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Abstract

Isometries on CAT(0) spaces, iteration of mapping classes and Weil-Petersson geometry

by Yunhui Wu, Ph.D., Brown University, May 2012

Professor Jeffrey F. Brock, Chair

Let S = Sg be a surface of genus g > 1, and Teich(S) be the Teichmüller space

endowed with the Weil-Petersson metric and Mod(S) be the mapping class group of

S. This dissertation mainly consists of three parts.

The first part is to study the translation lengths of parabolic isometries on com-

plete proper visible CAT(0) spaces and their applications. We show that the trans-

lation length of parabolic isometry is always zero in the visible case. The first ap-

plication is that the mapping class groups Mod(Sg) of Sg (g ≥ 3) which properly

discontinuously act on a complete proper visible CAT(0) space by isometries have

zero translation length (every element in Mod(Sg) has zero translation length). We

also apply the zero property to giving a criterion for closed two-dimensional mani-

folds with bounded geometry. The third application is to give a negative answer to

P. Eberlein’s conjecture which says that a complete open manifold M with sectional

curvature −1 ≤ KM ≤ 0 and finite volume is visible if the universal covering space

M̃ of M contains no imbedded flat half planes.

Secondly, we show that, fix X, Y ∈ Teich(S), for any φ ∈ Mod(S), there exists a

positive integer k depending on φ such that the sequence of the directions of geodesics

connecting X and φkn ◦ Y is convergent in the visual sphere of X. In particular the

“limit” of the sequence of geodeiscs joining X and φkn ◦ Y exists in some sense, a

geometric description for the limit is provided in this dissertation.

The third part is to show that the Riemannian sectional curvature operator

of Teich(S) is non-positive definite. As an application we show that any twist

harmonic map with respect to Mod(S) from rank-one hyperbolic spaces HQ,m =

Sp(m, 1)/Sp(m) · Sp(1) or HO,2 = F−204 /SO(9) into Teich(S) must be a constant

map.
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CHAPTER 1

Introduction

This dissertation has three completely independent parts. The first part is to

study parabolic isometries on proper visible spaces. We give a geometric obstruction

to visible manifolds with bounded geometry, which is sufficient to construct counterex-

amples to Eberlein’s conjecture which says that weak rank one nonpositive curved

manifolds with bounded geometry are visible. The second part is to study iteration of

mapping classes on Teichmüller space endowed with the Weil-Petersson metric. We

give a description of the limit of geodeiscs in the Teichmüller space. The third part is

to study the sectional curvature operator of Weil-Petersson metric. We show that the

operator is non-positive definite. As an application we will provide a rigid theorem

for harmonic maps into Teichmüller space.

The first part of this dissertation is to study parabolic isometries on proper vis-

ible CAT(0) spaces and their applications. CAT(0) spaces are generalizations of

Riemannian manifolds with nonpositive sectional curvature to geodesic spaces. The

classification of isometries of CAT(0) spaces is similar to the classification of isome-

tries for the hyperbolic half plane. Let M be a CAT(0) space and γ be an isometry on

M . γ is called parabolic if the translation length |γ| := infx∈M dist(γ ◦x, x) cannot be

obtained in M ; otherwise it is called semi-simple. Let M(∞) be the ideal boundary

of M defined as the asymptotic classes of rays in M (see [10]). M is called visible

if for any two different points x, y in M(∞) there exists a geodesic line c : R → M

such that c(−∞) = x and c(+∞) = y. A metric space is called proper if it is locally

compact. Now we can state the following theorem which is one of the main results in

the first part.
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Theorem. Let M be a complete proper visible CAT(0) space. Then any parabolic

isometry has zero translation length, i.e., for any parabolic isometry γ of M we have

|γ| = 0.

Phan conjectured in [48] that if M is a tame, finite volume, negatively curved

manifold, then M is not visible if its fundamental group π1(M) contains a parabolic

isometry of M̃ with positive translation length. This result gives an affirmative answer

to this conjecture.

Gromov and Eberlein constructed a two-dimensional complete open surface with

Gauss curvature K ≤ 0 and finite volume such that the fundamental group consists of

isometries on the universal covering with positive translation lengths (see [21]). The

first application of the theorem above is the following criterion for a two-dimensional

manifold with bounded geometry to be closed.

Theorem. Let M be a complete two-dimensional surface with the Gauss curvature

−1 ≤ K(M) ≤ 0 and V ol(M) < +∞, and let π1(M, p) be the fundamental group of

M with a basepoint p. Then M is closed if and only if for any non-trivial deck

transformation φ ∈ π1(M, p) the translation length |φ| > 0.

In [13] Brock and Farb asked whether the moduli space Mg of a closed surface Sg

(g ≥ 2) (up to finite covering) admits a complete, finite volume Riemannian metric

with non-positive sectional curvature. As a second application of the zero property of

parabolic isometry, the following result can partially answer Brock-Farb’s question.

Theorem. The moduli space Mg of a closed surface Sg (g ≥ 3) (up to finite cover-

ing) admits no complete, finite volume Riemannian metric whose sectional curvature

is nonpositive and universal covering is visible.

If the manifold is Gromov-hyperbolic, this result was proved in [13].

In [23] Farb conjectures that the moduli space Mg of a closed surface Sg (g ≥ 2)

(up to finite covering) admits no complete, finite volume Riemannian metric with

sectional curvature −1 ≤ K(Mg) ≤ 0, which is a weaker version of Brock-Farb’s
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question. Eberlein conjectures in [21] that a complete open manifold M with sectional

curvature −1 ≤ KM ≤ 0 and finite volume is visible if the universal covering space M̃

of M contains no imbedded flat half planes. From the theorem above we know that if

Eberlein’s conjecture is correct, then it could partially solve Farb’s conjecture. If we

assume that there exists a metric on Mg (g ≥ 3) (up to finite covering) such that it

has finite volume and sectional curvature −1 ≤ K(Mg) ≤ 0 and the universal covering

TS contains no imbedded flat half planes (Weaker Farb conjecture), the “candidate

metric” on Mg (g ≥ 3) would be a counterexample of Eberlein’s conjecture. The

following result gives a negative answer to Eberlein’s conjecture.

Theorem. The fundamental groups of manifolds M constructed in [1] and [26]

with finite volume and sectional curvature −1 ≤ KM < 0 contain parabolic isometries

of M̃ with positive translation length. In particular, M is not visible.

In [48] Phan also independently proved Fujiwara’s example is not visible by find-

ing two points x, y on the visual boundary of the universal covering space of Fujiwara’s

example such that there does not exist a geodesic line joining x and y in the universal

covering space.

Let S = Sg be a closed surface of genus g > 1, T (S) be the Teichmüller space

of S (without metric) and Teich(S) be the Teichmüller space of Sg endowed with

the Weil-Petersson metric. Let X, Y ∈ T (S) and Γ(X, Y ) be the quasi-Fuchsian

Bers simultaneous uniformization of (X, Y ) ∈ T (S)× T (S) (see [11]). Then Γ(X, Y )

determines Q(X, Y ) = H3/Γ(X, Y ) as its quotient hyperbolic 3-manifold. In [11] it

was shown that for any φ ∈ Mod(Sg), there is an s ≥ 1 depending only on φ and

bounded in terms of S so that the sequence {Q(φsi◦X, Y )}i≥1 converges algebraically

and geometrically. Let X, Y ∈ Teich(S) and g(X, Y ) denote the geodesic joining X

and Y . The direction of the unique geodesic segment joining X and Y in the visual

sphere of Teich(S) at X plays a role as Q(X, Y ). The following result is analogous

to Brock’s theorem.
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Theorem. Let φ ∈ Mod(S) be a mapping class. Then there is an s ≥ 1 only

depending on φ so that the sequence of the directions of the geodesics {g(X,φsi◦Y )}i≥1

is convergent in the visual sphere of X.

Since the limit of the directions in the theorem above exists, the geodesic starting

at X with the direction of the limit is uniquely determined. A natural question is

Question 0.1. How to describe the limit geodesic?

We define the translation length |φ| of mapping class φ ∈ Mod(S) by |φ| =

inf
X∈Teich(S)

dist(X,φ ◦ X). The classification of Mod(S) is given in [18, 65, 70]

by using the Weil-Petersson metric, which says that every mapping class in Mod(S)

(up to some power) is one of the following four cases: identity, multi Dehn-twists,

reducible with positive translation length, or pseudo-Anosov. We study question 0.1

case by case. For identity case, the answer is trivial.

Multi Dehn twists: Before stating the result we provide some necessary back-

ground. In [65] Wolpert gave a compactness theorem for a sequence of geodesics

in Teich(S) with uniform bounded lengths. Later, in [71] Yamada constructed the

so-called Teichmüller-Coxeter development D(Teich(S), ι) (also see chaper 4) by in-

troducing an infinite Coxeter reflection group and gluing infinite copies of Teich(S)

through the strata. The limit geodesic in Wolpert’s compactness theorem can be well

described in D(Teich(S), ι).

Let σ be a simplex whose vertices σ0 are mutually disjoint simple closed curves.

The stratum Tσ consists of all hyperbolic surfaces with nodes along the curves in σ0

(see [65]). A stratum is a convex subset in Teich(S). If φ is a multi Dehn-twist, the

limit of the geodesics {g(X,φi ◦ Y )}i≥1 can be characterized by the following:

Theorem. Let σ be an m-simplex, σ0 = {α1, · · · , αm+1}, and τi be the Dehn-

twist about the curve αi for i = 1, 2, · · · ,m + 1. Let φ =
∏

1≤i≤m+1 τi ∈ Mod(S),

X, Y ∈ Teich(S), and gn be the unit speed geodesics g(X,φn ◦ Y ). Then, there exists

a positive number L; an associated partition 0 = t0 < t1 < · · · < tk = L; simplices
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σ0, · · · , σk; and a piecewise geodesic

g : [0, L]→ Teich(S)

with the following properties.

(1). σ0
i ⊂ σ0, σ0

i ∩ σ0
j is empty for i 6= j,

(2). σ0 =
⋃k
i=1 σ

0
i ,

(3). g(ti) ∈ Tσi, i = 1, · · · , k − 1, g(0) = X, g(tk) = Y ,

(4). gn([0, t1]) converges in Teich(S) to the restriction g([0, t1]), and for each

i = 1, · · · , k − 1,

lim
n→+∞

dist(τi,n ◦ · · · ◦ τ1,n ◦ gn(t), g(t)) = 0, for t ∈ [ti, ti+1],

where τi,n =
∏

α∈σi τ
−n
α , for i = 1, · · · , k − 1.

(5). The piecewise geodesic g is the unique minimal length path in Teich(S) joining

g(0) to g(L) and intersecting the closures of the strata Tσ1 , Tσ2 , · · · , Tσk−1
in order.

The first point on g([0, L]) meeting with the strata g(t1) is the point where

the geodesic joining (1, X) and (
∏

α∈σ0 ωα, Y ) in the Teichmüller-Coxeter develop-

ment D(Teich(S), ι) first meets with the strata, where we identify (1,Teich(S)) with

Teich(S).

If m = 0, this result was studied in [12, 49].

Reducible with positive translation length: The following theorem says

that, provided φ is reducible and |φ| > 0, the geometric limit geodesic of the sequence

g(X,φkn ◦ Y ), as n goes to infinity, goes to an explicit stratum whose vertices consist

of the boundary closed curves in proper surfaces on which φk is pseudo-Anosov for

some positive integer k.

Theorem. Let φ ∈ Mod(S) be reducible with |φ| > 0 and k be a positive integer

such that φk =
∏

α∈σ0 τα×
∏

j φj, where σ is a simplex, τα is Dehn-twist about α, and

φj = φk|PSj is pseudo-Anosov on PSj where PSj is a proper subsurface of S. Then

for any X, Y ∈ Teich(S), there exists a geodesic ray c : [0,+∞)→ Teich(S) such that

(1). the sequence {g(X,φkn ◦ Y )} converges to c : [0,+∞)→ Teich(S).

5



(2). For any simple closed curve α ∈ ∂(∪jPSj), we have

lim
t→+∞

`α(c(t)) = 0.

(3). There exists a positive number ε0 such that for any non-peripheral essential

simple closed curve β in S but not in ∂(∪jPSj),

`β(c(t)) ≥ ε0

for all t ≥ 0.

Pseudo-Anosov: Let φ ∈ Mod(S) be pseudo-Anosov. It is shown in [18, 65, 70]

that φ has a unique axis on which φ acts by a translation. The following theorem says

that, as n goes to infinity, the geometric limit geodesic of the sequence g(X,φn ◦ Y )

always lies in the thick part of Teich(S).

Theorem. Let φ ∈ Mod(S) be pseudo-Anosov and χ be the axis for φ in Teich(S).

Then for any X, Y ∈ Teich(S) there exists a geodesic ray c : [0,+∞)→ Teich(S) such

that

(1). the sequence {g(X,φn ◦ Y )} converges to c : [0,+∞)→ Teich(S).

(2). c([0,+∞) is strongly asymptotic to χ.

(3). For any simple closed curve β in S,

lim
t→+∞

`β(c(t)) = +∞.

The last part is to study the negatively curved aspect of the curvature operator.

The curvature of Teich(S) has been studied over the past several decades. One

celebrated result is that Teich(S) has negative sectional curvature (see [57, 63]).

People use Wolpert’s curvature formula developed in [63] to show Teich(S) has fruitful

curvature properties (see [32, 41, 52, 56]).

Let X ∈ Teich(S) and ∧2TX(Teich(S)) be the exterior wedge of the tangent space

of Teich(S) at X, and let Q be the sectional curvature operator of Teich(S). Our first

result is the following.
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Theorem. Teich(S) has non-positive sectional curvature operator. Moreover,

Q(A,A) = 0 if and only if there exists an element B in ∧2TX(Teich(S)) such that

A = B − J ◦B where J is the almost complex structure on Teich(S),

where J ◦B is defined in chapter 5.

A harmonic map between two spaces is a critical point of the energy functional.

When the domain is the Quaternionic hyperbolic space or the Cayley plane, various

rigidity theorems were established in [17, 29, 39, 47] during the 1990s. As an

application, the following rigidity theorem is established.

Theorem. Let Γ be a lattice in a semisimple Lie group G which is either

Sp(m, 1) or F−204 , and Mod(S) be the mapping class group of Teich(S). Then,

any twist harmonic map f from G/Γ into Teich(S) with respect to a homomorphism

ρ : Γ→ Mod(S) must be a constant.

In particular, ρ(Γ) ⊂ Mod(S) will fix the point f(G/Γ) ∈ Teich(S). From a

standard argument in CAT(0) geometry we know that ρ(Γ) ⊂ Mod(S) must be a

finite group. Hence, if we assume that there exists a twist harmonic map f with

respect to any homomorphism from Γ to Mod(S), then the image of Γ in Mod(S)

would be finite, which is showed by S.K.Yeung in [72]. The existence of a twist

harmonic map requires the target space to be complete (see [29]). Teich(S), the

completion of Teich(S), is a singular CAT(0) space which is not locally compact. It

is reasonable to state the following conjecture.

Conjecture. Let f be a twist harmonic map from G/Γ into Teich(S) with respect

to a homomorphism ρ : Γ → Mod(S) and the image f(G/Γ) contains some point in

the interior Teich(S) of Teich(S). Then, f(G/Γ) ⊂ Teich(S).

Plan of the paper: Chapter 2 provides necessary backgrounds: surfaces, Te-

ichmüller space, CAT(0) geometry, Weil-Petersson geometry, and classification of

mapping classes in Teich(S).
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Chapter 3 studies the parabolic isometry on complete proper CAT(0) spaces. We

apply the zero property to studying Brock-Farb’s question, and the relation between

Farb’s conjecture and Eberlein’s conjecture. Counterexamples to Eberlein’s conjec-

ture are provided in this chapter.

In Chapter 4 we study the iteration mapping classes problem in the visual sphere.

We also give a description of the limit geodesic through different mapping classes.

Chapter 5 applies Wolpert’s curvature formula to proving the sectional curvature

operator of the Weil-Petersson metric is non-positive definite, what’s more, the zero-

level subsets of the curvature operator are tested. As an application, a rigid harmonic

map result is provided in this chapter.
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CHAPTER 2

Preliminaries

1. Surfaces

Let S be a closed oriented topological surface. The 2-dimensional unit sphere

S2 and the torus S1 × S1 are the two simplest examples. All oriented surfaces are

homeomorphic to the connected sum of g tori S1 × S1 (g ≥ 0). The case g = 0 refers

to the 2-sphere S2. The number g is called the genus of the surface. The topology of

S is completely determined by g. The Euler characteristic χ(S) of S is determined

by the genus via χ(S) = 2 − 2g. Throughout this paper we will always assume that

g > 1.

A Riemann surface X is a connected 1-dimensional complex manifold. It is a

2-dimensional real manifold locally homeomorphic to C with biholomorphic transi-

tion functions. The uniformization theorem[34] characterizes the universal covering

surface X̃ of a Riemann surface X up to biholomorphic isomorphism as either the

Riemann sphere Ĉ, the complex plane C, or the unit disk ∆. Moreover, X̃ is isomor-

phic to Ĉ if and only if X = Ĉ, X̃ is isomorphic to C if and only if χ(X) = 0, and X̃

is isomorphic to ∆ if and only if χ(X) < 0.

A marked conformal structure (f,X) on S is a Riemann surface X together with

an orientation preserving homeomorphism f : S → X. Since χ(S) = 2− 2g < 0, the

universal covering surface X̃ is isomorphic to ∆ for any marked conformal stucture

(f,X) on S.

The Poincaré metric on ∆

ds2 =
4|dz|2

(1− |z|2)2

gives ∆ a complete Riemannian metric of constant curvature −1. The automorphisms

Aut(∆) of ∆ preserve the Poincaré metric. The Riemann surface X can also be the

9



quotient space ∆/Γ where Γ is a discrete subgroup of Aut(∆), isomorphic to the

fundamental group π1(X) of X, called a Fuchsian group.

Since the universal covering X is isomorphic to ∆, the Poincaré metric on ∆

naturally descends to a complete Riemannian metric on X of constant curvature

−1. From the Gauss-Bonnet theorem the total area of X is determined by its Euler

characteristic via:

area(X) = 2π|χ(X)|.

A simple closed curve on S is called essential if it is not freely homotopic to a

point on S. Each nontrivial element in π1(S) is uniquely represented by an essential

simple closed curve up to homotopy. Since S is closed, any marked conformal struc-

ture of (f,X) determines a discrete faithful representation f∗ : π1(S)→ PSL2(R) =

Isom+(∆) up to conjugacy, such that f∗ sends nontrivial elements of π1(S) to hyper-

bolic elements of Isom+(∆). Let α ∈ π1(S). Since f∗(α) is hyperbolic, there exists

a unique axis on which f∗(α) acts by isometry. After projecting this axis onto X we

get a closed geodesic, the unique one representing α. On the other hand, any simple

closed geodesic in X is always essential.

Definition 1.1. Let α be a simple closed geodesic in X. We define the collar of

α to be the set

N(α) = {x; distX(x, α) < ω(α)}

where ω(α) = 1
2

ln cosh(`X(α))/2+1
cosh(`X(α))/2−1 . Actually ω(α) can guarantee that N(α) is isometric

to a hyperbolic annulus with a certain modulus depengding on ω(α). One can refer to

[7, 34] to see more details.

We recall a version of the Collar Lemma (see Hubbard, [34]) which gives a de-

scription of the portion of a hyperbolic surface with small injectivity radius.

Collar Lemma. (1) Let α and β be two disjoint essential closed geodesics. Then

N(α) and N(β) are disjoint.

10



(2) Let α1 and α2 be two different essential closed geodesics with non empty in-

tersection. Then `X(αi) ≥ 2ω(αj) for i 6= j ∈ {1, 2}.

2. Teichmüller space

The Teichmüller space can be constructed in several different ways. In this paper

we introduce two equivalent constructions by using marked conformal structures and

hyperbolic metrics. One can refer to [34, 37] for other constuctions.

Let (f,X) and (g, Y ) be two marked conformal structures on S. We call (f,X) is

equivalent to (g, Y ) if and only if there is a conformal isomorphism φ : X → Y such

that φ ◦ f is homotopic to g from S to Y .

Definition 2.1. (Teichmüller space, marking) Let S be a closed surface.

The Teichmüller space T′S modeled on S is the set of equivalence classes of pairs

(f,X), where X is a Riemann surface and f : S → X is an orientation preserving

homeomorphism.

We can also construct the Teichmüller space through hyperbolic metrics. Since

the genus g > 1, there exists a complete Riemannian metric on S whose Gauss

curvature is −1. Let M−1(S) be the set of complete Riemannian metrics on S such

that the curvature is −1, which is obviously not empty. Diff0(S) is the set of self-

orientation preserving diffeomorphisms of S which are isotopic to the identity. Two

elements ds2 and ds21 in M−1(S) are defined to be equivalent if there exists an element

f ∈ Diff0(S) such that f : (S, ds2)→ (S, ds21) is conformal.

Definition 2.2. (Teichmüller space, metric) Let S be a closed surface. The

Teichmüller space TS modeled on S is the set of equivalence classes of (S, ds2), where

ds2 is complete Riemannian metric on S whose Gauss curvature is −1.

By solving the so-called Beltrami equation we have the following property.

Proposition 2.3. (see [37]) For fixed surface S, TS is equivalent to T′S, i.e., they

are homeomorphic.
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From the definition above we can always assume that each element in the Te-

ichmüller space is a Riemann surface which represents an equivalence class. In this

dissertation we view the Teichm̈uller space through the metric way.

Let X ∈ TS. TS has a natural complex structure, and its holomorphic cotangent

space T ∗XTS at X is identified with the quadratic differentials Q(X) = ϕ(z)dz2 on X.

The Fenchel-Nielsen coordinate (see [37]) gives a homeomorphism between TS and

R6g−6, which can also be proved through the Fricke coordinates (see [37]), harmornic

maps (see [61]) and other ways.

Let α be an essential simple closed curve in S. For each X = (S, ds2) ∈ TS there

exists a unique closed geodesic [α] representing α. We denote the length of this closed

geodesic by `α(X). This length function depends on both α and X, and it is natural

to ask whether it depends smoothly on X. The following result gives an affirmative

answer.

Proposition 2.4. (see [37]) Let α be an essential simple closed curve in S. Then

`α(·) : TS → R is analytic.

Under a certain metric on TS, `α has a special property, which will be seen later.

3. CAT(0) geometry

A CAT(0) space is a geodesic metric space in which each geodesic triangle is no

fatter than a triangle in the Euclidean plane with the same edge lengths.

Definition 3.1. let M be a geodesic metric space. For any a, b, c ∈ M , three

geodesics [a, b], [b, c], [c, a] form a geodesic triangle ∆. Let ∆(a, b, c) ⊂ R2 be a triangle

in the Euclidean plane with the same edge lengths as ∆. Let p, q be points on [a, b]

and [a, c] respectively, and let p, q be points on [a, b] and [a, c], respectively, such that

distM(a, p) = distR2(a, p), distM(a, q) = distR2(a, q). We call M a CAT(0) space if

for all ∆ the inequality distM(p, q) ≤ distR2(p, q) holds.

Complete simply connected Riemannian manifolds of non-positive curvature are

CAT(0) spaces. Singular CAT(0) spaces contain trees endowed with the path metric.
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One can refer to [10] for more examples. Similar as the angle between different smooth

curves in R2, we can define the angle in a CAT(0) space. Let M be a complete CAT(0)

space and dist be the metric on it. Let c1 : [0, a] → M and c2 : [0, a′] → M be two

geodesics of arc-length parameters issuing from the same point p = c1(0) = c2(0).

Then the angle ∠p(c1, c2) between c1 and c2 at p is defined as

∠p(c1, c2) = lim
t→0

2 arcsin
dist(c1(t), c2(t))

2t
.

The definition above is the same as the definition of the angle in R2. Throughout

this paper we assume that all the geodesics use arc-length parameters.

The geodesic rays play an important role in the study of CAT(0) space. Two

geodesic rays c1, c2 : [0,+∞)→M are said to be asymptotic if there exists a constant

C such that dist(c1(t), c2(t)) ≤ C for all t ≥ 0. We start with the following property.

Proposition 3.2. (see [10], page 261) Let M be a complete CAT(0) space and

c : [0,+∞)→M be a geodesic ray, then

(1). for every y ∈M there exists a unique geodesic ray c′which issues from y and

is asymptotic to c([0,+∞)).

(2). The sequence of geodesics joining y and c(n) converges to c′.

Definition 3.3. The ideal boundary M(∞) of M is the set of equivalence classes

of geodesic rays where two geodesic rays are equivalent if and only if they are asymp-

totic.

If M is a complete simply connected Riemannian manifold of non-positive sec-

tional curvature, M(∞) is homeomorphic to the unit sphere of dimension dim(M)−1.

In the singular case, M(∞) can be very complicated. From proposition 3.2, for each

point p ∈ M and x ∈ M(∞) there exists a unique geodesic ray c which represents x

and starts from p. We write c(+∞) = x. M is called visible if for any two different

points x, y in M(∞) there exists a geodesic line c : R → M such that c(−∞) = x

and c(+∞) = y. The upper half plane H2 is a typical example of a visible CAT(0)

space, and the 2-plane R2 is not visible.
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In R2 we can define the angle between two geodesic rays. We can also give a

metric structure on M(∞) as follows. Given two different points x, y in M(∞) and

p ∈ M , let ∠p(x, y) denote the angle at p between the unique geodesics rays which

issue from p and lie in the class x and y respectively. The angular metric is defined

by

∠(x, y) := sup
p∈M
∠p(x, y).

The Tits metric Td on M(∞) is the interior metric associated to the angular metric

as follows: for any two points x, y ∈M(∞),

Td(x, y) = inf
c
`(c)

where the infimum is taken over all possible curves in M(∞) joining x and y, and

`(c) is the length of c under the angular metric.

From the definition we know that for any x, y ∈M(∞),

Td(x, y) ≥ ∠(x, y).

If M is visible, for any x 6= y ∈M(∞), ∠(x, y) = π and Td(x, y) = +∞.

The following property gives us a way to compute the angular metric.

Proposition 3.4. (see [10], page 281) Let M be a complete CAT(0) space with

a basepoint p. Let x, y ∈ M(∞) and c, c′ be two geodesic rays with c(0) = c′(0) = p,

c(+∞) = x and c′(+∞) = y. Then,

2 sin(
∠(x, y)

2
) = lim

t→+∞

dist(c(t), c′(t))

t
.

Let γ be a self map of M . γ is called an isometry of M if and only if γ : M →M

satisfies dist(γ ◦x, γ ◦ y) = dist(x, y) for any x, y ∈M . Just as in the classification of

isometry on H2, we classify an isometry γ of M as elliptic, hyperbolic, or parabolic.

γ is called elliptic if it has at least one fixed point in M , and hyperbolic if there

exists a geodesic line c : (−∞,+∞) → M such that γ acts on c(R) by a non-trivial
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translation. If γ is neither elliptic nor hyperbolic, then we call it parabolic. We define

the translation length of γ by

|γ| := inf
p∈M

dist(γ ◦ p, p).

From the definition above we know that γ is parabolic if and only if |γ| cannot be

achieved in M (see [5, 10]). Otherwise γ is also called semi-simple. Thus semi-simple

isometry is either elliptic or hyperbolic.

The following property gives us a new view point for the translation length. For

elliptic and hyperbolic cases, they are obvious.

Lemma 3.5. Let M be a complete CAT(0) space and γ be a parabolic isometry of

M . Then,

(1). |γ2| = 2 · |γ|.

(2). |γ| = limn→+∞
dist(γn◦p,p)

n
where p ∈M is arbitrary.

Proof of (1). For any p ∈M , from the triangle inequality, we have

dist(p, γ2 ◦ p) ≤ dist(p, γ ◦ p) + dist(γ ◦ p, γ2 ◦ p) = 2dist(p, γ ◦ p).

Since p is arbitrary, we have |γ2| ≤ 2|γ|.

On the other hand, let p0 be the midpoint of the geodesic connecting p and γ ◦ p.

Then using the definition of CAT(0) space,

dist(p0, γ ◦ p0) ≤
1

2
dist(p, γ2 ◦ p).

By the definition of translation length we have dist(p, γ2 ◦ p) ≥ 2|γ|. Since p is

arbitrary, |γ|2 ≥ 2|γ|.

Hence, |γ|2 = 2|γ|.

Proof of (2): Denote dist(p, γn ◦ p) by an. From the triangle inequality, for any

two positive integers n,m,

an+m ≤ an + am.
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Choose a positive integer q. For each n there exist k and r such that n = qk + r

where 0 ≤ r < q. Then we have

an
n
≤ kaq

n
+
ar
n
.

Taking the superior limit on the left hand side,

lim sup
n→+∞

an
n
≤ aq

q
.

Since q is arbitrary, taking the inferior limit on the right hand side,

lim sup
n→+∞

an
n
≤ lim inf

q→+∞

aq
q
.

Hence limn→+∞
an
n

exists. It is sufficient to find a subsequence of {an}n≥1 such that

the limit of the subsequence is |γ|.

Let f(p) be limn→+∞
dist(γn◦p,p)

n
. By the triangle inequality, for any p1, p2 in M ,

|f(p1)− f(p2)| = lim
n→+∞

|dist(γn ◦ p1, p1)− dist(γn ◦ p2, p2)|
n

≤ lim
n→+∞

2dist(p1, p2)

n
= 0.

So f(p) does not depend on p. By the triangle inequality,

dist(γn ◦ p, p) ≤ dist(γn ◦ p, γn−1 ◦ p) + dist(γn−1 ◦ p, p) ≤ · · · ≤ n× dist(γ ◦ p, p).

Hence,

f(p) ≤ lim
n→+∞

n× dist(γ ◦ p, p)
n

= dist(γ ◦ p, p).

Since p is arbitrary, f(p) ≤ |γ|.

Choose kn = 2n. Considering the geodesic triangle connecting p, γ2
n−1 ◦ p, γ2n ◦ p,

let pn−1 be the midpoint of the geodesic connecting p and γ2
n−1 ◦ p. Then using the

definition of CAT(0) space, dist(pn−1, γ
2n−1 ◦ pn−1) ≤ dist(p,γ2

n◦p)
2

. We rewrite it as

dist(pn−1, γ
2n−1 ◦ pn−1)

2n−1
≤ dist(p, γ2

n ◦ p)
2n

.

By induction on n, there exists p0 ∈M such that

dist(p0, γ ◦ p0) ≤
dist(p, γ2

n ◦ p)
2n

.
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Since dist(p0, γ ◦ p0) ≥ |γ|,

|γ| ≤ dist(p, γ2
n ◦ p)

2n
.

Taking the limit, we get

|γ| ≤ f(p).

Hence |γ| = limn→+∞
dist(γn◦p,p)

n
. �

We close this section by introducing a rigid theorem for the half plane in CAT(0)

space. A metric space M is called proper if M is locally compact. We say a geodesic

c : R → M bounds a flat half-plane if there exists a geodesical embedding F :

R≥0 × R → M such that F ({0} × R) = c(R). The following proposition gives a

criterion for a geodesic line to bound a flat half-plane.

Proposition 3.6. (see [10], page 290) Let M be a complete proper CAT(0) space.

If c : R→ X is a geodesic line, then Td(c(+∞,−∞)) ≥ π, with equality if and only

if c(R) bounds a flat half-plane.

4. Weil-Petersson metric

People have been using different metrics on TS to study Teichmüller theory for a

long time [37, 34]. One of the most important metrics is the Weil-Petersson metric

(see [37]).

Definition 4.1. Let X ∈ TS and ϕdz2, ψdz2 be two elements in the cotangent

space. The Weil-Petersson metric is the Hermitian metric on TS arising from the

the Petersson scalar product

< ϕ,ψ >=

∫
S

ϕ · ψ
σ2

dzdz

via duality.

We will concern ourselves primarily with its Riemannian part gWP . Throughout

this paper we denote the Teichmüller space endowed with the Weil-Petersson metric
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by Teich(S). The Weil-Petersson metric is a Kähler metric. gWP has negative cur-

vature. The path metric induced from the Weil-Petersson metric is incomplete, but

geodesically convex. In chapter 5 we will study the sectional curvature operator of

gWP . Under this metric, the length function of a simple closed curve has the following

property, which is very important in Chapter 4.

Theorem 4.2 (Wolpert, see [64]). Given a simple closed curve α ⊂ S and a

Weil-Petersson geodesic g(t) in Teich(S). Then the length `α(g(t)) is a strictly convex

function of t.

The non-completeness of the Weil-Petersson metric corresponds to finite-length

geodesics in Teich(S) along which the length function for some simple closed curve

converges to zero. Since Teich(S) is geodesically convex and has negative curvature,

the completion Teich(S) of Teich(S), also called the augmented Teichmüller space,

is a complete CAT(0) space (see [18, 65, 70]). In [44] the augmented Teichmüller

space is described concretely by adding strata consisting of stratum Tσ defined by

the vanishing of lengths

`α = 0

for each α ∈ σ0, where σ0 is a collection of finite mutually disjoint simple closed

curves.

Definition 4.3. A k-simplex σ is a simplex whose vertices σ0 is a set of k + 1

distinct free homotopy classes of non-trivial mutually disjoint simple closed curves of

S. We say two simplices σ and η are disjoint if σ0 and η0 are mutually disjoint simple

closed curves.

The topology for the stratum Tσ can be described by the so-called extended

Fenchel Nielsen coordinates: Give a pants decomposition P with σ0 ⊂ P , the usual

coordinates map Teich(S) to
∏

α∈P R × R+, where the first coordinate of each pair

measures twist and the second measures the length of the corresponding simple closed

curve in P . We extend the second part to 0 and take the quotient by identifying (t, 0)
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and (t′, 0) in each R× R≥0 factor. The topology near every point in a stratum Tσ is

given by these extended coordinates.

The stratum Tσ is naturally products of lower dimensional Teichmüller spaces

corresponding to the nodal surfaces in Tσ (see [44]). Choosing suitable σ, Tσ contains

geodesical embedding Euclidean spaces. Since Teich(S) is not locally compact, the

aspects of geodesics can be very complicated. Let X, Y ∈ Teich(S). We denote

the geodesic connecting X and Y by g(X, Y ). The following theorem is called the

non-refraction property for the Weil-Petersson geodesic.

Theorem 4.4 ([18, 65, 70]). Let X, Y ∈ Teich(S) and σ1 and σ2 be the maximal

collection of simple closed curves so that X ∈ Tσ1 and Y ∈ Tσ2. If η = σ1 ∩ σ2, then

int(g) ⊂ Tη,

where int(g) is the interior of g(X, Y ).

We remark that in the special case that both X and Y lie in Teich(S), the theorem

above is simply a restatement of Wolpert’s geodesical convexity theorem (see [64]).

If we allow the length function of simple closed curve to be +∞, theorem 4.2 can be

extended to the boundary case.

Theorem 4.5. Given a Weil-Petersson geodesic g(t) in Teich(S) and σ a simplex

such that int(g) ⊂ Tσ. Then for any simple closed curve α in S, the length `α(g(t))

is a convex function of t.

Proof. If α intersects with at least one simple closed curve in σ0, from the

Collar Lemma and theorem 4.4 we know that for all t, `α(g(t)) is always infinite,

which satisfies the convexity property.

If α is disjoint with σ0, α is contained in one component of S −∩β∈σ0β. Since Tσ

is the product of lower dimensional Teichmüller spaces, the projection of g(t) to each

component is either a geodesic or a point. Hence, it follows from theorem 4.2 that

`α(g(t)) is either strictly convex or constant. Hence, `α(g(t)) is convex.

If α is one curve in σ0, it follows from the fact that `α(g(t)) ≡ 0. �
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5. Mapping class group

Recall that Diff0(S) is the set of orientation preserving self diffeomorphisms of

S which are isotopic to the identity. We define Diff+(S) to be the set of orientation

preserving diffeomorphisms of S.

Definition 5.1. The mapping class group Mod(S) of S is defined as

Mod(S) := Diff+(S)/Diff0(S).

Mod(S) is a discrete group which acts properly discontinuously on TS and acts

on Teich(S) by isometry. The whole isometry group of Teich(S) is exactly Mod(S)

(see [46]). Mod(S) contains a torsion-free subgroup of finite index. The classification

of Mod(S) can be given through different methods. In this section we provide the

classification through the Weil-Petersson metric.

A mapping class is irreducible provided that no power fixes the free homotopy

class of a simple closed curve. An irreducible mapping class is pseudo-Anosov. A

mapping class is precisely one of: periodic, irreducible or reducible (see [24]). For

a reducible mapping class h, an invariant is σh, the maximal simplex fixed by some

power of h.

An essential subsurface is a submanifold R ⊂ S whose boundary is homotopically

essential. We have the following theorem due to Thurston (see [24], Exp. 9).

Theorem 5.2. (Thurston) A mapping class φ ∈ Mod(S) determines a simplex

σφ such that

(1). each component R of Sφ := S −
⋃
α∈σ0

φ
α is an essential subsurface.

(2). φ(σ0
φ) = σ0

φ.

(3). There exists an integer k such that for each component R of Sφ := S −⋃
α∈σ0

φ
α, φk|R is either identity or pseudo-Anosov.

Let φ ∈ Mod(S). We define the Weil-Petersson translation length by

LWP (φ) = inf
X∈Teich(S)

dWP (X,φ ◦X)
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where dWP is the path metric on Teich(S) induced by the Weil-Petersson metric.

From [18, 65, 70], the classification of Mod(S) is given by the following theorem.

Theorem 5.3. (see [65]) Let γ be an element in Mod(S). Then γ is semi-simple

if and only if LWP (γ) attains its minima at a point in Teich(S). In this case either γ

fixes at least one point in Teich(S) or there exists a unique Weil-Petersson geodesic

line r(t) ⊂ Teich(S) such that for all t, γ ◦ r(t) = r(t+LWP (γ)). For the latter case,

LWP (γ) > 0.

γ is reducible if and only if LWP (γ) cannot attain its minima in Teich(S). In this

case either γ fixes a point in Teich(S) or there exists an integer k depending on γ such

that γk acts on the null stratum Tσγ which is a product of low-dimensional Teichmüller

spaces Π T ′ × Π T ′′ by a product of : irreducible elements γ′ on T ′ with axis rh′ and the

identity on each T ′′. For the latter case, in particular there exists a bi-infinite Weil-

Petersson geodesic r(t) ⊂ Teich(S) such that for all t, γk ◦ r(t) = r(t+ kLWP (γ)).

For the irreducible case one can also refer to [18, 70].

One consequence of theorem 5.3 is the following proposition; one can also refer to

[9, 30].

Proposition 5.4. Let φ be a reducible element in Mod(S) with LWP (φ) = 0.

Then there exists an integer k and a simplex σ such that φk = Παi∈σ0ταi where ταi is

the Dehn-twist about αi.

Proof. Since φ is reducible, there exists an integer k, a simplex σ, and a collection

of mutually disjoint proper essential subsurfaces {PSj} such that

φk = Παi∈σ0ταi · Πjφj

where φj is pseudo-Anosov on PSj (see [24]).

Since LWP (φ) = 0, we do not have the pseudo-Anosov part: otherwise, from

theorem 5.3 we have LWP (φ) > 0 which is a contradiction. Hence,

φk = Παi∈σ0ταi .
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We close this section with a short discussion on moduli spaces.

Definition 5.5. The moduli space MS of S is defined as

MS := TS/Mod(S).

The moduli space is an orbifold. Since Mod(S) contains a torsion-free subgroup

of finite index, there exists a finite covering of MS in the orbifold sense such that it

is a manifold (see [25]).

For a given ε > 0, we define the ε-thick part TS≥ε of TS as the following

TS≥ε = {X ∈ TS; `α(X) ≥ ε, for all simple closed curves α}.

It is easy to see that Mod(S) acts invariantly on TS≥ε . The quotient space TS≥ε/Mod(S)

is called the ε-thick part of the moduli space, denoted by MS≥ε .

The following compactness property is due to Mumford (see [25]).

Theorem 5.6. (Mumford) For any ε > 0, MS≥ε is compact.

MS itself has fruitful properties. For example MS has only one end. Any simple

closed curved in MS can be homotopic to the outside of any compact subset in the

orbifold sense. Topologically, MS is simply connected. One can refer to [25] for

details.
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CHAPTER 3

Translation lengths of parabolic isometries of CAT(0) spaces

and their applications

1. Introduction

CAT(0) spaces are generalizations of Riemannian manifolds with nonpositive sec-

tional curvature to geodesic spaces. An isometry of the hyperbolic half plane H2 is

elliptic, parabolic or hyperbolic. This can also be applied to CAT(0) spaces. Like the

isometry of H2, an elliptic isometry of a CAT(0) space has fixed points, a parabolic

isometry cannot attain its translation length, and a hyperbolic isometry of a CAT(0)

space has an axis on which the isometry acts as a translation on R (see [5, 10]). If a

group acts properly and cocompactly on a proper CAT(0) space by isometries, then

the group consists of hyperbolic isometries. For example, the fundamental group of

a hyperbolic surface Sg with genus g ≥ 2 consists of hyperbolic isometries if we view

the fundamental group as an isometry group of the hyperbolic half plane. However,

if one considers an isometry group action which is not cocompact, one may have to

deal with parabolic isometries. For example, the fundamental group of a hyperbolic

surface Sg,n with genus g ≥ 1 and punctures n ≥ 1 contains parabolic isometries if

we view this group as an isometry group of the half plane.

In this chapter, we focus on parabolic isometries on CAT(0) spaces. We study the

translation lengths of parabolic isometries and generalize what Buyalo did for para-

bolic isometries on Gromov hyperbolic spaces in [8]. Then we study how the mapping

class groups of surfaces Sg (g ≥ 3) act properly discontinuously on complete proper

visible CAT(0) spaces. We study the zero axiom, which generalizes the curvature

condition on manifolds that the sectional curvature is bounded above by a negative

number, and give a description for manifolds with bounded geometry and zero axiom
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which generalizes what Eberlein and Schroeder did in [21, 53] for manifolds whose

sectional curvatures are pinched by two negative numbers. At the end we also give

counterexamples to Eberlein’s conjecture which says that there does not exist a gap

between visible manifolds and manifolds with certain geometric restrictions.

Let M be a complete CAT(0) space. An isometry γ of M is either elliptic, hyper-

bolic, or parabolic. Let M(∞) be the ideal boundary of M , defined as the asymp-

totic classes of rays in M . Recall M is visible if for any two different points x, y in

M(∞) there exists at least one geodesic line c : R → M such that c(−∞) = x and

c(+∞) = y. A metric space is called proper if it is locally compact. Now we can

state the following theorem which is one of the main results in this chapter.

Theorem 1.1. Let M be a complete proper visible CAT(0) space. Then any

parabolic isometry has zero translation length, i.e., for any parabolic isometry γ of M

we have |γ| = 0.

Bishop and O’Neill in [6] proved that any parabolic isometry of a complete simply

connected manifold M with sectional curvature KM ≤ −1 has zero translation length.

Later in [31] Heintze and Hof used the geometry on horospheres to prove it again.

Since a manifold satisfying the sectional curvature condition KM ≤ −1 is visible,

theorem 1.1 gives a new proof here. In 1999, Buyalo [8] proved that any parabolic

isometry of a complete Gromov-hyperbolic CAT(0) space M has zero translation

length. Theorem 1.1 generalizes this result in some sense, since a Gromov-hyperbolic

CAT(0) space is visible (see [10]). In [8] M does not need to be proper.

A manifold M is called visible if M has non-positive sectional curvature and the

universal covering space M̃ of M is visible. As a consequence of theorem 1.1, the

classification of isometries of complete simply connected visible manifolds is given as

follows.

Theorem 1.2. Let M be a complete simply connected visible manifold, and γ be

an isometry of M . Then,

(1). γ is elliptic if and only if γ has at least one fixed point in M .
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(2). γ is hyperbolic if and only if |γ| > 0.

(3). γ is parabolic if and only if |γ| = 0 and γ does not have fixed point in M .

Mapping class groups. Let Sg be a closed surface with genus g and Mod(Sg) be the

mapping class group of Sg, i.e. the group of isotopy classes of orientation-preserving

self-homeomorphisms of Sg. Bridson in [9] proved that any Dehn-twist in Mod(Sg)

has zero translation length if Mod(Sg) acts by isometries on a complete CAT(0) space

and g ≥ 3. Our second result in this chapter is

Theorem 1.3. Let M be a complete proper visible CAT(0) space and Sg be a

closed surface with genus g ≥ 3. If Mod(Sg) acts properly discontinuously on M by

isometries, then, for any element σ ∈ Mod(Sg), we have |σ| = 0.

Since every complete visible manifold M with finite volume has a nontrivial closed

geodesic (see theorem 2.13 in [4]), the isometry which represents a nontrivial closed

geodesic is a hyperbolic isometry of the universal covering space of M . In particular,

it has positive translation length. Since there exists a finite covering of the moduli

space MSg which is manifold. Applying theorem 1.3, we get the following theorem,

which partially answers Brock-Farb’s question which asks whether the moduli space

MSg of a closed surface Sg (g ≥ 2) (up to finite covering) admits a complete, finite

volume Riemannian metric with nonpositive sectional curvature.

Theorem 1.4. Let Sg be a closed surface of genus g ≥ 3. Then the moduli space

MSg of Sg (up to finite covering) admits no complete, finite volume Riemannian metric

whose sectional curvature is nonpositive and universal covering is visible.

Ivanov in [35] proved that the mapping class group Mod(Sg) (g ≥ 3) (up to finite

index) cannot be isomorphic to the fundamental group of any complete manifold with

pinched negative sectional curvature and finite volume. Later Brock and Farb in [13]

proved that the mapping class group Mod(Sg) (g ≥ 3) (up to finite index) cannot be

isomorphic to the fundamental group of any complete Gromov-hyperbolic manifold

of finite volume.
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Two-dimensional surfaces. A hyperbolic surface is a two-dimensional Riemannian

manifold with constant negative sectional curvature. A well-known result is that a

hyperbolic surface M with finite volume is closed if and only if the fundamental group

of M consists of hyperbolic isometries. For a general surface, it is interesting to know

when the fundamental group of the surface determines the compactness of the surface.

Theorem 1.5. Let M be a complete two-dimensional surface with the Gauss cur-

vature −1 ≤ K(M) ≤ 0 and V ol(M) < +∞, and let π1(M, p) be the fundamental

group of M with a basepoint p. Then M is closed if and only if for any non-trivial

deck transformation φ ∈ π1(M, p) the translation length |φ| > 0.

Two examples are given later to show that the lower bound for curvature and the

finite volume are necessary for theorem 1.5.

Manifolds without visibility. In the first paragraph of page 438 of [21] Eberlein

conjectures that a complete open manifold M with sectional curvature −1 ≤ KM ≤ 0

and finite volume is visible if the universal covering space M̃ of M contains no imbed-

ded flat half planes. In [23] Farb conjectures that the moduli space MSg of closed

surface Sg (g ≥ 2) (up to finite covering) admits no complete, finite volume Riemann-

ian metric with sectional curvature −1 ≤ K(MSg) ≤ 0, which is the weaker version

of Brock-Farb’s question (see [13]). From theorem 1.4 we know that if Eberlein’s

conjecture is correct, then it could partially solve Farb’s conjecture. If we assume

that there exists a metric on MSg (g ≥ 3) (up to a finite covering) such that it has

finite volume and sectional curvature −1 ≤ K(MSg) ≤ 0 and the universal cover-

ing Teich(Sg) contains no imbedded flat half planes (Weak Farb conjecture), then

the “candidate metric” on MSg (g ≥ 3) would be a counterexample for Eberlein’s

conjecture.

The following theorem gives more evidence to Farb’s conjecture.
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Theorem 1.6. If g ≥ 3, then Mod(Sg) cannot act properly discontinuously on any

complete simply connected Riemannian manifold M satisfying the zero axiom and the

sectional curvature −1 ≤ KM ≤ 0,

where the zero axiom is given in section 5.

In [1], the authors constructed so-called graph manifolds M with sectional curvature

−1 ≤ KM < 0 and finite volume. Since the sectional curvature KM < 0, the universal

covering M̃ does not contain imbedded flat half planes. In the second paragraph of

page 34 of [1] it says that the “Adjacent components” of the boundary Mn(+∞) have

Tits distance equal to π
2
. Hence M̃ is not visible since the Tits distance between any

two points in the boundary of a visible CAT(0) space is infinity (see [10]). In particu-

lar Abresch and Schroeder’s examples are counterexamples for Eberlein’s conjecture.

The authors did not provide the proof for the statement above on the Tits distance.

In this paper the follow theorem gives a detailed answer to Eberlein’s conjecture by

using theorem 1.1.

Theorem 1.7. The fundamental groups of manifolds M constructed in [1] and

[26] with finite volume and sectional curvature −1 ≤ KM < 0 contain parabolic

isometries of M̃ with positive translation length. In particular, M is not visible.

2. Parabolic isometries, half planes

Let M be a CAT(0) space and γ be an isometry of M . Every isometry of M can

be extended to a self-homeomorphism of M := M
⋃
M(∞) with the cone topology.

Let Fix(γ) denote the fixed points of γ in M , i.e., Fix(γ) := {x ∈ M ; γ ◦ x = x}.

We define Diam(A) := supx∈A supy∈A d(x, y) and Rad(A) := infx∈A supy∈A d(x, y)

for a metric space A with metric d, which are called the diameter and radius of A

respectively. For p ∈ M , we denote by
∑

pM the space of directions at p. In [27]

Fujiwara, Nagano and Shioya proved that

Theorem 2.1. Let M be a proper CAT(0) space such that
∑

pM is compact for

every p ∈ M , and let γ be a parabolic isometry of M . Then there exists η ∈ Fix(γ)
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such that Td(η, ξ) ≤ π
2

for any ξ ∈ Fix(γ). In particular Diam(Fix(γ)) ≤ π and

Rad(Fix(γ)) ≤ π
2

in the sense of the Tits metric on M(∞).

Since a complete proper metric space has compact direction at any point, the

following holds.

Theorem 2.2. Let M be a complete proper CAT(0) space, and let γ be a parabolic

isometry of M . Then there exists x0 ∈ Fix(γ) such that Td(x0, x) ≤ π
2

for any

x ∈ Fix(γ). In particular Diam(Fix(γ)) ≤ π and Rad(Fix(γ)) ≤ π
2

in the sense of

the Tits metric on M(∞).

Remark 2.1. In the case that M is a complete manifold with nonpositive curva-

ture, this was proved by Ballman, Gromov and Schroeder in appendix 3 of [5].

Now look at the following two examples.

Example 1. Let H2 be the upper half plane and define γ : H2 → H2 to be

γ ◦ ((x, y)) = (x + 1, y). It is easy to see that γ is parabolic and Fix(γ) consists of

one point. Hence Diam(Fix(γ)) = 0.

Example 2. Consider R×H2 endowed with the product metric where H2 is the

upper half plane as above and define γ : R × H2 → R × H2 to be γ ◦ ((z, (x, y))) =

(z, (x+ 1, y)). It is easy to see that γ is parabolic and Diam(Fix(γ)) = π.

In example 2 it is not hard to see that there exist two different points x, y in

Fix(γ) ⊂ (R × H2)(∞) such that there exists a geodesic line c : R → R × H2 with

c(+∞) = x and c(−∞) = y and this geodesic c(R) bounds a flat half-plane. The

following property tells us this is intrinsic in CAT(0) spaces.

Proposition 2.3. Let M be a complete proper CAT(0) space and γ be a parabolic

isometry of M . If there exists a geodesic c : R → M such that {c(+∞), c(−∞)} ⊂

Fix(γ), then the geodesic c(R) bounds a flat half-plane.

Proof. It is sufficient to show that Td(c(+∞), c(−∞)) = π from proposition 3.6

in chapter 2.
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Firstly from proposition 3.6 in chapter 2, we have Td(c(+∞), c(−∞)) ≥ π.

On the other hand, since γ is parabolic and {c(+∞), c(−∞)} ⊂ Fix(γ), by the-

orem 2.2,

Td(c(+∞), c(−∞)) ≤ π.

Hence Td(c(+∞), c(−∞)) = π. �

Remark 2.2. Under the assumptions of proposition 2.3, if M is visible, then the

fixed point of any parabolic isometry of M is a single point (see [27]).

Remark 2.3. In [8] Buyalo has shown that if M is a complete, not necessarily

proper, Gromov-hyperbolic CAT(0) space (this is stronger than a visible CAT(0)

space), then the fixed points of any parabolic isometry of M are but a single point.

Actually if one carefully checks Buyalo’s argument, one can show that if M is a

complete visible CAT(0) space, then the fixed points of any parabolic isometry of M

are either a single point or empty.

The dynamics of parabolic isometries of CAT(0) spaces are not easy to study (see

the examples in [27]). The following theorem gives a nice description of the dynamics

of a parabolic isometry with positive translation length, which is a special case of a

result of Karlsson and Margulis in [40].

Theorem 2.4. [KM99] Let M be a complete CAT(0) space with a base point

p ∈ M and γ be a parabolic isometry with |γ| > 0. Then there exists a unique

x0 ∈ Fix(γ) and a geodesic ray c : R≥0 →M such that c(0) = p, c(+∞) = x0 and

lim
n→+∞

dist(γn ◦ p, c(|γ| · n))

n
= 0.

The following is a direct corollary.

Corollary 2.5. Let M be a complete CAT(0) space with a basepoint p ∈ M

and γ be a parabolic isometry with |γ| > 0. Then {γn ◦ p} converges to a point

x ∈ Fix(γ) ⊂M(∞).
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Now we are ready to estimate the fixed points of a parabolic isometry of CAT(0)

space.

Proposition 2.6. Let M be a complete CAT(0) space with a basepoint p ∈ M

and γ be a parabolic isometry with |γ| > 0. Then there exist two different points

{x, y} ⊂ Fix(γ) such that Td(x, y) ≥ π.

Proof. Since |γ| > 0, by theorem 2.4 there exists a geodesic ray c : R≥0 → M

such that c(0) = p and

lim
n→+∞

dist(γn ◦ p, c(|γ| · n))

n
= 0.(1)

Similarly, since |γ−1| = |γ| > 0, by theorem 2.4 there exists a geodesic ray c′ :

R≥0 →M such that c′(0) = p and

lim
n→+∞

dist(γ−n ◦ p, c′(|γ| · n))

n
= 0.(2)

By the triangle inequality,

dist(c(|γ| · n), c′(|γ| · n))

n
≤ dist(γn ◦ p, c(|γ| · n))

n

+
dist(γ−n ◦ p, γn ◦ p)

n
+
dist(γ−n ◦ p, c′(|γ| · n))

n
.

From (1),(2) and dist(γ−n ◦ p, γn ◦ p) = dist(γ2n ◦ p, p), after taking the limit,

lim
n→+∞

dist(c(|γ| · n), c′(|γ| · n))

n
≤ lim

n→+∞

dist(γ2n ◦ p, p)
n

.(3)

On the other hand, by the triangle inequality,

dist(c(|γ| · n), c′(|γ| · n))

n
≥ dist(γ−n ◦ p, γn ◦ p)

n

− dist(γn ◦ p, c(|γ| · n))

n
− dist(γ−n ◦ p, c′(|γ| · n))

n
.

From (1) and (2), after taking a limit,

lim
n→+∞

dist(c(|γ| · n), c′(|γ| · n))

n
≥ lim

n→+∞

dist(γ2n ◦ p, p)
n

.(4)

Hence,

lim
n→+∞

dist(c(|γ| · n), c′(|γ| · n))

n
= lim

n→+∞

dist(γ2n ◦ p, p)
n

.(5)
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From lemma 3.5 in chapter 2,

lim
n→+∞

dist(c(|γ| · n), c′(|γ| · n))

n
= |γ2| = 2|γ|.(6)

By proposition 3.4 in chapter 2,

2 sin(
∠(c(+∞), c′(+∞))

2
) = lim

n→∞

dist(c(|γ| · n), c′(|γ| · n))

|γ| · n
= 2.

Hence,

∠(c(+∞), c′(+∞)) = π.

Since Td(c(+∞), c′(+∞)) ≥ ∠(c(+∞), c′(+∞)), Td(c(+∞), c′(+∞)) ≥ π. �

Proposition 2.7. Let M be a complete proper CAT(0) space and γ be a parabolic

isometry with |γ| > 0. Then there exist two different points {x, y} ⊂ Fix(γ) such

that Td(x, y) = π. In particular the diameter of Fix(γ) Diam(Fix(γ)) = π.

Proof. Since |γ| > 0, by proposition 2.6 there exists {x, y} ⊂ Fix(γ) such that

Td(x, y) ≥ π. On the other hand, since {x, y} ⊂ Fix(γ), by theorem 2.2, we have

Td(x, y) ≤ π. Hence Td(x, y) = π. �

Now we are ready to prove theorem 1.1 and theorem 1.2.

Proof of theorem 1.1. Suppose not. We assume that |γ| > 0. From propo-

sition 2.7 there exist two different points {x, y} ⊂ Fix(γ) such that Td(x, y) = π.

Since M is a visible CAT(0) space, there exists a geodesic line c : R→ M such that

c(+∞) = x, c(−∞) = y. By proposition 2.3 we get that c(R) bounds a flat half-plane,

which contradicts the fact that M is visible. �

Remark 2.4. We say a manifold M is tame if M is homemorphic to the interior

of a compact manifold M with boundary. Recently Phan conjectured in [48] that

if M is a tame, finite volume, negatively curved manifold, then M is not visible if

the fundamental group π1(M) of M contains a parabolic isometry of M̃ with positive

translation length. Theorem 1.1 confirms this conjecture.
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Since a Gromov-hyperbolic CAT(0)-space is visible, by theorem 1.1 we immedi-

ately obtain

Theorem 2.8. (see [8]) Let M be a complete proper Gromov-hyperbolic CAT(0)

space. Then any parabolic isometry of M has zero translation length.

Remark 2.5. In the case that M is a complete simply connected manifold with

curvature KM ≤ −1, it was showed in [6, 31] that the translation length function

of any parabolic isometry γ along any geodesic ray whose end belongs to the fixed

points of γ goes to zero.

Proof of theorem 1.2. Proof of (1): By definition.

Proof of (2): If γ is hyperbolic, by definition we know that |γ| > 0.

If |γ| > 0, assuming that γ is not hyperbolic, then γ should be parabolic. By

theorem 1.1 we have |γ| = 0 which contradicts our assumption.

Proof of (3): If γ is parabolic, it is obvious that γ does not have fixed points.

|γ| = 0 follows from theorem 1.1.

If γ does not have fixed points and |γ| = 0, the conclusion that γ is parabolic

follows from part (2). �

3. Mapping class group action

Let Sg be a hyperbolic surface with genus g. Mod(Sg) acts on the augmented

Teichmüller space Teich(S) by isometries. The Dehn-twists here behave as elliptic

isometries whose fixed points are products of lower-dimensional Teichmüller spaces.

The following theorem of Bridson (see [9]) says that when Mod(Sg) acts on a complete

CAT(0) space, then the zero translation length of each Dehn twist is intrinsic, except

for several cases.

Theorem 3.1. (see [9]) Whenever Mod(Sg) (g ≥ 3) acts by isometries on a

complete CAT(0) space M , then each Dehn twist τ ∈ Mod(Sg) has |τ | = 0.
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A group G acting on a metric space X is said to act properly discontinuously if

for each compact subset K ⊂ X, the set K ∩ gK is nonempty for only finitely many

g in G. The following corollary is a direct result of theorem 3.1.

Corollary 3.2. Whenever Mod(Sg) (g ≥ 3) acts properly discontinuously on a

complete CAT(0) space M by isometries, each Dehn twist τ ∈ Mod(Sg) acts as a

parabolic isometry with |τ | = 0.

Proof. If not, by theorem 3.1 τ is elliptic, so τ has a fixed point x0 ∈ M which

contradicts the assumption that the action is properly discontinuous, since any Dehn

twist has infinite order. �

Dehn twists on non-separate simple closed curves. In this subsection, the

ideas of the statements come from Brock and Farb’s paper [13].

Lemma 3.3. Let Mod(Sg) act on a complete CAT(0) space M by isometries.

Suppose that there exists a non-separate simple closed curve α such that the Dehn

twist on α has a unique fixed point in M(∞). Then the Dehn twist on any other

non-separate simple closed curve β also has only one fixed point in M(∞).

Proof. Since both α and β are non-separate simple closed curves, there exists

φ ∈ Mod(Sg) such that φ(α) = β (see [25]). Let τ• denote the Dehn twist on •. Since

φ · τα · φ−1 = τφ(α),

we have φ ·τα ·φ−1 = τβ. Let x ∈M(∞) be the fixed point of τα. For any y ∈ Fix(τβ),

we have τα(φ−1(y)) = φ−1(y). Hence φ−1(y) = x, that is Fix(τβ) = {φ(x)}. �

Lemma 3.4. Let Mod(Sg) act on a complete CAT(0) space M by isometries.

Suppose that α and β are disjoint non-separate simple closed curves and the Dehn

twist on α has a unique fixed point x in M(∞). Then Fix(τβ) = {x}.

Proof. Since α and β are disjoint, τα · τβ = τβ · τα. Hence τα(τβ(x)) = τβ(x).

Since Fix(τα) = {x}, τβ(x) = x. By lemma 3.3 we have Fix(τβ) = {x}. �
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Let us recall the Lickorish-Humphries generators for Mod(Sg). Let {{αi}2g+1
i=1

⋃
β}

be 2g + 2 non-separate simple closed curves such that

i(αi, αj) =


1, |i− j| = 1,

0, otherwise.

and

i(αi, β) =


1, i = 4,

0, otherwise.

Where i(•, •) is the geometric intersection of two curves. Then Mod(Sg) is generated

by the Dehn twists on these curves (see [25]).

Lemma 3.5. Let Mod(Sg) act on a complete CAT(0) space M by isometries.

Suppose that there exists a non-separate simple closed curve α such that the Dehn

twist about α has a unique fixed point x in M(∞). Then Mod(Sg) fixes x.

Proof. Choose the Lickorish-Humphries generators {{αi}2g+1
i=1

⋃
β} for Mod(Sg).

Since αi are non-separate simple closed curves and Fix(τα) = {x}, by lemma 3.3 τα1

fixes only one point y ∈ M(∞). If i > 2, F ix(ταi) = {y} follows from lemma 3.4

and the fact that i(α1, αi) = 0. And Fix(τβ) = {y} also follows from lemma 3.4

and i(α1, β) = 0. Since i(α2, α4) = 0, by lemma 3.4 and Fix(τα4) = {y} we have

Fix(τα2) = {y}. Hence, y is a common fixed point of the generator for Mod(Sg).

Furthermore, Mod(Sg) fixes y. Since Fix(τα) = {x}, we have y = x. Hence, Mod(Sg)

fixes x. �

Remark 3.1. Using the same argument, the lemma also holds for x ∈M . In this

case M can be any metric space.

Lemma 3.6. Let Mod(Sg) (g ≥ 3) act properly discontinuously on a complete

proper visible CAT(0) space M by isometries. Then Mod(Sg) fixes some point x ∈

M(∞).
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Proof. Since the action is properly discontinuous, by corollary 3.2, the Dehn

twist τα about a non-separate simple closed curve α is parabolic. Since M is proper,

Fix(τα) is not empty. The result follows from remark 2.2 and lemma 3.5. �

Proposition 3.7. Let Mod(Sg) (g ≥ 3) act properly discontinuously on a com-

plete proper visible CAT(0) space M by isometries. Then any infinite ordered element

φ ∈ Mod(Sg) acts as parabolic isometry.

Proof. Assuming that there exists an element φ ∈ Mod(Sg) with infinite order

which acts onM as a hyperbolic isometry, there exists x0 ∈M such that d(φ◦x0, x0) =

|φ| > 0. The geodesic line γ : R → M extended by the geodesic segment x0φ(x0) is

the axis for φ, that is φ ◦ γ(t) = γ(|φ| + t). Since M is a visible CAT(0) space, it

is not hard to see that Fix(φ) = {γ(+∞), γ(−∞)}. By lemma 3.6 we can assume

γ(+∞) is fixed by Mod(Sg). Let σ ∈ Mod(Sg). Since σ fixes γ(+∞) there exists a

number C > 0 such that dist(σ ◦ γ(n · |φ|), γ(n · |φ|)) ≤ C for any n > 0. Hence

dist((φ−n · σ · φn) ◦ γ(0), γ(0)) ≤ C. Since the action is properly discontinuous, there

exists a subsequence {ni} of {n}n≥1 such that φ−ni · σ · φni ≡ φ−n1 · σ · φn1 . Hence

φn1−ni ·σ = σ ·φn1−ni , which means that the centralizers of any two different elements

have nontrivial intersection because φ (up to a power) belongs to the centralizer of

every element. Since σ is arbitrary, we can choose two pseudo-Anosov elements σ1, σ2

such that < σ1, σ2 > is a free group of rank 2 (see [36]). It is easy to see that

the centralizers of < σ1 > and < σ2 > only have trivial intersection, which is a

contradiction. �

Now we are ready to prove theorem 1.3.

Proof of theorem 1.3. Case I): suppose that σ is elliptic. Then σ fixes a

point p ∈M . Hence |σ| = dist(σ ◦ p, p) = 0.

Case II): suppose that σ has infinite order, by proposition 3.7 we know that σ is

parabolic. |σ| = 0 follows from theorem 1.1. �

Remark 3.2. Masur-Minsky [45] has shown that Mod(
∑

g,n) (g ≥ 1) acts by

isometries on the complex of curves, which is a Gromov-hyperbolic space, and the
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pseudo-Anosov element acts as a hyperbolic element with positive translation length.

We should remark that the complex of curves is not a proper space and the action is

also not properly discontinuous.

4. Two-dimensional surfaces

Let M be a complete manifold with nonpositive sectional curvature and M̃ be the

universal covering space of M . π1(M, p) is the fundamental group of M with base-

point p ∈ M . Each element in π1(M, p) is a deck transformation of M̃ which is an

isometry of M̃ . Theorem 1.1 tells us that π1(M, p) does not contain parabolic isome-

tries with positive translation length if M̃ is visible. It is interesting to know when

the fundamental group π1(M, p) of M contains a parabolic isometry with positive

translation length.

At first let’s look at the following example.

Example 3. Let M be the two-dimensional Riemannian manifold (R × R, ds2)

where ds2 := (e−y+1)2dx2+dy2. Let φ : M →M be defined by (x, y) 7→ (x+1, y). It

is not hard to see that |φ| = infx∈M dist(x, φ ◦ x) = 1 > 0 and V ol(M/ < φ >) =∞.

The following theorem gives a link between the existence of a parabolic isometry

with positive translation length and infinite volume.

Theorem 4.1. Let M be a complete two-dimensional Riemannian manifold with

nonpositive Gauss curvature. If the fundamental group π1(M, p) of M with a basepoint

p contains a parabolic isometry φ with translation length |φ| > 0, then the volume

V ol(M) =∞.

Proof. Since π1(M, p) contains a parabolic isometry, M is non-compact. Sup-

pose that V ol(M) <∞. Then M is not flat since there does not exist a non-compact

flat surface of finite area. By proposition 2.5 of [20] (or corollary 3.2 of [21]) the

universal covering space M̃ of M is visible. Since φ is parabolic, by theorem 1.1 we

know that |φ| = 0 which is a contradiction. �
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Remark 4.1. Theorem 4.1 is not true in higher dimensions. We look at the

following example. Let S1 be the unit circle and Sg,1 be the Riemannian surface of

genus g ≥ 1 and one punctured point. Consider M = S1 × Sg,1, endowed with the

product metric. It is easy to see that M has sectional curvature −1 ≤ K(M) ≤ 0

and finite volume. It is not hard to find a parabolic isometry φ in the fundamental

group of M such that |φ| > 0.

For a finite-type complete Riemannian surface M , it is well known that M is

non-compact if and only if M has cusps. It is not hard to see that there exists a

unique ray in each cusp, and this ray is fixed by some parabolic isometry which has

zero translation length. Theorem 1.5 gives a criterion for a closed two-dimensional

manifold.

Proof of theorem 1.5. From compactness argument it is easy to see that if

M is closed, then for any non-trivial deck transformation φ ∈ π1(M, p), |φ| > 0.

Assume that M is open. Then there exists a geodesic ray r : [0,+∞) → M .

Since V ol(M) <∞ and K(M) ≤ 0, the injectivity radius along r([0,+∞)) goes to 0.

We lift the ray r([0,+∞)) to a geodesic ray in the universal covering space M̃ of M

r̃ : [0,+∞) → M̃ . It is easy to see that for any ε > 0, there exists R0 > 0 such that

for any t > R0, there exists non-trivial φt ∈ π1(M, p) so that dist(r̃(t), φt ◦ r̃(t)) < ε.

Claim: If ε is small enough, φt is parabolic for any t > R0.

Assume that the claim is correct. Since the deck transformation φt is parabolic

and has positive translation length, by theorem 4.1, we would have V ol(M) = +∞

which is a contradiction. Hence M is compact.

Proof of Claim: Since V ol(M) < +∞, using the same argument as in the proof of

theorem 4.1, by proposition 2.5 of [20] (or Corollary 3.2 of [21]) the universal covering

space M̃ of M is a visible space. Let ε > 0 be small enough. By lemma 3.1c of [21]

Fix(φt1) = Fix(φt2) for any ti > R0 (i = 1, 2). Let x ∈ Fix(φt1) ⊂ M̃(+∞) and

Γx := {φ : φ ∈ π1(M, p), φ(x) = x}.

If there exists t0 with t0 > R0 such that φt0 is hyperbolic. We denote φt0 by φ.

Since φ is hyperbolic, there exists a geodesic line γ : R→ M̃ which is the axis for φ,

37



that is φ ◦ γ(t) = γ(|φ|+ t). Since M̃ is a visible CAT(0) space, it is not hard to see

that Fix(φ) = {γ(+∞), γ(−∞)}. Without loss of generality we set x = γ(+∞). For

σ ∈ Γx, there exists a number C > 0 such that dist(σ◦γ(n·|φ|), γ(n·|φ|)) ≤ C for any

n > 0, that is dist((φ−n · σ · φn) ◦ γ(0), γ(0)) ≤ C. Since the fundamental group acts

properly discontinuously on the universal covering, there exists a subsequence {ni}

such that φ−ni · σ · φni ≡ φ−n1 · σ · φn1 . Hence φn1−ni · σ = σ · φn1−ni . Furthermore σ

acts invariantly on γ((−∞,+∞)) (a reselection of axis of φ is possibly required), so σ

is also hyperbolic and has the same axis as φ. Moreover we know the group generated

by σ and γ is cyclic. Since σ ∈ Γx is arbitrary, Γx is cyclic. Let α be the generator of

Γx and translate the geodesic γ of M̃ by an amount δ > 0, then |σ| ≥ δ > 0 for any

σ ∈ Γx. On the other hand, since the injectivity radius along r([0,+∞)) goes to 0,

for any n > 0, there exists φn ∈ Γx such that |φn| < 1
n
, which is a contradiction. �

Remark 4.2. The following two examples tell us that the lower bound for curva-

ture and finite volume are necessary for theorem 1.5.

Example 4. Example 1 of page 457 in [21] is a two-dimensional complete noncom-

pact surface M such that the Gauss curvature K(M) ≤ 0, the volume V ol(M) < +∞,

and the fundamental group of M with basepoint p consists of hyperbolic isometries.

Example 5. Consider the upper half plane H2 endowed with a metric ds2 :=

(dx2 + dy2) + dx2+dy2

y2
. Let φ : H2 → H2 defined by (x, y) 7→ (x + 1, y). Setting M

to be the quotient space H2/ < φ >, it is easy to check that M is complete, the

sectional curvature of M satisfies −1 ≤ KM < 0, and π1(M) consists of isometries

with positive translation length. But M is not closed.

Remark 4.3. I am grateful to Tam Nguyen Phan for pointing out that Gromov’s

example in [28] tells that theorem 1.5 may be incorrect in higher dimensions.

5. Negatively curved manifolds without visibility

In [22], Eberlein and O’Neill first introduced the so-called zero axiom. Recall that

M satisfies the zero axiom if for any two rays r : [0,+∞)→M and σ : [0,+∞)→M
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with r(+∞) = σ(+∞) in M(∞) we have limt→+∞ dist(r(t), σ(R≥0)) = 0. A typical

example of a space satisfying the zero axiom is a complete simply connected Rie-

mannian manifold whose sectional curvature is bounded above by a negative number.

Proposition 5.1. Let M be a complete CAT(0) space satisfying the zero axiom,

γ an infinite ordered isometry of M , and Fix(γ) be the subset in M(∞) fixed by γ

(i.e., for any x ∈ Fix(γ), γ(x) = x). Then for any geodesic ray r : [0,+∞] → M

with r(+∞) ∈ Fix(γ) we have limt→+∞ dist(γ ◦ r(t), r(t)) = |γ|.

Proof. Let {pi}i≥1 be a sequence in M such that limi→+∞ dist(γ ◦ pi, pi) = |γ|

and ri : [0,+∞) → M be a sequence of rays in M with ri(0) = pi and ri(+∞) =

r(+∞). Since M satisfies the zero axiom, for each i there exists ti, si > 0 such that

dist(ri(si), r(ti)) <
1
i
. By the triangle inequality,

dist(γ ◦ r(ti), r(ti)) ≤ dist(γ ◦ ri(si), ri(si)) + 2× dist(ri(si), r(ti)).(7)

Since ri(+∞) = r(+∞) ∈ Fix(γ) and the distance function between two rays in M is

convex (see [10]), dist(γ ◦ ri(t), ri(t)) is a decreasing function. In particular we have

dist(γ ◦ ri(si), ri(si)) ≤ dist(γ ◦ ri(0), ri(0)) = dist(γ ◦ pi, pi).(8)

Combining (7) and (8),

dist(γ ◦ r(ti), r(ti)) ≤ dist(γ ◦ pi, pi) +
2

i
.(9)

Taking the limit,

lim
i→+∞

dist(γ ◦ r(ti), r(ti)) ≤ |γ|.(10)

From the definition we also know that limi→+∞ dist(γ ◦ r(ti), r(ti)) ≥ |γ|. Hence

limi→+∞ dist(γ ◦ r(ti), r(ti)) = |γ|. Since r(+∞) ∈ Fix(γ), dist(γ ◦ r(t), r(t)) is

decreasing, so limt→+∞ dist(γ ◦ r(t), r(t)) = limi→+∞ dist(γ ◦ r(ti), r(ti)) = |γ|. �

Next now we give an affirmative answer to Farb’s conjecture if the manifold sat-

isfies the zero axiom.
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Proof of theorem 1.6. Let σ be a non-separate simple closed curve. Since

g ≥ 3, we can find two intersecting simple closed curves σ1, σ2 ⊂ (Sg − σ) such that

the group generated by the two Dehn-twists τσ1 and τσ2 is free (see [36]).

Let τσ be the Dehn-twist on σ in Mod(Sg). We define the centralizer N(τσ) of τσ

in the following way

N(τσ) := {α ∈ Mod(Sg) : α ◦ τσ = τσ ◦ α}.

It is not hard to see that < τσ1 , τσ2 >⊂ N(τσ).

If Mod(Sg) does act properly discontinuously on a complete simply connected

Riemannian manifold M satisfying the zero axiom and the sectional curvature −1 ≤

KM ≤ 0, then by corollary 3.2 (Bridson’s theorem), the Dehn-twist τσ would act as

a parabolic isometry on the M . By lemma 7.3 in page 87 of [5] we know that there

exists some x ∈M(∞) such that N(τσ) fixes x, that is for any α ∈ N(τσ), α(x) = x.

Since < τσ1 , τσ2 >⊂ N(τσ), < τσ1 , τσ2 > fixes x.

Let r : [0,+∞) → M be a geodesic ray in M with r(+∞) = x. Since g ≥ 3, the

translation length of any Dehn-twist is zero. Since M satisfies the zero axiom, by

proposition 5.1 we have limt→+∞ dist(τσ1 ◦r(t), r(t)) = limt→+∞ dist(τσ2 ◦r(t), r(t)) =

0. Hence, for any ε > 0 we can find t0 such that

dist(τσ1 ◦ r(t0), r(t0)) < ε, dist(τσ2 ◦ r(t0), r(t0)) < ε.

Choose ε so that ε is smaller than the Margulis constant for M . After applying

the Margulis Lemma (see [5]) at the point r(t0), we have that the group < τσ1 , τσ2 >

is a finitely generated subgroup of an almost nilpotent group which is still almost

nilpotent, which contradicts the fact that < τσ1 , τσ2 > is free. �

Remark 5.1. In [13, 35] it was proved that the mapping class group Mod(Sg,n)

cannot act properly discontinuously on any complete simply connected Riemannian

manifold with pinched negative sectional curvature when 3g−3+2n ≥ 2. Since a com-

plete simply connected Riemannian manifold whose sectional curvature is bounded
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above by a negative number satisfies the zero axiom, theorem 1.6 generalizes these

results except in several cases.

Proof of theorem 1.7. We first prove the theorem for examples in [26] when

the dimension of M is 3. For general dimension, it can be reduced to three.

Let V be a 3-dimensional closed hyperbolic manifold and S be a simple closed

geodesic in V with length a > 0. Let σ > 0 be small enough. Then a σ−neighborhood

Nσ(S) of S is S×S1× (0, σ). We introduce polar coordinates (ω, θ, r) on Nσ(S). The

hyperbolic metric of V on a σ−neighborhood Nσ(S) of V is given by

gV = cosh2(r)dω2 + sinh2(r)dθ2 + dr2 (0 ≤ θ ≤ 2π, 0 ≤ r ≤ σ).

Let M = V − S and g be the metric on M constructed in [26]:

g = cosh2(r)dω2 + sinh2(r)dθ2 + f 2(r)dr2 (0 ≤ θ ≤ 2π, 0 ≤ r ≤ σ)

where f(r) converges to +∞ as r → 0, and satisfies certain properties (see [26]). It is

showed in [26] that (M, g) has finite volume and sectional curvature −1 ≤ KM < 0.

From the definition of g we know that for any fixed positive number c0 ∈ (0, 2π),

the surface θ = c0 in M is totally geodesical. The metric g restricted to θ = c0 is

gθ=c0 = cosh2(r)dω2 + f 2(r)dr2 (0 ≤ r ≤ σ).

We denote M |θ=c0 by S×(0, σ). The universal covering space of S×(0, σ) is R×(0, σ).

Let φ be the generator of the fundamental group of S × (0, σ). Since the length of S

is a, it is not hard to see that, for all (ω, r) ∈ R× (0, σ), we have

φ ◦ (ω, r) = (ω + a, r) (0 ≤ r ≤ σ).

We claim that φ is a parabolic isometry with positive translation length.

Proof of Claim: Firstly we consider the curve c(t) : [0, 1]→ R× (0, σ) defined by

c(t) = (ω + t · a, r), so we have

|φ| ≤ `(c([0, 1])) =

∫ 1

0

√
cosh2(c2(t)) · c′1(t)2

= cosh(r) ·
∫ 1

0

|c′1(t)| = a · cosh(r).
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Since r is arbitrary, letting r → 0 we get |φ| ≤ a.

Secondly, let c(t) = (c1(t), c2(t)) : [0, 1]→ R× (0, σ) be any smooth curve joining

(ω, r) and (ω + a, r), so that in particular c1(0) = ω and c1(1) = ω + a. The length

of c([0, 1]) is

`(c([0, 1])) =

∫ 1

0

√
cosh2(c2(t)) · c′1(t)2 + f 2(c2(t)) · c′2(t)2

≥
∫ 1

0

| cosh(c2(t)) · c′1(t)| >
∫ 1

0

|c′1(t)|

≥ (c1(1)− c1(0)) = a > 0.

Since c(t) is arbitrary, |φ| ≥ a > 0. Hence |φ| = a > 0. |φ| can not be attained in

R × (0, σ) since `(c([0, 1])) > a for any curve joining (ω, r) and (ω + a, r), so φ is

parabolic.

Hence φ restricted to R× (0, σ) is a parabolic isometry with positive translation

length. Since θ = c0 is totally geodesical in M , R× (0, σ) is totally geodesical in the

universal covering of M . So φ is also a parabolic isometry with positive translation

length in the universal covering of M .

From theorem 1.1 we know that M is not visible.

The proof for examples in [1] is similar as above; we leave it as an exercise to

reader. �

Remark 5.2. Recently, in [48] Phan independently proved that Fujiwara’s ex-

ample M is not visible by finding two points x, y on the visual boundary of M̃ such

that there does not exist any geodesic line in M̃ joining x and y.
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CHAPTER 4

Iteration of mapping classes and limits of geodesics

1. Introduction

Let S = Sg be a closed surface of genus g > 1. Its Teichmüller space TS carries

various natural metrics, and for every metric people would like to draw analogies with

a complete hyperbolic space of the same dimension.

TS endowed with the Weil-Petersson metric is a Riemannian manifold, which is de-

noted by Teich(S). Wolpert and Tromba showed that Teich(S) has negative sectional

curvature (see [57, 63]). Scott Wolpert proved that Teich(S) is non-complete (see

[16, 62]), but geodesically convex (see [64]). The completion Teich(S) of Teich(S),

also called the augmented Teichmüller space, is naturally a CAT(0) space. So we can

study the geometry of Teich(S) through CAT(0) techniques.

A complete manifold with nonpositive sectional curvature M is compactified by

the space of infinite geodesic rays starting from a given point x ∈ M , which is

called the visual sphere at x, and basically it is the collection of directions of M

at x. Likewise, for each point X ∈ Teich(S), Teich(S) has a Weil-Petersson visual

sphere, although some geodesics go to the boundary of Teich(S) in finite time. Since

Teich(S) is a Riemannian manifold, the collection of directions of Teich(S) at X is

a (6g − 7)−dimensional sphere. We denote the visual sphere of Teich(S) at X by

VX(S).

The mapping class group Mod(S) of S , which is the group of orientation preserv-

ing self-homeomorphisms of S up to isotopy, acts on Teich(S) by isometries. Like in

the structure of isometry of a CAT(0) space, we can define the translation length of

an element φ ∈ Mod(S) |φ| by inf
X∈Teich(S)

dist(X,φ ◦X). We say φ is hyperbolic

if |φ| is attained in Teich(S); otherwise, it is called parabolic. In [18, 65, 70] it
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is showed that an element φ ∈ Mod(S) is hyperbolic if and only if φ is finite or-

dered or pseudo-Anosov. Moreover, every pseudo-Anosov mapping class has positive

translation length.

Let X, Y ∈ T (S) and Γ(X, Y ) be the quasi-Fuchsian Bers simultaneous uni-

formization of (X, Y ) ∈ T (S) × T (S). Then Γ(X, Y ) determines Q(X, Y ) =

H3/Γ(X, Y ) as a quotient hyperbolic 3-manifold. In [11] Brock shows

Theorem 1.1 (Brock). Let φ ∈ Mod(S) be a mapping class. Then there is

an s ≥ 1, depending only on φ and bounded in terms of S, so that the sequence

{Q(φsi(X), Y )}i≥1 converges algebraically and geometrically.

In [64] it was showed that Teich(S) is geodesically convex, i.e., for any two points

X, Y ∈ Teich(S), there exists a geodesic connecting X and Y , moreover the geodesic is

unique because the sectional curvature of Teich(S) is negative. We denote the geodesic

joining X and Y by g(X, Y ). Our first result is analogous to Brock’s theorem.

Theorem 1.2. Let φ ∈ Mod(S) be a mapping class. Then there is an s ≥

1, only depending on φ, so that the sequence of the directions of the geodesics

{g(X,φsi(Y ))}i≥1 is convergent in the visual sphere of X.

Given a collection of mutually disjoint simple closed curves, we connect them

pairwise by a segment of length 1. The resulting object is called a simplex. Let σ

be a simplex, and denote its vertices by σ0. Recall that the stratum Tσ consists of

all hyperbolic surfaces with nodes along the curves in σ (see [44, 65]). A stratum

is a convex subset in Teich(S). If φ is a Dehn-twist on a simple closed curve α, it

was showed in [12, 49] that the limit of the sequence {g(X,φi ◦ Y )}i≥1 goes to the

stratum Tα. It would be interesting to know whether this property can be generalized

to multi-twists, which is our second goal in this paper.

In [65] Wolpert gave a compactness theorem for a sequence of geodesics in

Teich(S) with uniform bounded lengths (see proposition 23 in [65]). Later Yamada

in [71] constructed the so-called Teichmüller-Coxeter development D(Teich(S), ι)

through introducing an infinite Coxeter reflection group and gluing infinite copies
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of Teich(S) through the strata. D(Teich(S), ι) is a complete CAT(0) space (see

[71]). The limit geodesic in Wolpert’s compactness theorem can be well described

in D(Teich(S), ι). The definition of D(Teich(S), ι) will be given in section 4 of this

chapter. If φ is a multi Dehn-twist, the limit of the geodesics {g(X,φi(Y ))}i≥1 can

be characterized by the following:

Theorem 1.3. Let σ be an m-simplex and σ0 = {α1, · · · , αm+1} and τi be the

Dehn-twist about the curve αi for i = 1, 2, · · · ,m+1. Let φ =
∏

1≤i≤m+1 τi ∈ Mod(S),

X, Y ∈ Teich(S), and gn be the unit speed geodesics g(X,φn ◦ Y ). Then, there exists

a positive number L, an associated partition 0 = t0 < t1 < · · · < tk = L, simplices

σ0, · · · , σk, and a piewise geodesic

g : [0, L]→ Teich(S)

with the following properties.

(1). σ0
i ⊂ σ0, σ0

i ∩ σ0
j is empty for i 6= j,

(2). σ0 =
⋃k
i=1 σ

0
i ,

(3). g(ti) ∈ Tσi, i = 1, · · · , k − 1, g(0) = X, g(tk) = Y ,

(4). gn[0, t1] converges in Teich(S) to the restriction g([0, t1]), and for each i =

1, · · · , k − 1,

lim
n→+∞

dist(τi,n ◦ · · · ◦ τ1,n ◦ gn(t), g(t)) = 0, for t ∈ [ti, ti+1],

where τi,n =
∏

α∈σi τ
−n
α , for i = 1, · · · , k − 1.

(5). The piecewise geodesic g is the unique minimal length path in Teich(S) joining

g(0) to g(L) and intersecting the closures of the strata Tσ1 , Tσ2 , · · · , Tσk−1
in order.

The first point on g([0, L]) meeting with strata g(t1) is the point where the ge-

odesic joining (1, X) and (
∏

α∈σ0 ωα, Y ) in the Teichmüller-Coxeter development

D(Teich(S), ι) firstly meets with the wall. Here we identify (1,Teich(S)) with Teich(S).

As part of the analysis we also have the following limit result.
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Theorem 1.4. Let σ be a k-simplex and σ0 = {γ1, · · · , γk+1}. τi is the Dehn-

twist about the curve γi for i = 1, 2, · · · , k + 1. Let φ =
∏

1≤i≤k+1 τi ∈ Mod(S) and

gn = g(X,φn ◦ Y ). Then for any X, Y ∈ Teich(S),

lim
n→+∞

`(g(X,φn ◦ Y )) exists,

where `(g(X,φn ◦ Y )) is the length of the geodesic g(X,φn ◦ Y ).

Before providing further context we first recall the Thurston-Nielsen classification

of mapping classes [24]. A mapping class is called reducible if some power fixes

a collection of mutually disjoint simple closed curves in S. Reducible classes are

analyzed in terms of mapping classes of proper subsurfaces. For a reducible mapping

class φ ∈ Mod(S) there exists a maximal finite collection of mutually disjoint simple

closed curves {αi} and mutually disjoint proper subsurfaces {PSk} ⊂ S such that

φk is the product of Dehn-twists on {αi} and pseudo-Anosov elements on proper

subsurfaces {PSk} ⊂ S for some integer s ≥ 1. If φ itself is a Dehn-twist about a

simple closed curve, then there does not exist a pseudo-Anosov part on any proper

subsurface. A mapping class is precisely one of: finite-ordered, reducible or pseudo-

Anosov (see [24]).

We denote the length of a geodesic segment c by `(c). We say a geodesic ray

c : [0,∞) → Teich(S) is the geometric limit of geodesics ci : [0, `(ci)) → Teich(S)

if for any t > 0, limi→+∞ dist(c(t), ci(t)) = 0, where all geodesics have unit speed.

We say a geodesic ray c : [0,+∞) → Teich(S) is strongly asymptotic to a subset

A ⊂ Teich(S) if the distance between c(t) and A satisfies

lim
t→+∞

dist(c(t), A) = 0.

If φ is pseudo-Anosov, the following theorem tells that the length of every simple

closed curve goes to infinity along the geometric limit of g(X,φn ◦ Y ).

Theorem 1.5. Let φ be a pseudo-Anosov mapping class and X, Y ∈ Teich(S).

Then the geodesics g(X,φn ◦ Y ) converges to a geodesic ray c : [0,+∞) → Teich(S)
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which is strongly asymptotic to the axis of φ in Teich(S). Moreover, for any simple

closed curve α in S,

lim
t→+∞

`α(c(t)) = +∞.

If φ is reducible with |φ| > 0, the following theorem tells that the geometric limit

geodesic of g(X,φn ◦ Y ) goes to an explicit stratum whose vertices consist of the

boundary closed curves in proper surfaces on which φ is pseudo-Anosov.

Theorem 1.6. Let φ ∈ Mod(S) be reducible with |φ| > 0 and k be a positive

integer such that φk =
∏

α∈σ0 τα×
∏

j φj, where σ is a simplex, τα is a Dehn-twist about

α, and φj = φk|PSj is pseudo-Anosov on PSj, where PSj is a proper subsurface of

S. Then for any X, Y ∈ Teich(S), there exists a geodesic ray c : [0,+∞)→ Teich(S)

such that

(1). the geodesics g(X,φn ◦ Y ) converge to c : [0,+∞)→ Teich(S).

(2). For any simple closed curve α ∈ ∂(∪jPSj), we have

lim
t→+∞

`α(c(t)) = 0.

(3). There exists a positive number ε0 such that for any non-peripheral essential

simple closed curve β in S but not in ∂(∪jPSj),

`β(c(t)) ≥ ε0

for all t ≥ 0.

2. Weil-Petersson geodesics and the Alexandrov tangent cone

Given X ∈ Teich(S), define

gX : Teich(S)→ WPX(S)

from Teich(S) into the space WPX(S) of Weil-Petersson unit speed geodesics starting

from X. Since Teich(S) is a CAT(0) space, for all Y ∈ Teich(S) there is a unique

Weil-Petersson geodesic in WPX(S) joining X to Y . The mapping gX(Y ) is given

47



by the unique geodesic connecting X and Y . It is not hard to see that gX gives a

homeomorphism from Teich(S) to WPX(S).

Since Teich(S) is a CAT(0) space, the notion of tangent cone is available. As in

[10], let c1(t) and c2(t) be two geodesics both of which start from X and have unit

speed. The Alexandrov angle ∠(c1, c2) between c1(t) and c2(t) at X is defined with

values in [0, π] as follows:

cos∠(c1, c2) = lim
t→0+

2t2 − dist2(c1(t), c2(t))
2t2

.

We introduce the equivalence relation on WPX(S) as c1(t) ∼ c2(t) provided that

∠(c1, c2) = 0.

Definition 2.1. The Alexandrov tangent cone ACX at X is the quotient space

WPX(S)/∼.

If X ∈ Teich(S), ACX coincides with the tangent space of Teich(S) at X, which

is R6g−6. Let σ be a simplex and X ∈ Tσ. Consider a Fricke-Klein basis {grad`β}β∈λ

for Tσ around X. For a ray r(t) with initial point X, we define a map Λ : r(t) →

R|σ|≥0 × TXTσ by

Λ(r(t)) = (
√

2π · d`
1
2
α(r(0+))

dt
,
√

2π · d`β(r(0+))

dt
).

The Alexandrov tangent cone at X is characterized by the following theorem (see

[67]).

Theorem 2.2. (see [67]) For X ∈ Teich(S), the mapping Λ : ACX → R|σ|≥0×TXTσ

is an isometry of cones with restrictions of inner products. A geodesic c(t) with

c(0) = X and d`
1/2
α (c(0+))

dt
= 0, α ∈ σ0, is contained in the stratum Tα.

The following strong reflection property is proved in the paragraph after theorem

6.9 in chapter 6 of [69] (or paragraph after example 4.19 in [67]). We will apply it

later.
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Proposition 2.3. Given a simplex σ, let X, Y be two points in Teich(S). Z is a

point in Tσ such that the piecewise geodesic g(X,Z) ∪ g(Z, Y ) is the minimal length

path in Teich(S) joining X and Y and intersecting the stratum Tσ. Then we have

(1). the initial tangents of g(Z,X) and g(Z, Y ) are equal in the components R|σ|≥0.

(2). The sum of the initial tangents of g(Z,X) and g(Z, Y ) has vanishing projec-

tion into the subcone TXTσ.

3. Iterated multi-twists

Let α be a homotopically essential simple closed curve on S. Let Tα denote the

α-stratum of Teich(S). In the extended Fenchel-Nielsen coordinates we have

Tα = {X ∈ Teich(S) : `α(X) = 0, `β(X) 6= 0 for all β ∈ P − α},

where P is a pants decomposition containing α.

Let τα ∈ Mod(S) be the Dehn-twist about α. The following lemma is proved in

[12]

Lemma 3.1. [Brock] Let X and Y lie in Teich(S), and let α be an essential simple

closed curve on S. Then there exists Xn ∈ g(X, τnα ◦ Y ) such that

lim
n→+∞

dist(Xn, Tα) = 0.

A perturbation argument gives the following property.

Lemma 3.2. Let X lie in Teich(S) and Y lie in Teich(S), and let α be an essential

simple closed curve on S. Then there exists Xn ∈ g(X, τnα ◦ Y ) such that

lim
n→+∞

dist(Xn, Tα) = 0.

Proof. From lemma 3.1 it is sufficient to prove the result when Y is in a stratum.

For any ε > 0 let Y ε ∈ Teich(S) with dist(Y ε, Y ) = ε. By lemma 3.1 there exists

Xε
n ∈ g(X, τnα ◦ Y ε) such that limn→+∞ dist(X

ε
n, Tα) = 0. Since Teich(S) is a CAT (0)

space, by proposition 2.2 of Chapter II.2 in [10], we know that there exists Xn ∈
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g(X, τnα ◦ Y ) such that dist(Xn, X
ε
n) ≤ max{dist(τnα ◦ Y ε, τnα ◦ Y ), dist(X,X)} =

dist(τnα ◦ Y ε, τnα ◦ Y ) = ε. Hence,

dist(Xn, Tα) ≤ dist(Xε
n, Tα) + dist(Xε

n, Xn) ≤ dist(Xε
n, Tα) + ε

Taking the superior limit,

lim sup
n→+∞

dist(Xn, Tα) ≤ ε.

Since ε is arbitrary,

lim
n→+∞

dist(Xn, Tα) = 0.

�

Remark 3.1. If we check the argument for the proof of lemma 3.1 in [12], the

conclusion also holds for the sequence of geodesics g(X, τ−nα ◦ Y ). Furthermore, it is

not hard to see that lemma 3.2 also holds for the sequence of geodesics g(X, τ−nα ◦Y ).

If we switch the position of X and Y , we have

Lemma 3.3. Let Y lie in Teich(S) and X lie in Teich(S) with `α(X) < +∞ where

α is an essential simple closed curve on S. Then there exists Xn ∈ g(X, τnα ◦ Y ) such

that

lim
n→+∞

dist(Xn, Tα) = 0.

Proof. By remark 3.1 there exists X ′n ∈ g(τ−nα ◦X, Y ) such that

lim
n→+∞

dist(X ′n, Tα) = 0.

Set Xn = τnα ◦X ′n. Since Mod(S) acts on Teich(S) by isometry, τ−nα ◦ (g(X, τnα ◦Y )) =

g(τ−nα ◦X, Y ). Hence, Xn ∈ g(X, τnα ◦ Y ).

dist(Xn, Tα) = dist(τnα ◦X ′n, Tα) = dist(X ′n, Tα).

Therefore,

lim
n→+∞

dist(Xn, Tα) = lim
n→+∞

dist(X ′n, Tα) = 0.
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Let η ⊂ σ be a sub-simplex of the simplex σ. The η− stratum Tη of Teich(S) con-

sists of all hyperbolic surfaces with nodes along the vertices of η, and is parameterized

in extended Fenchel-Nielsen coordinates with respect to a pants decomposition P of

S with σ0 ⊂ P . Set

PT (S)σ =
⋃
η⊂σ

Tη.

By definition we know that for any simplex σ, Teich(S) ⊂ PT (S)σ since Tφ = Teich(S)

where φ is the empty set.

We will apply Wolpert’s theorem on limits of finite length geodesics (see [65],

proposition 23).

Theorem 3.4. [Wolpert] Consider a sequence of unit-speed geodesics {gn} with

initial points converging to p0, lengths converging to L with L > 0 and parameter

intervals converging to [0, L]. There exists an associated partition 0 = t0 < t1 < · · · <

tk = L of the interval, simplices σ0, · · · , σk, simplices νi = σi
⋂
σi−1, and a piecewise

geodesic

g : [0, L]→ Teich(S)

with the following properties.

(1). g(ti−1, ti) ⊂ Tνi, i = 1, · · · , k.

(2). g(ti) ∈ Tσi, i = 1, · · · , k.

(3). There are elements τi,n ∈ Tw(σi−νi
⋃
νi+1), for i = 1, · · · , k−1, so that after

passing to a subsequence, gn[0, t1] converges in Teich(S) to the restriction g([0, t1]) and

for each i = 1, · · · , k − 1 and t ∈ [ti, ti+1],

lim
n→+∞

dist(τi,n ◦ · · · ◦ τ1,n ◦ (gn(t)), g(t)) = 0.

(4). The elements τi,n are either trivial or unbounded.

The piecewise geodesic g is the unique minimal length path in Teich(S) joining

g(0) to g(L) and intersecting the closures of the strata Tσ1 , Tσ2 , · · · , Tσk in order.
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Proposition 3.5. Let σ be a k-simplex, σ0 = {α1, · · · , αk+1}, and τi be the Dehn-

twist about the curve αi for i = 1, 2, · · · , k+1. Let φ =
∏

1≤i≤k+1 τi ∈ Mod(S). Then,

for any X, Y ∈ Teich(S),

(1). there exists ε = ε(X, Y, φ) > 0, which depends on X, Y and φ, such that for

any simple closed curve β /∈ σ0 we have

inf
Z∈g(X,φn◦Y )

`β(Z) > ε.

for all n ≥ 1.

(2). Any limit of geodesics g(X,φn ◦ Y ) in the sense of theorem 3.4 goes to the

stratum Tσ1 where σ1 ⊂ σ.

(3). There exists X i
n on the geodesics g(X,φn ◦ Y ) such that

lim
n→+∞

dist(X i
n, Tαi) = 0

for all 1 ≤ i ≤ k + 1.

Proof. Proof of (1): Let β be a simple closed curve in S satisfying β /∈ σ0. If

β is disjoint with σ0, then `β(φn ◦ Y ) = `β(Y ). We can always find another simple

closed curve β′ such that β′ /∈ σ0 and β′ intersects with β. By theorem 4.2 in chapter

2 we have

`β(Z) ≤ max{`β(X), `β(Y )}, `β′(Z) ≤ max{`β′(X), `β′(Y )}

for all Z ∈ g(X,φn ◦ Y ). By the Collar Lemma, there exists a positive number ε1

depending on X, Y, φ such that

`β(Z) ≥ ε1.

If β intersects at least one of σ0. Since φ fixes σ0 pointwise, for all α ∈ σ0, `α(φn ◦ Y ) =

`α(Y ), by theorem 4.2 in chapter 2 we have

`α(Z) ≤ max{`α(X), `α(Y )}
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for all Z ∈ g(X,φn ◦ Y ). By the Collar Lemma, there exists a positive number ε2

depending on X, Y, φ such that

`β(Z) ≥ ε2.

We choose ε = min{ε1, ε2}.

Proof of (2): Let W ∈ Tσ, we have φ ◦W = W . By the triangle inequality,

Length(g(X,φn ◦ Y )) ≤ dist(X,W ) + dist(W,φn ◦ Y )

= dist(X,W ) + dist(W,Y ) < +∞.

By theorem 3.4 any limit of g(X,φn ◦ Y ) goes to some stratum Tσ1 for some simplex

σ1. From part 1 we know that either σ1 ⊂ σ or σ1 is empty. We exclude the empty

case for the following reason. If σ1 is empty, after passing to a subsequence, the

geodesics g(X,φn ◦Y ) converge to a geodesic in Teich(S). In particular, {φn ◦Y }n≥1,

passing to a subsequence, converges to a point in Teich(S), which is impossible since

φ has infinite order and Mod(S) acts properly discontinuously on Teich(S).

Proof of (3): We prove it by induction on k.

If k = 0, it follows from lemma 3.1.

Assume that the conclusion holds for any k < k0, we prove it for k = k0. Assume

the result is incorrect. Passing to a subsequence (without of generality), we can

assume that there exists a positive number ε0 such that

dist(g(X,φn ◦ Y ), Tα1) ≥ ε0

for all n.

Let W ∈ Tσ. We have φ ◦W = W . By the triangle inequality,

Length(g(X,φn ◦ Y )) ≤ dist(X,W ) + dist(W,φn ◦ Y )

= dist(X,W ) + dist(W,Y ) < +∞.
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By theorem 3.4 and part 1, any subsequence of the geodesics g(X,φn ◦ Y ) can only

converge to a stratum Tη1 where η01 ⊂ σ0. Hence, without of generality we assume

that the geodesics g(X,φn ◦ Y ) converge to a stratum Tη1 with p1 ∈ Tη1 . Without

loss of generality, let η01 = {α2, · · · , αk1} and η02 = {α1, αk1+1, · · · , αk+1}) such that

the distance between the piecewise geodesic g(X, p1)
⋃
g(p1, φ

n ◦ Y ) and the geodesic

g(X,φn ◦ Y ) goes to 0 as n approaches to ∞. Since φ ∈ Mod(S) and Mod(S) acts

on Teich(S) by isometries, g(p1, φ
n ◦ Y )=g(ωn1 ◦ p1, φn ◦ Y )=ωn1 ◦ g(p1, ω

n
2 ◦ Y ) where

ω1 =
∏

γ∈η02
τγ, ω2 =

∏
γ∈η01

τγ.

For any ε > 0 let pε1 ∈ Teich(S) with dist(pε1, p1) = ε. From our assumption there

exists Xε
n ∈ g(pε1, ω

n
2 ◦ Y ) such that

lim
n→+∞

dist(Xε
n, Tα1) = 0.

Since Teich(S) is a CAT (0) space, by proposition 2.2 of Chapter II.2 in [10] we know

that there exists Xn ∈ g(p1, ω
n
2 ◦ Y ) such that dist(Xn, X

ε
n) ≤ max{dist(ωn2 ◦ Y, ωn2 ◦

Y ), dist(p1, p
ε
1)} = ε. Hence,

dist(Xn, Tα1) ≤ dist(Xε
n, Tα1) + dist(Xε

n, Xn) ≤ dist(Xε
n, Tα1) + ε

Taking the superior limit,

lim sup
n→+∞

dist(Xn, Tα1) ≤ ε.

SinceXn ∈ g(p1, ω
n
2 ◦Y ), ωn1 ◦Xn ∈ g(p1, φ

n◦Y ). When n is big enough, there exists

Yn ∈ g(X,φn ◦ Y ) such that dist(Yn, ω
n
1 ◦Xn) < ε0

2
because the distance between the

piecewise geodesic g(X, p1)
⋃
g(p1, φ

n ◦ Y ) and the geodesic g(X,φn ◦ Y ) approaches

0 as n goes to ∞. On the other hand,

dist(Yn, Tα1) ≤ dist(Yn, ω
n
1 ◦Xn) + dist(ωn1 ◦Xn, Tα1) <

ε0
2

+ dist(Xn, Tα1).

Taking the limit,

lim sup
n→+∞

dist(Yn, Tα1) ≤
ε0
2

+ ε.

Since ε is arbitrary, if we choose ε = ε0
4

, the inequality above contradicts our assump-

tion that dist(g(X,φn ◦ Y ), Tα1) ≥ ε0 for all n. �
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We extend proposition 3.5 to the case that X is in a stratum.

Proposition 3.6. Let σ be a k-simplex, σ0 = {α1, · · · , αk+1} and φ =
∏

1≤i≤k+1 τi ∈

Mod(S), where τi is the Dehn-twist about the curve αi for i = 1, 2, · · · , k + 1. Given

a simplex σ′ disjoint with σ and two points X ∈ Tσ′ and Y ∈ Teich(S), then we have

(1). there exists ε = ε(X, Y, φ) > 0 which depends on X, Y and φ such that for

any simple closed curve β /∈ σ0 ∪ σ′0 we have

inf
Z∈g(X,φn◦Y )

`β(Z) > ε.

for all n ≥ 1.

(2). Any limit of geodesics g(X,φn ◦ Y ) in the sense of theorem 3.4 goes to a

stratum Tσ1 where σ0
1 ⊂ σ0.

(3). There exists X i
n on the geodesic g(X,φn ◦ Y ) such that

lim
n→+∞

dist(X i
n, Tαi) = 0

for all 1 ≤ i ≤ k + 1.

Proof. Proof of (1): Let β be a simple closed curve in S satisfying β /∈ σ0 ∪ σ′0.

If β is disjoint with σ0 ∪ σ′0, then `β(φn ◦ Y ) = `β(Y ). We can always find another

simple closed curve β′ such that β′ /∈ σ0 ∪ σ′0 and β′ intersects with β. By theorem

4.2 in chapter 2 we have

`β(Z) ≤ max{`β(X), `β(Y )}, `β′(Z) ≤ max{`β′(X), `β′(Y )}

for all Z ∈ g(X,φn ◦Y ). From the Collar Lemma, there exists a positive ε1 depending

on X, Y, φ such that

`β(Z) ≥ ε1.

If β intersects at least one of σ0 ∪ σ′0. Since σ and σ′ are disjoint, φ fixes σ0 ∪ σ′0

pointwise, for all α ∈ σ0 ∪ σ′0, `α(φn ◦ Y ) = `α(Y ). From theorem 4.2 we have

`α(Z) ≤ max{`α(X), `α(Y )}
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for all Z ∈ g(X,φn ◦ Y ). By the Collar Lemma, there exists a positive ε2 depending

on X, Y, φ such that

`β(Z) ≥ ε2.

We choose ε = min{ε1, ε2}.

Proof of (2): Assume that the conclusion is incorrect.

At first by part 1), any limit of geodesics g(X,φn ◦ Y ) in the sense of theorem 3.4

goes to a stratum Tη, where either η is empty or η0 ⊂ σ0∪σ′0. We exclude the empty

case for the following reason. It is similar to the proof of part (1) in the proposition

above. By theorem 3.4, passing to a subsequence, the geodesics g(X,φn ◦Y ) converge

to a geodesic in Teich(S). In particular, {φn◦Y }, passing to a subsequence, converges

to a point in Teich(S), which is impossible since φ has infinite order and Mod(S) acts

properly discontinuously on Teich(S).

We denote the point on which the limit first meets the strata by Z. If η is not a

subsimplex of σ. By part (1), there exists a simple closed curve β ∈ η0 ∩ σ′0. Since

g(0) = X ∈ Tσ′ ⊂ Tβ, by theorem 4.4, g([0, t1]) ⊂ Tβ. Hence, g(X,Z) ⊂ Tβ, the

initial tangent vector of g(Z,X) vanish in the component Rβ
≥0. Since φ is reducible,

it is not hard to see that k ≥ 2, otherwise it contradicts lemma 3.3. Since the

piecewise geodesic g is the unique minimal length path in Teich(S) joining g(0) to

g(L) intersecting the closures of the strata Tσ1 , Tσ2 , · · · , Tσk in order, the piecewise

geodesic g(X,Z) ∪ g(Z, g(t2)) is the minimal length path in Teich(S) joining X and

g(t2) and intersecting the stratum Tη. From theorem 2.3 we know that the initial

tangent vector of g(Z,X) and g(Z, g(t2)) are equal in the components R|η|≥0, so the

initial tangent vector of g(Z, g(t2)) vanish in the component Rβ
≥0. By theorem 2.2,

we have that the geodesic g(Z, g(t2)) is contained in Tβ. In particular g(t2) ∈ Tβ. By

induction on ti, we have

g(ti) ∈ Tβ, for all i = 1, 2, · · · , k.
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In particular g(tk) ∈ Tβ.

On the other hand we claim g(tk) ∈ Teich(S).

If the claim is correct, we get a contradiction since Tβ does not have any intersec-

tion with Teich(S).

Proof of the claim: From part (1) we know that σi ⊂ σ ∪ σ′ for all i = 1, · · · , k.

So τk−1,n ◦ · · · ◦ τ1,n is a product of Dehn-twists about the curves in σ ∪ σ′. Since

gn(tk) = φn ◦ Y , we have

lim
n→+∞

dist(τk−1,n ◦ · · · ◦ τ1,n ◦ (φn ◦ Y ), g(tk)) = 0.

Since φn is a product of Dehn-twists about the curves in σ, τk−1,n ◦ · · · ◦ τ1,n ◦ φn is

a product of Dehn-twists about the curves in σ ∪ σ′. If we project both τk−1,n ◦ · · · ◦

τ1,n ◦ (φn ◦ Y ) and g(tk) onto the moduli space of S, we get

lim
n→+∞

distMS
(π(τk−1,n ◦ · · · ◦ τ1,n ◦ (φn ◦ Y )), π(g(tk))) = 0

where π is the quotient map from Teich(S) onto MS and distMS
is the path-metric

on the moduli space. Since π(τk−1,n ◦ · · · ◦ τ1,n ◦ (φn ◦ Y )) = π(Y ),

distMS
(π(Y ), π(g(tk))) = 0

which means that g(tk) is pre-image of Y , which is in Teich(S).

Proof of (3): For any ε > 0, let Xε ∈ Teich(S) such that dist(Xε, X) = ε. From

proposition 3.5 we know that, for each αi ∈ σ0, there exists X i,ε
n such that

lim
n→+∞

dist(X i,ε
n , Tαi) = 0.

Since Teich(S) is a CAT (0) space, from proposition 2.2 of Chapter II.2 in [10] we know

that there existsX i
n ∈ g(X,φn◦Y ) such that dist(X i

n, X
i,ε
n ) ≤ max{dist(Xε, X), dist(φn◦

Y, φn ◦ Y )} = ε. Hence,

dist(X i
n, Tαi) ≤ dist(X i,ε

n , Tαi) + dist(X i,ε
n , X

i
n) ≤ dist(X i,ε

n , Tαi) + ε
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Taking the superior limit,

lim sup
n→+∞

dist(X i
n, Tαi) ≤ ε.

Since ε is arbitrary,

lim
n→+∞

dist(X i
n, Tαi) = 0.

�

Let X, Y ∈ Teich(S) and τα be the Dehn-twist about α, where α is a simple

closed curve. Lemma 4.1 in [12] gives a nice description about the limit of geodesics

g(X, τnα ◦ Y ) in the sense of Wolpert’s convergence. For completeness we restate it

here. From proposition 3.5, any limit of the geodesics g(X, τnα ◦Y ) goes to the stratum

Tα. Let g(t1) ∈ Tα in theorem 3.4. Then, up to a subsequence, we have, for all t

lim
n→+∞

dist(g(X, τnα ◦ Y )(t), g(X, g(t1)) ∪ τnα ◦ g(g(t1), Y )(t)) = 0

where the piecewise geodesic segment g(X, g(t1)) ∪ τnα ◦ g(g(t1), Y )(t) also uses arc-

length parameter.

The following result generalizes this observation into multi-twists.

Proposition 3.7. Let σ be an m-simplex, σ0 = {α1, · · · , αm+1}, and τi be the

Dehn-twist about the curve αi, for i = 1, 2, · · · ,m+1. Let φ =
∏

1≤i≤m+1 τi ∈ Mod(S),

X, Y ∈ Teich(S), and gn be the unit speed geodesics g(X,φn ◦Y ). Then, after passing

to a subsequence, there exists a positive number L, an associated partition 0 = t0 <

t1 < · · · < tk = L, simplices σ0, · · · , σk, and a piecewise geodesic

g : [0, L]→ Teich(S)

with the following properties.

(1). σ0
i ⊂ σ0, σ0

i ∩ σ0
j is empty for i 6= j.

(2). σ0 =
⋃k
i=1 σ

0
i .

(3). g(ti) ∈ Tσi, i = 1, · · · , k − 1, g(0) = X, g(tk) = Y .
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(4). There are elements τi,n ∈ Tw(σi), for i = 1, · · · , k − 1 so that gn[0, t1]

converges in Teich(S) to the restriction g([0, t1]), and for each i = 1, · · · , k − 1 and

t ∈ [ti, ti+1]

lim
n→+∞

dist(τi,n ◦ · · · ◦ τ1,n ◦ (gn(t)), g(t)) = 0.

In particular, τk−1,n ◦ · · · ◦ τ1,n = φ−n when n is big enough.

The piecewise geodesic g is the unique minimal length path in Teich(S) joining

g(0) to g(L) and intersecting the closures of the strata Tσ1 , Tσ2 , · · · , Tσk−1
in order.

Proof. Choose a point W ∈ Tσ. φ ◦W = W , hence

Length(g(X,φn ◦ Y )) ≤ dist(X,W ) + dist(W,φn ◦ Y )

= dist(X,W ) + dist(W,Y ) < +∞.

By theorem 3.4, after passing to a subsequence, there exists t1 > 0 such that

(1). g(X,φn ◦ Y )([0, t1]) converges to a geodesic g([0, t1]) in Teich(S),

(2). there exists a simplex σ1 such that g(t1) ∈ Tσ1 .

From part (2) of proposition 3.5 we know that σ1 is a subsimplex of σ, i.e., σ0
1 ⊂ σ0.

Set

τ1,n =
∏
γ∈σ0

1

τnγ .

Hence, the piecewise geodesic g(X, g(t1))∪g(g(t1), φ
n◦Y ) and the geodesic g(X,φn◦Y )

coincide with each other as n goes to infinity. Since g(t1) ∈ Tσ1 ,

g(g(t1), φ
n ◦ Y ) = τ1,n ◦ g(g(t1),Πγ∈(σ0−σ0

1)
τnγ ◦ Y ).

Let σ′1 be a simplex with vertices σ′01 = σ − σ1, so σ1 is disjoint with σ′1. The

geodesics g(g(t1),Πγ∈(σ0−σ0
1)
τnγ ◦ Y ) satisfy the conditions of proposition 3.6. Hence,

by proposition 3.6 there exists a t2 > 0 and a simplex σ2 such that

(1). g(g(t1),Πγ∈(σ0−σ0
1)
τnγ ◦ Y ) converges to a geodesic g([t1, t2]) in Teich(S),

(2). g(t2) ∈ σ2 ⊂ σ′1 which indicates that σ2 ⊂ σ and σ1 ∩ σ2 = Φ.
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Set

τ2,n =
∏
γ∈σ0

2

τnγ .

The piecewise geodesic g(g(t1), g(t2))∪g(g(t2),Πγ∈(σ′01 )τ
n
γ ◦Y ) and g(X,Πγ∈(σ′01 )τ

n
γ ◦Y )

coincide with each other as n goes to infinity. Since the piecewise geodesic g(X, g(t1))∪

g(g(t1), φ
n ◦ Y ) and the geodesic g(X,φn ◦ Y ) coincide with each other as n goes to

infinity, we have, for all t ∈ [t1, t2],

lim
n→+∞

dist(τ2,n ◦ τ1,n ◦ (gn(t)), g(t)) = 0.

Continuing this process, by theorem 3.4, after finitely many steps, we get a sequence

of simplexes {σi}i=1,··· ,k and a sequence of positive numbers {ti}i=1,··· ,k such that

(1). σ0
i ⊂ σ0, σ0

i ∩ σ0
j is empty for i 6= j.

(2). σ0 =
⋃k
i=1 σ

0
i .

(3). g(ti) ∈ Tσi , i = 1, · · · , k, g(0) = X, g(tk) = Y .

(4). There are elements τi,n ∈ Tw(σi), for i = 1, · · · , k − 1 so that gn[0, t1]

converges in Teich(S) to the restriction g([0, t1]), and for each i = 1, · · · , k − 1 and

t ∈ [ti, ti+1],

lim
n→+∞

dist(τi,n ◦ · · · ◦ τ1,n ◦ (gn(t)), g(t)) = 0.

Since g(tk) = Y ,

lim
n→+∞

dist(τk−1,n ◦ · · · ◦ τ1,n ◦ φn ◦ Y, Y ) = 0.

This only happens when τk−1,n ◦ · · · ◦ τ1,n ◦ φn is always identity after some time.

It follows from theorem 3.4 that the piecewise geodesic g is the unique minimal

length path in Teich(S) joining g(0) to g(L) and intersecting the closures of the strata

Tσ1 , Tσ2 , · · · , Tσk−1
in order. �

4. Teichmüller-Coxeter development and geodesic limits

In [71], Yamada constructed Teichmüller-Coxeter complex D(Teich(S), ι) by in-

troducing an infinite Coxeter reflection group and gluing infinite copies of Teich(S)
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through the strata. In this section, we apply D(Teich(S), ι) to studying geodesic

limits.

To each simplex σ, we associate a formal reflection group Wσ with one reflection

generator ωα for each simple closed curve α ∈ σ0, with ω2
α = id and commuting

generators. For an inclusion of simplices σ ⊂ τ , associate the natural injective homo-

morphism ψτσ : Wσ → Wτ satisfying

ψτρ = ψτσψσρ for ρ ⊂ σ ⊂ τ.

The system of groups and monomorphisms {Wσ, ψτσ} has a direct limit Ŵ , called

the Coxeter group of curves. The injectivity of the homomorphisms ensures that the

homomorphisms: iσ : Wσ → Ŵ are injective. The Teichmüller-Coxeter development

D(Teich(S), ι) is the quotient of Ŵ × Teich(S) by the equivalence relation

(ω, Y ) ∼ (ω′, Y ′) provided Y = Y ′ and ω−1ω′ ∈ Wσ(Y )

where σ(Y ) is the simplex of null lengths for the surface Y . One can refer to [69, 71]

for details.

The following theorem is proved in [71].

Theorem 4.1 (Yamada). 1): D(Teich(S), ι) is a complete CAT(0) space. In

particular, for any two points (ω1, y1), (ω2, y2) ∈ D(Teich(S), ι) there exists a unique

geodesic joining (ω1, y1) and (ω2, y2).

2): Let σ be a simplex and Z ∈ Tσ. The Alexandrov tangent cone at (1, Z) in

D(Teich(S), ι) is the vector space R|σ| × TZTσ.

Let σ be a simplex and Z be a point in Tσ. By the definition of D(Teich(S), ι),

(1, Z) = (Πα∈σ0ωα, Z) since Πα∈σ0ωα ∈ Wσ(Z). The following lemma gives a another

viewpoint for proposition 2.3 in the Teichmüller-Coxeter development.

Lemma 4.2. Given a simplex σ, and X, Y be two points in Teich(S). Let Z

be a point in Tσ such that the piecewise geodesic g(X,Z) ∪ g(Z, Y ) is the minimal

length path in Teich(S) joining X and Y and intersecting the stratum Tσ. Then, the
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piecewise geodesic g((1, X), (1, Z)) ∪ g((ω, Z), (ω, Y )) is a global geodesic segment in

the Teichmüller-Coxeter development D(Teich(S), ι), where ω = Πα∈σ0ωα.

Proof. Since the Alexandrov tangent cone of X is a vector space, it is sufficient

to show that the direction of the geodesic g((1, Z), (1, X)) at (1, Z) is opposite to

the direction of g((ω, Z), (ω, Y ) at (ω, Z). By proposition 2.3 the directions of the

geodesics g((Z,X)) and g(Z, Y ) in Teich(S)at Z satisfies

(a). the initial tangents of g(Z,X) and g(Z, Y ) are equal in the components R|σ|≥0.

(b). The sum of the initial tangents of g(Z,X) and g(Z, Y ) has vanishing projec-

tion into the subcone TXTσ.

From the construction of the Teichmüller-Coxeter development D(Teich(S), ι) (see

[71]) we know that the direction of the geodesic g((ω, Z), (ω, Y )) in D(Teich(S), ι)

satisfies

(1). the initial tangents of g((ω, Z), (ω, Y )) and g((1, Z), (1, Y )) are opposite in

the components R|σ|.

(2). The sum of the initial tangents of g((ω, Z), (ω, Y )) and g((1, Z), (1, Y )) has

vanishing projection into the subcone TXTσ.

(1) and (2) says exactly that the direction of the geodesic g((1, Z), (1, X)) at (1, Z)

is opposite to the direction of g((ω, Z), (ω, Y )) at (ω, Z).

�

The following proposition gives a another viewpoint for proposition 3.7 in the

Teichmüller-Coxeter development.

Proposition 4.3. Let σ be an m-simplex, σ0 = {α1, · · · , αm+1}, and τi be the

Dehn-twist about the curve αi for i = 1, 2, · · · ,m+1. Let φ =
∏

1≤i≤m+1 τi ∈ Mod(S),

X, Y ∈ Teich(S), and gn be the unit speed geodesics g(X,φn ◦Y ). Then, for any limit

of g(X,φn ◦Y ) in the sense of proposition 3.7, we have there exists a positive number

L, an associated partition 0 = t0 < t1 < · · · < tk = L, simplices σ0, · · · , σk, and a

piecewise geodesic

g : [0, L]→ Teich(S)
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such that the piecewise geodesic

k−2⋃
j=0

g((

j∏
i=0

Πα∈σiωα, g(tj)), (

j+1∏
i=0

Πα∈σiωα, g(tj+1)))

is a global geodesic joining (1, X) and (
∏k−1

i=0 Πα∈σiωα, g(tj+1)) passing through the

points (
∏j+1

i=0 Πα∈σiωα, g(tk)), j = 1, · · · , k − 2.

Proof. Combine proposition 3.7 and lemma 4.2. �

Now we are ready to show that the sequence of the directions of the geodesics

g(X,φn ◦ Y ) is convergent in VX(S) if φ is a multi-twists.

Theorem 4.4. Let σ be an m-simplex, σ0 = {α1, · · · , αm+1}, and τi be the Dehn-

twist about the curve αi for i = 1, 2, · · · ,m + 1. Let φ =
∏

1≤i≤m+1 τi ∈ Mod(S),

X, Y ∈ Teich(S), and gn be the unit speed geodesics g(X,φn ◦ Y ). Then, there exists

a positive number t1, a subsimplex σ1 of σ, and a geodesic g : [0, t1]→ Teich(S) such

that g(t1) ∈ Tσ1 and gn[0, t1] converges to g([0, t1]) as n goes to infinity. In particular,

the sequence of the directions of the geodesics g(X,φn ◦ Y ) is convergent in VX(S).

Proof. It is sufficient to show that the sequence of the directions of the geodesics

g(X,φn ◦ Y ) is convergent in VX(S). Assume that the sequence of the directions of

the geodesics g(X,φn ◦ Y ) is not convergent in VX(S). Since the direction at X in

Teich(S) is S6g−7 which is compact, there exist two subsequences {g(X,φn
1
k ◦ Y )}k≥1

and {g(X,φn
2
k◦Y )}k≥1 of {g(X,φn◦Y )}n≥1 such that the limits in VX(S) are different.

We first consider the sequence of geodesics {g(X,φn
1
k ◦ Y )}n≥1. From proposition

3.7, after passing to a subsequence of {n1
k}k≥1(we still denote it by {n1

k}k≥1), there

exists a positive number L1, an associated partition 0 = t0 < t1 < · · · < tk = L1,

simplices σ0, · · · , σk, and a piecewise geodesic

g1 : [0, L]→ Teich(S)

with the following properties.

(1). σ0
i ⊂ σ0, σ0

i ∩ σ0
j is empty for i 6= j.

(2). σ0 =
⋃k
i=1 σ

0
i .
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(3). g1(ti) ∈ Tσi , i = 1, · · · , k − 1, g1(0) = X, g1(tk) = Y .

(4). There are elements τi,n ∈ Tw(σi), for i = 1, · · · , k − 1, so that gn[0, t1]

converges in Teich(S) to the restriction g1([0, t1]), and for each i = 1, · · · , k − 1 and

t ∈ [ti, ti+1],

lim
n→+∞

dist(τi,n ◦ · · · ◦ τ1,n ◦ (gn(t)), g1(t)) = 0.

In particular, τk−1,n ◦ · · · ◦ τ1,n = φ−n when n is big enough.

The piecewise geodesic g1 is the unique minimal length path in Teich(S) joining

g1(0) to g1(L1) and intersecting the closures of the strata Tσ1 , Tσ2 , · · · , Tσk−1
in order.

Since σ0
i ∩ σ0

j is empty for i 6= j and σ0 =
⋃k
i=1 σ

0
i ,

k−1∏
j=0

(
∏
γ∈σ0

i

ωγ) =
∏
α∈σ0

ωα.

From proposition 4.3 and the equation above we know that there exist positive num-

bers t1, L1 and a geodesic l1 : [0, L1]→ D(Teich(S), ι) satisfying

(1). l1(0) = (1, X), l1(L1) = (
∏

α∈σ0 ωα, Y ).

(2). The wall l1 first crosses is Tσ1 , and the point in Tσ1 is g1(t1) = l1(t1), where

we identify (1,Teich(S)) with Teich(S).

We make the same argument as above for geodesics {g(X,φn
2
k ◦ Y )}k≥1, after

passing to a subsequence of {n2
k}k≥1(we still denote it by {n2

k}k≥1): there exist positive

numbers s1, L2, a subsimplex β1 of σ, and a geodesic l2 : [0, L2] → D(Teich(S), ι)

satisfying

(1). l2(0) = (1, X), l2(L2) = (
∏

α∈σ0 ωα, Y ).

(2): The wall l2 first crosses is Tβ1 , and the point in Tβ1 is l2(s1), where we also

identify (1,Teich(S)) with Teich(S).

Since the limit of the directions of the geodesics {g(X,φn
1
k ◦Y )}k≥1 and {g(X,φn

2
k ◦

Y )}k≥1 is different in VX(S), l1(t1) 6= l2(s1). On the other hand, both l1 and l2 are

geodesics joining (1, X) and (
∏

α∈σ0 ωα, Y ). Hence they coincide with each other,

which contradicts the fact that they cross different points on the wall for the first

time.
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Remark 4.1. Using the same argument as in the proof of theorem 4.4, the result

is still true if X belongs to a stratum Tη where η is disjoint with σ.

Now we are ready to prove theorems 1.2, 1.3 and 1.4.

Proof of theorem 1.2. From theorem 5.3 in chapter 2, we know that φ is in

one of the four cases: semi-simple with either |φ| = 0 or |φ| > 0, or reducible with

either |φ| = 0 or |φ| > 0.

Case I: φ is semi-simple and δ = LWP (φ) = 0

From theorem 5.3 in chapter 2 we know that there exists an integer k with φk = id.

Hence, limn→+∞ g(X,φkn ◦ Y ) = g(X, Y ). So the limit of the sequence of the direc-

tions of the geodesics g(X,φkn ◦ Y ) is the direction of g(X, Y ).

Case II: φ is semi-simple and δ = LWP (φ) > 0

By theorem 5.3 in chapter 2, there exists a unique bi-infinite Weil-Petersson

geodesic γ such that φ ◦ γ(t) = γ(t + δ) for all t ∈ R. Consider the follow-

ing triangles ∆(X,φn ◦ Y, φn ◦ γ(0)) which are geodesic triangles in Teich(S) with

vertices {X,φn ◦ Y, φn ◦ γ(0)}. Since Mod(S) acts on Teich(S) by isometries,

dist(φn ◦ Y, φn ◦ γ(0)) = dist(Y, γ(0)). On the other hand

dist(X,φn ◦ γ(0)) ≥ dist(γ(0), φn ◦ γ(0))− dist(X,φn ◦ γ(0))

= n · δ − dist(X,φn ◦ γ(0)).

Hence dist(X,φn ◦ γ(0)) goes to +∞ as n goes to +∞. From the standard argument

in CAT(0) geometry (see [10]) we know that the limit of the sequence of the direc-

tions of g(X,φn ◦ γ(0)) exists in the visual sphere at X. Since dist(φn(Y ), φn ◦ γ(0))

is bounded above and lim dist(X,φn ◦ γ(0)) = +∞, the limit of the sequence of the

directions of g(X,φn ◦Y ) exists, and equals the limit of the sequence of the directions
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of g(X,φn ◦ γ(0)) in VX(S).

Case III: φ is reducible and δ = LWP (φ) > 0

By theorem 5.3 in chapter 2, there exists an integer k and a bi-infinite Weil-

Petersson geodesic γ(t) ⊂ Teich(S) such that for all t φk ◦ γ(t) = γ(t+ kδ). We con-

sider the triangles ∆(X,φkn(Y ), φkn(γ(0))), which are geodesic triangles in Teich(S)

with vertices {X,φkn(Y ), φkn(γ(0))}. By the same argument as in Case II the limit

of the sequence of the directions of g(X,φkn ◦ Y ) exists, and equals the limit of the

sequence of the directions of g(X,φkn ◦ γ(0)) in VX(S).

Case IV: φ is reducible and δ = LWP (φ) = 0

By proposition 5.4 in chapter 2 there exists an integer k such that φk is the product

of Dehn-Twists about disjoint closed curves, i.e., there exists a positive integer n0 and

the Dehn-Twists τi about simple closed curve γi such that φk =
∏

1≤i≤n0
τi. From

theorem 4.4 we know that the limit of the sequence of the directions of g(X,φkn ◦ Y )

exists as n→ +∞. �

Proof of theorem 1.3. At first it follows from theorem 4.4 that there exists

a positive number t1, a subsimplex σ1 of σ, and a geodesic g : [0, t1]→ Teich(S) such

that g(t1) ∈ Tσ1 and gn([0, t1]) converges to g([0, t1]) as n goes to infinity. Considering

the geodesics g(g(t1),
∏

α∈σ0−σ0
1
τnα ◦ Y ), it follows from remark 4.1 that there exists a

positive number t′2, a subsimplex σ2 of σ, and a geodesic g, : [0, t′2] → Teich(S) such

that

(1). σ2 ∩ σ1 = empty.

(2). g′(0) = g(t1), g
′(t′2) ∈ Tσ2 and g(g(t1),

∏
α∈σ0−σ0

1
τnα ◦ Y )([0, t′2]) converges to

g′([0, t′2]) as n goes to infinity.

Since g(g(t1), φ
n ◦Y ) =

∏
α∈σ0

1
τnα ◦ g(g(t1),

∏
α∈σ0−σ0

1
τnα ◦Y ), setting

∏
α∈σ0

1
τ−nα =

τ1,n, we have

lim
n→+∞

dist(τ1,n ◦ g(g(t1), φ
n ◦ Y )(t+ t1), g

′(t)) = 0, for t ∈ [0, t′2].

66



Setting t2 = t1 + t′2 and g(t) = g′(t+ t1), we get a piecewise geodesic g(X, g(t1))∪

g(g(t1), g(t2)) satisfying

(1). σ0
i ⊂ σ0 for i = 1, 2 , σ0

1 ∩ σ0
2 is empty,

(2). g(ti) ∈ Tσi , i = 1, 2, g(0) = X,

(3). gn([0, t1]) converges in Teich(S) to the restriction g([0, t1]), and

lim
n→+∞

dist(τ1,n ◦ gn(t), g(t)) = 0, for t ∈ [t1, t2],

where τ1,n =
∏

α∈σ1 τ
−n
α .

If we only consider the geodesics g(X,φn ◦ Y )[0, t2], it follows from theorem 3.4

that the piecewise geodesic g is the unique minimal length path in Teich(S) joining

g(0) to g(t2) and intersecting the closures of the stratum Tσ1 .

Continuing this process, it ends after finitely many steps since |σ| = k < +∞.

Parts (1), (2), (3), (4) and (5) of the conclusion follow after finitely steps.

From proposition 4.3 we know that the geodesic joining (1, X) and (
∏

α∈σ0 ωα, Y )

in the Teichmüller-Coxeter development D(Teich(S), ι) passes through (1, g(t1)). �

Remark 4.2. Both theorem 4.1 and theorem 1.3 hold for geodesics g(X,φkn ◦Y )

where {kn} is a subsequence of {n}n≥1.

Proof of theorem 1.4. Assume that the conclusion is incorrect.

There exist two subsequences of {n}n≥1 {k1n}n≥1 and {k2n}n≥1 such that

lim
n→+∞

length(g(X,φk
1
n ◦ Y )) 6= lim

n→+∞
length(g(X,φk

2
n ◦ Y )).

By theorem 1.3, {g(X,φk
1
n ◦ Y )} induces a geodesic joining (1, X) and (

∏
α∈σ0 ωα, Y )

in the Teichmüller-Coxeter development D(Teich(S), ι) whose length is the same as

limn→+∞ length(g(X,φk
1
n◦Y )). Similarly, {g(X,φk

2
n◦Y )} also induces a geodesic join-

ing (1, X) and (
∏

α∈σ0 ωα, Y ) in the Teichmüller-Coxeter development D(Teich(S), ι)

whose length is the same as limn→+∞ length(g(X,φk
2
n ◦Y )). Since D(Teich(S), ι) is a

CAT(0) space, the geodesic joining (1, X) and (
∏

α∈σ0 ωα, Y ) is unique, in particular

lim
n→+∞

length(g(X,φk
1
n ◦ Y )) = lim

n→+∞
length(g(X,φk

2
n ◦ Y ))
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which is a contradiction. �

5. Geometric limits of geodesics g(X,φn ◦ Y )

Let M be a CAT(0) space. Given a geodesic ray in M , for any point p ∈M , there

exists a unique ray emanating from p which has finite Hausdorff distance with a given

ray (see [10]). In [14], the authors use the Gauss-Bonnet formula and ruled surface

technique to show that two equivalent rays in Teich(S) are strongly asymptotic to each

other if at least one of them is recurrent, where a geodesic ray c : [0,+∞)→ Teich(S)

is recurrent if there exists a positive number ε and a sequence {tn} with tn → +∞

such that c(tn) ∈ Teich(S)≥ε, where

Teich(S)≥ε = {X ∈ Teich(S) : `α(X) ≥ ε, for all simple closed curve α}.

Proposition 5.1. Let c : [0,+∞) → Teich(S) be a recurrent ray and X ∈

Teich(S). Then the unique ray c′ : [0,+∞)→ Teich(S) emanating from X with finite

Hausdorff distance from c(t) is strongly asymptotic to c(t).

Proof. Let g : [0, dist(X, c(0))] → Teich(S) be the geodesic joining X and c(0)

with unite speed. Since c(0) ∈ Teich(S), by theorem 4.4 in chapter 2, g(0, dist(X, c(0))] ⊂

Teich(S).

Assume the conclusion is incorrect.

There exists a positive number δ such that for all t ≥ 0, we have the distance

between c(t) and c′(R≥0) is greater than δ. Choose a point g( δ
2
) and consider the

geodesic ray c′′ : [0,+∞) → Teich(S) emanating from g( δ
2
) with finite Hausdorff

distance from c(t). Since g( δ
2
) ∈ Teich(S), the distance between c(t) and c′′(R≥0)

goes to zero as t goes to infinity (see theorem 4.1 in [14]). Since the distance function

between two convex sets is convex (see [10]), the distance between c′(t) and c′′(R≥0)

is less than dist(c′′(0), c′(0)) = δ
2

if t is big enough. Hence, when t is big enough, the

distance between c(t) and c′(R≥0) is less than δ
2

which contradicts the assumption. �
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Proposition 5.2. Let c : [0,+∞)→ Teich(S) be a recurrent ray. Then, for any

simple closed curve α in S,

lim
t→+∞

`α(c(t)) = +∞.

Proof. By theorem 4.5 in chapter 2, limt→+∞ `α(c(t)) is either infinite or fi-

nite. Assume the conclusion is incorrect. There exists a number C ≥ 0 such that

limt→+∞ `α(c(t)) = C. It is not hard to see that the second derivative of `α satisfies

lim
t→+∞

`′′α(c(t)) = 0.

On the other hand, given an ε > 0, there exists a number c > 0 such that at each

t for which c(t) ∈ Teich(S)≥ε we have limt→+∞ `
′′
α(c(t)) ≥ c · `α(c(t)) ≥ cε > 0 (see

[66]). Since c(t) is recurrent, there exists a positive number ε and a sequence {tn}

with tn → +∞ such that r(tn) ∈ Teich(S)≥ε. Hence,

lim
t→+∞

`′′α(c(t)) 6= 0,

which is a contradiction. �

Now we are ready to prove theorem 1.5.

Proof of theorem 1.5. Since φ is pseudo-Anosov, by theorem 5.3 in chapter

2 there exists a bi-infinite unit speed Weil-Petersson geodesic r : (−∞,+∞) →

Teich(S) such that φn ◦ r(0) = r(n · |φ|). In particular r(t) is recurrent.

Since the limit of the geodesics {g(X, r(n · |φ|))} is a geodesic ray c : [0,+∞) →

Teich(S) satisfying c(0) = X and c(t) is asymptotic to the geodesic ray r[0,+∞) (see

[10]). Since Mod(S) acts on Teich(S) by isometries,

dist(φn ◦ Y, r(n · |φ|)) = dist(φn ◦ Y, φn ◦ r(0)) = dist(Y, r(0)) < +∞.

Hence, the geodesics {g(X,φn ◦ Y )} and {g(X, r(n · |φ|))} have the same limit ray

c : [0,+∞)→ Teich(S), which is asymptotic to the geodesic ray r[0,+∞) (see [10]).

Since r(t) is recurrent, by theorem 4.1 in [14] c : [0,+∞) → Teich(S) is strongly

asymptotic to r[0,+∞). This implies that c([0,+∞)) is also recurrent. By proposition

5.2 we have, for any simple closed curve α in S, limt→+∞ `α(c(t)) = +∞. �
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Recall that φ is called reducible if there exists a collection of mutually disjoint

simple closed curves II such that φ(II) = II. Thurston’s classification takes the

following form (see [24]).

Theorem 5.3 (Thurston). Any reducible mapping class φ ∈ Mod(S) determines

a maximal collection of simple closed curves {αi} and a maximal collection of proper

subsurfaces {PSj} of S such that there exists a positive integer k such that

φk = (
∏
i

ταi) · (
∏
j

φj)

where τi is the Dehn-twist about αi and φj = φk|PSj is pseudo-Anosov on PSj.

Since the translation length of multi Dehn-twists in Teich(S) is zero, the pseudo-

Anosov part is not empty if |φ| > 0 (|φk| = |k||φ|). Let σ be a simplex such that

σ0 = (∪iαi) ∪ (∪j ∪β∈∂(PSj) β), where ∂(PSj) is the boundary of PSj. The stratum

Tσ is a product of low dimensional Teichmüller spaces
∏
T ′ ×

∏
j T
′′
j with φk fixing

the factors, acting by a product of : the identity on T ′ and pseudo-Anosov elements

φj on T ′′j with axis cj.

Remark 5.1. If c : (−∞,+∞)→ Teich(S) is an axis for a pseudo-Anosov map-

ping class, there exists a positive number ε such that c(R) ⊂ Teich≥ε. By theorem

1.5 in chapter 2, for any simple closed curve α we have limt→+∞ `α(c(t)) = +∞.

Remark 5.2. Let φ ∈ Mod(S) be a reducible mapping class with |φ| > 0 and

c : (−∞,+∞) → Teich(S) be an axis for φk. By theorem 5.3, it is not hard to see

that the projection of c(R) onto T ′′j is the geodesic line which is the axis for φj on T ′′j .

Adding the remark above, for any non-peripheral essential simple closed curve α in

PSj we also have limt→+∞ `α(c(t)) = +∞.

Firstly let us consider the case that φ does not have a twist part. That is, there

exists a positive integer k and a maximal collection of proper subsurfaces {PSj} of S

such that φk =
∏

j φj where φj = φk|PSj is pseudo-Anosov on PSj.
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Given a simplex σ, the distance from a point X ∈ Teich(S) to the stratum Tσ is

estimated in terms of the geodesic length sum

` =
∑
α∈σ0

`α(X)

of the lengths of simple closed curves in σ0 on X by

dist(X,Tσ) =
√

2π`+O(`2)(11)

(see([65], cor.21)).

Then we have the following

Proposition 5.4. Let φ ∈ Mod(S) be reducible and k be a positive number such

that φk =
∏

j φj, where φj = φk|PSj is pseudo-Anosov on PSj. Then for any X, Y ∈

Teich(S), the geodesics g(X,φkn◦Y ) converge to a geodesic ray c([0,+∞)) in Teich(S)

with c(0) = X as n→ +∞.

Moreover, (1). for any non-peripheral essential simple closed curve α in PSj we

have

lim
t→+∞

`α(c(t)) = +∞.

(2). There exists a positive number ε0 such that for any non-peripheral essential

simple closed curve β in the complement (S−∪jPSj) of ∪jPSj we have, for all t ≥ 0,

1

ε0
≥ `β(c(t)) ≥ ε0.

(3). There exists a positive number ε1 such that for any non-peripheral essential

simple closed curve γ which intersects with at least one of ∪j ∪α∈∂(PSj) α we have, for

all t ≥ 0,

`γ(c(t)) ≥ ε1.

Proof. Proof of (1): Let σ be a simplex with σ0 = ∪j(∪β∈∂(PSj)β) and r :

(−∞,+∞) → Tσ be the axis for φk with φk ◦ r(t) = r(t + k|φ|) for all t ∈ R. Since

Mod(S) acts on Teich(S) by isometries,

dist(φkn ◦ Y, r(kn|φ|)) = dist(φkn ◦ Y, φkn ◦ r(0)) = dist(Y, c(0)) < +∞.
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So the limit of the geodesics g(X,φkn ◦ Y ) is the same as the limit of the geodesics

g(X, r(kn|φ|)) as n → +∞, which is the unique ray emanating from X with finite

Hausdorff distance to the ray r(R≥0) (see [10]). We denote this ray by c([0,+∞)).

By theorem 4.4 in chapter 2, c([0,+∞)) is contained in Teich(S).

Assume there exists a non-peripheral essential simple closed curve α in PSj for

some j such that limt→+∞ `α(c(t)) 6= +∞. Since the length of a simple closed curve

along Weil-Petersson geodesic is convex, there exists a number C1 ≥ 0 such that

limt→+∞ `α(c(t)) = C1 < +∞ and `α is decreasing along c(R≥0). From equation (11)

there exists a positive number C2 such that, for all t ≥ 0, we have

dist(c(t), Tα) ≤ C2.

Let {Zi} be a sequence of points in Tα with dist(c(i), Zi) ≤ C2 + 1. So there exists a

positive number C3 such that for any positive integer i,

dist(r(i), Zi) ≤ C3.

Hence the geodesics g(r(0), Zi) converge to r(R≥0) (see [10]). By theorem 4.5 in

chapter 2 we have

max
Z∈g(r(0),Zi)

`α(Z) ≤ max{`α(r(0)), `α(Zi)} = `α(r(0)).

Since `α is continuous on Teich(S), taking the limit, we have for all t ≥ 0,

`α(r(t)) ≤ `α(r(0)).

On the other hand, from remark 5.2, we should have

`α(r(t)) = +∞,

which is a contradiction.

Proof of (2): For any non-peripheral essential simple closed curve β in the com-

plement (S − ∪jPSj) of ∪jPSj, there exists another non-peripheral essential simple
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closed curve β′ in the complement of ∪jPSj such that β′ intersects with β. Since φk

acts as identity on (S − ∪jPSj), for all t ≥ 0,

`β(r(t)) = `β(r(0)), `β′(r(t)) = `β′(r(0)).

Since c(R≥0) is the limit of the geodesics g(X, r(i)) as i → +∞, by theorem 4.5

in chapter 2 we have

max
Z∈g(X,r(i))

`β′(Z) ≤ max{`β′(X), `β′(r(i))} = max{`β′(X), `β′(r(0))}.

After taking the limit, the conclusion follows from the Collar Lemma.

Proof of (3): Let α0 ∈ ∪j ∪α∈∂(PSj) α such that γ intersects with α0. Since

`α0(r(i)) = 0, by theorem 4.5 in chapter 2 we have

max
Z∈g(X,r(i))

`α0(Z) ≤ max{`α0(X), `α0(r(i))} = `α(X),

Since c(R≥0) is the limit of the geodesics g(X, r(i)) as i→ +∞, after taking the limit,

the conclusion follows from the Collar Lemma. �

The non-refraction property implies that the interior of any geodesic in Teich(S) is

contained in one single stratum. In [65] the flat subspaces of Teich(S) are well studied.

As an application Wolpert gives a new proof for Brock-Farb’s theorem (see [13]) that

Teich(S) is in general not Gromov-hyperbolic. Recall that a metric space is called

Gromov-hyperbolic if there exists a positive number δ such that for each geodesic

triangle the δ−neighborhood of any two sides contains the third side(see [10]). We

say a geodesic triangle ∆ is flat if ∆ is isometric to a triangle in two-dimensional

Euclidean space R2.

Proposition 5.5 (see [65], prop. 16). Let ∆ be a flat geodesic triangle in

Teich(S). Then there exists a simplex σ such that the interior of ∆ is contained

in the stratum Tσ. Moreover, the projection of ∆ to each component Teichmüller

space of Tσ is a point or a geodesic segment.

Lemma 5.6. Let φ ∈ Mod(S) be reducible and k be an integer such that φk =∏
j φj where φj = φk|PSj are pseudo-Anosov on PSj, and let σ be a simplex with
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σ0 = ∪j(∪β∈∂(PSj)β) and r : (−∞,+∞) → Tσ be the axis for φk such that for all

t φk ◦ r(t) = r(t + k|φ|). Then there does not exist any flat geodesic triangle ∆ in

Teich(S) whose three vertices X, Y, Z satisfy X = r(0), Y = r(|kφ|) and Z ∈ Tρ,

where ρ is a simplex satisfying ρ0 ⊂ ∪jPSj and ρ 6= σ.

Proof. Assume there exists a flat geodesic triangle ∆ in Teich(S) whose three

vertices X, Y, Z satisfy X = r(0), Y = r(|kφ|) and Z ∈ Tρ where ρ is a simplex

satisfying ρ0 ⊂ ∪jPSj and ρ 6= σ.

Since g(X, Y ) is a geodesic segment of the axis r(R), g(X, Y ) ⊂ Tσ. Let Z0 be

the midpoint of g(X, Y ). By theorem 4.4 in chapter 2 the interior of the geodesic

g(Z,Z0) int(g(Z,Z0)) ⊂ Tσ∩ρ. It follows from proposition 5.5 that the interior of ∆

is contained in Tσ∩ρ. Since ρ0 ⊂ ∪jPSj, either ρ0 has nonempty intersection with the

interior of ∪jPSj or ρ0 is a subset of the boundary of ∪jPSj.

Case I): there exists a simple closed curve γ ∈ ρ0 but γ /∈ ∪j∂(PSj). Since

ρ0 ⊂ ∪jPSj, without loss of generality, assume that γ ⊂ PS1. Since Tσ ⊂ Tσ∩ρ, there

exists a component T of Tσ∩ρ such that Teich(PS1) ⊂ T .

Firstly since Z ∈ Tρ ⊂ Tγ and γ ⊂ PS1, the projection Z ′ of Z onto T is contained

in Tγ ∩ T .

Secondly, it is not hard to see that φk|T =
∏

j;PSj⊂T φj. Since g(X, Y ) is a geodesic

segment on the axis of φk and φk|PSj is pseudo-Anosov, the projection of g(X, Y )

onto T is a geodesic segment on the axis of φk|T in T . Since φk|PS1 is pseudo-

Anosov, the projection of the axis of φk|T onto Teich(PS1) is a geodesic segment on

the axis of φk|PS1 . From theorem 5.3 in chapter 2 we know that the axis of φk|PS1

is contained in Teich(PS1). Since γ ⊂ PS1, the axis of φk|T does not intersect Tγ.

From lemma 5.6 we know that the projection of ∆ onto T is a geodesic. Let X ′, Y ′

and Z ′ be the projection of X, Y and Z onto T . Hence we get a geodesic segment

g(X ′, Y ′) ∪ g(Y ′, Z ′) in Teich(S) satisfying Y ′ ∈ Tγ and X ′, Y ′ /∈ Tγ. On the other

hand, since the geodesic in Teich(S) does not have refraction (see theorem 4.4 in

chapter 2), g(X ′, Y ′) ∪ g(Y ′, Z ′) is not a geodesic segment in Teich(S), which is a

contradiction.
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Case II): ρ is a proper subsimplex of σ. There exists a simple closed curve γ ∈

(σ0 − ρ0) such that `γ(Z) 6= 0. Let T be a component of Tσ∩ρ = Tρ containing

γ. It is easy to see that the projection Z ′ of Z onto T has `γ(Z
′) > 0. Since

φk|T =
∏

j;PSj⊂T φj and g(X, Y ) is a geodesic segment on the axis of φk in Teich(S), it

is not hard to see that the projection g(X ′, Y ′) of g(X, Y ) onto T is a geodesic segment

which is contained in ∩j;PSj⊂T ∩α∈∂(PSj) Tα. Since γ ⊂ T , we have g(X ′, Y ′) ⊂ Tγ. By

proposition 5.5 we get a geodesic segment g(X ′, Y ′)∪ g(Y ′, Z ′) in Teich(S) satisfying

Z ′ /∈ Tγ and X ′, Y ′ ∈ Tγ. On the other hand, by the non-fraction property of geodesic

(see theorem 4.4 in chapter 2), g(X ′, Y ′)∪g(Y ′, Z ′) is not a geodesic in Teich(S), which

is a contradiction. �

The following lemma is basic in CAT(0) geometry.

Lemma 5.7. Let M be a CAT-(0) space and ri : [0, 1] → M be two different

geodesics with unit speed, i=1,2. If dist(r1(t), r2(t)) is a constant for all t ∈ [0, 1],

then the convex hull of r1([0, 1]) ∪ r2([0, 1]) is isometric to a parallelogram in two-

dimensional Euclidean space R2.

Proof. Exercise for the reader. �

Before proving theorem 1.6, we show the following weaker statement.

Theorem 5.8. Let φ ∈ Mod(S) be reducible and k be a positive number such

that φk =
∏

j φj where φj = φk|PSj is pseudo-Anosov on PSj. Then for any X, Y ∈

Teich(S), the limit geodesic ray c : [0,+∞)→ Teich(S) of geodesics g(X,φkn ◦ Y ) in

proposition 5.4 satisfies the property that for any simple closed curve α ∈ ∂(∪jPSj),

we have

lim
t→+∞

`α(c(t)) = 0.

Proof. Firstly we claim that there exists a simple closed curve α ∈ ∂(∪jPSj)

such that

lim
t→+∞

`α(c(t)) = 0.
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Supposing not, by proposition 5.4 there exists a positive number ε such that c(R≥0)

lies in Teich(S)≥ε. In particular c(R≥0) is recurrent. Let r : (−∞,+∞) → Teich(S)

be an axis for φk. Since the Hausdorff distance between c(R≥0) and r(R≥0) is finite,

by proposition 5.1 r(R≥0) is strongly asymptotic to c(R≥0). In particular c(R≥0) ⊂

Teich(S)≥ε, which is a contradiction because r(R≥0) is contained in a stratum.

Assume there exists a simple closed curve β ∈ ∂(∪jPSj) such that

lim
t→+∞

`β(c(t)) > 0.

Since `β is convex on Teich(S), by part (2) of proposition 5.4, there exists a positive

number C such that limt→+∞ `β(c(t)) = C. Since `β(r(t)) ≡ 0, there exists a positive

number C1 such that

lim
t→+∞

dist(r(t), c([0,+∞))) = C1 > 0.(12)

Consider a sequence of quadrilaterals {Λn}, where Λn is a quadrilatera whose vertices

are {r(kn|φ|), r(k(n+1)|φ|), c(k(n+1)|φ|), c(kn|φ|)}. From equation (12) and lemma

5.7 we know that {Λn} will converge to a parallelogram which is isometric to a flat

parallelogram in two-dimensional Euclidean space R2. The pulled-back quadrilaterals

Λ′n = φ−kn ◦ Λn have a common edge g(r(0), r(k|φ|)). We consider a sequence of

geodesics φ−kn ◦ g(r(kn|φ|), c(kn|φ|)) = g(r(0), φ−kn ◦ c(kn|φ|)). From equation (12)

we know that

lim
n→+∞

length(g(r(0), φ−kn ◦ c(kn|φ|))) = C1.(13)

We denote the geodesics g(r(0), φ−kn ◦ c(kn|φ|)) by gn. Let σ be a simplex with

σ0 = ∂(∪jPSj). From Wolpert’s Compactness theorem (theorem 3.4), after passing

to a subsequence of {gn}, there exists a positive number t1, a point Z1, a simplex σ1,

and a sequence of product Dehn-twists τn ∈ Tw(σ0 − σ0 ∩ σ0
1) such that Z1 ∈ Tσ1

and τn ◦g(r(0), gn(t1)) converges in Teich(S) to the geodesic g(r(0), Z1). In particular

τn ◦ gn(t1) → Z1 as n → +∞. Since {Λn} converges to a flat parallelogram, so does

{Λ′n}. Hence the sequence of geodesic triangles with vertices {r(0), r(k|φ|), τn◦gn(t1)}
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converges to a geodesic triangle which is isometric to a flat triangle in R2 (may be a

singular triangle, i.e., a geodesic segment!).

Claim: σ0
1 ⊂ ∪jPSj and σ1 6= σ.

If the claim is correct, the conclusion follows since we get a contradiction with

lemma 5.6.

Proof of Claim: Firstly we show σ1 6= σ. If not, we get k = 1 in Wolpert’s

compactness theorem. So τn is trivial, t1 = C1, and φ−kn ◦ c(kn|φ|) converges to

Z1 ∈ Tσ. On the other hand, since φ fixes β, `β(φ−kn ◦ c(kn|φ|)) = `β(c(kn|φ|)), by

our assumption we have limn→+∞ `β(c(kn|φ|)) > 0. Hence,

lim
t→+∞

`β(Z1) > 0,

which contradicts with Z1 ∈ Tσ.

Secondly, we show that σ0
1 ⊂ ∪jPSj. For any simple closed curve α /∈ ∪jPSj,

either γ is a non-peripheral essential simple closed curve in the complement of ∪jPSj

or γ is a non-peripheral essential simple closed curve intersecting ∪j∂(PSj).

Assuming γ is non-peripheral essential in the complement of ∪jPSj, there exists

another non-peripheral essential simple closed curve γ′ which is also in the complement

of ∪jPSj. Since φ fixes γ′, by proposition 5.4, `γ′(φ
−kn◦c(kn|φ|)) = `γ′(c(kn|φ|)) ≤ 1

ε
.

From Wolpert’s convexity theorem (theorem 4.5) we have

max
Z∈g(r(0),φ−kn◦c(kn|φ|))

`γ′(Z) ≤ max{`γ′(r(0)), `γ′(φ
−kn ◦ c(kn|φ|))}

≤ max{`γ′(r(0)),
1

ε
} < +∞.

Since γ intersects γ′, it follows from the Collar Lemma that there exists a positive

number ε1 such that

max
Z∈g(r(0),φ−kn◦c(kn|φ|))

`γ′(Z) ≥ ε1

for all non-peripheral essential simple closed curves in the complement of ∪jPSj.

Assume that γ is a non-peripheral essential intersecting with ∪j∂(PSj). Let α ∈

∪j∂(PSj) such that α intersects γ. Since φ fixes α, `α(φ−kn ◦ c(kn|φ|)) = `α(c(kn|φ|))
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by Wolpert’s convexity theorem (theorem 4.5) we have

max
Z∈g(r(0),φ−kn◦c(kn|φ|))

`α(Z) ≤ max{`α(r(0)), `α(c(kn|φ|))}

= `α(c(kn|φ|)).

Using the same argument as in the proof of part (3) in proposition 5.4 we have

max
Z∈g(r(0),φ−kn◦c(kn|φ|))

`α(Z) ≤ `α(c(kn|φ|)) ≤ `α(X) < +∞.

Since γ intersects with α, it follows from the Collar Lemma that there exists a

positive number ε2 such that

max
Z∈g(r(0),φ−kn◦c(kn|φ|))

`γ′(Z) ≥ ε2

for all non-peripheral essential simple closed curves intersecting ∪j∂(PSj).

Hence each simple closed curve along geodesics g(r(0), φ−kn ◦ c(kn|φ|)) pinching

to zero length is contained in ∪jPSj. In particular we have σ0
1 ⊂ ∪jPSj.

�

Now we are ready to prove theorem 1.6.

Proof of theorem 1.6. Proof of (1): Since |φ| > 0, by theorem 5.3 in chap-

ter 2 there exists a unit speed geodesic line r : (−∞,+∞) → Teich(S) such that

φn ◦ r(0) = r(n|φ|) for all integers n. Since Mod(S) acts on Teich(S) by isometries,

dist(φn◦Y, φn◦r(0)) = dist(Y, r(0)) < +∞. Hence g(X,φn◦Y ) converges to a unique

geodesic ray emanating from X which has finite Hausdorff distance to r(R≥0) (see

[10]). From theorem 4.4 in chapter 2 we know that c(R≥0) ⊂ Teich(S).

Proof of (2): Since g(X,φn ◦ Y ) is convergent, g(X,φkn ◦ Y ) also converges to

c : [0,+∞)→ Teich(S). Setting φ′ =
∏

j φj, we have

dist(φkn ◦ Y, φ′n ◦ Y ) = dist(
∏
α∈σ0

τnα ◦ Y, Y ).

By theorem 1.4, there exists a positive number C such that

dist(φkn ◦ Y, φ′n ◦ Y ) ≤ C.
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So the limit of the geodesics g(X,φn ◦ Y ) is the same as the limit of the geodesics

g(X,φ′n ◦ Y ), which is also c : [0,+∞)→ Teich(S). By theorem 5.8 we have

lim
t→+∞

`α(c(t)) = 0,

for any simple closed curve α ∈ ∂(∪jPSj).

Proof of (3): Since c : [0,+∞) → Teich(S) is also the limit of the geodesics

g(X,φ′n ◦ Y ), by proposition 5.4 there exists positive number ε0 such that

`β(c(t)) ≥ ε0

for any non-peripheral essential simple closed curve β /∈ ∂(∪jPSj).

�
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CHAPTER 5

The Riemannian sectional curvature operator of the

Weil-Petersson Metric annd its applications

1. Introduction

Let S be a closed surface of genus g, where g > 1, and TS be the Teichmüller

space of S. TS carries two important metrics. One is the Teichmüller metric which

is a complete Finsler metric. The other is the Weil-Petersson metric, which is an

incomplete Kähler metric [2, 62]. We let Teich(S) denote TS endowed with the Weil-

Petersson metric. For Weil-Petersson geometry one can refer to Wolpert’s recent nice

book [69].

The curvature of Teich(S) has been studied over the past several decades. Ahlfors

in [2] showed the holomorphic sectional curvatures are negative. Tromba [57] and

Wolpert [63] independently showed the sectional curvatures are negative, and in [63]

a curvature formula is established to prove Royden’conjecture which says that the

holomorphic curvatures are bounded above by a negative number which only depends

on the topology of the surface. Schumacher [52] used Wolpert’s curvature formula

to show that Teich(S) has strongly negative curvature in the sense of Siu [54] which

is stronger than negative sectional curvature. Huang [32] showed that there is no

negative upper bound for the sectional curvature. Let X ∈ Teich(S) and ∆ be

the Beltrami-Laplace operator on X. Recently Liu-Sun-Yau [41] also used Wolpert’s

curvature formula and the positivity of the Green function of the operator (∆−2)−1 to

show that Teich(S) has dual Nakano negative curvature, which says that the complex

curvature operator on the dual tangent bundle is positive in some sense. For some

other related problems one can refer to [13, 32, 33, 42, 43, 56, 65, 68].

80



One of our purposes is to present some explicit formulas in different subspaces

of the exterior wedge of the tangent space of Teich(S) to understand the Riemann-

ian sectional curvature operator of Teich(S). The method in this paper is highly

influenced by the methods in [41, 52, 63].

Let X be a point in Teich(S), and TXTeich(S) be the tangent space at this point.

Let {µi}3g−3i=1 be the harmonic Beltrami differentials which form a basis of TXTeich(S),

and ∂
∂ti

be the vector fields corresponding to µi. Locally ti is a holomorphic coordinate,

and we set ti = xi + iyi. Let Q be the Riemannian curvature operator of Teich(S)

which is defined in section 3.

Our first result in this chapter is the nonpositivity of Q.

Theorem 1.1. Let Q be the curvature operator on ∧2TXTeich(S). Then, Q is

nonpositive definite, and Q(A,A) = 0 if and only if there exists an element B in

∧2TXTeich(S) such that A = B − J ◦ B, where J is the almost complex structure on

Teich(S) and defined in section 4.

A direct corollary is that the sectional curvature of Teich(S) is negative [2, 57, 63].

Normally a metric of negative curvature may not also have nonpositive curvature op-

erator (see [3]).

In the second part of this paper we will study harmonic maps from rank-one spaces

into Teich(S). For harmonic maps, there are a lot of very beautiful results in the case

when the target is a manifold with nonpositive curvature or nonpositive curvature

operator (see [17, 18, 39, 47, 70]). For harmonic maps into Teich(S), one can refer

to the nice survey [19]. In this paper we establish the following rigid result.

Theorem 1.2. Let Γ be a lattice in a semisimple Lie group G which is either

Sp(m, 1) or F−204 , and Mod(S) be the mapping class group of Teich(S). Then, any

twist harmonic map f from G/Γ into Teich(S) with respect to each homomorphism

ρ : Γ→ Mod(S) must be a constant.
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2. Preliminaries

Let X ∈ Teich(S) and D = −2(∆−2)−1 where ∆ is the Beltrami-Laplace operator

on X, hence we have D−1 = −1
2
(∆− 2). The following property has been proved in

many literatures. For completeness, we still state the proof here.

Proposition 2.1. Let D be the operator above. Then

(1). D is self-adjoint.

(2). D is positive.

Proof of (1). Let f and g be two real-valued smooth functions on X, and

u = Df , v = Dg. Then∫
S

Df · gdA =

∫
S

u · (−1

2
(∆− 2)v)dA = −1

2

∫
S

u · (∆− 2)vdA

= −1

2

∫
S

v · (∆− 2)udA =

∫
S

Dg · fdA

where the equality in the second row follows from the fact that ∆ is self-adjoint on

closed surfaces. For the case that f and g are complex-valued, we can prove it for the

real and imaginary part by using the same argument.

Proof of (2): Let f be a real-valued smooth functions on X, and u = Df . Then∫
S

Df · fdA =

∫
S

u · (−1

2
(∆− 2)u)dA = −1

2

∫
S

(u · (∆u)− 2u2)dA

=
1

2
(

∫
S

|∇u|2 + 2u2dA) ≥ 0,

where the equality in the second row follows from the Stoke’s Theorem. The last

equality holds if and only if u = 0, i.e., D is positive. For the case that f is complex-

valued, we also show it for the real and imaginary part. �

For the Green function of the operator −2(∆− 2)−1, we have

Proposition 2.2. Let D be the operator above. Then there exists a Green func-

tion G(w, z) for D satisfying:
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(1). G(w, z) is positive.

(2). G(w, z) is symmetric, i.e, G(w, z) = G(z, w).

Proof. One can refer to [51] and [63]. �

The Riemannian tensor of the Weil-Petersson metric. The curvature

tensor is given by the following. Let µα, µβ be two elements in the tangent space at

X, and

gαβ =

∫
X

µα · µβdA

where dA is the area element for X.

Let us study the curvature tensor in these local coordinates. First of all, for the

inverse of (gij), we use the convention

gijgkj = δik.

The curvature tensor is given by

Rijkl =
∂2

∂tk∂tl
gij − gst

∂

∂tk
git

∂

∂tl
gsj.

Since Ahlfors showed that the first derivatives of the metric tensor vanish at the

base point X in these coordinates, at X we have

Rijkl =
∂2

∂tk∂tl
gij.(14)

By the same argument in Kähler geometry we have

Proposition 2.3. For any indices i, j, k, l, we have

(1).Rijkl = Rijkl = 0,

(2).Rijkl = −Rijlk,

(3).Rijkl = Rkjil,

(4).Rijkl = Rilkj.
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Proof. These follow from formula (14) and the first Bianchi identity, one can

refer to [38]. �

Now let us state Wolpert’s curvature formula, which is crucial in this chapter.

Theorem 2.4. (see [63]) The curvature tensor is given by

Rijkl =

∫
X

D(µiµj) · (µkµl)dA+

∫
X

D(µiµl) · (µkµj)dA.(15)

Definition 2.5. Let µ∗ be elements ∈ TXTeich(S). Set

(ij, kl) :=

∫
X

D(µiµj) · (µkµl)dA.

From theorem 2.4 and the definition above,

Lemma 2.6. Rijkl = (ij, kl) + (il, kj).

3. Curvature operator on subspaces of ∧T 2
XTeich(S)

Before we study the curvature operator, let us set some notations. We set ti = xi+

iyi. Since (t1, t2, · · · , t3g−3) is a local holomorphic coordinate in a neighborhood U of

X, (x1, x2, · · · , x3g−3, y1, y2, · · · , y3g−3) is a real smooth coordinate in U . Furthermore,

we have

∂

∂xi
=

∂

∂ti
+

∂

∂ti
,

∂

∂yi
= i(

∂

∂ti
− ∂

∂ti
).

Let TTeich(S) be the real tangent bundle of Teich(S). On the bundle ∧2TTeich(S),

the curvature operator Q is defined by

Q(V1 ∧ V2, V3 ∧ V4) = R(V1, V2, V3, V4)

and extended linearly, where Vi are real vectors. It is easy to see that Q is a bilinear

symmetric form.

Since (x1, x2, · · · , x3g−3, y1, y2, · · · , y3g−3) is a real coordinate in U , for any X ∈ U ,

TXTeich(S) = Span{ ∂
∂xi

(X), ∂
∂yj

(X)}1≤i,j≤3g−3. Furthermore,

∧2TTeich(S) = Span{ ∂
∂xi
∧ ∂

∂xj
,
∂

∂xk
∧ ∂

∂yl
,
∂

∂ym
∧ ∂

∂yn
}.
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Set

∧2T 1
XTeich(S) = Span{ ∂

∂xi
∧ ∂

∂xj
},

∧2T 2
XTeich(S) = Span{ ∂

∂xk
∧ ∂

∂yl
},

∧2T 3
XTeich(S) = Span{ ∂

∂ym
∧ ∂

∂yn
}.

Hence,

∧2TXTeich(S) = Span{∧2T 1
XTeich(S),∧2T 2

XTeich(S),∧2T 3
XTeich(S)}.

3.1. The curvature operator on ∧2T 1
XTeich(S). Now we start to prove theo-

rem 3.1, which is influenced by theorem 4.1 in [41]. Let
∑

ij aij
∂
∂xi
∧ ∂

∂xj
be an element

in ∧2T 1
XTeich(S), where aij are real. Set

F (z, w) =

3g−3∑
i,j=1

aijµi(w) · µj(z).

Theorem 3.1. Let Q be the curvature operator and D = −2(∆−2)−1 where ∆ is

the Beltrami-Laplace operator on X. G is the Green function of D, and
∑

ij aij
∂
∂xi
∧ ∂
∂xj

is an element in ∧2T 1
XTeich(S) where aij are real. Then we have

Q(
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
,
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
)

=

∫
X

D(F (z, z)− F (z, z))(F (z, z)− F (z, z))dA(z)

− 2 ·
∫
X×X

G(z, w)|F (z, w))|2dA(w)dA(z)

+ 2 ·Re{
∫
X×X

G(z, w)F (z, w)F (w, z)dA(w)dA(z)},

where F (z, w) =
∑3g−3

i,j=1 aijµi(w) · µj(z).
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Proof. Since ∂
∂xi

= ∂
∂ti

+ ∂
∂ti

, from proposition 2.3,

Q(
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
,
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
)

=
∑
i,j,k,l

aijakl(Rijkl +Rijkl +Rijkl +Rijkl)

=
∑
i,j,k,l

aijakl(Rijkl −Rijlk −Rjikl +Rjilk)

=
∑
i,j,k,l

aijakl((ij, kl) + (il, kj)− (ij, lk)− (ik, lj)

− (ji, kl)− (jl, ki) + (ji, lk) + (jk, li)) (by lemma 2.6)

=
∑
i,j,k,l

aijakl(ij − ji, kl − lk)

+
∑
i,j,k,l

aijakl((il, kj) + (li, jk))

−
∑
i,j,k,l

aijakl((ik, lj) + (jl, ki)).

For the first term, from definition 2.5,

∑
i,j,k,l

aijakl(ij − ji, kl − lk)

=

∫
X

D(
∑
ij

aijµiµj −
∑
ij

aijµjµi)(
∑
ij

aijµiµj −
∑
ij

aijµjµi)dA(z)

=

∫
X

D(F (z, z)− F (z, z))(F (z, z)− F (z, z))dA(z).

For the second term, since D is self adjoint, using the Green function G,

∑
i,l

aijakl((il, kj) + (li, jk)) = 2 ·Re{
∑
i,l

aijakl((il, kj)}

= 2 ·Re{
∫
X

D(
∑
i

aijµiµl)(
∑
k

aklµkµj)dA(z)}

= 2 ·Re{
∫
X

∫
X

G(w, z)
∑
i

aijµi(w)µl(w)(
∑
k

aklµk(z)µj(z))dA(z)dA(w)}.
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From the definition of F (z, w),∑
i,j,k,l

aijakl((il, kj) + (li, jk))

= 2 ·Re{
∫
X×X

G(z, w)F (z, w)F (w, z)dA(w)dA(z)}.

For the last term, just as with the second term,∑
i,k

aijakl((ik, lj) + (ki, jl)) = 2 ·Re{
∑
i,k

aijakl((ik, lj)}

= 2 ·Re{
∫
X

D(
∑
i

aijµi
∑
k

aklµk)(µlµj)dA(z)}

= 2 ·Re{
∫
X

∫
X

G(w, z)
∑
i

aijµi(w)
∑
k

aklµk(w)(µl(z)µj(z))dA(z)dA(w)}

From the definition of F (z, w),∑
i,j,k,l

aijakl((ik, lj) + (ki, jl))

= 2 ·Re{
∫
X×X

G(z, w)F (z, w)F (z, w)dA(w)dA(z)}

= 2 ·
∫
X×X

G(z, w)|F (z, w)|2dA(w)dA(z).

Combining the three terms above, we get the theorem. �

Using the Green function’s positivity and symmetry,

Theorem 3.2. Under the conditions of theorem 3.1, Q is negative definite on

∧2T 1
XTeich(S).

Proof. By theorem 3.1 we have

Q(
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
,
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
)

=

∫
X

D(F (z, z)− F (z, z))(F (z, z)− F (z, z))dA(z)

− 2 · (
∫
X×X

G(z, w)|F (z, w))|2dA(w)dA(z)

− Re{
∫
X×X

G(z, w)F (z, w)F (w, z)dA(w)dA(z)}).
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For the first term, since F (z, z) − F (z, z) = 2iIm{F (z, z)}, by the positivity of the

operator D, ∫
X

D(F (z, z)− F (z, z))(F (z, z)− F (z, z))dA(z)

= −4 ·
∫
X

D(Im{F (z, z)})(Im{F (z, z)})dA(z) ≤ 0.

For the second term, using the Cauchy-Schwarz inequality,

|
∫
X×X

G(z, w)F (z, w)F (w, z)dA(w)dA(z)|

≤
∫
X×X

|G(z, w)F (z, w)F (w, z)|dA(w)dA(z)

≤

√∫
X×X

|G(z, w)||F (z, w)|2dA(w)dA(z)

×

√∫
X×X

|G(z, w)||F (w, z)|2dA(w)dA(z)

=

∫
X×X

G(z, w)|F (z, w)|2dA(w)dA(z),

since G is positive and symmetric.

Combining these three terms we get that Q is nonpositive on ∧2T 1
XTeich(S).

Furthermore, equality holds precisely when

Q(
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
,
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
) = 0,

that is there exists a constant complex number k such that both of the following hold:
F (z, z) = F (z, z),

F (z, w) = k · F (w, z).

If we let z = w, we get k = 1. Hence, the last equation is equivalent to∑
ij

(aij − aji)µi(w)µj(z) = 0.

Since {µi}i≥1 is a basis,

aij = aji.
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This means
∑

ij aij
∂
∂xi
∧ ∂

∂xj
= 0, so Q does not have any non-trivial eigenvectors

corresponding to 0. Hence, Q is negative definite on ∧2T 1
XTeich(S). �

3.2. The curvature operator on ∧2T 2
XTeich(S). Let bij be real and

∑
ij bij

∂
∂xi
∧ ∂

∂yj
∈

∧2T 2
XTeich(S). Set

H(z, w) =

3g−3∑
i,j=1

bijµi(w) · µj(z).

Using a similar computation as for theorem 3.1, the formula for the curvature

operator on ∧2T 2
XTeich(S) is given as follows.

Theorem 3.3. Let Q be the curvature operator and D be the same operator as

shown in theorem 3.1. Let
∑

ij bij
∂
∂xi
∧ ∂

∂yj
be an element in ∧2T 2

XTeich(S), where bij

are real. Then we have

Q(
∑
ij

bij
∂

∂xi
∧ ∂

∂yj
,
∑
ij

bij
∂

∂xi
∧ ∂

∂yj
)

= −
∫
X

D(H(z, z) +H(z, z))(H(z, z) +H(z, z))dA(z)

− 2 ·
∫
X×X

G(z, w)|H(z, w))|2dA(w)dA(z)

− 2 ·Re{
∫
X×X

G(z, w)H(z, w)H(w, z)dA(w)dA(z), }

where H(z, w) =
∑3g−3

i,j=1 bijµi(w) · µj(z).
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Proof. Since ∂
∂xi

= ∂
∂ti

+ ∂
∂ti

and ∂
∂yi

= i( ∂
∂ti
− ∂

∂ti
), from proposition 2.3,

Q(
∑
ij

bij
∂

∂xi
∧ ∂

∂yj
,
∑
ij

bij
∂

∂xi
∧ ∂

∂yj
)

= −
∑
i,j,k,l

bijbkl(Rijkl −Rijkl −Rijkl +Rijkl)

= −
∑
i,j,k,l

bijbkl(Rijkl +Rijlk +Rjikl +Rjilk).

= −
∑
i,j,k,l

bijbkl((ij, kl) + (il, kj) + (ij, lk) + (ik, lj) (by lemma 2.6)

+ (ji, kl) + (jl, ki) + (ji, lk) + (jk, li))

= −
∑
i,j,k,l

bijbkl(ij + ji, kl + lk)

−
∑
i,j,k,l

bijbkl((il, kj) + (li, jk))

−
∑
i,j,k,l

bijbkl((ik, lj) + (jl, ki)).

For the first term, from definition 2.5,

−
∑
i,j,k,l

bijbkl(ij + ji, kl + lk)

= −
∫
X

D(
∑
ij

bijµiµj +
∑
ij

bijµjµi)(
∑
ij

bijµiµj +
∑
ij

bijµjµi)dA(z)

= −
∫
X

D(H(z, z) +H(z, z))(H(z, z) +H(z, z))dA(z).

For the second term and the third term, just as in the proof of theorem 3.1 we have

∑
i,j,k,l

bijbkl((il, kj) + (li, jk))

= 2 ·Re{
∫
X×X

G(z, w)H(z, w)H(w, z)dA(w)dA(z)},∑
i,j,k,l

bijbkl((ik, lj) + (ki, jl))

= 2 ·
∫
X×X

G(z, w)|H(z, w)|2dA(w)dA(z).

Combining these three terms we get the theorem. �
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Using the same method as for theorem 3.2, we prove the following nonpositivity

result.

Theorem 3.4. Under the conditions of theorem 3.3, then Q is nonpositive definite

on ∧2T 2
XTeich(S), and the zero level subsets of Q(·, ·) are {

∑
ij bij

∂
∂xi
∧ ∂
∂yj

; bij = −bji}.

Proof. Let
∑

ij bij
∂
∂xi
∧ ∂

∂yj
be an element in ∧2T 2

XTeich(S), from theorem 3.3

we have

Q(
∑
ij

bij
∂

∂xi
∧ ∂

∂yj
,
∑
ij

bij
∂

∂xi
∧ ∂

∂yj
)

= −
∫
X

D(H(z, z) +H(z, z))(H(z, z) +H(z, z))dA(z)

− 2(·
∫
X×X

G(z, w)|H(z, w))|2dA(w)dA(z)

+ ·Re{
∫
X×X

G(z, w)H(z, w)H(w, z)dA(w)dA(z)}).

For the first term, since H(z, z) +H(z, z) = 2 ·Re{H(z, z)}, by the positivity of the

operator D,

−
∫
X

D(H(z, z) +H(z, z))(H(z, z) +H(z, z))dA(z)

= −4

∫
X

D(Re{H(z, z)})(Re{H(z, z)})dA(z) ≤ 0.

For the second term, using the Cauchy-Schwarz inequality,

|
∫
X×X

G(z, w)H(z, w)H(w, z)dA(w)dA(z)|

≤
∫
X×X

|G(z, w)H(z, w)H(w, z)|dA(w)dA(z)

≤

√∫
X×X

|G(z, w)||H(z, w)|2dA(w)dA(z)

×

√∫
X×X

|G(z, w)||H(w, z)|2dA(w)dA(z)

=

∫
X×X

G(z, w)|H(z, w)|2dA(w)dA(z),

since G is positive and symmetric.
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Combining these two terms, we get Q is always nonpositive on ∧2T 2
XTeich(S).

As in the proof of theorem 3.2,

Q(
∑
ij

bij
∂

∂xi
∧ ∂

∂yj
,
∑
ij

bij
∂

∂xi
∧ ∂

∂yj
) = 0

if and only if there exists a constant complex number k such that both of the following

hold: 
H(z, z) = −H(z, z),

H(z, w) = k ·H(w, z).

If we let z = w, we get k = −1. Hence, the last equation is equivalent to∑
ij

(bij + bji)µi(w)µj(z) = 0.

Since {µi}i≥1 is a basis,

bij = −bji.

�

3.3. The curvature operator on ∧2T 3
XTeich(S). Let J be the almost complex

structure on Teich(S). Since {ti} is a holomorphic coordinate, we have

J
∂

∂xi
=

∂

∂yi
.

Since the Weil-Petersson metric is a Kähler metric, J is an isometry on the tangent

space. In particular we have

R(V1, V2, V3, V4) = R(JV1,JV2,JV3,JV4)

= R(JV1,JV2, V3, V4) = R(V1, V2,JV3,JV4)

where R is the curvature tensor and Vi are real tangent vectors in TXTeich(S).

Let C =
∑

ij cij
∂
∂yi
∧ ∂

∂yj
be an element in ∧2T 3

XTeich(S), where cij are real. Set

K(z, w) =

3g−3∑
i,j=1

cijµi(w) · µj(z).
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Theorem 3.5. Let Q be the curvature operator, and
∑

ij cij
∂
∂yi
∧ ∂
∂yj

be an element

in ∧2T 3
XTeich(S). Then we have

Q(
∑
ij

cij
∂

∂yi
∧ ∂

∂yj
,
∑
ij

cij
∂

∂yi
∧ ∂

∂yj
)

=

∫
X

D(K(z, z)−K(z, z))(K(z, z)−K(z, z))dA(z)

− 2 ·
∫
X×X

G(z, w)|K(z, w))|2dA(w)dA(z)

+ 2 ·Re{
∫
X×X

G(z, w)K(z, w)K(w, z)dA(w)dA(z)}.

Proof. Since ∂
∂yi

= J ∂
∂ti

+ J ∂
∂ti

and J is an isometry, by proposition 2.3,

Q(
∑
ij

cij
∂

∂yi
∧ ∂

∂yj
,
∑
ij

cij
∂

∂yi
∧ ∂

∂yj
)

=
∑
i,j,k,l

cijckl(Rijkl +Rijkl +Rijkl +Rijkl)

= Q(
∑
ij

cij
∂

∂xi
∧ ∂

∂xj
,
∑
ij

cij
∂

∂xi
∧ ∂

∂xj
)

By theorem 3.1,

Q(
∑
ij

cij
∂

∂yi
∧ ∂

∂yj
,
∑
ij

cij
∂

∂yi
∧ ∂

∂yj
)

=

∫
X

D(K(z, z)−K(z, z))(K(z, z)−K(z, z))dA(z)

− 2 ·
∫
X×X

G(z, w)|K(z, w))|2dA(w)dA(z)

+ 2 ·Re{
∫
X×X

G(z, w)K(z, w)K(w, z)dA(w)dA(z)}.

�

The same proof as that of theorem 3.2 shows

Theorem 3.6. Let Q be the curvature operator as above, then Q is a negative

definite operator on ∧2T 3
XTeich(S).
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4. Curvature operator on ∧2TXTeich(S)

Every element in ∧2TXTeich(S) can be represented by
∑

ij(aij
∂
∂xi
∧ ∂

∂xj
+ bij

∂
∂xi
∧

∂
∂yj

+ cij
∂
∂yi
∧ ∂

∂yj
).

Proposition 4.1. Let Q be the curvature operator. Then

Q(
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
+ bij

∂

∂xi
∧ ∂

∂yj
+ cij

∂

∂yi
∧ ∂

∂yj
,

∑
ij

aij
∂

∂xi
∧ ∂

∂xj
+ bij

∂

∂xi
∧ ∂

∂yj
+ cij

∂

∂yi
∧ ∂

∂yj
)

= Q(
∑
ij

dij
∂

∂xi
∧ ∂

∂xj
+ bij

∂

∂xi
∧ ∂

∂yj
,
∑
ij

dij
∂

∂xi
∧ ∂

∂xj
+ bij

∂

∂xi
∧ ∂

∂yj
),

where dij = aij + cij.

Proof. Direct computation by using the isometric property of the almost com-

plex structure J. �

We want to know if the curvature operator Q is nonpositive definite. By proposi-

tion 4.1 it is sufficient to see ifQ is nonpositive definite on Span{∧2T 1
XTeich(S),∧2T 2

XTeich(S)}.

Firstly, let us establish the following formula.

Lemma 4.2. Let Q be the curvature operator,
∑

ij aij
∂
∂xi
∧ ∂

∂xj
be an element in

∧2T 1
XTeich(S), and

∑
ij bij

∂
∂xi
∧ ∂

∂yj
be an element in ∧2T 2

XTeich(S). Then we have

Q(
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
,
∑
ij

bij
∂

∂xi
∧ ∂

∂yj
)

= i ·
∫
X

D(F (z, z)− F (z, z))(H(z, z) +H(z, z))dA(z)

− 2 · Im{
∫
X×X

G(z, w)F (z, w)H(z, w))dA(w)dA(z)}

− 2 · Im{
∫
X×X

G(z, w)F (z, w)H(w, z)dA(w)dA(z)}.
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Proof. Since ∂
∂xi

= ∂
∂ti

+ ∂
∂ti

and ∂
∂yi

= i( ∂
∂ti
− ∂

∂ti
), by proposition 2.3,

Q(
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
,
∑
ij

bij
∂

∂xi
∧ ∂

∂yj
)

= (−i)
∑
i,j,k,l

aijbkl(−Rijkl +Rijkl −Rijkl +Rijkl)

= (−i)
∑
i,j,k,l

aijbkl(−Rijkl −Rijlk +Rjikl +Rjilk)

= (−i)
∑
i,j,k,l

aijbkl(−(ij, kl)− (il, kj)− (ij, lk)− (ik, lj)

+ (ji, kl) + (jl, ki) + (ji, lk) + (jk, li)) (by lemma 2.6)

= (−i)
∑
i,j,k,l

aijbkl(ji− ij, kl + lk)

+ (−i)
∑
i,j,k,l

aijbkl(−(il, kj) + (li, jk))

+ (−i)
∑
i,j,k,l

aijbkl(−(ik, lj) + (jl, ki)).

For the first term, by definition 2.5,∑
i,j,k,l

aijbkl(ji− ij, kl + lk)

=

∫
X

D(
∑
ij

aijµiµj −
∑
ij

aijµiµj)(
∑
kl

bklµkµl +
∑
kl

bklµlµk)dA(z)

=

∫
X

D(F (z, z)− F (z, z))(H(z, z) +H(z, z))dA(z).

For the second term, since D is self adjoint, using the Green function G,∑
i,l

aijbkl(−(il, kj) + (li, jk))

= 2i · Im{
∑
i,l

aijbkl(−(il, kj)}

= −2i · Im{
∫
X

D(
∑
i

aijµiµl)(
∑
k

bklµkµj)dA(z)}

= −2i · Im{
∫
X

∫
X

G(w, z)
∑
i

aijµi(w)µl(w)(
∑
k

bklµk(z)µj(z))dA(z)dA(w)}

= −2i · Im{
∫
X×X

G(z, w)F (z, w)H(w, z)dA(w)dA(z)}.
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For the last term,

∑
i,k

aijbkl(−(ik, lj) + (ki, jl)) = −2i · Im{
∑
i,k

aijbkl(ik, lj)}

= −2i · Im{
∫
X

D(
∑
i

aijµi
∑
k

bklµk)(µlµj)dA(z)}

= −2i · Im{
∫
X

∫
X

G(w, z)
∑
i

aijµi(w)
∑
k

bklµk(w)(µl(z)µj(z))dA(z)dA(w)}

= −2i · Im{
∫
X×X

G(z, w)F (z, w)H(z, w)dA(w)dA(z)}.

Combining these three terms above, we get the lemma. �

Now we study the curvature operator Q on Span{∧2T 1
XTeich(S),∧2T 2

XTeich(S)}.

Setting

A =
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
, B =

∑
ij

bij
∂

∂xi
∧ ∂

∂yj
,

on Span{∧2T 1
XTeich(S),∧2T 2

XTeich(S)}, we have

Theorem 4.3. Let Q be the curvature operator and D as above. Let A =∑
ij aij

∂
∂xi
∧ ∂

∂xj
and B =

∑
ij bij

∂
∂xi
∧ ∂

∂yj
. Then we have

Q(A+B,A+B) =

−4

∫
X

DIm{F (z, z) + iH(z, z)}(Im{F (z, z) + iH(z, z)})dA(z)

−2

∫
X×X

G(z, w)|F (z, w) + iH(z, w))|2dA(w)dA(z)

+2 Re{
∫
X×X

G(z, w)(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))dA(w)dA(z)},

where F (z, w) =
∑3g−3

i,j=1 aijµi(w) · µj(z) and H(z, w) =
∑3g−3

i,j=1 bijµi(w) · µj(z).

Proof. Since Q(A,B) = Q(B,A),

Q(A+B,A+B) = Q(A,A) + 2Q(A,B) +Q(B,B).
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By theorem 3.1, theorem 3.3 and lemma 4.2 we have

Q(A+B,A+B)

= (

∫
X

D(F (z, z)− F (z, z))(F (z, z)− F (z, z))dA(z)

−
∫
X

D(H(z, z) +H(z, z))(H(z, z) +H(z, z))dA(z)

+ 2i ·
∫
X

D(F (z, z)− F (z, z))(H(z, z) +H(z, z))dA(z))

( − 2 ·
∫
X×X

G(z, w)|F (z, w))|2dA(w)dA(z)

− 2 ·
∫
X×X

G(z, w)|H(z, w))|2dA(w)dA(z)

− 4 · Im{
∫
X×X

G(z, w)F (z, w)H(z, w))dA(w)dA(z)})

( + 2 ·Re{
∫
X×X

G(z, w)F (z, w)F (w, z)dA(w)dA(z)}

− 2 ·Re{
∫
X×X

G(z, w)H(z, w)H(w, z)dA(w)dA(z)}

− 4 · Im{
∫
X×X

G(z, w)F (z, w)H(w, z)dA(w)dA(z)})

The sum of the first three terms is exactly

−4

∫
X

D(Im{F (z, z) + iH(z, z)})(Im{F (z, z) + iH(z, z)})dA(z).

Just as |a+ ib|2 = |a|2+ |b|2+2 ·Im(a ·b), where a and b are two complex numbers,

the sum of the second three terms is exactly

−2 ·
∫
X×X

G(z, w)|F (z, w) + iH(z, w))|2dA(w)dA(z).

For the last three terms, since

Im(F (z, w) ·H(w, z)) = −Re(F (z, w) · (iH(w, z))),

the sum is exactly

2 ·Re{
∫
X×X

G(z, w)(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))dA(w)dA(z)}.
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Furthermore,

Theorem 4.4. Under the conditions of theorem 4.3, Q is nonpositive definite

on Span{∧2T 1
XTeich(S),∧2T 2

XTeich(S)}, and the zero level subsets of Q(·, ·) are

{
∑

ij bij
∂
∂xi
∧ ∂

∂yj
; bij = −bji} in Span{∧2T 1

XTeich(S),∧2T 2
XTeich(S)}.

Proof. Let us estimate the terms in theorem 4.3 separately. For the first term,

since D is a positive operator,

−
∫
X

D(Im{F (z, z) + iH(z, z)})(Im{F (z, z) + iH(z, z)})dA(z) ≤ 0.

For the third term, by the Cauchy-Schwarz inequality,

|
∫
X×X

G(z, w)(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))dA(w)dA(z)|

≤
∫
X×X

G(z, w)|(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))|dA(w)dA(z)

≤

√∫
X×X

G(z, w)|(F (z, w) + iH(z, w))|2dA(w)dA(z)

×

√∫
X×X

G(z, w)|(F (w, z) + iH(w, z))|2dA(w)dA(z).

Since G(z, w) = G(w, z),

|
∫
X×X

G(z, w)(F (z, w) + iH(z, w))(F (w, z) + iH(w, z))dA(w)dA(z)|

=

√∫
X×X

G(z, w)|(F (z, w) + iH(z, w))|2dA(w)dA(z)

×

√∫
X×X

G(w, z)|(F (w, z) + iH(w, z))|2dA(w)dA(z)

=

∫
X×X

G(z, w)|(F (z, w) + iH(z, w))|2dA(w)dA(z).

Combining the two inequalities above and the second term in theorem 3.3, we see

that Q is a nonpositive operator on Span{∧2T 1
XTeich(S),∧2T 2

XTeich(S)}. Further-

more, Q(A+B,A+B) = 0 if and only if there exists a constant k such that both of
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the following hold:
Im{F (z, z) + iH(z, z)} = 0,

F (z, w) + iH(z, w) = k · (F (w, z) + iH(w, z)).

If we let z = w, we get k = 1. Hence, the second equation is equivalent to∑
ij

(aij − aji + i(bij + bji))µi(w)µj(z) = 0.

Since {µi}i≥1 is a basis,

aij = aji, bij = −bji.

That is, A = 0 and B =
∑

ij bij
∂
∂xi
∧ ∂

∂yj
, where bij = −bji.

Conversely, if A = 0 and B ∈ {
∑

ij bij
∂
∂xi
∧ ∂

∂yj
; bij = −bji}, by theorem 3.4 we

have Q(A+B,A+B) = 0. �

Before we prove the main theorem, let us define a natural action of J on

∧2TXTeich(S) by 
J ◦ ∂

∂xi
∧ ∂

∂xj
:= ∂

∂yi
∧ ∂

∂yj
,

J ◦ ∂
∂xi
∧ ∂

∂yj
:= − ∂

∂yi
∧ ∂

∂xj
= ∂

∂xj
∧ ∂

∂yi
,

J ◦ ∂
∂yi
∧ ∂

∂yj
:= ∂

∂xi
∧ ∂

∂xj
,

and extend it linearly. It is easy to see that J ◦ J = id.

Now we are ready to prove theorem 1.1.

Proof of Theorem 1.1. Combining proposition 4.1 and theorem 3.4, we get

that Q is nonpositive definite.

If A = C − J ◦ C for some C in ∧2TXTeich(S), from the isometry of J it is easy

to see that Q(A,A) = 0.

Assume that A ∈ ∧2TXTeich(S) such that Q(A,A) = 0. Since ∧2TTeich(S) =

Span{ ∂
∂xi
∧ ∂

∂xj
, ∂
∂xk
∧ ∂

∂yl
, ∂
∂ym
∧ ∂

∂yn
}, there exists aij, bij and cij such that

A =
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
+ bij

∂

∂xi
∧ ∂

∂yj
+ cij

∂

∂yi
∧ ∂

∂yj
.
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Since Q(A,A) = 0, by proposition 4.1 and theorem 3.4 we must have

aij + cij = aji + cji, bij = −bji.

That is,

aij − aji = −(cij − cji), bij = −bji.

Set

C =
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
+
bij
2

∂

∂xi
∧ ∂

∂yj
.

Claim: A = C − J ◦ C.

Since
∑

ij aij
∂
∂xi
∧ ∂

∂xj
=

∑
i<j(aij − aji)

∂
∂xi
∧ ∂

∂xj
, we have

J ◦
∑
ij

aij
∂

∂xi
∧ ∂

∂xj
=

∑
i<j

(aij − aji)
∂

∂yi
∧ ∂

∂yj

= −
∑
i<j

(cij − cji)
∂

∂yi
∧ ∂

∂yj
= −

∑
cij

∂

∂yi
∧ ∂

∂yj
.

Similarly,

J ◦
∑

(
bij
2

∂

∂xi
∧ ∂

∂yj
) = −

∑ bij
2

∂

∂xi
∧ ∂

∂yj
.

The claim follows from the two equations above. �

5. Application

In this section we study the twist-harmonic maps from some domains into the

Teichmüller space. Before we go to the rank-one hyperbolic space case, let us state

the following lemma, which is influenced by lemma 5 in [72].

Lemma 5.1. The rank-one Hyperbolic spaces HQ,m = Sp(m, 1)/Sp(m) ·Sp(1) and

HO,2 = F−204 /SO(9) cannot be totally geodesically immersed into Teich(S).

Proof. On quaternionic hyperbolic manifolds HQ,m = Sp(m, 1)/Sp(m), assume

that there is a totally geodesic immersion of HQ,m into Teich(S). We may select

p ∈ HQ,m. Choose a quaternionic line lQ on TpHQ,m, and we may assume that lQ

is spanned over R by v, Iv, Jv and Kv. Without loss of generality, we may assume
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that J on lQ ⊂ TpHQ,m is the same as the complex structure on Teich(S). Choose an

element

v ∧ Jv +Kv ∧ Iv ∈ ∧2TpHQ,m.

Let QHQ,m be the curvature operator on HQ,m.

QHQ,m(v ∧ Jv +Kv ∧ Iv, v ∧ Jv +Kv ∧ Iv)

= RHQ,m(v, Jv, v, Jv) +RHQ,m(Kv, Iv,Kv, Iv) + 2 ·RHQ,m(v, Jv,Kv, Iv).

Since I is an isometry, we have

RHQ,m(Kv, Iv,Kv, Iv) = RHQ,m(IKv, IIv, IKv, IIv)

= RHQ,m(−Jv,−v,−Jv,−v) = RHQ,m(v, Jv, v, Jv).

Similarly,

RHQ,m(v, Jv,Kv, Iv) = RHQ,m(v, Jv, IKv, IIv)

= RHQ,m(v, Jv,−Jv,−v) = −RHQ,m(v, Jv, v, Jv).

Combining the terms above, we have

QHQ,m(v ∧ Jv +Kv ∧ Iv, v ∧ Jv +Kv ∧ Iv) = 0.

Since f is a geodesical immersion,

QTeich(S)(v ∧ Jv +Kv ∧ Iv, v ∧ Jv +Kv ∧ Iv) = 0.

On the other hand, by theorem 1.1, there exists C such that

v ∧ Jv +Kv ∧ Iv = C − J ◦ C.

Hence,

J ◦ (v ∧ Jv +Kv ∧ Iv)(16)

= J ◦ (C − J ◦ C) = J ◦ C − J ◦ J ◦ C = J ◦ C − C

= −(v ∧ Jv +Kv ∧ Iv).
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Since J is the same as J in HQ,m, we also have

J ◦ (v ∧ Jv +Kv ∧ Iv) = (Jv ∧ JJv + JKv ∧ JIv)(17)

= Jv ∧ (−v) + Iv ∧ (−Kv) = v ∧ Jv +Kv ∧ Iv.

From equations (16) and (17) we get

v ∧ Jv +Kv ∧ Iv = 0

which is a contradiction since lQ is spanned over R by v, Iv, Jv and Kv.

In the case of the Cayley hyperbolic plane HO,2 = F 20
4 /SO(9), the argument is the

same, replacing the argument above of a quaternionic line by a Cayley line ([15]). �

Now we are ready to prove theorem 1.2.

Proof of theorem 1.2. Since the sectional curvature operator on Teich(S) is

nonpositive, Teich(S) also has nonpositive Riemannian sectional curvature in the

complexified sense as stated in [47]. Assume f is not constant. From theorem 2 in

[17, 47], we know that f should be a totally geodesic immersion. On the other hand,

by lemma 5.1, there does not exist any totally geodesic immersion from G/Γ into

Teich(S). Hence, f must be a constant. �

Remark 5.1. In [72] it is showed that the image of any homomorphism ρ from

Γ to Mod(S) is finite. Hence, ρ(Γ) must have a fixed point in Teich(S) from classical

theory (Teich(S) is contractible). If we assume that there exists a twist harmonic map

f with respect to this homomorphism, then by theorem 1.2 we know ρ(Γ) ⊂ Mod(S)

will fix the point f(G/Γ) ∈ Teich(S).
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