stasse, Ee Sian Neo, Abderrahmane Kheddar, and Kazuhito Yokoi. Inter-

continental multimodal tele-cooperation using a humanoid robot. In International Conference

on Intelligent Robots and Systems, pages 405–411, Nice, France, September 2008.

[105] Jim Pitman. Combinatorial stochastic processes. Notes for Saint Flour Summer School, 2002.

[106] Nancy S. Pollard and Victor Brian Zordan. Physically based grasping control from example. In

SIGGRAPH/Eurographics symposium on Computer animation, pages 311–318, Los Angeles,

California, July 2005.

[107] Josep M. Porta, Nikos Vlassis, Matthijs T.J. Spaan, and Pascal Poupart. Point-based value

iteration for continuous pomdps. Journal of Machine Learning Research, 7(11):2329–2367,

November 2006.

[108] Harsha Prahlad, Ron Pelrine, Scott Stanford, John Marlow, and Roy Kornbluh. Electroad-

hesive robots – wall climbing robots enabled by a novel, robust, and electrically controllable

adhesion technology. In International Conference on Robotics and Automation, pages 3028–

3033, Pasadena, CA, May 2008.

[109] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric

Berger, Rob Wheeler, and Andrew Ng. ROS: an open-source robot operating system. In

ICRA Workshop on Open Source Software in Robotics, Kobe, Japan, May 2009.

[110] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approx-

imate gaussian process regression. Journal of Machine Learning Research, 6(12):1939–1959,

December 2005.

[111] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In Inter-

national Joint Conference on Artificial Intelligence, pages 2586 – 2591, Hyderabad, India,

January 2007.

129

[112] Carl Rasmussen and Zoubin Ghahramani. Infinite mixtures of Gaussian process experts. In

Neural Information Processing Systems, pages 881–888, Vancouver, CAN, December 2001.

[113] Carl Edward Rasmussen. The infinite Gaussian mixture model. In Neural Information Pro-

cessing Systems, pages 554–560, Vancouver, CAN, December 2000.

[114] Martin Riedmiller, Artur Merke, Manuel Nickschas, Wilhem Nowak, and Daniel Withopf.

Brainstormers 2003 - team description. In Robocup, Padua, Italy, July 2003.

[115] Paul E. Rybski, Kevin Yoon, Jeremy Stolarz, and Manuela Veloso. Interactive robot task

training through dialog and demonstration. In International Conference on Human-Robot

Interaction, pages 255–262, Arlington, VA, March 2007.

[116] Joe Saunders, Chrystopher L. Nehaniv, and Kerstin Dautenhahn. Teaching robots by mould-

ing behavior and scaffolding the environment. In International Conference on Human-Robot

Interaction, pages 142–150, Salt Lake City, Utah, USA, March 2006.

[117] Tetsuo Sawaragi and Yukio Horiguchi. Ecological interface enabling human-embodied cognition

in mobile robot teleoperation. Intelligence, 11(3):20–32, September 2000.

[118] Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational approaches to motor learning

by imitation. Philosophical Transaction of the Royal Society of London, 358(1431):537–547,

March 2003.

[119] Stefan Schaal, Marc Toussaint, Giorgos Petkos, and Narayanan Edakunni. LWPR code.

http://homepages.inf.ed.ac.uk/svijayak/software/LWPR/, 2003.

[120] Stephen Se, David Lowe, and Jim Little. Mobile robot localization and mapping with un-

certainty using scale-invariant visual landmarks. International Journal of Robotics Research,

21(8):735–758, August 2002.

[121] Pierre Sermanet, Raia Hadsell, Marco Scoffier, Matt Grimes, Jan Ben, Ayse Erkan, Chris

Crudele, Urs Muller, and Yann LeCun. A multi-range architecture for collision-free off-road

robot naviffion. Journal of Field Robotics, 26(1):58–87, January 2009.

[122] Jivko Sinapov, Mark Wiemer, and Alexander Stoytchev. Interactive learning of the acousitc

properties of household objects. In International Conference on Robotics and Automation,

pages 2518–2524, Kobe, Japan, May 2009.

[123] William D. Smart and Leslie Pack Kaelbling. Effective reinforcement learning for mobile

robots. In International Conference on Robotics and Automation, pages 3404–3410, Washing-

ton, D.C., May 2002.

[124] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In

Neural Information Processing Systems, pages 1257–1264, Vancouver, CAN, December 2006.

130

[125] Matthijs T. Spaan and Nikos Vlassis. Perseus: Randomized point-based value iteration for

pomdps. Journal of Artifical Intelligence Research, 24(1):195–220, January 2005.

[126] Mike Stilman, Koichi Nishiwaki, and Satoshi Kagami. Humanoid teleoperation for whole body

manipulation. In International Conference on Robotics and Automation, pages 3175–3180,

Pasadena, CA, May 2008.

[127] Mervyn Stone and Rodney J. Brooks. Continuum regression: Cross-validated sequentially

constructed prediction embracing ordinary least squares, partial least squares and principal

components regression. Journal of the Royal Statistical Society, 52(2):237–269, March 1990.

[128] Peter Stone and Manuela Veloso. Beating a defender in robotic soccer: Memory-based learning

of a continuous function. In Neural Information Processing Systems, pages 896–902, Vancouver,

CAN, December 1996.

[129] Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment, and low-

bandwidth communication for real-time strategic teamwork. Artificial Intelligence, 110(2):241–

273, June 1999.

[130] Peter Stone and Manuela M. Veloso. Layered learning. In European Conference on Machine

Learning, pages 369–381, Barcelona, Catalonia, Spain, May 2000.

[131] Daniel Stronger and Peter Stone. Maximum likelihood estimation of sensor and action model

functions on a mobile robot. In International Conference on Robotics and Automation, pages

2104–2109, Pasadena, CA, May 2008.

[132] Simone Stumpf, Erin Sullivan, Erin Fitzhenry, Ian Oberst, Weng-Keen Wong, and Margaret

Burnett. Integrating rich user feedback into intelligent user interfaces. In International Con-

ference on Intelligent User Interfaces, pages 50–59, Gran Canaria, Spain, January 2008.

[133] Richard Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-

ods for reinforcement learning with function approximation. In Neural Information Processing

Systems, pages 1057–1063, Vancouver, CAN, December 2000.

[134] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA, 1998.

[135] Richard S. Sutton, Doina Precup, and Satinder P. Singh. Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-

2):181–211, June 1999.

[136] Dag Sverre Syrdal, Kheng Lee Koay, Mick L. Walters, and Kerstin Dautenhahn. A Person-

alized Robot Companion? - the Role of Individual Differences on Spatial Preferences in HRI

Scenarios. In International Symposium on Robot & Human Interaction, pages pp. 1143–1148,

Jeju Island, Korea, August 2007.

131

[137] Leila Takayama, Wendy Ju, and Clifford Nass. Beyond dirty, dangerous and dull: what every-

day people think robots should do. In International Conference on Human-Robot Interaction,

pages 25–32, Amsterdam, The Netherlands, March 2008.

[138] Jun Tani and Stefano Nolfi. Learning to perceive the world as articulated: An approach for

hierarchical learning in sensory-motor systems. Neural Networks, 12(7–8):1131–1141, October

1999.

[139] Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Temporal difference and policy

search methods for reinforcement learning: An empirical comparison. In National Conference

on Artificial Intelligence, pages 1675–1678, Vancouver, CAN, July 2007.

[140] Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical dirichlet

processes. Journal of the American Statistical Association, 101(476):1566–1581, December

2006.

[141] Andrea L Thomaz and Cynthia Breazeal. Transparency and socially guided machine learning.

In International Conference on Development and Learning, pages 3475–3480, Bloomington,

IN, May 2006.

[142] Sebastian Thrun. Learning maps for indoor mobile robot navigation. Artificial Intelligence,

99(1):21–71, February 1998.

[143] Sebastian B. Thrun and Tom M. Mitchell. Lifelong robot learning. Technical Report IAI-TR-

93-7, University of Bonn, Jan 1993.

[144] J. Gregory Trafton, Alan C. Schultz, Magdalena Bugajska, and Farilee Mintz. Perspective-

taking with robots: experiments and models. In International Symposium on Robot & Human

Interaction, pages 580–584, Nashville, TN, August 2005.

[145] Katherine Tsui. Design and evaluation of a visual control interface of a wheelchair mounted

robotic arm for users with cognitive impairments. Master’s thesis, UMass Lowell, May 2004.

[146] Douglas L. Vail and Manuela M. Veloso. Feature selection for activity recognition in multi-

robot domains. In National Conference on Artificial Intelligence, pages 1415–1420, Chicao,

IL, July 2008.

[147] Meel Velliste, Sagi Perel, M. Chance Spalding, Andrew S. Whitford, and Andrew B. Schwartz.

Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198):1098–1101, June 2009.

[148] Deepak Verma and Rajesh P.N. Rao. Planning and acting in uncertain environments using

probabilistic inference. In International Conference on Intelligent Robots and Systems, pages

2382–2387, Beijing, China, October 2006.

[149] Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal. Incremental online learning in high

dimensions. Neural Computation, 17(12):2602–2634, December 2005.

132

[150] Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal. Lwpr: A scalable method for incre-

mental online learning in high dimensions. Technical Report EDI-INF-RR-0284, Edinburgh,

2005.

[151] Daniel Vlasic, Rolf Adelsberger, Giovanni Vannucci, John Barnwell, Markus Gross, Wojciech

Matusik, and Jovan Popović. Practical motion capture in everyday surroundings. ACM Trans.

Graph., 26(3):35–43, August 2007.

[152] Steven D. Whitehead and Dana H. Ballard. Learning to perceive and act by trial and error.

Machine Learning, 7(1):45–83, January 1991.

[153] Frank Wood, Daniel H. Grollman, Katherine A. Heller, Odest C. Jenkins, and Michael Black.

Incremental Nonparametric Bayesian Regression. Technical Report CS-08-07, Brown Univer-

sity Department of Computer Science, 2008.

[154] Mark Alistair Wood. An Agent-Independent Task Learning Framework. PhD thesis, University

of Bath, July 2008.

[155] Mark P. Woodward and Robert J. Wood. Using Bayesian inference to learn high-level tasks

from a human teacher. To appear in International Conference on Artificial Intelligence and

Pattern Recognition, Orlando, FL, July 2009.

