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Abstract of “Geodesic Theory and Inherent Dynamics of Hard Sphere Liquids”

by Qingqing Ma, Ph.D., Brown University, May 2015

What defines the intrinsic dynamics of liquids? By studying the hard sphere liq-

uids, whose potential energy landscape is so singular that traditional landscape ap-

proaches do not apply without approximation, we show that an important topological

feature of the potential energy landscape - the geodesic pathways - successfully pre-

dicts dynamics of hard sphere liquids, without any coarse-graining or softening the

potential. The geodesic pathways quantitatively capture the fast drop of diffusion

coefficients upon increasing packing fraction. They also contain other dynamical in-

formation such as dynamical heterogeneity. By comparing the geodesics of both hard

and soft sphere liquids, we show that the singularity of the potential energy land-

scape influences the details of the geodesics. There are more to explore about the

potential energy landscape than its minima and saddle points. The geodesics define

the inherent dynamics of liquids.



Chapter 1

Supercooled Liquids and Potential

Energy Landscape

When a liquid is cooled fast enough under certain conditions, instead of becoming

crystal, it enters a supercooled phase [1]. A supercooled liquid is a thermodynami-

cally metastable state [1]. Supercooled liquids demonstrate a wide range of dynamical

phenomena different from those of normal liquid or solid, such as fast slowing down of

dynamics [1], dynamic heterogeneity [1], cooperative regions [1], increasing dynamic

correlation length [1]. A deeply supercooled liquid experiences glass transition, the

glass transition temperature Tg conventionally defined as the temperature at which

the viscosity of the liquid reaches 1012 Pa·s upon cooling [1]. Whether glass transition

is a pure dynamical event or there is a thermodynamic phase transition underlying

is still under research. Although there is not yet any agreed conclusions through

extensive research on supercooled liquid by simulation, experiments or theories, the

dynamics itself is unique and worth studying.

This chapter introduces briefly the dynamic phenomena of supercooled liquid,

then the widely-used potential energy landscape approach for explaining the slowing

down of supercooled liquids. After that the chapter introduces the hard sphere liquid

and points out the limits of the traditional landscape approach, then proposes a new

1



CHAPTER 1. SUPERCOOLED LIQUIDS AND POTENTIAL ENERGY LANDSCAPE

approach to studying the dynamics, which is the theme of the thesis.

1.1 Dynamic Phenomena of Supercooled Liquids

1.1.1 Dynamic Slowing Down

The fast slowing down of dynamics is the most common feature of supercooled liquids.

Although a supercooled liquid maintains the unordered liquid structure, the dynamics

slow down drastically as the temperate decreases. Upon lowering the temperature,

the diffusion coefficient drops, the relaxation time increases, the viscosity increases,

all by several orders of magnitude, as illustrated in Fig. 1.1.

Figure 1.1: Illustration of dynamic slowing down of a glass-forming harmonic sphere
liquid. Figure taken from [2]. With decreasing temperature T in a small range, the
relaxation time τα increases and the diffusion coefficient D decreases, both by several
orders of magnitude. The dashed lines are different fitting curves.

The diffusion equation is [1]

∂ρ(r, t)

∂t
= ∇ · [D(ρ, r)∇ρ(r, t)] (1.1)

2



CHAPTER 1. SUPERCOOLED LIQUIDS AND POTENTIAL ENERGY LANDSCAPE

where D is the diffusion coefficient, ρ(r, t) is the density of the diffusing system at

position r and time t.

Assuming D is a constant, diffusion coefficient D has the following relation with

particle velocity microscopically [3],

D =
1

3

∫ ∞
0

dt〈vi(t) · vi(0)〉 (1.2)

where vi(t) is the velocity of the centre of mass of particle i at time t, and 〈. . . 〉

denotes ensemble average.

At long time limits, the Einstein relation holds [3]

2tD =
1

3
〈|ri(t)− ri(0)|2〉 (1.3)

where ri(t) is the position of the centre of mass of particle i at time t. This equation

is commonly used in experimental measurement of diffusion coefficients.

1.1.2 Dynamic Heterogeneity

Supercooled liquids demonstrate heterogeneity both structurally and dynamically [4],

rather than being homogenous. The particles can be divided into “fast” and “slow”

groups by relaxation rates based on their mean square displacements in a given time

interval [5]. The mobile particles increase the mobilities of the particles around them,

a process termed “dynamic facilitation” [5]. At longer times certain regions of the

system tend to have more mobile particles while certain regions have slow particles.

These close to each other particles are denoted as clusters [5], as shown in Fig. 1.2.

The non-Gaussian parameter α2 [7] quantifies how much a distribution of single

particle displacements is away from Gaussian.

α2(t) =
3

5

〈δr4
j (t)〉

〈δr2
j (t)〉2

− 1 (1.4)

3
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Figure 1.2: Illustration of clusters in a glass-forming Lennard-Jones liquid. Figure
taken from [6]. It shows the 5% most mobile particles (light grey) and 5% least mobile
particles (dark grey) in a time interval comparable to early α relaxation time. Parti-
cles with similar mobility tend to be spatially closer to each other, forming clusters.

where δr(t) = |rj(t)− rj(0)| is the displacement of particle j during time t.

If the distribution of single particle displacements is perfectly Gaussian, α2(t) = 0.

The non-zero value of α2 is correlated with dynamic heterogeneity.

Dynamical heterogeneity is also related to stretched exponential relaxation de-

cay [8] and the breakdown of Stokes-Einstein relation [9].

1.1.3 Growing Length Scale

A length scale can be extracted from the mobility correlation of dynamic facilitation.

In computer simulations, the length scale is often determined from the four point

4
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susceptibility χ4(t) [10], which characterizes the spatial and temporal correlation of

dynamic heterogeneity, as shown in Fig. 1.3.

Figure 1.3: Behavior of χ4 of a binary Lennard-Jones liquid. Each curve describes
the dependence of χ4 on time t at the temperature T . As T lowers, the peak of χ4

increases monotonically as well as the time t where the peak is, signaling a stronger
correlation and a slower decay of dynamics at lower temperatures.

The static correlation length, on the other hand, such as the pair correlation

function, does not grow with supercooling [10], as shown in Fig. 1.4.
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Figure 1.4: Pair correlation function g(r) of a binary Lennard-Jones liquid. It has a
weak temperature T dependence.

1.1.4 Cooperative Motion

When the dynamic is very slow, relaxation occurs by cooperative motion of particles.

The earliest idea is that of cooperative rearranging regions by Adam and Gibbs [11],

defined as the smallest region that can rearrange independently [1]. String motion [12]

is the elementary structure of relaxation. An illustration of string motion is given in

Fig. 1.5.
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Figure 1.5: String motion of a glass-forming Lennard-Jones liquid. Figure taken
from [13]. It shows the positions of the same particles at time 0 (white) and a later
time t∗ (dark grey), with white segments connecting two positions of the same particle.
The white arrows show the movements of some particles.

1.2 Potential Energy Landscape and Dynamics

Many theories attempt to explain one or more of the above phenomena, inherent

structure analysis, normal mode analysis, iso-configurational ensemble,mode coupling

theory, to name a few. Among them, inherent structure analysis based on potential

energy landscape [14] is widely used. A system composed of N particles in Cartesian

coordinates has configuration R, which is a 3N dimensional vector, and potential en-

ergy V (R), which is a scalar function of configuration R. The surface of the function

V forms the potential energy landscape.
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For a system with continuous potential energy, the Hessian matrix of V defines

the local saddle points and minima of the landscape [15]. The inherent structures

are the local minima. The landscape can ben seen as a map of basins of inherent

structures and barriers between them [16]. A molecular dynamic trajectory can be

mapped to a series of inherent structures by finding the nearest inherent structures

of selected configurations on the trajectory through steepest descent method on the

potential energy [1]. The motion of the system from the point of view of inherent

structure is therefore a combination of vibrations around inherent structures and hops

over the barrier to another basin of a different inherent structure [1]. The vibrations

around inherent structures are seen as “noise” because they do not contribute much

to the relaxation. The hopping motion between different inherent structures is the

main contribution of dynamics. In the traditional landscape approach, the distribu-

tion and characters of inherent structures govern the dynamics [17], and the hopping

motion between different inherent structures is considered to be “inherent dynamics”

of a liquid.

Fig. 1.6 illustrates the procedure of finding inherent structures and the inherent

dynamics of a system.

For a usual liquid at constant pressure, the controlling parameter of dynamics is

the temperature T . At high temperature, the system, seen as one point diffusing

on the potential energy landscape, has enough energy fluctuation to explore almost

freely all the regions of the landscape. Upon decreasing the temperature, the local

barriers begin to influence the propagation of the system. The system needs to wait

longer times to accumulate enough energy fluctuation in order to overcome barriers

to reach to another basin. Further cooling down the system, the motion of the system

is confined in some basin within the experimental time frame. The system is said to

be out of equilibrium.

8
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(a)

(b)

Figure 1.6: (a) Method of obtaining inherent structures from molecular dynamics
trajectory of a glass forming binary Lennard-Jones mixture. Figure taken from [18].
Each selected configurations along MD trajectory is quenched to the corresponding
local minima (inherent structure). (b) Inherent dynamics of a glass forming binary
Lennard-Jones mixture. Figure taken from [18]. The trajectory of inherent structures
excludes the “noise” of molecular dynamics trajectory, revealing inherent dynamics
of the system.

1.2.1 Mode Coupling Transition

Mode coupling theory [19] successfully predicts the dynamic slowing down of a system

in a certain region T > TMCT , where TMCT is the mode coupling temperature. The

9
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decreasing diffusion coefficient D can be fitted by

D(T ) ∝ (T − TMCT )−γ (1.5)

The divergence at T > TMCT is artificial because the original theory does not include

activated dynamics [2], which is the main mechanism of relaxation at T < TMCT .

However, TMCT itself may be the temperature at which the ergodicity of the system

is firstly broken [16] - the phase space breaks up into disconnected pieces and the

system is confined in one of them .

Other fittings exist, one better than others depends on the temperature range of

the system. The Vogel-Fulcher-Tamman law [1] without any theoretical framework

fits the relaxation time τ(T ) even for Tg < T < TMCT .

τ(T ) ∝ exp(
1

T − T0

) (1.6)

T0 is close to 0, or at least close to Tg in some systems [1]. The divergence of the

relaxation time may be real and indicates a dynamical phase transition [1].

1.3 Hard Sphere Liquid

Hard sphere system is a theoretical model to study liquids. The pair potential energy

µij between sphere i with diameter σi and sphere j with diameter σj is defined as

µij =

 0 : rij ≥ σij

∞ : rij < σij

(1.7)

σij =
1

2
(σi + σj) (1.8)

where rij is the distance between the center of sphere i and the center of sphere j,

and σij is sum of the radius of sphere i and j.

10



CHAPTER 1. SUPERCOOLED LIQUIDS AND POTENTIAL ENERGY LANDSCAPE

Hard sphere system is a pure theoretical model. In experiment colloids are often

used to mimic the behavior of hard spheres [20]. The controlling parameter for a hard

sphere liquid, as the counterpart of temperature T for usual liquid, is the density, usu-

ally described in packing fraction φ, defined as the fraction of the total volume of the

system occupied by all the hard spheres. A system containing N spheres with a total

volume Vbox has a packing fraction

φ =
Vspheres
Vbox

=
π

6Vbox

N∑
i=1

σ3
i (1.9)

where σi is the diameter of sphere i.

1.3.1 Dynamic Phenomena of Hard Sphere Liquids

Hard sphere liquids behave similarly in many ways as usual liquids with continuous

potential [21, 22]. The single component hard sphere liquid is a simple liquid that

crystalizes easily. It has a freezing point at φf = 0.49 [20].

For studying supercooled liquids, a binary hard sphere mixture which does not

crystalize easily is widely used. The mixture contains Nb big spheres and Ns small

spheres, with number ration Nb : Ns = 1 : 1 and diameter ratio σb : σs = 1.4σ : σ [23].

This system exhibits many properties as those of supercooled liquids [24] when φ is

high, such as dynamic slowing down [24], dynamic heterogeneity [24], growing length

scale [24]. The empirical mode coupling transition for the system is φc = 0.590 [24].

Both the single component hard sphere liquid and the binary mixture are studied

in the thesis.

Fig. 1.7 shows the dynamics slowing down for the binary hard sphere mixture.

Fig. 1.8 and Fig. 1.9 show dynamical heterogeneity for the binary hard sphere

mixture.
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Figure 1.7: Dynamic slowing down of the binary hard sphere liquid. Figure taken
from [24]. The diffusion coefficient D drops while the relaxation time τα increases
both by several orders of magnitude as the density φ approaches the mode coupling
density φc = 0.59. The dashed lines are different fitting curves.
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Figure 1.8: Clusters of slow particles of the binary hard sphere liquid. Figure taken
from [24]. The white and black spheres are slow particles of the system, with the
white representing big particles and the black representing small particles. The rest
of particles of the system are the black tiny dots. This figure demonstrates the exis-
tence of spatial dynamic heterogeneity in the hard sphere liquid that particles with
similar mobilities tend to form clusters.
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Figure 1.9: The probability density distribution of the logarithm of single particle
displacements δ(r) of small particles during a time interval of relaxation time τα of
the binary hard sphere liquid. Figure taken from [24]. As the density φ increases
from 0.5 to 0.59, the distribution gets broader and eventually forms a bimodal shape,
showing that there are “slow” and “fast” groups of particles. The figure demonstrates
dynamic heterogeneity by showing that there are different subgroups of particles with
different mobilities in the system.
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1.3.2 Potential Energy Landscape for Hard Sphere Liquids

The traditional analysis of potential energy landscape based on basins and transition

barriers is no longer applicable to hard sphere liquids, because of the singularity of

the potential energy, which is either 0 or infinity. There is no inherent structures

defined as the local minima of the potential energy. One can define a generalized

notion of inherent structure of hard sphere liquids as locally jammed packing con-

figuration obtained by compressing the volume of the system [25]. Other methods

of analysis can be generalized and applied to hard sphere liquids too. For example,

normal mode analysis is applied to hard sphere liquids by defining a fictitious force

with information of the momentum exchange per collision and time interval between

collisions [26], or by the covariance matrix of displacement [27]. Alternatively, ideas

of free energy landscape can be used for hard sphere liquids, in which case the barrier

of free energy landscape has a pure entropic origin [28].

But, is there anything the potential energy landscape can tell about dynam-

ics of hard sphere liquids? As hard sphere liquids capture the essential dynamics

of soft particle liquids (liquids composed of particles with continuous pair poten-

tials) [22, 29, 30, 31], is there anything common between the potential energy land-

scapes of both kinds of liquids? What are the features of the landscape that are

dominating the dynamics of both systems? Here we present a unified theory based

on potential energy landscape - geodesic theory, which focuses on the global length

scale of the landscape instead of local variance. We show that the geodesics can

predict dynamics slowing down for both soft particle liquids and hard particle liq-

uids, as well as contain information about some other dynamical features. Geodesics

represent the inherent dynamics of a system.
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Chapter 2

Geodesic Theory

This chapter first introduces the potential energy landscape ensemble [32], a natural

framework to define paths through the potential energy landscape and to develop

geodesic theory. It then presents geodesic theory [33], a unified approach to study

dynamics of liquid based on potential energy landscape. The end of the chapter shows

some previous results [33] to demonstrate how geodesics predict the dynamics of soft

particle liquids .

2.1 Potential Energy Landscape Ensemble

The potential energy landscape ensemble is defined as the set of all configurations R

that have a potential energy V (R) no bigger than some landscape energy EL [32].

R : V (R) ≤ EL (2.1)

An illustration of the potential energy landscape ensemble is in Fig. 2.1.

The potential energy landscape ensemble is thermodynamically equivalent to the

canonical ensemble [32]. The landscape energy EL in the potential energy landscape

ensemble is the counterpart of temperature T in the canonical ensemble.

In the potential energy landscape ensemble, one can show by maximizing the
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Figure 2.1: Illustration of the potential energy landscape ensemble. Figure taken
from [32]. The jagged curve is the potential energy V (R) of a system, and the hori-
zontal direct line represents the landscape energy EL. Only configurations satisfying
V (R) ≤ EL are allowed in the potential energy landscape ensemble, marked by the
grey area in the figure.

entropy that every allowed configuration has the same probability density ρ(R) [32].

ρ(R) = θ[EL − V (R)]/G(EL) (2.2)

G(EL) =

∫
dR θ[EL − V (R)] (2.3)

where θ(x) = (1, x ≥ 0; 0, x < 0) is the Heaviside step function.

Each configuration, within the potential energy landscape ensemble, is either dis-

allowed or allowed with the same probability density as every other allowed configu-

ration. In the canonical ensemble, different configurations have different probability

densities. The system has to wait to accumulate large enough energy fluctuation to

overcome energy barriers for propagation. In the potential energy landscape ensem-

ble, however, the system has free propagation, because each allowed configuration

has the same probability density, but the propagation problem has more complex

boundary conditions V (R) ≤ EL.
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The disallowed configurations V (R) > EL form forbidden regions in the 3N-

dimensional configuration space, where system cannot travel in the context of poten-

tial energy landscape ensemble. The system can be seen as a point diffusing outside

these forbidden regions in the 3N dimensional space, which enables the use of Green’s

function to develop geodesic theory, as shown in Section 2.2.

2.2 Geodesic Theory

In a high-dimensional space, the volume of a hyper-sphere is dominated by the vol-

ume of the thin shell near the surface [32]. Therefore, it is reasonable to expect in

the 3N dimensional configuration space, most of the allowed configurations lie close

to the boundary V (R) = EL. The trajectories of the system evolving should then be

paths close to the constant-potential-energy contours of these boundaries in potential

energy landscape ensemble.

When the dynamic is slow, what is the most important trajectory that dominates

the dynamics of the system?

A system has free propagation in the potential energy landscape ensemble. For

free propagation, the probability density of a system going from some initial config-

uration Ri to some final configuration Rf in a time t is described by the solution of

Fokker-Planck equation in the form of path integral [34, 35, 36, 37], given by Green’s

function [32]:

G(Ri → Rf |t) =

∫
exp

{
− 1

4D

∫
(
dR

dτ
)2dτ

}
dR(τ) (2.4)

The action S along the path is

S[R(τ)] =

∫
(
dR

dτ
)2dτ =

∫
(2T (τ))dτ (2.5)
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where T is the kinetic energy

T =
1

2

∑
µν

gµν
dxµ

dτ

dxν

dτ
(2.6)

with µ and ν labeling all degrees of freedom, and gµν is the kinematical metric.

In the limit of D → 0 (slow dynamics), the dominant paths are those minimizing

the path-integral action S. These paths also obey the principle of least action in

classical mechanics.

δS[R(τ)] = 0 (2.7)

At the same time, the kinematic path length l is

l =

∫
ds =

∫ t

0

√
2T (τ)dτ (2.8)

(ds)2 =
∑
µν

gµνdx
µdxν = 2T (dτ)2 (2.9)

The path with the shortest kinematic path length l, the geodesic we refer to, also

minimizes the path-integral action S. Therefore when dynamics is slow, the dominant

path is the geodesics for the metric gµν .

Some examples:

• Single component system with only translational diffusion [32]

The kinematic metric

gµν = Mδµν (2.10)

where all the particles have the same mass M , δµν = (1, if µ = ν ; 0, otherwise).

The kinetic energy

T =
1

2

N∑
j=1

M(
drj
dτ

)2 (2.11)

where j labels the j-th particle, r is the position of the center of mass of particle.

The kinematic path length is then proportional to the actual path length in
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Cartesian coordinates.

l =

∫
ds = M1/2

∫ √√√√ N∑
j=1

(drj)2 (2.12)

So the dominant path is at the same time the shortest path.

• Single component system with both translational and rotational diffusion [38]

The kinetic energy T includes both translation and rotation.

T =
N∑
j=1

(
M(

drj
dτ

)2 + I(
dΩ̂j

dτ
)2
)

(2.13)

where j labels the j-th particle, M is the mass , r is the position of the center

of mass, I is the moment of inertia, Ω̂ is the orientational unit vector.

The dominant paths are those minimizing the action S as well as the kinematic

length l [38].

S[R(τ)] =

∫
(2T (τ))dτ =

∫ N∑
j=1

(
M(

drj
dτ

)2 + I(
dΩ̂j

dτ
)2
)
dτ (2.14)

l =

∫ √
2T (τ)dτ =

∫ √√√√ N∑
j=1

(
M(

drj
dτ

)2 + I(
dΩ̂j

dτ
)2
)
dτ (2.15)

2.2.1 Diffusion

What information do these paths tell about the dynamics of a system? One nat-

ural quantity is the diffusion coefficient. In the context of potential energy land-

scape ensemble, the system is a free diffusing point around impenetrable obstacles

(V (R) > EL) in 3N dimensional space. Lieb pointed out that the action of diffusion

with a spherical obstacle depends on the shortest path g between end points [33].

The greatest contribution to diffusion comes from the shortest path with minimum
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action.

G(Ri → Rf |t) ∼ (4πD0t)
− d

2 exp
{
− g2

4D0t

}
(2.16)

where g is the length of the geodesic path, d is the spacial dimension, D0 is the

diffusion coefficient without any obstacles.

The phenomenological diffusion constant D is still predicted by Green’s function

G(Ri → Rf |t) ∼ (4πDt)−
d
2 exp

{
− |Rf −Ri|2

4Dt

}
(2.17)

Combining equations 2.16 and 2.17 shows that

D = lim
∆R→∞

D0(∆R/g)2 (2.18)

where the overbar means an average over multiple pairs of end points Ri and Rf

with equilibrium distribution, and ∆R is the distance between configuration Rf and

configuration Ri,

∆R = |Rf −Ri| =

√√√√ N∑
j=1

(rfj − rij)
2 (2.19)

Rf = (rf1 , · · · , r
f
N),Ri = (ri1, · · · , riN) (2.20)

Equation 2.18 demonstrates that the experimental diffusion constant can be ob-

tained by using only information about the global path lengths in the potential energy

landscape, without any regard to local features such as transition barriers (as needed

in the canonical ensemble). In fact, there is no local barrier in the potential en-

ergy ensemble because every allowed configuration is equally likely. Moreover, since

Equation 2.18 does not rely on finding the maxima or minima of the potential en-

ergy landscape, it can in principle be applied to any system, including systems with

singular potential such as hard sphere liquids.

The point of view is that the dynamics is slowing down not because of the increas-

ing difficulty in local barrier crossing, but because the forbidden regions are getting
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bigger and the accessible paths around these regions are getting more convoluted

and longer. There may be a point when these growing forbidden regions divide the

allowed portion of configuration space into separate parts, which corresponds to the

mode coupling transition [33].

In the limit of high mobility (high temperature for soft particle systems and low

density for hard sphere systems), D = σ0. In calculation, the absolute value of σ0 is

unknown, but the trend of D can still be predicted by

D ∝ (∆R/g)2 (2.21)

Other dynamical problems such as preferential solvation can also be studied

through geodesic theory [39].

2.3 Previous Results

Previous research [33] shows how geodesic theory predicts dynamics slowing down

for soft particle liquids. Both a simple monoatomic Lennard-Jones liquid and a bi-

nary glass-forming Kob-Andersen liquid have been studied in [33]. For both liquids,

the diffusion constants from landscape predictions agree with molecular dynamics

calculations over a wide range.
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Figure 2.2: Reduced diffusion coefficient D∗ = D
√
m/εσ2 as a function of reduced

temperature kBT/ε of a simple monoatomic Lennard-Jones liquid (a) and a glass-
forming Kob-Andersen liquid (b,c). Figure taken from [33]. “MD” means results
from molecular dynamics calculation and “landscape” means geodesic-landscape the-
ory prediction. A and B are the two species of particles in the binary Kob-Andersen
liquid. TMCT is the location of the literature empirical mode-coupling transition for
the Kob-Andersen liquid. As the temperature T approaches TMCT , the dynamics
slows down dramatically, shown by the decrease of diffusion coefficients over several
orders of magnitude. The predictions from geodesic theory agree very well with the
molecular dynamics calculations across several orders of magnitude.
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Methods

This chapter first presents the method of finding geodesics for soft particle liquids

from previous research [33]. Then the newly developed geodesics finding method for

hard sphere liquids is given, followed by the method of molecular dynamics calculation

of diffusion coefficients of hard sphere liquids.

3.1 Soft Particle Liquid

3.1.1 Models

Kob-Andersen liquid is used as a model of soft particle liquid system. This bi-

nary mixture is a widely-studied glass-forming model liquid [40, 41, 42, 13, 43]. It

is used in [33] as an example of geodesic theory on soft particle glass-forming liq-

uids. The mixture has a empirical mode coupling transition at reduced temperature

kBT/ε = 0.435 [44, 45]. The pair potential energy µαβ between two particles α and

β is

µαβ(r) = {
µLJαβ (r)− µtruncαβ (r) r < rc = 2.5σαβ

0, r > rc = 2.5σαβ

(3.1)

µLJαβ (r) = 4εαβ[(
σαβ
r

)12 − (
σαβ
r

)6] (3.2)
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µtruncαβ (r) = µLJαβ (rc) (3.3)

with parameters

εAA = ε, εBB = 0.5ε, εAB = 1.5ε (3.4)

σAA = σ, σBB = 0.88σ, σAB = 0.8σ (3.5)

where α, β = A or B denote species of particles, r is the distance between the two

particles.

In this thesis, the calculation of geodesics of Kob-Andersen liquid uses N = 108

(NA = 87 , NB = 21) at total reduced density ρσ3 = 1.2.

ρσ3 =
N

Vbox
σ3 (3.6)

where Vbox is the volume of simulation box. The range of temperature studied is from

kBT/ε = 5.0 to kBT/ε = 0.7.

3.1.2 Geodesics Finding of Soft Particle Liquids

3.1.2.1 Kuhn-Tucker Theorem

The geodesic problem in the potential energy landscape ensemble is :

optimization : the shortest path g between two end points Ri and Rf (3.7)

constraints : V (R) ≤ EL along the path (3.8)

The Kuhn-Tucker theorem [46] states that an optimization problem with inequal-

ity constraints has a solution that is a combination of unconstrained segments and

segments satisfying the constraints as equalities. Thus the geodesic should be a

combination of free propagation steps (V (R) < EL) and steps along the boundary

(V (R) = EL) [33].
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The path finding procedure includes three parts: finding the appropriate pairs of

end points with equilibrium distribution, finding paths between pairs of end points,

and optimizing the paths.

3.1.2.2 Finding End Points

To ensure connectness between each pair of end points, molecular dynamics based

on Verlet algorithm [47] is used to generate pairs of end points. The reduced time

step for integrating equation of motion in Verlet algorithm is δt

σ
√
m/ε

= 0.001 for all

temperatures, where m is the mass per particle.

The initial configuration of the system is set up as a face centered crystal. The

initial velocities are assigned by random numbers drawn from Maxwell-Boltzman dis-

tribution then adjusted to remove the net momentum of the system. To melt the

system fast from a crystal structure into an equilibrium liquid state, the velocities are

first scaled according to
∑N

i=1
1
2
mv2

i = 3
2
NkBTin, kBTin/ε = 5.0. The high tempera-

ture allows faster relaxation. Then 2 ∗ 105 molecular dynamic steps are performed,

rescaling the velocities every 1000 steps according to
∑N

i=1
1
2
mv2

i = 3
2
NkBTin.

After this, the crystal structure has melted. The system then needs to be cooled

down gradually to the desired temperature. This is done by running another 106

molecular dynamic steps, rescaling the velocity every 1000 steps according to
∑N

i=1
1
2
mv2

i =

3
2
NkBT , where T is the desired final temperature of the system.

To check whether the system has reached the desired temperature, we run another

106 molecular dynamics steps without any velocity rescaling. The temperature of the

system is recorded every 100 steps then the average temperature is calculated. If

the difference between the average temperature and the desired temperature is less

than 0.005ε/kB, the system is considered to have reached the desired temperature.

Otherwise we rescale the velocities then check again. This process is repeated until

the desired temperature is reached. Afterwards there is no more rescaling of velocity.

We run another 106 MD steps before collecting pairs of end points. We record
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a configuration as the first end point of the first pair, propagate the system until

it is away from the first end point by a desired distance ∆R. This configuration is

recorded as the second configuration of the pair. We propagate 105 MD steps before

collecting next pair of end points to avoid correlations among different pairs. The

process is repeated until desired number of pairs are collected.

The distance ∆R between two configurations Ra = (ra1, · · · , raN) and Rb = (rb1, · · · , rbN)

is

∆R = |Rb −Ra| =

√√√√ N∑
j=1

(rbj − raj )
2 (3.9)

where the 3 dimensional vector rj denotes the position of particle j.

3.1.2.3 Finding Geodesics

The method of finding geodesics for soft particle system is from [33]. Given a pair

of end points denoted as Ri and Rf , the landscape energy EL is the higher value of

V (Ri) and V (Rf ). EL = max(V (Ri), V (Rf )). According to Kuhn-Tucker theorem,

the path consists of direct steps (free propagation steps) and escape steps (steps along

the boundaries) [33].

1. Direct Step

Direct steps implement the free propagation segments of a path based on Kuhn-

Tucker theorem. The system starts from the initial configuration Ri, always

tries to move from its current position R(t) directly towards the final configu-

ration Rf , with a small step size δdi. The trial configuration R0(t+ 1) is

R0(t+ 1) = R(t) + δdi
Rf −R(t)

|Rf −R(t)|
(3.10)

In calculation δdi = 0.001σ is used.

If the trial configuration is in the allowed regions of configuration space (V (R0(t+

1)) ≤ EL), this R0(t + 1) is accepted as the new configuration of the system
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along the path. The system will proceed from there.

2. Escape Step

Escape steps implement the segments of a path that are along the boundaries

based on Kuhn-Tucker theorem. If the trial configuration R0(t + 1) is in the

forbidden region of configuration space (V (R0(t+ 1)) > EL), an escape step is

performed. A gradient descend procedure is employed to direct the system from

the disallowed trial location to its nearest allowed point (V (R(t + 1)) ≤ EL),

according to

Rn+1(t+ 1) = Rn(t+ 1)− V (Rn(t+ 1))− EL
|∇V (Rn(t+ 1))|2

∇V (Rn(t+ 1)) (3.11)

where n is the index of iteration step, R0(t + 1) is the initial disallowed con-

figuration, and ∇V represents the 3N dimentional gradient of potential energy

function V respect to R in the configuration space. The iteration stops when

V (Rn+1(t+ 1)) ≤ EL, and this Rn+1(t+ 1) is taken to be the new configuration

of the system along the path. The system will proceed from there.

In calculation, a tolerance δV for the system is needed due to numerical errors

in each step. For example, the iteration of equation 3.11 would never stop with-

out a cutoff tolerance. Thus in implementation a configuration is considered

allowed if V (R) ≤ (EL + δV ), δV = 10−4ε. This is equivalent to raising a tiny

amount of landscape energy for computational convenience.

3. A path is found when the distance between the current configuration of the

system R(t) and the second end point Rf is smaller than δdi.

|Rf −R(t)| < δdi (3.12)

The path length l is the sum of the length of every successful steps (steps con-
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necting two consecutive allowed configurations) along the path.

l =
t=P∑
t=0

|R(t+ 1)−R(t)| (3.13)

where P is the total number of steps along the path, R(0) = Ri , R(P+1) = Rf .

An illustration of the path finding method is in Fig. 3.1. The algorithm is shown

in Algorithm 1.

Figure 3.1: Illustration of path finding algorithm for soft particle systems. Figure
taken from [33]. The small circles with i and f denote initial and final configurations
respectively in the configuration space. The big circle in the middle is a forbidden
region. The system always tries to head toward the final point directly (a,c) unless
it meets an obstacle and has to move around the obstacle (b).
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Algorithm 1 Path finding for soft particle systems

EL ←MAX(V (Ri), V (Rf ))
l← 0 . path length
Rt . current configuration of the system
Ro . previous allowed configuration of the system
Rt ← Ri , Ro ← Ri

while |Rf −Rt| > δdi do . δdi = 0.001σ
Ro ← Rt

Rt ← Rt + δdi
Rf −Rt

|Rf −Rt|
. direct step

while V (Rt) > (EL + δV ) do . δV = 10−4ε

Rt ← Rt −
V (Rt)− EL
|∇V (Rt)|2

∇V (Rt) . escape step

end while
l← l + |Rt −Ro|
end while
return l

3.1.2.4 Optimization

As illustrated in Fig. 3.1, a path found from above procedure is not necessarily the

shortest possible. Optimization is needed on these geodesics candidates. This can be

done by trials of local adjustments in search for shorter paths.

Given a path found from Ri to Rf as the original geodesic candidate, a config-

uration R along the path is picked by random, and given a small displacement to

a new allowed configuration R′. A new path of two segments is generated by the

same path finding procedure, one from Ri to R′, and the other from R′ to Rf . The

new path length is the sum of the lengths of the two segments. If the new path is

shorter than the original geodesic candidate, the new path is taken to be the new

candidate for the geodesics, and the same optimization procedure is used on this new

candidate path. If the original candidate is shorter, the optimization repeats on the

original path. In principle this procedure continues until the path length converges.

Due to the limitation of computational time, the optimization stops when the trial

on a geodesic candidate path for finding shorter paths fails five times consecutively,

and the final path is taken to be the geodesic.
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The detailed procedure is listed below:

1. Record 103 configurations along the path equally distanced according to their

distances to the final end point.

2. Select one configuration R = (r1, · · · , rN) by random from the recorded config-

urations, select one particle k by random in this configuration and move it by a

random amount δr = (δx, δy, δz), which satisfy−0.10σ ≤ δx ≤ 0.10σ,−0.10σ ≤

δy ≤ 0.10σ,−0.10σ ≤ δz ≤ 0.10σ. The move r′k = rk+δr is accepted only if the

new configuration R = (r1, · · · , r′k, · · · , rN) is an allowed one in the potential

energy ensemble. It means the potential energy of the new configuration does

not exceed the landscape energy.

3. Repeat the process until the distance between the original configuration R and

the new allowed configuration R′ is bigger than 0.10σ.

4. Find a path from R′ to Ri, and a path from R′ to Rf . This forms a new path

between Ri and Rf . If the new path is shorter than the original path, set the

new path as our geodesic candidate which we will optimize. Otherwise optimize

the original path again.

5. Keep this process until 5 consecutive fails of finding a shorter path than the

current geodesic candidate.

6. The final geodesic candidate is taken to be the geodesic path.

The algorithm of optimization is in Algorithm 2.

31



CHAPTER 3. METHODS

Algorithm 2 Optimization of paths

lc . original candidate for geodesic
ln . new path
counter ← 0 . count the number of consecutive fails
pick randomly R
R′ ←MonteCarlo(R) . Monte Carlo, |R′ −R| ≥ 0.10σ
ln ← PathLength(R′,Ri) + PathLength(R′,Rf )
while counter < 5 do . allow 5 consecutive fails

if ln < lc then
lc ← ln
counter ← 0

else
counter ← counter + 1

end if
end while
return lc . final geodesic

3.2 Hard Sphere Liquid

3.2.1 Models

The models used for hard sphere liquids are the two system discussed in Chapter 1,

the simple mono disperse hard sphere liquid, and the glass-forming binary hard sphere

system with diameter ratio σb : σs = 1.4σ : σ and number ratio Nb : Ns = 1 : 1.

The pair potential energy µij between sphere i and j is

µij =

 0 : rij ≥ σij

∞ : rij < σij

(3.14)

σij =
1

2
(σi + σj) (3.15)

where rij is the distance between the center of sphere i and the center of sphere j, and

σ is the diameter of each sphere. σij is the minimum distance between the centers of

two spheres without any overlapping.

The calculation of geodesics of hard sphere liquids use various system sizes N .

In the binary liquid case N = Nb + Ns. The calculation of MD results of diffusion
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coefficients of hard sphere liquids use N = 108 for both the mono-disperse system

and the binary system. The range of densities studied is from low values φ = 0.05

to values close to the freezing point φf = 0.49 for the mono disperse system and the

empirical mode coupling transition φc = 0.59 for the binary system.

3.2.2 Geodesics Finding of Hard Sphere Liquids

The path finding of hard sphere liquid also includes three parts: finding the appro-

priate pairs of end points with equilibrium distribution, finding paths between end

points, and optimizing the paths.

3.2.2.1 Finding End Points

To ensure connectness between pairs of end points, molecular dynamics based on col-

lision dynamics [47] is used to generate end points. Details of setting up the molecular

dynamics run and equilibrating the system is given in section 3.2.3.

After the system has equilibrated, we record a configuration as the first end point

of the first pair, then propagate the system until it is away from the first end point by

a desired distance ∆R. This configuration is recorded as the second end point of the

pair. We propagate 105 MD steps before collecting next pair of end points to avoid

correlations among different pairs. This procedure is repeated until desired number

of pairs are collected.

3.2.2.2 Finding Geodesics

Due to the singularity of hard sphere potential, there is no gradient to utilize for the

escape step. Moreover, unlike the soft sphere case, two overlapping hard spheres are

enough to make a configuration disallowed, and there is nothing other spheres can

do to compensate the potential energy violation. So every overlapping pair of hard

spheres needs to be treated individually. Although the basic idea of always trying
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moving towards the end point and away from the obstacles applies, the path finding

algorithm of hard sphere liquids has to be different from that of soft particle liquids.

The idea of free volume turns out to be a useful guidance for path finding for hard

sphere liquids. Free volume is defined as the space the center of a given hard sphere

can move independently from the surrounding spheres [48]. Free volume is known

to affect the dynamics of liquids [49, 50, 51, 52]. Here, instead of utilizing gradient

to find the nearest allowed configuration from the disallowed trial configuration as

in the case of soft particle liquids, the system goes back to where it was before the

failed trial step, then moves away from the forbidden region for a small distance. This

move creates more free volume for the spheres that are potentially causing potential

energy violation, thus allowing more freedom for the system to reorientate itself in

configuration space and move towards the second end point without going into the

forbidden region.

The path consists of direct steps and collision avoidance steps.

1. Direct Step

In direct step, the system always tries to go from its current position R(t) to the

second end point Rf , with a small step size δdi. This step employs the same idea

of free propagation step as in the soft particle liquid. Direct steps implement

the free propagation segments of a path based on Kuhn-Tucker theorem.

R0(t+ 1) = R(t) + δdi
Rf −R(t)

|Rf −R(t)|
(3.16)

δdi = 10−2σ (3.17)

where σ = σs in the binary liquid case. The trial location R0(t+ 1) is accepted

as the new configuration of the system along the path if V (R0(t+1)) ≤ EL = 0.

In hard sphere case this means there is no overlapping in the system between

any particles. The system will proceed from the new configuration.
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2. Collision Avoidance Step

What’s different though, for the hard sphere liquids, is what to do once a trial

direct step takes the system to a forbidden region in the configuration space. As

discussed above, the gradient descend method for escape step in the soft sphere

liquid is no longer applicable to the hard sphere liquid. Instead, the collision

avoidance step is performed to cancel the overlaps and reposition the system.

First the failed direct step is rescinded and the system is back to its last allowed

configuration R(t) before the failed direct step. Then the overlapped particles

in the disallowed trial configuration R0(t+1) are further moved away from each

other in the allowed configuration R(t), according to the following procedure.

Define a fictitious pair potential µij that is zero between non-overlapping par-

ticles i and j, but has a finite and positive value when particle i and j overlap.

µij =

 0 : rij ≥ σij

ν(rij/σij) : rij < σij

(3.18)

ν(x) > 0 if 0 < x < 1 (3.19)

This fictitious potential imposes the same constraints on the configuration space

as the original singular potential, because both potentials require and only re-

quire configurations to have no overlapping.

A fictitious force f can be defined from µij if the derivative of ν(x) with respect

to x, denoted as ν ′(x), is negative for 0 < x < 1.

ν ′(x) < 0 if 0 < x < 1 (3.20)

fi = −∇i µij =


0 : rij ≥ σij
1

σij
ν ′ij r̂ij : rij < σij

(3.21)
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r̂ij =
rj − ri
|rj − ri|

(3.22)

For a failed trial configuration R0(t+1), define the weighed force vector on each

sphere j,

F0
j(t+ 1) =

[
cj f̂j

]
R0(t+1)

(3.23)

cj =
|fj|√∑N

1 |fi|2
(3.24)

f̂j =
fj
|fj|

(3.25)

ĝ0
j =

F0
j(t+ 1)

|F0
j(t+ 1)|

(3.26)

Then each particle in the system is moved according to

r1
j(t+ 1) = rj(t) + δcaĝ

0
j (3.27)

δca = 10−4σ (3.28)

where δca is the step size for each particle, σ = σs in the binary liquid case.

Note ĝ0
j = 0 for particles without any overlapping in configuration R0(t+ 1).

However, this simple ĝ0
j may not accomplish the task of avoiding overlapping in

the whole system, because new overlapping may be introduced by Equation 3.27.

For example, if particle i and j are overlapped in configuration R0(t + 1), al-

though pulling them apart in configuration R(t) increases the free space among

those two particles, this move may make particle i and some other particle k

overlap. Denote this new failed trial configuration as R1(t+1). In this situation,
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another fictitious force is calculated from this disallowed configuration R1(t+1)

as well and the final fictitious force is a combination of forces from all failed

trial configurations. The iteration repeats until a successful trial configuration

is found. This procedure allows the system to “detect” the obstacles around it

in configuration space then finds the best direction to move.

Suppose m iterations is needed,

ĝmj =

∑m
T=1 FT

j (t+ 1)

|
∑m

T=1 FT
j (t+ 1)|

(3.29)

FT
j (t+ 1) =

[
cj f̂j

]
RT (t+1)

(3.30)

where the superscript T denotes the index of each failed trial.

Each particle j is moved from the allowed configuration R(t) to the newly al-

lowed configuration Rm+1(t+ 1), according to

rm+1
j (t+ 1) = rj(t) + δcaĝ

m
j (3.31)

δca = 10−4σ (3.32)

This Rm+1(t+ 1) is taken to be the new configuration of the system along the

path, and the system will proceed from there.

The fictitious potential used in calculation for main results is

νij(x) = σ2
ij(1− x) (3.33)

Trials with an alternate potential νij(x) = σ3
ij(

1
3
x3− 1

2
x2+ 1

6
) show no discernible

numerical differences (shown in Chapter 4).

3. A path is found when the distance between the current configuration of the
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system R(t) and the second end point Rf is smaller than δdi.

|Rf −R(t)| < δdi (3.34)

The path length l is the sum of individual successful step lengths.

l =
t=P∑
t=0

|R(t+ 1)−R(t)| (3.35)

where P is the total number of steps along the path, R(0) = Ri , R(P+1) = Rf .

The algorithm of path finding for hard sphere liquids is shown in Algorithm 3.

3.2.2.3 Optimization

Optimization is also needed for paths of hard sphere liquids for the same reason as

that of soft particle liquids. The procedure is the same as in section 3.1.2.4.
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Algorithm 3 Path finding for hard sphere systems
EL ← 0
l← 0 . path length
Rt . current configuration of the system
Ro . previous allowed configuration of the system
Rt ← Ri , Ro ← Ri

while |Rf −Rt| > δdi do . δdi = 0.01σ
Ro ← Rt

Rt ← Rt + δdi
Rf −Rt

|Rf −Rt|
. direct step

while V (Rt) > 0 do
Rt ← CollisionAvoidanceStep(Ro,Rt) . collision avoidance step

end while
l← l + |Rt −Ro|
end while
return l

procedure CollisionAvoidanceStep(Ro,Rt)
Ro . Previous allowed configuration
Rt . Configuration after the failed direct step
Fj ← ~0 . Fictitious force on particle j
ĝj ← ~0 . particle j’s direction to move
repeat
Fj ← Fj + FictitiousForce(Rt)

ĝj =
Fj

|Fj|
Rt ← Ro + δca(ĝ1, ..., ĝj, ..., ĝN) . δca = 10−4σ

until V (Rt) = 0
return Rt

end procedure
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3.2.3 MD Calculation of Diffusion Coefficients

The diffusion coefficient D has the following relation with velocity autocorrelation

function [3]

D =
1

3

∫ ∞
0

dt〈vi(t) · vi(0)〉 (3.36)

In calculation, the implementation for mono-disperse hard sphere liquid is

D =
1

3

∫ tmax

0

dt〈 1

N

N∑
i=1

vi(t) · vi(0)〉 (3.37)

and for binary hard sphere mixture is

Db =
1

3

∫ tmax

0

dt〈 1

Nb

Nb∑
i=1

vi(t) · vi(0)〉 (3.38)

Ds =
1

3

∫ tmax

0

dt〈 1

Ns

Ns∑
i=1

vi(t) · vi(0)〉 (3.39)

where N is the number of particles, b and s denote big and small spheres respectively,

and the brackets 〈. . . 〉 mean an average over different configurations used for values

of vi(0). tmax is chosen differently for each φ to be a time that is sufficiently long to

ensure the convergence of the results.

By splitting the integration interval [0, tmax] into n subintervals, n being an even

number, each interval with size ∆t =
tmax
n

, the integration in above equations can be

calculated by Simpson’s rule.

∫ tmax

0

f(x)dx ≈ ∆t

3

[
f(x0) + 2

n
2
−1∑
j=1

f(x2j) + 4

n
2∑
j=1

f(x2j−1) + f(xn)
]

(3.40)

x0 = 0, xn = tmax, xj = j∆t for j = 0, 1, · · · , n (3.41)
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3.2.3.1 Collision dynamics of hard spheres

The molecular dynamics of hard sphere systems is based on collision dynamics [47].

Due to the singularity of the hard sphere potential, the exchange of momentum and

energy among different particles only happen when they collide. Denote the current

configuration of the system at time t as R(t) = (r1, · · · , rN), where rj (j = 1, · · · , N)

is a 3 dimensional vector denoting the position of particle j. The velocity of sphere

j is vj (j = 1, · · · , N). For each two particles i and j (not overlapped at time t), we

can calculate the time difference from now to the moment when they are about to

collide, denoted as collision time tij.

Define

rij = rj − ri, vij = vj − vi, (3.42)

When sphere i and sphere j are about to collide, they are in contact with each other

and the following equation is satisfied

|rij(t+ tij)| = |rij + vijtij| =
1

2
(σi + σj) (3.43)

Define bij = rij · vij, σij =
1

2
(σi + σj), Equation 3.43 becomes

v2
ijt

2
ij + 2bijtij + r2

ij − σ2
ij = 0 (3.44)

Equation 3.44 is a quadratic equation in tij. By solving the quadratic equation,

the collision time tij can be obtained.

If bij > 0, particle i and particle j are going away from each other. No collision

happens between them.

If bij < 0 and b2
ij − v2

ij(r
2
ij − σ2

ij) < 0, Equation 3.44 has complex roots. It means

no collision occurs between particle i and j.

If bij < 0 and b2
ij − v2

ij(r
2
ij − σ2

ij) > 0, Equation 3.44 has two positive roots. The

smaller one is the collision time

41



CHAPTER 3. METHODS

tij =
−bij − (b2

ij − v2
ij(r

2
ij − σ2

ij))
1/2

v2
ij

(3.45)

By iterating through all pairs of particles of the system, we know the collision

time between any two particle tij (i = 1, · · · , N, j = i+ 1, · · · , N). Note tij = tji.

The earliest collision of the whole system from now is by the colliding pair that

has the smallest value of tij. Denote the earliest colliding pair as particle m and

particle n.

(m,n) = arg min
i,j

tij, (i = 1, · · · , N, j = i+ 1, · · · , N) (3.46)

All particles are moved forward by time tmn.

rj(t+ tmn) = rj(t) + tmnvj, (j = 1, · · · , N) (3.47)

After this move, particle m and n are in contact and are about to collide. The

total energy and momentum are both conserved during the elastic collision. Denote

the change of velocity of particle m and n as δvm and δvn respectively. Because of the

conversation of total linear momentum and kinetic energy, and each particle having

the same mass, we have

vm(after) = vm(before) + δvm (3.48)

vn(after) = vn(before) + δvn (3.49)

bmn = rmn(t+ tmn) · vmn(t+ tmn) (3.50)

δvm = −(bmn/σ
2
mn)rmn (3.51)
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δvn = −δvm (3.52)

Note bmn is reevaluated in Equation 3.50 at the moment of collision (t+ tmn).

After the collision, the system has an updated configuration and velocity. New col-

liding pair is calculated from above procedure and the system is propagated forward

accordingly.

3.2.3.2 Procedures and Parameters

The calculation is performed in reduced units. Reduced time is t∗ = t(kBT
mσ2 )

1
2 and the

reduced diffusion coefficient D∗ is

D∗ =
D

(kBT
mσ2 )

1
2σ2

(3.53)

1. Mono-disperse hard sphere system

The system is first set up as a face centered crystal. The initial velocities is set

by random numbers taken from Maxwell-Boltzman distribution, adjusted to re-

move the net momentum of the system and rescaled by
∑N

i=1
1
2
mv2

i = 3
2
NkBT ,

where in calculation m = 1.0, kBT = 1.0. The system is equilibrated with 107

MD steps based on collision dynamics [47]. Each trajectory records a config-

uration every time interval ∆t, and records in total 105 configurations. The

time interval ∆t between two consecutively recorded configurations are chosen

differently for different φ to ensure convergence of results. Choose initial con-

figuration for velocity correlation as every 10 recorded configurations. So each

trajectories offers 104 configurations as the starting configuration of velocity

correlation.

We propagate 105 MD steps between two consecutive trajectories to avoid corre-

lations among trajectories. The reduced diffusion coefficient D∗ at each packing

fraction φ is averaged over 5 such trajectories.

43



CHAPTER 3. METHODS

The parameters of tmax, ∆t and n for mono-disperse hard sphere system are

given in Table 3.1.

φ ∆t n tmax
0.05 0.0010 30000 30

0.10,0.15 0.00050 30000 15
0.20,0.25 0.00020 30000 6
0.30,0.35 0.00010 30000 3
0.40,0.45 0.000050 30000 1.5
0.46-0.48 0.000030 30000 0.9

φ : packing fraction

∆t : time between two consecutively sampled configurations

n : number of intervals in Simpson’s rule

tmax : upper limit of time for calculating velocity correlation

Table 3.1: Parameters in reduced unit for the calculation of diffusion coefficient of
mono-disperse hard sphere system.

2. binary hard sphere liquid

For φ < 0.50, the system is first set up as a face centered crystal structure, with

big and small spheres occupying different halves. The initial velocities are set

by random numbers taken from Maxwell-Boltzman distribution, adjusted to re-

move the net momentum of the system, then rescaled by
∑N

i=1
1
2
mv2

i = 3
2
NkBT ,

where in calculation m = 1.0, kBT = 1.0. Then the system is equilibrated with

107 MD steps based on collision dynamics [47] before collecting data. Each

trajectory records a configuration every time interval ∆t and records in total

1.5 ∗ 105 configurations. ∆t is chosen differently for different φ to ensure the

convergence of results. The velocity correlation is calculated with initial con-

figuration every 10 recorded configurations. So each trajectory offers 1.5 ∗ 104

configurations as the starting configuration of velocity correlation. We propa-

gate 2∗105 MD steps between two consecutive trajectories to avoid correlations

among different trajectories. The reduced diffusion coefficient D∗ is averaged
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over 10 such trajectories.

For φ ≥ 0.50, the system is first set up as a face centered crystal structure

of packing fraction φin = 0.50, with big and small spheres occupying different

halves. This is because an fcc structure of higher packing fraction with this

arrangement of big and small spheres would have overlapping particles. The

system is then compressed to the desired packing fraction φ by mechanical con-

traction method [53]. The procedure is as follows. For one compression, the sim-

ulation box is compressed from its current volume V0 to a volume V = 0.9990V0.

Then we rescale the position of every sphere to put every sphere back into the

simulation box. In the case of overlapped spheres after rescaling the positions,

the overlapped pairs of spheres are pulled away along the line of the centers of

the two spheres from each other to just avoid overlapping. Then we propagate

the system with 2000 Monte Carlo steps [54]. One Monte Carlo step here means

giving each of the N spheres in the system one trial move δr sequentially. δr =

(δx, δy, δz), −0.10σ ≤ δx ≤ 0.10σ,−0.10σ ≤ δy ≤ 0.10σ,−0.10σ ≤ δz ≤ 0.10σ.

A trial move is accepted if it does not cause any overlaps and is rejected other-

wise. After this, compress the system again. The process is repeated until the

desired density φ is reached. Usually this generates a configuration of which

the density is slightly bigger than the desired one. In this case, the simulation

box is enlarged to make the density be exactly the desired value. No rescaling

of positions of spheres is needed after enlargement because every sphere is still

in the simulation box.

After mechanical contraction, the system is of a configuration of desired packing

fraction. Then we set the initial velocities of particles in the system by random

numbers from Maxwell-Boltzman distribution. The velocities are shifted to re-

move the net momentum of the system, then rescaled by
∑N

i=1
1
2
mv2

i = 3
2
NkBT ,

where in calculation m = 1.0, kBT = 1.0. The system is then equilibrated with

107 MD steps based on collision dynamics [47] before collecting data. Each tra-
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jectory records a configuration every time interval ∆t and records in total 2∗105

configurations. ∆t is chosen differently for different φ to ensure the convergence

of the results. The velocity correlation is calculated with initial configuration

every 100 recorded configurations. So each trajectories offers 2 ∗ 103 config-

urations as the starting configuration of velocity correlation. We propagate

2 ∗ 105 MD steps between two consecutive trajectories. The reduced diffusion

coefficient D∗ is averaged over 10 such trajectories.

The parameters of tmax, ∆t and n for binary hard sphere liquid are given in

Table 3.2.

φ ∆t n tmax
0.05 0.00060 40000 24

0.10,0.15 0.00040 40000 16
0.20,0.25 0.00020 40000 8
0.30,0.35 0.00015 40000 6
0.40,0.45 0.000010 40000 4
0.50-0.58 0.000002 100000 2

φ : packing fraction

∆t : time between two consecutively sampled configurations

n : number of intervals in Simpson’s rule

tmax : upper limit of time for calculating velocity correlation

Table 3.2: Parameters used in reduced unit for calculation of diffusion coefficient of
binary hard sphere system.
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Results

This chapter presents results of the geodesic theory for hard sphere systems. It shows

geodesic theory predicts how dynamics slows down for hard sphere systems, as well as

some other features of dynamics. Through these results, along with comparison with

a soft particle liquid, geodesic theory proves that what is essential in the change of

dynamics in liquids is that available global paths are getting longer. Tests of param-

eters and results of molecular dynamics calculation of diffusion coefficient are given

at the end of the chapter.

4.1 Convergence of Geodesic Path Length

4.1.1 Convergence with ∆R

Recall that the geodesic theory predicts diffusion coefficient by

D = lim
∆R→∞

D0(∆R/g)2 (4.1)

D ∝ (∆R/g)2 (4.2)

The above equations work in the limit of ∆R → ∞. Therefore, we first need to

ensure the geodesic path is converged with respect to ∆R before generating further
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results and analysis.

What we need to do is to find a ∆R that is large enough so that the value of

(∆R/g)2 reaches its limit value. Fig. 4.1 and Fig. 4.2 show the convergence of (∆R/g)2

with respect to ∆R for mono disperse and binary hard sphere system respectively.

φ

(∆
R

/g
)2
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0
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108
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Figure 4.1: Convergence of (∆R
g

)2 with respect to ∆R for the mono disperse hard
sphere system. The packing fraction φ goes from 0.05 to 0.48. The mono disperse
system studied here is of size N = 108. The results are averaged over 5 unoptimized
paths. The figure shows that (∆R

g
)2 is well converged with ∆R. ∆R = 108σ is large

enough to have converged results for N = 108 for the mono disperse hard sphere
system.
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Figure 4.2: Convergence of (∆R
g

)2 with respect to ∆R for the binary hard sphere
system. The packing fraction φ goes from 0.05 to 0.55. The binary system studied
here is of size N = 108. The results are averaged over 5 unoptimized paths. The
figure shows that (∆R

g
)2 is well converged with ∆R. ∆R = 108σ is large enough to

have converged results for N = 108 for the binary hard sphere system.

4.1.2 Convergence with N

We also check the finite size effect of the results. A converged value of (∆R/g)2 means

it should not change with system size N . Because ∆R =
√∑N

j=1(rfj − rij)
2 ∝
√
N ,

if we fix per-particle displacement across different system sizes, ∆R can be chosen

accordingly. Since we know ∆R = 108σ is large enough to have converged results

for N = 108 for both systems from Fig. 4.1 and Fig. 4.2, ∆R is chosen so that

∆R/
√
N = 10σ. Fig. 4.3 and Fig. 4.4 show the convergence of (∆R/g)2 with respect

to N for both systems.
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Figure 4.3: Convergence of (∆R
g

)2 with respect to N for the mono disperse hard sphere
system. The results are averaged over 5 unoptimized paths. The figure shows that
there is no finite size effect in the results.

Fig. 4.1, Fig. 4.2, Fig. 4.3 and Fig. 4.4 serve as a check of the validity of the

geodesic paths. For a giving packing fraction φ, the converged geodesic path length

scales with ∆R, and the ratio (∆R
g

)2 does not change with N when keeping the dis-

tance travelled per particle fixed. The figures show that the geodesic paths behave

as we expect.

What Fig. 4.1, Fig. 4.2, Fig. 4.3 and Fig. 4.4 show more is that, when increas-

ing the density φ, the geodesic path lengths g are getting longer with respect to

the net distance ∆R travelled by the system, reflected in the decreasing trend of

(∆R
g

)2. They show that the available paths in configuration space do get longer with

increasing density.
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Figure 4.4: Convergence of (∆R
g

)2 with respect to N for the binary hard sphere sys-
tem. The results are averaged over 5 unoptimized paths. The figure shows that there
is no finite size effect in the results.

4.2 Optimization

The paths are shorter after optimization, as shown in Fig. 4.5 and Fig. 4.6. For both

systems, the path lengths are shorter on the rough order of 10% after optimization.
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Figure 4.5: Comparison of path lengths of unoptimized paths and optimized paths of
the mono disperse hard sphere system. The upper panel is the comparison in linear
scale and the lower panel is the same curve on log scale. The results are averaged
over 5 paths of ∆R = 108σ and N = 108.
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Figure 4.6: Comparison of path lengths of unoptimized paths and optimized paths
of the binary hard sphere system. The upper panel is the comparison in linear scale
and the lower panel is the same curve on log scale. The results are averaged over 5
paths of ∆R = 108σ and N = 108.
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4.3 Dynamics Slowing down

How well do the geodesic paths predict dynamics for liquids? We utilize Equation 4.2

to predict diffusion coefficient from landscape geodesics. Fig. 4.7 and Fig. 4.8 show

that the landscape geodesic theory predicts dynamics slowing down in simple liquid

- the mono disperse hard sphere system.

φ
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1.5
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MD
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Figure 4.7: The reduced diffusion coefficient D∗ as a function of density φ for mono
disperse hard sphere liquid. The density φ goes from 0.05 to 0.48. The dashed black
line is precise results from molecular dynamics calculation. The red solid line is the
prediction from geodesic theory. According to D ∝ (∆R/g)2, the two curves are
collapsed together by multiplying (∆R/g)2 by an overall constant. The overall con-
stant is chosen to be the average of the value of D∗/(∆R/g)2 at different φ. The
geodesic result is averaged over 5 optimized paths of ∆R = 108σ and N = 108 for
each density. By comparing the results from MD and geodesics, the figure shows that
geodesic theory predicts dynamics slowing down accurately.

Not only can geodesic theory predict dynamics slowing down for simple liquids,

it is also able to predict dynamics slowing down in glass-forming liquids. Fig. 4.9

and Fig 4.10 show that the landscape geodesic theory captures the slowing down of
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Figure 4.8: Log scale of Fig 4.7. With increasing density φ towards the freezing point,
the reduced diffusion coefficient D∗ drops by two orders of magnitude. Geodesic the-
ory captures the change in dynamics over multiple orders of magnitude.

dynamics for the glass-forming binary hard sphere liquid.

Through Fig. 4.7, Fig. 4.8, Fig. 4.9 and Fig. 4.10, this section shows that geodesic

theory is able to predict dynamics with pure landscape information only, without any

reliance on dynamical details. The global features of the potential energy landscape

are sufficient to predict dynamical trends. The rate of growth of the geodesic path

lengths quantitively captures the rate of dynamics slowing down.

Moreover, geodesics being able to predict dynamics is what we expect if they are

the inherent dynamics of a system. This is the first test to prove that the geodesics

represent the inherent dynamics of a system.
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Figure 4.9: The reduced self diffusion coefficient D∗ as a function of density φ for each
component of the binary hard sphere liquid, the upper panel for big spheres(D∗b ) and
the lower panel for small spheres(D∗s). In both panels, the dashed lines are precise
results from molecular dynamics calculation(MD), and the solid lines are the pre-
diction from geodesic theory(geodesic). The density φ goes from 0.05 to 0.57. The
geodesic result uses the overall path length of the whole system, and is averaged over
5 paths of ∆R = 108σ and N = 108 using optimized paths for density up to 0.55 and
unoptimized paths for φ = 0.56, 0.57. The curves in each panel are collapsed together
by multiplying (∆R/g)2 by an overall constant, which is chosen to be the average of
the value of D∗b/(∆R/g)2 and D∗s/(∆R/g)2 at different φ respectively. By comparing
the results from MD and geodesics, the figure shows that geodesic theory predicts
dynamics slowing down accurately.
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Figure 4.10: Log scale of Fig 4.9. With increasing density φ towards the mode
coupling transition, the reduced diffusion coefficient D∗ drops by four orders of mag-
nitudes. Geodesic theory captures the change in dynamics across multiple orders of
magnitude.
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4.4 Dynamic Heterogeneity

What other dynamical information is embedded in the geodesics? In this section, by

studying further the glass-forming binary hard sphere system, we show that geodesic

paths also contain information about dynamic heterogeneity.

For a Gaussian diffusion, the single particle displacement δrj(t) obeys a Gaussian

distribution, and the logarithm of single particle displacement

log10(δrj(t)) = log10 |rj(t)− rj(0)| (4.3)

has a probability distribution P (log10(δr), t) that is independent of time [55]. In [24],

it is shown that the distribution P (log10(δr), t) of the same binary hard sphere system

broadens with increasing density φ, and gains bimodality when φ reaches 0.58. The

increasing width of the distribution is a sign of developing non-Fickian motion [24],

and the bimodality at high φ shows there are groups of spheres with distinct dynamics

in the system [24].

Geodesics should contain information about dynamic heterogeneity if it reveals

inherent dynamics. Since the small particle and big particle are already two differ-

ent groups in the system, we only look at one species here to exclude the possibility

of “fake” dynamic heterogeneity from mixed species. Because at high density small

spheres have a higher mobility than big spheres, the trend should be more obvious in

small spheres, so we study the dynamic heterogeneity in small spheres.

Dynamic heterogeneity should appear in geodesics if different particles contribute

differently to the geodesics. One measure is the geodesic distance gj traveled by each

particle scaled by the net end-to-end displacement ∆Rj it has made. In analogy to

Equation 4.3, the logarithm of the quantity is

log10(δjs) = log10(
gjs

∆Rjs

) (4.4)
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where the subscript s means small spheres, and the subscript j labels each of them,

j = 1, · · · , Ns.

The probability density distribution P (log10(δjs)) has width ∆

∆ =
〈
(log10(δjs)− 〈log10(δjs)〉)2

〉 1
2 (4.5)

where 〈· · · 〉 denote ensemble average.

The width ∆ of the distribution should increase with density φ if dynamic hetero-

geneity is contained in geodesics. To calculate the distribution and the width, we use

50 unoptimized paths of ∆Rs = 90σ and N = 108. Rs is the net distance travelled

by small spheres,

∆Rs =

√√√√ Ns∑
j=1

(rfjs − rijs)
2 (4.6)

∆Rs = 90σ corresponds to a value of ∆R of the whole system slightly bigger than

108σ, so we expect the results to be converged. The distribution is done by his-

togram [56] with bin width 0.05.

The result is shown in Fig. 4.11. It demonstrates that geodesics reveal the growth

of dynamic heterogeneity with increasing density.

Unoptimized paths are used because of the limitation of computational time.

Comparison of the distributions from optimized paths and unoptimized paths shows

no discernible difference, as shown in Fig. 4.12.
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Figure 4.11: Growth of dynamic heterogeneity revealed by geodesics. The up-
per panel shows the distributions of log10(

gjs
∆Rjs

) for different densities φ =

0.10, 0.20, 0.30, 0.40, 0.50, 0.55, with φ increasing from left to right. The lower panel
shows that the width ∆ of the distributions increases with φ. The result is averaged
over 50 unoptimized paths of ∆Rs = 90σ and N = 108.
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Figure 4.12: Comparison of P (log10(
gjs

∆Rjs
) and the distribution width ∆ from opti-

mized paths and unoptimized paths. In both panels the solid lines represent results
from unoptimized paths and the dashed lines are for optimized results. In the upper
panel the density φ for each curve is 0.10, 0.20, 0.30, 0.40, 0.50, 0.55 respectively, with
φ increasing from left to right, the same as in Fig. 4.11. Both unoptimized and opti-
mized results are averaged over 5 paths of ∆Rs = 90σ and N = 108. The distribution
of log10(

gjs
∆Rjs

) shifts towards left slightly after optimization, as the optimized paths

are shorter. But the change of the width ∆ is within fluctuations.
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4.5 Participation Ratio

The participation ratio is studied to learn about the average number of particles

contributing to the geodesics [39].

Generally, for a motion of a system from configuration R(t) = (r1(t), · · · , rj(t), · · · , rN(t))

to configuration R(t+ δt) = (r1(t+ δt), · · · , rj(t+ δt), · · · , rN(t+ δt)) in a very small

time interval δt, the participation number n is

n(t) = 1/
N∑
j=1

|cj(t)|4 (4.7)

δR̂(t) =
R(t+ δt)−R(t)

|R(t+ δt)−R(t)|
=
∑
jµ

cju(t)|jµ〉 =
N∑
j=1

cj(t)|j〉 (4.8)

c2
j(t) = ṙ2

j(t)/
N∑
i=1

ṙ2
j(t) (4.9)

ṙj(t) =
rj(t+ δt)− rj(t)

δt
(4.10)

N∑
j=1

|cj(t)|2 = 1 (4.11)

where j labels the particles and µ = x, y, z labels the Cartesian coordinates.

The participation ratio
n

N
, N being the system size, is usually used to measure

the degree of localizations of motions [57] in a system. In an extreme case where there

are m particles in a system contributing equally to a motion and the other N − m

particles not contributing at all , we would have n = m.

c2
j = {

1

m
if j is one of the m particles

0, if j is one of the N −m particles
(4.12)
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n = 1/
N∑
j=1

|cj(t)|4 = m (4.13)

Thus this participation ratio measures the effective number of particles moving in

any one step along the path.

The participation number n of a geodesic is the participation number per step

averaged over the entire path.

n = 〈n(τ)〉 =

∫ 1

0

dτn(τ) (4.14)

where τ is the progress along the path.

In implementation, the participation number of a path is calculated as follows.

Denote the total path length as g, the total number of steps along the path as P , the

length of each step t as s(t), t being the index of steps along the paths, t = 0, 1, · · · , P ,

R(0) = Ri , R(P + 1) = Rf .

g =
P∑
t=0

s(t) (4.15)

s(t) = |R(t+ 1)−R(t)| (4.16)

The participation number n of the whole path is

n =

∑P
t=0(s(t) · n(t))

g
(4.17)

The participation number n(t) of step t in implementation is

n(t) = 1/
N∑
j=1

|cj(t)|4 (4.18)
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δR̂(t) =
R(t+ 1)−R(t)

|R(t+ 1)−R(t)|
=
∑
jµ

cju(t)|jµ〉 =
N∑
j=1

cj(t)|j〉 (4.19)

c2
j(t) = ṙ2

j(t)/
N∑
i=1

ṙ2
j(t) (4.20)

ṙj(t) = rj(t+ 1)− rj(t) (4.21)

Fig. 4.13 shows that the participation number n scales linearly with N , meaning

the motion along the geodesics is macroscopic.
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Figure 4.13: Participation ratio n/N as a function of density φ for different system
sizes N = 108 and N = 256. The results are averaged over 5 unoptimized paths.
The figure shows that the participation ratio does not depend on N . The motion is
therefore macroscopic along geodesics.
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The unoptimized paths are used in Fig. 4.13 for computational convenience. Par-

ticipation number does not vary much after optimization, as shown in Fig. 4.14.
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Figure 4.14: Participation number n as a function of density φ before and after op-
timization. The results are averaged over 5 paths of N = 108 and ∆R = 108σ. The
figure shows that the participation number does not vary much after optimization.

By comparing the participation ratio of the binary hard sphere liquid and soft

particle Kob-Andersen liquid, we show that the motion for both systems is macro-

scopic, as shown in Fig. 4.15. In both systems, a significant fraction of the system

moves, even in the most efficient pathways.
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Figure 4.15: Participation ratios n/N of the binary hard sphere liquid and Kob-
Andersen liquid, as a function of φ and kBT/εAA respectively. The vertical dashed
line is the mode coupling transition for both systems. The results for both systems
are averaged over 5 optimized paths of ∆R = 108σ and N = 108. The motion along
geodesics for the two systems are both macroscopic.

4.6 Non-Gaussian Parameter

In Fig. 4.15, it is shown that the motion along the geodesics is macroscopic for both

hard and soft particle systems. However, there is a slightly different trend of the

participation ratio when the system approaches the mode coupling transition. Is this

difference related to the nature of the geodesics or the potential energy landscape?

This section studies the participation ratio of each step n(t) to take a more detailed

look at the geodesic paths.
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Recall the non-Gaussian parameter α2 is

α2(t) =
3

5

〈δr4
j (t)〉

〈δr2
j (t)〉2

− 1 (4.22)

where δr(t) = |rj(t)− rj(0)| is the displacement of particle j during time t.

Besides the fact that α2 measures how non-Gaussian the distribution of single

particle displacements is, α2 is also related to the participation ratio
n

N
.

c2
j(t) = ṙ2

j(t)/
N∑
i=1

ṙ2
j(t) (4.23)

n(t) =
1∑N

j=1 |cj(t)|4
= N

( 1

N

∑N
j=1 |δrj(t)|2

)2

1

N

∑N
j=1 |δrj(t)|4

= N
〈|δr(t)|2〉2

〈|δr(t)|4〉
(4.24)

n

N
=

3

5

1

1 + α2(t)
(4.25)

Equation 4.25 shows that the participation ratio and α2 carry the same informa-

tion. Also, Equation 4.25 shows that a perfect Gaussian diffusion with α2 = 0 has

participation ratio
n

N
≈ 0.6. Geodesics of normal liquid at equilibrium do have this

value [39]. Besides, a motion with few-particle contributions has large positive value

of α2, while a motion involving more than Gaussian numbers of particles has small

negative values of α2 (−0.4 ≤ α2 < 0).

By looking at the participation ratio and α2 along the path, we can investigate

how Gaussian the motion of each step is. Fig. 4.16 shows the probability distribution

of the participation ratio n/N and non-Gaussian parameter α2 of each step.

Fig. 4.16 shows that there are few-particle moves along geodesics in hard sphere

system. Due to the singularity of the potential energy, the potential energy violation

of overlapped particles can be solved locally without disturbing other particles. Those

few particle motions are labeled as n = 2, 3, 4 in the lower panel of Fig. 4.16. The
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weight of this few-particle motion decreases as density increases but is present at all

densities.

The locality of interaction among hard spheres also leads to a kind of motion

involving a large portion of particles of the system with increasing density, because

each local overlapping has to be solved entirely since the rearrangement of other par-

ticles will not lower the potential energy. As with increasing density the surrounding

particles of overlapped particles have to rearrange in coordination to make enough

free space to solve the overlapping. On the contrary, soft particle system can easily

“spread the pain” of potential energy violation. As shown in Fig. 4.17, the detailed

motion for Kob-Andersen liquid is different from the hard sphere liquid. There are no

obvious few-particle motion and there are no obvious very non-Gaussian steps. The

difference in potential energy landscape leads to this difference.

Unoptimized paths are used for both systems for computational convenience.

The distribution does not vary much after optimization, as shown in Fig. 4.18 and

Fig. 4.19.
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Figure 4.16: Probability distributions of participation ratio n/N (upper panel) and
non-Gaussian parameter α2 (lower panel) of individual steps along the geodesics of
the binary hard sphere system at different densities. The vertical dashed line marks
the location of perfect Gaussian behavior in both panels. The discrete peaks at large
α2 indicate few-particle moves of n = 2, 3, 4... (Equation 4.25 implies n = 2, 3, 4, · · ·
correspond to α2 = 31.4, 20.6, 15.2, · · · respectively). The results are averaged over
20 unoptimized paths of ∆R = 108σ and N = 108.
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Figure 4.17: Probability distributions of participation ratio n/N (upper panel) and
non-Gaussian parameter α2 (lower panel) of individual steps along the geodesics of
the Kob-Andersen system at different temperatures. The vertical dashed line marks
the location of perfect Gaussian behavior in both panels. The results are averaged
over 20 unoptimized paths of ∆R = 108σ and N = 108.
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Figure 4.18: Comparison of the probability distributions of single step participation
ratio of unoptimized and optimized paths for binary hard sphere system. The op-
timized results are averaged over 5 optimized paths of ∆R = 108σ and N = 108.
The unoptimized results are averaged over 20 unoptimized paths of ∆R = 108σ and
N = 108. The figure shows the distribution does not vary much after optimization.
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Figure 4.19: Comparison of the probability distributions of single step participation
ratio of unoptimized and optimized paths for Kob-Andersen system. The optimized
results are averaged over 5 optimized paths of ∆R = 108σ and N = 108. The unop-
timized results are averaged over 20 unoptimized paths of ∆R = 108σ and N = 108.
The figure shows the distribution does not vary much after optimization.
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4.7 Data Fitting

This section discusses how the data from our calculation for the binary hard sphere

system fit into different formulas used to describe glassy behaviors. The data used

are the geodesic results of (∆R/g)2 and MD results of D∗b of the binary hard sphere

system for density φ from 0.53 to 0.57. Although the density range of our data is not

close enough to the mode coupling transition, we nevertheless take a look at how the

data fits. The three fittings listed below are in analogy with [24], where Szamel et

al. fit their data of the same binary hard sphere system at higher densities. For each

fitting, we use the same transition density as in [24] to avoid overfitting. Szamel et al.

found that their data of relaxation time and length scale is in remarkable agreement

with Berthier and Witten’s fitting, and VTF fitting of relaxation time is the best over

the largest range of densities. We find our data fit mode coupling theory the best

from the following figures and goodness of fit.

4.7.1 Mode Coupling Theory

In [24], Szamel et al. fit their data of diffusion coefficient of the same binary hard

sphere system for 0.55 ≤ φ ≤ 0.58 with φc = 0.59, according to mode coupling

theory [24].

D−1 ∝ a(φc − φ)−γ, φc = 0.590 (4.26)

where D is the diffusion coefficient of the whole system, calculated from mean square

displacement from their Monte Carlo calculation. They found γ = 1.94.

Here we fit the value of (∆R/g)2 by mode coupling theory, as shown in Fig. 4.20.

(∆R/g)2 ∝ a(φc − φ)γ, φc = 0.590 (4.27)

For the fit we find γ = 1.450.

We also fit the data of D∗b from molecular dynamic calculation, as shown in
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POWER FIT DATA:
Goodness of Fit:
R2 = 0.999301

R2 = 0.998602(residualdegreesoffreedomadjusted)
Y = e(A ∗ log(X) +B)

A = 1.45039297355221763475E+00
B = -1.40404426074707444627E+00

Figure 4.20: Mode coupling fitting of (∆R
g

)2 as a function of φc−φ. The red dots are

the data points of (R
g

)2 from 5 paths of ∆R = 108σ and N = 108, using optimized
paths for φ = 0.53, 0.54, 0.55 and unoptimized paths for φ = 0.56, 0.57. The blue
curve is the mode coupling fit. The bottom box is the parameters of the fit.

Fig. 4.21.

D∗b ∝ a(φc − φ)γ, φc = 0.590 (4.28)

We find γ = 1.688 for this fit.
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POWER FIT DATA:
Goodness of Fit:
R2 = 0.991879

R2 = 0.983757(residualdegreesoffreedomadjusted)
Y = e(A ∗ log(X) +B)

A = 1.68844766460645190342E+00
B = 5.31815138570834733400E-03

Figure 4.21: Mode coupling fitting of reduced diffusion coefficient D∗b as a function of
φc− φ. The red dots are the data points of D∗ from molecular dynamics calculation.
The blue curve is the mode coupling fit. The bottom box is the parameters of the fit.

4.7.2 Vogel-Fucher-Tamman Formula

In [24], Szamel et al. fit their data of relaxation time τα for 0.55 ≤ φ ≤ 0.5905 with

φ0 = 0.6122, according to Vogel-Fucher-Tamman formula [24].

ln(τα) ∝ A(φ0 − φ)−1, φ0 = 0.6122 (4.29)
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They found A = 0.222.

We fit the value of (∆R/g)2 by the same formula, as shown in Fig. 4.22.

ln((∆R/g)−2) ∝ A(φ0 − φ)−1, φ0 = 0.6122 (4.30)

We find A = 0.1375 for this fit.

We also fit the data of D∗b from molecular dynamic calculation, as shown in

Fig. 4.23.

ln(D∗b ) ∝ A(φ0 − φ)−1, φ0 = 0.6122 (4.31)

We find A = 0.1596.
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EXPONENTIAL FIT DATA:
Goodness of Fit:
R2 = 0.998632

R2 = 0.997265(residualdegreesoffreedomadjusted)
Y = e(A ∗X +B)

A = 1.37528492585448885999E-01
B = 3.83832956016065551808E+00

Figure 4.22: (∆R
g

)2 as a function of φ0 − φ. The red dots are the data points

of (R
g

)2 from 5 paths of ∆R = 108σ and N = 108, using optimized paths for
φ = 0.53, 0.54, 0.55 and unoptimized paths for φ = 0.56, 0.57. The blue curve is
the Vogel-Fucher-Tamman fit. The bottom box is the parameters of the fit.
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EXPONENTIAL FIT DATA:
Goodness of Fit:
R2 = 0.986225

R2 = 0.972451(residualdegreesoffreedomadjusted)
Y = e(A ∗X +B)

A = 1.59642954332774783532E-01
B = 2.83629463279087445926E+00

Figure 4.23: Reduced diffusion coefficient D∗b as a function of φ0 − φ. The red dots
are the data points of D∗ from molecular dynamics calculation. The blue curve is the
Vogel-Fucher-Tamman fit. The bottom box is the parameters of the fit.
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4.7.3 Berthier and Witten Formula

In [24], Szamel et al. fit their data of relaxation time ταfor 0.55 ≤ φ ≤ 0.5905 with

φ0 = 0.635 according to Berthier and Witten formula [24].

ln(τα) ∝ A(φ0 − φ)−2, φ0 = 0.635 (4.32)

They found A = 0.017.

We fit the value of (∆R/g)2 by the same formula, as shown in Fig. 4.24.

ln((∆R/g)−2) ∝ A(φ0 − φ)−2, φ0 = 0.635 (4.33)

We find A = 0.01083 for this fit.

We also fit the data of D∗b from molecular dynamic calculation, as shown in

Fig. 4.25.

ln(D∗b ) ∝ A(φ0 − φ)−2, φ0 = 0.635 (4.34)

We find A = 0.01256 for this fit.
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EXPONENTIAL FIT DATA:
Goodness of Fit:
R2 = 0.997713

R2 = 0.995426(residualdegreesoffreedomadjusted)
Y = e(A ∗X +B)

A = 1.08322324636644928830E-02
B = 4.54052962271440030406E+00

Figure 4.24: (∆R
g

)2 as a function of φ0 − φ. The red dots are the data points

of (R
g

)2 from 5 paths of ∆R = 108σ and N = 108, using optimized paths for
φ = 0.53, 0.54, 0.55 and unoptimized paths for φ = 0.56, 0.57. The blue curve is
the Berthier and Witten fit. The bottom box is the parameters of the fit.
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EXPONENTIAL FIT DATA:
Goodness of Fit:
R2 = 0.983282

R2 = 0.966565(residualdegreesoffreedomadjusted)
Y = e(A ∗X +B)

A = 1.25595041101043327497E-02
B = 3.65360187240575573497E+00

Figure 4.25: Reduced diffusion coefficient D∗b as a function of φ0 − φ. The red dots
are the data points of D∗ from molecular dynamics calculation. The blue curve is the
Berthier and Witten fit. The bottom box is the parameters of the fit.
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4.8 Limitations of Generating Geodesics at High

Density

The results of binary hard sphere system goes to density φ = 0.57. At high density

close to the mode coupling transition, finding pairs of end points that are far away

enough from each other is the major hindrance of getting geodesic results.

The trend is that when φ is high, the computational time needed to get end points

by regular MD grows rapidly. Table 4.1 shows the time needed for regular molecular

dynamics to find one pair of end points distanced by ∆R = 108σ for the binary hard

sphere system of N = 108. The result is recorded in the rough order of thousands.

Within the given computational time, the regular molecular dynamics has not been

able to find a pair of such end points for density φ = 0.598 and higher.

The difficulty of finding end points that are enough far away does not exist only

in glass-forming hard sphere systems. In [32] and [33], Wang et al. found similar

behavior of the glass-forming Kob-Andersen liquid, that beyond a certain critical

temperature (the empirical mode-coupling temperature), they have not found a pair

of end points that are far away by a required distance.

A possible explanation is that the configuration space is divided up to different

separate regions beyond a certain critical value of φ (or beyond a critical tempera-

ture in the case of soft particle liquid), similar to the “ocean -lake” analogy in [32].

Upon increasing φ (or decreasing temperature in the case of soft particle liquid), the

available paths between two well separated configurations becomes more convoluted.

φ time (seconds)
0.50 700
0.58 80,000
0.59 520,000

0.597 3,500,000

Table 4.1: Time needed to generate one pair of end points of ∆R = 108σ by regular
MD, for the binary hard sphere system of N = 108.
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The regular molecular dynamics method has more difficulty propagating the system

to a distant configuration. At certain critical point, there may be a sharp transition

that the configuration space changes to a disconnected state. The system is confined

in one of the disconnected regions and is non-ergodic [32]. This percolation transition

of the potential energy landscape causes the regular molecular dynamics to fail to

propagate the system to a configuration far away.

4.9 Statistics along the Path

To take a more detailed look at the paths, this section shows some statistics of the

steps along the paths of the binary hard sphere system.

4.9.1 Fractions of Direct Steps and Collision Avoidance Steps

To see the fractions of different kinds of steps along the paths, we compare the number

of direct steps and the number of collision avoidance steps along the paths, shown

in Table 4.2. The results are averaged over 5 unoptimized paths of N = 108 and

∆R = 108σ and are recorded in the rough order of thousands of steps.

Table 4.2 shows that the major portion of the path is the collision avoidance step,

which is the segments of paths that are going around the boundaries. This is the

same as soft particle liquid, in which case the major portion of a path is from escape

steps that are going around boundaries too. It is consistent with the fact that in the

high dimensional configuration space, most configurations lie close to the boundaries

φ
number of number of fraction of

direct steps collision avoidance steps collision avoidance steps
0.30 18,000 300,000 94%
0.50 43,000 1,000,000 96%
0.58 150,000 6,000,000 98%

Table 4.2: Number of different steps along a path, for the binary hard sphere system
of N = 108 and ∆R = 108σ.
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in the potential energy landscape ensemble.

Besides, Table 4.2 also shows that the fraction of collision avoidance step increases

upon increasing φ. With increasing density, the forbidden regions occupy bigger frac-

tion of the configuration space. There is less chance of successful direct steps due to

the decrease of free space. The increasing fraction of collision avoidance steps means

that the portion of the segments of geodesics that are going around the obstacles

increases.

4.9.2 Overlaps in Failed Direct Steps

In a failed direct step, a particle with overlaps can have from 1 to N − 1 overlapping

partners. Denote the number of the overlapping partners that one overlapped particle

has as v (v = 1, 2, · · · , N − 1). Figure 4.26 shows the distribution of v. v is clearly

a local property that is independent of N , which is sensible because of the locality

of hard sphere potential. Also, when packing fraction φ gets higher, an overlapped

particle has a higher probability of having more overlapping partners. It is reflected

in the distribution of v that v has a higher weight at relatively large values when φ

is higher.

To show that v is independent of N , we compare the distributions of v of N = 108

and N = 256 in the same graph, shown in Fig. 4.27.
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Figure 4.26: Probability distributions of the number of overlapping partners one over-
lapped particle has. The upper panel is the result of the binary hard sphere system
of size N = 108 and lower panel is of N = 256. Each distribution is from all failed
direct steps of 1 unoptimized path of ∆R/σ = 10

√
N . Particles that do not have

overlap in a failed direct step are not taken into account in the distribution.
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Figure 4.27: Comparison of probability distributions of the number of overlapping
partners one overlapped particle has. The data is the same as in Fig. 4.26. This
figure shows that v is independent of N .

4.9.3 Number of Particles in a Collision Avoidance Step

In a collision avoidance step, particles that are spatially close to overlapped particles

have to rearrange in coordination to solve the overlap and reposition the system in

configuration space, especially when density is high. Denote the number of particles

that actually moved in a collision avoidance step as c (c = 2, 3, · · · , N).
c

N
is the

fraction of particles involved in a collision avoidance step in the system. Fig. 4.28

shows the distribution of
c

N
. Similar to the participation ratio, the distribution of

c

N
demonstrates that the collision avoidance step can have few particle moves as well as

large proportion of particle moves. The weight of large proportion of particle moves

increases with increasing density, which is due to the locality of hard sphere potential

as discussed in Section 4.5.
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Figure 4.28: Probability distributions of the fraction of particles moved in a collision
avoidance step. The upper panel is the result of the binary hard sphere system of
size N = 108 and lower panel is of N = 256. Each distribution is from all collision
avoidance steps of 1 unoptimized path of ∆R/σ = 10

√
N .
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To compare
c

N
for different N , we compare the distribution of v for N = 108 and

N = 256 in the same graph, shown in Fig. 4.29. It shows
c

N
is independent of N ,

same as the participation ratio.
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Figure 4.29: Comparison of probability distributions of the fraction of particles moved
in a collision avoidance step for N = 108 and N = 256. The data is the same as in

Fig. 4.28. This figure shows that
c

N
is independent of N .

4.9.4 Groups of Particles in a Collision Avoidance Step

The particles that actually moved in a collision avoidance step can be divided into dif-

ferent groups according to the cause of the move, traced back to the initial overlapped

particles after the failed direct step.

For example, if after one failed direct step, particle 1 and 2 overlap after the failed

move, moving them apart involving moving particle 3. And particle 101, 102, 103

overlap after the failed move, moving them apart involving moving particle 104. Then
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particle 1, 2, 3 are in one group, particle 101, 102, 103, 104 are in another group.

If the collision avoidance move invoked by two different groups involves the same

particle, then the two groups joins to be one big group. In the above example, if

moving apart particle 1 and 2 causes moving particle 3 and 50, and moving apart

particle 101, 102, 103 causes moving particle 104 and 50, then particle 1, 2, 3, 50,

101, 102, 103, 104 are counted as one group.

4.9.4.1 Number of Particles in a Group in a Collision Avoidance Step

Denote the number of particles in one group in a collision avoidance step as s. Accord-

ing to the above definition, a group has at least 2 particles in it. Fig. 4.30 shows the

distribution of s. The motion of each group is localized and the number of particles

in a group is independent of N because of the locality of the hard sphere potential.

s also has a very weak φ dependence.

To show that s is independent of N , we compare the distribution of s for N = 108

and N = 256 in the same graph, shown in Fig. 4.31.
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Figure 4.30: Probability distributions of the number of particles per group in a colli-
sion avoidance step. The upper panel is the result of the binary hard sphere system
of size N = 108 and lower panel is of N = 256. Each distribution is from all collision
avoidance steps of 1 unoptimized path of ∆R/σ = 10

√
N .
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Figure 4.31: Comparison of probability distributions of the number of particles per
group for N = 108 and N = 256. The data is the same as in Fig. 4.30. This figure
shows that s is independent of N .

4.9.4.2 Number of Groups in a Collision Avoidance Step

Denote the number of groups in a collision avoidance step as m. Fig. 4.32 shows the

distribution of
m

N
.

m should behave macroscopically because of the singularity of the hard sphere

potential. To show that m ∝ N , we compare the distributions of
m

N
for N = 108 and

N = 256 in the same graph, shown in Fig. 4.33.
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Figure 4.32: Probability distributions of the number of groups per collision avoidance
step. The upper panel is the result of the binary hard sphere system of size N = 108
and lower panel is of N = 256. Each distribution is from all collision avoidance steps
of 1 unoptimized path of ∆R/σ = 10

√
N .
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Figure 4.33: Comparison of probability distributions of the number of groups per col-
lision avoidance step for N = 108 and N = 256. The data is the same as in Fig. 4.32.

This figure shows that
m

N
is independent of N , that m ∝ N .

4.9.4.3 Conditional Distribution of Number of Particles per Group

To further see whether there exists a correlation between the number of particles per

group and the number of groups per step, another distribution of particles per group

is calculated, based on the number of groups in the collision avoidance step.

Three distributions are calculated from the data of collision avoidance steps.

• Distribution of number of particles per group when the number of group is

less than a lower bound. This part is considered as intensive. The probability

density function is denoted as p(sl).

• Distribution of number of particles per group when the number of group is big-

ger than an upper bound. This part is considered as extensive. The probability

density function is denoted as p(sr).
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• Distribution of number of particles per group when the number of group is be-

tween the lower bound and the upper bound. This part is a mix of intensive and

extensive group motion. The probability density function is denoted as p(sm).

For N = 108, the lower bound is chosen to be 4 and the upper bound is 18. For

N = 256, the lower bound is chosen to be 10 and the upper bound is 45.

Fig. 4.34 shows these three distributions of the binary hard sphere system at den-

sity φ = 0.50. The distributions of the system at other densities is similar. There is

no distinct differences in these distributions. It means there are not distinctive kinds

of motions in collision avoidance steps.

We also compare the two graphs in Fig. 4.34, shown in Fig. 4.35.

Through this section, we show that the collision avoidance step takes up the major

fraction of a path, especially when density is high. Also, due to the singularity of the

hard sphere potential, both the number of overlapping partners that an overlapped

particle has and the number of particles that are involved in a collision avoidance step

are independent of N , and the collision avoidance step has both few particle moves

and large proportion of particle moves. The hard sphere potential affects the detailed

properties of the paths.
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Figure 4.34: Conditional distributions of the number of particles per group in a col-
lision avoidance step. The upper panel is the result of the binary hard sphere system
of size N = 108 and lower panel is of N = 256. Each distribution is from all collision
avoidance steps of 1 unoptimized path of ∆R/σ = 10

√
N .
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Figure 4.35: Comparison of conditional distributions of the number of particles per
group in a collision avoidance step for N = 108 and N = 256. The data is the same
as in Fig. 4.34. This figure shows that the conditional distributions are independent
of N .

4.10 Parameter Test

This section shows numerical tests used to pick optimum parameters. The optimum

parameters are the ones shown in Chapter 3 and are used for generating main results.

4.10.1 Direct Step Length δdi

δdi = 0.01σ is used as the length of the direct step of the whole system. Fig. 4.36

shows the test result of different values of δdi, while fixing the values of all other

parameters as shown in Chapter 3.

Fig. 4.36 shows that δdi = 0.01σ and δdi = 0.1σ are able to generate shorter paths

than δdi = 0.001σ. δdi = 0.01σ and δdi = 0.1σ also take similar amount of computa-
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Figure 4.36: Test of different values of δdi for the binary hard sphere system. The
density φ goes from 0.05 to 0.55. The results are averaged over 5 unoptimized paths
of ∆R = 108σ and N = 108.

tional time to find a path. To avoid that too big a step may jump over a forbidden

region, we choose δdi = 0.01σ to ensure the continuous and smoothness of the path.

4.10.2 Collision Avoidance Step Length δca

δca = 0.0001σ is used as the length of the collision avoidance step of each particle.

Fig. 4.37 shows the test result of different values of δca, while fixing the values of all

other parameters as shown in Chapter 3.

Fig. 4.37 shows that δca = 10−4σ and δca = 10−5σ are able to generate shorter

paths than δca = 10−3σ. But δca = 10−5σ takes longer computational time to find a

path than δca = 10−4σ, so we choose δca = 10−4σ.
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Figure 4.37: Test of different values of δca for the binary hard sphere system. The
density φ goes from 0.05 to 0.55. The results are averaged over 5 unoptimized paths
of ∆R = 108σ and N = 108.

4.10.3 Fictitious Potential

Recall the fictitious potential used for generating geodesics for hard sphere systems

is

µij =

 0 : rij ≥ σij

ν(rij/σij) : rij < σij

(4.35)

ν(x) > 0 if 0 < x < 1 (4.36)

νij(x) = σ2
ij(1− x) (4.37)
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Trials with an alternate potential

νaij(x) = σ3
ij(

1

3
x3 − 1

2
x2 +

1

6
) (4.38)

show no discernible numerical differences, as shown in Fig. 4.38.
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Figure 4.38: Test of different fictitious potentials for the binary hard sphere system.
The density φ goes from 0.05 to 0.55. The results are averaged over 5 unoptimized
paths of ∆R = 108σ and N = 108. The figure shows that there is no distinct
numerical differences.

The fictitious potential and the resulting fictitious force is just a tool to let the sys-

tem “detect” the forbidden regions around it in configuration space, thus the detailed

form of the potential energy function should not matter for finding geodesics.
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4.11 MD Calculation of Diffusion Coefficients of

Hard Sphere Liquids

This section gives numerical tests to pick optimum parameters used in molecular dy-

namics calculation of diffusion coefficients of the hard sphere liquids, as well as the

comparison of the calculation results with published data.

4.11.1 Mono-disperse Hard Sphere Liquid

The parameters used for calculating the diffusion coefficient of the mono disperse

hard sphere system is Table 4.3. The result is shown in Fig. 4.39.
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Figure 4.39: Reduced diffusion coefficient D∗ as a function of φ for the mono disperse
hard sphere system.

To test whether the value of tmax is large enough to get converged result, we run

the same MD calculation with two different sets of parameters as shown in Table 4.4.
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φ ∆t n tmax
0.05 0.0010 30000 30

0.10,0.15 0.00050 30000 15
0.20,0.25 0.00020 30000 6
0.30,0.35 0.00010 30000 3
0.40,0.45 0.000050 30000 1.5
0.46-0.48 0.00030 30000 0.9

φ : packing fraction

∆t : time between two consecutively sampled configurations

n : number of intervals in Simpson’s rule

tmax : upper limit of time for calculating velocity correlation

Table 4.3: Parameters for calculation of the diffusion coefficient of the mono disperse
hard sphere system

The upper panel in Table 4.4 has a shorter tmax than the lower panel for each density

while fixing ∆t the same. By comparing the results with the two different sets of

parameters, we show that the value of tmax is large enough to generate converged

result, as shown in Fig. 4.40.

The final results of diffusion coefficients is calculated with an even larger tmax and

smaller ∆t, as shown in Table 4.3. A comparison of the final results with the testing

results show that the value of ∆t is small enough to have converged results, as shown

in Fig. 4.41.
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φ ∆t n tmax
0.05 0.00150 10000 15

0.10,0.15 0.00080 10000 8
0.20,0.25 0.00050 10000 5
0.30,0.35 0.00020 10000 2
0.40,0.45 0.00010 10000 1
0.46-0.48 0.00060 10000 0.6

φ ∆t n tmax
0.05 0.00150 12000 18

0.10,0.15 0.00080 12000 9.6
0.20,0.25 0.00050 12000 6
0.30,0.35 0.00020 12000 2.4
0.40,0.45 0.00010 12000 1.2
0.46-0.48 0.00060 12000 0.72

φ : packing fraction

∆t : time between two consecutively sampled configurations

n : number of intervals in Simpson’s rule

tmax : upper limit of time for calculating velocity correlation

Table 4.4: Parameters for testing tmax for the mono disperse hard sphere system
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Figure 4.40: Convergence of the results of D∗ with different tmax. The red curve is
the diffusion constants D∗ts calculated with a smaller value of tmax as shown in the
upper panel of Table 4.4. The blue curve is the diffusion constants D∗tl calculated
with a larger value of tmax as shown in the lower panel of Table 4.4. This figure shows
that the value of D∗ is converged with respect to the chosen tmax.
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Figure 4.41: Convergence of the results of D∗ with different ∆t. The red curve and
the blue curve is the same as in Fig. 4.40. The black curve is the diffusion coefficient
calculated with parameters in Table 4.3 and is the data used for final results. This
figure shows that the value of D∗ is well converged with the chosen ∆t and tmax.
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4.11.1.1 Comparison with Literature

We compare our results of diffusion coefficient of the mono-disperse hard sphere sys-

tem with published MD results in literature. [58] lists the diffusion coefficients for the

mono disperse hard sphere system of sizeN = 512 at density φ = 0.10, 0.20, 0.30, 0.40, 0.494.

We compare our results with [58] at density φ = 0.10, 0.20, 0.30, 0.40 in Fig. 4.42.
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Figure 4.42: Comparison of our results of reduced diffusion coefficient D∗ with liter-
ature results from [58]. The red curve is D∗ from our MD results of N = 108. The
blue curve D∗ Freeman is the MD results from [58] of N = 512. The figure shows
that our results are converged with the literature results.

[59] studied in detail the diffusion coefficients of the mono-disperse hard sphere

liquid of different system sizes N for finite size effect. We compare our results with

theirs in Fig. 4.43.

We investigate the finite size effect on the calculation of diffusion coefficients. De-

105



CHAPTER 4. RESULTS

φ

D
*

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6
D

*

D
*
 Heyes N = 500

D
*
 Heyes N = ∞

Figure 4.43: Comparison of our results of reduced diffusion coefficient D∗ with litera-
ture results from [59]. The red curve is D∗ from our MD results of N = 108. The blue
curve D∗ Heyes N = 500 is the MD results from [59] of N = 500. The black curve
D∗ Heyes N =∞ is results from [59] where they obtained the data by extrapolation.
The figure shows that there is a systematic finite-size effect on the result of D∗.

note the percentage error as ε =
(D∗−D∗HeyesN=∞)

D∗HeyesN=∞
, where D∗ is the results of the reduced

diffusion coefficient calculated by MD, and D∗HeyesN=∞ is the numerical results of the

reduced diffusion coefficient of of N = ∞ from [59] obtained by extrapolation. The

data from [58] of N = 512 has a percentage error ε around −5%. The data from [59]

of N = 500 has a percentage error ε around −6%. The percentage error of our results

of N = 108 is around −12%. The differences of results from different calculations are

from finite size effect and fluctuation.

However, finite size effect acts as an overall constant in the absolute value of dif-

fusion coefficient, so our results based on formula D ∝ (∆R/g)2 are still valid. To
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show this, we fit the diffusion coefficients from both the result of N = 500 from [59]

and our MD result to the diffusion coefficient of N = 4000 from [59], by multiplying

an overall constant c, which is obtained by matching the data at φ = 0.4 respectively.

The results are shown in Fig. 4.44.
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Figure 4.44: Finite size effect on the calculation of diffusion coefficient. The red curve
D∗ Heyes N = 4000 is results from [59]. The blue curve c1D

∗ Heyes N = 500 is

the MD results from [59] of N = 500 multiplied by constant c1, c1 =
D∗HeyesN=4000

D∗HeyesN=500

at

φ = 0.40. The black curve c2D
∗ is our MD results of D∗ of N = 108 multiplied by

constant c2, c2 =
D∗HeyesN=4000

D∗
at φ = 0.40. The figures shows that finite size effect

acts as an overall constant in the value of diffusion coefficient.

Fig. 4.45 shows the log scale of Fig. 4.44.
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Figure 4.45: Log scale of Figure 4.44.

4.11.2 Binary Hard Sphere Liquid

The parameters used for calculating the diffusion coefficient of the binary hard sphere

system is Table 4.5. The result is shown in Fig. 4.46.

We vary the value of ∆t while fixing the value of tmax to test that ∆t is small

enough to give converged results. The parameters are in Table 4.6 and the result is

shown in Fig. 4.47.

We also test with smaller values of tmax while fixing ∆t to see that the value of

tmax is big enough to generate converged results. The parameters are in Table 4.7

and the result is shown in Fig. 4.48.
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φ ∆t n tmax
0.05 0.00060 40000 24

0.10,0.15 0.00040 40000 16
0.20,0.25 0.00020 40000 8
0.30,0.35 0.00015 40000 6
0.40,0.45 0.000010 40000 4
0.50-0.58 0.00002 100000 2

φ : packing fraction

∆t : time between two consecutively sampled configurations

n : number of intervals in Simpson’s rule

tmax : upper limit of time for calculating velocity correlation

Table 4.5: Parameters for the calculation of the diffusion coefficient of the binary
hard sphere system

φ ∆t n tmax
0.05 0.00120 20000 24

0.10,0.15 0.00080 20000 16
0.20,0.25 0.00040 20000 8
0.30,0.35 0.00030 20000 6
0.40,0.45 0.00020 20000 4
0.46-0.48 0.00005 40000 2

φ : packing fraction

∆t : time between two consecutively sampled configurations

n : number of intervals in Simpson’s rule

tmax : upper limit of time for calculating velocity correlation

Table 4.6: Parameters for testing ∆t for the calculation of the diffusion coefficient of
the binary hard sphere system
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Figure 4.46: Reduced diffusion coefficient D∗ as a function of φ of the binary hard
sphere system. The red curve is the reduced self diffusion coefficient of big spheres
D∗b . The blue curve is the reduced self diffusion coefficient of small spheres D∗s .
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Figure 4.47: Convergence of the results of D∗ with different ∆t. The solid red curve
and the solid blue curve are the reduced self diffusion coefficient for big spheres and
small spheres respectively, calculated with parameters in Table 4.5. The dashed
black curve and the dashed grey curve are the reduced self diffusion coefficient for big
spheres and small spheres respectively, calculated with parameters in Table 4.6 which
has a bigger value of ∆t than Table 4.5 for each density. This figure shows that the
value of D∗ is well converged with the chosen ∆t.
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φ ∆t n tmax
0.05 0.00120 15000 18

0.10,0.15 0.00080 15000 12
0.20,0.25 0.00040 15000 6
0.30,0.35 0.00030 15000 4.5
0.40,0.45 0.00020 15000 3
0.46-0.48 0.00010 15000 1.5

φ : packing fraction

∆t : time between two consecutively sampled configurations

n : number of intervals in Simpson’s rule

tmax : upper limit of time for calculating velocity correlation

Table 4.7: Parameters for testing tmax for the calculation of the diffusion coefficient
of the binary hard sphere system
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Figure 4.48: Convergence of the results of D∗ with different tmax. The solid red
curve and the solid blue curve are the reduced self diffusion coefficient for big spheres
and small spheres respectively, calculated with parameters in Table 4.5. The dashed
black curve and the dashed grey curve are the reduced self diffusion coefficient for
big spheres and small spheres respectively, calculated with parameters in Table 4.7
which has a smaller value of tmax than Table 4.5 for each density. This figure shows
that the value of D∗ is well converged with the chosen tmax.
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Chapter 5

Other Path-finding Methods

There are other methods of finding paths, some not necessarily the shortest path.

These methods are documented in this chapter as well as some results. This chapter

first presents a new method of path-finding for soft particle systems, which generates

similar paths to the original method shown in Chapter 3 but with higher computa-

tional efficiency. Then this chapter records a method of path-finding for the hard

sphere liquids, which generates longer paths than the method used in Chapter 3.

5.1 Soft Particle Liquid

5.1.1 Method

A new method of finding geodesics for soft particle liquids is given in this section.

It follows the basic idea of the original method in Chapter3 based on Kuhn-Tucker

theorem, that the path consists of segments of unconstrained steps (V (R) < EL)

and segments of steps obeying the equality (V (R) = EL). Similar to the situation in

the original method, the system always heads towards the end point until it hits an

obstacle in the configuration space. The difference is how to form steps around the

obstacles.

Given a pair of end points Ri and Rf , the landscape energy EL is the bigger value
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of V (Ri) and V (Rf ), EL = max(V (Ri), V (Rf )). The system has a configuration

R = (r1, · · · , rj, · · · , rN) and a potential energy V = V (R).

The path consists of direct steps and contour steps.

1. Direct Step

In direct step, the system always tries to go directly from its current position

R(t) to the second end point Rf , with a small step size δdi. This part is the

same as in the original method in Chapter 3. Direct steps form the segments

of free propagation of a path based on Kuhn-Tucker theorem.

R0(t+ 1) = R(t) + δdi
Rf −R(t)

|Rf −R(t)|
(5.1)

In calculation δdi = 0.001σ is used.

If the trial position R0(t+1) is in the allowed region of configuration space(V (R0(t+

1)) ≤ EL), this R0(t + 1) is accepted as the new configuration of the system

along the path. The system will proceed from there.

2. Contour Step

If the trial position is in a forbidden region of configuration space(V (R0(t+1)) >

EL), the system first retreats to its position R(t) before the failed direct step.

The system then takes a contour step. (Similar to the case of hard sphere

method in Chapter 3, the hard sphere system first retreats to its last allowed

position before the failed direct step, then takes a collision avoidance step.)

Denote the 3N dimensional gradient vector of potential energy function V (R)

as ∇V (R).

The level set Φ of potential energy function V at an arbitrary configuration

R(t) is

Φ(R(t)) = {R : V (R) = V (R(t))} (5.2)
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The gradient of V at R(t) is perpendicular to the level set of V at R(t).

∇V (R(t)) ⊥ Φ(R(t)) (5.3)

Denote the unit vector pointing from the current position of the system R(t)

to the second end point Rf as d̂.

d̂ =
Rf −R(t)

|Rf −R(t)|
(5.4)

d̂ can be decomposed to two perpendicular vectors f and g, with f perpendic-

ular to ∇V and g parallel to ∇V . g is the projection of d̂ along the direction

of ∇V , and f is d̂− g.

d̂ = f + g (5.5)

g =
d̂ · ∇V
|∇V |

∇V
|∇V |

(5.6)

f = d̂− g (5.7)

g ‖ ∇V, g ⊥ Φ(R(t)) (5.8)

f ⊥ ∇V, f ‖ Φ(R(t)) (5.9)

f ⊥ g (5.10)

Since f ⊥ ∇V , if the system moves along the direction f , the move does not
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increase the potential energy V . We can move the system according to

R0(t+ 1) = R(t) + δdif̂ (5.11)

f̂ =
f

|f |
(5.12)

δdi = 0.001σ (5.13)

Contour steps form the segments of a path that satisfy the constraints as equal-

ity based on Kuhn-Tucker theorem.

Equation 5.11 does not increase the potential energy of the system in principle.

Due to numerical precision in calculation, in some cases the move may need a

small component in the direction of −g to decrease the potential energy a little

bit. An iteration is used to deal with this situation.

Rn(t+ 1) = R(t) + δdif̂ − δnc
∇V
|∇V |

(5.14)

δnc = 10−5nσ (5.15)

where n = 0, 1, 2, · · · , nmax is the index of iteration. The iteration stops when

V (Rn(t+1)) ≤ EL. In most cases, no iteration is needed and nmax = 0. In some

cases two or three iterations are needed. (In the original method in Chapter

3 a tolerance δV is used to deal with numerical error, which serves the same

purpose.) The configuration Rnmax(t+ 1) is accepted as the new configuration

of the system along the path. The system proceeds from there.

3. A path is found when the distance between the current configuration of the

system R(t) and the second end point Rf is smaller than δdi.

|Rf −R(t)| < δdi (5.16)

117



CHAPTER 5. OTHER PATH-FINDING METHODS

The path length l is the sum of the lengths of every successful step (steps con-

necting two consecutive allowed configurations) along the path.

l =
t=P∑
t=0

|R(t+ 1)−R(t)| (5.17)

where P is the total number of steps along the path, R(0) = Ri , R(P+1) = Rf .

This method is shown in Algorithm 4.

Algorithm 4 New method of path finding for soft particle systems

EL ←MAX(V (Ri), V (Rf ))
l← 0 . path length
Rt . current configuration of the system
Ro . previous allowed configuration of the system
Rt ← Ri , Ro ← Ri

while |Rf −Rt| > δdi do . δdi = 0.001σ
Ro ← Rt

Rt ← Rt + δdi
Rf −Rt

|Rf −Rt|
. direct step

if V (Rt) > EL then
Rt ← ContourStep(Ro) . contour step

end if
l← l + |Rt −Ro|
end while
return l

procedure ContourStep(Ro)
R
δc ← 0
d̂← Rf−Ro

|Rf−Ro|

∇̂V ← ∇V
|∇V |

repeat

R← Ro + δdi
d̂− (d̂ · ∇̂V )∇̂V
|d̂− (d̂ · ∇̂V )∇̂V |

− δc∇̂V . δdi = 0.001σ

δc ← δc + 10−5σ

until V (R) ≤ EL
return R
end procedure
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5.1.2 Results

The procedure of setting up molecular dynamics and finding pairs of end points is

the same as in Chapter 3.

5.1.2.1 Parameter Testing

The step size δdi = 0.001σ is used throughout the calculations with the new method.

Fig. 5.1 shows the convergence of (∆R
g

)2 with respect to the parameter δdi.
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Figure 5.1: Parameter test of δdi of the new path finding method. The system is
Kob-Andersen liquid of size N = 108. The reduced temperature kBT/ε decreases
from 5.0 to 1.0. The results are averaged over 5 unoptimized paths of ∆R = 108σ.

Fig. 5.1 shows that the path lengths generated with the three different tested

values of the parameter δdi are numerically very close. Computationally the time t
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needed to find a path is t(δdi = 0.01σ) < t(δdi = 0.001σ) < t(δdi = 0.0001σ). Because

in the original method δdi = 0.001σ is used as the direct step length, here δdi = 0.001σ

is chosen.

5.1.2.2 Convergence of the Paths

Fig. 5.2 shows the convergence of (∆R
g

)2 with respect to ∆R with the new path find-

ing method. Fig. 5.3 shows the convergence of (∆R
g

)2 with respect to ∆R with the

original path finding method. Comparing the graphs, the new method has similar

convergence rates to the original method with respect to ∆R.
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Figure 5.2: Convergence of (∆R
g

)2 with respect to ∆R with the new path finding
method. The system is Kob-Andersen liquid of size N = 108. The reduced temper-
ature kBT/ε decreases from 5.0 to 1.0. The results are averaged over 5 unoptimized
paths. The figure shows that (∆R

g
)2 is converged with ∆R within fluctuation.
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Figure 5.3: Convergence of (∆R
g

)2 with respect to ∆R with the original path finding
method. The system is Kob-Andersen liquid of size N = 108. The reduced temper-
ature kBT/ε decreases from 5.0 to 1.0. The results are averaged over 5 unoptimized
paths. The figure shows that (∆R

g
)2 is converged with ∆R within fluctuation.

Fig. 5.4 shows the convergence of (∆R
g

)2 with respect to N with the new path

finding method. Fig. 5.5 shows the convergence of (∆R
g

)2 with respect to N with the

original path finding method. Comparing the graphs, the new method has similar

convergence rates to the original method with respect to N .
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Figure 5.4: Convergence of (∆R
g

)2 with respect to N with the new path finding
method. The system is Kob-Andersen liquid of sizes N = 108 and N = 256. The
reduced temperature kBT/ε decreases from 5.0 to 1.0. The results are averaged over
5 unoptimized paths. The figure shows that (∆R

g
)2 is converged with N within fluc-

tuation.
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Figure 5.5: Convergence of (∆R
g

)2 with respect to N with the original path find-
ing method. The system is Kob-Andersen liquid of sizes N = 108 and N = 256.
The reduced temperature kBT/ε decreases from 5.0 to 1.0. The results are averaged
over 5 unoptimized paths. The figure shows that (∆R

g
)2 is converged with N within

fluctuation.
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5.1.2.3 (
∆R

g
)2

Fig. 5.6 shows the comparison of (
∆R

g
)2 with the new method and with the original

method.
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Figure 5.6: Comparison of (∆R
g

)2 with the new method and with the original method.

The system is Kob-Andersen liquid of size N = 108. The reduced temperature kBT/ε
decreases from 5.0 to 1.0. The results of both methods are averaged over 5 unop-
timized paths of ∆R = 108σ. The figure shows that the two methods give close
numerical results for (∆R

g
)2.

5.1.2.4 Participating Ratio

Fig. 5.7 shows the convergence of participation ratio n/N with respect to N with the

new path finding method.
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Figure 5.7: Convergence of the participation ratio n/N with respect to N with the
new path finding method for the Kob-Andersen liquid. The reduced temperature
kBT/ε decreases from 5.0 to 1.0. The results are averaged over 5 unoptimized paths.
The figure shows that n/N is converged with N within fluctuation. The motions
along the paths are therefore macroscopic.

Fig. 5.8 shows the comparison of participation ratio
n

N
with the new method and

with the original method.
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Figure 5.8: Comparison of participation ratio n/N with the new method and with
the original method for the Kob-Andersen liquid. The reduced temperature kBT/ε
decreases from 5.0 to 1.0. The results of both methods are averaged over 5 unopti-
mized paths of N = 108 and ∆R = 108σ. The figure shows that the two methods

give close numerical results of
n

N
.

5.1.3 Comparison of Methods

All the above figures show that the new method is able to generate converged paths,

and the results are numerically very close to those of the original method. The two

methods are both based on Kuhn-Tucker theorem, with the difference in implement-

ing the segments of paths that obey the constraints as equality. The contour step in

the new method, as the counterpart of the escape step in the original method, allows

the system to move along the boundary too. The system does retreat to the allowed

configuration first before the contour step, and that configuration does not usually lie
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exactly on the boundary. But as long as the step length is small, the configuration is

still very close to the boundary, so is the contour step.

In the escape step in the original method, iteration is needed in the gradient

descend method to find the nearest allowed configuration from the disallowed trial

location. In the new method, no such iteration is needed. This saves computational

time because it does not have to compute the potential energy multiple times for

one step. We compare the computational performance of the two methods in Ta-

ble 5.1. The time listed in the table is the rough average amount of time needed for

a method to find a path, given a pair of end points, averaged over 5 unoptimized

paths of N = 108 and ∆R = 108σ for Kob-Andersen liquid. The table shows that

the efficiency of the new method is about 10 times higher than the original method.

kBT/ε time(seconds) - new method time(seconds) - original method
5.0 750 12000
4.0 800 12000
3.0 850 12000
2.0 900 13000
1.0 1100 15000

Table 5.1: Comparison of computational performance of the new method and the
original method. The table lists the time needed to find a path for both methods.
Both results are averaged from 5 unoptimized paths of N = 108 and ∆R = 108σ for
Kob-Andersen liquid. The new method consumes about one tenth of the time of the
original method to find a path.

Another advantage of the new method is that, if the nearest allowed configuration

R where the escape step in the original method takes the system to happens to have

the property that d̂ is perpendicular to ∇V (R), the next direct step would take the

system back to the forbidden region, then the following escape step would take the

system back to the same nearest allowed point R again. The program would stay in

an infinite loop. The new method, on the other hand, does not have this problem.
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5.2 Hard Sphere Liquid

This section records a previous trial method of finding paths for hard sphere liquids.

While this method does find paths for hard sphere systems at low densities, the paths

it generates have wrong scaling behavior and are longer than the method in Chapter

3.

5.2.1 Method

Given a pair of end points Ri and Rf , a hard sphere system always have a land-

scape energy EL = 0. The system has a configuration R = (r1, · · · , rj, · · · , rN). The

potential energy V is 0 for every allowed configuration and∞ for any disallowed con-

figuration. No overlap is allowed in any allowed configuration in the potential energy

landscape ensemble.

The path consists of direct steps and away steps.

• Direct Step

The system always tries to move from its current configuration R(t) towards

the final configuration Rf directly, until two particles are about to overlap. If

we assign each particle a fictitious velocity vj (j = 1, 2, · · · , N),

vj = rjf − rj(t) (5.18)

where rjf is the position of particle j in the final configuration Rf , rj(t) is

the position of particle j in the current configuration R(t), then using collision

dynamics same as in the molecular dynamics [47], we can calculate the time

interval ∆t the system can travel until the moment when two particles are in

contact. We calculate the collision time interval tij between particle i and j

(i = 1, 2, · · · , N − 1, j = i + 1, · · · , N). The first pair to collide has the min-

imum value of tij, denoted as ∆t. Denote the colliding pair as particle p and
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particle q. ∆t = tpq.

The system is moved according to

rj(t+ 1) = rj(t) + ∆t · vj j = 1, · · · , N (5.19)

∆t = min{tij}, i = 1, · · · , N, j = i+ 1, · · · , N (5.20)

The time t the system needs to move from its current configuration to the final

configuration with the assigned velocity is t = 1.0. Thus if ∆t ≥ 1.0, it means

the system can move to the final configuration without any collisions. This

happens at the last step of the path where the system is moved to the final

configuration directly. Along the path ∆t < 1.0.

This step is similar to the direct step in the soft particle case where

R(t+ 1) = R(t) + δdi
Rf −R(t)

|Rf −R(t)|
(5.21)

δdi = |v ·∆t| (5.22)

v = (v1, · · · ,vj, · · · ,vN) j = 1, · · · , N (5.23)

• Away Step

After the direct step, particle p and particle q are in contact. Further move

along the previous direction would cause overlapping between the two particles,

thus a change of direction is needed.

First we need to decide which particle is in which particle’s way in the current

configuration. The volume taken by the motion of a sphere along a direct line is

a cylinder. For example, the position of the center of particle q rq = (rqx, rqy, rqz)

and its direction to go vq = (vqx, vqy, vqz) forms a ray. This ray is the axis of

the cylinder formed by particle q, denoted as cylinder q. Cylinder q is of radius
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1

2
σq.

If any part of particle p is in cylinder q, it means particle p is in particle q’s way,

and vice versa. Denote the distance from the center of particle p to the axis

of cylinder q as dpq. dpq is a point-to-line distance. If dpq <
1

2
(σp + σq), then

particle p is in particle q’s way. If dpq ≥
1

2
(σp + σq), then particle p is not in

cylinder q so particle p is not in particle q’s way. We can test whether particle

q is in particle p’s way by the same procedure.

Between the two colliding particles p and q, we decide which particle to move

out of the other particle’s way by the following procedure. If particle p is in

particle q’s way but particle q is not in particle p’s way, we move particle p out

of particle q’s cylinder. If particle q is in particle p’s way but particle p is not

in particle q’s way, we move particle q out of particle p’s cylinder. If they are

both in each other’s way, we move whichever particle that is closer to its final

position out of the other particle’s way.

Suppose now we need to move particle p out of particle q’s cylinder. The case of

moving particle q out of particle p’s cylinder is symmetrical. The configuration

of the system is the updated R(t) after the previous direct step. Particle p and

particle q are in contact. The distance from the center of particle p to the axis

of cylinder q is dpq. The minimum distance d that particle p needs to move in

order to be totally out of cylinder q is d =
1

2
(σp + σq)− dpq. The direction with

this shortest distance is that particle p moving directly away from the axis of

the cylinder, following the straight line perpendicular to the axis of the cylinder

and going through the center of particle p.

When moving particle p out of the cylinder of particle q, what often happens

is, another particle k may be in the way of particle p. In this situation, we

calculate the distance needed to move particle k out of the cylinder of particle

p and then move particle k accordingly. If another particle m is in particle k’s
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way of moving out of the cylinder of particle p, we apply the same procedure

to calculate the distance that particle m needs to move and then move particle

m accordingly. The iteration runs until there is no more particle in the way.

For example, if particle n is in particle m’s way, we move particle n by the

distance calculated from the above procedure, and the iteration stops if there

is no particle in particle n’s way.

After this move of particle p and possibly some other particles such as par-

ticle k and particle m, we move particle q by a small distance. Particle p

has been moved entirely out of the cylinder of particle q so we should have

dpq ≥
1

2
(σp + σq). We move particle q in the direction of vq to the point q′

where the projection of the center of particle p on the axis of the cylinder q is.

q′ is the projection point of the point-to-line projection. Denoting the position

of particle p as rp = (rpx, rpy, rpz) and the axis of cylinder q as vq = (vqx, vqy, vqz),

the projection point q′ is then q′ = (rp ·
vq
|vq|

) · vq
|vq|

. After this move the axis of

particle q’s cylinder is perpendicular to the line connecting the center of particle

q and the center of particle p. vq ⊥ (rq − rp). If there are some particles in the

way while moving particle q, they are moved with the same procedure in the

above paragraph.

All the above moves are counted as one step in the procedure. The step length

is the distance between the new configuration and the old configuration right

after the direct step.

An illustration of away step is given in Fig. 5.9.

• Path length

A path is found when the collision time ∆t = tpq is bigger than 1.0. Because in

direct step, the time needed for the system to go from the current configuration

to the end point with the assigned velocities is 1.0, so if ∆t > 1.0, it means

the system can go to the end point before having any collision. The system is
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q

                               
p
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p
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p
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q

p
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Figure 5.9: Illustration of away step. Particle q is the up left particle and cylinder
q is shown. After a direct step, particle p and particle q are in contact, and a part
of particle p is in cylinder q, shown in (a). The away step moves particle p out of
cylinder q, moving other particles if necessary, shown in (b) and (c). Then particle q
is moved to position q′, shown in (d).

moved according to

rj(t+ 1) = rj(t) + 1.0 · vj j = 1, · · · , N (5.24)

This is the last step of the whole path. After this step, the system is at the

second end point.
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The path length l is the sum of the length of every successful steps (steps con-

necting two consecutive allowed configurations) along the path.

l =
t=P∑
t=0

|R(t+ 1)−R(t)| (5.25)

where P is the total number of steps along the path, R(0) = Ri , R(P+1) = Rf .

For the binary hard sphere system, this method is able to find paths for packing

fraction φ up to 0.45. It fails to generate paths most of the time at higher packing

fractions.

5.2.2 Results

This section gives results with this path finding method. The procedure of setting up

molecular dynamics and finding pairs of end points is the same as in Chapter 3. All

the results below are averaged over 5 unoptimized paths.

Fig. 5.10 shows the convergence of (∆R
g

)2 with respect to ∆R.

Fig. 5.11 compares the results of (∆R
g

)2 from this old method and the new method

in Chapter 3. The comparison demonstrates that the new method is better.

Fig. 5.12 shows the values of (∆R
g

)2 for different N with this method. It shows

this method does not work because the results do not converge with different system

sizes N .
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Figure 5.10: Convergence of (∆R
g

)2 with respect to ∆R with the old path finding
method for the binary hard sphere liquid. The packing fraction φ goes from 0.05 to
0.45. The results are averaged over 5 unoptimized paths of N = 108. The figure
shows that (∆R

g
)2 is converged with ∆R within fluctuation.
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Figure 5.11: Comparison of (∆R
g

)2 from this method and the new method for the
binary hard sphere liquid. The packing fraction φ goes from 0.05 to 0.45. The results
of both methods are averaged over 5 unoptimized paths of N = 108 and ∆R = 108σ.
The figure shows that paths generated by the new method in Chapter 3 are shorter.
The new method is therefore better.
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Figure 5.12: Comparison of (∆R
g

)2 for different N with the old path finding method
for the binary hard sphere liquid. The packing fraction φ goes from 0.05 to 0.45. The
results are averaged over 5 unoptimized paths. The figure shows that the values of
(∆R
g

)2 are different for different N at the same density.
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5.2.3 Analysis

From the procedure of finding a path in Section 5.2.1, we can see that the reason that

this method does not work is that the motion is highly localized in the away step.

The away step deals with one colliding pair at a time. Most of the system remains

still in this step. So it is highly inefficient. The percentage of particles dealt with

each time is smaller for bigger N . The increasing inefficiency for bigger N lead to

longer paths and lower values of (∆R
g

)2 for bigger N , which is what we see in Fig. 5.12.

Fig. 5.13 shows that the participation ratio for different N , that bigger N has lower

participation ratio, which shows that the paths generated by this method are more

inefficient for bigger N .

The new method presented in Chapter 3, on the other hand, has both localized

motion and macroscopic motion depending on the situation. The collision avoidance

step in the new method can simultaneously deal with multiple overlaps, either mul-

tiple pairs of overlapping particles or any overlaps involving more than two particles.

The ability of dealing with all the particles with overlaps at the same time of the

collision avoidance step, without distinguishing among these overlaps, results in more

efficient paths with major portions of particles participating in the overall path. The

macroscopic motion in the overall path is shown in Fig. 5.14. In contrast to Fig. 5.13,

the participation ratio does not change with different N with the new method.

Fig 5.15 shows the comparison of participation ratio n/N with this trial method

and the new method for the binary hard sphere liquid. It shows that the new method

has more efficient paths with a higher participation ratio.
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Figure 5.13: Comparison of participation ratios n/N for different N with the old path
finding method for the binary hard sphere liquid. The packing fraction φ goes from
0.05 to 0.45. The results are averaged over 5 unoptimized paths. The figure shows
that the participation ratio n/N is lower for bigger N with this method.
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Figure 5.14: Comparison of participation ratios n/N for different N with the new
path finding method shown in Chapter 3 for the binary hard sphere liquid. The
figure is the same as Fig. 4.13 and is shown here for easy comparison. The packing
fraction φ goes from 0.05 to 0.55. The results are averaged over 5 unoptimized paths.
The figure shows that the participation ratio n/N does not depend on N with the
new method.
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Figure 5.15: Comparison of participation ratios n/N from this method and the new
method for the binary hard sphere liquid. The packing fraction φ goes from 0.05 to
0.45. The results are averaged over 5 unoptimized paths of ∆R = 108σ and N = 108
for both methods. The figure shows that the participation ratio n/N is higher with
the new method.
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Chapter 6

Concluding Remarks

What is intrinsic dynamics of a system? From the geodesic landscape perspective,

geodesics are the inherent dynamics of a system. The principal path a system takes

through the potential energy landscape becomes longer when the temperature drops

for soft sphere liquids or the density increases for hard sphere liquids. The length of

the principal path increasing is the cause of dynamics slowing down. The potential

energy landscape ensemble provides us a useful tool to investigate paths through the

potential energy landscape. Within this ensemble, the principal path a system takes

is the shortest path with respect to the kinematical metric gµν , and the potential

energy along the path cannot exceed a certain landscape energy.

By studying the geodesics of hard sphere liquids, we have shown that geodesics

explain why dynamics slows down for hard sphere liquids. It also contains informa-

tion about other dynamic features such as dynamic heterogeneity. Previous study has

shown that geodesics account for the dynamics slowing down for soft sphere liquids

as well. But in the case of hard sphere liquids, there is absolutely no barrier-hopping

in the potential energy landscape. The sole question is then whether the lengthier

pathways account for slower dynamics. The answer is yes. The path length is all we

need to explain the decrease in diffusion coefficients across multiple orders of mag-

nitude for both soft and hard sphere liquids. The difference in the potential energy
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landscapes between soft particle liquids and hard sphere liquids also reflects in the dif-

ferent details of the geodesics. The locality of the hard sphere potential energy leads

to existence of both few-particle moves and many-particle moves in the geodesics of

hard sphere liquids.

The traditional landscape approaches focus on the local minima and transitions

between basins. But a potential energy landscape is more than the stationary points.

By studying the hard sphere liquids, whose landscape does not have any local min-

ima, we prove that what determines the rate of dynamics is the global topological

feature - the shortest path lengths. Some other features of the landscape has been

studied. In [17, 60], Kim, Chowdhary and Keyes emphasized the role of borders of

basins in dynamics. In the point of view of geodesics, the reason that the borders

are important is not the associated basins or saddle points, but is that the geodesics

are close to the borders, because most configurations lie close to the boundaries in

the potential energy landscape ensemble. Geodesics also provide insight into the phe-

nomenon that the change of dynamic length scale is more pronounced than that of

static length scale in glassy dynamics. While the static length scale focuses on the

correlation between two static configuration points, the dynamic length scales focuses

on the correlation between paths among configurations, and these paths are getting

longer when system are deeper in glassy region.

The thesis has studied in detail the geodesics of hard sphere liquids and its im-

plication for dynamics. Geodesic theory has been proven a useful tool to study

liquid dynamics. The dynamical phenomena it predicts include dynamic slowing

down [33, 61], dynamic heterogeneity [61], divergence of relaxation rates of transla-

tion and rotation [38], preferential solvation [39]. In future it could be applied to

study other glassy problems such as percolation transition of configuration space and

problems of other glassy systems.
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