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Abstract of “Essays in Econometrics of Heterogeneous Agents”

by Yuya Sasaki, Ph.D., Brown University, May 2012

Economic models often involve non-separability between observed and unobserved

heterogeneous characteristics of economic agents. This dissertation presents methods

of identification, estimation, and inference of nonparametric and nonseparable eco-

nomic models for cross section and panel data. The first chapter discusses identifica-

tion and estimation of nonseparable dynamic panel data with non-random dynamic

selection. It shows that nonseparable dynamic panel models with endogenous attri-

tion can be identified from six time periods of unbalanced panel data. The principle

of constrained maximum likelihood is proposed for consistent estimation. The second

chapter discusses identification of average structural partial effects for endogenous

nonseparable cross-section models without assuming monotonicity. Nonparametric

identification methods are proposed for various first-stage structural and reduced-

form assumptions. The third chapter discusses statistical methods of model tests

for endogenous nonseparable cross-section models when instruments exhibit discrete

variations and the outcome structure is not monotone with respect to unobserved

heterogeneity. It shows that the testing method possesses sufficient power even if

instruments are discrete and exert only local effects on endogenous choice.



CHAPTER 1

Heterogeneity and Selection in Dynamic Panel Data

1. Introduction

Dynamics, nonseparable heterogeneity, and selection have been separately treated

in the panel data literature, in spite of their joint relevance to a wide array of applica-

tions. First, common economic variables of interest are modeled to follow dynamics,

e.g., assets, income, physical capital and human capital. Second, many economic

models entail nonseparable heterogeneity, i.e., an additively separable residual does

not summarize abilities, preferences and technologies. Third, most empirical panel

data are unbalanced by (self-) selection. Indeed, consideration of these three issues –

dynamics, nonseparable heterogeneity, and selection – is essential, but existing econo-

metric methods do not handle them at the same time.

To fill this gap, this paper proposes a set of conditions for identification of dynamic

panel data models in the presence of both nonseparable heterogeneity and dynamic

selection.1 Nonparametric point identification is achieved by using information in-

volving either a proxy variable or a slightly longer panel. Specifically, the model is

point-identified using T = 3 periods of unbalanced panel data and a proxy variable.

A special case of this identification result occurs by constructing the proxy variable

from three additional periods, i.e., T = 6 in total.

1 In the introductory section of his monograph, Hsiao (2003) particularly picks up heterogeneity
and selection as the two major sources of bias in panel data analysis, which motivates the goal of
this paper.
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For example, consider the dynamics of socio-economic status (SES) and its causal

effects on adult mortality.2 Many unobserved individual characteristics such as ge-

netics, patience and innate abilities presumably affect both SES and survival in non-

additive ways, which would incur a bias unless explicitly accounted for. Furthermore,

a death outcome of the survival selection induces subsequently missing observations,

which may result in a selection bias, often called survivorship bias. The following

dynamic panel model with selection accommodates this example:
Yt = g(Yt−1, U, Et) t = 2, · · · , T (Dynamic Panel Model)

Dt = h(Yt, U, Vt) t = 1, · · · , T − 1 (Selection Model)

FY1U (Initial Condition)

The first equation models the dynamics of the observed state variable Yt, such as

SES, as a first-order Markov process with unobserved heterogeneity U . The second

equation models a binary choice of the selection variable, Dt, such as survival, as a

Markov decision process with unobserved heterogeneity U . The initial condition FY1U

models the dependence of the initial state Y1 on unobserved heterogeneity U .3 The

period-specific shocks (Et, Vt) are exogenous, leaving the fixed effect U as the only

source of endogeneity. The economic agent drops out of the panel upon Dt = 0, as in

the case of death. Consequently, data is observed in the following manner: (Y2, D2)

is observed if D1 = 1; (Y3, D3) is observed if D1 = D2 = 1; and so on. Heckman and

Navarro (2007) introduced this formulation of dynamic selection.

2 Among many biological and socioeconomic factors of mortality (Cutler, Deaton, and Lleras-
Muney, 2006), the role of SES and economic environments has been investigated by a number of
empirical researches (e.g., Ruhm, 2000; Deaton and Paxson, 2001; Snyder and Evans, 2006; Sullivan
and von Wachter, 2009a,b).

3 The distribution FY1U features the initial conditions problem for dynamic panel data models.
See Wooldridge (2005) and Honoré and Tamer (2006) for discussions on the initial conditions problem
in the contexts of nonlinear and binary outcome models. Blundell and Bond (1998) and Hahn
(1999) use semiparametric distributions to obtain identifying restrictions and efficiency gain. In
applications, the initial condition FY1U together with the function g are important to disentangle
spurious state dependence of a long-run outcome (Heckman, 1981a,b).
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How can we nonparametrically point identify the nonseparable functions (g, h)

and the initial condition FY1U under this setup of endogenously unbalanced panel

data? Common ways to handle selection include matching and weighting. These

approaches, however, presume selection on observables, parametric models, and ad-

ditively separable models, none of which is assumed in this paper. Even without

selection, the standard panel data techniques such as first differencing, demeaning,

projection, and moment restrictions do not generally work for nonseparable and non-

parametric models.

The literature on nonseparable cross section models proposes constructing auxil-

iary variables, such as a proxy variable or a control variable, to remove endogeneity

(e.g., Garen, 1984; Imbens and Newey, 2009).4 Likewise, Altonji and Matzkin (2005)

show that a control variable can be also constructed from panel data for sibling and

neighborhood panels. This paper complements Altonji and Matzkin along two dimen-

sions. First, we show that a proxy variable can be constructed from dynamic panel

data, similar to their construction of a control variable from sibling and neighbor-

hood panel data. Second, the proxy variable, akin to a control variable,5 handles not

only nonseparable heterogeneity, but also dynamic selection. We propose a method

of using the proxy variable to nonparametrically difference out both nonseparable

heterogeneity and dynamic selection at the same time.

The nonparametric differencing relies on a nonclassical proxy variable, which we

define as a noisy signal of true unobserved heterogeneity with a nonseparable noise.

This definition is reminiscent of nonclassical measurement errors (ME).6 A natural

4 Chesher (2003) can be also viewed as a control variable method, cf. Imbens and Newey (2009;
Theorem 2).

5 Proxy and control variables are similar in that both of them are correlated with unobserved
factors. But they differ in terms of independence conditions: if X denotes an endogenous regressor
and U denotes unobserved factors, then a proxy variable Z and a control variable Z ′ satisfy Z ⊥⊥
X | U and U ⊥⊥ X | Z ′, respectively.

6 See Lewbel (2006), Mahajan (2006), Schennach (2007), Hu (2008), Hu and Schennach (2008),
and Schennach, Song, and White (2011) for the literature on the nonclassical ME.
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approach to identification, therefore, is to adapt the methods used in the nonclassical

ME literature to the current context. This paper follows the spectral decomposition

approach (e.g., Hu, 2008; Hu and Schennach, 2008) to nonparametrically identify

mixture components.7

The identification procedure is outlined as follows. First, the method of nonpara-

metric differencing removes the influence of nonseparable heterogeneity and selection.

After removing these two sources of bias, the spectral decomposition identifies the

mixture component fYt|Yt−1U , which in turn represents the observational equivalence

class of the true nonseparable function g by normalizing the distribution of the exoge-

nous error Et, following Matzkin (2003, 2007). This sequence yields nonparametric

point identification of g from short unbalanced panel data. The selection function

h can be similarly identified by a few additional steps of the spectral decomposition

and solving integral equations8 to identify representing mixture components.

2. Background

Selection is of natural interest in panel data analysis because attrition is an issue

in most, if not all, panel data sets. While many applications focus on the dynamic

model g as the object of primary interest, the selection function h also helps to explain

important causal effects in a variety of economic problems. In the SES and mortality

example, identification of the survival selection function h allows us to learn about

the causal effects of SES on mortality. Generally, the selection function h can be used

to model hazards of panel attrition. Examples include (i) school dropout (Cameron

and Heckman, 1998; Eckstein and Wolpin, 1999; Belzil and Hansen, 2002; Heckman

and Navarro, 2007); (ii) retirement from a job (Stock and Wise, 1990; Rust and

Phelan, 1997; Karlstrom, Palme, and Svensson, 2004; French, 2005; Aguirregabiria,

2010; French and Jones, 2011); (iii) replacement of depreciated capital (Rust, 1987)

7 See Henry, Kitamura, and Salanié (2010) for general identification results for mixture models.

8 Precisely, they are the Fredholm equations of the first kind. See Carrasco, Florens, and Renault
(2007).
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and replacement of managers (Brown, Goetzmann, Ibbotson, and Ross, 1992); (iv)

sterilization (Hotz and Miller, 1993); (v) exit from markets (Aguirregabiria and Mira,

2007; Pakes, Ostrovsky, and Berry, 2007); (vi) recovery from a disease (Crawford and

Shum, 2005); and (vii) death (Contoyannis, Jones, and Rice, 2004; Halliday, 2008).

Examples (i)–(v) are particularly motivated by rational hazards formulated in the

following structural framework.

Example 1 (Optimal Stopping as a Rational Choice of Hazard). Suppose that

an economic agent knows her current utility or profit as a function π of state yt

and heterogeneity u. Let vdt denote a selection-specific private shock for each choice

d ∈ {0, 1}, which is known to the agent. She also knows her exit value as a function

ν of state yt and heterogeneity u. Using the dynamic function g, define the value

function ν as the fixed point of the Bellman equation

ν(yt, u) = E[max{π(yt, u) + V 1
t + βE[ν(g(yt, u, Et+1), u)], π(yt, u) + V 0

t + βν(yt, u)}],

where β denotes the rate of time preference. The reduced-form self-selection function

h is then defined by

h(yt, u, vt) := 1{βE[ν(g(yt, u, Et+1), u)]︸ ︷︷ ︸
Continuation value

− βν(yt, u)︸ ︷︷ ︸
Exit Value

> v0t − v1t︸ ︷︷ ︸
||
vt

}.

The agent decides to exit at time t if h(Yt, U, Vt) = 0. Identification of the reduced

form h is important in many applications.9 Moreover, the reduced form h also reveals

the heterogeneous conditional choice probability (CCP), fDt|YtU , which in turn can be

used to recover heterogeneous structural primitives by using the method of Hotz and

Miller (1993).10 �

9 Counterfactual policy analysis is often possible with reduced-form selection function as a
sufficient statistic; see the Marschak’s (1953) maxim discussed by Heckman (2000) and Heckman
and Vytlacil (2007).

10 I keep identification of the primitives out of the scope of this paper. Primitives are known
to be generally under-identified without additional restrictions (Rust, 1994; Magnac and Thesmar,
2002; Pesendorfer and Schmidt-Dengler, 2008). These features may be more generally treated in
the literature of set identification and set inference, e.g., Bajari, Benkard, and Levin (2007) and the
follow-up literature.
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As this example suggests, nonparametric identification of the heterogeneous CCP

follows as a byproduct of our identification results,11 showing a connection between

this paper and the literature on structural dynamic discrete choice models. When at-

trition, Dt = 0, is associated with hazards or ends of some duration, our identification

results also entail nonparametric identification of the mixed hazard model and the

distribution of unobserved heterogeneity.12 In this sense, our objective is also related

to the literature on duration analysis (e.g., Lancaster, 1979; Elbers and Ridder, 1982;

Heckman and Singer, 1984; Honoré, 1990; Ridder, 1990; Horowitz, 1999; Ridder and

Woutersen, 2003).

The paper covers three econometric topics, (A) panel data, (B) selection/missing

data, and (C) nonseparable models. To show the place of this paper, I briefly discuss

these related branches of the literature. Because the field is extensive, the following

list is not exhaustive.

(A) and (B): panel data with selection has been discussed from the perspective of

(i) a selection model (Hausman and Wise, 1979; Das, 2004), (ii) variance adjustment

(Baltagi, 1985; Baltagi and Chang, 1994), (iii) additional data such as refreshment

samples (Ridder, 1992; Hirano, Imbens, Ridder, and Rubin, 2001; Bhattacharya,

2008), (iv) matching (Kyriazidou, 1997), (v) weighting (Hellerstein and Imbens, 1999;

Moffitt, Fitzgerald, and Gottschalk, 1999; Wooldridge, 2002), and (vi) partial identi-

fication (Khan, Ponomareva, and Tamer, 2011). We contribute to this literature by

allowing nonseparability in addition to selection/missing data.

Identification of CCP under finite heterogeneous types has been discussed by Magnac and Thes-
mar (2002) and Kasahara and Shimotsu (2009). Aguirregabiria and Mira (2007) considered market-
level unobserved heterogeneity as a variant of their main model. While we focus on identification of
heterogeneous CCP, Arcidiacono and Miller (2011) suggested a method of estimating heterogeneous
CCP.

11 Taking the expectation of h(y, u, · ) with respect to the distribution of the exogenous error
Vt yields the heterogeneous CCP, fDt|YtU (1 | y, u) for each (y, u). The heterogeneous CCP is also
identified by Kasahara and Shimotsu (2009), which this paper complements by introducing missing
observations in data.

12 The nonparametric mixed hazard model and the marginal distribution FU of unobserved
heterogeneity follow from the identified survival selection function h and the initial condition FY1U ,
respectively.
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(A) and (C): nonseparable panel models have been treated with (i) random coef-

ficients and interactive fixed effects (Hsiao, 1975; Pesaran and Smith, 1995; Hsiao

and Pesaran, 2004; Graham annd Powell, 2008; Arellano and Bonhomme, 2009;

Bai, 2009). (ii) bias reduction (discussed in the extensive body of literature sur-

veyed by Arellano and Hahn, 2005), (iii) identification of local partial effects (Altonji

and Matzkin, 2005; Altonji, Ichimura, and Otsu, 2011; Graham and Powell, 2008;

Arellano and Bonhomme, 2009; Bester and Hansen, 2009; Chernozhukov, Fernández-

Val, Hahn, and Newey, 2009; Hoderlein and White, 2009), (iv) partial identification

(Honoré and Tamer, 2006; Chernozhukov, Fernández-Val, Hahn, and Newey, 2010),

(v) partial separability (Evdokimov, 2009), and (vi) assumptions of surjective and/or

injective operators (Kasahara and Shimotsu, 2009; Bonhomme, 2010; Hu and Shum,

2010; Shiu and Hu, 2011). The paper contributes to this literature by introducing

selection/missing data in addition to allowing nonseparability.

Identification of a nonseparable dynamic panel data model is studied by Shiu and

Hu (2011) who use independently evolving covariates as auxiliary variables, similar to

one of the two identification results of this paper using a proxy as an auxiliary variable.

This paper complements Shiu and Hu along two dimensions. First, our identification

result using T = 6 periods eliminates the need to assume the independently evolving

covariates or any other auxiliary variable. Second, we can allow for selection/missing

data in addition to dynamics and nonseparability.

3. An Overview

We start out with an informal overview of the identification strategy in this section,

followed by formal identification results summarized in Section 4.

Briefly described, the nonparametric differencing method works in the following

manner. Let z denote a proxy variable. Observed data Az, which are contaminated

by mixed heterogeneity and selection, can be decomposed as Az = BzC, where Bz

contains model information and C contains the two sources of bias, i.e., heterogeneity

and selection. The contaminant holder, C, does not depend on z by an exclusion

7



restriction. Thus, using two values of z, say z = 0, 1, selectively eliminates C by

the operator composition A1A
−1
0 = B1CC

−1B−1
0 = B1B

−1
0 , without losing the model

information Bz. This shows how heterogeneity and selection contained in C are

nonparametrically differenced out, and is analogous to the familiar first differencing

method which eliminates fixed effects by using two values of t instead of two values

of z.

Section 3.1 sketches the identification strategy using T = 3 periods of panel data

and a proxy variable. An intuition is the following. First, using variations in Y1 in

the equation y2 = g(Y1, U, E2) involving the first two periods, t = 1, 2, we can retrieve

information about (U, E2) associated with Y2 = y2. This is comparable to the first

stage in the cross section context except for the endogeneity of the first-stage regressor

Y1. The proxy variable, which is correlated with Y1 only through U , disentangles U

and Y1 to fix the endogeneity. We then use this knowledge about U to identify the

heterogeneous dynamic through the equation Y3 = g(y2, U, E3) involving the latter

two periods, t = 2, 3, which is comparable to the second stage.

Section 3.2 sketches the identification strategy using T = 6 periods without a

proxy variable. With six periods, the three consecutive observations, Y2, Y3 and Y4,

together constitute a substitute for the proxy. Intuitively, controlling for the adjacent

states, Y2 and Y4, the intermediate state Y3 is correlated with (Y1, Y5, Y6) only through

the heterogeneity U . This allows Y3 to serve as a proxy for U , conditionally on Y2

and Y4. The constructed proxy identifies both FY6|Y5U , which represents the dynamic

function g, and the initial condition FY1U .

3.1. A Sketch of the Identification Strategy. Consider the model which

consists of (g, h, FY1U , ζ, FEt , FVt , FW ) where

(1)



Yt = g(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

Dt = h(Yt, U, Vt) t = 1, · · · , T − 1 (Selection)

FY1U (Initial Condition)

Z = ζ(U,W ) (Optional: Nonclassical Proxy)

8



The observed state variable Yt, such as SES, follows a first-order Markov process

g with nonseparable heterogeneity U . The selection variable Dt, such as survival,

follows a Markov decision process h with heterogeneity U . The outcome Dt = 0,

such as death, indicates attrition after which the counterfactual state variable Yt

becomes unobservable. The distribution FY1U of (Y1, U) models dependence of the

initial state Y1 on unobserved heterogeneity U . The last optional equation models

the proxy variable Z as a noisy signal of the true unobserved heterogeneity U with

a nonseparable noise variable W .13 This proxy equation is optional when T > 6,

because the three additional periods construct the proxy. The functional relations in

(1) together with the following exogeneity assumptions define the econometric model.

(i) Exogeneity of Et: Et ⊥⊥ (U, Y1, {Es}s<t, {Vs}s<t,W ) for all t ≥ 2.

(ii) Exogeneity of Vt: Vt ⊥⊥ (U, Y1, {Es}s6t, {Vs}s<t) for all t ≥ 1.(2)

(iii) Exogeneity of W : W ⊥⊥ (Y1, {Et}t, {Vt}t).

This construction of the model leaves the nonseparable fixed effect U as the only

source of endogeneity, and is in accordance with the standard assumptions in the

panel data literature. We assume that the exogenous shocks, Et, Vt, and the noise,

W , are continuously distributed, and normalize the distributions FEt , FVt , and FW to

Uniform(0, 1) so that the model consists of only the four elements (g, h, FY1U , ζ).

The nonseparable fixed effect U and the exogenous errors Et, Vt and W are un-

observable by econometricians. Observation of the the state variable Yt is contingent

on self-selection by economic agents. For a three-period panel data, the states are

observed according to the rule:

13 A standard proxy Z is an additively separable function of U and W (cf. Wooldridge, 2001;
Ch. 4). Our proxy model ζ allows for nonseparability and nonlinearity to avoid a misspecification
bias. One can think of the pair (U,W ) as fixed unobserved characteristics, where U is the part
that enters the economic model whereas W is the part excluded from these functions (i.e., exclusion
restriction). Therefore, W is exogenous by construction.
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Observe Y1.

Observe Y2 if D1 = 1.

Observe Y3 if D1 = D2 = 1.

Consequently, panel data reveals only the specific parts, FY2Y1ZD1( ·, ·, ·, 1) and

FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1), of the joint distributions, but they will become unob-

servable once a ‘1’ is replaced by a ‘0’ in the slot of Dt.

In the current section, we consider a special case where Yt, U , and Z are Bernoulli

random variables for ease of exposition. This special case conveniently allows to de-

scribe the identification strategy by means of matrices instead of operators. The basic

idea of the identification strategy for this special case extends to more general cases,

as formally stated in Section 4. For this setting, the function g can be represented

by a heterogeneous Markov transition probability, fYt+1|YtU . Similarly, the selection

function h can be represented by the heterogeneous conditional choice probability

(heterogeneous CCP), fDt|YtU . In this way, the model (g, h, FY1U , ζ) in (1) can be

represented by the quadruple (fYt+1|YtU , fDt|YtU , fY1U , fZ|U) of conditional and joint

mass functions. Given this statistical representation, identification amounts to that

fY2Y1ZD1( ·, ·, ·, 1) & fY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1)
uniquely
determine7→ (fYt+1|YtU , fDt|YtU , fY1U , fZ|U ).

The exogeneity in (2) implies the following two conditional independence restrictions:

Exogeneity of E3 ⇒ Markov Property: Y3 ⊥⊥ (Y1, D1, D2, Z) | (Y2, U)(3)

Exogeneity of W ⇒ Redundant Proxy: Z ⊥⊥ (Y2, Y1, D2, D1) | U(4)

See Lemma 3 in the appendix for a derivation of the above conditional independence

restrictions. The Markov property (3) states that the current state Y2 and the het-

erogeneity U are sufficient statistics for the distribution of the next state Y3. The

redundant proxy (4) states that, once the true heterogeneity U is controlled for, the

proxy Z is redundant for the model.14 These independence restrictions derive the

14 The redundant proxy assumption is stated in terms of conditional moments in the context of
linear additively separable models; see Wooldridge (2001), Ch. 4.
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following chain of equalities for each y1, y, y3, z:

fY3Y2Y1ZD2D1(y3, y, y1, z, 1, 1)︸ ︷︷ ︸
Observed Data

=
∑
u

fY3Y2Y1ZUD2D1(y3, y, y1, z, u, 1, 1)

=
∑
u

fY3|Y2Y1ZUD2D1
(y3 | y, y1, z, u, 1, 1) · fZ|Y2Y1UD2D1

(z | y, y1, u, 1, 1)

·fY2Y1UD2D1(y, y1, u, 1, 1)

(∗)
=

∑
u

fY3|Y2U (y3 | y, u)︸ ︷︷ ︸
Model g

· fZ|U (z | u)︸ ︷︷ ︸
Model ζ

· fY2Y1UD2D1(y, y1, u, 1, 1)︸ ︷︷ ︸
Nonparametric Residual

Involving Selection D2 = D1 = 1
& Nonseparable Fixed Effect U

(5)

where the last equality (∗) follows from (3) and (4). fY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1) on

the left-hand side can be observed from data because the slots of D1 and D2 contain

‘1.’ The right-hand side consists of three factors, where fY3|Y2U and fZ|U represent

g and ζ, respectively. The last factor fY2Y1UD2D1( ·, ·, ·, 1, 1) can be thought of as

the nonparametric residual of the observed data after extracting the two preceding

economic components, g and ζ. This nonparametric residual absorbs the selection,

D2 = D1 = 1, which is a source of selection bias. Moreover, the nonparametric

residual also absorbs the nonparametric distribution of the nonseparable fixed effect

U , which is a source of endogeneity bias. In other words, the two sources of bias –

nonseparable heterogeneity and selection – captured by the nonparametric residual

are isolated from the economic models (g, ζ) in the decomposition (5).

For convenience of calculation, we rewrite the equality (5) in terms of matrices as

(6) Ly,z = PyQzL̃y for each y ∈ Y and z ∈ Z,
11



where Ly,z, Py, Qz, and L̃y are defined as15

Ly,z :=

 fY3Y2Y1ZD2D1(0, y, 0, z, 1, 1) fY3Y2Y1ZD2D1(0, y, 1, z, 1, 1)

fY3Y2Y1ZD2D1(1, y, 0, z, 1, 1) fY3Y2Y1ZD2D1(1, y, 1, z, 1, 1)


→ Observed data

Py :=

 fY3|Y2U(0 | y, 0) fY3|Y2U(0 | y, 1)

fY3|Y2U(1 | y, 0) fY3|Y2U(1 | y, 1)


→ Represents model g

Qz := diag(fZ|U(z | 0) fZ|U(z | 1))′

→ Represents model ζ

L̃y :=

 fY2Y1UD2D1(y, 0, 0, 1, 1) fY2Y1UD2D1(y, 1, 0, 1, 1)

fY2Y1UD2D1(y, 0, 1, 1, 1) fY2Y1UD2D1(y, 1, 1, 1, 1)


→ Residual

In (6), the observed matrix Ly,z is decomposed into three factors, Py, Qz, and L̃y. The

matrices Py and Qz represent the economic models g and ζ, respectively. The matrix

L̃y contains the remainder as the nonparametric residual, and particularly contains

the two sources of bias.

Given the decomposition (6), the next step is to eliminate the nonparametric

residual matrix L̃y in order to nonparametrically difference out the influence of selec-

tion and nonseparable heterogeneity, or to remove biases induced by them. Using the

two values of z of the proxy variable, 0 and 1, we form the following composition:

(7) Ly,1L
−1
y,0︸ ︷︷ ︸

Observed Data

= PyQ1L̃yL̃
−1
y Q−1

0 P−1
y = Py︸︷︷︸

g

Q1Q
−1
0︸ ︷︷ ︸

ζ

P−1
y︸︷︷︸
g

.

The nonparametric residual matrix L̃y has been eliminated as desired. Consequently,

the observed data on the left hand side is now purely linked to a product of model

15 These two-by-two matrices follow from the simplifying assumption of the current subsection
that Yt, U , and Z are Bernoulli random variables. In general cases, integral and multiplication
operators replace these matrices.
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components (g, ζ) without any influence of the selection or the nonseparable hetero-

geneity.

The composition (7) is valid provided that Py, Qz, and L̃y are all non-singular.

The following rank restrictions guarantee that they are indeed non-singular under the

current setting.

Heterogeneous Dynamics: E[g(y, 0, Et)] ̸= E[g(y, 1, Et)](8)

Nondegenerate Proxy Model: 0 < E[ζ(u,W )] < 1 for each u ∈ {0, 1}(9)

No Extinction: E[h(y, u, Vt)] > 0 for each u ∈ {0, 1}(10)

Initial Heterogeneity:
E[U | Y2 = y, Y1 = 0, D1 = 1] ̸=

E[U | Y2 = y, Y1 = 1, D1 = 1]
(11)

Restriction (8) requires that the dynamic model g is a nontrivial function of the un-

observed heterogeneity, and implies that the matrix Py is non-singular.
16 Restriction

(9) requires that the proxy model (ζ, FW ) exhibits nondegeneracy, and implies that

the matrix Q0 is non-singular. Restriction (10) requires a positive survival probability

for each heterogeneous type u ∈ {0, 1}, and hence drives no type U into extinction.

Restriction (11) requires that the unobserved heterogeneity is present at the initial

observation. The last two restrictions (10) and (11) together imply that the nonpara-

metric residual matrix L̃y is non-singular.

Now that the nonparametric residual L̃y containing the two sources of bias has

gone, it remains to identify the elements of the matrices Py and Qz from equation (7).

This can be accomplished by showing the uniqueness of eigenvalues and eigenvectors

(e.g., Hu, 2008; Kasahara and Shimotsu, 2009). Because the matrix Qz is diagonal,

(7) forms a diagonalization of the observable matrix Ly,1L
−1
y,0. The diagonal elements

of Q1Q
−1
0 and the columns of Py are the eigenvalues and the eigenvectors of Ly,1L

−1
y,0,

16 Under the current simplified setting with Bernoulli random variables, a violation of this
assumption implies absence of endogeneity in the dynamic model, and thus the dynamic function g
would still be identified. However, the other functions are not guaranteed to be identified without
this assumption.
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respectively. Therefore, Q1Q
−1
0 is identified by the eigenvalues of the observable

matrix Ly,1L
−1
y,0 without an additional assumption.

On the other hand, identification of Py follows from the following additional re-

striction:

Relevant Proxy: E[ζ(0,W )] ̸= E[ζ(1,W )].(12)

This restriction (12) requires that the proxy model ζ is a nontrivial function of the true

unobserved heterogeneity on average. It characterizes the relevance of Z as a proxy

of U , and implies that the elements of Q1Q
−1
0 (i.e., the eigenvalues of Ly,1L

−1
y,0) are

distinct. The distinct eigenvalues uniquely determine the corresponding eigenvectors

up to scale. Since an eigenvector [fYt+1|YtU(0 | y, u), fYt+1|YtU(1 | y, u)]′ is a vector

of conditional densities which sum to one, the scale is also uniquely determined.

Therefore, Py and Q1Q
−1
0 are identified by the observed data Ly,1L

−1
y,0. The identified

eigenvalues17 take the form of the proxy odds fZ|U(1 | u)/(1− fZ|U(1 | u)), which in

turn uniquely determines the diagonal elements fZ|U(z | u) of Qz for each z. This

procedure heuristically shows how the the elements (g, ζ) of the model is identified

from endogenously unbalanced panel data.

Remark 1. The general identification procedure consists of six steps. The current

subsection presents a sketch of the first step to identify (g, ζ). Five additional steps

show that the remaining two elements (h, FY1U) of the model are also identified.

Figure 3.1 summarizes all the six steps. Section 4 presents a complete identification

result.

Discussion 1. This sketch of the identification strategy demonstrates how the

proxy handles both selection and nonseparable heterogeneity at the same time. The

trick of Equation (5) or (6) is to isolate the selection (D1 = D2 = 1) and the non-

parametric distribution of the nonseparable heterogeneity U into the nonparametric

17 Even though we obtain real eigenvalues in this spectral decomposition, Ly,1L
−1
y,0 need not be

symmetric. Note that a Hermitian operator is sufficient for real spectrum, but not necessary. This
identification result holds as far as the identifying restrictions are satisfied.
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Figure 1.1. A sketch of the proof of the identification strategy.

residual matrix L̃y, which in turn is eliminated in Equation (7). Our method thus

can be considered as a nonparametric differencing facilitated by a proxy variable,

nonparametrically differencing out both nonseparable fixed effects and endogeneous

selection. This process is analogous to the first differencing method which differences

out fixed effects arithmetically. Our nonparametric differencing occurs in the non-

commutative group of matrices (generally the group of linear operators), whereas the

first differencing occurs in (R,+). In the non-commutative group, the proxy Z plays

the role of selectively canceling out the nonparametric residual matrix L̃y while leav-

ing the Py and Qz matrices intact. The use of a proxy parallels the classical idea of

using instruments as means of removing endogeneity (Hausman and Taylor, 1981).

Instrumental variables are useful for additive models because projection (moment

restriction) of additive models on instruments removes fixed effects as in Hausman
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and Taylor. This projection method is not generally feasible for nonseparable and

nonparametric models. Therefore, this paper uses a proxy variable, akin to a con-

trol variable,18 to nonparametrically difference out the nonseparable fixed effect along

with selection as argued above. This point is revisited in Section 3.2: Discussion 3.

3.2. A Sketch of the Identification Strategy for T = 6. When T = 6, we

identify the model (g, h, FY1U) without using an outside proxy variable or the proxy

model ζ. In the presence of an outside proxy, the main identification strategy was to

derive the decomposition Ly,z = PyQzL̃y from which L̃y was eliminated (cf. Section

3.1). A similar idea applies to the case of T = 6 without an outside proxy.

Again, assume that Yt, U , and Z follow the Bernoulli distribution for ease of

exposition. Let Z := Y3 for notational convenience. Using the exogeneity restriction

(3) yields the following decomposition of the observed data.

fY6Y5Y4ZY2Y1D5D4D3D2D1(y6, y5, y4,

y3︷︸︸︷
z , y2, y1, 1, 1, 1, 1, 1)︸ ︷︷ ︸

Observed from Data → Ly5,y4,z,y2

=
∑
u

fY6|Y5U(y6 | y5, u)︸ ︷︷ ︸
Model g → Py5

× fY4ZD5D4D3|Y2U(y4, z, 1, 1, 1 | y2, u)︸ ︷︷ ︸
An Alternative to Proxy Model ζ → Qy4,z,y2

· fY5|Y4U(y5 | y4, u) · fY2Y1UD2D1(y2, y1, u, 1, 1)︸ ︷︷ ︸
To Be Eliminated → L̃y5,y4,y2

This equality can be equivalently written in terms of matrices as Ly5,y4,z,y2 = Py5

Qy4,z,y2 L̃y5,y4,y2 for each (y5, y4, z, y2), where the 2× 2 matrices are defined as

Ly5,y4,z,y2 := [fY6Y5Y4ZY2Y1D5D4D3D2D1(i, y5, y4, y3, y2, j, 1, 1, 1, 1, 1)](i,j)∈{0,1}×{0,1}

Py5 :=
[
fY6|Y5U (i | y5, j)

]
(i,j)∈{0,1}×{0,1}

Qy4,z,y2 := diag
(
fY4ZD5D4D3|Y2U (y4, z, 1, 1, 1 | y2, 0) fY4ZD5D4D3|Y2U (y4, z, 1, 1, 1 | y2, 1)

)′
L̃y5y4y2 :=

[
fY5|Y4U (y5 | y4, u) · fY2Y1UD2D1(y2, j, i, 1, 1)

]
(i,j)∈{0,1}×{0,1}

Similarly to the case with an outside proxy, varying z = y3 while fixing (y5, y4, y2)

eliminates L̃y5,y4,y2 because it does not depend on z = y3. Under rank restrictions,

18 If X denotes an endogenous regressor and U denotes unobserved factors, then a proxy, a
control variable, and an instrument are characterized by Z ⊥⊥ X | U , X ⊥⊥ U | Z, and Z ⊥⊥ U ,
respectively. The conditional independence (4) thus characterizes Z as a proxy rather than a control
variable or an instrument.
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the composition

Ly5,y4,1,y2L
−1
y5,y4,0,y2︸ ︷︷ ︸

Observed Data

= Py5Qy4,1,y2L̃y5y4y2L̃y5y4y2Q
−1
y4,0,y2

P−1
y5

= Py5 Qy4,1,y2Q
−1
y4,0,y2︸ ︷︷ ︸

Diagonal

P−1
y5

yields the eigenvalue-eigenvector decomposition to identify the dynamic model g rep-

resented by the matrix Py5 . Five additional steps identify the rest (h, FY1U) of the

model.

Discussion 2. Why do we need T = 6? For convenience of illustration, ignore

selection. The arrows in the diagram below indicate the directions of the causal

effects. We are interested in g and FY1U enclosed by round shapes. First, note that

a variation in Y6 in response to a variation in (Y5, U) reveals g. Second, a variation

in U in response to a variation in Y1 reveals FU |Y1 , hence FY1U . We can see from

the causal diagram that Y2, Y3, and Y4 are correlated with U , and hence we may

conjecture that they could serve as a proxy of U . However, any of them, say Z := Y3,

cannot be a genuine proxy because the redundant proxy assumption similar to (4),

say Z ⊥⊥ Y5 | Z, would be violated with this choice Z = Y3. That is, even if we control

for U , Y3 is still correlated with Y5 through the dynamic channel along the horizontal

arrows. In order to shut out this dynamic channel, we control the intermediate state Y4

between Y3 and Y5. Using the language of the causal inference literature, we say that

(U, Y4) “d-separates” Y3 and Y5 in the causal diagram below, and this d-separation

implies the conditional independence restriction Y3 ⊥⊥ Y5 | (U, Y4); see Pearl (2000).

Therefore Y3 is now a genuine proxy of U conditionally on the fixed Y4 to analyze

the dynamic model g. Similarly, we control the intermediate state Y2 between Y1 and

Y3 to analyze the initial condition FY1U . The causal diagram indicates that (U, Y2)

“d-separates” Y1 and Y3, hence Y3 ⊥⊥ Y1 | (U, Y2). This makes Y3 a genuine proxy

of U conditionally on the fixed Y2 to analyze the initial condition FY1U . Controlling

for the two adjacent states, Y2 and Y4, costs the consecutive three periods (Y2, Y3, Y4)

for the constructed proxy model Qy4,z,y2 . This is an intuition behind the requirement

of three additional periods for identification without an outside proxy variable. See

Section 10.2 for a formal proof.
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Figure 1.2. Causal diagram for six periods.

Discussion 3. The idea of using three additional time periods to construct a

proxy variable parallels the well-known idea of using lags as instruments to form

identifying restrictions for additively separable dynamic panel data models (e.g., An-

derson and Hsiao, 1982; Arellano and Bond, 1991; Ahn and Schmidt, 1995; Arellano

and Bover, 1995; Blundell and Bond, 1998; Hahn, 1999). Because projection or mo-

ment restriction on instruments is not generally a viable option for nonseparable and

nonparametric models, the literature on nonseparable cross section models proposes

constructing a proxy variable or a control variable from instruments (Garen, 1984;

Florens, Heckman, Meghir, and Vytlacil, 2008; Imbens and Newey, 2009). Altonji

and Matzkin (2005) show that a control variable can also be constructed from panel

data for sibling and neighborhood panels. This paper proposes constructing a proxy

variable from three additional observations of dynamic panel data, similar to Altonji

and Matzkin’s construction of a control variable from sibling and neighborhood pan-

els. The constructed proxy variable turns out to account for not only nonseparable

heterogeneity but also selection as argued above.

4. Identification

This section formalizes the identification result, a part of which is sketched in

Section 3.
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4.1. Identifying Restrictions. Identification is proved by showing the well-

definition of the inverse DGP correspondence

(FY2Y1ZD1( ·, ·, ·, 1), FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1)) 7→ (g, h, FY1U , ζ, FEt , FVt , FW ),

up to observational equivalence classes represented by a certain normalization of the

error distributions FEt , FVt , and FW a la Matzkin (2003). To this end, we invoke the

following four restrictions on the set of potential data-generating models.

Restriction 1 (Representation). Each of the functions g, h, and ζ is non-

decreasing and càglàd (left-continuous with right limit) in the last argument. The

distributions of Et, Vt, and W are absolutely continuous with convex supports, and

each of {Et}t and {Vt}t is identically distributed across t.

The weak – as opposed to strict – monotonicity of the functions with respect to

idiosyncratic errors accommodates discrete outcomes Yt, Dt, and Z under absolutely

continuous distributions of errors (Et, Vt,W ). The purpose of Restriction 1 is to

construct representations of the equivalence classes of nonseparable functions up to

which g, h, and ζ are uniquely determined by the distributions FYt|Yt−1U , FDt|YtU ,

and FZ|U , respectively. The independence restriction stated below in addition to

Restriction 1 allows for their quantile representations in particular.

Restriction 2 (Independence).

(i) Exogeneity of Et: Et ⊥⊥ (U, Y1, {Es}s<t, {Vs}s<t,W ) for all t ≥ 2.

(ii) Exogeneity of Vt: Vt ⊥⊥ (U, Y1, {Es}s6t, {Vs}s<t) for all t ≥ 1.

(iii) Exogeneity of W : W ⊥⊥ (Y1, {Et}t, {Vt}t).

In the context of Section 3.1, Restriction 2 (i) and (iii) imply the conditional in-

dependence restrictions (3) and (4), respectively. Parts (i) and (ii) impose exogeneity

of the idiosyncratic errors Et and Vt, thus leaving U as the only source of endogene-

ity. Part (iii) requires exogeneity of the noise W in the nonseparable proxy model ζ.

This means that the unobserved characteristics consist of two parts (U,W ) where U

is the part that enters the functions g and h, whereas W is the part excluded from
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those functions (i.e., exclusion restriction), and hence is exogenous by construction.

Part (iii) implies Z ⊥⊥ (Y1, {Et}t, {Vt}t) | U , which is similar to the redundant proxy

restriction in the classical sense as discussed in Section 3.1: once the true unobserved

heterogeneity U is controlled for, the proxy Z is redundant for (g, h, FY1,U). These

independence conditions play the role of decomposing observed data into model com-

ponents and the nonparametric residual, as we saw through the sketch in Section

3.

Restriction 3 (Rank Conditions). The following conditions hold for every y ∈

Y :

(i) Heterogeneous Dynamics: the integral operator Py : L2(FU) → L2(FYt) defined

by Pyξ(y
′) =

∫
fY3|Y2U(y

′ | y, u) · ξ(u)du is bounded and invertible.

(ii) Nondegenerate Proxy Model: there exists δ > 0 such that 0 < fZ|U(1 | u) 6 1−δ

for all u.

Relevant Proxy: fZ|U(1 | u) ̸= fZ|U(1 | u′) whenever u ̸= u′.

(iii) No Extinction: fD2|Y2U(1 | y, u) > 0 for all u ∈ U .

(iv) Initial Heterogeneity: the integral operator Sy : L2(FYt) → L2(FU) defined by

Syξ(u) =
∫
fY2Y1UD1U(y, y

′, u, 1) · ξ(y′)dy′ is bounded and invertible.

Under the special case discussed in Section 3.1, Restriction 3 is equivalent to (8)–

(12), by which the dynamic function g and the proxy model ζ were identified in that

section. The notion of ‘invertibility’ depends on the normed linear spaces on which

the operators are defined. We use L2 in order to exploit convenient properties of

the Hilbert spaces.19 A bounded linear operator between Hilbert spaces guarantees

existence and uniqueness of its adjoint operator, which of course presumes a pre-

Hilbert space structure in particular. Moreover, the invertibility guarantees that

the adjoint operator is also invertible, which is an important property used to derive

identification of the selection rule h and initial condition FY1U . Andrews (2011) shows

19 Carrasco, Florens, and Renault (2007) review some important properties of operators on
Hilbert spaces.
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that a wide variety of injective operators between L2 spaces can be constructed from

an orthonormal basis, and that the completeness assumption ‘generically’ holds.

The first part of the rank condition (ii) requires that the proxy model (ζ, FW )

exhibits nondegeneracy. The second part of the rank condition (ii) requires that Z is

a relevant proxy for unobserved heterogeneity U , as characterized by distinct proxy

scores fZ|U(1 | u) across u. The rank condition (iii) requires that there continue to

exist some survivors in each heterogeneous type, hence no type U goes extinct. This

restriction is natural because one cannot learn about a dynamic structure of the group

of individuals that goes extinct after the first time period.

Restriction 4 (Labeling of U in Nonseparable Models). u ≡ fZ|U(1 | u) for all

u ∈ U .

Due to its unobservability, U has neither intrinsic values nor units of measure-

ment. This is a reason for potential non-uniqueness of fully nonseparable functions.

The purpose of Restriction 4 is to attach concrete values to unobserved heterogeneity

U ; see also Hu and Schennach (2008). Restriction 4 is innocuous in nonseparable

models in the sense that identification is considered up to observational equivalence

g(y, u, ε) ≡ gπ(y, π(u), ε) for any permutation π of U . On the other hand, this re-

striction is redundant and too stringent for additively separable models, in which U

has the same unit of measurement as Y by construction. In the latter case, we can

replace Restriction 4 by the following alternative labeling assumption.

Restriction 4′ (Labeling of U in Separable Models). u ≡ E[g(y, u, E)]− g̃(y) for all

u ∈ U and y ∈ Y for some function g̃.

This alternative labeling restriction is innocuous for separable models in the sense that

it is automatically satisfied by additive models of the form g(y, u, ε) = g̃(y) + u + ε

with E[E ] = 0.
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4.2. Representation. Nonparametric identification of nonseparable functions

is generally feasible only up to some equivalence classes (e.g., Matzkin, 2003, 2007).

Representations of these equivalence classes are discussed as a preliminary step toward

identification. Restrictions 1 and 2 allow representations of functions g, h, and ζ by

normalizing the distributions of the independent errors.

Lemma 1 (Quantile Representations of Non-Decreasing Càglàd Functions).

(i) Suppose that Restrictions 1 and 2 (i) hold. Then FY3|Y2U uniquely determines

g up to the observational equivalence classes represented by the normalization Et ∼

Uniform(0, 1).

(ii) Suppose that Restrictions 1 and 2 (ii) hold. Then FD2|Y2U uniquely determines

h up to the observational equivalence classes represented by the normalization Vt ∼

Uniform(0, 1).

(iii) Suppose that Restrictions 1 and 2 (iii) hold. Then FZ|U uniquely determines

ζ up to the observational equivalence classes represented by the normalization W ∼

Uniform(0, 1).

A proof is given in Section 8.1. The representations under these assumptions and

normalizations are established by the respective quantile regressions:

g(y, u, ε) = F−1
Y3|Y2U(ε | y, u) := inf{y′ | ε ≤ FY3|Y2U(y

′ | y, u)} ∀(y, u, ε)

h(y, u, v) = F−1
D2|Y2U(v | y, u) := inf{d | v ≤ FD2|Y2U(d | y, u)} ∀(y, u, v)

ζ(u,w) = F−1
Z|U(w | u) := inf{z | w ≤ FZ|U(z | u)} ∀(u,w)

The non-decreasing condition in Restriction 1 is sufficient for almost-everywhere

equivalence of the quantile representations. Furthermore, we also require the càglàd

condition of Restriction 1 for point-wise equivalence of the quantile representations.

Given Lemma 1, it remains to show that the observed distributions FY2Y1ZD1( ·, ·, · , 1)

and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1)) uniquely determine (FY3|Y2U , FD2|Y2U , FZ|U) as well

as FY1U .
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4.3. The Main Identification Result. Section 4.2 shows that FY3|Y2U , FD1|Y1U ,

and FZ|U uniquely determine g, h, and ζ, respectively, up to the aforementioned

equivalence classes. Therefore, the model (g, h, FY1U , ζ) can be identified by showing

the well-definition of the inverse DGP correspondence

(FY2Y1ZD1( ·, ·, · , 1), FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1)) 7→ (FY3|Y2U , FD2|Y2U , FY1U , FZ|U).

Lemma 2 (Identification). Under Restrictions 1, 2, 3, and 4, the quadruple

(FY3|Y2U , FD2|Y2U , FY1U , FZ|U) is uniquely determined by FY2Y1ZD1( ·, ·, · , 1) and

FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1).

Combining Lemmas 1 and 2 yields the following main identification result of this

paper.

Theorem 1 (Identification). Under Restrictions 1, 2, 3, and 4, the model

(g, h, FY1U , ζ) is identified by FY2Y1ZD1( ·, ·, ·, 1) and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1) up to

the equivalence classes represented by the normalizations Et, Vt,W ∼ Uniform(0, 1).

A proof of Lemma 2 is given in Section 8.2, and consists of six steps of spectral

decompositions, operator inversions (solving Fredholm equations of the first kind),

and algebra. Figure 3.1 illustrates how observed data uniquely determines the model

(g, h, FY1U , ζ) through the six steps. Section 3.1 provided an informal sketch of the

proof of the first step among others.

Remark 2. While the baseline model only induces a permanent dropout through

Dt = 0, we can also allow for an entry through Dt = 1. See Section 10.1. This

is useful to model entry of firms as well as reentry of female workers into the labor

market after child birth. This extension also accommodates general unbalanced panel

data with various causes of selection.

Remark 3. Three additional time periods can be used as a substitute for a

nonclassical proxy variable. In other words, T = 6 periods of panel data alone

identifies the model, and a proxy variable is optional. See Section 3.2 and Section

10.2.
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Remark 4. The baseline model consists of the first-order Markov process. Section

10.3 generalizes the baseline result to allow for higher-order lags in the functions g

and h. Generally, τ + 2 periods of unbalanced panel data identifies the model with

τ -th order Markov process g and (τ−1)-st order Markov decision rule h. The baseline

model is a special case with τ = 1.

Remark 5. The baseline model only allows individual fixed effects U . Suppose

that the dynamic model gt involves time effects, for example, to reflect common

macroeconomic shocks to income dynamics. Then the model ({gt}Tt=2, h, FY1U , ζ) can

be identified by T +1 periods of unbalanced panel data from t = 0 to t = T > 3. See

Section 10.4.

Remark 6. The rule for missing observations was defined in terms of a lagged

selection indicator Dt−1 which depends on Yt−1. Data may instead be selected based

on contemporaneous Dt which depends on Yt. See Section 10.5. Note that, in the

latter case, we may not observe Yt based on which the data is selected. These two

selection criteria reflect the ex ante versus ex post Roy selection processes by rational

agents.

Remark 7. Restriction 3 (i) implies the cardinality relation |supp(U)| 6 |supp(Yt)|.

This cardinality restriction in particular rules out binary Yt with continuously dis-

tributed U . Furthermore, the relevant proxy in Restriction 3 (ii) implies dim(U) 6 1.

Remark 8. For the result using a proxy variable, the notation appears to suggest

that a proxy is time-invariant. However, a time-variant proxy Zt = ζ(U,Wt) may also

be used as far as Wt satisfies the same independence restriction as W .

5. Estimation

The identification result is derived through six steps of spectral decompositions,

operator inversions (solutions to Fredholm equations of the first kind), and algebra,

as illustrated in Figure 3.1. A sample-analog or plug-in estimation following all these

24



steps is practically infeasible. The present section therefore discusses how to turn this

six-step procedure into a one-step procedure.

5.1. Constrained Maximum Likelihood. After showing nonparametric iden-

tification as in Section 4, one can generally proceed with the maximum likelihood

estimation of parametric or semi-parametric sub-models. In our context, however,

the presence of missing observations biases the standard maximum likelihood estima-

tor. In this section, we apply the Kullback-Leibler information inequality to translate

our main identification result (Lemma 2) into an identification-preserving criterion

function, which is robust against selection or missing data.

Because the model (g, h, FY1U , ζ) is represented by (FYt|Yt−1U , FDt|YtU , FY1U , FZ|U)

(see Lemmas 1 and 4), we use F to denote the set of all the admissible model repre-

sentations:

F = {(FYt|Yt−1U , FDt|YtU , FY1U , FZ|U ) | (g, h, FY1U , ζ) satisfies Restrictions 1, 2, 3, and 4}.

As a consequence of the main identification result, the quadruple for the true model

(F ∗
Yt|Yt−1U

, F ∗
Dt|YtU , F

∗
Y1U

, F ∗
Z|U) can be characterized by the following criterion, allowing

for a one-step plug-in estimator.

Corollary 1 (Constrained Maximum Likelihood). If the quadruple for the true

model (F ∗
Yt|Yt−1U

, F ∗
Dt|YtU , F

∗
Y1U

, F ∗
Z|U) is an element of F , then it is the unique solution

to

max(
FYt|Yt−1U ,FDt|YtU

,FY1U ,FZ|U
)
∈F

c1E

[
log

∫
fYt|Yt−1U (Y2 | Y1, u)fDt|YtU (1 | Y1, u)

fY1U (Y1, u)fZ|U (Z | u)dµ(u)
∣∣D1 = 1

]
+

c2E

[
log

∫
fYt|Yt−1U (Y3 | Y2, u)fYt|Yt−1U (Y2 | Y1, u)fDt|YtU (1 | Y2, u)fDt|YtU (1 | Y1, u)

fY1U (Y1, u)fZ|U (Z | u)dµ(u)
∣∣D2 = D1 = 1

]
for any c1, c2 > 0 subject to∫

fDt|YtU (1 | y1, u)fY1U (y1, u)dµ(y1, u) = fD1(1) and∫
fYt|Yt−1U (y2 | y1, u)fDt|YtU (1 | y2, u)fDt|YtU (1 | y1, u)fY1U (y1, u)dµ(y2, y1, u) = fD2D1(1, 1).
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A proof is found in Section 9.1. The sense of uniqueness stated in the corollary

is up to the equivalence classes identified by the underlying probability measures.

Once a representing model (FYt|Yt−1U , FDt|YtU , FY1U , FZ|U) is parametrically or semi-

/non-parametrically specified, the sample analog of the objective and constraints can

be formed from observed data. The first term in the objective can be estimated

since (Y2, Y1, Z) is observed conditionally on D1 = 1. Similarly, the second term can

be estimated since (Y3, Y2, Y1, Z) is observed conditionally on D2 = D1 = 1. All

the components in the two constraints are also computable from observed data since

fD1(1) and fD2D1(1, 1) are observable.

This criterion is related to the maximum likelihood. The objective consists of a

convex combination of expected log likelihoods conditional on survivors. Using this

objective alone therefore would incur a survivorship bias. To adjust for the selection

bias, the constraints bind the model to correctly predict the observed selection prob-

abilities. Any pair of positive values may be chosen for c1 and c2. However, there is a

certain choice of these coefficients that makes the constrained optimization problem

easier, as discussed in the following remark.

Remark 9. Solutions to constrained optimization problems like Corollary 1 are

characterized by saddle points of the Lagrangean functional. Although it appears

easier than the original six-step procedure, this saddle-point problem over a function

space is still practically challenging. By an appropriate choice of c1 and c2, we can,

however, turn this saddle point problem into an unconstrained maximization prob-

lem. Let λ1 and λ2 denote the Lagrange multipliers for the two constraints in the

corollary. Under some regularity conditions (Fréchet differentiability of the objective

and constraint functionals, differentiability of the solution to the selection probabil-

ity, and the regularity of the solution for the constraint functionals), the choice of

c1 = Pr(D1 = 1) and c2 = Pr(D2 = D1 = 1) guarantees λ∗1 = λ∗2 = 1 at the optimum

(see Section 9.2). With this knowledge of the values of λ∗1 and λ
∗
2, the solution to the

problem in the corollary can now be characterized by a maximum rather than a saddle

point. This fact is useful both for implementation of numerical solution methods and
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for availability of the existing large sample theories of parametric, semiparametric,

and nonparametric M -estimators.

Remark 10. In case of using T = 6 periods of unbalanced panel data instead

of a proxy variable, a similar one-step criterion to Corollary 1 can be derived. See

Section 10.2.

5.2. An Estimator. The six steps of the identification strategy do not admit a

practically feasible plug-in estimator. On the other hand, Corollary 1 and Remark 9

together yield the standard M -estimator by the sample analog. We decompose the

model set as F = F1×F2×F3×F4, where F1, F2, F3, and F4 are sets of parametric

or semi-/non-parametric models for fYt|Yt−1U , fDt|YtU , fY1U , and fZ|U , respectively.

Accordingly, we denote an element of F by f = (f1, f2, f3, f4) for brevity. With this

notation, Corollary 1 and Remark 9 imply that the estimator of the true model f0

can be characterized by a solution f̂ to the maximization problem:

max
f∈Fk(n)

1

n

n∑
i=1

l(Yi3, Yi2, Yi1, Zi, Di2, Di1; f)

for some sieve space Fk(n) = F1,k1(n) ×F2,k2(n) ×F3,k3(n) ×F4,k4(n) ⊂ F , where

l(Yi3, Yi2, Yi1, Zi, Di2, Di1; f) := 1 {Di1 = 1} · l1(Yi2, Yi1, Zi; f)

+1 {Di2 = Di1 = 1} · l2(Yi3, Yi2, Yi1, Zi; f)− l3(f)− l4(f),

l1(Yi2, Yi1, Zi; f) := log

∫
f1(Yi2 | Yi1, u)f2(1 | Yi1, u)f3(Yi1, u)f4(Zi | u)dµ(u),

l2(Yi3, Yi2, Yi1, Zi; f) := log

∫
f1(Yi3 | Yi2, u)f1(Yi2 | Yi1, u)f2(1 | Yi2, u)f2(1 | Yi1, u)

× f3(Yi1, u)f4(Zi | u)dµ(u),

l3(f) :=

∫
f2(1 | y1, u)f3(y1, u)dµ(y1, u), and

l4(f) :=

∫
f1(y2 | y1, u)f2(1 | y2, u)f2(1 | y1, u)f3(y1, u)dµ(y2, y1, u).

Note that Yi3 and Yi2 may be missing in data, but the interactions with the indicators

1 {Di1 = 1} and 1 {Di2 = Di1 = 1} allow the expression l(Yi3, Yi2, Yi1, Zi, Di2, Di1; f)

to make sense even if they are missing.
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Besides the identifying Restrictions 1, 2, 3, and 4 for the model set F , we require

additional technical assumptions, stated in the appendix for brevity of exposition, to

guarantee a well-behaved estimator in large samples.

Proposition 1 (Consistency). Suppose that F satisfies Restrictions 1, 2, 3, 4,

and the assumptions under Section 9.2. If, in addition, Assumptions 1, 2, and 3 in

Section 9.3 restrict the model set F , choice of the sieves {Fk(n)}∞n=1, and the data

FY3Y2Y1ZD2D1, then
∥∥∥f̂ − f0

∥∥∥ = op(1) holds, where this norm ∥·∥ is defined in Section

9.3.

The estimator can also be adapted to semi-parametric and parametric sub-models

which can be more relevant for empirical analysis. Section 9.4 introduces a semi-

parametric estimator and its asymptotic distribution. Parametric models may be

estimated with the standard M -estimation theory.

5.3. Monte Carlo Evidence. This section shows Monte Carlo evidence to eval-

uate the estimation method proposed in this paper. The endogenously unbalanced

panel data of N = 1, 000 and T = 3 are generated using the following DGP:

Yt = α1Yt−1 + U + Et Et ∼ Normal(0, α2)

Dt = 1{β0 + β1Yt + β2U + Vt ≥ 0} Vt ∼ Logistic(0, 1)

FY1U (Y1, U) ∼ Normal


 γ1

γ2

 ,

 γ2
3 γ3γ4γ5

γ3γ4γ5 γ2
4




Z = 1{δ0 + δ1U +W ≥ 0} W ∼ Normal(0, 1)

Monte Carlo simulation results of the constrained maximum likelihood estimation

are displayed in the first four rows of Table 1.1. The first row shows simulated dis-

tributions of parameter estimates by the fully-parametric estimation using the true

model. The inter-quartile ranges capture the true parameter value of 0.5 without suf-

fering from attrition bias. The second row shows simulated distributions of parameter

estimates by semiparametric estimation, where the distribution of FY1U is assumed

to be semiparametric with normality of the conditional distribution FU |Y1 . The third
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True Parameter Values: α1 = α2 = β0 = β1 = β2 = 0.5

Dynamic Model Hazard Model

Percentile α̂1 α̂2 β̂0 β̂1 β̂2

Parametric CMLE 75% 0.556 0.519 0.673 0.855 1.293

50% 0.502 0.502 0.517 0.523 0.569

25% 0.454 0.483 0.403 0.169 −0.182

Semi-parametric∗ CMLE 75% 0.566 0.524 0.758 0.882 1.212

50% 0.513 0.508 0.555 0.523 0.475

25% 0.465 0.489 0.428 0.153 −0.288

Semi-parametric∗∗ CMLE 75% 0.558 — — 0.589

50% 0.459 — — 0.418 0.500

25% 0.368 — — 0.204 (Fixed)

Semi-parametric∗∗∗ CMLE 75% 0.686 — — 1.049

50% 0.436 — — 0.719 0.500

25% 0.271 — — 0.403 (Fixed)

Semi-parametric† 1st Step 75% 0.585 — — — —

50% 0.495 — — — —

25% 0.385 — — — —

Arellano-Bond 75% 0.464 — — — —

50% 0.412 — — — —

25% 0.352 — — — —

Fixed-Effect Logit 75% — — — −0.134 —

50% — — — −0.287 —

25% — — — −0.441 —

Random-Effect Logit 75% — — — 0.793 —

50% — — — 0.729 —

25% — — — 0.672 —

∗ The distribution of FY1U is semi-parametric.

∗∗ The distributions of Et and Vt are nonparametric.

∗ ∗ ∗ The distribution of FY1U is semi-parametric, and the distributions of Et and Vt are nonparametric.

† The distribution (Et, Vt, Y1, U) and the functions g and h are nonparametric.

Table 1.1. MC-simulated distributions of parameter estimates.
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row shows simulated distributions of parameter estimates by semiparametric estima-

tion, where the distributions of Et and Vt are assumed to be unknown. The fourth

row shows simulated distributions of parameter estimates by semiparametric estima-

tion combining the above two semiparametric assumptions. While the medians are

slightly off the true values, the inter-quartile ranges again capture the true parameter

value of 0.5.

If one is interested in only the dynamic model g, then the sample-analog estimation

of the first step in the six-step identification strategy can be used instead of the

constrained maximum likelihood. With the notations from Section 3.1, minimizing

ρ(L̂y,1L̂
−1
y,0, Py(α)Q1Q

−1
0 P−1

y (α)) for some divergence measure or a metric ρ yields

the first-step estimation. Using the square-integrated difference for ρ, the fifth row

of Table 1.1 shows a semiparametric first-step estimation for the dynamic model

g. The interquartile range of the MC-simulated distribution indeed captures the

true value of 0.5, and it is reasonably tight for a semiparametric estimator. But

why is the interquartile range of this first-step estimator tighter than those of the

CMLE in the first four rows, despite the greater degree of nonparametric specification?

Recall that the first-step estimation uses only two semi-/non-parametric functions

(g, ζ) because the other elements have been nonparametrically differenced out. This

is to be contrasted with the CMLE, which uses all the four semi-/non-parametric

functions (g, h, FY1U , ζ). The first-step estimator therefore uses less sieve spaces than

the CMLE, and incurs smaller mean square errors in finite sample.

If there were no missing observations from attrition, existing methods such as Arel-

lano and Bond (1991) would consistently estimate α1. Similarly, because Vt follows the

logistic distribution, the fixed-effect logit method (which is the only
√
N -consistent

binary response estimator in particular; Chamberlain, 2010) would consistently esti-

mate β1 if the counterfactual binary choice of dynamic selection were observable after

attrition. However, missing data from attrition causes these estimators to be biased

as shown in the bottom three rows of Table 1.1. Observe that the fixed effect logit

estimator is not only biased, but the sign is even opposite to the truth. This fact
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evidences that ignorance of selection could lead to a misleading result, even if the

true parametric and distributional model is known.

6. Empirical Illustration: SES and Mortality

6.1. Background. A large number of biological and socio-economic elements

help to explain mortality (Cutler, Deaton, and Lleras-Muney, 2006). Among others,

measures of socioeconomic status (SES) including earnings, employment, and income

are important, yet puzzling as presumable economic determinants of mortality. The

literature has reached no consensus on the sign of the effects of these measures of SES

on mortality. On one hand, higher SES seems to play a malignant role. For example,

at the macroeconomic unit of observations, recessions reduce mortality (Ruhm, 2000).

For another example, higher social security income induces higher mortality (Snyder

and Evans, 2006). On the other hand, higher SES has been reported to play a

protective role. Deaton and Paxson (2001) and Sullivan and von Wachter (2009a)

show that higher income reduces mortality. Job displacement, which results in a

substantial drop in income, induces higher and long-lasting mortality (Sullivan and

von Wachter, 2009b). The apparent discrepancy of the signs may be reconciled by

the fact that these studies consider different sources of income and different units of

observations.

A major concern in empirical analysis is the issue of endogeneity. Design-based

empirical analysis often provides a solution. However, while non-labor income may

allow exogenous variations to facilitate natural and quasi-experimental studies (e.g.,

Snyder and Evans, 2006), labor outcome is often harder to control exogenously. An

alternative approach is to explicitly control the common factors that affect both

SES and mortality. Education, in particular, is an important observable common

factor, e.g., Lleras-Muney (2005) reports causal effects of education on adult mortality.

Controlling for this common factor may completely remove the effect of income on

mortality. For example, Adams, Hurd, McFadden, Merrill, and Ribeiro (2003) show

that income conditional on education is not correlated with health.
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Figure 1.3. Causal relationships among early human capital, socioe-
conomic status, and mortality in adulthood.

Education may play a substantial role, but it may not be the only common factor

that needs to be controlled for. A wide variety of early human capital (HC) besides

those reflected on education is considered to affect SES and/or adult health in the

long run. Case, Fertig, and Paxson (2005) report long-lasting direct and indirect

effects of childhood health on health and well-being in adulthood. Maccini and Yang

(2009) find that the natural environment at birth affects adult health. Almond and

Mazumder (2005) and Almond (2006) show evidence that HC acquired in utero affects

long-run health. Early HC could contain a wide variety of categories of HC, such as

genetic expression, acquired health, knowledge, and skills, all of which develop in an

interactive manner with inter-temporal feedbacks during childhood (e.g., Heckman,

2007; Cunha and Heckman, 2008; Cunha, Heckman, and Schennach, 2010).

Failure to control for these components of early HC would result in identification

of “spurious dependence” (e.g., Heckman, 1981ab, 1991). Early HC may directly

affect adult mortality via the development of chronic conditions in childhood. Early

HC may also affect earnings, which may in turn affect adult mortality, as illustrated

below.

Identification of these two competing causal effects of Yt and U on Dt, or dis-

tinction between the two channels in the above diagram, requires to control for the

unobserved heterogeneity of early HC. Unlike education, however, most components

of early HC are unobservable from the viewpoint of econometricians. Suppose that

early HC develops into fixed characteristics by adulthood. How can we control for

these heterogeneous characteristics? Because of the strong cross-section correlation
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between SES and these heterogeneous characteristics, a variation over time is useful

to disentangle their competing effects on mortality, e.g., Deaton and Paxson (2001)

and Sullivan and von Wachter (2009a). I extend these ideas by treating early HC as a

fixed unobserved heterogeneity to be distinguished from time-varying observed mea-

sures of SES. To account for both nonseparable heterogeneity and the survivorship

bias, I use the econometric method developed in this paper.

6.2. Empirical Model. Sullivan and von Wachter (2009b) show elaborate ev-

idence on the malignant effects of job displacement on mortality, carefully ruling

out the competing hypothesis of selective displacement. Sullivan and von Wachter

(2009a), focusing on income as a measure of SES, find that there are protective effects

of higher SES on mortality whereas there is no or little evidence of causal effects of

unobserved attributes such as patience on mortality. Using the econometric meth-

ods developed in this paper, I attempt to complement these analyses by explicitly

modeling unobserved heterogeneity and survival selection.

The following econometric model represents the causal relationship described in

the above diagram.



(i) Yit = g(Yi,t−1, Ui, Eit) SES Dynamics

(ii) Dit = h(Yit, Ui, Vit) Survival Selection

(iii) FY1U Initial Condition

(iv) Zi = ζ(Ui,Wi) Nonclassical Proxy

where Yit, Dit, and Ui denote SES, survival, and unobserved heterogeneity, respec-

tively. As noted earlier, the heterogeneity U reflects early human capital (HC) ac-

quired prior to the start of the panel data, which play the role of sustaining employ-

ment dynamics in model (i). This early HC may include acquired and innate abilities,

knowledge, skills, patience, diligence, and chronic health conditions, which may af-

fect the survival selection (ii) as well as the income dynamics. The initial condition
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(iii) models a statistical summary of the initial observation of SES that has devel-

oped cumulatively and dependently on the early HC prior to the first observation by

econometrician.

For this empirical application, we consider the model in which all the random

variables are binary as in Section 3. Specifically, Yit indicates that individual i is

(0) unemployed or (1) employed, Dit indicates that individual i is (0) dead or (1)

alive, and Ui indicates that individual i belongs to (0) type I or (1) type II. Several

proxy variables are used for Zi as means of showing robustness of empirical results.

The heterogeneous type U does not yet have any intrinsic meaning at this point,

but it turns out empirically to have a consistent meaning in terms of a pattern of

employment dynamics as we will see in Section 6.4.

Besides unobserved heterogeneity, other main sources of endogeneity in analysis

of SES and mortality are cohort effects and age effects. In parametric regression

analysis, one can usually control for these effects by inserting additive dummies or

polynomials of age. Since additive controls are infeasible for our setup of nonseprable

models, we implement the econometric analysis for each bin of age categories in order

to mitigate the age and cohort effects.

6.3. Data. The NLS Original Cohorts: Older Men consist of 5,020 individuals

aged 46–60 as of April 1, 1966. The subjects were surveyed annually or biennially

starting in 1966. Attrition is frequent in this panel data. In order for the selection

model to exactly represent the survival selection, we remove those individuals with

attrition due to reasons other than death.

It is important to rule out competing hypotheses that obscure the credibility of

our empirical results. For example, health as well as wealth is an important factor of

retirement deicision (Bound, Stinebrickner, and Waidmann, 2010). It is not unlikely

that individuals who have chosen to retire from jobs for health problems subsequently

die. If so, we would erroneously impute death to voluntary retirements. To eliminate

this confounding factor, we consider the subsample of individuals who reported that
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health problems do not limit work in 1971. Furthermore, we also consider the sub-

sample of individuals who died from acute diseases such as heart attacks and strokes,

because workers dying unexpectedly from acute diseases are less likely to change la-

bor status before a sudden death than those who die from cancer or diabetes. Death

certificates are used to classify causes of deaths to this end.

Recall that the econometric methods presented in this paper offer two paths of

identification. One is to use a panel of T = 3 with a nonclassical proxy variable,

and the other is to use a panel of T = 6 without a proxy. While the the survey

was conducted at more than six time points, the list of survey years do not exhibit

equal time intervals (1966, 67, 68, 69, 71, 73, 75, 76, 78, 80, 81, 83, and 90). None

of annual or biennial sequences consist consecutive six periods from this anomalistic

list of years. Therefore we choose the method of proxy variables. Because one of the

proxy variables is collected only once in 1973, we need to set T=1 or T=2 to year

1973 in order to satisfy the identifying restriction. We thus set T = 2 to year 1973 to

exploit a larger size of data, hence using the three-period data from years 71, 73, and

75 in our analysis. The subjects are aged 51–65 in 1971, but we focus on the younger

cohorts not facing the retirement age.

We use height, mother’s occupation, and father’s occupation, as potential candi-

dates for proxy variables. Height reflects health investments in childhood (Schultz,

2002). Mother’s education and father’s occupation reflect early endowments and in-

vestments in human capital in the form of intergenerational inheritance; e.g., Currie

and Moretti (2003) show evidence of intergenerational transmission of human capital.

We use these three proxies to aim to show robustness of our empirical results.

6.4. Empirical Results. Table 1.2 summarizes estimates of the first-order pro-

cess of employment dynamics and the conditional two-year survival probabilities using

height as a proxy variable. The top and bottom panels correspond to younger cohorts

(aged 51–54 in 1971) and older cohorts (aged 55–58 in 1971), respectively. The left

and right columns correspond to Type I (Ui = 0) and Type II (Ui = 1), respec-

tively. These unobserved types exhibit a consistent pattern: off-diagonal elements
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Birth year cohorts 1917–1920 (aged 51–54 in 1971)

N = 822 Type I (U = 0) Type II (U = 1)

54.2% 45.8%

Markov Yt−1 Markov Yt−1

Matrix 0 1 Matrix 0 1

Yt
0 0.930 0.128

Yt
0 1.000 0.025

1 0.070 0.872 1 0.000 0.975

2-Year Survival Probability 2-Year Survival Probability

Yt
0 0.899 (0.044)

Yt
0 0.878 (0.149)

1 1.000 (0.000) 1 0.999 (0.038)

H0: equal probability H0: equal probability

p-value = 0.021∗∗ p-value = 0.445

Birth year cohorts 1913–1916 (aged 55–58 in 1971)

N = 727 Type I (U = 0) Type II (U = 1)

53.9% 46.1%

Markov Yt−1 Markov Yt−1

Matrix 0 1 Matrix 0 1

Yt
0 0.954 0.162

Yt
0 1.000 0.066

1 0.046 0.838 1 0.000 0.934

2-Year Survival Probability 2-Year Survival Probability

Yt
0 0.912 (0.036)

Yt
0 0.890 (0.107)

1 1.000 (0.000) 1 0.983 (0.042)

H0: equal probability H0: equal probability

p-value = 0.013∗∗ p-value = 0.416

Table 1.2. Model estimates with height as a proxy.
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Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 1.4. Markov probabilities of employment in the next two years.

of the employment Markov matrices for Type I dominate those of Type II. In other

words, Type I and Type II can be characterized as movers and stayers, respectively.

In view of the survival probabilities in the top panel (young cohorts), we find that

individuals almost surely stay alive as far as they are employed. On the other hand,

the two-year survival probabilities drop by about 10% if individuals are unemploed.

While the data indicates statistical significance of their difference only for Type I, the

magnitudes of differences in the point estimates are almost identical between the two

types. The same qualitative pattern persists in the older cohorts.

To show a robustness of this baseline result, we repeat this estimation using the

other two proxy variables, mother’s education and father’s occupation. Figure 1.4

graphs estimates of Markov probabilities of employment. The shades in the bars indi-

cate different proxy variables used for estimation. We see that these point estimates

are robust across the three proxy variables, implying that a choice of a particular

proxy does not lead to an irregular result in favor of certain claims. Table 1.5 graphs

estimates of conditional two-year survival probabilities. Again, the point estimates

are robust across the three proxy variables.
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Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 1.5. Conditional survival probabilities in the next two years.

As mentioned earlier, selective or voluntary retirement is a potential source of

bias. To rule out this possibility, we consider two subpopulations: 1. those individu-

als who reported that health problems do not limit their work in 1971; and 2. those

individuals who eventually died from acute diseases. Figures 1.6 and 1.7 show esti-

mates for the first subpopulation. Figures 1.8 and 1.9 show estimates for the second

subpopulation. Again, robustness across the three proxies persists, and the qualita-

tive pattern remains the same as the baseline result. The relatively large variations

in the estimates for the second subpopulation is imputed to small sample sizes due to

the limited availability of death certificates from which we identify causes of deaths.

In summary, we obtain the following two robust results. First, accounting for

unobserved heterogeneity and survivorship bias as well as voluntary retirements, em-

ployment status has protective effects on survival selection. This reinforces the results

of Sullivan and von Wachter (2009b). Second, there is no evidence of the effects of

unobserved attributes on survival selection, since the conditional survival probabili-

ties are almost the same between type I and type II. This is in accord with the claim
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Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 1.6. Markov probabilities of employment in the next two
years among the subpopulation of individuals who reported health
problems that limit work in 1971.

Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 1.7. Conditional survival probabilities in the next two years
among the subpopulation of individuals who reported health problems
that limit work in 1971.
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Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 1.8. Markov probabilities of employment in the next two
years among the subpopulation of individuals who eventually died from
acute diseases according to death certificates.

Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 1.9. Conditional survival probabilities in the next two years
among the subpopulation of individuals who eventually died from acute
diseases according to death certificates.
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of Sullivan and von Wachter (2009a), who deduce that lagged SES has little effect on

mortality conditionally on the SES of immediate past.

Using the estimated Markov model g and the estimated initial condition FY1U , we

can simulate the counterfactual employment rates assuming that all the individuals

were to remain alive throughout the entire period. Figure 1.10 shows actual employ-

ment rates (black lines) and counterfactual employment rates (grey lines) for each

cohort category for each proxy variable. I again remark that the qualitative patterns

are the same across three proxy variables for each cohort category. Not shockingly,

if it were not for deaths, the counterfactual employment rates would have been even

lower than what we observed from actual data. In other words, deaths of working

age population are saving the actual figures of employment rates to look higher.

7. Summary

This paper proposes a set of nonparametric restrictions to point-identify dynamic

panel data models by nonparametrically differencing out both nonseparable hetero-

geneity and selection. Identification requires either T = 3 periods of panel data and a

proxy variable or T = 6 periods of panel data without an outside proxy variable. As

a consequence of the identification result, the constrained maximum likelihood crite-

rion follows, which corrects for selection and allows for one-step estimation. Monte

Carlo simulations are used to evidence the effectiveness of the estimators. In the

empirical application, I find protective effects of employment on survival selection,

and the result is robust.

8. Appendix: Proofs for Identification

8.1. Lemma 1 (Representation).

Proof. (i) First, we show that there exists a function ḡ such that (ḡ,Uniform(0, 1))

is observationally equivalent to (g, FE) for any (g, FE) satisfying Restrictions 1 and 2.

By the absolute continuity and the convex support in Restriction 1, FE is invertible.

Hence, we can define h := F−1
E . Now, define ḡ by ḡ(y, u, · ) := g(y, u, · ) ◦ h−1 for
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Height as Mother’s Education Father’s Occupation

Cohorts a Proxy as a Proxy as a Proxy

51-54
in 1971

55-58
in 1971

Figure 1.10. Counterfactual simulations.

each (y, u). Note that, under Restriction 2, (ḡ, Fh(E)) is observationally equivalent to

(g, FE) by construction. However, we have h(E) ∼ Uniform(0, 1) by the definition of

h. It follows that (ḡ,Uniform(0, 1)) is observationally equivalent to (g, FE).

In light of the previous paragraph, we can impose the normalization Et ∼

Uniform(0, 1). Let Λ(y, u, ε) denote the set Λ(y, u, ε) = {y′ ∈ g(y, u, (0, 1)) | ε ≤

FY3|Y2U(y
′ | y, u)}, where g(y, u, (0, 1)) denotes the set {g(y, u, ε) | ε ∈ (0, 1)}. I claim

that g(y, u, ε) = inf Λ(y, u, ε).

First, we note that g(y, u, ε) ∈ Λ(y, u, ε). To see this, calculate

FY3|Y2U(g(y, u, ε) | y, u) = Pr(g(y, u, E3) ≤ g(y, u, ε) | Y2 = y, U = u)

= Pr(g(y, u, E3) ≤ g(y, u, ε)) ≥ Pr(E3 ≤ ε) = ε,
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where the first equality follows from Y3 = g(y, u, E3) given (Y2, U) = (y, u), the

second equality follows from Restriction 2 (i), the next inequality follows from the

non-decrease of g(y, u, ·) by Restriction 1 together with monotonicity of the prob-

ability measure, and the last equality is due to Et ∼ U(0, 1). This shows that

ε ≤ FY3|Y2U(g(y, u, ε) | y, u), hence g(y, u, ε) ∈ Λ(y, u, ε).

Second, I show that g(y, u, ε) is a lower bound of Λ(y, u, ε). Let y′ ∈ Λ(y, u, ε).

Since g is non-decreasing and càglàd (left-continuous) in the third argument by Re-

striction 1, we can define ε′ := max{ε ∈ (0, 1) | g(y, u, ε) = y′}. But then,

FY3|Y2U(y
′ | y, u) = Pr(g(y, u, E3) ≤ y′ | Y2 = y, U = u)

= Pr(g(y, u, E3) ≤ y′) = ε′,

where the first equality follows from Y3 = g(y, u, E3) given (Y2, U) = (y, u), the second

equality follows from Restriction 2 (i), and the last equality follows from the definition

of ε′ together with the non-decrease of g(y, u, ·) by Restriction 1 and Et ∼ U(0, 1).

Using this result, in turn, yields

g(y, u, ε) ≤ g(y, u, FY3|Y2U(y
′ | y, u)) = g(y, u, ε′) = y′,

where the first inequality follows from ε ≤ FY3|Y2U(y
′ | y, u) by definition of y′ as well

as the non-decrease of g(y, u, ·) by Restriction 1, the next equality follows from the

previous result FY3|Y2U(y
′ | y, u) = ε′, and the last equality follows from the definition

of ε′. Since y′ was chosen as an arbitrary element of Λ(y, u, ε), this shows that

g(y, u, ε) is indeed a lower bound of it. Therefore, g(y, u, ε) = inf{y′ ∈ g(y, u, (0, 1)) |

ε ≤ FY3|Y2U(y
′ | y, u)}, and g is uniquely determined by FY3|Y2U . (Moreover, note

that inf{y′ ∈ g(y, u, (0, 1)) | ε ≤ FY3|Y2U(y
′ | y, u)} coincides with the definition of the

quantile regression F−1
Y3|Y2U( · | y, u), hence g is identified by this quantile regression,

i.e., g(y, u, ε) = F−1
Y3|Y2U(ε | y, u).)

Part (ii) of the lemma can be proved in exactly the same way as in the proof of part

(i). In particular, h is identified by the quantile regression: h(y, u, v) = F−1
D2|Y2U(v |
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y, u). Similarly, part (iii) of the the lemma can be proved in the same way, and ζ is

identified by the quantile regression: ζ(u,w) = F−1
Z|U(w | u). �

8.2. Lemma 2 (Identification).

Proof. We will construct six steps for a proof of this lemma. The first step shows

that the observed joint distributions uniquely determine FY3|Y2U and FZ|U by a spectral

decomposition of a composite linear operator. The second step is auxiliary, and shows

that FY2Y1UD1( · , · , · , 1) is uniquely determined from the observed joint distributions

together with inversion of the operators identified in the first step. The third step

again uses spectral decomposition to identify an auxiliary operator with the kernel

represented by FY1|Y2UD2D1( · | · , · , 1, 1). In the fourth step, solving an integral

equation with the adjoint of this auxiliary operator in turn yields another auxiliary

operator with the multiplier represented by FY2UD2D1( · , · , 1, 1). The fifth step uses

the three operators identified in Steps 2, 3, and 4 to identify an operator with the

kernel represented by FD2|Y2U by solving a linear inverse problem. The last step uses

results from Steps 1, 2, and 5 to show that the initial joint distribution FY1U is uniquely

determined from the observed joint distributions. These six steps together prove that

the observed joint distributions FY2Y1ZD1( · , · , · , 1) and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1)

uniquely determine the model (FY3|Y2U , FD2|Y2U , FY1U , FZ|U) as claimed in the lemma.

Given fixed y and z, define the operators Ly,z : L2(FYt) → L2(FYt), Py : L2(FU) →

L2(FYt), Qz : L2(FU) → L2(FU), Ry : L2(FU) → L2(FU), Sy : L2(FYt) → L2(FU),
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Ty : L2(FYt) → L2(FU), and T
′
y : L2(FU) → L2(FU) by

(Ly,zξ)(y3) =

∫
fY3Y2Y1ZD2D1(y3, y, y1, z, 1, 1) · ξ(y1)dy1,

(Pyξ)(y3) =

∫
fY3|Y2U(y3 | y, u) · ξ(u)du,

(Qzξ)(u) = fZ|U(z | u) · ξ(u),

(Ryξ)(u) = fD2|Y2U(1 | y, u) · ξ(u),

(Syξ)(u) =

∫
fY2Y1UD1(y, y1, u, 1) · ξ(y1)dy1,

(Tyξ)(u) =

∫
fY1|Y2UD2D1(y1 | y, u, 1, 1) · ξ(y1)dy1,

(T ′
yξ)(u) = fY2UD2D1(y, u, 1, 1) · ξ(u)

respectively. We consider L2 spaces as the normed linear spaces on which these

operators are defined, particularly in order to guarantee the existence of its adjoint

operator T ∗
y to be introduced in Step 4. (Recall that a bounded linear operator

between Hilbert spaces admits existence of its adjoint operator.) Identification of the

operator leads to that of the associated conditional density (up to null sets), and vice

versa. Here, the operators Ly,z, Py, Sy, and Ty are integral operators whereas Qz, Ry,

and T ′
y are multiplication operators. Note that Ly,z is identified from observed joint

distribution FY3Y2Y1ZD2D1( · , · , · , · , · , 1, 1).
Figure 3.1 illustrates six steps toward identification of (FY3|Y2U , FD2|Y2U , FY1U , FZ|U)

from the observed joint distributions FY2Y1ZD1( ·, ·, ·, 1) and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1).
The four objects (g, h, FY1U , ζ) of interest are enclosed by double lines. The objects

that can be observed from data are enclosed by dashed-lines All the other objects are

intermediary, and are enclosed by solid lines. Starting out with the observed objects,

we show in each step that the intermediary objects are uniquely determined. These

uniquely determined intermediary objects in turn show the uniqueness of the four

objects (g, h, FY1U , ζ) of interest.

Step 1: Uniqueness of FY3|Y2U and FZ|U

The kernel fY3Y2Y1ZD2D1( · , y, · , z, 1, 1) of the integral operator Ly,z can be rewritten
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as

fY3Y2Y1ZD2D1(y3, y, y1, z, 1, 1) =

∫
fY3|Y2Y1ZUD2D1

(y3 | y, y1, z, u, 1, 1)

×fZ|Y2Y1UD2D1
(z | y, y1, u, 1, 1)(13)

×fD2|Y2Y1UD1
(1 | y, y1, u, 1) · fY2Y1UD1(y, y1, u, 1) du

But by Lemma 3 (i), (iv), and (iii), respectively, Restriction 2 implies that

fY3|Y2Y1ZUD2D1(y3 | y, y1, z, u, 1, 1) = fY3|Y2U(y3 | y, u),

fZ|Y2Y1UD2D1(z | y, y1, u, 1, 1) = fZ|U(z | u),

fD2|Y2Y1UD1(1 | y, y1, u, 1) = fD2|Y2U(1 | y, u).

Equation (13) thus can be rewritten as

fY3Y2Y1ZD2D1(y3, y, y1, z, 1, 1) =

∫
fY3|Y2U(y3 | y, u) · fZ|U(z | u)

×fD2|Y2U(1 | y, u) · fY2Y1UD1(y, y1, u, 1) du

But this implies that the integral operator Ly,z is written as the operator composition

Ly,z = PyQzRySy.

Restriction 3 (i), (ii), (iii), and (iv) imply that the operators Py, Qz, Ry, and Sy

are invertible, respectively. Hence so is Ly,z. Using the two values {0, 1} of Z, form

the product

Ly,1L
−1
y,0 = PyQ1/0P

−1
y

where Qz/z′ := QzQ
−1
z′ is the multiplication operator with proxy odds defined by

(Q1/0ξ)(u) =
fZ|U(1 | u)
fZ|U(0 | u)

ξ(u).

By Restriction 3 (ii), the operator Ly,1L
−1
y,0 is bounded. The expression Ly,1L

−1
y,0 =

PyQ1/0P
−1
y thus allows unique eigenvalue-eigenfunction decomposition similarly to

that of Hu and Schennach (2008).

The distinct proxy odds as in Restriction 3 (ii) guarantee distinct eigenvalues and

single dimensionality of the eigenspace associated with each eigenvalue. Within each
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of the single-dimensional eigenspace is a unique eigenfunction pinned down by L1-

normalization because of the unity of integrated densities. The eigenvalues λ(u) yield

the multiplier of the operator Q1/0, hence λ(u) = fZ|U(1 | u)/fZ|U(0 | u). This proxy

odds in turn identifies fZ|U( · | u) since Z is binary. The corresponding normalized

eigenfunctions are the kernels of the integral operator Py, hence fY3|Y2U( · | y, u).

Lastly, Restriction 4 facilitates unique ordering of the eigenfunctions fY3|Y2U( · | y, u)

by the distinct concrete values of u = λ(u). This is feasible because the eigenvalues

λ(u) = fZ|U(1 | u)/fZ|U(0 | u) are invariant from y. That is, eigenfunctions fY3|Y2U( · |

y, u) of the operator Ly,1L
−1
y,0 across different y can be uniquely ordered in u invariantly

from y by the common set of ordered distinct eigenvalues u = λ(u).

Therefore, FY3|Y2U and FZ|U are uniquely determined by the observed joint distri-

bution FY3Y2Y1ZD2D1( · , · , · , · , 1, 1). Equivalently, the operators Py and Qz are

uniquely determined for each y and z, respectively.

Step 2: Uniqueness of FY2Y1UD1( · , · , · , 1)

By Lemma 3 (ii), Restriction 2 implies fY2|Y1UD1(y
′ | y, u, 1) = fY2|Y1U(y

′ | y, u). Using

this equality, write the density of the observed joint distribution FY2Y1D1( · , · , 1) as

fY2Y1D1(y
′, y, 1) =

∫
fY2|Y1UD1(y

′ | y, u, 1)fY1UD1(y, u, 1)du

=

∫
fY2|Y1U(y

′ | y, u)fY1UD1(y, u, 1)du(14)

By Lemma 4 (i), FY3|Y2U(y
′ | y, u) = FY2|Y1U(y

′ | y, u) for all y′, y, u. Therefore, we

can write the operator Py as

(Pyξ)(y
′) =

∫
fY3|Y2U(y

′ | y, u) · ξ(u)du =

∫
fY2|Y1U(y

′ | y, u) · ξ(u)du.

With this operator notation, it follows from (14) that

fY2Y1D1( · , y, 1) = PyfY1UD1(y, · , 1).

By Restriction 3 (i), this operator equation can be solved for fY1UD1(y, · , 1) as

(15) fY1UD1(y, · , 1) = P−1
y fY2Y1D1( · , y, 1)
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Recall that Py was shown in Step 1 to be uniquely determined by the observed joint

distribution FY3Y2Y1ZD2D1( · , · , · , · , 1, 1). The function fY2Y1D1( · , y, 1) is also

uniquely determined by the observed joint distribution FY2Y1D1( · , · , 1) up to null

sets. Therefore, (14) shows that fY1UD1( · , · , 1) is uniquely determined by the

observed joint distributions FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1).

Using the solution to the above inverse problem, we can write the kernel of the

operator Sy as

fY2Y1UD1(y
′, y, u, 1) = fY2|Y1UD1(y

′ | y, u, 1) · fY1UD1(y, u, 1)

= fY2|Y1U(y
′ | y, u) · fY1UD1(y, u, 1)

= fY3|Y2U(y
′ | y, u) · fY1UD1(y, u, 1)

= fY3|Y2U(y
′ | y, u) · [P−1

y fY2Y1D1( · , y, 1)](u)

where the second equality follows from Lemma 3 (ii), the third equality follows

from Lemma 4 (i), and the forth equality follows from (15). Since fY3|Y2U was

shown in Step 1 to be uniquely determined by the observed joint distribution

FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and [P−1
y fY2Y1D1( · , y, 1)] was shown in the pre-

vious paragraph to be uniquely determined for each y by the observed joint dis-

tributions FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1), it follows that

fY2Y1UD1( · , · , · , 1) too is uniquely determined by the observed joint distributions

FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1). Equivalently, the operator Sy is

uniquely determined for each y.

Step 3: Uniqueness of FY1|Y2UD2D1( · | · , · , 1, 1)

First, note that the kernel of the composite operator T ′
yTy can be written as

fY2UD2D1(y, u, 1, 1) · fY1|Y2UD2D1(y1 | y, u, 1, 1) = fY2Y1UD2D1(y, y1, u, 1, 1)(16)

= fD2|Y2Y1UD1(1 | y, y1, u, 1) · fY2Y1UD1(y, y1, u, 1)

= fD2|Y2U(1 | y, u) · fY2Y1UD1(y, y1, u, 1)
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where the last equality is due to Lemma 3 (iii). But the last expression corresponds

to the kernel of the composite operator RySy, thus showing that T ′
yTy = RySy. But

then, Ly,z = PyQzRySy = PyQzT
′
yTy. Note that the invertibility of Ry and Sy as

required by Assumption 3 implies invertibility of T ′
y and Ty as well, for otherwise the

equivalent composite operator T ′
yTy = RySy would have a nontrivial nullspace.

Using Restriction 3, form the product of operators as in Step 1, but in the opposite

order as

L−1
y,0Ly,1 = T−1

y Q1/0Ty

The disappearance of T ′
y is due to commutativity of multiplication operators. By

the same logic as in Step 1, this expression together with Restriction 3 (ii) admits

unique left eigenvalue-eigenfunction decomposition. Moreover, the point spectrum is

exactly the same as the one in Step 1, as is the middle multiplication operator Q1/0.

This equivalence of the spectrum allows consistent ordering of U with that of Step 1.

Left eigenfunctions yield the kernel of Ty pinned down by the normalization of unit

integral. This shows that the operator Ty is uniquely determined by the observed

joint distribution FY3Y2Y1ZD2D1( · , · , · , · , 1, 1).

Step 4: Uniqueness of FY2UD2D1( · , · , 1, 1)

Equation (16) implies that∫
fY1|Y2UD2D1(y1 | y, u, 1, 1) · fY2UD2D1(y, u, 1, 1)du = fY2Y1D2D1(y, y1, 1, 1)

hence yielding the linear operator equation

T ∗
y fY2UD2D1(y, ·, 1, 1) = fY2Y1D2D1(y, ·, 1, 1)

where T ∗
y denotes the adjoint operator of Ty. Since Ty is invertible, so is its adjoint

T ∗
y . But then, the multiplier of the multiplication operator T ′

y can be given by the

unique solution to the above linear operator equation, i.e.,

fY2UD2D1(y, ·, 1, 1) = (T ∗
y )

−1fY2Y1D2D1(y, ·, 1, 1)
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Ty hence T
∗
y was shown to be uniquely determined by FY3Y2Y1ZD2D1( · , · , · , · , 1, 1)

in Step 3, and fY2Y1D2D1( ·, ·, 1, 1) is also available from observed data. Therefore,

the operator T ′
y is uniquely determined by FY3Y2Y1ZD2D1( · , · , · , · , 1, 1).

Step 5: Uniqueness of FD2|Y2U(1 | · , · )

First, the definition of the operators Ry, Sy, Ty, and T
′
y and Lemma 3 (iii) yield the

operator equality RySy = T ′
yTy, where Ty and T ′

y have been shown to be uniquely

determined by the observed joint distribution FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) in

Steps 3 and 4, respectively. Recall that Sy was also shown in Step 2 to be uniquely

determined by the observed joint distributions FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and

FY2Y1D1( · , · , 1). Restriction 3 (iv) guarantees invertibility of Sy. It follows that

the operator inversion Ry = (RySy)S
−1
y = (T ′

yTy)S
−1
y yields the operator Ry, in turn

showing that its multiplier fD2|Y2U(1 | y, · ) is uniquely determined for each y by the

observed joint distributions FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1).

Step 6: Uniqueness of FY1U

Recall from Step 2 that fY2Y1UD1( · , · , · , 1) is uniquely determined by the observed

joint distributions FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1). We can write

fY2Y1UD1(y
′, y, u, 1) = fY2|Y1UD1(y

′ | y, u, 1)fD1|Y1U(1 | y, u)fY1U(y, u)

= fY2|Y1U(y
′ | y, u)fD1|Y1U(1 | y, u)fY1U(y, u)

= fY3|Y2U(y
′ | y, u)fD2|Y2U(1 | y, u)fY1U(y, u),

where the second equality follows from Lemma 3 (ii), and the third equality follows

from Lemma 4 (i) and (ii). For a given (y, u), there must exist some y′ such that

fY3|Y2U(y
′ | y, u) > 0 by a property of conditional density functions. Moreover, Re-

striction 3 (iii) requires that fD2|Y2U(1 | y, u) > 0 for a given y for all u. Therefore,

for such a choice of y′, we can write

fY1U(y, u) =
fY2Y1UD1(y

′, y, u, 1)

fY3|Y2U(y
′ | y, u)fD2|Y2U(1 | y, u)
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Recall that fY3|Y2U( · | · , · ) was shown in Step 1 to be uniquely determined by

the observed joint distribution FY3Y2Y1ZD2D1( · , · , · , · , 1, 1), fY2Y1UD1( · , · , · , 1)

was shown in Step 2 to be uniquely determined by the observed joint distributions

FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1), and fD2|Y2U(1 | · , · )

was shown in Step 5 to be uniquely determined by the observed joint distributions

FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1). Therefore, it follows that the

initial joint density fY1U is uniquely determined by the observed joint distributions

FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1). �

8.3. Lemma 3 (Independence).

Lemma 3 (Independence). The following implications hold:

(i) Restriction 2 (i) ⇒ E3 ⊥⊥ (U, Y1, E2, V1, V2,W ) ⇒ Y3 ⊥⊥ (Y1, D1, D2, Z) | (Y2, U).

(ii) Restriction 2 (i) ⇒ E2 ⊥⊥ (U, Y1, V1,W ) ⇒ Y2 ⊥⊥ (D1, Z) | (Y1, U).

(iii) Restriction 2 (ii) ⇒ V2 ⊥⊥ (U, Y1, E2, V1) ⇒ D2 ⊥⊥ (Y1, D1) | (Y2, U).

(iv) Restriction 2 (iii) ⇒ W ⊥⊥ (Y1, E2, V1, V2) ⇒ Z ⊥⊥ (Y2, Y1, D2, D1) | U .

Proof. In order to prove the lemma, we use the following two properties of

conditional independence:

CI.1. A ⊥⊥ B implies A ⊥⊥ B | ϕ(B) for any Borel function ϕ.

CI.2. A ⊥⊥ B | C implies A ⊥⊥ ϕ(B,C) | C for any Borel function ϕ.

(i) First, note that Restriction 2 (i) E3 ⊥⊥ (U, Y1, E2, V1, V2,W ) together with the

structural definition Z = ζ(U,W ) implies E3 ⊥⊥ (U, Y1, E2, V1, V2, Z). Applying CI.1

to this independence relation E3 ⊥⊥ (U, Y1, E2, V1, V2, Z) yields

E3 ⊥⊥ (U, Y1, E2, V1, V2, Z) | (g(Y1, U, E2), U).

Since Y2 = g(Y1, U, E2), it can be rewritten as E3 ⊥⊥ (U, Y1, E2, V1, V2, Z) | (Y2, U).

Next, applying CI.2 to this conditional independence yields

E3 ⊥⊥ (Y1, h(Y1, U, V1), h(Y2, U, V2), Z) | (Y2, U).
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SinceDt = h(Yt, U, Vt) for each t ∈ {1, 2}, it can be rewritten as E3 ⊥⊥ (Y1, D1, D2, Z) |

(Y2, U). Lastly, applying CI.2 again to this conditional independence yields

g(Y2, U, E3) ⊥⊥ (Y1, D1, D2, Z) | (Y2, U).

Since Y3 = g(Y2, U, E3), it can be rewritten as Y3 ⊥⊥ (Y1, D1, D2, Z) | (Y2, U).

(ii) Note that Restriction 2 (i) E2 ⊥⊥ (U, Y1, V1,W ) together with the structural

definition Z = ζ(U,W ) implies E2 ⊥⊥ (U, Y1, V1, Z). Applying CI.1 to this indepen-

dence relation E2 ⊥⊥ (U, Y1, V1, Z) yields

E2 ⊥⊥ (U, Y1, V1, Z) | (Y1, U).

Next, applying CI.2 to this conditional independence yields

g(Y1, U, E2) ⊥⊥ (U, Y1, V1, Z) | (Y1, U).

Since Y2 = g(Y1, U, E2), it can be rewritten as Y2 ⊥⊥ (U, Y1, V1, Z) | (Y1, U). Lastly,

applying CI.2 again to this conditional independence yields

Y2 ⊥⊥ (h(Y1, U, V1), Z) | (Y1, U).

Since D1 = h(Y1, U, V1), it can be rewritten as Y2 ⊥⊥ (D1, Z) | (Y1, U).

(iii) Applying CI.1 to Restriction 2 (ii) V2 ⊥⊥ (U, Y1, E2, V1) yields

V2 ⊥⊥ (U, Y1, E2, V1) | (g(Y1, U, E2), U).

Since Y2 = g(Y1, U, E2), it can be rewritten as V2 ⊥⊥ (U, Y1, E2, V1) | (Y2, U). Next,

applying CI.2 to this conditional independence yields

V2 ⊥⊥ (Y1, h(Y1, U, V1)) | (Y2, U).

Since D1 = h(Y1, U, V1), it can be rewritten as V2 ⊥⊥ (Y1, D1) | (Y2, U). Lastly,

applying CI.2 to this conditional independence yields

h(Y2, U, V2) ⊥⊥ (Y1, D1) | (Y2, U).

Since D2 = h(Y2, U, V2), it can be rewritten as D2 ⊥⊥ (Y1, D1) | (Y2, U).
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(iv) Note that Restriction 2 (iii) W ⊥⊥ (Y1, E2, V1, V2) together with the struc-

tural definition Z = ζ(U,W ) yields Z ⊥⊥ (Y1, E2, V1, V2) | U . Applying CI.2 to this

conditional independence relation Z ⊥⊥ (Y1, E2, V1, V2) | U yields

Z ⊥⊥ (Y1, g(Y1, U, E2), h(Y1, U, V1), h(g(Y1, U, E2), U, V2)) | U.

Since Dt = h(Yt, U, Vt) for each t ∈ {1, 2} and Y2 = g(Y1, U, E2), this conditional

independence can be rewritten as Z ⊥⊥ (Y1, Y2, D1, D2) | U. �

8.4. Lemma 4 (Invariant Transition).

Lemma 4 (Invariant Transition).

(i) Under Restrictions 1 and 2 (i), FY3|Y2U(y
′ | y, u) = FY2|Y1U(y

′ | y, u) for all y′, y, u.

(ii) Under Restrictions 1 and 2 (ii), FD2|Y2U(d | y, u) = FD1|Y1U(d | y, u) for all d, y, u.

Proof. (i) First, note that Restriction 2 (i) E3 ⊥⊥ (U, Y1, E2, V1, V2,W ) implies

E3 ⊥⊥ (U, Y1, E2), which in turn implies that E3 ⊥⊥ (g(Y1, U, E2), U), hence E3 ⊥⊥

(Y2, U). Second, Restriction 2 (i) in particular yields E2 ⊥⊥ (Y1, U). Using these two

independence results, we obtain

FY3|Y2U(y
′ | y, u) = Pr[g(y, u, E3) ≤ y′ | Y2 = y, U = u]

= Pr[g(y, u, E3) ≤ y′]

= Pr[g(y, u, E2) ≤ y′]

= Pr[g(y, u, E2) ≤ y′ | Y1 = y, U = u] = FY2|Y1U(y
′ | y, u)

for all y′, y, u, where the second equality follows from E3 ⊥⊥ (Y2, U), the third equality

follows from identical distribution of Et by Restriction 1, and the forth equality follows

from E2 ⊥⊥ (Y1, U).

(ii) Restriction 2 (ii) V2 ⊥⊥ (U, Y1, E1, E2, V1) implies that V2 ⊥⊥ (g(Y1, U, E2), U),

hence V2 ⊥⊥ (Y2, U). Restriction 2 (ii) also implies V1 ⊥⊥ (Y1, U). Using these two
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independence results, we obtain

FD2|Y2U(d | y, u) = Pr[h(y, u, V2) ≤ d | Y2 = y, U = u]

= Pr[h(y, u, V2) ≤ d]

= Pr[h(y, u, V1) ≤ d]

= Pr[h(y, u, V1) ≤ d | Y1 = y, U = u] = FD1|Y1U(d | y, u)

for all d, y, u, where the second equality follows from V2 ⊥⊥ (Y2, U), the third equality

follows from identical distribution of Vt from Restriction 1, and the forth equality

follows from V1 ⊥⊥ (Y1, U). �

9. Appendix: Proofs for Estimation

9.1. Corollary 1 (Constrained Maximum Likelihood).

Proof. Denote the supports of conditional densities by I1 = {(y2, y1, z) |
fY2Y1Z|D2D1(y2, y1, z | 1) > 0} and I2 = {(y3, y2, y1, z) | fY3Y2Y1Z|D2D1(y3, y2, y1, z |
1, 1) > 0}. The Kullback-Leibler information inequality requires that∫

I1

log

[
fY2Y1Z|D1

(y2, y1, z | 1)
φ(y2, y1, z)

]
fY2Y1Z|D1

(y2, y1, z | 1)dµ(y2, y1, z) ≥ 0 and∫
I2

log

[
fY3Y2Y1Z|D2D1

(y3, y2, y1, z | 1, 1)
ψ(y3, y2, y1, z)

]
fY3Y2Y1Z|D2D1

(y3, y2, y1, z | 1, 1)dµ(y3, y2, y1, z) ≥ 0

for all non-negative measurable functions φ and ψ such that
∫
φ =

∫
ψ = 1. These

two inequalities hold with equalities if and only if fY2Y1Z|D1( ·, ·, · | 1) = φ and

fY3Y2Y1Z|D2D1( ·, ·, ·, · | 1, 1) = ψ, respectively. (Equalities and uniqueness are stated

up to the equivalence classes identified by the underlying probability measures.) Let

the set of such pairs of functions (φ, ψ) satisfying the above two Kullback-Leibler

inequalities be denoted by

Λ =

{
(φ,ψ)

∣∣∣∣ φ and ψ are non-negative measurable functions with

∫
φ =

∫
ψ = 1

}
.

With this notation, the maximization problem

(17) max
(φ,ψ)∈Λ

c1E [logφ(Y2, Y1, Z)|D1 = 1] + c2E [logψ(Y3, Y2, Y1, Z)|D2 = D1 = 1]

has the unique solution (φ, ψ) = (fY2Y1Z|D1( ·, ·, · | 1), fY3Y2Y1Z|D2D1( ·, ·, ·, · | 1, 1)).
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Now, let F ( · ;M) denote a distribution function generated by model M ∈ F .

For the true model M∗ := (F ∗
Yt|Yt−1U

, F ∗
Dt|YtU , F

∗
Y1U

, F ∗
Z|U), we have

FY2Y1ZD1( ·, ·, ·, 1) = FY2Y1ZD1( ·, ·, ·, 1;M∗)

FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1) = FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1;M∗)

Moreover, the identification result of Lemma 2 showed that this true model M∗ is

the unique element in F that generates the observed parts of the joint distributions

FY2Y1ZD1( ·, ·, ·, 1) and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1), i.e.,

FY2Y1ZD1( ·, ·, ·, 1) = FY2Y1ZD1( ·, ·, ·, 1;M) if and only if M =M∗

FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1) = FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1;M) if and only if M =M∗

But this implies that F ∗ is the unique model that generates the observable condi-

tional densities fY2Y1Z|D1( ·, ·, · | 1) and fY3Y2Y1Z|D2D1( ·, ·, ·, · | 1, 1) among those

models M ∈ F that are compatible with the observed selection frequencies fD1(1)

and fD2D1(1, 1), i.e.,

fY2Y1Z|D1
( ·, ·, · | 1) = fY2Y1Z|D1

( ·, ·, · | 1;M) if and only if M =M∗

given fD1(1;M) = fD1(1), and(18)

fY3Y2Y1Z|D2D1
( ·, ·, ·, · | 1, 1) = fY3Y2Y1Z|D2D1

( ·, ·, ·, · | 1, 1;M) if and only if M =M∗

given fD2D1(1, 1;M) = fD2D1(1, 1)(19)

Since (φ, ψ) = (fY2Y1Z|D1( ·, ·, · | 1), fY3Y2Y1Z|D2D1( ·, ·, ·, · | 1, 1)) is the unique

solution to (17), the statements (18) and (19) imply that the true model M∗ is the

unique solution to

max
M∈F

c1E
[
log fY2Y1Z|D1(Y2, Y1, Z | 1;M)

∣∣D1 = 1
]

+c2E
[
log fY3Y2Y1Z|D2D1(Y3, Y2, Y1, Z | 1, 1;M)

∣∣D2 = D1 = 1
]

s.t. fD1(1;M) = fD1(1) and fD2D1(1, 1;M) = fD2D1(1, 1)
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or equivalently

max
M∈F

c1E [log fY2Y1ZD1(Y2, Y1, Z, 1;M)|D1 = 1]

+c2E [log fY3Y2Y1ZD2D1(Y3, Y2, Y1, Z, 1, 1;M)|D2 = D1 = 1]

s.t. fD1(1;M) = fD1(1) and fD2D1(1, 1;M) = fD2D1(1, 1)(20)

since what have been omitted are constants due to the constraints.

By using Lemmas 3 and 4, we can write the equalities

fY2Y1ZD1
(y2, y1, z, 1;M) =

∫
fYt|Yt−1U (y2 | y1, u)fDt|YtU (1 | y1, u)fY1U (y1, u)fZ|U (z | u)dµ(u)

fD1(1;M) =

∫
fDt|YtU (1 | y1, u)fY1U (y1, u)dµ(y1, u)

fY3Y2Y1ZD2D1(y3, y2, y1, z, 1, 1;M) =

∫
fYt|Yt−1U (y3 | y2, u)fYt|Yt−1U (y2 | y1, u)fDt|YtU (1 | y2, u)

fDt|YtU (1 | y1, u)fY1U (y1, u)FZ|U (z | u)dµ(u)

fD2D1(1, 1;M) =

∫
fYt|Yt−1U (y2 | y1, u)fDt|YtU (1 | y2, u)

fDt|YtU (1 | y1, u)fY1U (y1, u)dµ(y2, y1, u)

for any model M := (FYt|Yt−1U , FDt|YtU , FY1U , FZ|U) ∈ F . Substituting these equalities

in (20), we conclude that the true model (F ∗
Yt|Yt−1U

, F ∗
Dt|YtU , F

∗
Y1U

, F ∗
Z|U) is the unique

solution to

max(
FYt|Yt−1U ,FDt|YtU

,FY1U ,FZ|U
)
∈F

c1E

[
log

∫
fYt|Yt−1U (Y2 | Y1, u)fDt|YtU (1 | Y1, u)

fY1U (Y1, u)fZ|U (Z | u)dµ(u)
∣∣D1 = 1

]
+

c2E

[
log

∫
fYt|Yt−1U (Y3 | Y2, u)fYt|Yt−1U (Y2 | Y1, u)fDt|YtU (1 | Y2, u)fDt|YtU (1 | Y1, u)

fY1U (Y1, u)FZ|U (Z | u)dµ(u)
∣∣D2 = D1 = 1

]

subject to

∫
fDt|YtU (1 | y1, u)fY1U (y1, u)dµ(y1, u) = fD1(1) and∫
fYt|Yt−1U (y2 | y1, u)fDt|YtU (1 | y2, u)fDt|YtU (1 | y1, u)fY1U (y1, u)dµ(y2, y1, u) = fD2D1(1, 1)

as claimed. �
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9.2. Remark 9 (Unit Lagrange Multipliers). For short-hand notation, we

write f = (f1, f2, f3, f4) ∈ F for an element of F , p1 := Pr(D1 = 1), p2 := Pr(D2 =

D1 = 1), and p := (p1, p2)
′. The solution f ∗(· ; p) ∈ F has Lagrange multipliers

λ∗(p) = (λ∗1(p), λ
∗
2(p))

′ ∈ Λ such that (f ∗(· ; p), λ∗(p)) is a saddle point of the La-

grangean functional

L(f, λ; p) = p1L1(f ; p1) + p2L2(f ; p2)− λ1(L3(f)− p1)− λ2(L4(f)− p2),

where the functionals L1, · · · , L4 are defined as

L1(f ; p1) =

∫ [
log

∫
f1(y2 | y1, u)f2(1 | y1, u)f3(y1, u)f4(z | u)dµ(u)

]
× fY2Y1Z|D1

(y2, y1, z | 1)dµ(y2, y1, z)

L2(f ; p2) =

∫ [
log

∫
f1(y3 | y2, u)f1(y2 | y1, u)f2(1 | y2, u)f2(1 | y1, u)f3(y1, u)f4(z | u)dµ(u)

]
× fY3Y2Y1Z|D2D1

(y3, y2, y1, z | 1, 1)dµ(y3, y2, y1, z)

L3(f) =

∫
f2(1 | y1, u)f3(y1, u)dµ(y1, u) and

L4(f) =

∫
f1(y2 | y1, u)f2(1 | y2, u)f2(1 | y1, u)f3(y1, u)dµ(y2, y1, u).

Moreover, f∗(· ; p) maximizes L(f, λ∗(p); p) given λ is restricted to λ∗(p). We want

to claim that λ∗(p) = (1, 1)′. The following assumptions are imposed to this end.

Assumption (Regularity for Unit Lagrange Multipliers).

(i) Selection probabilities are positive: p1, p2 > 0.

(ii) The functionals L1, L2, L3, and L4 are Fréchet differentiable with respect to f at

the solution f∗(· ; p) for some norm ∥·∥ on a linear space containing F .

(iii) The solution (f ∗(· ; p), λ∗(p)) is differentiable with respect to p.

(iv) The solution f ∗(· ; p) is a regular point of the constraint functionals L3 and L4.

A sufficient condition for part (ii) of this assumption will be provided later in terms

of a concrete normed linear space.
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Proof. Since the Chain Rule holds for a composition of Fréchet differentiable

transformations (cf. Luenberger, 1969; pp.176), we have

d

dp1
L(f ∗(· ; p), λ∗(p); p) = Df,λL(f

∗(· ; p), λ∗(p); p) ·Dp1(f
∗(· ; p), λ∗(p))

+
∂

∂p1
L(f ∗(· ; p), λ∗(p); p) =

∂

∂p1
L(f ∗(· ; p), λ∗(p); p)

where the second equality follows from the equality constraints and the stationarity

of L(·, λ∗(p); p) at f∗(· ; p), which is a regular point of the constraint functionals L3

and L4 by assumption.

On one hand, the partial derivative is

∂

∂p1
L(f ∗(· ; p), λ∗(p); p) = λ∗1(p).

On the other hand, the complementary slackness yields

d

dp1
L(f ∗(· ; p), λ∗(p); p) =

d

dp1
[p1L1(f

∗(· ; p); p1)].

In order to evaluate the last term, we first note that

p1L1(f ; p1) =

∫ [
log

∫
f1(y2 | y1, u)f2(1 | y1, u)f3(y1, u)f4(z | u)dµ(u)

]
× fY2Y1ZD1(y2, y1, z, 1)dµ(y2, y1, z).

In view of the proof of Corollary 1, we recall that f∗(· ; p) maximizes p1L1(· ; p1), and

the solution f∗(· ; p) satisfies∫
f∗1 (y2 | y1, u; p)f∗2 (1 | y1, u; p)f∗3 (y1, u; p)f∗4 (z | u; p)dµ(u) = fY2Y1Z|D1

(y2, y1, z | 1) · p1,

where the conditional density fY2Y1Z|D1(·, ·, · | 1) is invariant from variations in p, and

the scale of the integral varies by p1 which defines the L1-equivalence class of non-

negative functions over which the Kullback-Leibler information inequality is satisfied.

Therefore, we have

d

dp1

[
log

∫
f∗
1 (y2 | y1, u; p)f ∗

2 (1 | y1, u; p)f ∗
3 (y1, u; p)f

∗
4 (z | u; p)dµ(u)

]
=

1

p1
.

It then follows that

d

dp1
L(f∗(· ; p), λ∗(p); p) =

d

dp1
[p1L1(f

∗(· ; p); p1)] =
1

p1

∫
fY2Y1ZD1(y2, y1, z, 1)dµ(y2, y1, z) = 1,
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showing that λ∗1(p) = 1. Similar lines of argument prove λ∗2(p) = 1. �

Part (ii) of the above assumption is ambiguous about the definition of underlying

topological spaces, as we did not explicitly define the norm. In order to complement

for it, here we consider a sufficient condition. Write F = F1×F2×F3×F4. Define a

norm on F by ∥f∥s := ∥f1∥2+∥f2∥2+∥f3∥2+∥f4∥2, where ∥·∥2 denotes the L2-norm.

Also, define the set Bj(M) = {fj ∈ Fj | ∥fj∥∞ 6 M} for M ∈ (0,∞) for each

j = 1, 2, 3, 4. The following uniform boundedness and integrability together imply

part (ii).

Assumption (A Sufficient Condition for Part (ii)). There exists M < ∞ such that

F1 ⊂ L1 ∩B1(M), F2 ⊂ L1 ∩B2(M), F3 ⊂ L1 ∩B3(M), and F4 ⊂ L1 ∩B4(M) hold

with the respective Lebesgue measurable spaces.

Note that F1 ⊂ L1 ∩ L∞, F2 ⊂ L1 ∩ L∞, F3 ⊂ L1 ∩ L∞, and F4 ⊂ L1 ∩ L∞ follow

from this assumption, since B(M) ⊂ L∞ for each j = 1, 2, 3, 4. But then, each of

these sets is also square integrable as L1 ∩ L∞ ⊂ L2 (cf. Folland, 1999; pp. 185).

To see the Fréchet differentiability of L1, observe that for any η ∈ F∥∥∥∥∫ (f1 + η1)(f2 + η2)(f3 + η3)(f4 + η4)dµ(u)−
∫
f1f2f3f4dµ(u)−DL1(f ; η)

∥∥∥∥
1

6 ∥f1f2η3η4∥1 + ∥f1η2η3f4∥1 + ∥η1η2f3f4∥1 + ∥f1η2f3η4∥1 + ∥η1f2η3f4∥1 + ∥η1f2f3η4∥1

+ ∥f1η2η3η4∥1 + ∥η1f2η3η4∥1 + ∥η1η2f3η4∥1 + ∥η1η2η3f4∥1 + ∥η1η2η3η4∥1

6 ∥f1∥∞ ∥f2∥∞ ∥η3∥2 ∥η4∥2 + ∥f1∥∞ ∥f4∥∞ ∥η2∥2 ∥η3∥2 + ∥f3∥∞ ∥f4∥∞ ∥η1∥2 ∥η2∥2

+ ∥f1∥∞ ∥f3∥∞ ∥η2∥2 ∥η4∥2 + ∥f2∥∞ ∥f4∥∞ ∥η1∥2 ∥η3∥2 + ∥f2∥∞ ∥f3∥∞ ∥η1∥2 ∥η4∥2

+ ∥f1∥∞ ∥η2∥∞ ∥η3∥2 ∥η4∥2 + ∥η1∥∞ ∥f2∥∞ ∥η3∥2 ∥η4∥2 + ∥η1∥∞ ∥f3∥∞ ∥η2∥2 ∥η4∥2

+ ∥η1∥∞ ∥f4∥∞ ∥η2∥2 ∥η3∥2 + ∥η1∥∞ ∥η2∥∞ ∥η3∥2 ∥η4∥2

6 (∥f1∥∞ ∥f2∥∞ + ∥f1∥∞ ∥f4∥∞ + ∥f3∥∞ ∥f4∥∞ + ∥f1∥∞ ∥f3∥∞ + ∥f2∥∞ ∥f4∥∞

+ ∥f2∥∞ ∥f3∥∞ + ∥f1∥∞ ∥η2∥∞ + ∥η1∥∞ ∥f2∥∞ + ∥η1∥∞ ∥f3∥∞ + ∥η1∥∞ ∥f4∥∞

+ ∥η1∥∞ ∥η2∥∞) ∥η∥2s 6 11M2 ∥η∥2s ,
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where the L1-norm in the first line is by integration with respect to (y2, y1, z), all

the remaining Lp-norms are by integration with respect to (y2, y1, z, u), DL1(f ; η) :=∫
(f1f2f3η4 + f1f2η3f4 + f1η2f3f4 + η1f2f3f4)dµ(u), the first inequality follows from

the triangle inequality, the second inequality follows from the Hölder’s inequality, the

third inequality follows from our definition of the norm on F , and the last inequality

follows from our assumption. But then,

lim
∥η∥s→0

∥∥∫ (f1 + η1)(f2 + η2)(f3 + η3)(f4 + η4)dµ(u)−
∫
f1f2f3f4dµ(u)−DL1(f ; η)

∥∥
1

∥η∥s
= 0,

showing that DL1(f ; η) is the Fréchet derivative of the operator f 7→
∫
f1f2f3f4dµ(u).

This in turn implies Fréchet differentiability of the functional L1 at the solution

f ∗(· ; p), since the functional L1 ∋ η 7→
∫
log ηdFY2Y1Z|D1=1 is Fréchet differentiable

at η = fY2Y1ZD1(·, ·, ·, 1). Similar lines of arguments will show Fréchet differentiability

of the other functionals L2, L3, and L4 at f∗(· ; p).

9.3. Proposition 1 (Consistency of the Nonparametric Estimator). As

a setup, we define a normed linear space (L, ∥·∥) containing the model set F =

F1 × F2 × F3 × F4 as follows. We define the uniform norm of f as the essential

supremum

∥f∥∞ = ess supx |f(x)| .

Following Newey and Powell (2003) and others, we also define the following version

of the uniform norm when characterizing compactness:

∥f∥R,∞ = ess supx |f(x)(1 + x′x)| .

Noted that ∥·∥∞ 6 ∥·∥R,∞ holds. Similarly define the version of the L1 norm

∥f∥R,1 =
∫

|f(x)| (1 + x′x)dx.

Define a norm ∥·∥ on a linear space containing F by

∥f∥ := ∥f1∥R,∞ + ∥f2∥R,∞ + ∥f3∥R,∞ + ∥f4∥R,∞ .
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We consider F with the subspace topology of this normed linear space, where As-

sumption 3 below imposes restrictions on how to appropriately choose such a subset

F .

We assume that the data is i.i.d.

Assumption 1 (Data). The data {(Yi3, Yi2, Yi1, Zi, D2i, D1i)}ni=1 is i.i.d.

In order to model the rate at which the complexity of sieve spaces evolve with

sample size n, we introduce the notation N(· , · , ∥·∥) for the covering numbers

without bracketing. Let B(f, ε) = {f ′ ∈ F | ∥f − f ′∥ < ε} denote the ε-ball

around f ∈ F with respect to the norm ∥·∥ defined above. For each ε > 0 and

n, let N(ε,Fk(n), ∥·∥) denote the minimum number of such ε-balls covering Fk(n),

i.e., min{|C| | ∪f∈CB(f, ε) ⊃ Fk(n)}. With this notation, we assume the following

restriction.

Assumption 2 (Sieve Spaces).

(i) {Fk(n)}∞n=1 is an increasing sequence, Fk(n) ⊂ F for each n, and there exists a

sequence {πk(n)f0}∞n=1 such that πk(n)f0 ∈ Fk(n) for each n.

(ii) logN(ε,Fk(n), ∥·∥) = o(n) for all ε > 0.

The next assumption facilitates compactness of the model set and Hölder conti-

nuity of the objective functional, both of which are important for nice large sample

behavior of the estimator. We assume that the true model f0 belongs to F satisfying

the following.

Assumption 3 (Model Set).

(i) L1 Compactness: Each of F2 and F3 is compact with respect to ∥·∥R,1. Thus, let

M <∞ be a number such that supfi∈Fi
∥fi∥R,1 6M for each i = 2, 3.

(ii) L∞ Compactness: Each of F1, F2, F3, and F4 is compact with respect to ∥·∥R,∞.

Thus, let M∞ < ∞ be a number such that supfi∈Fi
∥fi∥R,∞ 6 M∞ for each i =

1, 2, 3, 4.
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(iii) Uniformly Bounded Density of E : There exists M1 <∞ such that

sup
f1∈F1

sup
y2,y1

∫
|f1(y2 | y1, u)| du 6M1.

(iv) Uniformly Bounded Density of Y1: There exists M3 <∞ such that

sup
f3∈F3

sup
y1

∫
|f3(y1, u)| du 6M3.

(v) Bounded Objective:

E

[(
inf
f∈F

∫
f1(Y2 | Y1, u)f2(1 | Y1, u)f3(Y1, u)f4(Z | u)dµ(u)

)−1
]
<∞ and

E

[(
inf
f∈F

∫
f1(Y3 | Y2, u)f1(Y2 | Y1, u)f2(1 | Y2, u)f2(1 | Y1, u)f3(Y1, u)f4(Z | u)dµ(u)

)−1
]
<∞

Part (i) of this assumption is not redundant, since fi are not densities, but con-

ditional densities. Despite their appearance, parts (iii) and (iv) of this assumption

are not so stringent. Suppose, for example, that the true model f0 consists of the

traditional additively separable dynamic model Yt = αYt−1+U +Et with a uniformly

bounded density of Et. In this case, the true model f0 can indeed reside in an F

satisfying the restriction of part (iii) for a suitable choice of M1. Similarly, the true

model f0 can reside in an F satisfying the restriction of part (iv) for a suitable choice

of M3, whenever the density of Y1 is uniformly bounded.

Proof. We show the consistency claim of Proposition 1 by showing that Con-

ditions 3.1, 3.2, 3.4, and 3.5M of Chen (2007) are satisfied by our assumptions (Re-

strictions 1, 2, 3, and 4 and Assumptions 1, 2, and 3). Restrictions 1, 2, 3, and 4

imply her Condition 3.1 by our identification result yielding Corollary 1 together with

Remark 9. Her Condition 3.2 is directly assumed by our Assumption 2 (i). Her Con-

dition 3.4 is implied by our Assumption 3 (ii) applied to the Tychonoff’s Theorem.

Her Conditions 3.5M (i) and (iii) are directly assumed by our Assumptions 1 and 2

(ii), respectively, provided that we will prove her Condition 3.5M (ii) with s = 1. It

remains to prove Hölder continuity of l(y3, y2, y1, z, d2, d1; · ) : (F , ∥·∥) → R for each

(y3, y2, y1, z, d2, d1), which in turn implies her Condition 3.5M (ii).
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In order to show Hölder continuity of the functional l(y3, y2, y1, z, d2, d1; · ), it

suffices to prove that of l1(y2, y1, z; · ), l2(y3, y2, y1, z; · ), l3, and l4. First, consider

l1(y2, y1, z; · ). For a fixed (y2, y1, z), observe

∣∣exp(l1(y2, y1, z; f))− exp(l1(y2, y1, z; f̄))
∣∣

6
∣∣∣∣∫ (f1 − f̄1)f2f3f4du

∣∣∣∣+ ∣∣∣∣∫ f̄1(f2 − f̄2)f3f4du

∣∣∣∣
+

∣∣∣∣∫ f̄1f̄2(f3 − f̄3)f4du

∣∣∣∣+ ∣∣∣∣∫ f̄1f̄2f̄3(f4 − f̄4)du

∣∣∣∣
6

∥∥f1 − f̄1
∥∥
∞ ∥f2∥∞

∫
|f3| du ∥f4∥∞ +

∥∥f̄1∥∥∞ ∥∥f2 − f̄2
∥∥
∞

∫
|f3| du ∥f4∥∞

+

∫ ∣∣f̄1∣∣ du∥∥f̄2∥∥∞ ∥∥f3 − f̄3
∥∥
∞ ∥f4∥∞ +

∫ ∣∣f̄1∣∣ du ∥∥f̄2∥∥∞ ∥∥f̄3∥∥∞ ∥∥f4 − f̄4
∥∥
∞

6 2M2
∞(M1 +M3)

∥∥f − f̄
∥∥ ,

where the first inequality follows from the triangle inequality, the second inequality

follows from the Hölder’s inequality, and the third inequality uses Assumption 3 (ii),

(iii), and (iv), together with the fact that ∥·∥∞ 6 ∥·∥R,∞. By Assumption 3 (v), there

exists a function κ1 such that E[κ1(Y2, Y1, Z)] <∞ and

∣∣l1(y2, y1, z; f)− l1(y2, y1, z; f̄)
∣∣ 6 2M2

∞(M1 +M3)
∥∥f − f̄

∥∥κ1(y2, y1, z).
This shows Hölder (in particular Lipschitz) continuity of the functional l1(y2, y1, z; · ).

By similar calculations using Assumption 3 (ii) and (iii), we obtain

∣∣exp(l2(y3, y2, y1, z; f))− exp(l2(y3, y2, y1, z; f̄))
∣∣

6
∥∥f1 − f̄1

∥∥
∞

∫
|f1| du ∥f2∥2∞ ∥f3∥∞ ∥f4∥∞ +

∫ ∣∣f̄1∣∣ du ∥∥f1 − f̄1
∥∥
∞ ∥f2∥2∞ ∥f3∥∞ ∥f4∥∞

+

∫ ∣∣f̄1∣∣ du ∥∥f̄1∥∥∞ ∥∥f2 − f̄2
∥∥
∞ ∥f2∥∞ ∥f3∥∞ ∥f4∥∞

+

∫ ∣∣f̄1∣∣ du ∥∥f̄1∥∥∞ ∥∥f̄2∥∥∞ ∥∥f2 − f̄2
∥∥
∞ ∥f3∥∞ ∥f4∥∞

+

∫ ∣∣f̄1∣∣ du ∥∥f̄1∥∥∞ ∥∥f̄2∥∥2∞ ∥∥f3 − f̄3
∥∥
∞ ∥f4∥∞ +

∫ ∣∣f̄1∣∣ du ∥∥f̄1∥∥∞ ∥∥f̄2∥∥2∞ ∥∥f̄3∥∥∞ ∥∥f4 − f̄4
∥∥
∞

6 6M4
∞M1

∥∥f − f̄
∥∥ .
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By Assumption 3 (v), there exists a function κ2 such that E[κ2(Y3, Y2, Y1, Z)] < ∞

and ∣∣l2(y3, y2, y1, z; f)− l2(y3, y2, y1, z; f̄)
∣∣ 6 6M4

∞M1

∥∥f − f̄
∥∥κ2(y3, y2, y1, z).

This shows Lipschitz continuity of the functional l2(y3, y2, y1, z; · ).

Next, using Assumption 3 (i) yields∣∣l3(f)− l3(f̄)
∣∣ 6

∣∣∣∣∫ (f2 − f̄2)f3

∣∣∣∣+ ∣∣∣∣∫ f̄2(f3 − f̄3)

∣∣∣∣
6

∥∥f2 − f̄2
∥∥
∞ ∥f3∥1 +

∥∥f̄2∥∥1 ∥∥f3 − f̄3
∥∥
∞ 6 2M

∥∥f − f̄
∥∥ ,

Similarly, using Assumption (i) and (ii) yields∣∣l4(f)− l4(f̄)
∣∣ 6

∥∥f1 − f̄1
∥∥
∞ ∥f2∥2∞ ∥f3∥1 +

∥∥f̄1∥∥∞ ∥∥f2 − f̄2
∥∥
∞ ∥f2∥∞ ∥f3∥1

+
∣∣f̄1∣∣∞ ∥∥f̄2∥∥∞ ∥∥f2 − f̄2

∥∥
∞ ∥f3∥1 +

∣∣f̄1∣∣∞ ∥∥f̄2∥∥∞ ∥f2∥1
∥∥f3 − f̄3

∥∥
∞

6 4MM2
∞
∥∥f − f̄

∥∥ .
It follows that l3 and l4 are also Lipschitz continuous. These in particular implies

Hölder continuity of the functionals l1(y2, y1, z; · ), l2(y3, y2, y1, z; · ), l3, and l4, hence

l(y3, y2, y1, z, d2, d1; · ). Therefore, Chen’s Condition 3.5M (ii) is satisfied with s = 1

by our assumptions. �

9.4. Semiparametric Estimation. Section 5.2 proposed an estimator which

treats the quadruple (fYt|Yt−1U , fDt|YtU , fY1U , fZ|U) of the density functions nonpara-

metrically. In practice, it may be more useful to specify one or more of these densities

semi-parametrically. For example, the dynamic model g is conventionally specified

by

g(y, u, ε) = αy + u+ ε.

By denoting the nonparametric density functions of Et by fE , we can represent the

density fYt|Yt−1U by fYt|Yt−1U(y
′ | y, u) = fE(y

′ − αy − u). Consequently, a model

is represented by (α, fE , fDt|YtU , fY1U , fZ|U). For ease of writing, let this model be

denoted by θ = (α, f̃1, f2, f3, f4). Accordingly, write a set of such models by Θ =

A× F̃1 × F2 × F3 × F4
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Under these notations, Corollary 1 and Remark 9 characterize a sieve semipara-

metric estimator θ̂ of θ0 as the solution to

max
θ∈Θk(n)

1

n

n∑
i=1

l(Yi3, Yi2, Yi1, Zi, Di2, Di1; θ)

for some sieve space Θk(n) = Ak(n)×F̃1,k1(n)×F2,k2(n)×F3,k3(n)×F4,k4(n) ⊂ Θ, where

l(Yi3, Yi2, Yi1, Zi, Di2, Di1; θ) := 1 {Di1 = 1} · l1(Yi2, Yi1, Zi; θ)

+1 {Di2 = Di1 = 1} · l2(Yi3, Yi2, Yi1, Zi; θ)− l3(θ)− l4(θ),

l1(Yi2, Yi1, Zi; θ) := log

∫
f̃1(Yi2 − αYi1 − u)f2(1 | Yi1, u)f3(Yi1, u)f4(Zi | u)dµ(u),

l2(Yi3, Yi2, Yi1, Zi; θ) := log

∫
f̃1(Yi3 − αYi2 − u)f1(Yi2 − αYi1 − u)

× f2(1 | Yi2, u)f2(1 | Yi1, u)f3(Yi1, u)f4(Zi | u)dµ(u),

l3(θ) :=

∫
f2(1 | y1, u)f3(y1, u)dµ(y1, u), and

l4(θ) :=

∫
f̃1(y2 − αy1 − u)f2(1 | y2, u)f2(1 | y1, u)f3(y1, u)dµ(y2, y1, u).

The asymptotic distribution of α̂ can be derived by following the method of Ai

and Chen (2003), which was also used in Blundell, Chen, Kristensen (2007) and Hu

and Schennach (2008). First, I introduce auxiliary notations. Define the path-wise

derivative

l′θ0(y3, y2, y1, z, d2, d1; θ − θ0) = lim
r→0

l(y3, y2, y1, z, d2, d1; θ(θ0, r))− l(y3, y2, y1, z, d2, d1; θ0)

r

where θ(θ0, ·) : R → Θ denotes a path such that θ(θ0, 0) = θ0 and θ(θ0, 1) = θ. Simi-

larly define the path-wise derivative with respect to each component of (f̃1, f2, f3, f4)

by

d

df̃1
lθ0(y3, y2, y1, z, d2, d1; f̃1 − f̃10) = lim

r→0

l(y3, y2, y1, z, d2, d1; f̃1(θ0, r))− l(y3, y2, y1, z, d2, d1; θ0)

r

d

df2
lθ0(y3, y2, y1, z, d2, d1; f2 − f20) = lim

r→0

l(y3, y2, y1, z, d2, d1; f2(θ0, r))− l(y3, y2, y1, z, d2, d1; θ0)

r

d

df3
lθ0(y3, y2, y1, z, d2, d1; f3 − f30) = lim

r→0

l(y3, y2, y1, z, d2, d1; f3(θ0, r))− l(y3, y2, y1, z, d2, d1; θ0)

r

d

df4
lθ0(y3, y2, y1, z, d2, d1; f4 − f40) = lim

r→0

l(y3, y2, y1, z, d2, d1; f4(θ0, r))− l(y3, y2, y1, z, d2, d1; θ0)

r

where f̃1(θ0, ·) : R → F̃1, f2(θ0, ·) : R → F2, f3(θ0, ·) : R → F3, and f4(θ0, ·) : R → F4

denote paths as before.
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Recenter the set of parameters by Ω = Θ− θ0 so that

⟨v1, v2⟩ = E
[
l′θ0(Y3, Y2, Y1, Z,D2, D1; v1)l

′
θ0
(Y3, Y2, Y1, Z,D2, D1; v2)

]
defines an inner product on Ω. Furthermore, by taking the closure Ω, we obtain

a complete space Ω with respect to the topology induced by ⟨·, ·⟩, hence a Hilbert

space (Ω, ⟨·, ·⟩). It can be written as Ω = R ×W where W = F̃1 × F2 × F3 × F4 −
(f̃10, f20, f30, f40). Given these notations, define

w∗ := (f̃∗
1 , f

∗
2 , f

∗
3 , f

∗
4 ) = arg min

w∈W
E

[(
d

dα
l(Y3, Y2, Y1, Z,D2, D1; θ0)−

d

df̃1
lθ0(Y3, Y2, Y1, Z,D2, D1; f̃1)

− d

df2
lθ0(Y3, Y2, Y1, Z,D2, D1; f2)−

d

df3
lθ0(Y3, Y2, Y1, Z,D2, D1; f3)

− d

df4
lθ0(Y3, Y2, Y1, Z,D2, D1; f4)

)2
]
.

Given this w∗, next define

Φw∗(y3, y2, y1, z, d2, d1) :=
d

dα
l(y3, y2, y1, z, d2, d1; θ0)−

d

df̃1
lθ0(y3, y2, y1, z, d2, d1; f̃1)

− d

df2
lθ0(y3, y2, y1, z, d2, d1; f2)−

d

df3
lθ0(y3, y2, y1, z, d2, d1; f3)

− d

df4
lθ0(y3, y2, y1, z, d2, d1; f4).

The next assumption sets a moment condition.

Assumption 4 (Bounded Second Moment). σ := E [Φw∗(Y3, Y2, Y1, Z,D2, D1)
2] <

∞

The mapping θ − θ0
s7→ α − α0 is a linear functional on Ω. Since (Ω, ⟨·, ·⟩) is a

Hilbert space, the Riesz Representation Theorem guarantees the existence of v∗ ∈ Ω

such that s(θ − θ0) = ⟨v∗, θ − θ0⟩ for all θ ∈ Θ under Assumption 4. Moreover, this

representing vector has the explicit formula v∗ = (σ−1,−σ−1w∗). Using Corollary 1 of

Shen (1997) yields asymptotic distribution of
√
N(α−α0) =

√
N
⟨
v∗, θ̂ − θ0

⟩
, which

is N(0, σ−1).
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In order to invoke Shen’s corollary, a couple of additional notations need to be

introduced. The remainder of the linear approximation is

r(y3, y2, y1, z, d2, d1; θ − θ0) := l(y3, y2, y1, z, d2, d1; θ)− l(y3, y2, y1, z, d2, d1; θ0)

−l′θ0(y3, y2, y1, z, d2, d1; θ − θ0)

A divergence measure is defined by

K(θ0, θ) :=
1

N

N∑
i=1

E [l(Yi3, Yi2, Yi1, Zi, Di2, Di1; θ0)− l(Yi3, Yi2, Yi1, Zi, Di2, Di1; θ)] .

Denote the empirical process induced by g by

νn(g) :=
1√
N

N∑
i=1

(g(Yi3, Yi2, Yi1, Zi, Di2, Di1)− Eg(Yi3, Yi2, Yi1, Zi, Di2, Di1))

For a perturbation ϵn such that ϵn = o(n−1/2), let θ∗(θ, ϵn) = (1− ϵn)θ + ϵn(u
∗ + θ0)

where u∗ = ±v∗. Lastly, Pn denote the projection Θ → Θn. The following high-level

assumptions of Shen (1997) guarantees asymptotic normality of
√
N
⟨
v∗, θ̂ − θ0

⟩
, or

equivalently of
√
N(α− α0).

Assumption 5 (Regularity). (i) sup{θ∈Θn|∥θ−θ0∥6δ0} n
−1/2νn(r(Y3, Y2, Y1, Z,D2, D1;

θ−θ0)−r(Y3, Y2, Y1, Z,D2, D1;Pn(θ
∗(θ, ϵn))−θ0)) = Op(ϵ

2
n). (ii) sup{θ∈Θn|0<∥θ−θ0∥6δn}

[K(θ0, Pn(θ
∗(θ, ϵn)) − K(θ0, θ)] − 1

2

[
∥θ∗(θ, ϵn)− θ0∥2 − ∥θ − θ0∥2

]
= O(ϵ2n). (iii)

sup{θ∈Θn|0<∥θ−θ0∥6δn} ∥θ
∗(θ, ϵn) − Pn(θ

∗(θ, ϵn))∥ = O(δ−1
n ϵ2n). (iv) sup{θ∈Θn|∥θ−θ0∥6δn}

n−1/2νn(l
′
θ0
( · · · ; θ∗(θ, ϵn) − Pn(θ

∗(θ, ϵn)))) = Op(ϵ
2
n). (v) sup{θ∈Θn|∥θ−θ0∥6δn} n

−1/2νn

(l′θ0( · · · ; θ − θ0)) = Op(ϵn).

Proposition 2 (Asymptotic Distribution of a Semiparametric Estimator). Sup-

pose that Restrictions 1, 2, 3, and 4 and Assumptions 4 and 5 hold. Then,
√
N(α−

α0)
d→ N(0, σ−1).

10. Appendix: Special Cases and Generalizations of the Baseline Model

10.1. A Variety of Missing Observations. While the baseline model con-

sidered in the paper induces a permanent dropout from data by a hazard selection,

variants of the model can be encompassed as special cases under which the main
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identification remains to hold. Specifically, we consider the following Classes 1 and 2

as special models of Class 3.

Class 1 (Nonseparable Dynamic Panel Data Model).
Yt = g(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

FY1U (Initial joint distribution of (Y1, U))

Z = ζ(U,W ) (Optional: nonclassical proxy of U)

�

Class 2 (Nonseparable Dynamic Panel Data Model with Missing Observations).



Yt = g(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

Dt = h(Yt, U, Vt) t = 1, · · · , T − 1 (Selection)

FY1U (Initial joint distribution of (Y1, U))

Z = ζ(U,W ) (Optional: nonclassical proxy of U)

where Yt is censored by the binary indicator Dt of sample selection as follows:
Yt is observed if Dt−1 = 1 or t = 1.

Yt is unobserved if Dt−1 = 0 and t > 1.

�

A representative example of this instantaneous selection is the Roy model such

as h(y, u, v) = 1{E[π(g(y, u, Et+1), u)] > c(u, v)} where π measures payoffs and c

measures costs. The following is the baseline model considered in the paper.

Class 3 (Nonseparable Dynamic Panel Data Model with Hazards).

Yt = g(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

Dt = h(Yt, U, Vt) t = 1, · · · , T − 1 (Hazard Model)

FY1U (Initial joint distribution of (Y1, U))

Z = ζ(U,W ) (Optional: nonclassical proxy of U)
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where Dt = 0 induces a hazard of permanent dropout in the following manner:
Y1 is observed,

Y2 is observed if D1 = 1,

Y3 is observed if D1 = D2 = 1.

�

The present appendix section proves that identification of Class 3 implies identi-

fication of Classes 1 and 2. The observable parts of the joint distributions in each of

the three classes include (but are not limited to) the following:

Class 1: Observe FY3Y2Y1ZD2D1 , FY2Y1ZD1 , FY3Y1ZD2 , and FY3Y2ZD2

Class 2: Observe FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1), and FY3Y1ZD2(·, ·, ·, 1)

Class 3: Observe FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1) and FY2Y1ZD1(·, ·, ·, 1)

Since the selection variable Dt in Class 1 is not defined, we assume without loss of

generality that it is degenerate at Dt = 1 in Class 1.

The problem of identification under each class can be characterized by the well-

definition of the following maps:

Class 1: (FY3Y2Y1ZD2D1 , FY2Y1ZD1 , FY3Y1ZD2 , FY3Y2ZD2)
ι17→ (g, FY1U , ζ)

Class 2: (FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1), FY3Y1ZD2(·, ·, ·, 1))
ι27→ (g, h, FY1U , ζ)

Class 3: (FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1)
ι37→ (g, h, FY1U , ζ)

The main identification result of this paper was to show well-definition of the map

ι3. Therefore, in order to argue that identification of Class 3 implies identification of

Classes 1 and 2, it suffices to claim that the well-definition of ι3 implies well-definition

of the maps ι1 and ι2.

First, note that the trivial projections

(FY3Y2Y1ZD2D1 , FY2Y1ZD1 , FY3Y1ZD2 , FY3Y2ZD2)
π17→ (FY3Y2Y1ZD2D1 , FY2Y1ZD1 , FY3Y1ZD2) and

(FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1), FY3Y1ZD2(·, ·, ·, 1))

π27→ (FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1))
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are well-defined. Second, by the construction of degenerate random variable Dt = 1

in Class 1, the map

(FY3Y2Y1ZD2D1 , FY2Y1ZD1 , FY3Y1ZD2 , FY3Y2ZD2)

κ17→ (FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1), FY3Y1ZD2(·, ·, ·, 1))

is well-defined in Class 1. Third, the trivial projection

(g, h, FY1U , ζ)
ρ7→ (g, FY1U , ζ)

is well-defined.

Now, notice that

ι1 = ρ ◦ ι3 ◦ κ1 ◦ π1 in Class 1, and

ι2 = ι3 ◦ π2 in Class 2.

Therefore, the well-definition of ι3 implies well-definition of ι1 and ι2 in particular.

Therefore, identification of Class 3 implies identification of Classes 1 and 2.

10.2. Identification without a Nonclassical Proxy Variable. The main

result of this paper assumed use of a nonclassical proxy variable Z. However, this use

was mentioned to be optional, and one can substitute a slightly longer panel T = 6

for use of a proxy variable. In this section we show how the model (g, h, FY1U) can be

identified from the joint distribution FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1)

that follows from T = 6 time periods of unbalanced panel data without additional

information Z.

Restriction 5 (Independence).

(i) Exogeneity of Et: Et ⊥⊥ (U, Y1, {Es}s<t, {Vs}s<t,W ) for all t ≥ 2.

(ii) Exogeneity of Vt: Vt ⊥⊥ (U, Y1, {Es}s6t, {Vs}s<t) for all t ≥ 1.

For simplicity of notation, we compress the nondegenerate random variable Y3

into a binary random variable Z := η(Y3) with a known transformation η such that

part (iii) of the following rank condition is satisfied. As the notation suggests, this Z

serves as a substitute for a nonclassical proxy variable.
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Restriction 6 (Rank Conditions). The following conditions hold for every y ∈

Y :

(i) Heterogeneous Dynamics: the integral operator Py : L2(FU) → L2(FYt) defined

by Pyξ(y
′) =

∫
fY3|Y2U(y

′ | y, u) · ξ(u)du is bounded and invertible.

(ii) There exist y4 and y2 satisfying the following conditions:

Nondegeneracy: fY4ZD5D4D3|Y2U(y4, 1, 1, 1, 1 | y2, u) is bounded away from 0 and 1 for

all u.

Relevance:
fY4ZD5D4D3|Y2U (y4,1,1,1,1|y2,u)
fY4ZD5D4D3|Y2U (y4,0,1,1,1|y2,u) ̸=

fY4ZD5D4D3|Y2U (y4,1,1,1,1|y2,u′)
fY4ZD5D4D3|Y2U (y4,0,1,1,1|y2,u′) whenever u ̸= u′.

(iii) No Extinction: fD2|Y2U(1 | y, u) > 0 for all u ∈ U .

(iv) Initial Heterogeneity: the integral operator Sy : L2(FYt) → L2(FU) defined by

Syξ(u) =
∫
fY2Y1UD1U(y, y

′, u, 1) · ξ(y′)dy′ is bounded and invertible.

Lemma 5 (Independence). The following implications hold:

(i) Restriction 5 (i) ⇒ E6 ⊥⊥ (U, Y1, E2, E3, E4, E5, V1, V2, V3, V4, V5)

⇒ Y6 ⊥⊥ (Y1, Y2, Y3, Y4, D1, D2, D3, D4, D5) | (Y5, U).

(ii) Restriction 5 (i) & (ii) ⇒ (E3, E4, E5, V3, V4, V5) ⊥⊥ (U, Y1, E2, V1, V2)

⇒ (Y3, Y4, Y5, D3, D4, D5) ⊥⊥ (Y1, D1, D2) | (Y2, U).

(iii) Restriction 5 (i) ⇒ E2 ⊥⊥ (U, Y1, V1) ⇒ Y2 ⊥⊥ D1 | (Y1, U).

(iv) Restriction 5 (ii) ⇒ V2 ⊥⊥ (U, Y1, E2, V1) ⇒ D2 ⊥⊥ (Y1, D1) | (Y2, U).

Proof. In order to prove the lemma, we use the following two properties of

conditional independence:

CI.1. A ⊥⊥ B implies A ⊥⊥ B | ϕ(B) for any Borel function ϕ.

CI.2. A ⊥⊥ B | C implies A ⊥⊥ ϕ(B,C) | C for any Borel function ϕ.

(i) First, applying CI.1 to E6 ⊥⊥ (U, Y1, E2, E3, E4, E5, V1, V2, V3, V4, V5) and using

the definition of g yield

E6 ⊥⊥ (U, Y1, E2, E3, E4, E5, V1, V2, V3, V4, V5) | (Y5, U).

Next, applying CI.2 to this conditional independence and using the definitions of g

and h yield

E6 ⊥⊥ (Y1, Y2, Y3, Y4, D1, D2, D3, D4, D5, Z) | (Y5, U).
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Applying CI.2 again to this conditional independence and using the definition of g

yield

Y6 ⊥⊥ (Y1, Y2, Y3, Y4, D1, D2, D3, D4, D5, Z) | (Y5, U).

(ii) First, applying CI.1 to (E3, E4, E5, V3, V4, V5) ⊥⊥ (U, Y1, E2, V1, V2) and using the

definition of g yield

(E3, E4, E5, V3, V4, V5) ⊥⊥ (U, Y1, E2, V1, V2) | (Y2, U)

Next, applying CI.2 to this conditional independence and using the definitions of g

and h yield

(E3, E4, E5, V3, V4, V5) ⊥⊥ (Y1, D1, D2) | (Y2, U)

Applying CI.2 again to this conditional independence and using the definition of g

yield

(Y3, Y4, Y5, D3, D4, D5) ⊥⊥ (Y1, D1, D2) | (Y2, U)

(iii) The proof is the same as that of Lemma 3 (ii).

(iv) The proof is the same as that of Lemma 3 (iii). �

Lemma 6 (Invariant Transition).

(i) Under Restrictions 1 and 5 (i), FYt|Yt−1U(y
′ | y, u) = FYt′ |Yt′−1U

(y′ | y, u) for all

y′, y, u, t, t′.

(ii) Under Restrictions 1 and 5 (ii), FD2|Y2U(d | y, u) = FD1|Y1U(d | y, u) for all d, y, u.

This lemma can be proved similarly to Lemma 4.

Lemma 7 (Identification). Under Restrictions 1, 4, 5, & 6, (FY3|Y2U , FD2|Y2U , FY1U)

is uniquely determined by FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and

FY2Y1D1( · , · , 1).

Proof. Given fixed (y5, y4, z, y2), define the operators Ly5,y4,z,y2 : L2(FYt) →

L2(FYt), Py5 : L2(FU) → L2(FYt), Qy5,y4,z,y2 : L2(FU) → L2(FU), Ry2 : L2(FU) →
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L2(FU), Sy2 : L2(FYt) → L2(FU), Ty2 : L2(FYt) → L2(FU), and T ′
y2

: L2(FU) →

L2(FU) by

(Ly5,y4,z,y2ξ)(y6) =

∫
fY6Y5Y4ZY2Y1D5D4D3D2D1(y6, y5, y4, z, y2, y1, 1, 1, 1, 1, 1) · ξ(y1)dy1,

(Py5ξ)(y3) =

∫
fY6|Y5U(y6 | y5, u) · ξ(u)du,

(Qy5,y4,z,y2ξ)(u) = fY5Y4ZD5D4D3|Y2U(y5, y4, z, 1, 1, 1 | y2, u) · ξ(u),

(Ry2ξ)(u) = fD2|Y2U(1 | y2, u) · ξ(u),

(Sy2ξ)(u) =

∫
fY2Y1UD1(y2, y1, u, 1) · ξ(y1)dy1,

(Ty2ξ)(u) =

∫
fY1|Y2UD2D1(y1 | y2, u, 1, 1) · ξ(y1)dy1,

(T ′
y2
ξ)(u) = fY2UD2D1(y2, u, 1, 1) · ξ(u)

respectively.

Step 1: Uniqueness of FY6|Y5U and FY5Y4ZD5D4D3|Y2U( ·, ·, ·, 1, 1, 1 | ·, ·)

The kernel fY6Y5Y4ZY2Y1D5D4D3D2D1( ·, y5, y4, z, y2, ·, 1, 1, 1, 1, 1) of the integral operator

Ly5,y4,z,y2 can be rewritten as

fY6Y5Y4ZY2Y1D5D4D3D2D1(y6, y5, y4, z, y2, y1, 1, 1, 1, 1, 1)

=

∫
fY6|Y5Y4ZY2Y1UD5D4D3D2D1(y6 | y5, y4, z, y2, y1, u, 1, 1, 1, 1, 1)

×fY5Y4ZD5D4D3|Y2Y1UD2D1(y5, y4, z, 1, 1, 1 | y2, y1, u, 1, 1)(21)

×fD2|Y2Y1UD1(1 | y2, y1, u, 1) · fY2Y1UD1(y2, y1, u, 1) du

But by Lemma 5 (i), (ii), and (iv), respectively, Restriction 5 implies that

fY6|Y5Y4ZY2Y1UD5D4D3D2D1
(y6 | y5, y4, z, y2, y1, u, 1, 1, 1, 1, 1) = fY6|Y5U (y5 | y5, u),

fY5Y4ZD5D4D3|Y2Y1UD2D1
(y5, y4, z, 1, 1, 1 | y2, y1, u, 1, 1) = fY5Y4ZD5D4D3|Y2U (y5, y4, z, 1, 1, 1 | y2, u),

fD2|Y2Y1UD1
(1 | y2, y1, u, 1) = fD2|Y2U (1 | y2, u).
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Equation (21) thus can be rewritten as

fY6Y5Y4ZY2Y1D5D4D3D2D1(y6, y5, y4, z, y2, y1, 1, 1, 1, 1, 1)

=

∫
fY6|Y5U(y6 | y5, u) · fY5Y4ZD5D4D3|Y2U(y5, y4, z, 1, 1, 1 | y2, u)

×fD2|Y2U(1 | y2, u) · fY2Y1UD1(y2, y1, u, 1) du

But this implies that the integral operator Ly4,y3,y2 is written as the operator compo-

sition

Ly5,y4,z,y2 = Py5Qy5,y4,z,y2Ry2Sy2 .

Restriction 6 (i), (ii), (iii), and (iv) imply that the operators Py5 , Qy5,y4,z,y2 , Ry2 ,

and Sy2 are invertible, respectively. Hence so is Ly5,y4,z,y2 . Using the two values {0, 1}

of Z, form the product

Ly5,y4,1,y2L
−1
y5,y4,0,y2

= Py5Qy4,1/0,y2P
−1
y5

where Qy4,1/0,y2 = Qy5,y4,1,y2Q
−1
y5,y4,0,y2

is the multiplication operator with proxy odds

defined by

(Qy4,1/0,y2ξ)(u) =
fY5Y4ZD5D4D3|Y2U(y5, y4, 1, 1, 1, 1 | y2, u)
fY5Y4ZD5D4D3|Y2U(y5, y4, 0, 1, 1, 1 | y2, u)

ξ(u)

=
fY5|Y4U(y5 | y4, u) · fY4ZD5D4D3|Y2U(y4, 1, 1, 1, 1 | y2, u)
fY5|Y4U(y5 | y4, u) · fY4ZD5D4D3|Y2U(y4, 0, 1, 1, 1 | y2, u)

ξ(u)

=
fY4ZD5D4D3|Y2U(y4, 1, 1, 1, 1 | y2, u)
fY4ZD5D4D3|Y2U(y4, 0, 1, 1, 1 | y2, u)

ξ(u).

Note the invariance of this operator in y5, hence the notation. By Restriction 6

(ii), the operator Ly5,y4,1,y2L
−1
y5,y4,0,y2

is bounded. The expression Ly5,y4,1,y2L
−1
y5,y4,0,y2

=

Py5Qy4,1/0,y2P
−1
y5

thus allows unique eigenvalue-eigenfunction decomposition as in the

proof of Lemma 2.

The distinct proxy odds as in Restriction 6 (ii) guarantee distinct eigenvalues and

single dimensionality of the eigenspace associated with each eigenvalue. Within each

of the single-dimensional eigenspace is a unique eigenfunction pinned down by L1-

normalization because of the unity of integrated densities. The eigenvalues λ(u) yield

the multiplier of the operator Qy4,1/0,y2 , hence λy4,y2(u) = fY4ZD5D4D3|Y2U(y4, 1, 1, 1, 1 |
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y2, u)/fY4ZD5D4D3|Y2U(y4, 0, 1, 1, 1 | y2, u). This proxy odds in turn identifies the func-

tion fY4ZD5D4D3|Y2U(y4, ·, 1, 1, 1 | y2, u) since Z is binary. The corresponding normal-

ized eigenfunctions are the kernels of the integral operator Py5 , hence fY6|Y5U( · | y5, u).

Lastly, Restriction 4 facilitates unique ordering of the eigenfunctions fY6|Y5U( · | y5, u)

by the distinct concrete values of u = λy4,y2(u). This is feasible because the eigenval-

ues λy4,y2(u) = fY4ZD5D4D3|Y2U(y4, 1, 1, 1, 1 | y2, u)/fY4ZD5D4D3|Y2U(y4, 0, 1, 1, 1 | y2, u)

are invariant from y5. That is, eigenfunctions fY6|Y5U( · | y5, u) of the operator

Ly5,y4,1,y2L
−1
y5,y4,0,y2

across different y5 can be uniquely ordered in u invariantly from y5

by the common set of ordered distinct eigenvalues u = λy4,y2(u).

Therefore, FY6|Y5U and FY4ZD5D4D3|Y2U(y4, ·, 1, 1, 1 | y2, u) are uniquely determined

by the joint distribution FY6Y5Y4ZY2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1), which in

turn is uniquely determined by the FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1).
The multiplier of the operator Qy5,y4,z,y2 is of the form

fY5Y4ZD5D4D3|Y2U (y5, y4, z, 1, 1, 1 | y2, u) = fY5|Y4U (y5 | y4, u) · fY4ZD5D4D3|Y2U (y4, z, 1, 1, 1 | y2, u)

= fY6|Y5U (y5 | y4, u) · fY4ZD5D4D3|Y2U (y4, z, 1, 1, 1 | y2, u)

by Lemma 6 (i), where the right-hand side object has been identified. Consequently,

the operators Py5 and Qy5,y4,z,y2 are uniquely determined for each combination of

y5, y4, z, y2.

Step 2: Uniqueness of FY2Y1UD1( · , · , · , 1)

By Lemma 5 (iii), Restriction 5 implies fY2|Y1ZUD1(y
′ | y, z, u, 1) = fY2|Y1U(y

′ | y, u).

Using this equality, write the density of the observed FY2Y1ZD1( · , · , · , 1) as

fY2Y1D1(y2, y1, 1) =

∫
fY2|Y1UD1(y2 | y1, u, 1)fY1UD1(y1, u, 1)du

=

∫
fY2|Y1U(y2 | y1, u)fY1UD1(y1, u, 1)du(22)

By Lemma 4 (i), FY6|Y5U(y
′ | y, u) = FY2|Y1U(y

′ | y, u) for all y′, y, u. Therefore, we

can write the operator Py as

(Py1ξ)(y2) =

∫
fY6|Y5U(y2 | y1, u) · ξ(u)du =

∫
fY2|Y1U(y2 | y1, u) · ξ(u)du.
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With this operator notation, it follows from (22) that

fY2Y1D1( · , y1, 1) = Py1fY1UD1(y1, · , 1).

By Restriction 6 (i) and (ii), this operator equation can be solved for fY1UD1(y, · , 1)

as

(23) fY1UD1(y1, · , 1) = P−1
y1
fY2Y1D1( · , y1, 1)

Recall that Py was shown in Step 1 to be uniquely determined by the observed

FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1). The function fY2Y1D1( · , y, 1) is

also uniquely determined by the observed joint distribution FY2Y1D1( · , · , 1) up to null

sets. Therefore, (22) shows that fY1UD1( · , · , 1) is uniquely determined by the pair

of the observed joint distributions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1)

and FY2Y1D1( · , · , 1).

Using the solution to the above inverse problem, we can write the kernel of the

operator Sy2 as

fY2Y1UD1(y2, y1, u, 1) = fY2|Y1UD1(y2 | y1, u, 1) · fY1UD1(y1, u, 1)

= fY2|Y1U(y2 | y1, u) · fY1UD1(y1, u, 1)

= fY6|Y5U(y2 | y1, u) · fY1UD1(y1, u, 1)

= fY6|Y5U(y2 | y1, u) · [P−1
y1
fY2Y1D1( · , y1, 1)](u)

where the second equality follows from Lemma 5 (iii), the third equality follows

from Lemma 4 (i), and the forth equality follows from (23). Since fY6|Y5U was

shown in Step 1 to be uniquely determined by the observed joint distribution

FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and [P−1
y1
fY2Y1D1( · , y1, 1)] was shown

in the previous paragraph to be uniquely determined for each y1 by the observed joint

distributions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D1( · , · , 1),

it follows that fY2Y1UD1( · , · , · , 1) too is uniquely determined by the observed joint

distributions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D1( · , · , 1).

Equivalently, the operator Sy2 is uniquely determined for each y2.
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Step 3: Uniqueness of FY1|Y2UD2D1( · | · , · , 1, 1)

This step is the same as Step 3 in the proof of Lemma 2, except that Ly,z and Q1/0

are replaced by Ly5,y4,z,y2 and Qy4,1/0,y2 , respectively, which were defined in Step 1 of

this proof. FY1|Y2UD2D1( · | · , · , 1, 1) or the operator Ty is uniquely determined by

the observed joint distribution FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1).

Step 4: Uniqueness of FY2UD2D1( · , · , 1, 1)

This step is the same as Step 4 in the proof of Lemma 2. FY2UD2D1( · , · , 1, 1) or the

auxiliary operator T ′
y is uniquely determined by the pair of the observed joint distri-

butions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).

Step 5: Uniqueness of FD2|Y2U(1 | · , · )

This step is the same as Step 5 in the proof of Lemma 2. FD2|Y2U(1 | · , · ) or the

auxiliary operator T ′
y is uniquely determined by the pair of the observed joint distri-

butions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).

Step 6: Uniqueness of FY1U

Recall from Step 2 that fY2Y1UD1( · , · , · , 1) is uniquely determined by the ob-

served joint distributions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and

FY2Y1D1( · , · , 1). We can write

fY2Y1UD1(y2, y1, u, 1) = fY2|Y1UD1(y2 | y1, u, 1)fD1|Y1U(1 | y1, u)fY1U(y1, u)

= fY2|Y1U(y2 | y1, u)fD1|Y1U(1 | y1, u)fY1U(y1, u)

= fY6|Y5U(y2 | y1, u)fD2|Y2U(1 | y1, u)fY1U(y1, u),

where the second equality follows from Lemma 5 (iii), and the third equality follows

from Lemma 4 (i) and (ii). For a given (y1, u), there must exist some y2 such that

fY6|Y5U(y2 | y1, u) > 0 by a property of conditional density functions. Moreover,

Restriction 6 (iii) requires that fD2|Y2U(1 | y1, u) > 0 for a given y1 for all u. Therefore,
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for such a choice of y2, we can write

fY1U(y1, u) =
fY2Y1UD1(y2, y1, u, 1)

fY6|Y5U(y2 | y1, u)fD2|Y2U(1 | y1, u)

Recall that fY6|Y5U( · | · , · ) was shown in Step 1 to be uniquely determined

by the observed joint distribution FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1),

fY2Y1UD1( · , · , · , 1) was shown in Step 2 to be uniquely determined by the pair of

the observed joint distributions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and

FY2Y1D1( · , · , 1), and fD2|Y2U(1 | · , · ) was shown in Step 5 to be uniquely determined

by the observed joint distributions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1)

and FY2Y1D1( · , · , 1). Therefore, it follows that the initial joint density fY1U is uniquely

determined by the observed FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and

FY2Y1D1( · , · , 1). �

We next discuss an identification-preserving criterion analogously to Corollary 1.

Let F denote the set of all the admissible model representations

F = {(FYt|Yt−1U , FDt|YtU , FY1U , FZ|U ) | (g, h, FY1U , ζ) satisfies Restrictions 1, 4, 5, and 6}.

A natural consequence of the main identification result of Lemma 7 is that the true model

(F ∗
Yt|Yt−1U

, F ∗
Dt|YtU , F

∗
Y1U

, F ∗
Z|U ) is the unique maximizer of the following criterion.

Corollary 2 (Constrained Maximum Likelihood). If the quadruple for the true model

(F ∗
Yt|Yt−1U

, F ∗
Dt|YtU , F

∗
Y1U

, F ∗
Z|U ) is an element of F , then it is the unique solution to

max(
FYt|Yt−1U ,FDt|YtU

,FY1U ,FZ|U
)
∈F

c1E

[
log

∫
fYt|Yt−1U

(Y2 | Y1, u)fDt|YtU (1 | Y1, u)fY1U (Y1, u)dµ(u)

∣∣∣∣D1 = 1

]
+

c2E

[
log

∫ 5∏
s=1

fYt|Yt−1U
(Ys+1 | Ys, u)fDt|YtU (1 | Ys, u)fY1U (Y1, u)dµ(u)

∣∣∣∣∣D5 = · · · = D1 = 1

]

for any c1, c2 > 0 subject to∫
fDt|YtU (1 | y1, u)fY1U (y1, u)dµ(y1, u) = fD1(1) and

∫ 5∏
s=2

fYt|Yt−1U (ys | ys−1, u)fDt|YtU (1 | ys, u)fDt|YtU (1 | y1, u)fY1U (y1, u)dµ(y2, y1, u)

= fD5D4D3D2D1(1, 1, 1, 1, 1).
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10.3. Models with Higher-Order Lags. The model discussed in this paper can be

extended to the following model

Yt = g(Yt−1, · · · , Yt−τ , U, Et) for t = τ + 1, · · · , T

Dt = h(Yt, · · · , Yt−τ+1, U, Vt) for t = τ, · · · , T − 1

FYτ ···Y1UDτ−1···D1(· · · , · , (1))

Z = ζ(U,W )

where g is a τ -th order Markov process with heterogeneity U , and the attrition model

depends on the past as well as the current state. In this set up, we can observe the

parts, FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1ZDτ ···D1(· · · , · , (1)), of the joint dis-

tributions if T = τ + 2. I claim that T = τ + 2 suffices for identification. In other

words, it can be shown that (g, h, FYτ ···Y1UDτ−1···D1(· · · , · , (1)), ζ) is uniquely determined by

FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1ZDτ ···D1(· · · , · , (1)) up to equivalence classes.

To this end, we replace Restrictions 2 and 3 by the following restrictions.

Restriction 7 (Independence).

(i) Exogeneity of Et: Et ⊥⊥ (U, {Ys}τs=1, {Ds}τs=1, {Es}s<t, {Vs}s<t,W ) for all t ≥ τ + 1.

(ii) Exogeneity of Vt: Vt ⊥⊥ (U, {Ys}τ−1
s=1 , {Ds}τ−1

s=1 , {Es}s6t, {Vs}s<t) for all t ≥ τ .

(iii) Exogeneity of W : W ⊥⊥ ({Yt}τt=1, {Dt}τt=1, {Et}t, {Vt}t).

Restriction 8 (Rank Conditions). The following conditions hold for every (y) ∈ Yτ :

(i) Heterogeneous Dynamics: the integral operator P(y) : L2(FU ) → L2(FYt) defined by

P(y)ξ(y
′) =

∫
fYτ+2|Yτ+1···Y2U (y

′ | (y), u) · ξ(u)du is bounded and invertible.

(ii) Nondegenerate Proxy Model: fZ|U (1 | u) is bounded away from 0 and 1 for all u.

Relevant Proxy: fZ|U (1 | u) ̸= fZ|U (1 | u′) whenever u ̸= u′.

(iii) No Extinction: fDτ+1|Yτ+1···Y2U (1 | (y), u) > 0 for all u ∈ U .

(iv) Initial Heterogeneity: the integral operator S(y) : L2(FYt) → L2(FU ) defined by

S(y)ξ(u) =
∫
fYτ+1···Y2Y1UDτ ···D1((y), y

′, u, (1)) · ξ(y′)dy′ is bounded and invertible.

Lemma 8 (Independence). The following implications hold:

(i) Restriction 7 (i) ⇒ Yτ+2 ⊥⊥ (Y1, {Dt}τ+1
t=1 , Z) | ({Yt}

τ+1
t=2 , U).

(ii) Restriction 7 (i) ⇒ Yτ+1 ⊥⊥ ({Dt}τt=1, Z) | ({Yt}τt=1, U).
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(iii) Restriction 7 (ii) ⇒ Dτ+1 ⊥⊥ (Y1, {Dt}τt=1) | ({Yt}
τ+1
t=2 , U).

(iv) Restriction 7 (iii) ⇒ Z ⊥⊥ ({Yt}τ+1
t=1 , {Dt}τ+1

t=1 ) | U .

Proof. As in the proof of Lemma 3, we use the following two properties of conditional

independence:

CI.1. A ⊥⊥ B implies A ⊥⊥ B | ϕ(B) for any Borel function ϕ.

CI.2. A ⊥⊥ B | C implies A ⊥⊥ ϕ(B,C) | C for any Borel function ϕ.

(i) First, note that Restriction 2 (i) Eτ+2 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1,W ) to-

gether with the structural definition Z = ζ(U,W ) implies the independence restriction

Eτ+2 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1, Vτ , Z). Applying CI.1 to this independence rela-

tion Eτ+2 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1, Z) yields

Eτ+2 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1, Z) | (g(Yτ , · · · , Y1, U, Eτ+1), {Yt}τt=2, U).

Since Yτ+1 = g(Yτ , · · · , Y1, U, Eτ+1), this conditional independence relation can be rewritten

as Eτ+2 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1, Z) | ({Yt}τ+1
t=2 , U). Next, applying CI.2 to this

conditional independence yields

Eτ+2 ⊥⊥ (Y1, h(Yτ+1, · · · , Y2, U, Vτ+1), {Dt}τt=1, Z) | ({Yt}τ+1
t=2 , U).

Since Dτ+1 = h(Yτ+1, · · · , Y2, U, Vτ+1)), this conditional independence can be rewritten

as Eτ+2 ⊥⊥ (Y1, {Dt}τ+1
t=1 , Z) | ({Yt}

τ+1
t=2 , U). Lastly, applying CI.2 again to this conditional

independence yields

g(Yτ+1, · · · , Y2, U, Eτ+2) ⊥⊥ (Y1, {Dt}τ+1
t=1 , Z) | ({Yt}

τ+1
t=2 , U).

Since Yτ+2 = g(Yτ+1, · · · , Y2, U, Eτ+2), this conditional independence relation can be rewrit-

ten as Yτ+2 ⊥⊥ (Y1, {Dt}τ+1
t=1 , Z) | ({Yt}

τ+1
t=2 , U).

(ii) Note that Restriction 2 (i) Eτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1,W ) together with the struc-

tural definition Z = ζ(U,W ) implies Eτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Z). Applying CI.1 to this

independence relation yields

Eτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Z) | ({Yt}τt=1, U).

Next, applying CI.2 to this conditional independence yields

g(Yτ , · · · , Y1, U, Eτ+1) ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Z) | ({Yt}τt=1, U).
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Since Yτ+1 = g(Yτ , · · · , Y1, U, Eτ+1), this conditional independence relation can be rewritten

as Yτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Z) | (D1, U). Lastly, applying CI.2 again to this conditional

independence yields Yτ+1 ⊥⊥ ({Dt}τt=1, Z) | ({Yt}τt=1, U).

(iii) Applying CI.1 to Restriction 2 (ii) Vτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τ−1
t=1 , Eτ+1, Vτ ) yields

Vτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τ−1
t=1 , Eτ+1, Vτ ) | (g(Yτ , · · · , Y1, U, Eτ+1), {Yt}τt=2, U).

Since Yτ+1 = g(Yτ , · · · , Y1, U, Eτ+1) by construction, it can be rewritten as Vτ+1 ⊥⊥

(U, {Yt}τt=1, {Dt}τ−1
t=1 , Eτ+1, Vτ ) | ({Yt}τ+1

t=2 , U). Next, applying CI.2 to this conditional inde-

pendence yields

Vτ+1 ⊥⊥ (Y1, h(Yτ , · · · , Y1, U, Vτ ), {Dt}τ−1
t=1 ) | ({Yt}

τ+1
t=2 , U).

Since Dτ = h(Yτ , · · · , Y1, U, Vτ ), it can be rewritten as Vτ+1 ⊥⊥ (Y1, {Dt}τt=1) | ({Yt}
τ+1
t=2 , U).

Lastly, applying CI.2 to this conditional independence yields

h(Yτ+1, · · · , Y2, U, V2) ⊥⊥ (Y1, {Dt}τt=1) | ({Yt}τ+1
t=2 , U).

Since Dτ+1 = h(Yτ+1, · · · , Y2, U, Vτ+1), it can be rewritten as Dτ+1 ⊥⊥ (Y1, {Dt}τt=1) |

({Yt}τ+1
t=2 , U).

(iv) Note that Restriction 2 (iii) W ⊥⊥ ({Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1) together with the

structural definition Z = ζ(U,W ) yields Z ⊥⊥ ({Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1) | U . Applying

CI.2 to this conditional independence relation yields

Z ⊥⊥ (g(Yτ , · · · , Y1, U, Eτ+1), {Yt}τt=1, h(g(Yτ , · · · , Y1, U, Eτ+1), U, Vτ+1), {Dt}τt=1) | U.

Since Yτ+1 = g(Yτ , · · · , Y1, U, Eτ+1) and Dτ+1 = h(Yτ+1, U, Vτ+1), this conditional indepen-

dence can be rewritten as Z ⊥⊥ ({Yt}τ+1
t=1 , {Dt}τ+1

t=1 ) | U. �

Lemma 9 (Invariant Transition).

(i) Under Restrictions 1 and 7 (i), FYτ+2|Yτ+1···Y2U(y
′ | (y), u) = FYτ+1|Yτ ···Y1U(y

′ |

(y), u) for all y′, (y), u.

(ii) Under Restrictions 1 and 7 (ii), FDτ+1|Yτ+1···Y2U(d | (y), u) = FD1|Yτ ···Y1U(d | (y), u)

for all d, (y), u.

Proof. (i) First, note that Restriction 7 (i) implies Eτ+2 ⊥⊥ (U, Yτ , · · · , Y1, Eτ+1),

which in turn implies that Eτ+2 ⊥⊥ (g(Yτ , · · · , Y1, U, Eτ+1), Yτ , · · · , Y2, U), hence
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Eτ+2 ⊥⊥ (Yτ+1, · · · , Y2, U). Second, Restriction 7 (i) in particular yields Eτ+1 ⊥⊥

(Yτ , · · · , Y1, U). Using these two independence results, we obtain

FYτ+2|Yτ+1···Y2U(y
′ | (y), u) = Pr[g((y), u, Eτ+2) ≤ y′ | (Yτ+1, · · · , Y2) = (y), U = u]

= Pr[g((y), u, Eτ+2) ≤ y′]

= Pr[g((y), u, Eτ+1) ≤ y′]

= Pr[g((y), u, Eτ+1) ≤ y′ | (Yτ , · · · , Y1) = (y), U = u]

= FYτ+1|Yτ ···Y1U(y
′ | (y), u)

for all y′, (y), u, where the second equality follows from Eτ+2 ⊥⊥ (Yτ+1, · · · , Y2, U), the

third equality follows from identical distribution of Et by Restriction 1, and the forth

equality follows from Eτ+1 ⊥⊥ (Yτ , · · · , Y1, U).

(ii) Restriction 7 (ii) implies that Vτ+1 ⊥⊥ (g(Yτ+1, · · · , Y1, U, Eτ+1), Yτ , · · · , Y1, U),

hence Vτ+1 ⊥⊥ (Yτ+1, · · · , Y2, U). Restriction 7 (ii) also implies Vτ ⊥⊥ (Yτ , · · · , Y1, U).

Using these two independence results, we obtain

FDτ+1|Yτ+1···Y2U(d | (y), u) = Pr[h((y), u, Vτ+1) ≤ d | (Yτ+1, · · · , Y2) = (y), U = u]

= Pr[h((y), u, Vτ+1) ≤ d]

= Pr[h((y), u, Vτ ) ≤ d]

= Pr[h((y), u, Vτ ) ≤ d | (Yτ , · · · , Y1) = (y), U = u]

= FD1|Yτ ···Y1U(d | (y), u)

for all d, (y), u, where the second equality follows from Vτ+1 ⊥⊥ (Yτ+1, · · · , Y2, U), the

third equality follows from identical distribution of Vt from Restriction 1, and the

forth equality follows from Vτ ⊥⊥ (Yτ , · · · , Y1, U). �

Lemma 10 (Identification). Under Restrictions 1, 4, 7, and 8, the quadruple

(FYτ+2|Yτ+1···Y2U , FDτ+1|Yτ+1···Y2U , FYτ ···Y1UDτ−1···D1(· · · , · , (1)), FZ|U) is uniquely deter-

mined by FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and FYτ+1···Y1ZDτ ···D1(· · · , · , (1)).
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Proof. Given fixed (y) and z, define the operators L(y),z : L2(FYt) → L2(FYt),

P(y) : L2(FU) → L2(FYt), Qz : L2(FU) → L2(FU), R(y) : L2(FU) → L2(FU), S(y) :

L2(FYt) → L2(FU), T(y) : L2(FYt) → L2(FU), and T
′
(y) : L2(FU) → L2(FU) by

(L(y),zξ)(yτ+2) =

∫
fYτ+2···Y1ZDτ+1···D1(yτ+2, (y), y1, z, (1)) · ξ(y1)dy1,

(P(y)ξ)(yτ+2) =

∫
fYτ+2|Yτ+1···Y2U(yτ+2 | (y), u) · ξ(u)du,

(Qzξ)(u) = fZ|U(z | u) · ξ(u),

(R(y)ξ)(u) = fDτ+1|Yτ+1···Y2U(1 | (y), u) · ξ(u),

(S(y)ξ)(u) =

∫
fYτ+1···Y2Y1UDτ ···D1((y), y1, u, (1)) · ξ(y1)dy1,

(T(y)ξ)(u) =

∫
fY1|Yτ+1···Y2UDτ+1D1(y1 | (y), u, (1)) · ξ(y1)dy1,

(T ′
(y)ξ)(u) = fYτ+1···Y2UDτ+1···D1((y), u, (1)) · ξ(u)

respectively. The operators L(y),z, P(y), S(y), and T(y) are integral operators whereas

Qz, R(y), and T ′
(y) are multiplication operators. Note that L(y),z is identified from

observed joint distribution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)).

Step 1: Uniqueness of FYτ+2|Yτ+1···Y2U and FZ|U

The kernel fYτ+2···Y1ZDτ+1···D1( · , (y), · , z, (1)) of the integral operator L(y),z can be

rewritten as

fYτ+2···Y1ZDτ+1···D1(yτ+2, (y), y1, z, (1)) =

∫
fYτ+2|Yτ+1···Y1ZUDτ+1···D1

(yτ+2 | (y), y1, z, u, (1))

×fZ|Yτ+1···Y1UDτ+1···D1
(z | (y), y1, u, (1))

×fDτ+1|Yτ+1···Y1UDτ ···D1
(1 | (y), y1, u, (1))

×fYτ+1···Y1UDτ ···D1
((y), y1, u, (1)) du(24)

But by Lemma 8 (i), (iv), and (iii), respectively, Restriction 7 implies that

fYτ+2|Yτ+1···Y1ZUDτ+1···D1(yτ+2 | (y), y1, z, u, (1)) = fYτ+2|Yτ+1···Y2U(yτ+2 | (y), u),

fZ|Yτ+1···Y1UDτ+1···D1(z | (y), y1, u, (1)) = fZ|U(z | u),

fDτ+1|Yτ+1···Y1UDτ ···D1(1 | (y), y1, u, (1)) = fDτ+1|Yτ+1···Y2U(1 | (y), u).
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Equation (24) thus can be rewritten as

fYτ+2···Y1ZDτ+1···D1(yτ+2, (y), y1, z, (1)) =

∫
fYτ+2|Yτ+1···Y2U(yτ+2 | (y), u) · fZ|U(z | u)

×fDτ+1|Yτ+1···Y2U(1 | (y), u)

×fYτ+1···Y1UDτ ···D1((y), y1, u, (1)) du

But this implies that the integral operator Ly,z is written as the operator composition

L(y),z = P(y)QzR(y)S(y).

Restriction 8 (i), (ii), (iii), and (iv) imply that the operators P(y), Qz, R(y), and

S(y) are invertible, respectively. Hence so is L(y),z. Using the two values {0, 1} of Z,

form the product

L(y),1L
−1
y,0 = P(y)Q1/0P

−1
(y)

where Qz/z′ := QzQ
−1
z′ . By Restriction 8 (ii), the operator L(y),1L

−1
(y),0 is bounded.

The expression L(y),1L
−1
(y),0 = P(y)Q1/0P

−1
(y) thus allows unique eigenvalue-eigenfunction

decomposition.

The distinct proxy odds as in Restriction 8 (ii) guarantee distinct eigenvalues

and single dimensionality of the eigenspace associated with each eigenvalue. Within

each of the single-dimensional eigenspace is a unique eigenfunction pinned down by

L1-normalization because of the unity of integrated densities. The eigenvalues λ(u)

yield the multiplier of the operator Q1/0, hence λ(u) = fZ|U(1 | u)/fZ|U(0 | u).

This proxy odds in turn identifies fZ|U( · | u) since Z is binary. The correspond-

ing normalized eigenfunctions are the kernels of the integral operator P(y), hence

fYτ+2|Yτ+1···Y2U( · | (y), u). Lastly, Restriction 4 facilitates unique ordering of the

eigenfunctions fYτ+2|Yτ+1···Y2U( · | (y), u) by the distinct concrete values of u = λ(u).

This is feasible because the eigenvalues λ(u) = fZ|U(1 | u)/fZ|U(0 | u) are invariant

from (y). That is, eigenfunctions fYτ+2|Yτ+1···Y2U( · | (y), u) of the operator L(y),1L
−1
(y),0

across different (y) can be uniquely ordered in u invariantly from (y) by the common

set of ordered distinct eigenvalues u = λ(u).
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Therefore, FYτ+2|Yτ+1···Y2U and FZ|U are uniquely determined by the observed joint

distribution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)). Equivalently, the operators P(y) and Qz

are uniquely determined for each (y) and z, respectively.

Step 2: Uniqueness of FYτ+1···Y1UDτ ···D1(· · · , · , (1))

By Lemma 8 (ii), Restriction 7 implies fYτ+1|Yτ ···Y1UDτ ···D1(y
′ | (y), u, (1)) = fYτ+1|Yτ ···Y1U

(y′ | (y), u). Using this equality, write the density of the observed joint distribution

FYτ+1···Y1Dτ ···D1(· · · , (1)) as

fYτ+1···Y1Dτ ···D1(y
′, (y), (1)) =

∫
fYτ+1|Yτ ···Y1UDτ ···D1(y

′ | (y), u, (1))

×fYτ ···Y1UDτ ···D1((y), u, (1))du

=

∫
fYτ+1|Yτ ···Y1U(y

′ | (y), u)

×fYτ ···Y1UDτ ···D1((y), u, (1))du(25)

By Lemma 9 (i), FYτ+2|Yτ+1···Y2U(y
′ | (y), u) = FYτ+1|Yτ ···Y1U(y

′ | (y), u) for all y′, (y), u.

Therefore, we can write the operator P(y) as

(P(y)ξ)(y
′) =

∫
fYτ+2|Yτ+1···Y2U (y

′ | (y), u) · ξ(u)du =

∫
fYτ+1|Yτ ···Y1U (y

′ | (y), u) · ξ(u)du.

With this operator notation, it follows from (25) that

fYτ+1···Y1Dτ ···D1( · , (y), (1)) = P(y)fYτ ···Y1UDτ ···D1((y), · , (1)).

By Restriction 8 (i) and (ii), this operator equation can be solved for the function

fYτ ···Y1UDτ ···D1((y), · , (1)) as

(26) fYτ ···Y1UDτ ···D1((y), · , (1)) = P−1
(y) fYτ+1···Y1Dτ ···D1( · , (y), (1))

Recall that P(y) was shown in Step 1 to be uniquely determined by the observed joint

distribution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)). The function fYτ+1···Y1Dτ ···D1( · , (y), (1)) is

also uniquely determined by the observed joint distribution fYτ+1···Y1Dτ ···D1(· · · , (1)).

Therefore, (25) shows that fYτ ···Y1UDτ ···D1(· · · , · , (1)) is uniquely determined by the

observed joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)).
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Using the solution to the above inverse problem, we can write the kernel of the

operator S(y) as

fYτ+1···Y1UDτ ···D1(y
′, (y), u, (1)) = fYτ+1|Yτ ···Y1UDτ ···D1

(y′ | (y), u, (1)) · fYτ ···Y1UDτ ···D1((y), u, (1))

= fYτ+1|Yτ ···Y1U (y
′ | (y), u) · fYτ ···Y1UDτ ···D1((y), u, (1))

= fYτ+2|Yτ+1···Y2U (y
′ | (y), u) · fYτ ···Y1UDτ ···D1((y), u, (1))

= fYτ+2|Yτ+1···Y2U (y
′ | (y), u)

×[P−1
(y) fYτ+1···Y1ZDτ ···D1( · , (y), z, (1))](u)

where the second equality follows from Lemma 8 (ii), the third equality follows

from Lemma 9 (i), and the forth equality follows from (26). Since fYτ+2|Yτ+1···Y2U

was shown in Step 1 to be uniquely determined by the observed joint distribution

FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and [P−1
(y) fYτ+1···Y1ZDτ ···D1( · , (y), z, (1))] was shown in

the previous paragraph to be uniquely determined for each y by the observed joint dis-

tributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)), it follows that

fYτ+1···Y1UDτ ···D1(· · · , · , (1)) too is uniquely determined by the observed joint distri-

butions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)). Equivalently, the

operator S(y) is uniquely determined for each (y).

Step 3: Uniqueness of FY1|Yτ+1···Y2UDτ+1···D1( · | · · · , · , (1))

First, note that the kernel of the composite operator T ′
(y)T(y) can be written as

fYτ+1···Y2UDτ+1···D1((y), u, (1)) · fY1|Yτ+1···Y2UDτ+1···D1(y1 | (y), u, (1))

= fYτ+1···Y1UDτ+1···D1((y), y1, u, (1))

= fDτ+1|Yτ+1···Y1UDτ ···D1(1 | (y), y1, u, (1)) · fYτ+1···Y1UDτ ···D1((y), y1, u, (1))

= fDτ+1|Yτ+1···Y2U(1 | (y), u) · fYτ+1···Y1UDτ ···D1((y), y1, u, (1))(27)

where the last equality is due to Lemma 8 (iii). But the last expression corresponds to

the kernel of the composite operator R(y)S(y), thus showing that T ′
(y)T(y) = R(y)S(y).

But then, L(y),z = P(y)QzR(y)S(y) = P(y)QzT
′
(y)T(y). Note that the invertibility of

R(y) and S(y) as required by Assumption 8 implies invertibility of T ′
(y) and T(y) as
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well, for otherwise the equivalent composite operator T ′
(y)T(y) = R(y)S(y) would have

a nontrivial nullspace.

Using Restriction 8, form the product of operators as

L−1
(y),0L(y),1 = T−1

(y)Q1/0T(y)

The disappearance of T ′
(y) is due to commutativity of multiplication operators. By

the same logic as in Step 1, this expression together with Restriction 8 (ii) admits

unique left eigenvalue-eigenfunction decomposition. Moreover, the point spectrum is

exactly the same as the one in Step 1, as is the middle multiplication operator Q1/0.

This equivalence of the spectrum allows consistent ordering of U with that of Step 1.

Left eigenfunctions yield the kernel of T(y) pinned down by the normalization of unit

integral. This shows that the operator T(y) is uniquely determined by the observed

joint distribution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)).

Step 4: Uniqueness of FYτ+1···Y2UDτ+1···D1(· · · , · , (1))

Equation (27) implies that∫
fY1|Yτ+1···Y2UDτ+1···D1(y1 | (y), u, (1)) · fYτ+1···Y2UDτ+1···D1((y), u, (1))du

= fYτ+1···Y1Dτ+1···D1((y), y1, (1))

hence yielding the linear operator equation

T ∗
(y)fYτ+1···Y2UDτ+1···D1((y), ·, (1)) = fYτ+1···Y1Dτ+1···D1((y), ·, (1))

where T ∗
(y) denotes the adjoint operator of T(y). Since T(y) is invertible, so is its adjoint

operator T ∗
(y). But then, the multiplier of the multiplication operator T ′

(y) can be given

by the unique solution to the above linear operator equation, i.e.,

fYτ+1···Y2UDτ+1···D1((y), ·, (1)) = (T ∗
(y))

−1fYτ+1···Y1Dτ+1···D1((y), ·, (1))

T(y) hence T
∗
(y) was shown to be uniquely determined by FYτ+2···Y1ZDτ+1···D1(· · · , · , (1))

in Step 3, and fYτ+1···Y1Dτ+1···D1(· · · , (1)) is also available from observed data. There-

fore, the operator T ′
(y) is uniquely determined by FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)).
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Step 5: Uniqueness of FDτ+1|Yτ+1···Y2U(1 | · · · , · )

First, the definition of the operators R(y), S(y), T(y), and T
′
(y) and Lemma 8 (iii) yield

the operator equality R(y)S(y) = T ′
(y)T(y), where T(y) and T

′
(y) have been shown to be

uniquely determined by the observed joint distribution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1))

in Steps 3 and 4, respectively. Recall that S(y) was also shown in Step 2 to be uniquely

determined by the observed joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and

fYτ+1···Y1Dτ ···D1(· · · , (1)). Restriction 8 (iv) guarantees invertibility of S(y). It follows

that the operator inversion R(y) = (R(y)S(y))S
−1
(y) = (T ′

(y)T(y))S
−1
(y) yields the operator

R(y), in turn showing that its multiplier fDτ+1|Yτ+1···Y2U(1 | (y), · ) is uniquely deter-

mined for each (y) by the observed joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1))

and fYτ+1···Y1Dτ ···D1(· · · , (1)).

Step 6: Uniqueness of FYτ ···Y1UDτ−1···D1(· · · , · , (1))

Recall from Step 2 that fYτ+1···Y1UDτ ···D1(· · · , · , (1)) is uniquely determined by the ob-

served joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)).

We can write

fYτ+1···Y1UDτ ···D1(y
′, (y), u, (1)) = fYτ+1|Yτ ···Y1UDτ ···D1(y

′ | (y), u, (1))

×fDτ |Yτ ···Y1UDτ−1···D1(1 | (y), u, (1))

×fYτ ···Y1UDτ−1···D1((y), u, (1))

= fYτ+1|Yτ ···Y1U(y
′ | (y), u) · fDτ |Yτ ···Y1U(1 | (y), u)

×fYτ ···Y1UDτ−1···D1((y), u, (1))

= fYτ+2|Yτ+1···Y2U(y
′ | (y), u) · fDτ+1|Yτ+1···Y2U(1 | (y), u)

×fYτ ···Y1UDτ−1···D1((y), u, (1)),

where the second equality follows from Lemma 8 (ii), and the third equality follows

from Lemma 9 (i) and (ii). For a given ((y), u), there must exist some y′ such

that fYτ+2|Yτ+1···Y2U(y
′ | (y), u) > 0 by a property of conditional density functions.

Moreover, Restriction 8 (iii) requires that fDτ+1|Yτ+1···Y2U(1 | (y), u) > 0 for a given
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(y) for all u. Therefore, for such a choice of y′, we can write

fYτ ···Y1UDτ−1···D1((y), u, (1)) =
fYτ+1···Y1UDτ ···D1(y

′, (y), u, (1))

fYτ+2|Yτ+1···Y2U(y
′ | (y), u) · fDτ+1|Yτ+1···Y2U(1 | (y), u)

fYτ+2|Yτ+1···Y2U(y
′ | (y), u) was shown in Step 1 to be uniquely determined by the ob-

served joint distribution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)), fYτ+1···Y1UDτ ···D1(y
′, (y), u, (1))

was shown in Step 2 to be uniquely determined by the observed joint distributions

FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)), and fDτ+1|Yτ+1···Y2U(1 |

(y), u) was shown in Step 5 to be uniquely determined by the observed joint distribu-

tions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)). Therefore, it follows

that the joint density fYτ ···Y1UDτ−1···D1(· · · , · , (1)) is uniquely determined by the ob-

served joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)).

�

10.4. Models with Time-Specific Effects. The baseline model (1) that we

considered in this paper assumes that the dynamic model g is time-invariant. It is

often more realistic to allow this model to have time-specific effects. Consider the

following variant of the model (1).

Yt = gt(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

Dt = h(Yt, U, Vt) t = 1, · · · , T − 1 (Hazard Model)

FY1U (Initial joint distribution of (Y1, U))

Z = ζ(U,W ) (Optional: nonclassical proxy of U)

The differences from (1) are the t subscripts under g.

The objective is to identify the model ({gt}Tt=2, h, FY1U , ζ). The main obstacle is

that the invariant transition of Lemma 4 (i) is no longer useful. As a result, Steps 2

and 6 in the proof of Lemma 2 break down. In order to remedy this hole, we need to

observe data of an additional time period prior to the start of the data, i.e., t = 0.

For brevity, we show this result for the case of T = 3.

Lemma 11 (Identification). Suppose that Restrictions 1, 2, 3, and 4 hold con-

ditionally on Pr(D0 = 1). Then the model ({FYt|Yt−1U}3t=2, FDt|YtU , FY1U |D0=1, FZ|U)
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is uniquely determined by the observed joint distributions FY1Y0ZD0( ·, · , · , 1),

FY2Y1Y0ZD1D0( ·, ·, · , · , 1, 1), and FY3Y2Y1Y0ZD2D1D0( ·, ·, ·, ·, ·, 1, 1, 1).

Proof. Many parts of the proof Lemma 2 remains available. However, under the

current model with time-specific transition, the operator Py is time-specific. There-

fore, we use two operators Py : L2(FU) → L2(FYt) and P ′
y : L2(FU) → L2(FYt) for

each y defined as

(Pyξ)(y2) =

∫
fY2|Y1U(y2 | y, u) · ξ(u)du,

(P ′
yξ)(y3) =

∫
fY3|Y2U(y3 | y, u) · ξ(u)du,

Accordingly, we employ the two observable operators Ly,z : L2(FYt) → L2(FYt) and

L′
y,z : L2(FYt) → L2(FYt) for each (y, z) defined as

(Ly,zξ)(y2) =

∫
fY2Y1Y0ZD1D0(y2, y, y0, z, 1, 1) · ξ(y0)dy0,

(L′
y,zξ)(y3) =

∫
fY3Y2Y1ZD2D1D0(y3, y, y1, z, 1, 1, 1) · ξ(y1)dy1.

All the other operators directly carry over from the proof of Lemma 2 as:

(Qzξ)(u) = fZ|U(z | u) · ξ(u),

(Ryξ)(u) = fD2|Y2U(1 | y, u) · ξ(u),

(Syξ)(u) =

∫
fY2Y1UD1D0(y, y1, u, 1, 1) · ξ(y1)dy1,

(Tyξ)(u) =

∫
fY1|Y2UD2D1D0(y1 | y, u, 1, 1, 1) · ξ(y1)dy1,

(T ′
yξ)(u) = fY2UD2D1D0(y, u, 1, 1, 1) · ξ(u)

except that the additional argument D0 = 1 is attached to the kernels of Sy and Ty

and the multiplier of T ′
y.

The first task is to identify the kernels of these two integral operators. Following

Step 1 of the proof of Lemma 2 by using the observed operator L′
y,z shows that P

′
y and

Qz are identified. Equivalently, FY3|Y2U and FZ|U are identified. Similarly, following
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Step 1 by using the observed operator Ly,z shows that Py and Qz are identified.

Equivalently, FY2|Y1U is identified as well.

Next, follow Step 2 of the proof of Lemma 2, except that we use our current

definition of Py instead of P ′
y. It follows that

fY2Y1UD1D0(y
′, y, u, 1, 1) = fY2|Y1U(y

′ | y, u) · [P−1
y fY2Y1D1D0( · , y, 1, 1)](u)

where fY2|Y1U was identified as the kernel of Py in the previous step, Py was identified

in the previous step, and fY2Y1D1D0( ·, ·, 1, 1) is observable from data. This shows

that the operator Sy is identified for each y.

Steps 3–5 analogously follow from the proof of Lemma 2 except that the current

definitions of Ly,z, Ry, Sy, Ty, and T
′
y are used. These steps show that Ry in particular

are identified for each y.

Lastly, extending the argument of Step 6 in the proof of Lemma 2 yields

fY1U |D0(y, u | 1) = fY2Y1UD1D0(y
′, y, u, 1, 1)

fY2|Y1U(y
′ | y, u)fD2|Y2U(1 | y, u)fD0(1)

where fY2Y1UD1D0( ·, ·, ·, 1, 1) was identified in the second step, fY2|Y1U was identified

in the first step, fD2|Y2U was identified in the previous step, and fD0(1) is observable

from data. It follows that FY1U |D0=1 is identified. �

10.5. Censoring by Contemporaneous Dt instead of Lagged Dt. For the

main identification result discussed, we assumed that lagged selection indicator Dt

induces censored observation of Yt as follows:

observe Y1,

observe Y2 if D1 = 1,

observe Y3 if D1 = D2 = 1.

In many application, contemporaneous Dt instead of lagged Dt may induce censored

observation of Yt as follows:

observe Y1, if D1 = 1

observe Y2 if D1 = D2 = 1,

observe Y3 if D1 = D2 = D3 = 1.
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where the model follows a slight modification of (1):

Yt = g(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

Dt = h(Yt, U, Vt) t = 1, · · · , T (Hazard Model)

FY1U (Initial joint distribution of (Y1, U))

Z = ζ(U,W ) (Optional: nonclassical proxy of U)

(The difference from the baseline model (1) is that the hazard model is defined for

all t = 1, · · · , T .) In this model, the problem of identification is to show the well-

definition of

(FY2Y1ZD2D1( ·, ·, ·, 1, 1), FY3Y2Y1ZD3D2D1( ·, ·, ·, ·, 1, 1, 1)) 7→ (g, h, FY1U |D1=1, ζ).

First, consider the following auxiliary lemma, which can be proved similarly to

Lemma 3.

Lemma 12 (Independence). The following implications hold:

(i) Restriction 2 (i) ⇒ Y3 ⊥⊥ (Y1, D1, D2, D3, Z) | (Y2, U).

(ii) Restriction 2 (i) ⇒ Y2 ⊥⊥ (D1, D2, Z) | (Y1, U).

(iii) Restriction 2 (ii) ⇒ D3 ⊥⊥ Y2 | (Y3, U).

(iv) Restriction 2 (iii) ⇒ Z ⊥⊥ (Y2, Y1, D3, D2, D1) | U .

Some of the rank conditions of Restriction 3 are replaced as follows.

Restriction 9 (Rank Conditions). The following conditions hold for every y ∈

Y :

(i) Heterogeneous Dynamics: the integral operator Py : L2(FU) → L2(FYt) defined

by Pyξ(y
′) =

∫
fY3|Y2U(y

′ | y, u) · ξ(u)du is bounded and invertible.

(ii) Nondegenerate Proxy Model: there exists δ > 0 such that δ 6 fZ|U(1 | u) 6 1−δ

for all u.

Relevant Proxy: fZ|U(1 | u) ̸= fZ|U(1 | u′) whenever u ̸= u′.

(iii) No Extinction: fD2|Y2U(1 | y, u) > 0 for all u ∈ U .

(iv) Initial Heterogeneity: the two integral operators L̃y : L2(Yt) → L2(U), and
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Sy : L2(U) → L2(Yt) respectively defined by L̃yξ(u) =
∫
fY2Y1UD3D2D1(y, y1, u, 1, 1, 1) ·

ξ(y1)dy1 and Syξ(y1) =
∫
fY2Y1UD2D1(y, y1, u, 1, 1) ·ξ(u)du are bounded and invertible.

Lemma 13 (Identification). Under Restrictions 1, 2, 4, and 9, the quadruple

(FY3|Y2U , FD3|Y3U , FY1U |D1=1, FZ|U) is uniquely determined by FY2Y1ZD2D1( ·, ·, ·, 1, 1)

and FY3Y2Y1ZD3D2D1( ·, ·, ·, ·, 1, 1, 1).

Proof. Given fixed y and z, define the operators Ly,z : L2(FYt) → L2(FYt),

Py : L2(FU) → L2(FYt), Qz : L2(FU) → L2(FU), L̃y : L2(Yt) → L2(U), and Sy :

L2(U) → L2(Yt) by

(Ly,zξ)(y3) =

∫
fY3Y2Y1ZD3D2D1(y3, y, y1, z, 1, 1, 1) · ξ(y1)dy1,

(Pyξ)(y3) =

∫
fY3|Y2U(y3 | y, u) · ξ(u)du,

(Qzξ)(u) = fZ|U(z | u) · ξ(u),

(L̃yξ)(u) =

∫
fY2Y1UD3D2D1(y, y1, u, 1, 1, 1) · ξ(y1)dy1,

(Syξ)(y1) =

∫
fY2Y1UD2D1(y, y1, u, 1, 1) · ξ(u)du

respectively. Similarly to the proof of Lemma 2, the operator Ly,z is identified from

observed joint distribution FY3Y2Y1ZD3D2D1( ·, ·, ·, ·, 1, 1, 1).

Step 1: Uniqueness of FY3|Y2U and FZ|U

The kernel fY3Y2Y1ZD3D2D1( · , y, · , z, 1, 1, 1) of the integral operator Ly,z can be

rewritten as

fY3Y2Y1ZD3D2D1(y3, y, y1, z, 1, 1, 1) =

∫
fY3|Y2Y1ZUD3D2D1(y3 | y, y1, z, u, 1, 1, 1)

×fZ|Y2Y1UD3D2D1(z | y, y1, u, 1, 1, 1)(28)

×fY2Y1UD3D2D1(y, y1, u, 1, 1, 1) du

But by Lemma 12 (i) and (iv) respectively, Restriction 2 implies that

fY3|Y2Y1ZUD3D2D1(y3 | y, y1, z, u, 1, 1, 1) = fY3|Y2U(y3 | y, u),

fZ|Y2Y1UD3D2D1(z | y, y1, u, 1, 1, 1) = fZ|U(z | u).
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Equation (28) thus can be rewritten as

fY3Y2Y1ZD3D2D1(y3, y, y1, z, 1, 1, 1) =

∫
fY3|Y2U(y3 | y, u) · fZ|U(z | u)

×fY2Y1UD3D2D1(y, y1, u, 1, 1, 1) du

But this implies that the integral operator Ly,z is written as the operator composition

Ly,z = PyQzL̃y

Restriction 9 (i), (ii), and (iv) imply that the operators Py, Qz, and L̃y are in-

vertible, respectively. Hence so is Ly,z. Using the two values {0, 1} of Z, form the

product

Ly,1L
−1
y,0 = PyQ1/0P

−1
y

where Qz/z′ := QzQ
−1
z′ is the multiplication operator with proxy odds defined by

(Q1/0ξ)(u) =
fZ|U(1 | u)
fZ|U(0 | u)

ξ(u).

The rest of Step 1 is analogous to that of the proof of Lemma 2. There-

fore, FY3|Y2U and FZ|U are uniquely determined by the observed joint distribution

FY3Y2Y1ZD3D2D1( ·, ·, ·, ·, 1, 1, 1). Equivalently, the operators Py and Qz are uniquely

determined for each y and z, respectively.

Step 2: Uniqueness of FY2Y1UD2D1( · , · , · , 1, 1)

By Lemma 12 (ii), Restriction 2 implies fY2|Y1UD2D1(y
′ | y, u, 1, 1) = fY2|Y1U(y

′ |

y, u). Using this equality, write the density of the observed joint distribution

FY2Y1D2D1( · , · , 1, 1) as

fY2Y1D2D1(y
′, y, 1, 1) =

∫
fY2|Y1UD2D1(y

′ | y, u, 1, 1)fY1UD2D1(y, u, 1, 1)du

=

∫
fY2|Y1U(y

′ | y, u)fY1UD2D1(y, u, 1, 1)du(29)

By Lemma 4 (i), FY3|Y2U(y
′ | y, u) = FY2|Y1U(y

′ | y, u) for all y′, y, u. Therefore, we

can write the operator Py as

(Pyξ)(y
′) =

∫
fY3|Y2U(y

′ | y, u) · ξ(u)du =

∫
fY2|Y1U(y

′ | y, u) · ξ(u)du.
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With this operator notation, it follows from (29) that

fY2Y1D2D1( · , y, 1, 1) = PyfY1UD2D1(y, · , 1, 1).

By Restriction 9 (i), this operator equation can be solved for fY1UD2D1(y, · , 1, 1) as

(30) fY1UD2D1(y, · , 1, 1) = P−1
y fY2Y1D2D1( · , y, 1, 1)

Recall that Py was shown in Step 1 to be uniquely determined by the observed joint

distribution FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1). The function fY2Y1D2D1( · , y, 1, 1)

is also uniquely determined by the observed joint distribution FY2Y1D2D1( · , · , 1, 1)

up to null sets. Therefore, (29) shows that fY1UD2D1( · , · , 1, 1) is uniquely deter-

mined by the observed joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and

FY2Y1D2D1( · , · , 1, 1).

Using the solution to the above inverse problem, we can write the kernel of the

operator Sy as

fY2Y1UD2D1(y
′, y, u, 1, 1) = fY2|Y1UD2D1(y

′ | y, u, 1, 1) · fY1UD2D1(y, u, 1, 1)

= fY2|Y1U(y
′ | y, u) · fY1UD2D1(y, u, 1, 1)

= fY3|Y2U(y
′ | y, u) · fY1UD2D1(y, u, 1, 1)

= fY3|Y2U(y
′ | y, u) · [P−1

y fY2Y1D2D1( · , y, 1, 1)](u)

where the second equality follows from Lemma 12 (ii), the third equality follows

from Lemma 4 (i), and the forth equality follows from (30). Since fY3|Y2U was

shown in Step 1 to be uniquely determined by the observed joint distribution

FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and [P−1
y fY2Y1D2D1( · , y, 1, 1)] was shown in

the previous paragraph to be uniquely determined for each y by the observed joint

distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1), it follows

that fY2Y1UD2D1( · , · , · , 1, 1) too is uniquely determined by the observed joint dis-

tributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1). Equivalently,

the operator Sy is identified for each y.

Step 3: Uniqueness of FY3D3|Y3U( · , 1 | · , · )
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The density of the observed joint distribution FY3Y2Y1D3D2D1(y3, y2, y1, 1, 1, 1) can be

decomposed as

fY3Y2Y1D3D2D1(y3, y2, · , 1, 1, 1) =

∫
fY3D3|Y2Y1UD2D1

(y3, 1 | y2, y1, u, 1, 1)

×fY2Y1UD2D1(y2, y1, u, 1, 1)du

=

∫
fY3D3|Y2U (y3, 1 | y2, u) · fY2Y1UD2D1(y2, y1, u, 1, 1)du

= Sy2 · fY3D3|Y2U (y3, 1 | y2, · )

for each y3 and y2, where the second equality follows from Lemma 12 (i) and (iii). By

Restriction 9 (iv), Sy2 is invertible, and we can rewrite the above equality as

fY3D3|Y2U(y3, 1 | y2, · ) = S−1
y2
fY3Y2Y1D3D2D1(y3, y2, · , 1, 1, 1).

Recall that Sy2 was shown to be uniquely determined in Step 2 by the observed

joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).

Therefore, FY3D3|Y2U( · , 1 | · , · ) is identified by the observed joint distributions

FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).

Step 4: Uniqueness of FD3|Y3U(1 | · , · )

The density of the observed joint distribution FY3D3|Y2U(y3, 1 | y2, u) can be decom-

posed as

fY3D3|Y2U(y3, 1 | y2, u) = fD3|Y3Y2U(1 | y3, y2, u) · fY3|Y2U(y3 | y2, u)

= fD3|Y3U(1 | y3, u) · fY3|Y2U(y3 | y2, u)

where the second equality follows from Lemma 12 (iii). For each pair (y3, u) in the

support, there exists y2 such that fY3|Y2U(y3 | y2, u) > 0. For such y2, rewrite the

above equation as

fD3|Y3U(1 | y3, u) =
fY3D3|Y2U(y3, 1 | y2, u)
fY3|Y2U(y3 | y2, u)

.

Recall that Step 1 showed that FY3|Y2U is uniquely determined by the observed joint

distribution FY3Y2Y1ZD3D2D1( ·, ·, ·, ·, 1, 1, 1), and Step 3 showed that FY3D3|Y2U( · , 1 |

· , · ) is identified by the observed joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1)
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and FY2Y1D2D1( · , · , 1, 1). Therefore, FD3|Y3U(1 | · , · ) is identified by the observed

joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).

Step 5: Uniqueness of FY1U |D1=1

Recall from Step 2 that fY2Y1UD2D1( · , · , · , 1, 1) is uniquely determined by the ob-

served joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).

We can write

fY2Y1UD2D1(y
′, y, u, 1, 1) = fD2|Y2Y1UD1

(1 | y′, y, u, 1)fY2|Y1UD1
(y′ | y, u, 1)fY1UD1(y, u, 1)

= fD2|Y2U (1 | y′, u)fY2|Y1U (y
′ | y, u)fY1UD1(y, u, 1)

= fD3|Y3U (1 | y′, u)fY3|Y2U (y
′ | y, u)fY1UD1(y, u, 1)

where the second equality follows from Lemma 12 (ii), and the third equality follows

from Lemma 4 (i) and (ii). For a given (y, u), there must exist some y′ such that

fY3|Y2U(y
′ | y, u) > 0 by a property of conditional density functions. Moreover, Re-

striction 9 (iii) requires that fD3|Y3U(1 | y′, u) > 0 for a given y′ for all u. Therefore,

for such a choice of y′, we can write

fY1UD1(y, u, 1) =
fY2Y1UD2D1(y

′, y, u, 1, 1)

fY3|Y2U(y
′ | y, u)fD3|Y3U(1 | y′, u)

Recall that fY3|Y2U( · | · , · ) was shown in Step 1 to be uniquely determined by the

observed joint distribution FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1), fY2Y1UD2D1( · , · , · , 1, 1)

was shown in Step 2 to be uniquely determined by the observed joint distributions

FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1), and fD3|Y3U(1 | · , · )

was shown in Step 4 to be uniquely determined by the observed joint distributions

FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1). Therefore, it follows

that the initial joint density fY1U |D1=1 is uniquely determined by the observed joint

distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1). �
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CHAPTER 2

Structural Partial Effects

1. Introduction

Economists are often interested in the structural partial effect β of models of the

form

Y = α+ βX + E , X ̸⊥⊥ E .

In this constant-coefficient affine structure, the local instrumental variable (LIV) de-

fined by d
dz
E[Y | Z = z]/ d

dz
E[X | Z = z] using any point of an instrumental variable

Z = z identifies this structural parameter β even if the first stage is nonparametric

and nonseparable. It boils down to the two-stage least squares when the first stage

is a constant-coefficient affine model.

More generally, economists are interested in the structural partial effect β(X, E) :=
∂
∂x
g(X, E) of nonparametric and nonseparable structural models of the form

Y = g(X, E), X ̸⊥⊥ E .

This paper shows that the LIV continues to identify the structural partial effect even

in this nonparametric framework under certain first-stage restrictions. Moreover, we

generalize the LIV identification methods to accommodate a more general class of

first-stage models.

An identification concept of nonseparable models under exogeneity and mono-

tonicity is discussed by Matzkin (2003). Hoderlein and Mammen (2007) discuss what

can be identified without monotonicity. Chesher (2003) identifies structural partial

effects of nonseparable models under endogeneity. In the meanwhile, control variable

approaches are proposed as ways to turn endogeneity into conditional exogeneity (Al-

tonji and Matzkin, 2005; Imbens and Newey, 2009). Identification of quantile struc-

tural functions under endogeneity is studied by Chernozhukov and Hansen (2005),
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Chernozhukov, Imbens and Newey (2007), Torgovitzky (2011), and D’Haultfoeuille

and Février (2011). Our work is perhaps most closely related to Chesher (2003)

who specifically identifies structural partial effects for well-defined subpopulations of

economic agents.

Because the statistical parameter (two-stage least squares) coincides with the

structural partial effect in the classical affine regression models, it is worth starting

out with this classical idea. We explore possible directions in which this classical idea

can be extend to nonparametric and nonseparable models. Heckman and Vytlacil

(1999, 2005, 2007) demonstrate that the localized version of the IV estimator (LIV)

identifies structural causal effects under nonparametric binary treatment models. We

show that the same statistical object can be used to identify average structural partial

effects for a class of nonseparable and nonparametric models in Section 2. We further

extend this idea in Section 3 for identification of the general marginal treatment

effect (MTE) projected on subpopulations characterized by all observed variables,

i.e., E[β(X, E) | Y XZ]. The identifying statistical parameter of a special case of

the MTE corresponds to well-known formula previously proposed in the literature

(Chesher, 2003; Imbens and Newey, 2009) - see Section 4.2.

2. The Local Instrumental Variable Estimator

Recall the classical two-stage constant-coefficient affine structures of the form

(31)


Y = α+ βX + E

X = γ + δZ + U

where E[(E , U) | Z] = (0, 0).

The structural parameter β is identified by the ratio of the two reduced-form mean

regressions

(32)
d
dz
E[Y | Z = z]

d
dz
E[X | Z = z]

.

A sample analog of this fraction is nothing but the two-stage least-squares estimator

of β.1

1 Recall that the two-stage least squares is β2SLS = e′2E[Z
′X]−1E[Z ′Y ] =

Cov(Z, Y )/Cov(Z,X) = [Cov(Z, Y )/Var(Z)]/[Cov(Z,X)/Var(Z)] = d
dzE[Y | Z = z]/ d

dzE[X | Z =

99



This fraction (32) remains to identify a variety of causal effects in another impor-

tant class of models. Heckman and Vytlacil (1999, 2005, 2007) consider a nonpara-

metric framework of binary treatment model of the form

(33)


Y = g(X, E)

X = 1{h(Z) > U}
where Z ⊥⊥ (E , U).

Despite the apparent discrepancy between the models (31) and (33), they show that

the same fraction (32) still identifies the marginal treatment effect E[g(1, E)−g(0, E) |

U ] under (33), which in turn can be used to recover various treatment parameters.

Heckman and Vytlacil call (32) the local instrumental variable (LIV) estimator.2

Given that the LIV identifies causal effects in both the parametric continuous

treatment model (31) and the nonparametric binary treatment model (33), our nat-

ural question is: to how much extent can we nonparametrically generalize (31) while

keeping the LIV capable of identifying causal effects? This question is practically im-

portant because the LIV formula (32) is a natural generalization of the conventional

two-stage least squares that certainly work for the classical model (31), whereas the

true model may be more general than (31).

In order to answer this question, consider a class of nonparametric and nonsepa-

rable two-stage structures of the form

(34)


Y = g(X, E)

X = h(Z,U)

where Z ⊥⊥ (E , U),

We define the partial effect by β(x, ε) := ∂
∂x
g(x, ε). It is straightforward to see that

the local average partial effect E[β(X, E) | Z = z] can be identified by the LIV formula

(32) under nonparametric regression models. We provide an exact condition under

z]. The numerator d
dzE[Y | Z = z] identifies the reduced-form composite parameter βδ and the

denominator d
dzE[X | Z = z] identifies the reduced-form first-stage parameter δ under the constant-

coefficient affine model (31).

2 They define the LIV as the derivative dE[Y | P = p]/dp where P = E[X | Z], but it is
equivalent to (32).
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which this LIV identification result remains to hold under the nonseparable model

(34).

Assumption 6 (Local Rank Condition for LIV). d
dz
E[X | Z = z] ̸= 0.

Assumption 7 (Stochastically Separable First Stage).

Cov
(
β(h(z, U), E), ∂

∂z
h(z, U)

)
= 0.

Assumption 6 is a generalization of the conventional rank condition δ ̸= 0 under

the classical model (31). In the case of endogeneity, Assumption 7 generally amounts

to separable first stage model h(z, u) = µ(z)+u, unless the second stage model takes

the specific form of a constant-coefficient affine model g(x, ε) = α+βx+ ε as in (31).

The following theorem states that this assumption is essential for the LIV formula

(32) to identify the local average partial effect E[β(X, E) | Z = z].

Theorem 2 (LIV: Necessary and Sufficient Condition). Suppose that Assumption

6 is satisfied for the model (34).3 Then,

E [β(X,A)|Z = z] =
d
dz
E[Y | Z = z]

d
dz
E[X | Z = z]

holds if and only if Assumption 7 is true.

If we allow the second stage structural function g to take more arbitrary forms than

the simple affine model (31), this necessary and sufficient condition generally amounts

separable first stage, h(z, u) = µ(z) + u, whose representative example is of course

the nonparametric mean regression model. Therefore, given the result of Theorem 2,

we hereafter discuss the LIV within the framework of the following assumption.

Assumption 8 (Separable First Stage). h(z, u) = µ(z) + u.

Recall that the two-stage least squares identifying the structural parameter β

under the classical model (31) can be interpreted as the coefficient in the regression of

3 In addition, we also assume the following regularity conditions: g and h are continuously
differentiable with respect to their first arguments; and β(h(z, ·), ·) is dominated in absolute value
by an L1(FEU ) function.
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Y on the predicted value of X, i.e., the partial effect of δZ on Y . This interpretation

carries over to the nonparametric model (34) under Assumption 8. That is, the

structural partial effect E[β(X, E) | Z = z] can be interpreted as and can be identified

by the partial effect of µ(Z) on Y .

Theorem 3 (Mean and Quantile LIV). Suppose that Assumptions 6 and 8 are

satisfied for the model (34).4 With the notation P := µ(Z), the following equalities

hold.

(i) E[β(X, E) | Z = z] =
d

dp
E[Y | P = p]

∣∣∣∣
p=µ(z)

and

(ii) E[β(X, E) | Y = QY |P (τ | µ(z)), Z = z] =
∂

∂p
QY |P (τ | p)

∣∣∣∣
p=µ(z)

where QY |P (τ | p) := inf{y | FY |P (y | p) > τ} denotes the τ -th quantile regression of

Y on P .

Combining the identifying equality of Theorem 2 with Theorem 3 (i), we have

E [β(X,A)|Z = z] =
d
dz
E[Y | Z = z]

d
dz
E[X | Z = z]︸ ︷︷ ︸

(a)

=
d

dp
E[Y | P = p]

∣∣∣∣
p=µ(z)︸ ︷︷ ︸

(b)

,

which confirms that the conventional property extends to the current nonparametric

setting, i.e., the structural partial effect can be identified by both (a) the ratio of

reduced-form partial effects and (b) the partial effect of Y on the predicted value P

of X.

This result even extends to the quantile counterpart. Quantile regressions are only

statistical objects, and usually do not have structural interpretations particularly

under endogeneity. Theorem 3 (ii), however, shows that the slope of the quantile

regression QY |P on the right-hand side does identify an average of the structural

partial effects β(X,A) on the left-hand side. Notice that the identifying quantile

regression is QY |P , which is in general different from QY |X .

4 In addition, we also assume the following regularity conditions: g is continuously differentiable
with respect to x; FY |P is continuously differentiable with respect to y; QY |P is continuously differ-
entiable with respect to p; fY |P is continuous in p; and β(h(z, ·), ·) is dominated in absolute value

by an L1(FEU ) function.
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We make a remark on the analogous expressions between parts (i) and (ii) of

Theorem 3. The mean regression E[Y | P ] is used to identify E[β(X, E) | Z] in

part (i), whereas the quantile regression QY |P is used to identify E[β(X, E) | Y, Z]

in part (ii). This parallel is intuitively straightforward, but is not too simple to be

explained concisely with logical precision, because quantile regressions do not directly

transform into moments in general. See the proof in the appendix to find out different

approaches used to prove the seemingly similar formulas in (i) and (ii).

3. Marginal Treatment Effects

The previous section studied identifiability of the local averages of the structural

partial effects E[β(X, E) | Z] and E[β(X, E) | Y, Z] by the LIV. However, the LIV

is nothing but one particular statistical expression, and need not be considered as

the sole identifying device. In this section, we ask if we can extend the idea of the

LIV to identify causal effects, E[β(X, E) | X,Z] and E[β(X, E) | Y,X,Z] on finer

subpopulations characterized by the additional conditioning variable X. Using the

same idea as Theorem 3 (i) under Assumptions 6 and 8 yields

E[β(X, E) | X = µ(z) + u, Z = z] =
d

dp
E[Y | X = p+ u, P = p]

∣∣∣∣
p=µ(z)

=
∂

∂x
E[Y | X = µ(z) + u, Z = z] +

∂
∂z
E[Y | X = µ(z) + u, Z = z]

µ′(µ(z))
(35)

The identifying statistical object on the right-hand side is no longer the LIV, but the

structural partial effect E[β(X, E) | X,Z] of interest is indeed identified. This section

presents generalization of this heuristic result by replacing Assumptions 6 and 8 by

the following assumptions.

Assumption 9 (Invertibility). h(z, · ) is invertible at each z, and υ(z, · ) denotes

the inverse.

Assumption 10 (Local Rank Condition for MTE). ∂
∂z
υ(z, x) ̸= 0.

103



Theorem 4 (Mean and Quantile MTE). Suppose that Assumptions 9 and 10 are

satisfied for the model (34).5 With the notation ρ(z, x) :=
[
∂υ(z,x)
∂x

]
/
[
∂υ(z,x)
∂z

]
, the

following equalities hold.

(i) E[β(X, E) | X = x, Z = z] =
∂

∂x
E[Y | X = x, Z = z]− ρ(z, x) · ∂

∂z
E[Y | X = x, Z = z] and

(ii) E[β(X, E) | Y = QY |XZ(τ | x, z),X = x, Z = z] =
∂

∂x
QY |XZ(τ | x, z)− ρ(z, x) · ∂

∂z
QY |XZ(τ | x, z)

Remark 11. While the model (34) entails the strong instrument independence

Z ⊥⊥ (E , U), only a weaker form of instrument independence Z ⊥⊥ E | U is required for

Theorem 4. In other words, the instrument Z may be correlated with the first-stage

unobservable U .

Observe the parallel between parts (i) and (ii) of Theorem 4, which is similar to

that of Theorem 3. The mean regression E[Y | X,Z] is used to identify E[β(X, E) |

X,Z] in part (i), whereas the quantile regression QY |X,Z is used to identify E[β(X, E) |

Y,X,Z] in part (ii). Again, this parallel is not too simple to be explained concisely

because differentiating quantile regressions do not directly transform into moments

of derivatives.

Theorem 4 (i) proposes identification of E[β(X, E) | X,Z], but the conditioning

variable X is by itself an endogenous outcome of more primitive variables (Z,U). In

order to give precise economic interpretation to this causal effect, it would be useful to

identify causal effects conditional on a set of primitive variables, e.g., E[β(x, E) | Z,U ]

instead of E[β(X, E) | X,Z]. Under Assumption 9, they in fact coincide to each other:

(36) E[β(x, E) | Z = z, U = υ(z, x)︸ ︷︷ ︸
Primitive Condition

] = E[β(X, E) | X = x, Z = z︸ ︷︷ ︸
Endogenous Condition

].

5 In addition, we also assume the following regularity conditions: g is continuously differentiable
with respect to x; FY |XZ is continuously differentiable with respect to y; QY |XZ is continuously
differentiable with respect to (x, z); fY |XZ is continuously differentiable with respect to (x, z); and

β(x, ·) is dominated in absolute value by an L1(FE|XZ) function.
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This shows that the formula in Theorem 4 (i) identifies the causal effects E[β(x, E) |

Z,U ], which is close in spirit to Heckman and Vytlacil’s (2005) marginal treatment ef-

fect (MTE) proposed in the context of the binary treatment model (33). We therefore

refer to the causal effects indentified in this section as the MTE.

Because Theorem 4 requires Assumption 9, identification of the MTE presumes

our knowledge of the first-stage structure h. In many economic applications, struc-

tural construction of economic models provide explicit formula for the first-stage

function h. The following example illustrates the case in point.

Example 2. Suppose that Y = g(X, E) models the demand for a single good

Y as a function of income X and preferences E as in the study of Engel curves.

Income X can be taken to be within-period total expenditure, which is justified under

preference restrictions (Lewbel, 1999). The first-stage endogenous choiceX = h(Z,U)

is modeled as a result of optimization behaviors.

Suppose that the dynamic consumption decision of economic agent at time t is

given by

max
{Xt+τ}T̄−t

τ=0

Et

[
T̄−t∑
τ=0

βτu(Xt+τ ; θ)

]
s.t. Mt+1 = (Mt −Xt)R + Zt+1

where u(·; θ) is the CARA utility function with parameter θ, Zt is the consumer’s

idiosyncratic labor income, Mt denotes assets, and R is the interest factor which is

fixed and deterministic for simplicity. If the growth of Zt is stochastic with Gaussian

iid innovation with variance σ2, then the first-stage function for individuals with no

initial assets is given by

Xt = Zt −
σ2θ

2β
,

where individuals have heterogeneous structural parameters (β, θ, σ2). Applying The-

orem 4 (i) together with (36) yields identification of the local average maginal Engel

coefficient

E[β(x, E) | Z = z, σ2θ/β = 2(z − x)] =
∂

∂x
E[Y | X = x,Z = z] +

∂

∂z
E[Y | X = x,Z = z]
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The object identified in this equation has a clear economic interpretation: the

average of heterogeneous marginal Engel coefficients at X = x among the subpop-

ulation of consumers earning z units of income with volatility σ2, having preference

parameters (β, θ) satisfying the relation σ2θ/β = 2(z − x).

Note that, in this example, the first-stage structure is trivially identified to be

X = Z +U where U := −0.5σ2θ/β. This trivial identification of the first-stage holds

even without any statistical or mean independence conditions between Z and U . In

other words, instrument independence for the first-stage unobservables need not hold

for the purpose of identifying the structural causal effects (see Remark 11).

4. Two Special Cases of the MTE

Example 2 illustrated a clear economic interpretation of the identified causal ef-

fects (MTE) when the first stage is structurally constructed. Many applications, how-

ever, lack such structural motivations. In the absence of structural models, economists

have often substituted statistical objects such as mean regressions and quantile re-

gressions. In this section, we demonstrate that the MTE is also compatible with

such statistical devices, though its economic interpretation becomes less clear than

in the case of Example 2. Sections 4.1 and 4.2 propose the special cases of the MTE

when the first stage is abstractly summarized by a mean regression and a quantile

regression, respectively.

4.1. Case 1: When First Stage Is a Mean Regression. Suppose that the

first-stage model is a nonparametric mean regression of the form

h(z, u) = µ(z) + u where E[U | Z] = 0.

In this case, Assumption 9 is trivially satisfied. Furthermore, the traditional local

rank condition µ′(z) ̸= 0 satisfies Assumption 10, and Theorem 4 can therefore be

used. Note that Remark 11 following Theorem 4 states that statistical independence

between the instrument Z and the first-stage unobservable U is not required. There-

fore, heteroscedasticity in the first stage E[U2 | Z] ̸= 0 is admissible in particular.
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Applying the theorem to this special case entails ρ(z, x) = −1/[µ′(z)] and yields the

following result.

Corollary 3 (MTE When First Stage is a Mean Regression). Suppose that the

model is given by
Y = g(X, E) where Z ⊥⊥ E | U

X = µ(Z) + U where E[U | Z] = 0 and µ′(z) ̸= 0

Then, the following identifying equalities hold.

(i) E[β(X, E) | X = x, Z = z] =
∂

∂x
E[Y | X = x, Z = z] +

∂
∂zE[Y | X = x,Z = z]

µ′(z)
and

(ii) E[β(X, E) | Y = QY |XZ(τ | x, z), X = x,Z = z] =
∂

∂x
QY |XZ(τ | x, z) +

∂
∂zQY |XZ(τ | x, z)

µ′(z)

Not surprisingly, Corollary 3 (i) corresponds to (35), by which the MTE was

motivated as a natural extension of the LIV under separable first stage models.

4.2. Case 2: When First Stage Is a Quantile Regression. Another im-

portant special case is when the first-stage model is represented by a nonparametric

quantile regression of the form

h(z, u) = QX|Z(u | z) where Z ⊥⊥ U.

In this case, Assumption 9 is satisfied if the X | Z = z is continuously distributed.

Furthermore, the traditional local rank condition ∂
∂z
FX|Z(x | z) ̸= 0 satisfies Assump-

tion 10. Applying Theorem 4 to this special case entails ρ(z, x) = −
[
∂
∂z
QX|Z(u | z)

]−1

where u = FX|Z(x | z), and therefore yields the following result.

Corollary 4 (MTE When First Stage is a Quantile Regression). Suppose that

the model is given by
Y = g(X, E)

X = QX|Z(U | Z)
where Z ⊥⊥ (E , U)
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Then, the following identifying equalities hold.

(i) E[β(X, E) | X = x, Z = z] =
∂

∂x
E[Y | X = x, Z = z] +

∂
∂zE[Y | X = x,Z = z]

∂
∂zQX|Z(u | z)

and

(ii) E[β(X, E) | Y = QY |XZ(τ | x, z), X = x,Z = z] =
∂

∂x
QY |XZ(τ | x, z) +

∂
∂zQY |XZ(τ | x, z)

∂
∂zQX|Z(u | z)

where u := FX|Z(x | z).

The right-hand side of Corollary 4 (ii) turns out to be the same as the identifying

equality

(37)
∂

∂x
QY |XU(y | x, u) =

∂

∂x
QY |XZ(τ | x, z) +

∂
∂z
QY |XZ(τ | x, z)
∂
∂z
QX|Z(u | z)

derived by Imbens and Newey (2009; Theorem 2). The left-hand side expressions,

however, are different. Equation (37) identifies the statistical object ∂
∂x
QY |XU(y |

x, u), whereas Corollary 4 (ii) identifies a local average of the structural object

β(X, E). Quantile partial effects do not generally represent structural partial effects

unless rank invariance is assumed. Our result therefore adds a structural interpre-

tation to (37), and parallels Chesher (2003), who originally derived this formula to

identify non-averaged structural partial effect.

The identifying equalities in Corollary 4 (i) and (ii) remain to hold whenever

the first-stage function h is monotone with respect to the unobservables u, because a

quantile regression can be used to represent a monotone first stage. The monotonicity,

however, is also the exact limit up to which they remain to hold. In other words,

the following assumption is a necessary and sufficient condition for these identifying

equalities.

Assumption 11 (Monotonicity). There exist functions h̄ : R2 → R and ι : RM →

R such that h(z, u) = h̄(z, ι(u)) and h̄ is strictly monotone in its second argument.

Proposition 3 (Necessary and Sufficient Condition). Suppose that FX|Z(· | z) is

strictly increasing in the model (34).6 Then the identifying equalities in Corollary 4

6 In addition, we also assume the following regularity conditions: g is continuously differentiable
with respect to x; h is continuously differentiable; FX|Z is absolutely continuous; QX|Z is continu-
ously differentiable with respect to z; and fU |XZ is continuously differentiable with respect to (x, z).
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(b) Control VariableGF

@A

Imbens (2007)

//

Imbens & Newey (2009)

//

(c) Identification of Quantile Partial Effect

∂
∂x
QY |XU(y | x, u) =

∂
∂x
QY |XZ(τ | x, z) +

∂
∂z
QY |XZ(τ |x,z)
∂
∂z
QX|Z(u|z)

(a) Monotonicity

Imbens & Newey (2009)

OO

oo
Proposition 3

//

(d) Identification of Structural Partial Effect

E[β(X, E) | X = x, Z = z] =
∂
∂x
QY |XZ(τ | x, z) +

∂
∂z
QY |XZ(τ |x,z)
∂
∂z
QX|Z(u|z)

Same Chesher Formula on the Right Hand Side�
�
�

�
�
�

�
�
�

�
�
�

Figure 2.1. The role of monotonicity in related identification results.

(i) and (ii) hold for all structural models (g, FE|U) if and only if Assumption 11 holds

for the first-stage function h.

Imbens and Newey (2009) show that the monotonicity is sufficient for a control

variable,7 which in turn is sufficient for the identifying equality (37). We show that

the monotonicity is necessary and sufficient for the identifying equality in Corollary

4 (ii). These relations are summarized in the logical diagram in Figure 2.1.

5. Nonlinear Heterogeneous Effects of Smoking

Adverse effects of smoking during pregnancy on infant birth weights have been

extensively studied in the health economic literature (e.g., Rosenzweig and Schultz

(1983); Evans and Ringel (1999); Lien and Evans (2005)). Most papers, including

those in the medical literature, have suggested that the effect of smoking (as binary

variable) on infant birth weights ranges from −200 grams to −400 grams. Given

that the average number of cigarettes smoked by smoking pregnant women is 12

between years 1989 and 1999, average effects of one cigarette on infant birth weight

thus ranges from −17 grams to −33 grams. The goal of our analysis is to provide a

much more detailed assessment of the effect of smoking, in particular we consider the

7 Imbens (2007) discusses its necessity. This is followed up by Kasy (2011).
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heterogeneous marginal effects of a single cigarette as opposed to these coarse average

effects.

Specifically, we analyze the effects of the number of cigarettes on infant birth

weight, extending an older idea of Evans and Ringel (1999). We allow for arbitrary

nonlinear, endogenous and heterogeneous effects of smoking, and want to obtain

averages of causal marginal effects for various subpopulations defined by treatment

intensity, as well as other variables that proxy for unobserved heterogeneity as detailed

below. Evans and Ringel use cigarette excise tax rate as source of exogenous variation

to mitigate confounding factors in identifying the effects of smoking. We follow this

idea; in our framework tax rates hence play the role of Z, while number of cigarettes

per day and infant birth weight are X and Y , respectively. The causal model is then

given by 
Y = g(X,S, E)

X = h(Z, S, U)

where E captures other unobserved factors related to the lifestyle of the mother that

impact the child’s birth weight. Other observed characteristics of the mother, denoted

S, are also controlled for, including maternal age, alcohol intake, number of prenatal

visits, and number of live births experienced. We use a cross section of the natality

data from the Natality Vital Statistics System of the National Center for Health

Statistics. The main variables in the data are summarized in Table 2.1. From this

data set we extract a random sample of size 100,000 from the time period between

1989 to 1999.

The structural features of interest are the averages marginal effect of a cigarette,

β(X,S, E), using subpopulation defined by combinations of Y , X and Z. Such causal

effects are identified in Theorems 2–4 and Corollaries 3 and 4. Note that all these

identifying equalities are proposed with derivatives of nonparametric mean and/or

quantile regressions, whose estimation and large sample theories are very standard in

the econometric literature (see Fan and Gijbels, 1996). We do not elaborate on these

standard statistical results in this paper. Estimates of the structural partial effects
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Variable Mean Std. Dev. Description

Birth Weight 3330 606 Infant birth weight measured in grams

Cigarette 1.75 5.51 Number of cigarettes smoked per day

Tax 30.4 15.5 Excise tax rate on cigarettes in percentage

Age 26.7 6.0 Maternal age

Drinks 0.04 0.75 Number of times of drinking per week

Visits 11.3 4.1 Number of prenatal care visits

Births 1.97 1.00 Number of live births experienced

Table 2.1. Descriptive statistics of the data.

Figure 2.2. Confidence intervals of E[β(X,S,A) | Y = 2500, X =
x, Z = 0.30, S = s̄].

β(X,S, E) projected on (Y,X,Z) are plotted in Figures 2.2–2.7). Due to the point

mass of the distribution of X at X = 0 which conflicts the assumption of absolute

continuity, our analysis focuses on the domain outside of this locality. With this

framework in place, we make the following observations:

1. Comparing the graphs with lower Z (e.g., Figure 2.2) and higher Z (e.g., Fig-

ure 2.6), we observe ceteris paribus a great deal of heterogeneity in overall effects. In
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Figure 2.3. Confidence intervals of E[β(X,S,A) | Y = 3000, X =
x, Z = 0.30, S = s̄].

Figure 2.4. Confidence intervals of E[β(X,S,A) | Y = 2500, X =
x, Z = 0.40, S = s̄].

particular, the marginal effects under higher tax rates are relatively larger in magni-

tude. In other words, pregnant women who still choose to smoke despite facing higher

tax rates exhibit larger marginal effects of smoking on infant birth weights. We will

discuss this phenomenon in more detail below.
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Figure 2.5. Confidence intervals of E[β(X,S,A) | Y = 3000, X =
x, Z = 0.40, S = s̄].

Figure 2.6. Confidence intervals of E[β(X,S,A) | Y = 2500, X =
x, Z = 0.50, S = s̄].

2. Comparing the marginal effects across X, we observe a common tendency for

marginal effects to diminish towards x = 20 (e.g., Figures 2.3–2.7). That is, the neg-

atively sloped structural function g will eventually flatten on average as x increases.

This phenomenon reflects the reduction in harm of an additional cigarette as the

number of cigarettes increases, i.e., diminishing marginal effects. It is imperative to
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Figure 2.7. Confidence intervals of E[β(X,S,A) | Y = 3000, X =
x, Z = 0.50, S = s̄].

keep in mind, however, that a woman who smoked 20 cigarettes a day has already

inflicted a large cumulative effect on her child.

3. Comparing the graphs with different values of Y (e.g., Figures 2.2 and 2.3), we

observe some differences in marginal effects across quantiles of Y , especially at lower

tax rates z = 30. Marginal effects of smoking on birth weights tend to be smaller

for lower quantiles of Y . This makes sense as it is more difficult to reduce a birth

weight that is already low by the same absolute value (though a similar percentage

reduction seems conceivable). These quantile differences are milder at higher tax

rates z > 40. However, the differences in Y are not pronounced in this application,

and as a consequence it may be justified to focus on the difference across (x, z) by

integrating out Y . These effects are illustrated in Figures 2.8–2.10, and they reinforce

nicely the observations made in the first two points above.

It is instructive to examine the first point in more detail and provide likely causal

explanations. As the graphs indicate, the magnitude of partial effects tends to be

negatively related to Z for each fixed value of X. Suppose now that z′ > z. The

subpopulation who smokes x cigarettes when the taxes are z′ is then characterized

by a higher preference for smoking than the subpopulation that smokes x cigarettes
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Figure 2.8. Confidence intervals of E[β(X,S,A) | X = x, Z =
0.30, S = s̄].

Figure 2.9. Confidence intervals of E[β(X,S,A) | X = x, Z =
0.40, S = s̄].

at the lower price (tax) z. What causes endogeneity is now precisely the correlation

between this preference for smoking and other factors in E , in particular adverse ones,

say, a preference for an unhealthy lifestyle, and/or a partner who also smokes. The

graphical results imply that the magnitude of partial effects tends to be positively

related to higher taxes in excess of the effect already incurred through X, suggesting
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Figure 2.10. Confidence intervals of E[β(X,S,A) | X = x, Z =
0.50, S = s̄].

this revealed preference for a negative lifestyle as explanation. Moreover, it implies

that the magnitude of partial effects tends to be positively related with unhealthy

factors in E , other things fixed. Lastly, this implies the cross partial sign

0 <
∂

∂ε

∣∣∣∣ ∂∂xg(x, ε)
∣∣∣∣ = − ∂2

∂ε∂x
g(x, ε).

Therefore, smoking X and other unhealthy behavioral inputs E are likely to be com-

plementary negative inputs in the birth weight “production” function g. So, based

on our results, policy should not just discourage smoking, but also the negative and

unhealthy life style associated with it that exacerbates its effect.

6. Summary

Economists are generally interested in estimating structural objects such as the

structural partial effects β(X, E). When E is multi-dimensional and/or the structural

function g is not invertible with respect to E , quantile partial effects generally do not

represent this structural partial effects of interest. This paper explored possibilities

of identifying local means of the structural partial effects. The main results are

summarized in Table 2.2.
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We first considered the LIV as a natural extension of the classical two-stage least

squares. This method identifies a useful policy parameter, but at the cost of separable

first stage assumption, which is necessary as well as sufficient (Theorem 2). The

classical idea of “regressing” Y on the predicted values of X remains to work in

identifying E[β(X, E) | Z], even if g is nonparametric and nonseparable (Theorem

3 (i)). Moreover, this idea extends to identification of E[β(X, E) | Y Z] simply by

replacing the mean regression by the corresponding quantile regression (Theorem 3

(ii)).

We next considered identifying the structural partial effects controlling for the

endogenous choice variable X. Equation (35) heuristically demonstrated that such

a calsal effect can be identified as a result of a slight extension of the LIV concept,

given that we have a prior knowledge about how the first-stage model looks like.

This heuristic finding was generalized in Theorem 4 (i), showing identification of

E[β(X, E) | XZ]. Replacing the mean regressions by the corresponding quantile

regressions allowed identification of E[β(X, E) | Y XZ] (Theorem 4 (ii)). This parallell

between parts (i) and (ii) of Theorem 4 resembles that of Theorem 3. These structural

partial effects (MTE) have clear economic interpretations when the first-stage model

is structurally constructed, as demonstrated in Example 2.

In the absence of structural motivations in the first stage, we can still substitute

statistical models such as the mean regression or the quantile regression to represent a

first-stage model (Corollaries 3 and 4). The identifying formula in the special case of

using quantile regressions to represent the first-stage model (Corollary 4 (ii)) coincides

with the well-known formula previously proposed by Chesher (2003) and Imbens and

Newey (2009). The identified objects, however, are different from each other.

With the abilities of the identified objects to describe heterogeneous structural

partial effects, we studied causal effects of smoking on infant birth weights. Smoking

is significantly malignant with diminishing marginal effects. Moreover, these marginal

effects tend to be greater for those mothers smoking under higher cigarette excise tax
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Identified
Structural Object

Identifying
Statistical Object

First-Stage
Structural/Statistical Model

LIV

Theorem 2 E[β(X, E)|Z]
Local Two-Stage Least Squares
d
dz
E[Y | Z]/ d

dz
E[X | Z]

Stochastically Separable Structure

Cov(β(h(z, U), E), ∂
∂zh(z, U)) = 0

Theorem 3
(i) E[β(X, E)|Z] d

dp
E[Y |P ] where P := µ(Z) Separable Structure

(ii) E[β(X, E)|Y Z] ∂
∂p
Q(Y |P ) where P := µ(Z) X = µ(Z) + U, Z ⊥⊥ U

MTE

Theorem 4
(i) E[β(X, E)|XZ] ∂

∂x
E[Y |XZ]− ∂

∂z
E[Y |XZ] · ρ(Z,X)

General Identifiable Structure
(see Example 2)

(ii) E[β(X, E)|Y XZ] ∂
∂x
Q(Y |XZ)− ∂

∂z
Q(Y |XZ) · ρ(Z,X) X = h(Z,U),

Z and U may
be correlated

Corollary 3
(i) E[β(X, E)|XZ] ∂

∂x
E[Y |XZ] + ∂

∂z
E[Y |XZ]/ d

dz
E[X|Z] Mean Regression

(ii) E[β(X, E)|Y XZ] ∂
∂x
Q(Y |XZ) + ∂

∂z
Q(Y |XZ)/ d

dz
E[X|Z] X = µ(Z) + U, E[U |Z] = 0

Corollary 4
(i) E[β(X, E)|XZ] ∂

∂x
E[Y |XZ] + ∂

∂z
E[Y |XZ]/ ∂

∂z
Q(X|Z) Quantile Regression

(ii) E[β(X, E)|Y XZ] ∂
∂x
Q(Y |XZ) + ∂

∂z
Q(Y |XZ)/ d

dz
Q(X|Z) X = QX|Z(U |Z), Z ⊥⊥ U

Table 2.2. Summary of identified structural parameters and the
respective first-stage models.

rate. Our inspection of this result implies that smoking and its associated unhealthy

life style have complementary negative effects on infant birth weights.

7. Mathematical Appendix

7.1. Proof of Theorem 2.

Proof. Using the definition (34) of the structural model, we have

E [Y |Z = z] =

∫ ∫
g(h(z, u), ε)fEU |Z(ε, u | z)dεdu =

∫ ∫
g(h(z, u), ε)fEU (ε, u)dεdu

where the last equality is due to the instrument independence in (34). Taking deriva-

tives on the both sides produces

d

dz
E [Y |Z = z] =

∫ ∫
β(h(z, u), ε)

[
∂

∂z
h(z, u)

]
fEU(ε, u)dεdu

=

∫ ∫
β(h(z, u), ε)

[
∂

∂z
h(z, u)

]
fEU |Z(ε, u | z)dεdu

= E

[
β(X, E) · ∂

∂z
h(Z,U)

∣∣∣∣Z = z

]
= E [β(X, E)|Z = z] · E

[
∂

∂z
h(Z,U)

∣∣∣∣Z = z

]
+Cov

(
β(X, E), ∂

∂z
h(Z,U)

∣∣∣∣Z = z

)
where the first equality is due to the differentiability of g and h with respect their

first arguments as well as the L1 dominance of the integrand, and the second equality
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is again due to the instrument independence in (34). The instrument independence

also yields

E

[
∂

∂z
h(Z,U)

∣∣∣∣Z = z

]
=

d

dz
E [X|Z = z] and

Cov

(
β(X, E), ∂

∂z
h(Z,U)

∣∣∣∣Z = z

)
= Cov

(
β(h(z, U), E), ∂

∂z
h(z, U)

)
.

Substituting these equalities and rearranging terms under Assumption 6, we obtain

E [β(X, E)|Z = z] =
d
dz
E [Y |Z = z]− Cov

(
β(h(z, U), E), ∂

∂z
h(z, U)

)
d
dz
E [X|Z = z]

Therefore, the desired equality holds if and only if Assumption 7 is true. �

7.2. Proof of Theorem 3.

Proof. (i) Using Assumption 8, we can write

d

dp
E[Y | P = p]

∣∣∣∣
p=µ(z)

=
d

dp

∫ ∫
g(p+ u, ε)fEU |P (ε, u | p)

∣∣∣∣
p=µ(z)

=
d

dp

∫ ∫
g(p+ u, ε)fEU(ε, u)

∣∣∣∣
p=µ(z)

=

∫ ∫
β(µ(z) + u, ε)fEU(ε, u)

=

∫ ∫
β(µ(z) + u, ε)fEU |Z(ε, u | z) = E[β(X, E) | Z = z],

where the second and fourth equalities are due to the instrumental independence in

the model (34), and the third equality is due to the differentiability of g with respect

to x as well as the L1-domination of β.

(ii) We derive the following three auxiliary equations. First,

Pr[g(X, E) 6 QY |P (τ | p+ δ) | P = p+ δ]− Pr[g(X, E) 6 QY |P (τ | p) | P = p+ δ]

= FY |P (QY |P (τ | p+ δ) | p+ δ)− FY |P (QY |P (τ | p) | p+ δ)

= δ

[
∂

∂p
QY |P (τ | p)

]
fY |P (QY |P (τ | p) | p+ δ) + o(δ)(38)
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holds under the differentiability of FY |P andQY |P with respect to y and p, respectively.

Second,

Pr[g(X, E) 6 QY |P (τ | p) | P = p+ δ]− Pr[g(X + δ, E) 6 QY |P (τ | p) | P = p]

= Pr[g(p+ δ + U, E) 6 QY |P (τ | p) | P = p+ δ]− Pr[g(p+ δ + U, E) 6 QY |P (τ | p) | P = p]

= Pr[g(p+ δ + U, E) 6 QY |P (τ | p)]− Pr[g(p+ δ + U, E) 6 QY |P (τ | p)] = 0,(39)

where the second equality is due to the instrumental independence in the model (34).

Third, using the short-hand notation B = β(X, E), we have

Pr[g(X + δ, E) 6 QY |P (τ | p) | P = p]− Pr[g(X, E) 6 QY |P (τ | p) | P = p]

= Pr[QY |P (τ | p) < Y 6 QY |P (τ | p)− (g(X + δ, E)− Y ) | P = p]

−Pr[QY |P (τ | p)− (g(X + δ, p)− Y ) < Y 6 QY |P (τ | p) | P = p]

= Pr[QY |P (τ | p) 6 Y 6 QY |P (τ | p)− δB | P = p]

−Pr[QY |P (τ | p)− δB 6 Y 6 QY |P (τ | p) | P = p] + o(δ)

=

∫ ∞

QY |P (τ |p)

∫ −δ−1[y−QY |P (τ |p)]

−∞
fY B|P (y, b | p)dbdy

−
∫ QY |P (τ |p)

−∞

∫ ∞

−δ−1[y−QY |P (τ |p)]
fY B|P (y, b | p)dbdy + o(δ)

= −δ
∫ 0

−∞
bfY B|P (QY |P (τ | p), b | p)db− δ

∫ ∞

0

bfY B|P (QY |P (τ | p), b | p)db+ o(δ)

= −δE[B | Y = QY |P (τ | p), P = p] · fY |P (QY |P (τ | p) | p) + o(δ),(40)

where the second equality is due to the differentiability of g and FY |P with respect

to x and y, respectively, and the fourth equality is due to change of variables and

integration by parts. Add these three equations (38), (39) and (40) together to get

0 = δ

[
∂

∂p
QY |P (τ | p)

]
· fY |P (QY |P (τ | p) | p+ δ)

− δE[B | Y = QY |P (τ | p), P = p] · fY |P (QY |P (τ | p) | p) + o(δ).

Under the condition that fY |P is continuous in p, letting δ → 0 yields

E[β(X, E) | Y = QY |P (τ | p), P = p] =
∂

∂p
QY |P (τ | p).
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Since Z = z and P = µ(z) are the same events under Assumption 6, setting p = µ(z)

yields the result. �

7.3. Proof of Theorem 4.

Proof. (i) We derive the following two auxiliary equations. First,

∂

∂x
E[Y | X = x,Z = z] = ∂x

∫
g(x, ε)fE|XZ(ε | x, z)dε =

∂

∂x

∫
g(x, ε)fE|UZ(ε | υ(z, x), z)dε

= E[β(X, E) | U = υ(z, x), Z = z]

+
∂

∂x
υ(z, x) · E

[
g(X, E) ∂

∂u
log fE|UZ(E | U,Z)

∣∣∣∣U = υ(z, x), Z = z

]
,

where the second equality is due to Assumption 9 and the third equality is due to the

differentiability of g with respect to x as well as the L1 dominance of the integrand.

Second, a similar calculation yields

∂

∂z
E[Y | X = x,Z = z] =

∂

∂z
υ(z, x)·E

[
g(X, E) ∂

∂u
log fE|UZ(E | U,Z)

∣∣∣∣U = υ(z, x), Z = z

]
,

where the instrumental independence in model (34) was used to vanish ∂
∂z
fE|UZ . Com-

bining the above two equations and rearranging by Assumption 10 yield the desired

result.

(ii) Assumptions 9 and 10 provide the parameterized curve h 7→ (h, δz(h)) =: (δx, δz)

that solves the implicit function equation υ(z + δz, x+ δx)− υ(z, x) = 0 of a smooth

submanifold in a neighborhood of h = 0. Furthermore, δz(0) = 0 and (δx, δz) → 0 as

h→ 0. By these properties, we have

(41)
δz
δx

= −
∂
∂x
υ(z, x)

∂
∂z
υ(z, x)

+ o(1) as h→ 0.

Next, we derive the following four auxiliary equations. First,

Pr[g(x+ δx, E) 6 QY |XZ(τ | x+ δx, z + δz) | X = x+ δx, Z = z + δz]

−Pr[g(x+ δx, E) 6 QY |XZ(τ | x, z + δz) | X = x+ δx, Z = z + δz]

= FY |XZ(QY |XZ(τ | x+ δx, z + δz) | x+ δx, z + δz)

−FY |XZ(QY |XZ(τ | x, z + δz) | x+ δx, z + δz)

= δx
∂

∂x
QY |XZ(τ | x, z)fY |XZ(QY |XZ(τ | x, z) | x+ δx, z + δz) + o(δx),(42)
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where the last equality is due to the differentiability of QY |XZ and FY |XZ with respect

to x and y, respectively. Second, similar lines of calculations yield

Pr[g(x+ δx, E) 6 QY |XZ(τ | x, z + δz) | X = x+ δx, Z = z + δz]

−Pr[g(x+ δx, E) 6 QY |XZ(τ | x, z) | X = x+ δx, Z = z + δz]

= FY |XZ(QY |XZ(τ | x, z + δz) | x+ δx, z + δz)

−FY |XZ(QY |XZ(τ | x, z) | x+ δx, z + δz)

= δz
∂

∂z
QY |XZ(τ | x, z)fY |XZ(QY |XZ(τ | x, z) | x+ δx, z + δz) + o(δz),(43)

under the differentiability of QY |XZ with respect to z. Third,

Pr[g(x+ δx, E) 6 QY |XZ(τ | x, z) | X = x+ δx, Z = z + δz]

−Pr[g(x+ δx, E) 6 QY |XZ(τ | x, z) | X = x, Z = z]

= Pr[g(x+ δx, E) 6 QY |XZ(τ | x, z) | Z = z + δz, U = υ(z + δz, x+ δx)]

−Pr[g(x+ δx, E) 6 QY |XZ(τ | x, z) | Z = z, U = υ(z, x)]

= Pr[g(x+ δx, E) 6 QY |XZ(τ | x, z) | Z = z + δz, U = υ(z, x)]

−Pr[g(x+ δx, E) 6 QY |XZ(τ | x, z) | Z = z, U = υ(z, x)] = 0,(44)

where the first equality is due to Assumption 9, the second equality is due to the

definition of (δx, δz), and the last equality is due to the instrument independence in
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the model (34). Fourth, with the short-hand notation B := β(X, E), we have

Pr[g(x+ δx, E) 6 QY |XZ(τ | x, z) | X = x, Z = z]

−Pr[g(x, E) 6 QY |XZ(τ | x, z) | X = x,Z = z]

= Pr[QY |XZ(τ | x, z) < Y 6 QY |XZ(τ | x, z)− (g(x+ δx, E)− Y ) | X = x,Z = z]

−Pr[QY |XZ(τ | x, z)− (g(x+ δx, z)− Y ) < Y 6 QY |XZ(τ | x, z) | X = x,Z = z]

= Pr[QY |XZ(τ | x, z) 6 Y 6 QY |XZ(τ | x, z)− δxB | X = x,Z = z]

−Pr[QY |XZ(τ | x, z)− δxB 6 Y 6 QY |XZ(τ | x, z) | X = x,Z = z] + o(δx)

=

∫ ∞

QY |XZ(τ |x,z)

∫ −δ−1
x [y−QY |XZ(τ |x,z)]

−∞
fY B|XZ(y, b | x, z)dbdy

−
∫ QY |XZ(τ |x,z)

−∞

∫ ∞

−δ−1
x [y−QY |XZ(τ |x,z)]

fY B|XZ(y, b | x, z)dbdy + o(δx)

= −δx
∫ 0

−∞
bfY B|XZ(QY |XZ(τ | x, z), b | x, z)db

−δx
∫ ∞

0

bfY B|XZ(QY |XZ(τ | x, z), b | x, z)db+ o(δx)

= −δxE[B | Y = QY |XZ(τ | x, z), X = x,Z = z]fY |XZ(QY |XZ(τ | x, z) | x, z) + o(δx),(45)

where the second equality is due to the differentiability of g and FY |XZ with respect

to x and y, respectively, and the fourth equality is due to change of variables and

integration by parts. Add the above four equations (42), (43), (44) and (45) together

to get

0 = δx
∂

∂x
QY |XZ(τ | x, z)fY |XZ(QY |XZ(τ | x, z) | x+ δx, z + δz)

+δz
∂

∂z
QY |XZ(τ | x, z)fY |XZ(QY |XZ(τ | x, z) | x+ δx, z + δz)

−δxE[B | Y = QY |XZ(τ | x, z), X = x, Z = z]fY |XZ(QY |XZ(τ | x, z) | x, z)

+o(δx) + o(δz).

The desired result follows from this equation together with Equation (41), Assumption

9, and the differentiability of fY |XZ with respect to the conditioning variables (x, z).

�

7.4. Proof of Proposition 3. We prove the following four auxiliary lemmas to

prove Proposition 3.
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Lemma 14. Suppose that FX|Z(· | z) is strictly increasing in the model (34). Then,

Assumption 11 holds if and only if FX|Z(h(z, u) | z) = FX|Z(h(z
′, u) | z′) holds for all

z, z′ and u.

Proof. (⇒) Suppose that h(z, u) = h̄(z, ι(u)) holds for all (z, u), where h̄ is

strictly increasing in its second argument. Then, FX|Z(h(z, u) | z) = FX|Z(h̄(z, ι(u)) |

z) = Pr(h̄(z, ι(U)) 6 h̄(z, ι(u)) | Z = z)
(1)
= Pr(ι(U) 6 ι(u) | Z = z)

(2)
= Pr(ι(U) 6

ι(u) | Z = z′)
(1)
= Pr(h̄(z′, ι(U)) 6 h̄(z′, ι(u)) | Z = z′) = FX|Z(h̄(z

′, ι(u)) | z′) =

FX|Z(h(z
′, u) | z′), where equalities (1) are due to the premise that h̄ is strictly

increasing in its second argument, and equality (2) is due to the instrument indepen-

dence in (34).

(⇐) Let z0 be an arbitrarily chosen element of the support of Z. Define ι : RM →

R by ι(u) = FX|Z(h(z
0, u) | z0). For each η ∈ (0, 1), there exists ξ(η) on the support

of X | (Z = z0) such that η = FX|Z(ξ(η) | z0). But then, for this ξ(η) as an element

of the support of X | (Z = z0), there exists υ(η) on the support of U (not necessarily

unique) such that ξ(η) = h(z0, υ(η)), i.e., η = FX|Z(h(z
0, υ(η)) | z0).

As such an element υ(η) is not generally unique for a given η, the map (z, η)
h̄7→

h(z, υ(η)) need not be well-defined. However, we will show that such a map h̄ is

indeed well-defined if FX|Z(h(z, u) | z) = FX|Z(h(z
′, u) | z′) holds for all z, z′ and

u. To show its well-definition, consider υ(η) and υ̃(η) such that ξ(η) = h(z0, υ(η)) =

h(z0, υ̃(η)). Note that FX|Z(h(z, υ(η)) | z) (∗)
= FX|Z(h(z

0, υ(η)) | z0) = FX|Z(ξ(η) |

z0) = FX|Z(h(z
0, υ̃(η)) | z0) (∗)

= FX|Z(h(z, υ̃(η)) | z) holds where equalities (∗) are due

to FX|Z(h(z, u) | z) = FX|Z(h(z
′, u) | z′). This implies that h(z, υ(η)) = h(z, υ̃(η))

by the assumption that FX|Z(· | z) is strictly increasing. Therefore, the mapping

h̄ : R2 → R defined by (z, η)
h̄7→ h(z, υ(η)) is indeed well-defined.

Having proven the well-definition of h̄, we next show that h(z, u) = h̄(z, ι(u))

holds for all (z, u). Observe FX|Z(h̄(z, ι(u)) | z) (1)
= FX|Z(h(z, υ(ι(u))) | z) (2)

=

FX|Z(h(z
0, υ(ι(u))) | z0) (3)

= ι(u)
(4)
= FX|Z(h(z

0, u) | z0) (2)
= FX|Z(h(z, u) | z), where

equality (1) is due to the definition of the well-defined map h̄, equalities (2) are due

to FX|Z(h(z, u) | z) = FX|Z(h(z
′, u) | z′), equality (3) is due to the definition of υ,
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and equality (4) is due to the definition of ι. This implies h̄(z, ι(u)) = h(z, u) for each

(z, u) by the assumption that FX|Z(· | z) is strictly increasing.

It remains to show that h̄ constructed in this way is strictly monotone in its

second argument. To see this, let 0 < η1 < η2 < 1. Then, FX|Z(h̄(z, η1) | z) (1)
=

FX|Z(h(z, υ(η1)) | z) (2)
= FX|Z(h(z

0, υ(η1)) | z0) (3)
= η1 < η2

(3)
= FX|Z(h(z

0, υ(η2)) |

z0)
(2)
= FX|Z(h(z, υ(η2)) | z)

(1)
= FX|Z(h̄(z, η2) | z), where equalities (1) are due to the

definition of the well-defined map h̄, equalities (2) are due to FX|Z(h(z, u) | z) =

FX|Z(h(z
′, u) | z′), and equalities (3) are due to the definition of υ. It follows from

this inequality that h̄(z, η1) < h̄(z, η2) by the assumption that FX|Z(· | z) is strictly

increasing. Therefore h̄ is strictly increasing in its second argument. �

Lemma 15. Suppose that FX|Z(· | z) is strictly increasing.8 If Assumption 11

holds and ∂
∂z
QX|Z(v | z) ̸= 0, then for the choice of c := [ ∂

∂z
QX|Z(v | z)]−1,

∂

∂x
log fU |XZ(u | QX|Z(v | z), z) + c

∂

∂z
log fU |XZ(u | QX|Z(v | z), z) = 0

holds for all u on the support of FU |XZ( · | QX|Z(v | z), z).

Proof. Let V := FX|Z(h(Z,U) | Z). Then, Assumption 11 and Lemma 14 imply

that V does not depend on Z, thus V = ν(U) for some function ν. Since (U, V ) =

(U, ν(U)), we have (U, V ) ⊥⊥ Z by the instrument independence in the model (34).

Using this independence restriction yields FUZ|V =
FUV |Z
FV

FZ = FUV

FV
FZ = FU |V FZ =

FU |V FZ|V , showing that U ⊥⊥ Z | V .

Now, note that the map (v, z) 7→ (QX|Z(v | z), z) is well-defined and injective,

owing to the well-definition and injectivity of the map v 7→ QX|Z(v | z) by the

absolute continuity of FX|Z (note that the absolute continuity of FX|Z in particular

implies that there is no singular part in its Lebesgue-Radon-Nikodym decomposition,

thus the quantile is strictly increasing in v). Therefore, we have fU |XZ(u | QX|Z(v |

z), z) = fU |V Z(u | v, z) for all z and v in their respective domains. Finally, use the

8 In addition, we also assume the following regularity conditions: FX|Z is absolutely continuous;
QX|Z is continuously differentiable with respect to z; and fU |XZ is continuously differentiable with
respect to (x, z)
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independence condition U ⊥⊥ Z | V obtained in the last paragraph to conclude that

fU |XZ(u | QX|Z(v | z), z) = fU |V (u | v), which is constant in z.

Since fU |XZ(u | QX|Z(v | z), z) is constant in z, we have

0 =
d

dz
fU |XZ(u | QX|Z(v | z), z)

=
∂

∂z
QX|Z(v | z) · ∂

∂x
fU |XZ(u | QX|Z(v | z), z) + ∂

∂z
fU |XZ(u | QX|Z(v | z), z)

under the differentiability of QX|Z with respect to z and the differentiability of fU |XZ

with respect to (x, z). Divide this equation by [ ∂
∂z
QX|Z(v | z)] · fU |XZ(u | QX|Z(v |

z), z) to prove the lemma. �

Lemma 16. Suppose that FX|Z(· | z) is strictly increasing.9 If Assumption 11 does

not hold, then there exists a set Ū ⊂ U of positive measure such that

(46)
d

dz
fU |XZ(u | QX|Z(v | z), z) ̸= 0.

holds for some z ∈ Z and for all u ∈ Ū .

Proof. Let V := FX|Z(h(Z,U) | Z). Write H(z, u) := FX|Z(h(z, u) | z). The

differentiability of h and FX|Z imply H ∈ C1(RM+1,R) where M is the dimension of

U . As Assumption 11 does not hold, we have ∇zH(z̄, ū) ̸= 0 for some (z̄, ū) ∈ Z ×U .

Let j be a coordinate of U in h satisfying dh(z, u)/duj ̸= 0 at (z̄, ū). Then, we

have ∇ujH(z̄, ū) ̸= 0. Thus we have sufficient conditions to invoke the Implicit

Function Theorem to obtain a continuous function λ : Z ⊃ Bδ(z̄) → U defined in a

neighborhood of z̄ such that H(z, λ(z)) = H(z̄, ū) =: v̄. It follows that a continuum

of the level set of V = v̄ exist in a neighborhood of z = z̄. But this level set does not

contain arbitrarily close horizontal or vertical displacements (z±δ, u) and (z, u±δej),

due to ∇zH(z̄, ū) ̸= 0 and ∇ujH(z̄, ū) ̸= 0. These two facts (i.e., existence of a

continuum of the level set and no containment of arbitrarily close horizontal or vertical

displacements) imply that supp[(Z,Uj) | V = v̄] ̸= supp[Z | V = v̄]× supp[Uj | V =

9 In addition, we also assume the following regularity conditions: h is continuously differentiable;
FX|Z is continuously differentiable; QX|Z is continuously differentiable with respect to z; and fU |XZ

is continuously differentiable with respect to (x, z).
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v̄], i.e., the support of (Z,Uj) | (V = v̄) is not rectangular. Since a rectangular support

of the joint distribution is a necessary condition for independence, this implies that

Z ⊥⊥ Uj | (V = v̄) does not hold, which in turn implies that Z ⊥⊥ U | (V = v̄) does

not hold.

Keeping the last result in mind, we now want to prove that (46) holds for some

z ∈ Z and for all u ∈ Ū with Ū a set of positive measure. But by the assumptions of

continuous differentiability of fU |XZ and QX|Z , it suffices to show that (46) holds for

some (z, u) ∈ Z×U , since the continuity of the derivatives then yields the correspond-

ing result throughout a neighborhood of such u. Suppose, by way of contradiction,

that d
dz
fU |XZ(u | QX|Z(v | z), z) = 0 holds for all (z, u) ∈ Z × U . As in the proof of

Lemma 15, fU |XZ(u | QX|Z(v | z), z) = fU |V Z(u | v, z). Hence, d
dz
fU |V Z(u | v, z) = 0

holds for all (z, u) ∈ Z × U , showing that Z ⊥⊥ U | V . This is a contradiction with

the conclusion of the previous paragraph. �

Lemma 17. (i) Suppose that the set of structural models satisfies (34).10 Then,

E [β(X, E)|X = x,Z = z] =
∂

∂x
E [Y |X = x,Z = z] + c

∂

∂z
E [Y |X = x,Z = z]−B(c, x, z)

holds for any c ∈ R, where the bias term is

B(c, x, z) = E
[
Y

{
∂

∂x
log fU |XZ(U |x, z) + c

∂

∂z
log fU |XZ(U |x, z)

}
|X = x, Z = z

]
.

(ii) If in addition v = FX|Z(x | z) and ∂
∂z
QX|Z(v | z) ̸= 0, then Assumption 11 is

sufficient to make B([ ∂
∂z
QX|Z(v | z)]−1, QX|Z(v | z), z) = 0 for all structural models

(g, FE|U) ∈ G × F .

(iii) Assumption 11 is also necessary to make B([ ∂
∂z
QX|Z(v | z)]−1, QX|Z(v | z), z) = 0

for all structural models (g, FE|U) ∈ G × F .

10 In addition, we also assume the following regularity assumptions: g is continuously differen-
tiable with respect to x; and fU |XZ is continuously differentiable with respect to (x, z).
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Proof. We write the observable mean regression E [Y |X = x, Z = z] as

E [Y |X = x, Z = z] =

∫ ∫
g(x, ε)fE|UXZ(ε | u, x, z)dεfU |XZ(u | x, z)du

=

∫ ∫
g(x, ε)fE|U(ε | u)dεfU |XZ(u | x, z)du,

where the last equality is due to the instrumental independence in (34). Take deriva-

tives to obtain

∂

∂x
E [Y |X = x,Z = z]

=

∫ ∫
β(x, ε)fE|U (ε | u)dεfU |XZ(u | x, z)du+

∫ ∫
g(x, ε)fE|U (ε | u)dε

∂

∂x
fU |XZ(u | x, z)du

= E [β(x, E)|X = x,Z = z] + E
[
Y
∂

∂x
log fU |XZ(U | x, z)|X = x,Z = z

]
,

where the first equality is due to the differentiability of g and fU |XZ with respect to

x as well as the L1 dominance of the integrand. By similar calculations, we have

c
∂

∂z
E [Y |X = x, Z = z] = E

[
Y c

∂

∂z
log fU |XZ(U | x, z)|X = x, Z = z

]
.

Combining these two inequalities yields

E [β(X, E)|X = x,Z = z] =
∂

∂x
E [Y |X = x, Z = z] + c

∂

∂z
E [Y |X = x,Z = z]−B(c, x, z),

where the bias term is

B(c, x, z) = E
[
Y

{
c
∂

∂z
log fU |XZ(U |x, z) +

∂

∂x
log fU |XZ(U |x, z)

}
|X = x, Z = z

]
.

This proves part (i) of the theorem. Apply Lemma 15 to prove part (ii).

Lastly, we prove part (iii) of the theorem by applying Lemma 16. We prove

the contrapositive statement, that if Assumption11 does not hold then there exists a

structural model (g, FE|U) ∈ G×F such that B([∇zQX|Z(v | z)]−1, QX|Z(v | z), z) ̸= 0.

By Lemma 16, there exists a set Ū ⊂ U of positive measure such that

d

dz
fU |XZ(u | QX|Z(v | z), z) ̸= 0.

holds for some z ∈ Z and for all u ∈ Ū . There exists a subset Ũ of Ū with pos-

itive measure on which the sign is positive or negative throughout. Without loss

of generality, assume that the above expression is positive on Ũ . Pick a structure
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(g, FE|U) ∈ G ×F such that
∫
g(x, ε)fE|U(ε | u)dε is positive on Ũ and zero outside Ũ

for some x.11 With this choice of (g, FE|U), we have

∂

∂z
QX|Z(v | z)B([

∂

∂z
QX|Z(v | z)]−1, QX|Z(v | z), z)

= E
[
Y

{
∂

∂z
log fU |XZ(U | x, z) + ∂

∂z
QX|Z(v | z) · ∂

∂x
log fU |XZ(U | x, z)

}
| X = x,Z = z

]
=

∫ [∫
g(x, ε)fE|U (ε | u)dε

] [
d

dz
fU |XZ(u | QX|Z(v | z), z)

]
du > 0.

This shows that B([∇zQX|Z(v | z)]−1, QX|Z(v | z), z) ̸= 0. �

Proposition 3 concerning the identifying equality of Corollary 4 (i) follows from

this lemma. The conclusion concerning the identifying equality of Corollary 4 (ii)

follows from similar lines of argument. �

11 There exist many such structures (g, FE|U ). As one example of a way to construct such a

structure, consider an orthonormal basis B of the L2(m) space. Form a function ϕ and an indexed
family

{
fE|U ( · | u)

}
u∈U of density functions by linear combinations of B so that

⟨
ϕ, fE|U ( · | u)

⟩
>

0 for all u ∈ Ũ and
⟨
ϕ, fE|U ( · | u)

⟩
= 0 for all u ∈ U\Ũ by applying the Parseval-Bessel equality.

Then, the required property is satisfied by any pair (g, FE|U ) with any function g such that g(x, · ) =
ϕ for some x. Note g is required to be continuously differentiable only with respect to x, and thus
will not be violated by this construction of g.
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CHAPTER 3

Nonparametric Model Tests with Discrete Instruments

1. Introduction

The following is a list of four common micro-econometric models:

(i) Yi = βSi + ε(Ai) – Constant coefficient model

(ii) Yi = ϕ(Si) + ε(Ai) – Nonlinear separable model

(iii) Yi = β(Ai)Si + ε(Ai) – Random coefficient model

(iv) Yi = ϕ(Si, Ai) – Nonlinear nonseparable model

where Yi, Si, and Ai denote observed outcome, observed endogenous choice, and

unobserved heterogeneity, respectively. Finding out the correct model reveals the

underlying economic structure. For example, if we find that model (i) or (ii) is

correct, then we can deduce that variations in first-stage choice come from preferences

or costs, rather than from heterogeneity in marginal returns. Moreover, finding out

the correct model allows us to choose the correct specification on which to conduct

statistical inferences.1 Therefore, there are both economic and econometric reasons

why one may be interested in distinguishing these four types of models. This paper

proposes a practically feasible method of testing to this end.

In the ideal setting where a continuous instrument induces smooth first-stage ef-

fects to construct a continuous control variable, the existing methods of nonparametric

inference would achieve this objective. However, this ideal setting is not often the

case, as one can see in the survey by Angrist and Krueger (2001) and Card (2001).

1 Various identification and estimation theories have been proposed. Model (ii) is studied by
Blundell and Powell (2003), Florens (2003), Newey and Powell (2003), Hall and Horowitz (2005),
Darolles et al. (2011), and Horowitz (2011). Model (iii) is studied by Garen (1984) and Heckman
and Vytlacil (1998), and the associated IV quantile regression has been studied by Ma and Koenker
(2006), Blundell and Powell (2007), Lee (2007), and Jun (2009). Model (iv) is studied by Chesher
(2003, 2005), Altonji and Matzkin (2005), Chernozhukov and Hansen (2005), Chernozhukov et al.
(2007), Horowitz and Lee (2007), Hoderlein and Mammen (2009), Imbens and Newey (2009), and
Torgovitsky (2011).
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In most empirical data covered in this survey, instruments exhibit only coarse and

discrete variations. An important example of discrete instruments is the quarter of

birth used by Angrist and Krueger (1991). With discrete instruments, structural

features are only partially identified under the nonlinear nonseparable model (iv)

(Chesher , 2005).2 In this light, I show how partially identified parameters can be

used to distinguish the model types (i), (ii), and (iii) against (iv).

Another practical limitation in common empirical data is the locality of instru-

mental effects, which prohibits identification of global shape of structural functions.

Again, an example is Angrist and Krueger in which the quarter-of-birth instrument

affects schooling choices only near the 9th to the 10th grades (for most cohorts and

states). While the locality often results in the smaller power of tests, we will empir-

ically show that models (i) and (ii) are rejected for wage outcome as a function of

years of education. Likewise, it will be empirically shown that models (i) and (iii) are

rejected for infant birth weight as a function of smoking intensity.

The objective of this paper is related to the literature on heterogeneity testing. For

example, Chernozhukov and Hansen (2006) propose a test of heterogeneous quantile

regression parameters under endogeneity. This idea is related to distinguishing the

model (i) from model (iii). The objective of this paper is also related to the literature

on nonparametric testing. For example, Horowitz and Lee (2009) propose tests of

parametric quantile regressions against nonparametric family of quantile regressions

under endogeneity. This idea can be used to distinguish the model (iii) from model

(iv).

The value added by this paper to this existing literature is twofold. First, we de-

velop a single device that can be used to distinguish the four types of models, (i), (ii),

(iii) and (iv). Second, more importantly, our method accounts for the aforementioned

difficulty associated with discrete instruments. This practically important issue has

2 Also related is Jun, Pinkse, and Xu (2011).
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not been explicitly addressed in the existing methods of heterogeneity or specification

testing under endogeneity.

The paper is organized as follows. We first discuss how to use partially identified

parameters to distinguish the four models in Section 2. Estimates of these partially

identified parameters are used to construct test statistics in Section 3. The tests are

applied to two empirical problems in Section 4. Section 5 summarizes the paper. The

appendix contains mathematical notes.

2. Bounds as Means of Specification Testing

How can we distinguish the four model types? Let ∂ϕ
∂s

denote the partial effect of

the structural function ϕ with respect to s. Under each model from (i) to (iii), this

partial effect reduces to

∂ϕ
∂s

∣∣
(s,a)

= β under (i) the constant coefficient model,

∂ϕ
∂s

∣∣
(s,a)

= ϕ′(s) under (ii) the nonlinear separable model, and

∂ϕ
∂s

∣∣
(s,a)

= β(a) under (iii) the linear random coefficient model.

They are a constant in (i), a function of only s in (ii), and a function of only a in

(iii). Models (i) and (iii) entail s-invariance of the partial effects, whereas models (i)

and (ii) entail a-invariance of the partial effects.

The next step is to translate these discriminatory characteristics into empirically

testable restrictions. As noted in the introductory section, empirical data often ex-

hibit only local instrumental effects near a certain point of s. Under this common

limitation, the s-invariance and the a-invariance of the partial effects at a given s are

characterized by

HS
0 :

∂2

∂s2
ϕ(s, a) = 0 for all a ∈ supp(A) at a given s, and

HA
0 :

∂2

∂s∂a
ϕ(s, a) = 0 for all a ∈ supp(A) at a given s,

respectively, where supp(·) denotes the support of the random variable. Rejection of

HS
0 will result in falsification of model types (i) and (iii). Likewise, rejection of HA

0

will result in falsification of model types (i) and (ii).
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Specification tests therefore require some knowledge of the partial effects, which

is not observable to us. We use as an alternative device the average partial effect,

denoted by

APE(s, z) := E

[
∂

∂s
ϕ(S,A)

∣∣∣∣S = s, Z = z

]
.

This APE(s, z) contains aggregate information about ∂ϕ
∂s

over some set of population

near the locality of s.3 The instrument Z as an additional conditioning variable plays

a key role in recovering the control variable (cf. Imbens and Newey (2009)), which in

turn reveals variations of ∂ϕ
∂s

in a. Consequently, sensitivity of APE(s, z) in z implies

whether HA
0 is true or not.

Point identification of the APE would allow us to test the hypotheses HS
0 and HA

0

easily. However, as noted in the introductory section, discreteness instruments are

obstacles for recovering smooth counterfactuals. Consequently, the APE is generally

at best partially identified, and our testing criteria will be based on the bounds of

the APE, and their intersections. The following subsection discusses relationships be-

tween APE(s, z) and its bounds, which will establish empirically testable restrictions

under the null hypotheses HS
0 and HA

0 .

2.1. Bounds of the APE and Their Implications for the Hypotheses.

In the literature on nonseparable models, the first-stage restrictions are often used

for identification of the second-stage features. Consider the following nonseparable

first-stage:

S = ψ(Z, V ),

where Z is an instrumental variable which may be discrete, and V denotes the

reduced-form unobserved heterogeneity. We impose the following standard restric-

tions:

3 Even if ϕ is differentiable everywhere, this object need not exist in general due to the Borel-
Kolmogorov paradox. But we assume it does exist, a sufficient condition for which is provided in
Appendix Section 6.
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Assumption 12 (Restrictions).

(IM) First-Stage Monotonicity: ψ(z, v) 6 ψ(z, v′) ⇐⇒ ψ(z′, v) 6 ψ(z′, v′) for all

z, z′ ∈ supp(Z) and for all v, v′ ∈ supp(V ).

(IV) Instrument Independence: (A, V ) ⊥⊥ Z.

(AC) Absolute Continuity: the distribution of S |Z=z is absolutely continuous with

a convex support for every z ∈ supp(Z).

(SI) Strong Instrument: ψ(z, v) is strictly increasing in z.

(IM) states that the first-stage choice is monotone in some index of unobserved

attributes, an assumption useful for constructing control variables (e.g., Imbens and

Newey (2009)). (IV) states the standard instrument independence. (AC) requires

that S is continuously distributed, which is an admissible abstraction of real data if

S has many support points such as years of schooling or number of cigarettes. On

the other hand, we maintain the assumption that Z is discrete since instruments

often have much fewer support points. This (AC) guarantees that the distribution of

S |Z=z has a probability density function denoted by fS|Z( · | z), and FS|Z( · | z) is

invertible on its support. Under this restriction, we denote the quantile regression by

QS|Z := F−1
S|Z . (SI) requires nontrivial first-stage effects. Alternatively, ψ(z, v) can be

strictly decreasing in z, in which case we only need to relabel z into negative values.

In practice, we are generally restricted to the locality of s at which (SI) is satisfied,

e.g., s ≈ 9-10 for Angrist and Krueger (1991).

As a device of characterizing model types, we use the notion of the local shapes

of the structural function ϕ. To formalize the sense of locality, consider the following

finite sets

Z+
s,z := {z′ ∈ supp(Z) | z′ > z, s ∈ supp(S | Z = z′)} and

Z−
s,z := {z′ ∈ supp(Z) | z′ < z, s ∈ supp(S | Z = z′)}

for a given (s, z) ∈ supp(S,Z). Z+
s,z consists of the “right instruments,” whereas Z−

s,z

consists of the “left instruments.” The right (respectively, left) instruments coun-

terfactually induce higher (respectively, lower) treatment values under (SI). Define
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z+s,z = minZ+
s,z and s−s,z = maxZ−

s,z, the right and left instruments closest to z, re-

spectively. Define the smallest local interval

I(s, z) :=
(
min{QS|Z(FS|Z(s | z) | z+s,z), QS|Z(FS|Z(s | z) | z−s,z)},

max{QS|Z(FS|Z(s | z) | z+s,z), QS|Z(FS|Z(s | z) | z−s,z)}
)
.

bounded by the closest counterfactual levels of treatments induced by the instruments.

Definition 1 (Local Shape). Suppose that ϕ ∈ C2. The following three local

shapes are defined:

(DR) Local Concavity: ∂2ϕ
∂s2

∣∣∣
(s′,a)

< 0 for all s′ ∈ I(s, z) and a ∈ supp(A).

(CR) Local Linearity: ∂2ϕ
∂s2

∣∣∣
(s′,a)

= 0 for all s′ ∈ I(s, z) and a ∈ supp(A).

(IR) Local Convexity: ∂2ϕ
∂s2

∣∣∣
(s′,a)

> 0 for all s′ ∈ I(s, z) and a ∈ supp(A).

These local concavity, linearity, and convexity determine the order relation be-

tween the APE and its upper and lower bounds. To discuss its intuition, let BR

and BL denote the difference quotients of ϕ that can be formed by counterfactual

variations in treatment S induced by the right and left instruments, respectively.

Under the local concavity of ϕ, we will see BR < APE < BL. The inequality will

be reversed under the local convexity of ϕ. Moreover, we expect to see the equality

BR = APE = BL under the local linearity of ϕ. The following theorem formalizes

these informal arguments.

Theorem 5 (Bounds of the APE). Suppose that Assumption 12 holds. Then, the

(in-)equalities

B(s; z+s,z, z) < APE(s, z) < B(s; s−s,z, z) under (DR)

B(s; z+s,z, z) = APE(s, z) = B(s; s−s,z, z) under (CR)

B(s; z+s,z, z) > APE(s, z) > B(s; s−s,z, z) under (IR)
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hold for z+s,z = minZ+
s,z and s

−
s,z = maxZ−

s,z, where B is defined with θz(s) := FS|Z(s |

z) by

B(s; z′, z) :=
E
[
Y
∣∣S = QS|Z (θz(s) | z′) , Z = z′

]
− E

[
Y
∣∣S = QS|Z (θz(s) | z) , Z = z

]
QS|Z (θz(s) | z′)−QS|Z (θz(s) | z)

.

Remark 12. When Z+
s,z (respectively Z−

s,z) is an empty set, there is no lower

bound (respectively no upper bound) under Definition 1 (DR). The opposite is the

case under Definition 1 (IR).

Remark 13. As the support of Z becomes richer to constitute a cluster point

at z, these bounds asymptotically converge to the true APE under some regularity

assumptions.

Remark 14. Notice that formula of the bound B(s; z′, z) resembles that of the

LATE (Imbens and Angrist, 1994). It takes the form of the “heterogeneous reduced-

form effects” divided by the “heterogeneous first-stage effects.” This parallels the

LATE which takes the form of the “average reduced-form effects” divided by the

“average first-stage effects.”

Implication for Hypothesis Testing: The theorem suggests that comparing

the order relation between B(s; z′, z) and B(s; z′′, z), which can be identified from

observed data, reveals the local shape of the structural function ϕ. If data indicates

B(s; z′, z) < B(s; z′′, z) or B(s; z′, z) > B(s; z′′, z), then we are in a position to reject

(CR), and hence to reject HS
0 . That is, variations of B in its second argument (i.e.,

z′ or z′′) are used to test the hypothesis HS
0 .

On the other hand, variations of B in its third argument (i.e., z) can be used to

test HA
0 . Note that under the null hypothesis HA

0 , the partial effect is invariant in

variations in a. Varying z while fixing s at a given locality causes variations in the

control variable v which in turn affects a under endogeneity. Thus, APE(s, z) should

be insensitive to variations in z under HA
0 . This in turn implies non-emptiness of

the intersection bounds
∩
z∈Z [B(s; z+s,z, z), B(s; z−s,z, z)] under HA

0 . Contrapositively,

emptiness of these intersection bounds leads to rejection of HA
0 .
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Example – Model (i): For an instance of the linear constant coefficient model
Y = βS + A

S = πZ + V

with (A, V ) ∼ N

0,

 1 1

1 1

 ,

some calculation yields QS|Z(θ | z) = πz + QV (θ) and E[Y | S = s, Z = z] =

(1 + β)s− πz. Substituting these expressions in the bound formula shows

B(s; z′, z) = β for all (s, z′, z).

The bounds B(s; z′, z) universally point-identify the constant partial derivative, which

is β. As the upper and lower bounds coincide at β, we fail to reject HS
0 . Moreover, by

non-emptiness of the intersection bounds
∩
z∈Z [B(s; z+s,z, z), B(s; s−s,z, z)] = {β}, we

fail to reject HA
0 too. �

Example – Model (ii): For an instance of the nonlinear regression model
Y = β

√
S + A

S = πZ + V

with (A, V ) ∼ N

0,

 1 1

1 1

 ,

some calculation yields QS|Z(θ | z) = πz + QV (θ) and E[Y | S = s, Z = z] =

β
√
s+ s− πz. Substituting these expressions in the bound formula shows

B(s; z′, z) = β

√
π(z′ − z) + s−

√
s

π(z′ − z)
for all (s, z′, z).

Therefore, taking (s; z′, z) = (π; 2, 1) for example yields

B(π; 2, 1)︸ ︷︷ ︸
= β√

π
(
√
2−1)

< APE(π, 1)︸ ︷︷ ︸
= β√

π
1
2

< B

(
π;

1

2
, 1

)
︸ ︷︷ ︸
= β√

π
(2−

√
2)

if β > 0.

As we have a strict inequality between upper and lower bounds, we reject HS
0 . On

the other hand, since the set enclosed by the intersection bounds containing the z-

invariant APE is non-empty, we fail to reject HA
0 . �

Example – Model (iii): For an instance of the linear random coefficient model
Y = (βA)S + A

S = πZ + V

with (A, V ) ∼ N

0,

 1 1

1 1

 ,
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some calculation yields QS|Z(θ | z) = πz + QV (θ) and E[Y | S = s, Z = z] =

(βs+ 1)(s− πz). Substituting these expressions in the bound formula shows

B(s; z′, z) = β · (s− πz) for all (s, z′, z).

On the other hand, the true APE takes the following form:

APE(s, z) = βE[A | S = s, Z = z] = βE[A | V = s−πz] = β·(s−πz) for all (s, z).

Therefore, the bounds B(s; z′, z) point-identify the heterogeneous APE(s, z) for every

(s, z). As the upper and lower bounds coincide at β(s−πz), we fail to reject HS
0 . On

the other hand, given the empty intersection bounds
∩
z∈Z [B(s; z+s,z, z), B(s; s−s,z, z)] =∩

z∈Z{β · (s− πz)} = ϕ under π ̸= 0, we reject HA
0 . �

These three examples reconfirm the relevance of the empirically testable hypothe-

ses for our main goal of specification testing. Indeed, we correctly fail to reject HS
0

under models (i) and (iii). Similarly, we correctly fail to reject HA
0 under models (i)

and (ii).

2.2. Numerical Illustrations. This subsection graphically illustrates the im-

plications of Theorem 5 for specification tests. Consider the following family of data-

generating models as a numerical example:

Y = ϕ(S,A) :=
5ps

1− ps
(S − 5)1−psepaA + (1− pa)A,

where ps and pa are parameters that generate heterogeneity across S and A, re-

spectively. These parameters reduce the model into the four types in the following

manner:

ps = 0 pa = 0 =⇒ (i) Linear constant coefficient model

ps ̸= 0 pa = 0 =⇒ (ii) Nonlinear separable model

ps = 0 pa ̸= 0 =⇒ (iii) Linear random coefficient model

ps ̸= 0 pa ̸= 0 =⇒ (iv) Nonlinear nonseparable model

In order to keep the true APE analytically tractable, we assume the linear first stage

S = 10 + Z + V where Z is uniform on {−1, 0, 1} and (A, V ) follows a joint normal

distribution with positive covariance.
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Figure 3.1 depicts the true APE(10, z) together with its bounds B(10; z + 1, z)

and B(10; z− 1, z). Notice that the bound inequalities are strict under the nonlinear

models (ii) and (iv), whereas the upper and lower bounds exactly coincide under the

linear models (i) and (iii). This result agrees with the (in-)equalities in Theorem 5,

and these characteristics can be used in an attempt to reject HS
0 , or as a way to

distinguish types (ii) and (iv) from types (i) and (iii).

Also notice that the true APE(10, z) is non-constant in z under the heterogeneous

models (iii) and (iv), whereas the true APE(10, z) is constant across z under the

homogeneous models (i) and (ii). The non-constancy of APE(10, z) across z under

the heterogeneous models (iii) and (iv) causes empty intersection bounds across z, and

this characteristic can be used in an attempt to reject HA
0 , or as a way to distinguish

types (iii) and (iv) from types (i) and (ii).

3. The Test Statistics

The previous section analyzed the role that bounds play in distinguishing the four

types of the models under discrete instruments. A sample analog of the bound in

Theorem 5 is

B̂(s; z′, z) = (En,hn [Y |S = q̂(s, z; z′), Z = z′ ]− En,hn [Y |S = s, Z = z ]) / (q̂(s, z; z′)− s) ,

where q̂(s, z; z′) is an rn-consistent estimator of QS|Z
(
FS|Z(s | z) | z′

)
, and En,hn de-

notes the Nadaraya-Watson estimator

En,hn [Y |S = s, Z = z ] :=

(
n∑

i=1

K

(
Si − s

hn

)
1(Zi = z)Yi

)
/

(
n∑

i=1

K

(
Si − s

hn

)
1(Zi = z)

)
.

Because the econometric and statistical literature has suggested numerous estimators

of conditional distribution and quantile regressions, we will not elaborate on large

sample properties of q̂(s, z; z′). It suffices to assume rn =
√
n, which is in general true

when Z is discrete and is compatible with the following assumption.

Assumption 13 (Large Sample). (i) q̂(s, z; z′)−QS|Z
(
FS|Z(s | z) | z′

)
= Op(r

−1
n ).

(ii) hn → 0, rn → ∞, h3nr
2
n → ∞, nhh → ∞, and nhnr

−2
n → 0 as n → ∞. (iii)

K is symmetric and Lipschitz-continuous with
∫
K = 1, supp(K) ⊂ (−1, 1), and

∥K∥2+δ <∞ for some δ > 0. (iv) (Ai, Vi, Zi) is i.i.d. (v) With ε := Y−E[Y | S,Z], the
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(i) Linear Constant Coefficient (iii) Linear Random Coefficient

(ps = 0.0, pa = 0.0) (ps = 0.0, pa = 0.1)

(ii) Nonlinear Separable (iv) Nonlinear Nonseparable

(ps = 0.5, pa = 0.0) (ps = 0.5, pa = 0.1)

(ii) Nonlinear Separable (iv) Nonlinear Nonseparable

(ps = −0.5, pa = 0.0) (ps = −0.5, pa = −0.1)

Figure 3.1. Relationships between the true APE(10, z) and their bounds.
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skedastic function σ2(s, z) := E[ε2 | S = s, Z = z] is twice continuously differentiable

with bounded second derivatives, and E[|ε|2+δ | S = s, Z = z] < ∞ for some δ > 0.

(vi) fSZ is twice continuously differentiable with respect to s with bounded second

derivatives. (vii) E[Y | S = s, Z = z] is twice continuously differentiable with respect

to s with a bounded second derivative.

Under this set of assumptions, asymptotic distributions of the bound estimators

B̂(s; z′, z) are obtained in Lemmas 22–24 in the appendix section. These asymp-

totic distributions will be used in turn to derive the asymptotic behavior of the test

statistics to be presented in Sections 3.1 and 3.2.

Recall the two practical limitations discussed in the introductory section, discrete

instruments and local instrumental effects. We fix short-hand notations in this light.

Because we focus on discrete instrumental variation, let supp(Z) = {z1, · · · , zK}

with z1 < · · · < zK . Moreover, because we focus on local instrumental effects, let

s ∈ supp(S) be fixed hereafter.4

3.1. Test of the Hypothesis HS
0 . For a test of model types (i) and (iii), we

consider the null hypothesis

HS
0 :

∂2

∂s2
ϕ(s, a) = 0 for all a ∈ supp(A),

against the list of two alternatives

HS
−1 :

∂2

∂s2
ϕ(s, a) < 0 for some a over a non-null set, and

HS
+1 :

∂2

∂s2
ϕ(s, a) > 0 for some a over a non-null set.

By Theorem 5, the null hypothesis HS
0 implies the empirically testable hypothesis

HS′

0 : B(s; zk+1, zk) = B(s; zk−1, zk) for each k = 2, · · · , K − 1.

4 In case of non-local instrumental effects, one can extend our test statistics by summing /
integrating over s to gain power. Summing over a finite set of s is a straightforward extension of
our results. A drawback with integrating over continuous s is that the stochastic process based
on our nonparametric estimation does not converge weakly to a tight process (hence non-Donsker).
One way to overcome this difficulty is to directly obtain the extreme value distribution of the limit
process, e.g., Chernozhukov, Lee, and Rosen (2009) Section 3.5.
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Contrapositively, rejection of this HS′
0 concludes rejection of the original HS

0 .

Figure 3.2 depicts relative orderings of the bounds B(s; · , · ) under each case

of these null and alternative hypotheses. A natural approach is to use a measure

of discrepancy between upper and lower bounds to form a test statistic. As such,

consider the simple test statistic

T̂ Sk,n :=

√
nhn

(
B̂(s; zk+1, zk)− B̂(s; zk−1, zk)

)
√
Γk,k−1 + Γk,k+1 − 2Γk,k−1,k+1

for any k ∈ {2, · · · , K−1}, where an (2K−2)×(2K−2) matrix Γ is given in Section

7 in the appendix. Large negative values of T̂ Sn reject HS′
0 in favor of HS

−1. Large

positive values of T̂ Sn reject HS′
0 in favor of HS

+1. This test statistic asymptotically

follows the standard normal distribution.

Proposition 4 (Test of HS
0 ). Suppose that Assumptions 12 and 13 hold. Then,

T̂ Sk,n
d−→ Z ∼ N(0, 1) under HS

0 .

3.2. Test of the Hypothesis HA
0 . For a test of model types (i) and (ii), we

consider the null hypothesis

HA
0 :

∂

∂s
ϕ(s, a) = βs for some constant βs for [PA|S=s]-a.s. a

A test statistic will be constructed through the following logic. Given discrete z, HA
0

implies

HA′

0 : APE(s, z) = βs for some constant βs for all z ∈ supp(Z | S = s).

Suppose that ϕ exhibits (DR) or (CR), i.e., (IR) is ruled out. Theorem 5 under HA′
0

yields

B(s; zk+1, zk) 6 βs for all k = 1, · · · , K − 1 and

βs 6 B(s; zk−1, zk) for all k = 2, · · · , K.

Satisfaction of these inequalities implies the following empirically testable hypothesis:

HA′′

0 : B(s; zk+1, zk) 6 B(s; zk′−1, zk′) for all k, k
′
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Fail to reject HS
0 Reject HS

0 in favor of HS
−1 Reject HS

0 in favor of HS
+1

Fail to reject HA
0 Fail to reject HA

0 Fail to reject HA
0

Fail to reject HS
0 Reject HS

0 in favor of HS
−1 Reject HS

0 in favor of HS
+1

Reject HA
0 Reject HA

0 Reject HA
0

Figure 3.2. Graphical characterizations of specification tests.

Rejection of HA′′
0 implies rejection of HA′

0 , which in turn implies rejection of HA
0 .

Figure 3.2 depicts the various cases in which the last null hypothesis is rejected or

fails to be rejected.

The last testable form of the hypothesis HA′′
0 requires that no lower bound exceeds

any uppper bound. Consider a test statistic as a measure of the largest deviation from

this requirement

T̂An (W ) :=
√
nhnmax

k,k′

{
Wk,k′

(
B̂(s; zk+1, zk)− B̂(s; zk′−1, zk′)

)}
where W is a weighting matrix. Consider the random variable TA(W ) := maxk,k′

{Wk,k′ (Lk − Uk′)} , where (L1, U2, L2, U3, L3, · · · , UK) is a 2(K − 1)-tuple random

vector following the normal law N(0,Γ) with Γ given in Section 7 in the appendix.

Proposition 5 (Test of HA
0 ). Suppose that Assumptions 12 and 13 hold. Then,

lim
n→∞

sup
H∈HA

0

Pr
(
T̂An > F−1

TA(1− α)
∣∣∣H) 6 α
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holds for all α ∈ (0, 1) under (DR) or (CR).

Remark 15. Under (IR) or (CR), we can develop a similar test statistic by

switching the roles of B̂(s; zk+1, zk) and B̂(s; zk′−1, zk′).

The size of this test is in general conservative. The exact size α is achieved under

the case of point-identification for every z ∈ supp(Z), that is, when Assumption 1

(CR) holds. Tendency of under-rejection becomes more likely as partially identified

regions become wider.

3.3. Monte Carlo Evidences. Consider the family of data-generating models

introduced in Section 2.2:

Y =
5ps

1− ps
(S − 5)1−psepaA + (1− pa)A

Recall that ps and pa are parameters that induce heterogeneity in the dimensions of

S and A, respectively. The null hypothesis HS
0 is true when ps = 0. Similarly, the

null hypothesis HA
0 is true when pa = 0. We expect that the power of the test of

HS
0 increases as ps deviates away from zero, and that the power of the test of HA

0

increases as pa deviates away from zero.

Figure 3.3 draws MC-simulated power curves of the 95% level tests across dif-

ferent values of ps and pa for various sample sizes of 1,000, 2,000, 5,000, and 10,000

observations. The size is indeed correct under both tests with about 5% rejection

probability at ps = 0 and pa = 0 for the tests of Hs
0 and Ha

0, respectively. The power

approaches one as the sample size increases when ps ̸= 0 and pa ̸= 0 under the tests of

Hs
0 and Ha

0, respectively. These simulation results evidence the power as well as the

unbiasedness of the proposed tests. The next section further evidences their power

with empirical data.

4. Testing with Empirical Data

In this section, we apply the proposed methods to two economic problems, both of

which have been extensively studied in the empirical literature. The first application
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95% Level Test of HS
0 95% Level Test of HA

0

Figure 3.3. Simulated power curves of the specification tests.

analyzes wage returns to years of schooling (Section 4.1). We will reject HA
0 , hence

precluding (i) the linear constant coefficient model and (ii) the nonlinear separable

model. The second application analyzes infant birth weight as an outcome of smoking

intensity (Section 4.2). We will reject HS
0 , hence precluding (i) the linear constant

coefficient model and (iii) the linear random coefficient model.

4.1. Returns to Schooling. Empirical assessment of the marginal returns to

schooling has long been of interest in labor economics. An important scene in the

literature was the emergence of natural experiments by instrumental variables (IV)

as sources of exogenous variations in endogenous choice, e.g., Angrist and Krueger

(1991). Interpretations of the IV estimator has been discussed in the econometric

literature, e.g., Angrist and Imbens (1995); (1997). For instance, (1997) shows

that 2SLS identifies the average partial effect under a special case of structural type

(iii). In this way, the knowledge of the true model type may allow a sensible structural

interpretation of the common statistical parameters.
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We attempt to test the structural types (i), (ii), and/or (iii) using the data of

Angrist and Krueger (1991). They used the quarter of birth as an exogenous source

of variation in years of schooling in order to study partial effects of education on wage

outcomes. The data consists of three decades of birth cohorts with log wage outcome

(Y ), endogenous choice of years of schooling (S), and several attribute characteristics

including quarter of birth (Z) and state of birth as well as other standard covariates.

Before starting the tests, we note that the instrumental effects should be limited

to the locality of the 9th to 10th years of schooling, where compulsory education

laws are supposed to induce difference by quarter of birth, although there are some

variations across time and states. Lleras-Muney (2002) describes the details of this

policy. Recall that this practical limitation was the reason for our setting of the null

hypotheses HS
0 and HA

0 at fixed s instead of global s. It is necessary to focus on

this locality where the instrument indeed matters, as characterized by the testable

restriction

Local First-Stage Effects := QS|Z (θz(s) | z′)−QS|Z (θz(s) | z) ̸= 0.

In order to confirm this restriction of Assumption 12 (SI), we estimate the hetero-

geneous first-stage effects across (s, z) using smooth quantile regression estimation5

for the subsample of individuals born in Arkansas, Kentucky, or Tennessee, the three

states associated with strongest first-stage effects (Hoogerheide et al. , 2007). Fig-

ure 3.4 shows that the first-stage effects in these three states are nonzero at s = 9,

whereas the instrument may be irrelevant at the college level (s = 12 and s = 16).

These differential first-stage effects coincide with the pattern implied by compulsory

education policies. We drop the first quarter because the transition between the first

and second quarters induces no difference even at s = 9. Therefore, we use the

instrumental variations among supp(Z) = {2, 3, 4}.

5 This follows from Horowitz (1998) replacing the indicator function with a smooth function
in the objective function of quantile estimators. We do so for our treatment of the years S as a
continuous variable.
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Figure 3.4. Heterogeneous first-stage effects across years of schooling
and quarters of birth. Sample: place of birth from Arkansas, Kentucky,
or Tennessee for all birth years.

The set estimates and confidence intervals for APE(9.5, z) for z ∈ {2, 3, 4} are

depicted in Figure 3.5. Comparing Figure 3.5 with Figure 3.1, we can conjecture

that the closer model in a statistical sense is (iii) the linear random coefficient model.

Moreover, comparing Figure 3.5 with Figure 3.2, we can see that the bottom left

picture in Figure 3.2 best resembles Figure 3.5 in a statistical sense. According to

Figure 3.5, the upper and lower bounds of APE(9.5, 3) do not seem to significantly

differ from each other, hence we are not likely to reject HS
0 . On the other hand,

the figure shows that APE(9.5, z) tends to decrease in z, which implies that we will

probably reject HA
0 .

Let us formalize these visual analyses as follows. First, consider the hypothesis

HS
0 : ∂2

∂s2
ϕ(9.5, a) = 0 for all a ∈ supp(A). Recall that large negative (respectively,

positive) values of the test statistic T̂ Sn reject the null hypothesis HS
0 of constant

returns in favor of the alternative hypothesis HS
−1 of decreasing returns (respectively,

HS
+1 of increasing returns). Table 3.1 shows that the test statistic is negative, but not

significantly so. Hence, we fail to reject HS
0 . Second, consider a test of the hypothesis
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Figure 3.5. Bounds and confidence regions of APE(9.5, z) for z =
2, 3, 4. Sample: place of birth in Arkansas, Kentucky, or Tennessee.

Null Hypothesis Alternative Hypothesis Test Statistic p-value

HS
0 : ∂ϕ

∂s
is constant across S

HS
−1 : ϕ is concave in S

T̂ Sn = −0.90 0.367
HS

+1 : ϕ is convex in S

HA
0 : ∂ϕ

∂s
is constant across A HA

1 : ∂ϕ
∂s

varies with A T̂An = 106.38 0.018∗∗

Table 3.1. Results of specification tests for Angrist & Krueger (1991) data.

HA
0 : ∂

∂s
ϕ(9.5, a) = βs for some constant βs for all a ∈ supp(A). Table 3.1 shows that

the test statistic is significantly large at the level of 5%. We therefore reject HA
0 .

These results imply that the wage production function may be linear in years of

schooling. However, the constant returns to education are likely to be heterogeneous,

conceivably across unobserved abilities. The structural specifications of (i) the con-

stant coefficient model and (ii) the nonlinear separable model are rejected, whereas

(iii) the linear random coefficient model survived our attempt at rejection.
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4.2. Smoking and Infant Birth Weights. The effects of smoking by pregnant

women on infant birth weights have been studied by an extensive body of both the

health economic literature (e.g., Rosenzweig and Schultz, 1983; Evans and Ringel,

1999; and Lien and Evans, 2005) and the medical literature (e.g., Lightwood, Phibbs,

and Glantz, 1999). In this section, we analyze the structural type of the birth-weight

production function that takes cigarettes as a negative production factor. Cigarette

excise tax rates are used to instrument for variations in cigarette consumption, fol-

lowing the approach of Evans and Ringel (1999). From natality data of the National

Vital Statistics System of the National Center for Health Statistics, we extract a

random sample of 100,000 observations from 1989 to 1999. Since three categories of

instrumental variations suffice for our purpose, we categorize the tax rate into three

groups, high for 50–100%, medium for 25–50%, and low for 0–25%, which are labeled

as z=1, 2, and 3, respectively.

Cigarette excise tax rates have nearly continuous variations. This instrumental

variable, unlike the example of Section 4.1 or many other empirical data, is rich enough

to allow nonparametric inferences without partial identification. We nevertheless

consider this application for the sake of demonstrating the power of our test for HS
0 .

In order to confirm the restriction of Assumption 12 (SI), we estimate the hetero-

geneous first-stage effects across (s, z) using smooth quantile regression estimation.

Figure 3.6 suggests that the first-stage effects are nonzero for 2 6 s 6 8. Both

positive and negative variations are large around s = 5. Therefore, we focus on a

neighborhood of s = 5.

The set estimates and confidence intervals for APE(5, z) are depicted in Figure

3.7. We can conjecture the true structural type by comparing Figure 3.7 with Figure

3.1 or 3.2. In comparison with Figure 3.1, we see that the graph representing (ii)

the nonlinear separable model most closely resembles Figure 3.7. The upper and

lower bounds of APE(5, 2) seem to differ significantly from each other, hence we will

probably reject HS
0 . On the other hand, the figure does not imply a tendency of either

increase or decrease for the true APE(5, z) in z, thus we are not likely to reject HA
0 .
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Figure 3.6. Heterogeneous first-stage effects across number of
cigarettes smoked and cigarette tax rate.

Figure 3.7. Bounds and confidence regions of APE(5, z) for z =
1, 2, 3 with h = 3.

Let us formalize these visual analyses. First, consider a test of hypothesis

HS
0 : ∂2

∂s2
ϕ(5, a) = 0 for all a ∈ supp(A). Table 3.1 shows that the test statistic is
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s = 4

Null Hypothesis Alternative Hypothesis Test Statistic p-value

HS
0 : ∂ϕ

∂s
is constant across S

HS
−1 : ϕ is concave in S

T̂ Sn = 5.86 0.000∗∗∗

HS
+1 : ϕ is convex in S

HA
0 : ∂ϕ

∂s
is constant across A HA

1 : ∂ϕ
∂s

varies with A T̂An = 0.00 0.625

s = 5

Null Hypothesis Alternative Hypothesis Test Statistic p-value

HS
0 : ∂ϕ

∂s
is constant across S

HS
−1 : ϕ is concave in S

T̂ Sn = 4.07 0.000∗∗∗

HS
+1 : ϕ is convex in S

HA
0 : ∂ϕ

∂s
is constant across A HA

1 : ∂ϕ
∂s

varies with A T̂An = 0.00 0.618

s = 6

Null Hypothesis Alternative Hypothesis Test Statistic p-value

HS
0 : ∂ϕ

∂s
is constant across S

HS
−1 : ϕ is concave in S

T̂ Sn = 2.06 0.040∗∗

HS
+1 : ϕ is convex in S

HA
0 : ∂ϕ

∂s
is constant across A HA

1 : ∂ϕ
∂s

varies with A T̂An = 0.00 0.612

Table 3.2. Results of specification tests for smoking and infant birth weights.

significantly positive. Hence, we reject HS
0 in favor of HS

+1, that is, convexity. Second,

consider a test of the hypothesis HA
0 : ∂

∂s
ϕ(5, a) = βs for some constant βs for all a ∈

supp(A). Table 3.2 shows that the test statistic is not significant. We therefore fail

to reject HA
0 .

These results imply that the birth-weight production function is convex in the

number of cigarettes, and the shapes of these functions are perhaps homogeneous
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across individuals. In other words, the negative marginal effects of smoking diminish

in number of cigarettes, but may not vary across unobserved physiological character-

istics of mothers. The structural specifications of (i) the constant coefficient model

and (iii) the linear random coefficient model are rejected, whereas (ii) the nonlinear

separable model survived our attempt at rejection.

5. Conclusion

This paper proposed methods of specification testing that are effective even when

instruments exhibit only discrete variations as in the case of many empirical data. To

reflect this limitation, we developed an idea to use partially identified parameters to

construct test statistics. The tests are designed to distinguish (i) the linear constant

coefficient model, (ii) the nonlinear separable model, and (iii) the linear random

coefficient model, against the alternative of (iv) the nonlinear nonseparable model.

We showed the empirical relevance of the method. Specifications (i) and (ii) are

rejected for log wages as a function of years of education. Specifications (i) and (iii)

are rejected for infant birth weights as a function of smoking intensity.

6. Appendix: Well-Defined Conditional Expectations

Define Ψ := ∂
∂s
ϕ(S,A). Assume that there exists a function h ∈ L1(FSZ) such

that ∫
F

h(s, z)dFSZ(s, z) =

∫
R×F

ψdFΨSZ(ψ, s, z)

holds for every Borel set F ∈ B(R2). Under this assumption, we can define the

conditional expectation

E

[
∂

∂s
ϕ(S,A)

∣∣∣∣ (S, Z) = ·
]
:= h,

which do not suffer from the Borel-Kolmogorov paradox. We similarly assume that

other conditional expectations and conditional distributions used through this paper

are well-defined.
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7. Appendix: Covariance Matrices Γ and Γ̃

The covariance matrix Γ is given by

Γ12

Γ21 Γ213 O

Γ213 Γ23

Γ32 Γ324

Γ324 Γ34

O
. . .

ΓK,K−1


where

Γk,k′ := ∥K∥22
σ2(QS|Z

(
FS|Z(s | zk) | zk′

)
, zk′)

fSZ(QS|Z
(
FS|Z(s | zk) | zk′

)
, zk′)

[
QS|Z

(
FS|Z(s | zk) | zk′

)
− s
]2

+ ∥K∥22
σ2(s, zk)

fSZ(s, zk)
[
QS|Z

(
FS|Z(s | zk) | zk′

)
− s
]2

Γk,k′,k′′ := ∥K∥22
σ2(s, zk)

fSZ(s, zk)
[
QS|Z

(
FS|Z(s | zk) | zk′′

)
− s
] [
QS|Z

(
FS|Z(s | zk) | zk′

)
− s
]

The covariance matrix Γ̃ is the middle 2(K − 2)× 2(K − 2) elements of Γ.

8. Appendix: Auxiliary Lemmas

8.1. Lemma 18.

Lemma 18. Suppose that Assumption 12 holds. Then

fV |SZ
(
v
∣∣QS|Z(θ | z′), z′

)
= fV |SZ

(
v
∣∣QS|Z(θ | z), z

)
holds for all θ ∈ (0, 1), for all v ∈ supp(V ), and for all z, z′ ∈ supp(Z).

Proof. With this specification, we have

FS|Z(ψ(z, v) | z) = Pr(ψ(z, V ) 6 ψ(z, v) | Z = z)
(1)
= Pr(ψ(z, V ) 6 ψ(z, v) | Z = z′)

(2)
= Pr(ψ(z′, V ) 6 ψ(z′, v) | Z = z′) = FS|Z(ψ(z

′, v) | z′)

for all (a, v) ∈ supp(A, V ) and z, z′ ∈ supp(Z), where step (1) is due to (IV), and step

(2) is due to (IM). But then, the random variable defined by Θ := FS|Z(ψ(z, V ) | z)

does not depend on z, hence Θ = h(V ) for some function h. Since (V,Θ) =
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(V, h(A, V )), (IV) implies (V,Θ) ⊥⊥ Z. But then, fV |Θ =
fV Θ|Z
fΘ

fZ = fV Θ

fΘ
fZ =

fV |ΘfZ = fV |ΘfZ|Θ, showing that V ⊥⊥ Z | Θ.

By (AC), FS|Z( · | z) is invertible on its support, and the map θ 7→ F−1
S|Z(θ | z)

is injective. But then, so is the map (θ, z) 7→
(
F−1
S|Z(θ | z), z

)
. This implies that

fV |SZ

(
v
∣∣∣F−1

S|Z(θ | z), z
)
= fV |ΘZ(v | θ, z) holds for all a v, θ, and z. Now apply V ⊥⊥

Z | Θ to this equality to get fV |SZ

(
v
∣∣∣F−1

S|Z(θ | z), z
)
= fV |ΘZ(v | θ, z) = fV |Θ(v | θ).

Therefore, it follows that

fV |SZ

(
v
∣∣∣F−1

S|Z(θ | z
′), z′

)
− fV |SZ

(
v
∣∣∣F−1

S|Z(θ | z), z
)
= fV |Θ(v | θ)− fV |Θ(v | θ) = 0.

�

8.2. Lemma 19.

Lemma 19. Suppose that (IV) holds. Then,

E[Y | S = s, Z = z] =

∫
ϕ(s, a)fA|V (a | v)fV |SZ(v | s, z)d(a, v)

holds for all (a, s, v, z) for which the conditional distributions are well-defined.

Proof. First, note that fA|V SZ(a | v, s, z) = fA|V SZ(a | v, ψ(z, v), z) = fA|V Z(a |

v, z) holds on the support of fV |SZ . Using this fact, we obtain

E[Y | S = s, Z = z] =

∫ ∫
ϕ(s, a)fA|V Z(a | v, z)fV |SZ(v | s, z)dadv

Next, using (IV) reduces fA|V Z into fA|V , hence proving the lemma. �

8.3. Lemma 20.

Lemma 20. Suppose that Assumption 12 holds. If z, z′ ∈ supp(Z) and θ ∈ (0, 1),

then

E[ϕ(s′, A)− ϕ(s,A) | S = s, Z = z] = E[Y | S = s′, Z = z′]− E[Y | S = s, Z = z] and

E[ϕ(s′, A)− ϕ(s,A) | S = s′, Z = z′] = E[Y | S = s′, Z = z′]− E[Y | S = s, Z = z]

hold, where s = QS|Z(θ | z) and s′ = QS|Z(θ | z′).
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Proof. First, note that the convex support condition in (AC) guarantees the

invertibility of FS|Z( · | z), hence F−1
S|Z( · | z) is well-defined on (0, 1). For notational

simplicity, write

Λ(z′, z, θ) :=

∫ ∫
ϕ(F−1

S|Z(θ | z
′), a)fA|V (a | v)fV |SZ(v | F−1

S|Z(θ | z), z)dadv.

Then, Lemma 19 states

E[Y | S = F−1
S|Z(θ | z

′), Z = z′] = Λ(z′, z′, θ) and E[Y | S = F−1
S|Z(θ | z), Z = z] = Λ(z, z, θ).

On the other hand, Lemma 18 implies Λ(z′, z′, θ) − Λ(z′, z, θ) = 0 and Λ(z, z′, θ) −

Λ(z, z, θ) = 0. Combining these two results yields

E[Y | S = F−1
S|Z(θ | z

′), Z = z′]− E[Y | S = F−1
S|Z(θ | z), Z = z]

= Λ(z′, z′, θ)− Λ(z′, z, θ)︸ ︷︷ ︸
0

+Λ(z′, z, θ)− Λ(z, z, θ)︸ ︷︷ ︸
(∗)

where the (∗) part is

(∗) =

∫ ∫ [
ϕ(F−1

S|Z(θ | z
′), a)− ϕ(F−1

S|Z(θ | z), a)
]
fA|V (a | v)fV |SZ(v | F−1

S|Z(θ | z), z)dadv

= E
[
ϕ(F−1

S|Z(θ | z
′), A)− ϕ(F−1

S|Z(θ | z), A)
∣∣∣S = F−1

S|Z(θ | z), Z = z
]

Now, substitute s′ = F−1
S|Z(θ | z′) and s = F−1

S|Z(θ | z) to obtain

E[Y | S = s′, Z = z′]− E[Y | S = s, Z = z] = E[ϕ(s′, A)− ϕ(s, A) | S = s, Z = z].

Similarly, we write

E[Y | S = F−1
S|Z(θ | z

′), Z = z′]− E[Y | S = F−1
S|Z(θ | z), Z = z]

= Λ(z′, z′, θ)− Λ(z, z′, θ)︸ ︷︷ ︸
(∗∗)

+Λ(z, z′, θ)− Λ(z, z, θ)︸ ︷︷ ︸
0

where the (∗∗) part is

(∗∗) =

∫ ∫ [
ϕ(F−1

S|Z(θ | z
′), a)− ϕ(F−1

S|Z(θ | z), a)
]
fA|V (a | v)fV |SZ(v | F−1

S|Z(θ | z
′), z′)dadv

= E
[
ϕ(F−1

S|Z(θ | z
′), A)− ϕ(F−1

S|Z(θ | z), A)
∣∣∣S = F−1

S|Z(θ | z
′), Z = z′

]
Now, substitute s′ = F−1

S|Z(θ | z′) and s = F−1
S|Z(θ | z) to obtain

E[Y | S = s′, Z = z′]− E[Y | S = s, Z = z] = E[ϕ(s′, A)− ϕ(s, A) | S = s′, Z = z′].
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8.4. Lemma 21.

Lemma 21 (Monotonicity). (i) Suppose that (IV) and (SI) hold. Then, for a

fixed θ ∈ (0, 1), QS|Z(θ | z) is increasing in z. (ii) If in addition (AC) holds, then

θ ∈ (0, 1), QS|Z(θ | z) is strictly increasing in z.

Proof. Let z′ > z. Since ψ is increasing by (SI), Pr(ψ(z, V ) 6 s) > Pr(ψ(z′, V )

6 s) for all s. But since Pr(ψ(z, V ) 6 s) = Pr(ψ(Z, V ) 6 s | Z = z) = FS|Z(s | z)

and similarly Pr(ψ(z′, V ) 6 s) = FS|Z(s | z′) by (IV), the above inequality reduces

to FS|Z(s | z) > FS|Z(s | z′) for all s. This inequality in turn yields the set relation{
s
∣∣FS|Z(s | z) > θ

}
⊃
{
s
∣∣FS|Z(s | z′) > θ

}
. But then,

F−1
S|Z(θ | z) = inf

{
s
∣∣FS|Z(s | z) > θ

}
6 inf

{
s
∣∣FS|Z(s | z′) > θ

}
= F−1

S|Z(θ | z
′)

which proves part (i).

To prove part (ii), assume (AC) in addition. Note that (AC) implies the absolute

continuity of the distribution of ψ(z, V ) with a convex support for each z ∈ supp(Z).

But then, z < z′ and (SI) yield Pr(ψ(z, V ) 6 s) > Pr(ψ(z′, V ) 6 s), hence θ :=

FS|Z(s | z) > FS|Z(s | z′) by the same argument as in part (i). Since (AC) implies

∂
∂θ
F−1
S|Z(θ | z) > 0, we obtain

F−1
S|Z(θ | z

′) = F−1
S|Z(FS|Z(F

−1
S|Z(θ | z

′) | z) | z) > F−1
S|Z(FS|Z(F

−1
S|Z(θ | z

′) | z′) | z) = F−1
S|Z(θ | z),

which proves part (ii). �

8.5. Lemma 22.

Lemma 22 (Asymptotic Distribution). Suppose that Assumption 13 holds. If

z′ ̸= z and QS|Z
(
FS|Z(s | z) | z′

)
̸= s, then

√
nhn

(
B̂(s; z′, z)−B(s; z′, z)

)
d−→ ξ ∼

N(0, V ), where

V := ∥K∥22
fSZ(s, z)σ

2(QS|Z
(
FS|Z(s | z) | z′

)
, z′) + fSZ(QS|Z

(
FS|Z(s | z) | z′

)
, z′)σ2(s, z)

fSZ(s, z)fSZ(QS|Z
(
FS|Z(s | z) | z′

)
, z′)

[
QS|Z

(
FS|Z(s | z) | z′

)
− s
]2
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Proof. By Assumption 13 (i), q̂(s, z; z′)
p−→ QS|Z

(
FS|Z(s | z) | z′

)
is granted.

Therefore, it suffices to show convergence of the numerator of B̂(s; z′, z) to that of

B(s; z′z) in law. I use some variants of the standard asymptotic theories of kernel-

based estimators (e.g., Pagan and Ullah, 1999).

First, the Lyapunov’s CLT with Assumption 13 (ii)–(vi) yields

√
nhn (En,h[Y | S = s, Z = z]− E[Y | S = s, Z = z]) =

1√
nhn

∑n
i=1K

(
Si−s
hn

)
1 (Zi = z) εi

1
nhn

∑n
i=1K

(
Si−s
hn

)
1 (Zi = z)

=

1√
n(z)hn

∑n
i=1K

(
Si−s
hn

)
1 (Zi = z) εi√

n(z)
n

1
n(z)hn

∑n
i=1K

(
Si−s
hn

)
1 (Zi = z)

d−→ ξ1√
fZ(z)fS|Z(s | z)

where n(z) :=
∑n

i=1 1 (Zi = z) and ξ1 ∼ N
(
0, fS|Z(s | z) ∥K∥22 σ2(s, z)

)
. Similarly,

we have

√
nhn

(
En,h[Y | S = q̂(s, z; z′), Z = z′]− E[Y | S = QS|Z

(
FS|Z(s | z) | z′

)
, Z = z′]

)
=

1√
nhn

∑n
i=1K

(
Si−q̂(s,z;z′)

hn

)
1 (Zi = z′) εi

1
nhn

∑n
i=1K

(
Si−q̂(s,z;z′)

hn

)
1 (Zi = z′)

+

√
nhn

(
E[Y | S = q̂(s, z; z′), Z = z′]− E[Y | S = QS|Z

(
FS|Z(s | z) | z′

)
, Z = z′]

)︸ ︷︷ ︸
=op(1)

First, we show that the last term is op(1). To see this, note that by the mean value

expansion together with Assumption 13 (i), (ii), and (vii), we have

√
nhn

(
E[Y | S = q̂(s, z; z′), Z = z′]− E[Y | S = QS|Z

(
FS|Z(s | z) | z′

)
, Z = z′]

)
= n1/2h1/2n Op(r

−1
n ) = Op((nhnr

−2
n )1/2) = op(1).

To study the asymptotic behavior of

1√
nhn

n∑
i=1

K

(
Si − q̂(s, z; z′)

hn

)
1 (Zi = z′) εi
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rewrite it as

1√
nhn

n∑
i=1

K

(
Si −QS|Z

(
FS|Z(s | z) | z′

)
hn

)
1 (Zi = z′) εi︸ ︷︷ ︸

d−→
√
fZ(z′)ξ2

+
1√
nhn

n∑
i=1

[
K

(
Si − q̂(s, z; z′)

hn

)
−K

(
Si −QS|Z

(
FS|Z(s | z) | z′

)
hn

)]
1 (Zi = z′) εi︸ ︷︷ ︸

op(1)

Again, the Lyapunov’s CLT with Assumption 13 (ii)–(vi) yields convergence of the

first term as

1√
nhn

n∑
i=1

K

(
Si −QS|Z

(
FS|Z(s | z) | z′

)
hn

)
1
(
Zi = z′

)
εi

=

√
n(z′)

n

1√
n(z′)hn

n∑
i=1

K

(
Si −QS|Z

(
FS|Z(s | z) | z′

)
hn

)
1
(
Zi = z′

)
εi

d−→
√
fZ(z′)ξ2

where ξ2 ∼ N
(
0, fS|Z(QS|Z

(
FS|Z(s | z) | z′

)
| z′) ∥K∥22 σ2(QS|Z

(
FS|Z(s | z) | z′

)
, z′)
)
.

On the other hand,

1√
nhn

n∑
i=1

[
K

(
Si − q̂(s, z; z′)

hn

)
−K

(
Si −QS|Z

(
FS|Z(s | z) | z′

)
hn

)]
1 (Zi = z′) εi

is op(1) To see this, let M denote the Lipschitz constant of K as granted by Assump-

tion 13 (iii), and note that∣∣∣∣∣K
(
Si − q̂(s, z; z′)

hn

)
−K

(
Si −QS|Z

(
FS|Z(s | z) | z′

)
hn

)∣∣∣∣∣
6M

∣∣∣∣∣ q̂(s, z; z′)−QS|Z
(
FS|Z(s | z) | z′

)
hn

∣∣∣∣∣ = Op(h
−1
n r−1

n )

by Assumption 13 (i). Note that this expression is independent of the subscript i.

Another application of the Lyapunov’s CLT with Assumption 13 (ii)–(vi) yields

1√
n

n∑
i=1

1 (Zi = z′) εi =

√
n(z′)

n

1√
n(z′)

n∑
i=1

1 (Zi = z′) εi = Op(1),
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Hence, it follows that

1√
nhn

n∑
i=1

[
K

(
Si − q̂(s, z; z′)

hn

)
−K

(
Si −QS|Z

(
FS|Z(s | z) | z′

)
hn

)]
1 (Zi = z′) εi

= h−1/2
n Op(h

−1
n r−1

n )Op(1) = Op

(
(h3nr

2
n)

−1/2
)
= op(1)

by Assumption 13 (ii), as desired. A similar decomposition method will show

1

nhn

n∑
i=1

K

(
Si − q̂(s, z; z′)

hn

)
1 (Zi = z′)

=
n(z′)

n

1

n(z′)hn

n∑
i=1

K

(
Si − q̂(s, z; z′)

hn

)
1 (Zi = z′)

p−→ fZ(z
′)fS|Z(QS|Z

(
FS|Z(s | z) | z′

)
| z′)

= fSZ(QS|Z
(
FS|Z(s | z) | z′

)
, z′)

Putting all these pieces together, we obtain√
nhn

(
En,h[Y | S = q̂(s, z; z′), Z = z′]− E[Y | S = QS|Z

(
FS|Z(s | z) | z′

)
, Z = z′]

)
d−→

√
fZ(z′)ξ2

fSZ(QS|Z
(
FS|Z(s | z) | z′

)
, z′)

where ξ2 ∼ N
(
0, fS|Z(QS|Z

(
FS|Z(s | z) | z′

)
| z′) ∥K∥22 σ2(QS|Z

(
FS|Z(s | z) | z′

)
, z′)
)
.

Since z ̸= z′, QS|Z
(
FS|Z(s | z) | z′

)
̸= s, hn → 0, and supp(K) ⊂ (−1, 1) by assump-

tion, √
nhn (En,h[Y | S = s, Z = z]− E[Y | S = s, Z = z])

and√
nhn

(
En,h[Y | S = q̂(s, z; z′), Z = z′]− E[Y | S = QS|Z

(
FS|Z(s | z) | z′

)
, Z = z′]

)
are asymptotically independent. Using this fact, we see that

ξ̂ :=
√
nhn((En,h[Y | S = q̂(s, z; z′), Z = z′]− En,h[Y | S = s, Z = z])

−(E[Y | S = QS|Z
(
FS|Z(s | z) | z′

)
, Z = z′]− E[Y | S = s, Z = z]))

d−→ ξ :=

√
fZ(z′)ξ2

fSZ(QS|Z
(
FS|Z(s | z) | z′

)
, z′)

−
√
fZ(z)ξ1

fSZ(s, z)

where

ξ ∼ N

(
0,

∥K∥22 σ2(QS|Z
(
FS|Z(s | z) | z′

)
, z′)

fSZ(QS|Z
(
FS|Z(s | z) | z′

)
, z′)

+
∥K∥22 σ2(s, z)

fSZ(s, z)

)
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Lastly, noting Assumption 13 (i) and (ii) yields

√
nhn

(
B̂(s; z′, z)−B(s; z′, z)

)
=

ξ̂

q̂(s, z; z′)− s
+

√
nhn

(
q̂(s, z; z′)−QS|Z

(
FS|Z(s | z) | z′

))
(q̂(s, z; z′)− s)

(
QS|Z

(
FS|Z(s | z) | z′

)
− s
)

=
ξ̂

q̂(s, z; z′)− s
+

Op((nhnr
−2
n )1/2)

(q̂(s, z; z′)− s)
(
QS|Z

(
FS|Z(s | z) | z′

)
− s
)

d−→ ξ

QS|Z
(
FS|Z(s | z) | z′

)
− s

∼ N(0, V )

where

V =

∥K∥22σ2(QS|Z(FS|Z(s|z)|z′),z′)
fSZ(QS|Z(FS|Z(s|z)|z′),z′)

+
∥K∥22σ2(s,z)

fSZ(s,z)[
QS|Z

(
FS|Z(s | z) | z′

)
− s
]2

�

8.6. Lemma 23.

Lemma 23 (Asymptotic Joint Distribution). Suppose that Assumption 13 holds.

If z∗ < z < z∗ and QS|Z
(
FS|Z(s | z) | z∗

)
< s < QS|Z

(
FS|Z(s | z) | z∗

)
, then

√
nhn

 B̂(s; z∗, z)−B(s; z∗, z)

B̂(s; z∗, z)−B(s; z∗, z)

 d−→ b ∼ N

0,

 Σ11(s, z) Σ12(s, z)

Σ12(s, z) Σ22(s, z)


where

Σ11(s, z) := ∥K∥22
fSZ(s, z)σ

2(QS|Z
(
FS|Z(s | z) | z∗

)
, z∗) + fSZ(QS|Z

(
FS|Z(s | z) | z∗

)
, z∗)σ2(s, z)

fSZ(s, z)fSZ(QS|Z
(
FS|Z(s | z) | z∗

)
, z∗)

[
QS|Z

(
FS|Z(s | z) | z∗

)
− s

]2
Σ12(s, z) := ∥K∥22

σ2(s, z)

fSZ(s, z)
[
QS|Z

(
FS|Z(s | z) | z∗

)
− s

] [
QS|Z

(
FS|Z(s | z) | z∗

)
− s

]
Σ22(s, z) := ∥K∥22

fSZ(s, z)σ
2(QS|Z

(
FS|Z(s | z) | z∗

)
, z∗) + fSZ(QS|Z

(
FS|Z(s | z) | z∗

)
, z∗)σ

2(s, z)

fSZ(s, z)fSZ(QS|Z
(
FS|Z(s | z) | z∗

)
, z∗)

[
QS|Z

(
FS|Z(s | z) | z∗

)
− s

]2

Proof. By using a similar argument to the proof of Lemma 22 (i), we obtain

√
nhn

 B̂(s; z∗, z)−B(s; z∗, z)

B̂(s; z∗, z)−B(s; z∗, z)

 = Q̂(s, z; z∗, z∗)
−1

 ξ̂∗

ξ̂∗

+Op((nhnr
−2
n )1/2)
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where

Q̂(s, z; z∗, z∗) := diag (q̂(s, z; z∗)− s, q̂(s, z; z∗)− s)

p−→ diag
(
QS|Z

(
FS|Z(s | z) | z∗

)
− s,QS|Z

(
FS|Z(s | z) | z∗

)
− s
)

is nonsingular with probability approaching one under the assumption that QS|Z(
FS|Z(s | z) | z∗

)
< s < QS|Z

(
FS|Z(s | z) | z∗

)
, and

ξ̂∗ :=
√
nhn((En,h[Y | S = q̂(s, z; z∗), Z = z∗]− En,h[Y | S = s, Z = z])

−(E[Y | S = QS|Z
(
FS|Z(s | z) | z∗

)
, Z = z∗]− E[Y | S = s, Z = z]))

ξ̂∗ :=
√
nhn((En,h[Y | S = q̂(s, z; z∗), Z = z∗]− En,h[Y | S = s, Z = z])

−(E[Y | S = QS|Z
(
FS|Z(s | z) | z∗

)
, Z = z∗]− E[Y | S = s, Z = z]))

Since z ̸= z′, QS|Z
(
FS|Z(s | z) | z′

)
̸= s, hn → 0, and supp(K) ⊂ (−1, 1) by assump-

tion,

√
nhn (En,h[Y | S = s, Z = z]− E[Y | S = s, Z = z]) ,

√
nhn

(
En,h[Y | S = q̂(s, z; z∗), Z = z∗]− E[Y | S = QS|Z

(
FS|Z(s | z) | z∗

)
, Z = z∗]

)
,

and

√
nhn

(
En,h[Y | S = q̂(s, z; z∗), Z = z∗]− E[Y | S = QS|Z

(
FS|Z(s | z) | z∗

)
, Z = z∗]

)
are asymptotically independent. Therefore, by a similar argument to the proof of

Lemma 22 (i), the Lyapunov’s CLT together with Assumption 13 (ii)-(vi) yields

 ξ̂∗

ξ̂∗

 p−→

 ξ∗

ξ∗

 ∼ N

0,

 Λ1
11(s, z) Λ1

12(s, z)

Λ1
12(s, z) Λ1

22(s, z)


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where

Λ1
11(s, z) :=

∥K∥22 σ2(QS|Z
(
FS|Z(s | z) | z∗

)
, z∗)

fSZ(QS|Z
(
FS|Z(s | z) | z∗

)
, z∗)

+
∥K∥22 σ2(s, z)

fSZ(s, z)

Λ1
12(s, z) :=

∥K∥22 σ2(s, z)

fSZ(s, z)

Λ1
22(s, z) :=

∥K∥22 σ2(QS|Z
(
FS|Z(s | z) | z∗

)
, z∗)

fSZ(QS|Z
(
FS|Z(s | z) | z∗

)
, z∗)

+
∥K∥22 σ2(s, z)

fSZ(s, z)

Therefore,

√
nhn

 B̂(s; z∗, z)−B(s; z∗, z)

B̂(s; z∗, z)−B(s; z∗, z)

 d−→ plim
(
Q̂(s, z; z∗, z∗)

)−1

 ξ∗

ξ∗


∼ N

0,

 Σ11(s, z) Σ12(s, z)

Σ12(s, z) Σ22(s, z)


�

8.7. Lemma 24.

Lemma 24 (Asymptotic Joint Distribution). Suppose that Assumption 13 holds

for s and all z ∈ supp(Z), and assume that QS|Z
(
FS|Z(s | zk) | zi

)
̸= QS|Z

(
FS|Z(s | zk′)

| zj) for k ̸= k′, k ̸= i, and k′ ̸= j. If supp(Z) = {z1, . . . , zK} with z1 < · · · < zK and

s ∈ supp(S), then

√
nhn · vec


B̂(s; z2, z1)−B(s; z2, z1) · · · B̂(s; z1, zK)−B(s; z1, zK)

...
. . .

...

B̂(s; zK , z1)−B(s; zK , z1) · · · B̂(s; zK−1, zK)−B(s; zK−1, zK)


(K−1)×(K−1)

d−→ b ∼ N

0,


Σ(z1) · · · O

...
. . .

...

O · · · Σ(zK)


(K−1)2×(K−1)2


where for each k = 1, · · · , K, the (i, i)–element of Σ(zk) is

∥K∥22
fSZ(s, zk)σ

2(QS|Z
(
FS|Z(s | zk) | zi

)
, zi) + fSZ(QS|Z

(
FS|Z(s | zk) | zi

)
, zi)σ

2(s, zk)

fSZ(s, zk)fSZ(QS|Z
(
FS|Z(s | zk) | zi

)
, zi)

[
QS|Z

(
FS|Z(s | zk) | zi

)
− s
]2

for i = 1, · · · , k − 1, the (i, i)–element of Σ(zk) is

∥K∥22
fSZ(s, zk)σ

2(QS|Z
(
FS|Z(s | zk) | zi+1

)
, zi+1) + fSZ(QS|Z

(
FS|Z(s | zk) | zi+1

)
, zi+1)σ

2(s, zk)

fSZ(s, zk)fSZ(QS|Z
(
FS|Z(s | zk) | zi+1

)
, zi+1)

[
QS|Z

(
FS|Z(s | zk) | zi+1

)
− s
]2
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for i = k + 1, · · · , K − 1, the (i, j)–element of Σ(zk) is

∥K∥22
σ2(s, zk)

fSZ(s, zk)
[
QS|Z

(
FS|Z(s | zk) | zi

)
− s
] [
QS|Z

(
FS|Z(s | zk) | zj

)
− s
]

for i ̸= j with i, j < k and similarly for other cases.

Proof. The upper (K − 1) × K block of the left-hand-side matrix consists of

elements of the form√
nhn

(
B̂(s; zi, zk)−B(s; zi, zk)

)
=

ξ̂ik
q̂(s, zk; zi)− s

+Op((nhnr
−2
n )1/2)

where, as in the proof of Lemma 23,

q̂(s, zk; zi)− s
p−→ QS|Z

(
FS|Z(s | zk) | zi

)
− s ̸= 0

and

ξ̂ik :=
√
nhn((En,h[Y | S = q̂(s, zk; zi), Z = zi]− En,h[Y | S = s, Z = zk])

−(E[Y | S = QS|Z
(
FS|Z(s | zk) | zi)

)
, Z = zi]− E[Y | S = s, Z = zk]))

for which Assumption 13 (ii)–(vi) facilitated a sufficient condition for the Lyapunov’s

CLT to be invoked. It remains to investigate in the elements of the variance-covariance

matrix, but this follows from the same argument as the proof of Lemma 23.

Lastly, we show that all the elements off the block diagonal are zero. To this

end, it suffices to observe asymptotic independence between ξ̂ik and ξ̂jk′ for k ̸= k′.

But this asymptotic independence clearly holds by noting that the data is i.i.d.,

hn → 0 as n → ∞, the assumption of the lemma that QS|Z
(
FS|Z(s | zk) | zi

)
̸=

QS|Z
(
FS|Z(s | zk′) | zj

)
, and that k ̸= k′ implies zk ̸= zk′ , s ̸= QS|Z

(
FS|Z(s | zk) | zi

)
for all i ̸= k, and s ̸= QS|Z

(
FS|Z(s | zk′) | zj

)
for all j ̸= k′. �

9. Appendix: Proofs of the Theorem and the Propositions

9.1. Proof of Theorem 5.

Proof. We prove the statement for the case of Assumption 1 (DR). Other cases

can be similarly proved by simply replacing inequalities. Let z′ := z+s,z and s′ =
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F−1
S|Z
(
FS|Z(s | z) | z′

)
. Since s = F−1

S|Z
(
FS|Z(s | z) | z

)
, Lemma 21 implies s′ > s.

Then (DR) or (CR) implies

ϕ(s′, a)− ϕ(s, a)

s′ − s
<

∂

∂S
ϕ(s, a)

for all a. But then,

E [ϕ(s′, A)− ϕ(s, A) | S = s, Z = z]

s′ − s
=

∫
ϕ(s′, a)− ϕ(s, a)

s′ − s
fA|SZ(a | s, z)da

<

∫
∂

∂S
ϕ(s, a)fA|SZ(a | s, z)da = E

[
∂

∂S
ϕ(s, A)

∣∣∣∣S = s, Z = z

]
.

Moreover, Lemma 20 yields

E [ϕ(s′, A)− ϕ(s, A) | S = s, Z = z] = E[Y | S = s′, Z = z′]− E[Y | S = s, Z = z]

since s = F−1
S|Z(θ | z) and s′ = F−1

S|Z(θ | z′) where θ = FS|Z(s | z). Substituting this

equality into the last inequality yields

E[Y | S = s′, Z = z′]− E[Y | S = s, Z = z]

s′ − s
< E

[
∂

∂S
ϕ(s, A)

∣∣∣∣S = s, Z = z

]
.

Next, let z′′ := z−s,z and s
′′ = F−1

S|Z
(
FS|Z(s | z) | z′′

)
. Since s = F−1

S|Z
(
FS|Z(s | z) | z

)
,

Lemma 21 implies s′′ < s. Using (DR) or (CR) and a similar argument to the previous

paragraph, we obtain

E

[
∂

∂S
ϕ(s,A)

∣∣∣∣S = s, Z = z

]
<

E[Y | S = F−1
S|Z
(
FS|Z(s | z) | z′′

)
, Z = z′′]− E[Y | S = s, Z = z]

F−1
S|Z
(
FS|Z(s | z) | z′′

)
− s

.

�

9.2. Proof of Proposition 4.

Proof. Under HS
0 , which implies HS′

0 , we have

T̂ Sn :=
√
nhn

B̂(s; zk+1, zk)− B̂(s; zk−1, zk)√
Γk,k−1 + Γk,k+1 − 2Γk,k−1,k+1

:=
√
nhn

(
B̂(s; zk+1, zk)−B(s; zk+1, zk)

)
−
(
B̂(s; zk−1, zk)−B(s; zk−1, zk)

)
√
Γk,k−1 + Γk,k+1 − 2Γk,k−1,k+1

.
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We have from Lemma 24 that

√
nhn



B̂(s; z1, z2)−B(s; z1, z2)

B̂(s; z3, z2)−B(s; z3, z2)
...

B̂(s; zK−2, zK−1)−B(s; zK−2, zK−1)

B̂(s; zK , zK−1)−B(s; zK , zK−1)


d−→



U2

L2

...

UK−1

LK−1


∼ N(0, Γ̃).

Hence, the continuous mapping theorem yields

√
nhn

(
B̂(s; zk+1, zk)−B(s; zk+1, zk)

)
−
(
B̂(s; zk−1, zk)−B(s; zk−1, zk)

)
√
Γk,k−1 + Γk,k+1 − 2Γk,k−1,k+1

,

d−→ Zk ∼ N(0, 1).

�

9.3. Proof of Proposition 5.

Proof. First, note that for each realization of B̂(s; · , · ), we have

T̂An =
√
nhnmax

k,k′

{
Wk,k′

(
B̂(s; zk+1, zk)− B̂(s; zk′−1, zk′)

)}
6

√
nhnmax

k,k′

{
Wk,k′

(
B̂(s; zk+1, zk)−B(s; zk+1, zk)

)
−Wk,k′

(
B̂(s; zk′−1, zk′)

−B(s; zk′−1, zk′))}

underHA
0 , sinceHA

0 impliesHA′′
0 , which in turn requiresB(s; zk+1, zk) 6 B(s; zk′−1, zk′)

for each k, k′. Therefore, by denoting by T ∗
n the random variable taking the form of the

right hand side, we obtain T̂An ≼ T ∗
n , where ≼ denotes the first-order stochastic domi-

nance relation. Under the special state ofHA′′
0 in which B(s; zk+1, zk) = B(s; zk′−1, zk′)

for each k, k′, the above inequality holds with equality, hence T̂An = T ∗
n under this

least favorable state of HA
0 .
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Second, note that by Lemma 24, we have

√
nhn



B̂(s; z2, z1)−B(s; z2, z1)

B̂(s; z1, z2)−B(s; z1, z2)

B̂(s; z2, z1)−B(s; z2, z1)
...

B̂(s; zK−1, zK)−B(s; zK−1, zK)


d−→



L1

U2

L2

...

UK


∼ N(0,Γ).

Therefore, by the Continuous Mapping Theorem, we have T ∗
n

d−→ TA.

Since T̂An ≼ T ∗
n under HA

0 , we have

Pr
(
T̂An > F−1

TA(1− α) | H
)
6 Pr

(
T ∗
n > F−1

TA(1− α) | H
)

for any α ∈ (0, 1) under H ∈ HA
0 . Taking the supremum over HA

0 yields

sup
H∈HA

0

Pr
(
T̂n > F−1

TA(1− α) | H
)
6 sup

H∈HA
0

Pr
(
T ∗
n > F−1

TA(1− α) | H
)

Lastly, it follows from T ∗
n

d−→ T that

lim
n→∞

sup
H∈HA

0

Pr
(
T̂n > F−1

TA(1− α) | H
)

6 lim
n→∞

sup
H∈HA

0

Pr
(
T ∗
n > F−1

TA(1− α) | H
)

= Pr
(
T > F−1

TA(1− α)
)

= α

�
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Honoré, Bo E. (1990) “Simple Estimation of a Duration Model with Unobserved

Heterogeneity,” Econometrica, Vol. 58 (2), pp. 453–473.
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