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CHAPTER I:

Introduction

1.1 Background and Motivation

Theory of large deviations has its roots in actuarial science when F. Esscher (in

the 1930s) became interested in finding the rare event probability that the total

earnings in an insurance company exceeds the total claim. He modeled the claims as

independent random variables and associated a distribution to them. The probability

of interest, then became the estimation of the tail probabilities of sums of independent

random variables. This marked the origin of the theory of large deviations. Over

the years, other scientists including H. Cramér made further contributions to the

subject, but a formal definition was given by S. R. S. Varadhan in the 1960s. In

short, theory of large deviations takes the Central Limit Theorem one step further.

To make this precise, consider a sequence of i.i.d random variables {Xk} with mean

zero and unit variance. By the Law of Large Numbers it follows that

Sn =
1

n

n
∑

k=1

Xk

1



converges to zero with probability one. Thus, for any δ > 0,

P (|Sn| ≥ δ) → 0 as n → ∞, (1.1)

i.e. for n sufficiently large, (|Sn| ≥ δ) is a rare event. On the other hand, the Central

Limit Theorem (CLT) asserts that as n approaches infinity, the random variable

√
nSn converges in distribution to that of a normal N(0, 1), therefore for any A ⊆ R

P (
√

nSn ∈ A) → 1√
2π

∫

A

e−x2/2dx as n → ∞. (1.2)

Let A
.
= R \ (−δ

√
n, δ

√
n), then

L.H.S.
.
= P (

√
nSn ∈ A) = P (|Sn| ≥ δ).

On the other hand, by direct calculation

R.H.S.
.
=

1√
2π

∫

A

e−x2/2dx = 1 − 1√
2π

∫ δ
√

n

−δ
√

n

e−x2/2dx ≈ e−nδ2/2,

thus applying (1.2) naively yields

1

n
logP (|Sn| ≥ δ) → −δ2

2
as n → ∞. (1.3)

Note that (1.1) and (1.2) hold true as long as {Xk} are i.i.d with zero mean and

unit variance, regardless of the distribution of each Xk; however, Cramér’s theorem

asserts that the value of the limit in (1.3) does depend on the distribution of {Xk} –

i.e., the limit is not unique for all distributions. Therefore, in the case of a rare event

where the set A depends on “n”, using CLT to replace
√

nSn by its distributional

limit, is a naive approach; instead, one should appeal to the “Large Deviation Limit”

of n−1logP (|Sn| ≥ δ).

2



Large deviations can also answer questions regarding the sample paths of stochastic

processes. For example, let Xn(t) be a family of processes with a deterministic limit

as n → ∞, then large deviations is able to identify the rate of this convergence.

Therefore, through sample path large deviations one can identify the exponential

decay rate of the probability of a rare event. While large deviations can successfully

identify this rate of convergence, the estimation of the “exact” probability of interest

belongs to the subject of stochastic simulation.

Stochastic simulation goes back to the work of Ulam, and Von Neuman (among oth-

ers), who coined the term “Monte Carlo” in Los Alamos in order to construct better

atomic bombs. Monte Carlo, which is particularly useful for simulating systems with

many coupled degrees of freedom such as fluids, exploits the Law of Large Numbers

in order to approximate expectations. Note that many quantities of interest such

as probabilities, integrals, and summations can be cast as expectations. The con-

sequence of this is that “probabilities” can be approximated by the Monte Carlo

method; however, the natural question to ask is whether Monte Carlo is also effi-

cient when dealing with rare events. The answer is not affirmative. The reason for

which is that the relative error (which is of the order of the inverse of the probability

of the rare event) renders the simulation computationally inefficient. “Importance

Sampling” – a general variance reduction technique – (which dates back to the 1950s

and is illustrated best in the work of D. Siegmund) is a remedy to this situation. An

importance sampling scheme generates samples from a new probability distribution

under which the rare event is no longer rare, i.e.

rare event (under old measure) → common event (under new measure).

However, there are many changes of measure that can turn a rare event into a

common event. The choosing of the measure which reduces the variance most, is

3



the core of the importance sampling technique and is referred to as “Asymptotic

Optimality” (This will be made precise in Section 3.5.5).

1.2 Overview

In this thesis, we consider a feed-forward network with a single server station serving

jobs with multiple levels of priority. The service discipline is preemptive in that the

server always serves a job with the current highest priority level. For this system

with discontinuous dynamics, we show that the family of scaled state processes satisfy

the sample path large deviations principle using a weak convergence argument. In

the special case where the jobs have two different levels of priority, we explicitly

identify the exponential decay rate of the probability a rare event, namely, the total

population overflow associated to the feed-forward network. We then use importance

sampling – a variance reduction technique – efficient for rare event probabilities to

simulate the exact probability of interest.

1.3 Outline

This thesis is organized as follows. In the second Chapter we establish a large

deviation principle for the family of scaled state processes, where we employ the

weak convergence approach. The identification of the exponential decay rate of the

probability of the rare event of interest (i.e., the total population overflow) associated

to the 2-dimensional network is also performed in this chapter. The third Chapter is

concerned with simulating the exact probability of interest via importance sampling.

The two main contributions are proposing an importance sampling estimator for

evaluating the probability of interest, and verifying that this estimator is in fact

asymptotically optimal. The chapter concludes with numerical simulations that

confirm the asymptotic optimality of our schemes. A collection of proofs is presented

in the Appendices.

4



CHAPTER II:

Large Deviations for a Feed-forward Network

2.1 Overview

We consider a single server station with multiple classes of exogenous jobs, where

each class is assigned a priority level. The service discipline is preemptive in that

the server always serves a job with the current highest level of priority. Jobs with

the same priority level are served under the first-in-first-out policy. This model is

probably the simplest feed-forward network with preemptive priority discipline [5].

Yet, it still captures the source of difficulty in the analysis of such systems, namely,

the discontinuous dynamics due to the preemptive service policy.

Theory of large deviations is concerned with the asymptotic behavior of tails of

sequences of probability distributions. Let S be a Polish space (i.e., a complete,

separable, metric space) equipped with the Borel σ-algebra and {Xn} a sequence of

S-valued random variables. A lower semicontinuous function I : S → [0,∞] with

compact level sets is said to be a large deviation upper bound rate function if for

5



every closed subset F of S

lim sup
n

1

n
log P (Xn ∈ F ) ≤ − inf

x∈F
I(x).

Similarly, I is said to be a large deviation lower bound rate function if for every

open subset G of S

lim inf
n

1

n
log P (Xn ∈ G) ≥ − inf

x∈G
I(x).

If I is both an upper and a lower bound rate function, then {Xn} satisfies the large

deviation principle with rate function I.

Large deviations analysis for stable stochastic systems with continuous dynamics

has been a classical topic in probability theory [15]. However, the general methodolo-

gies and techniques therein cannot be applied to models with discontinuous dynamics

that arise naturally in a variety of applications (notably queueing networks). In the

last two decades, research on the large deviations properties of such models has

become more and more popular and many interesting results have been obtained

[4, 6, 14, 20, 21]. With minor regularity conditions, it is possible to establish an

explicit large deviation upper bound rate function [29] for stochastic systems with

very general discontinuous dynamics. However, this upper bound rate function is

not a lower bound rate function in general [1, 17]. The reason for this gap lies in the

so called “stability-about-the-interface” condition. To give an intuitive explanation,

let us consider a simple model of random walk in R
d where the dynamics are con-

stant in the two half spaces Λ1 = {x ∈ R
d : x1 ≤ 0} and Λ2 = {x ∈ R

d : x1 > 0}.

Denote by Li the large deviation local rate function for the dynamics in the region

Λi, i = 1, 2. The upper bound rate function suggested by [29] on the interface

Σ = {x ∈ R
d : x1 = 0} is the inf-convolution of L1 and L2. That is, for every x ∈ Σ

6



and β ∈ R
d

L(x; β) = inf [ρ1L1(ν) + ρ2L2(θ)] , (2.1)

where the infimum is taken over all quadruples (ν, θ, ρ1, ρ2) such that

ν ∈ R
d, θ ∈ R

d, ρ1 ≥ 0, ρ2 ≥ 0, ρ1 + ρ2 = 1, ρ1ν + ρ2θ = β. (2.2)

This upper bound rate function L is not a lower bound rate function in general.

Indeed, it is shown in [28, Chapter 7] that the large deviation rate function is defined

exactly as in (2.1) but with extra constraints (i.e., the “stability-about-the-interface”

condition)

ν1 ≥ 0, θ1 ≤ 0

in (2.2). The reason for these extra constraints is that in order to prove a large

deviation lower bound, one needs to analyze the cost associated with a piece of

trajectory that travels on the interface Σ. This is usually achieved by a change

of measure argument so that the state process closely tracks the trajectory under

the new probability distribution. The vital role of this stability-about-the-interface

condition is to characterize all those changes of measures that lead to the desired

tracking behavior; see [28, Chapter 7] for more details.

The current Chapter consists of two parts. In the first part we establish the sam-

ple path large deviation principle for the feed-forward network under consideration.

It turns out that the “stability-about-the-interface” condition is implicitly built into

the upper bound rate function [29]. Consequently, the upper bound rate function is

indeed the rate function. Similar results have been obtained in [3], whose analysis

uses the techniques of the Skorokhod Problem and therefore do not apply here. We

7



also wish to point out that [18] can be applied to the current system to establish a

sample path large deviation principle. However, in [18] the rate function is only im-

plicitly defined in terms of the convergence parameters of the transform semigroup.

Furthermore, we use a different approach based on weak convergence, which seems

to be very powerful especially in dealing with discontinuous dynamics; see also [10].

The simple form of the upper bound rate function (or the rate function) allows

one to characterize through partial differential equations the asymptotic behavior of

various types of buffer overflow probabilities. In the second part, we illustrate this

connection by explicitly identifying the exponential decay rate of the total population

overflow probabilities when the exogenous jobs have two levels of priority. The form

of the decay rate is motivated by examining the geometry of the zero levels sets

of the system Hamiltonians, and then rigorously verified by constructing suitable

subsolutions to the related partial differential equation.

This Chapter is partly motivated by the problem of estimating various buffer

overflow probabilities for feed-forward networks via importance sampling. It serves

as a starting point towards large deviation analysis for more complicated networks

with preemptive priority service disciplines. The analysis suggests that it may not

be uncommon for the “stability-about-the-interface” condition to hold automatically

for physically meaningful systems; see also [10]. This leads to the interesting open

question of establishing a general sufficient condition to recognize such systems.

This Chapter is organized as follows. In Section 2.2 the model setup and system

dynamics are introduced. The large deviation analysis of the scaled state process is

performed in Section 2.3. In Section 2.4 we specialize to the two-dimensional case

and explicitly identify the exponential decay rate of the total population overflow

probabilities. A brief summary is given in Section 2.5. Some of the technical proofs

8



are deferred to appendices.

Remark on Notation: Unless otherwise specified, we will adopt the following

notation.

1. If x is a vector, then xi denotes its i-th component.

2. If βi is a vector, then [βi]k denotes its k-th component.

3. ei denotes the vector with the i-th component 1 and 0 otherwise.

4. The sup-norm is denoted by ‖ · ‖∞. For example, say f(x, t) is a function on

R
d × [0, T ]. Then

‖f‖∞ = sup
(x,t)∈Rd×[0,T ]

|f(x, t)|.

5. A collection of random variables that take values in a Polish space S is said to

be tight if the probability measures that these random variables induce on S

are tight.

6. At times random variables and stochastic processes will be defined on different

probability spaces. This happens, for example, when the Skorohod Represen-

tation Theorem is invoked. To ease exposition, we will use the same notation

E to denote the expectation on all these different probability spaces.

2.2 The Model and System Dynamics

Consider a single server station serving d classes of exogenous jobs. Jobs of class

i, i = 1, . . . , d arrive according to a Poisson process with rate λi > 0, and are

buffered at queue i. The service time for a class i job is exponentially distributed

with rate µi > 0. The arrival processes and service times are assumed to be mutually

9



independent. The system adopts a service discipline such that a job of class i has

preemptive priority over a job of class j whenever i > j, and the server always serves

a job with the current highest level of priority. Jobs with the same priority level are

served according to the first-in-first-out policy. See Figure 2.1. The state process

λ1

µ2

µ1

λ2

µdλd

...
...

Highest Priority

Lowest Priority

Figure 2.1: Feed-forward network with preemptive priority service policy

Q = {(Q1(t), . . . , Qd(t)) : t ≥ 0} is a d-dimensional process where Qi(t) denotes the

queue size of class i job at time t. It is a continuous time pure jump Markov process

defined on some probability space, say, (Ω, F, P). Define Π(x) to be the index of the

non-empty queue with the highest priority at state x = (x1, . . . , xd) ∈ R
d
+, that is,

Π(x) = max{i : xi > 0} with convention Π(0) = 0. (2.3)

Note that the mapping Π is lower semicontinuous. Under the preemptive service

policy, the set of all possible jumps of Q is

V = {±e1, . . . ,±ed},

and the jump intensity from state x to state x + v is defined as

r(x, v) =























λi if v = ei,

µi if v = −ei and i = Π(x) ≥ 1,

0 otherwise.

10



The dynamics of the system are discontinuous at the interface {x : Π(x) = i} for

each 0 ≤ i ≤ d − 1. Thus there are in total d interfaces of discontinuity whose

dimensions range from 0 to d − 1. These interfaces are also boundaries of the state

space.

λ1

µ2

Q1

µ1 λ1

λ2

λ2

λ2

λ1

µ2

∂

D

Q2

Figure 2.2: System Dynamics for d = 2

2.3 Large Deviations Analysis

In this section we study the sample path large deviation properties of the state

process Q. To this end, we define the scaled state process

Xn(t) =
1

n
Q(nt).

Our goal is to show that the family of processes {Xn(t) : t ∈ [0, T ], n ∈ N} (which

are again continuous time, pure jump Markov processes) satisfy the large deviation

principle with “some” rate function. In order achieve this goal, we need the following

definitions.

11



2.3.1 Hamiltonians and Rate Functions

For every α = (α1, . . . , αd) ∈ R
d, we define

H0(α) =

d
∑

k=1

λk(e
αk − 1), (2.4)

Hi(α) = µi(e
−αi − 1) +

d
∑

k=1

λk(e
αk − 1), 1 ≤ i ≤ d. (2.5)

The functions H0, H1, . . . , Hd are all strictly convex, and Hi corresponds to the

Hamiltonian in the region {x ∈ R
d
+ : Π(x) = i}. These Hamiltonians are closely

related to the log of the moment generating functions of the infinitesimal increments

of the process Q. Therefore, they play an important role in the PDE approach to

the large deviation analysis [9].

For each i denote by Li the Legendre transform of Hi, that is, for each β ∈ R
d,

Li(β) = sup
α∈Rd

[〈α, β〉 − Hi(α)]

Define ⊕ as the inf-convolution operator and L̄i as the inf-convolution of Li, Li+1,

. . ., Ld. That is, for every β ∈ R
d,

L̄i(β) = (Li ⊕ Li+1 ⊕ · · · ⊕ Ld)(β) (2.6)

= inf

{

d
∑

j=i

ρjLj(βj) : βj ∈ R
d, ρj ≥ 0,

d
∑

j=i

ρj = 1,

d
∑

j=i

ρjβj = β

}

.

The local rate function, denoted by L(x, β) for every x ∈ R
d
+ and β ∈ R

d, is defined

as

L(x, β) = L̄Π(x)(β).

Note that the Legendre transform and inf-convolution of convex functions are still

convex. Thus the local rate function L(x, ·) is convex for every x ∈ R
d
+.

12



2.3.2 Sample Path Large Deviations

Fix an arbitrary time T > 0. The sample paths {Xn(t) : t ∈ [0, T ]} live in the Polish

space of cadlag functions D([0, T ] : R
d) endowed with the Skorohod metric. For each

x ∈ R
d
+, define the rate function Ix : D([0, T ] : R

d) → [0,∞] by

Ix(φ) =

∫ T

0

L(φ(t), φ̇(t)) dt

if φ(0) = x, φ(t) ∈ R
d
+ for all t, and φ is absolutely continuous, and set Ix(φ) = ∞

otherwise. It was established in [29] that the rate function {Ix : x ∈ R
d
+} is an upper

bound rate function and has compact level sets on compacts in the sense that the

set

∪x∈C{φ : Ix(φ) ≤ M}

is compact for every M ≥ 0 and compact set C ∈ R
d
+.

2.3.3 The Main Theorem

Recall that the large deviation principle and the Laplace principle are equivalent for

probability measures on a Polish space [28, Theorem 1.2.1 and Theorem 1.2.3]. Let

Exn denote the expectation conditional on Xn(0) = xn.

Theorem 2.3.1. The processes {Xn(t) : t ∈ [0, T ]} satisfy the uniform Laplace

principle principle with rate functions {Ix : x ∈ R
d
+}. That is, for any sequence

{xn} ⊆ R
d
+ such that xn → x and any bounded continuous function h : D([0, T ] :

R
d) → R, we have

lim
n→∞

−1

n
log Exn{exp[−nh(Xn)]} = inf

φ∈D([0,T ]:Rd
+)
{Ix(φ) + h(φ)}.

Therefore, {Xn(t) : t ∈ [0, T ]} with Xn(0) = x ∈ R
d
+ satisfy the large deviation

principle with rate function Ix.

13



Proof. Throughout the proof we will assume without loss of generality that T = 1.

The uniform Laplace principle upper bound is implied by the uniform large deviation

upper bound [29, Theorem 1.1] through an argument analogous to [28, Theorem

1.2.1]. Therefore, it suffices to show the uniform Laplace principle lower bound.

That is to show

lim inf
n

1

n
log Exn{exp[−nh(Xn)]} ≥ − inf

φ∈D([0,1]:Rd)
{Ix(φ) + h(φ)}. (2.7)

Since the above inequality holds trivially if Ix(φ) = ∞, we can a priori assume that

Ix(φ) is finite, which dictates that φ is absolutely continuous. For the convenience of

the reader, we divide the proof into four steps. In Step 1, an alternative representa-

tion for the left hand side of (2.7) is established, which turns the analysis of the lower

bound (2.7) into that of a stochastic control problem. The construction of nearly

optimal controls is given in Step 2. The analysis of the limit controlled process is

carried out in Step 3 via the weak convergence approach. The desired lower bound

(2.7) is finally established in Step 4.

Step 1: Stochastic Control Representation

In order to prove (2.7), it suffices to show

lim inf
n

1

n
log Exn{exp[−nh(Xn)]} ≥ −[Ix(φ) + h(φ)] (2.8)

for every φ. Denote by Pn the probability measure induced by Xn on the Polish space

D([0, 1] : R
d). Then by the relative entropy representation of exponential integrals

[28, Section 1.4]

−1

n
log Exn{exp[−nh(Xn)]} = inf

[

1

n
R(Q‖Pn) +

∫

D([0,1]:Rd)

h dQ

]

14



where the infimum is taken over all probability measures Q on D([0, 1] : R
d). Now

consider those probability measures induced by jump Markov processes X̄n with

initial condition X̄n(0) = xn and generator L̄n such that

L̄
nf(x, t) = n

∑

v∈V

r̄(x, t; v)[f(x + v/n) − f(x)]. (2.9)

Here r̄(x, t; v) is non-negative and uniformly bounded, and also satisfies r̄(x, t; v) = 0

whenever r(x; v) = 0 [in other words, r̄(x, t; v) (which can be viewed as the control)

is the new jump intensity from state x to x + v at time t, and X̄n (which can be

viewed as the controlled process) is the scaled version of the jump Markov process

with r̄(x, t; v), as the jump intensity] . If we restrict the infimum to such probability

measures, for which the explicit evaluation of the relative entropy R(·‖Pn) is available

[22, Theorem B.6], we arrive at the inequality

−1

n
log Exn{exp[−nh(Xn)]}

≤ inf
r̄

Exn

[

∫ 1

0

∑

v∈V

r(X̄n(t); v)ℓ

(

r̄(X̄n(t), t; v)

r(X̄n(t); v)

)

dt + h(X̄n)

]

,

where ℓ is defined by

ℓ(x) =











x log x − x + 1 if x ≥ 0,

∞ if x < 0,

with the convention 0 · ℓ(0/0) = 0. Therefore, in order to prove (2.8), it suffices to

construct, for an arbitrarily fixed positive constant ε, an alternative jump intensity

function r̄ (dependent on ε) such that

lim sup
n

Exn

[

∫ 1

0

∑

v∈V

r(X̄n(t); v)ℓ

(

r̄(X̄n(t), t; v)

r(X̄n(t); v)

)

dt + h(X̄n)

]

(2.10)

≤ I(φ) + h(φ) + ε.
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Since proving (2.10) for all φ is not feasible, we restrict φ to a more analytically

tractable class N, which consists of those absolutely continuous functions φ∗ : [0, 1] →

R
d
+ such that there exists a positive integer K and a partition 0 = t0 < t1 < · · · <

tk−1 < tK = 1 where on each open interval (ti−1, ti), i = 1, . . . , K, both φ̇∗ and Π(φ∗)

take constant values. The following lemma states that any trajectory φ with finite

cost can be approximated by a trajectory in class N. The proof of this lemma is

deferred to Appendix A.1.

Lemma 2.3.2. Given any φ ∈ D([0, 1] : R
d) such that Ix(φ) < ∞ and any δ > 0,

there exists a φ∗ ∈ N such that ‖φ − φ∗‖∞ < δ and Ix(φ
∗) ≤ Ix(φ).

Due to this lemma and the continuity of h, it is easy to see that in order to show

(2.7) one only needs to prove

lim sup
n

Exn

[

∫ 1

0

∑

v∈V

r(X̄n(t); v)ℓ

(

r̄(X̄n(t), t; v)

r(X̄n(t); v)

)

dt + h(X̄n)

]

(2.11)

≤ I(φ∗) + h(φ∗) + ε.

We now set forth to prove this inequality.

Step 2: Construction of Optimal Controls (r̄)

The construction of r̄ is based on the representation of the rate function L̄i (which

is the infimum of the associated running cost, and can be viewed as the energy of a

particle) in terms of the function ℓ. More precisely, we have the following lemma,

whose proof is very similar to [10, Section 4.3]. For the sake of completeness, we

include the proof in Appendix A.2.
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Lemma 2.3.3. Given β ∈ R
d and i = 0, 1, . . . , d, we have the representation

L̄i(β) = inf

[

d
∑

k=1

ρkµkℓ

(

µ̄k

µk

)

+

d
∑

k=1

λkℓ

(

λ̄k

λk

)

]

where the infimum is taken over strictly positive constants {µ̄k, λ̄k : k ≥ 1} and

strictly positive constants {ρk : k ≥ i} with ρk = 0 for k < i such that

d
∑

k=i

ρk = 1, −
d
∑

k=1

ρkµ̄kek +

d
∑

k=1

λ̄kek = β.

Furthermore, L̄i(β) is finite if and only if βk ≥ 0 for all k < i.

Since φ∗ ∈ N, there exists a partition 0 = t0 < t1 < · · · < tK−1 < tK = 1 such

that on the open interval (tj , tj+1), both φ̇∗(t) and Π(φ∗(t)) take constant values,

say φ̇∗(t) = βj and Π(φ∗(t)) = Ij . Due to Lemma 2.3.3 we can define a collection

{ρj
k, µ̄

j
k, λ̄

j
k}k≥0 (where the superscript denotes the time index) such that

1. For k < Ij, ρj
k = 0, µ̄j

k = µk, and λ̄j
k = λk; Note that the definitions of µ̄j

k

and λ̄j
k can be arbitrary since the limit process does not spend any meaningful

amount of time on the interface {x ∈ R
d
+ : Π(x) = k}.

2. For k ≥ Ij, ρj
k, µ̄j

k and λ̄j
k are all strictly positive and satisfy

d
∑

k=Ij

ρj
k = 1, −

d
∑

k=1

ρj
kµ̄

j
kek +

d
∑

k=1

λ̄j
kek = βj , (2.12)

d
∑

k=1

ρj
kµkℓ

(

µ̄j
k

µk

)

+
d
∑

k=1

λkℓ

(

λ̄j
k

λk

)

≤ L̄Ij
(βj) + ε (2.13)

We can now define the alternative jump intensity r̄ as follows. For every t ∈ [tj, tj+1),
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let

r̄(x, t; v) =























λ̄j
k if v = ek,

µ̄j
k if v = −ek and Π(x) = k ≥ 1,

0 otherwise.

(2.14)

The function r̄ defines a jump process X̄n, given the initial condition X̄n(0) = xn.

We also introduce the notation

βj,0 =
d
∑

k=1

λ̄j
kek; βj,i = −µ̄j

iei +
d
∑

k=1

λ̄j
kek, i = 1, . . . , d. (2.15)

where the second superscript represents the surface of discontinuity. It is trivial from

definitions (2.14) and (2.15) that for every t ∈ [tj , tj+1),

βj,Π(x) =
∑

v∈V

r̄(x, t; v) · v. (2.16)

In other words, {βj,Π(x)} corresponds to the law of large number limit of the velocity

of the process X̄n at state x. It can be viewed as the average velocity.

Remark 2.3.4. The probability measures induced by X̄n and Xn are absolutely

continuous with respect to each other. This is because for any given jump size v,

the corresponding jump intensities r̄(x, t; v) and r(x; v) are either both zero or both

strictly positive.

Step 3: Weak convergence analysis of the limit process

The goal of this step is to argue that {X̄n} converges in distribution to φ∗. We

first show that {X̄n} is tight and thus has a subsequence converging in distribution,

and then identify the weak limit to be φ∗. The proof of tightness is standard. It is

in the identification of the weak limit, that the structure of the model, namely the
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stability-about-the-interface condition, plays a crucial role; see Remark 2.3.6.

For each n, we define a collection of random measures γn = (γn
0 , γn

1 , . . . , γn
d ) on

[0, 1] where for every k = 0, 1, . . . , d and every Borel set B ⊂ [0, 1]

γn
k (B) =

∫

B

1{Π(X̄n(t))=k} dt.

Each γn
k is a random variable taking values in the Polish space of sub-probability

measures on the interval [0, 1], equipped with the topology of weak convergence.

Lemma 2.3.5. Given any subsequence of (γn, X̄n), there exists a subsubsequence

and a collection of random measures γ = (γ0, γ1, . . . , γd) on [0, 1] such that

1. the subsubsequence converges in distribution to (γ, φ∗);

2. with probability one, γk is absolutely continuous with respect to the Lebesgue

measure on [0, 1], and its density, say hk, satisfies for almost every t

hk(t) =

K−1
∑

j=0

ρj
k1(tj ,tj+1)(t). (2.17)

Proof. To simplify notation, the subsequence is still denoted by (γn, X̄n). We first

argue that it is tight. The family of random measures {γn
k } is contained in the set

of all sub-probability measures on [0, 1]. Since [0, 1] is compact, this set is compact

as well. This proves the tightness of {γn}.

In order to show the tightness of {X̄n}, we introduce an auxiliary process Sn.

Loosely speaking, it is the “average” of the process X̄n:

Sn(t) = xn +
d
∑

k=0





I(t)−1
∑

j=0

βj,kγn
k {[tj , tj+1)} + βI(t),kγn

k {[tI(t), t)}



 ,
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where I(t) = max{j : tj ≤ t}. Since every random measure γn
k is absolutely contin-

uous with respect to the Lebesgue measure on [0, 1] with the density or the Radon-

Nikodým derivative uniformly bounded by one, {Sn} is uniformly Lipschitz contin-

uous. It follows that {Sn} takes values in a compact subset of C([0, 1] : R
d) by the

Arzélà-Ascoli Theorem, which in turn implies the tightness of {Sn}.

It suffices now to show that ‖X̄n − Sn‖∞ converges to 0 in probability (and

therefore {X̄n} is tight). To this end, we introduce the process

Zn(t) = nX̄n

(

t

n

)

, 0 ≤ t ≤ n.

Note that X̄n is a scaled version of Zn. Since the generator of X̄n takes the form

(2.9), it is clear that the generator of Zn, denoted by L
n, is such that

L
nf(z, t) =

∑

v∈V

r̄

(

z

n
,
t

n
; v

)

[f(z + v) − f(z)].

In other words, Zn is a pure jump Markov process whose jump intensity (for a jump

of size v) at state Zn = z and time t is

λn(z, t; v) = r̄

(

z

n
,
t

n
; v

)

. (2.18)

For every v ∈ V, denote by Y n,v the counting process for jumps of size v associated

with the process Zn. That is,

Y n,v(t) = Number of jumps of size v up until time t for the process Zn.
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It is clear that for every t ∈ [0, 1]

Zn(t) = Zn(0) +
∑

v∈V

Y n,v(t) · v = nxn +
∑

v∈V

Y n,v(t) · v, (2.19)

and the instantaneous intensity function for Y n,v is λn(Zn(t), t; v); see also [22, Ap-

pendix B] for a more detailed discussion on counting processes.

We can now rewrite Sn in terms of the intensity function λn. Recalling the

definitions of Sn and {γn
k }, and that I(s) = j if s ∈ [tj , tj+1) and I(s) = I(t) if

s ∈ [tI(t), t), we have

Sn(t) = xn +

d
∑

k=0





I(t)−1
∑

j=0

βj,k

∫ tj+1

tj

1{Π(X̄n(s))=k} ds

+ βI(t),k

∫ t

tI(t)

1{Π(X̄n(s))=k} ds

]

= xn +

d
∑

k=0

∫ t

0

βI(s),k · 1{Π(X̄n(s))=k} ds

= xn +

∫ t

0

βI(s),Π(X̄n(s)) ds.

Thanks to (2.16) and (2.18), it follows that

Sn(t) = xn +

∫ t

0

∑

v∈V

r̄(X̄n(s), s; v) · v ds

= xn +

∫ t

0

∑

v∈V

λn(Zn(ns), ns; v) · v ds

= xn +
1

n

∫ nt

0

∑

v∈V

λn(Zn(s), s; v) · v ds.
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Combined with equation (2.19), we have

X̄n(t) − Sn(t) =
1

n
Zn(nt) − Sn(t)

=
1

n

∑

v∈V

[

Y n,v(nt) −
∫ nt

0

λn(Zn(s), s; v) ds

]

· v.

It is now clear that X̄n − Sn is a martingale since λn is the intensity of Y n,v [13,

Lemma 2.3.2]. Therefore, it follows from Doob’s maximal inequality that for every

fixed ε > 0

Pxn

(

sup
t∈[0,1]

‖X̄n(t) − Sn(t)‖ > ε

)

≤ 1

ε2
Exn‖X̄n(1) − Sn(1)‖2.

Thanks to (2.18) and the definition (2.14) of r̄, λn is uniformly bounded by ‖r‖∞.

Therefore, for some constant C [13, Theorem 2.5.3]

Exn‖X̄n(1) − Sn(1)‖2 ≤ C

n2

∑

v∈V

Exn

[

Y n,v(n) −
∫ n

0

λn(Zn(s), s; v) ds

]2

=
C

n2

∑

v∈V

Exn

∫ n

0

λn(Zn(s), s; v) ds

≤ C · 2d‖r̄‖∞
n

.

The right hand side of the above inequality converges to 0 as n tends to infinity.

Therefore ‖X̄n − Sn‖∞ converges to 0 in probability and {X̄n} is tight.

By Prohorov’s Theorem [12, Chapter 3] there exists a subsubsequence, still de-

noted by (γn, X̄n), that converges in distribution to say (γ, X̄) where γ = (γ0, γ1, . . . , γd).

Note that X̄ is continuous since it also is the weak limit of Sn. By the Skorohod

Representation Theorem [28, Theorem A.3.9], we can assume that the convergence

is almost sure convergence when everything is defined on some probability space, say

(Ω̄, F̄, P̄). Again since {γn
k} is absolutely continuous with respect to the Lebesgue
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measure on [0, 1] with the density uniformly bounded by one, the limit γk also enjoys

the same property. Furthermore, it follows that for every t, Sn(t) converges almost

surely to

S(t) = x +

d
∑

k=0





I(t)−1
∑

j=0

βj,kγk{[tj , tj+1)} + βI(t),kγk{[tI(t), t)}



 .

Therefore, S(t) = X̄(t) almost surely for every t. Since both S and X̄ are continuous,

S = X̄ with probability one. In particular, if we denote by hk the density of γk,

dX̄(t)

dt
=

d
∑

k=0

βI(t),khk(t) (2.20)

for almost every t.

It remains to show (2.17) and that X̄ = φ∗. In doing so, we first establish a

useful property of {hk}, namely, that with probability one

d
∑

k=0

hk(t) = 1 =

d
∑

k=Π(X̄(t))

hk(t) (2.21)

for almost every t ∈ [0, 1]. The first equality is trivial since
∑d

k=0 γn
k equals the

Lebesgue measure on [0, 1] for every n. The second equality follows from a standard

argument [28, Theorem 7.4.4(c)]. Note that for almost every ω ∈ Ω, X̄(t, ω) is

continuous with respect to t, γn(ω) converges weakly to γ(ω), and X̄n(·, ω) converges

to X̄(·, ω) in the Skorohod metric. Fix arbitrarily such an ω. Define Ai = {t ∈

[0, 1] : Π(X̄(t, ω)) = i}. Since X̄n(·, ω) also converges to X̄(·, ω) in the sup-norm [22,

Theorem A.6.5] and Π is lower-semicontinuous, it follows that for every t ∈ Ai there

exists an open interval (at, bt) containing t and an N ∈ N such that Π(X̄n(s, ω)) ≥ i

for all s ∈ (at, bt) and n ≥ N . Therefore,
∑

k<i γ
n
k (ω){(at, bt)} = 0 for all n ≥ N .

Letting n → ∞ it follows that
∑

k<i γk(ω){(at, bt)} = 0 for every t ∈ Ai. Since
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Ai ⊆ ∪t∈Ai
(at, bt), there exists a countable subcover [19, Page 49, Lindelöf Theorem]

that is, there exists {tj} ⊆ Ai such that

Ai ⊆ ∪j(atj , btj ).

It follows from the countable sub-additivity of measures that
∑

k<i γk(ω){Ai} = 0.

Therefore,

0 =
d
∑

i=0

∑

k<i

γk(ω){Ai} =

∫ 1

0

Π(X̄(t))−1
∑

k=0

hk(t, ω) dt.

This completes the proof (2.21). Combining (2.21), (2.20), and (2.15) we obtain the

following identity

dX̄(t)

dt
=

d
∑

k=0

βj,khk(t) =

d
∑

k=1

λ̄j
kek −

d
∑

k=max{Π(X̄(t)),1}

µ̄j
khk(t)ek, (2.22)

for almost every t ∈ (tj , tj+1).

We will now use induction to argue (2.17). It is trivial that (2.17) holds for

almost every t ∈ [0, tj] with j = 0 since t0 = 0. Assume that (2.17) holds for almost

every t ∈ [0, tj]. The goal is to show that it holds for almost every t ∈ [0, tj+1], or

equivalently, hk(t) = ρj
k for almost every t ∈ (tj , tj+1).

It is not difficult to verify that X̄(t) = φ∗(t) for all t ∈ [0, tj]. Indeed, by the

induction hypothesis that (2.17) holds for almost every t ∈ [0, tj], and equations
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(2.12), (2.15), we have

dX̄(t)

dt
=

d
∑

k=0

βI(t),k
K−1
∑

j=0

ρj
k1(tj ,tj+1)(t)

=
K−1
∑

j=0

d
∑

k=0

ρj
kβ

j,k1(tj ,tj+1)(t)

=

K−1
∑

j=0

βj1(tj ,tj+1)(t)

=
dφ∗(t)

dt
. (2.23)

Therefore, since X̄(0) = x = φ∗(0), X̄(t) = φ∗(t) for every t ∈ [0, tj]. In particular,

X̄(tj) = φ∗(tj).

Define Ij = Π(φ∗(t)) and βj = φ̇∗(t) for every t ∈ (tj , tj+1). Observing that

[βj ]k = 0 for all Ij < k ≤ d, one can uniquely determine the value of {ρj
k} based on

the definition of {ρj
k} and equation (2.12), namely,

ρj
k =































λ̄j
k/µ̄

j
k if Ij < k ≤ d,

1 −
d
∑

k=Ij+1

λ̄j
k/µ̄

j
k if k = Ij ,

0 if k < Ij .

(2.24)

We also note that the lower semicontinuity of Π implies Ij ≥ Π(φ∗(tj)) = Π(X̄(tj)).

The key step in this inductive argument is to prove that Π(X̄(t)) = Ij for every

t ∈ (tj, tj+1). To this end, note that Π(X̄(t)) can only take finitely many possible

values, hence the maximum of Π(X̄(t)) on (tj , tj+1) must be attained at some t∗ ∈

(tj , tj+1). Since Π is lower semicontinuous, there exists an open interval that is

contained in (tj, tj+1), such that for all t in this interval, Π(X̄(t)) ≥ Π(X̄(t∗)).

Denote by (a, b) ⊆ (tj, tj+1) the largest of such intervals. By the definition of t∗,
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Π(X̄(t)) = Π(X̄(t∗)) = i (say) for every t ∈ (a, b). It follows from (2.22) that on the

interval (a, b),

dX̄(t)

dt
=

d
∑

k=1

λ̄j
kek −

d
∑

k=max{i,1}
µ̄j

khk(t)ek. (2.25)

Furthermore, since clearly [dX̄(t)/dt]k = 0 for all k > i and t ∈ (a, b), one can

directly compute hk from (2.25) and (2.21) to obtain a formula analogous to (2.24):

hk(t) =































λ̄j
k/µ̄

j
k if i < k ≤ d,

1 −
d
∑

k=i+1

λ̄j
k/µ̄

j
k if k = i,

0 if k < i,

(2.26)

for almost every t ∈ (a, b).

We will argue by contradiction that i ≤ Ij . Assume otherwise, namely, i > Ij .

Then by comparing (2.24) and (2.26) it follows easily that hi(t) > ρj
i and thus

[

dX̄(t)

dt

]

i

= λ̄j
i − µ̄j

ihi(t) < λ̄j
i − µ̄j

iρ
j
i = 0.

This implies that [X̄(a)]i > [X̄(t∗)]i > 0, or Π(X̄(a)) ≥ i > Ij . Recall that Ij ≥

Π(X̄(tj)). Therefore, a 6= tj and thus we must have that a > tj . By the lower

semicontinuity of Π there exists a small η > 0 such that a − η > tj and Π(X̄(t)) ≥

i = Π(X̄(t∗)) for every t ∈ (a−η, a]. Therefore, (a−η, b) ⊆ (tj , tj+1) is an interval on

which Π(X̄(t)) ≥ Π(X̄(t∗)). This contradicts the maximality of the interval (a, b).

Therefore i ≤ Ij and hence

Π(X̄(t)) ≤ Ij, for all t ∈ (tj , tj+1). (2.27)

In order to show the reverse inequality, we exclude the trivial case by assuming
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Ij ≥ 1. Note that (2.27) implies [dX̄(t)/dt]k = 0 for all k > Ij . Thanks to (2.22),

this is equivalent to hk(t) = λ̄j
k/µ̄

j
k = ρj

k for all k > Ij . It follows that

hIj
(t) ≤ 1 −

d
∑

k=Ij+1

hk(t) = 1 −
d
∑

k=Ij+1

ρj
k = ρj

Ij
. (2.28)

which in turn implies that for every t ∈ (tj, tj+1)

d[X̄(t) − φ∗(t)]Ij

dt
= [λ̄j

Ij
− µ̄j

Ij
hIj

(t)] − [λ̄j
Ij
− µ̄j

Ij
ρj

Ij
(t)] ≥ 0.

Since X̄(tj) = φ∗(tj), we have [X̄(t)]Ij
≥ [φ∗(t)]Ij

> 0, or Π(X̄(t)) ≥ Ij for all

t ∈ (tj , tj+1). Therefore, taking (2.27) into consideration we arrive at

Π(X̄(t)) = Ij = Π(φ∗(t))

on the interval (tj, tj+1).

The desired equality hk(t) = ρj
k for every t ∈ (ti, tj+1) is now trivial. Indeed, the

two formulas (2.24) and (2.26) are identical when i = Π(X̄(t)) = Ij. This completes

the proof of (2.17).

It remains to show that X̄(t) = φ∗(t) for all t ∈ [0, 1]. This can be done by

repeating the steps in (2.23) for every t ∈ (0, 1). The proof of Lemma 2.3.5 is now

complete.
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Step 4: Analysis of the cost

Along the convergent subsubsequence (still denoted by (γn, X̄n)), Lemma 2.3.5 and

(2.13) imply that

lim
n

Exn

[

∫ 1

0

∑

v∈V

r(X̄n(t); v)ℓ

(

r̄(X̄n(t), t; v)

r(X̄n(t); v)

)

dt + h(X̄n)

]

= lim
n

Exn

K−1
∑

j=0

[

∫ tj+1

tj

d
∑

k=1

λkℓ

(

λ̄j
k

λk

)

dt +
d
∑

k=1

µkℓ

(

µ̄j
k

µk

)

γn
k (dt)

]

+ h(φ∗)

=
K−1
∑

j=0

[

∫ tj+1

tj

d
∑

k=1

λkℓ

(

λ̄j
k

λk

)

dt +
d
∑

k=1

ρj
kµkℓ

(

µ̄j
k

µk

)

dt

]

+ h(φ∗)

≤
K−1
∑

j=0

∫ tj+1

tj

[L̄Ij
(βj) + ε]dt + h(φ∗)

=

∫ 1

0

L(φ∗(t), φ̇∗(t))dt + ε + h(φ∗).

This completes the proof of (2.11) as well as the proof of Theorem 2.3.1.

Remark 2.3.6. The stability-about-the-interface condition manifests itself in the

monotonicity of the value hk(t) with respect to the value of Π(X̄(t)); see (2.26).

Loosely speaking, this monotonicity property implies that the change of measure

(control) defined by the upper bound rate function automatically pushes the trajec-

tory back to the discontinuous interface if it ever wanders off. This guarantees the

desired tracking behavior.

2.4 A Case Study: The 2-dimensional Network

In this section we illustrate in the context of an example how to explicitly identify

the exponential decay rate of a rare event of interest. Consider the case where d = 2
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in the original model. The probability of interest is

pn = P{total population Q1 + Q2 reaches n before coming back to 0,

starting from Q = (0, 0)}.

Under the assumption that the stability condition holds, that is,

λ1

µ1
+

λ2

µ2
< 1, (2.29)

the total population overflow is a rare event when n is large.

The exponential decay rate of pn can be explicitly identified in terms of the

appropriate roots of the Hamiltonians H1 and H2. Note that H2 is the Hamiltonian

in the interior of the state space, whereas H1 is the Hamiltonian on the boundary

∂ = {x : Π(x) = 1} = {x = (x1, x2) : x2 = 0, x1 > 0}. For this reason, we simplify

the notation and denote

H = H2, H∂ = H1.

Sometimes H and H∂ are referred to as the interior and the boundary Hamiltonians,

respectively. Similarly, the rate functions L2 and L1 will be replaced by L and L∂ ,

correspondingly. We will proceed heuristically for now to show the form of the decay

rate of pn, which is closely connected to the geometry of the zero-level sets of H and

H∂.

2.4.1 Three Important Roots of the Hamiltonians

The quantity of interest pn is just the probability of the scaled process Xn reaching

the exit boundary ∂e = {x = (x1, x2) : xi ≥ 0, x1 + x2 = 1} before coming back to
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the origin, starting from the origin itself. Thanks to Theorem 3.4.1, it is reasonable

to expect that the exponential decay rate of pn equals the value of the calculus of

variations problem

inf

∫ τ

0

L(φ(t), φ̇(t)) dt,

where the infimum is taken over all absolutely continuous functions φ : [0,∞) → R
2
+

and τ ≥ 0 such that φ(0) = 0 and φ(τ) ∈ ∂e. It is not difficult to see that an optimal

trajectory φ∗, if it exists, should be a straight line due to the convexity of the local

rate function and the homogeneity of the system dynamics. See Figure 2.3.

x1 = Q1/n

x2 = Q2/n

0

x1 + x2 = 1

φ∗

φ

Pn(φ) ∝ exp{−nI(φ)}

Figure 2.3: Representative limit sample path φ

In order to solve the aforementioned calculus of variations problem, we recast it

into a control problem. To this end, we slightly expand this variational problem to

a general initial condition φ(0) = x and denote the corresponding infimum by V (x).

Notice that the exponential decay rate of pn is in fact V (0). Recall that the optimal

trajectory φ∗ is a straight line, which either travels through the interior of the state

space or along the boundary ∂. The value function V is different in each of these

two cases. We will discuss them separately.

If the optimal trajectory travels through the interior of the state space, then

the dynamic programming principle implies that the value function V satisfies the
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Hamiltonian-Jacobi-Bellman (HJB) equation

0 = inf
β

[L(β) + 〈∇V (x), β〉] = −H(−∇V (x)).

Furthermore, the boundary condition V (x) = 0 for x ∈ ∂e should hold. This sug-

gests that ∇V (x) = −α∗ where H(α∗) = 0 and that α∗ is orthogonal to ∂e, or

equivalently α∗
1 = α∗

2. In this case, the exponential decay rate of pn is just α∗
1, and

the optimal trajectory leaves the domain in a straight line with slope β∗ = ∇H(α∗)

(β∗ is the minimizer in the HJB equation). We wish to make an important cau-

tionary comment, namely, that the geometry of the zero-level set of H has to be

taken into consideration in order for these heuristics to determine a possible optimal

trajectory. For illustration, consider the following two scenarios (see Figure 2.4). In

both cases, ᾱ denotes the point on the level set {H = 0} with the maximal first

component, whence ∇H(ᾱ) = ae1 for some non-negative constant a. In case (a) the

45◦ line intersects with the level set at point α∗ which is above ᾱ. The corresponding

β∗ = ∇H(α∗) has non-negative components. Therefore, the root α∗ determines a

candidate optimal trajectory φ∗(t) = β∗t that lives in the non-negative orthant and

hits ∂e in finite time. In contrast, in case (b) the 45◦ line intersects with the level set

at point α∗ which is below ᾱ and β∗ = ∇H(α∗) has a negative second component. It

is clear that this root α∗ does not associate with any physically meaningful trajectory

since φ∗(t) = β∗t will not live in the non-negative orthant.

(b)(a)
α10

H < 0

DH(α∗)

45◦

α∗

DH(ᾱ)

ᾱ

α10

H < 0

H = 0α2 H = 0α2 45◦

DH(ᾱ)

ᾱ

DH(α∗)

α∗

Figure 2.4: Geometry and trajectory (I)
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In the case where the optimal trajectory travels along the boundary ∂, it may

represent two different types of prelimit behavior: (1) the trajectory really “pushes

into” the boundary if it is the limit of the prelimit sample paths that constantly

switch residence between the interior and the boundary ∂; (2) the trajectory barely

“touches” or “glides” along the boundary ∂ if it is the limit of those prelimit sample

paths that live very close to the boundary ∂. The way to determine the trajectory

also differs. For case (1), it is expected that along the boundary ∂ both the interior

and the boundary HJB equations will be satisfied. That is,

−H(−∇V (x)) = 0, − H∂(−∇V (x)) = 0.

This suggests that −∇V (x) = α̂ where H(α̂) = H∂(α̂) = 0. The exponential decay

rate of pn is therefore 〈α̂, e1〉 = α̂1. The corresponding trajectory is φ∗(t) = β∗t

where

β∗ = (β∗
1 , 0) = ρ1∇H(α̂) + ρ2∇H∂(α̂)

for some non-negative constants ρ1, ρ2 such that ρ1 + ρ2 = 1. The physical meaning

of this identity is fairly clear: ρ1 and ρ2 are respectively the limit fraction of time

that the prelimit sample paths spend in the interior and on the boundary ∂, whereas

∇H(α̂) and ∇H∂(α̂) are respectively the limit velocity of the prelimit sample paths

in the interior and on the boundary ∂. For case (2), when the limit optimal tra-

jectory glides along the boundary ∂, we expect that only the interior HJB equation

−H(−∇V (x)) = 0 will be satisfied. Hence ∇V = −α̂ where H(α̂) = 0 and the

corresponding β∗ = ∇H(α̂) is a horizontal vector. The exponential decay rate is

thus 〈α̂, e1〉 = α̂1 and the corresponding trajectory is φ∗(t) = β∗t.

Again, when this heuristic is used to determine a possible optimal trajectory, the

geometry of the zero-level sets of H and H∂ has to be incorporated. For illustration,

32



consider the following two scenarios (see Figure 2.5). As before, ᾱ denotes the

point on the level set {H = 0} with the maximal first component. In case (a),

the intersection of the two zero-level sets, α̂, is below ᾱ. The corresponding β∗

does determine a possible optimal trajectory φ∗(t) = β∗t, which “pushes into” the

boundary ∂. In case (b), however, α̂ is above ᾱ. In this case, since both ∇H(α̂)

and ∇H∂(α̂) have positive second components, none of their convex combinations

will yield a horizontal velocity β∗. Therefore, this root α̂ does not represent any

meaningful trajectory traveling along the boundary ∂. Indeed, the root that will

determine such a trajectory is ᾱ. It corresponds to a trajectory that “glides” along

the boundary ∂ with velocity β∗ = ∇H(ᾱ), a horizontal vector.

(a) (b)
α10

H < 0

α2

DH(ᾱ)

α10

H < 0

H = 0α2

ᾱ

β∗

H∂ < 0

DH(α∗)

H∂ < 0

H = 0

α∗

DH(ᾱ)
ᾱ

DH∂(α∗)

DH(α∗)

DH∂(α∗)
α∗

Figure 2.5: Geometry and trajectory (II)

It is now clear that the roots α∗, ᾱ, α̂ are crucial in the identification of the

exponential decay rate of pn. They can be explicitly calculated and we summarize

the result in the following lemma. Its proof is straightforward but tedious, and thus

omitted. To ease notation, from now on we let

θ1 =
λ1

µ2
, θ2 =

λ2

µ2
, θ3 =

µ1

µ2
, (2.30)

and define the constant

z =
(θ1 + θ2 + θ3 − 1) +

√

(θ1 + θ2 + θ3 − 1)2 + 4θ1(1 − θ3)

2θ3
. (2.31)
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Lemma 2.4.1. The constant z satisfies max{0, 1 − 1/θ3} < z < 1. Define vectors

α∗, ᾱ, and α̂ to be

α∗ = − log[θ1 + θ2] · (1, 1),

α̂ = (− log z,− log[1 − θ3 + θ3z]) ,

ᾱ =
(

log
[

1 + (1 −
√

θ2)
2/θ1

]

,− log
√

θ2

)

.

Then H(α∗) = 0, H(α̂) = H∂(α̂) = 0, and H(ᾱ) = 0 = 〈∇H(ᾱ), e2〉. Furthermore,

for any α such that H(α) = 0, the inequality α1 ≤ ᾱ1 holds, with equality if and only

if α = ᾱ.

2.4.2 The Exponential Decay Rate of pn

It is now intuitively clear what the exponential decay rate of pn should be. For

example, if α∗
2 > ᾱ2 and α̂2 < ᾱ2, then it corresponds to case (a) in Figure 2.4 and

case (a) in Figure 2.5. Therefore, α∗ determines a trajectory leaving the domain

through the interior with cost α∗
1, whereas α̂ determines a trajectory leaving the

domain by “pushing into” the boundary ∂ with cost α̂1. The optimal trajectory

should be the one with a smaller cost and the minimal cost is min(α∗
1, α̂

∗
1). More

generally, we have Theorem 2.4.3, which can be shown by constructing suitable

subsolutions and invoking Lemma 2.4.2 below.

Lemma 2.4.2. Suppose that W : R
2
+ → R is a twice continuously differentiable

function satisfying

−H(−∇W (x)) ≥ 0, for x = (x1, x2) ∈ R
2
+ such that x2 > 0

−H∂(−∇W (x)) ≥ 0, for x ∈ ∂

W (x) ≤ 0, for x ∈ ∂e
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Then

lim inf
n

−1

n
log pn ≥ W (0).

The function W is called a classical subsolution to the related partial differential

equation. This lemma can be shown by a verification argument and its proof is

deferred to Appendix A.3.

Theorem 2.4.3. The exponential decay rate of pn is

lim
n

−1

n
log pn =



































min(α∗
1, α̂1) if α∗

2 > ᾱ2, α̂2 < ᾱ2

α∗
1 if α∗

2 > ᾱ2, α̂2 ≥ ᾱ2

α̂1 if α∗
2 ≤ ᾱ2, α̂2 < ᾱ2

ᾱ1 if α∗
2 ≤ ᾱ2, α̂2 ≥ ᾱ2

.

Proof. We only give the details for the case where α∗
1 > ᾱ2 and α̂2 < ᾱ2. The proof

for other cases is similar and thus omitted. Let γ = min(α∗
1, α̂1). We first show the

upper bound

lim inf
n

−1

n
log pn ≥ γ. (2.32)

Thanks to Lemma 2.4.2, it suffices to construct a sequence of subsolutions whose

values at the origin approach γ. To this end, we define two vectors

v∗ =
γ

α∗
1

α∗ = γ · (1, 1), v̂ =
γ

α̂1
α̂ = γ ·

(

1,
α̂2

α̂1

)

.

Since H(α∗) = H(α̂) = H(0) = 0 and H∂(α̂) = H∂(0) = 0, it follows from the

convexity of H and H∂ that

H(v∗) ≤ 0, H(v̂) ≤ 0, H∂(v̂) ≤ 0.
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We claim that v∗
2 > v̂2. Indeed, letting ν = (0, ᾱ2) where by Lemma 2.4.1 ᾱ2 =

− log
√

θ2, straightforward calculation yields

H(ν) = λ2(1/
√

θ2 − 1) + µ2(
√

θ2 − 1) = −(
√

λ2 −
√

µ2)
2 < 0.

Therefore, it follows from the strict convexity of H and H(ᾱ) = 0 that H(sᾱ + (1−

s)ν) ≤ 0 for all s ∈ [0, 1]. This in turn implies that

α̂2

α̂1

<
ᾱ2

ᾱ1

,

since otherwise s∗ = ᾱ2/ᾱ1 · α̂1/α̂2 ∈ [0, 1], and the convexity of H implies that [note

that α̂2 < ᾱ2 by assumption]

H(α̂) <
α̂2

ᾱ2
H (s∗ᾱ + (1 − s∗)ν) +

(

1 − α̂2

ᾱ2

)

H(0) ≤ 0.

The above inequality is impossible since H(α̂) = 0. Observing that ᾱ2 < α∗
1 by

assumption, and ᾱ1 > α∗
1 by Lemma 2.4.1, we have

v̂2 =
α̂2

α̂1

γ <
ᾱ2

ᾱ1

γ <
α∗

1

α∗
1

γ = γ = v∗
2.

Now fix an arbitrary small positive number δ and define a piecewise affine function

on x ∈ R
2 by

W δ(x) = min{〈−v∗, x〉, 〈−v̂, x〉 − δ} =











〈−v∗, x〉 if x2 > bδ,

〈−v̂, x〉 − δ otherwise,

where b = (v∗
2 − v̂2)

−1 > 0. Let W ε,δ be the classical mollification of W δ [35, Section
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7.2], namely,

W ε,δ(x) =

∫

R2

ρ(y)W δ(x + εy)dy,

where ρ is a smooth symmetric kernel defined by

ρ(y) =











c exp {1/(‖y‖2 − 1)} if ‖y‖ ≤ 1,

0 if ‖y‖ ≥ 1,

∫

R2

ρ(y) dy = 1,

Assuming that the mollification parameter ε < bδ, we now argue that

W (x) = W ε,δ(x) + γ − ‖v∗‖ · ε

is a classical subsolution. Indeed, for x ∈ R
2
+, it is not difficult to see that

∇W (x) = −a(x)v∗ − (1 − a(x))v̂, a(x) =

∫

{y: εy2>bδ−x2}
ρ(y) dy.

Therefore, by the convexity of H and that a(x) ∈ [0, 1]

−H(−∇W (x)) ≥ −[a(x)H(v∗) + (1 − a(x))H(v̂)] ≥ 0.

On the other hand, for every x = (x1, x2) ∈ R
2 such that x2 < bδ − ε, we have

{y : εy2 > bδ − x2} ⊂ {y : ‖y‖ > 1}. Hence a(x) = 0 and ∇W (x) = −v̂. In

particular, for every x ∈ ∂

−H∂(−∇W (x)) = −H∂(v̂) ≥ 0.

Finally for every x ∈ ∂e, since W δ(x) ≤ 〈−v∗, x〉 = −γ and W δ is Lipschitz continu-

ous with ‖v∗‖ as a Lipschitz constant (note that ‖v∗‖ ≥ ‖v̂‖), it follows that

W (x) ≤
∫

R2

ρ(y)‖v∗‖ · ε‖y‖ dy − ‖v∗‖ · ε ≤
∫

R2

ρ(y)‖v∗‖ · εdy − ‖v∗‖ · ε = 0.
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Applying Lemma 2.4.2, we arrive at

lim inf
n

−1

n
log pn ≥ W (0) = γ − δ − ‖v∗‖ε ≥ γ − (1 + b‖v∗‖)δ

for all δ > 0. Letting δ tend to 0, we complete the proof of the upper bound (2.32).

It remains to show the lower bound

lim sup
n

−1

n
log pn ≤ γ.

We first observe that the sample path large deviation principle (i.e., Theorem 2.3.1)

implies that

lim sup
n

−1

n
log pn ≤ inf

∫ τ

0

L(φ(t), φ̇(t)) dt

where the infimum is taken over all absolutely continuous sample paths φ : [0,∞) →

R
2
+ such that φ(0) = 0, φ(τ) ∈ ∂e. The proof of this inequality is standard and

almost verbatim to that of equation (8.5) in [31] – the only major difference is that

“LA(1) is finite for any A ⊂ {1, 2, . . . , d}” should be replaced by “L̄i(1) is finite for

any i = 0, 1, . . . , d”.

In view of the above discussion, it suffices to construct a sample path φ∗ with

hitting time τ ∗ such that

∫ τ∗

0

L(φ∗(t), φ̇∗(t)) dt ≤ γ.

We consider the following two scenarios.

Case 1: α∗
1 ≤ α̂1. Define β∗ = ∇H(α∗) = (λ1e

α∗

1 , λ2e
α∗

2 − µ2e
−α∗

2). That is, β∗ is

the conjugate of α∗ through the convex duality of H and L. Clearly β∗
1 > 0. Since
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α∗
2 = α∗

1 > ᾱ2 = − log
√

θ2 [Lemma 2.4.1], it follows that

β∗
2 > λ2e

ᾱ2 − µ2e
−ᾱ2 =

√

λ2µ2 −
√

λ2µ2 = 0. (2.33)

Thus the trajectory φ∗(t) = β∗t lives in the positive orthant and τ ∗, defined as the

first hitting time to ∂e, is finite. It follows from the definition of L(·, ·) and the

conjugacy of β∗ and α∗ that for every t > 0

L(φ∗(t), φ̇∗(t)) = L(φ̇∗(t)) = L(β∗) = 〈α∗, β∗〉 − H(α∗) = 〈α∗, β∗〉.

Therefore,
∫ τ∗

0

L(φ∗(t), φ̇∗(t)) dt =

∫ τ∗

0

〈α∗, β∗〉 dt = 〈α∗, β∗τ ∗〉.

Since α∗
1 = α∗

2 and β∗τ ∗ ∈ ∂e, we have that 〈α∗, β∗τ ∗〉 = α∗
1 = γ.

Case 2: α∗
1 > α̂1. Define β̄ = ∇H(α̂) and β̂ = ∇H∂(α̂). Thus β̄ and α̂ are conjugate

through the convex duality of H and L, while β̂ and α̂ are conjugate through the

convex duality of H∂ and L∂. By direct calculation

β̄ = (λ1e
α̂1 , λ2e

α̂2 − µ2e
−α̂2), β̂ = (λ1e

α̂1 − µ1e
−α̂1 , λ2e

α̂2).

Since α̂2 < ᾱ2, it follows that β̄2 < 0 by an argument analogous to (2.33). Define

ρ1 = β̂2(β̂2 − β̄2)
−1 and ρ2 = −β̄2(β̂2 − β̄2)

−1. Then ρ1, ρ2 are both non-negative,

ρ1 + ρ2 = 1, and

β∗ = ρ1β̄ + ρ2β̂ = (β∗
1 , 0).

We claim that β∗
1 > 0. Indeed, since H and L are both strictly convex and L(β) = 0
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if and only if β = ∇H(0), it follows from the conjugacy of β̄ and α̂ that

〈α̂, β̄〉 = 〈α̂, β̄〉 − H(α̂) = L(β̄) > 0. (2.34)

Similarly

〈α̂, β̂〉 = 〈α̂, β̂〉 − H∂(α̂) = L∂(β̄) > 0. (2.35)

Therefore,

β∗
1 α̂1 = 〈β∗, α̂〉 = ρ1〈α̂, β̄〉 + ρ2〈α̂, β̂〉 > 0,

which in turn implies that β∗
1 > 0. Define the trajectory φ∗(t) = β∗t and let τ ∗

be the first hitting time to the exit boundary ∂e. The trajectory travels along the

boundary ∂ and the hitting time τ ∗ is finite. Furthermore,

∫ τ∗

0

L(φ∗(t), φ̇∗(t)) dt =

∫ τ∗

0

(L ⊕ L∂)(β
∗)dt = τ ∗ · (L ⊕ L∂)(β

∗).

However, by the definition of inf-convolution, (2.34) and (2.35)

(L ⊕ L∂)(β
∗) ≤ ρ1L(β̄) + ρ2L∂(β̂) = ρ1〈α̂, β̄〉 + ρ2〈α̂, β̂〉 = 〈α̂, β∗〉.

It follows that
∫ τ∗

0

L(φ∗(t), φ̇∗(t)) dt ≤ 〈α̂, β∗τ ∗〉 = α̂1 = γ.

This completes the proof.

Remark 2.4.4. The proof actually shows that the decay rate γ equals the value of

the calculus of variation problem

γ = inf

∫ τ

0

L(φ(t), φ̇(t)) dt

and that the trajectory φ∗ is indeed a minimizing trajectory.
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2.5 Summary

This chapter uses a weak convergence approach to establish the sample path large

deviation principle for a single server system with preemptive priority service policy.

The difficulty of the analysis is due to the discontinuity of the system dynamics. It

is shown that the general upper bound rate function [29] is indeed tight since the

stability-about-the-interface condition is automatically built into the upper bound

rate function. This simple form of the rate function proves to be useful when one

studies the asymptotic behavior of various buffer overflow probabilities. For illustra-

tion, in the two dimensional case the exponential decay rate of the total population

overflow probabilities is explicitly identified. This is achieved by studying the geome-

try of the zero level sets of the system Hamiltonians and by constructing appropriate

subsolutions to the related partial differential equation.
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CHAPTER III:

Importance Sampling for a Single Server Priority Queue

3.1 Overview

Importance sampling is a variance reduction technique, especially effective in Monte

Carlo simulation of rare event probabilities [23, 24, 25, 37, 38, 39, 40, 41, 42, 44, 45]

and the references therein. The basic idea of importance sampling is to simulate the

dynamics of the system under an alternative probability distribution (i.e., change

of measure). This introduces a bias in the Monte Carlo estimator, which will be

rectified by multiplying the outcome with the appropriate likelihood ratio.

It is clear by now that unless in very simple settings, state-dependent change of

measure is needed to achieve efficiency [26, 36]. This is particularly true in the con-

text of queueing networks where the system dynamics are in general high-dimensional

and discontinuous.

The systematic study of state-dependent importance sampling schemes originated

from [32]. The key observation is that importance sampling is closely connected to
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a small noise stochastic game and the corresponding limit Isaacs equation. More-

over, in order to construct efficient importance sampling schemes it suffices to build

appropriate classical subsolutions to the said Isaacs equation [33, 34].

A commonly used strategy is to first build a non-classical piecewise affine sub-

solution and then mollify it in an appropriate fashion in order to obtain a classical

subsolution. This approach is particularly effective for systems with piecewise ho-

mogeneous dynamics such as queueing networks. However, a drawback is that it will

introduce a mollification parameter that complicates the change of measure, and the

determination of its value is more of an art than a science.

In this Chapter we restrict our attention to the two-dimensional case of the feed-

forward network introduced in the previous Chapter, and demonstrate that for a

system where the form of discontinuity is simple, one does not need this mollifica-

tion in order to construct efficient importance sampling schemes. The asymptotic

optimality is established via a verification argument, where we construct a suitable

subsolution. Compared with the previous proofs involving classical subsolutions

[33, 34], the construction is more subtle in the sense that we don’t have the extra

mollification parameter to control the second derivative of the subsolution.

The outline of this Chapter is as follows. In Sections 3.2 the system model and

dynamics are described. The rare event of interest is introduced in Section 3.3 and

the corresponding large deviations results are stated in Section 3.4. Section 3.5 is

devoted to importance sampling and the proof of asymptotic optimality. Numerical

results are presented in Section 3.6. A brief summary is given in Section 3.7. For

ease of exposition, some of the technical proofs are deferred to an appendix.

Remark 3.1.1. Throughout the Chapter, if x is a vector, then xj denotes its j-th

coordinate. We also adopt the standard notation that ei represents the vector with
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the i-th coordinate 1 and 0 otherwise.

3.2 System Model and Dynamics

The system consists of a single server station serving two classes of exogenous jobs.

Jobs of class i arrive according to a Poisson process with rate λi, and are buffered at

queue i. The service time for a class i job is exponentially distributed with rate µi,

i = 1, 2. The arrival processes and the service times are assumed to be independent.

The service discipline for the system is such that a job of class 2 has preemptive

priority over a job of class 1. Jobs with the same priority level are served according

to the first-in-first-out policy. See Figure 3.1.

λ1

µ2

µ1

λ2

Highest Priority

Lowest Priority

Figure 3.1: A feed-forward network with priority service policy

We denote by Qi(t) the queue size of class i job at time t. Then the state

process Q = {(Q1(t), Q2(t)) : t ≥ 0} is a two dimensional continuous time pure

jump Markov process, defined on some probability space say (Ω, F, P ). We define a

lower-semicontinuous mapping Π to denote the index of the non-empty queue with

the highest priority at state x = (x1, x2), that is,

Π(x)
.
= max{i : xi > 0} with convention Π(0) = 0.
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Under the preemptive service policy, the set of all possible jumps of Q is

V = {±e1,±e2}

and the jump intensity from state x to state x + v is

r(x, v)
.
=























λi if v = ei

µi if v = −ei and i = Π(x)

0 otherwise

for all x ∈ R
2
+ and v ∈ V.

Due to the priority service policy, the system dynamics is discontinuous at the

interface {Q2 = 0} and the origin. Note that since no jumps in the interior of

the state space attempt to leave the non-negative orthant through {Q1 = 0}, no

discontinuity is present on this boundary. See Figure 3.2.

λ1

µ2

Q1

µ1 λ1

λ2

λ2

λ2

λ1

µ2

∂

Q2

Figure 3.2: Discontinuous dynamics

3.3 The Rare Event

Throughout the Chapter, we assume that the stability condition holds, i.e.,

λ1

µ1
+

λ2

µ2
< 1.
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Under this assumption, the total population overflow

An
.
= {total population Q1 + Q2 reaches n before going back to 0,

starting from Q(0) = (0, 0)}

is a rare event when n is large. The present Chapter is interested in efficient Monte

Carlo importance sampling schemes for estimating the rare event probability

pn
.
= P (An).

3.4 Review of Large Deviations Results

In order to construct efficient importance sampling algorithms, it is essential to

understand the large deviation asymptotics of {pn}. In the previous Chapter, the

sample path large deviations for a feedforward network with priority service policy

was established, and the exponential decay rate of pn was also explicitly identified.

The purpose of this Section is to briefly review these results.

For a system with discontinuous dynamics, there exists a simple, sample path

large deviation upper bound local rate function, whose value at a given point can be

identified as the inf-convolution of the neighboring local rate functions at that point

[29]. This upper bound in general is not tight since it does not explicitly take into

account the “stability-about-the-interface” condition [28, Chapter 7]. However, for

many physically meaningful systems, this stability condition is implicitly built into

the upper bound rate function [30, 31]. Thus the upper bound rate function is indeed

the true sample path large deviation rate function. With this simple form of rate

function at hand, one can show through partial differential equations the asymptotic
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behavior of various buffer overflow probabilities. This is done through examining the

geometry of the zero level sets of system Hamiltonians and by constructing suitable

subsolutions to the aforementioned partial differential equation.

3.4.1 System Hamiltonians

For every α = (α1, α2) ∈ R
2, we define

H(α)
.
= λ1(e

α1 − 1) + λ2(e
α2 − 1) + µ2(e

−α2 − 1),

H∂(α)
.
= λ1(e

α1 − 1) + λ2(e
α2 − 1) + µ1(e

−α1 − 1).

The functions H and H∂ are both strictly convex, where H corresponds to the

Hamiltonian in the interior of the state space {x2 > 0} and H∂ the Hamiltonian on

the boundary ∂
.
= {x2 = 0}. Since these Hamiltonians are closely related to the log

of the moment generating functions of the infinitesimal increments of the process Q,

they play an important role in the large deviations analysis.

3.4.2 The Exponential Decay Rate of pn

The exponential decay rate of the rare event probability pn can be explicitly identified

in terms of the roots of the Hamiltonians H and H∂ [43]. There are three roots of

particular importance: (i) α∗, the intersection of {H = 0} and the 45-degree line;

(ii) α̂, the intersection of {H = 0} and {H∂ = 0}; (iii) ᾱ, the right-most point

on {H = 0}. See Figure 3.3. Each of these three roots corresponds to a possible

asymptotically most likely path leading to the rare event (a straight line by convexity

of the local rate function). More precisely, α∗ corresponds to a path in the interior
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of the state space, α̂ a path that “pushes into” the boundary ∂, and ᾱ a path that

“glides” along the boundary ∂.

α10

H < 0

H = 0α2
45◦

α∗

H∂ = 0

H∂ < 0

ᾱ

α̂

Figure 3.3: Roots of the Hamiltonians

As shown in Theorem 3.4.1, these three roots can be explicitly solved. For nota-

tional convenience, we define

θ1
.
=

λ1

µ2

, θ2
.
=

λ2

µ2

, θ3
.
=

µ1

µ2

,

and

z
.
=

(θ1 + θ2 + θ3 − 1) +
√

(θ1 + θ2 + θ3 − 1)2 + 4θ1(1 − θ3)

2θ3
.

Theorem 3.4.1. The constant z satisfies max{0, 1−1/θ3} < z < 1. The exponential

decay rate of pn is:

γ
.
= − lim

n

1

n
log pn =



































min(α∗
1, α̂1) if α∗

2 > ᾱ2, α̂2 < ᾱ2

α∗
1 if α∗

2 > ᾱ2, α̂2 ≥ ᾱ2

α̂1 if α∗
2 ≤ ᾱ2, α̂2 < ᾱ2

ᾱ1 if α∗
2 ≤ ᾱ2, α̂2 ≥ ᾱ2

,
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where

α∗ .
= (− log[θ1 + θ2],− log[θ1 + θ2]),

α̂
.
= (− log z,− log[1 − θ3 + θ3z]) ,

ᾱ
.
=

(

log
[

1 + (1 −
√

θ2)
2/θ1

]

,− log
√

θ2

)

.

A detailed proof can be found in [43].

3.5 Importance Sampling

As mentioned before, importance sampling is a variance reduction technique for

Monte Carlo simulation, particularly effective in the context of rare event simulation.

The idea is to generate samples from an alternative probability distribution under

which the event is no longer rare. However, one has to select this change of measure

appropriately in order to achieve the so called asymptotic optimality [38, 45]. In this

Chapter, we are interested in building asymptotically optimal importance sampling

schemes for estimating pn when n is large.

3.5.1 Asymptotic Optimality

Recall that An is the rare event of buffer overflow, and pn
.
= P (An). An importance

sampling scheme generates samples from a new probability measure, say Qn, such

that P ≪ Qn. The unbiased importance sampling estimator, denoted by p̂n, is then

given by:

p̂n = 1An

dP

dQn

,
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where dP/dQn denotes the Radon-Nikodym derivative or the likelihood ratio. The

goal here is to choose Qn such that the variance, or the second moment of p̂n, is min-

imized. By Jensen’s inequality, and the large deviations properties of pn (Theorem

3.4.1) a lower bound follows:

lim inf
n

1

n
log EQn [p̂2

n] ≥ lim inf
n

2

n
log EQn[p̂n] = lim inf

n

2

n
log pn = −2γ.

An importance sampling scheme is said to be asymptotically optimal if this lower

bound is achieved, i.e., if

lim sup
n

1

n
log EQn[p̂2

n] ≤ −2γ.

We would like to make the following straightforward but useful observation

EQn[p̂2
n] = EQn

[

p̂n
dP

dQn

]

= EP [p̂n],

and hence asymptotic optimality amounts to

lim sup
n

1

n
log EP [p̂n] ≤ −2γ.

3.5.2 Classical Subsolution Approach

For our model, an importance sampling change of measure can be described by

an alternative jump intensity function say r̄(x, v). In other words, under the new

probability measure, the jump intensity for the process Q to make a jump of size v

at state q ∈ Z
2
+ is r̄(x, v) where x = q/n ∈ R

2
+. The key question is how r̄ should be

related to the original jump intensity function r(x, v).
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In a series of papers [32, 33, 34], it has been established that efficient state-

dependent importance sampling schemes can be constructed from classical subsolu-

tions to a related Hamilton-Jacobi-Bellman (HJB) equation. When applied to our

setting, a classical subsolution is a continuously differentiable function W : R
2
+ → R

that satisfies the following three properties

−H(−∇W (x)) ≥ 0 if x1 ≥ 0, x2 > 0 (3.1)

−H∂(−∇W (x)) ≥ 0 if x1 ≥ 0, x2 = 0 (3.2)

W (x) ≤ 0 if xi ≥ 0, x1 + x2 = 1. (3.3)

The change of measure associated with W takes the form [33]

r̄(x, v) = r(x, v) · e−〈∇W (x),v〉 (3.4)

for all x ∈ R
2
+ and v ∈ V. In [33] it was also shown that the exponential decay

rate of the second moment of the corresponding importance sampling estimator is

at least 2W (0). Therefore to achieve asymptotic optimality, one should construct a

classical subsolution W whose value at the origin is as close to γ as possible.

3.5.3 Piecewise Constant Change of Measure

For queueing networks or systems with piecewise homogeneous dynamics, classical

subsolutions are often constructed by mollifying suitable piecewise affine subsolutions

[33, 34]. This requires an additional small mollification parameter, whose value is

often chosen by experience and/or trial-and-error. In general, it seems that this

mollification is necessary in order to control the variance of the importance sampling

estimator.
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In this work, we show that for the current model, this mollification is not needed.

This is due to the fact that a simpler piecewise constant change of measure that is

asymptotically optimal can be directly constructed. In what follows, we identify this

change of measure (denoted by Qn), for the estimation of pn.

Consider a triple (α[1], α[2], δn), where α[1] and α[2] are two-dimensional vectors

and δn a non-negative real number. The values of α[1] and α[2] are essential in

determining the new jump intensity function r̄. In light of Theorem 3.4.1, taking

into account (3.1) and (3.2), we choose α[1] and α[2] as follows (see Figure 3.4).

1. If α∗
2 > ᾱ2 and α̂2 < ᾱ2, then:

α[1] .
=

min{α∗
1, α̂1}

α∗
1

· α∗, α[2] .
=

min{α∗
1, α̂1}

α̂1
· α̂.

2. If α∗
2 > ᾱ2 and α̂2 ≥ ᾱ2, then:

α[1] .
= α∗, α[2] .

=
α∗

1

ᾱ1
ᾱ.

3. If α∗
2 ≤ ᾱ2 and α̂2 < ᾱ2, then:

α[1] .
=

α̂1

ᾱ1

ᾱ, α[2] .
= α̂.

4. If α∗
2 ≤ ᾱ2 and α̂2 ≥ ᾱ2, then

α[1] .
= ᾱ, α[2] .

= ᾱ.

δn is a small parameter that determines the thickness of what we call a “boundary

layer”. By a boundary layer we mean a thin stripe where x2 is between 0 and δn;
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see Figure 3.4.

α10

H = 0α2
45◦

H∂ = 0

0

x2

x1

x1 + x2 = 1

α[2] = α̂

∇W = −α[2]

∇W = −α[1]

α[1]

α∗

δn

Figure 3.4: An example of α[1] and α[2]: case 1 with α∗

1 > α̂1

Finally, the change of measure Qn associated with this triple can be characterized

by the new jump intensity function r̄, where for x ∈ R
2
+ \ {0}

r̄(x, v)
.
=











r(x, v) · e〈α[1],v〉 if x2 ≥ δn,

r(x, v) · e〈α[2],v〉 if 0 ≤ x2 < δn,

and r̄(0, v)
.
= r(0, v) for all v ∈ V. Compared with the change of measure formula

(3.4), r̄ corresponds to a piecewise affine subsolution whose gradient is −α[1] when

x2 ≥ δn and −α[2] when x2 < δn.

3.5.4 The Importance Sampling Estimator

In order to identify the importance sampling estimator, we introduce the following

notation. Denote the total jump intensities by

R(x)
.
=
∑

v∈V

r(x, v), R̄(x)
.
=
∑

v∈V

r̄(x, v).
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Let {T1, T2, . . .} be the jump times of the state process Q with convention T0 = 0.

Let sj
.
= Tj − Tj−1 (sojourn times) and vj

.
= Q(Tj) − Q(Tj−1) (jump sizes). Define

N
.
= inf{k ≥ 1 : Q1(Tk) + Q2(Tk) = n or 0}.

and the scaled state process

Xn(t)
.
=

1

n
Q(t).

Then an unbiased importance sampling estimator is

p̂n = 1An ·
N
∏

j=1

r(Xn(Tj−1), vj)e
−R(Xn(Tj−1))sj

r̄(Xn(Tj−1), vj)e−R̄(Xn(Tj−1))sj
. (3.5)

Note that the likelihood ratio in the definition of p̂n is with respect to the continuous

time sample paths. One can also identify another unbiased importance sampling

estimator based on the embedded discrete time Markov chains {Xn(Tj) : j ≥ 0},

which is

p̄n
.
= 1An ·

N
∏

j=1

r(Xn(Tj−1), vj)/R(Xn(Tj−1))

r̄(Xn(Tj−1), vj)/R̄(Xn(Tj−1))
. (3.6)

In other words, p̄n is obtained by integrating out {sj} in the definition of p̂n, or more

precisely,

EQn[p̂n|Xn(T1), X
n(T2), . . . , X

n(TN)] = p̄n.

In the next section, we will show that p̂n is asymptotically optimal, which implies the

asymptotic optimality of p̄n. This is because the second moment of p̄n does exceed

that of p̂n.

The reason for introducing p̂n is its suitability for asymptotic analysis. However,

for the purpose of numerical simulation, we use p̄n due to its convenience.
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3.5.5 The Verification Argument

In this section, we establish the asymptotic optimality of the importance sampling

estimator p̂n (Theorem 3.5.1) under mild conditions through a verification argument.

The key part in the proof is the construction of a suitable subsolution and a related

supermartingale. The difference from the original proofs involving classical subsolu-

tions [33, 34] is that we don’t have the luxury to directly control the second derivative

of the subsolution by adjusting the mollification parameter. As a consequence, the

construction of a good subsolution is more involved.

Theorem 3.5.1 (Verification Argument). Suppose that δn → 0 and nδn → ∞. Then

the importance sampling estimator p̂n defined in (3.5) is asymptotically optimal.

Proof. By the definition of asymptotic optimality in Section 3.5.1, it suffices to show

that

lim sup
n

1

n
log EP [p̂n] ≤ −2γ.

To ease notation, we drop the super-index P , with the understanding that all the

calculation will be done under the original probability measure P . Recall the scaled

state process Xn(t)
.
= Q(t)/n, and denote by Exn [·] .

= E[·|Xn(0) = xn]. Further-

more, observe that by conditioning on the first jump [note the first jump can only

be e1 or e2 with probability λ1/(λ1 + λ2) and λ2/(λ1 + λ2) respectively]

E[p̂n] =

2
∑

i=1

λi

λ1 + λ2
E[p̂n|Q(0) = ei] =

2
∑

i=1

λi

λ1 + λ2
Eei/n[p̂n].

Therefore it suffices to show that

lim sup
n

1

n
log Exn [p̂n] ≤ −2γ,
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where xn → 0 and xn 6= 0.

We will only prove this upper bound for ᾱ∗
2 > ᾱ2 and α̂2 < ᾱ2, that is, the

first case in Section 3.5.3. The proof for the other scenarios is indeed a simpler

version of this and thus omitted. Note that in this case the exponential decay rate

γ = min{α∗
1, α̂1}.

As mentioned before, the proof involves the construction of a subsolution. Let

B
.
= α

[1]
2 − α

[2]
2 , which is strictly positive (Figure 4 depicts this fact and we omit the

trivial but tedious calculations). Define

W1(x)
.
= −〈α[1], x〉 + γ,

W2(x)
.
= −〈α[2], x〉 + γ − Bδn.

According to the definition of α[i] (Section 3.5.3), observe α
[1]
1 = α

[2]
1 = γ. It is easy

to verify that W1 and W2 are two affine functions that tie on the horizontal line

{x2 = δn}. Furthermore,

W̄ (x)
.
= min{W1(x), W2(x)} =











W1(x) if x2 ≥ δn,

W2(x) if x2 ≤ δn.
(3.7)

Fix an arbitrary εn > 0 such that εn/δn ∈ (0, 1) but bounded away from 0 and

1. The specific choice of εn is not important and therefore for simplicity, we will

set εn = δn/2 throughout. For the purpose of exploiting Itô formula later on, we

consider a classical mollification of W̄ as follows:

W (x)
.
=

∫

R2

ρ(y)W̄ (x + εny) dy − ‖α[1]‖εn,
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where ρ is the classical smooth symmetric mollifier given by

ρ(y) =











c exp{1/(‖y‖2 − 1)} if ‖y‖ ≤ 1,

0 if ‖y‖ ≥ 1,

and the normalizing constant c is chosen such that

∫

R2

ρ(y) dy = 1.

The following lemma establishes some useful properties of W which are essential in

the future analysis. Its proof is deferred to Appendix B.

Lemma 3.5.2 (Subsolution Properties). The function W is smooth and has the

following properties.

1. The gradient of W is a convex combination of α[1] and α[2]:

∇W (x) = −θ(x)α[1] − (1 − θ(x))α[2],

where

θ(x)
.
=

∫

{y=(y1,y2): εny2>δn−x2}
ρ(y) dy ∈ [0, 1].

2. W satisfies the boundary inequality

W (x) ≤ 0, if x1 + x2 ≥ 1

3. The value at the origin W (0, 0) = γ − Bδn.

4. Each element of the Hessian matrix ∇2W (x) is uniformly bounded by C/εn for

some constant C independent of n.
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Finally for any θ∗ ∈ (0, 1) we also define

Wθ∗(x1, x2) = W (x1, x2 − εnx
∗
2), (3.8)

where x∗
2 = x∗

2(θ
∗) is uniquely determined by the equation

θ∗ =

∫

{y=(y1,y2): y2>x∗

2}
ρ(y) dy. (3.9)

Clearly if θ∗ = 1/2 then x∗
2 = 0 (by the symmetry of ρ) and Wθ∗ = W .

Following the notation of Section 3.5.4, let J(t)
.
= inf{j : Tj ≥ t} and

Yn(t)
.
= exp







∫ t

0

[R̄(Xn(s)) − R(Xn(s))] ds +

J(t)
∑

j=1

log
r(Xn(Tj−1), vj)

r̄(Xn(Tj−1), vj)







.

Recalling the definition of p̂n in (3.5), it is not difficult to see that

p̂n = 1An · Yn(TN). (3.10)

Let b and θ∗ be two constants independent of n, whose values will be specified later

in Lemma 3.5.3. Pick arbitrarily q ∈ (1, 2). Consider the non-negative process

Mn(t)
.
= exp {−bnWθ∗(X

n(t))}Y q
n (t),

It follows from generalized Itô formula [31, Appendix A.6] that the process

Mn(t) +

∫ t

0

Mn(s)hn(Xn(s)) ds
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is a local martingale, where

hn(x)
.
= q[R(x) − R̄(x)]

+
∑

v∈V

r(x, v)

[

1 − e−bn(Wθ∗(x+v/n)−Wθ∗ (x))

(

r(x, v)

r̄(x, v)

)q]

.

It follows from Lemma 3.5.2 Part 4, definition (3.8) of Wθ∗ , and Taylor expansion

that for some constant C̄ independent of n

|〈DWθ∗(x), v〉 − n(Wθ∗(x + v/n) − Wθ∗(x))| ≤ C̄

nεn

=
2C̄

nδn

,

which in turn implies that for some constant K independent of n

hn(x) ≥ h̄n(x) − K[e2bC̄/(nδn) − 1] (3.11)

where

h̄n(x)
.
= q[R(x) − R̄(x)] +

∑

v∈V

r(x, v)

[

1 − e−b〈∇Wθ∗(x),v〉
(

r(x, v)

r̄(x, v)

)q]

.

The following lemma is the key observation in this verification argument. Its proof

is fairly technical and is deferred to Appendix B.

Lemma 3.5.3. For every 0 < ε < 1, there exists b ∈ (2−ε, 2] such that for θ∗ = 1/b

and all q > 1 but sufficiently close to 1, {h̄n(x) : x ∈ R
2
+, x 6= 0} is uniformly bounded

from below by a strictly positive constant that is independent of n (may depend on

b, θ∗, q).

Fix the triple (b, θ∗, q). Since nδn → ∞, the preceding lemma and inequality

(3.11) imply that hn(x) ≥ 0 for every x ∈ R
2
+ \{0} when n is large enough. It follows

that Mn is a non-negative local supermartingale, and hence a true supermartingale,
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up until the hitting time TN . In particular, by the optional sampling theorem

Exn[Mn(TN )] ≤ Mn(0) = e−bnWθ∗(xn). (3.12)

Since θ∗ = 1/b ≥ 1/2, it follows immediately from definition (3.9) that x∗
2 ≤ 0.

Therefore for x1 + x2 = 1, x1 + x2 − εnx
∗
2 ≥ 1, and thus Lemma 3.5.2 Part 2 yields

Wθ∗(x1, x2) = W (x1, x2 − εnx
∗
2) ≤ 0.

Note that on the set An, Xn(TN) lies on the line {x1 + x2 = 1}. It follows from

non-negativity of Mn and the preceding discussion that

Mn(TN) ≥ 1Ane−bnWθ∗(Xn(TN ))Y q
n (TN) ≥ 1AnY q

n (TN),

and hence by (3.12)

Exn [1AnY q
n (TN)] ≤ Exn[Mn(TN )] ≤ e−bnWθ∗(xn).

Using Hölder’s inequality, we arrive at

Exn[p̂n] = Exn[1AnYn(TN )] ≤ (Exn [1AnY q
n (TN)])1/q ≤ e−bnWθ∗(xn)/q. (3.13)

Observe that Lemma 3.5.2 Part 1 implies the Lipschitz continuity of W and hence

lim
n

|Wθ∗(x
n) − W (0)| = lim

n
|W (xn

1 , x
n
2 − εnx

∗
2) − W (0, 0)| = 0.

However, owing to Lemma 3.5.2 Part 3, W (0) = γ − Bδn. Therefore

lim
n

Wθ∗(x
n) = lim

n
W (0) = γ.
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Combined with (3.13), taking logarithm and dividing by n on both sides, it follows

that

lim sup
n

1

n
log Exn[p̂n] ≤ −bγ/q.

Now letting q → 1 and then b → 2 we have

lim sup
n

1

n
log Exn [p̂n] ≤ −2γ,

and the proof is complete.

3.6 Numerical Results

As mentioned in Section 3.5.4, the importance sampling estimator, p̄n, based on

the embedded discrete time Markov chain, is used in the simulation. Each estimate

is based on a sample size of 10000. The empirical relative errors of the estimates,

defined as below

empirical relative error
.
=

standard error of the estimate

estimate

are very small in all these numerical simulations, indicating that the importance

sampling estimators are highly accurate. The parameters in the i-th table correspond

to the i-th scenario in Section 3.5.3, for each i = 1, . . . , 4. We set the parameter

δn
.
= 1/

√
n for all these cases. The simulation results are quite robust for different

choices of δn. For example, we run the simulation for δn = 1/ log n and the results

are almost identical.
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n = 20 n = 50 n = 100

Estimate 2.01 × 10−4 2.46 × 10−9 1.64 × 10−17

Relative Error 2.5% 2.5% 2.6%

Table 1. λ1 = 0.1, λ2 = 0.2, µ1 = 0.2, µ2 = 0.8

n = 20 n = 50 n = 100

Estimate 1.65 × 10−8 1.93 × 10−20 2.35 × 10−40

Relative Error 1.2% 1.4% 1.6%

Table 2. λ1 = 0.2, λ2 = 0.2, µ1 = 1.0, µ2 = 1.0

n = 20 n = 50 n = 100

Estimate 1.10 × 10−3 2.85 × 10−7 3.04 × 10−13

Relative Error 1.8% 1.9% 1.9%

Table 3. λ1 = 0.2, λ2 = 0.2, µ1 = 0.6, µ2 = 0.5

n = 20 n = 50 n = 100

Estimate 4.81 × 10−7 3.08 × 10−16 2.13 × 10−31

Relative Error 1.5% 1.8% 2.0%

Table 4. λ1 = 0.2, λ2 = 0.2, µ1 = 1.0, µ2 = 0.8

3.7 Summary

We constructed a piecewise constant change of measure that led to the asymptotic

optimality of importance sampling schemes for the total population overflow of a

single server queue with priority service policy. The main feature of the queue was the

discontinuity of its dynamics. The construction of the importance sampling schemes

was based on an analysis of a closely related Hamilton-Jacobi-Bellman equation and

its subsolutions. Finally, a verification argument proved the asymptotic optimality of
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the schemes. Numerical simulations were also shown. It is our belief that the results

of this paper can be extended to systems with simple structures of discontinuity.
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Appendix A

Collection of Proofs (Chapter II)



A.1 Proof of Lemma 2.3.2

Given an arbitrary δ > 0, we need to show that there exists a φ∗ ∈ N such that

‖φ − φ∗‖∞ ≤ δ and Ix(φ
∗) ≤ Ix(φ). The idea is to approximate φ by suitable linear

interpolations. We introduce the following notation. Denote by [[a, b]] an interval

with end points a and b. The interval can be of any type [open, closed, or half open

half closed]. We first introduce the following lemma.

Lemma A.1.1. Given an arbitrary interval [[a, b]] and any σ > 0, there exists a

finite partition

[[a, b]] = ∪j [[αj , βj ]]

such that for each j

1. 0 ≤ βj − αj ≤ σ;

2. Π(φ(t)) ≥ max{Π(φ(αj)), Π(φ(βj))} for every t ∈ (αj , βj).

Proof: Let k∗ = min{Π(φ(t)) : t ∈ [[a, b]]}. Note that the minimum is always

attained since Π(·) can only take values from {0, 1, . . . , d}. We will prove the lemma

by backward induction on k∗. The claim is trivial in the case k∗ = d. Indeed, in order

to satisfy Part 1 one can partition the interval [[a, b]] into subintervals of equal length

with the length of each subinterval at most σ, while Part 2 holds automatically.

Assume that the lemma holds for k∗ = k + 1, . . . , d. We would like to show that

it is also valid when k∗ = k. To ease exposition we assume that [[a, b]] = [a, b] is a

closed interval. The proof for other cases is almost verbatim and thus omitted.

It suffices to show that there exists a finite collection of closed intervals {[āi, b̄i]}

with non-overlapping interiors such that 0 ≤ b̄i − āi ≤ σ, Π(φ(āi)) = Π(φ(b̄i)) =
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k∗ = k, and

min{Π(φ(t)) : t ∈ [a, b] \ ∪i[āi, b̄i]} ≥ k + 1.

Indeed in this case, by the induction hypothesis, the set [a, b] \ ∪i[āi, b̄i] which is the

union of a finite number of intervals, can be partitioned in a way that Parts 1 and 2

are satisfied. Adding to this partition the collection of closed intervals {[āi, b̄i]}, we

obtain a desired partition of [a, b] (note that Part 2 is satisfied for interval [āi, b̄i] by

the definition of k∗).

The values of āi, b̄i are defined recursively as follows. Let

ā = inf{t ∈ [a, b] : Π(φ(t)) = k}; b̄ = sup{t ∈ [a, b] : Π(φ(t)) = k}.

Thanks to the lower semicontinuity of Π, Π(φ(ā)) = Π(φ(b̄)) = k. Define

ā1 = ā

b̄1 = sup{t ∈ [ā1, (ā1 + σ) ∧ b] : Π(φ(t)) = k},

and for i ≥ 1,

āi+1 = inf{t ∈ [āi + σ, b] : Π(φ(t)) = k}

b̄i+1 = sup{t ∈ [āi+1, (āi+1 + σ) ∧ b] : Π(φ(t)) = k}.

The recursion will end if b̄N = b̄ for some N . It is clear that N is finite since

āi+1 − āi ≥ σ. Furthermore, the collection {[āi, b̄i] : i = 1, 2, . . . , N} clearly has the

desired property. This completes the proof.

Since Ix(φ) < ∞, φ is absolutely continuous and hence uniformly continuous on
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[0, 1]. Therefore, there exists σ > 0 such that for s, t ∈ [0, 1],

|φ(s) − φ(t)| ≤ δ, if |s − t| ≤ σ.

Let [0, 1] = ∪j [[αj , βj]] be the partition in Lemma A.1.1 with the given σ. Define φ∗

as the linear interpolation of φ from this partition. That is, for every j and every

t ∈ (αj, βj)

φ̇∗(t) =
φ(βj) − φ(αj)

βj − αj
,

and φ∗(t) = φ(t) if t = αj or βj for some j. Clearly φ∗ is absolutely continuous

and ‖φ∗ − φ‖∞ ≤ δ. It remains to show that Ix(φ
∗) ≤ Ix(φ). Note that for every

t ∈ (αj, βj),

Π(φ∗(t)) = max{Π(φ(αj)), Π(φ(βj))} ≤ Π(φ(t)).

Observing that the rate functions {L̄i} are monotonically non-decreasing in that

L̄0 ≤ L̄1 ≤ · · · ≤ L̄d, we have

∫ βj

αj

L(φ(t)), φ̇(t)) dt =

∫ βj

αj

L̄Π(φ(t))(φ̇(t)) dt ≥
∫ βj

αj

L̄Π(φ∗(t))(φ̇(t)) dt.

Thanks to the convexity of {L̄i} and Jensen’s inequality, it follows that

∫ βj

αj

L(φ(t)), φ̇(t)) dt ≥ (βj − αj)L̄Π(φ∗(t))(φ̇
∗(t)) dt =

∫ βj

αj

L(φ∗(t)), φ̇∗(t)) dt.

This completes the proof.
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A.2 Proof of Lemma 2.3.3

For any given λ > 0 and v ∈ R
d, straightforward calculation yields that the Legendre

transform of the convex function h(α) = λ[e〈α,v〉 − 1] is

h∗(β) = sup
α∈Rd

[〈α, β〉 − h(α)]

=











λℓ(λ̄/λ) if β = λ̄v for some λ̄ ∈ R,

0 otherwise,

for every β ∈ R
d. It is now an immediate consequence of [28, Corollary D.4.2] that

Li, the Legendre transform of Hi, has the following alternative representation. That

is, for every β ∈ R
d,

L0(β) = inf

[

d
∑

k=1

λkℓ

(

λ̄k

λk

)

:
d
∑

k=1

λ̄kek = β

]

(A.1)

and for i = 1, . . . , d,

Li(β) = inf

[

µiℓ

(

µ̄i

µi

)

+

d
∑

k=1

λkℓ

(

λ̄k

λk

)

: −µ̄iei +

d
∑

k=1

λ̄kek = β

]

. (A.2)

We are now in a position to prove the alternative representation for L̄i. Without

loss of generality, we assume that i = 0. The proof for i ≥ 1 is similar and thus

omitted. Thanks to the definition of L̄i (2.6) and equations (A.1)-(A.2), we have

L̄0(β) = inf

{

ρ0

d
∑

k=1

λk

(

λ̄
(0)
k

λk

)

+
d
∑

i=1

ρi

[

µiℓ

(

µ̄
(i)
i

µi

)

+
d
∑

k=1

λkℓ

(

λ̄
(i)
k

λk

)]}

= inf

{

d
∑

i=1

ρiµiℓ

(

µ̄
(i)
i

µi

)

+
d
∑

i=0

ρi

d
∑

k=1

λkℓ

(

λ̄
(i)
k

λk

)}

,
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where the infimum is taken over all (ρi, µ̄
(i)
i , λ̄

(i)
k ) such that

ρi ≥ 0,
d
∑

i=0

ρi = 1, ρ0

d
∑

k=1

λ̄
(0)
k ek +

d
∑

i=1

ρi

[

−µ̄
(i)
i ei +

d
∑

k=1

λ̄
(i)
k ek

]

= β. (A.3)

Abusing the notation a bit, write for k = 1, . . . , d,

µ̄k = µ̄
(k)
k , λ̄k =

d
∑

i=0

ρiλ̄
(i)
k .

Then the constraints (A.3) become

ρi ≥ 0,
d
∑

i=0

ρi = 1, −
d
∑

k=1

ρkµ̄kek +
d
∑

k=1

λ̄kek = β,

which are exactly the constraints in the statement of Lemma 2.3.3. Observe that,

by the convexity of ℓ,

d
∑

i=0

ρi

d
∑

k=1

λkℓ

(

λ̄
(i)
k

λk

)

=

d
∑

k=1

λk

d
∑

i=0

ρiℓ

(

λ̄
(i)
k

λk

)

≥
d
∑

k=1

λkℓ

(

λ̄k

λk

)

,

with equality if λ̄
(i)
k = λ̄

(j)
k = λ̄k for every i, j. Furthermore, one can restrict the

parameters {λ̄k, µ̄k : 1 ≤ k ≤ d} and {ρk : i ≤ k ≤ d} to be strictly positive. This is

because ℓ is finite and continuous on [0,∞). The representation for L̄i now follows

readily.

It remains to show that L̄i(β) is finite if and only if βk ≥ 0 for all k < i. This is

trivial since the set of (ρk, λ̄k, µ̄k) that satisfies the constraints is non-empty if and

only if βk ≥ 0 for all k < i. Thus completes the proof.
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A.3 Proof of Lemma 2.4.2

Consider the discrete embedded Markov chain of the state process Q and denote

by {Z(k) ∈ Z
2
+ : k = 0, 1, 2, . . .} the queue lengths at the transition epochs of the

network. Since the process Q starts at the origin, the initial state of the Markov

chain Z is Z(0) = 0.

We claim that for all k, n, and z = (z1, z2) ∈ Z
+
2 such that z1 + z2 ≤ n

E
[

e−n[W (Z(k+1)/n)−W (Z(k)/n)]
∣

∣Z(k) = z, Z(k − 1), . . . , Z(0)
]

≤ eM/n (A.4)

for some constant M . We will only show this inequality for the case when z2 > 0.

The case where z2 = 0 is similar and thus omitted. Let x = z/n and without loss of

generality assume λ1 + λ2 + µ2 = 1. Since z2 is strictly positive, Z(k + 1) can only

take values in the set {z +e1, z +e2, z−e2} with respective probabilities {λ1, λ2, µ2}.

Therefore, the conditional expectation on the left hand side of (A.4) equals

λ1e
−n[W (x+e1/n)−W (x)] + λ2e

−n[W (x+e2/n)−W (x)] + µ2e
−n[W (x−e2/n)−W (x)].

Since W is twice continuously differentiable, every component of the Hessian matrix

∇2W (x) is uniformly bounded on the compact set {x = (x1, x2) : xi ≥ 0, x1+x2 ≤ 1}.

Then by Taylor’s expansion we have that

|〈∇W (x), v〉 − n[W (x + v/n) − W (x)]| ≤ M

n
‖v‖2

for every vector v and some constant M . Therefore, the conditional expectation is

70



bounded from above by

eM/n
[

λ1e
−〈∇W (x),e1〉 + λ2e

−〈∇W (x),e2〉 + µ2e
−〈∇W (x),−e2〉] .

Observe that the sum in the square bracket is exactly 1 + H(−∇W (x)), which is

bounded from above by 1, owing to the subsolution property of W . This completes

the proof of inequality (A.4).

Fix an arbitrary positive integer n. Define Tn to be the first hitting time to the

exit boundary ∂e:

Tn = inf{k ≥ 0 : Z1(k) + Z2(k) = n}.

Define a non-negative process

Y n(k) = e−Mk/n−nW (Z(k)/n), k = 0, 1, 2, . . . .

It follows from inequality (A.4) that the stopped process {Y n(k ∧ Tn)} is a super-

martingale with respect to the natural filtration generated by Z. Let T0 be the return

time to the origin:

T0 = inf{k ≥ 1 : Z(k) = 0}.

Owing to the Optional Sampling Theorem and the non-negativity of Y n, we have

E[Y n(T0 ∧ Tn)] ≤ E[Y n(0)] = e−nW (0).

Furthermore, by the fact that W (x) ≤ 0 for every x ∈ ∂e,

Y n(T0 ∧ Tn) ≥ Y n(Tn)1{Tn<T0} ≥ e−MTn/n1{Tn<T0},
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and thus

E[e−MTn/n1{Tn<T0}] ≤ e−nW (0).

Since the system is exponentially ergodic, there exists a constant c > 0 such that

E[ecT0 ] is finite [2, Lemma 6.3]. Applying Hölder’s inequality and observing that any

power of an indicator function is still itself, we arrive at

pn = E[1{Tn<T0}]

≤
(

E[e−MTn/n1{Tn<T0}]
)

cn
M+cn

(

E[ecTn1{Tn<T0}]
)

M
M+cn ,

≤ e−nW (0)· cn
M+cn ·

(

E[ecT0 ]
)

M
M+cn .

Taking logarithm on both sides, it follows easily that

lim inf
n

−1

n
log pn ≥ W (0).

This completes the proof.
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Appendix B

Collection of Proofs (Chapter III)



B.1 Proof of Lemma 3.5.2

It is a standard result that W is a smooth function [35, Section 7.2]. To compute its

gradient, we observe that W̄ is Lipschitz continuous and thus a standard application

of Lebesgue’s Dominated Convergence Theorem [27] implies that

∇W (x) =

∫

R2

ρ(y)∇W̄ (x + εny)dy.

Owing to equation (3.7),

∇W̄ (x) =











−α[1] if x2 > δn,

−α[2] if x2 < δn,

thus Part 1 of the lemma follows readily. As for Part 2, observe that α
[1]
1 = α

[1]
2 = γ

and therefore for x = (x1, x2) such that x1 + x2 ≥ 1

W̄ (x) ≤ W1(x) = −〈α[1], x〉 + γ ≤ −γ + γ = 0.

It is easy to check that W̄ is Lipschitz continuous with ‖α[1]‖ as a Lipschitz constant

since ‖α[1]‖ > ‖α[2]‖, it follows that

W̄ (x + εny) ≤ W̄ (x) + ‖α[1]‖ · εn‖y‖ ≤ ‖α[1]‖ · εn‖y‖

and thus

W (x) ≤
∫

R2

ρ(y)‖α[1]‖ · εn‖y‖ dy − ‖α[1]‖εn

≤
∫

R2

ρ(y)‖α[1]‖ · εn dy − ‖α[1]‖εn

= 0.
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This proves Part 2 of the lemma. Part 3 is immediate from equation (3.7).

It remains to show Part 4. Owing to Part 1, we only need to show that the

gradient of θ(x) is uniformly bounded by C/εn for some constant C independent of

n. Clearly, by definition ∂θ/∂x1 = 0 and

∂θ

∂x2
= lim

h↓0

1

h

∫

{y=(y1,y2):δn−x2−h≤εny2<δn−x2}
ρ(y)dy.

Since ρ is bounded and supported on the unit disc, the integral of the right-hand-side

can be at most

‖ρ‖∞ · Area({y = (y1, y2) : δn − x2 − h ≤ εny2 < δn − x2} ∩ {‖y‖2 ≤ 1}),

which is bounded from above by ‖ρ‖∞ · 2h/εn. Therefore

∣

∣

∣

∣

∂θ

∂x2

∣

∣

∣

∣

≤ 2‖ρ‖∞
εn

.

This completes the proof.

B.2 Proof of Lemma 3.5.3

We would like to point out the following trivial lemma, whose proof is straightforward

by the strict convexity of H and H∂, and that H(0) = H∂(0) = 0.

Lemma B.2.1. Suppose that α is a non-zero, two-dimensional vector such that

H(α) = 0. Then

H(kα) < 0

for all k ∈ (0, 1). The same result holds if H is replaced by H∂.

75



To prove that h̄n(x) is uniformly bounded from below by a strictly positive con-

stant, we consider the following two scenarios separately.

Case 1: α∗
1 6= α̂1. Without loss of generality, assume α∗

1 < α̂1. The proof for the

other direction is almost verbatim and thus omitted. In this case, by definition in

Section 3.5.3, α[1] = α∗ and α[2] = kα̂ where k ∈ (0, 1). Note that H(α[2]) < 0 and

H∂(α
[2]) < 0 by Lemma B.2.1. Let b = 2 and θ∗ = 1/2. In this case, x∗

2 = 0 and

Wθ∗ = W . For x = (x1, x2) ∈ R
2
+ such that x2 ≥ δn, plugging in the definition of r̄

and R̄, we have

h̄n(x)
.
= q

∑

v∈V

r(x, v)
[

1 − e〈α
∗,v〉]+

∑

v∈V

r(x, v)
[

1 − e−2〈∇W (x),v〉−q〈α∗ ,v〉]

= −qH(α∗) − H(−2∇W (x) − qα∗).

According to Part 1 of Lemma 3.5.2 and observing H(α∗) = 0, we arrive at

h̄n(x) = −H(2θ(x)α∗ + 2(1 − θ(x))α[2] − qα∗).

If we regard the right-hand-side as a function of θ = θ(x) and denote it by F (θ),

then F is concave since H is convex. Note that for x2 ≥ δn, θ = θ(x) ∈ [1/2, 1]. If

θ = 1, then for q ∈ (1, 2) the right-hand-side is

F (1) = −H((2 − q)α∗) > 0,

again owing to Lemma B.2.1 and that 0 < 2−q < 1. For θ = 1/2, the right-hand-side

equals

F (1/2) = −H((1 − q)α∗ + α[2]).

This term is again strictly positive for any q which is sufficiently close to 1, owing to
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the continuity of H and that H(α[2]) < 0. Since F is concave, it is easy to see that

min
θ∈[1/2,1]

F (θ) = min{F (1/2), F (1)}.

Therefore, for all x = (x1, x2) such that x2 ≥ δn and all q > 1 but sufficiently close

to 1, F or h̄n is uniformly bounded from below by a positive constant independent

of n .

One can similarly argue for x = (x1, x2) ∈ R
2
+ such that 0 < x2 < δn. Indeed, for

such x analogous calculation yields

h̄n(x) = −qH(α[2]) − H(2θ(x)α∗ + 2(1 − θ(x))α[2] − qα[2]),

and θ(x) ∈ [0, 1/2]. For θ(x) = 1/2, the right-hand-side equals

−qH(α[2]) − H(α∗ + (1 − q)α[2]).

Owing to the fact that H(α[2]) < 0, H(α∗) = 0, and the continuity of H , this term

is strictly positive when q is close to 1. For θ(x) = 0, the right-hand-side equals

−qH(α[2]) − H((2 − q)α[2]),

which is again strictly positive for q ∈ (1, 2) since so is each summand [by Lemma

B.2.1]. The uniform positivity of h̄n for x such that 0 < x2 < δn follows analogously.

It remains to show the claim for x = (x1, x2) ∈ R
2
+ such that x2 = 0. For those

x, it is easy to check that θ(x) = 0 from definition [Lemma 3.5.2 Part 1] and that

77



εn = δn/2 < δn, which in turn implies that

h̄n(x) = −qH∂(α
[2]) − H∂(2α

[2] − qα[2]).

This is strictly positive for q ∈ (1, 2) since each summand is strictly positive by

Lemma B.2.1, and therefore the proof is complete.

Case 2: α∗
1 = α̂1. In this case α[1] = α∗ and α[2] = α̂. For any ε ∈ (0, 1) we can

select b ∈ (2 − ε, 2) such that

−H(α∗ + (b − 2)α̂) > 0. (B.1)

This is always possible since H(α∗) = 0 and 〈∇H(α∗), α̂〉 > 0 [we omit the straight-

forward but tedious technical proof that both ∇H(α∗) and α̂ live in the positive

orthant, which is fairly obvious from Figure 3]. Define θ∗
.
= 1/b, then θ∗ > 1/2.

We will also assume that x∗
2 ≥ −1. This assumption is without loss of generality —

If necessary, one can make b very close to 1 so that θ∗ is very close to 1/2. Then

x∗
2 = x∗

2(θ
∗) is very close to 0 and x∗

2 ≥ −1 holds automatically. The rest of the proof

is similar to the previous case, and thus we only give outlines.

For x = (x1, x2) ∈ R
2
+ such that x2 ≥ δn, it follows from straightforward calcula-

tions that

h̄n(x) = q
∑

v∈V

r(x, v)
[

1 − e〈α
∗,v〉]+

∑

v∈V

r(x, v)
[

1 − e−b〈∇Wθ∗(x),v〉−q〈α∗ ,v〉]

= −qH(α∗) − H(−b∇Wθ∗(x) − qα∗).
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Since H(α∗) = 0, it follows from Lemma 3.5.2 Part 1 and the definition of Wθ∗ (3.8)

h̄n(x) = −H(bθα∗ + b(1 − θ)α̂ − qα∗), (B.2)

where θ = θ(x1, x2 − εnx
∗
2). Note that for x2 = δn, by definition (3.9) and Lemma

3.5.2 Part 1

θ(x1, δn − εnx∗
2) =

∫

{y=(y1,y2):εny2>δn−(δn−εnx∗

2)}
ρ(y)dy

=

∫

{y=(y1,y2):y2>x∗

2}
ρ(y)dy

= θ∗.

It follows that for x2 ≥ δn, θ ∈ [θ∗, 1]. Again the right-hand-side of (B.2) as a

function of θ, is concave. It takes value −H((b − q)α∗) at θ = 1, which is strictly

positive for q ∈ (1, b), thanks to Lemma B.2.1 and that 0 < b − q < 1. At θ = θ∗, it

equals −H(α∗ + (b − 1)α̂ − qα∗). This is strictly positive for q > 1 but sufficiently

close to 1, since H is continuous and −H((b − 1)α̂) > 0 [again thanks to Lemma

B.2.1 and 0 < b − 1 < 1]. The uniform positivity of h̄n(x) for those x follows by an

analogous argument using concavity with respect to θ.

Now let us consider those x = (x1, x2) ∈ R
2
+ such that 0 < x2 < δn. Similarly,

we have

h̄n(x) = −H(bθα∗ + b(1 − θ)α̂ − qα̂),

where θ = θ(x1, x2 − εnx
∗
2) ∈ [0, θ∗]. For θ = θ∗ = 1/b, the right-hand-side equals

−H(α∗ + (b − 1)α̂ − qα̂).

This is strictly positive for q sufficiently close to 1, owing to inequality (B.1) and
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the continuity of H . For θ = 0, the right-hand-side equals −H((b − q)α̂) > 0 for

q ∈ (1, b). The uniform positivity again follows in the same fashion.

It remains to show for those x = (x1, x2) ∈ R
2
+ such that x2 = 0. Straightforward

calculation yields that

h̄n(x) = −H∂(bθα
∗ + b(1 − θ)α̂ − qα̂),

where θ = θ(x1, x2 − εnx
∗
2) = θ(x1,−εnx∗

2). Note that by Lemma 3.5.2 Part 1 and

εn = δn/2,

θ(x1,−εnx
∗
2) =

∫

{y=(y1,y2):εny2>δn+εnx∗

2}
ρ(y)dy

=

∫

{y=(y1,y2):y2>2+x∗

2}
ρ(y)dy

= 0.

The last equality is because 2+x∗
2 ≥ 1 and ρ is supported in the unit disc. It follows

that

h̄n(x) = −H∂((b − q)α̂) > 0

for q ∈ (1, b), thanks to Lemma B.2.1. This completes the proof.
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