
Two Weight Problems and

Bellman Functions on filtered

probability spaces

by

Jingguo Lai

B. S., Fudan University; Shanghai, China, 2008

M. S., Michigan State University; East Lansing, MI, 2010

A Dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Mathematics at Brown University

Providence, Rhode Island

May 2015



c© Copyright 2015 by Jingguo Lai



This dissertation by Jingguo Lai is accepted in its present form

by the Department of Mathematics as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Date

Sergei Treil, Advisor

Recommended to the Graduate Council

Date

Jill Pipher, Reader

Date

Brian Cole, Reader

Approved by the Graduate Council

Date

Peter M. Weber, Dean of the Graduate School

iii



Curriculum Vita

Jingguo Lai was born in Shenyang, Liaoning, P.R. China on Feburary 11, 1985

to Changbin Lai and Lijie Xue. He completed the B.S. at Fudan University on July

2008 and the M.S. at Michigan State University on July 2010. After graduating, he

continued the study of mathematics at Brown University. He married Maggie Fong

in the summer of 2013. Jingguo completed this thesis under the supervision of Sergei

Treil.

iv



Dedicated to my beloved parents:

Changbin Lai and Lijie Xue

v



Acknowledgements

To my advisor, Prof. Sergei Treil for his invaluable mentoring over the past five

years. He suggested these problems, taught me the right way of thinking process, and

provided guidance and ideas for all the tough steps.

To my readers, Prof. Jill Pipher and Prof. Brian Cole for their careful reading,

gentle criticism, and insightful edits.

To Prof. Justin Holmer for his help and support along the way.

To the wonderful mathematics department staff, particularly Audrey Aguiar,

Larry Larivee, and Doreen Pappas.

To my parents Changbin Lai and Lijie Xue, and my wife Maggie Fong for their

love and support.

To my cat Gigi for bringing me so much fun.

vi



Contents

Curriculum Vita iv

Dedication v

Acknowledgements vi

Chapter 1. Introduction 1

1. Two Weight Problems 1

2. Bellman Functions on filtered probability spaces 5

3. Outline of the thesis 9

Chapter 2. Two weight estimates for a vector-valued positive operators 10

1. The case 1 < p ≤ q 10

2. The case q < p <∞: a counterexample 11

3. The case q < p <∞: necessity and sufficiency 12

Chapter 3. Two weight estimates for paraproducts 17

1. Construction of the stopping intervals 17

2. The case 1 < p ≤ 2 18

3. The case 2 < p <∞: a counterexample 19

4. The case 2 < p <∞: trilinear forms and necessity 21

5. The case 2 < p <∞: from trilinear forms to shifted bilinear forms 22

6. The case 2 < p <∞: sufficiency 24

6.1. A modified stopping interval construction 25

6.2. Estimation of T1 26

6.3. Estimation of T2 30

vii



Chapter 4. Bellman functions on filtered probability spaces I: Burkhölder’s hull
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Abstract of ”Two Weight Problems and Bellman Funcfions on filtered

probability spaces”

by Jingguo Lai, Ph.D., Brown University, May 2015

Chapter 1 provides the necessary background and states the main results of the

thesis. Two seperate topics are studied. The first topic is on two weight problems.

The second topic is on Bellman functions on filtered probability spaces.

Chapter 2 proves a two weight estimation for a vector-valued positive operator.

We consider two different cases of this theorem. The easier case 1 < p ≤ q requires

only one testing condition. However, we construct a counterexample showing this

testing condtion alone is not sufficient for the case q < p < ∞. We apply the Rubio

de Francia Algorithm to reduce our problem to the well-known two weight estimates

for positive dyadic operators.

Chapter 3 proves a two weight estimation for paraproducts. We again consider two

different cases seperately. The first few steps of the proof proceeds exactly the same

as in Chapter 2. However, for the harder case 2 < p <∞, we need to characterize a

two weight inequality for shifted bilinear forms, which takes up the majority of this

chapter.

Chapter 4 considers the celebrated Dyadic Carleson Embedding Theorem. We

streamline a way of finding a super-solution of the Bellman function via the Burkhölder’s

hull. We give an explicit formula of the Burkhölder’s hull and hence a super-solution

in this chapter.

Chapter 5 generalizes the Dyadic Carleson Embedding Theorem to the filtered

probability spaces and proves the coincidence of the Bellman functions on an infinite

refining filtration. The proof requires a remodeling of the Dyadic Carleson Embedding

Theorem. Finally, we also consider the Bellman function of the Doob’s Martingale

Inequality.



CHAPTER 1

Introduction

In this chapter we provide some useful background on the topics of this thesis.

First we establish the general setup of two weight problems and raise the questions

of interest. Then we introduce a well-known application of the Bellman function

techniques and pose the questions we want to solve. Further we provide a brief

outline of this thesis.

1. Two Weight Problems

The original question about two weight estimates is to find a necessary and suf-

ficient condition on the weights (non-negative locally integrable functions) w and v

such that an operator T : Lp(w) → Lp(v) is bounded for all 1 < p < ∞, i.e. the

inequality ∫
|Tf |pvdx ≤ Cp ·

∫
|f |pwdx, for f ∈ Lp(w).(1.1)

Let u = w−p/p. A symmetric formulation of (1.1), well-known from 80s, is∫
|T (uf)|pvdx ≤ Cp ·

∫
|f |pudx, for f ∈ Lp(u).(1.2)

(1.2) looks more natural than (1.1) in the two weight setting: in particular, if T is an

integral operator, then the integration in the operator is performed with respect to

the same measure udx as in the domain.

Denote µ = udx and ν = vdx. Let T µ(f) := T (µf). We can rewrite (1.2) into∫
|T µ(f)|pdν ≤ Cp ·

∫
|f |pdµ, for f ∈ Lp(µ).(1.3)

Two weight problems are notoriously hard. The first few results are for T being

• Hardy operator by Muckenhoupt [1].

• Maximal operators by Sawyer [2], where a testing condition is introduced.
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• Fractional integrals by Sawyer and Wheeden [3] and [4].

For all these special operators, a characterization for all 1 < p < ∞ is given. In

particlar, Fractional integrals are examples of positive operators which are relatively

easier and more or less solved. To highlight some results of discrete positive operators,

we have results for T being

• Positive dyadic operators and p = 2 in [5].

• Positive dyadic operators and 1 < p <∞ in [6].

• Vector-valued positive dyadic operators and 1 < p <∞ in [9].

Several simplied proofs for the results listed above are also found. For example,

• [7] and [8] simplifies the proof given in [6].

• [10] simplifies the proof given in [9].

In rescent years, there is a breakthrough on this problem for singular operators.

Initiated by Nazarov, Treil and Volberg, and followed by Lacey, Sawyer, Uriarte-Tuero

et al., we have the following results for T being

• Haar multipliers in [5], which is the first case of discrete singular operators.

• Well localized operators including Haar shifts in [11].

• Sufficient conditions for Calderón-Zygmund singular integral operators, and

necessary and sufficient conditions for Calderón-Zygmund singular integral

operators together with two maximal operators in [12].

• Hilbert Transform in [13] and [14].

• Cauchy Transform in [15].

• Riesz Transform in [16].

Two weight problems for general Calderón-Zygmund singular integral operators re-

main unsolved. Note the original Two Weight Problems (1.1), (1.2), (1.3) make sence

for all 1 < p <∞. However, rescent results in [5], [11]-[16] only consider for p = 2.

The two weight problems we are interested in are both discrete ones. The first

is a new two weight estimates for Vector-valued positive operators when 1 < p <∞.
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The second is a two weight estimates for Paraproducts when 1 < p < ∞. Our setup

follows from the one in [17], which is more general than the dyadic case.

Definition 1.1. For a measurable space (X , T ), a lattice L ⊆ T is a collection

of measurable subsets of X with the following properties

(i) L is a union of generations Ln, n ∈ Z, where each generation is a collection

of disjoint measurable sets (call them intervals), covering X .

(ii) For each n ∈ Z, the covering Ln+1 is a countable refinement of the covering

Ln, i.e. each interval I ∈ Ln is a countable union of disjoint intervals

J ∈ Ln+1. We allow the situation where there is only one such interval J ,

i.e. J = I; this means that I ∈ Ln also belongs to the generation Ln+1.

Definition 1.2. For an interval I ∈ L, let rk(I) be the rank of the interval I,

i.e. the largest number n such that I ∈ Ln. For an interval I ∈ L, rk(I) = n, a child

of I is an interval J ∈ Ln+1 such that J ⊆ I (actually, J $ I). The colletion of all

children of I is denoted by child(I). Correspondingly, I is called the parent of J .

Definition 1.3. For a positive measure µ on (X , T ) , define the averaging oper-

ator as

Eµ
I
f = 〈f〉

I,µ
1
I

=

(
µ(I)−1

∫
I

fdµ

)
1
I
.(1.4)

where 1
I

is the indicator function of the interval I. The martingale difference operator

is then defined to be

∆µ

I
f = −Eµ

I
f +

∑
J∈child(I)

Eµ
J
f.(1.5)

From now on, we assume (X , T ) is a measurable space, L ⊆ T is a lattice on X ,

and µ, ν are two positive measures.

We denote the conjugate Hölder exponent of p by p′, where 1/p+ 1/p′ = 1. Here,

and throughout the thesis, we use the notation A . B meaning that there exists an

absolute constant C, such that A ≤ CB, and we write A ≈ B if A . B . A.
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Definition 1.4. Let α = {α
I

: I ∈ L} be non-negative constants associated to

a lattice L on (X , T ). Define a vector-valued operator

T µ
αf = {α

I
· Eµ

I
f}

I∈L
.(1.6)

Theorem 1.5 (Two weight estimates for a vector-valued positive operator [18]).

Let 1 < p <∞ and 1 ≤ q <∞.∫
X

[∑
I∈L

∣∣∣α
I
· Eµ

I
f
∣∣∣q] p

q

dν ≤ Cp ·
∫
X
|f |pdµ,(1.7)

holds if and only if

(i) for the case 1 < p ≤ q, we have∫
J

∣∣∣∣∣ ∑
I∈L:I⊆J

αq
I
· 1

I

∣∣∣∣∣
p
q

dν ≤ Cp
1 · µ(J), J ∈ L(1.8)

(ii) for the case q < p <∞, we have both (1.8) and

∫
J

∣∣∣∣∣ ∑
I∈L:I⊆J

αq
I
· ν(I)

µ(I)
· 1

I

∣∣∣∣∣
( p
q )
′

dµ ≤ C
q( p

q )
′

2 · ν(J), J ∈ L.(1.9)

In particular, C ≈ C1 + C2.

Remark 1.6. Vector-valued positive operators in the thesis are viewed as a simple

model of the paraproducts defined below.

Definition 1.7. For a measurable function b, the paraproduct operator with sym-

bol b is

πµb f =
∑
I∈L

(
Eµ
I
f
)(

∆ν

I
b
)
.(1.10)

Paraproducts play an important role in the investigation of the weighted inequal-

ities for the singular integral operators. The L2-boundedness of paraproducts is easy,

a necessary and sufficient condition (1.12) follows immediately from the Carleson

Embedding Theorem.

This necessary and sufficient condition (1.12) can be stated as a testing condition,

i.e. a paraproduct is bounded in L2 if and only if there is a uniform estimate on all
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intervals. In the classical non-weighted situation, the L2 boundedness is equivalent

to the boundedness of the paraproduct in all Lp, 1 < p <∞.

The weighted situation is much more interesting. It was shown in [17] that in

the one weight situation, the testing condition (1.12) is still necessary and sufficient,

but it now depends on p: the boundedness in Lp0 implies the boundedness in Lp with

1 < p ≤ p0, but not in Lp with p0 < p <∞.

Two weight case becomes even more interesting: while it is not hard to show that

for p ≤ 2 the testing condition is still sufficient for the boundedness, we will present

a counterexample showing that for p > 2 the testing condition alone does not work.

Theorem 1.8 (Two weight estimates for paraproducts [19]).

||πµb f ||
p

Lp(ν)
≤ Cp · ||f ||p

Lp(µ)
,(1.11)

holds if and only if

(i) for the case 1 < p ≤ 2, we have

∫
J

[ ∑
I∈L,I⊆J

∣∣∣∆ν

I
b
∣∣∣2] p

2

dν ≤ Cp
1 · µ(J), J ∈ L,(1.12)

(ii) for the case 2 < p <∞, we have both (1.12) and

∫
J ′

∑
I∈L

∑
I′∈child(I)

I′$J′

ν(I ′)

µ(I)
Eν
I

(∣∣∣∆ν

I
b
∣∣∣2)


( p
2
)′

dµ ≤ C
2( p

2)
′

2 · ν(J ′), J ∈ L, J ′ ∈ child(J).

(1.13)

In particular, C ≈ C1 + C2.

2. Bellman Functions on filtered probability spaces

Denote the Lebesgue measure of a set E by |E|, the average value of f on an

interval I by 〈f〉
I
. The celebrated dyadic Carleson Embedding Theorem states
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Theorem 1.9 (Dyadic Carleson Embedding Theorem). Let D = {([0, 1)+ j) ·2k :

j, k ∈ Z} be the standard dyadic lattice on R, and let {α
I
}
I∈D

be a sequence of non-

negative numbers satisfying the Carleson condition that:
∑

J∈D,J⊆I
α
I
≤ C|I| holds

for all dyadic intervals I ∈ D. Then the embedding

(1.14)
∑
I∈D

α
I
|〈f〉

I
|p ≤ Cp · C||f ||p

Lp
holds for all f ∈ Lp, where p > 1.

Moreover, the constant Cp = (p′)p is sharp (cannot be replaced by a smaller one).

An approach of proving Theorem 1.9 is the introduction of the Bellman function.

Without loss of generality, we can assume f ≥ 0. Following [20] and [21], we define

the Bellman function in three variables (F, f,M) as

B(F, f,M ;C) = sup

{
|J |−1

∑
I∈D,I⊆J

α
I
〈f〉p

I
: f, {α

I
}
I∈D

satisfy (i), (ii), (iii), and (iv)

}
,

(1.15)

(i) 〈fp〉
J

= F ; (ii) 〈f〉
J

= f; (iii) |J |−1
∑
I⊆J

α
I

= M ; (iv)
∑
I⊆J

α
I
≤ C|J | for all J ∈ D.

Note that the Bellman function B(F, f,M ;C) defined above dose not depend on

the choice of the interval J .

In [20], (1.14) was first proved using the Bellman function method for the case

p = 2, and in [21], the sharpness for the case p = 2 was also claimed. Later, A. Melas

found in [22] the exact Bellman function for all p > 1 in a tree-like setting using

combinatorial and covering reasoning. In [23], an alternative way of finding the exact

Bellman function based on Monge-Ampère equation was also established.

The Bellman functions have deep connetions to the Stochastic Optimal Control

theory [21]. Finding the exact Bellman functions is a difficult task. Both the com-

binatorial methods in [22] and the methods of solving the Bellman PDE in [23] are

quite complicated. Luckily, the proof of Theorem 1.9 only needs a super-solution

instead of the exact Bellman function, see [20], [21]. In this thesis, we will present a

way of calculating a super-solution via the Burkhölder’s hull.
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On the other hand, computation of the exact Bellman functions usually reflects

deeper structure of the corresponding harmonic analysis problem. It is interesting to

note that the exact Bellman function of Theorem 1.9 is not restricted to the standard

dyadic lattice. In [22], it also works for the tree-like structure. Let us consider a

more general situation here.

Let (X ,F , {Fn}n≥0, µ) be a discrete-time filtered probability space. By a discrete-

time filtration, we mean a sequence of non-decreasing σ-fields

{∅,X} = F0 ⊆ F1 ⊆ ... ⊆ Fn ⊆ ... ⊆ F .

We introduce notations fn = Eµ[f |Fn] and 〈f〉
E,µ

= µ(E)−1
∫
E
fdµ.

Definition 1.10. A sequence of non-negative random variables {αn}n≥0 is called

a Carleson sequence, if each αn is Fn-measurable and

Eµ
[∑
k≥n

αk|Fn

]
≤ C for every n ≥ 0.(1.16)

Definition 1.11. {Fn}n≥0 is called an infinitely refining filtration, if for every

ε > 0, every n ≥ 0 and every set E ∈ Fn, there exists a real-valued Fk-measurable

(k > n) random variable h, such that: (i) |h1
E
| = 1

E
and (ii)

∫
E
|hn|dµ ≤ ε.

Theorem 1.12 (Martingale Carleson Embedding Theorem). If f ∈ Lp(X ,F , µ)

and {αn}n≥0 is a Carleson sequence, then

Eµ
[∑
n≥0

αn|fn|p
]
≤ Cp · C · Eµ [|f |p] .(1.17)

Moreover, if {Fn}n≥0 is an infinitely refining filtration, then the constant Cp = (p′)p

is sharp.

Here, again without loss of generality, we can assume f ≥ 0. We define the

Bellman function BFµ (F, f,M ;C) in the martingale setting by

BFµ (F, f,M ;C) = sup

{
Eµ
[∑
n≥0

αnf
p
n

]
: f, {αn}n≥0 satisfy (i), (ii), (iii) and (iv)

}
,

(1.18)

7



(i) Eµ[fp] = F ; (ii) Eµ[f ] = f; (iii) Eµ
[∑
n≥0

αn

]
= M ; (iv) {αn}n≥0 satisfies (1.16).

Now, we are ready to state the first main theorem.

Theorem 1.13 (Coincidence of the Bellman functions [24]).

BFµ (F, f,M ;C) ≤ B(F, f,M ;C).(1.19)

Moreover, if {Fn}n≥0 is an infinitely refining filtration, then

BFµ (F, f,M ;C) = B(F, f,M ;C).(1.20)

For the Doob’s martingale inequality, recall the definition of the maximal function

associated to a discrete-time filtration {Fn}∞n=0

f ∗(x) = sup
n≥0
|fn(x)|.(1.21)

Theorem 1.14 (Doob’s Martingale Inequality). For every p > 1 and every f ∈

Lp(X ,F , µ), we have

||f ∗||p
Lp(X ,F ,µ)

≤ (p′)p · ||f ||p
Lp(X ,F ,µ)

.(1.22)

Moreover, if {Fn}n≥0 is an infinitely refining filtration, then the constant (p′)p is

sharp.

The study of the Lp-norm of the maximal function was initiated from the cele-

brated Doob’s martingale inequality, e.g. in [30]. The sharpness of this inequality

was shown in [26] and [27] if one looks at all martingales. For particular martingales

including the dyadic case, see [22] and [28]. Theorem 1.14 covers all these results.

Assuming f ≥ 0, we define the Bellman function B̃Fµ (F, f) associated to the Doob’s

martingale inequality by

B̃Fµ (F, f) = sup {Eµ [|f ∗|p] : Eµ[fp] = F, Eµ[f ] = f} .(1.23)

The connection between the Carleson Embedding Theorem and the maximal the-

ory has been known and exploited a lot, e.g. in [20] and [22]. Using this connection,

we give a proof of the second main theorem.

8



Theorem 1.15 (The Bellman function of the maximal operators [24]).

B̃Fµ (F, f) ≤ BFµ (F, f, 1;C = 1).(1.24)

Moreover, if {Fn}n≥0 is an infinitely refining filtration, then

B̃Fµ (F, f) = BFµ (F, f, 1;C = 1).(1.25)

3. Outline of the thesis

In chapter 2, we prove Theorem 1.5. We discuss two cases 1 < p ≤ q and

q < p < ∞ seperately. The theorem is actually equivalent to two weight estimates

for positive dyadic operators.

In chapter 3, we prove Theorem 1.8. Again, we discuss two cases 1 < p ≤ q and

q < p < ∞ seperately. The sufficiency part of the case q < p < ∞ needs to be done

in greater detail.

In chapter 4, we find a super-solution of Theorem 1.9 via the Burkhölder’s hull,

which proves the existence of the Bellman function B(F, f,M ;C).

In chapter 5, we present a remodeling of the Bellman function B(F, f,M ;C) and

use this to prove the two main results Theorem 1.13 and Theorem 1.15.

9



CHAPTER 2

Two weight estimates for a vector-valued positive operators

In this chapter, we prove Theorem 1.5. We first discuss the easier case 1 < p ≤ q.

Then we present a counterexample that (1.8) itself dose not imply (1.7). Enventually,

we reduce Theorem 1.5 to the well-known two weight estimates for positive dyadic

operators and complete our proof. A comparison of our theorem and the main results

in [9] and [10] is also given.

1. The case 1 < p ≤ q

We will see in this section that when 1 < p ≤ q, (1.8) is equivalent to (1.7). On

one hand, (1.8) can be deduced from (1.7) by setting f = 1
J

. On the other hand,

consider the maximal function

(2.1) Mµf(x) := sup
x∈I,I∈L

|EµI f(x)| .

The celebrated Doob’s martingale inequality asserts

||Mµf ||
Lp(µ)

≤ p′ · ||f ||
Lp(µ)

.(2.2)

Let Ek := {x ∈ X : Mµf(x) > 2k} and let Ek := {I ∈ L : I ∈ Ek}. Note that Ek is a

disjoint union of maximal intervals in Ek, maximal in the sense of inclusion. Denote

these disjoint maximal intervals by E∗k . Hence, Ek = ∪
J∈E∗k

J .

10



∫
X

[∑
I∈L

∣∣∣α
I
· Eµ

I
f
∣∣∣q] p

q

dν ≤
∑
k

∫
Ek

 ∑
I∈Ek\Ek+1

∣∣∣α
I
· Eµ

I
f
∣∣∣q


p
q

dν, 1 < p ≤ q

≤
∑
k

2(k+1)p

∫
Ek

 ∑
I∈Ek\Ek+1

αq
I
· 1

I


p
q

dν

≤
∑
k

2(k+1)p
∑
J∈E∗k

∫
J

[ ∑
I∈L:I⊆J

αq
I
· 1

I

] p
q

dν

≤ Cp
1 ·
∑
k

2(k+1)p · µ(Ek), (1.8)

. Cp
1 · ||Mµf ||p

Lp(µ)

≤ Cp
1 · (p′)p · ||f ||p

Lp(µ)
, (2.2).

2. The case q < p <∞: a counterexample

In this section, we see that (1.8) itself is not sufficient for (1.7) for the case q <

p <∞.

Consider the real line R with the Borel σ-algebra B(R). Let the lattice be all the

tri-adic intervals. We specify the positive measures µ, ν, the non-negative constants

α = {α
I

: I ∈ L}, and the functions f in the following way.

Let C = ∩n≥0Cn be the 1/3-Cantor set, where C0 = [0, 1), C1 = [0, 1/3) ∪ [2/3, 1)

and, in general, Cn = ∪
{

[x, x+ 3−n) : x =
∑n

j=1 εj3
−j, εj ∈ {0, 2}

}
.

(i) The measure µ is the Lebsgue measure restricted on [0, 1) and the measure

ν is the Cantor measure, i.e. ν(I) = 2−n for each I belongs to a connect

component of Cn.

(ii) Define α
I

= (2/3)n/p for each I belongs to a connect component of Cn.

(iii) For the function f , consider the gap of C, i.e. [0, 1) \ C. This is a disjoint

union of tri-adic intervals. Let f = (3/2)n/p ·n−r for each I ∈ [0, 1) \C with

length of I equals 3−n, where r is to be chosen later.

Claim 2.1. The construction gives a counterexample with properly chosen r.

11



Proof. We begin with checking (1.8). It suffices to check for every J belongs to

a connected component of Cn, and thus µ(J) = 3−n. Note that∣∣∣∣∣ ∑
I∈L:I⊆J

αq
I
· 1

I

∣∣∣∣∣
p
q

≤

∣∣∣∣∣∑
k≥n

(
2

3

) qk
p

∣∣∣∣∣
p
q

�
(

2

3

)n
.

Hence,

∫
J

∣∣∣∣∣ ∑
I∈L:I⊆J

αq
I
· 1

I

∣∣∣∣∣
p
q

dν .

(
2

3

)n
· ν(J) = µ(J).

Next, we show that (1.7) fails. This requires a careful choice of r in the definition

of f . Picking r > 1
p
, we have

||f ||p
Lp(µ)

=

∫ 1

0

|f |pdx =
∑
n≥1

(
3

2

)n
n−pr · 1

3n
· 2n =

∑
n≥1

n−pr <∞.

Since q < p < ∞, we can pick r such that 1
p
< r < 1

q
. Note that for every I

belongs to a connected component of Cn, we have

Eµ
I
f ≥ 1

3

(
3

2

)n+1
p

(n+ 1)−r.

Hence, consider In = {I : I is tri-adic with length less than or equal to 3−n},

∑
I∈In

∣∣∣α
I
· Eµ

I
f
∣∣∣q · 1

Cn
≥
∑
k≤n

∣∣∣∣∣13
(

3

2

) 1
p

(k + 1)−r

∣∣∣∣∣
q

&
∑
k≤n

(k + 1)−qr.

And so,

∫ [∑
I∈In

∣∣∣α
I
· Eµ

I
f
∣∣∣q] p

q

dν &

[∑
k≤n

(k + 1)−qr

] p
q

· ν(Cn)→∞ as n→∞.

We can see that the condition q < p <∞ is crutial in our construction. �

3. The case q < p <∞: necessity and sufficiency

We discuss the case q < p < ∞ of Theorem 1.5 in this section. In particular,

we see that both (1.8) and (1.9) are testing conditions on some families of special

functions.

12



To start, since

||T µ
αf ||q

Lp(lq ,ν)
= sup
||g||

L(p/q)′ (ν)
=1

∫
X

[∑
I∈L

∣∣∣α
I
· Eµ

I
f
∣∣∣q] gdν,(2.3)

we can write

||T µ
α ||q

Lp(µ)→Lp(lq ,ν)
= sup
||f ||

Lp(µ)
=1

sup
||g||

L(p/q)′ (ν)
=1

∫
X

[∑
I∈L

∣∣∣α
I
· Eµ

I
f
∣∣∣q] gdν.(2.4)

Without loss of generality, we assume that both f and g are non-negative. The

following lemma reduces us to the scalar-valued case.

Lemma 2.2.

||T µ
α ||q

Lp(µ)→Lp(lq ,ν)
≈ sup
||f ||

Lp(µ)
=1

sup
||g||

L(p/q)′ (ν)
=1

∫
X

[∑
I∈L

αq
I
· Eµ

I
(f q)

]
gdν.(2.5)

An easy application of Hölder’s inequality shows that the LHS of (2.5) is no more

than its RHS. The other half of this lemma depends on the following famous Rubio

de Francia Algorithm.

Lemma 2.3 (Rubio de Francia Algorithm). For every q < p <∞ and f ∈ Lp(µ),

there exists a function F ∈ Lp(µ), such that f ≤ F , ||F ||
Lp(µ)

≈ |f ||
Lp(µ)

and

µ(I)−1
∫
I

F qdµ . inf
x∈I

F q(x), I ∈ L.

Proof. Consider the maximal operator Mµ defined in (2.1). Doob’s martingale

inequality (2.2) implies

||Mµ||
Lp/q(µ)→Lp/q(µ)

≤
(
p

q

)′
.(2.6)

Denote M
(0)
µ = Id, M

(1)
µ = Mµ and M

(k)
µ = Mµ ◦M (k−1)

µ . Define the function F

by

F =

[∑
k≥0

(
2||Mµ||

Lp/q(µ)→Lp/q(µ)

)−k
M (k)

µ (f q)

] 1
q

.(2.7)

First we check the validity of the definition for F . Note that

13



||F ||q
Lp(µ)

=


∫
X

[∑
k≥0

(
2||Mµ||

Lp/q(µ)→Lp/q(µ)

)−k
M (k)

µ (f q)

] p
q

dµ


q
p

≤
∑
k≥0

(
2||Mµ||

Lp/q(µ)→Lp/q(µ)

)−k (∫
X

∣∣M (k)
µ (f q)

∣∣ pq dµ) q
p

, Minkowski inequality

≤
∑
k≥0

(
2||Mµ||

Lp/q(µ)→Lp/q(µ)

)−k (
||Mµ||

Lp/q(µ)→Lp/q(µ)

)k
||f ||q

Lp(µ)
= 2||f ||q

Lp(µ)
.

Hence, F is the Lp/q(µ)-limit of the partial sums and thus well-defined. Moreover,

we have also proved that ||F ||
Lp(µ)

. ||f ||
Lp(µ)

.

Considering only k = 0 in the definition for F , we have F ≥ f . And so ||F ||
Lp(µ)

≈

||f ||
Lp(µ)

. Finally, note that

µ(I)−1
∫
I

F qdµ ≤ inf
x∈I

Mµ(F q)(x)(2.8)

and

Mµ(F q) =
∑
k≥0

(
2||Mµ||

Lp/q(µ)→Lp/q(µ)

)−k
M (k+1)

µ (f q)

= 2||Mµ||
Lp/q(µ)→Lp/q(µ)

(F q − f q) . F q.

Therefore, we deduce

µ(I)−1
∫
I

F qdµ . inf
x∈I

F q(x), I ∈ L.

�

Applying Rubio de Francia Algorithm, we obtain∫
X

[∑
I∈L

αq
I
· Eµ

I
(f q)

]
gdν ≤

∫
X

[∑
I∈L

αq
I
· Eµ

I
(F q)

]
gdν

.
∫
X

[∑
I∈L

αq
I
·
(
Eµ
I
(F )
)q]

gdν

≤ ||T µ
α ||q

Lp(µ)→Lp(lq ,ν)
· ||F ||

Lp(µ)
· ||g||

L(p/q)′ (ν)
, (2.4)

. ||T µ
α ||q

Lp(µ)→Lp(lq ,ν)
,

(
||f ||

Lp(µ)
= ||g||

L(p/q)′ (ν)
= 1

)
.

14



Now that our problem is reduced to determine a necessary and sufficient condition

of ∫
X

∣∣∣∣∣∑
I∈L

αq
I
· Eµ

I
(f)

∣∣∣∣∣
p
q

dν . Cp

∫
X
|f |

p
q dµ,(2.9)

we may consult to the scalar-valued Theorem 2.4 below. Therefore, Theorem 1.8

follows from Theorem 2.4 for free, and both (1.8) and (1.9) are testing conditions

with respect to this derived scalar-valued problem.

Consider the linear operator defined by

T µαf :=
∑
I∈L

α
I
· Eµ

I
f.(2.10)

Theorem 2.4. Let 1 < p <∞ and let 1/p+ 1/p′ = 1. T µα : Lp(µ)→ Lp(ν) if and

only if ∫
J

∣∣∣∣∣ ∑
I∈L:I⊆J

α
I
· 1

I

∣∣∣∣∣
p

dν ≤ Cp
1 · µ(J), J ∈ L(2.11)

∫
J

∣∣∣∣∣ ∑
I∈L:I⊆J

α
I
· ν(I)

µ(I)
· 1

I

∣∣∣∣∣
p′

dµ ≤ Cp′

2 · ν(J), J ∈ L.(2.12)

In particular, ||T µα||Lp(µ)→Lp(ν)
≈ C1 + C2.

Remark 2.5. Theorem 2.4 is originally proved for the dyadic case. This general

version is explained in [7].

Remark 2.6. In [9] and [10], to obtain the two testing conditions, they first

rewrite (1.7) into∑
I∈L

α
I
· Eµ

I
f · Eν

I
g
I
· ν(I) ≤ C||f ||

Lp(µ)
· ||{g

I
}
I∈L
||
Lp′ (lq ,ν)

.(2.13)

Setting f = 1
J

, one deduces (1.8). For the second testing condition, one turns to

consider the family of functions {g
I
}
I∈L

supported on J ∈ L with L∞(lq, ν)-norm

equal to 1. This gives∫
J

∣∣∣∣∣ ∑
I∈L:I⊆J

α
I
· ν(I)

µ(I)
· Eν

I
g
I

∣∣∣∣∣
p′

dµ ≤ Cp′ · ν(J), J ∈ L.(2.14)

15



Compare Theorem 1.5 with the main results in [9] and [10]. We have a very different

condition (1.9) than (2.14) with seemingly ’wrong’ exponents. However, both (1.8)

and (1.9) are testing conditions on some families of special functions as we have shown

in this chapter.
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CHAPTER 3

Two weight estimates for paraproducts

In this chapter, we prove Theorem 1.8. We first follow the line of chapter 2. But

for the sufficient part of the case 2 < p <∞, we need to be more careful.

We start with some useful reductions. Obviously, it sufficies to constider only for

non-negative functions f ≥ 0 in Theorem 1.8. Moreover, recall the following version

of Littlewood-Paley theorem

Theorem 3.1 (Littlewood-Paley). If a function f has a Littlewood-Paley decom-

position f =
∑

I∈L∆ν

I
f , and define its square function to be Sνf =

[∑
I∈L

∣∣∣∆ν

I
f
∣∣∣2] 1

2

,

then ||f ||
Lp(ν)

� ||Sνf ||
Lp(ν)

for all 1 < p <∞.

Proof. See [17]. �

Applying this theorem, (1.11) is equivalent to

||Sν(πµb f)||p
Lp(ν)

=

∫
X

[∑
I∈L

∣∣∣Eµ
I
f
∣∣∣2 ∣∣∣∆ν

I
b
∣∣∣2] p

2

dν . Cp

∫
X
|f |pdµ.(3.1)

We will consider (3.1) instead of (1.11) in the following.

1. Construction of the stopping intervals

Let us construct a collection G ⊆ F ⊆ L of stopping intervals as follows. Given

a non-negative function f ≥ 0. For J ∈ F , let G∗(J) be the collection of maximal

intervals I ⊆ F , I ∈ J such that

〈f〉
I,µ

> 2〈f〉
J,µ
.

In case there are more than one such intervals I, we choose the one from the smallest

generation. Note that intervals from G∗(J) are pairwisely disjoint. Let F(J) = {I ∈
17



F : I ⊆ J} and let G(J) = ∪
I∈G∗(J)

I. Define also E(J) = F(J) \∪
I∈G∗(J)

F(I). Then

we have the following properties

(i) For any I ∈ E(J), 〈f〉
I,µ
≤ 2〈f〉

J,µ
,

(ii) µ(G(J)) < 1
2
µ(J).

To construct a collection G, fix some large integer N ∈ Z and consider all maximal

intervals J from {Lk}k≥−N and J ∈ F . These intervals form the first generation G∗1 of

stopping intervals. Inductively define the (n+1)-th generation of stopping intervals by

G∗n+1 = ∪
I∈G∗n
G∗(I) and we define the collection of stopping intervals by G = ∪n≥1G∗n.

Property (ii) implies that the collection G of stopping intervals satisfies the famous

Carleson measure condition

∑
I∈G,I⊆J

µ(I) < 2µ(J), J ∈ L.(3.2)

A special form of the Martingale Carleson Embedding Theorem 1.12 says

Theorem 3.2. Let µ be a measure on (X , T ) and let α
I
≥ 0, I ∈ L satisfy the

Carleson measure condition

∑
I∈G,I⊆J

α
I
≤ C · µ(J).(3.3)

Then for any measurable function f and any 1 < p <∞

∑
I∈L

α
I

∣∣∣〈f〉
I,µ

∣∣∣p ≤ C · (p′)p · ||f ||p
Lp(X ,T ,µ)

.(3.4)

2. The case 1 < p ≤ 2

We will see in this section that when 1 < p ≤ 2, (1.12) is equivalent to (3.1). On

one hand, (1.12) can be deduced from (3.1) by setting f = 1
J

. On the other hand,

we can apply the stopping intervals with F = L constructed in the previous section

to obtain

18



∫
X

 ∑
I∈L,I⊆L−N

∣∣∣Eµ
I
f
∣∣∣2 ∣∣∣∆ν

I
b
∣∣∣2


p
2

dν =

∫
X

∑
J∈G

∑
I⊆E(J)

∣∣∣Eµ
I
f
∣∣∣2 ∣∣∣∆ν

I
b
∣∣∣2


p
2

dν,

≤
∫
X

∑
J∈G

4〈f〉2
J,µ

∑
I⊆E(J)

∣∣∣∆ν

I
b
∣∣∣2


p
2

dν, 1 < p ≤ 2

≤ 2p
∑
J∈G

〈f〉p
J,µ

∫
J

 ∑
I⊆E(J)

∣∣∣∆ν

I
b
∣∣∣2


p
2

dν, (1.12)

≤ 2p
∑
J∈G

〈f〉p
J,µ
· Cp

1 · µ(J), (3.4)

≤ Cp
1 · 2p+1 · (p′)p · ||f ||p

Lp(X ,T ,µ)
.

Letting N →∞, we prove exactly (3.1). We can see 1 < p ≤ 2 plays an important

role in this argument. There is no analogue for the case 2 < p <∞.

3. The case 2 < p <∞: a counterexample

In this section, we see that (1.12) itself is not sufficient for (3.1) for the case

2 < p <∞.

Consider the real line R with the Borel σ-algebra B(R). Let the lattice be all the

tri-adic intervals. We specify the admissible measures µ, ν and the functions b, f in

the following way.

Let C = ∩n≥0Cn be the 1/3-Cantor set, where C0 = [0, 1), C1 = [0, 1/3) ∪ [2/3, 1)

and, in general, Cn = ∪
{

[x, x+ 3−n) : x =
∑n

j=1 εj3
−j, εj ∈ {0, 2}

}
.

(i) The measure µ is the Lebsgue measure restricted on [0, 1) and the measure

ν is the Cantor measure, i.e. ν(I) = 2−n for each I belongs to a connect

component of Cn.

(ii) For the function b, we specify its martingale differences ∆ν

I
b. Let |∆ν

I
b| =

(2/3)n/p for each I belongs to a connect component of Cn such that∫
I
(∆ν

I
b)dν = 0.

19



(iii) For the function f , consider the gap of C, i.e. [0, 1) \ C. This is a disjoint

union of tri-adic intervals. Let f = (3/2)n/p ·n−r for each I ∈ [0, 1) \C with

length of I equals 3−n, where r is to be chosen later in the proof.

Claim 3.3. The above construction gives a counterexample.

Proof. We begin with checking (1.12). It suffices to check for every J belongs

to a connected component of Cn, and thus µ(J) = 3−n. Note that[∑
I⊆J

∣∣∣∆ν

I
b
∣∣∣2] p

2

≤

[∑
k≥n

(
2

3

) 2k
p

] p
2

.

(
2

3

)n
.

Hence,

∫
J

[∑
I⊆J

∣∣∣∆ν

I
b
∣∣∣2] p

2

dν .

(
2

3

)n
ν(J) =

(
2

3

)n
·
(

1

2

)n
= µ(J).

Next, we show that (3.1) fails. This requires a careful choice of r in the definition

of f . Picking r > 1
p
, we have

||f ||p
Lp(µ)

=

∫ 1

0

|f |pdx =
∑
n≥1

(
3

2

)n
n−pr · 1

3n
· 2n =

∑
n≥1

n−pr <∞.

Since 2 < p < ∞, we can pick r such that 1
p
< r < 1

2
. Note that for every I

belongs to a connected component of Cn, we have

Eµ
I
f ≥ 1

3

(
3

2

)n+1
p

(n+ 1)−r.

Hence, consider In = {I : I is tri-adic with length less than or equal to 3−n},

∑
I∈In

∣∣∣Eµ
I
f
∣∣∣2 ∣∣∣∆ν

I
b
∣∣∣2 · 1

Cn
≥
∑
k≤n

∣∣∣∣∣13
(

3

2

) 1
p

(k + 1)−r

∣∣∣∣∣
2

&
∑
k≤n

(k + 1)−2r.

And so,

∫ [∑
I∈In

∣∣∣Eµ
I
f
∣∣∣2 ∣∣∣∆ν

I
b
∣∣∣2] p

2

dν &

[∑
k≤n

(k + 1)−2r

] p
2

· ν(Cn)→∞ as n→∞.

�
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4. The case 2 < p <∞: trilinear forms and necessity

We discuss the necessity of Theorem 1.8 in this section. In particular, we see that

both (1.12) and (1.13) are testing conditions on some families of special functions. To

make our explanations more clear and also for later purpose, we generalize Theorem

1.8 to a trilinear form.

(1.12) is a simple testing condtion on functions of the form f = 1
J

, but (1.13) is

not that clear. To deduce (1.13) from (3.1), we first note that ∆ν

I
b is constant on each

I ′ ∈ child(I). Let β
II′

=
(
µ(I)−1

∣∣∣∆ν

I
b
∣∣∣ · 1

I′

)2
for each I ′ ∈ child(I). (3.1) becomes

∫
X

∑
I∈L

∑
I′∈child(I)

β
II′

(∫
I

fdµ

)2

1
I′


p
2

dν . Cp

∫
X
|f |pdµ.(3.5)

Consider the following generalization of Theorem 1.8 to a trilinear form.

Theorem 3.4 (Two weight estimates for a trilinear form). For every sequence of

non-negative constants
{
β
II′

}
I∈L,I′∈child(I)

, define the trilinear operator

Π(f, g, h) =
∑
I∈L

∑
I′∈child(I)

β
II′

(∫
I

fdµ

)(∫
I

gdµ

)(∫
I′
hdν

)
.(3.6)

Π(f, g, h) ≤ C||f ||
Lp(µ)
||g||

Lp(µ)
||h||

L(
p
2 )
′
(ν)

(3.7)

holds if and only if

(i)

∫
J

 ∑
I∈L,I⊆J

∑
I′∈child(I)

β
II′
· µ(I)2 · 1

I′


p
2

dν ≤ C
p
2
1 · µ(J), J ∈ L,(3.8)

(ii)

∫
J ′

∑
I∈L

∑
I′∈child(I),I′$J ′

β
II′
· µ(I) · ν(I ′) · 1

I

( p
2)
′

dµ ≤ C
( p
2)
′

2 · ν(J ′), J ∈ L, J ′ ∈ child(J).

(3.9)

In particular, C ≈ C1 + C2.
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Remark 3.5. Note that Theorem 3.4 is written in duality form. In Theorem 3.4,

if we choose g = f and β
II′

=
(
µ(I)−1

∣∣∣∆ν

I
b
∣∣∣ · 1

I′

)2
, and take care of the powers of

the constants, then we recover Theorem 1.8.

All amounts to deduce (3.9) from (3.7). The argument depends on again the

Rubio de Francia Algorithm Lemma 2.3. Let f = g = F in (3.7), we obtain

Π(F, F, h) =
∑
I∈L

∑
I′∈child(I)

β
II′

(∫
I

Fdµ

)2(∫
I′
hdν

)

=

∫
X

∑
I∈L

∑
I′∈child(I)

β
II′

(∫
I

Fdµ

)2

· 1
I′

hdν ≤ C||F ||2
Lp(µ)
||h||

L(
p
2 )
′
(ν)

.

By Lemma 2.3 with q = 2, we have ||F ||
Lp(µ)

≈ ||f ||
Lp(µ)

and(∫
I

Fdµ

)2

≥ µ(I)2 · inf
x∈I

F 2(x) & µ(I) ·
∫
I

F 2dµ ≥ µ(I) ·
∫
I

f 2dµ,

thus we deduce∫
X

∑
I∈L

∑
I′∈child(I)

β
II′
· µ(I)

(∫
I

f 2dµ

)
· 1

I′

hdν . C||f ||2
Lp(µ)
||h||

L(
p
2 )
′
(ν)

,(3.10)

which implies∫
X

∑
I∈L

∑
I′∈child(I),I′$J ′

β
II′
· µ(I)

(∫
I′
hdν

)
· 1

I

 f 2dν . C||f ||2
Lp(µ)
||h||

L(
p
2 )
′
(ν)

.

Testing on h = 1
J ′

, we get exactly (3.9).

5. The case 2 < p <∞: from trilinear forms to shifted bilinear forms

In this section, we give an equivalent statement of Theorem 3.4 in terms of a

shifted positive operator. Based on this, we will prove the sufficiency in the next

section.

We start to understand Theorem 3.4 by two claims.

Claim 3.6.

Π(f, g, h) ≤ C||f ||
Lp(µ)
||g||

Lp(µ)
||h||

L(
p
2 )
′
(ν)
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is equivalent to

Π(f, f, h) ≤ C||f ||2
Lp(µ)
||h||

L(
p
2 )
′
(ν)

.

Proof. Only need to see the later implies the former. Since by definition (3.6),

we have

2Π(f, g, h) ≤ Π(f, f, h) + Π(g, g, h) ≤ C

(
||f ||2

Lp(µ)
+ ||g||2

Lp(µ)

)
||h||

L(
p
2 )
′
(ν)

Hence, by homogeniety, for every t > 0,

Π(f, g, h) = Π(tf,
1

t
g, h) ≤ C

(
t2||f ||2

Lp(µ)
+

1

t2
||g||2

Lp(µ)

)
||h||

L(
p
2 )
′
(ν)

.

Taking t2 = ||g||
Lp(µ)

/||f ||
Lp(µ)

, we conclude that

Π(f, g, h) ≤ C||f ||
Lp(µ)
||g||

Lp(µ)
||h||

L(
p
2 )
′
(ν)

.

�

Claim 3.7. Π(f, f, h) ≤ C||f ||2
Lp(µ)
||h||

L(
p
2 )
′
(ν)

holds, if and only if

∑
I∈L

∑
I′∈child(I)

β
II′
· µ(I)

(∫
I

f 2dµ

)(∫
I′
hdν

)
≤ C||f 2||

L(
p
2 )(µ)

||h||
L(

p
2 )
′
(ν)

holds.

(3.11)

Proof. In the last section, we have deduced that

Π(f, f, h) ≤ C||f ||2
Lp(µ)
||h||

L(
p
2 )
′
(ν)

implies (3.10), which is equivalent to (3.11). On the other hand, since µ(I) ·
∫
I
f 2dµ ≥(∫

I
fdµ

)2
, we know (3.11) implies

Π(f, f, h) ≤ C||f ||2
Lp(µ)
||h||

L(
p
2 )
′
(ν)

.

�

Because of the two claims, if we supress notation α
II′

= β
II′
· µ(I) in (3.11) and

instead of assuming 2 < p < ∞ and considering p/2, we still let 1 < p < ∞ and

consider p. Theorem 3.4 can be restated into the following.
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Theorem 3.8 (Two weight estimates for shifted positive operator). For every

sequence of non-negative constants
{
α
II′

}
I∈L,I′∈child(I)

, define the shifted positive op-

erator

Tα(f, g) =
∑
I∈L

∑
I′∈child(I)

α
II′

(∫
I

fdµ

)(∫
I′
gdν

)
.(3.12)

Tα(f, g) ≤ C||f ||
Lp(µ)
||g||

Lp′ (ν)
(3.13)

holds if and only if

(i)

∫
J

 ∑
I∈L,I⊆J

∑
I′∈child(I)

α
II′
· µ(I) · 1

I′

p dν ≤ Cp
1 · µ(J), J ∈ L,(3.14)

(ii)

∫
J ′

∑
I∈L

∑
I′∈child(I),I′$J ′

α
II′
· ν(I ′) · 1

I

p′ dµ ≤ Cp′

2 · ν(J ′), J ∈ L, J ′ ∈ child(J).

(3.15)

In particular, C ≈ C1 + C2.

6. The case 2 < p <∞: sufficiency

This section is dedicated to prove Theorem 3.8 and hence the sufficiency of The-

orem 1.8 for the case 2 < p < ∞. The idea of the proof is from [7] with some new

twists. It suffices to consider only for f ≥ 0 and g ≥ 0.

We split the estimate into two parts according to the following splitting condition:

L = A ∪ B, where

A =
{
I ∈ L : 〈f〉p

I,µ
· µ(I) ≥ 〈g〉p′

I,ν
· ν(I)

}
and B = L \ A.(3.16)

Standard approximation reasoning allows us to assume that only finitely many

terms α
II′

are non-zero, so all the sums are finite.
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For an interval I ∈ L, let Î denote its parents. Using the splitting condition

(3.16), we can write Tα(f, g) = T1 + T2, where

T1 =
∑
I∈A

α
ÎI

(∫
Î

fdµ

)(∫
I

gdν

)
,(3.17)

T2 =
∑
I∈B

α
ÎI

(∫
Î

fdµ

)(∫
I

gdν

)
.(3.18)

6.1. A modified stopping interval construction. To estimate T1 we need to

modify a bit the construction of stopping intervals from Section 1. The main feature

of the construction is that the stopping intervals well be the intervals I ∈ A, but the

stopping criterion will be checked on their parents Î.

We start with some interval J (not necessarily in A). For the interval J we define

the primary preliminary stopping intervals to be the maximal by inclusion intervals

Î ⊆ J , I ∈ A, such that

〈f〉
Î,µ

> 2〈f〉
J,µ
.(3.19)

Note that different I ∈ A can give the same Î, but this Î is counted only once.

It is obvious that these primary preliminary stopping intervals are disjoint and

their total µ-measure is at most µ(J)/2.

For each such preliminary stopping interval pick all its children L that belong to A

(there is at least one such L), and declare these children to be the stopping intervals.

For the children K /∈ A we continue the process: we will find the maximal by

inclusion intervals Î ⊆ K, I ∈ A satisfying (3.19), and declare these Î to be the

secondary preliminary stopping intervals (note that in the stopping criterion (3.19)

we still compare with the average over the original interval J).

For these secondary preliminary stopping intervals we add their children L ∈ A

to the stopping intervals, and for the children K /∈ A we continue the precess (again,

still comparing the averages with the average over the original interval J).

We assumed that the collection A is finite, so at some point the process will stop

(no I ∈ A, Î ⊆ K). We end up with the disjoint collection G∗(J) of stopping intervals.
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Since all the stopping intervals are inside the primary preliminary stopping inter-

vals, we can conclude that ∑
I∈G∗(J)

µ(I) <
1

2
µ(J).(3.20)

Let G(J) :=
⋃
I∈G∗(J) I. Define E(J) = A(J) \

⋃
I∈G∗(J)A(I), where A(J) = {I ∈

A : I ⊆ J} . It easily follows from the construction that for any I ∈ E(J)

〈f〉
I,µ
≤ 2〈f〉

J,µ
.(3.21)

To construct a collection G, we start with G0 of disjoint intervals covering the

set
⋃
I∈A Î. For each J ∈ G0 we run the stopping intervals construction to get the

collection G∗(J). The union
⋃
J∈G0 G

∗(J) give us the first generation of stopping

intervals G∗1 . Define inductively G∗k+1 =
⋃
J∈G∗k
G∗(J) and put G =

⋃
k≥1 G∗k .

Note that the condition (3.20) implies that the collection G satisfies the following

Carleson measure condition ∑
I∈G,I⊆J

µ(I) < 2µ(J), J ∈ L.(3.22)

we also can replace G by G ∪ G0 here, and still have the same estimate.

6.2. Estimation of T1. We start with the estimation of T1. Using the modified

stopping intervals constructed in the previous subsection and remember that J ∈ G0

is chosen such that J /∈ A, we obtain∑
I∈A

α
ÎI

(∫
Î

fdµ

)(∫
I

gdν

)
=

∑
J∈G∪G0

∑
I∈E(J)

α
ÎI

(∫
Î

fdµ

)(∫
I

gdν

)
= A©+ B©

A© =
∑

J∈G∪G0

∑
I∈E(J),I 6=J

α
ÎI

(∫
Î

fdµ

)(∫
I

gdν

)

B© =
∑
I∈G

α
ÎI

(∫
Î

fdµ

)(∫
I

gdν

)
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For piece A©, by (3.21), we have

A© ≤
∑

J∈G∪G0

2〈f〉
J,µ

∑
I∈E(J),I 6=J

α
ÎI
· µ(Î) ·

(∫
I

gdν

)

=
∑

J∈G∪G0

2〈f〉
J,µ

∫
J

 ∑
I∈E(J),I 6=J

α
ÎI
· µ(Î) · 1

I

 gdν
= 1©+ 2©

1© =
∑

J∈G∪G0

2〈f〉
J,µ

∫
J\G(J)

 ∑
I∈E(J),I 6=J

α
ÎI
· µ(Î) · 1

I

 gdν,

2© =
∑

J∈G∪G0

2〈f〉
J,µ

∫
J∩G(J)

 ∑
I∈E(J),I 6=J

α
ÎI
· µ(Î) · 1

I

 gdν.
To estimate 1©, since the sets J \G(J) are pairwisely disjoint,

1© ≤
∑

J∈G∪G0

2〈f〉
J,µ

∫
J

∣∣∣∣∣∣
∑

I∈E(J),I 6=J

α
ÎI
· µ(Î) · 1

I

∣∣∣∣∣∣
p

dν


1
p [∫

J\G(J)

|g|p′dν
] 1

p′

, (3.14)

≤
∑

J∈G∪G0

2〈f〉
J,µ
· C1 · µ(J)

1
p ·
[∫

J\G(J)

|g|p′dν
] 1

p′

, Hölder’s inequality

≤ C1 · 2

[ ∑
J∈G∪G0

〈f〉p
J,µ
· µ(J)

] 1
p
[ ∑
J∈G∪G0

∫
J\G(J)

|g|p′dν

] 1
p′

, (3.4) and disjointness

≤ C1 · 21+ 1
p · p′ · ||f ||

Lp(µ)
||g||

Lp′ (ν)
.

To estimate 2©, since the sets from G∗(J) are pairwisely disjoint and G(J) =

∪
K∈G∗(J)

K,

2© =
∑
J∈G

2〈f〉
J,µ

∑
K∈G∗(J)

∫
K

 ∑
I∈E(J),I 6=J

α
ÎI
· µ(Î) · 1

I

 gdν.
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Note that the integrand is constant on every K ∈ G∗(J). Hence, we obtain

2© =
∑

J∈G∪G0

2〈f〉
J,µ

∫
J

 ∑
I∈E(J),I 6=J

α
ÎI
· µ(Î) · 1

I

 ∑
K∈G∗(J)

〈g〉
K,ν
· 1

K

 dν

≤
∑

J∈G∪G0

2〈f〉
J,µ

∫
J

∣∣∣∣∣∣
∑

I∈E(J),I 6=J

α
ÎI
· µ(Î) · 1

I

∣∣∣∣∣∣
p

dν


1
p

∫
J

∣∣∣∣∣∣
∑

K∈G∗(J)

〈g〉
K,ν
· 1

K

∣∣∣∣∣∣
p′

dν


1
p′

=
∑

J∈G∪G0

2〈f〉
J,µ

∫
J

∣∣∣∣∣∣
∑

I∈E(J),I 6=J

α
ÎI
· µ(Î) · 1

I

∣∣∣∣∣∣
p

dν


1
p
 ∑
K∈G∗(J)

〈g〉p′
K,ν
· ν(K)

 1
p′

.

Using the splitting condition (3.16) for the definition A, we can estimate

2© ≤
∑

J∈G∪G0

2〈f〉
J,µ

∫
J

∣∣∣∣∣∣
∑

I∈E(J),I 6=J

α
ÎI
· µ(Î) · 1

I

∣∣∣∣∣∣
p

dν


1
p
 ∑
K∈G∗(J)

〈f〉p
K,µ
· µ(K)

 1
p′

≤
∑

J∈G∪G0

2〈f〉
J,µ
· C1 · µ(J)

1
p ·

 ∑
K∈G∗(J)

〈f〉p
K,µ
· µ(K)

 1
p′

≤ C1 · 2

[ ∑
J∈G∪G0

〈f〉p
J,µ
· µ(J)

] 1
p

 ∑
J∈G∪G0

∑
K∈G∗(J)

〈f〉p
K,µ
· µ(K)

 1
p′

, (3.4)

≤ C1 · 4(p′)p · ||f ||p
Lp(µ)

.

Combine the estimation of 1© and 2©. We conclude

A© ≤ C1 · 21+ 1
p · p′ · ||f ||

Lp(µ)
||g||

Lp′ (ν)
+ C1 · 4(p′)p · ||f ||p

Lp(µ)
.
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For piece B©, note that

B© =
∑
I∈G

α
ÎI
· µ(Î) · ν(I) · 〈f〉

Î,µ
· 〈g〉

I,ν

≤

[∑
I∈G

αp
ÎI
· µ(Î)p · ν(I) · 〈f〉p

Î,µ

] 1
p
[∑
I∈G

〈g〉p′
I,ν
· ν(I)

] 1
p′

, (3.16)

≤

[∑
I∈G

αp
ÎI
· µ(Î)p · ν(I) · 〈f〉p

Î,µ

] 1
p
[∑
I∈G

〈f〉p
I,ν
· µ(I)

] 1
p′

, (3.4)

≤ 2
1
p′ · p · ||g||

Lp′ (ν)
·

[∑
I∈G

αp
ÎI
· µ(Î)p · ν(I) · 〈f〉p

Î,µ

] 1
p

.

To finish, we need the following lemma.

Lemma 3.9. The sequence {α
I
}
I∈L

,

α
I

=
∑

I′∈child(I)

αp
II′
· µ(I)p · ν(I ′)

satisfies the Carleson measure condition.

Proof. For J ∈ L, we have

∑
I∈L:I⊆J

α
I

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∑
I⊆J

∑
I′∈G,I′∈child(I)

αp
II′
· µ(I)p · 1

I′

 1
p

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
p

Lp(ν)

, || · ||
lp
≤ || · ||

l1

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
I⊆J

∑
I′∈G,I′∈child(I)

α
II′
· µ(I) · 1

I′

∣∣∣∣∣∣
∣∣∣∣∣∣
p

Lp(ν)

=

∫
J

∣∣∣∣∣∣
∑
I⊆J

∑
I′∈G,I′∈child(I)

α
II′
· µ(I) · 1

I′

∣∣∣∣∣∣
p

dν, (3.14)

≤ Cp
1 · µ(J).

�

Hence, we can estimate

B© ≤ C1 · 2
1
p′ · p · p′ · ||f ||

Lp(µ)
||g||

Lp′ (ν)
,
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which, together with the estimation of A©, imply that

T1 ≤ C1 · 21+ 1
p · p′ · ||f ||

Lp(µ)
||g||

Lp′ (ν)
+ C1 · 4(p′)p · ||f ||p

Lp(µ)

+ C1 · 2
1
p′ · p · p′ · ||f ||

Lp(µ)
||g||

Lp′ (ν)
.

6.3. Estimation of T2. Now we take care of the estimation of T2. The estimation

proceeds similar as in subsection 6.2. Using the stopping intervals constructed in

section 1 with F = B, we obtain

∑
I∈B

α
ÎI

(∫
Î

fdµ

)(∫
I

gdν

)
=
∑
J∈G

∑
I∈E(J)

α
ÎI

(∫
Î

fdµ

)(∫
I

gdν

)
= A©+ B©

A© =
∑
J∈G

∑
I∈E(J),I 6=J

α
ÎI

(∫
Î

fdµ

)(∫
I

gdν

)
,

B© =
∑
J∈G

α
ĴJ

(∫
Ĵ

fdµ

)(∫
J

gdν

)
.

Note here I 6= J , we can write

A© ≤
∑
J∈G

2〈g〉
J,ν
·
∫
J

 ∑
I∈E(J),I 6=J

α
ÎI
· ν(I) · 1

Î

 fdµ = 1©+ 2©

1© =
∑
J∈G

2〈g〉
J,ν
·
∫
J\G(J)

 ∑
I∈E(J),I 6=J

α
ÎI
· ν(I) · 1

Î

 fdµ,

2© =
∑
J∈G

2〈g〉
J,ν
·
∫
J∩G(J)

 ∑
I∈E(J),I 6=J

α
ÎI
· ν(I) · 1

Î

 fdµ.
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To estimate 1©, again since the sets J \G(J) are pairwisely disjoint,

1© ≤
∑
J∈G

2〈g〉
J,ν

∫
J

∣∣∣∣∣∣
∑

I∈E(J),I 6=J

α
ÎI
· ν(I) · 1

Î

∣∣∣∣∣∣
p′

dν


1
p′ [∫

J\G(J)

|f |pdµ
] 1

p

, (3.15)

≤ C2 · 2

[∑
J∈G

〈g〉p′
J,ν
· ν(J)

] 1
p′
[∑
J∈G

∫
J\G(J)

|f |pdµ

] 1
p

, (3.4) and disjointness

≤ C2 · 21+ 1
p′ · p · ||f ||

Lp(µ)
||g||

Lp′ (ν)
.

To estimate 2©, note again that the sets from G∗(J) are pairwisely disjoint and

G(J) = ∪
K∈G∗(J)

K. Hence,

2© =
∑
J∈G

2〈g〉
J,ν

∑
K∈G∗(J)

∫
K

 ∑
I∈E(J),I 6=J

α
ÎI
· ν(I) · 1

Î

 fdµ.
Since the integrand is constant on K, we have

2© =
∑
J∈G

2〈g〉
J,ν
·
∫
J

 ∑
I∈E(J),I 6=J

α
ÎI
· ν(I) · 1

Î

 ∑
K∈G∗(J)

〈f〉
K,µ
· 1

K

 dµ
≤
∑
J∈G

2〈g〉
J,ν
· C2 · ν(J)

1
p′ ·

∫
J

∣∣∣∣∣∣
∑

K∈G∗(J)

〈f〉
K,µ
· 1

K

∣∣∣∣∣∣
p

dµ


1
p

, disjointness

=
∑
J∈G

2〈g〉
J,ν
· C2 · ν(J)

1
p′ ·

 ∑
K∈G∗(J)

〈f〉p
K,µ
· ν(K)

 1
p

, splitting condition (3.16)

≤ C2 · 2

[∑
J∈G

〈g〉p′
J,ν
· ν(J)

] 1
p′
∑
J∈G

∑
K∈G∗(J)

〈g〉p′
K,ν
· ν(K)

 1
p

, (3.4)

≤ C2 · 4(p)p
′ · ||g||p′

Lp′ (ν)

.

Combine the estimation of 1© and 2©, we have

A© ≤ C2 · 21+ 1
p′ · p · ||f ||

Lp(µ)
||g||

Lp′ (ν)
+ C2 · 4(p)p

′ · ||g||p′
Lp′ (ν)

.
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Finally, to estimate B©, note again

B© =
∑
J∈G

α
ĴJ
· µ(Ĵ) · ν(J) · 〈f〉

Ĵ ,µ
· 〈g〉

J,ν

≤

[∑
J∈G

αp
ĴJ
· µ(Ĵ)p · ν(J) · 〈f〉p

Ĵ,µ

] 1
p
[∑
J∈G

〈g〉p′
J,ν
· ν(J)

] 1
p′

, (3.4)

≤ 2
1
p′ · p · ||g||

Lp′ (ν)
·

[∑
J∈G

αp
ĴJ
· µ(Ĵ)p · ν(J) · 〈f〉p

Ĵ,µ

] 1
p

, Lemma 3.9

≤ C1 · 2
1
p′ · p · p′ · ||f ||

Lp(µ)
||g||

Lp′ (ν)
.

Hence, we deduce that

T2 ≤ C2 · 21+ 1
p′ · p · ||f ||

Lp(µ)
||g||

Lp′ (ν)
+ C2 · 4(p)p

′ · ||g||p′
Lp′ (ν)

+ C1 · 2
1
p′ · p · p′ · ||f ||

Lp(µ)
||g||

Lp′ (ν)
.

Eventually, we conclude that

Tα(f, g) = T1 + T2

≤ C1 · 21+ 1
p · p′ · ||f ||

Lp(µ)
||g||

Lp′ (ν)
+ C1 · 4(p′)p · ||f ||p

Lp(µ)

+ C2 · 21+ 1
p′ · p · ||f ||

Lp(µ)
||g||

Lp′ (ν)
+ C2 · 4(p)p

′ · ||g||p′
Lp′ (ν)

+ C1 · 21+ 1
p′ · p · p′ · ||f ||

Lp(µ)
||g||

Lp′ (ν)
.

By homogeniety, for every t > 0,

Tα(f, g) = Tα(tf,
1

t
g) . (C1 + C2) ·

(
tp||f ||p

Lp(µ)
+ ||f ||

Lp(µ)
||g||

Lp′ (ν)
+

1

tp′
||g||p′

Lp′ (ν)

)
.

Taking t = ||g||
1
p

Lp′ (ν)

/||f ||
1
p′

Lp(µ)
, we prove exactly

Tα(f, g) . (C1 + C2) · ||f ||
Lp(µ)
||g||

Lp′ (ν)
.
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CHAPTER 4

Bellman functions on filtered probability spaces I:

Burkhölder’s hull and Super-solutions

In this chapter, we find explicitly a super-solution of the dyadic Carleson Embed-

ding Theorem 1.9 via the Burkhölder’s hull. We start with some properties of the

Bellman function B(F, f,M ;C), in particular, we prove the main inequality. Then, we

define and discuss the super-solutions in detail. In the last section, we introduce the

Burkhölder’s hull and solve for a super-solution of Theorem 1.9 via the Burkhölder’s

hull. This chapter proves the existence of the Bellman function B(F, f,M ;C).

1. Properties of the Bellman function B(F, f,M ;C)

Proposition 4.1 (Properties of the Bellman function B(F, f,M ;C)).

(i) Domain: fp ≤ F and 0 ≤M ≤ C.

(ii) Range: 0 ≤ B(F, f,M ;C) ≤ Cp · C · F .

(iii) The main inequality: For all triples (F, f ,M) and (F±, f±,M±) belong to

the domain fp ≤ F , 0 ≤M ≤ C, with F = 1
2
(F+ +F−), f = 1

2
(f+ + f−) and

M = ∆M + 1
2
(M+ +M−), where 0 ≤ ∆M ≤M , we have

B(F, f ,M ;C) ≥ 1

2
{B(F+, f+,M+;C) + B(F−, f−,M−;C)}+ ∆M · fp.(4.1)

Proof. (i) follows from the Hölder’s inequality and that {α
I
}
I∈D

is a Carleson

sequence. (ii) holds if we assume Theorem 1.9 is true. We explain (iii) in more detail.

Split the sum in the definition (1.15) of B(F, f,M) into three pieces

|I|−1
∑
J⊆I

α
J
〈f〉p

J
=

1

2
|I+|−1

∑
J⊆I+

α
J
〈f〉p

J
+

1

2
|I−|−1

∑
J⊆I−

α
J
〈f〉p

J
+ |I|−1α

I
〈f〉p

I
,

where I± means the right and left halves of I, respectively.
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Now, we choose f± on the interval I± that almost give the supremum in the

definition (1.15) of B(F±, f±,M±), i.e. for small ε > 0,

|I±|−1
∑
J⊆I±

α
J
〈f±〉p

J
≥ B(F±, f±,M±;C)− ε

2
,

and note that |I|−1α
I
〈f〉p

I
= ∆M · f, we conclude

|I|−1
∑
J⊆I

α
J
〈f〉p

J
≥ 1

2
{B(F+, f+,M+;C) + B(F−, f−,M−;C)} − ε+ ∆M · fp,

which yields exactly (4.1). �

Remark 4.2. From (1.15), we know that the Bellman function B(F, f,M ;C)

exists and 0 ≤ B(F, f,M ;C) ≤ Cp · C · F if and only if Theorem 1.9 is true. The

sharpness is explained as

sup
fp≤F, 0≤M≤C

B(F, f,M ;C)

C · F
= (p′)p.(4.2)

2. Properties of the Super-solutions

2.1. The super-solutions and the dyadic Caleson Embedding Theorem.

Definition 4.3. A function satisfies Propositon 4.1 is called a super-solution. We

denote a super-solution by B(F, f,M ;C).

We have seen that the dyadic Carleson Embedding Theorem 1.9 gives rise to

a super-solution B(F, f,M ;C). On the other hand, to prove (1.14) and actually

Theorem 1.9, it suffices to find any super-solution.

Indeed, pick f ≥ 0 and {α
I
}
I∈D

satisfying the Carleson condition. For every

dyadic interval I ∈ D, let F
I
, f
I
,M

I
be the corresponding averages

F
I

= 〈fp〉
I
, f
I

= 〈f〉
I
,M

I
= |I|−1

∑
J⊆I

α
J
.

Note that F
I

= 1
2
(F

I+
+ F

I−
), f

I
= 1

2
(f
I+

+ f
I−

) and M
I

= ∆M
I

+ 1
2
(M

I+
+ M

I−
),

where 0 ≤ ∆M
I

= |I|−1α
I
≤ M

I
. For the interval I, the main inequality (4.1)

implies

α
I
〈f〉p

I
≤ |I|B(F

I
, f
I
,M

I
;C)− |I+|B(F

I+
, f
I+
,M

I+
;C)− |I−|B(F

I−
, f
I−
,M

I−
;C).

34



Going n levels down, we get the inequality

∑
J⊆I,|J |>2−n|I|

α
J
〈f〉p

J
≤ |I|B(F

I
, f
I
,M

I
;C)−

∑
J⊆I,|J |=2−n|I|

|J |B(F
J
, f
J
,M

J
;C)

≤ |I|B(F
I
, f
I
,M

I
;C) ≤ Cp · C · |I|F

I
= Cp · C ·

∫
I

fp.

Applying the above estimate for the intervals [−2n, 0) and [0, 2n) and taking the

limit as n→∞, we prove exactly (1.14).

Remark 4.4. To prove Theorem 1.9, all amounts to finding a super-solution

B(F, f,M ;C). We will see in section 3 that the least possible constant for which

B(F, f,M ;C) exists is Cp = (p′)p.

2.2. Further properties of B(F, f,M ;C). We start with the following cele-

brated theorem in convex analysis. We will give a proof for the sake of completeness,

for more details, see [29].

Theorem 4.5. Let f : Ω → R be a locally bounded function defined on some

convex domain Ω ∈ Rn and f satisfies the midpoint concavity: f(x+y
2

) ≥ f(x)+f(y)
2

for

all x, y ∈ Ω. Then f is concave and locally Lipschitz.

Proof. For concavity: If f is not concave, then there exist two points a, b ∈ Ω,

as well as the line segment connecting them [a, b] = {λa+ (1− λ)b : 0 ≤ λ ≤ 1} ⊆ Ω,

such that the function ϕ(λ) = f(λa+ (1− λ)b)− λf(a)− (1− λ)f(b) verifies

−∞ < C = inf{ϕ(λ) : 0 ≤ λ ≤ 1} < 0.

Note that we have used Ω being convex and f being locally bounded here. Fur-

thermore, ϕ(0) = ϕ(1) = 0 and a direct computation shows that ϕ is also midpoint

concave. Take 0 < δ < −C
2

and let 0 ≤ λ0 ≤ 1, such that ϕ(λ0) ≤ C+ δ, without loss

of generality, further assuming 0 < λ0 <
1
2
, hence we have ϕ(0) = 0 and ϕ(2λ0) ≥ C,

however

ϕ(λ0) ≤ C + δ <
C

2
=
ϕ(0) + ϕ(2λ0)

2
, a contradiction!
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For locally Lipschitz continuity: Given a ∈ Ω, we can find a ball B(a, 2r) ⊆ Ω on

which f is bounded by a constant M . For x 6= y in B(a, 2r), put z = y + ( r
α

)(y − x),

where α = ||y − x||. Clearly, z ∈ B(a, 2r). Moreover, since y = r
r+α

x + α
r+α

z, from

the concavity of f we infer that f(y) ≥ r
r+α

f(x) + α
r+α

f(z). So |f(y) − f(x)| ≤
α
r+α
|f(z)− f(x)| ≤ ||y−x||

r
· 2M . �

In the case of our main inequality (4.1), first put F = 1
2
(F+ +F−), f = 1

2
(f+ + f−)

and M = 1
2
(M+ + M−) (i.e. ∆M = 0) and assume all triples (F, f,M), (F±, f±,M±)

are in the convex domain: fp ≤ F, 0 ≤M ≤ C, then we obtain the midpoint concavity

of B(F, f,M ;C). Apply Theorem 4.5 to the function B, so B is itself concave and

locally Lipschitz. In particular, B is a continuous function.

Now let 0 ≤ λ ≤ 1 and F = λF+(1−λ)F−, f = λf+(1−λ)f−, M = ∆M +λM+ +

(1− λ)M−. The main inequality (4.1) and concavity of B imply that

∆M · fp ≤ B(F, f,M ;C)− B(F, f,M −∆M ;C)

≤ B(F, f,M ;C)− {λB(F+, f+,M+;C) + (1− λ)B(F−, f−,M−;C)} .

Hence, the Bellman function B(F, f,M) is continuous and satisfies

B(F, f,M ;C) ≥ λB(F+, f+,M+;C) + (1− λ)B(F−, f−,M−;C) + ∆M · fp.(4.3)

2.3. Regularization of the super-solutions. As we have seen, the Bellman

function B is concave and locally Lipschitz, and thus continuous, but hardly any better

than that. Fortunately, we know that the proof of Theorem 1.9 boils down to finding

just a super-solution B. We recall the trick of regularization of the super-solutions

from [25].

Given a super-solution B(F, f,M ;C) satisfying Proposition 4.1. Let φε, ψε :

(0,∞) → [0,∞) be any two nonnegative C∞ functions, such that supp(φε) ⊆

[1, (1 + ε)p], supp(ψε) ⊆ [1 + ε, 1 + 2ε] and
∫∞
0
φε(t)

dt
t

=
∫∞
0
ψε(t)

dt
t

= 1. Define

Bε(F, f,M ;C) =

∫∫∫
(0,∞)3

B
(
F

u
,
f

v
,
M

w
;C

)
φε(u)ψε(v)φε(w)

dudvdw

uvw

=

∫∫∫
(0,∞)3

B(u, v, w;C)φε

(
F

u

)
ψε

(
f

v

)
φε

(
M

w

)
dudvdw

uvw
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Note that the second representation shows Bε ∈ C∞. Since B is continuous, the

family of smooth functions {Bε : ε > 0} converges to B pointwisely as ε→ 0.

To check Proposition 4.1 for Bε. Note that the supports of φε and ψε guarantee

that Bε is well-defined in the region {fp ≤ F, 0 ≤ M ≤ C} and an easy calculation

shows that 0 ≤ Bε ≤ Cp · C · F . For the main inequality, the first representation and

(4.1) imply that

Bε(F, f,M ;C)− 1

2
{Bε(F+, f+,M+;C) + Bε(F−, f−,M−;C)}

≥ ∆M · fp
∫ (1+ε)p

1

∫ 1+2ε

1+ε

∫ (1+ε)p

1

1

vpw
φε(u)ψε(v)φε(w)

dudvdw

uvw

≥ 1

(1 + 2ε)p(1 + ε)p
∆M · fp → ∆M · fp as ε→ 0.

Hence, the proof of (1.14) given in subsection 2.1 works for the smooth function

Bε(F, f,M ;C) as well. In what follows, it suffices to consider only for smooth super-

solutions B(F, f,M ;C).

2.4. The main inequality in its infinitesimal version. For a smooth super-

solution B(F, f,M ;C), being concave means the second differential d2B ≤ 0. By the

main inequality (4.1), we have: B(F, f,M) − B(F, f,M −∆M) ≥ ∆M · fp, and thus

∂B
∂M
≥ fp.

Therefore, the main inequality (4.1) implies the following two infinitesimal ones

d2B(F, f,M ;C) ≤ 0 and
∂B
∂M

(F, f,M ;C) ≥ fp.(4.4)

Actually, (4.4) is equivalent to the main inequality (4.1). Since by (4.4), we can

deduce

∆M · fp ≤ B(F, f,M ;C)− B(F, f,M −∆M ;C)

≤ B(F, f,M ;C)− 1

2
{B(F+, f+,M+;C) + B(F−, f−,M−;C)} .
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3. Finding a super-solution via the Burkhölder’s hull

3.1. Burkhölder’s hull and some reductions. Assume B(F, f ,M ;C) is a

smooth super-solution. In this section, we present an explicit function B(F, f ,M ;C)

with the help of the Burkhölder’s hull.

Definition 4.6. The Burkhölder’s hull of B(F, f,M ;C) is defined by

u(f ,M ;C) = sup
F

{B(F, f,M ;C)− Cp · C · F}, f ≥ 0, 0 ≤M ≤ C.(4.5)

Remark 4.7. This trick of eliminating one variable is due to D. Burkhölder [27].

It follows from the definition (1.15) of B(F, f,M ;C) that

B(F, f,M ;C) = C · B(F, f,M/C; 1). Scaling Property(4.6)

Thus, it suffices to consider only for C = 1. We adopt the notations B(F, f ,M) =

B(F, f ,M ;C = 1), B(F, f ,M) = B(F, f ,M ;C = 1) and u(f ,M) = u(f ,M ;C = 1).

Proposition 4.8. The Bukhölder’s hull u(f,M) satisfies the following properties

(i)
∂u

∂M
(f,M) ≥ fp and (ii) u(f,M) is concave.

Proof. The proof follows from the definition (4.5).

(i) From ∂B
∂M

(F, f,M) ≥ fp, we conclude that B(F, f,M + ∆M)− B(F, f,M) ≥

∆M · fp. Choose F0 that almost gives the supremum in the definition of

u(f,M), i.e. for small ε > 0, B(F0, f,M)− Cp · F0 > u(f,M)− ε, then

u(f,M + ∆M)− u(f,M)

≥ [B(F0, f,M + ∆M)− Cp · F0]− [B(F0, f,M)− Cp · F0 + ε]

= [B(F0, f,M + ∆M)− B(F0, f,M)]− ε

≥ ∆M · fp − ε.

Letting ε→ 0, so ∂u
∂M

(f,M) ≥ fp.

(ii) We need the following simple lemma.
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Lemma 4.9. Let ϕ(x, y) be a convex function and let Φ(x) = sup
y
ϕ(x, y),

then Φ(x) is also a concave function.

Proof. We need to see Φ(λx1 + (1−λ)x2) ≥ λΦ(x1) + (1−λ)Φ(x2) for

all x1, x2 and 0 ≤ λ ≤ 1. Again choose y1 and y2 in the definition of Φ(x),

such that for small ε > 0, ϕ(x1, y1) > Φ(x1)− ε and ϕ(x2, y2) > Φ(x2)− ε.

Then

λΦ(x1) + (1− λ)Φ(x2) < λϕ(x1, y1) + (1− λ)ϕ(x2, y2) + ε

≤ ϕ(λx1 + (1− λ)x2, λy1 + (1− λ)y2) + ε

≤ Φ((λx1 + (1− λ)x2) + ε,

which proves the lemma. �

A direct application of this lemma gives (ii).

�

Remark 4.10. From Proposition 4.8 and (4.5), if the dyadic Carleson Embedding

Theorem 1.9 holds with constant Cp, then there exists a concave function u(f,M)

satisfying ∂u
∂M

(f,M) ≥ fp and −Cp · fp ≤ u(f,M) ≤ 0. On the other hand, if such a

u(f,M) exists, then we can define B(F, f,M) = u(f,M)+Cp ·F for F ≥ fp, 0 ≤M ≤ 1,

and so B is a super-solution that proves the dyadic Carleson Embedding Theorem with

the same constant Cp. Hence, the best constant in the dyadic Carleson Embedding

Theorem is exactly the best constant for which the fuction u(f,M) exists.

Now, note the definition (1.15) of B(F, f ,M ;C) implies that

B(tpF, tf ,M ;C) = tp · B(F, f ,M ;C) for all t ≥ 0. Homogeniety(4.7)

Hence, u(tf,M) = tp · u(f,M), which means u(f,M) can be represented as u(f,M) =

fp · ϕ(M). For such a function u(f,M), the Hessian equalsp(p− 1)fp−2ϕ(M) pfp−1ϕ′(M)

pfp−1ϕ′(M) fpϕ′′(M)

 ,
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so the concavity of u(f,M) is equivalent to the following two inequalities

ϕ(M) ≤ 0 and ϕϕ
′′ − (p′)(ϕ′)2 ≥ 0 for 0 ≤M ≤ 1.

The inequality ∂u
∂M

(f,M) ≥ fp means ϕ′(M) ≥ 1 and ϕ(M) also satisfies −Cp ≤

ϕ(M) ≤ 0.

Hence, our task is to find ϕ(M), such that

(i) 0 ≤M ≤ 1

(ii) −Cp ≤ ϕ(M) ≤ 0

(iii) ϕ′(M) ≥ 1

(iv) ϕϕ
′′ − (p′)(ϕ′)2 ≥ 0,

and the least possible constant is Cp = inf
ϕ

sup
0≤M≤1

{−ϕ(M)}.

3.2. The formula of the Burkhölder’s hull and an explicit super-solution.

We first introduce φ(M) = −ϕ(M) ≥ 0, then φ(M) satisfies

(i) 0 ≤M ≤ 1; (ii) 0 ≤ φ(M) ≤ Cp; (iii) φ′(M) ≤ −1; (iv) φφ
′′ − (p′)(φ)2 ≥ 0,

and we need to consider Cp = inf
φ

sup
0≤M≤1

{φ(M)}.

Rewrite φφ
′′ − (p′)(φ)2 ≥ 0 as φp

′+1 ·
(
φ′/φp

′)′ ≥ 0 or equivalently
(
φ′/φp

′)′ ≥ 0.

Let
(
φ′/φp

′)′
= g(M) ≥ 0 and denote G(M) =

∫M
0
g, we can solve

φ(M) =

[
p− 1

C2M + C1 −
∫M
0
G

]p−1
,

where C1 and C2 are some constants, such that C2M+C1−
∫M
0
G ≥ 0 for 0 ≤M ≤ 1.

Note that φ′(M) ≤ −1, so sup
0≤M≤1

φ(M) = φ(0) =
[
p−1
C1

]p−1
. All we need to do

now is to minimize
[
p−1
C1

]p−1
among all possible φ(M).

To this end, we compute

φ′(M) = −

[
p− 1

C2M + C1 −
∫M
0
G

]p
· [C2 −G(M)] ,

and use again φ′(M) ≤ −1 with M = 1, which yields

C1 ≤ −C2 +

∫ 1

0

G+ (p− 1) · [C2 −G(1)]
1
p .
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Remember that G′(M) = g(M) ≥ 0, thus G(M) is increasing, in particular,
∫ 1

0
G ≤

G(1), so C1 ≤ − [C2 −G(1)] + (p − 1) · [C2 −G(1)]
1
p . An easy calculation gives the

maximum of the right hand side equals (p − 1) · (p′)−p′ when C2 = G(1) + (p′)−p
′
,

therefore, C1 is at most (p− 1) · (p′)−p′ and thus
[
p−1
C1

]p−1
≥ (p′)p.

To write down an explicit super-solution, simply take G(M) = 0, C2 = (p′)−p
′

and C1 = (p− 1) · (p′)−p′ , then

φ(M) =

[
p− 1

C2M + C1 −
∫M
0
G

]p−1
=

pp

(p− 1) · [M + (p− 1)]p−1
,

and recall the relation B(F, f,M) = u(f,M) + CpF = (p′)pF − fp · φ(M), we obtain

u(f,M) = − (pf)p

(p− 1) · [M + (p− 1)]p−1
,(4.8)

B(F, f,M) = (p′)pF − (pf)p

(p− 1) · [M + (p− 1)]p−1
.(4.9)

In the general case, we have u(f ,M ;C) = C · u(f ,M/C) and B(F, f ,M ;C) = C ·

B(F, f ,M/C). Therefore, we have proved the following theorem.

Theorem 4.11. The Burkhölder’s hull of the dyadic Carleson Embedding Theorem

1.9 is given by

u(f ,M ;C) = − C · (pf)p

(p− 1) · [M
C

+ (p− 1)]p−1
.(4.10)

A super-solution that gives the sharpness Cp = (p′)p is

B(F, f ,M ;C) = (p′)pF − C · (pf)p

(p− 1) · [M
C

+ (p− 1)]p−1
.(4.11)

Remark 4.12. Now that the dyadic Carleson Embedding Theorem 1.9 is proved,

the Bellman function B(F, f,M ;C) exists with Cp = (p′)p. However, the super-

solution B(F, f ,M ;C) obtained above is not the real Bellman function, since on the

boundary F = fp the real Bellman function must satisfy the boundary condition

B(F, f,M ;C) = M fp = MF , but the function we constructed does not satisfy this

condition. So, this super-solution only touches the real one along some set. For the

exact Bellman function B(F, f,M ;C), see [22] and [23].
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CHAPTER 5

The Bellman functions on filtered probability spaces II:

Remodeling and proof of the main theorems

In this chapter, we prove the two main results: Theorem 1.13 and Theorem 1.15.

The proof depends on a remodeling of the Bellman function B(F, f,M ;C = 1) for an

infinitely refining filtration.

1. Properties of the Bellman function BFµ (F, f,M,C)

The Bellman function BFµ (F, f,M ;C) associated to the martingale Carleson Em-

bedding Theorem 1.13 does not formally have the main inequality. But it still satisfies

the following properties.

Proposition 5.1 (Properties of the Bellman function BFµ (F, f,M ;C)).

(i) Domain: fp ≤ F and 0 ≤M ≤ C.

(ii) Range: 0 ≤ BFµ (F, f,M ;C) ≤ Cp · C · F .

(iii) Homogeniety: BFµ (tpF, tf,M ;C) = tp · BFµ (F, f,M ;C) for all t ≥ 0.

(iv) Scaling Property: BFµ (F, f,M ;C) = C · BFµ (F, f,M/C; 1).

(v) BFµ (F, f,M ;C) ≥ BFµ (F, f,M −∆M ;C) + ∆M · fp for 0 ≤ ∆M ≤M .

In particular, BFµ (F, f,M ;C) is increasing in M .

Proof. (i) follows from the Hölder’s inequality and that {αn}n≥0 is a Carleson

sequence. (ii) holds if we assume Theorem 1.12 is true. (iii) and (iv) are obtained

directly from definition (1.18). We explain (v) in more detail. Choose f ≥ 0 and

{αn}n≥0 that almost give the supremum in the definition (1.18), i.e. for small ε > 0,

Eµ
[∑
n≥0

αnf
p
n

]
≥ BFµ (F, f,M −∆M ;C)− ε,

42



where Eµ [fp] = F , Eµ [f ] = f, Eµ
[∑

n≥0 αn
]

= M −∆M and Eµ
[∑

k≥n αk|Fn
]
≤ C

for every n ≥ 0. Since 0 ≤M ≤ C, if we increase α0 to α0 + ∆M then everything is

retained except we have now Eµ
[∑

n≥0 αn
]

= M and

Eµ
[∑
n≥0

αnf
p
n

]
≥ BFµ (F, f,M −∆M ;C)− ε+ ∆M · fp.

Letting ε→ 0, we obtain BFµ (F, f,M ;C) ≥ BFµ (F, f,M −∆M ;C) + ∆M · fp. �

2. Remodeling of the Bellman function B(F, f,M ;C = 1) for an infinitely

refining filtration

In this section, we present a remodeling of the Bellman function B(F, f,M ;C = 1)

for an infinitely refining filtration, which is central to the proof of Theorem 1.13 and

Theorem 1.15. We use the notation B(F, f,M) = B(F, f,M ;C = 1) in this and later

sections.

Consider the unit interval I = [0, 1] ∈ D, let {Ikj : 1 ≤ j ≤ 2k} be its k-th

generation desendant by subdividing I into 2k congruent dyadic intervals and denote

I01 = I.

Starting from the definition (1.15) of the Bellman function B(F, f,M), we can

find a function f ≥ 0 with 〈fp〉
I

= F , 〈f〉
I

= f and a sequence {α
J
}
J⊆I

,∑
J⊆I

α
J

= M satisfying the Carleson condition with constant C = 1, such that

the sum
∑

J⊆I
α
J
〈f〉p

J
(almost) attains B(F, f,M).

To proceed, we further assume that the sequence {α
J
}
J⊆I

has only finitely many

non-zero terms. Hence, the indices of {α
J
}
J⊆I

belong to the collection {Ikj : 1 ≤ k ≤

N, 1 ≤ j ≤ 2k} for some fixed integer N , i.e. for all J /∈ {Ikj : 1 ≤ k ≤ N, 1 ≤ j ≤ 2k},

we have α
J

= 0. As a consequence, we can think the function f being piecewise

constant on all {INj : 1 ≤ j ≤ 2N}.

Now, let us do the remodeling. Fix a small ε, 0 < ε < 1. Consider a discrete-time

filtered probability space (X ,F , {Fn}n≥0, µ). The initial construction is X 0
1 = X ,

and this is Fn0-measurable, where n0 = 0. Assume that the Fnk
-measurable sets

X k
j , 1 ≤ j ≤ 2k are constructed. We want to inductively construct Fnk+1

-measurable
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sets X k+1
j , 1 ≤ j ≤ 2k+1. Take a Fnk

-measurable set X k
j . Our construction consists

of two steps.

The first step is a modification of the set X k
j . For the given ε > 0 and X k

j ∈

Fnk
, Definition 1.11 guarantees the existence of a real-valued Fnk

j
-measurable random

variable h (nkj > nk), such that: (i) |h1
E
| = 1

E
and (ii)

∫
Xk

j
|hnk
|dµ ≤ ε2

4
µ(Xk

j ). The

condition (ii) is chosen in such a way that

µ
({
x ∈ X k

j : |hnk
| > ε

2

})
≤ ε

2
µ(X k

j ).(5.1)

Let X̃ k
j = X k

j \
{
x ∈ X k

j : |hnk
| > ε/2

}
. So we can conclude |hnk

| ≤ ε/2 on X̃ k
j , and

moreover, (1− ε/2)µ(X k
j ) ≤ µ(X̃ k

j ) ≤ µ(X k
j ).

In the second step, we set X k+1
2j−1 = X̃k

j ∩{h = 1} and X k+1
2j = X̃k

j ∩{h = −1}. Since∣∣∣∣∫X̃k
j

hdµ

∣∣∣∣ ≤ ∫X̃k
j

|hnk
|dµ ≤ ε

2
µ(X̃ k

j ), which gives
∣∣µ(X k+1

2j−1)− µ(X k+1
2j )

∣∣ ≤ ε
2
µ(X̃ k

j ) ≤
ε
2
µ(X k

j ), we have

1

2
(1− ε) ≤ max

{
µ(X k+1

2j−1)

µ(X k
j )

,
µ(X k+1

2j )

µ(X k
j )

}
≤ 1

2
(1 + ε).(5.2)

Do this for all X k
j , 1 ≤ j ≤ 2k and let nk+1 = max{nkj : 1 ≤ j ≤ 2k}. Hence, we

construct Fnk+1
-measurable sets X k+1

j , 1 ≤ j ≤ 2k+1. Our construction stops when

k = N .

Now that we have constructed {X k
j : 0 ≤ k ≤ N, 1 ≤ j ≤ 2k}. We can define a

new sequence {αn}n≥0 on the space (X ,F , µ) as

αnk
=


µ(X k

j )−1α
Ikj

, if x ∈ X k
j

0, if x ∈ X \
⋃2k

j=1X k
j

and αn = 0 for all n’s different from nk, 1 ≤ k ≤ N .

Finally, set the new function f̃ as f̃1
XN

j

= f1
INj

, 1 ≤ j ≤ 2N , and set f̃ = 0 on

X \
⋃2N

j=1XN
j . Note that the function f̃ is also piecewise constant on all {X k

j : 0 ≤

k ≤ N, 1 ≤ j ≤ 2k}.
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Remark 5.2. This construction guarantees that Eµ
[∑

n≥0 αn
]

=
∑

J⊆I
α
J

= M

and Eµ
[
f̃
]

= 〈f〉
I

= f. Later in subsection 2.2 and subsection 3.2, we use a slightly

modified version of this construction.

We will frequently consult to the following proposition.

Proposition 5.3. (i) 1
2
(1− ε) ≤ max

{
µ(Xk+1

2j−1)

µ(Xk
j )

,
µ(Xk+1

2j )

µ(Xk
j )

}
≤ 1

2
(1 + ε).

(ii) For every subset E ∈ Fnk
and µ(E ∩ X k

j ) > 0, we have

max

{
µ(E ∩ X k+1

2j−1)

µ(E ∩ X k
j )

,
µ(E ∩ X k+1

2j )

µ(E ∩ X k
j )

}
≤ 1

2
(1 + ε).(5.3)

Combined with (i), we have

max

{
µ(E ∩ X k+1

2j−1)

µ(X k+1
2j−1)

,
µ(E ∩ X k+1

2j )

µ(X k+1
2j )

}
≤ 1 + ε

1− ε
·
µ(E ∩ X k

j )

µ(X k
j )

.(5.4)

(iii) (1− ε)k ≤ µ(Xk
j )

|Ikj |
≤ (1 + ε)k for all 0 ≤ k ≤ N, 1 ≤ j ≤ 2k.

(iv) (1−ε)k〈f〉
IN−k
j

≤ 〈f̃〉
XN−k

j ,µ
≤ (1+ε)k〈f〉

IN−k
j

for all 0 ≤ k ≤ N, 1 ≤ j ≤ 2k.

Proof. (i) This is (5.2) from our construction.

(ii) This is an important extension of (i). But we only have the upper bound es-

timation in this general case. Recall that our construction gives |hnk
| ≤

ε/2 on X̃ k
j , so

∣∣∣∣∫E∩X̃k
j

hdµ

∣∣∣∣ ≤ ∫
E∩X̃k

j

|hnk
|dµ ≤ ε

2
µ(E ∩ X̃ k

j ), which is∣∣µ(E ∩ X k+1
2j−1)− µ(E ∩ X k+1

2j )
∣∣ ≤ ε

2
µ(E ∩ X̃ k

j ) ≤ ε
2
µ(E ∩ X k

j ). So we obtain

(5.3). (5.4) follows from (5.3) and (i).

(iii) We prove this by induction. For k = 0, we have µ(X 0
1 ) = |I01 | = 1. Assuming

(iii) holds for k, by (i) we can estimate for X k+1
2j (same for X k+1

2j−1) that

(1− ε)k+1 ≤
µ(X k+1

2j )

|Ik+1
2j |

= 2 ·
µ(X k+1

2j )

µ(X k
j )
·
µ(X k

j )

|Ikj |
≤ (1 + ε)k+1.

(iv) Again by induction, for k = 0, since f̃1
XN

j

= f1
INj

, 1 ≤ j ≤ 2N and f̃ = 0

on X \
⋃2N

j=1XN
j , we have 〈f̃〉

XN
j ,µ

= 〈f〉
INj

. Assuming (iv) holds for k, by
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(i) we have

(1− ε)k+1〈f〉
I
N−(k+1)
j

≤ 〈f̃〉
X

N−(k+1)
j ,µ

=
µ(XN−k

2j−1 )

µ(XN−(k+1)
j )

〈f̃〉
XN−k

2j−1 ,µ
+

µ(XN−k
2j )

µ(XN−(k+1)
j )

〈f̃〉
XN−k

2j ,µ

≤ (1 + ε)k+1〈f〉
I
N−(k+1)
j

.

�

3. The Bellman function BFµ (F, f,M ;C) of Theorem 1.13

3.1. BFµ (F, f ,M) ≤ B(F, f ,M). We show (1.19) for the case C = 1 and the

general case follows from the scaling property. Take the Bellman function B(F, f,M)

of the dyadic Carleson Embedding Theorem. Consider an arbitrary function f ≥ 0

and an arbitrary Carleson sequence {αn}n≥0 with C = 1. Set for every n ≥ 0,

Xn = (F n, fn,Mn) =

(
Eµ [fp|Fn] ,Eµ [f |Fn] ,Eµ

[∑
k≥n

αk|Fn

])
.

Fix the initial step

X0 =

(
Eµ[fp],Eµ[f ],Eµ

[∑
n≥0

αn

])
= (F, f,M).

By (1.16), we have 0 ≤ Mn ≤ 1. Also, fn = fn and when n ≥ 1, F n, fn and Mn are

random variables.

Lemma 5.4. For every n ≥ 0, we have

Eµ [B(Xn)]− Eµ
[
B(Xn+1)

]
≥ Eµ [αnf

p
n] ,

where B(Xn) = B(F n, fn,Mn).

Proof. Recall that the Bellman function B(F, f,M) satisfies (4.3). Note also we

have

Xn = Eµ
[
Xn+1|Fn

]
+ (0, 0, αn).
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By (4.3) and the Jensen’s inequality, we deduce

B(Xn) ≥ B
(
Eµ
[
Xn+1|Fn

])
+ αnf

p
n ≥ Eµ

[
B(Xn+1)|Fn

]
+ αnf

p
n.

Taking expectation, we prove exactly

Eµ [B(Xn)]− Eµ
[
B(Xn+1)

]
≥ Eµ [αnf

p
n] .

�

Summing up, we get the inequality

Eµ
[∑
n≥0

αnf
p
n

]
≤
∑
n≥0

(
Eµ[B(Xn)]− Eµ[B(Xn+1)]

)
≤ B(X0).

Hence, we conclude that BFµ (F, f ,M) ≤ B(F, f ,M).

3.2. BFµ (F, f ,M) = B(F, f ,M) for an infinitely refining filtration. To show

(1.20), again we consider C = 1. Note first that on the boundary fp = F , we

have BFµ (F, f ,M) = B(F, f ,M) = MF . For the case fp < F , we need to apply the

remodeling from section 1.

For technical issues, we slightly modify our remodeling here. First, by the conti-

nuity of B, there exists δ1 > 0, such that fp < F − δ1 and B(F − δ1, f ,M) is close to

B(F, f ,M). Next, by the definition of B, we can find a non-negative function f on

the unit interval I = [0, 1] with 〈fp〉
I

= F − δ1, 〈f〉
I

= f and a sequence {α
J
}
J⊆I

,∑
J⊆I

α
J

= M satisfying the Carleson condition with constant C = 1, such that the

sum
∑

J⊆I
α
J
〈f〉p

J
(almost) equals B(F, f,M). Moreover, by again the continuity, we

can choose a finite subset of {α
J
}
J⊆I

such that
∑

J⊆I
α
J

= M − δ2 for some δ2 > 0

and
∑

J⊆I
α
J
〈f〉p

J
still (almost) equals B(F, f,M). For simplicity, we assume exactly∑

J⊆I

α
J
〈f〉p

J
= B(F, f,M).(5.5)

Let the indices of {α
J
}
J⊆I

belong to the collection {Ikj : 1 ≤ k ≤ N, 1 ≤ j ≤ 2k}

for some fixed integer N . Choose ε > 0, such that F − δ1 ≤ F/(1 + ε)N . We do the

remodeling with this ε > 0 to construct {X k
j : 0 ≤ k ≤ N, 1 ≤ j ≤ 2k}, {αn}n≥0 and

f̃ on the space (X ,F , µ). To proceed, we observe that
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Lemma 5.5.

Eµ
[
f̃p
]
≤ (1 + ε)N〈fp〉

I
.(5.6)

Proof. By (iii) of Proposition 5.3,

Eµ
[
f̃p
]

=
2N∑
j=1

〈f̃p〉
XN

j ,µ
µ(XN

j ) ≤
2N∑
j=1

〈fp〉
INj

· (1 + ε)N |INj | = (1 + ε)N〈fp〉
I
.

�

So (5.6) and 〈fp〉
I

= F − δ1 ≤ F/(1 + ε)N imply that Eµ
[
f̃p
]
≤ F . Also recall

from the remodeling, we know Eµ
[
f̃
]

= 〈f〉
I

= f. Let us further modify the function

f̃ in the following way. Note that we are working on an infinitely refining filtration

(see definition 1.11). There exists a simple function g behaving like a Haar function,

such that g is supported on XN
1 , 〈g〉

XN
1 ,µ

= 0 and 0 < Eµ [|g|p] < ∞. Consider the

continuous function

a(t) = Eµ
[∣∣∣f̃ + tg

∣∣∣p] .
Thus, a(0) ≤ F and limt→∞ a(t) = ∞. Hence, we can find t0 ≥ 0, such that

Eµ
[∣∣∣f̃ + t0g

∣∣∣p] = F . Update f̃ to f̃ + t0g. We have then Eµ
[∣∣∣f̃ ∣∣∣p] = F and

Eµ
[
f̃
]

= f. Note here the updated function f̃ might be negative, however, all the

relevant average values we will use are still non-negative.

Now, let us discuss the properties of the Carleson sequence {αn}n≥0. Directly

from the remodeling, we know Eµ
[∑

n≥0 αn
]

=
∑

J⊆I
α
J

= M − δ2. Moreover, we

can prove

Lemma 5.6. The non-negative sequence {αn}n≥0 satisfies each αn is Fn-measurable

and

Eµ
[∑
k≥n

αk|Fn

]
≤ (1 + ε)N

(1− ε)2N
for every n ≥ 0.(5.7)

Proof. From the construction, it is clear that each αn is non-negative and Fn-

measurable. So we need to show for every Fn-measurable set E, we have

Eµ
[∑
k≥n

αk1
E

]
≤ (1 + ε)N

(1− ε)2N
· µ(E).
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Denote by k0 = min{k : nk ≥ n}. Since Eµ
[∑

k≥n αk1E

]
= Eµ

[
Eµ
[∑

k≥k0 αnk
|Fnk0

]
1
E

]
,

it suffices to show

Eµ
[∑
k≥k0

αnk
|Fnk0

]
≤ (1 + ε)N

(1− ε)2N
,

or equivalently, for every Fnk0
-measurable set E, we have

Eµ
[∑
k≥k0

αnk
1
E

]
≤ (1 + ε)N

(1− ε)2N
· µ(E).

Now the explicit computation shows

Eµ
[∑
k≥k0

αnk
1
E

]
=
∑
k≥k0

2k∑
j=1

α
Ikj

µ(E ∩ X k
j )

µ(X k
j )

.

An iteration of (5.4) gives

µ(E ∩ X k
j )

µ(X k
j )

≤ (1 + ε)N

(1− ε)N
· µ(E ∩ X k0

l )

µ(X k0
l )

, whenever X k
j ⊆ X

k0
l .

So we can estimate

Eµ
[∑
k≥k0

αnk
1
E

]
≤

2k0∑
l=1

(1 + ε)N

(1− ε)N
· µ(E ∩ X k0

l )

µ(X k0
l )

∑
k,j:Xk

j ⊆X
k0
l

α
Ikj

, {α
I
} Carleson sequence

≤ (1 + ε)N

(1− ε)N
2k0∑
l=1

µ(E ∩ X k0
l )

µ(X k0
l )

·
∣∣Ik0l ∣∣ , Proposition 5.3 (iii)

≤ (1 + ε)N

(1− ε)2N
2k0∑
l=1

µ(E ∩ X k0
l ) ≤ (1 + ε)N

(1− ε)2N
· µ(E).

�

To finish, we need one final lemma.

Lemma 5.7.

Eµ
[∑
n≥0

αn

∣∣∣f̃n∣∣∣p] ≥ (1− ε)pN
∑
J⊆I

α
J
〈f〉p

J
.(5.8)
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Proof.

Eµ
[∑
n≥0

αn

∣∣∣f̃n∣∣∣p] = Eµ
[∑
k≥0

αnk

∣∣∣f̃nk

∣∣∣p] =
∑
k≥0

2k∑
j=1

αIkj

〈∣∣∣f̃nk

∣∣∣p〉
Xk

j ,µ

≥
∑
k≥0

2k∑
j=1

α
Ikj

〈f̃nk
〉p
Xk

j ,µ
=
∑
k≥0

2k∑
j=1

α
Ikj

〈f̃〉p
Xk

j ,µ
, Proposition 5.3 (iv)

≥ (1− ε)pN
∑
k≥0

2k∑
j=1

αIkj 〈f〉
p

Ikj

= (1− ε)pN
∑
J⊆I

α
J
〈f〉p

J
.

�

Summarizing, we have constructed a function f̃ and a Carleson sequence {αn}n≥0

satisfying (5.7) with Eµ
[∣∣∣f̃ ∣∣∣p] = F , Eµ

[
f̃
]

= f and Eµ
[∑

n≥0 αn
]

=
∑

J⊆I
α
J

=

M − δ2. By (5.5) and (5.8), we deduce

BFµ
(
F, f,M − δ2;C =

(1 + ε)N

(1− ε)2N

)
≥ (1− ε)pN

∑
J⊆I

α
J
〈f〉p

J
= (1− ε)pNB (F, f,M) .

And Proposition 5.1 (iv) and (v) imply that

BFµ
(
F, f,M − δ2;C =

(1 + ε)N

(1− ε)2N

)
=

(1 + ε)N

(1− ε)2N
BFµ
(
F, f,

(1− ε)2N

(1 + ε)N
(M − δ2)

)
≤ (1 + ε)N

(1− ε)2N
BFµ (F, f,M) .

Letting ε → 0, we prove exactly BFµ (F, f ,M) ≥ B(F, f ,M). The other inequality

is proved in the subsection 3.1.

4. The Bellman function B̃Fµ (F, f) of the maximal operators

4.1. B̃Fµ (F, f) ≤ BFµ (F, f , 1). Let us relate the maximal function (1.21) to the

Bellman function BFµ (F, f ,M). Define a sequence of sets

En = {x ∈ X : n is the smallest non-negative integer, such that f ∗(x) = |fn(x)|}.
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Obviously, {En}n≥0 forms a disjoint partition of X . We can compute

||f ∗||p
Lp(X ,F ,µ)

= Eµ [|f ∗|p] = Eµ
[∑
n≥0

|fn|p1
En

]

= Eµ
[∑
n≥0

Eµ[1
En
|Fn] · |fn|p

]
.

Let αn = Eµ[1
En
|Fn], n ≥ 0. The connection between the maximal function (1.21)

and BFµ (F, f ,M) relies on the following simple fact.

Lemma 5.8. {αn}n≥0 is a Carleson sequence with C = 1. (see Definition 1.10).

Proof. It is clear that each αn is non-negative and Fn-measurable. Moreover,

for every set E ∈ Fn, we have Eµ
[∑

k≥n αk1E

]
= Eµ

[∑
k≥n 1

Ek∩E

]
≤ µ(E). So we

prove the claim. �

To prove (1.24), fix Eµ[fp] = F and Eµ[f ] = f. Since {αn}n≥0 is a Carleson

sequence with C = 1 and Eµ
[∑

n≥0 αn
]

= 1, we conclude that B̃Fµ (F, f) ≤ BFµ (F, f , 1).

4.2. B̃Fµ (F, f) = BFµ (F, f , 1) for an infinitely refining filtration. Again, we

appeal to the modified remodeling from subsection 2.2, but only with M = 1. Note

that we have

Eµ
[∑
n≥0

αn

∣∣∣f̃n∣∣∣p] = Eµ
[∑
k≥0

αnk

∣∣∣f̃nk

∣∣∣p] =
∑
k≥0

2k∑
j=1

αIkj

〈∣∣∣f̃nk

∣∣∣p〉
Xk

j ,µ

.

To proceed, we observe that

Lemma 5.9. For every 0 ≤ k ≤ N and 1 ≤ j ≤ 2k, we have∣∣∣f̃n
N−k

∣∣∣1
XN−k

j

≤ (1 + ε)k

(1− ε)k
〈f̃〉
XN−k

j ,µ
.(5.9)

Proof. First note that
∣∣∣f̃n

N−k

∣∣∣1
XN−k

j

= f̃n
N−k

1
XN−k

j

for every 0 ≤ k ≤ N

and 1 ≤ j ≤ 2k. Induction on k, for k = 0, the construction of f̃ immediately

gives f̃n
N

1
XN

j

= 〈f̃〉
XN

j ,µ
, 1 ≤ j ≤ 2N . Assuming (5.9) holds for k, then for every
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Fn
N−(k+1)

-measurable set E, E ⊆ XN−(k+1)
j and µ(E) > 0, we can estimate∫

E

f̃n
N−(k+1)

1
XN−(k+1)

j

dµ =

∫
E∩XN−(k+1)

j

f̃dµ =

∫
E∩XN−k

2j−1

f̃n
N−k

dµ+

∫
E∩XN−k

2j

f̃n
N−k

dµ

≤ (1 + ε)k

(1− ε)k

[
〈f̃〉
XN−k

2j−1 ,µ
µ(E ∩ XN−k

2j−1 ) + 〈f̃〉
XN−k

2j ,µ
µ(E ∩ XN−k

2j )

]
.

And hence, we deduce

µ(E)−1
∫
E

f̃n
N−(k+1)

1
XN−(k+1)

j

dµ, (E ⊆ XN−(k+1)
j )

≤ (1 + ε)k

(1− ε)k

[
〈f̃〉
XN−k

2j−1 ,µ

µ(E ∩ XN−k
2j−1 )

µ(E ∩ XN−k+1
j )

+ 〈f̃〉
XN−k

2j ,µ

µ(E ∩ XN−k
2j )

µ(E ∩ XN−k+1
j )

]
, (5.3)

≤ 1

2

(1 + ε)k+1

(1− ε)k

[
〈f̃〉
XN−k

2j−1 ,µ
+ 〈f̃〉

XN−k
2j ,µ

]
, Proposition 5.3 (i)

≤ (1 + ε)k+1

(1− ε)k+1
〈f̃〉
XN−(k+1)

j ,µ
.

Since this is true for every Fn
N−(k+1)

-measurable set E, E ⊆ XN−(k+1)
j and µ(E) > 0,

we prove (5.9) for k + 1. �

Applying (5.9), we have

Eµ
[∑
n≥0

αn

∣∣∣f̃n∣∣∣p] =
∑
k≥0

2k∑
j=1

αIkj

〈∣∣∣f̃nk

∣∣∣p〉
Xk

j ,µ

≤ (1 + ε)pN

(1− ε)pN
∑
k≥0

2k∑
j=1

αIkj 〈f̃〉
p

Xk
j ,µ
.

And note that Proposition 5.3 (iii) implies∑
k,j:Ikj ⊆I

k0
j0

α
Ikj

≤
∣∣Ik0j0 ∣∣ ≤ 1

(1− ε)N
µ(X k0

j0
) for every 0 ≤ k0 ≤ N, 1 ≤ j0 ≤ 2k0 .

Now, let us recall a useful lemma established in [22], formulated in our language,

Lemma 5.10. Suppose α
Ikj

≥ 0, where 0 ≤ k ≤ N, 1 ≤ j ≤ 2k, satisfies

∑
k,j:Ikj ⊆I

k0
j0

α
Ikj

≤ Cµ(X k0
j0

)(5.10)

for some constant C > 0, then we can choose pairwise disjoint measurable Akj ⊆ X

such that Akj ⊆ X k
j and α

Ikj

= Cµ(Akj ).

52



Proof. Without loss of generality, we can assume C = 1. We start at the level

k = N . Since (5.10) with C = 1 implies α
INj

≤ µ(XN
j ) for every 1 ≤ j ≤ 2N , we can

choose ANj ⊆ XN
j such that α

INj

= µ(ANj ). Assuming that we have chosen pairwise

disjoint measurable Akj for all k ≥ k0 + 1 and 1 ≤ j ≤ 2k, note that (5.10) with C = 1

gives

α
I
k0
j0

+
∑

k,j:Ikj $I
k0
j0

α
Ikj

≤ µ(X k0
j0

), so α
I
k0
j0

≤ µ

X k0
j0
\

⋃
k,j:Ikj $I

k0
j0

Akj

 ,

and thus we can choose measurable set Ak0j0 ⊆ X
k0
j0
\
⋃
k,j:Ikj $I

k0
j0

Akj , such that α
I
k0
j0

=

µ(Ak0j0 ). Continue this process for all the indices. This proves the lemma. �

By Lemma 5.10, we can estimate

Eµ
[∑
n≥0

αn

∣∣∣f̃n∣∣∣p] ≤ (1 + ε)pN

(1− ε)pN
∑
k≥0

2k∑
j=1

αIkj 〈f̃〉
p

Xk
j ,µ

=
(1 + ε)pN

(1− ε)pN
∑
k≥0

2k∑
j=1

1

(1− ε)N
µ(Akj )〈f̃nk

〉p
Xk

j ,µ

≤ (1 + ε)pN

(1− ε)(p+1)N

∑
k≥0

2k∑
j=1

Eµ
[∣∣∣f̃ ∗∣∣∣p 1

Ak
j

]
, disjointness

≤ (1 + ε)pN

(1− ε)(p+1)N
Eµ
[∣∣∣f̃ ∗∣∣∣p] .

Applying (5.5) and (5.8) with M = 1, together with Theorem 1.13, we have

(1 + ε)pN

(1− ε)(p+1)N
Eµ
[∣∣∣f̃ ∗∣∣∣p] ≥ Eµ

[∑
n≥0

αn

∣∣∣f̃n∣∣∣p] ≥ (1− ε)pN
∑
J⊆I

α
J
〈f〉p

J

= (1− ε)pNB (F, f, 1) = (1− ε)pNBFµ (F, f, 1) .

Recall that Eµ
[∣∣∣f̃ ∣∣∣p] = F and Eµ

[
f̃
]

= f. Letting ε → 0, we prove exactly

B̃Fµ (F, f) ≥ BFµ (F, f , 1). The other inequality is proved in the subsection 4.1.
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