
ELLIPTIC NETS AND ELLIPTIC CURVES

BY

KATHERINE E. STANGE

B. MATH., UNIVERSITY OF WATERLOO, 2001

M. SC., BROWN UNIVERSITY, 2003

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE

DEPARTMENT OF MATHEMATICS AT BROWN UNIVERSITY

PROVIDENCE, RHODE ISLAND

MAY 2008

c© Copyright 2008 by Katherine E. Stange

This dissertation by Katherine E. Stange is accepted in its present form by
the Department of Mathematics as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Joseph H. Silverman, Director

Recommended to the Graduate Council

Date
Alexander Goncharov, Reader

Date
Stephen Lichtenbaum, Reader

Date
Joseph H. Silverman, Reader

Approved by the Graduate Council

Date
Sheila Bonde

Dean of the Graduate School

iii

Vita

Katherine E. Stange was assembled in North Bay, Ontario, Canada in 1978. She was further processed
at the University of Waterloo, where she was labelled “Bachelor of Mathematics” in 2001.

iv

Acknowledgements

There are a great many people who have helped me along the long road that led, finally, to this thesis.
First among these is my advisor, Joseph Silverman. Thank you for your incredible patience and for
your enthusiastic telling of wonderful mathematical tales every Wednesday morning. And thank you
for your confidence in me. It is hard to put into words exactly what an advisor does, because it
happens between the practical matters of correcting papers and answering confusions. It has to do
with learning what mathematics is, and it is why we care about our mathematical genealogy. I’m proud
to have you as a mathematical father.

This work was supported for two years by the National Sciences and Engineering Research Council
of Canada in the form of a post-graduate scholarship, for which I am very grateful. I also wish to thank
Microsoft Research for providing me with a one-semester internship working with Kristin Lauter in
San Diego, California. Thank you, Kristin, for your amazing generosity, infectious curiosity and your
confidence in my work.

Thank you to Audrey, Carol, Doreen, Larry and Natalie. Without each of you, I wouldn’t have
ever found my way long enough to get to the math at all. Doreen and Natalie, you deserve special
thanks for your labours on my behalf, and for your love, both of which were above and beyond, and
for which I owe you more than I can give.

Thank you to my readers, Stephen Lichtenbaum and Alexander Goncharov. Thank you to Michael
Rosen for your interest and useful discussions. Thank you to Alf van der Poorten for your support
and enthusiasm. To Thomas Banchoff, for teaching me about teaching. To George Daskalopoulos,
who was always especially kind. Thank you to everyone in the Brown mathematics department for
being a good family to the graduate students.

Thank you to Christine Swart, Michael Scott, Graeme Everest, Gary McGuire, Peter Stevenhagen,
Nelson Stephens and Noam Elkies for your interest, discussions and support. And to many others who
took the time to discuss this work with me.

I want to thank my high school math teacher, Mr. Garrett, who is his own grandpa, and who
always answered my interest with excitement. It was in your class, 15 years ago, that I decided to do
this today. Thank you also to my teachers at the University of Waterloo, especially Peter Hoffman,
Ken Davidson, Brian Forrest and Cam Stewart. Thank you also to Murat for your support.

Thank you to Donald Knuth for LaTeX, and to Mistress LaSpliffe and the New York Times for
providing the necessary procrastination.

v

These are the people and things who made the mathematics possible. However, many of you I also
count among my friends. And I must also thank those, not necessarily mathematically involved, whose
friendship was every bit as important to the success of my crazy quest to become a mathematician as
the mathematics itself.

This includes all of the mathematics department graduate students, who each in their way con-
tributed to my upbringing, mathematical and otherwise. Thank you to Panayotis for being a loveably
argumentative Greek. To Dan for putting us into song. To Steve for telling us jungle tales. To Mikey
G for balls. To Alina for the challenge. To Michelle for her generosity. To Karen. To Graeme. To the
Mikes, Ben, Hatice, Steffan (for being Canadian), Ebru, Hyun, and Yu.

To Michael I owe more than thanks, for you are family.
To Rafe, for wonderful times. I miss you.
To those in the wider community of Brown whose paths I crossed and learned from. In particular,

thank you to Marie. To Joanna and Anita, for your open and accepting friendship. To Becca, for
fascinating conversation. To Kevin, for the Fez.

To Lionel, for letting me in.
To David, for the experiences, the filters, the words.
To all those I rode with. If graduate school was a journey, I did it by bicycle. Thank you to the

ECCC for the haybales and portajohns and all the rest. To Providence Bicycle. To Joe for swearing at
me when I got the townlines. To Forest for trying to ride me off your wheel while eating ice cream,
and putting up with me when I hung on. To the Brown Cycling Club for suffering my dictatorship. A
special thank you to Bob and Bikeworks for your incredible support and enthusiasm while I tried my
legs at racing. And thank you to Preston, for every time you agreed to go longer.

Thank you also to all those, named and nameless, whom I met in my travels abroad. Your strange
customs but universal generosity were a gift. To Yousra, Ahmed, Denis, Victor, Vika, Katya, Tatyana
Makarovna, Cody, Galina, Alain, Barbara, Patrick, Hanna, Spring. Especially to Yulia and Lera, and to
Tenzin, Dukgyal and Nordron. Thank you to Laura, Ruxandra, Dan, Heidrun, Voichitsa, and Helmut,
and especially to Oma Oma. And to many others whose names I have since lost, or never knew.

Thank you to Turtle Soup: to Meg, Helen, Kirsti, Lisa, Leah and Jessica. I wouldn’t have survived
high school without H.O.T. and quinzees and the Eighteenth Ruler of the Universe, without Bump
the King of Dorks and the belly button tree, without torso dancing and Psycho-pro-tection, without
the nickname Chubbo, without Dr. Niel Paterson or Cookie Dough. These things, ironically, made
me sane. And without the freedom and creativity of our strange community, without all of you to
convince me that anything was possible, I wouldn’t have believed I could do it.

And finally, there are those for whom thanks are simply inadequate.
For Jonathan: How you managed to stay convinced that I was a mathematician I don’t know. But

it is only thanks to that delusion that I really am. You’ve taught me anew how to love mathematics,
and whenever that relationship was going poorly, your bad puns laughed me back from the brink.
You’ve been my co-conspirator in a shameless neverending childhood. You’ve given me mathematics,
but you’ve given me much more: you’ve given me the world to do it in. I can’t find any words besides

vi

these1: I love you.
For Oma: Your love, your warmth, your interest, and your stories, have given me a cherished sense

of connection between what I do now and where I come from. And thank you for the baked apples.
For Christiaan, who derailed any attempt I ever had to be serious: My life would have been impov-

erished without the Zappa, the sizzling floor, the Hee Haw in the Hole, without you spinning Marley
on the linoleum. You taught me to read with raisins and Pavlovian conditioning. And you rode your
bike with me, always just a little faster. I think it was those bicycle rides that taught me tenacity, which
is still what I credit for anything I may go so far as to say I have earned.

And last, for my parents, mom and dad: How does one thank one’s parents? Without you, I
wouldn’t have had anyone to count up the myriad of small boxes and wedges I drew with glee all
over scraps of paper, to count those filled and those unfilled and pronounce the delightful name of the
fraction I had created. Without you, I wouldn’t know that six times eight is forty-eight. (With a little
more of you, I might have known that seven times eight is fifty-six.) Without you, I wouldn’t have been
drawn wide-eyed into thinking about whether there were more integers than there were even integers.
Or whether the universe was infinite, or how many different kinds of tastebuds we had. Without you,
I wouldn’t have had the confidence to take ‘contest math.’ And without you, I wouldn’t have been
happy and laughing and warm and strong when I did. Hell, without you, I wouldn’t even exist.

1With the possible exception of certain Frank Zappa lyrics.

vii

Contents

List of Tables xii

List of Figures xiii

List of Examples xiv

List of Algorithms xv

I Overture 1

1 Introduction 2
1.1 Lucas’ story . 2
1.2 Ward’s story . 3
1.3 Moving to higher rank . 6
1.4 Deeper connections . 10
1.5 Cryptographic applications . 12
1.6 Prerequisites . 13

2 Basic properties of elliptic divisibility sequences 15
2.1 Making the curve-sequence relation explicit . 15
2.2 Relations to the group law on the elliptic curve . 16
2.3 More on division polynomials . 16
2.4 Induction properties . 17
2.5 The integer case . 18
2.6 Periodicity modulo p . 18

II Moving to higher rank 21

3 Elliptic nets 22
3.1 Definitions and properties . 22
3.2 Examples . 23

viii

4 The joy of induction 26
4.1 Proofs by induction . 26
4.2 Basesets for ranks 1 and 2 . 27
4.3 Basesets for ranks n ≥ 3 . 31
4.4 Laurentness . 34

5 Elliptic nets over the complex numbers 35
5.1 Elliptic functions over C . 35
5.2 Forming the net . 37

6 Elliptic net polynomials 39
6.1 Defining net polynomials . 39
6.2 Properties of net polynomials . 43
6.3 Net polynomials at primes . 45

7 A curve gives a net 48
7.1 Net polynomials over arbitrary fields . 48
7.2 The elliptic net associated to a curve . 49

8 A net gives a curve 51
8.1 Scale equivalence and normalisation . 51
8.2 Curves from nets of ranks 1 and 2 . 53
8.3 Curves from nets of rank n ≥ 3 . 54

9 The curve-net theorem 56
9.1 Homothety and singular nets . 56
9.2 The curve-net theorem . 57

10 Bases and periodicity 59
10.1 Freedom from the tyranny of bases . 59
10.2 Higher rank periodicity properties . 60
10.3 Quantities which do not depend on basis . 65

11 Catching an elliptic curve 70
11.1 An extended example . 70
11.2 A closer look at the Gm case . 74
11.3 What about Ga? . 78

III Deeper connections 79

12 Three perspectives on group extensions 80
12.1 Group extensions and Baer sum . 80

ix

12.2 Factor sets and H 2(G,M) . 82
12.3 Multiplicative torsors . 84

12.3.1 An extension gives a multiplicative torsor . 84
12.3.2 A multiplicative torsor gives an extension . 86

13 Generalised Jacobians 88
13.1 Divisors and Weil reciprocity . 88
13.2 Generalised Jacobians . 89
13.3 The case of an elliptic curve with modulus m = (S)+(T) 90
13.4 Rational sections and algebraic groups . 92
13.5 Line bundles and extensions . 95

14 Biextensions 98
14.1 Definitions . 98
14.2 Cohomology of biextensions . 99
14.3 Poincaré line bundle . 100
14.4 Poincaré biextension for elliptic curves . 101

15 The elliptic net biextension is the Poincaré biextension 103
15.1 The elliptic net biextension . 103
15.2 The Poincaré biextension has extra structure . 104

16 Pairings 106
16.1 The Weil pairing for elliptic curves . 106
16.2 Weil pairing via duality . 111
16.3 The Tate-Lichtenbaum pairing for Jacobians . 113
16.4 The Tate-Lichtenbaum pairing for elliptic curves . 115

17 Pairings via elliptic nets 118
17.1 Pairings from biextensions . 118
17.2 Tate-Lichtenbaum and Weil pairings from elliptic nets 121
17.3 Partial periodicity and pairings . 123
17.4 Example calculations . 123

IV Cryptographic applications 125

18 Tate pairing computation 126
18.1 Miller’s algorithm . 126
18.2 Computing the values of an elliptic net . 127
18.3 Computation of the Tate-Lichtenbaum pairing . 128
18.4 Some implementation considerations . 130

x

18.5 Complexity . 132

19 The elliptic curve discrete logarithm problem 134
19.1 Perfect periodicity . 134
19.2 Some hard problems . 136
19.3 The F∗q discrete logarithm, The Tate-Lichtenbaum pairing and MOV and Frey-Rück

attacks . 139
19.3.1 An F∗q DLP equation of the form A = Bk from periodicity properties 139
19.3.2 An F∗q DLP equation from Shipsey’s thesis . 141
19.3.3 F∗q DLP equations and the Tate-Lichtenbaum pairing 141

19.4 ECDLP through EDS Association . 143
19.5 ECDLP and quadratic residues . 143
19.6 The EDS Residue problem . 145
19.7 ECDLP through EDS Discrete Log in the case of perfect periodicity 145
19.8 Equivalence of hard problems . 146

V Appendices 147

A Formulary 148
A.1 Elliptic net recurrence relation . 148
A.2 Complex function formulæ . 149
A.3 Net polynomials . 150
A.4 Formulæ relating curves and nets . 151
A.5 Transformation property for elliptic nets . 152
A.6 Partial periodicity . 152
A.7 Elliptic net biextension factor system . 153
A.8 Tate-Lichtenbaum and Weil pairing formulæ . 153
A.9 Discrete logarithm type equations . 153

B PARI/GP scripts 154
B.1 Computations with elliptic divisibility sequences . 154
B.2 Computations with rank two elliptic nets . 183
B.3 Computation of the Tate-Lichtenbaum pairing . 234

Bibliography 242

Index 247

xi

List of Tables

1.1 Special cases of Lucas sequences . 3

18.1 Comparison of Operations for Double and DoubleAdd steps 132
18.2 Fq Multiplications per Step . 133

xii

List of Figures

11.1 Elliptic net associated to y2 +y = x3 +x2−2x, P = (0,0), Q = (1,0) over Q 71
11.2 Elliptic net associated to y2 +y = x3 +x2−2x, P = (0,0), Q = (1,0) over F17 73
11.3 Elliptic net associated to y2 +y = x3 +x2−2x, P = (−36

169 , 755
2197), Q = (−1,1) over Q . . 74

11.4 Elliptic net associated to y2 + 3xy + 3y = x3 + 2x2 + x and points P = (0,0) and
Q = (1,

√
13−3) . 77

11.5 Elliptic net associated to y2 +2xy +2y = x3 +2x2 +x and P = (0,0) 78

18.1 A block centred on k . 128

xiii

List of Examples

3.2.1 Identically zero elliptic net . 23
3.2.2 Example elliptic net W (v) = v . 23
3.2.3 Example elliptic net W (v) = vi . 23
3.2.4 Example elliptic net: −1,0,1 . 23
3.2.5 Example elliptic net: Lucas sequences . 24
3.2.6 Elliptic net associated to y2 +y = x3 +x2−2x, P = (0,0), Q = (1,0) 24

10.3.1 Example of a quadratic quantity . 68
10.3.2 Calculating a residue for an elliptic net . 69

11.1.1 Elliptic net associated to y2 +y = x3 +x2−2x, P = (0,0), Q = (1,0) - more detail . 70
11.2.1 Elliptic nets associated to y2 +3xy +y = x3 +2x2 +x 74
11.3.1 Elliptic net for a singular cubic curve with a cusp. 78

17.4.1 Calculation of Weil and Tate-Lichtenbaum pairings using elliptic nets 123

xiv

List of Algorithms

18.1 Miller’s algorithm . 127
18.2 Elliptic Net Algorithm . 129
18.3 Double and DoubleAdd . 131

xv

Part I

Overture

1

Chapter 1

Introduction

This thesis is a retelling and elaboration of a delightful story about recurrence sequences first told in
1948. The original tale of recurrence relations and elliptic curves is due to Morgan Ward1 [74]. He
himself, in turn, was retelling (and enhancing) an older story due to Edouard Lucas [41, 42], about linear
recurrence sequences. To properly introduce our topic, then, we must start with Lucas and Ward.

1.1 Lucas’ story

Lucas, writing in the first volume of the American Journal of Mathematics in 1878, was interested in
symmetric functions of the roots of quadratic equations. Consider a quadratic equation

x2−Px +Q = 0,

with roots a and b (so P = a +b and Q = ab). Then, define the symmetric functions

Un =
an−bn

a−b
, and Vn = an +bn.

Lucas demonstrated that these remarkable functions have two special properties. First, they are gen-
erated by recurrence relations:

Un = PUn−1−QUn−2, and Vn = PVn−1−QVn−2. (1.1)

(A quick way to see this is to first show an+2 = Pan+1−Qan and bn+2 = Pan+1−Qbn.) And second,
they are defined by ‘circular functions’:

Un = P
n−1

2

(
sin(nx)
sin(x)

)
, and Vn = P

n+1
2

(
cos(nx)
cos(x)

)
.

The recurrence relations for Vn and Un can be considered instances of the addition/subtraction for-
mulæ for trigonometric functions.

1See [39] for an overview of Ward’s mathematical work.

2

3

Table 1.1: Special cases of Lucas sequences
(P ,Q) Un Vn

(1,−1) Fibonacci Numbers Lucas Numbers
(2,−1) Pell Numbers Pell-Lucas Numbers
(1,−2) Jacobsthal Numbers Jacobsthal-Lucas Numbers
(3,2) Mersenne Numbers 2n +1
(b +1,b) multiples of Cunningham Numbers

Examples of Lucas sequences are shown in Table 1.1. The Fibonacci numbers and Mersenne num-
bers in particular need no introduction: Lucas sequences in general and these special cases in particular
have been a source of study for hundreds of years. Mathematicians, including Lucas, have continued
to unearth connections to diverse corners of mathematics, and so it is that Lucas wrote

Ce memoire à pour objet l’étude des fonctions symétriques des racines d’une équation du second

degré, et son application à la théorie des nombres premiers. Nous indiquons dès le commencement,

l’analogie complète de ces fonctions symétriques avec les fonctions circulaires et hyperboliques; nous

montrons ensuite la liaison qui existe entre ces fonctions symétriques et les théories des détermi-

nants, des combinaisons, des fractions continues, de la divisibilité, des diviseurs quadratiques, des

radicaux continus, de la division de circonférence, de l’analyse indéterminée du second degré, des

residus quadratiques, de la décomposition des grands nombres en facteurs premiers, etc. Cette méth-

ode est le point du départ d’une étude plus complète, des propriétés des fonctions symétriques des

racines d’une équation algébrique, de degré quelconque, à coefficients commensurables, dans leurs

rapports avec les théories des fonctions elliptiques et abélienne, des résidus potentiels, et de l’analyse

indeterminee [sic] des degrés supérieurs. 2[42, p.184]

Ward took up the challenge.3

1.2 Ward’s story

Ward studied integral sequences satisfying a certain recurrence relation. We generalise his definition
to arbitrary integral domains.

Definition 1.2.1. Let R be an integral domain. An elliptic divisibility sequence is a function W : Z→R
satisfying

W (n +m)W (n−m)W (1)2 = W (n +1)W (n−1)W (m)2−W (m +1)W (m−1)W (n)2. (1.2)
2This memoire has as its object the study of the symmetric functions of the roots of a quadratic equation, and its application

to the theory of prime numbers. We indicate at the start the complete analogy of these symmetric functions with the circular
and hyperbolic functions; then we show the connections between these symmetric functions and the theory of determinants,
combinations, continued fractions, divisibility, quadratic divisors, continued radicals, the division of the circumference, the
analysis of indeterminates of the second degree, quadratic residues, the prime factorisation of large numbers, etc. This method
is the starting point of a more complete study of the properties of symmetric functions of the roots of an algebraic equation, of
any degree, of rational coefficients, in their relation with the theory of elliptic and abelian functions, potential residues, and the
analysis of indeterminates of higher degree.

3Lucas apparently claimed in other scattered hints to have found such a generalisation involving elliptic functions. This
generalisation will be Ward’s story, because Lucas never published anything about it. See [20, §10.1].

4

Ward made the assumption that W (1) = 1 and so left the W (1)2 out of the left side of this rela-
tion. By restoring that factor we obtain a homogeneous equation in the sense that if W is an elliptic
divisibility sequence and c is a constant then cW is also an elliptic divisibility sequence. Thus, we
loose nothing essential in our study if we, too, frequently assume for simplicity that W (1) = 1.

Ward also was interested in integer sequences, and required in his definition that W (n)|W (m)

whenever n|m. We will not make that assumption, since we intend to work over more general rings,
but we will discuss the integer case in Chapter 2.

Lucas’ Un were special values of the cyclotomic polynomials

Θn(x) =
xn−1
x−1

.

For example,

Θ1(x) = 1, Θ2(x) = x +1, Θ3(x) = x2 +x +1, Θ4(x) = x3 +x2 +x +1.

In fact,
Un = b1−n

Θn(a/b).

The cyclotomic polynomials are those whose roots are the ‘n-torsion points’ on the unit circle–that is
to say, the n-th roots of unity.

For an elliptic curve
y2 +a1xy +a3y = x3 +a2x2 +a4x +a6, (1.3)

the analogous polynomials are called division polynomials. These are the polynomials Ψn in x,y that
vanish exactly at the n-torsion points (and whose poles are supported at the identity). Define the usual
quantities

b2 = a2
1 +4a2, b4 = 2a4 +a1a3, (1.4)

b6 = a2
3 +4a6, b8 = a2

1a6 +4a2a6−a1a3a4 +a2a2
3−a2

4.

The first few division polynomials are

Ψ1 = 1, Ψ2 = 2y +a1x +a3, (1.5)

Ψ3 = 3x4 +b2x3 +3b4x2 +3b6x +b8,

Ψ4 = (2y +a1x +a3)(2x6 +b2x5 +5b4x4 +10b6x3 +10b8x2 +(b2b8−b4b6)x +b4b8−b2
6).

Of course, giving the zeroes and poles doesn’t exactly determine the polynomial. One way to fix the
definition is to require the leading coefficient of Ψn to be n (where the variable x is assigned weight 2
and the variable y is assigned weight 3). More frequently, the polynomials are defined in the first place
by giving the first four of them as above, and requiring the rest to be determined by the recurrence
relations

Ψ2m+1 = Ψm+2Ψ
3
m−Ψm−1Ψ

3
m+1, (1.6)

2yΨ2m = Ψm(Ψm+2Ψ
2
m−1−Ψm−2Ψ

2
m+1).

5

Morgan Ward, for his part, defined the division polynomials only over the complex numbers, using
the complex analytic theory of elliptic functions. That is, consider the Ψn as functions of a complex
variable z representing a point on an elliptic curve. Recall that a complex lattice Λ determines an
elliptic curve over C, and that the Weierstrass sigma function σ : C→ C can be used to ‘build’ elliptic
functions.

Definition 1.2.2. Fix a lattice Λ ∈ C corresponding to an elliptic curve E . For n ∈ Z, define a function
Ψn on C in the variable z as follows:

Ψn(z;Λ) =
σ(nz;Λ)
σ(z;Λ)n2

(For n = 0, set Ψn = 0.)

It is then a straightforward exercise to show, using complex function theory, that, first, the Ψ1, Ψ2,
Ψ3 and Ψ4 agree with (1.5), and second, that the Ψn satisfy (1.2) (in the variable n). Note that equations
(1.6) are special cases of (1.2). Ward went on to show that every elliptic divisibility sequence satisfying
certain conditions arises from an elliptic curve.

Theorem 1.2.1 ([74, Thm 12.1]). If W is an elliptic divisibility sequence of integers satisfying W (1) =

1, W (2)W (3) 6= 0, and W (2)|W (4), then there exists an elliptic curve (given by a lattice Λ) and a
complex constant z such that

W (n) = Ψn(z;Λ) =
σ(nz;Λ)
σ(z;Λ)n2 .

Suppose the lattice Λ determines an elliptic curve E and z determines a point P ∈ E . We will say
W is the elliptic divisibility sequence associated to E and P and write WE ,P(n) for the sequence.

Thus, we have much the same story as Lucas told sixty years earlier:

elliptic divisibility sequences ↔ Lucas sequences (Un)
recurrence (1.2) ↔ recurrence (1.1)

division polynomials ↔ cyclotomic polynomials
elliptic functions ↔ trigonometric functions

elliptic curve ↔ multiplicative group

Since a singular cubic curve has a group law on its non-singular points, and in the multiplicative case,
this becomes Gm, it is perhaps not entirely surprising that the Lucas sequences Un satisfy the elliptic
divisibility sequence recurrence (1.2); in fact, Ward first encountered the equation in Lucas’ paper [42,
p.204].

Much work has been done on elliptic divisibility sequences since they were defined by Ward: they
are a natural starting point in the study of non-linear recurrence sequences, and have a host of inter-
esting properties arising from this interplay of number theory and geometry. For example, it is a result
of Silverman that each term beyond some finite bound is divisible by some prime which is not a divisor
of any previous term [62]; further conjectures in this vein have recently opened approaches to Hilbert’s
tenth problem for the rationals [12]. There have also been applications to cryptography [61] and partial

6

difference equations [32]. Chapter 2 surveys the background results about elliptic divisibility sequences
used in this thesis.

1.3 Moving to higher rank

The purpose of this thesis is to introduce and study a generalisation of elliptic divisibility sequences
to higher dimension and to general fields. An elliptic net is a function W : A→ R from a finite rank
free abelian group A to an integral domain R satisfying the property

W(p +q + s)W(p−q)W(r + s)W(r)

+W(q + r + s)W(q− r)W(p + s)W(p)

+W(r + p + s)W(r− p)W(q + s)W(q) = 0 (1.7)

for all p,q,r,s ∈A. If A = R = Z, this is an equivalent definition of an elliptic divisibility sequence. By
the rank of an elliptic net we shall mean the rank of A.

As is the case for rank one, elliptic nets of any rank are closely tied to elliptic curves. Part II of this
thesis makes this correspondence explicit. Let K be any field. We generalise the concept of division
polynomials to that of net polynomials Ψv ∈ En(K) for v ∈ Zn, and show that these polynomials
(actually rational functions) generate all elliptic nets from n-tuples of points P = (P1, . . . ,Pn) ∈ En.
That is, the function WE ,P : Zn→K given by

WE ,P(v) = Ψv(P) (1.8)

is an elliptic net, and all elliptic nets from Zn to K arise in this manner for some choice of curve E over
K and n-tuple P ∈ E(K)n. Certain elliptic nets (called singular) arise from singular cubic Weierstrass
curves.

The hope of defining such higher rank elliptic divisibility sequences via a recurrence was briefly
discussed in correspondence by Noam Elkies, James Propp and Michael Somos in 2001 [55]. As we
shall see in Section 2.2, over Q, elliptic divisibility sequences arise as the denominators of the multiples
[n]P of the point P on E . Around the same time, Graham Everest, Victor Miller, Peter Rogers, Nelson
Stephens and Thomas Ward mused about the collection of denominators of the points [n]P + [m]Q
(as n and m vary) and their number-theoretical properties [19, 21, 56].

Any rank one subnet of an elliptic net (i.e., the restriction to any line passing through the origin in
the array of numbers) is an elliptic divisibility sequence. Christine Swart [68] and Alf van der Poorten
[73] have also studied translated elliptic divisibility sequences, which correspond in this context to
collections of terms of the form W ((a,nb)) in an elliptic net defined on A = Z2 for fixed a and b as n
varies (i.e., the restriction to any line not necessarily passing through the origin). Marco Streng studies
a slightly different generalisation for elliptic curves with complex multiplication [67].

To be precise about the relationship given by equation (1.8), let us set some terminology. Suppose
K is a field. We call a set of non-zero points {P1, . . . ,Pn} on the non-singular part C0 of a cubic Weier-
strass curve C appropriate if Pi 6=±Pj for any i 6= j and if [2]P1 and [3]P1 are nonzero in the case n = 1.

7

An elliptic net is called degenerate if it vanishes at any of the standard basis vectors or their pairwise
sums or differences in Zn (or, if n = 1, at 2 or 3). We call two elliptic nets W1 and W2 scale equiva-
lent if W1(v) = f (v)W2(v) for some quadratic function f : A→ K∗. Finally, a change of variables is
unihomothetic if it is of the form

x ′ = x + r,
y′ = y + sx + t.

Theorem 1.3.1 (Introductory version of Theorem 9.2.1). For each field K, there is an explicit bijection

scale equivalence classes of
non-degenerate elliptic nets
W : Zn→K for some n

 //

tuples (C,P1, . . . ,Pm) for some m, where C
is a cubic curve in Weierstrass form over K,
considered modulo unihomothetic changes
of variables, and such that {Pi} ∈C0(K)m

is appropriate

oo .

These are partially ordered sets and the bijection preserves the ordering: elliptic nets are ordered
by a natural notion of restriction (for any inclusion of their domains) and tuples of points are ordered
by the subgroup ordering on the groups they generate. The bijection takes a net of rank k to a tuple
with k points.

The proof of this bijection is the primary purpose of Part II. The structure of the proof is roughly
as follows. The difficult part of the argument is to create the elliptic net from the elliptic curve. To
do so over the complex numbers using Weierstrass’ σ function is relatively straightforward: in this
way we define functions Ωv and show that they form an elliptic net using complex function theory.
We then wish to create the net polynomials Ψv analogous to the division polynomials, which should
agree with the Ωv over C. It is necessary to understand the recursive structure of an elliptic net
sufficiently to do two things: first, give a generating collection of initial terms (a baseset) from which
every other term can be calculated with applications of the recurrence relation; and second, control
the amount of division required in such calculations to draw conclusions about the form of general
terms as functions of the initial terms. We define the Ψv in general by calculating them explicitly from
the Ωv on a baseset, and defining the rest recursively. Then, equality of the Ωv and Ψv on the baseset
gives us equality on the entire elliptic net. Through our understanding of the recursive structure, we
then proceed to determine conditions on the shape of the Ψv as polynomials in certain variables. In
the rank one case, we can define an elliptic net associated with any elliptic curve over any field: we
can do this because the division polynomials have Z coefficients and do not vanish modulo primes p.
We show the corresponding conditions for net polynomials using the recurrence structure and some
number-theoretical arguments, and this allows us to define an elliptic net from any curve and tuple of
points over any field using a geometrical argument. Finally, we derive formulæ for going in the other
direction, from net to curve, and, collecting our results, we have the bijection stated in Theorem 1.3.1.

In the course of proving the curve-net bijection, we discover numerous properties of elliptic nets
and net polynomials. Among these is a Laurentness property.

Theorem 1.3.2 (Introductory version of Theorem 4.4.1). The terms of an elliptic net are generated

8

by the recurrence relation from a finite set of initial terms. Furthermore, the terms are Laurent
polynomials in a set of initial terms of size 4 for rank one, and size no larger than 3n− 1 for rank
n > 1.

We also show that the net polynomials exist for any elliptic curve over any field, and have a certain
restrictive form. In the following theorem δ and γ4 are defined for the elliptic scheme in the theorem
analogously to the usual way ∆ and c4 are defined for elliptic curves.

Theorem 1.3.3 (Introductory version of Theorem 7.1.1). Let

f (x,y) = y2 +α1xy +α3y−x3−α2x2−α4x−α6

define an elliptic scheme EZ over the ring R = Z[α1, . . . ,α6] localised at (δ) and (γ4). Let n ≥ 1.
There exist rational functions Ψv on En

Z for each v = (v1, . . . ,vn) ∈ Zn satisfying the following
properties:

1. The Ψv satisfy the recurrence (1.7) in terms of v.

2. Ψv = 1 whenever v = ei for some 1≤ i ≤ n or v = ei +e j for some 1≤ i < j ≤ n. (Here e1, . . . ,en

represent the standard basis vectors in Zn.)

3. For each j = 1, . . . ,n, let p j : En → E be the projection onto the j -th factor, and let s : En → E
be summation of all factors. Then

div(Ψv) = ([v1]× . . .× [vn])∗s∗(O)− ∑
1≤k< j≤n

vkv j (p∗k× p∗j)s
∗(O)−

n

∑
k=1

(
2v2

k −
n

∑
j=1

vkv j

)
p∗k(O).

4. The Ψv can be expressed as polynomials in the ring

Rn = Z[α1,α2,α3,α4,α6][xi ,yi]
n
i=1

[
(xi −x j)

−1
]

1≤i< j≤n

/〈
f (xi ,yi)

〉n
i=1 ,

where the xi and yi are the rational functions ℘ and ℘′ respectively on the i-th component of
En

Z .

Among the properties Ward was interested in were some he called ‘symmetry properties.’ Con-
sider an elliptic divisibility sequence, such as

1,1,−3,11,38,249,−2357,8767,496035,−3769372,−299154043,

−12064147359,632926474117,−65604679199921,−6662962874355342,

−720710377683595651,285131375126739646739,

5206174703484724719135,−36042157766246923788837209, . . . (1.9)

This sequence, when reduced modulo 11, becomes

1,1,8,0,5,7,8,0,1,9,10,0,3,7,6,0,3,1,10,0,1,10,8,0,5,4,8,

0,1,2,10,0,3,4,6,0,3,10,10,0,1,1,8,0,5,7,8,0,1,9, . . . (1.10)

9

Sequence (1.9) is the sequence associated to the curve y2 +y = x3 +x2−2x and point P = (0,0), while
(1.10) is the sequence associated to the curve and point under reduction modulo eleven, i.e., curve
y2 + y = x3 + x2 + 9x and point P̃ = (0,0) over F11. The point P̃ has order 4 since this is the index at
which the first zero appears in (1.10). However, the sequence evidently has period 40, illustrating the
important remark that an elliptic divisibility sequence or elliptic net is not a function on the points of
the curve (in this case, the cyclic group generated by P).

Ward showed that elliptic divisibility sequences modulo a prime, while not necessarily periodic
with the same order as the associated point, do have a sort of ‘partial periodicity’ pattern with respect
to that order. For any prime p, let r be the smallest positive index at which the sequence is divisible by
p (in (1.10), this is 4). This r is called the rank of apparition, and is equal to the order of the associated
point on the curve over Fp. Ward showed that for any sequence and prime p, there exist integers a
and b such that

W (k + sr)≡W (k)aksbs2
mod p

for all s and k (see Theorem 2.6.2). In the example above a = 8 and b = 2.
For higher rank n, we replace the notion of a rank of apparition with a lattice of apparition, the

sublattice of Zn of indices at which the net vanishes modulo p. In general, we call the sublattice of Zn

where an elliptic net vanishes a lattice of zero-apparition, so that the lattice of apparition mod p is
the same as the lattice of zero-apparition for the elliptic net considered as taking values in Fp. Ward’s
result generalises as follows.

Theorem 1.3.4 (Introductory version of Theorem 10.2.3). Suppose that WE ,P is a non-degenerate
elliptic net of rank n with values in a field K and with lattice of zero-apparition Γ. For any r ∈ Γ

and k ∈ Zn\Γ, define
g : Γ× (Zn\Γ)→K∗

by

g(r,k) =
WE ,P(r+k)

WE ,P(k)
.

Then g is a quadratic function where defined, which is affine linear in the second factor in the sense
that

g(r,k1 +k2)− g(r,k1)− g(r,k2)+ g(r,0) = 0.

The proof depends on understanding how elliptic nets for the same curve relate to one another.
The following very important ‘transformation property’ is used in the proof of Theorem 1.3.4 and
repeatedly throughout the thesis.

Theorem 1.3.5 (Introductory version of Theorem 10.1.1). Let T be any n×m matrix. Let P ∈ Em,
v ∈ Zn. Then

WE ,P(T tr(v)) = WE ,T (P)(v)
n

∏
i=1

WE ,P(T tr(ei))
v2

i −vi (∑ j 6=i v j) ∏
1≤i< j≤n

WE ,P(T tr(ei +e j))
vi v j

10

In particular, the two elliptic nets

WE ,P ◦T tr : Zn→K, and WE ,T (P) : Zn→K

are scale equivalent.

1.4 Deeper connections

The proofs of partial periodicity for elliptic nets demonstrated in the last section flow eventually from
the theory of elliptic functions over the complex numbers (when traced to its roots, the proof is a
generalisation of the method of Ward demonstrated in Theorem 2.6.2). A central paradigm to the
study of elliptic nets is that the arithmetic of the nets is explained by the geometry of the underlying
curves. These proofs leave unanswered the question of the underlying geometry.

In Part III of the thesis, we partially answer this question. The answer lies in the theory of gen-
eralised Jacobians, biextensions and Tate-Lichtenbaum and Weil pairings for elliptic curves. Let E be
an elliptic curve and S and T two points on that curve. One can form a notion of a Jacobian for the
singular curve obtained from E by identifying S and T . This is a group called the generalised Jacobian
and is an extension of E by Gm. Whenever a sequence of group operations on points Pi in E results
in the identity O, one may take lifts of Pi in the generalised Jacobian and perform the same operations,
in which case the result lies in the fibre over O. This ‘monodromy’ is in some sense the source of the
partial periodicity patterns in the elliptic divisibility sequence or net.

To make this precise, it is convenient to consider the Poincaré biextension, which is a variety X
lying over E×E :

π : X → E×E

with a Gm action. It has the property that its slices π−1(E ×{P}) and π−1({P}×E) describe all of
the generalised Jacobians of E . It can be formed from the Poincaré line bundle by deleting the zero
section. The collection of biextensions can be described via cocyles and coboundaries, just as the
group of extensions can. These cocycles are called factor systems. The factor system for the Poincaré
biextension can be described in terms of elliptic nets, as follows.

Theorem 1.4.1 (Introductory version of Theorem 15.1.1). Let E be an elliptic curve. The Poincaré
biextension is given by a factor system consisting of a single map

Λ : E×E×E →Gm

given by the formula

Λ(Q1,Q2,Q3) =
W (q1 +q2 +q3)W (q1)W (q2)W (q3)
W (q1 +q2)W (q2 +q3)W (q3 +q1)

,

where in this formula, W is an elliptic net associated to E and the points T = (P1, . . . ,Pn), and the qi

are such that qi ·T = Qi on the curve. The resulting value of Λ is independent of the choice of T (so
the choice of T can depend on Q1,Q2,Q3 in general).

11

Since the elliptic net satisfies a recurrence relation, we can make an interesting observation.

Theorem 1.4.2 (Introductory version of Theorem 15.2.1). Let E be an elliptic curve. The Poincaré
biextension for E admits a factor system consisting of one map Λ such that

Λ(X1,X4 +X2,−X2)+Λ(X2,X4 +X3,−X3)+Λ(X3,X4 +X1,−X1) = 0

for all non-zero points X1,X2,X3,X4 ∈ E satisfying the condition that none of the expressions

X4 +Xi (i = 1,2,3), Xi −X j (i, j = 1,2,3, i 6= j), X4 +Xi +X j (i, j = 1,2,3, i 6= j)

vanishes.

Another consequence of Theorem 1.4.1 is formulæ for the Tate-Lichtenbaum and Weil pairings on
the elliptic curve. These pairings are usually defined using cohomological methods, which we review
in Chapter 16. In Chapter 17, we give an abstract definition of two pairings for any biextension, and
show that these are the Tate-Lichtenbaum and Weil pairings for the Poincaré biextension.

Theorem 1.4.3 (Introductory version of Theorems 17.2.1 and 17.2.2). Let Q1,Q2,Q3 be points on an
elliptic curve E and let W be any elliptic net associated to E and points T = (P1, . . . ,Pn) such that we
can find qi ∈ Zn for which qi ·T = Qi on the curve.

The Tate-Lichtenbaum pairing of Q1 ∈ E [m] and Q2 ∈ E is given by

τm(Q1,Q2) =
W (mq1 +q2 +q3)W (q3)
W (mq1 +q3)W (q2 +q3)

(1.11)

and the Weil pairing of Q1,Q2 ∈ E [m] is given by

em(Q1,Q2) =
W (mq1 +q2 +q3)W (q1 +q3)W (mq2 +q3)
W (mq1 +q3)W (q2 +q3)W (q1 +mq2 +q3)

.

(These formulæ are independent of q3 and the choice of T.)

Finally, we return to partial periodicity properties. Let P ∈ E [m]. The Tate-Lichtenbaum self
pairing τm(P ,P) in formula (1.11), for the elliptic net associated to the basis T = (P), becomes(

WE ,P(m +2)

WE ,P(2)

)(
WE ,P(1)

WE ,P(m +1)

)
,

from which the reader may guess that there are relations to the partial periodicity properties (m is the
rank of apparition of the sequence). In general, the formulæ above can be expressed in terms of the
function g of Theorem 1.3.4. We have

τm(P ,Q) =
g(mp,q+ s)

g(mp,s)
,

and
em(P ,Q) =

g(mp,q+ s)g(mq,s)
g(mp,s)g(mq,p+ s)

.

12

1.5 Cryptographic applications

Elliptic nets have several applications to elliptic curve cryptography. The first is to provide a new
algorithm for computing the Tate-Lichtenbaum and Weil pairings. We focus on the Tate-Lichtenbaum
pairing and remark that the Weil pairing may be computed by two applications of the algorithm for
the Tate-Lichtenbaum pairing (see Theorem 17.2.2).

The use of pairings in elliptic curve cryptography was originally suggested as a means of reducing
the discrete logarithm problem on an elliptic curve to the discrete logarithm problem in a finite field [45,
23], but considerable excitement and research has since been generated by public-key cryptographic
applications such as Sakai, Ohgishi and Kasahara’s key agreement and signature schemes [59], Joux’s tri-
partite Diffie-Hellman key exchange [35], and Boneh and Franklin’s identity-based encryption scheme
[7]. Good overviews of the research include [18, 53], while a very up-to-date research bibliography can
be found at [3].

The bottleneck for implementations of pairing-based cryptographic protocols is the costly com-
putation of the pairing, which is most frequently the Tate-Lichtenbaum or Weil pairing, the former
usually being more efficient. Prior to the author’s work, the only polynomial time algorithm was due
to Victor Miller [47, 46] (for an overview of implementions, see [17, 26]).

Theorem 17.2.1 relates elliptic nets and the Tate-Lichtenbaum pairing: it reduces the calculation of
the pairing to the calculation of terms of an elliptic net. Rachel Shipsey’s thesis provides a double-and-
add method of calculating the n-th term of an elliptic divisibility sequence in logn time [61]. The first
step to providing an elliptic net algorithm for pairings is to generalise her algorithm to elliptic nets.

The elliptic net algorithm and Miller’s algorithm are both logn algorithms; the difference is in the
constants. In its nascent form, the elliptic net algorithm is only somewhat slower than an optimised
Miller’s, especially at higher embedding degrees. The elliptic net algorithm has no cryptographically
significant restrictions on the points, curves or finite fields to which it applies, and requires no inver-
sions. One expects that the elliptic net algorithm will yield to further optimisation, possibly providing
an efficient alternative to Miller’s algorithm in many cases. Several groups of researchers are already
working in this direction; we discuss this in Chapter 18.

The elliptic net algorithm for the Tate-Lichtenbaum pairing is an example of a paradigm which
is probably best attributed to Rachel Shipsey: do arithmetic on elliptic curves via the arithmetic of
elliptic nets. Shipsey’s work made use of this approach to solve the elliptic curve discrete logarithm
problem in certain cases already known to be cryptographically insecure. Her work inspired Kristin
Lauter and the author to look more closely at the elliptic curve discrete logarithm problem in the
context of elliptic nets. This joint work4 forms the final chapter of this thesis.

The security of elliptic curve cryptography rests on the assumption that the elliptic curve discrete
logarithm problem is hard.

Problem 1.5.1 (Elliptic Curve Discrete Logarithm Problem (ECDLP)). Let E be an elliptic curve over
a finite field K. Suppose one is given points P ,Q ∈ E(K) such that Q ∈ 〈P〉. Determine k such that

4Performed during an internship at Microsoft Research, Redmond, Washington, September 10, 2007 - December 14, 2007.

13

Q = [k]P.

We define three hard problems in the theory of elliptic divisibility sequences (EDS Association,
EDS Residue and EDS Discrete Log), each of which is solvable in sub-exponential time if and only if
the elliptic curve discrete logarithm problem is solvable in sub-exponential time.

Problem 1.5.2 (EDS Association). Let E be an elliptic curve over a finite field K. Suppose one is given
points P ,Q ∈ E(K) such that Q ∈ 〈P〉, Q 6= O, and ord(P) ≥ 4. Determine WE ,P(k) for the value of
0 < k < ord(P) such that Q = [k]P.

Problem 1.5.3 (EDS Residue). Let E be an elliptic curve over a finite field K. Suppose one is given
points P ,Q ∈ E(K) such that Q ∈ 〈P〉, Q 6= O, and ord(P)≥ 4. Determine the quadratic residuosity
of WE ,P(k) for the value of 0 < k < ord(P) such that Q = [k]P.

Problem 1.5.4 (Width s EDS Discrete Log). Given an elliptic divisibility sequence W and terms
W (k), W (k +1), . . ., W (k + s−1), determine k.

A perfectly periodic elliptic divisibility sequence is one which has a finite period n and whose first
positive index k at which W (k) = 0 is k = n. If a periodic sequence is not perfectly periodic, then it
has n > k. Our main result is as follows.

Theorem 1.5.5 (Introductory version of Theorem 19.8.1). Let E be an elliptic curve over a finite field
K = Fq of characteristic 6= 2. If any one of the following problems is solvable in sub-exponential
time, then all of them are:

1. Problem 1.5.1: ECDLP

2. Problem 1.5.2: EDS Association for non-perfectly periodic sequences

3. Problem 1.5.3: EDS Residue for non-perfectly periodic sequences

4. Problem 1.5.4 (s = 3): Width 3 EDS Discrete Log for perfectly periodic sequences

A secondary purpose of our analysis is to relate these hard problems to the MOV and Frey-Rück
attacks, as well as Shipsey’s attack (on curves where these apply); this relationship stems from the
connection between the Tate-Lichtenbaum pairing and elliptic nets. Finally, this research raises the
interesting question of when terms of an elliptic divisibility sequence or elliptic net over a finite field
are quadratic residues.

1.6 Prerequisites

We will assume the reader is very familiar with elliptic curves. All of the necessary background con-
cerning elliptic curves can be found in [63, 64]. Among the other topics we will assume familiarity
with (listed with references) are: the basic concepts of homological algebra such as fibre products and
cohomology [75, Chapters 1-3]; basic complex function theory [44, Chapter 1]; schemes and algebraic

14

varieties [29, Chapter II], particularly the theory of divisors and line bundles; valuations and number
fields [52, Chapters I-II]; and the basic theory of abelian varieties [38, Chapters I-VI] [51, Chapter
III], particularly duality and the Theorem of the Cube. In general the citations given include much
more than is actually required. Part III, Chapters 12, 13, 14 and 16 provide detailed background on
central extensions, Gm-torsors and line bundles, generalised Jacobians, biextensions and the Weil and
Tate-Lichtenbaum pairings. Part I, Chapter 2 gives all the necessary background on elliptic divisibility
sequences used in the thesis.

Chapter 2

Basic properties of elliptic divisibility
sequences

Our purpose in this chapter is to give an overview of the classical theory and methods of elliptic divis-
ibility sequences. As such, we will include especially those proofs that give a flavour of the methods,
and omit much of the tedium. Citations are given wherever details are missing.

2.1 Making the curve-sequence relation explicit

Ward, in relating sequences and curves in Theorem 1.2.1, gives explicit formulæ for the coefficients of
the Weierstrass equation of the curve and the coordinates of the point, in terms of the initial terms of
the sequence. Christine Swart gives a cleaner collection of equations for this, and it is her version we
describe here. Also, although Ward concerns himself with integer sequences, his formulae and those
of Swart work equally well for rationals. As in the introduction, define a change of variables of a cubic
curve in Weierstrass form to be unihomothetic if it is of the form

x ′ = x + r,
y′ = y + sx + t.

Proposition 2.1.1 ([68, Thm 4.5.3]). Let W : Z→ Q be an elliptic divisibility sequence with W (1) =

1 and W (2)W (3) 6= 0. Then the family of curve-point pairs (C,P) such that W = WC,P is three
dimensional. These are the curve and point

C : y2 +a1xy +a3y = x3 +a2x2 +a4x +a6, P = (0,0)

where

a1 =
W (4)+W (2)5−2W (2)W (3)

W (2)2W (3)

a2 =
W (2)W (3)2 +W (4)+W (2)5−W (2)W (3)

W (2)3W (3)

15

16

a3 = W (2), a4 = 1, a6 = 0

or any image of these under a unihomothetic change of coordinates.

Proof. See Section 8.2.

If we apply a change of variables of the form

x← u2x, y← u3y

to the curve E defined by
y2 +a1xy +a3y = x3 +a2

2 +a4x +a6 (2.1)

and point P = (x,y) ∈ E to obtain a new curve E ′ and point P ′, then the associated elliptic divisibility
sequences satisfy

WE ′,P ′(n) = un2−1WE ,P(n). (2.2)

This is called by some an equivalence of elliptic divisibility sequences. We set our own terminology
later.

2.2 Relations to the group law on the elliptic curve

Suppose we define some auxiliary polynomials φm and ωm by

φm = xΨ
2
m−Ψm+1Ψm−1, (2.3)

4yωm = Ψm+2Ψ
2
m−1−Ψm−2Ψ

2
m+1. (2.4)

Then, one can check that on the curve (2.1),

[m]P =
(

φm(P)
Ψm(P)2 ,

ωm(P)
Ψm(P)3

)
. (2.5)

In particular, when working over Q, and in the case of an integer sequence, whenever φm(P) and Ψm(P)

are relatively prime, the denominator of the x-coordinate of [m]P will be exactly WE ,P(m)2. The
numerators and denominators in (2.5) may involve cancellation. There is no cancellation if P = (0,0),
a6 = 0 and gcd(a3,a4) = 1 [61, §4.4].1

2.3 More on division polynomials

The division polynomials Ψn have a special form.

1This has led some to remark that the ‘correct’ definition of elliptic divisibility sequences is by denominators in such a fashion.
We will not join that camp.

17

Proposition 2.3.1 ([63, Ex 3.7] or [74, V.14]). The division polynomials Ψn have a representation as
polynomials in x and y with coefficients in Z[a1,a2,a3,a4,a6]. In particular, they are of the form

Ψn(x,y) =

 nx
n2−1

2 + . . . n odd

y(nx
n2−4

2 + . . .) n even
.

Therefore, their squares Ψ2
n are polynomials of degree n2−1 in the variable x alone, with coefficients

in Z[a1,a2,a3,a4,a6], and leading coefficient n2. The roots of this polynomial Ψ2
n are exactly the x-

coordinates of all n2−1 non-zero n-torsion points on the associated elliptic curve.

2.4 Induction properties

Proposition 2.4.1. Let W : Z → R be an elliptic divisibility sequence that is nonzero at the first
four terms. Then W (−z) = −W (z) for any z ∈ Z. In particular W (0) = 0. Furthermore, any two
elliptic divisibility sequences W ,W ′ : Z→R that agree and are non-zero at 1,2,3 and 4, must agree
everywhere.

Proof. Our first step is to show the last statement for positively indexed terms (i.e., all positively
indexed terms agree). Two particular instances of the elliptic net equation (3.1) are

W (2n)W (2)W (1)2 = W (n)
(

W (n +2)W (n−1)2−W (n−2)W (n +1)2
)

, (2.6)

W (2n +1)W (1)3 = W (n +2)W (n)3−W (n−1)W (n +1)3. (2.7)

By induction on these equations, every subsequent positive indexed term is determined by W (1),
W (2), W (3), W (4).

Now we show the first statement. Assume without loss of generality that W (1) = 1 (since we can
scale W by a constant). First we show that W (0) = 0. For, consider n = m = 0: in this case (1.2) states
that W (0)2 = 0. Now we consider the statement −W (z) = W (−z). Suppose W (z + 2) 6= 0. Setting
n = 1,m = z + 1 in (1.2), we obtain W (z + 2)W (−z) = −W (z + 2)W (z), whence W (−z) = −W (z)

since W (z + 2) 6= 0. We have now shown the symmetry for z = 0,1,2, hence W (−1) and W (−2)

are nonzero, and so we’ve shown it for z = −3,−4 also. Therefore we’ve shown it for z = 0,1,2,3,4.
Thus, by the first part, the sequences W ′(z) = −W (−z) and W (z) agree on the first four terms and
therefore agree everywhere.

Finally, by the symmetry property just shown, the terms indexed by non-positive integers are also
determined uniquely by W (1), W (2), W (3) and W (4).

Proposition 2.4.2 ([74, Lemma 4.1]). If W is an elliptic divisibility sequence satisfying W (1) = 1 and
W (2)W (3) 6= 0, and if two consecutive terms vanish, then W (n) = 0 for n ≥ 4.

Proof. See [74, Lemma 4.1].

18

2.5 The integer case

From Proposition 2.3.1, any rational elliptic divisibility sequence can be made into an integer sequence
by an appropriate equivalence of the form (2.2), clearing the denominators.

Proposition 2.5.1 ([74, Thm 4.1]). Suppose W is an elliptic divisibility sequence satisfying W (1) = 1,
W (2)W (3) 6= 0 and W (2)|W (4), and W (i)∈Z for i = 1,2,3,4. Then, the sequence is entirely integer
and for all n,m ∈ Z,

n|m =⇒ W (n)|W (m).

Proof. We provide a sketch. For a complete proof, see [74, Thm 4.1]. Recall equations (2.6) and (2.7):

W (2n)W (2)W (1)2 = W (n)
(

W (n +2)W (n−1)2−W (n−2)W (n +1)2
)

,

W (2n +1)W (1)3 = W (n +2)W (n)3−W (n−1)W (n +1)3.

A first induction shows that all terms are integers, and W (2)|W (2n) for every n. Then, a second
induction shows the divisibility property in general: for this, we use the following equations (the first
in the case that m is even, the second in the case that it is odd):

W (nm)W (2) = W
(nm

2
)(

W
(nm

2 +2
)

W
(nm

2 −1
)2−W

(nm
2 −2

)
W
(nm

2 +1
)2
)

, (2.8)

W (nm)W (n) = W
(

n(m+1)
2 +1

)
W
(

n(m+1)
2 −1

)
W
(

n(m−1)
2

)2
(2.9)

−W
(

n(m−1)
2 +1

)
W
(

n(m−1)
2 −1

)
W
(

n(m+1)
2

)2
. (2.10)

This second induction uses Proposition 2.4.2.

2.6 Periodicity modulo p

Definition 2.6.1. For an integer elliptic divisibility sequence W , let r denote the smallest positive
integer such that W (r)≡ 0 mod p. The integer r is called the rank of apparition of W with respect
to p.

Proposition 2.6.1 ([74, Thm 5.1]). For any integer elliptic divisibility sequence and prime p, the rank
of apparition r with respect to p exists and satisfies

1≤ r ≤ 2p +1.

Proof. Without loss of generality, we may assume r ≥ p +3. Then consider the p values

W (r−1)W (r +1)
W (r)2 ,

19

each of which is a non-zero value modulo p. By the pigeonhole principle2, two must coincide, and we
have for some 1≤ n < m ≤ p−1,

W (m−1)W (m +1)
W (m)2 ≡W (n−1)W (n +1)

W (n)2 mod p.

Then, the elliptic divisibility sequence recurrence (1.2) implies

W (m +n)W (m−n)≡ 0 mod p.

By our assumption that r ≥ p + 3, and the fact that m−n ≤ p− 2, we conclude that W (m−n) 6≡ 0
mod p, and so

W (m +n)≡ 0 mod p.

But m +n ≤ 2p +1.

By the nice properties of the division polynomials (Proposition 2.3.1), we can reduce them modulo
a prime p, and the reduced division polynomials will correspond to the elliptic curve and point reduced
modulo the same prime. In particular, it will still be the case that Ψn(P) ≡ 0 modulo p if and only if
[n]P̃ = Õ on the reduced curve. So, if W is such that W (1) = 1, W (2)W (3) 6= 0 and W (2)|W (4),
then the sequence arises from some curve E and point P (by Theorem 1.2.1). In this case Shipsey [61,
§4.7.2] observes that Hasse’s bound on the number of points of a curve over a finite field implies that
for most primes p, the rank of apparition satisfies the stronger bound

r ≤ p +1+2
√

p.

Ward proves a very interesting and important ‘symmetry’ or ‘partial periodicity’ property.

Theorem 2.6.2 ([74, Thm 9.2]). Let W be an integer elliptic divisibility sequence such that W (1) = 1
and W (2)|W (4). Let p be an odd prime and suppose W (2)W (3) 6≡ 0 mod p. Let r be the rank
of apparition of W with respect to p. Then there exist integers a,b such that for all non-negative
integers k and s, we have

W (k + sr)≡ aksbs2
W (k) mod p.

Furthermore, the integers a and b satisfy

a ≡ W (r−2)
W (r−1)W (2)

, b ≡W (r−1)2W (2)
W (r−2)

mod p.

The proof uses the periodicity of the Weierstrass sigma function, and the reader is encouraged to
look ahead to Chapter 5, especially equation (5.1).

Proof. By Theorem 1.2.1, W is associated to some curve E and point P . Let z be the complex coordi-
nate of the point P , so that P = (℘(z),℘′(z)). The roots of Ψ2

n(x) = 0 over C are of the form

ζ =℘(ω/n)
2My advisor is fond of boosting the confidence of his struggling graduate students by asserting that his own thesis consisted

in large part of a single application of pigeonhole principle. For this, and his rumoured – but surely feigned – occasional
confusion over the correct definition of a topology, we are ever grateful.

20

where ω is a period of the Weierstrass ℘ function. By Proposition 2.3.1, the polynomial Ψ2
n(x) has

leading coefficient n2 and coefficients in Z[a1,a2,a3,a4,a6]. Hence, Ψ2
n(x) is a well-defined polynomial

of degree n2 modulo p for any p - n.
Now, assume for the moment that p - r .
Let K be the number field obtained by adjoining all the roots of Ψ2

r(x) and let p be a prime of K
that divides p. Then Ψ2

r splits in the finite field K/p. Since its value at P is zero, ℘(z) is a root modulo
p, i.e.,

℘(z)≡℘(ω/r) mod p

for some period ω . Thus, the sequence W under consideration agrees modulo p with the sequence
W ′

n = Ψn(ω/r). Since W modulo p reduces to integers modulo p (i.e., its image is in Q/(p)⊂K/p), it
suffices to replace W in our consideration with W ′ and show the formulæ of the theorem modulo p.

The formula of the Theorem now results from a calculation using the period relation (5.1) of the
Weierstrass σ function:

Ψk+sr

(
ω

r
)

Ψk

(
ω

r
) =

σ
(
(k + sr)ω

r
)

σ
(
k ω

r
) σ

(
ω

r
)−2rsk−r2s2

= λ (sω)eη(sω)(k sω
r +s ω

2)σ
(

ω

r
)−2rsk−r2s2

=
(

σ
(

ω

r
)−2r eη(ω) ω

r

)ks
(

λ (ω)σ
(

ω

r
)−r2

eη(ω) ω

2

)s2

.

For the case when p|r , there are some additional difficulties, and the reader should consult [74, Thm
9.2]. Finally, note that the final statement of the theorem (the formulæ for a and b) follows immediately
from the existence of a and b.

Ayad and Swart generalise partial periodicity to the case of prime power moduli [2, Thm C] [68,
Thm 5.1.3]. Their proofs have the additional attraction that they require only the recurrence relation
and not the underlying elliptic curve relationship.

Our interest in Ward’s original proof is to demonstrate a strategy that we will apply later: first,
show that the functions in question (in this case the division polynomials) have a nice form (i.e., they
are defined with Z coefficients and reduce modulo p without becoming trivial); second, verify the
property of interest (in this case the periodicity property) in the complex analytic case; third, using
the information from step one, transport the property to the finite field (or other field) case.

For a wealth of periodicity properties of elliptic divisibility sequences modulo primes and powers
of primes, see Swart [68].

Part II

Moving to higher rank

21

Chapter 3

Elliptic nets

We now introduce the main character of our story: the elliptic net.

3.1 Definitions and properties

Definition 3.1.1. Let A be a free finitely-generated abelian group, and let R be an integral domain. An
elliptic net is any map W : A→R such that the following recurrence holds for all p, q, r , s ∈A.

W(p +q + s)W(p−q)W(r + s)W(r)

+W(q + r + s)W(q− r)W(p + s)W(p)

+W(r + p + s)W(r− p)W(q + s)W(q) = 0 (3.1)

We refer to the rank of A as the rank of the elliptic net . Elliptic nets of rank one are elliptic divis-
ibility sequences, since (1.2) is a special case of (3.1). That the converse holds is a consequence of the
Curve-Net Theorem (Theorem 9.2.1), but should be susceptible of an elementary proof. Unfortunately
the author does not know of one.

Nelson Stephens has pointed out in conversation that another form of the elliptic net recurrence
relation is

W(a +b)W(a− c)W(c +d)W(c−d)

+W(a + c)W(a− c)W(d +b)W(d −b)

+W(a +d)W(a−d)W(b + c)W(b− c) = 0 (3.2)

where each term corresponds to a cyclic permutation of (bcd). This can be seen by the substitution
s← 2a, r ← b−a, p← c−a, q← d −a. Unfortunately, this is slightly less general, since in this case
s is necessarily even.

Proposition 3.1.1. Let W : A→ R be an elliptic net. Then W (−z) = −W (z) for any z ∈ A. In
particular W (0) = 0.

22

23

Proof. First we show that W (0) = 0. Consider p = q = r = s = 0: in this case (3.1) states that
3W (0)4 = 0. Now we consider the general statement. If W (−z) = W (z) = 0, we are done. If not,
then without loss of generality, assume W (z) 6= 0. Setting p = q = z,r = s = 0 in (3.1), we obtain
0+W (z)4 +W (z)3W (−z) = 0, whence W (−z) =−W (z).

Proposition 3.1.2. Suppose that B ⊂ A is a subgroup of A. Then the restriction of an elliptic net
W : A→R to B is also an elliptic net.

We refer to this elliptic net as the subnet associated to B and write W |B .

3.2 Examples

We begin with some trivial examples, easily verified by a simple calculation.

Example 3.2.1. The map W : Zn→R defined by W (v) = 0 for all v is an elliptic net.

Example 3.2.2. The map W : Zn → Zn defined by W (v) = v is an elliptic net. The elliptic net W ′ :
Z→ Zn defined by W ′(n) = W (0, . . . ,0,n) is an elliptic subnet of W (this follows from this example
and Example 3.2.1).

Since there is a projection Zn→ Z onto any coordinate, we have also some other examples.

Example 3.2.3. For any 1≤ i ≤ n, the map Wi : Zn→ Z defined by W (v) = vi is an elliptic net.

Since there is a ring homomorphism Z→ R for any ring R, the above give basic examples for all
rings R. If c is a constant, and W is an elliptic net, so is cW .

Now we consider some more interesting examples.

Example 3.2.4 (Due to M. Ward [74]). Consider the elliptic net W : Z→ Z given by

W (n) =
(n

3

)
=

0 3|n
1 n ≡ 1 mod 3
−1 n ≡−1 mod 3

The proof that this is an elliptic net is as follows. First, the Legendre symbol is multiplicative, so
each term of the recurrence relation (3.1) takes value −1,0,1 according to the modulo 3 residue of the
product of the indices of the term. Therefore, we analyse the modulo 3 residue of the three products
(p +q + s)(p−q)(r + s)r , (q +r + s)(q−r)(p + s)p and (r + p + s)(r− p)(q + s)q. By Example 3.2.2,
we know that these three products add up to zero. We claim that at least one of them is zero. For, if
not, then none of p, q, r , p−q, q−r or r− p is divisible by 3. So p,q,r are distinct nonzero elements
of Z/3Z, a contradiction. Therefore at least one product vanishes modulo 3; we claim that the other
two products are either both divisible by 3, or else distinct as residues modulo 3. For, if they were the
same and non-zero modulo 3, then their sum would not be divisible by 3, a contradiction. Hence, the
residues of the three products are either {0,0,0} or {−1,0,1} in some permutation. Thus the values
of W (n) satisfy the recurrence relation.

There are more interesting examples in the case of R = C.

24

Example 3.2.5 (Lucas, as described by [74]). Fix some x ∈ C and consider the sequence

W (n) =
sin(nx)
sin(x)

=
einx − e−inx

eix − e−ix .

It is a tedious computation to verify that W is an elliptic net. For any a,b ∈C satisfying ab = 1, there
is some x ∈ R such that a = eix ,b = e−ix . If a,b,c ∈ C satisfy c2 = ab, then we define W ′ to be

W ′(n) = c1−n an−bn

a−b
.

It follows that this is an elliptic net also, by considering a′ = a/c,b′ = b/c. This family includes the
elliptic net

WF (n) = in−1Fn,

where Fn are the Fibonacci numbers , defined by F1 = F2 = 1,Fn = Fn−1 + Fn−2 and arising from a,b
roots of x2−x−1. It also includes the elliptic net

WM(n) =
√

2
1−n

(2n−1)

related to the Mersenne numbers Mn = 2n−1 .
From the equation x2 +3x +1, we obtain a,b = 3±

√
5

2 and the elliptic net

W2F (n) = F2n

of the even-indexed Fibonacci numbers. The first few terms of this net are

1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, 832040, . . .

Proposition 3.2.1. Fix n, and R an integral domain. If v ∈ Zn is such that W (v) = 0 for all elliptic
nets W : Zn→R, then v = 0.

Proof. I claim that for any m,k, there is an elliptic net W : Z→ Z (chosen depending on m,k) such
that W (k) /∈ (m). First, if k /∈ (m), then W (n) = n will do. Next, recall that gcd(F2n,n) = 1 for all
n 6= 5 [72, p.84]. We also have that (5

3) = −1. So it suffices to choose among W (n) = n, W (n) = F2n

or W (n) =
(n

3
)

(Examples 3.2.2, 3.2.5, 3.2.4).
Let φ : Z→ R be the map given by r 7→ r · 1. Let (m) be the kernel of this map, where m ∈ Z.

Suppose that v 6= 0. Then there is some non-zero coordinate vi . Choose W : Z→ Z as above so that
W (vi) /∈ (m). Then φ(W (Wi(v))) 6= 0 for the elliptic net φ ◦W ◦Wi : Zn →R (see Example 3.2.3 for
definition of Wi).

The most interesting examples must wait until we have proven much of the general theory. But as
a preview, here is an illustration of a portion of an elliptic net of rank 2 that is typical of those studied
in this thesis.

Example 3.2.6. In a way to be defined in Chapter 5, the following elliptic net is associated to the
elliptic curve y2 +y = x3 +x2−2x and the points P = (0,0), Q = (1,0) on that curve. The array shows

25

the first quadrant of the elliptic net, with the origin (W (0,0) = 0) in the lower left. For example,
W (3,2) =−13.

4335 5959 12016 −55287 23921 1587077 −7159461
94 479 919 −2591 13751 68428 424345
−31 53 −33 −350 493 6627 48191
−5 8 −19 −41 −151 989 −1466
1 3 −1 −13 −36 181 −1535
1 1 2 −5 7 89 −149
0 1 1 −3 11 38 249

Chapter 4

The joy of induction

4.1 Proofs by induction

Induction is surely the favourite pastime of any recurrence relation; we will find it convenient to set
some notation and terminology.

Definition 4.1.1. Let I be a group, called the indexing group, whose elements are called indices. The
term associated to i is the symbol Ti . Equations in a finite number of the Ti using addition, subtraction
and multiplication of the terms are called recurrence relations.

Fix a set R of recurrence relations. We say that an index i ∈ I is implied by a set J ⊂ I if either
i ∈ J or some element r of R satisfies the following conditions:

1. There is exactly one occurence of Ti among the terms of r .

2. The other terms of r are indexed by elements of J.

3. All the terms in the monomial with Ti are indexed by non-zero elements of I .

Let S ⊂ I be a finite set. We say that i is S-integrally implied by J if in addition the monomial
containing Ti consists only of Ti and terms indexed by S. A set K ⊂ I is (S-integrally) implied by the
set J if every index in K is (S-integrally) implied by J.

A set B ⊂ I is an (S-integral) baseset for T if the following condition holds: For each index i ∈ I ,
there is a finite sequence J0 ⊂ J1 ⊂ ·· · ⊂ Jn such that B = J0, i ∈ Jn and for each 1 ≤ k ≤ n, Jk is
(S-integrally) implied by Jk−1.

In our case, the indexing set will be the group A ∼= Zn for some n. The set R will be all instances
of the recurrence relation

Tp+q+sTp−qTr+sTr +Tq+r+sTq−rTp+sTp +Tr+p+sTr−pTq+sTq = 0

(which is just (3.1)) as p,q,r,s range over A.

26

27

In the induction proofs of the next section, the game is to show that all elements are implied or
S-integrally implied by a baseset. To do this, we will construct the sets J1,J2, . . . by induction. At each
stage, we show that an index is implied simply by stating which is the relevant element of R.

In generating terms from a baseset using induction in this way, one never obtains a zero term as
a polynomial in the baseset terms. For, if we did, this term would be zero in all elliptic nets, a fact
contradicting Proposition 3.2.1. Therefore, condition 3 above really is sufficient to avoid division by
zero in the context of these abstract proofs.

The set R is an image of a homomorphism of Z-modules F : A4 → A12, and as such forms a Z-
module itself. That is to say, the recurrence relation (3.1) is given by the 12 indices in A whose terms
are related. This will be written as

F (p,q,r,s) = [p+q+ s,p−q,r+ s,r | q+ r+ s,q− r,p+ s,p | r+p+ s,r−p,q+ s,q] .

In the case of column vector notation, for example if

p =

1
0
0

 ,q =

0
1
0

 ,r =

0
0
1

 ,s =

0
0
0

 ,

then we can write a recurrence compactly as an array, such as

1 0 0 0
0 1 0 0
0 0 1 0

1 1 0 0
1 −1 0 0
0 0 1 1

∣∣∣∣∣∣∣∣
0 0 1 1
1 1 0 0
1 −1 0 0

∣∣∣∣∣∣∣∣
1 −1 0 0
0 0 1 1
1 1 0 0

 . (4.1)

In this notation, the terms to the left of the square braces correspond to the columns of p, q, r and s,
while the indices of the terms of the recurrence appear as the columns within the square braces.

To demonstrate that an index i is (S-integrally) implied by a set of indices S, it suffices to write
down an appropriate such array. We remark that any array of the form (4.1) is a recurrence if each row
is a recurrence. Therefore we may construct examples row-by-row.

One final note. By Proposition 3.1.1, when an index i is implied, the index −i is also taken to be
immediately implied. This will often be implicit.

The following definition will sometimes be used to order the inductions.

Definition 4.1.2. Let
N (v) = max

i=1,...,n
|vi |

be the norm of the vector v or the term W (v).

4.2 Basesets for ranks 1 and 2

The rank one case is a result of Morgan Ward.

28

Theorem 4.2.1 (Ward [74, Thm 4.1]). Let W : Z→R be an elliptic net. Then all W (v) are polynomials
in {

W (1),W (1)−1,W (2),W (3),
W (4)
W (2)

}
with Z-coefficients.

In particular, if W (1) = 1, the W (i) are integers for i = 2,3,4 and W (2) divides W (4), then the
elliptic net consists entirely of integers.

For the rank two case, we require a lemma.

Lemma 4.2.2. Let W : Z2→ R be an elliptic net. Then all W (z) are polynomials with integer coeffi-
cients in

B = {W (v) : N (v)≤ 4}∪{W (1,0)−1,W (0,1)−1,W (1,1)−1}.

Proof. Let
S = {(1,0),(0,1),(1,1)}.

The proof proceeds by induction on the norm. Clearly any W (v) for v∈B is a polynomial with integer
coefficients in terms of B. Now suppose that all terms with indices of norm less than N0 ≥ 4 are such
polynomials. Call the set of such indices T . Suppose v is an index of norm N0. We will construct the
recurrence demonstrating that v is S-integrally implied by T .

We construct examples row-by-row. For each i = 1,2, let wi be defined by

wi =

{
vi/2, vi even
(vi +1)/2, vi odd

.

Case I: v has exactly one odd entry and one even entry. For the odd entry, we use the row

F (wi ,wi −1,0,0) =
[

vi ,1,0,0
∣∣ wi −1,wi −1,wi ,wi

∣∣ wi ,−wi ,wi −1,wi −1
]
.

For the even entry, we use the row

F (wi ,wi ,1,0) =
[

vi ,0,1,1
∣∣ wi +1,wi −1,wi ,wi

∣∣ wi +1,−wi +1,wi ,wi
]
.

Case II: v has exactly two odd entries. For the first odd entry, use

F (wi ,wi −1,0,0) =
[

vi ,1,0,0
∣∣ wi −1,wi −1,wi ,wi

∣∣ wi ,−wi ,wi −1,wi −1
]
.

For the second odd entry, use

F (wi ,wi −1,1,0) =
[

vi ,1,1,1
∣∣ wi ,wi −2,wi ,wi

∣∣ wi +1,−wi +1,wi −1,wi −1
]
.

Case III: v has two even entries. For the first even entry, use

F (wi ,wi −1,0,1) =
[

vi ,1,1,0
∣∣ wi ,wi −1,wi +1,wi

∣∣ wi +1,−wi ,wi ,wi −1
]
.

For the second even entry, use

F (wi ,wi ,1,0) =
[

vi ,0,1,1
∣∣ wi +1,wi −1,wi ,wi

∣∣ wi +1,−wi +1,wi ,wi
]
.

29

For even vi , either |vi | ≤ 2 or |vi | > 3. In the former case, |wi |+ 1 ≤ 2 < N0. In the latter case,
we have |wi |+ 1 ≤ (|vi |+ 2)/2 < |vi | ≤N0. For odd vi , either |vi | ≤ 3 or |vi | > 4. In the former case
|wi |+2≤ 4≤N0. In the latter case, we have |wi |+2≤ (|vi |+5)/2 < |vi | ≤N0.

Therefore all the vectors in the recurrence have norm less than N0 with the exception of v. In the
monomial of v in the recurrence, the other indices are (1,0), (0,1) or (1,1). This demonstrates that v
is integrally implied by the set of indices of norm strictly less than N0, and we are done.

Theorem 4.2.3. Let W : Z2→R be an elliptic net. Then all W (v) are polynomials in{
W (1,1),W (1,0),W (0,1),W (1,1)−1,W (1,0)−1,W (0,1)−1,W (2,1),W (1,2),

W (2,0),W (0,2),
W (0,2)W (2,1)W (1,0)−W (0,1)W (2,0)W (1,2)

W (0,1)3W (2,1)−W (1,0)3W (1,2)

}
with Z-coefficients.

In particular, if W (1,0) = W (0,1) = W (1,1) = 1, the terms W (2,0), W (0,2), W (1,2), W (2,1)

are integers and W (2,1)−W (1,2) divides W (0,2)W (2,1)−W (2,0)W (1,2), then all terms of the
elliptic net are integers.

Proof. We have the recurrence

0 1 1 0
1 1 0 0

[
1 −1 1 1
2 0 0 0

∣∣∣∣∣ 2 0 0 0
1 1 1 1

∣∣∣∣∣ 1 1 1 1
1 −1 1 1

]
.

And so

W (1,−1) =
W (0,1)3W (2,1)−W (1,0)3W (1,2)

W (1,1)3 . (4.2)

Let
S = {(1,0),(0,1),(1,1),(1,−1)}.

Let
B = {v ∈ Z2 : N (v)≤ 4}.

By Lemma 4.2.2, it is only required to verify the truth of the statement for v of norm less than or equal
to 4. To do so, we demonstrate term-by-term that B is S-integrally implied by the set

{(1,0),(0,1),(1,1),(2,0),(0,2),(2,1),(1,2)}.

We list the relevant recurrences in order. It is assumed at each step that the calculation of W (a,b)

also calculated W (−a,−b) = −W (a,b). We prefix each recurrence by the element whose index it is
meant to imply.

W (2,−1) :
−1 0 1 1

1 1 0 0

[
0 −1 2 1
2 0 0 0

∣∣∣∣∣ 2 −1 0 −1
1 1 1 1

∣∣∣∣∣ 1 2 1 0
1 −1 1 1

]
.

W (1,−2) :
0 1 1 0
−1 −1 0 0

[
1 −1 1 1
−2 0 0 0

∣∣∣∣∣ 2 0 0 0
−1 −1 −1 −1

∣∣∣∣∣ 1 1 1 1
−1 1 −1 −1

]
.

30

W (2,2) :
1 1 −1 0
1 2 1 −1

[
2 0 −1 −1
2 −1 0 1

∣∣∣∣∣ 0 2 1 1
2 1 0 1

∣∣∣∣∣ 0 −2 1 1
1 0 1 2

]
. (4.3)

Note that in (4.3), the calculation of W (2,2) requires division by W (1,−1).

W (2,−2) :
1 1 −1 0
−1 −2 −1 1

[
2 0 −1 −1
−2 1 0 −1

∣∣∣∣∣ 0 2 1 1
−2 −1 0 −1

∣∣∣∣∣ 0 −2 1 1
−1 0 −1 −2

]
.

At this point we have implied all indices of norm at most 2.

W (3,0) :
2 1 0 0
0 0 1 0

[
3 1 0 0
0 0 1 1

∣∣∣∣∣ 1 1 2 2
1 −1 0 0

∣∣∣∣∣ 2 −2 1 1
1 1 0 0

]
.

W (3,1) :
2 1 0 0
1 0 1 0

[
3 1 0 0
1 1 1 1

∣∣∣∣∣ 1 1 2 2
1 −1 1 1

∣∣∣∣∣ 2 −2 1 1
2 0 0 0

]
.

W (3,2) :
2 1 0 0
1 1 1 0

[
3 1 0 0
2 0 1 1

∣∣∣∣∣ 1 1 2 2
2 0 1 1

∣∣∣∣∣ 2 −2 1 1
2 0 1 1

]
.

W (3,3) :
2 1 1 0
2 1 0 0

[
3 1 1 1
3 1 0 0

∣∣∣∣∣ 2 0 2 2
1 1 2 2

∣∣∣∣∣ 3 −1 1 1
2 −2 1 1

]
.

Simply by switching top rows with bottom rows, we similarly calculate W (0,3), W (1,3), and W (2,3).
And by putting negatives on the second rows, we imply the indices (1,−3), (2,−3), (3,−3), (3,−2)

and (3,−1). Note that some of these calculations appear to require division by W (1,−1). However,
in each case that this occurs, the other two terms are divisible either by W (1,−1) or W (2,−2). But
W (1,−1) divides W (2,−2) by (4.3). We have now implied all indices with norm at most 3.

W (4,0) :
2 1 0 1
0 0 1 0

[
4 1 1 0
0 0 1 1

∣∣∣∣∣ 2 1 3 2
1 −1 0 0

∣∣∣∣∣ 3 −2 2 1
1 1 0 0

]
.

W (4,1) :
3 2 1 −1
0 0 0 1

[
4 1 0 1
1 0 1 0

∣∣∣∣∣ 2 1 2 3
1 0 1 0

∣∣∣∣∣ 3 −2 1 1
1 0 1 0

]
.

W (4,2) :
3 2 1 −1
1 1 1 0

[
4 1 0 1
2 0 1 1

∣∣∣∣∣ 2 1 2 3
2 0 1 1

∣∣∣∣∣ 3 −2 1 2
2 0 1 1

]
.

W (4,3) :
2 2 1 0
2 1 0 0

[
4 0 1 1
3 1 0 0

∣∣∣∣∣ 3 1 2 2
1 1 2 2

∣∣∣∣∣ 3 −1 2 2
2 −2 1 1

]
.

W (4,4) :
3 2 1 −1
2 2 1 0

[
4 1 0 1
4 0 1 1

∣∣∣∣∣ 2 1 2 3
3 1 2 2

∣∣∣∣∣ 3 −2 1 2
3 −1 2 2

]
.

Again by switching top rows with bottom rows, we similarly calculate W (0,4), W (1,4), W (2,4) and
W (3,4). And by putting negatives on the second rows, we imply the indices (1,−4), (2,−4), (3,−4),
(4,−4), (4,−3), (4,−2) and (4,−1). As before, the resulting division by W (1,−1) can be accounted
for. We have demonstrated the calculation of all terms of index with norm at most 4. The calculations,
with attention to the case of (4.3), demonstrate the first statement. The second statement follows
immediately.

31

4.3 Basesets for ranks n ≥ 3

We now extend the results of the last section to arbitrary dimension.

Lemma 4.3.1. Let n ≥ 3. Suppose that W : Zn→R is an elliptic net. Let

Bn = {v ∈ Zn : vn = 0}∪{v ∈ Zn : N (v)≤ 1}.

Let
Sn = {v ∈ Zn : N (v) = 1}.

Then Bn is an Sn-integral baseset for W .

Proof. We prove this by induction on the norm. The base case is trivial: any v ∈ Zn with N (v)≤ 1 is
in Bn. We will show that any v ∈ Zn with N (v) = N0 is Sn-integrally implied by the set

KN0
= {v ∈ Zn : N (v) < N0}.

First, consider such a v with vn = 1. We will construct a recurrence row-by-row. Note that the
following is a recurrence for Z:

F (1,0,0,0) = [1,1,0,0 | 0,0,1,1 | 1,−1,0,0] .

Using this as the n-th row, it is now only necessary to create for each 1≤ i ≤ n−1 a recurrence of the
form [

vi ,$,%,% | ∗,∗,#,# | #,#,∗,∗
]
,

such that

1. The # must have absolute value less than N0,

2. The % and $ must have absolute value less than or equal to 1,

3. The ∗ and % must not be all zero in a given column.

Let

wi =

{
vi/2, vi even
(vi +1)/2, vi odd

.

Case I: If the i-th entry of v is even and wi ≥ 0, we may use either

F (wi −1,wi ,0,1) =
[

vi ,−1,1,0
∣∣ wi +1,wi ,wi ,wi −1

∣∣ wi ,−wi +1,wi +1,wi
]
,

or
F (wi ,wi +1,1,−1) =

[
vi ,−1,0,1

∣∣ wi +1,wi ,wi −1,wi

∣∣ wi ,−wi +1,wi ,wi +1
]
.

Case II: If the i-th entry of v is even and wi < 0, we may use either

F (wi ,wi −1,0,1) =
[

vi ,1,1,0
∣∣ wi ,wi −1,wi +1,wi

∣∣ wi +1,−wi ,wi ,wi −1
]
,

32

or
F (wi +1,wi ,1,−1) =

[
vi ,1,0,1

∣∣ wi ,wi −1,wi ,wi +1
∣∣ wi +1,−wi ,wi −1,wi

]
.

Case III: If the i-th entry of v is odd, we may use either

F (wi ,wi ,0,−1) =
[

vi ,0,−1,0
∣∣ wi −1,wi ,wi −1,wi

∣∣ wi −1,−wi ,wi −1,wi
]
,

or
F (wi ,wi ,1,−1) =

[
vi ,0,0,1

∣∣ wi ,wi −1,wi −1,wi

∣∣ wi ,−wi +1,wi −1,wi
]
.

Condition (1) is clearly satisfied.
Now we verify condition (2). In case I, if wi = 0, then the largest #-entry is of size at most 1 < N0.

Still for case I, if wi > 0, then the #-entry of largest absolute value is |wi |< |vi | ≤N0. In case II, wi < 0
and the #-entry of largest absolute value is −wi and | −wi | < |vi | ≤ N0. In case III, if wi > 0, then
vi > 0, and the largest #-entry is of absolute value |wi | = |(vi + 1)/2| ≤ |vi | ≤N0. If vi = 1, then the
second ≤ sign is actually a strict <. If vi > 1, then the first ≤ sign is actually a strict <. In case III,
if wi = 0, then the largest #-entry is of size at most 1 < N0. In case III, if wi < 0, then the #-entry of
largest size is wi −1. Then |vi | ≥ 3. So |wi −1|= |(vi −1)/2|< |vi | ≤N0.

It remains to check condition (3). If n ≥ 3, by the choices given above, we may guarantee that the
first two ∗-columns satisfy this. For the other columns, the only cases of difficulty are in case I when
wi = 0 and hence vi = 0, or in case III when wi = 0 or 1 and hence vi =−1 or 1. But if vi ∈ {−1,0,1}
for all i, then we are trying to create a recurrence for an element of the baseset, which is not the case.

This demonstrates how to imply any index v with norm N0 and vn = 1. By Proposition 3.1.1 we also
have all indices with vn =−1. We will now show how to imply any index v of norm N0 by induction on
the size of the last term. Suppose that all indices with |vn|< M0 have been implied for some M0 ≥ 1.

We now show how to imply an index v with vn = M0 (and hence by Proposition 3.1.1 with vn =

−M0). If M0 is even, we can use as the n-th row the recurrence

F (wi ,wi ,0,0) =
[

vi ,0,0,0
∣∣ wi ,wi ,wi ,wi

∣∣ wi ,−wi ,wi ,wi
]
.

If M0 is odd, we can use

F (wi ,wi −1,0,0) =
[

vi ,1,0,0
∣∣ wi −1,wi −1,wi ,wi

∣∣ wi ,−wi ,wi −1,wi −1
]
.

Note that vn ≥ 2 so the last eight indices of these recurrences are non-zero. It now suffices to create
for each 1≤ i ≤ n−1 a recurrence of the form[

vi ,#,#,# | ∗,∗,∗,∗ | ∗,∗,∗,∗
]
,

such that the ∗ may be anything at all, and the # may be anything of norm less than or equal to 1 so
long as in a given column they are not all zero. Recall that n ≥ 3. If we have at least one even vi for
i < n or if vn is odd, then the recurrences given in the first part will suffice for these criteria. If the vi

are all odd for i < n and vn is even, then it suffices to have the additional possibility

F (wi ,wi −1,1,0) =
[

vi ,1,1,1
∣∣ wi ,wi −2,wi ,wi

∣∣ wi +1,−wi +1,wi −1,wi −1
]
.

33

Lemma 4.3.2. Let W : Z3→R be an elliptic net. Let

S3 = {v ∈ Z3 : N (v) = 1}.

Then S3 is an S3-integral baseset for W .

Proof. We demonstrate that the terms W (2,0,0), W (0,2,0), W (2,1,0), W (1,2,0) are S3-integrally
implied by the set S3. To do so, we simply list the relevant recurrences. For W (2,0,0), one may use
p = (1,0,0), q = (1,0,−1), r = (0,1,0), s = (0,0,1) and we obtain

2 0 0 0
0 0 1 1
0 1 1 0

∣∣∣∣∣∣∣∣
1 1 1 1
1 −1 0 0
0 −1 1 0

∣∣∣∣∣∣∣∣
1 −1 1 1
1 1 0 0
1 0 0 −1

 . (4.4)

For W (2,1,0), we use p = (1,0,1), q = (1,0,0), r = (0,0,1), s = (0,1,−1) and obtain
2 0 0 0
1 0 1 0
0 1 0 1

∣∣∣∣∣∣∣∣
1 1 1 1
1 0 1 0
0 −1 0 1

∣∣∣∣∣∣∣∣
1 −1 1 1
1 0 1 0
1 0 −1 0

 . (4.5)

For W (0,2,0) and W (1,2,0) we may interchange the rows appropriately.
Now recall from the proof of Theorem 4.2.3, that

W (1,−1) =
W (0,1)3W (2,1)−W (1,0)3W (1,2)

W (1,1)3 .

Therefore all the terms in the set in the statement of Theorem 4.2.3 are S3-integrally implied by
S3. Therefore the theorem states that all terms of the form W (∗,∗,0) are S3-integrally implied by S3.
Then by Lemma 4.3.1, all of Z3 is S3-integrally implied by S3.

Theorem 4.3.3. Let n ≥ 3. Let W : Zn→R be an elliptic net. Let

Sn = {v ∈ Zn : N (v) = 1}.

Then Sn is an Sn-integral baseset for W . That is, all terms of W are Laurent polynomials with
coefficients in Z in the terms indexed by Sn.

Define
S ′n = {v ∈ Zn : N (v) = 1 and vi = 0 for at least one i}.

If n ≥ 4, then Sn is S ′n-integrally implied by S ′n.

Proof. The case n = 3 is Lemma 4.3.2. To prove the general case we can induct using Lemma 4.3.1.
Define the set

Rk−1 = {v ∈ Zk : vk = 0,N (v) = 1} ⊂ Sk,

and from the statement of Lemma 4.3.1,

Bk = {v ∈ Zk : vk = 0}∪{v ∈ Zk : N (v)≤ 1}.

34

If the theorem statement holds for n = k−1, then all terms of W : Zk → R indexed by v with vk = 0
are Rk−1-integrally implied by Rk−1. So all of Bk is Sk-integrally implied by Sk. By Lemma 4.3.1, all of
Zk is Sk-integrally implied by Bk, and hence Sk-integrally implied by Sk.

Now we show the second statement. Let n ≥ 4. Note that we have the following recurrences:

F (1,0,0,0) = [1,1,0,0 | 0,0,1,1 | 1,−1,0,0] ,

F (0,0,0,1) = [1,0,1,0 | 1,0,1,0 | 1,0,1,0] ,

F (1,1,1,−1) = [1,0,0,1 | 1,0,0,1 | 1,0,0,1] ,

F (0,0,−1,1) = [1,0,0,−1 | 0,1,1,0 | 0,−1,1,0] .

By choosing either these or their corresponding negatives, we can S ′n-integrally imply any term of
Sn\S ′n from baseset S ′n.

4.4 Laurentness

While our primary interest in Theorems 4.2.1, 4.2.3 and 4.3.3 is their use in the proof of Theorem
9.2.1, the Laurentness properties we’ve shown may be of independent interest. We collect them into a
single statement here.

Theorem 4.4.1. The terms of an elliptic net are generated by the recurrence relation from a finite set
of initial terms. Furthermore, the terms are Laurent polynomials in a finite set of initial terms. Let

Sn = {v ∈ Zn : max
i=1,...,n

|vi |= 1},

S ′n = Sn ∩{v ∈ Zn : vi = 0 for at least one i}.

The terms of an elliptic net of rank n are Laurent polynomials in the following variables and coeffi-
cients:

1. For n = 1:
Variables: W (1),W (2); Coefficients: Z[W (3),W (4)]

2. For n = 2:

Variables: W (1,1),W (1,0),W (0,1),W (0,1)3W (2,1)−W (1,0)3W (1,2);

Coefficients: Z[W (1,0),W (0,1),W (1,1),W (2,1),W (1,2),W (2,0),W (0,2)]

3. For n = 3:
Variables: S3; Coefficients: Z

4. For n ≥ 4:
Variables: S ′n; Coefficients: Z[Sn\S ′n]

The results for n = 1 and n = 2 are sharp in the sense that the result does not hold for a strictly
smaller set of variables or coefficients.

Chapter 5

Elliptic nets over the complex numbers

Fix an elliptic curve E over a field K . Our purpose now is to define functions Ωv : En → K for all
v∈Zn. We wish to do so in such a way that the map WE ,P : Zn→K given by fixing P∈ En and defining

WE ,P(v) = Ωv(P)

is an elliptic net. Our strategy is to do so first for elliptic curves over the complex numbers. Accord-
ingly, we set K = C for this section and consider the complex uniformization of E . We associate to E
a lattice Λ⊂ C and consider points z ∈ C/Λ as points on E .

5.1 Elliptic functions over C

For a complex lattice Λ, let η : Λ→C be the quasi-period homomorphism, and define λ : Λ→{±1} by

λ (ω) =

{
1 if ω ∈ 2Λ,
−1 if ω /∈ 2Λ.

Recall that the Weierstrass sigma function σ : C/Λ→C satisfies the following transformation formula
for all z ∈ C and ω ∈ Λ:

σ(z +ω ;Λ) = λ (ω)eη(ω)(z+ 1
2 ω)

σ(z;Λ) (5.1)

Definition 5.1.1. Fix a lattice Λ ∈ C corresponding to an elliptic curve E . For v = (v1, . . . ,vn) ∈ Zn,
define a function Ωv on Cn in variables z = (z1, . . . ,zn) as follows:

Ωv(z;Λ) =
σ(v1z1 + . . .+vnzn;Λ)

n

∏
i=1

σ(zi ;Λ)2v2
i −∑

n
j=1 vi v j ∏

1≤i, j≤n
i 6= j

σ(zi +z j ;Λ)vi v j

(5.2)

(If v = 0, we set Ωv ≡ 0.) In particular, we have for each v ∈ Z, a function Ωv on C in the variable z:

Ωv(z;Λ) =
σ(vz;Λ)
σ(z;Λ)v2 (5.3)

35

36

and for each pair (u,v) ∈ Z×Z, a function Ωu,v on C×C in variables z and w:

Ωu,v(z,w;Λ) =
σ(uz +vw;Λ)

σ(z;Λ)u2−uv σ(z +w;Λ)uv σ(w;Λ)v2−uv
. (5.4)

Proposition 5.1.1. The functions Ωv are elliptic functions in each variable.

Proof. Let ω ∈ Λ. We show the function is elliptic in the first variable. Let v = (v1, . . . ,vn) ∈ Zn and
z = (z1, . . . ,zn),w = (ω,0, . . . ,0) ∈ Cn. Using (5.1), we calculate

F =
Ωv(z+w;Λ)

Ωv(z;Λ)
=

λ (v1ω)

λ (ω)v2
1

= λ (ω)v1−v2
1 = 1

Thus Ωv is invariant under adding a period to the variable z1. Similarly Ωv is elliptic in each variable
on (C/Λ)n.

Proposition 5.1.2. Fix a lattice Λ ∈ C. Let v ∈ Zm and z ∈ Cn. Let T be an n×m matrix with entries
in Z and transpose T tr . Then

Ωv(T tr(z);Λ) =
ΩT (v)(z;Λ)

n

∏
i=1

ΩT (ei)
(z;Λ)2v2

i −∑
n
j=1 vi v j ∏

1≤i, j≤n
i 6= j

ΩT (ei+e j)
(z;Λ)vi v j

.

Proof. A straightforward calculation using (5.1).

Lemma 5.1.3.

℘(z)−℘(w) =−σ(z +w)σ(z−w)
σ(z)2σ(w)2 , (5.5)

℘(nz)−℘(mz) =−
Ωm+n(z)Ωm−n(z)

Ωm(z)2Ωn(z)2 . (5.6)

Proof. The first statement (5.5) is a standard result (for example [10, IV.3] or [34, VI.350]). The second
statement (5.6) follows by direct calculation.

Lemma 5.1.4.

ζ (x +a)−ζ (a)−ζ (x +b)+ζ (b) =
σ(x +a +b)σ(x)σ(a−b)
σ(x +a)σ(x +b)σ(a)σ(b)

, (5.7)

ζ (x +a +b)−ζ (x +a)−ζ (x +b)+ζ (x) =
σ(2x +a +b)σ(a)σ(b)

σ(x +a +b)σ(x +a)σ(x +b)σ(x)
. (5.8)

Proof. Denote by f and g the left and right side of (5.7) respectively. Considered as functions of any
one of x, a or b, these are elliptic functions. Suppose that a,b /∈Λ. Consider f and g as functions of x.
The set of poles of f or g is {−a,−b}. The zeroes of g are at−a−b and 0. These are also zeroes of f ,
since ζ is an odd function. Hence we have f = cg for some c not depending on x. Now define instead

F = (ζ (x +a)−ζ (a)−ζ (x +b)+ζ (b))σ(x +a)σ(x +b),

G = σ(x +a +b)σ(x).

37

We have F = c′G for some constant c′ independent of x. Taking derivatives and evaluating at x = 0,
we have

(℘(b)−℘(a))σ(a)σ(b) = c′σ(a +b)σ ′(0)

We have σ ′(0) = 1. By Lemma 5.1.3, we then have

c′ =− σ(a−b)
σ(a)σ(b)

which proves the first equation (5.7). The second equation (5.8) is obtained by a change of variables
x← a, a← x +b, b← x.

5.2 Forming the net

Theorem 5.2.1. Fix an elliptic curve E over C and points P1, . . . ,Pn ∈ E(C). Let Λ ⊂ C be the lattice
associated to E and z1, . . . ,zn the points associated to P1, . . . ,Pn respectively. Then the function W :
Zn→ C defined by

W (v) = Ωv(z1, . . . ,zn;Λ)

is an elliptic net.

Proof. For notational simplicity, we drop the arguments zi ,Λ and also write σ(v), ℘(v) and ζ (v) for
σ(v1z1 + . . .+vnzn), ℘(v1z1 + . . .+vnzn) and ζ (v1z1 + . . .+vnzn).

We wish to demonstrate the recurrence relation (3.1). We observe that v = 0 if and only if Ωv ≡ 0.
Therefore, we may assume that none of p, q or r are zero, for if so, then the recurrence relation (3.1)
holds trivially. Hence none of Ωp, Ωq, or Ωr is identically zero.

For any quadratic form f defined on Zn, we have the following relation for all p,q,s ∈ Zn:

f (p+q+ s)+ f (p−q)+ f (s)− f (p+ s)− f (p)− f (q+ s)− f (q) = 0. (5.9)

First we address the case that s = 0. By (5.9) and Lemma 5.1.3,

Ωp+qΩp−q

Ω2
pΩ2

q
=

σ(p+q)σ(p−q)
σ(p)2σ(q)2 =℘(q)−℘(p).

Therefore, we have
Ωp+qΩp−q

Ω2
pΩ2

q
+

Ωq+rΩq−r

Ω2
qΩ2

r
+

Ωr+pΩr−p

Ω2
r Ω2

p
= 0,

which gives the relation (3.1) for s = 0:

Ωp+qΩp−qΩ
2
r +Ωq+rΩq−rΩ

2
p +Ωr+pΩr−pΩ

2
q = 0.

Now suppose that s 6= 0 and so Ωs 6≡ 0. By (5.9) and Lemma 5.1.4,

Ωp+q+sΩp−qΩs

Ωp+sΩpΩq+sΩq
=

σ(p+q+ s)σ(p−q)σ(s)
σ(p+ s)σ(p)σ(q+ s)σ(q)

= ζ (p+ s)−ζ (p)−ζ (q+ s)+ζ (q).

38

Therefore, we have

Ωp+q+sΩp−qΩs

Ωp+sΩpΩq+sΩq
+

Ωq+r+sΩq−rΩs

Ωq+sΩqΩr+sΩr
+

Ωr+p+sΩr−pΩs

Ωr+sΩrΩp+sΩp
= 0,

or, more simply,

Ωp+q+sΩp−qΩr+sΩr +Ωq+r+sΩq−rΩp+sΩp +Ωr+p+sΩr−pΩq+sΩq = 0,

which is what was required to prove.

This identity is known in various forms in complex function theory. See [34, VI.359] and [77].

Chapter 6

Elliptic net polynomials

In the case of rank one, the functions Ωv are well-known to have a polynomial representation in terms
of the coefficients of the Weierstrass equation and the coordinates x = ℘(z),y = ℘′(z). These are
called division polynomials (see Section 1.2 or [63, Ex 3.7]). We wish to create analogous net polyno-
mials1 in the higher rank case. To begin, we calculate some representations explicitly. Then, using the
recurrence structure of the net, we define the net polynomials in general. Finally, in Section 6.3, we
show that they have properties analogous to those of division polynomials, i.e., have a restricted form
with integer coefficients and do not vanish modulo primes p.

6.1 Defining net polynomials

Define L = Q(α1,α2,α3,α4,α6) to be a field of transcendence degree five over the rationals; αi are the
indeterminates. Let

f (x,y) = y2 +α1xy +α3y−x3−α2x2−α4x−α6. (6.1)

Define the ring

Ln = L[xi ,yi]1≤i, j ,≤n

[
(xi −x j)

−1
]

1≤i< j≤n

/〈
f (xi ,yi)

〉
1≤i≤n .

In this section, we wish to define an elliptic net Ψv of elements of Ln. More specifically,

Theorem 6.1.1. Let n be a positive integer. There exist Ψv ∈ Ln indexed by v ∈ Zn such that the
following holds: For each elliptic curve E specified by Weierstrass coefficients a1, . . .a6 ∈Q, consider
the quotient map Ln → Q(En) defined by taking αi 7→ ai . The functions Ωv are elements of Q(En)

and this map takes Ψv 7→Ωv. Furthermore, the Ψv form an elliptic net.

Note that the theorem claims that the Ωv are elements of Q(En) and that they are the images of
some Ψv having special properties. The demonstrations of these two claims are intimately intertwined.

First we calculate a few of the Ωv explicitly, and see that they are elements of Q(En).
1One word of warning: net polynomials will not be polynomials in ℘(zi),℘

′(zi), but instead may involve a restricted set of
polynomial denominators. Thus, the name may be a slight–but justifiable–misnomer.

39

40

Proposition 6.1.2. Consider an elliptic curve defined over the rationals with Weierstrass equation

y2 +a1xy +a3y−x3−a2x2−a4x−a6 = 0.

Define b2,b4,b6 and b8 in the usual way (see (1.4)). We have the following expressions for n = 1:

Ω1 = 1, Ω2 = 2y +a1x +a3,

Ω3 = 3x4 +b2x3 +3b4x2 +3b6x +b8,

Ω4 = (2y +a1x +a3)(2x6 +b2x5 +5b4x4 +10b6x3 +10b8x2 +(b2b8−b4b6)x +b4b8−b2
6);

and for n = 2:

Ω(1,−1) = x2−x1,

Ω(2,1) = 2x1 +x2−
(

y2−y1
x2−x1

)2
−a1

(
y2−y1
x2−x1

)
+a2.

Ω(2,−1) = (y1 +y2)
2− (2x1 +x2)(x1−x2)

2 .

Proof. These are classical results (see for example [10, III.4, IV.3], [22, 4.4.5.a], [34, VI.349, 352] and
[63, Ex 3.7]) which can be calculated using the formulæ for addition on the curve.

Proposition 6.1.3. The terms Ωv indexed by the set

S3 = {v ∈ Z3 : N (v) = 1}

have representations as rational functions in the xi = ℘(zi) and yi = ℘′(zi) for i = 1,2,3. These
representations can be chosen to have denominators a product of at most three linear terms of the
form xi −x j for some 1≤ i < j ≤ 3.

Proof. We have Ω(1,0,0) = Ω(0,1,0) = Ω(0,0,1) = Ω(1,1,0) = Ω(0,1,1) = Ω(1,0,1) = 1. We also have

Ω(1,−1,0) = x2−x1, Ω(0,1,−1) = x3−x2, Ω(−1,0,1) = x1−x3,

and the corresponding negatives. That leaves only the cases where vi 6= 0 for all i = 1,2,3.
We have the following recurrence:

1 0 1 0
0 0 0 1
1 1 0 −1

1 1 1 1
1 0 1 0
1 0 −1 0

∣∣∣∣∣∣∣∣
1 −1 1 1
1 0 1 0
0 1 0 1

∣∣∣∣∣∣∣∣
2 0 0 0
1 0 1 0
0 −1 0 1

 ,

which gives
Ω(1,1,1)Ω(1,1,−1) +Ω(−1,0,1)−Ω(2,1,0) = 0.

By Proposition 6.1.2,

Ω(1,1,1)Ω(1,1,−1) = x1 +x2 +x3−
(

y1−y2
x1−x2

)2
−a1

(
y1−y2
x1−x2

)
+a2. (6.2)

41

We also have

1 1 0 −1
0 0 −1 1
1 0 1 0

1 0 −1 0
1 0 0 −1
1 1 1 1

∣∣∣∣∣∣∣∣
0 1 0 1
0 1 1 0
1 −1 1 1

∣∣∣∣∣∣∣∣
0 −1 0 1
0 −1 1 0
2 0 0 0

 ,

which gives
Ω(1,1,1)Ω(−1,0,1)Ω(0,−1,1) +Ω(1,1,−1)−Ω(0,0,2) = 0,

which becomes, by Proposition 6.1.2,

Ω(1,1,1)(x1−x3)(x2−x3)+Ω(1,1,−1) = 2y3 +a1x3 +a3. (6.3)

Multiplying (6.3) by Ω(1,1,1) and using (6.2), we obtain

(2y3 +a1x3 +a3)Ω(1,1,1)− (x1−x3)(x2−x3)Ω
2
(1,1,1)

= x1 +x2 +x3−
(

y1−y2
x1−x2

)2
−a1

(
y1−y2
x1−x2

)
+a2.

Similarly,

(2y2 +a1x2 +a3)Ω(1,1,1)− (x1−x2)(x3−x2)Ω
2
(1,1,1)

= x1 +x2 +x3−
(

y1−y3
x1−x3

)2
−a1

(
y1−y3
x1−x3

)
+a2. (6.4)

(2y1 +a1x1 +a3)Ω(1,1,1)− (x2−x1)(x3−x1)Ω
2
(1,1,1)

= x1 +x2 +x3−
(

y2−y3
x2−x3

)2
−a1

(
y2−y3
x2−x3

)
+a2. (6.5)

Adding (x3−x1) times (6.4) and (x3−x2) times (6.5), we obtain

Ω(1,1,1) =
(2x3−x1−x2)(x1 +x2 +x3 +a2)+ (y1−y3)2

x1−x3
+ (y2−y3)2

x2−x3
−a1(2y3−y1−y2)

(x3−x1)(2y2 +a1x2 +a3)+(x3−x2)(2y1 +a1x1 +a3)
(6.6)

Multiplying top and bottom by (x3−x1)(2y2 +a1x2 +a3)− (x3−x2)(2y1 +a1x1 +a3), this becomes

Ω(1,1,1) =
y1(x2−x3)+y2(x3−x1)+y3(x1−x2)

(x1−x2)(x1−x3)(x2−x3)
(6.7)

and we also obtain from (6.2),

Ω(−1,1,1) =
y1(x2−x3)−y2(x3−x1)−y3(x1−x2)

(x2−x3)
+a1x1 +a3,

Ω(1,−1,1) =
−y1(x2−x3)+y2(x3−x1)−y3(x1−x2)

(x3−x1)
+a1x2 +a3,

Ω(1,1,−1) =
−y1(x2−x3)−y2(x3−x1)+y3(x1−x2)

(x1−x2)
+a1x3 +a3.

This completes the necessary calculations.

42

Proof of Theorem 6.1.1. We use the inductive structure of elliptic nets. For v of dimension less than
4 satisfying N (v) = 1, define Ψv to be the rational functions given in Propositions 6.1.2 and 6.1.3, with
each ai replaced by αi .

By the collection of inductive results in Chapter 4 (specifically, Theorems 4.2.1, 4.2.3, and 4.3.3),
we may define all other Ψv using recurrence relations, but we do not yet know that this method gives
something well-defined (that is, a different choice of recurrence relations may yield a different result).
That is to say, we do not know that the Ψv form an elliptic net. Nevertheless, we may take for our
definition some arbitrary choice of ‘implications’ (in the terminology of Chapter 4), and then we know
the Ψv thus defined must lie within the field of fractions Frac(Ln) of Ln.

Define

Sn = Q[α1,α2,α3,α4,α6][xi ,yi]1≤i, j ,≤n

[
(xi −x j)

−1
]

1≤i< j≤n

/〈
f (xi ,yi)

〉
1≤i≤n .

The ring injection
Q[α1,α2,α3,α4,α6] // Sn

defines SpecSn as a variety over A5
Q. Let C be the curve defined by a polynomial of the form

fC(x,y) = y2 +a1xy +a3y−x3−a2x2−a4x−a6,

where ai ∈Q. Then define

Qn,C = Q[xi ,yi]1≤i, j ,≤n

[
(xi −x j)

−1
]

1≤i< j≤n

/〈
fC(xi ,yi)

〉
1≤i≤n .

The fibres of SpecSn over A5
Q are SpecQn,C , which is an affine piece of Cn for the curve C over Q.

The fibres which are SpecQn,E for an elliptic curve E form a Zariski open dense set in SpecSn. The
inclusion of these fibres gives quotient maps defined on Sn → Qn,C or Frac(Sn)→ Frac(Qn,C) by αi 7→
ai ; in either case, call this quotient map φC .

Let us return momentarily to the Ωv (defined for an elliptic curve over C). We know that these lie
in Frac(Qn,E) ⊂ Q(E) since they lie in this field on a baseset (by Propositions 6.1.2 and 6.1.3), and we
can induct using the results of Chapter 4. Further, by consideration of the divisor of Ωv, it is clear that
in fact Ωv ∈ Qn,E . If E is an elliptic curve, the image φE(Ψv) is exactly Ωv by definition.

The function Ψv is a rational function on SpecSn (note that Frac(Ln) = Frac(Sn)). On each fibre
SpecQn,E , it restricts to Ωv, which is regular (since Ωv ∈ Qn,E). Therefore, the support of the divisor
of poles of Ψv must consist only of some number of vertical fibres. That is to say, Ψv ∈ Ln.

Finally, a rational function on SpecSn that is zero on a Zariski open dense subset must be zero.
Therefore, the ring homomorphism ∏

E elliptic
φE

 : Ln→ ∏
E elliptic

Qn,E

is injective. Since the image of the collection {Ψv} under this map forms an elliptic net, it must be that
the Ψv form an elliptic net.

43

We call these Ψv the net polynomials. We can now restate the formulæ given in Proposition 6.1.2
for the more general Ψv.

Proposition 6.1.4. Consider an elliptic curve defined over the rationals with Weierstrass equation

y2 +a1xy +a3y−x3−a2x2−a4x−a6 = 0.

Define b2,b4,b6 and b8 as usual (see (1.4)). We have the following expressions for n = 1:

Ψ1 = 1, (6.8)

Ψ2 = 2y +a1x +a3, (6.9)

Ψ3 = 3x4 +b2x3 +3b4x2 +3b6x +b8, (6.10)

Ψ4 = (2y +a1x +a3)(2x6 +b2x5 +5b4x4 +10b6x3 +10b8x2 +(b2b8−b4b6)x +b4b8−b2
6); (6.11)

for n = 2:

Ψ(1,−1) = x2−x1, (6.12)

Ψ(2,1) = 2x1 +x2−
(

y2−y1
x2−x1

)2
−a1

(
y2−y1
x2−x1

)
+a2, (6.13)

Ψ(2,−1) = (y1 +y2)
2− (2x1 +x2)(x1−x2)

2 ; (6.14)

and for n = 3:

Ψ(1,1,1) =
y1(x2−x3)+y2(x3−x1)+y3(x1−x2)

(x1−x2)(x1−x3)(x2−x3)
, (6.15)

Ψ(−1,1,1) =
y1(x2−x3)−y2(x3−x1)−y3(x1−x2)

(x2−x3)
+a1x1 +a3, (6.16)

Ψ(1,−1,1) =
−y1(x2−x3)+y2(x3−x1)−y3(x1−x2)

(x3−x1)
+a1x2 +a3, (6.17)

Ψ(1,1,−1) =
−y1(x2−x3)−y2(x3−x1)+y3(x1−x2)

(x1−x2)
+a1x3 +a3. (6.18)

Proof. These formulæ follow from Proposition 6.1.2, the proof of Proposition 6.1.3 and Theorem
6.1.1.

6.2 Properties of net polynomials

In this section, we transfer some useful properties of the Ωv from the complex context to the context
of the Ψv. In particular, we are interested in the generalisation of Proposition 5.1.2.

Lemma 6.2.1. Let E be an elliptic curve. With the notation of the proof of Theorem 6.1.1, for each
positive integer m there exist x×m,y×m ∈ Frac(L1) such that, considered as complex functions on E,(

φE(x×m)
)
(z) =℘(mz), and

(
φE(y×m)

)
(z) =℘

′(mz).

44

Furthermore, there are functions xadd and yadd in Frac(L2) such that(
φE(xadd)

)
(z,w) =℘(z +w), and

(
φE(yadd)

)
(z,w) =℘

′(z +w).

Proof. The group law of an elliptic curve gives the following equations

℘(mz) =
(

℘′((m−1)z)−℘′(z)
℘((m−1)z)−℘(z)

)2
+a1

(
℘′((m−1)z)−℘′(z)
℘((m−1)z)−℘(z)

)
−a2−℘((m−1)z)−℘(z), (6.19)

℘
′(mz) =−

(
℘′((m−1)z)−℘′(z)
℘((m−1)z)−℘(z)

+a1

)
℘(mz)

−
(

℘′(z)℘((m−1)z)−℘′((m−1)z)℘(z)
℘((m−1)z)−℘(z)

)
−a3. (6.20)

The exact form is not important; only that, for m > 2, these define ℘(mz) and ℘′(mz) inductively
from ℘(nz) and ℘′(nz) for n < m. For m = 1, 2, let

x×1 = x, x×2 =
x4−b4x2−2b6x−b8

4x3 +b2x2 +2b4x +b6
.

So (φE(x×1))(z) =℘(z) and (φE(x×2))(z) =℘(2z). Define x×m,y×m inductively from these using for-
mulæ of the same form as (6.19) and (6.20):

x×m =

(
y×m−1−y×1
x×m−1−x×1

)2

+a1

(
y×m−1−y×1
x×m−1−x×1

)
−a2−x×m−1−x×1,

y×m =−

(
y×m−1−y×1
x×m−1−x×1

+a1

)
x×m−

(
y×1x×m−1−y×m−1x×1

x×m−1−x×1

)
−a3.

Then x×m,y×m ∈ Frac(L1) and by definition

(φE(x×m))(z) =℘(mx) and (φE(y×m))(z) =℘
′(mx)

for all E and m.
As for xadd and yadd , these also have explicit rational function representations, and so we can do

the same; see any elementary text on elliptic curves.

Since the same equations define the group law on the nonsingular part of a singular cubic curve,
we may also refer to x×m,y×m, xadd and yadd as giving the coordinates of the multiplication-by-m or
addition maps in this context.

Lemma 6.2.2.
Ψ

2
mΨ

2
n(x×m−x×n) =−Ψm+nΨm−n. (6.21)

Proof. This follows immediately from Lemma 5.1.3 and the fact that the map ∏
E elliptic

φE

 : Ln→ ∏
E elliptic

Qn,E

of Theorem 6.1.1 is injective.

45

Now we make an important definition. For each v ∈ Zm and T an n×m matrix, we let Ψv ◦T be
the rational function in Frac(Ln) obtained by substituting for xi ,yi the rational function expressions
for the x and y coordinates of

[Ti,1](x1,y1)+ [Ti,2](x2,y2)+ ...+[Ti,m](xm,ym).

In essence, we precompose by a linear transformation on the points. Lemma 6.2.1 ensures that this is
well-defined. Now, since the map ∏

E elliptic
φE

 : Ln→ ∏
E elliptic

Qn,E

of Theorem 6.1.1 is injective, Proposition 5.1.2 holds in the context of the Ψv. To be precise,

Theorem 6.2.3. Let v ∈ Zn. Let T be any n×m matrix with entries in Z and transpose T tr . Then

(Ψv ◦T)

(
n

∏
i=1

Ψ
v2

i −∑
n
j 6=i vi v j

T tr (ei)

)(
∏

1≤i< j≤n
Ψ

vi v j
T tr (ei+e j)

)
= ΨT tr (v).

6.3 Net polynomials at primes

We have now defined an elliptic net Ψv ∈Ln. In this section we determine a little more about the exact
nature of this net. Loosely speaking, we wish to show that the coefficients of the net polynomials are
contained in a proper subring R = Z[α1,α2,α3,α4,α6] of the field L = Q(α1,α2,α3,α4,α6) defined at
the beginning of Section 6.1 (note that R has field of fractions L). This is analogous to the rank one
statement that the division polynomials are polynomials in the coefficients of the curve and the vari-
ables x and y with integer coefficients. Furthermore, we wish to show the analogue of the statement
that the division polynomial Ψn does not vanish modulo p for every prime p and integer n.

To be more precise, define

Rn = R[xi ,yi]1≤i, j ,≤n

[
(xi −x j)

−1
]

1≤i< j≤n

/〈
f (xi ,yi)

〉
1≤i≤n ,

which injects into Ln.
Define the usual quantities

β2 = α
2
1 +4α2, β4 = 2α4 +α1α3, β6 = α

2
3 +4α6,

β8 = α
2
1 α6 +4α2α6−α1α3α4 +α2α

2
3 −α

2
4 ,

γ4 = β
2
2 −24β4, δ =−β

2
2 β8−8β

3
4 −27β

2
6 +9β2β4β6.

Theorem 6.3.1. The functions Ψv are elements of Rn ⊂ Ln. Let p be any prime of Rn that is a lifting
of a prime of R, and that does not contain both δ and γ4. Then Ψv /∈ p.

Proof. For n = 1,2, Theorems 4.2.1 and 4.2.3, and Proposition 6.1.2 imply that Ψv ∈ Rn.

46

We now consider the second statement in rank one and two. Note that it suffices to consider
maximal ideals p, since all prime ideals are contained in some maximal ideal. In dimension one, the
statement is a consequence of Lemma 6.2.2 as follows. Equation (6.21) implies:

Ψ
2
m−1(x×m−1−x×1) =−ΨmΨm−2. (6.22)

By the explicit form of Ψ1 and Ψ2, we know they are not in p. We claim that x×m−1−x×1 /∈ p for
any m > 1. If the claim holds, we may use (6.22) and induction on m to show that Ψm /∈ p for all m > 2.
It remains to prove the claim.

The claim is exactly the statement that for m > 2 the multiplication-by-m map [m] is not the iden-
tity map on a non-singular fibre or the nonsingular part of a nodal singular fibre over p of the elliptic
scheme

y2 +α1xy +α3y = x3 +α2x2 +α4x +α6

over R. If [m] = [1] on some such fibre, then [m] = [1] on some one-dimensional fibre, i.e., on some
curve over Fp. If this is the case, then [m−1] = [0] on this curve, a contradiction.

The rank two case may be reduced to the rank one case by the use of Theorem 6.2.3. We know
that Ψv is integral, so we show that it is not contained in any prime p lifted from R. It suffices to show
this for minimal such primes (where we can use the language of valuations), since if it is contained in
any prime, then it is contained in a minimal such one. In particular, first use

T =

(
1 0
1 0

)
,

For any k, we have
(Ψ(k,k) ◦T)Ψk2

2,0 = Ψ2k,0.

Consider the valuation ν on Frac(Ln) associated to the ideal p. The terms Ψk2

2,0 and Ψ2k,0 have zero
valuation, and so ν(Ψ(k,k) ◦T) = 0. We also know that ν(Ψ(k,k)) ≥ 0. Pre-composition by T means
substituting x2 := x1 and y2 := y1. So, ν(Ψ(k,k))≤ ν(Ψ(k,k) ◦T) = 0. Hence ν(Ψ(k,k)) = 0.

Now suppose that n = 2, so v = (v1,v2). Without loss of generality, v1v2 6= 0. For now, assume
v1v2 > 0. Using

T =

(
v2 0
0 v1

)
,

we obtain
(Ψ(v1,v2) ◦T)Ψv1v2

(v2,v1)
Ψ

v2
1−v1v2

(v2,0)
= Ψ(v1v2,v1v2)Ψ

v1v2−v2
2

(0,v1)
.

By the previous cases, then,
ν((Ψ(v1,v2) ◦T)Ψv1v2

(v2,v1)
) = 0.

In this case, pre-composition by T means substituting

x1 := φv2
Ψ
−2
v2

, y1 := ωv2
Ψ
−3
v2

, x2 := φv1
Ψ
−2
v1

, y2 := ωv1
Ψ
−3
v1

,

47

where gcd(φv1
,Ψv1

) = gcd(φv2
,Ψv2

) = gcd(ωv1
,Ψv1

) = gcd(ωv2
,Ψv2

) = 1. Since Ψv2
has zero valuation,

ν(Ψ(v1,v2) ◦T)≥ ν(Ψ(v1,v2))≥ 0.

By symmetry, Ψ(v1,v2) and Ψ(v2,v1) have the same valuation, and so it must be that ν(Ψ(v1,v2)) = 0.
For the case v1v2 < 0 some minor modification is required; in the first part, show ν(Ψ(k,−k)) = 0

and then use

T =

(
v2 0
0 −v1

)
in the second part.

Now we wish to show the case of general n. We first show by induction on n that terms indexed
by Sn have valuation zero. This holds for n = 2 by the previous case. We use the second statement of
Theorem 4.3.3 for the inductive step. The terms indexed by S ′n have zero valuation by the inductive
hypothesis, and therefore terms of Sn have non-negative valuation (i.e., these terms are in Rn). To
show that they have zero valuation requires an application of Theorem 6.2.3.

In this case, use the n×2 matrix

T =

1 0
1 0
...

...
1 0
0 1

,

which gives
(Ψ(1,1,...,1) ◦T)Ψn

(2,0) = Ψ(n,1)

Therefore, ν(Ψ(1,1,...,1) ◦T) = 0, and hence ν(Ψ(1,1,...,1)) = 0.
This completes the induction.
Now, by the first part of Theorem 4.3.3, in the rank one case, all Ψn have non-negative valuation

(i.e., are in Rn). We need to show that they are also non-positive, and again, this will be an application
of Theorem 6.2.3.

Use the same matrix T and this time we obtain

(Ψv ◦T)Ψ∑1≤i< j<n vi v j
(2,0)

= Ψ
(∑n−1

i=1 vi ,vn)
.

Therefore, ν(Ψv ◦T) = 0 and hence ν(Ψv) = 0.
This completes the proof.

Chapter 7

A curve gives a net

Let E be an elliptic curve over any field K . In this chapter we collect the results of the previous
chapters to define functions Ψv : En→K for all v ∈ Zn. We show that we can do so in such a way that
the map WE ,P : Zn→K given by fixing P ∈ En and defining

WE ,P(v) = Ψv(P)

is an elliptic net. Thanks to the generality of our previous results, we can do this for elliptic curves
over an arbitrary field K . In the first section we state our most general result on the functions Ψv and
in the second section we show how to make the construction for a given elliptic curve.

7.1 Net polynomials over arbitrary fields

Let n ≥ 1. For any elliptic curve or scheme C, let O denote the identity, [m] : C→C denote multipli-
cation by m, pi : Cn →C denote projection onto the i-th component, and s : Cn →C denote the sum
of all components. For v ∈ Zn, define the expression

DC,v = ([v1]× . . .× [vn])∗s∗(O)− ∑
1≤k< j≤n

vkv j (p∗k× p∗j)s
∗(O)−

n

∑
k=1

(
2v2

k −
n

∑
j=1

vkv j

)
p∗k(O),

which is a divisor on the n-fold product Cn. Over the complex numbers, the functions Ωv have these
divisors and satisfy the elliptic net recurrence (3.1).

We now collect the results of the previous sections.

Theorem 7.1.1. Let
f (x,y) = y2 +α1xy +α3y−x3−α2x2−α4x−α6

define an elliptic scheme EZ over the ring R = Z[α1, . . . ,α6] localised at (δ) and (γ4). Let n ≥ 1.
There exists a rational function Ψv on En

Z for each v ∈ Zn such that the collection of Ψv satisfies
the following properties:

48

49

1. The Ψv satisfy the recurrence (3.1) in terms of v.

2. Ψv = 1 whenever v = ei for some 1≤ i ≤ n or v = ei +e j for some 1≤ i < j ≤ n. (Here e1, . . . ,en

represent the standard basis vectors in Zn.)

3. div(Ψv) = DEZ,v.

4. The Ψv can be expressed as elements of the ring

Rn = Z[α1,α2,α3,α4,α6][xi ,yi]
n
i=1

[
(xi −x j)

−1
]

1≤i< j≤n

/〈
f (xi ,yi)

〉n
i=1 .

Proof. The Ψv are exactly those defined in the previous sections, which are elements of the ring Rn.
The ring Rn is the affine coordinate ring of the affine piece of En

Z obtained by removing all the axes,
diagonals and antidiagonals. Therefore the Ψv are rational functions on En

Z . We have seen that they
satisfy Properties 1 and 2 (Theorem 6.1.1). The divisor at the generic point is just DLn ,v since Ψv ∈Ln.
By Theorem 6.3.1, the divisors of the Ψv have no vertical components. Therefore, the divisor at the
generic point extends. This gives Property 3.

7.2 The elliptic net associated to a curve

Now fix any field K . Consider a curve C defined over K by the polynomial

fC(x,y) = y2 +a1xy +a3y−x3−a2x2−a4x−a6.

The functions φC(Ψv) satisfy properties 1, 2 and 4 of Theorem 7.1.1 with C in place of EZ and

Rn,C = Z[a1,a2,a3,a4,a6][xi ,yi]
n
i=1

[
(xi −x j)

−1
]

1≤i< j≤n

/〈
f (xi ,yi)

〉n
i=1

in place of Rn. In particular, for K = Q, the functions φC(Ψv) are exactly those Ωv defined in Chapter 5.
Note that the divisor of φC(Ψv) will be the pullback of the divisor DEZ,v under the map from C

to EZ, but it may not have the form DC,v because points may coincide. For example, if C is not
supersingular over Fp, then the divisor of φC(Ψp) over Fp has degree p at each of the p points of E [p].

It is now natural to define

Definition 7.2.1. For any curve C with Weierstrass equation

f (x,y) = y2 +a1xy +a3y−x3−a2x2−a4x−a6

defined over a field K and point P = (P1, . . . ,Pn) ∈C(K)n such that Pi 6= O for any i and Pi 6= ±Pj for
i 6= j , we associate the elliptic net

WC,P : Zn→K,

defined by
WC,P(v) = φC(Ψv).

50

The conditions on the Pi arises from the requirement that (xi −x j)
−1, xi , and yi do not blowup in

the formulæ for Ψv.
We have the following additional corollary to Theorem 7.1.1.

Corollary 7.2.1. For an elliptic net WE ,P : Zn → K associated to an elliptic curve E, P, we have
W (v) = 0 if and only if v ·P = O on E.

Proof. Immediate from the divisor of Ψv.

Chapter 8

A net gives a curve

In the last chapter, we demonstrated a way to construct an elliptic net from an elliptic curve. In this
chapter, we provide the other half of the ‘Curve-Net Theorem,’ by constructing, from a given elliptic
net, a curve which will give rise to it.

8.1 Scale equivalence and normalisation

This section serves to set some useful definitions for the statement of the Curve-Net Theorem and
subsequent chapters of the thesis.

Let B and C be abelian groups. Recall that a quadratic function f : B→C is a function such that
for all x,y,z ∈ B,

f (x +y +z)− f (x +y)− f (y +z)− f (x +z)+ f (x)+ f (y)+ f (z) = 0.

Proposition 8.1.1. Let W : A→ K be an elliptic net. Let f : A→ K∗ be a quadratic function. Define
W f : A→K by

W f (v) = f (v)W (v).

Then W f is an elliptic net.

Proof. We use multiplicative notation in K∗, so that the quadratic function f satisfies

f (x +y +z) f (x) f (y) f (z) f (x +y)−1 f (y +z)−1 f (x +z)−1 = 1. (8.1)

The parallelogram law for quadratic functions (written multiplicatively) states that

f (x−y) = f (x)2 f (y)2 f (x +y)−1. (8.2)

Equations (8.1) and (8.2) imply

f (p +q + s) f (p−q) f (r + s) f (r) = f (q + s) f (p + s) f (r + s) f (p) f (q) f (r) f (s)−1,

51

52

and so

f (p +q + s) f (p−q) f (r + s) f (r) = f (q + r + s) f (q− r) f (p + s) f (p)

= f (r + p + s) f (r− p) f (q + s) f (q).

This is a sort of symmetry property which suffices to show that the recurrence relation (3.1) holds for
W f .

Definition 8.1.1. If two elliptic nets are related in the manner of W and W f for some quadratic f ,
then we call them scale equivalent.

This is clearly an equivalence relation.

Definition 8.1.2. Let W : Zn → K be an elliptic net. Let e1, . . . ,en be the standard basis vectors in Zn.
We say that W is normalised if W (ei) = 1 for all 1≤ i ≤ n and W (ei + e j) = 1 for all 1≤ i < j ≤ n.
If any term of the form W (ei), W (ei + e j), W (ei − e j) is zero, or if n = 1 and any term of the form
W (2e1) or W (3e1) is zero, then we say that W is degenerate.

The reason for the exact definition of degenerate given here will become clear in the following
section. An elliptic net arising from an elliptic curve and points is normalised.

Proposition 8.1.2. Let W : Zn→K be a non-degenerate elliptic net. Then there is exactly one scaling
W f which is normalised.

Proof. We will give a function f which normalises W . Specify Ai j ∈K∗ for 1≤ i ≤ j ≤ n as follows.
Set Aii = W (ei)

−1 for each 1≤ i ≤ n and

Ai j =
W (ei)W (e j)

W (ei +e j)
,

for 1≤ i < j ≤ n. Set
f (v) = ∏

1≤i≤ j≤n
Avi v j

i j
.

Uniqueness is clear.

In particular, scale equivalence has (
n
2

)
+n =

(
n +1

2

)
degrees of freedom, in the sense that any equivalence class is an (n+1

2)-dimensional vector space.
We define the normalisation of an elliptic net W to be the unique normalised elliptic net which is

scale equivalent to W . We denote this by W̃ . Also, a coordinate sublattice of Zn refers to a sublattice
of the form {v ∈ Zn : vi = 0 for i ∈ I} for some nonzero subset I of {1,2, . . . ,n}. (This is in analogy
with a coordinate plane.)

Proposition 8.1.3. Let n > k≥ 2. Let W ,V : Zn→K be elliptic nets. Suppose that for every coordinate
sublattice L⊂Zn of rank k, W |L and V |L are scale equivalent. Then W and V are scale equivalent.

53

Proof. We may assume without loss of generality that W and V are normalised, since normalising
them will not change the condition that subnets are scale equivalent. We show that, once normalised,
W = V .

First, normalising W and V automatically normalises each of the W |L and V |L. For each L, since
these are scale equivalent and normalised, they agree. That is, W (v) = V (v) for any vector v in any
coordinate sublattice of rank k.

Theorem 4.3.3 tells us that an elliptic net on Zn is uniquely determined by its values on the rank
n− 1 coordinate planes. Therefore W and V agree on all rank three coordinate planes since they
agree on all rank two coordinate planes. By repeated application of Theorem 4.3.3 in this fashion, we
eventually find that W = V on all of Zn.

8.2 Curves from nets of ranks 1 and 2

Recall that a change of variables of a cubic curve in Weierstrass form is said to be unihomothetic if it
is of the form

x ′ = x + r,
y′ = y + sx + t.

(8.3)

Given an elliptic net of rank one or two, we can now describe explicitly how to obtain a curve from
which it arises. The rank one case is due originally to Ward [74, Thm 12.1], but we provide Swart’s
version here.

Proposition 8.2.1 ([68, Thm 4.5.3]). Let W : Z→K be a normalised non-degenerate elliptic net. Then
the family of curve-point pairs (C,P) such that W = WC,P is three dimensional. These are the curve
and point

C : y2 +a1xy +a3y = x3 +a2x2 +a4x +a6, P = (0,0)

where

a1 =
W (4)+W (2)5−2W (2)W (3)

W (2)2W (3)

a2 =
W (2)W (3)2 +W (4)+W (2)5−W (2)W (3)

W (2)3W (3)

a3 = W (2), a4 = 1, a6 = 0

or any image of these under a unihomothetic change of coordinates.

Proof. First, note that the division polynomials Ψ1, Ψ2, Ψ3 and Ψ4 are invariant under a change of
coordinates of the form (8.3). Then, it is a simple calculation to check that WC,P agrees with W at the
first four terms; hence WC,P = W . Conversely, suppose W = WC′,P ′ . After applying a transformation
of the form (8.3) taking P ′ to (0,0) and taking a4 to 1, substitution of the division polynomials into the
equations above verifies that a′i = ai for all i.

54

Proposition 8.2.2. Let W : Z2→ K be a normalised non-degenerate elliptic net. Then the family of
3-tuples (C,P1,P2) such that W = WC,P1,P2

is three dimensional. These are the curve

C : y2 +a1xy +a3y = x3 +a2x2 +a4x +a6

and points
P1 = (0,0), P2 = (W (2,1)−W (1,2),0),

with
a1 =

W (2,0)−W (0,2)
W (2,1)−W (1,2)

, a2 = 2W (2,1)−W (1,2), a3 = W (2,0)

a4 = (W (2,1)−W (1,2))W (2,1), a6 = 0

or any image of these under a unihomothetic change of coordinates.

Proof. The formulæ for W (2,0), W (0,2), W (2,1) and W (1,2) are invariant under a change of coor-
dinates of the form (8.3). The net WC,P1,P2

agrees with W at the terms (2,0), (0,2), (2,1) and (1,2);
hence WC,P1,P2

= W . Conversely, suppose W = WC′,P ′1 ,P ′2
. After applying a unihomothetic transfor-

mation taking P ′1 to (0,0) and P ′2 to (W (1,2)−W (2,1),0), substitution of the net polynomials into the
equations above verifies that a′i = ai for all i.

A more symmetric set of equations in the case of characteristic not equal to 2 is as follows:

P1 = (v,0), P2 = (−v,0), 2v = W (2,1)−W (1,2),

a1 =
W (2,0)−W (0,2)
W (2,1)−W (1,2)

, 2a2 = W (2,1)+W (1,2), 2a3 = W (2,0)+W (0,2)

4a4 =−(W (2,1)−W (1,2))2, 8a6 =−(W (2,1)−W (1,2))2(W (2,1)+W (1,2))

8.3 Curves from nets of rank n ≥ 3

Theorem 8.3.1. Let W : Zn → K be a normalised non-degenerate elliptic net. Then the set of curves
C defined over K and P∈Cn such that W = WC,P forms a three-dimensional family of tuples (C,P).
In particular, the family consists of one such tuple and all its images under a unihomothetic change
of coordinates.

Proof. First we observe a useful consequence of Theorem 6.2.3. Suppose V1 : Zm → K is an elliptic
net of rank m associated to C and P. Also suppose

V2 : {v ∈ Zm : vm = 0}→K

is the elliptic subnet of V1 associated to the coordinate lattice of rank m−1 consisting of vectors with
last coordinate zero. Suppose V ′2 : Zm−1 → K is naturally identified with V2 by simply deleting the
last coordinate of the domain. Then V ′2 is associated to C and P′ where P′ is simply P with the last

55

coordinate deleted. This result holds equally well for any coordinate plane (not just the one with last
coordinate zero).

The theorem holds for elliptic nets of rank 1 and 2 by Propositions 8.2.1 and 8.2.2. We demonstrate
the statement for higher ranks by induction. Suppose n ≥ 3 and the theorem holds for all nets of rank
less than n. Let W1, W2, . . . ,Wn be the normalised elliptic subnets of W associated to the rank n−1
coordinate lattices Li = {v : vi = 0}. These are defined as nets Wi : Li →K ; they can be identified with
nets W ′

i : Zn−1→ K in an obvious way. They are non-degenerate. Then, by the inductive hypothesis,
we have W ′

i = WCi ,Pi
for some curves Ci and points Pi ∈Cn−1

i .
Consider two such nets, Wi and Wj (where i < j). Let Wi j = Wi ∩Wj in W . Define W ′

i j : Zn−2→
K by the obvious identification. Then, W ′

i j = WCi j ,Pi j
for some curve Ci j and Pi j ∈ Cn−2

i j . By the
foregoing, Ci = C j = Ci j , Pi j is just P j with the i-th coordinate deleted, and Pi j is just Pi with the
(j −1)-th coordinate deleted.

Considering every such pair, we may define a candidate curve C by C = Ci for all i and P ∈ Cn

defined as the unique n-tuple which gives each Pi by deleting the i-th coordinate. By the foregoing,
this is well-defined.

Now we see that W agrees with WC,P on all coordinate sublattices of rank n− 1 and hence by
Proposition 8.1.3, W = WC,P.

If we apply a change of coordinates of the form (8.3) to C, the elliptic net does not change since it
is determined by its values on the 2-dimensional coordinate planes (by induction using Theorem 4.3.3;
see the last paragraph of the proof of Proposition 8.1.3). Furthermore, if two tuples not related by
such a change of coordinates generate the same net W , then the same would be true for the rank-two
subnets – a contradiction.

Chapter 9

The curve-net theorem

After a few preliminaries, we will now state the bijection between elliptic nets and curve-point tuples–
the famed ‘curve-net theorem.’

9.1 Homothety and singular nets

The only changes of coordinates of a Weierstrass equation into another are compositions of unihomo-
thetic changes of coordinates and changes of coordinates of the form (x,y) 7→ (λ 2x,λ 3y), which we
refer to as homotheties.

Proposition 9.1.1. Consider the rank n elliptic net WC,P associated to

C : y2 +a1xy +a3y = x3 +a2x2 +a4x +a6

and P ∈Cn. Let λ be a non-zero element of K. Suppose φ
λ

: C →C
λ

is the isomorphism of curves
taking C to

C
λ

: y2 +λa1xy +λ
3a3y = x3 +λ

2a2x2 +λ
4a4x +λ

6a6

under the change of coordinates (x,y) 7→ (λ 2x,λ 3y). Then

W̃C
λ
,φ

λ
(P) = λW̃C,P

In particular, let δi j be the Kronecker delta, and define

g(v) =−1− ∑
1≤i< j≤n

(−1)δi j viv j .

Then
WC

λ
,φ

λ
(P) = λ

g(v)WC,P.

Proof. If λ is a non-zero element of K then C
λ

is again an elliptic curve. The proposition holds for
Ωv over C by Definition 5.1.1. Therefore the rational function representations of Theorem 7.1.1 are
weighted homogeneous in the appropriate way; hence it holds over any field.

56

57

Therefore we set the following definition

Definition 9.1.1. If a basis B : b1, . . . ,bn is specified for A, then with the notation of Proposition 9.1.1,
we define

W λ (v) = λ
g(v)W (v).

This gives an action of K on elliptic nets W : Zn → K called the homothety action. Two elliptic nets
are homothetic if they are in the same orbit of the action of K .

Proposition 9.1.2. Let W be an elliptic net. Then for any non-zero λ ∈ K, W λ is normalised if and
only if W is.

Let W : Zn → K be an elliptic net. If the curve C associated to its normalisation is a nodal or
cuspidal cubic, then W is called singular . If, instead, C is an elliptic curve, then W is called non-
singular. In either case, the discriminant ∆ of W is defined to be the discriminant of the associated
Weierstrass equation. Similarly, the j -invariant of a non-singular elliptic net is the j -invariant of the
associated Weierstrass equation. These are well-defined since the discriminant and j -invariant do not
change under unihomothetic changes of variables. The discriminant of an elliptic net changes by a
factor of λ 12 under homothety, while the j -invariant remains unaltered.

Both scale equivalence and multiplication by a constant take an elliptic net to another elliptic net.
Therefore we will define the slightly more general notion of equivalence as any combination of the
two.

Definition 9.1.2. Let W1 and W2 be elliptic nets. Suppose α,β ∈K∗, and f : A→Z is a quadratic form.
If

W1(v) = αβ
f (v)W2(v)

for all v, then we say W1 is equivalent to W2 and write W1 ∼W2.

9.2 The curve-net theorem

For any Weierstrass curve C, we may put a partial ordering on the tuples of points of C by (P1, . . . ,Pn)≤
(Q1, . . . ,Qm) if the groups they generate satisfy a containment

〈
P1, . . . ,Pn

〉
⊆
〈
Q1, . . . ,Qm

〉
. The col-

lection of all elliptic nets is ordered by the subnet relation.
Collecting our work up to this point, we have shown:

Theorem 9.2.1. We call a set of points {P1, . . . ,Pn} on the non-singular part C0 of a cubic curve
appropriate if Pi 6= ±Pj for any i 6= j and if [2]P1 and [3]P1 are nonzero in the case n = 1. For each
field K, there is an explicit isomorphism of partially ordered sets

scale equivalence classes of
non-degenerate elliptic nets
W : Zn→K for some n

 //

tuples (C,P1, . . . ,Pm) for some m, where C
is a cubic curve in Weierstrass form over K,
considered modulo unihomothetic changes
of variables, and such that {Pi} ∈C0(K)m

is appropriate

oo .

58

Non-singular nets correspond to elliptic curves. The action of K (by homothety) on the sets preserves
the order and respects the isomorphism. The bijection takes an elliptic net of rank n to a tuple
with n points. The elliptic net W associated to a tuple (C,P1, . . . ,Pn) satisfies the property that
W (v1, . . . ,vn) = 0 if and only if v1P1 + . . .+vnPn = 0 on the curve C.

Proof. See Theorem 7.1.1, Definition 7.2.1, Theorem 8.3.1, Corollary 7.2.1 and Proposition 9.1.1

Chapter 10

Bases and periodicity

This centerpiece to this chapter is a notion of basis change for elliptic nets. This is explained in the
first section. As a consequence, we derive partial periodicity properties generalising those of Ward,
and examine quantities which are invariant under change of basis. A warning: in this section (and
henceforth), we will use the terms ‘basis’ and ‘coordinate’ in an arbitrary abelian group. In this context,
coordinates of a point with respect to a basis are no longer unique. And bases are not required to span,
so sometimes coordinates for a point do not exist.

10.1 Freedom from the tyranny of bases

Let E be an elliptic curve and P a point on E . Consider two elliptic nets: WE ,P and WE ,[2]P . Not
unreasonably, we would like to consider the second a ‘subnet’ of the first. However, they do not satisfy
the definition of a subnet relationship, since they are both defined on Z and do not, in general, agree
anywhere. Of course, we can say that the elliptic net

W ′ : 2Z→K, W ′(2n) = WE ,P(2n)

is a subnet of WE ,P corresponding to the inclusion 2Z ⊂ Z. But where has WE ,[2]P gone in this state-
ment? The sequences

WE ,P(2n), and WE ,[2]P(n)

should in some sense both be related to the sequence of multiples [2n]P , so we expect them to relate
to one another. In fact, it turns out that

W ′(2n) = WE ,P(2n) =
WE ,[2]P(n)

WE ,P(2)n2 . (10.1)

The problem we face here is to develop a language appropriate to ‘changing the basis’ of an elliptic net.
In fact, we already have the answer, in the form of an earlier theorem, which we restate here.

59

60

Theorem 10.1.1 (Restatement of Theorem 6.2.3). Let T be any n×m matrix. Let P ∈ Em, v ∈ Zn.
Then

WE ,P(T tr(v)) = WE ,T (P)(v)
n

∏
i=1

WE ,P(T tr(ei))
v2

i −vi (∑ j 6=i v j) ∏
1≤i< j≤n

WE ,P(T tr(ei +e j))
vi v j (10.2)

In particular, the two elliptic nets

WE ,P ◦T tr : Zn→K, and WE ,T (P) : Zn→K

are scale equivalent.

The equation (10.1) is a corollary.

10.2 Higher rank periodicity properties

Look back to Morgan Ward’s ‘periodicity property’ for elliptic divisibility sequences (Theorem 2.6.2),
which we restate here:

Theorem 10.2.1 ([74, Thm 9.2], Restatement of Theorem 2.6.2). Let W be an integer elliptic divisibil-
ity sequence such that W (1) = 1 and W (2)|W (4). Let p be an odd prime and suppose W (2)W (3) 6≡ 0
mod p. Let r be the rank of apparition of W with respect to p. Then there exist integers a,b such
that for all non-negative integers k and s, we have

W (sr +k)≡ aksbs2
W (k) mod p.

Furthermore, the integers a and b satisfy

a ≡ W (r−2)
W (r−1)W (2)

, b ≡W (r−1)2W (2)
W (r−2)

mod p.

Similar periodicity properties for prime power moduli, and their properties, have been extensively
studied by Ayad [2] and especially Swart [68].

Definition 10.2.1. The zeroes of an elliptic divisibility sequence or elliptic net appear as a sublattice of
the lattice of indices. We call this sublattice the lattice of zero-apparition. In the case of a sequence,
this sublattice is specified by a single positive integer, equal to the smallest positive index of a vanishing
term, and this number is called the rank of zero-apparition.

The rank of zero-apparition of an elliptic divisibility sequence associated to a point P will equal the
order of the point P . In the case of an array associated to points P1, . . . ,Pn, the elements v = (v1, . . . ,vn)

of the lattice of zero-apparition correspond to linear combinations v ·P that vanish. Although the
zeroes in an elliptic divisibility sequence appear regularly at a specific interval, that interval is not
always a period for the sequence. An elliptic net is not necessarily periodic with respect to its lattice
of zero-apparition.

In this section we use Theorem 10.1.1 to prove periodicity properties for general n. First we state
and prove Ward’s result for rank 1 to illustrate the method.

61

Theorem 10.2.2 (Generalisation of Theorem 2.6.2). Suppose that WE ,P(r) = 0 for a non-degenerate
elliptic divisibility sequence. Then for all s,k ∈ Z, we have

WE ,P(sr +k) = WE ,P(k)askbs2
(10.3)

where

a =
WE ,P(r +2)

WE ,P(r +1)WE ,P(2)
, b =

WE ,P(r +1)2WE ,P(2)

WE ,P(r +2)
(10.4)

Furthermore, ar = b2. Therefore, there exists an α ∈ K̄, the algebraic closure of K, such that α2 = a
and αr = b, and so

WE ,P(sr +k) = WE ,P(k)α(sr+k)2−k2
.

Proof. The first equation was first proven by Morgan Ward in the case of K = Q [74, Thm. 8.1]. We
prove it here from Theorem 10.1.1. We use (10.2) with

T =

(
r +2

1

)
.

We obtain

WE ,([r+2]P ,P)(s,t)WE ,P(r +2)s2−stWE ,P(r +3)stWE ,P(1)t2−st = WE ,P(sr +2s + t).

Instead, using

T =

(
2
1

)
.

we obtain
WE ,([2]P ,P)(s,t)WE ,P(2)s2−stWE ,P(3)stWE ,P(1)t2−st = WE ,P(2s + t).

Recalling that WE ,P(1) = 1 and [r +2]P = [2]P , and setting t = k−2s, these combine to give

WE ,P(sr +k) = WE ,P(k)askbs2

for some a,b independent of s and k. This does not require dividing by zero by the non-degeneracy
hypothesis.

Finally, the expressions for a and b given in the statement of the theorem may be derived from this
equation with s = 1,k = 1,2. Finally, since a and b are nonzero, choose some k so that WE ,P(k) 6= 0
and we may calculate

WE ,P(k)a2kb4 = WE ,P(2r +k) = WE ,P(r +(r +k)) = WE ,P(r +k)ar+kb = WE ,P(k)ar+2kb2

from which ar = b2.

The proof for the general case works along much the same lines.

62

Theorem 10.2.3. Let K be a field. Suppose that WE ,P : Zn → K is a non-degenerate elliptic net, with
lattice of zero-apparition Γ. For any r ∈ Γ and k ∈ Zn\Γ, define g : Γ× (Zn\Γ)→K∗ by

g(r,k) =
WE ,P(r+k)

WE ,P(k)
. (10.5)

Then g is a quadratic function where defined, which is affine linear in the second factor in the sense
that

g(r,k1 +k2)− g(r,k1)− g(r,k2)+ g(r,0) = 0.

Proof. Since this proof is rather complicated, we lay out the steps here as a more detailed statement
of the above:

1. Suppose that WE ,P is a non-degenerate elliptic net of rank n. Suppose that WE ,P(r) = 0. Then
for any k ∈ Zn\Γ, we have

WE ,P(l r+k) = WE ,P(k) fr(l ,k) (10.6)

where fr : Zn+1→K∗ is a quadratic form.

2. Furthermore, f satisfies

fr(l ,k) =
l−1

∏
j=0

fr(1,k+ jr). (10.7)

3. There exists a quadratic function qr : Zn→K∗ such that

fr(l ,k) = qr(l r+k)qr(k)−1. (10.8)

4. In particular, fr is affine linear in the second factor, in the sense that

fr(l ,k1 +k2)− fr(l ,k1)− fr(l ,k2)+ fr(l ,0) = 0.

5. Finally, for different r1 and r2 we have

fr1+r2
(l ,k) = fr1

(l ,k) fr2
(l ,k+ r1). (10.9)

6. Therefore we may define g : Γ×Zn → K∗ which is quadratic, and affine linear in the second
coordinate by

g(r,k) = fr(1,k).

We begin with the first statement, (10.6). Suppose that r = (r1, . . . ,rn). Let s = (s1, . . . ,sn) ∈ Zn

such that s ·P is not of the form Pi , or Pi±Pj for any i and j . Then, we apply Theorem 10.1.1 with the
(n +1)×n matrices

T1 =

s1 s2 · · · sn

1
1

. . .

1

, and T2 =

s1 + r1 s2 + r2 · · · sn + rn

1
1

. . .

1

.

63

The condition on s ensures that WE ,T1(P) and WE ,T2(P) are non-degenerate elliptic nets. We obtain

WE ,P(ks+ l1e1 + · · ·+ lnen) = WE ,T1(P)(k, l1, . . . , ln)WE ,P(s)k2−∑
n
i=1 kli

×
n

∏
i=1

WE ,P(ei)
l 2
i −kli−∑i 6= j li l j

n

∏
i=1

WE ,P(s+ei)
kli ∏

1≤i< j≤n
WE ,P(ei +e j)

li l j

and

WE ,P(kr+ks+ l1e1 + · · ·+ lnen) = WE ,T2(P)(k, l1, . . . , ln)WE ,P(r+ s)k2−∑
n
i=1 kli

×
n

∏
i=1

WE ,P(ei)
l 2
i −kli−∑i 6= j li l j

n

∏
i=1

WE ,P(r+ s+ei)
kli ∏

1≤i< j≤n
WE ,P(ei +e j)

li l j .

Notice that T1(P) = T2(P) so we can combine the above to obtain

WE ,P(kr+ks+ l1e1 + · · ·+ lnen) = WE ,P(ks+ l1e1 + · · ·+ lnen)

×WE ,P(r+ s)k2−∑
n
i=1 kli

n

∏
i=1

WE ,P(r+ s+ei)
kli

(
WE ,P(s)k2−∑

n
i=1 kli

n

∏
i=1

WE ,P(s+ei)
kli

)−1

For any k and k, the values l1, . . . , ln can be chosen so that

k = ks+ l1e1 + . . . lnen.

Hence this proves the first statement, Item 1. We show the second statement, Item 2, by induction.
Suppose it holds for l < N . Then we have

fr(N ,k) =
WE ,P(N r+k)

WE ,P(k)

=

(
WE ,P(N r+k)WE ,P

WE ,P((N −1)r+k)

)(
WE ,P((N −1)r+k)

WE ,P(k)

)
= fr(1,(N −1)r+k) fr(N −1,k)

=
N−1

∏
j=1

fr(1,k+ jr).

For Item 3, chose u ∈ Zn and set c = u · r. Then, let U : Zn → Zn be the linear transformation
U (v) = cv− (u ·v)r. This transformation is such that U (r) = 0. Define the quadratic function

q0(v) = fr(u ·v,U (v)).

Then,

q0(l r+k)
q0(k)

=
fr(u ·k+ cl ,ck− (u ·k)r)

fr(u ·k,ck− (u ·k)r)
=

cl+u·k−1

∏
j=u·k

fr(1,ck− (u ·k)r+ jr) = fr(cl ,ck).

Now define another function on elements of cZn by

qr(cv) = q0(v).

64

This is a quadratic function and by interpolation we extend the domain of definition to Zn. Since
fr(cl ,ck) is also a quadratic function, it can be interpolated also, and we still have

fr(l ,k) = qr(l r+k)qr(k)−1,

from which we deduce affine linearity, Item 4.
The formula (10.9) in Item 5 is immediate, and from this and affine linearity, the expression

g(r1 + r2 + r3,k1 +k2 +k3)g(r1,k1)g(r2,k2)g(r3,k3)
g(r1 + r2,k1 +k2)g(r2 + r3,k2 +k3)g(r1 + r3,k1 +k3)

becomes unity, which completes the proof.

Note that the interpolation of qr will in general require enlarging the field of definition of the
coefficients of the quadratic form (here ‘coefficients’ is interpreted in the multiplicative sense). This is
analogous to the one-dimensional case where it was necessary to move to a quadratic extension of K
to define α in the statement of Theorem 10.2.2.

Corollary 10.2.4. For every elliptic net W : Zn → K, and r ∈ Zn such that W (r) = 0, there exists an
equivalent elliptic net Wr : Zn→ K̄ which is periodic with respect to r.

Proof. Combining (10.6) with (10.8) shows that the elliptic net

WE ,P(v)

qr(v)

is periodic with respect to r.

We state a lemma for the rank 2 case, both as an example, and since it will be useful later.

Lemma 10.2.5. Let P ,Q ∈ E and WE ,P ,Q be the associated elliptic net. Let WE ,P ,Q(r) = 0 for some
r = (r1,r2). We have the form

g(l r,k1,k2) = al k1
r bl k2

r cl 2
r (10.10)

where

ar =
WE ,P ,Q(r1 +2,r2)

WE ,P ,Q(r1 +1,r2)WE ,P ,Q(2,0)
, br =

WE ,P ,Q(r1,r2 +2)

WE ,P ,Q(r1,r2 +1)WE ,P ,Q(0,2)
, (10.11)

cr =
WE ,P ,Q(r1 +1,r2 +1)

arbrWE ,P ,Q(1,1)
. (10.12)

Proof. The function g is quadratic, but affine linear in the second argument. Thus, it has the form

g(l r,k1,k2) = al k1
r bl k2

r cl 2
r

for some ar, br and cr. Collect the equations (10.5) for r and each of the vectors

k = (2,0),(1,0),(0,2),(0,1),(1,1).

65

By linear algebra,

ar =
g(r,2,0)
g(r,1,0)

=
WE ,P ,Q(r1 +2,r2)

WE ,P ,Q(r1 +1,r2)WE ,P ,Q(2,0)
,

br =
g(r,0,2)
g(r,0,1)

=
WE ,P ,Q(r1,r2 +2)

WE ,P ,Q(r1,r2 +1)WE ,P ,Q(0,2)
,

cr =
g(r,1,1)

arbr
=

WE ,P ,Q(r1 +1,r2 +1)

arbrWE ,P ,Q(1,1)
.

10.3 Quantities which do not depend on basis

In light of Theorem 10.1.1, we would like to define a notation for expressions in terms of elliptic nets
which can be evaluated under any choice of basis. To see what is meant, let Q be the point [2]P on E .
Consider the (as yet undefined) notation

W(3q)
W(q)9 . (10.13)

By this notation we shall mean that the reader should perform the following steps: choose any elliptic
net W associated to E and a basis T = P1, . . . ,Pn ∈ E ; find some ‘coordinates’ of Q in this basis, say vQ

(that is to say, such that vQ ·T = Q); and finally take the quotient of the evaluations of W at 3vQ and
vQ respectively to the powers shown. For example, if we choose the elliptic net WE ,P associated to
the basis P , then a coordinate vQ of Q is 2 (since Q = [2](P)), and we obtain

WE ,P(6)

WE ,P(2)9 ,

whereas if we choose the elliptic net WE ,[2]P associated to basis [2]P , a coordinate of Q is 1 (since
Q = [1]([2]P), and we obtain

WE ,[2]P(3)

WE ,[2]P(1)9 .

The punchline is that these expressions are equal. This is a result of Theorem 10.1.1 (or equation
(10.1)) and fortuitous cancellation:

WE ,P(6)

WE ,P(2)9 =

(
WE ,[2]P(3)

WE ,P(2)9

)
÷

(
WE ,[2]P(1)

WE ,P(2)1

)9

=
WE ,[2]P(3)

WE ,[2]P(1)9 .

In general, given any choices of bases in which Q has a coordinate, the resulting values will always
be equal. This is only true because the expression (10.13) has a special quadratic shape (it would not
work if we replaced the ’9’ with an ’8’). When the value of such an expression is independent of the
choice of elliptic net used for its evaluation, we will say that such an expression is well-defined, and
sometimes say that it is a quadratic quantity.

66

There is a small but very important catch. If we wish to evaluate W(p), we need to make two
choices: the basis T for the elliptic net, and the coordinate vP of P with respect to this net. Suppose
for the sake of argument that we choose two bases T1 and T2 such that M(T1) = T2 for some linear
transformation M. Then, Theorem 10.1.1 tells us that the the evaluation of W(p) performed with these
two choices will agree up to equivalence when using two coordinates v1 and v2 for P which satisfy
M(v1) = v2. There may be, in general, other ways to choose coordinates. It is Theorem 10.1.1 which
we will use to demonstrate the invariance of quadratic quantities, so we must pay special attention to
this matter. The partial periodicity results of the last section will be very important.

Following this informal discussion, we now formalise the notion with a few definitions and a theo-
rem.

Definition 10.3.1. Let the free group on Div(E) be denoted Div2(E). Elements will be denoted

∑
divisors

D=∑P nD,P (P)

mD [D] (10.14)

Example elements and calculations are

[(P)− (Q)]+3[2(P)−5([4]Q)], [(P)], [(P)+(Q)]−2[(P)+(Q)] =−[(P)+(Q)].

Definition 10.3.2. We define a subgroup Quad(E) ⊂ Div2(E) given by elements (called quadratic) of
the form (10.14) satisfying

∑
divisors

D=∑P nD,P (P)

mD

(
∑
P

nD,P xP

)2

= 0

as a polynomial identity in all the independent variables xP which appear.

Just as the group of principal divisors is generated by divisors of the form

(P)+(Q)− (P +Q)− (O),

so the group Quad(E) is generated by elements of the form

[(P)+(Q)+(R)+(S)]− [(P)+(Q)+(S)]− [(P)+(R)+(S)]− [(Q)+(R)+(S)]

+ [(P)+(S)]+ [(Q)+(S)]+ [(R)+(S)]− [(S)].

So, in particular, an element of Quad(E) also satisfies

∑
divisors

D=∑P nD,P (P)

mD

(
∑
P

nD,P xP

)
= 0.

The following depends upon Theorem 10.1.1.

67

Theorem 10.3.1. Let
Θ = ∑

divisors
D=∑P nD,P (P)

mD [D]

be an element of Quad(E), and such that none of the divisors D has sum O, i.e., ∑P [nD,P]P 6= O.
Let T ∈ E(K)n such that every P appearing in Θ is in the group ΓT =

〈
T1, . . . ,Tn

〉
generated by the

collection of Ti . For each such P, let vT,P ∈ Zn such that vT,P ·T = P (i.e., vT,P are the ‘coordinates’
of P in terms of T). Then, the value

ℵ = ∏
divisors

D=∑P nD,P (P)

WE ,T

(
∑
P

nD,P vT,P

)mD

(10.15)

in K∗ is independent of the choice of basis T and the choice of coordinates in that basis.

Proof. The fact that the divisors D do not have sum zero guarantees that the values

WE ,T

(
∑
P

nD,P vP

)

are each in K∗.
First, we will show independence of the choice of coordinates given a single choice of basis T.
By Theorem 10.2.3, g(r,k) is affine linear in the second coordinate where defined. Suppose we wish

to compare the calculation of ℵ using the same basis, but two different sets of coordinates: vT,P and
uT,P . These coordinates differ by mT,P = vT,P −uT,P such that WE ,T(mT,P) = 0. Then, the quotient of
the two calculations will be of the form

∏
divisors

D=∑P nD,P (P)

WE ,T

(
∑P nD,P vT,P

)
WE ,T

(
∑P nD,P uT,P

)
mD

= ∏
divisors

D=∑P nD,P (P)

(
g

(
∑
P

nD,P mT,P ,∑
P

nD,P uT,P

))mD

= ∏
divisors

D=∑P nD,P (P)

(
∏
P

g

(
∑
P

nD,P mT,P ,uT,P

)nD
)mD

= 1

by the affine linearity of g in the second factor. The final product is trivial because

∑
divisors

D=∑P nD,P (P)

mD

(
∑
P

nD,P xP

)
= 0.

This gives freedom from the choice of coordinates. Now we turn to the question of different bases.
Choose two vectors T and R in E(K)n. Let S ∈ E(K)n be chosen so that all Ti ,Ri ∈ ΓS. Then, there
exist matrices MT and MR such that

MT(S) = T, MR(S) = R

on E . We propose to show that ℵT = ℵS, which, repeated for R, will give ℵT = ℵR as desired.

68

Now, we use Theorem 10.1.1 with the matrix MT. We obtain that WE ,T and WE ,S ◦Mtr
T are equiv-

alent.
Suppose we also have that vS,P = Mtr

T (vT,P). Then, by the condition that Θ is quadratic, the ‘equiv-
alence factor’ vanishes and we have ℵT = ℵS as required.

Suppose instead that we do not have vS,P = Mtr
T (vT,P). Then we can alter our choice of coordinates

according to the above, to reduce to the first case.

The notation we have introduced is indeed clumsy, but it was necessary for the careful proof of the
theorem. Henceforth we will adopt our softer notation:

Definition 10.3.3. Whenever we have a product of the form (10.15) which is defined independently of
T as described in Theorem 10.3.1, we will say that it is a quadratic quantity in elliptic nets for E and
write it

∏
D

W

(
∑
P

nD,P p

)
where the W stands for any suitable choice of WE ,T and the lowercase p,q,r etc. stand for the
vT,P ,vT,Q ,vT,R etc. associated with the points P ,Q,R appearing in the divisors.

Example 10.3.1. The expression

W(p +q + r)W(p)W(q)W(r)
W(p +q)W(q + r)W(r + p)

is a quadratic quantity in elliptic nets for E , for any P ,Q,R in E such that none of P + Q + R, P , Q,
R, P +Q, Q +R, or R+P vanish. To see this, calculate

(p +q + r)2 + p2 +q2 + r2− (p +q)2− (q + r)2− (r + p)2 = 0.

To evaluate such a quantity we may choose any suitable T (suitable in the sense that P ,Q,R ∈ ΓT).

Finally, we wish to remove the nonvanishing conditions. The function g(r,k) of Theorem 10.2.3
is not well-defined when W (k) = 0. However, for each r, it extends uniquely as a function of k to
preserve affine linearity.

Now we wish to extend all elliptic nets in the same fashion. That is, whenever W (r) = 0, we would
like to give a value in K∗, called the residue at r. Then we can replace the values 0 with the respective
residues to obtain an extended elliptic net W defined everywhere and taking all its values in K∗. First,
set W (0) = 1. Then, the extended function g determine values for all W (r) where r is in the lattice of
zero-apparition via the relationship:

W E ,P(r+k) = W E ,P(k)g(r,k).

Now repeat the proof of Theorem 10.3.1 with the extended functions fr(k) = g(r,k) and the ex-
tended elliptic nets W . We discover that the quantity

∏
D

W

(
∑
P

nD,P p

)
,

69

defined using the extended elliptic nets, is still independent of basis and coordinates, and so is well-
defined everywhere. Furthermore it is equal to the original definition wherever they are both defined.

To evaluate a quadratic quantity which includes a residue, it is most convenient simply to change
coordinates so that it requires evaluating the easy residue W (0) = 1. If this is not possible, it becomes
necessary to compute a residue.

Example 10.3.2. As an example of such a calculation, consider an elliptic divisibility sequence W
associated to a curve

E : y2 +xy +y = x3−x2−3x +3

and point P = (0,1). This point has order 7 and so W (7) = 0. We can calculate its residue W (7) using
Theorems 10.2.3 and 10.2.2:

W (7) =
W (7)
W (0)

= g(7,0) = a0b1 =
W (8)2W (2)

W (9)
=

(134217728)2(2)
17179869184

= 2097152.

Chapter 11

Catching an elliptic curve

This chapter consists of several detailed examples verifying the results so far encountered.

11.1 An extended example

Example 11.1.1. We expand upon Example 3.2.6. Consider the elliptic curve

E : y2 +y = x3 +x2−2x

and the points P = (0,0), Q = (1,0) on that curve. Some of the smaller terms of the net WE ,P ,Q can be
calculated using Proposition 6.1.4.

W (0,0 = 0, W (1,0) = W (0,1) = W (1,1) = 1

W (2,0) = 2y1 +a1x1 +a3 = 1, W (0,2) = 2y2 +a1x2 +a3 = 1

W (1,−1) = x2−x1 = 1, W (2,1) = 2x1 +x2−
(

y2−y1
x2−x1

)2
−a1

(
y2−y1
x2−x1

)
+a2 = 2

W (2,−1) = (y1 +y2)
2− (2x1 +x2)(x1−x2)

2 =−1

This example has been chosen to give small manageable numbers. More terms can be calculated using
the recurrence relation (3.1) (for example using the algorithms in the scripts in Appendix B). The
array in Figure 11.1 shows a portion of the elliptic net centred on W (0,0) = 0. Notice the symmetry
property W (−a,−b) =−W (a,b). There are no other zeroes visible: in fact, P and Q are independent
non-torsion points. The centre row is the elliptic divisibility sequence associated to E and P , which
begins

1,1,−3,11,38,249,−2357,8767,496035,−3769372,−299154043,−12064147359,632926474117,

−65604679199921,−6662962874355342,−720710377683595651,285131375126739646739,

5206174703484724719135,−36042157766246923788837209,14146372186375322613610002376, . . .

The centre column is the elliptic divisibility sequence associated to Q.

70

71

Fi
gu

re
11

.1
:E

lli
pt

ic
ne

ta
ss

oc
ia

te
d

to
y2

+
y

=
x

3
+

x
2
−

2x
,P

=
(0

,0
),

Q
=

(1
,0

)
ov

er
Q

↑ Q

−
87

03
9

−
47

98
7

30
79

65
22

32
69

−
28

69
43

35
59

59
12

01
6
−

55
28

7
23

92
1

15
87

07
7
−

71
59

46
1

−
19

06
1

−
33

76
−

11
87

53
5

−
12

7
−

29
9

94
47

9
91

9
−

25
91

13
75

1
68

42
8

42
43

45
−

55
−

70
9

−
12

9
67

−
44

−
27

−
31

53
−

33
−

35
0

49
3

66
27

48
19

1
84

1
−

15
1

26
19

−
1

−
7

−
5

8
−

19
−

41
−

15
1

98
9

−
14

66
18

4
−

63
17

5
3

−
2

1
3

−
1

−
13

−
36

18
1

−
15

35
−

18
5

−
47

−
1

4
1

−
1

1
1

2
−

5
7

89
−

14
9

−
24

9
−

38
−

11
3

−
1

−
1

0
1

1
−

3
11

38
24

9
14

9
−

89
−

7
5

−
2

−
1

−
1

1
−

1
−

4
1

47
18

5
15

35
−

18
1

36
13

1
−

3
−

1
2

−
3

−
5

−
17

63
−

18
4

14
66

−
98

9
15

1
41

19
−

8
5

7
1

−
19

−
26

15
1

−
84

1
−

48
19

1
−

66
27

−
49

3
35

0
33

−
53

31
27

44
−

67
12

9
70

9
55

−
42

43
45

−
68

42
8

−
13

75
1

25
91

−
91

9
−

47
9

−
94

29
9

12
7

−
53

5
11

87
33

76
19

06
1

71
59

46
1
−

15
87

07
7
−

23
92

1
55

28
7
−

12
01

6
−

59
59

−
43

35
28

69
−

32
69

−
65

22
−

30
79

47
98

7
87

03
9

P
→

72

Let’s check an instance of the elliptic net recurrence relation (3.1) in this array. For example, let’s
check p = (1,1),q = (−1,1),r = (2,0),s = (2,−1). The recurrence relation is then

W (2,1)W (2,0)W (4,−1)W (2,0)+W (3,0)W (−3,1)W (3,0)W (1,1)

+W (5,0)W (1,−1)W (1,0)W (−1,1)

which evaluates to

(2)(1)(1)(1)+(−3)(4)(−3)(1)+(38)(1)(1)(−1) = 2+36−38 = 0.

Now let us examine this same elliptic curve and points over F17 in Figure 11.2. In this figure, a
spade (♠) marks the centre W (0,0); the other zeroes are marked by clubs (♣) to show the lattice of
zero-apparition.

The reader is encouraged to check Lemma 10.2.5 for this elliptic net. For example, let r = (4,4).
Then

ar =
WE ,P ,Q(r1 +2,r2)

WE ,P ,Q(r1 +1,r2)WE ,P ,Q(2,0)
=

WE ,P ,Q(6,4)

WE ,P ,Q(5,4)WE ,P ,Q(2,0)
=

(13)
(14)(1)

= 7,

br =
WE ,P ,Q(r1,r2 +2)

WE ,P ,Q(r1,r2 +1)WE ,P ,Q(0,2)
=

WE ,P ,Q(4,6)

WE ,P ,Q(4,5)WE ,P ,Q(0,2)
=

(2)
(15)(1)

= 16,

cr =
WE ,P ,Q(r1 +1,r2 +1)

arbrWE ,P ,Q(1,1)
=

WE ,P ,Q(5,5)

arbrWE ,P ,Q(1,1)
=

(3)
(7)(16)(1)

= 2.

So, for the example k = (−7,5), equation (10.10) on the left hand side is

WE ,P ,Q(−3,9)

WE ,P ,Q(−7,5)
=

11
2

= 14.

and on the right,
a−7

r b−5
r c1

r = (7)−7(16)−5(2) = 14.

Now let’s change basis. Select a small integer matrix

T =

(
3 2
−1 1

)
Then the new basis is T (P ,Q) = (P ′,Q ′) = ([3]P +[2]Q, [−1]P +Q) = ((−36

169 , 755
2197),(−1,1)). The asso-

ciated elliptic net is shown in Figure 11.3. Notice that this net is not integral, since the initial values
have denominators. These intial values are

W (0,0 = 0, W (1,0) = W (0,1) = W (1,1) = 1

W (2,0) = 2y1 +a1x1 +a3 =
3707
2197

, W (0,2) = 2y2 +a1x2 +a3 = 3

W (1,−1) = W (0,1)3W (2,1)−W (1,0)3W (1,2) = x2−x1 =
−133
169

W (2,1) = 2x1 +x2−
(

y2−y1
x2−x1

)2
−a1

(
y2−y1
x2−x1

)
+a2 =

−68428
61009

,

W (1,2) = 2x2 +x1−
(

y2−y1
x2−x1

)2
−a1

(
y2−y1
x2−x1

)
+a2 =

−689
361

.

73

Fi
gu

re
11

.2
:E

lli
pt

ic
ne

ta
ss

oc
ia

te
d

to
y2

+
y

=
x

3
+

x
2
−

2x
,P

=
(0

,0
),

Q
=

(1
,0

)
ov

er
F 17

6
13

8
6

11
2

15
4

8
16

8
4

15
2

11
6

8
13

6
16

14
8

6
13

3
4

16
10

3
2

4
8

3
3

15
9

13
10

16
13

5
6

♣
7

5
16

1
6

13
15

2
12

3
2

♣
1

12
10

2
1

16
12

5
13

11
8

5
2

16
3

12
16

13
2

1
9

16
2

4
16

5
3

1
2

12
8

6
13

12
15

11
15

15
2

1
7

♣
14

13
16

3
3

11
8

10
10

16
15

♣
8

16
6

7
2

11
12

14
4

13
5

♣
6

1
8

15
9

6
8

12
1

11
2

12
8

16
5

5
13

13
9

16
2

16
9

13
13

5
5

16
8

12
2

11
1

12
14

1
13

2
6

5
13

♣
8

14
3

2
9

4
10

1
13

12
6

♣
7

12
16

16
6

4
15

15
12

14
2

13
9

3
6

1
1

3
1

11
2

14
13

11
16

8
7

6
9

15
16

9
4

8
16

2
9

11
7

9
16

6
1

1
14

11
4

11
6

12
9

4
6

♣
12

1
4

12
5

10
2

6
11

13
8

♣
2

13
10

11
9

10
3

4
13

1
4

1
9

5
11

4
1

5
16

10
2

12
4

10
16

2
10

7
9

8
1

2
4

2
1

8
9

7
15

3
5

♣
5

14
15

16
3

1
4

2
11

5
4

♣
9

14
14

2
8

4
7

1
4

12
11

♣
10

12
1

6
13

8
2

8
15

15
15

2
13

7
3

8
9

7
9

3
1

10
15

3
8

13
12

14
13

1
8

4
2

13
10

10
1

10
12

4
13

♣
4

13
5

7
16

7
7

3
2

1
7

♣
14

13
16

3
3

11
8

10
10

16
15

6
15

2
5

6
16

9
8

8
8

2
9

2
16

10
12

8
15

10
2

3
13

7
9

3
2

4
14

14
16

16
4

5
11

2
4

1
3

16
15

14
5

♣
5

3
15

1
3

16
4

15
11

12
4

♣
9

3
14

15
8

13
7

14
8

6
13

3
4

16
10

3
2

4
16

4
1

16
1

1
2

12
7

4
4

12
4

10
8

5
1

10
13

15
13

16
5

♣
11

13
8

5
11

6
13

6
3

16
16

♠
1

1
14

11
4

11
6

12
9

4
6

♣
12

1
4

2
4

7
16

12
9

7
13

5
13

13
10

5
15

16
16

1
16

13
1

13
15

14
7

1
13

14
4

11
9

3
10

4
9

2
3

14
8

♣
13

5
6

2
13

1
14

16
2

14
12

♣
12

3
2

1
14

16
13

15
6

12
13

1
1

3
3

13
15

14
8

10
4

14
15

7
2

9
5

7
1

15
8

15
9

9
9

8
1

11
12

15
2

11
2

1
7

7
9

6
14

14
1

4
3

♣
10

16
15

14
10

10
1

10
12

4
13

♣
4

13
5

7
16

7
7

4
15

13
9

16
4

3
5

4
9

14
2

7
16

14
8

10
8

9
14

10
4

15
2

2
2

9
15

9
4

11
16

5
7

♣
6

5
13

16
10

13
9

15
3

3
8

♣
13

12
6

15
13

16
14

1
2

3
12

♣
12

14
2

10
8

9
16

15
13

15
16

9
8

10
7

15
1

7
13

5
15

7
1

12
16

13
6

12
8

16
13

16
4

13
14

7
8

6
7

4
15

♣
9

4
6

11
15

7
12

5
13

16
5

♣
11

13
8

5
11

6
13

6
3

16
16

11
1

8
10

6
8

15
1

9
13

8
1

2
8

11
10

9
1

6
4

3
15

6
16

14
16

16
11

14
8

4
15

3
5

2
2

13
11

1
1

5
10

♣
11

5
4

16
7

13
8

15
14

3
9

♣
4

12
11

15
4

16
3

5
16

6
15

5
9

1
12

12
4

4
8

1
15

1
8

4
4

12
12

1
9

5
15

6
16

5
9

11
8

2
9

16
11

♣
12

4
13

3
5

6
15

10
11

1
9

♣
2

1
7

7
9

6
14

14
1

4
3

♣
10

16
15

2
2

6
2

5
4

11
9

5
15

16
14

12
1

13
15

1
8

16
15

4
1

5
14

1
15

12
9

6
4

12
5

1
16

15
7

5
16

♣
15

14
5

15
2

4
11

16
1

12
10

♣
11

12
4

1
7

4
8

2
14

14
9

13
15

14
7

1
13

14
4

11
9

3
1

11
4

9
11

6
15

2
13

9
1

9
13

2
15

6
11

9
4

11

74

Figure 11.3: Elliptic net associated to y2 +y = x3 +x2−2x, P = (−36
169 , 755

2197), Q = (−1,1) over Q

64017366986980252
23298085122481

−391875247
371293 −129 331747

6859
−464635803151

16983563041
−41753192521927146

2213314919066161
36544816947871

137858491849
1268915

28561 −19 −15886
6859

218120695
47045881

−87224819531
16983563041

17849937049
815730721

13718
2197 3 −689

361
1259
6859

280178460819
103359800557

−27785809
4826809

133
169 1 1 −68428

61009
43030385549
33107082931

−3707
2197 −1 0 1 3707

2197
−3439168815

815730721
68428
61009 −1 −1 −133

169
27785809
4826809

320992934452306
23298085122481

−1259
6859

689
361 −3 −13718

2197
−17849937049

815730721
9420521994063176331

51185893014090757

From Theorem 4.4.1, the denominators appearing in this elliptic net should come from these de-
nominators and the numerator of W (1,−1). Factoring these, we obtain the primes 7, 13, and 19. All
the denominators in Figure 11.3 have prime factorisations containing only these primes. For example,

WE ,P ′,Q ′(−2,4) =
64017366986980252

23298085122481
in the upper left has denominator

23298085122481 = 1312.

As an example of Theorem 10.1.1, consider the point [5]P + [5]Q = [2]P ′+ [1]Q ′. The equation
(10.2) has left hand side

WE ,P ,Q

((
3 −1
2 1

)(
2
1

))
= WE ,P ,Q(5,5) = 68428

and right hand side

WE ,P ′,Q ′(2,1)WE ,P ,Q(3,2)2WE ,P ,Q(−1,1)−1WE ,P ,Q(2,3)2

=
(
−68428
61009

)
(−13)2(−1)−1(−19)2 = 68428,

verifying the statement.

11.2 A closer look at the Gm case

Example 11.2.1. Consider the sequence of even-indexed Fibonacci numbers,

1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, 317811, 832040, 2178309, 5702887,

14930352, 39088169, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025,

32951280099, 86267571272, 225851433717, 591286729879, 1548008755920, 4052739537881,

10610209857723, 27777890035288, 72723460248141, 190392490709135, 498454011879264,

1304969544928657, 3416454622906707, 8944394323791464, 23416728348467685, . . .

75

which satisfy the recurrence relation

W (n +2) = 3W (n +1)−W (n).

This Lucas sequence must be associated to a singular cubic curve and point. Using Swart’s Propo-
sition 8.2.1, the curve and point can be chosen to be

C : y2 +a1xy +a3y = x3 +a2x2 +a4x +a6, P = (0,0)

where

a1 =
W (4)+W (2)5−2W (2)W (3)

W (2)2W (3)
=

21+35− (2)(3)(8)
32(8)

= 3

a2 =
W (2)W (3)2 +W (4)+W (2)5−W (2)W (3)

W (2)3W (3)
=

(3)82 +21+35− (3)(8)
33(8)

= 2

a3 = W (2) = 3, a4 = 1, a6 = 0

which gives the singular cubic

C : y2 +3xy +3y = x3 +2x2 +x.

Take another point Q = (1,
√

13−3) on this curve. The elliptic divisibility sequence associated to
C and Q begins

1, 2
√

13, 88, 576
√

13, 97280, 2523136
√

13, 1700790272, 176362094592
√

13, 475470059536384,

197208405557903360
√

13, 2126671801638386139136, 3528271845490278518489088
√

13,

152193787051469992404816232448, 1009993188091606063360848884137984
√

13,

174266260490479115765850543576936611840,

4625884895742963491852853160886375288930304
√

13,

3192638013253516398641565523487277774441526853632, . . .

This is another elliptic divisibility sequence on the same singular cubic, so we expect it to be a singular
sequence. Morgan Ward showed that such sequences are scale equivalent either to the integers or a
Lucas sequence [74, Thm. 22.1]. In our case, it must be the latter, since our singularity is a node. In
fact, consider the equivalent sequence

An =
√

2
n2−1

WE ,P(n),

which begins

1,

√
13√
2

,
11
2

,
9
√

13
2
√

2
,

95
4

,
77
√

13
4
√

2
,

811
8

,
657
√

13
8
√

2
,

6919
16

,
5605

√
13

16
√

2
,

59027
32

,

47817
√

13
32
√

2
,

503567
64

,
407933

√
13

64
√

2
,

4295995
128

, . . .

76

This sequence satisfies the linear recurrence relation

An+2 =

(√
13√
2

)
An+1−An.

For example,

A3 =

(√
13√
2

)
A2−A1 =

(√
13√
2

)(√
13√
2

)
−1 =

11
2

.

The rank two elliptic net associated to C, P and Q is shown in Figure 11.4 (a multi-dimensional
Fibonacci sequence!). In this figure, the vectors (

a
b

)

correspond to the numbers a
√

13 + b. The origin is in the second column. Notice the conjugate
symmetry in this array:

W (a,b) = W (a,−b).

The curve C has a node at (−1,0). The tangent lines are y =
(
− 3

2 ±
√

5
2

)
(x +1). Let us denote the

non-singular part of C by Cns . Then Cns is isomorphic with K∗ under the isomorphism

(x,y) 7→ 2y +(3+
√

5)(x +1)
2y +(3−

√
5)(x +1)

. (11.1)

That is to say, Cns is a twisted form of Gm.
The point P = (0,0) is associated to the unit(

3+
√

5
3−
√

5

)

in the multiplicative group. If p is a prime of Q and we reduce the curve C and point P modulo p,
the associated elliptic divisibility sequence is reduced modulo p. But this corresponds to reduction
modulo p on Gm, for some prime p of Q(

√
5) lying over p. Therefore the order of the reduced point

P must divide p2−1 or p−1 depending on whether p splits in Q(
√

5). For example, the order of the
point modulo 7 should divide 48, while the order of the point modulo 11 should divide 10. Accordingly,
7 divides the 4-th term of WE ,P and 11 divides the 10-th.

Another consequence of the form of the isomorphism (11.1) is that all rational points on Cns map
to elements of the unit group in Q(

√
5). This unit group is rank 1, and so all rational points on Cns are

dependent. This means that any entirely rational elliptic net of rank two associated to C must have
non-trivial zeroes, and its terms are derived from those appearing in some single elliptic divisibility
sequence (see Example 11.3.1 for an elliptic net with dependent points). This explains the choice of Q
for the example in Figure 11.4: Q should be independent of P since otherwise it can’t be considered a
true ‘two-dimensional Fibonacci sequence’!

77

Fi
gu

re
11

.4
:E

lli
pt

ic
ne

ta
ss

oc
ia

te
d

to
y2

+
3x

y
+

3y
=

x
3
+

2x
2
+

x
an

d
po

in
ts

P
=

(0
,0

)
an

d
Q

=
(1

,√
13
−

3)
(62

48
69

37
6

22
52

98
02

24

)
(25

23
13

6
0

)
(62

48
69

37
6

−
22

52
98

02
24

)(
30

77
37

70
64

96
−

11
09

56
40

80
12

8)(
14

55
53

03
10

69
69

6
−

52
47

98
91

68
20

99
2)(

48
30

60
63

20
49

90
97

6
−

17
41

69
98

78
01

39
92

96

)
(20

16
76

8
72

70
91

2)
(0

97
28

0)
(20

16
76

8
−

72
70

91
2)

(−2
94

08
71

68
10

60
34

63
68

)
(35

25
30

70
84

8
−

12
71

06
75

45
60

)
(38

58
41

76
39

93
6

−
13

91
17

22
64

29
44

)
(12

86
4

46
33

6)
(57

6 0

)
(12

86
4

−
46

33
6)

(51
20

64
−

18
46

27
2)

(74
24

64
−

26
76

99
2)

(−6
98

52
71

23
2

25
18

57
53

60
0

)
(15

6
55

6)
(0 88

)
(15

6
−

55
6)

(−9
24

33
32

)
(−1

01
44

8
36

57
76

)
(12

16
42

68
−

43
85

88
92

)
(3 9)

(2 0)
(3 −

9)
(−2

9
10

5

)
(−1

27
8

46
08

)
(−3

83
65

13
83

27

)
(0 −

1)
(0 1)

(0 1)
(3 −

10

)
(−2

7
98

)
(23

7
−

85
4)

(0 −
1)

(0 0)
(0 1)

(0 3)
(0 8)

(0 21

)
(0 −

1)
(0 −

1)
(0 1)

(3 10

)
(27 98

)
(23

7
85

4)
(−3 9

)
(−2 0

)
(−3 −9

)
(29 10

5)
(12

78
46

08

)
(38

36
5

13
83

27

)
(−1

56
55

6

)
(0 −

88

)
(−1

56
−

55
6)

(−9
24

−
33

32

)
(10

14
48

36
57

76

)
(12

16
42

68
43

85
88

92

)
(−1

28
64

46
33

6

)
(−5

76 0

)
(−1

28
64

−
46

33
6)

(−5
12

06
4

−
18

46
27

2)
(−7

42
46

4
−

26
76

99
2)

(69
85

27
12

32
25

18
57

53
60

0)
(−2

01
67

68
72

70
91

2

)
(

0
−

97
28

0)
(−2

01
67

68
−

72
70

91
2)

(−2
94

08
71

68
−

10
60

34
63

68

)
(−3

52
53

07
08

48
−

12
71

06
75

45
60

)
(38

58
41

76
39

93
6

13
91

17
22

64
29

44

)
(−6

24
86

93
76

22
52

98
02

24

)(
−

25
23

13
6

0

)(
−

62
48

69
37

6
−

22
52

98
02

24

)(
−

30
77

37
70

64
96

−
11

09
56

40
80

12
8)(

−
14

55
53

03
10

69
69

6
−

52
47

98
91

68
20

99
2)(

−
48

30
60

63
20

49
90

97
6

−
17

41
69

98
78

01
39

92
96

)

78

Figure 11.5: Elliptic net associated to y2 +2xy +2y = x3 +2x2 +x and P = (0,0)

283−20(11) 3−16(12) 2−83−12(13) 2−163−8(14) 2−243−4(15) 2−32(16)
263−12(8) 3−9(9) 2−63−6(10) 2−123−3(11) 2−18(12) 2−2433(13)
243−6(5) 3−4(6) 2−43−2(7) 2−8(8) 2−1232(9) 2−1634(10)
223−2(2) 3−1(3) 2−2(4) 2−431(5) 2−632(6) 2−833(7)

(−1) (0) (1) (2) (3) (4)
2−2(−4) 3−1(−3) 223−2(−2) 243−3(−1) 263−4(0) 283−5(1)

11.3 What about Ga?

Example 11.3.1. Suppose we wish to produce the famous sequence

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, . . .?

Using Proposition 8.2.1, we can calculate the associated curve and point:

y2 +2xy +2y = x3 +2x2 +x, P = (0,0).

Suppose we choose another point, Q = [3]P = (−8
9 , −2

27). Then the associated elliptic net is formed
from two dependent points. It is shown in Figure 11.5, where the values are suggestively factored (the
origin is at the intersection of the second row from bottom and second column). The elliptic net is of
the form

W (n,m) = 2−2nm3nm−m2
(n +3m).

All elliptic nets satisfy W (1,0) = W (0,1) = W (1,1) = 1 from which fact one can deduce the powers
of 2 and 3.

Part III

Deeper connections

79

Chapter 12

Three perspectives on group extensions

This chapter contains background relating to group extensions in general and central extensions in
particular. We look at extensions from three perspectives: homological algebra and the Baer sum;
cohomology and factor sets; and multiplicative torsors. The formalism of factor sets and torsors, in
particular, will be used in later chapters.

12.1 Group extensions and Baer sum

In this section we see that the set of group extensions of a group G by an G-module M form a group.
Weibel [75, §3.4] provides a good reference for this section.

Consider an extension of groups

0 // M
j // X

π // G // 0.

in which M is abelian. To each such extension is associated an action of G on M, for, we may choose
any section σ of π and let G act on M by conjugation as follows:

mg = j−1(σ(g) j(m)σ(g)−1).

This is well defined since j(M) is a normal abelian subgroup of X (this guarantees that conjugation by
a different choice of section σ ′ has the same effect, for σ ′(g) = σ(g) j(m0) for some m0). This action
gives a G-module structure to M.

Therefore, given a group G and group M already endowed with a G-module structure, we may
consider the set of all group extensions

0 // M
j // X

π // G // 0.

giving rise in the sense above to the G-module structure already specified on M. We will see that this
set, modulo an appropriate equivalence relation, forms a group. In the next section we will show that
it is isomorphic to the group H 2(G,M) in group cohomology.

80

81

If there are two extensions X and X ′, such that the following diagram commutes, where α is a
group isomorphism then we say that X and X ′ are equivalent.

0 // M //

id
��

X //

α

��

G //

id
��

0

0 // M // X ′ // G // 0

(12.1)

This is evidently an equivalence relation.
Furthermore, we may define a composition law on extensions. Suppose we wish to add X and X ′

defined by

0 // M
j1 // X

π1 // G // 0,

0 // M
j2 // X ′

π2 // G // 0.

Their Baer sum is defined as follows. Let Y be the pullback

Y //

��

X ′

π2
��

X
π1 // G

(12.2)

That is, Y = {(x1,x2) ∈ X ×X ′ : π1(x1) = π2(x2)}. In particular, Y ⊃ j1(M)× j2(M). Define X ′′ to
be the quotient of Y by the antidiagonal (or skew diagonal) ∆̃ = {(j1(m), j2(m)−1) : m ∈M}. Then,
X ′′ forms an extension

0 // M
j // X ′′

π // G // 0

where j is the identification of M with M×0 (which is identified with 0×M in X ′′), and π is given by
either of the two commuting maps Y →G in (12.2) (which is well-defined since ∆̃ is in the kernel). The
exactness of this sequence follows from the exactness for X and X ′.

Proposition 12.1.1. Fix a group G and a G-module M. The set of equivalence classes of extensions
of G by M forms a group under Baer sum.

Proof. To check that this is a well-defined operation on the collection of equivalence classes, assume
that the pairs {X ,Y }, {X ′,Y ′} are pairs of equivalent extensions, X ′′ is the Baer sum of X and X ′,
and Y ′′ is the Baer sum of Y and Y ′. We must show that X ′′ and Y ′′ are equivalent. The equivalences
of the first two pairs gives group homomorphisms α1 : X →Y and α2 : X ′→Y ′. Define α : X ′′→Y ′′

by α((x1,x2)) = (α1(x1),α2(x2)), where the overline represents quotient by the anti-diagonal as in
the definition of Baer sum. This is clearly a group homomorphism. Also, the required commutative
diagram of extensions follows from the respective diagrams for the equivalences of the pairs {X ,Y }
and {X ′,Y ′}.

The identity for this group is the equivalence class containing the extension

0 // M
j // M⊕G

π // G // 0.

82

For, suppose that X in the notation of the Baer sum definition is this extension. Then, continuing
with that notation, Y ∼= M⊕X ′, and X ′′ ∼= (M⊕X ′)/∆̃ ∼= X ′. (This last isomorphism has the form
(m,x) 7→ x j(m)−1,x 7→ (0,x)).

The inverse of an extension X is the X ′ such that X ′′ is equivalent to the extension M⊕G. We
define X ′ by X ′ ∼= X , π2 = π1 but j2 = j1 ◦ [−1] where [−1] represents the map m 7→m−1 on M. Then
∆̃ = {(j1(m), j2(m)−1 : m ∈M}= {(j1(m), j1(m)) : m ∈M}Then X ′′= {(x1,x2) : π1(x1) = π2(x2)}/∆̃∼=
X ′. This last isomorphism is given by (x1,x2) 7→ x2x−1

1 ,x 7→ (x,0).

If we assume that the G-action on M is trivial, then σ(g) j(m)σ(g)−1 = j(m) for all σ(g), and M is
an abelian group, so j takes M into the centre of X . Converseley, if j takes M into the centre of X
then the G-action on M is trivial. These are called central extensions of the group G by the abelian
group M. This is the case we will be concerned with later.

12.2 Factor sets and H 2(G,M)

Now we will associate to each extension a function f : G ×G → M called a factor set. Dummit
and Foote describe much of what is covered in this section [15, §17.4]. Suppose we choose a section
σ : G→ X of π . Then for any g,h ∈ G, σ(g)σ(h) is in the same coset as σ(gh) of X /M. So there is
some fσ (g,h) ∈M such that

σ(g)σ(h) = fσ (g,h)σ(gh). (12.3)

This defines a function fσ : G×G →M. Every element of X may be written uniquely in the form
j(m)σ(g) for some m ∈M,g ∈G. Thus, we may identify X with M×G with the modified group law
‘⊕’ given by

(m,g)⊕ (n,h) = j(m)σ(g) j(n)σ(h) (12.4)

= j(m)σ(g) j(n)σ(g)−1
σ(g)σ(h)

= j(m) j(ng)σ(g)σ(h)

= j(mng fσ (g,h))σ(gh)

= (mng fσ (g,h),gh).

(Recall that G acts on M by conjugation, and this action is denoted mg .)
This group law must satisfy the associativity law, from which we derive the following identity for

fσ :
fσ (g,h) fσ (gh,k) = fσ (h,k)g fσ (g,hk). (12.5)

We will use this property as defining and say that any function f : G×G→M satisfying (12.5) is called
a factor set. Recall that H 2(G,M) consists of 2-cocycles f : G×G→M modulo 2-coboundaries. The
condition (12.5) is exactly the 2-cocycle condition for H 2(G,M), i.e., fσ is a 2-cocycle.

83

Now suppose that σ ′ is another section for the same extension, and f
σ ′ the associated factor set.

How do fσ and f
σ ′ relate? Observe that since σ(g) and σ ′(g) always lie in the same coset, we have

σ(g) = f1(g)σ
′(g)

for some f1(g) ∈M. Hence we may define a function f1 : G→M. Then, we check that

σ
′(g)σ ′(h) = f1(g)σ(g) f1(h)σ(h)

= f1(g)σ(g) f1(h)σ(g)−1
σ(g)σ(h)

= f1(g) f1(h)g fσ (g,h)σ(gh)

= f1(g) f1(h)g fσ (g,h) f1(gh)−1
σ
′(gh)

from which we deduce that

f
σ ′(g,h) fσ (g,h)−1 = f1(g) f1(h)g f1(gh)−1

for some f1 : G→M. This says exactly that fσ and f
σ ′ differ by a 2-coboundary in H 2(G,M). There-

fore, to each extension of G by M, we associate an element of H 2(G,M).
Now we verify that two equivalent extensions have the same factor set. Consider the diagram

(12.1). Then if σ is a section for the top row, α ◦σ is a section for the bottom row. Applying α to
equation (12.3), and recalling that α is the identity on j(M), we have

α ◦σ(g)α ◦σ(h) = fσ (g,h)α ◦σ(gh)

which is to say, fσ = fα◦σ .
Now, we demonstrate the map in the other direction: how a factor set determines an extension.

First, note that given any factor set f , we may choose a factor set f̂ from the same cohomology class
satisfying f̂ (1,h) = f̂ (g,1) = 1 by subtracting a coboundary δ f1 where f1(g) = f (1,1) is a constant el-
ement of H 1(G,M). First, note that (12.5) implies that f (1,1) f (1,k) = f (1,k) f (1,k) and so f (1,k) =

f (1,1). Also, it implies that f (1,1)g = f (g,1). Thus we may calculate f̂ (1,h) = f (1,h) f (1,1)−1 = 1
and f̂ (g,1) = f (g,1)(f (1,1)g)−1 = f (g,1) f (g,1)−1 = 1.

Therefore we may assume without loss of generality that the factor set with which we intend to
build our extension satisfies f (1,h) = f (g,1) = 1. The group law ⊕ described in (12.4) gives the clue
to defining the extension: let X be M×G as a set together with the operation

(m,g)⊕ (n,h) = (mng f (g,h),gh).

The factor set property gives associativity for this group law, and the property that f (1,h) = f (g,1) =

1 shows that (1,1) is the identity. Taking k = 1,h = g−1 in (12.5) gives f (g,g−1) = 1. Thus the inverse
of (m,g) is ((mg−1

)−1,g−1).
Thus we have a bijection between the group of equivalence classes of extensions and H 2(G,M).

Finally, we must verify that this is a group homomorphism. Suppose that we have the setup as de-
scribed in the definition of the Baer sum, σ1 is a section of π1 and σ2 is a section of π2. Then define σ

84

a section for π by σ(g) = (σ1(g),σ2(g)). Then we may calculate

σ(g)σ(h) = (σ1(g),σ2(g))(σ1(h),σ2(h))

= (σ1(g)σ1(h),σ2(g)σ2(h))

= (fσ1
(g,h)σ1(gh), fσ2

(g,h)σ2(gh))

= (fσ1
(gh), fσ2

(gh))(σ1(gh),σ2(gh))

= (fσ1
(gh), fσ2

(gh))σ(gh).

Recall that M× 0 and 0×M are identified and are the image of M in the extension X ′′. Therefore
fσ = fσ1

fσ2
as needed.

12.3 Multiplicative torsors

Yet another perspective on central extensions is explained by Grothendieck in SGA7 [1, exp. VII]; see
also [54, §10.2] and [9, §1]. Recall that for a group G and an abelian group B, a B-torsor X over G is a
set with a free action of B such that the quotient of X by the action is G.

Any two B-torsors X1 and X2 over a base G can be added. First take X1×G X2, the fibre product
of the torsors over G. This has two actions of B, one for each coordinate. Form the quotient with
respect to the B action b · (x1,x2) = (b ·x1,b

−1 ·x2), and we are left with a single action of B acting by
b · (x1,x2) = (b ·x1,b ·x2). This is the sum of B-torsors over G, denoted X1 +X2. Notice the similarity
to Baer sum.

12.3.1 An extension gives a multiplicative torsor

Suppose we have a central extension of groups

0 // B
j // X

π // G // 0. (12.6)

Then, in particular, there is a free action of B on X (denote this by b ·x) such that G is the quotient
of that action under π , i.e., X is a B-torsor over G. Both G and X have group laws, and these are
compatible in the sense that the following diagram commutes:

X ×X
m0 //

��

X

��
G×G m // G

(12.7)

Let p1, p2 : G×G→G be the left and right projection maps, respectively. We claim that the multipli-
cation m0 determines a map

p∗1X ×G×G p∗2X
m1 // m∗X (12.8)

85

between sets over G×G, and vice versa. We see this as follows. First, the dotted map making the
following diagram commute is unique by the universal property of the fibre product:

X ×X m2
//_________

%%JJJJJJJJJ

m0

++m∗X //

zzuuuuuuuuu
X

��
G×G m // G

Hence, m2 and m0 determine each other. Similar statements hold for p∗1X and p∗2X . Thus, the two
projection maps on X give rise to maps X ×X → p∗1X and X ×X → p∗2X . We claim that these two
maps make X ×X the fibre product of p∗1X and p∗2X over G×G. If that claim holds, then m2 and the
map m1 determine each other.

The claim will follow when we now look a little more closely at the map m1. We have

p∗1X ×G×G p∗2X ∼= {(e,g1,g2, f ,h1,h2) : e, f ∈X ,gi , fi ∈G,π(e) = g1,π(f) = h2,g1 = g2,h1 = h2}
∼= {(e, f ,g,h) : e, f ∈X ,g,h ∈G,π(e) = g,π(f) = h} (12.9)

∼= {(e, f) : e, f ∈X} ∼= X ×X

which has two natural actions of B (one for each coordinate). We also have

m∗X ∼= {(e,g,h) : e ∈X ,g,h ∈G,π(e) = gh},

which has a single action of B. Using (12.9), the map m1 is such that

m1((e, f ,g,h)) = (m0(e, f),g,h),

The map m1 inherits a respect for the actions of B from m0, which satisfies

m0(b1 · e1,b2 · e2) = b1b2 ·m0(e1,e2).

We have the equality m1((e, f ,g,h)) = m1((e
′, f ′,g′,h′)) if and only if m0(e, f) = m0(e

′, f ′),g = g′,h =

h′. Therefore, m1 is the quotient by the action b · (e, f ,g,h) = (b · e,b−1 · f ,g,h). In other words, m1

maps onto the B-torsor p∗1X + p∗2X over G×G. (Recall that the sum of two B-torsors over a base is
by definition exactly the fibre product of the two over that base, modulo the ‘anti-diagonal’ action of
B described.) The map m1 inherits surjectivity from m0. That means we have an isomorphism

µ : p∗1X + p∗2X →m∗X . (12.10)

The important point is this: to give such an isomorphism is to give a map m0 in diagram (12.7).
For any subset I of {1,2,3}, we define a map mI : G×G×G→ G to be the multiplication of the

coordinates I , i.e., m12 = m× id and m123 = m ◦m12 = m ◦m23. Similarly, we define projections pI on
G×G×G. Then the associativity of multiplication m0 produces an associativity of µ , which is to say
we have a commutative diagram of B-torsors over G×G:

p∗1X + p∗2X + p∗3X //

��

p∗12m∗X + p∗3X

��
p∗1X + p∗23m∗X // m∗123X

(12.11)

86

We define a multiplicative B-torsor over a group G to be a B-torsor X over a group G together
with an isomorphism (12.10) satisfying the commutative diagram (12.11). We have thus described how
a central extension gives a multiplicative torsor. We now wish to demonstrate the other direction.

12.3.2 A multiplicative torsor gives an extension

Suppose we have a multiplicative B-torsor X over a group G provided with a multiplication (12.10)
satisfying (12.11). As sets, we have an extension (12.6). We wish to endow X with the structure of a
group and show that π and j are homomorphisms. We can reverse the construction above, obtaining
a map m1 from µ and from that a map m0 : X ×X →X satisfying (12.7) (so, if m0 is a group law, the
map π is a homomorphism). We already have associativity of the multiplication µ by the description
above, and this translates to associativity of m0.

Now, we wish to describe the identity and inverses of this composition law, making it a group law.
Finally we show that j is a homomorphism.

The first step is to see what happens when we restrict to fibres: we have

(p∗1X + p∗2X)(g,h)
∼= // (m∗X)(g,h). (12.12)

Let g,h ∈G. The fibres Xgh and (m∗X)(g,h) over the points gh ∈G and (g,h) ∈G×G respectively are
defined by fibre products. These form two vertical faces of the following cubical diagram.

(m∗X)(g,h)
//____

��

��;;;;;;;;;;;;;;;;;
Xgh

��

��7777777777777777

m∗X

��;;;;;;;;;;;;;;;;;;
// X

��88888888888888888

{(g,h)} //

��

{(gh)}

��

oo

G×G m // G

In this diagram, there are commuting maps from (m∗X)(g,h) to G which factor through the point
gh and through X , which, by the universal property of the fibre product Xgh gives a unique map
(m∗X)(g,h)→Xgh . Now, (m∗X)(g,h) is actually the fibre product of Xgh and G×G. For, suppose some
H has maps to Xgh and G×G. Then it has a unique map to {gh} and by fibre product of the front
face, a unique map to {(g,h)}. It has unique maps to X and by fibre product of the floor of the cube,
to m∗X . But then by fibre product of the left face, it has a unique map to (m∗X)(g,h), demonstrating
the universal property of fibre products. Since Xgh has maps to itself and to G×G, it has a unique
map to (m∗X)(g,h) and so the dotted line is an isomorphism. This is what they mean when they say ‘by
abstract nonsense’. Anyway, by exactly similar abstract nonsense, there are unique isomorphisms

(m∗X)(g,h)
∼= Xgh, and (p∗1X + p∗2X)(g,h)

∼= Xg +Xh.

87

Thus, the isomorphism (12.10) determines a unique isomorphism

Xg +Xh
∼= // Xgh (12.13)

for each choice of g,h ∈G.
Now we wish to find an identity element for X . We have an isomorphism,

X1 +Xh →Xh.

In other words, this gives a free, transitive action of X1 on X , for any element of X1 gives an automor-
phism of Xh . Therefore it gives an identification between X1 and B. Let us denote by 1X the element
corresponding to the identity in B. Then its action on Xh is trivial for all h ∈ G and it is an identity
element. We also have an isomorphism

X1 +X1→X1.

which indicates that m0 restricts to a group law on the fibre X1. The fibre over X1 is the kernel of the
map π , and this identification is exactly the map j , which is injective. So once we show that m0 is a
group law, we will know that j is a homomorphism.

All that remains is the existence of inverses. We have an isomorphism

Xg +Xg−1 →X1

So, in particular, for any element x ∈X , let g = π(x) and consider x ∈Xg . Then choose y ∈Xg−1 such
that (x,y) 7→ 1X . This is the inverse of x.

This gives an equivalence of categories, and so multiplicative B-torsors over G form a group. The
group law, on the torsor side, is just torsor addition.

Chapter 13

Generalised Jacobians

We will now introduce generalised Jacobians, as described by Rosenlicht [57, 58] (and exposited by
Serre [60]). The first section introduces some basic notation for divisors. Then, the generalised Jaco-
bian is introduced. The case of an elliptic curve and a modulus of two points will be our particular
concern, and in this case the factor set is made explicit. In the last two sections, this is shown to be
equivalent to a group extension arising from a divisor in the Picard group of the curve: the first sec-
tion shows that the generalised Jacobian is an algebraic group, and that a rational factor set suffices to
determine an algebraic extension; in the second we show that the extension formed from a line bundle
has a factor set agreeing with that of Rosenlicht’s generalised Jacobian. Our interest all along is in
understanding the explicit computations, which we will use later.

13.1 Divisors and Weil reciprocity

Suppose D is a divisor on a product U ×V . If a = ∑P nP(P) is a cycle on U (i.e., a formal sum of
points of U), then we can write

D|U×a = ∑
P

nP D|U×{P},

where D|U×{P} denotes the divisor on U ×{P} which is the restriction of D to that fibre.
If D ∼ 0, then we write fD for a rational function on U ×V whose divisor is D (this notation

has an ambiguity, but we shall never use it in a context where the particular choice of such a function
matters).

Suppose D is a principal divisor on U , and a a cycle of degree zero. A divisor on a zero-dimensional
variety doesn’t mean much, so we appropriate the notation D|a to mean fD(a). In other words

D|a = ∏
P

fD(P)nP .

Using this notation, we have the following generalisation of Weil reciprocity:

88

89

Theorem 13.1.1 ([38, VI §4 Thm. 9]). Let A and B be two abelian varieties, and let D be a divisor on
A×B. Let a and b be two cycles of degree zero on A and B respectively, and whose sums are zero.
Suppose no point of a×b is contained in D. Then the values

fD|A×b
(a), and fD|a×B

(b)

are defined and equal. We denote both by D|a×b. If D is principal, we may relax the condition that
a and b have sum zero, in which case both of the above are still defined and are equal to fD(a× b)

(justifying our choice of notation).

The more usual statement of Weil Reciprocity is a corollary.

Corollary 13.1.2. Suppose that f and g are rational functions on a curve, whose divisors have dis-
joint support. Then f ((g)) = g((f)).

For proofs, see Lang [38, VI §4].

13.2 Generalised Jacobians

Let C be a projective algebraic non-singular irreducible curve defined over a field k. Let Pic(C) be the
group of divisors of C modulo linear equivalence, and let Pic0(C) be the subgroup of classes of divisors
of degree zero. Recall that there is an abelian variety, the Jacobian J(C), associated to the curve C,
and this variety is isomorphic to Pic0(C) as a group. In this section we wish to generalise the notion of
Jacobian to certain singular curves in a particular way. First, we describe a group extension of Pic0(C)

which depends on a choice of modulus m (a divisor on C). Then, we state that this group is isomorphic
to an algebraic group Jm(C). For details, see Serre’s Algebraic Groups and Class Fields [60] or the
original papers of Rosenlicht [57, 58].

Let m be an effective divisor ∑nP(P) on C, which we call the modulus. For a rational function f
on C, we write

f ≡ 1 mod m

if vP(1− f)≥ nP for every P in the support of m.
Then we say that two divisors D and D ′ on A with support disjoint from that of m are m-equivalent

if there exists a non-zero rational function f with divisor D−D ′ and such that f ≡ 1 modulo m. We
denote this by D ∼m D ′. The notion of m-equivalence is a refinement of linear equivalence. We
define Picm(C) to be the group of m-equivalence classes of divisors with support disjoint from m, and
Pic0

m(C) to be the subgroup consisting of classes of degree zero. For the case of the trivial divisor m,
m-equivalence is taken to be the usual notion of rational equivalence, so that Picm(C) = Pic(C) and
Pic0

m(C) = Pic0(C).
Let π : Pic0

m(C)→ Pic(C) be the obvious map. Let Lm be the kernel. In this way Pic0
m(C) is an

extension of Pic0(C) by an algebraic group:

0 // Lm

j // Pic0
m(C)

π // Pic0(C) // 0 (13.1)

90

13.3 The case of an elliptic curve with modulus m = (S)+(T)

Serre and Rosenlicht go on to describe the structure of these extensions in detail, but our concern
for the moment will be with elliptic curves, and more specifically, with the case for which it turns out
that Lm

∼= Gm. This is the case where C = E is an elliptic curve and m = (S)+ (T) for two distinct
points S,T ∈ E . In this section we will calculate the factor set for the generalised Jacobian Pic0

m(E)

explicitly. For further details on the explicit approach we take here, see [14].
In order to calculate the factor set, we must choose a section σ to π in (13.1). Denote by Div0

m(E)

divisors on E of degree zero and support disjoint from m and denote by Div0(E) divisors on E of
degree zero. For any divisor D = ∑P nP(P), let s(D) = ∑P [nP]P . We will choose a section σ to π in
(13.1) by first defining

σ : Div0(E)→Div0
m(E).

Associate to every P ∈ E some point RP such that neither RP nor s(D)+ RP is in the support of m.
Then we can define

σ(D) =
(

s(D)+Rs(D)

)
−
(

Rs(D)

)
(13.2)

and be assured that the supports of σ(D) and m are disjoint. Since Rs(D) depends only on the sum
of D , it is invariant across any equivalence class in Pic0(E). For convenience, we define RD := Rs(D).
Therefore σ induces a map which we will call by the same name

σ : Pic0(E)→ Pic0
m(E)

taking [D] to [σ(D)]m. This σ is a section to π in (13.1) and we intend to describe the factor set it gives.
We can define the factor set Fσ : Pic0(E)×Pic0(E)→ Lm by

Fσ (D1,D2) = σ(D1)+σ(D2)−σ(D1 +D2).

This divisor is linearly equivalent to zero and can be written(
s(D1)+RD1

)
−
(

RD1

)
+
(

s(D2)+RD2

)
−
(

RD2

)
−
(

s(D1 +D2)+RD1+D2

)
+
(

RD1+D2

)
. (13.3)

We define a little useful notation: denote by D(P ,Q) the divisor (P)+(Q)− (P +Q)− (O) and denote
by hP ,Q the rational function with this divisor. Then, the divisor becomes

D
(
s(D1),s(D2)

)
+D

(
s(D1)+ s(D2),RD1+D2

)
−D

(
s(D1),RD1

)
−D

(
s(D2),RD2

)
,

and we have

Fσ (D1,D2) =

hs(D1),s(D2)hs(D1)+s(D2),RD1+D2

hs(D1),RD1

hs(D2),RD2

 . (13.4)

Note that this divisor has disjoint support from m.

Proposition 13.3.1. The map
Fσ : E×E → Lm

91

is a factor set. Hence, we have an extension of groups

0 // Lm

j // Pic0
m(E)

π // Pic0(E) // 0 (13.5)

Proof. The verification of (12.5) is straightforward.

The kernel Lm consists of classes [D]m such that D = (f) and the supports of D and m are disjoint.
There is a map

Lm

φ // Gm

given by (f) 7→ f (S)/ f (T). The kernel of this map is zero. For, suppose φ([(f)]m) = φ([(g)]m).
Without loss of generality we may choose f and g such that f (T) = g(T) = 1, so this implies that

f (S)/g(S) = 1 ⇐⇒ (f /g)(S) = (f /g)(T) = 1

⇐⇒ (f /g)≡ 1 mod m

⇐⇒ [(f)]m = [(g)]m

This map is also surjective. A quick way to see this is to take the rational function

fa : E → P1, fa(B) =
x(B)−a
xT −a

where xT is the x-coordinate of the fixed point T and x(B) denotes taking the x coordinate of the
variable B. Then fa(T) = 1 for any a but fa(S) can be forced to become any desired value of Gm by
taking an appropriate value for a.

Finally, recall that Pic0(E)∼= E by the pair of maps P 7→ [(P)− (O)] and [∑P nP(P)] 7→ ∑P [nP]P .
Thus we may choose to consider Pic0

m(E) as the extension

0 // Gm
j // Pic0

m(E)
π // E // 0

given by the factor set

F̂σ (P ,Q) =
Fσ (P ,Q)(S)
Fσ (P ,Q)(T)

. (13.6)

In particular, we can consider Pic0
m(E) to be the group Gm×E with the operation ‘⊕’ given by

(a,P)⊕ (b,Q) = (abF̂σ (P ,Q),P +Q)

Importantly, we have not yet shown that Pic0
m(E) is an algebraic group.

Let us momentarily return to considering general C and m. In that case, we may also describe
Pic0

m(C) as a group extension by an algebraic group Lm, and it is isomorphic to a variety which we
denote Xm. The dimension of this variety is g + deg(m)− 1 for nontrivial m and Lm is an algebraic
group isomorphic to a product of a torus and a unipotent group of a certain form. For details, consult
Serre [60].

92

13.4 Rational sections and algebraic groups

In this section, we follow Serre [60, VII §1.4]. Suppose that A and B are commutative connected
algebraic groups. A rational map f : A×A→ B satisfying the cocycle condition (12.5) (recall that the
action of A is trivial) is called a rational factor set. A rational factor set is trivial if it is the image of
a rational map g : A→ B under the coboundary map. We similarly define regular factor sets. Rational
and regular functions are closed under addition, hence we have groups H 2

rat (A,B) and H 2
reg(A,B). If

we further assume that the factor sets are symmetric, we define H 2
rat (A,B)s and H 2

reg(A,B)s . Finally,
define Ext(A,B)rat and Ext(A,B)reg to be the subgroups of Ext(A,B) given by extensions admitting
a rational (respectively regular) section.

Theorem 13.4.1 ([60, VII §1.4 Prop. 4]).

1. The group H 2
reg(A,B)s is isomorphic to Ext(A,B)reg .

2. The group H 2
rat (A,B)s is isomorphic to Ext(A,B)rat .

Proof. Part 1: Restricting the isomorphism Ext(A,B)∼= H 2(A,B)s explained in Section 12.2, we have
an injective homomorphism θ : Ext(A,B)∗→H 2

reg(A,B)s given by taking any regular section g : A→X
and defining a factor set f : A×A→ B by f (x,y) = g(x) + g(y)− g(xy) (clearly the latter is also
regular). If f is a regular factor set, then we can define the associated extension as B×A with the
group law

(b1,a1)⊕ (b2,a2) = (b1 +b2 + f (a1,a2),a1 +a2).

The map a 7→ (1,a) is a regular section. So θ is a bijection.
In Part 2 we will several times use the following fact. Claim: A rational homomorphism between

algebraic groups is a regular homomorphism [60, V. §1 no. 5 Lemma 6]. To show this, suppose
f : G1→G2 is such a map, so it is a regular homomorphism on a non-empty open subset U ⊂G1. That
is, f (x +y) = f (x)+ f (y) whenever x,y,x +y ∈U . Fixing any x ∈U and varying y, we see that f is
regular on x +U . But the x +U cover G1, so f is regular.

Part 2: We again have a homomorphism θ : Ext(A,B)rat → H 2
rat (A,B)s . This time, to show injec-

tivity, we must show that having a rational section which is a homomorphism implies having a section
(everywhere defined) which is a homomorphism. The Claim provides this step.

It remains to demonstrate surjectivity. As before, we can define a law of composition on A×B
which is rational, making A×B a birational group. By the results of Weil (see [60, V. §1] or [76]),
A×B is birationally equivalent to a connected commutative algebraic group X by a pair of maps

F : A×B→X , G : X →A×B,

which commute with the defined composition laws (i.e., is a homomorphism where defined).
Then p1 ◦G : X → A is a surjective homomorphism (by the Claim). We now define a homomor-

phism from φ : B→X as follows. Let b ∈B, and choose a ∈A,b′ ∈B such that F is defined at (a,b+b′)
and (a,b′). Then, set φ(b) = F (a,b + b′)−F (a,b′). Then φ is independent of the choice of a and b′

93

by the condition that F respects the composition laws, and is a homomorphism where defined (hence
regular by the Claim). We have obtained maps

1 // B
φ // X

p1◦G // A // 1.

This is exact by the construction. A rational factor set for this extension is f . As in Part 1, a section
is given by x 7→ F (1,x), which is rational.

In particular, giving a rational section of A by B is enough to determine an extension of algebraic
groups. As a corollary we have the following:

Proposition 13.4.2. If A and B are algebraic groups, then a rational factor set extends uniquely to a
factor set defined everywhere.

Proof. By the bijection above, a rational factor set gives an extension of algebraic groups admitting
a rational section. Furthermore, this rational section gives the rational factor set we began with.
Therefore, extend this rational section to a section defined on the entire group A, and the associated
factor set must agree with the rational factor set where they are both defined. It remains to show
uniqueness. But this comes of the factor set condition. For any a,b,c,d , we have (by two applications
of the factor set condition):

f (a,b) =
f (a−d ,b− c) f (d ,b +a−d − c) f (a +b− c,c)

f (d ,a−d) f (b− c,c)
.

Since f is rational, it is defined on an open subset of A×A. Therefore there are some points c and d
such that the right hand side of the above is defined. This gives uniqueness.

Now, let us return to the notation of the last section, where m = (S) + (T) on an elliptic curve
E . Both Lm and Pic0(E) of the last section are algebraic groups (the first is Gm as described, and the
second is the Jacobian of the curve). Fix a value R0 6= S,T and suppose we choose the section giving
the extension Jm in such a way that the RD = R0 almost everywhere (i.e., unless one of P +R0, Q +R0,
P +Q +R0, or R0 is in {S,T }). We set the notation hP ,Q,R for a rational function with divisor

(P +R)+(Q +R)− (P +Q +R)− (R)

(slightly generalising the notation hP ,Q used in Section 13.3). Then, for all but finitely many pairs P ,Q,
the factor set (13.4) takes value F (P ,Q) = (hP ,Q,R0

). That is, as an extension by Gm, the factor set is

F (P ,Q) =
hP ,Q,R0

(S)

hP ,Q,R0
(T)

. (13.7)

This gives a rational factor set for Jm. Therefore Theorem 13.4.1 tells us that

Theorem 13.4.3. Let m = (S)+(T) on an elliptic curve E. Then Pic0
m(E) is an algebraic group.

Furthermore, we can show the following.

94

Proposition 13.4.4. Let E be an elliptic curve, and let m = (S)+ (T) and m′ = (S ′)+ (T ′). The two
generalised Jacobians Jm(E) and J

m′(E) are equivalent if and only if m′ = τ∗Mm for some point
M ∈ E.

Proof. As discussed above, choose R0 6= S,T ,S ′,T ′ and use it to make the rational factor sets F and
F ′ respectively of Jm and J

m′ . (By the preceeding, throughout what follows we may deal with only
with rational 2-cocycles and 2-coboundaries to demonstrate the result.) These satisfy

F (P ,Q)
F ′(P ,Q)

=
hP ,Q,R0

(S)hP ,Q,R0
(T ′)

hP ,Q,R0
(T)hP ,Q,R0

(S ′)
. (13.8)

Now suppose that m′ = τ∗Mm. We have

F (P ,Q)
F ′(P ,Q)

=
hP ,Q,R0

(S)hP ,Q,R0
(T +M)

hP ,Q,R0
(T)hP ,Q,R0

(S +M)
.

By Weil reciprocity, this is

F (P ,Q)
F ′(P ,Q)

=
hS−T ,M,T (P +R0)hS−T ,M,T (Q +R0)

hS−T ,M,T (P +Q +R0)hS−T ,M,T (R0)
,

which is a 2-coboundary in variables P and Q. Therefore the extensions are equivalent.
For the converse, suppose that the quotient of the factor sets is a 2-coboundary, so there’s some

rational function f such that
F (P ,Q)
F ′(P ,Q)

=
f (P) f (Q)
f (P +Q)

,

So we can write for some constant c, that

F (P ,Q)
F ′(P ,Q)

= c
f (P) f (Q)

f (P +Q) f (O)
,

Then f is a product of some functions hR1,R2,R3
. Without loss of generality, we may assume it is

exactly one such function: f = hR1,R2,R3
. Then, we have

F (P ,Q)
F ′(P ,Q)

= c
hR1,R2,R3

(P)hR1,R2,R3
(Q)

hR1,R2,R3
(P +Q)hR1,R2,R3

(O)
,

and again by Weil reciprocity,

F (P ,Q)
F ′(P ,Q)

= c
hP ,Q(R1 +R3)hP ,Q(R2 +R3)

hP ,Q(R1 +R2 +R3)hP ,Q(R3)
. (13.9)

Now, by the first direction, we can without loss of generality translate m and m′. So let us assume
T = R3 and T ′ = R2 +R3. Then, setting (13.8) equal to (13.9), we have

c
hP ,Q(R1 +R2 +R3)

hP ,Q(R1 +R3)
=

hP ,Q(S)

hP ,Q(S ′)

95

for all P ,Q. Let D = (R1 + R2 + R3)+ (S ′)− (R1 + R3)− (S). Then we have shown that f (D) = c−1

for all but finitely many rational functions f on E with disjoint support from D .
I claim that any divisor D such that f (D) is constant for all but finitely many f must be D = 0.

Suppose D = ∑np(P) with support S, then consider the functions

f(aP) = ∑
P∈S

aP ∏
Q∈S,Q 6=P

(x−xQ)

Then f(aP)(D) = ∏P anP
P

. By varying the aP we can obtain any value we like, unless the product is
empty (i.e., D = 0).

Therefore (S ′)− (S) = (R1 + R2 + R3)− (R1 + R3), so S = R1 + R3 and S ′ = R1 + R2 + R3. Thus
m = τ∗R2

m′.

13.5 Line bundles and extensions

Recall that Pic0(A) for an abelian variety A is the collection of divisor classes which are translation
invariant, i.e., τ∗P D−D ∼ 0.

In Section 13.3, we constructed an extension of an elliptic curve E by Gm for every m ∈ Div(E)

of the form (S)+ (T). There is another way to construct extensions of E by Gm or more generally
extensions of any abelian variety by Gm: any line bundle in Pic0(A) ‘is’ such an extension.

Consider a line bundle L over an abelian variety A. Then the line bundle with the zero section
removed (call it L̄) forms a Gm-torsor (the zero section must be removed so that Gm acts freely).
Furthermore, the tensor product of line bundles corresponds exactly to the sum of Gm-torsors (see
Section 12.3).

If, furthermore, we assume that L ∈ Pic0(A), then we have an isomorphism

p∗1L⊗ p∗2L∼= m∗L. (13.10)

Considered as torsors, this is just an isomorphism

p∗1L̄+ p∗2L̄∼= m∗L̄.

When referring to torsors coming from line bundles, we will often use the line bundle notations.
In what follows, the line bundle L, considered as a torsor, will become a multiplicative torsor, and
therefore give an extension of A by Gm.

We wish to fix a particular isomorphism of (13.10). We shall do this by giving a trivialisation of L
at 0, which is to say, choosing an isomorphism between A1 and the fibre L0 above 0:

L0
∼= // A1 , x1 7→ 1.

Tensoring with L0, we obtain an isomorphism

L0⊗L0
∼= // L0 , ax1⊗bx1 7→ abx1. (13.11)

96

Any isomorphism of (13.10) restricts to an isomophism L0⊗L0
∼= L0 (see Section 12.3); we choose to

fix the isomorphism of (13.10) which restricts to the one given in (13.11).
We wish to show that we have a commutative diagram of isomorphisms

p∗1L⊗ p∗2L⊗ p∗3L //

��

p∗12m∗L⊗ p∗3L

��
p∗1L⊗ p∗23m∗L // m∗123L

This is an equality of two isomorphisms. Restrict to L0⊗L0⊗L0 and the two isomorphisms become
the maps ax1⊗ bx1⊗ cx1 7→ abcx1. Since they restrict to the same map L0⊗L0⊗L0 → L0, they are
the equal.

Therefore, by Section 12.3, for every L ∈ Pic0(A) equipped with a trivialisation at 0, we obtain a
central extension.

Let’s make the factor set explicit. Since any line bundle admits rational sections, the extension
admits rational sections. Suppose we choose a section g : A→ L defined on any open subset where
the bundle is trivial. Associated with this rational section is a divisor D such that g is defined on
U = A\supp(D).

Let us set the notation λ (D) = p∗1D + p∗2D−m∗D . We have λ (D) ∼ 0. Hence, there is a rational
function f on A×A which has divisor λ (D). This is a map f

λ (D) : A×A→ P1. Thus, we define a
rational factor set F : A×A→Gm which is just

F (P ,Q) = f
λ (D)(P ,Q). (13.12)

Of course, we have a choice in f
λ (D) to scale by a constant, but this gives an equivalent factor set. By

definition, (13.12) is exactly the rational factor set associated to the rational section g.
Thus, we have constructed extensions of E by Gm in two different ways. It turns out these are the

same, which we show by comparing their factor sets.

Proposition 13.5.1. The equivalence class of extensions of E by Gm associated to the divisor D =

(S)− (T) is exactly the equivalence class of generalised Jacobians Jm for m = (S)+(T).

Proof. Let

C =−m∗123(O)+m∗12(O)+m∗23(O)+m∗13(O)−m∗1(O)−m∗2(O)−m∗3(O).

(Recall that mI corresponds to the multiplication of the factors indexed by I , e.g. m12 : E×E×E→ E
is (P1,P2,P3) 7→ P1 +P2.) By the Theorem of the Cube, C ∼ 0 on A×A×A. We can evaluate

C|{(X)}×A×A = p∗1(−X)+ p∗2(−X)−m∗12(−X).

Let us set the convenient notation λ (X) = p∗1(X)+ p∗2(X)−m∗12(X). We also have

C|A×{(X)}×{(Y)} = (−X)+(−Y)− (−X −Y)− (O).

97

Let a = (−P ,−Q) be a cycle on A×A, and b = (S)− (T) be a cycle on A. By Theorem 13.1.1, we have

f
λ ((S)−(T))(P ,Q) = fC|

b×A×A
(a) = fC|A×a

(b) = fP ,Q((S)− (T)).

This shows that both factor sets (13.7) and (13.12) form the same extension of E by Gm. The equality
above only holds on an open subset where it is defined, but by Proposition 13.4.2, this suffices to prove
the theorem.

Chapter 14

Biextensions

14.1 Definitions

We follow Mumford [50] in defining the notion of a biextension X of B×C by A (here, A, B and C
are abelian groups, but X will have a more complicated structure, as we shall see). See also [8], [1, exp.
VII], [54, §10.2]. We say X is a biextension of B×C by A if the following hold. First, A acts freely on
X and there is a map

X
π // B×C

making B×C into the quotient of X by the action of A (as a set). Define the fibre product X ×B X by

X ×B X
π◦p2 //

π◦p1
��

B×C

p1

��
B×C

p1 // B

where the pi are projection maps. Define X ×C X similarly. There are two laws of composition

+1 : X ×B X →X ,

+2 : X ×C X →X .

These satisfy the requirements that for each b ∈ B, Xb = π−1(b×C) is an abelian group under +1 and
π is a surjective group homomorphism of Xb onto C and has kernel isomorphic to A via the action of
A on Xb . A parallel requirement holds for each c ∈C. Furthermore, for elements x,y,u,v ∈X which
π maps

x 7→ (b1,c1), y 7→ (b1,c2), u 7→ (b2,c1), v 7→ (b2,c2),

we have
(x +1 y)+2 (u +1 v) = (x +2 u)+1 (y +2 v). (14.1)

In brief, X is a pair of parametrised collections (Xb and Xc) of extensions of C and B respectively by
A which satisfy some compatibility properties. From the definition above, it follows that for any fixed

98

99

b ∈ B, Xb is a group extension of C by A via the map π :

0 // A // Xb
π // C // 0. (14.2)

Finally, there is a natural notion of equivalence of biextensions, i.e., two biextensions X and X ′ are
equivalent if they are isomorphic as sets under the action of A. We will denote the set of equivalence
classes of biextensions by Biext(B×C,A). In the next section we will show that this has the structure
of a group.

14.2 Cohomology of biextensions

As for extensions, biextensions can be described by cocycles and coboundaries. Choose a section σ

to π : X → B × C. Any element x ∈X can be written as σ(b,c)a for some a ∈A, b ∈ B, and c ∈C
(here, xa denotes x acted on by a). Since A acts freely, this representation is unique, and so we have
an isomorphism X ∼= A×B×C as sets under the action of A (on the right, a acts by multiplication on
A and trivially on the other factors).

Restricting to a fixed b ∈ B, σ is a section to π in the extension (14.2), and has a factor set
fb,σ

: C × C → A. As always, a parallel statement holds for C in place of B, and we can define

φ : B×C×C→A,

ψ : B×B×C→A.

by φ(b;c,c′) = fb,σ
(c,c′), and ψ(b,b′;c) = fc,σ (b,b′). In other words,

φ(b;c,c′) = σ(b,c + c′)−σ(b,c)−σ(b,c′), (14.3)

ψ(b,b′;c) = σ(b +b′,c)−σ(b,c)−σ(b′,c).

Here, we mean that the values on the right lie in the fibre over (b,0) and (0,c) respectively, each of
which is identified with A since Xb and Xc are extensions of C and B by A respectively. Note that
these extensions have trivial action of B and C on A, so the factor sets satisfy

φ(b;c + c′,c′′)+φ(b;c,c′) = φ(b;c,c′+ c′′)+φ(b;c′,c′′), (14.4)

ψ(b +b′,b′′;c)+ψ(b,b′;c) = ψ(b,b′+b′′;c)+ψ(b′,b′′;c).

These factor sets give operations +1, +2 on A×B×C by

(a,b,c)+1 (a′,b,c′) = (a +a′+φ(b;c,c′),b,c + c′), (14.5)

(a,b,c)+2 (a′,b′,c) = (a +a′+φ(b,b′;c),b +b′,c) (14.6)

Thus, we must make explicit the conditions on φ and ψ which correspond to the conditions on +1 and
+2 in the definition of a biextension. First, we have the factor set conditions (14.4), but also +1 and +2

must be abelian group laws, which gives

φ(b;c,c′) = φ(b;c′,c), (14.7)

ψ(b,b′;c′) = ψ(b′,b;c).

100

and the compatibility condition says that

φ(b +b′;c,c′)−φ(b;c,c′)−φ(b′;c,c′) = ψ(b,b′;c + c′)−ψ(b,b′;c)−ψ(b,b′;c′). (14.8)

Thus, any section σ to π gives an associated factor system (φ ,ψ). Furthermore, any factor system
satisfying the conditions (14.4), (14.7), and (14.8) gives a biextension. Suppose σ and σ ′ are two sections
for a given biextension, and have factor systems (φ ,ψ) and (φ ′,ψ ′) respectively. Defining ρ : B×C→A
by

ρ(b,c) = a such that σ
′(b,c) = σ(b,c)a,

one then obtains from the theory of group extensions and factor sets that

φ
′(b;c,c′)−φ(b;c,c′) = ρ(b,c + c′)−ρ(b,c)−ρ(b,c′),

ψ
′(b,b′;c)−ψ(b,b′;c) = ρ(b +b′,c)−ρ(b,c)−ρ(b′,c).

Therefore, we can use (14.3) to define a coboundary map from the group of functions ρ : B×C→A
to the group of factor systems (both under addition). Coboundaries are called trivial factor systems,
and taking a quotient by this subgroup, we obtain a group H 2

bi(B×C,A) of factor systems.
Finally, in the case that two biextensions are equivalent, it is clear that they produce the same

factor system. Hence, there is a bijection

Biext(B×C,A)↔H 2
bi(B×C,A)

The collection of biextensions inherits its group structure from this isomorphism (we will not, as we
did in the case of extensions, make the group law explicit on the side of biextensions).

14.3 Poincaré line bundle

Suppose A is an abelian variety and Â is its dual. Mumford’s motivating example for the definition of
a biextension is the Poincaré line bundle on A× Â [50]. This is explained in greater detail in Milne [49,
Ex C.1]. We will now describe this biextension in general, before moving on to the special case of an
elliptic curve, where this biextension ‘patches together’ the generalised Jacobians we met in Section
13.2.

Let ia : Â→ A× Â be the map ia(â) = (a, â) and iâ : A→ A× Â be the map iâ(a) = (a, â). An
abelian variety Â is called the dual of the abelian variety A if there exists a divisor class P on A× Â
such that the maps

Â→ Pic0(A), â 7→ i∗â(P), and

A→ Pic0(Â), a 7→ i∗a(P),

are both bijections. The divisor class P is called the Poincaré divisor class.
Every abelian variety has a unique dual and Poincaré divisor class (up to isomorphism). Consider

the Poincaré line bundle which we will denote P (i.e., the line bundle associated to the Poincaré divisor

101

class), with its zero section removed. This is a Gm-torsor over A× Â, i.e., Gm acts freely on X and the
quotient of this action is A× Â. We will also denote this by P without confusion.

Proposition 14.3.1. The Poincaré line bundle forms a biextension of A× Â by Gm.

Proof. Suppose we restrict P to Pâ = i∗âP for â ∈ Â. This is a line bundle over A×{â} ∼= A, and
in fact, is an element of Pic0(A) by definition. Hence has the structure of a central extension with
group law +â (see Section 13.5). Similarly for Pa for a ∈A, with group law +a. These group laws are
abelian. The only thing that requires checking is the compatibility property (14.1), which we leave as
an exercise to the reader.

We would like to write down a factor system for the Poincaré biextension. Our interest will be in
the case that A is principally polarised and hence isomorphic to its dual Â. Recall [31, §A.7.3] that if
A is principally polarised, then there exists a divisor class c such that K(c) = 0 where

K(c) = {a ∈A|τ∗ac = c}.

Then a Poincaré divisor class is
D = p∗1c + p∗2c−m∗c.

Theorem 14.3.2. Let A be a principally polarised abelian variety. Let c be a divisor class on A such
that K(c) = 0. Let g be a rational function on A×A×A with divisor

C = m∗123c−m∗12c−m∗23c−m∗13c +m∗1c +m∗2c +m∗3c.

Then, φ = ψ = g : A×A×A→ Gm forms a rational factor system for the Poincaré biextension
(where Â is identified with A).

Proof. Let σ : A×A be a rational section to the Poincaré line bundle associated to this divisor. Then
the factor system can be calculated from this section. As usual let mI : A×A×A→A be multiplication
of the indicated factors, and pI on A×A×A be the indicated projection maps onto one or several
factors (note that m1 = p1 etc.). Then φ : A×A×A→Gm is given by a rational function with divisor

p∗12D + p∗13D−m∗23D = p∗1c + p∗2c−m∗12c + p∗1c + p∗3c−m∗13c− p∗1c−m∗23c +m∗123c = C

Note that φ and ψ must be equal by the symmetry of the biextension (the line bundle is symmetrical).

14.4 Poincaré biextension for elliptic curves

For an elliptic curve E , a Poincaré divisor is

P = m∗12(O)− p∗1(O)− p∗2(O).

102

The central extensions of E by Gm that arise from this biextension are those obtained from restricting
the divisor P to E ×{D} for some D ∈ Pic0(E) (we identify the latter with Ê in the usual way). In
particular, D = (−P0)− (O) for some P0 ∈ E . Then, the restriction of P is

(P0)− (O).

As a result, the extension is exactly the extension of E by Gm which is given by the line bundle associ-
ated to (P0)− (O) or the modulus m = (P0)+(O).

Chapter 15

The elliptic net biextension is the
Poincaré biextension

The first part of this chapter addresses some issues of basis, and lays the groundwork for the definition
of the elliptic net biextension, which we then show to be equal to the Poincaré biextension. As a
consequence, we deduce an extra additive structure on the Poincaré biextension.

15.1 The elliptic net biextension

We will now define a biextension of E×E →Gm using elliptic nets.
In the notation of Section 10.3, define

Λ(P ,Q,R) =
W(p +q + r)W(p)W(q)W(r)
W(p +q)W(q + r)W(r + p)

∈K∗ ∼= Gm (15.1)

By the results of Section 10.3, this is everywhere well-defined.

Theorem 15.1.1. The function Λ : E ×E ×E → Gm forms a biextension, and this biextension is the
Poincaré biextension.

Proof. We claim that Λ(P ,Q,R) gives a biextension in the sense that

φ(P ,Q;R) = Λ(P ,Q,R) = ψ(P ;Q,R)

is a factor system for a biextension.
To show that this is a factor system is very easy. On account of the symmetry of the definition in

P ,Q,R, the abelian property (14.7) is immediate, and the compatibility property (14.8) follows from

103

104

the factor set property (14.4). Thus it remains to verify the factor set property. We calculate

Λ(P +Q,R,S)Λ(P ,Q,S)

=
W(p +q + r + s)W(p +q)W(r)W(s)W(p +q + s)W(p)W(q)W(s)

W(p +q + s)W(r + s)W(p +q + r)W(p + s)W(q + s)W(p +q)

=
W(p +q + r + s)W(p)W(q)W(r)W(s)2

W(p +q + r)W(p + s)W(q + s)W(r + s)

which symmetric in P ,Q, and R. The factor set is also everywhere defined. Thus, it gives a biextension.
Wherever P +Q +R,P ,Q,R,P +Q,Q +R, and R+P do not vanish, the function

W(p +q + r)W(p)W(q)W(r)
W(p +q)W(q + r)W(r + p)

is a rational function with divisor

m∗123(O)−m∗12(O)−m∗13(O)−m∗23(O)+m∗1(O)+m∗2(O)+m∗3(O),

hence it gives a rational factor system for the Poincaré biextension, by Theorem 14.3.2.
Now, we show that any factor system for an algebraic biextension (i.e., a biextension of algebraic

groups B×C by an algebraic group A) which is defined on an open subset must extend uniquely to give
a factor system defined everywhere. (The resulting factor system is not regular in general.) We will
use Proposition 13.4.2. Call the factor system (φ ,ψ). First look at all the left-slices {P}×E on which
the factor system is rational; on all these it extends uniqely to some (φ ′,ψ ′). However, we may miss
some slices which are omitted entirely from the domain of (φ ′,ψ ′). So we consider the right-slices
E ×{P} and the partially extended factor system (φ ′,ψ ′) will be rational on all these slices and so
extends completely.

A brief note on evaluation. Whenever P , Q and R form an appropriate triple (i.e., no two are equal
or inverses, and no one is zero), then

Λ(p,q,r) = WP ,Q,R(1,1,1).

There are other special cases: for example, if P = Q, then we have

Λ(p, p,r) =
WP ,R(2,1)

WP ,R(2,0)
.

15.2 The Poincaré biextension has extra structure

As a consequence of Theorem 15.1.1, the Poincaré biextension has an extra additive structure, when
considered as a K∗-torsor. The following theorem has not, as far as the author knows, been recorded
elsewhere.

Theorem 15.2.1. Let E be an elliptic curve defined over a field K. The Poincaré biextension for E
admits a factor system (φ ,ψ) of maps

E(K)×E(K)×E(K)→K\{0}

105

such that
φ(X1,X2;X3) = ψ(X1;X2,X3)

and such that

φ(X1,X4 +X2,−X2)+φ(X2,X4 +X3,−X3)+φ(X3,X4 +X1,−X1) = 0

for all non-zero points X1,X2,X3,X4 ∈ E(K) satisfying the condition that none of the expressions

X4 +Xi (i = 1,2,3), Xi −X j (i, j = 1,2,3, i 6= j), X4 +Xi +X j (i, j = 1,2,3, i 6= j)

vanishes.

Proof. Rewrite the elliptic net recurrence relation (3.1) in the following form (by multiplying by a
factor):

W(p +q + s)W(p−q)W(s)
W(p + s)W(q + s)W(p)W(q)

+
W(q + r + s)W(q− r)W(s)

W(q + s)W(r + s)W(q)W(r)

+
W(r + p + s)W(r− p)W(s)

W(r + s)W(p + s)W(r)W(p)
= 0.

Let φ = ψ = Λ−1 where Λ is defined by (15.1). This is a factor system for the Poincaré biextension by
Theorem 15.1.1 since whenever (φ ,ψ) is a factor system for a biextension, so is (−φ ,−ψ) (in additive
notation). Then, the recurrence relation above becomes (after multiplication by −1):

φ(p,s +q,−q)+φ(q,s + r,−r)+φ(r,s + p,−p) = 0.

The statement follows.

Question 15.2.2. Does the Poincaré biextension on other principally polarized abelian varieties come
equipped with an extra additive structure of this type? This is related to the question of generalising
elliptic nets to other abelian varieties or Jacobians of curves.

Chapter 16

Pairings

This chapter consists of background on pairings, specifically the Weil and Tate-Lichtenbaum pairings.
We offer much more background than is strictly necessary to set notation for what follows.

16.1 The Weil pairing for elliptic curves

Consider the m-torsion points on an elliptic curve over C given by a lattice generated by 1 and τ .
These are the points of the form a

m + b
m τ for a,b ∈ Z. We define a pairing

em

(
a
m

+
b
m

τ,
c
m

+
d
m

τ

)
= e

iπ(ad−bc)
m

from E [m]×E [m] into the m-th roots of unity µm. Since the determinant is not dependent on the basis
chosen (here, 1 and τ), this pairing is defined independent of that choice. This is the Weil pairing.

It can also be viewed as the intersection pairing on the homology group H 1(E ,Z). To do this,
identify an m-torsion point with the path from the origin to that point, modulo H 1(E ,Z). Then, we
have

E [m]∼=
(

1
m

H 1(E ,Z)
)

/H 1(E ,Z)∼= H 1(E ,Z)/(mH 1(E ,Z))

But this latter is actually the group H 1(E ,Z/mZ). If α and β generate H 1(E ,Z), then the intersection
pairing is determined by the conditions

α ·β = 1, β ·α =−1, α ·α = β ·β = 0.

In particular,
(aα +bβ) · (cα +dβ) = ad −bc.

So the intersection pairing on H 1(E ,Z/mZ) takes values in Z/mZ, but under the exponential map, it
takes values in µm and agrees with the pairing above.

These are meant to be informal definitions of the Weil pairing over C, to be used as motivation
(following [25]). Over a more general field, one usually uses the following definition. This section

106

107

follows Miller [47] and Silverman [63, Chap III, §8]. The Tate-Lichtenbaum and Weil pairings are
defined in a more general setting for abelian varieties, but for the moment we restrict ourselves to the
case of elliptic curves.

Definition 16.1.1 (Weil pairing: first definition). Let m > 1 be an integer. Let E be an elliptic curve
defined over a field K which contains the field of definition of E [m], and with characteristic coprime to
m. Suppose that P ,Q ∈ E [m]. Choose divisors DP and DQ of disjoint support such that

DP ∼ (P)− (O), DQ ∼ (Q)− (O).

Then mDP ∼mDQ ∼ 0, hence there are functions fP and fQ such that

(fP) = mDP , (fQ) = mDQ .

The Weil pairing
em : E [m]×E [m]→ µm

is defined by

em(P ,Q) =
fP(DQ)

fQ(DP)
.

As an example, we can choose DP and DQ disjoint as follows: first choose some T such that
T 6∈ {O,−P ,Q,Q−P}. Then set DP = (P +T)− (T) and DQ = (Q)− (O). Set the notation fm,X for
the rational function with divisor m(X)−m(O). Then,

em(P ,Q) =
fP(DQ)

fQ(DP)
=

fP(Q) fQ(T)

fP(O) fQ(P +T)
=

fm,P(Q−T) fm,Q(T)

fm,P(−T) fm,Q(P +T)
. (16.1)

The last equality holds since fQ = fm,Q ◦ τ−T .
Two definitions must surely be better than one.

Definition 16.1.2 (Weil pairing: second definition). Let m > 1 be an integer. Let E be an elliptic curve
defined over a field K which contains the field of definition of E [m], and with characteristic coprime to
m. Suppose that P ,Q ∈ E [m]. Let gP be a rational function such that

gm
P = fm,P ◦ [m].

Choose P ′ such that P = [m]P ′. We know such a gP exists since it has divisor

[m]∗(P)− [m]∗(O) = ∑
R∈E [m]

(P ′+R)− (R)∼ 0

The Weil pairing
em : E [m]×E [m]→ µm

is defined by

em(P ,Q) =
gP(X +Q)

gQ(X)
.

108

Obviously we have some work to do.

Proposition 16.1.1. Denote the algebraic closure of K by K̄. Definitions 16.1.1 and 16.1.2 are well-
defined, agree, and have the following properties:

1. Bilinearity: for P ,Q,R ∈ E [m],

em(P +R,Q) = em(P ,Q)em(R,Q),

em(P ,Q +R) = em(P ,Q)em(P ,R).

2. Alternating: for P ∈ E [m],
em(P ,P) = 1.

3. Skew-symmetry: for P ,Q ∈ E [m],

em(P ,Q) = em(Q,P)−1.

4. Non-degeneracy: for nonzero P ∈ E [m](K̄), there exists Q ∈ E [m](K̄) such that

em(P ,Q) 6= 1.

5. Compatibility: for P ∈ E [mn],Q ∈ E [m],

emn(P ,Q) = em(nP ,Q).

6. Galois invariance: for P ,Q ∈ E [m], and σ ∈Gal(K̄/K),

em(P ,Q)σ = em(Pσ ,Qσ).

Proof. Well-definition of first definition: For now, consider the pairing as taking values in K∗. To
see that the pairing is well-defined requires an application of Weil reciprocity. For, suppose we chose
D ′P ∼ DP and D ′Q ∼ DQ , and obtain functions f ′P and f ′Q such that (f ′P) = mD ′P and (f ′Q) = mD ′Q .
Then, D ′P −DP = (gP) and D ′Q−DQ = (gQ) for some rational functions gP ,gQ . These can be chosen so
that f ′P = fP gm

P and f ′Q = fQgm
Q .

f ′P(D ′Q)

f ′Q(D ′P)
=

fP(DQ)gP(DQ)m fP(gQ)gP(gQ)m

fQ(DP)gQ(DP)m fQ(gP)gQ(gP)m

=
fP(DQ)gP(mDQ) fP(gQ)

fQ(DP)gQ(mDP) fQ(gP)

=
fP(DQ)

fQ(DP)

109

Bilinearity: Now we show that the pairing is bilinear. Choose P ,Q,R ∈ E [m]. Then DP+R =

DP +DR +(gPR).

em(P +R,Q) =
fP+R(DQ)

fQ(DP+R)

=
fP(DQ) fR(DQ)gPR(DQ)m

fQ(DP) fQ(DR) fQ(gPR)

= em(P ,Q)em(R,Q)

The argument for the second factor is essentially identical.
Values in µm: A consequence of bilinearity is that

em(O,Q) = em(O,Q)2,

which implies that
em(O,Q) = 1.

To show that the pairing takes values in µm, we check that

em(P ,Q)m = em(mP ,Q) = em(O,Q) = 1

Alternating: Using the formula (16.1), it suffices to find a point T such that T 6= O,±P and such
that T =−T . If m 6= 2, since P ∈ E [m], any T ∈ E [2] will suffice. If m = 2, and the characteristic of K
is not 2, then there are three nontrivial points of order 2, so again we can choose T 6=±P .

Skew-symmetry: To show skew-symmetry, use bilinearity to calculate

em(P ,Q)em(Q,P) = em(P +Q,P +Q) = 1

from the alternating property.
Equivalence of definitions: We wish to find a function gP depending on point P ∈ E [m] in such a

way that
gm

P = fm,P ◦ [m], (16.2)

and
gP(X +Q)

gP(X)
= em(P ,Q), (16.3)

where em here denotes the first definition of the Weil pairing (Definition 16.1.1).
To do so, first fix a value T 6= O,±P , and define hX to be the function with divisor

m(X)− (m−1)(T)− ([m]X − [m−1]T).

Then set

gP(X) =
fm,P(X)

hX ((P)− (O))
.

110

Then

gP(X)m =
fm,P(m(X))

hX (m(P)−m(O))

= fm,P(m(X)− (hX))

= fm,P((m−1)(T)+([m]X − [m−1]T)

= fm,P([m]X − [m−1]T) fm,P(T)m−1.

Thus, replace gP with a scalar multiple so that

gm
P = fm,P ◦ τ−[m−1]T ◦ [m].

Now, choose T to be [m]R for some R, so that we obtain

gm
P = fm,P ◦ [m]◦ τ[1−m]R.

We have not yet shown that (16.2) is satisfied. First, the divisor

(hX +Q)− (hX) = m((Q +X)− (X))

is linearly equivalent to zero, so it is the divisor of some function ĥQ,X . Now

gP(X +Q)
gP(X)

=
fm,P(X +Q)hX ((P)− (O))

fm,P(X)hX +Q((P)− (O))

=
fm,P((Q +X)− (X))

ĥQ,X ((P)− (O))

= em(P ,Q)

Thus, we have given an equivalent definition for the Weil pairing. But this definition is independent of
X , so (16.3) holds for gP ◦ τX for any X . Hence there is a function gP satisfying (16.2) and (16.3). This
alternate definition makes the remaining part of the proof easier.

Non-degeneracy: Under the new definition of the Weil pairing just given, non-degeneracy is a
consequence of the fact that the map

E [m]→Aut[K̄(E)/[m]∗K̄(E)], T 7→ τ
∗
T

is an isomorphism (see [63, Thm III.4.10 b)]). In particular, fix P and assume that em(P ,Q) = 1 for all
Q ∈ E [m]. Then gP(X +Q) = gP(X) for all Q ∈ E [m], so gP = h ◦ [m] for some h ∈ K̄(E). Hence

(h ◦ [m])m = gm
P = fm,P ◦ [m]

implying that f = hm. So then h has divisor (P)− (O), implying P = O.
Compatibility: We have

(gP ◦ [n])mn = (fm,P ◦ [m]◦ [n])n = fmn,P ◦ [mn].

111

Thus, to calculate emn instead of em, we replace gP with gP ◦ [n]. Then

emn(P ,Q) =
gP ◦ [n](X +Q)

gP ◦ [n](X)
=

gP([n]X +[n]Q)
gP([n]X)

= em(P , [n]Q).

Galois invariance: Let σ ∈Gal(K̄/K). Then

fm,Pσ = f σ

m,P , gPσ = gσ

P .

So

em(Pσ ,Qσ) =
gσ

P (X σ +Qσ)
gσ

P (X σ)
=
(

gP(X +Q)
gP(X)

)σ

= em(P ,Q)σ .

16.2 Weil pairing via duality

The Weil pairing arises from the Cartier duality of the kernels of an isogeny and its dual. In this section
we describe explicitly how the Weil pairing arises in this way for elliptic curves. The closest reference
to this material is Mumford [51, IV.§20, p.183-5] and Milne [48, §11,16].

The duality arises as follows. Let us assume we are working over an algebraically closed field. Let
f : A→ B be an isogeny of abelian varieties with a finite kernel. Consider the exact sequence

1 // N // A
f // B // 1.

This induces a long exact sequence

. . . // Hom(A,Gm) // Hom(N ,Gm) // Ext1(B,Gm) // Ext1(A,Gm).

It is the case that Hom(A,Gm) = 0. Under the interpretation of Cartier duality for abelian varieties
and finite group schemes (the kernel N is one such), we obtain a short exact sequence

1 // N̂ // B̂
f̂ // Â // 1.

This sequence is exact on the right because dimÂ = dim B̂ and N̂ is finite.
We will look more closely at exactly how the duality works for the sequence

1 // E [m] // E
[m] // E // 1.

This is an extension of groups, and so any section σ to [m] gives a factor set Fm : E×E → E [m]. The
section is just a choice for each P of some σ(P) such that [m]σ(P) = P . For convenience we will
denote σ(P) simply as P ′.

We have several isomorphic descriptions of the dual of an elliptic curve:

Ê ∼= Pic0(E)∼= Ext1(E ,Gm).

112

The dual isogeny to [m], which we write [̂m], has a sequence

1 // Pic0(E)[̂m] //

��

Pic0(E)

��

[̂m] // Pic0(E)

��

// 1

1 // Hom(E [n],Gm)

∼=

OO

// Ext1(E ,Gm) //

∼=

OO

Ext1(E ,Gm)

∼=

OO

// 1

We wish to make explicit the isomorphism at the left, which, combined with the isomorphism
Pic0(E) ∼= E , gives the duality of the kernels. First, suppose that (P + S)− (S) ∈ Pic0(E)[̂m] (so that
P ∈ E [m]). The image of this under the injection into Pic0(E) is associated with an extension of groups
in Ext1(E ,Gm) via the middle isomorphism. This is just the generalised Jacobian associated with the
modulus m = (P + S)+ (S) (by the general theory of duality as described in Chapters 13 and 14), and
it gives rise to a factor set which we will call FP : E×E →Gm.

We have a diagram
E [m] //___ Gm

E×E
F

<<xxxxxxxxx
Fm

OO

in which the dotted arrow and Fm together determine a factor set F : this is exactly the connecting
homomorphism Hom(E [m],Gm)→ Ext1(E ,Gm) in the long exact sequence above. We wish to show
that there exists a dotted arrow determining F = FP arising from the point P . Then we will have con-
structed a map from E [m] to Hom(E [m],Gm). We wish to then show that this map is an isomorphism.
In doing so, we will use the fact that P ∈ E [m] and Theorem 13.1.1. Finally, we will see that we have
constructed a pairing that agrees with the Weil pairing.

Recall that the factor set FP is given (in the notation of Section 13.2) by

FP(P0,Q0) = hP0,Q0
((P +S)− (S)).

The map Fm has already been described. We now construct the dotted map, which we will call
φ : E [m] → Gm. Let gP be as described in the definition of the Weil pairing (but using (P +S)− (S) in
place of (P)− (O)), and let

φ(T) =
gP(T +X)

gP(X)
for T ∈ E [m].

(Fortunately, we’ve already shown that this is well defined in Section 16.1.)
Next we show that the triangle commutes. Denote by ∆a,b the divisor ({([a]P , [b]P)}) on E ×E .

Let D be a divisor on E×E of the form

D = ∆1,m−∆m,1 +(m2−1)({O}×E)− (m2−1)(E×{O}).

The divisor D is principal. Let a = (P +S)− (S) and b = ((P0 +Q0)
′)− (P ′0)− (Q ′0)+(O) be divisors on

E . Note that the latter divisor is linearly equivalent to (Q +X)− (X) for Q = (P0 +Q0)
′−P ′0 −Q ′0 ∈

E [m]. Let A = B = E . In the language of Theorem 13.1.1, we can calculate

D|a×B = [m]∗((P +S)− (S))− (mP +mS)− (mS) = [m]∗((P +S)− (S)).

113

We can also calculate

D|A×b
=− [m]∗[((P0 +Q0)

′)− (P ′0)− (Q ′0)+(O)]+(m(P0 +Q0)
′)− (mP ′0)− (mQ ′0)+(O)

=− [m]∗[((P0 +Q0)
′)− (P ′0)− (Q ′0)+(O)]+(P0 +Q0)− (P0)− (Q0)+(O).

Notice that the first part of D|A×b
, that is, the part in the form of a pullback by [m]∗, is the divisor of

a function which must vanish on (P +S)− (S) since [m]P = O. Therefore, we apply Theorem 13.1.1 to
conclude that

FP(P0,Q0) = fD|A×b
(a) = fD|a×B(b) = gP(b) = φ(T).

There are a couple of small caveats here. First, we have used a definition for FP which works
only almost everywhere, i.e., a rational factor set (see Section 13.2). Second, we have used a divisor b

equivalent to (Q +X)− (X) in the definition of φ(T). That the definition is invariant under a change
of (Q + X)− (X) by linear equivalence is a more general statement than that of the independence of
the definition from X . We leave it to the reader to resolve these small issues.

Now we wish to show that the map we have constructed is an isomorphism. Note that any map
E [m]→Gm must actually take values in µm. Since we are working in an algebraically closed field, this
is a group homomorphism from (Z/mZ)2 to Z/mZ. There are m2 such maps. Thus, the cardinalities
of E [m] and Hom(E [m],Gm) agree. Thus, we will show the map is injective and that it is a group
homomorphism. For injectivity, choose P1 and P2 in E [m] and suppose φ(P1) = φ(P2) so that

(τ∗X − id∗)[m]∗((P1)− (P2)) = 0.

Then P1 = P2. To show φ is a group homomorphism, calculate(
gP1+P2

gP1
gP2

)
= [m]∗((P1 +P2)− (P1)− (P2)+(O))

which is the divisor of a function that vanishes on m-torsion points, and so φ(P1 +P2)φ(P1)
−1φ(P2)

−1

is a trivial map on E [m]. In these last arguments we have taken S = O for simplicity; we leave it to the
reader to convince himself the general case follows as easily.

16.3 The Tate-Lichtenbaum pairing for Jacobians

Another pairing intimately related to the Weil pairing is the Tate-Lichtenbaum pairing. This pairing
was first defined by Tate [69] for abelian varieties over p-adic number fields in 1958. In 1959, Lichten-
baum defined a pairing on Jacobian varieties and showed that it coincided with the pairing of Tate [40].
Descriptions can be found in Silverman [63, VIII.2, X.1] and Duquesne-Frey [16].

Let K be a field and G be the Galois group Gal(K̄/K), and let m ≥ 2 be an integer. Let J be the
Jacobian of a curve C. In analogy to the Kummer sequence for fields, consider the short exact sequence
of G-modules

0 // J(K̄)[m] // J(K̄)
[m] // J(K̄) // 0.

114

Taking Galois cohomology, we have a long exact sequence,

1 // J(K)[m] // J(K) m // J(K) EDBC
GF@A

// H 1(G,J(K̄)[m]) // H 1(G,J(K̄))
m // H 1(G,J(K̄))

from which we can extract a short exact sequence

0 // J(K)/mJ(K) δ // H 1(G,J(K̄)[m])
α // H 1(G,J(K̄))[m] // 0. (16.4)

This is the Kummer sequence for J/K .
The connecting homomorphism δ is given by Galois cohomology as follows. Suppose P ∈ J(K).

Choose Q ∈ J(K̄) such that [m]Q = P . Then δ (P) is a 1-cocycle c : G→ J[m] given by

cσ = Qσ −Q.

A different choice of Q (say Q ′) will alter this cocycle by a coboundary since Q −Q ′ ∈ J[m]. The
kernel of this map is mJ(K) since in this case cσ is a coboundary.

This gives a pairing
K : J[m]×G→ J[m], K(P ,σ) = cσ

called the Kummer pairing.
The map α in (16.4) arises from the inclusion J(K̄)[m] 7→ J(K̄). (The image of this map is a cocycle

that, under multiplication by m, becomes a coboundary since it takes values in J(K̄)[m].)
Now, recall that J(K̄)[m] is self-dual under the Weil pairing em (by Section 16.2). Given two cocy-

cles c1,c2 ∈H 1(G,J(K̄)[m]), we obtain a cocycle c ∈H 2(G,K̄∗)[m] by

c(σ1,σ2) = em(c1(σ1),c2(σ2)).

This is in fact a cup product, so we denote it by ∪. One must check that a different choice of 1-cocycle
representatives gives another 2-cocycle that differs by a 2-coboundary: this depends on the bilinearity
of the Weil pairing.

We can define the Tate-Lichtenbaum pairing (Tate’s version) by

τm : H 1(G,J(K̄))[m]×J(K)/mJ(K)→H 2(G,K̄∗)[m],

τm(γ,P) = δ (P)∪α
−1(γ).

One must check that this is independent of the preimage under α−1, which again depends on the
bilinearity of the Weil pairing.

Now for Lichtenbaum’s side. We still have J a Jacobian of a curve C defined over a field K .
Consider the short exact sequence of G-modules:

1 // PplC(K̄)
// Div0

C(K̄)
// Pic0

C(K̄)
// 0. (16.5)

115

From Galois cohomology there is a connecting homomorphism

δ : H 1(G,Pic0
C(K̄))→H 2(G,PplC(K̄)

).

This takes a map γ : G → Pic0
C(K̄) to a factor set δ (γ) : G×G → PplC(K̄)

by precomposing (in both
variables) the factor set for the extension (16.5) with γ .

This defines a pairing

τm : H 1(G,Pic0
C(K̄))×Pic0

C(K̄)→H 2(G,K̄∗)

as follows. Let γ ∈H 1(G,Pic0
C(K̄)). Let D be a divisor in Pic0

C(K̄). Then δ (γ) at any (σ1,σ2) ∈G×G is
a principal divisor and so it can be evaluated at D (i.e., take any rational function with divisor δ (γ) and
evaluate this at D). Of course D must be chosen so its support is disjoint from the support of δ (γ).
We set

τm(γ,D) = δ (γ)(D)

as functions on G×G.
Now, Pic0

C(K̄) = JC(K̄). So far, in Lichtenbaum’s pairing, there has been no mention of the integer
m. Necessarily, Lichtenbaum’s pairing induces a pairing

τm : H 1(G,JC(K̄))[m]×JC(K̄)/mJC(K̄)→H 2(G,K̄∗)[m]. (16.6)

To see this, note that if mγ is trivial, then δ (γ)m = δ (mγ) is trivial. Therefore, if D = mD ′, then
δ (γ)(D) = δ (γ)(mD ′) = δ (γ)(D ′)m is trivial.

Lichtenbaum shows that this pairing agrees with Tate’s version [40, pp. 126-127].
This is what is often referred to as the Tate-Lichtenbaum pairing. However, we will be interested

in a slight modification (yet again) of this pairing, and when we refer to the Tate-Lichtenbaum pairing,
we will mean this definition introduced in the next section for elliptic curves.

16.4 The Tate-Lichtenbaum pairing for elliptic curves

In this section, we define the Tate-Lichtenbaum pairing on elliptic curves via yet another definition:
this one is an explicit definition in terms of divisors. We show how it coincides with Lichtenbaum’s
pairing in the case of elliptic curves, then use the elementary definition to show the basic properties.
Parts of this exposition follow [24].

Definition 16.4.1. Let m > 1 be an integer. Let E be an elliptic curve defined over a field K containing
the m-th roots of unity µm. Suppose that P ∈E(K)[m]. Choose divisors DP and DQ of disjoint support
such that

DP ∼ (P)− (O), DQ ∼ (Q)− (O).

Then mDP ∼ 0, hence there is a function fP such that

(fP) = mDP .

116

The Tate-Lichtenbaum pairing

τm : E(K)[m]×E(K)/mE(K)→K∗/(K∗)m

is defined by
τm(P ,Q) = fP(DQ).

Comparing with Definition 16.1.1 will reveal the source of the proverb that the Tate-Lichtenbaum
pairing is “half” of the Weil pairing.

Before we prove a host of properties, let us see how this pairing relates to the pairing given in the
last section. Fix a σ ∈ G = Gal(K̄/K). We will simply ‘evaluate’ the pairing (16.6) at σ and (m−1)σ .
The group H 1(G,E(K̄))[m] evaluated at this point becomes the group E(K̄)[m] (write γ(σ) = Pσ).
Furthermore δ (γ)(σ ,(m− 1)σ) is a rational function with divisor m(Pσ)−m(O) (write fP), and the
pairing becomes

τm(P ,Q) = fP(DQ)

as in the definition above. It takes values in K̄∗, but considered up to (K̄∗)m. There are, of course,
some things to check. For example, σ must be chosen so that all P ∈ E(K)[m] satisfy γ(σ) = P for
some γ .

Proposition 16.4.1. Denote an algebraic closure of K by K̄. Definition 16.4.1 is well-defined, and has
the following properties:

1. Bilinearity: for P ,P ′ ∈ E(K)[m] and Q,Q ′ ∈ E(K)

τm(P +P ′,Q) =τm(P ,Q)τm(P ′,Q),

τm(P ,Q +Q ′) =τm(P ,Q)τm(P ,Q ′).

2. Non-degeneracy: for a finite field K, and nonzero P ∈ E(K)[m], there exists Q ∈ E(K) such
that

τm(P ,Q) 6= 1.

Furthermore, for a finite field K and Q ∈ E(K)\mE(K), there exists a P ∈ E(K)[m] such that

τm(P ,Q) 6= 1.

3. Galois invariance: for P ,Q ∈ E [m], and σ ∈Gal(K̄/K),

τm(P ,Q)σ = τm(Pσ ,Qσ).

Proof. Well-definition: First, we show the definition does not depend on the choice of DQ . For, sup-
pose that D ∼ D ′ for two divisors D and D ′ of degree zero defined over K , and suppose furthermore
that the supports of D and D ′ are disjoint from the support of fP . Then D ′ = D +(g) for some g with
support disjoint from that of fP . Therefore

fP(D ′)
fP(D)

= f ((g)) = g((f)) = g(mDP) = g(DP)m

117

and so fP (D ′)
fP (D) is an element of (K∗)m. This ensures that the definition does not depend on the choice

of DQ .
Second, we show that the definition does not depend on the choice of representative of Q in

E(K)/mE(K). Suppose that there are two divisors D and D ′ of degree zero defined over K , and
suppose furthermore that the supports of D and D ′ are disjoint from the support of fP . Suppose
that D ∼ (Q)− (O) and D ′ ∼ (Q +[m]R)− (O). Then D ′ ∼ D + m(R)−m(O). By the previous part,
fP(D ′) = fP(D +m(R)−m(O)) up to m-th powers, and

fP(D +m(R)−m(O)) = fP(D) fP((R)− (O))m,

so fP(D ′) and fP(D) are equal up to m-th powers.
Finally, we must show that the definition does not depend on the choice of DP . For, let D and D ′

be two divisors defined over K , of degree zero, and suppose that D ∼ D ′ and mD ∼mD ′ ∼ 0. Let f
and f ′ be functions whose divisors are mD and mD ′ respectively. Then let g be the function f ′/ f , so
that f ′ = f gm. Then for any divisor D with support disjoint from f ′ and f , we have

f ′(D) = f (D)g(D)m.

Thus the values f ′(D) and f (D) are equal up to m-th powers.
These three arguments show that the Tate-Lichtenbaum pairing is defined up to m-th powers in

K∗.
Bilinearity: Suppose that P ,P ′ ∈ E(K)[m] and Q,Q ′ ∈ E(K). Then DP+P ′ ∼DP +D ′P so mDP+P ′ ∼

mDP + mD ′P . In what follows recall that ‘=’ denotes equality up to m-th powers. We use the results
of the last part of the proof (‘well-definition’). We have

τm(P +P ′,Q) = fP+P ′(DQ) = fP(DQ) fP ′(DQ) = τm(P ,Q)τm(P ′,Q).

For the other factor, DQ+Q ′ ∼DQ +D ′Q so

τm(P ,Q +Q ′) = fP(DQ+Q ′) = fP(DQ +D ′Q) = fP(DQ) fP(D ′Q) = τm(P ,Q)τm(P ′,Q).

Non-degeneracy: This proof follows [30, Thm 4] in the case of a finite field. For local fields, Licht-
enbaum shows this in [40].

Galois invariance: Let σ ∈Gal(K̄/K). We have

τm(Pσ ,Qσ) = fPσ (DQσ) = f σ

P (Dσ

Q) = (fP(DQ))σ = τm(P ,Q)σ .

Chapter 17

Pairings via elliptic nets

In this chapter we will apply the results of Chapter 15 to obtain formulæ for the Tate-Lichtenbaum
and Weil pairings on an elliptic curve in terms of ellipic nets. The first section contains an abstract
construction of two pairings on biextensions. We then show that these pairings, for the Poincaré
biextension for an elliptic curve, are exactly the Tate-Lichtenbaum and Weil pairings. In the next
section we use the elliptic net description of the Poincaré biextension (Theorem 15.1.1), to give elliptic
net formulae for the pairings. Finally we give a few examples.

17.1 Pairings from biextensions

In this section we give an abstract construction for two pairings arising from any biextension. The
abstract construction of the second pairing (which we call qm below) and its relation to the Weil
pairing has been described by Gorchinskiı̆ in the case of a symmetric biextension [27, §3.2]. However,
the abstract construction of the first pairing (which we call pm below) appears to be the more natural of
the two, and is not, to the author’s knowledge, described anywhere. It becomes the Tate-Lichtenbaum
pairing for the Poincaré biextension.

Let X be a biextension of B×C by A, so that

X
π // B×C

is an A-torsor. First we address some general observations that will smooth the discussion. Most
importantly, each slice Xb (resp. Xc) is an extension of C (resp. B) by A. Hence a fibre of X over
(b,0) (resp. (0,c)) is naturally identified with A and we have a natural choice of identity element (the
element which acts on Xb (resp. Xc) trivially under +2 (resp. +1)), which we may choose to call 0b

(resp. 0c), and which is also the identity of the slice Xb (resp. Xc).
This is not true of a general fibre over a point (b,c): here we can only identify the difference of

two points of the fibre with an element of A via the action taking one to the other. This identification
does satisfy some consistency, however, as follows. Consider any x, y in the same fibre over (b,c) of

118

119

Xc , and let z be another point of Xc ; then x +2 z and y +2 z are in the same fibre and furthermore

xa = y =⇒ (x +2 z)a = y +2 z. (17.1)

This follows from the fact that Xc is an extension of C by A. Finally, the group laws +1 and +2

necessarily restrict to the same group law on the fibre (0,0). If we have an element of a fibre (b,0)

(resp. (0,c)), then +2 (resp. +1) agrees with the group law of A under the identification of the fibre
with A. Of course, if we have two elements over the general fibre (b,c), then we may add them with
either group law +1 or +2 and the results will differ (in fact they will lie on different fibres).

We now wish to define a pairing. For any positive integer m, let B[m] denote the m-torsion points
of the abelian group B. Let m2 denote multiplication by m under the group law +2 defined on the slice
Xc for any c ∈C. Define m1 similarly.

Theorem 17.1.1. Let m be a positive integer. Let A, B and C be abelian groups. Let X be a biextension
of B×C by A given by π : X → B×C. Let s ∈ B, and let σ be a section to π . For each b ∈ B[m] and
c ∈C, define pm(b,c) to be the element a ∈A whose action takes m2(σ(b,c)+2 σ(s,c) to σ(s,c) in the
fibre over (s,c) in X .

Then pm defines a bilinear pairing

pm : B[m]×C/mC→A/mA

which is independent of the choice of s and σ , and satisfies pm(0,c) = pm(b,0) = 0. There exists a
pairing

p′m : B/mB×C[m]→A/mA

defined symmetrically.
Furthermore, there exists a bilinear pairing

qm : B[m]×C[m]→A[m]

given by pm(b,c)− p′m(b,c) (where these are considered as elements of A as described in the first
paragraph, not as cosets modulo mA). This pairing is also independent of the choice of s and σ , is
skew-symmetric, and satisfies qm(0,c) = qm(b,0) = 0.

Proof. On Xc , the element
m2σ(b,c)+2 σ(s,c)

lies above (s,c), as does σ(s,c). There is some a ∈ A such that (m2σ(b,c)+2 σ(s,c))a = σ(s,c). Let
this a be the pairing pm(b,c). For notational ease, we may identify any difference of points in the same
fibre with an element of A, and recall that any translation of these is identified with the same element
of A (see (17.1) above). Then we may legitimately write

pm(b,c) = (m2σ(b,c)+2 σ(s,c))−2 σ(s,c) = m2σ(b,c),

since the last expression is an element of the fibre over (0,c). This demonstrates that the definition is
independent of s. Thus, from now on we set s = 0.

120

This pairing is bilinear in the first argument (as an element in A/mA) because

pm(b +b′,c)− pm(b,c)− pm(b′,c) = m2
(
σ(b +b′,c)−2 σ(b,c)−2 σ(b′,c)

)
,

where σ(b +b′,c)−2 σ(b,c)−2 σ(b′,c) lies over (0,c), hence pm(b +b′,c)− pm(b,c)− pm(b′,c)∈mA.
It is bilinear in the second argument in a similar manner:

pm(b,c + c′)− pm(b,c)− pm(b,c′) = m2
(
σ(b,c + c′)−1 σ(b,c)−1 σ(b,c′)

)
,

where this time the expression becomes m times an element which lies over (b,0). Note that the
compatibility property (14.1) allows us to distribute m2 over the +1.

It is not dependent on the choice of section because if we choose a different section, and define
pairing p̂m(b,c) associated to σ̂ , then we have

pm(b,c)− p̂m(b,c) = m(σ(b,c)− σ̂(b,c)),

where σ(b,c)−σ ′(b,c) lies over (0,0), hence pm(b,c)− p̂m(b,c) ∈mA.
By bilinearity, pm(0,c) = 0 = pm(b,0) for all b ∈ B and c ∈C.
It is defined on C/mC because if c = mc′ then pm(b,c) = mpm(b,c′) = pm(mb,c) = pm(0,c) = 0.
Now, we turn to the second pairing. In general, the properties of the second do not follow immedi-

ately from the first because the first took values in A/mA. However, the proof of independence from
s is exactly the same. To demonstrate independence from the choice of σ , let q̂m the pairing defined
using another section σ̂ . Then,

qm(b,c)− q̂m(b,c) = pm(b,c)− p′m(b,c)− p̂m(b,c)+ p̂′m(b,c)

= m2(σ(b,c)− σ̂(b,c))−m1(σ(b,c)− σ̂(b,c)) = 0,

where the final equality comes from the consideration that σ(b,c)− σ̂(b,c) is in the fibre over (0,0)

and here the group laws m1 and m2 restrict to the same group law on A. The compatibility condition
was used subtly here to leave off subscripts on the minus signs in the third expression. That is, suppose
x and y are in the fibre over (b,c) and such that m2x,m2y lie over (0,c) and m1x,m1y lie over (b,0)

and are therefore identified with elements of A. Then m2(x +1 y) = m2x +1 m2y = m2x +2 m2y =

m2(x +2 y).
We have

pm(b +b′,c)− pm(b,c)− pm(b′,c) = m2(σ(b +b′,c)−2 σ(b,c)−2 σ(b′,c))

where the operations are performed via group law +2, and

p′m(b +b′,c)− p′m(b,c)− p′m(b′,c) = m1(σ(b +b′,c)−2 σ(b,c)−2 σ(b′,c)).

The expression in brackets is an element of A (identified with the fibre over (0,c)). The left hand sides
of these two equations lie in the fibres over (0,c) and (0,0) respectively. Hence they are also identified
with A. Thus maps m2 : X(0,c)→X(0,c) and m1 : X(0,c)→X(0,0) induce maps m2,m1 : A→A. Each of

121

these maps must agree with the map m : A→A and hence are equal. (To see that the second map must
agree, note that the slice X0 for 0 ∈ B is a split extension of C by A.) This gives bilinearity of qm in the
first argument. Symmetry gives bilinearity in the second argument. The last properties follow from
bilinearity, and finally, the values are in A[m] since mqm(b,c) = qm(b,mc) = qm(b,0) = 0.

For the purposes of computation, let us consider the factor system associated to σ , called (φ ,ψ).
Then, identifying X with A×B×C according to this section, and assuming that σ(b,c) = (1,b,c), we
obtain

m2σ(b,c) = (pm(b,c),0,c) ∈A×B×C.

Loosely speaking, pm measures the monodromy of the cycle mb = 0 in the group law on Xc . Thus, to
compute pm(b,c), we can perform factor set computations, i.e.

pm(b,c) = ψ(b,b,c)ψ(2b,b,c)ψ(3b,b,c) · · ·ψ((m−1)b,b,c).

Similarly, to compute the pairing qm, we can perform two such computations, so that

pm(b,c) =
ψ(b,b,c)ψ(2b,b,c)ψ(3b,b,c) · · ·ψ((m−1)b,b,c)
ψ(b,c,c)ψ(b,c,2c)ψ(b,c,3c) · · ·ψ(b,c, [m−1]c)

.

Theorem 17.1.2. The pairings pm and qm in Theorem 17.1.1, in the case of the Poincaré biextension
for elliptic curves, are the Tate-Lichtenbaum and Weil pairings respectively.

Proof. Let E be an elliptic curve and let X be the Poincaré biextension over E×E . The computation
of pm(P ,Q) happens on the slice XQ , which is equivalent to an extension Jm for some modulus m =

(Q +S)+(S). Let DQ be the divisor (Q +S)−(S). Using the corresponding factor set, and choosing S
to avoid any possible intersection of the supports of all divisors concerned in the following calculation,
we obtain that

pm(P ,Q) = fP ,P(DQ) f[2]P ,P(DQ) · · · f[m−1]P ,P(DQ) = fP(DQ) = τm(P ,Q). (17.2)

The second equality above follows from the equality of divisors

([2]P)+(P)− ([3]P)− (O)+([3]P)+(P)− ([4]P)− (O)+ . . .+([m−1]P)+(P)−2(O) = m(P)−m(O).

To show that qm is the Weil pairing, compare Definition 16.1.1.

17.2 Tate-Lichtenbaum and Weil pairings from elliptic nets

Theorem 17.2.1. Let E be an elliptic curve over a field K containing the m-th roots of unity. Let
P ∈ E [m] and Q ∈ E. Let S be any point on E. The quantity

W(mp +q + s)W(s)
W(mp + s)W(q + s)

(17.3)

is well-defined as an element of K∗/(K∗)m, and is equal to the Tate-Lichtenbaum pairing τm(P ,Q).

122

Proof. First we verify that the quantity (17.3) is well-defined, when considered as an element of
K∗/(K∗)m. To do so, verify that

(mp +q + s)2 + s2− (mp + s)2− (q + s)2 ≡ 0 mod m

as a polynomial relation in variables p,q,s.
We use Theorem 15.1.1. Consider the Poincaré biextension of E×E by Gm. Let P̃ and S̃ be lifts of

(P ,Q) and (S,Q) to the Poincaré biextension X . Then [m]2(P̃) is in the fibre over (O,Q). The point
[m]2(P̃)+2 (S̃) is in the fibre over (S,Q) and can be compared to S̃ to yield an element of Gm. This
element is the Tate-Lichtenbaum pairing, by Theorems 17.1.1 and 17.1.2. Using the elliptic net factor
system for the biextension, we can calculate this element to be

Λ(P ,P ,Q)Λ([2]P ,P ,Q)Λ([3]P ,P ,Q) · · ·Λ([m−1]P ,P ,Q)Λ(O,S,Q) (17.4)

=
(

W(2p +q)W(p)W(p)W(q)
W(2p)W(p +q)W(p +q)

)(
W(3p +q)W(2p)W(p)W(q)
W(3p)W(2p +q)W(p +q)

)
×
(

W(4p +q)W(3p)W(p)W(q)
W(4p)W(3p +q)W(p +q)

)
· · ·
(

W(mp +q)W((m−1)p)W(p)W(q)
W(mp)W((m−1)p +q)W(p +q)

)
×
(

W(mp + s +q)W(mp)W(s)W(q)
W(mp + s)W(mp +q)W(q + s)

)
=
(

W(p)W(q)
W(p +q)

)m(
W(mp + s +q)W(s)
W(mp + s)W(q + s)

)

This could also be proven directly, but this would require a number of cases. After having shown
the expression for the pairing is well-defined, we could choose a convenient elliptic net (such as that
associated to the basis P ,Q,S), and then verify directly that the function we obtain (as a function of
P ,Q,S) is exactly that of Definition 16.4.1. This is essentially the proof given in the author’s paper
[65], where the terms ‘generalised Jacobian’ and ‘biextension’ are not mentioned.

Theorem 17.2.2. Let E be an elliptic curve over a field K containing the field of definition of E [m]

and of characteristic coprime to m. Let P ,Q ∈ E [m]. The quantity

W(mp +q + s)W(p + s)W(mq + s)
W(mp + s)W(q + s)W(p +mq + s)

(17.5)

is well-defined, independent of S and is equal to the Weil pairing em(P ,Q).

Proof. Verify that

(mp +q + s)2 +(p + s)2 +(mq + s)2− (mp + s)2− (q + s)2− (p +mq + s)2 = 0.

The statement follows from Theorems 17.1.1 and 17.1.2, by applying calculation (17.4) twice.

123

17.3 Partial periodicity and pairings

We can restate the formulæ for the Tate-Lichtenbaum and Weil pairings in terms of the partial period-
icity properties of Chapter 10, specifically Theorem 10.2.3, to give a particularly concrete statement.

Theorem 17.3.1. Let E be an elliptic curve over a field K containing the m-th roots of unity. Let
P ∈ E [m] and Q ∈ E be non-zero. Let S be any other non-zero point in E such that P +S and Q +S
do not vanish. Let P be a basis generating a group containing P ,Q,S and suppose p ·P = P, q ·P = Q,
and s ·P = S. The quantity

g(mp,q+ s)
g(mp,s)

=
WE ,P(mp+q+ s)WE ,P(s)

WE ,P(mp+ s)WE ,P(q+ s)

is well-defined as an element of K∗/(K∗)m, and is equal to the Tate-Lichtenbaum pairing τm(P ,Q).

Theorem 17.3.2. Let E be an elliptic curve over a field K containing the field of definition of E [m]

and of characteristic coprime to m. Let P ,Q ∈ E [m] be non-zero. Let S be any other non-zero point
in E such that P +S and Q +S do not vanish. Let P be a basis generating a group containing P ,Q,S
and suppose p ·P = P, q ·P = Q, and s ·P = S. The quantity

g(mp,q+ s)g(mq,s)
g(mp,s)g(mq,p+ s)

=
WE ,P(mp+q+ s)WE ,P(p+ s)WE ,P(mq+ s)

WE ,P(mp+ s)WE ,P(q+ s)WE ,P(p+mq+ s)

is well-defined, independent of S and is equal to the Weil pairing em(P ,Q).

17.4 Example calculations

We show a few example calculations of the Weil and Tate-Lichtenbaum pairings.

Example 17.4.1. Take the elliptic curve

E : y2 = x3 +319x +183

over F347. Take two points
P = (1,117), Q = (232,138)

on E . These points are both of order m = 178.
The Weil pairing is

em(P ,Q) =
WE ,P(mp+q+ s)WE ,P(p+ s)WE ,P(mq+ s)

WE ,P(mp+ s)WE ,P(q+ s)WE ,P(p+mq+ s)

=
WE ,P ,Q(m +2,1)WE ,P ,Q(3,0)WE ,P ,Q(2,m)

WE ,P ,Q(m +2,0)WE ,P ,Q(2,1)WE ,P ,Q(3,m)

=
22 ·206 ·319
119 ·82 ·333

= 1

which indicates that there is a relation P = [n]Q, and in fact a brief search reveals that P = [165]Q.

124

We can calculate the Tate-Lichtenbaum pairing τm(P ,Q) using the elliptic net WE ,P ,Q with S =

(2,0). The formula becomes

τm(P ,Q) =
WE ,P(mp+q+ s)WE ,P(s)

WE ,P(mp+ s)WE ,P(q+ s)
=

WE ,P ,Q(m +2,1)WE ,P ,Q(2,0)

WE ,P ,Q(m +2,0)WE ,P ,Q(2,1)
=

22 ·234
119 ·82

= 73.

Suppose we had chosen a different elliptic net for the evaluation of the Tate-Lichtenbaum pairing:
say WE ,P ,P+Q and S = [2]P−Q. Then we have

τm(P ,Q) =
WE ,P(mp+q+ s)WE ,P(s)

WE ,P(mp+ s)WE ,P(q+ s)
=

WE ,P ,P+Q(m +2,0)WE ,P ,P+Q(3,−1)

WE ,P ,P+Q(m +3,−1)WE ,P ,P+Q(2,0)
=

119 ·85
337 ·234

= 293.

Since the gcd(178,346) = 2, these results are considered modulo F∗347/(F∗347)
178 which is a group of

order two ((F∗347)
178 is all the quadratic residues). The ratio 73/293 ≡ 185 mod 347 is a quadratic

residue, so the calculations agree.

Part IV

Cryptographic applications

125

Chapter 18

Tate pairing computation

In this section we discuss algorithms for computing the Tate-Lichtenbaum pairing using elliptic nets
and Theorem 17.2.1. The first section is a review of Miller’s algorithm for computing the Tate-
Lichtenbaum pairing, which has several features in common with the elliptic net algorithm. Both
are based on computations on the biextension or generalised Jacobian. The elliptic net algorithm re-
lies on an algorithms for computing the terms of an elliptic net, and is based on algorithms of Shipsey
for elliptic divisibility sequences [61]. Then we present the elliptic net algorithm for computing the
Tate-Lichtenbaum pairing, and perform some rudimentary analysis on its runtime.

The elliptic net algorithm has been implemented by the author for PARI/GP (see [71]) and the
code is included in Appendix B.3. It has also been implemented in C++ by Michael Scott and Augusto
Jun Devegili for a pairing-friendly curve of degree 2. The implementation by Ben Lynn in the Pairing
Based Cryptography Library [43] is applicable to curves of various sizes and embedding degrees and in-
cludes a program to compare the Elliptic Net algorithm with Miller’s. Preliminary data agree with the
complexity analysis above. It has also been implemented (and improved) by Graeme Taylor at the Uni-
versity of Edinburgh, who has implemented it for SAGE (see [66]) and has notes on his improvements
available at [70].

18.1 Miller’s algorithm

Victor Miller described an algorithm for computing the Tate-Lichtenbaum and Weil pairings in 1986
[46], and it has since been the only algorithm used for this purpose. In 2004, he published an updated
version of his earlier account [47]. His algorithm is easy to describe in the context of the biextension
description of the Tate-Lichtenbaum and Weil pairings given in Section 17.1. We wish to compute
fP(DQ) where fP is a rational function with divisor m(P)−m(O) and DQ = (Q +S)− (S) for some S.
Miller’s idea arises from the observation (17.2), reprinted here:

τm(P ,Q) = fP(DQ) = fP ,P(DQ) f[2]P ,P(DQ) · · · f[m−1]P ,P(DQ).

126

127

The equation above reflects the calculation of [m]P from repeated additions of P . Miller’s insight was
that any chain of additions that results in [m]P would do as well. Thus, he suggested the use of a
double-and-add method. Miller’s basic algorithm is given in Algorithm 18.0.1. It creates a double-and-
add chain based on the binary expansion of m, then computes the point [m]P with this chain, at each
step computing the appropriate value fA,B(DQ) and keeping a running product.

Algorithm 1 Miller’s algorithm
Require: Points P and Q of an elliptic net, divisor DQ = (Q +S)− (S) with S such that DQ is disjoint

from ([n]P) for all n, and integer m = (dkdk−1 . . .d1)2 with dk = 1
Ensure: The Tate-Lichtenbaum pairing τm(P ,Q)

1: f ← 1
2: for i = k−1 down to 1 do
3: f ← f 2 fT ,T (DQ)
4: T ← [2]T
5: if di = 1 then
6: f ← f fT ,P(DQ)
7: T ← T +P
8: end if
9: end for

10: return f

18.2 Computing the values of an elliptic net

Rachel Shipsey gives a double-and-add algorithm for computing terms of an elliptic divisibility se-
quence [61]. In the case of interest to us now, given the initial values of an elliptic divisibility sequence,
the algorithm computes the n-th term of a sequence in log(n) time. Shipsey applied her more general
algorithm (which allows beginning elsewhere in the sequence) to give a solution to the elliptic curve
discrete logarithm problem in certain cases.

The algorithm described here is an adaptation and generalisation of Shipsey’s algorithm to calculate
terms W (m,0) and W (m,1) of an elliptic net. We define a block centred on k (shown in Fig. 18.1) to
consist of a first vector of eight consecutive terms of the sequence W (i,0) centred on terms W (k,0)

and W (k +1,0) and a second vector of three consecutive terms W (i,1) centred on the term W (k,1).
We define two functions:

1. Double(V): Given a block V centred on k, returns the block centred on 2k.

2. DoubleAdd(V): Given a block V centred on k, returns the block centred on 2k +1.

We assume the elliptic net satisfies W (1,0) = W (0,1) = 1. The first vectors of Double(V) and

128

(k-3,0) (k-2,0) (k-1,0) (k,0) (k+1,0) (k+2,0) (k+3,0) (k+4,0)

(k-1,1) (k,1) (k+1,1)

Figure 18.1: A block centred on k

DoubleAdd(V) are calculated according to the following special cases of (3.1):

W (2i−1,0) = W (i +1,0)W (i−1,0)3−W (i−2,0)W (i,0)3 , (18.1)

W (2i,0) = (W (i,0)W (i +2,0)W (i−1,0)2

−W (i,0)W (i−2,0)W (i +1,0)2)/W (2,0) . (18.2)

The formulæ needed for the computations of the second vectors are instances of (3.1):1

W (2k−1,1) = (W (k +1,1)W (k−1,1)W (k−1,0)2

−W (k,0)W (k−2,0)W (k,1)2)/W (1,1) , (18.3)

W (2k,1) = W (k−1,1)W (k +1,1)W (k,0)2

−W (k−1,0)W (k +1,0)W (k,1)2 , (18.4)

W (2k +1,1) = (W (k−1,1)W (k +1,1)W (k +1,0)2

−W (k,0)W (k +2,0)W (k,1)2)/W (−1,1) , (18.5)

W (2k +2,1) = (W (k +1,0)W (k +3,0)W (k,1)2

−W (k−1,1)W (k +1,1)W (k +2,0)2)/W (2,−1) . (18.6)

Equations (18.1) and (18.2), applied for i = k−1, . . . ,k + 3, allow calculation of the first vectors of
Double(V) and DoubleAdd(V) in terms of W (2,0) and the terms of V . Equations (18.3)–(18.6) allow
calculation of the second vectors in terms of W (1,1), W (−1,1), W (2,−1) and the terms of V .

The algorithm to calculate W (m,1) and W (m,0) for any positive integer m is shown in Algorithm
18.0.2. The formula for the last term of the first vector of V in line 1 is from (1.2). Note that elliptic
nets satisfy W (−n,−m) =−W (n,m) by Proposition 3.1.1. In Section 18.4 we will consider possible
optimisations.

18.3 Computation of the Tate-Lichtenbaum pairing

To compute the Tate-Lichtenbaum pairing using Theorem 17.2.1, we must choose a particular elliptic
net in which to do calculations. The following corollary to Theorem 17.2.1 represents one convenient
choice.

1The values p,q,r,s substituted into (3.1) to obtain equations (18.3) - (18.6) are [p,q,r,s] = [(k,0),(k− 1,0),(1,0),(0,1)],
[(k +1,0),(k,0),(1,0),(−1,1)], [(k +1,0),(k,0),(−1,0),(0,1)], and [(k +2,0),(k,1),(1,0),(0,0)] respectively.

129

Algorithm 2 Elliptic Net Algorithm
Require: Initial terms a = W (2,0), b = W (3,0), c = W (4,0), d = W (2,1), e = W (−1,1),

f = W (2,−1), g = W (1,1) of an elliptic net satisfying W (1,0) = W (0,1) = 1 and integer
m = (dkdk−1 . . . d1)2 with dk = 1

Ensure: Elliptic net elements W (m,0) and W (m,1)
1: V ← [[−a,−1,0,1,a,b,c,a3c−b3]; [1,g,d]]
2: for i = k−1 down to 1 do
3: if di = 0 then
4: V ←Double(V)
5: else
6: V ←DoubleAdd(V)
7: end if
8: end for
9: return V [0,3] and V [1,1] {terms W (m,0) and W (m,1) respectively}

Corollary 18.3.1. Let E be an elliptic curve defined over a finite field K, m a positive integer, P ∈
E(K)[m] and Q ∈ E(K). If WP is the elliptic net associated to E ,P, then we have

τm(P ,P) =
WP(m +2)WP(1)
WP(m +1)WP(2)

. (18.7)

Further, if WP ,Q is the elliptic net associated to E ,P ,Q, then we have

τm(P ,Q) =
WP ,Q(m +1,1)WP ,Q(1,0)

WP ,Q(m +1,0)WP ,Q(1,1)
. (18.8)

Proof. For the first formula, taking q = p and s = 2p, we obtain

τm(P ,P) =
W ((m +2)p)W (p)
W ((m +1)p)W (2p)

.

For the second, take s = p, obtaining

τm(P ,Q) =
W ((m +1)p +q)W (p)
W ((m +1)p)W (p +q)

.

We remind the reader of the following definition:

Definition 18.3.1 (Reminder of Definition 9.1.2). Let W1 and W2 be elliptic nets. Suppose α,β ∈ K∗,
and f : A→ Z is a quadratic form. If

W1(v) = αβ
f (v)W2(v)

for all v, then we say W1 is equivalent to W2 and write W1 ∼W2.

We can alter the elliptic net we are using for the Tate-Lichtenbaum pairing computation by an
equivalence without altering the outcome.

130

Consider an elliptic curve E over a finite field Fq of characteristic not 2 or 3, in Weierstrass form

y2 = x3 +Ax +B

and points P = (x1,y1) and Q = (x2,y2) on E(Fq) with Q 6= ±P . We must calculate the values a, b,
c, d , e, f , and g required as input for the Elliptic Net Algorithm. These are terms of the elliptic net
associated to E ,P ,Q. The necessary formulæ are given by the functions Ψm,n. See Proposition 6.1.4,
which gives

W (1,0) = 1 , (18.9)

W (2,0) = 2y1 , (18.10)

W (3,0) = 3x4
1 +6Ax2

1 +12Bx1−A2 , (18.11)

W (4,0) = 4y1(x
6
1 +5Ax4

1 +20Bx3
1 −5A2x2

1 −4ABx1−8B2−A3) . (18.12)

W (0,1) = W (1,1) = 1 , (18.13)

W (2,1) = 2x1 +x2−
(

y2−y1
x2−x1

)2
, (18.14)

W (−1,1) = x1−x2 , (18.15)

W (2,−1) = (y1 +y2)
2− (2x1 +x2)(x1−x2)

2 . (18.16)

Suppose that P has order m. Then we use the Elliptic Net Algorithm, with input m + 1 and a, b, c,
d , e, f , g given by (18.10)–(18.16).2 The output is used to evaluate formula (18.8) of Corollary 18.3.1,
giving the Tate-Lichtenbaum pairing.

18.4 Some implementation considerations

For an integer m and finite field Fq , we define the embedding degree k to be the least integer such that
m|(qk−1), thus ensuring the m-th roots of unity are contained in F∗qk . In cryptographic applications
of the Tate-Lichtenbaum pairing, it is usual to use a curve defined over Fq of embedding degree k > 1,
and points P ∈ E(Fq), Q ∈ E(F

qk): throughout what follows we make this assumption.
First, note that no inversions are actually needed in equations (18.1)–(18.6), since the inverses of

W (2,0), W (2,1), W (−1,1) and W (2,−1) may be precomputed before the double-and-add loop is
begun. Therefore these inversions are replaced by multiplications.

Now we consider optimisations in the functions Double and DoubleAdd. The largest savings can
be gained by first computing a number of products which appear frequently in the formulæ:

W (i,0)2 and W (i−1,0)W (i +1,0) for i = k−2, . . . ,k +3 ,

W (k,1)2 and W (k−1,1)W (k +1,1) .

2In this case, g = 1. However, in Section 18.4 we will replace this elliptic net with an equivalent one for which W (1,1) 6= 1.
For this reason, it is convenient to state Algorithm 18.0.2 in sufficient generality and include a variable g.

131

With these 14 computations, each term of the 11 to be calculated requires only two multiplications
and an addition (plus multiplications by W (2,0)−1, W (2,−1)−1, W (1,1)−1 and W (−1,1)−1). The
resulting Double and DoubleAdd algorithms are shown in Algorithm 18.0.3.

Algorithm 3 Double and DoubleAdd
Require: Block V centred at k of an elliptic net satisfying W (1,0) = W (0,1) = 1, values A =

W (2,0)−1,E = W (−1,1)−1,F = W (2,−1)−1,G = W (1,1)−1 and boolean add
Ensure: Block centred at 2k if add == 0 and centred at 2k +1 if add == 1

1: S← [0,0,0,0,0,0]
2: P ← [0,0,0,0,0,0]
3: S0←V [1,1]2

4: P0←V [1,0]V [1,2]
5: for i = 0 to 5 do
6: S[i]←V [0, i +1]2

7: P [i]←V [0, i]V [0, i +2]
8: end for
9: if add == 0 then

10: for i = 1 to 4 do
11: V [0,2i−2]← S[i]P [i +1]−S[i +1]P [i]
12: V [0,2i−1]← (S[i]P [i +2]−S[i +2]P [i])A
13: end for
14: V [1,0]← (S0P [3]−S[3]P0)G
15: V [1,1]← S[3]P0−S0P [3]
16: V [1,2]← (S[4]P0−S0P [4])E
17: else
18: for i = 1 to 4 do
19: V [0,2i−2]← (S[i]P [i +2]−S[i +2]P [i])A
20: V [0,2i−1]← S[i +1]P [i +2]−S[i +2]P [i +1]
21: end for
22: V [1,0]← S[3]P0−S0P [3]
23: V [1,1]← (S[4]P0−S0P [4])E
24: V [1,2]← (S0P [5]−S[5]P0)F
25: end if
26: return V

Finally, we may try to avoid some of the extra multiplications by W (2,0)−1, W (1,1)−1, W (2,1)−1

and W (2,−1)−1 entirely. Recall that by Theorem 17.2.1, applying an equivalence to the net will not
alter the Tate-Lichtenbaum pairing result. Let η = W (−1,1). Apply the equivalence given by α = 1,
β = η and f (n,m) = mn. Clearly, this preserves the conditions3 that W (1,0) = W (0,1) = 1 (and
leaves terms W (n,0) unchanged, so they are still in Fq), but changes W (−1,1) to 1, which saves one
multiplication in F

qk per iteration. If W (2,0) has a cube root ν in Fq , then the equivalence α = ν−1,
β = ν and f (n,m) = m2 + n2 + mn will change W (2,0) to 1, while preserving W (1,0) = W (0,1) =

W (−1,1) = 1, saving four Fq multiplications per iteration. Note that these equivalences may result in
W (1,1) 6= 1.

Finally, we consider the applicability of some of the usual optimisations of Miller’s algorithm. In

3These were needed to derive formulæ (18.1)–(18.6).

132

Table 18.1: Comparison of Operations for Double and DoubleAdd steps
Algorithm Double DoubleAdd

Optimised Miller’s [37] 4S +(k +7)M +Sk +Mk 7S +(2k +19)M +Sk +2Mk

Elliptic Net Algorithm 6S +(6k +26)M +Sk + 3
2 Mk 6S +(6k +26)M +Sk +2Mk

Miller’s algorithm, a final exponentiation is applied, in order to compute a unique value for the Tate-
Lichtenbaum pairing; the same exponentiation must be applied here. In the case of Miller’s, this expo-
nentiation eliminates multiplicative factors living in the base field Fq . In our case, the Fq computations
do not give rise to strictly multiplicative factors (the algorithm requires much addition and subtrac-
tion), and so we cannot use this final exponentiation as a justification for the saving of Fq computations.
Windowing methods (as in [6] and [28]) may lead to improvement. A triple-and-add adaptation (as in
[26] and [4]) does not seem promising, by the nature of the recurrence relation. However, efficiency
improvements are likely to be found by studying the characteristic 2 and 3 cases.

18.5 Complexity

Since the algorithm involves a fixed number of precomputations, and a double-and-add loop with a
fixed number of computations per step, the algorithm is linear time in the size of m, as is Miller’s al-
gorithm. Miller’s algorithm also consists of a double-and-add loop, and we call the two internal steps
Double and DoubleAdd, as for the Elliptic Net Algorithm. In Miller’s algorithm the cost of Dou-
bleAdd is almost twice that of Double. By contrast, in the Elliptic Net Algorithm these steps take the
same time, so the complexity is independent of Hamming weight. This makes the choice of appropri-
ate curves for cryptographical implementations somewhat easier [18], and may help discourage side
channel attacks.

Denote squaring and multiplication in Fq by S and M. Denote squaring and multiplication in F
qk

by Sk and Mk. Assume that multiplying an element of Fq by one of F
qk takes k multiplications in

Fq . Recall that E is defined over Fq , P ∈ E(Fq), and Q ∈ E(F
qk). Then any term W (n,0), being a

term in the elliptic divisibility sequence associated to E ,P , has a value in Fq . Under the optimisations
discussed in Section 18.4, each Double or DoubleAdd step requires 6S +(6k +26)M +Sk +2Mk. Fur-
thermore, under the condition that 2yP ∈ Fq is a cube, then precomputing its cube root will save four
multiplications in Fq per step.

The Elliptic Net Algorithm requires no inversions. Miller’s algorithm in affine coordinates requires
one or two Fq inversion per step. In situations where inversions are costly (depending on implemen-
tation, they may cost anywhere from approximately 4 to 80 multiplications [11]), one may implement
Miller’s algorithm in homogeneous coordinates.

For the purpose of comparison, we consider an optimised implementation of Miller’s algorithm in
Jacobian coordinates analysed by Neal Koblitz and Alfred Menezes [37]. In their implementation, they

133

Table 18.2: Fq Multiplications per Step
Embedding degree 2 4 6 8 10 12
Optimised Miller’s 18-38 31-58 46-82 64-109 84-140 106-174
Elliptic Net 51-52 76-80 104-112 136-147 171-186 207-228

assume x(Q) ∈ E(F
qk/2) (this is possible by using a twist of the curve, see for example [5]). Applying

this additional assumption to the elliptic net algorithm, W (1,1) will be an element of F
qk/2 , reducing

one of the multiplications in Double to one half the time. The comparison is summarised in Tables
18.1 and 18.2. In the latter, a squaring is assumed to be comparable to a multiplication (although it
is more usually assumed to be 0.8 times as fast), and a multiplication in F

qk is assumed to take k1.5

multiplications in Fq (see [37]). The number of steps constitutes a range because the Double and
DoubleAdd steps may differ in cost.

Chapter 19

The elliptic curve discrete logarithm
problem

This chapter contains joint work with Kristin Lauter performed
during an internship at Microsoft Research, Redmond, Washing-
ton, September 10, 2007 - December 14, 2007.

The purpose of our study in this chapter is to better understand the following problem.

Problem 19.0.1 (Elliptic Curve Discrete Logarithm Problem (ECDLP)). Let E be an elliptic curve over
a finite field K. Suppose one is given points P ,Q ∈ E(K) such that Q ∈ 〈P〉. Determine k such that
Q = [k]P.

The first section of this chapter discusses perfectly periodic sequences. Then, we turn to the ques-
tion of hard problems for elliptic divisibility sequences and elliptic nets, and compare these problems
with Problem 19.0.1.

19.1 Perfect periodicity

Definition 19.1.1. A periodic elliptic divisibility sequence whose rank of zero-apparition is equal to its
period, is called perfectly periodic. A periodic elliptic net is called perfectly periodic if its lattice of
zero-apparition is equal to its lattice of periodicity.

We will often put a tilde over a sequence to remind the reader that it is perfectly periodic (e.g.
W̃ (k)).

As an example, let W be a non-degenerate elliptic divisibility sequence. Consider the equivalent
sequence W ′(n) = αn2−1W (n) where α satisfies α2 = a,αm = b for a,b from Theorem 10.2.2. It

134

135

follows that this sequence is a perfectly periodic elliptic divisiblity sequence. Suppose that gcd(q−
1,m) = 1. In this case the conditions of Theorem 10.2.2 determine such an α uniquely, and it lies in K .
Otherwise (if gcd(q−1,m) 6= 1), two such α ’s will exist, equal up to sign. The two resulting perfectly
periodic sequences will be equal (only up to sign at odd-indexed locations).

The moral of the last paragraph is that any elliptic divisibility sequence is equivalent to a perfectly
periodic one. We can give an explicit expression for such a perfectly periodic sequence.

Theorem 19.1.1. Let K be a finite field of q elements, and E an elliptic curve defined over K. Suppose
#E(K) is relatively prime to q−1. Define a function

φ : E →K

by

φ(P) =

(
WE ,P(q−1)

WE ,P(q−1+ord(P))

) 1
ord(P)2

. (19.1)

For a point P of prime order not less than 4, the sequence φ([n]P) is a perfectly periodic elliptic
divisibility sequence equivalent to WE ,P(n). Specifically,

φ([n]P) = φ(P)n2−1WE ,P(n). (19.2)

More generally, let P ∈ E(K)n be a collection of nonzero points, no two equal or inverses, and all
elements of a single cyclic group. The n-array φ(v ·P) (as v ranges over Zn) forms a perfectly periodic
elliptic net equivalent to WE ,P(v). Specifically,

φ(v ·P) = WE ,P(v)
n

∏
i=1

φ(Pi)
v2

i −vi

(
∑ j 6=i v j

)
∏

1≤i< j≤n
φ(Pi +Pj)

vi v j . (19.3)

Proof. The proof uses Theorem 10.1.1. We will demonstrate the method of proof in the rank one case
before proceeding to the general case. Take T = (l), so

WE ,[l]P(n)WE ,P(l)n2
= WE ,P(nl).

By symmetry,
WE ,[n]P(l)WE ,P(n)l 2

= WE ,P(nl).

Let m = ord(P). Thus, combining the above and using l = q−1 and q−1+m in turn,

WE ,[n]P(q−1)WE ,P(n)(q−1)2

WE ,P(q−1)n2 = WE ,[q−1]P(n) = WE ,[q−1+m]P(n)

=
WE ,[n]P(q−1+m)WE ,P(n)(q−1+m)2

WE ,P(q−1+m)n2

Rearranging,
φ([n]P) = φ(P)n2−1WE ,P(n).

136

Therefore, φ([n]P) is an elliptic divisibility sequence. By definition, φ([n]P) has period ord(P) which
is equal to the rank of apparition of WE ,P and φ([n]P). So φ([n]P) is perfectly periodic.

For the rank n case, let m be the order of the cyclic group containing all the points under consid-
eration. In Theorem 10.1.1, let t = 1 and s = n and take T = (v1 v2 v3 · · · vn) to obtain

WE ,P(lv) = WE ,v·P(l)WE ,P(v)l 2
.

Now take t = s = n in Theorem 10.1.1 , and T = l Idn to obtain

WE ,P(lv) = WE ,lP(v)
n

∏
i=1

WE ,P(l ei)
v2

i −vi (∑ j 6=i v j) ∏
1≤i< j≤n

WE ,P(l ei + l e j)
vi v j .

Note that
WE ,P(l ei) = WE ,Pi

(l), WE ,P(l ei + l e j) = WE ,Pi+Pj
(l).

Combining the above, we have

WE ,lP(v) =
WE ,v·P(l)WE ,P(v)l 2

∏
n
i=1 WE ,Pi

(l)v2
i −vi (∑ j 6=i v j) ∏1≤i< j≤n WE ,Pi+Pj

(l)vi v j
.

Comparing this in the case of l = q−1 and l = q−1+m gives the required result, as before.

Corollary 19.1.2. Suppose that E is an elliptic curve over a field K = Fq and P ∈ E(K) is of order
m ≥ 4. The period of the sequence WE ,P is m ordK∗(φ(P)).

Proof. First, φ([n]P) has period exactly m. Since, if the period were m′ < m, then WE ,P(m′) = 0, a
contradiction. The result then follows directly from equation (19.2).

19.2 Some hard problems

Elliptic nets are closely related to points on elliptic curves. We have already seen in several cases that
computations relating to elliptic curves (such as pairings) can be carried out by computations of the
associated elliptic nets. We will define several computational problems for elliptic nets.

Problem 19.2.1 (EDS Association). Let E be an elliptic curve over a finite field K. Suppose one is
given points P ,Q ∈ E(K) such that Q ∈ 〈P〉, Q 6= O, and ord(P) ≥ 4. Determine WE ,P(k) for the
value of 0 < k < ord(P) such that Q = [k]P.

Problem 19.2.2 (EDS Residue). Let E be an elliptic curve over a finite field K. Suppose one is given
points P ,Q ∈ E(K) such that Q ∈ 〈P〉, Q 6= O, and ord(P)≥ 4. Determine the quadratic residuosity
of WE ,P(k) for the value of 0 < k < ord(P) such that Q = [k]P.

Problem 19.2.3 (Width s EDS Discrete Log). Given an elliptic divisibility sequence W and terms
W (k), W (k +1), . . ., W (k + s−1), determine k.

137

Recall that a perfectly periodic elliptic divisibility sequence is one which has a finite period n and
whose first positive index k at which W (k) = 0 is k = n. If a sequence is not perfectly periodic, then it
has n > k.

Note that the choice of segment 0 < k < ord(P) is not crucial in Problem 19.2.1 (EDS Association):
it could be restated for any segment i ord(P) < k < (i +1)ord(P). This problem is trivial for a perfectly
periodic sequence or net (since W̃ (k) = φ(Q) is computable in log q time). For the non-perfectly
periodic case, the problem appears to be much harder. As for Problem 19.2.3 (EDS Discrete Log), on
the other hand, for non-perfectly periodic elliptic divisibility sequences, it can be solved by computing
an F∗q discrete log. For this problem, it is the case of perfect periodicity that seems very difficult.

We will see that these hard problems are related according to the following diagram.

perfectly

periodic
[k]P

(logq)3

�������������������������

EDS
Association

��@
@

@
@

@
@

@
@

@
@

@

ECDLP

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

not perfectly

periodic

{φ([i]P)}k+2
i=k

W idth 3
EDS Discrete Log

!!B
B

B
B

B
B

B
B

B
B

B

(logq)2

??����������������������� {
WE ,P(i)

}k+2

i=k

F∗qDLP

}}{{{{{{{{{{{{{{{{{{{{{

k

(logq)3

=={{{{{{{{{{{{{{{{{{{{{

We demonstrate the complexity of solving the problems associated to the solid lines in the fol-
lowing series of theorems. The solid line labelled F∗qDLP has the complexity of a discrete logarithm
problem in F∗q (this is sub-exponential by index calculus). No sub-exponential algorithms are known
for the dotted lines.

Lemma 19.2.4. Let E be an elliptic curve defined over K, and P ∈ E(K) be a point of order not less
than 4. The x-coordinate of [n]P, denoted x([n]P), can be calculated from WE ,P(n− 1), WE ,P(n),
and WE ,P(n +1) in a fixed number of field operations.

Proof. From Lemma 6.2.2:

WE ,P(n−1)WE ,P(n +1)

WE ,P(n)2 = x(P)−x([n]P). (19.4)

Theorem 19.2.5 (Shipsey [61]). Let E be an elliptic curve over K, and P ∈ E(K) a point of order not
less than 4. Given a value m, the term WE ,P(m) in the elliptic divisibility sequence associated to E ,P
can be calculated in O((logm)(logq)2) time.

138

Proof. For completeness, we give a simplified version of Shipsey’s algorithm here. Following Shipsey,
denote by

〈
WE ,P(n)

〉
the segment or block centred at k of eight terms WE ,P(k−3), WE ,P(k−2), . . .,

WE ,P(k + 3), WE ,P(k + 4) of the sequence. The block centred at m can be calculated from the block
centred at 1 via a double-and-add algorithm based on an addition chain for m. The calculation of the
new block from the previous depends on two instances of the recurrence (one such calculation for each
term of the new block):

W (2i−1,0) = W (i +1,0)W (i−1,0)3−W (i−2,0)W (i,0)3 ,

W (2i,0) = (W (i,0)W (i +2,0)W (i−1,0)2−W (i,0)W (i−2,0)W (i +1,0)2)/W (2,0) .

To begin we must calculate the block centred at 1. Recalling that W (0) = 0, W (1) = 1 and W (−n) =

−W (n), we must calculate W (i) for i = 2,3,4. Formulæ are given in Proposition 6.1.4. This algorithm
takes O(logm) steps, each of which involves a fixed number of F∗q multiplications and additions, which
take O((logq)2) time at worst.

Theorem 19.2.6. Let E be an elliptic curve over K, and P ∈ E(K) a point of order not less than 4.
Given a point Q = [k]P, the term φ(Q) = W̃ (k) can be calculated in O((logq)3) time.

Proof. The formula for φ(Q) requires calculating two terms of WE ,Q , which, by Theorem 19.2.5, takes
log(q−1+ord(Q)) steps. Since ord(Q) is on the order of q, this takes O((logq)3) time at worst. The
other necessary operation is to find the inverse of ord(Q)2 modulo q−1, and to raise to that exponent.
Both these are also O(logq) operations.

Theorem 19.2.7. Let E be an elliptic curve over K, and P ∈ E(K) a point of order not less than 4.
Given terms W̃ (k),W̃ (k +1),W̃ (k +2), in a perfectly periodic sequence associated to E ,P, the point
Q = [k]P can be calculated in O((logq)2) time.

Proof. This follows from Lemma 19.2.4. Note that the left hand side of the expression (19.4) is invari-
ant under an elliptic divisibility sequence equivalence. Therefore we can calculate x([k + 1]P). Now
we must determine which of the two points with this x-coordinate is actually [k +1]P . First, take one
of the two candidate points, and proceed on the assumption that it is [k +1]P . Using the addition for-
mula for elliptic curves, calculate x([k +1]P +P) = x([k +2]P). Compare this with (19.4) to determine
W̃ (k +3). Also determine W̃ (k +4) in this manner. Then, if the terms W̃ (k), . . . ,W̃ (k +4) satisfy the
recurrence instance

W̃ (k +4)W̃ (k) = W̃ (k +1)W̃ (k +3)W̃ (2)2−W̃ (3)W̃ (1)W̃ (k +2)2,

our assumption about the point we chose is correct. If this recurrence does not hold, then the point
we chose was incorrect, and the other one is the point [k +1]P we seek. Finally, knowing [k +1]P , we
can calculate Q = [k]P = [k +1]P−P . The number of operations in the field is bounded by a constant,
hence the time taken is O((logq)2) at worst.

The following theorem is implicit in the work of Shipsey; see Section 19.3.2 for an explanation.

139

Theorem 19.2.8. Suppose P has prime order not dividing q− 1, and φ(P) is a primitive root in F∗q .
Given WE ,P(k),WE ,P(k + 1),WE ,P(k + 2), where it can be assumed that 0 < k < ord(P), calculating
k can be reduced to a single discrete logarithm in F∗q in O((logq)3) time.

Proof. We can deduce the x-coordinate of the point Q = [k]P by Lemma 19.2.4. Choosing one of the
two possible y-coordinates, we have either Q = [k]P or Q = [−k]P . To determine which is correct,
use the trick of the proof of Theorem 19.2.7. Suppose it is the former; then, from 19.1.1, we have

φ([k +1]P)
φ([k]P)

= φ(P)2k+1
WE ,P(k +1)

WE ,P(k)
.

So k satisfies an equation of the form A = B2k+1 where A and B are known, and B has order q− 1.
Therefore, we are reduced to solving a discrete logarithm of the form A = Bx for 0≤ x < q−1, with
the understanding that k will be one of (x−1)/2 or (x +q−1)/2. (In fact, if q−1 < m, there may be
at most two other possible values of k to check: the above values plus q−1.)

Remark 19.2.1. Let m = ord(P). Suppose that gcd(m,q− 1) = 1. As an integer k ranges over repre-
sentatives of a single coset in Z/mZ, it ranges over all possible cosets of Z/(q− 1)Z. Therefore, we
cannot expect to find the set of k such that Q = [k]P (i.e., a coset in Z/mZ) by solving an equation of
the form A = Bk in F∗q (i.e., solving modulo q−1). One solution to this problem is to attempt to solve
for an integer k (instead of a coset) – say, for example, the smallest non-negative k with Q = [k]P . This
is in essence what the preceeding theorem does. With this in mind, we set some terminology.

Definition 19.2.1. Let Q be a multiple of P on an elliptic curve E . The minimal multiplier of Q with
respect to P is the smallest non-negative value of k such that Q = [k]P .

Note that the minimal multiplier satisfies 0≤ k < ord(P).

19.3 The F∗q discrete logarithm, The Tate-Lichtenbaum pairing and

MOV and Frey-Rück attacks

Theorem 19.2.8 uses terms of the elliptic divisiblity sequence to give a discrete logarithm problem in
F∗q . We demonstrate some variations on this theme, and relate these types of equations to the Tate-
Lichtenbaum pairing, and to an ECDLP attack given by Shipsey [61].

19.3.1 An F∗q DLP equation of the form A = Bk from periodicity properties

The F∗q DLP equations we consider are consequences of Theorem 10.1.1, but many can be conve-
niently understood in terms of its corollary Theorem 10.2.3. The following example involves the terms
WE ,P(k) and WE ,P(k + 1), and requires knowledge of Q = [k]P . The following diagram is suggestive
for the discussion.

140

• ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •
◦ ◦ ◦ •

ujjTTTTTTTTTTTTT ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦
◦ • ◦ ◦ ◦ ◦ •

ujjTTTTTTTTTTTTT ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

ujjTTTTTTTTTTTTT ◦ ◦ ◦ ◦ • ◦
◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

ujjTTTTTTTTTTTTT ◦ ◦ ◦
•

t

OO

◦ ◦ ◦ ◦ •−s
oo ◦ ◦ ◦ ◦ •−s

oo ◦ ◦ ◦ ◦ •−s
oo

ujjTTTTTTTTTTTTT

In this picture of Z2, u = (−3,1), s = (5,0) and t = (0,5). Vectors u and s generate the lattice of zero-
apparition Λ for some elliptic net W associated to points P and Q = [3]P of order 5. The vector t is
also in Λ. One coset of Z2 modulo Λ is shown as the solid discs.

Theorem 10.2.3 shows the transformation relative to translation by a vector r∈Λ: it relates W (v+

r) to W (v) for each v. This theorem can be applied repeatedly, and different ‘paths’ from one point to
another must agree. In the picture above, the translation property which relates W (v +(−15,5)) to
W (v) can be calculated by applying the transformation associated to u five times (the diagonal path)
or by applying the transformation associated to −s three times followed by that associated to t once
(the sides of the triangle).

In the general case, we have Q = [k]P . Then the lattice of zero-apparition Λ for W = WE ,P ,Q

includes vectors u = (−k,1), s = (m,0) and t = (0,m). Suppose r = (r1,r2) is an element of Λ for
W = WE ,P ,Q . By Theorem 10.2.3, we have for all l ∈ Z and v ∈ Z2,

W (l r+v) = W (v)al v1
r bl v2

r cl 2
r (19.5)

where

ar =
W (r1 +2,r2)

W (r1 +1,r2)W (2,0)
, br =

W (r1,r2 +2)
W (r1,r2 +1)W (0,2)

, cr =
W (r1 +1,r2 +1)

arbrW (1,1)
.

We expect appropriate relationships between au, bu, cu, as, bs, etc. The F∗p DLP equation we seek
is one such relationship. We have

as =
W (m +2,0)

W (m +1,0)W (2,0)
, at =

W (2,m)
W (1,m)W (2,0)

, au =
W (2−k,1)

W (1−k,1)W (2,0)
.

For each i ∈ Z, we apply (19.5) to obtain

W (−ik +1, i−1)W (0,−1)
W (1,−1)W (−ik, i−1)

= ai
u (19.6)

141

Set i = m in (19.6), and apply (19.5) four times:

am
u =

W (−mk +1,m−1)W (0,−1)
W (1,−1)W (−mk,m−1)

=
(

W (−mk +1,m−1)
W (−mk +1,−1)

)(
W (−mk +1,−1)

W (1,−1)

)(
W (0,−1)

W (−mk,−1)

)(
W (−mk,−1)

W (−mk,m−1)

)
=

a−mk+1
t b−1

t c1
t a−k

s bk
s ck2

s

a−mk
t b−1

t c1
t a0

s bk
s ck2

s
= ata

−k
s

Setting i = 1 in (19.6), we obtain an expression

au =
W (−k +1,0)W (0,−1)

W (1,−1)W (−k,0)
=−

WE ,P(k−1)

WE ,P(k)W (1,−1)

which, when substituted into the last calculation, yields(
W (m +1,0)W (2,0)

W (m +2,0)

)k
=

(
WE ,P(k−1)

WE ,P(k)

)m(
− W (1,m)W (2,0)

W (2,m)W (1,−1)m

)
. (19.7)

19.3.2 An F∗q DLP equation from Shipsey’s thesis

The possibility of such an equation was observed by Rachel Shipsey in her thesis [61, p.80]. She uses
one-dimensional periodicity properties to derive the following equation:

WE ,P((m +1)(k +1))WE ,P(k)

WE ,P((m +1)k)WE ,P(k +1)
= WE ,P(m +1)2k+1 (19.8)

Shipsey then argues that without knowledge of k the left hand side can be calculated up to a factor of(
WE ,P(k)

WE ,P(k−1)

)m(m+2)

.

This is very much of the same spirit as equation (19.7), and in fact, Theorem 10.1.1 can be used to
rewrite (19.8) in this form:

WE ,P ,Q(m +1,m +1)

WE ,P ,Q(0,m +1)

(
WE ,P(k +1)

WE ,P(k)

)m(m+2)

= WE ,P(m +1)2k+1. (19.9)

By Lemma 19.2.4, knowledge of Q,WE ,P(k),WE ,P(k− 1) determines WE ,P(k + 1), and so this is very
much equivalent to Shipsey’s analysis. Note that the unknown terms in (19.9) are raised to the expo-
nent m + 2. At first blush, this may appear to lead to an ECDLP attack for q− 1 = m + 2 (where the
unknown terms will disappear). However, this is not allowed by Remark 19.2.1. In fact, it turns out
that if q−1 = m +2, then WE ,P(m +1) = 1 (this eventually follows from Theorem 10.1.1 also).

19.3.3 F∗q DLP equations and the Tate-Lichtenbaum pairing

The Tate-Lichtenbaum pairing and Weil pairing are used in the MOV [45] and Frey-Rück [23] attacks
on the ECDLP. These use the Weil and Tate-Lichtenbaum pairings, respectively, to translate an in-
stance of the ECDLP into an F∗q DLP equation, where index calculus methods may be used. The basic

142

idea, illustrated here for the Tate-Lichtenbaum pairing, is that Q = [k]P implies τm(Q,S) = τm(P ,S)k

by bilinearity. If S can be chosen so that τm(P ,S) is non-trivial, and if the Tate-Lichtenbaum pairing
takes values in a manageably small finite field, then index calculus methods can be used to determine
k. In particular, this attack applies for curves E over Fq where m = q−1.

In (19.9) and (19.7), all the terms may be calculated from knowledge of m, P and Q except for
WE ,P(k) and WE ,P(k− 1). However, notice that these unknown terms are raised to the power m.
Therefore, in the case that m = q−1, no extra information is needed and the ECDLP is reduced to an
F∗q DLP; this works in exactly the cases that the MOV or Frey-Rück attack applies.

These sorts of ‘alternate versions’ of the MOV/Frey-Rück attack do have a relation to the Tate-
Lichtenbaum pairing. In light of Theorem 17.2.1, equations (19.7) and (19.9) can be re-written as state-
ments in terms of the Tate-Lichtenbaum pairing.

For convenience, we restate Theorem 17.2.1.

Theorem 19.3.1 (Restatement of Theorem 17.2.1). Let E be an elliptic curve, m ≥ 4, and P1 ∈ E [m].
Let P2,P3 ∈ E be such that P3 6∈

{
O,P2

}
. Let W be an elliptic net of rank n, associated to points

T ∈ E(K)n. Let p1,p2,p3 ∈ Zn be such that Pi = pi ·T for each i. Let τm : E [m]×E/mE → K∗/(K∗)m

be the Tate pairing. Then

τm(P1,P2) =
W (mp1 +p2 +p3)W (p3)
W (mp1 +p3)W (p2 +p3)

.

Equation (19.7): Apply Theorem 19.3.1 twice, each time with basis T = (P ,Q). First, for the left-
hand side, use P1 = P ,P2 = −P ,P3 = [2]P and coordinates p1 = (1,0),p2 = (−1,0),p3 = (2,0). For the
right-hand side, use P1 = Q,P2 = −P ,P3 = [2]P , and coordinates p1 = (0,1),p2 = (−1,0),p3 = (2,0).
This rewrites (19.7) as

τm(P ,−P)k = τm(Q,−P).

Equation (19.9): This is somewhat more complicated. From Theorem 10.2.2 with m = q− 1 and
Theorem 19.3.1 with various parameters,

WE ,P(m +1)2
τm(P ,P)−2 =

(
WE ,P(m +1)2WE ,P(2)

WE ,P(m +2)

)2

= b2 = am = 1,

τm(P ,Q) =
WE ,P ,Q(m +1,1)WE ,P ,Q(1,0)

WE ,P ,Q(m +1,0)WE ,P ,Q(1,1)
, τm(Q,P) =

WE ,P ,Q(1,m +1)WE ,P ,Q(0,1)

WE ,P ,Q(0,m +1)WE ,P ,Q(1,1)
,

1 = τm(P ,O) = τm(P , [m]Q) =
WE ,P ,Q(m +1,m +1)WE ,P ,Q(1,1)

WE ,P ,Q(m +1,1)WE ,P ,Q(1,m +1)
.

All of which, taken together, rewrites (19.9) as

τm(P ,Q)τm(Q,P) = τm(P ,P)2k.

Equation (19.2) does not, however, lend itself to this sort of re-writing in terms of pairings, as it
requires the assumption that gcd(m,q− 1) = 1. If we were to redefine it without taking m2-th roots
(in order to avoid this assumption), the equation becomes effectively trivial.

143

19.4 ECDLP through EDS Association

The previous sections have demonstrated that there are a variety of ways to translate an ECDLP into
an F∗q DLP. The F∗q DLP equation is in terms of elements of the sequence WE ,P . For example in (19.7),
the elements are WE ,P(k) and WE ,P(k− 1). The problem of finding these terms (with knowledge of
Q = [k]P but not k) is EDS Association. In this example, however, it is only their quotient that is
needed. Depending on the form of the F∗q DLP equation, different such information (certain terms or
ratios of terms) suffices. We formalise the most general statement of this in the following theorem.

Proposition 19.4.1. Fix an elliptic curve E defined over Fq , and P ∈E(Fq) of order greater than three
and relatively prime to q−1. Suppose φ(P) has order q−1 in F∗q . With knowledge of any product

N

∏
i=1

WE ,P(pi(k))ei ,

where the ei ∈ Z, and pi(x) ∈ Z[x], and t(x) = ∑
N
i=1 ei pi(x)2 is a non-constant linear polynomial in

Z[x], the value of k can be determined in subexponential time in q.

Proof. By Theorem 19.1.1, t(k) satisfies an equation in F∗q of the form A = Bt(k). The left hand side A
is the known product in the hypothesis of the theorem, while B = φ(P) (whose computation takes time
O((logq)3) by Theorem 19.2.6). Solving this discrete logarithm for t(k) can be done sub-exponentially
by index calculus methods. Solving for k from t(k) is direct since t(k) is linear in k.

It is evident that the most costly step is the index calculus step, which in many cases has run time
r(q) = exp(c(logq)1/3(log logq)2/3) [13, p.306].

19.5 ECDLP and quadratic residues

We will show that determining only one bit of information – the residuosity – about a term WE ,P(k)

may suffice to solve the ECDLP. First, we observe a hypothetical method of attack for ECDLP.

Proposition 19.5.1. Let P be a point of odd order relatively prime to q−1. Given an oracle which can
determine the parity of the minimal multiplier of any non-zero point Q in 〈P〉 in time O(T (q)), the
elliptic curve discrete logarithm for any such Q can be determined in time O(T (q) logq +(logq)2).

Proof. Suppose that k is the minimal multiplier of Q with respect to P . The basic algorithm is:

1. If Q = P , stop.

2. Call the oracle to determine the parity of k. If k is even, find Q ′ such that [2]Q ′ = Q. If k is odd,
find Q ′ such that [2]Q ′ = Q−P .

3. Set Q = Q ′ and return to step 1.

144

In Step 2, since the cyclic group 〈P〉 has odd order, there is a unique Q ′. It can be found in O(logq)

time (see [36] for methods). Furthermore, Q ′ = [k′]P where

k′ =

{
k/2 k even
(k−1)/2 k odd

.

Then k′ is the minimal multiplier for Q ′ with respect to P . At the end of this process, the value of
the original k can be deduced from the sequence of steps taken. For each even step, record a ‘0’,
and for each odd step a ‘1’, writing from right to left, and adding a final ‘1’: this will be the binary
representation of k. The number of steps is log2 k = O(logq).

Proposition 19.5.2. Fix an elliptic curve E defined over Fq of characteristic not equal to two, and
P ∈ E(Fq) of order greater than three and relatively prime to q−1. Suppose that φ(P) is a quadratic
non-residue. Then, with knowledge of the quadratic residuosity of any product of the form

N

∏
i=1

WE ,P(pi(k))ei , (19.10)

where the ei ∈ Z, and pi(x) ∈ Z[x] of degree at most D, and t(x) = ∑
N
i=1 ei pi(x)2 is not constant as a

function Z/2Z→ Z/2Z, the parity of k can be determined in time O(D).

Proof. By Theorem 19.1.1, the value t(k) satisfies an equation in F∗q of the form A = Bt(k). The
quadratic residuosity of A is known. Now, B = φ(P) is a quadratic non-residue. The parity of t(k) can
be calculated from these values in constant time (i.e., consider the question in K∗ modulo (K∗)2). The
parity of k is determined by checking the parity of t(0) and t(1). This final step takes time O(D).

Corollary 19.5.3. Let E be an elliptic curve over a field of characteristic not equal to two. Let P be
a point of odd order such that φ(P) is a quadratic non-residue, and let k be the minimal multiplier
of a multiple Q of P. Given P ,Q and an oracle which can determine the quadratic residuosity of
WE ,P(k) in time O(T (q)), the elliptic curve discrete logarithm for any such Q can be determined in
time O(T (q) logq +(logq)2).

Proof. This follows from Proposition 19.5.2 with N = 1,e1 = 1, p1(x) = x and Proposition 19.5.1.

A few remarks are in order.

1. The hypotheses on the t(x) of Proposition 19.5.2 and Proposition 19.4.1 are mutually exclusive.

2. If φ(P) is a quadratic residue, one solution to this obstacle is to replace the initial problem
of Q = [k]P with the equivalent problem of [n]Q = [k]([n]P) for any n such that φ([n]P) is a
quadratic non-residue. The perfectly periodic sequence can be calculated term-by-term until
such an n is found.

3. It may be tempting to try to apply this method to the case that the order of P divides q− 1.
Unfortunately, this is not possible. If the order m of the group 〈P〉 is even, multiplication by
2 is not an automorphism, and so there is no unique ‘half’ of a point (this is the same difficulty

145

that prevents this sort of parity attack on an F∗q discrete log). If m|(q−1) is odd, then k satisfies
a discrete logarithm equation of the form A = Bk in the group K∗/(K∗)m, which has an odd
number of elements. Therefore, this does not determine the parity of k.

19.6 The EDS Residue problem

In light of the preceeding section, it is natural to define the problem of EDS Residue (Problem 19.2.2).
In Section 19.8 we will show that it is equivalent to the elliptic curve discrete logarithm in sub-
exponential time. How might one determine the quadratic residuosity of WE ,P(k)? Our first ob-
servation is that knowledge of the residuosity of one term WE ,P(k) would determine the residuosity
of the next term.

Proposition 19.6.1. Suppose Q is a known element of 〈P〉, but that its minimal multiplier k is un-
known. The quadratic residuosity of WE ,P(k +1)/WE ,P(k) can be calculated in O((logq)3) time.

Proof. From (19.2) with n = k and n = k +1, we have

φ(Q)
φ(Q +P)

= φ(P)2k+1

(
WE ,P(k +1)

WE ,P(k)

)
.

The calculation of the terms φ(P),φ(Q), and φ(P +Q) each take O((logq)3) time.

Therefore, based on knowledge of Q but not k, the sequence

S(n) =

(
WE ,P(n)

q

)(
WE ,P(k)

q

)
for n = k, . . . ,k +N may be may be calculated in O(N logq) time. Then the sequence(

WE ,P(n)

q

)
is either S(n) or −S(n). To determine which is to determine the quadratic residuosity of WE ,P(k).

Therefore, if some bias, or some pattern, for quadratic residues of the elliptic divisibility sequence
WE ,P(n) were known, then the correct choice of the two sequences above could be determined. How-
ever, as yet we have no evidence to suggest that the ratio of quadratic residues among the terms is not
1/2 in general.

Question 19.6.2. What proportion of terms in an elliptic divisibility sequence or elliptic net over a
finite field of odd characteristic are quadratic residues?

19.7 ECDLP through EDS Discrete Log in the case of perfect period-

icity

Problem 19.2.3 (EDS Discrete Log) is less unusual in flavour than the other problems considered here:
general discrete logarithm attacks will apply. Recall the proof of Theorem 19.2.5, in which blocks

146

centred at k are defined – denote this as B(k). From B(k), the recurrence relation can be used to
calculate B(2k) or B(2k + 1). In fact, Shipsey goes further, and shows how two blocks B(k),B(k′)
can be added to obtain a block B(k + k′) in a similarly efficient manner (see [61, p. 23]). This means
that the sequence of blocks B(n) is a sequence along which we can move easily by addition and Z-
multiplication. Therefore, algorithms such as Baby-Step-Giant-Step and Pollard’s ρ can be applied to
this problem.

19.8 Equivalence of hard problems

Theorem 19.8.1. Let E be an elliptic curve over a finite field K = Fq of characteristic 6= 2. If any one
of the following problems is solvable in sub-exponential time, then all of them are:

1. Problem 1.5.1: ECDLP

2. Problem 1.5.2: EDS Association for non-perfectly periodic sequences

3. Problem 1.5.3: EDS Residue for non-perfectly periodic sequences

4. Problem 1.5.4 (s = 3): Width 3 EDS Discrete Log for perfectly periodic sequences

Proof. (3) =⇒ (1): Corollary 19.5.3.
(1) =⇒ (2): If k is known, we can assume 0 < k ≤ ord(P), and then WE ,P(k) can be calculated in

O((logk)(logq)2) = O((logq)3) time.
(2) =⇒ (3): Residuosity of a value in F∗q can be determined in sub-exponential time (see [33] for

algorithms).
(1) =⇒ (4): Theorem 19.2.7.
(4) =⇒ (1): Theorem 19.2.6 allows calculation of φ([k]P), φ([k + 1]P), and φ([k + 2]P) in sub-

exponential time.

Part V

Appendices

147

Appendix A

Formulary

Let E be the elliptic curve defined over the rationals with Weierstrass equation

y2 +a1xy +a3y−x3−a2x2−a4x−a6 = 0.

As usual, let

b2 = a2
1 +4a2, b4 = 2a4 +a1a3,

b6 = a2
3 +4a6, b8 = a2

1a6 +4a2a6−a1a3a4 +a2a2
3−a2

4.

A.1 Elliptic net recurrence relation

The elliptic net recurrence relation:

W(p +q + s)W(p−q)W(r + s)W(r)

+W(q + r + s)W(q− r)W(p + s)W(p)

+W(r + p + s)W(r− p)W(q + s)W(q) = 0. (3.1)

Nelson form: (from (3.1) by s← 2a, r ← b−a, p← c−a, q← d −a)

W(a +b)W(a− c)W(c +d)W(c−d)

+W(a + c)W(a− c)W(d +b)W(d −b)

+W(a +d)W(a−d)W(b + c)W(b− c) = 0. (3.2)

Ward’s elliptic divisibility sequences recurrence relation: (from (3.1) by p← n, q←m, s← 0, r ← 1).

W (n +m)W (n−m)W (1)2 = W (n +1)W (n−1)W (m)2−W (m +1)W (m−1)W (n)2. (1.2)

148

149

Miscellaneous special cases:

W (p +q)W (p−q)W (r)2 = W (p + r)W (p− r)W (q)2−W (q + r)W (q− r)W (p)2,

W (n +2)W (n−2)W (1)2 = W (n +1)W (n−1)W (2)2−W (3)W (1)W (n)2,

W (n +m +1)W (n−m)W (2)W (1) = W (n +2)W (n−1)W (m +1)W (m)

−W (m +2)W (m−1)W (n +1)W (n),

W (n +3)W (n−2)W (2)W (1) = W (n +2)W (n−1)W (3)W (2)

−W (4)W (1)W (n +1)W (n),

W (2n)W (2)W (1)2 = W (n)
(

W (n +2)W (n−1)3−W (n−2)W (n +1)2
)

, (2.6)

W (2n +1)W (1)3 = W (n +2)W (n)3−W (n−1)W (n +1)3, (2.7)

W (nm)W (2) = W
(nm

2
)(

W
(nm

2 +2
)

W
(nm

2 −1
)2

−W
(nm

2 −2
)

W
(nm

2 +1
)2
)

, (2.8)

W (nm)W (n) = W
(

n(m+1)
2 +1

)
W
(

n(m+1)
2 −1

)
W
(

n(m−1)
2

)2

−W
(

n(m−1)
2 +1

)
W
(

n(m−1)
2 −1

)
W
(

n(m+1)
2

)2
, (2.9)

W (1,−1)W (1,1)3 = W (0,1)3W (2,1)−W (1,0)3W (1,2), (4.2)

W (2i−1,0) = W (i +1,0)W (i−1,0)3−W (i−2,0)W (i,0)3, (18.1)

W (2i,0)W (2,0) = W (i,0)W (i +2,0)W (i−1,0)2

−W (i,0)W (i−2,0)W (i +1,0)2, (18.2)

W (2k−1,1)W (1,1) = W (k +1,1)W (k−1,1)W (k−1,0)2

−W (k,0)W (k−2,0)W (k,1)2, (18.3)

W (2k,1) = W (k−1,1)W (k +1,1)W (k,0)2

−W (k−1,0)W (k +1,0)W (k,1)2, (18.4)

W (2k +1,1)W (−1,1) = W (k−1,1)W (k +1,1)W (k +1,0)2

−W (k,0)W (k +2,0)W (k,1)2, (18.5)

W (2k +2,1)W (2,−1) = W (k +1,0)W (k +3,0)W (k,1)2

−W (k−1,1)W (k +1,1)W (k +2,0)2. (18.6)

A.2 Complex function formulæ

Weierstrass σ -function definition of net polynomials:

1. n = 1:
Ωv(z;Λ) =

σ(vz;Λ)
σ(z;Λ)v2 . (5.3)

150

2. n = 2:
Ωu,v(z,w;Λ) =

σ(uz +vw;Λ)
σ(z;Λ)u2−uv σ(z +w;Λ)uv σ(w;Λ)v2−uv

. (5.4)

3. general n:

Ωv(z;Λ) =
σ(v1z1 + . . .+vnzn;Λ)

n

∏
i=1

σ(zi ;Λ)2v2
i −∑

n
j=1 vi v j ∏

1≤i, j≤n
i 6= j

σ(zi +z j ;Λ)vi v j

. (5.2)

Complex function identities:

℘(z)−℘(w) =−σ(z +w)σ(z−w)
σ(z)2σ(w)2 , (5.5)

℘(nz)−℘(mz) =−
Ωm+n(z)Ωm−n(z)

Ωm(z)2Ωn(z)2 , (5.6)

ζ (x +a)−ζ (a)−ζ (x +b)+ζ (b) =
σ(x +a +b)σ(x)σ(a−b)
σ(x +a)σ(x +b)σ(a)σ(b)

, (5.7)

ζ (x +a +b)−ζ (x +a)−ζ (x +b)+ζ (x) =
σ(2x +a +b)σ(a)σ(b)

σ(x +a +b)σ(x +a)σ(x +b)σ(x)
. (5.8)

A.3 Net polynomials

1. for n = 1:

Ψ1 = 1, (6.8)

Ψ2 = 2y +a1x +a3, (6.9)

Ψ3 = 3x4 +b2x3 +3b4x2 +3b6x +b8, (6.10)

Ψ4 = (2y +a1x +a3)(2x6 +b2x5 +5b4x4 +10b6x3 +10b8x2 +(b2b8−b4b6)x +b4b8−b2
6);
(6.11)

2. for n = 2:

Ψ(1,−1) = x2−x1, (6.12)

Ψ(2,1) = 2x1 +x2−
(

y2−y1
x2−x1

)2
−a1

(
y2−y1
x2−x1

)
+a2, (6.13)

Ψ(2,−1) = (y1 +y2)
2− (2x1 +x2)(x1−x2)

2 ; (6.14)

151

3. for n = 3:

Ψ(1,1,1) =
y1(x2−x3)+y2(x3−x1)+y3(x1−x2)

(x1−x2)(x1−x3)(x2−x3)
, (6.15)

Ψ(−1,1,1) =
y1(x2−x3)−y2(x3−x1)−y3(x1−x2)

(x2−x3)
+a1x1 +a3, (6.16)

Ψ(1,−1,1) =
−y1(x2−x3)+y2(x3−x1)−y3(x1−x2)

(x3−x1)
+a1x2 +a3, (6.17)

Ψ(1,1,−1) =
−y1(x2−x3)−y2(x3−x1)+y3(x1−x2)

(x1−x2)
+a1x3 +a3. (6.18)

A.4 Formulæ relating curves and nets

Define

φm = x(P)Ψ2
m−Ψm+1Ψm−1, (2.3)

4yωm = Ψm+2Ψ
2
m−1−Ψm−2Ψ

2
m+1. (2.4)

Then

[m]P =
(

φm(P)
Ψm(P)2 ,

ωm(P)
Ψm(P)3

)
, (2.5)

x([m]P)−x([n]P) =−
Ψm+n(P)Ψm−n(P)

Ψ2
m(P)Ψ2

n(P)
. (6.21)

Curve from sequence (see Section 8.2):

1. in rank n = 1:
C : y2 +a1xy +a3y = x3 +a2x2 +a4x +a6, P = (0,0),

where

a1 =
W (4)+W (2)5−2W (2)W (3)

W (2)2W (3)

a2 =
W (2)W (3)2 +W (4)+W (2)5−W (2)W (3)

W (2)3W (3)

a3 = W (2), a4 = 1, a6 = 0

2. in rank n = 2:

C : y2 +a1xy +a3y = x3 +a2x2 +a4x +a6, P1 = (0,0), P2 = (W (2,1)−W (1,2),0),

where
a1 =

W (2,0)−W (0,2)
W (2,1)−W (1,2)

, a2 = 2W (2,1)−W (1,2), a3 = W (2,0)

a4 = (W (2,1)−W (1,2))W (2,1), a6 = 0

152

3. alternative in rank n = 2 and characteristic 6= 2:

C : y2 +a1xy +a3y = x3 +a2x2 +a4x +a6, P1 = (v,0), P2 = (−v,0), ,

where
2v = W (2,1)−W (1,2),

a1 =
W (2,0)−W (0,2)
W (2,1)−W (1,2)

, 2a2 = W (2,1)+W (1,2), 2a3 = W (2,0)+W (0,2)

4a4 =−(W (2,1)−W (1,2))2, 8a6 =−(W (2,1)−W (1,2))2(W (2,1)+W (1,2))

A.5 Transformation property for elliptic nets

Let T be any n×m matrix. Let P ∈ Em, v ∈ Zn.

WE ,P(T tr(v)) = WE ,T (P)(v)
n

∏
i=1

WE ,P(T tr(ei))
v2

i −vi (∑ j 6=i v j) ∏
1≤i< j≤n

WE ,P(T tr(ei +e j))
vi v j (10.2)

A.6 Partial periodicity

Periodicity formulæ for non-degenerate elliptic nets:

1. rank n = 1 with WE ,P(r) = 0:

WE ,P(sr +k) = WE ,P(k)askbs2
(10.3)

where

a =
WE ,P(r +2)

WE ,P(r +1)WE ,P(2)
, b =

WE ,P(r +1)2WE ,P(2)

WE ,P(r +2)
(10.4)

2. rank n = 2 with WE ,P ,Q(r) = 0:

WE ,P ,Q(l r+k) = WE ,P ,Q(k)al k1
r bl k2

r cl 2
r (10.10)

where

ar =
WE ,P ,Q(r1 +2,r2)

WE ,P ,Q(r1 +1,r2)WE ,P ,Q(2,0)
, br =

WE ,P ,Q(r1,r2 +2)

WE ,P ,Q(r1,r2 +1)WE ,P ,Q(0,2)
, (10.11)

cr =
WE ,P ,Q(r1 +1,r2 +1)

arbrWE ,P ,Q(1,1)
. (10.12)

Perfectly periodic elliptic divisibility sequence and elliptic net over Fq :

φ(P) =

(
WE ,P(q−1)

WE ,P(q−1+ord(P))

) 1
ord(P)2

, (19.1)

φ(v ·P) = WE ,P(v)
n

∏
i=1

φ(Pi)
v2

i −vi

(
∑ j 6=i v j

)
∏

1≤i< j≤n
φ(Pi +Pj)

vi v j . (19.3)

153

A.7 Elliptic net biextension factor system

Λ(P ,Q,R) =
W(p +q + r)W(p)W(q)W(r)
W(p +q)W(q + r)W(r + p)

(15.1)

A.8 Tate-Lichtenbaum and Weil pairing formulæ

τm(P ,Q) =
W(mp +q + s)W(s)
W(mp + s)W(q + s)

, (17.3)

em(P ,Q) =
W(mp +q + s)W(p + s)W(mq + s)
W(mp + s)W(q + s)W(p +mq + s)

(17.5)

Special cases:

τm(P ,P) =
WP(m +2)WP(1)
WP(m +1)WP(2)

, (18.7)

τm(P ,Q) =
WP ,Q(m +1,1)WP ,Q(1,0)

WP ,Q(m +1,0)WP ,Q(1,1)
. (18.8)

A.9 Discrete logarithm type equations

Suppose [m]P = O and Q = [k]P .(
WE ,P ,Q(m +1,0)WE ,P ,Q(2,0)

WE ,P ,Q(m +2,0)

)k

=

(
WE ,P(k−1)

WE ,P(k)

)m(
−

WE ,P ,Q(1,m)WE ,P ,Q(2,0)

WE ,P ,Q(2,m)WE ,P ,Q(1,−1)m

)
, (19.7)

WE ,P(m +1)2k+1 =
WE ,P ,Q(m +1,m +1)

WE ,P ,Q(0,m +1)

(
WE ,P(k +1)

WE ,P(k)

)m(m+2)

. (19.9)

Appendix B

PARI/GP scripts

B.1 Computations with elliptic divisibility sequences

\\

\\ PARI/GP Script for Elliptic Divisibility Sequences v. 2.0 \\

\\

\\ This script performs various manipulations related to elliptic \\

\\ divisibility sequences. \\

\\ \\

\\ See http://www.math.brown.edu/~stange/ \\

\\ or contact <stange at math dot brown dot edu> for info. \\

\\ \\

\\ Throughout this script, it is assumed the sequences take values \\

\\ in a field. \\

\\ \\

\\ Feel free to distribute this script. \\

\\

\\ Set debug = 1 for some information on what is happening

debug = 0;

154

155

\\

\\ SECTION ONE: TRANSLATING BETWEEN CURVES AND SEQUENCES \\

\\

\\

\\ curvetoeds(curve,point)

\\

\\ Given an elliptic curve 'curve' and a point 'point' on that curve,

\\ returns the first four terms of the associated elliptic divisibility

\\ sequences as a row vector.

\\

\\ The curve may be given either in initialized or non-initialized form.

\\

{

curvetoeds(curve, point) =

local(bvals, initvals);

bvals = vector(8);

initvals = vector(4);

\\ the variable 'bvals' stores the usual b_2, b_4, b_6 and b_8

\\ defined for elliptic curves

\\ (see Silverman, Arithmetic of Elliptic Curves, 1986, p. 46)

bvals[2] = curve[1]^2 + 4 * curve[2];

bvals[4] = 2*curve[4] + curve[1]*curve[3];

bvals[6] = curve[3]^2 + 4*curve[5];

bvals[8] = curve[1]^2*curve[5] + 4*curve[2]*curve[5]

- curve[1]*curve[3]*curve[4] + curve[2]*curve[3]^2

- curve[4]^2;

156

\\ the variable 'initvals' stores the first four terms of the

\\ sequence; these formulae work for general Weierstrass eqns

initvals[1] = 1;

initvals[2] = 2*point[2] + curve[1]*point[1] + curve[3];

initvals[3] = 3*point[1]^4 + bvals[2]*point[1]^3

+ 3*bvals[4]*point[1]^2 + 3*bvals[6]*point[1]

+ bvals[8];

initvals[4] = initvals[2]*(2*point[1]^6 + bvals[2]*point[1]^5

+ 5*bvals[4]*point[1]^4 + 10*bvals[6]*point[1]^3

+ 10*bvals[8]*point[1]^2 + (bvals[2]*bvals[8]

- bvals[4]*bvals[6])*point[1] +bvals[4]*bvals[8]

- bvals[6]^2);

return(initvals);

}

\\\

\\ edstocurve(eds)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds' in the

\\ form of a vector of four terms (1st through 4th terms), with first

\\ term one, returns a curve such that that curve has the point (0,0)

\\ on it and the pair are associated to that sequence. (I.e. eds

\\ is associated to edstocurve(eds) and point [0,0].)

\\

\\ The curve returned is not initialised.

\\

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\

\\ This uses formulae due to Christine Swart in her thesis, "Elliptic

\\ Curves and related sequences", University of London, 2003.

\\\

157

{

edstocurve(eds) =

local(curve,a,b,c);

curve = vector(5);

a = eds[2];

b = eds[3];

c = eds[4];

if(eds[1] != 1, print("First term not 1"); return(0););

curve[1] = (c+a^5 - 2*a*b)/(a^2*b);

curve[2] = (a*b^2 + c + a^5 - a*b)/(a^3*b);

curve[3] = a;

curve[4] = 1;

curve[5] = 0;

return(curve);

}

\\\

\\ elllong(shortcurve)

\\

\\ Given a vector representing a cubic curve, calculates the standard

\\ values bi, ci, delta and j. (See Silverman, Arithmetic of Elliptic

\\ Curves, 1986, p. 46.)

\\

\\ The vector returned is of the form

\\

\\ [a1,a2,a3,a4,a6,b2,b4,b6,b8,c4,c6,delta,j]

\\

\\\

158

{

elllong(shortcurve) =

local(a1,a2,a3,a4,a6,b2,b4,b6,b8,c4,c6,delta,j);

a1 = shortcurve[1];

a2 = shortcurve[2];

a3 = shortcurve[3];

a4 = shortcurve[4];

a6 = shortcurve[5];

b2 = a1^2 + 4*a2;

b4 = 2*a4 + a1*a3;

b6 = a3^2 + 4*a6;

b8 = a1^2*a6 + 4*a2*a6 - a1*a3*a4 + a2*a3^2 - a4^2;

c4 = b2^2 - 24*b4;

c6 = -b2^3 + 36*b2*b4 - 216*b6;

delta = -b2^2*b8 - 8*b4^3 - 27*b6^2 + 9*b2*b4*b6;

if(delta == 0,

j = "inf";

,

j = c4^3/delta;

);

return([a1,a2,a3,a4,a6,b2,b4,b6,b8,c4,c6,delta,j]);

}

\\\

\\ edstocurvefull(eds)

\\

159

\\ Given a non-degenerate elliptic divisibility sequence 'eds' in the

\\ form of a vector of four terms (1st through 4th terms), with first

\\ term one, returns a curve such that that curve has the point (0,0)

\\ on it and the pair are associated to that sequence. (I.e. eds

\\ is associated to edstocurve(eds) and point [0,0].)

\\

\\ The vector returned is of the form

\\

\\ [a1,a2,a3,a4,a6,b2,b4,b6,b8,c4,c6,delta,j]

\\

\\ where the constants are as denoted in Silverman, Arithmetic of

\\ Elliptic Curves, 1986, p. 46

\\

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\

\\ This uses formulae due to Christine Swart in her thesis, "Elliptic

\\ Curves and related sequences", University of London, 2003.

\\\

{

edstocurvefull(eds) =

if(eds[1] != 1, print("First term not 1"); return(0););

return(elllong(edstocurve(eds)));

}

\\\

\\ edsjinv(eds)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds' in the

160

\\ form of a vector of four terms (1st through 4th terms), with first

\\ term one, returns the j-invariant of the associated curve.

\\

\\ If first term is not one, sequence is scaled to make it one.

\\

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\\

{

edsjinv(eds) =

if(eds[1] != 1, eds = eds/eds[1];);

return(edstocurvefull(eds)[13]);

}

\\\

\\ edsdisc(eds)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds' in the

\\ form of a vector of four terms (1st through 4th terms), with first

\\ term one, returns the discriminant of the associated curve.

\\

\\ If first term is not one, sequence is scaled to make it one.

\\

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\\

{

edsdisc(eds) =

if(eds[1] != 1, eds = eds/eds[1];);

return(edstocurve(eds)[12]);

161

}

\\\

\\ edsc4(eds)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds' in the

\\ form of a vector of four terms (1st through 4th terms), with first

\\ term one, returns the value c4 of the associated curve.

\\

\\ If first term is not one, sequence is scaled to make it one.

\\

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\\

{

edsc4(eds) =

if(eds[1] != 1, eds = eds/eds[1];);

return(edstocurve(eds)[10]);

}

\\\

\\ edsc6(eds)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds' in the

\\ form of a vector of four terms (1st through 4th terms), with first

\\ term one, returns the value c6 of the associated curve.

\\

\\ If first term is not one, sequence is scaled to make it one.

162

\\

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\\

{

edsc6(eds) =

if(eds[1] != 1, eds = eds/eds[1];);

return(edstocurve(eds)[11]);

}

\\\

\\ edsgtwo(eds)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds' in the

\\ form of a vector of four terms (1st through 4th terms), with first

\\ term one, returns the value g_2 for the associated curve.

\\

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\

\\ If first term is not one, sequence is scaled to make it one.

\\

\\ These use formulae due to M. Ward in his paper "Memoir on Elliptic

\\ Divisibility Sequences."

\\\

{

edsgtwo(eds)=

local(a,b,c);

163

a = eds[2];

b = eds[3];

c = eds[4];

if(eds[1] != 1, eds = eds/eds[1];);

return(

(a^20 + 4*a^15*c - 16*a^12*b^3 + 6*a^10*c^2

- 8*a^7*b^3*c + 4*a^5*c^3 + 16*a^4*b^6 + 8*a^2*b^3*c^2

+ c^4)/(12*a^8*b^4)

);

}

\\\

\\ edsgthree(eds)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds' in the

\\ form of a vector of four terms (1st through 4th terms), with first

\\ term one, returns the value g_3 for the associated curve.

\\

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\

\\ If first term is not one, sequence is scaled to make it one.

\\

\\ These use formulae due to M. Ward in his paper "Memoir on Elliptic

\\ Divisibility Sequences."

\\\

{

edsgthree(eds)=

local(a,b,c);

164

a = eds[2];

b = eds[3];

c = eds[4];

if(eds[1] != 1, eds = eds/eds[1];);

return(

- (a^30 + 6*a^25*c - 24*a^22*b^3 + 15*a^20*c^2

- 60*a^17*b^3*c + 20*a^15*c^3 + 120*a^14*b^6

- 36*a^12*b^3*c^2 + 15*a^10*c^4

- 48*a^9*b^6*c + 12*a^7*b^3*c^3 + 64*a^6*b^9

+ 6*a^5*c^5 + 48*a^4*b^6*c^2 + 12*a^2*b^3*c^4

+ c^6)/(216*a^12*b^6)

);

}

\\

\\ SECTION TWO: CALCULATING VALUES OF SEQUENCES \\

\\

165

\\\

\\ edsget(eds,n)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds' in the

\\ form of a vector of four terms (1st through 4th terms), and an integer

\\ n, returns the value of the sequence at index n.

\\

\\ Uses Shipsey's method (see edsblockships below).

\\

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\\

{

edsget(eds,n) =

if(debug, print("Calling edsget for W(", n, ")"););

if(n==0, return(0););

if(n < 5 && n > 0, return(eds[n]););

if(n < 0, return(-edsget(eds,-n)););

return(edsblockships(eds,n)[5]);

}

\\\

\\ edsgen(eds,len)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds'

\\ (in the form of the first four terms as a vector), and a positive

\\ integer 'len', returns a vector of length 'len' containing the

\\ first len terms of the sequence.

\\

166

\\ Uses the recurrence to generate terms one after another linearly.

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\\

{

edsgen(eds, len) =

local(X, i);

\\ Stupid to ask it to generate a shorter sequence than 4

if(len < 4,

print("Length too short, returning eds.");

return(eds);

);

X = vector(len);

\\ The first four terms of the resulting vector are

\\ already at hand

X[1]=eds[1];

X[2]=eds[2];

X[3]=eds[3];

X[4]=eds[4];

\\ For the rest of the terms, use the recurrence relation

for(i=5,len,

if(X[i-4] != 0,

\\ In this case it is safe to divide by X[i-4]

X[i] = (X[i-3]*X[i-1]*X[2]^2

- X[i-2]^2*X[1]*X[3])

/X[i-4]/X[1]/X[1];

,

\\ If X[i-4] == 0 then X[i-5] != 0 for

\\ non-degenerate sequences

167

X[i] = (X[i-1]*X[i-4]*X[2]*X[3]

- X[i-2]*X[i-3]*X[1]*X[4])

/X[i-5]/X[2]/X[1];

);

);

return(X);

}

\\

\\ edsblocklin(eds, len)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds'

\\ (in the form of the first four terms as a vector), and an integer

\\ 'len', returns a vector of length five containing the terms

\\ len-4 up through len of the sequence.

\\

\\ Uses the recurrence to generate terms one after another linearly.

\\ Very slow runtime for large len (it is O(len)).

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\

\\ Accepts negative len.

\\

{

edsblocklin(eds, len) =

local(X,Xnew,Xbase,i);

168

X = vector(5);

Xnew = vector(5);

Xbase = vector(5);

\\ elliptic divisibility sequences satisfy

\\ an antisymmetry property, so we calculate out in the

\\ positive direction and then reverse the block and put

\\ on minus signs

if(len < 0,

Xnew = edsblocklin(eds, -len+4);

for(i=1,5,

X[i] = -Xnew[6-i];

);

return(X);

);

\\ 'X' stores at each round the most recent block of

\\ five terms; start with the terms of eds,

\\ plus the zeroth term, which is 0

X[1]=0;

X[2]=eds[1];

X[3]=eds[2];

X[4]=eds[3];

X[5]=eds[4];

\\ if we are requesting a block very close to the origin,

\\ the calculation is easy

if(len == 4, return(X););

if(len == 3, return([-X[2],0,X[2],X[3],X[4]]););

if(len == 2, return([-X[3],-X[2],0,X[2],X[3]]););

if(len == 1, return([-X[4],-X[3],-X[2],0,X[2]]););

if(len == 0, return([-X[5],-X[4],-X[3],-X[2],0]););

169

\\ 'Xbase' keeps a permanent record of these first five terms

\\ for use in the recurrence

Xbase = X;

\\ Loop up to requested length, updating X each time to

\\ represent shifting one term along the sequence

for(i=1,len-4,

X = edsblockincrement(X,Xbase);

);

return(X);

}

\\

\\ edsblockships(eds, len)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds'

\\ (in the form of the first four terms as a vector), and an integer

\\ 'len', returns a vector of length 4 containing the terms

\\ len-4 up through len of the sequence.

\\

\\ Uses Shipsey's double-and-add method to generate the final terms in

\\ O(log (len)) time. Very fast.

\\ Her method is described in her thesis (Rachel Shipsey,

\\ Elliptic Divisibility Sequences, University of London, 2000)

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\

\\ Accepts negative len.

\\

170

{

edsblockships(eds, len) =

local(X, Xnew, Xbase, Xfinal, i, j, doubleaddchainlength,

doubleaddchain, scalefactor, remainder);

\\ elliptic divisibility sequences satisfy an

\\ antisymmetry property, so we calculate out in the

\\ positive direction and then reverse the block and put

\\ on minus signs

if(len < 0,

X = vector(5);

Xnew = vector(5);

Xnew = edsblockships(eds, -len+4);

for(i=1,5,

X[i] = -Xnew[6-i];

);

return(X);

);

\\ if we are requesting a block very close to the origin,

\\ the calculation is easy

if(len == 4, return([0,eds[1],eds[2],eds[3],eds[4]]););

if(len == 3, return([-eds[1],0,eds[1],eds[2],eds[3]]););

if(len == 2, return([-eds[2],-eds[1],0,eds[1],eds[2]]););

if(len == 1, return([-eds[3],-eds[2],-eds[1],0,eds[1]]););

if(len == 0, return([-eds[4],-eds[3],-eds[2],-eds[1],0]););

\\ Throughout, we use blocks (segments) of length 8 of

\\ the sequence.

\\ A block is 'based on' k if it represents terms k-3 up

171

\\ through k+4 of the sequence

X = vector(8);

Xnew = vector(8);

Xbase = vector(4);

\\ if eds doesn't have first term one, we have to scale it

\\ to one that does and then un-scale at the end

scalefactor = eds[1];

for(i=1,4,

eds[i] = eds[i]/scalefactor;

);

\\to make sure final block contains len-4 up through len

len = len-1;

\\ the initial terms of the sequence are stored in 'Xbase'

Xbase[1]=eds[1];

Xbase[2]=eds[2];

Xbase[3]=eds[3];

Xbase[4]=eds[4];

if(eds[2] == 0,

invtwo = "inf";

,

\\ the inverse of the second term is precomputed

invtwo = 1/eds[2];

);

\\ 'X' starts as a block based on 1

\\ (i.e. a block of length 8 whose 4th term is

\\ the first term of the sequence)

X[1] = -eds[2];

X[2] = -eds[1];

X[3] = 0;

X[4] = eds[1];

X[5] = eds[2];

X[6] = eds[3];

X[7] = eds[4];

172

X[8] = eds[2]^3*eds[4] - eds[3]^2*eds[1]*eds[3];

\\ The length of the double-add chain is computed

doubleaddchainlength = ceil(log(len+1)/log(2));

\\ The chain will be stored in this vector

doubleaddchain = vector(doubleaddchainlength);

\\ compute the double-add-chain

remainder = len;

i = 0;

while(remainder !=0,

bit = lift(Mod(remainder,2));

doubleaddchain[doubleaddchainlength - i] = bit;

remainder = (remainder-bit)/2;

i = i+1;

);

\\ Show the double-add-chain if debug data is on

if(debug == 1,

print("Double and add chain is: " doubleaddchain);

);

\\ Loop through the double-add-chain doubling or adding

for(j=2,doubleaddchainlength,

if(doubleaddchain[j] == 0,

\\ We double the block

\\ (get block based on 2*k from block

\\ based on k)

Xnew[1] = X[4]*X[2]^3 - X[1]*X[3]^3;

Xnew[3] = X[5]*X[3]^3 - X[2]*X[4]^3;

Xnew[5] = X[6]*X[4]^3 - X[3]*X[5]^3;

Xnew[7] = X[7]*X[5]^3 - X[4]*X[6]^3;

if(invtwo != "inf",

Xnew[2] = X[3]*(X[5]*X[2]^2

-X[1]*X[4]^2)*invtwo;

Xnew[4] = X[4]*(X[6]*X[3]^2

173

-X[2]*X[5]^2)*invtwo;

Xnew[6] = X[5]*(X[7]*X[4]^2

-X[3]*X[6]^2)*invtwo;

Xnew[8] = X[6]*(X[8]*X[5]^2

-X[4]*X[7]^2)*invtwo;

,

Xnew[2] = 0;

Xnew[4] = 0;

Xnew[6] = 0;

Xnew[8] = 0;

);

X = Xnew;

,

\\We double-add the block

\\ (get block based on 2*k+1 from block

\\ based on k)

Xnew[2] = X[5]*X[3]^3 - X[2]*X[4]^3;

Xnew[4] = X[6]*X[4]^3 - X[3]*X[5]^3;

Xnew[6] = X[7]*X[5]^3 - X[4]*X[6]^3;

Xnew[8] = X[8]*X[6]^3 - X[5]*X[7]^3;

if(invtwo != "inf",

Xnew[1] = X[3]*(X[5]*X[2]^2

-X[1]*X[4]^2)*invtwo;

Xnew[3] = X[4]*(X[6]*X[3]^2

-X[2]*X[5]^2)*invtwo;

Xnew[5] = X[5]*(X[7]*X[4]^2

-X[3]*X[6]^2)*invtwo;

Xnew[7] = X[6]*(X[8]*X[5]^2

-X[4]*X[7]^2)*invtwo;

,

Xnew[1] = 0;

Xnew[3] = 0;

Xnew[5] = 0;

Xnew[7] = 0;

);

X = Xnew;

);

174

);

\\ Put the final data into a vector of length five and return

Xfinal = vector(5);

Xfinal[1] = X[1]*scalefactor;

Xfinal[2] = X[2]*scalefactor;

Xfinal[3] = X[3]*scalefactor;

Xfinal[4] = X[4]*scalefactor;

Xfinal[5] = X[5]*scalefactor;

return(Xfinal);

}

\\\

\\ edsblockincrement(block,base)

\\

\\ Given an elliptic divisibility sequence 'base' in the form of a

\\ vector of five terms (0th through 4th terms) or four terms

\\ (1st through 4th), and a block

\\ of length 5 in that elliptic divisibility sequence or a Somos

\\ sequence translated from it,

\\ it calculates the block shifted one to the right. The sequence

\\ must be non-degenerate.

\\

\\ Used as an internal function for edsblocklin and others.

\\\

{

edsblockincrement(block,base)=

local(newblock);

175

newblock = vector(5);

\\ if base is a block of length four, make it length five

if(length(base) == 4,

base = [0,base[1],base[2],base[3],base[4]];

);

\\ calculate newest term and store in 'newblock'

if(block[2] != 0, \\ safe to divide by block[2]

newblock[5] = (block[3]*block[5]*base[3]^2

- block[4]^2*base[2]*base[4])

/block[2]/base[2]/base[2];

,

\\ otherwise it is safe to divide by block[1]

\\(both cannot be zero in a non-degenerate sequence)

newblock[5] = (block[5]*block[2]*base[3]*base[4]

- block[4]*block[3]*base[2]*base[5])

/block[1]/base[3]/base[2];

);

\\ shift previous terms and store in 'newblock'

newblock[4] = block[5];

newblock[3] = block[4];

newblock[2] = block[3];

newblock[1] = block[2];

return(newblock);

}

176

\\

\\ SECTION THREE: TRANSFORMATIONS AND PROPERTIES OF SEQUENCES \\

\\

\\

\\ edsrankofapp(eds, len)

\\

\\ Given an elliptic divisibility sequence 'eds'

\\ (in the form of the first four terms as a vector), and a positive

\\ integer 'len', returns the index of the first positive-indexed zero

\\ term before index len+1 or 0 if none is found up to that distance

\\

\\ If 'len' is omitted or is zero, will run until it finds a zero or

\\ is interrupted.

\\

\\ Uses a linear method to calculate terms one after another until

\\ a zero is found.

\\

{

edsrankofapp(eds, len) =

local(X, Xnew, Xbase, i);

X = vector(5);

Xnew = vector(5);

Xbase = vector(5);

\\ 'X' stores at each round the most recent block of five terms

177

\\ Start with the terms of eds, plus the zeroth term,

\\ which is 0. Return index if a zero is found.

X[1]=0;

for(i=1,4,

X[i+1]=eds[i];

if(X[i+1] == 0, return(i));

);

\\ 'Xbase' keeps a permanent record of these first five terms

\\ for use in the recurrence

Xbase = X;

if(len > 1,

\\ loop up to requested length looking for a zero

for(i=5,len,

X = edsblockincrement(X,Xbase);

if(X[5] == 0, return(i););

);

,

\\ loop up to requested length looking for a zero

i = 4;

while(X[5] != 0,

X = edsblockincrement(X,Xbase);

i = i+1;

);

return(i);

);

return(0);

}

178

\\

\\ edsperiod(eds, len)

\\

\\ Given a non-degenerate elliptic divisibility sequence 'eds'

\\ (in the form of the first four terms as a vector), and a positive

\\ integer 'len', returns the period of the sequence if it is less

\\ than len+1, or 0 if the period is not found up to that distance.

\\

\\ Uses a linear method to calculate terms one after another until

\\ the period is found.

\\

\\ 'Non-degerate' means the first, second and third terms are non-zero.

\\

{

edsperiod(eds, len) =

local(X, Xnew, Xbase, i);

X = vector(5);

Xnew = vector(5);

Xbase = vector(5);

\\ 'X' stores at each round the most recent block of five terms

\\ Start with the terms of eds, plus the zeroth term,

\\ which is 0

X[1]=0;

for(i=1,4,

X[i+1]=eds[i];

);

\\ 'Xbase' keeps a permanent record of these first five terms

\\ for use in the recurrence

Xbase = X;

\\ loop up to requested length searching for a zero

if(len > 0,

for(i=1,len,

179

X = edsblockincrement(X,Xbase);

if(X == Xbase, return(i););

);

,

i = 1;

X = edsblockincrement(X,Xbase);

while(X != Xbase,

X = edsblockincrement(X,Xbase);

i = i+1;

);

return(i);

);

return(0);

}

\\

\\ edssubseq(eds, n)

\\

\\ Given an elliptic divisibility sequence 'eds' associated to P on E

\\ (in the form of the first four terms as a vector), and a positive

\\ integer 'n', the sequence associated to [n]P on E.

\\

{

edssubseq(eds,n) =

local(neweds, nterm);

180

nterm = edsget(eds,n);

neweds = vector(4);

neweds[1] = 1;

neweds[2] = edsget(eds,2*n)/nterm^4;

neweds[3] = edsget(eds,3*n)/nterm^9;

neweds[4] = edsget(eds,4*n)/nterm^16;

return(neweds);

}

\\

\\ edsmakeint(eds)

\\

\\ Given an elliptic divisibility sequence 'eds' associated to P on E

\\ of type "t_FRAC",

\\ return an eds equivalent to it but with integer values, and no

\\ unnecessary gcd.

\\

{

edsmakeint(eds) =

local(neweds, factors, factr,gg);

neweds = eds;

factr = 1;

gg = gcd(numerator(neweds[2]),numerator(neweds[3]));

while(gg != 1,

neweds = edsequiv(neweds,g^(-1));

gg = gcd(numerator(neweds[2]),numerator(neweds[3]));

);

181

while(type(neweds[4]) != "t_INT",

factors = factor(denominator(neweds[4]));

factr = 1;

for(i=1,matsize(factors)[1],

factr = factr*factors[i,1];

);

neweds = edsequiv(neweds,factr);

);

return(neweds);

}

\\

\\ edsequiv(eds, factr)

\\

\\ Given an elliptic divisibility sequence 'eds'

\\ return an eds equivalent to it by factor 'factor'^(n^2-1)

\\

{

edsequiv(eds, factr) =

local(neweds);

neweds = vector(4);

neweds[1] = eds[1];

for(i=2,4,

neweds[i] = eds[i]*factr^(i^2-1);

);

182

return(neweds);

}

\\

\\ edsperfper(eds, stop)

\\

\\ Given an elliptic divisibility sequence 'eds'

\\ return an eds equivalent to it which has rank of apparition equal

\\ to its period, if one is found before stop is reached. (The

\\ algorithm loops through equivalences by i=1 to stop. If stop=0,

\\ it will go until one is found (potentially never).

\\

{

edsperfper(eds,stop) =

local(i,r);

r = edsrankofapp(eds);

if(debug, print("Rank of apparition is: ", r););

i=1;

while(edsget(edsequiv(eds,i),r+1) != 1 && i != stop,

i = i+1;

);

if(i == stop,

return(0);

);

return(edsequiv(eds,i));

183

}

B.2 Computations with rank two elliptic nets

\\

\\ PARI/GP Script for Rank Two Elliptic Nets v. 1.0 \\

\\

\\ This script performs various manipulations related to elliptic \\

\\ nets. It requires the script for elliptic divisibility sequences \\

\\ edstools.gp version 2.0. \\

\\ \\

\\ See http://www.math.brown.edu/~stange/ \\

\\ or contact <stange at math dot brown dot edu> for info \\

\\ \\

\\ Throughout this script, it is assumed the nets take values \\

\\ in a field. Sometimes this field is required to have \\

\\ characteristic not equal to two. Many things will work \\

\\ for general rings, but no guarantees there or anywhere. \\

\\ Zero divisors in particular are a big problem. \\

\\ \\

\\ The functions in this script are restricted to rank 2. \\

\\ \\

\\ A rank two elliptic net is represented as a vector of four \\

\\ entries: \\

\\ \\

\\ [W(2,0), W(0,2), W(2,1), W(1,2)] \\

\\ \\

\\ and is called 'non-degenerate' if none of the following occurs \\

\\ 1) W(2,1) = W(1,2) \\

\\ 2) W(2,0) = W(2,1) = 0 \\

\\ 3) W(0,2) = W(1,2) = 0 \\

184

\\ Degenerate curves are generally not allowed anywhere. \\

\\ \\

\\ Feel free to distribute this script. If you alter it, add a \\

\\ description of the alteration. Acknowledge my original version. \\

\\

\r edstools

\\ Set debug = 1 for some information on what is happening

global(debug);

debug = 0;

\\

\\ SECTION ONE: TRANSLATING BETWEEN CURVES AND NETS \\

\\

\\

\\ curvetotwonet(curve,pointa,pointb)

\\

\\ Given an elliptic curve 'curve' and a points 'pointa' and 'pointb'

\\ on that curve,

\\ returns the terms (2,0), (0,2), (2,1), (1,2) of the net in that

\\ order as a vector of length four.

\\

\\ Will return '0' in the case that pointa, pointb, pointa+pointb or

\\ pointa-pointb is the zero point on the curve.

\\

\\ The curve may be given either in initialised or non-initialised form.

\\

{

185

curvetotwonet(curve, pointa, pointb) =

local(initvals);

\\ The vector initvals will hold the terms

\\ (2,0), (0,2), (2,1), (1,2)

initvals = vector(4);

\\ It makes no sense to form a net with P, Q, P+Q or P-Q trivial

if(pointa == [0] || pointb == [0],

if(debug,

print("curvetotwonet does not accept zero

points");

);

return(0);

);

if(pointa[1] == pointb[1],

if(debug,

print("curvetotwonet does not accept points

which are equal or inverses");

);

return(0);

);

\\ Formulae for net polynomials gives the initial values

initvals[1] = 2*pointa[2] + curve[1]*pointa[1] + curve[3];

initvals[2] = 2*pointb[2] + curve[1]*pointb[1] + curve[3];

initvals[3] = 2*pointa[1] + pointb[1] - ((pointb[2]

- pointa[2])/(pointb[1] - pointa[1]))^2

- curve[1]*((pointb[2] - pointa[2])/(pointb[1]

- pointa[1])) + curve[2];

initvals[4] = 2*pointb[1] + pointa[1] - ((pointb[2]

- pointa[2])/(pointb[1] - pointa[1]))^2

- curve[1]*((pointb[2] - pointa[2])/(pointb[1]

- pointa[1])) + curve[2];

186

\\ Error trap: the resulting net is degenerate, which

\\ should only happen

\\ if P+Q or P-Q is [0] (trapped earlier)

if(initvals[3] == initvals[4],

if(debug, print("The resulting net is degenerate.

This should have been caught earlier."););

print("ERROR, PLEASE REPORT THIS BUG 4301982357

to stange@math.brown.edu");

);

return(initvals);

}

\\\

\\ twonettocurve(net)

\\

\\ Given a non-degenerate elliptic net 'net' in the

\\ form of a vector of length four (terms (2,0), (0,2), (2,1), (1,2)),

\\ returns a vector of length two whose first component is a length

\\ five vector representing a curve, and whose second component is

\\ a value 'x' such that that curve has the point (x,0) and (-x,0)

\\ on it and the triple are associated to that net. (I.e. net

\\ is associated to curve twonettocurve(net)[1] and points [x,0]

\\ and [-x,0].)

\\

\\ The curve returned is not initialised.

\\

\\ The field must be of characteristic not equal to two.

\\

\\ This uses formulae from my thesis "Elliptic Nets and Elliptic

\\ Curves."

\\\

{

twonettocurve(net) =

187

local(curve,n20,n02,n21,n12,xcoord, returnvector);

\\ set up return vector (curve and x coordinate)

returnvector = vector(2);

curve = vector(5);

\\ Return zero if the net is degenerate.

if(istwonetdegen(net),

if(debug, print("Degenerate nets taste bad!"););

return(0);

);

\\ gives names to net vals for ease of formulae

n20 = net[1];

n02 = net[2];

n21 = net[3];

n12 = net[4];

\\ Coefficients of curve

curve[1] = (n20 - n02)/(n21 - n12);

curve[2] = (n21 + n12)/2;

curve[3] = (n20 + n02)/2;

curve[4] = -(n21 - n12)^2/4;

curve[5] = -(n21 - n12)^2*(n21 + n12)/8;

\\ X coordinate of first point (and negative of second)

xcoord = (n21 - n12)/2;

\\ Create vector to return (curve and coordinate)

returnvector = [curve, xcoord];

return(returnvector);

}

\\\

188

\\ twonettocurvechar2(net)

\\

\\ Given a non-degenerate elliptic net 'net' in the

\\ form of a vector of length four (terms (2,0), (0,2), (2,1), (1,2)),

\\ returns a vector of length two whose first component is a length

\\ five vector representing a curve, and whose second component is

\\ a value 'x' such that that curve has the point (0,0) and (x,0)

\\ on it and the triple are associated to that net. (I.e. net

\\ is associated to curve twonettocurve(net)[1] and points [0,0]

\\ and [x,0].)

\\

\\ The curve returned is not initialised.

\\

\\ The field may be of characteristic equal to two (or may not).

\\

\\ This uses formulae from my thesis "Elliptic Nets and Elliptic

\\ Curves."

\\\

{

twonettocurvechar2(net) =

local(curve,n20,n02,n21,n12,xcoord, returnvector);

\\ Set up return vector (curve and x coordinate)

returnvector = vector(2);

curve = vector(5);

\\ Catch degenerate nets (return zero)

if(istwonetdegen(net),

if(debug, print("Degenerate nets taste bad!"););

return(0);

);

\\ Give names to variables for ease of formulae

n20 = net[1];

n02 = net[2];

n21 = net[3];

189

n12 = net[4];

\\ Coefficients of curve

curve[1] = (n20 - n02)/(n21 - n12);

curve[2] = 2*n21 - n12;

curve[3] = (n20);

curve[4] = (n21 - n12)*n21;

curve[5] = 0;

\\ X coordinate of second point

xcoord = (n21-n12);

\\ create vector of curve and coordinate

returnvector = [curve, xcoord];

return(returnvector);

}

\\\

\\ twonetjinv(net)

\\

\\ Given a non-degenerate elliptic net 'net' in the

\\ form of a vector of four terms,

\\ returns the j-invariant of the associated curve.

\\\

{

twonetjinv(net) =

return(elllong(twonettocurvechar2(net)[1])[13]);

}

\\\

\\ twonetdisc(net)

\\

190

\\ Given a non-degenerate elliptic net 'net' in the

\\ form of a vector of four terms,

\\ returns the discriminant of the associated curve.

\\\

{

twonetdisc(net) =

return(elllong(twonettocurvechar2(net)[1])[12]);

}

\\

\\ SECTION TWO: RELATING NETS AND SEQUENCES \\

\\

\\\

\\ twonettoeds(net,a,b)

\\

\\ Given a non-degenerate elliptic net 'net' in the

\\ form of a vector of four terms,

\\ returns the normalised elliptic divisibility sequence

\\ associated to the direction (a,b). That is, it returns

\\ [1, W(2a,2b)*W(a,b)^(-4), W(3a,3b)*W(a,b)^(-9),

\\ W(4a,4b)*W(a,b)^(-16)]

\\

\\ Returns '0' on degenerate nets.

\\\

{

191

twonettoeds(net,a,b) =

local(returnvec, twonetab);

returnvec = vector(4);

\\ Return zero if the net is degenerate.

if(istwonetdegen(net),

if(debug, print("Degenerate nets taste bad!"););

return(0);

);

\\ Get the value of the net W(a,b)

twonetab = twonetget(net,a,b);

\\ Set up the eds

returnvec[1] = 1;

returnvec[2] = twonetget(net,2*a,2*b)*twonetab^(-4);

returnvec[3] = twonetget(net,3*a,3*b)*twonetab^(-9);

returnvec[4] = twonetget(net,4*a,4*b)*twonetab^(-16);

\\ It's possible that the resulting eds is

\\ degenerate, so notify if debug=1

if(returnvec[2] == 0 || returnvec[3] == 0,

if(debug, print("The resulting elliptic

divisibility sequence is degenerate."););

);

return(returnvec);

}

\\\

\\ edstotwonet(eds1,eds2)

\\

\\ Given two elliptic divisibility sequences associated to the same

\\ curve, returns a net (as a 4-vector) of the curve and both points.

\\

192

\\ If the two eds are not from the same curve, returns zero.

\\

\\ Elliptic divisibility sequences must be normalised (first term 1).

\\ If they are not normalised, they will be scaled.

\\\

{

edstotwonet(eds1,eds2) =

local(curvepoint1, curvepoint2, returnnet, coordchange,

fullcurve1, fullcurve2);

\\ get the curves and points of the sequences

curvepoint1 = [edstocurve(eds1),[0,0]];

curvepoint2 = [edstocurve(eds2),[0,0]];

\\ check that the curves are the same up to unihomothetic

\\ change of variables

\\ (actually this checks up to u = plus/minus 1)

fullcurve1 = edstocurvefull(eds1);

fullcurve2 = edstocurvefull(eds2);

if(fullcurve1[13] != fullcurve2[13] ||

fullcurve1[12] != fullcurve2[12] ||

fullcurve1[11] != fullcurve2[11] ||

fullcurve1[10] != fullcurve2[10],

if(debug,

print("Elliptic divisibility sequences are

not from the same curve.");

);

return(0);

);

\\ get coordinate change required to go from second curve

\\ to first

\\ since u = plus/minus 1, this should always be possible

coordchange = getellcoordchange(curvepoint2[1],

curvepoint1[1]);

if(coordchange == 0,

193

if(debug,

print("Coordchange failed.");

);

return(0);

);

\\ change the second curve to go to the first

curvepoint2 = [ellchangecurve(curvepoint2[1],coordchange),

ellchangepoint(curvepoint2[2],coordchange)];

\\ get the net associated to the curve from eds1, and the

\\ point from eds1 and the changed point from eds2

returnnet = curvetotwonet(curvepoint1[1], curvepoint1[2],

curvepoint2[2]);

return(returnnet);

}

\\\

\\ getellcoordchange(curve1,curve2)

\\

\\ Given two elliptic curves of the same j-invariant, calculate the

\\ change of variables required to go from first to second, if

\\ possible. The change of variables may lie over an extension field,

\\ in which case getellcoordchange may fail and you can try defining

\\ the same curves over the extension field and trying again.

\\

\\ This algorithm will return 0 if it fails. It may fail for many

\\ reasons, the most common being that the curves are not isomorphic

\\ or the isomorphism lies over an extension. It will also fail

\\ if the j-invariant is zero.

\\

\\ Requires curves to be isomorphic and to be of the same pari type.

\\ Mixed t_INT and t_FRAC is ok.

\\

\\ If you're having trouble with a curve of seemingly mixed type like

\\ [1,x,x^2,...], you can make 1 of type t_POL by using 1+0*x instead

194

\\ for example. Pari doesn't square-root polys well, though, so you'll

\\ have better luck making it t_SER.

\\\

{

getellcoordchange(curve1,curve2) =

local(u,r,s,t, long, short, numer, denom, numerroot, denomroot,

uroot, u2, u4, i, k);

long = vector(2);

short = vector(2);

uroot = matrix(2,2);

\\ initialise curves for extended data

\\ recall that this works for singular curves

long[1] = elllong(curve1);

long[2] = elllong(curve2);

\\ also store a convenient short version of curves

short[1] = vector(5);

short[2] = vector(5);

for(i=1,5,

short[1][i] = curve1[i];

short[2][i] = curve2[i];

);

\\ if the j-invariants are different there's no hope anyway

if (long[1][13] != long[2][13],

if(debug,

print("different j-invariants in");

print(" getellcoordchange");

);

return(0);

);

195

\\ if the j-invariant is zero, this is an annoying and

\\ difficult case which is not yet implemented.

if (long[1][13] == 0,

if(debug,

print("The j-invariant is zero.");

print(" This case not implemented.");

);

return(0);

);

\\ in the case that only a unihomothetic change of variables

\\ is needed, this routine is easier (no issues of

\\ type/roots)

\\ this is the basic algorithm used below also

if(long[1][13] == long[2][13] &&

long[1][12] == long[2][12] &&

long[1][11] == long[2][11] &&

long[1][10] == long[2][10],

for(i=1,2,

u = (-1)^i;

s = 1/2*(curve2[1]*u - curve1[1]);

r = 1/3*(curve2[2]*u^2 - curve1[2]

+ s*curve1[1] + s^2);

t = 1/2*(curve2[3]*u^3 - curve1[3]

- r*curve1[1]);

if(debug, print("trying: ", [u,r,s,t]););

if(ellchangecurve(short[1],[u,r,s,t])

== short[2],

return([u,r,s,t]);

);

);

\\ if we reached this point, u was plus/minus 1, but

\\ somehow neither of the changes of coords worked

if(debug,

print("coordchange failed for u=\pm 1");

);

196

return(0);

);

\\ If execution gets here, u was not just plus/minus 1

\\ There are issues with type comparison, so if it's mixed

\\ type, return error.

\\ t_INT and t_FRAC mixed are ok

\\ obtain first type

typebase = type(short[1][1]);

\\ consider integers as if they are fractions

if(typebase == "t_INT", typebase = "t_FRAC");

\\ loop through other types, considering integers as

\\ as fractions, and watch for mismatch with first

for(i=1,5, for(k=1,2,

typecheck = type(short[k][i]);

if(typecheck == "t_INT", typecheck = "t_FRAC");

if(typecheck != typebase,

if(debug, print("input curves must be

all same types"););

return(0);

);

););

\\ fourth power of u is the ration of the c4's

u4 = long[1][10]/long[2][10];

\\ make sure taking square root of u^4 is possible

if(!issquare(u4) && (type(u4) == "t_INTMOD"

|| type(u4) == "t_POLMOD"),

\\ in this case u^4 is not a square

197

\\ and the isomorphism of the curves

\\ is defined over an extension field

\\ try again in an extension field

if(debug,

print("fourth power of u isn't a square!!");

print("u^4 = ", u4);

print("try an extension field.");

);

return(0);

);

\\ get a square root.

u2 = sqrt(u4);

\\ if it's a rational and square,

\\ make sure to get it as type rational

if((type(u4) == "t_FRAC" || type(u4) == "t_INT")

&& u4 > 0,

\\ break it up as numerator and denominator and

\\ take the integer roots of each

numer = numerator(u4);

denom = denominator(u4);

numerroot = sqrtint(numer);

denomroot = sqrtint(denom);

\\ set u2 as the root, if this worked

\\ if this didn't work, give a message

\\ (didn't work means wasn't a rational

\\ square, that's all)

if((numerroot/denomroot)^2 == u4,

u2 = numerroot/denomroot;

,

if(debug,

print("Square root as rational");

print(" didn't work in");

print(" getellcoordchange.");

198

);

);

);

\\ loop through both square roots of u4

for(i = 1,2,

\\ do u2 and negative u2 in turn

u2 = (-1) * u2;

\\ check if it's a square, and if it is,

\\ put the two roots in uroot

\\ if it is not, just put uroot=1 as placeholder

if(!issquare(u2) && (type(u2) == "t_INTMOD"

|| type(u2) == "t_POLMOD"),

\\ u2 is not a square

\\ and we are working with a modulus

if(debug,

print("Quadratic non-residue");

print(" in getellcoordchange.");

print(" May need extension");

print(" field?");

);

uroot[1,i]=1;

uroot[2,i]=1;

,

\\ we are working in t_FRAC, t_COMPLEX etc.

\\ so try to take a square root

\\ depending on type this may produce

\\ a pari error for weird types

u = sqrt(u2);

\\ if the type was rational (and positive)

\\ try to do the root as a rational if

\\ possible.

199

\\ if this fails, it means the root is over

\\ an extension of the rationals

if((type(u2) == "t_FRAC"

|| type(u2) == "t_INT") && u2 > 0,

numer = numerator(u2);

denom = denominator(u2);

numerroot = sqrtint(numer);

denomroot = sqrtint(denom);

if((numerroot/denomroot)^2 == u2,

u = numerroot/denomroot;

,

if(debug,

print("Square root");

print(" as rational");

print(" didn't work");

print(" in getell");

print("coordchange.");

);

);

);

\\ store the roots in uroot

uroot[1,i] = u;

uroot[2,i] = -u;

);

);

\\ at this point, if all has gone well, we've stored four

\\ roots of u^4 in uroot and we can test them all

\\ as possibilities.

\\ if all has not gone well, some roots were missed

\\ and it is possible the change of variables

\\ requires working over an extension field.

for(i=1,2,for(k=1,2,

200

\\ select the root for testing

u = uroot[i,k];

\\ setup change of variables

s = 1/2*(curve2[1]*u - curve1[1]);

r = 1/3*(curve2[2]*u^2 - curve1[2] + s*curve1[1]

+ s^2);

t = 1/2*(curve2[3]*u^3 - curve1[3] - r*curve1[1]);

\\ report if debug is on

if(debug, print("trying: ", [u,r,s,t]););

\\ if one of them works return it

if(ellchangecurve(short[1],[u,r,s,t]) == short[2],

return([u,r,s,t]);

);

););

\\ if not change of coordinates was found, report this

\\ and return 0

if(debug, print("No change of coordinates found."););

return(0);

}

\\

\\ SECTION THREE: TRANSFORMATIONS AND PROPERTIES OF NETS \\

\\

\\\

201

\\ istwonetdegen(net)

\\

\\ Returns 1 if net is degenerate, otherwise 0.

\\\

{

istwonetdegen(net) =

\\ check each of the possible degenerate cases

if(net[3] == net[4],

if(debug, print("The net has P-Q = 0"););

return(1);

);

if(net[2] == 0 && net[4] == 0,

if(debug, print("The net has P=0"););

return(1);

);

if(net[1] == 0 && net[3] == 0,

if(debug, print("The net has Q=0"););

return(1);

);

return(0);

}

\\\

\\ istwonetsing(net)

\\

\\ Returns 1 if net is singular, otherwise 0.

\\\

{

istwonetsing(net) =

\\ check if net is singular by looking at discriminant

202

\\ of associated curve

if(elllong(twonettocurvechar2(net)[1])[12] == 0,

return(1);

,

return(0);

);

}

\\\

\\ twonetbasischange(net,a,b,c,d)

\\

\\ Given a non-degenerate elliptic net 'net' associated to E,P,Q in the

\\ form of a vector of four terms, and integers a,b,c,d,

\\ returns a net associated to E and aP + bQ, cP + dQ

\\

\\ Does this directly via formulas.

\\\

{

twonetbasischange(nett,a,b,c,d) =

local(newnetter,nettab, nettcd, nettacbd, nettsing);

\\ the new (post basis change) net will be stored here

newnetter = vector(4);

\\ store some useful values of the old net

nettab = twonetget(nett,a,b);

nettcd = twonetget(nett,c,d);

nettacbd = twonetget(nett,a+c,b+d);

nettsing = twonetget(nett,a+c,-b-d);

\\ don't allow basis change that involves zero terms

if(nettab == 0 || nettcd == 0 || nettacbd == 0

|| nettsing == 0,

if(debug,

203

print("illegal basis change (or resulting

net is degenerate)");

);

return(0);

);

\\ compute terms of new net

newnetter[1] = twonetget(nett,2*a,2*b)/nettab^4;

newnetter[2] = twonetget(nett,2*c,2*d)/nettcd^4;

newnetter[3] = twonetget(nett,2*a+c,2*b+d)/nettab^2

/nettacbd^2*nettcd;

newnetter[4] = twonetget(nett,a+2*c,b+2*d)*nettab

/nettacbd^2/nettcd^2;

\\ error trap

if(istwonetdegen(newnetter),

if(debug,

print("Watch out! New net is degenerate.

(This should have been caught earlier.)");

);

print("ERROR, PLEASE REPORT THIS BUG 98273243611

to stange@math.brown.edu");

);

return(newnetter);

}

\\\

\\ twonetbasischangeviacurve(net,a,b,c,d)

\\

\\ Given a non-degenerate elliptic net 'net' associated to E,P,Q in the

\\ form of a vector of four terms, and integers a,b,c,d,

\\ returns a net associated to E and aP + bQ, cP + dQ

\\

\\ Does this by translating to curve and then back to net.

\\

204

\\ This produces the same output as twonetbasischange, but is often

\\ faster since it doens't require computing all sorts of elements

\\ of elliptic nets.

\\\

{

twonetbasischangeviacurve(nett,a,b,c,d) =

local(newnetter, curve, point1, point2, curvepoint);

\\ vector to store new (post basis change) net

newnetter = vector(4);

\\ get curve and point associated to the net

curvepoint = twonettocurve(nett);

curve = curvepoint[1];

point1 = [curvepoint[2],0];

point2 = [-curvepoint[2],0];

\\ error trap: points should be on the curve

if(!ellisoncurve(curve,point1) || !ellisoncurve(curve,point2),

if(debug,

print("points not on curve");

);

print("ERROR, PLEASE REPORT THIS BUG 944466112 to

stange@math.brown.edu");

return(0);

);

\\ make a net from the curve and the new basis points

newnetter = curvetotwonet(curve, elladd(curve,

ellpow(curve, point1, a), ellpow(curve, point2, b)),

elladd(curve, ellpow(curve, point1, c),

ellpow(curve, point2, d)));

\\ error trap: making the new net failed

\\ maybe it was degenerate

if(newnetter == 0,

205

if(debug, print("curvetotwonet failed."););

return(0);

);

\\ error trap: curvetotwonet should not produce a degenerate

\\ net

if(istwonetdegen(newnetter),

if(debug,

print("Watch out! New net is degenerate.

(This should have been caught earlier.)");

);

print("ERROR, PLEASE REPORT THIS BUG 98276112 to

stange@math.brown.edu");

);

return(newnetter);

}

\\

\\ SECTION FOUR: CALCULATING VALUES OF NETS \\

\\

\\\

\\ twonetget(net,x,y)

\\

\\ Given a non-degenerate elliptic net 'net' in the

\\ form of a vector of four terms, and integers x and y

\\ returns the value of the net at index (x,y).

\\

\\ Uses a log n algorithm based on shipsey's thesis.

\\\

206

{

twonetget(nett,x,y) =

local(X,k,newnett, ar, cr);

\\ This function is recursive, so this keeps track

\\ of the recursion if debug is on.

\\ debug = 1 in general with twonetget will produce

\\ waaaaaayyy too much data.

if(debug, print("Calling twonetget on W(", x, "," ,y, ")"););

\\ Degenerate nets are not allowed. It is possible (but

\\ rarely seen?) that this algorithm will recursively call

\\ itself on a degenerate net somewhere in the process.

\\ I would appreciate reports on this.

if(istwonetdegen(nett),

if(debug,

print("Degenerate nets taste like belly

button lint!");

);

\\ can't return 0 since that's a value!

return("failed");

);

\\ sometimes there's REALLY no work to do

\\ just return one of these simple values near the origin

if([x,y] == [2,0], return(nett[1]););

if([x,y] == [2,1], return(nett[3]););

if([x,y] == [1,1], return(1););

if([x,y] == [1,0], return(1););

if([x,y] == [0,0], return(0););

if([x,y] == [0,-2], return(-nett[2]););

if([x,y] == [-1,-2], return(-nett[4]););

if([x,y] == [-1,-1], return(-1););

if([x,y] == [0,-1], return(-1););

207

\\ if the answer is really small, just do it directly

\\ by calling twonetarray to build the small values

\\ this is more efficient than the recursive algorithm

\\ for small values

if(abs(x) < 5 && abs(y) < 5,

return(twonetarray(nett,5)[6+x,6+y]);

);

\\ make sure x >= y

if(y > x,

return(twonetget(

[nett[2],nett[1],nett[4],nett[3]] ,y,x));

);

\\ make sure x >= 0

if(x < 0,

return(-twonetget(nett, -x, -y));

);

\\ if the requested coordinate is of the form

\\ (positive,negative), use a basis change to change

\\ it to (pos,pos)

if(y < 0,

\\ change basis to P, -Q to do the calculation

\\ with two positive values

newnett = twonetbasischange(nett,1,0,0,-1);

return(twonetget(newnett,x,-y)*(-1)^(x*y));

);

\\ if y is 0 or 1, we'll need to get the x-axis of

208

\\ the net to start things off

if(y == 0 || y == 1,

X = twonetarray(nett,5);

k = 5+1;

);

\\ if y=0, just need EDS associated to first point

if(y == 0,

return(edsget([X[k+1,k],X[k+2,k],

X[k+3,k],X[k+4,k]],x));

);

\\ if y=1, just need to calculate out Shipsey block

\\ along the x-axis

\\ See my Tate Pairing via Elliptic Nets paper

\\ for calculating Shipsey blocks.

if(y == 1,

return(shipsey_block([X[k-2,k],X[k-1,k],X[k,k],

X[k+1,k],X[k+2,k],X[k+3,k],X[k+4,k],

X[k+5,k];X[k,k+1],X[k+1,k+1],X[k+2,k+1],

0,0,0,0,0], nett, x));

);

\\ at this point, y >= 2, and x >= y

if(debug, print("got to y >=2 case"););

if(twonetget(nett,0,y) == 0,

\\ if W(0,y) = 0, translate by it to get a

\\ simpler thing to return

if(debug,

209

print("We have W(0,y) = 0 for y=", y);

);

if(twonetget(nett,0,2) != 0

&& twonetget(nett,2,0) != 0,

\\ then no division by zero in following

ar = (twonetget(nett,2,y)

/twonetget(nett,2,0)

/twonetget(nett,1,y));

cr = (twonetget(nett,1,y+1)

*twonetget(nett,0,2)

*twonetget(nett,0,y+1)

/twonetget(nett,0,y+2)/ar);

return(twonetget(nett, x, 0)*ar^x*cr);

, \\ one of those is zero

if(twonetget(nett,2,0) != 0,

\\ W(0,2) is zero, so W(1,2) and

\\ W(2,2) are not, then y is even

ar = twonetget(nett,2,2)

/twonetget(nett,2,0)

/twonetget(nett,1,2);

cr = twonetget(nett,1,2)/ar;

return(twonetget(nett,x,0)

*ar^(y/2)*cr);

,

\\ in this case W(2,0) = 0

\\ so W(3,0) and W(3,1) not zero

br = twonetget(nett,3,1)

/twonetget(nett,3,0);

ar = -twonetget(nett,2,1)/br;

cr = -ar;

if(Mod(x,2) == 0,

\\ then W(x,y) = 0

return(0);

,

210

return(twonetget(nett,1,y)

*ar^((x-1)/2)

br^(y(x-1)/2)

*cr^(((x-1)/2)^2));

);

);

);

);

if(twonetget(nett,1,y) == 0,

\\ if W(1,y) = 0, translate by it to get

\\ a simpler thing to return

if(debug,

print("We have W(1,y) = 0 for y=", y);

);

if(twonetget(nett,0,2) != 0

&& twonetget(nett,2,0) != 0,

\\ then no division by zero in

\\ the following

ar = (twonetget(nett,3,y)

/twonetget(nett,2,0)

/twonetget(nett,2,y));

cr = (twonetget(nett,2,y+1)

*twonetget(nett,0,2)

*twonetget(nett,1,y+1)

/twonetget(nett,1,y+2)/ar);

return(twonetget(nett, x-1, 0)

*ar^(x-1)*cr);

,

\\ one of those is zero

if(twonetget(nett,2,0) != 0,

\\ W(0,2) is zero, so W(1,2)

\\ and W(2,2) are not, y odd

211

ar = twonetget(nett,2,2)

/twonetget(nett,2,0)

/twonetget(nett,1,2);

cr = twonetget(nett,1,2)/ar;

return(twonetget(nett,x,1)

*ar^((y-1)/2)*cr);

,

\\ in this case W(2,0) = 0

\\ so W(3,0) and W(3,1) not 0

br = twonetget(nett,3,1)

/twonetget(nett,3,0);

ar = -twonetget(nett,2,1)/br;

cr = -ar;

if(Mod(x,2) == 0,

return(twonetget(nett,

0,y)*ar^(x/2)

*br^(y*x/2)

*cr^((x/2)^2));

, \\ then W(x,y) = 0

return(0);

);

);

);

);

if(twonetget(nett,-1,y) == 0,

\\ if W(1,-y) = 0, translate by it to get a

\\ simpler thing to return

if(debug,

print("We have W(-1,y) = 0 for y=", y);

);

if(twonetget(nett,0,2) != 0

&& twonetget(nett,2,0) != 0,

212

\\ then no division by zero in following

ar = (twonetget(nett,1,y)

/twonetget(nett,2,0)

/twonetget(nett,0,y));

cr = (twonetget(nett,0,y+1)

*twonetget(nett,0,2)

*twonetget(nett,-1,y+1)

/twonetget(nett,-1,y+2)/ar);

return(twonetget(nett, x+1, 0)

*ar^(x+1)*cr);

,

\\ one of those is zero

if(twonetget(nett,2,0) != 0,

\\ W(0,2) is zero, so W(1,2) and

\\ W(2,2) are not, y odd

ar = twonetget(nett,2,2)

/twonetget(nett,2,0)

/twonetget(nett,1,2);

cr = twonetget(nett,1,2)/ar;

return(twonetget(nett,x,1)

*ar^((y-1)/2)*cr);

,

\\ in this case W(2,0) = 0

\\ so W(3,0) and W(3,1) not zero

br = twonetget(nett,3,1)

/twonetget(nett,3,0);

ar = -twonetget(nett,2,1)/br;

cr = -ar;

if(Mod(x,2) == 0,

return(twonetget(nett,

0,y)*ar^(x/2)

*br^(y*x/2)

*cr^((x/2)^2));

,

\\ then W(x,y) = 0

213

return(0);

);

);

);

);

\\ otherwise change basis to P, yQ and use Shipsey block

newnett = twonetbasischange(nett,1,0,0,y);

if(newnett == 0,

\\ we just had a failed basis change since

\\ W(1,y) or W(0,y) = 0 or W(1,-y) = 0

if(debug,

print("failed basis change that

should not have happened");

);

);

return(twonetget(newnett,x,1)*(twonetget(nett,1,y)^x)

/twonetget(nett,0,y)^(x-1));

}

{

shipsey_block(theblock, nett, val) =

\\ given: theblock, the block centred on 1, in the net 'nett'

\\ cannot accept nett[1] = 0 or net such that

\\ twonetget(nett, 2, -1) = 0

\\ returns: the central value of block centred on val in the

\\ net 'nett' i.e. W(val,1)

local(initial_data);

214

initial_data = vector(4);

if(debug, print("Calling Shipsey Block"););

if(nett[1] == 0 || twonetget(nett,2,-1),

if(debug,

print("Shipsey Block Request with

zero W(2,0) or W(2,-1)");

);

);

if(nett[1] == 0,

\\ in case W(2,0) = 0

initial_data[1] = "inf";

,

initial_data[1] = 1/nett[1];

);

initial_data[2] = 1;

\\ the following division should never be zero

\\ in non-degenerage net

initial_data[3] = 1/twonetget(nett,-1,1);

if(twonetget(nett,2,-1) == 0,

\\ in case W(2,-1) = 0, we cannot

\\ call net_loop

if(debug,

print("Avoiding a W(2,-1) issue");

);

return(-twonetget(nett,val+2,0)

*twonetget(nett,-3,1)

/(twonetget(nett,-1,1)

*twonetget(nett,2,0))^(val+3));

,

initial_data[4] = 1/twonetget(nett,2,-1);

);

return(net_loop(theblock, initial_data, val)[2,2]);

}

215

{

double_or_add(V, initial_data, add) =

\\ double_or_add

\\ Given a block V centred at k, and the initial data relevant to

\\ the elliptic net, returns either a block centred at 2k or 2k+1

\\ depending on whether variable "add" is 0 or 1 respectively.

local(doubleV, m, i, j);

\\ Create the output block

doubleV = matrix(2,8);

\\ initial_data contains the precomputed inverses

inverse_20 = initial_data[1]; \\ inverse of W(2,0)

inverse_11 = initial_data[2]; \\ inverse of W(1,1)

inverse_n1 = initial_data[3]; \\ inverse of W(-1,1)

inverse_2n = initial_data[4]; \\ inverse of W(2,-1)

\\ Fill out first vector of output block

for(j=-1,2,

i = j;

m = 4; \\ index to middle of block

if(inverse_20 == "inf",

\\ in case it's a net where 2P = 0,

\\ even terms are all 0

doubleV[1,m+2*i-add] = 0;

,

doubleV[1,m + 2*i - add] = ((V[1,m+i])

216

(V[1,m+i+2])(V[1,m+i-1])^2

- (V[1,m+i])*(V[1,m+i-2])

*(V[1,m+i+1])^2)*inverse_20;

);

\\ when we hit j=-1, if add=1,

\\ calculate W(2k+5,0) instead of W(2k-3,0)

if(i == -1 && add == 1, i = 3;);

doubleV[1,m + 2*i - 1 - add] = (V[1,m+i+1])

*(V[1,m+i-1])^3 - (V[1,m+i-2])

*(V[1,m+i])^3;

);

\\Fill out second vector of output block

m2 = 2; \\ index to middle of second vector of block

m1 = 4; \\ index to middle of first vector of block

if(add == 0,

doubleV[2,1] = (V[2,m2+1]*V[2,m2-1]

*V[1,m1-1]^2 - V[1,m1]*V[1,m1-2]

*V[2,m2]^2)*inverse_11;

);

doubleV[2,2-add] = (V[2,m2-1]*V[2,m2+1]*V[1,m1]^2

- V[1,m1-1]*V[1,m1+1]*V[2,m2]^2);

doubleV[2,3-add] = (V[2,m2+1]*V[2,m2-1]*V[1,m1+1]^2

- V[1,m1]*V[1,m1+2]*V[2,m2]^2)*inverse_n1;

if(add == 1,

if(inverse_2n == "inf",

if(debug,

print("Oh dear, W(2,-1) = 0

in shipsey");

);

doubleV[2,3] = "inf";

,

217

doubleV[2,3] = (V[1,m1+1]*V[1,m1+3]

*V[2,m2]^2 - V[2,m2-1]*V[2,m2+1]

*V[1,m1+2]^2)*inverse_2n;

);

);

return(doubleV);

}

{

net_loop(V,initial_data, m) =

\\ net_loop

\\ Given a starting block V centred at 1, initial data relevant to

\\ the elliptic net, and an integer m, returns the block centred at m

local(currentV, m_size, add, i, j);

\\ determine the number of steps in the double-and-add loop

m_size = ceil(log(m+1)/log(2));

\\ the variable storing the current block

currentV = V;

\\ ignore the first "1" in the binary expansion of m

m = m - 2^(m_size-1);

\\ step through the digits in the binary expansion of m

for(j=1,m_size-1,

i = m_size - j; \\kludgy version of "down to"

218

\\ determine if this is a double step or a

\\ double-and-add step

\\ based on current digit of m; set "add" accordingly

if(m - 2^(i-1) >= 0,

add = 1;

m = m - 2^(i-1);

,

add = 0;

);

\\ call the double or double-and-add function to

\\ update the current block

currentV = double_or_add(currentV, initial_data, add);

\\ print information about the current step

if(debug,

print("The digit of m for this step is "

add, ".");

\\print("The resulting block from this

\\ step is ", currentV);

);

);

return(currentV);

}

\\\

\\ twonetgetslow(eds,a,b)

\\

\\ Given a non-degenerate elliptic net 'net' in the

\\ form of a vector of four terms, and integers a and b

\\ returns the value of the net at index (a,b).

219

\\

\\ Horribly inefficient; generates the whole array to large width.

\\\

{

twonetgetslow(nety,x,y) =

local(k,width);

if(istwonetdegen(nety),

if(debug,

print("Degenerate nets taste like toe jam!");

);

return("failed");

);

width = 2*max(abs(x),abs(y))+8;

k = width + 1;

return(twonetarray(nety,width)[k+x,k+y]);

}

\\\

\\ twonetarray(net,width)

\\

\\ Given a non-degenerate elliptic net 'net' in the

\\ form of a vector of four terms, and integer width > 3,

\\ returns a large matrix (2*width+1 times 2*width+1)

\\ whose entries represent the entries of the elliptic net

\\

\\ If the returned matrix is called X, then

\\ W(x,y) is stored in entry X[width+1+x,width+1+y].

\\ In particular, the array contains all W(x,y) with |x|,|y| <= width.

\\\

220

{

twonetarray(startnet,width) =

local(i,j,k,l,w,X,m);

if(debug, print("Calling twonetarray"););

if(istwonetdegen(startnet),

if(debug,

print("Degenerate nets taste like earwax!");

);

return(0);

);

\\ check to be sure width is an integer

if(type(width) != "t_INT",

if(debug, print("Width not an integer!"););

return(0);

);

\\ check to be sure width is not too small

if(width < 4,

print("width too small, increasing to width=4");

width = 4;

);

\\ set up the matrix

w = 2*width+1;

X = matrix(w,w);

\\ Useful variable 'k' so that W(x,y) = X[k+x,k+y]

k = width+1;

\\ Error-catching background filler for matrix

\\ (if in the end you see 'c' there's been an error,

\\ as this should all be overwritten)

for(l=1,w,for(m=1,w,

X[l,m] = c;

221

););

\\ Initial values of the net.

X[k+0,k+0] = 0;

X[k+0,k+1] = 1;

X[k+1,k+0] = 1;

X[k+1,k+1] = 1;

X[k+2,k+0] = startnet[1];

X[k+2,k+1] = startnet[3];

X[k+0,k+2] = startnet[2];

X[k+1,k+2] = startnet[4];

\\ Starter recurrences fill out the area near the origin.

\\ No division by zero possible here if net is nondegenerate.

X[k+1,k-1] = (-X[k+2,k+1]*X[k,k+1]^3 + X[k+1,k+2]*X[k+1,k]^3)

/(X[k+1,k+1]^3);

if(X[k+1,k-1] == 0,

if(debug,print("Oops, P+Q=0"););

return(0);

);

X[k+2,k-1] = (X[k+2,k]*X[k+1,k]^2*X[k+0,k+2] - X[k+2,k+1]

*X[k+1,k-1]^2*X[k,k+1])/(X[k,k+1]*X[k+1,k+1]^2);

X[k+1,k-2] = (-X[k+2,k-1]*X[k,k+1]^3 + X[k+1,k+1]*X[k+1,k-1]^3)

/(X[k+1,k]^3);

X[k+3,k] = (-X[k+1,k+1]*X[k+1,k-1]*X[k+2,k]^2 + X[k+2,k+1]

*X[k+2,k-1]*X[k+1,k]^2) / (X[k+1,k]*X[k,k+1]^2);

X[k,k+3] = (X[k+1,k+1]*X[k+1,k-1]*X[k,k+2]^2 - X[k+1,k+2]

*X[k+1,k-2]*X[k,k+1]^2) / (X[k,k+1]*X[k+1,k]^2);

X[k+2,k+2] = (- X[k+2,k]*X[k+1,k+1]*X[k+1,k+2]*X[k,k+1]

222

+ X[k,k+2]*X[k+2,k+1]*X[k+1,k]*X[k+1,k+1])/(X[k,k+1]

*X[k+1,k]*X[k+1,k-1]);

X[k+2,k-2] = (X[k+2,k]*X[k,k+1]*X[k+1,k-2]*X[k+1,k-1]

- X[k+2,k-1]*X[k,k+2]*X[k+1,k-1]*X[k+1,k])

/(-X[k,k+1]*X[k+1,k]*X[k+1,k+1]);

X[k+3,k+1] = (- X[k+1,k+1]^2*X[k+2,k-1]*X[k+2,k+1]

+ X[k+2,k]^2*X[k+1,k]*X[k+1,k+2])/(-X[k+1,k-1]

*X[k,k+1]);

X[k+1,k+3] = (X[k+1,k+1]^2*X[k+1,k-2]*X[k+1,k+2] + X[k,k+2]

*X[k,k+2]*X[k,k+1]*X[k+2,k+1])/(X[k+1,k-1]*X[k+1,k]^2);

X[k+2,k+3] = (X[k+1,k]*X[k+1,k+2]*X[k,k+2]*X[k+2,k+2]

- X[k+1,k+3]*X[k+1,k+1]*X[k+2,k+1]*X[k,k+1])

/ (X[k,k+1]*X[k+1,k-1]*X[k+1,k+1]);

X[k+3,k+2] = (X[k,k+1]*X[k+2,k+1]*X[k+2,k]*X[k+2,k+2]

- X[k+3,k+1]*X[k+1,k+1]*X[k+1,k+2]*X[k+1,k])

/ (-X[k+1,k]*X[k+1,k-1]*X[k+1,k+1]);

X[k+3,k+3] = (- X[k+3,k+2]*X[k+1,k+1]*X[k+1,k+2]*X[k+1,k+1]

+ X[k+2,k+2]*X[k,k+1]*X[k+2,k+2]*X[k+2,k+1])

/(-X[k+1,k]^2*X[k+1,k+1]);

X[k+3,k-1] = (X[k+2,k]^3*X[k,k+2] + X[k+1,k-1]^3*X[k+3,k+1])

/ (X[k+1,k+1]^3);

X[k+1,k-3] = -(X[k,k+2]^3*X[k+2,k] - X[k+1,k-1]^3*X[k+1,k+3])

/ (X[k+1,k+1]^3);

if(X[k+2,k] != 0,

\\ in this case 2P != 0 on the curve

X[k,k+4] = (-X[k+1,k+3]*X[k+1,k+1]*X[k,k+2]*X[k+2,k-2]

-X[k+1,k-1]*X[k+1,k-3]*X[k,k+2]*X[k+2,k+2])

/ (-X[k+2,k]*X[k+1,k-1]*X[k+1,k+1]);

223

,

\\ now 2P = 0. If also 2P - Q = 0,

\\ then Q = 0 -- a degen. net. So

\\ division by X[k+2,k-1] ok.

if(X[k+2,k-1] == 0,

if(debug, print("error, Q=0"););

return(0);

);

X[k,k+4] = (-X[k+2,k-2]*X[k+1,k+2]*X[k,k+3]*X[k+1,k+1]

- X[k+2,k+2]*X[k+1,k-2]*X[k,k+1]*X[k+1,k-3])

/ (-X[k+1,k]*X[k+1,k+1]*X[k+2,k-1]);

);

if(X[k,k+2] != 0,

\\ in this case 2Q != 0

X[k+4,k] = (X[k+3,k+1]*X[k+1,k+1]*X[k+2,k]*X[k+2,k-2]

- X[k+1,k-1]*X[k+3,k-1]*X[k+2,k]*X[k+2,k+2])

/ (X[k,k+2]*X[k+1,k-1]*X[k+1,k+1]);

,

\\ now 2Q = 0. If also P - 2Q = 0, then

\\ P = 0 -- a degen. net. So division by X[k+1,k-2] ok.

if(X[k+1,k-2] == 0,

if(debug, print("error, P=0"););

return(0);

);

X[k+4,k] = (X[k+2,k-2]*X[k+2,k+1]*X[k+3,k]*X[k+1,k+1]

- X[k+2,k+2]*X[k+2,k-1]*X[k+1,k]*X[k+3,k-1])

/ (X[k,k+1]*X[k+1,k+1]*X[k+1,k-2]);

);

X[k+4,k-1] = (-X[k+3,k]*X[k+1,k-2]*X[k+2,k]^2 + X[k+1,k-1]

224

*X[k+3,k+1]*X[k+2,k-1]^2) / (X[k,k+1]*X[k+1,k+1]^2);

X[k+1,k-4] = (-X[k,k+3]*X[k+2,k-1]*X[k,k+2]^2 + X[k+1,k-1]

*X[k+1,k+3]*X[k+1,k-2]^2) / (X[k+1,k]*X[k+1,k+1]^2);

\\if(debug, print("done starter recurrences"););

\\ Fill out axes in positive direction with EDS recurrence

\\ The terms W(0,i) and W(i,0) for i=1,4 are already done

\\ by starter recurrences

for(i=5,width,

\\ y-axis

if(X[k,k+i-4] != 0,

\\ safe to divide by W(0,i-4)

X[k,k+i]=(X[k,k+i-1]*X[k,k+i-3]*X[k,k+2]^2

-X[k,k+3]*X[k,k+1]*X[k,k+i-2]^2)

/(X[k,k+i-4]*X[k,k+1]^2);

,

\\ if W(0,i-4) = 0 then W(0,i-5) != 0, so safe

\\ to divide by W(0,i-5)

\\ further, if W(0,2) = 0 = W(0,i-4), then net

\\ nondegen => i is even, so W(0,i)=0 too

if(X[k,k+2] == 0,

if(debug && Mod(i,2) != 0,

print("Degenerate net error

W(0,odd)=W(0,2)=0");

);

X[k,k+i] = 0;

,

if(i==5,

if(debug,

225

print("W(0,1)=0 error");

);

);

X[k,k+i]=(X[k,k+i-1]*X[k,k+i-4]*X[k,k+2]

*X[k,k+3]-X[k,k+4]*X[k,k+1]

*X[k,k+i-2]*X[k,k+i-3])

/(X[k,k+i-5]

*X[k,k+1]*X[k,k+2]);

);

);

\\ x-axis

if(X[k+i-4,k] != 0,

\\ safe to divide by W(i-4,0)

X[k+i,k]=(X[k+i-1,k]*X[k+i-3,k]*X[k+2,k]^2

-X[k+3,k]*X[k+1,k]*X[k+i-2,k]^2)

/(X[k+i-4,k]*X[k+1,k]^2);

,

\\ if W(i-4,0) = 0 then W(i-5,0) != 0,

\\ so safe to divide by W(i-5,0)

\\ further, if W(2,0) = 0 = W(i-4,0),

\\ then net nondegen => i is even, so W(i,0)=0

\\ too

if(X[k+2,k] == 0,

if(debug && Mod(i,2) != 0,

print("Degenerate net error

W(odd,0)=W(2,0)=0");

);

X[k+i,k] = 0;

,

if(i==5,

if(debug,

print("W(1,0)=0 error");

);

);

226

X[k+i,k]=(X[k+i-1,k]*X[k+i-4,k]

*X[k+2,k]*X[k+3,k]

-X[k+4,k]*X[k+1,k]

*X[k+i-2,k]*X[k+i-3,k])

/(X[k+i-5,k]

*X[k+1,k]*X[k+2,k]);

);

);

);

\\if(debug, print("done axes"););

\\Fill out the terms 0-4 of W(-1,*).

for(j=0,4,

X[k-1,k+j] = -X[k+1,k-j];

);

\\Using translated sequence recurrences, fill out positive

\\ rows and columns (full first quadrant)

for(i=1,4,

X = dnetgen_helper_row(X,width,i,-1);

X = dnetgen_helper_col(X,width,i,-1);

);

for(i=5,width,

X = dnetgen_helper_row(X,width,i,0);

X = dnetgen_helper_col(X,width,i,0);

);

\\if(debug, print("done translated recs positive"););

\\ Fill out columns in negative direction

for(j=1,width,

for(m=1,width,

227

i = -m;

\\ error-check

if(debug && X[k+j,k+i+4] == 0 && X[k+j,k+i+5] == 0,

print("Yikes degenerate: W(", j, ",", i+4,

")=0=W(", j, ",", i+5, ")");

);

\\ fill out column j downwards

if(X[k+j,k+i+4] != 0,

\\ okay to divide by W(j,i+4)

X[k+j,k+i]=(X[k+j,k+i+1]*X[k+j,k+i+3]

*X[k,k+2]^2-X[k,k+3]*X[k,k+1]

*X[k+j,k+i+2]^2)

/(X[k+j,k+i+4]*X[k,k+1]^2);

,

\\ W(j,i+4)=0 so okay to divide by W(j,i+5)

\\ further, if W(0,2) = 0 = W(j,i+4), then net

\\ nondegen => i is even, so W(j,i)=0 too

if(X[k,k+2] == 0,

X[k+j,k+i] = 0;

,

X[k+j,k+i]=(X[k+j,k+i+1]*X[k+j,k+i+4]

*X[k,k+2]*X[k,k+3]-X[k,k+4]

*X[k,k+1]*X[k+j,k+i+2]

*X[k+j,k+i+3])

/(X[k+j,k+i+5]*X[k,k+1]

*X[k,k+2]);

);

);

);

);

\\Fill out the negatives.

for(i=-width,-1,for(j=-width,width,

228

X[k+i,k+j]=-X[k-i,k-j];

););

for(i=-width,-1,

X[k,k+i]=-X[k,k-i];

);

if(debug, print("returning twonetarray"););

return(X);

}

{

dnetgen_helper_row(X, width, row, startblock)=

\\ internal function that fills out a row in the

\\ positive direction of a 2d array

local(j,i);

j=row;

for(i=startblock+5,width,

if(X[k+i-4,k+j] != 0,

\\ okay to divide by W(i-4,j)

X[k+i,k+j]=(X[k+i-1,k+j]*X[k+i-3,k+j]

*X[k+2,k]^2-X[k+3,k]*X[k+1,k]

*X[k+i-2,k+j]^2)/(X[k+i-4,k+j]

*X[k+1,k]^2);

,

\\ W(i-4,j) = 0 so okay to divide by W(i-3,j)

\\ further, if W(2,0) = 0 = W(i-4,j), then

\\ net nondegen => i is even, so W(i,j)=0 too

if(X[k+2,k] == 0,

X[k+i,k+j] = 0;

229

,

X[k+i,k+j]=(X[k+i-1,k+j]

*X[k+i-4,k+j]*X[k+2,k]

*X[k+3,k]-X[k+4,k]*X[k+1,k]

*X[k+i-2,k+j]*X[k+i-3,k+j])

/(X[k+i-5,k+j]*X[k+1,k]

*X[k+2,k]);

);

);

);

return(X);

}

{

dnetgen_helper_col(X, width, col, startblock)=

\\ internal function that fills out a column in the positive

\\ direction of a 2d array

local(j,i);

j=col;

for(i=startblock+5,width,

if(X[k+j,k+i-4] != 0,

\\ okay to divide by W(j,i-4)

X[k+j,k+i]=(X[k+j,k+i-1]*X[k+j,k+i-3]

*X[k,k+2]^2-X[k,k+3]*X[k,k+1]

*X[k+j,k+i-2]^2)/(X[k+j,k+i-4]

*X[k,k+1]^2);

,

\\ W(j,i-4) = 0 so okay to divide by W(j,i-3)

\\ further, if W(0,2) = 0 = W(j,i-4), then

\\ net nondegen => i is even, so W(j,i)=0 too

if(X[k,k+2] == 0,

230

X[k+j,k+i] = 0;

,

X[k+j,k+i]=(X[k+j,k+i-1]*X[k+j,k+i-4]

*X[k,k+2]*X[k,k+3]-X[k,k+4]

*X[k,k+1]*X[k+j,k+i-2]

*X[k+j,k+i-3])/(X[k+j,k+i-5]

*X[k,k+1]*X[k,k+2]);

);

);

);

return(X);

}

\\\

\\ twonetarrayprettify(array,typeofpretty)

\\

\\ Given an array produced by twonetarray, prettifies it depending

\\ on the value of typeofpretty:

\\

\\ cartesian: makes x and y increase right and up from center

\\ posquad: shows positive quadrant only, cartesian style

\\ latex: outputs it in latex format

\\ maple: outputs it as matrix for maple

\\ mathematica: outputs it as matrix for mathematica

\\

\\ For best results, write latex'd, maple'd or mathematica'd matrices

\\ to file, where the escape characters don't show (copy and paste

\\ from screen causes problems). Use write command.

\\

\\ In general, these apply to any square matrix, and one should apply

\\ them, in the order desired, one at a time (for example, to make a

\\ nice latex table, do cartesian first, then latex.

\\

\\\

231

{

twonetarrayprettify(array,typeofpretty)=

local(newmat, newsize);

\\ all cases except posquad use newsize

newsize = length(array);

if(typeofpretty == "cartesian",

newmat = array;

array = mattranspose(array);

for(i=1,newsize,for(j=1,newsize,

newmat[i,j] = array[newsize+1-i,j];

););

return(newmat);

);

if(typeofpretty == "posquad",

newsize = (length(array)-1)/2;

newmat = matrix(newsize, newsize);

for(i=1,newsize,for(j=1,newsize,

newmat[i,j] = array[newsize+i,newsize+j]

););

newmat = twonetarrayprettify(newmat,"cartesian");

return(newmat);

);

if(typeofpretty == "latex",

newmat = "";

newmat = concat(newmat,"\\begin{matrix}");

for(i=1,newsize-1,

newmat = concat(newmat, array[i,1]);

for(j=2,newsize,

newmat = concat(newmat," & ");

newmat = concat(newmat,array[i,j]);

);

newmat = concat(newmat," \\\\");

232

);

newmat = concat(newmat, array[newsize,1]);

for(j=2,newsize,

newmat = concat(newmat," & ");

newmat = concat(newmat,array[newsize,j]);

);

newmat = concat(newmat,"\\end{matrix}");

return(newmat);

);

if(typeofpretty == "maple",

newmat = "";

newmat = concat(newmat,"Matrix(");

newmat = concat(newmat,newsize);

newmat = concat(newmat,",");

newmat = concat(newmat,newsize);

newmat = concat(newmat,",[[");

for(i=1,newsize-1,

newmat = concat(newmat, array[i,1]);

for(j=2,newsize,

newmat = concat(newmat,",");

newmat = concat(newmat,array[i,j]);

);

newmat = concat(newmat,"],[");

);

newmat = concat(newmat, array[newsize,1]);

for(j=2,newsize,

newmat = concat(newmat,",");

newmat = concat(newmat,array[newsize,j]);

);

newmat = concat(newmat,"]])");

233

return(newmat);

);

if(typeofpretty == "mathematica",

newmat = "";

newmat = concat(newmat,"{{");

for(i=1,newsize-1,

newmat = concat(newmat, array[i,1]);

for(j=2,newsize,

newmat = concat(newmat,",");

newmat = concat(newmat,array[i,j]);

);

newmat = concat(newmat,"},{");

);

newmat = concat(newmat, array[newsize,1]);

for(j=2,newsize,

newmat = concat(newmat,",");

newmat = concat(newmat,array[newsize,j]);

);

newmat = concat(newmat,"}}");

return(newmat);

);

if(debug,

print("not a valid type of prettification");

);

return(0);

}

234

B.3 Computation of the Tate-Lichtenbaum pairing

\\

\\ PARI/GP Script for Computation of Tate Pairing v. 1.1 \\

\\

\\ This script uses the algorithm presented in \\

\\ "The Tate Pairing via Elliptic Nets" by Katherine E. Stange \\

\\ See http://www.math.brown.edu/~stange/tatepairing/ \\

\\ or contact <stange at math dot brown dot edu> for info \\

\\ \\

\\ Note that the optimisations mentioned in the paper are not \\

\\ all implemented here; rather, the algorithm is implemented in \\

\\ its simplest form for clarity. \\

\\ \\

\\ v. 1.1 fixes a bug that affects pairings on points whose order is \\

\\ a power of two. \\

\\

\\ Set debug = 1 to report steps of algorithm

global(debug);

debug = 0;

\\

\\ double_or_add

\\ Given a block V centred at k, and the initial data relevant to

\\ the elliptic net, returns either a block centred at 2k or 2k+1

\\ depending on whether variable "add" is 0 or 1 respectively.

\\

{

double_or_add(V, initial_data, add) =

local(doubleV, m, i, j);

235

\\ Create the output block

doubleV = matrix(2,8);

\\ initial_data contains the precomputed inverses

inverse_20 = initial_data[1]; \\ inverse of W(2,0)

inverse_11 = initial_data[2]; \\ inverse of W(1,1)

inverse_n1 = initial_data[3]; \\ inverse of W(-1,1)

inverse_2n = initial_data[4]; \\ inverse of W(2,-1)

\\

\\ Fill out first vector of output block

\\

for(j=-1,2,

i = j;

m = 4; \\ index to middle of block

doubleV[1,m + 2*i - add] = ((V[1,m+i])*(V[1,m+i+2])

*(V[1,m+i-1])^2 - (V[1,m+i])

(V[1,m+i-2])(V[1,m+i+1])^2)

*inverse_20;

\\ when we hit j=-1, if add=1, calculate

\\ W(2k+5,0) instead of W(2k-3,0)

if(i == -1 && add == 1, i = 3;);

doubleV[1,m + 2*i - 1 - add] = (V[1,m+i+1])

*(V[1,m+i-1])^3 - (V[1,m+i-2])

*(V[1,m+i])^3;

);

\\

236

\\Fill out second vector of output block

\\

m2 = 2; \\ index to middle of second vector of block

m1 = 4; \\ index to middle of first vector of block

if(add == 0,

doubleV[2,1] = (V[2,m2+1]*V[2,m2-1]*V[1,m1-1]^2

- V[1,m1]*V[1,m1-2]*V[2,m2]^2)*inverse_11;

);

doubleV[2,2-add] = (V[2,m2-1]*V[2,m2+1]*V[1,m1]^2

- V[1,m1-1]*V[1,m1+1]*V[2,m2]^2);

doubleV[2,3-add] = (V[2,m2+1]*V[2,m2-1]*V[1,m1+1]^2

- V[1,m1]*V[1,m1+2]*V[2,m2]^2)*inverse_n1;

if(add == 1,

doubleV[2,3] = (V[1,m1+1]*V[1,m1+3]*V[2,m2]^2

- V[2,m2-1]*V[2,m2+1]*V[1,m1+2]^2)*inverse_2n;

);

return(doubleV);

}

\\

\\ net_loop

\\ Given a starting block V centred at 1, initial data relevant to

\\ the elliptic net, and an integer m, returns the block centred at m

\\

{

net_loop(V,initial_data, m) =

local(currentV, m_size, add, i, j);

237

\\ determine the number of steps in the double-and-add loop

m_size = ceil(log(m+1)/log(2));

\\ the variable storing the current block

currentV = V;

\\ ignore the first "1" in the binary expansion of m

m = m - 2^(m_size-1);

\\ step through the digits in the binary expansion of m

for(j=1,m_size-1,

i = m_size - j; \\kludgy version of "down to"

\\ determine if this is a double step or a

\\ double-and-add step based on current digit

\\ of m; set "add" accordingly

if(m - 2^(i-1) >= 0,

add = 1;

m = m - 2^(i-1);

,

add = 0;

);

\\ call the double or double-and-add function to

\\ update the current block

currentV = double_or_add(currentV, initial_data, add);

\\ print information about the current step

if(debug == 1,

print("The digit of m for this step is ",

add, ".");

print("The resulting block from this step is ",

238

currentV);

);

);

return(currentV);

}

\\

\\ tate_pairing_alg

\\ Arguments: elliptic curve, two points, and integer.

\\ Returns: tate pairing of the two points with respect to the integer.

\\ Note: this is currently not implemented for curves in characteristic

\\ 2 or 3.

\\

{

tate_pairing_alg(elliptic_curve, point_a, point_b, torsion) =

local(V, initial_data, x1, y1, x2, y2, a4, a6, resultV);

\\ Create a starting block for the net

V = matrix(2,8);

\\ Create a vector to store the pre-computed inverses

initial_data = vector(4);

\\ Make sure the points are on the curve

if(ellisoncurve(elliptic_curve, point_a) == 0,

print("The first point is not on the curve!");

);

if(ellisoncurve(elliptic_curve, point_b) == 0,

239

print("The second point is not on the curve!");

);

\\ If the curve is not in nice Weierstrass form

\\ y^2 = x^3 + Ax + B, do a change of coordinates

if(elliptic_curve[1] != 0 || elliptic_curve[2] != 0

|| elliptic_curve[3] != 0,

print("Curve not in two-coeff. Weierstrass form!");

a1 = elliptic_curve[1];

a2 = elliptic_curve[3];

a3 = elliptic_curve[2];

a4 = elliptic_curve[4];

a6 = elliptic_curve[5];

coordinate_change = [1/6,-a2/3,-a1/2,-a3/2+a1*a2/6];

elliptic_curve = ellchangecurve(elliptic_curve,

coordinate_change);

point_a = ellchangepoint(point_a, coordinate_change);

point_b = ellchangepoint(point_b, coordinate_change);

print("New curve: ", elliptic_curve);

print("New first point: ", point_a);

print("New second point: ", point_b);

);

\\ Set up the usual variable names for elliptic curves

x1 = point_a[1];

y1 = point_a[2];

x2 = point_b[1];

y2 = point_b[2];

a4 = elliptic_curve[4];

a6 = elliptic_curve[5];

\\ Fill out the first vector of the block

V[1,4] = 1;

240

V[1,5] = 2*y1;

V[1,6] = 3*x1^4 + 6*a4*x1^2 + 12*a6*x1-a4^2;

V[1,7] = 4*y1*(x1^6 + 5*a4*x1^4 + 20*a6*x1^3 - 5*a4^2*x1^2

- 4*a4*a6*x1 - 8*a6^2 - a4^3);

V[1,8] = -((V[1,6])^3 - (V[1,5])^3*(V[1,7]));

V[1,3] = 0;

V[1,2] = - V[1,4];

V[1,1] = - V[1,5];

\\ Fill out the second vector of the block

V[2,1] = 1;

V[2,2] = 1;

V[2,3] = 2*x1+x2 - ((y2-y1)/(x2-x1))^2;

\\ Print starting block

if(debug == 1,

print("The beginning block is: ", V);

);

\\ Pre-compute the inverses

initial_data[1] = 1/(V[1,5]);

initial_data[2] = 1;

initial_data[3] = 1/(x1 - x2);

initial_data[4] = 1/((y1+y2)^2 - (2*x1 + x2)*(x1-x2)^2);

\\ Print the pre-computed info

if(debug == 1,

print("Precomputed inverses: ", initial_data);

);

\\ Call the net algorithm to obtain the block centred

\\ at "torsion"

resultV = net_loop(V, initial_data, torsion);

241

\\ Apply the Tate pairing formula and return result

return(resultV[2,3]/resultV[1,5]);

}

Bibliography

[1] Groupes de monodromie en géométrie algébrique. I. Springer-Verlag, Berlin, 1972. Séminaire de
Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la
collaboration de M. Raynaud et D. S. Rim, Lecture Notes in Mathematics, Vol. 288.

[2] Mohamed Ayad. Périodicité (mod q) des suites elliptiques et points S-entiers sur les courbes
elliptiques. Ann. Inst. Fourier (Grenoble), 43(3):585–618, 1993.

[3] Paulo S. L. M. Barreto. The pairing-based crypto lounge. http://planeta.terra.com.br/

informatica/paulbarreto/pblounge.html.

[4] Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott. Efficient algorithms for pairing-
based cryptosystems. In Advances in cryptology—CRYPTO 2002, volume 2442 of Lecture Notes
in Comput. Sci., pages 354–368. Springer, Berlin, 2002.

[5] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. On the selection of pairing-friendly groups.
In Selected areas in cryptography, volume 3006 of Lecture Notes in Comput. Sci., pages 17–25.
Springer, Berlin, 2004.

[6] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. Elliptic curves in cryptography, volume 265
of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
2000. Reprint of the 1999 original.

[7] Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing. In Advances
in cryptology—CRYPTO 2001 (Santa Barbara, CA), volume 2139 of Lecture Notes in Comput.
Sci., pages 213–229. Springer, Berlin, 2001.

[8] Lawrence Breen. Fonctions thêta et théorème du cube, volume 980 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 1983.

[9] Jean-Luc Brylinski and Pierre Deligne. Central extensions of reductive groups by K2. Publ. Math.
Inst. Hautes Études Sci., (94):5–85, 2001.

[10] K. Chandrasekharan. Elliptic functions, volume 281 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1985.

242

243

[11] Mathieu Ciet, Marc Joye, Kristin Lauter, and Peter L. Montgomery. Trading inversions for mul-
tiplications in elliptic curve cryptography. Des. Codes Cryptogr., 39(2):189–206, 2006.

[12] G. Cornelissen and K. Zahidi. Elliptic divisibility sequences and undecidable problems about
rational points. http://arxiv.org/abs/math/0412473v3, 2004.

[13] Richard Crandall and Carl Pomerance. Prime numbers. Springer-Verlag, New York, 2001. A
computational perspective.

[14] Isabelle Déchène. Arithmetic of generalized Jacobians. In Algorithmic number theory, volume
4076 of Lecture Notes in Comput. Sci., pages 421–435. Springer, Berlin, 2006.

[15] David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley & Sons Inc., Hoboken,
NJ, third edition, 2004.

[16] Sylvain Duquesne and Gerhard Frey. Background on pairings. In Handbook of elliptic and
hyperelliptic curve cryptography, Discrete Math. Appl. (Boca Raton), pages 115–124. Chapman
& Hall/CRC, Boca Raton, FL, 2006.

[17] Sylvain Duquesne and Gerhard Frey. Implementation of pairings. In Handbook of elliptic and
hyperelliptic curve cryptography, Discrete Math. Appl. (Boca Raton), pages 389–404. Chapman
& Hall/CRC, Boca Raton, FL, 2006.

[18] Sylvain Duquesne and Tanja Lange. Pairing-based cryptography. In Handbook of elliptic and
hyperelliptic curve cryptography, Discrete Math. Appl. (Boca Raton), pages 573–590. Chapman
& Hall/CRC, Boca Raton, FL, 2006.

[19] Graham Everest, Victor Miller, and Nelson Stephens. Primes generated by elliptic curves. Proc.
Amer. Math. Soc., 132(4):955–963 (electronic), 2004.

[20] Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward. Elliptic Divisibility
Sequences, pages 163–175. American Mathematical Society, Providence, 2003.

[21] Graham Everest, Peter Rogers, and Thomas Ward. A higher-rank Mersenne problem. In Al-
gorithmic number theory (Sydney, 2002), volume 2369 of Lecture Notes in Comput. Sci., pages
95–107. Springer, Berlin, 2002.

[22] Gerhard Frey and Tanja Lange. Background on curves and Jacobians. In Handbook of elliptic
and hyperelliptic curve cryptography, Discrete Math. Appl. (Boca Raton), pages 45–85. Chapman
& Hall/CRC, Boca Raton, FL, 2006.

[23] Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class group of curves. Math. Comp., 62(206):865–874, 1994.

[24] Steven D. Galbraith. Pairings. In Advances in elliptic curve cryptography, volume 317 of London
Math. Soc. Lecture Note Ser., pages 183–213. Cambridge Univ. Press, Cambridge, 2005.

244

[25] Steven D. Galbraith. The Weil pairing on elliptic curves over C. 2005.

[26] Steven D. Galbraith, Keith Harrison, and David Soldera. Implementing the Tate pairing. In
Algorithmic number theory (Sydney, 2002), volume 2369 of Lecture Notes in Comput. Sci., pages
324–337. Springer, Berlin, 2002.

[27] Sergey O. Gorchinskiı̆. The Poincaré bi-extension and idèles on an algebraic curve. Mat. Sb.,
197(1):25–38, 2006.

[28] Darrel Hankerson, Julio López Hernandez, and Alfred Menezes. Software implementation of
elliptic curve cryptography over binary fields. In Proceedings of CHES 2000, volume 1965 of
Lecture Notes in Comput. Sci., pages 1–24. Springer, Berlin, 2000.

[29] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in
Mathematics, No. 52.

[30] F. Hess. A note on the Tate pairing of curves over finite fields. Arch. Math. (Basel), 82(1):28–32,
2004.

[31] Marc Hindry and Joseph H. Silverman. Diophantine geometry, volume 201 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2000. An introduction.

[32] A. N. W. Hone. Elliptic curves and quadratic recurrence sequences. Bull. London Math. Soc.,
37(2):161–171, 2005.

[33] Toshiya Itoh and Shigeo Tsujii. An efficient algorithm for deciding quadratic residuosity in finite
fields GF(pm). Inform. Process. Lett., 30(3):111–114, 1989.

[34] Camille Jordan. Cours d’analyse de l’École polytechnique. Tome II. Les Grands Classiques
Gauthier-Villars. [Gauthier-Villars Great Classics]. Éditions Jacques Gabay, Sceaux, 1991. Calcul
intégral. [Integral calculus], Reprint of the third (1913) edition.

[35] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic number theory
(Leiden, 2000), volume 1838 of Lecture Notes in Comput. Sci., pages 385–393. Springer, Berlin,
2000.

[36] Julio Lopez Kenny Fong, Darrel Hankerson and Alfred Menezes. Field inversion and point halving
revisited. Technical Report, CORR 2003-18, Department of Combinatorics and Optimization,
University of Waterloo, Canada, 2003.

[37] Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high security levels. In Cryptog-
raphy and coding, volume 3796 of Lecture Notes in Comput. Sci., pages 13–36. Springer, Berlin,
2005.

[38] Serge Lang. Abelian varieties. Interscience Tracts in Pure and Applied Mathematics. No. 7.
Interscience Publishers, Inc., New York, 1959.

245

[39] D. H. Lehmer. The mathematical work of Morgan Ward. Math. Comp., 61(203):307–311, 1993.

[40] Stephen Lichtenbaum. Duality theorems for curves over p-adic fields. Invent. Math., 7:120–136,
1969.

[41] Edouard Lucas. Theorie des Fonctions Numeriques Simplement Periodiques. Amer. J. Math.,
1(4):289–321, 1878.

[42] Edouard Lucas. Theorie des Fonctions Numeriques Simplement Periodiques. [Continued]. Amer.
J. Math., 1(3):197–240, 1878.

[43] Ben Lynn. Pairing-based cryptography library. http://crypto.stanford.edu/pbc/.

[44] Jerrold E. Marsden and Michael J. Hoffman. Basic complex analysis. W. H. Freeman and Com-
pany, New York, second edition, 1987.

[45] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Trans. Inform. Theory, 39(5):1639–1646, 1993.

[46] Victor S. Miller. Short programs for functions on curves. 1986.

[47] Victor S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology, 17(4):235–261,
2004.

[48] J. S. Milne. Abelian varieties. In Arithmetic geometry (Storrs, Conn., 1984), pages 103–150.
Springer, New York, 1986.

[49] J. S. Milne. Arithmetic duality theorems. BookSurge, LLC, Charleston, SC, second edition, 2006.

[50] David Mumford. Bi-extensions of formal groups. In Algebraic Geometry (Internat. Colloq., Tata
Inst. Fund. Res., Bombay, 1968), pages 307–322. Oxford Univ. Press, London, 1969.

[51] David Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathe-
matics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay, 1970.

[52] Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin,
1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With
a foreword by G. Harder.

[53] K. G. Paterson. Cryptography from pairings. In Advances in elliptic curve cryptography, volume
317 of London Math. Soc. Lecture Note Ser., pages 215–251. Cambridge Univ. Press, Cambridge,
2005.

[54] Alexander Polishchuk. Abelian varieties, theta functions and the Fourier transform, volume
153 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2003.

[55] James Propp. Robbins forum. http://jamespropp.org/about-robbins.

246

[56] Peter Rogers. Topics in elliptic divibility sequences. Master’s thesis, University of East Anglia,
2003.

[57] Maxwell Rosenlicht. Generalized Jacobian varieties. Ann. of Math. (2), 59:505–530, 1954.

[58] Maxwell Rosenlicht. A universal mapping property of generalized jacobian varieties. Ann. of
Math. (2), 66:80–88, 1957.

[59] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In Symposium on
Cryptography and Information Security. Okinawa, Japan, 2000.

[60] Jean-Pierre Serre. Algebraic groups and class fields, volume 117 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1988. Translated from the French.

[61] Rachel Shipsey. Elliptic Divibility Sequences. PhD thesis, Goldsmiths, University of London,
2001.

[62] Joseph H. Silverman. Wieferich’s criterion and the abc-conjecture. J. Number Theory, 30(2):226–
237, 1988.

[63] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1992. Corrected reprint of the 1986 original.

[64] Joseph H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1994.

[65] Katherine E. Stange. The Tate pairing via elliptic nets. In Pairing-Based Cryptography - PAIR-
ING 2007, volume 4575 of Lecture Notes in Comput. Sci., pages 329–348. Springer, Berlin, 2007.

[66] William Stein. Sage: Open Source Mathematical Software (Version 2.10.2). The Sage Group,
2008. http://www.sagemath.org.

[67] Marco Streng. Divisibility sequences for elliptic curves with complex multiplication. http://

www.math.leidenuniv.nl/~streng/, 2007.

[68] Christine Swart. Elliptic curves and related sequences. PhD thesis, Royal Holloway and Bedford
New College, University of London, 2003.

[69] J. Tate. WC-groups over p-adic fields, volume 13 of Séminaire Bourbaki; 10e année: 1957/1958.
Textes des conférences; Exposés 152 à 168; 2e éd. corrigée, Exposé 156. Secrétariat mathématique,
Paris, 1958.

[70] Graeme Taylor. Algorithms for elliptic nets. Available at http://www.maths.ed.ac.uk/

~s0677951/code.htm and http://aleph.straylight.co.uk/ellnet.pdf.

[71] The PARI Group, Bordeaux. PARI/GP, version 2.3.2, 2007. available from http://pari.math.

u-bordeaux.fr/.

247

[72] Steven Vajda. Fibonacci & Lucas numbers, and the golden section. Ellis Horwood Series: Math-
ematics and its Applications. Ellis Horwood Ltd., Chichester, 1989. Theory and applications,
With chapter XII by B. W. Conolly.

[73] Alfred J. van der Poorten. Elliptic curves and continued fractions. J. Integer Seq., 8(2):Article
05.2.5, 19 pp. (electronic), 2005.

[74] Morgan Ward. Memoir on elliptic divisibility sequences. Amer. J. Math., 70:31–74, 1948.

[75] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1994.

[76] André Weil. On algebraic groups of transformations. Amer. J. Math., 77:355–391, 1955.

[77] Chu Wenchang, Shalosh B. Ekhad, and Robin J. Chapman. Problems and Solutions: Solutions:
10226. Amer. Math. Monthly, 103(2):175–177, 1996.

Index

additive group, 78
appropriateness, 6, 57

Baer sum, 80, 81
basis

change of, 72, 74
biextension, 10–11, 98

algebraic, 104
cohomology, 99, 100
elliptic curve, 101
elliptic net, 103
equivalence, 99
factor system, 100, 103
Poincaré, 10, 100, 104

cohomology
biextension, 99, 100
group, 80, 82

coordinate sublattice, 52
curve-net theorem, 7, 57
curve-sequence theorem, 5
cyclotomic polynomial, 4

discriminant
elliptic net, 57

divisibility, 18
division polynomial, 4, 16

complex definition, 5
divison polynomial, 4
divisor, 88

of net polynomial, 48
of the cube, 104

EDS
Association, 13, 136, 143
Discrete Log, 13, 136
Residue, 13, 136, 145

elliptic curve
discrete logarithm problem, 12, 134
from elliptic net, 15, 53, 54
group law, 16
hard problems, 13
singular, 5, 6

elliptic divisibility sequence
baseset, 17
computation of terms

script, 154–183
example, 8
recurrence relation, see recurrence relation,

elliptic divisibility sequence
translated, 6

elliptic functions, 35
elliptic net, 22

algorithm, 12
baseset, 27–34
change of basis, see elliptic net, transfor-

mation property
computation of terms

script, 183–233
degenerate, 52
dependent, 78
example, 23, 24, 70–78
from elliptic curve, 49
hard problems, 146

248

249

j-invariant, 57
normalised, 52
over finite field, 72
rank, 22
recurrence relation, see recurrence relation,

elliptic net
singular, 57
subnet, 23
symmetry, 22
transformation property, 9
zeroes, 24

elliptic nets
from elliptic curves, 37

equivalence, 57
extensions

central, 82

factor set, 82
rational, 92

factor system, 100
Fibonacci sequence, 24, 74

multi-dimensional, 76
Frey-Rück attack, 139

group extensions, 80

integers, 78

Jacobians
generalised, 10–11, 88, 89

elliptic curve, 90
equivalence, 94
line bundles, connection with, 96

Laurentness, 7, 18, 34, 74
line bundle, 95

Poincaré, 100
Lucas, 2
Lucas sequence, 2, 24, 75

Mersenne numbers, 24
Miller’s algorithm, 12

MOV attack, 139
multiplicative group, 5, 74

twisted form, 76
multiplicative torsor, 95

net polynomial
complex definition, 35
is elliptic, 36
over arbitrary field, 48

partial ordering
of elliptic nets, 7

periodicity
partial, 9, 10, 18, 19, 72
perfect, 13, 134, 145

quadratic residues, 143
quasi-period homomorphism, 35

recurrence relation
elliptic divisibility sequence, 3
elliptic net, 6, 22, 37, 72, 105

scale equivalence, 7, 51
Shipsey

algorithm, 137
thesis, 141

singular
elliptic net, 57

symmetry properties, 8

Tate-Lichtenbaum pairing, 10–12, 113, 139, 141
computation

script, 234–241
equivalence of definitions, 116
for elliptic curves, 115
for Jacobians, 113
Lichtenbaum’s definition, 114
properties, 116
Tate’s definition, 114

torsors
multiplicative, 84

250

turtle soup, vi

unihomothetic, 7, 53, 56
unit group, 76

Ward, 3
Weierstrass sigma function, 35
Weil pairing, 11–12, 106, 107

as intersection pairing, 106
for elliptic curves over C, 106
from Cartier duality, 111
properties, 108

Weil reciprocity, 88

