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Chapter 1 Introduction 

1.1. Mechanical properties of graphene with topological 

defects 

As a monolayer of sp
2
-bonded carbon atoms densely packed in a honeycomb crystal 

lattice [1] (as shown in Fig. 1.1a), graphene exhibits exceptional electrical, mechanical 

and optical properties [2-4],
 
making it an ideal candidate for a vast range of applications, 

such as flexible electronics [5, 6], field effect transistors [1, 7, 8], nanomechanical 

resonators [9]. While it is still challenging to fabricate large pieces of pristine single-

crystalline graphene, large-area polycrystalline graphene (polygraphene) (as shown in 

Fig. 1.1b) containing internal grain boundaries has been successfully synthesized via 

chemical vapor deposition (CVD) [5, 10]. Motivated by this development, considerable 

research has been dedicated to the effect of grain boundaries on the electrical [11-14], 

mechanical [14-22] and thermal properties [23, 24]
 
of graphene. Recent studies (Fig. 

1.1c) have also shown that the position and type of topological defects in graphene can be 

controlled with ion irradiation [25], which suggests a promising way to tune the physical 

properties of graphene via defect engineering [26]. 

 

a b c 
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Figure 1.1. Graphene structures. (a) A picture of perfect graphene structurefrom 

Wikipedia (http://en.wikipedia.org/wiki/Graphene). (b) Polycrystalline graphene with 

grain boundaries [14]. (c) Controlled defects with ion irradiation [25]. 

Fracture is among the most prominent concerns about the mechanical behaviors of 

polygraphene. It has been recently shown via atomistic and quantum simulations that the 

fracture strength of a bi-crystalline graphene is sensitive to the misorientation angle 

across the grain boundary [15, 16, 20, 22]. Experiments revealed that the strength of 

polygraphene is about 35 GPa [14, 17], which is larger than most of the engineering 

materials but substantially lower than the ideal strength (about 130 GPa) of single-

crystalline graphene [4]. This is not so surprising since many forms of defects (e.g., 

vacancies, voids, micro-cracks and chemical impurities) can lead to reduction in the 

strength of graphene [15, 17, 27-30]. In spite of these impressive progress on the fracture 

behaviors of polycrystalline graphene, some fundamental issues remain to be fully 

elucidated. For example, could nanocrystalline graphene (nc-graphene), which contains a 

network of nanoscale internal grain boundaries, be made flaw tolerant [31] and if so, 

what would be the critical condition? It is already known that the grain boundary strength 

in graphene is generally weaker than that of perfect graphene. However, experiments and 

atomistic simulations [18] have shown that intra-granular fracture happens in 

polycrystalline graphene. An interesting open question is whether grain boundary can be 

tougher than the perfect graphene lattice? 

Due to its atomic scale thickness, the deformation energy in a free standing graphene 

sheet can be easily released through out-of-plane wrinkles, which have been predicted by 

atomistic simulations [32-35] and verified by carefully designed experiments[36, 37]. So 

http://en.wikipedia.org/wiki/Graphene
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far, there is still the lack of a complete analysis of the wrinkling in graphene with defects 

from the continuum point of view. It has also been shown that the out-of-plane 

displacement in graphene can be used to tune the electrical [38-40] and mechanical 

properties of graphene, such as anisotropic friction [41] and tunable wettability through 

controllable crumpling [42] of graphene on substrate. These recent studies are calling for 

systematic investigations of topological defects induced wrinkling in graphene. 

 

Figure 1.2. Wrinkling in graphene with topological defects. (a) Atomistic simulations for 

wrinkling of grain boundary in graphene [33]. (b) Experiments and simulations show the 

wrinkling in graphene with a dislocation dipole [36]. 

1.2 Methodology of molecular dynamics 

Most of simulations in this thesis will be carried out with molecular dynamics (MD). 

Therefore I will make a brief introduction of the MD simulation, interatomic potential 

and common ensembles used in the simulations. 

Molecular dynamics (MD) is a computational simulation of the physical movements 

of atoms and molecules [43], which have become a popular and standard tool to 

investigate the fundamental mechanisms of the mechanical properties of nanostructures. 

a 
b 
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For the classical molecular mechanics, the atoms and molecules interact with each other 

following Newton’s second law, 

iiim fr  ,                                                                (1.1) 

where mi is the mass of the ith atom, ri is the Cartsian coordinates, and fi is the interaction 

force applied on ith atom from other atoms, and “.” denotes the time derivative. The force 

is determined by 

i

i

U

r
f




 ,                                                            (1.2) 

where U is the potential energy. In classical molecular dynamics simulation, the potential 

energy is usually described with some empirical functions with tunable parameters to fit 

the experimental data and first principle calculations. 

Interatomic potential is the central part of the classical MD simulations and 

sometimes also the bottleneck of accurately predicting the physical properties of the 

structures due to the lack of accurate potential. There have been several popular atomic 

potentials for carbon-carbon atom interaction with the ability to describe bond break and 

forming, such as Tersoff [44], REBO (reactive empirical bond-order) [45], AIREBO 

(adaptive intermolecular REBO) [46], EDIP (environment-dependent interaction 

potential) [47], LCBOPII (long-range reactive bond-order potential) [48], ReaxFF 

(reactive force field) [49], COMB (Charge-Optimized Many-Body) [50], SED-REBO 

(screened environment-dependent reactive empirical bond-order ) [51], NN (Neural 

Network) potential [52]. 

Until now, AIREBO/REBO is still the most popular atomistic potential for 

simulation of carbon materials, as it can capture most of the physical properties of carbon 
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structures and is already implemented in the widely used open source MD package 

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [53]. Although 

NN, LCBOPII and SED-REBO potentials are shown to be more accurate, their 

applications are still limited due to its complication in implementation and unavailability 

in the public open source software. All the atomistic simulations in the thesis are 

performed with AIREBO potential. It should be noted that the smaller cutoff distance in 

the switching function of AIREBO potential should be taken in the range of 1.92~2.0 

Angstrom to avoid a known non-physical post-hardening behavior [15, 16, 54], while 

remaining consistent with DFT calculations [20]. For the present study, this cutoff 

distance was set at 2.0 Å following a previous study [54].  

Classical molecular dynamics simulations are based on the statistical mechanics. It is 

meaningless to focus on certain trajectory, and people are usually interested in the 

average values of a thermal dynamic system, such as energy, temperature and pressure. 

According to the different simulation set up, three ensembles are commonly used in the 

classical molecular dynamics simulations: (1) microcanonical ensemble (NVE), (2) 

canonical ensemble (NVT), and (3) isothermal-isobaric ensemble (NPT). 

Microcanonical ensemble denotes a system isolated with external environment, 

which has conserved atom/molecular number (N), volume (V) and energy (E). In 

canonical ensemble, the number (N), volume (V) and temperature (T) are conserved. The 

system energy is exchanged within a thermostat bath [43]. The popular techniques to 

control temperature in NVT ensemble include velocity rescaling, Berendsen thermostat 

[55], Nose-Hoover thermostat [56, 57], and Langevin dynamics [58]. Isothermal-isobaric 

ensemble represents a system with conserved number (N), volume (V) and pressure (P). 
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The pressure is controlled by a barostat bath, a similar concept with the thermostat bath. 

The widely used barostat baths are Berendsen barostat [55], Andersen barostat [59] and 

Parrinello-Rahman barostat [60]. 

1.3. Outline of the thesis 

In this thesis, we will investigate the fracture and wrinkling in graphene with 

topological defects using atomistic simulations and continuum models. This thesis 

consists of six chapters and is organized as follows. 

Chapter 1 is an overview introduction about the mechanics properties of graphene 

with grain boundaries and dislocations. The methodology of molecular dynamics 

simulation and our research goal are also presented. 

In Chapter 2, we review the flaw tolerance/insensitivity phenomenon in nanoscale 

fracture, which has been observed in a wide range of materials. We will then investigate 

whether nanocrystalline graphene will have flaw insensitive fracture using large scale 

MD simulations. We will also study the effective fracture energy for the nanocrystalline 

graphene by combining MD simulations and continuum models. 

Chapter 3 focuses on the interaction between crack and typical topological defects, 

such as dislocation and grain boundary. We will set up a large graphene strip containing 

an edge crack and dislocation to investigate the interaction between them. The results 

based on MD simulations will be compared with the existing theoretical models, such as 

dislocation interacting with linear elastic crack and the Dugdale cohesive crack model. 

We will also carry out MD simulations for crack interacting with grain boundaries to 

estimate the toughness of grain boundary and predict the crack propagation path. 
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In Chapter 4, we will employ large-scale atomistic simulations and continuum 

modeling to analyze the defects controlled wrinkling in graphene. A benchmark for the 

deformation configuration and stress state of a single dislocation in a large grpahene will 

be first studied to show the pronounced 3D deformation and verify the continuum model 

proposed in the thesis. We will further design the graphene configurations under specific 

defect distributions such as those leading to a sinusoidal surface ruga
1
 or a catenoid 

funnel with both atomistic simulations and continuum models. 

In Chapter 5, we first give a brief introduction of the studies of curved graphene and 

phase field crystal (PFC) method. It will be shown that the PFC method can be used to 

generate initial atomistic structure of graphene conforming on curved surface. We will 

review the numerical schemes for solving the governing equation of PFC method and 

implement the finite element method (FEM) in the open source software, which is more 

flexible to deal with complicated boundary conditions. Preliminary studies for the 

fracture of a sinusoidal graphene sheet generating with PFC are also presented. 

Chapter 6 concludes the entire thesis with major scientific findings and future 

directions of the study. 

                                                 
1
 The Latin word ruga is used to refer a large-amplitude state of a wrinkle, crease, ridge or fold 

[61]. 
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Chapter 2 Flaw Insensitive Fracture in 

Nanocrystalline Graphene 

2.1. Introduction 

Chemical vapor deposition (CVD) method [5, 10] is still the current popular method 

to fabricate the large scale graphene, which will unavoidably create topological defects, 

such as dislocations and grain boundaries [14]. Damage of the graphene sample can also 

be induced by the process of transform and devices fabrication [17, 21]. On the other 

hand, extrinsic defects, like holes, have been introduced to tailor the functionality of the 

graphene, such as the electronic properties [62] and band structure [63], water 

desalination [64] and DNA sequencing [65, 66]. Therefore, it is crucial to understand the 

collaborative effects of different defects on the mechanical properties of graphene, like 

modulus and strength. 

Fracture is among the most prominent concerns about the mechanical behaviors of 

single and nano-crystalline graphene. It is known that the fracture strength of a material 

generally increases when the characteristic size (e.g., sample size, grain size) of the 

material is reduced [67]. One interesting phenomenon is that material failure may become 

insensitive to the presence of cracks when the sample size is smaller than a critical value 

[31]. A previous study has shown that the fracture of perfect graphene remains sensitive 

to the cracks or holes even down to the atomic scale [28]. An interesting open question is 

whether nanocrystalline graphene (nc-graphene), which contains a network of nanoscale 
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internal grain boundaries, could be made flaw tolerant and if so, what would be the 

critical condition for this to happen? This question is non-trivial due to the out-of-plane 

membrane deflections of graphene during deformation and fracture.  

In this chapter, we will first review the concepts of flaw tolerance/insensitivity and 

related studies in this area. We then establish a molecular model for the uniaxial tensile 

simulations of a nanocrystalline graphene strip containing a pre-existing hole. The elastic 

modulus, failure strength and flaw insensitivity of a nanocrystalline graphene nanostrip 

will be investigated, followed by some discussion and conclusion remarks at the end of 

the chapter. 

2.2. Concepts of flaw tolerance/insensitivity 

Inspired by natural materials with superior strength such as bone, tooth and nacre, 

which share a common staggered nanoscale mineral-protein composite structure at the 

bottom level, Gao and collaborators [31] showed that the nanocomposites in nature 

exhibit a generic mechanical structure in which the mineral particles of nanometer size 

are selected to ensure optimum strength and maximum tolerance of flaws (robustness). 

To illustrate this concept, consider a cracked mineral plate with a surface crack (Fig. 

2.1a), for which the failure strength 
f

m  can be calculated from Griffith’s criterion of 

fracture as 

 m

f

m E ,        
hEm


  ,                                             (2.1) 
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where mE  is the Young’s modulus of mineral,   is the fracture surface energy and h is 

the thickness of the mineral plate. The failure strength for a defect free crystal is defined 

as the theoretical strength S . As shown in Fig. 2.1b, there exists a critical length scale 

2

2*

S

E
h m

 ,                                                          (2.2) 

below which the fracture strength of a cracked crystal is equal to that of a perfect crystal. 

This phenomenon, referred to as flaw tolerance, has now been reported in various 

materials, for example ceramics [68], biological composites [31], nanocrystalline metallic 

thin film [69, 70], amorphous carbon [71], filament networks [72], spider silk [73, 74], 

metallic glass[75, 76] and Pt nanocrystalline nanopillar [77].  

 

Figure 2.1. Theoretical modeling of flaw tolerance. (a) Schematic drawing of a surface 

crack in a mineral plate. (b) Comparison of the fracture strength of a cracked mineral 

platelet predicted from the Griffith criterion of fracture with the strength of a perfect 

crystal. (a)-(b) are both from reference [31]. 

In general, the critical size for flaw tolerance depends on the sample geometry and 

loading conditions. Gao and Chen [78] conducted a more rigorous theoretical derivation 

of the critical size for flaw tolerance in a thin strip under tension, which provides a 
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benchmark solution for the verification of experiments or numerical simulations. The 

theoretical modeling set up is shown in Fig. 2.2, including a thin strip with a central crack 

(Fig. 2.2a) or an edge crack (F.2.2b). They defined the state of flaw tolerance as such that 

a pre-existing crack does not propagate even as the applied stress approaches the limiting 

strength of the material, denoted as S. There is no stress concentration in the structure so 

that the material failure occurs by uniform rupture at the limiting strength of material. 

Since the introduction of a crack will reduce the effective cross-section of material near 

the crack, the value of the far field applied stress should decrease as 

  







 11 S

H

a
Sth ,                                           (2.3) 

where th  represents the theoretical failure strength in the presence of the flaw. 

Combining Eqs. (2.1) and (2.3) with considerations of the strip geometry, Gao and Chen 

obtain the critical size for flaw tolerance as 2*  58.3 SEH  , where 2  is the 

fracture energy of the material.  
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Figure 2.2. Theoretical modeling of flaw tolerance in a cracked strip. (a) A thin strip with 

a central crack. The strip width is 2H and the crack length is 2a. (b) A thin strip with edge 

cracks. The strip width is 2H and the crack length is a. (c) Theoretical analysis of flaw 

tolerance in the thin strip. (a)-(c) are all from reference [78]. 

2.3. MD Simulations of fracture in nanocrystalline 

graphene 

Our MD simulations of nc-graphene are performed using LAMMPS [53]. The 

interatomic force is described by the adaptive intermolecular reactive empirical bond 

order (AIREBO) potential [46]. It should be noted that the smaller cutoff distance in the 

switching function of AIREBO potential should be taken in the range of 1.92~2.0 

Angstrom to avoid a known non-physical post-hardening behavior [15, 16, 54] while 

remaining consistent with DFT calculations [20]. For the present study, this cutoff 

a 

b 

c 
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distance was set at 2.0 Å following a previous study [54].
 
The simulation sample is a nc-

graphene nanostrip with the length of 60 nm, width of 20 nm and average grain size of 2 

nm. To test the flaw sensitivity of the nc-graphene nanostrip, a circular hole with radius 

ranging from 1 nm to 6 nm is created at the center of the strip. Periodic boundary 

condition is imposed in the longitudinal (x) direction of the strip, while the other two 

directions (y and z) are kept free. During simulations, NVT ensemble is adopted to 

maintain the temperature at 300 K using the Nose-Hoover thermostat [56]. The tensile 

fracture behavior of the nc-graphene nanostrip is investigated under a constant stretching 

strain rate of 5×10
8
 /s, while the Virial theorem is employed to calculate stress 

distribution in the sample. Figure 1a shows a typical atomic configuration of the nc-

graphene nanostrip after equilibration at room temperature, where numerous wrinkles 

enhanced by atomic mismatches across grain boundaries can be clearly observed. These 

out-of-plane deflections are known to help minimizing the energy of the system and 

thermally stabilizing the membrane-like crystalline structures [32, 33]. Figure 2.3b-d 

illustrates various types of defects along the grain boundaries, such as the pentagon-

heptagon pairs, polygons and vacancies. 
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Figure 2.3. Simulation sample of a nanocrystalline graphene nanostrip. (a) Contours of 

out-of-plane displacement after equilibration at 300 K. (b)-(d) Representative defect 

structures revealed by differences in potential energy, which include (b) pentagon-

heptagon and pentagon-octagon pairs, (c) vacancy and (d) polygon. (Scale bar: 5 nm) 

Figure 2.4a depicts the tensile stress-strain curve of the nc-graphene nanostrip 

containing a circular hole of 1 nm radius. Three different regimes of deformation 

behaviors can be identified. In the first regime, the slope of the stress-strain curve 

increases as the applied strain increases, which is characteristic of entropic elastic 

behaviors in a thin membrane. Such entropic elasticity is attributed to wrinkling of nc-

graphene due to the presence of defects and thermal fluctuation. Initially, there exist large 

wrinkles with RMS out-of-plane displacement of 0.83 nm in nc-graphene, which is 

substantially larger than the magnitude of finite-sized intrinsic ripples in the suspended 

single-crystalline graphene sheet [79, 80]. As the applied strain is increased, the nc-

graphene gradually flattens under stretching, and the resistance to extension rises due to 
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the reduced degrees of freedom. In the second regime, the wrinkles are largely flattened 

by the applied stretching and the sp
2
 C-C bonds are being directly stretched, as evidenced 

by the fact that the stress becomes linearly dependent on the strain. Fitting the stress-

strain curve gives an effective Young’s modulus around 432.26±10.57 GPa. In the third 

regime, the nc-graphene nanostrip fails due to fracture. Figure 2.4b-d shows a sequence 

of snapshots capturing crack initiation and propagation in nanocrystalline graphene. 

Typically, a crack initiates at a grain boundary and then grows along the grain boundaries 

or deflects into a grain. The sample eventually ruptures as the crack runs through the 

whole strip with little or no plastic deformation and the crack surface is nearly 

perpendicular to the loading direction, indicating brittle fracture. Notably, the fracture did 

not initiate at the hole but rather at some distance away from it, contradicting to the 

expectations from the classical theory of stress concentration at the hole boundary. We 

also performed MD simulations of tensile fracture in a nc-graphene nanostrip containing 

an edge notch (See Supplementary Materials), with similar observations that fracture 

occurred away from the notch. While these results are essentially reminiscent of recent 

experimental observations of flaw-insensitive fracture in nanocrystalline aluminum strips 

[69], multiscale simulations in model materials [81] and atomistic simulations in silk 

protein nanocrystals [74], this is the first time that flaw insensitive fracture has ever been 

demonstrated in high strength (tens of GPa) materials via atomistic simulations. 
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Figure 2.4. Deformation and fracture behaviors of a nanocrystalline graphene nanostrip 

with a center hole under longitudinal tension. (a) Typical tensile stress-strain curve. (b-d) 
I 

I

I 

a 

b c 

d e 
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Tensile stress contours (unit: GPa) at ε=8%, 9.1%, 9.25% and 9.35%, respectively. In (b) 

and (c), micro-cracks (marked by squares) initiate from topological defects on grain 

boundaries. In (d) and (e), micro-cracks coalesce to form a big crack, eventually leading 

to failure. Note that the fracture surface is nearly perpendicular to the loading direction. 

(Scale bar: 5 nm). 

To understand the physical mechanism of flaw insensitive fracture in nanocrystalline 

graphene, we have also investigated the tensile fracture behavior of a single-crystalline 

graphene nanostrip with the same dimensions as our nc-graphene sample but without 

grain boundaries. Based on the crystal orientation of the graphene edges normal to the 

tensile direction, the simulated sample is classified into armchair and zigzag types. Figure 

2.5a shows the relationship between the strength (taking as the peak tensile stress before 

fracture) of the single-crystalline graphene strip and the radius of the center hole. The 

results are consistent with those from multiscale calculations coupling quantum, 

molecular and continuum methods [28], as well as MD simulations on single-crystalline 

graphene with a center slit [82]. According to the classical Griffith model, the facture 

strength of a center-cracked strip is [83] 

  a

E

F 





1
,                                                       (2.4)                                                         

where a2  is the crack size, E is the Young’s modulus, Wa /2 ,  is the fracture 

surface energy and  F  is a function of   reflecting the boundary effect, 

     2sec06.0025.01 42  F .                                            (2.5)                                     

Taking the Young’s modulus and fracture surface energy of graphene to be 1 TPa and 10 

J/m
2
, respectively, the predictions from the Griffith model are in excellent agreement 
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with our MD simulation results, as shown in Figure 2.5a. The value of fracture energy 

used here is close to that obtained from coupled quantum-atomistic simulations, as well 

as from classic MD simulations [28], although a drastically different value (0.1 J/m
2
) has 

also been reported from a molecular statics simulation [84].  

Next we make a quantitative comparison between the tensile fracture behavior of a 

nc-graphene strip and that of a single-crystalline graphene strip. For every selected value 

of the radius of the hole in the nc-graphene strip, we perform independent simulations on 

ten randomly generated samples with different initial grain configurations but the same 

mean grain size from the Voronoi construction. The fracture strength is then taken as the 

average of all ten simulations to eliminate statistical fluctuations from different 

simulations. Figure 2.5b shows the variation of fracture strength with the hole radius. As 

the hole radius decreases, the fracture strength increases and then saturates to a plateau 

which is close to the theoretical strength (about 26.86 GPa) of nc-graphene without a 

hole. It is noted that a majority of previous studies focused on bi-crystalline graphene 

with specific arrangement of pentagons and heptagons along grain boundary [15, 16].
 

Due to the presence of relatively ordered pentagonal-heptagonal rings, the strength of 

such bi-crystalline graphene is higher than that of polycrystalline graphene with multiple 

grain boundaries of random misorientations. It is found that Eq. (2.4) is still capable of 

predicting the fracture strength of the nc-graphene strip if the fracture energy is reduced 

to 8 J/m
2
, and there exists a transition from the Griffith-governed fracture to failure at the 

limiting strength of material, as shown in Figure 2.5b. Such transition has also been 

demonstrated by numerical simulations for a thin strip containing central crack with 

lattice model [81] and a silk protein nanocrystals under point load [74].
 
Note that this is 
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the first time that the facture surface energy of nc-graphene is estimated. Due to the 

presence of grain boundaries, it can be expected that the fracture energy of nc-graphene 

should be a little smaller than that of pristine graphene. 

 

Figure 2.5. Strength variations of single- and nano-crystalline graphene nanostrips with 

the radius of an internal hole. (a) Strength of armchair and zigzag single-crystalline 

graphene. 
EX  is the experimental value of graphene strength reported in Ref. [4]. The 

reader is referred to Ref. [28] for strength calculated from a multiscale method coupling 

quantum, molecular and continuum statics and to Ref. [82] for strength from MD 

simulations of a square graphene sheet (55 nm
2
) with a central slit at room temperature 
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and strain rate of 5×10
8
 /s. (b) Strength of nanocrystalline graphene. (c) Normalized 

strength of single- and nano-crystalline graphene nanostrips. 
m  denotes the strength 

from MD simulations, th refers to the limiting strength of the flaw tolerant 

nanocrystalline graphene strip at the holed cross section. (d) Strengths of single- and 

nano-crystalline graphene strips with an ellipitic hole. 

According to the previous theoretical model [78], the critical width for a strip with a 

central crack to achieve flaw tolerance is 

2 58.3 SEWcr  ,                                                     (2.6)                                                       

where S  is the limiting strength of material (i.e. the average strength of nc-graphene 

without holes). From the present MD simulations, the limiting strength of nc-graphene is 

obtained as 26.86±1.12 GPa. Therefore, the critical strip width for flaw-tolerance is 

estimated as 17.16 nm from Eq. (2.6). The width of the nc-graphene strips used in the 

present simulations is 20 nm, which is close to the critical value. When the strip width 

falls below the critical value, the strip becomes flaw tolerant and should fail at the 

limiting strength of material. To check this prediction, the strength is normalized as 

follows 

   aa thm   ,                                                   (2.7)                                                          

where  am  is the strength from MD simulation and      1th Sa  is the limiting 

strength of the strip at the holed cross section. The relevant results for single- and nano-

crystalline graphene strips are shown in Figure 2.5c. It is clearly seen that the normalized 

fracture strength of nc-graphene is independent of the flaw size, while the normalized 

strength of single-crystalline graphene falls way below the limiting strength. We have 
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also investigated the mechanical responses of single- and nano-crystalline graphene 

containing an elliptic hole of various aspect ratios, with results showing that the strength 

of single-crystalline graphene is sensitive to the aspect ratio of the elliptical hole, as 

would be expected from the classical theory of stress concentration. In contrast, the 

strength of the nc-graphene strip is found to be independent of the aspect ratio of the 

elliptical hole, again indicating flaw insensitive fracture. These results are summarized in 

Figures 2.5c,d, which highlight the differences in fracture behaviors between nano- and 

single-crystalline graphene nanostrips. 

 

Figure 2.6. Tensile stress contours (unit: GPa) near a hole of radius 3 nm in single- and 

nano-crystalline graphene nanostrips during deformation. (a) Armchair and (b) zigzag 
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graphene strips at a strain of 4%. Nano-crystalline graphene strips (c) with and (d) 

without the hole at a strain of 8%. (Scale bar: 5nm) 

Figure 2.6 compares the stress contours between single- and nano-crystalline 

graphene during deformation, showing clear stress concentrations near the hole in single-

crystalline graphene. In contrast, while some elevated stress regions can be observed 

along the grain boundaries in nc-graphene, there is no evidence of stress concentration 

near the hole. This is consistent with recent experimental results on notched 

nanocrystalline aluminum thin strips [69, 70]. Compared with single crystalline graphene, 

the grain boundaries in nanocrystalline graphene increase the characteristic length scale 

of flaw tolerance while weakening the elastic modulus, fracture energy and strength of 

the material. Our findings are essentially consistent with previous studies demonstrating 

that hierarchical materials with weak internal boundaries can enhance the flaw tolerance 

of materials [31, 74]. Based on the present study and recent experimental observations 

[18] that cracks may penetrate grain boundaries and move along armchair or zigzag paths 

in polycrystalline graphene with mean grain sizes more than one hundred nanometers, it 

is speculated that polycrystalline graphene with larger grain sizes may have smaller flaw 

tolerance length scale compared to nanocrystalline graphene. 

The phenomenon of flaw insensitive fracture is not limited to the geometry of the 

flaw. To demonstrate this point, the same sample configuration depicted in Fig 2.4 is 

employed to investigate the tensile fracture behavior of a pre-edge-notched nc-graphene 

strip (see Fig. 2.7). The simulation settings are kept the same as in the case of a pre-

existing hole. Figure 2.7 demonstrates that fracture could occur at a distance away from 

the pre-existing notch, similar to the case of a central hole discussed in section 2.3. 
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Figure 2.7. Flaw insensitive fracture in an edge-notched nc-graphene strip. (a) Typical 

tensile stress-strain curve of a pre-edge-notched nc-graphene strip. (b) Tensile stress 

contours (unit: GPa) of the strip at different strains. 
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2.4. Summary 

In summary, we have performed MD simulations to investigate the uniaxial tensile 

fracture behaviors of a nanocrystalline graphene nanostrip, with focus on the 

phenomenon of flaw insensitive fracture below a critical strip width. Our simulations 

reveal that micro-cracks nucleate randomly at intrinsic defects along grain boundaries 

and coalesce to form a big crack, eventually leading to catastrophic fracture. The key 

finding is that the microcrack nucleation and coalescence are not always induced by nor 

associated with the large hole or notch in the system. It is found that the MD simulation 

results are in good agreement with theoretical predictions based on fracture mechanics 

and also qualitatively consistent with experimental observations on nanocrystalline 

aluminum thin strips. The present studies also showed the entropic elastic behavior in the 

initial stage of deformation, and predicted the facture surface energy of about 8 J/m
2
 for 

nanocrystalline graphene, which is lower than that (about 10 J/m
2
) of single-crystalline 

graphene. These differences can be attributed to the presence of defects along grain 

boundaries in nanocrystalline graphene. It is interesting and worth noting that, while the 

grain boundaries substantially weaken the strength of nc-graphene, they simultaneously 

render the material less sensitive to structural flaws. Our simulations provide significant 

insights into previous experiments on flaw insensitive fracture in nanoscale materials and 

reveal a fundamental difference in tensile fracture behaviors between nano- and single-

crystalline graphene. 
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Chapter 3 Crack Interacting with 

Dislocations and Grain Boundaries in 

graphene 

3.1. Introduction 

In the previous chapter, the fracture behaviors of a nanocrystalline graphene 

nanostrip with and without holes have been studied. It is shown that grain boundaries can 

weaken the strength of the graphene, while enhance the flaw insensitivity due to the 

presence of intrinsic defects. However, the complicated grain geometry and random 

distribution of grain boundary orientation as well as many other types of defects (i.e. 

vacancies) make it hard to obtain a fundamental understanding of the toughening effects 

of dislocations and grain boundaries. 

Dislocation core energy is a crucial parameter to establish a consistent continuum 

model for dislocations [85] and can only be obtained from atomic simulations. So far, 

there are no systematic studies of dislocation core energy in graphene. It is believed that 

the pre-stress induced by dislocations is the key to determining the strength of a grain 

boundary [15] in graphene. The grain boundary toughness, another important fracture 

property of material, has not been discussed in the literature. A recent experiment 

measured the toughness of polycrystalline graphene via direct tensile loading and 

reported a toughness value of about 15.9 J/m
2
 [86]. A natural question is whether grain 
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boundaries weaken or enhance the toughness of graphene? Here we analyze some simple 

scenarios involving a crack interacting with a dislocation or a grain boundary, and hope 

these studies may shed some light on the inter- and intra-granular crack paths found in 

polycrystalline graphene [18]. 

This chapter is aimed to investigate the following questions through atomistic 

simulations: (1) what is the dislocation core energy for pentagon-heptagon pair in 

graphene? (2) Will a dislocation have a significant shielding effect on crack propagation 

in graphene? (3) What is the toughness of a grain boundary with different misorientation 

angles in graphene? 

3.2. Dislocation core in graphene  

A dislocation dipole model is adopted here to compute the dislocation core energy, 

as shown in Fig. 3.1 a. Periodical boundary conditions are applied to a square graphene 

sheet. The dipole distance varies from b to 31b, where b is the Burger’s vector for a 

pentagon-heptagon pair in graphene. The conjugate gradient (CG) algorithm is employed 

to find the energy minimum configuration. The dipole energy is defined as the energy 

change due to the introduction of the dipole compared to the perfect graphene. In order to 

compare with the classical dislocation theory, the carbon atoms are only allowed to move 

in the same plane during the simulations (i.e., two-dimensional (2D) simulations). 

According to the classical dislocation theory, the strain energy stored in an infinite 

domain with a dislocation dipole under generalized plane stress condition can be 

expressed as [87], 

 


nSb
E

r

Sb
EE

c

log
4

2log
4

2
2
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2

core 
d

d ,                               (3.1) 
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with the dipole distance |d|=nb and dislocation radius rc=b. In reality, the simulation is 

conducted within a large graphene supercell (20×20 nm
2
) to represent an infinite domain. 

Figure 3.1 Dislocations dipole in graphene. (a), Molecular mechanics (MM) model for a 

dislocation dipole in a graphene square sheet (length L of 20 or 40 nm) with dipole 

distance d varying from 0.24 to 6 nm. (b), Potential energy for the dislocation dipole from 

MM simulations and classical edge dislocation model. (c), Atomic configuration of the 

dislocation dipole in graphene with d=26b. (d), Core of a heptagon-pentagon dislocation 

in graphene shown in (c). (Scale bar: 2 nm) 

a b 
L 

L d 

c d 

-7.8 -6.8 eV 



 28 

Fitting the MM simulation results for a dislocation dipole in the graphene supercell 

(see Fig. 3.1 b), we can obtain the following key parameters for the model, i.e., the 

dislocation core energy Ecore=2.386 eV for rc=b and a core radius of rc=0.59b=1.43 Å if 

we set Ecore=0 eV, which are in good agreement with previous values reported in 

literatures [88]. The total potential energy stored in the dislocation core (the region 

circled in Fig. 3.1d) is 2.362 eV, which is a self-consistent proof of the dislocation core 

energy and radius estimated from Eq. 3.1. The in-plane modulus S predicted by Eq. 3.1 is 

equal to 19.14 eV/Å
2
, very close to the value 17.57 eV/Å

2 
obtained from the

 
uniaxial 

tensile simulation. The convergence of results with respect to the sample size is further 

confirmed by comparing the dislocation dipole energy in a larger supercell size (40×40 

nm
2
 shown as red square in Fig. 3.1 b).  The agreement between simulations and 

theoretical predictions shows that the classical dislocation model can be applied to 

describe dislocations in graphene confined to 2D. 

3.3. Crack interaction with a dislocation in graphene 

Crack-like defects commonly exist during large area graphene fabrication and 

transformation processes. A fundamental question is how the interaction between cracks 

and dislocations affect the strength of polycrystalline graphene. Here we use MD 

simulations to investigate the interaction between a single dislocation and a crack. It is 

known that the relative orientation of a dislocation with respect to a crack tip plays an 

important role. Two typical dislocation orientations are considered here, i.e. dislocation-1 

denotes the case of its pentagon facing the crack tip and dislocation-2 represents the case 

of its heptagon facing the crack tip.  
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Figure 3.2 Crack interaction with a dislocation in graphene. (a), Stress-strain curves from 

MD simulations for a cracked graphene strip with/without a dislocation ahead of the 

crack tip. (b), Stress contours (yy) for a graphene strip with crack only (εyy=0.027). (c), 

A zoom-in snapshot around the crack tip in (b). (d), Stress contours for a crack 

interacting with a dislocation-1 (εyy=0.035). (e), A zoom-in snapshot around the crack tip 

in (d). (f), Stress contours for a crack interacting with a dislocation-2 (εyy=0.019). (g), A 
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zoom-in snapshot around the crack tip in (f). (h), Stress contours for a crack interacting 

with a dislocation-2 (εyy=0.019). (i), A zoom-in snapshot around the crack tip in (h). The 

scale bars are 10 nm in (b), (d), (f) and (h). 

A graphene nanostrip with length of 80 nm and height of 40 nm, and containing a 20 

nm long edge crack created on the middle plane is used in current simulations. The initial 

crack remains atomically sharp and along the zigzag plane of graphene. The dislocation is 

placed 1 nm away from the crack tip. A tensile loading with strain rate of 10
9
/s is applied 

by prescribing a linear velocity profile at the beginning and then the vertical velocities of 

the upper and lower edges of the strip. During simulations, NVT ensemble is adopted to 

maintain the temperature at 10 K using the Nose-Hoover thermostat [56]. 

The failure strain for the cracked graphene without dislocation is 0.0277 (see Fig. 

3.2a), from which the fracture surface energy can be extracted as Γ =13 J/m
2
 (i.e. Γ=Ehε

2
, 

E being the Young’s modulus, h the half width of the strip, ε the critical strain at crack 

propagation).
 
For the case of crack interacting with dislocation-1, the final failure strain 

increases to 0.036 (see Fig. 3.2a), indicating a significant shielding effect, which can be 

also verified by comparing the stress field near the crack tip (shown in Fig. 3.2b-e). For 

the case of crack interacting with dislocation-2, a tensile pre-stress near the heptagon will 

enhance the tensile stress near the crack tip and assist the crack initiation, as shown in 

Fig. 3.2f-g. The critical strain for initial crack propagation is about 0.02. The advancing 

crack tip will break the weak bond associated with the heptagon-hexagon pair, resulting 

in an effectively blunted crack tip and hindering the catastrophic failure of graphene strip 

until a much larger critical strain of 0.034.  
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It is interesting to compare our current MD simulations with the existing theories 

about crack interacting with dislocations. According to linear elastic fracture mechanics, 

the shielding effect of a dislocation on a crack can be expressed in term of an effective 

stress intensity factor at the crack tip [89] 
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where KI
0
 is the stress intensity factor for perfect without dislocation, E is the Young’s 

modulus, Γ is the fracture energy, b is Burger’s vector and R is the distance between 

dislocation and the crack tip, ϕ is the angle of Burger’s vector (ϕ= π/2 for dislocation-1, 

and ϕ= -π/2 for dislocation-2). At the atomic scale, the crack-tip singularity can be 

eliminated by the nonlinear deformation of atomic bonds. Bhandakkar et al [90, 91] 

studied a dislocation interacting with a Dugdale cohesive crack and derived a closed form 

formula for the effective stress intensity factor as 
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and  
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where 
28 c

c

E







  is the length scale associated with the Dugdale cohesive zone [92] and 

L is the cohesive zone length in the presence of the dislocation. The unknowns eff

IK  and 

L should be solved by combining Eq. (3.3) and Eq. (3.4). The detailed derivation can be 

found in papers [90, 91]. According to the model, the failure strain is linearly 
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propositional to the stress intensity factor, and therefore we can estimate the failure strain 

once we have the effective stress intensity factor.  

With the following parameters obtained from MD simulations of graphene, 

GPa 120nm, 242.0 GPa, 845 nm, 1,mJ 132 c

2   bER ,      (3.5) 

we can calculate the fracture strains for the cases of dislocation interacting with a linear 

elastic crack and a Dugdale cohesive crack, which are summarized in Table. 3.1. It is 

interesting to note that the linear elastic crack model overestimates the effect of 

dislocation, while the Dugdale cohesive crack underestimates the influence of 

dislocation. This does not seem unreasonable, as both of these models are approximations 

of the nonlinear cohesive behavior of atomic bonds near the crack tip. Of course, more 

sophisticated models of dislocation interacting with a cohesive crack can be developed to 

better calibrate the MD simulation results. It is also noted that the crack tip can break the 

bond shared by hexagon and heptagon when it is close enough to the crack tip. Under that 

situation, two crack tips will be formed, leading to an effective blunted crack and thus 

delaying the ultimate failure of the whole structure. In this sense, the failure behavior of 

graphene can be quite sensitive to the atomic structure near the crack tip. 

Table 3.1. Simulated failure strains of dislocation interacting with a linear elastic crack 

versus a Dugdale cohesive crack from MD simulations and continuum models.  

 MD Results Linear Crack Cohesive Crack 

Dislocation-1 0.036 0.0385 0.0344 

Dislocation-2 0.020 0.0169 0.022 

    Note: The simulated failure strain of a cracked graphene strip without a dislocation is 

0.0277.  
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3.4. Crack along a grain boundary in graphene 

The theoretical strength of a material is an indicator of how strong of a defect free 

sample is. So far, graphene has been reported to have the highest strength (130 GPa [4]) 

among all materials. In comparison, the toughness of a material describes the critical 

condition for a crack to propagate in the material. Recent experiments found that the 

toughness of graphene is only 15.9 J/m
2
 [86], indicating that graphene is quite fragile. 

Here we will focus on the calculations of grain boundary toughness of graphene through 

MD simulations. 

Our simulations use a bi-crystal graphene strip with length of 80 nm and height of 40 

nm, containing a symmetrical grain boundary in the middle (as shown in Fig. 3.3a). The 

initially atomically sharp crack lies along the grain boundary with length of about 20 nm. 

For the same grain boundary, there exists two different types of crack according to its 

propagation direction, namely a rightward crack (Fig. 3.3b) and a leftward crack (Fig. 

3.3c). A mode I tensile loading with strain rate of 10
9
/s is applied similarly to the 

previous simulations. During the simulations, NVT ensemble is again adopted to 

maintain the temperature at 10 K using the Nose-Hoover thermostat [56]. 
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Figure 3.3 Cracking along a grain boundary in graphene. (a), Bi-crystal graphene strip 

with left crack. (b), A rightward crack along a zigzag grain boundary (θ=9.43). (c), A 

leftward crack along an armchair-tilted grain boundary (θ=9.43). The scale bars are 10 

nm in (a) and 1 nm in (b) and (c). 
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Figure 3.4 MD simulations of a crack propagating along an armchair-tilted grain 

boundary with misorientation angle θ =9.43. (a), Stress-strain curves for the rightward 
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and leftward cracks. (b) and (c), Crack propagation patterns. (d), (f) and (h), Snapshots 

for stress (σ22) distribution near the crack tip for the rightward crack under different 

applied strains. (e), (g) and (i), Snapshots for stress (σ22) distribution near the crack tip for 

the leftward crack under different applied strains. The scale bars are 10 nm in (b-c) and 1 

nm in (d-i). 

The results for crack propagation along a typical armchair tilted grain boundary with 

misorientation angle θ =9.43 are shown in Fig. 3.4. As shown in Fig. 3.4a, the failure 

strain for the rightward and leftward cracks are 0.03 and 0.034, respectively, which are 

both higher than that of crack propagation along the armchair direction in a perfect 

graphene sheet (0.0277). This indicates that the grain boundary can enhance the 

toughness of graphene, even though the strength is lower. Our simulations also show that 

the crack will keep propagating along the grain boundary during the whole process (Fig. 

3.4 b-c). Some details of crack initiation and propagation can be examined by comparing 

a series of snapshots of stress distributions near the crack tip (Fig. 3.4 d-i). For the 

rightward crack, atomic bonds near the crack will start to break as early as 0.02 applied 

strain. However, the crack tip will be trapped as it approaches a pentagon and the applied 

strain will continue to increase (Fig. 3.4 f) until the bond shared by the nearest hexagon 

and heptagon is broken (Fig. 3.4 h). Although the leftward crack is similarly hindered by 

the grain boundary, the details of crack propagation are are quite different. As shown in 

Fig. 3.4e, the maximum stress is not at the crack tip but near the heptagon for the leftward 

crack. The bond shared by the nearest hexagon and heptagon ruptures before the main 

crack starts to propagate (Fig. 3.4g), effectively creating a daughter crack which 

propagates towards to the mother crack to induce an overall crack propagation (Fig. 3.4i).  
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To understand the mechanism of crack propagation along the grain boundary, the 

stress distributions near the crack tip for the rightward and leftward cracks before any 

external loading is applied are compared in Fig. 3.5. It is clearly shown that the grain 

boundary causes an initial tensile stress at the rightward crack tip while an initial 

compressive stress at the leftward crack tip, which is contrary to a direct superposition of 

the stress field induced by dislocations in the grain boundary. It is known that the 

terminated dislocation wall can be treated as a disclination [93]. For the rightward crack, 

the dislocation wall forms a negative disclination, resulting in a tensile stress field (Fig. 

3.4c). For the leftward crack, the dislocation wall forms a positive disclination, leading to 

a compressive stress field (Fig. 3.4d). While the simulated results can be qualitatively 

explained by this effective disclination model, the non-trivial geometry makes it difficult 

to obtain a quantitative analysis.  

 
-10 10 GPa 

a b 

x1 

c d 

l s 

x1 

x2 

… 
l s 

x2 

… 



 38 

Figure 3.5 Initial stress (σ22) distributions near the crack tip for a crack along an 

armchair-tilted grain boundary. (a) MD simulations of a rightward crack. (b), MD 

simulation of a leftward crack. (c), Continuum models for (a). (d), Continuum model for 

(b). The scale bar is 1 nm in (a-b). 

 

 

d e 

f g 

-80 80 GPa 

ε=0.28 

ε=0.29 

ε=0.25 

ε=0.26 

c 

b a 



 39 

Figure 3.6 MD simulations of a crack propagating along an armchair-tilted grain 

boundary with misorientation angle θ =21.8. (a), Stress-strain curves for the rightward 

and leftward crack propagation. (b) and (c), Crack propagation patterns for the rightward 

and leftward cracks. (d) and (f), Snapshots of stress (σ22) distributions near the crack tip 

for the rightward crack under different applied strains. (e) and (g), Snapshots of stress 

distributions near the crack tip for the leftward crack under different applied strains. The 

blue lines in (b) and (f) represent the lowest energy surface. The scale bars are 10 nm in 

(b-c) and 1 nm in (d-g). 

We also conducted similar simulations for an armchair-tilted grain boundary with 

misorientation angle of θ =21.8, as shown in Fig. 3.6. It can be seen that the failure strain 

for the rightward crack is comparable with that without the grain boundary, while the 

value for the leftward crack is smaller than that without the grain boundary. An 

interesting phenomenon is that the rightward crack tends to branch and deflect into the 

lower grain (Fig. 3.6b), while the leftward crack moves along the grain boundary during 

the entire process (Fig. 3.6c). Directional anisotropy in failure mode has been previously 

discussed for symmetrically tilt grain boundaries in copper nanocrystals [94]. The 

snapshots of crack tip field suggest that the branching of the rightward crack follows the 

lowest surface energy direction (Fig. 3f). In comparison, the leftward crack advances by 

breaking the bond shared by hexagon and heptagons (Fig. 3g). 

It is worth making a brief comparison between the current simulations and previous 

studies on crack propagating along grain boundary in metals. In metals, grain boundaries 

are usually regarded as weak planes and sources of dislocations emission. These two 

competing mechanisms can determine the intrinsic brittle or ductile behaviors of the grain 
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boundary, as described by Rice’s model [95]. The rapid development of computational 

resources have made it possible to model directional anisotropy associated with crack 

propagation along grain boundaries [94], lattice trapping effects [96] and impurity 

embrittlement of grain boundaries [97]. A recent study finds that disclination formed by 

two grain boundaries can heal an edge crack in nanocrystalline metals [98]. Our present 

simulations reveal that grain boundary can play a critical role in determining crack 

propagation behavior in a bi-crystal graphene. The pre-stress induced by dislocations in 

the grain boundary can have significant effect on the behavior of the crack tip. 

Apparently, there exist two competing mechanisms to determine whether the crack might 

branch away from an armchair-tilted grain boundary in graphene: crack propagation 

along a plane of lowest surface energy versus breaking the bond shared by hexagon and 

heptagon. It may be possible to develop a Rice-like continuum model to characterize the 

competing effect of these two factors in the future.  

3.5. Summary 

In this chapter, we performed MM simulations to search for the minimum energy 

configuration of a dislocation dipole in a square graphene sheet under periodical 

boundary conditions. By calibrating the MM simulated data with a continuum model, we 

can extract the effective dislocation core energy and core radius.  As a consistent check of 

our results, the total potential energy change of atoms inside the dislocation core is 

verified to be close to the fitted value for the dislocation core energy. The dislocation 

core radius obtained in our simulations is also in good agreement with the results from 

previous studies in the literature. 
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Our MD simulations on dislocation interaction with an edge crack in a 40 nm wide 

graphene strip reveal that a single dislocation can increase or decrease the effective stress 

intensity factor by 30% depending on the orientation of the dislocation with respect to the 

crack. It is also interesting to note that the MD simulation results lie between those 

predicted for a linear elastic crack and for a Dugdale cohesive crack. Therefore, it may be 

worth extending the current model for dislocation interacting with a Dugdale cohesive 

crack to a more realistic cohesive crack model. The simulations also show that a slight 

variation in the atomic structure near the crack tip can significantly change the failure 

strain. 

We also carried out MD simulations for crack propagation along an armchair 

symmetrically tilted grain boundary. Similar to a dislocation, grain boundaries can 

strongly effect the stress intensity factor at the crack tip. However, the pre-stress obtained 

from MD simulation has an opposite sign compared to that calculated from a direct 

superposition of the stress induced by dislocations in the grain boundary. This can be 

qualitatively explained from the effective dislcination of a terminated dislocation wall in 

a consistent continuum model, even though it has been difficult to obtain quantitative 

agreement. Two competing mechanisms are identified to determine the crack branching 

behavior along an armchair-tilted grain boundary in graphene: cracking along a plane 

with the lowest surface energy versus breaking of a bond shared by hexagons and 

heptagons in the grain boundary. In this regard, our current studies are still quite 

preliminary, and more work is needed in the future. For example, more systematic studies 

on crack propagation along grain boundaries with different misorientation angles may 

help achieve a complete understanding of grain boundary fracture in graphene. It will be 
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interesting to study crack propagation along grain boundaries under mixed mode loading 

conditions, which may be helpful for understanding the failure of polycrystalline 

graphene. 

It is noted that there is still a general lack of reliable interatomic potentials to capture 

the fracture behavior in graphene. While the fundamental mechanism of crack interaction 

with dislocations and grain boundaries via the pre-stress distributions at the crack tip may 

be insensitive to the detailed forms of the atomic potential, the exact values of the critical 

strains and the sequences of the bond breaking processes near the crack tip may be more 

dependent on the choice of the interatomic potential. Our studies are not only suitable for 

graphene, but also for other material systems like nanocrystalline diamond and cubic-BN 

crystal with dislocations or grain boundaries. 
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Chapter 4 Defects controlled wrinkling and 

topological design in graphene 

4.1. Introduction 

As illustrated in the title, this thesis is dedicated to investigating two main problems 

in graphene with topological defects: fracture and wrinkling. In the previous two 

chapters, we have focused on the fracture in graphene with topological defects through 

MD simulations and theoretical analysis. Our studies have revealed that the defects such 

as dislocations and grain boundaries have significant influences on the strength and 

toughness of graphene. In the following two chapters, we will investigate the defects 

controlled wrinkling in graphene and the topological design of multifunctional graphene 

with defects. 

As a special class of solid membrane with two-dimensional (2D) crystalline 

structure, free standing graphene undergoes fully three-dimensional (3D) deformation to 

minimize its energy in the presence of topological defects as verified by recent high-

resolution transmission electron microscopy (HRTEM) experiments [36, 37], density 

functional theory (DFT) calculations [32] and atomistic simulations [33-35]. As 

illustrated in Fig. 4.1a, a dislocation dipole in graphene can induce large wrinkles near 

the dislocation core, with out-of-plane displacement amplitude up to 3.3 Å. Figure 4.1b 

shows the potential energy of carbon atoms around the dislocation dipole, where atoms in 

the dislocation cores exhibit higher energy than those in the far field. In particular, three 

http://en.wikipedia.org/wiki/%C3%85
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atoms on the heptagon side have the highest energy. The 3D distributions of bond lengths 

around a dislocation and the corresponding 2D projection are presented in Fig. 4.1c and 

4.1d, respectively. It can be clearly observed that the 2D projection significantly 

underestimates the length of covalent bonds around the dislocation core [36]. 

Interestingly, it has also been shown that the out-of-plane displacement in graphene can 

be used to tune the electrical [38-40] and mechanical properties of graphene, such as 

anisotropic friction [41] and tunable wettability through controllable crumpling [42] of 

graphene on substrate. These recent studies are calling for systematic investigations of 

topological defects induced wrinkling in graphene. 

 
 

 

Figure 4.1. Atomic configuration of a dislocation dipole in a graphene sheet of 

dimension 20×20 nm
2
 (only part of the region around the dislocation dipole is shown 

here). (a) A perspective view of deformation around the dislocation dipole. (b) Top view 

of the dislocation dipole. (c) Bond structures around the dislocation core in 3D. (d) Bond 

structures around the dislocation core in 2D projection. The color represents the scale of 

the out-of-plane displacement in (a) and potential energy in (b-d), respectively. (Scale 

bar: 1 nm) 

This chapter is organized as follows. Section 4.2 reviews the existing continuum 

model of defects in a flexible solid membrane. A mathematical analogy between 
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topological defects and incompatible growth metric will be established in Section 4.3. 

The numerical methods used in continuum and atomistic simulations are summarized in 

Section 4.4. Section 4.5 is dedicated to the fundamental problem of an isolated 

dislocation in graphene. Section 4.6 presents two examples of designing graphene-based 

nanostructures with distributed topological defects, specifically a sinusoidal graphene 

ruga and a catenoid graphene funnel. Finally, some concluding remarks are given in 

Section 4.7. 

4.2. Continuum model for graphene with topological 

defects 

From a continuum perspective, topological defects in flexible membrane and shell 

structures have been investigated during the past several decades. Nelson and 

collaborators [99, 100] derived a generalized von Karman equation to describe coupling 

between topological defects, in-plane stress and out-of-plane deformation in a 2D 

crystalline membrane; they showed that the out-of-plane deformation can significantly 

reduce the magnitude of in-plane stresses generated by the defects. Zubov [101-103] 

investigated topological defects in plates and shells, and proposed a geometrical analogy 

to transform the problem of a thin shell with defects into its dual problem of a thin shell 

with external loading [103].  

In this section, we briefly review the governing equations of topological defects in a 

flexible solid membrane by Seung and Nelson [100]. Our present study focuses on the 

topological defects in a mono-layer graphene sheet, reference configuration of which is 

taken to be a flat surface in the (x1, x2) plane. The deformation can be characterized by 
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the in-plane displacement components u1(X) and u2(X), as well as the out-of-plane 

displacement w(X). The in-plane strain tensor can be expressed as, 

 
jiijjiij wwuu ,,,,

2

1
 ,      2,1, ji ,                                     (4.1) 

where   i, denotes partial derivative   ii x , . The mean and Gaussian curvatures can 

be written in terms of the out-of-plane deformation w as, 
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where    denotes the gradient operator and  det  the determinant of a second rank 

tensor. For small w , Eq. (4.2) can be simplified as 
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where  2  is the Laplace operator. 

The total strain energy of the membrane is expressed as a summation of the stretching 

energy and bending energy, 
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where E is the Young’s modulus, v the Poisson’s ratio, B the bending stiffness, and BG 

the Gaussian stiffness. Here we note that the thickness of graphene is not well defined 

within the classical theory of plates and shells, as it may depend on the type of loading 

and geometry [104, 105]. In the present study, the effective thickness h of graphene (3.34 

Å) is only used to define the in-plane stretching modulus, while the bending stiffness is 

obtained directly from atomistic simulations [106, 107] . 
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Disclinations characterize the rotational defects in a crystalline structure, whose 

direction is defined by a rotation axis also known as the Frank vector. For disclinations in 

graphene, the Frank vector is normal to the x1-x2 plane, so that the out-of-plane 

displacement remains single-valued. In the presence of N disclinations, the 

incompatibility condition should satisfy [100], 
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where ije  is the 2D permutation tensor, and si(r-ri) represents the ith disclination at 

position ri with strength si. In the present study, dislocations are modeled as disclination 

dipoles [16, 93, 108], which makes the distributed dislocations not explicitly appear in 

the incompatibility equation, implying 0, jlijlue  [100]. Substituting this into Eq. (4.5) 

and considering the identity  
jiijijji wwuu ,,,,

2

1

2

1
  , we obtain the incompatibility 

condition in terms of in-plane strains and out-of-plane deformation as follows, 
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Taking variation of the total energy in Eq. (4.4) with respect to the in-plane and out-

of-plane displacements, we obtain the following equations, 
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where 
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is a bi-harmonic operator and the stress tensor is calculated according to 

generalized Hooke’s law 
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Introducing the Airy stress function , so that ij=eikejlh
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where S=Eh denotes the in-plane stretching modulus. Substituting Eq. (4.8) into the 

incompatibility equation in (4.6) and using Eq. (4.3), we obtain 
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Note that 
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The governing equation for nonlinear coupling between in-plane stresses and out-of-

plane deformation can be rewritten as, 
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where [f, g]= eikejlf,lkg,ji =f,11g,22+ f,22g,11 2f,12g,12. Finally, we obtain the following 

generalized von Karman equation for defects in flexible membrane, 
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It is noted that Chen and Chrzan [109] calculated the self-energy of a periodical array 

of dislocation dipoles in a graphene sheet with and without out-of-plane deformation by 

modeling dislocations as topological constraints and performing energy minimization in 

the Fourier space. In spite of these impressive progresses on dislocations/disclinations in 

solid membranes, it remains a challenge to develop an efficient continuum model that can 
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accurately capture both the atomic-scale rippling near the defect core and large-scale 

wrinkles in the membrane. 

4.3. Mathematical analogy between defects and 

inhomogeneous growth 

In linear elastic solids, dislocations can be treated as an eigenstrain field that can be 

analytically or numerically treated using Green’s function method [110]. In comparison, 

topological defects in graphene present a greater challenge due to the complex nonlinear 

coupling between in-plane and out-of-plane deformations. It has been difficult to obtain 

analytical solutions even for a single, isolated dislocation in a membrane. Similar 

problems with incompatible deformation significantly influencing the final morphology 

of the structures occur in the growth of biological tissue [111-114] and the swelling of a 

soft membranes [115, 116]. A number of theoretical frameworks have been proposed to 

treat incompatible deformation in these phenomena, such as non-Eulidean plate theory 

[117] and multiplicative decomposition of deformation gradient [118-120]. A comparison 

between the governing equations for defects and growth in thin plates would suggest that 

the defects can be represented as an equivalent eigenstrain field, an idea that has been 

widely used in micromechanics [110, 121].  

The governing equation for the inhomogeneous growth in thin films [111, 112] can be 

written as, 
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where 
ggg

g 12,1211,2222,11 2   is the incompatibility metric due to the in-plane growth 

or swelling. It is noted that the two sets of equations (i.e., Eqs. (4.12) and (4.13)) are 

identical if one sets  
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gg

2211,   

and 
g

12 , are prescribed values and independent of each other, there are no unique 

combinations of growth strain for a given incompatibility metric field. In the present 

study, we set 12 11 220,g g g g      , and obtain a Poisson’s equation for 
g , 

 



N

i

ii

g s
1

2
rr ,                                                (4.14) 

which has the following solution in an infinite domain, 

constantlog
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i
ig s

rr


 ,                                             (4.15) 

where the constant term is determined by boundary conditions. For general computational 

domain and boundary conditions, the eigenstrain field can be obtained by numerically 

solving the Poisson equation defined in Eq. (4.14). Therefore, we will use the following 

growth strain to simulate the topological defects in graphene, 

constantlog
2

 ,0
1

221112  


N

i

i
iggg s

rr


 .                          (4.16) 

To eliminate the singularity at the core of the defects, we replace  irr   with a 

Gaussian function 
 








 


2

2

2
exp

1

c

i

c rr

rr


 by introducing an intrinsic length scale rc, and 

then modify the solution to Eq. (4.16) as, 
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where Ei(x) is the exponential integral. For discrete systems like graphene or finite 

element method discretized structures, the length scale rc can be physically related to the 

lattice length or the minimum mesh size. 

4.4. Numerical methods for simulation 

To provide some benchmark solutions to validate the continuum model, we first 

investigate dislocations in graphene using atomistic simulations based on the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) [53]. The interatomic force 

for graphene is calculated by the Adaptive Intermolecular Reactive Empirical Bond 

Order (AIREBO) potential [46]. During simulations, energy minimization is employed to 

find the equilibrium configurations of the defective system. Before equilibration, the 

simulated system is relaxed at a constant temperature of about 1 K via the Nose−Hoover 

thermostat [56] to introduce some perturbations in the out-of-plane deformation. In the 

case of a single, isolated dislocation, a small perturbation is applied to the structure by 

initially assigning some non-zero out-of-plane coordinates for one or two atoms near the 

heptagon and then relaxing the whole system, as the thermal fluctuation breaks the initial 

flat configuration and structural symmetry. The atomic stress is calculated by the Virial 

theorem. 

The continuum model is numerically solved based on a discretization of graphene 

into a triangular lattice [100], in which the total elastic energy is defined as a combination 

of stretching energy Fs and bending energy Fb,  
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where rij  is the current bond length, r0 the equilibrium bond length, and n and n the 

normal vectors of nearest-neighbors (Fig. 4.2a). It is worth noting that the above 

triangular model predicts that the Gaussian stiffness is equal to the negative bending 

stiffness [100]. This is close to a recent DFT calculation [122] which predicted the 

bending and Gaussian stiffnesses of graphene to be 1.44 eV and -1.52 eV, respectively. 

During simulations, the growth strain g
 is applied to the lattice by stretching the 

equilibrium bond length r0 to r0 [1+g
(x1,x2)] [112]. The equilibrium bond length r0 is 

taken to be 1.40 Å, the same as that used in atomistic simulations based on the AIREBO 

potential. Figure 4.2b shows the predicted 3D buckled shapes of positive and negative 

disclinations in a circular disk from the continuum model, which are shown to be 

consistent with atomic simulations in Fig. 4.2c. 

 
 

 

Figure 4.2. Buckled shapes around disclinations in a circular graphene disk of radius 5 

nm. (a) The triangular lattice model adopted in continuum simulations. (b) The calculated 

3D buckled shapes around positive and negative disclinations in the circular graphene 

disk from the continuum model. (c) Corresponding 3D buckled shapes from atomistic 
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simulations. The colors represent eigenstrain field with rc=0.5 Å and out-of-plane 

deformation in (b) and (c), respectively. 

4.5. An isolated dislocation in graphene 

In this section, both continuum model and atomistic simulations are used to study an 

isolated dislocation in a square graphene sheet with in-plane dimensions of 80×80 nm
2
, 

as schematically shown in Fig. 4.3a. In both atomistic and continuum simulations, the 

edge of graphene is clamped to reduce the edge effect on wrinkling. The stretching 

modulus and bending stiffness are extracted from atomistic simulations as S=17.57 eV/Å
2
 

and B=0.95 eV, respectively, and then used in continuum simulations. According to the 

atomic structure of graphene, the strength and size of the disclination dipole that forms a 

dislocation are taken as π/3 and 1.158 Å, respectively. Figure 4.3b depicts the atomic 

structure of the heptagon-pentagon dipole, while Fig. 3c shows the eigenstrain field of the 

dipole used in the continuum model, which is calculated according to Eq. (16) with one 

positive and negative disclination at the position of (-1.158,0) and (1.158,0), respectively. 

 
 

Figure 4.3. An isolated dislocation in a square graphene sheet. (a) Schematic illustration. 

(b) A magnified view of atomic structure of a dislocation (heptagon-pentagon dipole) in 

graphene. (c) The eigenstrain field of dislocation used in the continuum model. (Scale 

bar: 1 nm) 
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Figures 4.4a-c and 4.4d-f plot the in-plane stress contours of an isolated dislocation 

from continuum modelling and atomistic simulations, respectively. Comparison between 

Figs. 4.4a-c and 4.4d-f indicate that the stress field predicted from the continuum model 

is in good agreement with that from atomistic simulations. In order to further quantify the 

influences of the out-of-plane deformation on the stress field around dislocation, we plot 

stresses predicted from 2D atomistic simulations with no out-of-plane deformation and 

from the classical plane-stress solution of an edge dislocation in Fig. 4.4g-i and 4.4j-l, 

respectively. The results from 2D atomistic simulations are very close to the plane-stress 

theoretical solutions of an edge dislocation [85], but are remarkably different from 3D 

simulation results shown in Figs. 4.4d-f. It is observed that the stress fields with and 

without the out-of-plane deformation deviate significantly in magnitude, shape and 

distribution. For example, when the out-of-plane relaxation is allowed, the magnitude of 

the maximum tensile (compressive) stress 22 is seen to drop from 117 (-109) GPa to 

58.5 (-48.6) GPa. Compared to the 2D solution, the region of significantly amplified 

stress near dislocation core is significantly reduced in 3D due to out-of-plane rippling. 

These results indicate that the out-of-plane wrinkling in graphene substantially lowers the 

stress level near the dislocation core, and the stress field in 3D becomes asymmetric due 

to the buckling prone heptagon (compressive) side of the dislocation core. 
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Figure 4.4. Comparison of stress fields around an isolated dislocation calculated from 

continuum modelling and atomistic simulations. Contour plots of stress components 

11,22, 12 from (a-c) continuum modelling based on the generalized von Karman 

equation; (d-f) 3D atomistic simulations; (g-i) 2D atomistic simulations (without out-of-
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plane deformation); (j-l) classical plane-stress solution of an edge dislocation. (Scale bar: 

1 nm.) 

Figure 4.5 shows excellent quantitative agreement in out-of-plane displacement 

profile calculated from the continuum model and atomistic simulations. It is interesting to 

observe that the out-of-plane rippling extends over large distances (more than 20 nm), 

almost to the clamped boundary. This long-range nature of the out-of-plane distortion 

induced by a dislocation is consistent with recent HRTEM observations [36, 37]. 

 

 

Figure 4.5. Comparison of the out-of-plane displacement field calculated from 

continuum modelling based on the generalized von Karman equation and atomistic 

simulations. (a) Contour plots of the out-of-plane displacement field calculated from 

continuum modelling. (b) A zoom-in snapshot of deformation around the dislocation core 

in (a). (c) Corresponding contour plots of the out-of-plane displacement field calculated 

from atomistic simulations. (d) A zoom-in snapshot of deformation around the 

dislocation core in (c). The scale bars are 10 nm in (a) and (c), 1 nm in (b) and (d), 

respectively. 
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Most existing theoretical models of dislocations in graphene assumed 2D 

deformation and neglected out-of-plane displacement [16, 108, 123-125]. It has been 

argued that a 2D disclination dipole model can be used to predict the tensile failure 

strength of polycrystalline graphene with specific grain boundaries, with results in good 

agreement with those from molecular dynamics (MD) simulations [16, 108]. The reason 

for such agreement has been attributed to the fact that the wrinkles induced by 

dislocations can be suppressed by the applied tensile strain [16]. Our present model 

allows one to quantify the effect of an applied tensile strain on the wrinkling field around 

a dislocation in graphene. 

 
 

 

Figure 4.6. Effect of an applied tensile strain on wrinkling around a dislocation. (a) 

Continuum solutions under uniaxial and biaxial strains. (b) Corresponding atomistic 

simulations. (Scale bar: 1 nm) 
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Three different loading modes (uniaxial tension in x1, uniaxial tension in x2 and 

equibiaxial tension) are applied to an 80×80 nm
2
 graphene sheet that contains a single 

dislocation. Figure 4.6 shows the results from continuum modelling and atomistic 

simulation under the three loading modes with a maximum strain of 0.02. It is noted that 

only biaxial tension can effectively suppress the out-of-plane wrinkling. It appears that 

uniaxial tension in the x1 direction even enhances the out-of-plane deformation due to 

Poisson contraction [126]. The local wrinkling near the heptagon core is still suppressed 

by the uniaxial tensile strain. These results indicate a need for caution when using 2D 

models to analyze the deformation of dislocations in graphene even under tensile loading. 

It can be noted that there exists long-range wrinkling perpendicular to the loading 

direction under uniaxial tension, as shown in Fig. 6. Such wrinkling does not significantly 

affect the local stresses and strains near the dislocation, which determines the fracture 

strength of defective graphene [16, 22]. In this sense, the wrinkling under uniaxial tension 

has very minor influence on the strength of graphene. 

We note that the continuum model developed in the present study only involves three 

parameters, stretching modulus, bending stiffness and bond length (or Burger’s vector), 

which can be obtained from experimental measurements [4] or computational studies, 

such as DFT [107, 122, 127] and molecular mechanics [105, 106], with accuracy 

comparable to that of an interatomic potential [46]. Compared to full atom simulations, 

the continuum model can dramatically reduce the computational cost. For instance, 

typically it takes about 1000 CPU hours to perform atomistic simulations for an 80×80 

nm
2
 graphene sheet, but only 50 CPU hours to perform continuum simulations of 
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comparable scale. The continuum model provides an opportunity to investigate defects 

controlled wrinkling in graphene at the micron scale and above. 

4.6. Defects controlled graphene structures 

The nonlinear coupling between topological defects and curvature in a 2D crystalline 

membrane can induce a variety of interesting phenomena. It has been shown that lattice 

defects tend to adopt specific patterns on curved surfaces [128-134] and can trigger 

different buckling modes in a spherical elastic shell, which has been used to shed light on 

the understanding of virus shape [135] and morphological changes between smooth and 

faceted structures [136, 137]. Reversible transformation between flat sheets and surfaces 

with non-zero Gaussian curvature in nematic glass sheet has been studied by combining 

the effects of disclinations with thermal/optical stimuli [138, 139]. In parallel with recent 

attempts to design 3D surface profiles of inhomogeneous gel composites with 

controllable swelling ratio [115, 116], it will also be challenging and exciting to explore 

the possibility of designing curved structures with distributed topological defects in 

graphene and other 2D crystalline materials. The rapid developments in new 

experimental techniques [25, 140] have made it increasingly possible to control the 

position, type and distribution of defects in graphene, so as to tune its electrical and 

mechanical properties. The question of how graphene deforms due to isolated and/or 

collective defects in 3D motivates the present study to develop an efficient continuum 

approach to characterize 3D deformation and stress fields in graphene with prescribed 

distributions of defects, and to demonstrate the possibility of designing graphene-based 

nanostructures by controllably deploying such defects. 
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In the above discussions, we have demonstrated that significant out-of-plane 

wrinkling deformation in graphene can be triggered by topological defects such as 

disclinations and dislocations. One question is whether the collective behaviors of such 

topological defects can be utilized to design curved graphene structures with interesting 

properties. As a preliminary study in this direction, here we show two examples of curved 

graphene structures that can be generated and tuned by a distribution of topological 

defects. The present study can be related to the problem of finding the minimum energy 

configuration of a lattice of charged particles on a curved surface [130, 134]. Using 

Monte Carlo simulations, Hexemer et al. [130] predicted the emergence of disclinations 

in a lattice of charge particles on a high aspect ratio (amplitude over wavelength) 

sinusoidal surface 

     2121 sinsin, qxqxAxxw   ,                                          (4.19) 

where A is the amplitude and q is the wavenumber. 

 
 

Figure 4.7. A sinusoidal graphene ruga induced by a periodic array of disclinations from 

continuum modeling and atomistic simulations. (a) The continuum eigenstrain filed in the 
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undeformed configuration with rc=0.5 Å and (b) the configuration of the sinusoidal 

graphene ruga predicted from continuum modelling. (c) Potential energy contour (top 

view) and (d) the configuration of the sinusoidal graphene ruga from atomistic 

simulations. (Scale bar: 1 nm) 

A sinusoidal graphene, referred to as a graphene ruga, can be created from a 

periodical array of distributed disclination quadrupole in a square unit cell [130]. Here we 

first create the graphene ruga in the continuum framework based on such a distribution of 

disclinations, whose corresponding eigenstrain field is shown in Fig. 4.7a. The continuum 

model successfully produces a sinusoidal ruga structure with amplitude of about 7 Å and 

wavelength of around 30 Å, as shown in Fig. 4.7b. Next we create an atomic graphene 

ruga through voronoi diagram of the lattice structure presented in the work of Hexemer et 

al. [130] and relax the structure using atomistic simulations under periodical boundary 

conditions. The atomic potential energy contour of the graphene ruga structure is 

depicted in Fig. 4.7c, from which we can see that most of the atoms have lower energy 

than those in the heptagon rings. Figure 4.7d shows the atomic sinusoidal ruga structure, 

which is nearly the same as the continuum prediction and thus validates that the 

continuum model can capture large scale wrinkles induced by multiple defects. 

More recently, Kusumaatmaja and Wales [134] showed that an array of dislocations 

emerges when particles confined on a catenoid surface are interacting with different 

potentials (Fig. 4.8a).  The catenoid surface is defined as, 

           ,sincosh,coscosh,, cccczyx  ,                             (4.20) 

where 0 ≤ ζ< 2π, -zmax ≤ ξ < zmax and c is a parameter to control the waist of the 

catenoid in the z=0 plane. Typical catenoid surfaces with different waist are shown in Fig. 
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8a. To form a catenoid graphene funnel, an initial atomic structure of 1018 carbon atoms 

is constructed through voronoi diagram according to the coordinates of 600 triangular 

vertices from the Cambridge Energy Landscape Database (http://www-

wales.ch.cam.ac.uk/CCD.html), corresponding to a shape determined from Eq. (4.20) 

with c=0.6. Before performing energy minimization via atomistic simulations, the edge 

atoms are functionalized with hydrogen atoms for passivation. The relaxed atomic 

structure is shown in Fig. 4.8c, confirming that the nearly catenoid graphene funnel 

constructed from topological defects is stable. To mimic the dislocation structure in the 

atomic system, we distribute 7 dislocation pairs (each composed of 2 heptagon-pentagon 

dipoles) on the upper and lower half of a cylindrical surface, as illustrated in Fig. 4.8d. 

The final configuration from the continuum modeling is shown in Fig. 4.8e, which is 

consistent with the full-atom model constructed from the catenoid surface. 

 
 

 

Figure 4.8. A catenoid graphene funnel from atomic simulations and continuum 

modeling. (a) Catnoid surfaces for c=0.5 and 0.7, from which zmax is determined by 

http://www-wales.ch.cam.ac.uk/CCD.html
http://www-wales.ch.cam.ac.uk/CCD.html
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cosh(zmax/c)c=1. (b) The initial atomic configuration of 1018 carbon atoms on a catenoid 

surface (Kusumaatmaja and Wales [134]) with distributed dislocations. (c) The relaxed 

atomic structure of (b). The color represents the potential energy scale. The 

corresponding (d) initial and (e) final structures predicted from continuum modelling. 

The color represents the eigenstrain scale with rc=0.5 Å. (scale bar: 1 nm) 

4.7. Summary 

We have developed an efficient continuum approach to determining the 3D 

configuration and stress field of a curved graphene membrane that contains a distribution 

of topological defects. Comparison with large-scale atomistic simulations shows that the 

proposed continuum model is capable of predicting the stress field and out-of-plane 

deformation around disclinations and dislocations in graphene. Both atomistic and 

continuum simulations indicate that, due to the atomic thickness of graphene, even a 

single disclination/dislocation can cause significant out-of-plane wrinkling. The driving 

force for such wrinkling comes from the relaxation of in-plane stress and elastic energy 

near the defect core. We further showed that the out-of-plane wrinkling near a dislocation 

core cannot be fully suppressed by uniaxial stretching, which calls for caution in applying 

2D dislocation models to analyze deformation around topological defects in graphene 

even under severe stretching. It should be possible to extend the present continuum 

method to other 2D one-atom-thick materials, such as monolayer B-N sheet and MoS2 

membranes. 

A promising future research direction is to investigate how to utilize the nonlinear 

coupling between topological defects and membrane curvature to tailor the design of a 

curved graphene membrane or structure that conforms to an arbitrary three dimensional 
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surface or object. This is a highly nonlinear inverse problem, for which it would be 

prohibitively expensive to use full-atom simulation methods. In contrast, our present 

study has demonstrated the feasibility of developing a continuum framework which can 

accurately capture both the atomic scale rippling near the defects core and the large-scale 

wrinkling induced by multiple defects. The use of dislocations/disclinations to control 

configuration and stress/strain fields provides an extra dimension in design space to tune 

the electrical, thermal and mechanical properties of 2D crystalline nanomaterials. A 

highly efficient and accurate continuum approach may open the possibility to address a 

series of fundamental problems with immediate applications in various fields. 



 65 

Chapter 5 A Phase Field Crystal Method for 

Multifunctional Curved Graphene Design 

with Topological Defects 

5.1. Introduction 

In chapter 4, we have seen that 3D curved graphene sheets can be formed with 

distributed topological defects. It is believed that both the curvature and topological 

defects can alter the electronic [11, 14, 40] and mechanical properties of graphene [15-

17]. Thus, it is of great scientific and technological importance to develop a general 

methodology for creating a curved graphene sheet conforming to an arbitrarily given 3D 

shape for multifunctional device design. 

Our proposed continuum model can accurately capture both the global wrinkle and 

atomic configuration for a given distribution of defects. However, the defect distribution 

that generates a specific 3D shape of graphene membrane is usually unknown, which is 

actually an inverse problem involving highly nonlinear deformation. Previous studies 

have employed geometry method [141-143] and Monte Carlo simulations [144] to search 

for the positions of carbon atoms on a curved surface, which are difficult to apply in a 

large system with complicated geometry. One possible way to deal with this issue is to 

incorporate dislocation nucleation and motion based on our proposed continuum model in 

the last chapter. 
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It is noted that the recently developed phase field crystal (PFC) method [145] is a 

powerful promising approach to searching for the minimum energy configuration of a 

triangular lattice network on an arbitrary 3D curved membrane. One distinct advantage of 

the PFC method is that particle interaction is described by a continuum effective density 

field governed by a generalized diffusion equation, the time scale of which is several 

orders higher than MD simulations based on a pair potential. For example, Voigt’s group 

has successfully applied PFC to solve the Thomson problem of charged particles on a 

sphere [146, 147] and defect pattern of particles on a catenoid surface [148]. The 

triangular lattice structure obtained from PFC can be easily transformed into the hexagon 

lattice structure of graphene through voronoi construction. We will therefore use the PFC 

method to generate graphene atomic structure for any given curved membrane shape. 

In this chapter, we will first review some previous studies on the mechanical and 

physical properties of curved graphene and the methods used to generate such graphene 

sheets. We will then introduce the phase field crystal model and its implementation 

within the finite element (FEM) formulations to numerically solve the partial differential 

equation (PDE) associated with the PFC method. Finally, we will present a few 

preliminary results of curved graphene design with the PFC method. 

5.2. Previous studies on curved graphene  

Curved carbon nanostructures have been found much earlier than Graphene. A 

famous example is fullerene (C60) (Fig. 5.1a), containing 12 pentagons to form a closed 

spherical shape, the discovery of which initiated the development of nanotechnology. The 

defects configuration on these closed geometries satisfy the classical Euler’s formula, 

given by 
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2 FEV ,                                                         (5.1) 

where F, E, V are the number of faces, edges and vertices, respectively. If we assume all 

the carbon-carbon are sp
2
 bonding, the relationship between the numbers of different 

types of topological defects can be expressed as [149] 

 1222 8754  NNNN ,                                            (5.2) 

where Ni is the number of carbon rings with i edges. 

People have also tried to explore more complicated carbon material with curvature 

beyond the sphere. For example, Terrones and Mackay [150] proposed a three-

dimensional, open and negatively curved graphitic structure. Lenosky et al. [151] 

conducted molecular mechanics simulation based on force field to investigate the energy 

of similar carbon structures and the associated defect structures. The negative curvature 

graphitic structure was subsequently identified by Iijima et al. [152] with transmission 

electron microscopy. Petersen et al. [144] developed a Monte Carlo simulations 

technique to investigate the complicated carbon nanostructured surface based on the 

reactive atomic potential. The readers can find more information from a nice review 

about many previous studies on curved carbon materials [149]. Very recently, 

experimental and simulated studies [153, 154] have shown that such kind of structure can 

help design carbon based supercapacitors.  
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Figure 5.1. Curved carbon nanostructures. (a) Atomic structure of fullerene (C60) 

(http://en.wikipedia.org/wiki/Fullerene). Two-fold symmetry axis views of the cubic D 

(b) and P (c) of schwarzite, emphasizing differences in the layout of the seven-membered 

rings [151]. 

Since 2004, Graphene, a single atomic layer membrane, has attracted tremendous 

attention due to its exceptional electrical and mechanical properties [1-4]. The two-

dimensional membrane structure of graphene presents a great challenge for real 

applications of graphene based devices, as it is difficult to manipulate graphene. It would 

be desirable to create some three-dimensional nanoporous form of graphene, a bulk 

material that has similar electrical properties as graphene. It has been reported that such 

kind of nanoporous structure (shown in Fig. 5.2) can be successfully fabricated with 

chemical vapor deposition (CVD) on a Ni-based metal foam structure [155]. It is believed 

that the nanoporous graphene structure can make it simpler to design novel electronic 

devices.  

b a c 
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Figure 5.2. Three-dimensional nanoporous graphene. (a) Fabrication of nanoporous 

graphene with the use of nanoprous Ni. (b) The structure of nanoporous graphene with 

and without nanoporous Ni. Raman spectral indicates that the 3D nanoporous sample 

consists of high-quality monolayered graphene. (c) Atomic structures of the nanoporous 

graphene. Topological defects can be found in the curved surface [155]. 

 

a b c 

d e 

a b 

c 
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Figure 5.3. Creating a curved carbon structure from a geometrical point of view. (a) Unit 

cell for a toroidal carbon nanotube (Ref. [141]). (b) Bead molecular structure for a 

toroidal tube. (c) Bead molecular structure for hierarchical fullerene. (b) and (c) from the 

online blog: http://thebeadedmolecules.blogspot.com/. (d) Constructing curved graphene 

sheet from the triangular lattice network via the voronoi scheme. (e) Complicated curved 

carbon structures based on the triangular lattice network. (d) and (e) are from Ref. [143] 

Inspired by the curved graphitic structure connected with sp2 carbon-carbon bond, 

Bih-Yaw Jin, a professor in the chemistry department of National Taiwan University 

proposed to design and create 3D curved graphitic model structures using beads. They 

tried to combine chemistry, geometry and art together with bead molecular models; the 

structures they created serve as vivid demonstrations of the atomic structures of carbon 

based nanomaterials to the students. Jin’s group [141, 142] also derived the generalized 

classification scheme of toroidal and helical carbon nanotubes (shown in Fig. 5.3a) as 

well as other curved carbon materials from the geometrical point of view. The bead 

molecular structures for toroidal carbon annotubes and hierarchical fullerene are shown 

in Fig. 5.3b-c, which can be found on http://thebeadedmolecules.blogspot.com/. Similar 

to Jin’s concept of using beads to mimic carbon atoms, others [143] also constructed 

carbon atomic structures employing the voronoi construction from a triangular mesh (as 

shown in Fig. 5.3.d-e). For a given curved structure, the authors of [143] first used the 

sphere packing method to efficiently obtain a high quality triangular mesh with constrains 

that all the voronoi polygon have edges between 4 and 8. The curved carbon structures 

obtained from this method are confirmed to be stable using full atom simulations. This 

provides a reliable and efficient way to generate curved carbon nanostructures. The key 

http://thebeadedmolecules.blogspot.com/
http://thebeadedmolecules.blogspot.com/
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for this method is to create the initial triangular lattice structures, a problem which we 

will use the phase field crystal method to solve in our studies. 

5.3. Phase field crystal method 

Phase field crystal is a recently proposed method, still under development, to 

describe the dynamics of discrete atomic structure with a continuum density function 

with periodical solutions, which can be obtained through energy minimization of a free 

energy functional and solved by a diffusion equation [145, 156]. Compared to the 

conventional continuum models and MD simulations, the PFC method can not only 

capture the atomic level information in a material, such as point and line defects, but also 

describe the dynamical process in real time scale. The classical functional used for PFC 

has been generalized from the Swift-Hohenberg (SH) equation [145]: 

   xdF  





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  is the Laplace operator, ϕ is the density, ε is the reduced 

temperature representing the effect of undercooling. The governing equation for the 
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As shown in Fig. (5.4a), the conventional phase field model can only capture the 

amplitude variation of two phases, while the PFC method can track atomic structures. It 

has been shown that the parameters ε and   (the average density) determine the final 

patterns of density distributions [145, 157, 158], such as those in liquid, strip and triangle 

pattern for two-dimensional systems, as 
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 liquid ,     xqA ss sinstrip , and 

         232cos3coscostriangle yqyqxqA tttt ,                  (5.5) 

where q and A are the wave number and amplitude corresponding to the minimum of the 

free energy, 
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The free energy of the system associated with each single mode approximation can be 

expressed as [157, 158] 
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     (5.7) 

The corresponding phase diagram for the 2D system based on this single mode 

assumption has been analyzed [145, 157] and summarized in Fig. 5.4b. For the triangular 

pattern, the system can be equivalent to an isotropic elastic system with effective elastic 

modulus calculated as 

2
2

36153
75

1






   , and 31v ,                                  (5.8) 

where  and v  are shear modulus and Poisson ratio, respectively. As the PFC method 

can capture the motion of topological defects (i.e. dislocations and grain boundary) in 

large time scale (seconds), it has been widely used to simulate the crystal grain growth 

[145] and grain boundary motion [159-161]. 
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Figure 5.4. The phase field crystal method. (a) Differences and similarities between the 

phase field and phase field crystal methods (from Prof. Voorhees’s talk at NIST). (b) 

Phase diagram of the phase field crystal model (Ref. [158]). 

The original PFC method adopts a very simple model that can generate periodical 

patterns to capture elastic and plastic (associated with defects motion) deformation of a 

discrete atomic lattice point. Later, people realized that the PFC model is actually a 

simplification of the classical fluid density functional theory (F-DFT) by perturbing the 

functional formula in F-DEFT around the average density [156, 162]. This connection not 

only provides a solid foundation of the PFC model, but also a systematic way to 

generalize the original PFC model to incorporate more complicated situations, such as 

multicomponent interactions [163], accurate models for 3D FCC and BCC crystal model 

[164] and new periodical patterns, i.e. hexagon and kagome shape [165]. With these new 

developments, it is now believed that the PFC model will play increasingly important 

roles in the large time scale dislocation dynamics in a number of materials, including 

FCC and BCC metals, and graphene [166]. 

In a real application, it is a still challenge to numerically solve the governing 

equation of the PFC model defined in Eq. (5.4), which is a 6
th

 order nonlinear partial 

b a 
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differential equation (PDE). The higher spatial derivative not only requires special 

treatment in discretization methods in space, but also needs implicit solver of the time 

integral, as a sufficiently small time step must be used to make the integral stable 

(roughly
6xt  ). Currently, spectral methods in Fourier space are still popular in 

solving PFC problems under periodical boundary conditions. However, it is known that 

numerical methods in real space, such as the finite element method (FEM), finite 

difference method and finite volume method, can be more flexible in handling the 

complicated geometrical shapes in solving general PDEs. Numerical schemes based on a 

mixed form of FEM, introducing two new variables to reduce the highest order in spatial 

derivative, have been proposed to solve the PFC equations [167], such as 
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                                                (5.9) 

where μ and u are two newly introduced intermediate variables. If we are interested in the 

dynamical process on a curved surface   in 3D, like the defects in graphene considered in 

the current thesis, Eq. (5.9) can be rewritten as [147] 
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                                           (5.10) 

where   is the surface Laplace operator. It has been shown that FEM can be used to 

successfully solve Eq. (5.9) and Eq. (5.10) [147, 158, 167]. 

Typical simulations for the PFC model on curved surface are shown in Fig 5.5. With 

FEM solver, Backofen et al.[147]  applied the PFC method to the classical Thomson 
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problem of charged particles interacting on a sphere (Fig. 5.5 a) and obtained results 

consistent with previous studies in the literature. In the same paper, they also computed 

the lattice pattern on the Stanford bunny (Fig. 5.5 b) to demonstrate the advantage of the 

FEM scheme. Recently, Schmid and Voigt [148] analyzed the defect patterns on the 

catenoid surface with the PFC model (Fig. 5.5 c). Garcia et al. [168] investigated the 

defect dynamics on a sinusoidal surface using the PFC method with finite difference 

solver.   

 

Figure 5.5. Phase field crystal simulations on a curved surface. (a) PFC simulation of the 

classical Thomson problem [147]. (b) PFC simulation on the surface of the Stanford 

bunny [147]. (c) Defects pattern on the catenoid surface with PFC simulation [148]. (d) 

Defect dynamics on a sinusoidal surface using PFC [168]. 

a 

c 

d b 
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5.4. FEM implementation of PFC model 

FEM is a powerful tool to solve the PFC model on flat and curved surfaces. In this 

section, we will first summarize the weak forms of the governing equations of Eq. (5.9) 

and Eq. (5.10) and then introduce the implementation of the numerical scheme in the 

open source FEM software, FEniCS Project [169]. 

For a given function space V, the weak form for Eq. (5.9) is to search the solution 

  VVVu ,,  satisfying 
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for all test functions Vwvq ,, .  

As discussed in the previous section, the higher order spatial derivatives make the 

stable time step for explicit time integration impractically small. Therefore, we will 

utilize the implicit middle point formula to deal with the time integral. The final weak 

form of Eq. (5.9) can be written as 
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where 
nn ttt  1
,  

n
and  

1n
 denote the values at time 

nt  and 
1nt , respectively. 

Equation (5.12) defines a nonlinear algebra equations associated with 
111 ,,  nnn u  with 

the input
nnn u,, , which will be solved with the Newton method. 
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Over the past few decades, FEM has become a popular standard tool for solving 

PDE. A lot of effort has been devoted to developing open source FEM software package 

with a variety of functions and high parallel efficiency, e.g. Deal.II and FEniCS project. 

In the current thesis, FEniCS is used as a platform to implement the FEM scheme for the 

PFC method. FEniCS project is a collection of free software components for the 

automated, efficient solution of partial differential equations (PDE) [169], which has 

been widely applied to problems in fluid dynamics, surface water wave, solid mechanics 

and phase filed. A unique feature of FEniCS is the design and application of the Unified 

Form Language (UFL) [170], which is a domain-specific language, embedded in Python 

for specifying finite element discretizations of differential equations in terms of finite 

element variational forms.  

The UFL is relatively straightforward and easy to use, as illustrated by the following 

example of solving Poisson’s equation in FEniCS [170]. The continuum equation for 

Poisson’s equation with boundary conditions can be written as 

  fu  graddiv   in    ,  
0uu  on D , gun  on 

N ,                (5.13) 

where  ND   is a partitioning of the boundary of    into Dirichlet and Neumann 

boundaries. The standard H
1
-conforming finite element discretization of Eq. (5.13) can be 

expressed as: find 
hVu  such that 

   vLxgvxfvxvuvua    N

dddgradgrad,  ,                      (5.14) 

for all hVv ˆ , where 
hV is a continuous piecewise polynomial trial space incorporating 

the Dirichlet boundary conditions on D and hV̂ is a continuous piecewise polynomial test 

space with zero trace on D . The UFL code corresponding to the weak form defined in 
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Eq. (5.14) is shown in Fig. 5.6. It is worth noting that the derivative operator on a curved 

manifold has been embedded in FEniCS. Therefore, the same UFL code can work for 

both flat and curved surfaces, which significantly simplifies the coding effort. 

 

Figure 5.6. UFL code of FEM implementation for Poisson equation in FEniCS [170]. 

5.5. Preliminary results on using PFC in curved graphene 

design  

To test our FEM code, we will first simulate the typical phase field crystal patterns 

shown in the phase diagram (Fig. 5.5b). A square domain with length of 19 is used in the 

simulations, roughly containing 3 wavelengths. The parameters in the PFC model are the 

same as Ref. [158]. Three typical patterns with different average densities 

6.0,2.0,05.0  are simulated, corresponding to strip, triangle, and homogenous states, 

respectively. The initial density distribution is the flat state with a small Gaussian random 

perturbation, such that  2

0 , N , where  2,N  is the Gaussian random 

variable with mean value   and standard derivation   and   is a small number 

compared with  . The final configurations for each simulation at t=1000 are 

summarized in Fig. 5.7, which are consistent with the theoretical predictions and previous 

numerical simulations. 
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Figure 5.7. FEM simulations of typical PFC patterns. (a) A strip pattern for 05.0 , 

(b) a triangular pattern for 2.0 , and (c) a homogenous pattern for 6.0 . 

 

Figure 5.8. A flow chart for designing a curved graphene sheet via the PFC method. (a) 

The initial curved manifold. (b) A continuum triangular pattern on the curved surface 

generated by the PFC method. (c) A discrete triangular lattice network according to the 

triangular pattern. (d) The generated graphene atomic structure through voronoi 

construction from the triangular network.  

a b 

d c 

a b c 
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A flow chart of employing the PFC method to design a curved 3D graphene structure 

is shown in Fig. 5.8, taking a sinusoidal graphene sheet as an example. The PFC 

simulation will be first performed on a given curved manifold (Fig. 5.8a) to search for the 

minimum energy triangular pattern (Fig. 5.8b). The wave crests are indentified as atoms 

so that the continuum triangular pattern will be transformed into a discrete triangular 

lattice network (Fig. 5.8c). The final graphene atomic structure (Fig. 5.8d) can then be 

obtained from voronoi construction based on the triangular network. For a general curved 

surface, including the previously discussed nanoporous graphene, the atomic structure 

can be generated based on a similar procedure. 

Once we obtain the atomic structure of the graphene sheet, we can run MD 

simulations to test the real configuration of the atomic structure with realistic atomic 

potential, such as AIREBO [46], and to investigate the mechanical and electronic 

properties of the obtained curved graphene. Taking the sinusoidal graphene as example, a 

uniaxial tensile MD simulation is first carried out to study the elastic modulus and 

strength of the material. Periodical boundary conditions are applied to both horizontal 

and vertical directions. A tensile loading with strain rate of 10
9
/s is applied by deforming 

the simulation box in the horizontal direction via the command fix/deform in LAMMPS. 

During the simulations, the NVT ensemble is adopted to maintain the temperature at 1 K 

using the Nose-Hoover thermostat [56]. The stress-strain curves are depicted in Fig. 5.9a, 

showing a strong size dependent fracture behavior. The elastic modulus of this curved 

graphene is almost independent of the size and is found to be around 320 GPa by fitting 

the initial elastic deformation of the graphene. Typical snap shots of the stress (σxx) 

contours in the sinusoidal graphene sheet with different simulation size can be found in 
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Fig. 5.9b-e. The unit cell is shown together with its three periodical images. During the 

tensile simulation, a crack first initiates at a bond shared by a heptagon and a hexagon. 

For the unit cell sinusoidal graphene sheet, it is noted that catastrophic failure does not 

immediately follow crack nucleation (Fig. 5.9b), unlike a conventional brittle material. 

The reasons for this may be attributed to the small size of the sample and curved 

graphene geometry. On the contrary, brittle failures are found in larger sinusoidal 

graphene sheet (Fig. 5.9d). Another interesting phenomenon is that the sinusoidal 

graphene sheets remain wrinkled even after failure (Fig. 5.9c and Fig. 5.9e). 

Figure 5.9. Uniaxial tensile simulation of a sinusoidal graphene sheet with molecular 

dynamics. (a) Stress-strain curves of the sinusoidal graphene with different unit cell size 

under the uniaxial tensile loading. (b)-(c) Top and front views of a snapshot of stress (σxx) 

contours under applied strain ε=0.15 for one unit cell with length L=4 nm. (d)-(e) Top 

and front views of a snapshot of stress contours under applied strain ε=0.15 for four basic 

unit cell with length L=16 nm. (The scale bars are 4 nm) 
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Figure 5.10. Edge crack propagation in a nanostrip of sinusoidal and flat graphene. (a) 

Stress-strain curves for flat and sinusoidal graphene sheets. The dot-dashed line 

represents the result of a larger sinusoidal graphene strip with length of 160 nm and width 

of 80 nm. (b) A nanostrip of sinusoidal graphene with an edge crack, the color showing 

out-of plane deformation. (c) Crack tip and atomic orientation of zigzag, armchair and 

sinusoidal graphene. (d) A top view of stress (σyy) contours near the crack tip during the 

tensile deformation. (e) Contours of out-of-plane displacements from a perspective view 

near the crack tip during the tensile deformation. The scale bars are 10 nm and 1 nm in 

(b) and (d), respectively. 

As another illustration, we considered crack propagation in a nanostrip of sinusoidal 

graphene. The strip is selected to be 80 nm long and 40 nm wide, with a 20 nm long edge 

crack (Fig. 5.10b). Periodical boundary condition is set up in the vertical direction of the 

nanostrip. A tensile loading with strain rate of 10
9
/s is applied by deforming the 

simulation box. During the simulations, NVT ensemble is adopted to maintain the 

temperature at 10 K using the Nose-Hoover thermostat [56]. From the stress strain curve, 

the toughness of the sinusoidal graphene is estimated to be around 32 J/m
2
, which is 

about three times that of a flat graphene (i.e. 11.4 J/m
2
 and 13 J/m

2
 for zigzag and 

armchair orientation, respectively). In order to exclude possible size effects on the 

toughness calculation, we also simulate crack propagation in a lager strip of sinusoidal 

graphene, with length equal to 160 nm and width equal to 80 nm, the result of which 

confirms the toughness value predicted using the smaller sample. More interestingly, the 

crack tip advances earlier in the sinusoidal graphene (around 0.023) compared to the flat 

graphene sheets. However, the structure remains stable so that the stress in the sample 
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keeps increasing even after the crack starts to advance. Two lattice bonds are broken at 

the strain of 0.03. It is noted that the crack gradually propagates until the applied strain 

increases to 0.059, when the heptagon ring is broken. A distinct feature of crack 

propagation in the curve graphene is that the local curvature keeps changing when the 

crack tip moves (Fig. 5.10e). It seems that this 3D curvature variation strongly influences 

the effective stress intensity and bond orientation near the crack tip, which may be a 

possible explanation for the observed toughness enhancement in sinusoidal graphene. It 

should be noted that the pre-stress induced by topological defects may affect both crack 

nucleation and propagation in the curved graphene.  

5.6. Summary 

In this chapter, we have reviewed some previous studies related to curved graphene 

from both experimental and simulated points of view. It is believed that the defect and 

curvature effect in graphene will significantly influence the mechanical and electrical 

properties of graphene, such as using as a high capacity anode in Lithium ion batteries. 

Recent developments on the fabrication of 3D nanoporous graphene that keeps excellent 

electronic properties of single layer graphene have provided a promising way to design 

graphene based 3D electronic devices. These progresses in experimental studies are 

calling for more efforts in theoretical modeling and simulations on the mechanical and 

physical properties of the curved graphene structure to provide guidelines in real devices 

design. 

Although several attempts have been made in numerically designing curved 

graphene, such as Monte Carlo simulations and sphere packing mesh method, it is still 

challenging to generate a desired graphene structure on a given curved manifold. In this 
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regard, the phase field crystal (PFC) method is promising in searching for the minimum 

energy triangular pattern by tracking the dynamical diffusion of an effective continuum 

density function on a surface. The governing equation of the PFC model can be 

efficiently solved with FEM, which can be quite flexible in dealing with complicated 

geometries. We have implemented the FEM scheme of the PFC model in the open source 

software FEniCS, which is relatively easy to use and of high parallel efficiency with 

PETSc as the linear equation solver. Some benchmark simulations have been conducted 

for the phase diagram of the PFC model using the FEM code in FEniCS, which are in 

good agreement with previous theoretical and numerical simulations. 

We have employed the PFC method to create a curved graphene sheet conforming to 

a sinusoidal surface. The PFC simulation is first performed to search for the minimum 

energy triangular pattern. The wave crests are indentified as atoms so that the continuum 

triangular pattern is transformed into a discrete triangular lattice network. The final 

graphene atomic structure is obtained from voronoi construction based on the triangular 

network. It should be pointed out that for general curved surface, including the previously 

discussed nanoporous graphene, a similar procedure can be followed to generate the 

atomic structure. For further illustration of potential applications of this research, we 

further study the mechanical properties of a generated sinusoidal graphene sheet. It is 

demonstrated that the fracture energy of the sinusoidal graphene can be 3 times as high as 

that of a flat graphene sheet. 
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Chapter 6 Conclusions and Perspectives 

6.1. Concluding remarks 

Using large-scale atomistic simulations and continuum models, we have investigated 

the fracture and wrinkling in graphene with topological defects. The scientific findings 

for each chapter are summarized as follows. 

In Chapter 2, flaw insensitive fracture is found in nanocrystalline graphene with a 

critical size around 20 nm, which is consistent with previous theoretical predictions. Our 

simulations reveal that micro-cracks nucleate randomly at intrinsic defects along grain 

boundaries and coalesce to form a big crack, eventually leading to catastrophic fracture. 

The key finding is that the microcrack nucleation and coalescence are not always induced 

by nor associated with pre-existing geometrical flaws such as a hole or notch in the 

system. We also extract the effective fracture energy (8 J/m
2
) for the nanocrystalline 

graphene with a 2 nm average grain size. 

In Chapter 3, Our MD simulations on dislocation interacting with an edge crack in a 

40 nm wide graphene strip reveal that a single dislocation can increase or decrease the 

effective stress intensity factor by 30% depending on the orientation of the dislocation 

with respect to the crack. It is also interesting to note that MD simulation results lie 

between those predicted from the conventional linear elastic crack and the Dugdale 

cohesive crack model. We also carry out MD simulations for crack propagation along 

grain boundaries, which also have significant effect on the crack nucleation and 

propagation. 



 87 

In Chapter 4, we employ large-scale atomistic simulations and continuum modeling 

to analyze the defects controlled wrinkling in graphene. Both atomistic and continuum 

simulations indicate that, due to the atomic thickness of graphene, even a single 

disclination/dislocation can cause significant out-of-plane wrinkling. The driving force 

for such wrinkling comes from the relaxation of in-plane stress and elastic energy near 

the defect core. Comparison with atomistic simulations indicates that the proposed 

model, with only three parameters (i.e., bond length, stretching modulus and bending 

stiffness), is capable of accurately predicting the atomic scale wrinkles near 

disclination/dislocation cores while also capturing the large scale graphene configurations 

under specific defect distributions such as those leading to a sinusoidal surface ruga or a 

catenoid funnel. 

In Chapter 5, a numerical scheme based on finite element method (FEM) is 

implemented in the open source software FEniCS for solving the governing equation of 

the phase field crystal model. We apply the phase field crystal (PFC) method to search 

for a triangular lattice pattern with the lowest energy on a given curved surface, which 

then serves as a good approximation of the graphene lattice structure conforming to that 

surface. The preliminary studies for the fracture of a sinusoidal graphene sheet generaed 

with PFC show a significant enhancement in the fracture toughness compared to the flat 

grpahene. 

6.2. Outlook of future research 

It has been shown that the physical and mechanical properties of grpahene can be 

actively tailored through topological defects design. The studies in the current thesis have 

been focused on the fundamental mechanical properties of graphene with defects, with 
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the hope of providing some guidelines for real graphene based device design. Along this 

line of research, there are still many interesting problems, some of which are listed as 

follows. 

(1) For crack interaction with grain boundaries in graphene, only a few typical grain 

boundaries have been discussed in current thesis. It will be interesting to systematically 

simulate the crack propagation behavior and toughness for a wider range of grain 

boundaries. Mixed mode failure is another important phenomenon to be investigated.  

(2) Our preliminary studies on sinusoidal graphene Ruga have shown a promising 

toughening effect due to the distributed topological defects. The elastic modulus 

associated with curved graphene sheet is substantially decreased, which is a tradeoff for 

toughness enhancement. A complete map of the elastic and toughness values for different 

sinusoidal graphene Ruga is needed through large scale MD simulations in order to 

provide a balance between high modulus and toughness.  

(3) Curved graphene will tend to fail at bonds with high pre-stress, which is usually 

on a heptagon ring. For a given wavelength, although a higher wave amplitude will 

potentially give rise to better stretchability, it may also induce a higher pre-stress, which 

will accelerate the failure of the structure. Therefore, there may be an optimum aspect 

ratio (amplitude over wavelength) to maximize the toughness of a sinusoidal graphene 

Ruga. 

(4) Nanoporous graphene is a recent progress on designing graphene-based device, 

the 3D structure of which makes it easier to be manipulated. Combining phase field and 

phase field crystal method will generate realistic nanoporous graphene structures. It will 
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be interesting to study the mechanical and thermal properties of these structures to 

provide a solid foundation for real device design. 

(5) Although the fundamental mechanisms of the mechanical properties of graphene 

with defects revealed in this thesis are generally correct, we note that some values from 

specific simulations, like the strength and toughness of the graphene structures may vary 

with the interatomic potential used in the current thesis. It will be of great interest to 

employ more accurate potentials in future studies. 
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