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Chapter 1. Introduction 

 

1.1. Overview of modeling of advanced high strength steels (AHSS) 

Recently, the modeling of mechanical properties of advanced high strength steels 

(AHSS) has received particular focus, and the need for integrated models capable of 

predicting the mechanical properties of AHSS is increasing. Modeling the mechanical 

behavior of AHSS is a critical step towards understanding the microstructure-property 

relations of AHSS, optimizing mechanical behavior and controlling their mechanical 

properties more rapidly than before using experiments [1]. Of particular important for 

industry is the need to predict local strength variations in formed components with 

accurate constitutive models.  

The increased interest in modeling of AHSS is primarily attributed to the 

widespread usage of such steels in automotive industry, where materials with high 

ductility as well as high strength are required for the construction of car bodies or 

especially crash absorbent elements. AHSS were developed to offer the combination of 

high strength and ductility, weight reduction (e.g. ~10% mass reduction compared to 

mild steels [2]), improved passive safety features, energy saving considerations and 

environmental protection. AHSS primarily include fully martensitic (MS) steels, dual-

phase (DP) steels, press-hardened boron (PHS) steels, transformation induced plasticity 

(TRIP) steels, complex phase (CP) steels, and high manganese content austenitic steels 

with twinning induced plasticity (TWIP) [3-6]. The majority of autobody components in 
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vehicle safety cages are designed using AHSS, especially DP steels (see Fig. 1.1), 

according to the results of the ULSAB-AVC Program (Ultra Light Steel Auto Body-

Advanced Vehicle Concepts). Compared to conventional steels, AHSS have better 

mechanical performance (see Fig. 1.2). Some types of AHSS (e.g. MS steels) have ultra-

high yield and tensile strengths relative to conventional steels. Others (e.g. DP and TRIP 

steels) have a higher strain hardening capacity resulting in a good strength-ductility 

balance.  

 

 

Fig. 1.1 ULSAB-AVC autobody structure steel type [7].  

 

In Fig. 1.2, the MS, DP, TRIP, PHS, and CP steels are refered to as first 

generation AHSS [5]. The austenitic stainless steels (AUST.SS), TWIP steels and  

lightweight steels with induced plasticity (L-IP) are refered to as second generation 

AHSS [5]. Wide scale adoption of the second generation AHSS in the automotive 

industry has been hampered by high costs associated with heavily alloyed materials and 

by post-formed cracking [5, 6].  In this dissertation, we only focus on the first generation 
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AHSS, which are ferrite-based with multiple phases, including ferrite, martensite, 

austenite and/or retained austenite. MS steels are fully martensitic steels, DP steels 

consist of softer ferrite and harder martensite, and TRIP steels have the triple phase 

microstructure consisting of ferrite, bainite, and retained austenite. During the plastic 

deformation, the metastable austenite phase in TRIP steels is transformed into martensite. 

The martensite phase may be the most important phase of AHSS since it exists in all 

AHSS and posesses the highest tensile strength compared to other phases. The overall 

mechanical properties of AHSS depend on both the properties of the individual phases 

and also on the microstructural characteristics such as the grain size, volume fraction and 

morphology of individual phases [8, 9]. 

 

 

Fig. 1.2 Mechanical performance of advanced high strength steels compared to other 

conventional steels [5, 6]. 
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Martensite in AHSS can adopt one of two general types of microstructure: 

martensite with a low carbon content (<0.6 wt.%C) has a lath microstructure; while 

martensite with a higher carbon content has a plate-like microstructure. In this 

dissertation, we focus on a low-carbon martensite (< 0.3 wt.%C), in which lath martensite 

is the predominant morphology [10-12]. A representative four-level lath martensite ( ) 

microstructure, consisting of prior austenite grains, packets, blocks, and laths is shown 

schematically in Fig. 1.3 [13]. Laths typically have sub-micron dimensions; blocks 

consist of collections of laths, and in a 0.2 wt.%C steel, can have sizes ranging from 1-10 

m, a collection of blocks forms a packet with dimensions of order 3-150 m, and 

packets develop within prior austenite grains with sizes between 10-500 m [14, 15]. It is 

commonly accepted that the crystallographic orientations within the blocks are related to 

those of the prior austenite (  ) grains by the Kurdjumov-Sachs (K-S) orientation 

relationship, which is expressed as (111) / /(110) , [101] / /[111]      with a total of 24 

possible crystallographic variants [13, 16]. The strength of martensite in AHSS depends 

primarily on its carbon content. The yield strength of martensite increases with increasing 

carbon content. 

Compared to the four-level hierarchical microstructure of lath martensite, ferrite 

and austenite phases in AHSS have simple microstructures. Generally ferrite and 

austenite phases are assumed to be the body-centered cubic (BCC) and face-centered 

cubic (FCC) single crystals, respectively. The strength of ferrite in DP and TRIP steels in 

general is determined by its composition, grain size, initial dislocation density or residual 

stresses induced by the volume expansion associated with the austenite to martensite 

transformation. 
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Fig. 1.3 Schematic showing the lath martensite microstructure typical of low carbon steels 

(adapted from [13]). 

 

There is currently substantial focus in the computational material science 

community on building models to predict the flow behavior of AHSS from their 

microstructures. The simplest such models use a 2D idealization of the microstructure, 

together with a phenomenological isotropic J2 flow rule and/or isotropic Ludwik 

hardening law to investigate the flow behaviors of DP and TRIP steels [9, 17, 18]. 

Realistic microstructures from 2D AHSS micrographs are used in these models [9, 17, 

18]. Most recently, Ramazani et al. pointed out that the 2D plane strain modeling using a 

phenomenological isotropic J2 flow rule, even with realistic microstructures, 
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underpredicts the flow strengh of DP steels, while 3D modeling gives a quantitatively 

reasonable description of the tensile flow curve [19]. The isotropic physically-based 

micromechanical models were also used to simulate the flow behavior of TRIP steels 

[20]. The model used for the simulations of the flow curves of the individual phases is 

based on the Mecking-Kocks theory [21, 22] and utilizes physical properties such as the 

microstructural parameters, the dislocation density, and the chemical composition of the 

individual phases [20]. The flow curves of TRIP steels were modeled by the successive 

application of a Gladman-type [23] mixture law for two-phase steels. Compared to the 

above-mentioned models, more sophisticated models use a crystal plasticity model based 

on Schmid’s law to characterize the phases of DP steels [24, 25]. These generally model 

a ferritic microstructure using a rate-dependent single crystal plasticity model and the 

martensitic phase is addressed with either a crystal plasticity [25, 26] or an isotropic 

hardening J2 flow model [24]. More recently, the effect of crystallographic orientation on 

the microscale flow behavior and plastic localization of DP steel has been investigated 

using 2D crystal plasticity model [27]. The crystal-plasticity-based models also offer the 

most detailed representation of a complete martensitic microstructure [28, 29]. These 

generally model a martensitic microstructure at the level of individual blocks, with laths 

represented approximately through material state variables characterizing dislocation 

densities.  

Recently, several researchers have also focused on predicting the formability and 

failure behavior of AHSS from their predicted microstructures. The hole-expansion 

formability of DP steels has been modeled using Ludwik’s equation to predict the flow 

curves of ferrite and martensite phases [30]. Other models used continuum Gurson-
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Tvergaard-Needlemann (GTN) damage model to characterize stretch-flangeability in the 

hole-expansion formability of DP steels [31]. Using a 2D realistic microstructure of DP 

and TRIP steels and the phenomenological isotropic J2 flow rule, together with Ludwik’s 

equation to model the flow curves of individual phases, the failures of DP and TRIP 

steels were modeled [9, 17, 32]. These studies were successful in predicting the failure 

modes and ductility of DP and TRIP steels through plastic strain localization. More 

recently, the crystal plasticity finite element method was used to model the failures of DP 

steels [24, 27, 33]. Progress has also been made in modeling failure mechanisms such as 

void growth in martensitic microstructures [34]. The constitutive laws in crystal plasticity 

models, however, contain no material based length-scales, and therefore cannot capture 

microstructural size effects. Discrete dislocation models are a promising approach to 

address this [35], but at present fully three-dimensional discrete dislocation simulations 

cannot treat a sufficiently large enough material volume to model microstructural effects 

accurately. 

In all prior models that were designed to predict the flow and failure behavior of 

AHSS, a significant outstanding challenge is that such models contain large numbers of 

material parameters, which must be fit to experimental data. Some of these, such as 

characteristic misorientations across lath, block or packet boundaries in martenstitic 

microstructures, can be determined experimentally [36]. Others, such as parameters 

characterizing flow strength or hardening relations of individual phases in AHSS, are 

more difficult to determine, and are usually selected so as to fit the experimentally 

measured macroscopic stress-strain behavior under some convenient strain path. This 
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fitting process is usually poorly conditioned, in the sense that many different 

combinations of material parameters can yield similar macroscopic stress-strain behavior. 

Determining the material paramters characterizing flow or hardening relations of 

the individual phases in the complex microstructures of AHSS is critical to obtaining 

accurate predictions of its macroscopic behavior of AHSS. The mechanical behavior of 

individual phases of DP steels has been evaluated by using nanohardness or 

ultramicrohardness [24, 37], in-situ neutron diffraction [38] or in-situ high energy X-ray 

diffraction techniques [26, 39, 40]. Hardness measurements require a very small 

indentation contact area, and so are susceptible to indentation size effects [41]. In 

addition, it is difficult to ensure that the material being indented is homogeneous below 

the indenter. In the neutron diffraction technique, it is difficult to separate the ferrite and 

marteniste diffraction peaks due to the similar BCC and body-centered tetragonal (BCT) 

crystal structures in ferrite and martensite [26, 39, 40]. It has recently been shown that 

high energy X-ray diffraction has the capability of separating (200) and (211) diffraction 

peaks for the ferrite and martensite phases, but diffraction measurements can only 

measure the average lattice strain in the ferrite and martensite as a function of 

macroscopic stress, so extracting the mechanical response of the individual phases is 

difficult. A common approach has been to fit material parameters to match lattice strain 

measurements obtained using X-ray or neutron diffraction measurements [25-27]. 

Recently, an alternative to these approaches has been developed, in which micronscale 

specimens are extracted directly from the microstructure, and their load-displacement 

relation is subsequently determined using a nanoindenter. For example, Stewart et al. 

have used micropillar compression technique to measure the constituent behavior of DP 
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steels [42]; while Ghassemi-Armaki et al. have measured the mechanical response of 

individual martensite blocks and packets extracted from a fully martensitic steel [15]. The 

ability of micropillar experiments to determine the properties of the phases directly 

significantly improves the accuracy of microstructure-based simulations. Micropillar 

calibrated constitutive models have been described in [15].  

 

1.2. Summary of the proposed approach for modeling of AHSS 

We propose a micropillar-calibrated crystal-plasticity-finite-element approach to 

predict the deformation response of AHSS. Here is the summary of the approach.  

a) Measuring the flow properties of individual phases in AHSS using micropillar 

compression tests. Dr. H. Ghassemi-Armaki at Brown University has 

measured the flow and hardening behavior of individual phases in AHSS 

using micropillar compression tests [15, 43].  

b) Fitting micropillar compression data using crystal-plasticity models. The 

material parameters required in crystal-plasticity models for individual phases 

of AHSS are directly extracted from the flow curves of individual phases 

measured by the micropillar compression tests in (a). The micropillar-

calibrated crystal plasticity models will be used in macroscopic simulations in 

(c) and (d). The determined properties of the phases directly significantly 

improve the accuracy of microstructure-based simulations. 

c) Generating fully 3D representative volume elements (RVEs) and predicting 

the macroscopic flow curves and flow potentials of AHSS. A simulated 

annealing process [44] is used to generate the fully 3D RVEs of AHSS. The 
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overall macroscopic uniaxial stress-strain curves and flow potential surfaces 

of AHSS are predicted using the crystal-plasticity models with parameters 

determined from micropillar compression tests in (b).  

d) Predicting the forming limit strains using the macroscopic non-associated 

plasticity finite element method. The parameters of the macroscopic non-

associated plasticity model are fit using the 3D RVEs subjected to multiaxial 

loading with the micropillar-calibrated crystal plasticity modes in (b). The 

forming limit strains are predicted using a 3D sheet necking finite element 

model [45, 46].  

 

1.3. AHSS selected for study 

To apply the proposed approach described in the previous section, we focus on 

two types of AHSS: MS and DP steels. We investigate the deformation response of both 

AHSS types in the dissertation. The first type of AHSS to be considered, MS steel 

includes only the martensite phase (see Fig. 1.4). MS steels have some of the highest 

strength levels and strength-to-weight ratios among materials currently available for body 

structure applications in the automotive industry. These properties make them attractive 

materials for components where high strength is critically important, such as bumper 

reinforcement beams, door intrusion beams, side sill reinforcements, belt line 

reinforcements, springs, and clips. More widespread use is hampered primarily by their 

limited ductility and formability. Therefore, there is considerable interest in finding ways 

to optimize their microstructure so as to improve their ductility. With this in mind, the 
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influence of microstructural variables on the flow and failure behavior of MS steels is an 

issue of considerable current interest. 

The second steel is a dual-phase (DP) steel that includes both soft ferrite and hard 

martensite phases (see Fig. 1.4). These steels were developed in the mid-seventies in 

order to meet the increasing needs of weight reduction and improved crash performance 

of vehicles. They have a typical microstructure consisting of a soft ferrite phase with 

dispersed islands of a hard martensite phase [47-49] (see Fig. 1.4). DP steels are 

particularly widely used in automotive applications such as bumper reinforcement beams, 

door intrusion beams, seating components and structural cross members due to their 

remarkable combination of strength and ductility compared to MS steels. The unusual 

properties of DP steels can be attributed to their complex and highly heterogeneous 

microstructure (see Fig. 1.4). This complexity can be exploited to generate DP steels with 

a wide range of properties that include high tensile to yield strength ratio, continuous 

yielding, high work hardening rate and good ductility.  

The microstructures of the two types of AHSS are shown in Fig. 1.4.  The MS 

steel can be thought of as a DP steel with the limiting volume fraction of 100% 

martensite. The DP steels have between 35% and 65% of martensite, with a higher 

volume fraction in DP980. In addition to the different volume fraction of martensite, the 

ferrite grains are finer in DP steel DP980 than in DP steel DF140T. The bulk uniaxial 

stress-strain curves of the two types of AHSS are shown in Fig. 1.5. The fully martensitic 

steel has higher nominal strength but less ductility, while the two DP steels DF140T and 

DP980 have lower nominal strength but better ductility. In addition, the two DP steels 

have similar nominal strength but different ductilities.  
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Fig. 1.4 Comparison of the microstructures of three AHSS: (a) DP steel DF140T, (b) DP 

steels DP980 and (c) fully martensitic steel. Light regions are martensite phase (marked by 

“M”) and dark regions are ferrite phase (marked by “F”). (SEM images provided by Dr. H. 

Ghassemi-Armaki at Brown University). 

 

 

Fig. 1.5 Bulk uniaxial stress-strain curves of three AHSS along rolling direction (RD). (Data 

provided by Dr. H. Ghassemi-Armaki at Brown University). 
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Our computations begin by addressing the behavior of the fully martensitic steel. 

Using the measurements of the deformation response of microscale volumes of material 

extracted from a low-carbon MS sheet steel (MartINsite® 190), we will predict the 

overall response of the bulk MS microstructure in Section 2.8, using crystal-plasticity-

based finite element simulations. The micropillar compression experimental data are used 

to determine material properties in Section 2.6, by using an optimization process to 

determine parameters that best fit the experimental data. Fully 3D models of the MS 

microstructure are then assembled using a microstructure reconstruction technique [44], 

and finite element computations are used to determine the macroscopic uniaxial stress-

strain response of the material in Section 2.8. The predicted macroscopic response is 

shown to be in excellent agreement with experimental measurements. Finally, our 

microstructure-based model predicts the detailed distributions of prior 

austenite/packet/block boundary stresses in MS microstructure in Section 2.8, which 

provides insights into their effect on the bulk strength or ductility. 

We will next study and compare the microscale flow and hardening behavior of 

DP steels (DF140T and DP980) in Sections 2.7, 3.5 and 4.4. These are both commercial 

grade steels with ~0.15 wt.% and ~0.1 wt.% bulk carbon content, respectively. The two 

steels have significantly different microstructures: for example, the martensite volume 

fraction in DP980 is approximately 50% greater than that in DF140T. Despite these 

differences, they have nearly identical uniaxial tensile stress-strain behavior. To explain 

these observations, the material parameters in the crystal-plasticity-based constitutive 

equations for the ferritic and martensitic phases of the steels will be determined using 
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micropillar compression stress-strain curves in Sections 2.7 and 3.5. Based on these 

measurements, a 3D computational model will be created of each DP steel microstructure 

in Section 4.3, and subjected to loading representing uniaxial tension.  

This combination of experiment and computation has been found to predict the 

uniaxial behavior of both DP steels accurately. In addition, it provides a number of 

insights into the microstructural origins of their tensile behavior. In particular, the 

martensite phase in DF140T is found to have a compressive strength approximately twice 

that of the martensite phase in DP980. This strength difference is offset by the different 

volume fractions of martensite in the two steels, explaining how they exhibit nearly 

identical tensile flow strength. In addition, our results show that the ferritic micropillars 

have a strongly orientation dependent flow strength, which cannot be explained by a 

conventional crystal plasticity model based on Schmid’s law. We find that these 

discrepancies can be resolved by adopting more sophisticated crystal plasticity models 

developed recently for BCC materials with non-Schmid behavior. The non-Schmid 

behavior in the ferrite leads to a small reduction in the tensile flow stress of the dual 

phase steels, as well as a small tension-compression asymmetry. Finally, our 

microstructure-based model predicts the detailed distributions of strain, ferrite/martensite 

interfacial stress and prior austenite/block boundary stress in both steel microstructures in 

Section 4.4, which provide insights into their different tensile ductility.  

To measure and compare the tension-compression asymmetry induced by the non-

Schmid behavior in the ferrite phase of DP steels, a non-associated plastic flow model is 

adopted and the forming limit strains in both DP steels are predicted in Section 4.5. The 

higher strength-differential value and lower forming limit strain under some loading 
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paths in DF140T will be predicted, which also imply the less ductility compared to 

DP980.  

 

1.4. Overview of mechanical behavior of active biopolymer networks 

If plant and animal cells are regarded as an automobile vehicle, the cytoskeleton is 

the body of the cell vehicle. In the previous Sections and Chapters 2-4, we described the 

mechanical behavior of AHSS used widely in automobile vehicle body parts. In this 

section and Chapter 5, we will discuss the mechanical behavior of cytoskeleton, 

especially active biopolymer networks, which are the body parts of cell vehicles. 

Although AHSS and active biopolymer networks are the main constituent materials of 

body parts of automobile vehicles and cells, respectively, the physical mechanisms 

involved in the deformation response of both materials are totally distinct.  

The mechanical properties of plant and animal cells are governed by 

the cytoskeleton, which is a flexible and dynamic network of biopolymer fibers combined 

with a group of associated regulatory and crosslinking proteins [50, 51]. One of the key 

aspects of the mechanical behavior of these networks is their highly nonlinear 

elastic response to applied stresses [52], in particular their ability to strain stiffen by 

orders of magnitude when subject to large stresses. Cells also employ molecular motors 

to convert chemical energy into mechanical work [50]. Motors generate internal stress in 

the networks even in the absence of external loading [50, 53]. In this manner, cells can 

regulate their mechanical properties by using both active and passive components. Fig. 

1.6 shows the force generator in fibroblast cells and the force is generated by three main 

components, that is, actin filament, Myosin II motors and crosslinkers.  
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Fig. 1.6 A schematic of actin filaments (black lines) with myosin motors (blue) and 

compliant crosslinks (green lines). Myosin motor exerts equal and opposite forces on the 

filaments on which it is attached, which results in a force dipole (pair of red arrows). These 

forces lead to the extension of the filamin crosslinks. 

 

While the mechanical behavior of semiflexible polymer networks with compliant 

and rigid crosslinks has been studied in detail both experimentally and theoretically [54-

61], the interplay between active mechanisms of stress generation through motor 

activity and passive strain hardening properties of crosslinks has only been considered 

very recently [53, 59]. In this regard, reconstituted actin networks can be particularly 

useful, since the density of crosslinks and motors can be varied in a desired manner to 

gain insights into the mechanisms of strain hardening and nonlinear elastic response. 

Indeed, recent experiments on networks that consist of actin filaments crosslinked by 
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filamin A (FLNa) and bipolar filaments of muscle myosin II show that in the absence of 

any applied loads [59], the motors stiffen the network by about two orders of magnitude. 

The degree of stiffening was found to increase with increasing density of myosin motors. 

Another key observation from this study relates to the magnitude of stiffening caused by 

compliant and incompliant crosslinks. While FLNa is a large, highly flexible dimer that 

promotes orthogonal F-actin crosslinking, scruin is an incompliant crosslink. 

Interestingly, it was found that in distinct contrast to FLNa, scruin does not promote 

active stiffening of F-actin networks upon addition of myosin. These results clearly show 

that actomyosin contractility when combined with appropriate crosslinks can allow 

the cell to operate in a nonlinear regime to actively control its mechanical response. 

Why do compliant crosslinks in active networks lead to large strain stiffening 

while no significant increase in stiffness is observed in the case of incompliant crosslinks? 

To answer this question and to quantitatively study the interplay of internal strains 

generated by molecular motors and external loads, we will study the mechanical response 

of active networks using finite element simulations in Chapter 5.  

A number of approaches including mean-field models, effective medium theory 

and numerical simulations have been used to study the elastic response of passive 

networks with both compliant and incompliant crosslinks [54-57]. However the role of 

crosslinks in the mechanical response of networks with molecular motors has not been 

considered theoretically. Our work in Chapter 5 shows that the nature and density of the 

crosslinks play a key role in determining the strain stiffening response in 

active biopolymer networks. FLNa is a crosslink that is compliant at small pulling forces, 

but is stiff beyond a critical value of stretch [52]. We find that even in the absence of 

javascript:popupOBO('GO:0031941','c0sm00908c')
javascript:popupOBO('GO:0031941','c0sm00908c')
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applied loads, motors lead to almost completely stretch out the compliant crosslinks 

taking them into the stiffened regime, which in turn also leads to bending of the filaments. 

As the crosslinks are fully stretched, the applied load is accommodated by the 

deformation of filaments. Since it is more difficult to deform the filaments compared to 

stretching of compliant crosslinks, the network stiffens by as much as two orders of 

magnitude compared to the case when motors are absent. On the other hand, when the 

crosslinks are incompliant, the contractile forces due to motors do not alter the network 

morphology in a significant manner leading to much lesser stiffening (typically by a 

factor of two) in agreement with experiments [59].  

 

1.5. Outline of dissertation  

The dissertation is divided into two parts. The first part (Chapters 2-4) will 

discuss the micropillar-calibrated modeling of low-carbon martensitic steels and DP 

steels. The second part (Chapter 5) will discuss the strain-stiffening modeling of active 

biopolymer networks.  

In Chapter 2, a brief overview of the martensite phase in steels and the 

experimental data of lath martensitic micropillar compression tests are first provided. The 

lath martensitic microstructure is generated following a simulated annealing process [44] 

with brick meshing. Using the dislocation-density-based crystal plasticity model 

incorporating the crystalline structure, anisotropy, orientation relations, prior austenite 

orientations and initial dislocation densities of lath martensite, the material parameters of 

lath martensite in MS and DP steels will be determined through combining the 

micropillar compression tests and a MATLAB optimization procedure. The dislocation-
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density-based crystal plasticity model and its implementation in an ABAQUS UMAT 

will also be described. To confirm the micropillar compression tests of lath martensite, 

the uniaxial stress-strain curves of 3D fully martensitic steel RVEs are predicted in the 

end of Chapter 2, which are in excellent agreement with the experimental measurements. 

The prior austenite/packet/block boundary stress distributions are also analyzed to 

provide insights into their effect on the bulk strength or ductility of MS steels.  

In Chapter 3, the overview of ferrite phase of AHSS and the experimental data of 

ferrite micropillar compression tests will first be introduced. The mechanical properties 

and material parameters in the crystal plasticity model of the ferrite phase in AHSS will 

then be investigated in detail. The procedure for determining material parameters is 

similar to the one used for lath martensite in Chapter 2. The non-Schmid Bassani-Wu 

crystal plasticity model for the ferrite phase will be described in detail in this Chapter, 

including its implementation in an ABAQUS UMAT.  

In Chapter 4, after determining the volume fraction of martensite in DP steels via 

measuring the area fraction of martesite in SEM images, the 3D DP heterogeneous 

microstructures are generated using the technique outlined in Chapter 2. Then the 

uniaxial stress-strain curves of 3D DP RVEs are predicted, which are good agreement 

with the experimental measurements. To investigate the different ductilities of the two 

commercial DP steels with similar nominal strength, the macroscopic non-associated 

flow behavior resulting from the non-Schmid behavior of the ferritic phase of the two DP 

steels are studied and compared. The strain/stress partitioning and interfacial stress 

distributions are also analyzed to explain the different ductilities of these two DP steels.  
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The second part of the dissertation (Chapter 5) will investigate the strain-

stiffening behavior of active biopolymer networks using finite element method. The 

random 2D biopolymer network models with two distinct crosslinkers are generated 

using MATLAB, and then are sheared up to 100% macroscopic strain to study the strain-

stiffening behavior. The effect of myosin motors modeled as static force-dipoles on the 

biopolymer networks with two different crosslinks will also be discussed in detail in 

Chapter 5.   

The research in this dissertation is summarized in Chapter 6, and suggestions for 

future work are made. 
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Chapter 2. Mechanical Behavior of 

Martensite Phase in AHSS 

 

To predict the overall mechanical behavior of AHSS, material parameters in 

crystal plasticity models must be fit to experimental data. Usually these parameters are 

selected so as to fit the experimentally measured macroscopic stress-strain behavior 

under some convenient strain path. This fitting process is usually poorly conditioned, in 

the sense that many different combinations of material parameters can yield similar 

macroscopic stress-strain behavior. To overcome the limitation, in this and next Chapters, 

material parameters of martensite and ferrite phases in AHSS are fit to micropillar 

compression experiments, which directly measure the properties of individual phases 

within a complex multiphase microstructures.  

In this Chapter, the mechanical behavior of the martensite phase in AHSS will be 

discussed. After an overview of the martensite phase in AHSS in Section 2.1, 

experimental data from lath martensite micropillar compression tests will be introduced 

in Section 2.2.  The numerical generation of a lath martensite microstructure will be 

discussed in detail in Section 2.3, where the four-level hierarchical microstructures of lath 

martensite will be generated. The dislocation-density-based crystal plasticity model for 

lath martensite blocks and its implementation in an ABAQUS UMAT will be described 

in Sections 2.4 and 2.5. Finally, the material properties of lath martensite in AHSS will 

be determined in Sections 2.6 and 2.7 through fitting the micropillar compression stress-
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strain curves of lath martensites in different AHSS. A 3D RVE of fully martensitic steels 

will be constructed using the method described in Section 2.3 and the overall uniaxial 

stress-strain curves of fully martensitic steels will be predicted in Section 2.8. These are 

shown to be in excellent agreement with the experimental measurements. 

 

2.1. Overview of martensite phase of AHSS 

Martensite, named in honor of the German engineer Adolf Martens, is one of the 

most important constituents in AHSS [62]. It is formed from austenite containing carbon 

atoms, based on the diffusionless nature of the martensitic transformation, and inherits 

the carbon atoms of the parent austenite [63]. The carbon atoms are trapped in octahedral 

interstitial sites between iron atoms, producing a tetragonal BCC structure (also known as 

a BCT structure). Together with the volume expansion when FCC austenite transforms to 

BCT martensite, the lattice-invariant deformation which results from slip or twinning 

plastic deformation mechanism induces a high density of dislocations and/or twins in the 

martensite microstructures [63]. 

The overall response of the martensite microstructure has been found to be highly 

sensitive to both its composition and overall size scale (which is largely a function of 

thermo-mechanical processing history). For example, the strain hardening rate of MS 

steels increases with increasing carbon content [63, 64], partly as a result of solute 

strengthening, and partly because increasing carbon content tends to lead to finer 

martensitic microstructures [16, 65]. The yield strength of lath martensite has been shown 

to scale with the inverse square root of the characteristic size of the microstructure (e.g. 

grain, block or packet size), as predicted by the Hall-Petch formula [14, 66-70]. This size 
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dependence has been attributed to the tendency of inter-block and packet boundaries to 

block dislocation motion: for example, micro-cantilever tests have shown that the initial 

hardening rate of specimens containing a block boundary is higher than that in a 

specimen consisting of a single block [70], possibly as a result of dislocation pile-up 

adjacent to the block boundary. Likewise, nanoindentation has been used to probe the 

strength of single blocks of martensite in low carbon steels with attempts to separate the 

strengthening contributions of the matrix and the block/packet boundaries in martensite 

[71-73]. A rather surprising finding from an in-situ nanoindentation study in the TEM [74] 

and at odds with the line of reasoning in [70] was that lath boundaries were effective in 

stopping matrix dislocations, at producing pile-ups and activating sources in adjacent 

laths whereas block boundaries acted as sinks for matrix dislocations and were not 

effective in producing dislocation pile-ups and this was attributed to the crystallography 

of the block boundary.      

One of the interesting properties of the martensite phase in steels is the strength-

differential effect. Around 1970, it was established that as-hardened, quenched or 

tempered martensitic steels are significantly stronger in uniaxial compression than in 

uniaxial tension, which is known as the strength-differential effect [75-80]. The strength 

difference between the compressive and tensile flow stress decreases with increasing 

tempering temperature and increases with the carbon content [75, 79]. Several hypotheses 

have been advanced to explain the strength-differential effect [75], for example, the 

microcrack hypothesis, the residual-stress hypothesis, the retained-austenite hypothesis, 

the internal Bauschinger hypothesis, the solute/dislocation interaction hypothesis and the 

volume-expansion hypothesis. Later, Hirth and Cohen proposed a nonlinear model which 
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can account for a 3-6% strength-differential [75]. Spitzig et al. argued that the strength-

differential effect is primarily a manifestation of the general pressure dependence of flow 

stress [79, 80]. Through evaluating the strength-differential effect in four commercial 

steels, Singh et al. showed that the pressure dependent flow stress model proposed by 

Spitzig and Richmond [81] appears better than the nonlinear model proposed by Hirth 

and Cohen [75] to explain the strength-differential effect in martensite.  

However, whether there exists the strength-differential effect in the martensite 

phase to be studied is still undetermined experimentally. The strength-differential effect 

of martensite will be ignored in the following modeling work.  

In addition to fully martensitic steels, the behavior of the martensite phase in dual 

phase steels is also of great interest. Two decades ago, several experiments showed that 

plastic deformation of the martensite phase in DP steels is absent except for the regions 

very close to the fracture surface in the high-carbon DP steels [82-85], which is similar to 

other high strength low alloy steels where the ferrite phase deforms while the harder 

phase does not experience any significant deformation. But in low-carbon (<0.1 wt.%) 

DP steels (like the DP steels to be considered in the disseratation), Mazinani and Poole 

observed that substantial martensite plasticity occurs under certain conditions [8], for 

example when the strength of martensite is reduced either by lowering its carbon 

concentration or by tempering. Rashid and Cprek also observed that martensite deforms 

plastically after excessive straining of ferrite matrix [86].      

Based on the observation of martensite plasticity in low-carbon DP steels, various 

models of hardening behavior in the martensitic phase of DP steels have been used to 

predict the overall behavior of DP steels. For example, Kadkhodapour et al. assumed that 
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the martensitic phase in commercial DP980 steel exhibits a nearly flat flow curves 

(elastic-nearly perfectly plasticity) [24]. In contrast, the martensite phase in DP980 was 

assumed to have linear hardening behavior in Sun et al.’s work [9]. All these assumptions 

are based on phenomelogical measurement, and none of previous work directly extracts 

the plastic flow and hardening behavior of martensite phase in AHSS without the 

influence of other phases. The accurate measurement of material properties of the 

martensite phase in AHSS is important to predict the overall deformation reponse of 

AHSS. The micropillar compression test is a good technique to accurately extract the 

material properties of individual phase in multiphase steels. In the following sections of 

this Chapter, we will use a combination of micropillar compression tests and dislocation-

density-based crystal plasticity model to extract the plastic flow and hardening properties 

of the martensite phase in two types of AHSS.  

 

2.2. Experimental data of lath martensitic micropillar compression tests   

All of the experiments in this Section were conducted by Dr. H. Ghassemi-

Armaki at Brown University [15, 43]. Several micropillars ranging in diameter from 0.3 

m to 3.6 m were excised from the as-rolled MS and DP steel sheets. As the lath 

dimensions for low carbon martensite are typically in the 200 nm regime [71], all 

micropillars were expected to contain multiple laths. However, since the block 

dimensions are typically in the 1-4 m range, the micropillars at the large end of the 

range examined will likely contain multiple blocks and possibly even include a packet 

boundary in the cross-section and perhaps more in the through-thickness of the 
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micropillar whereas in the sub-micron pillar size range, the likelihood of including 

multiple blocks diminishes. 

Uniaxial compression stress-strain curves obtained by deforming micropillars of 

various diameters from MS steel sheet are shown in Fig. 2.1(a) and (b). The stress-strain 

curves shown in Fig. 2.1(a) are for pillars that equal or exceed 2 m in diameter whereas 

those presented in Fig. 2.1(b) correspond to sub-micron pillars. The stress-strain curves in 

Fig. 2.1(a) can be separated into two general groups. In Fig. 2.1(a), micropillars 1 and 2 

(which have a diameter of 2.0m) begin yielding at ~1200 MPa and show elastic-nearly 

perfectly plastic behavior. Micropillars 3 and 4, which have diameters of 3.6 m and 2.8 

m, appear to display a slightly higher proportional limit but more importantly show 

pronounced hardening. A set of stress-strain curves is provided in Fig. 2.1(b) for pillars 

that are typically < 1 m in diameter. A large scatter in response is observed, both, in 

terms of the stress required for noticeable onset of plastic deformation as well the 

subsequent hardening rate. The exact reason for this large scatter is not well understood 

at the moment. The flow stress at 1% plastic strain is plotted as a function of pillar 

diameter in Fig. 2.1(c) for twenty-six micropillars. The figure confirms that for diameters 

greater than 1 m, the flow stress scatter is minimal and the flow stress is independent of 

the pillar diameter. Note that martensites extracted from the two DP steels considered in 

the dissertation show qualitatively similar behavior [43]. In the following modeling of 

martensite micropillars, we only consider martensite pillars with diameter equal to or 

greater than 2 m for MS steel.  



27 

 

 

 

 

 

(a) 

(b) 
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Fig. 2.1 Micropillar compression stress-strain curves for the as-rolled martensitic steel sheet. 

In (a) Micropillars 1 and 2 exhibit marginal hardening whereas micropillars 3 and 4 show 

pronounced hardening. All four micropillars have diameters > 1 m. In contrast, in (b) 

submicron pillars show a large range of response in flow behavior. The variation in flow 

stress at 1% plastic strain is shown as a function of pillar diameter in (c) and it is evident 

that the spread in data diminishes dramtically above a pillar diameter of ~1 m. The figures 

are provided by Dr. H. Ghassemi-Armaki at Brown University [15]. 

 

Some further insights into the difference in behavior between the two sets of 

pillars in Fig. 2.1(a) were obtained by examining the micropillars after deformation. 

Micropillars 1 and 2 (which showed elastic-nearly perfectly plastic behavior) deform by 

forming a pronounced slip band and what appears to be single slip (Fig. 2.2(a) for the 

case of micropillar 1; micropillar 2 is shown later in the modeling section in Fig. 2.8(c)). 

Micropillars 3 and 4 (which exhibit strain hardening behavior) show a more uniform 

(c) 
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deformation mode and evidence for multiple slip (Fig. 2.3(a) for the case of micropillar 3; 

micropillar 4 is shown later in the modeling section in Fig. 2.8(f)).  

 

 

Fig. 2.2 Microstructural observations of deformed micropillar 1 (stress-strain curve in Fig. 

2.1) prepared by FIB milling: (a) SEM and (b) low magnification bright field TEM image of 

the vertical section of the deformed micropillar. (c-f) Selected area diffraction patterns from 

four locations identified in (b) as 1, 2, 3 and 4 confirm the microstructure is composed of a 

single martensite block. The figures are provided by Dr. H. Ghassemi-Armaki at Brown 

University [15]. 
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Fig. 2.3(a) SEM and (b) composite bright field TEM image of the entire vertical section of 

the deformed micropillar 3 (stress-strain curve in Fig. 2.1) revealing the presence of 

multiple blocks and perhaps one or more packet boundaries. The figures are provided by 

Dr. H. Ghassemi-Armaki at Brown University [15]. 

 

From experiments, it is verified directly that micropillar 1 consists of a single 

martensite block, while micropillar 3 contains a block or packet boundary. For this 

purpose, TEM samples were extracted from the deformed micropillars by FIB milling 

and lift-out. The micropillar 1 has a height of around 3.8 m after deformation, as shown 

in Fig. 2.2(a); a low-magnification TEM image of a vertical section of the micropillar 

obtained by FIB lift-out in Fig. 2.2(b) corresponds to about 3.6 m in the vertical 

direction (~ 0.2m of the top of the micropillar has been milled during thinning of TEM 
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sample). The uniform contrast in the bright field image suggests the absence of any block 

or packet boundaries. Selected area diffraction patterns from 4 regions labeled as (1-4) 

are presented in Fig. 2.2(c-f) and these verify the above observation that the entire pillar 

represents a single orientation and does not include block or packet boundaries. Post-

deformation bright field TEM images from the different locations of the vertical section 

of micropillar 3 are presented in the form of a montage in Fig. 2.3(b). The composite 

bright field TEM image clearly shows multiple block boundaries and perhaps packet 

boundaries in the micropillar. Our simulations, to be described in detail in Sections 2.6 

and 2.7, suggest that the increased hardening is caused by block or packet boundaries and 

arises as a consequence of geometric constraints. A similar strengthening influence of 

block boundaries has been observed in micro-cantilever tests on a martensitic specimen 

[70].  

In the context of examining the role of a boundary in influencing plastic flow in a 

micropillar, Kunz and Greer [87] have reported a reduction in hardening rate in bi-crystal 

Al specimens and have suggested that the boundary serves as a dislocation sink; in 

contrast, Ng and Ngan [88] observed an increase in hardening in bi-crystal Al 

micropillars and reported dislocation accumulation at the boundary but the size range of 

pillars examined in the two studies was different. Many prior nano- and micropillar 

studies have focused on the influence of pillar size on their strength [89-95]. Generally, 

the results show that strength is higher at smaller size although this phenomenon is less 

pronounced in pillars approaching 2 m diameter in crystals with cubic structures [94]. 

Our results suggest that size effects are insignificant in martensite pillars with diameters 

exceeding 2.0m. Data for these micropillars are therefore taken to represent behavior of 
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the bulk martensite, and can accordingly be used to determine material parameters for 

crystal-plasticity material models for use in finite element simulations. These 

computations are described in more detail in the following Sections. 

 

2.3. Generation of lath martensitic microstructures 

Two major morphologies of the martensite phase, namely lath and plate, form in 

steels [10, 63]. Lath martensite forms in low- and medium-carbon steels and consists of 

parallel arrays of lath-shaped crystals. Plate martensite forms in high-carbon steels with 

non-parallel arrays. The AHSS under consideration belong to low-carbon steels, and 

therefore only the lath microstructure will be discussed.  

The characteristics of a general lath martensite ( ) microstructure are shown 

schematically in Fig. 1.3. The microstructure is hierarchical, with four separate scales. 

Prior austenite (  ) grains are the largest features. Each prior austenite grain contains a 

number of packets, which are groups of blocks with the same habit plane {111} . A 

packet is composed of an ensemble of blocks, which are bundles of laths having 

approximately the same crystal orientation. It is commonly accepted that the 

crystallographic orientations within the blocks are related to those of the prior-austenite 

grains by the Kurdjumov-Sachs (K-S) orientation relationship, which is expressed as 

(111) / /(110) , [101] / /[111]      and has a total of 24 possible crystallographic variants 

[13, 16]. Recent work has shown sub-block morphology in martensite to be low-angle 

boundaries [16, 36].  Low angle boundaries do not significantly change the predictions of 

a continuum plasticity model and so are ignored in our model. 
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A model martensite microstructure is generated as follows (Fig. 2.4). (i) First, a 

3D prior austenite grain structure is generated using a simulated annealing process [44] 

with brick meshing (Fig. 2.4(a)), where the simulated annealing process refers to the 

geometric optimization of space-filling objects without too much overlap. Random 

crystallographic orientations [ ]A   composed of three orthogonal unit vectors are assigned 

to the prior austenite grains. (ii) Each prior austenite grain is then divided into packets by 

using L  Voronoi tessellation. An element is selected at random within each prior 

austenite grain to act as the Voronoi center [28, 29, 96] (Fig. 2.4(b)).  The distance 

between Voronoi centers and other elements in the prior austenite grain is measured by 

the L  norm or maximum norm [97]. The number of Voronoi centers in each prior 

austenite grain controls the packet size. One of four {111}  habit planes (see Table 2.1) in 

the K-S orientation relationship is randomly chosen for each packet [16]. (iii) Finally, 

each packet is sub-divided into blocks, using a similar L  Voronoi tessellation (Fig. 

2.4(c)). One orientation variant selected at random from the 6 possible K-S orientation 

variants of each packet group (see Table 2.1) is assigned to each block. The number of 

Voronoi centers in each packet controls the block size. The orientations of the blocks 

[ ]A   are related to the orientations of prior austenite grains via the transformation 

1[ ] [ ] [ ]T A A 



 , which can be derived from the 24 K-S orientation variants in Table 2.1 

[98].  

Since the laths in a block have very similar crystallographic orientations [13, 16], 

we neglect the orientation difference between laths in a single block and idealize each 

block as a single crystal. Thus, a block size corresponds to the smallest length scale in the 
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model microstructure. The primary effect of the laths is to establish a large immobile 

dislocation density within the block, thus generating a high resistance to plastic 

deformation. A phenomenological constitutive law, which includes the dislocation 

density as a state variable, is used to approximate the slip resistance within each block, as 

described in more detail in next Section.  

 

 

Fig. 2.4 Schematic showing the hierarchic microstructure generation procedure (a)->(b)->(c) 

of lath martensite in a low-carbon steel. (a) Prior austenite grains Ai are generated by a 

simulated annealing process [44]. Thick black lines are prior austenite grain boundaries. (b) 

Each prior austenite grain is divided into packets Pi using L  Voronoi tessellation. Thin 

black lines are packet boundaries. (c) Each packet is subdivided into blocks B i using L  

Voronoi tessellation. Dashed black lines are block boundaries. 
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Table 2.1 The 24 crystallographic variants for the K-S orientation relationship [39]. 

Variant Planes parallel Direction parallel Packet Group 

V1 (111) / /(011)   [101] / /[111]   

[101] / /[111]   

[011] / /[111]   

[011] / /[111]   

[110] / /[111]   

[110] / /[111]   

P1 

V2 

V3 

V4 

V5 

V6 

V7 (111) / /(011)   [101] / /[111]   

[101] / /[111]   

[110] / /[111]   

[110] / /[111]   

[011] / /[111]   

[011] / /[111]   

P2 

V8 

V9 

V10 

V11 

V12 

V13 (111) / /(011)   [011] / /[111]   

[011] / /[111]   

[101] / /[111]   

[101] / /[111]   

[110] / /[111]   

[110] / /[111]   

P3 

V14 

V15 

V16 

V17 

V18 

V19 (111) / /(011)   [110] / /[111]   

[110] / /[111]   

[011] / /[111]   

[011] / /[111]   

[101] / /[111]   

[101] / /[111]   

P4 

V20 

V21 

V22 

V23 

V24 
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2.4. Dislocation-density-based crystal plasticity model 

Most finite element analyses pertaining to lath martensite adopt 

phenomenological plasticity models [9, 17, 99]. These models do not account for the 

crystalline structure, anisotropy of lath martensite, orientation relations, morphologies, 

prior austenite orientations and initial dislocation densities. Molecular Dynamics 

simulations have also been used to predict the defect nucleation and transformation at the 

molecular level [100-102]. But the limitations of spatial scales minimize the 

understanding and prediction at the microstructural level. Recently, Hatem and Zikry 

proposed a dislocation-density-based crystal plasticity finite element model to predict the 

mechanical behavior of lath martensitic microstructures [28, 29, 96], where the 

crystalline structure, anisotropy, orientation relations, prior austenite orientations and 

initial dislocation densities were considered. But the 2D lath martensite microstructure 

only includes a single prior austenite grain and it cannot predict the overall stress-strain 

curves of complex lath martensitic microstructures. In this dissertation, we will follow the 

dislocation-density-based crystal plasticity finite element model proposed by Hatem and 

Zikry [28, 29, 96] with the revised dislocation density evolution law to predict the 

mechanical behavior of martensitic steels and the martensite phase in DP steels. The 

revised dislocation density evolution law was developed by Lee et al. [103].        

Our computations model each block in the microstructure as a single crystal, 

using a dislocation-density-based crystal plasticity model similar to one proposed by 

Hatem and Zikry [28, 29, 96] and Lee et al. [103]. The total deformation gradient F  is 

decomposed as 

  
e pF F F  (2.1) 
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where 
e

F  is the elastic deformation gradient and 
p

F  is the plastic deformation gradient 

due to slip. The evolution of plastic deformation is described as the cumulative slip rates 

on all possible slip systems,  

 1 1 * *e p p e

p

  



   L F F F F s m  (2.2) 

where pL  is the plastic deformation velocity gradient, 
  is the slip rate of slip system 

 , *
s  and 

*
m  are the slip direction vector and slip plane normal vector in the deformed 

configuration, respectively. 

The slip systems in BCT lath martensite are assumed to be the same as those of a 

BCC crystal [104]. Within each block, plastic flow is assumed to take place by shearing 

on the 24 {110} <111> and {112} <111> systems, with the plastic slip rate on a generic 

slip system related to the stress acting on the slip plane by 
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 (2.3) 

Here,   is the resolved shear stress on slip system  , 0 ,m  are material parameters, 

and the strength of each slip system g

 is determined from dislocation densities on each 

slip system according to  
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where a  

  m , and 
  is the line direction of the forest dislocations. The 

dislocation densities evolve according to [103] 
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where ,a bk k  are material parameters, and b is the Burgers vector. The dislocation-

density-based crystal plasticity model has five material parameters (including the initial 

dislocation density, taken to be equal on all slip systems), which must be determined 

from experiments (see Sections 2.6 and 2.7). 

 

2.5. Implementation of dislocation-density-based crystal plasticity model 

The dislocation-density-based crystal plasticity model was implemented as user-

material subroutine (UMAT) in the commercial finite element code ABAQUS v6.9. The 

tangent modulus method [105] for rate-dependent crystal plasticity models was used to 

update the slip rate, strength of slip, resolved shear stresses, and dislocation density of 

each slip system in the UMAT.  

Fig. 2.5 shows the implementation flowchart of the dislocation-density-based 

crystal plasticity model in the UMAT. The framework of the UMAT is based on Kysar’s 

single crystal plasticity UMAT [106] that was originally developed by Prof. Y.G. Huang 

at Harvard University. 
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Fig. 2.5 Implementation flowchart of dislocation-density-based crystal plasticity model for 

martensite 

 

Three new subroutines, GSLPINIT_MART( ), DISLOCATIONHARDEN( ) and 

DISLOCATIONEVOL( ) were added into Kysar’s UMAT. The three new subroutines 

are detailed in the Appendix A.  

Subroutine GSLPINIT_MART( ) is used to calculate the initial value of the 

current slip resistance strength of each slip system. First, the edge dislocation line 

direction 
  is calculated by the cross product of the slip direction 


s  and the slip plane 

normal 


m . The initial value of the current slip resistance strength of each slip system is 

determined based on Eq. (2.4).  

Start 
Read material parameters; Initialize slip directions and slip plane normal; Initialize 

slip resistance strength GSLPINIT_MART( ); Initialize resolved shear stress 

Calculating Solution Dependent State Variables (total 333) 
Calculate slip deformation tensor and slip spin tensor; Calculate shear strain rate; 

Calculate dislocation density-based hardening strength DISLOCATIONHARDEN( ) 

 

 

 

Solving Shear Strain Increment 
Use tangent modulus method; LU decomposition to solve shear strain increment 

(24×24 matrix) 

Updating Solution Dependent State Variables and Stress 

Obtain increment of current slip resistance strength, resolved shear stress, dislocation 

density DISLOCATIONEVOL( ) and stress 

Calculating Material Jocobian Matrix 
Calculate derivative of shear strain increment w.r.t. strain increment (LU 

decomposition: 6×(24×24)); Calculate derivative of stress increment w.r.t. strain 

increment 
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Subroutine DISLOCATIONHARDEN( ) is used to calculate the slip hardening 

moduli. The rate form of Eq. (2.4) gives  
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Then, the self- and latent- hardening moduli are given by  
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Subroutine DISLOCATIONEVOL( ) is used to calculate the increment of 

dislocation density based on Eq. (2.5), that is,  
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2.6. Determining lath martensite material parameters in MS steels 

Material parameters for the martensite in MS steels are determined by fitting 

finite element simulations to the results of experimental micropillar compression tests in 

Section 2.2. Experimental data for micropillars 2 (which consists of a single block) and 4 

(which includes block boundaries) in Section 2.2 in fully martensitic steel were used for 

fitting purposes [15]. An inhomogeneous state of stress and strain is developed in a 

micropillar during the compression test. Therefore, full-scale 3D finite element 

simulations are needed to model the deformation. A 3D microstructure is generated in the 

model micropillar following the procedure in Section 2.3, except that the micropillar was 

assumed to be a single prior austenite grain.  
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The boundary conditions applied in the 3D micropillar simulations are as follows. 

The top surface of the micropillar is indented by a flat rigid surface representing the flat 

punch nanoindenter; the base is supported on springs, which approximate the elastic 

deformation of the underlying material. To model the real interaction between the 

nanoindenter and the micropillars, the friction between the rigid surface and micropillars 

is also considered in the 3D micropillar model. The friction coefficient is set to be 0.5 in 

all the following micropillar simulations. The friction coefficient value was selected so as 

to prevent slip between the indenter and pillar surface. For friction coefficient values that 

allow slip, the predicted deformation in the pillars does not match experiments. As long 

as the friction coefficient is sufficiently high to prevent slip, predictions are insensitive to 

the value selected. 

The crystallographic orientations of the experimental micropillars are not known. 

Consequently, a random orientation was assigned to the prior austenite grain in the 

simulations, and the orientation that best fits the experimental data was selected. It was 

found that the prior austenite grain with [011]  along the micropillar axial direction could 

reproduce the experimental results. In the following 3D micropillar simulations, we 

always adopt [011]  as the axial direction of the prior austenite grain.  

An iterative optimization procedure (illustrated in Fig. 2.6) was used to determine 

material parameters in the crystal plasticity model that best fit experimental stress-strain 

curves from the micropillar experiments. The mean-square average of the difference 

between measured and predicted nominal stress was used for the objective function  , 

which was minimized by the Nelder-Mead Simplex algorithm [107]. Predictions are fit 

simultaneously to compression data for micropillars containing only a single block (e.g. 
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micropillar 2), and for those containing multiple blocks (e.g. micropillar 4). Single-block 

micropillars deform primarily in single slip, and their response is therefore dominated by 

the slip resistance of an individual slip system. In contrast, micropillars containing 

multiple blocks deform with multiple active slip systems. The data for micropillars 

containing multiple slip therefore provide a robust calibration for latent hardening 

parameters in the crystal plasticity model. The material parameters that best fit 

micropillar data are listed in Table 2.2. These parameters should not be interpreted as 

universal to all martensitic steels, of course: considerable variability in properties is likely 

to arise from chemistry (carbon and alloy content) and processing history (reflected in 

lath dimensions, and dislocation density). 

The predicted nominal stress versus nominal strain curves for two micropillars are 

compared to experimental measurements in Fig. 2.7. Micropillar 2, which contains a 

single block, displays approximately elastic-perfectly plastic behavior, characterized by a 

flat flow stress curve (no hardening) after elastic deformation. In contrast, micropillar 4 

(which contains two blocks separated by a packet boundary in the simulation) shows 

significant strain hardening. K-S variants V9 and V21 were chosen for the two blocks in 

micropillar 4 (see Fig. 2.8). Our simulation results provide additional support for the 

hypothesis that block or packet boundaries give rise to the strain hardening behavior 

observed experimentally in the two largest micropillars. In addition, the crystal plasticity 

model yields an excellent fit to experimentally measured stress-strain curves. A power-

law fit (=k
n
) to the simulated stress-strain curve for micropillar 4 provides an exponent 

of 0.075 which is in reasonable agreement with that obtained from experiment on the 

bulk material (n=0.101).  
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Fig. 2.6 Iterative procedure used to determine material parameters for lath martensitic 

steels. 

 

Table 2.2 Material parameters obtained from 3D finite element simulations of micropillar 

compression tests on the martensitic phase of three AHSS. 

 Fully Martensitic 

Steel 

DP Steel 

DF140T 

DP Steel 

DP980 

Strain rate 0 (s
-1

) 31.72 10  
31.6 10  

31.7 10  

Stress exponent m  69.1 63.7 71.2 

Shear modulus G (GPa) 75 75 75 

Burgers vector b  (nm) 0.3 0.3 0.3 

Dislocation nucleation rate ak  71.2 86.4 73.0 

Dislocation annihilation rate bk  0.152 0.0935 0.14 

Initial dislocation density 0  (m
-2

) 135.02 10  
138.2 10  

133.0 10  
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Fig. 2.8 shows predicted contours of Von Mises stress and equivalent plastic 

strain in micropillars 2 and 4, respectively (corresponding to 5% strain in Fig. 2.7). SEM 

images of the micropillars after deformation are also shown for comparison. The 

predicted slip distribution in both micropillars is in good qualitative agreement with the 

deformed shapes observed experimentally. Micropillar 2 deforms primarily by slip on a 

dominant active slip system with a fairly localized deformation mode. In contrast, 

multiple slip systems are activated in micropillar 4, which consequently exhibits a more 

diffuse strain field. 

 

 

Fig. 2.7 Comparison of measured and predicted stress-strain curves for micropillars 

extracted from the lath martensitic steel. Micropillar 2 is idealized as a single martensitic 

block, and exhibits nearly elastic-perfectly plastic behavior. Micropillar 4 in the simulation 

contains two blocks separated by a packet boundary, and the interaction between them 

leads to an effective strain hardening behavior. Experimental data are shown in Fig. 2.1(a). 
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Since it is not possible to experimentally determine the exact microstructure in 

those micropillars that contain multiple blocks, we have tested the sensitivity of our 

predictions to the pillar microstructure. For this purpose, we used the material parameters 

listed in Table 2.2, and varied the number of blocks and packets in the pillar. It was found 

that the most significant microstructural variable was the misorientation between the two 

blocks in the pillar. For example, Fig. 2.9 shows predicted stress–strain curves for a pillar 

containing two types of interface. In one case, the blocks in the pillar have orientations 

corresponding to K-S variants V9 and V21, and are therefore separated by a packet 

boundary. This microstructure gives rise to a strong geometric constraint at the interface, 

and hence results in high strain hardening. The second example shows results for a pillar 

containing blocks with K-S variants V9 and V7, which are separated by a block boundary. 

In this case, the geometric constraint at the interface is weaker, and so produces a lower 

strain hardening slope. It is important to understand the physical origin of the predicted 

strengthening effect of packet and block boundaries. The role of the interface is to change 

the deformation mode from single slip (in a pillar consisting of a single block) to multiple 

slip (in pillars consisting of multiple packets or blocks). This activates latent hardening, 

which is the dominant contribution to the increased flow strength of the pillar. The 

difference between block boundaries and packet boundaries is a consequence of the 

different slip behavior in the material adjacent to these boundaries. 
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Fig. 2.8 3D Finite element simulations of micropillar indentation experiments. (a) Von Mises 

stress and (b) equivalent plastic strain contours of deformed micropillar 2 at 5% strain. (c) 

SEM image of the deformed micropillar 2 for comparison with (a) and (b). (d) Von Mises 

stress and (e) equivalent plastic strain contours of deformed micropillar 4 at 5% strain. (f) 

SEM image of the deformed micropillar 4 for comparison with (d) and (e). Black lines in 

contours (d) and (e) are the packet boundary. Experimental data appear in [15]. 
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Fig. 2.9 Comparison of strain hardening behavior of micropillars with packet boundary and 

with block boundary. (a) Stress-strain curves of two micropillars and (b,c) dislocation 

density contours of micropillars with (b) packet boundary and with (c) block boundary. 

Black lines in contours (b) and (c) are the packet boundary and the block boundary, 

respectively. Experimental data appear in [15]. 

 

2.7. Determining lath martensite material parameters in DP steels 

Similar to the determination of martensite material parameters in MS steels in the 

previous section, we will determine the martensite material parameters in DP steels 

DF140T and DP980 in this section. We assume that micropillars that exhibit little strain 

hardening (pillar 2 in DF140T and pillar A in DP980 in Fig. 2.10) consist of a single 

martensite block while those that show significant strain hardening (pillar 1 in DF140T 

and pillar B in DP980 in Fig. 2.10) consist of multiple bocks [43]. Parameters for 

martensite in DP steels were fit to pillars with elastic-perfectly plastic response (which 

were taken to be a single martensite block) and those with a hardening response (which 

contained a packet boundary). The resulting material parameters are listed in Table 2.2. 

Fig. 2.10 compares the measured and predicted stress-strain curves for martensitic 

micropillars in both DP steels. The results are qualitatively similar to previous 

experiments and simulations of deformation in micropillars extracted from fully 
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martensitic steels in Section 2.6. With an appropriate set of parameters, the model 

accurately predicts both the elastic-perfectly plastic response of pillars consisting of a 

single block, as well as the hardening behavior of pillars that contain a block or packet 

boundary. Interestingly, the optimal set of parameters representing the two DP steels 

indicates that the largest difference between them is the initial dislocation density 

(
13 28.2 10 m  for DF140T and 

13 23.0 10 m  for DP980). DF140T has a higher initial 

dislocation density, and consequently has greater flow strength than DP980. These 

observations are consistent with differences in partitioned carbon content between the 

martensite phases of the two steels (~0.35 wt.% in martensite phase of DF140T versus 

~0.15 wt.% in martensite phase of DP980), since the dislocation density increases with 

carbon content in low-carbon steels [65, 108]. 

 

 

Fig. 2.10 Comparison of measured and predicted stress-strain curves for martensitic 

micropillars extracted from DP steels (a) DF140T and (b) DP980. Micropillar 1 of DF140T 

and micropillar A of DP980 in the simulations contain several blocks separated by packet 

boundaries, and the interaction between them leads to an effective strain hardening 

behavior. Micropillar 2 of DP980 is idealized as a single martensitic block, and exhibits 

elastic-nearly perfectly plastic behavior. Experimental data appear in [43]. 
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2.8. Comparison of measured and predicted behavior for MS steels 

 The numerical simulation can be validated by predicting the uniaxial tensile 

stress-strain response of a full 3D RVE of the martensite, and comparing the predictions 

to experimental measurements in Fig. 1.5 [15]. For this purpose, a three-dimensional 

RVE (Fig. 2.11(a)) was constructed using the method described in Section 2.3. A typical 

distribution of blocks in a representative volume element is shown in Fig. 2.11(a). The 

volume element was then subjected to periodic boundary conditions representing uniaxial 

tension along the x-direction, and the average stress in the volume element is computed. 

Note that the boundary conditions preclude necking in the volume element, so results 

were only computed for strains up to 4% to rule out any possible effects of necking. 

 

 

 

Fig. 2.11 (a) One example of 3D RVEs and (b) dislocation density contour of the RVE at 4% 

macroscopic strain. Blocks are distinguished by colors (a). The size of RVE is 100m x 

100m x 100m and the brick element size is 2m x 2m x 2m. Total 125,000 elements are 

used. 
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A qualitative validation of the model is provided by the predicted dislocation 

density distribution shown in Fig. 2.11(b). The dislocation density contour (Fig. 2.11(b)) 

shows that its value is around 15 210 m  which is close to the experimental observation [65, 

108], note that the experimental data was measured before plastic deformation. In 

addition, Fig. 2.12 compares the measured and predicted uniaxial tensile stress-strain 

curves for three RVEs with random microstructures. The model slightly overestimates the 

initial yield stress of the material. This discrepancy may be a consequence of tension-

compression asymmetry in the martensite resulting from non-Schmid behavior of slip [75, 

76, 78]. Nevertheless, the good agreement between theory and experiment validates the 

microstructure-based procedure for predicting macroscopic properties of steels. In 

particular, the model correctly predicts the strain hardening behavior of the bulk material, 

even though individual martensite blocks in single slip exhibit nearly elastic-perfectly 

plastic behavior. The hardening response of the bulk material is a consequence of 

geometric constraints between martensite blocks, packets, and grains, which result in 

multiple slip and activate latent hardening. The hardening rate of the bulk specimen is 

comparable to that of a pillar containing a packet boundary, suggesting that a similar 

level of geometric constraint develops in these two types of specimen. Simulations 

suggest that the overall response of the bulk material is less sensitive than a micropillar to 

its detailed microstructure, since different representations of statistically similar 

microstructural RVEs are predicted to have nearly identical flow stresses.  
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Fig. 2.12 Comparison of measured and predicted uniaxial stress-strain curves of lath 

martensitic steel. Three RVEs with random microstructures show almost the same flow and 

hardening behaviors, and in good agreement with experiments. Experimental data appear 

in Fig. 1.5. 

 

We have also calculated quantitative measures of the stress distribution on the 

prior austenite/packet/block boundaries. The normal and tangential stresses on the prior 

austenite/packet/block boundaries in the fully martensitic steel were estimated. This 

calculation is complicated by the rectangular grid used to mesh the microstructures in our 

computations, and the boundaries follow a zig-zag path along element boundaries rather 

than conforming to the true geometry of the boundaries. We have therefore used the 

following procedure to compute the normal and tangential stress along the boundaries. 

First, we choose a small cube of material with the point of interest on the boundary at the 

center. An average normal vector n

 

to the boundary within the cube is created using the 

following definition,  
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1

.

boundary

boundaries
Total no of boundaries

 n n  (2.9) 

Two mutually perpendicular tangent vectors t1, t2  that are perpendicular to n  are 

created randomly. Then the normal and tangent stresses Tn ,Tt

 

are calculated by the 

following formulas,  

 2 2
1 1

1 1
; ; ( 1,2)

cube cube

n i ij j t i ij j
cube cubeV V

T n n T T T T t n
V V


         (2.10) 

where the volume integrals are computed by summing over elements in the cube. This 

procedure has been used to compute histograms of the variation of normal and tangential 

stresses on the prior austenite/packet/block boundaries in fully martensitic steel. The 

results are shown in Fig. 2.13. The total areas of the histograms are normalized to unity, 

and are shown at the same global strain (4%). The results show that the normal and 

tangential stresses acting on packet and block boundaries are similar, while the average 

normal and tangential stresses acting on prior austenite boundaries are slightly smaller 

than those on packet/block boundaries. The slight difference between prior austentine and 

packet/block boundaries might be explained by the uncorrelated crystal orientations 

between prior austenite grains and the correlated K-S orientations between packets or 

blocks.  
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Fig. 2.13 Histograms of (a) normal and (b) tangential stress distributions on the prior 

austenite/packet/block boundaries in fully martensitic steel at 4% global strain.  



54 

 

 

 

 

Chapter 3. Mechanical Behavior of Ferrite 

Phase in AHSS 

 

Similar to the previous Chapter where the material properties of lath martensites 

in AHSS were determined via fitting the micropillar compression stress-strain curves, in 

this Chapter, the material properties of ferrite phase in DP steels will be determined. In 

contrast to the hierarchical microstructure of lath martensite, the ferrite grains in DP 

steels are assumed to be single crystals. After a brief overview of the ferrite phase in DP 

steels in Section 3.1, the material properties of the ferrite phase in DP steels will be 

determined in Section 3.3 using the orientation dependent stress-strain curves of ferrite 

micropillar compression tests in Section 3.2. The crystallographic orientation dependent 

flow curves and non-Schmid behavior of ferrite phase in DP steels will be highlighted in 

this Chapter.  

3.1. Overview of ferrite phase of AHSS 

As mentioned in the Chapter 1, AHSS are multiphase steels which consist of hard 

islands in a ductile ferritic matrix, and conventional HSS are also ferrite-based steels. The 

ductile and soft ferrite phase, compared to other phases in AHSS, is the major base 

material in all high strength steels. The mechanical behavior of the ferrite phase becomes 

important in order to understand the overall mechanical behavior of AHSS and other 

steels.  
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The mechanical behavior of ferrite (also known as α-ferrite or alpha iron) in steels 

has been discussed several decades ago [109]. The general properties of ferrite in steels 

have been reviewed in Leslie’s book [109], such as yielding, plastic flow, hardening and 

deformation texture. The strength of the ferrite phase in DP steels is mainly controlled by 

the steel chemistry, grain size and initial dislocation density [8]. Except for the general 

properties of BCC ferrite grains, recently, some new features have been observed in 

ferrite grains in AHSS [37, 48], especially the inhomogeneous hardness in a single ferrite 

grain near the ferrite/martensite boundaries. 

Generally, the ferrite grains in polycrystals are assumed to be similar to ferrite 

single crystals. But in AHSS, the ferrite grains are always surrounded by the harder 

phases, like martensite in DP steels and the mechanical behavior of ferrite grains in such 

heterogeneous microstructures is different from those in homogeneous microstructures 

[37, 48]. Recently, Tsipouridis et al. observed that the hardness of ferrite in DP steels 

increases as the indent approaches Ferrite/Ferrite grain boundaries and/or 

Ferrite/Martensite phase boundaries using ultramicrohardness indentation tests [37]. They 

also observed that the amount of hardness increase depends on the boundary types: 

indents located close to phase boundaries exhibit higher hardness values than indents 

located at equal distances from grain boundaries [37]. The similar hardness variation 

trend in the ferrite phase was also observed in nanoindentation tests of DP steel [48]. The 

grain- and phase-boundaries as dislocation obstacles have been used to interpret the 

hardness variation inside the ferrite phase of DP steels, since higher dislocation densities 

in the ferrite in the vicinity of the phase boundaries were observed [37, 48]. The higher 
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dislocation densities near the phase boundaries were induced from the austenite-to-

martensite transformation on the adjacent ferrite grains [37].  

Although the inhomogeneous hardness were observed in ferrite grains near the 

harder phase in AHSS using hardness indentation tests, the plastic flow and hardening 

properties cannot be directly measured from hardness indentation tests. In addition, the 

presence of a harder substrate underneath the indent, irrespective as to whether this is a 

martensite grain or just a ferrite grain boundary, is an unpredictable factor and may affect 

the measurements in hardness indentation tests [37]. The micropillar compression tests 

described in the preceding chapter provide a more reliable measure of mechanical 

behavior in ferrite. Stewart et al. have used the micropillar compression technique to 

measure the constitutive stress-strain behavior of the ferrite phase in DP steel [42]. The 

yield and fracture strengths of the ferrite phase in DP steel have also been determined in 

micropillar compression tests [42]. However the crystallographic orientation dependent 

behavior of the ferrite phase in DP steels was ignored in Stewart et al.’s work, which will 

be demonstrated to be important in extracting flow and hardening parameters of ferrite in 

this Chapter.  

Another important feature of the ferritic phase in AHSS is the non-Schmid 

behavior. The physical mechanism of the non-Schmid behavior in ferrite is that the stress 

may modify the non-planar dislocation core structure and the flow stress consequently 

depends on the full stress tensor [45, 110-112]. It is based on the evidence that plastic 

deformation of BCC ferrite is dominated by the glide of screw dislocations, which have a 

highly non-planar core structure and a high Peierls barrier to dislocation motion [45, 110-

115]. This will be discussed in the Section 3.2 in more detail. In light of these 
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developments, we will use the non-Schmid Bassani-Wu crystal plasticity model to extract 

the material properties of the ferrite phase in DP steels in this Chapter. 

 

3.2. Experimental data of ferrite micropillar compression tests 

All of the experiments in this Section were conducted by Dr. H. Ghassemi-

Armaki at Brown University [43]. The nominal stress-strain curves for ferrite 

micropillars extracted from both DP steels are shown in Fig. 3.1. The orientation of the 

compression axis in each specimen is listed in Table 3.1. The yield stress is orientation 

dependent, but lies in the general range between 300-400 MPa for both DP steels. This 

range is comparable to the initial uniaxial tensile yield stress in the DP steels (see Fig. 

1.5). The stress-strain curves can be used to determine material parameters such as the 

critical resolved shear stress to activate slip, as well as self- and latent-hardening rates for 

the slip systems.  These are described in more detail in the following Sections. 

 

 

Fig. 3.1 Micropillar compression stress-strain curves for ferrite phases in (a) DF140T steel 

and (b) DP980 steel. The figures were provided by Dr. H. Ghassemi-Armaki at Brown 

University [43]. 
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Table 3.1 The specific crystal orientations indices parallel to axis of uniaxial compression 

for ferrite grains of two DP DF140T and DP980 steels are as follows. The table was 

provided by Dr. H. Ghassemi-Armaki at Brown University [43]. 

DF140T Ferrite 1: 
[778] 

Ferrite 2: 
[315] 

Ferrite 3: 
[001] 

Ferrite 4: 
[223] 

Ferrite 5: 
[334] 

Ferrite 6: 
[556] 

Ferrite 7: 
[546] 

DP980 Ferrite A: 
[516] 

Ferrite B: 
[324] 

Ferrite C: 
[205] 

Ferrite D: 
[326] --- --- --- 

 

3.3. Non-Schmid Bassani-Wu crystal plasticity model 

The ferritic phase in AHSS has a BCC crystal structure. Plastic deformation of 

BCC metals is dominated by the glide of screw dislocations, which have a highly non-

planar core structure and a high Peierls barrier to dislocation motion [45, 110-115]. In 

FCC metals, yield is determined by the maximum resolved shear stress on the candidate 

slip systems, and the plastic flow consequently obeys Schmid’s law. In contrast, for BCC 

materials the stress may modify the non-planar dislocation core structure, and the flow 

stress consequently depends on the full stress tensor [45, 110-112]. This is often referred 

to as ‘non-Schmid’ behavior. Significant progress has been made in recent years in 

modeling slip in BCC materials both at the atomic scale and at continuum length scales. 

For example, Koester et al. confirmed that the non-glide stresses have a strong influence 

on the hardening behavior of BCC iron using an atomistically informed crystal plasticity 

model [45, 110, 111]. In a polycrystal, this non-Schmid behavior leads to non-associated 

flow, which is well known to make the material prone to strain localization [45]. In light 

of these developments, we have chosen to model the ferrite using a constitutive model 

developed by [112], which is capable of accounting for non-Schmid behavior in BCC 

crystals.   
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Similar to the dislocation-density-based crystal plasticity model for martensite 

blocks in Section 2.4, the total deformation gradient F  is decomposed as Eq. (2.1). The 

evolution of the plastic deformation is described as Eq. (2.2). Following Caillard [113], 

we assume that plastic flow takes place by shearing on the set of {110}<111> slip 

systems, with the plastic slip rate on a generic slip system related to the stress acting on 

the slip plane by  

  0

*

m

sign
g



 




  

 
 
 
 

 (3.1) 

Here,   is the resolved shear stress on slip system  , 
0 , m  are material parameters, 

and *g
 is a modified slip system strength given by * max( ,0)NSg g g    , where g  is 

an evolving strength representing the effects of self- and forest- hardening; and  

 1 1 2 3 1 1( ) ( )NSg a a a               m σs m σ m s m σ m s  (3.2) 

is a correction to account for non-Schmid behavior [112]. In Eq. (3.2),   is the stress 

tensor; 
s  is the slip direction; 

α
m  is the normal to the slip plane, and 1


m  is a unit vector 

perpendicular to the {110} plane in the zone of 
α

m  that makes an angle of -60
0
 with the 

reference plane (see Table 3.2), and  are material parameters. Note that more 

recently Koester et al. [111] added three more terms in Eq. (3.2) to account for the non-

Schmid effect of pure BCC iron. Here Eq. (3.2) can be regarded as the simple version in 

reference [111] by ignoring the extra three terms. The relevant unit vectors for each slip 

system in a BCC crystal are given in Table 3.2 [110].  

  

(a
1
,a

2
,a

3
)
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Table 3.2 The 24 slip systems in BCC crystals [110]. 

α Reference system 
s  

m  1


m  

1 (011)[111]  [111]  [011] [110]  

2 (101)[111]  [111]  [101]  [011]  

3 (110)[111]  [111]  [110]  [101]  

4 (101)[111]  [111]  [101]  [110]  

5 (011)[111]  [111]  [011]  [101]  

6 (110)[111]  [111]  [110]  [011] 

7 (011)[111]  [111]  [011]  [110]  

8 (101)[111]  [111]  [101]  [011]  

9 (110)[111]  [111]  [110]  [101]  

10 (101)[111] [111]  [101]  [110]  

11 (011)[111]  [111]  [011]  [101]  

12 (110)[111]  [111]  [110]  [011]  

13 (011)[111]  [111]  [011] [101]  

14 (101)[111]  [111]  [101]  [110]  

15 (110)[111]  [111]  [110]  [011]  

16 (101)[111]  [111]  [101]  [011] 

17 (011)[111]  [111]  [011]  [110]  

18 (110)[111]  [111]  [110]  [101]  

19 (011)[111]  [111]  [011]  [101]  

20 (101)[111]  [111]  [101]  [110]  

21 (110)[111]  [111]  [110]  [011]  

22 (101)[111]  [111]  [101]  [011]  

23 (011)[111]  [111]  [011]  [110]  

24 (110)[111]  [111]  [110]  [101]  

 

Self- and latent- hardening in the ferrite are modeled using the standard crystal 

plasticity constitutive equations 
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N

g h 
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



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where the hardening moduli are 

 
1; , coplanar

( )
; otherwise

h qh q
q

 

 



  


 (3.4) 

with the latent hardening factor  a material parameter, and the hardening rate is 

 2 0
0

0

( ) ( )sech ( );s
s s

s

h h
h h h h G

g g

   
   

     
   

 (3.5) 

 
0 0( ) 1 tanh( / )G f 

 

  


   (3.6) 

Here, 
0 0 0 0{ , , , , , }s sh h g g f   are material parameters. This material model contains 12 

material parameters, which must be determined from experiment. 

 

3.4. Implementation of non-Schmid Bassani-Wu crystal plasticity model 

In the simulations described here, this model was implemented as a user-material 

subroutine (UMAT) in the commercial finite element code ABAQUS v6.9. The tangent 

modulus method [105] for rate-dependent crystal plasticity models was used to update the 

slip rate, the strength of slip and the resolved shear stresses in the UMAT.  

Fig. 3.2 shows the implementation flowchart of the non-Schmid Bassani-Wu 

crystal plasticity model in the UMAT. The framework of the UMAT is based on  Kysar’s 

single crystal plasticity UMAT [106] that was originally developed by Prof. Y.G. Huang 

at Harvard University. 

 

q
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Fig. 3.2 Implementation flowchart of non-Schmid Bassani-Wu crystal plasticity model for 

ferrite 

 

The new subroutine NONSCHMIDINIT( ) was added into Kysar’s UMAT, which 

is also included in Appendix B. In the new subroutine, the unit vectors 1


m ,  


m , 

s , 

cross products 
 m s  and 1

 m s , which are denoted by variables SLPNOR1, 

SLPNOR, SLPDIR, SLPCRS1 and SLPCRS2, respectively, are initialized for 24 slip 

systems.  

The tangent modulus method [105] for rate-dependent crystal plasticity models is 

used in the UMAT. The basic goal is to estimate  an effective slip rate to use over a small 

Start 
Read material parameters; Initialize slip directions and slip plane normal; Initialize 

non-Schmid slip direction NONSCHMIDINIT( ); Initialize slip resistance strength; 

Initialize resolved shear stress 

Calculating Solution Dependent State Variables (total 333) 
Calculate slip deformation tensor and slip spin tensor;  Calculate three non-Schmid 

slip deformation tensor; Calculate shear strain rate; Calculate self- and latent- 

hardening strength 

 

 

 

Solving Shear Strain Increment 

Use tangent modulus method; LU decomposition to solve shear strain increment 

(24×24 matrix) 

Updating Solution Dependent State Variables and Stress 
Obtain increment of current slip resistance strength, resolved shear stress and stress 

Calculating Material Jocobian Matrix 

Calculate derivative of shear strain increment w.r.t. strain increment (LU 

decomposition: 6×(24×24)); Calculate derivative of stress increment w.r.t. strain 

increment 
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yet finite time step, that is, we seek 
t


 







 for a given time step t . We define the 

increment of shear strain by  

 ( ) ( )t t t         (3.7) 

and use the  -scheme in the finite difference methods [116], 

 (1 ) t t tt      
        (3.8) 

where the subscript is the time at which the slip rate 
  is evaluated. The value of   is 

recommended to be during 0.5 and 1 [105].  

The slip rate 
  is a function of the resolved shear stress   and the current 

resistance strength g
. Taylor expansion of the slip rate yields  

 t t
t t t g

g

 
   

 

 
  




 
    

 
 (3.9) 

where   and g  are the increment of the resolved shear stress and the current 

resistance strength in slip system   within the time increment t , respectively. 

Substituting Eq. (3.9) into Eq. (3.8) gives  

 t t
tt g

g

 
   

 

 
    



  
       

  
 (3.10) 

In order to solve the shear strain increment 
 , we need to obtain the relations 

for the increment of resolved shear stress 
  and current resistance strength g in 

terms of the strain increment ij .  
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Before deriving the increments of resolved shear stress and current resistance 

strength in terms of the strain increment ij , it is convenient to introduce the slip 

deformation and spin tensors ij

  and ij

 , respectively,  

  * * * *1

2
ij i j j is m s m        (3.11) 

  * * * *1

2
ij i j j is m s m        (3.12) 

and the following non-Schmid slip deformation and spin tensors, respectively, 

      * * * *

1 1 1

1

2
i jij j i

s m s m
      

  
 (3.13) 

      * * * *

1 1 1

1

2
i jij j i

s m s m
      

  
 (3.14) 
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          * * * *
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1

2ij i j j i
m m m m

   
   

  
 (3.18) 

where  
* * *

2  m m s  and 
* * *

3 1 m m s . 

To calculate the increment of the modified slip system strength 

* max( ,0)NSg g g    , we first need to calculate the increment of the non-Schmid part of 

the modified slip system strength in Eq. (3.2). The non-Schmid slip strength rate is given 

by  
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Recall that 
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 (3.20) 

Then the non-Schmid slip strength rate is written as,  
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 
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 

m σ σD D σ s

m σ σW D σ m

m σ σW D σ m

 (3.21) 

where 
*

D  is the rate of stretching of the lattice, and *
W  is the spin tensor in deformed 

configuration. The Jaumann rate of the Cauchy stress in deformed configuration is 

 
*

* *


  σ σ W σ σW  (3.22) 

To proceed, consider the indentity 

    * * * * *

1 1 1

      ω σ σω D m σD D σ s  (3.23) 

The above identity can be obtained by expressing the terms in component form, that is,  
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 (3.24) 

And the term in Eq.(3.21) including the Jaumann rate can be written as 

 

*

* * * * *

1 1

* * *

1

*

1

( : )

: :

: :

   

 





 

 

 

m σ s m D s

m s D

μ D

 (3.25) 

where we have considered the symmetry in elastic moduli tensor  . Substituting Eqs. 

(3.23) and (3.25) into Eq. (3.21), the term related to parameter 1a  can be expressed as 

 
*

* * * * *

1 1 1 1 1 1( : ) :a a  
 
      

 
m σ σD D σ s μ ω σ σω D  (3.26) 

Finally, based on Eq. (3.21), the increment of the non-Schmid slip strength  NSg  can be 

written as 
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Now the increment of the modified slip system strength * max( ,0)NSg g g     is given 

by 

 

* max( ,0)

max ,0
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g g g

h g
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


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
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 


 (3.28) 

The resolved shear stress on the   slip system was defined as 

 * *    m s  (3.29) 

The rate of the resolved shear stress can be written as 

  * * * * *:      m D σD D σ s  (3.30) 

Then the increment of resolved shear stress is given by 

 ijkl kl ik jk jk ik ij ij

     



        
 

          
 

  (3.31) 

The Jaumann rate of Cauchy stress is given by 
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*

: ( : )


  * *
σ D σ I D  (3.32) 

where I  is the second order identical tensor. Note the term ( : )*
σ I D  has been neglected 

in the previous since stress is much less than elastic moduli. The Jaumann rate 
*

σ  is 

related to the stress rate on axes rotating with the material 


σ , by 
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 (3.33) 

where 


  σ σ Wσ σW . The stress increments ij  on axes rotating with the material 

are given by  
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For given strain increments ij , substituting Eqs. (3.28) and (3.31) into (3.10), 

the shear strain increments 
  can be uniquely determined by, 



69 

 

 

 

 

 

     
     

   

1 1 1 1

* * * * * *

2 2 2 2 2 2

* * * *

1 3 1 3

( )

ijkl kl ik jk jk ik kl

t ijkl jk ik ijkl ik jk

ijkl ij li ik ki il
kl kl kl

ijkl ij li i
kl kl

t

t h sign a
g

a a a

a a


   

 



   



  




       




       

    

  

 
    



       
 

   

  



m m m m m m

m m m m３ ３   

 

     
     

 

* *

1 3

1 1 1 1

* * * * * *

2 2 2 2 2 2

* * *

1 3 1

k ki il
kl

t ijkl kl ik jk jk ik ij

ijkl jk ik ijkl ik jk

ijkl ij li ik ki il
kl kl kl

ijkl ij
kl

a

t t

t a
g

a a W t a

a a

  


   




  



  


       




      

   



 


       



       
 

      

   

m m

m m m m m m

m m m m

３

３ ３    * * *

3 1 3li ik ki il
kl kl

W t a    m m３

(3.35) 

where   is the Kronecker delta. Once the shear strain increments  
  are solved in 

term of the strain increments ij , all other increments can be obtained through Eqs. 

(3.28), (3.31) and (3.34). 

All the above-mentioned formulas have been implemented into the ABAQUS 

UMAT.  

 

3.5. Determining ferrite material parameters in DP steels 

A comparison between predicted and measured stress-strain curves for ferritic 

micropillars is shown in Fig. 3.3. The crystal plasticity model with the non-Schmid effect 

yields a good fit to experimentally measured stress-strain curves (Fig. 3.1) [43]. The low 

flow strength of the micropillars (e.g. pillar 2 in DF140T) corresponds to single slip, 

while the higher flow strength of ferritic micropillars (e.g. pillar 3 in DF140T) 

corresponds to multiple slip. The resulting material parameters are listed in Table 3.3. 

The non-Schmid parameters are assumed to be same for both steels, since the dislocation 
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core structures in the two materials are likely to be similar. The ferrite in DF140T has a 

higher initial yield stress but lower hardening rate than DP980. The higher dislocation 

density due to the finer ferrite grains in DP980 may explain the higher hardening rates of 

DP980. 

 

 

Fig. 3.3 Comparison of measured and predicted stress-strain curves for ferrite micropillars 

extracted from (a) DF140T and (b) DP980. Crystal plasticity-based model with non-Schmid 

effect can best fit all ferrite micropillars simultaneously with crystallographic orientations 

(specified by the initial orientation of the compression axis): (a) [315] (Pillar 2), [001] (Pillar 

3) and [556] (Pillar 7) of DF140T and (b) [516] (Pillar A), [324] (Pillar B) and [416] (Pillar C) 

of DP980. Experimental data appear in Fig. 3.1. 

 

The importance of including non-Schmid behavior in the constitutive model for 

ferrite can be demonstrated by means of two simple numerical tests. In the first test, we 

create a ‘virtual’ micropillar which is identical to DF140T but displays no non-Schmid 

behavior (i.e. the virtual material has identical material parameters to those listed in Table 

3.3, but the coefficients a1 = a2 = a3 = 0). The stress-strain curves for this material are 

compared with experimental data in Fig. 3.4(a). The non-Schmid behavior clearly has a 

significant effect on the orientation dependence of the flow strength of the ferritic 

micropillars. As a second test, we have attempted to fit the predictions of a classical 
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Bassani-Wu crystal plasticity model to the experimentally measured flow behavior in the 

ferritic micropillars (obtained by enforcing a1 = a2 = a3 = 0  during the optimization 

process). The predicted best fit is compared with experimental data in Fig. 3.4(b). 

Without the non-Schmid terms, it is impossible to fit the experimental data correctly. 

 

Table 3.3 Material parameters determined by 3D finite element simulations of micropillar 

compression tests on the ferritic phase of DF140T and DP980. 

Two commercial DP steels DF140T DP980 

Strain rate 
0  (s

-1
) 0.002 0.009 

Stress exponent m  41.0 67.8 

Initial hardening rate h
0
 (MPa) 97.1 556.3 

Saturated hardening rate h
s
 (MPa) 5.36 188.9 

Initial flow stress g
0
 (MPa) 253.8 238.7 

Saturated flow stress g
s
 (GPa) 3.22 0.61 

Characteristic shear strain 
0  65.1 55.2 

Latent hardening coefficient f
0
 99.9 0.08 

Latent hardening coefficient q 1.4 1.0 

Non-Schmid effect parameter a
1
 0.6 0.6 

Non-Schmid effect parameter a
2
 0.01 0.01 

Non-Schmid effect parameter a
3
 0.2 0.2 
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Fig. 3.4 Comparison of measured and predicted stress-strain curves for ferritic micropillars 

extracted from DF140T using (a) non-Schmid crystal plasticity model with optimal material 

parameters but a1 = a2 = a3 = 0  and (b) the best fit of a classical Bassani-Wu crystal 

plasticity model without non-Schmid behavior to the experimental data, respectively. 

Experimental data appear in Fig. 3.1. 
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Chapter 4. Mechanical Behavior of Dual 

Phase Steels 

 

Using material parameters determined in Chapters 2 and 3, the mechanical 

behavior of DP steel microstructures will be predicted in this Chapter. The volume 

fraction of martensite in both DP steels will be determined in Section 4.1. After 

generating the 3D RVEs of both DP steels in Section 4.2, the predicted and measured 

uniaxial stress-strain curves of both DP steels will be compared in Section 4.3, which 

shows that the predictions match experiments very well using micropillar-calibrated 

crystal plasticity models described in Chapters 2 and 3. Finally, the non-associated plastic 

flow behavior of both DP steels resulting from the non-Schmid behavior of ferrite is 

described in Section 4.4, where the strength differential values and forming limit strains 

are determined using the 3D RVEs of both DP steels subjected to multiaxial loading.  

 

4.1. Determination of volume fraction of martensite in DP steels 

For DP steels, the volume fraction of martensite is one of the important factors 

needed to determine their mechanical behavior. The measurement of the volume fraction 

of the martensite in DP steels becomes essential before investigating the plastic behavior 

of DP steels. A simple way to determine the volume fraction of martensite is to measure 

the area fraction of martensite in several SEM pictures of DP steels and then average 
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these area fractions. The volume fraction of martensite in DP steels can be approximated 

by the average area fraction through the following relation,  

 
1 1 1 1

1 1 1 1
s totN N N N

Ns s sM M
M M M M Ms tot tot

s s s s

n n
A A n n V

N N N nn n n



   

     


     (4.1) 

where MA  is the average area fraction of martensite, N  is the total number of SEM 

pictures, s
MA  is the area fraction of martensite of the s-th SEM picture, sn  is the total 

pixel number of the s-th SEM picture, s
Mn  is the total pixel number of martensite in the s-

th SEM picture, totn is the total pixel number of all SEM pictures and tot
Mn  is the total 

pixel number of martensite for all SEM pictures. Here we assume that the each SEM 

picture has the same pixel number, that is, sn n . 

Using 4 SEM images for DF140T and 13 SEM images for DP980, we determine 

the volume fraction of martensite in DP steels DF140T and DP980. We first convert the 

SEM pictures into black-white binary images by setting a threshold in MATLAB, and 

then calculate the pixel number of black color (unity in MATLAB) in black-white binary 

images. Fig. 4.1 shows examples of SEM pictures and the corresponding black-white 

binary images used to calculate the pixel number of black color (martenstie phase). 

Following Eq. (4.1), we obtain the volume fractions of martensite, 0.39±0.02 for DF140T 

and 0.61±0.03 for DP980. 

 

 



75 

 

 

 

 

Fig. 4.1 Examples of SEM images and the corresponding black-white binary images used to 

determine the volume fraction of martensite in DP steels DF140T and DP980. Light and 

dark regions in SEM images are martensite and ferrite phases, respectively. Black and 

white colors in black-white images denote the martensite and ferrite phases, respectively. 

(SEM images provided by Dr. H. Ghassemi-Armaki at Brown University). 

 

4.2. Generation of DP steel microstructures 

The calibrated crystal plasticity models for ferrite and martensite can now be 

combined to predict the overall flow behavior of the two DP steels. To this end, a 

computational representation of the DP steel microstructure must be generated. The DP 

steels studied in this paper consist of ferrite grains, which are surrounded by particles of 

lath martensite, as illustrated in Fig. 1.4. A computational model of this microstructure is 

generated as follows (Fig. 4.2). First, a 3D ferrite grain structure is generated using a 

simulated annealing process [44] with brick meshing (Fig. 4.2(a)), where the simulated 

annealing process refers to the geometric optimization of space-filling objects without too 
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much overlap. Random crystallographic orientations are assigned to the ferrite grains. 

Secondly, prior austenite grains are nucleated randomly on the ferrite grain boundaries 

and then grown at a fast rate along ferrite grain boundaries and a slow rate along other 

directions (Fig. 4.2(b) and Fig. 4.2(c)). A growth-rate ratio of 2:1 was found to generate a 

microstructure very similar to the experimental micrographs. The growth of prior 

austenite grains is terminated when the volume fraction reaches a prescribed target value 

(61%±3% in DP980 and 39%±2% in DF140T). Note that the prior austenite grain 

nucleation and growth processes are based on brick meshing, that is, brick elements 

representing ferrite grains will be converted to represent prior austenite grains.  

A martensitic microstructure is then generated within each of the prior-austenite 

grains, following the procedure described in detail in Section 2.3 [15]. First, random 

crystallographic orientations [ ]A   are assigned to each prior austenite grain. The prior 

austenite grains are then divided into packets using L  Voronoi tessellation. An element 

is selected at random within each prior austenite grain to act as the Voronoi center [28, 29, 

96] (Fig. 4.2(d) and Fig. 4.2(e)). The distance between Voronoi centers and other 

elements in the prior austenite grain is measured by the L  norm or maximum norm [97]. 

The number of Voronoi centers in each prior austenite grain controls the packet size. One 

of four {111}  
habit planes in the Kurdjimov-Sachs (K-S) family of orientations is 

randomly chosen for each packet [13, 16]. Finally, each packet is sub-divided into blocks, 

using a similar L  Voronoi tessellation (Fig. 4.2(f)). The number of Voronoi centers in 

each packet controls the block size. One orientation variant selected at random from the 6 

possible K-S orientation variants of each packet group is assigned to each block. The 

orientations of the blocks [ ]A   are related to the orientations of prior austenite grains via 
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the transformation 1[ ] [ ] [ ]T A A 


 , which can be derived from the 24 K-S orientation 

variants [98].  

 

 

Fig. 4.2 Schematic showing the DP microstructure generation procedure (a)->(b)->(c) of 

ferrite and lath martensite in a low-carbon DP steel. Procedure (d)->(e)->(f) shows the 

microstructure generation of lath martensite in a low-carbon DP steel. (a) Ferrite grains Fi 

are generated by a simulated annealing process [44]. Thick dashed black lines are ferrite 

grain boundaries. (b) Prior austenite grains Ai (red color) are nucleated randomly on the 

ferrite grain boundaries and (c) then grown at a fast rate along ferrite grain boundaries and 

a slow rate along other directions. (d)-(e) Each prior austenite grain Ai is divided into 

packets Pi using  Voronoi tessellation. Thin black lines are packet boundaries. (f) Each 

packet is subdivided into blocks Bi using  Voronoi tessellation. Thin dashed black lines 

are block boundaries. 

 

RVEs generated using this procedure are shown in Fig. 4.3 for both steels. The 

RVEs capture macroscopic features such as differences in the volume fraction of 

martensite in the two steels (61%±3% in DP980, compared to 39%±2% in DF140T). In 

addition, the microstructure generation procedure can duplicate the initial texture in the 

steel, as well as the shape and distributions of the two phases. 

L

L
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Fig. 4.3 Representative volume elements generated for (a) DF140T and (b) DP980. Ferrite 

grains or martensite blocks are distinguished by the different colors. Black color denotes 

the martensite phases in both steels. More black color in (b) indicates higher volume 

fraction of martensite in DP980 (61%±3%) than in DF140T (39%±2%). The size of RVE is 

100m x 100m x 100m and the brick element size is 2m x 2m x 2m. Total 125,000 

elements are used. 

 

4.3. Comparison of measured and predicted behavior for DP steels 

The computational model, as well as the procedure used to determine material 

parameters for the two phases of the steel from micropillar experiments, can be validated 

by comparing the predicted behavior of the model microstructures described in the 

preceding section with experimental measurements in Fig. 1.5 [43]. To this end, the 

volume elements were subjected to periodic boundary conditions representing uniaxial 

tension, and the average stresses in the volume elements are computed. Note that the 

boundary conditions preclude necking in the volume element, so predictions can only be 

compared to experiment for strains below 10%, which correspond to uniform elongation. 
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Fig. 4.4 Comparison of measured and predicted uniaxial stress-strain curves of (a) DF140T 

and (b) DP980. For each DP steel, three RVEs with measured mean volume fraction of 

martensite (39% for DF140T and 61% for DP980) and its standard variance (2% for 

DF140T and 3% for DP980) show almost the same flow and hardening behaviors, and in 

good agreement with experiments. Predicted results with turning off non-Schmid effect 

show larger deviation from experimental results, compared to the predicted results with 

non-Schmid effect. NSE in legends means the non-Schimd effect. Experimental data appear 

in Fig. 1.5. 

 

Fig. 4.4(a) and Fig. 4.4(b) compare the measured and predicted uniaxial tensile 

stress-strain curves of DF140T and DP980. Numerical predictions are shown for 

representative volume elements with martensite volume fractions in a narrow range about 

the nominal value, to assess the influence of statistical variations in volume fraction. The 

predicted stress-strain curves are in excellent agreement with experimental data in Fig. 

1.5 [43]. Fig. 4.5 and Fig. 4.6 compare the Von Mises stress and equivalent plastic strain 

contours of DP140T and DP980. The simulations confirm that the two steels achieve 

their strength in different ways: in DP980, there is a large martensite volume fraction, but 

the flow strength of the martensite is comparatively low; whereas DF140T has a smaller 

volume fraction of martensite with a higher strength.     
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Fig. 4.5 Von Mises stress contours of (a) DF140T (Vm=39%), (b) DF140T (Vm=39% and 

turn off non-Schmid effect), (c) DP980 (Vm=61%) and (d) DP980 (Vm=61% and turn off 

non-Schmid effect). The unit of stress in legend is MPa.  
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Fig. 4.6 Equivalent plastic strain contours for (a) DF140T (Vm=39%), (b) DF140T (Vm=39% 

and turn off non-Schmid effect), (c) DP980 (Vm=61%) and (d) DP980 (Vm=61% and turn off 

non-Schmid effect). 

 

The simulations also provide a way to probe the roles of the different phases in 

determining the overall response of the microstructure. For this purpose, Fig. 4.7 shows 

the fraction of the average equivalent plastic strain rate that is accommodated by 

martensite and ferrite in the two steels. The fractions of the average equivalent plastic 

strain rate in the ferrite and martensite are computed as  

 ; 1

f
eq

f m ff m
eq eq

f f f


 
  


 (4.2) 
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respectively, where 
f

eq  denotes the volume averaged strain rate in the ferrite phase, 

which is computed from the finite elements using 
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Here, V f

 

is the volume of ferrite phase, i
elV , 

i
eq  are the volume and equivalent plastic 

strain rate of the i-th element in the ferrite, respectively, and N
el

f  denotes the total number 

of ferrite elements. The average equivalent plastic strain rate of martensite 
m
eq  can be 

calculated using a similar formula. Note that the deformation is time-independent and 

then the fraction of plastic strain rate is equivalent to the fraction of plastic strain.  

 

 

Fig. 4.7 Fraction of average equivalent plastic strain rates in ferrite and martensite phases 

for (a) DF140T and (b) DP980. Blue and red dash-dot lines are the volume fractions of 

ferrite and martensite, respectively. In (b) DP980, the plastic strain rate fractions in the two 

phases match the volume fractions closely (see the length of double-ended arrows in (b)). In 

contrast, the plastic strain rate fraction in DF140T differs significantly from the volume 

fractions (see the length of double-ended arrows in (a)). Note that the deformation is time-

independent and then the fraction of plastic strain rates is equivalent to the fraction of 

plastic strain.  
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In both steels, yield occurs first in ferrite, at a uniaxial stress of approximately 

400MPa. This point corresponds approximately to the deviation from linearity in the 

experimental stress-strain curve. For a brief period (up to a strain of 0.6% in DP980 or 

0.4% in DF140T) the ferrite contributes 100% of the total plastic strain. Shortly thereafter 

(at a stress level of approximately 700MPa), the martensite begins to deform plastically. 

The onset of plastic flow in the martensite corresponds to the point where a substantial 

decrease in hardening rate occurs in the macroscopic stress-strain curves. Thereafter, the 

strain rate partition remains approximately constant in both steels. The fraction of plastic 

strain rate in DP980 roughly approaches the volume fraction of individual phases, as 

predicted by a simple Taylor model [117]. In contrast, the plastic strain rate fraction in 

DF140T differs significantly from the volume fraction (the difference is marked by the 

double-ended arrows in Fig. 4.7). The deviation from Taylor behavior in DF140T is a 

consequence of the large difference between the strengths of the martensite and ferrite 

phases in this material. The deviation can be interpreted to quantify the difference 

between the actual strain rate in each phase and the imposed macroscopic strain rate, and 

is thus a measure of the strain incompatibility in the microstructure. The larger strain 

incompatibility in DF140T may be indirectly related to its lower tensile ductility.    

Fig. 4.4 and Fig. 4.7 also show the influence of non-Schmid behavior in the ferrite 

on the predicted overall tensile flow stress and strain rate partitioning in the two steels. 

For purposes of comparison, a ‘virtual material’ was created in which the ferrite has the 

same properties as those of the experimentally calibrated material model, except that non-

Schmid behavior was removed by setting a1 = a2 = a3 = 0 . The uniaxial stress-strain 

response of this model material is shown as open symbols and dashed lines in Fig. 4.4, 
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and the strain partition is shown as dashed lines in Fig. 4.7. The effect of non-Schmid 

behavior in the ferrite is to reduce the tensile strength of both steels. The effect is greater 

in DF140T than in DP980 due to a higher volume fraction of ferrite in DF140T. The non-

Schmid behavior of the ferrite has a number of additional implications. It leads to a small 

tension-compression asymmetry in the dual phase steels. The strength differential 

parameter [45] measuring the tension-compression asymmetry is 0.06 in DF140T and 

0.012 in DP980. In addition, non-Schmid behavior leads to non-associated flow in a 

polycrystalline microstructure, which tends to make a material more prone to localization 

[45]. This may provide a partial explanation for the difference in ductility between the 

two materials. Both strength differential parameter and non-associated flow will be 

discussed in detail in the next Section.    

In addition to computing the partitioning of strain rates between the two phases of 

the steels, we have calculated quantitative measures of the stress distribution in their 

microstructures. Experiments suggest that fracture generally nucleates at the interface 

between ferrite and martensite in both steels [33]. The stresses acting on these interfaces 

is therefore of particular interest. To this end, we have estimated the normal and 

tangential stresses on the ferrite/martensite interfaces in both steels. This calculation is 

complicated by the rectangular grid used to mesh the microstructures in our computations, 

and the interfaces follow a zig-zag path along element boundaries rather than conforming 

to the true geometry of the interface. We have therefore used a procedure similar to that 

described in Section 2.8 to compute the normal and tangential stress along the interfaces. 

This procedure has been used to compute histograms of the variation of normal and 

tangential stresses on the ferrite/martensite interfaces in both steels. The results are 
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shown in Fig. 4.8. The total areas of the histograms are normalized to unity for both 

steels, and are shown at the same global strain (10%). The results show that the peak 

values of the normal stress in DF140T reach 2.4GPa, while in DP980 the maximum 

normal stress reaches only 1.9GPa. Similarly, both the average and peak shear stresses 

acting on interfaces in DF140T significantly exceed those in DP980. These differences 

can be explained by the higher flow stresses of the martensite phase in DF140T, and also 

provides an addition possible explanation for the lower ductility of DF140T compared 

with DP980.  

 

 

Fig. 4.8 Histograms of (a) interfacial normal and (b) interfacial tangent stress distributions 

in DF140T and DP980 at 10% global strain. Inset in (a) is the amplified distribution tail 

region marked by the rectangle.  

 

Similarly, the normal and tangential stresses acting on the prior 

austenite/packet/block boundaries in both DP steels were also estimated. The same 

procedure in Section 2.8 has been used to compute histograms of the variation of normal 

and tangential stresses acting on the prior austenite/packet/block boundaries in both DP 

steels. The results are shown in Fig. 4.9. The total areas of histograms are normalized to 



86 

 

 

 

unity, and are shown at the same global strain (10%). The results show that the normal 

and tangential stresses acting on prior austenite and block boundaries are similar, while 

the average normal and tangential stresses acting on prior austenite boundaries are 

slightly smaller than those on block boundaries. The slight difference between prior 

austenite and block boundaries might be explained by the uncorrelated crystal 

orientations between prior austenite grains and correlated K-S orientations between 

packets or blocks, which is similar to the observation for fully martensitic steel in Section 

2.8. Note that there is no packet boundary in the DP RVEs under consideration. In 

addition, the results show that the peak values of normal stress acting on prior austenite 

and block boundaries in DF140T reach 3.0GPa, while in DP980 the maximum normal 

stress acting on prior austenite and block boundaries reaches only 2.4GPa. Similarly, both 

the average and peak tangential stresses acting on prior austenite and block boundaries in 

DF140T significantly exceed those in DP980. These differences can be explained by the 

much higher flow stresses of the martensite phase in DF140T.  
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Fig. 4.9 Histograms of (a)/(c) normal and (b)/(d) tangent stress distributions on prior 

austenite/block boundaries in (a)-(b) DF140T and (c)-(d) DP980 at 10% global strain. 

 

4.4. Non-associated flow in DP steels 

The non-Schmid behavior of the ferrite has a number of additional implications. It 

leads to non-associated plastic flow in the DP steels, which tends to make a material more 

prone to localization [45]. This may provide a partial explanation for the difference in 

ductility between the two DP steels DF140T and DP980.  

To describe the non-associated plastic flow of DP steels, we adopt a simple 

coarse-grain constitutive model [45]. The flow potential is the same as the J2 flow,  

 
23G J  (4.4) 
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while the yield function is  a function of both second and third invariants of the deviatoric 

Cauchy stress,   

 
1/3

3/2

2 31/3
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b
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 (4.5) 

where 2 / 2ij ijJ s s  and 3 / 3ij jk kiJ s s s  are the second and third invariants of the 

deviatoric Cauchy stress, ijs . For this simple coarse-grain constitutive model, the 

parameter b  in the yield function (4.5) is the measure of the non-associated flow. The 

classical Von Mises yield function can be recovered by setting 0b  .  

Another measure of non-associated flow, perhaps more intuitive than b , is the 

strength differential (SD) given by,   
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 (4.6) 

where T  and C  are the initial yield stresses in tension and compression, respectively.  

Before using the above-mentioned non-associated plastic flow model in DP steels, 

we need to know the values of b or SD in DP steels. The values of b or SD can be easily 

measured by testing the tension and compression yield stresses in Eq. (4.6) in 

experiments. Due to the shortage of the experimental tests, here we use the micropillar-

calibrated RVEs in Section 4.3 to fit the yield function in Eq. (4.5).    

The average stresses are calculated along the two planar loading directions 

(denoted by x  and y ) in 3D micropillar-calibrated RVEs subjected to multiaxial 

displacement loading. These average stresses are used to fit the parameter b  in Eq. (4.5) 

(dots in Fig. 4.10). In Fig. 4.10 the yield surfaces (curves in Fig. 4.10) are determined by 

the Eq. (4.5) using the optimal fitting parameter b . Note that for the rate-dependent 
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viscoplasticity used in our crystal-plasticity model, there are no true yield surfaces 

corresponding to stress states that would initiate yielding in a rate-independent material, 

and the yield surfaces in rate-dependent viscoplasticity are the constant offset effective 

plastic strain surfaces [118]. It is necessary to show the evolution of yield surfaces with 

different constant offset effective plastic strain (Fig. 4.10). For each yield surface, one 

optimal parameter b  or SD is obtained by fitting the yield function (4.5) using the 

average stresses measured from 3D RVEs subjected to multiaxial loading. The evolution 

of parameter SD with the offset effective plastic strain for DP steels DF140T and DP980 

is shown in Fig. 4.11. The SD value for DF140T is around 4 times larger than the one for 

DP980. The larger SD value makes a material more prone to localization [45]. This may 

provide a partial explanation for the difference in ductility between the two DP steels 

DF140T and DP980.  

Once the strength differential SD values for two DP steels DF140T and DP980 

are known, we have the capability to model the macroscopic forming behavior of DP 

steels using the non-associated flow model. One of the interested things in forming 

behavior of DP steels is to determine the forming limit strain. We follow the 3D sheet 

necking finite element model in [45, 46] to predict the forming limit strains in both DP 

steels.  

The material parameters used in the non-associated flow model [45, 46] are listed 

in Table 4.1. Only the non-associated parameter b  or SD is different for two DP steels. 

But the small difference leads to different forming limit strains for these two DP steels. 

Fig. 4.12 shows the different forming limit strains (
DF140T 0.02cr  for DF140T versus 

DP980 0.029cr   for DP980) under a strain path (ρ=-0.2) near the plain strain state using the 
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3D sheet necking modeling in [46]. Using the 3D sheet necking modeling in [46], we also 

plot the forming limit diagram under different loading paths (see Fig. 4.13). Compared to 

associated flow ( 0b SD  ), the non-associated flow obviously increases or decreases 

the forming limit strains of DP steels along different loading paths. The deviation of 

forming limit strains for the non-assocated flow from the associated flow increases with 

the increasing of strength differential SD value. This may also explain why DF140T has 

less ductility than DP980 since the SD value in DF140T is larger due to a higher volume 

fraction of ferrite.  
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Fig. 4.10 Yield surfaces with different offset effective plastic strains (a) 0.2%, (b) 0.5%, (c) 

1.2% and (d) 5%. The dots are calculated from 3D micropillar-calibrated RVEs and curves 

are obtained from the non-associated yield function in Eq. (4.5) using the optimal fitting 

parameter b . Black dots and curves denote DF140T, and red dots and curves denote DP980. 

SDA  and SDB denote the strength differential values of DF140T and DP980, respectively. 
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Fig. 4.11 Evolution of strength differential SD value with the offset equivalent plastic strain 

for DP steels DF140T and DP980.  

 

Table 4.1 Material parameters used in 3D sheet necking finite element model in reference 

[45]. 

Two commercial DP steels DF140T DP980 

Young’s modulus (MPa) 2.1E5 

Poisson ratio 0.3 

Strain rate 0   (s
-1

) 1.0 

Exponent m 0.0002 

Initial hardening stress 0  (MPa) 675.0 

Characteristic plastic strain 0  0.001 

Hardening exponent n 20.0 

Non-associated parameter b  -0.273 -0.058 
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Fig. 4.12 Average logrithmic strain  11

b

  in band vs average logrithmic strain  11

m

  in 

matrix using the non-associated plastic flow model [45] with the specific loading path ρ=-0.2. 

Associated flow behavior is also included by setting parameter 0b  . 
DF140T

cr and 
DP980

cr  

denote forming limit strains for DF140T and DP980, respectively. 

 

 

Fig. 4.13 (a) Forming limit diagram for both DP steels using the non-associated plastic flow 

model [45]. The amplified region denoted by the dashed rectangle in (a) is shown in (b). 

Different ρ denote different loading paths.  
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Chapter 5. Mechanical Behavior of Active 

Biopolymer Networks 

 

In the preceding Chapters, we have discussed the nonlinear mechanical behavior 

of hard AHSS (Young’s modulus ~ 200 GPa). In this Chapter, we will study the 

nonlinear deformation behavior of active biopolymer networks, which is extremely softer 

(Young’s modulus ~ 1 Pa [59]) compared to hard AHSS. The distinct deformation 

mechanisms of active biopolymer networks also lead to the different nonlinear 

deformation behavior, known as the strain stiffening behavior, which will be discussed in 

Section 5.2. Before the discovery of the nonlinear strain stiffening behavior of active 

biopolymer networks using finite element method, the construction of 2D active 

biopolymer networks will be described in Section 5.1. 

5.1. Construction of active biopolymer networks 

The biopolymer networks considered in our study are constructed as follows. 

Straight filaments of length L = 10 μm (comparable to the actin filament lengths of 10–

15 μm [59]) and random orientations are assembled in a square box of width W = 40 μm. 

When two filaments cross each other, they are connected by a nonlinear spring (to be 

described below) or are linked rigidly. Filaments that cross the top and bottom boundary 

are cut and the dangling ends are removed, while periodic boundary conditions are 

imposed along the lateral boundaries. The system is loaded by restricting the horizontal 

displacements of the nodes of the filaments at the top and bottom of the box to γW and 
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zero, respectively, where γ is the applied shear strain. We assume that 

the polymer filaments that make up our network are semiflexible, so that the persistence 

length of the individual chains is much longer than the average distance between the two 

crosslink sites, and comparable to the contour length of individual polymer chains. 

Therefore we ignore thermal energy arising from fluctuation of the filaments and 

consider only the extensional and bending energies of the filaments. Using κ and μ to 

denote bending modulus and stretching modulus of F-actin, respectively, we choose μ/L 

= 1.6 MPa and 2 4/ ( ) 2.3 10L     (both representative of F-actin networks [50, 55]). 

The normalized line density of our network (
2/TL L W  , where LT is the total length of 

filaments in the cell) is 12.5  , which is well above the rigidity percolation threshold of

5.7   [119].  

The contour length of FLNa is 0 150l nm [58, 59] and its persistence length is 

20pl nm [52, 59]. For stretches less than the contour length, this crosslink behaves like 

a linear spring with spring constant 02 (3 )cl B pk k T l l [120], where 4.11Bk T pN nm  . 

When stretched beyond its contour length 0l , the stiffness of the crosslink increases very 

rapidly [56, 57]. Following the work of Broedersz et al. [56, 57], we therefore model the 

crosslinks as piecewise linear springs such that the force F = −kΔl, where k = kcl for 

length Δl < l0, while k ≫ kcl when Δl > l0, where Δl is the extension of the crosslink. 

Scruin crosslinks on the other hand are inextensible [52]. Very recent measurement 

shows that force applied by a single skeletal myosin head on an F-actin is in the range 1 

pN–5 pN [121]. Myosin is typically assembled into thick filaments with several heads; 

the filaments typically have lengths of 1 μm [59, 122]. To model the contractile force 
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generated by the motors we model them as force dipoles as shown schematically in Fig. 

1.6. In our simulations, the motors are assembled by picking a point at random on a 

filament and then picking another point located on a neighboring filament such that the 

distance of the two points lies in the range of 0.5–2 μm. A typical force of 10 pN is 

applied along the line connecting the two points to simulate the pulling effect of the 

motors as shown in Fig. 1.6. 

 

5.2. Finite element modeling 

The elastic fields in the sheared filament network are computed using commercial 

finite element software ABAQUS v6.8, discretizing each filament with 100 equal-sized 

Timoshenko beam elements (B21). All simulations are carried out in a finite deformation 

setting; i.e., the effect of geometry changes on force balance and rigid body rotations are 

explicitly taken into account. The macroscopic shear stress τ for our model is the total 

horizontal reaction force at the top of the simulation box divided by W. The 

dimensionless stress   in Fig. 5.1 is defined as /L   , and the modulus 

/K d d   . To gain insight into different deformation mechanisms, we also compute 

the total energy associated with stretching of the crosslinks in the cell, Ec, the total 

bending energy of all the filaments, Eb, and the sum of the bending and stretching 

energies or the total strain energy of all the filaments, Ef. We first consider the case where 

there are no motors present and the crosslinks are either rigid (black dashed lines in Fig. 

5.1 and Fig. 5.2) or compliant (black solid lines in Fig. 5.1 and Fig. 5.2). As in earlier 

work [56, 57], the modulus in the latter case shows a sharp increase when the crosslinks 

are fully stretched and enter the hardened regime (note that 3D simulations show similar 
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results [54]). It can be seen from Fig. 5.2 that below this threshold the total energy of the 

network is dominated by the energy of stretching the crosslinks, but above this threshold 

the filaments first bend and then stretch. In the case of rigid crosslinks, for small strains, 

the deformation of the network is dominated by bending of the filaments followed by 

stretching and orientation of the filaments along the direction of shearing. Note that at 

very large applied strains, both the networks show identical response due to stretching of 

the filaments. 
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Fig. 5.1 Stress ( ) and differential shear stiffness ( ) vs shear strain (γ) for active F-

actin network with rigid or compliant crosslinks. The myosin motors only stiffen the F-

actin network with rigid crosslinks by a factor of 1.4 at small strains: network without 

myosin motor (black dashed line) and Nm/Nactin = 6.4 (green circles). However the myosin 

motors stiffen the flexibly crosslinked F-actin network up to a factor of 70: network without 

myosin motors (black solid line), with Nm/Nactin = 0.9 (red solid line), with Nm/Nactin = 3.1 

(blue solid line), and with Nm/Nactin = 6.4 (green solid line). Nm and Nactin correspond to the 

total number of motors and filaments, respectively. Each motor exerts a force of 10 pN on 

the actin filament. 

 

javascript:popupOBO('GO:0031941','c0sm00908c')
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Fig. 5.2 (a) The ratio of total stretching energy (Ec) of compliant crosslinks to total energy 

(Ef) of filaments in the system, and (b) the ratio of total bending energy (Eb) of the filaments 

in the system to total strain energy of all the filaments (Ef) as a function of shear strain (γ). 

At small strains, the rigidly crosslinked F-actin network is dominated by bending of F-actin , 

regardless of whether myosin motors are present (green circles) or absent (black dashed 

line). However, myosin motors drive the deformation from stretching of the crosslinks to 

bending of F-actin as evidenced by the decrease in the ratio Ec/Ef from the case with no 

motors (black solid line), to the cases with increasing contractile forces (not plotted here) 

or motor densities (Nm/Nactin = 0.9 (red solid line), Nm/Nactin = 3.1 (blue solid line), and 

Nm/Nactin = 6.4 (green solid line)). All flexibly crosslinked F-actin networks with or without 

myosin motors show nearly identical behavior of the ratio Eb/Ef (green solid line in (b)). 

 

Next we consider the response of the network with compliant crosslinks in the 

presence of motors. At small strains, Fig. 5.1 shows that the networks continuously 
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stiffen with increasing density of motors. Even with one motor per filament, the stiffness 

of the network increases by over one order of magnitude. Networks with about six motors 

per filament are stiffer than the networks without motors by about two orders of 

magnitude. To understand the reason for this marked increase in stiffness, we consider (a) 

the ratios of energies associated with different deformation modes (Fig. 5.2), (b) the 

distributions of the lengths of the crosslinks (Fig. 5.3) and c) the shapes of the deformed 

filaments (Fig. 5.4). Fig. 5.2 shows that even at small applied strains, the ratio of the total 

energy of the crosslinks to the total strain energy of all the filaments decreases 

significantly with increasing motor density. Indeed, the histogram of crosslink 

extensional lengths in Fig. 5.3 confirms that the motors are able to induce stretching of 

almost all the crosslinks to their contour length, l0, beyond which it is difficult to stretch 

them. This causes bending of the filaments, which explains the decrease in the ratio of the 

total energy of stretching of crosslinks to the total energy of the filaments, Ec/Ef, with 

increase in the density of motors. Upon application of a small external load, the 

deformation is primarily borne by the bending of the filaments leading to stiffer response 

compared to the case where motors are absent. The dominance of the bending modes is 

clearly seen in Fig. 5.4: for small applied strain of 0.05, the filaments in the network 

without motors are straight whereas significant bending of the filaments can be seen in 

the network with motors. Also note from Fig. 5.3 that most of the crosslinks in the former 

case have not been stretched to the maximum extent. As the applied strain is large ( 0.3), 

in all cases there is a transition in the deformation modes of the filaments from bending to 

stretching, at which point the response of all the networks is identical. 
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Fig. 5.3 Distribution of the extension of the crosslinks Δl relative to their contour length l0 at 

shear strains γ = 0 (blue) and γ = 0.05 (green). cl is the number of crosslinks normalized by 

the total number of crosslinks in the active network. The symbols A–C corresponded to the 

black squares given in Fig. 5.1. In B and C myosin motors drive most compliant crosslinks 

up to contour lengths, l0, whereas when no motors are present (A), the crosslinks have not 

been stretched to their fullest extent. Note that more crosslinks are stretched to their 

contour lengths in C than in B owing to the larger motor density in the former case. 

 

 
Fig. 5.4 The deformation of F-actin network corresponding to the points A and C in Fig. 5.1. 

Deformation is dominated by stretching of compliant crosslinks (A) or bending of flexibly 

crosslinked F-actin (C). Red lines are actin filaments and blue dots indicate the location of 

crosslinks. 
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In contrast to the filaments with compliant crosslinks, the stress-strain curves and 

the incremental moduli of networks with rigid crosslinks are not significantly altered by 

the presence of motors. Indeed, we find only an increase close to a factor of two in the 

modulus of the network at small strains. We can understand this by noting that the 

filaments in rigidly crosslinked networks deform primarily through bending. The motors 

do not qualitatively change this picture. The effect of the motors on bending deformation 

is small unlike the large change in the lengths of the crosslinks that they induce in the 

case of compliant networks. Our calculations therefore provide an explanation for the key 

role played by the nature of the crosslinks on the mechanical response of active networks. 

It is well known that in uncrosslinked networks the myosin filaments effectively 

fluidize actin networks by actively sliding antiparallel actin filaments past one another, 

which can lead to large scale reorganization of the network. However in a crosslinked 

network, upon addition of myosin, there was no noticeable change in network structure 

[59]. When myosin and FLNa were both present, the network still remained 

homogeneous and unbundled suggesting that relative sliding between the motors and 

filaments is relatively small, which justifies the treatment of the motors as force dipoles. 

It is also possible that myosin-driven tension may release FLNa crosslinking. Also, scruin 

can inhibit myosin binding. These issues, the effect of potential sliding and perhaps the 

stretching of myosin motors themselves can be considered in future work using the model 

we have developed here. 
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5.3. Conclusions 

In summary, by using material parameters typical for actin networks with 

compliant crosslinks, we have shown that myosin II motors generate internal stresses by 

stretching the crosslinks which in turn pull on the actin filaments. Once the crosslinks are 

fully stretched to their contour lengths, the differential stiffness of the network can 

increase by two orders of magnitude in excellent agreement with recent experiments [59]. 

In addition, our simulations show that motors do not lead to any significant stiffening in 

the response of rigidly crosslinked networks, also in accord with experiments [59]. These 

observations underscore the importance of the nature of crosslinks on determining the 

strain hardening behavior of active networks and provide guidelines for tuning 

mechanical response of biomimetic systems. 
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Chapter 6. Conclusions and Future Work 

 

6.1. Conclusions 

The nonlinear deformation response of two distinct materials is studied using 

finite element simulations in the dissertation. One is the hard AHSS widely used in 

automobile vehicles and its nonlinear mechanism of plastic deformation is due to 

dislocations. Another is soft active biopolymer networks in plant and animal cells and its 

nonlinear mechanism of deformation is due to the deformation mode transition from 

bending to stretching.  

For the hard AHSS, our proposed approach in Section 1.2 has successfully 

modeled the deformation response of two types of AHSS: fully martensitic steels and DP 

steels. The combination of micropillar compression experiments and microstructure-

based crystal plasticity finite element simulations accurately determined the material 

properties of lath martensite and ferrite in AHSS and predicted the overall flow behavior 

of both types of AHSS.  

The measured flow curves for martensite micropillars with diameters exceeding 

2.0 μm can be used to determine material parameters in a dislocation-density-based 

crystal plasticity model of individual martensite blocks. Numerical simulations confirm 

that hardening behavior can be attributed to the geometric constraints arising from 

boundaries between blocks. Boundaries between blocks in two separate packets were 

found to give rise to greater strain hardening than those between blocks within a single 
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packet. Full 3D crystal plasticity simulations, with material properties determined from 

martensite micropillar tests, were then used to predict the macroscopic uniaxial stress–

strain behavior of a representative volume element of martensite. The predicted stress–

strain behavior is in excellent agreement with experimental measurements, and validates 

the use of micropillar tests to determine material parameters for individual phases of a 

complex microstructure. The similar stress distributions on prior austenite/packet/block 

boundaries are also predicted.  

Using the same approach described in Section 1.2, the constitutive behavior, 

uniaxial tensile response, strain partitioning and interfacial stress distributions in two 

commercial DP steels, DP980 and DF140T, have also been determined.  

The crystallographic orientation dependence of the flow strength in the ferritic 

phases is predicted successfully by a crystal plasticity model that accounts for the non-

Schmid behavior commonly exhibited by BCC single crystals. Classical models based on 

Schmid’s law do not predict the orientation dependence correctly. 

The compressive response of micropillars extracted from the martensite phases of 

the two DP steels is qualitatively similar to behavior observed in fully martensitic steel. 

The pillars exhibit either elastic-perfectly plastic behavior, or a strain hardening response, 

depending on whether the pillars consist of a single block or block/packet boundary. The 

dislocation-density-based crystal plasticity model that accounts for the hierarchical 

microstructure of martensite also predicts behavior in the martensite micropillars milled 

from DP steel sheets that is in good agreement with experiment. 

A 3D computational representation of the microstructures of the DP steels, in 

which crystal plasticity models (calibrated by micropillar experiments) were used to 
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describe both the ferritic and martensitic phases, predicts uniaxial tensile stress-strain 

curves that are in excellent agreement with experiment. Computations show that features 

observed in the uniaxial tensile stress-strain curves can be explained by changes in strain 

partitioning in the steels with increasing strain.  First yield occurs in the ferrite at 400MPa. 

The period of rapid strain hardening between 400MPa and 700MPa is associated with 

continued deformation in the ferrite, while the martensite remains elastic. Above 700MPa, 

the martensite yields, leading to a reduction in strain hardening rate. Beyond this point, 

the strain partitioning between ferrite and martensite remains approximately constant in 

both steels. Further strain hardening in the steady-state regime is produced primarily by 

the martensite. 

The strain rate partitioning in the two DP steels during steady-state uniaxial 

tensile deformation differs significantly. In DP980, the contribution to the total plastic 

strain rate from martensite and ferrite roughly follows the individual volume fractions as 

predicted by a Taylor model; while in DF140T, martensite contributes only 25% of the 

total strain rate, which is much less than its volume fraction of 39%.  

The non-Schmid behavior observed in ferrite leads to a 9% reduction in the flow 

strength of DF40T and 5% reduction in the flow strength of DP980. The strength 

differential parameter measuring the tension-compression asymmetry is 0.06 in DF140T 

and 0.012 in DP980. The forming limit strain under a specific loading path (ρ=-0.2) near 

the plane strain state is 0.02 in DF140T and 0.029 in DP980. The difference results from 

the higher volume fraction of ferrite in DF140T. The non-associated flow obviously 

increases or decreases the forming limit strains of DP steels along different loading paths. 
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The deviation of forming limit strains for the non-associated flow from the associated 

flow increases with the increasing of strength differential SD value. 

For the soft active biopolymer networks, using material parameters typical for 

actin networks with compliant crosslinks, we have shown that myosin II motors generate 

internal stresses by stretching the crosslinks which in turn pull on the actin filaments. 

Once the crosslinks are fully stretched to their contour lengths, the differential stiffness of 

the network can increase by two orders of magnitude in excellent agreement with recent 

experiments. In addition, our simulations show that motors do not lead to any significant 

stiffening in the response of rigidly crosslinked networks, also in accord with 

experiments. These observations underscore the importance of the nature of crosslinks on 

determining the strain hardening behavior of active networks and provide guidelines for 

tuning mechanical response of biomimetic systems. 

 

6.2. Future work 

In light of the work in the dissertation, several directions might be investigated in 

the future. 

1. Eliminating the stepped interface shape of 3D RVEs due to the brick elements 

and remeshing the interfaces. The grain and phase boundaries in 3D RVEs are 

stepped shape due to brick elements. The artificial interfacial shapes should be 

eliminated in the future. One possible solution is to use the open-source 

software neper [123, 124] to reconstruct the 3D RVEs.   

2. Using the cohesive zone model to investigate decohesion along 

ferrite/martensite phase boundaries. It has been shown that most crack initiate 
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and/or propagate along the ferrite/martensite phase boundaries [24, 27]. The 

3D RVEs will have the capability to predict the failure and fraction behavior 

of multiphase steels if the stepped interfaces are smoothed.  

3. Introducing the austenite-to-martensite transformation mechanism into the 

crystal-plasticity models and predicting the plastic deformation of TRIP steels. 

The combination of micropillar compression tests and crystal-plasticity finite 

element model has been successfully used to predict the overall uniaxial 

stress-strain curves of fully martensite steel and DP steels. The approach 

might be extended to predict the mechanical properties of more complex 

AHSS, for example, TRIP steels.  

4. Measuring the strength differential value of lath martensite phase. Designing 

experiments to test whether the studied lath martensite exhibits the strength 

differential effect should be done in the future.  

5. Investigating the viscoelastic behavior of active biopolymer networks. The 

reconstructing of the cellular microstructures is facilitated by employing 

transiently cross-linking proteins. It is yet to be resolved how transiently 

cross-linking proteins affect the frequency response of cross-linked actin 

networks in the elasticity dominated intermediated frequency regime [60, 125-

128]. Including the binding/unbinding behavior of transient cross-linking 

protein and using kinetic connect elements in ABAQUS might predict the 

viscoelastic behavior of the active biopolymer networks.   
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Appendix A 

C---------------------------------------------------------------------- 

      SUBROUTINE GSLPINIT_MART (GSLIP0, NSLIP, NSLPTL, NSET, PROP, SLPNOR, SLPDIR) 

 

C-----  This subroutine calculates the initial value of current  
C     strength for each slip system in a rate-dependent single crystal. 

C     One set of initial values, proposed by Lee 

 

C-----  These initial values may be different for all slip systems  

C-----  Use single precision on cray 

C 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION GSLIP0(NSLPTL), NSLIP(NSET), PROP(16,NSET), 

     2          SLPNOR(3, NSLPTL), SLPDIR(3, NSLPTL),  

     3          SLPLINE(3, NSLPTL) 

 
C-----  Variables: 

C 

C     GSLIP0 -- initial value of current strength (OUTPUT) 

C 

C     NSLIP  -- number of slip systems in each set (INPUT) 

C     NSLPTL -- total number of slip systems in all the sets (INPUT) 

C     NSET   -- number of sets of slip systems (INPUT) 

C     SLPNOR -- normal of slip plane (INPUT) 

C     SLPDIR -- slip direction (INPUT) 

C     SLPLINE-- edge dislocation line direction 

C 

C     PROP   -- material constants characterizing the initial value of  
C               current strength (INPUT) 

C 

C               For Lee's law  

C               PROP(1,i) -- shear modulus G in the ith set of   

C                            slip systems 

C               PROP(2,i) -- magnitude of burgers verctor b 

C                            in the ith set of slip systems 

C               PROP(3,i) -- ka 

C               PROP(4,i) -- kb 

C               PROP(5,i) -- initial dislocation density \rho_0 

C               PROP(6,i) -- static yield stress 
C 

C 

 

C     include all active slip systems, including different slip system sets 

 

C     calculate the edge dislocation line direction for each slip system 

      call VectorCrossProduct(NSLPTL, SLPNOR, SLPDIR, SLPLINE)       

      id = 0 

      do i=1, NSET 

         Gshear = PROP(1,i) 

         burg = PROP(2,i)  
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         sigma0 = PROP(6,i) 

              

         do j=1, NSLIP(i) 

            id = id + 1   

             

            jd = 0 
            Term0 = 0.d0 

            do ii=1, NSET 

               rho0 = PROP(5, ii) 

               do jj=1, NSLIP(ii) 

                  jd = jd + 1 

                   

                  Hij = 0.d0 

                  do k=1, 3 

                     Hij = Hij + SLPNOR(k, id)*SLPLINE(k, jd) 

                  end do 

                  IF (Hij .GT. 1.d0 .and. Hij .LT. 1.1) THEN  

                     Hij = 1.d0 
                  else if (Hij .GT. 1.1) then 

                     WRITE (6,*)'***CPENG ERROR: Hij is bigger than 1.0' 

                     write (6,*)'SLPNOR are', (SLPNOR(kk,id),kk=1,3) 

                     write (6,*)'SLPLINE are', (SLPLINE(kk,jd),kk=1,3) 

                     write (6,*)'Hij is', Hij 

                     STOP 

                  END IF 

                  Term0 = Term0 + ABS(Hij)*rho0 

               end do 

            end do 

            GSLIP0(id) = sigma0 + Gshear*burg*SQRT(Term0) 
         end do 

      end do 

 

      RETURN 

      END 

C---------------------------------------------------------------------- 

      SUBROUTINE DislocationHarden(rho, NSLIP, NSLPTL, NSET, 

     2                             H, PROP, ND, SLPNOR, SLPDIR) 

      

C     NSLIP  -- number of slip systems in each set (INPUT) 

C     NSLPTL -- total number of slip systems in all the sets (INPUT) 

C     NSET   -- number of sets of slip systems (INPUT) 
C 

C     H      -- current value of self- and latent-hardening moduli  

C               (OUTPUT) 

C               H(i,i) -- self-hardening modulus of the ith slip system 

C                         (no sum over i) 

C               H(i,j) -- latent-hardening molulus of the ith slip  

C                         system due to a slip in the jth slip system  

C                         (i not equal j) 

C 

C     PROP   -- material constants characterizing the self- and latent- 

C               hardening law (INPUT) 
C 

C               For Lee's hardening law  

C               PROP(1,i) -- shear modulus G in the ith set of   

C                            slip systems 
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C               PROP(2,i) -- magnitude of burgers verctor b 

C                            in the ith set of slip systems 

C               PROP(3,i) -- k_a 

C               PROP(4,i) -- k_b 

C               PROP(5,i) -- initial dislocation density   

C                            rho_0 in the ith set of slip systems 
C 

C     ND     -- leading dimension of arrays defined in subroutine UMAT  

C               (INPUT)  

 

C-----  Use single precision on cray 

C 

      IMPLICIT REAL*8 (A-H,O-Z) 

 

      DIMENSION rho(NSLPTL), NSLIP(NSET),  

     2          PROP(16,NSET), H(ND,NSLPTL), 

     3          SLPNOR(3,NSLPTL), SLPDIR(3,NSLPTL), SLPLINE(3,NSLPTL) 

 
         

C     calculate the edge dislocation line direction for each slip system 

      call VectorCrossProduct(NSLPTL, SLPNOR, SLPDIR, SLPLINE)    

       

      ISELF=0 

      DO I=1,NSET 

         DO J=1,NSLIP(I) 

            ISELF=ISELF+1 

             

            Gshear = PROP(1, I) 

            ak = PROP(3, I) 
            bk = PROP(4, I) 

             

            DO LATENT=1,NSLPTL 

               Hij = 0.d0 

               do k=1, 3 

                  Hij = Hij + SLPNOR(k, ISELF)*SLPLINE(k, LATENT) 

               end do 

               Hij = ABS(Hij) 

               IF (Hij .GT. 1.d0 .and. Hij .LT. 1.1) THEN  

                  Hij = 1.d0 

               else if (Hij .GT. 1.1) then 

                  WRITE (6,*)'***CPENG ERROR: Hij is bigger than 1.0' 
                  write (6,*)'SLPNOR are', (SLPNOR(kk,ISELF),kk=1,3) 

                  write (6,*)'SLPLINE are', (SLPLINE(kk,LATENT),kk=1,3) 

                  write (6,*)'Hij is', Hij 

                  STOP 

               END IF 

                 

               rhoSum = 0.d0  

               hRhoSum = 0.d0 

               do k=1, NSLPTL 

                  Hik = 0.d0 

                  do ii=1, 3 
                     Hik = Hik + SLPNOR(ii, ISELF)*SLPLINE(ii, k) 

                  end do 

                  Hik = ABS(Hik) 

                  IF (Hik .GT. 1.d0 .and. Hik .LT. 1.1d0) THEN  
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                     Hik = 1.d0 

                  else if (Hik .GT. 1.1) then 

                     WRITE (6,*)'***CPENG ERROR: Hik is bigger than 1.0' 

                     write (6,*)'SLPNOR are', (SLPNOR(kk,ISELF),kk=1,3) 

                     write (6,*)'SLPLINE are', (SLPLINE(kk,k),kk=1,3) 

                     write (6,*)'Hik is', Hik 
                     STOP 

                  END IF 

                   

                  rhoSum = rhoSum + rho(k) 

                  hRhoSum = hRhoSum + Hik*rho(k) 

               end do 

               if (hRhoSum .lt. 0.0) then 

                  write(6,*)'***CPENG ERROR: hRhoSum is less than 0.0' 

                  write(6,*)'hRhoSum is', hRhoSum 

                  stop 

               end if 

                
               H(LATENT, ISELF) = 0.5d0*Gshear*Hij*(SQRT(rhoSum)/ak - 

     2                               bk*rho(LATENT))/SQRT(hRhoSum)    

            END DO 

 

         END DO 

      END DO 

 

      RETURN 

      END 

 

C---------------------------------------------------------------------- 
      Subroutine DislocationEvol(rho, 

     2                      NSLIP, NSLPTL, NSET, DGAMMA, DRho,  

     3                      PROP, ND) 

C  

C     Dislocaiton density evolution equation 

C     Output the increment of dislocaiton densities 

C 

      IMPLICIT REAL*8 (A-H,O-Z) 

 

      DIMENSION rho(NSLPTL), NSLIP(NSET),  

     2          PROP(16,NSET), DGAMMA(NSLPTL), DRho(NSLPTL) 

           
      id=0 

      DO i=1,NSET 

         DO j=1,NSLIP(I) 

            id=id+1 

             

            burg = PROP(2, i) 

            burgInv = 1.d0/burg 

            ak = PROP(3, i) 

            bk = PROP(4, i) 

             

            rhoSum = 0.d0 
            do k=1, NSLPTL 

               rhoSum = rhoSum + rho(k) 

            end do 

            if (rhoSum .le. PROP(5,1)) then 
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               write(6,*)'***CPENG ERROR: rhoSum is less than rho_0' 

               write(6,*)'rhoSum is', rhoSum 

               stop 

            end if 

             

            DRho(id) = burgInv*(rhoSum/ak - bk*rho(id))*ABS(DGAMMA(id)) 
         END DO 

      END DO 

 

      RETURN 

      END       

C---------------------------------------------------------------------- 
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Appendix B 

      SUBROUTINE NonSchmidInit (SLPDIR, SLPNOR, SLPNOR1, SLPCRS1, 

     2                       SLPCRS2, ROTATE, NSLPTL, NSLIP, NSET) 

      

C-----  Use single precision on cray 

C 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION SLPDIR(3,24), SLPNOR(3,24), SLPNOR1(3,24), 

     *          SLPCRS1(3,24), SLPCRS2(3,24),NSLIP(NSET), 

     *          ROTATE(3,3), TERM(3) 

      
      SLPDIR(1,1) = 1.;   SLPDIR(2,1) = 1.;   SLPDIR(3,1) = 1. 

      SLPNOR(1,1) = 0.;   SLPNOR(2,1) = 1.;   SLPNOR(3,1) =-1. 

      SLPNOR1(1,1)=-1.;   SLPNOR1(2,1)= 1.;   SLPNOR1(3,1)= 0. 

 

      SLPDIR(1,2) = 1.;   SLPDIR(2,2) = 1.;   SLPDIR(3,2) = 1. 

      SLPNOR(1,2) =-1.;   SLPNOR(2,2) = 0.;   SLPNOR(3,2) = 1. 

      SLPNOR1(1,2)= 0.;   SLPNOR1(2,2)=-1.;   SLPNOR1(3,2)= 1. 

       

      SLPDIR(1,3) = 1.;   SLPDIR(2,3) = 1.;   SLPDIR(3,3) = 1. 

      SLPNOR(1,3) = 1.;   SLPNOR(2,3) =-1.;   SLPNOR(3,3) = 0. 

      SLPNOR1(1,3)= 1.;   SLPNOR1(2,3)= 0.;   SLPNOR1(3,3)=-1. 
 

      SLPDIR(1,4) =-1.;   SLPDIR(2,4) = 1.;   SLPDIR(3,4) = 1. 

      SLPNOR(1,4) =-1.;   SLPNOR(2,4) = 0.;   SLPNOR(3,4) =-1. 

      SLPNOR1(1,4)=-1.;   SLPNOR1(2,4)=-1.;   SLPNOR1(3,4)= 0. 

 

      SLPDIR(1,5) =-1.;   SLPDIR(2,5) = 1.;   SLPDIR(3,5) = 1. 

      SLPNOR(1,5) = 0.;   SLPNOR(2,5) =-1.;   SLPNOR(3,5) = 1. 

      SLPNOR1(1,5)= 1.;   SLPNOR1(2,5)= 0.;   SLPNOR1(3,5)= 1. 

 

      SLPDIR(1,6) =-1.;   SLPDIR(2,6) = 1.;   SLPDIR(3,6) = 1. 

      SLPNOR(1,6) = 1.;   SLPNOR(2,6) = 1.;   SLPNOR(3,6) = 0. 

      SLPNOR1(1,6)= 0.;   SLPNOR1(2,6)= 1.;   SLPNOR1(3,6)=-1. 
 

      SLPDIR(1,7) =-1.;   SLPDIR(2,7) =-1.;   SLPDIR(3,7) = 1. 

      SLPNOR(1,7) = 0.;   SLPNOR(2,7) =-1.;   SLPNOR(3,7) =-1. 

      SLPNOR1(1,7)= 1.;   SLPNOR1(2,7)=-1.;   SLPNOR1(3,7)= 0. 

 

      SLPDIR(1,8) =-1.;   SLPDIR(2,8) =-1.;   SLPDIR(3,8) = 1. 

      SLPNOR(1,8) = 1.;   SLPNOR(2,8) = 0.;   SLPNOR(3,8) = 1. 

      SLPNOR1(1,8)= 0.;   SLPNOR1(2,8)= 1.;   SLPNOR1(3,8)= 1. 

       

      SLPDIR(1,9) =-1.;   SLPDIR(2,9) =-1.;   SLPDIR(3,9) = 1. 

      SLPNOR(1,9) =-1.;   SLPNOR(2,9) = 1.;   SLPNOR(3,9) = 0. 
      SLPNOR1(1,9)=-1.;   SLPNOR1(2,9)= 0.;   SLPNOR1(3,9)=-1. 

 

      SLPDIR(1,10) = 1.;   SLPDIR(2,10) =-1.;   SLPDIR(3,10) = 1. 

      SLPNOR(1,10) = 1.;   SLPNOR(2,10) = 0.;   SLPNOR(3,10) =-1. 

      SLPNOR1(1,10)= 1.;   SLPNOR1(2,10)= 1.;   SLPNOR1(3,10)= 0.       
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      SLPDIR(1,11) = 1.;   SLPDIR(2,11) =-1.;   SLPDIR(3,11) = 1. 

      SLPNOR(1,11) = 0.;   SLPNOR(2,11) = 1.;   SLPNOR(3,11) = 1. 

      SLPNOR1(1,11)=-1.;   SLPNOR1(2,11)= 0.;   SLPNOR1(3,11)= 1.     

       

      SLPDIR(1,12) = 1.;   SLPDIR(2,12) =-1.;   SLPDIR(3,12) = 1. 

      SLPNOR(1,12) =-1.;   SLPNOR(2,12) =-1.;   SLPNOR(3,12) = 0. 
      SLPNOR1(1,12)= 0.;   SLPNOR1(2,12)=-1.;   SLPNOR1(3,12)=-1.    

       

      SLPDIR(1,13) =-1.;   SLPDIR(2,13) =-1.;   SLPDIR(3,13) =-1. 

      SLPNOR(1,13) = 0.;   SLPNOR(2,13) = 1.;   SLPNOR(3,13) =-1. 

      SLPNOR1(1,13)= 1.;   SLPNOR1(2,13)= 0.;   SLPNOR1(3,13)=-1.      

       

      SLPDIR(1,14) =-1.;   SLPDIR(2,14) =-1.;   SLPDIR(3,14) =-1. 

      SLPNOR(1,14) =-1.;   SLPNOR(2,14) = 0.;   SLPNOR(3,14) = 1. 

      SLPNOR1(1,14)=-1.;   SLPNOR1(2,14)= 1.;   SLPNOR1(3,14)= 0.   

 

      SLPDIR(1,15) =-1.;   SLPDIR(2,15) =-1.;   SLPDIR(3,15) =-1. 

      SLPNOR(1,15) = 1.;   SLPNOR(2,15) =-1.;   SLPNOR(3,15) = 0. 
      SLPNOR1(1,15)= 0.;   SLPNOR1(2,15)=-1.;   SLPNOR1(3,15)= 1.   

 

      SLPDIR(1,16) = 1.;   SLPDIR(2,16) =-1.;   SLPDIR(3,16) =-1. 

      SLPNOR(1,16) =-1.;   SLPNOR(2,16) = 0.;   SLPNOR(3,16) =-1. 

      SLPNOR1(1,16)= 0.;   SLPNOR1(2,16)= 1.;   SLPNOR1(3,16)=-1.   

       

      SLPDIR(1,17) = 1.;   SLPDIR(2,17) =-1.;   SLPDIR(3,17) =-1. 

      SLPNOR(1,17) = 0.;   SLPNOR(2,17) =-1.;   SLPNOR(3,17) = 1. 

      SLPNOR1(1,17)=-1.;   SLPNOR1(2,17)=-1.;   SLPNOR1(3,17)= 0.   

 

      SLPDIR(1,18) = 1.;   SLPDIR(2,18) =-1.;   SLPDIR(3,18) =-1. 
      SLPNOR(1,18) = 1.;   SLPNOR(2,18) = 1.;   SLPNOR(3,18) = 0. 

      SLPNOR1(1,18)= 1.;   SLPNOR1(2,18)= 0.;   SLPNOR1(3,18)= 1.         

 

      SLPDIR(1,19) = 1.;   SLPDIR(2,19) = 1.;   SLPDIR(3,19) =-1. 

      SLPNOR(1,19) = 0.;   SLPNOR(2,19) =-1.;   SLPNOR(3,19) =-1. 

      SLPNOR1(1,19)=-1.;   SLPNOR1(2,19)= 0.;   SLPNOR1(3,19)=-1.   

 

      SLPDIR(1,20) = 1.;   SLPDIR(2,20) = 1.;   SLPDIR(3,20) =-1. 

      SLPNOR(1,20) = 1.;   SLPNOR(2,20) = 0.;   SLPNOR(3,20) = 1. 

      SLPNOR1(1,20)= 1.;   SLPNOR1(2,20)=-1.;   SLPNOR1(3,20)= 0.   

 

      SLPDIR(1,21) = 1.;   SLPDIR(2,21) = 1.;   SLPDIR(3,21) =-1. 
      SLPNOR(1,21) =-1.;   SLPNOR(2,21) = 1.;   SLPNOR(3,21) = 0. 

      SLPNOR1(1,21)= 0.;   SLPNOR1(2,21)= 1.;   SLPNOR1(3,21)= 1.   

 

      SLPDIR(1,22) =-1.;   SLPDIR(2,22) = 1.;   SLPDIR(3,22) =-1. 

      SLPNOR(1,22) = 1.;   SLPNOR(2,22) = 0.;   SLPNOR(3,22) =-1. 

      SLPNOR1(1,22)= 0.;   SLPNOR1(2,22)=-1.;   SLPNOR1(3,22)=-1.  

 

      SLPDIR(1,23) =-1.;   SLPDIR(2,23) = 1.;   SLPDIR(3,23) =-1. 

      SLPNOR(1,23) = 0.;   SLPNOR(2,23) = 1.;   SLPNOR(3,23) = 1. 

      SLPNOR1(1,23)= 1.;   SLPNOR1(2,23)= 1.;   SLPNOR1(3,23)= 0.  

 
      SLPDIR(1,24) =-1.;   SLPDIR(2,24) = 1.;   SLPDIR(3,24) =-1. 

      SLPNOR(1,24) =-1.;   SLPNOR(2,24) =-1.;   SLPNOR(3,24) = 0. 

      SLPNOR1(1,24)=-1.;   SLPNOR1(2,24)= 0.;   SLPNOR1(3,24)= 1.  
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      NSLPTL = 24 

      NSLIP(1) = 24 

       

C      WRITE(6,*) '          ' 

C      WRITE(6,*) ' #     Slip Direction     Slip Plane     Slip Plane2' 

C      DO J=1,NSLIP(1) 
C         WRITE (6,11) J,  

C     2                (INT(SLPDIR(K,J)),K=1,3), (INT(SLPNOR(K,J)),K=1,3), 

C     3                (INT(SLPNOR1(K,J)),K=1,3) 

C      END DO 

C11    FORMAT(1X,I2,5X,'[',3(1X,I2),1X,']',5X,'(',3(1X,I2),1X,')', 

C     2       5X,'(',3(1X,I2),1X,')')     

C-----calculate the the second and third unit vectors  

C     SLPCRS1 and SLPCRS2        

C-----SLPCRS1 

      call VectorCrossProduct(NSLIP(1), SLPNOR, SLPDIR, SLPCRS1) 

C-----SLPCRS2 

      call VectorCrossProduct(NSLIP(1), SLPNOR1, SLPDIR, SLPCRS2) 
 

C      WRITE(6,*) '          ' 

C      WRITE(6,*) ' #          Slip Cross1          Slip Cross2' 

C      DO J=1,NSLIP(1) 

C         WRITE (6,12) J,  

C     2                (SLPCRS1(K,J),K=1,3), (SLPCRS2(K,J),K=1,3) 

C      END DO 

C12    FORMAT(1X,I2,3X,'(',3(1X,F5.2),1X,')',3X,'(',3(1X,F5.2),1X,')')  

 

C----- Normalize the vectors       

      DO I=1, NSLIP(1) 
         TERM1 = 0. 

         TERM2 = 0. 

         TERM3 = 0. 

         TERM4 = 0. 

         TERM5 = 0. 

         DO J=1, 3 

            TERM1 = TERM1 + SLPDIR(J,I)**2 

            TERM2 = TERM2 + SLPNOR(J,I)**2 

            TERM3 = TERM3 + SLPNOR1(J,I)**2 

            TERM4 = TERM4 + SLPCRS1(J,I)**2 

            TERM5 = TERM5 + SLPCRS2(J,I)**2             

         END DO 
          

         TERM1SqrtInv = 1./SQRT(TERM1) 

         TERM2SqrtInv = 1./SQRT(TERM2) 

         TERM3SqrtInv = 1./SQRT(TERM3) 

         TERM4SqrtInv = 1./SQRT(TERM4) 

         TERM5SqrtInv = 1./SQRT(TERM5) 

 

         DO J=1, 3 

            SLPDIR(J,I) = SLPDIR(J,I)*TERM1SqrtInv 

            SLPNOR(J,I) = SLPNOR(J,I)*TERM2SqrtInv 

            SLPNOR1(J,I) = SLPNOR1(J,I)*TERM3SqrtInv 
            SLPCRS1(J,I) = SLPCRS1(J,I)*TERM4SqrtInv 

            SLPCRS2(J,I) = SLPCRS2(J,I)*TERM5SqrtInv 

         END DO 

      END DO 
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C-----Unit vectors in slip directions: SLPDIR, and unit normals to  

C     slip planes: SLPNOR, and unit normals: SLPNOR1, and  

C     unit cross-product: SLPCRS1, and unit cross-product: SLPCRS2 

C     in global system 

C 
   DO J=1,NSLIP(1) 

      DO I=1,3 

      TERM(I)=0. 

      DO K=1,3 

      TERM(I)=TERM(I)+ROTATE(I,K)*SLPDIR(K,J) 

      END DO 

   END DO 

   Term0 = 0. 

   do i=1, 3 

      Term0 = Term0 + TERM(i)**2 

   end do 

   Term0SqrtInv = 1./SQRT(Term0)   
   DO I=1,3 

      SLPDIR(I,J)=TERM(I)*Term0SqrtInv 

   END DO 

  

   DO I=1,3 

      TERM(I)=0. 

      DO K=1,3 

      TERM(I)=TERM(I)+ROTATE(I,K)*SLPNOR(K,J) 

      END DO 

   END DO 

   Term0 = 0. 
   do i=1, 3 

      Term0 = Term0 + TERM(i)**2 

   end do 

   Term0SqrtInv = 1./SQRT(Term0)   

   DO I=1,3 

      SLPNOR(I,J)=TERM(I)*Term0SqrtInv 

   END DO 

    

   DO I=1,3 

      TERM(I)=0. 

      DO K=1,3 

      TERM(I)=TERM(I)+ROTATE(I,K)*SLPNOR1(K,J) 
      END DO 

   END DO 

   Term0 = 0. 

   do i=1, 3 

      Term0 = Term0 + TERM(i)**2 

   end do 

   Term0SqrtInv = 1./SQRT(Term0)   

   DO I=1,3 

      SLPNOR1(I,J)=TERM(I)*Term0SqrtInv 

   END DO 

    
   DO I=1,3 

      TERM(I)=0. 

      DO K=1,3 

      TERM(I)=TERM(I)+ROTATE(I,K)*SLPCRS1(K,J) 
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      END DO 

   END DO 

   Term0 = 0. 

   do i=1, 3 

      Term0 = Term0 + TERM(i)**2 

   end do 
   Term0SqrtInv = 1./SQRT(Term0)   

   DO I=1,3 

      SLPCRS1(I,J)=TERM(I)*Term0SqrtInv 

   END DO  

    

   DO I=1,3 

      TERM(I)=0. 

      DO K=1,3 

      TERM(I)=TERM(I)+ROTATE(I,K)*SLPCRS2(K,J) 

      END DO 

   END DO 

   Term0 = 0. 
   do i=1, 3 

      Term0 = Term0 + TERM(i)**2 

   end do 

   Term0SqrtInv = 1./SQRT(Term0)   

   DO I=1,3 

      SLPCRS2(I,J)=TERM(I)*Term0SqrtInv 

   END DO     

   END DO 

 

      RETURN 

      END      
C---------------------------------------------------------------------- 

C---------------------------------------------------------------------- 

      SUBROUTINE VectorCrossProduct (N, A, B, CRS) 

 

C-----  Cross Product of Two Unit Vectors CRS = A X B 

 

C-----  Use single precision on cray 

C 

      IMPLICIT REAL*8 (A-H,O-Z) 

      DIMENSION A(3,N), B(3,N), CRS(3,N)   

       

       
      DO I=1, N 

         CRS(1,I) = A(2,I)*B(3,I) - A(3,I)*B(2,I) 

         CRS(2,I) = A(3,I)*B(1,I) - A(1,I)*B(3,I) 

         CRS(3,I) = A(1,I)*B(2,I) - A(2,I)*B(1,I) 

 

         TERM = SQRT(CRS(1,I)**2 + CRS(2,I)**2 + CRS(3,I)**2) 

         CRS(1,I) = CRS(1,I)/TERM 

         CRS(2,I) = CRS(2,I)/TERM 

         CRS(3,I) = CRS(3,I)/TERM 

      END DO 

 
      RETURN 

      END 

C---------------------------------------------------------------------- 


