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Chapter 1

Introduction

Aerial imagery is a vital source of information for a large number of civil and defense appli-

cations, including city planning and land management, surveillance, and mission planning

and rehearsal. While the captured imagery itself can provide useful information, applica-

tions often require that the data be transformed in some way (e.g. registered to a common

coordinate system) or that information be extracted from it for it to be maximally useful.

One such application is that of 3-d localization of image points: Given a selected point in

a (2-d) image, it is often useful to determine the 3-d location of the corresponding world

point which produced the image intensity. Localization in 3-d requires the inference and

representation of potentially uncertain scene geometry based on the available image data

and is made possible using the reconstruction methods and probabilistic 3-d model pre-

sented in this thesis. A second application of aerial imagery is that of generating synthetic

images from viewpoints which have not been directly observed based on available imagery

from those that have. This process is known as novel view generation and is also made

possible using the methods and model presented in this thesis. Although there do exist

novel view generation methods which do not use explicit 3-d models (known collectively

as image-based rendering methods and discussed in Section 2.2), they are not capable of

producing accurate renderings from viewpoints far from any of the available input images.

In addition to 3-d point localization and novel view generation, 3-d models are also valuable

as tools enabling measurement of objects and distances in three dimensions as well as a way

to aggregate information from multiple images in applications such as change detection,

1
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which has been shown to have better performance when using 3-d models [53].

(a) (b) (c)

Figure 1.1: In the proposed system, input images (two of which are shown in (a)) are used
to generate a probabilistic model (b) which can be used to locate 3-d points and produce
expected images from novel viewpoints (c).

Three-dimensional information can be inferred from imagery, but manual effort is often

needed to ensure the accuracy and completeness of the models due to uncertainties and am-

biguities present in the image data. It is often the case that exact position is unknowable

given the image data alone due to ambiguities and intensity variation caused by unmod-

eled phenomenon. The precision with which 3-d points can be localized is also inherently

limited by the resolution of the images in which they appear. An automatic reconstruction

algorithm may handle these uncertainties and ambiguities by either resolving them based

on implicit or explicit prior assumptions about the scene geometry or by fully representing

them inherently in the reconstructed model. When dealing with real-world scenes, however,

prior assumptions about surface geometry are often violated, leading to reconstruction er-

rors. Often times a “smoothness” prior is used which in the case of uncertainty favors

the surface with the lowest possible curvature, leading to errors near sharp corners and

rough texture. Representations which allow for “fuzzy”, or probabilistic, representations of

surfaces are able to represent surfaces with uncertain location without making such prior

assumptions and are therefore able to avoid potential errors of this type. In order to be

useful for novel viewpoint generation, the model must also be capable of providing rich

information about the represented scene, including visibility and occlusion information for
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points in the scene. Finally, the model must lend itself to practical and efficient represen-

tation, enabling large-scale scenes to be represented with fine detail. This is particularly

important when modeling and generating views of large and complex outdoor scenes.

Currently, there exists a variety of manual, semi-automatic, and fully automatic 3-d

reconstruction algorithms used for the purpose of site modeling from aerial imagery. These

methods construct models which are necessarily compact in nature so that they are able to

scale to large scenes. (Detailed discussion is presented in Section 2.3.) Manual and semi-

automatic method are able to produce accurate reconstructions, but require tedious work

on the part of the operator. Automatic site-modeling systems are prone to error and not

capable of producing probabilistic representations which can account for the error sources.

There do exist, however, several probabilistic reconstruction algorithms in the computer

vision literature. These methods are capable of automatically producing volumetric scene

models which accurately represent uncertainties and (in some cases) ambiguities present in

the image data. These methods are discussed in detail in Section 2.4. Despite their ability

to construct probabilistic models these methods do not scale well to large and complex

scenes, primarily due to their dependence on large three-dimensional voxel arrays.

The work presented in this thesis generalizes the previous probabilistic models in such a

way that multiple orders of magnitude savings in storage are possible, making precise rep-

resentation and novel view generation of large-scale outdoor scenes possible. Specifically,

the inherent dependence on a discrete array of uniformly sized voxels is removed through

the derivation of a continuous probabilistic model. The continuous model allows for imple-

mentations which non-uniformly sample the volume, providing high resolution detail where

needed, and coarser resolutions in areas containing little information. In addition, multi-

ple reconstruction algorithms are presented to accommodate differing modes of operation

in which aerial imagery may be captured and used. The proposed model combined with

the reconstruction and novel view generation algorithms comprise the first system capa-

ble of automatically generating photo-realistic renderings of large and complex scenes from

arbitrary viewpoints based on aerial image data alone.
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1.1 Probabilistic Scene Models

The utility of a probabilistic model stems primarily from the fact that computing exact 3-d

structure based on 2-d images is in general an ill-posed problem. Bhotika et al. [5] char-

acterized the sources of difficulty as belonging to one of two classes: scene ambiguity and

scene uncertainty. Scene ambiguity exists due to the existence of multiple possible photo-

consistent scenes and is a problem even in the absence of any sensor noise or violations of

appearance assumptions (Figure 1.3). In the absence of prior information regarding the

scene structure, there is no reason to prefer one possible reconstruction over another. The

term “scene uncertainty”, on the other hand, is used to describe sources of error stemming

from unmodeled phenomenon including sensor noise, violations of simplified appearance

models, (e.g. Lambertian reflectance), and calibration errors (Figure 1.2). The presence of

scene uncertainty typically makes reconstruction of a perfectly photo-consistent scene im-

possible. A probabilistic model allows the scene ambiguity and uncertainty to be explicitly

represented, which in turn allows the assignment of confidence values to visibility calcula-

tions, expected images, and other data extracted from the model. A probabilistic model

can also be used to determine which areas of the scene require further data collection due

to low confidence.

1.1.1 Scene Uncertainty

The presence of scene uncertainty means that, even with a perfectly accurate reconstruction,

we cannot expect perfect photo-consistency due to various sources of noise. This fact is most

often dealt with by modeling the appearance of a surface point in a particular image as a

random sample drawn from a distribution (usually Gaussian) associated with the point. In

the space carving method of Kutulakos and Seitz [41], a global threshold on the variance of

the distribution is specified. A voxel whose projections have a sample variance greater than

this threshold is considered non photo-consistent and carved from the model as a result.

As Broadhurst et al. [7] point out, this approach can cause holes to be incorrectly carved in

the model. They improve on the space carving method by assigning a probability to each

voxel based on the likelihood that the image samples originated from a distribution with
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(a) (e)(d)(c)(b)

Figure 1.2: Various causes of scene uncertainty in the “Capitol” sequence. (a): Transient
foreground objects such as cars (b): Specularities and other non-Lambertian effects (c):
Movement of scene objects (caused by wind, for example) (d): Regions with large intensity
gradients are particularly sensitive to small errors in camera calibration (e): Sensor noise
and non-linear effects can cause appearance variation.

small variance rather than making a binary decision. Similarly, Bhotika et al. [5] carve each

voxel with a probability based on the variance of the samples in each of a large number

of runs. The final voxel probability is computed as the probability that the voxel exists in

a given run. Like these methods, the algorithms presented in this thesis are based on the

basic assumption that, all else being equal, voxels whose image projections have a small

variance across many views are more likely to be photo-consistent than those that have a

larger variance.

1.1.2 Scene Ambiguity

In the absence of any prior knowledge of the scene, the existence of scene ambiguity forces

one to concede the impossibility of reconstructing the scene exactly with total confidence.

This occurs when multiple reconstructions are possible which are photo-consistent with

all available image data. There are varying approaches to dealing with this reality. The

simplest approach is to consider any single photo-consistent reconstruction a valid solution

to the problem. The obvious drawback of this approach is that nothing can be said about

the certainty of the true scene matching the reconstruction or the relationship between the



6

(a) (b)

(c)
(d)

Figure 1.3: Scene Ambiguity. (a): Two cameras view a surface with three uniformly colored
regions. (b) The photo hull. (c) A probabilistic model: The true location of the surface
may be anywhere within the shaded regions. (d): If a prior on the shape of the surface is
available, a more accurate reconstruction may be possible.

reconstruction and the true scene, only that it is possible that the reconstruction is accurate.

If certain a priori information about the scene is available, the information may be used

to choose the photo-consistent reconstruction which best agrees with the prior. This is the

approach taken by most stereo algorithms, which use the assumption of smoothly varying

depth as a regularizing constraint (e.g. [25, 10, 76, 70]). The reconstruction algorithms

presented in this thesis do not utilize any such priors in order to keep them as generally

applicable as possible.

Another approach is to define a particular member of the set of photo-consistent recon-

structions as “special”, and aim to recover that member. This is the approach taken by

Kutulakos and Seitz [41] and Bhotika et al. [5]. Kutulakos and Seitz define the photo hull as

the tightest possible bound on the true scene geometry, i.e. the maximal photo-consistent

reconstruction. The photo hull is guaranteed to contain all possible photo-consistent re-

constructions, and to be itself a photo-consistent reconstruction. They show that under

ideal conditions the photo hull can be recovered exactly, while Bhotika et al. present a
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stochastic algorithm for probabilistic recovery of the photo hull in the presence of noise.

The photo hull provides a maximal bound on the true scene geometry, but does not contain

any information about the distribution of possible scene surfaces within the hull.

A third approach is to explicitly and probabilistically represent the full range of possible

scene reconstructions. Broadhurst et al. [7] aim to reconstruct such a representation, as

well as Pollard and Mundy [53] for the purpose of change detection. (These approaches

are discussed in detail in Section 2.4.) Because a model which fully represents both scene

ambiguities and uncertainties is desired, the model and algorithms presented in this thesis

are also based on this approach.

1.1.3 Representation

One of the most important aspects of any reconstruction algorithm is the way in which

the estimated 3-d geometry is represented. Ideally, a probabilistic reconstruction algorithm

would produce a probability distribution over the space of all possible surfaces. In prac-

tice, however, the dimensionality of the space is too large to feasibly represent. Previous

probabilistic reconstruction algorithms [57, 7, 5, 53] have relied on discrete models which

instead represent the probabilities of individual “volume elements”, or voxels, belonging to

a particular set of voxels S whose precise definition varies slightly between algorithms; the

set S may represent the volume occupied by the objects in the scene or the boundary of

the volume only. In either case, the space of possible surfaces is effectively marginalized

for each voxel by ignoring the interdependence of voxel probabilities. Each voxel v in the

model stores a probability P (Xv), where the proposition Xv represents “v ∈ S”.

One possible definition of S is the set of “surface voxels”. This definition is based

on the assumption that the surface is composed of a set of discrete, opaque voxels. The

model of Pollard and Mundy [53] is based on this definition of voxel probability. Although

not formulated as a probabilistic model, the opacity values associated with the voxels by

Debonet et al. [57] can also be treated as surface probabilities. The second possible definition

of S is the set of “occupied” voxels, the union of the set of surface voxels and the set of

interior voxels not visible from any viewpoint. This is the definition used by Broadhurst

et al. [7]. A third possible definition of S is used by Bhotika et al. [5]: the set of voxels
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comprising the photo hull (Section 1.1.2). One potential problem associated with methods

which define S to be the set of surface voxels is that of distinguishing between voxels interior

to surfaces (which may or may not be occupied) and visible, empty voxels in open space.

For example, the probability associated with the interior voxels in Pollard and Mundy’s

model are not well defined since a voxel is no longer updated once it is occluded from

all viewpoints. Although the model presented in this thesis does represent “surface-like”

geometry, a method is presented for determining interior and exterior regions in Section 5.3.

(a) (b)

P(depth = s)

s

Figure 1.4: Space discretization using voxels. (a) Discretization in scene-space: A best-
case reconstruction of the surface. (b) Discretization in “camera space”: The depth of the
scene along the camera ray is confined to a discrete probability distribution. Possible values
correspond to point of intersection with voxel boundaries (marked in red).

Regardless of the definition of the set S, there is no notion of “partial” voxels existing

in these discrete models. This means that the boundaries between empty space and ob-

jects in the scene (i.e. surfaces) may only exist at voxel boundaries. Assuming a best-case

reconstruction (surface location known with infinite precision), the maximum distance be-

tween the true surface and a voxel boundary is bounded by ℓ
2 , where ℓ is the side length

of a voxel. In general, however, surfaces cannot be localized with infinite precision for the
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reasons discussed previously. Instead, there is a some continuous range of possible surface

locations with an associated continuous probability distribution. Using traditional voxel

models, however, the continuous distribution is approximated by a set of discrete locations

which correspond to voxel boundaries.

In addition to representing the 3-d geometry itself, it is often useful to compute depth

map images where each pixel value represents the depth of the first world surface intersected

by its corresponding camera ray. Because the scene geometry is uncertain, these depth

values are represented by a probability distribution in a probabilistic model. Using the

discrete voxel models the distribution is also discrete since there are a finite number of

possible depth values corresponding to voxel boundaries along the camera ray. This type of

model is analogous to stereo methods which assign per-pixel depths based on a discrete set

of possible values. The maximum distance between two consecutive possible depth values

is
√

3ℓ and occurs when the ray enters and exits a voxel from opposite corners. Although

the continuous nature of the surface location and depth distribution are not reflected in the

model, it can be made arbitrarily precise by increasing the resolution (decreasing the voxel

size) of the model to satisfy a given precision constraint. Unfortunately, the cost of such

a representation in terms of both storage and computational requirements is prohibitive

for sufficiently complex scenes; unlike deterministic space carving methods [41] where only

surface voxels are explicitly represented, a full volumetric representation must be maintained

for the probabilistic case. This means that
(

L
ℓ

)3
voxels are required, where L

ℓ
is the linear

resolution desired.

In general, information regarding the location of objects and surfaces in the scene is

not known a priori, and so a regular sampling of the volume is a reasonable strategy. As

information is learned about the scene, however, a more intelligent sampling of the volume

should be possible in order to offset the cubic storage cost. Regions of low surface probability

can be sampled at a lower rate to increase efficiency, and regions of high surface probability

can be sampled a higher rate to increase effective resolution and accuracy. In voxel-based

models, a lower sampling rate translates to larger voxels. Unfortunately, handling variable

voxel sizes correctly presents serious problems for models based on discrete probabilities of

the form P (Xv). As voxel size grows, the discrete model becomes a poor representation of
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(a) (b)

surfaces

empty space

Figure 1.5: Variable voxel size: (a) A regular discretization of space. (b) Variable voxel size
allows a finer resolution near surfaces, and a coarser resolution in empty space where there
is little information.

the underlying scene knowledge even in the case of low, slowly varying probability regions.

As an example, consider a large region of space which is known, based on the data, to

have a low (but non-zero) probability of containing a world surface. This type of situation

commonly arises when large homogeneous surfaces are imaged. Based on the low, smoothly

varying probability, the region would seem to be an ideal candidate for data compression in

the model. Modeling the region with a single (for example) large voxel, however, creates a

large region with zero probability of containing a world surface (the interior of the voxel),

and a single potential location for the surface (the voxel boundary) with a finite probability

based on the probability P (Xv) assigned to the voxel. Data compression is achieved at the

cost of an accurate representation of the scene knowledge. An alternate way to view the

problem is from the point of view of a camera viewing the scene. Treating the depth of

occlusion along a camera ray as a random variable, the depth probability distribution for a

ray passing through the unknown region is continuous and close to uniform. Modeling the

region with a large voxel size, however, simply moves the possible occlusion depth values

further apart (Figure 1.6).

Rather than representing space using discrete elements with probability of belonging
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p(d = x) P (d = x)P (d = x)

(a) (b) (c)

d =? ambiguous region

Figure 1.6: The problem with discrete voxel models: (a) a ray passes through a uniformly
ambiguous region, resulting in a continuous probability distribution of the depth d of the
surface. (b) The distribution is approximated by a finite set of depths with associated
discrete probabilities when the region is represented by a series of small voxels. (c) The
depth distribution approximation becomes less accurate as the voxel size grows.

to a particular set, the model presented in this thesis represents the probability that a

ray passing through a point will be occluded by that point as a density function. Instead

of a discrete set of possible locations of the depth of the scene from the camera center

measured along a particular camera ray, a fully continuous probability density function

describing the depth may be computed. Details of the model are discussed in Chapter 3.

The key advantage of the proposed continuous model over the traditional discrete voxel

models is the ability to non-uniformly sample the scene space while maintaining accurate

representations of the continuously varying occlusion pdfs. This enables implementations

to efficiently represent large and complex scenes with fine detail, making it a viable solution

for scene modeling from aerial imagery.

1.2 Outline

The remainder of the thesis is laid out as follows. In Chapter 2, the state of the art in

3-d reconstruction from image data in general and aerial imagery specifically is discussed.

Existing probabilistic methods are discussed in detail, and the presented approach is com-

pared and contrasted. In Chapter 3, the continuous probabilistic scene model is presented

in detail. In chapter 4, an implementation of the scene model is presented which uses a



12

piecewise-constant assumption and is represented by an octree. An alternate piecewise-

linear implementation is also briefly discussed. In Chapter 5, algorithms for reconstructing

the probabilistic model are presented. The algorithms are first presented in their general

continuous form, and then adapted for use with the piecewise-constant implementation.

Both online and offline reconstruction algorithms are presented, as well as a method for

recovering a polygonal surface estimate from the probabilistic model. Chapters 6 and 7

discuss the results of the reconstruction algorithms on test and aerial video, respectively.

The test data is used in Chapter 6 in order to provide a basis for comparison between the

reconstructed 3-d models generated using the presented approach and existing techniques.

The 3-d localization and synthetic viewpoint generation methods are evaluated in Chapter 7

using aerial and satellite imagery to showcase the model’s ability to handle large outdoor

scenes with high levels of detail. In Chapter 8, a method for refining camera calibration

based on visual servoing techniques and expected image generation is discussed. Finally,

the thesis is concluded in Chapter 9.

1.3 Contributions

The following contributions are provided in this thesis:

• A continuous probabilistic scene model is presented which generalizes and improves

upon existing discrete models by enabling higher accuracy and more efficient sampling

techniques.

• An implementation of the model based on a piecewise-constant assumption and octree

for data storage is described.

• Methods for reconstructing probabilistic scene geometry and appearance based on

image data are presented for the general continuous model as well as simplified ver-

sions tailored to the piecewise-constant case. Both online and offline algorithms are

presented.

• A method for 3-d point localization using the probabilistic model is presented and

evaluated.
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• A method for the generation of synthetic images from novel viewpoints using using

the probabilistic model is presented and evaluated.

• A method for constructing a surface mesh representing the estimated positions of

surfaces present in the scene based on the probabilistic model is described for the

purposes of evaluating the accuracy of the reconstruction algorithms using standard

test data.

• A method for refining camera estimates which uses all available image data is described

and evaluated.

1.4 Notation

The following notation is used as consistently as possible throughout this thesis. Vector

quantities are denoted by boldface variable names, and scalars by regular font. A capital

“P” is used to represent discrete probabilities, and lowercase for continuous probability

density values. Propositions to which probabilities are assigned are denoted by capital

letters in calligraphic fonts (e.g. X , D, M).



Chapter 2

Related Work

The research presented in this thesis is closely related to work in several other fields. The

goal of this chapter is to provide an overview of currently existing methods for constructing

and visualizing computerized 3-d models based on image data. Site modeling from aerial

imagery is of particular interest, although general 3-d reconstruction and visualization is

also discussed. In Section 2.1, a brief discussion of general 3-d reconstruction methods

existing in the computer vision literature is presented, followed by the presentation of the

related field of image-based rendering in Section 2.2. In Section 2.3, previous work and the

current state of the art in site modeling will be discussed, including manual and automatic

methods. Previous reconstruction methods involving probabilistic models are discussed in

detail in Section 2.4, and the chapter is concluded in Section 2.4.5.

2.1 General 3-d Multi-view Reconstruction

3-d reconstruction from images is one of the fundamental problems of computer vision and

the basic principles behind it are discussed in many texts, including Hartley and Zisser-

man [33] and Ma et al. [48]. Reconstruction methods vary both in the algorithms used and

the type of output produced. While traditional dense two-view stereo methods generally

produce 21
2 -d depth maps, multi-view methods generally produce output in one of three

forms: 3-d point clouds based on feature correspondences, polygonal meshes, or volumetric

models.

14
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2.1.1 2.5-d Methods

Traditional stereo reconstruction methods take as input two (calibrated) images, and pro-

duce a disparity or depth map as output. Depth values are calculated by determining the

distance between points in the first image and their corresponding match in the second.

Due to the epipolar constraint [33], matching can be accomplished with a 1-d search. If a

smoothness and ordering constraints are also enforced, depth values can be efficiently com-

puted for each pixel using a dynamic programming scheme [3]. A Comprehensive review

of the stereo reconstruction literature as of 2002 is given by Scharstein and Szeliski [59].

While highly accurate results are possible [70, 75], the reconstruction results are limited to

functions of the form f(x, y) and cannot completely represent general 3-d scenes.

Figure 2.1: Stereo reconstruction input (two left-most images) and resulting depth map
(right). Results and image taken from Wang and Zheng [70]

2.1.2 Point-Based Methods

When reconstructing with a number of input images greater than two, it is reasonable to

produce a fully 3-d representation. One alternative is a discrete set of elements with no

inherent relationship to each other. The elements may be oriented or non-oriented points,

or small surface patches. Perhaps the most straightforward method of extending traditional

stereo to larger numbers of views is to perform traditional two-view stereo between image

pairs, convert the depth map values to 3-d point clouds, and merge the sets of estimated

points in 3-d. This is the approach taken by Bradley et al. [6], who also fit a triangular

mesh to the resulting filtered point cloud as an additional step. Other multi-view methods

explicitly match features across multiple images in 2-d, and then triangulate the 3-d position

using all correspondences simultaneously.
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Furukawa and Ponce [25] match small image patches across multiple frames, expanding

and filtering the set of matches using visibility constraints as the algorithm progresses.

A set of discrete small planar patches is output as a result. Habbecke and Kobbelt [31]

have developed another surface-element based reconstruction algorithm; theirs is able to

produce a dense set of circular disks with a smoothness assumption on the scene geometry.

Many multi-view methods are capable of computing 3-d point locations as well as camera

calibration information simultaneously using the constraints imposed by feature matches

across multiple images (so called “structure and motion”). One example of a such a method

is presented by Pollefeyes et al. [55], who use tracked Harris corner [32] features to establish

correspondences across frames of a video sequence. Brown and Lowe [9] and Snavely et

al. [65] use SIFT features [47] for the same purpose, with considerable success: Snavley et

al. have shown their system to successfully calibrate data sets consisting of hundreds of

images taken from the internet. The output of feature-based matching methods (at least in

an initial phase) is a discrete and sparse set of 3-d elements. While high quality point-based

visualization is possible in general [40], the reconstruction results of these methods are not

directly useful for this purpose since some regions (e.g. those with homogeneous appearance)

will be void of features and thus also void of reconstructed points. It is possible to estimate a

full surface mesh based on the reconstructed features [28, 25], but doing so requires imposing

regularizing constraints and hallucinating data to fill in “holes” corresponding to featureless

regions. Methods based on dense matching techniques avoid the hole-filling problem, but

are dependent on smoothness and ordering assumptions to perform the matching. The

methods presented in this thesis are not dependent on any assumptions regarding the 3-d

scene geometry, yet produce a dense model suitable for photorealistic rendering.

2.1.3 Surface-Based Methods

Another class of systems stores 3-d information in the form of a polygonal mesh whose

properties are optimized based on the image data. Hernández and Schmitt [35] initialize

a surface mesh based on the visual hull [42, 23] (which requires foreground segmentation)

and optimize the geometry based on silhouette and photo-consistency information. Other

methods [2, 17] based on surface optimization have also been proposed. Aside from requiring
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Figure 2.2: Two views of the “capitol” scene reconstructed using the patch-based multiview
stereo method of Furukawa and Ponce [25]. Matching is ambiguous in large homogeneous
regions such as the grassy area, and so no points are reconstructed there.

that the scene to be reconstructed can be segmented from the background in order to

produce an initial estimate, the utilization of a mesh representation requires knowledge of

the scene topology, which may be arbitrarily complex and not fully recoverable from the

visual hull alone. Zaharescu et al. [79] propose a method for robustly handling topology

changes during optimization, but still require an initialized mesh which is based on the visual

hull of the segmented foreground object. Because the methods presented in this thesis are

based on a volumetric representation, they are able to handle scenes with arbitrarily complex

topology. In addition, no segmentation or initial estimate is needed for the presented

reconstruction algorithms to operate. Vogiatzis et al. [69] use graph cuts in order to compute

an optimal surface which segments the “exterior” and “interior” of the modeled object.

They use a volumetric representation of the cost function which allows them to handle

topologically complex objects, but do not model occlusions which are instead treated as

outliers in the photo-consistency function. The reconstruction and visualization algorithms

presented in this thesis fully model occlusions in 3-d, allowing the reconstruction of complex

scenes with many objects.
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2.1.4 Volumetric Methods

A third class of systems represent the 3-d scene to be reconstructed as a set of voxels, which

are classified as either being occupied or empty [41] based on the visual hull and photomet-

ric consistency. Volumetric methods are capable of producing a complete representation of

the modeled surfaces (as mesh-based reconstructions do), yet (like point-based reconstruc-

tions) make no assumptions about scene topology and do not in general require foreground

segmentation or an initial estimate. One disadvantage of volumetric reconstruction meth-

ods is that they are capable of producing results only as accurate as the resolution of the

fixed-size grid on which the voxels are defined, and large grid sizes can potentially become

computationally expensive and infeasible to store in memory. A survey of early methods

was presented by Slabaugh et al. [63] in 2001. In general, volumetric models are initialized

with all voxels labeled as “occupied” and are iteratively carved away using one of two types

of constraints. The first type of constraint is the visual hull [42]. If foreground segmentation

is available in the input images, voxels which project to background pixels may be carved

from the model. The second type of constraint used in volumetric reconstruction methods

is that of color consistency: Under the assumption of a Lambertian scene and fixed illumi-

nation, a surface point must project to a pixel of the same intensity for each image in which

it is visible. Seitz and Dyer [62] showed that an ordinal visibility constraint on the set of

voxels is satisfied when no scene point is contained within the convex hull of the camera

centers. Using this constraint, voxels may be ordered such that all voxels which potentially

occlude a given voxel occur before it in the ordering. The set of voxels is then traversed,

and voxels which do not satisfy the color consistency constraint are removed. Those that

do are assigned the color of their projections. Kutulakos and Seitz [41] later presented a

variation which overcomes the ordinal visibility constraint by traversing the voxel grid in

six passes (one for each of the axis-aligned directions), with only a subset of the cameras

being considered during each pass. Slabaugh et al. [64] presented their “Generalized Voxel

Coloring” algorithm in 2004 which allows the voxels to be scanned in a more general order.

They also present a novel projective voxel warping function which allows an infinite volume

to be represented with a finite number of voxels.

Because the focus of this thesis is on the automatic modeling of complete scenes, visual
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hull methods which require foreground segmentation are not applicable in general. Voxel

coloring methods have been shown to produce satisfactory results, but are prone to errors

due to violations of the color consistency constraint due to the incorrect assumption of

Lambertian surfaces, calibration errors, sensor noise, or other factors. These errors often

manifest themselves as incorrectly carved “holes” in the model [57]. To combat these errors,

several probabilistic methods have been proposed [57, 7, 5, 53] which do not “carve” voxels,

but rather assign each a probability of existing as part of the model. Because the models

and algorithms presented in this thesis are closely related to these probabilistic methods,

they are discussed in detail separately in Section 2.4.

2.2 Image-Based Rendering

The major application area focused on in this thesis is that of novel viewpoint generation,

an operation which can, in general, be performed using one of two strategies. The first is

to reconstruct a 3-d model of the scene based on the imagery and then render the model

directly. The second possible strategy is to render the novel views by intelligently drawing

pixel data directly from the input images; the class of methods which follow this strategy are

collectively known as “image-based rendering” (ibr) techniques. In practice, image-based

rendering methods range from having no 3-d model [43] to a full 3-d model with input

images used for texture mapping [15]. Two pioneering papers in the field were presented

by Levoy and Hanrahan [43] and Gortler et al. [29] in 1996. Based on the observation that

the plenoptic function [1], which models light visible from all points in all directions for all

time, can be reduced to a 4-d function under certain assumptions (static scene, constant

lighting, viewpoints in free space). Levoy and Hanrahan represent images as 2-d slices of

the 4-d light field, allowing them to generate new views by extracting and resampling the

appropriate samples from the data structure. Gortler et al. use a similar model and present

a method for utilizing geometric information about the scene if available.

Because most image-based rendering techniques use a crude or non-existent 3-d model,

generating images free of artifacts is a major challenge. Fitzgibbon et al. [22] aim to solve

the problem by constraining the generated views such that their texture statistics are similar
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to those of the input images. Woodford et al. [73] also use patches of the input images as

priors on the output image, but formulate the problem using Markov Random Fields with

pair-wise potentials, which allows for global optimization. In general, state of the art image-

based techniques are capable of producing convincing images under certain assumptions,

but have trouble when the synthetic viewpoint is far from that of any input images (See

Chapter 6).

2.3 Site Modeling

The term “site modeling” describes the process of constructing a 3-d representation of a

geographic area based on sensor data such as aerial imagery. Other forms of data such

as LiDAR [78, 67] or digital elevation models (DEM’s) may also be used. Geographic

site modeling is a large field with research and development efforts taking place both in

academia and industry. Hu et al. [37] provide an overview of urban modeling techniques,

with a particular focus on large scale modeling. The various approaches can be classified

into two categories, manual and automatic. Most state of the art systems in use in industrial

settings automate at least part of the modeling process, however for the purposes of this

thesis, a site modeling tool requiring any user interaction is classified as manual. Many fully

automatic tools do exist, but are in general not yet reliable or robust enough to generate

models as complete and accurate as the manual tools.

2.3.1 Manual Methods

An early site modeling tool was the “Façade” system, presented by Debevec et al. [16]

in 1996. The system used manually selected image constraints to optimize parameters of

user-defined geometric primitives corresponding to components of structures in the scene.

The primitive-based scene representation can then be automatically refined using stereo

correspondences between the images. Rendering of the models utilizes view dependent

texture mapping, where the texture data is generated by interpolating between input images

based on the viewing angle of the virtual camera.

The RADIUS [21] (Research And Development for Image Understanding Systems)
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(a) (d)(c)(b)

Figure 2.3: Stages of the Façade modeling system (Image from Debevec et al. [16]): (a)
Marked edges on an input image. (b) Optimized geometric primitives. (c) The model
reprojected back into an input image. (d) A synthetic view generated using view-dependent
texture mapping.

project represents another early effort aimed at developing a set of tools enabling a user to

rapidly construct site models from imagery. The RADIUS Common Development Environ-

ment (RCDE) [34] is an interface which provides the infrastructure for all of the modeling

and image operations which are part of the project. Using the RCDE, users can manually

create primitive building and terrain models and render texture mapped versions of them.

As part of the RADIUS project, Fua [24] developed a method for optimizing manually

created building models and terrain features such as roads and rivers based on stereo and

shading information present in images, as well as geometric constraints.

A similar tool, the “CyberCity Modeler” [30], was developed at ETH Zurich at about

the same time frame. Using the tool, the user manually selects correspondences of feature

points in multiple calibrated images. The positions of the features are then triangulated, and

polyhedral models are automatically generated using the 3-d point locations. The resulting

models can be manually edited to improve accuracy and robustness, and then texture

mapped using aerial and ground-based imagery. Other manual methods exist both in the
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(a) (b)

Figure 2.4: The RADIUS Common Development Environment (Images taken from Heller
and Quam [34]): (a) A screenshot from the RCDE (b) A rendering of a texture mapped
site model.

research literature [27], and in the form of production software (Sketchup, 3dvia). In general,

simple primitive-based models can be generated with ease, but larger time commitments

are necessary for generation of realistic and complex models. The work presented in this

thesis differs in that it is a fully automatic system which is able to generate models of scenes

with arbitrarily complex structure.

2.3.2 Automatic Methods

Manual and semi-automatic methods for site modeling have proven to be both accurate

and robust, but have the obvious disadvantage of requiring human interaction. In order

to create larger and more detailed models in a shorter time-frame, automatic methods are

needed.

Although the focus of the RADIUS project [21] was primarily on the creation of an

interactive site modeling environment, some fully automatic components were developed as

well. Collins et al. [11] developed a method to automatically detect line segments in aerial

images, and organize the segments into groups corresponding to building rooftops. The

rooftop heights are determined using epipolar matching across images, along with a digital

terrain map to constrain the heights. The authors show promising results on test data, but

the system is only capable of extracting simple roof models consisting of single polygons.
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A more sophisticated system that also relies on the assumption of planar scenes was

presented by Dick et al. [18] in 2000. An initial reconstruction is first computed based on

matching corner features across multiple frames. Using prior models and geometric con-

straints (vertical and horizontal planes, perpendicular intersection of planes, etc.), a planar

model is fit to the reconstructed point cloud. An initial planar model is estimated from the

point cloud by first assuming that all planes are perpendicular to a common ground plane.

Planes are estimated from the point cloud using RANSAC, and the normal of the ground

plane is then estimated. All points are then projected onto the ground plane, and lines are

fit to clusters of the projected points. Assuming that the lines correspond to rectangular

and vertical walls, a rough model can be estimated. A refined model is constructed by fitting

parameterized architectural features (arches, windows, etc.) to manually selected regions

of the planes. Structure and motion algorithms can also be formulated to take advantage

of the planarity and grid-like structure of urban scenes [60].

Much recent effort has been focused on the reconstruction of urban scenes from ground-

based imagery. Pollefeys et al. [54] have developed a complete system for real-time re-

construction of urban models based on street-level video captured from a moving vehicle.

Camera pose is estimated using GPS/INS sensor data combined with structure from motion

techniques, and depth maps are generated for each image using dense stereo. Finally, the

depth maps are fused and meshed to create the model. A similar system has been developed

by Cornelis et al. [12] for the purpose of novel view generation in vehicle navigation sys-

tems. The authors make the assumption that building facades are ruled surfaces with lines

parallel to the gravity vector, and the ground plane is a ruled surface which is known based

on the camera height. A novel feedback loop is presented in which occluding objects such

as pedestrians and vehicles are detected and removed from the model generation process.

These vehicle-based reconstruction methods are capable of generating convincing renderings

similar ground-based viewpoints, but are unable to produce full 3-d building models based

on the limited input data and, in the case of Cornelis et al., simplifying assumptions which

do not hold for general 3-d building shapes.
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(a) (b)

Figure 2.5: Reconstruction results from the Urbanscape project. (Image from Pollefeys
et al. [54]): (a) reconstruction of building facades viewed from above (b) building models
viewed from the side.

2.3.3 Utilizing Range Data

In order to improve accuracy and completeness, many methods employ the use of LiDAR to

produce range scans or digital elevation models (DEM’s) of the scenes to be modeled. You et

al. [78] present a method requiring minimal user interaction in order to optimize a primitive-

based site model using airborne LiDAR data. In later work [38], they utilize aerial and

ground-based imagery to refine and texture-map the building models. Ground-based LiDAR

has also been used to construct detailed building models. Stamos et al. [66] present a method

for registering scans with each other, and Liu and Stamos [44, 45] present a method for

registering the scans with ground-based imagery for the purposes of photorealistic rendering.

2.3.4 Industrial State of the Art

Several commercial products exist which provide users the ability to construct accurate

3-d site models based on image data and manual input. Examples include PhotoModler

from Eos Systems Inc. and ImageModeler, a product of Autodesk. In addition, companies

such as CyberCity 3d, LLC (originally a spin-off company of ETH Zurich, developers of the

CC-modeler tool [30]) provide customers with ready-made 3-d site models of geographic

regions. In general, significant manual effort is still required in order to create site models

of industrial quality.
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2.4 Probabilistic Reconstruction Methods

D

P (Xi)

j < i j > i

r

Figure 2.6: Notation used while discussing the discrete probabilistic reconstruction meth-
ods. A camera ray r corresponding to data D passes through a series of voxels, each with
occupancy probability P (Xi).

There exists in the literature several distinct methods for reconstructing a probabilistic

volumetric scene model based on image data, all based on discrete voxel models. Although

the methods vary in their approach, the goal is the same: to produce a volumetric repre-

sentation of the 3-d scene, where each point in the volume is assigned a probability based

on the likelihood of it being contained in the scene. In the following discussion, a consistent

notation (which may differ from that of the original authors) is applied to facilitate compar-

ison. It is assumed that there exists a set S of voxels which are occupied. The probability

that a particular voxel v belonging to the set is denoted P (Xv). The term D refers to the

available image data.

2.4.1 Responsibility Weighted Voxels

Although not formulated as such, De Bonet and Viola [57] presented in 1999 what is es-

sentially the first probabilistic method for volumetric reconstruction. The authors define

an imaging model in which each observed pixel is computed as a weighted sum of voxel

colors along the viewing ray. These weights are referred to as “responsibilities”, and can

be computed for each voxel along the ray as the product of the voxel’s probability and its

visibility probability:

Ωi = P (Xi)
∏

j<i

(1 − P (Xj)) (2.1)
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where the index i refers to the ordering of the voxels along the camera ray. Note that the

authors did not refer to the P (Xi) values as probabilities, but as “opacities”; the terms and

notations have been changed for consistency with other methods, but the algorithm remains

as originally presented. Following the computation of the responsibilities Ωk
i for each voxel

i and image k, the voxel’s color is computed as the weighted average of the projections,

weighted by the responsibilities. Given the new color estimates, the responsibilities are

recomputed using a heuristic based on the agreement of the voxel’s color and the projection

into the image. From the responsibilities a separate probability Pk(Xxyz) for each voxel i

and image k can be computed as follows:

Pk(Xxyz) =
Ωk

i

1 −∑j<i Ω
k
j

(2.2)

Finally, the voxel’s updated probability P (Xi) is computed based on the weighted aver-

age of the probabilities Pk(Xi), weighted by the responsibilities Ωk
i . The process is repeated

until the voxel probabilities converge.

2.4.2 Probabilistic Space Carving

The first volumetric reconstruction algorithm to be explicitly formulated using a proba-

bilistic framework was proposed by Broadhurst et al. [7] in 2001 and later elaborated in

Broadhurst’s thesis [8]. It is a global algorithm which uses Bayes’ theorem to compute the

probability of each voxel existing in the model.

P (X|D) =
P (X )P (D|X )

P (D)
(2.3)

Broadhurst’s method is an offline algorithm, and so the data term D in Equation 2.3

represents all available image data. The prior probability term P (X ) is assumed to be a

constant (0.5 is given as a nominal value), and the reconstruction is performed (in theory)

in a one-time noniterative operation. The denominator is expanded as follows:

P (X|D) =
P (X )P (D|X )

P (D|X )P (X ) + P (D|X )P (X )
(2.4)
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The term P (X ) represents the prior probability that the voxel is not occupied, and is

equal to 1−P (X ). The only remaining issues are how to compute the probabilities P (D|X )

and P (D|X ). It is assumed that each voxel has associated with it an appearance model

{µ, σ} based on the assumption of a spherical gaussian color distribution with mean color µ

and covariance matrix σ2I. The appearance models, however, are not estimated explicitly

but marginalized using a uniform prior for the mean color and the prior P (σ) = 1
σ

for the

standard deviation. This prior is chosen primarily for mathematical convenience as it allows

a closed-form solution for the probabilities P (D|X ) and P (D|X ) to be computed, and also

for having the desirable attribute that surface voxels with small variances are more likely

than large ones. In order to determine the probability of the data D given that the voxel

does not exist, an independent appearance model for the projection of the voxel into each

image is assumed. Given that the voxel does exist, the projection of the voxel into a given

image can be explained by the voxel, or by any of the voxels “in front” of the voxel along the

ray to the camera center. In order to account for these occlusions, all possible cases are, in

theory, marginalized. In practice, this is computationally infeasible, and several simplifying

assumptions are made.

2.4.3 Stochastic Space Carving

The concept of the photo hull distribution was presented by Bhotika et al. [5] in 2002 and

expanded upon in Bhotika’s thesis [4]. A clear distinction between scene ambiguity and scene

uncertainty is made by the authors. Scene ambiguity is caused by the existence of multiple

photo-consistent reconstructions, even in the absence of noise. Scene uncertainty is caused

by the presence of image noise. The authors define the photo hull as the union of all photo-

consistent reconstructions; the photo hull itself is photo-consistent as well. The objective

of the reconstruction algorithm is to recover the (unique) photo hull, thereby removing the

problem of scene ambiguity. A probabilistic representation (due to scene uncertainty) is

obtained by a stochastic process which draws fair samples from photo hull distribution.

The samples are obtained through a carving process which randomly chooses voxels and

removes them from the photo hull probabilistically based on their photo-consistency. This

process is run repeatedly, and each time a voxel belongs to the drawn sample its counter is
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incremented. The probability of the voxel belonging to the photo hull is then approximated

as the ratio of the count divided by total number of samples drawn.

2.4.4 Online Reconstruction

A third probabilistic formulation, proposed by Pollard and Mundy [53] in 2007 and later

elaborated in Pollard’s thesis [52], is an online method. Pollard’s model and reconstruction

algorithm were proposed primarily as a means for change detection in images, but are also

well suited for other purposes including novel view generation [52, 14]. The first and most

basic difference between Pollard’s reconstruction algorithm and Broadhurst’s is a direct

reflection of Pollard’s method being an online algorithm, meaning that it uses information

from the current time step only, and Broadhurst’s being a global one (i.e. it uses information

from all images simultaneously). In Pollard’s equations, the term D represents information

from the current image only, and the prior probability P (X ) for the current timestep is

represented by the posterior probability from the previous timestep. In order to emphasize

this point, Equation 2.3 can be rewritten:

Pt(X|Dt) =
Pt−1(X )P (Dt|X )

P (Dt)
(2.5)

In addition to the surface probabilities of each voxel, an appearance model is also ex-

plicitly modeled using a mixture of Gaussians distribution. The distribution is updated at

each timestep using a method similar to that proposed by Stauffer and Grimson [68], with

the addition of an update weight based on the probability that the voxel is occupied and is

visible in the current image. The visibility probability is given by:

vis(x) =
∏

i<x

(1 − P (Xi)) (2.6)

where i < x denotes that the voxel i lies on the camera ray and is closer to the camera

center than x. The probability of the image data which corresponds to the projection of x

is computed as follows:

p(D) =
∑

i∈R

P (Xi) vis(i)p(D|v = i) (2.7)
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Essentially, the identity of the unknown voxel v which produced the image data D is

marginalized by summing the appearance probabilities p(D|v = i) (given by the mixture of

Gaussians distribution at i) of all voxels along the camera ray R, weighted by the probability

that i is a surface voxel and is visible. The expanded update equation is written:

P (X|D) = P (X )

{

∑

i′<i

P (X ′

i ) vis(i′)p(D|v = i′)

}

+ vis(i)p(D|v = i)

∑

i′

P (X ′

i ) vis(i′)p(D|i′ = v)
(2.8)

and is applied to each voxel with the introduction of each new image. Pollard and

Mundy show that under certain simplifying assumptions, the model will converge to a state

in which all occupied voxels have probability 1 and all empty voxels converge to probability

0 after sufficiently many updates. The update equation is used as the basis for the online

updating algorithm presented in Chapter 5.

2.4.5 Conclusions

While the work presented in this thesis is closely related to previously developed proba-

bilistic reconstruction algorithms (particularly that of Pollard and Mundy [53]), a major

advantage of this work is the continuous probabilistic representation as discussed in Sec-

tion 1.1.3. State of the art probabilistic models are not capable of reconstructing large and

complex scenes, a critical obstacle to successful site modeling which is overcome by the

proposed model and methods.



Chapter 3

The Continuous Probabilistic

Scene Model

P1 P2

P3 P4

P5 P6

P7

α(x)

Figure 3.1: Traditionally, a volume is modeling probabilistically using discrete units of
space. The proposed model uses a continuously varying scalar field to represent likelihood
of occlusion.

Based on the discussion in Section 1.1, the advantages of a probabilistic model are

clear. The regular discretization inherent in state of the art probabilistic models [53, 77, 7],

however, make the modeling of very large scenes prohibitively expensive in terms of stor-

age costs. In this chapter, a continuously varying probabilistic scene model is proposed

which generalizes the discrete model proposed by Pollard and Mundy [53]. The proposed

continuous model allows implementations to sample the volume in a non-uniform fashion,

leading to the possibility of significantly more space-efficient representations (Examples of

30
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such implementations will be presented in Chapter 4). This chapter is laid out as follows:

In Section 3.1, the theoretical basis for the continuous probabilistic geometry model is intro-

duced. In Section 3.2, the inclusion of appearance information in the model is discussed. In

Section 3.3, methods for rendering models containing geometry and appearance information

are presented, and the chapter is concluded in Section 3.4

3.1 Geometry

A continuous representation of surface geometry is proposed in the form of a scalar function

termed the occlusion density. The occlusion density at a point in space can be thought of

as a measure of the likelihood that the point occludes points behind it along the line of

sight of a viewer, given that the point itself is unoccluded. More precisely, the occlusion

density value at the point is a measure of occlusion probability per unit length of a viewing

ray which is passing through the point. If the occlusion density is defined over a volume,

probabilistic visibility reasoning can be performed for any pair of points within the volume.

In the case where surface geometry exists and is known completely (e.g. scenes defined by a

surface mesh), the occlusion density is defined as infinite at the surface locations, and zero

elsewhere.

3.1.1 Occlusion density definition

Given a ray in space defined by its origin point q and a unit direction vector r, the probability

of each point x along the ray being visible from q may be computed. It is assumed here that

q is the position of a viewing camera, and r represents a viewing ray of the camera, but the

assumption is not necessary in general. Points along the line of sight may be parameterized

by s, the distance from q:

x(s) = q + sr, s ≥ 0 (3.1)

Given the point q and viewing ray r, a proposition Vs may be defined as follows:

Vs ≡ “The point along r at distance s is visible from q .” (3.2)
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The probability P (Vs) is a (monotonically decreasing) function of s and can be written

as such using the notation vis(s).

vis(s) ≡ P (Vs) (3.3)

Given a segment of r with arbitrary length ℓ beginning at the point with distance s from

q, an additional proposition Qℓ
s may be defined.

Qℓ
s ≡ “A ray entering the region of length ℓ at distance s is occluded

while passing through the region.” (3.4)

The probability P (Qℓ
s) is termed the occlusion probability of the segment and can be

defined as the probability that the point at distance s+ ℓ is not visible, given that the point

at distance s is visible.

P (Qℓ
s) = P (V̄s+ℓ|Vs)

= 1 − P (Vs+ℓ|Vs) (3.5)

Using Bayes’ Theorem,

P (Qℓ
s) = 1 − P (Vs|Vs+ℓ)P (Vs+ℓ)

P (Vs)
(3.6)

Substituting vis(s) for the visibility probability at distance s and recognizing that

P (Vs|Vs+ds) = 1,

P (Qℓ
s) = 1 − vis(s+ ℓ)

vis(s)

P (Qℓ
s) =

vis(s) − vis(s+ ℓ)

vis(s)
(3.7)

If an infinitesimal segment length ℓ = ds is used, Equation 3.7 becomes:
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P (Qds
s ) =

−d vis(s)

vis(s)
(3.8)

P (Qds
s )

ds
= −vis′(s)

vis(s)
(3.9)

The left-hand side of Equation 3.9 can be thought of as a measure of occlusion probability

per unit length, or occlusion density. The function α(s) is introduced as notation for the

occlusion density as a function of distance s along a viewing ray (Equation 3.10). From

Equation 3.11 it is clear that the visibility probability at a point along a viewing ray

decreases at a rate proportional to both the occlusion density of the point and the value of

the visibility probability itself. The occlusion density at a point has thus far been defined

as a property of a particular viewing ray passing through the point. It is assumed, however,

that the probability that a point occludes a viewing ray is independent of the direction from

which the point is being viewed. It is conceivable that this assumption could be violated for

some special cases of material, but it is consistent with standard imaging models of opaque

surfaces and allows the occlusion density to be specified as a 3-d scalar function α(x)

independent of any particular viewing ray. The ray independence assumption manifests

itself in traditional discrete probabilistic models by the fact that voxel probabilities are

fixed with respect to the viewing direction.

α(s) ≡ −vis′(s)

vis(s)
(3.10)

vis′(s) = −α(s) vis(s) (3.11)

In practice, the occlusion density of points in a given scene must be computed using a

finite number of observations. In these cases the occlusion density at a point in space is a

property of what is known about the scene based on the available data, and not an intrinsic

property of the point itself. Given that the underlying true occlusion density is a generalized

function with support concentrated at the true surface location, and assuming that the

modeled occlusion density approaches this function as the number of unique observations

increases, it follows that the expected visibility from any viewpoint also approaches the true
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visibility. Empirically, the reconstructed occlusion density function does in fact increase in

precision with the number of unique observations. (The modeling of the occlusion density

function from a finite set of viewpoints is discussed in detail in Chapter 5.) This allows

the prediction of visibility probabilities along viewing rays which have not been observed,

which is a critical requirement for novel viewpoint rendering (Section 7.3).

3.1.2 Visibility probability calculation

The visibility probability of the point at distance t can be derived in terms of α(s) by

integrating both sides of equation 3.10 with respect to s.

∫ t

0
α(s)ds =

∫ t

0

−d vis(s)

vis(s)

−
∫ t

0
α(s)ds = [ln (vis(s)) + c]t0

−
∫ t

0
α(s)ds = ln (vis(t)) − ln (vis(0)) (3.12)

Finally, by recognizing that vis(0) = 1 and placing both sides of Equation 3.12 in an

exponential:

vis(t) = e−
∫ t

0
α(s)ds (3.13)

Equation 3.13 gives a simple expression for the visibility probability in terms of the

occlusion density values along the viewing ray which will be used heavily throughout the

remainder of the thesis.

3.1.3 Relationship to the Beer-Lambert Law

It is perhaps interesting to note that the derivation of the visibility probability from Equa-

tion 3.8 onward follows very closely the derivation of the Beer-Lambert law, which relates

the absorption of light to the properties of a solution through which it is traveling. Rather

than visibility probability, the Beer-Lambert law specifies the ratio of the quantities I0 and

I1: the intensities of the light before entering the solution and after leaving the solution,

respectively.
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I1
I0

= e−α′l (3.14)

Here, α′ is known as the absorption coefficient (which is assumed to be constant along

the path) and l is the length of the path through the solution.

3.1.4 Relationship with discrete voxel probabilities

The key difference (as discussed in Section 1.1.3) between the discrete voxel probabilities

P (X ) of existing methods and the preceding formulation of occlusion density is the interpre-

tation of the probability values. Because existing methods effectively model the probability

that a voxel boundary is occluding, the path length of the viewing ray through the voxel is

irrelevant. By contrast, the occlusion probabilities P (Qℓ
s) represent the probability that the

viewing ray is occluded at any point on the interval [s, s+ ℓ]. In order to interpret a voxel

probability as an occlusion probability, it is therefore necessary to associate a canonical

path length ℓ̂ with the voxel. Assuming the voxels are cubical, a reasonable choice is to

simply use the voxel side length. The voxel occlusion probability P (Qℓ̂
s) is the complement

of the visibility probability of the point s+ ℓ̂, assuming that the visibility probability vis(s)

of the voxel is certain.

P (Qℓ̂
s) = 1 − e−

∫ s+ℓ̂

s
α(s′)ds′ (3.15)

Assuming that the occlusion density within the voxel is constant with value α, the voxel

probability is computed as follows.

P (Qℓ̂
s) = 1 − e−αℓ̂ (3.16)

Likewise, given a canonical segment length ℓ̂ and occlusion probability value P (Qℓ̂
s), the

constant valued occlusion density within the voxel may also be computed.

α = − ln(1 − P (Qℓ̂
s))

ℓ̂
(3.17)

Although the occlusion probabilities as defined in this thesis and the voxel probabilities

used in previous probabilistic methods are defined slightly differently, they can therefore
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be compared by assigning a canonical segment length to a voxel. Using Equations 3.16

and 3.17, the voxel probabilities can also be converted to and from occlusion density values.

3.2 Appearance

In addition to the occlusion density, it is often useful to define appearance information for

points in space. Here, “appearance” is a general term that describes the predicted pixel value

of a particular imaging sensor, given that the point is visible from the sensor. In general,

many factors contribute to this value: lighting conditions, viewing angle, particularities of

the imaging sensor, and others. There is a large body of work in the computer graphics

literature that is focused on modeling these factors’ effect on an object’s appearance, a

comprehensive survey of which is given by Dorsey et al. [19].

For practical reasons, the appearance models discussed in this thesis are relatively sim-

ple and are independent of viewing direction and lighting conditions. It is assumed that

for a given point x, a single distribution pA(i,x) describes the probability density of the

imaged value, i, of x. In the case of greyscale imagery, i is a scalar value and the dis-

tribution is one-dimensional. In the case of multi-band imagery (e.g. RGB color), i is

an n-dimensional vector and the distribution is defined over the n appearance dimensions.

Specific distribution models are discussed in Chapter 4.

3.3 Rendering

Given a volume for which both occlusion density and appearance are defined for all points

contained in the volume, the probability distribution of a particular pixel value can be

computed. It is assumed that each pixel is associated with a corresponding camera ray

defined by a origin point q (usually the camera center), and a viewing direction defined by

a unit vector r.

3.3.1 Probability density function of imaged point location

Given a camera ray again parameterized by s, the unknown distance so at which the ray is

occluded can be modeled as a random variable with cumulative density function 1− vis(s).
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Figure 3.2: (a) A camera ray parameterized by s passes through a volume over which the
scalar field α(x) is defined. (b) Plots of α(s), vis(s), and ω(s).

(The probability that a point is visible from the camera center is the complement of the

probability that the ray is occluded by a point so < s.) A new function, ω(s), is defined as

the probability density function of the point of occlusion.

ω(s) ≡ PDF(so)

ω(s) =
d

ds
[1 − vis(s)]

ω(s) = α(s)e−
∫ s

0
α(s′)ds′ (3.18)

By substituting the definition of vis(s) back into Equation 3.18,

ω(s) = α(s) vis(s) (3.19)

This definition is not surprising, since in order for s to be the occlusion distance, the

point at s must be occluding and visible from the camera.

In many cases, it is useful to compute the probability that a camera ray passes through

all (modeled) space unoccluded. This is denoted by the probability vis(∞). By definition
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of ω(s):

∫

∞

0
ω(s)ds = 1 − vis(∞) (3.20)

The complete probability distribution of so for a given ray is therefore composed of the

continuous density function ω(s), plus the discrete probability vis(∞).

∫

∞

0
ω(s)ds+ vis(∞) = 1 (3.21)

3.3.2 Probability density function of imaged pixel value

Using the density function ω(s) and the appearance distributions pA(i, s) for each point x(s)

along the camera ray, a total appearance distribution describing the imaged pixel value can

be computed:

pT (i) =

∫

∞

0
ω(s)pA(i, s)ds + vis(∞)pA(i,∞) (3.22)

The term pA(i,∞) represents the appearance model in the case where the camera ray

passes unoccluded through space.

For the purpose of rendering images of the scene, the expected pixel value E[pT (i)] is

often all that is required to be computed. In this case, the expected values of the appearance

model distributions may be accumulated in place of the distributions themselves.

E[pT (i)] =
1

(R1 −R0)

∫ R1

R0

∫

∞

0
ω(s)pA(i, s)ds + vis(∞)pA(i,∞)di

The values R1 and R0 represent the upper and lower limits of the intensity value i,

respectively. Changing the order of integration:

E[pT (i)] =

∫

∞

0
ω(s)

1

(R1 −R0)

∫ R1

R0

pA(i, s)ds + vis(∞)pA(i,∞)di

=

∫

∞

0
ω(s)E[pA(i, s)]ds + vis(∞)E[pA(i,∞)] (3.23)

It is important to note that Equation 3.23 provides a means for computing an ex-

pected image pixel value by weighting and accumulating expected values of appearance
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models along the corresponding camera ray, allowing implementations to efficiently render

expected images from arbitrary viewpoints. Figure 3.3 shows two examples of expected

images rendered using this technique.

Figure 3.3: Expected images generated from models of the capitol (left) and downtown
(right) aerial sequences.

3.4 Conclusion

The model presented in this chapter allows for the probabilistic representation of scene

geometry and appearance in a continuous manner. Given a scene model and a camera,

visibility information for any point in the scene can be determined, as well as a probability

distribution of the value for each pixel in the image. The main motivation behind this

model is to provide a theoretical framework for probabilistic scene model implementations

which are not inherently tied to the regular sampling of space, i.e. voxel-based models.



Chapter 4

Implementation

In order to make practical use of the continuous probabilistic scene model described in

Chapter 3, a finite-sized representation which is able to associate both an occupancy prob-

ability and appearance information with each point in the working volume is needed. One

such representation involves storing a finite set of sample values from the volume and in-

terpolating values between them. Based on the sampling theorem, it is clear that a perfect

reconstruction can be achieved if the volume is sampled with a frequency at least twice that

of the highest frequency present in the continuous model. If some simplifying assumptions

are made, however, more efficient sampling schemes can be employed. Details are presented

in this chapter of an implementation which approximates the underlying occupancy proba-

bility and appearance functions as piecewise-constant and assumes that the modeled volume

contains large regions in which the functions are slowly varying. Section 4.1 introduces the

piecewise-constant model and discusses its representation using an adaptively refined oc-

tree. The visibility and rendering equations presented in Chapter 3 are reformulated based

on the piecewise-constant assumption in Section 4.2. In addition to intelligent sampling,

appearance information at each cell must also be represented efficiently; this is discussed

in Section 4.3. An alternative representation based on a piecewise-linear approximation is

briefly discussed in Section 4.4, and the chapter is concluded in Section 4.5.

40
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4.1 Piecewise-Constant Model

Most real-world scenes contain large, slowly varying regions of low occlusion probability in

areas of “open space” and high, quickly varying occlusion probability near “surface-like”

objects. It therefore makes sense to sample α(x) in a nonuniform fashion. The proposed

implementation approximates both α(x) and the appearance model as being piecewise con-

stant, with each region of constant value represented by a cell of an adaptively refined

octree.

occlusion density αn

appearance model pA(i)n

n− 1

n

n+ 1

Figure 4.1: Each cell of the octree is associated with a single occlusion density value αn and
a probability density function pA(i)n representing the appearance of the cell.

4.1.1 Octree Representation

An octree is a hierarchical spatial data structure which is the three-dimensional extension

of its two-dimensional counterpart, the quadtree. (The term “quadtree” is sometimes used

to refer to the general class of data structures.) The general principles of the data struc-

ture are presented in Section 4.1.2, and a specific implementation of the 2-d quadtree in

Section 4.1.3. The implementation is extended to three dimensions in Section 4.1.4. For

further details about the quadtree and octree data structures, the reader is referred to

Samet’s comprehensive treatment [58].

4.1.2 The Quadtree

The quadtree is a hierarchical spatial data structure first proposed by Morton in 1966 [49].

Its main purpose is to provide a subdivision of space which is efficient in terms of storage
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Figure 4.2: A three-level quadtree, with base-4 fd-linear codes assigned to each leaf node
and corresponding cell. The significant digits of the fd-linear codes are colored in red. Left:
The spatial organization of the quadtree. Right: The tree structure.

costs and computational complexity of basic operations (e.g. query). A tree of degree four

is used to represent a hierarchy of square-shaped regions, with the children of each node

representing its four quadrants. In a variable resolution quadtree, regions are recursively

subdivided until some application-specific criterion in the region is met.

4.1.3 The FD-Linear Quadtree

For some applications, only the leaf nodes of the quadtree need to be explicitly represented.

In this case the structure may be fully represented using a set of leaf node locational codes,

each composed of a fixed length base-4 index and an integer representing the depth in

the tree. The index of a node contains 2d significant bits, where d is the depth of the

node. Each base-4 (two bit) digit represents an edge in the quadtree in a traversal from the

root node. A quadtree represented by a set of leaf nodes with indices constructed in this

manner was first proposed by Rosenfeld et al. in 1983 [56] and is known as an FD-Linear

quadtree (Figure 4.2). When the trailing insignificant bits are set to 0, traversal of the cells

in the order of their indices corresponds to an inorder traversal of the leaf nodes of the

corresponding tree.
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4.1.4 The FD-Linear Octree and Piecewise-Constant Approximation

The principles of the quadtree can be trivially extended to three dimensions, giving rise

to the octree data structure. Rather than quadrants, the eight children of each node in

an octree represent octants of its corresponding cubic region. The fd-linear codes used to

represent leaves in the tree contain 3d significant bits, with each base-8 (three bit) digit

representing an edge along the path to the leaf in the degree eight tree. The proposed

implementation partitions the space to be modeled into fixed-sized cubes, each cube being

represented by an fd-linear octree. Each cell in an octree stores a single occlusion density

value α and appearance distribution pA(i). The appearance distribution represents the

probability density function of the pixel intensity resulting from the imaging of the cell.

(The representation used for the function pA(i) is discussed in Section 4.3.) The occlusion

density value and appearance distribution are assumed to be constant within the cell. Note

that this piecewise-constant assumption can be made arbitrarily accurate since, in theory,

any cell in which the approximation is not acceptable can always be subdivided into smaller

cells. In practice, however, the amount of useful resolution in the model is limited by the

resolution of the input data used to construct it.

4.2 Visibility Reasoning and Rendering using the octree

Taking advantage of the piecewise-constant approximation, the visibility and rendering

equations presented in Chapter 3 can be simplified considerably. Given a ray again defined

by an origin point q and a unit direction vector v, and parameterized by the distance s along

v from q, the function α(s) along the ray can be represented by S segments [si, si+1], i =

0, 1, . . . S−1 with corresponding constant occlusion density values αi and appearance model

distributions pAi(i). The appearance model pAi(i) represents the probability distribution

of the imaged intensity, given that the intensity was produced by a point v along the ray

with si < v ≤ si+1). The distance (si+1 − si) is the length of the segment passing through

the ith cell along the ray and is abbreviated ℓi (Figure 4.3). This simplification allows the

integrals in Equations 3.13, 3.18, and 3.22 to be easily computed as discrete summations.
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Figure 4.3: A camera ray parameterized by s cuts through cells in the octree. Both the
occlusion density and appearance model are approximated as being constant within each
cell.

4.2.1 Visibility Reasoning

Using the piecewise constant assumption and a point x = q + sv lying within the nth cell

along the ray defined by q and v, the visibility of x from q can now be computed as:

vis(s) = exp(−
∫ s

0
α(s)ds) = exp

(

−
n−1
∑

i=0

αiℓi + αn(s− sn)

)

(4.1)

The visibility probability of the points x(si) are defined as visi:

visi = exp

(

−
n−1
∑

i=0

αiℓi

)

(4.2)

4.2.2 Rendering

Given an image pixel and corresponding camera ray parameterized by s, a discrete probabil-

ity Ωi can be assigned to each octree cell intersected by the ray representing the probability

that a point along the ray within the cell is imaged by the camera. (Here, ω(s) is as defined

in Equation 3.19.)
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Figure 4.4: Plots of a piecewise-constant occlusion density function (a) along a viewing ray,
and the corresponding visibility probability function (b). The term αi is defined as the
(constant) value of the occlusion density function between s values si and si+1, while the
term visi is defined as the visibility probability at s = si.

Ωi =

∫ si+1

si

ω(s)ds

=

∫ si+1

si

αie
−

∫ s

0
α(s′)ds′ds

= αie
−

∫ si
0

α(s′)ds′
∫ si+1

si

e
−

∫ si+1
si

αids′′
ds

= αie
−
∑i−1

n=0
αnℓn

[

1 − e−αiℓi

αi

]

= e−
∑i−1

n=0
αnℓn(1 − e−αiℓi) (4.3)

This expression is equivalent to the difference of the two consecutive visibility probabil-

ities visi and visi+1.

Ωi = visi − visi+1 (4.4)

Using the Ωi’s as weights, the expected intensity E[i] of the observed intensity at an

image pixel may be computed as a weighted sum of the n distributions pAi
(i) along the

corresponding camera ray based on Equation 3.23.

E[I] =
S−1
∑

i=0

ΩiE[pAi
(i)] + E[pA∞

(i)] vis∞ (4.5)
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Figure 4.5: A mixture of Gaussians distribution in one dimension with three modes. The
distributions of the individual modes are plotted in red, green, and blue. The composite
distribution is plotted in black.

The term vis∞ represents the probability that the camera ray passes unoccluded through

the model, and the appearance model pA∞
(i) represents the intensity distribution of pixels

produced by such unoccluded rays. Each pixel and corresponding camera ray are treated

as being independent of the others, simplifying computations and allowing the expected

intensities of each pixel to be computed in parallel.

4.3 Appearance Models

The appearance model pA(i) assigned to each cell is represented by a mixture of Gaussians

distribution, similar to that proposed by Stauffer and Grimson [68] for 2-d background

modeling and used by Pollard and Mundy [53] in their voxel model. The distribution is

composed of a fixed number N of Gaussian distributions with means µn and standard

deviations σn. Each Gaussian component is weighted by a scale factor wn.

pA(i) =
1

W

N
∑

n=1

wn

σn

√
2π

exp(−(i − µn)2

2σ2
n

) ,

W =

N
∑

n=1

wn

(4.6)

The number of modes needed for a sufficiently flexible representation varies depending

on application. For the purposes of this work it is assumed that a single dominant mode in

the distribution is sufficient to model the nominal appearance of each scene point, with slight
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Figure 4.6: Examples of appearance variation from the “capitol” video sequence. From left
to right: foreground objects in motion, specular reflection, motion due to wind, camera
misregistration.

variations in appearance due to viewing angle, illumination, and color calibration accounted

for by the normal variance of the mode. The other modes in the distribution serve to

account for any other variation. Appearance changes may occur for many reasons, including:

occlusion by moving objects in the scene (e.g. vehicles and pedestrians), small motions of

the scene components themselves (e.g. foliage motion due to wind), shadows, (e.g. those

cast by moving foreground objects or clouds), specularities, and camera misregistration.

4.3.1 Storage Savings

The storage savings over a fixed size voxel grid made possible by the octree implementation

of course vary depending on the scene being modeled, but can be easily examined for the

simple case of a completely planar scene. Assuming that the volume to be modeled is a

cube, the N3 voxels are required to represent the scene, where N is the linear resolution

(voxels per side length of modeled volume). In the case of the octree, the model is refined

iteratively by removing each cell intersected by the plane and replacing it with eight children

cells, so the linear resolution at a given iteration i is 2i. The number of cells intersecting

the plane at iteration i is (2i)2 (or 4i), meaning the number of additional cells needed at

iteration i + 1 is 7 · (4i). The total number of cells at iteration i can be computed as a

geometric series:
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N = 1 +

i
∑

j=1

7 · 4j−1 = 1 +
7 · (4i − 1)

3
(4.7)

Written in terms of linear resolution N ,

ncells(N) = 1 + 7 · (N2 − 1)

3
(4.8)

Figure 4.7 shows a plot of the number of cells required for the fixed size voxel grid

and octree model for a given linear resolution. Assuming a constant sized storage space

allocated per cell/voxel, the fixed-grid voxel model requires O
(

N3
)

storage space, and the

octree model O
(

N2
)

.
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Figure 4.7: The theoretical number of cells stored for a planar scene are plotted based on
the linear resolution of the model. Data points for actual (non-planar) scene models are
also shown.

4.4 Piecewise-Linear Model

Although the focus of the remainder of this thesis is on the presented piecewise-constant

implementation, use of the continuous probabilistic model is not limited to this implemen-

tation in general. As an example of a potential alternate implementation, the groundwork

for a piecewise-linear model is briefly presented.
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x
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Figure 4.8: A camera ray parameterized by s passes through the tetrahedral mesh. A
2-d cross section is shown on the right. On the left, the ray is shown piercing a single
tetrahedron in 3-d.

4.4.1 Tetrahedral Mesh Representation

In a tetrahedral volume mesh, sample values may be stored at each of the vertices and lin-

early interpolated at any point within the volume represented by the mesh using barycentric

coordinates [13]. The barycentric coordinates λi of a point x relative to the four vertices

vi, i ∈ [1 . . . 4] of the tetrahedron containing x are computed as follows:
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=
(
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)−1
(x − v4) (4.9)

The fourth coordinate, λ4, is computed as 1 − λ1 − λ2 − λ3. The interpolated value of

the occlusion density at x is computed using the barycentric coordinates as weights.

α(x) =
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Note that it is straightforward but not strictly necessary to use a tetrahedral mesh; War-

ren presented a method for computing barycentric coordinates for general convex polyhe-

drons in 1996 [71]. Interpolation of the appearance model is potentially less straightforward,

as the weighted sum in Equation 4.10 must be applied to the color probability distributions

pA(i,vi) defined at the vertices. Given the mixture of Gaussians representation described

in Section 4.3, one solution is to represent the distribution using 4N modes, where N is

the number of modes in the distributions stored at each of the vertices. The distribution

at point x would then be computed as:

pA(i,x) =
4
∑

v=1

λv

Wv

N
∑

n=1

1

σnv

√
2π

exp(−(i− µnv)
2

2σn
2
v

) (4.11)

In addition to the accuracy that a piecewise-linear approximation provides over a piecewise-

constant approximation, some added flexibility is provided by the tetrahedral mesh data

structure. While the cells of an octree can be made arbitrarily fine, their locations are con-

strained by the regular subdivision into octants. This is not the case with the tetrahedral

cells of a mesh: their vertices can be repositioned if doing so will lead to a more efficient

representation. This added flexibility comes at the cost of explicitly storing the positions

of each vertex in the mesh; the positions of the octree cells are computed implicitly based

on the cell index and location of the octree origin.

4.4.2 Visibility and Rendering

The visibility computation of Equation 3.13 can be simplified for the piecewise-linear ap-

proximation in a similar manner as that of the piecewise-constant approximation. The ray

is divided into segments based on transition points between tetrahedra of the mesh (Fig-

ure 4.9). The values at the transition points si are interpolated based on the equations in

Section 4.4.1. The visibility probability of a transition point x(si) along the ray can then

be calculated as follows:

visi = exp



−1

2

i−1
∑

j=0

(αj + αj+1)(sj+1 − sj)



 (4.12)

Using the linearly interpolated function α(s) and vis(s), the probability density ω(s) of
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Figure 4.9: The function α as a function of the ray parameter s is shown, linearly inter-
polated between values of si. The values si correspond to points at which the ray passes
from one tetrahedron to another, and the function values at the points are themselves
interpolated based on the values at the tetrahedron’s vertices.

the imaged point along a camera ray can also be computed using the equations presented

in Section 3.3.1. The weights Ωi can then also be computed for each appearance model

pA(i, si) in order to compute the total distribution pT (i).

Ωi =
1

2

∫ si+1

si−1

α(s) vis(s)ds (4.13)

The values of Ωi can be expanded in terms of the values αi and visi but is omitted here

since the remainder of the thesis focuses on the piecewise linear implementation.

4.5 Conclusion

In order to be useful, a theoretical model must lend itself to efficient and practical im-

plementations. Two such implementations have been presented in this chapter based on

the continuous model proposed in Chapter 3 and varying levels of simplifying assumptions

about the underlying occlusion density and appearance functions. The remainder of this

thesis will focus exclusively on the octree-based implementation using the piecewise-constant

assumption presented in Section 4.1.



Chapter 5

Reconstruction Algorithms

A continuous probabilistic scene model was introduced in Chapter 3, and an implementa-

tion based on a piecewise-constant approximation in Chapter 4. In this chapter, methods

for reconstructing and updating an instance of the model based on calibrated images are

presented. There are two distinct classes that a reconstruction algorithm may fall into. The

first class is that of online algorithms, and the second is that of (offline) global optimiza-

tion algorithms. An online algorithm is one that processes input serially, without access

to previous or future input data at a given time step. Online reconstruction algorithms

maintain the current state of the model and update the state using one image at a time.

These algorithms are useful and sometimes necessary when the image size is very large (e.g.

satellite imagery) or when new image data is continuously becoming available (e.g. a live

video stream). Global optimization algorithms, on the other hand, make use of (potentially)

all available data and compute a reconstruction that attempts to satisfy the constraints im-

posed by all input simultaneously. These algorithms are in general costlier in terms of

memory and computation than the online variety, but have the obvious advantage of access

to all available data. In cases such as an indefinitely active live video stream where it is not

practical to store all available input, a fixed-sized subset of image data can be maintained

and used for model reconstruction. For the purposes of this thesis, any algorithm which

operates using more than one image at time is classified as a global optimization algorithm.

The remainder of the chapter is laid out as follows: In Sections 5.1 and 5.2, online and

global reconstruction algorithms, respectively, for the piecewise-constant implementation of

52
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the continuous probabilistic model are presented. In Section 5.3, a method for estimating

an implicit surface based on the probabilistic model is presented for the purpose of post-

processing the reconstructed models, and finally the chapter is concluded in Section 5.4.

5.1 Online Updating

As discussed in the chapter introduction, an online reconstruction algorithm may be prefer-

able or even necessary in some circumstances. An online method for updating the proba-

bilistic model presented in Chapter 4 is presented here. The formulation closely parallels

that of Pollard and Mundy [53], which is discussed in Section 2.4.4.

Pollard and Mundy’s online Bayesian update equation (Equation 2.8) is used to deter-

mine the posterior probabilities of a series of voxels along a camera ray, given their prior

probabilities and an image observation. Rather than a camera ray intersecting a series of

voxels, the equation can be thought of as being applied to a series of N intervals of equal

length ℓ along a ray parameterized by s, the distance from the camera center. The probabil-

ity P (Xi) of the voxel i being a surface voxel is replaced by P (Qℓ
i), the occlusion probability

defined in Equation 3.4 of the ith segment. The visibility probability of the ith segment is

denoted by the term visi.

visi ≡
i−1
∏

j=0

(1 − P (Qℓ
j)) (5.1)

The posterior probability P (Qℓ
i |D) is computed as follows:

P (Qℓ
i |D) = P (Qℓ

i)
P (D|Qℓ

i)

P (D)
(5.2)

Expanding the numerator and denominator terms,

P (Qℓ
i |D) = P (Qℓ

i)

i−1
∑

j=0

P (Qℓ
j) visj P (D|sj < v ≤ sj+1) + visi P (D|si < v ≤ si+1)

N−1
∑

j=0

P (Qℓ
j) visj P (D|sj < v ≤ sj+1)

(5.3)
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For convenience, the term prei, which represents the probability of the observation

taking into account segments 0 through i− 1 only, is defined:

prei ≡
i−1
∑

j=0

P (Qℓ
j) visj P (D|sj < v ≤ sj+1) (5.4)

Equation 5.3 can then be re-written as:

P (Qℓ
i |D) = P (Qℓ

i)
prei + visi P (D|si < v ≤ si+1)

pre
∞

(5.5)

where pre
∞

represents the total probability of the observation based on all pixels along

the ray. Pollard and Mundy assume that the observed imaged data is produced by a voxel

along the camera ray and do not consider the possibility that the observed intensity was

produced by a point beyond the region of modeled space. In this thesis an additional term

vis∞ P (D|∄v) is introduced to the denominator of the update equation which accounts

for this possibility. The probability of the ray passing unoccluded through the model is

represented by vis∞ and is computed based on Equation 5.6. The term P (D|∄v) represents

the probability of the observed intensity given that the ray passes unoccluded through, and

can be thought of as a “background” appearance model.

vis∞ ≡
N−1
∏

i=0

[1 − P (Qℓ
i)] (5.6)

The new equation for the posterior occlusion probability is then written:

P (Qℓ
i |D) = P (Qℓ

i)
prei + visi P (D|si < v ≤ si+1)

pre
∞

+ vis∞ P (D|∄v) . (5.7)

Throughout the remainder of this chapter, the ratio of the posterior probability to the

prior probability is denoted by the variable β for convenience.

βi =
prei + visi P (D|si < v ≤ si+1)

pre
∞

+ vis∞ P (D|∄v) (5.8)

P (Qℓ
i |D) = βiP (Qℓ

i) (5.9)

Equation 5.9 computes the posterior occlusion probability of a segment along a camera

ray given the observation D. What is needed for the continuous model is an analogous
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method for updating the continuous occlusion density values along the ray. A straightfor-

ward conversion to the continuous case can be arrived at by subdividing the segment into

N infinitesimally small segments.

l
l

N

(a) (b)

Figure 5.1: (a) A viewing ray passes through a segment of uncertain geometry for length ℓ.
(b) Equivalently, the viewing ray passes through N regions of length ℓ

N
.

The probability of an entering ray passing thourgh the segment unoccluded is the com-

plement of P (Qℓ), or (1−P (Qℓ)). Equivalently, the ray can be described as passing through

N consecutive intervals of length ℓ
N

.

1 − P (Qℓ) =
[

1 − P (Q ℓ
N )
]N

(5.10)

Solving for the probability P (Q ℓ
N ) in terms of P (Qℓ) gives:

P (Q ℓ
N ) = 1 −

[

1 − P (Qℓ)
]

1

N
(5.11)

For a given point lying in the ith sub-interval, βi does not change as the number of

intervals is increased by subdivision using equation 5.11. This can be shown in three steps:

1. The total probability contributed by a set of M consecutive identical segments is

identical to the probability contributed by the original segment.
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2. The value of β for the first cell in the set is identical to the value of β for the original

segment.

3. The value of β is identical for all cells in the set.

The first step can be shown by again considering a segment of length ℓ with occlusion

probability P (Qℓ), and visibility probability vis0. The total probability contribution Ωℓ of

the segment is equal to P (Qℓ) vis0. If the segment is divided into N sub-segments, the total

probability contribution of the sum can be shown to be equal to Ωℓ.

Ωℓ = P (Qℓ) vis0 =
N−1
∑

i=0

[P (Q ℓ
N ) visi] (5.12)

By substituting the definition of visi, the equation can be simplified as follows.

P (Qℓ) vis0 = P (Q ℓ
N )

N−1
∑

i=0

[vis0

i−1
∏

j=0

(1 − P (Q ℓ
N ))]

P (Qℓ) vis0 = P (Q ℓ
N ) vis0

N−1
∑

i=0

(1 − P (Q ℓ
N ))i

P (Qℓ) vis0 = P (Q ℓ
N ) vis0

(1 − P (Q ℓ
N ))N − 1

(1 − P (Q ℓ
N )) − 1

P (Qℓ) vis0 = −(vis0[(1 − P (Q ℓ
N ))N − 1]) (5.13)

By substituting the definition of P (Q ℓ
N ) based on Equation 5.11, Equation 5.13 can be

further simplified.

P (Qℓ) vis0 = − vis0[(1 − (1 − (1 − P (Qℓ))
1

N ))N − 1]

P (Qℓ) vis0 = − vis0[((1 − P (Qℓ))
1

N )N − 1]

P (Qℓ) vis0 = − vis0(1 − P (Qℓ)) + vis0

P (Qℓ) vis0 = P (Qℓ) vis0 (5.14)

Based on this proof, it can be trivially seen that the value of prei which encompasses a

given interval of segments does not change as the segments are subdivided. Likewise, the
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visibility probability visi also remains constant by definition of the subdivision equation

(Equation 5.11). Assuming that the appearance probability P (D|si < v ≤ si+1) of a

subdivided segment is equal to the appearance probability of the original segment, it is

clear that βi for the first subdivided segment is equal to β of the original segment since all

terms remain constant.

It can then be seen that all subdivided intervals must have the same β value as the

original segment by proving that for two consecutive segments with identical appearance

probabilities P (D|sj < v ≤ sj+1) and occlusion probabilities P (Q), β is identical. The

proof is as follows.

βi+1 =
prei+1 + visi+1(1 − P (Q))P (D|si < v ≤ si+1)

pre∞

βi+1 =
prei + visi P (Q)P (D|si < v ≤ si+1) + visi(1 − P (Q))P (D|si < v ≤ si+1)

pre∞

βi+1 =
prei + visi P (D|si < v ≤ si+1)(P (Q) + 1 − P (Q))

pre∞

βi+1 =
prei + visi P (D|si < v ≤ si+1)

pre∞

βi+1 = βi (5.15)

A continuous form of Equation 5.9 can then be derived by dividing both sides of Equa-

tion 5.9 by ℓ and taking the limit as the number of subdivisions N grows and ℓ approaches

an infinitesimal value ds.

lim
ℓ→0

P (Qℓ
i |D)

ℓ
= lim

ℓ→0
βi
P (Qℓ

i)

ℓ

P (Qds
i |D)

ds
= βi

P (Qds
i )

ds
(5.16)

Substituting in α(s) based on the definition given in Equation 3.10 and expanding

provides the full update equation. Using the continuous form of the pre term

pre(s) =

∫ s

0
α(s′) vis(s′)P (D|v = s′)ds′ (5.17)

the update equation is written:
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β(s) =
pre(s) + vis(s)P (D|v = s)

pre(∞) + vis(∞)P (D|∄v) (5.18)

α(s|D) = α(s)β(s) (5.19)

Equations 5.18 and 5.19 describe the full online update equation for the continuous

probabilistic model, a trivial extension of the discrete update equation to the continuous

case where occlusion probabilities are replaced by occlusion densities. In order to be of

practical value, however, a form which is suited to the piecewise-constant model must be

derived.

5.1.1 Adaptation for Piecewise-Constant Model

The systems described in this thesis use a piecewise-constant approximation to the contin-

uous model as described in section 4.1. The piecewise-constant model allows the update

equations (Equations 5.18 and 5.19) to be simplified by converting the integrals of constant

valued segments in the pre and vis terms to summations. It is assumed that each segment i

has associated with it a constant occlusion density value and a single appearance model, i.e.

appearance is constant in a given segment. The visi and prei terms of the discrete model

are redefined as follows for the piecewise-constant model.

visi ≡ exp(−
∫ si

0
α(s′)ds′)

visi = exp(−
i−1
∑

j=0

αjℓj) (5.20)

prei ≡
∫ si

0
α(s) vis(s)P (D|v = s)ds

prei =

i−1
∑

n=0

(1 − eαnℓn) visn P (D|sn < v ≤ sn+1) (5.21)

The probability P (D|sn < v ≤ sn+1) is represented by the distribution pAn(i) at the

value of the intensity i associated with the camera ray. Likewise, the probability P (D|∄v)
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is represented by a “background” intensity distribution pA∞
(i). Substituting into Equa-

tion 5.21 gives:

prei =
i−1
∑

n=0

(1 − eαnℓn) visn pAn(i) (5.22)

Using the new definitions for visi and prei, the βi value can be computed using the

analogous form of Equation 5.8.

β(si) =
prei + visi pAi(i)

pre
∞

+ vis∞ pA∞
(i)

(5.23)

Because visi represents the visibility probability of the first point in the ith segment x(si)

and prei represents the observation probability taking into account all points on the ray prior

to x(si), this equation gives the update ratio for x(si). Using the proof of Equation 5.15

and extending to the continuous case by taking the limit as N becomes infinite, however,

it can be seen that for a segment of constant occlusion density and appearance, β(s) must

be constant within the segment as well. Thus the constant-valued occlusion density αi for

segment i can be updated to the posterior value α′

i using Equation 5.23.

βi ≡ β(si) (5.24)

α′

i = αiβi (5.25)

5.1.2 Updating the Scene Model

The update equations described in Section 5.1.1 give a posterior value of the occlusion

density αi for each constant-valued segment i along a camera ray. In the piecewise-constant

model, the transition points x(si) correspond to locations where the camera ray exits the

(i − 1)th cell and enters the ith cell along the ray. The updating of the occlusion density

and appearance model cannot, however, be performed independently for each camera ray.

This is because multiple camera rays will pass through a single cell and will not, in general,

agree on the values of the updated occlusion densities. To resolve this conflict, each camera
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ray’s contribution to the updated value is weighted based on the corresponding segment

length ℓi.

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

Figure 5.2: The update equations are defined per ray, but a given block of constant occlu-
sion density may contain multiple ray segments. The updated occlusion density value is
determined by averaging the contributions from each ray, weighted by their corresponding
segment lengths ℓi.

The appearance of each cell is represented by a mixture of a fixed number of Gaussian

distributions (Section 4.3) and is updated with each new image based on the adaptive update

equations proposed by Stauffer and Grimson [68] and used by Pollard and Mundy [53]. Each

update to the appearance model is weighted by the visibility probability visi of the cell. The

appearance models for each visible cell are also updated once per image, using the mean

image value of the projected cell. When computing the mean, the image pixel values are

also weighted based on their respective camera ray segment lengths.

5.1.3 Adaptive refinement

Upon initialization of the model, each cell corresponds to a leaf at constant depth in the

octree, i.e. the volume is regularly sampled. As more information is incorporated into the

model, the sampling of regions with high occlusion density may be refined. The proposed

implementation refines a cell when its maximum occlusion probability P (Qmaxi
) reaches a

global threshold. The maximum occlusion probability of cell i is a function of the longest

path through the cell and the cell’s occlusion density.
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Figure 5.3: A cropped 2-d slice from the “dinoRing” model. Left: The occlusion density
values. Right: The structure of the octree.

P (Qmaxi
) = 1 − exp(−ℓmaxi

αi) (5.26)

The occlusion densities of the refined cells are initialized to the value of their parent

cell, while the appearance models are reset to a “blank” state to avoid propagating low

frequency image information down to the finer levels. This process is executed after each

new image update to the model.

5.2 Enforcing Global Consistency

While online reconstruction algorithms can be essential for certain modes of operation, they

must deal with the disadvantage of not being able to access all available information simul-

taneously. For this reason, a second reconstruction algorithm is presented which iteratively

optimizes the occlusion density and appearance model parameters for each cell using all

available information from a set of input images.

It is assumed that the observed data D = {D0,D1 . . .DN} is given as a set of N im-

ages along with the corresponding set of cameras. The probability of each observed image

P (Dn) is assumed to be independent of all other observation probabilities. The posterior
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probability of a given constant-valued cell of the octree depends only on the M ≤ N im-

ages for which the cell projects within image bounds. In general, there is an arbitrarily

complex network of dependence between the cells in the scene which may include circular

dependencies, as pointed out by Bhotika et al. [5]. Note that this is not the case for the

online updating scheme discussed in Section 5.1. In the case of online updating using a

single image, each cell is dependent only on the other cells along the camera rays which

pass through it, resulting in a cycle-free dependency graph. In order to produce a computa-

tionally tractable global reconstruction algorithm, however, the parameters of each cell are

considered independently, with the assumption that all of the other cells’ parameters are

fixed. The cells are updated incrementally in this way until convergence is achieved over

the entire scene. Taking advantage of both the data and cell independence assumptions, the

posterior occlusion density for a given cell can be computed as the product of the individual

posterior occlusion densities.

βi =
M
∏

m=0

preim + visimpAi(im)

pre
∞m + vis∞mpA∞

(im)
(5.27)

This update equation is based on the implicit assumption that all occlusion probabilities

and appearance models in the model are correct. Until the model converges, this assumption

is false and so the resulting multiplier βi must be damped to prevent the model from

jumping to or oscillating between erroneous states as the visibility probabilities change at

each iteration. The damped multiplier β̂ is computed as a function of the free parameter κ

as follows:

β̂i =
(βi + κ)

(κβi + 1)
, 0 < κ < 1 (5.28)

The damping function is chosen for its simplicity (controlled by a single parameter κ)

and the fact that it imposes straight-forward minimum and maximum β̂ values of κ and

1
κ
, respectively. Figure 5.4 illustrates how the damped update ratio β̂ varies with β for

various values of κ. Figure 5.5 shows plots of the occlusion density value of a surface point

as a function of the batch update iteration number for various κ values. The undamped

(κ = 0.0) case shows an initial oscillation and eventual convergence to a relatively low value,

while the damped cases show a continual increase.
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Figure 5.4: The damped update ratio β̂ is shown as a function of the undamped value β
for various values of the damping parameter κ.

5.2.1 Appearance calculation

Because the updating algorithm uses information from all images simultaneously, appear-

ance modeling is not limited to online updating algorithms such as those used in Section 5.1.

Instead, an expectation maximization (EM) algorithm is used to compute the maximum

likelihood parameters of the appearance independently for each cell at each timestep. A

single Gaussian distribution is used to model the probability density pAi(im) with two free

parameters: the mean µ and variance σ2. It is assumed that each observed intensity im is

produced by one of three potential sources:

• Jm ≡ Observation m is produced by a point within the cell.

• Km ≡ The cell is not visible; observation m is generated by a point “in front of” the

cell.

• Lm ≡ The cell is visible, but observation m is produced by a point “behind” the cell.
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Figure 5.5: The occlusion density value for a surface point as a function of iteration number
with various amounts of damping. For the undamped case, the model became too large
after the ninth iteration due to excessive subdividing of octree cells and was terminated.

For the purposes of appearance estimation the cell is assumed to be occluding, and so

P (Lm) = 0. This assumption is valid because if the cell is not occluding, the appearance

model is not relevant. The “expectation” step consists of computing the probabilities P (Jm)

and P (Km), which are calculated as follows:

P (Jm) = visi pAi(im) (5.29)

P (Km) = prei (5.30)

The “maximization” step then consists of computing new values for µ and σ2 using the

observed intensities im and the corresponding probabilities wm as weights.

wm =
P (Jm)

P (Jm) + P (Km))
(5.31)

The parameters are computed using the standard definitions of weighted sample mean

and weighted sample variance s2. Note that the sum W of observation weights may be

interpreted as the expected number of observations.
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µ =

M
∑

m=0

wm

W
im , W =

M
∑

m=0

wm (5.32)

s2 =
1

1 −W2

M
∑

m=0

wm

W
(im − µ)2 , W2 =

M
∑

m=0

(wm

W

)2
(5.33)

The sample variance s2 is clipped to a fixed minimum value s2min if it falls below in order

to help prevent the EM algorithm from converging to a degenerate solution dominated by

a single observation. If the computed values of µ and s2 do not differ from the previous

values by more than a predetermined tolerance value, the computation is assumed to have

converged. Otherwise, the algorithm iterates using the updated values as input to the

“expectation” step.

Once convergence is reached, an estimate of the true variance σ2 must be estimated

based on the sample variance s2. The computation of the sample variance in Equation 5.33

can itself be interpreted as a sample from a chi-square distribution with M − 1 degrees of

freedom based on Cochran’s theorem [72].

(M − 1)s2

σ2
∼ χ2

M−1 (5.34)

The practical result of Equation 5.34 is that the sample variances computed in Equa-

tion 5.33 tend to underestimate the true appearance variances σ2 for small sample sizes

(Figure 5.6). This underestimation can lead to the occlusion density of cells with few ob-

servations growing larger than expected due to the overestimate of pAi(im) caused by the

underestimated variance. In order to prevent this, an estimate σ̂2 of σ2 is computed such

that

P (σ̂2 < σ2) = ε , (5.35)

where ε is a parameter which specifies the probability of underestimating the true vari-

ance σ2. The estimated variance σ̂2 is computed as the sample variance s2 multiplied by a

scale factor a which is determined by the parameter ε.

P (as2 < σ2) = ε (5.36)
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Figure 5.6: The probability distribution of the sample variance is plotted for various sample
sizes M . For small sample sizes the variance tends to be underestimated. As the sample
size grows, the most probable sample variance approaches the true variance (σ2 = 0.2 in
this case).

σ̂2 = as2 (5.37)

Equation 5.36 can be rewritten using the cumulative distribution function of the chi-

squared distribution.

γ((M − 1)/2, (as2)/2)

Γ((M − 1)/2)
= ε (5.38)

The functions Γ(k, x) and γ(k, x) are the regularized Gamma function and lower incom-

plete Gamma function, respectively. By solving Equation 5.38 for a as a function of the

expected number of observations W , the scale factors with which to multiply the sample

variances to achieve the equality specified in Equation 5.36 are computed. Figure 5.7 shows

the scale factors as a function of W for ε = 0.1, 0.25, and 0.75. The estimated variance can

then be computed using the sample variance and scale factor a using Equation 5.37.
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Figure 5.7: The scale factors a with which the appearance sample variances s2 are mul-
tiplied in order to satisfy Equation 5.36 are shown as a function of the expected number
of observations W for some representative values of the parameter ε. The scale factors
converge to unity (dashed line) for very large values of W .

5.2.2 Iteration and convergence

Once the updated occlusion density β̂α and appearance parameters µ,σ̂2 have been com-

puted, the cells are independently updated with the new values. The cells are then refined as

needed using the method described in Section 5.1.3. The occlusion density and appearance

update steps are then repeated until an acceptable level of convergence is achieved.

5.3 Post Processing

Once converged, it is often desirable to represent the model with an octree which has as

few leaves as possible. This reduces the storage space needed for the model and also allows

for higher computational efficiency in operations such as expected image generation.
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5.3.1 Compression of Exterior cells

Octree cells located in “open space” have corresponding occlusion density values which ap-

proach zero, and therefore contribute close to nothing to the expected image pixel intensities

based on Equation 4.5. Merging neighboring cells with negligible occlusion densities will

therefore improve the efficiency of the model while having little effect on the quality of the

representation.

Like the cell refinement process, the merging of cells requires a hard decision to be

made, and therefore requires a threshold on some attribute of a given cell to determine if it

is eligible for merging. The merging process should not introduce artifacts into the expected

images generated using the model, so the maximum possible contribution to an expected

pixel value is used as the value to be thresholded. A cell’s contribution to an expected pixel

value is dependent upon its occlusion density, visibility probability, and the length of the

corresponding pixel ray segment which passes through the cell (Equation 4.3). The visibility

probability may vary with viewpoint, but is assumed to be close to one in the worst case.

The worst-case segment length ℓmax is a diagonal path between opposite corners of the cell

and is equal to
√

3ℓs, where ℓs is the side length of the cell. The maximum contribution

Ωmax can then be computed:

Ωmax = 1 − eαℓmax (5.39)

If all siblings of a given node at level n in the octree have Ωmax less than some threshold

value ˆΩmax, they are merged into a single parent cell at level n−1 with an occlusion density

and appearance model equal to the mean of the children’s. This process is continued

recursively until no further nodes can be merged.

5.3.2 Compression of Interior cells

Based on the definition of the occlusion density function in Equation 3.10, it can be seen

that for points which are never visible (e.g. located in the interior of solid objects) α(s) is

undefined since vis(s) = 0 for all viewpoints. In practice, the values for these points com-

puted using the iterative reconstruction algorithms presented in this chapter are updated
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initially, and then remain unchanged once the model converges sufficiently such that their

visibility probability approaches zero for all viewpoints. In order to detect these points, a

new scalar function, Λ∞(x), is introduced.

Λ∞(x) = ‖[vis(qi,x)]‖
∞
, qi ∈ Q (5.40)

whereQ is a set of viewing positions, and the infinity-norm is used to select the maximum

visibility probability at a point over the set. It is assumed that surfaces are “one-sided”, i.e.

orientable with an outside and an inside that is never viewed. Points inside of solid objects

therefore have Λ∞(x) close to zero, points in open space have Λ∞(x) close to one, and an

implicit surface can be generated by selecting the level set of any value in between.

(a) (c)(b)

Figure 5.8: The construction of the Λ∞ implicit function from two views of a simple scene.
Figures (a) and (b) show the visibility values for the two cameras (yellow indicates vis = 1,
and grey vis = 0). The black lines indicate regions of high occlusion density values. Figure
(c) shows the resulting Λ∞ values, with the red line indicating the implicit surface Λ∞ = 0.5.

Interior points are detected by selecting the interior points of a level set corresponding

to a very small maximum visibility value Λ∞ = ǫ. The occlusion density of these interior

points is then set to zero, allowing the corresponding cells to be compressed as the exterior

cells are.

5.4 Conclusion

Two methods for constructing a probabilistic scene model using the variable resolution

piecewise-constant model of Chapter 4 have been presented. The first method uses an
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online updating algorithm which uses information from a single image at each update step,

while the second uses information from all images simultaneously to construct the model

using a global optimization. The online algorithm has the advantage of using a constant

amount of storage independent of the number of images used since it only needs to store

the current state of the model and update information for the current image at any given

time. The global optimization technique must store information which is proportional to

the number of images being used, but is able to produce better results than the online

method. Results achieved using the two methods to reconstruct outdoor scenes from aerial

video are compared in Chapter 7.



Chapter 6

Experiments: Test Data

In order to accurately locate the positions of 3-d points or produce renderings of novel views

using the technique described in Section 4.2.2, the reconstruction algorithms presented in

Chapter 5 must produce accurate representations of the true scene geometry. In order to

evaluate the level of accuracy, the reconstruction algorithms are applied to standard multi-

view stereo test sets for which the ground truth geometry is known. Unfortunately, there

does not currently exist any standard method for evaluating the accuracy of probabilistic

reconstructions. There do exist, however, standard data sets and evaluation techniques for

traditional multi-view stereo algorithms [61]. Because the standard method of evaluation

requires a triangular mesh as the output of the reconstruction algorithm, a method is

presented which produces one based on the probabilistic model. Finally, the accuracy of

the resulting mesh is compared with state of the art multi-view stereo methods.

6.1 Evaluation Datasets

In recent years, the Middlebury multi-view stereo evaluation project [61] has become the

most widely accepted method for comparing multi-view reconstruction results in the com-

puter vision community. Four sets of images (with corresponding cameras) are available,

each captured using a spherical gantry from viewpoints ranging most of a full hemisphere

around the test objects. A black background is placed around the object, making straight-

forward foreground segmentation possible for algorithms which utilize it. The test objects
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are then captured using a laser scanner in order to provide a ground truth model with

which triangular meshes produced by the reconstruction algorithms are compared. Two of

the datasets whose camera configuration resembles those of the aerial sequences are used

for evaluation purposes in this chapter.

(a) (b)

Figure 6.1: (a) The cameras and modeled volume for the “dinoRing” dataset, and two
representative images. (b) The cameras and modeled volume for the “templeRing” dataset,
and two representative images.

6.2 Mesh Generation

The online and batch update algorithms presented in Chapter 5 were run on both of the test

data sets with the “background” distribution pA∞
(i) set to a Gaussian distribution with a

mean 0 and σ2 = 0.031 to account for the black background present in the images. The

σ value was determined empirically by sampling manually selected background pixels from

the images. In order participate in the Middlebury multi-view evaluation, reconstructions

in the form of a triangle mesh must be produced. In order to satisfy this requirement, a

level set Λ∞(x) = 0.5 of the scalar field Λ∞(x) presented in Section 5.3.2 is extracted which

estimates the location of visible surface points in the volume. The level set partitions the
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volume into regions which are more likely to lie outside the object (Λ∞(x) > 0.5), and

regions which are more likely to be inside and therefore not visible from any viewpoint

(Λ∞(x) < 0.5). A mesh-based representation of the level set can then be extracted using

the marching cubes method [46].

6.3 Results

dataset accuracy (mm) completeness (%)

“dinoRing” (Furukawa and Ponce [26]) 0.28 99.8
“dinoRing” (online) 2.61 91.4
“dinoRing” (batch) 5.08 91.5

“templeRing” (Vu et al. [36]) 0.45 99.8
“templeRing” (online) 1.89 92.1
“templeRing” (batch) 2.56 93.1

Table 6.1: Accuracy results obtained using the Middlebury multi-view evaluation site for
the presented algorithms and the accuracy leaders as of September 2009. Results were
obtained using an accuracy threshold of 90% and a completeness threshold of 1.25mm.

Figures 6.2 and 6.3 show renderings of the meshes created from the “dinoRing” and

“templeRing” datasets, using the online and batch update algorithms, respectively. The

meshes were submitted to the Middlebury multi-view evaluation website (http://vision.

middlebury.edu/mview) for evaluation, and the results are reported in Table 6.1. Given

a threshold percentage P , the accuracy metric indicates the maximum error of the most

accurate P% of points. Given a distance threshold c, the completeness metric indicates the

percent of vertices of the ground truth model which lie within c of the reconstructed model.

The results in Table 6.1 were computed using the site’s default thresholds P = 90% and

c = 1.25mm.

Based on the accuracy and completeness metrics, the quality of the models constructed

with the online method are competitive with state of the art multi-view reconstruction

algorithms, although not among the leaders. The primary reason for this is the lack of a

regularization term which enforces smoothness of the surfaces in regions of homogeneous

color. These homogeneous regions have ambiguous geometry, resulting in a thick region of

low occlusion density rather than a thin sheet of high occlusion density as is produced in
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(a)

(b)

Figure 6.2: (a) Volume renderings of the occlusion densities for the “templeRing” and
“dinoRing” datasets using the online construction method. (b): The generated meshes.

more well-defined and textured regions. Because the models are in fact smooth in these

regions (particularly the dinosaur model), the reconstruction algorithms which enforce the

smoothness assumption with regularization terms are able to produce reasonable surface

estimates, as opposed to the presented surface extraction method which becomes very locally

sensitive to the choice of Λ∞. This ambiguity does not, however, affect the model’s ability to

produce accurate renderings (Figure 6.4) and allows for a more complete representation of

the knowable surface geometry free of any smoothness assumptions. Such a representation

is important where not only the location of the surface is important, but the precision with

which it is known as well. Using the batch method, the completion percentage improves

slightly, but the accuracy drops. In practice the accuracy is sensitive to the damping

parameter κ, with higher values (and slower convergence) leading to more accuracy. Future
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(a)

(b)

Figure 6.3: (a) Volume renderings of the occlusion densities for the “templeRing” and
“dinoRing” datasets using the batch construction method. (b): The generated meshes.

work will focus on the development of optimization algorithms which do not depend on such

a damping parameter. Despite the apparent shortcomings of the batch algorithm, it does

allow points which are not visible in many views to be modeled more effectively than with

the online algorithm. This is demonstrated in Chapter 7, particularly in the datasets where

complicated visibility relationships exist between points in the scene (e.g. the “downtown”

sequence).

6.4 Conclusions

While not particularly well suited to probabilistic representations, the Middlebury multi-

view stereo evaluation system allows the accuracy of the reconstructed models to be inde-

pendently evaluated with known ground truth. The presented mesh generation algorithm
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(a) (b)

Figure 6.4: (a) A view of some regions containing large errors in the surface estimation. (b)
An expected image generated from a similar viewpoint.

works well in regions with unambiguous surface geometry, but is not well defined in ambigu-

ous regions due to the lack of any regularization terms in the mesh fitting process. While

leading to poorer results on the smooth Middlebury models (particularly the dinosaur), the

lack of surface geometry assumptions is in fact a strength of the probabilistic model, since

it enables a more complete representation of the 3-d information embedded in the input

images. Despite this lack of regularizing assumptions, the experiments demonstrate that

an accurate reconstruction of surface geometry is possible which is competitive with state

of the art multi-view stereo methods.



Chapter 7

Experiments: Aerial Imagery

The probabilistic model and reconstruction algorithms presented in this thesis have many

applications in GIS and visualization, two of which are focused on in this chapter: 3-d

point localization and novel view generation. Results for the presented single-image 3-d

localization method are presented and compared with multi-view triangulation. Results for

the expected image rendering algorithm are presented and compared with state of the art

image-based rendering methods.

7.1 Aerial Video Datasets

The aerial video used for experimentation in this thesis was collected using a digital cam-

corder with resolution 1280 × 720 from a helicopter flown above Providence, Rhode Island

during July of 2006. Three representative sequences are used throughout this chapter for

experimentation. The “capitol” sequence is a roughly 270◦ pass around the Rhode Island

capitol building composed of 255 images. The sequence contains finely detailed as well ho-

mogeneous regions and a moderate amount of occlusion, mainly due to the capitol building

itself. The “downtown” sequence is a roughly complete circular pass around a group of

tall buildings in Providence consisting of 180 images and containing many occlusions. The

“steeple” sequence is composed of 100 images taken from a linear path above North Main

St.. The sequence contains a moderate amount of occlusion but has a much lower variation

of viewpoints than the other sequences.
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Figure 7.1: The “steeple” dataset. A plot of the feature points and camera centers generated
by the structure from motion calibration algorithm [65] as well as three representative images
from the set are shown.

Figure 7.2: The “capitol” dataset. A plot of the feature points and camera centers generated
by the structure from motion calibration algorithm [65] as well as three representative images
from the set are shown.
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Figure 7.3: The “downtown” dataset. A plot of the feature points and camera centers gener-
ated by the structure from motion calibration algorithm [65] as well as three representative
images from the set are shown.

The cameras corresponding to each video frame were automatically calibrated using

structure from motion software [65] made available by the authors, producing full intrinsic

and extrinsic camera calibration for each image as well as a sparse point cloud. The point

clouds were not used as part of any probabilistic scene modeling algorithms, but were

needed as input to the image-based rendering algorithms of Woodford et al. as shown in

Section 7.3.1.

In order to place the calibrated cameras in a real-world coordinate frame with mean-

ingful units, manual point correspondences were selected in a small (∼ 10) subset of the

images as well as in a pair of pre-calibrated satellite images of the region purchased commer-

cially. After triangulating the 3-d positions of the points in both the (arbitrary) structure

from motion coordinate frame and the (real-world) satellite coordinate frame, a similarity

transform (rotation, translation, and a single scale parameter) which maps between the two

frames was computed for each sequence.
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7.2 3-d Localization

Figure 7.4: Given accurate calibration, a camera ray can be computed for each pixel location
(small red dot) in a given image. The distance along the ray of the corresponding world
point (large red dot) can then be computed as a probability density function (shown in
green) based on the probabilistic scene model.

Given a probabilistic scene model and an image with a corresponding camera, the full

probability distribution of the depth of each imaged point can be computed as the function

ω(s) (Section 3.3.1), where s is the distance from the camera center. Because the cam-

era center and ray corresponding to any given point are known based on the calibration

parameters, the 1-d distribution can be embedded into 3-d space. Adding the assumption

that the camera ray does in fact intersect a point in the scene, Bayes’ Law can be used to

normalize the density function, producing a new function, ω̂(s). As shown in section 3.3.1,

ω(s) integrates to the complement of vis∞. The normalized density function ω(s) integrates

to one.

ω̂(s) =
ω(s)

∫

∞

0 ω(s′)ds′
(7.1)

The density functions ω(s) and ω̂(s) are derived from occlusion density values along

the ray only, and do not take into account any appearance information. A more accurate

estimate of the occluding point depth for an image pixel can be computed by including the

probability of each point along the ray producing the imaged pixel value. This new density
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function is termed ψ(s) and is computed as follows:

ψ(s) =
ω(s)pA(i, s)

∫

∞

0 ω(s′)pA(i, s′)ds′
(7.2)

σu

σv

v1

v2

v3

Figure 7.5: Localization precision: Given an image location accuracy represented by the
standard deviation σ in pixels, a set of random image samples may be drawn (red dots). For
each image sample, a random sample along the corresponding camera ray is drawn based
on the depth probability density function. The set of 3-d position samples (blue dots)
is represented by its principal component vectors v1, v2, v3. The lengths of the vectors
indicate the variance of the point set in the respective directions.

The 1-d probability density functions ω̂(s) and ψ(s) represent the likelihood of a given

camera ray being occluded as a function of depth along the ray. Often times, it is useful to

instead have a 3-d representation indicating the expected 3-d point location and a measure

of the certainty of the point’s location. For this type of measurement it is necessary to know

the accuracy of the camera ray itself, which depends on two factors: the accuracy of the

camera calibration, and the accuracy of the 2-d image point location.

Assuming that these two error sources are normally distributed and independent in

the image x and y directions as well as independent relative to each other, the total ray

accuracy can be represented using two variances σ2
u and σ2

v for the image x and y directions,

respectively. The sum of these error sources is also normally distributed, and σ2
u and σ2

v are

computed by simply adding the variances of the calibration and localization distributions.

Typical backprojection errors of the structure from motion algorithm are on the order of

0.5 pixels and the conservative assumption of 1 pixel accuracy in image point localization

is assumed. These figures are used as the standard deviations of the calibration and image
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localization distributions, giving a total variance in each image direction of σ2
u = σ2

v =

12 + 0.52 = 1.25 pixels2.

Based on the distribution of image samples with mean position (u, v) and covariance
[

σ2
uσ

2
v

]

I2, a set of random samples is chosen, each corresponding to a unique camera ray. For

each camera ray, a random depth sample sd is then chosen according to the depth probability

density function ψ(s) (or ω̂(s) if no appearance information is available) corresponding to the

ray. In this way the image location distribution and depth distributions are used to generate

a set of random 3-d point locations corresponding to the location of the imaged point. The

distribution of this set of 3-d points is analyzed using principal component analysis, which

produces three orthogonal basis vectors indicating the directions of maximal variance. The

length of the vectors indicate the variance in their respective directions.

7.2.1 Results

(a) (b)

Figure 7.6: A frame from the “downtown” sequence (a) and a visualization of the expected
per-pixel depth (b).

In order to evaluate the accuracy of the depth probability functions, ground truth point

locations were established by manually selecting their projections in multiple images and

triangulating based on standard methods [33]. The location of each point was then manually

selected in a test image and a set of 3-d location samples were generated. Figure 7.7 shows

the points selected for 3-d localization in the three datasets. Figures 7.8 – 7.16 show plots

of the depth cumulative density functions corresponding to the camera rays of the selected

image points, as well as the set of 3-d point samples generated according to the process

described in Section 7.2. Finally, Tables 7.1 – 7.9 show the standard deviations of the 3-d
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point distributions as well as the error of the expected location relative to the triangulated

ground truth point location.

1

2
3

1

2

3

1

2

3

(a)

(b)

(c)

Figure 7.7: Test points from the “steeple” (a), “capitol” (b), and “downtown” (c) sequences
used for the localization tests.
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Figure 7.8: Plots of the depth cdf and generated random point samples (triangulated point
shown in red.) for the “steeple” test point 1.

(a) Expected Point Error (m)

appearance info?
no yes

online 4.88 1.86
batch 2.11 1.49

(b) σmax (m)

appearance info?
no yes

online 16.44 7.49
batch 6.88 3.80

Table 7.1: Test point 1 for the “steeple” dataset. (a): distance from the triangulated point
to the expected 3-d sample. (b): Standard deviation of the point sample distribution in the
direction of maximum variance.
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Figure 7.9: Plots of the depth cdf and generated random point samples (triangulated point
shown in red.) for the “steeple” test point 2.

(a) Expected Point Error (m)

appearance info?
no yes

online 6.09 0.66
batch 0.73 0.14

(b) σmax (m)

appearance info?
no yes

online 25.4 5.23
batch 8.13 3.48

Table 7.2: Test point 2 for the “steeple” dataset. (a): distance from the triangulated point
to the expected 3-d sample. (b): Standard deviation of the point sample distribution in the
direction of maximum variance.
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Figure 7.10: Plots of the depth cdf and generated random point samples (triangulated point
shown in red.) for the “steeple” test point 3.

(a) Expected Point Error (m)

appearance info?
no yes

online 3.51 0.14
batch 0.55 0.78

(b) σmax (m)

appearance info?
no yes

online 20.5 16.6
batch 7.14 5.5

Table 7.3: Test point 3 for the “steeple” dataset. (a): distance from the triangulated point
to the expected 3-d sample. (b): Standard deviation of the point sample distribution in the
direction of maximum variance.
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Figure 7.11: Plots of the depth cdf and generated random point samples (triangulated point
shown in red.) for the “capitol” test point 1.

(a) Expected Point Error (m)

appearance info?
no yes

online 6.53 4.68
batch 2.70 2.07

(b) σmax (m)

appearance info?
no yes

online 27.86 23.08
batch 12.75 9.83

Table 7.4: Test point 1 for the “capitol” dataset. (a): distance from the triangulated point
to the expected 3-d sample. (b): Standard deviation of the point sample distribution in the
direction of maximum variance.
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Figure 7.12: Plots of the depth cdf and generated random point samples (triangulated point
shown in red.) for the “capitol” test point 2.

(a) Expected Point Error (m)

appearance info?
no yes

online 0.05 3.21
batch 2.81 1.85

(b) σmax (m)

appearance info?
no yes

online 24.47 21.20
batch 9.56 4.53

Table 7.5: Test point 2 for the “capitol” dataset. (a): distance from the triangulated point
to the expected 3-d sample. (b): Standard deviation of the point sample distribution in the
direction of maximum variance.
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Figure 7.13: Plots of the depth cdf and generated random point samples (triangulated point
shown in red.) for the “capitol” test point 3.

(a) Expected Point Error (m)

appearance info?
no yes

online 1.39 1.05
batch 1.28 1.35

(b) σmax (m)

appearance info?
no yes

online 14.05 5.45
batch 3.99 2.13

Table 7.6: Test point 3 for the “capitol” dataset. (a): distance from the triangulated point
to the expected 3-d sample. (b): Standard deviation of the point sample distribution in the
direction of maximum variance.
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Figure 7.14: Plots of the depth cdf and generated random point samples (triangulated point
shown in red.) for the “downtown” test point 1.

(a) Expected Point Error (m)

appearance info?
no yes

online 2.54 0.76
batch 4.42 0.57

(b) σmax (m)

appearance info?
no yes

online 15.02 9.31
batch 20.43 8.85

Table 7.7: Test point 1 for the “downtown” dataset. (a): distance from the triangulated
point to the expected 3-d sample. (b): Standard deviation of the point sample distribution
in the direction of maximum variance.
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Figure 7.15: Plots of the depth cdf and generated random point samples (triangulated point
shown in red.) for the “downtown” test point 2.

(a) Expected Point Error (m)

appearance info?
no yes

online 1.90 1.79
batch 1.04 1.24

(b) σmax (m)

appearance info?
no yes

online 9.56 11.68
batch 3.85 4.37

Table 7.8: Test point 2 for the “downtown” dataset. (a): distance from the triangulated
point to the expected 3-d sample. (b): Standard deviation of the point sample distribution
in the direction of maximum variance.
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Figure 7.16: Plots of the depth cdf and generated random point samples (triangulated point
shown in red.) for the “downtown” test point 3.

(a) Expected Point Error (m)

appearance info?
no yes

online 16.90 22.99
batch 2.84 5.81

(b) σmax (m)

appearance info?
no yes

online 44.36 56.01
batch 15.36 24.27

Table 7.9: Test point 3 for the “downtown” dataset. (a): distance from the triangulated
point to the expected 3-d sample. (b): Standard deviation of the point sample distribution
in the direction of maximum variance.
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By accumulating information from previous images, the probabilistic model is able to

produce accurate point location estimates based on an image correspondence from a single

image. In addition to the expected position, a full probability distribution of the location can

be generated which is useful for GIS applications where the precision of 3-d point estimates

is of high importance. Based on the expected point errors and distribution variances, it

is clear that the appearance information adds significant accuracy and precision to the

estimated point locations. The models constructed with the batch algorithm are able to

localize better than those built using the online algorithm, perhaps not surprising since the

batch algorithms have access to a greater amount of input image data at each iteration

of the reconstruction. The depth cumulative density functions reveal the sources of error

and uncertainty which lead to unreasonably large values of the expected point errors and

σmax. In some cases, such as test point 3 of the “downtown” sequence, there are regions

of non-zero occlusion density in the open space between the camera center and the true

point of occlusion. When this occurs, the cdf will be greater than zero at the true depth.

Alternatively, in some cases the occlusion densities around the surface location have not

sufficiently converged, leaving a significant probability of the ray passing through the surface

region unoccluded. This can be seen in the cases of test point 2 of the “capitol” sequence and

test point 2 of the ”downtown” sequence. In general, however, the depth cumulative density

functions closely approximate the ideal case of a step function, with the sharp transition

from 0 to 1 occurring near the true depth value.
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7.3 Novel View Generation

By generating an expected intensity value for each pixel in an image using the algorithm

described in Section 3.3.2 (implementation described in Section 4.2.2), an image may be

generated from any arbitrary viewpoint using a probabilistic scene model. In order to

evaluate the accuracy of these images with respect to those produced by state of the art

image-based rendering algorithms, two distinct test case paradigms are used. The first,

sometimes referred to as a “leave one out” test, involves generating an image from the

viewpoint of one of the images from the original sequence but was not used as input to the

algorithm. Using the original image as ground truth, the accuracy of the rendered images

may be quantitatively evaluated by computing the root mean square error over all pixels in

the image. In the case of video sequences, the viewpoint from which the view is rendered,

although not identical, is typically fairly similar to input images which are temporally close

to the “left out” image. In image-based rendering terminology, this is often referred to as

the problem of view interpolation. It should be noted that, while widely used, the evaluation

metric based on pixel differences is not a perfect indicator of “photorealism” since it does

not penalize various type of artifacts such as discontinuities and “salt and pepper” noise

which can be disturbing to the human visual system. The second, more challenging, type

of test involves generating a view of the scene from a viewpoint which is far from any of

the input viewpoints. Unfortunately, no suitable ground truth images were captured which

image the scenes from a view disparate from those of the input sequences. Because of this,

the rendered results must be evaluated qualitatively on the basis of photorealism alone.

7.3.1 Results

Woodford07a Woodford07b Pollard09 psm (online) psm (batch)

“steeple” 0.068 0.071 0.051 0.053 0.046
“capitol” 0.109 0.060 0.098 0.085 0.075

“downtown” 0.122 0.103 0.109 0.106 0.079

Table 7.10: RMS errors for the image-based rendering algorithms evaluated over the inter-
section of masks. Results are based on normalized pixel values with range [0, 1]

Figures 7.17, 7.18, and 7.19 show rendered images using two state of the art image-based
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rendering algorithms ([73] and [74]), Pollard and Mundy’s fixed-grid voxel model [53, 52],

and the octree-based models based on the continuous model presented here (online and

batch reconstruction methods). Table 7.3.1 shows the root mean square error of the images,

using the ground truth image contained within the intersection of all valid reconstruction

regions as the basis for evaluation. All five methods perform well on the “steeple” sequence,

which is not surprising given that it is the least complex of the three sequences in terms

of occlusions and viewpoint variation. The “capitol” sequence is more challenging due to

the large viewpoint variation and resulting occlusions, mostly due to the capitol building

itself. All methods perform reasonably well with the exception of Woodford07a [73], which

produces noticeable artifacts in the patterned concrete in front of the building. The fixed-

grid voxel method [52] produces a reasonable image but suffers around regions of high

frequency due to the inherent practical resolution limitations of fixed-grid methods. As is the

case with all of the test images, the model constructed with the batch algorithm outperforms

that constructed with the online method. The “downtown” sequence presents the greatest

challenge for the rendering algorithms due to the large viewpoint variation combined with

the large amount of occlusions present. The image-based rendering algorithms suffer because

of this, as evidenced by the large amount of rendering artifacts present. The fixed-grid

probabilistic method again suffers due to the lack of sufficient resolution to cover the entire

scene at the resolution of the input images. Along with the online octree method, it also

appears to suffer in regions that are occluded in the majority of views, such as the lower

portions of the tall building sides. This is presumably due to the fact that the online methods

did not processes a sufficient number of views in which the regions were not occluded. The

batch algorithm does not suffer from this problem since it is able to process information

from the entire range of viewpoints at each iteration, resulting in a significantly lower RMS

error rendering.

While capable of rendering images for which nearby input images are available, the

quality of the images produced by image-based rendering algorithms rapidly degrades as

the viewpoint moves farther away. Because they explicitly represent 3-d scene structure, the

probabilistic methods are capable of predicting views which vary greatly from any available

input. Figures 7.20, 7.21, and 7.22 show two rendered viewpoints for each of the aerial
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datasets rendered using the fixed-grid voxel model and the octree-based continuous model.

Although the relatively small variation in viewpoints in the “steeple” sequence makes view

interpolation an easier problem, it makes rendering from disparate viewpoints more difficult

since the 3-d information is not as accurate. This is evidenced in the relatively poor quality

of the rendered images in Figure 7.20, especially around homogeneous regions which are

impossible to precisely localize given the image data. Figure 7.21 shows renderings from two

distant viewpoints for the “capitol” sequence. The first view is a low-altitude view looking

at the back of the capitol building, which the models produced by both online methods

(discrete voxel and online octree-based) are not able to satisfactorily render. It should be

mentioned that the discrete voxel-based method has an implementation issue which prevents

it from correctly handling camera rays at shallow angles, which may have contributed to

the poor image quality. The model produced by the batch update method produces a

fairly crisp and photo-realistic rendering. The second view, a nadir view of the building

and surrounding land, is rendered fairly successfully by all three probabilistic methods,

although the octree-based batch method again reproduces the finest high frequency details

and contains the fewest number of artifacts. Similar types of viewpoints are rendered for

the “downtown” sequence, shown in Figure 7.22. The octree-based batch method again

outperforms the online methods in terms of image fidelity, especially in regions that are

not seen in the majority of images such as the lower regions of the building sides. The

octree-based methods are able to predict imagery for a larger geographic region in greater

detail thanks to the storage savings of the octree model.

7.4 Conclusions

In this chapter, the utility of the octree-based implementation of the continuous probabilistic

scene model in two distinct application areas was explored: 3-d point localization and novel

viewpoint rendering. The 3-d point localization technique is novel in that it enables a user

to view a probability distribution of the location of any imaged 3-d point based on a scene

model and it’s projection in a single image. Two localization methods were presented: one

that uses the occlusion density information only and one that also incorporates appearance
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information, with the later shown to be significantly more effective. Using the rendering

equations presented in Chapters 3 and 4, novel views of aerial scenes with varying amounts

of occlusion and viewpoint variation were generated and compared with results produced

by state of the art image-based rendering algorithms. Particularly in the scenes with a

large number of occlusions, the probabilistic models fared better in general. Unlike the

image-based rendering algorithms, the probabilistic models were also able to generate photo-

realistic renderings from viewpoints far from any of the available input views. In general,

the octree-based models built using the batch update algorithm fared better than the online

version and the octree-based models were able to represent larger areas with finer detail

than the fixed-grid models using less storage space.
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(a)

(d)

(b)

(e)

(c)

Figure 7.17: Image-based rendering results for the “leave-one-out” test on the “steeple”
sequence. The pixel error images are shown below the rendered results. (a): Woodford et
al. [73] (b): Woodford at al. [74] (c): Pollard [52], (d) Continuous model (online construc-
tion): (e): Continuous model (batch method)
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(a)

(d)

(b)

(e)

(c)

Figure 7.18: Image-based rendering results for the “leave-one-out” test on the “capitol”
sequence. The pixel error images are shown below the rendered results. (a): Woodford et
al. [73] (b): Woodford at al. [74] (c): Pollard [52], (d) Continuous model (online construc-
tion): (e): Continuous model (batch method)
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(a)

(d)

(b)

(e)

(c)

Figure 7.19: Image-based rendering results for the “leave-one-out” test on the “downtown”
sequence. The pixel error images are shown below the rendered results. (a): Woodford et
al. [73] (b): Woodford at al. [74] (c): Pollard [52], (d) Continuous model (online construc-
tion): (e): Continuous model (batch method)



101

Y
X

Z

YX

Z

(a)

(d)(c)

(b)

(a)

(d)(c)

(b)

Figure 7.20: Two novel viewpoints far from any input images (“steeple” sequence). (a):
The virtual camera (red) plotted with the input cameras (blue). (b): Using Pollard’s voxel
model. (c): Continuous model, online constuction. (d): Continuous model, batch method.
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Figure 7.21: Two novel viewpoints far from any input images (“capitol” sequence). (a):
The virtual camera (red) plotted with the input cameras (blue). (b): Using Pollard’s voxel
model. (c): Continuous model, online constuction. (d): Continuous model, batch method.
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Figure 7.22: Two novel viewpoints far from any input images (“downtown” sequence). (a):
The virtual camera (red) plotted with the input cameras (blue). (b): Using Pollard’s voxel
model. (c): Continuous model, online constuction. (d): Continuous model, batch method.



Chapter 8

Camera Refinement

There exist a large number of automatic and manual camera calibration algorithms in the

computer vision and photogrammetry literature. The vast majority of these algorithms pro-

duce or take as input a sparse set of feature correspondences across images and optimize the

camera parameters (and potentially the 3-d feature locations) to minimize the reprojection

error in the images. For example, the camera models for the aerial video frames used in this

thesis were generated using the Structure from Motion algorithm of Snavely et al. [65] with

features automatically detected and matched using Lowe’s SIFT [47] keypoints. While these

algorithms have proven to be sufficiently accurate for many applications, their reliance on

sparse feature locations means that much of the available image information goes unused.

In this chapter, a method for refining these camera estimates which uses all available image

information is presented. The method is based on the visual servoing technique from the

robotics field and requires that the provided initial camera estimates are accurate enough

to construct a scene model from which expected images can be rendered. This chapter is

based on material originally published by the author in 2008 [14].

8.1 Background and Overview

Visual servoing is a term used in the robotics community referring to the use of video and

video processing as a form of feedback in a position control loop. A tutorial on the field

was put together by Hutchinson et al. [39]. A typical goal is to move the end-effector of

104
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Figure 8.1: Flowchart of the camera pose optimization algorithm.

a robotic arm to a pre-determined position and orientation relative to a stationary object,

with a single camera located on the end-effector (the “eye-in-hand” configuration). The

arm is first manually moved to the desired position, and an image of the target is taken

and stored. If the target is planar, a homography can be computed which maps the current

image to the stored image, and the end-effector is moved with the goal of bringing the

homography to the identity matrix. Drummond and Cipolla [20] showed that by using Lie

Algebra representations, 3-d information about the world is implicitly embedded into the

2-d image transformations.

Rather than providing feedback to a physical servoing system, here it is the camera

estimate that is being adjusted. Since it is not possible to capture real images from the

estimated viewpoints, expected images generated using the scene model are used to instead.

The goal of the refinement algorithm is to produce a camera model whose corresponding

expected image is mapped to the true image by the identity transformation.

8.2 Representation of 2-d and 3-d Transformations

The 2-d general affine matrix group GA(2) is used to represent image homographies, and

the special Euclidian matrix group SE(3) to represent camera motions. Drummond and

Cipolla [20] showed that by using Lie Algebra representations, 3-d information about the

world is implicitly embedded into the 2-d image transformations. Although the goal is to

accurately handle non-planar scenes, an assumption is made that the translation between
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Figure 8.2: (a) The dominant world plane is shown in the camera coordinate system. (b)
The plane normal n̂ is projected onto the X-Z and Y-Z planes, giving the plane parameters
θ and φ.

the estimated and true camera positions is sufficiently small that the corresponding image

transformation can be approximated by a 2-d homography induced by a dominant world

plane Π =
[

n̂x n̂y n̂z d
]T

, where ‖n̂‖ = 1 and the plane parameters are specified in the

camera coordinate system (i.e. the z axis is the principal axis of the camera). Disregarding

degenerate cases, Π can be represented using three parameters:

θ = tan−1 n̂x

−n̂z

, φ = tan−1 n̂y

−n̂z

, dz =
−d
n̂z

(8.1)

(See Figure 8.2). The Lie group SE(3) has an associated Lie algebra se(3), which is

spanned by the so-called SE(3) generator matrices Ei, i ∈ {1, 2 . . . 6}.
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(8.2)

The six se(3) bases correspond to translation in x, y, and z, and rotation about the x,y,
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and z axes, respectively. Likewise, the Lie group GA(2) has an associated Lie algebra ga(3)

which is spanned by the GA(2) generator matrices Gi, i ∈ {1, 2 . . . 6}.

G1 =
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(8.3)

The six ga(2) bases correspond to shift in x, shift in y, rotation, scaling, shear at 90◦, and

shear at 45◦, respectively. Using these bases, the vectors x̂ ∈ ℜ6 and ẑ ∈ ℜ6 are defined,

representing infinitesimal 3-d Euclidean and 2-d affine transformations, respectively. Using

the dominant world plane parameterized by θ, φ, and dz, The Jacobian matrix which maps

infinitesimal changes in the camera pose to changes in the induced homography can then

be defined, i.e. Ji,j = δẑi

δx̂j
.

J =
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2dz

− tan(θ)
2dz
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2dz

− tan(φ)
2dz
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− tan(θ)
2dz
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2dz

0 0 0 0

− tan(φ)
2dz

− tan(θ)
2dz

0 0 0 0





























(8.4)

The derivation of this matrix is very similar to the one presented by Drummond and

Cipolla [20], and the reader is referred there for the details. One difference between the

Jacobian J presented here and Drummond and Cipolla’s is that the world plane normal

is not constrained to lie in the Y Z plane here, and thus requires three parameters (as

opposed to the two used by Drummond and Cipolla). Note that columns 3 through 5 are

approximate only, because in general a full projective image transformation is needed to

model changes caused by translation along the camera axis and rotation around an axis

other than the camera’s principal axis.
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8.3 Refinement Algorithm

The camera refinement algorithm has three essential steps. First, a planar fit to the scene

geometry being viewed must be determined in order for the Jacobian J (Equation 8.4) to

be computed. Second, an expected image is rendered from the viewpoint of the current

camera estimate. Finally, an image transformation mapping the expected image to the

original image is computed, leading to an incremental adjustment to the camera parameters

based on J . The second and third steps are then repeated until convergence is reached.

Section 8.3.1 describes the first step in detail, and Section 8.3.2 the refinement iteration.

8.3.1 Plane Estimation

(a) (b)

Figure 8.3: (a) A depth map computed for a frame from the “downtown” sequence. (b)
The depth map is converted to a point cloud, and a plane is fit to the points.

In order to compute the Jacobian matrix J , a dominant world plane estimate must first

be computed. Using the estimated camera position, a depth value for each pixel is computed

using the expected value E[ω(s)] of the depth distribution discussed in Section 3.3.1. The

depth values are converted to 3-d points by backprojecting along the camera rays, and a

plane can be fit to the set of backprojected points. The fit is in general poor due to the

non-planarity of the scene, but is sufficient since a coarse representation of scene depth is

all that is needed [20].
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8.3.2 Camera Parameter Update

The vector x̂ is used to represent the Euclidean transformation which maps the original

camera coordinate system to that of the refined camera estimate, and is updated iteratively

until convergence is reached. The system is initialized with the identity transformation,

i.e. x̂ = 0. At each step, an expected image is rendered from the viewpoint defined by x̂

using the method described in Section 3.3. A homography represented by the vector ẑ is

then computed which minimizes the sum of squared pixel intensity differences between the

original image and the transformed expected image. (The reader is referred to Zitovia’s

2003 survey [80] for a review of 2-d image registration techniques.) The inverse Jacobian

J−1 is then used to move the estimated camera position towards the correct state, and

a new expected image is generated using the adjusted state. The processes is repeated

until the adjustments to x̂ fall below a fixed threshold or a maximum number of iterations

is reached, in which case the refinement process is considered a failure. This refinement

process is essentially a novel application of Drummond and Cipolla’s [20] visual servoing

algorithm to camera calibration made possible by the ability of the probabilistic scene model

to render realistic and complete expected images from arbitrary viewpoints.

8.4 Validation

In order to validate the camera refinement process, the algorithm was run on the “capi-

tol” and “downtown” sequences, using the camera estimates produced by Snavely et al.’s

structure from motion algorithm [65] (manually aligned to a real-world coordinate frame

as described in Section 7.1). The scene models were generated using the batch update

method presented in Section 5.2 with 32 out of the 255 total images and 31 out of the 180

total images, respectively. The cameras were first refined using the structure from motion

cameras as initial estimates. The mean displacements over all cameras were 0.18 and 0.16

meters for the “capitol” and “downtown” sequences, respectively (max 0.53, 0.50). The

mean respective orientation offsets were 0.02 and 0.01 degrees (max 0.08, 0.04). This small

movement of the refined cameras indicates that the refinement algorithm “agrees” with the

cameras generated by the structure from motion algorithm.
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In order to test the robustness of the refinement algorithm, the estimated camera centers

and “look” directions (i.e. the z axis orientation of the camera coordinate frame) were per-

turbed in random directions by various amounts. Tables 8.1 and 8.2 show the displacement

and orientation errors of the refined “capitol” cameras for various amounts of perturbation

of the initial estimates for a randomly chosen camera which was not used in the construction

of the model. Tables 8.3 and 8.4 show the results for the “downtown” sequence.

translation offset (m)
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.) 0.0 0.43 0.52 1.00 0.53 0.29 0.48 0.46 0.49 0.41 0.43 0.36

0.5 0.66 0.42 0.18 0.51 0.48 0.37 0.34 0.30 0.32 0.57 1.39
1.0 0.56 0.57 0.21 0.63 0.40 0.27 0.37 0.45 0.48 0.79 0.26
1.5 0.48 0.57 0.21 3.53 0.92 31.70 5.33 6.80 0.31 8.25 16.37
2.0 0.25 0.88 0.62 0.14 5.67 2.49 18.32 3.43 9.19 52.57 3.56
2.5 2.34 39.12 11.61 2.88 8.19 14.43 172.31 5.49 18.54 18.06 1.01
3.0 22.50 9.90 46.45 10.86 22.06 98.96 16.76 15.64 53.48 11.62 41.80
3.5 3.19 31.08 10.32 28.40 23.67 20.91 25.41 21.84 78.39 15.34 10.32
4.0 39.30 9.10 10.19 10.17 8.66 8.47 56.31 6.37 96.28 104.26 132.06

Table 8.1: Displacement errors of the refined camera estimates for the “capitol” sequence,
using various amounts of random perturbation of structure from motion cameras as initial
estimates.

translation offset (m)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
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n
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.) 0.0 0.07 0.09 0.16 0.06 0.03 0.05 0.05 0.05 0.04 0.04 0.04

0.5 0.10 0.07 0.03 0.07 0.08 0.04 0.03 0.04 0.04 0.07 0.16
1.0 0.09 0.07 0.03 0.10 0.07 0.04 0.06 0.07 0.04 0.11 0.06
1.5 0.08 0.08 0.05 0.56 0.15 3.93 1.48 1.51 0.05 1.01 1.77
2.0 0.07 0.12 0.08 0.04 0.99 0.31 2.27 0.57 1.13 5.91 0.57
2.5 2.54 6.78 1.40 0.36 2.18 0.44 20.87 1.80 2.34 1.73 0.15
3.0 2.63 3.34 5.45 2.77 3.84 11.78 3.19 3.09 7.72 2.33 3.27
3.5 3.13 5.83 2.99 6.11 3.18 1.20 5.33 5.78 10.80 4.76 0.87
4.0 3.87 4.86 4.40 4.49 2.66 4.75 5.90 4.47 10.09 10.05 13.35

Table 8.2: Orientation errors of the refined camera estimates for the “capitol” sequence,
using various amounts of random perturbation of structure from motion cameras as initial
estimates.

It is clear from the tables that the refinement algorithm robustly converges to a close

approximation of the true camera parameters when the orientation of the initial estimate

is accurate within roughly 1◦. The accuracy of the camera center of the initial estimate
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translation offset (m)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
or

ie
n
ta

ti
on

off
se

t
(d

eg
.) 0.0 0.16 0.37 0.41 0.37 0.52 0.51 0.79 0.98 0.45 0.75 0.99

0.5 1.06 0.84 0.79 0.77 0.42 0.89 0.65 0.49 0.79 0.53 0.95
1.0 0.39 0.42 0.57 0.71 0.84 1.06 0.35 0.78 1.10 5.96 0.39
1.5 39.52 0.71 0.52 0.59 16.95 0.29 0.39 12.76 1.65 8.21 1.02
2.0 21.79 59.33 0.91 55.90 11.13 15.59 0.65 7.53 9.15 12.01 11.22
2.5 0.38 0.90 60.31 0.93 6.14 12.66 5.41 6.89 8.66 0.97 55.97
3.0 15.54 97.79 48.76 59.02 5.90 40.83 5.86 6.62 65.24 32.98 1.95
3.5 13.31 14.06 66.92 31.63 33.70 27.98 16.71 17.30 37.19 14.98 20.89
4.0 79.20 36.38 2.86 2.24 33.46 11.21 5.15 34.78 18.80 11.55 8.97

Table 8.3: Displacement errors of the refined camera estimates for the “downtown” sequence,
using various amounts of random perturbation of structure from motion cameras as initial
estimates. All units are meters.

translation offset (m)
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.) 0.0 0.01 0.02 0.03 0.03 0.04 0.04 0.06 0.08 0.03 0.07 0.10

0.5 0.10 0.07 0.09 0.07 0.04 0.08 0.05 0.06 0.06 0.05 0.07
1.0 0.04 0.06 0.05 0.06 0.08 0.10 0.03 0.07 0.09 1.50 0.03
1.5 3.98 1.50 0.04 0.04 2.69 0.02 0.03 2.09 0.21 1.91 0.08
2.0 3.17 6.34 0.13 5.75 2.41 2.55 0.05 1.83 1.77 0.85 1.95
2.5 0.04 2.49 5.91 0.12 2.24 2.55 1.88 2.51 2.41 0.08 6.03
3.0 2.15 5.92 4.98 6.36 0.62 4.02 3.00 0.88 5.86 1.58 3.15
3.5 2.70 2.54 4.23 5.43 1.45 1.48 3.65 4.35 5.40 3.86 1.63
4.0 3.48 3.35 3.56 3.47 2.54 3.53 3.73 4.41 3.92 3.17 3.99

Table 8.4: Orientation errors of the refined camera estimates for the “downtown” sequence,
using various amounts of random perturbation of structure from motion cameras as initial
estimates. All units are degrees.

did not appear to have much of an effect on the accuracy of the refined camera within the

range of 0 to 10 meters of initial error. This approximate region of convergence is within the

limits of what is currently available from global positioning devices and inertial navigation

systems.

Although it is useful to determine what range of initial error the refinement algorithm

is capable of recovering from, these numbers do not tell the whole story. When the cameras

are reasonably distant from the scene (as typically are in aerial imagery), small errors

in translation can be offset by errors in orientation, resulting in a minimal effect on the

projection errors of points in the scene. It is therefore useful to measure the projection error
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of points in the scene before and after the optimization process. Figure 8.4 shows a scatter

plot of the mean projection error of 3-d scene points using the refined camera estimates

vs. the initial (noisy) camera estimates based on the experiments presented above. The

3-d point locations and ground truth projections are again provided by the structure from

motion algorithm. The refinement algorithm is consistently able to recover from projection

errors of up to 50 pixels, but does not reliably converge for larger errors.
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Figure 8.4: Mean projection errors after refinement as a function of the mean initial pro-
jection error for the (a) “capitol” and (b) “downtown” sequences.

8.5 Conclusions

The camera refinement algorithm presented in this chapter is a robust and useful tool, pro-

vided that a sufficiently accurate model exists for the purpose of generating the expected

images used for visual feedback. The existing model can produced using by previously

collected and calibrated data or, if they are sufficiently accurate, the camera estimates

themselves. The refinement algorithm itself is essentially a novel application of visual ser-

voing, and demonstrates the usefulness of the probabilistic model in the application area of

camera calibration.



Chapter 9

Conclusions and Future Work

This thesis has presented a novel continuous probabilistic model for representing scene

geometry and appearance based on aerial imagery. By generalizing previous (discrete)

probabilistic models in this way, implementations such as the presented octree-based model

can achieve multiple orders of magnitude in storage savings by non-uniformly sampling

the volume of interest. A generalization of a previous online probabilistic reconstruction

algorithm [53] was presented, as well as a novel reconstruction algorithm which is able to

process all available data at once. The utility of the model for two critical application areas,

3-d point localization and novel viewpoint rendering, was presented and evaluated, leading

to the conclusion that the ability of the octree-based implementation to represent large

areas with fine detail gives it a distinct advantage over previous methods based on discrete

fixed-grid models. Because the presented algorithms rely on a form of photo-consistency

metric, pixel-accurate camera calibration is critical. For this reason, a camera refinement

algorithm based on the model was presented in Chapter 8 was presented which shown to

be able to recover from up to 50 pixels of calibration error.

The utility of the presented model is not however limited to the applications focused

on in this thesis. Much future work will focus on exploring new applications which can

benefit from the increased resolution and coverage made possible by the continuous model.

One example of such an application is object recognition. Previous work by Mundy and

Ozcanali [51] used a discrete, fixed grid voxel model. When replaced with the octree-

based model, Ozcanali has shown recognition results to improve significantly, as shown in

113
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Figure 9.1.

Figure 9.1: A series of object detection [51] ROC curves. Using the presented octree-based
continuous model produces an increase in accuracy over the discrete fixed model. Graph
courtesy of Ozge C. Ozcanali.

In addition to exploring new application areas, several means of potential improvement

to the model and implementation will be explored in the near future. One example of such

work is that of speed improvements to the reconstruction and rendering algorithms. Off the

shelf computer graphics cards are becoming more and more powerful, with current models

able to process data multiple orders of magnitude faster than CPU’s for parallelizable

algorithms. Work is underway to leverage this enormous processing power to speed up the

algorithms presented in this thesis, and a real-time interactive novel viewpoint rendering

implementation has already been realized.

A second area of future work involves exploring the representation of the occlusion den-

sities themselves. Currently, unobserved regions are initialized with low occlusion density

values which are permitted to increase as evidence from the image data mounts. Ideally the

lack of knowledge about a given point could be represented by a degree of uncertainty, and

not by the occlusion density itself. In other words, the model should be able to distinguish

between a point which is probably not occluding and a point for which there is little or no
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evidence either way. Mundy has explored this concept using subjective logic [50] for the

discrete voxel case. Future work will involve developing and refining the theory as it relates

to the continuous model. It is expected that such a model will ease or eliminate the need

for the damping control to the batch update algorithm, which is partially a result of the

insufficiently accurate initial prior state of the model.

Finally, although this thesis has focused primarily on aerial imagery, the model is of

course not limited to that class of data, as evidenced by its ability to produce accurate

reconstructions using the Middlebury multi-view stereo evaluation test data 6. Experiments

which focus on ground-based data or combinations of ground-based and aerial data will be

explored, giving rise to the potential challenges of dealing with modes of data containing

vastly varying resolution.

The significant gains over traditional probabilistic scene models demonstrated here,

along with the many avenues for potential improvement and expansion of capabilities, in-

dicate a promising future for the model whose basis has been presented in this thesis.
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