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Modeling the complex interactions that arise when query workloads share computing
resources and data is challenging albeit critical for a number of tasks such as Qual-
ity of Service (QoS) management in the emerging cloud-based database platforms,
effective resource allocation for time-sensitive processing tasks, and user-experience
management for interactive systems. In our work, we develop practical models for
query performance prediction (QPP) for heterogeneous, concurrent query workloads
in analytical databases.

Specifically, we propose and evaluate several learning-based solutions for QPP.
We first address QPP for static workloads that originate from well-known query
classes. Then, we propose a more general solution for dynamic, ad hoc workloads.
Finally, we address the issue of generalizing QPP for different hardware platforms
such as those available from cloud-service providers.

Our solutions use a combination of isolated and concurrent query execution sam-
ples, as well as new query workload features and metrics that can capture how
different query classes behave for various levels of resource availability and con-
tention. We implemented our solutions on top of PostgreSQL and evaluated them
experimentally by quantifying their effectiveness for analytical data and workloads,
represented by the established benchmark suites TPC-H and TPC-DS. The results
show that learning-based QPP can be both feasible and effective for many static and
dynamic workload scenarios.
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Concurrent query execution facilitates improved resource utilization and aggregate

throughput, while making it a challenge to accurately predict individual query per-

formance. Modeling the performance impact of complex interactions that arise when

multiple queries share computing resources and data is difficult albeit critical for a

number of tasks such as Quality of Service (QoS) management in the emerging cloud-

based database platforms, effective resource allocation for time-sensitive processing

tasks, and user experience management for interactive database systems.

Consider a cloud-based database-as-a-service platform for data analytics. The

service provider would negotiate service level agreements (SLAs) with its users. Such

SLAs are often expressed in terms of QoS (e.g., latency, throughput) requirements

for various query classes, as well as penalties that kick in if the QoS targets are

violated. The service provider has to allocate sufficient resources to user queries

to avoid such violations, or else face consequences in the form of lost revenue and

damaged reputation due to unhappy customers. Thus, it is important to be able

to accurately predict the run-time of an incoming query on the available machines,

as well as its impact on the existing queries, so that the scheduling of the query

does not lead to any QoS violations. The service provider may have to scale up and

allocate more cloud resources if it deems that existing resources are insufficient to

accommodate the incoming query.

Concurrent query performance prediction (cQPP) is relevant in many contexts.

We start by examining it broadly for analytical queries. We consider two approaches:

interaction and resource modeling. Next we extend this work to support distributed

OLAP queries. Finally, we explore two approaches to OLTP throughput prediction.
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1.1 Modeling Query Performance for Static Work-

loads

In our first section, we address the performance prediction problem for analytical

concurrent query workloads. Specifically, we study the following problem: ”Given a

collection of queries q1, q2, q3, ..., qn, concurrently executing on the same machine at

arbitrary stages of their execution, predict when each query will finish its execution.”

We assume that all queries are derived from a set of known query classes (e.g.,

instances of TPC-H query templates) and that they are mostly I/O bound (e.g.,

typical TPC-H queries).

We propose a two-phase solution for this problem.

1. (Model building) We build a composite, multivariate regression model that

captures the execution behavior of concurrent queries as they go through dis-

tinct query mixes. We use this model to predict the execution speed for each

query in a given concurrent workload.

2. (Timeline analysis) We analyze the execution timeline of the workload to pre-

dict the termination points for individual queries. This timeline analysis starts

by predicting the first query to complete and then repeatedly performs predic-

tion for the remaining queries. The timeline can be either real-time or have

access to a queue for batch-oriented planning.

One of our key ideas is to use Buffer Access Latency (BAL) as an effective means

to both capture the execution speed of a query as well as to quantify the performance

impact of concurrently running queries. Our first regression model uses the average
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BAL of the query execution to accurately predict runtimes of individual queries when

run concurrently. We call this model ”BAL to Latency” (B2L).

While it is not tractable to sample how much BAL is affected for all possible

concurrent query combinations, we show that capturing only the first- and second-

order effects, which can be obtained by sampling isolated and pairwise-concurrent

query runs, is sufficient to yield good predictions. Our second regression model,

therefore, uses the base BAL for a query q (obtained from the isolated run of q),

other queries in the mix, delta BALs (obtained from pairwise-concurrent runs for the

concurrent queries in the mix) and limited higher multiprogramming level sampling

to predict the change in average BAL for q. We refer to this multivariate regression

model as ”BAL to concurrent BAL” (B2cB). As a final step, we compose B2cB and

B2L to obtain execution latency predictions for queries in the concurrent mix.

Finally, we adapt this system to support changing workloads by calculating incre-

mental predictions of the execution latency for discrete mixes as they occur. When

an incoming query is added to a mix we project how it will impact the currently run-

ning queries and estimate the execution latency we can expect for the new addition.

This technique also allows us to dynamically correct some of our previous estimates

by re-evaluating with each scheduling decision. It can also allow for batch-based

resource planning by modeling a larger queue of queries in our scheduling.
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1.2 Query Performance Prediction for Dynamic

Workloads

In our second section, we explore the idea of a more generalized concurrency model

based on allocating specific resources for each query as we schedule it. This approach

will allow us to model concurrency with a much lighter training phase. Concurrent

query execution allows users to decrease the time required for a batch of queries [5, 8]

in analytical workloads. When several queries execute simultaneously, hardware

resources can be better used by exploiting parallelism. At the same time, concurrent

execution raises a number of challenges, including predicting how interleaving queries

will affect each other’s rate of progress. As multiple queries compete for hardware

resources, their interactions may be positive, neutral, or negative [3]. For example, a

positive interaction may occur if two queries share a large table scan: one query may

pre-fetch data for the other and they both enjoy a modest speedup. In contrast,

if two queries access disjoint data and are I/O-bound, they may slow each other

down by a factor of two or more. Judicious scheduling of concurrent queries can

significantly impact the completion time of individual mix members as well as the

entire batch [7].

Concurrent query execution allows users to decrease the time required for a batch

of queries [5, 8] in analytical workloads. When several queries execute simultaneously,

hardware resources can be better used by exploiting parallelism. At the same time,

concurrent execution raises a number of challenges, including predicting how inter-

leaving queries will affect each other’s rate of progress. As multiple queries compete

for hardware resources, their interactions may be positive, neutral, or negative [3].

For example, a positive interaction may occur if two queries share a large table scan:

one query may pre-fetch data for the other and they both enjoy a modest speedup.
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In contrast, if two queries access disjoint data and are I/O-bound, they may slow

each other down by a factor of two or more. Judicious scheduling of concurrent

queries can significantly impact the completion time of individual mix members as

well as the entire batch [7].

Accurate concurrent query performance prediction (cQPP) stands to benefit a

variety of applications. This knowledge would allow system administrators to make

better scheduling decisions for large batches of queries [7]. With cQPP, cloud-based

provisioning would be able to make more informed deployment plans [45, 1]. Per-

formance prediction under concurrency can also create more refined query progress

indicators by analyzing in real time how physical resource availability affects a query’s

estimated completion time. Moreover, accurate cQPP could also enable query opti-

mizers to create interaction-aware execution plans.

Because of its important applications, there has been significant recent work on

cQPP, which has primarily focused on static workloads [5, 23]. These solutions pre-

dict models on well-defined sets of query templates where interactions within the

workload must be sampled before predictions may be produced. Furthermore, the

sampling requirements for these approaches grow exponentially in proportion to the

complexity of their workloads, limiting their viability in real-world deployments. In

this work, we propose a more general solution to target dynamic or ad hoc workloads,

where new templates may be executed with queries from a well-known workload.

We create predictions for these unseen templates without the requirement to sample

their interactions with our workload. In doing so, we retain the benefits of the prior

work, while accommodating unseen or changing workloads. Thus, this approach

dramatically simplifies the process of supporting unpredictable or evolving user re-

quirements, which are present in many exploration-oriented database applications

including science, engineering and business.
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Prior work in cQPP [5, 23] developed black-box approaches, in which the re-

searchers built models based on observed end-to-end performance of various con-

current query mixes. In contrast, we use a gray-box approach. We leverage both

statistics from sampled query behavior and semantic information from query execu-

tion plans. By using these two complementary sources of information, we show that

it is possible to build more comprehensive and easier to train models that require

significantly less sampling effort.

Our cQPP framework, called Contender, models the resource contention for an-

alytical queries executing under concurrency. This resource-contention guided ap-

proach abstracts away the underlying workings of the database and operating sys-

tem. By only considering resource consumption and data access requirements for

individual queries, Contender is agnostic to the implementation details of the target

system. As a result, Contender is not only more flexible than the prior approaches, it

also significantly lowers training requirements for new queries. Specifically, we show

that our sampling requirements can be reduced from exponential to linear, and with

further restrictions, to even constant time.

The key idea underlying Contender is that it models query performance as a

function of a query’s resource access behavior and how this behavior varies with

concurrent execution. Query performance generally varies on a continuum where

the lower bound is the time taken with exclusive access to resources and the upper

bound is simulated by evaluating query performance when all but its fair share

of the system resources are occupied. Contender also models positive interactions

that originate due to shared buffers, which we have observed to be common and

significant.

The majority of query reactions to resource contention occurs in two dimensions:
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I/O bandwidth and memory availability. A decrease in I/O bandwidth may result in

a linear increase in query latency, due to the well-documented I/O bottleneck [23].

Modeling memory contention is more complicated. A reduction in memory availabil-

ity naturally forces queries with large intermediate results to swap to disk. This in

turn causes I/O bandwidth to become more scarce and further exacerbates the I/O

bottleneck.

Our solution begins by profiling each known template individually for its I/O

requirements and reasoning about its latency in terms of I/O availability. We create

a performance continuum for each primary, the query for which we are creating a

prediction. We define the lower bound of this continuum as the template’s isolated

execution time. We quantify the upper bound of this range by creating a spoiler 1.

A spoiler simulates the worst-case scenario for a query executing under concurrency

by limiting the resources available to it. As such, spoilers are used to characterize

the sensitivity of queries to resource availability, which we quantify using a metric

called Query Sensitivity (QS).

To create predictions, we parse the query execution plans of contemporary queries

(i.e., those that are executing concurrently with a primary) to estimate the conditions

under which the primary query will be executing. By quantifying the contemporary

resource requirements, we estimate the availability of I/O bandwidth in our sys-

tem. We estimate the resource usage of contemporary queries using Contemporary

Query Intensity (CQI), a metric that quantifies the resource consumption behavior

of contemporary queries in relation to the primary.

We integrate these two metrics (QS and CQI) by building a model for each query

1We derive its name from the American colloquialism “something that is produced to compete
with something else and make it less successful”
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template based on the continuum bounded by its isolated execution time and spoiler

latency. We then use regression to chart a query’s latency changes as its execution

environment varies from very low I/O contention (i.e., sharing most scans, limited

swapping interference) to high contention. We demonstrate that there is a linear

progression for how individual templates respond to increasing resource scarcity.

Finally we address the problem of sampling time. We improve on the sampling

requirements for new, unseen query templates by proposing a prediction model for

spoiler latency (a parameter for our cQPP model). We examine how spoiler latency

increases for different templates depending on their query plan characteristics. By

leveraging these estimates, we then show how our system can model arbitrary mixes

with little to no sampling of new templates.

1.3 Concurrent Workload Modeling for Portable

Databases

There has recently been considerable interest in bringing databases to the cloud [53,

55, 61, 18, 19]. It is well known that by deploying in the cloud, users can save

significantly in terms of upfront infrastructure and maintenance costs. They benefit

from elasticity in resource availability by scaling dynamically to meet demand.

Hardware offerings for DBMS users now come in more varieties and pricing

schemes than ever before. Users can purchase traditional data centers, subdivide

hardware into virtual machines or outsource all of their work to one of many of

cloud providers. Each of these options is attractive for different use cases. In this

work we focus on infrastructure-as-a-service (IaaS) in which users rent virtual ma-
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chines, usually by the hour. Major cloud providers in this space include Amazon

Web Services and Rackspace [11, 44].

Past work in performance prediction revolved around working with a diverse set of

sample of queries, which typically originate from the same schema and database [3, 4,

7, 29, 23, 9, 26]. These studies relied on either parsing query execution plans to create

comparisons to other queries or learning models in which they compared hardware

usage patterns of new queries to those of known queries. These techniques are not

designed to perform predictions across platforms; they do not include predictive

features characterizing the execution environment. Thus, they require extensive re-

training for each new hardware configuration.

To address this limitation, our work aims at generalizing workload performance

prediction to what we call portable databases, which are intended to be used on

multiple platforms, either on physical or virtual hardware. These databases may

execute queries at a variety of price points and service levels, potentially on different

cloud providers.

Predicting workload performance on portable databases remains an open prob-

lem. Having a prediction framework that is applicable across hardware platforms can

significantly ease the provisioning problem for portable databases. By modeling how

a workload will react to changes in resource availability, users can make informed

purchasing decisions and providers can better meet their users’ expectations. Hence,

the framework would be useful for the parties who make the decisions on hardware

configurations for database workloads.

In addition to modeling the workload based on local samples, we also examine

the process of learning from samples in the cloud. We find that by extrapolating on
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what we learn from one cloud provider we can create a feedback loop where another

realizes improvements in its prediction quality.

As an important design goal, our framework requires little knowledge about the

specific details of the workloads and the underlying hardware configurations. The

core element we use is an identifier, called fingerprint, which we create for each work-

load examined in the framework. A fingerprint abstractly characterizes a workload

on carefully selected, simulated hardware configurations. Once it is defined, a fin-

gerprint would describe the workload under varying hardware configurations, includ-

ing the ones from different cloud providers. Fingerprints are also used to quantify

the similarities among workloads. We use fingerprints as input to a collaborative

filtering-style algorithm to make predictions about new workloads.

1.4 Main Contributions

This thesis makes novel contributions in three important areas. First we address the

problem of modeling concurrent query interactions in static workloads for latency

predictions. We then propose a more generic solution for ad hoc analytical work-

loads. Finally we provide preliminary research on the issue of portable databases

and predicting their performance on changing hardware platforms.

Our main contributions for static workloads are as follows:

• We argue and experimentally demonstrate that BAL is a robust indicator for

query execution speed even in the presence of concurrency. It facilitates the

modeling of the joint affect of I/O speed and memory stress with a single value.
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• We develop a multivariate regression model that predicts the impact of higher-

degree concurrent query interactions derived from isolated (degree-1) and pair-

wise (degree-2) concurrent execution samples.

• We show experimental results obtained from a PostgreSQL / TPC-H study

that supports our claims and verifies the effectiveness of our predictive models.

Our predictions are on the average within 21% of the actual values, while the

timeline analysis leads to additional improvements, reducing our average error

to an average of 9% with periodic re-evaluation.

In our work with ad hoc analytical queries, we have the following contributions:

• We introduce novel resource-contention metrics to model how analytical queries

behave under concurrent execution: Query Sensitivity (QS) models how a

query’s performance varies as a function of resource availability, while Con-

temporary Query Intensity (CQI) quantifies the resources to which a primary

has access when executing with others.

• We leverage these metrics to predict latency of previously unseen templates

using linear-time sampling of query executions.

• We further generalize our approach by estimating spoiler performance of tem-

plates, reducing our sampling overhead to constant time.

• We provide a comprehensive experimental analysis of our solutions using PostgreSQL/TPC-

DS, comparing our proposal to existing approaches in terms of predictive ac-

curacy and model building overhead. The results demonstrate the competitive

performance of our framework despite its generality and low training overhead.

For portable databases we have several contributions, namely:
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• Creating a framework for simulating arbitrary hardware configurations, which

we use to fingerprint workloads.

• Applying machine learning on fingerprints to predict workload performance for

new hardware configurations.

• Proposing strategies to reduce the training overhead for new workloads.



Chapter Two

Background
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2.1 Concurrent Query Performance Prediction

In this work we deal with the problem of predicting query latency under concurrency.

We specifically target analytical workloads. These workloads are defined by having

very large data (typically it cannot fit in RAM). These workloads are typically I/O

bound and are very sensitive to potential sharing opportunities with contemporary

queries.

In Chapter 3 we perform all of our experiments using TPC-H at scale factor 10.

This is a moderate weight workload consisting of one main table (the fact table) and

several supporting (or “dimension”) tables. This simple schema allowed us to more

succinctly summarize the behavior of queries under concurrency.

In Chapter 4 we use a more sophisticated analytical workload, TPC-DS. This is

at scale factor 100, i.e., it consists of approximately 100 GB of data spread out over

7 fact tables. Here we model more complex workloads and a database that is much

greater in scale.

Much of our modeling revolves around taking apart the individual steps in a

query execution plan. This consists of a directed acyclic graph which allows the

query to compute its results. An example of a query execution plan is in Figure 2.1.

In this figure we see that we scan two tables, join and then sort them to return results

to the user. Tuples travel from the leaf nodes to the root using this technique. They

do so in a pipelined fashion, except when they meet blocking operators (such as the

sort).

For all of our concurrent trials we evaluate discrete mixes using a technique that

we call steady state. An example of a steady state sample is depicted in Figure 2.2.
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Figure 2.1: An example of a query execution plan.

For each experiment, we hold the query mix constant and introduce new examples of

a template when prior ones end. We create one stream for each template represented

in a mix. In our example, we have two query streams: qa and qb. We continue the

experiment until each stream has collected at least n samples (for our trials n = 5).

We omit the first and last few samples to insure that conditions are constant for

the duration of our experiment. We can generalize our predictions to changing

query mixes (as new queries are added and prior ones complete) using the timeline

techniques of [23].
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Figure 2.2: An example of steady state query mixes, qa running with qb

Steady state evaluation allows us to reason about how a query will react to a

continuous level of contention and a fixed mix of queries. The warm cache (achieved

by omitting the first few samples) allows us to distill our measurements down to

interactions, rather than quantifying the overhead of the initial query set up and

caching of small supporting structures. This approach also causes us to sample the

changing interactions from queries overlapping at different phases in their execution.

2.2 Model-Based Predictions

To describe how query interactions occur we build regression models. These models

quantify the relationship between our indicators (such as logical I/O time) and the

value for which we are creating predictions (i.e., query latency). By determining

how these two quanities are correlated we can build robust predictions with limited

training sets.

For our models we begin with independent variables, or the ones that we use to

describe the phenonemon that we are modeling. We seek to find a simple relationship

between it and the dependent variable which we are forecasting. A considerable part

of our work is in understanding query interactions well enough to identify effective

independent variables for our analysis.

To build a model, we first begin with many (x, y) points, which we train upon.
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Here x is a series of observations of indepenent variables and y are the corresponding

outcomes. We learn model coefficients to describe the relationship between x and y.

We use linear regression for the majority of our findings. Here we formulate what

we understand about our queries into a representation of how it impacts latency. The

majority of our models take the form y = mx + b and we solve for m, the slope of

our model and b the y-intercept of our model based on the training data.

In a select few cases we experiment with sophisticated machine learning tech-

niques. We do this to see if we can learn more complicated models of query interac-

tions by using all of the components of the QEP. In the rest of our work we primarily

focus on the leaf nodes because disk I/O is the main source of our interactions.

2.3 Model Quality Evaluation

We assessed the quality of our predictions using mean relative error (MRE):

MRE =
1

n

n∑
i=1

|observedi − predictedi|
observedi

(2.1)

It is a normalized evaluation of accuracy. We quantify the scale of our errors in

terms of the quantity that we are trying to predict. This is an intuitive approach to

determining the accuracy of our frameworks.

An alternative that we considered was r2, the coefficient of determination (r2)

to assess the goodness of fit of the model to the data. R2 is a normalized measure

that relates the error of the model to the overall variance of the data set. It ranges

from 0 to 1, with higher values denoting a better model fit. It captures the error of
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the model by calculating the sum-squared errors of each data point in the training

set (SSerr), normalized by the total variability of the data calculated by taking the

sum of squared deviates of the data points from the mean (SStot). r
2 is calculated

as 1− SSerr/SStot.

Unless otherwise specified, we use k-folds cross validation to verify our work.

This technique divides the data into k equally sized folds. We train on k − 1 folds

and evaluate our model on the remaining one. We get a more complete picture of

our space using this technique while keeping our test and training data disjoint.

2.4 Sampling Concurrent Query Mixes

The number of concurrent mixes grows exponentially in proportion to the number of

templates in our workload and the number of multiprogramming levels studied (i.e.,

how many queries are executing simultaneously). When evaluating concurrent mixes

for each multiprogramming level k with n distinct templates, there exist n-choose-k

with replacement combinations. Or more formally:

((
n

k

))
=

(
n+ k − 1

k

)
=

(n+ k − 1)!

k!(n− 1)!
(2.2)

distinct mix combinations.

Latin hypercube sampling is a technique where we uniformly distribute our sam-

ple selection throughout our potential prediction space. This is done by creating a

hypercube with the same dimensionality as our multiprogramming level. We then
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Query 1 2 3 4 5
1 X
2 X
3 X
4 X
5 X

Table 2.1: Example of 2-D Latin hypercube sampling

select our samples such that every value on every plane gets intersected exactly once.

Each sampling run of this technique produces at most n combinations, where n is

the number of unique queries in our workload.

An example of Latin hypercube sampling is shown in Table 2.1. This example

demonstrates that each template gets sampled an equal number of times, in this

case twice. We can further sample the space by evaluating multiple, disjoint latin

hypercube samples.



Chapter Three

Concurrent Query Performance

Predictions for Static Workloads
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In this section we examine the work that we did to predict cQPP for static worloads.

We presume for this section that all of the templates in our workload are well-defined

and build a distinct model for each based on its logical I/O latency patterns.

3.1 Modeling Discrete Query Mixes

Query latency is directly affected by resources contention in the underlying hardware

of the system on which it is executing. As the number of queries that are presently

executing goes up, they must increasingly share access to disk and CPU time as well

as RAM.

In this research we target OLAP workloads, thus we choose to focus on the

interaction of I/O and RAM for our latency predictions. We build an additive

multivariable model that estimates query interactions based on pairwise and isolated

observations. We use this model to estimate the average buffer access latency, which

we in turn use to estimate our end-to-end QoS.

3.1.1 Query Latency Indicators

We first study good indicators of query QoS. When we began researching contention,

we analyzed several examples of database-generated profiling data and experimented

with linear and power regression over several potential indicators of query latency.

The two indicators that we hypothesized showed most promise were I/Os consumed

and buffer pool misses.

We started by reasoning about what resources would experience the most con-
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tention. We know that OLAP queries are highly I/O-bound. The process of fetching

pages for a database system is very complicated. From a simplified model we can

think of it as a hierarchy of access methods. When fetching a tuple for a query,

the executor first submits a request to the buffer pool, the smallest but fastest way

to access data. If the requested block is not found, the lookup is passed on to the

OS-level cache, which is the second fastest and smallest option. Finally, if this fails,

the request is enqueued for disk access to retrieve the block containing the requested

tuple. This disk access may be a seek or a sequential read, also causing the cost to

access a block of data to vary. This variance happens even when we know where

the block was found physically on disk. Our disk access time could potentially be

calculated as proportional to the position of a disk arm to simulate its motion to the

desired disk.

Needless to say, a system this complex is very challenging to model, but it does

break down into discrete steps. To capture this as an I/O vs RAM decision, we

started by looking at the number of blocks read from disk and how many buffer pool

misses were recorded.

The first metric we considered was quantifying the number of blocks read by a

query. We thought that if a query’s execution speed is highly tied to how fast it can

complete I/Os (and reads from RAM are essentially free), then this could give us an

indicator of how much query progress has been accomplished over time. We found

that there was a correlation between number of blocks read in a query’s execution

time and the query’s latency. Unfortunately it was a weak and noisy relationship,

due to the complexity of modeling the contents of RAM and variations in how far

the disk head had to move in order to access an arbitrary block.

Next we looked at buffer pool misses. We reasoned that the cost of disk access
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Query BP Misses Blocks Both B2L
Overall 44% 33% 29% 16%
3 43% 33% 32% 5%
4 55% 25% 26% 15%
5 49% 34% 32% 7%
6 23% 54% 33% 40%
7 51% 25% 24% 7%
8 49% 26% 23% 14%
10 52% 26% 27% 12%
14 27% 44% 35% 32%
18 54% 25% 22% 6%
19 32% 40% 33% 26%

Table 3.1: Performance of BAL as a QoS indicator in comparison to buffer pool misses, blocks
read, blocks read and buffer pool misses (multivariate) at MPL 5.

may be related to the number of times we seek a block in the buffer pool and find

it unavailable. Like the I/O metric, we found that this one was relatively poorly

correlated because the system is very complex and also has multiple layers of in-

memory storage. Only examining one layer of the RAM-level storage produced

misleading results.

We tried doing multivariate regression on both of these metrics, thinking they

would complement each other. Our hypothesis was that buffer pool hits would act

as a complement to disk read requirements (i.e., a hit to the buffer pool allows us

to prevent a disk access). Applied together these two indicators could be used to

predict end-to-end latency. Unfortunately this model did not work well because

there were too many other complexities, such as waiting in the queue for access to

the fully serialized I/O system. We examine the accuracy of these regressions in

Table 3.1. Here we trained on a set of disjoint 3 Latin hypercube sampled runs at

multiprogramming level 5. We evaluate our models with two additional sets of test

samples, comprised of 10 mixes each. For more details on our sampling techniques,

please see Section 3.2.1.
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Buffer Pool Delay as a Performance Indicator (B2L)

We found that handling each of the I/O access cases individually had limited success

because the interactions were too complex. In an effort to distill the problem further,

we identified the initial request to the buffer pool as a gateway that all queries must

go through in order to receive data. When a query requests a block of data, it first

is added to a global queue maintained by the DBMS. When a request gets to the

top of the queue, then the system queries its levels of storage one after another until

it acquires the needed disk block.
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Figure 3.1: BAL as it changes over time for TPC-H Query 14. Averaged over 5 examples of the
template in isolation.

Rather than modeling the steps of a buffer pool request, we reasoned that it would

be far simpler to estimate the time that elapses between when an I/O request is issued

and when the block of data is returned. We call this metric buffer access latency or

BAL. Averaging these latencies over the lifetime of a query gives us the ability to

summarize the interactions of disk seeks, sequential reads, OS cache hits and buffer

pool hits among disparate queries currently executing on the same database.

In Table 3.1 we examine the quality of BAL in comparison to the other indicators

we pursued to predict latency. We built linear regression models at multiprogram-

ming level 5 for blocks read, buffer pool misses, a multivariate regression model for

both and another model for BAL. Our experimental setup is detailed in Section 6.1.1.
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Query Std Dev (µs)
3 24.23
4 18.57
5 10.4
6 7.68
7 31.88
8 9.87
10 23.48
14 12.5
18 19.29
19 10.1

Table 3.2: Standard deviation of BAL for various TPC-H queries.

We trained them all on a small set of disjoint data and this is the accuracy recorded

for test data, which has no overlap with the training data. BAL does roughly twice as

well as these other indicators, even when they are combined to build a model. BAL’s

accuracy improves further when we train it on samples from more multiprogramming

levels.

Our BAL indicator correlates strongly with latency because it is an average of our

logical page delay over a long period of time. An I/O bound query will have latency

directly proportional to how long it waits for I/O on average plus some fixed overhead

factor for CPU time and other inexpensive in-memory support operations. We use

linear regression to model this relationship between BAL and latency. It produces

an equation of the form y = mx+ b. Our system finds the overhead relatively fixed

on a per-query basis and it comprises the y-intercept (b) of the model. The m term

allows us to apply a cost to each I/O request we service in the course of our query

execution.

One of the reasons that BAL is a good indicator for latency is because it is

averaged over many samples over the lifetime of a query. Thus, even when a query

goes through very complex interactions with the OS as well as other queries, it will
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still accurately predict the overall latency. In Figure 3.1 we display how the typical

values of BAL vary through the lifetime of a query when run in isolation. All of our

BAL measurements are averages of 1000 buffer pool requests. This particular query

(TPC-H Q14) goes through a brief period of low latency in BAL while the query

is warming up (it is scanning the probe relation for a hash join). Then it reaches

a relatively stable state where it is continuously reading in and joining tuples. The

BAL periodically fluctuates as the kernel context switches and experiences some

noise as it iterates through the join.

In Table 3.2, we look at the standard deviation for all of the queries from our

workload of ten moderate weight TPC-H queries. There are always outliers in the

BAL measurements due to the complexity of the system. Fortunately they are a

distinct minority of the measurement set for each query and thus their impact is

diminished by averaging. As the query 14 example demonstrates, we have a range

of 10-130 µs, but our standard deviation is only 12.5.

In summary, average BAL was our strongest indicator, so we chose to focus our

regression on its prediction. The strength of this model is demonstrated in its r2

values for each query class in our training. They varied from 0.877-0.994 for the

ten queries in our TPC-H workload. All of our queries were very well-fitted by

this modeling. We train on 175 template examples on average, using data from our

training sets at multiprogramming levels 1-5. Next we consider how to estimate this

execution speed, or BAL.
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Variables R2

I 0.167
I & C 0.169
I & C & D 0.219
I & C & D & G 0.358

Table 3.3: r2 values for different BAL prediction models (variables: Isolated (I), Complement
Sum (C), Direct (D), Indirect (G))

. Training on multiprogramming level 3.

3.1.2 Resource contention prediction

At a higher level, we seek to quantify how a query’s performance changes as it ex-

periences resource sharing. In order to accomplish this we must first characterize

how a query class runs under optimal conditions, i.e., in isolation. We then need to

extrapolate how interacting with other query classes in our workload impacts its per-

formance. Quantifying contention is a very complex, multi-layered problem. Some of

the resources required are non-blocking (such as access to RAM or computing with

multiple cores), while others are serialized (including access to disk). Modeling all of

these facets of query execution and their interactions among each other analytically

is prohibitively expensive. We’d need to account for buffer pool state, CPU sharing,

and the more global state of the query executor. As we explored in the previous

section, average BAL is a consistent indicator of QoS, throughout changing query

mixes and concurrency levels. In this section we propose atechnique for predicting

average BAL byleveraging the interactions of query templates based onobservations

among pairs.

B2cB: Quantifying query interactions: a pairwise approach

To leverage B2Lfor end-to-end latency predictions, we must accurately predict the

average BAL. We start by examining the resource utilization of a query class un-
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der optimal conditions (in isolation), what resources other queries that are running

concurrently will expect to consume and also quantify how much these queries will

contend with each other on a query-by-query basis (i.e., evaluating interactions as

pairs).

To better characterize how queries interact we first looked at all pairwise inter-

actions. For our workload of ten queries, we executed all 55 unique combinations

in steady state. These pairings allowed us to characterize the magnitude and sign

(positive or negative to denote slow down or speed up respectively) for each pairwise

interaction in the workload. For example, when TPC-H Query 19 is run with Query

7 it executes in roughly the same amount of time it does in isolation. This is because

both of their query execution plans are dominated by sequential scans on the fact

table. In contrast, when Q19 is run with Q7, it slows down by approximately 50%.

In this case, the two queries share less overlap in their working sets and both require

significant RAM to do expensive joins.

We use this base pairwise interaction rate and isolated runs to build our regression

model. Specifically, we predict the average BAL based on these two inputs. We have

found that as long as we do not reach a state of overload, concurrency has an additive

effect on delay. We call this BAL estimation system ”BALs to concurrent BAL” or

B2cB.

When we predict the latency or BAL of a query, we call this query the primary.

Queries that are running concurrently with it are its complements.

Our model has the following four independent variables, provided from training

data of queries running in steady state as pairs as well as in isolation:
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• Isolated : Isolated BAL of primary query

• Complements : Sum of complement queries’ isolated BALs

• Direct : Sum of the change in BAL for the primary when it interacts with each

of its complements

• Indirect : Sum of indirect contention costs, i.e., the change in BAL for each

complement with each other complement.

The intuition behind this model is that when we are dealing with a non-overloaded

state, the cost of contention increases linearly, and is a function of fixed costs for

each query in the mix as well as variable costs for each pairwise interaction among

the queries (a roughly n2 relationship, divided into direct and indirect costs). If

we presume round robin scheduling, then the BAL becomes the cost of our initial,

isolated reading, plus the cost of one average reading of each of the complements,

plus observed interaction costs among all of the queries in the workload.

Examining isolated BAL creates a baseline to assess the concurrent BAL. It pro-

vides us the default access time for the primary query, under optimal circumstances.

We are summarizing the behavior of an very complex system by estimating how long

on average it takes to access a block of data for the query executor. We denote the

isolated BAL of a query i as Ti.

Similarly, we need to consider the needs of the complement queries that are

running in our proposed mix. Summing the BAL of the complements allows us

to build an estimate of the rate at which they consume I/O bandwidth given fair

scheduling. This is a rough estimate of the “cost” of complement queries. A fast

isolated average BAL implies that we have a lightweight query that draws most of

its inputs from RAM. In contrast, longer buffer access latencies mean that a query
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is requesting diverse data that is not memory- resident such as a fact table scan or

an index scan, necessitating expensive seeks.

Next we look at the change in BAL for our direct query interactions. We quantify

a direct query interaction as the average BAL of a query when it is measured in steady

state with one other query. We refer to the BAL of query i run with query j as Ti/j.

We take the change in this measurement as ∆Ti/j = Ti/j − Ti. If this quantity is

positive, we are experiencing slowdown. If it is negative then we have a beneficial

interaction between queries. As alluded to earlier, like queries (especially ones in the

same query class) sometimes help each other finish faster. In contrast, queries that

access completely different relations will only create contention and can dramatically

slow down query execution progress.

Finally we examine the change in delay between the complement queries. This

gives us a glimpse into how much contention they are creating and how much their

interacting footprint will affect the primary query. It is worth noting that their

interactions may not be symmetrical (∆Ti/j 6= ∆Tj/i. For example, an equi-join

requires dedicated memory to complete their comparisons efficiently. If it is run

concurrently with a table scan, the table scan will not be as affected by the join

because it uses each tuple only once. The scanning query disproportionately affects

the latency of the joining query due to it having access to less memory.

We found that all of these independent variables were necessary to build a com-

plete model. As Table 3.3 demonstrates, our R2 increases significantly once we start

considering isolated costs with interactions, and has almost half the sum-squared

error when solving for four variables rather than relying on the isolated BAL as an

indicator.
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We predict average BAL for query q, with the remaining queries in the mix (com-

plements) as c0..cn as:

B = αTq + β

n∑
i=0

Tci + γ1

n∑
i=0

∆Tq/ci + γ2

n∑
i=0

n,j!=i∑
j=0

∆Tci/cj (3.1)

We solve for the coefficients α, β, γ1 and γ2 using linear multivariate regression

for all queries in our training set, once per each multiprogramming level. We elect to

do this regression once per multiprogramming level to make a robust model for many

query interactions. The regression technique derives our coefficients using the least

sum-squared error method. Our samples are derived from latin hypercube sampling.

An example of this technique is Table 2.1.

Figure 3.2: System model for query latency predictions in steady state.

To provide a more concrete example, if we are predicting the BAL of query a

and it is being run with queries b and c, we start out with the following inputs:

• Ta, Tb, Tc - the average BAL of a, b and c when run in isolation

• ∆Ta/b,∆Ta/c, et cetera - change in BAL of a when run with b or c (∆Ta/b =

Ta/b − Ta)



33

Using this data we do regression for the average BAL by setting up the following

model:

B = αTa + β(Tb + Tc) + γ1(∆Ta/b + ∆Ta/c) + γ2(∆Tb/c + ∆Tc/b)

We outline the end-to-end process of latency prediction on the right-hand side

of Figure 3.2. We use this model B2cB or “BAL to concurrent BAL” to create a

BAL estimate for higher levels of concurrency with arbitrary mixes. This lightweight

system allows us to rapidly create an average BAL estimate which we can then apply

our B2L model to, enabling us to solve for our QoS estimate.

3.2 Performance prediction

To create our performance predictions, we start by training our model. At the highest

level, the training phase consists of running our workload in isolation as well as at

several multiprogramming levels. This provides the coefficients for evaluating our

B2L and B2cB models. All of our sampling phases are used to train both prediction

systems.

3.2.1 B2cB: Training Phase

Sampling a subset of the data in a training phase to create a robust model has been

used in many database performance applications such as [7, 26]. Experiment-driven

modeling allows us to approximate the landscape of how queries in a set interact.

For us, we reason about query interactions as an additive model, where we weigh

the fixed costs of individual queries and the projected cost of interactions, using the
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B2cB method from Section 3.1.

Our model must evaluate contention at three levels: isolation, pairwise and higher

degrees of concurrency. The steps are displayed in Figure 3.2.

First we characterize the workload that we have in terms of how each query

behaves in isolation. This baseline allows us to get an estimate of what constitutes

normal, unimpeded progress for a query class and how much we are speeding up or

slowing down as more queries are added too the mix. We collect 5 samples of each

query class running in isolation with a warm cache. We record both the latency

and BAL for our model building. The BAL provides input for the first two terms of

the B2cB model. The BAL-latency pair is used in the training of the B2L latency

prediction model.

Next, we build a matrix of interactions by running all pairwise combinations, 55

in our case. This allows us to succinctly estimate the degree of contention that each

query class in a workload puts on every potential complement. As with our isolated

measurements, we get both end-to-end latency as well as average BAL measurements

for all of these combinations. These BAL-latency pairs are also used for the B2L

training phase. In addition, they too are used as inputs for the examples used by

B2cB to estimate BAL. This moderate number of samples is completely necessary

for both our BAL and latency predictions. The pairwise interactions provide us with

inputs for the independent variables of B2cB. They also give us our input for our

B2L model. B2L builds upon many concurrency levels in order to plot how latency

grows as contention increases. Each multiprogramming level helps us complete the

model.

After that we build our model coefficients for interactions of degree greater than 2.
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This linear regression is done on a set of Latin hypercube sampled data points. These

sample runs are used to create the coefficients for B2cB at each multiprogramming

level.

LHS is a general sampling technique and is not a perfect fit for exploring this

space of all possible query combinations. LHS does not take into account the differ-

ence between combinations and permutations when exploring our sampling space.

For example, to the sampler, the combination of (3, 4) and (4, 3) would both be

considered distinct samples. From the database’s point of view they are both simply

one instance of Q3 and one instance of Q4 running concurrently. We eliminated LHS

in which the same combination appears more than once from our training set.

For our training phase we used this sampling technique three times for each

concurrency level. Experimentally we found that as more samples were taken we

naturally get a more comprehensive picture of the cost of contention in our system.

On the other hand, more sampling takes more time. We found that three LHS

runs for each multiprogramming level was a good trade off between these competing

objectives. Acquiring more samples did not improve our prediction accuracy by

greater than 5%.

Each LHS run consists of ten steady state combinations, resulting in 30 training

combinations sampled for each multiprogramming level. Initially this may seem like

a lot of samples, but realize that it is not that many in comparison to all possible

combinations. This is especially true for higher multiprogramming levels where our

set of combinations grows exponentially every time we add a query.

In practice, the total training period took approximately a couple of days in our

modest setup. This may seem like considerable time, but we are only required to
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train once and can then use the results for any arbitrary mixes indefinitely. It is

also worth noting that this up-front training period is what allows our model to be

extremely lightweight once it reaches the evaluation phase (i.e., it is producing query

latency estimates). The cost of creating an estimate is negligible once the model is

trained. It is only the cost of applying the B2cB model (summing the primary,

complement, direct and indirect I/O contributions) and providing the output to a

B2L model (y = mx+ b).

3.3 Timeline Analysis

Using the B2cB model to estimate our buffer access latency followed by the B2L

model for each query class, we can estimate the latency of individual queries being

executed in steady state. This QoS estimator is trained on cases where the mix of

queries will remain constant for the duration of our prediction. This system is useful

for simple cases, where we only want an estimate for how long a query will run in a

fixed mix. It also works well for very consistent workloads.

However, in most circumstances the query mix is constantly changing as new

queries are submitted by users and pre-existing ones terminate. For example, in a

production system, managers and other decision-makers submit queries when they

are at work and would benefit from an estimated time of arrival for the results. With

modeling we can give them real time feedback of how long a new query will run and

how much it will affect their currently executing workload.

This type of system necessitates evaluation of the larger workload with arbitrary

mixes. We need to consider all of the mixes that will happen during a query’s lifetime
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as the number and/or type of complement queries goes up and down. This system

must quantify the slowdown (or speedup) caused by these mixes, and estimate what

percentage of the query’s work will happen in each mix.

We propose two scenariosfor evaluating our predictions. The first setup we study

is one in which new queries are being submitted for immediate execution. In this case

we presume that at scheduling time the number of queries executing monotonically

decreases as the queries currently executing complete. In the second scenario we

consider a batch-based approach, where our system is given a fixed multiprogram-

ming level and a queue of queries to run. In this method we also attempt to model

the mixes that will occur, by projecting when queries from the queue will started

during the time we are modeling in our prediction.

Figure 3.3: JIT evaluation flowchart.

3.3.1 Just-in-Time Modeling

We call the former approach just-in-time (JIT ) modeling. JIT allows us to ask the

question, ”If I schedule a query now, how long will it take? How will it affect the

presently running queries’ completion times?” JIT estimates are more flexible in that

they support more than one multiprogramming level in our estimate and real-time
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changes in the workload.

Also, this more incremental approach will allow us to refine our estimates as

time goes on. As we evaluate QoS every time a query is added, we can correct

past estimates by examining how the query has progressed since we last forecasted

its end-to-end latency. In the context of a SLA, this may allow us to prevent QoS

violations from happening by giving us time to intervene and load balance as we go

along. Experimentally we saw an average of 9% accuracy in our QoS estimates with

this approach.

This timeline generation requires estimates of the latency for each query in each

mix and what percentage of its execution time each mix will occupy. When we

evaluate individual steady states, we infer an ordering of when queries will terminate

by sorting their remaining latency estimates. It is updated whenever a query is added

to our workload to estimate how long a new query will run and how it will impact

its complements.

The JIT algorithm is charted in Figure 3.3. In our timeline-based QoS estimator,

first we look at all of the progress of the n queries that are presently executing in

a mix. We create a list of the time that has elapsed since each presently executing

query began and initialize our performance estimate with this quantity. We also

record the number of buffer pool requests that have been serviced in the past for

each query. This second metric gives us a rough estimate of what percentage of the

query’s work has been completed.

Next we must look at the estimated QoS for each query in the proposed mix,

operating under the temporary assumption that the mix does not change. We can

use the techniques in the previous section to create end-to-end latency estimates for
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each query in the workload under these steady state conditions. This first estimates

BAL using B2cB, which we then translate into latency using B2L.

After this we sort the steady state estimates and pick the query with the minimum

remaining time as our first segment of evaluation. This defines the period over which

we evaluate our first discretemix. We select this qmin and its estimated latency lmin

as the time when our mix state will change next. We then subtract qmin from the

mix.

We then update the progress of each query that is not equal to qmin by taking the

ratio of lmin/lq and multiplying it by the buffer pool requests remaining for query

q. We also add lmin to our estimate for each query in the workload that is not

terminating.

As an aside, we found that our buffer pool request count never varied more than

5% for the same query class. This is because the query execution plan never changed,

despite the use of range queries and indices. If a query did exhibit plan changes,

either caused by a skewed distribution of the data or more variable range queries,

we can account for this by subdividing our query classes into cases for each plan /

range.

Finally, we subtract qmin from our workload because we project that it will have

ended at this prediction point. We keep iteratively predicting and eliminating the

query with the least time remaining until we have completed our estimates for all

queries in the workload.

To summarize, we start with n queries and project a completion time for each in

n phases. Each phase contains a monotonically decreasing multiprogramming level
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Figure 3.4: Queue modeling algorithm where qp is the primary query, pq is the progress of query
q, Rq is the total number of requests for q.

t = 0
while qmin 6= qp do

for each r in w do
li = EstimateTimeRemaining(r, pr, w)
qi = r

end for
w = sort(l, q) // sort to find the query with the shortest remaining latency
w0 = get queue next() // replace shortest remaining query from the mix with
the next one in the queue
t+ = l0 // add minimum time to primary’s estimate
for each q in w, q 6= w0 do
pq+ = (l0/lq) ∗ (Rq − pq)

end for
end while

as a query in the mix terminates. At each concurrency level greater than two, we

use our B2cB and B2L models to create QoS estimates. For isolated and pairwise

cases we use the latencies recorded during training.

3.3.2 Queue Modeling

Another scenario under which this system could be useful is for estimating how long

a query will take if we have a fixed multiprogramming level. In [39] the authors

discussed how a fixed multiprogramming level is a common “knob“ for optimizing

DBMS performance while scheduling concurrent resources. Queue Modeler requires

access to a queue of queries submitted. QM works very similarly to JIT predictions,

except it examines the currently executing workload and models the addition of the

next query in the queue when it projects that a current query will terminate. This

system allows us to give an end-to-end estimate of progress without starting the

execution of some of the queries that are included in our prediction.
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We detail the working of Queue Modeler in Algorithm 3.4. Queue modeling starts

with a list of status information for each presently executing query, much like JIT.

This too is a pair of the query execution time and the progress the query has made

in terms of buffer pool requests. We add the new query to the list with its progress

and current latency at zero. Next we model the steady state latency of each query

in the mix and sort the remaining latency estimates. We then replace the query

that has the shortest remaining time (qmin) with the next one on the queue. qmin

is projected to continue running for rmin time. Next we update the progress of the

remaining queries by taking the ratio of rmin to their projected time remaining. We

continue this cycle until the query for which where are creating a prediction is qmin.



Chapter Four

Generalized Concurrent Query

Performance Prediction
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In this chapter we progress on to studying a system to create predictions for dynamic

workload using a system that we call contender.

4.1 Extending Existing Learning Techniques

When considering how to create predictions for dynamic concurrent workloads, we

began by experimenting with sophisticated machine learning techniques. We ex-

tended the techniques of [9] and [26], which were devised for isolated QPP. Here, the

authors parsed the query execution plans (QEPs) of individual queries. A QEP is a

directed acyclic graph which defines the steps that a query executes to produce its

results. The research used a feature set defined by the query plan nodes. Queries

are modeled using machine learning techniques such as Kernel Canonical Correla-

tion Analysis (KCCA) and Support Vector Machines (SVMs). When we applied

these techniques for cQPP, we found that they were not effective in addressing our

problem, as we discuss below.

We first examine how we adapted the feature set for isolated query latency pre-

diction to concurrent environments. We then briefly review the methodology for how

we applied these machine learning techniques to the problem of cQPP. After that

we evaluate our models on the TPC-DS workload detailed in Section 6.2.1. These

statistical approaches require significant training sets, so for these experiments we

learn on 24 templates and test on the remaining one from our workload.

Features We leveraged the work for isolated QPP to experiment with model-

ing concurrent query performance. The features consisted of a count and summed

cardinality estimate for each unique QEP node.
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We extended these feature sets for cQPP two ways. First, we made them

interaction-aware by incorporating data describing the specific I/O requirements

of individual QEPs. We performed this by adding a feature for each distinct table

scanned. Second, we made it concurrency-aware by adding the features of contem-

porary queries. This brings our total number of features up to 4n, where n is the

number of distinct QEP nodes including sequential scans for each table. In our

experiments, we had 168 features for 42 QEP node types. This resulted in very

complex models as we cast our queries into a high dimensional space.

Accuracy We evaluated two popular machine learning techniques to create pre-

dictions for new templates based on the features described above. In the first tech-

nique, KCCA, we create predictions by identifying similar examples in the training

data. In the second technique, SVM, we learn by classifying queries by their features

to coarse-grained latency labels. For both cases, we work at the granularity of the

query plan and we used well-known implementations of each technique [14, 33].

We found moderate success with this approach for static workloads at MPL 2

(i.e., with the same templates in the training and test set but differing concurrent

mixes). We trained on 250 concurrent query mixes and tested on 75 mixes, giving us

a 3.3 : 1 ratio of training to test data. Each template was proportionally distributed

between the training and test set. We found that we could predict latency within

32% of the correct value with KCCA on average and within 21% for SVM. While

these results are competitive with the work of [23], they are more complex and time

consuming in comparison to their predecessors.

We also evaluated these approaches on a dynamic workload. For this study, we

reduced our workload from 25 to 17 templates because the remaining 7 templates

had one or more QEP nodes that were not present in any other template in our
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Figure 4.1: Relative error for predictions at MPL 2 using machine learning.

workload. We could not build models for features that we have not trained upon.

As shown in Figure 4.1, we found that neither technique was very good at esti-

mating latency for previously unseen templates. KCCA was very sensitive to changes

in QEP nodes used because it takes the Euclidean distance between the new tem-

plate and all of the training examples. When a new template is far in feature space

from all of our training examples, its predictions are of lower quality. Likewise, SVM

was over-fitting the templates that it has rather than learning interactions between

QEP nodes. This is problematic because nodes that are salient in one QEP may be

absent in others.

Both techniques perform well on queries where they have one or more templates

that are close in plan structure (e.g., templates 56 and 60). In this context, we

found that machine learning solutions work proportionally to the quality of their

training data. Unfortunately QEP feature space is sparsely populated in practice, so

building a robust model of this space is very time consuming. Thus, we propose an

alternative approach that casts the problem in terms of resource contention rather

than individual node interactions.
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4.2 Modeling Resource Availability

In this section we describe how we model I/O availability to predict the latency of

a query t (the primary query) when executing concurrently with a query set C (the

contemporary queries). First, we discuss how we generate a latency range for the

primary based on the minimal and maximum I/O contention. We refer to this range

as the primary’s performance continuum. Then we study how we can estimate where

in this range the primary’s performance lies by modeling the I/O contention between

the primary query and its contemporaries.

In our models we elected to work at the level of the template rather than indi-

vidual query execution plans. The reasons for this are twofold. First, as discussed

in Section 4.1, modeling interactions at the QEP level is not fruitful using conven-

tional techniques. Secondly, we observed that on average our templates exhibited a

standard deviation in latency of 6% when executing in isolation, which is a manage-

able deviation. Were we to find higher variance, we could use the techniques in [5]

to divide our templates into subclasses. In this work we focus on the interactions

among query templates, rather than the individual query characteristics.

4.2.1 Template Performance Continuum

Contender creates a continuum that establishes a range for the performance of the

primary query template. To make performance comparable to other templates, we

normalize the query’s latency as a percentage of its continuum and we estimate

the upper and lower performance by simulating the best and worst I/O contention

scenario. By quantifying where a template’s performance lies on the continuum, we
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can then see how the query responds to I/O contention, rather than being tied to

absolute quantities of latency.

We set the lower bound of our continuum to be the latency of the primary query

when running in isolation, lmint . This metric sets our estimates relative to the best

case scenario, i.e., when our query makes unimpeded progress. It does not preclude

the case of negative continuum points when we observe positive interactions, as we

will explore in Section 4.3.

For each template t and for a given MPL we use a spoiler to calculate its con-

tinuum’s upper bound, lmaxt . We note that MPL is the multiprogramming level of

the system, i.e., the number of concurrent queries. This enables us to chart how a

template’s latency increases as resource contentions grows. The spoiler simulates the

highest-stress scenario for the primary query at MPL n. It allocates (1-1/n)% of the

RAM and pins it in memory. It also circularly reads n− 1 large files to continuously

issue I/O requests. We run the spoiler to simulate MPLs for each template in the

range of [2,5]. We found that by using the spoiler we can very accurately simulate the

upper bound for a given template in a system with fair scheduling. Empirically out

of 2,188 distinct samples, we found that the spoiler predicted maximum is effective

for 96% of cases. The few outliers are a side effect of our sampling strategy. Details

are in Section 6.2.1.

Thus, if lt,m is the query latency of a template t executing with a query mix m,

its continuum point is defined as:

ct,m =
lt,m − lmint

lmaxt − lmint

. (4.1)



48

Symbol Definition
lmint minimum latency of template t
lmaxt maximum latency for template t
pt % of exec. time t uses I/O in isolation
sf time required to scan table f in isolation
la,m observed latency of template a when run in mix m
hf times that f appears in a mix’s fact table scans
gf,c boolean for if c and primary scans f
jf,c boolean for if c scans f and the primary does not
ωc I/O time executed by contemporary c and primary
τc I/O time in which contemporary c executes shared

scans with other contemporaries
rc query intensity for contemporary c
rt,m CQI for primary t in mix m

Table 4.1: Notation for CQI model for a query t, table scan f and contemporary query c.

Contender predicts the continuum point, ct,m, and then based on Equation 4.1

estimates the latency, lt,m, of the primary query t. In the next sections we present

our prediction model for ct,m, which is based on modeling the impact of resource

availability on the latency of the primary query t.

4.2.2 Contemporary Query Intensity (CQI)

Given a primary query t executing concurrently with a set of contemporary queries

C = {c1, ..., cn}, Contender uses the CQI metric to model how aggressively con-

current queries will use the underlying resources. Specifically, we focus on how to

accurately model the usage of I/O by the contemporary queries. This is important

because the I/O bottleneck is the main source of analytic query slowdown [23]. We

first examine how much of the I/O bandwidth each contemporary query uses when

it has no contention. We then estimate the impact of shared scans between the

primary t and its contemporaries C. Finally we evaluate how shared I/O among the

contemporaries may further ameliorate I/O scarcity.
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Baseline First, we examine the behavior of each contemporary template ci by

quantifying its I/O requirements. Specifically, we measure the percent of the query’s

execution time spent executing I/O in isolation, pci . We do not differentiate between

sequential versus random I/O, deliberately measuring the query in terms of only the

time required on the I/O bus. Using this metric, we evaluate I/O in the same units

as latency. We calculate pci by measuring the time the disk has spent executing I/O

while the query ci is running in isolation. (we used Linux’s procfs statistics). Our

first approximation of the I/O requirements of our contemporaries can be calculated

by averaging pci for all of the contemporary queries c1, ..., cn.

Positive Primary Interactions After we have a baseline estimate for the I/O

requirements of our contemporary queries, we focus on estimating the positive impact

of interactions on the each contemporary query ci. One way for a query ci to have

less contention is for it to share work with its primary query. Sharing needs to be

large enough for the interaction to make an impact on end-to-end latency. The bulk

of our positive interactions will occur from shared fact table scans which are at the

heart of our interactions. These are the largest source of I/O usage for analytical

queries and the ones that are most subject to reuse in shared buffers.

Therefore, for each contemporary query we estimate its I/O behavior as it in-

teracts with the primary. Specifically, we estimate the time spent on I/Os that are

shared between the primary and its contemporary queries. We estimate this time

by first determining the fact tables scans that are shared by the primary and each

contemporary ci as:

gf,ci =

 1 if template ci and primary both scan table f

0 otherwise
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Then, we can estimate the time that the contemporary template ci will no longer

exclusively require for I/O, ωci (since these I/O requests are shared with the primary),

as:

ωci =
n∑
f=1

gf,ci × sf (4.2)

where sf is the table scan latency for the fact table f . We empirically evaluate

the latency of each table scan by executing a query consisting of only the sequential

scan. The above formula sums up the estimated time required for each shared fact

table scan.

Contemporary Interactions In addition to determining the I/O that is likely

to be shared between the primary and its contemporaries, we must also forecast

the work that will be shared among contemporaries. For example, if our primary is

executed with contemporaries a and b, we want to take into account the savings in

I/O time for any scans that are shared by a and b.

We first determine the table scans that are shared between ci and its non-primary

contemporaries with:

jf,ci =

 1 if ci scans f , the primary does not and hf > 1

0 otherwise

where hf counts the number of contemporaries sharing a scan table f . Because we

are only interested in shared scans, we add the limit that hf must be greater than

one. We also require that fact table f must not appear in the primary to avoid double

counting. We estimate that on average the intersecting templates will equally split

the cost of the sequential scans. We can calculate the reduction in I/O due to shared
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scans for each contemporary c as:

τci =
n∑
f=1

jf,ci × (1− 1

hf
)× sf (4.3)

Contemporary I/O Requirements Given the I/O requirements reductions

due to positive interactions with the primary and the non-primary contemporaries,

we can estimate the I/O requirements of a contemporary query ci as:

rci = (lminci
× pci − ωci − τci)/lminci

(4.4)

Here, we take the latency of ci executing in isolation (lminci
). We multiply it by

pci , the percentage the query spend executing I/Os, to estimate its I/O time. We then

subtract its positive interactions with the primary and other contemporaries. This

gives us an estimate of the percentage of ci’s “fair share” of hardware resources that it

will use and it reduces the I/O requirements to that which is strictly interfering with

the primary. Contemporaries with high rci values will use most or all of the resources

available to them, bringing the primary closer to the spoiler provided maximum. A

lower rci indicates a query that will create little contention for the primary.

We then average the r values over all contemporaries to produce rt,m for primary

t in mix m, where m is comprises the primary and contemporaries c1, ..., cn:

rt,m =
1

n

n∑
i=1

rci (4.5)

rt,m is our Contemporary Query Intensity (CQI) metric, which we use to model the

I/O contention for the primary t. We truncate all negative I/O requirements to zero.

This occurs when contemporaries have negligible I/O requirements outside of their
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Figure 4.2: An example of calculating query intensity for an individual contemporary.

p p + ω p + ω + τ
MPL 2-5 25.4% 20.4% 20.2%

Table 4.2: Mean relative error for the CQI model for latency prediction.

shared scans. We use this estimate as the independent variable for our predictions

of the primary’s continuum point, ct,m (see Section 4.3).

To work through an example, see Figure 4.2. Here c1 shares one fact table scan

with the primary t and one with the contemporary c2. First contender calculates

the baseline I/O bandwidth for c1 as lminc1
× pc1 . We then subtract the duration

of the one shared scan with the primary as ωc1 . After that we subtract half of its

shared scan with c2 as τc1 , to account for savings among the contemporaries. We

then divide by lminc1
to estimate the percentage of I/O time that c1 will require.

Latency Prediction based on CQI In Table 4.2 we analyze how well CQI

predicts latency based on linear regression. We start with the baseline and incre-

mentally add the the primary and contemporary interactions to our CQI estimate.

We examine our ability to predict latency at MPLs 2-5. In the first column, we

examine having our independent variable be only the average percent of I/O time

used by the contemporary queries. Here, we theorized that if we knew how much

of the I/O bandwidth each contemporary query would use in isolation, we could av-

erage it out to determine the amount of “slack” available. This approach produced

moderately good predictions at 25%.
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Next, we evaluated whether subtracting the time of individual shared scans be-

tween the contemporaries and primary would improve our estimates. We use shared

scans to quantify the I/O that is freed due to direct positive interactions, allowing

a query to complete faster than the spoiler-predicted maximum. In doing this we

distill our I/O requirement forecast to only those that are disjoint from the primary.

We realized modest improvements in our accuracy, bringing our mean relative error

(MRE) down to 20%.

After that we looked at whether considering interactions between the contem-

poraries would further refine our estimates. Interestingly, these interactions did not

significantly improve our results. Sharing among the contemporaries does not impact

the availability of I/O to the primary as heavily as direct primary-to-contemporary

sharing.

4.3 Building Predictive Models for Query Perfor-

mance

In this section we explore the steps we take to learn the relationship between CQI

and query performance for training as well as new unseen templates. First, we

provide a linear regression model that predicts the latency of a query (i.e., where

its performance lies on our continuum). We refer to this as modeling the query’s

sensitivity (QS) to resource contention. Contender first builds a set of reference

models for the templates available in its training data. After that Contender learns

the predictive models for new, unseen templates based on the references.



54

4.3.1 Modeling the Continuum: Estimating Query Sensitiv-

ity (QS)

Table 4.2 shows that we can build highly accurate predictions using linear regression

based on CQI. We can estimate CQI using Equation 4.5 which is built on a blend of

semantic query plan information and physical measurements in isolation, as described

in Section 4.2. Given the CQI, we can build a second model to predict the relationship

between CQI and a template’s performance (i.e., its continuum point) for a given

mix of concurrent queries.

We learn the relationship between the CQI and continuum point by comparing

our new template to the performance of templates that are part of our pre-existing

workload. We now introduce the notion of Query Sensitivity (QS) to capture the

degree that a template responds to changing levels of resource contention. Our

solution to capture this sensitivity notion uses linear regression. Each model consists

of a y-intercept (b) and a slope (µ), producing the classic y = µx + b mapping to

predict our continuum point. The prediction model for template t is:

ct,m = µtrt,m + bt. (4.6)

For templates in our reference workloads, we apply linear regression to learn the

coefficients µt and bt. We first evaluate several mixes, m1, ..mn with that template.

For each template t we model the relationship between several (rt,m, ct,m) pairs.

Our training set gives us several µt and bt examples from which we can learn new

template models. In Figure 4.3 we examine the relationship between µt and bt for

our templates in pairwise executions.

In the plotted models the y-intercept establishes the minimum continuum point
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Figure 4.3: Coefficients from regression at MPL 2 for predicting continuum points based on CQI.

for a template executing under concurrency. In cases where the contemporary queries

have an I/O usage of near zero, the y-intercept is equal to our slowdown from isolated

performance (lt,m − lmint) divided by the continuum range (lmaxt − lmint). This

slowdown occurs from fixed costs of concurrency such as context switching.

Interestingly, in several of our cases the y-intercept is negative, which corre-

sponds to templates that are predisposed to positive interactions. If a template has

a negative y-intercept and near-zero CQI (i.e., most of its work is shared), then our

estimated point on the continuum is negative, hence faster than the query’s execu-

tion time in isolation. These queries have lightweight CPU requirements which allow

them to benefit more from shared scans.

The slope denotes how quickly the template will respond to changes in I/O avail-

ability. Templates that have their performance dictated by the I/O bottleneck are

more sensitive to variations in the resource requirements of their contemporaries.

This high slope is also correlated with templates that have a lower y-intercept, both

are harbingers of I/O bound executions. These queries are more sensitive to con-

currency and their performance when executing with others occupies a wider range.

Anecdotally they are primarily executing sequential scans with small intermediate

results.
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For the majority of our queries, the y-intercept and slope are highly correlated

along the trend line. This demonstrates two observations. First, that query sensitiv-

ity to concurrency correlates with a larger range of interactions (both positive and

negative). Secondly, we only have to estimate one of these parameters to learn the

behavior of a new template without observing its interactions in our workload.

4.3.2 Modeling QS for New Templates

In this section we discuss four different methods we studied for predicting the QS

model coefficients (µt and bt in Equation 4.6) for new, previously unseen templates.

Our goal was to to find a simple metric to model a new template’s reaction to

changing resource availability. We first examined the best case scenario where there

is only contention for memory but not I/O bandwidth. Then we studied contention

when a query is executing with a very cooperative contemporary: itself. We also

examined models that rely on the template properties. Eventually we propose a

model that relies on isolated latency to learn the QS model parameters.

Memory-Only Spoiler In analytical workloads we theorized that queries gen-

erally use their portion of the memory. This is due to their underlying data being

much greater than the size of RAM. In our template models the y-intercept (bt)

should be analogous to the query’s continuum point if there is no contention for

I/O bandwidth, but it is still executing alongside another query. We simulate this

condition by creating a modified spoiler, based only on memory consumption. It

allocates (1 − 1/m)% of the RAM where the simulated MPL is m and leaves the

remaining hardware resources untouched. We recorded the template latency under

these conditions.
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This approach was poorly correlated with our y-intercept estimates at MPL 2.

We evaluated the correlation using Pearson’s r, a normalized metric for covariance

between two sets of measurements. r ranges from -1...1, where higher absolute

quantities denote better fits. Our r between the continuum point to the y-intercept

was 0.2.

There are several complexities associated with a primary executing concurrently

with real queries that are not captured in this approach. The memory-only spoiler

does not represent the cost of context switching, contemporary scanning of dimension

tables or the swapping of contemporary intermediate results.

Interestingly we found that this quantity was slightly better correlated with our

slope, having a r of -0.38 due to the relationship in Figure 4.3. This indicates that

queries with a higher slowdown when memory-starved have a lower sensitivity to

concurrency. In general as the degree of query complexity increases, our likelihood

of reaping benefits (such as scan sharing) from query interactions diminishes.

Homogeneous Samples An alternative approach to modeling QS is to run a

template concurrently with itself. This gives us the effect of close sharing of fact

table scans and estimates the impact of the additional query running. We found

empirically that the slowdown of a template when run with itself is slightly better

correlated with the coefficients of its model (r=0.27 for y-intercept, -0.46 for slope)

than the memory-only approach.

Homogeneous samples have only moderate correlation because they are unduly

influenced by the individual template characteristics. For example, if a template

with high memory requirements is run with itself, the latency may slow down in the

wake of greater swapping at a faster rate than it would for other workload templates.
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Y-Intercept Slope
pt 0.18 -0.05

Max Working Set -0.24 0.11
Plan Nodes 0.31 -0.29

Records Accessed 0.12 -0.22
Isolated Latency 0.36 -0.51
Spoiler Latency 0.27 -0.49

Spoiler Slowdown 0.08 -0.24

Table 4.3: r between template traits and model coefficients at MPL 2.

While this did exhibit a better correlation to our y-intercept, it required executing

time-consuming additional sampling. This, like the memory-only spoiler, was an

unattractive way to learn our model parameters.

Template Properties Next we examined parameter estimation by looking for

trends in the query execution plan and resources used in our existing samples. By

looking at template properties, we could predict how a query would react to changing

I/O availability. We examined both performance features, such as percent I/O time

(pt) and maximum working set size, the size of the largest intermediate result in

our QEP. We also analyzed query complexity, by charting how closely the number

of plan nodes and records accessed correlated with our coefficients. Finally, we

evaluated the continuum itself, correlating the isolated run time, spoiler latency and

spoiler slowdown (by dividing spoiler latencies by the corresponding isolated query

duration). By looking at how a query “stretches” its latency, we may be able to

learn our models. Our findings are in Table 4.3.

Our performance features, pt and working set size, were poorly correlated with

our model parameters. This is not surprising because these parameters were too fine-

grained to summarize the query’s sensitivity to concurrency. Likewise, the number

of QEP nodes and records accessed also gave us too little information about overall

query behavior. Spoiler slowdown only conveyed the worst-case scenario, stripping
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out valuable information regarding the query as a whole.

Isolated latency We found that isolated latency is inversely correlated with

slope in our model. Isolated latency is a useful approximation of the “weight” of a

query. Queries that are lighter weight tend to have larger slopes. They are more

sensitive to changing I/O availability and exhibit greater variance in their latency

under different concurrent mixes. In contrast, heavier queries (with high isolated

latencies) tend to be less perturbed by concurrency; their longer lifespans average out

brief concurrency-induced interruptions. Isolated latency is also positively correlated

with y-intercepts, due to the relationship in Figure 4.3. We learn from isolated

latency to predict Contender’s slopes for the remainder of this work.

Prediction pipeline for unseen templates

We build our prediction model in two phases (see Figure 4.4). First we train on a

known workload, drawing from isolated, spoiler and limited concurrent mix samples.

Next we use linear regression to estimate the slope, µt, based on our query’s isolated

latency. We learn this relationship based on other queries in our workload. Using

this estimated slope, we can learn the y-intercept, bt, using a second regression step.

We learn from a trend line such as that in Figure 4.3. This is step 3 in our framework.

By assembling these two estimated parameters, we can produce a prediction

of a new template t’s continuum point for an arbitrary mix. We do this by first

parsing the contemporary queries and estimating their I/O requirements (i.e., rci

values in Equation 4.4) and then calculate the CQI value for the template query t

(Equation 4.5). We then apply our estimated coefficients, µt and bt, to the CQI value

to estimate our continuum point based on the regression model in Equation 4.6.
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Figure 4.4: Process for predicting cQPP.

Given the continuum point, we use the isolated and spoiler latencies for the

template to scale it into a latency estimate, reversing Equation 4.1. Using this

technique, we can predict end-to-end latency for a new template as a part of arbitrary

mixes using just its isolated and spoiler latency samples.

4.3.3 Reduced Sampling Time

One of the appealing aspects of Contender is that it requires very limited sampling

to achieve high quality predictions. Specifically, we require only the spoiler latency

for each template paired with semantic information from its execution plan. This

is a very simple and flexible system for inserting new templates into pre-existing

workloads.

In prior work (e.g., [23]), the authors required significant sampling of new tem-

plates interacting with their workload before they can make predictions. This is

inflexible and causes an exponential growth in sampling requirements as the number

of distinct templates grow. This system used Latin Hypercube Sampling (LHS) in

its training phase for each template. For a workload with t templates with m MPLs
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and k samples taken at each MPL, this approach necessitates t × m × k samples

(O(n3)) before it can start making predictions. If we incorporate a new template, it

needs to be sampled with the previous templates. This requires at least 2 ×m × k

additional samples per template to determine how it interacts with the pre-existing

workload. In Section 4.1 the cost of adding a new template for our results was 109

hours on average.

In contrast our approach reduces our sampling to linear time. We only require one

sample per MPL, i.e., the spoiler latency. This dramatically reduces our sampling

time to 23% of the static workload case. In addition, this approach does not pre-

dispose our modeling toward a small subset of randomly selected mixes. Rather, we

profile how the individual template responds to concurrency generically. In the next

section, we explore how we learn spoiler latency, based on template characteristics,

which allows us to further reduce the sampling requirements of our system.

Predicting Spoiler Latency for Unseen Templates

Contender is well-prepared to predict latency for individual templates executing

under concurrency. However sampling at every MPL is cumbersome. Our model

would be much more flexible if we can learn spoiler latencies with more limited

sampling of new templates.

Spoiler Growth We first explored whether spoiler latencies had predictable

patterns of growth as our concurrency level increased. When we simulate a query’s

behavior as its access to hardware resources diminished, we observed that query

performance degraded. We theorized that latency would increase proportionally to

our simulated MPL. Qualitatively we found that templates tend to occupy one of
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Figure 4.5: Spoiler latency under increasing multiprogramming levels.

three categories. We have plotted one example of each in Figure 4.5.

The first category is demonstrated by Template 62. It is a very lightweight,

simple template. It has one fact table scan and very small intermediate results. This

query is subject to slow growth as contention increases as it is not strictly I/O bound.

In isolation it uses 87% of the I/O bandwidth.

Our second medium weight category is shown with Template 71. It is I/O bound

using greater than 99% of the I/O bandwidth in isolation. However, it does not have

large intermediate results. Because of these two factors, it exhibits modest linear

growth as we increase the MPL.

The final type of queries in our workload are heavy. These queries are shaped

by large intermediate results which necessitate swapping as our degree of contention

increases. They have a much higher slope. These templates exhibit linear increases

in latency, however their growth rate is much faster than that of the other two classes.

All of these responses exhibit linear growth, albeit different rates. By learning

from the first m spoiler latencies, where m is our multiprogramming level, we can

build a pattern for each template to estimate our upper bound at higher levels of
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pt WS Size Rand. I/O
r2 0.63 0.41 0.00

Table 4.4: Correlation between I/O profile components and spoiler models.

contention. Logically query latency should grow in proportion to the simulated MPL.

We experimented with training a linear regression model for each template. We

learned from MPLs 1-3 and evaluated our models on MPLs 4-5. We found that on

average we could predict spoiler latency within 8% of the correct elapsed time using

this technique. This demonstrates that there is a simple linear relationship between

query performance and simulated MPL.

Learning Spoiler Growth Patterns We have demonstrated that spoiler per-

formance for individual templates grows linearly proportional to our simulated MPL.

As detailed in Figure 4.5, individual templates have very different latency growth

rates as our simulated MPL increases. However we can estimate the slope for each

template by evaluating how comparable they are to other templates in our workload.

To this end we first normalize our spoiler latencies. For each spoiler recording we

divide by a template’s isolated performance so that our predictions revolve around

spoiler slowdown rather than latency.

We now turn our attention to predicting the coefficients for these models. To

predict a template’s response to the spoiler, we develop a profile of its I/O behavior.

We begin with three metrics for to describe query performance in isolation: pt, work-

ing set size and percent of time spent executing random I/O. In [26] the researchers

have predicted latency as well as I/O-level metrics for queries executing in isolation.

In future work we could leverage this to predict our template profiles.
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We evaluated how well each of these individual metrics correlated with our perfect

linear models for predicting spoiler slowdown in Table 4.4. We found that pt and

working set size are very well-correlated with our model coefficients. Queries with the

same percent of time spent executing I/O would have their spoiler latency naturally

“stretch” at the same rate as resource availability diminishes. This makes it intuitive

that pt will be a useful indicator of spoiler latency growth rates.

Likewise, working set size indicates the rate at which a template will swap its

intermediate results as resources become more scarce. While this is not as well-

correlated as pt it is still a useful indicator and gives us another dimension with

which to predict our spoiler model coefficients.

Finally, we found that random I/O time was not a good indicator of spoiler

growth rate. Random I/O confers a high fixed cost on query latency and this does

not directly indicate spoiler latency growth, rather it identifies circumstances under

which there will be limited growth. This is because random I/O creates a sunk cost

for queries that are dominated by it. We discard this metric for the rest of our study.

We considered two approaches to predicting spoiler latency for new templates.

First, we put each template in a two-dimensional space based on their working set

size and pt. We then average the coefficients of the k nearest neighbors to predict

the coefficients for the new template. Here we can learn the behavior of new queries

by comparing them directly to members of our prior workload.

An alternative approach is to predict spoiler slowdown by evaluating regression

on the relationship between pt and our spoiler slope. They are well-correlated, so

we will exploit this relationship . This would enable us to determine where a new

template resides in terms of a continuous function. However, it is a weaker approach
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because it necessitates using just one of our indicators.



Chapter Five

Bringing Workload Performance

Prediction to Portable Databases
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Figure 5.1: Fine grained regression for workload throughput prediction on Amazon Web Services
instances using TPC-DS.

5.1 Fine Grained Profiling

In the section, we demonstrate that a simple, query-at-a-time modeling approach

poorly predicts throughput for portable databases. This finding underlines the need

for a more general profiling solution. In this approach, we create a model for each

platform based on aggregating over its member queries. Our goal was to see if by

analyzing the resource requirements of individual queries in our workload, we could

build a model to describe how they would perform as a collection. By summing up

how the member queries used resources, we could quantify the total strain on our

system.

In theory this approach should be promising. We build a profile of each workload

where we sum up the strain that the member queries would place on the system

if executed in isolation. This should indicate the rate at which our workload can

make progress and hence predict throughput. However we found that in practice

this approach fails to capture the lower level interactions among our queries. We

cannot model savings from beneficial relationships such as shared scans. We also

fail to capture slowdown, such as two memory-intensive queries creating expensive
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thrashing in the buffer pool.

We start by profiling the query templates on three dimensions: memory, CPU and

I/Os executed. We collect this data from database logs. We created a vector for each

template with these three parameters, which capture the resource footprint for the

workload. To describe a workload, we summed up this 3-D vector over all templates

in the workload. We then built a model using multivariate regression to learn the

throughput of individual workloads. Our independent variables were the summed

memory, I/O and CPU usage, and the dependent variable was the throughput for

the whole workload on a given hardware configuration. We built one model per

hardware platform.

We experimented with the TPC-H and TPC-DS workloads detailed in Sec-

tion 6.3.1. We found that this approach worked reasonably well in TPC-H, with

an average relative error of 23%. This is because the TPC-H benchmark uses a

simple schema of just one fact table and few dimension tables. The opportunity for

complex (e.g., negative) interactions are limited because all of the queries are sharing

the same bottleneck.

In contrast, under the same framework, the prediction quality for TPC-DS was

very poor, with a mean relative error of 1307%, as shown in Figure 5.1. The errors

are a result of very complex interactions among the queries. The database has

skew, and includes seven fact tables and many more dimension tables. There are

various degrees of data overlap among the queries. For this more complex dataset

we regressed to the mean. In other words, there was no clear correlation between

this linear combination of variables and the throughput. Hence our models had very

large y-intercepts and negligible slopes for our independent variables. For most cases

this does adequately, albeit via over-fitting. For 80% of our samples, on average we
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get within 40% of the correct throughput. Our simple model creates an inaccurate

representation of the workload as it fails to capture such richer interplay among

queries. This corroborates the findings in [23, 9].

5.2 Portable Prediction Framework

Our framework consists of several modules as outlined in Figure 5.2. First, we train

our model using a variety of reference workloads. Next, we execute limited sampling

on a new workload on the local testbed. After that we compare the new workload

to the references and create a model for it. Finally, we leverage the model to create

workload throughput predictions (i.e., Queries per Minute or QpM). Optionally we

use a feedback loop to update our predictions as more execution samples become

available from the new workloads.

We initially sample the execution of our known workloads using the experimental

configuration detailed in 6.3.1. Essentially, a new workload consists of a collection

of queries that the user would like to understand the performance of on different

hardware configurations. We sample these workloads under many simulated hard-

ware configurations and generate a three-dimensional local response surface. This

surface, which we refer to as the fingerprint, characterizes how the workload re-

sponds to changing I/O, CPU and memory availability. We explore the details of

this sampling approach more in the proceeding sections.

In addition, we evaluate each of our reference workloads in the cloud. Our frame-

work seamlessly considers multiple cloud providers, regarding each cloud offering as

a distinct hardware platform. By quantifying how these remote response surfaces
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Figure 5.2: System for modeling and predicting workload throughput.

varied, we determined common behavioral patterns for analytical workloads in the

cloud. We learn from our reference workloads’ performance in the cloud rather than

interpolating within the local testbed. This makes us robust to hardware platforms

that exceed our local capacity.

Next we sample new workloads that are disjoint from the training set. We locally

simulate a representative set of hardware configurations for the new workloads by

creating local response surface. Finally we create predictions for new workloads

on remote platforms by comparing their response surface to that of the reference

workloads. We present the details of this process in Section 5.4.

In addition we incrementally improve our model for new workloads by adding in-

cloud performance to its fingerprint. As we refine our fingerprint for the workload,

we create higher quality predictions for new, unsampled platforms.

5.3 Local Response Surface Construction

In our design, we create a simple framework for simulating hardware configurations

for each workload using a local testbed. When we evaluate our new queries locally

we obviate the noisiness that may be caused by virtualization and multi-tenancy.
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Although we did not empirically find these complexities to be a significant factor, a

local testbed allows us to control for them.

We call our hardware simulation system a spoiler because it occupies resources

that would otherwise be available to the workload.1 The spoiler manipulates resource

availability on three dimensions: CPU time, I/O bandwidth and memory. We con-

sider the local response surface to be an inexpensive surrogate for cloud performance.

We experiment with a workload by slicing this three dimensional response surface

along several planes. In doing so, we identify the resources upon which the workload

is most reliant. Not surprisingly, the I/O bandwidth was the dominant factor in

many cases, followed by the memory availability.

We control the memory dimension by selectively taking away portions of our

RAM. We did this by allocating the space in the spoiler and pinning it in memory.

This forced the query to swap if it needed more than the available RAM. In our case

we start with 4 gigabytes of memory and increment in steps of four until we reach

our maximum of 16 gigabytes.

We regulate the CPU dimension by taking a percent of the CPU to make available

to the database. For simplicity we set our number of cores equal to our multipro-

gramming level. Hence each query had access to a single core. We simulated our

system having access to 25%, 50%, 75% and 100% of the CPU time. We did this by

making a top priority process that executes a large number of floating point opera-

tions. We time the duration of the arithmetic and sleep for the appropriate ratio of

CPU time.

1We derive its name from the American colloquialism “something that is produced to compete
with something else and make it less successful.”
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Figure 5.3: Local response surface for a TPC-DS workload with high I/O availability. Responses
are in queries per minute. Low I/O dimension not shown.

We had a coarse-grained metric for I/O availability: low or high. Most cloud

providers have few levels of quality of service for their I/O time. To the best of

our knowledge Amazon Elastic Block Store is the only service that allows users to

provision I/Os per second and this is a premium option. We simulated this by

making our high availability give the database unimpeded access to I/O bandwidth.

For the low I/O bandwidth case we had a competing process that circularly scanned

a very large file at equal priority to the workload.

An example local response surface is depicted in Figure 5.3. We see that its

throughput varies from zero to seven QpM. This workload’s throughput exhibits a

strong correlation with memory availability. Most contention was in the I/O sub-

system both through scanning tables and through swapping intermediate results as

memory becomes less plentiful.

5.4 Model Building

We elected to use a prediction framework inspired by memory-based version of col-

laborative filtering [31] to model our workloads. This approach is typically used in
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recommender systems. In simplified terms, collaborative filtering identifies similar

objects, compares them and makes predictions about their future behavior. This

part of our framework is labelled as “model building” in Figure 5.2.

One popular application for collaborative filtering is movie recommendations,

which we shortly review as an analogous exercise. When a viewer v asks for a movie

recommendation from a site such as Netflix, the service would first try to identify

similar users. It would then average the scores that similar viewers had for movies

that v has not seen yet to project ratings for v. It can then rank the projected

ratings and return the top-k to v.

In our case, we forecast QpM for a new workload. We compute the similarity for

our new workload to that of our references. We then calculate a weighted average

of their outcomes for the target cloud platform based on similarity. We found that

by using these simple steps, we could achieve high quality predictions with little

training on new workloads.

Our implementation first normalizes each reference workload to make it compa-

rable to others. We zero mean its throughputs and divide by the standard deviation.

This enables us to account for different workloads having distinct scales in QpM. For

each reference workload r and hardware configuration h, we have a throughput tr,h.

We have an average throughput of ar and a standard deviation σr. We normalize

each throughput as:

tr,h =
tr,h − ar
σr

This puts our throughputs on a scale of approximately -1...1. We apply this

Gaussian normalization once per workload. This makes one workload comparable to

the others.
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When we receive a new workload i, for which we are creating a prediction, we

normalize it similarly and then compare it to all of our reference workloads. For i we

have samples of it executing on a set of hardware configurations Hi. We discuss our

sampling strategies in the next section. For each pair of workloads i, j we compute

Si,j = Hi ∩Hj or the hardware configurations on which both have executed. We can

then estimate the similarity between i and j as:

wi,j =
1

|Si,j|
∑
h∈Si,j

ti,htj,h

After that we forecast the workload’s QpM on a new hardware platform, h, by taking

a similarity-based weighted average of their normalized throughputs:

ti,h =

∑
j|Si,j 6=∅,h∈Hj

wi,jtj,h∑
j|Si,j 6=∅,h∈Hj

|wi,j|

This forecasting favors workloads that most closely resemble the one for which we

are creating a prediction. We downplay those that are less relevant to our forecasts.

Naturally we can only take this weighted average for the workloads that have

trained on h, the platform we are modeling. We can create predictions for both

local and in-cloud platforms using this technique. While we benefit if our local test

bed physically has more resources than the cloud-based platforms upon which we

predict, we can use the model for cloud platforms exceeding our local capabilities.

The only requirement for us to create a prediction is that we have data capturing how

training workloads respond to each remote platform. Experimentally we evaluate

cloud platforms that are both greater and less than our local testbed in hardware

capacity.
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Figure 5.4: An example of 2-D Latin hypercube sampling.

We then derive the unnormalized throughput as:

ti,h = ti,hσi + ai

This is our final prediction.

5.5 Sampling

We experimented with two sampling strategies for exploring a workload’s response

surface. We first consider Latin hypercube sampling, a technique that randomly

selects a subsection of the available space with predictable distributions. We also

evaluate adaptive sampling, in which we recursively subdivide the space to charac-

terize the novel parts of the response surface.

Latin Hypercube Sampling Latin hypercube sampling is a popular way to

characterize a surface by taking random samples from it. It was used in [23, 5] for

a static hardware variant of this problem. It takes samples such that each plane in

our space is intersected exactly once, as depicted in Figure 5.4.

In the complete version of Figure 5.3, we first partition the response surface by

I/O bandwidth, a dimension that has exactly two values for our configuration. We
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do this such that our dimensions are all of uniform size to adhere to the requirement

that each plane is sampled exactly once. We then have two 4x4 planes and we sample

each four times at random.

Adaptive Sampling We submit that our local response surface is monotonic.

This is intuitive; the more resources a workload has, the faster it will complete.

To build a collaborative filtering model we need to determine its distribution of

throughputs. Exhaustively evaluating this continuous surface is not practical. On

average it would take us 88 hours to analyze a single workload if we did so in a coarse

grid.

We also considered using a system such as [22], in which the authors explore a high

dimensional surface of database configurations. They identify regions of uncertainty

and sample the ones that are most likely to improve their model. However this

technique is likely to evaluate more than is necessary because it presumes a non-

monotonic surface. By exploiting the clear relationship between hardware capacity

and performance, we may reduce our sampling requirements.

Hence we propose an adaptive sampling of the space. We start by sampling the

extreme points of our local response surface. This corresponds to (2.4 GHz, 16 GB,

High) and (0.6 GHz,4 GB, Low) in the full version of Figure 5.3. We first test to

see if the range established by these points is significant. If it is very small, then

we stop. Otherwise we recursively subdivide the space until we have a well-defined

model.

We subdivide the space until we observe that the change in throughput is ≤n%

of the response surface range. Our recursive exploration of the space first divides

the response surface by I/O bandwidth. We do this because I/O bandwidth is the



77

!"# !$# !%# !"# !$# !%#

!%# !"# !$# !%# !"# !$# !%#

!$# !%# !"# !$# !%# !"#

&'#

&(#

&)#

*+,-#

Figure 5.5: Example workload for throughput evaluation with three streams with a workload of
a, b, and c.

dimension most strongly correlated with throughput. After that we subdivide on

memory availability. It too directly impacts the I/O bottleneck. Finally we sample

among changing CPU resources if we have not reached a stopping condition.

5.6 Preliminary Results

In this section, we first detail our experimental configurations. We then explore the

cloud response surface, for which we are building our models. Next, we evaluate the

effectiveness of our prediction framework for cloud performance based on complete

sampling of the local response grid. After that, we investigate how our system

performs with our two sampling strategies. Finally, we look at the efficacy of our

models gaining feedback from cloud sampling.

5.6.1 Experimental Configuration

We experimented with TPC-DS and TPC-H, two popular analytical benchmarks at

scale factor 10. We evaluated using all but the 5 longest running queries on TPC-

H and using 74 of the 100 TPC-DS templates, again omitting the longest running

ones. We did not use the TPC-DS templates that ran for greater than 5 minutes in

isolation on our highest local hardware configuration. We elected to omit the longest
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running queries because under concurrency their execution times grow very rapidly

and we kept the scope of our experiments to 24 hours or less each. Nonetheless

a portion of our experiments (2%) still exhibited unbounded latency growth. We

terminated them after 24 hours and record them as having zero QpM.

We implemented a variant of the TPC-H throughput test. An example of our

setup is displayed in Figure 6.12. Specifically we created a workload with 5 templates,

± 1 to account for modulus cases. Our trials were all at multiprogramming level 3,

in accordance with TPC-H standards. Each of our three query streams executed a

permutation of the workload’s templates. We executed at least 5 examples of each

stream before we concluded our test. We omit the first and last few queries from

each experiment to account for a warmup and cool down time. We compute the

queries per minute (QpM) for the duration of the experiment.

We created 23 TPC-DS workloads using this method. The first 8 were configured

to look at increasing database sizes. The first two access tables totaling to 5 GB,

the second two at 10 GB, et cetera. The remaining 15 workloads were randomly

generated without replacement. For TPC-H we randomly generated 9 workloads.

There were three sets of three permutations without replacement.

We quantify the quality of our predictions using mean relative error as in [23,

9, 5]. We compute it for each prediction as |observed−predicted|
observed

. This metric scales our

predictions by the throughputs, giving an intuitive yardstick for our errors.

For our in-cloud evaluations we used Amazon EC2 and Rackspace. We rented

EC2’s m1.medium, m1.large, m1.xlarge and hi1.4xlarge instances. The first three are

general purpose virtual machines at increasing scale of hardware. The final is an I/O

intensive SSD offering. We considered experimenting on their micro instances and
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conducted some experiments on AWS’s m1.small offering. However we found that so

many of our workloads do not complete within our time requirement in this limited

setting that we ceased pursuing this option. When a workload greatly outstrips the

hardware resources available it is reduced to thrashing as it swaps continuously. In

Rackspace we experimented on their 4, 8, 16, and 32 GB cloud offerings.

We used k-fold cross validation (k=4) for all of our trials. That is, we partition

our workloads into k equally sized folds, train on k−1 folds and test on the remaining

one.

5.6.2 In Cloud Performance

In Figure 6.13 we detail the throughput for our individual workloads as they are

deployed on a variety of cloud instances. We see a monotonic surface much like the

ones that we encounter with the local testbed. This indicates that there may be

exploitable correlations between the two surfaces.

For TPC-H we see that the majority of our workloads are of moderate intensity.

They have a gradual increase in performance until they reach the extra large instance.

At that point many of the workloads fit in the 7.5 GB of memory, seeing only modest

gains from the largest instance. There are three workloads that are more intensive

(shown in dashed lines). They have greater hardware requirements and do not see

performance gains until the database is completely memory resident.

TPC-DS has a more diverse response to the cloud offerings. The majority follow

a curve similar to that of TPC-H. There is one that never achieves performance

gains because it is entirely CPU bound. We also have two examples of the memory-
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Figure 5.6: Cloud response surface for (a) TPC-H and (b) TPC-DS

intensive “knee” as seen in TPC-H, again as a dashed line. The consistency of the

response surfaces also indicates that our cloud evaluation was robust to noisiness

that is a part of the multi-tenant cloud environment.

Next we examine the quality of our predictions for a new workload if we have

very good knowledge of its local response surface. For each workload we sampled

the entire grid in Figure 5.3 locally. Our prediction results are in Figure 6.14. We

observed that the quality of our predictions steadily increased for TPC-DS with our

provisioned hardware. As the workloads had more resources they thrash and swap

less. This makes their outcomes more predictable.

In contrast our predictions in TPC-H get slightly worse for the larger instances.

This is a side effect of the three dashed workloads that are memory-intensive. They

exhibit limited growth in the smaller instances and have a dramatic take off when

they have sufficient RAM. This is an under-sampled condition. If we omit them from

our calculations, our average error drops to 20% for the highest two instances.

It is interesting to see that these two response surfaces in Figure 6.13 are very

comparable despite their different schemas. This demonstrates that both analytical

benchmarks are highly I/O bound and that we have fertile ground to learn across

databases rather than having to deploy a new database in the cloud before we can
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Figure 5.7: Prediction errors for cloud offerings.

make predictions.

5.6.3 Cross Schema Prediction

We found that we could predict TPC-DS based on TPC-H only training within 27%

of the correct throughput on average. The results showed encouraging evidence that

the framework can successfully identify the important similarities across workloads

that are drawn from different set of queries and schemas.

5.6.4 Sampling

Next we quantify the speed at which adaptive sampling converged on a response

surface. We configured our algorithm such that if the range is less than 1 QpM

we cease sampling. We made our stopping condition for recursion 33% of the range

established by the initial, most distant points. We found that on average we sampled

43% of the space for TPC-DS and 33% for TPC-H.

This is a very high sampling rate, considering that our local trials take 165
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Figure 5.8: Prediction errors for each sampling strategy in TPC-H.

minutes on average. This would mean that for TPC-DS we would have to conduct

38 hours worth of experiments before we could predict on the cloud. This is a very

high cost and perhaps not a practical use case. We also noticed that there is a high

degree of variance in the number of points we sampled per response surface. The

standard deviation for our number of points sampled was 5.5 trials for TPC-DS,

demonstrating noticeable unpredictability in our sampling times.

Adaptive sampling displayed an impedance mismatch with our prediction model.

The collaborative filtering model required a set of samples that is representative of

the data both in terms of its distinct values and their frequency. Adaptive sampling

captures their distinct values more precisely, but fails to observe their frequency.

This distorts the normalization phase and hence our predictions.

For our Latin hypercube sampling trials we sampled 8 points or 25% of the local

response surface. While this sampling is robust, it is considerably less costly than the

adaptive alternative. By spacing our random samples such that they all intersect

each distinct dimension value once we achieve a more representative view of the

space.

We evaluate the accuracy of our predictions using different sampling techniques



83

in Figure 6.15. We see that adaptive sampling does very poorly in comparison to the

full grid and Latin hypercube approaches. This is because we oversample the spaces

that exhibit rapid change and do not give due weight to the ones that are more stable

and likely to be the average case. In future work we could mitigate this limitation by

interpolating the response surface based on known points. Latin hypercube sampling

demonstrates prediction accuracy on par with that of grid sampling, showing that

this approach is well-matched to our prediction engine. We do perform slightly better

in the m1.large case. This is a 2% difference is a negligible noise due to the spoiler

simulations.

In Figure 6.16 we compare (1) our TPC-DS predictions on Rackspace with

Latin hypercube sampling to (2) those that are based on LHS and incorporating

m1.medium and m1.xlarge samples from our AWS experiments. For the LHS-only

sampling case we found that it was slightly harder to predict than in Amazon AWS.

The response surfaces on Rackspace were slightly less smooth than AWS, implying

that multi-tenancy may have been playing a larger role in this environment.

In the second series (shown as Local LHS+AWS), we evaluated how augmenting

our models with cloud samples would improve our predictions. We found that this

feedback modestly but appreciably increased our accuracy. This demonstrated that

our incremental improvement of the model benefits from the feedback and that cross-

cloud knowledge is portable.
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Chapter Six

Experimental Evaluation
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In this section we will first examine the effectiveness of the BAL and B2cB system.

After that we will examine how well Contender predicts cQPP in a more general-

ized setting. Finally we will review some preliminary results for portable workload

performance prediction.

6.1 B2L and B2cB

In this section we set out to verify the accuracy and utility of the four modules in

our framework. First we look at the accuracy of B2L, or how well our experiment-

driven model can use buffer access latency to predict end-to-end query latency under

varying concurrency levels and query mixes. Next, we examine how well our B2cB

model can predict BAL for use with B2L. After that we explore the accuracy of

combining these two techniques to produce end-to-end latency estimates. Finally,

we experiment with creating prediction on random, dynamically generated workloads

at a fixed multiprogramming level using our JIT and queue modeler timeline analysis

techniques.

We gathered data in two phases for our steady state experiments. Initially, we

create our training data consisting of several steady state mixes. Our training set

draws from samples at multiprogramming levels 1-5. Using the training data set

we build our prediction models for the concurrent buffer access latency (B2cB) and

the end-to-end latency (B2L). The details of this training process are in Section

3.2.1. B2cB produces coefficients for the multivariate prediction model for each

multiprogramming level. B2L produces its simple linear model for each query class.

Next we looked at a test data set, consisting of randomly selected mixes that are
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disjoint from the training data. Our test data set is drawn from two Latin hypercube

sample sets per multiprogramming level, producing 20 steady state measurements.

Each steady state measurement is comprised of at least 5 queries per template in

the mix.

Finally, we experimented with completely arbitrary mixes, relaxing our steady

state assumption. This allowed us to evaluate our timeline analysis. Here we looked

at both incremental re-evaluation of our predictions (JIT) as well as creating only

one prediction when each query started (queue modeler).

6.1.1 Experimental Configuration

We experimented with a TPC-H query workload consisting of moderate weight

queries that exert strain on different parts of the database system. We targeted

OLAP because the queries are longer running, giving us a more time to characterize

their interactions. Analytical queries tend to be more highly I/O-bound, allowing

us to focus on this element for our interaction modeling rather than a more complex

multidimensional model that would have to take into account CPU slicing and other

resource sharing.

We worked with a mix of ten moderate weight queries. Specifically, our workload

is comprised of TPC-H queries 3, 4, 5, 6, 7, 8, 10, 14, 18 and 19 on an instance of TPC-

H, scale factor 10. We selected the ten queries on and around the median execution

time for all of the TPC-H templates. We focus on medium-weight queries because

they are long running enough such that we can make useful inferences about their

behavior. They are also light enough to allow for us to experiment with meaningful

multiprogramming levels.
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Furthermore, we wanted to predict realistic workloads. We study concurrent

query mixes of different multiprogramming levels, however we do not address pre-

dictions for cases of very high contention. Therefore, we do not consider cases where

it is likely that a mix of queries could complete all of their executions in isolation

faster than running its queries concurrently.

We also elected to focus on moderate-weight queries because modeling across

multiple query weights adds another layer to the problem as demonstrated in [26].

In this work they classified their queries according to a relative weight and built

models for each group. In future work, we may extend our framework with a similar

labeling strategy.

In our experimental configuration we added the primary key indexes provided by

the standard TPC-H implementation. The benchmark was deployed on a modified

version of PostgreSQL 8.4.3. The source code was instrumented to measure BAL.

All of our trials were run on a machine with an Intel i7 2.8 GHz processors and 8

GB of RAM. The machine ran on Ubuntu 9.04 on Linux 2.6.28-11.

6.1.2 Predicting Query Contention

In this section we will look at how well our B2cB and B2L system can predict BAL

and end-to-end latency. All of the results below are evaluated on our test data,

disjoint from the training samples.
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Figure 6.1: Fit of B2L to steady state data at multiprogramming levels 3-5.

B2L

First we examine the effectiveness of B2L for estimating latency based on a pro-

vided BAL. We built our linear models for each query class on our training set at

multiprogramming levels 1-5. Our training phase produces simple equations of the

form

L = Oα + Pα ∗Bα (6.1)

for each query class in our workload.

We demonstrate the fit of our model with Figure 6.1. The points on this graph

are all from individual queries of our test data set with concurrency levels 3-5. The

lines denote the slope of an individual B2L model. Each query class fits very well

with its regression model. Our evaluation data produced an average error of just

5%. This tight fit is because queries generally will have latency proportional to the

rate at which they can access physical pages. This shows that despite relatively few

mixes sampled and varying concurrency levels, buffer access latency is an efficient

and robust estimator of query latency. To reiterate, none of the points evaluated

here were a part of the training phase.
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It is clear that our B2L models fall into two main trajectories. These different

slopes are a consequence of our query templates having different query execution

plan layouts. Query plans can be divided into processing pipelines. These pipelines

delineate points in the query execution where results from the previous pipeline must

be completed before the next phase of a query may start. For example, sorts require

access to all of the tuples in their operation and thus require that executor start a

new pipeline for them (separate from the operators that provided tuples to the sort).

In future work, we may consider breaking our predictions down to the granularity of

pipelines as was done for progress estimators in [17].

The queries with smaller latency growth (queries 6, 14 and 19) had a single

pipeline (i.e., no materialization points such as sorts or group-by aggregates). The

remaining query classes which demonstrated a faster latency increase in proportion

to their BAL generally had greater than one pipeline in their query plans. This

means that the overall growth rate for each BAL is higher, due to the overhead of

the tuples having to traverse multiple pipelines and typically be evaluated by more

operators in the query plan.

B2cB

Now that we have established that average BAL is a good predictor of latency in the

case of varying resource contention, we turn to evaluating how well we can predict

this metric. We examine the accuracy of the B2cB approach for predicting average

BAL on the test data set.

The fit of B2cB predictions to measured BAL at multiprogramming level 3 in is

displayed in Figure 6.2. This charts all of the queries in the test mixes in steady
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state. There were a total of 20 steady state mixes sampled for this experiment.
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Figure 6.2: B2cB predictions on steady state data, multiprogramming level 3

Our samples create a uniform fit around the trend line, denoting that the model

can make reasonable “ballpark estimates” of BAL. There is some variance within

queries of the same class and mix. Much of this can attributed to buffer pool contents

and changing predicates for each example of a query template.

Another cause of variance is temporal shifts (i.e., queries in the same mix start

at different times in relation to their complements). These shifts are displays as

horizontal lines of points on this graph. We have experimented with breaking our

queries into sections and evaluating our predictions on this finer-grained basis. Ex-

perimentally we did not find significant improvements by evaluating these queries on

a section-by-section basis. We also found that sampling to quantify all pairs at this

granularity caused our training time to grow significantly.

Also, our model works best at low–to moderate–levels of contention. As con-

tention increases (denoted by a higher observed BAL), our estimates have reduced

accuracy. This is because as we get closer to a state of overload, our growth pattern

gradually shifts from linear to exponential. Modeling overload and the shift in our

distribution of BAL is left to future work.
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In summary, our B2cB estimates had an average error of 24-35%. As we increased

our multiprogramming level, our estimates became slightly less accurate as we neared

a state of overload.

6.1.3 Steady State Predictions

Next we examine our ability to predict end-to-end latency under steady state condi-

tions by composing our BAL estimates with B2L. For each query in a steady state

run we first predict the BAL using B2cB. Then we translate this predicted BAL to

latency using the B2L models depicted in Figure 6.1. We hold the mix constant

to allow us to model discrete mixes despite the underlying queries having differ-

ent execution latencies. We will later quantify the additional challenges posed by

continuously changing query mixes.

In Figure 6.3 we assess our model’s accuracy on the test data. We divide our

findings into query classes and also averaged overall. We tested this system for

multiprogramming levels 3-5. The figure shows our relative error, calculated as:

|recordedQoS−prediction|
recordedQoS

.

For reference, we include the standard deviation for each query in each mix.

This is normalized to the average latency of the sample that it came from. This is

to quantify the variance-inducing conditions caused by temporal offsets and changes

in our template predicates. It is averaged over multiprogramming levels 3-5.

At multiprogramming level 3, our error rate roughly equals to the average stan-

dard deviation. Our error averages to 15%, which is well-fitted considering the

variety of cases handled (20 discrete mixes times 3 queries per mix). Queries that
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Figure 6.3: Steady state relative prediction errors for query latency at multiprogramming levels
3-5

have relatively simple, highly I/O dominated plans such as Q6 are modeled well.

Queries that have more complex aggregation are more reliant on prefetching and

consequently are sensitive to the temporal offsets of their complements. Examples

of this phenomenon include Q3 and Q5. Later we will discuss the effects of relaxing

this steady state assumption.

6.1.4 Timeline Evaluation

Next we evaluate how well our timeline approaches estimates individual query la-

tency. Once again, we experimented with three multiprogramming levels. We ran

250 randomly generated queries (both the template and predicates were selected in

this manner). These measurements excluded a warmup and cool down period for

each run to allow our multiprogramming level to remain constant. All of these re-

sults are from the same set of query executions, processed for both JIT and queue

modeling timeline analysis.

JIT predictions produce a latency estimate for all queries currently executing

when a new query is started. We use this technique to simulate the scenario where
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users are submitting queries that are run immediately. This system will enable the

user to estimate how long a new query will take and its projected impact on currently

running queries’ latencies. In this context, we work from the scenario where the user

has no way of predicting the incoming workload. Thus we re-evaluate our latency

predictions every time a new query is introduced into the mix.

This technique also allows us to do real-time “course corrections” for our esti-

mates. We can see how our prediction errors converge as time passes for the JIT

technique in Figure 6.4. Our predictions naturally follow a half-cone shaped dis-

tribution. The closer a query is to completion, the better our predictions are. We

could improve our readings further by evaluating more frequently, perhaps at regular

intervals rather than when we are scheduling a new query. This would be useful if we

are (for example) updating a real-time progress indicator for users who are awaiting

query results or running real-time load balancing.
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Figure 6.4: JIT prediction errors as we re-evaluate queries periodically at multiprogramming level
3.

With the JIT estimator our average error is around 10%. This is a combination of

having good latency estimates paired with corrections from the re-evaluations. This

is the reason that the higher multiprogramming levels generally perform better; they

re-evaluate more frequently as they schedule queries at a faster rate.
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Figure 6.5: JIT relative latency estimation errors at various multiprogramming levels.
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Figure 6.6: Queue modeling relative latency estimation errors at various multiprogramming levels.

This outcome demonstrates that we can (a) give users real-time guidance about

how scheduling decisions will affect currently running queries as well as ones that

they are considering scheduling; and (b) we can make predictions with arbitrary

mixes. Thus we are not limited by our initial steady state configuration. The ability

to depart from steady state estimates and still produce similar error rates is caused

by the database being so large that most of it cannot fit in memory at any given time.

Thus, our estimates adapt to the RAM changing its contents regularly, negating the

necessity of discretely modeling buffer pool state.

Finally in Figure 6.6, we examine how well our predictor can handle arbitrary

mixes paired with more uncertainty about the duration and content of the individual

mixes. Using the queue modeler technique, we build a latency estimate from predict-

ing both when the primary query and its complements will terminate. We model for
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a continuous multiprogramming level by adding new queries from a provided queue

when complement queries are projected to terminate. The simulation ends when our

primary query is projected to be the next query replaced by an element of the queue.

Overall, this brings our accuracy levels to an average of 21%. This is close to our

estimation accuracy in steady state. This accuracy demonstrates that our framework

can make predictions under realistic scenarios of queries starting and stopping at in-

tervals offset from each other. This allows a user to make straightforward “what-if”

analysis when they are considering scheduling a batch of queries. This framework

could potentially enable a user to formulate different orderings of their queries and

submit them for evaluation to our system. This would search for time-saving order-

ings of submitted queries.

These results also demonstrate that our system can tolerate some uncertainty

about the mixes being executed. Despite our steady state estimates having limited

inherent errors, this does not unduly affect our mixed workload case. In many cases

the timeline errors are not significant because as we are transitioning between mixes,

we do this one query at a time. Thus the subsequent mixes are only slightly different

from each other in terms of how they affect the primary query.

6.2 Contender

Here we evaluate the effectiveness of Contender, our query performance prediction

technique for dynamic workloads.
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6.2.1 Experimental Configuration

In this work we experimented with TPC-DS [43], a decision support benchmark at

scale factor 100. We executed the benchmark on PostgreSQL 8.4.3. In our deploy-

ment we added the primary key indexes provided by the TPC-DS implementation.

We ran all of our experiments on a machine with an Intel i7 2.8 GHz processors and

8 GB of RAM. The computers had Ubuntu 9.04 on Linux 2.6.28-11 installed.

We elected to work with average running time queries. We sought to target

the workloads that benefit most from our predictions. This is in contrast to long

running queries, which are so demanding that it is often not profitable to run them

concurrently [39]. We omit short running queries because our predictions will benefit

these queries less due to their lifespan.

We identified these queries by first running all of the TPC-DS templates in iso-

lation with a cold cache. We recorded the latency of each template. We sorted the

list by latency and selected the median template and the ones directly below it. Our

workload consisted of 25 templates, 2, 8, 15, 17, 18, 20, 22, 25, 26, 27, 32, 33, 40,

46, 56, 60, 61, 62, 65, 66, 70, 71, 79, 82 and 90. Our workload had a latency range

of 130-1000 seconds in isolation.

We experimented with concurrent mixes at MPLs 2-5 using steady state mixes.

For pairwise interactions (MPL 2) we sampled all pairs. This consisted of 325 distinct

mixes and gave us a comprehensive view of how our queries interacted. We use this

well-sampled dataset to evaluate different components of our model. We did this to

avoid bias in our sampling of this very large space. Naturally for higher MPLs the

number of mixes grows exponentially. At MPL 5 there are 118,755 mixes. Clearly

evaluating this space exhaustively is prohibitively expensive.
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Figure 6.7: Prediction error rate at MPL 4 with CQI-only model.

We used Latin Hypercube Sampling (LHS) to select mixes at higher concurrency

levels as in [3]. Specifically, for all queries in our training set, we randomly selected

mixes such that we have an equal number of samples for each template. We evaluated

four disjoint LHS samples for MPLs 3-5.

Unless otherwise specified we evaluate our models using k-folds cross validation

(k = 5). We partition the data into k equally sized components and repeatedly train

on k − 1 folds, testing on the remaining one.

Our spoiler latency establishes an upper bound for query execution time. How-

ever, there are a small number of cases where the observed latency exceeds the

spoiler’s estimate. This occurred when long running queries are paired with very

short ones and is an artifact of our steady state sampling. When a very short run-

ning query is executed in this manner, its cost of restarting, including generating

the query plan and re-caching dimension tables, becomes a significant part of its re-

source consumption. Empirically we found that overload (latency ≥ 105% of spoiler

maximum) occurs at a frequency of 4%. Identifying these outliers is possible (e.g.,

[4]), however it is beyond the scope of our work. We omit them from our evaluation.
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6.2.2 Contemporary Query Intensity

In Figure 6.7 we evaluate the effectiveness of using CQI to predict our continuum

point. We build one model per template per MPL based on pairs of CQIs and

continuum points. On average we can predict latency within 18% of the correct

value at MPL 4. This demonstrates a very well-fitted model to these complex query

interactions.

We predict several of our templates very well, within 10% of the correct latency.

These templates are 26, 33, 61 and 71. They are easier to predict because the queries

are extremely I/O bound. All have a pt of 97% or greater, so they are particularly

amenable to CQI modeling.

Templates 2 and 22 had the highest error rates using this technique. Both of

these templates are memory-intensive. They have large intermediate results that

necessitate swapping to disk as contention grows. In Figure 6.8 we look at the CQI

plotted against our observed continuum points for Template 22 at MPL 2. We see

that the pattern of latency growth for this template is closer to logarithmic than

linear, a departure from the behavior of non-memory intensive templates. We did

not have enough similar queries in our workload to train for separate logarithmic

models, so we continue to use the less accurate linear modeling.

Interestingly, template 17, 25, and 32 had slightly lower accuracy. These tem-

plates revolve around random I/O, which makes their response to concurrency less

predictable. Their I/O under concurrency is sensitive to the speed at which we ex-

ecute seeks. Research has found that random I/O can vary by up to an order of

magnitude per page fetched [23].
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Figure 6.8: Logarithmic trend for memory-intensive Template 22 at MPL 2.

Also we had a slightly higher error rate for Template 40. This template had two

outliers in which it ran with queries that both had high memory and were primarily

random I/O. Without the two outliers, its relative error is reduced to 21%.

6.2.3 Query Sensitivity

In Figure 6.9 we demonstrate that the CQI-only model scales up well in MPLs 2-

5. Our metric is robust to complex and changing concurrent execution conditions.

We found that we could predict new mixes with an error rate of less than 20% on

average.

In this figure we also evaluate our prediction accuracy as we estimate the coeffi-

cients of our query sensitivity models. We start by predicting the model’s slope from

the template’s isolated latency. We then learn the trend line in Figure 4.3 using our

training templates. We apply the estimated slope to learn the y-intercept for each

template. With these parameters, we take in the CQI to produce latency estimates.

We find that we lose around 5% of our accuracy learning y-intercept from a



101

0%	
  

5%	
  

10%	
  

15%	
  

20%	
  

25%	
  

30%	
  

35%	
  

Avg	
   2	
   3	
   4	
   5	
  

M
ea
n	
  
Re

l.	
  
Er
ro
r	
  

Mul-programming	
  Level	
  

CQI	
  Only	
  
Y-­‐Int	
  Learned	
  
QS	
  Learned	
  

Figure 6.9: Mean relative error for predictions with and without knowledge of model parameters.

known slope. This is because we are not perfectly correlated as we make the mapping

between model coefficients. There is some visible noise in the Figure 4.3 and this

creates our slight loss in accuracy.

One important finding in Figure 6.9 is that Contender can create predictions for

multiple previously unseen templates at the same time. When we evaluate learned

QS (and learned slope) our cross validation trains on 20 templates and tests on the

remaining 5. We are simulating the case where 5 new templates are added to our

workload (and we evaluate their interactions with other new templates based only

on their QEPs and isolated pt values). This works for two reasons. First, CQI

is dependent primarily on semantic information, so we do not need to sample our

interactions. Secondly the space demonstrated in Figure 4.3 is simple to model and

requires limited sampling.

Our accuracy in this work is comparable the prior work on cQPP [23]. They were

able to predict query latency within 25% of the correct figure on average on TPC-H

while requiring latin hypercube sampling with each new template. We achieved the

approximately same accuracy using linear time samplings and do not require any

sampling of concurrent mixes.



102

6.2.4 Spoiler Estimation

Next we turn our attention to predicting spoiler latency for individual templates.

In Figure 6.10 we evaluate our accuracy for predicting MPLs 2-5. In the perfect

linear series we evaluate how predictable spoiler latency is for direct models, where

we build directly on sampled points to see how much noise is inherent in the system.

After that we evaluate our sampled approach in which we predict spoiler latency at

MPLs 4-5 based on sampling MPLs 1-3. Next we compared our two comprehensive

predictors of spoiler growth, k nearest neighbors and pt regression. For this section

we train on all but the test template and evaluate our model on the remaining one.

In the perfect linear case we fit a trend line to our spoiler latency at the five

sampled levels and take the mean relative error of our observed latencies as they

deviate from the trend line. Our predictions were within 5% of the correct latency

on average. For most queries our growth is directly proportional to the simulated

MPL. We verify our initial conjecture that fair sharing will stretch out our latency

in a linear fashion.

Next we evaluated spoiler latency predictions with reduced sampling. We learned

from MPLs 1-3 and predicted the remaining two multiprogramming levels. This

limited sampling established a trajectory for our spoiler latency. We found that

on average we could predict spoiler latency within slightly better than 10% of the

correct figure using this technique.

Next we predicted spoiler latencies using the KNN approach. We found the k

templates nearest to our test template (k = 3) and averaged their models to predict

the spoiler latencies of the new template. We evaluated the k nearest templates in a

2-D space where we considered a template’s pt and working set size. This approach
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Figure 6.10: Spoiler estimation error rate with several prediction strategies. Relative error dis-
played.

allows us to create predictions for completely new templates without sampling their

spoiler performance. However it brought our accuracy down for a MRE of 15%.

Finally, we created predictions based on linear regression, relating pt of the new

template to training model coefficients. This approach allowed us to solve for the

coefficients on a continuous function rather than working from a nearest neighbor fit.

However it incorporated less information by only working with our most correlated

variable, pt. It performed slightly worse than KNN with a MRE of 20%.

We then used our estimated spoiler times to create concurrent query latency

predictions. As with the prior experiments, we first create continuums establishing

the estimated spoiler latency as our upper bound. In Figure 6.11 we average over all

of our templates except for Template 2.

Template 2 has a very large working set size. This causes the spoiler to grow at

a much faster rate than than is common in our workload, especially at higher MPLs.

This behavior is the result of the spoiler always exceeding its portion of the RAM,

forcing the query to swap. It dramatically increases our upper bound. In practice this

template is getting better resource access than the spoiler-predicted maximum due to
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Figure 6.11: Latency predictions with estimated spoiler and isolated I/O profile. Error bars are
standard deviations.

sharing work with the contemporaries. Hence our estimated spoilers, which are lower

than the actual spoiler latency in this case, produce artificially better predictions by

limiting the prediction range. This is because there were few potential neighbors

that had comparable working sets. In future work we can mitigate this effect by

creating a suite of spoilers, each consuming different quantities of RAM.

We found that working from these estimated spoiler latencies did not significantly

affect the accuracy of our predictions. In most cases the spoiler latency estimates

were sufficiently close such that it did not impact our ability to predict template

latency in individual mixes. However, as the figure demonstrates, the standard

deviation of our predictions increase. There is more noisiness in our data as we

learn spoiler growth patterns from the k-nearest neighbors. We demonstrate that by

sampling a query only in isolation we can build a profile to predict its latency with

a mean relative error of 25%.

Finally we experimented with predicting query performance under concurrency

simulating the case of using the inputs from a QPP model for queries executing in

isolation such as [9]. The final series in Figure 6.11 demonstrates our prediction

accuracy when we randomly assign our prediction inputs as ± 25% of their observed

values. This error rate is in line with the isolated prediction accuracy in the literature.
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Figure 6.12: Example workload for throughput evaluation with three streams with a workload of
a, b, and c.

We found a commensurate loss in accuracy in our predictions.

6.3 Portable Predictions

In this section, we first detail our experimental configurations. We then explore the

cloud response surface, for which we are building our models. Next, we evaluate the

effectiveness of our prediction framework for cloud performance based on complete

sampling of the local response grid. After that, we investigate how our system

performs with our two sampling strategies. Finally, we look at the efficacy of our

models gaining feedback from cloud sampling.

6.3.1 Experimental Configuration

We experimented with TPC-DS and TPC-H, two popular analytical benchmarks at

scale factor 10. We evaluated using all but the 5 longest running queries on TPC-

H and using 74 of the 100 TPC-DS templates, again omitting the longest running

ones. We did not use the TPC-DS templates that ran for greater than 5 minutes in

isolation on our highest local hardware configuration. We elected to omit the longest

running queries because under concurrency their execution times grow very rapidly

and we kept the scope of our experiments to 24 hours or less each. Nonetheless
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a portion of our experiments (2%) still exhibited unbounded latency growth. We

terminated them after 24 hours and record them as having zero QpM.

We implemented a variant of the TPC-H throughput test. An example of our

setup is displayed in Figure 6.12. Specifically we created a workload with 5 templates,

± 1 to account for modulus cases. Our trials were all at multiprogramming level 3,

in accordance with TPC-H standards. Each of our three query streams executed a

permutation of the workload’s templates. We executed at least 5 examples of each

stream before we concluded our test. We omit the first and last few queries from

each experiment to account for a warmup and cool down time. We compute the

queries per minute (QpM) for the duration of the experiment.

We created 23 TPC-DS workloads using this method. The first 8 were configured

to look at increasing database sizes. The first two access tables totaling to 5 GB,

the second two at 10 GB, et cetera. The remaining 15 workloads were randomly

generated without replacement. For TPC-H we randomly generated 9 workloads.

There were three sets of three permutations without replacement.

We quantify the quality of our predictions using mean relative error as in [23,

9, 5]. We compute it for each prediction as |observed−predicted|
observed

. This metric scales our

predictions by the throughputs, giving an intuitive yardstick for our errors.

For our in-cloud evaluations we used Amazon EC2 and Rackspace. We rented

EC2’s m1.medium, m1.large, m1.xlarge and hi1.4xlarge instances. The first three are

general purpose virtual machines at increasing scale of hardware. The final is an I/O

intensive SSD offering. We considered experimenting on their micro instances and

conducted some experiments on AWS’s m1.small offering. However we found that so

many of our workloads do not complete within our time requirement in this limited
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setting that we ceased pursuing this option. When a workload greatly outstrips the

hardware resources available it is reduced to thrashing as it swaps continuously. In

Rackspace we experimented on their 4, 8, 16, and 32 GB cloud offerings.

We used k-fold cross validation (k=4) for all of our trials. That is, we partition

our workloads into k equally sized folds, train on k−1 folds and test on the remaining

one.

6.3.2 In Cloud Performance

In Figure 6.13 we detail the throughput for our individual workloads as they are

deployed on a variety of cloud instances. We see a monotonic surface much like the

ones that we encounter with the local testbed. This indicates that there may be

exploitable correlations between the two surfaces.

For TPC-H we see that the majority of our workloads are of moderate intensity.

They have a gradual increase in performance until they reach the extra large instance.

At that point many of the workloads fit in the 7.5 GB of memory, seeing only modest

gains from the largest instance. There are three workloads that are more intensive

(shown in dashed lines). They have greater hardware requirements and do not see

performance gains until the database is completely memory resident.

TPC-DS has a more diverse response to the cloud offerings. The majority follow

a curve similar to that of TPC-H. There is one that never achieves performance

gains because it is entirely CPU bound. We also have two examples of the memory-

intensive “knee” as seen in TPC-H, again as a dashed line. The consistency of the

response surfaces also indicates that our cloud evaluation was robust to noisiness
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Figure 6.13: Cloud response surface for (a) TPC-H and (b) TPC-DS

that is a part of the multi-tenant cloud environment.

Next we examine the quality of our predictions for a new workload if we have

very good knowledge of its local response surface. For each workload we sampled

the entire grid in Figure 5.3 locally. Our prediction results are in Figure 6.14. We

observed that the quality of our predictions steadily increased for TPC-DS with our

provisioned hardware. As the workloads had more resources they thrash and swap

less. This makes their outcomes more predictable.

In contrast our predictions in TPC-H get slightly worse for the larger instances.

This is a side effect of the three dashed workloads that are memory-intensive. They

exhibit limited growth in the smaller instances and have a dramatic take off when

they have sufficient RAM. This is an under-sampled condition. If we omit them from

our calculations, our average error drops to 20% for the highest two instances.

It is interesting to see that these two response surfaces in Figure 6.13 are very

comparable despite their different schemas. This demonstrates that both analytical

benchmarks are highly I/O bound and that we have fertile ground to learn across

databases rather than having to deploy a new database in the cloud before we can
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Figure 6.14: Prediction errors for cloud offerings.

make predictions.

6.3.3 Cross Schema Prediction

We found that we could predict TPC-DS based on TPC-H only training within 27%

of the correct throughput on average. The results showed encouraging evidence that

the framework can successfully identify the important similarities across workloads

that are drawn from different set of queries and schemas.

6.3.4 Sampling

Next we quantify the speed at which adaptive sampling converged on a response

surface. We configured our algorithm such that if the range is less than 1 QpM

we cease sampling. We made our stopping condition for recursion 33% of the range

established by the initial, most distant points. We found that on average we sampled

43% of the space for TPC-DS and 33% for TPC-H.

This is a very high sampling rate, considering that our local trials take 165
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Figure 6.15: Prediction errors for each sampling strategy in TPC-H.

minutes on average. This would mean that for TPC-DS we would have to conduct

38 hours worth of experiments before we could predict on the cloud. This is a very

high cost and perhaps not a practical use case. We also noticed that there is a high

degree of variance in the number of points we sampled per response surface. The

standard deviation for our number of points sampled was 5.5 trials for TPC-DS,

demonstrating noticeable unpredictability in our sampling times.

Adaptive sampling displayed an impedance mismatch with our prediction model.

The collaborative filtering model required a set of samples that is representative of

the data both in terms of its distinct values and their frequency. Adaptive sampling

captures their distinct values more precisely, but fails to observe their frequency.

This distorts the normalization phase and hence our predictions.

For our Latin hypercube sampling trials we sampled 8 points or 25% of the local

response surface. While this sampling is robust, it is considerably less costly than the

adaptive alternative. By spacing our random samples such that they all intersect

each distinct dimension value once we achieve a more representative view of the

space.

We evaluate the accuracy of our predictions using different sampling techniques
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in Figure 6.15. We see that adaptive sampling does very poorly in comparison to the

full grid and Latin hypercube approaches. This is because we oversample the spaces

that exhibit rapid change and do not give due weight to the ones that are more stable

and likely to be the average case. In future work we could mitigate this limitation by

interpolating the response surface based on known points. Latin hypercube sampling

demonstrates prediction accuracy on par with that of grid sampling, showing that

this approach is well-matched to our prediction engine. We do perform slightly better

in the m1.large case. This is a 2% difference is a negligible noise due to the spoiler

simulations.

In Figure 6.16 we compare (1) our TPC-DS predictions on Rackspace with

Latin hypercube sampling to (2) those that are based on LHS and incorporating

m1.medium and m1.xlarge samples from our AWS experiments. For the LHS-only

sampling case we found that it was slightly harder to predict than in Amazon AWS.

The response surfaces on Rackspace were slightly less smooth than AWS, implying

that multi-tenancy may have been playing a larger role in this environment.

In the second series (shown as Local LHS+AWS), we evaluated how augmenting

our models with cloud samples would improve our predictions. We found that this

feedback modestly but appreciably increased our accuracy. This demonstrated that

our incremental improvement of the model benefits from the feedback and that cross-

cloud knowledge is portable.
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with and without additional cloud features.



Chapter Seven

Related Work
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Extensive work has been done in the area of characterizing queries and their per-

formance. This includes analytical estimates such as those used by query optimiz-

ers [49], black-box profiling [3] and hybrid approaches [26]. Query performance pre-

diction has also been considered for many workload types including OLAP [3] and

MapReduce [41]. The problems solved by these works includes query scheduling,

latency prediction and many other problems. There has been some work done on

analytically predicting throughput in [25]. In this section we examine the state of

the art for our proposed work.

The importance of query performance prediction is explored in [10]. Query per-

formance prediction can allow us to enhance almost all aspects of a database from

its physical design to query execution planning. In other words, predictive databases

can create an introspective system that is self-tuning and self-scheduling.

7.1 Query interaction modeling

The topic of performance predictions for database workloads has gained significant

interest in the research community. In [26] the authors use machine learning tech-

niques to predict the performance metrics of database OLAP queries. Although their

performance metrics include our QoS metric (query latency), their system does not

address concurrent workloads. Moreover, their solution relies on statistics from the

SQL text of a query or obtained from the optimizer on the query plan. Prior efforts to

predict database performance [36, 58] provide an estimate of the percentage of work

done or produce an abstract number intended to represent relative “cost”. In [13]

the authors analyzed how to classify workloads. Work has been done to characterize

the usage of specific resources in databases including [12] and [34] examine memory
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and CPU usage under various workloads respectively.

In [37] the researchers propose a single query progress indicator that can be

applied on a large subset of database query types. Their solution uses semantic

segmentation of the query plans and strongly relies on the optimizer’s (often inac-

curate) estimates for cardinality and result sizes. Although their progress estimator

takes into account the system load, their work does not specifically estimate progress

of concurrent queries and includes limited experiments on resource contention. On

the contrary, our work primarily focuses on concurrent workloads and does not rely

on the optimizer’s estimates. Moreover, our timeline analysis identifies the overlap

between concurrent queries to continuously improve the prediction error and thus

can effectively address resource contention for concurrent queries. Finally, progress

estimators have been investigated for MapReduce queries [41]. Although this work

is related, it assumes a different workload model from the one used in this paper.

Furthermore, [38] examines predicting query latency with concurrency, but does not

consider multiple, diverse query classes.

Query interactions have also been addressed and greatly advanced in [2, 3] and [4].

In this work the authors create these concurrency-aware models to build schedules

for batches of OLAP queries. Their solutions create regression models based on

sampling techniques similar to the ones that we use. These systems created schedules

for a list of OLAP queries to minimize end-to-end latency for a large set of queries.

Our experiment-driven approach predicts the response time of individual queries,

and presumes that the order of execution of the queries is fixed for a real-time

environment.

[7] models the mixes of concurrent queries over time from a provided workload,

but does not target individual query latencies, instead optimizing for end-to-end
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workload latencies. This approach uses an incremental evaluation approach, which

our timeline analysis is inspired by. Our timeline modeling uses a very different

framework to project latency.

In [29] the authors use machine learning to predict query performance. They

provide a range for their query execution latency. Their work considers concurrency

as well, but only looks at the multiprogramming level rather than individual mixes.

In contrast, we provide a scalar estimate and consider system strain at a higher

granularity.

Finally, [39] explores how to schedule OLAP mixes by varying the multiprogram-

ming level. They use a priority-based control mechanism to prevent overload and

underload, allowing the database to maintain a good throughput rate. Like this

work, our model experiments for many multiprogramming levels, but our focus in

this work is in predicting QoS rather than scheduling the right degree of concurrency.

7.2 Qualitative Workload Modeling

Qualitative workload modeling is used to compare competing options when planning

how to schedule or manage a workload. There has been considerable work on this

for cloud deployment [54, 46, 32, 60]. It has also been considered in the context of

power management [56, 15]. Similar modeling has been explored for for transactional

workloads in [28, 19, 47].
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7.3 Query Resource Profiling

In [46] we created generic bin packer for the provisioning of cloud resources. For this

study our objectives revolved around solving for minimum financial cost in creat-

ing virtual machine deployment plans on the cloud. Our generic query performance

prediction is a logical extension of this work, but instead optimizes for query perfor-

mance goals. Whereas the prior work considered black- and white-box approaches,

we propose gray box performance prediction. We strive to leverage the best elements

of both approaches.

Our BAL framework is an inversion of the techniques for configuration of virtual

machines in [51] and automatic deployment of virtualized applications [50]. In [51]

the researchers exploit database cost models to determine the appropriate resource

configuration for the virtual machines on which an anticipated workload will run.

In their model, resource allocation can be applied in a more fine-grained manner

by provision specific amounts of memory, CPU power, I/O bandwidth, etc. In our

approach, the system begins with pre-configured physical machines. In [50] virtu-

alized applications are treated as black-boxes and performance modeling techniques

are used to predict the performance of these applications on different machines con-

figurations. In contrast, our approach is specific to database systems and it attempts

to exploit database cost models to achieve its objectives.

Resource management and scheduling have also been addressed within the con-

text of database systems [26, 42]. In [20, 27, 40] they allocate a fixed pool of resources

to individual queries or query plan operators and scheduling queries or operators to

be executed on the available resources aiming to increase the system throughput.

We extend this work by focusing on analytical query-oriented workloads rather than
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throughput-based goals.

Resource provisioning for shared computers has been studied extensively in the

operating system community. In [52] the authors use a profiling approach to over-

booking resources with a graph-based placement algorithm. Their work focuses on

supporting many heterogeneous applications in a cluster where each unit of applica-

tion can only exist on one node. Ours starts with a similar problem and progresses

on to the inverse, dividing a database application among multiple nodes.

In [21] the authors study a similar resource provisioning problem for web-based

applications using a modeling approach. Their work also naturally lends itself to

bin-packing, but it is tailored for web server applications only, focusing more on

cache locality and modeling how the workload evolves over time. They also do not

use profiling and presume a finer-grained degree of control (being able to allocate

memory on a per-application basis) than is possible with a large-scale database

deployment.

Workload characterization for three-tiered web services was examined in [57]. The

authors use neural networks to distill the relationship between system configuration

and workload performance. They primarily focused on predicting efficient system

configurations whereas our work is concerned with making scheduling decisions on a

fixed configuration.

In [59] the authors characterize generic database workloads to create represen-

tative benchmarks. They examine system traces and SQL statements to classify a

workload. Their work characterizes the resources used by individual queries. In con-

trast our research takes a known workload, analyzes its resource consumption and

makes performance predictions.
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7.4 Query Progress Indicators

There has been robust work on query progress indicators [16, 17, 37, 38] and existing

solutions are covered in [16]. In [17] the authors reason about the percent of the query

completed, however their solution does not directly address latency predictions for

database queries and they do not consider concurrent workloads. [38, 37] do consider

system strain and concurrency, but they remain focused on performance of queries

in progress. In contrast, we create predictions for queries before they begin.

7.5 Query Performance Prediction

In [9, 26] the researchers use machine learning techniques to predict multiple per-

formance metrics of analytical queries. Although their predictions include our QoS

metric (query latency), they do not address the problem of concurrent workloads. In

Section 4.1 we experimented with the same machine learning techniques and found

them unsuitable for cQPP. Furthermore, in [9] the researchers propose predictive

modeling techniques and they use two types of prediction models, namely support

vector machines (SVMs) and Kernel Canonical Correlation Analysis (KCCA). This

work studies query latency prediction models for both static and dynamic workloads.

In addition [35] examined statistical techniques to further generalize prediction for

isolated query performance prediction.

Performance prediction under concurrency was pioneered and well-modeled in [3,

4]. The authors create concurrency-aware models to build schedules for batches of

OLAP queries. Their solutions create regression models based on sampled concurrent

query executions. These systems generate optimal schedules for a set of OLAP
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queries to minimize end-to-end latency for an entire batch. Our experiment-driven

approach provides finer grained predictions that can estimate the response time of

individual queries. Furthermore, [7, 8] extends the work in [3, 4] to predict the

completion time of mixes of concurrent queries over time from a provided workload.

This work does not target individual query latencies either; instead the authors

predicted end-to-end workload latencies. Similar to this work, we learn from well-

defined templates. However, we do not require sampling how these templates interact

with the workload to make predictions.

[29, 39] explored workload modeling under concurrency. [29] makes predictions

about query latency under concurrency as a range. Neither of these approaches make

precise latency predictions as we do in this work. In [39] the authors consider query

interactions to tune the multiprogramming level and guide query scheduling.

Finally in [23] we proposed predictive performance models for concurrent work-

loads. This research showed that a new buffer access latency metric can be highly

effective in capturing resource contention across concurrent workloads. However the

techniques proposed were limited to predictions for known templates with sampling

requirements exponential in the number of query templates to be supported. The

proposals in this paper address these limitations without sacrificing predictive accu-

racy.

Workload Characterization

In [24] the authors created a system to automatically classify workloads as ana-

lytical or transactional. In [48] the researchers explored different types of transac-

tional workloads and how the implementation of an OLTP workload can dramatically

impact its performance characteristics. [5] examined how to identify individual an-
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alytical templates within a workload. In [30] researchers analyzed how individual

components of traditional RDBMSs contribute to latency. All of these techniques

can help us create generalized models for database workloads.

There has also been work on profiling and managing workload performance in

the cloud. In [53, 55, 61] the authors managed workloads from the perspective of

maximizing profits from service level agreements (SLAs). In [18, 19] the researchers

built models to profile workloads for multi-tenant databases in the cloud. Database

consolidation was studied in [6]. Analytical query interactions were modeled in [3, 4].

In [22], the researchers presented a system for automatically managing database pa-

rameters for a workload. Our approach is similar to this work in that we characterize

a multidimensional response surface for workloads under varying conditions.

To the best of our knowledge, no prior work addressed the problem of predicting

workload performance for changing hardware platforms.



Chapter Eight

Conclusion
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In this section we highlight the main findings of our studies. We will examine our pre-

diction framework for static and dynamic workloads as well as portable predictions.

Finally we will identify several future research directions in this area.

8.1 Concurrent Query Performance Prediction for

Static Workloads

This work proposes a lightweight estimator for concurrent query execution perfor-

mance for analytical workloads. To the best of our knowledge it is the first to

predict execution latency for individual queries for real-time reporting without using

semantic information.

Our system starts with studying the relationship between BAL and quality of

service as measured by query execution latency. We have demonstrated that there

is a strong linear relationship between these two metrics, which we model with our

system B2L. This relationship is based on the observation that as long as there is

contention for a resource and we can instrument its bottleneck, then we can ac-

curately predict latency. We produce very accurate estimates of latency given the

average BAL despite this metric exhibiting moderate variance. We accomplish this

because our queries are sufficiently long that we collect enough samples to produce

a representative average. This naturally is proportional to the latency because the

queries are primarily I/O-bound. We predict the BAL by extrapolating higher degree

interactions using pairwise BALs in a system we call B2cB.

We then adapt this baseline system to a dynamically changing workload using

timeline analysis. We predict the steady state latency of each query in a workload
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and determine which will terminate first. We then estimate the progress of each query

after the first terminates and conjecture about which will end next. We continue

this cycle in two formulations: just-in-time and queue-modeler. In the former, we

build our prediction based on the currently executing batch. The latter fixes our

multiprogramming level and predicts when new queries will be started as old ones

end.

8.2 Concurrent Query Performance Prediction for

Dynamic Workloads

We studied the problem of predicting concurrent performance of dynamic analytical

query workloads. This is a problem with many important applications in resource

scheduling, provisioning, and user experience management. This tool may also be

useful for next generation query optimizers by modeling and predicting contention

within the I/O subsystem.

We first showed that existing machine learning approaches for query performance

prediction do not provide satisfactory solutions when extended for concurrency. We

then described our solution, which we call Contender. It relies on modeling the

degree to which queries create and are affected by resource contention. We formally

defined and quantified these notions via two new metrics called Contemporary Query

Intensity (CQI) and Query Sensitivity (QS), respectively. Using these metrics and

the knowledge of baseline (i.e., isolated) query performance, we were able to make

accurate predictions for arbitrary queries with low training overhead.

Specifically, our experiments using PostgreSQL on TPC-DS showed our predic-
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tion errors can be kept within 25% with constant time sampling overhead. Our

approach is thus competitive with alternative techniques in terms of predictive ac-

curacy, yet it constitutes a substantial improvement over the state of the art, as

it is both more general (i.e., supports predictions on arbitrary queries), and more

practical and efficient (i.e., require less training).

8.3 Workload Performance Prediction for Portable

Databases

In this work we introduce the problem of creating performance predictions for portable

databases with analytical workloads. Our framework creates workload fingerprints

by simulating various hardware configurations. We train our collaborative learning

models using these signatures. This approach allows us to predict throughput as the

databases migrates to different cloud offerings. Our prediction framework enables

users to “right size” their provisioning and cloud deployments.

We first discuss how we created a local testbed and simulate different hardware

configurations to profile our workload. After that we explored how we brought

collaborative filtering to bear on this problem. Finally we explore two sampling

approaches to reduce our training time: adaptive sampling and Latin hypercube.

We have demonstrated that using these techniques we can predict workload

throughput, on TPC-H and TPC-DS, within approximately 30% of the correct value

on average. These results are obtained by sampling only a quarter of the local

response surface, which makes our solution practical for low-overhead deployment.
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One interesting extension to this problem could be predicting the latency of

individual queries as they are moved from one hardware platform to another. This

could be studied either in isolation or under concurrency. In either context it would

make portable databases more accessible to users.

Future research in this area could also include generalizing our models to accom-

modate growing and shrinking databases. By scaling our predictions, we may be

able to support incrementally changing workloads. This would further improve the

usability and applicability of our approach.

Another research direction in this area is modeling transactional workloads under

changing hardware configurations. The underpinnings of this model would be differ-

ent because it would need to take into account latches, locks and other more complex

interactions among write-intensive queries. It too would make portable databases

more accessible to users. This more detailed modeling is beyond the scope of this

work.

In summary we created a system to fingerprint analytical workloads by using

a locally executed testbed to simulate a variety of hardware platforms. We then

compare this profile to that of other analytical workloads using collaborative filtering.

We use careful sampling to further reduce our training time and cost.
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