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Chapter 1. Introduction  
 

Locomotor and manual actions are fundamental to daily human interactions with 

a complex dynamic environment. The mechanisms underlying the perceptual control of 

action are of central importance to our understanding of both the function of perception 

and the organization of action. Two general approaches to visual control have emerged 

over the last few decades, often referred to as the on-line approach and the model-based 

approach. The fundamental difference between the two lies in the underlying basis for 

control. In on-line control, action is controlled by current visual information that is 

available during the ongoing movement. In contrast, in model-based control, action is 

controlled by an internal representation such as a world model, an action plan, or both. In 

this dissertation, I first review the evidence regarding on-line and model-based control 

drawn from research on locomotion and manual actions. I then describe three 

experiments that investigate on-line and model-based control in a locomotor interception 

task, in which a participant walks to intercept a moving target. Finally, I arrive at some 

conclusions about the plausibility of each approach.  

A primary role for current information in the control of action was originally 

emphasized by Gibson (1958, 1979). According to Gibson, various types of information 

are available to specify the properties of the environment. Detection of visual information 

by an attuned perceptual system enables humans to be aware of the specified 

environmental properties and to control their actions successfully with respect to those 

properties. As Gibson (1979) asserted, “Locomotion and manipulation … are controlled 

not by the brain but by information, that is, by seeing oneself in the world. Control lies in 



2 

 

 

 

the animal-environment system.” Following Gibson’s seminal work, the role of visual 

information in action control has been increasingly recognized (see Warren, 1998, 2009). 

A growing number of studies have identified specific optical variables and proposed 

control laws that couple action to the environment. For example, it has been shown that 

walking can be steered by using the currently available optic flow, which specifies one’s 

heading relative to a target (Bruggeman, Zosh, & Warren, 2007; Warren, Kay, Duchon, 

Zosh, & Sahuc, 2001). The locomotor trajectory and even anticipatory behavior emerges 

from the actor-environment system as a consequence of lawful regularities governing the 

coupled system’s behavior (Stepp & Turvey, 2010; Warren, 2006).  

The concept of an internal model was introduced by Kenneth Craik (1943/1967) 

in his influential book, The nature of explanation. Craik proposed that the brain “imitates” 

a physical process by creating an “internal model of reality” with a similar “relation-

structure,” thereby enabling prediction of external events in the physical world (p. 50-53, 

81-82). In engineering, internal model control was developed to compensate for the time 

delays inherent in feedback control by incorporating an internal model of the controlled 

system (Conant & Ashby, 1970; Garcia & Morari, 1982). Similarly, internal models of 

the musculoskeletal system have been promoted in computational motor control (Kawato, 

1999; Wolpert & Ghahramani, 2000), while world models have been incorporated into 

control architectures for mobile robots (Moravec, 1982; Thrun, 1997). Echoing Craik, 

Wolpert describes internal models as “putative neural systems that mimic physical 

systems outside the brain,” whose “primary role is to predict the behavior of the body and 

the world” (Davidson & Wolpert, 2005, p. S313; Wolpert & Ghahramani, 2000, p. 1212). 

The standard concept of an internal model thus satisfies Clark and Grush’s (1999) 
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description of a “full-blooded” representation: an inner surrogate for an extra-neural state 

of affairs that can be decoupled (at least temporarily) from ongoing environmental input. 

Wolpert and Ghahramani (2000) offer the analogy of a flying ball, whose future path can 

be predicted by a model that includes the equations of projectile motion (Newton’s laws), 

the fixed parameters of the system (gravitational constant, air resistance, ball diameter), 

and takes information about the ball’s initial state (position, velocity, spin) as input.  

Whereas the on-line approach emphasizes the perceiver’s coupling to the 

environment by means of optical information, the model-based approach emphasizes the 

role of an internal model of the actor-environment system. Successful action thus 

typically depends on a close correspondence between the physical world and its internal 

model. As an action unfolds, the state of the actor is continuously monitored, based on 

sensory information and/or motor efference, and is used to update the actor’s state with 

respect to the world model. The primary role in controlling action – whether or not visual 

information is concurrently available – is thus played by an internal representation of the 

world and the actor’s state. There is evidence that action can be guided without 

concurrent visual information in some circumstances, which I will refer to as off-line 

control. For example, in the blind walking task, blindfolded participants are able to walk 

successfully to a target they have previously viewed. Loomis and Beall (1998, 2004) 

proposed that visual and other sensory input is processed to construct an internal 3D 

model of the environment, which they called “perceptual space.” Based on this world 

model, they argued, locomotor behavior is planned and executed and the actor’s state is 

updated. Results from the blind walking paradigm imply that locomotion can be guided 

by some form of spatial memory. 
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One problem I face in trying to evaluate the two approaches is that the properties 

of internal world models invoked in the literature are seldom clearly specified. Some 

internal models appear to have a wide scope, such as the laws of projectile motion or a 

3D spatial model of the environment. Others are said to represent specific situations with 

narrow scope, such as the extrapolated trajectory of a given object or the spatial location 

of a particular target. In addition, knowledge of fixed parameters, such as Earth’s 

gravitational acceleration or a ball’s diameter or elasticity, is sometimes referred to as an 

internal model. I will reserve the term for the standard notion of an internal surrogate that 

mimics an external physical process; fixed parameters do not meet this standard and will 

be treated as constants or calibrations. Further, the fidelity of an internal model, as well as 

its temporal duration, are rarely specified. This makes the expected accuracy, precision, 

and time course of model-based action difficult to operationalize. The concept is thus 

rather unconstrained and its predictions quite malleable, to the point where it may not be 

possible to test (Chemero, 2009; Haselager, de Groot, & van Rappard, 2003).  

Both the on-line and model-based approaches have something to contribute to our 

understanding of the control of action. The on-line approach contributes by identifying 

specific information in natural environments and characterizing control laws that map the 

information into movement control variables. Its advantage lies in its parsimony, in 

reducing the computational burden of constructing and simulating a high-fidelity world 

model to guide every movement. The proper domain of the on-line approach is, by 

definition, action that is controlled by current visual information; it does not purport to 

apply to off-line situations in which environmental information is unavailable, such as 

blind walking. Conversely, the natural domain of the model-based approach is action that 
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is performed off-line without concurrent visual information, like blind walking. The 

primary question at issue is whether the model-based approach normally applies to both 

domains, even in the presence of visual information that could be used to guide action on-

line. A secondary question is whether a full-blooded internal model is necessary to 

account for off-line control, or whether weaker strategies are sufficient. The advantage of 

a strong model-based view is that it provides a common account of visual-motor control 

under both conditions.  

 

 

Figure 1. An outfielder catching a fly ball. 

  

In this chapter, I evaluate two hypotheses regarding the control of action under 

both normal vision and visual occlusion conditions. To introduce the hypotheses, 

consider the classic outfielder problem, in which a baseball player runs to catch a fly ball 

(Figure 1). The ball is launched at a given distance and flies in the general direction of the 

fielder. First, according to the strong on-line control hypothesis (Figure 2a), action is 

normally controlled exclusively on the basis of current visual information, without the 

involvement of an internal model (e.g. Chapman, 1968; McBeath, Shaffer, & Kaiser, 

1995). This hypothesis implies that performance would deteriorate if vision was 

withdrawn, depending on the spatio-temporal demands of the task, but it does not aim to 
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account for action control in the absence of visual information. One way to test this 

hypothesis is to eliminate the current information by visually occluding the ball, and to 

measure the fielder’s subsequent behavior. If performance is significantly impaired under 

such conditions, it would suggest that the fielder ordinarily uses current visual 

information to control catching.  

 

 

Figure 2. The two hypotheses of action control. a: Action is controlled by 

current information. b: Action is controlled by an internal model.  

 

Another test is to manipulate the visual information about the ball’s flight and 

determine the control law that guides the fielder’s behavior in real time. For example, the 

Optical Acceleration Cancellation (OAC) theory proposes that the fielder moves forward 

or backward so as to null the vertical acceleration of the ball’s optical projection, and left 

or right to keep the ball in a constant bearing (CB) direction (Chapman, 1968; McLeod, 

Reed, & Dienes, 2006, Michaels & Oudejans, 1992). If the ball’s current vertical optical 

velocity (dtana/dt in Figure 1) is increasing, the fielder should speed up in the backward 

direction, whereas if dtana/dt is decreasing, the fielder should speed up in the forward 

direction. By keeping the upward optical velocity approximately constant, the fielder will 

arrive at the right place at the right time to catch the ball. Indeed, experimental 

manipulation of the ball’s trajectory produces adjustments by the fielder that are 

consistent with this on-line control strategy (Fink, Foo, & Warren, 2009; McLeod, Reed, 
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Gilson & Glennerster, 2008). This theory offers an illustrative example of anticipatory 

behavior arising from a specific coupling between actor and environment due to lawful 

regularities that govern the coupled system.  

However, neither of these tests can rule out the possibility that current 

information is used to update an internal world model, which is in turn used to control 

action. On this hypothesis, information does not control action directly – only indirectly, 

via its effects on an internal model. Specifically, according to the strong model-based 

control hypothesis (Figure 2b), action is controlled exclusively by an internal world 

model. The world model is constructed using information about the physical environment 

and the actor’s state, and is used to control action even when visual information is 

available. Under conditions of visual occlusion, the world model persists and continues to 

guide action. In the outfielder example (Figure 1), the fielder visually perceives the ball’s 

initial distance and velocity, computes the ball’s trajectory based on an internal model of 

the laws of projectile motion and knowledge of fixed parameters, and predicts its landing 

place and time (Saxberg, 1987). Consequently, the fielder should be able to catch the ball 

even when it is visually occluded shortly after launch. (I note that evidence for this 

particular theory is lacking: at outfield distances of 30 m, absolute distance and velocity 

are not accurately perceived, and even skilled baseball players cannot identify correct 

trajectories or predict landing points (Schaffer and McBeath, 2005)).  

A critical issue is how long an internal model can be expected to persist and how 

accurately it can control behavior after decoupling from environmental information. If an 

internal model is assumed to decay rapidly, successful action would require continuous 

updating by current information. Withdrawal of that information would thus lead to 
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increasing model error, resulting in impaired performance – depending, of course, on the 

spatio-temporal demands of the task. Positing a short-lived world model thus renders 

strong model-based control indistinguishable from strong on-line control, because both 

require continuous visual input and predict degraded performance under visual occlusion. 

Hence, a rapidly-decaying internal model is not an empirically testable hypothesis. It is 

also a more complex one, for it is not clear what a continuously-coupled internal model 

would add to the explanatory account if behavior can be controlled by environmental 

information itself. Finally, a rapidly-decaying internal model seems to undermine the 

raison d’etre of such an internal representation: to predict the state of the world when 

decoupled from environmental information. This proposal thus has obvious logical 

weaknesses, so I will assume that a world model persists long enough and is accurate 

enough to be empirically measurable.  

In the remainder of this chapter, I proceed by reviewing relevant experimental 

studies on the visual control of locomotor and manual actions. The first section focuses 

on model-based control. My purpose here is to determine whether a hypothesized internal 

world model is sufficient for accurate and precise control of action, or whether current 

visual information is necessary. These studies typically manipulate the availability of 

information and analyze performance under different visual conditions. In the second 

section, I review the on-line control literature, with the aim of determining whether 

current information is sufficient for accurate and precise action control, and whether 

action is normally guided on-line. In the third section, I consider the literature on 

anticipatory control in interception tasks. Finally, I preview three experiments in which I 
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investigate whether on-line or model-based control is used in a moving-target 

interception task. 

 

1.1. Model-based control: Is an internal model sufficient?  
 

According to the model-based approach, action is normally controlled on the basis 

of a 3D world model and/or action plan. This view implies that such an internal 

representation alone should be sufficient to control action in the absence of visual 

information, at a comparable level of performance, for some period of time. Numerous 

studies address this question by manipulating the availability of visual information. If 

visual input is withdrawn and task performance remains accurate and precise, this would 

imply that such an internal representation is sufficient to control action. But it would not 

imply that action is normally model-based when visual information is available. 

Conversely, if performance deteriorates, this would imply that concurrent visual 

information is necessary for normal levels of performance. But it would be agnostic as to 

whether the information is used to guide action directly or to update a short-lived internal 

model. Studies manipulating the duration of visual occlusion might shed some light on 

this question. 

1.1.1. Visual occlusion leads to degraded performance 
 

Research on visually directed action is often regarded as evidence for model-

based control in human locomotion (Loomis & Beall, 2004; Loomis & Philbeck, 2008). 

For example, in the typical blind walking task, human participants briefly view a target 
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on the ground at a distance, close their eyes, and walk without vision to the remembered 

target location. This task has been extensively investigated over the last three decades. It 

is usually reported that human actors are able to perform blind walking successfully with 

target distances up to 30 m (Loomis, DaSilva, Fujita, & Fukusima, 1992; Rieser, 

Ashmead, Talor, & Youngquist, 1990; Thomson, 1983). Participants are able to walk to 

the target location after viewing it for only 150 ms, and even without directly fixating the 

target (Philbeck, 2000). Successful performance is also observed in other directed 

walking tasks (Loomis et al., 1992; Philbeck, Loomis, & Beall, 1997). For example, in 

“triangulation by walking”, participants view a target at a distance and then walk 

blindfolded along an oblique path until instructed to turn and walk to the remembered 

target location – which they can do with reasonable accuracy (Philbeck et al., 1992). This 

result suggests that blind walking is based on a spatial memory of the target location in 

the environment and updating of the actor’s position, not simply a perceived egocentric 

distance, a pre-planned action, or a visual-motor mapping.  

Studies of visually directed walking thus indicate that humans are able to perform 

certain actions without guidance by concurrent visual information. However, they do not 

imply that action is normally model-based when such information is available. This 

question hinges on a comparison of blind walking performance with that of sighted 

walking. Moreover, null results must be interpreted cautiously, for the degree of error is 

likely to depend on the spatial demands of the task. Very few studies have directly 

compared walking in visual and nonvisual conditions. Thomson (1983) originally asked 

participants to walk to a previewed target with or without vision. Participants walked 

with similar accuracy and precision in both conditions for target distances of 9 m or less, 
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but variability in walked distance increased dramatically in the occlusion condition for 

targets at 12 m or more. In Farrell and Thomson (1999), participants walked to a target 

line and placed the toe of a specified foot against the line. Variability in final toe position 

was significantly greater in the occlusion condition than that in the normal vision 

condition. One might expect larger differences for tasks that place greater demands on 

spatial memory. These studies indicate that visual occlusion leads to degraded 

performance compared with normal vision, with greater variability implying spatial 

uncertainty. Therefore, spatial memory alone cannot guide locomotion with the same 

precision, demonstrating an ongoing role for current visual information.  

Driving a car is an everyday activity with greater spatio-temporal demands than 

locomotion on foot because of higher speed and more complex maneuvers. Initial reports 

indicated comparable driving performance under full vision and visual occlusion 

conditions when participants changed lanes on a straight road or negotiated a curve 

(Godthelp, 1985, 1986). For example, Godthelp (1985) investigated whether drivers can 

change lanes without continuous visual information. Measures of steering-wheel activity 

and the car’s spatial path with full vision were compared with visual occlusion at start of 

the lane change. The occlusion duration lasted 1 s in a driving simulator and 3 s in a real 

car. In both cases, participants successfully performed lane changes under both the full 

vision and visual occlusion conditions.  

With longer occlusion durations, however, greater performance degradation was 

subsequently observed (Cloete & Wallis, 2009; Wallis, Chatziastros, & Bulthoff, 2002; 

Wallis, Chatziastros, Tresilian, & Tomasevic, 2007). Wallis, et al. (2002) asked 

participants to perform a lane change on a straight road in a driving simulator, under 
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normal light or dark-tunnel conditions. In the tunnel, all visual information was removed 

and participants did not receive visual feedback about their performance. Participants 

were able to change lanes very well in normal light, but they could not successfully 

perform the task in the dark-tunnel condition, and usually failed to adjust their driving 

direction in the new lane. This failure persisted even when visual feedback was provided 

at the end of each trial. 

One possible reason for the severe performance degradation in Wallis, et al. (2002) 

is the extended visual occlusion, which lasted the whole course of lane change. Even with 

occlusion of 3 s, Godthelp’s (1985) participants were usually in the midst of the lane 

change when visual information became available again, so they could make final 

corrections to their maneuvers in the new lane. However, in Wallis, et al. (2002), visual 

information was removed during the entire lane change, so participants could not make 

visual corrections and were completely dependent on spatial memory.  

To analyze the influence of visual occlusion duration on driving performance, 

Hildreth, Beusmans, Boer, and Royden (2000) tested a lane correction task in a driving 

simulator, in which the car’s position was perturbed and the screen went blank, and the 

driver tried to steer back to the center of the lane. Errors began to accrue in the second 

phase of correction with visual occlusion of only 1.5 s, and variability in steering angle 

and lateral position in the first phase increased significantly at 4 s. The results indicate 

that even short occlusion durations yield a decline in performance, consistent with on-line 

control.  

I recently investigated the effect of occlusion in a more demanding locomotor task, 

walking a slalom course of five targets (Zhao and Warren, 2013). Participants walked in a 
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virtual environment while the visibility of the upcoming targets was manipulated and the 

walking trajectory was recorded. An analysis of the passing distance for each target 

revealed that increasing the number of visible upcoming targets from 1 to 5 did not 

improve steering accuracy or precision, indicating no advantage of a longer preview. In 

contrast, when the next upcoming target was visually occluded, performance significantly 

deteriorated, and greater errors were observed with occlusion of the upcoming two targets. 

The same pattern of results was observed by Duchon and Warren (1997) when 

participants steered a slalom course with a joystick. These results imply that steering is 

normally guided to the next target in an on-line manner, one target at a time.  

So far, the findings for walking and driving appear to be consistent. Withdrawal 

of visual information generally leads to a decline in performance, although the effect of 

occlusion duration depends on the spatio-temporal demands of the task. This emphasizes 

the importance of current visual information for accurate and precise performance, 

consistent with on-line control. It also provides evidence of off-line control strategies that 

can be used in the absence of current information, based on spatial memory that decays 

rapidly over a few seconds. The outstanding question is the role of this current 

information: whether it normally controls action on-line, or is used to update an internal 

model that continually controls action.  

The research on manual actions such as reaching or catching is consistent with the 

findings for locomotion. Manual actions differ from locomotor actions with respect to 

both effectors and spatial-temporal scale, and often demand higher accuracy and/or 

precision for successful performance. In early studies on catching, Whiting and 

colleagues (Sharp & Whiting, 1974; Whiting & Sharp, 1974) found that participants were 
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able to perform a one-handed catching task successfully when the ball was visually 

occluded for a short duration (less than 280 ms) before interception. But longer occlusion 

durations led to significantly degraded performance.  

Westwood, Heath, and Roy (2001) asked participants to reach to a target in the 

midsagittal plane. The target was either fully visible, or was occluded 0 to 2 s before the 

reaching signal and remained occluded during the reach. Visual occlusion during the 

reach resulted in greater endpoint errors, with longer occlusion times producing even 

greater errors. Similar effects of occlusion duration have been reported in other studies of 

manual reaching (Elliott & Calvert, 1990; Heath, Westwood, & Binsted, 2004).  

Binsted, Rolheiser, and Chua (2006) examined the time course of the decay of the 

remembered location of a target. Participants were asked to repeatedly tap between two 

targets presented in the transverse plane. Both targets were illuminated for the first 5 s, 

and then disappeared for the remaining 6 s of a trial. Tapping was highly accurate when 

the targets were visible, but endpoint variability significantly increased immediately after 

they disappeared, and continued to increase through the occlusion period. This result is 

consistent with on-line control when visual information is available, and off-line control 

that decays rapidly after information is withdrawn. 

Related studies have investigated the effect of intermittent vision on catching and 

reaching. In general, performance degrades significantly when the gap between visual 

samples is more than 80 ms (Bennett, Elliott, Weeks, & Keil, 2003; Bennett, Ashford, & 

Elliott, 2003; Elliott, Chua, & Pollock, 1994; Elliott, Pollock, Lyons, & Chua, 1995; 

Lyons, Fontaine, & Elliott, 1997). For example, Bennett, et al. (2003) asked participants 

to catch an approaching tennis ball with visual samples of 20 ms separated by visual 
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occlusion intervals of 0, 20, 40 or 80 ms. Catching performance with simultaneous 

binocular samples was unaffected by occlusion intervals of 0 to 40 ms, but performance 

deteriorated significantly with gaps of 80 ms, with both greater position error and a 

higher rate of failure. Thus, while continuous visual information may not be necessary for 

successful action, relatively short occlusion intervals significantly impair performance. 

This is quite consistent with on-line control, but indicates that any internal model of the 

ball’s trajectory is extremely short-lived, raising doubts about strong model-based control. 

In sum, walking, driving, catching, and reaching tasks are generally impaired 

under visual occlusion conditions. Although some tasks can be performed successfully 

with short occlusion durations, it is consistently observed that longer occlusion leads to a 

larger decline in accuracy and/or precision. The magnitude of error obviously depends on 

the spatio-temporal demands of the task, and the literature demonstrates that more 

demanding tasks can produce significant errors with very short occlusion periods. This 

pattern of findings is consistent with strong on-line control, the claim that action is 

normally controlled by current visual information. They also cast doubt on strong model-

based control, for the evidence indicates that any such representation decays extremely 

rapidly upon withdrawal of visual information. At a minimum, such an internal model 

would have to be continuously updated, and thus model-based control also critically 

depends on current visual information. Taken together, the occlusion paradigm indicates 

that an internal world model is by itself insufficient to account for the accuracy and 

precision of normal action; this level of performance appears to require concurrent visual 

information. 

1.1.2. Visual occlusion leads to a different movement pattern  
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In the previous section, I reviewed literature on task performance under visual 

occlusion conditions, leading to the conclusion that a world model alone is not sufficient 

to account for ordinary levels of performance. In this section, I consider research showing 

that the pattern of movement changes under visual occlusion.  

A number of studies have reported that visual occlusion can influence the 

movement pattern in manual catching (Dessing, Wijdenes, Peper, & Beek, 2009; Mazyn, 

Savelsbergh, Montagne, & Lenoir, 2007; Tijtgat, Bennett, Savelsbergh, Clercq, & Lenoir, 

2011). Mazyn et al. (2007) asked participants to catch an approaching ball with full 

vision and in a visual occlusion condition in which the ball was occluded at the onset of 

catching hand-movement. First, participants performed a block of 10 trials of visually-

guided catching. Then, they were trained in the occlusion condition on blocks of 10 trials 

until they reached a criterion (catching 7 out of 10 balls), followed by another block of 

occluded trials. Number of successful catches significantly dropped in the first occlusion 

block compared to the full vision block, then improved in the last occlusion block, but 

remained worse than with full vision. Of greater interest is an observed change in the 

spatial and temporal characteristics of the catching movement. Compared to the full 

vision block, the movement was initiated significantly later in the first visual occlusion 

block, and even later in the last occlusion block. Similarly, the movement time 

significantly decreased and the peak wrist velocity increased in the first occlusion block, 

and even more so in the last occlusion block. The peak hand aperture also increased and 

participants caught the ball closer to their bodies in the visual occlusion condition, 

compared to the full vision condition. Thus it appears that participants postponed their 
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response to keep the ball visible for a longer time, and the movement kinematics 

compensated for the late initiation. The peak hand aperture also increased to facilitate 

successful catching in the occlusion condition.  

Delaying movement initiation in the occlusion condition thus served to maintain 

the visibility of the flying target, enabling participants to detect more information about 

its motion before it disappeared. The shorter movement time also produced a shorter 

occlusion time before the catch, reducing uncertainty about the target’s trajectory. 

Increasing the hand aperture helped to compensate for remaining uncertainty about the 

ball’s trajectory. These coordinated changes in the movement pattern suggest that the 

visual-motor system adapts to reduced information by seeking to maximize the period of 

on-line control, minimize the period of off-line control, and compensate for uncertainty 

about the target’s motion. This pattern of results is consistent with the hypothesis that on-

line control is the preferred mode of action guidance.  

The studies I reviewed in this section manipulated availability of visual 

information in action tasks, that is, visual information is either available or totally 

eliminated. The results indicate that visual occlusion usually leads to degraded action 

performance and/or different movement pattern, consistent with on-line control. However, 

there are very few studies testing the effect of degraded visual information on action tasks. 

This is an interesting test about action control. In some natural circumstances, visual 

information may be degraded such as walking in fog. Moreover, testing action task with 

degraded visual information may shed light on mechanisms underlying action control 

which might complement the findings reviewed in this section. Therefore, in my 

dissertation, I will investigate on-line or model-based control by manipulating quality of 
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visual information in action tasks. Specifically, in Experiment 2, I will degrade the visual 

information to different levels about a moving target to test its effect on a locomotor 

interception task. 

 

1.2. On-line control: Is current information sufficient? 
 

Whereas model-based control emphasizes the role of an internal representation in 

guiding action, on-line control emphasizes the role of current visual information. The 

approach seeks to identify both the information that is used and the control laws that map 

that information into the control variables for action (Warren, 2006).  

1.2.1. On-line control of locomotor behavior 
 

According to the on-line approach, locomotion is normally controlled on the basis 

of current visual information, without relying on an internal representation such as a 

world model or a pre-planned path. Under normal circumstances, humans control their 

actions by detecting current information and coupling it to movement control variables in 

real time (with a visual-motor delay), avoiding the computational demands of 

maintaining an internal model and a path plan in a complex environment that is 

continuously changing.  

Much evidence has shown that multisensory information is used to perceive one’s 

current direction of travel (heading) and control steering, including optic flow 

(Bruggeman, et al., 2007; M.G. Harris & Carre, 2001; Li & Cheng, 2013; Turano, et al., 

2005; Warren, et al., 2001), proprioception (J.M. Harris & Bonas, 2002; Rushton, et al., 
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1998; Wilkie & Wann, 2002), and vestibular information (Butler, et al., 2010). The 

steering dynamics model developed by Warren and his colleagues (see Warren & Fajen, 

2008) offers an existence proof that on-line control based on such information is 

sufficient to account for basic locomotor behavior, including steering to stationary and 

moving targets, and avoiding stationary and moving obstacles (see also Wilkie & Wann, 

2003, 2005). The model is a nonlinear dynamical system that takes information about the 

current heading and the directions and distances of objects as input, and generates a new 

heading direction as output, without an internal representation of the environment or the 

future path.  

 

 

Figure 3. Definition of variables as an agent walk to a stationary goal: heading  
direction(Φ), goal direction( ), target-heading angle( ),  
metaphorical spring stiffness (k) and damping coefficient(b). Adapted  

from Warren (2006). 
 

Consider the example of steering to a stationary goal. Fajen and Warren (2003) 

modeled steering with a second-order differential equation in which the angular 

acceleration of turning is a function of the current difference between the heading 

direction and the goal direction ( ) and the distance of the goal (dg):  
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                                     (1) 

This model can be thought of as an angular mass-spring system (Figure 3). The model 

effectively nulls the target-heading angle by creating an attractor of heading in the goal 

direction. The damping term  reflects a frictional force that is proportional to the 

turning rate, preventing oscillations about the goal. The stiffness term  

reflects the observation that the strength of the attractor linearly increases with the target-

heading angle. The stiffness is modulated by goal distance , reflecting the 

observation that the attractor strength decays exponentially with distance.  

Fajen, and Warren (2003) found that this model closely reproduces walking 

trajectories as goal distance and target-heading angle are varied. Participants turned onto 

a straight path to the goal in the early part of a trajectory, and they did so earlier when the 

goal was closer and when the target-heading angle was greater. The model generalizes to 

new conditions with fixed parameter values (b, k, c1, c2). Moreover, similar components 

for other elementary behaviors have been developed, which can be linearly combined to 

account for more complex behavior (Warren & Fajen, 2008).  

Taken together, the steering dynamics model demonstrates that on-line control is 

sufficient to explain basic human locomotor behavior, when concurrent information is 

available. Of course, it is also possible to create conditions that invoke off-line control, 

by removing information (e.g. blind walking), imposing task demands that render the 

available information inadequate, or introducing a strategic element (e.g. team sports). 

But it does not follow that model-based strategies are normally used to guide locomotion 

when on-line control is sufficient.  
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1.2.2. On-line control of manual actions  
 

It is widely observed that manual action is adjusted based on incoming visual 

information even after movement onset (Brenner & Smeets, 1997; Brenner, Smeets, & de 

Lussanet, 1998; Caljouw, van der Kamp, & Savelsbergh, 2006; Diedrichsen, Nambisan, 

Kennerley, & Ivry, 2004; Gosselin-Kessiby, Messier, & Kalaska, 2008; Sarlegna, Blouin, 

Bresciani, Bourdin, Vercher, & Gauthier, 2003; Saunders & Knill, 2003, 2004). Brenner 

and Smeets (1997) found that participants rapidly adjust their hand movement to the 

target’s perturbed position in a manual hitting task. Participants were asked to hit a 

stationary disk with a rod as soon as the disk appeared on a screen. In some trials, the 

disk was suddenly displaced to the left or right as participants initiated their hand 

movement. Hand trajectories indicated that participants shifted their hand movement 

toward the disk’s new position about 110 ms after its displacement. In another study 

(Brenner et al., 1998), participants hit a moving target with a rod; on some trials, the 

target velocity suddenly increased or decreased after movement initiation. The results 

indicated that participants adjusted their hand movement on-line with a visual-motor 

delay about 200 ms, responding to the perturbation on the target’s velocity.  

Gosselin-Kessiby et al. (2008) required participants to first align their hand with 

the orientation of a target then reach to the target. Participants were explicitly instructed 

not to change their hand orientation during reaching, yet the initial alignment error was 

reduced during the reach. This result suggests that on-line adjustment of hand movements 

may be carried out involuntarily based on the available information.  
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In the previous section, I found that when manual tasks are performed under 

visual occlusion, performance typically deteriorates and movement patterns change to 

compensate for the loss of visual information (e.g. Mazyn et al. 2007). The results imply 

that an internal representation is by itself insufficient to account for normal levels of 

performance, inconsistent with model-based control. Conversely, the present studies 

indicate that manual actions are continuously guided by the available information and are 

rapidly adjusted in response to new information. The evidence thus demonstrates that 

current information is sufficient to account for the guidance of locomotor and manual 

actions, consistent with on-line control.  

In contrast with the findings that manual actions are rapidly adjusted in response 

to new information, there are very few studies testing whether humans could rapidly 

adjust their locomotor interceptions according to new information about a moving target. 

Moreover, it is an interesting question whether the steering dynamics model (see Warren 

& Fajen, 2008) is able to account for humans’ locomotor interception of a target that 

changes its movement. I will test this in two experiments. Specifically, in Experiment 1, I 

will vary target speed to test participants’ interception behavior. By simulating 

interception paths, I will test whether the steering dynamics model could sufficiently 

account for interception behavior or an internal model of target movement estimated over 

a temporal window could improve simulation performance. Then in Experiment 3, I will 

test whether participants could learn the movement of a speed-varying target through a 

block of trials and, if they did, whether a learned internal model of target movement 

could guide interception of an occluded target.  
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1.3. Anticipatory control of interceptive actions: Is an internal 
model necessary? 

 

To interact successfully and efficiently with a dynamic environment, action is 

often anticipatory. In this section, I will examine whether anticipatory control of 

interceptive action is based on current information, or whether some form of prediction 

based on an internal world model is necessary. Two anticipatory control strategies have 

been proposed for interceptive action: predictive control, which is model-based, and on-

line control, which is information-based in a continuous or prospective manner (Lee & 

Young, 1985; Warren, 2006; Zago, McIntyre, Senot, & Lacquaniti, 2009)1

According to predictive control, an internal world model is used to predict the 

future state of the environment, the prediction is used to plan an action, which is then 

executed. For instance, in the outfielder problem, the initial velocity of the ball and a 

model of projectile motion would be used to predict its landing point and plan a running 

trajectory. Predictive control is thus a form of model-based control. In contrast, 

anticipatory action could be based on current information,in two ways. In continuous 

control, movement is governed by information that continuously leads the actor to the 

right place at the right time, according to a control law such as the OAC and CB 

strategies. Prospective control is based on current information that specifies the future 

state of the actor-environment system, and guides the actor to that endpoint according to 

a control law. For example, the relative rate of optical expansion (tau) of an object 

. I note that 

these terms are used inconsistently in the literature, so I will define our usage here.  
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approaching at a constant velocity specifies its time-to-contact (TTC) with the actor – the 

time that remains before a future collision (Lee, 1976; Hecht & Savelsbergh, 2004). 

Instead of a future state being predicted by a world model, the future state is specified by 

current information, which is used in a control law. Both continuous and prospective 

control are thus forms of on-line control.  

1.3.1. Locomotor interception 
 

In locomotor interception, the actor travels to intercept a moving target, which is 

typically moving in the horizontal plane. In initial studies, participants travelled on a 

linear path (e.g. a track or a treadmill) and only controlled their speed. The results were 

consistent with the constant bearing strategy, in which speed was varied to keep the target 

in a constant direction, leading to successful interception (Bastin, Craig, & Montagne, 

2006; Bastin, Jacobs, Morice, Craig, & Montagne, 2008; Chardenon, Montagne, Laurent, 

& Bootsma, 2005; Lenoir, Musch, Janssens, Thiery, & Uyttenhove, 1999; Lenoir, Musch, 

Thiery, & Savelsbergh, 2002). Fajen and Warren (2004) asked participants to intercept a 

moving target by walking in a virtual environment, allowing them to control both heading 

and speed. Instead of heading toward the target’s current position, participants led the 

target, maintaining it in a constant bearing direction in space. When tested against other 

possible control strategies, the constant bearing strategy best explained the data, 

indicating that it is sufficient to account for locomotor interception (Fajen & Warren, 

2007).  

                                                                                                                                                 
1 A third strategy of strong anticipation has been developed for temporally coupled 

movements (Stepp & Turvey, 2010; Stephen, Stepp, Dixon, & Turvey, 2008), but I do 
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Subsequently, Diaz, Philips, and Fajen (2009) suggested that prediction might 

play a role in guidance of interception. In a virtual environment projected on a large 

screen, participants used a foot pedal to control their simulated speed on a straight path, 

in order to intercept a moving target. In the first experiment, the target moved at 3 initial 

speeds, then after 2.5 to 3.25s it changed speed. The new speed was sampled from a 

normal distribution with a mean greater than the initial speed, so the target usually 

accelerated. Contrary to the constant bearing strategy, the bearing direction of the target 

increased prior to the speed change – that is, participants typically accelerated more than 

required by the CB strategy. The authors suggested that participants learned from 

previous trials that the target usually increased its speed, and thus the accelerated prior to 

the target.  

In their second experiment (Diaz et al., 2009), participants intercepted a target 

that moved on linear, concave, or convex curvilinear paths. On the concave trials, 

participants accelerated early then decelerated later in a trial, consistent with the constant 

bearing strategy. On the convex trials, participants mostly accelerated early in a trial as 

the target approached, thereby avoiding the target getting away when it turned 

perpendicular to their path, inconsistent with the constant bearing strategy. The authors fit 

this data with a model combining the constant bearing strategy with a short-term 

prediction of the target’s motion during a future time interval (∆t = 0.5-3.5s), based on a 

learned internal model of the target’s trajectory. Travel speed is then adjusted to null 

change in the bearing angle at that future time (t+∆t). Diaz, et al. (2009) thus suggested 

                                                                                                                                                 
not have space to consider it here. 
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that an internal model of the target’s trajectory plays a part in guiding interception, 

together with the CB strategy. 

However, the spatio-temporal demands in Diaz, et al. (2009) were such that on-

line control was often inadequate for successful interception. Target trajectories were 

explicitly designed so that the CB strategy would often fail, and indeed participants 

missed the target in nearly half the trials, even after practice (~ 45% in the last block of 

both experiments). These are precisely the conditions that invoke off-line control 

strategies. In Experiment 2, the authors note that performance was best on linear and 

concave trials, when the speed profile was consistent with the CB strategy, and worst on 

convex trials, when it was not. That is, participants appeared to use the CB strategy in 

conditions when it was likely to succeed (linear and concave paths), and added a 

predictive component in the condition when it was insufficient (convex path). I note that, 

contrary to other studies, initial walking speed in Diaz, et al. (2009) was 0 m/s at the 

onset of target motion, with an interception time of 5 s or less. This required acceleration 

early in the trial, consistent with the observed early-acceleration strategy. 

Morice, Francois, Jacobs, and Montagne (2010) performed a similar experiment, 

in which participants walked on a treadmill in a virtual environment to intercept a target 

that moved on rectilinear, concave or convex paths. In this case, however, it was possible 

to intercept the target (about 90% success) and participants adopted a moderate walking 

speed before the target appeared. With the concave target path, participants usually 

accelerated and decelerated, whereas with the convex path they decelerated from the 

initial speed and then accelerated, consistent with the CB strategy. This result suggests 

that participants prefer an on-line control strategy when it is sufficient to perform the task.  
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Morice, et al.’s (2010) second experiment was similar, except that the target’s 

path was marked on the ground with a colored stripe on half the trials. The participants’ 

speed profiles were less consistent with the constant bearing strategy when the stripe was 

visible, and more consistent with a required velocity model. That strategy is based on the 

ratio of the actor’s distance from the interception point and target’s TTC with the 

interception point. Marking the target’s path specifies the interception point during 

straight walking and thus makes these variables visually available, providing prospective 

information for on-line control. Under these conditions, prediction based on an internal 

model is not necessary to explain the experimental results. 

The work of Diaz et al. (2009) and Morice et al. (2010) suggests that the CB 

strategy is not the only solution for locomotor interception: human actors are able to 

adopt different strategies under different conditions, demonstrating a certain flexibility in 

visual-motor control. Recall, however, that participants could only control their speed in 

these studies, whereas in normal locomotion both speed and heading must be controlled. 

Research by Owens and Warren (described in Warren & Fajen, 2008) asked participants 

to intercept a target that moved on a circular path while walking in a virtual environment 

on the ground plane. The results indicated that participants usually walked a smoothly 

curved trajectory at a preferred speed to intercept the target, consistent with the CB 

strategy (Owen & Warren, 2004). When the target traveled repeatedly on the same 

circular path, some participants learned a heuristic after 6 to 10 trials: they took a short-

cut across the circle and picked up the target on at the far side using the CB strategy 

(Owen & Warren, 2005). But when the target could move on two different circular paths, 
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this heuristic was abandoned and participants reverted to the CB strategy for the entire 

interception path (Owen & Warren, 2006).  

These results indicate that the constant bearing strategy is a basic and robust 

strategy for locomotor interception. Although heuristics can be learned under certain 

conditions, they are approximate, specific to those conditions, and unstable. In this case, 

with a repeated target path, a heuristic was adopted for the early stage of interception 

when precise control was not essential, but the CB strategy was phased in during the late 

stage, when the spatio-temporal demands of the task were high. Such a heuristic-then-

online strategy is another manifestation of the flexibility in human visual-motor control, 

yet it did not generalize to highly similar situation with only two possible targets. Even 

when an off-line strategy is adopted, it appears to be a rough heuristic that applies under 

narrow conditions, rather than an accurate, generalizable world model.  

1.3.2. Manual interception 
 

Anticipatory manual interception might also be based on current visual 

information or an internal world model. Whereas locomotor interception takes place over 

many seconds and tolerates relatively large errors, manual interception often occurs 

within a second and demands a great degree of accuracy. These spatio-temporal demands 

imply even greater difficulty in the face of a visuomotor delay of about 200ms, widely 

recognized as the duration for visual information processing and action initiation 

(Nijhawan, 2008). 

Numerous studies indicate that online control is sufficient to account for manual 

interception of an approaching ball (Bootsma, Fayt, Zaal, Laurent, 1997; Dessing, 



29 

 

 

 

Bullock, Peper, & Beek, 2002; Dessing, Peper, Bullock, & Beek, 2005; Montagne, 

Laurent, Durry, & Bootsma,1999; Peper, Bootsma, Mestre, & Bakker, 1994). For 

example, Peper, et al. (1994; Bootsma, et al. 1997) originally proposed the required 

velocity model to account for ball catching behavior. According to this model, the lateral 

hand velocity is continuously controlled by information about the current lateral distance 

between hand and ball, divided by the ball’s current TTC. However, recent evidence 

favors a prospective control strategy (Peper, et al, 1994), in which the interception point 

of the approaching ball is specified by the ratio between its lateral optical velocity and its 

TTC, which is used to control hand position on-line (Arzamarski, Harrison, Hajnal, & 

Michaels, 2007; Craig, Goulon, Berton, Rao, Fernandez, & Bootsma, 2009; Jacobs & 

Michaels, 2006; Michaels & Jacobs, 2006). There is no indication that an internal model 

of the ball’s trajectory must be introduced to account for these interception data. 

The need for an internal model has been more pointedly raised for the case of 

catching a free-falling object, where gravitational acceleration significantly influences the 

timing of interception. Although the tau variable was originally proposed to specify TTC 

with an object moving at a constant velocity, Lee, Young, Reddish, Lough, and Clayton 

(1983) argued that it could also be used to time hitting an accelerating object. A ball was 

dropped from different heights, which accelerated under gravity. Participants stood 

beneath the ball, crouched and leapt to punch it straight back up. The results indicated 

that they geared the timing of their leg and arm movements to the first-order estimate of 

TTC given by tau. This suggested that prospective information is used to control 

interception on-line, even with accelerating objects.  
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In contrast, Lacquaniti and his colleagues argued that interception of a free falling 

object is predictively controlled based on an internal model of earth’s gravity (Lacquaniti 

& Maioli, 1989a , 1989b; Mcintyre, Zago, Berthoz, & Lacquaniti, 2001; Senot, Zago, 

Lacquaniti, & McIntyre, 2005; Zago, Bosco, Maffei, Iosa, Ivanenko, & Lacquaniti, 2004). 

For example, Mcintyre, et al. (2001) asked participants to catch a ball that was projected 

downward with three initial velocities (0.7, 1.7 and 2.7 m) from a height 1.6m above their 

hand. On Earth, catching responses were closely synchronized with the arrival of the ball 

regardless of its initial velocity. Participants rotated their forearm upward about 200 ms 

before contact and the peak bicep EMG occurred about 40 ms before contact. However, 

when the task was performed in microgravity (about 0 g) on board the space shuttle, the 

anticipatory peak bicep EMG occurred earlier before contact; the shifts were inconsistent 

with using first-order TTC or the ball’s actual motion, and implied that participants were 

still correcting for Earth’s gravitational acceleration despite being in microgravity. 

Considering that object acceleration is poorly perceived (Brouwer, Brenner, & Smeets, 

2002, Werkhoven, Snippe, & Toet, 1992), the authors proposed that a “second-order 

internal model of gravity” is used to predict the object’s movement during catching. 

 Baures, Benguigui, Amorim, and Siegler (2007) raised some methodological 

concerns about these studies. Moreover, the results are actually consistent with an 

approximate heuristic strategy and do not require an internal model of gravitational 

motion. Indeed, the authors (Zago, et al., 2008) subsequently backed away from their 

initial interpretation concluding that their findings were “indicative of a rather 

unsophisticated model of effects of gravity,” and stressing “the notion of implicit, 
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approximate, probabilistic knowledge of the effects of gravity on object motion, as 

opposed to the notion of explicit, precise, analytic knowledge of Newtonian mechanics.”  

Other studies have shown that visual information is not necessary for participants 

to intercept an object in free fall (Katsumata & Russell, 2012; Lacquaniti & Maioli 

1989b). Lacquaniti and Maioli (1989b) reported that participants were able to catch a ball 

that was dropped from different heights and was occluded after its release. However, they 

did not produce consistent anticipatory EMG activity in the occlusion condition 

compared with the visual condition. Moreover, successful catches in occlusion condition 

could be attributed to an off-line mapping strategy based on time retention (Baures, et al., 

2007). Lacquaniti and Maioli (1989b) only tested three drop heights (0.4, 0.8 and 1.2 m). 

Thus, participants could have learned a simple mapping from the ball’s height to the 

temporal interval between release and interception in early trials, and used the mapping to 

guide interception in the occlusion condition. Indeed, in a study of rhythmic ball 

bouncing, Siegler, Bardy, and Warren (2010) found that participants use the temporal 

interval of the ball’s ascent to control the timing of racket motion. Specifically, 

participants adapted immediately to a change in the gravitational constant when bouncing 

a virtual ball, demonstrating that racket motion was not controlled based on an internal 

model of Earth’s gravity. 

Such a temporal mapping strategy could also be used to intercept fast-moving 

objects when there is insufficient time to detect information about the trajectory. In major 

league baseball, for example, a fastball takes about 410 ms from release to arrive at the 

plate, and passes the batter at speeds approaching 100 mph (44.7 m/s), an angular 

velocity greater than 500 deg/s. The batter’s pre-swing usually begins about 200 ms 
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before bat-ball contact. Thus, the batter must rely on brief visual information early in the 

ball’s flight, sometimes prior to release, to control hitting.  

Gray (2002) asked experienced baseball players to use a bat to hit a simulated 

approaching baseball displayed on a computer monitor. The ball was launched 

horizontally from a simulated distance of 18.5 m, and was only affected by the force of 

gravity. In the first experiment, pitch speed varied randomly within a large range (28.2-

35.8 m/s). The temporal accuracy of hitting was significantly better than the spatial 

accuracy. In the second experiment, only slow (about 31.3 m/s) and fast (about 38.0 m/s) 

pitch speed were randomly presented, and performance greatly improved. Batters hit 

significantly more balls and spatial accuracy was significantly higher. If batting were 

based on an internal model of each trajectory, there is no reason to expect such an 

improvement. A possible explanation is that the small set of initial conditions in the 

second experiment facilitated the development of a mapping strategy, in which the ball’s 

optical motion in the early part of its trajectory was mapped into the spatial parameters of 

the swing. By contrast, the variation in initial conditions in the first experiment was 

presumably too great to acquire a simple mapping.  

In addition, a pitch sequence effect was observed in the second experiment. For 

example, performance on a fast pitch was better when it followed several fast pitches 

than when it followed several slow pitches. The authors explained this as an expectancy 

effect, such that after several fast pitches players came to expect the next one to be fast 

again. But a mapping strategy could provide a mechanism for this effect of “expectancy” 

on performance. Specifically, a fast-pitch mapping may be activated and tuned by a 

sequence of fast pitches, resulting in better performance on the next fast pitch. Switching 



33 

 

 

 

to a slow-pitch mapping would have to be based on the first couple hundred milliseconds 

of the next pitch, incurring a cost in performance.  

Recently, Hayhoe and her colleagues (Diaz, Cooper, Rothkopf, & Hayhoe, 2013; 

Hayhoe, McKinney, Chajka, & Pelz, 2012; Hayhoe, Mennie, Sullivan, & Gorgos, 2005; 

also Land & McLeod, 2000) have reported anticipatory eye movements in ball 

interception tasks. They proposed that an internal model of the world’s dynamics is 

constructed and used to predict upcoming events and plan movements. Diaz, et al. (2013) 

asked participants to hit a ball with a racquet in a virtual environment, after it bounced 

once on the ground. The ball was projected toward them from a distance of 9 m on three 

sets of parabolic paths, which simulated natural trajectories under gravity. The ball then 

bounced near a fixed location (about 3.25 m away), with two possible values of elasticity 

(0.58 and 0.73), which determined the ratio of prebounce to postbounce vertical velocity. 

Eye movement records indicated that participants usually tracked the ball after it was 

released and then made a saccade about 150-200 ms before the bounce. They maintained 

that gaze direction until the ball bounced up near the line of sight, after which they 

tracked the ball again before hitting it.  

Based on an analysis of the visual angle between the fixed gaze direction and the 

ball direction at the time of the bounce, Diaz, et al. (2013) concluded that participants 

made accurate predictive saccades. Specifically, the line of fixation was close the ball’s 

post-bounce trajectory, given its pre-bounce velocity and elasticity, consistent with a 

prediction based on an internal model of the ball’s dynamics. Unfortunately, the within-

participant variability of this angle was not reported, which bears on the required 

precision of any internal model.  
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To assess the accuracy of the predictive saccade, Diaz, et al. (2013) analyzed the 

minimum visual angle between the gaze direction and ball direction after the bounce, and 

reported that it was quite small, with low within-participant variability. I note, however, 

that the ball’s post-bounce trajectory spans a rather large visual angle, and thus a saccade 

does not need to be very accurate or precise to land near this trajectory. Specifically, as 

long as the saccade is not too small, the gaze direction will be low enough for the ball to 

pass near the line of fixation, so the eye can then track the ball. This suggests that a 

simple not-too-small-saccade heuristic may be enough to fixate near the post-bounce 

trajectory, with a simple mapping from the three initial trajectories to a saccade target for 

both ball elasticities. Such an off-line strategy may be able to account for anticipatory 

saccades more parsimoniously than assuming a generative dynamic world model. 

Potential tests of this claim include analyzing the accuracy and precision actually 

required for successful and unsuccessful saccades in this task, and studying whether 

experience with a small set of ball trajectories and elasticities generalizes to new 

conditions or requires learning a new mapping.  

Overall, here is little evidence suggesting that an internal model of gravity or 

elasticity is necessary to explain control of manual interception. In general, interception 

appears to be controlled on-line by visual information when it is available. In certain 

circumstances, when information is unavailable (e.g., visual occlusion), near threshold 

(e.g. baseball batting), or object trajectories are stereotyped, simple heuristic or mapping 

strategies appear be used. The advantage of these simple task-specific strategies over an 

accurate internal model is their parsimony in explaining interception behavior. However, 



35 

 

 

 

it is a challenge to empirically distinguish on-line control and simple off-line strategies 

from a predictive internal model that is continually updated by current information. 

  

1.4. The current studies 
 

In this chapter, I reviewed studies indicating that visual occlusion usually leads to 

degraded performance and/or different movement pattern. This implies that an internal 

model is not sufficient to guide action. In those studies, visual information was either 

available or totally eliminated. In my dissertation, I will probe intermediate levels of 

information availability by degrading the visibility of a moving target to different levels 

in a locomotor interception task. If interception is controlled on-line by current visual 

information, increasingly degraded visibility should lead to progressively impaired 

performance. Total occlusion of the target should lead to worst performance for there is 

no information about target motion at all. If interception is controlled by an internal 

model of target motion, interception performance should depend on the fidelity of the 

internal model. If a high-fidelity internal model is created before target visibility 

degradation and persists, it should be able to guide interception accurately and precisely. 

If a medium- or low-fidelity internal model is created before target visibility degradation 

and persists, interception performance should progressively decline as target visibility is 

degraded, until it plateaus at some level: the plateau provides an estimate of the model’s 

fidelity. If an internal model is created and continuously updated by incoming visual 

information, interception performance should progressively decline as target visibility is 

degraded. Total occlusion of the target should result in intermediate level of performance 



36 

 

 

 

that provides estimate of the internal model without updating by the degraded target 

information. 

I also reviewed studies indicating that current information is sufficient to guide 

actions. The steering dynamics model (see Warren & Fajen, 2008) offers an existence 

proof that on-line control based on such information is sufficient to account for basic 

locomotor behavior. In addition, studies concerning manual actions indicated that hand 

movement is adjusted based on incoming visual information even after movement onset 

(e.g. Brenner & Smeets, 1997). In my dissertation, I will test whether locomotor 

interception can be adjusted in response to new information about target movement. In 

Experiment 1, I will vary target speed in the midst of a trial, that is, the target will 

randomly speed up or slow down. If locomotor interception is controlled on-line based on 

current information, interception should be rapidly adjusted in response to new target 

speed. Moreover, the steering dynamics model should be able to account for interception 

of the speed-varying target. I will also test whether an internal model of target movement 

estimated over a temporal window contributes to account for interception behavior. If the 

internal model does make contribution, involvement of the internal model as input to the 

steering dynamics model should improve simulation of interception paths. Otherwise, it 

implies that the internal model is not necessary to account for interception behavior.  

In the last section of this chapter, I reviewed studies indicating that locomotor and 

manual interception are guided based on anticipatory control. Generally speaking, 

interceptive actions can be accounted for by either on-line control based on current 

information, or by some off-line strategies such as heuristics and mapping strategy. 

However, some studies suggested that a learned internal model of target movement could 
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be used to guide interception. Such internal models could be learned from everyday life, 

e.g. an internal model of earth’s gravity (see McIntyre, et al., 2001), or from repeated 

practice, e.g. a fixed target trajectory (see Diaz, et al., 2009). In my dissertation, I will test 

whether an internal model of target behavior could be learned and subsequently used to 

control interception. If so, the internal model should be available to guide interception of 

the same target even when the latter is visually occluded.  
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Chapter 2. Experiment 1: Intercepting a speed-
varying target 
 

2.1. Introduction 
 

As described above, humans walk to intercept a moving target by nulling change 

in the current direction of the target, consistent with the constant bearing strategy (Bastin, 

Craig, & Montagne, 2006; Bastin, Jacobs, Morice, Craig, & Montagne, 2008; Chardenon, 

Montagne, Laurent, & Bootsma, 2005; Lenoir, Musch, Janssens, Thiery, & Uyttenhove, 

1999; Lenoir, Musch, Thiery, & Savelsbergh, 2002). For example, in Fajen and Warren 

(2004), participants intercepted a moving target by walking in a virtual environment. It 

was found that, instead of heading toward the target’s current position, participants led 

the target, maintaining it in a constant bearing direction in space (Figure 4).  

 

 

Figure 4. Definition of variables as an agent is intercepting a moving goal: heading  

Direction (Φ), goal direction ( ), target-heading angle ( ). 
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Fajen & Warren (2007) reported that the constant bearing strategy best explained 

participants’ interception behavior over other possible control strategies. A steering 

dynamics model based on the constant bearing strategy accurately reproduced 

participants’ interception path in different conditions (See Equation 2).  

                                       (2) 

This theoretical model effectively nulls change in the target’s bearing direction 

( , establishing an attractor in the direction of the interception path. The damping term 

 represents a frictional force that is proportional to agent’s turning rate, reducing 

oscillations. The stiffness term  reflects the observation that the strength of the 

attractor linearly increases with the rate of change in the target’s bearing. The stiffness 

term is modulated by target distance , reflecting the observation that the 

attractor strength decreases with target distance. 

Besides the constant bearing model, Fajen & Warren (2007) also tested other 

possible theoretical models. These included a model that nulls the target-heading angle, a 

model that computes a required interception angle and a model that nulls change in the 

target-heading angle. Simulation performance indicated that the constant bearing model 

best explained participants’ interception behavior.  

In contrast to an on-line interception strategy, a model-based strategy could create 

an internal model by extrapolating the target’s previous motion to estimate its future 

trajectory. For example, Saunders and Knill (2003, 2004) proposed an auto-regressive 

linear model for a manual reaching task. According to this model, finger position is 

estimated by computing the weighted sum of the finger’s previous positions over a 
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temporal window. In effect, the model predicts the next finger position by integrating 

over its previous positions. I evaluated this class of internal models for extrapolating 

target motion. In this case, interception behavior is guided by an estimate of the target’s 

future speed that is based on integrating its previous speed over some temporal window.  

In Experiment 1, I tested whether this kind of internal extrapolation model makes 

a contribution to locomotor interception, or whether current visual information is 

sufficient to explain interception behavior. Participants walked to intercept a moving 

target that randomly increased or decreased its speed in the midst of a trial. These 

interception trajectories were simulated using the constant bearing strategy (with a fixed 

visual-motor delay), but different kinds of input about target motion were compared. 

Specifically, I either input information for the target’s current speed, or an estimate of the 

target’s speed based on integration over a previous temporal window. The size of the 

temporal window was varied to identify the optimal integration interval. If such an 

internal model of target motion contributes to interception behavior, it would improve 

simulation performance. In contrast, if current visual information is sufficient to explain 

behavior, no improvement would be observed.  

 

2.2. Method 
 

2.2.1. Participants  
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10 graduate and undergraduate students (six females, 4 males) participated in this 

experiment. Their ages ranged from 19 to 30, and all had normal or corrected-to-normal 

vision. Participants read and signed the informed consent prior to the experiment, and 

were paid for their participation. Brown’s Institutional Review Board approved the 

research protocol. 

2.2.2. Apparatus 
 

The experiment was carried out in the Virtual Environment Navigation Lab 

(VENLab) at Brown University. Participants walked freely in a 12 m × 12 m tracking 

area while viewing a virtual environment in a head-mounted display (HMD; Proview 

SR80-A, Rockwell Collins, Carlsbad, CA). The HMD provided stereoscopic viewing 

with a 53° (vertical) × 63° (horizontal) field of view, at a resolution of 1024 × 1280 

pixels in each eye. The virtual environment was generated using Vizard software 

(WorldViz, Santa Barbara, CA) on a Dell XPS 730 workstation, and the images were 

presented at frame rate of 60 Hz. Head position and orientation were measured using a 

hybrid ultrasonic-inertial system (Intersense IS-900, Billerica, MA) with 6 degrees of 

freedom, at a sampling rate of 60 Hz. Head coordinates from the tracker were used to 

update the display with a latency of approximately 50 ms. 
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a b  

Figure 5. Display of the experimental environment. a: A target pole appears on the 
participant’s left and moves rightward. b: A top-down view at the moment the target 

appears.  
 

2.2.3. Displays 
 

The virtual environment consisted of a ground plane (50 m2) mapped with a 

random noise texture of black and white squares, a black sky, a home pole, an orientation 

pole, and a target pole (See Figure 5). The home pole was a blue granite-textured cylinder, 

3.0 m tall with a radius of 0.2 m; the orientation pole was a red granite-textured cylinder, 

1.8 m tall with radius of 0.2 m; the target pole was a green granite-textured cylinder, 2.0 

m tall with a radius of 0.1 m. When participants stood at the home pole and faced the 

orientation pole (5 m away), the target pole appeared 8.8 m ahead and 2.0 m to the left or 

right of the participant and immediately began moving. If the target appeared on the left, 

it would move rightward (and vice versa) on a path perpendicular to the line between the 

home and orientation poles. 

2.2.4. Design and procedure 
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The target pole initially moved at one of the two speeds, 0.6 or 0.8 m/s. Three 

seconds later, it changed its speed by -0.3, -0.2, 0, +0.2 or +0.3 m/s. This yielded a 2 

(initial speed) x 5 (speed change) factorial design, with a total of ten target conditions. 

At the beginning of an experimental session, the HMD was set up and calibrated 

for the participant according to the procedure described in Fajen and Warren (2003). This 

was followed by 8 practice trials in which the target’s initial speed was 0.7 m/s, different 

from test trials. The target speed increased by 0.2 m/s in 2 practice trials, decreased by 

0.2 m/s in 2 trials, and remained constant in the remaining 4 trials, which were presented 

in a random order. The participant then completed 8 test trials in each target condition 

(initial speed x speed change), for a total of 80 test trials. The order of test trials was also 

randomized.  

At the beginning of each trial, the home pole and orientation pole appeared. The 

participant was instructed to walk to and stand at the home pole, facing the orientation 

pole. After 1.5 s, the orientation pole turned yellow and the participant was instructed to 

walk straight toward the orientation pole. After the participant walked 0.5 m, the home 

and orientation poles disappeared; after another 0.5 m, the target pole appeared and 

started moving. The participant was instructed to walk to intercept the target without 

running. When the participant arrived within 0.4 m of the center of the target pole, the 

trial ended and next trial began, with the home and orientation poles appearing at new 

locations. All instructions were pre-recorded and delivered over headphones. An 

experimental session lasted about 50 min.  

 

2.3. Results 
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2.3.1. Interception locations 
 

I first examined the influence of the different target conditions on interception 

location. Figure 6 illustrates the interception location in the different speed change 

conditions for Participant 10 (note that the z-axis is exaggerated relative to the x-axis). 

When the target speed increased, it traveled farther in the lateral direction (x-axis) before 

interception, with a progressively greater effect for larger increases; if the target speed 

decreased, it traveled a disproportionately shorter distance before interception.  

 

  

Figure 6. Example interception locations from Participant 10 with target initial  
speed 0.8 m/s. 

 
Because the target moved in the x direction with a constant z position, I analyzed 

only the x interception location (the variation in z, only about 0.3 m, was due to the angle 

of approach to the target pole). The mean x interception location in each target condition 

appears in Figure 7. A 2-way repeated-measures ANOVA revealed significant main 

effects of initial speed, F (1,9) = 582.59, p < 0.01,ηp
2 = 0.99, speed change F (4,36) = 

257.93, p < 0.01, ηp
2 = 0.96, and an interaction, F (4,36) = 24.65, p < 0.01, ηp

2 = 0.73. 

Speed change (m/s) 
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The results indicate that the speed manipulation was sufficient to affect the participants’ 

interception behavior. 

 

 

Figure 7. Mean final locations in each target condition in Experiment 1.  
 

2.3.2. Simulation of interception path 
 

 I simulated interception paths using the constant bearing model (Equation 2), 

according to which participants intercept the target by nulling change in the target’s 

bearing direction. I used the parameter values from Fajen and Warren (2007), that is, b 

=7.75 s-1, km=6.00 m-1s-1, and c1=1.00 m, fixed across all conditions. I input the target’s 

current speed  to the model, with a fixed visuo-motor delay of 400 ms from Cinelli 

and Warren (2012), reflecting the interval between a target speed change and observable 

adjustments in a walking participant’s trajectory.  

To examine whether an internal model of target motion contributes to locomotor 

interception, I also ran simulations of the constant bearing model using the extrapolated 
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target speed as input. Specifically, the distal target speed was estimated by computing its 

mean prior speed over a temporal window (See Equation 3), and treating the size of 

window as a free parameter (Figure 8a).  

                                             (3) 

The integration interval influences the estimate of target speed, such that a larger 

window results in a longer delay before the current target speed is accurately estimated 

following a speed change (Figure 8b). I varied the temporal window from 50 to 1000 ms 

in increments of 50 ms. The resulting estimate of the target’s proximal angular velocity 

and distance were fed into the simulation of the constant bearing model. 

 

a b  

Figure 8. a: As a target is moving right, its movement is estimated  
within a temporal window. b: Example target speed profile and its  

estimations within different temporal windows with window2  
longer than window1. 

 

To simulate each trial, the model was initialized with the participant’s initial 

position and initial heading, and the time series of actual walking speed was input into the 

model along with the target speed and distance. The model was integrated in Matlab 

using the Runge-Kutta method to generate a time series of the actor’s position and 

heading direction. Sample paths from participant N and simulated paths from both 

models appear in Figure 9. The on-line constant bearing model (red) appears to match the 
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participant’s actual path (blue) quite closely. When the extrapolated estimate of target 

speed with a temporal window of 800 ms is used as input in the simulation, the simulated 

paths (green) are no closer and appear to deviate more from the participant paths in some 

conditions (Figure 9b). 

 

a  

b  

Figure 9. Example trajectories. CBS: simulated trajectories based on constant 
bearing model (red trajectories). CBS+window (800ms): simulated trajectories 

based on constant bearing model with estimate of target speed over 800 
ms (green trajectories). a: Initial target speed 0.6 m/s with speed change +0.2 m/s. 

b: Initial target speed is 0.8 m/s with speed change -0.3 m/s.  
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To measure simulation performance, I computed the distance between the 

participant’s actual trajectory and the corresponding simulated trajectory at every time 

step. Then I computed the mean distance of that trajectory across all time steps. Figure 10 

presents the mean distance as a function of window size for all target conditions, where a 

temporal window of 0 ms is equivalent to on-line control; the shorter the mean distance, 

the better is the simulation performance. With a slow initial speed of 0.6 m/s (Figure 10a), 

mean distance increased with window size when the target sped up (speed change +0.2 

and +0.3 m/s). One-way repeated-measures ANOVAs for each speed change condition 

indicated a significant main effect of window size in the +0.2 m/s condition, F (20,180) = 

16.90, p < 0.01, and in the +0.3 m/s condition, F (20,180) = 32.66, p < 0.01, indicating 

that performance declined with temporal integration. The size of window did not 

significantly affect simulation performance in the other three speed change conditions for 

this initial speed, indicating no improvement with temporal integration of target motion.  

With a fast initial target speed of 0.8 m/s (Figure 10b), the mean distance 

increased significantly with window size when the target slowed down (speed change of -

0.3 m/s), F (20,180) = 8.82, p < 0.01. However, when the target sped up by +0.3 m/s, 

mean distance significantly decreased with a longer window, F (20,180) = 2.11, p < 0.01. 

The size of temporal window did not significantly affect simulation performance in the 

other three speed change conditions. In sum, an internal extrapolation model increased 

simulation accuracy in only one of ten conditions, actually reduced simulation accuracy 

in three conditions, and did not contribute to performance in the remaining six conditions. 
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a  

b  

Figure 10. Mean distance between participants’ and simulated 
Trajectories in Experiment 1. a: Initial target speed is 0.6 m/s. b: Initial 

target speed is 0.8 m/s 
 
 

2.4. Discussion 
 

In Experiment 1, I manipulated the initial speed of the target and the direction and 

magnitude of a speed change during interception. Analysis of the interception location 

indicated that the higher the initial speed, the farther was the interception location in the 

lateral (x) direction, and that a greater speed increase led to a farther interception location 
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while a greater decrease led to a closer interception location. The results indicated that 

the speed manipulation was sufficient to measurably affect participants’ interception 

trajectories. 

Simulations of these interception trajectories using the constant bearing model 

with different temporal integration windows were used to compare on-line control based 

on current visual information (0 ms window) with an internal model that extrapolated the 

target’s motion based on its preceding speed (up to a 1000 ms window). The simulation 

results indicated that adding an internal model of target motion failed to improve 

simulation performance in nine out of ten conditions. On the contrary, temporal 

integration actually impaired performance in three speed-up conditions, inconsistent with 

model-based control. The one condition in which a longer integration window improved 

performance occurred when a fast initial speed (0.8 m/s) increased by +0.3 m/s.  

In conclusion, in the vast majority of trials, a constant bearing strategy based on 

current visual information is sufficient to account for target interception without an 

internal model of target motion. Indeed, the introduction of a temporal integration 

estimate of target speed impairs performance more often than it improves performance. 

The pattern of results thus rules out this class of extrapolation models in locomotor 

interception. The findings of Experiment 1 are thus consistent with on-line control. 
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Chapter 3. Experiment 2: Intercepting a blurred 
target 
 

3.1. Introduction 
 

In Chapter 1, I reviewed studies indicating that visual occlusion usually leads to 

degraded performance across different action tasks, including manual, locomotion and 

driving tasks. This implies that an internal model is not sufficient to guide action at the 

same level of performance as current visual information, consistent with on-line control. 

In those studies, there were usually two visual conditions: visual information was either 

totally available or totally removed. In this experiment, I probed intermediate levels of 

information availability by degrading the visibility of a moving target during locomotor 

interception. This allowed me to make some qualitative predictions. 

There is evidence that reducing a target’s contrast results in decreasing perceived 

target speed (Brooks, 2001; Thompson, 1982), and so does reducing a target’s spatial 

frequency (Diener, Wist, Diehgans, & Brandt, 1976). In this experiment, target visibility 

was thus degraded by horizontally “blurring” a vertical bar, yielding a target with a 

Gaussian luminance profile that varied in width and in contrast, with six visibility 

conditions. Each trial began with a fully-visible moving target, which then appeared to 

move behind a translucent occluder, and continued at the same speed. The participant’s 

task was again to walk to intercept the moving target. 

 



52 

 

 

 

a  

b  

c  

d  

Figure 11. Three predictions about interception error due to increasingly degraded visibility 
a: Prediction based on on-line control hypothesis. b: Prediction based on  

a high-fidelity internal model. c: Prediction based on a medium- or low-fidelity 
internal model without updating after target occlusion. d: Prediction based on a medium- or  

low-fidelity internal model with updating after target occlusion. 
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According to the on-line control hypothesis, performance is dependent on current 

visual information. Thus, this hypothesis predicts that as visual information for the 

target’s bearing direction and angular velocity is degraded, interception error should 

begin to increase (The Blur conditions in Figure 11a). Since there is no visual 

information available in the Occlusion condition, performance in this condition should be 

worst (The Occlusion condition in Figure 11a).   

According to the model-based control hypothesis, an internal model of target 

motion should be created early in a trial when the target is clearly visible, and it should 

persist and guide interception with some degree of accuracy after removal of visual 

information. Degrading target visibility to different levels may thus allow us to estimate 

the fidelity of such an internal model. For example, a high-fidelity internal model would 

result in accurate and precise interception across all levels of visibility (Figure 11b), 

whereas a medium- or low-fidelity model would yield an increase in error as visibility is 

reduced, until it plateaus at some level (Figure 11c); the plateau provides an estimate of 

the model’s fidelity.  

It is also possible that an internal model of target motion is continuously updated 

based on incoming visual information, regardless of information quality. Therefore, in the 

Blur conditions, even though an accurate internal model might be created when the target 

is clearly visible, after the target is blurred it would be updated based on the degraded 

visual information, which leads to increasing decay of the internal model and thus 

increasing interception error (Blur conditions in Figure 11d). In the Occlusion condition, 

the internal model created early in a trial with clear target should persist, for there is no 

updating information, and it should more accurate than the degraded Blur conditions. The 
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interception accuracy in the Occlusion condition provides an estimate of the persisting 

fidelity of the internal model later in the trial (the Occlusion condition in Figure 11d).  

 

3.2. Method 
 

3.2.1. Participants  
 

10 graduate and undergraduate students (5 females, 5 males) participated in this 

experiment. Their ages ranged from 20 to 29, and all had normal or corrected-to-normal 

vision. All participants read and signed the informed consent prior to the experiment, and 

were paid for their participation. Brown’s Institutional Review Board approved the 

research protocol. 

3.2.2. Apparatus and displays.  
 

The apparatus and displays were the same as in Experiment 1, with one exception. 

Instead of a 3D pole, the target was a green 2D bar (0.2m wide x 2.0 m tall), which 

appeared to move in front of a virtual wall. The wall was a translucent gray patch (400 m 

wide x 200 m tall), which was visible throughout a trial and was actually located 2 cm 

behind the target’s path. 2.5 s after the target appeared, it arrived at a virtual occluder and 

then moved behind it (Figure 12). The occluder was invisible through a trial. The bar was 

progressively blurred as it passed the edge of the occluder, so it appeared to move behind 

a translucent occluder of varying opacity.  
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Figure 12. A top-down view at the moment the target appeared. The red asterisk on  
participant path indicated the moment the target was occluded by the occluder. 

 

There were six different levels of target visibility. In the No-blur condition, the 

rectangular bar (0.2 m wide) was fully visible. In the Blur-1 to Blur-4 conditions, the bar 

was blurred in the x direction and its contrast was reduced (0.4, 0.6, 0.8, 1.0 m wide, 

respectively). In the Occlusion condition, the bar was totally occluded as it passed the 

virtual occluder. To create these different levels of blur, the alpha value of the target was 

determined as a Gaussian function centered on target:  

                    a(x) = g ( x-c, w/6 )                    (3) 

where x refers horizontal coordination within a target, c refers coordination of target 

center, and w refers target width. Figure 13 showed the targets in different Blur 

conditions viewed straight ahead from a distance of 3 m.  
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Figure 13. The targets of different blur levels viewed 3 m straight ahead. 
  

3.2.3. Design and procedure.  
 

In this experiment, three target speeds (0.6, 0.8 or 1.0 m/s) were crossed with six 

levels of visibility (No-blur, Blur-1 to Blur-4, and Occlusion), yielding a 3 (speed) x 6 

(blur) factorial design with a total of 18 target conditions.  

The task and procedure were similar to those in Experiment 1. On each trial, the 

target appeared 8.8 m ahead and 2 m to the left or right, and began to move (Figure 12). 

After 2.5 s, the target appeared to move behind the occluder and the participant continued 

to intercept it. The trial ended when participant came within 0.4 m of the occluder. 

Participants were told that the target would be blurred or totally occluded in some trials, 

and in that case they were to intercept the target as if it was fully visible.  
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Figure 14. Example trajectories in No-blur, Blur4 and Occlusion conditions. The asterisks  
represent the blur points where the targets went behind an occluder. The targets were  

clearly visible before the blur points and then be occluded after the blur points. Heading 
adjustment before the blur points is the mean angle participants turned before blur point;  
heading adjustment after blur point is the mean angle participants turned after blur point.  
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Participants performed 12 practice trials, 2 in each target blur condition. The three 

target speeds were randomly assigned to the practice trials. Then they performed 144 test 

trials, with 8 repetitions in each of the 18 target conditions. The order of the trials was 

randomized for each participant. An experimental session lasted about an hour. 

3.3. Results 

 

3.3.1. Interception performance  
 

I first examined the effect of target blur on interception performance. Three 

sample interception trajectories from the No-blur, Blur-4 and Occlusion conditions, with 

a target speed of 1.0 m/s, appears in Figure 14. Note the increasing deviation from a 

straight path and undershooting of the target. As before, I analyzed the x position at 

interception. The constant error was computed as the distance between the participant’s x 

position and the target’s x position at the end of the trial; positive values indicate 

overshooting and negative values undershooting. The variable error is the within-subject 

standard deviation of constant errors in each condition. 

The mean constant error in each condition appears in Figure 15. When the target 

moved slowly (0.6 m/s), the constant errors were close to zero across different levels of 

target blur, indicating quite accurate interception. This could be because participants 

completed the initial turn onto a straight path before the target reached the occluder. 

When the target moved at 0.8 or 1.0 m/s, constant errors were increasingly negative with 

greater target blur, indicating more undershooting with more blur. A 2-way repeated-

measures ANOVA indicated significant main effects of target speed, F(2,18) = 68.82, p < 
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0.01, ηp
2 = 0.88, and target blur, F(5,45) = 9.70, p < 0.01, ηp

2 = 0.52, and a significant 

interaction, F(10,90) = 28.14, p < 0.01, ηp
2 = 0.76. Simple main effect test found  a 

significant main effect of target blur in both the 0.8 m/s condition, F(5,45) = 6.97, p < 

0.05, and the 1.0 m/s condition, F(5,45) = 6.73, p < 0.05, but not in 0.6 m/s, F(5,45) = 

1.72, p = 0.28. Thus, undershooting increased monotonically as target visibility was 

degraded. 

 

Figure 15. Constant errors in each target condition in Experiment 2. 
 

The mean variable error in each condition is presented in Figure 16. It appears 

that variable errors increased with target blur for all target speeds, indicating greater 

variability in interception behavior as target visibility was degraded. A 2-way repeated-

measures ANOVA indicated significant main effects of target speed, F(2,18) = 3.69, p < 

0.05, ηp
2 = 0.29, and target blur, F(5,45) = 40.36, p < 0.01, ηp

2 = 0.82, but no interaction, 

F(10,90) = 1.39, p = 0.19, ηp
2 = 0.13. Simple main effect test found  a significant main 
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effect of target blur in the 0.6 m/s condition, F(5,45) = 18.06, p < 0.01, and 1.0 m/s 

condition, F(5,45) = 6.25, p < 0.05, but not in 0.8 m/s, F(5,45) = 3.59, p = 0.09. 

 

Figure 16. Variable errors in each target condition in Experiment 2. 
 

The results so far indicate that participants generally undershot the target when it 

moved at speeds of 0.8 or 1.0 m/s. To investigate the reason for the undershooting, I 

analyzed the participant’s walking speed and final location. The mean final location in 

each condition appears in Figure 17. A 2-way repeated-measures ANOVA found 

significant main effects of target speed, F(2,18) = 237.37, p < 0.01, ηp
2 = 0.96, and target 

blur, F(5,45) = 5.57, p < 0.01, ηp
2 = 0.38, and a significant interaction, F(10,90) = 7.08, p 

< 0.01, ηp
2 = 0.44. One-way ANOVAs for each target speed confirmed a significant main 

effect of target blur in the 0.8 m/s condition, F(5,45) = 3.34, p < 0.05, and the 1.0 m/s 
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target speeds. This effect is most obvious in the total Occlusion condition with a target 

speed of 1.0 m/s. The results indicated that degrading target visibility results in different 

interception paths, which lead to undershooting.  

 

Figure 17. Mean final locations in each target condition in Experiment 2. 
 

The mean walking speed in each condition is presented in Figure 18. Although 

walking speeds are fairly stable across conditions, a 2-way repeated-measure ANOVA 

revealed significant main effects of target speed, F(2, 18) = 81.39, p < 0.01, ηp
2 = 0.90, 

and target blur, F(5,45) = 11.33, p < 0.01, ηp
2 = 0.38, as well as a significant interaction, 

F(10,90) = 4.81, p < 0.01, ηp
2 = 0.21. One-way repeated-measures ANOVAs for each 

target speed demonstrated a significant main effect of blur in both the 0.8 m/s condition, 

F(5,45) = 6.01, p < 0.01 and the 1.0 m/s condition, F(5,45) = 20.08, p < 0.01. These 

results indicate that participants walked more slowly as target visibility was degraded in 

the faster speed conditions. One possible explanation is that degrading target’s visibility 
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results in decreasing perceived target speed. This would contribute to target 

undershooting. 

 

Figure 18. Mean walking speed in each target condition in Experiment 2. 
 

To examine whether participants adjusted their heading in response to the target’s 

motion, I measured the angle they turned within a trial. First, to determine whether 

viewing the target for 2.5 s is enough for participants to differentially respond to target 

speed, I measured the total angle through which they turned in the first part of the trial, 

before the target was blurred (red asterisk in Figure 14). Participants turned more with 

faster targets in all conditions (Figure 19). A 2-way repeated-measure ANOVA found a 

significant main effect of target speed, F(2, 18) = 221.28, p < 0.01, ηp
2 = 0.96, but no 

main effect of blur level, F(5, 45) = 0.42, p = 0.84, ηp
2 = 0.04, nor any interaction, F(10, 

90) = 1.21, p = 0.29, ηp
2 = 0.12. The results indicate that viewing the target for 2.5 s is 

enough for participants to distinguish target speeds and adjust their heading adaptively. 
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Figure 19. Heading adjustment before blur point in Experiment 2. 
 

Second, to determine whether participants also adaptively adjusted their heading 

during blur or occlusion, I measured the angle they turned after the blur point (red 

asterisk in Figure 14).  Participants adjusted for target speed in the Blur conditions, but 

not in the Occlusion condition (Figure 20). A 2-way repeated-measures ANOVA found 

significant main effects of target speed, F(2,18) = 85.48, p < 0.01, ηp
2 = 0.91, target blur, 

F(5,45) = 4.81, p < 0.01, ηp
2 = 0.35, and a significant interaction, F(10,90) = 8.82, p < 

0.01, ηp
2 = 0.49. Simple effect tests found a significant effect of target speed in each of 

the five Blur conditions (p < 0.01 for all blur conditions), but not in the Occlusion 

condition (p = 0.24). The results indicate that participants adjusted their heading 

adaptively during target blur; however, they just turned constant angle when the target 

was totally occluded. 
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Figure 20. Heading adjustment after blur point in Experiment 2. 
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Variable error is a measure of the total amount of variability in interception 
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from the spatial displacement at each time step. Finally, I ran RQA on the heading time 

series with the following parameters: delay = 20, embedding dimension = 5, radius = 25 

and Linemin = 2. Specifically, for each heading time series, I created four delayed time 

series, each with increasing delay of 20 data samples, which derived five time series in 

total. With each heading time series representing a dimension, the heading values of the 

five time series formed a trajectory in a 5-dimension space. Then for each point along the 

trajectory, I searched all other points that fall within a radius of 25. Thus the point 

numbers of any pair of points falling within the radius (25) formed a 2D coordinate. For 

example, if the first point falls within 25 from the 40th point, this pair gives rise to a 

coordinate of (1, 40). Then the coordinates was represented by a black dot in a 2D 

recurrence plot, with each dimension representing the point number. Thus, the black area 

in a recurrence plot represents the amount of recurrent points. See Charles & Webber 

(2005) for detailed procedure of RQA.    

 

Figure 21. Example heading time series and recurrence plot. 
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The heading time series and the RQA recurrence plot for three sample trials 

appear in Figure 21. As the target was increasingly blurred, black area appears to 

decrease, indicating that greater target blur results in less recurrence points. Several 

measures of nested temporal structure can be derived from the recurrence plot, such as 

percent recurrence, which quantifies the degree of pattern repetition across different time 

scales. Specifically, it is the percentage of recurrence points over all possible points, 

represented by ratio of black area within a recurrence plot. Regarding the current study, 

low percent recurrence may characterize more variable interception behavior.  

 

Figure 22. Mean percent recurrence in each target condition in Experiment 2. 
 

The mean percent recurrence in each condition appears in Figure 22. The pattern 

of results suggests that temporal structure within a trial decreased as target blur increased, 
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F(5,45) = 4.50, p < 0.01, ηp
2 = 0.33, but no interaction, F(10, 90) = 1.58, p = 0.125, ηp

2 = 

0.15. A one-way repeated-measures ANOVA for each target speed obtained significant 

main effect of blur in both the 0.8 m/s condition, F(5,45) = 3.67, p < 0.01 and the 1.0 m/s 

condition, F(5,45) = 2.98, p < 0.05. Thus, consistent with the preceding analyses, 

degrading target visibility resulted in more variable interception trajectories, having less 

temporal structure, at higher target speeds. 

 

3.4. Discussion 
 

In the current study, I manipulated target visibility using different levels of blur, 

ranging from full visibility to total occlusion, as the target moved behind a virtual 

occluder. The results indicated that degrading target visibility progressively impaired 

both the accuracy and precision of locomotor interception. That is, greater target blur led 

to more undershooting, higher variability in final position, and less temporal structure in 

interception trajectories. Total occlusion resulted in the most severely impaired 

performance. Moreover, participants did not adjust their heading adaptively if the target 

was totally occluded. Instead they just turned a constant angle regardless of different 

target speed. 

Thus, interception performance strongly depended on current visual information. 

If interception were guided by an internal model of target motion that persists after 

information is degraded, interception error would either remain low (Figure 11b) or 

would plateau at a blur level that reflects the model’s fidelity (Figure 11c). On the 

contrary, I showed that interception error increased monotonically as information was 
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degraded. This result suggests that interception of a blurred target is based either on 

current visual information (Figure 11a) or an internal model continuously updated by 

current visual information, even though it is degraded (Figure 11d). I showed that 

interception performance is worst in the Occlusion condition, which is consistent with the 

on-line control prediction (Figure 11a). Therefore, the results suggest that interception is 

controlled only based on current visual information, consistent with on-line control.  

In Chapter 1, I reviewed numerous studies that manipulated the availability of 

current visual information in visual-motor tasks (for example, Wallis, et al., 2002). The 

findings of those studies show that removal of visual information usually leads to 

impaired performance. In Experiment 2, I created intermediate levels of target visibility 

and found that greater target blur led to progressively impaired performance. The current 

study thus goes beyond previous research and lends greater support to a strong 

dependence on current information, as expected by on-line control.  

When the target moved at higher speeds (0.8 or 1.0 m/s), increased target blur 

resulted in greater undershooting. Analysis of participants’ final x location and walking 

speed indicated that increasing target blur resulted in a slower walking speed and less 

distance traveled in the x direction. This may be due to that target speed was perceived 

lower when the target was increasingly blurred. Thus, target blur influenced both 

participants’ walking speed and locomotor path, and both of these factors contributed to 

target undershooting. 

On the other hand, the results indicate that higher target speeds effectively led to 

final positions that were farther along the x-axis. This holds true even in the total 
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Occlusion condition, when the target disappeared from view. This raises the question of 

how locomotor interception is controlled in off-line situations.  

I found that participants adaptively adjusted their heading before the blur point 

according to different target speed. This also holds true in the Occlusion condition. 

Therefore heading adjustment before the blur point might be sufficient to account for 

participants’ increased final x location with faster targets. After the blur point, 

participants continued to adaptively adjust their heading according to the target’s speed if 

the target was visible or blurred. But if the target was totally occluded, they turned a 

constant angle regardless of target speed. Specifically, it appears that they did not turn 

more with faster targets. This stereotyped turn results in undershooting of the faster 

targets in the Occlusion condition. Moreover, it implies that there is no internal model 

simulation or prediction of the occluded target’s motion. 

The constant bearing model (Equation 2) may help understand participants’ 

stereotyped heading adjustment after target occlusion. With the target totally occluded, 

the constant bearing model loses its stiffness term ( ), for there is no current 

information about bearing angle, however still maintaining the damping term ( ). If 

participants were still turning at the blur point, the damping term would allow 

participants to decrease their turning rate and then probably walk straight ahead at the end 

of a trial. To test this, I will analyze participants’ heading time series to examine whether 

participants were still turning at blur point and then decreased their turning rate.  

Participants accurately intercepted the target when the target moved at 0.6 m/s 

regardless of blur levels. This result indicates that participants did understand the task and 

walked to the center of the target even when the target is blurred. One possible reason of 
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the accurate interception in this target condition is that slower target speed demands less 

adjustment in participant’s interception path or walking speed. With respect to walking 

speed, participants walked most slowly when target moved at 0.6 m/s, with mean speed 

of 1.28 m/s in both No-blur and Occlusion conditions. In contrast, when target moved at 

0.8 m/s, participants’ mean speed is 1.35 m/s in No-blur condition and 1.28 m/s in 

Occlusion condition, and 1.41 and 1.32 m/s in these two conditions with target speed of 

1.0 m/s. The decline in walking speed from No-blur to Occlusion condition may imply 

that lower walking speed might be the more comfortable one compared with higher speed. 

Thus when target moved at slower speed (0.6 m/s), it may demand little adjustment in 

participants walking speed (speeding up in this case) to accurately intercept the target. To 

further test this hypothesis, I plan to examine adjustment in interception path. 

Target blur appears to have increased uncertainty about the target’s position and 

speed, resulting in progressively impaired performance. Nevertheless, performance in the 

Blur-1 to Blur-4 conditions was better than in the Occlusion condition. This implies that, 

although the target’s visibility was degraded, some visual information was still available 

to guide interception. For example, even with a greatly blurred target, participants might 

be able to estimate the center of the target and reduce its positional uncertainty. In 

stationary psychophysical tasks, human observers can be quite accurate in judging the 

center of a wide object (Cavezian, Valadao, Hurwitz, Saoud, & Danckert 2012; Elias, 

Robinson, & Saucier, 2005).  

Whereas the amount of variability in performance across trails is expressed by the 

variable error, RQA characterized the structure of variability on an interception path 

within a single trial. The RQA found that mean percent recurrence (the degree of 
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repeating pattern) decreased with greater target blur. This result suggests that degrading 

target visibility yields interception trajectories with less temporal structure and more 

random variability. The RQA results are quite consistent with the interception errors and 

support the primary role of current information in action control.  

In sum, Experiments 1 and 2 offer no support for the model-based control 

hypothesis that interception is guided by a persisting internal model that extrapolates the 

trajectory of a moving target on individual trials. In contrast, the results thus far indicate a 

strong dependence on current visual information, consistent with the on-line control 

hypothesis. In Experiment 3, I turn to the possibility that an internal model of a target’s 

motion is learned over multiple trials and subsequently used to guide interception 

behavior. 
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Chapter 4. Experiment 3: Intercepting an occluded 
target after learning its movement 
 

4.1. Introduction 
 

The previous two experiments have found no evidence that an internal model of 

target motion is created on the basis of the target’s initial trajectory and used to guide 

interception during an individual trial. However, it remains possible that an internal 

model of target behavior might be learned over multiple trials and subsequently used to 

guide interception on later occasions. Experiment 3 is designed to investigate this 

hypothesis.  

Some studies have suggested that a learned internal model of target movement 

could be used to guide interception. For example, Lacquaniti and his colleagues argued 

that an internal second-order model of earth’s gravity, including the law of motion, is 

used to control interception of a free falling object (e.g. McIntyre, et al., 2001). Gravity is 

ubiquitous on earth and humans experience it all the time. Such an internal model might 

thus be learned from everyday human experience with falling bodies. 

In another study, Diaz, et al. (2009) suggested that prediction of a target’s future 

motion could be used to intercept a velocity-varying target. The authors assumed both 

“perfect knowledge” of the target’s future movement and that this knowledge could be 

used to compute the required velocity for interception. This knowledge might be acquired 

during repeated trials in which the target moved the same way. 

These studies seem to suggest that an internal model of target behavior could be 

learned and subsequently used to control interception. If so, then according to model-
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based control, the internal model should be available to guide interception of the same 

target even when the latter is visually occluded. I tested this hypothesis in the present 

experiment.  

First, during a block of learning trials, participants intercepted a visible moving 

target that always underwent the same speed change (increasing or decreasing its speed 

by 0.2 or 0.3 m/s). This was followed by a block of test trials, in which participants were 

told to intercept the same target, but it was visually occluded before the speed change. If 

a reasonably accurate internal model of target motion is learned and used to guide 

interception, this predicts that performance in test trials should not be greatly impaired by 

target occlusion. On the other hand, if action is not based on a learned internal model but 

model but depends on current information, this predicts that interception performance 

should deteriorate significantly in test trials. 

 

4.2. Method 
 

4.2.1. Participants  
 

10 graduate and undergraduate students (6 females, 4 males) participated in this 

experiment. Their ages ranged from 19 to 27 years, and all had normal or 

corrected-to-normal vision. All participants read and signed the informed consent prior to 

the experiment, and were paid for their participation. Brown’s Institutional Review Board 

approved the research protocol. 
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4.2.2. Apparatus and displays  
 

This apparatus was the same as in the previous experiments. The target bar (with 

no blur) and virtual occluder were taken from Experiment 2, and the target’s motion was 

the same as in Experiment 1.   

4.2.3. Design and procedure  
 

As in Experiment 1, the initial target speed was 0.6 or 0.8 m/s, and three seconds 

later its speed changed by -0.3, -0.2, 0, +0.2 or +0.3 m/s. This again yielded a 2 (initial 

speed) x 5 (speed change) factorial design, with a total of ten target conditions.  

However, in this experiment the five speed-change conditions were blocked and 

run in separate experimental sessions, with at least 24 hours between them. Each session 

consisted of a learning block followed by a test block. In the learning block, the target 

was visible throughout a trial and the speed-change was the same on every trial, although 

the target’s initial speed varied in a random order. Participants performed 20 trials at each 

initial speed, yielding 40 trials in a learning block. In the test block, the target 

disappeared behind the virtual occluder 2.5 s after it appeared, so it was totally occluded 

before the speed change. Participants were told that the target would speed up or slow 

down the same way it had in the learning block, and they were instructed to intercept the 

target as if it were fully visible. There were 12 trials at each initial speed, presented in a 

random order, yielding 24 trials in a test block. A session lasted about 40 min, and the 

session order was counterbalanced across participants.  
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The procedure was the same as in Experiment 1, with the exception that practice 

trials were replaced by a virtual reality familiarization period at the beginning of the first 

session, in which participants walked to several stationary green poles. Thus, they only 

intercepted moving targets during learning trials. Participants were instructed to walk to 

intercept the target, but were not explicitly instructed to learn or remember the target 

motion.  

 

4.3. Results 
 

To examine participants’ interception performance, I analyzed final constant 

errors in each target condition for learning and test blocks (Figure 23). Participants 

tended to overshoot the target when it initially moved at the low speed and then slowed 

down, and tended to undershoot the target when it initially moved at the high speed and 

then sped up; the converse conditions tended to be more accurate. This pattern is most 

obvious in the test block, where participants under- and overshot the target by as much as 

80 cm. An omnibus 3-way repeated-measures ANOVA found significant main effects of 

initial target speed, F(1,9) = 78.76, p < 0.01, ηp
2 = 0.89, and speed change, F(4,36) = 

31.24, p < 0.01, ηp
2 = 0.78, but not block type (learning or test), F(1,9) = 0.04, p = 0.849, 

ηp
2 = 0.00. However, all two-way interactions were significant, although the three-way 

interaction was not.  

To examine these effects more closely, I performed a 2-way repeated-measures 

ANOVA (block type x speed change) for each initial target speed. With the slow initial 

speed of 0.6 m/s, there was a significant main effect of speed change, F(4,36) = 20.68, p 
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< 0.01, ηp
2 = 0.69, no main effect of block type, F(1,9) = 4.35, p = 0.07, ηp

2 = 0.33, but a 

significant interaction, F(4,36) = 13.75, p < 0.01, ηp
2 = 0.60,. This result confirms that 

participants overshot the target more in the test block than in the learning block when the 

target slowed down. Simple main effect test only found significant effect of speed change 

for test block, F(4,36) = 10.79, p < 0.01, but not for learning block, F(4,36) = 3.13, p < 

0.10.  

For the fast initial speed of 0.8 m/s, a 2-way repeated-measures ANOVA revealed 

a significant main effect of speed change, F(4,36) = 37.25, p < 0.01, ηp
2 = 0.81, no effect 

of block type, F(1,9) = 2.92, p = 0.12, ηp
2 = 0.25, but a significant interaction, F(4,36) = 

15.19, p < 0.01, ηp
2 = 0.63. This result indicates that participants undershot the target 

more in the test block than in the learning block when the target speed was constant or 

increased. Simple main effect test found significant effect of speed change for both 

learning block, F(4,36) = 9.00, p < 0.05, and test block, F(4,36) = 14.42, p < 0.01.  

 

Figure 23. Constant errors in each target condition for learning and  
test blocks in Experiment 3. 
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The mean variable error in each condition is presented in Figure 24. It appears 

that variable errors increased in test block when the target was totally occluded compared 

with learning block where the target was visible. An omnibus 3-way repeated-measures 

ANOVA indicated only a main effect of block type, F(1,9) = 116.05, p < 0.01, ηp
2 = 0.93, 

but no effect of target initial speed, F(1,9) = 1.42, p = 0.26, ηp
2 = 0.14, or speed change, 

F(4,36) = 1.61, p = 0.19, ηp
2 = 0.15, nor any interaction. The results indicate that target 

occlusion resulted in higher interception variability. 

.  

  

Figure 24. Variable errors in each target condition for 
learning and test blocks in Experiment 3. 
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upward on test trials, and for the initial speed of 0.8 m/s, the dashed curves appear to 

converge slightly downward. This observation implies that participants learned the mean 

initial speed of the target, not the specific speed change in a learning block. This would 

account for the pattern of over and under-shooting. 

 

Figure 25. Final location averaged every 5 trials across participants in each  
target condition for learning and test blocks in Experiment 3. 
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2 = 0.73, no effect of block type, F(1,9) = 3.59, p = 

0.09, ηp
2 = 0.29, but a significant interaction, F(4,36) = 7.30, p < 0.01, ηp

2 = 0.45, 
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consistent with a compression of the range of final locations in the test block. One-way 

repeated-measures ANOVAs for each block indicated a significant main effect of speed 

change in both the learning block, F(4,36) = 36.59, p < 0.01 and test block, F(4,36) = 

9.93, p < 0.01.  

For the initial speed of 0.8 m/s, a 2-way repeated-measures ANOVA similarly 

revealed a significant main effect of speed change, F(4,36) = 20.82, p < 0.01, ηp
2 = 0.69, 

no effect of block type, F(1,9) = 3.11, p = 0.11, ηp
2 = 0.26, but a significant interaction, 

F(4,36) = 8.63, p < 0.01, ηp
2 = 0.49, again confirming a compression of the response 

range in the test block. One-way repeated-measure ANOVAs for each block indicated 

significant main effect of speed change in both the learning block, F(4,36) = 27.92, p < 

0.01, and the test block, F(4,36) = 8.86, p < 0.01. In sum, the results of final x location 

indicate that, although participants distinguished the initial speed and speed-change 

conditions, the adjustment of the interception path in the test block was significantly 

compressed compared to the learning block. This is consistent with the analysis of 

constant error and absolute error, which indicated greater errors in the test block. 
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Figure 26. Mean final locations in each target condition for  
learning and test blocks in Experiment 3. 

 

To examine whether participants adjusted their speed in different target conditions, 

I also examined participants’ walking speed. The mean walking speed in sub-blocks of 5 

trials during a session appears in Figure 27. The walking speeds also exhibit a regression 

toward the mean on test trials, when the target was occluded. That is, participants’ 

walking speed increased from the learning block to test block when the target initially 

moved at lower speed and then slowed down. This result is consistent with the finding 

that participants overshot the target more in those conditions during test block. Moreover, 

participants’ walking speed decreased from the learning block to test block when the 

target initially moved at higher speed and then sped up. This result is consistent with the 

finding that participants undershot the target more in those conditions during test block. 
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Figure 27. Walking speed averaged every 5 trials across participants in each target 
condition for learning and test blocks in Experiment 3. 

 

The Mean walking speed in each target condition appears in Figure 28. A 3-way 

repeated-measure ANOVA indicated significant main effect of initial target speed, F(1,9) 

= 67.86, p < 0.01, ηp
2 = 0.88, and speed change, F(4,36) = 3.56, p < 0.05, ηp

2 = 0.28, but 

no effect of block type, F(1,9) = 0.02, p = 0.89, ηp
2 = 0.00, nor the three-way interaction, 

F(4,36) = 0.13, p = 0.97, ηp
2 = 0.01. To examine the walking speed more closely, I 

performed a 2-way repeated-measure ANOVA for each target initial speed. For the initial 

speed of 0.6 m/s, there was a revealed significant main effect of speed change, F(4,36) = 

2.84, p < 0.05, ηp
2 = 0.24, and significant interaction between block type and speed 

change, F(4,36) = 3.78, p < 0.05, ηp
2 = 0.29, but no effect of block type, F(1,9) = 1.01, p 

= 0.34, ηp
2 = 0.10. One-way repeated-measure ANOVA within each block type indicated 

significant main effect of speed change only in the learning block, F(4,36) = 4.57, p < 

0.01.  
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For initial speed of 0.8 m/s, there was a significant main effect of speed change, 

F(4,36) = 4.24, p < 0.01, ηp
2 = 0.32, and significant interaction between block type and 

speed change, F(4,36) = 4.02, p < 0.01, ηp
2 = 0.31, but no effect of block type, F(1,9) = 

1.13, p = 0.32, ηp
2 = 0.11. One-way repeated-measure ANOVA within each block type 

indicated significant main effect of speed change only in the learning block, F(4,36) = 

6.78, p < 0.01. In sum, the results of participants’ walking speed indicated that 

participants did not adjust their walking speed effectively in different target conditions in 

the test block while they did so in the learning block. This is consistent with the analysis 

of constant error and absolute error which indicated higher errors were observed in the 

test block. 

 

   

Figure 28. Mean walking speed in each target condition for  
learning and test blocks in Experiment 3. 
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learned to anticipate the target speed change, I measured the total angle through which 

they turned before the occlusion point at 2.5 s (i.e. before the speed change). When the 

target initially moved at 0.6 m/s, participants turned more when the target speed would 

subsequently increase, and turned less when the target speed would decrease (Figure 29). 

This pattern of adjustment was observed in both learning and test blocks. A 2-way 

repeated-measure ANOVA indicated significant main effect of block type, F(1,9) = 6.22, 

p < 0.05, ηp
2 = 0.41, and speed change, F(4,36) = 20.44, p < 0.01, ηp

2 = 0.69, but no 

interaction, F(4,36) = 2.25, p = 0.08, ηp
2 = 0.20. A similar pattern of heading adjustment 

was observed with an initial target speed of 0.8 m/s. A 2-way repeated-measure ANOVA 

indicated only a significant main effect of speed change, F(4,36) = 15.68, p < 0.01, ηp
2 = 

0.64. The results indicate that participants learned to anticipate the upcoming target speed 

change by adjusting their heading in advance. 

 

  

 
Figure 29. Heading adjustment before occlusion point in each target condition 

for learning and test blocks in Experiment 3. 
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Second, to determine whether participants learned to adjust for the speed change 

during occlusion, I measured the angle they turned after the occlusion point (Figure 30). 

In the learning block when the target was always visible, participants turned more when 

target speed increased and turn less when target speed decreased. However, in the test 

block when the target was occluded, participants appeared to turn a constant angle 

regardless of the target speed change. When target initially moved at 0.6 m/s, a 2-way 

repeated-measure ANOVA indicated significant main effect of speed change, F(4,36) = 

10.31, p < 0.01, ηp
2 = 0.53, no effect of block type, F(1,9) = 0.36, p = 0.56, ηp

2 = 0.04, 

and significant interaction F(4,36) = 20.04, p < 0.01, ηp
2 = 0.69. Simple effect tests found 

a significant effect of target speed change in the learning block (p < 0.01), but not in the 

test block (p = 0.89). With an initial target speed of 0.8 m/s, a 2-way repeated-measure 

ANOVA indicated significant main effect of speed change, F(4,36) = 11.99, p < 0.01, ηp
2 

= 0.57, block type, F(1,9) = 6.73, p < 0.05, ηp
2 = 0.43, and their interaction, F(4,36) = 

18.56, p < 0.01, ηp
2 = 0.67. Simple effect tests found a significant effect of target speed 

change in the learning block (p < 0.01), but not in the test block (p = 0.10). The results 

indicate that participants adaptively adjusted their heading with a visible target in the 

learning block; in contrast, they turned a constant angle when the target was occluded in 

the test block.  Thus, participants did not learn to adjust their heading to the target’s speed 

change during occlusion. 
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Figure 30. Heading adjustment after occlusion point in each target condition 
for learning and test blocks in Experiment 3. 

 

4.4. Discussion 
 

In the current study, participants first learned target movement in a learning block 

with the visible target, and then they were tested in a test block with the target visually 

occluded. The analysis of performance errors indicated that higher errors were observed 

in the test block than in the learning block. Moreover, participants tended to overshoot 

the target more in the test block than in the learning block when the target initially moved 

at slower speed and then slowed down; they tended to undershoot the target more in the 

test block than in the learning block when the target initially moved at higher speed and 

then sped up. The impaired performance in the test block with occluded target is 

consistent with the results of Experiment 2 in which degrading target visibility 

progressively impaired interception performance. 

The results also revealed a pattern of regression to the mean in final location and 

walking speed when the target was occluded. That is, participants’ final x position and 

walking speed increased from the learning block to test block when the target’s initial 
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speed was low and then slowed down; their final location and walking speed decreased 

from the learning block to test block when the target initially moved at higher speed and 

then sped up. This result indicated that participants did not adjust their interception path 

and walking speed in the test block as effectively as in the learning block. This may 

account for the increased interception error in the test block.  

As in Experiment 2, participants’ final location indicated that different target 

speed changes effectively resulted in different final locations, and hence different 

interception paths. That is, speeding-up led to greater final x locations, while slowing-

down led to smaller final x locations. This holds true even in the test block, when the 

target was totally occluded. However, this does not necessarily imply that an accurate 

internal model of target motion was learned and used to guide interception. Indeed, 

interception performance in the test block was significantly impaired, as reflected by the 

constant and absolute errors, and the range of responses was significantly compressed. 

Moreover, participants made adaptive adjustments for the upcoming speed change before 

the target was occluded, which may be sufficient to account for their final x locations.  

These adaptive adjustments prior to the occlusion point indicate that participants 

did learn to anticipate the upcoming target speed change. A possible heuristic might be 

called the “adaptive bearing strategy”. That is, in a block of trials in which the target 

speeds up, participants increase the bearing angle before the occlusion point; and in a 

block in which the target slows down, they decrease the bearing angle. This heuristic only 

applies before the occlusion point. In a learning block, when the target remains visible, 

the constant bearing strategy may fade in to control interception after the speed change. 

But in a test block, when the speed change is occluded, participants turn a constant angle 
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after the occlusion point. This stereotyped adjustment was also observed in Experiment 2. 

There is thus no evidence of an adaptive or predictive adjustment once the target was 

occluded.  The constant bearing model (Equation 2) with only a damping term might be 

able to account for the stereotyped heading adjustment. To examine participants’ heading 

adjustment strategy in different conditions, I will examine their heading time series.     

Lacquaniti and his colleagues argued that an internal model of earth’s gravity 

could be used in interception of a free falling object (e.g. Mcintyre, et al., 2001). And 

Diza, et al. (2009) suggested prediction based on knowledge of a target’s future 

movement could be used to intercept a velocity-varying target. In those studies, 

participants didn’t purposely learn an internal model of target movement if there was one. 

In contrast, in the current study I had participants learned a target’s movement in a block 

of trials in which the target underwent the same speed change. Moreover, in those studies, 

the target underwent more complicated velocity change, e.g. the free falling target 

continuously accelerated due to earth’s gravity. In contrast, in the current study the target 

underwent less complicated speed change, that is, it only changed its speed once. 

Nevertheless, I found impaired interception performance and a stereotyped heading 

adjustment during occlusion. There is thus no evidence that an internal model of target 

motion was learned and used to guide interception.  
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Chapter 5. Discussion 
 

5.1. The current experiments 
 

In three experiments, I used a moving-target interception task to investigate 

whether locomotor interception is normally controlled on-line by current information or 

by an internal model. One of the reasons that I used this task is that locomotor 

interception is a fundamental daily activity. Another reason is that locomotor interception 

complements previous work with blind walking tasks. Research on blind walking is often 

regarded as evidence for model-based control in human locomotion (Loomis & Beall, 

2004; Loomis & Philbeck, 2008). However, the spatio-temporal demands of blind 

walking are relatively low compared to those of blind interception. Specifically, the blind 

walking task only implicates an internal representation of the spatial position of a 

stationary object, which might be satisfied by spatial memory for the target’s 

approximate location in a static environment. In contrast, the blind interception task 

implicates a dynamic internal model that mimics an object’s motion through the 

environment and enables prediction of its trajectory. Moving-target interception thus 

places greater demands on the control of action and enables tests of a “full-blooded” 

internal model. 

In Experiment 1, I tested whether an internal model of target position and speed, 

computed over a preceding temporal window (Saunders & Knill, 2003, 2004), would 

help explain human interception behavior. I found that using this internal model as input 

to the constant bearing strategy did not improve simulations of the human data, compared 
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to using current information as input. Thus, target extrapolation models of this sort do not 

appear to contribute to human interception behavior. Although this is a likely candidate, 

of course, there are other possible types of internal models of target motion, such as 

Kalman filter models, that I plan to test against the current data.  

In Experiment 2 and 3, to test on-line or model-based control, I manipulated 

availability or quality of current visual information to test on-line or model-based control. 

The results of Experiment 2 indicate that degrading target visibility progressively 

impaired both the accuracy and precision of locomotor interception. In Experiment 3, 

even when participants experienced the same target speed-change for a block of 40 trials, 

visual occlusion again resulted in impaired interception performance. These results 

clearly demonstrate the primary role of current information in locomotor interception. On 

the other hand, participants did learn to anticipate upcoming target speed change in 

Experiment 3. An adaptive bearing strategy might be able to account for participants’ 

adaptive heading adjustment before occlusion point. According to this strategy, 

participants increase the bearing angle before occlusion point if they anticipate the target 

speeding up; they decrease the bearing angle if they anticipate the target slowing down.  

In Experiment 2 and 3, participants turned a constant angle after the target was 

totally occluded in contrast with the adaptive heading adjustment when target was visible. 

This result indicates no evidence for an internal model that predicts the target’s motion 

during occlusion. This finding also suggests that different control strategies may be used 

in visual and occlusion conditions. This stereotyped heading adjustment might be able to 

be accounted for by the constant bearing model (Equation 2) with only the damping term. 
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To closely examine how participants adjust their heading, I will analyze their heading 

time series. 

 

5.2. The three hypotheses 
 

5.2.1. Strong model-based control 
 

 

Figure 31. The three hypotheses of action control. 

 

The model-based approach seeks to account for the control of action based on an 

internal representation such as a world model and/or an action plan. In particular, the 

strong model-based hypothesis states that vision is used to construct an internal model of 

the environment, and action is controlled exclusively based on this world model, whether 

or not visual information is concurrently available. However, the properties of an internal 

world model are seldom clearly specified, making the hypothesis difficult to test. 

Successful performance in visually directed action such as blind walking is 

regarded as an existence proof of an internal world model. However, it does not follow 

that such a world model guides walking when the eyes are open. Indeed, the literature 
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shows that performance with vision is significantly more precise than performance 

without vision, increasingly so as the spatio-temporal demands of the task increase. 

Moreover, it is widely reported that longer occlusion times lead to progressively impaired 

performance. All these findings suggest that an internal model by itself is not sufficient to 

guide action, contrary to the strong model-based control hypothesis. The difficulty is that 

the temporal persistence of a world model is unspecified, and thus degraded performance 

under occlusion, no matter how rapid, can be attributed to the decay of an internal model.  

A world model is often posited to account for anticipatory actions as well, for 

example in locomotor or manual interception of a moving target. On this view, 

interceptive actions are predicatively controlled, where the prediction is based on an 

internal model of the target’s motion. A few studies have claimed that participants learn a 

predictive model of target motion, but I contend that the results may be explained by 

simpler heuristic or visual-motor mapping strategies. Generally speaking, the existing 

data are insufficient to justify the strong model-based control hypothesis in the face of 

more parsimonious explanations.  

In sum, without clear specification, the existence and role of an internal world 

model are difficult to test empirically. First, an internal model cannot be directly 

manipulated to test its influence on action control. In contrast, the available visual 

information can be manipulated or withdrawn and the corresponding on-line control laws 

can be identified and tested empirically.  

Second, the expected time course of an internal model upon removal of visual 

information is unspecified. Although humans can perform certain tasks under visual 

occlusion, longer occlusion usually leads to progressive deterioration in performance. 
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There is no agreement on the level of performance predicted by a world model, its 

expected rate of decay, or the frequency of visual updating required to maintain 

performance. If decay is rapid and updating frequent, at some point the model-based 

hypothesis collapses into the on-line control hypothesis, for action is continuously 

dependent upon current information. Given that both approaches thus recognize the 

crucial role of current information, I conclude that on-line control is more parsimonious 

than model-based control. 

Third, the content and scope of an internal world model remain ill-specified. In 

the literature I reviewed, a world model could be a spatial memory (e.g., Loomis & Beall, 

2004), a model of Earth’s gravitational acceleration (e.g., McIntyre, et al., 2001), 

knowledge of an object’s dynamic properties (e.g. ball elasticity in Diaz, et al., 2013), or 

a spatiotemporal model of a specific trajectory (e.g. a convex path in Diaz, et al., 2009). 

The concept of a world model appears to be too unconstrained to serve as a useful 

scientific construct, subject to operationalization and empirical test (Haselager, et al., 

2004). In contrast, visual information and on-line control laws can be operationalized and 

tested experimentally. Nevertheless, I believe that common usage of the term “internal 

model” entails a representation of intervening states of the actor-environment system, and 

a generative capacity to extend to new situations within the model’s domain. Such 

properties may be empirically evaluated, but testable predictions depend on specifying 

the content and scope of the model. 

In sum, there is little evidence to support the use of model-based control when 

visual information is concurrently available. When visual information is removed, task 

performance deteriorates rapidly, implying that an internal world model alone is not 
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sufficient to guide action. The evidence thus demonstrates that current information is 

necessary for normal levels of performance, given the spatio-temporal demands of the 

task, consistent with on-line control. Under these circumstances, positing an internal 

world model is gratuitous. Even proponents of the concept (Zago et al., 2008) have 

conceded the lack of support for “precise, analytic knowledge” and accepted 

“unsophisticated, approximate knowledge” that I would term heuristic. I conclude that 

the facts militate against the strong model-based hypothesis. 

5.2.2. Strong on-line control 
 

The strong on-line control hypothesis states that action is controlled on the basis 

of current visual information, when such information is available. The literature review 

indicates that visual information is sufficient for on-line control of a variety of locomotor 

and manual tasks. A growing number of studies have identified the specific informational 

variables and control laws used to guide a wide range of human actions. In addition, as 

summarized in the previous section, performance is generally impaired by visual 

occlusion, leading to the conclusion that current information is necessary for normal 

levels of performance. Taken together, these findings indicate that action is normally 

controlled by current information, consistent with the strong on-line control hypothesis.  

However, strong on-line control is not a comprehensive account of the control of 

action, for does not attempt to explain behavior under conditions when visual information 

is unavailable. For a complete theory, an account of off-line control is also needed. 

5.2.3. The hybrid hypothesis 
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I propose a hybrid hypothesis of action control (Figure 27). The hybrid hypothesis 

aims to be a comprehensive account of the control of action by combining strong on-line 

control with complementary off-line control strategies. This hypothesis accepts that 

action is normally controlled online by current information. But under exceptional 

conditions, such as visual occlusion, near visual threshold, or with highly regular object 

motion, action may be controlled by simple off-line strategies such as heuristics, 

mappings, or spatial memory. For example, in visually directed locomotion, an 

approximate spatial memory of target location appears to guide blind walking after vision 

is removed.  

 These off-line strategies do not guarantee successful or general control of action. 

Spatial memory is approximate, capacity-limited, and subject to interference and decay 

over time. A heuristic is a qualitative rule without much predictive accuracy, but gets the 

actor into the ball-park for the task. A mapping strategy is a learned relationship between 

initial information variables and action control variables or end-states. For example, a 

simple mapping from three drop heights to interception times may be learned during 

normal catching, and then used when the target is occluded (Lacquaniti and Maioli, 

1989b).  

Alternatively, consider the possibility that off-line control is based on a full 

internal world model rather than heuristics and mappings. Despite the vagueness of the 

concept, I believe that an internal model can be distinguished from these weaker 

strategies. As used in the literature, the term entails computing or simulating intervening 

states of the actor-environment system with some degree of accuracy. It also implies that 

the model is generative, such that model-based control should generalize to new 
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conditions within the model’s domain. For instance, an internal model of projectile 

motion would represent intervening states of a ball’s trajectory, and may be expected to 

generalize to new initial velocities, wind conditions, and ball elasticities, depending on its 

scope.  

I find that the existing evidence does not call for an accurate world model, and 

can often be explained by a simple heuristic or mapping. For example, participants 

walking to intercept a target that moved on a fixed circular path learned a short-cut 

strategy (Owen & Warren, 2005), but it did not enable successful interception; rather, on-

line control phased in on the far side of the circle. Moreover, the strategy was context-

specific and did not generalize to multiple target paths with different radii and directions. 

This has the hallmarks of a heuristic. Or consider a baseball batter operating near the 

limits of visual performance (Gray, 2002). Batters appeared to learn a mapping from the 

ball’s initial optical motion to its arrival location at the plate. Moreover, different 

mappings appear to be learned for fast pitches and slow pitches, potentially explaining 

the pitch sequence effect. Such results are more consistent with context-specific 

mappings than a general internal model of the projectile motion. However, experiments 

on off-line control are still needed, which are explicitly designed to disentangle the 

predictions of an internal model from situation-specific heuristics and mappings. 

In Experiment 2 and 3, stereotyped heading adjustment was observed and 

interception performance was impaired when the target was occluded. This indicates no 

evidence for an internal model that predicts or simulates target’s motion. A simple 

heuristic might rather be used. Specifically, participants may just maintain approximately 

the same walking direction after target occlusion. The constant angle they turned after 
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target occlusion may be due to inertia, which may be accounted for by the constant 

bearing model (Equation 2) with only the damping term.  

 

5.3. Conclusion 
 

In conclusion, I performed three experiments to test whether locomotor 

interception of a moving target is controlled on-line by current visual information or by 

an internal model. I used different ways to test this question, including comparing 

simulation performance of different control models and comparing interception 

performance in different visual conditions. Generally speaking, the results of the 

experiments suggest the primary role of current visual information in control of 

locomotion interception. Based on the current results and by reviewing literature in this 

area, I conclude that a hybrid hypothesis, which combines one-line control and off-line 

heuristics, provides a comprehensive and coherent account of visually controlled action.  
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