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Abstract of “Thermodynamic Studies of Phase Transitions and Emerging Orders in 

Unconventional Superconductors.” by Xu Luo, Ph.D., Brown University, May 2015 

The nematic phase transition in Fe-based superconductors (FeSCs) has been a topic under 

intensive investigation. So far it is commonly accepted that the structural transition from 

tetragonal (C4) to orthorhombic (C2) symmetry in FeSCs has an electronic nematic origin due to 

the unusual anisotropy in resistivity, optical conductivity and orbital occupancy observed above 

the structural transition. However, recent studies of (Ba, Eu)Fe2(As1-xPx)2 by magnetic torque 

measurements show the existence of a “true” nematic transition well above the commonly 

accepted structural/nematic transition .Controversies about this “true” nematic phase transition 

arise as residue strains or external applied fields are known to break C4 symmetry and render the 

structural transition merely a crossover. 

We performed high resolution AC micro-calorimetry and SQUID magnetometry measurements 

of BaFe2(As1-xPx)2 (x=0, 0.3) to investigate the various phase transitions and to explore the “true” 

nematic phase transition. The advantageous design of our membrane calorimeter allows us to 

perform high resolution studies of the thermodynamic phase transitions without any symmetry 

breaking fields. Our results suggest that there is not a second order “true” nematic phase 

transition in BaFe2(As1-xPx)2 even though the Ginzburg-Landau model used to fit the magnetic 

torque data indicates that the expected thermal anomaly should be within our experimental 

resolution. 

In addition to the above, we present specific heat and magnetization studies of Ba1-xNaxFe2As2 in 

search of the recent discovered emergent reentrant C2 to C4 symmetry SDW transition in this 

series of compound. Our results indeed locate a new phase transition in Ba0.74Na0.26Fe2As2 at 45K. 

However, the absence of the conventional SDW transition at around 80K in our data leaves doubt 

about the exact nature of this new phase transition. We also systematically studied the effects of 



iv 
 

heavy ion irradiation (HII) on the anisotropy of YBa2Cu3O7- single crystals by angular rotation 

specific heat measurements. We found that the anisotropy of YBa2Cu3O7- decreases by 

approximately a factor of two with an irradiation dose of 6T (matching field). The dependence of 

anisotropy on irradiation doses agrees well with the prediction from a simple phenomenological 

model that takes into account the anisotropic scattering caused by columnar defects created in HII. 
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Chapter 1  

Introduction 
 

1.1 History and Evolution of Superconductivity 

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes at University of Leiden [1]. 

It was found that the resistance of mercury (Hg) dropped abruptly to zero at around T*=4.2K (Fig 

1.1(a)). It was obvious that the sample had undergone a transformation into a novel, as yet 

unknown, state characterized by zero electrical resistance. This phenomenon was named 

“Superconductivity”. 

All attempts to find at least traces of resistance in bulk superconductors were to no avail. On the 

basis of the sensitivity of modern equipment, one can argue that the resistivity of superconductors 

is zero, at least at the level of 10
-24

 *cm, which is 15 orders of magnitude smaller than the 

resistance of high purity copper, the best normal conductor, at L
4
He temperature [2]. The 

temperature of the transition from normal to superconducting state is called the critical 

temperature Tc. Shortly after the discovery, it was found that superconductivity can be destroyed 

not only by heating the sample to above Tc, but also by placing it in a relatively weak magnetic 

field. This field is defined as the thermodynamic critical field, Hc (Note that this only applies to 

type I superconductivity, which has only one critical field). 

Ever since its discovery, superconductivity has been one of the most actively studied fields in 

condensed matter physics and has attracted immense experimental and theoretical efforts. More 

and more superconductors have been discovered in single elements, alloys, intermetallic 

compounds and oxides and still more are being discovered. 
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Fig 1.1 (a) Resistance versus temperature data of mercury made by Kamerlingh Onnes in his 

original paper [1] (b) Superconductivity in the periodic table [3]. 

A fact that can easily be overlooked is that superconductivity is not rare in nature. Almost half of 

the elements in the periodic table and hundreds of compounds have been found to be 

superconducting (Fig 1.1(b)). Fig 1.2 shows the milestones in the discovery of superconductors 

[4]. Among the elemental superconductors, Niobium (Nb) has the highest superconducting 

transition temperature, Tc, of 9.2 K. This record held for more than ten years, until the discovery 

of niobium nitride (NbN) which superconducts at 16 K. It took another thirty years for Tc to 

increase from 16 K in NbN to 23 K in niobium germanium (Nb3Ge) [5]. It is worth mentioning 

that Nb3Sn with a Tc of 18 K [6] has been used for making high field superconducting magnets 

due to high critical current density and capability of withstanding high magnetic fields [7]. 

Then a revolutionary breakthrough was made by Karl Muller and Johannes Bednorz in 1986 with 

their discovery of La1-xBaxCuO4 with a transition temperature over 30 K [8]. Nine months later, 

Tc rose to 93 K in YBa2Cu3O7- discovered by M. K. Wu, C. W. Chu et al [9]. Tc now exceeds the 

boiling point of liquid nitrogen. Tc continued to dramatically increase over the next several years. 

R
 

T 

(a) (b) 
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In 1988, Bi2Sr2CanCun+1O2n+6-  was discovered to be superconducting at 95 K when n = 1 [10] 

and 105K when n=2 [10]. Later, thallium based cuprates Tl2Ba2CanCun+1O2n+6-  (n=2) was 

discovered to have a Tc of 120 K [11]. In 1993, HgBa2Can-1CunO2n+2+ (n=3) was found with Tc as 

high as 133 K [12] and with Tl substitution on Hg sites, Tc rose to 138 K which is the current 

record of highest Tc at ambient pressure [13]. This group of materials is named High-Tc 

superconductors due to their extremely high critical temperatures (above LN2 temperature). Since 

they all share the same CuO2 planes in their crystal structures which are commonly believed to be 

responsible for superconductivity, they are also known as High-Tc cuprates. 

 

Fig 1.2 Evolution of the critical temperatures of superconductors [4]. 

Another breakthrough in the discovery of superconductivity was made by Hideo Hosono and co-

workers in 2008 [14] with the discovery of superconductivity at 26K in LaFeAsO0.9F0.1. Soon 

after this discovery, the transition temperature has been raised to above 40 K by chemical 

substitutions with the highest Tc reported so far at 55K in SmFeAsO1−x [15] and Gd1−xThxFeAsO 

[16]. This group of materials is named Fe-based superconductors (FeSCs) due to the presence and 

importance of Fe2X2 (X=As, Se, etc.) layers in their crystal structures. 
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1.2 Fe-based Superconductors 

The crystal structures of the 5 most common FeSC families [17] are shown in Fig 1.3. It can be 

seen that they all share a common layered structure based upon a planar layer of Fe atoms joined 

by tetrahedrally coordinated pnictogen (P, As) or chalcogen (S, Se, Te) anions arranged in a 

stacked sequence separated by alkali, alkaline earth or rare earth and oxygen/fluorine “blocking 

layers”. It is widely believed that the high-Tc superconductivity originates within these iron 

containing layers, similar to the case of cuprates where the CuO2 planes are thought to be 

responsible for superconductivity. However, there are three key differences between these two 

systems: (1) the arrangement of pnicitogen/chalcogen anions above and below the planar iron 

layer as opposed to the planar copper-oxygen structure of the cuprates; (2) the ability to dope 

directly into the active pairing layer in FeSCs; and (3) the metallic nature of the parent compound 

in Fe-based superconductor as opposed to the insulating nature of the parent compound in 

cuprates. It is these traits, together with the similar interplay of magnetism and superconductivity 

that mark FeSCs and cuprates as distinct but closely related superconducting families. 

 

Fig 1.3 The five main structural families of Fe-based superconductors [17] 
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The phase diagram of FeSCs is in fact strikingly similar to many other classes of unconventional 

superconductors (cuprates, organics, heavy-fermion SCs), all believed to have unconventional 

(non-phonon-mediated) pairing mechanisms. An antiferromagnetic parent state is suppressed by 

either chemical doping [18-20] or applied external pressure [21-25] and superconductivity arises. 

Superconductivity reaches its maximum approximately at the annihilation of antiferromagnetism 

(AFM). A compilation of the experimental doping phase diagrams for one of the most studied 

FeSC systems, Ba-based “122” system, is shown is Fig 1.4 [17].  

 

Fig 1.4 Normalized Temperature-doping phase diagram of Ba “122” system [17]. 

The electronic band structures of FeSCs have been calculated using local density approximation 

[26] and an example band structure is given in Fig 1.5 [27]. It was shown that the electronic 

properties are dominated by five Fe d-states at the Fermi energy, with a Fermi surface consisting 

of three cylindrical hole pockets at the center and two cylindrical electron pockets at the corner of 

the Brillouin Zone (BZ). The results agree well with angle-resolved photoemission spectroscopy 

(ARPES) [28-30] and quantum oscillation measurements [31, 32].  
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Fig 1.5 Fermi surfaces of Ba(Fe0.9Co0.1)2As2 calculated via density functional theory [27]. 

The pairing symmetry in FeSCs is a topic of hot debate. While early experiments point to a fully 

gaped order parameter (OP) consistent with a fully symmetric s-wave symmetry [30], the OP 

symmetry of FeSCs was in fact predicted to have s-wave symmetry, but with a sign change that 

occurs between different bands in the complex multi-band electronic structure. This is the so-

called “ s   ”symmetry [27, 33]. On the experimental side, NMR experiments on several 

members of the Fe-based superconductors have positively identified the parity of the 

superconducting state as singlet [34, 35], implying an even OP symmetry (i.e. s-wave, d-wave, 

etc.). Determining the nature of the orbital OP symmetry, however, is much more complex and is 

currently the focus of most research. Due to the multi-band nature of FeSCs and their nesting 

properties, anisotropic s- and d-wave states are nearly degenerate [36], making it difficult to 

identify the underlying symmetry even if experiments determine the presence of nodes in the gap 

symmetry. Phase sensitive experiments [37, 38] that have been done so far favor s   symmetry 

in the FeSCs, but definitive experiments on more materials are needed to conclusively settle the 

case. Pairing mechanisms in FeSCs are not clear. Early calculations have shown that FeSCs have 

poor electron-phonon couplings and phonons alone cannot explain the high critical temperatures 
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observed [39]. Since superconductivity sits so close to antiferromagnetism (AFM), it is 

commonly believed that AFM fluctuations might play a key role in the pairing of FeSCs.  

 

Fig 1.6 Proposed multi-band pairing gap symmetries (Note that multiple hole and electron 

pockets have been reduced to one each for simplicity). Left: s  symmetry with isotropic gaps; 

Middle: s  symmetry with accidental nodes on electron pockets; Right: d-wave symmetry. From 

Ref [17]. 

 

1.3 Nematicity in Fe-based superconductors 

The role of AFM to Fe-based superconductors has been discussed extensively in the previous 

sections. However, another important fact that makes FeSCs so unique is that the AFM transition 

is almost always preceded by or coincident with a structural transition [40-42] (e.g. the dashed 

line in Fig 1.3) from tetragonal to orthorhombic symmetry (see Fig 1.7).  



8 

 

 

Fig 1.7 Schematics showing the structural and AFM transitions in doped (Co or P) BaFe2As2 

expressed as single FeAs layer. The green and red dashed lines mark the 2-Fe and 1-Fe unit cell. 

From Ref [43]. 

The interplay of magnetic and structural transitions generates rich physics. Although a 

conventional phonon driven mechanism of the structural transition cannot be ruled out completely, 

this transition has generally been considered as a manifestation of electronic nematic order [44], 

which has also been inferred from the unusual anisotropy in resistivity [45, 46] (Fig 1.8), optical 

conductivity [47] and orbital occupancy [48] (Fig 1.9) observed at temperatures above the 

structural transition.  
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Fig 1.8 In-plane resistivity anisotropy measurements of Ba(Fe1-xCox)2As2. The anisotropy value of 

~2 cannot be explained by a conventional structural distortion in the orthorhombic phase. From 

Ref [45]. 

 

Fig 1.9 Temperature dependence of anisotropic band dispersion in BaFe2As2 and 

Ba(Fe0.975Co0.025)2As2 along Г-X and Г-Y measured by ARPES. From Ref [48]. 

The origin of nematic order has been ascribed to either a spontaneous ferro-orbital order with 

unequal occupations between the Fe dxz and dyz orbitals [49-53]
 
or an Ising spin-nematic order 

[54-58] where the Z2 symmetry between the two possible SDW ordering wave vectors 

0,  ( )
1

Q  and , )0(  
2

Q  in the 1-Fe Brillouin Zone (BZ) is broken before the O(3) spin 

rotational symmetry [57] (Fig 1.10). 
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Fig 1.10 Schematic showing the spin-nematic mechanisms of the structural transition. From Ref 

[57] 

Regardless of the exact microscopic origin of nematicity, a phenomenological treatment of the 

problem based on Ginzburg-Landau (GL) theory by taking into account magnetostructural 

coupling yields a good description of the order of the AFM and structural transitions and the 

possibility of a tricritical point in the phase diagram [44, 59, 60] (Fig 1.11) 
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Fig 1.11 Schematic T-doping diagrams for structural and magnetic phase transitions (top panels) 

and general phase diagram determined from GL theory (bottom panel); Dashed and solid lines 

indicate 1
st
 and 2

nd
 order phase transitions. From Ref [60]. 

 

1.4 Research Topics and Thesis Layout 

Recent magnetic torque measurements on BaFe2(As1-xPx)2 [61] and EuFe2(As1-xPx)2 [62] single 

crystals under in-plane magnetic field rotation revealed the onset of two fold oscillations, which 

break the tetragonal symmetry at a temperature T
*
 well above (>30K) the commonly accepted 

nematic/structural transition at TS (Fig 1.12). These results were interpreted [61, 62] as signature 

of a “true” 2
nd

 order nematic phase transition at T* leading from the high-temperature tetragonal 

phase to a low-temperature phase with C2-symmetry whereas the conventional structural 

transition at Ts ceases to be a true phase transition but is regarded as a meta-nematic transition.  

This “true” transition at T* is found to persist even for doping levels in the nonmagnetic 

superconducting regime, which dramatically changes the phase diagrams of BaFe2(As1-xPx)2 and 

EuFe2(As1-xPx)2. For instance, consideration needs to be given to the number of degrees of 

freedom required for stabilizing a nematic state over such a wide temperature range [63] in a 

macroscopically tetragonal lattice.   
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Fig 1.12 T-doping phase diagram after addition of the true nematic phase transition line (left); 

Measurement data from magnetic torque, high-resolution XRD and resistivity with red lines 

marking the true nematic phase transition temperatures for five different doping levels of 

BaFe2(As1-xPx)2. From Ref [61]. 

Measurements of the strain dependent resistivity anisotropy [46] or of the shear elastic constants 

[64] of BaFe2As2 (parent compound) do not yield evidence for additional phase transitions above 

the usual structural transition.  A recent STM/STS study on NaFeAs single crystals [65] revealed 

the persistence of local electronic nematicity up to temperatures of almost twice TS.  In this case, 

residual strains in the sample in conjunction with a large nematic susceptibility were considered 

as possible origin of such symmetry breaking. Similarly, recent inelastic neutron scattering 

experiments shows change in the low energy spin excitations in uniaxially strained BaFe2-xTxAs2 

(T=Co or Ni) from four fold to two fold symmetry at temperatures (T
*
) corresponding to the onset 

of in-plane resistivity anisotropy observed previously [66]. However, the authors also emphasized 

the effects from the uniaxial strain they applied which rendered the structural transition at TS a 

crossover and T
*
 only marks a typical range of nematic fluctuations [66]. Nevertheless, magnetic 

torque is directly related to the spin nematic order parameter [57] possibly facilitating the 

observation of a nematic phase transition.  Thus, the question whether the phenomena at T* 

represent a 2
nd

 order phase transition, a cross-over associated with the onset of sizable short-range 

correlations and fluctuations, or spurious effects due to frozen-in or applied strains remains 

unresolved. Given the controversies of the true nematic transition, we propose to study the phase 

transitions in BaFe2(As1-xPx)2 by high resolution ac microcalorimetry and SQUID magnetometry. 

If such a phase transition does exist, we should be able to see it in the thermal channel, i.e. 

specific heat. 

Another closely related topic of interest is the reentrant C4 symmetric antiferromagnetic spin 

density wave (SDW) transition in underdoped Ba1-xNaxFe2As2 (x=0.24) that was recently 
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observed by neutron scattering experiments [67] (Fig 1.13). High resolution specific heat 

measurements in this case can also be used to find out about the existence of such a phase 

transition and to find the transition temperatures with high accuracy.  

 

Fig 1.13 Schematic showing the phase diagram of Ba1-xNaxFe2As2 with the reentrant C4 symmetry 

phase plotted as the red region. Different AFM ordering configurations for the C2 and C4 phases 

are shown in the left and right panels. From Ref [67].  

Recently, the discovery of a large reduction in the thermodynamic anisotropy of a few iron based 

superconductors by heavy ion irradiation has attracted great interest [68-70] (See Fig 1.14). While 

iron based superconductors are generally known as multi-band superconductors and temperature 

dependent anisotropies in FeSCs have been reported [69, 71]. The effects of heavy ion irradiation 

on a single band d-wave superconductor, such as YBCO, have not been studied yet. In this thesis, 

we used angular dependent specific heat measurements to systematically study the effects of 

heavy ion irradiation with different doses on the thermodynamic properties of YBCO, such as 

anisotropy, upper critical fields, critical temperatures, emerging phases, etc.  
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Fig 1.14 (a) anisotropy measurements of SmFeAsO0.85F0.15 after irradiation of B=4 T and 9.5 T 

[68]; (b) anisotropy of SrFe2(As1-xPx)2 (x=0.35) before and after irradiation of B =25 T [69]; (c) 

anisotropy of Ba0.6K0.4Fe2As2 measured by specific heat before and after an irradiation dose of B 

=21 T [70]. 

 

This thesis will be organized as follows:  

In Chapter 2, I will give a general overview of the important advancements in superconductivity 

and discuss some of the fundamentals of superconductivity. 

In Chapter 3, I will describe the experimental technique: membrane based high resolution AC 

Micro-calorimetry that was used to carry out the experimental studies of various thermodynamic 

properties and phase transitions of unconventional superconductors. 

In Chapter 4, I will show and discuss in detail, the results from our study of the antiferromagnetic 

and nematic phase transitions in BaFe2(As1-xPx)2. Many of the things discussed can be found in a 
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recently published paper: X. Luo et al, Antiferromagnetic and nematic phase transitions in 

BaFe2(As1−xPx)2 studied by ac microcalorimetry and SQUID magnetometry, Phys. Rev. B 91, 

094512 (2015). 

In Chapter 5, I will show the results from our thermodynamic studies of the exotic reentrant C2 to 

C4 SDW transition in underdoped Ba1-xNaxFe2As2 for several different doping levels; I will also 

show the results from our study of the effects of heavy ion irradiation on the thermodynamic 

properties, especially anisotropy, of high purity detwinned YBa2Cu3O7- single crystals. 

In Chapter 6, I will summarize the work in this thesis and give some important conclusions that 

can be drawn from it.  
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Chapter 2  

Overview of Superconductivity 
 

 

2.1 Meissner effect 

The discovery of Meissner effect in 1933 was another mile stone in the study of 

superconductivity [72]. It was then people start to realize that superconductor is not merely an 

ideal conductor with zero resistance. Instead, superconductors demonstrate perfect diamagnetism 

when the applied field is lower than Hc (Hc1 for type II superconductors). The argument is 

straightforward. For an ideal conductor that is zero field cooled, applying an external field will 

induce a surface current according to Lenz’s law which generates a magnetic field in the direction 

opposite to that of the external field. Therefore, the total field in the interior of the specimen is 

zero. Written in terms of Maxwell equations: 

                                                               
1 B

E
c t


  


                                                            (2.1) 

In an ideal conductor, 0   and 0E j   . It follows that B const  and considering 

0B   before applying the external field, we arrive at 0B   also after the field is applied. 

However, if we reverse the sequence of cooling the sample below Tc and applying an external 

field, we will see that there would be a difference in the results. Since we apply a field when the 

sample is above Tc, i.e. in the resistive state, the magnetic field will penetrate into the interior of 

the sample. Then when the sample is cooled below Tc into the zero resistance state, the field 

remains in it because the magnetic field does not change with time in an ideal conductor (see Fig 
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2.1(a)). However, this is not what Meissner and Ochsenfeld observed. Instead, they found the 

magnetic field inside a superconductor is always zero no matter which sequence was employed, 

as shown in Fig. 2.1 (b). Perfect diamagnetism in superconductors cannot be explained by zero 

resistivity and it is one of the intrinsic properties of the superconductors. 

 

Fig 2.1 (a) Magnetic induction inside an ideal conductor when field cooled from above Tc 

(b) Magnetic induction inside a superconductor when field cooled from above Tc 

2.2 Type I and Type II superconductivity 

We have already learned that the interior of the superconductor cannot be penetrated by a weak 

magnetic field (Meissner effect). When the magnetic field becomes large, superconductivity 

breaks down. Superconductivity can be divided into two groups depending on how this 

breakdown occurs. In type I superconductors, superconductivity is abruptly destroyed via a first 

order phase transition when the strength of the applied field rises above the critical field Hc. The 

dependence of magnetization and magnetic induction on applied field of type I superconductors 

are plotted in Fig 2.2 (a). Type I superconductivity is normally found in pure metals, e.g. Al, Pb 
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and Hg. The only alloy known up to now which exhibits type I superconductivity is TaSi2 [73]. 

Depending on the demagnetization factor, one may obtain an intermediate state in type I 

superconductors which are characterized by macroscopic phase separation of superconducting 

and non-superconducting domains in the bulk of the superconductor [74].  

 

Fig 2.2 (a) Magnetization (left) and Magnetic induction (right) versus applied field for type I 

superconductor; (b) Magnetization (left) and Magnetic induction (right) versus applied field for 

type II superconductor. 

The transition of type II superconductors from superconducting in externally applied magnetic 

fields is more gradual comparing with type I superconductors. The superconductor will exclude 

completely the external field up to the lower critical field (Hc1). The external fields then penetrate 

the material in the form of quantized magnetic flux lines (vortices) forming a state called the 

vortex state (Shubnikov phase) [75]. In this state, the material remains superconducting outside of 
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these microscopic vortices. With an increasing applied magnetic field, the vortex density becomes 

too large and the entire material becomes non-superconducting at the upper critical field (Hc2). 

The dependence of magnetization and magnetic induction on applied field of type II 

superconductors are plotted in Fig 2.2 (b). As will be mentioned later in the text, the Ginzburg-

Landau parameter  which is defined as the ratio of the penetration depth  to the coherence 

length  determines whether a superconductor is type I or type II. Type I superconductor has 

1

2
   and type II superconductor has

1

2
  .  The H-T phase diagram for type I and type II 

superconductors are shown in Fig 2.3. 

 

                       Fig 2.3 H-T phase diagram of type I (left) and type II (right) superconductors 

2.3 Thermodynamics of Superconductors 

Consider a long cylinder of a type I superconductor in a uniform longitudinal magnetic field H0. 

We know that when 0 cH H  , B is zero due to the Meissner effect. The magnetic moment per 

unit volume of the cylinder is then: 

                                                                   0 / 4M H                                                            (2.2) 
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When a value dH0 is added to the magnetic field H0, an external source of magnetic field does a 

work on the superconductor, per unit volume, of: 

                                                           
0 0 0 / 4MdH H dH                                                       (2.3) 

When field changes from 0 to H0, the work done by the field source is: 

                                                             

0

2

0 0

0

/ 8

H

MdH H                                                        (2.4) 

This work is stored in the free energy of the superconductor placed in the field H0. Thus, if the 

free energy density of a superconductor in zero magnetic field is Fs0, that of the superconductor in 

a finite magnetic field is: 

                                                                 
2

0 0 / 8sH sF F H                                                     (2.5) 

When the applied field reaches the thermodynamic critical field, i.e. H0 = Hc, the free energy of 

the superconductor would be equal to that of the normal metal, thus: 

                                                                   
2

0 / 8n s cF F H                                                      (2.6) 

We can see that the thermodynamic critical field is a measure of the extent to which the 

superconducting state is preferable to the normal state. 

By taking the first derivative of the free energy with respect to temperature in equation (2.6), we 

can derive the entropy difference between the superconducting and normal states: 

                                                                   
4

c c
s n

H H
S S

T

 
   

 
                                               (2.7) 

A few important conclusions can be drawn from (2.7) 
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(1) Since the entropy is zero at 0 K for both superconducting and normal states, the slope of 

Hc is also zero at 0 K. The slope of Hc is always negative from experiment results which 

means the entropy of the superconducting state is always lower than that of the normal 

state except for T = 0 K and T = Tc. A plot of the entropy of the superconducting and 

normal state is shown in Fig 2.4(a). 

(2) Since Ss = Sn at T = Tc, the transition at T = Tc does not involve latent heat and thus is a 

second order phase transition. On the other hand, all transitions at T<Tc from normal to 

superconducting state with a sufficiently strong applied magnetic field is accompanied by 

release of latent heat and thus are first order phase transitions. 

 

Fig 2.4 (a) Temperature dependence of the entropy of the superconducting state and normal state; 

(b) Temperature dependence of the specific heat of superconducting and normal states 

The specific heat of matter can be defined as  /C T S T    . Therefore, we can write the 

difference in specific heat between superconducting and normal states as: 

                                                 

2 2

24

c c
s n c

T H H
C C H

T T

   
    

    

                                       (2.8) 
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At T = Tc, Hc = 0, then we have: 

                                                               

2

4c

c

c c

T T

T T

T H
C

T



 
   

 
                                           (2.9) 

Equation (2.9) is known as the Rutgers formula. It implies there is a discontinuous jump at T = Tc 

in the specific heat as a function of temperature. The Rutgers formula defines the height of the 

jump. The temperature dependence of the specific heat is plotted in Fig 2.4(b). 

 

2.4 London Theory 

The first phenomenological theory of superconductivity was developed by London brothers in 

1935 [76]. The theory is based on two-fluid model which states that in a superconductor at 

cT T  , only a fraction (T) /sn n  of the total number of conduction electrons are capable of 

participating in a supercurrent. ( )sn T  is known as the density of superconducting electrons. It 

approaches the full electronic density n  as T  falls well below Tc, but it drops to zero as T rises 

to Tc. The remaining fraction of electrons is assumed to constitute a “normal fluid” of density 

sn n  that cannot carry an electrical current without normal dissipation. The normal and 

superconducting currents are assumed to flow in parallel. 

For the superconducting electrons, London proposed two equations to describe their motion in 

electromagnetic fields: 

                                                         ( )sE J
t


 


                                                                   (2.10) 

                                                       ( )sH c J                                                                 (2.11) 
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Here 
s s sJ n ev  is the supercurrent density, and 

2

s

m

n e
   . 

While the Maxwell equation tells us that 
4

H J
c


   , plugging this equation into equation 

(2.11) gives:  

                                                     
2 ( ) 0H H                                                           (2.12) 

where 

2
2

24 s

mc

n e



  . The solution to equation (2.12) in 1D with a semi-infinite superconductor 

occupying the 0x   half space and an external applied field of 0H  along the z axis is given by: 

                                                           
/

0( ) xH x H e                                                               (2.13) 

 

Fig 2.5 Magnetic field penetration into a bulk superconductor. The field at the surface is H0 

What this means is that the magnetic field falls off exponentially with increasing distance from 

the surface of the superconductor. The characteristic decay length   which characterizes the 
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strength of magnetic field penetrating into the superconductor is called the London penetration 

depth. 

London theory was successful in explaining the Meissner effect. However, it failed to take into 

account quantum effects and cannot explain the phenomenon of vortices. 

 

2.5 Ginzburg-Landau theory 

The Ginzburg-Laudau (GL) theory [77] is based on the theory of second-order phase transitions 

developed by Landau. A pseudowavefunction ( ) ( ) ir r e     was introduced as a complex 

order parameter. 
2

( )r  was to represent the local density of superconducting electrons, ( )sn r  . 

When temperature is close to Tc ( c cT T T  ), the order parameter is small. According to 

Landau’s theory of second order phase transitions, the free energy can be expanded in powers of 

2
  and 

2
  . In the case of an inhomogeneous superconductor in a uniform external 

magnetic field near Tc, the Gibbs free energy can be written as [78]: 

2
2 * 2

2 4 0

*

( ) ( ) H
( ) Α

2 2 8 4
s n

e A A
G H G i dV

m c




 

   
          

  
                                                                                                                

(2.14) 

Where 
2 *

sn  is the superfluid density; A is the vector potential; B A  is the local 

magnetic field; H0 is the external magnetic field.  and  are phenomenological expansion 

coefficients which are characteristics of the material. 
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Minimizing the above GL free energy with respect to   , one can derive the first equation of 

Ginzburg-Landau theory and its boundary condition: 

                                                

*
2 2

*

*

1
( )   = 0

2

(i + ) 0 

e
i

m c

e
n

c

        

   

                            (2.15) 

where n is the unit vector normal to the surface of the superconductor. Similarly, one can 

minimize the free energy with respect to A and derive the second equation of GL theory: 

                              

* *2
2* *

* *
( ) ( )

4 2

c e e
J A

m i m c
                          (2.16) 

To simplify and help the understanding of the GL equations, two new parameters are introduced 

to substitute for  and   

                                                           

2
2

*

* 2 * 2
2

* *2 *2

2

4 4s

m

m c m c

n e e







  



 

                                            (2.17) 

In terms of the above new parameters and the normalized order parameter 0(r) (r) /     ; 

*

0 /sn      , the GL equations can be written in a more concise and convenient form: 

                                               
22 2

0

2
( ) 0i


        


                                          (2.18) 

                                        
2

* *0

2 24
i


   

 


                                    (2.19) 



26 

 

Where 
0 / ec   is the flux quantum.   is the coherence length which is characteristic 

length scale over which the order parameter varies and   is the penetration depth. The physical 

meaning and importance of these two characteristic lengths will be discussed in details in the 

following analysis. 

Consider an infinite superconductor in the x>0 semi-space with an interface to vacuum or an 

insulator in the x<0 semi-space. Assuming there is no applied magnetic fields or current. In this 

case, it is reasonable to consider the normalized order parameter ( )x  as a real term. The first 

GL equation can be reduced to a simple form: 

                                                       

2
2 3

2
0

d

dx


                                                            (2.20) 

The boundary conditions for this case are: 

1 ; 0  when 

0 at 0

d
x

dx

x






  

 

 

The solution to this equation is   tanh( )
2

x
x


  . A plot of the order parameter ( )x  as a 

function of x is shown in Fig 2.6. 
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Fig 2.6 Normalized order parameter as a function of depth in a superconductor 

 

It clearly shows that ξ is indeed the characteristic scale over which the variation of the order 

parameter ψ occurs. The other quantity,  , introduced in equation (2.17) is already known to us. 

This is just the penetration depth for a weak magnetic field. Both  and ξ are temperature 

dependent due to the temperature dependence of  and  

In order to find a good approximation of the temperature dependence of  and  let’s consider 

the simplest case: a homogeneous superconductor without external applied magnetic fields. In 

this case  does not depend on r and the expansion of the free energy in powers of 
2

  near Tc 

becomes: 

                                                        
2 4

0
2

s nF F


                                                     (2.21) 

Here Fs0 is the free energy density of the superconductor in the absence of magnetic field, and Fn 

is its free energy density in the normal state. The sign of β is required to be positive since Fs0 is 

not always favorable for any arbitrarily large value of 
2

 . By minimizing the Helmholtz free 

energy with respect to 
2

 , one gets: 

                                                                
2

0 /                                                               (2.22) 

Substituting (2.22) into (2.21), we can find the difference in free energy: 

                                                              
2

0 / 2n sF F                                                          (2.23) 

And this difference equals 
2 / 8cH   , and we have: 
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2 24 /cH                                                              (2.24) 

Using the empirical formula 

2

(T) (0) 1c c

c

T
H H

T

  
   

   

 , to a first approximation we can 

assume  cT T    and const   . Therefore, in the temperature interval close to Tc: 

                                           
1/2 1/2( ) ,           ( )c cT T T T                                             (2.25) 

The Ginzburg-Landau parameter  is defined as the ratio of the penetration depth  and the 

coherence length : /    and by plugging in the expressions for  and , i.e. equation (2.17), 

the GL parameter can be written as 
22 2 c

e
H

c
   and from there we obtain the expression 

for the thermodynamic critical field Hc: 

                                                              0

2 2
cH




                                                            (2.26) 

We already know that type I and type II superconductors show entirely different responses to an 

external magnetic field. The reason is that the surface energy of the interface between a normal 

and a superconducting region, ns , is positive for type I superconductors and negative for type II 

superconductors. To look into the details of this argument, let’s consider a flat Normal-

Superconductor (NS) interface within a superconductor in the intermediate state. From GL theory, 

we can derive the NS interface energy as: 

                                         

22
2

2

( )

2 2

c c
ns

c

H d H H H
dx

dx H


 







  
   

   
                                    (2.27) 

The first term in the integrand is nonzero over a distance x ~ , since the order parameter changes 

from 0 to 1 in the vicinity of the NS interface over a distance of the order of the coherence length 
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 as we have discussed earlier. Thus the first term of the integral is of the order of . Note that the 

field penetrating the superconducting region is always less than the field at the interface, that is, 

less than Hc. Therefore the second term is always negative. This term 
2

( )

2

c

c

H H H

H


 reaches 

approximately -1 at the interface and becomes zero deep in the interior of both S and N domains. 

The area where it is nonzero extends over a distance of the order of .  

Consider two limiting cases: 

(1)  1,  i.e.,     . Then, the dominant contribution to the NS interface energy comes from 

the first term and 
2 0ns cH    . Fig 2.7 shows how the order parameter  and the magnetic 

field H vary in the vicinity of the interface. We can see there is a region of thickness ~  where 

the order parameter is already sufficiently small and the magnetic field is kept out. This result in 

an increase of the region’s energy due to additional energy required to break the Cooper pairs 

with the region.  

(2) 1,  i.e.,    . The dominant contribution to the NS interface energy comes from the 

second term and 
2 0ns cH   . Fig 2.8 shows the variation of (x) and H(x) in this case. 

This time,  varies much more rapidly than the magnetic field so that there is a region of 

thickness ~  where the order parameter  is close to 1. This results in a gain of the condensation 

energy in the interface region.  
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Fig 2.7 Spatial variation of the order parameter  and the magnetic field H in the vicinity of the 

NS interface for 1  

 

Fig 2.8 Spatial variation of the order parameter  and the magnetic field H in the vicinity of the 

NS interface for 1  

 

Thus, if 1  , then 0ns   . Such materials are called type I superconductors. If 1 , then 

0ns  . Such materials are called type II superconductors. Exact calculations show that the 
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crossover from positive to negative of the interface energy occurs at 1/ 2    and this value 

sets the boundary between type I and type II superconductors. 

In type II superconductors, when the applied field is higher than Hc1, the magnetic field begins to 

penetrate into the superconductor in the form of discrete vortex filaments, with each vortex 

consisting of a normal state core carrying a quantum of flux 
7 2

0 2.07 10 G cm    . These 

flux tubes arrange themselves into a triangular or hexagonal pattern to achieve the lowest possible 

energy (Fig. 2.9). The solution to an isolated vortex in an infinite superconductor in GL theory is: 

                                                             0
02

( ) ( / )
2

h r K r 



                                                 (2.28) 

for the region of the vortex outside of the normal core. K0 is the Hankel function of imaginary 

argument. 

The asymptotic behavior of this function is: 

                                                    0 1/2

ln(1 / )    at  1 
( )

/    at   1z

z z
K z

e z z





                                             (2.29) 

The field at the center of the vortex can be obtained to logarithmic accuracy as: 

                                                             0

2
(0) ln

2
H 




                                                         (2.30) 

The spatial variation of the magnetic field of an isolated vortex is shown in Fig 2.9. 

The free energy of an isolated vortex line per unit length, or more accurately, the free energy of a 

superconductor containing one vortex, , measured relative to its free energy without the vortex 

can be derived in GL theory as: 
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2

0 (ln 0.08)
4

 


 
  
 

                                                  (2.31) 

In an external applied field H0, the energy that is a minimum at equilibrium is the Gibbs free 

energy G. per unit length of the vortex, this energy is: 

                                                          0

4

B H
G dV




                                                           (2.32) 

H0 can be taken out of the integral and recalling that the vortex carries one flux quantum 0, we 

have: 

                                                              0 0

4

H
G 




                                                              (2.33) 

Clearly, for a sufficiently weak external field H0, G > 0 and vortex formation is not favored. 

However, there exists such a field Hc1, starting from which G becomes negative and the formation 

of a vortex reduces the free energy. It follows from (2.33) and (2.31) that: 

                                                         0
1 2

(ln 0.08)
4

cH 



                                                  (2.34) 
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Fig 2.9 Triangular lattice arrangements of vortices in the mixed state of type II superconductor 

(left); Spatial distributions of the order parameter and the magnetic field of a single vortex (right). 

When type II superconductor is in the mixed state and the external applied field is increased, the 

period of the vortex lattice decreases and when it becomes of the order of the coherence length , 

a second order phase transition occurs from the mixed state to the normal state. This happens 

when the external fields reaches Hc2, the upper critical field. 

It can then be derived from GL theory that the upper critical field is given by: 

                                                            0
2 2

2
2

c cH H



                                                   (2.35) 

We can see that by measuring the upper critical field Hc2 of a superconductor we can actually 

derive the coherence length, .  

What we have discussed above are the critical fields for a homogeneous isotropic superconductor. 

In the case of an anisotropic tetragonal superconductor, the upper critical fields are given by: 

                                                                 

0
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c c
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

                                                      (2.36) 

The anisotropy of the upper critical fields stems from the anisotropy of the coherence length, 

which originates from the anisotropy of the effective mass since 

2
2(T)

2 ( )
i

im T



  , where i 

identifies a particular principal axis. The anisotropy can be written as: 
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H Hm

m H H

 


 

    
            
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                         (2.37) 
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The angular dependence of the Hc2 can be worked out in the anisotropic GL approximation: 

                                                  

 
2||

2 1/2
2 2 2

( )
cos sin

c ab

c

H
H 

  



                                           (2.38) 

Where  is the angle between the magnetic field and the ab plane. 

 

2.6 BCS theory 

The physical mechanism of superconductivity became clear only 46 years after the phenomenon 

had been discovered, when Bardeen, Cooper and Schrieffer published their theory (the BCS 

theory) [79-81]. The first hint at the origin of superconductivity came with the discovery of the 

isotope effect [82, 83]. It was found that different isotopes of the same superconducting metal 

have different critical temperatures, Tc and they obey the relation 
a

cT M const  where M is the 

mass of the isotope and the exponent a is close to 0.5. Thus it became clear that the lattice of ions 

in a metal is an active participant in creating the superconducting state.  

In 1950, Frolich [84] demonstrated that electrons can indirectly interact with each other in a 

crystal by emitting and absorbing phonons. Electron 1 with wave vector k1 emits a phonon and 

goes to state k1’, electron 2 with wave vector k2 absorbs this phonon and goes to state k2’. This 

process can be understood as the mutual scattering of two electrons in (k1, k2) state into (k1’, k2’) 

state through electron-phonon interactions. By this interaction, electrons within a thin shell of ~

D   in the vicinity of the Fermi surface are attractive to each other. 

In 1956, Cooper considered two electrons which are attractive to each other above the Fermi 

surface. He solved the two-body Schrodinger equation and calculated the binding energy between 
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these two electrons. He found the binding energy is always negative and a bound pair with 

negative potential can always be formed no matter how small the attractive interaction is [79]. 

Combining the two facts above, Bardeen, Cooper and Schrieffer developed the microscopic 

theory of superconductivity. In a crystal, electron pairs (Cooper pairs) in the ~ D  shell near 

Fermi surface are formed due to attractive electron-electron interactions mediated by phonons. 

When such pairs of electrons are scattered from below the Fermi surface to above the Fermi 

surface, the potential energy is lowered while the kinetic energy is increased. If the decrease of 

potential energy is larger than the increase of the kinetic energy, the ground state of the system is 

no longer the one for the normal state where all the electrons occupy the states inside the Fermi 

surface, as shown in Fig. 2.10 (a), but rather one in which some states above the Fermi surface are 

occupied and some states below the Fermi surface are empty, as shown in Fig. 2.10 (b). To form 

as many pairs as possible, so that the lowest energy state can be achieved, two electrons with 

opposite momentum are favored to form pairs, which mean k1 = -k2 = k, and if we also consider 

the electron spins, antiparallel configuration of the spins often lowers the energy even more. The 

electron pair with momentum (k,-k) and antiparallel spins is called a Cooper pair. 

 

Fig 2.10 Schematic diagram of Fermi surface at (a) Normal ground state and (b) Superconducting 

state. 
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Due to Pauli Exclusion Principle, the wavefunction of the paired state should be antisymmetrical 

under particle exchange. If the spin of these two electrons form a spin singlet state (S=0), the 

spatial wavefunction would be with one of even parity, which means that the angular momentum 

should be L=0, 2, 4… etc. If the spins form a spin triplet state (S=1), the spatial wavefunction 

would have odd parity and the angular momentum should be L=1, 3 ..., etc. Except for very rare 

situations, such as the case of the ferromagnetic superconductor Sr2RuO4 [85], Cooper pairs have 

spin singlet configurations. 

In BCS theory, to simplify the calculation, several assumptions are made. First, the Fermi surface 

is assumed to be a sphere. Second, the paired state is assumed to have L=0 and S = 0. Third, the 

electron-phonon interaction, Vkk’, is simplified as a constant: 

                                              
   if ,  

0     if ,

k D k D

kk

k D k D

V
V

   

   







  
 

 
                                     (2.39) 

where 
k  is the relative kinetic energy of the electron defined as: 

                                                         

2 2 2 2

2 2

F
k

k k

m m
                                                               (2.40) 

Introduce 
2

kv  as the probability that paired state (k,-k) is occupied, the total energy of a 

superconductor in the state described by the distribution 
2

kv is: 

                                                 
2

,

2s k k kk k k k k

k k k

E v V v u v u   



                                                (2.41) 

where 
2 21k ku v   . Here the first term gives the total kinetic energy of the system and the second 

term is the mean potential energy of electron interaction. Now we can find the function 
2

kv  such 

that the total energy Es is a minimum. This requires:  
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
                                                                   (2.42) 

Substituting (2.41) into (2.42), we obtain: 
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2 0k

k k k
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It follows that: 
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
                                        (2.44) 

From (2.44) we can derive the following equation for 
2

kv : 
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Then  
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Fig 2.11 Dependence of 
2

kv  on k. The region 
2

kv  is smeared out is 20 

 

The dependence of 
2

kv  on k is plotted in Fig 2.11. As we can see, the total energy of the system 

reaches its minimum when the electron distribution near the Fermi surface is “smeared out” over 

the energy interval ~ 20. We emphasize that this happens at 0 K and this is the identity of the 

ground state of the superconductor. 

To find the ground state energy of the superconductor, let’s find 0 first. Plugging (2.46) into the 

second expression in (2.44), we can get: 
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                                     (2.47) 

Changing the summation as integration, one can derive that: 

                                                  
1/2

2 2

0

0

1 (0)
D

N V d



 


                                                   (2.48) 

where N(0) is the density of states at the Fermi energy. After integration we get: 

                                                           
0 1

sinh( )
(0)

D

N V


                                                         (2.49) 

In the weak coupling limit: 0

1
2 exp( )

(0)
D

N V
   . To estimate 0, let’s take the Debye 

temperature / ~ 100D Bk K  and (0) ~ 0.3N V  , we obtain 0 / ~ 4KBk .  
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We can then derive the energy difference between the superconductor ground state and the 

normal ground state, the result is: 

                                                     
2

0

1
(0)

2
s nW E E N                                                     (2.50) 

Recalling that this energy difference is also given by 
2(0) / 8cH   , we can write down the 

expression for the thermodynamic critical field in terms of characteristic parameters of the 

superconductor: 

                                                          
0(0) 4 (0)cH N                                                      (2.51) 

The elementary excitation energy in the superconductors is given by: 

                                                           
2 2

0k kE                                                                   (2.52) 

This is the energy needed to add one extra electron to a superconductor in the ground state, we 

increase the energy of the system by at least the value of 0. This means that the spectrum of 

elementary excitations of the superconductor is separated from the ground-state energy level by 

an energy gap. This is illustrated in Fig 2.12. The dependence of Ek on k given by (2.52) is shown 

in Fig 2.13. 
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Fig 2.12 Energy gap 0 separates the energy levels of elementary excitations from the ground-

state level 

 

 

Fig 2.13 Energy dispersion of the elementary excitations of the superconductor (left) and the 

density of states (right) 

The density of states of elementary excitations can be derived as: 

                                                        
2 2

0

( ) (0)
E

E N
E

 
 

                                                  (2.53) 

It follows from (2.53) that the density of states of elementary excitations goes to infinity as 

0E   . 

Let’s now discuss how the superconducting coherence length can be evaluated using the 

microscopic theory. We have already seen that large variations of 
2

kv  can occur only within 

0~ 2 F

F

k
k


   . In real space, large variations of the ground state wavefunction can be expected 

within ~1/x k   from the Uncertainty principle. It then follows: 
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Thus 0

0

~
4

Fv



, more rigorous calculations yields: 

                                                                   0 ~ 0.18 F

B c

v

k T
                                                         (2.54) 

As the temperature increases, the energy gap  decreases. This is easy to understand because the 

energy required to break a Cooper pair is 2 and if the temperature is such that ~ 2Bk T   , it is 

evident that many Cooper pairs will be broken through thermal processes. As a result, more states 

will be occupied by elementary excitations (single electrons) and fewer states can form pairs that 

lower the superconductor’s energy. An implicit expression of the temperature dependent gap is: 
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2 2
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k TT
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                             (2.55) 

The temperature dependence is the gap is shown in Fig 2.14. Near Tc, the variation of the gap 

with temperature obeys 
1/2( )cT T   . 

 

Fig 2.14 Temperature dependence of the energy gap in BCS theory 
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An expression of the critical temperature Tc can also be derived since at T = Tc, the gap  = 0. 

Putting these two conditions in (2.55) gives us: 

                                                      

0

1
tanh

(0) 2

D

B c

d
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
                                                (2.56) 

Carrying out the integration, we get: 

                                                    
1
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(0)

B c Dk T
N V

                                            (2.57) 

We already know that, in the weak coupling limit: 
0

1
2 exp( )

(0)
D

N V
  , then  

                                                                  
02 3.53 B ck T                                                         (2.58) 

Some other important thermodynamic properties of BCS superconductors are: 

(1) In the weak coupling limit, the specific heat jump can be expressed as the universal 

relation: 

                                                  1.43

c

s n

n T T

C C

T



                                                     (2.59) 

where 
2 21

(0)
3

n Bk N   is the Sommerfeld constant in the normal state.  

(2) In the weak coupling limit, the thermodynamic critical field can be expressed as: 

                                               (0) 0.55 c
c c

c

dH
H T

TdT
                                               (2.60) 

Where 4.4c
n

c

dH

TdT
  . 

(3) In the weak coupling limit, at very low temperature: 
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The superconducting gap is a very important quantity in superconductors not only because it 

determines the thermodynamic properties of superconductor, but also because it is closely related 

to the Cooper pair state and superconducting order parameter. It was proved [86] that the order 

parameter (r) in GL theory is actually the pair wavefunction in BCS theory and is proportional 

to the superconducting gap. Therefore, by measuring the superconducting gap, information about 

the pairing symmetry, which is critical to determining the pairing mechanism, can be extracted.  

 

 

Fig 2.15 superconducting gap with different gap symmetries in k space. 

 

Fig 2.15 shows the schematic representation of  in k space. Fig 2.15(a) shows the isotropic s-

wave superconducting gap with L = 0 and S = 0, the superconductor is fully gapped, which is the 

situation discussed in the original BCS theory. For the so called s   wave pairing symmetry, 

which was proposed to be favored in Fe-based superconductors, the superconductor is fully 
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gapped on both electron and hole Fermi sheets but with opposite signs between them [33]. Fig. 

2.15(b) shows the anisotropic p-wave gap with L = 1 and S = 1. Fig 2.15(c) and (d) show the 

anisotropic d-wave gap with L = 2 and S = 0. For different gap symmetries, the angular dependent 

superconducting gap, (k), can be written as: 

 

                                       2 2

xy

1                      isotropic s-wave

( ) cos(2 )                d

sin(2 )                      d -wave

x y
k wave
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
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                                      (2.62) 

The gap anisotropy is defined as: 
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                                                         (2.63) 

 

which is 0 for isotropic s-wave superconductor and 1 for d-wave superconductors. 

 

 

2.7 Theory of nematic phase transition in FeSCs 

 

The theory of nematic order in Fe-based superconductors was established by several authors and 

two different mechanisms have been proposed, i.e. spin-nematic [54-58] and orbital-order [49-53].  

In the spin driven Ising-nematic scenario, the qualitative idea is simple and can be understood 

using symmetry arguments [57], as shown in Fig 2.16. In many antiferromagnets, the symmetry 

that is broken at the magnetic transition temperature is the O(3) spin-rotational symmetry. To the 

O(3) symmetry-breaking corresponds also a translational symmetry-breaking, due to the increase 

in the 
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size of the crystalline unit cell in the magnetically ordered phase. In the iron pnictides, however, 

the situation is different. The SDW ground state is actually doubly degenerate, as it is 

characterized by magnetic stripes of parallel spins along either the y axis (ordering vector Q1 = 

(,0)) or the x axis (ordering vector Q2 = (0, )). Therefore, to go to the ordered state, the system 

has to break not only the O(3) spin-rotational symmetry, but it also has to choose between two 

degenerate ground states, which corresponds to a Z2 (Ising-like) symmetry. Since Z2 is a discrete 

symmetry, the Z2 symmetry-breaking is expected to be less affected by fluctuations than the 

continuous O(3) symmetry-breaking, what opens up the possibility of the former happening 

before the latter. 

 

Fig 2.16 Schematic representation of the nematic phase transition in real space. (a) The transition 

from the paramagnetic phase to the stripe ordered SDW phase breaks 2(3)O Z  symmetry. (b) 
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The symmetry breaking in two successive steps. First, the Z2 symmetry is broken but the system 

is still in the paramagnetic state, but the spin correlations break the tetragonal symmetry. In the 

second step, the O(3) symmetry is broken and the system acquires long range magnetic order [57]. 

 

This leads to the idea of an Ising-nematic state: an intermediate phase preceding the SDW state, 

where the Z2 symmetry is broken but the O(3) symmetry is not. In real space, the Z2 symmetry 

breaking corresponds to a broken tetragonal symmetry, since the correlation functions 
i i xS S 

and i i yS S   acquires opposite signs. This is an analogy of the nematic phase in liquid crystals, 

which is characterized by broken rotational symmetry and unbroken translational symmetry. 

Although translational symmetry and rotational symmetry are always broken in crystals, the 

analogy remains valid: in the electronic nematic phase, the point-group symmetry is reduced from 

C4 to C2 corresponding to additional lowering of the rotational symmetry. From a purely 

symmetry point of view, the nematic state is therefore equivalent to the orthorhombic phase, 

which is the result of the inevitably induced distortion of the crystalline lattice. The term ‘nematic’ 

is however used to emphasize the fact that the phase transition is of purely electronic origin and 

would still take place in a perfectly rigid lattice. The nematic susceptibility measurements by Chu 

et al [46] demonstrated indeed the existence of a divergence of the nematic susceptibility at the 

structural transition in Ba(Fe1-xCox)2As2, which gives firm evidence that the structural transition 

from C4 to C2 symmetry in FeSCs is indeed driven by electronic nematicity.  The phase diagram 

of iron pnictides, after the incorporation of the influence of electronic nematicity, is shown in Fig 

2.17. 
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Fig 2.17. Nematic phase diagram of FeSCs. SDW denotes the spin-density wave state, SC the 

superconducting state, PM the paramagnetic phase and Tet the tetragonal phase. Tetragonal 

symmetry is broken only below nematic/structural transition line, but nematic fluctuations remain 

at higher temperatures [57]. 

 

The mechanism behind the spontaneous breaking of the additional Ising symmetry is reminiscent 

of the order-out-of-disorder mechanism put forward by Chandra et al in the context of localized-

spin models [87]. Not surprisingly, the first model calculations that obtained a spontaneous 

nematic phase in the pnictides were based on a strong-coupling approach, the so-called J1–J2 

model [54, 55, 88]. More recently, it was shown that an itinerant description of the system also 

accounts for a preemptive nematic phase [56]. Notwithstanding important differences between the 

strong-coupling and weak-coupling approaches—in particular on the character of the nematic and 

magnetic transitions as function of doping and pressure [56]—they share similar physics: 

magnetic fluctuations spontaneously break the tetragonal symmetry already in the paramagnetic 

phase. 

 

A brief discussion of the J1-J2 model is given below following the paper by C. Fang et al [55]. It 

has to be emphasized beforehand that a model of localized spins cannot be taken as a realistic 

representation of the electronic structure in iron-pnictides. The most obvious point is that FeSCs 
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are metallic, or more rigorously, semi-metallic. However, the model is sufficiently simple and its 

predictions agree qualitatively with experimental results.   

 

 

Fig 2.18 Schematic showing the nearest neighbor coupling J1, next nearest neighbor coupling J2, 

and the interlayer coupling Jz, and the orientation of spins in the J1-J2 model [55].  

 

In the tetragonal phase, the iron sites form square planar arrays, such that the sites of adjacent 

planes lie above one another. Because the superexchange is mediated through off plane but 

plaquette centered As atoms, the first- and second-neighbor antiferromagnetic exchange 

couplings, J1 and J2, are expected to be of roughly the same magnitude. However, the coupling 

between spins on neighboring planes, Jz, while still antiferromagnetic, is expected to be much 

smaller than the in-plane couplings (Fig 2.18). Estimates from previous work [87] are 

1 20.5 400 700 KJ J    . Jz is several orders of magnitude smaller than J2. The resulting 

minimal Hamiltonian is: 
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Where 
,R nS is a spin S operator on site R in plane n; 1 and 2 are first and second nearest 

neighbor lattice vectors; K is the biquadratic interaction term which is small. In the broken-

symmetry “nematic” phase, the spin-nematic order parameter given in (2.65) is not zero. Since a 

structural distortion of appropriate symmetry is linearly coupled to the spin nematic order 

parameter, the magnitude of the structural distortion u will be proportional to N in the presence of 

weak electron-lattice coupling. 

                               
1

1

1 , ,
ˆ ˆ( ) ;      ( x) ( ) 1d R n R n d dN F S S F F y



                              (2.65) 

The model is considered in the limit of 2 1 / 2 ,   0zJ J J K   . Finite temperature properties 

of the model is obtained by considering S  as an N dimensional unit vector [SO(N) spin] and 

solving the problem in the large N limit. Without going into the details of the theoretical 

derivation, the results show that the above model has two second order phase transitions. The 

nematic transition temperature TN is always larger than the SDW transition temperature TSDW. The 

transition temperatures TN and TSDW as the function of zJ  for a fixed 20.0075K J  are shown 

in Fig 2.19. The theoretical results agree qualitatively with the experimental observation of a 

structural transition preceding the SDW transition.  

 

Fig 2.19 TN and TSDW as a function of zJ  for 1 22J J , 3N   and 1S   in the J1-J2 model [55]. 
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Chapter 3  

Experimental method: AC micro-

calorimetry 
 

3.1 Overview 

Accurate thermodynamic measurements are essential to understanding the fundamental properties 

of materials. The heat capacity measurements probe the low energy excitations in solids, which 

played an important role in early studies of solid-state physics, e.g. measurements of the low 

temperature electronic specific heat of metals allows us to measure the Sommerfeld constant

2
2 (0)

3
Bk N


  because  when e FC T T T  , which gives information about the density of 

states at the Fermi surface; while measurements of the low temperature lattice specific heat 

allows us to determine the Debye temperature ( D ) of the material (

4
312

( )
5

latt B

D

T
C nk





 , 

when DT  ) [89]. In the study of unconventional superconductors, the measurements of heat 

capacity is also central to revealing new undiscovered phases, e.g. the discovery of vortex melting 

transition in high purity YBCO single crystals [90] and the more recent Chiral CDW phase in 

TiSe2 [91], etc. and studying volume effects such as the superconducting state in a material, e.g. 

the confirmation of two-band superconductivity in MgB2 by low temperature specific heat 

measurements [92].   

 

In this thesis, I primarily use a built-in-house membrane based ac micro-calorimeter to study the 

thermodynamic properties of unconventional superconductors (High Tc cuprates, FeSCs). The 

advantageous design of the calorimeter allows accurate high resolution measurements of sub-g 
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single crystals or films from room temperature down to sub-K in high magnetic fields (as high as 

8T).  

 

3.2 Calorimetric methods 

The term calorimeter is used for the description of an instrument devised to determine heat and 

rate of heat exchange, and denotes the combination of sample and measuring system, kept in a 

well-defined surrounding, the thermal bath or shield, as shown in Fig 3.1 [93]. 

 

 Fig 3.1 Schematic representation of a calorimeter [93]. The measuring cell is thermally 

connected to the thermal bath at temperature Tb with a thermal conductance of Ke. The internal 

and external time constants i = C/Ki and e = C/Ke represent the time in which thermal 

equilibrium is achieved in the calorimetric cell, and cell plus bath system respectively. 

 

A list of common calorimetric methods is given in Table 3.1. Depending on the heat transfer 

conditions between the sample cell and the thermal bath, calorimeters can be divided in 

isothermal, isoperibol, and adiabatic. Isothermal calorimeters have both calorimeter and thermal 

bath at constant Tb. If only the surroundings are isothermal the mode of operation is called 
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isoperibol. In adiabatic calorimeters the exchange of heat between the calorimeter and the shield 

is kept close to zero by making the thermal conductance as small as possible. 

 

Method Typical 

condition 

Measured 

quantity 

Condition for good 

accuracy 

Typical 

sample size 

Heat pulse Adiabatic Temp. 

variation 

e >> th > i >200 mg 

Thermal 

relaxation 

Isoperibol Temp. 

variation 

e >> i 0.01 - 1 g 

Continuous 

heating 

Adiabatic Temp. 

variation 

(T-Tb)/i >> dT/dt >100 mg 

Differential 

calorimetry 

Isoperibol Heat 

flow 

e short 10 - 100 mg 

AC steady 

state 

Isoperibol Temp. 

variation 

e>1>i sub g - mg 

 

Table 3.1 Principle methods used in modern calorimetry [94], T, Tb, e and 

i are explained in Fig 3.1. th represents the length of the heat pulse. 

1) Heat pulse method 

The heat-pulse method is realized by heating the sample for a finite time th and measuring the 

temperature increment T. This method is the direct transposition of the thermodynamic 

definition of heat capacity: 

                                                                  
0

lim
T

Q
C

T 



                                                             (3.1) 
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where Q is the heat supplied to the sample and calorimeter in form of a pulse. 

2) Thermal relaxation method 

The thermal relaxation method consists of applying a known power P to the cell to raise the 

sample temperature by an amount T = P/Ke. When a steady state condition is reached the power 

is turned off and the temperature will drop back to the initial value with an exponential decay 

which depends on the external time constant e = C/Ke: 

                                                                
/ et

bT T Te


                                                            (3.2) 

By fitting the exponential dependence of the sample temperature, one determines T and e. From 

these two quantities one can derive the thermal conductance between the calorimeter cell and bath, 

Ke = P/T and the heat capacity of the cell, C = e Ke.  

3) Continuous heating method 

In the continuous heating method, heat is added continuously to the sample at constant power P 

and the resulting temperature increase is recorded. The heat capacity is given by the instantaneous 

derivative of the temperature T with respect to time as: 

                                                                  
/

P
C

dT dt
                                                                (3.3) 

This method is usually performed under adiabatic conditions and is well suited for samples of 

high thermal conductivity which exhibit a short internal relaxation time i. The requirements for a 

fast distribution of the heat within the calorimeter/sample system restrict its general application. 

4) Differential scanning calorimeter (DSC) 
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DSC (Fig 3.2) is a thermal analysis method where differences in heat flow into a sample and a 

reference are measured as a function of sample temperature, while both are subjected to a 

controlled temperature program. There exist two types of DSCs: heat-flux DSCs and power-

compensated DSCs.  

In heat-flux DSC, the sample and reference assembly is enclosed in a single furnace which is 

heated with a linear heating rate: 

                                                                      
bT T t                                                              (3.4) 

where Tb is the initial temperature and  = dT/dt is the known heating rate. Owing to the heat 

capacity difference between the sample and reference, there would be a temperature difference 

between the sample and reference T. The heat flow rate is proportional to T through a 

temperature dependent proportionality factor E(T) which is related the geometry and the materials 

of construction of the device as ( )Q E T T  . The heat capacity is given by /C Q   .  

In the power-compensated DSC the heat to be measured is compensated by increasing or 

decreasing an adjustable Joule heat. The measuring system consists of two identical furnaces, 

embedded in a large temperature controlled heat sink. The temperatures of the sample and 

reference are controlled independently and are made identical by varying the power input to the 

two furnaces; the energy required to do this is a measure of the heat capacity changes in the 

sample relative to the reference. 
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                 Fig 3.2 Schematic of a heat-flux differential scanning calorimeter [95] 

 

5) 3 method 

The first measurement of specific heat using the temperature modulation was performed by 

Corbino in 1910/11 [96]. He used the resistance of electrically conducting samples to determine 

the temperature oscillations with a method known as third-harmonic (3) method. In this kind of 

experiment the same metal resistor element is used as both heater and thermometer. The heater, 

with resistance R, is driven by a current at frequency  which results in a power of double the 

frequency: 

                                                                   0( ) cosI t I t                                                        (3.5a) 

                                                         0( ) (1 cos2 t)P t P                                                    (3.5b) 

where 
2

0 0

1

2
P I R  . This power leads to temperature oscillations of frequency 2 in the resistor, 

which to a first order approximation, leads to oscillations in the resistance of the resistor at the 

same frequency: 
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0( ) [1 cos(2 t )]R t R T                                             (3.6)  

where 
1 dR

R dT
   and  is the phase shift between temperature oscillation T and power 

oscillation. The combined effect on the voltage over resistor is then: 

           0 0 0 0
0 0( ) ( ) ( ) cos cos( t ) cos(3 t )

2 2

I R I R
V t I t R t I R t T T                 (3.7) 

The first term is the normal AC voltage at the drive frequency, while the second and third terms, 

which derive from mixing the current and resistance oscillations, are dependent on the T. The 

temperature oscillation amplitude, in turn, is related to the sample heat capacity [97]. 

3.3 AC steady state calorimetry 

AC steady state calorimetry was first developed by Sullivan and Seidel in their seminal 1968 

paper [98, 99].  They employed an AC current to heat an indium sample that was coupled to a 

heat reservoir for which the resultant equilibrium temperature of the sample contained an AC 

term with a amplitude that was inversely proportional to the heat capacity and was measurable 

with high precision [98]. It must be acknowledged that this method was independently developed 

also by Kraftmakher and Handler [100], Mapother and Rayl [101] at about the same time, but we 

have become more familiar with Sullivan and Seidel’s research. Since then, this method has been 

widely used, especially for small samples and it is the method which our membrane micro-

calorimeter is based on. 

3.3.1 Principles of AC steady state micro-calorimetry 
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Fig 3.3 (a) Schematic of AC steady state specific heat measurement. A sample is connected to the 

thermal bath at Tb, and heated with an AC power. The temperature oscillation of the sample at 

steady state is measured by a thermometer. (b) Sample temperature plotted as a function of time. 

The DC offset temperature and AC temperature oscillations at steady state are marked in the plot. 

 

Consider the system illustrated in Fig 3.3 (left). A sample with heat capacity Cs is placed on a 

substrate-base or platform that is weakly linked to a thermal bath with temperature Tb which has a 

large enough heat capacity comparing to the sample so that its temperature can be assumed 

constant. The thermal conductance between the sample and the heat bath is . Then the sample is 

heated by a small AC heating power which causing its temperature to oscillate with a small 

amplitude Tac around the steady state condition of the bath. The ac current passed through the 

heater with resistance R and the power generated is given by equations (3.8) and (3.9) 

respectively: 

                                                                     0( ) sin tI t I                                                        (3.8) 

                                                  
2 20

0 0( ) ( ) (1 cos2 );     
2

P
P t I t R t P I R                            (3.9) 
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When the system reaches equilibrium, the heat balance equation gives: 

                                                   
( ) ( )

( ) ( )s
s s b

dQ t dT t
P t C T t T

dt dt
                                (3.10) 

where Ts(t) is the sample temperature, Q(t) is the heat absorbed by sample. Substituting equation 

(3.9) into (3.10), we get: 

                                     0 0 ( )
cos ( ) ;     2

2 2

s
s s b

P P dT t
t C T t T

dt
                             (3.11) 

Comparing both sides of equation, we can see that we must have an AC and DC term on each 

side. Then the solution to Ts(t) should look like: 

                                                            ( ) ( )s b off acT t T T T t                                                  (3.12) 

The difference between the temperature of sample and thermal bath is offT and ( )acT t , which are 

caused by the DC and AC components of the heating power. Putting equation (3.12) into (3.11), 

we get: 

                                           0 0 ( )
cos ( )

2 2

ac
s ac off

P P dT t
t C T t T

dt
                                   (3.13) 

Comparing the dc and ac terms separately, one can get: 

                                                                          0

2
off

P
T                                                         (3.14) 

                                                         0 ( )
cos ( )

2

ac
s ac

P dT t
t C T t

dt
                                     (3.15) 

Solving the above two equations, we get the expressions for the DC and AC component of the 

temperature difference between sample and thermal bath: 
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where 
s denotes the external time constant given by: 

                                                                         /s sC                                                          (3.18) 

and the phase angle  is defined by: 
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The amplitude of the ac temperature oscillation of the sample is given by: 
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If 1s , then equation (3.20) can be reduced to: 
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i.e.: 

                                                                        0

4
s

ac

P
C

T
                                                         (3.22) 

 



60 

 

Note that the condition 1s corresponds to / 1ac offT T  (from equation (3.20)). The 

analysis above gave us the idea that if the frequency of the AC power, ω, is tuned so that it falls 

into the range of 1s , or / 1ac offT T , then the heat capacity of the sample can be 

determined by controlling the value of P0 and ω, and measuring the value of Tac. 

 

3.3.2 Design of membrane based AC micro-calorimeter 

                     

Fig 3.4 Front view of the membrane micro-calorimeter immediately after fabrication (left); Front 

view of the calorimeter with a sample mounted in the center and Au wires bonded to the contact 

pads for the heater and thermocouple (right). 
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Fig 3.5 Expanded view of the micro-calorimeter: a 200 m thick silicon base with a 150 nm thick 

thin layer of Si3N4 is back etched to produce a suspended membrane window of dimensions 1x1 

mm
2
. A thin film heater, a SiO2 insulating layer and a thermocouple are patterned and deposited 

on top of the membrane. The sample is placed on top of the thermocouple with minute amount of 

Apiezon N grease [102]. 

The theoretical formulation in the previous section suggests that a sensitive calorimeter will 

require the following components: (i) a heat base to provide a stable bath temperature for the 

sample; (ii) an AC heater with well controlled power amplitude and frequency; (iii) a sensitive 

thermometer capable of detecting small temperature oscillations of the sample.  

For the heat base and substrate, we chose a thin membrane of silicon nitride. The choice of Si-N 

membrane is due to its low thermal expansion coefficient which gives good thermal shock 

resistance, good high-temperature strength, creep resistance and oxidation resistance. Since the 

membrane is as thin as 150nm, the addendum heat capacity from it would be negligible. 

For the AC heater, we use a sputtered thin film metallic layer of Au-2.1% Co patterned as a 

meandering strip. The thickness of the heater is around 35nm and the resistance of it is usually 

around 700 to 800 . There is a meandering section of the heater with an area of 150 x 150 μm
2
 

located at the center of the Si3N4 membrane, which acts as the effective heating area. Wide 

contact lines connect this center region with four contact pads located on the Si substrate. Typical 

current sent to the heater is ~0.1 to 0.2 mA with a power ~10 μW driven at a frequency range of 

15 – 100 Hz. The ideal sample size should be about the size of the meandering part of the heater 

(150 x 150 μm
2
), and as thin as possible (typically ~10-30 μm) for best possible heat conductance. 

A 150 nm thick SiO2 insulating layer covering an area of 200 x 200 μm
2
 was sputtered on the top 

of the meandering heater to electrically separate the heater from the thermocouple. The amplitude 
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and frequency of the current through the heater is provided by the controlled output from a 

Stanford Research Lock-in amplifier (SR830).  

For the thermocouples, choosing the right materials is critical to achieve high resolution and good 

functionality. Ultra-low noise measurements require transformer preamplifiers which cannot 

operate if the impedance of the thermocouples is too high. In our case, we use a sputtered thin 

film Au-2.1%Co and Cu thermocouple, which has a low resistance value of ~25  and a Seebeck 

coefficient of ~ 42 V/K at room temperature (Fig 3.6), to measure the AC temperature 

oscillation in the sample.  Front side images of the membrane based micro-calorimeter without 

and with a sample on top are shown in Fig 3.4. A schematic showing the individual components 

of the calorimeter is shown in Fig 3.5. 

 

Fig 3.6 Seebeck coefficient versus temperature for three different thermocouples. The 

chromel/constatan and chromel/Au-0.07%Fe thermocouples both have high resistance values 

when compared to Cu/Au-2.1%Co thermocouple. From Ref [103]. 

One of the major disadvantages of this thermocouple based membrane micro-calorimeter is that 

the sensitivity becomes very low at low temperature since 0   as   0S T   , which makes 

low-temperature specific heat measurements difficult. To overcome this problem, we have 
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developed a Ge/Au alloy based resistive thermometer that has high dimensionless sensitivity 

( ln / lnd R d T  ) even at low temperature.  An image of the center of the 2
nd

 generation micro-

calorimeter with this resistive thermometer incorporated is shown in Fig 3.7: 

 

Fig 3.7 second generation membrane based micro-calorimeter with the Ge/Au resistive 

thermometer (120mm x 80 mm x 100 nm) in replacement of the original Au-2.1%Co 

thermalcouple. 

The resistance of a test Ge/Au alloy based resistance thermometer as a function of temperature is 

given in Fig 3.8. The dimensionless sensitivity of the thermometer as deposited and annealed on a 

hotplate at 160 
o
C for 1 hour is shown in Fig 3.9. Its temperature sensitivity approaches that of 

commercially available Cernox temperature sensors. 
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Fig 3.8 Resistance versus temperature of a test GeAu alloy resistive thermometer on log-log scale. 

 

Fig 3.9 Dimensionless sensitivity of as deposited and annealed GeAu thermometer as a function 

of temperature.  

A novel wafer based semiconductor fabrication process has also been developed for fabricating 

both the first and second generation membrane calorimeters with high efficiency. With this new 

process, the cost and time for fabrication is significantly reduced and the yield from one round of 

fabrication is also significantly enhanced. 

 

3.3.3 Calorimetric measurements 

The micro-calorimeter was mounted onto a Cu-plate with silver epoxies. This Cu-plate is then 

placed in the slot in the center of a circuit board with vacuum grease (Apiezon N). Gold wires 

with diameters of 25m and 50m are then used to connect the electrical contact pads on the SiN 

membrane to the contact pads on the circuit board with silver epoxy (type: H20E). The circuit 
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board or chip is then attached to the end of a probe and electrical connections between the probe 

and the circuit board is made by plugging in the 18-pin male connector from the probe to the 

female connector on the circuit board. An image of the bottom of the probe with the calorimeter 

mounted is shown in Figure 3.10.  

 

  

Fig 3.10 Bottom part of the specific heat probe showing the 

circuit board with the calorimeter in the center 

 

The amplitude and frequency of the current sent through the heater is controlled by the output of 

a Stanford Research Lock-In amplifier (SR830). The base temperature of the Cu-block where the 

chip (circuit board containing the calorimeter cell) is attached is controlled and measured by a 

LakeShore 340 Temperature Controller and a Cernox thermometer. The signal from the 

thermocouple related to Tac is amplified 1:100 by a Stanford Research Transformer (SR554) 

followed by a 1:1000 Stanford Research Preamplifier (SR560). See Figure 3.11 below for a 

schematic of the measurement setup. 
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Fig 3.11 Schematic showing the specific heat measurement setup 

All the instruments used in the measurements are connected using GPIB cables to a computer 

with LabVIEW installed. Several LabVIEW programs have been developed to automate the 

control of instruments and data acquisition. Fig 3.12 shows a photo of the user interface for one 

of the LabVIEW programs which is capable of measuring the specific heat as a function of 

temperature with preset applied magnetic field and field angle sequence. 

 

Fig 3.12 User interface of LabVIEW program for heat capacity measurements 
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From section 3.1 we know that 0

2
off

P
T


  , so offT  depends on the amplitude of the heater power 

and the coupling between sample and base (copper block). By tuning the amplitude of the heater 

power, we can change the offset temperature. Usually we keep offT ~ 0.2 – 0.5K. Now we need to 

set the measuring frequency to satisfy the condition / 1ac offT T . In order to find the correct 

operating frequency, we perform a frequency scan of the calorimeter at a fixed temperature. A 

typical frequency scan is shown in Figure 3.13 below: 

 

Fig 3.13 Log-log plot of the amplitude of the ac temperature oscillation and the heat capacity 

defined by (3.22) vs. frequency from a TiSe2 single crystal on top of the calorimeter. The heater 

power amplitude is kept constant. 

 

As we can see from the figure, when the frequency of the AC current is in the range of 10 - 

100Hz, the AC temperature response of the sample, Tac is inversely proportional to the frequency. 

This is the correct frequency range to maintain / 1ac offT T . If this condition holds, 
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0 0

4 4(2 )
s

ac ac

P P
C

T f T 
  . When plotted on log-log scale, the dependence of Tac on f will be a 

linear line with a slope of -1. At lower frequencies, Tac is nearly constant. This can be explained 

by looking at equation (3.20), when f (or ) is small enough, ac offT T  , while 0

2
off

P
T


  is 

independent of frequency. At higher frequencies, ~100 1000Hzf  , the response from the 

sample starts to slow down so the slope of Tac vs. f becomes smaller. When the frequency is 

higher than 1000 Hz, the signal from the sample quickly diminishes until it becomes undetectable 

because at such a high frequency, the sample basically lose coupling to the calorimeter. Hence, 

for this particular sample, the operating frequency range is 10 100f Hz   and it is marked by a 

linear slope of Tac and a plateau in heat capacity in the Tac and C vs. f plot (log-log scale) at fixed 

temperature. 

 

3.3.4 More rigorous model and calorimeter calibration 

The model we discussed in section 3. 1 is a simplified model of the membrane calorimeter which 

is useful to describe the system but is slightly oversimplified. In particular, we ignored the heat 

capacity of the thermocouples, the supporting SiN membrane underneath the thermocouple and 

the thermal link between the sample and the thermocouple. Here, we include all these effects and 

discuss the results below. 
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Fig 3.14 Schematic diagram of the more rigorous model of the calorimeter, the effects of the heat 

capacity of the thermocouple (heat capacity of the section of membrane support the thermocouple 

included) and the thermal link between sample and thermocouple are included [104]. 

 

The heat balance equations for this updated model system are: 

                                                                    s( )s
s s

dT
C T T

dt
                                               (3.23) 

                                               ( ) ( ) ( )b b s s

dT
P t C T T T T

dt


                                      (3.24) 

Substituting the expression for T , equation (3.23) into equation (3.24), we get: 

                                  

2

2
( ) ( )s s b s

s s b s b

s s

C d T dT
P t C C C C T T

dt dt
 




 

 
      

 
                  (3.25) 

The expression for the AC power input is still the same as in the previous model: 
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                                                        2 0( ) ( ) 1 cos2
2

P
P t I t R t                                         (3.26) 

Similarly, we can guess the form of the solution for Ts as: 

                                                                cos(2 )sT A B t                                              (3.27) 

where A is a constant or dc part of Ts, and B is the amplitude of the ac temperature oscillation, i.e. 

Tac,   is the phase angle of the ac oscillation.  

Substituting equations (3.26) and (3.27) into equation (3.25), we obtain: 

20 0 b
b s

2 b
b s
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2 2
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
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 


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 
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 
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 

                                                                                                                                                                          

                                                                                                                                                    (3.28) 

Equating the DC and AC parts on both sides of the equation, we get: 
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From equation (3.29), we get the solution for A: 
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2
b

b

P
A T


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As I have pointed out in equation (3.27), A is the DC component of the temperature of the sample. 

This result is the same as what was obtained earlier for the simplified model: The elevation of 

temperature with respect to the base temperature is equal to the average power divided by the 

thermal link between the base and the thermocouple. 

From equation (3.20) and (3.21), we obtain the expression for the sample heat capacity: 
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               (3.33) 

 

Knowing the typical values of b , s  , and C , and estimating sC for the materials to be 

measured, it can be shown that some of the fractions in the denominator of Equation (3.33) would 

be much smaller or equal to unity in such a way that for this model sC  can be approximated as: 

                                                                      0 1

4 2
s

ac

P
C

T
                                                       (3.34) 

Using this factor in combination with the fact that the power received by the sample is ~3/4 times 

of the power applied, the measured heat capacity will be 8/3 times larger than the actual value: 

                                                                       0 3

4 8
s

ac

P
C

T
                                                      (3.35) 
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We can see that the specific heat we measured by using equation (3.22) are off by a factor of ~2. 

In order to find out the exact of value of this correction factor, we calibrate our specific heat 

measurements by measuring a standard gold reference sample with a known literature value [105]. 

By scaling our measurement data to the standard data we determine this correction factor to be ~2, 

which is quite close to the value of 3/8 from equation (3.35). Each membrane calorimeter was 

individually calibrated against a standard gold foil, so all the measurements presented in this 

thesis have been corrected by this particular factor. See Fig 3.15 for an example calibration data 

of one of our membranes with a gold sample. 

 

 

Fig 3.15 Plot of the measured specific heat of a Au standard sample after a correction factor of 

1.9 (red) and the literature specific heat data [105] of the sample (blue). 

 

3.3.5 Helium-3 Cryostat System 
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The cryostat used in our experiments was built by Cryo-Industries and is a top-loading 
3
He 

system designed to achieve temperatures ranging from as high as room temperature (300K) to as 

low as 0.3 K. The tail of the cryostat is placed in the bore of a transverse 8 Tesla superconducting 

magnet from American Magnetics, Inc. Both the 
3
He-cryostat and the magnet reside in a super-

insulated liquid 
4
He dewar. A stepper motor bolted at the top of the cryostat allows rotation of the 

sample probe and the load lock by 360
o
 horizontally. A load lock is attached to the top of the 3He 

cryostat with an isolation valve so that the sample space of the 
3
He cryostat is maintained in 

vacuum when loading and unloading samples. A schematic of the cryostat is shown in Fig 3.16.  

Cooling the sample is achieved through the following procedure: First, the sample probe is 

inserted into the load lock on top of the cryostat. Then the load lock is pumped down to a pressure 

of below 10
-5

 Torr by a portable pump station. Then the isolation valve between the load lock and 

the sample space of the 
3
He cryostat is opened and the sample probe is slowly lowered into the 

cryostat. Once the bottom of the probe, where the calorimeter sits reaches the center of the 

horizontal superconducting magnet, the top of the probe can be locked to the top of the load lock 

by two screws and four nuts. To cool down the probe, 
3
He gas is then released into the sample 

space either from an external 
3
He gas storage tank that is connected to the sample space or by 

heating up charcoal sorption pump to release previously absorbed 
3
He gas. The 

3
He cryostat 

consists of a 1K pot which is in direct contact with the outer wall of the sample chamber and 

draws liquid Helium from the reservoir in the dewar through a capillary tube (see Fig 3.17). 

Filling the 1K pot with liquid helps cool the sample probe to nearly 4.2 K. Pumping on the 
4
He 

gas vapor 1K pot with an external pump reduces the vapor pressure of liquid 
4
He in the 1K 

pot ,which further lowers the temperature to ~1.5 K. At this temperature, 
3
He gas condenses on 

the part of the inner wall of the sample chamber which is directly connected to the 1K pot and 

immerses the tip of the sample probe. The charcoal sorption pump operates by cooling the 

charcoal by drawing liquid 
4
He from the dewar in a similar manner as that of the 1K pot, through 
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a second capillary tube. Lowering the temperature of charcoal greatly enhances its absorbing 

capability. The absorbed gas can be later be released by heating the charcoal with a provided 

heater attached to its container. We use the charcoal sorption pump to reduce the vapor pressure 

of liquid 
3
He in the sample chamber which allows us to reach a base temperature close to ~300 

mK. The low temperature retention time is about two hours with around 30 ml of L
3
He in the 

bottom of the sample chamber. Once liquid 
3
He has completely evaporated, we can repeat the 

process by heating the charcoal to release 
3
He gas back into the sample chamber provided that the 

1K pot is full and being pumped. By controlling the temperature of the 1K-pot and the charcoal 

pot, the temperature of the 
3
He exchange gas can be adjusted. Furthermore, by adjusting the 

power of the heater on the sample holder, the temperature of the sample can be tuned from 0.3K 

to 300K. 

 

Fig 3.16 Schematic of the 
3
He cryostat with dimensions. 
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The system is designed to perform both temperature sweep and field sweep measurements. To do 

so, we simply cool the sample down to the desired temperature first. The desired sample 

temperature can be stabilized by balancing the cooling power from the 1K pot and charcoal 

sorption pumps and the heating power from the resistive heater on the sample holder. The 

orientation of the sample with respect to the magnetic field is adjusted by using the stepper motor 

via a LabVIEW control program. The stepper motor provides angle resolution of 0.015 

degrees/step. For temperature sweep measurements, the temperature ramp rate is controlled via a 

Lakeshore temperature controller and the temperature sweep rate can be as small as 0.1K/minute. 

For our heat capacity measurements, we use a typical ramp rate of 0.2K/minute. 

 

Fig 3.17 Bottom part of the 
3
He cryostat showing the details of the 1K pot and charcoal sorption 

pump.  
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Chapter 4  

Study of nematic and antiferromagnetic 

transitions in Fe-based superconductors 
 

4.1 Introduction and overview 

The phase diagrams of one of the most studied Fe-based superconducting system, namely the 

“122” system, have been introduced in section 1.2. Starting from the antiferromagnetic parent 

compound BaFe2As2, one can systematically dope either Ba with K, Fe with Co or Ni, or As with 

P to suppress antiferromagnetism (AFM) and a superconducting dome emerges in the phase 

diagram. Among these three systems the iso-valent P-doped Ba122 system has attracted the most 

attention recently due the discovery of a “true” nematic phase transition line in the phase diagram 

by magnetic torque and high resolution XRD experiments [61].  

 

Fig 4.1 T-doping phase diagram after addition of the true nematic phase transition line (left); 

Measurement data from magnetic torque, high-resolution XRD and resistivity with red lines 
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marking the true nematic phase transition temperatures for five different doping levels of 

BaFe2(As1-xPx)2.[61] 

Conventionally the structural transition which usually precedes or is coincident with the AFM 

transition in the temperature-doping phase diagram of “122” system has been regarded as a 

nematic phase transition due to experimentally observed unusually large electronic anisotropy 

either in resistivity, optical conductivity, or orbital occupancy in order to separate it from a 

conventional phonon (lattice vibration) driven structural transition. However, recent magnetic 

torque measurements on BaFe2(As1-xPx)2 [61] and EuFe2(As1-xPx)2 [62] single crystals under in-

plane magnetic field rotation revealed breaking of the tetragonal symmetry at a temperature T
*
 

more than 30K above the conventional nematic/structural transition at TS.   The 2
nd

 order phase 

transition at T
*
 is now regarded as the “true” nematic phase transition while the structural 

transition ceases to be a true phase transition but is regarded as a meta-nematic transition.  

Measurements of the strain dependent resistivity anisotropy [46] (Fig 4.2) or of the shear modulus 

[64] (Fig 4.3) of BaFe2As2 shows strong divergence of the nematic susceptibility at the structural 

transition with a long tail which extends to much higher temperatures. This give evidence for 

strong nematic fluctuations right above the structural transition Ts and leads to the updated 

nematic phase diagram for FeSCs with an extra region of strong nematic fluctuations (Fig 4.4). 

However, no evidence was found for another phase transition above the existing 

nematic/structural transition.   

 



78 

 

  

Fig 4.2 measurements of the strain dependent resistivity anisotropy, a quantity which is 

proportional to the nematic susceptibility. Strong divergence of the nematic susceptibility is 

found at Ts, with a Curie-Weiss shaped long tail indicative of nematic fluctuations extending to 

temperatures as high as room temperature. The left figure shows data for the parent compound 

while the right figure shows data for various doping levels of Ba(Fe1-xCox)2As2 [46]. 
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Fig 4.3 Nematic susceptibility, expressed in unit of C66,0/
2
 where C66,0 is the temperature 

independent elastic constant and  is the electron-lattice coupling strength, plotted as a function 

of temperature. Strong divergence is seen at Ts for both Ba(Fe1-xCox)2As2 and Ba1-xKxFe2As2 [64]. 

 

Fig 4.4 Nematic phase diagram of BaFe2(As1-xPx)2 or Ba(Fe1-xCox)2As2 [57] 

 

A recent STM/STS study on NaFeAs single crystals [65] revealed the persistence of local 

electronic nematicity up to temperatures of almost twice TS.  In this case, residual strains in the 

sample in conjunction with a large nematic susceptibility were considered as possible origin of 

such symmetry breaking. Similarly, recent inelastic neutron scattering experiments shows change 

in the low energy spin excitations in uniaxially strained BaFe2-xTxAs2 (T=Co or Ni) from four 

fold to two fold symmetry at temperatures (T
*
) corresponding to the onset of in-plane resistivity 

anisotropy observed previously [66]. However, the authors also emphasized the effects from the 

uniaxial strain they applied which rendered the structural transition at TS a crossover and T
*
 only 

marks a typical range of nematic fluctuations [66]. Nevertheless, magnetic torque is directly 

related to the spin nematic order parameter [57] possibly facilitating the observation of a nematic 
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phase transition.  Thus, the question whether the phenomena at T* represent a 2
nd

 order phase 

transition, a cross-over associated with the onset of sizable short-range correlations and 

fluctuations, or spurious effects due to frozen-in or applied strains remains unresolved. 

Here we present a study of single crystal BaFe2(As1-xPx)2 by high resolution ac micro-calorimetry 

[106] and SQUID magnetometry to investigate the various phase transitions and to explore the 

“true” nematic phase transition.  If another 2
nd

 order true nematic phase transition does exist more 

than 30K above the structural transition, we should see a corresponding feature in the specific 

heat since specific heat is a direct thermodynamic probe of any phase transitions.  

4.2 Experimental results 

High quality BaFe2(As1-xPx)2 crystals were grown by the self-flux method as described elsewhere 

[107]. Annealing of as-grown BaFe2As2 was carried out in an evacuated quartz tube together with 

BaAs flux at 800 
o
C for 72 hours [108]. High resolution specific heat measurements were 

performed with our home built membrane-based ac micro-calorimeter. Single crystal samples of 

BaFe2As2, with dimensions of ~
3120 110 20 µm   

for the as-grown and ~
3130 180 13 µm   

for the annealed sample, respectively, were mounted onto the calorimeter with minute amount of 

Apiezon N grease.  

Fig 4.5 shows the temperature dependence of the specific heat for both as-grown and annealed 

BaFe2As2 samples from 100K to 220K. Fig 4.6 shows the magnified peak region of the original 

data for as grown and annealed samples. For the as grown BaFe2As2, a sharp peak is 

distinguished at 133K with a relative peak height of ΔC/C~37% and a width of only 1.2K 

(FWHM), which signifies the simultaneous AFM and tetragonal to orthorhombic structural 

transitions in this parent compound of the 122 family. The sharpness of the peak, combined with 

the step-like feature in the entropy as shown later, seem to suggest the first order nature of this 
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combined phase transition. This agrees with previous results from heat capacity and synchrotron 

XRD measurements of C. R. Rotundu et al [109] and neutron diffraction from S. Avci et al [41]. 

The peak associated with the AFM/structural transition shifts to a higher temperature of 137K for 

the annealed BaFe2As2, with a relative height of ΔC/C ~69% and a width of 0.7K. Interestingly 

the shape of peak becomes λ-like rather than approximately symmetric after annealing. This 

might be a direct consequence of improvement in sample quality by annealing, which was found 

to increase the transition temperature gradually [109]. The absolute values of the peak height, in 

ΔC/TN, are about 0.3 J/mol K
2
 and 0.5 J/mol K

2
 for as grown and annealed BaFe2As2, consistent 

with a previous reported value of 0.3 J/mol K
2
 at a transition temperature of 138K for a high 

quality sample [110].  

 

Fig 4.5 Temperature dependence of the specific heat of as-grown and annealed BaFe2As2 single 

crystals. 

 



82 

 

 

Fig 4.6 Peak regions of the specific heat of as grown (blue) and annealed (red) BaFe2As2. 

Integrating C/T over temperature yields the change in entropy across the transition as shown in 

Fig 4.7. A clear step-like anomaly is discernible at the AFM/Structural transitions of both samples. 

The detailed shape of the anomaly is shown in Fig 4.8 obtained by subtracting a normal state 

background from the original entropy.  The change in entropy at the transition, extracted by 

approximating the transition as a sharp step, amounts to ~0.5 J/mol K, or 0.06 kB per formula unit, 

for both as-grown and annealed BaFe2As2. This value is slightly smaller than ~0.84 J/mol K 

reported for an annealed crystal with a transition temperature of 140 K [109].  The change in 

entropy across the AFM transition is substantially smaller than the value of ln(2)R  expected for 

the onset of long-range magnetic order in a S=1/2–system, indicative of pronounced magnetic 

fluctuations [95].  The shape of the C/T - and S - curves, particularly of the as-grown sample, is 

consistent with a broadened first order transition as well as with a second order magnetic 

transition accompanied by critical fluctuations [112].  However, for our annealed sample a clear 

kink in S(T) is seen near the top of the transition about 0.5 K above the peak temperature in the 

specific heat, followed by a tail towards high temperatures.  Such behavior is not expected for 



83 

 

critical fluctuations, and may instead indicate two transitions, namely a second order transition 

preceding a first order transition by approximately 0.5 K. Similar results have been reported in 

recent X-ray diffraction and X-ray resonant magnetic scattering studies on as-grown BaFe2As2 

[59], where they found a second order structural transition and a first order AFM transition 

separated by approximately 0.75 K. 

 

 

Fig 4.7 Temperature dependence of the entropies of as grown and annealed BaFe2As2. Dashed 

lines in the main panel indicate extrapolations of the normal state entropy. Blue and red arrows 

indicate the AFM/structural transitions. 
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Fig 4.8 Temperature dependence of the entropy of as grown and annealed BaFe2As2, after 

subtraction of a smooth normal state background indicated by the dashed lines Fig 4.7, 

respectively. The data for the annealed sample is shifted downward slightly to assist the eye. The 

dashed lines and double headed arrows demonstrate the construction used for extracting the 

entropy steps at the transitions. The black arrow indicates the position of the kink in the entropy 

of the annealed BaFe2As2, and the double-headed arrows mark the location of the maxima in the 

specific heat. 

We also measured the specific heat of near optimum doped BaFe2(As1-xPx)2 (x=0.3) crystal with 

dimensions of 113 x 154 x 22 µm
3
 from 15K to 120K. The result is shown below in Fig 4.9. 
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Fig 4.9 Temperature dependence of the heat capacity of BaFe2(As0.7P0.3)2. Upper inset shows a 

magnification of the SC transition region. Lower inset is a magnification of the temperature 

region where the nematic transition is expected to occur. The level of resolution is about 10
-4

. The 

kink-like feature at around 77 K is an artifact due to the condensation of minute amounts of N2 

gas in certain areas of the cryostat. 

Substracting a polynomial (third order) normal state background from the raw data, we can look 

at the superconducitng transition more closely in the upper inset of Fig 4.9. The superconducting 

Tc for this particular sample is around 29K taking the onset as the criterion.  

Fig 4.10 and the lower inset of Fig. 4.9 show the specific heat for BaFe2As2 and BaFe2(As0.7P0.3)2 

under high magnification after subtraction of a smooth polynomial background. Within our 

resolution of 10
-4

, no feature can be identified that would indicate a phase transition near the 
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expected nematic transition temperatures of 170 K and 90 K of the parent compound and 

optimally doped sample, respectively.  

 

Fig 4.10. The specific heat of annealed BaFe2As2 after a background subtraction for the 

temperature region above the peak. Red and green curves correspond to warming and cooling 

runs, respectively. Dashed lines indicate the level of the anomaly expected on the basis of the GL-

model. Data are off-set by 0.2 J/mol K for clarity of presentation. 

We evaluate the expected specific heat signature at the nematic transition using the  GL free 

energy for BaFe2As2 as given in Ref [61]: 

                                       2 4 6 2 4,        s pF t u v t w g                                       (4.1) 

Here 
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a b
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



 denotes the lattice distortion and   is the nematic order parameter. 
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denoting the transition temperatures in the absence of coupling between the two order parameters, 

i.e. 0g   . The coefficients u, v, and w are determined in Ref [61] from fits to the torque and 

XRD data on a BaFe2As2 crystal with a transition temperature very close to the one investigated 

here. This GL model yields a 2
nd

 order nematic phase transition at 
 0*

pT T  and a meta-nematic 

transition at
 0

s sT T  . By using the same model, we derive the temperature dependence of the 

free energy F(T), entropy S(T) and specific heat C(T). The latter two are shown in Fig 4. 11. 

 

Fig 4.11 Temperature dependence of the specific heat of BaFe2As2 as derived from the GL model. 

Inset shows the calculated result of the temperature dependence of entropy near the 

AFM/structural transition. 

 

As we can see, the theoretical curves of S(T) and C(T) reproduce the shape of the experimental 

curves quite well, with a similar sharp peak in the specific heat and a step in the entropy at Ts, 

though the experimental entropy curve is more smeared possibly due to fluctuations or 
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inhomogeneity in the sample.  In addition, the theoretical specific heat curve also reveals a small 

step at the nematic transition (T*). In order to evaluate the expected height of this step, we 

consider the ratio of the change in entropy at Ts, as given by      
s sT T

S F T F T        , 

and the step in the specific heat at T*, 
*

2 2   
T

C T F T    .  This ratio is independent of an 

over-all scale factor and is found from the GL model to be *| | 5
sT T

S C   .   

From Fig. 2 we obtain the change in entropy at the AFM/structural transition of ~0.5 J/mol K, 

yielding the expected height of the specific heat anomaly at T* of ~ 0.1 J/mol K. Considering that 

the noise level at ~170 K (the expected T* for BaFe2As2) is ~0.012 J/mol K, we should be able to 

distinguish such a feature, indicating that there are no 2
nd

 order phase transition at T* and that the 

transition into the C2-phase occurs at TS.  

It is important to recognize that the phenomenological order parameter   contains, in principle, 

both spin-nematic and orbital components, which are linearly coupled by symmetry. The 

magnetic degrees of freedom (DOF) are taken into account in the free energy through the spin-

nematic component of  . Thus in the case of an AFM order also developing at TS, which 

apparently is true for BaFe2As2, the related change in entropy is automatically taken into account 

through the spin-nematic component of  . Moreover, any additional entropy change at TS in the 

orbital DOF is taken into account through the orbital component of  . Thus, the free energy 

constructed above contains all the thermodynamic information about the system and the entropy 

step at Ts calculated in our model has taken into account all the related DOF. 

Fig. 4.12 shows the magnetization of both as grown and annealed BaFe2As2 samples measured in 

an applied field of 1 T along the basal plane and along the c-axis, respectively. Note that for 

annealed BaFe2As2, a Curie-type paramagnetic background ( Curie

b
M a

T
   ), possibly coming 
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from precipitates of Fe or Fe related compound introduced during annealing, was subtracted. 

Similar background subtraction was also done on the magnetization of as grown BaFe2As2, 

although the magnitude of the background is almost negligible.  

 

Fig 4.12 Temperature dependence of the magnetization of as grown and annealed BaFe2As2 in an 

applied field of 1T along the ab plane and c-axis. 

High DC magnetic fields on the order of 10T [113]
 
and pulsed fields of 27.5T [114] have been 

observed to partially detwin under-doped Ba(Fe1−xCox)2As2 crystals.  This field dependence of the 

structure may suppress the sharpness of the structural transition; however, in our case, a relatively 

small applied field of 1T would not cause any significant detwinning effects that could lead to 

transition broadening. In fact, we observe a sharp step-like feature in the magnetization for both 

applied field directions in as grown and annealed samples indicates the AFM/Structural transition. 

The transition temperatures are consistent with those obtained from the specific heat 

measurements. The value of the magnetization and the drop at TN for H || ab are higher than that 

for H || c by a factor of ~2-3, consistent with the in-plane spin arrangements in the Fe-As planes 
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[17]. Above the magneto-structural transition the magnetization increases linearly with 

temperature [115], distinctly different from the temperature-independent Pauli paramagnetism of 

itinerant carriers as well as the 1/T-decrease in the Curie-Weiss law of independent local 

moments.  Such linear temperature dependence has been reported previously for several iron-

based superconductors, including BaFe2As2 [116], CaFe2As2 [117], LaFeAsO1-xFx [118], 

Ca(Fe1−xCox)2As2 [118] and SrFe2As2 [119], as well as  high-Tc La2-xSrCuO4-y [120].  It was 

suggested to be a consequence of strong AFM correlations [121, 122] persisting in the 

paramagnetic state or, alternatively, of flat electronic bands caused by the quasi 2D crystal 

structure [123].   

Subtraction of the aforementioned linear M(T) background from the raw data yields a detailed 

presentation of the magnetic transition shown in Fig 4.13.  The transition is slightly sharper for 

the annealed compound. Specifically, the broadening right above the transition found in the as 

grown sample almost disappears after annealing. Such a sharp transition without any indication of 

precursors is quite unexpected if magnetic fluctuations play a key role in the magnetostructural 

transition.  However, this seeming contradiction can be explained by the fact that uniform 

magnetization is mostly sensitive to fluctuations at 0Q  in the BZ, and is therefore, not a direct 

measurement of the fluctuations at the SDW ordering wave vectors (  0  ( ), Q  and ( ),  0  ).  

Recently, a scaling relation between the NMR spin lattice relaxation and the elastic shear 

modulus in Ba(Fe1-xCox)2As2 was discovered [124], indicative of strong coupling between 

magnetic and structural fluctuations.  
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Fig 4.13 Temperature dependence of the magnetization of as grown and annealed BaFe2As2 after 

subtraction of the linear M(T) background in an applied field of 1T along the ab plane and c-axis. 

4.3 Summary and discussion 

In this chapter, I presented SQUID magnetometry and high resolution AC microcalorimetry 

measurements of single crystal BaFe2(As1-xPx)2 ( 0,  0.3x  ).  This technique allows us to probe 

the thermodynamic phase diagram without the application of external potentially symmetry 

breaking fields such as strain or magnetic, nor does it exert uncontrolled residual strains for 

example due to thermal contraction.  Results on both as grown and annealed BaFe2As2 reveal a 

sharp peak at the AFM/Structural transitions.  A kink in the entropy of annealed BaFe2As2 gives 

evidence for splitting of the two transitions by approximately 0.5 K.  Our measurements show no 

additional features in the specific heat of both BaFe2As2 and BaFe2(As0.7P0.3)2 in the temperature 

regions of the purported “true” nematic phase transition reported in torque measurements [49], 

eventhough the Ginzburg-Landau model used to fit the magnetic torque data indicates that the 

expected thermal anomaly should be easily observable with our experimental resolution of 10
-4

.  
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We thus conclude that the behavior previously reported [61] for BaFe2As2 at T* does not 

represent a second order phase transition, and that the phase transition into the orthorhombic 

phase does occur at TS.  
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Chapter 5 
 

Emerging new phases in Fe-based superconductor 

and thermodynamics of High temperature 

superconductors 

 

5.1 Study of the emergent C4 SDW phase in Ba1-xNaxFe2As2 

5.1.1 Introduction 

Recently a wholly new magnetic phase with C4-symmetry in the lattice was found to exist at the 

boundary between superconductivity and stripe mangetism in Ba1-xNaxFe2As2 by high resolution 

neutron diffraction experiments [58] (Fig 5.1).  For several doping levels: x=0.24, 0.26, 0.27 and 

0.28 in the coexistence regime of antiferromagnetism (or spin density wave (SDW)) and 

superconductivity, an emergent C4 symmetric SDW phase was found above the superconducting 

transition (Fig 5.2). This discovery has important implications for the origin of magnetic and 

structural transitions in iron-based superconductors. The results agree with the prediction of the 

spin-nematic models [44] that a C4 phase can become degenerate with the C2 phase only at higher 

doping when hole and electron Fermi surfaces are not well nested, and that the stability of the C4 

phase would be limited to a very narrow region close to the suppression of anitiferromagnetism.  
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Fig 5.1 Temperature dependence of powder neutron diffraction from Ba1-xNaxFe2As2 (x=0.24). 

The first diffractogram shows data from the (112) Bragg peak (using tetragonal indices), which 

shows the orthorhombic transition at TN and the re-entrant tetragonal transition at Tr. The other 

two diffractorgrams are from mangetic bragg peaks. The 
1 1

( , ,3)
2 2

data shows the onset of stripe 

SDW order at TN. The 
1 1

( , ,3)
2 2

 data show the onset of the C4 SDW order at Tr [58]. 
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Fig 5.2 Phase diagram of Ba1-xNaxFe2As2. Blue points indicate coincident antiferromagnetic and 

Tetragonal to Orthorhombic structural transition temperatures,TN. Red points indicate observed 

transition temperatures, Tr, into the C4 phase, all measured by neutron diffraction. Green points 

indicate superconducting transition temperatures, Tc, determined from magnetization data [58]. 

 

In an attempt to map out with more precision the transition temperatures of this new emergent C4 

cymmetric magnetic phase, we performed heat capacity measurements of a series of samples of 

Ba1-xNaxFe2As2, at doping levels of x=0.22,0.26,0.27 and 0.28.  

 

5.1.2 Ba1-xNaxFe2As2 (x=0.22) 

The sample is of polycrystalline form and has dimensions of ~120m x 90m x 15m.  The 

specific heat of the sample was measured from 15K to 120K and a clear bump- shaped anomaly 

is found at around 100K (Fig 5.3 (left)), indicative of the AFM/SDW transition which was later 

confirmed by SQUID magnetization measurements. A better view of the details of this phase 

transition is made available by subtracting a smooth polynomial background from the raw data, as 

shown in Fig 5.3 (right). We use entropy conservation to extract the transition temperature as 

TN=97.5K. 
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Fig 5.3 (left) Temperature dependence of the specific heat of Ba1-xNaxFe2As2 (x=0.22) from 15K 

to 120K, a bump-like feature at around 100K marks the AFM/structural transition. (right) C/T 

data of the same sample after subtraction of a smooth background. An illustration of the entropy 

conservation construction is shown in the figure as our way to determine the transition 

temperature precisely.  

To look for the superconducting transition in Ba1-xNaxFe2As2 (x=0.22), we measured the specific 

heat from 10K to 30K with high precision. The data is shown in Fig 5.4 as a plot of C/T versus T. 

A broad hump in the specific heat roughly between 14K and 18K can be distinguished in the raw 

data (left figure in Fig 5.4). After a smooth polynomial (second order) background subtraction, 

the superconducting transition is seen as a broadened step with an onset Tc of ~18K and a width 

of ~2K. It is worth mentioning that the superconducting anomaly is extremely small, with a

2/ 2.5mJ/mol KcC T  , almost an order of magnitude smaller than 
2/ 20 mJ/mol KcC T 

for a BaFe2(As1-xPx )2 (x=0.5) single crystal sample which has a Tc of 18K [125]. This might be 

due to the poor quality of the polycrystalline sample that we used for our measurements which 

contains significant amount of non-superconducting materials, such as flux from material growth. 
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cc 

Fig 5.4 (Left) Temperature dependence of the specific heat (more precisely, C/T) of Ba1-

xNaxFe2As2 (x=0.22) from 10K to 30K. A broad bump-like feature can be distinguished between 

15K and 20K and is marked by the black arrow in the figure. (Right) the data after a smooth 

background subtraction showing the superconducting transition with more details. 

The magnetization of Ba1-xNaxFe2As2 (x=0.22) has also been measured from 15K to 120K in an 

applied field of 2T after the sample was cooled in zero field (ZFC). The result is shown in Fig 5.5. 

A small step like feature is found at 98K which corresponds to the AFM (or SDW) transition, the 

results agrees with specific heat data quite well since the temperature in specific heat data needs 

to be corrected for an offset temperature with a value of ~0.6K due to the DC component of 

heating power. The drop in magnetization associated with the superconducting transition onsets at 

18K which is also consistent with results from specific heat measurements. 
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Fig 5.5 Temperature dependence of the magnetization of Ba1-xNaxFe2As2 (x=0.22) in an applied 

field of 2T, zero field cooled. The arrows mark the onset of the superconducting transition and the 

AFM transition respectively. 

It is worth mentioning that this sample lies outside of the emergent C4 phase in the phase diagram 

of Ba1-xNaxFe2As2 and we don’t see any new phase transition in our data. However, our results 

confirm a Tc at 18K and a TN at 98K, which agrees with results from neutron diffraction 

measurements and provides more accurate transition temperatures. It also gives us a general idea 

of the quality of the sample and how the AFM transition looks like in specific heat.   

5.1.3 Ba1-xNaxFe2As2 (x=0.26) 

For this doping level, neutron diffraction results tell us that there would be 3 phase transitions: 

one AFM/SDW transition at ~80K, one re-entrant C2 to C4 symmetry structural transition at ~ 

45K and one superconducting transition at ~25K [58]. We performed specific heat measurement 

of this sample at a frequency of 34Hz (determined by a frequency scan at 40K) with a heating 

current of 120 A from 20K to 105K. The result is shown below in Fig 5.6: 
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Fig 5.6 (main panel) Temperature dependence of the specific heat of Ba1-xNaxFe2As2 (x=0.26) 

from 20 to 50K with the arrow marking the superconducting transition at around 25K and the 

dashed line marking another weak anomaly at T
*
 = 45K. (Inset) Specific heat data for the sample 

sample up to 100K. 

 

A weak anomaly can be seen at around 25K in the specific heat data which marks the 

superconducting transition at this doping level in the sample. In addition to this feature, another 

weak feature can be seen in specific heat at around T
*
 = 45K and is marked by the dashed line 

which possibly signifies the reentrant C2 to C4 transition in the sample. A better look at the details 

of the superconducting transition is made possible by subtracting a smooth polynomial 

background from the raw data near the superconducting feature. The results is shown in Fig 5.7. 

Using entropy  conservation construction, the height of the superconducting anomaly can be 
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determined as 
2/ 3.6mJ/mol KcC T  . This value is slightly higher than that of Ba1-

xNaxFe2As2 (x=0.22). Considering that the Tc for x=0.26 sample is also higher (25K comparing to 

18K onset), the results are consistent. However, we have to emphasize again that the value is 

considerably smaller (~ a factor of 10) than that from measurements of a similar single crystal 

sample Ba0.77K0.23Fe2As2 with about the same Tc [126], which can be attributed to the poor quality 

of the polycrystalline sample we have used. From the comparison of the results, we estimate that 

only ~10% of the sample is actually superconducting. 

 

Fig 5.7 Specific heat of Ba1-xNaxFe2As2 (x=0.26) after subtraction of a normal state background 

showing the superconducting transition in details. The step in the specific heat is determined by 

entropy conservation.  

A better look at the specific heat anomaly at T* is made available by taking the first derivative of 

the heat capacity data and the results is shown in Fig 5.8. 
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Fig 5.8 The first derivative of the specific heat of Ba1-xNaxFe2As2 (x=0.26) from 35 to 60K. The 

anomaly at T
*
=45K is clearly shown. 

Unfortunately, we are not able to distinguish another feature in the temperature region above T
*
 

that could possibly mark the AFM transition in the sample, which brings doubt to the nature of 

the feature at T
*
. There are be two possiblities: 1) T

*
 marks the regular AFM(SDW) transition and 

there is not a reentrant C4 symmetric SDW phase transition at this doping level; 2) T
*
 indeed 

marks the new phase transition. However, due to certain reasons (e.g. sample quality), we cannot 

locate the regular AFM(SDW) transition.  

To further investigate and verify the phase transitions we found in specific heat, we also 

performed SQUID magnetization measurments on powder samples of Ba0.74Na0.26Fe2As2 from the 

same batch (Fig 5.9). In addition to the superconducting transition, which is manifested as a drop 

in the magnetization with a onset of 25K (Fig 5.10), we found that there is a kink in the M/T vs T 

curve at 45K for all three different applied magnetic fields (H=2kG, 1T and 2T) with either ZFC 

(Zero-field cooled) or FC (Field cooled) conditions. The transition temperatures agree with that 

from specific heat measurements. No evidence for another phase transition above 45K can be 
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found, which also agrees with the specific heat measurement results. Thus the existence of the re-

entrant C4 AFM(SDW) transition is not clear based on our experimental data. 

 

Fig 5.9 Magnetization (actually magnetic moment) versus temperature for Ba1-xNaxFe2As2 

(x=0.26) from 20 to 60K. The kink-like anomalies are marked by the dashed line at 45K. 

Different colored curves for the same applied field are results from ZFC and FC measurement 

conditions respectively. 
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Fig 5.10 Magnetic moment versus temperature for Ba1-xNaxFe2As2 (x=0.26) from 10 to 30K in an 

applied field of 1T under ZFC (blue) and FC (red) conditions. The black arrow marks the Tc at 

25K. 

 

5.1.4 Ba1-xNaxFe2As2 (x=0.28) 

Two samples, sample 1 and sample 2, of Ba1-xNaxFe2As2 at doping level of x=0.28 have also been 

measured. According to neutron diffraction data [58], this sample should have Tc in the range of 

25 to 30K, Tr (reentrant C4 symmetry SDW transition) in the range of 40 to 50K and TN in the 

range of 65 to 75K. Our specific heat results show that the samples are actually multi-phased and 

the doping level has variations from sample to sample, which again brought doubt to the 

interpretation of data from neutron diffraction measurements.  

The specific heat of sample 1 (size: 88m x 78m x 15m) is measured from 20K to 80K and the 

result is shown below in Fig 5.11. A step like anomaly is found strangely at around 34K. By 

subtracting a normal state background, we look at the step in specific heat in more details in the 

inset of Fig 5.11. The behaviors of this anomaly in applied magnetic fields give evidence for the 

nature of the anomaly as a superconducting transition (Fig 5.12). This contradicts the Tc value of  

~26K as given in Ref [58] for x=0.28 doping level and in fact agrees more with the literature Tc 

value for a Ba1-xNaxFe2As2 (x=0.4) single crystal sample [127]. The height of the step at Tc from 

our data is found to be 
2/ 58 mJ/mol KcC T  , about 40% lower than the value of  

2/ 102 mJ/mol KcC T  for the Ba1-xNaxFe2As2 (x=0.4) single crystal sample from Ref [127].  
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Fig 5.11 (Main panel) Temperature dependence of the specific heat for sample 1 of Ba1-

xNaxFe2As2 (x=0.28). The black arrow marks the step-like feature at the superconducting 

transition. (Inset) Detailed view of the superconducting transition after subtraction of a normal 

state background. 
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Fig 5.12 (Main panel) temperature dependence of the specific heat for three different applied field 

after substraction of a normal state background. (Inset) Magnetic phase diagram extracted from 

the data, a linear upper critical field slope of 
0 2 / 6.5 T/KcdH dT    is found. 

From the field dependence of the specific heat data, we extract the upper critical field slope near 

Tc as 0 2 / 6.5 T/KcdH dT   . This value is slightly larger than the value of 

0 2 / 5.25 T/Kc

cdH dT   from [127] for applied field along the crystalline c-axis. Considering 

that the sample we meaured is polycrystalline and the alignment of the field could be off from c-

axis by quite a bit. The slightly higher value we got for the upper critical field slope is quite 

reasonable. Because of the good agreement of our data with the literature data for 

Ba0.6Na0.4Fe2As2, we conclude that sample 1 actully has a doping level of 0.4, rather than 0.28. 

What this indicates is that the powdered Ba1-xNaxFe2As2 sample (x=0.28) we used in our 

measurements is not homogenous and some of them is actually optimum doped (x=0.4). 

In an attempt to verify our conclusion, we measured the heat capacity of another sample (sample 

2) from the same batch of powered polycrystals. The result is shown in figure 5.13. 
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Fig 5.13 (Left) temperature dependence of the heat capacity of sample 2 of Ba1-xNaxFe2As2 

(x=0.28). Two small anomalies marked by black arrows can be seen in the raw data. (Right) heat 

capacity data after two different smooth background subtractions to give a better look at the two 

transitions at 34K (red) and 29.5K (blue) respectively.  

 

The data shows two anomalies at 34K and 29.5K. The feature at 34K, as we have seen in sample 

1, is the superconducting transition temperature for Ba0.6Na0.4Fe2As2, i.e., x=0.4. The nature of the 

29K feature was confirmed as another superconducting transition by the observation of a shift in 

the position of the feature in an applied magnetic field of 4T (Fig 5.14). This results, combined 

with the results from sample 1, confirmed that the sample we obtained were not homogeneous 

and thus not useful for identifying the reentrant C4 symmetric SDW transition claimed by neutron 

diffraction measurements. 

 

Fig 5.14 Temperature dependence of the heat capacity of sample 2 of Ba1-xNaxFe2As2 (x=0.28) 

near 29K for applied fields of 0T (red) and 4T (blue) respectively. 
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5.1.5 Discussion 

In conclusion, we studied the specific heat of Ba1-xNaxFe2As2 at several different doping levels, i.e. 

x=0.22, 0.26 and 0.28. For the x=0.22 sample, a peak in the specific heat and a step in the 

magnetization at 98K marks the AFM/structural transition. Another tiny step in specific heat and 

a drop in the magnetization at 18K mark the superconducting (SC) transition. The SC anomaly 

height found from our data is almost a factor of 10 smaller than that of a similar sample in the 

“122” family with about the same Tc [126], which can be attributed to the poor quality of the 

polycrystalline sample that we have used for our measurements. For the x=0.26 sample, we were 

about to find a phase transition at T
*
 = 45K which is exactly the transition temperature for the 

reentrant C4 phase transition. However, the lack of signs for another transition at around 80K 

leaves doubt about the nature of the transition at 45K. It is equally possible that the transition at 

45K marks the SDW transition and there isn’t a reentrant SDW transition into C4 symmetry. For 

the x=0.28 samples, we found that they are not homogeneous and many has a SC transition at 

34K, which in fact corresponds to x=0.4 optimum doped samples. As a result, we cannot draw 

any additional conclusion about the reentrant C4 SDW phase transition from the data measured on 

samples at this doping level.  

It is worth mentioning that recently a group of scientists at KIT indeed found through thermal 

expansion and heat capacity measurements the existence of a C4 SDW phase in underdoped Ba1-

xKxFe2As2 [126]. The high quality single crystals used in their experiments certainly helped to 

confirm the existence of this new phase. However, for the Ba1-xNaxFe2As2, further investigations 

with high quality samples are definitely needed to verify the existence and determine the phase 

boundaries of this emergent new phase. 
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5.2 Heavy ion irradiation effects on the thermodynamic 

anisotropy of YBa2Cu3O7- single crystals 

5.2.1 Introduction 

The vortex dynamics of high temperature superconductors (HTSC) is quite different from that of 

traditional superconductors. Among the non-conventional characteristics that were early 

identified are: 1) Large drop of the critical current density Jc with temperature; 2) existence of an 

“irreversibility line” in the H-T phase diagram above which Jc = 0 and the magnetic response is 

reversible; 3) very fast time relaxation of the persistent currents in the irreversible regime, orders 

of magnitude faster than in low temperature superconductors [128]. 

Aligned columnar defects produced by heavy-ion irradiation in HTSC are amorphous tracks 

whose diameters are a few times the coherence length of these materials (Fig 5.15(Left)). When 

the magnetic field is applied parallel to the tracks, each defect can confine the whole length of a 

vortex core without any increase of the elastic energy of vortex, at least at low fields where vortex 

interactions are weak. These columnar shaped defects are the most effective pinning centers for 

flux lines in HTSCs [128]. They are found to generate large increases in the critical current 

densities (Fig 5.15(right)) and expand the irreversible regimes (Fig 5.16) in YBa2Cu3O7- and the 

various Bi- and Tl-based compounds. In YBa2Cu3O7- single crystals and thin films, the pinning 

enhancement is strongly angular-dependent, and maximizes when the applied magnetic field is 

parallel to the amorphous latent tracks (Fig 5.17) [128]. 
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Fig 5.15 (Left) columnar shaped defects induced by heavy ion irradiation. The inset shows the 

cross section for two defects, the diameter of the amorphous region is around 6 nm. (Right) Jc vs 

H for YBa2Cu3O7- single crystals irradiated with 580MeV Sn ions to different doses. For 

reference, the largest Jc obtained for a proton irradiated crystal is shown [129]. Note that doses 

are expressed as dose matching fields: 0B n    , where n is the number of defects per unit 

area.  

 

Fig 5.16 The irreversibility lines for three different Au heavy ion irradiation doses on YBa2Cu3O7-

 single crystals [130]. 
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Fig 5.17 Hysteresis loops taken at 30K for an YBa2Cu3O7- crystal irradiated at 30
o
 off the c-axis. 

The hysteresis loops for applied field aligned +/- 30
o
 with respect to the c-axis are shown [129]. 

Recently there have been experimental studies on the effects of heavy ion irradiation on the 

thermodynamic properties of a few iron-based superconductors. More specifically, it was found 

that heavy-ion irradiation can reduce the thermodynamic anisotropy of SmFeAsO1-xFx [68], 

SrFe2(As1-xPx)2 [69] and Ba1-xKxFe2As2 [70]. In the case of SmFeAsO1-xFx, an irradiation dose of 

4T and 9.5T was found to reduce the anisotropy by a factor of 2, from 8 to 4 (Fig 5.18).  
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Fig 5.18 Measurements of the thermodynamic anisotropy of pristine and irradiated (B=4T, 9.5T) 

SmFeAsO1-xFx through specific heat measurements [68]. 

However, the effects of heavy ion irradiation on the thermodynamic anisotropy of HTSC has not 

been thoroughly studied. Here we use high resolution angular dependent specific heat to study the 

effects of heavy ion irradiation on the thermodynamic properties of one of the most studied 

HTSC, YBa2Cu3O7- 

5.2.2 Experimental results 

We irradiated two single crystal YBa2Cu3O7- with 1.4GeV Au heavy ion to dose matching fields 

of B = 1T and 6T. Then specific heat of the pristine, 1T irradiated and 6T irradiated samples are 

measured with various magnetic fields applied along the ab plane and c-axis to determine the H-T 

phase diagram and the uppercritical field (Hc2) lines. Fixed field varing angle measurements were 

also carried out for the pristine and 6T irradiated sample to obtain the field angle dependence of 

the upper critical temperature (Tc2), which then is fitted by a GL model to extract the 

thermodynamic anisotropy with precision. Alignment of the sample with the applied fields was 

made with a hall sensor mounted on the bottom of the probe which approximately aligns with the 

calorimeter (+/- 2
o
). 

For the pristine sample, the specific heat versus temperature curves after subtraction of a normal 

state background from 83 to 99K for applied fields along the ab plane and c-axis have been 

plotted in Fig 5.19. The Tc for this pristine sample is 92.4K (taking the inflection point as 

criterion) and the width of the superconducting transition is only 0.6K. The appearance of a small 

peak below the main superconducting transition indicates the first order vortex melting transition 

and gives further evidence for the purity of the sample. 
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Fig 5.19 Temperature dependence of the specific heat for the pristine YBa2Cu3O7- for applied 

fields from 0T to 7.9T along the crystalline c-axis (left) and ab-plane (right). 

Taking the inflection point as the criterion for the critical temperature (Tc), we extract the H-T 

phase diagram for the pristine sample as shown in Fig 5.20. Using a linear weighted least square 

fit to the temperature dependence of the upper critical fields, we extract the upper critical field 

slopes as: 2
0 2.0 0.2 T/K

c

cdH

dT
     and 2

0 12.5 0.8 T/K
ab

cdH

dT
    . From the ratio of these 

two slopes we can extract the thermodynamic anisotropy for the pristine sample as: 

                                                        2

2

/
6.3 0.7

/

ab

c
pris c

c

dH dT

dH dT
                                                (5.1) 
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Fig 5.20 The H-T phase diagram for the pristine YBa2Cu3O7- sample for applied field along the 

ab plane and c-axis. 

Another way to determine the thermodynamic anisotropy using specific heat is to fit a Ginzburg-

Landau (GL) model to the angular dependence of the upper critical field. However, this 

measurement requires scanning of the applied magnetic field which is not very well controlled in 

our experimental setup. Instead, as an alternative, we applied a fixed field to the sample and 

measure the temperature dependence of the specific heat for different applied field angles. The 

resulting upper critical temperature versus field angle can be fitted with the following GL model 

[131]: 

                                     
2 2 2

2 0 2( ) cos sin / ( H / T)ab

c c cT T H                                    (5.2) 

Where H is the strength of the fixed applied field, Tc0 is the Tc at zero applied field.  is the field 

angle relative to the ab-plane. 

For the pristine YBa2Cu3O7- sample, we applied a magnetic field of 1T and measured C(T) for 

field angles of -9 degrees to 189 degrees, which consists of 36 groups of data. The upper critical 
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temperature (Tc2) for each C(T) is extracted by taking the inflection point as the criterion and the 

resulting 2( )cT  plot is shown in Fig 5.21. 

 

Fig 5.21 Angular dependence of the upper critical temperature of the pristine YBa2Cu3O7- 

sample in an applied field of 1T. The blue curve is the GL model fit to the data. 

Fitting the GL model in equation (5.2) to raw data gives us the anisotropy as a fitting parameter 

and its value determined from the fit is: 

                                                                 7.8 2.0pris                                                             (5.3) 

The slightly discrepancy between the anisotropy obtained from the GL model fit to 2( )cT  data 

and that obtained from the ratio of upper critical field slopes probably comes from the slight 

misalignment between the magnetic field and the crystal orientations (~ 2 degrees). In this 

scenario, the anisotropy obtained from the upper critical field slopes would be slightly smaller. 
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We performed the same kind of specific heat measurements for the YBCO_Au6T sample (short 

name for the 6 TB  Au heavy ion irradiated YBa2Cu3O7- sample). The specific heat data for 

applied fields up to 4T along the c-axis and 7.9T along the ab-plane is shown in Fig 5.22 after a 

normal background subtraction. For this irradiated sample, we can see that Tc has been suppressed 

by 1.7K to 90.7K and the superconducting transition has also broadened, with a width of about 

2.6K. The broadening of the transition brings more error to our determination of Tc , which is 

manifested by the large error bars in the H-T phase diagram (Fig 5.23) extracted from the specific 

heat data. 

 

Fig 5.22 Temperature dependence of the specific heat of the Au heavy ion irradiated YBa2Cu3O7- 

( 6 TB  ) for applied fields from 0 T to 7.9 T along the crystalline c-axis (left) and from 0 T to 

4 T along the ab-plane (right). 
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Fig 5.23 The H-T phase diagram for the irradiated YBa2Cu3O7- sample ( 6 TB  ) for applied 

fields along the ab plane and c-axis. 

For magnetic fields applied along the c-axis, we can see that there is a variation in the slope of the 

upper critical field. Comparing to the pristine sample, the upper critical field slope along c-axis is 

enhanced in YBCO_Au6T by approximately a factor of 2.8 in the low field regime to 

2
0 5.6 0.6 T/K

c

cdH

dT
    . It relaxes back to the value of the pristine sample at 

2
0 2.0 0.1 T/K

c

cdH

dT
     in the high field regime. There is also an enhancement in the upper 

critical field slope along the ab-plane by a factor of ~1.5 to 2
0 18.9 0.6 T/K

ab

cdH

dT
    . In this 

case we can see that there is clearly an indication for reduction in the anisotropy after the Au 

heavy ion irradiation at 6 TB  . 
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Angular dependent specific heat measurements at an applied field of 1T were also carried out for 

this irradiated sample and the resulting angular dependence of the upper critical temperature at H 

= 1T is presented in Fig 5.24. 

 

Fig 5.24 Angular dependence of the upper critical temperature of YBCO_Au6T sample in an 

applied field of 1T. The blue curve is the GL model fit to the data. 

Fitting equation (5.2) to the data above gives us the value of the thermodynamic anisotropy of 

YBCO_Au6T as a fitting parameter: 

                                                                    6 3.7 1.5B T


                                                      (5.4) 

Comparing to the anisotropy of the pristine sample, we have: 

                                                                   
6

0.5  0.3
B T

pris




                                                    (5.5) 
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Thus we can see after Au heavy ion irradiation at a dose matching field of 6T, the anisotropy of 

YBa2Cu3O7- has been reduced by one half. Similar reduction in the anisotropy of another 

YBa2Cu3O7- sample irradiated at 1 TB  has also been measured in a similar manner as for the 

6 TB   irradiated sample. The anisotropy for YBCO_Au1T was found to be 

1 4.3 1.4B T


  . Fig 5.25 plots Tc and anisotropy as a function of irradiation dose below: 

 

Fig 5.25 The critical temperature and thermodynamic anisotropy of YBa2Cu3O7- plotted against 

1.4GeV Au heavy ion irradiation dose, expressed in terms of dose matching field. 

5.2.3 Comparison to theory and discussion 

We can see that the anisotropy is suppressed quickly with irradiation and saturates at high 

irradiation doses. Similar trends can also be seen in the critical temperatures. A simple model that 

takes the anisotropic scattering caused by columnar defects into account from Ref [68] can 

qualitatively explain the reduction in anisotropy as seen in our measurements. Since the upper 

critical field near Tc in an anisotropic superconductor is given by (in the GL limit): 
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                                                 0 0
2 2 2
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2 ( ) 2 (0)

c

c

ab ab c

T
H

T T 

 
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                                         0 0
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ab

c

ab c ab c c

T
H

T T T   

 
                               (5.7) 

The superconducting anisotropy is given by: 

                                                          2 2

2 2

/

/

ab ab

c c ab

c c

c c c

H dH dT

H dH dT





                                               (5.8) 

The effect of scattering on the coherent length is that the coherent length needs to be corrected for 

the mean free path: 

                                                                       
0

1 1 1
p l 
                                                           (5.9) 

Heavy ion irradiation leads to additional electron scattering, especially in plane: 

                                                                       
0

1 1 1

ab ab irrl l l
                                                       (5.10) 

Assuming the additional scattering along c-axis is negligible, then: 

                                                             
1 1 1 1 1

 ;  
p p

ab ab irr c cl   
                                            (5.11) 

Thus in the clean limit, the ratio of the anisotropy after heavy ion irradiation is given by: 

                                         0

1

1 1

1 1
1 1

pp

ab abc
p pp

ab abc c
p

ab irr irr irr
l l l

 
 

  



   

  

                              (5.12) 
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Thus the ratio of the anisotropy after and before heavy ion irradiation is: 

                                                                       

0

1

1
p

ab

irrl








                                                       (5.13) 

The derivation of the anisotropy for a single band superconductor with columnar defects in the 

dirty limit has been given in Ref [68] and I simply put the results below: 

                                                                      
0

0

1

1 ab

irr

l

l








                                                      (5.14) 

The irradiation induced change in the in-plane mean free path is proportional to the mean distance 

between columns, which is roughly 1/ colN  ( colN  is the number of columns) for a classical 

two-dimensional system. Thus equation (5.13) and (5.14) can then be expressed as: 

                                                       
0

1
   for   

1 col

l
N




 



                                          (5.15) 

                                                    
0

1
   for   

1 col

l
N




 



                                         (5.16) 

where  is a phenomenological parameter. A plot of the anisotropy ratio with number of 

columnar defects is given in Fig 5.26. We can see that there is qualitative agreement between our 

data and this simple theoretical model. 
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Fig 5.26 Anisotropy normalized by the value of the pristine sample as a function of the number of 

columnar defects in the clean (black) and dirty (red) limit. 

In conclusion, we studied the effects of heavy ion irradiation on the anisotropy of optimum doped 

YBa2Cu3O7- through angular rotational specific heat measurements. We found that after an 

irradiation dose of 6 TB  in 1.4GeV Au heavy ion, the anisotropy of YBa2Cu3O7- is reduced 

by approximately 50%. Similar reduction in the 1 TB   YBa2Cu3O7- sample has also been 

found. The observed dependence of the anisotropy on irradiation dose can be qualitatively 

explained by the simple theoretical model that takes into account the anisotropic scattering 

induced by columnar defects produced during heavy ion irradiation. 
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Chapter 6  

Conclusions 
 

In conclusion, I presented a systematic study of the phase transitions and thermodynamics of 

unconventional superconductors by high resolution membrane based AC micro-calorimetry.  

Regarding the controversial “true” nematic phase transitions in BaFe2(As1-xPx)2 observed by 

magnetic torque measurements. We studied the specific heat of BaFe2(As1-xPx)2 at two doping 

levels: x=0 and x=0.3, which is the parent compound and a near-optimum doped compound. We 

observe a sharp peak in the specific heat at 133K and 137K for the as-grown and annealed parent 

compound BaFe2As2 which corresponds to the combined antiferromagnetic (AFM) and structural 

transition in this material. Entropy analysis of the parent compound reveal a first order like step at 

the AFM/Structural transition with a change in entropy of ~0.5 J/mol K. A kink about 0.5K above 

the step in entropy in annealed BaFe2As2 suggests splitting of the AFM and structural transition 

by about 0.5K. Careful analysis of the specific heat data for the annealed BaFe2As2 in the 

temperature region where torque measurments found the “true” nematic phase transition yields no 

evidence for another second order phase transition, even though the Ginzburg-Landau model used 

to fit the magnetic torque data indicates that the expected thermal anomaly should be easily 

observable with our experimental resolution of 10
-4

. Similar lack of features has been observed in 

the specific heat of the near–optimum doped BaFe2(As0.7P0.3)2 above the superconducting 

transition at 29K. We thus conclude that the behavior previously reported [61] for BaFe2As2 at T* 

does not represent a 2
nd

 order phase transition, and that the phase transition into the orthorhombic 

phase does occur at TS, the structural transition. 
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For the recently found reentrant C4 symmetric AFM (SDW) phase in under doped Ba1-xNaxFe2As2 

by high resolution neutron diffraction, we studied the thermodynamic phase transitions of four 

samples at three different doping levels: x=0.22, 0.26 and 0.28 with specific heat and SQUID 

magnetization measurements.  

For the x=0.22 sample, a broadened step-like anomaly is found at around 18K with a width of ~ 

2K that indicates the superconducting transition. The height of anomaly extracted by using an 

entropy conservation construction was found to be 
2/ 2.5mJ/mol KcC T  , which is about a 

factor of ten smaller than that of a similar sample in the “122” family with about the same Tc. We 

attribute this to the poor quality of the polycrystalline sample we have used for our measurements. 

Another peak in the specific heat at 98K and a step in the magnetization at the sample 

temperature signal the AFM (SDW) transition in this sample.  

For the x=0.26 sample, in which the neutron diffraction experiment found the SDW transition 

between 80 and 85K and the reentrant C4 SDW transition at ~ 45K, we were able to identify a 

kink in the specific heat and magnetization at around 45K. However, the lack of features at ~80 to 

85K in both specific heat and magnetization data leaves doubt about the nature of the feature at 

45K. Two scenarios can be possible: 1) the feature at 45K indeed marks the reentrant C4 SDW 

transition and the lack of features for the C2 SDW transition is caused by other factors, such as 

the quality of the sample; 2) the feature at 45K actually marks the C2 SDW transition and there is 

not a reentrant C4 SDW phase for Ba1-xNaxFe2As2 at this doping level. Further investigations on 

high quality single crystal samples would be very helpful in clarifying this issue. A small step like 

anomaly found at around 25K (onset) in specific heat and a drop in the magnetization at the same 

temperature indicates the superconducting transition in this sample. The anomaly height at the 

superconducting transition is estimated to be 
2/ 3.6mJ/mol KcC T  , which is slightly higher 
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than that of the x=0.22 sample but still much lower than the value of a single crystal sample with 

about the same Tc.  

For the x=0.28 doping level, two samples were measured. For sample 1, a superconducting 

transition at 34K was found with a 
2/ 58mJ/mol KcC T  . The value of Tc is significantly 

higher than the literature value observed for doping level of x=0.28 (~25K) but rather is close to 

the Tc value of the optimum (x=0.4) doped Ba1-xNaxFe2As2.  Measurements of the specific heat 

under various applied magnetic fields allow us to extract the value of the upper critical field slope 

near Tc as 0 2 / 6.5 T/KcdH dT   , which is quite close to the literature value of 

0 2 / 5.25 T/Kc

cdH dT    for a single crystal Ba1-xNaxFe2As2 (x=0.4) sample for applied field 

along c-axis. The above evidence makes us believe that the sample 1 is actually at doping level of 

x=0.4 rather than x=0.28. For sample 2, we were able to distinguish two bumps in the specific 

heat at 29K and 34K respectively. The anomaly at 29K shifts in an applied field, giving evidence 

to its nature as another superconducting phase. The results from sample 2 lead us to the 

conclusion that the sample prepared at this doping level is not homogeneous and a range of 

doping’s can be found from powder to powder.  

The conclusion from our investigation of the emergent reentrant C4 SDW phase transition in Ba1-

xNaxFe2As2 is that there might be a reentrant C4 phase in Ba1-xNaxFe2As2 at doping level of 

x=0.26. However, to make a firmer conclusion we would need to obtain a high quality single 

crystal for specific heat measurements. High quality samples for the whole range from x=0.24 to 

x=0.3 would be helpful for us to determine the exact phase boundaries of this emergent phase in 

the Temperature-doping phase diagram. 

The effects of heavy ion irradiation on the thermodynamic anisotropy of YBCO are studied by 

field dependent and angular dependent specific heat measurements. For the pristine YBCO 

sample, anisotropy of 6.3 +/- 0.7 was extracted from the ratio of the upper critical field slopes 
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along the crystalline ab plane and c-axis. A Ginzburg-Landau model fit to the angular dependence 

of the upper critical temperature (Tc2) in a fixed applied field of 1T yields the anisotropy as a 

fitting parameter. The value of the anisotropy extracted from the fit is 7.8 +/- 2.0. The slight 

discrepancy between the anisotropy values from these two methods can be attributed to the slight 

misalignment of the magnetic field to the crystal orientations, which in our case was found to be 

around 2 degrees. Similar studies of the anisotropy of YBa2Cu3O7- irradiated with 1.4GeV Au 

heavy ion at two different dose matching fields: 1 TB   and 6 TB  yields anisotropy of 4.3 

+/- 1.4 for the 1 TB   YBa2Cu3O7- sample and 3.7 +/- 1.5 for the 6 TB   YBa2Cu3O7- 

sample respectively. Such a reduction in anisotropy can be qualitatively explained by a simple 

phenomenological model that takes into account the anisotropy scattering induced by columnar 

defects produced in heavy ion irradiation [68]. The theoretically derived dependence of 

anisotropy on the number of columnar defects agrees well with experimental data. More 

specifically, the anisotropy as predicted from the theoretical model does decrease fast with 

irradiation doses at first and then saturates at high irradiation doses. 
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