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Case 2: Secondary Mesenchyme Cell Lineage (SMC)

Case 1: Primary Mesenchyme Cell Lineage (PMC)

• Network modeling is useful for extracting 
complexities within expression data.

• Regulation in developmental biology is 
dependent on temporal and spatial gene 
expression patterns.

• Constructing cell lineage specific gene 
regulatory networks (GRNs) can further 
molecular understanding of differentiation and 
gain new functional insights into underlying 
circuits.

• Aim 1: Infer cell lineage specific networks 
detailing important drivers of differentiation.

• Aim 2: Use scRNA-seq to infer both temporal 
and spatial gene expression patterns through 
trajectory analysis.

• Aim 3: Develop new hypotheses that describe 
the differentiation process of each cell lineage 
and detail future experiments to process.

• Single cell RNA sequencing (scRNA-seq) data 
for the sea urchin embryo was obtained from 
Foster et al., 2020 1.

• scRNA-seq data included eight time points 
covering 8-cell to late gastrula stage.

• Semi-supervised clustering (scSorter)2 was 
used to obtain cell lineages from marker gene 
expression.

• Trajectory inference (Dynverse)3 was 
performed on each cell-lineage and important 
bifurcation points.

• Differentially expressed genes (DEGs) were 
characterized by:

• Genes having differences in expression between 
cell lineage clusters (Seurat)4.

• Genes whose expression significantly changing 
across pseudotime (GAM)5.

• Genes with differences in expression patterns 
over pseudotime between lineages (TradeSeq)6.

• Genes with difference in expression between 
lineages at early decision points (TradeSeq)6. 

• Set of all DEGs were used for network 
inference (BEELINE)7. 

• Network methods consisted of using normalized 
expression data and potential uses of 
pseudotime.
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Figure 2: Network mechanism underlying SMC differentiation into pigment and blastocoel cells. A-B. Network inference performed through
Dynverse using a diffusion time algorithm detected a bifurcation in the secondary mesenchyme cell lineage. Each plot shows the topological 
mapping of approximate start, decision, and end points in the bifurcation. RNA expression of marker genes were log transformed ranging  from 0 
(low expression) to max value (high expression). (A) Transcription factor marker glial cell missing characterized the pigment cell branch. 
(B) Transcription factor marker GATAc characterized the blastocoel cell  branch. C-D. Bifurcation topology was mapped to temporal indications of 
both real-time and pseudotime. Real time values showed that pseudotime accurately reflects the real-time course from the hatched blastula (HB) 
to late gastrula (LG) stage. Additionally, the decision point of the bifurcation is within the mesenchyme blastula stage aligning with other records of the differentiation of pigment and blastocoel lineages. (E) Network describes 
the differentiation of pigment vs blastocoel cells. (Edge width) Bigger width describes higher ranking of interaction within the GENIE3, GRNBoost2, and LEAP algorithms. (Green line) Positive correlation between two genes. (Blue 
line) Negative correlation between two genes.  (Orange circle) Genes described to be important for pigment cells in literature. (Purple circle) Genes described to be important for blastocoel cells in literature. (Red box) Genes 
that are potential drivers of differentiation that are regulated by transcription factors erg (blastocoel cell) and gcm (pigment cell). (F) Dynamic expression patterns of genes involved in pigment and blastocoel cells. In between 
the vertical dashed lines indicate decision regions. (Left box) Gcm, pks1, and SOCS box protein 3 have high expression in the pigment cell lineage and are marked to be positively correlated to one another. (Right box) GATAc, erg, 
and ZNF420 have high expression in the blastocoel cell lineage and have positive correlation with one another. Between both cell lineage networks the two example genes, SOCS box protein 3 and ZNF420 are potential genes 
that may regulate the differentiation circuit in SMC’s. 
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Figure 1: Network mechanism describing PMC early vs late differentiation. A-B. Network inference performed through Dynverse using a diffusion time algorithm detected a 
bifurcation in the primary mesenchyme cell lineage. Each plot shows the topological mapping of approximate start, decision, and end points in the bifurcation. RNA expression of 
marker genes were log transformed ranging from 0 (low expression) to max value (high expression). (A) Transcription factor marker Alx1 characterized the PMC lineage.  (B) SOCS 
Box Protein 3 provided early indication of the SMC lineage. (C) Bifurcation topology was mapped to real time data showing that the PMC cell lineage is specified as early as the 
morula stage (sp3) and fully differentiated into skeletogenic cells at the late gastrula state (spLG). (D) Network describes the early vs late specification of PMC’s to skeletogenic 
cells. (Edge width) Bigger width describes higher ranking of interaction within  the GENIE3, GRNBoost2, and LEAP algorithms. (Green line) Positive correlation between two 
genes. (Blue line) Negative correlation between two genes.  (Orange circle) Genes described to be important for early specification of PMC’s. (Purple circle) Genes described to 
be important for later specification of PMCs and genes involved in skeletogenesis. (Red box) Genes that are potential drivers of differentiation of the PMC lineage.

• Analyzing networks of differentiation in the 
SMC and PMC cell lineage through scRNA-seq 
data and methods involving trajectory and 
network inference are possible.
• The usage of these methods invoked new 

insights into mechanisms of differentiation
and contained known interactions described 
in previous literature.

• Genes not described in literature and regulated 
by known transcription factors can be 
experimentally verified to provide major insight 
into regulatory circuits.
• Such genes are highlighted in Figure 1 and 2.

• The GRN’s created reflect correlation between 
genes based on temporal and spatial expression 
data. These networks contain a mixture of 
direct and indirect interactions. However, 
usage of prior knowledge (Davidson GRN) can 
highlight these differences.
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• Perform trajectory and network analysis for 
additional cell lineages found in the scRNA-seq 
dataset.

• Experimentally verify new interactions through 
whole-mount in-situ hybridization, qPCR, and 
knockdown/inhibitor experiments.

• Expand networks to include proteomics and 
metabolomics data to describe systems level 
information of the differentiation process.

• Understand differentiation of cell fate in other 
echinoderms at the single cell level.
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