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Abstract of “Towards High-order Methods for Stochastic Differential Equations with White Noise:
A Spectral Approach” by Zhongqiang Zhang, Ph.D., Brown University, May 2014

We develop a recursive multistage Wiener chaos expansion method (WCE) and a recursive multi-

stage stochastic collocation method (SCM) for numerical integration of linear stochastic advection-

diffusion-reaction equations with multiplicative white noise. We show that both methods are com-

parably efficient in computing the first two moments of solutions for long time intervals, compared

to a direct application of WCE and SCM while both methods are more efficient than the standard

Monte Carlo method if high accuracy is required.

Both methods belong to Wong-Zakai approximation, where Brownian motion is truncated using

its spectral expansion before any discretization in time and space. For computational convenience,

WCE is associated with the Ito formulation of underlying equations and SCM is associated with

the Stratonovich formulation.

We apply SCM using Smolyak’s sparse grid construction to obtain the shock location of the

one-dimensional piston problem, which is modeled by stochastic Euler equations with multiplica-

tive white noise. We show numerically that SCM is efficient for short time simulations and for

small magnitudes of noises and quasi-Monte Carlo methods are efficient for moderate large-time

simulations. We also illustrate the efficiency of SCM through error estimates for a linear model

problem.

We further investigate the effect of a spectral approximation of Brownian motion, rather than

a piecewise linear approximation, for both spatial and temporal noise. For spatial noise, we con-

sider semilinear elliptic equations with additive noise and show that when the solution is smooth

enough, the spectral approximation is superior to the piecewise linear approximation while both

approximations are comparable when the solution is not smooth. For temporal noise, we use this

spectral approach to design numerical schemes for stochastic delay differential equations under the

Stratonovich formulation. We show that the spectral approach admits higher-order accuracy only

for higher-order schemes.



Besides equations with coefficients of linear growth, we also consider stochastic ordinary differ-

ential equations with coefficients of polynomial growth. We formulate a basic relationship between

local truncation error and global error of numerical methods for these equations, and apply this

relationship for our explicit balanced scheme to obtain the convergence order.
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Chapter 1

Introduction

Stochastic mathematical models have attracted increasing attention for their capacity of represent-

ing intrinsic uncertainty in complex systems, e.g., capturing various scales as in particle simulations

at mesoscopic scale, and extrinsic uncertainty, e.g., stochastic external forces, stochastic initial con-

dition or stochastic boundary conditions.

One important class of stochastic mathematical models is stochastic partial differential equations

(SPDEs), which can be seen as deterministic partial differential equations (PDEs) with finite or

infinite dimensional random processes–either with color noise or white noise. Though white noise

is a purely mathematical construction, it can be a good model for rapid random fluctuations and

also it is a limit of color noise when the correlation length goes to zero.

SPDEs with white noise have been derived from various applications, such as nonlinear filtering

(see e.g. [415]), turbulent flows (see e.g. [40, 292]), fluid flows in random media (see e.g. [190]),

particle systems (see e.g. [228]), population biology (see e.g. [86]), neuroscience (see e.g. [389]),

etc.

Since analytic solutions to SPDEs can rarely be obtained, numerical methods are adopted to

solve SPDEs. One of the motivations for numerical SPDEs in early literature was to solve the

Zakai equation of nonlinear filtering, see e.g. [29, 68, 112, 127, 128, 129]. In the next section,
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Figure 1.1: Conceptual and chapter overview of this thesis

we review some numerical methods for semilinear equation (1.1.1), advection-diffusion-reaction

equation of nonlinear filtering (1.1.6), stochastic Burgers equation (1.1.13) and stochastic Navier-

Stokes equation (1.1.16).

The rest of this chapter is organized as follows. In Section 1.1, we review several prevalent

numerical methods for SPDEs and address the convergence and stability of these methods. We

then survey one of these numerical methods, the Wong-Zakai approximation in Section 1.2. Before

we present the objectives of this work, we briefly address the numerical integration methods in

random space for obtaining statistics of solutions in Section 1.3. In Figure 1.1, we sketch how we

organize this chapter and the overall organization of this thesis.

1.1 Review of numerical methods for SPDEs

In this section, we briefly review numerical methods for SPDEs and classify the numerical meth-

ods in literature into three types: direct semi-discretization methods, Wong-Zakai approximation,

and preprocessing methods. In the first approach, we usually discretize the underlying SPDEs in
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time and/or in space, applying classical techniques from time-discretization methods of stochastic

ordinary differential equations (SODEs) and/or from spatial discretization methods of partial dif-

ferential equations (PDEs). In the second approach, we first discretize the space-time noise before

any discretization in time and space and thus we need further spatial-temporal discretizations. In

the third approach, we first transform the underlying SPDE into some equivalent form before we

discretize the SPDEs.

We start from considering the following SPDE over the physical domain D ⊆ Rd,

dX = [AX + f(X)] dt+ g(X) dWQ, (1.1.1)

where WQ is a Q-Wiener process:

WQ(t, x) =
∑
i∈Nd

√
qiei(x)wi(t), (1.1.2)

Here qi ≥ 0, i ∈ Nd and {ei(x)} is an orthonormal basis in L2(D). When qi = 1 for all i, we have

the space-time white noise. When
∑∞
i=1 qi <∞, we call it the space-time colored noise. We call the

noise finite-dimensional when qi = 0 for all sufficient large i. The physical space is one-dimensional,

i.e. d = 1, unless otherwise stated.

The leading operator A can be second-order or fourth-order differential operators, which are

usually generators of analytic semigroups. The nonlinear function f, g are usually Lipschitz con-

tinuous. The problem (1.1.1) is endowed either with only initial conditions in the whole space

(D = Rd) or with initial and boundary conditions in a bounded domain (D ( Rd).

1.1.1 Direct semi-discretization methods for parabolic SPDEs

In this approach, we first review the time-discretization methods for (1.1.1), which can be seen

as a straightforward application of numerical methods for SODEs, where increments of Brownian
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motions are used. After truncating in physical space, we will have a system of finite dimensional

SODEs and then we can apply standard numerical methods for SODEs, e.g. those from [218, 297,

301].

Second-order equations

For finite dimensional noise, we can directly apply those time-discretization methods for SODEs

to SPDEs as solutions are usually smooth in space. Ref. [141] considered Euler and other explicit

schemes for scalar Wiener process and Ref. [220] further considered linear-implicit schemes in time

under the same problem setting. Ref. [118] proposed the Milstein scheme for KPP equations with

multiplicative noise using finite difference scheme in space. See [136, 309, 343, 355, 359] for more

numerical results.

For infinite dimensional noise but with fast decaying qi, Ref. [180] considered the mean-square

convergence of linear-implicit and explicit Euler scheme, and Crank-Nicolson scheme in time for

(1.1.1) with certain smooth f and g and proved half-order convergence for these schemes. The

author remarked that for Crank-Nicolson scheme the convergence order can be improved to one

for linear equations with additive noise, as in the case of SODEs. Ref. [181] proved the first-

order weak convergence of these numerical schemes for (1.1.1) with additive noise. Ref. [293]

considered (1.1.1) with space-time noise where qi and ei are eigenvalues and eigenfunctions of a

specific isotropic kernel. Hausenblas [179] considered a slightly different equation

dX = [AX + f(t,X)] dt+
∑
j

gi(t,X) dwj(t), (1.1.3)

where
∑
j ‖gi(t)‖

2
2 < ∞ and some boundedness of f and g is imposed. Here ‖·‖2 is the Sobolev-

Hilbert second-order norm. The author proved half-order convergence in time for the linear-implicit

and explicit Euler schemes and the Crank-Nicolson scheme.

However, if space-time white noise is considered, the convergence order in time is expected to be
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less than 1/4. In fact, the sample paths of the solution to heat equation with additive noise is Hölder

continuous with exponent 1/4 − ε in time (ε > 0 is arbitrarily small), and thus the optimal order

of convergence in time is 1/4 − ε if only increments of Brownian motion (with equsi-spaced time

steps) are used, see e.g. [5, 84] for the case of linear equations. Gyongy and Nualart introduced an

implicit numerical scheme in time for the SPDE (1.1.1) with additive noise and proved convergence

in probability in time without order in [167] and for (1.1.1) with mean-square order 1/8− ε in time

[168]. Gyongy [157, 159] also applied finite differences in space to the SPDE (1.1.1) and then used

several temporal implicit and explicit schemes, including the linear-implicit Euler scheme. The

author showed that these schemes converge with order 1/2− ε in the space and with order 1/4− ε

in time for multiplicative noise with Lipschitz nonlinear terms similar to the linear equations in

[5, 84].

Refs. [315, 316] proposed an implicit Euler scheme on non-uniform time grid for (1.1.1) with

f = 0 to reduce the computational cost where they provided upper bound [315] and lower bound

[316] of the mean-square errors in terms of the computational cost.

As we mentioned before, the solution to (1.1.1) is of low regularity and thus it is not possible

to derive high-order schemes with direct time discretization methods. See e.g. [390] for discussion

on first-order schemes (Milstein type schemes) for (1.1.1) and also [209] for a review of numerical

approximation of (1.1.1) along this line.

For spatial semi-discretization methods for solving SPDEs (including but not limited to (1.1.1)),

see finite difference methods, see e.g. [5, 353, 412, 263]; finite element methods, see e.g. [5, 20, 129,

390, 393, 408, 411]; finite volume methods for hyperbolic problems, see e.g. [234, 311]; spectral

methods, see e.g. [56, 68, 203, 254]). See also [164, 176, 177, 126] for acceleration schemes in space

using Richardson’s extrapolation method.
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Fourth-order equations

Now we consider fourth-order equations, i.e. A is a fourth-order differential operator, which have

been investigated in [225, 226, 227, 231, 248] etc. As the kernels associated with fourth-order

operators can have more smoothing effects than those associated with second-order differential

operator, we can expect better convergence in space and also in time.

Ref. [225] considered fully-discrete finite element approximations for a fourth-order linear

stochastic parabolic equation with additive space-time white noise in one space dimension where

strong convergence with order 3/8 in time and 3/2− ε in space was proved.

Ref. [231] proved the convergence of finite element approximation of the nonlinear stochastic

Cahn-Hilliard-Cook equation by additive space-time color noise

dX = ∆2X + ∆f(X) + dWQ. (1.1.4)

Ref. [62] presented some numerical results of a semi-implicit backward differentiation formula in

time for nonlinear Cahn-Hilliard equation while no convergence analysis is given.

For the linearized Cahn-Hilliard-Cook equation (f = 0) with additive space-time colored noise,

Ref. [248] applied a standard finite element method and an implicit Euler scheme in time and

obtained quasi-optimal convergence order in space. Kossioris and Zouris considered an implicit

Euler scheme in time and finite elements in space for the linear Cahn-Hilliard equation with additive

space-time white noise in [227] and the same equation but with even rougher noise which is the

fist-order spatial derivative of the space-time white noise in [226]. In [227], they proved that the

strong convergence order is (4− d)/8 in time and (4− d)/2− ε in space for d = 2, 3.

1.1.2 Wong-Zakai approximation for parabolic SPDEs

In this approach, we first truncate the Brownian motion with a smooth process of bounded variation

yielding a PDE with finite dimensional noise. Thus, after truncating Brownian motion, we have to
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discretize both in time and in space to obtain fully discrete schemes.

The most popular approximation Brownian motion in this approach is piecewise linear approx-

imation of Brownian motion (also known as polygonal approximation [399])

W (n)(t) = W (ti) + (W (ti+1)−W (ti))
t− ti

ti+1 − ti
, t ∈ [ti, ti+1). (1.1.5)

Piecewise linear approximation for SPDEs has been well studied in theory, see e.g. [151, 194, 371,

382, 383, 385, 121] (for mean-square convergence), [42, 152, 171, 172] (for pathwise convergence),

[16, 28, 63, 69, 153, 154, 155, 170, 156, 294, 384] (for support theorem, the relation between the

support of distribution of the solution and that of its Wong-Zakai approximation). For mean-

square convergence of (1.1.6) with Mk having no differential operator, Ref. [194] proved a half-

order convergence, see also [49, 50]. For pathwise convergence, Ref. [171] proved a 1/4 − ε-order

convergence and Ref. [172] proved a 1/2− ε-order convergence whenMk is a first-order differential

operator.

All the aforementioned papers were on the convergence of the Wong-Zakai approximation itself,

i.e., without any further discretization of the resulting PDEs. Numerical simulations haven’t been

well explored for SPDEs. Even for SODEs, Ref. [258] seems to be the first attempt to obtain

numerical solutions from Wong-Zakai approximation, where the authors considered a stiff ODE

(abbreviated for ordinary differential equations) solver instead of presenting new discretization

schemes.

In this work, we will derive fully discrete schemes based on Wong-Zakai approximations and

show the relationships between the derived schemes and the classical schemes (e.g. those in [218,

297, 301]); see Chapter 8 for details.

We will briefly review the literature on Wong-Zakai approximation in Section 1.2, especially

on different types of approximation of Brownian motion and their applications to SPDEs and also

SODEs.
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1.1.3 Preprocessing methods for parabolic SPDEs

In this type of methods, the underlying equation is first transformed into an equivalent form, which

may bring some benefits in computation, and then is dealt with time discretization techniques. For

example, splitting techniques split the underlying equation into stochastic part and deterministic

part and save computational cost if either part can be easily solved or even explicitly solved. In

the splitting methods, we also have the freedom to use different schemes for different parts.

We will only review two methods in this class: splitting techniques and exponential integrator

methods. In addition to these two methods, there are other preprocessing methods such as methods

of averaging-over-characteristics, e.g. [304, 336, 360] ; particle methods, e.g. [76, 77, 78, 79, 80, 243];

algebraic method, e.g. [344]; filtering on space-time noise [260]; etc.

Splitting methods

Splitting methods are also known as fractional step methods, see e.g. [138], and sometimes as

predictor-corrector methods see e.g. [113]. They have been widely used for their computational

convenience, e.g. [31, 74, 75, 160, 162, 163, 205, 249, 256, 255]. Mostly, the splitting is formulated

by the following Lie-Trotter splitting, which splits the underlying problem, say (1.1.6), into two

parts: ‘stochastic part’ (1.1.7a) and ‘deterministic part’ (1.1.7b). Consider the following Cauchy

problem (see e.g. [113, 161, 162])

du(t, x) = Lu(t, x) dt+

d1∑
k=1

Mku(t, x) ◦ dwk, (t, x) ∈ (0, T ]×D, (1.1.6)

where L is linear second-order differential operator, Mk is linear differential operator up to first

order, and D is the whole space Rd. The typical Lie-Trotter splitting scheme for (1.1.6) reads, over

the time interval (tn, tn+1], in integral form

ũn(t, x) = un(tn, x) +

∫ t

tn

d1∑
k=1

Mkũn(s, x) ◦ dwk(s), t ∈ (tn, tn+1], (1.1.7a)
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un(t, x) = ũn(tn+1) +

∫ t

tn

Lun(s, x) ds, t ∈ (tn, tn+1]. (1.1.7b)

WhenMk is a zeroth order differential operator, Ref. [363] presented for pathwise convergence

with half-order in time under L2-norm in space when d1 = 1. Under similar settings in [363], Ref.

[205] proved that a normalization of numerical density in Zakai equation in a splitting scheme is

equivalent to solving the Kushner equation (nonlinear SPDE for the normalized density, see e.g.

[244]) by a similar splitting scheme (first order in the mean-square sense).

WhenMk is a first-order differential operator, Ref. [113] proved half-order mean-square conver-

gence in time under the L2-norm in space. Gyöngy and Krylov managed to provide the first-order

mean-square convergence in time under higher-order Sobolev-Hilbert norms [162], and under even

stronger norm in space [161].

Other than finite dimensional noise, Refs. [30, 31] considered semilinear parabolic equations

(1.1.1) with multiplicative space-time color noises. With the Lie-Trotter splitting, they established

strong convergence of the splitting scheme and proved half-order mean-square convergence in time.

[74] obtained mean-square and pathwise convergence order of Lie-Trotter splitting methods for

Cauchy problems of linear stochastic parabolic equations with additive space-time noise.

Other than the problems (1.1.1) and (1.1.6), the Lie-Trotter splitting techniques have been

applied to different problems, such as stochastic hyperbolic equations (e.g. [6, 25, 349]), rough

partial differential equations (e.g. [117]), stochastic Schrödinger equation (e.g. [43, 142, 255, 256,

285]), etc.

Integration-factor (exponential integrator) techniques

In this approach, we first write the underlying SPDE in mild form (integration-factor) and then

combine different time-discretization methods to derive fully discrete schemes. It was first proposed

in [259, 313], under the name of exponential Euler scheme and was further developed to derive

higher-order scheme, see e.g. [27, 206, 207, 208, 209, 210, 211].
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In this approach, it is possible to derive high-order schemes in the strong sense since we may

incorporate dynamics the underlying problems as shown for ODEs with smooth random inputs in

[216] . By formulating Equation (1.1.1) with additive noise in mild form, we have

X(t) = eAtX0 +

∫ t

0

eA(t−s)f(X(s)) ds+

∫ t

0

eA(t−s) dWQ(s), (1.1.8)

then we can derive an exponential Euler scheme [259, 313]:

Xk+1 = eAh[Xk + hf(Xk) +WQ(tk+1)−WQ(tk)]. (1.1.9)

or as in [210, 313]

Xk+1 = eAhXk +A−1(eAh − I)f(Xk) +

∫ tk+1

tk

eA(tk+1−s) dWQ(s), (1.1.10)

where tk = kh, k = 0, · · · , N , Nh = T .

In certain cases, the total computational cost for the exponential Euler scheme can be reduced

when ηk =

∫ tk+1

tk

eA(tk+1−s) dWQ(s) is simulated as a whole instead of using increments of Brownian

motion. For example, when Aei = −λiei, noticing that ηk solves

Y =

∞∑
i=1

∫ tk+1

tk

AY ds+

∞∑
i=1

∫ tk+1

tk

√
qiei dwi(s), (1.1.11)

and thus ηk can be represented by

ηk =

∞∑
i=1

√
γiei(x)ξk,i, ξk,i =

1
√
γi

∫ tk+1

tk

eλi(tk+1−s) dwi(s), γi =
qi

2λi
(1− exp(2λih). (1.1.12)

In this way, we incorporate the interaction between the dynamics and the noise and thus we can

have first-order mean-square convergence [209, 210]. See [208, 217, 261, 305] for further discussion
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on additive noise.

For multiplicative noise, a first-order scheme (Milstein scheme) has been derived under this

approach [211], where commutative conditions on diffusion coefficients for equations with infinite

dimension noises were identified and a one-and-a-half order scheme in the mean-square sense has

been derived in [27]. See also [3, 19, 21, 235, 262, 395] for further discussion on exponential

integration schemes for SPDEs with multiplicative noises.

1.1.4 Stochastic Burgers and Navier-Stokes equations

As a special class of parabolic SPDEs, stochastic Burgers and Navier-Stokes equations require more

attention for their strong interactions between the strong nonlinearity and the noises. Similar to

linear heat equation with additive noise, the convergence for time-discretization of one-dimensional

Burgers equations is no more than 1/4, see [339] for multiplicative space-time noise with convergence

in probability, and [36] for additive space-time noise with pathwise convergence. The convergence

in space is less than 1/4, see [4] for additive space-time white noise with pathwise convergence, and

[35] for additive space-time color noise with pathwise convergence.

Because of the strong nonlinearity, the discretization in space and in time may cause some effects,

such as “a spatial version of the Ito-Stratonovich correction” [174, 175]. Hairer et al considered

finite difference schemes for the Burgers equation with additive space-time noise in [175]:

∂tu = ν∂2
xu+ (∇G(u))∂xu+ σẆQ, x ∈ [0, 2π]. (1.1.13)

If we only consider the discretization of the first-order differential operator, e.g.,

∂tu
ε = ν∂2

xu
ε + (∇G(uε))∂xu

ε + σẆQ, ∂xu
ε =

u(x+ aε)− u(x− bε)
(a+ b)ε

, (1.1.14)
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then we can prove that this equation converges to (see [174])

∂tv = ν∂2
xv + (∇G(v))∂xv −

σ2

4ν

a− b
a+ b

∆G(v) + σẆQ, x ∈ [0, 2π] (1.1.15)

if ẆQ is space-time white noise, and no correction term if ẆQ is more regular than space-time white

noise, e.g. white in time but correlated in space. Effects of some other standard discretizations in

space, e.g. Galerkin methods, and fully discretizations were also discussed in [174].

The stochastic incompressible Navier-Stokes is

∂tu + u · ∇u− ν∆u +∇p = σ(u)ẆQ, divu = 0, (1.1.16)

where σ is Lipschitz continuous. When E[WQ(x, t)WQ(y, s)] = q(x, y) min (s, t) and q(x, x) is

square-integrable over the physical domain, Ref. [44] showed the existence and strong convergence

of the solutions for the full discrete schemes in two-dimensional case. Ref. [60] considered three

semi-implicit Euler schemes in time and standard finite elements methods for two-dimensional

(1.1.16) with periodic boundary conditions. They presented the solution convergence in probability

with order 1/4 in time similar to one-dimensional stochastic Burgers equation with additive noise.

They also showed that for the corresponding Stokes problem, the fully discrete scheme converges

in the strong sense with order half in time and order one in physical space.

For (1.1.16) in the bounded domain with Dirichlet boundary condition, Ref. [418] considered the

backward Euler scheme and proved half-order strong convergence when the multiplicative noise is

space-time color noise. Ref. [410] considered an implicit-explicit scheme and proved a convergence

order depending on the regularity index of initial condition. Ref. [106] considered finite elements

methods and a semi-implicit Euler for stochastic Navier-Stokes equation (1.1.16) and Ref. [107]

considered similar fully discrete schemes for stochastic Navier-Stokes introduced in [292]. Ref. [409]

provided a posteriori error estimates for stochastic Navier-Stokes equation.
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See [38] ( recursive approximation), [111] (implicit scheme), [143] (Wong-Zakai approximation),

[351, 413] (Galerkin approximation), [108] (Wiener chaos expansion) for more discussion on nu-

merical methods and e.g. [95] for existence and uniqueness of (1.1.16). See also [147] for strong

convergence of Fourier Galerkin methods for the hyperviscous Burgers equation and some numerical

results for stochastic Burgers equation equipped with Wick product [374].

1.1.5 Beyond parabolic SPDEs

Compared to parabolic equations, stochastic wave equations of second order can have better smooth-

ing in time: the solutions are Hölder continuous with exponent 1/2−ε in time, and thus the optimal

order of convergence in time is half if only increments of Brownian motion is used, see [391] for the

one-dimensional wave equation with multiplicative noise.

Ref. [8] considered linear wave equation with additive single white noise in time using integration

factor techniques, where the convergence of two-step finite difference schemes in time is of first-

order. Ref. [397] applied exponential integration with (1.1.12) for the semilinear wave equation with

additive space-time noise and obtained first-order mean-square convergence in time and half-order

in space.

Ref. [342] considered finite difference schemes in space for stochastic semilinear wave equation

with multiplicative space-time white noise and obtained optimal mean-square convergence with

order less than 1/3 in space given smooth initial conditions. Finite element methods were investi-

gated in [232] and their convergence order was identified with the regularity of the solution. Ref.

[56] considered semi-discretization using spectral Galerkin methods in physical space.

Other than strong approximation of stochastic wave equations, Ref. [183] obtained second-order

weak convergence both in space and in time for leap-frog scheme in both space and time solving the

one-dimensional semilinear wave equation driven by additive spatial-time white noise. Ref. [341]

considered weak convergence of full discrete finite element methods for the linear stochastic elastic

equation driven by additive space-time noise and showed that the weak order is twice the strong
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order both in time and in space.

Among stochastic hyperbolic problems, stochastic conservation laws have also attracted increas-

ing interest, see e.g. [67, 100, 109, 191, 350] for some theoretical results and e.g. [25, 349, 234, 311]

for some numerical studies.

Many other evolution equations have also been explored, such as stochastic KdV equations (see

e.g. [90, 93, 94, 97, 98, 185], Ginzburg-Landau equation (see e.g. [254]), stochastic Schrödinger

equations (see e.g. [24, 87, 88, 89, 91, 92, 313]), stochastic age-dependent population (see e.g. [184]),

etc.

For steady stochastic partial differential equations, especially for stochastic elliptic equation,

see e.g. [5, 10, 32, 55, 105, 119, 165, 393]. See further discussion in Chapter 6.

1.1.6 Stability and convergence of existing numerical methods

There are various aspects to be considered for numerical methods for SPDEs, e.g. the sense of exis-

tence of solutions, the sense of convergence, the sense of stability, etc. Here the existence of solutions

and numerical solutions to SPDEs are usually interpreted as mild solutions or as variational solu-

tions. Convergence and stability are usually understood in the following sense: mean-square sense

(or Lp in random space), pathwise (almost sure convergence), weak sense (convergence in moments

and expectations of functionals of solutions). Here we use ‘strong convergence’ for convergence in

the mean-square sense and ‘weak convergence’ for convergence in moments or expectations of the

functional of solution.

We focus on weak convergence in this subsection. For strong convergence, we refer to [236] for

an optimal convergence order of finite element methods and linear-implicit Euler scheme in time

for (1.1.1); see also the aforementioned papers for strong convergence in different problem settings.
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Weak convergence

Similar to the weak convergence of numerical methods for SODEs, the main tool for the weak

convergence is the Kolmogorov equation associated with the functional and the underlying SPDE

[81, 83].

For linear equations, the Kolomogrov equation for SPDEs is sufficient to obtain optimal weak

convergence, see e.g. [99, 124, 354]. Ref. [354] considered weak convergence of θ-method in

time and spectral methods in physical space for heat equation with additive space-time noise and

showed that the weak convergence order is twice that of strong convergence for a finite dimensional

functional. Ref. [124] obtained similar conclusion for more general functional, the restriction on

which was further removed in [99]. More recently, there have been more works following this

approach [229, 230, 252, 341] for linear equations.

For the linear Cahn-Hilliard equation with additive noise, Ref. [229] obtained the weak error

for the semidiscrete schemes by linear finite elements with order h2β | log(h)|), where hβ is strong

convergence order and β is determined by qi and the smoothness of the initial condition. Ref. [230]

provided weak convergence order for the same problem but with further time discretization and

proved that the weak convergence order is twice the strong convergence order.

For nonlinear equations, Malliavian calculus for SPDEs has also been used for optimal weak

convergence, see e.g. [96, 181, 396]. Ref. [181] applied Malliavin calculus to parabolic SPDE

to obtain the weak convergence of linear-implicit Euler and Crank-Nicolson schemes in time for

additive noise, where the first-order weak convergence (with certain condition on the functional)

is obtained. Ref. [183] showed that the order of weak convergence of leap-frog both in space and

time is twice that of strong convergence for wave equation with additive noise as shown for heat

equations, see e.g. [96, 99, 124]. Ref. [96] established weak convergence order for the semilinear

heat equations with multiplicative space-time noise and showed that the weak convergence order

is twice the strong convergence order in time. Ref. [396] obtained weak convergence order of the
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linear-implicit Euler scheme in time for (1.1.1) with additive noise and obtained similar conclusions.

For exponential Euler schemes for SODEs, it was proved that the weak convergence order is

one (see e.g. [313]), which is the same as the mean-square convergence order, .

For weak convergence of numerical methods for elliptic equations, we can use multivariate

calculus to compute the derivatives with respect to (random) parameters and Taylor’s expansion,

see e.g. [64, 65] and also Chapter 6.

Pathwise convergence

There are two approaches to obtain pathwise convergence. The first is via mean-square convergence.

By the Borel-Cantelli lemma (see e.g. [157]), it can be shown that pathwise convergence order is the

same as mean-square convergence order (up to an arbitrarily small constant ε > 0). For example,

Ref. [84] first deduced a pathwise convergence on schemes from the mean-square convergence order

established in [159]. Refs. [19, 21, 75, 247, 246] first obtained the mean-square convergence order

and then documented the pathwise convergence.

The second approach is without knowing the mean-square convergence. In [363], the authors

required pathwise boundedness (uniformly boundedness in time step sizes) to have a pathwise

convergence with order 1/2 − ε. In [208], it was shown that it is crucial to establish the pathwise

regularity of the solution to obtain pathwise convergence order.

Finally, we note that there are some other senses of convergence, see e.g. [17] for convergence

in probability using several approximations of white noise, see also Section 1.2.

Stability

Here we will not review the stability of numerical methods for SPDEs but refer to [390] for the

stability of the fully discrete schemes for (1.1.1). We also refer to the following two papers for some

general framework on stability and convergence. Ref. [245] proposed a version of Lax equivalence

theorem for (1.1.1) with additive and multiplicative noise while WQ is replaced with a càdlàg (right
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continuous with a left limit) square-integrable martingale. Ref. [235] suggested a general framework

for Galerkin methods for (1.1.1) and applied them to Milstein schemes.

We now summarize a recent work on the mean-square stability of Milstein scheme for one-

dimensional advection-diffusion equation with multiplicative scalar noise [136, 343]. Ref. [343]

analyzed the linear stability (proposed in [46]) of the first-order σ-θ-scheme and Ref. [187] for

SODEs. For a specific equation of the form (1.1.6)

dv = −µ∂xvdt+
1

2
∂2
xvdt−

√
ρ∂xvdWt, 0 ≤ ρ < 1, (1.1.17)

the σ-θ scheme reads, with time step size δt and space step size δx,

Vn+1 = Vn −
θ

2
(
δt

δx
µD1 −

δt

δx2
D2)Vn+1 −

1− θ
2

(
δt

δx
µD1 −

δt

δx2
D2)Vn

− δt

δx2
ρ[σD2Vn+1 + (1− σ)D2Vn]

−
√
ρ

2

√
δt

δx
D1Vnξn +

ρ

2

δt

δx2
D2Vnξ

2
n,

where ξn are i.i.d. independent standard Gaussian random variables, θ ∈ [0, 1] and D1 and D2 are

the first and second central difference operators. It was shown that when σ = −1, θ > 1/2 the

scheme is unconditionally stable as we have, by Fourier stability analysis,

δt

δx2
[1− 2(θ − ρσ − ρ2)] < 1. (1.1.18)

When σ = 0, θ = 0, the scheme becomes the Milstein discretization in time in conjunction with

finite difference schemes in physical space introduced in [136] where it requires that µ2 dt ≤ 1 − ρ

in addition to (1.1.18).

It is common that the stability region of a numerical scheme in time for SPDEs with mul-

tiplicative noise is smaller than that of the scheme for PDEs, e.g., Crank-Nicolson scheme for
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(1.1.1) with multiplicative noise [390], or alternating direction explicit scheme for heat equation

with multiplicative noise [359].

1.1.7 Conclusion

As SPDEs driven by space-time noise are usually of low regularity, especially when the noise is

space-time white noise, it is difficult to obtain efficient high-order schemes in general. Therefore,

it is helpful to make full use of specific properties of the underlying SPDEs and preprocessing

techniques to derive higher order schemes while keeping the computational cost low. For example,

we can use the exponential Euler scheme (1.1.10) with (1.1.12) when the underlying SPDEs are

driven by additive noise and their leading differential operators are independent of randomness and

time. When SPDEs (with multiplicative noises) have commutative noises, we can use the Milstein

scheme (first order strong convergence, see e.g. [211, 236, 309]) while only sampling the increment

of Brownian motions.

Another issue for numerical methods of SPDEs is to reduce the computational cost in high-

dimensional random space as there are usually infinite dimensional stochastic processes whose

truncations converge very slowly. This is the case even when (1.1.12) can be used. Thus, efficient

infinite-dimensional integration methods should be employed to obtain the desired statistics. See

Section 1.3 for a brief review of numerical integration methods in random space.

1.2 Approximation of Brownian motion

1.2.1 Piecewise linear approximation

Let us first illustrate the Wong-Zakai approximation by considering the piecewise linear approxi-

mation (1.1.5) of the one-dimensional Brownian motion W (t) for the following Ito SODEs, see e.g.

[399, 400]

dX = b(t,X)dt+ σ(t,X)dW (t), X(0) = X0, (1.2.1)
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and obtain the following ODE with smooth random inputs

dX(n) = b(t,X(n))dt+ σ(t,X(n))dW (n)(t), X(0) = X0. (1.2.2)

It is proved in [399, 400] that (1.2.2) converges in the mean-square sense to

dX =

(
b(t,X) +

1

2
σ(t,X)σx(t,X)

)
dt+ σ(t,X)dW (t), X(0) = X0, (1.2.3)

under mild assumptions, which can be written in Stratonovich form [361]

dX = b(t,X)dt+ σ(t,X) ◦ dW (t), X(0) = X0, (1.2.4)

where ‘◦’ indicates the Stratonovich product. The term 1
2σ(t,X)σx(t,X) in (1.2.3) is called the

Wong-Zakai correction term.

As in the case of scalar SODEs, it is essential to identify the Wong-Zakai correction term (or

the equation that the resulting equation from Wong-Zakai approximation converges to) in various

cases. For SODEs with scalar noise, say (1.2.1), when Brownian motion is approximated by a

process of bounded variation (rather than by piecewise linear approximation), Ref. [364] proved

that the convergence to (1.2.3) holds in the pathwise sense (almost surely) if the drift b is locally

Lipschitz continuous and is of linear growth and diffusion σ is continuous with bounded first-order

derivatives. However, this conclusion does not hold if σ does not have bounded first-order derivative

in x [364] or the approximation of Brownian motion is not differentiable [289].

For SODEs with multiple noises, Sussmann [365] derived a generic Wong-Zakai correction term

for multiple noises. Refs. [242, 241] provided a practical criterion to verify whether a general

approximation of Brownian motions (even general semimartingales) leads to a standard Wong-

Zakai correction term (e.g. 1/2σxσ for (1.2.4)) or other Wong-Zakai correction terms. To have a
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standard Wong-Zakai correction, the bottom line for the approximation of Brownian motion is

lim
n→∞

E[

∫ T

0

W (n) dW (n) −
∫ T

0

W (t) ◦ dW (t)] = 0. (1.2.5)

The convergence of Wong-Zakai approximation for SODEs has been established in different

senses, e.g. pathwise convergence (e.g. [364, 365]), support theorem (the relation between the

support of distribution of the solution and that of its Wong-Zakai approximation, e.g. [15, 294,

362, 385]), mean-square convergence (e.g. [13, 202, 385, 166]), convergence in probability (e.g. [14]).

The Wong-Zakai approximation has been extended in various aspects:

� from single white noise to multiple white noise, see e.g. [166, 365].

� from SODEs to SPDEs, hyperbolic equations (e.g. [295, 345, 346, 422]), parabolic equations

(e.g. [2, 101]) including Burgers equation (e.g. [325, 326]) and Navier-Stokes equations (e.g.

[69, 385, 384]), and equations on manifold (e.g. [41, 169]), etc.

� from piecewise linear approximation to general approximation: mollifier type (e.g. [202, 270,

272]), Ikeda-Nakao-Yamato-type approximations (e.g. [122, 200, 270]) or their extensions

(e.g. [166]), (Lévy-Ciesielski) spectral type (e.g. [50, 265, 422]), general colored noises (e.g.

[2, 364, 365]), etc.

� from SODEs driven by Gaussian white noise to those with general processes: general semi-

martingales (e.g. [110, 121, 182, 223, 241, 242, 340]), fractional Brownian motion (e.g. [18,

378]), rough path (e.g. [116]), etc.
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1.2.2 Other approximations

Besides the piecewise linear approximation of Brownian motion (1.1.5), there are several other

approximations, e.g mollification of Brownian motion, see e.g. [104, 149, 200, 272, 270, 337, 424, 423]

W̃ (t) =

∫ t

tn

∫
R
K(θ, s) dW (s) dθ, t ∈ [tn, tn+1), (1.2.6)

where K is symmetric. This type of approximation was proposed for a method of lines for SODEs in

[329], where no numerical results were presented. When this approximation is applied in SODEs,

consistency (convergence without order) has been proved in [104, 149, 150, 273] etc. In [202],

the approaches of piecewise linear approximation and mollification have been unified with proved

convergence order, known as Ikeda-Nakao-Yamato-type approximations, see also [166].

Another way to approximate Brownian motion is by an orthogonal expansion,: (also known as

Levy-Ciesielski approximation [71, 214, 237], Ito-Niso approximation [204] or Fourier approximation

[333]):

W (n)(t) =

n∑
i=1

(∫ t

tn

mi(s)ds

)∫ tn+1

tn

mi(s) dW (s), t ∈ [tn, tn+1], (1.2.7)

where {mi(t)}∞i=1 is a complete orthonormal system (CONS) in L2([0, T ]); see [201] for a history

review on this approximation. With this approximation, Ogawa [328] defined the following so-called

Ogawa integral, which is proved in [327] to coincide with the Stratonovich integral if the integrand

f(t) is a continuous semi-martingale on the natural filtration of Brownian motion.

In fact, taking a piecewise constant basis (normalized) in (1.2.7), we then have exactly the

piecewise linear approximation (1.1.5). Also, if we take any orthonormal basis starting from a

constant, then taking n = 1 also leads to (1.1.5). With a piecewise constant basis, the use of

multiple Ito integrals (Wiener chaos expansion) and multiple Strotonovich integrals was addressed

in [49, 50].

The approximation with trigonometric orthonormal basis has been used in Wiener chaos meth-
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ods (see e.g. [51, 265, 268, 266, 192, 420]) and will be the approximation for our Wong-Zakai

approximation throughout this work. See Chapter 8 for the Wong-Zakai approximation using

(1.2.7) for SODEs with time delay.

1.3 Integration methods in random space

1.3.1 Monte Carlo method and its variants

Numerical SODEs and SPDEs are usually dependent on the Monte Carlo method and it variants

to obtain the desired statistics of the solutions. The standard (brute force) Monte Carlo method is

known for its slow convergence since its error is usually dominated by its statistical error, C/
√
N

where C is the variance of the random process associated with the desired statistics and N is the

number of sampling paths (trajectories), see e.g. [320, Chapter 1].

To accelerate the standard method, some variance reduction methods have been proposed to

reduce the number C, see e.g. [134, 218, 301]. One of the recently developed variance reductions

methods, the so-called multilevel Monte Carlo method has attracted more attention for numerical

SODEs and SPDEs. The idea of multilevel Monte Carlo methods is to write the desired statistics in

a telescoping sum and then to sample the difference terms (between terms defined on two different

mesh sizes) in the telescoping sum with a small number of sampling paths, where the corresponding

C is small. In this way, the computational cost is reduced since the difference terms defined on

finer meshes would admit smaller variances and thus require a smaller number of sampling paths.

For the multilevel Monte Carlo method for numerical SPDEs, see e.g. [1, 23, 66, 72, 369, 370]

for elliptic equations with random coefficients, [306, 307, 308] for stochastic hyperbolic equations,

and [22, 136] for stochastic parabolic equations. Ref. [1] proposed time discretization schemes with

large stability regions to further reduce the cost of the multilevel Monte Carlo method. However,

it has been shown that the multilevel Monte Carlo methods are not robust, see e.g. [224, Chapter

4].
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Quasi-Monte Carlo methods have also been investigated for numerical SPDEs. Quasi-Monte

Carlo methods were originally designed as deterministic integration methods in random space and

allowed only moderately high dimensional integrations, see e.g. [320, 356]. However, some random-

ized quasi-Monte Carlo methods have been successfully applied to solve stochastic elliptic equations

with random coefficients, see e.g. [139, 140, 240, 239] where the solution is analytic in random space

(parameter space). For the latest review on quasi-Monte Carlo methods, see [102].

Compared to the Monte Carlo type method, the following two methods have no statistical errors

and allow efficient short-time integration of SPDEs.

1.3.2 Wiener chaos expansion method

By Cameron-Martin theorem [52], any square-integrable stochastic processes (with respect to

Wiener measure) can be represented by a series of Hermite polynomials of Gaussian random vari-

ables, named Wiener Chaos expansion. This approach has been applied to study practical problems,

see e.g. [132] and extended to a general class of chaos expansion (polynomial chaos) for general

measures, see e.g. [405, 392]. See e.g. [402] for a review on this topic.

For linear problems driven by white noise in space or in time, the Wiener chaos expansion

method has been investigated both theoretically (see e.g. [265, 266, 267, 268]) and numerically (see

e.g. [393, 420]). The advantage of Wiener chaos expansion method is that the resulting system of

PDEs is linear, lower triangular and deterministic. Also, the Wiener chaos expansion method can

be of high accuracy.

However, there are two main difficulties for the Wiener chaos expansion as a numerical method.

The first is the efficiency of long-time integration. Usually, this method is only efficient for short-

time integration, see e.g. [49, 265]. This limitation can be somewhat removed when a recursive

procedure is adopted for computing certain statistics, e.g. first two moments of the solution, see

e.g. [420].

23



The second is nonlinearity. When SPDEs are nonlinear, Wiener chaos expansion methods result

in fully coupled systems of deterministic PDEs while the interactions between different Wiener

chaos expansion terms necessitate exhaustive computation. This effect has been shown numerically

through the stochastic Burgers equation and the Navier-Stokes equations [192].

One remedy for nonlinear problems is to introduce the Wick-Malliavin approximation for non-

linear terms. Wick-Malliavin approximations can be seen as a perturbation of a Wick product

formulation by adding high-order Malliavin derivatives of the nonlinear terms to the Wick prod-

uct formulation, see [388] for details. Basically, lower level Wick-Malliavin approximation (with

lower-order Malliavin derivatives) allows weaker nonlinear interactions between the Wiener chaos

expansion terms. Let us consider Burgers equation with additive noise for example. When only the

Wick product is used (zeroth-order Malliavin derivatives only), the resulting system is lower tri-

angular and contains only one nonlinear equation. When Malliavin derivatives of up to first-order

are used, the resulting system of PDEs is only weakly coupled and contains only two nonlinear

equations. This approach has been shown very efficient for short-time integration of equations with

quadratic nonlinearity and small noise, see e.g. [388].

The Wick product had been formulated in [190] for various SPDEs before the Wick-Malliavin

approximation was introduced. The Wick product formulation has been explored with finite element

methods in physical space, see e.g. [274, 275, 276, 277, 278, 279, 280, 372, 373, 374, 414, 213] and

also [393] for a brief review on SPDEs equipped with Wick product.

1.3.3 Stochastic collocation method

In the framework of deterministic integration methods for SPDEs in random space, another solution

for nonlinear SPDEs, or linear SPDEs with random coefficient is employing collocation techniques

in random space. Here by stochastic collocation methods, we mean the sampling strategies using

high-dimensional deterministic quadratures (with certain polynomial exactness) to evaluate desired

expectations of solutions to SPDEs.
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For SODEs driven by white noise in time, the stochastic collocation method has been known

as cubature on Wiener space (e.g. [173, 253, 269, 317, 321]), optimal quantization (e.g. [331, 332])

to solve SODEs in random space, sparse grid of Smolyak type (e.g.[131, 130, 145, 338]), or particle

simulation (e.g. [114]). For stochastic collocation methods for equations with color noise, see e.g.

[9, 403].

The stochastic collocation methods result in decoupled systems of equations as Monte Carlo

method and its variants do, which can be of great advantage in computation. High accuracy and

fast convergence can be also observed for stochastic evolution equations, e.g. [130, 145, 338] where

sparse grid of Smolyak type was used.

However, the fundamental limitation of these collocation methods is the exponential growth of

sampling points with an increasing number of random parameters, see e.g. [145], and thus a failure

for longer time integration, see error estimates for cubature on Wiener space (e.g. [26, 61, 103])

and conclusions for optimal quantization (e.g. [331, 332]).

One remedy of cubature methods for longer time integration of SODEs was proposed in [173,

253], where at each time step an empirical measure was reconstructed by regression such that the

measure can produce moments close to the first few moments of numerical solutions computed at

cubature points. However, for SPDEs, this regression approach has not been documented yet.

1.4 Objectives of this work

We will focus on two issues in numerical methods for SPDEs with white noise: one is deterministic

integration methods in random space; the other is the effect of truncation of Brownian motion using

spectral approximation.

For deterministic integration methods of SPDEs in random space, we aim at longer time nu-

merical integration of time-dependent equations, especially of linear stochastic advection-reaction-

diffusion equations. We will study Wiener chaos expansion methods (WCE) and stochastic collo-

25



cation methods (SCM) and compare their performance and prove their convergence order.

To achieve longer time integration, we adopt the recursive WCE proposed in [265] for the Zakai

equation for nonlinear filtering and develop algorithms for the first two moments of solutions.

Numerical results show that when high accuracy is required WCE is superior to Monte Carlo

methods while WCE is not as efficient if only low accuracy is required, see Chapter 2.

We will show that the recursive approach for SCM for linear advection-reaction-diffusion equa-

tions is efficient for longer time integration in Chapter 3. We first analyze the error of SCM (sparse

grid collocation of Smolyak type) with Euler scheme in time for linear SODEs, and show the error

is small only when the noise magnitude is small and/or the integration time is small.

We will compare WCE and SCM using the recursive procedure in Chapter 4, where we derive

error estimates of WCE and SCM for linear advection-reaction-diffusion equations and show that

WCE and SCM are competitive in practice by careful numerical comparisons, even though WCE

can be of one order higher than SCM.

Among almost all approximations for WCE and SCM, we use the Wong-Zakai approximation

with spectral approximation of Brownian motion. The convergence order with respect to the

number of truncation modes is half order, see Chapter 4. However, WCE can be of higher order

convergence since it can preserve the orthogonality over the Wiener space (infinite dimensional)

while SCM can not as the orthogonality is only valid on discrete spaces (finite dimensional), see

Chapter 4.

To further investigate the effect of truncation of Brownian motions, we will study the elliptic

equation with additive white noise in Chapter 6. We show that the convergence of numerical solu-

tions with truncation of Brownian motion depends on the smoothing effects of the resolvent of the

elliptic operator. We also show similar convergence when finite element methods are used. In Chap-

ter 5, we will test the Wong-Zakai approximation in conjunction with stochastic collocation method

of stochastic Euler equations modeling a stochastic piston problem and show the effectiveness of

this approximation.
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In Chapter 7, we will derive a relationship between local truncation error and global truncation

error of one-step schemes for SODEs with non-global Lipschitz conditions.

Before we summarize our results in Chapter 9, we will explore the Wong-Zakai approxima-

tion for stochastic differential equations with time delay in Chapter 8 and show that Wong-Zakai

approximation can facilitate the derivation of various numerical schemes.

As shown in Figure 1.1, we focus on deterministic integration methods in random space, i.e.,

polynomial chaos (WCE) and stochastic collocation (SCM), in Chapters 2-5 and compare their

performance with Monte Carlo methods and/or quasi-Monte Carlo methods. In Chapter 2, we

compare WCE and Monte Carlo methods and show that WCE is superior to Monte Carlo methods

if high accuracy is needed. In Chapters 3 and 5, we show theoretically and numerically the efficiency

of SCM for short time integration and for small magnitudes of noises. In Chapter 4, we compare

WCE and SCM in conjuncture with a recursive multistage procedure and show that they are

comparable in performance.

We use Monte Carlo methods in Chapters 6-8 as the dimensionality in random space is beyond

deterministic integration methods.

In all chapters except Chapters 3 and 7, we apply the Wong-Zakai approximation with the

Brownian motion approximated by it spectral truncation. We show that the convergence of nu-

merical schemes based on the Wong-Zakai approximation is determined by further discretization in

space (Chapter 6) or in time (Chapter 8).
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Part I: Temporal White Noise
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Chapter 2

Wiener chaos methods for linear

stochastic

advection-diffusion-reaction

equations

In this chapter, we we develop numerical algorithms using Wiener chaos expansion (WCE) for

solving second-order linear parabolic stochastic partial differential equations (SPDEs). The algo-

rithm we propose for computing moments of the SPDE solutions is deterministic, i.e., without any

statistical errors. We also compare the proposed deterministic algorithm with two other numerical

methods based on the Monte Carlo technique and demonstrate that the new method is more effi-

cient for highly accurate solutions. Numerical tests of some examples show that the scheme is of

mean-square order O
(
∆N/2

)
for advection-diffusion and for diffusion-reaction SPDEs with constant

or variable coefficients, where ∆ is the time-step, and N is the Wiener chaos order.
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2.1 Introduction

In this chapter we develop a new numerical method based on nonlinear filtering ideas and spec-

tral expansions for advection-diffusion-reaction equations perturbed by random fluctuations, which

form a broad class of second-order linear parabolic stochastic differential equations (SPDEs). The

standard approach to constructing SPDE solvers starts with a space discretization of a SPDE, for

which spectral methods (see, e.g. [68, 141, 209]), finite element methods (see, e.g. [5, 129, 408])

or spatial finite differences (see, e.g., [5, 160, 353, 412]) can be used. The result of such a space

discretization is a large system of ordinary stochastic differential equations (SDEs) which requires

time discretization to complete a numerical algorithm. In [89, 96] a SPDE is first discretized in

time and then to this semi-discretization a finite-element or finite-difference method can be ap-

plied. Other numerical approaches include those making use of splitting techniques [31, 249, 162],

quantization [137], or an approach based on the averaging-over-characteristic formula [304, 336].

In [265, 290] numerical algorithms based on the Wiener chaos expansion (WCE) were introduced

for solving the nonlinear filtering problem for hidden Markov models. Since then the WCE-based

numerical methods have been successfully developed in a number of directions (see e.g. [192, 406]).

In computing moments of SPDE solutions, the existing approaches to solving SPDEs are usu-

ally complemented by the Monte Carlo technique. Consequently, in these approaches numerical

approximations of SPDE moments have two errors: numerical integration error and Monte Carlo

(statistical) error. To reach a high accuracy, we have to run a very large number of independent

simulations of the SPDE to reduce the Monte Carlo error. Instead, here we exploit WCE numerical

methods to construct a deterministic algorithm for computing moments of the SPDE solutions

without any use of the Monte Carlo technique.

The rest of this chapter is organized as follows. In Section 2.2 we introduce the linear SPDE

considered in this chapter and recall the definition of its Wiener chaos solution. In Section 2.3 we

revisit the method employed in [265] and apply it to a more general linear SPDE than the one
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treated in [265]. Based on this, the algorithm for computing moments of the SPDE solutions is

introduced in Section 2.4. To demonstrate the effectiveness of the proposed algorithm, we perform

a number of numerical tests. In Section 2.5 we test the algorithm on two one-dimensional SPDEs

and confirm its theoretical order of convergence. In Section 2.6 we apply this algorithm to the

passive scalar equation in the periodic case in two dimensions. In both Section 2.5 and Section 2.6

we also compare the WCE-based algorithm with algorithms exploiting the Monte Carlo technique

and demonstrate that while the proposed WCE-based algorithm is slower than Monte Carlo-type

methods in getting results of low accuracy, in reaching higher accuracy the WCE-based algorithm

can be more efficient. A summary and discussion on possible extensions are given in Section 2.7.

2.2 WCE of the SPDE solution

Let (Ω,F , P ) be a complete probability space, Ft, 0 ≤ t ≤ T, be a filtration satisfying the usual

hypotheses, and (w(t),Ft) = ({wk (t) , k ≥ 1} ,Ft) be a system of one-dimensional independent

standard Wiener processes. Let D be an open domain in Rd. Consider the following SPDE written

in the form of Itô:

du(t, x) = [Lu(t, x) + f(x)] dt+
∑
k≥1 [Mku(t, x) + gk(x)] dwk(t), (t, x) ∈ (0, T ]×D,

u(0, x)= u0(x), x ∈ D,

(2.2.1)

where

Lu(t, x) =
∑d
i,j=1 aij (x)DiDju(t, x) +

∑d
i=1 bi(x)Diu(t, x) + c (x)u(t, x),

Mku(t, x) =
∑d
i=1 b

k
i (x)Diu(t, x) + hk (x)u(t, x),

(2.2.2)
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and Di := ∂xi . We assume that D is either bounded with a regular boundary or that D = Rd.

In the former case we will consider periodic boundary conditions and in the latter the Cauchy

problem. We also assume that the coefficients of operators L and M are uniformly bounded and

L− 1
2

∑
k≥1 MkMk is nonnegative definite. When the coefficients of L and M are sufficiently

smooth, existence and uniqueness results for the solution of (2.2.1)–(2.2.2) are available, e.g. in

[347] and under weaker assumptions, see e.g. [291, 268].

Now let us recall (see details in [291, 266, 268]) the definition of a Wiener chaos solution to the

linear SPDE (2.2.1)-(2.2.2). Denote by J the set of multi-indices α = (αk,l)k,l≥1 of finite length

|α| =
∑∞
i,k=1 αk,l, i.e.,

J = {α = (αk,l, k, l ≥ 1), αk,l ∈ {0, 1, 2, . . .}, |α| <∞} .

Here k denotes the number of Wiener processes and l the number of Gaussian random variables

approximating each Wiener process as will be shown shortly. We represent the solution of (2.2.1)-

(2.2.2) as

u(t, x) =
∑
α∈J

1√
α!
ϕα(t, x)ξα, (2.2.3)

where {ξα} is a complete orthonormal system (CONS) in L2(Ω,Ft, P ), α! =
∏
k,l(αk,l!), and ϕα

satisfies the following system of equations (the propagator):

∂ϕα(s, x)

∂s
= Lϕα(s, x) + f(x)1{|α|=0} (2.2.4)

+
∑
k,l

αk,lml(s)
[
Mkϕα−(k,l)(s, x) + gk(x)1{|α|=1}

]
, 0 < s ≤ t, x ∈ D,

ϕα(0, x) = u0(x)1{|α|=0}, x ∈ D,
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where α−(k, l) is the multi-index with components

(
α−(k, l)

)
i,j

=


max(0, αi,j − 1), if i = k and j = l,

αi,j , otherwise.

(2.2.5)

The random variables ξα in (2.2.3) are constructed according to the Cameron-Martin theorem [52]:

ξα :=
∏
α

(
Hαk,l(ξk,l)√

αk,l!

)
, α ∈ J , (2.2.6)

where {ml} = {ml(s)}l≥1 is a CONS in L2([0, t]), ξk,l =

∫ t

0

ml(s) dwk(s), and Hn is the n-th

Hermite polynomial:

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2. (2.2.7)

The representation (2.2.3)-(2.2.7) is called a WCE of the SPDE solution. It is clear that a truncation

of the WCE (2.2.3) presents a possibility for constructing numerical methods for SPDEs. This is

considered in the next section.

2.3 Multistage WCE method

In addition to the multi-index length |α| =
∑∞
i,k=1 αk,l, we define the order of multi-index α :

d(α) = max {l ≥ 1 : αk,l > 0 for some k ≥ 1} and the truncated set of multi-indices:

JN,n = {α ∈ J : |α| ≤ N, d(α) ≤ n} .

Here N is the highest Hermite polynomial order and n is the maximum number of Gaussian random

variables for each Wiener process. Using (2.2.3), we introduce the truncated Wiener chaos solution

uN,n(t, x) =
∑

α∈JN,n

1√
α!
ϕα(t, x)ξα. (2.3.1)
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We choose the basis {ml(s)}l≥1 as

m1(s) =
1√
t
, ml(s) =

√
2

t
cos(

π(l − 1)s

t
), l ≥ 2, 0 ≤ s ≤ t. (2.3.2)

See a discussion on selection of basis in [265].

The truncated expansion (2.3.1) together with (2.2.4)), (2.2.6), and (2.3.2)) gives us a construc-

tive approximation of the solution to (2.2.1)), where implementation requires that we numerically

solve the propagator (2.2.4)).

It is proved in [265, Theorem 2.2] that when bki (t, x) = 0, c = 0, gk = 0 (reaction-diffusion

equation) and the number of noises is finite there is a constant C > 0 such that for any t ∈ (0, T ]

E[‖uN,n(t, ·)− u(t, ·)‖2L2 ] ≤ CeCt
(

(Ct)N+1

(N + 1)!
+
t3

n

)
. (2.3.3)

Our preliminary analysis shows that in the general case of the equation (2.2.1), the error estimate

(2.3.3) is expected to be

E[‖uN,n(t, ·)− u(t, ·)‖2L2 ] ≤ CeCt
(

(Ct)N+1

(N + 1)!
+
t2

n

)
. (2.3.4)

It follows from the error estimates (2.3.3) and (2.3.4) that the error of the approximation uN,n(t, ·)

grows exponentially in time t which severely limits its practical use. To overcome this difficulty, it

was proposed in [265] to introduce a time discretization with step ∆ > 0 and view (2.3.1), (2.2.4),

(2.2.6), (2.3.2) as the one-step approximation of the SPDE solution based on which an effective

numerical method applicable to longer time intervals was constructed.

To this end, let us introduce the multi-step basis for the WCE and its corresponding propagator.

Let 0 = t0 < t1 < · · · < tK = T be a uniform partition of the time interval [0, T ] with time step
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size ∆, see Figure 2.1. Let {m(i)
k } =

{
m

(i)
k (s)

}
k≥1

be the following CONS in L2([ti, ti−1]) :

m
(i)
l = ml(s− ti), ti ≤ s ≤ ti−1, (2.3.5)

ml(s) =
1√
∆
, ml(s) =

√
2

∆
cos

(
π(l − 1)s

∆

)
, l ≥ 2, 0 ≤ s ≤ ∆,

ml(s) = 0, l ≥ 1, s /∈ [0,∆].

Define the random variables ξ
(i)
α , i = 1, . . . ,K, as

ξ(i)
α :=

(i)∏
α

(
Hαk,l(ξ

(i)
k,l)√

αk,l!

)
, α ∈ J , (2.3.6)

where ξ
(i)
k,l =

∫ ti−1

ti

m
(i)
l (s) dwk(s), and Hn are Hermite polynomials (2.2.7).

Let

u∆,N,n(0, x) = u0(x) (2.3.7)

and by induction for i = 1, . . . ,K :

u∆,N,n(ti−1, x) =
∑

α∈JN,n

1√
α!
ϕ(i)
α (∆, x)ξ(i)

α , (2.3.8)

where ϕ
(i)
α (∆, x) solves the system

∂ϕ
(i)
α (s, x)

∂s
= Lϕ(i)

α (s, x) + f(x)1{|α|=0} (2.3.9)

+
∑
k,l

αk,lm
(i)
l (s)

[
Mkϕ

(i)
α−(l,k)(s, x) + gk(x)1{|α|=1}

]
, s ∈ (0,∆],

ϕ(i)
α (0, x) = u∆,N,n(ti, x)1{|α|=0}.

Thus, (2.3.7)-(2.3.9) together with (2.3.5) and (2.3.6) gives us a recursive method (called the RWCE

method) for solving the SPDE (2.2.1), where implementation requires to numerically solve the
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propagator (2.3.9) at every time step.

Based on the one-step error (2.3.3), the following global error estimate for the RWCE method

is proved in [265, Theorem 2.4] (the case of bki (t, x) = 0, c = 0, gk = 0 and finite number of noises):

E[‖u∆,N,n(ti−1, ·)− u(ti−1, ·)‖2L2 ] ≤ CeCT
(

(C∆)N

(N + 1)!
+

∆2

n

)
, i = 1, . . . ,K, (2.3.10)

for some C > 0 independent of ∆, N, and n, i.e., this method is of global mean-square order

O
(

∆N/2√
(N+1)!

+ ∆√
n

)
. Moreover, based on (2.3.4), one can prove that in the general case of (2.2.1)

(advection-diffusion-reaction equations) the error estimate for the RWCE method will have the

form

E[‖u∆,N,n(ti−1, ·)− u(ti−1, ·)‖2L2 ] ≤ CeCT
(

(C∆)N

(N + 1)!
+

∆

n

)
, i = 1, . . . ,K, (2.3.11)

i.e., this method is of mean-square order O
(

∆N/2√
(N+1)!

+
√

∆
n

)
.

As we already mentioned, the RWCE method requires to solve the propagator (2.3.9) at every

time step, which is computationally rather expensive. To reduce the cost, we introduce a modifi-

cation of this method following [265]. The idea is to expand the initial condition u0(x) in a basis

{em}, present u∆,N,n(ti, x) as u∆,N,n(ti, x) =
∑
m cmem(x) and note that ϕα(∆, x;u∆,N,n(ti, ·)) =∑

m cmϕα(∆, x; em), where ϕα(s, x;φ) is the solution of the propagator (2.3.9) with the initial

condition φ(x).

The idea is illustrated in Figure 2.1 with the help of a sketch. We can first compute the

propagator (2.3.12) (see below) on (0,∆] and obtain a problem-dependent basis qα,l,m (2.3.13).This

step is called “offline” as in [265]. Thus, one recursively computes the solution “online” by (2.3.14)

and (2.3.15) only at time i∆ (i = 2, · · · ,K) using the obtained basis qα,l,m. Specifically, we proceed

as follows. Let {em} = {em(x)}m≥1 be a CONS in L2(D) with boundary conditions satisfied and
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Figure 2.1: Illustration of the idea of multistage WCE. The dotted line denotes the “offline” com-
putation, where we solve the propagator up to time ∆. The dash line implies that one solves only
the solution on certain time levels instead of on the entire time interval.

· · ·0 ∆ 2∆ · · · · · · i∆ · · · · · · T = K∆

offline︸ ︷︷ ︸ online

δt

(·, ·) be the inner product in that space. Let ϕα(s, x;φ) solve the following propagator:

∂ϕα(s, x;φ)

∂s
= Lϕα(s, x;φ) + f(x)1{|α|=0} (2.3.12)

+
∑
k,l

αk,lml(s)
[
Mkϕα−(l,k)(s, x;φ) + gk(x)1{|α|=1}

]
, s ∈ (0,∆],

ϕ(i)
α (0, x) = φ(x)1{|α|=0},

where ml(s) are as in (2.3.2). Define

qα,l,m = (ϕα(∆, ·; el), em), l,m ≥ 1, (2.3.13)

and then find by induction the coefficients

ψm(0;N, n) := (u0, em), (2.3.14)

ψm(i;N, n) :=
∑

α∈JN,n

∑
l

1√
α!
ψl(i− 1;N, n)qα,l,mξ

(i)
α , i = 1, . . . ,K.

It is proved in [265, Theorem 2.5] that

u∆,N,n(ti−1, x) =
∑
m

ψm(i;N, n)em(x), i = 0, . . . ,K, P -a.s. . (2.3.15)

We refer to the numerical method (2.3.15), (2.3.12)-(2.3.14) together with (2.3.5)-(2.3.6) as the

multistage WCE method for the SPDE (2.2.1).
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In practice, if the equation (2.2.1) has an infinite number of Wiener processes, we truncate them

to a finite number r ≥ 1 of noises. We introduce the correspondingly truncated set JN,n,r so that

JN,n,r = {α ∈ J : |α| ≤ N, dr(α) ≤ n} ,

where dr(α) = max {l ≥ 1 : αk,l > 0 for some 1 ≤ k ≤ r} .

Algorithm 2.3.1. Choose a truncation of the number of noises r ≥ 1 and the algorithm’s parame-

ters: a CONS {em(x)}m≥1 and its truncation {em(x)}Mm=1; a time step ∆; N and n which together

with r determine the size of the multi-index set JN,n,r.

Step 1. For each m = 1, . . . ,M, solve the propagator (2.3.12) for α ∈ JN,n,r on the time interval

[0,∆] with the initial condition em(x) and denote the obtained solution as ϕα(∆, x; em), α ∈ JN,n,r,

m = 1, . . . ,M. Note in this step, we need to choose also a time step size δt to solve the equations

in the propagator numerically.

Step 2. Evaluate ψm(0;N, n,M) = (u0, em), m = 1, . . . ,M, where u0(x) is the initial condition

for (2.2.1), and qα,l,m = (ϕα(∆, ·; el), em(·)), l,m = 1, . . . ,M.

Step 3. On the i-th time step (at time t = i∆), generate the Gaussian random variables

ξ
(i)
α , α ∈ JN,n,r, according to (2.3.6), compute the coefficients

ψm(i;N, n,M) =
∑

α∈JN,n,r

M∑
l=1

1√
α!
ψl(i− 1;N, n,M)qα,l,mξ

(i)
α , m = 1, . . . ,M,

and obtain the approximate solution of (2.2.1)

uM∆,N,n(ti−1, x) =

M∑
m=1

ψm(i;N, n,M)em(x).

Algorithm 2.3.1 coincides with the algorithm proposed in [265] for (2.2.1) in the case of bki (t, x) =

0, c = 0, gk = 0, and finite number of noises but generalizes it to a wider class of linear SPDEs

of the form (2.2.1). In particular, the algorithm from [265] was applied to the nonlinear filtering
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problem for hidden Markov models in the case of independent noises in signal and observation,

while Algorithm 2.3.1 is also applicable when noises in signal and observation are dependent.

Algorithm 2.3.1 allows us to simulate mean-square approximations of the solution to the SPDE

(2.2.1). It can also be used together with the Monte Carlo technique for computing expectations

of functionals of the solution to (2.2.1). In the next section we propose an algorithm based on

Algorithm 2.3.1, which allows us to compute moments of the solution to (2.2.1) without using the

Monte Carlo technique.

Remark 2.3.2. We note that the cost of simulation of the random field u(ti, x) by Algorithm 2.3.1

over K timesteps is proportional to KM2 (N+nr)!
N!(nr)! .

2.4 Algorithm for computing moments

Implementation of Algorithm 2.3.1 requires the generation of the random variables ξ
(i)
α (see (2.3.6)).

Then, for computing moments of the solution of the SPDE problem (2.2.1), we also need to make

use of the Monte Carlo technique. As is well known, Monte Carlo methods have a low rate of

convergence. In this section we present a deterministic algorithm (Algorithm 2.4.1) for computing

moments, i.e., an algorithm which does not require any random numbers and does not have a

statistical error. In Sections 2.5 and 2.6 we compare Algorithm 2.4.1 with some Monte Carlo-type

methods and demonstrate that Algorithm 2.4.1 can be more computationally efficient when higher

accuracy is required.

First, it is not difficult to see that the mean solution E[u(t, x)] is equal to the solution ϕ(0)(t, x)

of the propagator (2.3.12) with α = (0):

E[u(t, x)] = ϕ(0)(t, x).

Thus evaluating the mean Eu(t, x) is reduced to numerical solution of the linear deterministic PDE
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for ϕ(0)(t, x).

We limit ourselves here to presenting an algorithm for computing the second moment of the

solution, E[u2(t, x)]. Other moments of the solution u(t, x) can be considered analogously.

According to Algorithm 2.3.1, we approximate the solution u(ti−1, x) of (2.2.1) by uM∆,N,n(ti−1, x)

(when f = gk = 0) as follows:

ψm(0;N, n,M) = (u0, em), m = 1, . . . ,M,

ψm(ti−1;N, n,M) =
∑

α∈JN,n,r

M∑
l=1

1√
α!
ψl(ti;N, n,M)qα,l,m ξ(i)

α , m = 1, . . . ,M,

uM∆,N,n(ti−1, x) =

M∑
m=1

ψm(ti−1;N, n,M)em(x), i = 1, . . . ,K,

where qα,l,m are from (2.3.13) and ξ
(i)
α are from (2.3.6). Then, we can evaluate the covariance

matrices

Qlm(0;N, n,M) := ψl(0;N, n,M)ψm(0;N, n,M), l,m = 1, . . . ,M, (2.4.1)

Qlm(ti−1;N, n,M) := E[ψl(ti−1;N, n,M)ψm(ti−1;N, n,M)]

=

M∑
j,k=1

Qjk(ti;N, n,M)
∑

α∈JN,n,r

1

α!
qα,j,lqα,k,m,

l,m = 1, . . . ,M, i = 1, . . . ,K,

and, consequently, the second moment of the approximate solution

E[(uM∆,N,n(ti−1, x))2] =

M∑
l,m=1

Qlm(ti−1;N, n,M)el(x)em(x), i = 1, . . . ,K. (2.4.2)

We note that implementation of (2.4.1)–(2.4.2) does not require generation of the random variables

ξ
(i)
α . Hence we have constructed a deterministic algorithm for computing the second moments of

the solution to the SPDE (2.2.1) when f = gk = 0, which we formulate below.
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Algorithm 2.4.1 (Recursive multistage Wiener chaos expansion). Choose a truncation of the

number of noises r ≥ 1 in (2.2.1) and the algorithm’s parameters: a CONS {em(x)}m≥1 and its

truncation {em(x)}Mm=1; a time step ∆; N and n which together with r determine the size of the

multi-index set JN,n,r.

STEP 1 For each m = 1, . . . ,M, solve the propagator (2.3.12) for α ∈ JN,n,r on the time interval [0,∆]

with the initial condition φ(x) = em(x) and denote the obtained solution as ϕα(∆, x; em),

α ∈ JN,n,r, m = 1, . . . ,M. Also, choose a time step size δt to solve the equations in the

propagator numerically.

STEP 2 Evaluate ψm(0;N, n,M) = (u0, em), m = 1, . . . ,M, where u0(x) is the initial condition for

(2.2.1), and qα,l,m = (ϕα(∆, ·; el), em(·)), l,m = 1, . . . ,M.

STEP 3 Recursively compute the covariance matrices Qlm(ti−1;N, n,M) according to (2.4.1) and obtain

the second moment E[(uM∆,N,n(ti−1, x))2] of the approximate solution to (2.2.1) by (2.4.2).

We emphasize again that Algorithm 2.4.1 for computing moments does not have a statistical

error.

Let us discuss the error of Algorithm 2.4.1. One can show (see, e.g. [265]) that due to the

orthogonality of the random variables ξ
(i)
α in the sense that E[ξ

(i)
α ξ

(j)
β ] = 0 unless i = j and α = β,

the following equality holds:

E[u2(t, x)]− E[u2
N,n(t, x)] = E[(u(t, x)− uN,n(t, x))2]. (2.4.3)

Hence the error estimates for approximation of the second moment E[u2(ti−1, x)] by E[u2
∆,N,n(ti−1, x)]

is equal to the errors given in (2.3.10) and (2.3.11).

We do not discuss here errors arising from noise truncation and from truncation of the basis

{em(x)}m≥1.
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Remark 2.4.2. It is not difficult to show that the computational costs of Steps 1 and 2 of Al-

gorithm 2.4.1 are proportional to M2 (N+nr)!
N!(nr)! . In general the computational cost of Step 3 over K

timesteps is proportional to KM4 (N+nr)!
N!(nr)! . Taking this into account together with the error estimates

(2.3.10) and (2.3.11), it is usually computationally beneficial to choose n = 1 and N = 2 or 1. The

main compu]tational cost of Algorithm 2.4.1 is due to the total number of basis functions M (in

physical space) required for reaching a satisfactory accuracy. As is well known, for a fixed accuracy

the number M of basis functions {em}Mm=1 is proportional to Cd, where C depends on a choice of

the basis and on the problem. If the variance of u2(t, xi) is relatively large and the problem consid-

ered does not require a very large number of basis functions M, then one expects Algorithm 2.4.1

to be computationally more efficient in evaluating second moments than the combination of Algo-

rithm 2.3.1 with the Monte Carlo technique.

Algorithm 2.4.1’s efficiency can often be improved by choosing an appropriate basis {em} so

that the majority of functions qα,l,m are identically zero or negligible and hence can be dropped from

computing the covariance matrix {Qlm(ti−1;N,M)}Ml,m=1, significantly decreasing the computational

cost of Step 3. For instance, for the periodic passive scalar equation considered in Section 2.6

we choose the Fourier basis {em}. In this case the number of zero qα,l,m is proportional just to

M (the total number of qα,l,m is proportional to M2) and, consequently, the computational cost

of Step 3 (and hence that of Algorithm 2.4.1) becomes proportional to M2 instead of the original

M4. Moreover, computation of the covariance matrix according to (2.4.1) can be done in parallel.

Clearly, the use of reduced-order methods with offline/online strategies [348] can greatly reduce the

value of M and hence will make the proposed method very efficient.

Remark 2.4.3. It is more expensive to compute higher-order moments by a deterministic algorithm

analogous to Algorithm 2.4.1. Since second moments give us such important, from the physical point

of view, characteristics as energy and correlation functions, Algorithm 2.4.1 can be a competitive

alternative to Monte Carlo-type methods in practical situations.
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2.5 Numerical tests in one dimension

We start (Section 2.5.1) with a description of two one-dimensional test problems used in the nu-

merical tests. Then, for clarity of exposition, we illustrate application of Algorithm 2.4.1 to these

problems (Section 2.5.2). We present results of numerical tests of Algorithm 2.4.1 in Section 2.5.3

and its comparison with some Monte Carlo-type algorithms in Section 2.5.4. In the next section

(Section 2.6) we also perform numerical tests with a two-dimensional passive scalar equation.

2.5.1 Test problems

We consider the following two model problems. The first one is the stochastic advection-diffusion

equation with periodic boundary condition, written in the Stratonovich form as

du(t, x) = εuxx(t, x)dt+ σux(t, x) ◦ dw(t), t > 0, x ∈ (0, 2π), (2.5.1)

u(0, x) = sin(x),

or in the Itô form as

du(t, x) = auxx(t, x) dt+ σux(t, x) dw(t), u(0, x) = sin(x).

Here w(t) is a standard one-dimensional Wiener process, σ > 0, ε ≥ 0 are constants, and a =

ε+ σ2/2. The solution of (2.5.1) is

u(t, x) = e−εt sin(x+ σw(t)), (2.5.2)

and its first and second moments are

E[u(t, x)] = e−at sin(x), E[u2(t, x)] = e−2εt

(
1

2
− 1

2
e−2σ2t cos(2x)

)
.
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We note that for ε = 0 the equation (2.5.1) becomes degenerate.

The second model problem is the following Ito reaction-diffusion equation with periodic bound-

ary condition:

du(t, x) = auxx(t, x) dt+ σu(t, x) dw(t), t > 0, x ∈ (0, 2π), (2.5.3)

u(0, x) = sin(x),

where σ > 0 and a ≥ 0 are constants. Its solution is

u(t, x) = exp

(
−(a+

σ2

2
)t+ σw(t)

)
sin(x); (2.5.4)

and its first and second moments are

E[u(t, x)] = e−at sin(x), E[u2(t, x)] = exp
(
−(2a− σ2)t

)
sin2(x).

In Sections 2.5.3 and 2.5.4 we will test Algorithm 2.4.1 by evaluating the second moments

Eu2(t, x) of the solutions to (2.5.1) and (2.5.3).

2.5.2 Application of WCE algorithms to the model problem

The problems (2.5.1) and (2.5.3) are simpler than the general linear SPDE (2.2.1) and, consequently,

Algorithm 2.4.1 applied to them takes a simpler form (see Algorithm 2.5.1 below).

We note that when an SPDE has a single Wiener process only, the multi-index α takes the form

α = (α1, α2, . . .), where αi are non-negative integers. For instance, if |α| = 0 (i.e., α = (0, 0, . . .))

then the corresponding ξα = 1 (cf. (2.2.6)). If |α| = 1, then the multi-index α = (0, . . . , 0, 1, 0, . . .)

with αi = 1 and the other αk = 0, and the corresponding ξα = H1(ξi)= ξi =
∫ t

0
mi(s) dw(s). If

|α| = 2, then the multi-index is either of the type α = (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . .) with αi = αj = 1

and the other αk = 0, and consequently, ξα = H1(ξi)H1(ξj) =
∫ t

0
mi(s) dw(s)

∫ t
0
mj(s) dw(s); or
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α = (0, . . . , 0, 2, 0, . . .) with αi = 2 and the other αk = 0, and consequently, ξα = H2(ξi)/
√

2 =

1√
2

[(∫ t
0
mi(s) dw(s)

)2

− 1

]
, and so on.

The model problems (2.5.1) and (2.5.3) have a single Wiener process and they possess the

following interesting feature. We observe that their solutions (2.5.2) and (2.5.4) have the form

u(t, x) = f(t, x, w(t)), where f(t, x, y) is a smooth function. Consequently, the solutions are ex-

pandable in the basis consisting just of ξα = Hk(w(t)/
√
t)/
√
k! = Hk(ξ1)/

√
k!, α = (k, 0, . . . , 0),

k = 0, 1, . . . , i.e., we have

u(t, x) =
∑
α∈J

ϕα(t, x)√
α!

ξα =

∞∑
N=0

∑
α∈JN,1

ϕα(t, x)√
α!

ξα =

∞∑
k=0

ϕk(t, x)√
k!

ηk , (2.5.5)

where ηk = ξα with α = (k, 0, . . . , 0), k = 0, 1, . . . . Hence

uN,1(t, x) = :uN(t, x) =

N∑
k=0

ϕk(t, x)√
k!

ηk , (2.5.6)

which corresponds to setting n = 1 in (2.3.1). It is not difficult to show (see also the discussion on

error estimates after Algorithm 2.4.1 in Section 2.4) that applying Algorithm 2.4.1 to the model

problems (2.5.1) and (2.5.3) is more accurate than in general cases of (2.2.1) (cf. (2.3.10) and

(2.3.11) and also (2.4.3)):

∥∥E[u2(t, ·)]− E[u2
∆,N(t, ·)]

∥∥
L2 ≤ C

(C∆)N

(N + 1)!
(2.5.7)

for all sufficiently small ∆ > 0 and a constant C > 0 independent of ∆ and N (as before, here we

neglected errors arising from truncation of the basis {em}).

For the problems (2.5.1) and (2.5.3), the propagator (2.3.12) takes the form (recall that here

the multi-index α degenerates to α = (k, 0, . . . , 0), k = 0, 1, . . .) :

∂tϕ0 = a∂2
xxϕ0, ϕ0(0, x;φ) = φ(x), (2.5.8)
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∂tϕk = a∂2
xxϕk +

1√
∆
σk∂xϕk−1, ϕk(0, x; 0) = 0, k > 0,

and

∂tϕ0 = a∂2
xxϕ0, ϕ0(0, x;φ) = φ(x), (2.5.9)

∂tϕk = a∂2
xxϕk +

1√
∆
σkϕk−1, ϕk(0, x; 0) = 0, k > 0,

respectively. We solve these propagators numerically using the Fourier collocation method with M

nodes in physical space and the Crank–Nicolson time discretization with step δt in time. Denote by

Lm(x), m = 1, . . . ,M, the m-th Lagrangian trigonometric polynomials using M Fourier collocation

nodes, i.e., Lm(x) are m-th order trigonometric polynomials satisfying Lm(xl) = δm,l and xl =

2π
M (l − 1), l = 1, . . . ,M. Now, for completeness, we formulate the realization of Algorithm 2.4.1 in

the case of the model problems.

Algorithm 2.5.1. For given values of the model parameters a and σ, choose the algorithm param-

eters: a number of Fourier collocation nodes M, a time step δt for solving the propagator (2.5.8)

(or (2.5.9)), and a time step ∆ and the number of Hermite polynomials N.

STEP 1 Solve the propagator (2.5.8) (or (2.5.9)) on the time interval [0,∆] with the initial condition

φ(x) = Lk(x) using the Fourier collocation method with M nodes in physical space and the

Crank–Nicolson scheme with step δt in time and denote the obtained numerical approximation

of ϕk(∆, xl;Lm) as ϕM,δt
k (∆, xl;Lm), l,m = 1, . . . ,M, k = 0, 1, . . . ,N.

STEP 2 Recursively compute the covariance matrices

Qlm(ti−1;N,M) := E[uM,δt∆,N (ti−1, xl)u
M,δt
∆,N (ti−1, xm)], ti−1 = i∆, i = 0, . . . ,K,
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of the approximate solution to (2.5.1) (or (2.5.3)):

Qlm(0;N,M) = u0(xl)u0(xm), l,m = 1, . . . ,M,

Qlm(ti−1;N,M) =

N∑
k=1

M∑
q=1

M∑
r=1

1

k!
Qqr(ti;N,M)ϕM,δt

k (∆, xl;Lq)ϕ
M,δt
k (∆, xm;Lr),

l,m = 1, . . . ,M, i = 1, . . . ,K,

where u0(x) is the initial condition of (2.5.1) (or (2.5.3)).

In particular, we obtain the second moment of the approximate solution to (2.5.1) (or (2.5.3)):

E[uM,δt∆,N (ti−1, xj)]
2 = Qjj(ti−1;N,M), j = 1, . . . ,M, i = 1, . . . ,K.

We note that Algorithm 2.5.1 has four errors: (1) an error due to time discretization of the

SPDE, which is controlled by ∆; (2) the truncation error of the one-step WCE, which is controlled

by N; (3) an error due to the truncation of the spatial basis {em}, which is controlled by M; and

(4) the numerical integration error in solving the propagator. The last one, in its turn, consists

of the error due to space discretization, which is controlled by M, and of the error due to time

discretization, which is controlled by δt.

Remark 2.5.2. To approximate the solution of (2.5.1) (or (2.5.3)), one can use the truncated

WCE uN(t, x) from (2.5.6) and, in particular, evaluate the second moment E[u2(t, x)] as

E[u2(t, x)] ≈ E[u2
N(t, x)] =

N∑
k=0

ϕ2
k(t, x)

k!
≈

N∑
k=0

[
ϕM,δt
k (t, x)

]2
k!

, (2.5.10)

where ϕ0(t, x) = ϕ0(t, x;u0(x)) and ϕk(t, x) = ϕk(t, x; 0), k > 0, are solutions of the propagator

(2.5.8) (or (2.5.9)) and ϕM,δt
k (t, x) are their numerical approximations obtained, e.g., using the

Fourier collocation method with M nodes in physical space and the Crank–Nicolson scheme with step
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δt in time. The approximation (2.5.10) can be viewed as a one-step approximation corresponding

to Algorithm 2.5.1, i.e., the first step of Algorithm 2.5.1 with ∆ = t, and its error is estimated as

∣∣E[u2(t, ·)]− E[u2
N(t, ·)]

∣∣
L2 ≤ CeCt

(Ct)N+1

(N + 1)!
.

We see that this error grows exponentially with t, which was confirmed by our numerical tests

with (2.5.1) (not presented here). To reach a satisfactory accuracy of the approximation (2.5.10)

for a fixed t, one has to take a sufficiently large N which is computationally expensive (see also

Remark 2.4.2) even in the case of moderate values of t. In contrast, we demonstrate (see next

section) that the error of Algorithm 2.5.1 grows linearly with time and it is relatively small even

for N = 1.

2.5.3 Numerical results

In this section we present some results of our numerical tests of Algorithm 2.5.1 on the two model

problems (2.5.1) and (2.5.3).

In approximating the propagators (2.5.8) and (2.5.9) we choose a sufficiently large number

of Fourier collocation nodes M and a sufficiently small time step δt so that errors of numerical

solutions to the propagators have a negligible influence on overall accuracy of Algorithm 2.5.1 in

our simulations. In all the numerical tests it was sufficient to take M = 20; this choice of M was

tested by running control tests with M = 80.

We measure numerical errors using the norms:

ρ2(t) =

(
2π

M

M∑
m=1

(E[uM,δt∆,N (t, xm))2]− E[u2(t, xm)])2

)1/2

,

and

ρ∞(t) = max
1≤m≤M

∣∣∣∣E [uM,δt∆,N (t, xm)
]2
− Eu2(t, xm)

∣∣∣∣ .
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The results of our tests on the model problem (2.5.1) in the degenerate case (i.e., ε = 0) and

in the non-degenerate case (i.e., ε > 0) are presented in Tables 2.1 and 2.2, respectively. Table 2.3

corresponds to the tests with the second model problem (2.5.3). Numerical tests with values of

the parameters other than those used for Tables 2.1-2.3 were also performed and they gave similar

results.

Table 2.1: Performance of Algorithm 2.5.1 for Model (2.5.1). The parameters of the model (2.5.1)
are σ = 1, ε = 0, and the time t = 10. In Algorithm 2.5.1 we take M = 20.

N ∆ δt ρ2(10) ρ∞(10)

1 0.1 1× 10−3 4.69× 10−1 1.87× 10−1

0.01 1× 10−4 6.07× 10−2 2.42× 10−2

0.001 1× 10−5 6.25× 10−3 2.49× 10−3

2 0.1 1× 10−3 1.92× 10−2 7.67× 10−3

0.01 1× 10−4 2.07× 10−4 8.27× 10−5

0.001 1× 10−5 2.09× 10−6 8.33× 10−7

3 0.1 1× 10−3 4.82× 10−4 1.99× 10−4

0.01 1× 10−4 5.16× 10−7 2.06× 10−7

0.001 1× 10−5 3.37× 10−10 1.81× 10−10

4 0.1 1× 10−3 9.36× 10−6 3.73× 10−6

0.01 1× 10−5 9.35× 10−10 4.17× 10−10

Table 2.2: Model (2.5.1): performance of Algorithm 2.5.1. The parameters of the model (2.5.1) are
σ = 1, ε = 0.01, and the time t = 10. In Algorithm 2.5.1 we take M = 20.

N ∆ δt ρ2(10) ρ∞(10)

1 0.1 1× 10−3 3.84× 10−1 1.53× 10−1

0.01 1× 10−4 4.97× 10−2 1.98× 10−2

0.001 1× 10−4 5.11× 10−3 2.04× 10−3

2 0.1 1× 10−3 1.58× 10−2 6.28× 10−3

0.01 1× 10−4 1.70× 10−4 6.77× 10−5

0.001 1× 10−4 1.72× 10−6 6.88× 10−7

3 0.1 1× 10−3 3.95× 10−4 1.57× 10−4

0.01 1× 10−4 4.22× 10−7 1.68× 10−7

0.001 1× 10−5 3.65× 10−10 2.01× 10−10

4 0.1 1× 10−3 7.67× 10−6 3.06× 10−6

0.01 1× 10−5 8.39× 10−10 3.90× 10−10

Analyzing the results in Tables 2.1, 2.2 and 2.3, we observe the convergence order of ∆N for a

fixed N in all the tests which confirms our theoretical prediction (2.5.7). We also run other cases

(not presented here) to confirm the conclusion from Section 2.5.2 that the number n of random
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Table 2.3: Performance of Algorithm 2.5.1 for Model (2.5.3). The parameters of the model (2.5.3)
are σ = 1, a = 0.5, and the time t = 10. In Algorithm 2.5.1 we take M = 20.

N ∆ δt ρ2(10) ρ∞(10)

1 0.1 1× 10−3 5.75× 10−1 3.74× 10−1

0.01 1× 10−4 7.44× 10−2 4.85× 10−2

0.001 1× 10−4 7.65× 10−3 4.98× 10−3

2 0.1 1× 10−3 2.36× 10−2 1.53× 10−2

0.01 1× 10−4 2.54× 10−4 1.65× 10−4

0.001 1× 10−4 2.58× 10−6 1.68× 10−6

3 0.1 1× 10−3 5.90× 10−4 3.85× 10−4

0.01 1× 10−4 6.32× 10−7 4.12× 10−7

variables ξk used per step does not influence the accuracy of Algorithm 2.4.1 in the case of the

model problems (2.5.1) and (2.5.3).

In Figure 2.2 we demonstrate dependence of the relative numerical error

ρr2(t) =
ρ2(t)

‖E[u2(t, ·)]‖L2

on integration time. These results were obtained in the degenerate case of the problem (2.5.1),

but similar behavior of errors was observed in our tests with other parameters as well. One can

conclude from Figure 2.2 that (after an initial fast growth) the error grows linearly with integration

time. This is a remarkable feature of the proposed WCE-based algorithm since it implies that the

algorithm can be used for long time integration of SPDEs.

2.5.4 Comparison of the WCE algorithm and Monte Carlo-type algo-

rithms

As discussed in Introduction, there are other approaches to solving SPDEs, which are usually

complimented by the Monte Carlo technique when one is interested in computing moments of SPDE

solutions. In this section, using the problem (2.5.1), we compare the performance of Algorithm 2.5.1

and two Monte Carlo-type algorithms, one of which is based on the method of characteristics [304]

and another on the Fourier transform of the linear SPDE with subsequent simulation of SDEs and
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Figure 2.2: Dependence of the relative numerical error ρr2(t) on integration time. Model (2.5.1) is
simulated by Algorithm 2.5.1 with M = 20 and δt = ∆/100 and various ∆ and N. The parameters
of (2.5.1) are σ = 1 and ε = 0.

application of the Monte Carlo technique.

The solution of (2.5.1) with ε = 0 (the degenerate case) can be represented using the method

of characteristics [347]:

u(t, x) = sin(Xt,x(0)), (2.5.11)

where Xt,x(s), 0 ≤ s ≤ t, is the solution of the system of backward characteristics

dXt,x(s) = σ
←−
dw(s), Xt,x(t) = x. (2.5.12)

The notation “
←−
dw(s)” means backward Itô integral (see, e.g. [347]). It follows from (2.5.12) that

Xt,x(0) has the same probability distribution as x+σ
√
tζ, where ζ is a standard Gaussian random

variable (i.e., ζ ∼ N (0, 1)). Since we are interested only in computing statistical moments, it is

assumed, without loss of generality, that

Xt,x(0) = x+ σ
√
tζ. (2.5.13)
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Then we can estimate the second moment m2(t, x) := E[u2(t, x)] as

m2(t, x)
.
= m̂2(t, x) =

1

L

L∑
l=1

sin2(x+ σ
√
tζ(l)), (2.5.14)

where ζ(l), l = 1, . . . , L, are i.i.d. standard Gaussian random variables. The estimate m̂2 for m2 is

unbiased, and, hence, the numerical procedure for finding m2 based on (2.5.14) has only the Monte

Carlo (i.e., statistical) error which, as usual, can be quantified via half of the length of the 95%

confidence interval:

ρMC(t, x) = 2

√
Var(sin2(x+ σ

√
tζ))

√
L

.

Table 2.4 gives the statistical error for m̂2(t, x) from (2.5.14) (recall that there is no space or

time discretization error in this algorithm), which is computed as

2 ·max
j

√
1
L

∑L
l=1 sin4(xj + σ

√
tζ(l))− [m̂2(t, xj)]

2

√
L

, (2.5.15)

where the set of xj is the same as the one used for producing the results of Table 2.5 by Algo-

rithm 2.5.1 and ζ(l) are as in (2.5.14). All the tests were run using Matlab R2007b, on a Macintosh

desktop computer with Intel Xeon CPU E5462 (quad-core, 2.80 GHz). Every effort was made to

program and execute the different algorithms as much as possible in an identical way. The cost

of simulation due to (2.5.14) is directly proportional to L. The slower time increase for smaller

L in Table 2.4 is due to inclusion of the initialization time of the computer program in the time

measurement.

In Table 2.5 we repeat some of the results already presented in Table 2.1, which are now also

accompanied by CPU time for comparison.

Comparing the results in Tables 2.4 and 2.5, we conclude that when one sets a relatively large

error tolerance level the estimate m̂2(t, x) from (2.5.14) is computationally more efficient than

Algorithm 2.5.1; however, Algorithm 2.5.1 has lower costs in reaching a higher accuracy (errors
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Table 2.4: Performance of the method (2.5.14) for Model (2.5.1). The parameters of the model
(2.5.1) are σ = 1, ε = 0, and the time t = 10. The statistical error is computed according to
(2.5.15).

L statistical error CPU time (sec.)

102 8.87× 10−2 6× 10−3

104 7.40× 10−3 6.7× 10−2

106 7.09× 10−4 7.4× 100

108 7.07× 10−5 7.4× 102

1010 7.07× 10−6 7.3× 104

Table 2.5: Performance of Algorithm 2.5.1 for Model (2.5.1). The parameters of the model (2.5.1)
are σ = 1, ε = 0, and the time t = 10. The parameters of Algorithm 2.5.1 are ∆ = 0.1, M = 20,
δt = 0.001.

N ρ∞(10) CPU time (sec.)

1 1.87× 10−1 5.7× 100

2 7.67× 10−3 8.1× 100

3 1.99× 10−4 1.1× 101

4 3.73× 10−6 1.3× 101

of order equal to or smaller than 10−6). We note that variance reduction techniques (see, e.g.

[301, 304] and the references therein) can be used in order to reduce the Monte Carlo error. But

the aim here is to give a comparison of computational costs for the WCE-based algorithm and

direct Monte Carlo methods having in mind that for complex stochastic problems it is usually

rather difficult to reduce variance efficiently.

Let us now use the problem (2.5.1) with ε = 0 for comparison of Algorithm 2.5.1 with another

approach exploiting the Monte Carlo technique. One can represent the solution of this periodic

problem via the Fourier transform:

u(t, x) =
∑
k∈Z

eikxuk(t) (2.5.16)

with uk(t), t ≥ 0, k ∈ Z, satisfying the system of SDEs:

duk(t) = −k2 1

2
σ2uk(t)dt+ ikσuk(t)dw(t), Reuk(0) = 0, Imuk(0) =

1

2
(δ1k − δ−1k) . (2.5.17)
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Noting that here uk(t) ≡ 0 for all |k| 6= 1 and re-writing (2.5.16)-(2.5.17) in the trigonometric form,

we get

u(t, x) = uc(t) cosx+ us(t) sinx, (2.5.18)

where

duc(t) = −1

2
σ2uc(t)dt+ σus(t)dw(t), uc(0) = 0, (2.5.19)

dus(t) = −1

2
σ2us(t)dt− σuc(t)dw(t), us(0) = 1.

The system (2.5.19) is a Hamiltonian system with multiplicative noise (see, e.g. [299, 301]). It is

known [299, 301] that symplectic integrators have advantages in comparison with usual numerical

methods in long time simulations of stochastic Hamiltonian systems. An example of a symplectic

method is the midpoint scheme, which in application to (2.5.19) takes the following form:

ūc(tk+1) = ūc(tk) +
σ

2
(ūs(tk) + ūs(tk+1))

√
∆tζk+1, uc(0) = 0, (2.5.20)

ūs(tk+1) = ūs(tk)− σ

2
(ūc(tk) + ūc(tk+1))

√
∆tζk+1, us(0) = 1,

where ζk are i.i.d. standard Gaussian random variables and ∆t > 0 is a time step. The scheme

(2.5.20) converges with the mean-square order 1/2 and weak order 1 [301]. It is implicit but can

be resolved analytically since we are dealing with the linear system here. One can recognize that

(2.5.19) is a Kubo oscillator. A number of numerical tests with symplectic and non-symplectic

integrators are done on a Kubo oscillator in [299, 301].

Using (2.5.18) and (2.5.20), we evaluate the second moment of the solution to (2.5.1) with ε = 0

as

m2(tk, x) := E[u2(tk, x)]
.
= E[(ūc(tk) cosx+ ūs(t) sinx)2] (2.5.21)
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.
= m̂2(tk, x) =

1

L

L∑
l=1

[
ūc,(l)(tk) cosx+ ūs,(l)(tk) sinx

]2
,

where ūc,(l)(tk), ūs,(l)(tk) are independent realizations of the random variables ūc(tk), ūs(tk).

The estimate m̂2(tk, x) from (2.5.21) has two errors: the time discretization error due to the

approximation of (2.5.19) by (2.5.20) and the Monte Carlo error. The errors presented in Table 2.6

are computed as maxj [m̄2(tk, xj) − E[u2(tk, xj)]] and are given together with the 95% confidence

interval.

Table 2.6: Model (2.5.1): performance of the method (2.5.21). The parameters of the model (2.5.1)
are σ = 1, ε = 0, and the time t = 10.

∆t L Error CPU time (sec.)

0.1 104 8.06× 10−3 ± 7.09× 10−3 4.72× 10−1

0.01 104 6.55× 10−4 ± 7.08× 10−4 3.90× 102

0.001 106 8.81× 10−5 ± 7.07× 10−5 3.81× 105

Comparing the results in Tables 2.6 and 2.5, we come to the same conclusion as in our first

comparison test that Algorithm 2.5.1 is computationally more efficient than the Monte Carlo-based

algorithms in reaching a higher accuracy.

2.6 Numerical tests with passive scalar equation

A prominent example of the stochastic advection-diffusion equation (2.2.1)-(2.2.2) is a passive scalar

equation, which is motivated by the study of the turbulent transport problem (see [123, 233, 264]

and the references therein). Here we perform numerical tests on the two-dimensional (d = 2)

passive scalar equation with periodic boundary conditions:

du(t, x) +

∞∑
k=1

d∑
i=1

σik(x)Diu ◦ dwk(t) = 0, (2.6.1)

u(t, x1 + `, x2) = u(t, x1, x2 + `) = u(t, x), t > 0, x ∈ (0, `)2,

u(0, x) = u0(x), x ∈ (0, `)2,
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where ◦ indicates the Stratonovich version of stochastic integration, ` > 0, the initial condition

u0(x) is a periodic function with the period (0, `)2, and σik(x) are divergence-free periodic functions

with the period (0, `)2:

div σk = 0. (2.6.2)

In (2.6.1) we take a combination of such σk(x) so that the corresponding spatial covariance C is

symmetric and stationary: C(x−y) =

∞∑
k=1

λkσk(x)σᵀ
k(y), where λk are some non-negative numbers.

Namely, we consider

C(x− y) =

∞∑
k=1

λkC(x− y;nk,mk), (2.6.3)

where nk,mk is a sequence of positive integers, and

C(x− y;n,m) = cos(2π
(
n[x1 − y1] +m[x2 − y2]

)
/`)

 m2 −nm

−nm n2

 ,

which can be decomposed as

C(x− y;n,m) = cos(2π[nx1 +mx2]/`)

 −m
n

 cos(2π
[
ny1 +my2

]
/`)

[
−m n

]

+ sin(2π
[
nx1 +mx2

]
/`)

 −m
n

 sin(2π[ny1 +my2]/`)

[
−m n

]
.

Hence, {σk(x)}k≥1 in (2.6.1) is an appropriate combination of vector functions of the form

cos(2π[nx1 +mx2]/`)

 −m
n

 and sin(2π
[
nx1 +mx2

]
/`)

 −m
n

 .
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We rewrite (2.6.1) in the Ito’s form:

du(t) +
1

2

d∑
i,j=1

Cij(0)DiDjudt+

∞∑
k=1

d∑
i=1

σik(x)Diudwk(t) = 0, (2.6.4)

u(t, x1 + `, x2) = u(t, x1, x2 + `) = u(t, x), t > 0, x ∈ (0, `)2,

u(0, x) = u0(x), x ∈ (0, `)2.

Below we present results of numerical tests of Algorithm 2.4.1 applied to (2.6.4) and its com-

parison with the Monte Carlo-type algorithm based on the method of characteristics from [304]. In

the tests we simulated the L2-norm of the second moment of the SPDE solution

∥∥E[u2(T, ·)]
∥∥
L2 =

[∫
[0,`]2

(E[u2(T, x)])2dx

]1/2

. (2.6.5)

We considered the particular case of (2.6.1), (2.6.3) with ` = 2π, the initial condition

u0(x) = sin(2x1) sin(x2) . (2.6.6)

and with two noise terms:

σ1(x) = cos(x1 + x2)

 −1

1

 , σ2(x) = sin(x1 + x2)

 −1

1

 , (2.6.7)

σk(x) = 0 for k > 2.

This example satisfies the so-called commutativity condition, see e.g. [211, 301]. The error

estimate (2.3.10) holds in this case, which is confirmed in the tests, (see Chapter 4 for error estimates

for single noise, one special coase of commutative noises).

In Algorithm 2.4.1 we solve the propagator (2.3.12) corresponding to the SPDE (2.6.4) using

fourth-order explicit Runge–Kutta with step size δt in time and the Fourier spectral method with
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M modes in physical space. We noted in Remark 2.4.2 that in general the computational cost of

Algorithm 2.4.1 is proportional to M4 but with an appropriate choice of basis functions, this cost

can be considerably reduced. Indeed, the Fourier basis is natural for the problem (2.6.4) and the use

of this basis reduces the computational cost to being proportional to M2. This significant reduction

is based on the following observation. Since we consider finite number of noises with periodic

σk(x) and ϕα(∆, x; el) to be the solution of the propagator (2.3.12) with the initial condition

equal to a single basis function el(x), ϕα(∆, x; el) is expandable in a finite number of periodic

functions ek(x) and this number does not depend on M. Hence for fixed α and l the number of

nonzero qα,l,m = (ϕα(∆, ·; el), em(·)) is finite. Therefore, the overall number of nonzero qα,l,m is

proportional to M instead of M2. This was tested and confirmed in our tests. We use the above fact

in our computer realization of Algorithm 2.4.1 and reduce the computational cost of obtaining a

single entry of the matrix Ql,m from the order of O(M2) to order O(1). Hence, computational costs

of Step 3 (and hence that of Algorithm 2.4.1) becomes proportional to M2 instead of the original

M4.

We do not have an exact solution of the problem (2.6.1) and hence we need a reference solution.

To this end, the L2-norm of the second moment of the SPDE solution at T = 1 was computed by

Algorithm 2.4.1 with parameters N = 2, n = 1, M = 900 (i.e., 30 basis functions in each space

direction), δt = 1 × 10−5, ∆ = 1 × 10−4 and which is equal to 1.57976 (5 d.p.). This result was

also verified by the Monte Carlo-type method described below with ∆t = 1 × 10−3, Ms = 10 and

L = 8× 107, which gave 1.579777± 7.6× 10−5 where ± reflects the Monte Carlo error only.

For Algorithm 2.4.1, we measure the error of computing the L2-norm of the second moment of

the SPDE solution as follows

ρ(T ) =
∥∥E[u2

ref(T, ·)]
∥∥
l2
−
∥∥∥E[(uM,δt∆,N (T, ·))2]

∥∥∥
l2
,

where ‖v(·)‖l2 = `
Ms

(∑Ms
i,j=1 v

2(x1
i , x

2
j )
)1/2

, x1
i = x2

i = (i−1)`/Ms, i = 1, . . . ,Ms, and E[u2
ref(T, ·)]
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is the reference solution computed as explained above. The results demonstrating second-order

convergence (see (2.3.10) and the discussion after Algorithm 2.4.1 ) are given in Table 2.7. We

note that we also did some control tests with δt = 1× 10−5 and M = 1600 which showed that the

errors presented in this table are not essentially influenced by the errors caused by the choice of

δt = 1× 10−4 and cut-off of the basis at M = 900.

Table 2.7: Performance of Algorithm 2.4.1 for passive scalar equation (2.6.4). The parameters of
Algorithm 2.4.1 are N = 2, n = 1, M = 900, δt = 1× 10−4.

∆ ρ(1)

0.05 0.1539
0.02 0.0326
0.01 0.0089
0.005 0.0023
0.0025 0.0006

Let us now describe the Monte Carlo-type algorithm based on the method of characteristics

(see further details in [304]) with which we compare here the performance of Algorithm 2.4.1. The

solution u(t, x) of (2.6.1) has the following (conditional) probabilistic representation (see [347, 264]):

u(t, x) = u0(Xt,x(0)) a.s., (2.6.8)

where Xt,x(s), 0 ≤ s ≤ t, is the solution of the system of (backward) characteristics

− dX =
∑
k

σk(X)
←−−
dwk(s), X(t) = x. (2.6.9)

Due to (2.6.2) and (see [264]) ∑
k

∂σk
∂x

σk = 0, (2.6.10)

the phase flow of (2.6.9) preserves phase volume (see e.g. [301, p. 247, Eq. (5.5)]). We also recall

that the Ito and Stratonovich forms of (2.6.9) coincide. As it is known [301], it is beneficial to

approximate (2.6.9) using phase volume preserving schemes, e.g., by the midpoint method [301,
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Chapter 4], which for (2.6.9) takes the form (here we exploited that the Ito and Stratonovich forms

of (2.6.9) coincide): for an integer m ≥ 1,

Xm = x, (2.6.11)

Xl = Xl+1 +
∑
k

σk

(
Xl +Xl+1

2

) (
ζ∆t
k

)
l

√
∆t, l = n− 1, . . . , 0,

where
(
ζ∆t
k

)
l

are, e.g., i.i.d. random variables with the law

ζ∆t
k =


ξk, |ξk| ≤ A∆t,

A∆t, ξk > A∆t,

−A∆t, ξk < −A∆t,

(2.6.12)

and ξk are i.i.d standard Gaussian random variables, and A∆t =
√

2c| ln ∆t|, c ≥ 1. Its weak

order is equal to one [301]. This scheme requires solving the two-dimensional nonlinear equation

at each step. To solve it, we used the fixed-point method with the level of tolerance 10−13, and in

our example two fixed-point iterations were sufficient to reach this accuracy. Using X̄t,x(0) = X0

obtained by (2.6.11) with ∆t = T/m, we simulate the L2-norm of the second moment of the SPDE

solution as follows:

∥∥E[u2(T, ·)]
∥∥
L2 =

(∫
[0,`]2

(E[u2(T, x)])2 dx

)1/2

≈
∥∥E[u2(T, ·)]

∥∥
l2

(2.6.13)

=
`

Ms

 Ms∑
i,j=1

(
E[u2

0(XT,x1
i ,x

2
j
(0))]

)2

1/2

≈ `

Ms

 Ms∑
i,j=1

(E[u2
0(X̄T,x1

i ,x
2
j
(0))]2

1/2

≈ `

Ms

 Ms∑
i,j=1

[
1

L

L∑
l=1

u2
0(X̄

(l)

T,x1
i ,x

2
j
(0))

]2
1/2

,

where x1
i = x2

i = (i− 1)`/Ms, i = 1, . . . ,Ms; X̄
(l)

t,x1
i ,x

2
j
(0) are independent realizations of the random

variables X̄t,x1
i ,x

2
j
(0). The approximation in (2.6.13) has three errors: (i) the error of discretization
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of the integral of the space domain [0, `]2 which is negligible in our example even for Ms = 10; (ii)

the error of numerical integration due to replacement of Xt,x1
i ,x

2
j
(0) by X̄t,x1

i ,x
2
j
(0); (iii) the Monte

Carlo error which is measured analogously to how it was done in Section 2.5.4. We note that it is

possible to reduce the variance of the estimator on the right-hand side of (2.6.13) but we do not

consider it here. It is interesting that the mid-point scheme used to simulate X̄t,x1
i ,x

2
j
(0) gave very

accurate results even with relatively large time steps.

We compare Algorithm 2.4.1 and the Monte Carlo algorithm (2.6.13) by simulating the example

(2.6.1), (2.6.6), (2.6.7) at T = 1. In these comparison tests, Matlab R2010b was used for each test

on a single core of two Intel Xeon 5540 (2.53 GHz) quad-core Nehalem processors. From Tables 2.8

and 2.9, we can draw the same conclusion as in one dimension that for lower accuracy the Monte

Carlo algorithm (2.6.13) outperforms Algorithm 2.4.1; but that Algorithm 2.4.1 is more efficient

for obtaining higher accuracy.

Table 2.8: Performance of Algorithm 2.4.1 passive scalar equation (2.6.4). The parameters of
Algorithm 2.4.1 are N = 2, n = 1, M = 900, δt = 1× 10−4.

∆ ρ(1) CPU time

1× 10−2 8.89× 10−3 3.7× 104 (sec.)
1× 10−3 1.20× 10−4 3.2× 105(sec.)
5× 10−4 3.73× 10−5 1.8× 102(hours)

Table 2.9: Performance of Algorithm 2.6.11 for passive scalar equation (2.6.4). The parameter is
M = 100.

∆t L Error CPU time

2× 10−1 2.5× 104 4.68× 10−3 ± 4.38× 10−3 1.2× 101 (sec.)
1× 10−2 4× 107 1.46× 10−4 ± 1.08× 10−4 3.5× 105 (sec.)
1× 10−3 4× 108 ∼ ×10−5 ± 3.03× 10−5 9.7× 103 (hours) 1

2.7 Summary

We have developed a multistage Wiener chaos expansion (WCE) method for advection-diffusion-

reaction equations with multiplicative noise, which form a wide class of linear parabolic SPDEs.

1This is an estimated time according to the tests with smaller ∆t, L and with M = 100.
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We complemented this method by a deterministic algorithm for computing second moments of the

SPDE solutions without any use of the Monte Carlo technique. Our numerical tests demonstrated

that the proposed WCE-based deterministic algorithm can be more efficient than Monte Carlo-type

methods in obtaining results of higher accuracy, scaling as ∆N, where ∆ is the time-step of the

“online” integration and N is the order of Wiener chaos. We have also found that for obtaining

results of lower accuracy, Monte Carlo-type methods outperform the deterministic algorithm for

computing moments even in the one-dimensional case. The proposed WCE-based algorithm is

conceptually different from Monte Carlo-type methods and thus it can be used for independent

verification of results obtained by Monte Carlo solvers. The efficiency of the algorithm can be

greatly improved if it is combined with reduced-order methods so that only a handful of modes will

be required to represent the solution accurately in physical space, i.e., a case with small M.

Further work is required to extend the theoretical analysis of [265] to the stochastic advection-

diffusion-reaction equations we have considered here as well as to weak convergence for WCE-based

algorithms. The numerical experiments in Section 2.6 with periodic passive scalar equation were

motivated by a non-viscous transport equation with Kraichnan’s velocity, which corresponds to an

SPDE with less a regular solution than the one we simulated in Section 2.6. Though we obtained

promising results in our numerical tests, simulation of the passive scalar equation with Kraichnan’s

velocity requires special consideration. These aspects will be addressed in the future.
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Chapter 3

Stochastic collocation methods for

differential equations with white

noise

In this chapter, we consider a sparse grid collocation method in conjunction with a time discretiza-

tion of the differential equations for computing expectations of functionals of solutions to differential

equations perturbed by time-dependent white noise. We first analyze the error of Smolyak’s sparse

grid collocation used to evaluate expectations of functionals of solutions to stochastic differential

equations discretized by the Euler scheme. We show theoretically and numerically that this algo-

rithm can have satisfactory accuracy for small magnitude of noise or small integration time, however

it does not converge neither with decrease of the Euler scheme’s time step size nor with increase

of Smolyak’s sparse grid level. Subsequently, we use this method as a building block for proposing

a new algorithm by combining sparse grid collocation with a recursive procedure. This approach

allows us to numerically integrate linear stochastic partial differential equations over longer times,

which is illustrated in numerical tests on a stochastic advection-diffusion equation.
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3.1 Introduction

In a number of applications from physics, financial engineering, biology and chemistry it is of in-

terest to compute expectations of some functionals of solutions of ordinary stochastic differential

equations (SDE) and stochastic partial differential equations (SPDE) driven by white noise. Usu-

ally, evaluation of such expectations requires to approximate solutions of stochastic equations and

then to compute the corresponding averages with respect to the approximate trajectories. We will

not consider the former in this chapter (see, e.g. [301] and references therein) and will concen-

trate on the latter. The most commonly used approach for computing the averages is the Monte

Carlo technique, which is known for its slow rate of convergence and hence limiting computational

efficiency of stochastic simulations. To speed up computation of the averages, variance reduction

techniques (see, e.g. [301, 304] and the references therein), quasi-Monte Carlo algorithms [320, 356],

and the multi-level Monte Carlo method [134, 135] have been proposed and used.

An alternative approach to computing the averages is (stochastic) collocation methods in ran-

dom space, which are deterministic methods in comparison with the Monte Carlo-type methods

that are based on a statistical estimator of a mean. The expectation can be viewed as an integral

with respect to the measure corresponding to approximate trajectories. In stochastic collocation

methods, one uses (deterministic) high-dimensional quadratures to evaluate these integrals. In the

context of uncertainty quantification where moments of stochastic solutions are sought, collocation

methods and their close counterparts (e.g., Wiener chaos expansion-based methods) have been very

effective in reducing the overall computational cost in engineering problems, see e.g. [132, 368, 404].

Stochastic equations or differential equations with randomness can be split into differential equa-

tions perturbed by time-independent noise and by time-dependent noise. It has been demonstrated

in a number of works (see e.g. [10, 34, 9, 403, 314, 322, 416] and references therein) that stochastic

collocation methods can be a competitive alternative to the Monte Carlo technique and its variants

in the case of differential equations perturbed by time-independent noise. The success of these
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methods relies on smoothness in the random space and can usually be achieved when it is sufficient

to consider only a limited number of random variables (i.e., in the case of a low dimensional random

space). The small number of random variables significantly limits the applicability of stochastic

collocation methods to differential equations perturbed by time-dependent noise as, in particular,

it will be demonstrated in this chapter.

The class of stochastic collocation methods for SDE with time-dependent white noise includes

cubatures on Wiener space [269], derandomization [317], optimal quantization [331, 332] and sparse

grids of Smolyak type [130, 131, 145]. While derandomization and optimal quantization aim at

finding quadrature rules which are in some sense optimal for computing a particular expectation

under consideration, cubatures on Wiener space and a stochastic collocation method using Smolyak

sparse grid quadratures (a sparse grid collocation method, SGC) use pre-determined quadrature

rules in a universal way without being tailed towards a specific expectation. Since SGC is endowed

with negative weights, it is, in practice, different from cubatures on Wiener space, where only

quadrature rules with positive weights are used. Among quadrature rules, SGC is of particular

interest due to its computational convenience. It has been considered in computational finance

[130, 145], where high accuracy was observed. We note that the use of SGC in [130, 145] relies on

exact sampling of geometric Brownian motion and of solutions of other simple SDE models, i.e.,

SGC in these works was not studied in conjunction with SDE approximations.

In this chapter, we consider a SGC method accompanied by time discretization of differential

equations perturbed by time-dependent noise. Our objective is twofold. First, using both analytical

and numerical results, we warn that straightforward carrying over stochastic collocation methods

and, in particular, SGC to the case of differential equations perturbed by time-dependent noise

(SDE or SPDE) usually leads to a failure. The main reason for this failure is that when integration

time increases and/or time discretization step decreases, the number of random variables in approx-

imation of SDE and SPDE grows quickly. The number of collocation points required for sufficient

accuracy of collocation methods grows exponentially with the number of random variables. This
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results in non-convergence of algorithms based on SGC and SDE time discretizations. Further, due

to empirical evidence (see e.g. [335]), the use of SGC is limited to problems with random space

dimensionality of up to 40. Consequently, SGC algorithms for differential equations perturbed by

time-dependent noise can be used only over small time intervals unless a cure for its fundamental

limitation is found.

In Section 2 (after brief introduction to the sparse grid of Smolyak [358] (see also [398, 131,

403]) and to the weak-sense numerical integration for SDE (see, e.g. [301])), we obtain an error

estimate for a SGC method accompanied by the Euler scheme for evaluating expectations of smooth

functionals of solutions of a scalar linear SDE with additive noise. In particular, we conclude that

the SGC can successfully work for a small magnitude of noise and relatively short integration

time while it does not converge neither with decrease of the time discretization step used for SDE

approximation nor with increase of the level of Smolyak’s sparse grid. Numerical tests in Section 3.4

confirm our theoretical conclusions and we also observe first-order convergence in time step size of

the algorithm using the SGC method as long as the SGC error is small relative to the error of time

discretization of SDE. We note that our conclusion is, to some extent, similar to that for cubatures

on Wiener space [61], for Wiener chaos method [192, 265, 266, 420] and some other functional

expansion approaches [49, 50].

The second objective of the chapter is to suggest a possible cure for the aforementioned deficien-

cies, which prevent SGC to be used over longer time intervals. For longer time simulation, deter-

ministic replacements (such as stochastic collocation methods and functional expansion methods)

of the Monte Carlo technique in simulation of differential equations perturbed by time-dependent

noise do not work effectively unless some restarting strategies allowing to ‘forget’ random variables

from earlier time steps are employed. Examples of such strategies are the recursive approach for

Wiener chaos expansion methods to compute moments of solutions to linear SPDE [265, 420] and

an approach for cubatures on Wiener space based on compressing the history data via a regression

at each time step [253].
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Here we exploit the idea of the recursive approach to achieve accurate longer time integration

by numerical algorithms using the SGC. For linear SPDE with time-independent coefficients, the

recursive approach works as follows. We first find an approximate solution of an SPDE at a

relatively small time t = h, and subsequently take the approximation at t = h as the initial value in

order to compute the approximate solution at t = 2h, and so on, until we reach the final integration

time T = Nh. To find second moments of the SPDE solution, we store a covariance matrix of

the approximate solution at each time step kh and recursively compute the first two moments.

Such an algorithm is proposed in Section 3.3; in Section 3.4 we demonstrate numerically that this

algorithm converges in time step h and that it can work well on longer time intervals. At the same

time, a major challenge remains: how to effectively use restarting strategies for SGC in the case of

nonlinear SDE and SPDE and further work is needed in this direction.

3.2 Sparse grid for weak integration of SDE

3.2.1 Smolyak’s sparse grid

Sparse grid quadrature is a certain reduction of product quadrature rules which decreases the

number of quadrature nodes and allows effective integration in moderately high dimensions [358]

(see also [398, 324, 131]). Here we introduce it in the form suitable for our purposes.

We will be interested in evaluating d-dimensional integrals of a function ϕ(y), y ∈ Rd, with

respect to a Gaussian measure:

Idϕ :=
1

(2π)
d/2

∫
Rd
ϕ(y) exp

(
−1

2

d∑
i=1

y2
i

)
dy1 · · · dyd. (3.2.1)

Consider a sequence of one-dimensional Gauss–Hermite quadrature rules Qn with number of nodes
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n ∈ N for univariate functions ψ(y), y ∈R:

Qnψ(y) =

n∑
α=1

ψ(yn,α)wn,α, (3.2.2)

where yn,1 < yn,2 < · · · < yn,n are the roots of the Hermite polynomialHn(y) = (−1)ney
2/2 dn

dyn e
−y2/2

and wn,α = n!/(n2[Hn−1(yn,α)]2) are the associated weights. It is known that Qnψ is exactly equal

to the integral I1ψ when ψ is a polynomial of degree less than or equal to 2n−1, i.e., the polynomial

degree of exactness of Gauss–Hermite quadrature rules Qn is equal to 2n− 1.

We can approximate the multidimensional integral Idϕ by a quadrature expressed as the tensor

product rule

Idϕ ≈ Īdϕ := Qn ⊗Qn · · · ⊗Qnϕ(y1, y2, · · · , yd) = Q⊗dn ϕ(y1, y2, · · · , yd) (3.2.3)

=

n∑
α1=1

· · ·
n∑

αd=1

ϕ(yn,α1 , . . . , yn,αd)wn,α1 · · ·wn,αd ,

where for simplicity we use the same amount on nodes in all the directions. The quadrature Īdϕ

is exact for all polynomials from the space Pk1 ⊗ · · · ⊗ Pkd with max ki = 2n− 1, where Pk is the

space of one-dimensional polynomials of degree less than or equal to k (we note in passing that this

fact is easy to prove using probabilistic representations of Idϕ and Īdϕ). Computational costs of

quadrature rules are measured in terms of a number of function evaluations which is equal to nd

in the case of the tensor product (3.2.3), i.e., the computational cost of (3.2.3) grows exponentially

fast with dimension.

The sparse grid of Smolyak [358] reduces computational complexity of the tensor product rule

(3.2.3) via exploiting the difference quadrature formulas:

A(L, d)ϕ :=
∑

d≤|i|≤L+d−1

(Qi1 −Qi1−1)⊗ · · · ⊗ (Qid −Qid−1)ϕ,

where Q0 = 0 and i = (i1, i2, . . . , id) is a multi-index with ik ≥ 1 and |i| = i1 + i2 + · · · + id. The
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number L is usually referred to as the level of the sparse grid. The sparse grid rule (3.2.4) can also

be written in the following form [398]:

A(L, d)ϕ =
∑

L≤|i|≤L+d−1

(−1)L+d−1−|i|
(
d− 1

|i| − L

)
Qi1 ⊗ · · · ⊗Qidϕ. (3.2.4)

The quadrature A(L, d)ϕ is exact for polynomials from the space Pk1 ⊗· · ·⊗Pkd with |k| = 2L−1,

i.e., for polynomials of total degree up to 2L−1 [324, Corollary 1]. Due to (3.2.4), the total number

of nodes used by this sparse grid rule is estimated by

#S ≤
∑

L≤|i|≤L+d−1

i1 × · · · × id.

Table 3.1 lists the number of sparse grid points, #S, up to level 5 when the level is not greater

than d.

Table 3.1: The number of sparse grid points for the sparse grid quadrature (3.2.4) using the one-
dimensional Gauss-Hermite quadrature rule (3.2.2), when the sparse grid level L ≤ d.

L = 1 L = 2 L = 3 L = 4 L = 5
#S 1 2d+ 1 2d2 + 2d+ 1 4

3d
3 + 2d2 + 14

3 d+ 1 2
3d

4 + 4
3d

3 + 22
3 d

2 + 8
3d+ 1

The quadrature Īdϕ from (3.2.3) is exact for polynomials of total degree 2L − 1 when n = L.

It is not difficult to see that if the required polynomial exactness (in terms of total degree of

polynomials) is relatively small then the sparse grid rule (3.2.4) substantially reduces the number

of function evaluations compared with the tensor-product rule (3.2.3). For instance, suppose that

the dimension d = 40 and the required polynomial exactness is equal to 3. Then the cost of the

tensor product rule (3.2.3) is 340 .
= 1. 215 8 × 1019 while the cost of the sparse grid rule (3.2.4)

based on one-dimensional rule (3.2.2) is 3281.

Remark 3.2.1. In this work we consider the isotropic SGC. More efficient algorithms might be built

using anisotropic SGC methods [145, 323], which employ more quadrature points along the “most
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important” direction. Goal-oriented quadrature rules, e.g. [317, 331, 332], can also be exploited

instead of pre-determined quadrature rules used here.

3.2.2 Weak-sense integration of SDE

Let (Ω,F , P ) be a probability space and (w(t),Fwt ) = ((w1(t), . . . , wr(t))
ᵀ,Fwt ) be an r-dimensional

standard Wiener process, where Fwt , 0 ≤ t ≤ T, is an increasing family of σ-subalgebras of F

induced by w(t).

Consider the system of Ito SDE

dX = a(t,X)dt+

r∑
l=1

σl(t,X)dwl(t), t ∈ (t0, T ], X(t0) = x0, (3.2.5)

where X, a, σr are m-dimensional column-vectors and x0 is independent of w. We assume that

a(t, x) and σ(t, x) are sufficiently smooth and globally Lipschitz. We are interested in computing

the expectation

u(x0) = Ef(Xt0,x0
(T )), (3.2.6)

where f(x) is a sufficiently smooth function with growth at infinity not faster than a polynomial:

|f(x)| ≤ K(1 + |x|κ) (3.2.7)

for some K > 0 and κ ≥ 1.

To find u(x0), we first discretize the solution of (3.2.5). Let

h = (T − t0)/N, tk = t0 + kh, k = 0, . . . , N.
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In application to (3.2.5) the Euler scheme has the form

Xk+1 = Xk + a(tk, Xk)h+

r∑
l=1

σl(tk, Xk)∆kwl, (3.2.8)

where X0 = x0 and ∆kwl = wl(tk+1) − wl(tk). The Euler scheme can be realized in practice by

replacing the increments ∆kwl with Gaussian random variables:

Xk+1 = Xk + a(tk, Xk)h+

r∑
l=1

σl(tk, Xk)
√
hξl,k+1, (3.2.9)

where ξr,k+1 are i.i.d. N (0, 1) random variables. Due to our assumptions, the following error

estimate holds for (3.2.9) (see e.g. [301, Chapter 2]):

|Ef(XN )− Ef(X(T ))| ≤ Kh, (3.2.10)

where K > 0 is a constant independent of h. This first-order weak convergence can also be achieved

by replacing ξl,k+1 with discrete random variables [301], e.g., the weak Euler scheme has the form

X̃k+1 = X̃k + ha(tk, X̃k) +
√
h

r∑
l=1

σl(tk, X̃k)ζl,k+1, k = 0, . . . , N − 1, (3.2.11)

where X̃0 = x0 and ζl,k+1 are i.i.d. random variables with the law

P (ζ = ±1) = 1/2. (3.2.12)

The following error estimate holds for (3.2.11)-(3.2.12) (see e.g. [301, Chapter 2]):

|Ef(X̃N )− Ef(X(T ))| ≤ Kh , (3.2.13)

where K > 0 can be a different constant than in (3.2.10).
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Introducing the function ϕ(y), y ∈ RrN , so that

ϕ(ξ1,1, . . . , ξr,1, . . . , ξ1,N , . . . , ξr,N ) = f(XN ), (3.2.14)

we have

u(x0) ≈ ū(x0) := Ef(XN ) = Eϕ(ξ1,1, . . . , ξr,1, . . . , ξ1,N , . . . , ξr,N ) (3.2.15)

=
1

(2π)rN/2

∫
RrN

ϕ(y1,1, . . . , yr,1, . . . , y1,N , . . . , yr,N ) exp

(
−1

2

rN∑
i=1

y2
i

)
dy.

Further, it is not difficult to see from (3.2.11)-(3.2.12) and (3.2.3) that

u(x0) ≈ ũ(x0) := Ef(X̃N ) = Eϕ(ζ1,1, . . . , ζr,1, . . . , ζ1,N , . . . , ζr,N ) (3.2.16)

= Q⊗rN2 ϕ(y1,1, . . . , yr,1, . . . , y1,N , . . . , yr,N ),

where Q2 is the Gauss-Hermite quadrature rule with nodes ±1 and equal weights 1/2. We note that

ũ(x0) can be viewed as an approximation of ū(x0) and that (cf. (3.2.10) and (3.2.13)) ū(x0)−ũ(x0) =

O(h).

Remark 3.2.2. Let ζl,k+1 in (3.2.11) be i.i.d. random variables with the law

P (ζ = yn,j) = wn,j , j = 1, . . . , n, (3.2.17)

where yn,j are nodes of the Gauss-Hermite quadrature Qn and wn,j are the corresponding quadrature

weights (see (3.2.2)). Then

Ef(X̃N ) = Eϕ(ζ1,N , . . . , ζr,N ) = Q⊗rNn ϕ(y1,1, . . . , yr,N ),

which can be a more accurate approximation of ū(x0) than ũ(x0) from (3.2.16) but the weak-sense
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error for the SDEs approximation Ef(X̃N )− Ef(X(T )) remains of order O(h).

Practical implementation of ū(x0) and ũ(x0) usually requires the use of the Monte Carlo tech-

nique since the computational cost of, e.g. the tensor product rule in (3.2.16) is prohibitively high

(cf. Section 3.2.1). In this work, we consider application of the sparse grid rule (3.2.4) to the

integral in (3.2.15) motivated by lower computational cost of (3.2.4).

Probabilistic interpretation of SGC

It is not difficult to show that SGC admits a probabilistic interpretation, e.g. in the case of level

L = 2 we have

A(2, N)ϕ(y1,1, . . . , yr,1, . . . , y1,N , . . . , yr,N ) (3.2.18)

= (Q2 ⊗Q1 ⊗ · · · ⊗Q1)ϕ+ (Q1 ⊗Q2 ⊗Q1 ⊗ · · · ⊗Q1)ϕ

+ · · ·+ (Q1 ⊗Q1 ⊗ · · · ⊗Q2)ϕ− (Nr − 1) (Q1 ⊗Q1 ⊗ · · · ⊗Q1)ϕ

=

N∑
i=1

r∑
j=1

Eϕ(0, . . . , 0, ζj,i, 0, . . . , 0)− (Nr − 1)ϕ(0, 0, . . . , 0),

where ζj,i are i.i.d. random variables with the law (3.2.12). Using (3.2.16), (3.2.18), Taylor’s

expansion and symmetry of ζj,i, we obtain the relationship between the weak Euler scheme (3.2.11)

and the SGC (3.2.4):

Ef(X̃N )−A(2, N)ϕ = Eϕ(ζ1,1, . . . , ζr,1, . . . , ζ1,N , . . . , ζr,N ) (3.2.19)

−
N∑
i=1

r∑
j=1

Eϕ(0, . . . , 0, ζj,i, 0, . . . , 0)− (Nr − 1)ϕ(0, 0, . . . , 0)

=
∑
|α|=4

4

α!
E

 N∏
i=1

r∏
j=1

(ζj,i)
αj,i

∫ 1

0

(1− z)3Dαϕ(zζ1,1, . . . , zζr,N ) dz


− 1

3!

N∑
i=1

r∑
j=1

E

[
ζ4
j,i

∫ 1

0

(1− z)3 ∂4

(∂yj,i)
4ϕ(0, . . . , 0, zζj,i, 0, . . . , 0) dz

]
,
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where the multi-index α = (α1,1, . . . , αr,N ) ∈ NrN0 , |α| =
∑N
i=1

∑r
j=1 αj,i, α! =

∏N
i=1

∏r
j=1 αj,i! and

Dα = ∂|α|

(∂y1,1)α1,1 ···(∂yr,N )αr,N
. The error of the SGC applied to weak-sense approximation of SDE is

further studied in Section 3.2.3.

Second-order schemes

In the SGC context, it is beneficial to exploit higher-order or higher-accuracy schemes for approx-

imating the SDE (3.2.5) because they can allow us to reach a desired accuracy using larger time

step sizes and therefore less random variables than the first-order Euler scheme (3.2.9) or (3.2.11).

For instance, we can use the second-order weak scheme for (3.2.5) (see, e.g. [301, Chapter 2]):

Xk+1 = Xk + ha(tk, Xk) +
√
h

r∑
i=1

σi(tk, Xk)ξi,k+1 +
h2

2
La(tk, Xk) (3.2.20)

+h

r∑
i=1

r∑
j=1

Λiσj(tk, Xk)ηi,j,k+1 +
h3/2

2

r∑
i=1

(Λia(tk, Xk) + Lσi(tk,Xk))ξi,k+1,

k = 0, . . . , N − 1,

where X0 = x0; ηi,j = 1
2ξiξj − γi,jζiζj/2 with γi,j = −1 if i < j and γi,j = 1 otherwise;

Λl =

m∑
i=1

σil
∂

∂xi
, L =

∂

∂t
+

m∑
i=1

ai
∂

∂xi
+

1

2

r∑
l=1

m∑
i,j=1

σilσ
i
l

∂2

∂xi∂xj
;

and ξi,k+1 and ζi,k+1 are mutually independent random variables with Gaussian distribution or

with the laws P (ξ = 0) = 2/3, P (ξ = ±
√

3) = 1/6 and P (ζ = ±1) = 1/2. The following error

estimate holds for (3.2.20) (see e.g. [301, Chapter 2]):

|Ef(X(T ))− Ef(XN )| ≤ Kh2.

Roughly speaking, to achieve O(h) accuracy using (3.2.20), we need only
√

2rN (
√
rN in the

case of additive noise) random variables, while we need rN random variables for the Euler scheme
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(3.2.9). This reduces the dimension of the random space and hence can increase efficiency and

widen applicability of SGC methods (see, in particular Example 4.1 in Section 3.4 for a numerical

illustration). We note that when noise intensity is relatively small, we can use high-accuracy low-

order schemes designed for SDEs with small noise [300] (see also [301, Chapter 3]) in order to

achieve a desired accuracy using less number of random variables than the Euler scheme (3.2.9).

3.2.3 Illustrative examples

In this section we show limitations of the use of SGC in weak approximation of SDEs. To this end,

it is convenient and sufficient to consider the scalar linear SDE

dX = λXdt+ ε dw(t), X0 = 1, (3.2.21)

where λ and ε are some constants.

We will compute expectations Ef(X(T )) for some f(x) and X(t) from (3.2.21) by applying the

Euler scheme (3.2.9) and the SGC (3.2.4). This simple example provides us with a clear insight

when algorithms of this type are able to produce accurate results and when they are likely to fail.

Using direct calculations, we first (see Examples 3.2.3–3.2.4 below) derive an estimate for the error

|Ef(XN )−A(2, N)ϕ| with XN from (3.2.9) applied to (3.2.21) and for some particular f(x). Then

(Proposition 3.2.5) we obtain an estimate for the error |Ef(XN )−A(L,N)ϕ| for a smooth f(x)

which grows not faster than a polynomial function at infinity. We will observe that the considered

algorithm is not convergent in time step h and not convergent in level L but it can be sufficiently

accurate when noise intensity and integration time are small.

It follows from (3.2.10) and (3.2.13) that

|Ef(XN )−A(L,N)ϕ| ≤
∣∣∣Ef(X̃N )−A(L,N)ϕ

∣∣∣+ |Ef(XN )− Ef(X̃N )| (3.2.22)

≤
∣∣∣Ef(X̃N )−A(L,N)ϕ

∣∣∣+Kh,
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where X̃N is from the weak Euler scheme (3.2.11) applied to (3.2.21), which can be written as

X̃N = (1 + λh)N +

N∑
j=1

(1 + λh)N−jε
√
hζj . Introducing the function

X̄(N ; y) = (1 + λh)N +

N∑
j=1

(1 + λh)N−jε
√
hyj , (3.2.23)

we see that X̃N = X̄(N ; ζ1, . . . , ζN ). We have

∂

∂yi
X̄(N ; y) = (1 + λh)N−iε

√
h and

∂2

∂yi∂yj
X̄(N ; y) = 0. (3.2.24)

Then we obtain from (3.2.19):

R : = Ef(X̃N )−A(2, N)ϕ (3.2.25)

= ε4h2
∑
|α|=4

4

α!
E

[
N∏
i=1

(ζi(1 + λh)N−i)αi
∫ 1

0

(1− z)3z4 d
4

dx4
f(X̄(N, zζ1, . . . , zζN )) dz

]

− 1

3!
ε4h2

N∑
i=1

E
[
ζ4
i

∫ 1

0

(1− z)3z4 d
4

dx4
f(X̄(0, . . . , 0, zζi, 0, . . . , 0)) (1 + λh)4N−4idz

]
.

Non-Convergence in time step h

We will illustrate the non-convergence in h through two examples.

Example 3.2.3. For f(x) = xp with p = 1, 2, 3, it follows from (3.2.25) that R = 0, i.e., SGC does

not introduce any additional error, and hence by (3.2.22)

|Ef(XN )−A(2, N)ϕ| ≤ Kh, f(x) = xp, p = 1, 2, 3.

For f(x) = x4, we get from (3.2.25):

R =
6

35
ε4h2

N∑
i=1

N∑
j=i+1

(1 + λh)4N−2i−2j
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=
6

35
ε4 ×


(1+λh)2N−1
λ2(2+λh)2

[
(1+λh)2N+1
1+(1+λh)2 − 1

]
, λ 6= 0, 1 + λh 6= 0,

T 2

2 −
Th
2 , λ = 0.

We see that R does not go to zero when h→ 0 and that for sufficiently small h > 0

|Ef(XN )−A(2, N)ϕ| ≤ Kh+
6

35
ε4 ×


1
λ2 (1 + e4Tλ), λ 6= 0,

T 2

2 , λ = 0.

We observe that the SGC algorithm does not converge with h → 0 for higher moments. In

the considered case of linear SDE, increasing the level L of SGC leads to the SGC error R being

0 for higher moments, e.g., for L = 3 the error R = 0 for up to 5th moment but the algorithm

will not converge in h for 6th moment and so on (see Proposition 3.2.5 below). Further (see the

continuation of the illustration below), in the case of, e.g. f(x) = cosx for any L this error R is

not zero, which is also the case for nonlinear SDE. We also note that one can expect that this error

R is small when noise intensity is relatively small and either time T is small or SDE has, in some

sense, stable behavior (in the linear case it corresponds to λ < 0).

Example 3.2.4. Now consider f(x) = cos(x). It follows from (3.2.25) that

R = ε4h2
∑
|α|=4

4

α!
E

[
N∏
i=1

(ζi(1 + λh)N−i)αi
∫ 1

0

(1− z)3z4 cos((1 + λh)N

+z

N∑
j=1

(1 + λh)N−jε
√
hζj) dz


− 1

3!
ε4h2

N∑
i=1

(1 + λh)4N−4i

∫ 1

0

(1− z)3z4E[ζ4
i cos((1 + λh)N + z(1 + λh)N−iε

√
hζi)] dz

and after routine calculations we obtain

R = ε4h2 cos((1 + λh)N )

1

6

N∑
i=1

(1 + λh)4N−4i + 2

N∑
i=1

N∑
j=i+1

(1 + λh)4N−2i−2j
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×
∫ 1

0

(1− z)3z4
N∏
l=1

cos(z(1 + λh)N−lε
√
h)dz

+

2

3

N∑
i,j=1;i 6=j

(1 + λh)4N−3i−j + 2

N∑
k,i,j=1

i 6=j,i 6=k,k 6=j

(1 + λh)4N−2k−i−j


×
∫ 1

0

(1− z)3z4
∏
l=i,j

sin(z(1 + λh)N−lε
√
h)

N∏
l=1

l 6=i,l 6=j

cos(z(1 + λh)N−lε
√
h)dz

+4
N∑

i,j,k,m=1
i 6=j,i 6=k,i 6=m,j 6=k,j 6=m,k 6=m

(1 + λh)4N−i−j−k−m

×
∫ 1

0

(1− z)3z4
∏

l=i,j,m

sin(z(1 + λh)N−lε
√
h)

N∏
l=1

l 6=i,l 6=j,l 6=k,l 6=m

cos(z(1 + λh)N−lε
√
h)dz

−1

6

N∑
i=1

(1 + λh)4N−4i

∫ 1

0

(1− z)3z4 cos(z(1 + λh)N−iε
√
h)] dz

]
.

It is not difficult to see that R does not go to zero when h→ 0. Further, taking into account that

| sin(z(1 + λh)N−jε
√
h)| ≤ z(1 + λh)N−jε

√
h, we get for sufficiently small h > 0

|R| ≤ Cε4(1 + e4Tλ),

where C > 0 is independent of ε and h. Hence

|Ef(XN )−A(2, N)ϕ| ≤ Cε4(1 + e4Tλ) +Kh, (3.2.26)

and we have arrived at a similar conclusion for f(x) = cosx as for f(x) = x4.

Non-convergence in SGC level

Now we will address the question what the effect of increase of the level L on error estimates can

be. To this end, we will need the following error estimate of a Gauss-Hermite quadrature. Let
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ψ(y), y ∈ R, be a sufficiently smooth function which itself and its derivatives are growing not

faster than a polynomial at infinity. Using the Peano kernel theorem (see e.g. [85]) and that a

Gauss-Hermite quadrature with n-nodes has the order of polynomial exactness 2n − 1, we obtain

for the approximation error Rn,γψ of the Gauss-Hermite quadrature Qnψ:

Rn,γ(ψ) := Qnψ − I1ψ =

∫
R

dγ

dyγ
ϕ(y)Rn,γ(Γy,γ) dy, 1 ≤ γ ≤ 2n, (3.2.27)

where Γy,γ(z) = (z−y)γ−1/(γ−1)! if z ≥ y and 0 otherwise. One can show (see, e.g. [286, Theorem

2]) that there is a constant c > 0 independent of n and y such that for any 0 < β < 1

|Rn,γ(Γy,γ)| ≤ c√
2π
n−γ/2 exp

(
−βy

2

2

)
, 1 ≤ γ ≤ 2n. (3.2.28)

We also note that (3.2.28) and the triangle inequality imply, for 1 ≤ γ ≤ 2(n− 1):

|Rn,γ(Γy,γ)−Rn−1,γ(Γy,γ)| ≤ c√
2π

[n−γ/2 + (n− 1)−γ/2] exp

(
−βy

2

2

)
. (3.2.29)

Now we consider an error of the sparse grid rule (3.2.4) accompanied by the Euler scheme (3.2.9)

for computing expectations of solutions to (3.2.21).

Proposition 3.2.5. Assume that a function f(x) and its derivatives up to 2L-th order satisfy the

polynomial growth condition (3.2.7). Let XN be obtained by the Euler scheme (3.2.9) applied to the

linear SDE (3.2.21) and A(L,N)ϕ be the sparse grid rule (3.2.4) with level L applied to the integral

corresponding to Ef(XN ) as in (3.2.15). Then for L ≤ N and sufficiently small h > 0

|Ef(XN )−A(L,N)ϕ| ≤ Kε2L(1 + eλ(2L+κ)T )
(

1 + (3c/2)
L
)
β−L/2TL, (3.2.30)

where K > 0 is independent of h, L and N ; c and β are from (3.2.28); κ is from (3.2.7).
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Proof. We recall (see (3.2.15)) that

Ef(XN ) = INϕ =
1

(2π)N/2

∫
RrN

ϕ(y1, . . . , yN ) exp

(
−1

2

N∑
i=1

y2
i

)
dy.

Introduce the integrals

I
(k)
1 ϕ =

1√
2π

∫
R
ϕ(y1, . . . , yk, . . . , yN ) exp

(
−y

2
k

2

)
dyk, k = 1, . . . , N, (3.2.31)

and their approximations Q
(k)
n by the corresponding one-dimensional Gauss-Hermite quadratures

with n nodes. Also, let U (k)
ik

= Q
(k)
ik
−Q(k)

ik−1.

Using (3.2.4) and the recipe from the proof of Lemma 3.4 in [323], we obtain

INϕ−A(L,N)ϕ =

N∑
l=2

S(L, l)⊗Nk=l+1 I
(k)
1 ϕ+ (I

(1)
1 −Q(1)

L )⊗Nk=2 I
(k)
1 ϕ, (3.2.32)

where

S(L, l) =
∑

i1+···+il−1+il=L+l−1

⊗l−1
k=1U

(k)
ik
⊗ (I

(l)
1 −Q

(l)
il

). (3.2.33)

Due to (3.2.27), we have for n > 1 and 1 ≤ γ ≤ 2(n− 1)

Unψ = Qnψ −Qn−1ψ = [Qnψ − I1(ψ)]− [Qn−1ψ − I1(ψ)] (3.2.34)

=

∫
R

dγ

dyγ
ψ(y)[Rn,γ(Γy,γ)−Rn−1,γ(Γy,γ)] dy,

and for n = 1

Unψ = Q1ψ −Q0ψ = Q1ψ = ψ(0). (3.2.35)

By (3.2.33), (3.2.31) and (3.2.27), we obtain for the first term in the right-hand side of (3.2.32):

S(L, l)⊗Nn=l+1 I
(n)
1 ϕ
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=
∑

i1+···+il=L+l−1

⊗l−1
n=1U

(k)
ik
⊗ (I

(l)
1 −Q

(l)
il

)⊗Nn=l+1 I
(n)
1 ϕ

=
∑

i1+···+il=L+l−1

⊗l−1
n=1U

(k)
ik
⊗ (I

(l)
1 −Q

(l)
il

)

⊗
∫
RN−l

ϕ(y)
1

(2π)(N−l)/2 exp(−
N∑

k=l+1

y2
k

2
) dyl+1 . . . dyN

= −
∑

i1+···+il=L+l−1

⊗l−1
n=1U

(k)
ik
⊗
∫
RN−l+1

d2il

dy2il
l

ϕ(y)Ril,2il(Γyl,2il)

× 1

(2π)(N−l)/2 exp(−
N∑

k=l+1

y2
k

2
) dyl . . . dyN .

Now consider two cases: if il−1 > 1 then by (3.2.34):

S(L, l)⊗Nn=l+1 I
(n)
1 ϕ = −

∑
i1+···+il=L+l−1

⊗l−2
n=1U

(k)
ik
⊗
∫
RN−l+2

d2il−1−2

dy
2il−1−2
l−1

d2il

dy2il
l

ϕ(y)Ril,2il(Γyl,2il)

×[Ril−1,2il−1−2(Γyl−1,2il−1−2)−Ril−1−1,2il−1−2(Γyil−1
,2il−1−2)]

× 1

(2π)(N−l)/2 exp(−
N∑

k=l+1

y2
k

2
) dyl−1 . . . dyN

otherwise (i.e., if il−1 = 1) by (3.2.35):

S(L, l)⊗Nn=l+1 I
(n)
1 ϕ = −

∑
i1+···+il=L+l−1

⊗l−2
n=1U

(k)
ik
⊗
∫
RN−l+1

Q
(l−1)
1

d2il

dy2il
l

ϕ(y)Ril,2il(Γyl,2il)

× 1

(2π)(N−l)/2 exp(−
N∑

k=l+1

y2
k

2
) dyl . . . dyN .

Repeating the above process for il−2, . . . , i1, we obtain

S(L, l)⊗Nn=l+1 I
(n)
1 ϕ =

∑
i1+···+il=L+l−1

∫
RN−#Fl−1

[⊗m∈Fl−1
Q

(m)
1 D2αlϕ(y)] (3.2.36)

×Rl,αl(y1, . . . , yl)
1

(2π)(N−l)/2 exp(−
N∑

k=l+1

y2
k

2
)
∏

n∈Gl−1

dyn × dyl . . . dyN ,

where the multi-index αl = (i1 − 1, . . . , il−1 − 1, il, 0, . . . , 0) with the m-th element αml , the sets

Fl−1 = Fl−1(αl) = {m : αml = 0, m = 1, . . . , l − 1} andGl−1 = Gl−1(αl) = {m : αml > 0, m = 1, . . . , l − 1},
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the symbols #Fl−1 and #Gl−1 stand for the number of elements in the corresponding sets, and

Rl,αl(y1, . . . , yl) = −Ril,2il(Γyl,2il)⊗n∈Gl−1
[Rin,2in−2(Γyn,2in−2)−Rin−1,2in−2(Γyn,2in−2)].

Note that #Gl−1 ≤ (L− 1) ∧ (l − 1) and also recall that ij ≥ 1, j = 1, . . . , l.

Using (3.2.28), (3.2.29) and the inequality

∏
n∈Gl−1

[i−(in−1)
n + (in − 1)−(in−1)]i−ill ≤ (3/2)#Gl−1 ,

we get

|Rl,α(y1, . . . , yl)| ≤
∏

n∈Gl−1

[i−(in−1)
n + (in − 1)−(in−1)]i−ill

c#Gl−1+1

(2π)(#Gl−1+1)/2
(3.2.37)

× exp

− ∑
n∈Gl−1

βy2
n

2
− βy2

l

2


≤ (3c/2)#Gl−1+1

(2π)(#Gl−1+1)/2
exp

− ∑
n∈Gl−1

βy2
n

2
− βy2

l

2

 .

Substituting (3.2.37) in (3.2.36), we arrive at

∣∣∣S(L, l)⊗Nn=l+1 I
(n)
1 ϕ

∣∣∣ (3.2.38)

≤
∑

i1+···+il=L+l−1

(3c/2)#Gl−1+1

(2π)(N−#Fl−1)/2

∫
RN−#Fl−1

∣∣∣⊗m∈Fl−1
Q

(m)
1 D2αlϕ(y)

∣∣∣
× exp

− ∑
n∈Gl−1

βy2
n

2
− βy2

l

2
−

N∑
k=l+1

y2
k

2

 ∏
n∈Gl−1

dyn × dyl . . . dyN .

Using (3.2.24) and the assumption that
∣∣∣ d2L

dx2L f(x)
∣∣∣ ≤ K(1 + |x|κ) for some K > 0 and κ ≥ 1, we

get

∣∣D2αlϕ(y)
∣∣ = ε2LhL

∣∣∣∣ d2L

dx2L
f(X̄(N, y))

∣∣∣∣ (1 + λh)2LN−2
∑l
i=1 iα

i
l (3.2.39)
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≤ Kε2LhL(1 + λh)2LN−2
∑l
i=1 iα

i
l (1 + |X̄(N, y)|κ).

Substituting (3.2.39) and (3.2.23) in (3.2.38) and doing further calculations, we obtain

∣∣∣S(L, l)⊗Nn=l+1 I
(n)
1 ϕ

∣∣∣ ≤ Kε2LhL(1 + eλκT )(1 + (3c/2)L∧l)β−(L∧l)/2 (3.2.40)

×
∑

i1+···+il=L+l−1

(1 + λh)2LN−2
∑l
i=1 iα

i
l

≤ Kε2LhL(1 + eλ(2L+κ)T )(1 + (3c/2)L∧l)β−(L∧l)/2
(
L+ l − 2

L− 1

)
≤ Kε2LhL(1 + eλ(2L+κ)T )(1 + (3c/2)L∧l)β−(L∧l)/2lL−1.

with a new K > 0 which does not depend on h, ε, L, c, β, and l. In the last line of (3.2.40) we used

(
L+ l − 2

L− 1

)
=

L−1∏
i=1

(1 +
l − 1

i
) ≤

[
1

L− 1

L−1∑
i=1

(1 +
l − 1

i
)

]L−1

≤ lL−1.

Substituting (3.2.40) in (3.2.32) and observing that
∣∣∣(I(1)

1 −Q(1)
L )⊗Nk=2 I

(k)
1 ϕ

∣∣∣ is of order O(hL), we

arrive at (3.2.30).

Remark 3.2.6. Due to Examples 3.2.3 and 3.2.4, the error estimate (3.2.30) proved in Proposi-

tion 3.2.5 is quite sharp and we conclude that in general the SGC algorithm for weak approximation

of SDE does not converge with neither decrease of time step h nor with increase of the level L. At

the same time, the algorithm can be sufficiently accurate when noise intensity ε and integration

time T are relatively small.

Remark 3.2.7. It follows from the proof (see (3.2.39)) that if d2L

dx2L f(x) = 0 then the error IN (ϕ)−

A(L,N)ϕ = 0. We emphasize that this is a feature of the linear SDE (3.2.21) thanks to (3.2.24),

while in the case of nonlinear SDE this error remains of the form (3.2.30) even if the 2Lth derivative

of f is zero. See also the discussion at the end of Example 3.2.3 and numerical tests in Example

3.4.1.
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Remark 3.2.8. We note that it is possible to prove a proposition analogous to Proposition 3.2.5

for a more general SDE, e.g. for SDE with additive noise. Since such a proposition does not add

further information to our discussion of the use of SGC and its proof is more complex than in the

case of (3.2.21), we do not consider such a proposition here.

3.3 Recursive collocation algorithm for linear SPDE

In the previous section we have demonstrated the limitations of SGC algorithms in application to

SDEs that, in general, such an algorithm will not work unless integration time T and magnitude of

noise are small. It is not difficult to understand that SGC algorithms have the same limitations in

the case of SPDE as well, which, in particular, is demonstrated in Example 4.2, where a stochastic

Burgers equation is considered. To cure this deficiency and achieve longer time integration in the

case of linear SPDE, we will exploit the idea of the recursive approach proposed in [265, 420] in the

case of a Wiener chaos expansion method. To this end, we apply the algorithm of SGC accompanied

by a time discretization of SPDE over a small interval [(k − 1)h, kh] instead of the whole interval

[0, T ] as we did in the previous section and build a recursive scheme to compute the second-order

moments of the solutions to linear SPDE.

Consider the linear SPDE (2.2.1) with finite dimensional noises. We will continue to use the

notation from the previous section: h is a step of uniform discretization of the interval [0, T ],

N = T/h and tk = kh, k = 0, . . . , N. We apply the trapezoidal rule in time to the SPDE (2.2.1):

uk+1(x) = uk(x) + h[L̃uk+1/2(x)− 1

2

r∑
l=1

Mlgl(x) + f(x)] (3.3.1)

+

r∑
l=1

[
Mlu

k+1/2(x) + gl(x)
]√

h (ξlh)k+1 , x ∈ D,

u0(x) = u0(x),

where uk(x) approximates u(tk, x), uk+1/2 = (uk+1 + uk)/2, and (ξlh)k are i.i.d. random variables
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so that

ξh =


ξ, |ξ| ≤ Ah,

Ah, ξ > Ah,

−Ah, ξ < −Ah,

(3.3.2)

with ξ ∼ N (0, 1) and Ah =
√

2p| lnh| with p ≥ 1. We note that the cut-off of the Gaussian random

variables is needed in order to ensure that the implicitness of (3.3.1) does not lead to non-existence

of the second moment of uk(x) [299, 301]. Based on the standard results of numerics for SDEs

[301], it is natural to expect that under some regularity assumptions on the coefficients and the

initial condition of (2.2.1), the approximation uk(x) from (3.3.1) converges with order 1/2 in the

mean-square sense and with order 1 in the weak sense and in the latter case one can use discrete

random variables ζl,k+1 from (3.2.12) instead of (ξlh)k+1 (see also e.g. [96, 141] but we are not

proving such a result here).

In what follows it will be convenient to also use the notation: ukH(x;φ(·)) = ukH(x;φ(·); (ξlh)k , l =

1, . . . , r) for the approximation (3.3.1) of the solution u(tk, x) to the SPDE (2.2.1) with f(x) = 0

and gl(x) = 0 for all l (homogeneous SPDE) and with the initial condition φ(·) prescribed at time

t = tk−1; ukO(x) = ukO(x; (ξlh)k , l = 1, . . . , r) for the approximation (3.3.1) of the solution u(tk, x)

to the SPDE (2.2.1) with the initial condition φ(x) = 0 prescribed at time t = tk−1. Note that

ukO(x) = 0 if f(x) = 0 and gl(x) = 0 for all l.

Let {ei} = {ei(x)}i≥1 be a complete orthonormal system (CONS) in L2(D) with boundary

conditions satisfied and (·, ·) be the inner product in that space. Then we can write

uk−1(x) =

∞∑
i=1

ck−1
i ei(x) (3.3.3)

with ck−1
i = (uk−1, ei) and, due to the SPDE’s linearity:

uk(x) = ukO(x) +

∞∑
i=1

ck−1
i ukH(x; ei(·)).
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We have

c0l = (u0, el), ckl = qkOl +

∞∑
i=1

ck−1
i qkHli, l = 1, 2, . . . , k = 1, . . . , N,

where qkOl = (ukO, el) and qkHli = (ukH(·; ei), el(·)).

Using (3.3.3), we represent the second moment of the approximation uk(x) from (3.3.1) of the

solution u(tk, x) to the SPDE (2.2.1) as follows

E[uk(x)]2 =

∞∑
i,j=1

Ckijei(x)ej(x), (3.3.4)

where the covariance matrix Ckij = E[cki c
k
j ]. Introducing also the means Mk

i , one can obtain the

recurrent relations in k :

M0
i = c0i = (u0, ei), C0

ij = c0i c
0
j , (3.3.5)

Mk
i = E[qkOi] +

∞∑
l=1

Mk−1
l E[qkHil],

Ckij = E[qkOiq
k
Oj ] +

∞∑
l=1

Mk−1
l

(
E[qkOiq

k
Hjl] + E[qkOjq

k
Hil]
)

+

∞∑
l,p=1

Ck−1
lp E[qkHilq

k
Hjp],

i, j = 1, 2, . . . , k = 1, . . . , N.

Since the coefficients of the SPDE (2.2.1) are time independent, all the expectations involving the

quantities qkOi and qkHil in (3.3.5) do not depend on k and hence it is sufficient to compute them

just once, on a single step k = 1, and we get

M0
i = c0i = (u0, ei), C0

ij = c0i c
0
j , (3.3.6)

Mk
i = E[q1

Oi] +

∞∑
l=1

Mk−1
l E[q1

Hil],

Ckij = E[q1
Oiq

1
Oj ] +

∞∑
l=1

Mk−1
l

(
E[q1

Oiq
1
Hjl] + E[q1

Ojq
1
Hil]
)

+

∞∑
l,p=1

Ck−1
lp E[q1

Hilq
1
Hjp],

i, j = 1, 2, . . . , k = 1, . . . , N.
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These expectations can be approximated by quadrature rules from Section 2.1. If the number of

noises r is small, then it is natural to use the tensor product rule (3.2.3) with one-dimensional

Gauss–Hermite quadratures of order n = 2 or 3 (note that when r = 1, we can use just a one-

dimensional Gauss–Hermite quadrature of order n = 2 or 3). If the number of noises r is large then

it might be beneficial to use the sparse grid quadrature (3.2.4) of level L = 2 or 3. More specifically,

E[q1
Oi]

.
=

η∑
p=1

(u1
O(·; yp), ei(·))Wp, E[q1

Hil]
.
=

η∑
p=1

(u1
H(·; el; yp), ei(·))Wp, (3.3.7)

E[q1
Oiq

1
Oj ]

.
=

η∑
p=1

(u1
O(·; yp), ei(·))(u1

O(·; yp), ej(·))Wp,

E[q1
Oiq

1
Hjl]

.
=

η∑
p=1

(u1
O(·; yp), ei(·))(u1

H(·; el; yp), ej(·))Wp,

E[q1
Hilq

1
Hjk]

.
=

η∑
p=1

(u1
H(·; el; yp), ei(·))(u1

H(·; ek; yp), ej(·))Wp,

where yp ∈ Rr are nodes of the quadrature, Wp are the corresponding quadrature weights, and η =

nr in the case of the tensor product rule (3.2.3) with one-dimensional Gauss–Hermite quadratures

of order n or η is the total number of nodes #S used by the sparse-grid quadrature (3.2.4) of level

L. To find u1
O(x; yp) and u1

H(x; el; yp), we need to solve the corresponding elliptic PDE problems,

which we do using the spectral method in physical space, i.e., using a truncation of the CONS

{el}l∗l=1 to represent the numerical solution.

To summarize, we formulate the following deterministic recursive algorithm for the second-order

moments of the solution to the SPDE problem (2.2.1).

Algorithm 3.3.1. Choose the algorithm’s parameters: a complete orthonormal basis {el(x)}l≥1 in

L2(D) and its truncation {el(x)}l∗l=1; a time step size h; and a quadrature rule (i.e., nodes yp and

the quadrature weights Wp, p = 1, . . . , η).

Step 1. For each p = 1, . . . , η and l = 1, . . . , l∗, find approximations ū1
O(x; yp) ≈ u1

O(x; yp) and

ū1
H(x; el; yp) ≈ u1

H(x; el; yp) using the spectral method in physical space.
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Step 2. Using the quadrature rule, approximately find the expectations as in (3.3.7) but with the

approximate ū1
O(x; yp) and ū1

H(x; el; yp) instead of u1
O(x; yp) and u1

H(x; el; yp), respectively.

Step 3. Recursively compute the approximations of the means Mk
i , i = 1, . . . , l∗, and covari-

ance matrices {Ckij , i, j = 1, . . . , l∗} for k = 1, . . . , N according to (3.3.6) with the approximate

expectations found in Step 2 instead of the exact ones.

Step 4. Compute the approximation of the second-order moment E[uk(x)]2 using (3.3.4) with

the approximate covariance matrix found in Step 3 instead of the exact one {Ckij}.

We emphasize that Algorithm 3.3.1 for computing moments does not have a statistical error.

Error analysis of this algorithm will be considered elsewhere.

Remark 3.3.2. Algorithms analogous to Algorithm 3.3.1 can also be constructed based on other

time-discretizations methods than the trapezoidal rule used here or based on other types of SPDE

approximations, e.g. one can exploit the Wong-Zakai approximation.

Remark 3.3.3. The cost of this algorithm is, similar to the algorithm in [420], T
∆ηl

4
∗ and the

storage is ηl2∗. The total cost can be reduced by employing some reduced order methods in physical

space and be proportional to l2∗ instead of l4∗. The discussion on computational efficiency of the

recursive Wiener chaos method is also valid here, see [420, Remark 4.1].

3.4 Numerical experiments

In this section we illustrate via three examples how the SGC algorithms can be used for the weak-

sense approximation of SDEs and SPDEs. The first example is a scalar SDE with multiplicative

noise, where we show that the SGC algorithm’s error is small when the noise magnitude is small.

We also observe that when the noise magnitude is large, the SGC algorithm does not work well. In

the second example we demonstrate that the SGC can be successfully used for simulating Burgers

equation with additive noise when the integration time is relatively small. In the last example we
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show that the recursive algorithm from Section 3.3 works effectively for computing moments of the

solution to an advection-diffusion equation with multiplicative noise over a longer integration time.

In all the tests we limit the dimension of random spaces by 40, which is an empirical limitation

of the SGC of Smolyak on the dimensionality [335]. Also, we take the sparse grid level less than

or equal to five in order to avoid an excessive number of sparse grid points. All the tests were run

using Matlab R2012b on a Macintosh desktop computer with Intel Xeon CPU E5462 (quad-core,

2.80 GHz).

Example 3.4.1 (modified Cox-Ingersoll-Ross (mCIR), see e.g. [73]). Consider the Ito SDE

dX = −θ1X dt+ θ2

√
1 +X2 dw(t), X(0) = x0. (3.4.1)

For θ2
2 − 2θ1 6= 0, the first two moments of X(t) are equal to

EX(t) = x0 exp(−θ1t), EX2(t) = − θ2
2

θ2
2 − 2θ1

+ (x2
0 +

θ2
2

θ2
2 − 2θ1

) exp((θ2
2 − 2θ1)t).

In this example we test the SGC algorithms based on the Euler scheme (3.2.8) and on the second-

order weak scheme (3.2.20). We compute the first two moments of the SDE’s solution and measure

the errors of the algorithms as

ρr1(T ) =
|EX(T )− EXN |
|EX(T )|

, ρr2(T ) =

∣∣EX2(T )− EX2
N

∣∣
EX2(T )

. (3.4.2)

Table 3.2 presents the errors for the SGC algorithms based on the Euler scheme (left) and on

the second-order scheme (3.2.20) (right), when the noise magnitude is small. For the parameters

given in the table’s description, the exact values (up to 4 d.p.) of the first and second moments are

3.679×10−2 and 4.162×10−2, respectively. We see that increase of the SGC level L above 2 in the

Euler scheme case and above 3 in the case of the second-order scheme does not improve accuracy.

When the SGC error is relatively small in comparison with the error due to time discretization, we
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observe decrease of the overall error of the algorithms in h: proportional to h for the Euler scheme

and to h2 for the second-order scheme. We underline that in this experiment the noise magnitude

is small.

Table 3.2: Comparison of the SGC algorithms based on the Euler scheme (left) and on the second-
order scheme (3.2.20) (right). The parameters of the model (3.4.1) are x0 = 0.1, θ1 = 1, θ2 = 0.3,
and T = 1.

h L ρr1(1) order ρr2(1) order L ρr1(1) order ρr2(1) order

5×10−1 2 3.20×10−1 – 3.72×10−1 – 3 6.05× 10−2 – 8.52×10−2 –
2.5×10−1 2 1.40×10−1 1.2 1.40×10−1 1.4 3 1.14×10−2 2.4 2.10×10−2 2.0
1.25×10−1 2 6.60× 10−2 1.1 4.87×10−2 1.5 3 1.75×10−3 2.7 6.73×10−3 1.6
6.25×10−2 2 3.21×10−2 1.0 8.08×10−3 2.6 4 3.64×10−4 2.3 1.21×10−3 2.5
3.125×10−2 2 1.58×10−2 1.0 1.12×10−2 -0.5 4 8.48×10−4 -1.2 3.75×10−4 1.7

2.5×10−2 2 1.26×10−2 1.49×10−2 2 9.02×10−4 5.72×10−2

2.5×10−2 3 1.26×10−2 1.48×10−2 3 9.15×10−5 2.84×10−3

2.5×10−2 4 1.26×10−2 1.55×10−2 4 1.06×10−4 2.77×10−4

2.5×10−2 5 1.26×10−2 1.56×10−2 5 1.06×10−4 1.81×10−4

In Table 3.3 we give results of the numerical experiment when the noise magnitude is not small.

For the parameters given in the table’s description, the exact values (up to 4 d.p.) of the first

and second moments are 0.2718 and 272.3202, respectively. Though for the Euler scheme there is

a proportional to h decrease of the error in computing the mean, there is almost no decrease of

the error in the rest of this experiment. The large value of the second moment apparently affects

efficiency of the SGC here. For the Euler scheme, increasing L and decreasing h can slightly improve

accuracy in computing the second moment, e.g. the smallest relative error for the second moment

is 56.88% when h = 0.03125 and L = 5 (this level requires 750337 sparse grid points) out of the

considered cases of h = 0.5, 0.25, 0.125, 0.0625, and 0.03125 and L ≤ 5. For the mean, increase of

the level L from 2 to 3, 4 or 5 does not improve accuracy. For the second-order scheme (3.2.20),

relative errors for the mean can be decreased by increasing L for a fixed h: e.g., for h = 0.25, the

relative errors are 0.5121 0.1753, 0.0316 and 0.0086 when L = 2, 3, 4, and 5, respectively.

We also see in Table 3.3 that the SGC algorithm based on the second-order scheme may not

admit higher accuracy than the one based on the Euler scheme, e.g. for h = 0.5, 0, 25, 0.125 the

second-order scheme yields higher accuracy while the Euler scheme demonstrates higher accuracy
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for smaller h = 0.0625 and 0.03125. Further decrease in h was not considered because this would

lead to increase of the dimension of the random space beyond 40 when the sparse grid of Smolyak

(3.2.4) may fail and the SGC algorithm may also lose its competitive edge with Monte Carlo-type

techniques.

Table 3.3: Comparison of the SGC algorithms based on the Euler scheme (left) and on the second-
order scheme (3.2.20) (right). The parameters of the model (3.4.1) are x0 = 0.08, θ1 = −1, θ2 = 2,
and T = 1. The sparse grid level L = 4.

h ρr1(1) order ρr2(1) ρr1(1) ρr2(1)

5×10−1 1.72×10−1 – 9.61×10−1 2.86×10−2 7.69×10−1

2.5×10−1 1.02×10−1 0.8 8.99×10−1 8.62×10−3 6.04×10−1

1.25×10−1 5.61×10−2 0.9 7.87×10−1 1.83×10−2 7.30×10−1

6.25×10−2 2.96×10−2 0.9 6.62×10−1 3.26×10−2 8.06×10−1

3.125×10−2 1.52×10−2 1.0 5.64×10−1 4.20×10−2 8.40×10−1

Via this example we have shown that the SGC algorithms based on first- and second-order

schemes can produce sufficiently accurate results when noise magnitude is small and that the second-

order scheme is preferable since for the same accuracy it uses random spaces of lower dimension than

the first-order Euler scheme, compare e.g. the error values highlighted by bold font in Table 3.2 and

see also the discussion at the end of Section 2.2. When the noise magnitude is large (see Table 3.3),

the SGC algorithms do not work well as it was predicted in Section 2.3.

Example 3.4.2 (Burgers equation with additive noise). Consider the stochastic Burgers equation

[82, 192]:

du+ u
∂u

∂x
dt = ν

∂2u

∂x2
dt+ σ cos(x)dw, 0 ≤ x ≤ `, ν > 0 (3.4.3)

with the initial condition u0(x) = 2ν 2π
`

sin( 2π
` x)

a+cos( 2π
` x)

, a > 1, and periodic boundary conditions. In the

numerical tests the used values of the parameters are ` = 2π and a = 2.

Apply the Fourier collocation method in physical space and the trapezoidal rule in time to

(3.4.3):

~uj+1 − ~uj
h

− νD2 ~uj+1 + ~uj
2

= −1

2
D(

~uj+1 + ~uj
2

)2 + σΓ
√
hξj , (3.4.4)
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where ~uj = (u(tj , x1), . . . , u(tj , xM))ᵀ, tj = jh, D is the Fourier spectral differential matrix, ξj

are i.i.d N (0, 1) random variables, and Γ = (cos(x1), . . . , cos(xM))ᵀ. The Fourier collocation points

are xm = m `
M (m = 1, . . . ,M) in physical space and in the experiment we used M = 100. We aim at

computing moments of ~uj , which are integrals with respect to the Gaussian measure corresponding

to the collection of ξj , and we approximate these integrals using the SGC from Section 2. The use

of the SGC amounts to substituting ξj in (3.4.4) by sparse-grid nodes, which results in a system of

(deterministic) nonlinear equations of the form (3.4.4). To solve the nonlinear equations, we used

the fixed-point iteration method with tolerance h2/100.

The errors in computing the first and second moments are measured as follows

ρr,21 (T ) =
‖Euref(T, ·)− Eunum(T, ·)‖

‖Euref(T, ·)‖
, ρr,22 (T ) =

∥∥Eu2
ref(T, ·)− Eu2

num(T, ·)
∥∥

‖Eu2
ref(T, ·)‖

, (3.4.5)

ρr,∞1 (T ) =
‖Euref(T, ·)− Eunum(T, ·)‖∞

‖Euref(T, ·)‖∞
, ρr,∞2 (T ) =

∥∥Eu2
ref(T, ·)− Eu2

num(T, ·)
∥∥
∞

‖Eu2
ref(T, ·)‖∞

,

where ‖v(·)‖ =

(
2π

M

M∑
m=1

v2(xm)

)1/2

, ‖v(·)‖∞ = max
1≤m≤M

|v(xm)|, xm are the Fourier collocation

points, and unum and uref are the numerical solution obtained by the SGC algorithm and the

reference solution, respectively. The first and second moments of the reference solution uref were

computed by the same solver in space and time (3.4.4) but accompanied by the Monte Carlo method

with a large number of realizations ensuring that the statistical errors were negligible.

First, we choose ν = 0.1 and σ = 1. We obtain the reference solution with h = 10−4 and

1.92×106 Monte Carlo realizations. The corresponding statistical error is 1.004×10−3 for the mean

(maximum of the statistical error for Euref(0.5, xj)) and 9.49× 10−4 for the second moment (maxi-

mum of the statistical error for Eu2
ref(0.5, xj)) with 95% confidence interval, and the corresponding

estimates of L2-norm of the moments are ‖Euref(0.5, ·)‖
.
= 0.18653 and

∥∥Eu2
ref(0.5, ·)

∥∥ .
= 0.72817.

We see from the results of the experiment presented in Table 3.4 that for L = 2 the error in com-

puting the mean decreases when h decreases up to h = 0.05 but the accuracy does not improve
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with further decrease of h. For the second moment, we observe no improvement in accuracy with

decrease of h. For L = 4, the error in computing the second moment decreases with h. When

h = 0.0125, increasing the sparse grid level improves the accuracy for the mean: L = 3 yields

ρr,21 (0.5)
.
= 9.45× 10−3 and L = 4 yields ρr,21 (0.5)

.
= 8.34× 10−3. As seen in Table 3.4, increase of

the level L also improves accuracy for the second moment when h = 0.05, 0.25, and 0.125.

Table 3.4: Errors of the SGC algorithm to the stochastic Burgers equation (3.4.3) with parameters
T = 0.5, ν = 0.1 and σ = 1.

h ρr,21 (0.5), L = 2 ρr,21 (0.5), L = 3 ρr,22 (0.5), L = 2 ρr,22 (0.5), L = 3 ρr,22 (0.5), L = 4

2.5×10−1 1.28×10−1 1.3661×10−1 4.01×10−2 1.05×10−2 1.25×10−2

1.00×10−1 4.70×10−2 5.3874×10−2 4.48×10−2 4.82×10−3 4.69×10−3

5.00×10−2 2.75×10−2 2.7273×10−2 4.73×10−2 5.89×10−3 2.82×10−3

2.50×10−2 2.51×10−2 1.4751×10−2 4.87×10−2 6.92×10−3 2.34×10−3

1.25×10−2 2.67×10−2 9.4528×10−3 4.95×10−2 7.51×10−3 2.29×10−3

Second, we choose ν = 1 and σ = 0.5. We obtain the first two moments of the reference uref using

h = 10−4 and the Monte Carlo method with 3.84× 106 realizations. The corresponding statistical

error is 3.2578× 10−4 for the mean and 2.2871× 10−4 for the second moment with 95% confidence

interval, and the corresponding estimates of L2-norm of the moments are ‖Euref(0.5, ·)‖
.
= 1.11198

and
∥∥Eu2

ref(0.5, ·)
∥∥ .

= 0.66199.

The results of the experiment are presented in Table 3.5. We see that accuracy is sufficiently

high and there is some decrease of errors with decrease of time step h. However, as expected, no

convergence in h is observed and further numerical tests (not presented here) showed that taking h

smaller than 1.25×10−2 and level L = 2 or 3 does not improve accuracy. In additional experiments

we also noticed that there was no improvement of accuracy for the mean when we increased the level

L up to 5. For the second moment, we observe some improvement in accuracy when L increases

from 2 to 3 (see Table 3.5) but additional experiments (not presented here) showed that further

increase of L (up to 5) does not reduce the errors.

For the errors measured in L∞-norm (3.4.5) we had similar observations (not presented here)

as in the case of L2-norm.
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Table 3.5: Errors of the SGC algorithm applied to the stochastic Burgers equation (3.4.3) with
parameters ν = 1, σ = 0.5, and T = 0.5.

h ρr,21 (0.5), L = 2 ρr,22 (0.5), L = 2 ρr,22 (0.5), L = 3

2.5×10−1 4.94×10−3 8.75×10−3 8.48×10−3

1×10−1 8.20×10−4 1.65×10−3 1.13×10−3

5×10−2 4.88×10−4 1.18×10−3 6.47×10−4

2.5×10−2 3.83×10−4 1.08×10−3 5.01×10−4

1.25×10−2 3.45×10−4 1.07×10−3 4.26×10−4

In summary, this example has illustrated that SGC algorithms can produce accurate results

in finding moments of solutions of nonlinear SPDE when the integration time is relatively small.

Comparing Tables 3.4 and 3.5, we observe better accuracy for the first two moments when the

magnitude of noise is smaller. In some situations higher sparse grid levels L improve accuracy but

dependence of errors on L is not monotone. No convergence in time step h and in level L was

observed which is consistent with our theoretical prediction in Section 2.

Example 3.4.3 (Stochastic advection-diffusion equation). Consider the stochastic advection-diffusion

equation in the Ito sense:

du =

(
ε2 + σ2

2

∂2u

∂x2
+ β sin(x)

∂u

∂x

)
dt+ σ

∂u

∂x
dw(s), (t, x) ∈ (0, T ]× (0, 2π), (3.4.6)

u(0, x) = φ(x), x ∈ (0, 2π),

where w(s) is a standard scalar Wiener process and ε ≥ 0, β, and σ are constants. In the tests we

took φ(x) = cos(x), β = 0.1, σ = 0.5, and ε = 0.2.

We apply Algorithm 3.3.1 to (3.4.6) to compute the first two moments at a relatively large

time T = 5. The Fourier basis was taken as CONS. Since (3.4.6) has a single noise only, we used

one-dimensional Gauss–Hermite quadratures of order n. The implicitness due to the use of the

trapezoidal rule was resolved by the fixed-point iteration with stopping criterion h2/100.

As we have no exact solution of (3.4.6), we chose to find the reference solution by Algorithm 4.2

from [420] (a recursive Wiener chaos method accompanied by the trapezoidal rule in time and
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Fourier collocation method in physical space) with the parameters: the number of Fourier collo-

cation points M = 30, the length of time subintervals for the recursion procedure h = 10−4, the

highest order of Hermite polynomials P = 4, the number of modes approximating the Wiener pro-

cess n = 4, and the time step in the trapezoidal rule h = 10−5. It gives the second moment in the

L2-norm
∥∥Eu2

ref(1, ·)
∥∥ .

= 1.065195. The errors are computed as follows

%2
2(T ) =

∣∣∥∥Eu2
ref(T, ·)

∥∥− ∥∥Eu2
numer(T, ·)

∥∥∣∣ , %r,22 (T ) =
%2

2(T )

‖Eu2
ref(T, ·)‖

, (3.4.7)

where the norm is defined as in (3.4.5).

Table 3.6: Errors in computing the second moment of the solution to the stochastic advection-
diffusion equation (3.4.6) with σ = 0.5, β = 0.1, ε = 0.2 at T = 5 by Algorithm 3.3.1 with l∗ = 20
and the one-dimensional Gauss–Hermite quadrature of order n = 2 (left) and n = 3 (right).

h %r,22 (5) order CPU time (sec.) %r,22 (5) order CPU time (sec.)

5×10−2 1.01×10−3 – 7.41 1.06×10−3 – 1.10×10
2×10−2 4.07×10−4 1.0 1.65×10 4.25×10−4 1.0 2.43×10
1×10−2 2.04×10−4 1.0 3.43×10 2.12×10−4 1.0 5.10×10
5×10−3 1.02×10−4 1.0 6.81×10 1.06×10−4 1.0 1.00×102

2×10−3 4.08×10−5 1.0 1.70×102 4.25×10−5 1.0 2.56×102

1×10−3 2.04×10−5 1.0 3.37×102 2.12×10−5 1.0 5.12×102

The results of the numerical experiment are given in Table 3.6. We observe first-order conver-

gence in h for the second moments. We notice that increasing the quadrature order n from 2 to 3

does not improve accuracy which is expected. Indeed, the used trapezoidal rule is of weak order

one in h in the case of multiplicative noise and more accurate quadrature rule cannot improve the

order of convergence. We note in passing that in the additive noise case we expect to see the second

order convergence in h when n = 3 due to the properties of the trapezoidal rule.

In conclusion, we showed that recursive Algorithm 3.3.1 can work effectively for accurate com-

puting of second moments of solutions to linear stochastic advection-diffusion equations at relatively

large time. We observed convergence of order one in h.
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Chapter 4

Comparison between Wiener chaos

methods and stochastic collocation

methods

In this chapter, we compare Wiener chaos expansion and stochastic collocation methods for lin-

ear advection-reaction-diffusion equations with multiplicative white noise. Both methods are con-

structed based on a recursive multi-stage algorithm for long-time integration. We derive error

estimates for both methods and compare their numerical performance. Numerical results confirm

that the recursive multi-stage stochastic collocation method is of order ∆ (time step size) in the

second-order moments while the recursive multi-stage Wiener chaos method is of order ∆N +∆2 (N

is the order of Wiener chaos) for advection-diffusion-reaction equations with commutative noises,

in agreement with the theoretical error estimates. However, for non-commutative noises, both

methods are of order one in the second-order moments.
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4.1 Introduction

Partial differential equations (PDEs) driven by white noise have different interpretation of stochastic

products and lead to different numerical approximations, unlike the PDEs driven by color noise.

Specifically, stochastic products for white noise are usually interpreted with two different products:

the Ito-Wick product and the Stratonovich product, see e.g. [7]. Different products lead to different

performance of numerical solvers for PDEs driven by white noise, especially when Wiener chaos

expansion (WCE) and stochastic collocation methods (SCM) in random space are used. In this

chapter, we will show theoretically and through numerical examples that for white noise driven

PDEs, WCE and SCM have quite different performance when the noises are commutative. This is

different from how WCE and SCM behave for PDEs driven by color noise. For elliptic equations

with color noise, it is demonstrated in [11] that there are only small differences in the numerical

performance of generalized polynomial chaos expansion and SCM.

To apply WCE and SCM, we first discretize the Brownian motion with its truncated spectral

expansion, see e.g. [333, Chapter IX] and [265], and subsequently we employ the corresponding

functional expansion (WCE and SCM) to represent the solution in random space. In principle,

we can employ any functional expansion, however, different expansions are preferred for different

stochastic products because of computational efficiency. In practice, WCE is associated with the

Ito-Wick product, see (4.2.2), as the product is defined with Wiener chaos modes yielding a weakly

coupled system (lower-triangular system) of PDEs for linear equations. On the other hand, SCM is

associated with the Stratonovich product, see (4.2.6), yielding a decoupled system of PDEs. These

different formulations lead to different numerical performance as we demonstrate in Section 4.4; in

particular, WCE can be of second-order convergence in time while SCM is only of first-order in

time in the second-order moments for commutative noises. Further, when the noises serve as the

advection coefficients, SCM can be more accurate than WCE when both methods are of first order

convergence as the SCM (Stratonovich formulation) can lead to smaller diffusion coefficient than

97



those for WCE (Ito-Wick formulation).

Both methods are actually Wong-Zakai type approximations [399, 400], according to which

we discretize only the Brownian motion, hence resulting in PDEs with finite dimensional random

inputs. The latter can be solved numerically using a variety of space-time discretization methods.

Here we will employ functional expansion methods in random space, e.g., WCE [49, 265] and

SCM [403]. Compared to the Monte Carlo method, these functional expansion methods have no

statistical errors and allow efficient short-time integration of SPDEs [49, 50, 192, 265, 266, 420].

However, a fundamental limitation of these expansion methods is the exponential growth of

error with time and the increasing complexity as the number of random variables is increasing,

generated by the discretization of the Brownian motion. To deal with this complexity, a recursive

WCE method was proposed in [265] for the Zakai equation of nonlinear filtering with uncorrelated

observations. More recently, a recursive multi-stage approach was developed to efficiently solve

linear stochastic advection-diffusion-reaction equations using either WCE [420].

Some numerical results of WCE for SPDEs have been presented in [420] for linear advection-

diffusion-reaction equations and in [192] for nonlinear SPDEs including the stochastic Burgers

equation and the Navier-Stokes equations. These numerical results have demonstrated that WCE

in conjunction with the recursive multi-stage approach are efficient for long-time integration of

linear advection-diffusion-reaction equations. Although the number of operations for the recursive

multi-stage WCE is of order M4, where M is the number of nodes employed in the discretization

of physical space, this computational complexity can be reduced to the order of M2 using sparse

representations (see e.g. [352]), as demonstrated in [420].

The main point of this chapter is the derivation of theoretical error estimates for both WCE

and SCM methods and subsequent comparison of the numerical performance of the two methods

for commutative and non-commutative noises. In addition, we will develop a recursive multi-stage

SCM using a spectral truncation of Brownian motion. Specifically, in this chapter we will derive

the error estimate of WCE for linear advection-diffusion-reaction equations with white noise in
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the advection velocity and that of SCM with white noise in the reaction rate. We note that the

convergence rate of WCE is known only for linear advection-diffusion-reaction equations with white

noise in the reaction rate although the convergence of WCE for linear advection-diffusion-reaction

equations has been studied for some time [264, 265, 266, 268].

This chapter is organized as follows. After the Introduction section, in Section 4.2, we review

the WCE method and SCM for linear parabolic SPDEs and develop a new recursive SCM using

a spectral truncation of Brownian motion, following the same recursive procedure as WCE in

[265, 420]. In Section 4.3 we present the error estimates for both methods for linear advection-

diffusion-reaction equations, with the proofs presented in Section 4.5. In Section 4, we present

numerical results of WCE and SCM for linear SPDEs with both commutative and non-commutative

noises and verify the error estimates of WCE and SCM for commutative noises.

4.2 Review of Wiener chaos and stochastic collocation

In this section, we briefly review WCE and SCM for the linear SPDE (2.2.1).

In both WCE and SCM, we discretize the Brownian motion using the following spectral repre-

sentations (see e.g. [265, 420]):

lim
n→∞

E[(w(t)− w(n)(t))2] = 0, w(n)(t) =

n∑
i=1

∫ t

0

mi(s) dsξi, t ∈ [0, T ], (4.2.1)

where {mi}∞i=1 is a CONS (complete orthonormal system) in L2([0, T ]), and ξi are mutually in-

dependent standard Gaussian random variables. The expansion (4.2.1) is an extension of Fourier

expansion of Brownian motion that is the Wiener construction [333, Chapter IX] and is used in

[214, 237].
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4.2.1 Wiener chaos expansion (WCE)

The SPDE (2.2.1) with finite dimensional noises can written in the following form using the Ito-Wick

product

du(t, x) = [Lu(t, x) + f(x)] dt+

q∑
k=1

[Mku(t, x) + gk(x)] � ẇk dt, (t, x) ∈ (0, T ]×D,

u(0, x) = u0(x), x ∈ D, (4.2.2)

where ẇk is formally the first-order derivative of wk in time, i.e., ẇ = d
dtw. To obtain the coefficients

ϕα(t, x;φ), we approximate wk with the spectral truncation (4.2.1), w
(n)
k , and then we substitute the

representation (2.2.3) into (2.2.1); by multiplying ξα on both sides of (2.2.1), and taking expectation

with the properties of the Ito-Wick product ξα � ξβ =
√

(α+β)!
α!β! ξα+β and E[ξαξβ ] = δα=β , we then

have that the coefficients ϕα(t, x;φ) satisfy the following propagator

∂ϕα(t, x;φ)

∂t
= Lϕα(t, x;φ) + f(x)1{|α|=0} (4.2.3)

+

q∑
k=1

n∑
l=1

αk,lml(t)
[
Mkϕα−(k,l)(t, x;φ) + gk(x)1{|α|=1}

]
, t ∈ (0, T ],

ϕα(0, x) = φ(x)1{|α|=0},

where α−(k, l) is the multi-index with components

(
α−(k, l)

)
i,j

=


max(0, αi,j − 1), if i = k and j = l,

αi,j , otherwise.

(4.2.4)

In practical computations, we are only interested in the truncated Wiener chaos solution (2.3.1).

However, the error induced by the truncation of Wiener chaos expansion grows exponentially with

time and thus WCE is not efficient for long-time integration. To control the error behavior, we can

use the recursive WCE (see Algorithm 2.4.1) for computing the second moments, E[u2(t, x)], of the

solution of the SPDE (2.2.1). See Chapter 2 for more details.
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Note that in Algorithm 2.4.1 we discretize the Brownian motion using the following spectral

representation in a multi-element version, i.e., using K multi-elements [265, 420]:

w(n,K)(t) =

K∑
k=1

n∑
i=1

∫ tk∧t

tk−1∧t
mi,k(s) dsξi,k, t ∈ [0, T ], (4.2.5)

where 0 = t0 < t1 < · · · < tK = T , tk ∧ t is the minimum of tk and t, {mi,k}∞i=1 is a CONS

in L2([tk, tk+1]), and ξi,k are mutually independent standard Gaussian random variables. This

approximation of the Brownian motion will be also used in the stochastic collocation methods

presented below.

4.2.2 Stochastic collocation method (SCM)

This method leads to fully decoupled system instead of a weakly coupled system from the WCE.

First, we rewrite the SPDE (2.2.1) with finite dimensional noises in Stratonovich form

du(t, x) = [L̃u(t, x) + f(x)] dt+

q∑
k=1

[Mku(t, x) + gk(x)] ◦ ẇk dt, (t, x) ∈ (0, T ]×D,

u(0, x) = u0(x), x ∈ D, (4.2.6)

where L̃u = Lu − 1
2

∑
1≤k≤q Mk[Mku + gk]. Second, we replace the Brownian motion with its

multi-element spectral expansion (4.2.5), and obtain the following partial differential equation with

smooth random inputs:

dũ(t, x) = [L̃ũ(t, x) + f(x)] dt+

q∑
k=1

[Mkũ(t, x) + gk(x)] dw
(n,K)
k (t), (t, x) ∈ (0, T ]×D,

ũ(0, x) = u0(x), x ∈ D. (4.2.7)
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Now we can apply standard numerical techniques of high integration to obtain p-th moments of

the solution to (2.2.1)

E[ũpn,K(x, t)] =
1

(2π)nqK/2

∫
RnqK

F (u0(x), x, t,y)e−
y>y

2 dy, p = 1, 2, · · · (4.2.8)

where y = (yi,k,l), i ≤ n, k ≤ K, l ≤ q and the functional F represents the solution functional for

(4.2.7). Here we employ sparse grid collocation [125, 358] if the dimension nK is moderately large.

As pointed out in [9, 403], we are led to a fully decoupled system of equations as in the case of

Monte Carlo methods.

In practice, we use the sparse grid quadrature rule (3.2.4). Here again, the direct application

of SCM is efficient only for short-time integration. To achieve long-time integration, we apply the

recursive multi-stage idea used in Algorithm 2.4.1 and similarly we have the following algorithm

for the second moments of the approximate solution when f = gk = 0, see Appendix 4.6 for its

derivation.

Algorithm 4.2.1 (Recursive multi-stage stochastic collocation method). Choose a CONS {em(x)}m≥1

and its truncation {em(x)}Mm=1; a time step ∆; the sparse grid level L and n, which together with

the number of noises q determine the sparse grid Hnq
L which contains η(L, nq) sparse grid points.

Step 1. For each m = 1, . . . ,M, solve the system of equations (4.2.7) on the sparse grid Hnq
L

in the time interval [0,∆] with the initial condition φ(x) = em(x) and denote the obtained solution

as υκ(∆, x; em), m = 1, . . . ,M, and κ = 1, · · · , η(L, nq). Also, choose a time step size δt to solve

(4.2.7) numerically.

Step 2. Evaluate Φm(0; L, n,M) = (u0, em), m = 1, . . . ,M, where u0(x) is the initial condition

for (2.2.1), and hκ,l,m = (υκ(∆, ·; el), em), l,m = 1, . . . ,M.

Step 3. Recursively compute the covariance matrices Hlm(ti; L, n,M), l,m = 1, . . . ,M, as follows:

Hlm(0;N, n,M) = (u0, el)(u0, em),
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Hlm(ti; L, n,M) =

M∑
j,k=1

Hjk(ti−1; L, n,M)

η(L,nq)∑
κ=1

hκ,j,lhκ,k,mWκ, i = 1, . . . ,K,

where Wκ are the sparse grid quadrature weights corresponding to the sparse grid points in Step 1,

and obtain the second moments E[ũM∆,L,n(ti, x)]2 of the approximate solution to (2.2.1) as

E[ũM∆,L,n(ti, x)]2 =

M∑
l,m=1

Hlm(ti; L, n,M)el(x)em(x), i = 1, . . . ,K. (4.2.9)

Remark 4.2.2. Similar to Algorithm 2.4.1, the cost of this algorithm is T
∆η(L, nq)M4 and the

storage is η(L, nq)M2. The total cost can be reduced to the order of M2 by adopting some reduced

order methods in physical space. The discussion on computational efficiency of the recursive WCE

methods, see [420, Remark 4.1], is also valid for Algorithm 4.2.1.

4.3 Error estimates

Though WCE and SCM use the same spectral truncation of Brownian motion, the former is asso-

ciated with the Ito-Wick product while the latter is related to the Stratonovich product. Note that

WCE employs orthogonal polynomials as basis and SCM does not have such orthogonality. This

difference allows WCE to have better convergence rate than SCM in the second-order moments,

see Corollary 4.3.2 and Remark 4.3.4.

Assume that there exist a positive constant δL and a real number CL such that

(Lv, v) + δL ‖v‖2H1 ≤ CL ‖v‖2 , (4.3.1)

where (·, ·) is the duality between H−1(D) and H1(D) associated with the inner-product over L2(D).

The operator L generates a semi-group {Tt}t≥0, which has the following properties: for g ∈ Hr(D),

‖Ttg‖2Hr ≤ C(r,L)e2CLt ‖g‖2Hr , (4.3.2)
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where C(0,L) = 1 and

∫ t

s

e2CL(t−θ) ‖Ttg‖2Hr+1 dθ ≤ δ−1
L C(r,L)e2CL(t−s) ‖g‖2Hr . (4.3.3)

Also, we assume that there exists a constant C̃(r,M) such that

‖Mkg‖2Hr ≤ C̃(r,M) ‖g‖2Hr+1 , for g ∈ Hr+1, k = 1, · · · , q. (4.3.4)

For the WCE for the SPDE (2.2.1) with single noise, i.e., q = 1, we have the following result.

Theorem 4.3.1. Assume that σi,k, ai,j , bi, c, νk in (2.2.2) belong to Cr+1
b (D) and u0 ∈ Hr(D),

where r ≥ N+ 2 and N is the order of Wiener chaos. Let u in (2.2.3) be the Wiener chaos solution

to (2.2.1) and uN,n in (2.3.1) the truncated Wiener chaos solution. Then for ti = i∆, it holds that,

when C1 < δL,

E[‖uN,n(ti, ·)− u(ti, ·)‖2]

≤ (Cbrc∆)Ne2CLT

[
eCbrcT

(N + 1)!
+

(Cbrc∆)brc−N−1

brc!
δL

δL − C1

]
‖u0‖2Hr

+2C2(N + 2,L)e2CN+2T+2CLT
∆2

nπ2
‖u0‖2HN+2 ,

where the constants δL and CL are from (4.3.1) and Cbrc = C(brc,L)C̃(brc−1,M). The constants

C(brc,L) and C̃(brc − 1,M) are from (4.3.2) and (4.3.4), respectively.

From Theorem 4.3.1, we have that the mean-square error of the recursive multi-stage WCE is

O(∆N/2) +O(∆).

Corollary 4.3.2. Under the conditions of Theorem 4.3.1, we have

∣∣∣E[‖uN,n(ti, ·)‖2]− E[‖u(ti, ·)‖2]
∣∣∣ = E[‖uN,n(ti, ·)− u(ti, ·)‖2]
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≤ (Cbrc∆)Ne2CLT

[
eCbrcT

(N + 1)!
+

(Cbrc∆)brc−N−1

brc!
δL

δL − C1

]
‖u0‖2Hr

+2C2(N + 2,L)e2CN+2T+2CLT
∆2

nπ2
‖u0‖2HN+2 .

This corollary claims that the convergence rate of the error in second-order moments is twice that

of the mean-square error, i.e., O(∆N) +O(∆2). This corollary can be proved by the orthogonality

of WCE. In fact, it holds that

E[u2(ti, x)]− E[u2
N,n(ti, x)] = E[(u(ti, x)− uN,n(ti, x))2], (4.3.5)

as the different terms in the Cameron-Martin basis are mutually orthogonal. Then integrating over

the physical domain and by the Fubini Theorem, we reach the conclusion by Theorem 4.3.1.

For SCM for the SPDE (2.2.1), we consider here Wong-Zakai type approximation (4.2.7), as the

case of n = 1 has been considered in [50, 194].

Theorem 4.3.3. Suppose that u0 ∈ L4(D). Let u(t, x) be the solution to (2.2.1) and ũ(t, x) the

solution to (4.2.7). When f = gr = σi,r = 0, νr, c is bounded, and νr is Lipschitz continuous with

respect to its all variables, we have one-step error as, i.e., when K = 1,

E[|u(t, x)− ũ(t, x)|2] ≤ C exp(CT )(T 3 + T 2)n−1+ε, (4.3.6)

where ε > 0 is sufficiently small and the constant C depends on the boundedness of νr(t, x) and

c(t, x). When K > 1 (K∆ = T ), we have for ti = i∆, 1 ≤ i ≤ K,

E[|u(ti, x)− ũ(ti, x)|2] ≤ C exp(CT )∆n−1+ε. (4.3.7)

Remark 4.3.4. Under some smoothness assumptions on the coefficients and the initial condition

of Equation (2.2.1), the error
∣∣∣E[‖ũSCM(ti, x)‖2]− E[‖ũ(ti, x)‖2]

∣∣∣ is expected to be ∆L−1 (T L in
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one-step) as in multiple Stratonovich integral expansion [50].

For SCM, we do not have orthogonality as for WCE, see (4.3.5), and thus we expect that the

convergence in moments is as usual for SDEs, i.e., at most first order in ∆ when n is small. This

finding will be verified by numerical examples in the next section.

4.4 Numerical results

In this section, we compare Algorithms 2.4.1 and 4.2.1 for linear stochastic advection-diffusion-

reaction equations with commutative and non-commutative noises. We will test the computational

performance of these two methods in terms of accuracy and computational cost. All the tests were

run using Matlab R2012b, on a Macintosh desktop computer with Intel Xeon CPU E5462 (quad-

core, 2.80 GHz). Every effort was made to program and execute the different algorithms as much

as possible in an identical way.

The computational complexity for Algorithm 2.4.1 is
(
N+nq
N

)
T
∆M4 [420] and that for Algorithm

4.2.1 is η(L, nq) T∆M4. The ratio of the computational cost of SCM over that of WCE is η(L, nq)/(
N+nq
N

)
. For example, when N = 1 and L = 2, the ratio is (1 + 2nq)/(1 + nq), which will be used in

the three numerical examples. The complexity is increasing exponentially with nq and L, see e.g.

[125], or N but is increasing linearly with T
∆ . Hence, we only consider low values of L and N.

Example 4.4.1 (Single noise). We consider a single noise in (2.2.1) in Ito’s form over the domain

(0, T ]× (0, 2π):

du = [(ε+
1

2
σ2)∂2

xu+ β sin(x)∂xu] dt+ σ∂xu dw(t), (4.4.1)

or in Stratonovich form

du = [ε∂2
xu+ β sin(x)∂xu] dt+ σ∂xu ◦ dw(t), (4.4.2)
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with non-random initial condition u(0, x) = cos(x), where w(t) is a standard scalar Wiener process,

ε > 0, β, σ are constants.

In this example, we compare Algorithms 2.4.1 and 4.2.1 for (4.4.1) with the parameters β = 0.1,

σ = 0.5 and ε = 0.02. We will show that the recursive multi-stage WCE is at most of order ∆2 in

the second-order moments and the recursive multi-stage SCM is of order ∆.

In Step 1, Algorithm 2.4.1, we employ Crank-Nicolson in time and Fourier collocation in physical

space. We obtain the solution by Algorithm 2.4.1 with the same solver but finer resolution as a

reference solution, as we have no exact solution to (4.4.1). The reference solution is obtained by

M = 30, ∆ = 10−4, N = 4, n = 4, δt = 10−5. It gives the second-order moments in L2-norm∥∥E[u2
ref ]
∥∥ = 1.0651945500628588 and in the L∞-norm

∥∥E[u2
ref ]
∥∥
∞ = 0.51747461411047124.

The errors are computed with (3.4.7) and in the following sense

%∞2 (T ) =
∣∣∥∥E[u2

ref(T )]
∥∥
∞ −

∥∥E[u2
numer(T )]

∥∥
∞

∣∣ , %r,∞2 (T ) =
%∞2 (T )

‖E[u2
ref(T )]‖∞

, (4.4.3)

where ‖v‖ =

(
2π

M

M∑
m=1

v2(xm)

) 1
2

, ‖v‖∞ = max
1≤m≤M

|v(xm)|, xm are the Fourier collocation points

and unumer is the numerical solution.

With the above truncation parameters, the recursive WCE is of second-order convergence in ∆

for the second-order moments when N = 2 and of first-order convergence when N = 1 from Table

4.1. We note that when N = 3, the method is still second-order in ∆ (not presented here). This

verifies the estimate O(∆N) +O(∆2) in Corollary 4.3.2.

Table 4.1: Algorithm 2.4.1: recursive multi-stage Wiener chaos method for (4.4.1) at T = 5:
σ = 0.5, β = 0.1, ε = 0.02, and M = 20, n = 1.

∆ δt N %r,22 (T ) order %r,∞2 (T ) order CPU time (sec.)
1.0e-1 1.0e-2 1 1.5249e-2 – 8.8177e-3 3.57
1.0e-2 1.0e-3 1 1.5865e-3 ∆0.98 8.9310e-4 ∆0.99 33.22
1.0e-3 1.0e-4 1 1.5934e-4 ∆1.00 8.9429e-5 ∆1.00 348.03

1.0e-1 1.0e-2 2 1.9070e-4 – 4.1855e-5 – 5.14
1.0e-2 1.0e-3 2 2.0088e-6 ∆1.98 4.2889e-7 ∆1.99 51.75
1.0e-3 1.0e-4 2 2.0386e-8 ∆1.99 4.8703e-9 ∆1.94 490.04
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In Step 1, Algorithm 4.2.1, we use a third-order strong-stability-preserving Runge-Kutta scheme

[212] in time and Fourier collocation method in physical space. A Crank-Nicolson scheme in time

was also used but led to no changes in convergence order or in accuracy and thus the results are

not presented. We observe in Table 4.2 that the convergence order for second-order moments is

one in ∆ even when the sparse grid level L is 2, 3 and 4 (the latter is not presented here). The

errors for L = 3 are more than half in magnitude smaller than those for L = 2 while the time cost

for L = 3 is about 1.5 times of that for L = 2.

Table 4.2: Algorithm 4.2.1: recursive multi-stage stochastic collocation method for (4.4.1) at T = 5:
σ = 0.5, β = 0.1, ε = 0.02, and M = 20, n = 1.

∆ δt L %r,22 (T ) order %r,∞2 (T ) order CPU time (sec.)

1.0e-1 1.0e-2 2 3.7467e-4 – 3.0692e-3 – 3.67
1.0e-2 1.0e-3 2 3.7496e-5 ∆1.00 3.0441e-4 ∆1.00 34.25
1.0e-3 1.0e-4 2 3.7501e-6 ∆1.00 3.0416e-5 ∆1.00 332.06

1.0e-1 1.0e-2 3 1.4095e-4 – 3.2416e-4 – 5.18
1.0e-2 1.0e-3 3 1.3518e-5 ∆1.02 2.9879e-5 ∆1.04 50.95
1.0e-3 1.0e-4 3 1.3459e-6 ∆1.00 2.9623e-6 ∆1.00 494.07

In summary, from Tables 4.1 and 4.2, we observe that the recursive multi-stage WCE is O(∆N)+

O(∆2) and the recursive multi-stage SCM is O(∆), as predicted by the error estimats in Section

4.3. While the SCM and the WCE are of the same order when N = 1 and L ≥ 2, the former

can be more accurate than the latter. In fact, when N = 1 and L = 2, the recursive multi-stage

SCM error is almost two orders of magnitude smaller than the recursive multi-stage WCE while the

computational cost for both is almost the same, as predicted (
(
N+nq
N

)
= η(L, nq) = 2). The recursive

multi-stage WCE with N = 2 is of order ∆2 and its errors are almost two orders of magnitude smaller

than those by the recursive multi-stage SCM (with level 2 or 3) for the second-order moments.

In this example, the recursive multi-stage SCM outperforms the recursive multi-stage WCE with

N = 1. The reason can be as follows. In SCM, we solve an advection-dominant equation rather

than a diffusion-dominant equation in WCE, as SCM is associated with the Stratonovich product

which leads to the removal of the term 1
2σ

2∂2
xu in the resulting equation, see (4.4.2). The larger σ

is, the more dominant the diffusion is. In fact, results for σ = 1 and σ = 0.1 (not presented here)
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show that when σ = 1, the relative error of SCM with L = 2 is almost three orders of magnitude

smaller than WCE with N = 1; when σ = 0.1, the relative error of SCM with L = 2 is only less than

one order of magnitude smaller than WCE with N = 1. With Crank-Nicolson in time and Fourier

collocation in physical space, we cannot achieve better accuracy for WCE with N = 1 and ∆ no

less than 0.0005 when M ≤ 40. These findings suggest the use of efficient PDE solvers for different

resulting PDEs from WCE and SCM (to be precise, from Ito-Wick formulation and Stratonovich

formulation), respectively.

Example 4.4.2 (Commutative noises). We consider two commutative noises in (2.2.1) in Ito’s

form over the domain (0, T ]× (0, 2π):

du = [(ε+
1

2
σ2

1 cos2(x))∂2
xu+ (β sin(x)− 1

4
σ2

1 sin(2x))∂xu] dt

+σ1 cos(x)∂xu dw1(t) + σ2u dw2(t), (4.4.4)

or in Stratonovich form

du = [ε∂2
xu+ β sin(x)∂xu] dt+ σ1 cos(x)∂xu ◦ dw1(t) + σ2u ◦ dw2(t), (4.4.5)

with non-random initial condition u(0, x) = cos(x), where (w1(t), w2(t)) is a standard Wiener

process, ε > 0, β, σ1, σ2 are constants. The noises satisfy the commutative conditions:

(σ1 cos(x)∂x)(σ2u) = σ2(σ1 cos(x)∂xu).

In this example, we take σ1 = 0.5, σ2 = 0.2, β = 0.1, ε = 0.02. We again observe first-order

convergence for SCM and WCE with N = 1, and second-order convergence for WCE with N = 2

as in the last example with single noise.

We choose the same solver for the recursive multi-stage WCE and SCM but a Crank-Nicolson

109



scheme in time for SCM. We compute the errors as follows: when ∆1 > ∆2,

%̄2
2(T ) =

∣∣∥∥E[u2
∆1

(T )]
∥∥− ∥∥E[u2

∆2
(T )]

∥∥∣∣ , %̄r,22 (T ) =
%̄2

2(T )∥∥E[u2
∆2

(T )]
∥∥ , (4.4.6)

%̄∞2 (T ) =
∣∣∥∥E[u2

∆1
(T )]

∥∥
∞ −

∥∥E[u2
∆2

(T )]
∥∥
∞

∣∣ , %̄r,∞2 (T ) =
%̄∞2 (T )∥∥E[u2
∆2

(T )]
∥∥
∞
. (4.4.7)

In Tables 4.3 and 4.4, we choose ∆2 = ∆1/10, i.e., the errors for ∆ is computed by the difference of

the numerical solution obtained by ∆1 = ∆ (δt = ∆1/10) and that by ∆2 = ∆/10, (δt = ∆2/10),

both with n = 1 and M = 30.

For WCE, we observe in Table 4.3 convergence of order ∆N in the second-order moments: first-

order convergence when N = 1, and second-order convergence when N = 2. Numerical results for

N = 3 (not presented here) show that the convergence order is still two even though the accuracy is

further improved when N increases from 2 to 3. This is consistent with our estimate O(∆N)+O(∆2)

in Corollary 4.3.2.

We also tested the case n = 2 which gives similar results and same convergence order.

Table 4.3: Algorithm 2.4.1: recursive multi-stage Wiener chaos expansion for commutative noises
(4.4.4) at T = 1: σ1 = 0.5, σ2 = 0.2, β = 0.1, ε = 0.02, and M = 30, n = 1.

∆ δt N %̄r,22 (T ) order %̄r,∞2 (T ) order CPU time (sec.)

1.0e-1 1.0e-2 1 1.5213e-3 – 1.4833e-3 – 3.19
1.0e-2 1.0e-3 1 1.6206e-4 ∆0.97 1.5603e-4 ∆0.98 32.74
1.0e-3 1.0e-4 1 1.6323e-5 ∆1.00 1.5694e-5 ∆1.00 329.15

1.0e-1 1.0e-2 2 4.0210e-5 – 2.9237e-5 – 6.53
1.0e-2 1.0e-3 2 4.4359e-7 ∆1.96 3.2771e-7 ∆1.95 65.89
1.0e-3 1.0e-4 2 4.4682e-9 ∆2.00 3.3484e-9 ∆1.99 657.55

For SCM, we observe first-order convergence in ∆ from Table 4.4 when L = 2, 3. When L = 4,

the errors are at the same level as L = 3. Note that L = 3 actually leads to a bit worse accuracy,

compared with the case L = 2. We also tested n = 2 and observed no improved accuracy for

L = 2, 3, 4.

For the two commutative noises, we conclude from this example that the recursive multi-stage
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Table 4.4: Algorithm 4.2.1: recursive multi-stage stochastic collocation method for commutative
noises (4.4.4) at T = 1: σ1 = 0.5, σ2 = 0.2, β = 0.1, ε = 0.02, and M = 30, n = 1.

∆ δt L %̄r,22 (T ) order %̄r,∞2 (T ) order CPU time (sec.)

1.0e-1 1.0e-2 2 1.2318e-4 – 1.1253e-3 – 5.18
1.0e-2 1.0e-3 2 1.1880e-5 ∆1.02 1.0921e-4 ∆1.01 54.70
1.0e-3 1.0e-4 2 1.1837e-6 ∆1.00 1.0889e-5 ∆1.00 545.20

1.0e-1 1.0e-2 3 2.3402e-4 – 1.8692e-4 – 13.26
1.0e-2 1.0e-3 3 2.3127e-5 ∆1.01 1.6291e-5 ∆1.06 142.23
1.0e-3 1.0e-4 3 2.3102e-6 ∆1.00 1.6062e-6 ∆1.00 1420.24

WCE is of order ∆N + ∆2 in the second-order moments and that the recursive multi-stage SCM is

of order ∆ in the second-order moments no matter what sparse grid level is. The errors of recursive

multi-stage SCM is one order of magnitude smaller than those of recursive multi-stage WCE with

N = 1 while the time cost of SCM is about 1.6 times of that cost of WCE. For large magnitude of

noises (σ1 = σ2 = 1, numerical results are not presented), we observed that the SCM with L = 2

and WCE with N = 1 have the same order-of-magnitude accuracy. In this example, the use of SCM

with L = 2 for small magnitude of noises is competitive with the use of WCE with N = 1.

Example 4.4.3 (Non-commutative noises). We consider two non-commutative noises in (2.2.1)

in Ito’s form over the domain (0, T ]× (0, 2π):

du = [(ε+
1

2
σ2

1)∂2
xu+ β sin(x)∂xu+

1

2
σ2

2 cos2(x)u] dt

+σ1∂xu dw1(t) + σ2 cos(x)u dw2(t), (4.4.8)

or in Stratonovich form

du = [ε∂2
xu+ β sin(x)∂xu] dt+ σ1∂xu ◦ dw1(t) + σ2 cos(x)u ◦ dw2(t), (4.4.9)

with non-random initial condition u(0, x) = cos(x), where (w1(t), w2(t)) is a standard Wiener
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process, ε > 0, β, σ1, σ2 are constants. The noises are non-commutative since

σ2 cos(x)(σ1∂xu)− (σ1∂x)(σ2 cos(x)u) = σ1σ2 sin(x)∂xu 6= 0.

We take the same constants ε > 0, β, σ1, σ2 as in the last example. We also take the same solver

as in the last example. In the current example, we observe only first-order convergence for SCM

(level L = 2, 3, 4) and WCE (N = 1, 2, 3) when n = 1, 2, see Table 4.5 for parts of the numerical

results.

The errors are computed by (4.4.6) and are defined by the difference of numerical solution

obtained by parameters in a current line and that obtained by parameters in the subsequent line

in the tables. For example, the errors of Line 2 in Table 4.5 are computed by the difference of

numerical solution with ∆ = 0.05 and that with ∆ = 0.02. The errors in the last line are computed

by the difference of numerical solutions with ∆ = 0.001 and those with ∆ = 0.0005, while other

truncation parameters are fixed except δt = ∆/10.

Table 4.5: Algorithm 2.4.1 (recursive multi-stage Wiener chaos expansion, left) and Algorithm 4.2.1
(recursive multi-stage stochastic collocation method, right) for (4.4.8) at T = 1: σ1 = 0.5, σ2 = 0.2,
β = 0.1, ε = 0.02, and M = 20, n = 1. The time step size δt is ∆/10. The reported CPU time is in
seconds.

∆ N %̄r,22 (T ) order time (sec.) L %̄r,22 (T ) order time (sec.)

1.0e-1 1 1.8648e-3 – 1.04 2 3.2616e-4 – 1.65
5.0e-2 1 1.1431e-3 ∆0.71 2.11 2 1.9301e-4 ∆0.76 3.31
2.0e-2 1 3.8525e-4 ∆1.19 5.12 2 6.3899e-5 ∆1.21 8.64
1.0e-2 1 1.9346e-4 ∆1.00 10.19 2 3.1868e-5 ∆1.00 17.12
5.0e-3 1 1.1635e-4 ∆0.73 20.01 2 1.9095e-5 ∆0.74 33.82
2.0e-3 1 3.8827e-5 ∆1.20 50.39 2 6.3606e-6 ∆1.20 86.44
1.0e-3 1 1.9422e-5 ∆1.00 100.09 2 3.1795e-6 ∆1.00 172.13

1.0e-1 2 5.7118e-5 – 2.16 3 8.1479e-5 – 4.03
5.0e-2 2 2.5022e-5 ∆1.19 4.11 3 4.6873e-5 ∆0.80 8.68
2.0e-2 2 6.7011e-6 ∆1.44 9.97 3 1.5294e-5 ∆1.22 22.08
1.0e-2 2 3.0336e-6 ∆1.14 20.03 3 7.5859e-6 ∆1.00 43.85
5.0e-3 2 1.7175e-6 ∆0.82 40.25 3 4.5320e-6 ∆0.74 88.35
2.0e-3 2 5.5527e-7 ∆1.23 101.34 3 1.5074e-6 ∆1.20 223.15
1.0e-3 2 2.7438e-7 ∆1.02 201.35 3 7.5310e-7 ∆1.00 450.13

In this example, our error estimate for recursive multi-stage WCE is not valid any more and
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the numerical results suggest that the errors behave as ∆N + C∆/n. For N = 1 and n = 10 (not

presented), the error is almost the same as n = 1. While N = 2 and n = 10, the error first decreases

as O(∆2) for large time step size and then as O(∆) for small time step size; see Table 4.6. When

N = 2 and n = 10, the errors with ∆ = 0.005, 0.002, 0.001 are ten percent (1/n) of those with the

same parameters but n = 1 in Table 4.5. Here the constant in front of ∆, C/n, plays an important

role: when ∆ is large and this constant is small, then the order of two can be observed; when ∆ is

small, C∆/n is dominant so that only first-order convergence can be observed.

The recursive multi-stage SCM is of first-order convergence when L = 2, 3, 4 and n = 1, 2, 10

(only parts of the results presented). In contrast to Example 4.4.2, the errors from L = 3 are one

order of magnitude smaller those from L = 2. Recalling that the number of sparse grid points is

η(2, 2) = 5 and η(3, 2) = 13, we have the cost for L = 3 is about 2.6 times of that for L = 2.

However, it is expected that in practice, a low level sparse grid is more efficient than a high level

one when nq is large as the number of sparse grid points η(L, nq) is increasing exponentially with nq

and L. In other words, L = 2 is preferred when SPDEs with many noises (large q) are considered.

As discussed in the beginning of this section, the ratio of time cost for SCM and WCE is

η(L, nq)/
(
N+nq
N

)
. The cost of recursive multi-stage SCM with L = 2 is at most 1.8 times (1.6

predicted by the ratio above, q = 2 and n = 1) of that of recursive multi-stage WCE with N = 1.

However, in this example, the accuracy of the recursive multi-stage SCM is one order of magnitude

smaller than that of the recursive multi-stage WCE when N = 1 and L = 2. In Table 4.5, we present

in bold the errors between 1.5 × 10−5 and 2.5 × 10−5. Among the four cases listed in the table,

the most efficient, for the given accuracy above, is WCE with N = 2, which outperforms SCM with

L = 3 and SCM with L = 2. Also, WCE with N = 1 is less efficient than the other three cases.

We also observed that when σ1 = σ2 = 1, SCM with L = 2 is one order of magnitude smaller than

WCE with N = 1 (results not presented here).

For non-commutative noises in this example, we show that the error for WCE is ∆2 + C∆/n

and the error for SCM is ∆. The numerical results suggest that SCM with L = 2 is competitive
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with WCE with N = 1 for both small and large magnitude of noises if n = 1.

Table 4.6: Algorithm 2.4.1: recursive multi-stage Wiener chaos expansion for (4.4.8) at T = 1:
σ1 = 0.5, σ2 = 0.2, β = 0.1, ε = 0.02. The parameters are M = 20, N = 2, and n = 10. The time
step size δt is ∆/10.

∆ %̄r,22 (T ) order %̄r,∞2 (T ) order CPU time (sec.)

1.0e-1 3.5280e-5 – 1.9366e-5 – 84.00
5.0e-2 1.1122e-5 ∆1.67 5.9400e-6 ∆1.71 160.50
2.0e-2 1.9283e-6 ∆1.91 9.7383e-7 ∆1.97 391.40
1.0e-2 6.2037e-7 ∆1.64 2.9242e-7 ∆1.74 749.40
5.0e-3 2.6087e-7 ∆1.25 1.1245e-7 ∆1.38 1557.60
2.0e-3 6.8288e-8 ∆1.46 2.6917e-8 ∆1.56 3887.50
1.0e-3 3.0622e-8 ∆1.16 1.1452e-8 ∆1.23 7677.40

With these three examples, we observe that the convergence order of the recursive multi-stage

SCM in the second-order moments is one for commutative and non-commutative noises. We verified

that our error estimate for WCE, ∆N + ∆2 , is valid for commutative noises, see Examples 4.4.1

and 4.4.2; the numerical results for non-commutative noises, see Example 4.4.3, suggest the errors

are of order ∆N + C∆/n where C is a constant depending on the coefficients of the noises.

For stochastic advection-diffusion-reaction equations, different formulations of stochastic prod-

ucts (Ito-Wick product for WCE, Stratonovich product for SCM) lead to different numerical per-

formance. When the white noise is in the velocity, the Ito-Wick formulation will have stronger

diffusion than that in the Stratonovich formulation in the resulting PDE. As stronger diffusion

requires more resolution, the recursive multi-stage WCE with N = 1 may produce less accurate

results than those by the recursive multi-stage SCM with L = 2 with the same PDE solver under

the same resolution, as shown in the first and the third examples.

In conclusion, we recommend the recursive multi-stage SCM with L = 2, n = 1 and also the

recursive multi-stage WCE with N = 1, n = 1, as both can outperform each other in certain cases.

For commutative noises, recursive multi-stage WCE with N = 2 may be used when the number of

noises, q, is small and hence the number of WCE modes is small so that the computational cost

would grow slowly.
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4.5 Proofs

Denote by Crb (D) the set of continuous functions that have bounded up to r-th order derivatives

with finite norm

‖f‖Crb = max
0≤|β|≤brc

∥∥Dβf
∥∥
L∞

+ sup
x,y∈D

|β|=brc,r>brc

∣∣Dβf(x)−Dβf(y)
∣∣

|x− y|r−brc
,

where brc is the integer part of the real number r.

4.5.1 Proof of Theorem 4.3.1

The idea of the proof is to first establish the error estimate for one-step (∆ = T ) error and then that

for the multi-step (∆ = T/K) error, the latter of which can be done with the same argument of the

proof in [265, Theorem 2.4]. The one-step error consists of two steps: estimating E[(u(t)− uN(t))2]

and E[(uN(t)− uN,n(t))2] and the conclusion follows from the triangle inequality.

We now state the estimate of these two quantities when f = gk = 0 and q = 1 in (2.2.1).

Lemma 4.5.1. Assume that σi,k, ai,j , bi, c, νk belongs to Cr+1
b (D) and u0 ∈ Hr(D), where r ≥ N+1.

When C1 < δL, we have, for any t ∈ (0, T ],

E[‖u(t)− uN(t)‖2] ≤ (Cbrct)
N+1e2CLt[

eCbrct

(N + 1)!
+

(Cbrct)
brc−N−1

brc!
1

1− C1

δL

] ‖u0‖2Hbrc , (4.5.1)

where the constants δL and CL are from (4.3.1) and Cbrc = C(brc,L)C̃(brc−1,M). The constants

C(brc,L) and C̃(brc − 1,M) are from (4.3.2) and (4.3.4), respectively.

Lemma 4.5.2. Under the assumptions of Lemma (4.5.1) and r ≥ N + 2, we have

E ‖uN,n(t, ·)− uN(t, ·)‖2 ≤ 2C2(N + 2,L)e2CN+2t+2CLt
t3

nπ2
‖u0‖2HN+2 , (4.5.2)

where CL is from (4.3.1) and C(N + 2,L), CN+2 are from Lemma 4.5.1.
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For simplicity, we denote by sk the ordered set (s1, · · · , sk). For k ≥ 1, denote dsk := ds1 . . . dsk,

and

F (t; sk;x) = Tt−skMik · · · Ts2−s1Mi1Ts1u0(x),

∫ (k)

(· · · ) dsk =

∫ t

0

∫ sk

0

· · ·
∫ s2

0

(· · · ) ds1 . . . dsk.

∫
(k)

(· · · ) dsk =

∫ t

0

∫ t

s1

· · ·
∫ t

sk−1

(· · · ) dsk . . . ds2 ds1.

Proof of Lemma 4.5.1. As E[‖u(t)− uN(t)‖2] =
∑
k>N

∑
|α|=k

‖ϕα(t)‖2

α!
, one should check

∑
|α|=k

ϕ2
α(t, x)

α!

which equals to

∫ (k) ∣∣F (t; sk;x)
∣∣2 dsk, by Proposition A.1 in [265]. Then by Fubini theorem,

∑
|α|=k

‖ϕα(t)‖2

α!
=

∫ (k) ∥∥F (t; sk; ·)
∥∥2

dsk.

Denote Xk = Tsk−sk−1
Mik−1

· · · Ts2−s1Mi1Ts1u0, Yk = MikXk, k ≥ 1 and also X = Tt−skYk.

Then Xk = Tsk−sk−1
Yk−1 and Yk−1 =Mik−1

Xk−1.

By the assumption that σi,k, ai,j , bi, c, νk belongs to Cr+1
b (D), it can be readily checked that

(4.3.2) and (4.3.3) hold if (4.3.1) holds, and (4.3.4) holds.

Without loss of generality, assume that r is a positive integer. If r ≥ k, by the definition of F

and the estimate (4.3.2), we have

∥∥F (t; sk; ·)
∥∥2 ≤ e2CL(t−sk) ‖Yk‖2 = e2CL(t−sk) ‖MikXk‖2

≤ C̃(0,M)e2CL(t−sk) ‖Xk‖2H1

≤ C1e
2CL(t−sk−1) ‖Yk−1‖2H1

≤ · · ·

≤ Ckr e
2CLt ‖u0‖2Hk ,

where Cr = C(r,L)C̃(r− 1,M) and C̃(r− 1,M) is from (4.3.4), depending only on the coefficients
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of M with their derivatives up to order r − 1. We then have

∫ (k) ∥∥F (t; sk; ·)
∥∥2

dsk ≤ Ckr e2CLt ‖u0‖2Hk
∫ (k)

dsk. (4.5.3)

If r < k, we change the integration order, apply (4.3.2), (4.3.4), and (4.3.3), and have

∫ (k) ∥∥F (t; sk; ·)
∥∥2

dsk =

∫ (k)

‖X‖2 dsk =

∫
(k)

‖X‖2 dsk

≤
∫

(k)

e2CL(t−sk) ‖Yk‖2 dsk =

∫
(k)

e2CL(t−sk) ‖MikXk‖2 dsk

≤ C̃(0,M)

∫
(k)

e2CL(t−sk) ‖Xk‖2H1 ds
k

= C̃(0,M)

∫
(k−1)

∫ t

sk−1

e2CL(t−sk) ‖Xk‖2H1 dsk ds
k−1

≤ δ−1
L C1

∫
(k−1)

e2CL(t−sk−1) ‖Yk−1‖2 dsk−1.

Repeating the procedure gives

∫ (k) ∥∥F (t; sk; ·)
∥∥2

dsk ≤ δr−kL Ck−r1

∫
(r)

e2CL(t−sr) ‖Yr‖2 dsr. (4.5.4)

By (4.5.3) and (4.5.4), and

∫ (k)

dsk =
tk

k!
, we conclude that, for r ≥ N + 1,

E[‖u(t)− uN(t)‖2] =
∑
k>N

∫ (k) ∥∥F (t; sk; ·)
∥∥2

dsk

=
∑

N<k≤r

∫ (k) ∥∥F (t; sk; ·)
∥∥2

dsk +
∑
k>r

∫ (k) ∥∥F (t; sk; ·)
∥∥2

dsk

≤
∑

N<k≤r

tk

k!
Ckr e

2CLt ‖u0‖2Hk +
tr

r!
Crr e

2CLt ‖u0‖2Hr
∑
k>r

δr−kL Ck−r1

≤ (Crt)
N+1e2CLt[

eCrt

(N + 1)!
+

(Crt)
r−N−1

r!

C1

δL − C1
] ‖u0‖2Hr ,

where we require C1 < δL. This ends the proof.
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Remark 4.5.3. Lemma 4.5.1 still holds for r =∞ if C∞ <∞. In fact, by (4.5.3), we have

E[‖u(t)− uN(t)‖2] ≤
∑
k≥N

tk

k!
Ck∞e

2CLt ‖u0‖2Hk ≤ (C∞t)
N+1e2CLt

eC∞t

(N + 1)!
‖u0‖2H∞ .

If r <∞, we require that C1 < δL, which is actually C̃(0,M)C(1,L) < δL. An example of this

condition is as follows: L = ∆, Mk = 1
2Dk and thus C̃(0,M)C(1,L) = 1

2 < δL = 1.

Proof of Lemma 4.5.2. It can be proved as in [265, p.446-449] that

∑
|α|=k,iαk=l

‖ϕα(t)‖2

α!
≤ kt

∥∥Fj(t; sk; ·)
∥∥2
∫ t

0

M2
l (s) ds

tk−1

(k − 1)!
, (4.5.5)

where Ml(t) =
∫ t

0
ml(s) ds and

Fj(t; s
k;x) =

∂F (t; sk;x)

∂sj
= Tt−skMik · · · Tsj+1−sjMijLTsj−sj−1 · · · Ts1u0(x)

−Tt−skMik · · ·Mij+1LTsj+1−sj · · ·Ts1u0(x) =: F 1
j + F 2

j .

Due to the same structure of two terms in Fj(t; s
k;x), we only need to estimate

∥∥F 1
j

∥∥. Repeatedly

using (4.3.2) gives

∥∥F 1
j

∥∥2
=

∥∥Tt−skMik · · · Tsj+1−sjMijLTsj−sj−1
· · · Ts1u0

∥∥2

≤ e2CLt−sk
∥∥Mik · · · Tsj+1−sjMijLTsj−sj−1

· · · Ts1u0

∥∥2

≤ C̃(0,M)e2CL(t−sk)
∥∥Tsk−sk−1

· · · Tsj+1−sjMijLTsj−sj−1 · · · Ts1u0

∥∥2

H1

≤ C1e
2CL(t−sk)

∥∥Mik−1
· · · Tsj+1−sjMijLTsj−sj−1 · · · Ts1u0

∥∥2

H1

≤ · · ·

≤ Ck−j−1
k−j e2CL(t−sj)

∥∥Tsj−sj−1
· · · Ts1u0

∥∥2

Hk−j+2 .
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Similarly, we have

∥∥Tsj−sj−1 · · · Ts1u0

∥∥2

Hk−j+2 ≤ Cjk+2e
2CLsj ‖u0‖2Hk+2 .

Thus, we arrive at that

∥∥F 1
j

∥∥2 ≤ Ck−j−1
k−j

∥∥Tsj−sj−1
· · · Ts1u0

∥∥2

Hk−j+2 ≤ Ck+1
N+2e

2CLt ‖u0‖2HN+2 (4.5.6)

Then by (4.5.5) and (4.5.6), setting Ml(s) =
√

2t
(l−1)π sin( (l−1)π

t s), we obtain that

E[‖uN(t)− uN,n(t)‖2] =
∑
l≥n+1

N∑
k=1

∑
|α|=k,iαk=l

‖ϕα(t)‖2

α!

≤
∑
l≥n+1

N∑
k=1

ktmax
j

∥∥Fj(t; sk; ·)
∥∥2
∫ t

0

M2
l (s) ds

tk−1

(k − 1)!

≤
∑
l≥n+1

N∑
k=1

2ktmax
j

∥∥F 1
j

∥∥2 t2

π2(l − 1)2

tk−1

(k − 1)!

≤
∑
l≥n+1

2t3

π2(l − 1)2

N∑
k=1

kmax
j

∥∥F 1
j

∥∥2 tk−1

(k − 1)!

≤ 2t3

nπ2

N∑
k=1

kmax
j

∥∥F 1
j

∥∥2 tk−1

(k − 1)!
.

The summation in the last inequality can be estimated by (4.5.6) as follows:

N∑
k=1

kmax
j

∥∥F 1
j

∥∥2 tk−1

(k − 1)!
≤

N∑
k=1

Ck+1
N+2e

2CLt ‖u0‖2HN+2

ktk−1

(k − 1)!

≤ C2(N + 2,L)e2CN+2t+2CLt ‖u0‖2HN+2 .

This completes the proof.
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4.5.2 Proof of Theorem 4.3.3

To prove Theorem 4.3.3, we need the following conditional probabilistic representation (the condi-

tional Feynman-Kac formula) for (2.2.1), see e.g. [347],

u(t, x) = EQ[u0(X̂t,x(T ))Ŷt,x,1(T ) + Ẑt,x,1,0(T )], 0 ≤ t ≤ T. (4.5.7)

where X̂t,x, Ŷt,x,y, and Ẑt,x,y,z is the solution to the following SDE

d̂X̂ = [b(s, X̂)−
q∑
r=1

σr(s, X̂)νr(s, X̂)] ds (4.5.8)

+

p∑
r=1

αr(s, X̂) d̂Br +

p∑
r=1

σr(s, X̂) d̂wr, X̂(t) = x,

d̂Ŷ = [c(s, X̂)Ŷ ds+

q∑
r=1

νr(s, X̂)Ŷ ] d̂wr, Ŷ (t) = y, (4.5.9)

d̂Ẑ = [f(s, X̂)Ŷ ds+

q∑
r=1

gr(s, X̂)Ŷ ] d̂wr, Ẑ(t) = z, (4.5.10)

and B(s) = (B1(s), · · · , Bp(s))ᵀ is a p-dimensional standard Wiener process independent of w(s)

and EQ[·] is the expectation with respect to FBt . The d×pmatrix α(t, x) is defined as α(t, x)αᵀ(t, x) =

2a(t, x)− σ(t, x)σᵀ(t, x).

We consider the case f = gk = σik = 0, i.e., the Zakai equation of nonlinear filtering when

observation is uncorrelated as in [265].

As the case of n = 1 is considered in [50, 194], here we consider only the case K = 1. The proof

is for time-dependent coefficients which covers the case of time-independent ones in (2.2.1).

Proof. The solution to (2.2.1) can be represented as

u(t, x) = EQ[u0(X̂t,x) exp(

q∑
r=1

∫ t

0

νr(s, X̂t,x) dwr(s) +

∫ t

0

c̄(t, X̂t,x) ds)], (4.5.11)
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where c̄(t, X̂t,x) = c(t, X̂t,x)− 1
2

∑q
r=1 ν

2
r (s, X̂t,x). The solution to (4.2.7) using spectral expansion

of Brownian motion can be represented by

ũ(t, x) = EQ[u0(X̂t,x) exp(

q∑
r=1

∫ t

0

νr(s, X̂t,x) ˙̃wr(s) ds+

∫ t

0

c̄(t, X̂t,x) ds)]. (4.5.12)

Thus, we have

ũ(t, x)− u(t, x) = EQ[u0(X̂t,x) exp(

∫ t

0

c̄(t, X̂t,x) ds)

×

(
exp(

q∑
r=1

∫ t

0

νr(s, X̂t,x) ˙̃wr(s) ds)− exp(

q∑
r=1

∫ t

0

νr(s, X̂t,x) dwr(s))

)
],

By the fact that ex − ey = eθx+(1−θ)y(x − y) (0 ≤ θ ≤ 1), boundedness of c̄(t, x) and Cauchy

inequality, we have

E[|ũ(t, x)− u(t, x)|2] (4.5.13)

≤ E[(EQ[u0(X̂t,x) exp(

∫ t

0

c̄(t, X̂t,x) ds)) exp(

q∑
r=1

∫ t

0

νr(s, X̂t,x)[θ dw̃r(s) + (1− θ) dwr(s)])

×(

q∑
r=1

∫ t

0

νr(s, X̂t,x)[ dw̃r(s)− dwr(s)])])
2]

≤ C exp(Ct)EQ[u4
0(X̂t,x)]1/2E[(EQ[exp(

q∑
r=1

∫ t

0

4νr(s, X̂t,x)[θ dw̃r(s) + (1− θ) dwr(s)])]1/2]

×E[EQ[(

q∑
r=1

∫ t

0

νr(s, X̂t,x)[ dw̃r(s)− dwr(s)])
2]])

≤ C exp(Ct)EQ[(E[exp(

q∑
r=1

∫ t

0

4νr(s, X̂t,x)[θ dw̃r(s) + (1− θ) dwr(s)])]1/2]

×EQ[E[(

q∑
r=1

∫ t

0

νr(s, X̂t,x)[ dw̃r(s)− dwr(s)])
2]]).

Hence, we need to estimate I =: E[
∣∣∣∑q

r=1

∫ t
0
νr(s, X̂t,x)[ dw̃k(s)− dwk(s)]

∣∣∣2] and

II =: E[(EQ[exp(

q∑
r=1

∫ t

0

4νr(s, X̂t,x)[θ dw̃r(s) + (1− θ) dwr(s)])]1/2].
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By the independence of ξk,i and X̂t,x and a standard estimate in spectral methods (e.g. [33]),

we have

I = E[

∣∣∣∣∣
q∑
r=1

∞∑
i=n+1

∫ t

0

νr(s, X̂t,x)mk,i(s) dsξk,i

∣∣∣∣∣
2

] (4.5.14)

= E[

q∑
r=1

∞∑
i=n+1

(

∫ t

0

νr(s, X̂t,x)mk,i(s) ds)
2]

≤ CT 1−εn−1+ε

q∑
r=1

∣∣νkχ[0,t]

∣∣2
1−ε

2 ,2,[0,T ]
,

where the Slobodeckij semi-norm |f |θ,p,D is defined by (
∫
D
∫
D
|f(x)−f(y)|p

|x−y|pθ+d dx dy)1/2. The constant

T 1−ε appears due to Bramble-Hilbert lemma, see e.g. [70]. Since νr is Lipschitz continuous in its

first and second variables and EQ[
∣∣∣X̂t,x(s)− X̂t,x(u)

∣∣∣2] ≤ C |s− u|, we have

EQ[|νr|21−ε
2 ,2,[0,T ]] =

∫ T

0

∫ T

0

EQ[
∣∣∣νr(s, X̂T,x(s))− νr(s1, X̂T,x(s1))

∣∣∣2]

|s− s1|2−ε
ds1 ds

≤ C(T 2+ε + T 1+ε). (4.5.15)

Thus, by (4.5.14) and (4.5.15), we have

I ≤ C(T 3 + T 2)n−1+ε. (4.5.16)

Now we estimate II. Recall the following facts

E[exp(

q∑
r=1

∫ t

0

4νr(s, X̂t,x) dwr)] = exp(

q∑
r=1

8

∫ t

0

ν2
r (s, X̂t,x) ds),

E[exp(

q∑
r=1

∫ t

0

4νr(s, X̂t,x) ˙̃wr ds)] ≤ exp(

q∑
r=1

8

∫ t

0

ν2
r (s, X̂t,x) ds),

and thus we have

II ≤ 4 exp(Ct). (4.5.17)
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From here, (4.5.16), and (4.5.13), we reach the conclusion for one-step error and hence we can

readily obtain the multi-step error estimate.

4.6 Appendix: derivation of Algorithm 4.2.1.

The idea of recursive SCM is to use SCM over small time interval (ti−1, ti] instead of over the

whole interval (0, T ] and to compute the second-order moments of the solution recursively in time.

The derivation of such a recursive algorithm will make use of properties of the problem (2.2.1) and

orthogonality of the basis both in physical space and random space as will be shown shortly.

Denote the solution of sparse grid collocation by

ũM∆,L,n(ti, x) =

η(L,nq)∑
κ=1

υκ(∆, x, ũM∆,L,n(ti−1, x))Iκ(ζ(i)),

where ζ(i) is a nq-dimensional Gaussian random variable used over the interval (ti−1, ti] and Iκ(ζ(i))

is the sparse grid interpolation operator which is a polynomial of order no more than L − 1. It

equals to 1 on the κ-th point of the sparse grid Hnq
L and is zero on the rest of sparse grid points.

We solve (4.2.7) with spectral methods in physical space, i.e., using a truncation of a CONS

in physical space, e.g., {em}Mm=1 to represent the numerical solution. Define Φm(ti, L, n,M) =

(ũM∆,L,n(ti, ·), em). Then by the linearity of the problem (4.2.7) and f = gk = 0, we have

ũM∆,L,n(ti, x) =

η(L,nq)∑
κ=1

M∑
l=1

Φl(ti−1, L, n,M)υκ(∆, x, el)Iκ(ζ(i)).

By the orthonormality of em, we then have

Φm(ti, L, n,M) =

η(L,nq)∑
κ=1

M∑
l=1

Φl(ti−1, L, n,M)hκ,l,mIκ(ζ(i)), (4.6.1)
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where hκ,l,m = (υκ(∆; ·, el), em). The second moments can be computed by

E[ũM∆,L,n(ti, x)]2 =

M∑
l,m=1

Hlm(ti, L, n,M)el(x)em(x), (4.6.2)

where Hlm(ti, L, n,M) = E[Φl(ti, L, n,M)Φm(ti, L, n,M)]. With (4.6.1), we have

Hlm(ti, L, n,M) =

η(L,nq)∑
κ=1

η(L,nq)∑
α=1

M∑
j=1

M∑
k=1

Hjk(ti−1, L, n,M)hκ,j,lhκ,k,mE[Iκ(ζ(i))Iα(ζ(i))]. (4.6.3)

The matrix Hlm(ti, L, n,M) can be simplified as

Hlm(ti, L, n,M) =

M∑
j=1

M∑
k=1

Hjk(ti−1, L, n,M)

η(L,nq)∑
κ=1

hκ,j,lhκ,k,mWκ,

as E[Iκ(ζ(i))Iα(ζ(i))] = Wκδκ,α since the polynomial exactness of Smolyak sparse grid is 2L − 1

[324, Corollary 1] .
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Chapter 5

Application example: stochastic

collocation methods for 1D

stochastic piston problem

In this chapter, we apply stochastic collocation method for a one-dimensional piston problem.

We consider a piston with a velocity perturbed by Brownian motion moving into a straight tube

filled with a perfect gas at rest. The shock generated ahead of the piston can be located by

solving the one-dimensional Euler equations driven by white noise using the Stratonovich or Ito

formulations. We approximate the Brownian motion with its spectral truncation and subsequently

apply stochastic collocation using either sparse grid or the quasi-Monte Carlo (QMC) method.

In particular, we first transform the Euler equations with an unsteady stochastic boundary into

stochastic Euler equations over a fixed domain with a time-dependent stochastic source term. We

then solve the transformed equations by splitting them up into two parts, i.e., a ‘deterministic

part’ and a ‘stochastic part’. Numerical results verify the Stratonovich-Euler and Ito-Euler models

against stochastic perturbation results, and demonstrate the efficiency of sparse grid and QMC for
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small and large random piston motions, respectively. The variance of shock location of the piston

grows cubically in the case of white noise in contrast to colored noise reported in [251], where the

variance of shock location grows quadratically with time for short times and linearly for longer

times.

5.1 Introduction

In recent years, the polynomial chaos method and its extensions for colored noise have been ad-

vanced significantly for computational fluid dynamics problems, see e.g. [221, 318]. Although

there has been little attention paid on high-order numerical methods for white noise, white noise

is nevertheless important in computational modeling, e.g. as a limit of colored noise when the cor-

relation length goes to zero. An extremely small correlation length for colored noise will produce a

high dimensional problem in random space and causes the so-called “curse-of-dimensionality” for

high-order numerical methods which are prohibitively expensive. Unlike colored noise, white noise

requires a fundamentally different calculus (see e.g. [330]) and therefore the development of new

numerical methods.

Here, we revisit the stochastic piston problem in [251], which defines a testbed for numerical

solvers in both random and physical space. The piston driven by time-varying random motions

moves into a straight tube filled with a perfect gas at rest. Of interest is to quantify the pertur-

bation of the shock position ahead of the piston corresponding to the random motion. For the

perturbed shock position, Lin et al. [251] obtained analytical solutions for small amplitudes of

noises and numerical solutions for large amplitudes of noises, with the method of stochastic per-

turbation analysis and polynomial chaos, respectively. A specific random motion of the piston was

studied where the piston velocity was perturbed by a correlated random process with zero mean

and exponential covariance kernel. It was concluded that the variance of the shock location grows

quadratically with time for small time and linearly for large time by both the perturbation analysis
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and numerical simulations of the corresponding Euler equations. Numerical results from the Monte

Carlo method and the polynomial chaos method (e.g. [405]) for the stochastic Euler equations

showed good agreement with the results from the perturbation analysis.

Here we consider the case of piston velocity perturbed by Brownian motion, which leads to the

Euler equations subject to white noise rather than the Euler equations subject to colored noise

in [251]. We will use the Monte Carlo method and the recently developed stochastic collocation

method for equations driven by white noise. Note that the method of perturbation analysis in [251]

is independent of the type of noises when they have continuous paths in the random space so that

the results by the perturbation analysis can be understood in a path-wise sense. Therefore, the

stochastic piston problem defined in [251] can serve as a rigorous testbed of evaluating numerical

stochastic solvers. So we will use the variances from perturbation analysis as reference solutions.

Although, the Monte Carlo method is one of the popular methods for solving equations driven

by white noise [218], it converges slowly as the total error of the method is dominated by the

statistical error, which is is proportional to 1√
N

with N being the number of sampling points.

To avoid this slow convergence induced by the statistical error, Zhang et al. [421] proposed a

new stochastic collocation method for time-dependent equations driven by white noise in time.

Stochastic collocation methods are based on high-dimensional integration quadrature rules instead

of statistical methods [9, 368, 403]. While the main difficulty of the stochastic collocation method

comes from the large number of random variables, we proposed a spectral expansion of the Brownian

motion to reduce the number of random variables up to relatively large time for time-dependent

equations so that the stochastic collocation method can be applied efficiently. Here we further

extend this approach to conservation laws by adopting the quasi-Monte Carlo (QMC) method to

compute up to larger time and/or for large amplitudes of noises. The QMC method is efficient

and converges faster than the Monte Carlo method if relatively high dimensional integration is

considered, see e.g. [320, 357]; see also [139] for the application of the QMC method to elliptic

equations in random porous media.
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This chapter is organized as follows. In Section 2, we describe the piston problem driven by

random processes and review two different approaches to obtain the shock location: the perturba-

tion analysis and the one-dimensional Euler equations. When the piston is driven by the Brownian

motion, we introduce two types of Euler equations according to different interpretations of stochas-

tic products for white noise, i.e., the Stratonovich-Euler equations and the Ito-Euler equations.

In Section 3, we describe a splitting method for the Euler equations before comparing the vari-

ances from the two stochastic Euler equations with those from first-order perturbation analysis.

We demonstrate that indeed the Stratonovich-Euler equations are suitable for obtaining the vari-

ances of perturbations piston locations. We apply a stochastic collocation method to solve the

Stratonovich-Euler equations in the splitting-method setting. We conclude in Section 5 with a

summary and comments on computational efficiency. The Appendix includes some details of the

stochastic collocation method and of a model ordinary differential equation problem.

5.2 Theoretical Background

Suppose that the piston velocity is perturbed by a time-dependent random process so that the piston

velocity is up = Up + vp(t, ω), where ω is a point in random space; see Figure 5.1 for a sketch of

shock tube driven by a piston perturbed with random motion. Here we write vp(t, ω) = εUpV (t, ω)

U
p
 + v

p
 ( t ) 

S + v
s
 ( t ) 

U = 0        
P = P

+
      

ρ = ρ
+

C = C
+
      

U = U
p
 + v

p
 ( t )

P = P
−
            

ρ = ρ
−
      

C = C
−
           

Figure 5.1: A sketch of piston-driven shock tube with random piston motion.

and denote the stochastic process V (t, ω) as V (t) for brevity.
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When ε = 0, i.e., no perturbation is imposed on the piston, the piston moves into the tube

with a constant velocity Up, the shock speed S (and thus the shock location) can be determined

analytically, see [251, 250]. When ε is very small, one can determine the perturbation process of

the shock location using the first-order perturbation analysis [251], that is:

z(t) = εUpqS
′
∞∑
n=0

(−r)n
∫ t

0

V (αβnt1) dt1, (5.2.1)

where z(t) + tS is the shock location induced by the random motion of piston,

S′ =
γ + 1

4

S

S − γ+1
4 Up

,

q =
2

1 + k
, r =

1− k
1 + k

, k = C−
S + S′Up
1 + γSUp

,

α =
C− + Up − S

C−
, β =

C− + Up − S
C− + S − Up

.

Here γ is the ratio of the specific heats and C− the sound speed behind the shock when the piston

is unperturbed. The first two moments of the perturbation process z(t) are

E[z(t)] = 0,

E[z2(t)] = (εUpqS
′)2E[

( ∞∑
n=0

(−r)n
∫ t

0

V (αβnt1, ·) dt1
)2

].

We note that the perturbation analysis in [251] is independent of the perturbation process

whenever the process is continuous such that the analysis can be understood in a path-wise way.

By taking V (t, ω) as the Brownian motion W (t) (omitting ω), we then have

E[z2(t)] = (εUpqS
′)2E[

( ∞∑
n=0

(−r)n
∫ t

0

W (αβnt1) dt1
)2

]

= (εUpqS
′)2E[

( ∞∑
n=0

(−r)n
∫ t

0

√
αβnW (t1) dt1

)2
]
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= (εUpqS
′)2(

∞∑
n=0

(−r)n
√
αβn)2E[

( ∫ t

0

W (t1) dt1
)2

]

=
αt3

3
(εUpqS

′)2 1

(1 + rβ
1
2 )2

, (5.2.2)

where we use the scaling property of Brownian motion (W (αβnt1) =
√
αβnW (t1)) and

∫ t

0

W (t1) dt1

is a Gaussian process with zero mean and variance t3

3 .

5.2.1 Stochastic Euler equations

The stochastic piston problem can be modeled by the following Euler equations with unsteady

stochastic boundary:

∂

∂t
U +

∂

∂x

(
f(U)

)
= 0, (5.2.3)

where U =


ρ

ρu

E

, f(U) =


ρu

ρu2 + P

u(P + E)

 , ρ is density, u is velocity, E is total energy, and P is

pressure given by (γ− 1)(E− 1
2ρu

2) and γ = 1.4. The initial and boundary conditions are given by

u(x, 0) = 0, P (x, 0) = P+, ρ(x, 0) = ρ+, x > Xp(t),

P (Xp(t), 0) = P−, ρ(Xp(t), 0) = ρ−,

and

u(Xp(t), t) =
∂

∂t
Xp(t) = up(t), t > 0,

where Xp(t) is the position of the piston, and up(t) is the velocity of the piston.

This problem is a moving boundary problem and can be transformed to a fixed boundary
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problem by defining a new coordinate (y, τ) from (x, t) via the following transform:

y = x−
∫ τ

0

up(τ1, ω) dτ1, τ = t. (5.2.4)

Defining v = u− up, we then have the following Euler equations with a source term [251]:

∂

∂τ
V +

∂

∂y

(
f(V)

)
= g(V)

∂up
∂τ

, (5.2.5)

where V =


ρ

ρv

Ẽ

, Ẽ = P
γ−1 + 1

2ρv
2 and g(V) =


0

−ρ

−ρv

. The initial and boundary conditions are

given by

v(y, 0) = −Up, P (y, 0) = P+, ρ(y, 0) = ρ+, y > 0,

P (0, 0) = P−, ρ(0, 0) = ρ−, (5.2.6)

and

v(0, τ) = 0, τ ≥ 0.

Our goal here is to compute the variance of the shock location perturbation z(τ). The pertur-

bation of the shock location is z(τ) = Xs(τ)−τS = Xs(t)−tS, where Xs(τ) = Ys(τ)+
∫ τ

0
up(t1) dt1

is the shock location while Ys(τ) is the shock location under the new coordinate (y, τ).

If we take up(t) = Up(1 + εW (t)), where W (t) is a scalar Brownian motion, we are led to the

following Euler equations

∂

∂τ
V +

∂

∂y

(
f(V)

)
= εUpg(V) ∗ Ẇ , (5.2.7)

where ‘∗’ denotes two different products as follows:
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(1) Stratonovich-Euler equations

∂

∂τ
V +

∂

∂y

(
f(V)

)
= εUpg(V) ◦ Ẇ , (5.2.8)

where ‘◦’ is the Stratonovich product, or

(2) Ito-Euler equations

∂

∂τ
V +

∂

∂y

(
f(V)

)
= εUpg(V) · Ẇ , (5.2.9)

where ‘·’ is the Ito product. The initial and boundary conditions are imposed as above. The

meaning of ‘◦’ will be explained in Section 5.3.2 and that of ‘·’ in Section 5.3.3.

We will verify these two models (5.2.8) and (5.2.9) by solving them numerically with a splitting

method in the next section.

5.3 Verification of the Stratonovich- and Ito-Euler equations

In the previous section, we introduced two approaches to obtain the variances of the shock location.

Here, we verify the correctness of the stochastic Euler equations by comparing the variances of

the shock location obtained by two approaches, i.e., the first-order perturbation analysis and the

numerical solution of the stochastic Euler equations, up to time T = 5.

For numerical simulations, we consider the piston velocity Up = 1.25, where the Mach number

of the shock is M = 2 and γ = 1.4. We normalize all velocities with C+, the sound speed ahead of

the shock, i.e. C+ = 1. Then, the initial conditions are given through the unperturbed relations of

states variables [251] as follows:

P+ = 4.5, P− = 1.0, ρ+ = 3.73, ρ− = 1.4.
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5.3.1 A splitting method for stochastic Euler equations

We use a source-term (noise-term) splitting method proposed in [191] for a scalar conservation

law with time-dependent white noise source term. Holden and Risebro [191] considered a Cauchy

problem on the whole line with multiplicative white noise in Ito’s sense: ∂
∂tu+ ∂

∂xf(u) = g(u)Ẇ (t)

with deterministic essentially bounded initial condition where f , g are both Lipschitz, and g has

bounded support. They proved the almost-sure-convergence of this splitting method to a weak

solution of the Cauchy problem assuming initial condition having bounded support and finitely

many extrema while provided no convergence rate.

Here we extend this splitting method to the system (5.2.7). Specifically, given the solution at

τn, Vn, to obtain the solution at τn+1, we first solve, on the small time interval [τn, τn+1),

∂

∂τ
V(1) +

∂

∂y

(
f(V(1))

)
= 0, (5.3.1)

with the boundary conditions (5.2.6) and initial condition V(1)(τn) = Vn; then we solve the

following Cauchy problem, again on [τn, τn+1),

∂

∂τ
V(2) = εUpg(V(2)) ∗ Ẇ , (5.3.2)

with the initial condition V(2)(τn) = V(1)(τn+1). Then the solution at time τn+1, Vn+1, is set as

V(2)(τn+1) (subject to the error from the splitting). If we denote by S(τ, τn) the operator which

takes V(τn) as initial condition at τn to the weak solution of (5.3.1) and by R(τ, τn) the operator

which takes the initial condition at time τn to the solution of the stochastic differential equation

(5.3.2). Then the approximate solution at τn+1 is defined by Vn+1 = R(τn+1, τn)S(τn+1, τn)Vn.

Thus we define a sequence of approximate solution, {Vn}, to (5.2.7) at time {τn}.

The application of splitting technique requires numerical methods for (5.3.1) and (5.3.2). The

splitting scheme allows us to deploy efficient existing methods to solve them separately. To solve
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(5.3.1), we use a fifth-order WENO scheme in physical space and second-order strong-property-

preserving (SPP) Runge-Kutta in time [212]. In solving (5.3.2), we will employ two different

methods: the Monte Carlo method and the stochastic collocation method developed in this work.

We employ 1000 points for the fifth-order WENO scheme over the interval [0, 5] and the time step

size dτ = 0.0005 so that the error from time discretization is negligible. As we mentioned before,

our goal is to compute the variance of the perturbed shock location. Since there is always only one

shock, we obtain Ys(τ) by finding the biggest jump of pressure, where the error is of order O(dx)

(dx is the mesh size in physical space).

5.3.2 Stratonovich-Euler equations versus first-order perturbation anal-

ysis

We first compare the results obtained by solving the Stratonovich-Euler equations with the Monte

Carlo method and those obtained from first-order perturbation analysis.

To solve the Stratonovich-Euler equations (5.2.8) with the splitting method, we need to solve

(5.3.2) as follows. By the definition of the Stratonovich integral, we have that, for a square-

integrable stochastic process h(t),

∫ T

0

h(t) ◦ dW = lim
n→∞

n∑
i=1

h(ti+1/2)∆Wi,

where tn+1/2 = tn+1+tn
2 and ∆Wn = W (tn+1)−W (tn). The limit is understood in the mean-square

sense [330]. Thus, we will solve Equation (5.3.2) by the following Crank-Nicolson scheme

V(2)(τn+1) = V(2)(τn) + εUpg(V(2)(τn+1/2))∆Wn. (5.3.3)

In our simulation, the values of function g(V(2)(τ)) at τn+1/2 are approximated by the average

values g(V(2)(τn))+g(V(2)(τn+1))
2 . Note that for the specific form of g, we do not have to invert the
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resulting matrix in (5.3.3).

Figure 5.2 verifies that the Stratonovich-Euler equations (5.2.8) can capture the variances of

shock location for the stochastic piston problem driven by Brownian motion. Here we employ 10,000

realizations so that the statistical error can be neglected for noises with amplitude no less than 0.05.

We also note that for noises with amplitude less than 0.05, the error of the adopted methods is

dominated by the statistical error from the Monte Carlo method and also the space discretization

error from WENO. Figure 5.2 presents the variances obtained by the Monte Carlo method (5.3.1)-

(5.3.3) and those from variances estimates by the first-order perturbation analysis (5.2.2). We

observe the agreement between the results from the Monte Carlo method and the perturbation

analysis within small time and for small noises. Figure 5.2(a) shows the results for small noises,

i.e., ε ∼ O(10−2) while Figure 5.2(b) for large noises, i.e., ε ∼ O(10−1). The difference between the

variances from the Monte Carlo method and the first-order perturbation analysis (5.2.2) is at most

12%− 13% of the variances (5.2.2), up to time T = 5, for all cases except for the case ε = 0.5; for

the latter, the difference between the variances is at most 19.3% of the variance (5.2.2). However,

for small time (t < 1) the variances by Monte Carlo and perturbation analysis agree well, while

they deviate much after t = 2. This effect can be explained as follows. For t < 1, the variance of

the driving process (Brownian motion) has small value (
√
t) corresponding to a weak perturbation;

while at later time it has larger value increasing substantially the perturbation. (We remind the

reader that the perturbation process in [251] has unit variance.)

5.3.3 Stratonovich-Euler equations versus Ito-Euler equations

For the Ito-Euler equations (5.2.9), we solve (5.3.2) by the forward Euler scheme

V(2)(τn+1) = V(2)(τn) + εUpg(V(2)(τn))∆Wn. (5.3.4)
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Figure 5.2: Comparison between the results from first-order perturbation analysis (5.2.2) and
solving the Stratonovich-Euler equations (5.2.8) by the splitting method (5.3.1)-(5.3.3).

136



Recall that the Ito integral is defined as, see e.g. [330],

∫ T

0

h(t) · dW = lim
n→∞

n∑
i=1

h(ti)∆Wi.

Next we compare the numerical results for the Stratonovich-Euler equations and the Ito-Euler

ones using the above discretization in time. We observe from Figure 5.3 that for both small and

large noises, these two types of equations have almost the same variances for the perturbed shock

location E[z2(t)] up to time T = 5. Actually, the difference of variances by the Stratonovich-

Euler and Ito-Euler equations for ε ≤ 0.2 is less than 10−3 up to time t = 5 which lies within

the discretization errors. For ε = 0.5, we present in Table 5.1 the difference of variances for these

two approaches using the same sequence of Monte Carlo points. The Stratonovich-Euler equations

exhibits larger variances in large time but the difference from those by the Ito-Euler equations is

less than 10% of the variances by Ito-Euler equations. We then conclude that the Stratonovich-

Euler equations are a suitable model for the piston problem driven by Brownian motion and we

will consider only this approach hereafter.

Table 5.1: The difference of variances of shock location by Stratonovich-Euler and Ito-Euler equa-
tions for ε = 0.5.

t 1.0 2.0 3.0 4.0 5.0
0.0007 0.0129 0.0742 0.2353 0.2421

5.4 The Stochastic Collocation Method

Next we test the stochastic collocation method versus the Monte Carlo method for the Stratonovich-

Euler equations (5.2.8). To solve the Stratonovich-Euler equations (5.2.8), we again use the splitting

method (5.3.1)-(5.3.2). In (5.3.2), we adopt the stochastic collocation method, where we first

introduce a spectral approximation for the Brownian motions and subsequently apply the sparse

grid method. Specifically, we first approximate Brownian motion with its spectral approximation,
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Figure 5.3: Comparison between solving Stratonovich-Euler equations (5.2.8) and Ito-Euler equa-
tions (5.2.9) by the splitting method (5.3.1)-(5.3.2).
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using K multi-elements:

W (n,K)(τ) =

K−1∑
k=0

n∑
i=1

∫ τ

0

χ[tk,tk+1)(s)mk,i(s) dsξk,i, τ ∈ [0, T ],

where 0 = t0 < t1 < · · · < tK = T , χ[tk,tk+1)(τ) is the indicator function of the interval [tk, tk+1),

{mk,i}∞i=1 is a complete orthonormal basis in L2([tk, tk+1]), and ξk,i are mutually independent

standard Gaussian random variables (with zero mean and variance one). Hence, we obtain the

following partial differential equation with smooth inputs:

∂

∂τ
V(2) = εUpg(V(2))

K∑
k=0

n∑
i=1

χ[tk−1,tk)(τ)mk,i(τ)ξk,i. (5.4.1)

In (5.4.1) we apply the stochastic collocation method [9, 368, 403] for smooth noises; see Appendix

A for a brief review on the stochastic collocation method for white noise. The stochastic collocation

method we adopt here is the sparse grid of Smolyak type based on 1D Gaussian-Hermite quadrature;

we refer to [125] for implementation details.

The first issue we have for the piston problem here is the discontinuity of the solution to

(5.2.8), where the condition for spectral approximation to work may be invalid [364]. In practice,

we solve the problem with the WENO scheme, which smears the shock somewhat, and thus we

have higher regularity than that of the original problem. A second issue is that the use of the

stochastic collocation method (Smolyak sparse grid) with Gaussian quadrature may not exhibit

fast convergence because of the low regularity. Thus, we use n = 1 or 2 with large K (small time

step in W (n,K)) instead of large n with small K. This choice of n is verified with control tests with

n = 3, 4 for different K, where the numerical results show large deviations from those of Monte

Carlo method with high oscillations. We choose a low sparse grid level (i.e. two) to be consistent

with the ‘available regularity’ (numerical tests with high sparse grid level show an instability). The

third issue is the so-called “curse-of-dimensionality”. In practice, when the number of random
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variables, Kn, increases, the Smolyak sparse grid method will not work well and will be replaced

by the QMC method.

Here we adopt a uniform partition of the time interval [0, T ], that is tk = (k−1)∆, k = 1, · · · ,K.

The complete orthonormal basis we employ in L2([tk, tk+1]) is the cosine basis

mk,1(t) =
1√
∆
, mk,i(t) =

√
2

∆
cos

(
(i− 1)π

∆
(t− tk)

)
, i ≥ 2.

Figure 5.4 compares the numerical results from the Monte Carlo method (5.3.1)–(5.3.3) and the

stochastic collocation method for (5.3.1) and (5.4.1) with both small and large noises. For each ε,

we use different ∆ (the length of the uniform partition of time interval [0, T ]), i.e. different size of

elements K. We note that all the numerical solutions obtained by the stochastic collocation method

agree with those from the Monte Carlo method (5.3.1)–(5.3.3) within small time. Here we do not

observe convergence in n, recalling that such convergence requires smoothness in random space.

We note that smaller ∆ and larger n may lead to a larger number of random variables and thus

the break down of the sparse grid method [403]. So we first test the cases of small ∆ such that we

can apply the sparse grid method. Figure 5.4 shows that a low level sparse grid method works well

for the piston problem with small perturbations. We note that our sparse grid level is two and thus

the number of collocation points is 2n T∆ + 1.

When n = 1, we observe in Figure 5.4 good agreement of the results by the stochastic collocation

method and the Monte Carlo method in small time (t ≤ 2). Notice that when n = 1, (5.4.1) is the

classical Wong-Zakai approximation [399]

∂

∂τ
V(2) = g(V(2))

1√
∆

K−1∑
k=0

χ[tk,tk+1)(τ)ξk,1. (5.4.2)

However, for n = 2, there are some disagreements between the results. In Figure 5.4(a) and

5.4(c), the results of the case n = 2 and ∆ = 0.2 (note that we have nK = 50 random variables)
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(b) ε = 0.1
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(c) ε = 0.2
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Figure 5.4: Comparison between numerical results from Stratonovich-Euler equations (5.2.8) using
the direct Monte Carlo method (5.3.1) and (5.3.3) and the stochastic collocation method (5.4.1).
The sparse grid level is 2 and ∆ is the size of element in time in the stochastic collocation method.
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underestimate those results from the Monte Carlo method and the stochastic collocation method

with a smaller number of random variables (n = 1). The larger number of random variables (n = 2

here) does not result in convergence since we do not have a smooth solution as we mention above.

For the case with large perturbation, ε = 0.5, we require smaller ∆ and thus more random

variables. This is why we observe the disagreement in Figure 5.4(d). For all cases in Figure 5.4,

we observe a deviation of numerical results by stochastic collocation methods from those of Monte

Carlo method over large time. Similar effects arise in the application of spectral methods in random

space, e.g., in Wiener chaos methods. The interested reader may refer to [420] for a discussion of

this effect.

To adapt to the high dimensionality (large number of random variables), we employ the QMC

method instead of sparse grid methods. We consider two popular QMC sequences: one is a scram-

bled Halton with the method RR2 proposed in [222]; and the other is a scrambled Sobol sequence

suggested in [287]. Both sequences lie in hypercube and thus an inverse transformation is adopted

to generate sequences in the entire space based on these two sequences. In Figure 5.5, we test the

large noise case, i.e. ε = 0.5. Both Halton and Sobol sequences work if a moderately large sample of

the sequences is adopted. For 1000 sample points, variances from both sequences are closer to those

from Monte Carlo method (5.3.1)-(5.3.3) than those from 500 sample points of both sequences.

5.5 Summary

We simulated a stochastic piston problem by time-varying Brownian motions of a piston moving

inside an adiabatic tube of constant area, which is governed by the Euler equations driven by white

noise. By splitting the Euler equations into two parts – a ‘deterministic part’ and a ‘stochastic part’

– we solved the ‘stochastic part’ by the Monte Carlo method and the stochastic collocation method.

The numerical results show that the variances of the shock location grow cubically with time, which

are significantly different from those from colored noise driven piston. In Figure 5.6 we compare the
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(a) Sobol sequence: 500 sample points
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(b) Sobol sequence: 1000 sample points
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(c) Halton sequence: 500 sample points
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Figure 5.5: Comparison between numerical results from Stratonovich-Euler equations (5.2.8) using
direct Monte Carlo method (5.3.1)-(5.3.3) and the QMC method for (5.4.1) with a large noise:
ε = 0.5.
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variances of shock positions induced by three different Gaussian noises: Brownian motion, random

process with zero mean and exponential covariance kernel exp(− |t1 − t2|), and standard Gaussian

random variable, where the noise amplitude is ε = 0.1. The results are obtained via the stochastic

perturbation analysis. The case of Brownian motion induces smaller values of variances than the

other two cases for short times and greater values of variances for longer times. We note that the
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Figure 5.6: Comparison among variances of shock positions induced by three different Gaus-
sian noises: Brownian motion, random process with zero mean and exponential covariance kernel
exp(− |t1 − t2|) and standard Gaussian random variable. The noise amplitude is ε = 0.1.

effects of different Gaussian processes are similar to a first-order stochastic differential equation

responding to different Gaussian processes. The shock location depends on the time integration

of the underlying Gaussian processes as the solution to stochastic differential equation does; see

Appendix B for details.

Firstly, we solved the ‘stochastic part’ using the Monte Carlo method by the definition of

Stratonovich integral and verified the Stratonovich-Euler equations by the first-order perturbation

analysis presented in [251]. Secondly, we solved the Stratonovich-Euler equations by solving the

‘stochastic part’ with the stochastic collocation method using a multi-element spectral approxima-

tion of the Brownian motion. Finally, we tested two types of QMC sequences for the ‘stochastic
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part’ using a multi-element spectral approximation of the Brownian motion when the noise is large.

The stochastic collocation and QMC methods are superior to the Monte Carlo method in the sense

that they can achieve faster convergence than the classic Monte Carlo method.

The low accuracy of the stochastic collocation method, especially for long times, is caused by

the discontinuity of the solution. Due to the deterministic solver, we have that the accuracy for the

numerical shock location is only first-order in the spatial step size, i.e., O(dx) . For small noises,

we had agreement between the results from the Euler solver and those from perturbation analysis.

However, for large noises, we need small time-interval ∆ for the stochastic collocation method to

converge. As smaller time-interval ∆ leads to larger number of random variables, we adopted the

QMC method which led to accurate solutions.

With regards to computational efficiency, the stochastic collocation method is more efficient

than Monte Carlo simulation when a small number of random variables are involved, where the

number of collocation points is far less than Monte Carlo sampling points. As time becomes larger,

we introduce more random variables and thus we need to employ the more efficient QMC method. In

other applications involving long-time integration, it may be possible to use all three different ways

of sampling, i.e., starting with sparse grid for early time, continuing with the QMC for moderate

time and even switching to the Monte Carlo method for long time.

5.6 Appendix: a first-order model driven by different Gaus-

sian processes

Consider the following simple ordinary differential equation with multiplicative noise:

dy = k(t, ω)y dt, y(0) = y0. (5.6.1)
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Here we take y0 = 1 for simplicity. Suppose k(t, ω) is a Gaussian random variable or process with

zero mean. Specifically, k(t, ω) will take the following form:

� k(t, ω) =: ξ ∼ N (0, 1);

� k(t, ω) =: V (t, ω) where the two-point correlation function of V (t) is exp(− |t1−t2|A ).

� k(t, ω) =: W (t, ω) is the standard Brownian motion: E[W (t)W (s)] = min(t, s).

� k(t, ω) =: Ẇ (t, ω) is the white noise: E[Ẇ (t)Ẇ (s)] = δ(t− s).

Remark 5.6.1. When k(t, ω) =: Ẇ (t, ω), Equation (5.6.1) is understood in the Stratonovich sense:

dy = y ◦ dW (t), y(0) = y0. (5.6.2)

The exact solution to Equation (5.6.1) is y = y0 exp(K(t)), where K(t) =
∫ t

0
k(s) ds is again

Gaussian with mean zero and variance σ2. Then we have the moments of the solution y, for

m = 1, 2, · · · , E[ym(t)] = ym0 exp(m
2

2 σ
2), where σ2 = t2, 2At + 2A2(exp(− t

A ) − 1), t3

3 , t for the

listed processes, respectively. Figures 5.7 and 5.8 illustrate the different behavior of second-order

moments with small time t ∈ [0, 1] and larger time t > 1. The amplitudes of variances are similar to

those of variances of the shock location in Figure 5.6, indicating three different behaviors in three

different time intervals.
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Figure 5.7: Comparison of variances of the solutions for four models of k(t) up to time t = 1:
A = 1.
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1 1.5 2 2.5
0

100

200

300

400

500

600

t

v
a

ri
a

n
c
e

s

 

 

process  with exponential kernel

white noise

2.5 3 3.5
0

0.5

1

1.5

2

2.5
x 10

4

t

v
a

ri
a

n
c
e

s

 

 

process  with exponential kernel

white noise

(c) Comparison between the cases of white noise and a process with exponential kernel

Figure 5.8: Comparison of variances of the solutions for four models of k(t) at large time: A = 1.148



Part II: Spatial White Noise
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Chapter 6

Semilinear Elliptic Equations with

Additive Noise

We investigate in this chapter the strong and weak convergence order of piecewise linear finite

element methods for a class of semilinear elliptic equations with additive spatial white noise using a

spectral truncation of white noise. We show that the strong convergence order of the finite element

approximation is h2−d/2−ε where h is the element size, d is the dimension and ε > 0 is arbitrarily

small. We also show that the weak convergence order is twice the strong convergence order for one-

and two-dimensional problems. Numerical results confirm our prediction for a two-dimensional

semilinear elliptic problem.

6.1 Introduction

We study numerical approximation of the following semilinear elliptic equation with additive white

noise using a spectral approximation of spatial white noise:

−∆u(x) + f(u(x)) = g(x) +
∂d

∂x1∂x2 · · · ∂xd
W (x), x = (x1, · · · , xd) ∈ D, (6.1.1)

150



with Dirichlet boundary condition

u(x) = 0, x ∈ ∂D, (6.1.2)

where D = (0, 1)d, W (x) is a Brownian sheet on D̄ = [0, 1]d, f is Lipschitz continuous and g ∈ L2(D)

so that (6.1.1) is well-posed, see Section 6.2 for details.

Discretizing white noise (Brownian motion) is important in the numerical methods of stochastic

differential equations (SDEs) driven by white noise. In the literature of numerical SDEs, several

types of discretizations of Brownian motion have been proposed: piecewise linear approximation

(see e.g.[400, 399] and [202, p. 396]), spectral approximation (see e.g. [301]), wavelet approximation

(also known as Levy-Ciesielsky approximation, see e.g. [214]) and mollifier approximation (see e.g.

[202, p. 397] and [329]), and so on.

Investigating such a benchmark problem (6.1.1) will be helpful to better understand the influence

of discretizing Brownian motion/sheet as well as more complex noises in the context of approxi-

mating stochastic partial differential equations. For example, when higher dimensional white noise

is considered, which is the case for space-time white noise (see e.g. [209]), we can combine one

of the above approximation methods in each dimension and thus have different approximation of

white noise. It is then crucial to understand the performance of different approximation methods

in a simple case such as the problem (6.1.1) .

The piecewise linear approximation for Brownian motion leads to a piecewise constant approx-

imation of white noise, which has been wildly used in approximating temporal noise for solving

SDEs (see e.g. [218] and [301]) as well as in approximating spatial noises (see e.g. [5, 55, 105, 165]).

Using piecewise constant approximation, Gyongy and Martinez [165] considered a finite difference

scheme in physical space for the problem (6.1.1) and obtained dimension-dependent convergence

order in the mean-square sense: h if d = 1; and h2− d2−ε if d = 2, 3, where h is the finite difference

step size. Here and throughout the paper, ε > 0 is an arbitrary small constant. For finite element

methods for (6.1.1) in physical space, [5] obtained the mean-square convergence order h for one-
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dimensional linear problem and [55] considered a two-dimensional problem (6.1.1) over a general

bounded convex domain and established the mean-square convergence order h1−ε. In other words,

the finite element methods basically yield the same mean-square convergence order as the finite

difference methods do for d = 1, 2, when piecewise constant approximation of white noise is used.

With a spectral approximation of the spatial additive noise, we will show that the mean-square

convergence order is h2−d/2−ε, where we use piecewise linear finite element approximation in phys-

ical space, see Theorem 6.2.5. Specifically, in the one-dimensional case, we obtain the mean-square

convergence order h3/2−ε instead of h from the piecewise constant approximation of white noise

[5]. We note that for d = 1, the solution is actually in H3/2−ε(D) and the spectral approximation

benefits from the smoothness of the solution as will be shown in Section 6.2, where we also show

similar effects for fourth-order equations.

We will also show that the weak convergence order of the spectral approximation of white noise

is twice its mean-square convergence order when only the white noise is discretized in (6.1.1), see

Theorem 6.2.3. While further discretizing (6.1.1) with a piecewise linear finite element method,

we show that the weak error is h4−d−ε for d = 1, 2, see Theorem 6.2.7. We will also present some

numerical results for one- and two-dimensional semilinear elliptic equations in Section 6.3.

Besides the problem considered here, this spectral approximation can be and has been considered

for elliptic equations with multiplicative noise, see e.g. linear elliptic equation with lognormal

diffusivity [64, 65, 119, 120] and with white noise diffusivity [393]. The spectral approximation of

white noise can be further applied to those problems in a more complex domain and with different

boundary conditions, see e.g. [5, 57, 59, 58, 105, 215, 390, 407, 408, 412] where the piecewise

constant approximation is used.
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6.2 Main results

For (6.1.1) to be well-posed, we require the following assumption as in [45, 55, 165]: the nonlinear

function f can be more general than just Lipstichz continuous as in the Introduction. The following

assumption can allow f to be a sum of non-decreasing bounded functions and a Lipschitz continuous

function with a small Lipschitz constant.

Assumption 6.2.1. The function f satisfies the following conditions:

� There exists a constant L < Cp such that

[f(s)− f(t)](s− t) ≥ −L |s− t|2 , ∀s, t ∈ R. (6.2.1)

� There exist constants M ≥ 0 and R ≥ 0 such that

|f(s)− f(t)| ≤M +R |s− t| , ∀s, t ∈ R. (6.2.2)

Here Cp is the constant in the Poincare inequality:

‖∇v‖2 ≥ Cp ‖v‖2 , v ∈ H1
0 (D).

Under Assumption 6.2.1, the solution to (6.1.1) is proved to exist and be unique in Lp(Ω, L2(D))

when d ≤ 3 [45]. For d > 4, for Equation (6.1.1) to be well-posed in Lp(Ω, L2(D)), [284] considered

additive color noise instead of white noise. The solution to (6.1.1) is understood in the sense of a

mild solution:

u(x) +

∫
D
K(x, y)f(u(y)) dy =

∫
D
K(x, y)g(y) dy +

∫
D
K(x, y) dW (y). (6.2.3)

where K(x, y) is Green’s function of the Laplace equation −∆v = c(x) and v(x) = 0 on ∂D and
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v(x) =
∫
D K(x, y)c(y) dx.

6.2.1 Semidiscrete and fully discrete schemes

Here we represent the spatial white noise Ẇ (x) with an orthogonal series expansion

∂d

∂x1∂x2 · · · ∂xd
W (x) =

∑
α∈J

eα(x)ξα, (6.2.4)

or for the spatial Brownian motion (Brownian sheet)

W (x) =
∑
α∈Nd

∫ xd

0

∫ xd−1

0

· · ·
∫ x1

0

eα(y) dy1 · · · dydξα, (6.2.5)

where {eα(x)}∞|α|=1 is a complete orthonormal basis in L2(D); ξα, α = (α1, α2, α3) are independent

standard Gaussian random variables. In practice, we can take any orthonormal basis in L2(D).

Here we take the eigenfunctions of the elliptic equation

−∆ψ = λψ, x ∈ D ψ = 0, x ∈ ∂D, (6.2.6)

which can form an orthonormal basis in L2(D). We denote the truncation of W (x) (6.2.5) by Wn:

Wn(x) =
∑

|α|≤n, α∈Nd

∫ xd

0

∫ xd−1

0

· · ·
∫ x1

0

eα(y) dy1 · · · dydξα. (6.2.7)

A semi-discrete scheme of (6.1.1) (to be precise, (6.2.3)) is then as follows

un(x) +

∫
D
K(x, y)f(un(y)) dy =

∫
D
K(x, y)g(y) dy +

∫
D
K(x, y) dWn(y). (6.2.8)

154



which is equivalent to

−∆un(x) + f(un(x)) = g(x) +
∂d

∂x1∂x2 · · · ∂xd
Wn(x). (6.2.9)

The scheme (6.2.9) requires further discretization in physical space. Here we consider a finite

element approximation. Let Vh be a linear finite element subspace of H1
0 (D) with quasi-uniform

triangulation Th. Then the linear finite element approximation of un in (6.2.9) is to find uhn ∈ Vh

such that

(∇uhn ,∇v) + (f(uhn ), v) = (g +
∂d

∂x1 · · · ∂xd
Wn, v), ∀v ∈ Vh. (6.2.10)

6.2.2 Strong and weak convergence order

In this section, we will only present our conclusions on strong and weak convergence orders while

the proofs can be found in Section 6.4.

Theorem 6.2.2 (Strong error). Let u be the solution to (6.1.1) and un the solution to (6.2.9).

Under Assumption 6.2.1, we have

E[‖u− un‖2] ≤ C
(
M(

∞∑
|α|=n+1

λ−2
α )1/2+

∞∑
|α|=n+1

λ−2
α

)
≤ Cε−1

(
Mn−(2−d/2−ε/2)+(Cp+R)2n−(4−d−ε)),

where the constant C depends only on d,Cp, L and M,R, λα are eigenvalues of the problem (6.2.6).

The constants L,M,R are from Assumption 6.2.1.

Under further smoothness of the nonlinear function f , we show that the weak convergence order

is twice of the mean-square convergence order.

Theorem 6.2.3 (Weak error). Let u be the solution to (6.1.1) and un the solution to (6.2.9). In

addition to Assumption 6.2.1, assume also that f and F and their derivatives up to fourth-order
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are of at most polynomial growth at infinity:

∣∣∣∣ dkdxkG(x)

∣∣∣∣ ≤ c(1 + |x|κ), κ <∞, k = 1, 2, 3, 4. (6.2.11)

Furthermore, we assume that M = 0 in Assumption 6.2.1. Then we have

‖E[F (u)]− E[F (un)]‖ ≤ C
∞∑

|α|=n+1

λ−2
α ≤ Cn−(4−d−ε). (6.2.12)

The constant C depends on d,Cp, L,M,R as in Theorem 6.2.2 and also the constant in (6.2.11).

Before we state the conclusion for finite element approximation (6.2.10), we illustrate the above

conclusions for a linear elliptic equation with additive noise.

Example 6.2.4 (Linear elliptic equation, see e.g. [5, 105]). We consider the following linear

problem:

−∆u+ bu(x) = g(x) +
∂

∂x
W (x), x ∈ (0, 1),

u(0) = u(1) = 0,

where b > −π2 and g ∈ L2([0, 1]). The solution can be represented by u =

∞∑
k=1

ξk + gk
b+ k2π2

ek, where

gk = (g, ek), ∂
∂xW (x) =

∑∞
k=1 ekξk, ξk are i.i.d. standard random variables. The basis {ek}∞k=1

can be any orthonormal basis in L2([0, 1]), e.g. ek =
√

2 sin(kπx), which are the corresponding

eigenfunctions of −∆u = λu over [0, 1] with u(0) = u(1) = 0. The first two moments of u are

E[u] =

∞∑
k=1

gk
b+ k2π2

ek E[‖u‖2] =

∞∑
k=1

1 + g2
k

(b+ k2π2)2
=

∞∑
k=1

1

(b+ k2π2)2
+ ‖E[u]‖2 .

It can be readily checked that there exists C > 0 independent of n such that

E[‖u− un‖2] = E[‖u‖2 − ‖un‖2] ≤ C 1

n3
,
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where un =

n∑
k=1

ξk + gk
b+ k2π2

ek.

Theorem 6.2.5 (Finite element approximation, strong error). Let u be the solution to (6.1.1) and

uhn the solution to (6.2.10). Under Assumption 6.2.1, we have the following estimate for piecewise

linear finite element approximation of (6.1.1),

E[
∥∥u− uhn∥∥2

] ≤ 2E[‖u− un‖2] + 2E[
∥∥un − uhn∥∥2

]

≤ Cε−1(n−(4−d−ε) +Mn−(2− d2−ε/2)) + C(h4nd +Mh2nd/2).

When taking n = 1/h, we have

E[
∥∥u− uhn∥∥2

] ≤ Cε−1(h4−d−ε +Mh2− d2−ε/2). (6.2.13)

Remark 6.2.6. The convergence order in Theorem 6.2.5 is optimal as the solution u to (6.1.1)

belongs to H2−d/2−ε(D) when M = 0 in Assumption 6.2.1, see Theorem 6.4.3. Compared to the

methods of finite difference and finite element in [5, 165, 55], the convergence order is half order

higher than the convergence order presented in [5] for the one-dimensional problem and are the

same for higher dimensional problems [165, 55].

Theorem 6.2.7 (Finite element approximation, weak error). Let u be the solution to (6.1.1) and

uhn the solution to (6.2.10). Under the conditions of Theorem 6.2.3, we have, for d = 1, 2,

E[‖u‖2 −
∥∥uhn∥∥2

] ≤ Cε−1h4−d−εnε(κ+1)(d−1).

Taking n at the order of 1/h, we have

E[‖u‖2 −
∥∥uhn∥∥2

] ≤ Cε−1h4−d−ε((κ+1)(d−1)+1).
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Here the constant is similar to that in Theorem 6.2.5 and κ from (6.2.11).

6.2.3 Examples of other PDEs

It seems that the fact that the weak convergence order is twice of the strong-order convergence is

quite general. In the following example, we show that it is true for an advection equation with

multiplicative noises using the spectral approximation (6.2.7).

Example 6.2.8 (Advection-reaction, see e.g. [367]).

∂u

∂t
+
∂u

∂x
= σ(u− 1) ◦ Ẇ (x), x ∈ [0, L] (6.2.14)

with initial condition u0(x) and zero inflow. The stochastic product u ◦ Ẇ is the Stratonovich

product. Equation (6.2.14) can be written in Ito’s form

∂u

∂t
+
∂u

∂x
=
σ2

2
(u− 1) + σ(u− 1) �W (x), x ∈ [0, L], (6.2.15)

where ‘�’ represents the Ito-Wick product. The exact solution of (6.2.14) is

u = 1 + [u0(x− t)− 1] exp[σW (x)− σW (x− t)]. (6.2.16)

Applying the truncated spectral expansion (6.2.7) in one-dimensional physical space, we then have

the following approximation to Equation (6.2.14):

∂un
∂t

+
∂un
∂x

= σ(un − 1)
d

dx
Wn(x), x ∈ [0, L] (6.2.17)

whose solution is

un = 1 + [u0(x− t)− 1] exp[σWn(x)− σWn(x− t)]. (6.2.18)
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Theorem 6.2.9. Let u be the solution to (6.2.14) and un the solution to (6.2.17). Then we have

E[|u− un|2] ≤ C 1

n
,
∣∣E[uk − ukn ]

∣∣ ≤ C 1

n
, ∀k > 0, (6.2.19)

where C depends only on t, x and σ in the former inequality and also on k in the latter.

For one-dimensional advection equations with multiplicative noise, we have the order of 1/
√
n

for strong convergence and 1/n for weak convergence. We do not expect better convergence order

as in the case of elliptic equation, where the smoothing of the inverse of Laplacian operator is

involved. The following example shows that when better smoothing effects appear for biharmonic

equations, the strong convergence order can be even higher than that in the case of the elliptic

operators.

Example 6.2.10 (Linear biharmonic equations with additive noise). Consider the following linear

biharmonic equation with additive noise

∆2u+ bu = g(x) +
∂d

∂x1∂x2 · · · ∂xd
W (x), x = (x1, · · · , xd) ∈ D = [0, 1]d, (6.2.20)

with u = 0 and ∆u = 0 on ∂D, g ∈ L2(D). Suppose the operator ∆2 has eigenvalues λα and

eigenfunctions eα. Then λα ∼ 1
α4

1+···+α4
d

. We approximate (6.2.20) by truncating the white noise

using the spectral representation (6.2.4):

∆2un + bun = g(x) +
∑
|α|≤n

eα(x)ξα. (6.2.21)

Then we have

u =
∑
α

gα + ξα
b+ λα

eα, un =
∑
|α|≤n

gα + ξα
b+ λα

eα. (6.2.22)
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Similar to Theorem 6.2.2, we can conclude that

E[‖u‖2 − ‖un‖2] = E[‖u− un‖2] ≤ Cn−(8−d−ε). (6.2.23)

Before ending this section, we remark that our approach can be further extended as follows:

1) the domain D can be a bounded domain with a smooth boundary ∂D; 2) the operator ∆

can be replaced by general self-adjoint, positive-definite, linear operators, say A , with compact

inverse. For example, one can consider the problem in [55] with bounded convex D and A = ∆.

We emphasize again that any orthonormal basis in L2(D) can be used in the spectral expansion

(6.2.5), though it may be convenient to use the eigenfunctions of A as a basis when they can be

explicitly obtained.

6.3 Numerical results

In this section, we present some numerical results of piecewise linear finite element approximation

of one- and two- dimensional semilinear elliptic equations (6.1.1) with spatial Brownian motion

approximated by its spectral truncation (6.2.7).

To compute the expectations, we use quasi-Monte Carlo sampling for the one-dimensional prob-

lem as we can have relative low random dimensions (no more than 40) and Monte Carlo sampling for

the two-dimensional problem as higher random dimension is adopted in the spectral approximation

(6.2.5) for higher dimensional problems. The experiments were performed using Matlab R2012a on

a Macintosh desktop computer with Intel Xeon CPU E5462 (quad-core, 2.80 GHz). A fixed-point

iteration method with tolerance h2/100 was used to solve the nonlinear algebraic equations at each

step of the implicit schemes.
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Example 6.3.1 (One-dimensional elliptic).

−∆u =
1

2
sin(u) +

∂

∂x
W (x), x ∈ D = (0, 2), (6.3.1)

with zero Dirichlet boundary condition.

In this example, we will truncate the Brownian motion as follows W (x) =
∑n
k=1

∫ x
−1
mk(y) dyξk,

where we use the cosine basis in L2(D):

m1(x) =
1√
|D|

, mk(x) =

√
2

|D|
cos(

(k − 1)π

|D|
x), k ≥ 2.

Here we employ the number of elements and the number of modes for Brownian motion no more

than forty so that we can use a deterministic version of quasi-Monte Carlo integration method for

evaluating the expectations. See [222] on practical aspects of qausi-Monte Carlo methods.

The quasi-Monte Carlo sequence we used is a Sobol sequence generated in Matlab using the

following command:

p=sobolset(n,'Skip',1e3,'Leap',20); X=net(p,N); X=erfinv(2*X-1)*sqrt(2);

where we take the number of quasi-Monte Carlo sample paths N = 5× 107.

In this example, the errors are measured in the weak sense:

ρr2 =

∣∣∣E[
∥∥uh1

n1

∥∥2
]− E[

∥∥uh2
n2

∥∥2
]
∣∣∣

E[
∥∥∥uh2

n2

∥∥∥2

]
, n2 > n1, (6.3.2)

where ‖v‖ is the L2 norm in physical space and ni is set to be the number of element associated

with hi (ni = 2/hi in this example), for i = 1, 2.

We take σ = 1 and obtained E[
∥∥∥u1/20

40

∥∥∥2

] by N = 5×107 quasi-Monte Carlo sample paths which

gives the value 0.2617935 (up to 7 digit).

In Table 6.1, we observe that the convergence order of finite elements error is close to 2.5.
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This is also the case for linear problems (with u in place of sin(u)), where we observed similar

convergence order (results are not presented here). We can not observe the optimal convergence

h3 as in Theorem 6.2.5 as we believe that the element size h is relatively too large to see such a

convergence order.

We did not test the convergence order with larger number of finite elements (smaller h) and

modes for Brownian motion (larger n) as the evaluation of expectations is a higher dimensional

integration and usually requires randomized/random sampling methods, such as randomized quasi-

Monte Carlo simulation or Monte Carlo simulation. To reduce the accompanied statistical errors

from the randomized/random sampling methods, a huge of number of sampling paths or an effective

variance reduction method, see e.g. [301], should be applied. This issue is out of the scope of the

paper and thus is not considered here.

Table 6.1: Convergence of piecewise linear finite element methods for the one-dimensional semilinear
problem (6.3.1) with a spectral approximation of white noise (6.2.7).

# element n ρr2 order CPU time(s.)

8 8 6.463× 10−4 – 8.24× 102 1

16 16 1.737× 10−4 h1.90 2.03× 103

24 24 6.495× 10−5 h2.43 3.57× 103

32 32 3.047× 10−5 h2.63 5.07× 103

Example 6.3.2 (Two-dimensional elliptic equation).

−∆u+ sin(u) = σ
∂2

∂x1∂x2
W (x), x ∈ D = (0, 1)× (0, 1), (6.3.3)

with zero Dirichlet boundary conditions.

In this example, we test the weak convergence of piecewise linear finite element (rectangular

element) approximation of (6.3.3) with different noise magnitudes. In simulations we used the

Monte Carlo methods with Mersenne twister random generator (seed 100) to compute expectations.

1The computational time includes the time of generating quasi-Monte Carlo sequences, which is much smaller
than the total computational time.
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The errors are measured in the following weak sense:

ρr1 =

∣∣∣∥∥(E[uhn ])2
∥∥− ∥∥∥(E[u

h/2
2n ])2

∥∥∥∣∣∣∥∥E[uh/2]
∥∥2 , ρr2 =

∣∣∣E[
∥∥uhn∥∥2

]− E[E[u
h/2
2n ]2]

∣∣∣
E[
∥∥∥uh/22n

∥∥∥2

]
.

When 32× 32 elements are used, we employ 2× 105 Monte Carlo sample paths and obtain

σ = 0.5,
∥∥∥(E[u

√
2/32

32 ])2
∥∥∥ = 0.22861± 2.3× 10−4 and E[

∥∥∥u√2/32
32

∥∥∥2

] = 0.22965± 4.5× 10−4;

σ = 1,
∥∥∥(E[u

√
2/32

32 ])2
∥∥∥ = 0.22861 ± 4.7 × 10−4, E[

∥∥∥u√2/32
32

∥∥∥2

] = 0.23278 ± 9.0 × 10−4. The

numbers after ‘±’ are the statistical errors with the 95% confidence interval.

In Table 6.2, we observe a second-order convergence of piecewise approximation (6.2.10) for the

two-dimensional semilinear problem (6.3.3), which is consistent with our theoretical prediction in

Theorem 6.2.7 for σ = 0.5 and σ = 1.

Table 6.2: Convergence of piecewise linear finite element approximation of the two-dimensional
semilinear problem (6.3.3) with a spectral approximation of white noise (6.2.7).

σ # MC # element ρr1 order ρr2 order time(s.)

0.5 1× 103 4× 4 1.831× 10−2 ± 3.2× 10−3 – 1.800× 10−2 ± 6.5× 10−3 – 0.1
0.5 4× 104 8× 8 4.201× 10−3 ± 5.3× 10−4 h2.12 4.172× 10−3 ± 1.0× 10−3 h2.11 2.2
0.5 8× 104 16× 16 1.113× 10−3 ± 3.7× 10−4 h1.92 1.121× 10−3 ± 7.1× 10−4 h1.90 80.1
1.0 2× 103 4× 4 1.779× 10−2 ± 4.5× 10−3 – 1.662× 10−2 ± 9.2× 10−3 – 0.1
1.0 1× 105 8× 8 4.281× 10−3 ± 6.7× 10−4 h2.05 4.177× 10−3 ± 1.3× 10−3 h1.99 71.6
1.0 2× 105 16× 16 1.231× 10−3 ± 4.7× 10−4 h1.80 1.255× 10−3 ± 9.0× 10−4 h1.73 191.2

6.4 Proofs

The eigenvalue problem (6.2.6) admits a nondecreasing sequence {λm}∞m=1 of positive eigenvalues

and limm→∞ λm →∞. The Green function K(x, y) can be represented by

K(x, y) =
∑
α∈Nd

1

π2 |α|2
eα(x)eα(y), (6.4.1)
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where eα(x) =
∏d
i=1

√
2 sin(παixi) ( αi = 1, 2, · · · ) are the orthonormal eigenfunctions of −∆. We

will use the single-indexed ek and/or multi-indexed eα for the eigenfunctions if no confusion arises.

For any s ∈ R, we define

Ḣs = Ḣs(D) = D((−∆)s/2) =

{
v| ‖v‖s =

∥∥∥(−∆)s/2v
∥∥∥ = (

∞∑
k=1

λsk(v, ek))1/2 <∞

}
.

It is known that Ḣs = Hs, see e.g. [375].

6.4.1 Regularity of the solution to (6.1.1).

To prove our conclusions, we need some regularity results for (6.1.1).

Lemma 6.4.1. There exists a constant C depending only on d that

∫
D
|K(x, y)|2 dy ≤ C,

∫
D
‖K(·, y)‖22−d/2−ε dy ≤ C. (6.4.2)

Proof. By (6.4.1) and orthonormality of {eα}, we have

∫
D
|K(x, y)|2 dy =

∑
α

1

π4 |α|4
e2
α(x) ≤ C

∑
α

1

π2 |α|4
≤ C.

By the fact that λα ≤ C |α|2, we then have

∫
D
‖K(·, y)‖22−d/2−ε dy =

∑
α

λ2−d/2−ε
α

1

π4 |α|4
≤ C

∑
α

1

|α|d+ε
≤ Cε−1,

where we use the fact that the series
∑
α∈Nd

1

|α|s
converges if and only if s > d+ ε with ε > 0.

Lemma 6.4.2. For any ε > 0, we have

E[

∥∥∥∥ ∂d

∂x1∂x2 · · · ∂xd
Wn

∥∥∥∥2

Ḣ−d/2−ε
] ≤ E[

∥∥∥∥ ∂d

∂x1∂x2 · · · ∂xd
W

∥∥∥∥2

Ḣ−d/2−ε
] < C(d)ε−1, (6.4.3)

164



Proof. By the definition of norms in Ḣ−β , where β = d/2 + ε, we have

E[

∥∥∥∥ ∂d

∂x1∂x2 · · · ∂xd
Wn

∥∥∥∥2

Ḣ−β
] ≤ E[

∥∥∥∥ ∂d

∂x1∂x2 · · · ∂xd
W

∥∥∥∥2

Ḣ−β
] =

∑
α∈Nd

λ−βα =
1

π2β

∑
α∈Nd

1

|α|2β
.

Then we have for 2β > d+ ε,
∥∥∥ ∂d

∂x1∂x2···∂xdW
∥∥∥2

Ḣ−β
≤ C(d)ε−1 <∞.

From Lemmas 6.4.1 and 6.4.2, we have the following regularity results for (6.1.1).

Theorem 6.4.3. Under Assumption 6.2.1, we have the following regularity for the solution to

(6.1.1):

E[‖u‖p] <∞, E[‖u‖2Lp ] <∞, 2 ≤ p <∞, (6.4.4)

and furthermore, if M = 0 in Assumption 6.2.1 (to be precise, (6.2.2)),

E[‖u‖22−d/2−ε] < Cε−1. (6.4.5)

Proof. We first establish the Lp-stability for Equation (6.1.1) for p > 2 since the L2 regularity can

be found in [165]. By (6.2.3) and (6.2.2), taking Lp-norm over both sides, we then have

E[‖u‖2Lp ] ≤ CE[

∥∥∥∥∫
D
|K(·, y)(1 + |u|)| dy

∥∥∥∥
Lp

]2 + CE[

∥∥∥∥∥∥
∞∑
|α|=1

1

π2 |α|2
.eα(x)ξα

∥∥∥∥∥∥
2

Lp

] (6.4.6)

By the Cauchy-Schwarz inequality and by Lemma 6.4.1, we have

E[

∥∥∥∥∫
D
|K(·, y)u| dy

∥∥∥∥2

Lp
] ≤

∥∥∥∥∫
D
K2(·, y) dy

∥∥∥∥2

Lp
E[‖u‖2] ≤ CE[‖u‖2].

Then by E[

∥∥∥∥∥∥
∞∑
|α|=1

1

π2 |α|2
eα(x)ξα

∥∥∥∥∥∥
2

Lp

] < ∞ and (6.4.6), we have the second inequality in (6.4.4).

With Lemma 6.4.2, the estimate (6.4.5) can be proved similarly.
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6.4.2 Proofs for strong convergence order

Lemma 6.4.4. For η =
∫
D K(x, y) d[W (y)−Wn(y)], we have

E[‖η‖2] ≤ C(d)ε−1(n + 1)−(4−d−ε). (6.4.7)

Proof. By (6.4.1), (6.2.5) and (6.2.7), we have

E[‖η‖2] = E[

(∫
D
K(x, y) d[W (y)−Wn(y)]

)2

]

=
∑
|α|≥n+1

1

π4 |α|4
≤ (n + 1)−(4−d−ε)

∑
|α|≥n+1

1

π4 |α|d+ε

≤ C(d)ε−1n−(4−d−ε),

where we use the fact that the series
∑
α∈Nd

1

|α|s
converges if and only if s > d+ ε with ε > 0.

Lemma 6.4.5. Under Assumption 6.2.1, then we have

E[‖u− un‖2] ≤ C(M
(
E[‖η‖2]

) 1
2

+ (Cp +R)2E[‖η‖2]).

where the constant C depends only on Cp, L and M,R.

The proof of Lemma 6.4.5 is similar to that of Theorem 2.3 in [165]. We present the proof here

for completeness.

Proof. By (6.2.3) and (6.2.8), the error equation reads

u(x)− un(x) = −
∫
D
K(x, y)[f(u(y))− f(un(y))] dy + η(x). (6.4.8)

Multiplying [f(u(y))− f(un(y))] over both sides of (6.1.1), applying the inequality (6.2.1) and
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integrating over the domain D, we have

−L ‖u− un‖2 ≤
∫
D
η(x)[f(u(x))− f(un(x))] dx

−
∫
D

∫
D
K(x, y)[f(u(y))− f(un(y))] dy[f(u(x))− f(un(x))] dx

≤
∫
D
η(x)[f(u(x))− f(un(x))] dx− Cp

∫
D

(∫
D
K(x, y)[f(u(y))− f(un(y))] dy

)2

dx

=

∫
D
η(x)[f(u(x))− f(un(x))] dx− Cp

∫
D

[u− un − η]2 dx.

Then, by (6.2.2) and the Cauchy-Schwarz inequality, we have

(Cp − L) ‖u− un‖2 ≤ (Cp +R) ‖u− un‖ ‖η‖+ 2M ‖η‖ .

By Assumption 6.2.1 (Cp − L > 0), we have

‖u− un‖2 ≤ C(M ‖η‖+ (Cp +R)2 ‖η‖2),

where the constant C depends only on Cp, L and M , R.

Theorem 6.2.2 follows from the triangle inequality and Lemmas 6.4.4 and 6.4.5.

6.4.3 Proofs for weak convergence order

To prove Theorem 6.2.3, we need the following lemmas. In the proofs, we will use single-indexed

eigenvalues λi and eigenfunctions ei(x). We introduce the following equation

−∆u(x) + f(u(x)) = g(x) +

∞∑
i=1

ei(x)yi. (6.4.9)

Lemma 6.4.6. In addition to Assumption 6.2.1, assume also that f satisfies the polynomial growth
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condition (6.2.11). Then there exists a constant C > 0 depending only on d, κ and β that

E[
∥∥Dβu

∥∥2

Lq
] ≤ C

∏
i

λ−2βi
i , for 1 ≤ |β| ≤ 4, 2 ≤ q ≤ ∞.

Lemma 6.4.7. Suppose that F satisfies the polynomial growth condition (6.2.11). Under the

conditions of Lemma 6.4.6, we then have for some constant C > 0 depending only on d, κ and β,

E[
∥∥Dβ(F (u))

∥∥2
] ≤ C

∏
i

λ−2βi
i , for |β| ≤ 4.

Proof of Lemma 6.4.6. To estimate the derivatives of solution with respect to parameters,

we need the following auxiliary equation: for g̃ ∈ L2(D),

−∆v + f ′(u)v = g̃(x), x ∈ D, v = 0 on ∂D. (6.4.10)

By Assumption 6.2.1, we claim the following estimate

‖v‖Lq ≤ c
∥∥∥∥∫
D
K(x, y)g̃(y) dy

∥∥∥∥
L∞

, ∀ 2 ≤ q ≤ ∞. (6.4.11)

We first establish the case q = 2. Equation (6.4.10) can be written in the integral form as

v(x) +

∫
D
K(x, y)f ′(u)v dy =

∫
D
K(x, y)g̃(y) dy. (6.4.12)

Multiplying f ′(u)v over both sides and by the Poincare inequality, (6.4.12) and (6.4.10), we have

0 = (f ′(u)v, v) + (

∫
D
K(·, y)f ′(u(y))v(y) dy, f ′(u)v)− (

∫
D
K(·, y)g̃(y) dy, f ′(u)v)

≥ (f ′(u)v, v) + Cp

∥∥∥∥∫
D
K(·, y)f ′(u(y))v(y) dy

∥∥∥∥2

− (

∫
D
K(·, y)g̃(y) dy, f ′(u)v)

≥ −L ‖v‖2 + Cp

∥∥∥∥v − ∫
D
K(·, y)g̃(y) dy

∥∥∥∥2

− (

∫
D
K(·, y)g̃(y) dy, f ′(u)v).
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Then, by the fact that f ′ ≥ −L > −Cp and |f ′| ≤ R, we have (6.4.11) when q = 2. After taking

Lq-norm over both side of (6.4.12) and by
∫
D K

2(x, y) dy ≤ C (Lemma 6.4.1), we have

‖v‖Lq ≤ RC ‖v‖+

∥∥∥∥∫
D
K(·, y)g̃(y) dy

∥∥∥∥
Lq
,

and thus by Lemma 6.4.1, we reach (6.4.11).

Taking the derivative with respect to yi in Equation (6.4.9), we have

−∆Dεiu+ f ′(u)Dεiu = ei(x).

Thus, by (6.4.11) and (6.4.1) , we have

‖Dεiu‖Lq ≤ cλ
−1
i . (6.4.13)

Taking the derivatives with respect to yi and yj in Equation (6.4.9), we have the following equation:

−∆Dεi+εju+ f ′(u)Dεi+εju = −f ′′(u)DεiuDεju.

Then by (6.4.11) and (6.4.13), we have

∥∥Dεi+εju
∥∥
Lq
≤ cλ−1

i λ−1
j ‖f

′′(u)‖ , (6.4.14)

where we assume that f ′′(x) is of at most polynomial growth. Similarly, we have

∥∥Dεi+εj+εku
∥∥
Lq
≤ cλ−1

i λ−1
j λ−1

k (
∥∥∥f (3)(u)

∥∥∥+ ‖f ′′(u)‖),∥∥Dεi+εj+εk+εlu
∥∥
Lq
≤ cλ−1

i λ−1
j λ−1

k λ−1
l (
∥∥∥f (4)(u)

∥∥∥+
∥∥∥f (3)(u)

∥∥∥+ ‖f ′′(u)‖).

By the assumption of polynomial growth at infinity for f and its derivatives and the Lp-stability
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(6.4.4), we reach the conclusion. �

Proof of Lemma 6.4.7. By the multivariate chain rule (also known as multivariate Faa di

Bruno formula) and Lemma 6.4.6, we have Dεi+εjF (u) = F ′(u)Dεi+εju + F ′′(u)DεiuDεju, and

thus by (6.4.13) ∥∥Dεi+εjF (u)
∥∥2 ≤ c(‖F ′(u)‖2 + ‖F ′′(u)‖2)λ−2

i λ−2
j , (6.4.15)

and similarly,

∥∥D2εi+2εjF (u)
∥∥2 ≤ c(‖F ′(u)‖2 + ‖F ′′(u)‖2 +

∥∥∥F (3)(u)
∥∥∥2

+
∥∥∥F (4)(u)

∥∥∥2

)λ−4
i λ−4

j . (6.4.16)

The conclusion then follows from the assumption of polynomial growth of F and its derivatives at

infinity (6.2.11) and Lemma 6.4.6. �

Proof of Theorem 6.2.3. By the first-order Taylor’s expansion, we have for m > n

E[F (um)− F (un)]

= E[F (um(ξ1, · · · , ξn′ , · · · , ξm′))− F (un(ξ1, · · · , ξn))]

= E[

m′∑
i=n′+1

Dεi(F (um(ξ1, · · · , ξ′n, 0, · · · , 0)))ξi]

+

m′∑
i,j=n′+1

E[

∫ 1

0

(1− t)Dεi+εj (F (um(ξ1, · · · , ξn′ , tξn′+1, · · · , tξm′)))ξiξj ]

=

m∑
i,j=n′+1

∫ 1

0

(1− t)E[Dεi+εj (F (um(ξ1, · · · , ξn′ , tξn′+1, · · · , tξm′)))ξiξj ], (6.4.17)

where we used the fact ξi (i ≥ n′+1) is independent of F (um(ξ1, · · · , ξn′ , 0, · · · , 0)) and E[ξi] = 0 and

we defined n′ = n!/d!/(n− d)!. We also denoted by Dεiφ(y1, y2, · · · , ym′) the first-order derivatives

of φ in the yi-direction (replacing ξi with yi); εi is a vector of m′ dimension taking values 1 at the

i-th element and 0 otherwise. More generally, Dα represents multivariate derivatives with respect

to the parameters y.
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To estimate (6.4.17), we split the term into two parts:

I =

m′∑
i=n′+1

∫ 1

0

(1− t)E[D2εi(F (um(ξ1, · · · , ξn′ , tξn′+1, · · · , tξm′)))ξ2
i ],

II = 2

m′∑
i<j, i,j=n′+1

∫ 1

0

(1− t)E[Dεi+εj (F (um(ξ1, · · · , ξn′ , tξn′+1, · · · , tξm′)))ξiξj ].

By Lemma 6.4.7, we have

‖I‖ =

∥∥∥∥∫ 1

0

(1− t)E[D2εi(F (um(ξ1, · · · , ξn′ , tξn′+1, · · · , tξm′)))ξ2
i ] dt

∥∥∥∥
≤

∫ 1

0

(1− t)E[
∥∥D2εi(F (um(ξ1, · · · , ξn′ , tξn′+1, · · · , tξm′)))

∥∥ ξ2
i ] dt ≤ cλ−2

i . (6.4.18)

For II, we use the recipe of the proof of Theorem 2.8 in [65]. For simplicity, we define that

Xt,r,s
i.j = (ξ1, · · · , ξn′ , tξn′+1, · · · , trξi, · · · , tsξj , · · · , tξm′).

Noticing that E[Dεi+εj (F (um(Xt,0,1
i,j )ξiξj ] = 0 (i < j), we have

∫ 1

0

(1− t)E[Dεi+εj (F (um(Xt,1,1
i,j ))ξiξj ] dt

=

∫ 1

0

(1− t)E[Dεi+εj (F (um(Xt,1,1
i,j ))ξiξj ] dt−

∫ 1

0

(1− t)E[Dεi+εj (F (um(Xt,0,1
i,j ))ξiξj ] dt

=

∫ 1

0

∫ 1

0

(1− t)tE[D2εi+εj (F (um(Xt,r,1
i,j ))ξiξj ] dt dr.

With E[D2εi+εj (F (um(Xt,r,0
i,j )ξiξj ] = 0 (i < j), we have similarly

∫ 1

0

∫ 1

0

(1− t)tE[D2εi+εj (F (um(Xt,r,1
i,j ))ξiξj ] dt dr,

=

∫ 1

0

∫ 1

0

∫ 1

0

(1− t)t2E[D2εi+2εj (F (um(Xt,r,s
i,j ))ξ2

i ξ
2
j ] dt dr ds,

and thus for i < j

∫ 1

0

(1− t)E[Dεi+εj (F (um(Xt,1,1
i,j ))ξiξj ] dt
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=

∫ 1

0

∫ 1

0

∫ 1

0

(1− t)t2E[D2εi+2εj (F (um(Xt,r,s
i,j ))ξ2

i ξ
2
j ] dt dr ds.

Now we can bound II as with Lemma 6.4.7,

‖II‖ ≤
∥∥∥∥∫ 1

0

(1− t)E[D2εi+2εj (F (um(Xt,1,1
i,j ))ξiξj ] dt

∥∥∥∥ ≤ cλ−2
i λ−2

j . (6.4.19)

Thus, we have by (6.4.17), (6.4.18), and (6.4.19),

‖E[F (um)− F (un)]‖ ≤ c
m∑

|α|=n+1

λ−2
α + c(

m∑
|α|=n+1

λ−2
α )2. (6.4.20)

Then by λ−1
α ≤ C |α|

−2
, we arrive at the conclusion. �

6.4.4 Proof of Theorem 6.2.9

We first prove the strong convergence. Note that

E[(u−un)2] = (u0(x− t)−1)2E[(exp(σW (x)−σW (x− t))−exp(σWn(x)−σWn(x− t)))2]. (6.4.21)

By the fact that exp(a)−exp(b) = exp(θa+(1−θ)b)(a−b) where a ≤ θ ≤ b and the Cauchy-Schwarz

inequality, we have

E[(u− un)2] = (u0(x− t)− 1)2E[(exp(σW (x)− σW (x− t))− exp(σWn(x)− σWn(x− t)))2]

≤ (u0(x− t)− 1)2 (E[(exp(4σθ(W (x)−W (x− t)) + 4(1− θ)σ(Wn(x)− σWn(x− t)])1/2

×σ2
(
E[((W (x)−W (x− t))− (Wn(x)−Wn(x− t)))4]

)1/2
.

It requires to estimate the two expectations in the above inequality.

(E[(exp(4σθ(W (x)−W (x− t)) + 4(1− θ)σ(Wn(x)− σWn(x− t)])1/2
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≤ (E[(exp(8σθ(W (x)−W (x− t))])1/4
(E[(exp(8(1− θ)σ(Wn(x)−Wn(x− t))])1/4

≤ exp(2σ2θt) (E[(exp(4(1− θ)σ(Wn(x)−Wn(x− t))])1/4

≤ exp(8σ2θ2t) exp(8(1− θ)2σ2t) ≤ exp(8σ2t). (6.4.22)

Now we estimate the E[(W (x)−W (x− t)− (Wn(x)−Wn(x− t)))4].

E[(W (x)−W (x− t)− (Wn(x)−Wn(x− t)))4]

= E[(

∞∑
k=n+1

[Mk(x)−Mk(x− t)]ξk)4]

= E[(

∞∑
k=n+1

∞∑
l=n+1

[Mk(x)−Mk(x− t)]2[Ml(x)−Ml(x− t)]2ξ2
kξ

2
l ]

≤ 3

∞∑
k=n+1

∞∑
l=n+1

[Mk(x)−Mk(x− t)]2[Ml(x)−Ml(x− t)]2

= 3(

∞∑
k=n+1

[Mk(x)−Mk(x− t)]2)2 ≤ c1

n
, (6.4.23)

where Mk =
∫ x

0
mk(y) dy with m1(x) = 1/

√
L, mk(x) = 2/

√
L cos(π(k−1)t/L) and c depends only

on t and x.

By (6.4.22) and (6.4.23), we have the first estimate in (6.2.19).

Now we prove the weak convergence. It suffices to check E[(u− 1)k]−E[(un − 1)k]. By (6.2.16)

and (6.2.18), we have

∣∣E[(u− 1)k]− E[(un − 1)k]
∣∣ =

∣∣(u0(x− t)− 1)k exp(
k2

2
σ2E[(W (x)−W (x− t))2])

−(u0(x− t)− 1)k exp(
k2

2
σ2E[(Wn(x)−Wn(x− t))2])

∣∣
≤

∣∣(u0(x− t)− 1)k
∣∣ exp(

k2

2
σ2E[(W (x)−W (x− t))2])

×k
2

2
σ2
(
E[(W (x)−W (x− t))2]− E[(Wn(x)−Wn(x− t))2]

)
,

where we have used the fact ex − ey = eθx+(1−θ)y(x − y) (0 ≤ θ ≤ 1) and that E[(Wn(x) −
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Wn(x − t))2] ≤ E[(W (x) −W (x − t))2]. By E[(W (x) −W (x − t))2] − E[(Wn(x) −Wn(x − t))2] =∑∞
k=n+1

(
Mk(x)−Mk(x− t)

)2
, we then have

∣∣E[(u− 1)k]− E[(un − 1)k]
∣∣ ≤ k2

2
σ2
∣∣(u0(x− t)− 1)k

∣∣ exp(
k2

2
σ2t)

c

n
.

Hence, the estimate of the weak convergence order follows. �

6.4.5 Proof of Theorem 6.2.5

Define the Ritz projection Rh : H1
0 (D)→ Vh by

(∇Rhw,∇v) = (∇w,∇v), ∀v ∈ Vh, w ∈ H1
0 (D).

Then it holds that, see e.g. [375], there is a constant C independent of h such that for 0 ≤ l < r ≤ 2

‖w −Rhw‖l ≤ Ch
r−l ‖w‖r , w ∈ H2(D) ∩H1

0 (D), (6.4.24)

Proof. It can be readily checked from (6.2.9) and (6.2.10) that

(∇(Rhun − uhn ),∇v) + (f(un)− f(uhn ), v) = 0, v ∈ Vh. (6.4.25)

Taking v = Rhun − uhn and by (2.1) and (2.3), the Cauchy-Schwarz inequality, we have

∥∥∇(Rhun − uhn )
∥∥2

= −(f(un)− f(uhn ), un − uhn ) + (f(un)− f(uhn ), Rhun − un)

≤ L
∥∥un − uhn∥∥2

+ c(M +R
∥∥un − uhn∥∥) ‖Rhun − un‖)

≤ L+ Cp
2

∥∥un − uhn∥∥2
+ CM ‖Rhun − un‖+ C ‖Rhun − un‖2 .

Then by the Poincare inequality
∥∥∇(Rhun − uhn )

∥∥2 ≥ Cp
∥∥Rhun − uhn∥∥2

, the triangle inequality and
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L < Cp, there exists a constant C independent of h but dependent of Cp, R, L:

∥∥Rhun − uhn∥∥2

1
+
∥∥un − uhn∥∥2 ≤ C(M ‖Rhun − un‖+ ‖Rhun − un‖2). (6.4.26)

Then by (6.4.24), we have

∥∥Rhun − uhn∥∥2

1
+
∥∥un − uhn∥∥2 ≤ C(Mh2 ‖un‖2 + h4 ‖un‖22). (6.4.27)

Similar to the proof of Theorem 6.4.3, we have

E[‖un‖22] ≤ CE[

∥∥∥∥g +
∂d

∂x1 · · · ∂xd
Wn

∥∥∥∥2

] ≤ Cnd, (6.4.28)

where we have used the fact that

E[

∥∥∥∥ ∂d

∂x1 · · · ∂xd
Wn

∥∥∥∥2

] =
∑
|α|≤n

‖eα‖2 ≤ Cnd.

By (6.4.26) and (6.4.28), we obtain that

∥∥un − uhn∥∥2 ≤ C(Mh2 ‖un‖2 + h4 ‖un‖22),

whence we can reach the conclusion by setting h = n−1.

6.4.6 Proof of Theorem 6.2.7

By Theorem 6.2.3, we have

E[‖u‖2 − ‖un‖2] ≤ Cn−(4−d−ε).
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By the standard estimate of the Ritz operator in negative norms, (see e.g. [375, Theorem 5.1]),

‖un −Rhun‖−r ≤ Ch
q+r ‖un‖q , 1 ≤ q ≤ s, 0 ≤ r ≤ s− 2 (6.4.29)

we have, by taking q = r = 2,

E[‖un‖2 − ‖Rhun‖2] ≤ E[‖un −Rhun‖−2 ‖un +Rhun‖2] ≤ Ch4(E[‖un‖22]).

Then by (6.4.28), E[‖un‖2 − ‖Rhun‖2] ≤ Ch4nd, and thus we have by Theorem 6.2.3

E[‖u‖2]− E[‖Rhun‖2] = E[‖u‖2 − ‖un‖2] + E[‖un‖2 − ‖Rhun‖2] ≤ Cn−(4−d−ε) + Ch4nd. (6.4.30)

By the triangle inequality, we need to estimate E[
∥∥uhn∥∥2

]−E[‖Rhun‖2]. To this end, we introduce

the following linear adjoint problem over the domain D:

−∆ψ + f ′(un)ψ = φ, ψ|∂D = 0. (6.4.31)

Then we have ‖ψ‖2 ≤ C ‖φ‖ since f ′(un) ≥ −L > −Cp is bounded. Introducing e = Rhun − uhn ,

e1 = un − uhn , e2 = Rhun − un, we then have,

(e, φ) = (∇e,∇ψ) + (f ′(un)e, ψ) = (∇e,∇Rhψ) + (f ′(un)e, ψ)

= (f ′(un)e, ψ −Rhψ)− (f(un)− f(uhn )− f ′(un)e,Rhψ),

= (f ′(un)e1, ψ −Rhψ)− (f(un)− f(uhn )− f ′(un)e1, Rhψ − ψ)

−(f(un)− f(uhn )− f ′(un)e1, ψ) + (f ′(un)e2, ψ),

where we have used the error equation (6.4.25) and the definition of the Ritz projection. Thus we
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have, by (6.4.24), |f ′(un)| ≤ R and Taylor’s expansion,

|(e, φ)| ≤ C ‖e1‖h2 ‖ψ‖2 −
1

2
(f ′′(θun + (1− θ)uhn )e2

1, ψ) + (f ′(un)e2, ψ) (6.4.32)

≤ C ‖e1‖h2 ‖ψ‖2 + ‖e1‖2 ‖ψ‖∞ (1 + ‖un‖κL∞ +
∥∥uhn∥∥κL∞) + C ‖e2‖−2 ‖ψ‖2 ,

where we used the polynomial growth condition (6.2.11) for f ′′. Then we have, by the embedding

‖v‖∞ ≤ C ‖v‖2, (6.4.32), and ‖ψ‖2 ≤ C ‖φ‖ that

|(e, φ)| ≤ Ch2(‖e1‖+ ‖e1‖2 (1 + ‖un‖κL∞ +
∥∥uhn∥∥κL∞) + ‖e2‖−2) ‖φ‖ .

Thus by the definition of negative norm, (6.4.29) and the Hölder inequality, we have

E[‖e‖2−1] ≤ CE[(‖e1‖2 + ‖e2‖2)]h4 + E[‖e1‖4 (1 + ‖un‖κL∞ +
∥∥uhn∥∥κL∞)2])

≤ CE[(‖e1‖2 + ‖e2‖2)]h4 + E[‖e1‖4] (6.4.33)

+C(E[‖e1‖4(1+ε)
])1/(1+ε)

(
(E[‖un‖2κ(1+1/ε)

L∞ ])ε/(1+ε) + (E[
∥∥uhn∥∥2κ(1+1/ε)

L∞
])ε/(1+ε)

)

Similar to the proofs of Lemmas 6.4.6 and 6.4.7, we have

(E[‖un‖2κ(1+1/ε)
L∞ ])ε/(1+ε) + (E[

∥∥uhn∥∥2κ(1+1/ε)

L∞
])ε/(1+ε) ≤ Cnεκ(d−1), d = 1, 2,

E[‖un‖p2] ≤ Cnpd/2, p ≥ 2. (6.4.34)

Then by (6.4.34), (6.4.33) and (6.4.26), we have , for d = 1, 2

(E[‖e‖2−1])1/2 ≤ Ch2(E[‖e1‖2] + E[‖e2‖2])1/2 + (E[‖e1‖4])1/2 + C(E[‖e1‖4(1+ε)
])1/(1+ε)nεκ(d−1)

≤ Ch4−d/2−ε + Ch4−d−εnεκ(d−1), (6.4.35)
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whence by (6.4.29), we have

∣∣∣E[
∥∥uhn∥∥2 − ‖Rhun‖2]

∣∣∣ ≤ E[
∥∥uhn −Rhun∥∥−1

∥∥uhn +Rhun
∥∥

1
]

≤ (E[‖e‖2−1])1/2E[
∥∥uhn +Rhun

∥∥2

1
]

≤ Ch4−d−2ε)(E[‖un‖21])1/2 ≤ Ch4−d−εnε(κ+1)(d−1).

Then by the triangle inequality and (6.4.30), we reach the conclusion.
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Part III: Stochastic Ordinary Differential Equations
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Chapter 7

A Fundamental Limit Theorem for

SDEs with non-Lipschitz

coefficients

In this chapter, we prove a fundamental mean-square convergence theorem for stochastic differential

equations (SDEs) with coefficients of polynomial growth at infinity and satisfying a one-sided

Lipschitz condition. We apply the theorem to a number of existing numerical schemes. We also

propose a special balanced scheme which is explicit and of half-order mean-square convergence.

Some numerical tests are presented.

7.1 Introduction

Let (Ω,F , P ) be a complete probability space and Fwt be an increasing family of σ-subalgebras of F

induced by w(t) for 0 ≤ t ≤ T , where (w(t),Fwt ) = ((w1(t), . . . , wm(t))>,Fwt ) is an m-dimensional
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standard Wiener process. We consider the system of Ito stochastic differential equations (SDEs):

dX = a(t,X)dt+

m∑
r=1

σr(t,X)dwr(t), t ∈ (t0, T ], X(t0) = X0, (7.1.1)

where X, a, σr are d-dimensional column-vectors and X0 is independent of w. We suppose that

any solution Xt0,X0(t) of (7.1.1) is regular on [t0, T ], i.e., it is defined for all t0 ≤ t ≤ T [178].

In traditional numerical analysis for SDEs [218, 297, 301], it is assumed that the SDEs coefficients

are globally Lipschitz which is a significant limitation as most of the models of applicable interest

have coefficients which grow faster at infinity than a linear function. If the global Lipschitz condition

is violated, the convergence of many usual numerical methods can disappear, see e.g. [186, 193, 302,

366]. This has been the motivation for the recent interest in both theoretical support of existing

numerical methods and developing new methods or approaches for solving SDEs under nonglobal

Lipschitz assumptions on the coefficients.

In most of SDEs applications (e.g., in molecular dynamics, financial engineering and other prob-

lems of mathematical physics), one is interested in simulating averages Eϕ(X(T )) of the solution to

SDEs – the task for which the weak-sense SDEs approximation is sufficient and effective [297, 301].

The problem with divergence of weak-sense schemes was addressed in [302] (see also [303]) for

simulation of averages at finite time and also of ergodic limits when ensemble averaging is used.

The concept of rejecting exploding trajectories proposed and justified in [302] allows us to use any

numerical method for solving SDEs with nonglobally Lipschitz coefficients for estimating averages.

Following this concept, we do not take into account the approximate trajectories X(t) which leave

a sufficiently large ball SR := {x : |x| < R} during the time T. See other approaches for resolving

this problem in the context of computing averages, including the case of simulating ergodic limits

via time averaging, e.g. in [37, 288, 366].

In this work, we deal with mean-square (strong) approximation of SDEs with nonglobal Lipschitz

coefficients. Mean-square schemes have their own area of applicability (e.g. for simulating scenarios,
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visualization of stochastic dynamics, filtering, etc., see further discussion on this in [197, 218, 301]

and references therein). Furthermore, mean-square approximation is of theoretical interest and it

also provides a guidance in constructing weak-sense schemes (see, e.g. [218, 297, 301]).

In the case of weak approximation we often have to simulate large dimensional complicated

stochastic systems using the Monte Carlo technique (or time averaging), which is typical for molec-

ular dynamics applications, or we have to perform calculations on a daily basis, which is usual,

e.g., in financial applications. Hence the cost per time step of a weak numerical integrator should

be low, which, in particular, essentially prohibits the use of implicit methods. In contrast, areas

of applicability of mean-square schemes, as a rule, do not involve simulation of a large number of

trajectories or over very long time periods and, consequently, there are more relaxed requirements

on the cost per time step of mean-square schemes and efficient and reliable implicit schemes have

practical interest. Strong schemes for SDEs with nonglobal Lipschitz coefficients have been con-

sidered in a number of recent works, see e.g. [186, 187, 193, 197, 198, 199, 282, 283, 319] and the

references therein); see an extended literature review on this topic in [197].

In this work, we present a variant of the fundamental mean-square convergence theorem in the

case of SDEs with nonglobal Lipschitz coefficients, which is analogous to Milstein’s fundamental

theorem for the global Lipschitz case [296] (see also [297, 301]). More precisely, we assume that

the SDEs coefficients can grow polynomially at infinity and satisfy a one-sided Lipschitz condition.

The theorem is stated in Section 7.2 and proved in Section 7.5. Its corollary on almost sure

convergence is also given. In Section 7.2 we start discussion on applicability of the fundamental

theorem, including its application to the drift-implicit Euler scheme and thus establish its order

of convergence. Strong convergence (but without order) of this scheme was proved for SDEs with

nonglobal Lipschitz drift and diffusion in [197, 282] and more recently its convergence with order

half was proved in [283].

We propose a particular balanced method (see the class of balanced methods in [298, 301]) and

prove its convergence with order half in the nonglobal Lipschitz setting in Section 7.3. Apparently,

182



this is the first time when mean-square convergence with an order has been proved for an explicit

scheme under the conditions which allow polynomial growth of both drift and diffusion coefficients.

Some numerical experiments supporting our results are presented in Section 7.4.

In [376], we also have included fully implicit (i.e., implicit both in drift and diffusion) mean-

square schemes for one-sided Lipschitz drift coefficient which grows superlinearly and not faster

than polynomial growth at infinity . The fully implicit schemes was proposed and motivated by

symplectic integration of stochastic Hamiltonian equations in [299] (see also [301]), where their

convergence was proved under globally Lipschitz coefficients. See [376] for more details.

7.2 Fundamental theorem

Let Xt0,X0
(t) = X(t), t0 ≤ t ≤ T, be a solution of the system (7.1.1). We will assume the following.

Assumption 7.2.1. (i) The initial condition is such that

E|X0|2p ≤ K <∞, for all p ≥ 1. (7.2.1)

(ii) For a sufficiently large p0 ≥ 1 there is a constant c1 ≥ 0 such that for t ∈ [t0, T ],

(x− y, a(t, x)− a(t, y)) +
2p0 − 1

2

m∑
r=1

|σr(t, x)− σr(t, y)|2 ≤ c1|x− y|2, x, y ∈ Rd. (7.2.2)

(iii) There exist c2 ≥ 0 and κ ≥ 1 such that for t ∈ [t0, T ],

|a(t, x)− a(t, y)|2 ≤ c2(1 + |x|2κ−2 + |y|2κ−2)|x− y|2, x, y ∈ Rd. (7.2.3)

The condition (7.2.2) implies that

(x, a(t, x)) +
2p0 − 3

2

m∑
r=1

|σr(t, x)|2 ≤ c0 + c′1|x|2, t ∈ [t0, T ], x ∈ Rd, (7.2.4)
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where c0 = |a(t, 0)|2/2 + (2p0−3)(2p0−1)
4

∑m
r=1 |σr(t, 0)|2 and c′1 = c1 + 1/2. The inequality (7.2.4)

together with (7.2.1) is sufficient to ensure finiteness of moments [178]: there is K > 0

E|Xt0,X0(t)|2p < K(1 + E|X0|2p), 1 ≤ p ≤ p0 − 1, t ∈ [t0, T ]. (7.2.5)

Also, (7.2.3) implies that

|a(t, x)|2 ≤ c3 + c′2|x|2κ , t ∈ [t0, T ], x ∈ Rd, (7.2.6)

where c3 = 2|a(t, 0))|2 + 2c2(κ − 1)/κ and c′2 = 2c2(1 + κ)/κ.

Introduce the one-step approximation X̄t,x(t+h), t0 ≤ t < t+h ≤ T, for the solution Xt,x(t+h)

of (7.1.1), which depends on the initial point (t, x), a time step h, and {w1(θ)−w1(t), . . . , wm(θ)−

wm(t), t ≤ θ ≤ t+ h} and which is defined as follows:

X̄t,x(t+ h) = x+A(t, x, h;wi(θ)− wi(t), i = 1, . . . ,m, t ≤ θ ≤ t+ h). (7.2.7)

Using the one-step approximation (7.2.7), we recurrently construct the approximation (Xk,Ftk), k =

0, . . . , N, tk+1 − tk = hk+1, TN = T :

X0 = X(t0), Xk+1 = X̄tk,X̄k(tk+1) (7.2.8)

= Xk +A(tk, Xk, hk+1;wi(θ)− wi(tk), i = 1, . . . ,m, tk ≤ θ ≤ tk+1).

The following theorem is a generalization of Milstein’s fundamental theorem [296] (see also

[297, 301, Chapter 1]) from the global to nonglobal Lipschitz case. It also has similarities with a

strong convergence theorem in [186] proved for the case of nonglobal Lipschitz drift, global Lipschitz

diffusion and Euler-type schemes.

For simplicity, we will consider a uniform time step size, i.e., hk = h for all k.
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Theorem 7.2.2. Suppose (i) Assumption 7.2.1 holds;

(ii) The one-step approximation X̄t,x(t + h) from (7.2.7) has the following orders of accuracy:

for some p ≥ 1 there are α ≥ 1, h0 > 0, and K > 0 such that for arbitrary t0 ≤ t ≤ T − h, x ∈ Rd,

and all 0 < h ≤ h0 :

|E[Xt,x(t+ h)− X̄t,x(t+ h)]| ≤ K(1 + |x|2α)1/2hq1 , (7.2.9)

[
E|Xt,x(t+ h)− X̄t,x(t+ h)|2p

]1/(2p) ≤ K(1 + |x|2αp)1/(2p)hq2 (7.2.10)

with

q2 ≥
1

2
, q1 ≥ q2 +

1

2
; (7.2.11)

(iii) The approximation Xk from (7.2.8) has finite moments, i.e., for some p ≥ 1 there are β ≥ 1,

h0 > 0, and K > 0 such that for all 0 < h ≤ h0 and all k = 0, . . . , N :

E|Xk|2p < K(1 + E|X0|2pβ). (7.2.12)

Then for any N and k = 0, 1, . . . , N the following inequality holds:

[
E|Xt0,X0(tk)− X̄t0,X0(tk)|2p

]1/(2p) ≤ K(1 + E|X0|2γp)1/(2p)hq2−1/2 , (7.2.13)

where K > 0 and γ ≥ 1 do not depend on h and k, i.e., the order of accuracy of the method (7.2.8)

is q = q2 − 1/2.

The theorem is proved in Section 7.5 and it uses the following lemma.

Lemma 7.2.3. Suppose Assumption 7.2.1 holds. For the representation

Xt,x(t+ θ)−Xt,y(t+ θ) = x− y + Zt,x,y(t+ θ), (7.2.14)
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we have for 1 ≤ p ≤ (p0 − 1)/κ :

E|Xt,x(t+ h)−Xt,y(t+ h)|2p ≤ |x− y|2p(1 +Kh) , (7.2.15)

E |Zt,x,y(t+ h)|2p ≤ K(1 + |x|2κ−2 + |y|2κ−2)p/2|x− y|2php . (7.2.16)

This lemma is proved in Section 7.6. Theorem 7.2.2 has the following corollary.

Corollary 7.2.4. In the setting of Theorem 7.2.2 for p ≥ 1/(2q) in (7.2.13), there is 0 < ε < q

and an a.s. finite random variable C(ω) > 0 such that

|Xt0,X0
(tk)−Xk| ≤ C(ω)hq−ε,

i.e., the method (7.2.8) for (7.1.1) converges with order q − ε a.s.

The corollary is proved using the Borel-Cantelli-type of arguments (see, e.g. [158, 304]).

7.2.1 Discussion

In this section we make a number of observations concerning Theorem 7.2.2.

1. As a rule, it is not difficult to check the conditions (7.2.9)-(7.2.10) following the usual routine

calculations as in the global Lipschitz case [218, 297, 301]. We note that in order to achieve the

optimal q1 and q2 in (7.2.9)-(7.2.10) additional assumptions on smoothness of a(t, x) and σr(t, x)

are usually needed.

In contrast to the conditions (7.2.9)-(7.2.10), checking the condition (7.2.12) on moments of a

method Xk is often rather difficult. In the case of global Lipschitz coefficients, boundedness of

moments of Xk is just direct implication of the boundedness of moments of the SDEs solution and

the one-step properties of the method (see [301, Lemma 1.1.5]). There is no result of this type

in the case of nonglobal Lipschitz SDEs and each scheme requires a special consideration. For a

number of strong schemes boundedness of moments in nonglobal Lipschitz cases were proved (see,
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e.g. [186, 193, 198, 197, 366]). In Section 7.3 we show boundedness of moments for a balanced

method. See also [376] for fully implicit methods.

Roughly speaking, Theorem 7.2.2 says that if moments of Xk are bounded and the scheme was

proved to be convergent with order q in the global Lipschitz case then the scheme has the same

convergence order q in the considered nonglobal Lipschitz case.

2. Assumptions and the statement of Theorem 7.2.2 include the famous fundamental theorem

of Milstein [296] proved under the global conditions on the SDEs coefficients (of course, as discussed

in the previous point, this case does not need the assumption (7.2.12)).

3. Consider the drift-implicit scheme [301, p. 30]:

Xk+1 = Xk + a(tk+1, Xk+1)h+

m∑
r=1

σr(tk, Xk)ξrk
√
h, (7.2.17)

where ξrk = (wr(tk+1)−wr(tk))/
√
h are Gaussian N (0, 1) i.i.d. random variables. Assume that the

coefficients a(t, x) and σr(t, x) have continuous first-order partial derivatives in t and the coefficient

a(t, x) also has continuous first-order partial derivatives in xi and that all these derivatives and

the coefficients themselves satisfy inequalities of the form (7.2.3). It is not difficult to show that

the one-step approximation corresponding to (7.2.17) satisfies (7.2.9) and (7.2.10) with q1 = 2 and

q2 = 1, respectively. Its boundedness of moments, in particular, under the condition (7.2.4) for

time steps h ≤ 1/(2c1), is proved in [197]. Then, due to Theorem 7.2.2, (7.2.17) converges with

mean-square order q = 1/2 (note that for q = 1/2, it is sufficient to have q1 = 3/2 which can be

obtained under lesser smoothness of a). Further, in the case of additive noise (i.e., σr(t, x) = σr(t),

r = 1, . . . ,m), q1 = 2 and q2 = 3/2 and (7.2.17) converges with mean-square order 1 due to

Theorem 7.2.2. We note that convergence of (7.2.17) with order half in the global Lipschitz case

is well known [218, 297, 301]; in the case of nonglobal Lipschitz drift and global Lipschitz diffusion

was proved in [186, 193] (see also related results in [158, 366]); and under Assumption 7.2.1 strong

convergence of (7.2.17) without order was proved in [197, 282] and more recently its strong order
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half was independently established in [283].

5. Due to the bound (7.2.5) on the moments of the solution X(t), it would be natural to require

that β in (7.2.12) should be equal to 1. Indeed, (7.2.12) with β = 1 holds for the drift-implicit

method (7.2.17) [197] and for fully implicit methods (see [376, Section 4] or (7.4.4)). However, this

is not the case for tamed-type methods (see [198]) or the balanced method from Section 7.3.

6. The constant K in (7.2.13) depends on p, t0, T as well as on the SDEs coefficients. The

constant γ in (7.2.13) depends on α, β and κ.

7. Let us illustrate Assumption 7.2.1 (ii) on a one-dimensional SDE: dX = −µX|X|r1−1dt +

λXr2dw with µ, λ > 0, r1 ≥ 1, and r2 ≥ 1. If r1 + 1 > 2r2 or r1 = r2 = 1, then (7.2.2) is valid for

any p0 ≥ 1. If r1 + 1 = 2r2 and r1 > 1 then (7.2.2) is valid for 1 ≤ p0 ≤ µ/λ2 + 1/2.

7.3 A balanced method

In this section we propose a particular balanced scheme from the class of balanced methods in-

troduced in [298] (see also [301]) and prove its mean-square convergence with order half using

Theorem 7.2.2. As far as we know, this variant of balanced schemes has not been considered be-

fore. In Section 7.4 we test the balanced scheme on a model problem and demonstrate that it

is more efficient than the tamed scheme (7.4.2) (see Section 7.4) from [197]. We also note that

it was mentioned in [197] that a balanced scheme suitable for the nonglobal Lipschitz case could

potentially be derived.

Consider the following balanced-type scheme for (7.1.1):

Xk+1 = Xk +
a(tk, Xk)h+

∑m
r=1 σr(tk, Xk)ξrk

√
h

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

, (7.3.1)

where ξrk are Gaussian N (0, 1) i.i.d. random variables.

We prove two lemmas which show that the scheme (7.3.1) satisfies the conditions of Theo-

rem 7.2.2. The first lemma is on boundedness of moments, which uses a stopping time technique
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(see also, e.g. [302, 197]).

Lemma 7.3.1. Suppose Assumption 7.2.1 holds with sufficiently large p0. For all natural N and

all k = 0, . . . , N the following inequality holds for moments of the scheme (7.3.1):

E|Xk|2p ≤ K(1 + E|X0|2pβ), 1 ≤ p ≤ p0 − 1

4(3κ − 2)
− 1

2
, (7.3.2)

with some constants β ≥ 1 and K > 0 independent of h and k.

Proof. In the proof we shall use the letter K to denote various constants which are independent of

h and k. We note in passing that the case κ = 1 (i.e., when a(t, x) is globally Lipschitz) is trivial.

The following elementary consequence of the inequalities (7.2.4) and (7.2.6) will be used in the

proof: there exits a constant K > 0 such that

m∑
r=1

|σr(t, x)|2 ≤ K(1 + |x|2κ). (7.3.3)

We observe from (7.3.1) that

|Xk+1| ≤ |Xk|+ 1 ≤ |X0|+ (k + 1). (7.3.4)

Let R > 0 be a sufficiently large number. Introduce the events

Ω̃R,k := {ω : |Xl| ≤ R, l = 0, . . . , k}, (7.3.5)

and their compliments Λ̃R,k. We first prove the lemma for integer p ≥ 1. We have

EχΩ̃R,k+1
(ω)|Xk+1|2p ≤ EχΩ̃R,k

(ω)|Xk+1|2p (7.3.6)

= EχΩ̃R,k
(ω)|(Xk+1 −Xk) +Xk|2p ≤ EχΩ̃R,k

(ω)|Xk|2p + EχΩ̃R,k
(ω) |Xk|2p−2

×
[
2p(Xk, Xk+1 −Xk) + p(2p− 1)|Xk+1 −Xk|2

]
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+K

2p∑
l=3

EχΩ̃R,k
(ω) |Xk|2p−l |Xk+1 −Xk|l.

Consider the second term in the right-hand side of (7.3.6):

EχΩ̃R,k
(ω) |Xk|2p−2 [

2p(Xk, Xk+1 −Xk) + p(2p− 1)|Xk+1 −Xk|2
]

(7.3.7)

= 2pE

(
χΩ̃R,k

(ω) |Xk|2p−2 E

[(
Xk,

a(tk, Xk)h+
∑m
r=1 σr(tk, Xk)ξrk

√
h

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

)

+
2p− 1

2

∣∣∣∣∣ a(tk, Xk)h+
∑m
r=1 σr(tk, Xk)ξrk

√
h

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

∣∣∣∣∣
2
∣∣∣∣∣∣Ftk

 .

Since Eξrk
m∏
j=1

|ξjk|αj = 0 for all r and any αj ≥ 0, j = 1, . . .m, and ξrk are independent of Ftk , we

obtain

χΩ̃R,k
E

[ ∑m
r=1 σr(tk, Xk)ξrk

√
h

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

∣∣∣∣∣Ftk
]

(7.3.8)

= χΩ̃R,k

m∑
r=1

E

σr(tk, Xk)ξrk
√
h

∞∑
i=0

(−1)i

[
h|a(tk, Xk)|+

√
h

m∑
r=1

|σr(tk, Xk)ξrk|

]i∣∣∣∣∣∣Ftk


= 0.

Using that Eξrkξlk
m∏
j=1

|ξjk|αj = 0 for l 6= r and any αj ≥ 0, j = 1, . . . ,m, we analogously get for

l 6= r :

χΩ̃R,k
E

[
σr(tk, Xk)ξrk

√
hσl(tk, Xk)ξlk

√
h

(1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|)2

∣∣∣∣∣Ftk
]

= 0. (7.3.9)

Then the conditional expectation in (7.3.7) becomes

A := χΩ̃R,k
E

[(
Xk,

a(tk, Xk)h+
∑m
r=1 σr(tk, Xk)ξrk

√
h

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

)
(7.3.10)

+
2p− 1

2

∣∣∣∣∣ a(tk, Xk)h+
∑m
r=1 σr(tk, Xk)ξrk

√
h

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

∣∣∣∣∣
2
∣∣∣∣∣∣Ftk
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= χΩ̃R,k
E

[
(Xk, a(tk, Xk)h)

1 + h|a(tk, Xk)|+
√
h|
∑m
r=1 σr(tk, Xk)ξrk|

+
2p− 1

2

a2(tk, Xk)h2 + h
∑m
r=1 (σr(tk, Xk)ξrk)

2(
1 + h|a(tk, Xk)|+

√
h|
∑m
r=1 σr(tk, Xk)ξrk|

)2

∣∣∣∣∣∣∣Ftk


≤ χΩ̃R,k
E

[
(Xk, a(tk, Xk)h)

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

+
2p− 1

2

h
∑m
r=1 |σr(tk, Xk)|2ξ2

rk

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

∣∣∣∣∣Ftk
]

+
2p− 1

2
χΩ̃R,k

a2(tk, Xk)h2

= χΩ̃R,k
E

[
(Xk, a(tk, Xk)h) + 2p−1

2 h
∑m
r=1 |σr(tk, Xk)|2

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

+
2p− 1

2

h
∑m
r=1 |σr(tk, Xk)|2(ξ2

rk − 1)

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

∣∣∣∣∣Ftk
]

+
2p− 1

2
χΩ̃R,k

a2(tk, Xk)h2.

Using (7.2.4) and (7.2.6), we obtain

A ≤ c0h+ c′1|Xk|2hχΩ̃R,k
(7.3.11)

+
2p− 1

2
hχΩ̃R,k

m∑
r=1

|σr(tk, Xk)|2E

[
(ξ2
rk − 1)

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

∣∣∣∣∣Ftk
]

+Kh2 +KχΩ̃R,k
|Xk|2κh2.

Since E(ξ2
rk − 1) = 0, moments of ξrk are bounded and ξrk are independent of Ftk , we obtain for

the expectation in the second term in (7.3.11):

χΩ̃R,k
E

[
(ξ2
rk − 1)

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

∣∣∣∣∣Ftk
]

(7.3.12)

= χΩ̃R,k
E

[
(ξ2
rk − 1)

1 + h|a(tk, Xk)|+
√
h
∑m
r=1 |σr(tk, Xk)ξrk|

− (ξ2
rk − 1)

∣∣∣∣∣Ftk
]

= −χΩ̃R,k
E

[
(ξ2
rk − 1)

h|a(tk, Xk)|+
√
h
∑m
r=1 |σl(tk, Xk)ξlk|

1 + h|a(tk, Xk)|+
√
h
∑m
l=1 |σr(tk, Xk)ξlk|

∣∣∣∣∣Ftk
]

≤ χΩ̃R,k
E

[
|ξ2
rk − 1|

(
h|a(tk, Xk)|+

√
h

m∑
r=1

|σl(tk, Xk)||ξlk|

)∣∣∣∣∣Ftk
]

≤ χΩ̃R,k
K

(
h|a(tk, Xk)|+

√
h

m∑
r=1

|σr(tk, Xk)|

)
.

191



Using (7.2.6) and (7.3.3), we get from (7.3.11)-(7.3.12):

A ≤ c0h+ c′1χΩ̃R,k
|Xk|2h+KhχΩ̃R,k

m∑
r=1

|σr(tk, Xk)|2

×

[
h|a(tk, Xk)|+

√
h

m∑
r=1

|σr(tk, Xk)|

]
+Kh2 +KχΩ̃R,k

|Xk|2κh2 (7.3.13)

≤ χΩ̃R,k
Kh(1 + |Xk|2 + |Xk|2κh+ |Xk|3κh1/2) ≤ χΩ̃R,k

Kh(1 + |Xk|2 + |Xk|3κh1/2).

Now consider the last term in (7.3.6):

EχΩ̃R,k
(ω) |Xk|2p−l |Xk+1 −Xk|l (7.3.14)

≤ KEχΩ̃R,k
(ω) |Xk|2p−l

[
hl|a(tk, Xk)|l + hl/2

m∑
r=1

|σr(tk, Xk)|l|ξrk|
l

]

≤ KEχΩ̃R,k
(ω) |Xk|2p−l hl/2

[
1 + |Xk|lκ

]
,

where we used (7.2.6) and (7.3.3) again as well as the fact that χΩ̃R,k
(ω) and Xk are Ftk -measurable

while ξrk are independent of Ftk .

Combining (7.3.6), (7.3.7), (7.3.10), (7.3.13) and (7.3.14), we obtain

EχΩ̃R,k+1
(ω)|Xk+1|2p (7.3.15)

≤ EχΩ̃R,k
(ω)|Xk|2p +KhEχΩ̃R,k

(ω) |Xk|2p−2
[
1 + |Xk|2 + |Xk|3κh1/2

]
+K

2p∑
l=3

EχΩ̃R,k
(ω) |Xk|2p−l hl/2

[
1 + |Xk|lκ

]
≤ EχΩ̃R,k

(ω)|Xk|2p +KhEχΩ̃R,k
(ω) |Xk|2p +K

2p∑
l=2

EχΩ̃R,k
(ω) |Xk|2p−l hl/2

+Kh3/2EχΩ̃R,k
(ω) |Xk|2p−2+3κ

+Kh

2p∑
l=3

EχΩ̃R,k
(ω) |Xk|2p+l(κ−1)

hl/2−1.

Choosing

R = R(h) = h−1/(6κ−4), (7.3.16)
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we get, for l = 3, . . . , 2p, EχΩ̃R,k
(ω) |Xk|2p−2+3κ

hl/2−1 ≤ χΩ̃R(h),k
(ω) |Xk|2p and also

χΩ̃R(h),k
(ω) |Xk|2p+l(κ−1)

hl/2−1 ≤ χΩ̃R(h),k
(ω) |Xk|2p , and hence we rewrite (7.3.15) as

EχΩ̃R(h),k+1
(ω)|Xk+1|2p (7.3.17)

≤ EχΩ̃R(h),k
(ω)|Xk|2p +KhEχΩ̃R(h),k

(ω) |Xk|2p +K

p∑
l=1

EχΩ̃R(h),k
(ω) |Xk|2(p−l)

hl

≤ EχΩ̃R(h),k
(ω)|Xk|2p +KhEχΩ̃R(h),k

(ω) |Xk|2p +Kh,

where in the last line we have used Young’s inequality. From here, we get by Gronwall’s inequality

that

EχΩ̃R(h),k
(ω)|Xk|2p ≤ K(1 + E|X0|2p), (7.3.18)

where R(h) is from (7.3.16) and K does not depend on k and h but it depends on p.

It remains to estimate EχΛ̃R(h),k
(ω)|Xk|2p. We have

χΛ̃R,k
= 1− χΩ̃R,k

= 1− χΩ̃R,k−1
χ|Xk|≤R = χΛ̃R,k−1

+ χΩ̃R,k−1
χ|Xk|>R

= · · · =
k∑
l=0

χΩ̃R,l−1
χ|Xl|>R,

where we put χΩ̃R,−1
= 1. Then, using (7.3.4), (7.3.18), (7.2.1), and Cauchy-Bunyakovsky-Schwarz’s

and Markov’s inequalities, we obtain

EχΛ̃R(h),k
(ω)|Xk|2p = E

k∑
l=0

|Xk|2pχΩ̃R(h),l−1
χ|Xl|>R(h) (7.3.19)

≤
(
E|X0 + k|4p

)1/2 k∑
l=0

(
E
[
χΩ̃R(h),l−1|Xl|>R(h)

])1/2

=
(
E|X0 + k|4p

)1/2 k∑
l=0

(
P (χΩ̃R(h),l−1

|Xl| > R)
)1/2

≤
(
E|X0 + k|4p

)1/2 k∑
l=0

(
E(χΩ̃R(h),l−1

|Xl|2(2p+1)(6κ−4))
)1/2

R(h)(2p+1)(6κ−4)
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≤ K
(
E|X0 + k|4p

)1/2 (E(1 + |X0|2(2p+1)(6κ−4))
)1/2

kh2p+1

≤ K(1 + E|X0|4p+2(2p+1)(6κ−4))1/2,

which together with (7.3.18) implies (7.3.2) for integer p ≥ 1. Then, by Jensen’s inequality, (7.3.2)

holds for non-integer p as well. �

The next lemma gives estimates for the one-step error of the balanced scheme (7.3.1).

Lemma 7.3.2. Assume that (7.2.5) holds. Assume that the coefficients a(t, x) and σr(t, x) have

continuous first-order partial derivatives in t and that these derivatives and the coefficients satisfy

inequalities of the form (7.2.3). Then the scheme (7.3.1) satisfies the inequalities (7.2.9) and (7.2.10)

with q1 = 3/2 and q2 = 1, respectively.

The proof of this lemma is given in Section 7.7. Lemmas 7.3.1 and 7.3.2 and Theorem 7.2.2

imply the following result.

Proposition 7.3.3. Under the assumptions of Lemmas 7.3.1 and 7.3.2 the balanced scheme (7.3.1)

has mean-square order half, i.e., for it the inequality (7.2.13) holds with q = q2 − 1/2 = 1/2.

Remark 7.3.4. In the additive noise case the mean-square order of the balanced scheme (7.3.1)

does not improve (q1 and q2 remain 3/2 and 1, respectively).

7.4 Numerical examples

In this section we will test the following schemes: the balanced method (7.3.1) from Section 7.3;

the drift-implicit scheme (7.2.17), the fully implicit Euler scheme (7.4.4) with λ = 1; the mid-point

method (7.4.4) with λ = 1/2; the drift-tamed Euler scheme (a modified balanced method) [198]:

Xk+1 = Xk + h
a(Xk)

1 + h |a(Xk)|
+

m∑
r=1

σr(tk, Xk)ξrk
√
h; (7.4.1)

194



the fully-tamed scheme [197]:

Xk+1 = Xk +
a(Xk)h+

∑m
r=1 σr(tk, Xk)ξrk

√
h

max
(

1, h
∣∣∣ha(Xk) +

∑m
r=1 σr(tk, Xk)ξrk

√
h
∣∣∣) ; (7.4.2)

and the trapezoidal scheme [301, p. 30]:

Xk+1 = Xk +
h

2
[a(Xk+1) + a(Xk)] +

m∑
r=1

σr(tk, Xk)ξrk
√
h. (7.4.3)

As before, ξrk = (wr(tk+1) − wr(tk))/
√
h are Gaussian N (0, 1) i.i.d. random variables. The two

fully implicit scheme for (7.1.1) are from [376]:

Xk+1 = Xk + a(tk+λ, (1− λ)Xk + λXk+1)h

−λ
m∑
r=1

d∑
j=1

∂σr
∂xj

(tk+λ, (1− λ)Xk + λXk+1)σjr(tk+λ, (1− λ)Xk + λXk+1)h

+

m∑
r=1

σr(tk+λ, (1− λ)Xk + λXk+1) (ζrh)k
√
h, (7.4.4)

where 0 ≤ λ ≤ 1, tk+λ = tk + λh and (ζrh)k are i.i.d. random variables so that

ζh =


ξ, |ξ| ≤ Ah,

Ah, ξ > Ah,

−Ah, ξ < −Ah,

(7.4.5)

with ξ ∼ N (0, 1) and Ah =
√

2l| lnh| with l ≥ 1. We recall [301, Lemma 1.3.4] that

∣∣E[(ξ2 − ζ2
h)]
∣∣ ≤ (1 + 2

√
2l| lnh|)hl. (7.4.6)

The drift-tamed Euler scheme (7.4.1) converges with strong convergence order half under Assump-

tion 7.2.1 together with Lipschitz diffusion coefficient [198]. When 1/2 < λ ≤ 1, the fully implicit
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scheme (7.4.4) is expected to converge with order half under similar conditions, see [376]. The

fully-tamed Euler scheme (7.4.2) is proved to have strong convergence but without order given

under Assumption 7.2.1, see [197].

In all the experiments with fully implicit schemes, where the truncated random variables ζ

are used, we took l = 2 in (7.4.6). The experiments were performed using Matlab R2012a on a

Macintosh desktop computer with Intel Xeon CPU E5462 (quad-core, 2.80 GHz). In simulations

we used the Mersenne twister random generator with seed 100. Newton’s method was used to solve

the nonlinear algebraic equations at each step of the implicit schemes.

We test the methods on two model problems. The first one has nonglobal Lipschitz drift, global

Lipschitz diffusion and two noncommutative noises. The second example satisfies Assumption 7.2.1

(nonglobal Lipschitz both drift and diffusion). The aim of the tests is to compare performance

of the methods: their accuracy (i.e., roughly speaking, size of prefactors at a power of h) and

computational costs. We note that experiments cannot prove or disprove boundedness of moments

of the schemes since experiments rely on a finite sample of trajectories run over a finite time interval

while blow-up of moments in divergent methods (e.g., explicit Euler scheme) is, in general, a result

of large deviations [288, 302].

Example 7.4.1. Our first test model is the Stratonovich SDE of the form:

dX = (1−X5) dt+X ◦ dw1 + dw2, X(0) = 0. (7.4.7)

In Ito’s sense, the drift of the equation becomes a(t, x) = 1−x5 +x/2. Here we tested the balanced

method (7.3.1); the drift-tamed scheme (7.4.1); the fully implicit Euler scheme (7.4.4) with λ = 1;

the mid-point method (7.4.4) with λ = 1/2. We note that for all the methods tested on this example

except the mid-point rule mean-square convergence with order half is proved either in earlier papers

[198, 197, 283] or here as it was described before.
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To compute the mean-square error, we run M independent trajectories X(i)(t), X
(i)
k :

(
E [X(T )−XN ]

2
)1/2 .

=

(
1

M

M∑
i=1

[X(i)(T )−X(i)
N ]2

)1/2

. (7.4.8)

We took time T = 50 and M = 104. The reference solution was computed by the mid-point method

with small time step h = 10−4. It was verified that using a different implicit scheme for simulating

a reference solution does not affect the outcome of the tests. We chose the mid-point scheme as a

reference since in all the experiments it produced the most accurate results.

Table 7.1 gives the mean-square errors and experimentally observed convergence rates for the

corresponding methods. We checked that the number of trajectories M = 104 was sufficiently

large for the statistical errors not to significantly hinder the mean-square errors (the Monte Carlo

error computed with 95% confidence was at least 10 time smaller than the reported mean-square

errors except values for (7.4.1) at h = 0.1 and 0.05 where it was at least 5 time smaller than

the mean-square errors). In addition to the data in the table, we evaluated errors for (7.3.1) for

smaller time steps: h = 0.002 – the error is 9.27e-02 (rate 0.41), 0.001 – 6.86e-02 (0.44). The

observed rates of convergence of all the tested methods are close to the predicted 1/2. For a fixed

time step h, the most accurate scheme is the mid-point one, the less accurate scheme is the new

balanced method (7.3.1). To produce the result with accuracy ∼ 0.06 − 0.07, in our experiment

of running M = 104 trajectories the scheme (7.4.1) required 170 sec., the mid-point (7.4.4) with

λ = 1/2 – 329 sec., (7.4.4) with λ = 1 – 723 sec., and (7.3.1) – 1870 sec. That is, our experiments

confirmed the conclusion of [198] that the drift-tamed (modified balance method) (7.4.1) from [198]

is highly competitive. We note that (7.4.1) is not applicable when diffusion grows faster than a

linear function and that in this case the balanced method (7.3.1) can outcompete implicit schemes

as it is shown in the next example.
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Table 7.1: Example 7.4.1. Mean-square errors of the selected schemes. See further details in the
text.

h (7.4.4), λ = 1 rate (7.4.4), λ = 1/2 rate (7.4.1) rate (7.3.1) rate
0.1 1.712e-01 – 1.443e-01 – 3.748e-01 – 3.594e-01 –
0.05 1.234e-01 0.47 9.224e-02 0.65 2.103e-01 0.83 3.017e-01 0.25
0.02 7.692e-02 0.52 5.261e-02 0.61 9.472e-02 0.87 2.297e-01 0.30
0.01 5.478e-02 0.49 3.549e-02 0.57 6.104e-02 0.63 1.778e-01 0.37
0.005 3.935e-02 0.48 2.487e-02 0.51 3.959e-02 0.62 1.354e-01 0.39

Example 7.4.2. Consider the SDE in the Stratonovich sense:

dX = (1−X5) dt+X2 ◦ dw, X(0) = 0. (7.4.9)

In Ito’s sense, the drift of the equation becomes a(t, x) = 1− x5 + x3.

Here we tested the balanced method (7.3.1); the fully-tamed Euler scheme (7.4.2); the drift-

implicit scheme (7.2.17); the fully implicit Euler scheme (7.4.4) with λ = 1; the mid-point method

(7.4.4) with λ = 1/2; and the trapezoidal scheme (7.4.3). We recall that in the case of nonglobal

Lipschitz drift and diffusion, for the drift-implicit scheme (7.2.17) and the balanced method (7.3.1)

mean-square convergence with order half is shown earlier in this work and for (7.2.17) also in [283];

it is not difficult to generalize the results of [282] to show boundedness of higher moments of the

trapezoidal scheme (7.4.3) and then, using Theorem 7.2.2, to prove its mean-square convergence

with order half (see also [283]), which is supported by the experiments. Strong convergence of

(7.4.2) without order is proved in [197]. We note that it can be proved directly that implicit

algebraic equations arising from application of the mid-point and fully implicit Euler schemes to

(7.4.9) have unique solutions under a sufficiently small time step.

The reference solution was computed by the mid-point method with small time step h = 10−4.

The time T = 50 and M = 104 in (7.4.8).

The fully-tamed scheme (7.4.2) did not produce accurate results until the time step size is at

least h = 0.005 and we do not then report its errors here but see the remark below.
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Figure 7.1: Example 7.4.2. Trajectories of the fully-tamed scheme (7.4.2) and the balanced scheme
(7.3.1) for h = 0.1. The reference trajectory is simulated by the mid-point scheme (see (7.4.4) with
λ = 1/2) using a small time step.
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Remark 7.4.3. In contrast to the explicit balance scheme (7.3.1), the nature of the explicit fully-

tamed scheme (7.4.2) can lead to spurious oscillations, which significantly reduces its practical

usefulness. Indeed, if at a step k∗, the event O :=
∣∣∣ha(Xk) +

∑m
r=1 σr(tk, Xk)ξrk

√
h
∣∣∣ > 1/h hap-

pens, then in the case of (7.4.9) the trajectory Xk, k > k∗, oscillates approximately between Xk∗

and Xk∗ − sgn(Xk∗)/h. Since the probability of the event O is positive for any step size h > 0 and

grows with integration time, it is unavoidable that in some scenarios (i.e., on some trajectories)

such oscillatory behavior will appear. For instance, in this experiment for h = 0.1 we observed 305

out of 1000 paths for which O happened over the time interval [0, 5], 582 – over [0, 10] and 989 –

over [0, 50]; for h = 0.05 – 866 out of 1000 paths over the time interval [0, 50]. Typical trajectories

of the balance scheme (7.3.1) and the fully-tamed scheme (7.4.2) are presented in Fig. 7.1, where

the reference solution is computed by the mid-point scheme with a small time step h = 0.0001. From

the practical point of view, (7.4.2) works as long as the explicit Euler scheme works (cf. [288] and

also [301, p. 17]). The strong convergence (without order) of (7.4.2) [197] in comparison with the

explicit Euler scheme is due to the following fact. When event O happens for the Euler scheme its

sequence Xk starts oscillating with growing amplitude which leads to unboundedness of its moments
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and, consequently, its divergence in the mean-square sense. For (7.4.2), the oscillations are bounded

by ∼ 1/h and since the probability of O over a finite time interval rapidly decreasing with decrease

of h, then the moments are bounded uniformly in h. At the same time, the one-step approximation

of (7.4.2) does not satisfy the conditions (7.2.9) and (7.2.10) of Theorem 7.2.2. We note that the

explicit balanced-type scheme (7.3.1) does not have such drawbacks as (7.4.2).

Table 7.2 gives the mean-square errors and experimentally observed convergence rates for the

corresponding methods. We checked that the number of trajectories M = 104 was sufficiently large

for the statistical errors not to significantly hinder the mean-square errors (the Monte Carlo error

computed with 95% confidence was at least ten time smaller than the reported mean-square errors).

In addition to the data in the table, we evaluated errors for (7.3.1) for smaller time steps: h = 0.002

– the error is 3.70e-02 (rate 0.41), 0.001 – 2.73e-02 (0.44), 0.0005 – 2.00e-02 (0.45), i.e., for smaller

h the observed convergence rate of (7.3.1) becomes closer to the theoretically predicted order 1/2.

Since (7.4.9) is with single noise, the mid-point scheme demonstrates the first order of convergence.

The other implicit schemes show the order half as expected.

Table 7.2: Example 7.4.2. Mean-square errors of the selected schemes. See further details in the
text.

h (7.2.17) rate (7.4.4), λ = 1 rate (7.4.4), λ = 1/2 rate (7.4.3) rate (7.3.1) rate
0.2 3.449e-01 – 1.816e-01 – 1.378e-01 – 4.920e-01 – 2.102e-01 –
0.1 2.441e-01 0.50 1.331e-01 0.45 8.723e-02 0.66 3.526e-01 0.48 1.637e-01 0.36
0.05 1.592e-01 0.62 9.619e-02 0.47 5.344e-02 0.71 2.230e-01 0.66 1.270e-01 0.37
0.02 8.360e-02 0.70 6.599e-02 0.41 2.242e-02 0.95 1.048e-01 0.82 9.170e-02 0.36
0.01 5.460e-02 0.61 4.919e-02 0.42 1.145e-02 0.97 5.990e-02 0.81 7.065e-02 0.38
0.005 3.682e-02 0.57 3.522e-02 0.48 5.945e-03 0.95 3.784e-02 0.66 5.393e-02 0.39

Table 7.3 presents the time costs in seconds. Let us fix tolerance level at 0.05 − 0.06. We

highlighted in bold the corresponding values in both tables. We see that in this example the mid-

point scheme is the most efficient which is due to its first order convergence in the commutative

case. Among methods of half-order, the balanced method (7.3.1) is the fastest and one can expect

that for multi-dimensional SDEs the explicit scheme (7.3.1) can considerably outperform implicit
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methods (see a similar outcome for the drift-tamed method (7.4.1) supported by experiments in

[198]; note that (7.4.1), in comparison with (7.3.1), is, as a rule, divergent when diffusion is growing

faster than a linear function on infinity).

Table 7.3: Example 7.4.2. Computational times for the selected schemes. See further details in the
text.

h (7.2.17) (7.4.4), λ = 1 (7.4.4), λ = 1/2 (7.4.3) (7.3.1)
0.2 9.25e+00 1.10e+01 9.33e+00 1.20e+01 3.98e+00
0.1 1.77e+01 2.17e+01 1.80e+01 2.30e+01 7.49e+00
0.05 3.42e+01 4.26e+01 3.51e+01 4.48e+01 1.41e+01
0.02 8.33e+01 1.04e+02 8.69e+01 1.10e+02 3.37e+01
0.01 1.64e+02 2.05e+02 1.73e+02 2.19e+02 6.62e+01
0.005 3.25e+02 4.07e+02 3.47e+02 4.37e+02 1.32e+02

7.5 Proof of the fundamental theorem

Note that in this and the two next sections we shall use the letter K to denote various constants

which are independent of h and k. The proof exploits the idea of the proof of this theorem in the

global Lipschitz case [296].

Consider the error of the method X̄t0,X0(tk+1) at the (k + 1)-step:

ρk+1 := Xt0,X0
(tk+1)− X̄t0,X0

(tk+1) = Xtk,X(tk)(tk+1)− X̄tk,Xk(tk+1) (7.5.1)

= (Xtk,X(tk)(tk+1)−Xtk,Xk(tk+1)) + (Xtk,Xk(tk+1)− X̄tk,Xk(tk+1)) .

The first difference in the right-hand side of (7.5.1) is the error of the solution arising due to the

error in the initial data at time tk, accumulated at the k-th step, which we can re-write as

Stk,X(tk),Xk(tk+1) = Sk+1 := Xtk,X(tk)(tk+1)−Xtk,Xk(tk+1) = ρk + Ztk,X(tk),Xk(tk+1)

= ρk + Zk+1,

where Z is as in (7.2.14). The second difference in (7.5.1) is the one-step error at the (k + 1)-step
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and we denote it as rk+1 :

rk+1 = Xtk,Xk(tk+1)− X̄tk,Xk(tk+1).

Let p ≥ 1 be an integer. We have

E|ρk+1|2p = E |Sk+1 + rk+1|2p (7.5.2)

= E[(Sk+1, Sk+1) + 2(Sk+1, rk+1) + (rk+1, rk+1)]p

≤ E |Sk+1|2p + 2pE |Sk+1|2p−2
(ρk + Zk+1, rk+1) +K

2p∑
l=2

E |Sk+1|2p−l |rk+1|l.

Due to (7.2.15) of Lemma 7.2.3, the first term on the right-hand side of (7.5.2) is estimated as

E |Sk+1|2p ≤ E|ρk|2p(1 +Kh). (7.5.3)

Consider the second term on the right-hand side of (7.5.2):

E |Sk+1|2p−2
(ρk + Zk+1, rk+1) = E |ρk|2p−2

(ρk, rk+1) (7.5.4)

+E
(
|Sk+1|2p−2 − |ρk|2p−2

)
(ρk, rk+1) + E |Sk+1|2p−2

(Zk+1, rk+1).

Due to Ftk -measurability of ρk and due to the conditional variant of (7.2.9), we get for the first

term on the right-hand side of (7.5.4):

E |ρk|2p−2
(ρk, rk+1) ≤ KE |ρk|2p−1

(1 + |Xk|2α)1/2hq1 . (7.5.5)

Consider the second term on the right-hand side of (7.5.4) and first of all note that it is equal to

zero for p = 1. We have for integer p ≥ 2 :

E
(
|Sk+1|2p−2 − |ρk|2p−2

)
(ρk, rk+1) ≤ KE |Zk+1| |ρk||rk+1|

2p−3∑
l=0

|Sk+1|2p−3−l|ρk|l.
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Further, using Ftk -measurability of ρk and the conditional variants of (7.2.10), (7.2.15) and (7.2.16)

and the Cauchy-Bunyakovsky-Schwarz inequality (twice), we get for p ≥ 2 :

E
(
|Sk+1|2p−2 − |ρk|2p−2

)
(ρk, rk+1) (7.5.6)

≤ KE |ρk|2p−1
(1 + |X(tk)|2κ−2 + |Xk|2κ−2)1/4hq2+1/2(1 + |Xk|2α)1/2.

Due to Ftk -measurability of ρk, the conditional variants of (7.2.10) and (7.2.16) and the Cauchy-

Bunyakovsky-Schwarz inequality (twice), we obtain for the third term on the right-hand side of

(7.5.4):

E |Sk+1|2p−2
(Zk+1, rk+1) (7.5.7)

≤ E[E
(
Sk+1|4p−4|Ftk

)1/2 E (|Zk+1|4|Ftk
)1/4 E (|rk+1|4|Ftk

)1/4
]

≤ KE |ρk|2p−1
(1 + |X(tk)|2κ−2 + |Xk|2κ−2)1/4hq2+1/2(1 + |Xk|4α)1/4.

Due to Ftk -measurability of ρk and due to the conditional variants of (7.2.10) and (7.2.15) and

the Cauchy-Bunyakovsky-Schwarz inequality, we estimate the third term on the right-hand side of

(7.5.2):

K

2p∑
l=2

E |Sk+1|2p−l |rk+1|l ≤ K
2p∑
l=2

E[E(|Sk+1|4p−2l |Ftk)1/2E(|rk+1|2l|Ftk)1/2] (7.5.8)

≤ K
2p∑
l=2

E[|ρk|2p−lhlq2(1 + |Xk|2lα)1/2].

Substituting (7.5.3)-(7.5.8) in (7.5.2) and recalling that q1 ≥ q2 + 1/2, we obtain

E|ρk+1|2p ≤ E|ρk|2p(1 +Kh) +KE |ρk|2p−1
(1 + |Xk|2α)1/2hq2+1/2

+KE |ρk|2p−1
(1 + |X(tk)|2κ−2 + |Xk|2κ−2)1/4hq2+1/2(1 + |Xk|2α)1/2

+KE |ρk|2p−1
(1 + |X(tk)|2κ−2 + |Xk|2κ−2)1/4hq2+1/2(1 + |Xk|4α)1/4
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+K

2p∑
l=2

E[|ρk|2p−lhlq2(1 + |Xk|2lα)1/2]

≤ E|ρk|2p(1 +Kh)

+KE |ρk|2p−1
(1 + |X(tk)|2κ−2 + |Xk|2κ−2)1/4hq2+1/2(1 + |Xk|2α)1/2

+K

2p∑
l=2

E[|ρk|2p−lhlq2(1 + |Xk|2lα)1/2].

Then using Young’s inequality and the conditions (7.2.5) and (7.2.12), we obtain

E|ρk+1|2p ≤ E|ρk|2p +KhE|ρk|2p +K(1 + E|X0|
βp(κ−1)+2pαβ)h2p(q2−1/2)+1

whence (7.2.13) with integer p ≥ 1 follows by application of Gronwall’s inequality. Then by Jensen’s

inequality (7.2.13) holds for non-integer p as well. �

7.6 Proof of Lemma 7.2.3

Lemma 7.2.3 is an analogue of Lemma 1.1.3 in [301].

Proof. Introduce the process St,x,y(s) = S(s) := Xt,x(s) − Xt,y(s) and note that Z(s) = S(s) −

(x− y). We first prove (7.2.15). Using the Ito formula and the condition (7.2.2) (recall that (7.2.2)

implies (7.2.5)), we obtain for θ ≥ 0 :

E|S(t+ θ)|2p = |x− y|2p + 2p

∫ t+θ

t

E|S|2p−2

[
Sᵀ(a(t,Xt,x(s))− a(t,Xt,y(s)))

+
1

2

m∑
r=1

|σr(t,Xt,x(s))− σr(t,Xt,y(s))|2
]
ds

+2p(p− 1)

∫ t+θ

t

E|S|2p−4

∣∣∣∣∣Sᵀ(s)

m∑
r=1

[σr(t,Xt,x(s))− σr(t,Xt,y(s))]

∣∣∣∣∣
2

ds

≤ |x− y|2p + 2p

∫ t+θ

t

E|S|2p−2

[
Sᵀ(a(t,Xt,x(s))− a(t,Xt,y(s)))

+
2p− 1

2

∫ t+θ

t

m∑
r=1

|σr(t,Xt,x(s))− σr(t,Xt,y(s))|2
]
ds
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≤ |x− y|2p + 2pc1

∫ t+θ

t

E|S(s)|2p ds

from which (7.2.15) follows after applying Gronwall’s inequality.

Now we prove (7.2.16). Using the Ito formula and the condition (7.2.2), we obtain for θ ≥ 0 :

E |Z(t+ θ)|2p = 2p

∫ t+θ

t

E|Z|2p−2

[
Zᵀ(a(t,Xt,x(s))− a(t,Xt,y(s))) (7.6.1)

+
1

2

m∑
r=1

|σr(t,Xt,x(s))− σr(t,Xt,y(s))|2
]
ds

+2p(p− 1)

∫ t+θ

t

E|Z|2p−4

∣∣∣∣∣Zᵀ
m∑
r=1

[σr(t,Xt,x(s))− σr(t,Xt,y(s))]

∣∣∣∣∣
2

ds

≤ 2p

∫ t+θ

t

E|Z|2p−2(s)

[
Sᵀ(a(t,Xt,x(s))− a(t,Xt,y(s)))

+
2p− 1

2

∫ t+θ

t

m∑
r=1

|σr(t,Xt,x(s))− σr(t,Xt,y(s))|2
]
ds

−2p

∫ t+θ

t

E|Z|2p−2(x− y, a(t,Xt,x(s))− a(t,Xt,y(s)))ds

≤ 2pc1

∫ t+θ

t

E|Z|2p−2|S|2 ds

−2p

∫ t+θ

t

E|Z|2p−2(x− y, a(t,Xt,x(s))− a(t,Xt,y(s)))ds.

Using Young’s inequality, we get for the first term in the right-hand side of (7.6.1):

2pc1

∫ t+θ

t

E|Z|2p−2|S|2 ds ≤ 4pc1

∫ t+θ

t

E|Z|2p−2(|Z|2 + |x− y|2) ds (7.6.2)

≤ K
∫ t+θ

t

E|Z|2pds+K|x− y|2
∫ t+θ

t

E|Z|2p−2ds.

Consider the second term in the right-hand side of (7.6.1). Using Hölder’s inequality (twice),

(7.2.3), (7.2.15) and (7.2.5), we obtain

− 2p

∫ t+θ

t

E|Z|2p−2(x− y, a(t,Xt,x(s))− a(t,Xt,y(s)))ds (7.6.3)
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≤ 2p

∫ t+θ

t

E|Z|2p−2|a(t,Xt,x(s))− a(t,Xt,y(s))||x− y|ds

≤ K|x− y|
∫ t+θ

t

[
E|Z|2p

]1−1/p
[E|a(t,Xt,x(s))− a(t,Xt,y(s))|p]1/p ds

≤ K|x− y|
∫ t+θ

t

[
E|Z|2p

]1−1/p

× (E[(1 + |Xt,x(s)|2κ−2 + |Xt,y(s)|2κ−2)p/2|Xt,x(s)−Xt,y(s)|p])1/p ds

≤ K|x− y|
∫ t+θ

t

[
E|Z|2p

]1−1/p (E[(1 + |Xt,x(s)|2κ−2 + |Xt,y(s)|2κ−2)p]
)1/2p

×
(
E[|Xt,x(s)−Xt,y(s)|2p]

)1/2p
ds

≤ K |x− y|2 (1 + |x|2κ−2 + |y|2κ−2)1/2

∫ t+θ

t

[
E|Z|2p

]1−1/p
ds.

Substituting (7.6.2) and (7.6.3) in (7.6.1) and applying Hölder’s inequality to E|Z|2p−2, we get

E |Z(t+ θ)|2p ≤ K
∫ t+θ

t

E|Z|2pds

+K |x− y|2 (1 + |x|2κ−2 + |y|2κ−2)1/2

∫ t+θ

t

[
E|Z|2p

]1−1/p
ds

whence we obtain (7.2.16) for integer p ≥ 1 using Gronwall’s inequality as, e.g. in [310, p. 360],

and then by Jensen’s inequality for non-integer p > 1 as well. �

7.7 Proof of Lemma 7.3.2

As in the global Lipschitz case [298, 301], the proof of Lemma 7.3.2 is routine one-step error analysis.

Proof. We start with proving an auxiliary result. Let a function ϕ(t, x) have continuous first-

order partial derivative in t and that the derivative and the function satisfy inequalities of the form

(7.2.3). For α ≥ 1 and s ≥ t, we have

E |ϕ(s,Xt,x(s))− ϕ(t, x)|α ≤ KE|ϕ(s,Xt,x(s))− ϕ(s, x)|α +K |ϕ(s, x)− ϕ(t, x)|α

≤ KE
[
(1 + |Xt,x(s)|κ−1 + |x|κ−1)|Xt,x(s)− x|

]α
+K

∣∣∣∣∫ s

t

∂

∂s
ϕ(s′, x)ds′

∣∣∣∣α
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≤ KE(1 + |Xt,x(s)|κ−1 + |x|κ−1)α
∣∣∣∣∫ s

t

a(s′, Xt,x(s′))ds′
∣∣∣∣α

+K

q∑
r=1

E(1 + |Xt,x(s)|κ−1 + |x|κ−1)α
∣∣∣∣∫ s

t

σr(s
′, Xt,x(s′))dwr(s

′)

∣∣∣∣α
+K(1 + |x|ακ)(s− t)α.

Then, using the Cauchy-Bunyakovsky-Schwarz inequality, (7.2.5) and (7.2.3), we get

E |ϕ(s,Xt,x(s))− ϕ(t, x)|α ≤ K(1 + |x|α(κ−1))

[
E
(∫ s

t

(1 + |Xt,x(s′)|κ)ds′
)2α

]1/2

(7.7.1)

+K(1 + |x|α(κ−1))

q∑
r=1

[
E
∣∣∣∣∫ s

t

σr(s
′, Xt,x(s′))dwr(s

′)

∣∣∣∣2α
]1/2

+K(1 + |x|ακ)(s− t)α.

By the inequality for powers of Ito integrals from [133, p. 26], we obtain that

E
∣∣∣∣∫ s

t

σr(s
′, Xt,x(s′))dwr(s

′)

∣∣∣∣2α ≤ K(s− t)α−1

∫ s

t

E|σr(s′, Xt,x(s′))|2αds′. (7.7.2)

And, by the same recipe as in [133, p. 26] which exploits Hölder’s inequality, it is not difficult to

get

E
[∫ s

t

|1 +Xt,x(s′)|κds′
]2α

≤ K(s− t)2α−1

∫ s

t

E|1 +Xt,x(s′)|2ακds′. (7.7.3)

It follows from (7.7.1)-(7.7.3), the assumption that σr satisfy (7.2.3) and from (7.2.5) that

E |ϕ(s,Xt,x(s))− ϕ(t, x)|α ≤ K(1 + |x|2ακ−α)[(s− t)α/2 + (s− t)α], (7.7.4)

which, in particular, holds for the functions a(t, x) and σr(t, x) under the conditions of the lemma.

Now consider the one-step approximation of the SDE (7.1.1), which corresponds to the balanced

method (7.3.1):

X = x+
a(t, x)h+

∑m
r=1 σr(t, x)ξr

√
h

1 + h|a(t, x)|+
√
h
∑m
r=1 |σr(t, x)ξr|

(7.7.5)
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and the one-step approximation corresponding to the explicit Euler scheme:

X̃ = x+ a(t, x)h+

m∑
r=1

σr(t, x)ξr
√
h. (7.7.6)

We start with analysis of the one-step error of the Euler scheme:

ρ̃(t, x) := Xt,x(t+ h)− X̃.

Using (7.7.4), we obtain

|Eρ̃(t, x)| =

∣∣∣∣∣E
∫ t+h

t

(a(s,Xt,x(s))− a(t, x))ds

∣∣∣∣∣ ≤ E
∫ t+h

t

|a(s,Xt,x(s))− a(t, x)|ds (7.7.7)

≤ Kh3/2(1 + |x|2κ−1).

(We remark that assuming additional smoothness of a(t, x), we can get an estimate for Eρ̃(t, x) of

order O(h2) but this will not improve the result of this lemma for the balanced scheme (7.3.1).)

Further,

Eρ̃2p(t, x) ≤ KE

∣∣∣∣∣
∫ t+h

t

(a(s,Xt,x(s))− a(t, x))ds

∣∣∣∣∣
2p

(7.7.8)

+K

q∑
r=1

E

∣∣∣∣∣
∫ t+h

t

(σr(s,Xt,x(s))− σr(t, x)) dwr(s)

∣∣∣∣∣
2p

.

Using the same recipe as in (7.7.3) and then applying (7.7.4), we get for the first term in (7.7.8):

E

∣∣∣∣∣
∫ t+h

t

(a(s,Xt,x(s))− a(t, x))ds

∣∣∣∣∣
2p

≤ Kh2p−1

∫ t+h

t

E|a(s,Xt,x(s))− a(t, x)|2pds (7.7.9)

≤ Kh3p(1 + |x|4pκ−2p).
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Using an inequality of the form (7.7.2) and then applying (7.7.4), we obtain

E

∣∣∣∣∣
∫ t+h

t

(σr(s,Xt,x(s))− σr(t, x)) dwr(s)

∣∣∣∣∣
2p

(7.7.10)

≤ Khp−1

∫ t+h

t

E |σr(s,Xt,x(s))− σr(t, x)|2p ds ≤ Kh2p(1 + |x|4pκ−2p).

It follows from (7.7.8)-(7.7.10) that

Eρ̃2p(t, x) ≤ Kh2p(1 + |x|4pκ−2p). (7.7.11)

Now we compare the one-step approximations (7.7.5) of the balanced scheme and (7.7.6) of the

Euler scheme:

X = x+
a(t, x)h+

∑m
r=1 σr(t, x)ξr

√
h

1 + h|a(t, x)|+
√
h
∑m
r=1 |σr(t, x)ξr|

= X̃ − ρ(t, x), (7.7.12)

where

ρ(t, x) =

(
a(t, x)h+

m∑
r=1

σr(t, x)ξr
√
h

)
h|a(t, x)|+

√
h
∑m
r=1 |σr(t, x)ξr|

1 + h|a(t, x)|+
√
h
∑m
r=1 |σr(t, x)ξr|

.

Using the equality (7.3.8) and the assumptions made on the coefficients (see (7.2.3)), we obtain

|Eρ(t, x)| =

∣∣∣∣∣a(t, x)hE
h|a(t, x)|+

√
h
∑m
r=1 |σr(t, x)ξr|

1 + h|a(t, x)|+
√
h
∑m
r=1 |σr(t, x)ξr|

∣∣∣∣∣ ≤ Kh3/2(1 + |x|2κ),

which together with (7.7.12) and (7.7.7) implies that (7.7.5) satisfies (7.2.9) with q1 = 3/2. Further,

Eρ2p(t, x) ≤ h2pE

[
√
h|a(t, x)|+

m∑
r=1

|σr(t, x)ξr|

]4p

≤ Kh2p(1 + |x|4pκ),

which together with (7.7.12) and (7.7.11) implies that (7.7.5) satisfies (7.2.10) with q2 = 1. �
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Chapter 8

Numerical schemes for SDEs with

time delay via Wong-Zakai

approximation

In this chapter, we derive three numerical schemes for stochastic delay differential equations (SD-

DEs) using the Wong-Zakai approximation. By approximating the Brownian motion with its trun-

cated spectral expansion and then using different discretizations in time, we obtain three schemes:

a Predictor-Corrector scheme, a Midpoint scheme and a Milstein-like scheme. We prove that the

Predictor-Corrector scheme converges with order half in the mean-square sense while the Milstein-

like scheme converges with order one. Numerical tests confirm the theoretical prediction and

demonstrate that the Midpoint scheme is of half-order convergence. Numerical results also show

that the Predictor-Corrector and Midpoint schemes can be of first-order convergence under com-

mutative noises when there is no delay in the diffusion coefficients.
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8.1 Introduction

Numerical solution of stochastic delay differential equations (SDDEs) has attracted increasing in-

terest recently, as memory effects in the presence of noise are modeled with SDDEs in engineering

and finance, e.g., [146, 188, 334, 377, 387]. Most of numerical methods for SDDEs have focused on

the convergence and stability of different time-discretization schemes since the early work [379, 380].

Currently, several time-discretization schemes have been well-studied: the Euler-type schemes (the

forward Euler scheme [12, 238] and the drift-implicit Euler scheme [196, 257, 401]), the Milstein

schemes [46, 189, 195, 219], the split-step schemes [148, 394, 417], and also some multi-step schemes

[47, 48, 53, 54].

These schemes are usually based on the Ito-Taylor expansion, see e.g. [219] or anticipative

calculus, see e.g. [195]. Here we employ a different approach, the so-called Wong-Zakai (WZ)

approximation, see e.g. [271, 381, 386]. The difference between WZ approximation and the afore-

mentioned schemes is that in WZ we first approximate the Brownian motion with an absolute

continuous process and then apply proper time-discretization schemes for the resulting equation

while the aforementioned schemes are ready for simulation without any further time discretization.

The WZ approximation thus can be viewed as an intermediate step for deriving numerical schemes

and can provide more flexibility of discretization of Brownian motion before performing any time

discretization. Moreover, with the WZ approximation we can apply Taylor’s expansion rather than

Ito-Taylor expansion and anticipative calculus. In this chapter, we show the flexibility of this ap-

proach and derive three numerical schemes for SDDEs using the Stratonovich formulation with a

spectral truncation of Brownian motion.

In WZ, we employ the classical piecewise linear interpolation of Brownian motion in e.g. [271,

381, 386] and a Fourier approximation of Brownian motion. Specifically, we will derive three distinct

schemes using different time-discretization techniques. After approximating the Brownian motion

by a spectral expansion, we then use the trapezoidal rule and the predictor-corrector strategy to
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obtain a Predictor-Corrector scheme and prove its convergence in the mean-square sense. We also

use the midpoint rule within the WZ approximation to derive a fully implicit scheme (implicit

in both drift and diffusion terms). These two schemes are convergent with strong order half for

SDDEs, as shown numerically in Section 8.3.

If no delay arises, the Predictor-Corrector scheme and the Midpoint scheme coincide with those

for stochastic differential equations without delay. The Predictor-Corrector scheme degenerates

into a family of the Predictor-Corrector scheme in [39], which were proposed in order to overcome

numerical stability introduced by the Euler scheme and other one-step explicit schemes. Without

delay, our Midpoint scheme becomes one of the symplectic-preserving schemes in [299] for stochastic

Hamiltonian systems. Though we will only focus on the convergence of these schemes and check

their numerical performance, we expect that these schemes have larger stability regions than the

Euler scheme for SDDEs as in the cases without delay.

Based on Taylor expansion of the diffusion terms, we also derive a first-order scheme (called

Milstein-like), which is similar to the Milstein scheme [189, 195, 219]. The Milstein-like scheme we

propose here can be readily used in routine simulation unlike the Milstein scheme [189, 195, 219]

which requires additional approximation of the double integrals. Specifically, the double integrals

are approximated with spectral truncation using truncation parameters reciprocal to the time step

size to achieve first-order convergence, which will be shown both in theory and in computation. The

spectral truncations we use are from the piecewise linear interpolation and a Fourier expansion.

Comparison between these two truncations will be presented for a specific numerical example in

Section 8.3, where it is shown that the Fourier approach is faster than the piecewise constant

approach. It is worth noting that the approximation of double integrals in the present context

is similar to those using numerical integration techniques which has been long explored, see e.g.

[218, 301].

The rest of this chapter is organized as follows. In Section 8.2, we show how to derive our

schemes from WZ approximation to the Stratonovich SDDEs. Numerical results will be presented
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in Section 8.3 to illustrate the convergence of the three schemes and to compare their numerical per-

formance. We will show that the Milstein-like scheme is much slower than the Predictor-Corrector

and Midpoint schemes as in each step the evaluation of double integrals are expensive, no mat-

ter what approximation for the double integrals is used. Finally, we prove in Section 8.4 that

the Predictor-Corrector scheme is of half-order convergence in the mean-square sense while the

Milstein-like scheme is of first-order convergence.

8.2 Numerical schemes for SDDEs

Consider the following SDDE with constant delay in Stratonovich form:

dX(t) = f(X(t), X(t− τ))dt+

r∑
l=1

gl(X(t), X(t− τ)) ◦ dWl(t), t ∈ (0, T ],

X(t) = φ(t), t ∈ [−τ, 0], (8.2.1)

where τ > 0 is a constant, (W (t),Ft) = ({Wl(t), 1 ≤ l ≤ r} ,Ft) is a system of one-dimensional

independent standard Wiener process, the functions f : Rd × Rd → Rd, gl : Rd × Rd → Rd,

φ(t) : [−τ, 0]→ Rd is continuous with E‖φ‖2L∞ <∞. We also assume that φ(t) is F0-measurable.

For the mean-square stability of Equation (8.2.1), we assume that f , gl , ∂xglgl and ∂xτ glgl,

(∂x and ∂xτ denote the derivatives with respect to the first and second variables, respectively),

l = 1, 2, · · · , r in Equation (8.2.1) satisfy the following Lipschitz conditions:

|v(x1, y1)− v(x2, y2)|2 ≤ Lv(|x1 − x2|2 + |y1 − y2|2), (8.2.2)

and the linear growth conditions

|v(x1, y1)|2 ≤ K(1 + |x1|2 + |y1|2) (8.2.3)
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for every x1, y1, x2, y2 ∈ Rd, where Lv, K are positive constants, which depend only on v. Under

these conditions, Equation (8.2.1) has a unique sample-continuous and Ft-adapted strong solution

X(t) : [−τ,+∞)→ Rd, see e.g. [281, 312].

The Wong-Zakai (WZ) approximation, see e.g. [399, 400], is a semi-discretization method where

Brownian motion is approximated by finite dimensional absolute continuous stochastic processes

before any discretization in time or in physical space. There are different types of WZ approx-

imation, see e.g. [202, 328, 364, 423]. Here we use an orthogonal expansion approach for WZ

approximation of Brownian motion:

W (n)(t) =

n∑
j=1

∫ t

0

mj(s) ds

∫ T

0

mj(t) dW, t ∈ [0, T ], (8.2.4)

where {mj(t)}∞j=1 is a complete orthonormal system (CONS) in L2([0, T ]) and ξj =:
∫ T

0
mj(t) dW,

are mutually independent standard Gaussian random variables. In this chapter, we will use a

piecewise version of spectral expansion (8.2.4) by taking a partition 0 = t0 < t1 < · · · < tN∆−1 <

tN∆
= T and choosing a truncated CONS, {m(n)

j (t)}Nhj=1 in L2([tn, tn+1]) for n = 0, · · · , N∆ − 1:

W (Nh,n)(t) =

N∆−1∑
n=0

Nh∑
j=1

∫ t

0

χ[tn,tn+1)m
(n)
j (s) dsξ

(n)
j , ξ

(n)
j =

∫ tn+1

tn

m
(n)
j (s) dW (8.2.5)

where χ is the indicator function.

Here different choices of CONS lead to different representations. The orthonormal piecewise

constant basis over time interval [tn, tn+1), with ∆′ = (tn+1 − tn)/Nh,

m
(n)
j (t) =

√
Nh√

tn+1 − tn
χ[tn+(j−1)∆′,tn+j∆′), j = 1, 2, · · · , Nh, (8.2.6)

gives the classical piecewise linear interpolation (see e.g. [202, 385, 399, 400]), if Nh = 1,

W (1,n)(t) = W (tn) + (t− tn)
W (tn+1)−W (tn)

tn+1 − tn
, t ∈ [tn, tn+1]. (8.2.7)
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The orthonormal Fourier basis gives Wiener’s representation (see e.g. [218, 301, 333]):

m
(n)
1 (t) =

1√
tn+1 − tn

, m
(n)
2k (t) =

√
2

tn+1 − tn
sin(

2kπ

tn+1 − tn
(t− tn)),

m
(n)
2k+1(t) =

√
2

tn+1 − tn
cos(

2kπ

tn+1 − tn
(t− tn)), t ∈ [tn, tn+1]. (8.2.8)

Note that taking Nh = 1 in (8.2.8) leads to the piecewise linear interpolation (8.2.7). Besides, we

can also use the wavelet basis, which gives the Levy-Ciesielsky representation [214].

In this chapter, we consider the spectral approximation (8.2.5) with piecewise constant basis

(8.2.6) and Fourier basis (8.2.8). With these approximations, we have the following WZ approxi-

mation for Equation (8.2.1)

dX̃(t) = f(X̃(t), X̃(t− τ))dt+

r∑
l=1

gl(X̃(t), X̃(t− τ))dW̃l(t), t ∈ [0, T ],

X̃(t) = φ(t), t ∈ (−τ, 0], (8.2.9)

where W̃l(t) can be any approximation of Wl(t) described above. For the piecewise linear inter-

polation (8.2.7), we have the following consistency of the WZ approximation (8.2.9) to Equation

(8.2.1).

Theorem 8.2.1 (Consistency, [381]). Suppose f and gl in Equation (8.2.1) are Lipschitz continuous

and satisfy conditions (8.2.2) and have second-order continuous and bounded partial derivatives.

Suppose also the initial segment φ(t), t ∈ [−τ, 0] to be on the probability space (Ω,F , P ) and F0-

measurable and right continuous, and E‖φ‖2L∞ < ∞. For X̃(t) in (8.2.9) with piecewise linear

approximation of Brownian motion (8.2.7), we have for any t ∈ (0, T ],

lim
n→∞

sup
0≤s≤t

E[|X(s)− X̃(s)|2] = 0. (8.2.10)

The consistency of the WZ approximation with spectral approximation (8.2.5) can be established
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by the argument of integration by parts as in [171, 202], under similar conditions on the drift and

diffusion coefficients.

8.2.1 Derivation of numerical schemes

We will further discretize Equation (8.2.9) in time and derive several numerical schemes for (8.2.1).

To this end, we take an uniform time step size h, which satisfies τ = mh and m is a positive

integer; NT = T/h (T is the final time); tn = nh, n = 0, 1, · · · , NT . For simplicity, we take the

same partition for the WZ approximation exactly as the time discretization, i.e.,

tn = tn, n = 0, 1, · · · , NT and ∆ =: tn − tn−1 = tn − tn−1 = h.

For Equation (8.2.9), we have the following integral form over [tn, tn+1]:

∫ tn+1

tn

dX̃(t) =

∫ tn+1

tn

f(X̃(t), X̃(t− τ))dt+

r∑
l=1

∫ tn+1

tn

gl(X̃(t), X̃(t− τ))dW̃l(t) (8.2.11)

=

∫ tn+1

tn

f(X̃(t), X̃(t− τ))dt+

r∑
l=1

∫ tn+1

tn

gl(X̃(t), X̃(t− τ))

Nh∑
j=1

m
(n)
j (t)ξ

(n)
l,j dt.

Here we emphasize that the time-discretization for the diffusion term have to be at least half-

order. Otherwise, the resulting scheme is not consistent, e.g., Euler-type schemes, in general,

converge to the corresponding SDDEs in Ito sense instead of those in Stratonovich sense. In fact,

if gl(X̃(t), X̃(t − τ)) (l = 1, · · · , r) is approximated by gl(X̃(tn), X̃(tn − τ)) in Equation (8.2.11),

then we have, for both Fourier basis (8.2.8) and piecewise constant basis (8.2.6),

∫ tn+1

tn

dX̃(t) =

∫ tn+1

tn

f(X̃(t), X̃(t− τ))dt+

r∑
l=1

gl(X̃(tn), X̃(tn − τ)∆Wl,n,

where ∆Wl,n = Wl(tn+1) −Wl(tn). This will lead to Euler-type scheme which converges to the
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following SDDE in the Ito sense, see e.g. [12, 257], instead of (8.2.1):

dX(t) = f(X(t), X(t− τ))dt+

r∑
l=1

gl(X(t), X(t− τ))dWl(t).

In the following, three numerical schemes for solving Equation (8.2.1) are derived using Taylor

expansion and different discretizations in time in (8.2.11). The first scheme is a Predictor-Corrector

scheme. Taking Nh = 1, we have that both base, (8.2.6) and (8.2.8), have only one term m
(n)
1 = 1/

√
h over each subinterval. Using the trapezoidal rule to approximate the integrals on the right side

of (8.2.11), we get

Xn+1 = Xn +
h

2

[
f(Xn, Xn−m) + f(Xn+1, Xn−m+1)

]
+

1

2

r∑
l=1

[
gl(Xn, Xn−m) + gl(Xn+1, Xn−m+1)

]
∆Wl,n, (8.2.12)

where Xn is an approximation of X̃(tn) (thus an approximation of X(tn)). The initial conditions

are Xn = φ(nh), when n = −m,−m+ 1, · · · , 0. Note that the scheme (8.2.12) is fully implicit and

is not solvable as ∆Wl,n can take any values in the real line. To resolve this issue, we further apply

the left rectangle rule on the right side of (8.2.11) to obtain a predictor for Xn+1 in (8.2.12) so

that the resulting scheme is explicit. Actually, we arrive at a Predictor-Corrector scheme for SDDE

(8.2.1):

Xn+1 = Xn + hf(Xn, Xn−m) +

r∑
l=1

gl(Xn, Xn−m)∆Wl,n,

Xn+1 = Xn +
h

2

[
f(Xn, Xn−m) + f(Xn+1, Xn−m+1)

]
(8.2.13)

+
1

2

r∑
l=1

[
gl(Xn, Xn−m) + gl(Xn+1, Xn−m+1)

]
∆Wl,n, n = 0, 1, · · · , NT − 1.

Remark 8.2.2. Taking Nh = 1 is sufficient for half-order schemes, such as the scheme Predictor-

Corrector scheme (8.2.13) and the following Midpoint scheme. Both schemes employ
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∫ tn+1

tn

∑Nh
j=1m

(n)
j (t)ξ

(n)
l,j dt, which is equal to ∆Wl,n for any Nh ≥ 1, according to (8.2.5) and our

choices of orthonormal base (8.2.6) and (8.2.8).

Theorem 8.2.3. Assume that f , gl, ∂xglgq and ∂xτ glgq (l, q = 1, 2, · · · , r) satisfy the Lipschitz

condition (8.2.2) and also gl have bounded second-order partial derivatives with respect to all vari-

ables. If E[‖φ‖pL∞ ] <∞, p ≥ 4, then we have for the Predictor-Corrector scheme (8.2.13),

max
1≤n≤NT

E|X(tn)−Xn|2 = O(h). (8.2.14)

The proof will be presented in Section 8.4.

Remark 8.2.4. When τ = 0 both in drift and diffusion coefficients, the scheme (8.2.13) degenerates

into one family of the Predictor-Corrector schemes in [39], which can have larger stability region

than the explicit Euler scheme and some other one-step schemes, especially for stochastic differential

equations with multiplicative noises. Moreover, we will numerically show that if the time delay only

exists in the drift term in SDDE with commutative noise (for one-dimensional case, i.e., d = 1,

the commutative condition is gl∂xgq − gq∂xgl = 0, 1 ≤ l, q ≤ r), the proposed Predictor-Corrector

scheme can be convergent with order one in the mean-square sense.

The second scheme is a Midpoint scheme. Taking Nh = 1, applying the Midpoint rule on the

right side of (8.2.11) and by X(t + h
2 ) ≈ 1

2 (X(t + h) + X(t)), we obtain the following Midpoint

scheme

Xn+1 = Xn + hf

(
Xn +Xn+1

2
,
Xn−m +Xn−m+1

2

)
(8.2.15)

+

r∑
l=1

gl

(
Xn +Xn+1

2
,
Xn−m +Xn−m+1

2

)
∆W l,n, n = 0, 1, · · · , NT − 1,

where we have truncated ∆Wn with ∆Wn so that the solution to (8.2.15) has finite second-order

moment and is solvable (see e.g. [301, Section 1.3]). Here ∆Wn = ζ(n)
√
h instead of ξ(n)

√
h, where
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ζ(n) is a truncation of the standard Gaussian random variable ξ(n) (see e.g. [301, pp. 39]):

ζ(n) = ξ(n)χ|ξ(n)|≤Ah + sgn(ξ(n))Ahχ|ξ(n)|>Ah , Ah =
√

4| log (h)|.

This fully implicit Midpoint scheme is symplectic if τ = 0 [299], which allows long-time integra-

tion for stochastic Hamiltonian systems. As in the case of no delay, the Midpoint scheme complies

with the Stratonovich calculus without differentiating the diffusion coefficient. Again, it has first-

order convergence for Stratonovich stochastic differential equations with commutative noise when

no delay arises in the diffusion coefficients. However, it has half-order convergence once the delay

appears in the diffusion coefficients, which will be shown numerically in Section 8.3.

The last scheme is a Milstein-like scheme. When s ∈ [tn, tn+1], we approximate f(X̃(s), X̃(s−τ))

by f(X̃(tn), X̃(tn − τ)) and by the Taylor’s expansion we have

gl(X̃(s), X̃(s− τ)) ≈ gl(X̃(tn), X̃(tn − τ)) + ∂xgl(X̃(tn), X̃(tn − τ))[X̃(s)− X̃(tn)]

+∂xτ gl(X̃(tn), X̃(tn − τ))[X̃(s− τ)− X̃(tn − τ)]. (8.2.16)

Substituting the above approximations into (8.2.11) and omitting the terms whose order is higher

than one in (8.2.11), we then obtain the following scheme:

Xn+1 = Xn + hf(Xn, Xn−m) +

r∑
l=1

gl(Xn, Xn−m)Ĩ0

+

r∑
l=1

r∑
q=1

∂xgl(Xn, Xn−m)gq(Xn, Xn−m)Ĩq,l,tn,tn+1,0 (8.2.17)

+

r∑
l=1

r∑
q=1

∂xτ gl(Xn, Xn−m)gq(Xn−m, Xn−2m)χtn≥τ Ĩq,l,tn,tn+1,τ , n = 0, 1, · · · , NT − 1,

where

Ĩ0 =

∫ tn+1

tn

dW̃l(t), Ĩq,l,tn,tn+1,0 =

∫ tn+1

tn

∫ t

tn

dW̃q(s)dW̃l(t), tn ≥ 0;
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Ĩq,l,tn,tn+1,τ =

∫ tn+1

tn

∫ t−τ

tn−τ
dW̃q(s)dW̃l(t), tn ≥ τ.

Using the Fourier basis (8.2.8), the three stochastic integrals in (8.2.17) are computed by

ĨF0 =

∫ tn+1

tn

m
(1)
i (t)ξ

(n)
l,1 dt = ∆Wl,n, (8.2.18)

ĨFq,l,tn,tn+1,0 =
h

2
ξ

(n)
q,1 ξ

(n)
l,1 −

√
2h

2π
ξ

(n)
q,1

s∑
p=1

1

p
ξ

(n)
l,2p +

h

2π

s1∑
p=1

1

p
[ξ

(n)
q,2p+1ξ

(n)
l,2p − ξ

(n)
q,2pξ

(n)
l,2p+1],

ĨFq,l,tn,tn+1,τ =
h

2
ξ

(n−m)
q,1 ξ

(n)
l,1 −

√
2h

2π
ξ

(n−m)
q,1

s∑
p=1

1

p
ξ

(n)
l,2p +

h

2π

s1∑
p=1

1

p
[ξ

(n−m)
q,2p+1ξ

(n)
l,2p − ξ

(n−m)
q,2p ξ

(n)
l,2p+1],

where s = [Nh2 ] and s1 = [Nh−1
2 ]. When piecewise constant basis (8.2.6) is used, these integrals are

ĨL0 =

Nh−1∑
j=0

∆Wl,n,j = ∆Wl,n,

ĨLq,l,tn,tn+1,0 =

Nh−1∑
j=0

∆Wl,n,j [
∆Wq,n,j

2
+

j−1∑
i=0

∆Wq,n,i], (8.2.19)

ĨLq,l,tn,tn+1,τ =

Nh−1∑
j=0

∆Wl,n,j [
∆Wq,n−m,j

2
+

j−1∑
i=0

∆Wq,n−m,i],

where ∆Wk,n,j = Wk(tn+ (j+1)h
Nh

)−Wk(tn+ jh
Nh

), k = 1, · · · , r, j = 0, · · · , Nh−1 and ∆Wk,n,−1 = 0.

In Example 8.3.3, Section 8.3, we will show that the piecewise linear interpolation is less efficient

than the Fourier approximation for achieving the same order of accuracy.

The scheme (8.2.17) can be seen as further discretization of the Milstein scheme for Stratonovich

SDDEs proposed in [195]:

XM
n+1 = XM

n + hf(XM
n , XM

n−m) +

r∑
l=1

gl(X
M
n , XM

n−m)∆Wl,n

+

r∑
l=1

r∑
q=1

∂xgl(X
M
n , XM

n−m)gq(X
M
n , XM

n−m)Iq,l,tn,tn+1,0 (8.2.20)

+

r∑
l=1

r∑
q=1

∂xτ gl(X
M
n , XM

n−m)gq(X
M
n−m, X

M
n−2m)χtn≥τIq,l,tn,tn+1,τ , n = 0, 1, · · · , NT − 1.
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as the double integrals approximated by either the Fourier expansion or the piecewise linear inter-

polation: Ĩ0, Ĩq,l,tn,tn+1,0, and Ĩq,l,tn,tn+1,τ are, respectively, approximation of the following integrals

:

I0 =

∫ tn+1

tn

◦dWl(t), Iq,l,tn,tn+1,0 =

∫ tn+1

tn

∫ t

tn

◦dWq(s) ◦ dWl(t), tn ≥ 0

Iq,l,tn,tn+1,τ =

∫ tn+1

tn

∫ t−τ

tn−τ
◦dWq(s) ◦ dWl(t), tn ≥ τ.

Actually, we have the following relations.

Lemma 8.2.5. For the Fourier basis (8.2.8), it holds that

ĨF0 = I0, (8.2.21)

E[(ĨFq,l,tn,tn+1,0 − Iq,l,tn,tn+1,0)2] = ς(Nh)
2∆2

(Nhπ)2
+

∞∑
i=M

∆2

(iπ)2
≤ c ∆2

π2M
, (8.2.22)

E[(ĨFq,l,tn,tn+1,τ − Iq,l,tn,tn+1,τ )2] = ς(Nh)
2∆2

(Nhπ)2
+

∞∑
i=M

∆2

(iπ)2
≤ c ∆2

π2M
, (8.2.23)

where ς(Nh) = 0 if Nh is odd and 1 otherwise, and M is the integer part of (Nh + 1)/2.

The proof of this lemma can be found in Section 4. With Lemma 8.2.5, we can show that the

Milstein-like scheme (8.2.17) can be of first-order convergence in the mean-square sense, see Section

8.4.

Theorem 8.2.6. Assume that f , gl, ∂xglgq and ∂xτ glgq (l, q = 1, 2, · · · , r) satisfy the Lipschitz

condition (8.2.2) and also gl have bounded second-order partial derivatives with respect to all vari-

ables. If E[‖φ‖pL∞ ] <∞, p ≥ 4, then we have for the Milstein-like scheme (8.2.17),

max
1≤n≤NT

E|X(tn)−Xn|2 = O(h2), (8.2.24)

when the double integrals Ĩq,l,tn,tn+1,0, Ĩq,l,tn,tn+1,τ are computed by (8.2.18) and Nh is at the order
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of 1/h.

When (8.2.19) is used in the Milstein-like scheme (8.2.17), the first-order strong convergence

can be proved similarly when Nh is at the order of 1/h.

8.3 Numerical results

In this section, we test the convergence rate of the proposed schemes and compare their numeri-

cal performance. In the first two examples, we test the Predictor-Corrector scheme (8.2.13) and

Midpoint scheme (8.2.15) for multiple noises and show both methods are of half-order mean-square

convergence. Further, we show that both schemes converge with order one in the mean-square

sense for a SDDE with single white noise and no time delay in diffusion coefficients. In the last

example, we investigate the Milstein-like scheme (8.2.17) and show that it is first-order convergent

for SDDEs with multiple white noises.

Throughout this section, the strong error of numerical solutions is defined as

ρh,T =
( 1

np

np∑
i=1

|Xh(T, ωi)−Xh
2
(T, ωi)|2

)1/2
,

where ωi denotes the i-th single sample path and np is the number of paths.

The numerical tests were performed using Matlab R2012a on a Dell Optiplex 780 computer with

CPU (E8500 3.16 GHz). we used the Mersenne twister random generator with seed 1 and took a

large number of paths so that the statistical error can be ignored. Newton’s method with tolerance

h2/100 was used to solve the nonlinear algebraic equations at each step of the implicit schemes.

We first test the convergence rate of Predictor-Corrector scheme (8.2.13) and Midpoint scheme

(8.2.15) for a SDDE with several noises.
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Example 8.3.1. Consider Equation (8.2.1) with the following coefficients

f = −15X(t) + 2 sin(X(t− τ));

g1 = sin(X(t)) + 0.5X(t− τ); g2 = 0.9X(t); g3 = 0.2X(t) + 0.2X(t− τ);

g4 = 2 sin(X(t)); g5 = 0.8X(t) + cos(X(t− τ)); g6 = X(t) + 0.5 sin(X(t− τ));

g7 = 2 cos(X(t− τ)); g8 = −X(t) + cos(X(t− τ)), g9 = 0.5X(t)−X(t− τ);

g10 = 1.5 cos(X(t− τ))

and the initial function is φ(t) = t+ 0.2.

In this example, we test the convergence order of the Predictor-Corrector and Midpoint schemes

at T = 20 and with different time delays τ = 2−4, 2−2, 1.

In Table 8.1, we observe that both schemes are convergent with order half in the mean-square

sense. Different time delays do not influence the convergence rate of these schemes.

The amount of operations of the Predictor-Corrector scheme for Equation 8.2.1 is (5r+6)dT/h.

For the Midpoint scheme, the amount of operations is 6CI(r + 1)dT/h, where CI is the maximum

number of Newton’s iterations in each time step. In Table 8.1, we observe that for both schemes,

the computational cost doubles when step sizes reduce by half. The CPU time of the Midpoint

scheme is about four times of what the Predictor-Corrector scheme costs, which is consistent with

the prediction as the observed CI is around 4.

We now test the convergence rate for the Predictor-Corrector scheme (8.2.13) and the Midpoint

scheme (8.2.15) for SDDEs with different types of noises: non-commutative noise, single noise.

We will show that the time delay in a diffusion coefficient keeps both methods only convergent at

half-order, while for the SDDE with single noise, the two schemes can be of first-order accuracy in

the mean-square sense if the time delay does not appear explicitly in the diffusion coefficients.

1We write ‘*’ whenever no results from a smaller time step size are available and the convergence order is absent.
This rule applies throughout this section.
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Table 8.1: Convergence rate of Predictor-Corrector scheme (left) and Midpoint scheme (right) for
Example 8.3.1 at T = 20 with ten white noises using np = 4000 sample paths.

τ h ρh,T order time (s.) ρh,T order time (s.)

2−8 4.050e-02 0.51 220 6.698e-02 0.61 807
2−9 2.851e-02 0.56 420 4.378e-02 0.44 1591

1
16 2−10 1.936e-02 0.48 818 3.237e-02 0.53 3157

2−11 1.390e-02 * 1620 2.239e-02 * 6289
2−12 * 1 * 3221 * * 12573
2−8 3.955e-02 0.54 219 5.942e-02 0.51 805
2−9 2.728e-02 0.55 417 4.189e-02 0.48 1586

1
4 2−10 1.861e-02 0.46 816 3.000e-02 0.47 3148

2−11 1.359e-02 * 1615 2.164e-02 * 6284
2−12 * * 3215 * * 12557
2−8 3.914e-02 0.53 221 5.725e-02 0.48 805
2−9 2.711e-02 0.54 422 4.092e-02 0.51 1588

1 2−10 1.873e-02 0.46 820 2.887e-02 0.47 3148
2−11 1.364e-02 * 1627 2.086e-02 * 6289
2−12 * * 3236 * * 12569

Example 8.3.2. Consider Equation (8.2.1) in one-dimension and assume the initial function

φ(t) = t+ 0.2, with different diffusion terms:

� non-commutative white noises without delay in the diffusion coefficients:

dX = [−X(t) + sin(X(t− τ))] dt+ sin(X(t)) ◦ dW1(t) + 0.5X(t) ◦ dW2(t), (8.3.1)

where the noises are non-commutative as ∂x(sin(x))0.5x− ∂x(0.5x)sin(x) 6= 0;

� commutative (single) white noises without delay in the diffusion coefficients:

dX = [−X(t) + sin(X(t− τ))] dt+ sin(X(t)) ◦ dW (t); (8.3.2)

� commutative (single) white noises with delay in the diffusion coefficients:

dX = [−X(t) + sin(X(t− τ))] dt+ sin(X(t− τ)) ◦ dW (t). (8.3.3)

From Figure 8.1(a) (non-commutative noises, Equation (8.3.1)) and Figure 8.1(c) (single delayed

224



diffusion, Equation (8.3.3)), we observe the half-order strong convergence. In contrast, for Equation

(8.3.2) (single noise, non-delayed diffusion) in Figure 8.1 (b), the convergence order of these two

schemes becomes one in the mean-square sense.

From this example, we conclude that for the Predictor-Corrector and Midpoint schemes, when

the time delay only appears in the drift term, the convergence order is one for the equation with

commutative noises and half for the one with non-commutative noises. However, when the diffusion

coefficients contain time delays, these two schemes are only half-order even for equations with a

single white noise.

In the last example, we test the Milstein-like scheme (8.2.17) using different bases, i.e., piecewise

constant basis (8.2.6) and Fourier approximation (8.2.8), and compare its numerical performance

with Predictor-Corrector and Midpoint schemes. For the Milstein-like scheme, we show that for

multiple noises, the computational cost for achieving the same accuracy is much higher than the

other two schemes; while for single noise, the computational cost for the same accuracy is lower.

Example 8.3.3. We consider the Milstein-like scheme (8.2.17) for

dX(t) = [−9X(t) + sin(X(t− τ))]dt+ [sin(X(t)) +X(t− τ)] ◦ dW1(t)

+[X(t) + cos(0.5X(t− τ))] ◦ dW2(t), t ∈ (0, T ]

X(t) = t+ τ + 0.1, t ∈ [−τ, 0] (8.3.4)

and

dX(t) = [−2X(t) + 2X(t− τ)]dt+ [sin(X(t)) +X(t− τ)] ◦ dW (t), , t ∈ (0, T ]

X(t) = t+ τ, t ∈ [−τ, 0] (8.3.5)

To reduce the computational cost, the double integrals are computed by the Fourier expansion
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Figure 8.1: Mean-square convergence test of the Predictor-Corrector (left column) and Midpoint
schemes (right column) on Example (8.3.2) at T=5 with different τ using np = 10000 sample paths.
(a): multi white noises with non-delayed diffusion term; (b): single white noise with non-delayed
diffusion term; (c): single white noise with delayed diffusion term.

approximation (8.2.18) and the following relation

Ĩq,l,tn,tn+1,0 = ∆Wl,n∆Wq,n − Ĩl,q,tn,tn+1,0, Ĩl,l,tn,tn+1,0 =
(∆Wl,n)2

2
. (8.3.6)
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We also use the following relations

Ĩq,l,tn,tn+ph,0 =

p−1∑
j=0

[
Ĩq,l,tn+jh,tn+(j+1)h,0 + ∆Wl,n+jχj≥1

j−1∑
i=0

∆Wq,n+i

]
,

Ĩq,l,tn,tn+ph,τ =

p−1∑
j=0

[
Ĩq,l,tn+jh,tn+(j+1)h,τ + ∆Wl,n+jχj≥1

j−1∑
i=0

∆Wq,n−m+i

]
.

In Table 8.2, we show that for Equation (8.3.4), the Milstein-like scheme (8.2.17) converges with

order one in the mean-square sense. Compared to the Predictor-Corrector scheme or the Midpoint

scheme, when the time step sizes are the same, the computational cost for the Milstein-like scheme

(8.2.17) is several times higher. In fact, in the Milstein-like scheme, the extra computational cost

comes from evaluating the double integrals ĨFq,l,tn,tn+1,0
and ĨFq,l,tn,tn+1,τ

at each time step, which

requires 7/(2h)(3r2 − r)/2 operations when we take the relation (8.3.6) into account.

We also test the Milstein-like scheme (8.2.17) using the piecewise constant basis (8.2.6). The

computational cost is even higher than that of using the Fourier basis for the same time step size.

Actually, the amount of operations for evaluating double integrals using (8.2.19) is (1/(2h2) + 5/

(2h) − 1)(3r2 − r)/2, which is O(1/h2), much more than that of using the Fourier basis, O(1/h).

Our numerical tests (not presented here) confirmed the fast increase of amount of operations.

Table 8.2: Convergence rate of the Milstein-like scheme (left) for Equation (8.3.4) at T = 1 and
comparison with the convergence rate of the Predictor-Corrector scheme (middle) and the Midpoint
scheme (right) using np = 4000 sample paths. The upper rows are with τ = 1/16 and the lower are
with τ = 1/4.

h ρh,T order time (s.) ρh,T order time (s.) ρh,T order time (s.)
2−4 9.832e-02 1.27 0.72 7.164e-02 0.94 0.05 5.000e-02 0.60 0.16
2−5 4.090e-02 1.09 1.0 3.734e-02 0.69 0.10 3.304e-02 0.55 0.29
2−6 1.921e-02 0.99 1.7 2.308e-02 0.51 0.12 2.263e-02 0.51 0.41
2−7 9.703e-03 * 3.3 1.616e-02 * 0.25 1.590e-02 * 0.79
2−8 * * 6.4 * * 0.40 * * 1.54
2−4 9.307e-02 1.28 0.56 6.956e-02 0.96 0.04 5.050e-02 0.68 0.11
2−5 3.824e-02 1.08 0.93 3.582e-02 0.70 0.10 3.155e-02 0.56 0.22
2−6 1.804e-02 0.99 1.6 2.205e-02 0.62 0.17 2.133e-02 0.58 0.39
2−7 9.069e-03 * 2.8 1.434e-02 * 0.26 1.425e-02 * 0.78
2−8 * * 5.5 * * 0.45 * * 1.59

However, the amount of operations of the Milstein-like scheme can be significantly reduced

when there is just a single diffusion term. In Table 8.3, we observe that the Milstein-like scheme
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for Equation (8.3.5) is still of first-order convergence but the Predictor-Corrector scheme and the

Midpoint scheme is only of half-order convergence. For the same accuracy, the computational cost

for the Milstein-like scheme using the Fourier basis is less than that for the other two schemes. In

fact, for single noise, we only need to compute one double integral Ĩ1,1,tn,tn+1,τ . Moreover, when

the coefficients of the diffusion term are small, a small number of Fourier modes is required for

large time step sizes, i.e., Nh can be O(1) instead of O(1/h). The computational cost can thus be

reduced somewhat, see e.g. [301, Chapter 3] for such a discussion for equations with small noises

without delay.

Table 8.3: Convergence rate of the Milstein-like scheme (left) for Equation (8.3.5) (single white
noise) at T = 1 and comparison with the convergence rate of the Predictor-Corrector scheme
(middle) and Midpoint scheme (right) using np = 4000 sample paths. The delay τ is taken as 1/4.

h ρh,T order time (s.) h ρh,T order time (s.) ρh,T order time (s.)
2−4 3.164e-02 0.91 0.19 2−7 1.252e-02 0.44 0.18 1.263e-02 0.45 0.59
2−5 1.688e-02 0.99 0.28 2−8 9.219e-03 0.51 0.37 9.246e-03 0.51 1.09
2−6 8.499e-03 0.90 0.46 2−9 6.462e-03 0.49 0.56 6.471e-03 0.48 2.05
2−7 4.570e-03 * 0.79 2−10 4.617e-03 * 1.03 4.627e-03 * 3.97
2−8 * * 1.40 2−11 * * 1.91 * * 7.58

In summary, the proposed Predictor-Corrector scheme and Midpoint scheme are convergent with

half-order in the mean-square sense, see Example 8.3.1. We also show that these two schemes can

be of first-order in the mean-square sense if the underlying SDDEs with single noise (commutative

noise) and the time delay is only in the drift coefficients, see Example 8.3.2. In Example 8.3.3 the

numerical tests show that our proposed Milstein-like scheme is of first-order in the mean-square

sense for SDDEs with non-commutative noise wherever the time delay appears, i.e. in the drift

and/or diffusion coefficients. Compared to the other two schemes, the Milstein-like scheme is more

accurate but is more expensive as it requires evaluations of double integrals, with cost inversely

proportional to the time step size and proportional to the square of number of noises. However, for

SDDEs with single noise, the Milstein-like scheme (with the Fourier basis) can be superior to the

Predictor-Corrector scheme and the Midpoint scheme both in terms of accuracy and computational

cost.
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8.4 Proofs

In this section, we prove Theorems 8.2.3 and 8.2.6 and Lemma 8.2.5. While proofs of Theorems

8.2.3 and 8.2.6 are presented only for the one-dimensional problem (8.2.1) (d = 1), they can be

extended to multi-dimensional case d > 1 without difficulty.

Proof of Theorem 8.2.3. We recall that for the Milstein scheme (8.2.20), see [195],

max
1≤n≤NT

E|X(tn)−XM
n |2 = O(h2). Then by the triangle inequality, it suffices to prove

max
1≤n≤NT

E|XM
n −Xn|2 = O(h). (8.4.1)

We denote that fn = f(Xn, Xn−m) and gl,n = gl(Xn, Xn−m) and also

ρfn = f(Xn+1, Xn−m+1)− fn, (8.4.2)

ρgl,n = gl(Xn+1, Xn−m+1)− [gl,n + ∂xgl,n

r∑
q=1

gq,n∆Wq,n + ∂xτ gl,n

r∑
q=1

gq,n−m∆Wq,n−m].

With (8.4.2), we can rewrite (8.2.13) as follows

Xn+1 = Xn + hfn +

r∑
l=1

gl,n∆Wl,n +
1

2

r∑
l=1

r∑
q=1

∂xgl,n∆Wq,n∆Wl,n

+
1

2

r∑
l=1

r∑
q=1

∂xτ gl,n gq,n−m∆Wq,n−m∆Wl,n + ρn, (8.4.3)

where ρn = hρfn + 1
2

∑r
l=1 ρgl,n∆Wl,n.

It can be readily checked that if f , gl satisfy the Lipschitz condition (8.2.2), and gl has bounded

second-order derivatives (l = 1, · · · , r), then by the Predictor-Corrector scheme (8.2.13) and Tay-

lor’s expansion of gl(Xn+1, Xn−m+1), we have h2E[ρ2
fn

] ≤ Ch3, E[(ρgl,n∆Wl,n)2] ≤ Ch3, and thus

by the triangle inequality,

E[ρ2
n] ≤ Ch3, (8.4.4)
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where the constant C depends on r and Lipschitz constants, independent of h.

Subtracting (8.4.3) from (8.2.20) and taking expectation after squaring over both sides, we have

E[(XM
n+1 −Xn+1)2] = E[(XM

n −Xn)2] + 2E[(XM
n −Xn)(

4∑
i=0

Ri − ρn)]

−2

4∑
i=0

E[ρnRi] +

4∑
i,j=0

E[RiRj ] + E[ρ2
n], (8.4.5)

where we denote fMn = f(XM
n , XM

n−m) and gMl,n = gl(X
M
n , XM

n−m) and

R0 = h(fMn − fn) +

r∑
l=1

(gMl,n − gl,n)∆Wl,n,

R1 =

r∑
l=1

r∑
q=1

[
∂xg

M
l,ng

M
q,n − ∂xgl,ngq,n

] ∆Wq,n∆Wl,n

2
,

R2 =

r∑
l=1

r∑
q=1

[
∂xτ g

M
l,ng

M
q,n−m − ∂xτ gl,ngq,n−m

] ∆Wq,n−m∆Wl,n

2
,

R3 =

r∑
l=1

r∑
q=1

∂xg
M
l,ng

M
q,n(Iq,l,tn,tn+1,0 −

∆Wq,n∆Wl,n

2
),

R4 =

r∑
l=1

r∑
q=1

∂xτ g
M
l,ng

M
q,n−m(Iq,l,tn,tn+1,τ −

∆Wq,n−m∆Wl,n

2
).

By the Lipschitz condition for f and gl, and adaptedness of Xn, X
M
n , we have

E[R2
0] ≤ C(h2 + h)(E[(XM

n −Xn)2] + E[(XM
n−m −Xn−m)2]). (8.4.6)

To bound E[R2
i ] (i = 1, 2, 3, 4), we require that Xn and XM

n have bounded (up to) fourth-order

moments, which can be readily checked from the Predictor-Corrector scheme (8.2.13) and the

Milstein scheme (8.2.20) under our assumptions. By the Lipschitz condition of gl and ∂xτ glgq, we

have

E[R2
2] ≤ C max

1≤l,q≤r
E[(
∣∣XM

n −Xn

∣∣+
∣∣XM

n−m −Xn−m
∣∣)2(∆Wq,n−m∆Wl,n)2],

230



whence by Cauchy inequality and the boundedness of E[X4
n] and E[(XM

n )4], we have E[R2
2] ≤ Ch2.

Similarly, we have E[R2
1] ≤ Ch2. By Lemma 8.2.5, and linear growth condition (8.2.3) for ∂xτ glgq,

we obtain

E[R2
4] ≤ C max

1≤l<q≤r
E[(1 +

∣∣XM
n

∣∣2 +
∣∣XM

n−m
∣∣2)(Iq,l,tn,tn+1,τ −

∆Wq,n−m∆Wl,n

2
)2] ≤ Ch2,

since XM
n , XM

n−m have bounded fourth-order moments and by the Burkholder-Davis-Gundy in-

equality, it holds that for l 6= q

E[(Iq,l,tn,tn+1,τ −
∆Wq,n−m∆Wl,n

2
)4]

= E[(

∫ tn+1

tn

(Wq(t− τ)− Wq(tn+1 − τ) +Wq(tn − τ)

2
) ◦ dWl)

4]

≤ C(E[

∫ tn+1

tn

(Wq(t− τ)− Wq(tn+1 − τ) +Wq(tn − τ)

2
)2 ds])2 ≤ Ch4.

Similarly, we have E[R2
3] ≤ Ch2. Thus we have proved that

E[R2
i ] ≤ Ch2, i = 1, 2, 3, 4. (8.4.7)

By the basic inequality 2ab ≤ a2 + b2, we have

2
∣∣E[(XM

n −Xn)ρn]
∣∣ ≤ hE[(XM

n −Xn)2] + h−1E[ρ2
n]. (8.4.8)

By the fact that Xn and XM
n are Ftn-measurable and Lipschitz condition for f ,

2E[(XM
n −Xn)R0] = 2hE[(XM

n −Xn)(fn − fn−m)]

≤ Ch(E[(XM
n −Xn)2] + E[(XM

n−m −Xn−m)2]). (8.4.9)
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Further, by the Lipschitz condition (8.2.2) for ∂xglgl, we have

2E[(XM
n −Xn)R1] =

r∑
l=1

E[(XM
n −Xn)∂xg

M
l,ng

M
l,n − ∂xgl,ngl,n)]E[(∆Wl,n)2]

≤ Ch(E[(XM
n −Xn)2] + E[(XM

n−m −Xn−m)2]). (8.4.10)

By the adaptedness of Xn, X
M
n and E[∆Wl,n] = E[(Iq,l,tn,tn+1,0 −

∆Wq,n∆Wl,n

2 )] = 0, we have

E[(XM
n −Xn)Ri] = 0, i = 2, 3. (8.4.11)

Again by the adaptedness of Xn and XM
n , we can have

E[(XM
n −Xn)R4] = 0. (8.4.12)

In fact, by Lemma 8.2.5, we can represent Iq,l,tn,tn+1,τ as

Iq,l,tn,tn+1,τ =
h

2
ξ
(n−m)
q,1 ξ

(n)
l,1 +

h

2π

∞∑
p=1

1

p
[ξ

(n)
q,2p+1ξ

(n−m)
l,2p − ξ(n−m)

q,2p ξ
(n)
l,2p+1 −

√
2ξ

(n−m)
q,1 ξ

(n)
l,2p]. (8.4.13)

Then by the facts E[
∣∣(XM

n −Xn)R4

∣∣] ≤ (E[(XM
n − Xn)2])1/2(E[R2

4])1/2 ≤ Ch and E[(XM
n −

Xn)ξ
(n)
l,k ] = 0 for any k ≥ 1, we obtain (8.4.12) from Lebesgue’s dominated convergence theorem.

With (8.4.11)-(8.4.12) and Cauchy inequality, from (8.4.5) we have, for n ≥ m,

E[(XM
n+1 −Xn+1)2]

≤ E[(XM
n −Xn)2] + 2E[(XM

n −Xn)(R0 +R1 − ρn)] + C

4∑
i=0

E[R2
i ] + CE[ρ2

n]

and further by (8.4.4), (8.4.6)-(8.4.8), and (8.4.9)-(8.4.10), we obtain, for n ≥ m,

E[XM
n+1 −Xn+1]2
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≤ (1 + Ch)E[(XM
n −Xn)2] + ChE[(XM

n−m −Xn−m)2]) + (C + h−1)E[ρ2
n] + C

4∑
i=0

E[R2
i ]

≤ (1 + Ch)E[(XM
n −Xn)2] + ChE[(XM

n−m −Xn−m)2] + Ch2, (8.4.14)

where C is independent of h. Similarly, we can also obtain that (8.4.14) holds for n = 1, · · · ,m−1.

Taking the maximum over both sides of (8.4.14) and noting that XM
i −Xi = 0 for −m ≤ i ≤ 0,

we have

max
1≤i≤n+1

E[(XM
i −Xi)

2] ≤ (1 + Ch) max
1≤i≤n

E[(XM
i −Xi)

2] + Ch2.

Then (8.4.1) follows from discrete Gronwall inequality. �

Proof of Lemma 8.2.5. From (8.2.18), the first formula (8.2.21) can be readily obtained.

Now we consider (8.2.22). For l = q, it holds that

Ĩl,l,tn,tn+1,0 = Il,l,tn,tn+1,0 = (∆Wl,n)2/2,

if (8.2.5) with piecewise constant basis (8.2.6) or Fourier basis (8.2.8) is used. For any orthogonal

expansion (8.2.4), we have E[
∫ tn+1

tn
(W̃q(s) −Wq(s)) dWl

∫ tn+1

tn
W̃q(s) d(W̃l −Wl)] = 0 and thus by

Wq(tn) = W̃q(tn), Ito’s isometry and integral by parts, we have, when l 6= q,

E[(Ĩq,l,tn,tn+1,0 − Iq,l,tn,tn+1,0)2]

= E[(

∫ tn+1

tn

[W̃q(s)−Wq(s)] ◦ dWl +

∫ tn+1

tn

W̃q(s) d[W̃l −Wl])
2]

= E[(

∫ tn+1

tn

[W̃q(s)−Wq(s)] dWl)
2] + E[(

∫ tn+1

tn

W̃q(s) d[W̃l −Wl])
2]

=

∫ tn+1

tn

E[[W̃q(s)−Wq(s)]
2] ds+ E[(−

∫ tn+1

tn

[W̃l −Wl] dW̃q(s))
2].

Then by the mutual independence of all Gaussian random variables ξ
(n)
q,i , i = 1, 2, · · · , q = 1, 2, · · · , r,
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we obtain E[[W̃q(s)−Wq(s)]
2] =

∑∞
i=Nh+1M

2
i (s), where Mi(s) =

∫ s
tn
mi(θ) dθ and for l 6= q,

E[(

∫ tn+1

tn

[W̃l(s)−Wl(s)] dW̃q)
2] = E[(

∞∑
i=Nh+1

Nh∑
j=1

∫ tn+1

tn

Mi(s)mj(s) dsξ
(n)
l,i ξ

(n)
q,j )2]

=

∞∑
i=Nh+1

Nh∑
j=1

(

∫ tn+1

tn

Mi(s)mj(s) ds)
2.

Then we have

E[(Ĩq,l,tn,tn+1,0 − Iq,l,tn,tn+1,0)2]

=

∞∑
i=Nh+1

∫ tn+1

tn

M2
i (s) ds+

∞∑
i=Nh+1

Nh∑
j=1

(

∫ tn+1

tn

Mi(s)mj(s) ds)
2. (8.4.15)

In (8.4.15), we consider the Fourier basis (8.2.8). Since Mi(s) (i ≥ 2) are also sine or cosine

functions, we have

∞∑
i=Nh+1

Nh∑
j=1

(

∫ tn+1

tn

Mi(s)mj(s) ds)
2 = (

∫ tn+1

tn

MNh+1(s)mNh(s) ds)2 (8.4.16)

when Nh is even and
∑∞
i=Nh+1

∑Nh
j=1(

∫ tn+1

tn
Mi(s)mj(s) ds)

2 = 0 when Nh is odd. Moreover, for

i ≥ 2, it holds from simple calculations that

∫ tn+1

tn

M2
i (s) ds =

3∆2

(2bi/2cπ)2
, i is even and

∆2

(2bi/2cπ)2
otherwise. (8.4.17)

Then by (8.4.15), (8.4.16), we have

E[(ĨFq,l,tn,tn+1,0 − Iq,l,tn,tn+1,0)2]

=

∞∑
i=Nh+1

∫ tn+1

tn

M2
i (s) ds+

∞∑
i=Nh+1

Nh∑
j=1

(

∫ tn+1

tn

Mi(s)mj(s) ds)
2

= ς(Nh)
∆2

(Nhπ)2
+

∞∑
i=Nh+1

3ς(i)∆2

(2[i/2]π)2
= ς(Nh)

2∆2

(Nhπ)2
+

∞∑
i=M

∆2

(iπ)2
.
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Hence, we arrive at (8.2.22) by the fact
∑∞
i=M

1
i2 ≤

1
M . Similarly, we can obtain (8.2.23). �

Proof of Theorem 8.2.6. Subtracting (8.2.17) from (8.2.20) and taking expectation after

squaring over both sides, we have

E[(XM
n+1 −Xn+1)2] = E[(XM

n −Xn)2] + 2

4∑
i=0

E[(XM
n −Xn)Ri] +

4∑
i,j=0

E[RiRj ],

where we denote fMn = f(XM
n , XM

n−m) and gMl,n = gl(X
M
n , XM

n−m) and

R0 = h(fMn − fn) +
r∑
l=1

(gMl,n − gl,n)∆Wl,n,

R1 =

r∑
l=1

r∑
q=1

[
∂xg

M
l,ng

M
q,n − ∂xgl,ngq,n

]
ĨFq,l,tn,tn+1,0,

R2 =

r∑
l=1

r∑
q=1

[
∂xτ g

M
l,ng

M
q,n−m − ∂xτ gl,ngq,n−m

]
ĨFq,l,tn,tn+1,τ ,

R3 =

r∑
l=1

r∑
q=1

∂xg
M
l,ng

M
q,n(Iq,l,tn,tn+1,0 − ĨFq,l,tn,tn+1,0),

R4 =

r∑
l=1

r∑
q=1

∂xτ g
M
l,ng

M
q,n−m(Iq,l,tn,tn+1,τ − ĨFq,l,tn,tn+1,τ ).

Similar to the proof of Theorem 8.2.3, we have

E[R2
0] ≤ C(h2 + h)(E[(XM

n −Xn)2] + E[(XM
n−m −Xn−m)2]), (8.4.18)

E[R2
1] ≤ C max

1≤l,q≤r
E[(
∣∣XM

n −Xn

∣∣2 +
∣∣XM

n−m −Xn−m
∣∣2)]E[(ĨFq,l,tn,tn+1,0)2],

E[R2
2] ≤ C max

1≤l,q≤r
E[(
∣∣XM

n −Xn

∣∣2 +
∣∣XM

n−m −Xn−m
∣∣2)(ĨFq,l,tn,tn+1,τ )2],

E[R2
3] ≤ C max

1≤l<q≤r
E[(1 +

∣∣XM
n

∣∣2 +
∣∣XM

n−m
∣∣2)]E[(Iq,l,tn,tn+1,0 − ĨFq,l,tn,tn+1,0)2],

E[R2
4] ≤ C max

1≤l<q≤r
E[(1 +

∣∣XM
n

∣∣2 +
∣∣XM

n−m
∣∣2)(Iq,l,tn,tn+1,τ − ĨFq,l,tn,tn+1,τ )2].
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First, we establish the following estimations:

E[R2
i ] ≤ Ch3, i = 3, 4. (8.4.19)

The case for i = 3 follows directly from Lemma 8.2.5 and boundedness of moments of Xn and XM
n .

By Lemma 8.2.5 and (8.2.18), we have

E[(Iq,l,tn,tn+1,τ − ĨFq,l,tn,tn+1,τ )4]

= E[(−
√

2h

2π
ξ

(n−m)
q,1

∞∑
p=s+1

1

p
ξ

(n)
l,2p +

h

2π

∞∑
p=s1+1

1

p
[ξ

(n−m)
q,2p+1ξ

(n)
l,2p − ξ

(n−m)
q,2p ξ

(n)
l,2p+1])4]

≤ Ch4[(

∞∑
p=s+1

1

p2
)2 + (

∞∑
p=s1+1

1

p2
)2] ≤ C h4

N2
h

,

where s = [Nh2 ] and s1 = [Nh−1
2 ]. As Nh is at the order of 1/h, we have

E[(Iq,l,tn,tn+1,τ − ĨFq,l,tn,tn+1,τ )4] ≤ Ch6. (8.4.20)

Then by the fact that Xn and XM
n have bounded fourth-order moment, Cauchy inequality, and

(8.4.20), we reach (8.4.19) when i = 4.

Second, we estimate E[R2
i ], i = 1, 2. By (8.2.18), the Lipschitz condition (8.2.2) and Nh is at

the order of 1/h, we have

E[R2
1] ≤ Ch(E[(XM

n −Xn)2] + E[(XM
n−m −Xn−m)2]). (8.4.21)

Now we require to estimate E[R2
2]. By Lipschitz condition (8.2.2), the adaptedness of XM

n−m and

Xn−m and Cauchy inequality (twice), we have

E[R2
2] ≤ C max

1≤l,q≤r

{
E[
∣∣XM

n −Xn

∣∣2 (ĨFq,l,tn,tn+1,τ )2] + E[
∣∣XM

n−m −Xn−m
∣∣2 (ĨFq,l,tn,tn+1,τ )2]

}
,
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≤ C max
1≤l,q≤r

(E[
∣∣XM

n −Xn

∣∣4])1/4(E[(ĨFq,l,tn,tn+1,τ )8])1/4(E[
∣∣XM

n −Xn

∣∣2])1/2

+Ch2E[(XM
n−m −Xn−m)2].

It can be readily checked from (8.2.18) that E[(ĨFq,l,tn,tn+1,τ
)8] ≤ Ch8. Hence, from boundedness of

moments, we have

E[R2
2] ≤ Ch2(E[(XM

n −Xn)2])1/2 + Ch2E[(XM
n−m −Xn−m)2]. (8.4.22)

Now estimate E[(XM
n − Xn)Ri], i = 0, 1, 2, 3, 4. By the adaptedness of Xn and Lipschitz

condition of f , we have

E[(XM
n −Xn)R0] ≤ ChE[(

∣∣XM
n −Xn

∣∣2 +
∣∣XM

n−m −Xn−m
∣∣2)]. (8.4.23)

By the adaptedness of Xn and E[Ĩq,l,tn,tn+1,0] = δq,lh/2 (δq,l is the Kronecker delta) and Lipschitz

condition of ∂xglgq, we have

E[(XM
n −Xn)R1] ≤ ChE[(

∣∣XM
n −Xn

∣∣2 +
∣∣XM

n−m −Xn−m
∣∣2)]. (8.4.24)

By the adaptedness of Xn and E[Ĩq,l,tn,tn+1,0 − Iq,l,tn,tn+1,0] = 0, we have

E[(XM
n −Xn)R3] = 0. (8.4.25)

Similar to the proof of (8.4.12), we have

E[(XM
n −Xn)R4] = 0. (8.4.26)
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Then by (8.4.18), (8.4.19)-(8.4.22), (8.4.23)-(8.4.26) and Cauchy inequality, we have

E[(XM
n+1 −Xn+1)2] ≤ (1 + Ch)E[(XM

n −Xn)2] + ChE[(XM
n−m −Xn−m)2]

+Ch2(E[(XM
n −Xn)2])1/2 + Ch3, (8.4.27)

where n ≥ m. Similarly, we have that (8.4.27) holds also for 1 ≤ n ≤ m − 1. From here and by

nonlinear Gronwall inequality, we reach the conclusion (8.2.24). �

238



Chapter 9

Conclusion

9.1 Summary

In this work, we developed a recursive multistage Wiener chaos expansion method (WCE) and

a recursive multistage stochastic collocation method (SCM) for longer time integration of linear

stochastic advection-reaction-diffusion equations with finite dimensional noises. To compute first

two moments of the solution with such a recursive multistage procedure, we first compute the

covariance matrix of the solution at different physical points at a time step and then recursively

compute the covariance matrix of the solution at the next time step using the covariance matrix at

the previous time step. We continue this process before we reach the final integration time.

We compared the recursive multistage WCE with methods of characteristics plus a standard

Monte Carlo sampling strategy. We showed that WCE is more efficient than standard Monte Carlo

methods if high accuracy in first two moments is required.

We also compared WCE and SCM in conjunction with the recursive multistage procedure.

Though WCE exhibits higher order convergence than SCM, we show that both methods are com-

parable in performance, depending on underlying problems. Although the computational cost is

proportional to the fourth power of the number of nodes or modes employed in physical space, the
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cost can be reduced to the second power if we make full use of the sparsity of the solution.

For SCM, we also investigated a benchmark problem for stochastic solvers–a stochastic piston

problem in one-dimensional physical space. We modeled the problem of moving piston with velocity

being Brownian motion into a tube with stochastic Euler equations driven by white noise. After

splitting the stochastic Euler equations into two parts (by Lie-Trotter splitting), we truncated the

Brownian motion with its spectral expansion and applied SCM to obtain variances of the shock

locations at different time instants. We showed that SCM is efficient for a short time simulation

and quasi-Monte Carlo methods are efficient for a relatively longer time simulation.

We also illustrate the efficiency of SCM with Euler scheme in time through a linear stochastic

ordinary differential equations: error estimates show that SCM using sparse grid of Smolyak type

is efficient for short time integration and for small magnitudes of noises.

Our conclusion on integration methods in random space is as follows. WCE and SCM are

efficient for longer time integration of linear problems using our recursive approach and for a small

number of noises within short time simulation. However, if time increases, we have already employed

many random variables, either from increments of Brownian motion or from the modes of spectral

truncation of Brownian motion. Hence, deterministic integration methods are not efficient any more

since their computational cost grows exponentially with the number of random variables. We then

have to use randomized sampling strategies, such as Monte Carlo methods or randomized qausi-

Monte Carlo methods, possibly together with variance reduction methods to reduce the statistical

errors.

For both WCE and SCM, we applied the Wong-Zakai approximation using a spectral approx-

imation of Brownian motion. However, we use different stochastic products for WCE and SCM

because of computational efficiency. In practice, WCE is associated with the Ito-Wick product,

which yields a weakly coupled system of PDEs for linear equations. SCM is associated with the

Stratonovich product, which yields a decoupled system of PDEs. These different formulations lead

to different numerical performance but both methods are comparable in performance for linear
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problems.

We also used Wong-Zakai approximation to stochastic ordinary differential equations with and

without delay. For stochastic differential equations with constant time delay, we derived three

schemes from Wong-Zakai approximation using spectral approximation, predictor-corrector scheme,

mid-point scheme and Milstein scheme. We found that even when there is one single delay term

in the diffusion coefficient, the predictor-corrector and mid-point schemes cannot converge with

order one in the mean-square sense. This is quite different from the cases for these two schemes

for equations without delay where these two schemes are of strong order one under commutative

conditions on the diffusion coefficients. If there is any delay in the diffusion coefficients, we found

that Milstein scheme is substantially slower than the other two schemes unless there is only one

single noise. In other words, the most efficient schemes for stochastic delay differential equations

are half-order schemes in general.

For stochastic ordinary differential equations with or without delay, we observed that the con-

vergence order of numerical schemes via the Wong-Zakai approximation is not determined by the

Wong-Zakai approximation but relies on further time discretization in time. For example, the

Wong-Zakai approximation itself is of order half; however, Milstein scheme based on the Wong-

Zakai approximation (called Milstein-like scheme in Chapter 8) is of order one.

Using spectral approximation of Brownian motion, we investigated a semilinear equation with

additive spatial white noise. We found that for problems in two or three dimensions in physical

space, we cannot expect better convergence from the spectral approximation of Brownian motion

than that from piecewise linear approximation. However, we may expect high-order convergence

when we have solutions of high regularity. For example, for elliptic equations with additive noise in

one-dimensional physical space or even higher-order equations in two- or three-dimensional physical

space, we can expect high regularity and benefit from the spectral truncation of Brownian motion.

We also considered stochastic differential equation with non-Lipschitz continuous coefficients

both in drift and diffusion. Under a one-sided Lipschitz condition on coefficients, we established a
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fundamental limit theorem, i.e., a relationship between the local truncation error and global error

in the mean-square sense for numerical schemes for nonlinear stochastic differential equations. We

also proposed an explicit balanced scheme so that we can efficiently integrate stochastic differential

equation with superlinearly growing coefficients over a finite time interval.

9.2 Future work

For long-time integration of nonlinear stochastic differential equations using deterministic integra-

tion methods in random space, dimensionality in random space is still the essential difficulty: the

number of random variables growth linearly and the number of Wiener chaos modes or stochastic

collocation points grows exponentially. For linear equations solved with the recursive multistage

WCE or SCM, we will have fast increasing computational cost for some statistics of the solutions

other than the first two moments, e.g., the computational cost for third-order moments will be pro-

portional to the sixth power of nodes or modes employed in physical space. For nonlinear equations,

the recursive multistage approach fails as nonlinear equations usually have strong dependence on

the initial condition and the superposition principle does not work any more.

To lift the curse of dimensionality, we have to suppress the history data and restart from time to

time to keep low dimensionality in random space (and thus low computational cost). To suppress

the history data, we should employ some reduction methods, such as functional analysis of variance,

see e.g. [115, 144, 419], to reduce the number of used random variables before integrating over the

next time interval.

For stochastic partial differential equations with space-time noise, deterministic integration

methods in random space are too expensive as many random variables will be employed to trun-

cate space-time noise. Monte Carlo methods and associated variance reduction methods including

multilevel Monte Carlo method could potentially be applied to resolve this issue.
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[4] A. Alabert and I. Gyöngy, On numerical approximation of stochastic Burgers’ equation,

in From stochastic calculus to mathematical finance, Springer, Berlin, 2006, pp. 1–15.

[5] E. J. Allen, S. J. Novosel, and Z. Zhang, Finite element and difference approximation

of some linear stochastic partial differential equations, Stochastics Stochastics Rep., 64 (1998),

pp. 117–142.

[6] V. V. Anh, W. Grecksch, and A. Wadewitz, A splitting method for a stochastic Goursat

problem, Stochastic Anal. Appl., 17 (1999), pp. 315–326.

[7] L. Arnold, Stochastic differential equations: theory and applications, Wiley-Interscience,

New York, 1974.

243



[8] A. Ashyralyev and M. Akat, An approximation of stochastic hyperbolic equations: case

with Wiener process, Math. Methods Appl. Sci., 36 (2013), pp. 1095–1106.

[9] I. Babuska, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic

partial differential equations with random input data, SIAM J. Numer. Anal., 45 (2007),

pp. 1005–1034 (electronic).

[10] I. Babuska, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations

of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800–

825.
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for diffusions, Ann. Inst. H. Poincaré Probab. Statist., 30 (1994), pp. 415–436.

[29] A. Bensoussan, R. Glowinski, and A. Răşcanu, Approximation of the Zakai equation
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[231] M. Kovács, S. Larsson, and A. Mesforush, Finite element approximation of the Cahn-

Hilliard-Cook equation, SIAM J. Numer. Anal., 49 (2011), pp. 2407–2429.
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[398] G. W. Wasilkowski and H. Woźniakowski, Explicit cost bounds of algorithms for mul-

tivariate tensor product problems, J. Complexity, 11 (1995), pp. 1–56.

[399] E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals,

Ann. Math. Statist., 36 (1965), pp. 1560–1564.

[400] , On the relation between ordinary and stochastic differential equations, Internat. J.

Engrg. Sci., 3 (1965), pp. 213–229.

[401] F. Wu, X. Mao, and L. Szpruch, Almost sure exponential stability of numerical solutions

for stochastic delay differential equations, Numer. Math., 115 (2010), pp. 681–697.

282



[402] D. Xiu, Fast numerical methods for stochastic computations: a review, Commun. Comput.

Phys., 5 (2009), pp. 242–272.

[403] D. Xiu and J. Hesthaven, High-order collocation methods for differential equations with

random inputs, SIAM J. Sci. Comput., 27 (2005), pp. 1118–1139.

[404] D. Xiu and G. Karniadakis, Modeling uncertainty in steady state diffusion problems via

generalized polynomial chaos, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 4927–

4948.

[405] D. B. Xiu and G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic

differential equations, SIAM J. Sci. Comput., 24 (2002), pp. 619–644.

[406] J. Xu and J. Li, Sparse Wiener chaos approximations of Zakai equation for nonlinear

filtering, in Proceedings of the 21st annual international conference on Chinese Control and

Decision Conference, CCDC’09, Piscataway, NJ, USA, 2009, IEEE Press, pp. 910–913.

[407] Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differ-

ential equation driven by an additive noise, BIT, 44 (2004), pp. 829–847.

[408] , Galerkin finite element methods for stochastic parabolic partial differential equations,

SIAM J. Numer. Anal., 43 (2005), pp. 1363–1384.

[409] X. Yang, Y. Duan, and Y. Guo, A posteriori error estimates for finite element approxi-

mation of unsteady incompressible stochastic Navier-Stokes equations, SIAM J. Numer. Anal.,

48 (2010), pp. 1579–1600.

[410] X. Yang, W. Wang, and Y. Duan, The approximation of a Crank-Nicolson scheme for

the stochastic Navier-Stokes equations, J. Comput. Appl. Math., 225 (2009), pp. 31–43.

283



[411] R.-m. Yao and L.-j. Bo, Discontinuous Galerkin method for elliptic stochastic partial differ-

ential equations on two and three dimensional spaces, Sci. China Ser. A, 50 (2007), pp. 1661–

1672.

[412] H. Yoo, Semi-discretization of stochastic partial differential equations on R1 by a finite-

difference method, Math. Comp., 69 (2000), pp. 653–666.

[413] N. Yoshida, Stochastic shear thickening fluids: strong convergence of the Galerkin approxi-

mation and the energy equality, Ann. Appl. Probab., 22 (2012), pp. 1215–1242.

[414] M. Zahri, M. Seaid, H. Manouzi, and M. El-Amrani, Wiener-Itô chaos expansions
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