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Abstract of Integration of Genetic and Epigenetic Alterations in the Discovery of 

Molecular Drivers of Malignancy in Glioma, by Ashley A. Smith, Ph.D.  

Brown University, May 2014 

 

Gliomas are a family of extremely aggressive brain cancers, which, despite 

current treatment options, have poor prognoses.  There are distinct subtypes of gliomas, 

and accurately identifying these is critical for diagnosis and management. Often, the 

pathologic diagnosis of these subtypes is difficult, and research is underway to discover 

novel biomarkers that aid in accurate subtype identification and prognostication. This 

thesis focuses on the joint analysis of DNA methylation profiles with somatic mutation 

and gene expression data in glioma, assessing the nature of their association with each 

other and, subsequently, with histology and disease outcome.  The ultimate goal is to 

develop potential prognostic biomarkers of the disease.  

 

DNA methylation was determined for several different grades and histologies of 

glioma in addition to non-brain-tumor controls. The same samples were sequenced for 

IDH1/2 mutations. We, and others, discovered an IDH hypermethylator phenotype, 

showing a tight association between the occurrence of IDH mutation and 

hypermethylation. This phenotype had a higher prevalence in low-grade and secondary 

gliomas. Besides mutation, DNA methylation is also associated with other somatic 

alterations, which can alter gene expression. To better understand how DNA methylation 

and gene expression drive glioma, we used an integrative bioinformatics approach; our 

goal was to investigate DNA methylation that modulates gene expression as well as 
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independent DNA methylation (methylation that may exert its phenotypic effects through 

alternative mechanisms), assessing the nature of their association with disease survival. 

Our model supports the existing theory that DNA methylation can work through gene 

expression to influence survival outcome but also suggests that DNA methylation can 

work alone or through alternative mechanisms to influence glioma outcome. In addition, 

our approach offers an alternative method of biomarker discovery, which could 

potentially be used for diagnostic and therapeutic purposes. Overall, this work supports 

the hypothesis that somatic mutations are not solely responsible for the glioma phenotype. 

Epigenetics, particularly DNA methylation, is also important in both the genesis and 

outcome of the disease. Furthermore, our model provides an alternative approach for 

biomarker discovery that may also be applicable to cancers other than glioma.  
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Thesis Overview 

 Gliomas are a family of extremely aggressive brain cancers, which, despite 

currently available treatments, have poor prognoses, with high-grade glioblastoma 

multiforme (GBM) having a median survival time of 15 months. There exist many 

individual subtypes of glioma, which are both histologically and molecularly distinct, and 

accurately identifying these subtypes is critical for diagnosis, prognosis, and treatment. 

Often, the pathologic diagnosis of these subtypes can be difficult, and research is 

underway to define novel biomarkers of the disease that can assist in accurate subtype 

identification. There is an array of somatic alterations that can contribute to 

tumorigenesis, although it is now recognized that genetic alterations alone cannot explain 

the phenotypes of all human tumors.  Currently, increasing attention is being focused on 

the potential for epigenetic alterations to drive these tumors. The integration of both 

epigenetic and genetic alterations is critical to more fully understand tumorigenesis. 

Using an integrated approach could be particularly valuable for studying cancers with 

poorly understood etiologies as well as for largely incurable cancers, such as glioma.  The 

aims of this thesis were to focus upon the joint analysis of DNA methylation profiles with 

mutation and expression data in glioma, assessing their associations with histology and 

outcome, and evaluating their potential utility as biomarkers of the disease.  

 This thesis begins with a broad introduction to glioma and its histological 

subtypes, as well as the biology of DNA methylation alterations, gene expression changes, 

and mutations associated with these phenotypes. Chapter 2 provides details on the 
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integration of glioma DNA methylation and IDH mutation, resulting in the discovery of 

an IDH-driven hypermethylator phenotype that is associated with the survival outcome of 

specific glioma subtypes. Chapter 3 describes the results of a two-part bioinformatics-

based analysis integrating DNA methylation and gene expression. The first part focuses 

on methylation-mediated changes in gene expression, which result in differential glioma 

survival, and the second focuses on DNA methylation mediating survival directly or 

through mechanisms other than direct changes in gene expression. Additionally, this 

analysis highlights potential biomarkers of the disease. Finally, Chapter 4 summarizes the 

conclusions of the previous chapters, discussing the importance of this work and provides 

potential future directions for this research.  

 

Glioma: presentation, diagnosis, and treatment 

 Gliomas are malignant brain tumors thought to arise from glial cells or their 

precursors 
1
 and account for almost 80% of all primary malignant brain tumors

2
. Clinical 

presentation of the disease includes headaches, seizures, focal neurologic deficits, 

confusion, memory loss, and personality changes
3
. However, many patients, particularly 

with low-grade glioma, remain asymptomatic
4
. Patients suspected of having glioma 

undergo imaging for initial lesion conformation and grading
3
. Though magnetic 

resonance imaging (MRI) is the gold standard for investigation of suspected glioma, 

confirmatory diagnosis is still based on stereotactic biopsies
4,5

. New imagery methods 

such as diffusion and perfusion-weighted imaging, proton MR spectroscopy, and 
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susceptibility-weighted imaging provide even more insight into tumor grade and can 

influence therapeutic decisions
5
. 

Upon glioma conformation, a stereotactic biopsy is taken, or if placement is 

conducive to surgery, tumors are resected and biopsied, with the ladder method being 

preferable for better histological diagnosis, reduction of symptoms from mass effect, and 

increased efficacy of therapies
6,7

.  Biopsies are classified based on guidelines set forth by 

the World Health Organization (WHO), which divides gliomas into several different 

subtypes and grades
1
. Subtypes are graded using a I-IV numerical grading system where 

higher numbers are associated with increased malignancy. Numerical grade is based on 

the presence or absence of several characteristics, including mitosis, necrosis, nuclear 

atypia, and endothelial cell proliferation. In addition, tumors are divided into several 

histological types based on their morphology and predominate cell type. The major 

histological types include astrocytomas, oligodendrogliomas, mixed oligoastrocytomas, 

and ependymomas
1
. Several subtypes can be found within each major type of glioma.  

The most common subtypes of astrocytic tumors include diffuse and pylocitic 

astrocytomas. Diffuse astrocytomas (predominately of astrocytic origin), account for 

almost 80% of adult gliomas and are most frequently found in the cerebral hemispheres
1,8

. 

Diffuse astrocytomas (well-differentiated, anaplastic, and glioblastoma) range from grade 

II-IV respectively, with glioblastoma multiforme (GBM) being the most malignant of all 

gliomas. Pilocytic astrocytomas are generally a benign tumor with a WHO grade of I and 

usually arise in the cerebellum.  The second major glioma type, oligodendroglioma 

(predominantly oligodendrocytic in origin), accounts for 5-15% of gliomas and is usually 

found in the cerebral hemispheres, specifically the frontal or temporal lobes. 
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Oligodendrogliomas are further divided into well-differentiated (grade II) and anaplastic 

(grade III)
 1,8

.  In addition, mixed oligoastrocytomas consist of a mix of both astrocytes 

and oligodendrocytes with both well-differentiated (grade II) and anaplastic (grade III) 

histologies
1
. Finally, in adults, ependymomas (predominantly of ependymal origin) are 

most commonly found in the spinal cord
8
. Ependymal tumors consist of 4 different 

subtypes subependymoma, myxopapillary, well-differentiated, and anaplastic, ranging 

from grade I-III
1
. Due to the heterogeneity of each of the individual subtypes and varying 

locations of each, glioma management and treatment can vary accordingly. 

The general treatment scheme for glioma consists of resection (if applicable), 

radiation, and/or chemotherapy
4,9

.  Due to the location and infiltrative nature of gliomas, 

many cannot be resected completely or remain inoperable, and tumor resection is closely 

associated with patient survival 
9
. However, advances in surgical techniques have 

enhanced the ability of surgeons to preform more complete glioma resection
10

. 

Preoperative techniques such as MRI can work together with intraoperative techniques 

such as neuronavigation to aid in determining the borders of the brain lesion
10

. This 

technique is particularly helpful in locating small deep-seated lesions with an accuracy of 

about 2 mm
11

. Fluorescence-guided resection is another intraoperative imaging technique 

where fluorescence is used to contrast normal vs. tumor tissue, allowing for more 

accurate and complete resection
10

. Techniques such as functional MRI (fMRI) aid in the 

visualization of active parts of the brain and can be beneficial in obtaining a gross 

impression of the lesion preoperatively
10

. Additional techniques include CT, 3D planning, 

fiber tracking, and transcranial magnetic stimulation
10

. If the nature or placement of the 

tumor does not allow for resection, then a stereotactic biopsy is taken for diagnostic 
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purposes
3
. Immediately after surgery/biopsy, the main course of treatment is 

radiotherapy
3
. Radiotherapy is used for both low- (WHO grade II) and high-grade (WHO 

grade III, IV) gliomas, typically at a maximum dose of 60 Gy, as higher doses have not 

been associated with improved outcome and can lead to increased toxicity
4,9

.  In addition 

to radiotherapy, chemotherapy may be used, mostly for high-grade tumors
3,9

, as it is 

controversial whether chemotherapy should be offered to low-grade glioma patients 

before treatment with radiotherapy
4
. Concomitant and adjuvant temozolomide (TMZ) is 

the most commonly used chemotherapeutic drug for glioma treatment with advantages 

including oral dosing, ability to cross the blood brain barrier (BBB), preferable toxicity 

profile compared to other drugs, increased effectiveness, and improved quality-of-life 
6,12

. 

Other chemotherapeutics include carmustine wafers (Gliadel) and PCV (combination of 

Procarbazine, CCNU, and Vincristine) 
3,4,9

. Depending on the tumor grade and type and 

patient age, a combination of both radiotherapy and chemotherapy is often used
3,4,9

.  

Additionally, increased knowledge of the pathogenesis of glioma has spurred discussion 

and trials for targeted molecular-based
13

, epigenetic-based
14

 and antiangiogenic-based
12,15

 

therapies.  

Unfortunately, the initial brain lesion is not the only concern for treatment. 

Another major issue with glioma patients is the management of comorbidities associated 

with the primary tumor. These conditions include seizures, peritumoral edema, venous 

thromboembolism, cognitive dysfunction, and fatigue
16

. Seizures are a common symptom 

of glioma, with approximately 20-62% of patients experiencing tumor-related epilepsy 

during the course of their disease
16

. General treatment for seizures includes a variety of 

antiepileptic drugs. Unfortunately, antiepileptic drugs can have unwanted interactions 
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with other glioma-related treatments including induction of the cytochrome P-450 system 

(as seen with the drug phenytoin), which increases the metabolism of many 

chemotherapeutic agents. For this reason, antiepileptic drugs that do not induce these 

enzymes (such as clonazepam) are preferred 
16

. Edema is another side effect of the tumor 

and if not controlled can lead to serious complications and morbidity.  Excess fluid build-

up is caused by a disruption in the blood-brain barrier, allowing fluid into the 

extracellular space of the brain parenchyma. Corticosteroids are usually used to manage 

peritumoral edema by decreasing endothelial permeability. Unfortunately, there are 

several complications associated with corticosteroids, including gastrointestinal problems, 

steroid myopathy, and osteoporosis. Using lower doses can reduce side effects, and most 

subside after treatment has stopped. Venous thromboembolism (VTE) is another 

complication experienced by glioma patients and can be treated mechanically using 

elastic compression stockings as well as with anticoagulation therapies such as low 

molecular weight heparins. Lastly, disruption in cognitive functions and increased fatigue, 

though not necessarily associated with morbidity, can significantly reduce quality of life 

in glioma patients.  Medications such as methylphenidate have been shown to improve 

neurobehavioral functioning, reducing fatigue and depression, while increasing 

cognition
16

. Finally recurrence of the primary tumor is often seen. Recurrence of low-

grade glioma has been associated with increased malignancy due to transformation
17

. 

However, recurrence is more frequent in higher-grade tumors with a median time-to-

tumor progression of ~6.9 months
18

. Unfortunately, treatment options for recurrent 

gliomas are limited due to difficulty of resection and drug resistance
19

.  
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Glioma: epidemiology, risk, and survival 

 During the years 2005-2009 the incidence (age adjusted) of primary brain and 

central nervous system (CNS) tumors in the United States was approximately 20.6 per 

100,000 people, with the average incidence of malignant tumors in adults (20+ years of 

age) ranging from 5.80-11.70 per 100,000 people
2
.  Of these, gliomas accounted for 29% 

of all adult tumors and approximately 80% of all adult malignant tumors, with an 

incidence rate of 6.03 per 100,000 people. GBM and astrocytomas accounted for 

approximately 76% of all gliomas, with GBM having the highest incidence rate among 

malignant tumors. Gliomas are most commonly found in patients between the 4
th

 and 6
th

 

decades of life, with lower grades often found at the younger end of the age range
4,7

. In 

addition, malignant glioma incidence is statistically significantly higher in males than in 

females and in caucasians compared to blacks 
2
.  

There are few risk factors associated with glioma, with environmental/behavioral 

risk factors being the most attractive to study, since they are modifiable 
20,21

. Of these, 

ionizing radiation is the only known environmental risk factor. However, it has been 

suggested that non-ionizing radiation could be associated with gliomagenesis. 

Specifically mentioned is the use of cell phones, which emit low-radiofrequency in close 

proximity to the head and brain. Though it is possible cell phone use could cause an 

increase in glioma risk, no substantial evidence for this has been provided
21

. Allergies 

and immunologic changes; specifically, reduced immunoglobulin E (IgE) have been 

inversely associated with glioma risk
22

.  Genetic risk factors involved in gliomagenesis 

include single nucleotide polymorphisms (SNPs), which affect detoxification, DNA 

repair, and cell cycle regulation 
3
.   
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Low-grade pilocytic astrocytomas and ependymal tumors have the best prognosis, 

with an approximate 5-10 year survival rate of 91.4% and 77.6% respectively. Grade II 

oligodendrogliomas or astrocytomas have a survival range of 5-10 years 
3
 and; generally, 

anaplastic oligodendrogliomas (3-5 years) have a better prognosis than anaplastic 

astrocytomas  (2-3 years)
 3

. The poorest survival among gliomas is associated with GBM, 

where median survival is only 12-15 months
8
, with a 5-year survival of only 4.7%

2
. 

However, recent literature has reported on the molecular complexity of these tumors in 

the hopes of improving survival with better diagnosis and more targeted treatments.  

 

Glioma: genetics 

 The variability in the etiology, progression, and histologies of gliomas is in part 

due to their genetic heterogeneity, which includes somatic mutations, 

deletion/amplifications, copy number variation (CNV) and insertion of repetitive 

elements. Somatic mutations, particularly in tumor suppressor genes, were some of the 

first implicated in gliomagenesis. Over 65% of gliomas, predominantly low-grade and 

secondary GBMs, contain mutated TP533,13,23
.  Mutations in the RB1 tumor suppressor 

gene are observed mainly in high-grade gliomas. Additionally, p53 and RB pathways 

may be affected by mutations/amplifications in MDM1/2/4/ and CDKN2A/b (INK4A and 

ARF), as well as CDK4/613,23,24
. Dysregulation of many tyrosine kinase-signaling 

pathways is also present in malignant glioma. For instance, PDGFR 

overexpression/amplification is ubiquitous among malignant gliomas, and EGFR 

amplification/overexpression/mutation has become a marker of high-grade glioma and 
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primary GBM, both of which can cause oncogenic dysregulation of PI3K-AKT-mTOR 

and Ras-MAPK signaling pathways
13,23

. Also associated with these pathways are 

mutation/deletion of PTEN, which is the primary negative regulator of the PI3K-AKT-

mTOR signaling pathway, and mutations in NF1, which is the primary negative regulator 

of the Ras-MAPK pathway
23,24

. Loss of heterozygosity (LOH) of 1p19q is the most 

prevalent loss among oligodendrogliomas and a predictor of better prognosis
25

. Most 

recently implicated in glioma are alterations in isocitrate dehydrogenase 1/2(IDH1/2) 
26

 

and telomerase reverse transcriptase (TERT)
 27

. The metabolic enzyme IDH1/2 is mutated 

at high prevalence in low-grade gliomas and secondary GBMs
26

. Interestingly, patients 

with IDH1 mutations tend to be younger and have a better survival outcome
26,28

. Novel 

mutations in the promoter region of TERT have also been discovered 
27

; they appear to be 

mutually exclusive with IDH1 mutations and demonstrate poorer outcome
29,30

. 

Additionally, mutations in ATRX (α thalassemia/mental retardation syndrome X-linked) 

have been observed in GBMs wild-type (WT) for TERT
31

.  ATRX is involved in 

chromatin remodeling that is active in telomere biology
31

. Both mutations in TERT and 

ATRX suggest the importance of telomerase activation in the development of glioma
29

. 

There are several recurrent translocations reported in glioma, including the in-frame gene 

fusion of fibroblast growth factor receptor1/3 (FGFR1/3) and transforming acidic coiled-

coil (TACC) to form FGFR1/3-TACC332
 and EGFR fusions with septin 14 (SEPT14) 

33
. 

The ladder aids in activation of the STAT3 pathway, whose dysregulation has been 

associated with glioma infiltration and growth
34

. Finally, genetic risk factors are also 

involved in glioma etiology. Extensive genome-wide association studies (GWAS) and 

candidate-gene studies have found associations between glioma risk and single-
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nucleotide polymorphisms (SNPs)
 35

. Of these, GWAS studies are the most consistently 

replicated, revealing 8 SNPs/near 7 different genes that are significantly associated with 

glioma risk: TERT, EGFR, CCDC26, CDKN2A, PHLDB1, RTEL1, and TP53 35-39.  

 Integration of these genetic events has allowed for increased understanding of the 

pathogenesis of glioma and yielded distinct genetic profiles that aid in distinguishing 

different subtypes for better diagnosis and treatment. Efforts put forth by Godard et al, 

and Nutt et al have demonstrated that gliomas can be classified based on differential gene 

expression
40,41

, and expression-based classes correlated better with survival than 

histological outcome
41

. Further investigation revealed that gene expression profiles could 

be used to further distinguish classes within individual subtypes and aided in the 

discovery of prognostic markers such as FABP7, whose increased expression is 

associated with poorer outcome in GBM
42

. Further studies used gene-expression 

signatures to classify gliomas based on their resemblance to different stages of 

neurogenesis, resulting in three subclasses: proneural, proliferative, and mesenchymal
43

. 

These classes were further supported and refined by integrating gene-expression with 

copy number, and mutation data
24,44

. The integration with other genetic events resulted in 

the aforementioned proneural and mesenchymal classes with the addition of classical and 

neuronal classes
24,43,44

. Proneural classes are strongly associated with high levels of TP53 

mutation, PDGF amplification/mutation, IDH1/2 mutation, younger age, and have a trend 

toward increased survival. The mesenchymal subtype is defined by high expression of 

CHI3L1, MET, and NF1 deletion/mutation. High levels of EGFR amplification/mutation 

define the classical subtype, and there is a clear difference in response to treatment 

observed between classical and mesenchymal subtypes
21,35,36,23

. Finally, tumors of the 
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neural subtype appear to be the most molecularly similar to normal brain, this group also 

contains the oldest patients
44

.  

Though genetic-based classes have aided in both prognosis and therapeutic intervention, 

it has become increasingly apparent that genetics alone cannot explain the phenotype of 

this complex disease, highlighting the need for studies focusing on not only the genome, 

but also the epigenome.  

 

Glioma: epigenetics 

An epigenetic trait is defined by a heritable, stable change in expression and/or 

cellular phenotype that does not result from change to the DNA sequence
45,46

. Epigenetic 

regulators include histone modifications
47

, microRNA
48,49

, and DNA methylation
50-52

, 

and are critical in normal development contributing to the vast array of cellular 

phenotypes
52-54

.  However, dysregulation of these regulators has been associated with the 

etiology of many human diseases
55

. Due to its assay accessibility, DNA methylation has 

been one of the most widely studied epigenetic events
56-59

.  

DNA methylation occurs on cytosines found 5’ to guanines in the DNA sequence 

(CpG dinucleotides)
 52

. Maintenance/deposition of methylation is controlled mainly by 

three DNA methyltransferases (DNMT1, 3A, 3B) using S-adenosyl methionine as the 

methyl donor
53,60

.  In mammals, approximately 60-80% of CpGs are methylated
53

. CpG 

dinucleotides are under-represented in the genome, however, they have been found at 

higher than expected quantities in gene promoter regions
61

, and clusters of them are 

referred to as CpG islands
62

. The placement of CpG islands in promoter regions of genes 
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allows for epigenetic regulation of transcriptional activity through structural changes in 

associated chromatin
53,55,60

. For instance, methylation of a CpG island in the promoter 

region of a gene can work together with histone modifications causing chromatin 

condensation and inhibition of transcriptional activity, essentially silencing expression of 

the gene. CpG shores (CpGs that lie ~2kb away from CpG Islands) have also been 

implicated in transcriptional activity as well as cell programing
63,64

.  Furthermore, 

patterns of DNA methylation can be used to distinguish individual cell types/mixtures 

and tissues
52,65-67

, including different regions of non-diseased brain
68

. DNA methylation 

is important in many normal processes besides transcriptional regulation and cell 

programming, including genomic imprinting, silencing of aberrant repetitive elements, 

and regulation of transcriptional enhancers and splice site variants
52

.  Disruption of 

normal DNA methylation events can cause dysregulation of these processes, which has 

been associated with adverse health affects including diseases such as cancer 
55

.  

One of the first epigenetic changes implicated in human cancer was a general loss 

of methylation in tumors compared with normal tissue
69,70

.  Hypomethylation is primarily 

associated with aberrant expression of repetitive elements but can also lead to loss of 

imprinting and activation of oncogenes
69,71,72

.  Furthermore, hypomethylation can 

promote deletions and translocations by favoring mitotic recombination
73

. Overall, 

hypomethylation is associated with genomic instability, which can aid in tumor 

progression
71,72

. Gene-specific hypermethylation is also observed in cancer and is 

associated with transcriptional inactivation
72-75

. Most ubiquitously observed in 

carcinogenesis is methylation-induced silencing of tumor suppressor genes, which can 

aid in tumorigenesis by altering many cancer-related pathways
74

. Patterns of methylation 
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can also be important prognostic and diagnostic tools in cancer. Differentially methylated 

regions (DMRs) are regions of the genome demonstrating variable methylation and can 

be used not only to distinguish different cell and tissue types; but also to aid in 

distinguishing normal and tumor tissue as well as individual cancer subtypes
64,76

. Genes 

with differential DNA methylation have become ideal candidates for biomarker selection 

for both the diagnosis and prognostication of disease while simultaneously highlighting 

potential therapeutic targets
77

. Another reason DNA methylation is so attractive to study 

is because, unlike genetic alterations, epigenetic alterations are potentially reversible. The 

reversibility of DNA methylation has been harnessed for therapeutic reasons in 

myelodysplastic syndromes and myelogenous leukemia, for which the Food and Drug 

Administration has already approved the use of drugs which prevent re-methylation (i.e. 

5-azacytidine and 5-aza-2’-deoxicytidine)
 78-80

.  

Significant advances in the field of epigenetics have led to the discovery of 

several epigenetically altered genes/pathways in glioma. Genome-wide hypomethylation 

is seen in approximately 80% of GBMs, and this loss of methylation is correlated with 

increased proliferation and aberrant transcriptional activity
81

. The promoter region of 

putative oncogene MAGEA1 is hypomethylated in GBM and is associated with increased 

expression of this cancer-testis antigen 
81,82

. Increased activation of MAGE proteins have 

been implicated in multiple cancers and are associated with T-cell recognition, p53 

inhibition, and response to chemotherapy 
81,82

.  More commonly seen in glioma is locus-

specific hypermethylation
81,83,84

. Promoter hypermethylation has been observed in many 

cancer-related gene pathways, including DNA repair, cell cycle progression, apoptosis, 

angiogenesis, and cell growth
85-89

. Disruption of any of these pathways can ultimately 
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lead to variable effects on survival.  One example of this phenomenon is the epigenetic 

silencing of the DNA repair gene MGMT, which has become a strong predictor of glioma 

outcome and response to treatment
90,91

. MGMT normally functions by removing aberrant 

alkyl groups from the O
6 

position of guanine
90,91

. In cancer treatment, MGMT expression 

can decrease the therapeutic efficacy of radiation and alkylating agents such as 

temozolomide by repairing therapy-induced damage to the tumor cells. DNA gene 

promoter methylation silencing of MGMT is, then, associated with significantly better 

survival following chemotherapeutic treatments
90,91

. Promoter methylation of SOCS3 has 

been implicated in secondary and low-grade gliomagenesis via the STAT3 and MAPK-

pathways
92,93

. Methylation of SOCS3 is significantly associated with poorer survival 

outcome
92,93

. These examples demonstrate the impact that the epigenome can have on 

tumorigenesis as well as its importance for diagnosis and survival outcome and as a 

biomarker of the disease. 

 

Glioma: Integration of genetics and epigenetics 

The genetic landscape of glioma is fairly well studied; however, its relationship 

with the glioma epigenome is poorly understood. Previous literature suggests that 

complex somatic alterations are involved in gliomagenesis that aid not only in 

distinguishing glioma from other diseases but also in distinguishing different glioma 

subtypes.  These alterations include both genetic events, such as amplifications/deletions 

and mutations, as well as epigenetic events such as hyper- and hypo-methylation, all of 

which can dysregulate cancer-related signaling pathways promoting tumorigenesis and 
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modulating outcome. The importance of analyses integrating the cancer genome and 

epigenome has been observed with the identification of a CpG island methylator 

phenotype in colorectal cancer
94-96

. The integration of both methylation profiles and 

mutation data demonstrated distinct classes of colorectal cancer, with CIMP-high tumors 

showing extensive promoter methylation and mutations in the BRAF oncogene
95

. In 

contrast, a CIMP-low phenotype is associated with promoter methylation of a more 

limited set of genes, particularly age-related genes, and is also associated with mutation 

in the KRAS oncogene
95

. CIMP-negative tumors display rare methylation as well as TP53 

mutation.  The prognosis associated with these subgroups also varies, with CIMP-high 

tumors having the best outcome
96

. In glioma, the link between promoter methylation and 

gene expression has been established on a single-locus level. However, large-scale 

integration approaches of methylation patterns and genetic alterations in glioma have not 

been attempted to date.  

 

Conclusion 

This thesis aims to carefully assess the epidemiology of DNA methylation in 

glioma.  Novel high-throughput DNA methylation arrays (Illumina), which interrogate 

approximately 1,500 cancer-related CpG loci, were used to identify the epigenetic 

determinants of methylation in glioma and how they associate with genetic alterations 

such as mutations.  The initial results suggested the correlation of a hypermethylator 

phenotype and IDH1 mutations with tumor histology and increased prognosis. To further 

demonstrate the importance of integrative analysis in gliomagenesis and improved 
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prognosis, data obtained from The Cancer Genome Atlas (TCGA) were used to 

determine the joint effect of DNA methylation and gene expression on survival outcome 

in glioma using a novel bioinformatics-based approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

References 

 1. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of 

tumours of the central nervous system. Acta Neuropathol. Aug 

2007;114(2):97-109. 

2. Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: 

primary brain and central nervous system tumors diagnosed in the United 

States in 2005-2009. Neuro Oncol. Nov 2012;14 Suppl 5:v1-49. 

3. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. Jul 

2008;359(5):492-507. 

4. Sanai N, Chang S, Berger MS. Low-grade gliomas in adults. J Neurosurg. Nov 

2011;115(5):948-965. 

5. Mohammed W, Xunning H, Haibin S, Jingzhi M. Clinical applications of 

susceptibility-weighted imaging in detecting and grading intracranial 

gliomas: a review. Cancer Imaging. 2013;13:186-195. 

6. Pouratian N, Schiff D. Management of low-grade glioma. Curr Neurol Neurosci 

Rep. May 2010;10(3):224-231. 

7. Wang Y, Jiang T. Understanding high grade glioma: molecular mechanism, 

therapy and comprehensive management. Cancer Lett. May 

2013;331(2):139-146. 

8. V. K, A.K. A, J.C. A. Robbins Basic Pathology. 9 ed. Canada: Elsevier Saunders; 

2013. 

9. Stupp R, Tonn JC, Brada M, Pentheroudakis G, Group EGW. High-grade 

malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment 



 21 

and follow-up. Annals of oncology : official journal of the European Society for 

Medical Oncology / ESMO. May 2010;21 Suppl 5:v190-193. 

10. Vranic A. New developments in surgery of malignant gliomas. Radiol Oncol. 

Sep 2011;45(3):159-165. 

11. Ganslandt O, Behari S, Gralla J, Fahlbusch R, Nimsky C. Neuronavigation: 

concept, techniques and applications. Neurol India. Sep 2002;50(3):244-255. 

12. Bradley D, Rees J. Updates in the management of high-grade glioma. J Neurol. 

Jul 2013. 

13. Masui K, Cloughesy TF, Mischel PS. Review: molecular pathology in adult 

high-grade gliomas: from molecular diagnostics to target therapies. 

Neuropathol Appl Neurobiol. Jun 2012;38(3):271-291. 

14. Clarke J, Penas C, Pastori C, et al. Epigenetic pathways and glioblastoma 

treatment. Epigenetics. Jun 2013;8(8). 

15. Plate KH, Scholz A, Dumont DJ. Tumor angiogenesis and anti-angiogenic 

therapy in malignant gliomas revisited. Acta Neuropathol. Dec 

2012;124(6):763-775. 

16. Wen PY, Schiff D, Kesari S, Drappatz J, Gigas DC, Doherty L. Medical 

management of patients with brain tumors. Journal of neuro-oncology. Dec 

2006;80(3):313-332. 

17. Jaeckle KA, Decker PA, Ballman KV, et al. Transformation of low grade glioma 

and correlation with outcome: an NCCTG database analysis. Journal of neuro-

oncology. Aug 2011;104(1):253-259. 



 22 

18. Stupp R, Mason W, van den Bent M, et al. Radiotherapy plus concomitant and 

adjuvant temozolomide for glioblastoma. N Engl J Med. Mar 

2005;352(10):987-996. 

19. Haar CP, Hebbar P, Wallace GC, et al. Drug resistance in glioblastoma: a mini 

review. Neurochem Res. Jun 2012;37(6):1192-1200. 

20. Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL. Epidemiology of brain 

tumors. Neurol Clin. Nov 2007;25(4):867-890, vii. 

21. Bondy ML, Scheurer ME, Malmer B, et al. Brain tumor epidemiology: 

consensus from the Brain Tumor Epidemiology Consortium. Cancer. Oct 

2008;113(7 Suppl):1953-1968. 

22. Wiemels JL, Wiencke JK, Patoka J, et al. Reduced immunoglobulin E and 

allergy among adults with glioma compared with controls. Cancer Res. Nov 

2004;64(22):8468-8473. 

23. Huse J, Holland E. Targeting brain cancer: advances in the molecular 

pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. May 

2010;10(5):319-331. 

24. Brennan CW, Verhaak RG, McKenna A, et al. The Somatic Genomic Landscape 

of Glioblastoma. Cell. Oct 2013;155(2):462-477. 

25. Aldape K, Burger PC, Perry A. Clinicopathologic aspects of 1p/19q loss and 

the diagnosis of oligodendroglioma. Arch Pathol Lab Med. Feb 

2007;131(2):242-251. 

26. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human 

glioblastoma multiforme. Science. Sep 2008;321(5897):1807-1812. 



 23 

27. Killela PJ, Reitman ZJ, Jiao Y, et al. TERT promoter mutations occur frequently 

in gliomas and a subset of tumors derived from cells with low rates of self-

renewal. Proceedings of the National Academy of Sciences of the United States 

of America. Apr 2013;110(15):6021-6026. 

28. Hartmann C, Meyer J, Balss J, et al. Type and frequency of IDH1 and IDH2 

mutations are related to astrocytic and oligodendroglial differentiation and 

age: a study of 1,010 diffuse gliomas. Acta Neuropathol. Oct 

2009;118(4):469-474. 

29. Arita H, Narita Y, Fukushima S, et al. Upregulating mutations in the TERT 

promoter commonly occur in adult malignant gliomas and are strongly 

associated with total 1p19q loss. Acta Neuropathol. Aug 2013;126(2):267-

276. 

30. Nonoguchi N, Ohta T, Oh JE, Kim YH, Kleihues P, Ohgaki H. TERT promoter 

mutations in primary and secondary glioblastomas. Acta Neuropathol. Aug 

2013. 

31. Kannan K, Inagaki A, Silber J, et al. Whole-exome sequencing identifies ATRX 

mutation as a key molecular determinant in lower-grade glioma. Oncotarget. 

Oct 2012;3(10):1194-1203. 

32. Singh D, Chan JM, Zoppoli P, et al. Transforming fusions of FGFR and TACC 

genes in human glioblastoma. Science. Sep 2012;337(6099):1231-1235. 

33. Frattini V, Trifonov V, Chan JM, et al. The integrated landscape of driver 

genomic alterations in glioblastoma. Nat Genet. Aug 2013. 



 24 

34. Luwor RB, Stylli SS, Kaye AH. The role of Stat3 in glioblastoma multiforme. J 

Clin Neurosci. Jul 2013;20(7):907-911. 

35. Walsh KM, Anderson E, Hansen HM, et al. Analysis of 60 reported glioma risk 

SNPs replicates published GWAS findings but fails to replicate associations 

from published candidate-gene studies. Genet Epidemiol. Feb 

2013;37(2):222-228. 

36. Sanson M, Hosking FJ, Shete S, et al. Chromosome 7p11.2 (EGFR) variation 

influences glioma risk. Human molecular genetics. Jul 2011;20(14):2897-

2904. 

37. Shete S, Hosking FJ, Robertson LB, et al. Genome-wide association study 

identifies five susceptibility loci for glioma. Nat Genet. Aug 2009;41(8):899-

904. 

38. Stacey SN, Sulem P, Jonasdottir A, et al. A germline variant in the TP53 

polyadenylation signal confers cancer susceptibility. Nat Genet. Nov 

2011;43(11):1098-1103. 

39. Wrensch M, Jenkins RB, Chang JS, et al. Variants in the CDKN2B and RTEL1 

regions are associated with high-grade glioma susceptibility. Nat Genet. Aug 

2009;41(8):905-908. 

40. Godard S, Getz G, Delorenzi M, et al. Classification of human astrocytic 

gliomas on the basis of gene expression: a correlated group of genes with 

angiogenic activity emerges as a strong predictor of subtypes. Cancer Res. Oct 

2003;63(20):6613-6625. 



 25 

41. Nutt CL, Mani DR, Betensky RA, et al. Gene expression-based classification of 

malignant gliomas correlates better with survival than histological 

classification. Cancer Res. Apr 2003;63(7):1602-1607. 

42. Liang Y, Diehn M, Watson N, et al. Gene expression profiling reveals 

molecularly and clinically distinct subtypes of glioblastoma multiforme. 

Proceedings of the National Academy of Sciences of the United States of 

America. Apr 2005;102(16):5814-5819. 

43. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade 

glioma predict prognosis, delineate a pattern of disease progression, and 

resemble stages in neurogenesis. Cancer Cell. Mar 2006;9(3):157-173. 

44. Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis 

identifies clinically relevant subtypes of glioblastoma characterized by 

abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. Jan 

2010;17(1):98-110. 

45. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational 

definition of epigenetics. Genes Dev. Apr 2009;23(7):781-783. 

46. Bird A. Perceptions of epigenetics. Nature. May 2007;447(7143):396-398. 

47. Turner BM. Cellular memory and the histone code. Cell. Nov 

2002;111(3):285-291. 

48. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. May 2007;61(5 

Pt 2):24R-29R. 

49. Costa FF. Non-coding RNAs, epigenetics and complexity. Gene. Feb 

2008;410(1):9-17. 



 26 

50. Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell 

Genet. 1975;14(1):9-25. 

51. Holliday R. The inheritance of epigenetic defects. Science. Oct 

1987;238(4824):163-170. 

52. Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev 

Biochem. 2012;81:97-117. 

53. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. 

Nat Rev Genet. Mar 2013;14(3):204-220. 

54. Weinhold B. Epigenetics: the science of change. Environ Health Perspect. Mar 

2006;114(3):A160-167. 

55. Portela A, Esteller M. Epigenetic modifications and human disease. Nat 

Biotechnol. Oct 2010;28(10):1057-1068. 

56. Bibikova M, Barnes B, Tsan C, et al. High density DNA methylation array with 

single CpG site resolution. Genomics. Oct 2011;98(4):288-295. 

57. Bibikova M, Le J, Barnes B, et al. Genome-wide DNA methylation profiling 

using Infinium® assay. Epigenomics. Oct 2009;1(1):177-200. 

58. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific 

PCR: a novel PCR assay for methylation status of CpG islands. Proceedings of 

the National Academy of Sciences of the United States of America. Sep 

1996;93(18):9821-9826. 

59. Tost J, Gut IG. DNA methylation analysis by pyrosequencing. Nat Protoc. 

2007;2(9):2265-2275. 



 27 

60. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome 

integrates intrinsic and environmental signals. Nat Genet. Mar 2003;33 

Suppl:245-254. 

61. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. Jan 

2002;16(1):6-21. 

62. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986 

May 15-21 1986;321(6067):209-213. 

63. Aran D, Sabato S, Hellman A. DNA methylation of distal regulatory sites 

characterizes dysregulation of cancer genes. Genome Biol. Mar 

2013;14(3):R21. 

64. Doi A, Park IH, Wen B, et al. Differential methylation of tissue- and cancer-

specific CpG island shores distinguishes human induced pluripotent stem 

cells, embryonic stem cells and fibroblasts. Nat Genet. Dec 

2009;41(12):1350-1353. 

65. Ehrlich M, Gama-Sosa MA, Huang LH, et al. Amount and distribution of 5-

methylcytosine in human DNA from different types of tissues of cells. Nucleic 

acids research. Apr 1982;10(8):2709-2721. 

66. Rakyan VK, Down TA, Thorne NP, et al. An integrated resource for genome-

wide identification and analysis of human tissue-specific differentially 

methylated regions (tDMRs). Genome Res. Sep 2008;18(9):1518-1529. 

67. Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as 

surrogate measures of cell mixture distribution. BMC Bioinformatics. 

2012;13:86. 



 28 

68. Ladd-Acosta C, Pevsner J, Sabunciyan S, et al. DNA methylation signatures 

within the human brain. Am J Hum Genet. Dec 2007;81(6):1304-1315. 

69. Feinberg AP, Vogelstein B. Hypomethylation of ras oncogenes in primary 

human cancers. Biochemical and biophysical research communications. Feb 

1983;111(1):47-54. 

70. Gama-Sosa MA, Slagel VA, Trewyn RW, et al. The 5-methylcytosine content of 

DNA from human tumors. Nucleic acids research. Oct 1983;11(19):6883-

6894. 

71. Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. Dec 

2009;1(2):239-259. 

72. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for 

early oncogenic pathway addiction? Nat Rev Cancer. Feb 2006;6(2):107-116. 

73. Esteller M. Epigenetics in cancer. N Engl J Med. Mar 2008;358(11):1148-1159. 

74. Esteller M. CpG island hypermethylation and tumor suppressor genes: a 

booming present, a brighter future. Oncogene. Aug 2002;21(35):5427-5440. 

75. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat 

Rev Genet. Jun 2002;3(6):415-428. 

76. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association 

studies for common human diseases. Nat Rev Genet. Aug 2011;12(8):529-541. 

77. Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the 

time is now. Crit Rev Oncol Hematol. Oct 2008;68(1):1-11. 

78. Issa JP, Gharibyan V, Cortes J, et al. Phase II study of low-dose decitabine in 

patients with chronic myelogenous leukemia resistant to imatinib mesylate. 



 29 

Journal of clinical oncology : official journal of the American Society of Clinical 

Oncology. Jun 2005;23(17):3948-3956. 

79. Kaminskas E, Farrell A, Abraham S, et al. Approval summary: azacitidine for 

treatment of myelodysplastic syndrome subtypes. Clinical cancer research : 

an official journal of the American Association for Cancer Research. May 

2005;11(10):3604-3608. 

80. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study 

of the combination of 5-aza-2'-deoxycytidine with valproic acid in patients 

with leukemia. Blood. Nov 2006;108(10):3271-3279. 

81. Nagarajan RP, Costello JF. Epigenetic mechanisms in glioblastoma multiforme. 

Semin Cancer Biol. Jun 2009;19(3):188-197. 

82. Cadieux B, Ching TT, VandenBerg SR, Costello JF. Genome-wide 

hypomethylation in human glioblastomas associated with specific copy 

number alteration, methylenetetrahydrofolate reductase allele status, and 

increased proliferation. Cancer Res. Sep 2006;66(17):8469-8476. 

83. Natsume A, Kondo Y, Ito M, Motomura K, Wakabayashi T, Yoshida J. 

Epigenetic aberrations and therapeutic implications in gliomas. Cancer Sci. 

Jun 2010;101(6):1331-1336. 

84. Martinez R, Esteller M. The DNA methylome of glioblastoma multiforme. 

Neurobiol Dis. Jul 2010;39(1):40-46. 

85. Amatya VJ, Naumann U, Weller M, Ohgaki H. TP53 promoter methylation in 

human gliomas. Acta Neuropathol. Aug 2005;110(2):178-184. 



 30 

86. Baeza N, Weller M, Yonekawa Y, Kleihues P, Ohgaki H. PTEN methylation and 

expression in glioblastomas. Acta Neuropathol. Nov 2003;106(5):479-485. 

87. Bello MJ, Rey JA. The p53/Mdm2/p14ARF cell cycle control pathway genes 

may be inactivated by genetic and epigenetic mechanisms in gliomas. Cancer 

genetics and cytogenetics. Jan 2006;164(2):172-173. 

88. Costello JF, Berger MS, Huang HS, Cavenee WK. Silencing of p16/CDKN2 

expression in human gliomas by methylation and chromatin condensation. 

Cancer Res. May 1996;56(10):2405-2410. 

89. Watanabe T, Yokoo H, Yokoo M, Yonekawa Y, Kleihues P, Ohgaki H. 

Concurrent inactivation of RB1 and TP53 pathways in anaplastic 

oligodendrogliomas. J Neuropathol Exp Neurol. Dec 2001;60(12):1181-1189. 

90. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from 

temozolomide in glioblastoma. N Engl J Med. Mar 2005;352(10):997-1003. 

91. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair 

gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J 

Med. Nov 2000;343(19):1350-1354. 

92. Martini M, Pallini R, Luongo G, Cenci T, Lucantoni C, Larocca LM. Prognostic 

relevance of SOCS3 hypermethylation in patients with glioblastoma 

multiforme. International journal of cancer. Journal international du cancer. 

Dec 2008;123(12):2955-2960. 

93. Lindemann C, Hackmann O, Delic S, Schmidt N, Reifenberger G, 

Riemenschneider MJ. SOCS3 promoter methylation is mutually exclusive to 



 31 

EGFR amplification in gliomas and promotes glioma cell invasion through 

STAT3 and FAK activation. Acta Neuropathol. Aug 2011;122(2):241-251. 

94. Issa J. CpG island methylator phenotype in cancer. Nat Rev Cancer. Dec 

2004;4(12):988-993. 

95. Ogino S, Kawasaki T, Kirkner G, Loda M, Fuchs C. CpG island methylator 

phenotype-low (CIMP-low) in colorectal cancer: possible associations with 

male sex and KRAS mutations. J Mol Diagn. Nov 2006;8(5):582-588. 

96. Shen L, Toyota M, Kondo Y, et al. Integrated genetic and epigenetic analysis 

identifies three different subclasses of colon cancer. Proceedings of the 

National Academy of Sciences of the United States of America. Nov 

2007;104(47):18654-18659. 

 

 

 

 

 

 

 

 

 



 32 

 

 

 

 

 

 

 

 

 

Chapter 2 

DNA Methylation, Isocitrate Dehydrogenase Mutation, 

 and Survival in Glioma 

Brock C. Christensen, Ashley A. Smith, Shichun Zheng, Devin C. Koestler, E. Andres 

Houseman, Carmen J. Marsit, Joseph L. Wiemels, Heather H. Nelson, Margaret R. 

Karagas, Margaret R. Wrensch, Karl T. Kelsey, John K. Wiencke
 

BCC and AAS contributed equally to the work. 

MRW, KTK,
 
and JKW are joint lead investigators. 

 

 

 Journal of National Cancer Institute; January 19, 2011; 103:143-153 

 

 

 

 

 

 



 33 

DNA Methylation, Isocitrate Dehydrogenase Mutation, and Survival in Glioma 

Brock C. Christensen, Ashley A. Smith, Shichun Zheng, Devin C. Koestler, E. Andres 

Houseman, Carmen J. Marsit, Joseph L. Wiemels, Heather H. Nelson, Margaret R. 

Karagas, Margaret R. Wrensch, Karl T. Kelsey, John K. Wiencke 

 

Affiliations of authors: Department of Pathology and Laboratory Medicine (BCC, AAS, 

CJM, KTK); Department of Community Health, Brown University, Providence, RI 

02912, USA (BCC, DCK, EAH, KTK); Department of Neurological Surgery, Helen 

Diller Family Cancer Center (SZ, MRW, JKW); Department of Epidemiology and 

Biostatistics, University of California San Francisco, San Francisco, CA (JLW); 

Department of Biostatistics, Harvard School of Public Health, Boston, MA (EAH); 

Masonic Cancer Center, Division of Epidemiology and Community Health, University of 

Minnesota, Minneapolis, MN (HHN); Section of Biostatistics and Epidemiology, 

Department of Community and Family Medicine, Dartmouth Medical School, Lebanon, 

NH (MRK).  

BCC and AAS contributed equally to the work.  

MRW, KTK,
 
and JKW are joint lead investigators.  

 

Correspondence to: John K. Wiencke, PhD, Department of Neurological Surgery, Helen 

Diller Family Cancer Center, University of California San Francisco, San Francisco, CA 

91458 (e-mail: John.Wiencke@UCSF.edu) 

Funding  

mailto:John.Wiencke@UCSF.edu


 34 

This study was funded by the National Institute of Health, grant numbers R01CA52689 

(to MRW) and P50CA097257 (to MRW and JKW); R01CA078609, R01CA121147, 

R01CA126939, and R01CA100679 (to KTK); R01ES06717 and R01CA126831 (to 

JKW); P30CA077598 (to HHN); and Tobacco-Related Diseases Research Program, grant 

number 18CA-0127 (to JLW) 

Notes 

The funders did not have any role in the study design, collection of data, interpretation of 

the results, preparation of the manuscript, or the decision to submit the manuscript for 

publication.  

 

 



 35 

Context and Caveats  

Prior knowledge 

Human gliomas often have mutations in the isocitrate dehydrogenase genes (IDH1 and 

IDH2). IDH mutation is associated with improved survival in glioma patients. Epigenetic 

alterations like DNA methylation at CpG dinucleotides play an important role in gene 

regulation. Integration of genetic and epigenetic data is important for a better 

understanding of glioma development. 

Study design 

DNA methylation profile of CpG loci and methylation class of 131 glioma and seven 

non-glioma brain tissues were determined. The association between IDH mutation and 

methylation class was analyzed. Survival analysis of patients carrying IDH mutation vs. 

wild-type IDH was also performed.     

Contribution 

CpG loci showed differential methylation between glioma and non-glioma tissues. 

Statistically significant associations were found between DNA methylation class and 

histologic subtypes, and between DNA methylation class and IDH mutation of gliomas. 

Patients carrying IDH mutation in gliomas showed improved survival compared with 

patients carrying IDH wild-type after adjustment for age and grade-specific tumor 

histology. 

Implications 

A distinct methylation pattern in glioma tissues is associated with IDH mutation. 
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Limitations 

Mutation data was not available for all tissue samples, which may have limited the 

statistical power of the analyses.  
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Abstract 

Background: Although much is known about molecular and chromosomal 

characteristics that distinguish glioma histologic subtypes, DNA methylation patterns of 

gliomas and their association with other tumor features such as mutation of isocitrate 

dehydrogenase (IDH) genes, has only recently begun to be investigated. 

Methods: DNA methylation of glioblastomas, astrocytomas, oligodendrogliomas, 

oligoastrocytomas, ependymomas, and pilocytic astrocytomas (n = 131) from the Brain 

Tumor Research Center at the University of California San Francisco, as well as non-

tumor brain tissues (n = 7), was assessed with the Illumina GoldenGate methylation 

array. Methylation data were subjected to recursively partitioned mixture modeling 

(RPMM) to derive methylation classes. Differential DNA methylation between tumor 

and non-tumor was also assessed. The association between methylation class and IDH 

mutation (IDH1 and IDH2 isoforms) was tested using univariate and multivariable 

analysis for tumors with available substrate for sequencing (n = 95). Survival of glioma 

patients carrying mutant IDH (n = 56) was compared with patients carrying wild-type 

IDH (n = 39) by using a multivariable Cox proportional hazards model and Kaplan-Meier 

analysis. All statistical tests were two-sided. 

Results: We observed a statistically significant association between RPMM methylation 

class and glioma histologic subtype (P < 2.2  10
-16

). Compared with non-tumor brain 

tissues, across glioma tumor histologic subtypes, the differential methylation ratios of 

CpG loci were statistically significantly different (Permutation P < .0001). Methylation 

class was strongly associated with IDH mutation in gliomas (P = 3.0  10
-16

). Compared 

with glioma patients whose tumors harbored wild-type IDH, patients whose tumors 
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harbored mutant IDH showed statistically significantly improved survival (HR of death = 

0.27, 95% confidence interval [CI] = 0.10 to 0.72).  

Conclusion: The homogeneity of methylation classes for gliomas with IDH mutation, 

despite their histologic diversity, suggests that IDH mutation is associated with a distinct 

DNA methylation phenotype and an altered metabolic profile in glioma.  
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Introduction 

 Malignant glioma is the most common form of primary malignant brain tumor and the 

glioma histologic subtypes include glioblastomas, grades 2 and  3 astrocytomas, grades 2 

and  3 oligodendrogliomas, grades 2 and 3 oligoastrocytomas, ependymomas, and 

pilocytic astrocytomas (1). Presently, there are limited treatment options for glioma; 

glioblastoma, the most common glioma subtype, remains an incurable disease with a 

median survival of 15 months, even with radiation and temozolomide therapy (2). 

 A comprehensive appreciation of the integrated genomics and epigenomics of 

glioma is needed to better understand the multiple cellular pathways involved in their 

development, establish markers of resistance to traditional therapies, and contribute to the 

development of targeted therapies. Epigenetic alterations can alter gene expression, gene 

expression potential, or the regulation of gene function, and thereby contribute to 

gliomagenesis. Arguably, the most widely studied epigenetic mark is DNA methylation 

that occurs at cytosine residues in the context of CpG dinucleotides. Approximately half 

of human genes have concentrations of CpGs in their promoter regions and the 

methylation state of these and other gene-associated CpGs are widely regarded as critical 

indicators of gene regulation.      

 Since 2008, sequencing of gliomas has identified mutations in the isocitrate 

dehydrogenase 1 and 2 (IDH1 and IDH2) genes (3-5). The IDH1 and IDH2 enzymes 

convert isocitrate to alpha (α)–ketoglutarate producing NADPH and participate in cellular 

metabolic processes such as glucose sensing, lipid metabolism, and oxidative respiration 

(reviewed in [6]). Mutations in IDH1 are consistently found in codon 132 for arginine 

(R132), and mutations in IDH2 consistently occur at the analogous amino acid R172 (3, 
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7). Mutations in IDH1 and IDH2 (IDH when referring to both) are unlike most cancer-

associated enzyme mutations because they confer neomorphic enzyme activity rather 

than inactivating, or constitutively activating, the enzyme. The mutant form of IDH  

enzymes convert α-ketoglutarate to 2-hydroxyglutarate in an NADPH-dependent manner, 

and via an unknown mechanism contribute to the pathophysiology of gliomas and 

leukemias (5, 7, 8). IDH mutations occur in approximately 80% of grades 2-3 gliomas 

and secondary glioblastomas, but less than 10% of primary glioblastomas (4, 5). In 

gliomas, IDH mutation has been associated with genetic alterations in other genes 

including the tumor suppressors and oncogenes (5). IDH mutation also has been 

associated with younger age and improved survival in glioma patients (5, 9).   

 The somatic genetic signature of any individual tumor is critical to assessing its 

clinical and etiologic character. Similarly, the profile of somatic epigenetic alterations is 

central to forming a complete understanding of the pattern of disrupted cellular 

functioning responsible for the deadly behavior of gliomas. Major advances in the 

clinical role of epigenetics in gliomas include the findings that promoter methylation 

silencing of the O-6-methylguanine-DNA methyltransferase (MGMT) gene is associated 

with response to temozolomide treatment (10). Epigenetic silencing of MGMT gene is 

found in approximately 80% of gliomas with mutant IDH1, compared with 

approximately 60% of gliomas with wild-type IDH1 (9). Other common alterations in 

gliomas are mutations in tumor protein p53 (TP53) (11) and amplification of the 

epidermal growth factor receptor (EGFR) oncogene (12). Better definitions of the 

somatic nature of gliomas should integrate both their genetic and epigenetic alterations. 

In this study, we assessed CpG methylation patterns, IDH mutation, TP53 mutation, and 
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EGFR amplification in histologically diverse gliomas to define epigenetic subgroups of 

potential clinical and etiologic relevance.  

 

Patients, Materials, and Methods 

Patients and Tissue Samples  

Fresh frozen tumor tissues of patients (n = 131) diagnosed with glioma between 1990 and 

2003 were obtained from the University of California San Francisco (UCSF) Brain 

Tumor Research Center Tissue Bank. Tumors were previously reviewed by UCSF 

neuropathologists to assign histologic subtypes and grades according to the World Health 

Organization classification for patients operated on at the UCSF Medical Center (1). 

Tumor samples were defined as secondary glioblastoma if the patients had previous 

histological diagnosis of a lower-grade glioma. Non-tumor brain tissue samples were 

obtained from cancer-free patients (n = 7) who underwent temporal lobe resection for 

treatment of epilepsy at the UCSF Medical Center. Patient ages were documented at the 

time of initial diagnosis. Other demographic and survival data were obtained from UCSF 

patient records and the California Cancer Registry. The Institutional Review Board 

approval certification was obtained from the UCSF Committee on Human Research, and 

subjects provided written, informed consent for tissue collection. 

 

Cell lines, Cell Culture, and Reagents 

A431 cells (a human epidermoid cancer cell line that is known to have EGFR 

amplification and overexpression) and HT29 cells (a human colon adenocarcinoma cell 

line without EGFR amplification) were obtained from American Type Culture Collection 
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(ATCC, Manassas, VA). Cell lines were maintained in Dulbecco's Modified Eagle's 

Medium and RPMI 1640 medium (both from Invitrogen, Carlsbad, CA), respectively, 

with 10% fetal bovine serum (Hyclone, Logan UT), at 37ºC in 5% CO2. When cultures 

reached 80% confluency, cells were harvested for DNA extraction. 

DNA Extraction, Bisulfite Modification, and Methylation Analysis  

Genomic DNA from 131 glioma tissue samples and seven non-tumor brain tissue 

samples was isolated from approximately 25 mg wet weight of each frozen tissue sample 

using QIAamp DNA mini kit  (Qiagen Inc., Valencia, CA), according to the 

manufacturer's instructions. DNA was eluted twice in a total of 100 µl of elution 

buffer. The same DNA extraction method was applied to A431 and HT29 cell lines that 

served as EGFR amplification controls.  

 For DNA methylation analysis, 1 g of genomic DNA was first subjected to 

bisulfite modification using the EZ DNA Methylation Kit (Zymo Research Corporation, 

Orange, CA), according to the manufacturer's instructions. Bisulfite modification 

converts unmethylated cytosine residues to uracil and preserves methylated cytosine 

residues as cytosines.  

GoldenGate DNA methylation bead arrays (Illumina Inc., San Diego, CA) were used to 

interrogate methylation of 1505 CpG loci associated with 803 cancer-related genes, 

according to the manufacturer's instructions. GoldenGate methylation arrays were used to 

analyze bisulfite-modified DNA from 131 glioma and 7 non-tumor samples for 

methylation, and processed at the UCSF Institute for Human Genetics, Genomics Core 

Facility. The GoldenGate array methylation data were deposited in the Gene Expression 

Omnibus and are publicly available (accession GSE20395). The Cancer Genome Atlas 
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(TCGA), a public data portal, was used to obtain GoldenGate methylation array data for 

validation of methylation classes. Quantitative methylation-specific polymerase chain 

reaction (PCR) (QMSP) was used to confirm methylation data from the GoldenGate array. 

Candidate genes were selected based on previous studies (13-16) that reported aberrant 

methylation in astrocytic glioma and included MGMT, Ras association domain family 

member 1 (RASSF1), PYD and CARD domain containing (PYCARD), homeobox A9 

(HOXA9), paternally expressed 3 (PEG3), and slit homolog 2 (SLIT2). CpGenome 

Universal Methylated DNA (Millipore, Billerica, MA) was bisulfite modified and used as 

a positive control for QMSP analysis. QMSP was performed using Applied Biosystems 

7900HT Fast Real-Time PCR System (Applied Biosystems, Carlsbad, CA). The reaction 

plate was prepared using the Beckman Coulter automated liquid handler-Biomex 3000 

(Beckman Coulter, Fullerton, CA). Each reaction contained 10.0 µL 2× Power SYBR 

Green PCR Master Mix (Applied Biosystems), 100-400 nM of forward and reverse 

primers (Supplementary Table 1, available online) and 25 ng of DNA template in a total 

reaction volume of 20 µL. For the amplification of RASSF1, 2–3% dimethyl sulfoxide 

(DMSO) was added to the reaction mix. PCR conditions are modified by different primer 

concentrations and DMSO was added to ensure that primer dimers and non-specific 

amplification products were not included in the threshold cycle (Ct) calculation. To 

confirm specificity of amplicons from QMSP, we performed dissociation curve analysis. 

The PCR conditions were: 95ºC for 10 minutes, and 40 cycles of 95ºC for 15 seconds, 

60ºC for 30 seconds, and 72ºC for 30 seconds. SYBR Green fluorescence data was 

collected only during the extension reaction at 72ºC. Ct values were calculated by the 

7900HT system software, and average relative quantification (RQ) values were obtained 
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for each sample using actin, beta (ACTB) amplification as the referent, where RQ = 

(target gene / ACTB) / (Universal methylation calibrator / ACTB). Spearman rank 

correlation coefficients (rho) and P values were calculated to assess the correlation 

between GoldenGate array data and QMSP results.  

 

Mutation analysis   

IDH mutation. The region spanning R132 codon of IDH1, and the region spanning R172 

codon of IDH2 were amplified by PCR with primers designed with Primer 3 sofware 

(v.0.4.0) with the exception of the forward sequencing primer, which was selected from 

Balss et al. (4). PCR reaction mixtures contained 10–25 ng DNA, 1 buffer, 0.2 mM 

dNTP mix, 0.2 µM forward and reverse primers, 0.04 units of HotStarTaq, and 1 mM 

MgCl2 (Qiagen Inc.), in a 25 L volume. The PCR conditions were: 95ºC for 10 minutes, 

40 cycles of 94ºC for 30 seconds, 60ºC for 30 seconds, and 72ºC for 1 minute. The 

resulting products were analyzed on a 1.5% agarose gel. DNA was purified using the 

QIAquick® PCR Purification Kit (Qiagen Inc.) and sent to Rhode Island Genomics and 

Sequencing Center at the University of Rhode Island, where it was sequenced in both 

directions using the BigDyeTerminator v3.1 Cycle Sequencing Kit (Applied Biosystems, 

Foster City, CA). Sequences were analyzed with the help of Applied Biosystems 

Sequence Scanner Software v1.0. All primers for IDH1 mutation analysis are listed in 

Supplementary Table 1, available online.  

 

TP53 mutation. For TP53 mutation analysis, PCR–single-strand conformation 

polymorphism technique was used, and DNA sequencing was done as previously 
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described (8). Primers for PCR amplification of fragments of exons 5 to 8 of TP53 are 

listed in Supplementary Table 1, available online. PCR reaction mixtures contained 50 ng 

DNA, 20 µmol/L dNTP, 10 mmol/L Tris-HCl (pH 9.0), 1.5 mmol/L MgCl2, 0.1% Triton 

X-100, 10 pmol of forward and reverse primers, 1 unit Taq (Perkin-Elmer Cetus, 

Norwalk, CT), and 0.2 µCi [
33

P] dCTP (DuPont New England Nuclear, Boston, MA), in 

a 30 µL volume. DNA with TP53 mutation confirmed by sequencing was included as 

positive control. The PCR reaction was carried out using 35 cycles: 94ºC for 30 seconds, 

annealed for 30 seconds at 58 ºC for exons 5 and 8, and 60 ºC for exons 6 and 7 (primers 

listed in Supplementary Table 1, available online) and 72ºC for 1 minute. Three 

microliters of PCR product were mixed with 2 µL of 0.1 N NaOH and then mixed with 5 

µL of gel loading buffer solution (United States Biochemical Corp. Cleveland, OH) and 

heated at 94ºC for 4 minutes. DNA was analyzed on 6% nondenatured polyacrylamide 

gel, supplemented with 10% glycerol. Electrophoresis was performed at room 

temperature for 20 hours and exposed to autoradiography films for 16 hours for detection 

of bands. Direct sequencing of PCR fragments for both DNA strands was done on all 

tumor DNAs that showed aberrant migration patterns on single-strand conformation 

polymorphism gel to determine the corresponding DNA sequences using dsDNA cycle 

sequencing system (Life Technologies, Gaithersburg, MD), as described in Wiencke et al. 

(17).  

 

EGFR amplification. EGFR amplification was measured by a quantitative PCR method 

using the ABI 7900 Real-Time PCR system (Applied Biosystems) and the commonly 

used DNA-binding dye, SYBR Green I, which has been shown to be equivalent to 
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TaqMan PCR assay for the assessment of gene copy number (18). Quality control 

measures for the real-time SYBR green assay included running triplicate determinations 

for both EGFR and control gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 

DNA from A431 and HT29 cell lines, with known copy number states for EGFR, served 

as positive and negative controls, respectively, for amplification.  

 

Statistical Analysis 

Data assembly. Methylation data were assembled with BeadStudio methylation software 

from Illumina. All GoldenGate methylation array data points are represented by 

fluorescent signals
 
(Cy dyes) from both methylated (Cy5) and unmethylated (Cy3) alleles. 

The methylation level, designated as beta (β) is calculated as β = (max[Cy5, 0])/(|Cy3| +
 

|Cy5| + 100), in which the average β value is derived from the approximately 30 replicate 

methylation measurements, because each CpG probe set is present on the array and 

measured in each sample approximately 30 times. Raw average β values were analyzed 

without normalization as recommended by Illumina. At each CpG locus, for each tissue 

DNA sample, the detection P value was used to determine sample performance; all 

samples had detection P values less than 1  10
5

 at more than 75% of CpG loci and 

passed performance criteria. There were 8 CpG loci that had a median detection P value 

of greater than .05, and these 8 CpGs were excluded from the analysis. All CpG loci on 

the X chromosome were excluded from analysis. The final dataset contained 1413 

autosomal CpG loci associated with 773 genes. For each CpG locus, the differential 

methylation values (delta-beta [Δβ]) were calculated by subtracting the average β value 
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of tumors from the mean β value of the seven non-tumor brain samples. Subsequent 

analyses were carried out using the R software (19). All statistical tests were two-sided. 

 

Unsupervised Clustering, Recursively Partitioned Mixture Modeling, and Survival. 

Hierarchical clustering of the DNA methylation data was performed using the R function 

hclust with Euclidean distance metric and Ward linkage. To discern and describe the 

relationships between CpG methylation data and patient and tumor covariates, a modified 

model-based form of unsupervised clustering known as recursively partitioned mixture 

modeling (RPMM), was used as described in Houseman et al. (20) and as used in 

Christensen et al. (21). The analysis of associations between methylation class 

(categorical) and individual categorical covariates was performed using the Fisher exact 

test. To test for association between methylation class and continuous covariates, a 

permutation test was run with the Kruskal-Wallis test statistic, and a likelihood ratio test 

was used for comparing the association between methylation class and IDH mutation to a 

model including age and histology. To test for associations between IDH mutation and 

grade-specific tumor histology, and IDH mutation and tumor grade, Fisher’s exact tests 

were used. To test for associations between IDH mutation and primary vs. secondary 

glioblastoma, IDH mutation and TP53 mutation, and IDH mutation and EGFR 

amplification, Chi-square tests were used. The assumption of proportionality for Cox 

proportional hazards modeling was verified by calculating Pearson correlation 

coefficients for the corresponding set of Schoenfeld residuals with a transformation of 

time based on the Kaplan-Meier estimate of the survival function (22), and graphically by 

plotting log(survival time) vs. log(-log[survival as a function of time, t]).  
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Locus-by-locus analysis. To examine differential methylation between tumor and non-

tumor tissues, gliomas were stratified by grade-specific histologic subtypes, and 

individual CpG loci were compared between subtypes of glioma and non-tumor samples 

using a Wilcoxon rank-sum test. Because this results in the simultaneous comparison of 

all CpG loci between glioma subtypes and non-tumor sample types, false discovery rate 

estimation and Q-values computed by the qvalue package in R (23) were used to adjust 

for multiple testing. Differentially methylated CpGs were counted as hyper- or 

hypomethylated if both the tumor vs. non-tumor Q less than .05 and the median 

methylation value |Δβ| greater than 0.2. An equivalent approach was used in the analysis 

of differential methylation for gliomas with mutant or wild-type IDH, compared with 

non-tumor tissues. 

 

Pathway Analysis. A canonical pathway analysis was conducted with the use of 

Ingenuity Pathway Analysis software (Ingenuity Systems, Redwood City, CA). CpG 

gene-loci associated with the Illumina GoldenGate methylation array were used as 

reference and loci from differential methylation analysis, as described later in the article, 

were compared. The statistical significance of gene-locus enrichment within canonical 

pathways was measured with a Fisher’s exact test. 
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Results 

Unsupervised Clustering and Modeling of Glioma and Non-Tumor DNA 

Methylation Data 

Histological grade and patient demographic data for the 131 gliomas and patient 

demographic data for the seven non-tumor brain tissues are presented in Table 1. To 

characterize DNA methylation of gliomas and non-tumor brain tissues, the bisulfite-

modified DNA samples were hybridized to the GoldenGate DNA methylation array. 

Unsupervised clustering of DNA methylation data from 1413 autosomal CpG loci 

showed that non-tumor brain tissues cluster with each other and are distinct from tumor 

tissues (Figure 1, A). Furthermore, we observed that oligodendrogliomas and 

astrocytomas generally clustered together and demonstrated a greater number of 

methylated loci relative to ependymomas, pilocytic astrocytomas, as well as non-tumor 

brain tissues. Concomitantly, glioblastomas (also known as grade IV astrocytoma), 

predominantly clustered together at the bottom of the heatmap (Figure 1, A) and 

displayed more hypermethylated CpG loci than ependymomas.  

 In order to further investigate the DNA methylation patterns of gliomas and non-

tumor brain tissue, we implemented an agnostic approach by applying a modified model-

based form of unsupervised clustering known as recursively partitioned mixture modeling 

(RPMM) (20). RPMM allows for precise inference regarding the potential covariates 

associated with intrinsic similarities and differences in CpG methylation by generating 

distinct classes of DNA methylation for the modeled samples based upon the DNA 

methylation array data. We applied RPMM clustering to all 131 tumors, which generated 

11 methylation classes (Figure 1, B). Methylation classes contain samples with DNA 
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methylation patterns that are most similar to each other, and samples with different DNA 

methylation patterns are distinguished by their membership in a different methylation 

class. Methylation class was statistically significantly associated with both tumor 

histologic subtype (P < 2.2  10
-16

) and grade (P < 2.2  10
-16

) (Supplementary Table 2, 

available online). 

 

Methylation Array and Methylation Class Validation 

Methylation data from GoldenGate arrays have been extensively validated by our group 

and others using a variety of methods (24-28). The methylation array data presented in 

this study were validated by correlating CpG methylation array data to quantitative 

methylation-specific PCR (QMSP) data for genes commonly methylated in gliomas—

MGMT, RASSF1, PYCARD, HOXA9, PEG3, and SLIT2 (Supplementary Table 3, 

available online). To determine the validity of association between histology and 

methylation class we utilized publicly available GoldenGate methylation array data for 

71 glioblastoma samples from The Cancer Genome Atlas (TCGA). Using the RPMM 

classification (Figure 1, B), we predicted the methylation class for each glioblastoma 

sample of TCGA and confirmed that 70 of 71 (99%) TCGA glioblastoma samples were 

classified in RPMM methylation classes that contained glioblastoma samples 

(Supplementary Table 2, available online). The identification numbers and the predicted 

RPMM methylation classes of TCGA tumors are listed in Supplementary Table 4, 

available online. 

 

 



 51 

Ratios of Hypermethylated to Hypomethylated CpG Loci and Tumor Histology  

We examined the differential methylation (Δβ) between tumor and non-tumor brain 

tissues and observed a striking pattern of the number of hyper- and hypomethylated CpG 

loci among different tumor subtypes (Figure 2, A). Glioblastomas showed a low ratio of 

hyper- to hypomethylated loci (ratio = 1.3), compared with the ratio for grades 2 and 3 

astrocytomas, grades 2 and 3 oligoastrocytomas, and grade 2 oligodendrogliomas (ratios 

= 3.7, 7.6, and 9.7, respectively). Conversely, ependymomas showed increased 

hypomethylation (ratio = 0.3). The ratios of hyper- to hypomethylated CpG loci were 

statistically significantly different across glioma tumor histologic subtypes (Permutation 

P<. 0001). Histology-related hyper- and hypomethylation patterns were also evident in 

unsupervised hierarchical clustering of Δβ methylation values for all 1413 autosomal 

CpG loci (Figure 2, B).  

 We next assessed the cellular pathways associated with statistically significantly 

differentially hypomethylated and (separately) hypermethylated CpG loci that were 

common among glioblastomas, astrocytomas, oligoastrocytomas, and 

oligodendrogliomas. There were 18 CpG loci with statistically significant differential 

hypomethylation (Q<. 05) and common among glioblastomas, astrocytomas, 

oligoastrocytomas, and oligodendrogliomas. An analysis of cellular pathways enriched 

among these 18 CpG loci, compared with all genes represented on the methylation array, 

revealed statistically significant enrichment of metabolism and biosynthesis pathways 

(Supplementary Table 5, available online). In addition, there were 35 statistically 

significantly differentially hypermethylated (Q<0.05) CpG loci common among 

glioblastomas, astrocytomas, oligoastrocytomas, and oligodendrogliomas. An analysis of 
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cellular pathways enriched among these 35 CpG loci showed that oxidative stress 

response and retinoic acid mediated apoptosis signaling pathways were statistically 

significantly enriched (Supplementary Table 5, available online). For each grade-specific 

tumor histology, all statistically significant differentially hypomethylated and 

hypermethylated CpG loci are detailed in Supplementary Tables 6 and 7, respectively, 

available online. 

 

Glioma Methylation Classes, IDH Mutation, and Survival  

The analysis of differentially methylated CpG loci in cellular pathways suggested that 

metabolic pathways as a group were commonly hypomethylated in gliomas. We 

hypothesized that genetic mutations in the metabolic pathways were associated with the 

observed DNA methylation phenotype. To test this hypothesis, we sequenced a subset of 

95 tumors with available DNA for IDH1 and IDH2 mutations. IDH2 mutation was 

detected in only two tumors, and IDH1 mutation was detected in 55 tumors (total IDH 

mutation prevalence = 58.9%). IDH mutations were more common in oligoastrocytoma, 

oligodendroglioma, or astrocytoma histologic subtypes than in glioblastomas, pilocytic 

astrocytomas, or ependymomas (P = 6.4  10
-9

); in lower-grade than higher-grade tumors 

(P = .01); in tumors with TP53 mutation compared with wild-type TP53 (P = .06); and in 

younger patients (mean age = 36.6 years vs. 47.4 years, P = .0009) (Table 2). However, 

IDH mutation was not associated with EGFR amplification (P = .10) (Table 2). 

Additionally, tumors with IDH mutation showed statistically significantly higher MGMT 

methylation (P = 3.6  10
-4

) (Supplementary Figure 1, available online).  
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 Next we investigated the number of statistically significantly differentially 

methylated CpG loci between tumor and non-tumor samples stratified by IDH mutation 

status. Tumors with IDH mutation revealed a striking contrast between the number of 

statistically significantly differentially hypermethylated loci, as well as the ratio of hyper- 

to hypomethylated loci in IDH mutant tumors vs. IDH wild-type tumors (mutant = 7.8 vs. 

wild-type = 0.22) (Figure 3, A). We utilized the statistically significantly differentially 

hypermethylated and hypomethylated CpG loci in IDH mutant tumors to conduct an 

enrichment analysis of cellular pathways. We found that cellular signaling pathways were 

hypermethylated, whereas metabolism and biosynthesis pathways that included starch 

and sucrose metabolism and pentose and glucuronate interconversion pathways, were 

hypomethylated in IDH mutant tumors (Supplementary Table 8, available online). 

 Methylation profiling with RPMM of the 95 gliomas with both methylation data 

and IDH mutation status resulted in nine methylation classes (Figure 3, B). Methylation 

classes were statistically significantly associated with patient age (Permutation P = 3.0  

10
-4

), histology (P<2.2  10
-16

), and grade (P = 6.0  10
-9

) (Supplementary Table 9, 

available online). IDH mutation was also strongly associated with methylation class (P = 

3.0  10
-16

) (Figure 3, C), and this association remained statistically significant when 

controlling for age and histology (likelihood ratio P<.0001). Only two methylation 

classes had IDH mutant tumors (class L and class RLLR), and greater than 98% of the 

tumors (all but one) in these two classes had an IDH mutation (Figure 3C). Furthermore, 

methylation classes L and RLLR were both more highly methylated than the other 

methylation classes (Figure 3, B).  
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Last, we examined the potential association between IDH mutation and patient 

survival among cases with available mutation data (n = 95) because previous studies 

reported increased survival among glioma patients with IDH mutation (3, 5).  In a 

multivariate Cox proportional hazards model controlling for age at diagnosis, sex, and 

grade-specific histology, we observed that patients whose tumors harbored IDH mutation 

showed statistically significantly better survival, compared with patients (n = 39) whose 

tumors harbored wild-type IDH (HR of death = 0.27, 95% confidence interval [CI] = 0.10 

to 0.72) (Figure 3, D, and Table 3).    

 

Discussion  

In this study, we demonstrate a distinct pattern of methylation across histological 

subtypes of glioma that is associated with genetic mutation in IDH gene loci. The two 

methylation classes associated with mutant IDH tumors had a homogeneous, 

hypermethylation-rich character compared to the methylation classes for tumors with 

wild-type IDH. Additionally, the tumors with wild-type IDH belonged to several distinct 

methylation classes. The contrast between a single homogenous hypermethylated profile 

and several heterogeneous hypomethylated profiles (associated with distinct histologic 

types) strongly suggests that IDH mutation “drives” the observed hypermethylated 

phenotype, irrespective of tumor histology. In support of this, we note that IDH1 

mutation is more robustly associated with methylation class, compared with the classical 

glioma tumor genetic markers like TP53 mutation and EGFR amplification. 

 IDH mutations are heterozygous and allow the enzyme normally responsible for 

conversion of isocitrate to α-ketoglutarate to convert α-ketoglutarate to 2-
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hydroxyglutarate in an NADPH–dependent manner and results in accumulation of 2-

hydroxyglutarate (7, 8). Despite the observed hypermethylated profile of IDH mutant 

tumors, analysis of cellular pathways showed hypomethylation of several metabolic 

pathways, potentially to compensate for mutation-related metabolic stress. Because the 

methylation profile of IDH mutant tumors is generally homogenous, it is possible that the 

hypermethylation phenotype is either selected for, or driven by, the hypomethylation of 

compensatory metabolic pathways, thus directly linking and temporally situating these 

events. The level of α-ketoglutarate has been shown to be slightly lower in IDH1 mutant 

gliomas, though this decrease was not statistically significant (8). However, IDH1 

localizes to the cytosol and peroxisomes, whereas IDH2 is localizes to mitochondria; and 

because most IDH mutations in gliomas are in IDH1, pan-cellular α-ketoglutarate levels 

may not represent available cytosolic α-ketoglutarate levels. Furthermore, IDH1 R132 

mutation has been shown to favor an active conformation of the enzyme, increase its 

affinity for NADPH, and favor reduction of α-ketoglutarate to 2-hydroxyglutarate over 

the conversion of isocitrate to α-ketoglutarate, which may reduce the availability of  

cytosolic α-ketoglutarate and NADPH (8). Hence, a potential mechanism responsible for 

the strong association between epigenetic profile and IDH mutation is related to 

potentially altered availability of α-ketoglutarate in these tumors. The Jumonji-domain-

containing histone demethylases require α-ketoglutarate as a substrate for their enzymatic 

activity (29) and altered activity of these histone demethylases could lead to aberrantly 

remodeled chromatin, potentially resulting in epigenetic alterations at the DNA-level as 

well. However, studies that are beyond the scope of this manuscript would be necessary 

to disentangle the complex networks of chromatin remodeling enzymes, their targets, and 
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their responses to altered levels of enzymatic substrate. Alternatively, (or perhaps in 

conjunction) lower concentrations of NADPH associated with mutant IDH1 (30) may 

result in a decreased capacity for reductive processes in defense against reactive oxygen 

species. Furthermore, α-ketoglutarate itself is a potent antioxidant (6) and its decreased 

availability in IDH mutant cells alone, or together with lower NADPH levels could drive 

the selection of cells with compensatory metabolic gene expression profiles mediated by 

altered epigenetic patterns including chromatin configuration and DNA methylation. 

Consistent with the suggestion that gene expression profiles are altered in association 

with DNA methylation related to IDH mutation, an analysis of glioblastoma gene 

expression subtypes showed that IDH mutation occurred almost exclusively proneural 

glioblastomas (31).   

 More broadly, and similar to the hypermethylation phenotype we describe here, 

hypermethylator phenotypes have previously been associated with other cancers. This 

phenotype was first described in colon cancer, and is commonly referred to as CpG 

Island Methylator Phenotype (CIMP) (32). Specifically, colorectal cancers can be divided 

in CIMP-high, CIMP-low, and non-CIMP based on the methylation of 5-8 specific gene 

promoters (33, 34). Similar to IDH in glioma, CIMP status in colon tumors has been 

associated with specific mutations; CIMP-High with BRAF and CIMP-Low and non-

CIMP with KRAS (35). Recently, Noushmehr et al. described a CIMP in glioblastomas, 

termed G-CIMP, which they found to be tightly associated with IDH1 mutation (36). In a 

number of lower-grade gliomas Noushmehr et al. performed methylation profiling of 

eight markers of G-CIMP and confirmed that IDH1 mutation is associated with G-CIMP 

in low-grade tumors, which is consistent with our array-based findings. Furthermore, 
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over 83% of G-CIMP positive glioblastomas with IDH1 mutation were of the proneural 

glioblastoma gene expression subtype (36), additional evidence supporting an association 

between distinct, IDH-related methylation in our data (from diverse glioma histologic 

subtypes), and a specific gene expression phenotype. In addition, MGMT methylation is 

often investigated in glioma since it has been associated with increased sensitivity to 

alkylating agents such as Temozolomide and can impact response to therapy (37). In fact, 

increased MGMT methylation can also distinguish CIMP-High and CIMP- Low from 

non-CIMP in colon cancer (38). Our results, consistent with previous work (9), 

demonstrate an association between increased MGMT methylation and IDH mutation. 

Finally, some studies have reported CIMP positive colon cancers to have a relatively 

better prognosis (39), and from both the work of Noushmehr et al. and ours, this appears 

to be consistent with the pattern of survival observed in CIMP gliomas.  

 The association between IDH mutation and a single methylation profile across 

several histologic subtypes suggests that genetic and epigenetic alterations are not 

independent. This observation also has profound implications for the development of new 

therapies for glioma. Although pharmacological inhibition of 2-hydroxyglutarate has 

been suggested as a possible approach to treating IDH mutant gliomas (40) such drugs do 

not yet exist. However, DNA methylation is a modifiable therapeutic target; DNA 

methyltransferase inhibitors and histone deacetylase inhibitors are in clinical trials and 

showing some promise for the treatment of hematopoietic malignancies (41-43). Our 

work suggests that a simple diagnostic test for DNA methylation (or mutation) can 

identify a class of tumors for which the modification of DNA methylation may have 

therapeutic efficacy. This class of tumors is not discernable by any of the classic 
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histopathologic or tumor markers for glioma. The recognition that IDH mutation has 

value as a clinical prognostic marker and is associated with a broad DNA methylation 

phenotype suggests that glioma therapeutic protocols that reverse DNA methylation 

should be pursued.   

 Our study has a few limitations. Although we studied 131 histologically diverse 

tumors, we did not have IDH mutation, TP53 mutation, and EGFR amplification data on 

all subjects and had somewhat limited statistical power to explore the relationships 

between IDH mutation and these alterations. Future investigations that include larger 

numbers of histologically diverse samples and higher-resolution methylation array 

techniques, along with measurements of other somatic alterations (IDH mutation, mRNA 

expression, and copy number) will afford a more comprehensive understanding of the 

molecular and chromosomal characteristics that distinguish glioma subtypes. 

Understanding whether these glioma molecular and chromosomal subtypes are 

differentially associated with glioma risk loci (44) also will help to understand the 

etiology and possibly outcomes of this often-catastrophic disease.        

 In summary, our work demonstrates a clear relationship between genetic and 

epigenetic events in human gliomas by associating IDH mutations with a homogenous 

methylation profile, and demonstrates that profiles of methylation differ by histologic 

subtype of disease. Additionally, and consistent with previous work, we also showed that 

patients with IDH mutation have a significantly improved survival. Advances in therapy 

for glioma may be realized by targeting DNA methylation. Much attention has recently 

been given to the utility of MGMT methylation in predicting response to therapy, and our 
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data further suggest that other DNA methylation markers may improve clinical 

assessment, guide therapies, and potentially uncover novel therapeutic avenues altogether.  
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Figure 1. Association between glioma histologic subtypes and DNA methylation pattern.  A) The average 

methylation beta (β) values of both gliomas (n = 131) and non-tumor tissue samples (n =7) were subjected 

to unsupervised hierarchical clustering based on Euclidean distance metric and Ward linkage and are 

shown in the heatmap. Each row represents a sample and each column represents a CpG locus (all 1413 

autosomal loci). The scale bar at the bottom shows the range of β values (0 to 1). Tissue histology and 

grade are defined in color keys next to the heatmap, on the left. GBM2 = secondary glioblastoma 

multiforme; GBM = primary glioblastoma multiforme; AS3 = grade 3 astrocytoma; AS2 = grade 2 

astrocytoma; OA3 = grade 3 oligoastrocytoma; OA2 = grade 2 oligoastrocytoma; OD2 = grade 2 

oligodendroglioma; EP = ependymoma; PA = pilocytic astrocytoma. B) Recursively partitioned mixture 

model (RPMM) of glioma and non-tumor brain tissue samples (n = 138). Methylation profile classes are 

stacked in rows separated by red lines and class height corresponds to the number of samples in each class. 

Class methylation at each CpG locus (columns) is the mean methylation for all samples in a class. To the 

left of the RPMM is the clustering dendrogram. In the heatmap and RPMM, blue designates methylated 

CpG loci (average β = 1), and yellow designates unmethylated CpG loci (average β = 0).  
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Figure 2. Differential methylation and the ratio of hyper- to hypomethylated loci in gliomas.  Differential 

the non-tumor brain samples (n = 7) for each CpG locus. A) The number of statistically significantly 

differentially hyper- and hypomethylated loci (Q<0.05 and |Δβ|>0.2), are plotted by grade-specific glioma 

histology. GBM = primary glioblastoma multiforme; GBM2 = secondary glioblastoma multiforme; AS3 = 

grade 3 astrocytoma; AS2 = grade 2 astrocytoma; OA3 = grade 3 oligoastrocytoma; OA2 = grade 2 

oligoastrocytoma; OD2 = grade 2 oligodendroglioma; EP = ependymoma; PA = pilocytic astrocytoma. B) 

Δβ values for all tumors (n = 131) were subjected to unsupervised hierarchical clustering based on 

Euclidean distance metric and Ward linkage. Each row represents a sample and each column represents a 

CpG locus (all 1413 autosomal loci). The scale bar at the top shows the range of Δβ values (-1 to 1). Tissue 

histology and grade are defined in color keys next to the heatmap on the left. In the heatmap blue 

designates differentially hypermethylated CpG loci in tumors (Δβ = 1), and yellow designates differentially 

hypomethylated CpG loci in tumors (Δβ = -1). 
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Figure 3. Association between IDH mutation and methylation phenotype in gliomas.  A) The number of 

statistically significantly differentially hyper- and hypomethylated loci (Q<0.05 and |Δβ|>0.2), are plotted 

by tumor IDH mutation status. B) Recursively partitioned mixture model (RPMM) of glioma samples with 

both methylation and mutation data (n = 95). Methylation profile classes are stacked in rows separated by 

red lines, class height corresponds to the number of samples in each class. Class methylation at each CpG 

locus (columns) is the mean methylation for all samples in a class where blue designates methylated CpG 

loci (average β = 1), and yellow designates unmethylated CpG loci (average β = 0). To the right of the 

RPMM is the clustering dendrogram. C) Methylation-class-specific IDH mutation status (Fisher’s P = 

3.0E-16). D) Kaplan-Meier survival probability strata for IDH mutant (red, n = 56) and IDH wild-type 

(black, n = 39) tumors, tick marks are censored observations and banding patterns represent 95% 

confidence intervals (CIs). 
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Table 1. Patient demographic and tumor characteristics* 

            

   Tumor histology and grade of glioma tissues (n=131)  

Characteristic 

Non-

tumor 
brain 

tissue 
(n=7) 

Primary 

Glioblasto
ma 

multiforme 
(n=20) 

Secondary 

Glioblasto
ma 

multiforme 
(n=12) 

Grade 3 
Aastrocyto

ma  (n=9) 

Grade 2 
Astrocyto

ma (n=20) 

Grade 3 
Oligoastrocyto

ma   (n=9) 

Grade 2 
Oligoastrocyto

ma  (n=22) 

Grade 2 
Oligodendroglio

ma  (n=20) 

Eppendymo
ma (n=15) 

Pilocytic 
Astrocyto

ma (n=4) 
 

Age at 
diagnosis, y                      

Median 33 55 34.5 40 40 40 33 35.5 41 28.5  

Range 23 - 42 21 - 78 18 - 49 23 - 57  21 - 64 26 - 52 19 - 48 20 - 59 19 - 70 22 - 39  

Sex, No. (%)            

Female 3 (43) 7 (35) 4 (33) 6 (67) 10 (50) 4 (44) 9 (41) 10 (50) 4 (27) 2 (50)  

Male 4 (57) 13 (65) 8 (67) 3 (33) 10 (50) 5 (56) 13 (59) 10 (50) 11 (73) 2 (50)  

Race, No. (%)                      

White - 18 (90) 11 (92) 5 (56) 17 (85) 7 (78) 16 (73) 18 (90) 12 (80) 4 (100)  

Hispanic - 1 (5) 1 (8) 2 (22) 1 (5) 0 1 (4) 1 (5) 2 (13) 0  
American 

Indian - 0 0 0 1 (5) 0 0 0 0 0  

Asian - 0 0 1 (11) 1 (5) 0 2 (9) 1 (5) 0 0  

Unknown 7 (100) 1 (5) 0 1 (11) 0 2 (22) 3 (14) 0 1 (7) 0  

Survival, d            

Median NA 759 1244 1933 1584 3007 2937 2532 2498 2789  

Range NA 108-2477 466-4973 516-4494 305-4043 603-6459 612-5843  4-5988 478-5983 948-3279  

*Non-tumor brain tissues (n=7) were obtained from cancer-free patients who underwent temporal lobe resection for treatment of 
epilepsy at the UCSF Medical Center. Glioma tissues (n=131) were obtained between 1990 and 2003 from the University of California 
San Francisco Brain Tumor Research Center Tissue Bank.  
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Table 2. Patient age, grade-specific glioma histology, grade, TP53 mutation, and EGFR 

amplification stratified by IDH mutation status* 
   

Patient age and tumor characteristics 

IDH Mutation† 

No  Yes 

Age at diagnosis, y  P = 9.0E-04‡ 
Median age (range) 49 (17–78) 35 (20–59) 
Mean age (SD) 47.4 (17.5) 36.6 (8.7) 

 
Tumor histology§, No. (%)    P = 6.4E-09||  

Grade 2 Astrocytoma  5 (26) 14 (74) 
Grade 3 Astrocytoma 0 (0) 4 (100) 
Ependymoma 14 (100) 0 (0) 
Primary Glioblastoma 15 (79) 4 (21) 
Secondary Glioblastoma (P=.005)¶ 1 (14) 6 (86) 
Grade 2 Oligoastrocytoma  2 (13) 13 (87) 

Grade 2 Oligodendroglioma  1 (6) 15 (94) 
 
Tumor grade, No. (%)   P = .01# 

1 - - 
2 22 (34) 42 (66) 
3 0 (0) 5 (100) 
4 16 (62) 10 (38) 

 
TP53 mutation, No. (%)   P = .06** 

No 27 (63) 16 (37) 
Yes 5 (31) 11 (69) 

 
EGFR amplification, No. (%)   P = .10†† 

No 28 (51) 27 (49) 
Yes 5 (100) 0 (0) 

* Analysis of patient age and tumor characteristics vs isocitrate dehydrogenase (IDH) gene 
mutation status. TP53 = tumor protein 53. EGFR = epidermal growth factor receptor.    

† IDH gene mutation was assessed by sequencing tumor DNA.   

‡ Association between age and IDH mutation was assessed using two-sided Student’s t-test. 
§ Tumors were previously reviewed by neuropathologists at the University of California San 
Francisco to assign histologic subtypes and grades according to the World Health Organization 
classification. 
|| Association between grade-specific histology and IDH mutation was assessed using two-sided 
Fisher’s exact test. 
¶ Association between primary vs. secondary glioblastoma and IDH mutation was assessed 
using two-sided χ

2 
test. 

# Association between tumor grade and IDH mutation was assessed using two-sided Fisher’s 
exact test 

** Association between TP53 mutation and IDH mutation was assessed using two-sided χ
2 
test. 

†† Association between EGFR amplification and IDH mutation was assessed using two-sided χ
2 

test. 
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Table 3.  Survival analysis using multivariable Cox proportional hazards model* 

Variable HR† (95% CI) 

Age 1.03 (1.00 to 1.06) 

 
Sex 

  

Female 1.0 (Referent) 

Male 0.73 (0.34 to 1.55) 

 
IDH mutation‡  

 

No 1.0 (Referent) 

Yes 0.27 (0.10 to 0.72) 

 
Histology§ 

  

Grade 2 astrocytoma  1.0 (Referent) 

Grade 3 astrocytoma  1.79 (0.35 to 9.13) 

Ependymoma 0.25 (0.06 to 1.06) 

Primary glioblastoma 1.77 (0.60 to 5.22) 

Secondary glioblastoma 3.94 (1.20 to 12.9) 

Grade 2 oligoastrocytoma  2.8 (0.06 to 1.39) 

Grade 3 oligoastrocytoma||  - 

Grade 2 oligodendroglioma  0.75 (0.21 to 2.69) 

* Cox proportional hazards model of survival included age, sex, IDH mutation, and grade-
specific histology. HR = hazards ratio, CI = confidence interval, IDH = isocitrate dehydrogenase 
gene. 

† Adjusted HR values.  

‡ IDH gene mutation was assessed by sequencing tumor DNA.  

§Tumors were previously reviewed by neuropathologists at the University of California San 
Francisco to assign histologic subtypes and grades according to the World Health Organization 
classification. 
|| n =1, HR = 1.4E-07, standard error = 4,910, confidence interval indeterminable. 
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Supplementary Figure 1. Association between IDH mutation and increased MGMT 

methylation.  IDH mutation status vs. relative MGMT methylation from quantitative methylation 

specific PCR demonstrates statistically significantly increased MGMT methylation among tumors 

with IDH mutation (P = 3.6 × 10
-4

). Black bars indicate mean relative MGMT methylation in IDH 

wild-type (0.04) and IDH mutant tumors (0.17).   
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Supplementary Table 1. Primer sequences for quantitative methylation specific polymerase chain reaction (QMSP), IDH mutation, TP53 

mutation, and EGFR amplification experiments* 

Experiment Forward  5'-3' Reverse 5'-3' Amplicon Size Reference 

QMSP 
    RASSF1A-M GTGTTAACGCGTTGCGTATC AACCCCGCGAACTAAAAACG 94 Yu et al. 2004 (1) 

MGMT3-M GATTTGGTGAGTGTTTGGGTC ACCACTCGAAACTACCACCG 79 This study 
HOXA9-M GAATTTAAGGGTTGTTCGGGC GACCGCTCAAAAAATACCGCG 81 This study 
PYCARD-M GGTTGTAGCGGGGTGAGC CGACGATCAAATTCTCCAACG 96 Stone et al. 2004 (2) 
PEG3-M TCGTCGTATTTGTCGTTAATTAATTC GCAAACGCTATCCTAATTAATTAAACG 123 Maegawa et al. 2004 (3) 
SLIT2-M TTTAGGTTGCGGCGGAGTC CAACGAACCCGTAACAAAACG 147 Dallol et al. 2003 (4) 
ACTB TGGTGATGGAGGAGGTTTAGTAAGT AACCAATAAAACCTACTCCTCCCTTAA 133 Harden et al. 2003 (5) 

IDH1  
    Amplification ATATTCTGGGTGGCACGGTCTT CCTTGCTTAATGGGTGTAGATACCA 227 This study 

Sequencing F CGGTCTTCAGAGAAGCCATT 

  
This study 

Sequencing R CATGCAAAATCACATTATTGCCAAC 

  
This study 

IDH2  
    Amplification TTCTGGTTGAAAGATGGCG CAGGTCAGTGGATCCCCTC  251 This study 

Sequencing F ATGGCGGCTGCAGTGGG 
  

This study 
Sequencing R CAGGTCAGTGGATCCCCTC  

  
This study 

TP53 
    Exon 5 GTTCACTTGTGCCCTGA AGCCCTGTCGTCTCT 

 
Wiencke et al. 2005 (6) 

Exon 6 CTCTGATTCCTCACTG CCAGAGACCCCAGTTGCAAACC 

 
Wiencke et al. 2005 (6) 

Exon 7 TGCTTGCCACAGGTCT ACAGCAGGCCAGTGT 

 
Wiencke et al. 2005 (6) 

Exon 8 AGGACCTGATTTCCTTAC TCTGAGGCATAACTGC 

 
Wiencke et al. 2005 (6) 

Gene 
Amplification 

    EGFR CCGCATTAGCTCTTAGACCCA GAATGCAACTTCCCAAAATGTGC 98 This study 

GAPDH CTCCCCACACACATGCACTTA CCTAGTCCCAGGGCTTTGATT 99 This study 

* RASSF1=Ras association domain family member 1, MGMT=O-6-methylguanine-DNA methyltransferase, HOXA9=homeobox A9, 
PYCARD=PYD and CARD domain containing, PEG3=paternally expressed 3, SLIT2=slit homolog 2, ACTB=actin, beta, IDH=isocitrate 
dehydrogenase, TP53=tumor protein 53, EGFR=epidermal growth factor receptor, GAPDH=glyceraldehyde-3-phosphate dehydrogenase.  
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Supplementary Table 2. Recursively partitioned mixture model methylation class by glioma histology and predicted methylation class 

membership for The Cancer Genome Atlas (TCGA) glioblastoma samples* 

            

Methylation Class AS2 AS3 EP GBM GBM2 OA2 OA3 OD2 PA   

 
 

Predicted TCGA GBM Class 

LLLLL 0 0 3 0 0 1 0 0 0   0 

LLLLR 0 0 3 0 0 0 0 0 0 
 

0 

LLLRL 0 0 5 0 0 0 0 0 0   0 

LLLRR 1 0 3 0 0 0 0 0 0 
 

0 

LLRLL 1 0 0 0 0 0 0 1 1   0 

LLRLR 0 0 0 0 0 1 0 0 3 
 

0 

LLRR 4 0 0 0 0 1 0 0 0   1 

LRL 0 1 0 14 0 0 0 0 0 
 

56 

LRR 0 0 1 3 8 0 0 0 0   10 

RL 12 8 0 2 4 10 4 3 0 
 

4 

RR 2 0 0 1 0 9 5 16 0   0 

* AS2=grade 2 Astrocytoma, AS3=grade 3 astrocytoma, EP=ependymoma, GBM=primary glioblastoma multiforme, GBM2=secondary 
glioblastoma multiforme, OA2=grade 2 oligoastrocytoma, OA3=grade 3 oligoastrocytoma, OD2=grade 2 oligodendroglioma, PA=pilocytic 
astrocytoma, TCGA=The Cancer Genome Atlas. Tumors were previously reviewed by UCSF neuropathologists to assign histologic subtypes and 
grades according to the World Health Organization classification.



 75 

 

* PEG3 = paternally expressed 3, HOXA9 = homeobox A9, MGMT = O-6-methylguanine-DNA 
methyltransferase, PYCARD = PYD and CARD domain containing, RASSF1 = Ras association 
domain family member 1, SLIT2 = slit homolog 2.  
† This column lists the Illumina GoldenGate methylation array annotation for CpGs where the 
gene name is listed first in all capital letters and italics followed by an E for exon or P for promoter 
to indicate the location of the CpG relative to the transcription start site, and the number indicates 
the distance of the CpG from the transcription start site.  
‡ Number of samples with both GoldenGate array and QMSP methylation data. 
§ Spearman correlation coefficient (rho)  
|| Two-sided Spearman’s rank correlation test for association between GoldenGate array 
methylation value and QMSP methylation value. 

Supplementary Table 3. Association between GoldenGate array methylation values and 

quantitative methylation specific polymerase chain reaction (QMSP)*  

GENE_CpG † No. ‡ 
Spearman 

(rho) § P || 

PEG3_E496 110 0.32 5.90E-04 

HOXA9_E252 117 0.52 1.50E-09 

HOXA9_E252 117 0.53 6.90E-10 

MGMT_P272 110 0.45 7.40E-07 

MGMT_P281 110 0.47 2.30E-07 

PYCARD_E87 107 0.81 < 2.2E-16 

PYCARD_P150 107 0.26 6.70E-03 

PYCARD_P393 107 0.43 5.00E-06 

RASSF1A_E116 118 0.7 < 2.2E-16 

RASSF1A_P244 118 0.59 3.50E-12 

SLIT2_E111 106 0.4 2.30E-05 

SLIT2_P208 106 0.4 2.40E-05 
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Supplementary Table 4. Identification numbers (ID) and RPMM methylation class 

membership for The Cancer Genome Atlas (TCGA) glioblastoma samples used in validation. 

TCGA ID 
RPMM methylation 
class  

TCGA-02-0001-01C-01D-0186-05 LRR  

TCGA-02-0002-01A-01D-0186-05 LRL  

TCGA-02-0003-01A-01D-0186-05 LRL  

TCGA-02-0006-01B-01D-0186-05 LRL  

TCGA-02-0007-01A-01D-0186-05 LRL  

TCGA-02-0009-01A-01D-0186-05 LRL  

TCGA-02-0010-01A-01D-0186-05 LRR  

TCGA-02-0011-01B-01D-0186-05 LRR  

TCGA-02-0014-01A-01D-0186-05 LRR  

TCGA-02-0021-01A-01D-0186-05 LRL  

TCGA-02-0024-01B-01D-0186-05 LRR  

TCGA-02-0027-01A-01D-0186-05 LRL  

TCGA-02-0028-01A-01D-0186-05 RL  

TCGA-02-0033-01A-01D-0186-05 LRL  

TCGA-02-0034-01A-01D-0186-05 LRL  

TCGA-02-0037-01A-01D-0186-05 LRL  

TCGA-02-0038-01A-01D-0186-05 LRL  

TCGA-02-0043-01A-01D-0186-05 LRL  

TCGA-02-0046-01A-01D-0186-05 LRL  

TCGA-02-0047-01A-01D-0186-05 LRR  

TCGA-02-0052-01A-01D-0186-05 LRL  

TCGA-02-0054-01A-01D-0186-05 LRL  

TCGA-02-0055-01A-01D-0186-05 LRL  

TCGA-02-0057-01A-01D-0186-05 LRL  

TCGA-02-0058-01A-01D-0186-05 RL  

TCGA-02-0060-01A-01D-0186-05 LRL  

TCGA-02-0064-01A-01D-0199-05 LRL  

TCGA-02-0069-01A-01D-0199-05 LRR  

TCGA-02-0071-01A-01D-0199-05 LRL  

TCGA-02-0074-01A-01D-0199-05 LRL  

TCGA-02-0075-01A-01D-0199-05 LRL  
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TCGA-02-0080-01A-01D-0199-05 RL  

TCGA-02-0083-01A-01D-0199-05 LRL  

TCGA-02-0085-01A-01D-0199-05 LRL  

TCGA-02-0086-01A-01D-0199-05 LRL  

TCGA-02-0089-01A-01D-0199-05 LRL  

TCGA-02-0099-01A-01D-0199-05 LRL  

TCGA-02-0102-01A-01D-0199-05 LRL  

TCGA-02-0107-01A-01D-0199-05 LRL  

TCGA-02-0113-01A-01D-0199-05 LRL  

TCGA-02-0114-01A-01D-0199-05 LRR  

TCGA-02-0115-01A-01D-0199-05 LRL  

TCGA-02-0116-01A-01D-0199-05 LRL  

TCGA-06-0119-01A-08D-0218-05 LRL  

TCGA-06-0121-01A-04D-0218-05 LRL  

TCGA-06-0122-01A-01D-0218-05 LRL  

TCGA-06-0124-01A-01D-0218-05 LRL  

TCGA-06-0125-01A-01D-0218-05 LRL  

TCGA-06-0126-01A-01D-0218-05 LRL  

TCGA-06-0128-01A-01D-0218-05 RL  

TCGA-06-0129-01A-01D-0218-05 LRR  

TCGA-06-0130-01A-01D-0218-05 LRL  

TCGA-06-0133-01A-02D-0218-05 LRL  

TCGA-06-0137-01A-01D-0218-05 LRL  

TCGA-06-0137-01A-02D-0218-05 LRL  

TCGA-06-0137-01A-03D-0218-05 LRL  

TCGA-06-0137-01B-02D-0218-05 LRL  

TCGA-06-0139-01A-01D-0218-05 LLRR  

TCGA-06-0140-01A-01D-0218-05 LRL  

TCGA-06-0141-01A-01D-0218-05 LRR  

TCGA-06-0142-01A-01D-0218-05 LRL  

TCGA-06-0143-01A-01D-0218-05 LRL  

TCGA-06-0145-01A-01D-0218-05 LRL  

TCGA-06-0145-01A-02D-0218-05 LRL  

TCGA-06-0145-01A-03D-0218-05 LRL  

TCGA-06-0145-01A-04D-0218-05 LRL  

TCGA-06-0145-01A-05D-0218-05 LRL  
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TCGA-06-0145-01A-06D-0218-05 LRL  

TCGA-06-0147-01A-01D-0218-05 LRL  

TCGA-06-0148-01A-01D-0218-05 LRL  

TCGA-06-0169-01A-01D-0218-05 LRL  
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Supplementary Table 5. Cellular pathways enriched among statistically significantly differentially 

methylated CpG loci in common among glioblastomas, astrocytomas, oligoastrocytomas, and 
oligodendrogliomas*. 

Cellular Pathway  P† 

Hypomethylated  

Methane Metabolism .02 

Stilbene, Coumarine and Lignin Biosynthesis .02 

Metabolism of Xenobiotics by Cytochrome P450 .02 

PXR/RXR Activation .02 

Retinol Metabolism .04 

TREM1 Signaling .04 

Phenylalanine Metabolism .05 

Hypermethylated  

Retinoic acid Mediated Apoptosis Signaling .005 

Primary Immunodeficiency Signaling .01 

RAN Signaling .02 

NRF2-mediated Oxidative Stress Response .03 

EGF Signaling .05 

* CpG loci with statistically significantly differential methylation (Q<0.05 and |Δβ|>0.2) between 
tumor and non-tumor tissue were examined for cellular pathway enrichment with Ingenuity 
pathways analysis software. PXR=nuclear receptor subfamily 1, group I, member 2; RXR=retinoid 
X receptor, gamma; TREM1=triggering receptor expressed on myeloid cells 1; RAN=RAN, 
member RAS oncogene family; NRF2=nuclear factor (erythroid-derived 2)-like 2; EGF=epidermal 
growth factor. 

† Two-sided Fisher’s exact test for enrichment of genes whose CpG loci are represented among 
the genes in the listed pathways. 
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Supplementary Table 6. Statistically significantly differentially hypomethylated CpG loci in 

human gliomas. 

  Median    Median 

GENE_CpG* 
Q-

value 
Δβ 
Value  GENE_CpG* 

Q-
value 

Δβ 
Value 

Primary glioblastoma      Grade 3 Astrocytoma     

CASP10_P334_F 0.002 -0.587  ACVR1_P983_F 0.007 -0.363 

CD82_P557_R 0.002 -0.289  CASP10_P334_F 0.007 -0.412 

CDK2_P330_R 0.002 -0.234  CD82_P557_R 0.007 -0.289 

DDR1_P332_R 0.002 -0.299  DDR1_P332_R 0.007 -0.349 

DSG1_P159_R 0.002 -0.249  GFAP_P1214_F 0.007 -0.324 

GFAP_P1214_F 0.002 -0.293  GSTM2_P109_R 0.007 -0.255 

GSTM2_P109_R 0.002 -0.261  IL16_P93_R 0.007 -0.394 

LEFTY2_P561_F 0.002 -0.452  IL8_E118_R 0.007 -0.578 

MPO_E302_R 0.002 -0.227  LEFTY2_P561_F 0.007 -0.426 

MPO_P883_R 0.002 -0.637  MKRN3_E144_F 0.007 -0.480 

PSCA_P135_F 0.002 -0.205  MKRN3_P108_F 0.007 -0.509 

PTHR1_P258_F 0.002 -0.509  MPO_P883_R 0.007 -0.514 

TRIP6_P1274_R 0.002 -0.500  PADI4_P1011_R 0.007 -0.246 

TRPM5_P721_F 0.002 -0.265  PTHR1_P258_F 0.007 -0.446 

UGT1A1_P315_R 0.002 -0.276  TRIP6_P1090_F 0.007 -0.497 

IFNG_E293_F 0.002 -0.274  TRIP6_P1274_R 0.007 -0.489 

MKRN3_P108_F 0.002 -0.355  UGT1A1_P315_R 0.007 -0.335 

NOTCH4_E4_F 0.002 -0.561  CCL3_E53_R 0.008 -0.261 

WNT8B_E487_F 0.002 -0.226  CDK2_P330_R 0.008 -0.235 

IFNG_P188_F 0.002 -0.205  HBII_52_E142_F 0.008 -0.253 

IL8_E118_R 0.002 -0.666  SERPINE1_P519_F 0.010 -0.454 

TMPRSS4_P552_F 0.002 -0.356  P2RX7_P597_F 0.012 -0.491 

TRIP6_P1090_F 0.002 -0.504  PLA2G2A_P528_F 0.012 -0.210 

GFAP_P56_R 0.002 -0.375  ACVR1_E328_R 0.015 -0.353 

SERPINE1_E189_R 0.002 -0.251  CXCL9_E268_R 0.015 -0.205 

CCL3_E53_R 0.002 -0.302  JAK3_P1075_R 0.015 -0.455 

PADI4_P1011_R 0.002 -0.361  MMP2_P303_R 0.015 -0.291 

CASP10_P186_F 0.002 -0.630  PDGFRA_E125_F 0.015 -0.266 

SH3BP2_E18_F 0.002 -0.267  GFAP_P56_R 0.019 -0.312 

ACVR1_P983_F 0.002 -0.321  EPM2A_P113_F 0.023 -0.205 

BLK_P14_F 0.002 -0.273  PRSS1_E45_R 0.023 -0.329 

SLC14A1_P369_R 0.002 -0.318  PRSS1_P1249_R 0.023 -0.389 

SPP1_E140_R 0.002 -0.382  TJP2_P518_F 0.023 -0.335 

MMP10_E136_R 0.003 -0.290  TRPM5_P721_F 0.026 -0.213 

PRSS1_P1249_R 0.003 -0.393  BLK_P14_F 0.033 -0.217 

TNK1_P221_F 0.003 -0.207  PTK7_E317_F 0.033 -0.219 

MKRN3_E144_F 0.003 -0.230  NOTCH4_E4_F 0.049 -0.304 

MPL_P657_F 0.003 -0.376  Grade 2 Astrocytoma     
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TNFSF10_E53_F 0.003 -0.458  CD82_P557_R 0.012 -0.298 

S100A2_E36_R 0.003 -0.228  DDR1_P332_R 0.012 -0.310 

SERPINE1_P519_F 0.003 -0.507  GFAP_P1214_F 0.012 -0.371 

TJP2_P518_F 0.003 -0.347  LEFTY2_P561_F 0.012 -0.402 

JAK3_P1075_R 0.004 -0.493  TRIP6_P1090_F 0.012 -0.458 

KLK11_P103_R 0.004 -0.383  TRIP6_P1274_R 0.012 -0.476 

ACVR1_E328_R 0.005 -0.304  UGT1A1_P315_R 0.012 -0.316 

HBII_52_E142_F 0.005 -0.261  GFAP_P56_R 0.013 -0.450 

IL16_P93_R 0.005 -0.312  GSTM2_P109_R 0.013 -0.260 

S100A2_P1186_F 0.005 -0.454  MKRN3_E144_F 0.013 -0.347 

ZNFN1A1_E102_F 0.005 -0.252  PTHR1_P258_F 0.014 -0.233 

IL8_P83_F 0.005 -0.585  CDK2_P330_R 0.017 -0.232 

NAT2_P11_F 0.005 -0.203  MPO_P883_R 0.018 -0.246 

PI3_P1394_R 0.005 -0.367  MKRN3_P108_F 0.019 -0.499 

SHB_P691_R 0.005 -0.254  ACVR1_E328_R 0.019 -0.321 

EMR3_P39_R 0.006 -0.481  IL12B_P392_R 0.021 -0.301 

KLK10_P268_R 0.006 -0.208  ACVR1_P983_F 0.025 -0.356 

CD86_P3_F 0.008 -0.436  IL16_P93_R 0.025 -0.258 

CSF3R_P8_F 0.009 -0.370  IL8_E118_R 0.026 -0.416 

GSTM2_P453_R 0.010 -0.263  CASP10_P334_F 0.032 -0.269 

NOS2A_P288_R 0.010 -0.264  SLC14A1_P369_R 0.037 -0.274 

MBD2_P233_F 0.011 -0.254  P2RX7_P597_F 0.047 -0.230 

MMP2_P303_R 0.011 -0.332  
Grade 3 
Oligoastrocytoma     

MMP9_P189_F 0.011 -0.413  ACVR1_P983_F 0.003 -0.428 

PDGFRA_E125_F 0.011 -0.250  CD82_P557_R 0.003 -0.246 

FGFR2_P460_R 0.013 -0.327  DDR1_P332_R 0.003 -0.349 

PRSS1_E45_R 0.013 -0.304  GFAP_P1214_F 0.003 -0.377 

ALPL_P433_F 0.016 -0.227  GSTM2_P109_R 0.003 -0.255 

FGF1_E5_F 0.016 -0.213  LEFTY2_P561_F 0.003 -0.427 

PADI4_P1158_R 0.016 -0.243  MKRN3_E144_F 0.003 -0.384 

VAV1_P317_F 0.016 -0.214  MKRN3_P108_F 0.003 -0.615 

MC2R_P1025_F 0.018 -0.243  MPO_P883_R 0.003 -0.346 

CASP10_E139_F 0.022 -0.305  TRIP6_P1090_F 0.003 -0.540 

NGFR_P355_F 0.022 -0.263  TRIP6_P1274_R 0.003 -0.528 

PIK3R1_P307_F 0.022 -0.234  UGT1A1_P315_R 0.003 -0.451 

STAT5A_E42_F 0.024 -0.298  CASP10_P334_F 0.004 -0.313 

C4B_E171_F 0.027 -0.205  CDK2_P330_R 0.004 -0.247 

CPA4_E20_F 0.027 -0.258  ACVR1_E328_R 0.005 -0.332 

DDR2_E331_F 0.032 -0.246  IL16_P93_R 0.005 -0.381 

HDAC1_P414_R 0.032 -0.522  GFAP_P56_R 0.007 -0.452 

TNFSF10_P2_R 0.032 -0.369  PDGFRA_E125_F 0.007 -0.236 
Secondary 
Glioblastoma    PWCR1_P357_F 0.007 -0.204 
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CD82_P557_R 0.002 -0.270  IL8_E118_R 0.009 -0.521 

CXCL9_E268_R 0.002 -0.441  TRPM5_P721_F 0.014 -0.211 

DSG1_P159_R 0.002 -0.406  BLK_P14_F 0.040 -0.205 

EMR3_P1297_R 0.002 -0.406  RUNX1T1_E145_R 0.040 -0.229 

GABRA5_P1016_F 0.002 -0.339  
Grade 2 
Oligoastrocytoma     

GFAP_P1214_F 0.002 -0.408  ACVR1_E328_R 0.006 -0.403 

GSTM2_P109_R 0.002 -0.251  CDK2_P330_R 0.006 -0.251 

IFNG_E293_F 0.002 -0.326  DDR1_P332_R 0.006 -0.334 

IFNG_P188_F 0.002 -0.447  GFAP_P1214_F 0.006 -0.275 

IL8_P83_F 0.002 -0.615  GSTM2_P109_R 0.006 -0.237 

ITK_P114_F 0.002 -0.312  IL16_P93_R 0.006 -0.360 

JAK3_P1075_R 0.002 -0.562  IL8_E118_R 0.006 -0.497 

KLK10_P268_R 0.002 -0.211  LEFTY2_P561_F 0.006 -0.369 

KLK11_P103_R 0.002 -0.355  MKRN3_E144_F 0.006 -0.267 

KRT1_P798_R 0.002 -0.297  TRIP6_P1090_F 0.006 -0.456 

LEFTY2_P561_F 0.002 -0.489  TRIP6_P1274_R 0.006 -0.509 

MPO_E302_R 0.002 -0.427  UGT1A1_P315_R 0.006 -0.385 

MPO_P883_R 0.002 -0.633  MKRN3_P108_F 0.007 -0.488 

PADI4_P1011_R 0.002 -0.647  CD82_P557_R 0.007 -0.295 

PI3_P1394_R 0.002 -0.330  GFAP_P56_R 0.007 -0.444 

PRSS1_E45_R 0.002 -0.498  CASP10_P334_F 0.007 -0.277 

PRSS1_P1249_R 0.002 -0.664  PDGFRA_E125_F 0.007 -0.250 

PSCA_P135_F 0.002 -0.468  ACVR1_P983_F 0.007 -0.341 

PTHR1_P258_F 0.002 -0.560  P2RX7_P597_F 0.007 -0.284 

PWCR1_P357_F 0.002 -0.238  MPO_P883_R 0.008 -0.258 

SPI1_P929_F 0.002 -0.206  HTR2A_E10_R 0.010 -0.248 

SPP1_P647_F 0.002 -0.291  PTHR1_P258_F 0.024 -0.235 

TMPRSS4_P552_F 0.002 -0.520  
Grade 2 
Oligodendroglioma     

TRIP6_P1274_R 0.002 -0.539  ACVR1_E328_R 0.002 -0.420 

UGT1A1_P315_R 0.002 -0.419  DDR1_P332_R 0.002 -0.302 

WNT8B_E487_F 0.002 -0.369  GFAP_P1214_F 0.002 -0.243 

CDK2_P330_R 0.002 -0.241  GSTM2_P109_R 0.002 -0.254 

CSF3R_P8_F 0.002 -0.498  IL16_P93_R 0.002 -0.401 

DDR1_P332_R 0.002 -0.328  MKRN3_E144_F 0.002 -0.207 

IL16_P93_R 0.002 -0.421  MKRN3_P108_F 0.002 -0.515 

MKRN3_P108_F 0.002 -0.496  TRIP6_P1274_R 0.002 -0.511 

P2RX7_P597_F 0.002 -0.562  UGT1A1_P315_R 0.002 -0.426 

PSCA_E359_F 0.002 -0.434  MPO_P883_R 0.002 -0.204 

TNK1_P221_F 0.002 -0.254  CASP10_P334_F 0.003 -0.316 

TRPM5_P721_F 0.002 -0.448  TRIP6_P1090_F 0.003 -0.429 

HBII_52_E142_F 0.002 -0.468  LEFTY2_P561_F 0.004 -0.308 

NOTCH4_E4_F 0.002 -0.604  ACVR1_P983_F 0.004 -0.259 
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CASP10_P334_F 0.003 -0.554  PDGFRA_E125_F 0.004 -0.256 

HLA_DQA2_E93_F 0.003 -0.226  CDK2_P330_R 0.005 -0.233 

ACVR1_E328_R 0.003 -0.370  SPP1_E140_R 0.005 -0.292 

ACVR1_P983_F 0.003 -0.442  CD82_P557_R 0.007 -0.235 

BLK_P14_F 0.003 -0.360  IL8_E118_R 0.008 -0.354 

GFAP_P56_R 0.003 -0.471  PEG3_E496_F 0.008 -0.276 

GLI2_E90_F 0.003 -0.320  GFAP_P56_R 0.009 -0.374 

MKRN3_E144_F 0.003 -0.531  Ependymoma     

MPL_P657_F 0.003 -0.449  ACVR1_E328_R 0.007 -0.387 

PLA2G2A_P528_F 0.003 -0.399  ACVR1_P983_F 0.007 -0.525 

ZNFN1A1_E102_F 0.003 -0.267  CD82_P557_R 0.007 -0.291 

PLA2G2A_E268_F 0.004 -0.277  CDK2_P330_R 0.007 -0.236 

TNFSF8_P184_F 0.004 -0.219  DDR1_P332_R 0.007 -0.335 

CCR5_P630_R 0.004 -0.271  FGF1_E5_F 0.007 -0.393 

EMR3_P39_R 0.004 -0.288  FGF1_P357_R 0.007 -0.288 

FGF7_P44_F 0.004 -0.308  FGFR2_P460_R 0.007 -0.413 

CCL3_E53_R 0.005 -0.589  GFAP_P1214_F 0.007 -0.456 

CD1A_P6_F 0.005 -0.215  GSTM2_P109_R 0.007 -0.263 

EMR3_E61_F 0.005 -0.458  GSTM2_P453_R 0.007 -0.399 

PTPRH_E173_F 0.005 -0.489  LEFTY2_P561_F 0.007 -0.466 

SERPINE1_P519_F 0.005 -0.492  MMP14_P13_F 0.007 -0.561 

TEK_P526_F 0.005 -0.228  MPL_P657_F 0.007 -0.453 

TGFB1_P833_R 0.005 -0.334  RIPK1_P744_R 0.007 -0.446 

TRIP6_P1090_F 0.005 -0.521  RIPK1_P868_F 0.007 -0.414 

IL8_E118_R 0.006 -0.563  SERPINE1_P519_F 0.007 -0.504 

ALPL_P433_F 0.007 -0.278  SH3BP2_E18_F 0.007 -0.330 

HLA_DPA1_P28_R 0.007 -0.225  SPARC_P195_F 0.007 -0.209 

NOS2A_P288_R 0.007 -0.501  TNK1_P221_F 0.007 -0.291 

PDGFRA_E125_F 0.007 -0.288  TRIP6_P1274_R 0.007 -0.511 

SH3BP2_E18_F 0.007 -0.300  UGT1A1_P315_R 0.007 -0.421 

CSF3_P309_R 0.010 -0.302  FASTK_P598_R 0.008 -0.292 

PEG3_E496_F 0.010 -0.245  MATK_P190_R 0.008 -0.294 

CASP10_P186_F 0.012 -0.548  SERPINE1_E189_R 0.008 -0.262 

DDR2_E331_F 0.012 -0.410  SHB_P691_R 0.008 -0.299 

HLA_DPA1_P205_R 0.012 -0.351  SLC14A1_P369_R 0.008 -0.487 

SLC14A1_P369_R 0.012 -0.361  FAS_P65_F 0.009 -0.237 

IL6_P213_R 0.017 -0.306  CHI3L2_E10_F 0.013 -0.253 

KIAA0125_E29_F 0.017 -0.245  GFAP_P56_R 0.013 -0.508 

MMP2_P303_R 0.017 -0.329  HPN_P374_R 0.013 -0.527 

SIN3B_P514_R 0.017 -0.201  IL1RN_P93_R 0.013 -0.335 

SPP1_E140_R 0.017 -0.356  NAT2_P11_F 0.013 -0.335 

AOC3_P890_R 0.021 -0.237  HPN_P823_F 0.015 -0.573 

LEFTY2_P719_F 0.021 -0.268  ALPL_P433_F 0.020 -0.334 
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SLC22A18_P216_R 0.021 -0.201  TGFBI_P173_F 0.020 -0.295 

TJP2_P518_F 0.021 -0.347  TJP2_P518_F 0.020 -0.375 

VAMP8_P114_F 0.021 -0.337  TRIP6_P1090_F 0.020 -0.523 

NAT2_P11_F 0.024 -0.322  IL8_E118_R 0.022 -0.560 

PADI4_P1158_R 0.033 -0.364  MUC1_P191_F 0.022 -0.262 

PDGFB_P719_F 0.033 -0.318  ZNFN1A1_E102_F 0.022 -0.203 

CCKAR_P270_F 0.038 -0.453  IGF2AS_P203_F 0.026 -0.241 

ZNF264_P397_F 0.038 -0.272  HTR2A_E10_R 0.029 -0.292 

MBD2_P233_F 0.043 -0.300  RBP1_P426_R 0.029 -0.400 

SHB_P691_R 0.043 -0.284  S100A2_P1186_F 0.029 -0.255 

    MMP10_E136_R 0.032 -0.367 

    TNFSF10_E53_F 0.032 -0.342 

    EPHA2_P203_F 0.035 -0.318 

    LCN2_P86_R 0.035 -0.332 

    SEPT5_P464_R 0.035 -0.243 

* This column lists the Illumina GoldenGate methylation array annotation for CpGs where the 
gene name is listed first in all capital letters followed by an E for exon or P for promoter to indicate 
the location of the CpG relative to the transcription start site, and the number indicates the 
distance of the CpG from the transcription start site, and F indicates forward strand and R 
indicates reverse strand.  
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Supplementary Table 7. Statistically significantly differentially hypermethylated CpG loci in 

human gliomas. 

  Median    Median 

GENE_ CpG* Q-value 
Δβ 

Value  GENE_ CpG* 
Q-

value 
Δβ 

Value 

Primary Glioblastoma 
     

Grade 3 
Oligoastrocytoma     

AATK_P519_R 0.002 0.214  AATK_P519_R 0.003 0.217 

CD40_P372_R 0.002 0.310  ABCG2_P310_R 0.003 0.748 

FZD9_E458_F 0.002 0.771  ALOX12_E85_R 0.003 0.647 

IRAK3_E130_F 0.002 0.277  ALOX12_P223_R 0.003 0.359 

IRAK3_P185_F 0.002 0.538  ATP10A_P147_F 0.003 0.603 

MEST_E150_F 0.002 0.521  BMP4_P123_R 0.003 0.668 

MEST_P4_F 0.002 0.477  BMP4_P199_R 0.003 0.231 

SLIT2_P208_F 0.002 0.281  CCKAR_E79_F 0.003 0.377 

TES_P182_F 0.002 0.675  CD40_E58_R 0.003 0.541 

TNFRSF10A_P91_F 0.002 0.706  CD40_P372_R 0.003 0.314 

TP73_P945_F 0.002 0.291  CD81_P272_R 0.003 0.599 

CD81_P272_R 0.002 0.603  CD9_P504_F 0.003 0.582 

GFI1_P45_R 0.002 0.455  CDH3_E100_R 0.003 0.720 

HOXA9_P1141_R 0.002 0.748  CDH3_P87_R 0.003 0.764 

MEST_P62_R 0.002 0.464  CDKN1B_P1161_F 0.003 0.226 

TAL1_E122_F 0.002 0.250  CFTR_P115_F 0.003 0.238 

TNFRSF10D_E27_F 0.002 0.664  COL18A1_P494_R 0.003 0.802 

HTR1B_P222_F 0.002 0.570  CRIP1_P874_R 0.003 0.597 

RAB32_P493_R 0.002 0.370  CTNNA1_P382_R 0.003 0.809 

TNFRSF10A_P171_F 0.002 0.550  DDIT3_P1313_R 0.003 0.444 

DIO3_P674_F 0.002 0.512  DES_E228_R 0.003 0.752 

FLT3_E326_R 0.002 0.669  DNAJC15_P65_F 0.003 0.343 

FLT4_E206_F 0.002 0.278  DSC2_E90_F 0.003 0.829 

HOXA11_E35_F 0.002 0.472  EIF2AK2_P313_F 0.003 0.604 

F2R_P839_F 0.002 0.416  ELK3_P514_F 0.003 0.585 

HOXA5_P1324_F 0.002 0.329  EPHA2_P203_F 0.003 0.282 

IRAK3_P13_F 0.002 0.252  EPHA2_P340_R 0.003 0.476 

KIAA1804_P689_R 0.002 0.370  ERBB3_E331_F 0.003 0.814 

MT1A_P600_F 0.002 0.245  ERCC6_P698_R 0.003 0.435 

CD40_E58_R 0.002 0.318  ERN1_P809_R 0.003 0.252 

PRKCDBP_E206_F 0.002 0.634  ESR2_E66_F 0.003 0.790 

DNAJC15_P65_F 0.003 0.324  ESR2_P162_F 0.003 0.796 

DSC2_E90_F 0.003 0.596  EYA4_P508_F 0.003 0.441 

MAPK10_E26_F 0.003 0.204  EYA4_P794_F 0.003 0.369 

ALOX12_P223_R 0.003 0.296  F2R_P839_F 0.003 0.438 

DES_E228_R 0.003 0.221  FABP3_E113_F 0.003 0.592 

HOXA9_E252_R 0.003 0.676  FAS_P65_F 0.003 0.618 



 86 

ISL1_E87_R 0.003 0.236  FES_E34_R 0.003 0.842 

MOS_E60_R 0.003 0.595  FES_P223_R 0.003 0.770 

ALOX12_E85_R 0.004 0.587  FGFR3_P1152_R 0.003 0.365 

BMP4_P199_R 0.004 0.222  FRZB_E186_R 0.003 0.805 

HOXA11_P698_F 0.004 0.777  FZD9_E458_F 0.003 0.762 

HTR1B_E232_R 0.004 0.412  GFI1_P45_R 0.003 0.535 

RARRES1_P426_R 0.004 0.340  GLI3_P453_R 0.003 0.788 

GATA6_P21_R 0.005 0.579  GNMT_E126_F 0.003 0.806 

GFI1_E136_F 0.005 0.425  GNMT_P197_F 0.003 0.682 

LY6G6E_P45_R 0.005 0.230  GP1BB_P278_R 0.003 0.261 

SLC22A3_P528_F 0.005 0.203  GRB7_P160_R 0.003 0.389 

TES_E172_F 0.005 0.412  GUCY2D_P48_R 0.003 0.507 

ZNF215_P129_R 0.005 0.233  HFE_E273_R 0.003 0.796 

HOXB2_P488_R 0.006 0.351  HHIP_P578_R 0.003 0.273 

RARA_P176_R 0.006 0.349  
HIC_1_seq_48_S103

_R 0.003 0.228 

TUSC3_E29_R 0.006 0.676  HIC2_P498_F 0.003 0.432 

DIO3_P90_F 0.006 0.286  HOXA9_E252_R 0.003 0.280 
HIC_1_seq_48_S103_

R 0.006 0.210  HRASLS_P353_R 0.003 0.359 

HOXA5_P479_F 0.006 0.213  HS3ST2_E145_R 0.003 0.596 

TAL1_P594_F 0.006 0.794  ICA1_P61_F 0.003 0.330 

GATA6_P726_F 0.008 0.565  ICA1_P72_R 0.003 0.759 

GJB2_P931_R 0.008 0.249  IFNGR2_P377_R 0.003 0.217 

TDGF1_P428_R 0.008 0.259  IGF1_E394_F 0.003 0.225 

ISL1_P379_F 0.009 0.222  IGFBP2_P306_F 0.003 0.574 

DIO3_E230_R 0.010 0.471  IL17RB_E164_R 0.003 0.813 

RAN_P581_R 0.010 0.327  INSR_P1063_R 0.003 0.428 

ZP3_E90_F 0.010 0.424  IRAK3_E130_F 0.003 0.260 

DDIT3_P1313_R 0.011 0.370  IRAK3_P13_F 0.003 0.279 

TWIST1_E117_R 0.011 0.265  IRF5_E101_F 0.003 0.435 

MYOD1_E156_F 0.014 0.317  ITPR2_P804_F 0.003 0.754 

NEFL_P209_R 0.014 0.616  JAK3_E64_F 0.003 0.625 

IPF1_P750_F 0.016 0.439  JAK3_P156_R 0.003 0.425 

EYA4_P794_F 0.018 0.214  KIAA1804_P689_R 0.003 0.745 

GSTM1_P266_F 0.020 0.316  KIT_P367_R 0.003 0.488 

BMP4_P123_R 0.022 0.420  KLK10_P268_R 0.003 0.492 

HOXA9_P303_F 0.022 0.394  LOX_P313_R 0.003 0.781 
PALM2_AKAP2_P420

_R 0.022 0.252  LY6G6E_P45_R 0.003 0.313 

TFAP2C_P765_F 0.022 0.368  LYN_P241_F 0.003 0.786 

JAK3_P156_R 0.024 0.340  MAP3K1_E81_F 0.003 0.822 

SFN_P248_F 0.024 0.344  MAP3K1_P7_F 0.003 0.796 

IPF1_P234_F 0.030 0.389  MATK_P190_R 0.003 0.532 
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MAP3K1_P7_F 0.030 0.450  MEST_E150_F 0.003 0.606 

TNFRSF10C_P7_F 0.030 0.398  MEST_P4_F 0.003 0.495 

BCR_P346_F 0.032 0.284  MEST_P62_R 0.003 0.525 

SCGB3A1_E55_R 0.032 0.287  MET_E333_F 0.003 0.794 

CAV2_E33_R 0.036 0.363  MGMT_P272_R 0.003 0.240 

FZD9_P175_F 0.036 0.391  MGMT_P281_F 0.003 0.202 

HOXA5_E187_F 0.036 0.259  MMP14_P13_F 0.003 0.323 

ITPR2_P804_F 0.040 0.203  MOS_E60_R 0.003 0.694 

TAL1_P817_F 0.040 0.254  MST1R_P392_F 0.003 0.225 

TSP50_P137_F 0.040 0.259  MT1A_E13_R 0.003 0.567 

CRIP1_P874_R 0.044 0.234  MT1A_P49_R 0.003 0.397 

IGFBP1_P12_R 0.044 0.403  MYCL1_P502_R 0.003 0.753 

HOXB2_P99_F 0.049 0.243  MYLK_P469_R 0.003 0.376 

PYCARD_E87_F 0.049 0.308  NOTCH3_P198_R 0.003 0.733 

WRN_P969_F 0.049 0.287  PAX6_P1121_F 0.003 0.518 
Secondary 
Glioblastoma      POMC_P400_R 0.003 0.404 

AATK_P519_R 0.002 0.215  PRKCDBP_E206_F 0.003 0.732 

ABCG2_P310_R 0.002 0.475  PYCARD_E87_F 0.003 0.710 

ALOX12_E85_R 0.002 0.633  PYCARD_P393_F 0.003 0.276 

ALOX12_P223_R 0.002 0.354  RAB32_E314_R 0.003 0.542 

BMP4_P199_R 0.002 0.234  RAB32_P493_R 0.003 0.476 

CD81_P272_R 0.002 0.651  RAN_P581_R 0.003 0.410 

CFTR_P115_F 0.002 0.453  RARRES1_P426_R 0.003 0.549 

CFTR_P372_R 0.002 0.631  RASSF1_E116_F 0.003 0.894 

CRIP1_P274_F 0.002 0.465  RASSF1_P244_F 0.003 0.514 

CRIP1_P874_R 0.002 0.522  RBP1_E158_F 0.003 0.889 

DES_E228_R 0.002 0.662  RBP1_P150_F 0.003 0.797 

DSC2_E90_F 0.002 0.696  RBP1_P426_R 0.003 0.504 

EYA4_P794_F 0.002 0.337  SCGB3A1_E55_R 0.003 0.795 

FZD9_E458_F 0.002 0.708  SEPT9_P374_F 0.003 0.223 

GFI1_E136_F 0.002 0.729  SLC22A3_P528_F 0.003 0.276 

GFI1_P45_R 0.002 0.545  TES_P182_F 0.003 0.666 
HIC_1_seq_48_S103_

R 0.002 0.222  TGFB2_E226_R 0.003 0.830 

HOXA9_E252_R 0.002 0.656  THBS1_E207_R 0.003 0.837 

IRAK3_E130_F 0.002 0.612  
TIMP3_seq_7_S38_

F 0.003 0.419 

IRF5_E101_F 0.002 0.231  TJP1_P390_F 0.003 0.812 

JAK3_P156_R 0.002 0.369  
TNFRSF10A_P171_

F 0.003 0.566 

KIAA1804_P689_R 0.002 0.761  TNFRSF10A_P91_F 0.003 0.727 

MAPK10_E26_F 0.002 0.209  TNFRSF10D_E27_F 0.003 0.716 

MEST_E150_F 0.002 0.563  TNFRSF10D_P70_F 0.003 0.238 

MEST_P4_F 0.002 0.491  TRIP6_E33_F 0.003 0.752 
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MEST_P62_R 0.002 0.500  VAV2_P1182_F 0.003 0.360 

MGMT_P272_R 0.002 0.225  ZMYND10_E77_R 0.003 0.696 

MGMT_P281_F 0.002 0.394  ZMYND10_P329_F 0.003 0.653 

MST1R_P392_F 0.002 0.222  ZP3_E90_F 0.003 0.745 

MT1A_E13_R 0.002 0.531  CAV2_E33_R 0.004 0.817 

MT1A_P49_R 0.002 0.517  CFTR_P372_R 0.004 0.698 

MT1A_P600_F 0.002 0.245  CRIP1_P274_F 0.004 0.459 

PRKCDBP_E206_F 0.002 0.697  GSTM1_P266_F 0.004 0.466 

RAB32_E314_R 0.002 0.520  MAPK10_E26_F 0.004 0.233 

RAB32_P493_R 0.002 0.457  MMP14_P208_R 0.004 0.424 

RASSF1_E116_F 0.002 0.888  NGFR_P355_F 0.004 0.207 

RASSF1_P244_F 0.002 0.463  PGF_P320_F 0.004 0.661 

RBP1_E158_F 0.002 0.894  TAL1_P594_F 0.004 0.574 

SYK_E372_F 0.002 0.348  WT1_P853_F 0.004 0.384 

TAL1_P594_F 0.002 0.656  CCNA1_E7_F 0.005 0.626 

TNFRSF10A_P171_F 0.002 0.558  CTNNB1_P757_F 0.005 0.308 

TNFRSF10A_P91_F 0.002 0.716  E2F5_P516_R 0.005 0.361 

TNFRSF10C_E109_F 0.002 0.381  ENC1_P484_R 0.005 0.409 

TNFRSF10D_E27_F 0.002 0.713  EVI1_P30_R 0.005 0.719 

TNFRSF10D_P70_F 0.002 0.240  GRB7_E71_R 0.005 0.226 

COL18A1_P494_R 0.002 0.485  HTR1B_E232_R 0.005 0.580 

CTNNA1_P382_R 0.002 0.315  IGFBP2_P353_R 0.005 0.227 

ERBB3_E331_F 0.002 0.606  IRAK3_P185_F 0.005 0.383 

ESR2_P162_F 0.002 0.750  TDGF1_P428_R 0.005 0.257 

ZMYND10_E77_R 0.002 0.683  TNFRSF1B_P167_F 0.005 0.318 

ERG_E28_F 0.002 0.687  BCR_P346_F 0.007 0.586 

RARRES1_P426_R 0.002 0.524  GFI1_E136_F 0.007 0.650 

TES_P182_F 0.002 0.608  IGFBP1_P12_R 0.007 0.476 

THBS1_E207_R 0.002 0.825  SH3BP2_P771_R 0.007 0.447 

CCNA1_E7_F 0.003 0.752  ZNF215_P129_R 0.007 0.674 

DNAJC15_P65_F 0.003 0.367  CPA4_E20_F 0.009 0.249 

ERN1_P809_R 0.003 0.216  FAS_P322_R 0.009 0.252 

GNMT_E126_F 0.003 0.797  GRB10_P260_F 0.009 0.723 

GP1BB_P278_R 0.003 0.241  IGFBP1_E48_R 0.009 0.537 

HIC2_P498_F 0.003 0.262  TNFRSF10C_P7_F 0.009 0.404 

HOXB2_P488_R 0.003 0.365  CDKN1C_P626_F 0.011 0.489 

HS3ST2_E145_R 0.003 0.709  FGFR2_P266_R 0.011 0.324 

ICA1_P61_F 0.003 0.319  GJB2_P931_R 0.011 0.373 

TDGF1_P428_R 0.003 0.229  HDAC1_P414_R 0.011 0.242 

GJB2_P931_R 0.003 0.313  HOXB2_P488_R 0.011 0.288 

ERCC6_P698_R 0.004 0.289  ITGA6_P298_R 0.014 0.465 

RBP1_P150_F 0.004 0.758  NR2F6_E375_R 0.014 0.239 

SLC22A3_P528_F 0.004 0.284  PTCH2_E173_F 0.014 0.368 
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FRZB_E186_R 0.004 0.806  STAT5A_E42_F 0.014 0.218 

HHIP_P578_R 0.004 0.464  TGFBI_P173_F 0.014 0.352 

HOXA9_P303_F 0.004 0.304  CRK_P721_F 0.017 0.344 

ICA1_P72_R 0.004 0.498  EVI1_E47_R 0.017 0.555 

SCGB3A1_E55_R 0.004 0.783  JUNB_P1149_R 0.017 0.316 

SFN_P248_F 0.004 0.288  MC2R_P1025_F 0.017 0.209 

TJP1_P390_F 0.004 0.616  MCM2_P260_F 0.017 0.213 

AREG_P217_R 0.005 0.411  MOS_P27_R 0.017 0.353 

BMP4_P123_R 0.005 0.619  MT1A_P600_F 0.017 0.301 

CD40_P372_R 0.005 0.318  PLAUR_E123_F 0.017 0.627 

F2R_P839_F 0.005 0.441  PLSCR3_P751_R 0.017 0.377 

GNMT_P197_F 0.005 0.666  TMEFF1_P626_R 0.017 0.235 

GRB7_E71_R 0.005 0.399  AREG_P217_R 0.021 0.475 

GRB7_P160_R 0.005 0.227  EPHB4_E476_R 0.021 0.224 

GSTM1_P266_F 0.005 0.453  FGFR2_P460_R 0.021 0.279 

HFE_E273_R 0.005 0.819  LAMC1_P808_F 0.021 0.372 

HOXA9_P1141_R 0.005 0.733  PTK2_P735_R 0.021 0.311 

HOXB2_P99_F 0.005 0.267  TFAP2C_P765_F 0.021 0.265 

MAP3K1_E81_F 0.005 0.712  WRN_P969_F 0.026 0.309 

MAP3K1_P7_F 0.005 0.691  COL1A2_P407_R 0.032 0.222 

PYCARD_E87_F 0.005 0.693  HDAC5_E298_F 0.032 0.286 

RAN_P581_R 0.005 0.383  RARRES1_P57_R 0.032 0.346 

RBP1_P426_R 0.005 0.501  KCNK4_P171_R 0.040 0.303 

TNFRSF10C_P7_F 0.005 0.454  FGF1_P357_R 0.048 0.208 

ZMYND10_P329_F 0.005 0.615  HCK_P858_F 0.048 0.314 

ITPR2_P804_F 0.006 0.631  MMP9_P237_R 0.048 0.221 

RARRES1_P57_R 0.006 0.354  PADI4_P1158_R 0.048 0.208 

ST6GAL1_P164_R 0.006 0.629  

Grade 2 
Oligoastrocytoma      

FES_E34_R 0.007 0.743  ALOX12_E85_R 0.006 0.614 

ZP3_E90_F 0.007 0.385  CRIP1_P274_F 0.006 0.420 

EPHA2_P340_R 0.009 0.330  FZD9_E458_F 0.006 0.669 

TAL1_E122_F 0.009 0.285  LOX_P313_R 0.006 0.769 

CD40_E58_R 0.010 0.458  MT1A_P600_F 0.006 0.275 

CDH3_E100_R 0.010 0.648  RBP1_E158_F 0.006 0.725 

CTNNB1_P757_F 0.010 0.207  SEPT9_P374_F 0.006 0.208 

ELL_P693_F 0.010 0.362  CD40_E58_R 0.007 0.467 

FRZB_P406_F 0.010 0.290  MEST_P4_F 0.007 0.473 

HTR1B_E232_R 0.010 0.371  PRKCDBP_E206_F 0.007 0.676 

JAK3_E64_F 0.010 0.432  AATK_P519_R 0.007 0.210 

PAX6_P1121_F 0.010 0.258  CAV2_E33_R 0.007 0.580 

WNT10B_P823_R 0.010 0.274  ERBB3_E331_F 0.007 0.698 

HOXA11_P698_F 0.015 0.713  FAS_P65_F 0.007 0.593 
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CDH3_P87_R 0.017 0.589  GFI1_P45_R 0.007 0.297 

EYA4_P508_F 0.017 0.373  GLI3_P453_R 0.007 0.592 

FES_P223_R 0.017 0.667  ICA1_P61_F 0.007 0.380 

FGFR3_P1152_R 0.017 0.256  IGFBP1_P12_R 0.007 0.539 

HCK_P858_F 0.017 0.403  MATK_P190_R 0.007 0.433 

MOS_E60_R 0.017 0.624  MT1A_E13_R 0.007 0.410 

DIO3_E230_R 0.021 0.384  TAL1_P594_F 0.007 0.225 

LYN_P241_F 0.024 0.626  ZP3_E90_F 0.007 0.371 

MET_E333_F 0.024 0.284  ALOX12_P223_R 0.007 0.341 

NOTCH3_P198_R 0.024 0.292  BMP4_P199_R 0.007 0.233 

POMC_P400_R 0.024 0.341  CCNA1_E7_F 0.007 0.639 

TGFB2_E226_R 0.024 0.777  COL18A1_P494_R 0.007 0.600 

ATP10A_P147_F 0.028 0.314  DDIT3_P1313_R 0.007 0.434 

CCKAR_E79_F 0.028 0.315  ESR2_P162_F 0.007 0.677 

FAS_P65_F 0.028 0.589  MAP3K1_E81_F 0.007 0.810 

HOXA5_P479_F 0.028 0.273  NOTCH3_P198_R 0.007 0.672 

HRASLS_P353_R 0.028 0.312  RASSF1_E116_F 0.007 0.760 

IMPACT_P234_R 0.028 0.341  RBP1_P150_F 0.007 0.679 

TIMP3_seq_7_S38_F 0.028 0.308  BMP4_P123_R 0.007 0.645 

EVI1_E47_R 0.038 0.237  CD81_P272_R 0.007 0.539 

IRAK3_P185_F 0.038 0.595  DSC2_E90_F 0.007 0.701 

PGF_P320_F 0.049 0.271  ENC1_P484_R 0.007 0.250 

SGCE_E149_F 0.049 0.266  EYA4_P794_F 0.007 0.353 

ST6GAL1_P528_F 0.049 0.647  F2R_P839_F 0.007 0.411 

TAL1_P817_F 0.049 0.201  FES_P223_R 0.007 0.709 

Grade 3 Astrocytoma      GRB10_P260_F 0.007 0.553 

AATK_P519_R 0.007 0.211  GRB7_P160_R 0.007 0.362 

ABCG2_P310_R 0.007 0.728  
HIC_1_seq_48_S103

_R 0.007 0.204 

ALOX12_E85_R 0.007 0.616  JAK3_P156_R 0.007 0.380 

ALOX12_P223_R 0.007 0.325  MYCL1_P502_R 0.007 0.646 

CD40_P372_R 0.007 0.282  PAX6_P1121_F 0.007 0.322 

CD81_P272_R 0.007 0.462  POMC_P400_R 0.007 0.376 

CFTR_P372_R 0.007 0.692  RAB32_E314_R 0.007 0.413 

COL18A1_P494_R 0.007 0.635  RASSF1_P244_F 0.007 0.436 

CRIP1_P874_R 0.007 0.473  TES_P182_F 0.007 0.277 

CTNNA1_P382_R 0.007 0.726  
TIMP3_seq_7_S38_

F 0.007 0.441 

DES_E228_R 0.007 0.517  TJP1_P390_F 0.007 0.756 

DSC2_E90_F 0.007 0.804  TNFRSF10D_E27_F 0.007 0.696 

EPHA2_P340_R 0.007 0.433  TNFRSF10D_P70_F 0.007 0.226 

ERBB3_E331_F 0.007 0.866  ZMYND10_P329_F 0.007 0.654 

ERN1_P809_R 0.007 0.217  ABCG2_P310_R 0.007 0.689 

ESR2_P162_F 0.007 0.790  AREG_P217_R 0.007 0.446 
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EYA4_P794_F 0.007 0.312  CDKN1B_P1161_F 0.007 0.227 

F2R_P839_F 0.007 0.403  CRIP1_P874_R 0.007 0.462 

FRZB_P406_F 0.007 0.588  CTNNA1_P382_R 0.007 0.666 

FZD9_E458_F 0.007 0.701  DES_E228_R 0.007 0.320 

GFI1_E136_F 0.007 0.706  IGFBP2_P306_F 0.007 0.441 

GFI1_P45_R 0.007 0.573  IL17RB_E164_R 0.007 0.716 

GSTM1_P266_F 0.007 0.518  MEST_E150_F 0.007 0.464 

HHIP_P578_R 0.007 0.379  MET_E333_F 0.007 0.691 
HIC_1_seq_48_S103_

R 0.007 0.216  EPHA2_P340_R 0.008 0.438 

HOXA9_E252_R 0.007 0.549  FES_E34_R 0.008 0.690 

ICA1_P61_F 0.007 0.336  FGFR3_P1152_R 0.008 0.336 

ICA1_P72_R 0.007 0.695  GFI1_E136_F 0.008 0.614 

IFNGR2_P377_R 0.007 0.220  GUCY2D_P48_R 0.008 0.515 

IL6_P611_F 0.007 0.336  IRF5_E101_F 0.008 0.222 

IRF5_E101_F 0.007 0.202  KIAA1804_P689_R 0.008 0.609 

ITPR2_P804_F 0.007 0.648  LY6G6E_P45_R 0.008 0.262 

JAK3_P156_R 0.007 0.383  MEST_P62_R 0.008 0.475 

KIAA1804_P689_R 0.007 0.700  RARRES1_P426_R 0.008 0.489 

MAP3K1_E81_F 0.007 0.791  TNFRSF10A_P91_F 0.008 0.554 

MAP3K1_P7_F 0.007 0.735  TNFRSF10C_P7_F 0.008 0.394 

MEST_E150_F 0.007 0.466  CD9_P504_F 0.008 0.489 

MOS_E60_R 0.007 0.646  CTNNB1_P757_F 0.008 0.264 

MT1A_P600_F 0.007 0.249  ERN1_P809_R 0.008 0.216 

MYLK_P469_R 0.007 0.355  ESR2_E66_F 0.008 0.411 

PGF_P320_F 0.007 0.535  GSTM1_P266_F 0.008 0.375 

PRKCDBP_E206_F 0.007 0.617  IRAK3_P185_F 0.008 0.472 

PTPN6_E171_R 0.007 0.248  
TNFRSF10A_P171_

F 0.008 0.526 

RAB32_E314_R 0.007 0.552  BMPR2_P1271_F 0.009 0.371 

RAB32_P493_R 0.007 0.422  CCKAR_E79_F 0.009 0.407 

RAN_P581_R 0.007 0.378  ERCC6_P698_R 0.009 0.403 

RARA_E128_R 0.007 0.313  EVI1_E47_R 0.009 0.416 

RARA_P176_R 0.007 0.570  HHIP_P578_R 0.009 0.226 

RARRES1_P426_R 0.007 0.514  HRASLS_P353_R 0.009 0.368 

RASSF1_E116_F 0.007 0.826  TGFB2_E226_R 0.009 0.731 

RBP1_E158_F 0.007 0.859  FABP3_E113_F 0.010 0.516 

RBP1_P426_R 0.007 0.495  RAB32_P493_R 0.010 0.424 

SCGB3A1_E55_R 0.007 0.733  RAN_P581_R 0.010 0.386 

SYK_E372_F 0.007 0.258  RUNX1T1_P103_F 0.010 0.405 

TAL1_E122_F 0.007 0.547  SH3BP2_P771_R 0.010 0.306 

TES_P182_F 0.007 0.518  ZNF215_P129_R 0.010 0.462 

TNFRSF10A_P171_F 0.007 0.542  ATP10A_P147_F 0.011 0.524 

TNFRSF10A_P91_F 0.007 0.709  CD40_P372_R 0.011 0.294 
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TNFRSF10D_E27_F 0.007 0.712  HTR1B_E232_R 0.011 0.270 

TNFRSF10D_P70_F 0.007 0.223  ICA1_P72_R 0.011 0.640 

ZP3_E90_F 0.007 0.557  ITPR2_P804_F 0.011 0.579 

BMP4_P199_R 0.008 0.228  MAP3K1_P7_F 0.011 0.760 

CD40_E58_R 0.008 0.447  THBS1_E207_R 0.011 0.674 

EPHA1_P119_R 0.008 0.509  CDH3_P87_R 0.012 0.515 

ESR2_E66_F 0.008 0.767  FRZB_E186_R 0.012 0.684 

HOXA11_P698_F 0.008 0.683  GNMT_E126_F 0.012 0.715 

HOXA9_P1141_R 0.008 0.536  GNMT_P197_F 0.012 0.645 

HS3ST2_E145_R 0.008 0.636  PYCARD_E87_F 0.012 0.652 

MAPK10_E26_F 0.008 0.206  RBP1_P426_R 0.012 0.492 

MT1A_P49_R 0.008 0.711  SCGB3A1_E55_R 0.012 0.706 

POMC_P400_R 0.008 0.362  TRIP6_E33_F 0.012 0.641 

PYCARD_E87_F 0.008 0.649  DNAJC15_P65_F 0.013 0.311 

RASSF1_P244_F 0.008 0.420  ELK3_P514_F 0.013 0.523 

TJP1_P390_F 0.008 0.861  EPHA2_P203_F 0.013 0.258 

ZMYND10_E77_R 0.008 0.634  EYA4_P508_F 0.013 0.361 

ZMYND10_P329_F 0.008 0.643  KLK10_P268_R 0.013 0.482 

ZNF215_P129_R 0.008 0.606  SEMA3B_E96_F 0.013 0.223 

CCNA1_E7_F 0.010 0.839  CFTR_P372_R 0.015 0.588 

DDIT3_P1313_R 0.010 0.459  PGF_P320_F 0.015 0.413 

ERCC6_P698_R 0.010 0.381  CPA4_E20_F 0.016 0.231 

ERG_E28_F 0.010 0.743  EVI1_P30_R 0.016 0.269 

FABP3_E113_F 0.010 0.547  GP1BB_P278_R 0.016 0.209 

FES_E34_R 0.010 0.731  IGF1_E394_F 0.016 0.250 

HDAC5_E298_F 0.010 0.222  MMP14_P13_F 0.016 0.222 

MYCL1_P502_R 0.010 0.659  ERG_E28_F 0.018 0.394 

SOX17_P303_F 0.010 0.235  GJB2_P931_R 0.018 0.243 

TAL1_P594_F 0.010 0.624  JAK3_E64_F 0.018 0.564 

TIMP3_seq_7_S38_F 0.010 0.543  LYN_P241_F 0.018 0.563 

CFTR_P115_F 0.012 0.279  PTCH2_E173_F 0.018 0.297 

DNAJC15_P65_F 0.012 0.261  VAV2_P1182_F 0.018 0.328 

MEST_P62_R 0.012 0.444  JUNB_P1149_R 0.020 0.252 

MOS_P27_R 0.012 0.209  ST6GAL1_P164_R 0.020 0.254 

SEPT9_P374_F 0.012 0.205  BCR_P346_F 0.022 0.248 

SOX17_P287_R 0.012 0.351  MYLK_P469_R 0.022 0.285 

TNFRSF10C_P7_F 0.012 0.472  EIF2AK2_P313_F 0.024 0.562 

BMPR2_P1271_F 0.015 0.277  HFE_E273_R 0.024 0.607 

CRIP1_P274_F 0.015 0.417  HIC2_P498_F 0.024 0.228 

CTNNB1_P757_F 0.015 0.318  IL6_P611_F 0.024 0.384 

CTSL_P264_R 0.015 0.445  KIT_P367_R 0.024 0.313 

GNMT_E126_F 0.015 0.751  PLAUR_E123_F 0.024 0.527 

KIT_P367_R 0.015 0.374  ZNF215_P71_R 0.024 0.261 
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NOTCH3_P198_R 0.015 0.643  ITGA6_P298_R 0.026 0.252 

PLSCR3_P751_R 0.015 0.400  MOS_E60_R 0.026 0.570 

ACVR1C_P363_F 0.019 0.423  TGFBI_P173_F 0.026 0.226 

CDKN1B_P1161_F 0.019 0.366  HCK_P858_F 0.028 0.306 

EYA4_P508_F 0.019 0.510  MAPK10_E26_F 0.032 0.208 

GLI3_P453_R 0.019 0.668  CDH3_E100_R 0.039 0.541 

HOXA9_P303_F 0.019 0.313  TNFRSF1B_P167_F 0.039 0.252 

HRASLS_P353_R 0.019 0.342  ACVR1C_P363_F 0.043 0.263 

MEST_P4_F 0.019 0.472  TEK_E75_F 0.043 0.200 

PTCH2_E173_F 0.019 0.282  MMP14_P208_R 0.046 0.246 

RBP1_P150_F 0.019 0.695  MMP7_E59_F 0.046 0.208 

SH3BP2_P771_R 0.019 0.378  TMEFF1_P626_R 0.050 0.216 

TP73_P945_F 0.019 0.348  

Grade 2 
Oligodendroglioma      

CAV2_E33_R 0.023 0.273  AATK_P519_R 0.002 0.208 

E2F5_P516_R 0.023 0.271  ABCG2_P310_R 0.002 0.678 

FES_P223_R 0.023 0.705  ALOX12_E85_R 0.002 0.617 

GJB2_P931_R 0.023 0.314  ALOX12_P223_R 0.002 0.341 

GUCY2D_P48_R 0.023 0.261  ATP10A_P147_F 0.002 0.581 

LYN_P241_F 0.023 0.508  BMP4_P123_R 0.002 0.646 

NRG1_P558_R 0.023 0.324  BMP4_P199_R 0.002 0.230 

PAX6_P1121_F 0.023 0.307  BMPR2_P1271_F 0.002 0.431 

TNFRSF10C_E109_F 0.023 0.270  CAV2_E33_R 0.002 0.763 

WNT10B_P823_R 0.023 0.295  CCKAR_E79_F 0.002 0.381 

BMP4_P123_R 0.026 0.609  CCNA1_E7_F 0.002 0.662 

CCKAR_E79_F 0.026 0.350  CD40_E58_R 0.002 0.378 

CD9_P504_F 0.026 0.545  CD40_P372_R 0.002 0.307 

CDH3_E100_R 0.026 0.717  CD81_P272_R 0.002 0.610 

CDH3_P87_R 0.026 0.705  CD9_P504_F 0.002 0.527 

ELK3_P514_F 0.026 0.339  CDH3_P87_R 0.002 0.706 

EPHA2_P203_F 0.026 0.304  CDKN1B_P1161_F 0.002 0.419 

FAS_P65_F 0.026 0.623  CFTR_P372_R 0.002 0.500 

FGFR3_P1152_R 0.026 0.356  COL18A1_P494_R 0.002 0.725 

FRZB_E186_R 0.026 0.782  CRIP1_P274_F 0.002 0.389 

GNMT_P197_F 0.026 0.674  CRIP1_P874_R 0.002 0.449 

GRB7_E71_R 0.026 0.708  CTNNA1_P382_R 0.002 0.675 

GRB7_P160_R 0.026 0.388  CTNNB1_P757_F 0.002 0.319 

HCK_P858_F 0.026 0.377  DDIT3_P1313_R 0.002 0.427 

HFE_E273_R 0.026 0.776  DES_E228_R 0.002 0.551 

HIC2_P498_F 0.026 0.354  DSC2_E90_F 0.002 0.707 

HLA_F_E402_F 0.026 0.366  ELK3_P514_F 0.002 0.553 

IRAK3_P185_F 0.026 0.490  EPHA2_P203_F 0.002 0.223 

JAK3_E64_F 0.026 0.669  EPHB6_E342_F 0.002 0.213 
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LOX_P313_R 0.026 0.632  ERBB3_E331_F 0.002 0.714 

MATK_P190_R 0.026 0.362  ERCC6_P698_R 0.002 0.444 

MET_E333_F 0.026 0.684  ERN1_P809_R 0.002 0.226 

MT1A_E13_R 0.026 0.534  ESR2_E66_F 0.002 0.733 

TERT_P360_R 0.026 0.256  ESR2_P162_F 0.002 0.768 

TGFB2_E226_R 0.026 0.838  EYA4_P508_F 0.002 0.478 

THBS1_E207_R 0.026 0.782  EYA4_P794_F 0.002 0.361 

TRIP6_E33_F 0.026 0.701  F2R_P839_F 0.002 0.349 

ATP10A_P147_F 0.033 0.528  FES_E34_R 0.002 0.735 

BCR_P346_F 0.033 0.273  FES_P223_R 0.002 0.700 

IMPACT_P234_R 0.033 0.636  FGFR3_P1152_R 0.002 0.353 

RUNX1T1_P103_F 0.033 0.497  FZD9_E458_F 0.002 0.697 

AREG_P217_R 0.040 0.491  GFI1_P45_R 0.002 0.314 

IGFBP1_P12_R 0.040 0.535  GLI3_P453_R 0.002 0.635 

PLAUR_E123_F 0.040 0.391  GNMT_E126_F 0.002 0.739 

RARRES1_P57_R 0.040 0.281  GNMT_P197_F 0.002 0.662 

CEBPA_P1163_R 0.049 0.453  GP1BB_P278_R 0.002 0.212 

COL1A2_E299_F 0.049 0.298  GRB7_E71_R 0.002 0.584 

COL1A2_P407_R 0.049 0.245  HHIP_P578_R 0.002 0.312 

COL1A2_P48_R 0.049 0.233  HRASLS_P353_R 0.002 0.382 

GRB10_P260_F 0.049 0.614  ICA1_P61_F 0.002 0.398 
 
Grade 2 Astrocytoma       ICA1_P72_R 0.002 0.717 

CD81_P272_R 0.012 0.551  IGFBP2_P306_F 0.002 0.437 

ERBB3_E331_F 0.012 0.634  IL17RB_E164_R 0.002 0.794 

FZD9_E458_F 0.012 0.641  INSR_P1063_R 0.002 0.507 

TNFRSF10A_P91_F 0.012 0.655  IRAK3_E130_F 0.002 0.409 

COL18A1_P494_R 0.013 0.625  IRAK3_P185_F 0.002 0.530 

MEST_P4_F 0.013 0.447  IRF5_E101_F 0.002 0.301 

ESR2_P162_F 0.014 0.778  JAK3_E64_F 0.002 0.512 

DSC2_E90_F 0.015 0.716  JAK3_P156_R 0.002 0.379 

GFI1_P45_R 0.015 0.384  KIAA1804_P689_R 0.002 0.691 

ERCC6_P698_R 0.017 0.203  KIT_P367_R 0.002 0.450 

MEST_E150_F 0.017 0.401  KLK10_P268_R 0.002 0.466 

MT1A_P600_F 0.017 0.246  LOX_P313_R 0.002 0.775 

TGFB2_E226_R 0.017 0.703  LYN_P241_F 0.002 0.634 

TJP1_P390_F 0.017 0.726  MAP3K1_E81_F 0.002 0.809 

ALOX12_E85_R 0.018 0.607  MAP3K1_P7_F 0.002 0.745 

CFTR_P372_R 0.018 0.496  MATK_P190_R 0.002 0.478 

CRIP1_P274_F 0.018 0.412  MEST_E150_F 0.002 0.485 

TNFRSF10A_P171_F 0.018 0.523  MEST_P4_F 0.002 0.468 

DES_E228_R 0.019 0.329  MEST_P62_R 0.002 0.473 

ERN1_P809_R 0.019 0.212  MET_E333_F 0.002 0.764 
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RARRES1_P426_R 0.019 0.488  MT1A_P600_F 0.002 0.272 

TES_P182_F 0.019 0.478  NGFR_P355_F 0.002 0.261 

CAV2_E33_R 0.019 0.385  NOTCH3_P198_R 0.002 0.684 

CCNA1_E7_F 0.019 0.617  NTSR1_P318_F 0.002 0.292 

FABP3_E113_F 0.019 0.448  PAX6_P1121_F 0.002 0.388 

HHIP_P578_R 0.019 0.233  PGF_P320_F 0.002 0.586 

JAK3_P156_R 0.019 0.385  PLAUR_E123_F 0.002 0.448 

TNFRSF10D_E27_F 0.019 0.689  POMC_P400_R 0.002 0.397 

TNFRSF10D_P70_F 0.019 0.201  PRKCDBP_E206_F 0.002 0.669 

ZMYND10_P329_F 0.019 0.639  PYCARD_E87_F 0.002 0.658 

DDIT3_P1313_R 0.021 0.445  RAB32_E314_R 0.002 0.645 

EYA4_P794_F 0.021 0.315  RAN_P581_R 0.002 0.359 

PRKCDBP_E206_F 0.021 0.611  RARRES1_P426_R 0.002 0.478 

SH3BP2_P771_R 0.021 0.415  RASSF1_E116_F 0.002 0.786 

ABCG2_P310_R 0.023 0.686  RASSF1_P244_F 0.002 0.460 

CTNNA1_P382_R 0.023 0.609  RBP1_E158_F 0.002 0.792 

ICA1_P72_R 0.023 0.527  RBP1_P150_F 0.002 0.668 

MATK_P190_R 0.023 0.438  RBP1_P426_R 0.002 0.488 

RAB32_E314_R 0.023 0.420  SCGB3A1_E55_R 0.002 0.752 

BMP4_P199_R 0.025 0.206  SEPT9_P374_F 0.002 0.225 
HIC_1_seq_48_S103_

R 0.025 0.201  SYK_E372_F 0.002 0.227 

IGF1_E394_F 0.025 0.254  TES_P182_F 0.002 0.358 

LOX_P313_R 0.025 0.771  TGFB2_E226_R 0.002 0.774 

MEST_P62_R 0.025 0.426  THBS1_E207_R 0.002 0.757 

PTCH2_E173_F 0.025 0.244  
TIMP3_seq_7_S38_

F 0.002 0.622 

RBP1_E158_F 0.025 0.736  TJP1_P390_F 0.002 0.853 

RBP1_P150_F 0.025 0.635  
TNFRSF10A_P171_

F 0.002 0.542 

RUNX1T1_P103_F 0.025 0.209  TNFRSF10A_P91_F 0.002 0.633 

F2R_P839_F 0.026 0.377  TNFRSF10C_P7_F 0.002 0.441 

GLI3_P453_R 0.026 0.508  TNFRSF10D_E27_F 0.002 0.711 

LY6G6E_P45_R 0.026 0.296  TNFRSF10D_P70_F 0.002 0.229 

MYCL1_P502_R 0.026 0.570  TRIP6_E33_F 0.002 0.673 

THBS1_E207_R 0.026 0.719  WT1_P853_F 0.002 0.354 

DNAJC15_P65_F 0.028 0.274  ZMYND10_E77_R 0.002 0.553 

PGF_P320_F 0.028 0.467  ZMYND10_P329_F 0.002 0.664 

SCGB3A1_E55_R 0.028 0.617  ZNF215_P129_R 0.002 0.688 

ALOX12_P223_R 0.029 0.329  ZP3_E90_F 0.002 0.601 

BMP4_P123_R 0.029 0.588  CPA4_E20_F 0.002 0.255 

CD40_E58_R 0.029 0.372  FABP3_E113_F 0.002 0.409 

GSTM1_P266_F 0.029 0.426  
HIC_1_seq_48_S103

_R 0.002 0.209 

HRASLS_P353_R 0.029 0.310  IGFBP2_P353_R 0.002 0.213 
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NOTCH3_P198_R 0.029 0.647  ITPR2_P804_F 0.002 0.544 

POMC_P400_R 0.029 0.353  MOS_E60_R 0.002 0.665 

RAB32_P493_R 0.029 0.371  PODXL_P1341_R 0.002 0.375 

ZMYND10_E77_R 0.029 0.446  RAB32_P493_R 0.002 0.436 

CTNNB1_P757_F 0.032 0.221  TGFBI_P173_F 0.002 0.279 

GRB7_P160_R 0.032 0.311  CDH3_E100_R 0.003 0.720 

RBP1_P426_R 0.032 0.477  GRB10_P260_F 0.003 0.390 

CCKAR_E79_F 0.035 0.335  GUCY2D_P48_R 0.003 0.389 

EPHA2_P340_R 0.035 0.345  HTR1B_E232_R 0.003 0.418 

ATP10A_P147_F 0.037 0.453  LY6G6E_P45_R 0.003 0.318 

RAN_P581_R 0.037 0.361  MT1A_P49_R 0.003 0.276 

EYA4_P508_F 0.040 0.468  
TNFRSF10C_E109_

F 0.003 0.292 

JAK3_E64_F 0.040 0.556  CTSD_P726_F 0.003 0.321 

KIAA1804_P689_R 0.040 0.552  DNAJC15_P65_F 0.003 0.335 

MAP3K1_E81_F 0.040 0.769  MYCL1_P502_R 0.003 0.592 

RARA_P176_R 0.040 0.503  PADI4_P1158_R 0.003 0.262 

EPHA2_P203_F 0.044 0.295  SH3BP2_P771_R 0.003 0.375 

GNMT_E126_F 0.044 0.660  TEK_E75_F 0.003 0.222 

ITPR2_P804_F 0.044 0.486  TMEFF1_P626_R 0.003 0.288 

MYLK_P469_R 0.044 0.249  IFNGR2_P377_R 0.003 0.200 

PLAUR_E123_F 0.044 0.442  MMP14_P13_F 0.003 0.280 

PYCARD_E87_F 0.044 0.646  SLC22A3_P528_F 0.003 0.231 

RASSF1_E116_F 0.044 0.612  CASP6_P201_F 0.004 0.247 

TNFRSF10C_P7_F 0.044 0.384  EIF2AK2_P313_F 0.004 0.722 

AREG_P217_R 0.047 0.391  GFI1_E136_F 0.004 0.532 

CRIP1_P874_R 0.047 0.415  HS3ST2_E145_R 0.004 0.305 

IGFBP1_P12_R 0.047 0.515  PTCH2_E173_F 0.004 0.265 

LYN_P241_F 0.047 0.410  AREG_P217_R 0.004 0.494 

MAP3K1_P7_F 0.047 0.719  EPHA2_P340_R 0.004 0.289 

RASSF1_P244_F 0.047 0.393  EVI1_P30_R 0.004 0.427 

Ependymoma       FAS_P65_F 0.004 0.591 

EVI2A_P94_R 0.009 0.237  HFE_E273_R 0.004 0.627 

RASSF1_E116_F 0.013 0.574  MMP2_P303_R 0.004 0.383 

ERN1_P809_R 0.017 0.210  MYLK_P469_R 0.004 0.461 

IFNGR2_P377_R 0.017 0.208  RUNX1T1_P103_F 0.004 0.247 

TDGF1_P428_R 0.017 0.314  STAT5A_E42_F 0.004 0.258 

PTPRO_P371_F 0.026 0.259  FRZB_E186_R 0.005 0.719 

RAB32_P493_R 0.029 0.345  GRB7_P160_R 0.005 0.396 

SPP1_E140_R 0.029 0.215  HIC2_P498_F 0.005 0.306 

FZD9_E458_F 0.032 0.201  IGFBP1_E48_R 0.005 0.490 

KLK10_P268_R 0.032 0.349  IMPACT_P234_R 0.005 0.466 

RASSF1_P244_F 0.032 0.406  PYCARD_P393_F 0.005 0.218 
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TES_P182_F 0.032 0.234  VAV2_P1182_F 0.005 0.399 

HOXA11_P698_F 0.041 0.252  AHR_P166_R 0.005 0.660 

NFKB1_P496_F 0.041 0.236  CDKN1C_P626_F 0.005 0.252 

CTSD_P726_F 0.045 0.296  FAS_P322_R 0.005 0.371 

    HCK_P858_F 0.005 0.323 

    IGFBP7_P297_F 0.005 0.229 

    LAMC1_P808_F 0.005 0.363 

    COL1A2_P407_R 0.006 0.256 

    HOXA11_P698_F 0.006 0.499 

    IGF2R_P396_R 0.006 0.272 

    ZNF215_P71_R 0.006 0.349 

    CD81_P211_F 0.007 0.360 

    GSTM1_P266_F 0.007 0.247 

    MMP14_P208_R 0.007 0.374 

    PLSCR3_P751_R 0.007 0.218 

    RARRES1_P57_R 0.007 0.260 

    MMP2_P197_F 0.008 0.272 

    TNF_P158_F 0.008 0.235 

    IGF1_E394_F 0.009 0.310 

    MLH3_P25_F 0.009 0.250 

    MT1A_E13_R 0.009 0.489 

    SEMA3B_E96_F 0.009 0.237 

    ERG_E28_F 0.010 0.338 

    EVI1_E47_R 0.012 0.638 

    JUNB_P1149_R 0.012 0.361 

    GJB2_P931_R 0.013 0.288 

    IGFBP1_P12_R 0.013 0.414 

    TNFRSF1B_P167_F 0.013 0.385 

    WRN_P969_F 0.013 0.294 

    ACVR1C_P363_F 0.015 0.378 

    BCR_P346_F 0.015 0.267 

    COL1A2_P48_R 0.015 0.275 

    FGFR2_P460_R 0.015 0.363 

    ITGB4_P517_F 0.015 0.410 

    FGFR2_P266_R 0.017 0.375 

    TNFRSF1B_E5_F 0.017 0.201 

    E2F5_P516_R 0.019 0.303 

    FGF1_P357_R 0.019 0.238 

    HOXA5_E187_F 0.019 0.321 

    PTPN6_E171_R 0.019 0.238 

    IL6_P611_F 0.021 0.319 

    PTK2_P735_R 0.027 0.467 

    CALCA_E174_R 0.030 0.225 
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    TFAP2C_P765_F 0.037 0.250 

    CREB1_P819_F 0.041 0.248 

    CRK_P721_F 0.046 0.266 

    MAPK12_P416_F 0.046 0.214 

    SH3BP2_E18_F 0.046 0.216 

    SHB_P691_R 0.046 0.223 

* This column lists the Illumina GoldenGate methylation array annotation for CpGs where the 
gene name is listed first in all capital letters followed by an E for exon or P for promoter to indicate 
the location of the CpG relative to the transcription start site, the number indicates the distance of 
the CpG from the transcription start site, and F indicates forward strand and R indicates reverse 
strand.  
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Supplementary Table 8. Cellular pathways enriched among statistically significantly differentially 

methylated CpG loci in gliomas with an IDH mutation compared to gliomas without IDH mutation*. 

Pathways enriched in IDH mutant gliomas  P† 

Hypermethylated  

Protein Kinase A Signaling .05 

Angiopoietin Signaling .06 

RAN Signaling .10 

Hypomethylated  

Methane Metabolism .03 

Stilbene, Coumarine and Lignin Biosynthesis .03 

Metabolism of Xenobiotics by Cytochrome P450 .03 

PXR/RXR Activation .04 

Retinol Metabolism .05 

Phenylalanine Metabolism .06 

Starch and Sucrose Metabolism .09 

Pentose and Glucuronate Interconversions .09 

Androgen and Estrogen Metabolism .10 

* CpG loci with statistically significantly differential methylation (Q<0.05 and |Δβ|>0.2) between 
IDH wild-type and IDH mutant gliomas were examined for cellular pathway enrichment with 
Ingenuity pathways analysis software.  RAN=RAN, member RAS oncogene family; PXR=nuclear 
receptor subfamily 1, group I, member 2; RXR=retinoid X receptor, gamma.  

† Two-sided Fisher’s exact test P value for enrichment of genes whose CpG loci are represented 
in among those in the listed pathways. 
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Supplementary Table 9. Recursively partitioned mixture model (RPMM) methylation class membership and glioma tumor grade and histology*.  

              

 IDH Mutation Tumor Grade Tumor histology† 

Methylation Class No Yes 2 3 4 AS2 AS3 EP GBM GBM2 OA2 OA3 OD2 

L  1 52 43 5 5 14 4 0 3 2 13 1 16 

RLLL  5 0 1 0 4 0 0 1 3 1 0 0 0 

RLLR  0 5 0 0 5 0 0 0 1 4 0 0 0 

RLR  12 0 0 0 12 0 0 0 12 0 0 0 0 

RRLL  5 0 5 0 0 0 0 5 0 0 0 0 0 

RRLR   5 0 5 0 0 0 0 5 0 0 0 0 0 

RRRLL  2 0 2 0 0 1 0 1 0 0 0 0 0 

RRRLR  4 0 4 0 0 4 0 0 0 0 0 0 0 

RRRR  4 0 4 0 0 0 0 2 0 0 2 0 0 

 
P = 3.0x10

-16
‡ P < 2.2x10

-16
§ 

     
P < 2.2x10

-16
|| 

* Methylation classes from recursively partitioned mixture model (RPMM) of gliomas with IDH mutation data stratified by IDH mutation status, 
tumor grade, and grade-specific tumor histology, all statistical tests are two-sided. 

† AS2=grade 2 Astrocytoma, AS3=grade 3 astrocytoma, EP=ependymoma, GBM=primary glioblastoma multiforme, GBM2=secondary 
glioblastoma multiforme, OA2=grade 2 oligoastrocytoma, OA3=grade 3 oligoastrocytoma, OD2=grade 2 oligodendroglioma. Tumors were 
previously reviewed by UCSF neuropathologists to assign histologic subtypes and grades according to the World Health Organization 
classification. 
‡ Fisher’s exact test P value for association between RPMM methylation class and IDH mutation status.  
§ Fisher’s exact test P value for association between RPMM methylation class and tumor grade. 
|| Fisher’s exact test P value for association between RPMM methylation class and grade-specific tumor histology. 
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Abstract 

Glioblastoma multiforme (GBM) is the most aggressive of all brain tumors with a median 

survival under 1.5 years. Recently, epigenetic alterations have been found to play key 

roles in both glioma genesis and clinical outcome, demonstrating the need to integrate 

genetic and epigenetic data into predictive models.  To enhance current models through 

discovery of novel predictive biomarkers, we employed a genome wide, agnostic strategy 

to specifically capture both expression-based (methylation-directed changes in gene 

expression) and alternative associations of DNA methylation with disease survival in 

glioma. Human GBM-associated DNA methylation, gene expression, IDH1 mutation 

status, and survival data were obtained from The Cancer Genome Atlas. DNA 

methylation loci and expression probes were paired by gene, and their subsequent 

association with survival was determined by applying an accelerated failure time model 

to previously published alternative and expression-based association equations. 

Significant associations were seen in 27 unique methylation/expression pairs with 

expression-based, alternative, and combinatorial associations observed (10, 13, and 4 

pairs, respectively). The majority of the DNA methylation loci that were predictive were 

located within CpG islands, and all but three of the locus pairs showed negative 

correlations, suggesting that for most loci, the methylation/expression pairs were 

inversely related, consistent with methylation-associated gene regulatory action. Our 

results indicate that changes in DNA methylation are associated with altered survival 

outcome through both coordinate changes in gene expression and alternative mechanisms. 

Furthermore, our approach offers an alternative method of biomarker discovery using a 
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priori gene pairing and precise targeting to identify novel sites for loci-specific 

therapeutic intervention.   

Keywords: glioma, DNA methylation, gene expression, biomarker, mediation analysis 
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Introduction 

  Glioblastoma multiforme (GBM) is the most aggressive of all brain tumors, and 

accounts for approximately 70% of all malignant gliomas.
1
  Despite current treatments, 

patients with GBMs have a median survival of only 12-15 months.
1
  This disease is 

thought to result from the outgrowth of clonal populations that harbor a combination of 

somatic gene alterations that are likely complex.
1
  Genetic alterations include 

dysregulation of many angiogenic and proliferative pathways including amplification of 

EGFR and overexpression of VEGF.
1
  In addition, dysregulation in many members of the 

PI(3)K /Akt/RAS signaling pathway have also been implicated in the disease.
1
  In 2006, 

Phillips et al used these genetic alterations, as well as copy number variations (CNV), to 

distinguish subclasses of GBM, which had prognostic implications.
2
  These analyses 

were further supported by several studies that assessed known, prevalent mutations in 

GBMs (EGFR, PTEN, IDH1, TP53, and NF1), copy number alterations, and expression 

changes in an integrative approach in order to more precisely define of GBM subtypes 

important for survival prediction.  These data and approaches strongly support the 

hypothesis that GBMs harbor a complex combination of somatic alterations that 

determine their phenotype. 
3, 4

 

Recently, Frattini et al (2013), used a novel statistical approach in an attempt to identify 

drivers of gliomagenesis through integration of somatic mutations and CNV.
5
  They 

classified three types of GBM: 1) GBM having deletions at sites containing mutations, 2) 

GBM having amplifications at sites containing mutations, and 3) GBM with recurrent 

mutations and no alteration in CNV.
5
  They also identified fusion products involving the 

EGFR-SEPT14 loci. Their integrative analysis further added to the genetic understanding 
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of GBM pathogenesis as well as marked specific targets for possible therapeutic 

intervention. 
5
 

Epigenetics (particularly DNA methylation) also plays an important role in gliomagenesis 

and glioma survival. Gene promoter DNA methylation has long been associated with 

gene silencing and research has now identified a role for methylation in selecting 

alternate transcripts and gene promoters, giving rise to somatic events that can impact 

disease survival. 
6-10

 
11, 12 Our group and others have reported an association between 

isocitrate dehydrogenase 1 and 2 (IDH1/2) mutations and a hypermethylator phenotype in 

gliomas that is associated with early age of onset and increased patient survival, 

specifically in lower grade gliomas and secondary GBM.
6, 15 

Our data, which looked at a 

TCGA independent population, also demonstrated and association between TP53 and G-

CIMP and a lack of association between EGFR and G-CIMP, and an overall increase in 

methylation genome-wide. 
16

 

 DNA methylation does not act solely through the mediation of gene expression (the 

mechanism that we designate as an expression-based association).  DNA methylation has 

also been found to associate with chromosomal instability, the induction of splice 

variants, alterations in enhancer regions, changes in microRNA binding regions and 

expression control regions, and mutations.  These somatic changes (which we designate 

as an alternative association) could also greatly impact survival, but are much less well 

studied.
6-10

  

These reports have highlighted the crosstalk between various types of carcinogenic 

somatic alterations and the need for a better understanding of the complex nature of the 
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pattern of somatic gene inactivation, involving genetic and epigenetic alterations that 

impact upon both the genesis of and survival from glioma. Although there has been a call 

for these integrative biomarkers that can sharpen predictive tools, most research has 

focused on the integration of genetic alterations (e.g. mutations) and their association 

with survival.
5, 18, 19

 Here, we have made use of The Cancer Genome Atlas (TCGA) data 

sets to test our bioinformatics-based approach for identifying novel biomarkers of 

phenotypically important relationships among DNA methylation, gene expression, and 

survival in GBM.  

Results 

DNA methylation and gene expression are significantly associated in GBM samples 

After removal of all IDH1 mutant samples and replicates to prevent survival bias, the 

final phase 1 and phase 2 datasets contained n=73 and n=168 samples, respectively. 

Patient demographic data for all 241 GBM samples are presented in Table 1.  Expression 

and methylation loci were paired by gene symbol for all 241 samples, resulting in a total 

of 66,202 unique methylation and expression pairs, which were used for the following 

analysis. In order to ensure functionality of methylation loci in the following analysis an 

initial screen was conducted to determine the association of methylation and expression 

with in the same gene.  To identify the methylation loci that regulate gene expression 

level, a linear model, as specified in Equation 2 (see Materials and Methods), was 

performed using the combined phase 1 and phase 2 datasets (n=241). Pairs were chosen 

as significant if they had a q-value <0.05. Out of all 66,202 corresponding loci for both 

expression and methylation, 9821 were found to be significantly associated with each 
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other (84.3% negatively correlated, 15.7% positively correlated). Samples were then 

separated back into the original phase 1 (n=73) and phase 2 (n=168) sets for survival 

analysis. 

 

DNA methylation and gene expression pairs are significantly associated with patient 

survival in GBM samples 

To determine DNA methylation and gene expression pairs that are not only significantly 

associated with each other, but also significantly associated with survival, a Cox 

proportional hazards model was run on phase 1, phase 2, and pooled datasets. We used 

the Cox model to investigate the effect of gene expression, DNA methylation, and their 

interaction term on survival, adjusting for age, gender, and study. ‘Study’ was included in 

as a model variable as a precautionary measure due to the inherent difference in how the 

presence of IDH1 mutation was determined for each of the two datasets. As previously 

mentioned, tumors with a G-CIMP phenotype or IDH mutation were removed from this 

analysis due to their association with increased survival in GBM patients.  Analysis of the 

phase 1 data set (n=73) yielded 878 pairs (from the original 9821) that were significantly 

associated with survival (p<0.05). Those 878 pairs were re-run using the phase 2 data set 

(n=168) using the same model, which reveals 100 pairs with p<0.05. Finally, we assessed 

effects of the 100 pairs on overall survival using the pooled dataset (n=241) 

(Supplementary Material, Table S1). Pairs significantly correlated with survival were 

chosen based on the q-value (BH) of the pooled model (cutoff: q<0.10).  A total of 36 

unique methylation/expression pairs from 29 genes were significantly associated with 
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survival. Of these 36 unique pairs, CpG locus cg23134520 was found to contain a SNP 

(rs6032566) and was removed from further analysis. This yielded 35 unique 

methylation/expression pairs from 28 different genes, which were used for the final 

mediation analysis (Table 2).  

 

Association of methylated loci with survival can be decomposed into i) those whose 

action is mediated through expression and ii) those whose association with survival is not 

mediated in this fashion. 

We first estimated the association of DNA methylation with survival mediated through 

presumptive effect on gene expression (expression-based association) and then assessed 

the association not directly mediated through gene expression (alternative association). 

The expression-based and alternative associations of paired loci with survival were 

estimated for the top 35 unique methylation/expression pairs (chosen from the linear 

model and Cox proportional hazards model) by using an accelerated failure time (AFT) 

model (see Supplementary Material, Table S2).  This yielded 10 unique 

methylation/expression pairs where expression-mediated methylation was associated with 

survival outcome (or significant expression-based associations) (Fig. 1A), 13 

methylation/expression pairs where methylation did not work through expression of the 

same gene to effect survival (significant alternative association) (Fig. 1B), and 4 

methylation/expression pairs where methylation exerted its effect on survival outcome 

directly and through gene expression (both significant alternative and expression-based 

associations) (Fig. 1C).  Of the 27 significant methylation and expression pairs, 22 DNA 
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methylation loci were located within a CpG Island and, in general, pairs within the same 

gene had similar effects on survival (Fig. 1 A-C). In addition, all but three of the locus 

pairs (associated with CACNB1, RFXANK, and RAB21), had negative correlations, 

suggesting that the majority of the methylation/expression pairs were inversely related  

(see Supplementary Material, Fig. S2). Additionally, exon locations of methylation loci 

from significant pairs can be seen in supplementary material, Fig. S3 

 

Discussion 

The association of alterations in DNA methylation and gene expression in GBM 

with disease survival has been a major focus of recent studies, as it is apparent that 

outcome is not solely driven by somatic mutation. These previous studies generally 

identified loci whose methylation was inversely correlated with expression and examined 

that impact of those loci on patient outcome. Uniquely, in our study, we focused upon 

methylation and attempted to classify the effects of methylation on survival into those 

mediated by expression and those not mediated by expression, thereby expanding the 

potential biomarker pool.   

 In 2013, Wang et al used an integrative Bayesian analysis (iBAG) approach to analyze 

the association of DNA methylation with changes in gene expression and subsequently 

evaluated the association of changes in gene expression on GBM survival.
21

 This linear 

approach was able to identify several genes with significant associations of gene 

expression modulated by methylation. Consistent with this data, several genes that we 

identified to be significantly modulated by DNA methylation, including OSMR, STEAP1, 
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and GRB10, were also reported by Wang et al in their findings. 
21

  However, methylation 

not only exerts its effects on survival through expression of its associated gene, but also 

can operate through a variety of other mechanisms, including chromosomal 

fragility/instability, splicing variants, enhancer regions, and dysregulation of microRNA. 

6-10
 Etcheverry et al (2010) investigated the impact of DNA methylation on gene 

expression and outcome in GBM.
22

 Their analysis focused on the relationship between 

DNA methylation and gene expression and the association of methylation on survival. 

They identified 421 CpG sites that were significantly inversely correlated between 

methylation and expression, 291 of these CpG sites matched what we found to be 

correlated in our analysis. They also identified 13 genes, that appeared to have consistent 

differential methylation and expression (between GBM and control brain) but were 

negatively correlated, suggesting that the regulation of these genes may be epigenetically 

modulated.
22

  However, Wang et al did not consider the joint effect of methylation and 

expression on outcome. In addition, IDH1 mutant-associated samples were removed from 

our study to ensure that the final results would not reflect a bias toward the IDH1 

hypermethylator phenotype due to its association with increased survival.
6
  

Our final model focuses not only on how methylation acts through expression to 

associate with survival; but also assesses how methylation can associate with survival 

directly or as a proxy for alternative mechanisms (Fig. 2).   The final 27 significant 

methylation/expression pairs (contain genes associated with invasion, angiogenesis, and 

metabolism, and many have been previously linked to brain/glioma (Table 3).  Of the 20 

genes that contained the significant pairs, to our knowledge none are associated with 

common amplifications and deletions found in GBM.
23

 Ten pairs (from seven genes) had 
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a significant expression-based association with survival, suggesting that DNA 

methylation in these genes affects survival outcome via gene expression of the associated 

gene. Interestingly, two genes contained multiple significant methylation/expression pairs. 

One of these genes, oncostatin M receptor (OSMR), contained two significant pairs, both 

with the same gene expression probe, but paired with different DNA methylation loci. 

The DNA methylation loci for these pairs fall in a CpG island within 550 bp of the 

transcription start site of the OSMR gene and the pairs showed a negative correlation, 

suggesting that methylation of these loci could inhibit gene expression. The locus pairs 

(cg03138091_A_24_P388860 and cg26475085_A_24_P388860) were associated with a 

significant expression-based association for each CpG.  It is known that OSMR beta 

associates with Interleukin 31 Receptor alpha (IL31RA) to form the Interleukin 31 

receptor (IL31) complex which activates signal transducer and activator of transcription 3 

(STAT3).
24

  Priester et al (2013) recently demonstrated that silencing of STAT3 inhibits 

glioma single cell infiltration and tumor growth, suggesting that STAT3 plays an 

important role in the invasiveness of gliomas.
25

 If OSMR is silenced via DNA 

methylation of its promoter, this could lead to a decrease in OSMR gene expression and 

its association with IL31RA, inhibiting the subsequent activation of STAT3. Without 

activated STAT3, GBM growth and infiltration could be attenuated, potentially causing an 

increase in survival. This proposed mechanism supports the expression-based association 

of OSMR methylation on survival in the present study.  

 In addition to the 10 pairs with significant expression-based associations, there were also 

14 methylation/expression pairs (in 12 genes) with significant alternative associations. 

This suggests that in these genes, DNA methylation is associated with survival either 
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directly or through mechanisms other than direct changes in gene expression. For 

instance, aquaporin 1 (AQP1) contained one methylation/expression pair, which is 

located in a CpG island within 300 bp of the transcription start site of the AQP1 gene, and 

the pair showed a negative correlation, suggesting that methylation of this locus could 

inhibit gene expression. The major function of aquaporins (AQPs) is transportation of 

water across cell membranes, the disruption of which has been shown to disturb the 

blood-brain barrier and lead to cerebral edema.
26-28

 AQP1 and AQP4 are most abundantly 

expressed in the nervous system, and though AQP4 has been more heavily studied, the 

expression of both has been observed in GBM and found to correlate with malignancy, 

specifically with cytotoxic cerebral edema, angiogenesis, and migration/invasion.
26, 29, 30

 

Recently, it has been shown that both AQP1 and AQP4 are direct targets of microRNA 

320a (miR-320a) and that increased miR-320a is associated with a reduction in AQP1/4 

expression.
31

 Therefore, a possible mechanistic explanation for the alternative association 

we observe involves methylation of the microRNA target region on AQP1 inhibiting the 

binding of miR-320a and ultimately allowing transcription of AQP1.  

Interestingly, there were four methylation/expression pairs (three genes) that had both 

significant alternative and expression-based associations. Of interest is the gene growth 

factor receptor-bound protein 10 (GRB10), which contained two significant pairs, both 

with the same DNA methylation locus but paired with different gene expression probes. 

The DNA methylation locus for these pairs fall in a CpG island of the GRB10 gene, and 

the pairs showed a negative correlation. The loci pairs (cg24302095_A_24_P235266 and 

cg24302095_A_24_P235268) have significant alternative associations that suggest that 

with a 5% increase in methylation, a decrease in survival may be observed; but the pairs 
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also have significant expression-based associations. GRB10 is an imprinted gene that is 

differentially expressed from two promoters. In the brain, it is paternally expressed.
32

  

GRB10 interacts with receptor tyrosine kinases and signaling molecules, most commonly 

insulin receptors and insulin-like growth factor receptors.
32, 33

 In addition, monoallelic 

expression appears to be limited to fetal brain, skeletal muscle, and, most recently, 

placenta.
32, 33

 Not only is expression of GRB10 tissue specific, but it is also isoform 

specific.
32

 Currently, 13 different splice variants of GRB10 have been identified, with all 

but one being expressed in the brain.
33

 Overexpression of some isoforms has been shown 

to suppress growth.
32

 Yonghao et al (2011) found decreased expression of GRB10 in 

many human tumor types, including gliomas, compared to corresponding normal tissue.
34

 

These tumor samples demonstrated a negative correlation between GRB10 and PTEN 

expression. Furthermore, in a murine cell line, stabilization of Grb10 due to mTORC1-

mediated phosphorylation resulted in inhibition of PI3K and ERK-MAPK pathways, 

suggesting a role for Grb10 as a tumor suppressor. 
34

 Conversely, Nord et al (2009), using 

a 32K bacterial artificial chromosomes array, found human GRB10 to be a putative novel 

oncogene in glioblastoma.
35

 Mechanistic differences might be attributed to inherent 

imprinting differences in GRB10 between mice and humans. Nonetheless, DNA 

methylation of this CpG locus has the potential to cause alternative splice sites and may 

be responsible for the different isoforms of GRB10. Therefore, it is plausible that both the 

alternative and expression-based associations of this gene have a significant outcome on 

survival. Further potential mechanisms for genes that contained significant pairs can be 

found in Table 3.  
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There were several limitations to our work. First, we relied upon publically available data, 

which did not have complete mutation and survival data. We used a previously validated 

approach to control for this, but this remains a limitation 
9
 
7
. To address the issue of 

missing survival data we used an accelerated failure time model to predict the survival 

time of censored values. In order to ensure functionality of methylation loci in our 

analysis, an initial screen was conducted, and only methylation and expression pairs that 

were significantly correlated within the same gene were used. Due to limited patient data, 

our study consisted only of primary GBM; however, promoter methylation of many 

GBM associated genes is more common in secondary GBM (ie. 11% promoter 

methylation for MGMT 36 
),  which may explain the lack of detection of previously 

described genes associated with promoter methylation in glioma. Additionally, there was 

one pediatric patient out of the 241 samples (age 10) that was not removed from the study 

prior to analyses.  

Our approach focuses on methylations that regulate expression of the same gene, as 

mentioned above, and would miss methylation loci that do not regulate gene expression 

and are associated with survival through the alternative mechanism. To establish no 

association with gene expression, difficulties such as distinguishing null findings due to 

severe multiple comparisons from those with true biology will be an issue. Our approach 

circumvents the difficulty and is driven by biology: methylation that regulates gene 

expression is more likely to be functional and thus affects cancer survival. 

Overall, our findings are consistent with the well-accepted concept that DNA methylation 

can associate with survival outcome via alterations in gene expression (e.g., OSMR). Our 

findings also suggest that methylation can associate with survival outcome through 
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mechanisms other than dysregulation of gene transcription, including disruption of 

microRNA function, as possible in the case of AQP1. Additionally, some 

methylation/expression pairs have both significant alternative and expression-based 

associations, suggesting that different tumors are using discrete mechanisms, yielding 

different survival outcomes, as described for the proposed alternative and expression-

based associations of GRB10. It should be noted that promoter methylation of MGMT, 

which is frequent in low-grade and secondary GBM
11, 12

,was observed to be significantly 

correlated with MGMT gene expression (data not shown), but was not observed in our 

final list of significant pairs. This may be attributable to the data quality (e.g. treatment 

data), or the relatively large number of subjects required to detect an interaction between 

treatment and methylation at this locus.   

Importantly, our data suggest that this approach might profitably be applied to cancers 

other than GBM. Our method also brings to light pathways for future study as potential 

mechanisms in the pathogenesis of glioma. Though additional validation is needed, our 

work supports the concept that DNA methylation can function both through gene 

expression, and more directly or through alternative mechanisms, to modulate survival 

outcomes among glioblastoma patients.  

 

Materials and Methods: 

External Data Sets 

 Methylation, expression, and mutation data for glioblastoma multiforme (GBM) were 

downloaded from The Cancer Genome Atlas (TCGA) for two different sample sets.  
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Level 1 HumanMethylation27 (Illumina) DNA methylation data and level 2 

AgilentG4502A_07_1 and 2 gene expression data were downloaded for all available 

GBM batches. GBM batches 1, 2, 3, and 10 were used as the phase 1 set and GBM 

batches 16, 20, 26, 38, and 62 were used as the phase 2 data set.  Patient samples lacking 

covariate data were removed; samples were further restricted to patients diagnosed with 

glioblastoma who were alive 30 days after their date of diagnosis. Data sets were not 

combined in further analyses due to the fact that phase 2 data did not have definitive IDH 

mutation status. Since IDH mutations are associated with survival we were hesitant to 

combine the two datasets as mis-identification of IDH mutations could grossly affect 

findings.   

Recursively partitioned mixture model to determine IDH1 mutation status 

Patient survival, DNA methylation, gene expression, and IDH1 mutation data (phase 1 

set only), was obtained for primary glioblastoma multiforme (GBM) samples. It has been 

widely acknowledged that IDH1 mutants are almost exclusively associated with a 

hypermethylater (G-CIMP) phenotype, and this phenotype is associated with increased 

survival in glioma.
10,11 

Therefore, we wanted to remove IDH mutant samples from our 

study so results would not be biased due to increased survival associated with this 

mutation. Since IDH mutation data was not available for the phase 2 sample set, we 

employed a recursively partitioned mixture model (RPMM) as described by Houseman et 

al 
20

 and used in Christensen and Smith et al.
6
 The RPMM successfully divided the phase 

1 set into seven classes (see Supplementary Material, Fig. S1), and the samples in the top 

two most highly methylated classes, along with the samples having IDH mutations in the 
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phase 1 set, were removed (TCGA.14.1458, TCGA.16.1460, TCGA.19.1788, 

TCGA.14.1456, TCGA.28.1756, TCGA.14.4157, TCGA.32.4208).  

Methylation Data 

 Methylation beta values were extracted from raw idat files using GenomeStudio software 

(Illumina), which calculates beta values using M/(M+U+100), where M is the methylated 

signal, U is the unmethylated signal, and 100 is an arbitrary offset. Replicates that did not 

correlate were removed (TCGA.06.0137, TCGA.06.0145). For methylation loci, all loci 

that contained a detection p-value > 0.05 for any sample were removed from further 

analysis.  Since approximately 25% of the survival data is censored, censored survival 

times were estimated using an accelerated failure time (AFT) model based on the 

equation below. 

Equation 1.    ( )                               (         )  

   (            )     

Where T follows a Weibull distribution 
37

 (μ is a scale parameter and   follows an 

extreme value distribution).  Next, methylation values were normalized for bead chip to 

control potential batch effect using the ComBat method 
38

 with adjustment of age, gender, 

survival, censored data, and survival-censored interaction.  

Expression Data 

 TCGA expression and methylation subject identification numbers were matched; all 

non-matching samples were removed from the datasets.  Replicates in expression samples 

were either averaged or chosen based on the closest mean and standard deviation to the 
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methylation distribution across all samples. The final data sets consist of a phase 1 

dataset (n=73) and a phase 2 dataset (n=168) that contain complete data on overall 

survival, DNA methylation and gene expression with samples considered G-CIMP 

removed.  

Final methylation/expression locus pairs 

Methylation and expression loci were merged based on gene of origin. Annotation files 

for both platforms (HumanMethylation27 and AgilentG4502A_07_1 and 2) were 

downloaded from TCGA and matched by gene symbol, (using the manufacturer’s 

annotation) yielding 66,202 methylation/expression pairs. It should be noted that there 

are usually several methylation loci and/or expression probes found within each gene, so 

while each pair is unique upon merging, an individual methylation or expression locus 

may be repeated among several pairs.  

Statistical Analysis 

To choose statistically significant methylation and expression pairs, expression was 

regressed on methylation in the pooled (n=241) dataset. The associated p-values were 

adjusted for false discovery rate (FDR) using the Benjamini-Hochberg (BH) procedure.
39

 

All methylation/expression pairs that had a q-value <0.05 were identified as being 

significantly associated with each other (n=9821 pairs). 

To further siphon out statistically significant pairings, pairs were then assessed using a 

Cox proportional hazards model for the effect of expression, methylation, and their 

interaction on survival, controlling for age, gender, and study (when applicable). A three 

degree-of-freedom (DF) Chi-square test was performed to test for significance of 
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expression, methylation, and their cross-product interaction. The three-DF models were 

repeated for both phase 1 (n=73) and phase 2 datasets (n=168) separately and the pooled 

dataset (n=241). In order to reduce false positives, final statistically significant pairs were 

selected for having p-values <0.05 in both phase 1 and phase 2 datasets and q-values of 

<0.1 in the pooled dataset. 

The associations of methylation and expression on survival were determined by a 

mediation analysis adopted from VanderWeele 
37

  using the following equations for the 

expression-based and alternative associations of methylation on survival: 

Equation 2.  [ |   ]              

Equation 3.    ( )                                 ( )          

                    

Equation 4.         (          )(   
 ) 

Equation 5.      {     (      
          

 ))(    ) 

      
   (      ), 

where T is survival time, E is expression, M is methylation, c is study, σ
2 

is the variance 

of the error term in Equation 2,   is a random error in Equation 3 following the extreme 

value distribution, and   is a scale parameter. For our purposes, m* is median 

methylation and (m-m*) is the change in methylation we are interested in observing. For 

example, we would set m-m* to 0.05 if we wanted to look at the change in survival for a 

5% increase in methylation. Equation 2 represents the linear model for the association 

between expression and methylation, and Equation 3 represents the accelerated failure 
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time model with interaction between methylation and expression. 0-2 are the regression 

parameters for the linear model, and θ0-θ4 are the regression parameters for the 

accelerated failure time model. We used a stepwise mediation analysis that considers the 

relationships between methylation and expression (Equation 2) and their joint effect on 

survival (Equation 3). In our case, an alternative association is the effect that methylation 

alone (or as a proxy for alternative mechanisms) has on survival, and expression-based 

association is the effect of methylation on survival mediated through gene expression. 

Equation 4 represents the expression-based association, and Equation 5 represents the 

alternative association of methylation on survival, 
37

   both of which can be estimated by 

fitting the models in Equations 2 and 3. We used bootstrap to find the variances and 

confidence intervals of the expression-based and alternative associations.  

To determine directionality of the association of methylation on expression, we looked at 

the coefficient in the linear model regressing expression on methylation (Equation 2). A 

negative coefficient suggests that methylation and expression are inversely related (i.e., 

increased methylation is associated with decreased expression and vise versa). A positive 

correlation demonstrates that methylation and expression are directly related (i.e., 

increased methylation is associated with increased expression).  
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Figure 1. Significant expression-based and alternative associations of DNA methylation on gene 

expression and survival. The 35 unique DNA methylation/gene expression pairs were subjected to an 

Accelerated Failure Time (AFT) survival model and applied to alternative and expression-based equations 

(2-5 in methods). This yielded a total of 27 significant methylation/expression pairs, 10 had significant 

expression-based associations (A), 14 had significant alternative associations (B), and 4 had both 

significant expression-based and alternative associations (C).  Grey lines indicate alternative associations, 

black lines indicate expression-based associations, grey circles indicate that the methylation locus for that 

gene pair was found in CpG Island, and black circles indicate that the methylation locus for that gene pair 

was not found in a CpG island. The y-axis indicates the change in survival time per 5% increase in 

methylation; therefore, effects that fall above the line are associated with an increase in survival and effects 

that fall below the line are associated with a decrease in survival. 
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Figure 2. Model for mediation analysis. First a linear model adjusted for study was used to determine significantly correlated methylation/expression pairs. Next, 

a Cox proportional hazards model was used to find significant association between survival and expression, methylation, and their interaction term (adjusting for 

age, gender, and study). An accelerated failure time model was used to estimate the association between survival and expression, methylation, and their 

interaction term (adjusting for age, gender, and study), and a mediation analysis was performed to estimate the alternative and expression-based associations on 

glioma survival. 
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Table 1. Patient demographic and tumor* characteristics 

  

Data Sets 

 Characteristic Training Set (n=73) Testing Set (n=168) Pooled (n=241) 

Age, years 
            Median  56 60 59 

         Range 18-86 10-86 10-86 

Sex, n(%) 
            Female 31 (42.5) 69 (41.1) 100 (41.5) 

         Male 42 (57.5) 99 (58.9) 141(58.5) 

**Survival (months) 
            Median  12.58 10.6 11.3 

         Range 1.37-60.0 1.08-60.0 1.08-60.0 

*All tumor data obtained from The Cancer Genome Atlas (TCGA) 

 **Censored at 60 months (5 years) 
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Table. 2. Final 35 DNA methylation/gene expression pairs that are significantly associated with 

survival 

TargetID_Reporter.REF SYMBOL 

cg17942096_A_23_P165180 RFXANK 

cg18345635_A_23_P147345 SLC16A3 

cg23943801_A_23_P128166 RAB21 

cg27626424_A_23_P34449 LOR 

cg05743054_A_23_P419947 MLF1 

cg18345635_A_23_P158725 SLC16A3 

cg18345635_A_23_P147349 SLC16A3 

cg11558474_A_23_P94552 TMEM2 

cg01781266_NM_018222_2_3793 PARVA 

cg05845503_A_24_P141275 GRHPR 

cg05845503_A_23_P60225 GRHPR 

cg04551925_A_23_P19894 AQP1 

cg00973286_A_23_P139715 TNFRSF1A 

cg16773028_A_32_P40593 KCNA2 

cg03138091_A_24_P388860 OSMR 

cg26475085_A_24_P388860 OSMR 

cg24812523_A_23_P14346 AKAP6 

cg24302095_A_24_P235266 GRB10 

cg24302095_A_24_P235268 GRB10 

cg22166290_A_24_P402580 BCL11A 

cg03764161_A_23_P203330 FAM111A 

cg17726022_A_24_P261734 SLC38A1 

cg17726022_A_23_P326510 SLC38A1 

cg07663789_A_23_P327451 NPR3 

cg04006554_A_23_P214244 ENPP5 

cg04006554_A_23_P214240 ENPP5 

cg04006554_NM_021572_2_2378 ENPP5 

cg05788437_A_23_P80826 FYTTD1 

cg06038049_A_23_P35029 CPSF3L 

cg20089715_A_23_P405754 CACNB1 

cg24219058_A_23_P310921 PCDH7 

cg20091959_A_23_P210445 L3MBTL 

cg18138552_A_23_P67464 PSMD8 

cg20161089_A_24_P270460 IFI27 

cg18320336_A_24_P406335 STEAP1 
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Table 3. Functions of significant genes and potential mechanisms in glioma 

SYMBOL NAME FUNCTION (GeneCards®)  
Potential expression-based 

role in glioma survival 
Potential alternative role in 

glioma survival 
Ref. # 

CACNB1 calcium channel, voltage-
dependent, beta 1 subunit 

Involved in modulating G 
protein inhibition 

It has been proposed that 
CACNB1 can protect neurons 
from Ca(2+)-induced cell death 
by modulating Ca(2+) 
channels; therefore, 
methylation-induced inhibition 
of CACNB1 could lead to loss 
of their neuroprotective 
activities (Ruan B et al 2008). 

 37 

IFI27 interferon, alpha-inducible 
protein 27 

Promotes cell death through 
mediation of IFN-alpha  

?   

MLF1 myeloid leukemia factor 1 Oncoprotein that may be 
involved in lineage 
commitment 

MLF1 and MLF1-like protein 
were found to co-localize and 
be over expressed in GBM 
tumors suggesting they play a 
role in glioma pathogenesis 
and survival. (Hanissian SH et 
al 2005). Dysregulation in 
expression of MLH1 via 
methylation could lead to 
differential survival outcomes.  

 38 

OSMR oncostatin M receptor Member of the type 1 
cytokine receptor family 
which heterodimerizes with 
interleukin 31, which as a 
complex can induce 
signaling events  

Dysregulation of STAT3 
activation via epigenetic 
induced silencing 
(Chattopadhyay et al 2007; 
Priester et al 2013). 

 22-23 

RFXANK regulatory factor X-
associated ankyrin-
containing protein 

Forms a complex with 
regulatory factor X-
associated protein and 
regulatory factor 5, which 
can then bind X box motif 
regions of some major 
histocompatibility (MHC) 

Methylation-induced decrease 
in RFXANK could inhibit MHC 
class II activation, which is 
associated with glioma tumor 
invasion (Zagzag D et al, 
2005). 

 39 
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class II molecules, leading 
to activation 

SLC16A3 solute carrier family 16, 
member 3 
(monocarboxylic acid 
transporter 4) 

Part of a family of 
monocarboxylate 
transporters that catalyze 
lactic acid and pyruvate 
transport across plasma 
membranes 

Differential SLC16A3 
expression causing 
dysregulation of glycolytic 
metabolism via MCTs 
(Halestrap AP et al 2004 and 
2013; Miranda-Gonçalves V et 
al 2013; Colen CB et al 2011). 

 40-
42,49 

TNFRSF1A tumor necrosis factor 
receptor superfamily, 
member 1A 

This receptor can activate 
NF-kappaB, mediate 
apoptosis, and function as a 
regulator of inflammation 

Methylation induced changes 
in gene expression can 
dysregulate NF-kappaB 
pathway, which has been 
previously associated with 
glioma tumorigenesis and 
could be a possible therapeutic 
target of this disease       ( 
Atkinson GP et al 2010). 

 43 

AQP1 aquaporin 1 (Colton blood 
group) 

Molecular water channel 
protein 

 Methylation-mediated 
dysregulation of microRNA 
mir-320a binding region 
(Papadopoulos MC et al 
2013; Bonomini F et al 2010; 
Wolburg H et al 2012; El 
Hindy Ner et al 2013; 
Saadoun S et al 2005; 
Sepramaniam S et al 2010). 

24-29 

ENPP5 ectonucleotide 
pyrophosphatase/ 
phosphodiesterase 5 
(putative) 

It may play a role in 
neuronal cell 
communication 

 Possible dysregulation in 
angiogenic signaling (Smith 
SJ et al 2012). 

44 
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FYTTD1 forty-two-three domain 
containing 1 

Required for mRNA export 
from the nucleus to the 
cytoplasm  

 ?  

KCNA2 potassium voltage-gated 
channel, shaker-related 
subfamily, member 2 

Voltage-gated ion channel 
that has a multitude of 
different functions ranging 
from regulation of 
neurotransmitter release, 
heart rate, insulin secretion, 
and neuronal excitability 

 Contains an alternatively 
spliced product in glioma 
cells which could contribute 
to the inactivation rate of the  
k(+) current Akhtar S et al 
1999) 

45 

L3MBTL   Lethal (3) Malignant Brain 
Tumor-like 1 (Drosophila) 

Polycomb group gene 
which functions to regulate 
gene activity via chromatin 
modifications 

 ?  

NPR3 natriuretic peptide receptor 
C/guanylate cyclase C 
(atrionatriuretic peptide 
receptor C) 

Natriuretic peptide receptor 
that regulates blood 
volume/pressure, 
pulmonary hypertension, 
cardiac function and some 
metabolic/growth processes 

 ?  

PSMD8 proteasome (prosome, 
macropain) 26S subunit, 
non-ATPase, 8 

Regulatory subunit of the 
26S multicatalytic 
proteinase complex, which 
is involved in the ATP-
dependent degradation of 
ubiquitinated proteins 

 ?  

RAB21 RAB21, member RAS 
oncogene family 

GTP-binding protein 
involved in integrin 
internalization and recycling  

 Rab21 expression has been 
found to attenuate Epidermal 
growth factor (EFG)-
mediated mitogen-activated 
protein kinase (MAPK) by 
inducing EGF-receptor 
degradation (Yang X et al 
2012).  

46 
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STEAP1 six transmembrane 
epithelial antigen of the 
prostate 1 

Found to be upregulated in 
multiple cancer cells lines 
and may be a potential 
metalloreductase  

 ?  

TMEM2 transmembrane protein 2 Involved in coordination of 
myocardial and endocardial 
morphogenesis (Totong R 
et al 2011, Smith KA et al 
2011)  

 ?                                                    47-48 

CPSF3L cleavage and 
polyadenylation specific 
factor 3-like 

Catalytic subunit of the 
integrator complex, which 
mediates the 3-prime end 
processing of small nuclear 
RNAs U1 and U3 

? ?  

GRB10 growth factor receptor-
bound protein 10 

Growth receptor binding 
protein that interacts with 
insulin and insulin-like 
growth-factor receptors 

Methylation induced loss of 
imprinting (Blagitko N et al 
2009; Monk D et al 2009; Yu Y 
et al 2011 ;Nord H et al 2009). 

Methylation changes in 
splice variants, leading to 
expression of alternatively 
functioning isoforms 
(Blagitko N et al 2009; Monk 
D et al 2009; Yu Y et al 2011 
;Nord H et al 2009 ). 

30-33 

GRHPR glyoxylate 
reductase/hydroxypyruvate 
reductase 

Enzyme that plays a role in 
metabolism and reduces 
hydroxypyruvate to D-
glycerate and glyoxylate to 
glycolate and oxidizes D-
glycerate to 
hydroxypyruvate  

? ?   

? - Possible mechanisms relating to glioma and significant expression-based or alternative association are unknown.  
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Supplementary Figure 1. Removal of IDH1 mutants. A Recursively partitioned mixture model (RPMM) was run on the top 5000 most variable CpG loci from 

the HumanMethylation27 (Illumina) DNA methylation array testing set (n=190) in order to determine hypermethylated classes, which have been previously 

associated with IDH1 mutation and increased survival in glioma(1A). The average methylation of each class was plotted (1B) and tumors in the top two most 

hypermethylated classes (RLLRR and RLLRL) were removed from the analysis as possible IDH1 mutant containing samples (1C).
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Supplementary Figure 2. Directionality of significant pairs. Gene expression values were plotted against 

DNA methylation values. A negative correlation demonstrates that methylation and expression are going in 

opposite directions (i.e. an increase in methylation is associated with a decrease in expression) and a 

positive correlation demonstrates that methylation and expression are going in the same directions (i.e. an 

increase in methylation is associated with an increase in expression). 
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Supplementary Fig. 3 Map of methylation loci locations from significant 

methylation/expression pairs. Each methylation locus obtained from significant 

methylation and expression pairs was plotted according to its genome location (Illumina 

annotation file). Exon locations were obtained from Genome Browser, with variants 

chosen based on the highest number of exons for which methylation loci fell within an 

exon as opposed to an intron. If the methylation locus was found within a CpG Island, 

that CpG island range was plotted in green (Illumina annotation file). CPSF3L is not 

plotted due to the fact that the accession number for this gene (NM_032179.1) was not 

available on genome browser.  
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Supplementary Table 1. DNA methylation/ expression pairs that are significantly associated with survival (q-value<0.1) 

Methylation Loci_Expression Probe Gene Symbol p-value  q-value** 

cg17942096_A_23_P165180 RFXANK 0.0007 0.0124 0.0001 0.007 
cg18345635_A_23_P147345 SLC16A3 0.0123 0.0075 0.0001 0.007 
cg23943801_A_23_P128166 RAB21 0.0133 0.0063 0.0003 0.0078 
cg27626424_A_23_P34449 LOR 0.0238 0.0078 0.0004 0.0078 
cg05743054_A_23_P419947 MLF1 0.0205 0.0001 0.0004 0.0078 
cg18345635_A_23_P158725 SLC16A3 0.0082 0.0336 0.0005 0.0078 
cg18345635_A_23_P147349 SLC16A3 0.0091 0.0179 0.0009 0.0127 
cg11558474_A_23_P94552 TMEM2 0.0192 0.0171 0.001 0.0127 
cg01781266_NM_018222_2_3793 PARVA 0.0204 0.0052 0.0015 0.0157 
cg05845503_A_24_P141275 GRHPR 0.0399 0.0191 0.0017 0.0157 
cg05845503_A_23_P60225 GRHPR 0.0305 0.0220 0.0019 0.0157 
cg04551925_A_23_P19894 AQP1 0.0486 0.0302 0.002 0.0157 
cg00973286_A_23_P139715 TNFRSF1A 0.0451 0.0231 0.0022 0.0157 
cg16773028_A_32_P40593 KCNA2 0.0474 0.0032 0.0022 0.0157 
cg03138091_A_24_P388860 OSMR 0.0070 0.0261 0.0026 0.0174 
cg26475085_A_24_P388860 OSMR 0.0227 0.0104 0.0037 0.0228 
cg24812523_A_23_P14346 AKAP6 0.0049 0.0239 0.0039 0.0229 
cg24302095_A_24_P235266 GRB10 0.0244 0.0006 0.0042 0.0234 
cg24302095_A_24_P235268 GRB10 0.0238 0.0005 0.0047 0.0244 
cg22166290_A_24_P402580 BCL11A 0.0179 0.0449 0.0053 0.0244 
cg03764161_A_23_P203330 FAM111A 0.0425 0.0082 0.0053 0.0244 
cg17726022_A_24_P261734 SLC38A1 0.0346 0.0388 0.0054 0.0244 
cg17726022_A_23_P326510 SLC38A1 0.0389 0.0335 0.0063 0.0273 
cg07663789_A_23_P327451 NPR3 0.0217 0.0261 0.0068 0.0282 
cg04006554_A_23_P214244 ENPP5 0.0113 0.0140 0.0091 0.0362 
cg04006554_A_23_P214240 ENPP5 0.0068 0.0107 0.0107 0.0398 
cg04006554_NM_021572_2_2378 ENPP5 0.0071 0.0115 0.0107 0.0398 
cg05788437_A_23_P80826 FYTTD1 0.0232 0.0000 0.0118 0.0422 
cg06038049_A_23_P35029 CPSF3L 0.0031 0.0322 0.0154 0.0515 
cg20089715_A_23_P405754 CACNB1 0.0044 0.0123 0.0154 0.0515 
cg24219058_A_23_P310921 PCDH7 0.0078 0.0085 0.0224 0.0723 
cg20091959_A_23_P210445 L3MBTL 0.0286 0.0136 0.0232 0.0725 
cg18138552_A_23_P67464 PSMD8 0.0310 0.0205 0.0259 0.0758 
cg20161089_A_24_P270460 IFI27 0.0462 0.0093 0.0261 0.0758 
cg23134520_A_23_P143218 ACOT8* 0.0463 0.0374 0.0265 0.0758 
cg18320336_A_24_P406335 STEAP1 0.0374 0.0277 0.0345 0.0958 

ACOT8 was removed from further analysis as SNP rs6032566 lies in the CpG locus of interest (cg23144520)**q-value  based on n=878 
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Supplementary Table 2. Expression-based and alternative associations of DNA methylation on gene expression and survival.  

Methylation Loci_Expression 
Probe SYMBOL 

Alternative 
Association 

 Confidence 
Interval (lower 

bound) 

 Confidence 
Interval         

(upper bound) 

Expression-
Based 

Association 

 Confidence 
Interval    

(lower bound) 

 Confidence 
Interval     

(upper bound) 

cg24812523_A_23_P14346 AKAP6 0.999 0.96 1.04 1.007 0.994 1.018 
cg04551925_A_23_P19894 AQP1 1.111 1.03 1.21 0.982 0.952 1.012 
cg22166290_A_24_P402580 BCL11A 0.998 0.92 1.11 0.989 0.964 1.011 
cg20089715_A_23_P405754 CACNB1 1.029 0.97 1.10 0.977 0.950 0.994 
cg06038049_A_23_P35029 CPSF3L 2.863 1.19 10.97 7.237 1.129 103.291 
cg04006554_A_23_P214240 ENPP5 0.915 0.84 0.97 0.997 0.980 1.015 
cg04006554_A_23_P214244 ENPP5 0.920 0.85 0.98 0.994 0.977 1.011 
cg04006554_NM_021572_2_2378 ENPP5 0.917 0.84 0.98 0.997 0.979 1.014 
cg03764161_A_23_P203330 FAM111A 1.172 0.70 1.80 0.970 0.717 1.441 
cg05788437_A_23_P80826 FYTTD1 2.577 1.50 5.09 0.768 0.406 1.287 
cg24302095_A_24_P235266 GRB10 0.961 0.90 1.00 1.029 1.012 1.053 
cg24302095_A_24_P235268 GRB10 0.958 0.90 0.99 1.028 1.012 1.049 
cg05845503_A_23_P60225 GRHPR 2.156 1.06 4.30 4.370 0.953 21.125 
cg05845503_A_24_P141275 GRHPR 2.277 1.11 4.79 5.474 1.074 29.351 
cg20161089_A_24_P270460 IFI27 0.941 0.85 1.05 0.961 0.928 0.989 
cg16773028_A_32_P40593 KCNA2 1.061 1.03 1.10 0.996 0.980 1.010 
cg20091959_A_23_P210445 L3MBTL 1.064 1.00 1.12 1.013 0.997 1.034 
cg27626424_A_23_P34449 LOR 1.036 1.00 1.07 1.001 0.994 1.009 
cg05743054_A_23_P419947 MLF1 1.124 0.73 2.38 0.825 0.596 0.933 
cg07663789_A_23_P327451 NPR3 1.033 1.00 1.07 0.998 0.991 1.003 
cg03138091_A_24_P388860 OSMR 0.984 0.95 1.02 1.018 1.008 1.030 
cg26475085_A_24_P388860 OSMR 1.041 0.95 1.15 1.025 1.003 1.052 

cg01781266_NM_018222_2_3793 PARVA 1.059 0.95 1.15 0.990 0.963 1.017 
cg24219058_A_23_P310921 PCDH7 1.043 0.78 1.76 0.939 0.810 1.005 
cg18138552_A_23_P67464 PSMD8 1.610 1.07 2.39 0.850 0.625 1.080 
cg23943801_A_23_P128166 RAB21 2.764 1.36 6.06 1.240 0.729 2.441 
cg17942096_A_23_P165180 RFXANK 0.922 0.84 1.01 1.050 1.019 1.086 
cg18345635_A_23_P147345 SLC16A3 1.009 0.98 1.06 1.017 1.007 1.031 
cg18345635_A_23_P147349 SLC16A3 1.010 0.98 1.05 1.011 1.003 1.024 
cg18345635_A_23_P158725 SLC16A3 1.011 0.98 1.06 1.015 1.006 1.029 

cg17726022_A_23_P326510 SLC38A1 1.040 0.72 1.51 0.875 0.702 1.032 
cg17726022_A_24_P261734 SLC38A1 1.052 0.73 1.55 0.868 0.698 1.021 
cg18320336_A_24_P406335 STEAP1 0.939 0.89 0.99 0.995 0.981 1.004 
cg11558474_A_23_P94552 TMEM2 1.107 1.01 1.23 1.017 0.994 1.042 
cg00973286_A_23_P139715 TNFRSF1A 1.096 0.91 1.28 1.080 1.001 1.181 

*Associations in bold type are significant
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Conclusion 

 

Malignant adult gliomas are the most common type of brain cancer
1
.  In the past 

decade, advances in diagnosis and treatment, particularly the use of the alkylating agent 

temozolomide, have only led to minimal improvement in patient survival 
2,3

.  Glioma 

survival outcome has been found to be associated with age, adjuvant treatments, giant-

cell subtype and oligodendroglia differentiation
2
. In addition, advances in imaging 

techniques have allowed for better diagnosis
4,5

 and more complete resection of malignant 

tumors, which has also been correlated with improved patient survival
5,6

. However, 

advances in the classification of glioma based on its molecular landscape are the most 

clinically relevant
7-10

. The classification of glioma types/subtypes using both genetic and 

epigenetic profiles has not only enhanced our knowledge of gliomagenesis but has also 

highlighted both molecular predictors of survival and possible therapeutic targets of 

glioma
11

.  

Genetic markers of glioma such as somatic alterations in the p53
12-15

, Rb
15

, 

EGFR
16

, PI3K, and VEGF signaling pathways have now been well established
2,17

, 

allowing for treatments targeting specific genes and proteins. More successful targeted 

therapies include anti-angiogenic drugs, including the commonly used bevacizumab
18

. 

Bevacizumab is a monoclonal antibody against VEGF, which, upon binding, inhibits 

VEGF activity
19

. In 2009 bevacizumab was granted accelerated approval by the FDA as a 

single agent for the treatment of recurrent GBM
19

. However, some studies have shown 

that anti-angiogenic drugs can enhance invasion and metastasis
20,21

. It has been suggested 
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that anti-angiogenic drugs should be used in combination with drugs that inhibit 

progression, invasion, and/or metastasis to increase overall survival
22,23

.  

EGFR is a tyrosine kinase activated growth factor that is involved in the 

activation of many signaling pathways, including RAS-MEK-ERK and PI3K-AKT
24

, and 

is strongly dysregulated in glioma and consistently amplified or mutated in GBM
16

. 

Many targeted therapies, including monoclonal antibodies, vaccines, tyrosine-kinase 

inhibitors, and RNA-based agents have been under review
25

. Though research on these 

drugs seems promising, drug resistance is a common endpoint, re-emphasizing the need 

for novel drug targets
25

.  Recently, greater attention has been given to epigenetics-based 

targets, both for prognostic and therapeutic purposes.  

 The role of epigenetics in cancer biology has only recently started to come into 

focus. Epigenetics encompasses events such as histone modifications
26

, DNA 

methylation
27,28

, and the targeting of genes by microRNA
29,30

, all of which are capable of 

changing an individual’s gene expression and/or cellular phenotype without directly 

changing the DNA sequence
31,32

. One of the most intensely studied areas of epigenetics is 

DNA methylation, which entails the addition of methyl groups to CpG dinucleotides
33

. 

DNA methylation is catalyzed by DNA methyltransferases and causes condensation of 

chromatin structure, which can lead to dysregulation of gene transcription
33,34

. DNA 

methylation of gene promoters is strongly implicated in a variety of cancers, including 

gliomas, and has been associated variable prognosis
35

. The best-known example of this 

association in glioma is the promoter methylation of methyl guanine methyl transferase 

(MGMT), which is associated with increased survival after treatment
36,37

.  The fact that 

epigenetics does not involve actual alterations in the DNA sequence makes it more 
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appealing to study because unlike genetic alterations, epigenetic alterations are 

potentially reversible. Agents inhibiting re-methylation, such as 5-azacytidine, have 

already been approved for the treatment of hematopoietic cancers
38-40

. However, the use 

of such drugs on solid tumors has proven less effective
41

. Additionally, the lack of 

specificity of DNA-methylating agents is a prevalent concern, as it can lead to global 

demethylation and consequent expression of oncogenes and transposable elements, 

ultimately causing genomic instability
41

.    

DNA methylation has become a reliable source of biomarkers, as methylation 

profiles can distinguish cell lineages
42

, tissues
43

, and disease subtypes, and contribute to 

improvements in diagnosis, prognosis, and treatment outcome
35

. On a single locus level, 

DNA methylation has aided in the treatment and survival of glioma, as seen with the 

aforementioned promoter methylation of MGMT44
. Loss of methylation on a global level 

has become a defining tumor characteristic
45,46

. 

Progress in the understanding of both the genetic and epigenetic landscapes of 

glioma has led to advances in both the diagnosis and treatment of the disease. Despite 

these advancements, disease survival remains low. Some researchers theorize that 

patients would benefit from targeting the molecular landscape as a whole, not just 

specific somatic alterations
47

. This theory would rely heavily on the molecular 

classification of tumors and how specific profiles or molecular characteristics associate 

with both treatment and survival.  The molecular classification of glioma began with the 

integration of genetic alterations. At the forefront of this research was Phillips et al, who 

defined 3 classes of glioma based on the integration of copy number variation (CNV), 

gene expression, and activation of cell signaling
8
. The classes, proneural, proliferative, 
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and mesenchymal, each resemble different stages of neurogenesis and each was 

differentially associated with outcome, with the proliferative and mesenchymal classes 

demonstrating the poorest survival
8
.  These analyses were further supported by the 

addition of mutation data, which helped refine associations seen between classes and 

survival outcome and led to the identification of novel drivers of gliomagenesis
10,48,49

.  

However, as these studies only exhibit the genetic diversity of glioma and its subtypes, 

there is a need for further analyses that integrate other important aspects of gliomagenesis, 

such as epigenetics.  

The integration of genetics and epigenetics has greatly enhanced our knowledge 

of cancer biology, as seen with CpG island methylator phenotypes (CIMP), which can 

distinguish different tumor subtypes and are significantly associated with outcome. In 

glioma, the link between promoter methylation and gene expression has been established 

on a single-locus level. However, no large-scale attempts integrating methylation patterns 

and genetic alterations in glioma have been made to date. The goal of this thesis was to 

integrate genetic and epigenetic profiles to obtain molecular drivers of malignancy and 

survival in glioma. 

In chapter 2, we discuss the relationship between the common glioma mutant 

isocitrate dehydrogenase (IDH) and its association with DNA methylation. First DNA 

methylation signatures of GBM, astrocytomas (AS), oligodendrogliomas (OD), 

oligoastrocytomas (OA), ependymomas (EP), and pilocytic astrocytomas (PA) (n=131) 

and those of non-glioma brain tissues (n=7) were obtained using the Infinium 

GoldenGate array, which interrogates CpG methylation loci in ~1500 cancer related 

genes. Tumors and non-glioma tissues were then clustered based on their methylation 
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status (β-value), with samples having the most similar methylation patterns clustering 

together. As expected, gliomas clustered separately from non-glioma brain tissue. 

Furthermore, a pathway analysis of differentially methylated loci (based on Δβ between 

glioma and non-glioma brain tissue) demonstrated that as a whole, metabolic pathways 

were commonly hypomethylated. Interestingly, the metabolite IDH1/2 has recently been 

found to be mutated in approximately 80% of low-grade gliomas and secondary GBM, 

and in <10% of primary GBM
50,51

.  This prompted us to investigate the association 

between IDH and DNA methylation in glioma. Recursively partitioned mixture modeling 

was used to cluster only glioma samples, resulting in nine classes that were significantly 

associated with age, histology, and grade. Not surprisingly, IDH mutants were associated 

with histological subtypes, with an increased number of mutants found in low-grade 

gliomas and secondary GBM compared with primary GBM. In addition, IDH mutants 

were exclusively associated with the two homogenous hypermethylated classes, where 

non-mutants were heterogeneously distributed among the remaining seven classes.  This 

novel finding suggested IDH as a potential driver of a hypermethylator phenotype.  In 

fact, associations between methylation class and both TP53 and EGFR were less robust 

than that of mutant IDH, further supporting the role of IDH as a driver of the observed 

hypermethylator phenotype.  A Cox proportional hazards model showed that patients 

whose tumors harbored IDH mutants had significantly improved outcome compared with 

patients whose tumors harbored non-mutant IDH, suggesting IDH mutation in association 

with hypermethylation as a potential prognostic biomarker of glioma. The prognostic 

value of the hypermethylator phenotype, or CIMP, was first observed in colorectal cancer. 

CIMP classes are determined based on mutations in BRAF and/or KRAS and promoter 
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methylation levels
52

, and CIMP subtypes are associated with differential prognosis. 

Recently, Noushmehr et al confirmed the relationship of mutant IDH with promoter 

methylation of CIMP-associated loci and successfully defined a glioma-CIMP (G-CIMP)
 

7
.  They found that G-CIMP-positive tumors are frequently found in younger patients 

with low-grade gliomas, and these patients often show better survival outcomes, which 

supports our findings
7
. Additionally, gene expression data revealed that G-CIMP tumors 

are enriched in a portion of the previously identified proneural subtype
7
, which has also 

been associated with a better prognosis
8,10

.  

Mechanistically, the link between IDH mutants and DNA methylation is still 

under debate. Mutant IDH is a neomorphic enzyme that, instead of catalyzing the 

oxidative decarboxylation of isocitrate into α-ketoglutarate (α –KG), actually converts    

α –KG into oncometabolite 2-hydroxyglutare (2-HG) in an NADPH-dependent manner
53

. 

Accumulation of 2-HG has been seen in diseases such as 2-hydroxyglutaric aciduria, 

which has been associated with increased risk of glioma
53

.  In 2011, Xu et al found 2-HG 

to be a weak antagonist of α–KG, which, at high concentrations, can inhibit α–KG-

dependent dioxygenases such as histone demethylases and TET2 5-methylcytosine 

hydroxylases (5mC). Inhibition of histone demethylases can limit the removal of histone-

associated methyl groups causing an increase in normal histone methylation. TET2 

normally catalyzes the conversion of 5mC to 5-hydroxymethylcytosine (5hmC), which 

can lead to demethylation of DNA.  Therefore, inhibition of TET2 can lead to an increase 

in DNA methylation. Consequently, the increased production of 2-HG from mutated IDH 

can cause dysregulation of the normal methylome
54

.  In 2012, Turcan et al lent further 

support to the connection between IDH and the G-CIMP
55

. The group found enriched 
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methylation of the histone marks H3K9 and H3K27 in cells expressing mutant IDH, 

which have been shown to promote DNA methylation through recruitment of DMNTs 
56

. 

Furthermore, expression of TET2 was inhibited in IDH mutant samples, decreasing 

production of 5hmC and further supporting previous findings of a possible mechanistic 

link between IDH mutations and G-CIMP
55

.  

The success of the integration of genetic and epigenetic alterations in defining a 

prognostically relevant G-CIMP class further demonstrates the need for analyses that can 

aid in the discovery of other drivers and potential biomarkers of gliomagenesis. Of 

particular interest are those gliomas that fall outside of the IDH-driven methylator 

phenotype. 

 In chapter 3, we employed a genome-wide, agnostic strategy for the discovery of 

novel predictive biomarkers related to the prognosis of glioma. In the previous chapter, 

we focused on the associations of IDH mutant gliomas and methylation. Interestingly, 

though IDH mutants were exclusive to the two hypermethylated classes, wild-type IDH 

was homogenously distributed among the lower methylated classes, suggesting 

alternative mechanisms of glioma pathogenesis in these patients. Uniquely, in our study, 

we focused on IDH wild-type samples and the role methylation plays alone or in 

conjunction with gene expression in the pathogenesis and survival of primary GBM. Not 

surprisingly, the 27 genes found to be significantly associated with survival in our study 

are involved in invasion, angiogenesis, and metastasis, and many were previously found 

to be associated with brain/glioma.  We found 10 methylation/expression pairs that had a 

significant expression-based association with survival, suggesting that DNA methylation 

in these genes affects survival outcome via expression of the associated gene, supporting 
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the commonly accepted paradigm that methylation effects survival through gene 

expression. Interestingly, of these 10 methylation/expression pairs, two were found 

within the OSMR gene. As mentioned in chapter 3, OSMR is associated with STAT3 

activation via the JAK/STAT signaling pathway. In a glioma cell line, inhibition of 

STAT3 activation was associated with reduced cell migration and invasion and mice with 

STAT3 knockdown tumors exhibited increased survival compared to controls, suggesting 

that inhibition of STAT3 is important in gliomagenesis and survival. Therefore, 

methylation induced silencing of OSMR could inhibit the activation of STAT3, thereby 

attenuating glioma cell migration and invasion. Evidence of methylation-induced 

silencing of OSMR has already been shown in colorectal (CR) cancer.  Methylation-

induced silencing of OSMR expression was associated with increased growth due to 

inhibition of the OSMR substrate OSM
57,58

. Furthermore, CR tumors with increased 

OSMR promoter methylation were associated with a non-invasive phenotype
58

, 

suggesting that OSMR could predict a class of tumors that are associated with improved 

survival. This data supports a possible link between promoter methylation, gene 

expression, and survival outcome, and suggests methylation of OSMR as a potential 

biomarker of a novel prognostic phenotype.   

In our work, 14 methylation/expression pairs were found to have significant alternative 

associations, suggesting that methylation can function through alternative mechanisms 

other than expression, to effect survival. Increased expression of the water channel AQP1, 

which had a significant alternative association in our analysis, has recently been observed 

in GBM. Interestingly, AQP1 has been shown to contain targets for regulatory 

microRNAs. Osmotically regulated microRNAs miR-708 and miR-666 were found to 
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inhibit AQP1 expression in BDL endothelial cells, and low AQP1 levels were associated 

with reduced angiogenesis and fibrosis in a mouse model of liver cirrhosis
59

.   

Additionally, hypoxically activated miR-214 was correlated with decreased AQP1 

expression in HUVEC cells
60

, and miR-320a has been found to directly target AQP1 and 

is associated with decreased mRNA and protein expression of AQP1 during cerebral 

ischemia.  Importantly, AQP1 is associated with cytotoxic cerebral edema, angiogenesis, 

and invasion in GBM, suggesting that suppression of AQP1 expression could increase 

survival outcome
61

. Therefore, a possible mechanistic explanation for the alternative 

association we observed in our work involves methylation of the microRNA target region 

on AQP1, which would inhibit the binding of miR-320a and ultimately result in increased 

expression of AQP1.  This model could explain the alternative mechanism associated 

with glioma survival in this instance
61,62

. Unexpectedly, there were four methylation-

expression pairs that had both significant alternative and expression-based associations, 

suggesting that methylation can function simultaneously through both expression-based 

and alternative mechanisms to significantly impact survival. This phenomenon was 

observed with locus pairs found within the imprinted GRB10 gene. GRB10 has recently 

been implicated as both a putative oncogene in glioma 
63

 and potential tumor suppressor
64

. 

The GRB10 gene is of particular interest because it has been found to contain 13 different 

splice variants, expression of all but one of which (γ2) has been found in the brain
65

. 

GRB10 has been shown to have both an inhibitory and stimulatory effect on IGF-1-

related proliferation, though not specifically in brain tissue
66

. Though the reason behind 

its conflicting effects is not yet understood, one theory is that different GRB10 isoforms 

have different regulatory functions but compete for similar substrates.  DNA methylation 
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has the ability to regulate differential isoform production via alternative splicing
67

. 

Uniquely, imprinting of GRB10 is tissue-dependent. Monoallelic expression is seen in 

skeletal muscle and placenta (maternally expressed in humans) and in the brain 

(paternally expressed in humans)
 65

. Disruption of maternal imprinting in mice leads to 

overgrowth and insulin sensitivity throughout life, while in adult mice, deletion of 

GRB10 is associated with increased total body mass and up-regulation of cancer 

associated genes
68

. Unfortunately, ablation of imprinting in the paternal allele has not 

been shown to affect growth
68

. However, it is important to note that mice have been 

found to only have maternally imprinted GRB10 as opposed to humans, who show 

biallelic imprinting. Overall, this suggests that associations with survival can occur due to 

both loss of imprinting (expression-based association) and through expression of 

differentially functioning alternative isoforms (alternative association). It is plausible that 

these effects could be seen simultaneously in genes within the same tumor and work 

synergistically, or these effects could occur separately within different tumors, allowing 

the gene and its associated effect (alternative or expression-based) to be used as possible 

markers of tumor type. Overall, these findings corroborate the common idea that 

methylation operates through expression to affect survival outcome, but they also suggest 

that methylation can associate with survival outcome through mechanisms other than 

dysregulation of gene transcription. Though additional validation studies are needed, our 

method may lead to the identification of novel putative genetic and epigenetic biomarkers 

of glioma that could potentially be useful as therapeutic targets Importantly, this 

approach could be applicable to cancers other than glioma, and the model can be adjusted 

to include other variables of interest. For instance, instead of focusing on DNA 
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methylation and gene expression, one could focus on DNA methylation and microRNA. 

Thus, our analysis provides a conceivable method of biomarker discovery that may be 

broadly clinically applicable.  

Unfortunately, there were several limitations to this study. First, we had to rely on 

publically available data, which did not have complete mutation and survival data. For 

the missing mutation data, we used an RPMM to remove the hypermethylated classes that 

our group
9
 and others

7
 have previously found to exclusively contain IDH mutants. To 

address issue of missing survival data we used an accelerated failure time model to 

predict the survival time of censored values in order to control for survival in a combat 

model. In order to ensure functionality of methylation loci in our analysis, an initial 

screen was conducted, and only methylation and expression pairs that were significantly 

correlated within the same gene were used. Unfortunately, this approach entailed the 

exclusion of loci that may affect the expression of genes from distant locations, as seen 

with the methylation of enhancer regions. Additionally, the Infinium 

HumanMethylation27 array that was used to determine methylation status in these 

samples is strongly biased towards proximal promoter regions
69

.  Therefore, in future 

studies it may be beneficial to look at the correlation of methylation loci and all gene 

expression probes, without focusing on pairs within a single gene. In 2013, Aran et al 

explored how DNA methylation of distal regulatory sites in normal and malignant cell 

lines associates with gene expression levels across the genome
70

. First, they developed a 

model, which, at a score of less than or equal to 0.85, successfully determined genes that 

undergo promoter methylation-dependent expression in variable methylation sites (VMS) 

of malignant cell lines with 2.63% sensitivity and a 12.8% false discovery rate. This 
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model was then applied to VMS +/- 1 megabase of the transcription start site of over 

17,000 human genes, excluding sites that fell within 5 KB of promoters/alternative 

promoters of the associated genes. This yielded 1,911 pairs (486 genes), 1,041 of which 

were distal regulatory sites largely within promoter and enhancer regions. Further 

analyses suggested that high-scoring pairs were enriched in transcriptional enhancers and 

bound transcription factors in a methylation-dependent manner. Furthermore, analysis of 

the 1,911 distal methylation sites in normal vs. malignant mammary epithelial cells 

revealed a methylation-dependent association between high-score enhancer regions and 

the expression of their associated genes and suggested that methylation levels of these 

enhancers associate better with transcriptional regulation than promoter methylation. 

Moreover, both hypomethylation and hypermethylation of enhancers was observed in 

different malignant cell types, suggesting a role for differential enhancer methylation in 

cancer
70

.  In addition differential enhancer methylation may be useful in differentiating 

different glioma subtypes. Due to limited patient data, our study consisted only of 

primary GBM; however, using our method to look at several different histologies could 

support pre-existing or aid in the discovery of new subclasses of glioma. This is further 

supported by our observation of methylation and expression pairs that were significant 

for both expression-based and alternative associations, demonstrating that the 

pathogenesis of these tumors involves discrete mechanisms that have differential effects 

on survival outcome. Of further interest is the prognostic signature of gliomas both before 

and after treatment. Shukla et al used both treated (radio therapy and concomitant 

temozolomide) patient samples and a series of cell culture experiments (using 5-Aza-2'-

deoxycytidine treatment) to identify a methylation-based prognostic signature in high-
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grade glioma comprising nine genes
71

. Using a methylation-based risk-score, the 

methylation statuses of these nine genes could identify patients as either low-risk or high-

risk, with the latter having significantly lower survival. Unsurprisingly, the low-risk 

group contained a high percentage of IDH1 mutants, proneural associated genes, and G-

CIMP tumors. Additionally, the high-risk group was associated with activated NF-kB 

signaling. Further studies demonstrated that inhibition of NF-kB lead to enhanced 

sensitivity to chemotherapeutic agents, Not only does this explain the decreased survival 

observed in high-risk groups, but it also suggests NF-kB as a probable therapeutic target 

in cases where normal therapy is not successful
71

.  

Our research has aided in the discovery of putative glioma biomarkers, as 

observed in chapter 2 with the association of IDH and a hypermethylator phenotype with 

increased survival.  Though more validation is required, we have shown the importance 

of analyses integrating multiple somatic alterations and their associations with outcome, 

as shown in chapter 3 with the integration of DNA methylation and gene expression. 

These analyses supported the common idea that DNA methylation works through gene 

expression to affect survival. Our analysis also demonstrated a unique method of 

biomarker discovery that can easily lend itself to diseases other than glioma. Most 

importantly, our analysis demonstrated significant alternative associations, suggesting 

that DNA methylation can also operate through alternative or combined mechanisms to 

affect outcome.  An alternative association, as defined in chapter 3, is when DNA 

methylation affects survival without directly influencing gene expression. In this case, 

DNA methylation does not directly alter gene transcription via promoter methylation, but 

may change gene expression and survival via dysregulation of microRNAs and enhancer 



 167 

regions. In addition, DNA methylation could also affect survival by promoting/hindering 

genomic fragility and instability. Survival in patients with tumors having a 

hypermethylator phenotype, as seen with the IDH-associated hypermethylator phenotype 

discussed in chapter 2, has often been associated with promoter methylation-induced 

silencing of tumor suppresser genes. However, with increased knowledge of the role 

epigenetics plays in cancer and survival, promoter methylation may not be the only 

relevant epigenetic mechanism at play in the methylator phenotype. As previously 

discussed, alternative mechanisms such as methylation inhibition of microRNAs and 

their target regions and methylation of distal sites associated with enhancer or polycomb 

regions could impact gene expression and survival. Additionally, tumors with a 

hypermethylator phenotype are generally associated with increased survival. This could 

also be explained by the enhanced genomic stability observed in these tumors. In cancer, 

genomic instability is associated with hypomethylation, which can cause increased 

expression of aberrant transposons and a potential subsequent decrease in survival. 

Theoretically, the increased hypermethylation seen in CIMP-positive tumors could 

manifest in methylation of transposons/repeat elements, thereby increasing stability 

relative to CIMP-negative tumors. This is another possible explanation for the increased 

survival associated with CIMP-positive tumors vs CIMP-negative tumors. Collectively, 

this research has enhanced our knowledge of gliomagenesis and has further demonstrated 

the molecular complexity of glioma. 
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Future Directions 

Though our method was successful in demonstrating the importance of integration of 

molecular phenotypes in the classification of molecular drivers of malignancy in glioma, 

it will be important to properly validate these analyses with a separate set of GBMs. 

Additionally, our methods could benefit from the use of new high-throughput DNA 

methylation arrays, such as the HumanMethylation450 BeadChip array (Illumina), which 

allows for increased coverage of the genome compared to the HumanMethylation27 array, 

including the interrogation of CpG shores, whose differential methylation patterns have 

become increasingly recognized as important biomarkers of disease. This increased 

coverage would allow us to look at the correlation between DNA methylation and gene 

expression beyond the transcription start site. Following the example of Aran et al, who 

looked at DNA methylation of distal regulatory sites
70

, we could tailor our integrated 

analysis to focus on the association of CpG shore methylation with both gene expression 

and survival. It has been shown that altered methylation at distal regulatory sites found 

within enhancer regions correlates with altered gene expression more strongly than 

altered methylation at promoter regions
70

.  With this knowledge, it would be expected 

that our analysis would demonstrate increased expression-based associations with 

survival.  
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