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for hyperbolic equations
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Chapter 1

Introduction

We consider discontinuous Galerkin (DG) methods for solving hyperbolic equations

ut + f(u)x = g(x, t), (x, t) ∈ R× (0, T ],

u(x, 0) = u0(x), x ∈ R.
(1.1)

The DG method is a class of finite element methods using completely discontin-

uous piecewise polynomial space to represent as the numerical solutions and as the

test functions. The method, first introduced in 1973 by Reed and Hill [86], was gen-

eralized by Johnson and Pitkäranta to solve scalar linear hyperbolic equations with

Lp-norm error estimates [64]. Subsequently, Cockburn et al. studied Runge-Kutta

discontinuous Galerkin (RKDG) methods for hyperbolic conservation laws in a series

of papers [35, 32, 33, 36]. As mentioned in [26], for linear hyperbolic equations, by

using piecewise polynomial of degree k, the DG approximation is (k + 3/2)-th order

superconvergent towards a particular projection of the exact solution. However, nu-

merical experiments demonstrate that a rate of convergence of k + 2. We will use a

dual argument to prove this property.

One application of the DG methods is to solve hyperbolic equations involving

δ-functions. It is well known that generic solutions of hyperbolic equations are not

smooth. Discontinuities or even δ-singularities may appear in the solutions. The

2



3

DG methods have been shown to be L2-stable for nonlinear hyperbolic equations

with L2-solutions which may contain discontinuities [60, 55]. In our work, we as-

sume that the initial condition u0, or the source term g(x, t), or the solution u(x, t)

to (1.1) contains δ-singularities. Such problems appear often in applications, such

as pressureless Euler equatons, and are difficult to approximate numerically. Many

numerical techniques rely on modifications with smooth kernels which may smear

such singularities, leading to large errors in the approximation. On the other hand,

the DG methods are based on weak formulations and can be designed directly solve

such problems without modifications, leading to very accurate results. We will pro-

vide numerical examples to demonstrate this advantage. Moreover, we will give

rigorous error estimates for the DG methods on some linear problems involving δ-

singularities. As demonstrate that the DG approximations are high order accurate

under suitable negative-order norms. This makes possible extraction of supercon-

vergence solution by convolving the numerical solutions with suitable kernels. For

nonlinear models equations, we will apply boundary-preserving (BP) limiters and

prove the L1-stability of the schemes.



Chapter 2

Preliminaries

In this chapter, we consider the hyperbolic equation (1.1) on the interval [0, 2π].

2.1 The DG scheme

First, we divide the computational domain Ω = [0, 2π] into N cells

0 = x 1
2

< x 3
2

< · · · < xN+ 1
2

= 2π,

and denote

Ij =
(
xj− 1

2
, xj+ 1

2

)

as the cells. hj = xj+ 1
2
− xj− 1

2
denotes the length of each cell. We also define

h = hmax = maxj hj and hmin = minj hj as the lengths of the largest and smallest

cells, respectively. We consider regular meshes, that is hmax ≤ Λhmin where Λ ≥ 1 is

a constant during mesh refinement. Clearly, if Λ = 1, the mesh is uniform.

Next, we define

Vh = {v : v|Ij
∈ Pk(Ij), j = 1, · · · , N}

4
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as the finite element space, where Pk(Ij) denotes the space of polynomials in Ij of

degree at most k. We also define

H1
h = {φ : φ|Ij

∈ H1(Ij), ∀j}.

The DG scheme we consider is the following: find uh ∈ Vh, such that for any vh ∈ Vh

((uh)t, vh)j = (f(uh), (vh)x)j − f̂j+ 1
2
v−h |j+ 1

2
+ f̂j− 1

2
v+

h |j− 1
2

+ (g(x, t), vh)j, (2.1)

where (w, v)j =
∫

Ij
wvdx, and v−h |j+ 1

2
= vh(x

−
j+ 1

2

) denotes the left limit of the function

vh at xj+ 1
2
. Likewise for v+

h . Moreover, the numerical flux f̂ is a single valued function

defined at the cell interfaces and in general depends on the values of the numerical

solution uh from both sides of the interfaces

f̂j+ 1
2

= f̂(uh(x
−
j+ 1

2

), uh(x
+
j+ 1

2

)).

In general, we use monotone fluxes.

For the linear case f(u) = u, we consider the upwind fluxes f̂ = u−h . Then the

numerical scheme (2.1) can be written as

((uh)t, vh)j = (uh, (vh)x)j − u−h v−h |j+ 1
2

+ u−h v+
h |j− 1

2
+ (g(x, t), vh)j (2.2)

= −((uh)x, vh)j − [uh]v
+
h |j− 1

2
+ (g(x, t), vh)j, (2.3)

where [uh]j− 1
2

= uh(x
+
j− 1

2

) − uh(x
−
j− 1

2

) is the jump of uh across xj− 1
2
. We use (2.2)

and (2.3) in Chapters 3 and 4 for the error estimates. Define

Hj(uh, vh) = (uh, (vh)x)j − u−h v−h |j+ 1
2

+ u−h v+
h |j− 1

2
, (2.4)
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such that the DG scheme can be written as

((uh)t, vh)j = Hj(uh, vh) + (g(x, t), vh)j.

If we do not consider the source term (i.e. g(x, t) = 0), the scheme becomes

((uh)t, vh)j = Hj(uh, vh). (2.5)

2.2 Norms

We now define some norms that we use throughout the thesis.

Denote ‖u‖0,Ij
as the standard L2-norm of u on cell Ij. For any non-negative

natural number `, we also define the norm and seminorm of the Sobolev space H`(Ij)

as

‖u‖`,Ij
=

{ ∑

0≤α≤`

∥∥∥∥
dαu

dxα

∥∥∥∥
2

0,Ij

}1/2

, |u|`,Ij
=

∥∥∥∥
d`u

dx`

∥∥∥∥
0,Ij

.

For convenience, if ` = 0, the corresponding index will be omitted.

We also define the L∞-norm and seminorm by

‖u‖`,∞,Ij
= max

0≤α≤`

∥∥∥∥
dαu

dxα

∥∥∥∥
∞,Ij

, |u|`,∞,Ij
=

∥∥∥∥
d`u

dx`

∥∥∥∥
∞,Ij

,

where ‖u‖∞,Ij
is the standard L∞-norm of u on cell Ij. Clearly, the L∞-norm is

stronger than the L2-norm, and in one cell Ij, we have

‖u‖Ij
≤ h

1/2
j ‖u‖∞,Ij

. (2.6)

Moreover, we define the norms on D = ∪j∈ΓIj for some index set Γ as follows:

‖u‖`,D =

(∑
j∈Γ

‖u‖2
`,Ij

)1/2

, ‖u‖`,∞,D = max
j∈Γ

‖u‖`,∞,Ij
.
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For convenience, if D = Ω = [0, 2π], the corresponding index will be omitted.

Finally, the negative order Sobolev norm can be defined as

‖u‖−`,D = sup
φ∈C∞0 (D)

∫
D

u(x)φ(x)dx

‖φ‖`,D

.

2.3 Properties of the finite element space

In this section, we study the basic properties of the finite element space. Let us start

with the classical inverse properties.

Lemma 2.3.1. Assume u ∈ Vh, then there exists a constant C > 0 independent of

h and u such that

∥∥∥∥
dαu

dxα

∥∥∥∥
D

≤ Ch−α‖u‖D, α ≥ 1, (2.7)

∑
Ij∈D

(∣∣∣u−
j+ 1

2

∣∣∣ +
∣∣∣u+

j− 1
2

∣∣∣
)
≤ Ch−1/2‖u‖D, (2.8)

where D can be the single cell Ij or the whole computational domain Ω.

Proof: The proof is trivial. We just use the fact that the norms in finite dimensional

spaces are equivalent. So we skip it here.

We define P`(p) as the `-th order L2-projection of p into Vh, such that

(P`(p), u)j = (p, u)j , ∀u ∈ P`(Ij). (2.9)

In addition, if ` ≥ 1, we can also define two Gauss-Radau projections P+ and P− as:

(P+(p), u)j = (p, u)j , ∀u ∈ P`−1(Ij) , and P+(p)(x+
j−1/2) = p(x+

j−1/2), (2.10)

(P−(p), u)j = (p, u)j , ∀u ∈ P`−1(Ij) , and P−(p)(x−j+1/2) = p(x−j+1/2). (2.11)

The projections P+ and P− are different from the exact collocation at different end
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points of each cell.

For the projection Ph, which is either Pk, P+ or P−, we denote the error operator

by P⊥h = I− Ph, where I is the identity operator. By a scaling argument, we obtain

the following property [28].

Lemma 2.3.2. Suppose the function u(x) ∈ Ck+1(Ij), then there exists a positive

constant C independent of h and u, such that

‖P⊥h u‖Ij
≤ Chk+1

j |u|k+1,Ij
and ‖P⊥h u‖∞,Ij

≤ Chk+1
j |u|∞,k+1,Ij

. (2.12)

Moreover, one can also prove the following superconvergence property [5].

Lemma 2.3.3. Suppose u(x) ∈ Ck+2(Ij), and xj is one of the downwind-biased

Radau points in the cell Ij, then

|(u− P−u)(xj)| ≤ Chk+2
j |u|k+2,∞,Ij

. (2.13)

However, if u is highly oscillatory or discontinuous, we cannot obtain any useful

estimate of ‖P⊥h u‖ by the two lemmas above. Therefore, we consider the following

estimate.

Lemma 2.3.4. Suppose u(x) is a bounded function, then

‖Phu‖∞,Ij
≤ C‖u‖∞,Ij

, and ‖P⊥h u‖∞,Ij
≤ C‖u‖∞,Ij

. (2.14)

Proof: For the simplicity of the presentation, we will only prove it for the P−
projection. We consider the projection on the reference cell T = [−1, 1] and define a

special norm in Pk(T ) as

|||v||| = max

{
|v(1)|,

∣∣∣∣
∫ 1

−1

v(s)spds

∣∣∣∣ : 0 ≤ p ≤ k − 1

}
.

It is not difficult to show this is indeed a norm. Since all norms in Pk are equivalent,
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we have ‖v‖∞,T ≤ C|||v||| for any v ∈ Pk(T ). Therefore, for any bounded function

u,

‖P−u‖∞,T ≤ C|||P−u||| = C|||u||| ≤ C‖u‖∞,T .

This proves the assertion on the reference cell. The general case follows from a

standard scaling argument.

By using (2.6) and Lemma 2.3.4, we obtain

‖P⊥h u‖Ij
≤ h

1/2
j ‖P⊥h u‖∞,Ij

≤ Ch
1/2
j ‖u‖∞,Ij

.

Now, we consider the projection of functions depending not only on the spatial

variable x but also on the time variable t. Suppose u(x, t) is a function differentiable

and integrable with respect to t and assume t1 and t2 are two real values such that

t1 < t2. Then we have

Ph (ut(x, t)) = (Phu(x, t))t , and Ph

(∫ t2

t1

u(x, t)dt

)
=

∫ t2

t1

(Phu(x, t))dt. (2.15)

As a result, we do not need to distinguish Ph(ut(x, t)) and (Phu(x, t))t, and can

simply denote them as Phut.

2.4 Properties of the DG spatial discretization

In this subsection, we present some basic properties about the bilinear form Hj

and the L2-stability condition [30]. We consider the linear case, namely (1.1) with

f(u) = u. The following lemma is given by Cockburn [30].

Lemma 2.4.1. Suppose uh is the DG numerical solution which satisfies (2.5) in

each cell. By using the upwind flux, we have

‖uh(T )‖2 +

∫ T

0

∑
1≤j≤N

[uh(t)]
2
j+1/2 dt ≤ ‖uh(0)‖2. (2.16)
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Lemma 2.4.2. Suppose vh ∈ Vh and q(x) ∈ H1
h, then the two Gauss-Radau projec-

tions satisfy

Hj(P⊥−q(x), vh) = 0, and Hj(vh,P⊥+q(x)) = 0. (2.17)

Proof: The proof is straight forward. So we skip it here.

If we define (uh, vh) =
∑

j(uh, vh)j and H(p, q) =
∑

j Hj(p, q), then

Lemma 2.4.3. Suppose p(x) ∈ H1
h and vh ∈ Vh, there holds

H(P⊥−p(x), vh) = 0, and H(vh,P⊥+p(x)) = 0. (2.18)

Proof: The proof follows from Lemma 2.4.2 and the definition of H. So we skip it.

2.5 The error equation

In this subsection, we also consider linear equation (i.e. f(u) = u in (1.1)) and

proceed to construct the error equations. From (2.2) and definition (2.4), we have

for any vh ∈ Vh

((uh)t, vh)j = Hj(uh, vh) + (g(x, t), vh)j.

Clearly, the exact solution u satisfies a similar equation

(ut, vh)j = Hj(u, vh) + (g(x, t), vh)j.

Denote the error between the exact solution and the DG numerical solution to be

e(t) = u(t)− uh(t). Then we have

(et, vh)j = Hj(e, vh), for any vh ∈ Vh.
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Following the usual treatment in finite element analysis, we divide the error into the

form e(t) = η(t)− ξ(t), where

η(t) = u(t)− P−u(t), and ξ(t) = uh(t)− P−u(t).

From Lemma 2.4.2, we obtain the error equations of the DG scheme. Suppose vh ∈ Vh

then

(et, vh)j = −Hj(ξ, vh)

= −(ξ, vhx)j + ξ−v−h |j+ 1
2
− ξ−v+

h |j− 1
2

(2.19)

= (ξx, vh)j + [ξ]v+
h |j− 1

2
(2.20)

because of upwinding. Equations (2.19) and (2.20) are fundamental in our analysis

later.

Let us finish this section by proving the following lemma.

Lemma 2.5.1. Suppose ξ̄ is the cell average of ξ, that is ξ̄ = ξ̄j = 1
hj

∫
Ij

ξdx in cell

Ij, for any j = 1, · · · , N . Then we have

‖ξ − ξ̄‖Ij
≤ Chj‖ξx‖Ij

≤ Chj‖Pket‖Ij
≤ Chj‖et‖Ij

. (2.21)

Proof: The right inequality is trivial and the left one follows from the Poincaré

inequality. So we only need to prove the middle one.

Suppose Q is the Legendre polynomial of degree k in [-1,1] and define P =

(−1)kQ. Then P satisfies the following three properties:

(1) P is uniformly bounded: ‖P‖∞,[−1,1] ≤ 1;

(2) P evaluated at the left boundary is 1: P (−1) = 1;

(3) P is orthogonal to any polynomials with degree no greater than k−1:
∫ 1

−1
PRdx =

0 for any R(x) ∈ Pk−1([−1, 1]).

Define Pj(x) = P (
2(x−xj)

hj
), then Pj also satisfies the corresponding three properties
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in the cell Ij. In (2.20), we take vh = ξx − aPj, where a = ξ+
x |j−1/2 is a real number,

to obtain

‖ξx‖2
Ij

= (Pket, ξx − aPj)j

≤ ‖Pket‖Ij

(‖ξx‖Ij
+ |a|‖Pj‖Ij

)

≤ ‖Pket‖Ij

(
‖ξx‖Ij

+ Ch
−1/2
j ‖ξx‖Ij

h
1/2
j

)

≤ C‖Pket‖Ij
‖ξx‖Ij

, (2.22)

where the constant C does not depend on j, h or u. Here, for the second step we

use the Cauchy-Schwarz inequality, for the third one we use (2.6) and (2.8), and the

last step is trivial. We finish the proof by dividing both sides of the above equation

by ‖ξx‖Ij
.



Chapter 3

Analysis of optimal

superconvergence for linear

hyperbolic equations

In this chapter, we study one-dimensional linear hyperbolic conservation laws

ut + ux = 0, (x, t) ∈ R× (0, T ],

u(x, 0) = u0(x), x ∈ R,
(3.1)

where the initial datum u0 is sufficiently smooth. We will consider both the peri-

odic boundary condition u(0, t) = u(2π, t) and the initial-boundary value problem

with u(0, t) = g(t). We use piecewise k-th degree polynomials to approximate the

solution in each cell and prove that, under suitable initial discretization, the rate of

convergence for the error between the DG solution and the exact solution is of order

(k + 2)-th at the downwind-biased Radau points. Moreover, we also prove order

(k + 2)-th superconvergence of the cell averages as well as the error between the DG

solution and a particular type of projection of the exact solution.

In [116], Zhang and Shu gave explicitly formulae for the DG solution in the case

of piecewise linear functions for the linear convection equation on uniform meshes.

13
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The leading error term is shown to be of a constant magnitude independent of time

t. This motivates the division of the numerical error into two parts, one being the

leading term and the other one being a superconvergent term.

In [5, 6], Adjerid et al. proved the (k + 2)-th order superconvergence of the

DG solutions at the downwind-biased Radau points for ordinary differential equa-

tions. Later, Adjerid and Weihart [7, 8] investigated the local DG error for multi-

dimensional first-order linear symmetric and symmetrizable hyperbolic systems. The

authors showed that the projection of the local DG error is also (k + 2)-th order su-

perconvergent at the downwind-biased Radau points by performing a local error

analysis on Cartesian meshes. The global superconvergence is given by numerical

experiments. In [7, 8], only initial-boundary value problems are considered, and the

local DG error estimate is valid for t sufficiently large. Subsequently, Adjerid and

Baccouch [4] investigated the global convergence of the implicit residual-based a pos-

teriori error estimates, and proved that these estimates at a fixed time t converge to

the true spatial error in the L2 norm under mesh refinement. In [25], Cheng and Shu

proved (k + 3
2
)-th order superconvergence of the DG solution towards a particular

projection of the exact solution. The authors considered the case of piecewise linear

polynomials (k = 1) on uniform meshes with periodic boundary conditions for the

linear conservation laws. Later Cheng and Shu also proved the same (k+ 3
2
)-th order

superconvergence when using piecewise k-th degree polynomials with arbitrary k on

arbitrary regular meshes in [26]. In [26] the authors considered both periodic bound-

ary conditions and initial-boundary value problems. However, the convergence rate

obtained in [26] is not optimal. Numerical tests showed that the error of the DG

solution towards the particular projection of the exact solution is (k + 2)-th order

accurate, even on highly non-uniform meshes, when a special initial discretization is

used. Recently, in [123] Zhong and Shu revisited the same problem and showed that

the error between the DG numerical solution and the exact solution is (k + 2)-th

order superconvergent at the downwind-biased Radau points and (2k + 1)-th order
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superconvergent at the downwind point in each cell on uniform meshes with periodic

boundary conditions for k = 1, 2 and 3. The proofs in [25, 123] use Fourier analysis

and work only for uniform meshes and periodic boundary conditions. Moreover,

Fourier analysis is difficult to perform for higher polynomial degree k since it relies

explicitly on the structure of the algorithm matrices. In [26], a different framework

to prove the superconvergence results that does not rely on Fourier analysis is offered

and the results are valid for both periodic boundary conditions and initial-boundary

value problems. In this chapter, we improve upon the result in [26]. A new tech-

nique is adopted to obtain the optimal rate of superconvergence. The proof works

for arbitrary regular meshes and schemes of any order. Even though the proof is

given for the simple scalar equation (3.1), the same superconvergent results can be

obtained for one-dimensional linear systems using similar points.

3.1 Statement of the main result

Before proceeding to the main theorem, we first introduce a special initial discretiza-

tion. We wish to require

(uh)t = P−(ut) and ‖P−u− uh‖Ω = O(hk+2). (3.2)

Notice that the special projection P− is used in the error estimates of the DG methods

to derive optimal L2-error bounds in the literature, e.g., in [118]. As in [26], we will

prove that the numerical solution is closer to this special projection of the exact

solution than to the exact solution itself. The exact way to discretize the initial data

to achieve the property (3.2) will be given in Section 3.2.1. We can now state our

main theorem.

Theorem 3.1.1. Let u(x, t) ∈ Ck+4 be the exact solution of the linear hyperbolic

equation (3.1) and uh be the numerical solution of the DG scheme (2.5). The finite

element space Vh is made up of piecewise polynomials of degree k ≥ 1 on regular
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meshes, i.e. the ratio of the length of the largest cell to that of the smallest one is

bounded during mesh refinement. At time T there holds the following estimate

(
1

N

N∑
j=1

|(u− uh)(xj)|2
) 1

2

≤ C(1 + T 2)hk+2‖u‖k+4,∞,Ω, (3.3)

where Ω is the computational domain, and xj is any one of the downwind-biased

Radau points in the cell Ij. The constant C does not depend on h, T or u.

Remark 3.1.1. Theorem 3.1.1 is valid for both periodic boundary condition and

initial-boundary value problems.

Corollary 3.1.1. Suppose the conditions in the above theorem are satisfied, then we

have

‖u− uh‖L2(Ω) ≤ C(1 + T 2)hk+2‖u‖k+4,Ω, (3.4)

‖P−u− uh‖L2(Ω) ≤ C(1 + T 2)hk+2‖u‖k+4,Ω, (3.5)

where u− uh denotes the cell average of u− uh, and the constant C does not depend

on h, T or u.

3.2 Proof of the main result

In this section, we first discuss how to discretize the initial datum, then prove the

main result, Theorem 3.1.1, and finally briefly discuss the application of the super-

convergence results. The proof can be divided into several steps. Briefly, by using

the triangle inequality, we separate |(u − uh)(xj)| into two parts, |(u − P−u)(xj)|
and |ξ(xj)|. The superconvergence of the first term is given by Lemma 2.3.3 while

the second one is more difficult to deal with and we separate this process into two

steps. In the first step, we consider the estimates of et and ett. In the second step,

we use a quadrature formula and consider the dual problem of (3.1). Besides the

main theorem, we also prove Corollary 3.1.1 in this section.
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3.2.1 The initial discretization

In this subsection we consider the suitable discretization of the initial datum. As

mentioned in Section 3.1, we would like to have the initial solution satisfy ξt = 0 and

‖ξ‖Ω ≤ Chk+2, see (3.2). We start from the requirement ξt = 0 and check whether a

special numerical initial solution can be constructed which also satisfies the second

requirement ‖ξ‖Ω ≤ Chk+2. Let us start from the following lemma. Taking vh = 1

in (2.19), we have

Lemma 3.2.1.
∫

Ij
etdx = 0, ∀ 1 ≤ j ≤ N if and only if ξ−

j+ 1
2

is a constant which

does not depend on j.

Denote the constant mentioned in the previous lemma as S. Clearly, such a constant

gives us freedom to control ‖ξ‖Ij
, as is shown in the following lemma.

Lemma 3.2.2. Suppose ‖et‖Ij
≤ Ch

k+3/2
j , then S ≤ Chk+2

j if and only if ‖ξ‖Ij
≤

Ch
k+5/2
j .

Proof: Suppose ‖ξ‖Ij
≤ Ch

k+5/2
j , then by Lemma 2.3.1 we have S ≤ Chk+2

j . On

the other hand, suppose S ≤ Chk+2
j , then by Lemma 2.5.1

ξ̄j = ξ−
j+ 1

2

− (ξ − ξ̄j)
−
j+ 1

2

≤ S + Ch
−1/2
j ‖ξ − ξ̄j‖Ij

≤ S + Ch
1/2
j ‖et‖Ij

≤ Chk+2
j .

Therefore,

‖ξ‖Ij
≤ ‖ξ̄j‖Ij

+ ‖ξ − ξ̄j‖Ij
≤ Ch

k+5/2
j .

Remark 3.2.1. The condition ‖et‖Ij
≤ Ch

k+3/2
j in Lemma 3.2.2 is true because we

require ξt = 0. Actually, we can show ‖et‖Ij
≤ Chk+1

j |u|k+2,Ij
. We will also use this

estimate of et later.
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There is a straightforward corollary of the above lemma.

Corollary 3.2.1. Suppose the initial solution satisfies ξt = 0 and S ≤ Chk+2, then

‖ξ‖Ω ≤ Chk+2.

Now let us proceed to construct the initial solution uh from ξt = 0.

Lemma 3.2.3. Suppose
∫

Ij
et = 0, then ξx is uniquely determined by Pket in the cell

Ij.

Proof: Let v+
h |j− 1

2
= 0 in equation (2.20), then we have

(Pket, vh)j = (ξx, vh)j. (3.6)

Since the equation is linear, we only need to prove uniqueness. That is, suppose

(Pket, vh)j = 0, ∀ vh ∈ Vh and v+
h |j− 1

2
= 0, then ξx = 0. To prove this, let p(x) be

an arbitrary polynomial of degree no more than k and vh = p− p+
j− 1

2

. Then

(Pket, p)j = (Pket, p− p+
j− 1

2

)j = 0.

This implies that Pket = 0. By Lemma 2.5.1, we obtain ξx = 0.

Remark 3.2.2. The expression of ut can be obtained by the partial differential equa-

tion. Therefore it is not difficult to obtain Pket from ξt = 0.

Now, the only thing left is to determine the value of the constant S = ξ−
j− 1

2

. By

Corollary 3.2.1 we can simply take S = 0. However, such S does not satisfy the

conservation of mass. If we consider periodic boundary condition we can select a

special S such that
∫

Ω
ξ = 0. We first prove that such as S satisfies the property

S ≤ Chk+2. Actually,

∫

Ω

ξdx =
N∑

j=1

ξ̄jhj =
N∑

j=1

(
S − (ξ − ξ̄)−

j+ 1
2

)
hj,
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which yields

S|Ω| =
N∑

j=1

(ξ − ξ̄)−
j+ 1

2

hj. (3.7)

Then we obtain

S ≤ C

|Ω|
N∑

j=1

‖et‖Ij
h

3/2
j ≤ C

|Ω|

(
N∑

j=1

h2k+5
j

)1/2

|u|k+2,Ω ≤ C√
|Ω|h

k+2|u|k+2,Ω. (3.8)

In the first inequality in (3.8) we use Lemma 2.5.1 and (2.8). For the second inequal-

ity we use the Cauchy-Schwartz inequality and the estimate ‖et‖Ij
≤ Chk+1

j |u|k+2,Ij

obtained in Remark 3.2.1. The last inequality follows from the fact that
∑

hj = |Ω|
and hj ≤ h.

Now we summarize how to implement the initial discretization. We divide the

process into the following steps:

(1) Let ξt = 0, then compute the value of et using the PDE.

(2) Use Lemma 3.2.3 to find ξx.

(3) Compute ξ − ξ̄ in each cell from ξx and the fact that
∫

Ij
(ξ − ξ̄)dx = 0.

(4) Express S by using (3.7) or simply by taking S = 0.

(5) Calculate ξ from the expressions of S and ξx.

(6) Recover uh = ξ + P−u.

From the process mentioned above, we observe that the initial solution is uniquely

determined by the requirements ξt = 0 and
∫

Ω
ξdx = 0 or ξ−

j− 1
2

= 0.

3.2.2 Step 1

Now, we proceed to prove Theorem 3.1.1. The estimates of ‖et‖Ω and ‖ett‖Ω follow

from Lemma 2.3 in [26] with some minor changes. We skip the proofs and state the
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results in the following two equations:

‖ett(t)‖Ω ≤ Chk+1|u|k+3,Ω + Cthk+1|u|k+4,Ω, (3.9)

‖et(t)‖Ω ≤ Chk+1|u|k+2,Ω + Cthk+1|u|k+3,Ω. (3.10)

Therefore, by Lemma 2.5.1 we have

‖ξ − ξ̄‖ ≤ C(1 + t)hk+2‖u‖k+3,Ω. (3.11)

Before proceeding to the optimal error estimates of ‖ξ‖Ω, we use a superconvergence

result to prove the optimal error estimate of ‖e‖∞,Ω.

Following [26], we can easily prove

‖ξ(t)‖Ω ≤ C(1 + t)hk+3/2‖u‖k+3,Ω.

Since ξ is a polynomial of degree at most k in each cell, we have

‖ξ(t)‖∞,Ij
≤ Ch−1/2‖ξ(t)‖Ij

≤ Ch−1/2‖ξ(t)‖Ω ≤ C(1 + t)hk+1‖u‖k+3,Ω.

Notice that the right hand side of the above equation does not depend on j. We can

therefore take the maximum on both sides to obtain

‖ξ(t)‖∞,Ω ≤ C(1 + t)hk+1‖u‖k+3,Ω.

Finally, by Lemma 2.3.2, we obtain

‖e(t)‖∞,Ω ≤ C(1 + t)hk+1‖u‖∞,k+3,Ω. (3.12)
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3.2.3 Step 2

Now, we proceed to estimate e(xj). By Lemma 2.3.3, only ξ(xj) is considered.

Denote the downwind-biased Radau points of the cell Ij as xi
j, 0 ≤ i ≤ k. Also

denote ψi
j to be a polynomial of degree k in cell Ij, such that

ψi
j(x`) =





1 x` = xi
j

0 x` 6= xi
j

. (3.13)

By the Gauss-Radau quadrature, we have ξ(xi
j) = 2

wihj
(ξ, ψi

j), where the constant

wi is the weight of the quadrature at the ith downwind-biased Radau point on the

reference interval [−1, 1]. Therefore, we only need to estimate (ξ, ψi
j) for any 0 ≤

i ≤ k. Clearly, ‖ψi
j‖∞ ≤ C, where the positive constant C does not depend on i, j

or h. Motivated by [34], we consider the dual problem of (3.1). For convenience, we

denote by C a generic positive constant that does not depend on h, T or u, but may

depend on Λ. Recall that Λ is the ratio of the length of the largest cell to that of

the smallest one.

We begin by considering the solution to the dual problem:

(1) For the periodic boundary condition, find a function φi
j such that φi

j(·, t) satisfies

φi
j t

+ φi
jx

= 0, (x, t) ∈ R× (0, T ],

φi
j(x, T ) = ψi

j(x), x ∈ R,

φi
j(0, t) = φi

j(2π, t), t ∈ [0, T ].

(3.14)

(2) For the initial boundary value problem, find a function φi
j such that φi

j(·, t)
satisfies

φi
j t

+ φi
jx

= 0, (x, t) ∈ R× (0, T ],

φi
j(x, T ) = ψi

j(x), x ∈ R,

φi
j(2π, t) = 0, t ∈ [0, T ].

(3.15)

For convenience, we drop the subscript j as well as the superscript i and denote ψ
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as ψi
j and φ as φi

j. Following [34]

(e(T ), ψ) = (e, φ)(0) +

∫ T

0

(e, φ)tdt

= (e, φ)(0) +

∫ T

0

[(et, φ) + (e, φt)]dt. (3.16)

We apply P+ to deal with the term (et, φ) + (e, φt), with the definition of the

projection given in (2.10). Recalling that e = η − ξ where the notations of ξ and η

can be found in Section 2.5, we have

(et, φ) + (e, φt) = (et,P⊥+φ) + (et,P+φ)− (e, φx)

= (et,P⊥+φ) +H(e,P+φ)− (η, φx) + (ξ, φx)

= (et,P⊥+φ)−H(ξ,P+φ)− (η, φx) +H(ξ, φ)

−
N∑

j=2

ξ−[φ]j− 1
2

+ ξ−φ−|N+ 1
2
− ξ−φ+| 1

2

= (et,P⊥+φ)− (η, φx)−
N∑

j=2

ξ−[φ]j− 1
2

+ ξ−φ−|N+ 1
2
− ξ−φ+| 1

2
,(3.17)

where for the last equality we use Lemma 2.4.3.

For the periodic boundary condition, the above turns out to be

(et, φ) + (e, φt) = (et,P⊥+φ)− (η, φx)−
N∑

j=1

ξ−[φ]j− 1
2
. (3.18)

Integrating in t and noticing the fact that

∫ T

0

N∑
j=1

ξ−[φ]j− 1
2

= 0,
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since [φ(t)]i− 1
2

= 0 except for at most finitely many t, we have

∫ T

0

[(et, φ) + (e, φt)]dt =

∫ T

0

(et,P⊥+φ)dt +

∫ T

0

(η, φt)dt. (3.19)

For the initial boundary value problem, keeping in mind the fact that ξ−1
2

= 0, (3.17)

becomes

(et, φ) + (e, φt) = (et,P⊥+φ)− (η, φx)−
N∑

j=2

ξ−[φ]j− 1
2

+ ξ−φ−|N+ 1
2
. (3.20)

Integrating the above equation in t, and noticing the fact that

∫ T

0

N∑
j=1

ξ−[φ]j− 1
2

= 0, and

∫ T

0

ξ−φ−|N+ 1
2

= 0,

since [φ(t)]i− 1
2

= 0 except for at most finitely many t, and φ−(t)|N+ 1
2

= 0 when

t < T , we again obtain (3.19).

We use integration by parts on the second term of the right hand side of (3.19),

∫ T

0

(η, φt)dt = (η, ψ)(T )− (η, φ)(0)−
∫ T

0

(ηt, φ)dt. (3.21)

Plugging (3.21) into the second term on the right hand side of (3.19), then plugging

(3.19) into the right hand side of (3.16), we obtain

(e(T ), ψ) = (e, φ(0)) +

∫ T

0

(et,P⊥+φ)dt + (η, ψ)(T )− (η, φ)(0)−
∫ T

0

(ηt, φ)dt.

Noticing that P−u− uh = e− η, we have

(P−u− uh, ψ)(T ) = Πj
1 + Πj

2 + Πj
3,
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where

Πj
1 = (P−u− uh, φ)(0),

Πj
2 = −

∫ T

0

(P⊥−ut, φ)dt,

Πj
3 =

∫ T

0

(et,P⊥+φ)dt.

For the first term, notice the fact that at t = 0, the support of φj is of length at

least hmin. Therefore, each cell contains at most dΛe+ 1 such φj, where dΛe denotes

the smallest integer no smaller than Λ. In Section 3.2.1 we obtained the estimate

‖ξ(0)‖Ω ≤ Chk+2|u|k+2,Ω, such that

N∑
j=1

(Πj
1)

2 =
N∑

j=1

(P−u− uh, φj)
2(0)

≤ Ch(dΛe+ 1)‖ξ‖2
Ω

≤ Ch2k+5|u|2k+2,Ω. (3.22)

The estimate of Πj
2

We proceed to estimate Πj
2 = − ∫ T

0
(P⊥−ut, φ). For simplicity, only a periodic bound-

ary condition is considered. However the estimate of the initial-boundary value

problem can be obtained in exactly the same way. We extend our meshes onto

the whole real line periodically, so the domain under consideration in this and the

next subsections is R × [0, T ]. Clearly, the characteristic line which passes through

(xj− 1
2
, T ), denoted by lj, is t = x + T − xj− 1

2
, 0 < t < T . We also assume that lj

and the cell boundary xi− 1
2
× [0, T ] intersect at t = tji . Denote the support of φ in

R × [0, T ] as Ωj, then the boundaries of the cells separate Ωj into several pieces, as

shown in Figure 3.1. Denote Ωj
i = Ωj∩Ii×[0, T ] and kj = min

{
i : Ωj

i is not empty
}
.

Also define ∆j = {kj, kj +1, · · · , j} to be the index set which contains the subscripts
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of all the nonempty pieces. Then we can easily realize the following properties:

(1) Ωj = ∪i∈∆j
Ωj

i and |∆j| = j − kj + 1 ≤ dTΛ
h
e+ 1.

(2) Denote ∆̃j = {i ∈ ∆j|Ωj
i is not a parallelogram}, then |∆̃j| ≤ dΛe + 2 and

j ∈ ∆̃j.

(3) Among those which are not parallelograms, Ωj
j is a triangle which lies in the

region R× [T − h, T ], and by denoting Ω̃j = ∪i∈∆̃j\jΩ
j
i , we have Ω̃j ∈ R× [0, 2h].

(4) Suppose Ωj
i is a parallelogram then the vertices are (xi− 1

2
, tji ), (xi+ 1

2
, tji+1), (xi+ 1

2
, tj+1

i+1 ),

and (xi− 1
2
, tj+1

i ).

IjIi

Ωi
j

Ωj
j

Ωj
k+1

t=T

t=0

Ik+1Ik

ti+1
j

ti
j

ti+1
j+1

ti
j+1

Figure 3.1: The support of φ: black polygons along the dashed line.

Now we can proceed to obtain the estimate

∫ T

0

(P⊥−ut, φ) =
∑
i∈∆j

∫

Ωj
i

P⊥−ut φ dxdt.
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Consider the parallelogram Ωj
i . And noticing the fact

∫ tji+1

tj+1
i

(
P⊥−ut(t

j+1
i ), φ

)
dt =

(
P⊥−ut(t

j+1
i ),

∫ tji+1

tj+1
i

φ dt

)

=

(
P⊥−ut(t

j+1
i ),

∫

Ij

ψ dx

)

= 0. (3.23)

Then we have

∫

Ωj
i

P⊥−ut φ dxdy =

∫ tji+1

tj+1
i

(P⊥−ut, φ)dt

=

∫ tji+1

tj+1
i

(P⊥−ut(t)− P⊥−ut(t
j+1
i ), φ)dt

=

∫ tji+1

tj+1
i

(
P⊥−

(∫ t

tj+1
i

utt(τ)dτ

)
, φ

)
dt

=

∫ tji+1

tj+1
i

∫ t

tj+1
i

(
P⊥−utt(τ), φ

)
dτdt

≤ Chk+4|u|k+3,∞,Ω. (3.24)

Now, we consider Ωj
j and Ω̃j. By using the third property of the partition of the

support of Ωj, we have

∫

Ωj
j

P⊥−ut φ dxdt ≤ Chk+3|u|k+2,∞,Ω,

and ∫

Ω̃j

P⊥−ut φ dxdt ≤ Chk+3|u|k+2,∞,Ω.

Combining the above, we obtain

∫ T

0

(P⊥−ut, φ) ≤ Chk+3|u|k+2,∞,Ω + CThk+3|u|k+3,∞,Ω.
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The estimate of Πj
3

We still consider periodic boundary condition and follow the procedure in the pre-

vious section. However, there are two differences:

(1) The support of P⊥+φ, denoted as Tj, is different from Ωj.

(2) We do not have the local estimates of ‖ett‖Ij
or ‖et‖Ij

.

To deal with the first one, we define T j
i = Tj ∩ Ii × (0, T ). Clearly T j

i is a

rectangle covering Ωj
i and can be written as T j

i = Ii×(t0, t1), where t0 = inf{t : ∃x ∈
Ii s.t. (x, t) ∈ Ωj

i} and t1 = sup{t : ∃x ∈ Ii s.t. (x, t) ∈ Ωj
i}. If Ωj

i is a parallelogram,

then t0 = tj+1
i and t1 = tji+1 (see Figure 3.2). We also denote T̃j = ∪i∈∆̃j\jT

j
i , then

Tj = ∪i∈∆j
T j

i . Moreover, it is not difficult to obtain T j
j ⊂ Ij × (T − h, T ) and

T̃j ⊂ R× (0, 2h). Consider T j
i such that Ωj

i is a parallelogram. And notice that

IjIi

Ti
j

Tj
k-1

Tj
j

Tj
k

t=T

t=0
Ik+1Ik

ti
j+1

ti+1
j+1

ti
j

ti+1
j

Figure 3.2: The support of P+φ: the black boxes along the dashed line.
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∫ tji+1

tj+1
i

(et(t
j+1
i ),P⊥+φ)dt =

(
et(t

j+1
i ),P⊥+

∫ tji+1

tj+1
i

φ dt

)

=

(
et(t

j+1
i ),P⊥+

∫

Ij

ψ dx

)

= 0. (3.25)

Then we have

∫

T j
i

et P⊥+φ dxdt =

∫ tji+1

tj+1
i

(et,P⊥+φ)dt

=

∫ tji+1

tj+1
i

(
et(t)− et(t

j+1
i ),P⊥+φ

)
dt

=

∫ tji+1

tj+1
i

(∫ t

tj+1
i

ett(τ)dτ,P⊥+φ

)
dt

≤ Ch3/2

∫ tji+1

tj+1
i

‖ett‖Ii
dt. (3.26)

Observe that sup{t : (x, t) ∈ T̃j} ≤ 2h and inf{t : (x, t) ∈ T j
j } ≥ T − h. Therefore

∫

T j
j

et P⊥+φ dxdt ≤ Ch
1/2
j

∫ T

T−h

‖et‖Ij
dt,

and

∫

T̃j

et P⊥+φ dxdt ≤ C

∫ 2h

0

∑

i∈∆̃j\j
‖et‖Ii

h
1/2
i dt

≤ Ch1/2

∫ 2h

0


 ∑

i∈∆̃j\j
‖et‖2

Ii




1/2

dt. (3.27)

Combining the above, we obtain the estimate

Πj
3 ≤ CΓj

1 + CΓj
2 + CΓj

3,
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where

Γj
1 = h3/2

∑

i∈∆j\∆̃j

∫ tji+1

tj+1
i

‖ett‖Ii
dt,

Γj
2 = h

1/2
j

∫ T

T−h

‖et‖Ij
dt,

Γj
3 = h1/2

∫ 2h

0


 ∑

i∈∆̃j\j
‖et‖2

Ii




1/2

dt.

As mentioned at the beginning, we do not have the local estimates of ‖et‖ or ‖ett‖,
so we need to consider the summation with respect to j.

First, we consider Γj
1. Keeping in mind the fact that, for any t ∈ (0, T ) and

1 ≤ i ≤ N , the information of ‖ett(t)‖Ii
is contained in at most dΛe+ 1 instances of

Γj
1, we have

N∑
j=1

|Γj
1|2 ≤

N∑
j=1

h3
∑

i∈∆j\∆̃j

dTΛ

h
e
(∫ tji+1

tj+1
i

‖ett‖Ii
dt

)2

≤ CTh3

N∑
j=1

∑

i∈∆j\∆̃j

∫ tji+1

tj+1
i

‖ett‖2
Ii
dt

≤ CT (dΛe+ 1)h3

∫ T

0

‖ett‖2
Ωdt

≤ CTh2k+5

∫ T

0

(|u|k+3,Ω + t|u|k+4,Ω)2dt

≤ Ch2k+5
(
T 2|u|2k+3,Ω + T 4|u|2k+4,Ω

)
. (3.28)
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The second term is easy to deal with since

N∑
j=1

|Γj
2|2 ≤

N∑
j=1

h2

∫ T

T−h

‖et‖2
Ij

dt

= h2

∫ T

T−h

‖et‖2
Ωdt

≤ Ch2k+4

∫ T

T−h

(|u|k+2,Ω + t|u|k+3,Ω)2dt

≤ Ch2k+5
(|u|2k+2,Ω + T 2|u|2k+3,Ω

)
dt. (3.29)

The third term is also not difficult. Notice that for fixed i,
∫ 2h

0
‖et‖Ii

is contained in

at most dΛe+ 1 instances of Γj
3, we have

N∑
j=1

|Γj
3|2 ≤

N∑
j=1

h2

∫ 2h

0

∑

i∈∆̃j\j
‖et‖2

Ij
dt

≤ (dΛe+ 1)h2

∫ 2h

0

‖et‖2
Ωdt

≤ Ch2k+4

∫ 2h

0

(|u|k+2,Ω + t|u|k+3,Ω)2dt

≤ Ch2k+5
(|u|2k+2,Ω + h2|u|2k+3,Ω

)
dt. (3.30)

Combining the above, we obtain

N∑
j=1

|Πj
3|2 ≤ C

N∑
j=1

(|Γj
1|2 + |Γj

2|2 + |Γj
3|2

) ≤ C(1 + T 4)h2k+5‖u‖2
k+4,Ω.

Remark 3.2.3. By the same method mentioned in this subsection, we can also derive

that
N∑

j=1

|Πj
2|2 ≤ C(1 + T 2)h2k+5‖u‖2

k+4,Ω.

Here the upper bound is of T 2 instead of T 4 since ‖ηt‖Ω and ‖ηtt‖Ω do not grow in

time.



31

3.2.4 Final estimate

Now we proceed to the final estimate of |ξ(xj)|. We simply sum up all the previous

estimates and obtain

N∑
j=1

|(ξ, ψj)|2 ≤ 3
N∑

j=1

(|Πj
1|2 + |Πj

2|2 + |Πj
3|2

)

≤ Ch2k+5
(|u|2k+2,Ω + (1 + T 2)‖u‖2

k+4,Ω + (1 + T 4)‖u‖2
k+4,Ω

)

≤ Ch2k+5(1 + T 4)‖u‖2
k+4,Ω. (3.31)

Therefore,

1

N

N∑
j=1

|ξ(xj)|2 =
1

N

N∑
j=1

∣∣∣∣
2

hj

(ξ, ψj)

∣∣∣∣
2

≤ Ch2k+4(1 + T 4)‖u‖2
k+4,Ω.

By Lemma 2.3.3,

1

N

N∑
j=1

|(u− uh)(xj)|2 ≤ Ch2k+4(1 + T 4)‖u‖2
k+4,∞,Ω. (3.32)

This completes the proof of the main theorem.

Notice that, throughout the proof, we have not used any special property of ψ.

Hence we can take ψ to be the indicator function of cell Ij, which yields the estimate

of (3.4). Finally, (3.5) follows from (3.11) and (3.4).

3.2.5 Applications

In Section 3.2.2, we proved optimal error estimates in L∞ by using the superconver-

gence of ξ = uh − P−u. This can be considered as an application of the supercon-

vergence result. Let us also briefly discuss some other applications. A notice is to

use the superconvergence of the cell averages to construct a new a posterior error
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indicator, in the same spirit as in [67] where the jump sizes at cell interfaces are

used as an a posterior error indicator. To expose this, we denote v as the numerical

solution instead of uh in this section and consider the cell Ij only. Following the

superconvergence result, the cell average of the numerical solution vj is superclose

to that of the exact solution uj. If we construct another numerical cell average ṽj

which is not superconvergent, then the difference ṽj − vj is a good a posterior error

indicator of the local error. We can construct ṽj in the following steps:

(1) Extend the polynomial numerical solution from the two neighboring cells, de-

noted by vj−1 and vj+1, to the cell Ij.

(2) Compute the cell averages of vj−1 and vj+1 in the cell Ij, and denote them by

ṽj−1 and ṽj+1 respectively.

(3) Define

ṽj = θṽj−1 + (1− θ)ṽj+1,

where 0 ≤ θ ≤ 1. In general, the new cell average ṽj is only (k+1)-th order accurate.

(4) The a posterior computable quantity ṽj − vj is asymptotically equal to the error

ṽj − uj and is therefore a good indicator of the local error.

Numerical evidence will be given in Section 3.3.

Based on the superconvergence of the downwind-biased Radau points, we can

construct another a posterior error indicator. We use vj and uj as the numerical and

exact solutions in cell Ij, respectively. Denote xi
j, 0 ≤ i ≤ k as the downwind-biased

Radau points and Ŝ = {xj− 1
2
, x0

j , · · · , xk
j}. Then we construct another numerical

approximation wj ∈ Pk+1(Ij) which interpolates vj at x ∈ Ŝ. For convenience, if x̂ ∈
Ŝ is located at the cell interface, v(x̂) is denoted as the left limiter of the numerical

approximation. Therefore, we have wj(x
+
j− 1

2

) = vj−1(x
−
j− 1

2

) and wj(x
−
j+ 1

2

) = vj(x
−
j+ 1

2

).

We define w(x) to be such a function such that for any j, w(x) agrees with wj in

cell Ij. Obviously, w(x) is a continuous function. In (3.12), we mentioned that the

error between the numerical solution and the exact solution is not superconvergent.

If we can show that the new numerical approximation wj is superconvergent in the
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L∞-norm, the difference vj − wj is a good a posterior error indicator of the local

error. Let w̃j ∈ Pk+1(Ij) be a polynomial thus interpolates uj at x ∈ Ŝ. Clearly,

‖uj − w̃j‖∞,Ij
≤ Chk+2. (3.33)

On the other hand, for any x̂ ∈ Ŝ, Theorem 3.1.1 yields |vj(x̂) − uj(x̂)| ≤ Chk+3/2.

Then we have |wj(x̂)− w̃j(x̂)| ≤ Chk+3/2. Define a special norm in Pk+1(Ij) as

||v||Ŝ = max
x∈Ŝ

{|v(x)|} .

It is not difficult to show this is indeed a norm. Since all norms in Pk+1 are equivalent,

we have ‖v‖∞,Ij
≤ C||v||Ŝ for any v ∈ Pk+1(Ij). Therefore,

‖wj − w̃j‖∞,Ij
≤ C||wj − w̃j||Ŝ ≤ Chk+3/2.

By using (3.33), we have

‖uj − wj‖∞,Ij
≤ Chk+3/2,

which further yields

‖uj − wj‖∞ ≤ Chk+3/2.

3.3 Numerical tests

The purpose of this section is to verify our main result, Theorem 3.1.1 as well as

Corollary 3.1.1, and to present numerical evidence suggesting that the proved rate

of superconvergence is optimal. In most cases, we consider random meshes (that is,

each cell boundary point is randomly and independently perturbed from a uniform

mesh up to a given percentage) and use Λ to denote the ratio of the length of the

largest cell to that of the smallest one.
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Example 3.1. We solve the following equation





ut + ux = 0

u(x, 0) = esin(x)

u(0, t) = u(2π, t)

. (3.34)

The exact solution to this problem is

u(x, t) = esin(x−t).

We use ninth order SSP Runge-Kutta discretization in time [46] and take ∆t =

0.05hmin to reduce the time error. Non-uniform meshes are obtained by randomly

and independently perturbing each node in a uniform mesh by up to 40%, and

the example is tested with both P1 and P2 polynomials. The error in Theorem

3.1.1 at different downwind-biased Radau points at t = 1 on random meshes of N

cells are computed. In Table 3.1, we observe (2k + 1)-th order superconvergence at

the downwind point and (k + 2)-th order superconvergence at other Radau points.

The initial solution is obtained by exactly the same way as mentioned in Section

3.2.1. The downwind-biased Radau points on the interval [-1,1] are −1
3

and 1 for P1

polynomials, and are −1−√6
5

, −1+
√

6
5

and 1 for P2 ones.

Table 3.2 shows the rate of convergence of the error ξ. We observe that the order

is k + 2, indicating that the estimate in (3.5) is sharp.

Moreover, we also test the superconvergence for the cell average. Table 3.3 shows

the result for Example 3.1 by using the method mentioned in Section 3.2.1 as well

as with L2- and P−-projection for the initial discretization. From the table, we find

the convergent rates to be of order 2k + 1, k + 3
2

and at least k + 2, respectively, for

the three different ways of numerical initial discretization.

Now we follow the steps in Section 3.2.5 and construct the new numerical cell

average. Following the same notations, θ is taken to be θ = 1, i.e. we consider the
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Table 3.1: The error e at the Radau points for (3.34) when using P1 and P2 poly-
nomials.

1st Radau point 2nd Radau point downwind point
Polynomial N hmax Λ error order error order error order

P1 50 0.202 6.056 1.86E-04 - 1.34E-04 -
100 0.111 6.169 3.76E-05 2.64 2.87E-05 2.55
200 5.408e-02 7.339 3.89E-06 3.17 2.92E-06 3.19
400 2.781e-02 6.956 4.90E-07 3.12 3.80E-07 3.07

P2 50 0.202 6.056 1.11E-06 - 1.09E-06 - 2.13E-07 -
100 0.111 6.169 1.70E-07 3.09 1.42E-07 3.37 1.78E-08 4.10
200 5.408e-02 7.339 1.03E-08 3.93 7.94E-09 4.04 4.28E-10 5.21
400 2.781e-02 6.956 7.74E-10 3.89 5.81E-10 3.93 1.37E-11 5.18

Table 3.2: The error ξ for equation (3.34) when using P1 and P2 polynomials.

L2 norm of ξ P1 Polynomial P2 Polynomial
N hmax Λ L2 error order L2 error order
50 0.202 6.056 4.09E-04 - 1.85E-06 -
100 0.111 6.169 8.67E-05 2.56 2.93E-07 3.05
200 5.408e-02 7.339 8.84E-06 3.19 1.70E-08 3.99
400 2.781e-02 6.956 1.11E-06 3.12 1.29E-19 3.88
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Table 3.3: The cell average of the error e for equation (3.34) when using P1 and P2

polynomials.

L2-norm of the cell average of e P1 polynomial P2 polynomial
initial discretization N hmax Λ L2 error order L2 error order

uht = P−ut 50 0.202 6.056 3.84E-04 - 5.18E-07 -∫
Ω
(uh − u)dx = 0 100 0.111 6.169 8.23E-05 2.54 4.70E-08 3.96

200 5.408e-02 7.339 8.42E-06 3.19 1.08E-09 5.29
400 2.781e-02 6.956 1.06E-06 3.11 3.33E-11 5.23

L2 projection 50 0.202 6.056 3.87E-04 - 5.56E-06 -
100 0.111 6.169 1.19E-04 1.94 1.18E-06 2.56
200 5.408e-02 7.339 1.38E-05 3.02 1.11E-07 3.31
400 2.781e-02 6.956 2.02E-06 2.89 7.65E-09 4.02

P− projection 50 0.202 6.056 3.35E-04 - 1.07E-06 -
100 0.111 6.169 7.38E-05 2.50 9.30E-08 4.03
200 5.408e-02 7.339 7.72E-06 3.16 3.47E-09 4.60
400 2.781e-02 6.956 9.81E-07 3.10 1.72E-10 4.52
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extension from the downwind cell to the right. We use P2 polynomials on a uniform

mesh with N = 100. Define piecewise constants s(x) such that in cell Ij

s(x) = sj =
ṽj − vj

ṽj − uj

− 1,

where uj denotes the cell average of the exact solution u in cell Ij. We compute and

observe that ‖s‖∞,Ω = 7.90× 10−4, indicating that the computable quantity ṽj − vj

is a good estimate of the local error ṽj − uj. From Figure 3.3, we observe that the

computable quantity |v̄− ṽ| captures the profile of the local error |u− v| (computed

at the middle point in each cell) well.

X

E
rr

or

1 2 3 4 5 6
10-8

10-7

10-6

10-5

10-4

Figure 3.3: Comparison between |u− v| (solid line) and |v̄ − ṽ| (dashed line).
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Example 3.2. We solve the following initial boundary value problem





ut + ux = 0

u(x, 0) = sin(x)

u(0, t) = sin(−t)

. (3.35)

The exact solution to this problem is

u(x, t) = sin(x− t).

We use third order SSP Runge-Kutta discretization in time, take ∆t = 0.1h2
min to

reduce the time error, and test the example with both P1 and P2 polynomials. The

same quantities as in Example 3.1 on the same kind of random meshes of N cells are

computed. The initial solution is obtained as given in Section 3.2.1. In Table 3.4 we

observe that the error between the DG solution and the exact solution is (2k +1)-th

order superconvergent at the downwind point and (k + 2)-th order superconvergent

at the other Radau points.

Table 3.4: The error e at the Radau points for (3.35) when using P1 and P2 poly-
nomials.

1st Radau point 2nd Radau point downwind point
Polynomial N hmax Λ error order error order error order

P1 50 0.202 6.056 6.06E-05 - 2.88E-05 -
100 0.111 6.169 8.92E-06 3.16 4.30E-06 3.14
200 5.408e-02 7.339 1.02E-06 3.04 4.73E-07 3.09
400 2.781e-02 6.956 1.25E-07 3.15 5.82E-08 3.15

P2 50 0.202 6.056 4.10E-07 - 3.11E-07 - 1.30E-08 -
100 0.111 6.169 3.20E-08 4.21 2.38E-08 4.24 5.51E-10 5.22
200 5.408e-02 7.339 1.84E-09 4.00 1.38E-09 3.99 1.45E-11 5.06
400 2.781e-02 6.956 9.36E-11 4.48 1.05E-10 3.87 4.31E-13 5.28

Table 3.5 shows the (k + 2)-th order superconvergence of the error ξ in the L2-
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norm, demonstrating that the estimate in (3.5) is sharp.

Table 3.5: The error ξ for (3.35) when using P1 and P2 polynomials.

L2-norm of ξ P1 polynomial P2 polynomial
N hmax Λ L2 error order L2 error order
50 0.202 6.056 1.24E-04 - 6.63E-07 -
100 0.111 6.169 1.87E-05 3.13 5.32E-08 4.17
200 5.408e-02 7.339 2.10E-06 3.06 3.03E-09 4.01
400 2.781e-02 6.956 2.58E-07 3.15 2.30E-10 3.88

As in Example 3.1, we also test the superconvergence for the cell average. Table

3.6 shows the result for Example 3.2 using the method in Section 3.2.1 as well as

the L2- and P−-projections for the initial discretization. We observe results similar

to those in the periodic case.

Example 3.3. We solve the following two-dimensional problem





ut + ux + uy = 0

u(x, y, 0) = sin(x + y)
, (3.36)

with periodic boundary condition on the domain [0, 2π]2.

The exact solution is

u(x, y, t) = sin(x + y − 2t).

We use a random rectangular mesh defined as

0 = x 1
2

< · · · < xNx+ 1
2

= 2π, 0 = y 1
2

< · · · < yNy+ 1
2

= 2π

and

Ii,j = [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
].
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Table 3.6: The cell average of the error e for (3.35) when using P1 and P2 polyno-
mials.

L2 norm of the cell average of e P1 polynomial P2 polynomial
initial discretization N hmax Λ L2 error order L2 error order

uht = P−ut 50 0.202 6.056 1.11E-04 - 3.75E-08 -
uh

−
j+ 1

2

= P−u−
j+ 1

2

100 0.111 6.169 1.67E-05 3.12 1.63E-09 5.18

200 5.408e-02 7.339 1.90E-06 3.04 4.07E-11 5.16
400 2.781e-02 6.956 2.35E-07 3.14 1.14E-12 5.37

L2 projection 50 0.202 6.056 1.86E-04 - 2.59E-06 -
100 0.111 6.169 5.48E-05 2.02 3.59E-07 3.26
200 5.408e-02 7.339 6.86E-06 2.91 3.11E-08 3.43
400 2.781e-02 6.956 1.02E-06 2.87 2.86E-09 3.59

P− projection 50 0.202 6.056 1.01E-04 - 2.49E-07 -
100 0.111 6.169 1.53E-05 3.12 1.48E-08 4.66
200 5.408e-02 7.339 1.72E-06 3.06 5.73E-10 4.55
400 2.781e-02 6.956 2.06E-07 3.20 2.48E-11 4.72
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We define the approximation space as

V k
h =

{
uh : uh|Ii,j

∈ Qk(Ii,j), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}
,

where Qk(Ii,j) denotes all the tensor product polynomials of degree at most k in x

and in y on Ii,j. The Gauss-Radau projection P− is defined as follows:

∫

Ii,j

(P−u− u)vhdxdy = 0

for any vh ∈ V k−1
h ,

∫ y
j+1

2

y
j− 1

2

(P−u(xi+ 1
2
, y)− u(xi+ 1

2
, y))wh(y)dy = 0

for any wh ∈ Pk−1,

∫ x
i+1

2

x
i− 1

2

(P−u(x, yj+ 1
2
)− u(x, yj+ 1

2
))zh(x)dx = 0

for any zh ∈ Pk−1, and

P−u(xi+ 1
2
, yj+ 1

2
) = u(xi+ 1

2
, yj+ 1

2
).

We also use an upwind flux and ninth order SSP Runge-Kutta discretization in time

with ∆t = 0.1hmin. We test the example with both Q1 and Q2 polynomials, and

compute ξ = uh − P−u, the error of the cell average, as well as the error on the

downwind-biased Radau points and the downwind point. For simplicity, we do not

consider the Radau points one by one, but select the one which gives the largest

error in each cell. The initial solution is given by the P− projection.

It appears that similar superconvergence results are valid also in two-dimensions.

However, the technique of the proof in this chapter, in particular the part related to
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the special projections, does not seem to be easily extendable to two-dimensions.

Table 3.7: Superconvergence results for equation (3.36) when using Q1 and Q2 poly-
nomials.

Q1 polynomial Q2 polynomial
Error Nx ×Ny hmax Λ L2 error order L2 error order

‖P−u− uh‖ 10× 10 0.997 3.722 2.65E-02 - 8.40E-04 -
20× 20 0.552 4.809 4.41E-03 3.04 6.97E-05 4.22
40× 40 0.270 7.339 5.12E-04 3.02 3.64E-06 4.13
80× 80 0.133 6.326 6.33E-05 2.96 2.33E-07 3.89

‖u− uh‖ 10× 10 0.997 3.722 4.19E-02 - 6.47E-04 -
20× 20 0.552 4.809 7.65E-03 2.88 5.26E-05 4.25
40× 40 0.270 7.339 9.12E-04 2.98 2.20E-06 4.44
80× 80 0.133 6.326 1.14E-04 2.94 1.16E-07 4.17

maxi,j |(u− uh)(x, y)| 10× 10 0.997 3.722 2.28E-02 - 1.56E-03 -
(x,y) is the Downwind- 20× 20 0.552 4.809 5.65E-03 2.37 1.35E-04 4.14

biased Radau points in Ii,j 40× 40 0.270 7.339 6.39E-04 3.05 8.88E-06 3.81
80× 80 0.133 6.326 1.01E-04 2.62 7.15E-07 3.57

maxi,j |(u− uh)(x, y)| 10× 10 0.997 3.722 1.99E-02 - 3.72E-04 -
(x,y) is the downwind 20× 20 0.552 4.809 2.79E-03 3.33 4.09E-05 3.74

point in Ii,j 40× 40 0.270 7.339 3.93E-04 2.74 1.49E-07 4.64
80× 80 0.133 6.326 4.65E-05 3.02 1.34E-07 3.42

3.4 Concluding remarks

We have studied the behavior of the error between the upwinded DG solution and

the exact solution for sufficiently smooth solutions of linear conservation laws. We

prove that under suitable initial discretization, the error between the DG solution

and the exact solution is (k + 2)-th order superconvergent at the downwind-biased

Radau points. Moreover, numerical experiments show that the convergent rate is

(2k + 1)-th order superconvergent at the downwind point as well as in the L2-norm
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of the cell average. We also prove that the DG solution is superconvergent with the

rate k + 2 towards a particular projection of the exact solution.



Chapter 4

Negative-order norm error

estimates for linear hyperbolic

equations involving δ-functions

In this chapter, we develop and analyze DG methods for solving hyperbolic conser-

vation laws involving δ-functions. δ-function has many equivalent definitions, and

one of them is the following weak form:

∫

R

δ(x)v(x)dx = v(0), v(x) ∈ C(R).

As mentioned in Chapter 1, the DG methods are based on a weak form, and can

be designed to approximate δ-functions directly. However, in DG methods, the test

functions are completely discontinuous across the cell interfaces. If the δ-function is

placed at the cell interface, then the numerical scheme is not well-defined. In [68],

the author introduced the distribution theory for discontinuous test function, which

extended the definition of δ-function as

∫

R

δ(x)v(x)dx =
v(0+) + v(0−)

2
, v(x) is piecewise continuous,

44
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which further completes the definition of the DG schemes.

We consider negative-order norm error estimates. Such norms can be used to

detect the oscillations of a function. In [34], Cockburn et al. proved high order

superconvergence error estimates of DG methods including their divided differences

for hyperbolic equations with smooth solutions in negative-order norms. They also

demonstrated that the application of the post-processing techniques of Bramble and

Schatz [17] can yield superconvergence in the strong L2-norm. Other related works

include [92, 103, 111, 91], where one-sided filter and local derivative post-processing

were considered. We will extend the work in [34], and consider the general case

where the exact solutions are not smooth.

The first example of non-smooth solutions for hyperbolic equations is the follow-

ing problem

ut + ux = 0, (x, t) ∈ R× (0, T ],

u(x, 0) = u0(x), x ∈ R,
(4.1)

where the initial solution u0(x) has compact support, with a discontinuity at x = 0,

but is otherwise smooth. Clearly, the exact solution of (4.1) is discontinuous along

the characteristic line x = t and the numerical DG solution has spurious oscillations

around this discontinuity line, which we refer to as the pollution region. There are

not too many works in the literature studying error estimates of DG methods for

problems with discontinuous solutions. The first work in this direction seems to be

that of Johnson et al. [63, 64, 65] for DG methods in both space and time. They

have shown that, with linear space-time elements, the width of the pollution region

is of the size at most O(h1/2 log 1/h). More recently, Cockburn and Guzmán [31] and

Zhang and Shu [117] revisited this problem with the RKDG methods and obtained

similar results. Especially, in [31], the left boundary of the pollution region is shown

to be at most O(h2/3 log(1/h)) from the singularity for piecewise linear DG method

with second order Runge-Kutta time discretization on uniform meshes. The first

problem we consider in this chapter is (4.1) with the initial condition u0(x) having
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a δ-singularity at x = 0. We consider a semi-discrete DG method and use the result

in [117] to prove superconvergence results estimated in negative-order norms outside

the pollution region. By convolving the DG solution with a suitable kernel, the post-

processed approximation is (2k+1)-th order accurate in a region slightly smaller than

the one above. The rate of convergence agrees with that in [34], in which the initial

datum u0(x) was assumed to be sufficiently smooth.

Hyperbolic conservation laws with source terms have been analyzed by several

authors [21, 47, 66, 99, 72]. In particular, in [47], the authors studied the following

problem

ut + f(u)x = g(x, t), (x, t) ∈ R× (0, T ],

u(x, 0) = u0(x), x ∈ R,
(4.2)

where f is a smooth convex function (f ′′(u) > 0 for all u) and g(x, t) = Gx(x, t)

with G being a bounded, piecewise smooth function, and constructed L∞-stable

Godunov-type difference schemes. In [98], Santos and de Oliveira studied hyperbolic

conservation laws whose source terms contain δ-singularities, and investigated the

convergence of numerical discretization by using a finite volume scheme. Later, they

considered a class of high resolution methods in [79]. In [78], Noussair studied the

wave behavior of (4.2), where the source term also depends on u but not on the time

variable t. We note that all these previous works did not provide any error estimates

in the smooth region away from the singularities. In this chapter, we investigate a

simpler case by assuming f(u) = u and g(x, t) = G′(x) in the source term in (4.2),

where G(x) is a step function which does not depend on the time variable t. We

show that by convolving the DG solution with a suitable kernel, the post-processed

approximation turns out to be (2k + 1)-th order superconvergent in the smooth

region.
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4.1 Post-processing

4.1.1 Convolution kernel

Now, we proceed to describe the type of post-processing to be considered, following

Bramble and Schatz [17]. Let χ be the indicator function of the interval (−1
2
, 1

2
), We

define recursively the functions ψ(l) as

ψ(1) = χ, ψ(n+1) = ψ(n) ∗ ψ(1), for n ≥ 1.

The numerical solution is post-processed by convolving it with a kernel K(ν,l)(x)

which satisfies the following properties:

(1) It has a compact support.

(2) It reproduces polynomials p of degree ν − 1 by convolution: K(ν,l) ∗ p = p.

(3) It is a linear combination of B-splines and is of the form

K(ν,l)(x) =
∑

γ∈Z
kν,l

γ ψ(l)(x− γ).

The weights kν,l
γ ∈ R are chosen so that (2) is satisfied. See [17, 34] for more details.

We also define K
(ν,l)
H (x) = K(ν,l)(x/H)/H and ψ

(l)
H (x) = ψ(l)(x/H)/H and it is not

difficult to verify that

Dα(ψ(β)) ∗ v = ψ
(β−α)
H ∗ ∂α

Hv,

where ∂Hv(x) = 1
H

(v(x+ 1
2
H)−v(x− 1

2
H)). In general, we take H = nh, n = 1, 2, · · · .

This property is important as it allows us to express derivatives of the convolution

with the kernel in terms of simple difference quotients.
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4.1.2 An approximation result

Let us investigate the relationship between u−K2k+2,k+1
h ∗uh and the negative-order

norm estimates of divided differences of the error u− uh.

Theorem 4.1.1 (Bramble and Schatz [17]). Suppose the kernel Kν,l
h satisfies the

properties listed in Section 4.1.1. Let v be a function in L2(Ω1), where Ω1 is an open

set in Ω, and u be a function in Hν(Ω1). Further assume Ω0 to be an open set in Ω1

such that Ω0 + 2supp(Kν,l
h ) ⊂⊂ Ω1. Then we have

‖u−Kν,l
h ∗ v‖Ω0 ≤

hν

ν!
C1|u|ν,Ω1 + C1C2

∑

0≤α≤l

‖∂α
h (u− v)‖−l,Ω1 ,

where C1 =
∑

γ∈Z |kν,l
γ | and C2 only depends on Ω0, Ω1, ν, and l.

There is a straightforward corollary.

Corollary 4.1.1. Suppose the conditions in Theorem 4.1.1 are satisfied. Further

assume that ‖∂α
h (u− v)‖−l,Ω1 ≤ Chµ is valid for all α ≤ l and ν ≥ µ. Then we have

‖u−Kν,l
h ∗ v‖Ω0 ≤ Chµ,

where C only depends on Ω0, Ω1, ν, and l.

4.2 Singular initial condition

Let us consider problem (4.1) and use upwind fluxes. We first state the main results

in Theorem 4.2.1 and then give the proofs. We provide the negative-order norm error

estimates in the whole space as well as in the region away from the singularities.



49

4.2.1 Main results

The following lemma is the semi-discrete version of the result in Zhang and Shu

[117]. For completeness we will give its proof in Section 4.5.

Lemma 4.2.1. Let u be the exact solution of the initial value problem (4.1), where

the initial condition u0(x) ∈ Ck+2 except for one singularity at x = 0. Let uh be

the solution of the DG method (2.5) at time T , where the finite element space Vh is

made up of the piecewise polynomials of degree k ≥ 1. Suppose h is the maximum

cell length. Then there holds the following error estimate

‖u(T )− uh(T )‖Ω\RT
≤ Chk+1, (4.3)

where RT = (T − Ch1/2 log(1/h), T + Ch1/2 log(1/h)), and the bounding constant

C > 0 does not depend on h.

We will use Lemma 4.2.1 to prove the following theorem.

Theorem 4.2.1. Suppose u ∈ C2k+2 and the conditions of Lemma 4.2.1 are satisfied.

Then by taking Ω0 + 2supp(K2k+2,k+1
h ) ⊂⊂ Ω1 ⊂⊂ Ω\RT , we have

‖u(T )− uh(T )‖−(k+1) ≤ Chk, (4.4)

‖u(T )− uh(T )‖−(k+2) ≤ Chk+1/2, (4.5)

‖u(T )− uh(T )‖−(k+1),Ω1 ≤ Ch2k+1, (4.6)

‖u(T )−K2k+2,k+1
h ∗ uh(T )‖Ω0 ≤ Ch2k+1, (4.7)

where the positive constant C does not depend on h. Here the mesh is assumed to be

uniform for (4.7) but can be regular and non-uniform for the other three inequalities.

Remark 4.2.1. To obtain (4.7), we have to assume the mesh is uniformly dis-

tributed, that is hj = h, ∀ j. This is a result of the negative-order norm estimates
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of the divided differences. Actually, we denote w = ∂hu and wh = ∂huh. Clearly,

w satisfies (4.1) with initial condition w(x, 0) = ∂hu(x, 0). If we shift the mesh by

h
2
, then wh satisfies numerical scheme (2.5). By the same analysis for the proof of

(4.6), we obtain

‖∂h(u− uh)‖−(k+1),Ω1 = ‖w − wh‖−(k+1),Ω1 ≤ Ch2k+1.

The estimates for higher order divided differences can be obtained by exactly the same

line in this remark. Therefore, (4.7) follows directly from Corollary 4.1.1.

Remark 4.2.2. The error estimates in the −(k + 1)-th order norm are used for

problems with singular initial conditions while the estimates in the −(k +2)-th order

norm are used for problems with singular source terms.

4.2.2 A proof of Theorem 4.2.1

In this subsection, we give the discretization and prove the first three estimates in

Theorem 4.2.1.

Initial discretization

From now on, we assume the δ-singularity of the initial datum is contained in cell

Ii. For simplicity, we also assume the singularity is concentrated at 0, denoted as

δ(x). We apply the L2-projection Pk to discretize the initial condition to obtain

‖uh(0)‖ ≤ Ch−1/2. At t = 0, for any function φ ∈ C∞
0 (Ω), we have, for the cell Ii

which contains the δ-singularity,

(u− uh, φ)i = (u− uh, φ− Pkφ)i

= (u, φ− Pkφ)i

≤ ‖φ− Pkφ‖∞,Ii

≤ Chk+ 1
2 |φ|k+1,Ii

.
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In other cells, following the same analysis as above, we have

(u− uh, φ)j = (u− Pku, φ− Pkφ)j ≤ Ch2k+2|u0|k+1,Ij
|φ|k+1,Ij

. (4.8)

The −(k + 1)-th order error estimate on Ω

In this subsection, we proceed to prove (4.4). The proof mostly follows [34]. We

begin by considering the solution to the dual problem: Find a function φ such that

φ(·, t) satisfies

φt + φx = 0, (x, t) ∈ Ω× (0, T ),

φ(x, T ) = Φ(x), x ∈ Ω.
(4.9)

Assuming Φ is an arbitrary function in C∞
0 (Ω), we have, following [34],

(u(T )− uh(T ), Φ) = (u− Pku, φ)(0)−
∫ T

0

[((uh)t, φ) + (uh, φt)]dt (4.10)

= (u− Pku, φ)(0)−
∫ T

0

N∑
j=1

[uh](φ− Pkφ)+|j− 1
2

(4.11)

≤ Chk+1/2|Φ|k+1 + Chk+1/2|Φ|k+1

∫ T

0

(
N∑

j=1

[uh]
2
j− 1

2

)1/2

dt.

Using the Cauchy-Schwartz inequality and Lemma 2.4.1, we have

∫ T

0

(
N∑

j=1

[uh]
2
j− 1

2

)1/2

dt ≤ T 1/2

(∫ T

0

N∑
j=1

[uh]
2
j− 1

2
dt

)1/2

≤ T 1/2‖uh(0)‖
≤ CT 1/2h−1/2.
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Combining the above, we can see

‖u(T )− uh(T )‖−(k+1) = sup
Φ∈C∞0 (Ω)

(u(T )− uh(T ), Φ)

‖Φ‖k+1

≤ sup
Φ∈C∞0 (Ω)

Chk+1/2|Φ|k+1 + CT 1/2hk|Φ|k+1

‖Φ‖k+1

≤ CT 1/2hk + Chk+1/2.

Now, we consider the extension to higher dimensions. The proof of the following

corollary is straightforward and is similar to the one-dimensional case, and is thus

omitted.

Corollary 4.2.1. Let Ω be an open set in Rd, and u be the exact solution of the

following initial value problem

ut +
∑d

j=1 uxj
= 0, (x, t) ∈ Ω× (0, T ],

u(x, 0) = δ(f(x)), x ∈ Ω,

where f(x) : Rd → R is a smooth function. Denote Γh = {K} as a regular triangu-

lation of Rd, whose elements K are open and have diameter hK less than or equal

to h. In each K, denote ∂K− and ∂K+ as the inflow and outflow edges respectively.

Let uh be the DG approximation which satisfies

(uht, vh)K =
d∑

i=1

(uh, (vh)xi
)K +

d∑
i=1

(u−h , v+
h )∂K− −

d∑
i=1

(u−h , v−h )∂K+ , vh ∈ Vh,

where the finite element space Vh is made up of the piecewise polynomials of degree

k ≥ 1. Suppose the total measure of the cells which contain δ-singularities initially

is mh, then there holds the following estimate

‖u(T )− uh(T )‖−k−1 ≤ C
√

mT 1/2hk + Chk+d/2, (4.12)
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where the bounded constant C > 0 does not depend on h or T .

The −(k + 2)-th order error estimate on Ω

We shall prove (4.5). To do so, we apply P+ to estimate the term (uht, φ) + (uh, φt).

By using (2.4) and Lemma 2.4.3, we obtain

(uht, φ) + (uh, φt) = (uht,P⊥+φ) + (uht,P+φ)− (uh, φx)

= (uht,P⊥+φ) +H(uh,P+φ)−H(uh, φ)

= (uht,P⊥+φ). (4.13)

Integrating in t, we obtain

∫ T

0

(uht, φ) + (uh, φt)dt = (uh,P⊥+φ)(T )− (uh,P⊥+φ)(0)−
∫ T

0

(uh,P⊥+φt)dt. (4.14)

Applying Lemma 2.4.1, we have

∫ T

0

(uht, φ) + (uh, φt)dt ≤ ‖uh(0)‖ (‖(P⊥+φ)(0)‖+ ‖(P⊥+φ)(T )‖) +

∫ T

0

‖uh(0)‖ ‖P⊥+φt(t)‖dt

≤ C‖uh(0)‖
(

hk+1|Φ|k+1 +

∫ T

0

hk+1|Φ|k+2dt

)

≤ C(1 + T )hk+1‖uh(0)‖‖Φ‖k+2.

From the above we observe

‖u(T )− uh(T )‖−(k+2) = sup
Φ∈C∞0 (Ω)

(u(T )− uh(T ), Φ)

‖Φ‖k+2

≤ sup
Φ∈C∞0 (Ω)

Chk+ 1
2 |Φ|k+1 + C(1 + T )hk+ 1

2‖Φ‖k+2

‖Φ‖k+2

≤ C(1 + T )hk+ 1
2 .
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4.2.3 The negative-order error estimate on Ω1 ⊂⊂ Ω\RT

We proceed to prove (4.6). To estimate the negative-order norm of u−uh at time T

on Ω1, we need to assume Φ ∈ C∞
0 (Ω1) instead of C∞

0 (Ω). Moreover, we also assume

the exact solution u ∈ C(Ω), this is because we are allowed to modify the exact

solution in the cell which contains the δ-singularity, keeping the numerical solution

uh untouched. More details of this assumption can be found in [117, 31] or Section

4.5.2. Therefore, in (4.11), we have

N∑
j=1

[uh](φ− Pkφ)+|j− 1
2

=
N∑

j=1

[uh − Pku + Pku− u](φ− Pkφ)+|j− 1
2

≤ Chk (‖u− Pku‖Ω1 + ‖Pku− uh‖Ω1) |φ|k+1

≤ Chk (‖u− Pku‖Ω1 + ‖u− uh‖Ω1) |φ|k+1

≤ Ch2k+1|φ|k+1,

where we use Lemmas 2.3.1 and 2.3.2 in the second inequality and Lemma 4.2.1 in

the last one. Inserting this into (4.11), we have

(u(T )− uh(T ), Φ) ≤ (u− Pku, φ)(0) + Ch2k+1|φ|k+1. (4.15)

By using (4.8), we obtain the estimate we want

‖u(T )− uh(T )‖−(k+1),Ω1 = sup
Φ∈C∞0 (Ω1)

(u(T )− uh(T ), Φ)

‖Φ‖k+1

≤ sup
Φ∈C∞0 (Ω1)

Ch2k+1‖Φ‖k+1 + Ch2k+2‖Φ‖k+1

‖Φ‖k+1

≤ Ch2k+1,

where the constant C > 0 is independent of h.
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4.3 Singular source term

In this section, we briefly discuss a linear inhomogeneous evolution equation of a

function

u(x, t) : Ω× (0,∞) → R

of the form 



ut(x, t) + Lu(x, t) = f(x, t), (x, t) ∈ Ω× (0,∞),

u(x, 0) = 0, x ∈ Ω,
(4.16)

with L being a linear differential operator that does not involve time derivatives. If

we multiply the above equation by a smooth function φ(x, t), then integrate over

space and time, we obtain

∫ ∞

0

∫

Ω

[φut + φLu] dxdt =

∫ ∞

0

∫

Ω

f(x, t)φ(x, t)dxdt.

Integrating by parts and assuming zero boundary condition, we have

∫ ∞

0

∫

Ω

[uφt + uL∗φ] dxdt +

∫ ∞

0

∫

Ω

f(x, t)φ(x, t)dxdt = 0, (4.17)

where L∗ is the dual operator of L.

Definition 4.3.1. The function u(x, t) is called a weak solution of the equation

(4.16), if (4.17) holds for all functions φ ∈ C1
0(Ω×R+).

4.3.1 Duhamel’s principle

Now, we consider linear hyperbolic conservation laws with source terms. To deal with

such problems we apply Duhamel’s principle, which is applicable to linear parabolic

and hyperbolic PDE and yields an integral representation in terms of the solutions

of more tractable PDEs.
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Lemma 4.3.1 (Duhamel’s principle). The solution to (4.16) is

u(x, t) =

∫ t

0

(P sf)(x, t)ds,

where P sf is the solution of the problem





Pt(x, t) + LP (x, t) = 0, (x, t) ∈ Ω× (s,∞),

P (x, s) = f(x, s), x ∈ Ω.
(4.18)

Notice that P sf is the solution to the homogeneous PDE with the source term

f serving as the initial condition at time t = s. To prove the lemma, we can simply

check that the expression of u satisfies (4.16). More details and a proof can be found

in [62], in which the PDE is a second order wave equation. The above lemma requires

suitable regularity of u. However, Duhamel’s principle is also valid in the following

weak sense.

Lemma 4.3.2. Suppose u(x, t) is the weak solution of equation (4.16), then

u(x, t) =

∫ t

0

(P sf)(x, t)ds

in the sense of distribution, where P sf is the weak solution of equation (4.18).

The proof directly follows from the definition of the weak solution and the proof

of Duhamel’s principle, so we omit it here.

Finally, we extend Duhamel’s principle to the DG schemes. For simplicity, we

consider the following equation





ut(x, t) + ux(x, t) = δ(x), (x, t) ∈ Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,
(4.19)

with u0 = 0. For general smooth u0(x), the same result can be obtained by superpo-

sition. We define the finite element approximation uh : [0, T ] → Vh as the solution
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to

(uht, χ)j = Hj(uh, χ) + (δ(x), χ)j, ∀χ ∈ Vh,

uh(0) = 0,
(4.20)

whereHj(·, ·) is the DG bilinear form defined in (2.4). Then the semi-discrete version

of Duhamel’s principle is given in Lemma 4.3.3.

Lemma 4.3.3. The solution of (4.20) can be written in the form uh =
∫ t

0
ps(x, t)ds

where ps(x, t) is the solution of the following scheme: find p ∈ Vh such that

(pt, χ)j = Hj(p, χ), ∀χ ∈ Vh,

p(s) = Pkδ(x).
(4.21)

The proof is straightforward, since uh in (4.20) and
∫ t

0
ps(x, t)ds share the same initial

condition and the same system of ODEs, noticing the fact that (Pkδ, χ) = (δ, χ).

In what follows, we would like to rewrite the inhomogeneous equations (4.19) and

(4.20) into homogeneous ones (4.26) and (4.21) by using Lemma 4.3.2 and Lemma

4.3.3 respectively. Then we apply the estimates of P sf − ps, which have been given

in Theorem 4.2.1, to prove the main result, Theorem 4.3.1.

4.3.2 Error estimates

We first state the main result Theorem 4.3.1 and then give the proof.

Theorem 4.3.1. Suppose u is the exact solution of equation (4.19), and uh is the

numerical solution which satisfies (4.20). Denote RT = Ii∪ (T −C log(1/h)h1/2, T +

C log(1/h)h1/2), where Ii is the cell which contains the concentration of the δ-singularity
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on the source term. Then we have the following estimates

‖u(T )− uh(T )‖−(k+1) ≤ Chk, (4.22)

‖u(T )− uh(T )‖−(k+2) ≤ Chk+1/2, (4.23)

‖u− uh‖−(k+1),Ω1 ≤ Ch2k+1, (4.24)

‖u(T )−K2k+2,k+1
h ∗ uh(T )‖Ω0 ≤ Ch2k+1, (4.25)

where Ω0 + 2supp(K2k+2,k+1
h ) ⊂⊂ Ω1 ⊂⊂ R\RT . Here the mesh is assumed to be

uniform for (4.25) but can be regular and non-uniform for the other three inequalities.

Remark 4.3.1. As mentioned in Remark 4.2.1, (4.25), which requires uniform

meshes, follows from (4.24). Moreover, we also skip the proofs of (4.22) and (4.23),

since they follow easily from (4.4) and (4.5) in Theorem 4.2.1.

Now we proceed to prove (4.24). Denote vs as the exact solution of the following

equation

ut + ux = 0, (x, t) ∈ Ω× (s, T ],

u(x, s) = δ(x), x ∈ Ω,
(4.26)

and vs
h as the solution of the numerical scheme (4.21). For convenience, if s = 0, the

superscript will be omitted. We consider the dual problem defined the same way as

(4.9). By Lemma 4.3.3 and Lemma 4.3.2, we have

(u− uh, Φ)(T ) =

∫ T

0

(vs − vs
h, Φ)(T )ds. (4.27)

By using (4.10) and (4.13), and the fact that vh is the L2-projection of v at t = 0,

we obtain

(vs − vs
h, Φ)(T ) = ((v − vh)(0),P⊥+φ(s))−

∫ T

s

(vht(t− s),P⊥+φ(t))dt,
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which further yields

(u− uh, Φ)(T ) = Π1 − Π2,

where Π1 =
∫ T

0
((v−vh)(0),P⊥+φ(s))ds, and Π2 =

∫ T

0

∫ T

s
(vht(t−s),P⊥+φ(t))dtds. First

consider the second term,

Π2 = −
∫ T

0

∫ t

0

((vh)s(t− s),P⊥+φ(t))dsdt

=

∫ T

0

(vh(t)− vh(0),P⊥+φ(t))dt.

Therefore,

(u− uh, Φ)(T ) =

∫ T

0

(v(0),P⊥+φ(s))ds−
∫ T

0

(vh(t),P⊥+φ(t))dt

= G1 −G2.

We claim G1 = 0. Actually, for any τ ∈ Ii,
∫ T+τ

τ
Φ(x)dx does not depend on τ ,

since Φ(x) vanishes in the neighborhood of x = 0 and x = T . Therefore,

G1 =

(
δ(x),P⊥+

∫ T

0

φ(x, s)ds

)
=

(
δ(x),P⊥+

∫ x+T

x

Φ(y)dy

)

i

= 0.

Now, we only need to estimate G2. Since

(vh(t),P⊥+φ(t)) = (vh(t)− v(t) + v(t)− Pk−1v,P⊥+φ(t)),

by Lemma 4.2.1 and Lemma 2.3.2, we have G2 ≤ Ch2k+1|φ|k+1. Finally, we obtain

‖u− uh‖−(k+1),Ω1 ≤ Ch2k+1

and complete the proof of Theorem 4.3.1.
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4.4 Numerical examples

In this section, we provide numerical experiments to demonstrate our theoretical

results for the post-processor and to illustrate the performance of the DG schemes.

We denote by d the distance between the singularities and the region under consid-

eration. In all the figures, if not otherwise stated, the numerical solutions are plotted

using six Gaussian points in each cell.

4.4.1 Singular initial condition

Example 4.1. We solve the following problem

ut + ux = 0, (x, t) ∈ [0, π]× (0, 1],

u(x, 0) = sin(2x) + δ(x− 0.5), x ∈ [0, π],
(4.28)

with periodic boundary condition u(0, t) = u(π, t).

Clearly, the exact solution is

u(x, t) = sin(2x− 2t) + δ(x− t− 0.5).

We use a ninth order SSP Runge-Kutta discretization in time [46] and take the time

step ∆t = 0.1h. We test the example by using Pk polynomials with k = 1, 2, 3 on

uniform meshes, and compute the L2-norm of the error after post-precessing in the

region away from the singularity at t = 0.5. By taking d = 0.2, the region under

consideration is [0, 0.8] ∪ [1.2, π]. In Table 4.1, we can observe at least (2k + 1)-th

order convergence. Moreover, we observe that the rate of convergence settles to the

asymptotic value when the total number of cells is around dN
π

= 0.2×500
π

≈ 30, no

matter which degree of polynomials we use. The initial discretization is obtained by

taking the L2 projection.

Figure 4.1 shows the numerical solution with and without post-processing. We
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Table 4.1: L2-norm of the error between the numerical solution and the exact solution
for (4.28) after post-processing in the region away from the singularity.

P1 polynomial P2 polynomial P3 polynomial
N d error order error order error order
200 0.2 6.88E-05 - 8.40e-07 - 1.48E-09 -
300 0.2 1.41E-05 3.92 3.56e-10 19.2 3.98E-13 20.3
400 0.2 5.89E-06 3.02 1.98e-11 10.1 4.42E-16 23.7
500 0.2 3.01E-06 3.01 6.13e-12 5.25 7.49E-17 7.95
600 0.2 1.74E-06 3.00 2.37e-12 5.21 1.76E-17 7.94

use P2 polynomials and take h = 0.01. From the figure we observe some localized

oscillations near the discontinuity and that the post-processor does not significantly

smear the singularity.
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Figure 4.1: Numerical solution for (4.28) at t = 0.5 with (right) and without (left)
post-processing.

Example 4.2. We consider the following two dimensional problem

ut + ux + uy = 0, (x, y, t) ∈ [0, 2π]× [0, 2π]× (0, 1],

u(x, 0) = sin(x + y) + δ(x + y − 2π), (x, y) ∈ [0, 2π]× [0, 2π],
(4.29)
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with periodic boundary condition.

Clearly, the exact solution is

u(x, t) = sin(x + y − 2t) + δ(x + y − 2t) + δ(x + y − 2t− 2π).

We use Qk polynomial approximation spaces with k = 1 and 2, where Qk is the

space of tensor product polynomials of degree at most k ≥ 0. We also apply the

same time discretization as in Example 4.1 and compute the L2-norm of the error

after post-precessing in the region away from the singularity at t = 0.5. Moreover,

we take d = 0.4. In Table 4.2, we can observe (2k + 1)-th order convergence.

Table 4.2: L2-norm of the error between the numerical solution and the exact solution
for (4.29) after post-processing in the region away from the singularity.

Q1 polynomial Q2 polynomial
N d error order error order
400 0.4 2.60E-05 - 3.23e-08 -
500 0.4 1.24E-05 3.32 2.47e-10 20.0
600 0.4 7.16E-06 3.01 1.19e-11 16.6
700 0.4 4.50E-06 3.01 5.11e-12 5.47
800 0.4 3.01E-06 3.02 2.53e-12 5.29

It appears that similar results are valid in two dimensions. However, the technique

of proof in this chapter, in particular the part related to the special projections in

(2.10) and (2.11), does not seem to be easily extendable to two dimensions.

Moreover, Figure 4.2 shows the numerical solution by plotting the numerical cell

averages. We use Q2 polynomials and take N = 100. From the figure we can observe

two lines of δ-singularities.

Even though the theory in this chapter is given only for scalar linear equations

for simplicity, it generalizes to linear systems in a straightforward way.
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Figure 4.2: Numerical solution (left) and the cut plot along x = y (right) for (4.29)
at t = 0.5.

Example 4.3. We solve the following linear system

ut − vx = 0, (x, t) ∈ [0, 2]× (0, 0.4],

vt − ux = 0, (x, t) ∈ [0, 2]× (0, 0.4],

u(x, 0) = δ(x− 1), v(x, 0) = 0, x ∈ [0, 2].

(4.30)

Clearly, the exact solution (the Green’s function) is

u(x, t) =
1

2
δ(x− 1− t) +

1

2
δ(x− 1 + t), v(x, t) =

1

2
δ(x− 1 + t)− 1

2
δ(x− 1− t).

We use a third order SSP Runge-Kutta discretization in time [46] and take the

time step ∆t = 0.1h. Figure 4.3 shows the numerical solutions at t = 0.4 with P3

polynomials and h = 0.01. We observe that the numerical solutions capture the

profiles of the exact solutions quite well. Since we have not used any limiter, there

are some localized oscillations near the singularities.
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Figure 4.3: Solutions of u (left) and v (right) for (4.30) at t = 0.4.

4.4.2 Singular source term

Example 4.4. We solve the following problem

ut + ux = δ(x− π), (x, t) ∈ [0, 2π]× (0, 1],

u(x, 0) = sin(x), x ∈ [0, 2π],

u(0, t) = 0, t ∈ (0, 1].

(4.31)

Clearly, the exact solution is

u(x, t) = sin(x− t) + χ[π,π+t],

where χ[a,b] denotes the indicator function of the interval [a, b]. We use the same

time discretization as in the previous example, and use both P1 and P2 polynomials

to approximate the exact solution on uniform meshes. We compute the L2-norm

of the error after post-precessing in the region away from the singularities at t =

0.5. In this example, we also take d = 0.2, and the region under consideration is

[0, π−0.2]∪ [π+0.2, π+0.3]∪ [π+0.7, 2π]. In Table 4.3, we observe (2k+1)-th order
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convergence. The initial discretization is again obtained by taking the L2 projection.

Table 4.3: L2-norm of the error between the numerical solution and the exact solution
for (4.31) after post-processing in the region away from the singularity.

P1 polynomial P2 polynomial
N d error order error order
401 0.2 1.74E-06 - 4.29E-08 -
801 0.2 5.92E-09 8.22 6.80E-13 15.9
1601 0.2 7.36E-10 3.03 1.34E-17 12.3
3201 0.2 9.19E-11 3.01 3.86E-18 5.13
6401 0.2 1.15E-11 3.01 1.16E-19 5.07

Moreover, Figure 4.4 shows the numerical solutions with and without post-

processing. We use P2 polynomials and take h = 0.01. We observe that the

post-processor does not smear the singularity and that it effectively damps out the

oscillations near the left singularity.
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Figure 4.4: Numerical solutions for (4.31) at t = 0.5 with (right) and without (left)
post-processing.
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Example 4.5. We solve the following problem

ut + ((x + 1)u)x = δ(x− c), (x, t) ∈ [0, 1.5]× (0, 1],

u(x, 0) = 0, x ∈ [0, 1.5],

u(0, t) = 0, t ∈ (0, 1].

(4.32)

The exact solution is

u(x, t) =
1

1 + x
[H(x− c)−H(x + 1− (c + 1)et)],

where H(x) is the Heaviside function defined as

H(x) =





0, x < 0,

1, x ≥ 0.

We take c = π
20

and compute the solution at t = 0.5 with P1 and P2 polynomials.

Since (x+1) is always positive, by using upwind fluxes, we always consider u−h to be

the numerical flux at the cell interfaces. For time discretization, the classical fourth

order Runge-Kutta method is used with ∆t = h2. In this example, we take d = 0.1,

and the region under consideration is [0, π
20
− 0.1] ∪ [ π

20
+ 0.1, ( π

20
+ 1)

√
e − 1.1] ∪

[( π
20

+ 1)
√

e− 0.9, 1.5]. In Table 4.4, we can observe (k + 1)-th and (2k + 1)-th order

convergence before and after post-processing respectively.

Moreover, Figure 4.5 shows the numerical solution with P2 polynomials and

h = 0.01. We use the cell averages to plot the left panel of the figure. We observe that

the numerical solution agrees well with the exact solution away from the singularities.

Since we have not used any limiter, there are some localized oscillations near the

singularity on the right. It is interesting to observe that there are very few numerical

oscillations near the left singularity. In the middle panel of Figure 4.5, we use six

Gaussian points to plot, and the detailed zoom for the left singularity is given in the

right panel. Clearly, the numerical solution only oscillates in the cell [0.15,0.16]. No
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Table 4.4: L2-norm of the error between the numerical solution with and the exact
solution for (4.32) before and after post-processing in the region away from the
singularity.

P1 polynomial P2 polynomial
N d error order error order

before post-processing 400 0.1 7.08E-07 - 1.10E-08 -
800 0.1 1.21E-07 2.56 4.37E-11 7.98
1600 0.1 3.02E-08 2.00 5.46E-12 3.00
3200 0.1 7.55E-09 2.00 6.83E-13 3.00
6400 0.1 1.89E-09 2.00 8.53E-14 3.00

after post-processing 400 0.1 4.92E-07 - 8.65E-09 -
800 0.1 7.49E-11 12.7 4.54E-14 17.5
1600 0.1 7.43E-12 3.33 5.13E-19 16.4
3200 0.1 9.31E-13 3.00 1.76E-20 4.86
6400 0.1 1.16E-13 3.00 5.75E-22 4.94

oscillation is observed in the left figure for cell averages, and only one undershoot

can be observed in the middle and right panels for which six Gaussian points are

plotted. This can be explained by the size of the pollution region. In Theorem 4.3.1,

we have proved that, for such singularities, RT contains only one cell. This implies

that the numerical solution will oscillate within that cell, which clearly agrees with

our observation.

4.5 Proof of Lemma 4.2.1

In this section we prove Lemma 4.2.1. The main line of proof is based on ideas in

[31, 117]. For simplicity, we only consider a δ-singularity in (4.1), hence u0(x) =

δ(x) + f(x), where f(x) is sufficiently smooth and has compact support on the

computational domain Ω.
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Figure 4.5: Numerical solutions for (4.32) at t = 0.5 plotted for the cell averages
(left), six Gaussian points (middle) and the detailed zoom (right). In the left panel,
the solid line is the exact solution and the symbols are the cell averages of the
numerical solution.

4.5.1 The weight function

Let ϕ(x) be a positive bounded function, which can be taken as a weight function.

For any function q ∈ H1
h, we define the weighted L2-norm as

‖q‖ϕ,D =

(∫

D

q2ϕdx

) 1
2

in the domain D. If ϕ = 1 or D = Ω, the corresponding subscript will be omitted.

We will consider two weight functions ϕ1(x, t) and ϕ−1(x, t), respectively, to

determine the left-hand and right-hand boundary of the regionRT such that, outside

this region, we can resume the (k+1)-th order accuracy in the L2-norm. Both weight

functions are related to the cut-off of the exponent function φ(r) ∈ C1 : Ω → R,

φ(r) =





2− er, r < 0,

e−r, r > 0,
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and they are defined as the solutions of the linear hyperbolic problem,

ϕa
t + ϕa

x = 0, (4.33)

ϕa(x, 0) = φ

(
a(x− xc)

γhσ

)
, (4.34)

where γ > 0, 0 < σ < 1 and xc are three parameters which will be chosen later. We

always assume γhσ−1 ≥ 1 in this section.

In [117], the authors have listed several properties about the two weight functions.

Here, we state those that will be used.

Proposition 4.5.1. For each weight function ϕa(x, t), the following properties hold

1 ≤ ϕa(x, t) ≤ 2, a(x− xc − t) ≤ 0, (4.35)

0 < ϕa(x, t) < hs, a(x− xc − t) > s log(1/h)γhσ. (4.36)

Lemma 4.5.1. Let V be a Gauss-Radau projection, either P− or P+. For any

sufficiently smooth function p(x), there exists a positive constant C independent of

h and p, such that

‖V⊥p‖ϕ,D ≤ Chk+1‖∂k+1
x p‖ϕ,D, (4.37)

‖V⊥(ϕvh)‖ϕ−1,D ≤ Cγ−1h1−σ‖vh‖ϕ,D, (4.38)

‖V(ϕvh)‖ϕ−1,D ≤ C‖vh‖ϕ,D. (4.39)

where D is either the single cell Ij or the whole computational domain Ω.

Lemma 4.5.2. For any function v ∈ Vh there holds the following identity

H(v, ϕv) = −1

2

∑
j

ϕj+ 1
2
[v]2

j+ 1
2

+
1

2
(v, ϕxv). (4.40)
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4.5.2 The smooth solution

We consider the following problem

vt + vx = 0, (4.41)

v(x, 0) = v0(x), (4.42)

where the initial condition v0(x), is a sufficiently smooth function modified from the

original initial condition u0(x) = δ(x) + f(x) such that it agrees with u0(x) for all

x ∈ Ω\Ii, and satisfies

|∂α
x v0(x)| ≤ Ch−α−1, x ∈ Ii,

where Ii is the cell containing x = 0.

4.5.3 Error representation and error equations

Denote the error by e = v−uh, where uh approximates the solution to (4.1) or (4.41).

Clearly, e also satisfies (2.5). We divide the error into the form e = η − ξ, where

η = v − P−v = P⊥−v, and ξ = uh − P−v.

Following [117], we obtain

d‖ξ‖2
ϕ

dt
= 2

(
ξt,P⊥+(ϕξ)

)
+ 2 (ξt,P+(ϕξ))− (ξ, ϕxξ)

= 2
(
ξt,P⊥+(ϕξ)

)
+ 2 (ηt,P+(ϕξ))− 2 (et,P+(ϕξ))− (ξ, ϕxξ)

= 2
(
ξt,P⊥+(ϕξ)

)
+ 2 (ηt,P+(ϕξ))− 2H(e,P+(ϕξ))− (ξ, ϕxξ)

= 2
(
ξt,P⊥+(ϕξ)

)
+ 2 (ηt,P+(ϕξ)) + 2H(ξ,P+(ϕξ))− (ξ, ϕxξ)

= 2
(
ξt,P⊥+(ϕξ)

)
+ 2 (ηt,P+(ϕξ)) + 2H(ξ, ϕξ)− (ξ, ϕxξ)

= 2Π1 + 2Π2 − Π3,
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where

Π1 =
(
ξt,P⊥+(ϕξ)

)
, Π2 = (ηt,P+(ϕξ)) , Π3 =

∑
j

ϕj+ 1
2
[ξ]2

j+ 1
2
.

First we estimate Π1. Denote w = ξt − Pk−1ξt. From the scheme (2.20), we have

(ξt, w)j = (ηt, w)j − (et, w)j = (ηt, w)j − [ξ]j− 1
2
w+

j− 1
2

.

Inserting this into Π1 and defining ψ =
√

ϕ, we obtain

(ξt,P⊥+(ϕξ))j =

(
(ξt, w)j

‖w‖2
Ij

w,P⊥+(ϕξ)

)

j

=

((
(ηt, w)j − [ξ]j−1/2w

+
j− 1

2

) w

‖w‖2
Ij

,P⊥+(ϕξ)

)

j

≤ C

‖w‖Ij

(
|(ψηt, w)j|+

∣∣∣[ψξ]j−1/2w
+
j− 1

2

∣∣∣
) ∥∥ψ−1P⊥+(ϕξ)

∥∥
Ij

≤ Ch1−σ

γ

(
‖ηt‖2

ϕ,Ij
+ ‖ξ‖2

ϕ,Ij

)
+

Ch1/2−σ

γ

(
ϕj−1/2[ξ]

2
j−1/2 + ‖ξ‖2

ϕ,Ij

)
.

Summing up with respect to j, we obtain

(ξt,P⊥+(ϕξ)) ≤ Ch1−σ

γ

(‖ηt‖2
ϕ + ‖ξ‖2

ϕ

)
+

Ch1/2−σ

γ

(∑
j

ϕj−1/2[ξ]
2
j−1/2 + ‖ξ‖2

ϕ

)
.

For Π2, it is not difficult to see that

Π2 ≤ C‖ηt‖ϕ ‖ξ‖ϕ ≤ C(‖ηt‖2
ϕ + ‖ξ‖2

ϕ).

Then if γ is large enough and σ = 1
2
, we have

2Π1 + 2Π2 − Π3 ≤ C
(‖ηt‖2

ϕ + ‖ξ‖2
ϕ

)
.



72

By Gronwall’s inequality,

‖ξ(T )‖2
ϕ ≤ C

∫ T

0

‖ηt‖2
ϕdt + C‖ξ(0)‖2

ϕ. (4.43)

4.5.4 The final estimate

This part is almost the same as in [117]. We will only discuss the left-hand boundary

of RT since the discussion for the right one is similar. Denote xL(t) = t + xc with

xc = −2s log(1/h)γhσ,

where s and γ are sufficiently large and σ = 1/2. As mentioned before, the δ-

singularity in the initial datum is assumed to be contained in cell Ii. By proposition

4.5.1, we obtain 0 < φ(x) < hs for any x ∈ Ii. We choose v0 to satisfy Pkv0 = Pku0 =

uh(0). Then

‖ξ(0)‖ϕ ≤ ‖ξ(0)‖ϕ,L2(R\Ii) + ‖ξ(0)‖ϕ,L2(Ii) ≤ Chk+1‖f‖k+2 + Chs−1/2.

If s is large enough, then ‖ξ(0)‖ϕ ≤ Chk+1.

Define the domain R+
T = (xL(T ),∞), then

‖uh − v‖R\R+
T
≤ ‖uh − v‖ϕ,R\R+

T
≤ ‖η‖ϕ,R\R+

T
+ ‖ξ‖ϕ ≤ Chk+1‖f‖k+1 + ‖ξ‖ϕ.

To estimate the second term on the right hand side, we use (4.43). Denote

w(t) = max{xj+ 1
2

: xj− 1
2

< t +
1

2
xc,∀j},

and R1(t) = (−∞, w(t)), R2(t) = R\R1(t) = (w(t),∞). If γhσ−1 is large enough,

R1(t) stays away from the bad interval [t− h, t + h] where v(x, t) 6= u(x, t), then we
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have

‖ηt‖ϕ,R1(t) ≤ Chk+1‖f‖k+2.

Now we proceed to estimate ‖ηt‖ϕ,R2(t). Since R2 contains the entire bad region, we

will use the property of the weight function. By (4.36) we have ϕ ≤ hs in this zone.

Then we obtain

‖ηt‖ϕ,R2(t) ≤ Chs/2‖ηt‖R2(t) ≤ Chs/2+k+1‖∂k+2
x v‖R2(t) ≤ Ch(s−3)/2+Chs/2+k+1‖f‖k+2,R2(t).

Similarly, we can estimate the right-hand side of the non-smooth region. If we take

s large enough, we have

‖uh − u(x, T )‖R\R+
T

= ‖uh − v(x, T )‖R\R+
T
≤ Chk+1‖f‖k+2 + Ch(s−3)/2 ≤ Chk+1.

4.6 Concluding remarks

In this chapter, we use a DG method to solve linear hyperbolic conservation laws

involving δ-singularities. We investigate the negative-order norm error estimates

for the accuracy of the DG approximations to linear hyperbolic conservation laws

with singular initial data or singular source terms, and obtain error estimates in

the L2-norm after post-processing in one space dimension. Numerical experiments

demonstrate that the estimates are optimal. The results in this chapter offers evi-

dence that the DG method is a good algorithm for problems involving δ-singularities

in their solutions.



Chapter 5

Applications to Krause consensus

models and pressureless Euler

equations

In this chapter, we apply DG methods to solve hyperbolic conservation law

ut + f(u)x = 0, (x, t) ∈ R× (0, T ],

u(x, 0) = u0(x), x ∈ R,
(5.1)

and its two dimensional version, where the exact solution u(x, t) contains δ-singularities.

We extend the work in Chapter 4 and consider applications to two model equations:

Krause’s consensus models and the pressureless Euler equations. These two models

are used to describe the collision of particles, and the distributions can be identified

as density functions. If the particles are places at a single point, the density func-

tion is a δ-function and is difficult to approximate numerically. Recently, in [119],

genuinely maximum-principle-satisfying high order DG schemes for scalar equations

and two-dimensional incompressible flows in vorticity-streamfunction formulation

have been constructed. Subsequently, positivity-preserving high order DG schemes

for compressible Euler equations were given in [120]. We will extend the ideas in

74
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[119, 120] to construct bound-preserving high order DG schemes for the Krause’s

consensus models and pressureless Euler equations.

For the first example, we discuss the following Krause’s consensus model equation

ρt + Fx = 0, x ∈ [0, 1], t > 0,

ρ(x, 0) = ρ0(x), t > 0,
(5.2)

where ρ is the density function, which is always positive. The flux F is given by

F (x, t) = v(x, t)ρ(x, t),

and the velocity v is defined by

v(x, t) =

∫ 1

0

(y − x)ξ(y − x)ρ(y, t)dy,

where 0 ≤ ξ(x) ≤ 1 is supported on a ball centered at zero with radius R. In [19],

Canuto et al. investigated the discretized version of the PDE and proved that when

the time t tends to infinity, the density function ρ will converge to some isolated δ-

singularities, and the distance between any two of these δ-singularities cannot be less

than R. Some computational results are shown in [19] based on a first order finite

volume method. For two dimensions, if the initial density is rotationally invariant,

the limit density should also be rotationally invariant, and hence can only be a single

δ located at the center. However, direct computations on rectanglular meshes yield

more than one δ singularity for sufficiently small R as a resultof the meshes not being

invariant under rotation. In this chapter, following ideas in [23, 24], we construct a

special mesh to obtain symmetry and convergence to physically relevant solutions.

Computational results are given to demonstrate the advantages of high order DG

schemes.
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For the second example, we discuss the pressureless Euler equation

wt + f(w)x = 0, t > 0, x ∈ R, (5.3)

w =


 ρ

m


 , f(w) =


 m

ρu2


 ,

with m = ρu, where ρ is the density function and u is the velocity. Pressureless

Euler equations in one space dimension have been analyzed at the theoretical level

intensively, e.g. [13, 14, 18, 22, 41]. Some numerical methods have also been studied

by several authors [15, 10, 27, 16]. In [15], only first and second order numerical

schemes were considered. Except for those in [15], no other methods seem to have

been designed to solve (5.3) directly. In [16], the authors added an artificial vis-

cosity and built a diffusive scheme. In [27], the authors applied the sticky particle

methods to the equation and showed that the approximation satisfies the original

system within a certain residual. In [10], the authors introduced a new variable and

added one more equation to the system, leading to more computational cost. In this

chapter, we consider high order DG scheme and approximate the equation without

modification. Physically, the density ρ is positive and the velocity u satisfies a max-

imum principle. We extend the idea in [120] and construct suitable limiters to fulfill

these two requirements while maintaining high order accuracy. Moreover, numerical

evidences demonstrate that the scheme is good for approximations in the presence of

vacuum. Finally, our scheme works well in two dimensions. To the authors’ knowl-

edge, not too much works in the literature focus on the two dimensional equations,

and some theoretical results can be found in [96, 97]. However, complete existence

and uniqueness results are not available. Therefore, our scheme offers a good tool to

study two-dimensional pressureless Euler equations and other similar equations.
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5.1 Preliminaries

5.1.1 Limiters

In this subsection, we use forward Euler for time discretization and briefly discuss

the construction of bound-preserving limiters [121]. We denote un
j and un

j to be the

numerical solution and its cell average at time level n in cell Ij. If we consider generic

numerical solution on the whole computational domain Ω, then the subscript j will

be omitted. Suppose the exact solution of (5.1) is in some convex set G and we

are interested in constructing numerical solutions which are also in G. The whole

precess can be divided into three steps.

In the first step, we consider a first order scheme

un+1
j = un

j + λ
(
f̂
(
un

j−1,u
n
j

)− f̂
(
un

j ,u
n
j+1

))

=
1

2

(
un

j + 2λf̂
(
un

j−1,u
n
j

))
+

1

2

(
un

j − 2λf̂
(
un

j ,u
n
j+1

))

=
1

2
H1

(
un

j−1,u
n
j , 2λ

)
+

1

2
H2

(
un

j ,u
n
j+1, 2λ

)
, (5.4)

where

H1 (u,v, c) = v + c f̂(u,v), H2 (u,v, c) = u− c f̂(u,v). (5.5)

Here un
j = un

j is a constant in each cell Ij, and λ = ∆t
∆x

is the ratio of time and

space mesh sizes. For many two-point first order numerical fluxes, we can prove the

following property.

Property 5.1.1. Suppose G is a convex set and u,v ∈ G, then there exists a positive

constant C?, such that, for any 0 < c < C?, we have H1 (u,v, c) ,H2 (u,v, c) ∈ G.

Based on the above property, we can easily obtain that, under the CFL condition

λ < C?

2
, un ∈ G implies un+1 ∈ G.

Next, we study high order schemes and assume un ∈ G. Consider the equation
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satisfied by the numerical cell averages

ūn+1
j = ūn

j + λ
(
f̂(u−

j− 1
2

,u+
j− 1

2

)− f̂(u−
j+ 1

2

,u+
j+ 1

2

)
)

. (5.6)

Let αi be the Legendre Gauss-Lobatto quadrature weights for the interval [−1
2
, 1

2
]

such that
∑M

i=0 αi = 1, with 2M − 3 ≥ k, and denote the corresponding Gauss-

Lobatto points in cell Ij as {x̌j
i}. Then the Gauss-Lobatto quadrature yields

ūn
j =

M∑
i=0

αiu
n
j (x̌j

i ).

Clearly, un
j (x̌j

0) = u+
j− 1

2

and un
j (x̌j

M) = u−
j+ 1

2

. Therefore,

ūn+1
j =

M∑
i=0

αiu
n
j (x̌j

i ) + λ
(
f̂(u−

j− 1
2

,u+
j− 1

2

)− f̂(u−
j+ 1

2

,u+
j+ 1

2

)
)

=
M−1∑
i=1

αiu
n
j (x̌j

i ) + α0H1

(
u−

j− 1
2

,u+
j− 1

2

,
λ

α0

)
+ αMH2

(
u−

j+ 1
2

,u+
j+ 1

2

,
λ

αM

)
.

If the numerical flux satisfies Property 5.1.1, we have H1

(
u−

j− 1
2

,u+
j− 1

2

, λ
α0

)
∈ G

and H2

(
u−

j+ 1
2

,u+
j+ 1

2

, λ
αM

)
∈ G, provided the suitable CFL condition λ < α0C? is

satisfied. Here, we use the fact that α0 = αM . Since un
j (x̌j

i ) ∈ G and G is a convex

set, we have ūn+1
j ∈ G.

Finally, we can modify the numerical solution through the simple scaling limiter

ũn+1
j = ūn+1

j + θ
(
un+1

j − ūn+1
j

)
. By taking suitable θ ∈ [0, 1], we have ũn+1

j ∈ G,

and ũn+1
j is used as the numerical solution at time level n + 1. In many situations

we can prove that this modification does not affect the high order accuracy of the

original solution un+1
j [121].
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5.1.2 High order time discretizations

We will use strong stability preserving (SSP) high order time discretizations to solve

the ODE system ut = Lu. More details of these time discretizations can be found

in [102, 101, 46]. In this chapter, we use the third order SSP Runge-Kutta method

[102]

u(1) = un + ∆tL(un),

u(2) =
3

4
un +

1

4

(
u(1) + ∆tL(u(1))

)
, (5.7)

un+1 =
1

3
un +

2

3

(
u(2) + ∆tL(u(2))

)
,

and the third order SSP multi-step method [101]

un+1 =
16

27
(un + 3∆tL(un)) +

11

27

(
un−3 +

12

11
∆tL(un−3)

)
. (5.8)

Since a SSP time discretization is a convex combination of the forward Euler, by

using the limiter mentioned in Section 5.1.1, the numerical solution obtained from

the full scheme is also in G.

5.2 Krause’s consensus models

In this section we apply DG methods to Krause’s consensus models, extending the

results in [19].

5.2.1 Positivity-preserving high order schemes

We consider (5.2) in more detail. For this model, we define G = {ρ : ρ > 0}. Clearly,

G is a convex set. We start with the following first order scheme

ρn+1
j = ρn

j + λ
(
vj− 1

2
h(ρn

j−1, ρ
n
j )− vj+ 1

2
h(ρn

j , ρ
n
j+1)

)
, (5.9)
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where h(·, ·) is a numerical flux, and ρn
j = ρn

j is the numerical approximation to the

exact solution in cell Ij at time level n, with ρn
j being its cell average. Moreover,

vj− 1
2

is the numerical velocity at the interface xj− 1
2
, given by

vj− 1
2

=
N∑

i=1

∫

Ii

(y − xj− 1
2
)ξ(y − xj− 1

2
)ρn

i (y)dy.

For this model, we use an upwind flux, i.e.

vh(u,w) =





vu v ≥ 0,

vw v < 0,

and define H1 and H2 as

H1(u,w, c) = w + cvh(u,w), H2(u,w, c) = u− cvh(u,w).

Then the scheme (5.9) can be written as

ρn+1
j =

1

2
H1(ρ

n
j−1, ρ

n
j , 2λ) +

1

2
H2(ρ

n
j , ρ

n
j+1, 2λ).

Based on the above notations, we can prove the following lemma.

Lemma 5.2.1. Suppose ρn > 0, then under the CFL condition

max
j
|vj− 1

2
|λ <

1

2
,

we have ρn+1 > 0.

Proof: We consider H1(ρ
n
j−1, ρ

n
j , 2λ) first. If vj− 1

2
< 0, then

H1(ρ
n
j−1, ρ

n
j , 2λ) = ρn

j + 2λvj− 1
2
h(ρn

j−1, ρ
n
j ) = (1 + 2λvj− 1

2
)ρn

j > 0.
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On the other hand, if vj− 1
2
≥ 0, then

H1(ρ
n
j−1, ρ

n
j , 2λ) = ρn

j + 2λvj− 1
2
h(ρn

j−1, ρ
n
j ) = ρn

j + 2λvj− 1
2
ρn

j−1 > 0.

Similarly, we have

H2(ρ
n
j , ρ

n
j+1, 2λ) = ρn

j − 2λvj+ 1
2
h(ρn

j , ρ
n
j+1) > 0.

Therefore,

ρn+1
j =

1

2
H1(ρ

n
j−1, ρ

n
j , 2λ) +

1

2
H2(ρ

n
j , ρ

n
j+1, 2λ) > 0.

This completes the proof.

Now, we consider high order schemes. The analysis in Section 5.1.1 implies the

following theorem.

Theorem 5.2.1. Suppose the DG solution ρn > 0, then under the CFL condition

max
j
|vj− 1

2
|λ < α0,

we have ρ̄n+1 > 0.

Based on the above theorem, we can modify the density ρn
j in the following steps.

• Set up a small number ε = min
{
10−13, ρ̄n

j

}
.

• Compute mj = mini ρ
n
j (x̌j

i ), where {x̌j
i} are the Gauss-Lobatto points in cell

Ij.

• If mj < ε, then we take

θ =
ρn

j − ε

ρn
j −mj

,

and use

ρ̃n
j = ρn

j + θ(ρn
j − ρn

j ) (5.10)
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as the DG approximation in cell Ij at time level n.

Based on the above steps, the numerical density is always positive. Therefore

‖ρn‖L1(Ω) =

∫

Ω

ρn(x)dx =

∫

Ω

ρ0(x)dx = ‖ρ0‖L1(Ω), (5.11)

where ‖u‖L1(Ω) is the standard L1-norm of u on Ω. Clearly, (5.11) implies the L1

stability for the DG scheme. Moreover, we can also derive a sufficient CFL condition

which does not depend on the numerical velocity in Theorem 5.2.1. Actually, Note

that

vj− 1
2

=
N∑

i=1

∫

Ii

(y − xj− 1
2
)ξ(y − xj− 1

2
)ρn

i (y)dy ≤ R‖ρ0‖L1(Ω),

such that the sufficient CFL condition is

λ ≤ α0

R‖ρ0‖L1(Ω)

. (5.12)

To summarize, we have the following theorem.

Theorem 5.2.2. Under the CFL condition (5.12), the DG scheme with the positivity-

preserving limiter for equation (5.2) is L1 stable and the density function is always

positive.

5.2.2 Numerical experiments

In this subsection, some numerical examples will be given to demonstrate the good

performance of the DG scheme.

Example 5.1. We consider the following problem

ρt + (vρ)x = 0, x ∈ [0, 1], t > 0,

ρ(x, 0) = ρ0(x), t > 0,
(5.13)
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where the velocity v is defined by

v(x, t) =

∫ x+R

x−R

(y − x)ρ(y, t)dy.

We apply the positivity-preserving limiter and use P0 and P1 polynomials. Moreover,

we use the third order SSP Runge-Kutta discretization in time [102] with ∆t =

0.1∆x. Figure 5.1 shows the numerical approximations of ρ(x) at t = 1000, with
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Figure 5.1: Numerical density for (5.13) at t = 1000 with N = 400 when using P0

(left) and P1 (right) polynomials.

N = 400, ρ0 = 1, and R = 0.02. We can observe 22 δ-singularities in each panel, and

the distance between any two adjacent singularities is greater than R. The algorithm

is quite stable in this simulation. Moreover, the P1 solution in the right panel is more

accurate than the P0 one in the left panel, since the heights of the δ-singularities are

almost doubled.

Example 5.2. We consider the model problem in two dimensions.

ρt + div(vρ) = 0, x ∈ [−1, 1]2, t > 0,

ρ(x, 0) = ρ0(x), t > 0,
(5.14)
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where the velocity v is defined by

v(x, t) =

∫

BR(x)

(y − x)ρ(y, t)dy.

In this example, we take R = 0.1 and

ρ0(x) =





1 r < 0.5,

0 r > 0.5,

where r = ‖x‖ is the Euclidean norm of x. In [19], the authors demonstrated that

the exact solution should be a single delta placed at the origin. However, by using

rectangle meshes, we observe more than one delta singularity for R sufficiently small

as a consequence of the meshes not being invariant under rotation. To address this

problem, we follow [23, 24], and construct a special equal-angle-zoned mesh. The

structure of the mesh is given in Figure 5.2. By using this mesh, the limit density

given in Figure 5.3 is a single delta placed at the origin.

Figure 5.2: Equal-angle-zoned mesh.
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Figure 5.3: Numerical density ρ for (5.14) at t = 2000 with N = 200 when using P0

polynomials.

5.3 Pressureless Euler equations

In this section, we apply DG methods to the pressureless Euler equations.

5.3.1 Numerical schemes in one dimension

We study (5.3) in more detail. Physically, the density is positive and the velocity

satisfies the maximum principle. Therefore, we define

G =



w =


 ρ

m


 : ρ > 0, aρ ≤ m ≤ bρ



 ,

where

a = min u0(x), b = max u0(x), (5.15)
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with u0 being the initial velocity. Clearly, G is a convex set. As mentioned in Section

5.1.1, we start with the following first order scheme,

wn+1
j = wn

j + λ
(
h(wn

j−1,w
n
j )− h(wn

j ,wn
j+1)

)
, (5.16)

where h(·, ·) is a numerical flux and wn
j =

(
ρn

j ,m
n
j

)T
is the numerical approximation

to the exact solution in cell Ij at time level n. Moreover, we define wn
j =

(
ρn

j , m
n
j

)T
as

its cell average. Clearly, for a first order scheme, wn
j = wn

j in (5.16). For simplicity,

we use un
j for

mn
j

ρn
j

as the numerical velocity throughout this section. In this problem,

we consider the Godunov flux [15]. Suppose that at the cell interface x = xj− 1
2

we

have two numerical approximations w` = (ρ`,m`)
T and wr = (ρr,mr)

T from the left

and right respectively. Then the Godunov flux is given as

(h (w`,wr))
T = (ρ̂uj− 1

2
, ρ̂u2

j− 1
2
) =





(m`, ρ`u
2
`) u` > 0, ur > 0,

(0, 0) u` ≤ 0, ur > 0,

(mr, ρru
2
r) u` ≤ 0, ur ≤ 0,

(m`, ρ`u
2
`) u` > 0, ur ≤ 0, v > 0,

(mr, ρru
2
r) u` > 0, ur ≤ 0, v < 0,

(m`+mr

2
, ρ`u

2
` = ρru

2
r) u` > 0, ur ≤ 0, v = 0,

(5.17)

where

u` =
m`

ρ`

, ur =
mr

ρr

, and v =

√
ρ`u` +

√
ρrur√

ρ` +
√

ρr

.

For this problem, H1 and H2 are taken to be

H1 (u,v, c) = v + ch (u,v) , H2 (u,v, c) = u− ch (u,v) . (5.18)

Clearly, (5.16) can be written as

wn+1
j =

1

2
H1

(
wn

j−1,w
n
j , 2λ

)
+

1

2
H2

(
wn

j ,wn
j+1, 2λ

)
.
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Before proceeding to the theoretical results for the scheme, we would like to introduce

the following lemma. The proof is trivial and is omitted.

Lemma 5.3.1. Suppose {x̌i} are positive real numbers, and a ≤ y̌i ≤ b, ∀i, then

a ≤
∑n

i=1 x̌iy̌i∑n
i=1 x̌i

≤ b.

We will use Lemma 5.3.1 to prove the following lemma.

Lemma 5.3.2. Suppose wn ∈ G, then under the CFL condition

λ <
1

2 max(|a|, |b|) ,

where a and b are defined in (5.15), we have wn+1 ∈ G.

Proof: We will only prove H1

(
wn

j−1,w
n
j , 2λ

) ∈ G. The proof for H2

(
wn

j ,wn
j+1, 2λ

) ∈
G follows the same lines. Define H1

(
wn

j−1,w
n
j , 2λ

)
= (ρ̌, m̌)T , then the velocity de-

rived from H1 is given as

ǔ =
m̌

ρ̌
=

mn
j + 2λρ̂u2

j− 1
2

ρn
j + 2λρ̂uj− 1

2

. (5.19)

We will prove ρ̌ > 0 and a ≤ ǔ ≤ b. To do so, we have to determine what {x̌i} and

{y̌i} should be in Lemma 5.3.1, by testing the different choices for the numerical flux

in (5.17). For simplicity, we define ûj− 1
2

=
ρ̂u2

j− 1
2

ρ̂u
j− 1

2

, if ρ̂uj− 1
2
6= 0.

• If ρ̂uj− 1
2

= mn
j−1, then ûj− 1

2
= un

j−1 > 0. We take x̌1 = ρn
j , y̌1 = un

j and

x̌2 = 2λmn
j−1, y̌2 = un

j−1.

• If ρ̂uj− 1
2

= mn
j , then ûj− 1

2
= un

j ≤ 0. We take x̌1 = ρn
j + 2λmn

j , y̌1 = un
j .

• If ρ̂uj− 1
2

= (mn
j−1 + mn

j )/2, then ρ̂u2
j− 1

2
= (mn

j−1u
n
j−1 + mn

j u
n
j )/2. We combine

the two situations above, and take x̌1 = ρn
j + λmn

j , y̌1 = un
j and x̌2 = λmn

j−1,

y̌2 = un
j−1.
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• If ρ̂uj− 1
2

= 0, then ρ̂u2
j− 1

2
= 0. We take x̌1 = ρn

j , y̌1 = un
j .

Clearly, in each case, x̌i > 0, therefore ρ̌ > 0. Moreover, we observe a ≤ y̌i ≤ b, so

that by Lemma 5.3.1, we have a ≤ ǔ ≤ b.

Now, we consider high order schemes. By the same analysis as in Section 5.1.1,

we have the following result.

Theorem 5.3.1. Suppose wn ∈ G, then under the CFL condition

λ <
α0

max(|a|, |b|) ,

we have wn+1 ∈ G.

Based on this, we can modify the numerical solution wn
j while keeping the cell

average untouched. Due to rounding error, we define

Gε =



w =


 ρ

m


 : ρ ≥ ε, a− ε ≤ m

ρ
≤ b + ε



 ,

∂Gε =



w =


 ρ

m


 : ρ ≥ ε,

m

ρ
= a− ε or b + ε



 .

Then the modification of wn
j is given in the following steps.

• Set up a small number ε = 10−13.

• If ρ̄n
j > ε, then proceed to the following steps. Otherwise, ρn

j is identified as the

approximation to vacuum, and the velocity is undefined. Therefore, we take

w̃n
j = wn

j as the numerical solution and skip the following steps.

• Modify the density first: Compute mj = mini ρ
n
j (x̌j

i ), where {x̌j
i} are the Gauss-

Lobatto points in cell Ij, and get ρ̃n
j by (5.10). Then use ρ̃n

j as the new numerical

density ρn
j .
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• Modify the velocity: Define qj
i = wn

j (x̌j
i ) in cell Ij. If qj

i ∈ Gε, then take θj
i = 1.

Otherwise, take

θj
i =

∥∥wn
j − sj

i

∥∥
∥∥wn

j − qj
i

∥∥ ,

where ‖·‖ is the Euclidean norm, and sj
i is the intersection point of the straight

line

s(t) = (1− t)wn
j + tqj

i , 0 ≤ t ≤ 1,

and the surface ∂Gε. Define θj = mini=0,··· ,m θj
i , and use

w̃n
j = wn

j + θj(w
n
j −wn

j ),

as the DG approximation in cell Ij.

5.3.2 Numerical schemes in two dimensions

We extend our work to two dimensions and consider the following equation

wt + f(w)x + g(w)y = 0, t > 0, (x, y) ∈ R2, (5.20)

w =




ρ

m

n


 , f(w) =




m

ρu2

ρuv


 , g(w) =




n

ρuv

ρv2


 ,

with

m = ρu, n = ρv,

where ρ is the density function and (u, v) is the velocity field. We define

G =





w =




ρ

m

n


 : ρ > 0,m2 + n2 ≤ S2ρ2





,
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where

S > 0, and S2 = max
x,y

(
u2(x, y, 0) + v2(x, y, 0)

)

with (u, v)(x, y, 0) being the initial velocity field. Clearly, G is a convex set.

For simplicity, we use uniform rectangular meshes. The cell is defined as Iij =[
xi− 1

2
, xi+ 1

2

]
×

[
yj− 1

2
, yj+ 1

2

]
, and the mesh sizes in x and y directions are denoted as

∆x and ∆y respectively. At time level n, we approximate the exact solution with a

vector of polynomials of degree k, wn
ij = (ρn

ij,m
n
ij, n

n
ij)

T , and define the cell average

wn
ij = (ρn

ij, m
n
ij, n

n
ij)

T . Moreover, we denote w+
i− 1

2
,j
(y),w−

i+ 1
2
,j
(y),w+

i,j− 1
2

(x),w−
i,j+ 1

2

(x)

as the traces of w on the four edges of cell Iij respectively. More details can be found

in [120]. We use (un
ij, v

n
ij) for (

mn
ij

ρn
ij

,
nn

ij

ρn
ij

) as the numerical velocity field in cell Iij at

time level n, and define a1 = maxij |un
ij| and a2 = maxij |vn

ij|. For simplicity, if we

consider a generic numerical solution on the whole computational domain at time

level n, the subscript ij will be omitted.

We only consider high order schemes, and the one satisfied by the cell averages

can be written as

wn+1
ij = wn

ij +
∆t

∆x∆y

∫ y
j+1

2

y
j− 1

2

h1

(
w−

i− 1
2
,j
(y),w+

i− 1
2
,j
(y)

)
− h1

(
w−

i+ 1
2
,j
(y),w+

i+ 1
2
,j
(y)

)
dy

+
∆t

∆x∆y

∫ x
i+1

2

x
i− 1

2

h2

(
w−

i,j− 1
2

(x),w+
i,j− 1

2

(x)
)
− h2

(
w−

i,j+ 1
2

(x),w+
i,j+ 1

2

(x)
)

dx,(5.21)

where h1(·, ·) and h2(·, ·) are one-dimensional numerical fluxes. For this problem,

we also use the Godunov flux. Suppose (x, y) = (xi− 1
2
, y0) is a point on the vertical

cell interface, at which we have two numerical approximations w` = (ρ`,m`, n`)
T

and wr = (ρr,mr, nr)
T from left and right respectively. Then the Godunov flux
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(h1(w`,wr))
T can be written as

(
ρ̂u, ρ̂u2, ρ̂uv

)
=





(m`, ρ`u
2
` , ρ`u`v`) u` > 0, ur > 0,

(0, 0, 0) u` ≤ 0, ur > 0,

(mr, ρru
2
r, ρrurvr) u` ≤ 0, ur ≤ 0,

(m`, ρ`u
2
` , ρ`u`v`) u` > 0, ur ≤ 0, v > 0,

(mr, ρru
2
r, ρrurvr) u` > 0, ur ≤ 0, v < 0,

1
2
(m` + mr, ρ`u

2
` + ρru

2
r,m`v` + mrvr) u` > 0, ur ≤ 0, v = 0,

where

(u`, v`) =

(
m`

ρ`

,
n`

ρ`

)
, (ur, vr) =

(
mr

ρr

,
n`

ρ`

)
, and v =

√
ρ`u` +

√
ρrur√

ρ` +
√

ρr

.

The numerical flux h2 =
(
ρ̂v, ρ̂uv, ρ̂v2

)T

can be defined in a similar way on the

horizontal cell interfaces.

For accuracy, we use L-point Gauss quadratures with L ≥ k + 1 to approximate

the integrals in (5.21). More details of this requirement can be found in [32]. The

Gauss quadrature points on
[
xi− 1

2
, xi+ 1

2

]
and

[
yj− 1

2
, yj+ 1

2

]
are denoted by

p̂x
i =

{
x̂β

i : β = 1, · · · , L
}

and p̂y
j =

{
ŷβ

j : β = 1, · · · , L
}

,

respectively. Also, we denote ŵβ as the corresponding weights on the interval
[−1

2
, 1

2

]
. Following the same notation as in previous sections, we use

p̌x
i = {x̌α

i : α = 0, · · · ,M} and p̌y
j =

{
y̌α

j : α = 0, · · · ,M
}

as the Gauss-Lobatto points on
[
xi− 1

2
, xi+ 1

2

]
and

[
yj− 1

2
, yj+ 1

2

]
respectively. Also, we

denote w̌α as the corresponding weights on the interval
[−1

2
, 1

2

]
.
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Let λ1 = ∆t
∆x

and λ2 = ∆t
∆y

, then the numerical scheme (5.21) becomes

wn+1
ij = wn

ij + λ1

L∑

β=1

ŵβ

[
h1

(
w−

i− 1
2
,β

,w+
i− 1

2
,β

)
− h1

(
w−

i+ 1
2
,β

,w+
i+ 1

2
,β

)]

+ λ2

L∑

β=1

ŵβ

[
h2

(
w−

β,j− 1
2

,w+
β,j− 1

2

)
− h2

(
w−

β,j+ 1
2

,w+
β,j+ 1

2

)]
, (5.22)

where w−
i− 1

2
,β

= w−
i− 1

2
,j
(ŷβ

j ) is a point value in the Gauss quadrature. Likewise for

the other point values. As the general treatment, we rewrite the cell average on the

right hand side as

wn
ij =

M∑
α=0

L∑

β=1

w̌αŵβw
1
αβ =

M∑
α=0

L∑

β=1

w̌αŵβw
2
βα,

where w1
αβ and w2

βα denote wn
ij(x̌

α
i , ŷβ

j ) and wn
ij(x̂

β
i , y̌α

j ) respectively. We extend the

definitions of H1 and H2 in (5.18) to two-dimensional problems and define

H1
1 (u,v, c) = v + ch1 (u,v) , H1

2 (u,v, c) = u− ch1 (u,v) ,

H2
1 (u,v, c) = v + ch2 (u,v) , H2

2 (u,v, c) = u− ch2 (u,v) .

Let µ = a1λ1 + a2λ2, then scheme (5.22) can be written as

wn+1
ij = C1

L∑

β=1

ŵβ

(
M−1∑
α=1

w̌αw
1
αβ + w̌0H

1
1

(
w−

i− 1
2
,β

,w+
i− 1

2
,β

, µ1

)
+ w̌MH1

2

(
w−

i+ 1
2
,β

,w+
i+ 1

2
,β

, µ1

))

+ C2

L∑

β=1

ŵβ

(
M−1∑
α=1

w̌αw
2
βα + w̌0H

2
1

(
w−

β,j− 1
2

,w+
β,j− 1

2

, µ2

)
+ w̌MH2

2

(
w−

β,i+ 1
2

,w+
β,j+ 1

2

, µ2

))
,

where

C1 =
a1λ1

µ
, C2 =

a2λ2

µ
, µ1 =

µ

a1w̌0

, µ2 =
µ

a2w̌0

.

Now, we can state the main theorem.
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Theorem 5.3.2. Suppose wn ∈ G, then under the CFL condition

∆t

∆x
a1 +

∆t

∆y
a2 ≤ ŵ0,

we have wn+1 ∈ G.

Proof: For simplicity, we only prove H1
1

(
w−

i− 1
2
,β

,w+
i− 1

2
,β

, µ1

)
∈ G, ∀β, and define

H1
1

(
w−

i− 1
2
,β

,w+
i− 1

2
,β

, µ1

)
= (ρ̌, m̌, ň)T , ǔ =

m̌

ρ̌
, v̌ =

ň

ρ̌
.

Following the same analysis as in Lemma 5.3.2, we have ρ̌ > 0. Therefore, we need

only prove ǔ2 + v̌2 ≤ S2. By the assumption, we have

w−
i− 1

2
,β

=
(
ρ−

i− 1
2
,β

,m−
i− 1

2
,β

, n−
i− 1

2
,β

)T

∈ G and w+
i− 1

2
,β

=
(
ρ+

i− 1
2
,β

,m+
i− 1

2
,β

, n+
i− 1

2
,β

)T

∈ G.

Denote h1

(
w−

i− 1
2
,β

,w+
i− 1

2
,β

)
=

(
ρ̂ui− 1

2
,β, ρ̂u2

i− 1
2
,β, ρ̂uvi− 1

2
,β

)T

as the corresponding

numerical flux, and for any unit vector n = (n1, n2)
T , define w̌ = ǔn1 + v̌n2. Then

w̌ =
m+

i− 1
2
,β

n1 + n+
i− 1

2
,β

n2 + µ1

(
ρ̂u2

i− 1
2
,βn1 + ρ̂uvi− 1

2
,βn2

)

ρ+
i− 1

2
,β

+ µ1ρ̂ui− 1
2
,β

=
ρ+

i− 1
2
,β

w+
i− 1

2
,β

+ µ1ρ̂ui− 1
2
,βŵi− 1

2
,β

ρ+
i− 1

2
,β

+ µ1ρ̂ui− 1
2
,β

,

where

w+
i− 1

2
,β

=
m+

i− 1
2
,β

n1 + n+
i− 1

2
,β

n2

ρ+
i− 1

2
,β

, ŵi− 1
2
,β =

ρ̂u2
i− 1

2
,βn1 + ρ̂uvi− 1

2
,βn2

ρ̂ui− 1
2
,β

.

We can easily show that |w+
i− 1

2
,β
| ≤ S and |ŵi− 1

2
,β| ≤ S. Following the same lines as

is the proof of Lemma 5.3.2, we have |w̌| ≤ S. Choosing n to be parallel with (ǔ, v̌),

we have ǔ2 + v̌2 ≤ S2, completing the proof.
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Remark 5.3.1. Since a1 ≤ S and a2 ≤ S, another sufficient CFL condition in

Theorem 5.3.2 is ∆t
∆x

+ ∆t
∆y
≤ ŵ0

S
.

Based on the above theorem, we can modify the numerical solution wn
ij keeping

the cell average untouched. Due to the rounding error, we define

Gε =





w =




ρ

m

n


 : ρ ≥ ε,m2 + n2 ≤ (S + ε)2ρ2





,

∂Gε =





w =




ρ

m

n


 : ρ ≥ ε,m2 + n2 = (S + ε)2ρ2





.

Then the modification of wn
ij is given in the following steps.

• Set up a small number ε = 10−13.

• If ρn
ij > ε, then proceed to the following steps. Otherwise, ρn

ij is identified as

the approximation to vacuum, and the velocity is undefined. Therefore, we

take w̃n
ij = wn

ij as the numerical solution and skip the following steps.

• Modify the density first: Compute mij = minαβ

{
ρn

ij(x̌
α
i , ŷβ

j ), ρn
ij(x̂

β
i , y̌α

j )
}

. If

mij < ε, then take ρ̃n
ij as

ρ̃n
ij = ρn

ij + θij

(
ρn

ij − ρn
ij

)
,

with

θij =
ρn

ij − ε

ρn
ij −mij

,

and use ρ̃n
ij as the new numerical density ρn

ij.

• Modify the velocity: Consider w1
αβ and w2

βα in cell Iij. If w1
αβ ∈ Gε, then take
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θ1
αβ = 1. Otherwise, take

θ1
αβ =

∥∥wn
ij − s1

αβ

∥∥
∥∥wn

ij −w1
αβ

∥∥ ,

where ‖ · ‖ is the Euclidean norm, and s1
αβ is the intersection point of the

straight line

s1(t) = (1− t)wn
ij + tw1

αβ, 0 ≤ t ≤ 1,

and the surface ∂Gε. Similarly, we can define θ2
βα in the same way for w2

βα.

Finally, we use

w̃n
ij = wn

ij + θ(wn
ij −wn

ij), θ = min
α,β

{
θ1

αβ, θ2
βα

}
,

as the DG approximation in cell Iij.

5.3.3 Numerical experiments

Let us provide numerical experiments to demonstrate the good performance of the

DG scheme for solving pressureless Euler equations. In all numerical simulations, if

not otherwise stated, we use third order schemes and take N = 100.

One space dimension

We consider the problem in one space dimension and solve (5.3) with different initial

conditions.

Example 5.3. We consider the following initial data

ρ0(x) = sin(x) + 2, u0(x) = sin(x) + 2, (5.23)

with periodic boundary condition.
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Clearly, the exact solution is

u(x, t) = u0(x0), ρ(x, t) =
ρ0(x0)

1 + u′0(x0)
,

where x0 is given implicitly by

x0 + tu0(x0) = x.

We use the third order SSP multi-step method in time [101] with ∆t = 0.01∆x2,

and test the example by using Pk polynomials with k = 1, 2, 3 on uniform meshes.

Table 5.1 shows the L2-norm of the error at t = 0.1. We observe (k + 0.5)-th order

convergence.

Table 5.1: L2-norm of the error between the numerical density and the exact density
for initial condition (5.23).

k=1 k=2 k=3
N error order error order error order
20 1.41E-02 - 6.84E-04 - 3.40e-5 -
40 4.18E-03 1.76 1.04E-04 2.72 2.82e-6 3.59
80 1.30E-03 1.68 1.55E-05 2.74 2.26e-7 3.64
160 4.24E-04 1.62 2.41E-06 2.69 1.83e-8 3.62
320 1.51E-04 1.49 3.80E-07 2.67 1.49e-9 3.63

Example 5.4. We consider the following initial condition

ρ0(x) =





1 x < 0,

0.25 x > 0,
u0(x) =





1 x < 0,

0 x > 0.
(5.24)

Clearly, the exact solution is

(ρ(x, t), u(x, t)) =





(1, 1) x < 2t/3,

(0.25, 0) x > 2t/3,
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and at x = 2t
3
, the density should be a δ-function. Figure 5.4 shows the numerical
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Figure 5.4: Numerical density (left) and velocity (right) at t = 0.5 with P1 polyno-
mials for initial condition (5.24).

density and velocity at t = 0.5 using P1 polynomials. From the figure, we observe

the numerical solution capture the profile of the exact solution quite well.

Example 5.5. We consider the following initial condition

ρ0(x) = 0.5, u0(x) =





−0.5 x < −0.5,

0.4 −0.5 < x < 0,

0.4− x 0 < x < 0.8,

−0.4 x > 0.8.

(5.25)

The exact solution for t < 1 is

(ρ(x, t), u(x, t)) =





(0.5,−0.5) x < −0.5− 0.5t,

(0, undefined) −0.5− 0.5t < x < −0.5 + 0.4t,

(0.5, 0.4) −0.5 + 0.4t < x < 0.4t,

( 0.5
1−t

, 0.4−x
1−t

) 0.4t < x < 0.8− 0.4t,

(0.5,−0.4) x > 0.8− 0.4t.
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Figure 5.5 shows the numerical density and velocity at t = 0.5. From the figure,

x
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Figure 5.5: Numerical density (left) and velocity (right) at t = 0.5 for initial condition
(5.25). The solid line shows the exact solution while the symbols show the numerical
solution.

we can observe some local oscillations near the singularities. This is not surprising

as we have not used any limiters other than the bound-preserving ones for the DG

scheme.

Example 5.6. We consider the following initial condition

ρ0(x) = 0.5, u0(x) =




−0.5 x < 0,

0.4 x > 0.
(5.26)

The exact solution is

(ρ(x, t), u(x, t)) =





(0.5,−0.5) x < −0.5t,

(0, undefined) −0.5t < x < 0.4t,

(0.5, 0.4) x > 0.4t.

Figure 5.6 shows the numerical density and velocity at t = 0.5. From the figure, we

can observe some local oscillations near the singularities.
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Figure 5.6: Numerical density (left) and velocity (right) at t = 0.5 for initial condition
(5.26).

Two dimensions

We consider the problem in two dimensions and solve (5.20) with different initial

conditions.

Example 5.7. We consider the following initial condition

ρ(x, y, 0) = ρ0(x + y) = exp(sin(x + y)),

u(x, y, 0) = u0(x + y) = 1
3
(cos(x + y) + 2), (5.27)

v(x, y, 0) = v0(x + y) = 1
3
(sin(x + y) + 2).

The exact solution is

u(x, y, t) = u0(z0), v(x, y, t) = v0(z0), ρ(x, y, t) =
ρ0(z0)

1 + u′0(z0) + v′0(z0)
,

where z0 is given implicitly by

z0 + t(u0(z0) + v0(z0)) = x + y.



100

We use the third order SSP multi-step method in time [101] with ∆t = 0.01∆x3/2,

and test the example by using Pk polynomials with k = 1, 2, 3. Table 5.2 shows the

L2-norm of the error at t = 0.1. From the table, we again observe about (k +0.5)-th

order convergence.

Table 5.2: L2-norm of the error between the numerical density and the exact density
for initial condition (5.27).

k=1 k=2 k=3
N error order error order error order
10 0.512 - 0.107 - 3.42E-02 -
20 0.176 1.54 3.12E-02 1.78 3.57E-03 3.26
40 6.48E-02 1.44 8.52E-03 1.87 4.86E-04 2.88
80 2.32E-02 1.48 1.39E-03 2.62 3.97E-05 3.61
160 9.08E-03 1.35 1.92E-04 2.86 3.65E-06 3.45

Example 5.8. We consider the following initial condition

ρ(x, y, 0) =
1

100
, (u, v)(x, y, 0) = (− 1

10
cos θ,− 1

10
sin θ), (5.28)

where θ is the polar angle.

Since all the particles are moving towards the origin, the density function at t > 0

should be a single delta at the origin. Different from Example 5.2 in Section 5.2.2,

we can observe only one delta located at the origin by using rectangle mesh as shown

in Figure 5.7.

Example 5.9. We consider the following initial condition

ρ(x, y, 0) =
1

10
, (u, v)(x, y, 0) =





(−0.25,−0.25) x > 0, y > 0,

(0.25,−0.25) x < 0, y > 0,

(0.25, 0.25) x < 0, y < 0,

(−0.25, 0.25) x > 0, y < 0.

(5.29)
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Figure 5.7: Numerical density (left) and velocity field (right) at t = 0.5 for initial
condition (5.28).

Figure 5.8 shows the numerical density and velocity field at t = 0.5. From the

figure, we can observe δ-singularities located at the origin and two axes.

Example 5.10. We consider the following initial condition

ρ(x, y, 0) =
1

100
, (u, v)(x, y, 0) =





(cos θ, sin θ) r < 0.3,

(−1
2
cos θ,−1

2
sin θ) r > 0.3,

(5.30)

where r =
√

x2 + y2 and θ is the polar angle.

Figure 5.9 shows the numerical density (contour plot) and velocity field at t = 0.5.

From the figure, we can observe δ-shocks located on a circle and vacuum inside.

Example 5.11. We consider the following initial condition

ρ(x, y, 0) = 0.5, (u, v)(x, y, 0) =





(0.3, 0.4) x > 0, y > 0,

(−0.4, 0.3) x < 0, y > 0,

(−0.3,−0.4) x < 0, y < 0,

(0.4,−0.3) x > 0, y < 0.

(5.31)
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Figure 5.8: Numerical density (left) and velocity field (right) at t = 0.5 for initial
condition (5.29).
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Figure 5.9: Numerical density (left) and velocity field (right) at t = 0.5 for initial
condition (5.30).
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Figure 5.10: Numerical density (left) and velocity field (right) at t = 0.4 with N = 50
for initial condition (5.31).

Figure 5.10 shows the numerical density (contour plot) and velocity field with

N = 50 at t = 0.4. From the figure, we can observe that the numerical solution

approximates the vacuum quite well.

5.4 Concluding remarks

In this chapter, we developed DG methods to solve hyperbolic conservation laws in-

volving δ-singularities. We study Krause’s consensus models and pressureless Euler

equations to demonstrate the stability and high resolution of the DG approximations.

Moreover, numerical experiments show that the scheme is also good for approxima-

tions in the presence of vacuum. In future work we will extend DG methods to other

equations involving δ-singularities to wider areas of applications.



Part II

Numerical cosmology
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In this second part, we will study the Lyα photons transfer in an optically thick

medium. Lyα photons have been widely applied to study the physics of luminous

objects at various epochs of the universe, such as Lyα emitters, Lyα blob, damped

Lyα system, Lyα forest, fluorescent Lyα emission, star-forming galaxies, quasars at

high redshifts as well as optical afterglow of gamma ray bursts [49, 43, 38, 69]. The

resonant scattering of Lyα photons with neutral hydrogen atoms has a profound

effect on the time, space and frequency dependencies of Lyα photons transfer in

an optically thick medium. Lyα photons emerging from an optically thick medium

would carry rich information of the photon sources and halo surrounding the source of

the Lyα photon. The profiles of the emission and absorption of the Lyα radiation are

powerful tools to constrain the mass density, velocity, temperature and the fraction of

neutral hydrogen of the optically thick medium. Radiation transfer of Lyα photons

in an optically thick medium is fundamentally important.

The radiative transfer of Lyα photons in a medium consisting of neutral hydrogen

atoms has been extensively studied either analytically or numerically for more than

half a century. In [3], the focus was on the numerical approximation of the redis-

tribution function of resonant scattering, and no solution of the integro-differential

equation of the radiative transfer has been found. Before that, Field [44] gave the first

analytical solution of the integro-differential equation for the case of both medium

and source uniformly distributed in the whole space. Analytical solutions of the fre-

quency profile of photons emergent from optically thick halo are found based on the

Fokker-Planck (F-P) approximation of the integro-differential equation [51, 76, 37].

Besides the F-P approximation, Monte Carlo (MC) simulations are also popular in

solving the transfer of resonant photons (e.g. [75, 122, 107, 110, 70, 82, 114, 115].

However, many important topics cannot be seen with the above-mentioned solu-

tions. Besides the Field’s analytical solution, all others are time-independent, and

therefore miss the detailed balance relationship of resonant scattering [93] and can-

not be used to describe the formation and evolution of the Wouthuysen-Field (W-F)
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local thermalization of the Lyα photon frequency distribution [113, 44, 45], which is

important for the emission and absorption of the hydrogen 21 cm line (e.g. [42]. The

rich features of the Lyα photon transfer referring to the W-F local thermalization

are fully missed. The F-P equation is based on the Eddington approximation, which

assumes that the radiation intensity is a linear function of angular (direction) vari-

able. Therefore, the solutions of the F-P equation do not provide the information of

the evolution of the angular distribution of Lyα photons.

Recently, a state-of-the-art numerical method has been introduced to solve the

integro-differential equation of the radiative transfer with resonant scattering [83,

84, 85, 87]. The solver is based on the weighted essentially non-oscillatory (WENO)

scheme [61]. With the WENO solver, many physical features of the transfer of Lyα

photons in an optically thick medium [88, 89, 90], missed in the F-P equation ap-

proximations, have been revealed. For instance, the WENO solution shows that the

time scale of the formation of the W-F local thermal equilibrium is only about a few

hundred times that of the resonant scattering. It also shows that the double peaked

frequency profile of the Lyα photon, emerging from an optically thick medium, does

not follow the time-independent solutions of the F-P equation [42, 87, 88, 89, 90].

These results indicate the needs of re-visiting problems which have been studied only

via the F-P time-independent approximation. In this part, we will use a WENO

solver to study the effect of dust and angular distribution of Lyα resonant photons

transfer in an optically thick halo.



Chapter 6

WENO solver of transfer

equations of resonant photons

6.1 Basic theory

6.1.1 Radiative transfer equation of a dusty halo

The radiative transfer equation of Lyα photons in a spherical halo with dust is given

by

∂I

∂η
+ µ

∂I

∂r
+

(1− µ2)

r

∂I

∂µ
− γ

∂I

∂x
=

−φ(x; a)I +

∫
R(x, µ, x′, µ′; a)I(η, r, x′, µ′)dx′dµ′/2

−κ(x)I + Aκ(x)

∫
Rd(x, x′; µ, µ′; a)I(η, r, x′, µ′)dx′dµ′ + S, (6.1)

where S is the source and I(t, rp, x, µ) is the specific intensity, which is a function

of time t, radial coordinate rp, frequency x and the direction angle, µ = cos θ, with

respect to the radial vector r.

In (6.1), we use the dimensionless time η defined as η = cnHIσ0t and the dimen-

sionless radial coordinate r defined as r = nHIσ0rp, where nHI is the numer density
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of HI, and σ0/π
1/2 is the cross section of HI resonent scatering of Lyα photons at

resonant frequency ν0 = 2.46×1015s−1. That is, η and r are, respectively, in the units

of mean free flight-time and mean free path of photon ν0 with respect to the resonant

scattering without dust scattering and absorption. Without resonant scattering, a

signal propagates in the radial direction with the speed of light and the orbit of the

signal is r = η + const.

φ(x, a) is the normalized Voigt profile [57] given as

φ(x, a) =
a

π3/2

∫ ∞

−∞
dy

e−y2

(x− y)2 + a2
. (6.2)

As usual, the photon frequency ν in (6.1) is described by the dimensionless frequency

x ≡ (ν − ν0)/∆νD, and ∆νD = ν0(vT /c) = 1.06 × 1011(T/104)1/2 Hz is the Doppler

broadening by the thermal motion vT =
√

2kBT/m, T being the gas temperature

of the halo. The parameter a in (6.2) is the ratio of the natural to the Doppler

broadening. For the Lyα line, a = 4.7× 10−4(T/104)−1/2. The optical depth of Lyα

photons with respect to HI resonant scattering is τs(x) = nHIσ(x)drp, where σ(x) =

σ0φ(x, a) is the cross section of scattering at ν, and therefore, the dimensionless size

of the halo R is equal to the optical depth τ0 = nHIσ0R.

The re-distribution function R(x, µ, x′, µ′; a) of (6.2), the derivation of which is

given in Section 6.1.4, gives the probability of a photon absorbed at the frequency x′

direction µ′, and re-emitted at the frequency x direction µ. It depends on the details

of the scattering [54, 56, 58]. If we consider coherent scattering without recoil, the

re-distribution function with the Voigt profile is

R(x, µ, x′, µ′; a) =

∫ 2π

0

a

4π3β

∫ ∞

−∞
e−u2

[
a2 +

(
x + x′

2
− αu

)2
]−1

exp

(
−(x− x′)2

4β2

)
dudφ,

(6.3)

where H =
√

1− µ2
√

1− µ′2 cos φ + µµ′, α =
√

1+H
2

, and β =
√

1−H
2

. In the case

of a = 0, i.e., considering only the Doppler broadening, the re-distribution function
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is

R(x, µ, x′, µ′) =

∫ 2π

0

1

2π2
√

1−H2
exp

[
−22 − 2xx′H + x′2

1−H2

]
dφ, (6.4)

where H is exactly the same as in (6.3). The redistribution function of (6.4) is

normalized as

1

2

∫ 1

−1

∫ ∞

−∞
R(x, µ, x′, µ′)dx′dµ′ = φ(x, 0) = π−1/2e−x2

.

With this normalization, the total number of photons is conserved in the evolution

described by (6.1). That is, the destruction processes of Lyα photons, such as

the two-photon process [105, 80], are ignored in (6.3). The recoil of atoms is not

considered in (6.3) or (6.4).

The absorption and scattering of dust are described by the term κ(x)I in (6.1),

where κ(x) = σd/σ0, which is of the order of 10−8(T/104)1/2 [40, 39]. The term with

A in (6.1) describes albedo, i.e. A ≡ σs/σd, where σs is the cross section of dust

scattering and σd is the effective cross-section per hydrogen atom, which describes

the absorption and scattering of dust. Generally, A lies approximately between 0.3

and 0.4 [81, 112]. With dust, the optical depth is given by

τ(x) = τ0φ(x, a) + τd(x) (6.5)

where the dust optical depth τd(x) = nHIσd(x)R. This is equal to assuming that dust

is uniformly distributed in IGM. The effects of inhomogeneous density distributions

of dust [77, 48] will not be studied.

Since dust generally is much heavier than a single atoms, the recoil of dust par-

ticles can be neglected when colliding with a photon. Under this “heavy dust” ap-

proximation, photons do not change their frequency during the collision with dust.

The redistribution function of dust Rd is independent of x and x′, and is simply
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given by a phase function as

Rd(µ, µ′) =
1

4π

∫ 2π

0

dφ′
1− g2

(1 + g2 − 2gµ̄)3/2
=

∞∑

l=0

(2l + 1)

2
glPl(µ)Pl(µ

′), (6.6)

where µ̄ = µµ′ +
√

(1− µ2)(1− µ′2)cosφ′ and Pl is the Legendre function. The

factor g in (6.6) is the asymmetry parameter. For isotropic scattering, g = 0. The

cases of g = +1 and -1 correspond to complete forward and backward scattering,

respectively. Generally, the factor g is a function of the wavelength. For the Lyα

photon, we will take g = 0.73 for realistic dust scattering [73]. The integral of (6.6)

is performed in Section 6.1.5.

In (6.1) we neglect the effect of collision transition from H(2p) state to H(2s)

state, which can significantly affect the escape of Lyα photons when the HI column

density is higher than 1021 cm−2 and dust absorption is very small [76]. This generally

is out of the parameter range used below. We are also not considering the effects of

bulk motion of the medium of halos (e.g. [104, 114]).

In (6.1), the term with the parameter γ is due to the expansion of the universe. If

nH is equal to the mean of the number density of cosmic hydrogen, we have γ = τ−1
GP ,

and τGP is the Gunn-Peterson optical depth. Since the Gunn-Peterson optical depth

is of the order of 106 at high redshift (e.g. [89]), the parameter γ is of the order of

10−5− 10−6. Therefore, if the optical depth of halos is less than or equal to 106, the

term with γ in (6.1) can be ignored.

6.1.2 Integrated redistribution function

In general, it is difficult to solve the transfer equation for noncoherent scatter-

ing. Therefore, the scattering is assumed to be isotropic and we need to integrate

R(x, µ, x′, µ′; a) over the angular direction. Denote R(x, x′; a) as the angular aver-

aged re-distribution function. It gives the probability of a photon absorbed at the

frequency x′, and re-emitted at the frequency x. If we consider coherent scattering
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without recoil, the angular-averaged re-distribution function with the Voigt profile

can be written as,

R(x, x′; a) = (6.7)

1

π3/2

∫ ∞

|x−x′|/2

e−u2

[
tan−1

(
xmin + u

a

)
− tan−1

(
xmax − u

a

)]
du

where xmin = min(x, x′) and xmax = max(x, x′). In the case of a = 0, i.e. including

only the Doppler broadening, the re-distribution function is

R(x, x′) =
1

2
erfc[max(|x|, |x′|)]. (6.8)

The angular-averaged re-distribution function of (6.8) is normalized as
∫∞
−∞R(x, x′)dx′ =

φ(x, 0) = π−1/2e−x2
. With this normalization, the total number of photons is also

conserved in the evolution described by (6.1).

6.1.3 Eddington approximation

Equation (6.6) indicates that the transfer equation (6.1) can be solved with the

Legendre expansion I(η, r, x, µ) =
∑

l Il(η, r, x)Pl(µ). If we take only the first two

terms, l = 0 and 1, it is the Eddington approximation as

I(η, r, x, µ) ' J(η, r, x) + 3µF (η, r, x) (6.9)

where

J(η, r, x) =
1

2

∫ +1

−1

I(η, r, x, µ)dµ, F (η, r, x) =
1

2

∫ +1

−1

µI(η, r, x, µ)dµ. (6.10)
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They are, respectively, the angularly averaged specific intensity and flux. Defining

j = r2J and f = r2F , (6.1) yields the equations of j and f as

∂j

∂η
+

∂f

∂r
= −(1− A)κj − φ(x; a)j +

∫
R(x, x′; a)jdx′ + γ

∂j

∂x
+ r2S, (6.11)

∂f

∂η
+

1

3

∂j

∂r
= −(1− Ag)κf + γ

∂f

∂x
− φ(x; a)f +

2

3

j

r
. (6.12)

The mean intensity j(η, r, x) describes the x photons trapped in the position r at

time η by the resonant scattering, while the flux f(η, r, x) describes the photons in

transit.

For spherical halo with a central source, the term S of (6.1) can be replaced by

a boundary condition of I(η, r, x, µ) at r = 0. If the angular distribution of photons

is independent of photon’s frequency, we have

r2I(η, r, x, µ)|r→0 = S0T (η)Θ(µ)φ(x). (6.13)

where the functions T (η), Θ(µ), and φ(x) describe, respectively, the time-dependence,

angular- and frequency-distributions of photons of the source. In this case, the source

of (6.13) can be replaced by a boundary condition at r = 0 as

f(η, 0, x) = S0T (η)φ(x)
1

2

∫
µΘ(µ)dµ = S0φs(x). (6.14)

For example, if we take the boundary condition at r = 0 to be

r2I(η, r, x, µ)|r→0 =





6µπ−1/2e−x2
, µ > 0,

0, µ < 0.
(6.15)

With (6.15) one can find I from (6.1), and then find j and f via (6.10). Therefore,

the corresponded boundary condition of (6.14) is

f(η, r = 0, x) = π−1/2e−x2

. (6.16)
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We will use these two boundary conditions in Chapter 8.

In (6.13) and (6.14), S0 is the intensity. Since (6.1), (6.11) and (6.12) are linear,

the solutions of j(x), f(x) and I(x) for given S0 = S are equal to Sj1(x), Sf1(x)

and SI1(x), where j1(x), f1(x) and I1(x) are the solutions of S0 = 1.

On the outside of the halo, r > R, no photons propagate in the direction µ < 0.

The boundary condition at r = R of (6.1) should be

I(η, R, x, µ) = 0, µ < 0. (6.17)

For (6.11), we have
∫ −1

0
µI(η, R, x, µ)dµ = 0 [108], and the boundary condition is

then

j(η, R, x) = 2f(η, R, x). (6.18)

If the source becomes to emit photon at t = 0, the initial condition should be

I(0, r, x, µ) = 0, (6.19)

for (6.1), and

j(0, r, x) = f(0, r, x) = 0, (6.20)

for (6.11).

6.1.4 Re-distribution function

In this section, we proceed to the re-distribution function R(x, µ, x′, µ′; a) in (6.1).

We consider isotropic scattering and the case of a = 0. The re-distribution function

R(x,n, x′,n′) =
1

π sin α
exp

[
−x2 − 2xx′ cos α + x′2

sin2 α

]

gives the probability that a photon with frequency x′ and direction n′ within an

element of solid angle dω′ is absorbed and re-emitted with frequency x and direction
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n in dω [56], where α is the angle between n and n′. Choose x-axis such that n′ lies

in the xz-plane, then

n′ = (sin θ′, 0, cos θ′)

and

n = (sin θ cos φ, sin θ sin φ, cos θ),

where φ is the azimuthal angle, µ = cos θ and µ′ = cos θ′. With the above notation,

dω = 1
4π

dφdµ and

cos α = n′ · n = sin θ sin θ′ cos φ + cos θ cos θ′.

Integrating over φ, we obtain

R(x, µ, x′, µ′) =

∫ 2π

0

1

2π2
√

1−H2
exp

[
−22 − 2xx′H + x′2

1−H2

]
dφ,

where H =
√

1− µ2
√

1− µ′2 cos φ + µµ′. If we consider a 6= 0, and follow the same

line above, we obtain

R(x, µ, x′, µ′; a) =

∫ 2π

0

a

4π3β

∫ ∞

−∞
e−u2

[
a2 +

(
x + x′

2
− αu

)2
]−1

exp

(
−(x− x′)2

4β2

)
dudφ,

where H =
√

1− µ2
√

1− µ′2 cos φ+µµ′, α =
√

1+H
2

, and β =
√

1−H
2

. We can verify

numerically that the angular averaged re-distribution function is exactly the same

as the one obtained by Hummer [56], i.e.

1

2

∫ 1

−1

R(x, µ, x′, µ′; a)dµ′ =
1

2

∫ 1

−1

R(x, µ, x′, µ′; a)dµ = R(x, x′; a).
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6.1.5 Integral of the phase function

Equation (6.6) can be rewritten as

Rd(µ, µ′) =
1

4π

∫ 2π

0

dφ′
1− g2

|I− gI′| 32
(6.21)

where I and I′ are unit vector on the direction of polar angle θ and θ′, and azimuth

angle φ and φ′, respectively. That is I · I = I′ · I′ = 1 and I · I′ = cos γ = cos θ cos θ′+

sin θ sin θ′ cos(φ− φ′), and µ = cos θ, µ′ = cos θ. We have

d

dg

1

|I− gI′|1/2
=

1− g2

2g|I− gI′|3/2
− 1

2g|I− gI′|1/2
,

and therefore,
1− g2

|I− gI′|3/2
= 2g

d

dg

1

|I− gI′|1/2
+

1

|I− gI′|1/2
. (6.22)

The expansion with Legendre functions Pl(cos γ) gives

1

|I− gI′|1/2
=

∞∑

l=0

glPl(cos γ), (6.23)

and then
1− g2

|I− gI′|3/2
=

∞∑

l=1

2lglPl(cos γ) +
∞∑

l=0

glPl(cos γ). (6.24)

Since cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′), we have the following identity

for the Legendre function Pl(cos γ) as

Pl(cos γ) = Pl(cos θ)Pl(cos θ′) + 2
m=l∑
m=1

(l −m)!

(l + m)!
Pm

l (cos θ)Pm
l (cos θ′) cos[m(φ− φ′)].

(6.25)
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The integral of φ′ in (6.21) kills the second term of (6.25), we have

Rd(µ, µ′) =
1

4π
2π

[ ∞∑

l=1

2lglPl(cos θ)Pl(cos θ′) +
∞∑

l=0

glPl(cos θ)Pl(cos θ′)

]
(6.26)

=
1

2

[ ∞∑

l=1

2lglPl(µ)Pl(µ
′) +

∞∑

l=0

glPl(µ)Pl(µ
′)

]
.

Using the orthogonal relation
∫ 1

−1
Pl(µ)Pl′(µ)dµ = 2

2l+1
δl,l′ , we have

R0(g) =
1

2

∫ 1

−1

dµ

∫ 1

−1

dµ′Rd(µ, µ′) = 1, (6.27)

for which only the term l = 0 in (6.26) has contribution. Similarly,

R1(g) =
1

2

∫ 1

−1

dµ

∫ 1

−1

dµ′µRd(µ, µ′) =
1

2

∫ 1

−1

dµ

∫ 1

−1

dµ′µ′Rd(µ, µ′) = 0, (6.28)

R2(g) =
1

2

∫ 1

−1

dµ

∫ 1

−1

dµ′µµ′Rd(µ, µ′) =
g

3
. (6.29)

These results are used in deriving (6.11) and (6.12).

6.2 Numerical algorithm for equation (6.1)

We solve (6.1) with initial and boundary conditions (6.13), (6.17) and (6.19). For

simplicity, we ignore the effect of dust (i.e. κ(x) = 0). Our computational domain

is (r, x, µ) ∈ [0, rmax] × [xleft, xright] × [−1, 1], where rmax, xleft and xright are chosen

such that the solution vanishes to zero outside the boundaries. We choose mesh sizes

with grid refinement tests to ensure proper numerical resolution. In the following, we

describe numerical techniques involved in our algorithm, including approximations

to spatial derivatives, numerical integration, numerical boundary condition and time

evolution.
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6.2.1 Conservation law

To use the WENO algorithm, we first rewrite (6.1) into the form of a conservation

law. Noticing the boundary condition (6.13), we define I ′ = r2I, so(6.1) becomes

∂I ′

∂η
+ µ

∂I ′

∂r
+

1

r

∂(1− µ2)I ′

∂µ
− γ

∂I ′

∂x
=

−φ(x; a)I ′ +
∫
R(x, µ, x′, µ′; a)I ′(η, r, x′, µ′)dx′dµ′/2 + r2S. (6.30)

For simplicity, we drop the prime, and use I(η, r, x, µ) for I ′(η, r, x, µ) below.

6.2.2 The WENO algorithm: approximations to the spatial

derivatives

The spatial derivative terms in (6.30) are approximated by a fifth-order finite differ-

ence WENO scheme.

We first give the WENO reconstruction procedure for approximating ∂I
∂x

,

∂I(ηn, ri, xj, µk)

∂x
≈ 1

∆x
(ĥj+1/2 − ĥj−1/2)

with fixed η = ηn, r = ri and µ = µk. The numerical flux ĥj+1/2 is obtained by the

fifth-order WENO approximation in an upwind fashion, because the wind direction

is fixed (negative). Denote

hj = I(ηn, ri, xj, µk), j = −2,−1, · · · , Nx + 3

with fixed n, i and k. The numerical flux from the WENO procedure is obtained by

ĥj+1/2 = ω1ĥ
(1)
j+1/2 + ω2ĥ

(2)
j+1/2 + ω3ĥ

(3)
j+1/2, (6.31)
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where ĥ
(m)
j+1/2 are the three third-order fluxes on three different stencils given by

ĥ
(1)
j+1/2 = −1

6
hj−1 +

5

6
hj +

1

3
hj+1,

ĥ
(2)
j+1/2 =

1

3
hj +

5

6
hj+1 − 1

6
hj+2,

ĥ
(3)
j+1/2 =

11

6
hj+1 − 7

6
hj+2 +

1

3
hj+3,

and the nonlinear weights ωm are given by

ωm =
ω̆m∑3
l=1 ω̆l

, ω̆l =
γl

(ε + βl)2
,

where ε is a parameter to avoid the denominator to become zero and is taken as

ε = 10−8. The linear weights γl are given by

γ1 =
3

10
, γ2 =

3

5
, γ3 =

1

10
,

and the smoothness indicators βl are given by

β1 =
13

12
(hj−1 − 2hj + hj+1)

2 +
1

4
(hj−1 − 4hj + 3hj+1)

2,

β2 =
13

12
(hj − 2hj+1 + hj+2)

2 +
1

4
(hj − hj+2)

2,

β3 =
13

12
(hj+1 − 2hj+2 + hj+3)

2 +
1

4
(3hj+1 − 4hj+2 + hj+3)

2.

Similarly, we give the WENO procedure in approximating ∂(1−µ2)I
∂µ

,

∂(1− µ2
j)I(ηn, ri, xk, µj)

∂µ
≈ 1

∆µ
(ĥj+1/2 − ĥj−1/2)

with fixed η = ηn, r = ri and x = xk. The numerical flux ĥj+1/2 is also obtained

by the fifth-order WENO approximation in an upwind fashion, however the wind
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direction here is positive, opposite from that of ∂I
∂x

. Denote

hj = (1− µ2
j)I(ηn, ri, xk, µj), j = −3,−2, · · · , Nµ + 2

with fixed n, i and k. The numerical flux from the WENO procedure is obtained by

ĥj+1/2 = ω1ĥ
(1)
j+1/2 + ω2ĥ

(2)
j+1/2 + ω3ĥ

(3)
j+1/2, (6.32)

where ĥ
(m)
j+1/2 are the three third-order fluxes on three different stencils given by

ĥ
(1)
j+1/2 = −1

6
hj+2 +

5

6
hj+1 +

1

3
hj,

ĥ
(2)
j+1/2 =

1

3
hj+1 +

5

6
hj − 1

6
hj−1,

ĥ
(3)
j+1/2 =

11

6
hj − 7

6
hj−1 +

1

3
hj−2,

and the nonlinear weights ωm are given as

ωm =
ω̆m∑3
l=1 ω̆l

, ω̆l =
γl

(ε + βl)2
,

where ε is taken as ε = 10−8. The linear weights γl are also given by

γ1 =
3

10
, γ2 =

3

5
, γ3 =

1

10
,

and the smoothness indicators βl are given by

β1 =
13

12
(hj+2 − 2hj+1 + hj)

2 +
1

4
(hj+2 − 4hj+1 + 3hj)

2,

β2 =
13

12
(hj+1 − 2hj + hj−1)

2 +
1

4
(hj+1 − hj−1)

2,

β3 =
13

12
(hj − 2hj−1 + hj−2)

2 +
1

4
(3hj − 4hj−1 + hj−2)

2.
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In the end, we approximate the r-derivative in (6.30), following the reconstruction

procedures mentioned above. However, we need to check the wind direction at the

r-boundary of each cell. When µ > 0, the wind direction is positive, and we use

(6.32) to approximate the numerical flux, while when µ < 0, we use equation (6.31).

6.2.3 High order numerical integration

The integration of the resonance scattering term is calculated by a fifth order quadra-

ture [100]
∫ µright

µleft

f(µ)dµ = ∆µ

Nµ∑

k=1

ωkf(µk) + O(∆µ5),

where µk = µleft + (k − 1
2
)dµ and the weights are defined as,

ω1 =
6463

5760
, ω2 =

1457

1920
, ω3 =

741

640
, ω4 =

5537

5760
,

ωNµ−3 =
5537

5760
, ωNµ−2 =

741

640
, ωNµ−1 =

1457

1920
, ωNµ =

6463

5760
,

and ωk = 1 otherwise.

6.2.4 Numerical boundary condition

Following Carrillo et al. [20], at µ = −1 and µ = 1, we take the boundary conditions

as, for µ > 0,

I(η, r, x,−1− µ) = I(η, r, x,−1 + µ),

I(η, r, x, 1 + µ) = I(η, r, x, 1− µ),

motivated by the physical meaning of µ as the cosine of the angle to the z−axis.

We also explicitly impose ĥ 1
2

= ĥNµ+ 1
2

= 0 for the first and last numerical fluxes in

order to enforce conservation of mass.
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6.2.5 Time Evolution

To evolve in time, we use the third-order TVD Runge-Kutta time discretization

[102]. For system of ODEs ut = L(u), the third order Runge-Kutta method is

u(1) = un + ∆τL(un, τn),

u(2) =
3

4
un +

1

4
(u(1) + ∆τL(u(1), τn + ∆τ)),

un+1 =
1

3
un +

2

3
(u(2) + ∆τL(u(2), τn +

1

2
∆τ)).

6.3 Numerical algorithm for equations (6.11) and

(6.12)

We will solve (6.11) and (6.12) with boundary and initial conditions (6.14), (6.18)

and (6.20) by using the WENO solver.

To solve (6.11) and (6.12) as a system, our computational domain is (r, x) ∈
[0, rmax]× [xleft, xright]. As mentioned in the Section 6.2, rmax, xleft and xright are cho-

sen such that the solution vanishes outside the boundaries. In the following, we

describe numerical techniques involved in our algorithm, including the characteris-

tic decomposition, and numerical boundary condition. All other algorithms can be

found in Section 6.2.

6.3.1 Characteristic decomposition

We consider the WENO reconstruction procedure for approximating the r-derivatives

only. We need to perform the WENO procedure based on a characteristic decompo-
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sition. To accomplish this, we write the left-hand side of (6.11) and (6.12) as

ut + Aur,

where u = (j, f)T and

A =


 0 1

1
3

0




is a constant matrix. To perform the characteristic decomposition, we first compute

the eigenvalues, the right eigenvectors and the left eigenvectors of A and denote

them by Λ, R and R−1. We then project u to the local characteristic fields v with

v = R−1u. Now ut + Aur of the original system is decoupled as two independent

equations as vt + Λvr. We approximate the derivative vr component by component,

each with the correct upwind direction, with the WENO reconstruction procedure

similar to the procedure described in Section 6.2. In the end, we transform vr back to

the physical space by ur = Rvr. We refer the readers to [29] for more implementation

details.

6.3.2 Numerical Boundary Condition

To implement the boundary condition (6.18), we also need to perform a characteristic

decomposition as discussed above. Using the same notation as before, we project

u to the local characteristic fields v with v = R−1u. Denote v = (v1, v2)
T , now

ut + Aur of the original system is decoupled to two independent scalar operators

given by
∂v1

∂t
+ λ1

∂v1

∂r
;

∂v2

∂t
+ λ2

∂v2

∂r

where λ1 =
√

3
3

and λ2 = −
√

3
3

. The characteristic line starting from the boundary

r = rmax for the first equation is pointing outside the computational domain while

the one for the second equation is pointing inside. For well-posedness of our system,
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we need to impose the boundary condition there as

v2 = αv1 + β

with constants α and β. We can calculate the values of α and β based on equation

(6.18) and the left and right eigenvectors of A. For example, if we take

R =




√
3

2

√
3

2

1
2
−1

2


 ,

we recover that α = 7 − 4
√

3 and β = 0. We use extrapolation to obtain the value

of v1 and then compute the value v2. In the end, we transfer v back to the physical

space by u = Rv.



Chapter 7

Effect of dust on Lyα photon

transfer in optically thick halo

We will investigate, in this chapter, the effects of the dust on the Lyα photons transfer

in an optically thick medium. Dust can be produced at epochs of low and moderate

redshifts, and even at redshift as high as 6 [106]. Absorption and scattering of dust

have been used to explain the observations on Lyα emission and absorption [59],

such as the escaping fraction of Lyα photons [52, 53, 11]; the redshift-dependence of

the ratio between Lyα emitters and Lyman Break galaxies [109]; and the “evolution”

of the double-peaked profile [71].

However, it is still unclear whether the time scale of a photon escaping from

optically thick halo will be increasing (or decreasing) when the halo is dusty. It is

also unclear whether the effects of dust absorption can be estimated by the random

walk picture [50]. As for the dust effect on the double-peaked profile, the current

results given by different studies seem to be contradictory: some claims that the

dust absorption leads to the narrowing of the double-peaked profile [71], while others

conclude that the width between the two peaks apparently should be increasing due

to the dust absorption [110]. We will focus on these basic problems, and examine

them with the solution of the integro-differential equation of radiative transfer.

124
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7.1 Basic theory

We study the radiative transfer (6.11) and (6.12) with boundary and initial condition

(6.14), (6.18) and (6.20).

7.1.1 Dust models

We consider three models of the dust as follows:

I. pure scattering, A = 1, g = 0.73: dust causes only anisotropic scattering, but no

absorption;

II. scattering and absorption, A = 0.32, g = 0.73: dust causes both absorption and

anisotropic scattering.

III. pure absorption, A = 0: dust causes only absorption, but no scattering;

Models I and III do not occur in reality. They are, however, helpful to reveal the

effects of pure scattering and absorption on the radiative transfer.

Since κ(x) is on the order of 10−8, its effect will be significant only for halos with

optical depth τ0 ≥ 106, and ignorable for τ0 ≤ 105. To illustrate the dust effect, we

use halos of R = τ0 ≤ 104, and take larger κ to be ' 10−4−10−2. We consider below

only the case of grey dust, i.e. κ is independent of frequency x. This certainly is

not realistic dust. Yet, the frequency range given in the solution below mostly are

in the range |x| < 4. Therefore, the approximation of grey dust would be proper if

the cross section of dust is not strongly frequency dependent in the range |x| < 4.

7.1.2 Numerical example: Wouthuysen-Field thermalization

As the first example of numerical solutions, we show the Wouthuysen-Field (W-F)

effect, which requires that the distribution of Lyα photons in the frequency space

should be thermalized near the resonant frequency ν0. The W-F effect illustrates the
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difference between the analytical solutions of the Fokker-Planck approximation and

that of equations (6.11) and (6.12). The former can not show the local thermaliza-

tion [76], while the latter can [88]. All problems related to the W-F local thermal

equilibrium should be studied with the integro-differential equation (6.1).
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Figure 7.1: The mean intensity j(η, r, x) at η = 500 and r = 100 for dust models
I (left panel), II (middle panel) and III (right panel). The source is S0 = 1 and
φs(x) = (1/

√
π)e−x2

. The parameter a = 10−3. In each panel, κ is taken to be 0,
10−4, 10−3 and 10−2.

Figure 7.1 presents a solution of the mean intensity j(η, r, x) at time radial η =

500 coordinate r = 102 for halo with size R À r = 102. The three panels correspond

to dust models I (left panel), II (middle panel) and III (right panel). The source is

taken to have a Gaussian profile φs(x) = (1/
√

π)e−x2
and unit intensity S0 = 1. The

solutions of Figure 7.1 actually are independent of R, if R À 102. The intensity of

j is decreasing from left to right in Figure 7.1, because the absorption is increasing

with the models from I to III.

A remarkable feature shown in Figure 7.1 is that all j(η, r, x) have a flat plateau

in the range |x| ≤ 2. This gives the frequency range of the W-F local thermalization

[88, 89]. The range of the flat plateau |x| ≤ 2 is almost dust-independent, either

for model I or for models II and III. This is expected, as neither the absorption nor

scattering given by the κ term of (6.1) changes the frequency distribution of photons.

The redistribution function (6.6) also does not change the frequency distribution of

photons. This point can also be seen from (6.11) and (6.12), in which the κ terms
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are frequency-independent. The evolution of the frequency distribution of photons

is due only to the resonant scattering.

Since thermalization will erase all frequency features within the range |x| ≤ 2,

the double-peaked structure does not retain information of the photon frequency

distribution within |x| < 2 at the source. That is, the results in Figure 7.1 will hold

for any source S0φs(x) with arbitrary φs(x) which is non-zero within |x| < 2 [88, 89].

This property can also be used as a test of the simulation code. It requires that

simulation result in a flat plateau, regardless of the whether source is monochromatic

or with a finite width around ν0.

7.2 Dust effects on photon escape

7.2.1 Model I: scattering of dust

To study the effects of dust scattering on the Lyα photon escape, we show in Figure

7.2 the flux f(η, r, x) of Lyα photons emerging from halos at the boundary r = R =

102 for Model I. The three panels of Figure 7.2 correspond to κ = 10−4, 10−3, and

10−2 from left to right, respectively. The source starts to emit photons at η = 0 with

a stable luminosity S0 = 1, and with a Gaussian profile φs(x) = (1/
√

π)e−x2
.

Figure 7.2 clearly shows that the time-evolution of f(η, r, x) is κ-independent.

Although the cross section of dust scattering increases about 100 times from κ = 10−4

to κ = 10−2, the curves of the left and right panels in Figure 7.2 are almost identical.

According to the scenario of “single longest excursion”, photon escape is not a

process of Brownian random walk in the spatial space, but a transfer in the frequency

space [80, 9, 1, 2, 51, 12]. A photon will escape, once its frequency is transferred

from |x| < 2 to |x| > 2, on which the medium is transparent. On the other hand,

dust scattering given by the redistribution function equation (6.6) does not change

photon frequency. Dust scattering has no effect on the transfer in the frequency

space.
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Figure 7.2: Flux f(η, r, x) of Lyα photons emergent from halos at the boundary R =
102, and for the dust model I A = 1, g = 0.73. The parameter κ is taken to be 10−4

(left), 10−3(middle) and 10−2 (right). The source is S0 = 1 and φs(x) = (1/
√

π)e−x2
.

The parameter a = 10−3.

Moreover, photons with frequency |x| < 2 are quickly thermalized after a few

hundred resonant scattering. In the local thermal equilibrium state, the angular

distribution of photons is isotropic. Thus, even if the dust scattering is anisotropic

g 6= 0 with respect to the direction of the incident particle, the angular distribution

will keep isotropic undergoing a g 6= 0 scattering. Hence, dust scattering also has no

effect on the angular distribution.

7.2.2 Model III: absorption of dust

Similar to Figure 7.2, we present in Figure 7.3 the flux of Model III, i.e. dust causes

only absorption without scattering. All other parameters of Figure 7.3 are the same

as in Figure 7.2. In the left panel of Figure 7.3, the curves at the time η = 2000

and 3000 are the same. It means the flux f(η, R, x) at the boundary R is already

stable, or saturated at the time η ≥ 2000. The small difference between the curves

of η = 1000 and η ≥ 2000 of the left panel indicates that the flux is still not yet

completely saturated at the time η = 1000. However, comparing the middle and

right panels of Figure 7.3, we see that for κ = 10−3, the flux has already saturated at

η = 1600, while it has saturated at η = 800 for κ = 10−2. That is, the stronger the
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dust absorption, the shorter the saturation time scale. The time scales of escape or

saturation do not increase by dust absorption, and even decrease with respect to the

medium without dust. Stronger absorption leads to shorter time scale of saturation.

x

f(
η,

r,
x)

-2 0 2

0.2

0.4 η=2000,3000

η=1000η=500

x

f(
η,

r,
x)

-2 0 2

0.2

0.4
η=1600,2500

η=800η=500

x

f(
η,

r,
x)

-2 0 2

0.02

0.04
η=800,1500

η=300η=200

Figure 7.3: Flux f(η, r, x) of Lyα photons emergent from halos at the boundary
r = R = 102. The parameters of the dust are A = 0 and κ = 10−4 (left), 10−3

(middle) and 10−2 (right). Other parameters are the same as in Figure 7.2.

Obviously, dust absorption does not help in producing photons for the “single

longest excursion”. Therefore, dust absorption cannot make the time scale of pro-

ducing photons for “single longest excursion” smaller. However, dust absorptions are

effective in reducing the number of photons trapped in the state of local thermalized

equilibrium |x| < 2 (see also Section 7.3.2). This indicates that the higher the value

of κ, shorter the time scale of saturation.

7.2.3 Effective absorption optical depth

Since Lyα photons underwent a large number of resonant scattering before escap-

ing from the halo with optical depth τ0 À 1, it is generally believed that a small

absorption of dust will lead to a significant decrease of the flux. However, it is still

unclear what the exact relationship between the dust absorption and the resonant

scattering is. This problem should be measured by the effective optical depth of dust

absorption of Lyα photons in R = τ0 À 1 halos.

To calculate the effective optical depth, we first give the total flux of Lyα photons
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emerging from a halo of radius R, which is defined as F (η) =
∫

f(η, R, x)dx. Figure

7.4 plots F (η) as a function of time η for halo with sizes R = τ0 = 102 and 104. The

curves typically are growing and then saturating. The three panels correspond to

the dust models I, II and III from left to right. The upper panels are of R = 102,

and lower panels for R = 104. In each panel of R = 102, we have three curves

corresponding to κ = 10−4, 10−3 and 10−2, respectively. In cases of R = 104, we take

κ = 10−4 and 10−3.
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Figure 7.4: The time evolution of the total flux F (η) at the boundary of halos with
R = τ0 = 102 (upper panels), and R = τ0 = 104 (lower Panels). The source of S0 = 1
and φs(x) = (1/

√
π)e−x2

starts to emit photons at time η = 0. The parameters of
dust are (A = 1, g = 0.73) (left); (A = 0.32, g = 0.73) (middle) and A = 0 (right).
In each panel of R = 102, κ is taken to be 10−4, 10−3 and 10−2. In the cases of
R = 104, κ is taken to be 10−4, 10−3.

The left panel of Figure 7.4 shows that the three curves of κ = 10−4, 10−3 and

10−2 are almost the same. This is consistent with Figure 7.2 that for Model I,

the time-evolution of f are κ-independent for the pure scattering dust. For the pure
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absorption dust (the right panel of Figure 7.4), the saturated flux is smaller for larger

κ. We can also see from Figure 7.4 that the time scale of approaching saturation is

smaller for larger κ. The result of model II is in between that for models I and III.

With the saturated flux of Figure 7.4, one can define the effective absorption

optical depth by τeffect ≡ −(1/κ) ln fS. The results are shown in Table 7.1, in which

τa is the dust absorption depth. It is interesting to see that the effective absorption

optical depth is always equal to a few times of the optical depth of resonant scattering

τ0, regardless of whether τa is less than 1. Namely, the effective absorption depth

τeffect of dust is roughly proportional to τ0.

Table 7.1: Effective absorption optical depth τeffect

Model II Model III
R = τ0 κ τa fS τeffect τa fS τeffect

102 10−4 0.0068 0.978 2.2× 102 0.01 0.963 3.8× 102

102 10−3 0.068 0.760 2.7× 102 0.10 0.670 4.0× 102

102 10−2 0.68 0.116 2.2× 102 1.00 0.057 2.9× 102

104 10−4 0.68 6.28× 10−2 2.8× 104 1.00 3.02× 10−2 3.5× 104

104 10−3 6.8 4.07× 10−7 1.5× 104 10.0 2.87× 10−9 1.97× 104

According to the random walk scenario, if a medium has optical depths of ab-

sorption τa and scattering τs, the effective absorption optical depth should be equal

to τeffect =
√

τa(τa + τs) [95]. However, the results of the last line of Table 7.1 show

that the random walk scenario does not work for the dust effect on resonant photon

transfer. This result is consistent with Figures 7.2 and 7.3. When the optical depth

of dust is lower than the optical depth of resonant scattering τ0, the time scale of

photon escaping is not affected by the dust, but is proportional to τ0, and therefore,

the absorption is also proportional to τ0.
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7.2.4 Escape coefficient

With the total flux, we can define the escaping coefficient of Lyα photon as fesc(η, τ0) ≡
F (η)/F0, where F0 is the flux of the center source. Figure 7.5 shows fesc(η, τ0) at

three times η = 5×103, 104 and 3.2×104 for Model II and κ = 10−3. At η = 5×103,

the flux of halos with τ0 ≤ 103 is saturated. At η = 104, halos with τ0 ≤ 3× 103 are

saturated, and all halos of τ0 ≤ 104 are saturated at η = 3.2× 104.

τ0

f es
c(

η,
τ 0)

102 103 10410-6

10-5

10-4

10-3

10-2

10-1

100

Figure 7.5: Escaping coefficient fesc(η) as a function of the optical depth τ0 of halo
at time η = 5 × 103, 104, and 3.2×104 from bottom to up. Dust is modeled by II,
A = 0.32, g = 0.73, and κ = 10−3.

7.3 Dust effects on double-peaked profile

7.3.1 Dust and the frequency of double peaks

A remarkable feature of Lyα photon emerging from an optically thick medium is

the double-peaked profile. Figures 7.1, 7.2 and 7.3 have shown that the double

peak frequencies x+ = |x−| are almost independent of either the scattering or the

absorption of dust. In this section, we consider halos of size R or τ0 larger than 102.

Figure 7.6 presents the double peak frequency |x±| as a function of aτ0, where the
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parameter a is taken to be 10−2 (left) and 5 × 10−3 (right). Comparing the curves

with dust and without dust in Figure 7.6 we conclude that the dust effect on |x±| is

very small woth aτ0 = aR = 102.
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Figure 7.6: The two-peak frequencies x+ = |x−| as a function of aτ0. The parameter
a is taken to be 10−2 (left) and 5 × 10−3 (right). Dust model III (pure absorption)
is used, and κ is taken to be 10−3. The dashed straight line gives log x±-log aτ with
slope 1/3, which is to show the (aτ)1/3-law of x±.

In the range aτ0 < 20, the |x±|-τ0 relation is almost flat with |x±| ' 2. It

is because the double-peaked profile is given by the frequency range of the locally

thermal equilibrium. The positions of the two peaks, x+ and x−, essentially are at

the maximum and minimum frequencies of the local thermalization. The frequency

range of the local thermal equilibrium state is determined mainly by the Doppler

broadening, and weakly dependent on τ0. Thus, we always have x± ' ±2. When the

optical depth is larger, aτ0 ∼ 102, more and more photons of the flux are attributed

to the resonant scattering by the Lorentzian wing of the Voigt profile. In this phase,

|x±| will increase with τ0.

Figure 7.6 also shows a line x± = ±(aτ0)
1/3, which is given by the analytical

solution of the Fokker-Planck approximation, in which the Doppler broadening core

in the Voigt profile being ignored [51, 76, 37]. The numerical solutions of (6.1)

or (6.11) and (6.12) deviate from the (aτ0)
1/3-law at all parameter range of Figure
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7.6. The deviation at aτ0 < 20 is caused by the Doppler broadening core in the

Voigt profile is ignored in the Fokker-Planck approximation, so no locally thermal

equilibrium can be reached. Therefore, in the range aτ0 < 20, |x±| of the WENO

solution is larger than the (aτ0)
1/3-law. In the range of aτ0 > 20, the Fokker-Planck

approximation yields a faster diffusion of photons in the frequency space. This

point can be seen in the comparison between a Fokker-Planck solution with Field’s

analytical solution (Figure 1 in [94]). In this range, the numerical results of |x±| is

less than the (aτ0)
1/3-law.

7.3.2 No narrowing and no widening

The dust effect has been used to explain the narrowing of the width between the two

peaks [71]. conversely, it is also used to explain the widening of the width between

the two peaks [110]. However, Figures 7.1, 7.2, 7.3 and 7.6 show that the width

between the two peaks of the profile is very weakly dependent on dust scattering

and absorption. This result supports, at least in the parameter range considered in

Figures 7.1, 7.2, 7.3, neither the narrowing nor the widening of the two peaks.

If dust absorption can cause narrowing, the absorption should be weaker at |x| ∼
0, and stronger at |x| ≥ 2. Similarly, if dust absorption can cause widening, the

absorption should be weaker at |x| ∼ 2, and stronger at |x| ∼ 0. To test these

assumptions, Figure 7.7 plots ln[f(η, r, x, κ = 0)/f(η, r, x, κ)] as a function of x.

It measures the x(frequency)-dependence of the flux ratio with and without dust

absorption. We take large η, and then the fluxes in Figure 7.7 are saturated. Figure

7.7 shows that the absorption in the range |x| < 2 is much stronger than for |x| > 2,

and therefore, the assumption of the narrowing is ruled out. Figure 7.7 shows also

that the curves of ln[f(η, r, x, κ = 0)/f(η, r, x, κ = 10−3)] are almost flat in the range

|x| < 2. Therefore, the assumption of widening of the two peaks can also be ruled

out.

Since the cross sections of dust absorption and scattering are assumed to be
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Figure 7.7: ln[f(η, r, x, κ = 0)/f(η, r, x, κ)] as function of x for model II (up), and
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frequency-independent. (6.11) and (6.12) do not contain any frequency scales other

than that from resonant scattering. However, either narrowing or widening would

require to have frequency scales different from that of resonant scattering. This is

not possible if the dust is gray.

7.3.3 Profile of absorption spectrum

If the radiation from the sources has a continuous spectrum, the effect of a neutral

hydrogen halos is to produce an absorption line at ν = ν0. The profile of the

absorption line can also be found by solving (6.11) and (6.12), but replacing the

boundary equation (6.14) by

f(η, 0, x) = S0. (7.1)
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That is, we assume that the original spectrum is flat in the frequency space. The

spectrum of the flux emerging from the halo of R = 102 and 104 with central source

for (7.1) for dust models I, II and III are shown in Figure 7.8. All curves are for

large η, i.e. they are saturated.
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Figure 7.8: The spectrum of the flux emergent from halo of R = 102 (upper panels)
and 104 (lower panels) with central source of equation (7.1) for the dust model I
(left), II (middle) and III (right). Other parameters are the same as in Figure 7.2.

The optical depths at the frequency |x| > 4 are small, and therefore, the Ed-

dington approximation might no longer be valid. However, those photons do not

strongly involve the resonant scattering, and hence they do not significantly affect

the solution around x = 0. The solutions of Figure 7.8 is still useful to study the

profiles of f around x = 0.

The flux profile of Figure 7.8 are absorption lines with the width given by the

double peaks similar to the double peaked structure of the emission line. The flux

at the double peaks is even higher than for the flat wing. It is because more photons
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are stored in the frequency range |x| < 2. According to the redistribution function

equation (6.7), the probability of transferring a x′ photon to a |x| < |x′| photon is

larger than that from |x′| to |x| > |x′|. Therefore, if the original spectrum is flat,

the net effect of resonant scattering is to bring photons with frequency |x| > 2 to

|x| < 2. Photons stored |x| < 2 are thermalized, and therefore, in the range |x| < 2,

the profile will be the same as the emission line, and the double peaks can be higher

than the wing. It makes the shoulder at |x| ∼ 2.

As expected, for model I (left panels of Figure 7.8), the double profile is com-

pletely κ-independent. Dusty scattering does not change the flux and its profile. For

models II and III, the higher the κ, the lower the flux of the wing, because the dust

absorption is assumed to be frequency-independent. The positions of the double

peaks, in the absorption spectrum are also κ-independent. This once again shows

that dust absorption and scattering causes neither narrowing nor widening of the

double-peaked profile. However, for higher κ the flux of the peaks is lower. When

the absorption is very strong, the double-peaked structure might disappear, but will

not be narrowed or widened.

7.4 Discussions and conclusions

The study of dust effects on radiative transfer has had a long history related to

extinction. However, dust effects on radiative transfer of resonant photons actually

have not been carefully investigated. Existing works are mostly based on the solu-

tions of the Fokker-Planck approximation, or Monte Carlo simulation. These results

are important. We revisited these problems with the WENO solver of the integro-

differential equation of the resonant radiative transfer, and have found some features

which have not been addressed in previous works. These features are summarized

as follows.

First, the random walk picture in the physical space will no longer be available



138

for estimating the effective optical depth of dust absorption. For a medium with the

optical depth of absorption and resonant scattering to be τa À 1, τ(ν0) À 1 and

τs(ν0) À τa, the effective absorption optical depth is found to be almost independent

of τa, and to be equal to about a few times of τs(ν0).

Second, dust absorption will, of course, yield the decrease of the flux of Lyα pho-

tons emergent from optical thick medium. However, if the absorption cross-section

of dust is frequency independent, the double-peaked structure of the frequency pro-

file is basically dust-independent. The double-peaked structure does not narrow or

widen by the absorption and scattering of dust.

Third, the time scales of Lyα photon transfer basically are independent of dust

scattering and absorption. Since these time scales are mainly determined by the ki-

netics in the frequency space. However, dust does not affect the behavior of the trans-

fer in the frequency space if the cross section of the dust is wavelength-independent.

The local thermal equilibrium makes the anisotropic scattering ineffective on the

angular distribution of photons. Dust absorption and scattering do not lead to the

increase or decrease of the time of storing Lyα photons in the halos.

The differences between the time-independent solutions of the Fokker-Planck

approximation, or Monte Carlo simulation and the WENO solution of (6.1) is mainly

related to the W-F effect. Therefore, all above-mentioned features can already be

clearly seen with halos of τ0 ∼ 102, in which the W-F local thermal equilibrium has

been well established.

In this context, most calculation in this chapter is on holes with τ0 < 105. This

range of τ0 certainly is unable to describe halos with column number density of HI

larger than 1017 cm−2 (e.g. [90]). Nevertheless, the result of τ0 < 105 would already

be useful for studying the 21 cm region around high-redshift sources, of which the

optical depth typically is [74, 89].

τ0 = 3.9× 105fHI

(
T

104K

)−1/2 (
1 + z

10

)3 (
Ωbh

2

0.022

)(
Rph

10kpc

)
, (7.2)
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where fHI is the fraction of HI. All other parameters in (7.2) is taken from the

concordance ΛCDM mode. For these objects the relation between dimensionless η

and physical time t is given by

t = 5.4× 10−2f−1
HI

(
T

104K

)1/2 (
1 + z

10

)−3 (
Ωbh

2

0.022

)−1

η, yr. (7.3)

The 21 cm emission rely on the W-F effect. On the other hand, the time-scale of

the evolution of the 21 region is short. The effect of dust on the time-scales of Lyα

evolution should be considered.

We have not considered the Lyα photons produced by the recombination in the

ionized halo. If the halo is optical thick, photons from the recombination will also

be thermalized. The information of where the photon comes from will be forgotten

during the thermalization. Therefore, photons from recombination should not show

any difference from those emitted from central sources. Only the photons formed

very close to the boundary of the halo will not be thermalized, and may yield different

behavior.



Chapter 8

Angular distribution of Lyα

resonant photons emergent from

optically thick medium

This chapter will study the angular distribution of Lyα photon transferring in an op-

tically thick medium. Previous methods are based on the Eddington approximation

and the evolution of the angular distribution is completely ignored. However, the

evolution of angular distribution actually is significant. In a thermalized or statistical

equilibrium state, the angular distribution of photons should be isotropic, regardless

of the initial angular distribution. Therefore, one can expect that the angular distri-

bution of Lyα photons with resonant frequency ν0 should be isotropic. On the other

hand, the angular distribution of photons with frequency different from ν0 might

be anisotropic, as those photons are not involved in the evolution of thermalization

or statistical equilibrium. Consequently, the angular distributions of Lyα resonant

photons from optically thick medium should be frequency-dependent. It definitely

cannot be described by the Eddington approximation. The evolution of the angular

distribution of resonant photons is not trivial. We still use the WENO solver, and

solve the photon transfer in both frequency and angular spaces.
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8.1 Transfer equations of resonant photons with-

out dust

We solve the radiative transfer equation of Lyα resonant photon in a spherically

symmetric medium containing neutral HI. For simplicity, we ignore the effect of dust

(i.e. κ(x) = 0), and (6.1) is

∂I

∂η
+ µ

∂I

∂r
+

(1− µ2)

r

∂I

∂µ
− γ

∂I

∂x
=

−φ(x; a)I +

∫
R(x, µ, x′, µ′; a)I(η, r, x′, µ′)dx′dµ′/2 + S. (8.1)

The boundary and initial conditions are still given in (6.13), (6.17) and (6.19).

8.1.1 Test with Field’s analytical solution

We first test the WENO solver with analytical solutions. Assuming that the specific

intensity and source S are homogeneous in the r and µ space, i.e. I(η, r, x, µ) is

independent of variables r and µ. (8.1) becomes

∂J

∂η
− γ

∂J

∂x
= −φ(x)J +

∫
R(x, x′)J(η, x′)dx′ + S, (8.2)

where

J(η, x) =
1

2

∫
I(η, r, x, µ)dµ. (8.3)

Take γ = 0, Voigt parameter a = 0, the source S = φ(x) = π−1/2e−x2
, and the initial

radiative field I(x, η = 0) = 0. The time-dependent solution of(8.2) is [44, 94].

J(x, η) = π−1/2[1− exp(−ηe−x2

)] (8.4)

+

∫ ∞

x

ew2

[1− (1 + ηe−w2

) exp(−ηe−w2

)]erf(w)dw.
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Our solver seeks a solution I from (8.1). One can then give J via (8.3). It is

interesting to see whether the solution to (8.4) can be reproduced, if we also assume

that the source S in (8.1) is spatially homogeneous, but µ-dependent, i.e. S =

Θ(µ)φ(x) = Θ(µ)π−1/2e−x2
where Θ(µ) describes the angular distribution of photons

from the source. We consider both an isotropic source

S = π−1/2e−x2

, −1 ≤ µ ≤ 1, (8.5)

and an anisotropic source as follows,

S =





2(n + 1)µnπ−1/2e−x2
, 0 < µ ≤ 1,

0, −1 ≤ µ ≤ 0,
(8.6)

where n is taken to be a positive integer.Obviously, the larger the n, the stronger

the emission in the direction µ = 1. The factor 2(n + 1) is for normalization:

1
2

∫ 1

0
2(n + 1)µndµ = 1.

The numerical results with sources (8.5) and (8.6) with n = 4 and 6 are shown

in Figure 8.1. It is expected that the numerical solution with source (8.5) (the left
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Figure 8.1: The WENO numerical solutions (solid lines) of equation (8.1) assuming
the sources S is a) S = π−1/2e−x2

for all µ (left); b) S = 10µ4π−1/2e−x2
(middle); and

c) S = 14µ6π−1/2e−x2
(right) for µ > 0 and S=0 for µ < 0. The Field’s analytical

solution is shown with dot lines.
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panel of Figure 8.1) should follow the analytical solution (8.4) well, as the isotropic

source is the same as that used to find the analytical solution.

It is interesting to see that the WENO solutions of n = 4 (middle panel) and

n = 6 (right panel) also follow the analytical solution to (8.4) well. It seems to

indicate that the evolution of the frequency space is independent of the µ-space.

8.1.2 Time scale of the statistical equilibrium of the angular

distribution

A remarkable feature of the solutions of Figure 8.1 is a flat plateau in the range

|x| < 2 at time η > 100. The flat plateau is caused by the Wouthuysen-Field

local thermalization of frequency distribution of resonant photon [113, 44, 45]. The

flat plateau actually is the Boltzmann statistical equilibrium distribution around

x = 0 when the atomic mass is infinite. If the mass is finite, i.e. considering the

recoil in the re-distribution functions (6.3) or (6.4), the flat plateau will become

e−2bx, where b = hν0/mvT c, which is the local Boltzmann distribution required by

the Wouthuysen-Field effect [88]. The resonant scattering between photons and

HI atoms leads to the Boltzmann distribution of the photon frequency distribution

around x = 0 with the temperature equal to that of HI atoms.

When resonant photons undergo the local thermalization in the frequency space,

the angular distribution should be approaching statistical equilibrium. The anisotropic

µ-distributions have to evolve to be isotropic (statistical equilibrium). We calculate

all the µ-distributions at the time η corresponding to the three panels of Figure

8.1. The result is plotted in Figure 8.2. The µ-distribution of left panel is always

isotropic. This is expected as the source is isotropic, which is already in the state of

statistical equilibrium.

The middle and right panels of Figure 8.2 show the evolution of an anisotropic µ-

distribution equation (8.6). The time scale for approaching an isotropic distribution

seems to be independent of the anisotropy of sources. It is always equal to about
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Figure 8.2: The WENO numerical solutions of angular distributions from equation
(8.1) at x = 0, assuming the sources S are a) S = π−1/2e−x2

for all µ (left) and b)
S = 10µ4π−1/2e−x2

(middle); and c) S = 14µ6π−1/2e−x2
(right) for µ > 0 and S=0

for µ < 0.

η ∼ 100 for both n = 4 and n = 6, i.e. the µ-distribution will become isotropic

after 100 times of resonant scattering. This time scale is about the same as that of

the W-F thermalization (Figure 8.1). Therefore, the thermalization in the frequency

space and the isotropic distribution in the µ-space are realized at about the same

time.

8.2 Precision of the Eddington approximation

8.2.1 Equations of the Eddington approximation

Following the same analysis as in Section 6.1.3, (8.1) yields the equations of j and f

as

∂j

∂η
+

∂f

∂r
= −φ(x; a)j +

∫
R(x, x′; a)jdx′ + γ

∂j

∂x
+ r2S, (8.7)

∂f

∂η
+

1

3

∂j

∂r
− 2

3

j

r
= −φ(x; a)f + γ

∂f

∂x
, (8.8)

with initial and boundary conditions (6.14), (6.18) and (6.20).
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8.2.2 Profiles of j and f

Figure 8.3 does show small differences between the solutions with and without the

Eddington approximation, even though both solutions are given by the same source.

The difference comes from the contribution of the terms of l > 2 in the Legendre

expansion. The difference between the profiles with and without the Eddington

approximation becomes smaller when the time η is larger. It is because larger η

corresponds to larger optical depth. The Eddington approximation generally is good

for optically thick medium.
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Figure 8.3: A comparison of the solutions j and f with the Eddington approximation
(dashed curves) and the solutions of f without the Eddington approximation (solid
curves). Relevant parameters are r = R = 102, and a = 10−3.

Now we consider different sources. We re-do the solutions of j and f with equation

(8.1) by taking S = δ(µ − 1
2
) and S = δ(µ − 1). We use polynomials of degree 6

to approximate the delta sources. The results are given in Figure 8.4, which shows

the same shape of the profiles. That is, the profiles of j and f are not affected

by the angular distribution of photons from the source. It is probably because

the µ-distribution quickly evolves into the statistical equilibrium state, the initial
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anisotropy of the µ distribution is forgotten.
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Figure 8.4: A comparison of the solution s j and f with S=δ(µ− 1/2) and δ(µ− 1).
Relative parameters are r = R = 100, a = 10−3.

8.3 Angular distributions

8.3.1 Frequency dependence

Although the Eddington approximation is acceptable when calculating the profile of

Lyα photons in the frequency space, it fails in the µ-space. The result in Figure

8.2 shows that the µ-distribution is isotropic at frequency ν0. On the other hand,

the µ-distribution will no longer be isotropic at frequency |x| ≥ 2, because photons

of |x| ≥ 2 have not undergone scattering. Consequently, the angular distribution of

photons emerging from optically thick halo should be frequency(energy)-dependent.

We calculate the µ-distribution of photons from a halo with R = 500 with the

central source given by (6.15), i.e. photons from the source can be described by

the Eddington approximation (6.9). The result is shown in Figure 8.5. The µ

distributions at frequencies x = 0 and 0.8 are basically straight lines in the whole
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Figure 8.5: The µ distribution of photons emergent from a halo with radius R =
500. The frequencies are x = 0.0, 0.8, 1.6 and 2.4. The relevant parameters of the
calculation are η = 1.2× 104, γ = 0, and a = 10−3.
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range −1 ≤ µ ≤ 1. That is, I can be described by the Eddington approximation

equation (6.9).

At x = 1.6, the µ-distribution begins to deviate from a straight line, i.e. deviating

from an Eddington approximation. At x = 2.4, the µ-distribution shows a very sharp

spike at µ = 1. That is, the angular distribution of photons with frequency at the

two peaks (Figure 8.3) is significantly different from isotropic, but is dominated by

photons of µ = 1. This result is consistent with the “single shot picture” [2, 12], in

which photons with frequency |x| < 2 mainly undergo a diffusion in the frequency

space; once a photon diffuses to |x| ≥ 2, it will take “single longest excursion” to

leave for outside of the halo. Therefore, the two peaks of the flux f at frequency

x± ' ±(2 − 3) are dominated by photons from “single longest excursion” photons,

of which µ ∼ 1.

8.3.2 Dependence of the initial anisotropy

The source of Figure 8.5 given by (6.15) has Θ(µ) = 6µ (µ > 0), which is linear in

µ. We now consider sources with higher anisotropy with Θ(µ) given by

Θ(µ) =





2(n + 2)µn, 0 < µ ≤ 1,

0, µ < 0.
(8.9)

When the integer n is large, Θ(µ) is similar to a δ function δ(µ−1), i.e. most photons

are in the direction µ = 1.

We repeat the calculation of Figure 8.5, but using the source equation (8.9) with

n = 1, 2, 4, 6 and 8. The result is plotted in Figure 8.6. It is interesting to

see that the µ-distributions are independent of n, but depend on x. It is easy to

explain the n-independence of the two top panels of Figure 8.6, both of which have

frequency |x| ≤ 2. In this frequency range, the evolution of the specific intensity

I is governed by the local thermalization of x-space and entropy increasing of µ-

space. These processes lead to the Boltzmann distribution in the energy space and
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Figure 8.6: The µ-distribution of halo with radius R =100 and source equation (8.9)
with n=1, 2, 4, 6, and 8. For each x, the curves for different n overlap with each
other. The frequencies are taken to be x = 0, 0.8, 1.6, 2.4. The parameters of the
halos are η = 3500, γ = 0, and a = 10−3.

isotropic distribution in the angular space, regardless of the initial distributions

in either frequency- or angular spaces. In other words, the initial distribution is

forgotten during the local thermalization and approaching statistical equilibrium.

However, the mechanism of the local thermalization and approaching isotropic

distribution seems to be unable to explain why the two curves at x=1.6 and x=2.4

of Figure 8.6 also show n-independence. The µ-distribution of these two curves of

Figure 8.6 are highly anisotropic. Therefore, they do not have to be the result of

the local thermalization and approaching statistical equilibrium. Why do they also

show the behavior of forgetting the initial angular distributions? The reason is as

follows. In the first phase of resonant photon evolution, Lyα photons are trapped

in the range of |x| ≤ 2 within the time scales of a few tens or hundred scattering

[89]. The trapped photons have already forgotten their initial state. On the other

hand, photons with |x| ≥ 2 mostly come from the diffusion of trapped photons from
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|x| ≤ 2 to |x| ≥ 2 [88]. Thus, all photons of |x| ≥ 2 emerging from the optically

thick halo essentially have the same initial condition, given by the |x| space diffusion

of trapped photons. Therefore, the initial distributions before they are trapped have

been forgotten. This property can also be seen in Figure 8.2, in which, although the

sources of the middle and right panels are different from each other, the behaviors of

the time-evolution of the µ-distribution are about the same. This result also implies

that it is impossible to recover the information of the distribution of photons emitted

by the central source.

8.3.3 Collimation of photons of the double peaks

A common feature of Figure 8.6 is to show a very sharp spike at µ ∼ 1 when |x| = 1.6

and |x| = 2.4, corresponding to the double peaks of Figures 8.3 and 8.4. Therefore,

the spiky distribution of µ indicates that the photons with frequency at the double

peaks have formed a forward beam.

In order to measure the angular size of the µ = 1 spikes, we fit the µ-distributions

of Figure 8.5 at x = 1.6 and x = 2.4 with polynomials of µ. We find that both curves

can be well fitted with polynomials of µ having leading terms Aµ16 + Bµ15 + ..., A,

B being fitting coefficients. The terms of either µ16 or µ15 are much sharper than

the central source equation (8.9) µn with n ≤ 6. Therefore, the radiative transfer at

the double peaks of frequency space plays the role of forward collimator. It made

the photons form forward beams.

If we define the spread angle β of the forward beam as the angle of half intensity,

this number can be estimated by cos16 β = 1/2, and therefore, β ∼ 0.29rad. This

result is again consistent with the “single shot picture”. The double peaks mainly

consist of photons from a single shot, which moves in the forward direction.
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8.3.4 Large halo

We calculate the µ-distribution of Lyα photons in a halo with large radius R = 1000,

and the central source is given by equation (8.9) and n = 6. The results are given in

Figure 8.7, which shows the dependence of the µ distribution on the radial variable

r in the halo.
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Figure 8.7: The µ-distributions at radial positions r = 100 (left), 300 (middle), 500
(right) of a halo with radius R = 1000. The source is given by equation (8.9) and
n = 6. The frequencies are taken to be x = 0, 0.8, 1.6, 2.4. The dotted curves in
the middle and right panels are µ-distributions at r = 100 x = 2.4. Other relevant
parameters are η = 1.2× 104, γ = 0 and a = 10−3.

Although the photons from the source of n = 6 are highly anisotropic, all the

µ-distributions of x = 0.0 and 0.8 at r = 100, 300, 500 are straight lines. That is,

the specific intensity I can be well approximated by the Eddington approximation

equation (6.9). This result is consistent with Section 8.3.2. The r-dependence of

the µ-distribution of |x| = 2.4 photons is also consistent with the result of section

8.3.3: the larger the r, the sharper the µ-distribution. The r transfer leads to the

collimation.

The behavior of r-dependence of the µ-distribution at x = 1.6 is very different

from that of x = 0.0, 0.8, and 2.4. The µ distribution at r = 100 is about the same

as Figure 8.6, i.e. it has undergone an evolution of forward collimation, having a

sharp spike at µ = 1. However, the µ distribution will no longer show a spike at
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r = 300 and 500. When r is equal to or less than about 200, the r-dependence of

the µ distribution is similar to the |x| = 2.4 photons. However, when r ≥ 200, the

r-dependence of the µ distribution is similar to the |x| = 0 and 0.8 photons. This

is because the optical depth at |x| = 1.6 is larger than |x| = 2.4, the “single shot

picture” is working well at r ∼ 100 for both |x| = 1.6 and 2.4. However, at r ≥ 200,

the single shot picture can still work well for |x| = 2.4, but not so well for |x| = 1.6.
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Figure 8.8: The µ-distributions with respect to the effective optical depth. Relevant
parameters are η = 1.2× 104, γ = 0 and a = 10−3.

We consider the evolution of the angular distribution with respect to effective

radial optical depth τr(x) = τ0φ(x, a). The result is plotted in Figure 8.8. The

µ-distribution is isotropic if the effective radial optical depth is large and it will no

longer be isotropic when the depth becomes small. If we define the transition between

isotropic and anisotropic µ-distribution occurs when I(r, x, 1) = 2I(r, x,−1), then

at the transition, the critical optical depth is τcrit ≈ 5, as can be found from table

8.1.
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Table 8.1: critical effective optical depth τcrit

r 100 200 300 400 500
x 1.6 1.8 1.8 2.0 2.0

τr(x) 4.41 4.46 6.69 4.17 5.21

8.3.5 Effect of anisotropic scattering

All calculations in the previous sections are based on the re-distribution function

equation (6.3), which consider only isotropic scattering. If we consider dipole scatter-

ing, it seems to introduce a new factor leading to anisotropy and yield new anisotropic

behavior. However, HI atoms are in thermal equilibrium, and their distribution is

isotropic. The dipole scattering, as average, does not contain any parameter of spe-

cific direction. It will not add any anisotropic behavior. Therefore, all conclusions

in the previous sections should still hold.

8.4 Conclusion

The transfer of Lyα resonant photons from a central source in a halo consisting of

HI generally is considered as a problem of radiative transfer in an optically thick

medium. However, the “optically thick medium” assumption is true only when the

frequency of Lyα photons lies in a narrow range |x| ≤ 2. The cross section of resonant

scattering is very sensitive to the photon frequency. It quickly becomes small when

the frequency of Lyα photons has only a small deviation from the range |x| ≤ 2. For

those photons, the halo is optically moderate thick, or even thin. Therefore, in order

to understand the transfer of Lyα photons with frequency around the resonant peak,

we need to find the solutions of the integro-differential equation (8.1) in optically

thick as well as moderate thick and even thin medium. That is, although the halo is

optically thick for resonant photons, one should not treat (8.1) by using the condition
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of optical thick.

To find solution of (8.1) with desired precision in frequency ranges of optically

thick as well as moderately thick, the algorithm must handle the extremely flat

distribution (|x| < 2) and its sharp boundary (|x| ∼ 2) of I. These features can be

properly captured by the state-of-the-art numerical method, WENO scheme, as it has

high order of accuracy and good convergence in capturing discontinuities as well as

being superior to piecewise smooth solutions containing discontinuities. The WENO

solver has been shown to be powerful to solve the integro-differential equation of

radiative transfer of resonant photons Lyα. In this chapter, we develop the WENO

algorithm to be able to solve the integral-differential equation (8.1) in frequency and

angular space simultaneously.

We have first shown that the Eddington approximation can yield reasonable

results of the frequency profile of photons emergent from optically thick halos. Since

the Eddington approximation assumes I is linearly depends on µ, all the physics of

the angular distribution of Lyα photons are missing. A cost of the Fokker-Planck

equations is also to ignore all the effects of the evolutions of angular distribution.

The physics of the evolution of the angular distribution is rich. As has been

known, resonant scattering couples the transfers of resonant photons in the phys-

ical space and the frequency space. We show, in this chapter, that the resonant

scattering leads to the coupling between the evolutions of resonant photons in the

frequency space and the angular space as well. The evolution of the resonant photon

distribution in the µ space is strongly dependent on the frequency. Photons with

frequency |x| ≤ 2 undergo the procedure of approaching statistical equilibrium, and

their angular distribution is isotropic after a few tens or hundred scattering, regard-

less of whether the initial angular distribution is isotropic. On the other hand, the

angular distribution of photons with |x| ≥ 2 is strongly anisotropic, even if the initial

angular distribution is isotropic.

An interesting feature is that the anisotropic angular distributions at frequency
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|x| ∼ 2 are independent of the initial angular distributions. Different initial angular

distributions yield the same anisotropic angular distributions after a few tens or

hundred scattering. This is because photons at frequency |x| ∼ 2 are not directly

from the source, but come from the trapped photons within |x| ≤ 2, for which the

initial distributions have been forgotten. Therefore, it seems to be impossible to

recover the property of the source with the observed µ-distribution of Lyα photons

either in the range of |x| ≤ 2 or in |x| ≥ 2.

Another interesting feature of an optically thick halo is the collimation of photons

with frequencies of the double peaks. This is also because photons trapped in |x| ≤ 2

are thermal. When the trapped photons diffuse to |x| ≥ 2, they have two possible

fates. One is to get out of the holes by a single shot if photons move forward. If

a photon has not taken a single shot, the resonant scattering will lead it back to

the region of |x| ≤ 2. Therefore, photon transfer in optically thick medium is a

collimator. Although photons stored in an optically thick halo are thermal, the µ-

distribution is isotropic and the double peak only picks up photons of a single shot,

i.e. moving forward.
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