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CHAPTER 1

Introduction

This thesis focuses on the study of singularities in algebraic geometry, and involve two broad

topics:

(i) logarithmic resolution of singularities,

(ii) and the monodromy conjecture of Denef–Loeser.

This thesis is based on four papers either authored or co-authored by the author. In chrono-

logical order, they are:

(i) [Que22a], which is the content of Chapter 3,

(ii) [QR21] co-authored with David Rydh, which is the content of Chapter 2,

(iii) [AQ21] co-authored with Dan Abramovich, which is the content of Chapter 4,

(iv) and finally, [Que22b], which is the content of Chapter 5.

In this thesis, all ideals considered on schemes (or more generally algebraic stacks) are

always quasi-coherent, finitely generated ideals. In addition, since toric geometry is prevalent

throughout this thesis, we shall fix, once and for all, the following:

Convention 1.0.1 (Conventions on lattices, fans, and their cones). For m ∈ N, we set

[m] = {1, 2, . . . ,m} (i.e. [0] = ∅). We reserve the letter N = Zn (and sometimes L) for the

lattice of one-parameter subgroups of a torus Gn
m, and the letter M = N∨ := Hom(N,Z) for its

dual lattice of characters of Gn
m. The standard basis vectors of N will be denoted ei for i ∈ [n],

while the standard basis vectors of M will be denoted e∨i for i ∈ [n].
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For a subring R of R, we set NR = N ⊗Z R with positive half-space N+
R = Rn

≥0 ⊂ NR

(where R≥0 = R ∩R≥0). Likewise we also set MR = M ⊗Z R with positive half-space M+
R =

HomN(Rn
≥0, R≥0) ⊂MR. We write N+ for N+

Z and M+ for M+
Z .

Given a fan Σ in NR, XΣ will denote the toric variety of Σ. We will follow any conventions

in [CLS11] pertaining to toric varieties. For a convex rational polyhedral cone σ in NR, the

dimension of its R-span will be denoted dim(σ). Its relative interior (= the interior of σ in its

R-span in NR) will be denoted as relint(σ). Given another rational convex polyhedral cone σ′

in NR, we write σ′ ≺ σ to mean that σ′ is a face of σ. For any d ∈ N, we will denote Σ[d]

(resp. σ[d]) to be the d-dimensional cones in Σ (resp. d-dimensonal faces σ′ ≺ σ). The cones

in Σ[1] will be called rays. We usually denote rays by the letter ρ instead of σ. The first lattice

point on each ray ρ ∈ Σ[1] will be written as uρ = (uρ,i)
n
i=1. The cones in Σ[dim(N)] will be

called full-dimensional. We also write Σ[max] to denote the set of maximal cones in Σ. All

fans considered in this thesis fulfill the condition that Σ[max] = Σ[dim(N)]. The support of Σ

(= the union of all cones in Σ) will be denoted by |Σ|. For S ⊂ NR, we write ⟨S⟩ for the cone

in N+
R generated by S.

Finally, σstd denotes the standard cone in NR, that is, σstd =
∑n

i=1 R≥0ei. We also set Σstd

for the standard fan in NR, that is, the fan generated by the standard cone σstd.

1.1. Weighted blow-ups

Scheme-theoretic weighted blow-ups appear naturally in the context of toric varieties and,

more generally, in locally toric situations. Given a lattice N , a fan Σ on NR, a cone σ, and a

lattice point v ∈ relint(σ), the star subdivision Σ∗(v) of Σ at v induces a map of toric varieties

XΣ∗(v) → XΣ [CLS11, §11.1].

If σ is simplicial, then there is a unique way to write v =
∑n

i=1 diuρi where ρ1, ρ2, . . . , ρn

are the rays of σ with first lattice points uρ1 ,uρ2 , . . . ,uρn , and d1, d2, . . . , dn ∈ N>0. If

D1, D2, . . . , Dn are the torus-invariant divisors on XΣ corresponding to the rays ρ1, ρ2, . . . , ρn,
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then XΣ∗(v) → XΣ is the scheme-theoretic weighted blow-up along the “weighted center”

1

d1
D1 ∩ · · · ∩

1

dn
Dn.

One way to make this precise is to take the usual blow-up of XΣ along the integral closure of

the ideal

I N
d1

D1
+ · · ·+ I N

dn
Dn

where N is a positive integer that is sufficiently divisible, and ID is the ideal sheaf of a divisor

D on XΣ. If every cone containing σ is smooth, then the Di are Cartier divisors and if all

the multiplicities di are equal, then XΣ∗(v) → XΣ is the usual smooth blow-up of XΣ along

the smooth closed subscheme D1 ∩ D2 ∩ · · · ∩ Dn. If Σ is smooth, then the weighted blow-

up XΣ∗(v) → XΣ of the smooth toric variety XΣ is always singular unless the multiplicites di

are equal. Fortunately, in that case, XΣ∗(v) is still a simplicial toric variety, and it is known

that a simplicial toric variety is always the coarse space of a smooth toric stack, cf. [BCS05,

Proposition 3.7] or [FMN10, Theorem II]. Therefore, if one wants to work with weighted blow-

ups of smooth objects, the above discussion suggests that there is more promise in considering

weighted blow-ups as stacks instead of schemes.

1.1.1 (Weighted blow-ups as stacks). As before, consider a smooth fan Σ. It turns out

that the toric stack X , corresponding to the star subdivision Σ∗(v) of Σ at v, is what we

will refer to as the stack-theoretic weighted blow-up of X = XΣ along the smallest Z-graded

OX-subalgbra I• ⊂ OX [t] containing OX in degree 0 and IDi
in degree di for 1 ≤ i ≤ n. By

definition, this means that X is the stack-theoretic Proj :

ProjX(I•) =
[
SpecX(I•) ∖ V (I+) / Gm

]
.
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We call I• a Rees algebra on X (Definition 2.3.1), and we express it as:

(1.1) I• = (ID1 , d1) + (ID2 , d2) + · · ·+ (IDn , dn), cf. Definition 2.3.5.

The exceptional divisor of this weighted blow-up is the stack-theoretic Proj of
⊕

n∈N In/In+1

which is a weighted projective stack — a smooth stack whose coarse space is a weighted pro-

jective space.

Rees algebras provide a common framework for stack-theoretic weighted blow-ups of arbi-

trary algebraic stacks, that is independent of any toric connections. This framework includes

the following examples:

(i) the usual blow-up in the ideal I, which corresponds to the usual Rees algebra I• =

(I, 1) =
⊕

n≥0 I
n,

(ii) the dth root stack in the Cartier divisor D, which corresponds to the Rees algebra

I• = (ID, d), and

(iii) the Cartierification of a Q-Cartier divisor D, which corresponds to the Rees algebra

I• = (ID, 1) + (I2D, 2) + · · · .

Whereas usual blow-ups modify the space without introducing any stackiness, root stacks and

Cartierifications leave the coarse space unmodified and introduces stackiness in codimension 1

and codimension ≥ 2 respectively. Toric stacks, with trivial generic stabilizer, can be obtained

from their coarse toric variety by taking Cartierifications and root stacks (Example 2.2.21).

Up to normalization, every weighted blow-up is a usual blow-up followed by a root stack

(Proposition 2.3.44).

Finally, we would like to point out that the Rees algebra in (1.1) is an example of a smooth

weighted center. These are the Rees algebras that can be locally written as (x1, d1) + (x2, d2) +

· · ·+(xn, dn) where x1, x2, . . . , xn is a regular sequence and V (x1, x2, . . . , xn) is smooth. Smooth

weighted centers can also be characterized as the Rees algebras I• whose “weighted” normal
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cone SpecX
(⊕

n≥0 In/In+1

)
is a twisted weighted vector bundle (Definition 2.2.3) and whose

co-support V (I1) is smooth, cf. Proposition 2.5.4.

1.1.2 (Applications). Besides arising naturally in the toric setting, weighted blow-ups have

also been an indispensible tool in algebraic geometry. For example, weighted blow-ups have been

used to study certain aspects of certain moduli stacks, e.g. in [Inc22]. More relevant to this

thesis is the recent prominent example of weighted resolution of singularities by Abramovich,

Temkin and W lodarczyk [ATW19], which uses stack-theoretic weighted blow-ups in smooth

centers and is far more effective than Hironaka’s classical algorithm but at the expense of

using smooth stacks. In Chapters 3 and 4 of this thesis, we supply an enhancement of the

results in [ATW19] from which one can recover the key features in Hironaka’s resolution of

singularities. All these demonstrate that as opposed to usual blow-ups, weighted blow-ups

provide a significant amount of flexibility and simplification to many algorithms and arguments

in algebraic geometry.

It is also understood among experts that weighted blow-ups is a more valuable and con-

venient tool than usual blow-ups in recovering the necessary data needed to understand a

singularity. We mention a few examples illustrating this. For example, weighted blow-ups are

used to compute the log canonical threshold of a plane curve singularity, cf. [KSC04, §6.5].

Weighted blow-ups also appear in the proof of Denef–Loeser’s motivic monodromy conjecture

for semi-quasihomogeneous singularities as in [BBV21]. Not surprisingly, this monodromy

conjecture happens to be the subject of Chapter 5 in this thesis, although we approach it using

the more efficient technique of multi-weighted blow-ups, which is the content of Chapter 4.

1.1.3 (Overview of Chapter 2). Chapter 2 forms the first portion of this thesis. In §2.1,

we study the stack-theoretic Proj. In particular, we describe its local charts (§2.1.C), its

tautological line bundles (§2.1.D), its universal property (Proposition 2.1.4), and its properties

(§2.1.E).
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In §2.2, we give four examples of stack-theoretic Proj. The first example is weighted pro-

jective stacks, which includes root stacks of line bundles, and more generally twisted weighted

projective bundles (§2.2.A). The second example is root stacks of generalized Cartier divi-

sors (§2.2.B). The third example is a construction which transforms Q-invertible sheaf into

an invertible sheaf (§2.2.C), which generalizes Cartierification. This was prominently used

by Abramovich and Hassett [AH10] to treat families of Q-Gorenstein varieties. The fourth

example is a stack-theoretic amplification of GIT quotients (§2.2.D).

In §2.3, we finally introduce Rees algebras and weighted blow-ups (§2.3.A and §2.3.B). In

particular, we describe their exceptional divisor (Definition 2.3.13) and their universal property

(Theorem 2.3.20). We also give a simplified description of their universal property in the case

of normalized weighted blow-ups (Theorem 2.3.43). In §2.4, we treat weighted normal cones.

In particular, we describe how the extended Rees algebra Iext• (Definition 2.3.3) gives rise to the

deformation to the weighted normal cone Spec(Iext• ) (§2.4.B).

In §2.5, we consider weighted blow-ups in regular and smooth centers. Firstly, we show

that various notions of quasi-regularity coincide, and are equivalent to the weighted normal

cone being a twisted weighted vector bundle (§2.5.A). Secondly, in §2.5.B, we show that when

a Rees algebra is locally generated by a weighted regular sequence, then its extended Rees

algebra has a very simple description (Proposition 2.5.9), which culminates in simple equations

for its weighted blow-up. Thirdly, we discuss weighted blow-ups along regular (resp. smooth)

centers (2.5.C, resp. §2.5.D), i.e. Rees algebras I• that are locally generated by a weighted

regular sequence and whose co-support V (I1) is regular (resp. smooth).

In §2.6, we expand on some of the toric connections alluded to in the beginning of this

section. This naturally motivates a discussion of weighted blow-ups in the locally toric situation,

or even more generally, in the setting of logarithmic schemes. This is the content of §2.7. In

§2.7.A, we define the monomial part of a Rees algebra (2.7.4), before using it to define what

6



it means for a Rees algebra to be fs = fine and saturated (Definition 2.7.6). We also endow

logarithmic structures on weighted blow-ups in the logarithmic setting (4.2.18), so that the fs

category of logarithmic schemes is closed under the operation of weighted blow-ups along fs Rees

algebras. In §2.7.B, we work with schemes that are “étale locally toric”, namely toroidal (=

logarithmically regular) schemes. We define and discuss weighted blow-ups of toroidal schemes

along toroidal (= logarithmically regular) centers. Similar to §2.5.B, we give simple equations

for the weighted blow-up of a toroidal scheme along a toroidal center (Proposition 2.7.17).

1.1.4 (What’s missing from Chapter 2). Unlike the classical case where we treated both

regular and smooth centers (cf. 2.5.C and 2.5.D), we did not define and treat weighted blow-ups

of logarithmically smooth schemes over a base scheme S along logarithmically smooth centers.

These do not play a part in this thesis, and have been omitted given the length of this thesis.

Also excluded from Chapter 2 is a section that demonstrates a GIT wall-crossing between

smooth Deligne–Mumford stacks is given by a stack-theoretic weighted blow-up followed by a

stack-theoretic weighted blow-down, both in regular centers. These will eventually appear in

[QR21] in the near future.

1.2. Resolution of singularities via logarithmic stacks

The middle portion of this thesis re-visits the celebrated theorem of Hironaka [Hir64]

that one can resolve the singularities of a reduced, closed, singular subscheme X of a smooth

scheme Y over a field k of characteristic zero, in a way that is functorial with respect to

smooth morphisms of such pairs (X ⊂ Y ). Over the years, the proof of this theorem has seen

simplifications, for example by Bierstone–Milman [BM97], by Encinas–Villamayor [EV03],

and by W lodarczyk [W lo05]. Most recently, it was shown independently by Abramovich–

Temkin–W lodarczyk [ATW19] and by McQuillan [McQ20] that one can do this by iteratively

blowing up the “worst singular locus” and immediately witnessing a visible improvement in
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singularities, although one has to instead work with weighted blow-ups along smooth centers,

and admit smooth Deligne–Mumford stacks as ambient spaces.

In addition, one typically requires, for the sake of applications, that the singular locus of

X is transformed under the resolution into a simple normal crossings divisor. This was a

feature of Hironaka’s theorem in [Hir64], although it was only recently in a different paper of

Abramovich–Temkin–W lodarczyk [ATW20a] that logarithmic geometry was first accessed as a

tool to account for this requirement, by encoding exceptional divisors as logarithmic structures.

We remark, however, that the resolution algorithm in [ATW19] does not address the afore-

mentioned requirement. It is thus natural to ask for an amalgamation of the two aforementioned

techniques, which we mark by × below:

logarithmic geometry in

the service of resolution
×

resolution in the sense of

Hironaka [Hir64],

Bierstone–Milman [BM97],

Encinas–Villamayor [EV03]

weighted blow-ups

in the service

of resolution

[ATW20a]

[ATW19, McQ20]

In §1.2.A and Chapter 3, we realize × as follows: the weighted blow-ups along smooth

centers in [ATW19] are replaced by their logarithmic counterpart — weighted blow-ups along

toroidal centers. It is essential to note that even if one takes a pair (X ⊂ Y ) from before as

input for the algorithm in §1.2.A, one is inevitably led to admit toroidal Deligne Mumford stacks

as ambient spaces — these are logarithmically smooth over k, but not necessarily smooth over

k. As a consequence, one cannot expect to resolve the singularities of X solely via weighted
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blow-ups along toroidal centers, and the best one can hope for at the end is toroidal singularities

(= logarithmic embedded resolution in the sense of Theorem A), where the singular locus of

X is now transformed into a divisor with toroidal support. Nonetheless this is not a concern,

since one can then apply resolution of toroidal singularities, cf. [KKMSD73, Theorem 11*]

or [W lo20a, Theorem 6.5.1].

In §1.2.B and Chapter 4, we propose a different candidate for × , although it is built on the

same backbone of ideas as the previous candidate. Namely, we use a construction of Satriano in

[Sat13, §3] to upgrade the aforementioned weighted blow-ups along toroidal centers to multi-

weighted blow-ups. This is carried out in §4.1.B, where certain multi-weighted blow-ups are

realized as canonical Artin stacks over weighted toroidal blow-ups. The reader can also find,

in §4.1.A, an account of local aspects of multi-weighted blow-ups. The key advantage of using

multi-weighted blow-ups over weighted toroidal blow-ups is that we remain in the ideal realm

of smooth ambient spaces, and hence we can do without resolution of toroidal singularities at

the end. However, the trade-off is that one has to work more broadly with Artin stacks as

ambient spaces.

1.2.A. Logarithmic resolution via weighted blow-ups in toroidal centers. Consider a

fs (Definition 2.7.1) logarithmic scheme Y which is logarithmically smooth over k, or equiva-

lently a toroidal k-scheme Y (Definition 2.7.10). More generally, we consider a toroidal Deligne–

Mumford stack Y over k [ATW20b, §3.3.3]. We also consider a reduced, closed subscheme

X ⊂ Y , always endowed with the logarithmic structure MX that is the pullback of the logarith-

mic structure MY on Y under X ↪→ Y (so that the inclusion X ↪→ Y of logarithmic algebraic

stacks is strict). Additionally, we will always assume X is generically toroidal, that is, there is

a dense open U ⊂ X such that (U,MY |U) is toroidal. Such pairs (X ⊂ Y ) form the objects of

9



a category, where a morphism between pairs (X̃ ⊂ Ỹ )→ (X ⊂ Y ) is a cartesian square

X̃ = X ×Y Ỹ Ỹ

X Y

f

where f : Ỹ → Y is logarithmically smooth and surjective. We refer to such morphisms as

logarithmically smooth, surjective morphisms of pairs. Note, however, that in certain situations

below, we do not demand surjectivity in our morphisms of pairs.

The goal of Chapter 3 is to define a “logarithmic embedded resolution” functor on the

aforementioned category, which assigns to each pair X ⊂ Y as above, a proper, birational

morphism Π: YN → Y such that both YN and the proper transform XN ⊂ X ×Y YN are

toroidal. More precisely:

Theorem A (Logarithmic embedded resolution via weighted blow-ups in toroidal centers).

Given a reduced, generically toroidal, closed substack X of a toroidal Deligne–Mumford stack

Y over k, there exists a canonical sequence of weighted blow-ups along toroidal centers

Π: Y + := YN
πN−−−−−→ YN−1

πN−1−−−−−−→ · · · π1−−−−−→ Y0 == Y

together with proper transforms Xi ⊂ Yi of X, such that:

(i) X+ := XN is a toroidal Deligne–Mumford stack over k.

(ii) Π is an isomorphism over the toroidal (= logarithmically smooth) locus X log−sm ⊂ X.

(iii) Π−1(X ∖X log−sm) is set-theoretically contained in the toroidal divisor of X+.

This procedure (X ⊂ Y ) 7→ (X̃ ⊂ Ỹ ) is functorial with respect to every logarithmically smooth

morphism of such pairs (X̃ ⊂ Ỹ ) → (X ⊂ Y ), whether or not surjective. In fact, Ỹ + =

Ỹ ×Y Y
+.
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Here, (i) is logarithmic embedded resolution of X, while (ii) and (iii) are the logarithmic

analogues of two essential features in Hironaka’s resolution of singularities [Hir64, Main The-

orem I], cf. properties (ii) and (iii) in Corollary D below. Note that the Yi’s in Theorem A will

be toroidal but not necessarily smooth over k (cf. the example in §3.4.C), so it does not make

sense to ask for Π−1(X∖X log−sm) to be a simple normal crossings divisor on X+. Nevertheless,

(iii) gives us some control over the exceptional locus of Π. As one might already notice in

Corollary D, this control over the exceptional locus is sufficient for us to deduce Hironaka’s

resolution of singularities.

1.2.1 (On the role of idealistic exponents in Chapter 3). A convenient numerical tool for

representing and keeping track of toroidal centers is the notion of idealistic exponents, which we

detail in §2.3.G. Unlike the original papers [ATW19] and [Que22a] on which Chapter 3 is based

on, we have made the stylistic choice in this thesis to avoid any use of idealistic exponents in our

proofs, with the exception of the proof of Theorem 3.3.9(iii), cf. Remark 3.3.12. Nevertheless,

we still retain the language of idealistic exponents in our formulation of results throughout

Chapter 3, cf. Convention 2.3.79 and 3.1.6.

Returning back to Theorem A, one obtains Theorem A by taking at the (i + 1)th step the

weighted blow-up of Yi along the “worst singular locus of Xi ⊂ Yi”. We give a formal statement

of this procedure in Theorem B below. In the upcoming paragraphs, we will express the “worst

singular locus of Xi ⊂ Yi” in terms of a local singularity invariant.

1.2.2 (A local singularity invariant). For a point y ∈ |Y |, we will associate, in §3.3.A, a local

singularity invariant invy(X ⊂ Y ) of X ⊂ Y at y (which is an amalgamation of the invariants in

[ATW20a] and [ATW19]), which is, very simply put, a non-decreasing truncated sequence of

non-negative rational numbers, where the last entry is allowed to be ∞. We can well-order the

set consisting of all local invariants of such pairs X ⊂ Y at points y ∈ Y by the lexicographic
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order < (cf. last sentence of Definition 3.3.4), but with a caveat: our lexicographic order

considers the truncation (from the end) of a sequence to be strictly larger than the sequence

itself, cf. an example in 3.3.1. Letting J ⊂ OY denote the ideal underlying X ⊂ Y , the

invariant satisfies the following properties, cf. 3.3.5 and Lemma 3.3.6:

(a) invy(X ⊂ Y ) = (0) if and only if y /∈ |X|. For y ∈ |X|, the invariant detects

logarithmic smoothness of X at y. Namely, invy(X ⊂ Y ) is bounded below (via the

lexicographic order < above) by the constant sequence (1, 1, . . . , 1) of length equal to

the height of Jy, and equality holds if and only if X is toroidal at y.

(b) It is upper semi-continuous on Y .

(c) It is functorial with respect to logarithmically smooth morphisms of pairs X ⊂ Y ,

whether or not surjective.

(d) The first term of invy(X ⊂ Y ) is the logarithmic order (Definition 3.1.3) of J at y. In

particular, it lies in N ∪ {∞}.

This invariant will be constructed via logarithmic analogues of the classical notions of maximal

contact elements and coefficient ideals, which we detail in §3.2.

1.2.3 (“Worst singular locus”). Next, we set max inv(X ⊂ Y ) := maxy∈|X| invy(X ⊂ Y ).

This global invariant is functorial with respect to logarithmically smooth, surjective morphisms

of pairs X ⊂ Y , cf. Corollary 3.3.7. Property (a) above suggests that the aforementioned “worst

singular locus of X ⊂ Y ” can be loosely interpreted as the closed substack of X consisting of

points y ∈ |X| such that invy(X ⊂ Y ) = max inv(X ⊂ Y ). More precisely, this “worst singular

locus of X ⊂ Y ” will be the co-support of a toroidal center I• on Y , cf. Definitions 3.3.8

and 3.3.15, as well as the proof of Theorem A. Our next theorem says that the weighted blow-

up of Y along this “worst singular locus” I• improves the singularities on X immediately in a

visible way:
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Theorem B (Maximum invariant drops after each weighted blow-up). Given a reduced,

logarithmically singular, closed substack X of a toroidal Deligne–Mumford stack Y over k, there

exists a canonical toroidal center I• on Y , with weighted blow-up

Y ′ := BlI• Y
π−−−−→ Y

and proper transform X ′ ⊂ Y ′ of X ′, such that:

(i) Y ′ is a toroidal Deligne–Mumford stack over k, and the exceptional divisor of π is

set-theoretically contained in the toroidal divisor of Y ′.

(ii) π is an isomorphism over the open complement in Y of the closed locus of points

y ∈ |Y | with invy(X ⊂ Y ) = max inv(X ⊂ Y ).

(iii) max inv(X ′ ⊂ Y ′) < max inv(X ⊂ Y ).

This procedure (X ⊂ Y ) 7→ (X ′ ⊂ Y ′) is functorial with respect to every logarithmically smooth,

surjective morphism of such pairs (X̃ ⊂ Ỹ )→ (X ⊂ Y ). In fact, Ỹ ′ = Ỹ ×Y Y
′.

By iterating Theorem B, one can achieve the logarithmic analogue of principalization

[Kol07, Therem 3.35] for the underlying ideal of X ⊂ Y . In contrast, to achieve logarith-

mic embedded resolution of X ⊂ Y in the sense of Theorem A, some care needs to be taken

while iterating Theorem B. We give these details in §3.4.B. In §3.4.B, we will also prove the

following corollaries of Theorem A:

Corollary C (Logarithmic resolution). Given a pure-dimensional, reduced, generically

toroidal, fs logarithmic Deligne–Mumford stack X of finite type over k, there exists a proper,

birational morphism Π : X+ → X where:

(i) X+ is a pure-dimensional, toroidal Deligne–Mumford stack over k.

(ii) Π is an isomorphism over X log−sm ⊂ X.

(iii) Π−1(X ∖X log−sm) is set-theoretically contained in the toroidal divisor of X+.
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This procedure X 7→ X+ is functorial with respect to every logarithmically smooth morphism

X̃ → X, whether or not surjective.

We will prove Corollary C by first embedding X, locally in the étale topology, as a closed

subscheme of pure codimension in a toroidal k-scheme Y , before applying Theorem A to obtain

local logrithmic resolutions of X. It then remains to show that one can patch these local

logarithmic resolutions. This is a consequence of the functoriality in Theorem A and a standard

“re-embedding principle” (Lemma 3.4.8). Finally, as promised earlier, we can also deduce, from

the above corollary, Hironaka’s resolution of singularities.

Corollary D (Resolution of singularities, à la Hironaka). Given a pure-dimensional, reduced

scheme X of finite type over k, there exists a projective, birational morphism Φ : X++ → X

where:

(i) X++ is a pure-dimensional smooth k-scheme.

(ii) Φ is an isomorphism over the smooth locus Xsm ⊂ X.

(iii) Φ−1(X ∖Xsm) is a simple normal crossings divisor on X++.

This procedure X 7→ X++ is functorial with respect to every smooth morphism X̃ → X, whether

or not surjective.

Note that Φ is not just proper, but projective. We prove Corollary D by first proving a

weaker version where Φ is possibly only proper and X++ is possibly a Deligne-Mumford stack

over k. This follows by applying resolution of toroidal singularities after the procedure in

Corollary C, as noted at the very start of this section. To complete the proof of Corollary D,

it remains to apply the destackification procedure of Bergh–Rydh [BR19].
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1.2.B. Resolution of singularities via multi-weighted blow-ups. As hinted at the start

of §1.2, we will provide, in this subsection, an adaptation of the main theorems in §1.2.A, in

terms of multi-weighted blow-ups.

Instead of toroidal Deligne–Mumford stacks over k, the “smallest” category of ambient

spaces that is closed under the operation of multi-weighted blow-ups is the category of smooth,

toroidal Artin stacks over k. Unlike toroidal Deligne–Mumford stacks over k, these objects

can be described without the language of logarithmic geometry: they can be thought of as

pairs (Y,E), where Y is a smooth Artin stack over k, and E ⊂ Y is a normal crossings divisor

(potentially ∅). For such a pair (Y,E), if we set U = Y ∖E and j to be U ↪→ Y , then Y would be

logarithmically smooth over k, under the logarithmic structure αY : MY := j∗(O∗U)∩OY ↪→ OY

induced by E. Moreover, note that MY is a sheaf in the Zariski topology if and only if E ⊂ Y

is a simple normal crossings divisor. Therefore, smooth, strict toroidal Artin stacks over k are

simply pairs (Y,E) where Y is a smooth Artin stack over k, and E is a simple normal crossings

divisor on Y (potentially ∅).

Let us therefore consider a reduced, closed substack X in a smooth, toroidal Artin stack

Y over k. We always endow X with the logarithmic structure MX that is the pullback of the

logarithmic structure MY under the inclusion X ↪→ Y . Such pairs (X ⊂ Y ) form the objects

of a category, where a morphism between pairs (X̃ ⊂ Ỹ )→ (X ⊂ Y ) is a cartesian square

X̃ = X ×Y Ỹ Ỹ

X Y

f

for a strict, smooth, and surjective morphism f : Ỹ → Y . We refer to such a morphism as

a strict, smooth, and surjective morphism of pairs. At times we might drop surjectivity as a

condition, in which case we say f is a strict, smooth morphism of pairs. Chapter 4 concerns

following adaptation of Theorem A:
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Theorem E (Embedded resolution of singularities via multi-weighted blow-ups). Given a

reduced, generically toroidal, closed substack X of a smooth, toroidal Artin stack Y over k,

there exists a canonical sequence of multi-weighted blow-ups

Π: Y + := YN
πN−−−−−→ YN−1

πN−1−−−−−−→ · · · π1−−−−−→ Y0 == Y

together with proper transforms Xi ⊂ Yi of X, such that:

(i) X+ := XN is a smooth, toroidal Artin stack over k.

(ii) Π is an isomorphism over X log−sm ⊂ X.

(iii) Π−1(X ∖X log−sm) is a simple normal crossings divisor on X+.

(iv) Each πi is birational, surjective, universally closed, and factors as Yi → Yi → Yi−1,

where Yi → Yi is a good moduli space of Yi relative to Yi−1, Yi is normal, and

Yi → Yi−1 is a schematic blow-up (whence birational and projective).

This procedure (X ⊂ Y ) 7→ (X+ ⊂ Y +) is functorial with respect to strict, smooth morphisms

of such pairs (X̃ ⊂ Ỹ )→ (X ⊂ Y ), whether or not surjective. In fact, Ỹ + = Ỹ ×Y Y
+.

Similar to Theorem A, one obtains Theorem E by taking at the (i + 1)th step the multi-

weighted blow-up of Yi along the same “worst singular locus of Xi ⊂ Yi” in §1.2.3, constructed

using the local singularity invariant inv in 1.2.2. We formalize this in the following adaptation

of Theorem B:

Theorem F (Maximum invariant drops after each multi-weighted blow-up). Given a re-

duced, logarithmically singular, closed substack X of a smooth, toroidal Artin stack Y over k,

there exists a canonical multi-weighted blow-up

Y ′
π−−−−→ Y

with proper transform X ′ ⊂ Y ′ of X, so that:
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(i) Y ′ is a smooth, toroidal Artin stack over k, and the exceptional divisor of π is a union

of a subset of irreducible components of the simple normal crossings toroidal divisor

on Y ′.

(ii) π is an isomorphism away from the closed substack of X consisting of points y ∈ |X|

such that invy(X ⊂ Y ) = max inv(X ⊂ Y ).

(iii) max inv(X ′ ⊂ Y ′) < max inv(X ⊂ Y ).

(iv) π is birational, surjective, universally closed, and factors as Y ′ → Y′ → Y , where

Y ′ → Y′ is a good moduli space relative to Y , Y′ is normal, and Y′ → Y is a

schematic blow-up (whence birational and projective).

This procedure (X ⊂ Y ) 7→ (X ′ ⊂ Y ′) is functorial with respect to strict, smooth, and surjective

morphisms of such pairs (X̃ ⊂ Ỹ )→ (X ⊂ Y ). In fact, Ỹ ′ = Ỹ ×Y Y
′.

As hinted at the start of §1.2, various properties of Satriano’s construction [Sat13, §3] will

allow us to deduce Theorems E and F from Theorems A and B respectively. This will be done

in §4.3.B. In §4.3.B, we will also establish the following adaptation of Corollary C:

Corollary G (Resolution of singularities). Given a pure-dimensional, reduced, generically

toroidal, fs logarithmic Artin stack X of finite type over k, there exists a proper, birational

morphism Π : X+ → X where:

(i) X+ is a pure-dimensional, smooth, toroidal Artin stack over k.

(ii) Π is an isomorphism over X log−sm ⊂ X.

(iii) Π−1(X ∖X log−sm) is a simple normal crossings divisor on X+.

This procedure X 7→ X+ is functorial with respect to every strict, smooth morphism X̃ → X,

whether or not surjective.

The proof of the above corollary proceeds in a similar way as the proof of Corollary C, once

one makes the relevant modifications. Finally, from Corollary G, one can deduce Hironaka’s
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resolution of singularities in the sense of Corollary D, although Bergh–Rydh’s destackification

is not the only ingredient. Prior to destackification, one needs to apply reduction of stabilizers

in the sense of Edidin–Rydh [ER20]. We sketch this toward the end of §4.3.B.

1.3. Monodromy conjecture of Denef–Loeser

For the final portion of the thesis, we consider a subfield k ⊂ C, and fix 0 ̸= n ∈ N. For

every a := (a1, . . . , an) ∈ Nn, let xa denote the monomial xa11 · · ·xann in k[x1, . . . , xn]. Let

f =
∑
a∈Nn

ca · xa ∈ k[x1, . . . , xn]

be a non-constant polynomial satisfying c0 = f(0) = 0, and let V (f) be the hypersurface

defined by f = 0 in An := Spec(k[x1, . . . , xn]). Let Γ+(f) denote the Newton polyhedron of f ,

defined as the convex hull in Rn of the finite union

⋃{
a + Rn

≥0 : a ∈ Nn, ca ̸= 0
}
.

In this section and Chapter 5, we impose the following condition on f :

Definition 1.3.1. For a face ς of Γ+(f), let us set

(1.2) fς :=
∑

a∈Nn∩ς

ca · xa.

We say that f is non-degenerate with respect to ς if the closed subscheme V (fς) ⊂ An is non-

singular in the torus Gn
m ⊂ An. We also say f is non-degenerate, if f is non-degenerate with

respect to all compact faces of Γ+(f).

This non-degeneracy condition was first introduced in [Kou76], and it guarantees that the

singularity theory of V (f) ⊂ An at the origin 0 ∈ An is, to a certain extent, governed by Γ+(f).

The extent to which the former is governed by the latter is the main interest of Chapter 5.
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More precisely, Chapter 5 provides a geometric explanation (Theorem I) for the proposition in

[ELT22, Proposition 3.8] that any pole of the topological zeta function of f at 0 ∈ An [DL92a]

cannot arise exclusively from a set of B1-facets of Γ+(f) with consistent base directions. In the

process, we obtain a smaller set of candidate poles for the motivic zeta function of f at 0 ∈ An

[DL01] than what was previously known in general (Theorem H), and in particular we also

deduce (via Theorem J) a new, geometric proof of:

Theorem (= [BV16, Theorem 10.3]). The motivic monodromy conjecture holds for non-

degenerate polynomials in n = 3 variables.

1.3.A. Statement of objectives, motivations, and results. We assume throughout this

subsection that f ∈ k[x1, . . . , xn] is non-degenerate.

Convention 1.3.2 (Conventions on the Newton polyhedron of f). Let N = Zn, and M

be the dual lattice N∨. For reasons related to toric geometry (cf. Conventions 1.0.1), we view

Γ+(f) as a polyhedron in M+
R (instead of N+

R). For a face ς of Γ+(f),

we write



ς
′ ≺ ς

ς
′ ≺1
ς

vert(ς)

dim(ς)

for



a face ς′ of ς.

a facet (= codimension 1 face) ς′ of ς.

the set of vertices of ς.

the dimension of the affine span of ς.

Whenever ς ≺1 Γ+(f), we say ς is a facet of Γ+(f), and we usually use the letter τ instead of

ς to denote facets of Γ+(f). If two facets τ1 and τ2 of Γ+(f) intersect in a common facet (i.e.

τ1 ∩ τ2 ≺1 τ1, τ2), we say that τ1 and τ2 are adjacent, and write

τ1 ⌢ τ2.
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Finally, for i ∈ [n], let Hi denote the coordinate hyperplane in MR defined by ei = 0. For

τ ≺1 Γ+(f), let Hτ be its affine span in MR, with equation

(1.3)
{
a ∈MR : a · uτ = Nτ

}
where the vector uτ := (uτ,i)

n
i=1 is the unique primitive vector in N+ that is normal to Hτ . If

Nτ > 0 (i.e. τ is not contained in any coordinate hyperplane Hi in MR), the numerical datum

of τ is defined as:

(1.4) ητ := (Nτ , |uτ |) :=
(
Nτ , uτ,1 + uτ,2 + · · ·+ uτ,n

)
and the candidate pole sτ of τ is defined as the root of the polynomial Nτs+ |uτ |:

(1.5) sτ := −|uτ |
Nτ

.

Finally, for s◦ ∈ Q<0, we let F(f ; s◦) := {τ ≺1 Γ+(f) : Nτ > 0 and sτ = s◦}.

1.3.3. The main theorem of Chapter 5 concerns the näıve motivic zeta function of f at

0 ∈ An (cf. [DL01, Definition 3.2.1], and [CLNS10, Chapter 7, §3.3.1]), which we shall

denote by Zmot,0(f ; s), and is tied to the singularity theory of V (f) ⊂ An at 0 ∈ An via the

motivic monodromy conjecture of Denef–Loeser.

In our setting, their conjecture states that there should exist a set of candidate poles Θ

for Zmot,0(f ; s) (in the sense of [BN20, Definition 5.4.1]) such that every s◦ ∈ Θ induces a

monodromy eigenvalue of f near 0 ∈ Cn in the following sense: given any neighbourhood

U of 0 in f−1(0) ⊂ Cn, there exists x ∈ U such that exp
(
2π
√
−1s◦

)
is an eigenvalue of the

monodromy transformation acting on the singular cohomology
⊕

i≥0H
i
sing(Ff,x,Z) of the Milnor

fiber Ff,x of f at x, cf. [Mil68] and [CLNS10, Chapter 1, §3.4.1].
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1.3.4. To start, it has been established in the literature (cf. [BV16, Theorem 10.5] or

[BN20, Theorem 8.3.5]) that

(1.6) Θ(f) := {−1} ∪
{
sτ : τ ≺1 Γ+(f) with Nτ > 0

}
is a set of candidate poles for Zmot,0(f ; s). More precisely, the preceding statement can be

explicated as follows:

(1.7) Zmot,0(f ; s) ∈Mk

[
L−s

] [ 1

1− L−(Ns+ν)
: (N, ν) ∈ η(f)

]

where

(1.8) η(f) := {(1, 1)} ∪
{
ητ : τ ≺1 Γ+(f) with Nτ > 0

}
and Mk denotes the localization of the Grothendieck ring K0(Vark) of k-varieties (= finite-type

k-schemes) with respect to the class L of A1. Note that the letter T is sometimes used in place

of the indeterminate L−s.

1.3.5. Unfortunately, the main difficulty in establishing the motivic monodromy conjecture

for a non-degenerate polynomial f lies in the fact that not every candidate pole in Θ(f) induces

a monodromy eigenvalue of f near 0 ∈ An. Therefore, one desires for a smaller set of candidate

poles for Zmot,0(f ; s). This chapter gives a partial answer to the question of when a strictly

smaller set of candidate poles than Θ(f) exists for Zmot,0(f ; s), which can be seen as a motivic

upgrade of some existing general results in the literature pertaining to a “close relative” of

Zmot,0(f ; s), namely the topological zeta function Ztop,0(f ; s) of f at 0 ∈ An, cf. [DL92a] and

[CLNS10, Chapter 1, §3.3.1, equation (3.3.1.3)].
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Remark 1.3.6. Indeed Ztop,0(f ; s) is a “close relative” of Zmot,0(f ; s) in the sense that

Zmot,0(f ; s) specializes to Ztop,0(f ; s) via the motivic measure:

Eu: Mk → Z

which sends a k-variety X to the topological Euler characteristic of X⊗kC, cf. [DL01, Section

3.4] for details. In particular, one recovers in this way an analogue of (1.7) for Ztop,0(f ; s) (which

was observed earlier in [DL92a, Theorem 5.3(ii)]), namely that every pole of Ztop,0(f ; s) lies

in Θ(f).

1.3.7. To segue into the main results of Chapter 5, it is useful (as hinted in 1.3.5) to

first recall some existing results in the literature which demonstrate that occasionally some

candidate poles sτ in Θ(f) ∖ {−1} are not actual poles of Ztop,0(f ; s). Few of these results are

known for Zmot,0(f ; s) prior to [Que22b], especially for general n. We start with the following

definition:

Definition 1.3.8 (B1-facets, cf. [ELT22, Definition 3.1], [LPS22, Definition 1.4.1]). A

facet τ of Γ+(f) is called a B1-facet if there exists v ∈ vert(τ) and i ∈ [n] such that:

(a) The ith coordinate of v is 1.

(b) ∅ ̸= vert(τ) ∖ {v} ⊂ Hi.

(c) τ is compact in the ith coordinate, i.e. τ + R≥0e
∨
i ̸⊂ τ (cf. 5.1.8(iii)).

Note that in particular, (b) and (c) imply that Hi ∩ τ ≺1 τ . In this case, we call v an apex

of τ with corresponding base direction i ∈ [n]. Note that the apex v and the base direction i

uniquely determine each other.

1.3.9. Fix −1 ̸= s◦ ∈ Q<0. It is known that if F(f ; s◦) only consists of one B1-facet, then

s◦ is not a pole of Ztop,0(f ; s), cf. [ELT22, Proposition 3.7]. More generally one might guess

that conclusion is true whenever F(f ; s◦) comprises of only B1-facets. However, this is false,
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cf. Example 5.2.13 and Remark 5.2.14 for a simple counterexample. One rectifies that guess

(cf. [ELT22, Proposition 3.8]) by further imposing the following condition on F(f ; s◦):

Definition 1.3.10. A set B of B1-facets of Γ+(f) has consistent base directions if there

exists, for each facet τ ∈ B, a choice of a distinguished base direction b(τ) ∈ [n], such that

b(τ1) = b(τ2) for every pair of adjacent facets τ1, τ2 ∈ B. In this case we call {b(τ) : τ ∈ B} a

set of consistent base directions for B.

The main contribution of Chapter 5 can now be stated as follows:

Theorem H. Let B be a set of B1-facets of Γ+(f) with consistent base directions. Then

Θ†,B(f) := {−1} ∪
{
sτ : τ ≺1 Γ+(f) with Nτ > 0 and τ /∈ B

}
is a set of candidate poles for Zmot,0(f ; s).

1.3.11. We prove Theorem H towards the end of §5.3.C. The centerpiece of our proof

(= Theorem I below) is perhaps more satisfying than Theorem H itself, especially given that

previous attempts to understand the topological zeta function analogue of Theorem H, or

even special cases of Theorem H, used roundabout methods: namely, they typically involve a

manipulation of some explicit formula for Ztop,0(f ; s) or Zmot,0(f ; s), cf. formulae in [DL92a,

Theorem 5.3(iii)], [DH01, Theorem 4.2], and [BV16, Theorem 10.5]. In contrast, our proof is

geometric in nature, in the sense that we construct an appropriate embedded desingularization

of V (f) ⊂ An above 0 ∈ An that bears witness to Theorem H.

1.3.12. To put our approach to Theorem H into perspective, we temporarily shift our

attention to our approach towards its weaker counterpart (1.6), i.e. (1.7). Given that there is

a motivic change of variables formula for Zmot,0(f ; s) under any proper, birational morphism

π : X → An (cf. [CLNS10, Chapter 6, §4.3]), one natural hope towards proving (1.7) would

23



be to apply the change of variables to an appropriate embedded desingularization π : X → An

of V (f) ⊂ An above 0 ∈ An. A natural candidate for π would be the toric modification

πΣ′ : XΣ′ → An induced by any smooth subdivision Σ′ of the normal fan Σ(f) of Γ+(f). Indeed,

one can show that the non-degeneracy condition on f implies that πΣ′ desingularizes V (f) ⊂ An

above 0 ∈ An, cf. [Var76, Sections 9 and 10]. Unfortunately, subdividing Σ(f) into Σ′ usually

introduces new rays to Σ(f). One can show this process of adding new rays cannot show in

general the existence of a set of candidate poles for Zmot,0(f ; s) as small as Θ(f).

1.3.13. The above discussion suggests that one should perhaps avoid the process of adding

new rays, and instead work directly on Σ(f) and its associated toric modification πΣ(f) : XΣ(f) →

An, despite the fact that πΣ(f) is usually not an embedded desingularization for V (f) ⊂ An

above 0 ∈ An (as XΣ(f) is usually singular).

Nevertheless, this was the approach in a recent paper of Bultot–Nicaise [BN20], where they

instead showed that if one endows XΣ(f) with the divisorial logarithmic structure M associated

to the reduction of

π−1Σ(f)

(
V (f) ∪ V (x1) ∪ V (x2) ∪ · · · ∪ V (xn)

)
⊂ XΣ(f)

the resulting logarithmic scheme (XΣ(f),M ) is logarithmically smooth. They then related

Zmot,0(f ; s) to a different motivic zeta function associated to XΣ(f) and the Gelfand–Leray

form dx1∧ dx2∧ · · · ∧ dxn/df (cf. Loeser–Sebag [LS03] and [BN20, Definition 5.2.2]). Finally,

the logarithmic smoothness of (XΣ(f),M ) enables them to deduce an explicit formula for the

latter zeta function, from which (1.7) follows.

1.3.14. In contrast, our approach towards (1.7) is a stack-theoretic re-interpretation of

Bultot–Nicaise’s approach, and allows one to work directly on Σ(f) while still remaining in the

realm of smooth ambient spaces. The point here is that one can associate, to the potentially

singular toric variety XΣ(f), a smooth toric Artin stack XΣ(f) whose good moduli space (in the
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sense of [Alp13]) is XΣ(f), cf. §5.2.A. One can then show that the composition

ϑΣ(f) : XΣ(f)
good moduli space−−−−−−−−−−−−−−→ XΣ(f)

πΣ(f)−−−−−−→ An

desingularizes V (f) ⊂ An above 0 ∈ An in the following sense:

Definition 1.3.15. A stack-theoretic embedded desingularization of V (f) ⊂ An above 0 ∈

An is a morphism Π : X → An where:

(i) X is a smooth Artin stack over k admitting a good moduli space X → X, and the

induced morphism π : X→ An is proper and birational.

(ii) Π−1
(
V (f)

)
is a simple normal crossings divisor at every point in Π−1(0) (in the stack-

theoretic sense, cf. [BR19, Definition 3.1]).

1.3.16. In §5.2.A we also discuss a motivic change of variables for Zmot,0(f ; s) that is ap-

plicable to ϑΣ(f), although indirectly. By this we mean that one has to first take a simplicial

subdivision ΣΣΣ(f) of Σ(f) without adding new rays. The effect of doing so is that the corre-

sponding toric stack XΣΣΣ(f) is Deligne–Mumford, and the morphism ϑΣΣΣ(f) : XΣΣΣ(f) → An factors

through ϑΣ(f) : XΣ(f) → An as an open substack, i.e. ϑΣΣΣ(f) also desingularizes V (f) ⊂ An above

0 ∈ An. Finally we compute the set of numerical data associated to (f, ϑΣΣΣ(f)) (in the sense of

Definition 1.3.17 below), and show that it is the set η(f) in (1.8). Applying the aforementioned

motivic change of variables to ϑΣΣΣ(f), the preceding sentence then implies (1.7).

Definition 1.3.17. Let Π : X → An be a stack-theoretic embedded desingularization of

V (f) ⊂ An above 0 ∈ An, such that X is a Deligne–Mumford stack. Let {Ei : i ∈ I} denote

the set of irreducible components of Π−1
(
V (f)

)
. For each i ∈ I, let Ni (resp. νi − 1) denote

the multiplicity of Ei in the divisor Π−1
(
V (f)

)
(resp. the relative canonical divisor KΠ of Π).

Then the set of numerical data associated to the pair (f,Π) is:

η(f,Π) :=
{

(Ni, νi) : i ∈ I
}
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where each (Ni, νi) is referred to as the numerical datum of the corresponding irreducible

component Ei ⊂ Π−1
(
V (f)

)
.

Similar to how the motivic change of variables in 1.3.16 reduces (1.6) to the existence of

a stack-theoretic desingularization of V (f) ⊂ An above 0 ∈ An whose set of numerical data

equal to η(f), that same change of variables would also reduce Theorem H to the following:

Theorem I (⇐= Theorem 5.3.26). Given a set B of B1-facets of Γ+(f) with consistent base

directions, there exists a stack-theoretic embedded desingularization Π : X → An of V (f) ⊂ An

above 0 ∈ An, such that X is a Deligne–Mumford stack, and whose set of numerical data is:

η†,B(f) := {(1, 1)} ∪
{
ητ : τ ≺1 Γ+(f) with Nτ > 0 and τ /∈ B

}
.

1.3.18. Our proof of Theorem I occupies the entirety of §5.3. As one might expect from

the discussion in 1.3.12 and 1.3.14, the proof should involve the construction of a fan Σ† that

subdivides N+
R and satisfies the following:

(i) The set of rays in Σ† comprises of rays in Σ(f) except those that are dual to facets in

B.

(ii) The induced toric modification ϑΣ† : XΣ† → An is a stack-theoretic embedded desin-

gularization of V (f) ⊂ An above 0 ∈ An.

In the first two paragraphs of §5.2.B, we give a brief sketch as to how one could accomplish this

construction, and in §5.3.A and §5.3.B, we provide the details of the construction. In addition,

in §5.2.B we also verify our methods for three non-degenerate polynomials in n = 3 variables.

We hope to highlight, through these examples, various aspects of Theorems H and I.

1.3.19. Finally, we indicate in §5.4 the various aspects in which Theorem H is incomplete

for the motivic monodromy conjecture for non-degenerate polynomials (1.3.3), most of which

26



we are pursuing separately in a sequel, using methods that are motivated by and similar to the

ones in this chapter.

Nevertheless, Theorem H in particular recovers the motivic monodromy conjecture for non-

degenerate polynomials in n = 3 variables, which was proven previously by Bories–Veys [BV16,

Theorem 10.3], although (as hinted in 1.3.11) via an approach different from Theorem I. Indeed,

in §5.4.A, we first show that Theorem H implies:

Theorem J (= Theorem 5.4.9). Let n = 3, and let S◦ ⊂ Θ(f)∖ {−1}. If F(f ; s◦) is a set

of B1-facets of Γ+(f) with consistent base directions for each s◦ ∈ S◦, then Θ(f) ∖ S◦ is a set

of candidate poles for Zmot,0(f ; s).

Note that by specializing Zmot,0(f ; s) to Ztop,0(f ; s) (cf. Remark 1.3.6), Theorem J in

particular recovers [LVP11, Proposition 14]. Moreover, the authors in loc. cit. showed that

s◦ ∈ Θ(f) ∖ {−1} induces a monodromy eigenvalue of f near 0 ∈ Cn (in the sense indicated

in 1.3.3) whenever F(f ; s◦) satisfies either of the following hypotheses:

(i) F(f ; s◦) contains a non–B1-facet of Γ+(f) [LVP11, Theorem 10].

(ii) F(f ; s◦) is a set of B1-facets of Γ+(f), but without consistent base directions [LVP11,

Theorem 15].

Therefore, we conclude from Theorem J and the preceding sentence that:

Corollary K. The motivic monodromy conjecture holds for non-degenerate polynomials in

n = 3 variables.
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CHAPTER 2

Weighted blow-ups

In this chapter, unless otherwise specified, we consider schemes (or more generally algebraic

stacks) X over an arbitrary base scheme S. Occasionally we take S to be the final object

Spec(Z) in the category of schemes, or Spec(k) for a field k.

2.1. Stack-theoretic Proj

Let R =
⊕

n∈NRn be a quasi-coherent graded OX-algebra. The grading on R corresponds

to a co-action of OX [t±1] on R:

β : R→ R⊗OX
OX [t±1] = R[t±1]

mapping a section r of Rn to rtn, or equivalently, an action α : Gm × SpecX(R) → SpecX(R)

of Gm = Spec(Z[t±1]) on SpecX(R). We denote by R+ the ideal
⊕

n≥1Rn ⊂ R, and we denote

the dth Veronese subalgebra
⊕

n≥0Rdn by R(d).

2.1.A. Stabilizers of Gm-action. Let x : Spec(κ) → SpecX(R) be a point. The stabilizer

group scheme of x, denoted Gx, is a closed subgroup of Gm ⊗ κ = Spec(κ[t±1]), and sits in the

cartesian diagram

Gx Spec(κ)

Gm × SpecX(R) SpecX(R)×X SpecX(R).

(x,x)

(α,π2)

Thus, either Gx = µµµd ⊗ κ = Spec
(
κ[t]/(td − 1)

)
for some d ≥ 1 or Gx = Gm ⊗ κ. Equivalently,

the Cartier dual of Gx is either Z/dZ or Z.
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Lemma 2.1.1. The Cartier dual of Gx is Z/(d : x /∈ V (Rd)), that is,

(i) Gx = Gm if and only if x ∈ V (R+), and

(ii) µµµd ⊂ Gx if and only if x ∈ V (Rn) for all n ∈ N such that d ∤ n.

Proof. The question is local on X so we may assume that X is affine. Let φx : R → κ

be the corresponding ring homomorphism. Then µµµd ⊂ Gx if and only if x is µµµd-equivariant, or

equivalently, if and only if φx is Z/dZ-graded. This happens precisely when the kernel of φx

contains Rn for all n such that d ∤ n. □

In particular, V (R+) precisely contains the points fixed by Gm, whence the action of Gm on

SpecX(R) restricts to an action of Gm on W := SpecX(R)∖V (R+). Moreover, if R is generated

in degree 1, then this action of Gm on W is free, i.e. Gx = {1} for all points x ∈ W . This is

because in that case (Rn : d ∤ n) = R+ whenever d > 1.

2.1.B. Definition of the stack-theoretic Proj. Let W := SpecX(R) ∖ V (R+). The stack-

theoretic Proj of R is the stack quotient

ProjX(R) := [W / Gm].

By Lemma 2.1.1, ProjX(R) is a tame algebraic stack [AOV08]. If the orders of the stabilizer

groups of the points of ProjX(R) are invertible on X, then ProjX(R) is a Deligne–Mumford

stack. In particular, this holds in characteristic zero.

The Gm-equivariant map W → X, where X is equipped with the trivial action, gives a

map ProjX(R) → X × BGm. We let π : ProjX(R) → X and p : ProjX(R) → BGm be the

induced maps. Then p fits in the following cartesian square:

W ∗

ProjX(R) BGm

q

p
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where q : W → [W / Gm] is the quotient map. Note that since R is also an R0-algebra, π

factors through SpecX(R0), and ProjX(R) → SpecX(R0) is the stack-theoretic Proj of R as

an R0-algebra. It is thus harmless to assume that R0 = OX .

If X is more generally an algebraic stack, the above definition still makes sense. In this case

W is an algebraic stack with an action of Gm [Rom05].

2.1.C. Local charts. We can give local charts of ProjX(R) as follows. Let fi ∈ R+ be

homogeneous elements of degrees di ≥ 1, indexed by some indexing set I, such that R+ ⊂√
(fi : i ∈ I). Then W = SpecX(R) ∖ V (R+) =

⋃
i∈I SpecX(Rfi), so we have an open covering

ProjX(R) =
⋃

i∈I D+(fi), where

D+(fi) :=
[
SpecX(Rfi) / Gm

]
=
[
SpecX

(
Rfi/(fi − 1)

)
/ µµµdi

]
.(2.1)

and is called the fi-chart. The second equality in (2.1) follows from Lemma 2.1.2, with A = Z,

a = di, R = Rfi and r = fi. The intersection of charts works as usual: D+(fi) ∩ D+(fj) =

D+(fifj) and the open inclusion D+(fi) ∩D+(fj) ⊂ D+(fi) is given by fj ̸= 0.

Lemma 2.1.2 (Slicing). Let A be a finitely generated abelian group, with corresponding

diagonalizable algebraic group D(A). Let R =
⊕

α∈ARα be an A-graded algebra, and let r ∈ R

be a homogeneous element of degree a ∈ A. Then R/(r− 1) is an A/⟨a⟩-graded algebra and the

A/⟨a⟩-graded homomorphism R→ R/(r − 1) induces a morphism of algebraic stacks

[
Spec(R/(r − 1)

)
/ D

(
A/⟨a⟩

)]
→
[
Spec(R) / D(A)

]
.

This is an isomorphism if r is invertible and a has infinite order.

Note that as A-graded modules R ≃ R/(r − 1)[r, r−1] but the algebra structures do not

coincide. Similarly, R/(r − 1) ≃
⊕

[α]∈A/⟨a⟩Rα but only as A/⟨a⟩-graded modules.
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Proof. Only the last statement requires proof. It suffices to prove that the natural D(A)-

equivariant map

Spec
(
R/(r − 1)

)
×D(A/⟨a⟩) D(A)→ Spec(R)

is an isomorphism. Let us elaborate on the left hand side. We have two commuting actions on

Spec
(
R/(r − 1)

)
×D(A) = Spec(R/(r − 1)[vA]) := Spec(R/(r − 1)[vα : α ∈ A]):

(i) the diagonal D(A/⟨a⟩)-action, given by (y, t) · s = (ys, s−1t), where in the first factor

the action corresponds to the induced A/⟨a⟩-grading on R/(r − 1), and

(ii) the D(A)-action on the second factor given by (y, t) · s = (y, ts).

The D(A/⟨a⟩)-action is free with quotient Spec
(
R/(r − 1)

)
×D(A/⟨a⟩) D(A) = Spec(R◦) where

R◦ is the degree 0 part of R/(r − 1)[vA] with the A/⟨a⟩-grading. The D(A)-action endows R◦

with the following A-grading

R◦ =
⊕
α∈A

(
R/(r − 1)

)
[α]
vα.

The natural A-graded algebra homomorphism R→ R◦ is thus an isomorphism. □

Remark 2.1.3. The full sub-category of algebraic stacks, whose objects are Zariski-locally

of the form [Spec(B) / D(A)] for a finitely generated abelian group A with diagonalizable

group scheme D(A) and an A-graded ring B, is closed under taking stacky Proj. Indeed, let

X = [Spec(B) / D(A)] as above, and let R be a quasi-coherent graded OX-algebra, i.e. a

quasi-coherent (A × Z)-graded B-algebra. For a collection of (A × Z)-homogeneous elements

fi ∈ R+ of degrees (ai, di) such that R+ ⊂
√

(fi : i ∈ I), then ProjX(R) is then covered by the

charts

D+(fi) = [Spec(Rfi) / D(A× Z)] =
[
Spec

(
Rfi/(fi − 1)

)
/ D

(
(A× Z)/⟨(ai, di)⟩

)]
.
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2.1.D. Tautological line bundles O(d). Let as before p : W → ProjX(R) denote the pre-

sentation. pullback of line bundles induces an isomorphism

ρ∗ : Pic
(
ProjX(R)

) ≃−−−−→ PicGm(W )

where the right hand side denotes the Gm-equivariant Picard group of W . For each d ∈ Z, there

are tautological line bundles O(d) on the stack-theoretic Proj, arising from the shifts R(d), as

well as natural maps π∗Rd → O(d) induced from the multiplication maps R ⊗OX
Rd → R(d).

Note that O(1) is invertible and that O(d) = O(1)⊗d.

For each d ∈ Z, we let qd : ProjX(R)→ BGm = [∗ / Gm] be the morphism classifying the

line bundle O(d). Then q1 = q, that is, O(1) corresponds to the Gm-torsor W → ProjX(R).

In particular, qd = (·)d ◦ q where (·)d : BGm → BGm is induced by the dth power morphism.

Equivalently, qd : [W / Gm] → [∗ / Gm] is induced by the structure morphism W → ∗ and

(·)d : Gm → Gm. Therefore, the morphism also fits in the following cartesian square [Ols16,

Exercise 10.F]:

[W / µµµd] ∗

ProjX(R) BGm.
qd

2.1.E. Properties. The stack-theoretic Proj enjoys the following universal property:

Proposition 2.1.4 (Universal property). Let R be a graded quasi-coherent OX-algebra.

Given a scheme T with a morphism f : T → X, a lift of f to ProjX(R) corresponds to the

data of a line bundle L on T and a graded homomorphism φ : f ∗R→
⊕

n≥0 L ⊗n of sheaves of

algebras on T such that locally on T , φn : f ∗Rn → L ⊗n is surjective for all sufficiently divisible

n.
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Proof. To lift f to ProjX(R), one needs to supply a Gm-torsor P over T mapping Gm-

equivariantly to W making the following diagram commute:

P W SpecX(R)

T X
f

Every line bundle L on T gives rise to a Gm-torsor P = SpecT
(⊕

n∈Z L ⊗n) over T , and

conversely any Gm-torsor P over T arises from some line bundle L on T . Then a Gm-equivariant

morphism

P = SpecT

(⊕
n≥0

L ⊗n

)
∖ V

(⊕
n≥1

L ⊗n

)
−→ SpecX(R) ∖ V (R+) = W

making the diagram above commute, is equivalent to a graded homomorphism φ : f ∗R →⊕
n≥0 L ⊗n such that

⊕
n≥1 L ⊗n ⊂

√
φ(f ∗R+), i.e. L ⊂

√
φ(f ∗R+). Given a trivialization

t of L over an open subset U ⊂ T , there therefore exists a positive integer N such that the

trivializing section t⊗N of L ⊗N over U lifts to f ∗RN . Thus, whenever N divides n, φn : f ∗Rn →

L ⊗n is surjective over U . □

Proposition 2.1.5. Let R be a graded quasi-coherent OX-algebra.

(i) ProjX(R) has finite diagonal relative to X. In particular, ProjX(R) is separated

over X.

(ii) If R is finitely generated, then ProjX(R) is proper over X.

(iii) The coarse space of ProjX(R), relative to X, is the usual ProjX(R).

(iv) The morphism q1 : ProjX(R)→ X × BGm corresponding to O(1) is quasi-affine.

(v) The relative coarse space of qd : ProjX(R)→ X×BGm is ProjX(R(d)), where R(d) =⊕
n≥0Rdn.

(vi) If S is another graded OX-algebra and φ : R→ S is a graded homomorphism such that

S+ ⊂
√
φ(R+), then there is an induced affine morphism f : ProjX(S)→ProjX(R)
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such that f ∗O(1) = O(1). If R and S are of finite type and R0 → S0 is finite, then f

is finite.

Here, (iv) is saying that O(1) alone is generating for ProjX(R) in the sense of [Gro17], cf.

[Gro17, Corollary 6.7].

Proof. The questions are local onX, so we may assume thatX = Spec(A) is affine. For (i),

we need to show that D+(fifj)→ D+(fi)×X D+(fj) is finite. Over the tautological G2
m-torsor

this map is Spec(Rfifj [u, u
−1])→ Spec(Rfi)×X Spec(Rfj), where φ : Rfi⊗ARfj → Rfifj [u, u

−1]

is given by φ(r⊗s) = rsud if s ∈ Rd. It is finite since udi = φ(f−1i ⊗fi) and u−dj = φ(fj⊗f−1j ).

For (iii), note that ProjX(R) =
(
Spec(R) ∖ V (R+)

)
/ Gm. Indeed, the coarse space of

D+(fi) = [Spec(Rfi) / Gm] is the spectrum of the invariant ring of Rfi , that is, R(fi). For (ii),

if R is finitely generated, then ProjX(R)→ X is proper. Coupled with the fact that the coarse

space morphism ProjS(R) → ProjX(R) is also proper, we conclude that ProjX(R) is proper

over X. For (iv), it suffices to note that the total space of the Gm-bundle corresponding to

O(1) is the quasi-affine scheme W = Spec(R) ∖ V (R+), which we saw in §2.1.D.

For (v), the question can be checked flat-locally, so we may pass to the total space of the

Gm-bundle corresponding to O(d), which is [W / µµµd] (by §2.1.D again), and which has coarse

space Spec(R(d)) ∖ V (R
(d)
+ ). Consequently, the relative coarse space of qd is [Spec(R(d)) ∖

V (R
(d)
+ ) / Gm] = ProjX(R(d)).

Finally, for (vi), we obtain an affine Gm-equivariant morphism Spec(S)→ Spec(R) such that

the inverse image of V (R+) contains V (S+), whence we obtain an affine morphism f : ProjX(S)

→ProjX(R) over BGm. If R and S are of finite type and R0 → S0 is finite, then both stacky

Proj are proper over Spec(R0), and hence f is finite (as f is proper and affine). □

Note that (vi) with S =
⊕

n≥0 L ⊗n retrieves the universal property (Proposition 2.1.4).

In the terminology of [AH10, §2.3], the stack-theoretic Proj is a cyclotomic stack, i.e. has
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stabilizers µµµd (Lemma 2.1.1), which is uniformized by O(1), i.e. q1 : ProjX(R) → BGm is

representable (Proposition 2.1.5(iv)).

Corollary 2.1.6. Let R be a graded OX-algebra. ProjX(R) coincides with the usual

ProjX(R) if and only if the action of Gm on W is free, in which case O(1) is very ample

relative to X. In particular, this happens when R is generated in degree 1.

Proof. ProjX(R) coincides with the coarse space ProjX(R) if and only if ProjX(R) is

an algebraic space, if and only if the action of Gm on W is free. □

Recall that the shift R(d) also gives rise to a coherent sheaf R̃(d) on ProjX(R), but this

sheaf is not always invertible if R is not generated in degree 1. There is a canonical morphism

R̃(d) ⊗ R̃(e) → ˜R(d+ e) but this is also not an isomorphism in general. If p : ProjX(R) →

ProjX(R) denotes the coarsening morphism, then R̃(d) = p∗O(d).

Proposition 2.1.7. Let R be a graded OX-algebra. If X is quasi-compact and R is finitely

generated, then R(d) =
⊕

n≥0Rdn is generated in degree 1 for all sufficiently divisible d. In

particular, the usual ProjX(R) agrees with the stack-theoretic ProjX(R(d)) and is the relative

coarse space of qd.

Proof. This can be verified locally on X so we can assume that X = Spec(A) is affine. If

R has generators f1, . . . , fm with degrees d1, d2, . . . , dm, then we claim that choosing d = mℓ

suffices, where ℓ is the least common multiple of the di. Indeed, for every n ≥ 0, Rn is generated

by fa1
1 · · · fam

m with
∑m

i=1 aidi = n. If n ≥ mℓ, then for each such generator fa1
1 · · · fam

m , there

exists some 1 ≤ i ≤ m such that aidi ≥ ℓ, i.e. fa1
1 · · · fam

m is divisible by f
ℓ/di
i ∈ Rℓ. This shows

that Rn = Rn−ℓRℓ whenever n ≥ mℓ, which implies the claim. □

Remark 2.1.8. If R has generators of degrees d1, d2, . . . , dm, then it is not sufficient to take

d as the least common multiple ℓ of d1, d2, . . . , dm in Proposition 2.1.7.
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2.1.F. Embeddings into the stack-theoretic Proj.

2.1.9. In this section, let f : X → S be a qcqs morphism of algebraic stacks and L a line

bundle on X. If there exists for every x ∈ X a positive integer N such that f ∗f∗L ⊗N → L ⊗N

is surjective at x, then the homomorphism
⊕

n≥0 f
∗f∗L ⊗n →

⊕
n≥0 L ⊗n induces, via the

universal property (Proposition 2.1.4), a morphism

(2.2) φL : X →ProjS

(⊕
n≥0

f∗L
⊗n
)

such that φ∗L O(1) = L . In particular, if L is uniformizing relative to S, that is, the in-

duced morphism X → S × BGm is representable, then so is the induced morphism φL : X →

ProjS(
⊕

n≥0 f∗L
⊗n).

Setup 2.1.10. Let f : X → S be a morphism of quasi-compact algebraic stacks with finite

diagonal. Then there is a relative coarse space p : X → Xcs/S and fcs : Xcs/S → S is separated.

Let L be a line bundle on X. Then for sufficiently divisible k, the line bundle L ⊗k descends to

Xcs/S [Ryd15]. To be precise, p∗L ⊗k is a line bundle and p∗p∗L ⊗k → L ⊗k is an isomorphism.

Definition 2.1.11 (Ampleness). In Setup 2.1.10, we say that L is ample relative to S if

the line bundle p∗L ⊗k is ample relative to S.

Lemma 2.1.12. Keep the assumptions of Setup 2.1.10. If S is an affine scheme, then the

following statements are equivalent:

(i) L is ample.

(ii) The open subsets Xg, for g ∈ Γ(X,L ⊗d) where d is a positive integer, form a basis

for the topology on X.

(iii) There exists a positive integer d and finitely many sections fi ∈ Γ(X,L ⊗d) such that

(Xcs)fi is affine for all i, and such that X =
⋃

iXfi.
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(iii′) There exists a positive integer d and finitely many sections fi ∈ Γ(X,L ⊗d) such that

(Xcs)fi is quasi-affine for all i, and such that X =
⋃

iXfi.

This can be verified via passage to the coarse space Xcs, and applying the analogous classical

result for p∗L ⊗k. The following example shows that some caution is warranted though.

Remark 2.1.13. Retain the situation of Setup 2.1.10. If L is ample, and F is a quasi-

coherent OX-module of finite type, there does not always exist a positive integer n0 such that

F ⊗OX
L ⊗n is globally generated over S for all n ≥ n0. It is also not true that F ⊗OX

L ⊗n

is globally generated over S for sufficiently divisible n. For example, take X = Bµµµd, L = OX ,

and F to be the universal torsion line bundle on X. Then F ⊗OX
L ⊗n = F for every integer

n, and F has no global sections.

Proposition 2.1.14. In Setup 2.1.10, the following holds.

(i) If L is ample, then f ∗f∗L ⊗N → L ⊗N is surjective for all sufficiently divisible N

and thus induces a morphism

φL : X →ProjS
(⊕

n≥0 f∗L
⊗n)

as in (2.2).

(ii) If L is ample and uniformizing, the induced morphism φL is a quasi-compact, scheme-

theoretically dominant, open immersion (so in particular, quasi-affine). If in addition

f is proper, φL is an isomorphism.

(iii) Assume there exists a positive integer N such that f ∗f∗L ⊗N → L ⊗N is surjective. If

the induced morphism φL is quasi-affine, then L is ample and uniformizing.

Proof. For (i), denote the induced morphism Xcs/S → S by fcs. Fix a positive integer

k such that L ⊗k descends to Xcs/S. Since p∗L ⊗k is ample over S, there exists a positive

integer N such that for all n ≥ N , p∗L ⊗kn = (p∗L ⊗k)⊗n is globally generated over S, that
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is, f ∗cs(fcs)∗p∗L
⊗kn → p∗L ⊗kn is surjective. Applying p∗ and noting f = fcs ◦ p, we see that

f ∗f∗L ⊗kn → p∗p∗L ⊗kn ≃−→ L ⊗kn is surjective, as desired.

For (ii), the question is local and so we may assume that S = Spec(A) is affine. Set

R =
⊕

n≥0 Γ(X,L ⊗n). Since L is ample, we may apply Lemma 2.1.12(iii) above and thus

X =
⋃

iXfi for some homogeneous fi ∈ R with (Xfi)cs affine. Since each [Spec(Rfi) / Gm]

is an open substack of ProjX(R), it suffices to prove that the induced morphism Xfi →

[Spec(Rfi) / Gm] is an isomorphism for every i. Therefore, we set up the following diagram

(where the reader should first disregard the dotted arrows and fill them in as the argument

progresses):

(2.3)

Z ′ SpecXfi

(⊕
n∈Z L ⊗n) Spec(Rfi) S

Z Xfi

[
Spec(Rfi) / Gm

]
S × BGm

(Xcs)fi Spec
(
(Rfi)0

)

finite

affine

integral

finite
φL |Xfi

Since Xfi has finite diagonal over S (by assumption of Setup 2.1.10), there exists a finite cover

Z → Xfi from a scheme Z. Then Z is affine, since the composition Z → Xfi → (Xcs)fi is

integral, and (Xcs)fi is affine. Set

Z ′ := Z ×Xfi
SpecXfi

(⊕
n∈Z L ⊗n) ,

which is also an affine scheme. Since L is uniformizing, Xfi is representable over S ×BGm, so

that SpecXfi

(⊕
n∈Z L ⊗n) is an algebraic space (over S). Moreover, it admits a finite surjection

from the affine scheme Z ′, so Chevalley’s Theorem implies that it is also an affine scheme.

Hence, the morphism SpecXfi

(⊕
n∈Z L ⊗n) → Spec(Rfi), which induces an isomorphism on
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global sections

Rfi =

(⊕
n≥0

Γ(X,L ⊗n)

)
fi

≃−−→
⊕
n∈Z

Γ(Xfi ,L
⊗n),(2.4)

must be an isomorphism, and hence so is Xfi → [Spec(Rfi) / Gm], as desired.

For (iii), the question is again local, so we assume that S = Spec(A) is affine. Evidently,

φL is representable, whence so is the morphism X → BGm induced by L . Thus, L is

uniformizing. To show that L is ample, let d be a positive integer, and let f ∈ Γ(X,L ⊗d).

Then φL |Xf
: Xf → D+(f) is quasi-affine, whence (Xcs)f is quasi-affine over Spec ((Rf )0). In

particular, (iii′) of Lemma 2.1.12 is satisfied, so L is ample. □

Remark 2.1.15. Let f : X → S and L be as in §2.1.9. In general R =
⊕

n≥0 f∗L
⊗n is

not finitely generated, so the corresponding stack-theoretic Proj is in general not proper over

S. However, if S is qcqs, then R is the union of its finitely generated, quasi-coherent graded

OS-subalgebras Rλ. Since X is quasi-compact, there exists an index λ0 such that for all λ ≥ λ0,

the composition f ∗(Rλ)n → f ∗f∗L ⊗n → L ⊗n is surjective for all sufficiently divisible n. For

λ ≥ λ0, we get a morphism φλ : X →ProjS(Rλ), where the stack-theoretic Proj is now proper

over S, and such that φλ factors (rationally) through φL : X →ProjS(R).

Now assume that Setup 2.1.10 holds, assume that L is ample and uniformizing, and that X

is of finite type over S. By Proposition 2.1.14(ii), φL : X →ProjS(R) is an open immersion.

In this case, we will now show that, after increasing λ0, the induced morphism φλ : X →

ProjS(Rλ) is an immersion for every λ ≥ λ0.

This is a local question on S, so we may assume that S = Spec(A) is affine and that

R =
⊕

n≥0 f∗L
⊗n =

⊕
n≥0 Γ(X,L ⊗n). We apply Lemma 2.1.12: there exists a positive

integer d, as well as finitely many fi ∈ Γ(X,L ⊗d) such that X =
⋃

iXfi and each (Xcs)fi is

affine (and each φL |Xfi
: Xfi → D+(fi) is an isomorphism).
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Since X is of finite type over S, the OS-algebra Rfi ≃
⊕

n∈Z Γ(Xfi ,L
⊗n) is generated

by finitely many homogeneous elements bij. Using the isomorphism in (2.4), we may, for a

positive integer m, lift each bij to some sij/f
m
i ∈ (Rfi)deg(bij) for some sij ∈ Γ(X,L ⊗md+deg(bij)).

Thus, for sufficiently large λ ≥ λ0, there exist homogeneous elements sλij and fλ
i of Rλ which

respectively lift each sij and each fi to Rλ. Therefore, for all such λ, φλ maps each Xfi into

D+(fλ
i ) ⊂ ProjS(Rλ). To complete the proof, it suffices to show each φλ|Xfi

is a closed

immersion. To this end, recall each φλ|Xfi
fits into the following cartesian square:

(2.5)

SpecXfi

(⊕
n∈Z L ⊗n) SpecS

(
(Rλ)fλ

i

)

Xfi D+(fλ
i )

φλ|Xfi

and it suffices to show that the top row is a closed immersion. Since each Xfi has finite diagonal

and each (Xfi)cs is affine, we may argue, as in (2.3), that the algebraic space SpecXfi

(⊕
n∈Z L ⊗n)

is an affine scheme. Then the top row of (2.5) is a morphism of affine schemes, which induces

a surjection on global sections

(Rλ)fλ
i
↠ Rfi

≃−−−−→
⊕
n∈Z

Γ(Xfi ,L
⊗n),

and hence is necessarily a closed immersion, as desired.

2.1.G. Sequences of stack-theoretic Proj. A sequence of stack-theoretic Proj

X ′ := Xn −→ Xn−1 −→ · · · −→ X1 −→ X

is not a stack-theoretic Proj because it need not be cyclotomic: the stabilizers are subgroups of

Gn
m, not of Gm. Instead of a single uniformizing line bundle L = O(1), we have a uniformizing

collection of line bundles L1,L2, . . . ,Ln — the corresponding map to BGn
m is representable.
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In fact, as we shall see next, this collection is even generating in the sense of [Gro17]: locally

on X, every quasi-coherent sheaf on X ′ of finite type is a quotient of a direct sum of line

bundles of the form L ⊗d1
1 ⊗ · · · ⊗L ⊗dn

n , di ∈ Z. Equivalently, the corresponding map to BGn
m

is quasi-affine [Gro17, Corollary 6.7]. That is, X ′ is divisorial.

Proposition 2.1.16. Let X ′ := Xn → Xn−1 → · · · → X1 → X be a sequence of n stack-

theoretic Proj. Let OXi
(1) ∈ Pic(Xi) denote the corresponding ample uniformizing line bundle

and let Li be the pullback of OXi
(1) to X ′.

(i) (L1,L2, . . . ,Ln) is generating, i.e. the induced morphism X ′ → BGn
m is quasi-affine.

(ii) If X is quasi-compact, then the line bundle L ⊗N1
1 ⊗ L ⊗N2

2 ⊗ · · · ⊗ L ⊗Nn
N is ample

relative to X for every N1 ≫ N2 ≫ · · · ≫ Nn.

Proof. The first part is immediate and the second part follows from the following lemma

and the classical result for compositions of projective morphisms [EGAII, Prop. 4.6.13 (ii)]. □

Lemma 2.1.17. Let f : X → Y be a qcqs morphism of algebraic stacks with finite inertia

and let fcs : Xcs → Ycs be the induced morphism on coarse spaces. Let L be an invertible sheaf

on Xcs. If L |X is f -ample, then L is fcs-ample.

Proof. By definition of ample (Setup 2.1.10), we may replace X with Xcs/Y so that f

becomes representable. The question is also local on Ycs so we may assume that Ycs is affine

and that Y admits a finite flat presentation Y ′ → Y of constant rank d. Let X ′ = X×Y Y
′ and

note that Y ′ → Ycs and X ′ → Xcs are affine. Let x ∈ |X| be a point. We need to find an affine

open neighborhood Xg of x for some g ∈ Γ(X,L ⊗m) such that (Xg)cs is affine, or equivalently,

such that X ′g is affine.

Consider the preimage Z ⊂ |X ′| of x. Since Z is finite and L |X′ is ample, there exists

a section f ∈ Γ(X ′,L ⊗n) such that Z ⊂ X ′f [EGAII, Cor. 4.5.4]. The norm of f along
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X ′ → X gives a section g ∈ Γ(X,L dn) such that Z ⊂ X ′g ⊂ X ′f and X ′g is affine, cf. [EGAII,

Cor. 6.5.7]. □

2.2. Examples of stack-theoretic Proj

In this section we give four examples of stack-theoretic Proj:

(2.2.A) twisted weighted projective stacks, which include root stacks of line bundles,

(2.2.B) root stacks of generalized Cartier divisors,

(2.2.C) a construction that transforms Q-invertible sheaves to invertible sheaves,

(2.2.D) and stack-theoretic GIT quotients.

In the next section, we will also present weighted blow-ups as another example of the stack-

theoretic Proj construction.

2.2.A. Weighted projective stacks, root stacks of line bundles and twisted weighted

vector bundles.

Example 2.2.1 (Weighted projective stacks [AH10, §2.1]). An important class of examples

of stack-theoretic Proj is weighted projective stacks. Given weights d0, d1, . . . , dn ∈ Z>0 we have

the smooth stack

P(d0, d1, . . . , dn) = ProjX
(
OX [x0, x1, . . . , xn]

)
where the degree of xi is di. The generic stabilizer is µµµd, where d = gcd(d0, d1, . . . , dn), and the

coarse space is the usual, singular, weighted projective space P(d0, d1, d2, . . . , dn). Slightly more

general, given vector bundles E1,E2, . . . ,Er on X and weights d1, . . . , dr ∈ Z>0, the weighted

(or graded) vector bundle E = E1(−d1)⊕ · · · ⊕ Er(−dr) gives the smooth stack

P(E ) = P
(
E1(−d1)⊕ · · · ⊕ Er(−dr)

)
:= ProjX

(
r⊗

i=1

SymOX

(
Ei(−di)

))
.
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The universal property of this stack is as follows (cf. Proposition 2.1.4): given a morphism

f : T → X, a lift to P(E ) corresponds to the data of a line bundle L on T and homomorphisms

φi : f
∗Ei → L ⊗di such that locally on T at least one of the φi is surjective. An isomorphism

between two lifts (L , {φi}) and (L ′, {φ′i}) is an isomorphism L ≃ L ′ compatible with the φi

and φ′i.

Example 2.2.2 (Root stacks of line bundles [Cad07a, Def. 2.2.6]). A special case of the

previous example is roots of line bundles. Given a line bundle E on X and a positive integer

d, the stack P
(
E (−d)

)
parameterizes, for a morphism of schemes f : T → X, a line bundle

L on T together with an isomorphism f ∗E
≃−→ L ⊗d. The corresponding graded algebra is

R = SymOX

(
E (−d)

)
. We call the corresponding stack-theoretic Proj the dth root stack of the

line bundle E , and denote it by X(E ,d) or X
(
d
√

E
)
.

We will need the following generalization of weighted vector bundles:

Definition 2.2.3. A twisted weighted vector bundle on X is a smooth affine morphism

E → X with a Gm-action such that E is smooth-locally Gm-equivariantly isomorphic to X×An

where Gm acts linearly with some weights d1, d2, . . . , dn ∈ Z.

The morphism E → X is called a Gm-fibration in [BB73, §3]. Equivalently, E = SpecX(R)

where R is a quasi-coherent graded OX-algebra that smooth-locally looks like the symmetric

algebra over OX of a graded vector bundle.

We will only need the case where all weights are positive (called fully definite in [BB73,

§2]). If X is a scheme and all weights are positive, then smooth-locally can be replaced with

Zariski-locally, see Remark 2.2.8.

Example 2.2.4 (Bia lynicki-Birula decomposition [BB73, Thm. 4.1]). Let X be a smooth

quasi-projective variety with an action of Gm. Let F ⊂ XGm be a connected component of the
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fixed locus. Let F+ = {x ∈ X : limt→0 t.x ∈ F}. Then F and F+ are Gm-equivariant, F is

closed, F+ is locally closed, F and F+ are smooth, and the natural map F+ → F is a twisted

weighted vector bundle with strictly positive weights.

Definition 2.2.5. A twisted weighted projective stack over X is the stack-theoretic Proj

of a graded algebra corresponding to a twisted weighted bundle on X with strictly positive

weights.

In what follows, we always assume that E = SpecX(R) is a twisted weighted bundle over a

connected scheme X. Then there exist a Zariski open cover Ui of X, weights d = (d1 < d2 <

· · · < dr), and dimensions n = (n1, n2, . . . , nr) ∈ Zr
>0, such that for every i,

R|Ui
≃ Sym

(
r⊕

i=1

O⊕ni
Ui

(−di)

)
=

r⊗
i=1

Sym
(
O⊕ni

Ui
(−di)

)
.

Example 2.2.6. For a non-trivial example of a twisted weighted bundle, let us consider

the weights d = (d1, d2, d3) = (1, 2, 4) and the dimensions n = (n1, n2, n3) = (1, 1, 1). Over

each Ui, we have a graded isomorphism:

αi : R|Ui

≃−−−−→ OUi
[xi, yi, zi],

where xi has weight 1, yi has weight 2, and zi has weight 4. Over pairwise intersections

Uij := Ui ∩ Uj, we then have the graded isomorphism on Uij:

αij = αj|Uij
◦ αi|−1Uij

: OUij
[xi, yi, zi]

≃−−−−→ R|Uij

≃−−−−→ OUij
[xj, yj, zj].

By considering the linear relations among the weights 1, 2, and 4, we deduce that these αij’s

have the following form in general:

xi 7→ aij · xj
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yi 7→ bij ·
(
yj + dij · x2j

)
zi 7→ cij ·

(
zj + eij · x4j + fij · x2jyj + gij · y2j

)
where aij, bij, cij ∈ Γ(Uij,O

×
Uij

) and dij, eij, fij, gij ∈ Γ(Uij,OUij
). Note that the data dij, eij, fij, gij

are precisely the “twists” in the twisted weighted bundle R. Over triple intersections Uijk :=

Ui ∩ Uj ∩ Uk, we have the following cocycle conditions:

aik = aijajk bik = bijbjk cik = cijcjk dik = djk +
a2jk
bjk

dij

and 
eik

fik

gik

 =


ejk

fjk

gjk

+
1

cjk


a4jk a2jkbjk · djk b2jk · d2jk

0 a2jkbjk · 1 b2jk · 2djk

0 0 b2jk · 1



eij

fij

gij


Therefore, twisted weighted bundles R on X with weights d = (1, 2, 4) and dimensions n =

(1, 1, 1) are globally characterized by the Čech cocycles in Ȟ1
(
X,G

)
, where

G =
(
Gm × ((Gm ×Gm) ⋉Ga)

)
⋉G3

a,

and the semidirect product are given by the actions:

(i) Gm ×Gm → Gm → Aut(Ga) where (a, b) 7→ a2

b
,

(ii) Gm × ((Gm ×Gm) ⋉Ga)→ GL3 → Aut(G3
a) where

(c, a, b, d) 7−→ 1

c


a4 a2bd b2d2

0 a2b 2b2d

0 0 b2

 .

2.2.7 (General description of twisted weighted bundles). In general, twisted weighted bun-

dles R on X with weights d and dimensions n are globally characterized by their respective
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Čech cocycles in Ȟ1(X,Gd,n), where the group Gd,n can be described as follows. If all weights

are equal, that is, r = 1, then Gd1,n1 = GLn1 and twisted weighted vector bundles are just

weighted vector bundles. If not, that is r > 1, set d′ = (d1, . . . , dr−1), n′ = (n1, . . . , nr−1), and

Gd,n is a semidirect product of the form

Gd,n = (GLnr ×Gd′,n′) ⋉GnrNr
a ,

where Nr is the dimension of the dr
th degree piece of a graded polynomial algebra with free

variables {xi,j : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ ni}, where xi,j is given weight di. That is,

Nr =
∑

dr=
∑

mi≥0 midi

r−1∏
i=0

(
mi + ni − 1

mi

)
.

Remark 2.2.8. From the description of Gd,n, we obtain an exact sequence

1 −→ Ud,n −→ Gd,n −→ GLn −→ 1

where Ud,n is a smooth connected unipotent group scheme of dimension N(d,n) =
∑r

i=2 niNi

and GLn = GLn1 × · · · ×GLnr . In particular, Gd,n is special in the sense of Serre, that is, the

Čech cohomology Ȟ1(X,Gd,n) can be calculated in the Zariski topology if X is a scheme.

In particular, if di is not in the Z≥0-linear span of d1, . . . , di−1, for every 1 ≤ i ≤ r, then

N(d,n) = 0 and any twisted weighted bundle E with weights (d1, . . . , dr) is a weighted bundle,

i.e. E “splits” as

E ≃ SpecX
(
SymOX

(E1(−d1)⊕ · · · ⊕ Er(−dr))
)

for vector bundles E1, . . . ,Er on X with respective dimensions n1, . . . , nr.

2.2.9 (Associated weighted vector bundle). To a twisted weighted vector bundle E =

SpecX(R) we can associate a weighted vector bundle E := R+/R
2
+ on X. This is nothing

but the vector bundle corresponding to the image of E under Ȟ1(X,Gd,n) → Ȟ1(X,GLn).
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Since E is locally free, the quotient morphism R+ → R+/R
2
+ = E locally admits a graded

section, which locally induces a graded isomorphism SymOX
(E )

≃−→ R. One can interpret the

presence of the “twists” in the twisted weighted bundle R as the obstructions to patching these

local isomorphisms to a global isomorphism. Note that the weights d and the dimension n can

be read off from E .

2.2.B. Root stacks of (generalized) Cartier divisors.

Definition 2.2.10. A generalized effective Cartier divisor on X is a pair (L , s) where L

is a line bundle and s ∈ Γ(X,L ) is a global section. Equivalently, s gives a homomorphism

s∨ : L ∨ → OX . We say that (L , s) is ordinary if s∨ is injective, or equivalently, if (L , s) =

(OX(D), sD) for an effective Cartier divisor D. Here, s∨D is the inclusion of the ideal ID =

OX(−D).

Example 2.2.11 (Root stacks of generalized divisors [Cad07a, Def. 2.2.1]). Given a gen-

eralized Cartier divisor (L , s) on X and a positive integer d, we consider the following graded

OX-algebra

(2.6) R =
⊕
n≥0

L ⊗−⌈n/d⌉

where the multiplication in this algebra makes sense by using the homomorphism s∨ : L ∨ → OX

whenever applicable. For example, for 0 < k, ℓ ≤ d, the multiplication Rk ⊗ Rℓ → Rk+ℓ is the

canonical L ∨ ⊗L ∨ → (L ∨)⊗2 if k + ℓ > d, and is given by L ∨ ⊗L ∨ → (L ∨)⊗2
1⊗s∨−−−→ L ∨

if k + ℓ ≤ d. We denote the corresponding stack-theoretic Proj by X(L ,s,d), and call it the dth

root stack of (L , s).

The root stack X(L ,s,d) has the following universal property (cf. Proposition 2.1.4): if

f : T → X is a morphism then a lift to the root stack is equivalent to giving a generalized Cartier
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divisor (E , t) on T together with an isomorphism φ : f ∗(L , s)
≃−→ (E , t)d. The corresponding

universal generalized Cartier divisor on the root stack is (O(−1), t) where t∨ is given by the

natural map R(1) → R. An isomorphism between two lifts (E , t, φ) and (E ′, t′, φ′) is an

isomorphism E → E ′ compatible with t, t′, φ and φ′.

Forgetting the section induces a morphism X(L ,s,d) → X(L ,d) to the root stack of Exam-

ple 2.2.2. Note that X(L ,d) ≃ X(L ∨,d).

Since R(d) = SymOX
(L ∨), it follows that π : X(L ,s,d) → X is a coarse space. Since R is flat,

π is also flat.

Remark 2.2.12. When L is trivial, then ProjX(R) is covered by a single chart as follows.

Let f ∈ Γ(X,L ) be an everywhere non-vanishing section. Then ProjX(R) = D+(f) =[
SpecX

(
R/(f − 1)

)
/ µµµd

]
. Note that R/(f − 1) ≃ OX [x]/(xd − s

f
) where deg(x) = −1.

More generally, if there exists a line bundle E such that L ≃ E d, then we can write the

root stack as a global quotient by µµµd by first twisting R with E so that

ProjX(R) =

[
SpecX

(
d−1⊕
n=0

E −n

)
/ µµµd

]

where E −n has degree −n and the multiplication is induced by s∨ : E −d = L ∨ → OX .

Example 2.2.13 (Root stacks of ordinary divisors). If D is an effective Cartier divisor on

X, the previous construction gives the following graded OX-graded algebra:

R =
⊕
n≥0

I
⌈n/d⌉
D .

We sometimes denote X(OX(D),sD,d) or X
(
d
√
D
)

instead, and call it the dth root stack of D. For

morphisms f : T → X such that f−1(D) is a Cartier divisor, the root stack has the following

universal property: a lift to the root stack is equivalent to giving an effective Cartier divisor E
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on T such that dE = f−1(D). In particular, the groupoid X(D,d)(T → X) is equivalent to a set

in this case, i.e. there are no non-trivial isomorphisms between lifts.

The morphism π : X(D,d) → X is a flat coarse space which is an isomorphism outside D.

The morphism E → D is a gerbe isomorphic to the dth root stack of the line bundle OD(D).

2.2.C. Inverting Q-invertible sheaves.

Setup 2.2.14. Let X be a noetherian scheme satisfying Serre’s condition S2 (for example,

a normal scheme). Let F be a coherent OX-module that is generically locally free, that is, there

exists a dense open jV : V ↪→ X on which F is locally free. We say that F has rank r if F |V is

locally free of rank r. Let tor(F ) be the torsion submodule of F , i.e.

tor(F ) = ker
(
F → jV ∗(F |V )

)
and set Ftf := F/tor(F ). Note that tor(F ) is independent of V since X has no embedded

points.

Suppose that j : U ↪→ X is an open subset whose complement has codimension ≥ 2 in X,

and on which Ftf is locally free. If X is normal, then this can always be arranged for since Ftf

is free at every point of codimension 1.

Lemma 2.2.15. The canonical morphism F → F∨∨ can be identified with the canonical

morphism F → Ftf → j∗(Ftf |U).

We call F∨∨ = j∗(Ftf |U) the reflexive hull of F . We say F is reflexive, if the canonical

morphism F → F∨∨ = j∗(Ftf |U) is an isomorphism.

Proof. Firstly, since X is S2, F
∨∨ is also S2, i.e. j∗(F

∨∨|U) = F∨∨. Next, since F∨∨ is

torsion-free, F → F∨∨ factors through Ftf , and the resulting morphism Ftf → F∨∨ induces a
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morphism j∗(Ftf |U)→ j∗(F
∨∨|U) = F∨∨ of S2-sheaves on X that is an isomorphism on U , and

hence is an isomorphism on X. □

For every integer n ≥ 0, we define the saturated nth power of F to be F [n] := (F⊗n)∨∨. Note

that F [n] = j∗(F
⊗n
tf |U) since Ftf |U is locally free.

We say that F is Q-invertible if F [N ] is invertible for some positive integer N , locally on X.

Note that a Q-invertible sheaf has rank 1. In what follows, we consider the graded OX-algebra

F [•] :=
⊕
n≥0

F [n].

Proposition 2.2.16 (cf. [AH10, Prop. 5.3.2]). Let X ′ = ProjX(F [•]) with structure mor-

phism π : X ′ → X. If F is Q–invertible, then:

(i) F [•] is finitely generated, and hence, X ′ is proper over X.

(ii) π : X ′ → X is a coarse space and an isomorphism over U . In particular, π is quasi-

finite.

(iii) If F [N ] ≃ OX for some N ≥ 1, then X ′ =
[
SpecX

(⊕N−1
n=0 F

[n]
)
/ µµµN

]
.

(iv) X ′ satisfies S2. Moreover, if X is normal, so is X ′.

(v) For every positive integer n, the canonical morphism F [n] → π∗OX′(n) is an isomor-

phism, and the canonical morphism π∗F [n] → OX′(n) is a reflexive hull.

(vi) π : X ′ → X satisfies the following universal property: if T is a scheme satisfying

S2 (resp. T is a normal scheme) which admits a morphism f : T → X such that

codimT

(
T ∖ f−1(U)

)
≥ 2 (resp. f−1(U) is dense in T ), then there is a lift of f to X ′,

unique up to a unique 2-isomorphism, if and only if (f ∗F )∨∨ is invertible.

Before proving the proposition, we note that in (vi), the hypothesis that codimT (T ∖

f−1(U)) ≥ 2 is satisfied whenever f satisfies one of the following conditions:

(a) f is flat;
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(b) f is dominant and integral and T is integral; or

(c) f is dominant and quasi-finite and T is integral.

Proof of Proposition 2.2.16. All statements, except (iii), are local on X so we may

assume that F [N ] is invertible for some integer N . For (i), note that the multiplication F [kN ]⊗

F [n] → F [kN+n] is an isomorphism for all integers k, n ≥ 0. Thus F [•] is generated in degrees

≤ N . Since F [n] is coherent for every n, we deduce that F [•] is finitely generated. Thus, X ′ is

proper over X by Proposition 2.1.5(ii).

For (ii), we note that F [N•] is generated in degree 1 and thus that the coarse space of X ′

is ProjX(F [•]) = ProjX(F [N•]) = P(F [N ]) = X (Proposition 2.1.5(iii)). Moreover, since Ftf |U

is invertible, π is an isomorphism over U . For (iii), this follows from X ′ = D+(f) where f is

a nowhere vanishing section of F [N ] (§2.1.C). For (iv), the question is local so we can assume

that F [N ] ≃ OX and hence that we have a faithfully flat presentation SpecX
(⊕N−1

n=0 F
[n]
)
→ X ′.

The result follows since
⊕N−1

n=0 F
[n] is a coherent S2-sheaf.

For (v), let U ′ := π−1(U), and consider the cartesian square:

U ′ X ′

U X.

≃

j′

π

j

Since F [n]|U = F⊗ntf |U is invertible, the canonical morphism π∗F [n] → OX′(n) is an iso-

morphism when restricted to U ′. Moreover, since OX′(n) is invertible, it is S2 and thus

OX′(n) = j′∗(π
∗F [n]|U ′), i.e. OX′(n) is the reflexive hull of π∗F [n]. We also have that:

F [n] ≃ j∗j
∗F [n] ≃ π∗j

′
∗j
′∗π∗F [n] ≃ π∗OX′(n).

Finally, for (vi), by Proposition 2.1.4 a morphism T → X ′ corresponds to a line bundle

L on T and a graded homomorphism φ : f ∗F [•] →
⊕

n≥0 L ⊗n of sheaves on T such that

φn : f ∗F [n] → L ⊗n is surjective for sufficiently divisible n, or equivalently, such that the induced
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(φn)tf : (f ∗F [n])tf → L ⊗n is surjective for sufficiently divisible n. Since F [n]|U is invertible,

f ∗F [n] is invertible over f−1(U), so (φn)tf |f−1(U) is an isomorphism for sufficiently divisible n,

and hence an isomorphism for all n. This means the following:

(a) If T is S2, then by hypothesis, (φn)tf is an isomorphism away from codimension ≥ 2 for all

n. Since L ⊗n is invertible, (φn)tf is the reflexive hull for all n, and thus so is φn.

(b) If T is normal, then by hypothesis, (φn)tf is generically an isomorphism for all n. In addition,

Serre’s condition R1 implies that (f ∗F [n])tf is invertible in codimension 1, so (φn)tf is an

isomorphism in codimension 1 for sufficiently divisible n, and hence an isomorphism in

codimension 1 for all n. In conclusion, (φn)tf is an isomorphism away from codimension

≥ 2, and the same argument as in (a) shows that φn is the reflexive hull for all n.

In either case, we conclude that such an L and φ exist precisely when (f ∗F )∨∨ is invertible

and then L = (f ∗F )∨∨. Finally, note that if F [N ] is invertible, then φN is an isomorphism and

in particular surjective. □

Remark 2.2.17. When F [N ] is invertible, the construction X ′ → X that makes F invertible

is closely related to taking the N th root of the invertible sheaf F [N ] (Example 2.2.2). Since

OX′(1)⊗n = OX′(n) = π∗F [N ], there is a canonical map φ : X ′ → X
(
N
√
F [N ]

)
over X. This map

is representable, hence finite, since φ∗ is compatible with tautological line bundles. That is, φ

is also induced, via Proposition 2.1.5(vi), by the graded homomorphism

SymOX

(
F [N ](−N)

)
→
⊕
n≥0

F [N ].

The finite morphism φ is not an isomorphism. In fact, the root stack is a gerbe, whereas

X ′ → X is generically an isomorphism (a stacky modification, i.e. proper and generically an

isomorphism). On the root stack, F [N ] has an N th root, but it does not coincide with the

reflexive hull of the pullback of F because it does not agree over U . This is explained by the

presence of torsion in the Picard group in the root stack over U .
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Example 2.2.18 (Q-Gorenstein varieties). We now apply Proposition 2.2.16 to the canon-

ical sheaf. Let X be a Q-Gorenstein variety of index N , that is, a normal variety of such that

the N th pluricanonical divisor NKX is Cartier. Let ω
[n]
X = OX(nKX) denote the nth pluricanon-

ical sheaf, or equivalently, (ω⊗nX )∨∨. Then ω
[n]
X is a reflexive sheaf of rank 1, which is invertible

whenever N divides n. Let X ′ = ProjX
(
ω
[•]
X

)
. Then π : X ′ → X is an isomorphism over the

locus where ωX is invertible, i.e. where X is quasi-Gorenstein, that is, Q-Gorenstein of index

1. The coarse moduli space of X ′ is ProjX
(
ω
[N•]
X

)
which equals X, and π∗O(n) = ω

[n]
X for every

positive integer n. The morphism π : X ′ → X only adds some stackiness in codimension ≥ 2.

Finally, the canonical sheaf ωX′ is (π∗ωX)∨∨, and hence is equal to OX′(1).

Example 2.2.19 (Cartierification). More generally, fix a normal noetherian scheme X,

with an effective Q-Cartier divisor D ⊂ X, say ND is Cartier. Let ID = OX(−D) be the ideal

of D ⊂ X, which is a reflexive OX-submodule of OX of rank one. Let U denote the largest open

subset of X on which D|U is Cartier (i.e. ID|U = ID|U is an invertible OU -submodule of OU), so

that ID = j∗(ID|U ). Recall that U ⊃ Reg(X) (the latter has complement of codimension ≥ 2

in X), and moreover note that U ⊃ Y ∖D.

We apply Proposition 2.2.16 with F = ID. Note that F [n] = I
[n]
D is precisely the nth

symbolic power InD of ID, since all the associated points of ID are non-embedded, and hence,

are contained in U . The OX-algebra F [•] = I•D =
⊕

n≥0 InD is called the symbolic Rees algebra

of D (or ID). Let X ′ = ProjX(I•D) with structure morphism π : X ′ → X. The inverse image

of D under π is a Cartier divisor (v), and π satisfies the following universal property (vi): if

f : T → X is a morphism from a normal scheme T such that f−1(D) is nowhere dense in T ,

then f factors, uniquely, through π if and only the inverse image f ∗D of D under f is an

effective Cartier divisor on T . Here, f ∗D is the Weil divisor on T whose underlying ideal sheaf

is (f ∗ID)∨∨.
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As a final note, we will see later in Example 2.3.38 that
⊕

n≥0 InD is the integral closure

of the OX-subalgebra
⊕

n≥0 I
⌈n/N⌉
ND of Example 2.2.13. In other words, there is a canonical

finite morphism X ′ = ProjX(I•D) → X
(
N
√
ND

)
, which presents X ′ as the normalization of

X
(
N
√
ND

)
.

Example 2.2.20 (Stacky modifications given by inverting Q-invertible sheaves). Suppose

that π : X ′ → X is a proper quasi-finite morphism of noetherian stacks satisfying S2, that L ∈

Pic(X ′) is an ample and uniformizing line bundle relative to X, and that π is an isomorphism

over an open substack U ⊂ X and that U and π−1(U) have complements of codimension at least

2. Then X ′ = ProjX(F [•]) where F = π∗L . Indeed, first note that X ′ → X is a relative coarse

space since X ′cs/X → X is a finite morphism between S2-stacks that is an isomorphism outside

codimension 2, hence an isomorphism. It follows that π∗L ⊗N is a line bundle for sufficiently

divisible N (2.1.10). Moreover, X ′ = ProjX
(⊕

n≥0 π∗L
⊗n) by Proposition 2.1.14(ii) so it

suffices to note that π∗L ⊗n = π∗j
′
∗j
′∗L ⊗n = j∗(π|U)∗j

′∗L ⊗n = j∗j
∗F⊗n = F [n].

Example 2.2.21 (Toric varieties and toric stacks). Let Σ be a simplicial fan. Then the

associated toric variety XΣ is normal and the torus-invariant divisors D1, D2, . . . , Dn are Q-

Cartier. The corresponding toric stack XΣ is smooth with smooth toric divisors. We thus get

a map XΣ → X ′ where X ′ → XΣ is the iterated stack-theoretic Proj that makes all the torus-

invariant divisors Cartier (Example 2.2.19). Since (O(D1),O(D2), . . . ,O(Dn)) is uniformizing

on the toric stack XΣ (by the Cox construction) as well as on X ′ (see Proposition 2.1.16), it

follows that XΣ → X ′ is a representable birational homeomorphism between normal stacks,

hence an isomorphism.

The toric stack XΣ is the canonical stack associated to the variety XΣ with finite quotient

singularities [FMN10, §4]. The Cartierification thus gives a different description of the canoni-

cal stack for a toric variety. If Σ is a stacky fan, then the associated toric stack can be described
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as the Cartierification of the torus-invariant divisors of the associated toric variety followed by

taking root stacks of these divisors and then root stacks of line bundles [FMN10, Thm. 1].

2.2.D. Stack-theoretic amplification of GIT quotients. Let X be a projective variety

with an action of a reductive group G and let L be an ample line bundle with a G-action.

Then we can form the GIT quotient X //G = Proj
(⊕

n≥0 Γ(X,L ⊗n)G
)
, where for each n ≥ 0,

Γ(X,L ⊗n)G denotes the G-invariant global sections of L ⊗n. If Xss ⊂ X denotes the semi-

stable locus of X, then Xss → X //G is a good quotient. This can also be phrased as saying

that [Xss / G]→ X //G is a good moduli space.

It is very natural to also consider the “stack-theoretic GIT quotient”:

[X //G] := Proj

(⊕
n≥0

Γ(X,L ⊗n)G

)
.

Whereas [Xss / G] is typically an Artin stack with infinite stabilizers, the stack [X //G] is a

tame Artin stack with finite cyclic stabilizers. We have

[Xss / G]
rel. good mod. space−−−−−−−−−−−→ [X //G]

tame coarse space−−−−−−−−−−→ X //G.

The stack-theoretic GIT quotient [X //G] was studied by Hassett [Has05, §3.1] and Gulbrand-

sen [Gul11] when X is the projective space of hypersurfaces in Pn of degree d and G = SL(n+1)

for small d and n.

2.3. Rees algebras and weighted blow-ups

2.3.A. Rees algebras.

Definition 2.3.1 (Rees algebras). A Rees algebra on X is a quasi-coherent, finitely gener-

ated, graded OX-subalgebra R =
⊕

n≥0 In · tn of OX [t] such that I0 = OX and In ⊃ In+1 for
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every n ∈ N. Equivalently, a Rees algebra is a descending filtration

I• = (I0 ⊃ I1 ⊃ I2 ⊃ . . . )

of ideals of OX , satisfying the following conditions:

(i) I0 = OX ;

(ii) InIm ⊂ In+m for every n,m;

(iii) locally on X, there exists a sufficiently large positive integer d such that for all integers

n ≥ 1,

In =

(
Iℓ11 I

ℓ2
2 · · · I

ℓd
d : ℓi ∈ N,

d∑
i=1

iℓi = n

)
,

in which case, we say that I• is generated in degrees ≤ d. Equivalently, the graded

module R+/R
2
+ is concentrated in degrees ≤ d.

Rees algebras are partially ordered by inclusion. The initial object is the zero Rees algebra

which is OX in degree 0 and zero in positive degrees. For any positive integer d, we write Id•

for the dth Veronese subalgebra of I•.

Remark 2.3.2.

(i) That I• is generated in degrees ≤ d does not imply that the Veronese subalgebra

Iℓ• is generated in degree 1 for ℓ the least common multiple of 1, 2, . . . , d, cf. Re-

mark 2.1.8. But it does imply that the Veronese subalgebra Id• is generated in degree

1 for sufficiently divisible d, see Proposition 2.3.7 below.

(ii) Rees algebras are called idealistic filtrations by Kawanoue [Kaw07]. Moreover, the

element gtn ∈ Int
n is also written there as (g, n); however, we shall reserve that

notation for the smallest Rees algebra containing gtn.
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(iii) Encinas–Villamayor [EV07a] do not require their Rees algebras to satisfy Ii ⊃ Ii+1.

This condition is, however, essential for the purpose of weighted blow-ups (Defini-

tion 2.3.12): without this condition, the exceptional divisor (Definition 2.3.13) of a

weighted blow-up would not make sense.

It is also convenient to account for the condition that I• is a descending filtration by ex-

tending Rees algebras trivially in negative degrees:

Definition 2.3.3 (Extended Rees algebras). An extended Rees algebra on X is a quasi-

coherent, finitely generated Z-graded OX [t−1]-subalgebra Iext• =
⊕

n∈Z I
ext
n · tn of OX [t±1] such

that Iext0 = OX .

2.3.4. For an extended Rees algebra Iext• on X, I• :=
⊕

n≥0 I
ext
n · tn is a Rees algebra on

X in the sense of Definition 2.3.1. Conversely, every Rees algebra I• on X can uniquely be

extended to an extended Rees algebra Iext• on X by setting

Iextn :=


OX , if n < 0;

In, if n ≥ 0.

Definition 2.3.5. Given an ideal J ⊂ OX and d ≥ 1, we let (J, d) denote the smallest Rees

algebra containing Jtd. Given a finite collection of Rees algebras Ik,• we let
∑

k Ik,• denote the

smallest Rees algebra containing all the Ik,•.

The marked ideal (J, d), used in resolution of singularities, can be identified with the Rees

algebra (J, d). Explicitly, we have that (J, d)n = J⌈n/d⌉, that is:

(J, d) = OX ⊕ Jt⊕ Jt2 ⊕ · · · ⊕ Jtd ⊕ J2td+1 ⊕ J2td+2 ⊕ · · ·

57



and that

(I1,• + · · ·+ Ir,•)n =
∑

n=n1+···+nr

I1,n1I2,n2 · · · Ir,nr .

In particular, I• is generated in degree ≤ d if and only if I• = (I1, 1) + (I2, 2) + · · ·+ (Id, d).

Example 2.3.6 (Ordinary Rees algebras). If a Rees algebra I• is generated in degree 1, i.e.

In = In1 for all n ≥ 1, then we say that I• = I•1 = (In1 ) = (I1, 1) is the Rees algebra of the ideal

I1 ⊂ OX .

The next proposition is a direct translation of Proposition 2.1.7:

Proposition 2.3.7. Let I• be a Rees algebra on X and suppose that X is quasi-compact.

Then for all sufficiently divisible d, we have Ird = (Id)
r for all integers r ≥ 1, i.e. Id• is the

Rees algebra of the ideal Id. □

Example 2.3.8. The graded OX-algebra of the dth root stack of the divisor D (Exam-

ple 2.2.13) is the Rees algebra (ID, d). The symbolic Rees algebra I•D of the Cartierification of

D (Example 2.2.19) is also a Rees algebra.

We can also see (ID, d) as a dilation of the ordinary Rees algebra (ID, 1):

Example 2.3.9 (Dilation). Given a Rees algebra I• on X, and a positive integer d, the dth

dilation of I• is the Rees algebra D• := I⌈•/d⌉, i.e. Dn := I⌈n/d⌉ for every integer n ≥ 0. Note

that the dth Veronese subalgebra of D• is I•, and I• ⊂ D•.

Taking the dth dilation of the dth Veronese subalgebra of a Rees algebra I• on X gives:

Example 2.3.10 (Truncation). Given a Rees algebra I• on X, and a positive integer d, the

dth truncation of I• is the Rees algebra T• := Id⌈•/d⌉ =
∑

d|n(In, n), i.e. Tn = Id⌈n/d⌉ for every

integer n ≥ 0. Note that Td• = Id•, and T• ⊂ I•.
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Remark 2.3.11. The Rees algebra
⊕

n≥0 I
⌈n/N⌉
ND mentioned at the end of Example 2.2.19

is precisely (IND, N), i.e. the N th truncation of I•D, since ND is a Cartier divisor.

2.3.B. Weighted blow-ups.

Definition 2.3.12 (Weighted blow-ups). If I• is a Rees algebra on X, the (stack-theoretic)

weighted blow-up of X along I• is defined as the stack-theoretic Proj

BlI• X := ProjX(I•) −→ X.

This morphism is proper (Proposition 2.1.5(ii)). Note that
√
In =

√
I1 for any positive integer

n. We call V (I1) the co-support of the weighted blow-up (or the Rees algebra).

Definition 2.3.13 (Exceptional divisor). Let X ′ := BlI• X
π−→ X. The natural inclusion

I•+1 ↪→ I• corresponds to the inclusion OX′(1) ↪→ OX′(0) = OX′ of invertible sheaves, and

defines an effective Cartier divisor E on X ′ such that OX′(1) = OX′(−E). We call E the

exceptional divisor of BlI• X.

Remark 2.3.14. Explicitly, if we write I• locally as (f1, d1) + · · ·+ (fm, dm), then the ideal

sheaf IE of E can be described locally on BlI• X as follows. On the chart

D+(fi · tdi) =
[
SpecX

(
I•[(fi · tdi)−1]

)
/ Gm

]
of BlI• X, the ideal sheaf IE is generated by t−1 = fi·tdi−1

fi·tdi
∈ I•[(fi · tdi)−1]. In particular, the

Cartier divisor diE is principal and given by the vanishing of π−1(fi) on this chart. Thus, for

all N divisible by d1, d2, . . . , dm, the Cartier divisor NE has ideal sheaf

INE =
(
π−1(fi)

N/di : i = 1, 2, . . . ,m
)
.
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Remark 2.3.15 (Weighted blow-ups in terms of extended Rees algebras). Note that if Iext•

denotes the extended Rees algebra of I• (2.3.4), then:

BlI• X = ProjX(Iext• ) :=
[
SpecX(Iext• ) ∖ V (Iext+ ) / Gm

]
.

Indeed, if we write I• locally as (f1, d1) + · · ·+ (fm, dm), then one has, for each 1 ≤ i ≤ m, that

Iext• [(fi · tdi)−1] = I•[(fi · tdi)−1], and thus

D+(fi · tdi) =
[
SpecX

(
Iext• [(fi · tdi)−1]

)
/ Gm

]
.

Evidently these identifications are compatible with each other.

Note too that the exceptional divisor E of BlI• X is induced by the principal divisor given by

t−1 = 0 on SpecX(Iext• ) whereas the ideal sheaf I•+1 on SpecX(I•), which is not even invertible,

only becomes principal over the localizations I•[(fi · tdi)−1] (Remark 2.3.14).

The next proposition, like Proposition 2.3.7, is a direct translation of Proposition 2.1.7:

Proposition 2.3.16. Let I• be a Rees algebra on X. The coarse space of BlI• X, relative

to X, is the ordinary blow-up BlId X for any positive integer d such that Id• is generated in

degree 1. Such a d always exists if X is quasi-compact (Proposition 2.3.7). □

Example 2.3.17 (Ordinary blow-ups). Let I ⊂ OX be an ideal. The weighted blow-up

BlI• X of X along the Rees algebra I• = (I, 1) of I is the usual blow-up BlI X of X along I.

Example 2.3.18 (Root stack of a divisor). Given an effective Cartier divisor D on X, and a

positive integer d, the root stack X
(
d
√
D
)

is the weighted blow-up Bl(ID,d)X (see Examples 2.2.13

and 2.3.8).
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Example 2.3.19 (Cartierification). If X is normal and noetherian and D is an effective

Q-Cartier divisor, then the Cartierification of D in X is BlI•D X (see Examples 2.2.19 and

2.3.8).

Theorem 2.3.20 (Universal property of weighted blow-ups). Let I• be a Rees algebra, and

let π : X ′ = BlI• X → X be the corresponding weighted blow-up.

(i) For every n ∈ N we have an inclusion of ideals π−1(In)OX′ ⊂ InE, which is an equality

for all sufficiently divisible n (locally on X).

(ii) Let f : T → X be a morphism such that U := T ∖ f−1
(
V (I1)

)
is scheme-theoretically

dense. The groupoid of factorizations through π is equivalent to the set of effective

Cartier divisors D on T such that f−1(In)OT ⊂ InD for all n with equality for all

sufficiently divisible n (locally on T ). If f = π ◦ g, then D = g−1(E).

Proof. By Proposition 2.1.4, a factorization of f through π corresponds to a line bundle

L on T together with a graded algebra homomorphism φ :
⊕

n≥0 f
∗In →

⊕
n≥0 L ⊗n which is

surjective for all sufficiently divisible n. The case T = BlI• X corresponds to L = OX′(1) =

OX′(−E) with the canonical map φ.

Let N be a sufficiently divisible integer. We begin by noting that φN |U is an isomorphism

and hence that φ|U is an isomorphism. Since j : U → T is scheme-theoretically dominant, we

have that L n → j∗j
∗L n = j∗j

∗OT is injective whereas the image of f ∗In → j∗j
∗F ∗In = j∗j

∗OT

is f−1(In)OT . It follows that φ factors through an injective graded homomorphism

ψ :
⊕
n≥0

f−1(In)OT →
⊕
n≥0

L ⊗n.

In particular, ψN is an isomorphism. The composition of ψ−1N , the inclusion f−1(IN)OT ⊂

f−1(IN−1)OT and ψN−1 gives an injective homomorphism L N ↪→ L N−1, or equivalently, an

injective homomorphism s : L ↪→ OT . This defines the Cartier divisor D. Note that s|U =
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(ψ1|U)−1 so ψn together with sn gives the inclusion of ideals f−1(In)OT ↪→ L n = OT (−nD) ↪→

OT . □

Remark 2.3.21. For all n, we have a commutative diagram

nE V (In)

BlI• X Xπ

which is cartesian for sufficiently divisible n. Unlike the usual blow-up, the diagram is not

always cartesian for n = 1. Nevertheless:

(i) π is an isomorphism away from V (I1).

(ii) Ered = π−1(V (I1))red.

(iii) π−1(V (I1)) is of codimension 1 in BlI• X and its complement is scheme-theoretically

dense in BlI• X.

Remark 2.3.22. If one locally writes I• as (f1, d1) + · · ·+ (fm, dm), then the condition in

Theorem 2.3.20(ii) that f−1(In) ⊂ InD for all n with equality for sufficiently divisible n (locally

on T ) can be explicated as the following equivalent condition: f−1(fi) ∈ IdiD for all 1 ≤ i ≤ m

and locally on T there exists an i such that IdiD =
(
f−1(fi)

)
. The latter occurs on the preimage

of the chart D+(fi · tdi) of BlI• X (Remark 2.3.14). Thus, f−1(In)OT = InD for every n divisible

by the d1, d2, . . . , dm.

The next corollary generalizes Example 2.3.18.

Corollary 2.3.23. Let I ⊂ OX be an ideal, and fix a positive integer d. Then Bl(I,d)X

coincides with the dth root stack (Example 2.2.13) of the exceptional divisor of the usual blow-up

BlI X of X along I.

Proof. LetX ′ denote the dth root stack of the exceptional divisor of BlI X. For a morphism

f : T → X:
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(a) The groupoid of factorizations through X ′ → X is equivalent to the set of effective Cartier

divisors D on T such that f−1(I)OT = IdD (Example 2.2.13).

(b) The groupoid of factorizations through Bl(I,d)X → X is equivalent to the set of effective

Cartier divisors D on T such that f−1(I⌈n/d⌉)OT ⊂ InD for every n with equality whenever

d | n (Remark 2.3.22).

The groupoids in (a) and (b) are equivalent, and the corollary follows. □

Remark 2.3.24. The corollary shows that our definition of Bl(I,d)X agrees with the defi-

nition of Bl(I,d)X as the dth root stack of the usual blow-up in [Ryd09]. The weighted blow-up

Bl(I,d)X is called the dth Kummer blow-up of X along I in [Ryd09].

Corollary 2.3.25 (Functoriality for weighted blow-ups). Let f : Y → X be a morphism of

schemes, and let I• be a Rees algebra on X. There is a unique morphism g : Blf−1(I•)OY
Y →

BlI• X making the following diagram commute:

(2.7)

Blf−1(I•)OY
Y (BlI• X)×X Y BlI• X

Y X

g

πY

ι

π

f

and the induced morphism ι is a closed immersion. Hence:

(i) Blf−1(I•)OY
Y is the scheme-theoretic closure of the complement of E×XY in (BlI• X)×X

Y .

(ii) If f is a closed immersion, then so is g : Blf−1(I•)OY
Y → BlI• X.

(iii) If f is flat (e.g. f is an open immersion), then ι is an isomorphism.

Proof. The existence and uniqueness of g follow from Theorem 2.3.20. To see that ι is a

closed immersion, note that ι is induced by the natural surjective morphism f ∗I• → f−1(I•)OY
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of graded OY -algebras, i.e.

ι : Blf−1(I•)OY
Y = ProjY (f−1(I•)OY ) ↪→ProjY (f ∗I•) = (BlI• X)×X Y.

Then parts (i) and (ii) are immediate. For part (iii), note that if f is flat, then f ∗I• → f−1(I•)OY

is an isomorphism. □

Definition 2.3.26. In the above corollary, Blf−1(I•)OY
Y is known as the proper (or strict)

transform of Y → X under the weighted blow-up BlI• X
π−→ X, while π−1(Y ) = (BlI• X)×X Y

is the total transform of Y → X under the weighted blow-up BlI• X
π−→ X.

For the remainder of this section, we specialize to the case where Y = V (J) ↪→ X is a closed

subscheme, where J ⊂ OY is an ideal.

Definition 2.3.27 (Admissibility). For x ∈ X, we say that I• is J-admissible at x if (I•)x

contains the Rees algebra J•x of Jx. Equivalently, (I1)x ⊃ Jx.

We also say I• is J-admissible if I• is J-admissible at every x ∈ X. That is, I• ⊃ J•.

Equivalently, I1 ⊃ J , i.e. the co-support (Definition 2.3.12) of I• is contained in V (J) ⊂ X.

We collate some straightforward properties:

Lemma 2.3.28 (Properties). Let d1, . . . , dm ∈ N>0, and J1, . . . , Jm be ideals on X. For

x ∈ X:

(i) I• is
∑

i Ji-admissible at x if and only if I• is Ji-admissible at x for every 1 ≤ i ≤ m.

(ii) If Idi• is Ji-admissible at x for every 1 ≤ i ≤ m, then Id• is
∏

i Ji-admissible at x,

where d :=
∑

i di.

(iii) For any d ∈ N>0, I• is J-admissible at x if and only if Id• is J
d-admissible at x.

The following lemma says that we can check admissibility by passing to completions, and

is a consequence of faithful flatness of OX,x → ÔX,x, cf. [Mat89, Theorem 7.5].
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Lemma 2.3.29. For x ∈ X, I• is J-admissible at x if and only if I1ÔX,x ⊃ JÔX,x.

The notion of admissibility is related to weighted blow-ups as follows:

Lemma 2.3.30 (Relationship with weighted blow-ups). Let π : X ′ := BlI• X → X, and E

be the exceptional divisor on X ′ with ideal IE ⊂ OX′. For m ∈ N>0, the following statements

are equivalent:

(i) Im• is J-admissible.

(ii) π−1(J)OX′ ⊂ ImE , i.e.
(
π−1(J)OX′

)
= ImE · J ′ for an ideal J ′ ⊂ OX′.

Proof. For (i) =⇒ (ii), we use Theorem 2.3.20(i) to deduce from J ⊂ Im that π−1(J)OX′ ⊂

π−1(In)OX′ ⊂ ImE , as desired. For (ii) =⇒ (i), recall that X ′ = ProjX(Iext• ), with IE = (t−1) ⊂

Iext• . Then (ii) implies J · tm ⊂ I−mE ·
(
π−1(J)OX′

)
⊂ I•, so that J ⊂ Im. □

We conclude this section by defining one additional transform:

Definition 2.3.31 (Weak transform). Assume thatX is noetherian. Let π : X ′ := BlI• X →

X, and E be the exceptional divisor on X ′ with ideal IE ⊂ OX′ . Let

ℓ := max{m ∈ N>0 : Im• is J-admissible} = max{m ∈ N>0 : π−1(J)OX′ ⊂ ImE }

which exists by Krull’s intersection theorem. Then we call the ideal π−1∗ (J) := π−1(J)OX′ · I−ℓE

the weak transform (also known as the birational or controlled transform) of J under π, cf.

[Kol07, Definition 3.60].

Note that π−1∗ (J) is always contained in the proper transform J̃ of J under π (Defini-

tion 2.3.26), with equality if J is locally principal. This follows from the fact that J̃ =

(π−1(J)OX′ : I∞E ) :=
⋃

m∈N (π−1(J)OX′ : ImE ), cf. [Lee20, Proposition A.2.2].
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2.3.C. Integral closure of Rees algebras.

Definition 2.3.32 (Integral closure). For a Rees algebra I• (or more generally, a quasi-

coherent OX-subalgebra of OX [t]) on X, we denote by IC(I•) the integral closure of I• in OX [t].

We say I• is integrally closed if IC(I•) = I•.

Note that if X is normal, then I• is integrally closed if and only if SpecX(I•) is normal.

Remark 2.3.33. For a Rees algebra I• on X, note that (by definition) the integral closure

of Id• is the dth Veronese subalgebra of IC(I•).

Remark 2.3.34. Given a Rees algebra I•, the integral closure IC(I•) is always a quasi-

coherent graded OX-subalgebra of OX [t] but not necessarily of finite type. However, if X is

integral and Nagata, then we claim that IC(I•) is of finite type over OX , and hence a Rees

algebra on X.

Indeed, the question is local, so we may assume that X = Spec(A) is affine. Let K be the

fraction field of A. Let IC(I•) be the integral closure of I• in K(t). Since A is Nagata, so is

I• (being a finitely generated A-subalgebra of A[t]). Since K(t) is also the field of fractions of

I•
1, we conclude that IC(I•) is finite over I•. In particular, it is a noetherian I•-module, so

its I•-submodules (e.g. IC(I•)) are finitely generated I•-modules, and hence, finitely generated

A-algebras.

2.3.35 (Integral closure of ideals). For an ideal I on X, the t1-graded piece of IC(I•) is

known in the literature (e.g. [Laz04, 9.6.A]) as the integral closure IC(I) of the ideal I ⊂ OX .

Note that I ⊂ IC(I) ⊂
√
I.

Example 2.3.36. Let X be a normal scheme. If E is an effective Cartier divisor on X,

then the ordinary Rees algebra (IE, 1) of IE = OX(−E) on X is integrally closed. Indeed,

locally on X, we have that I•E ≃ OX [t] which is integrally closed.
1If In = 0 for n > 0, then IC(I•) = I• and there is nothing to prove.
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Example 2.3.37 (Integral closure of truncations). Let I• be a Rees algebra on X, and for

any positive integer d, let T• be the dth truncation of I• (Example 2.3.10). Then IC(I•) = IC(T•).

For this, it suffices to observe that the dth Veronese subalgebra of IC(I•) coincides with that of

IC(T•).

Example 2.3.38 (Cartierification, II). Adopt the setup in Example 2.2.19. We shall now

show that I•D =
⊕

n≥0 InD is the integral closure in OX [t] of (IND, N) =
⊕

n≥0 I
⌈n/N⌉
ND . Since

(IND, N) is the N th truncation of I•D (Remark 2.3.11(i)), it remains to show (because of

Example 2.3.37) that I•D is integrally closed.

For this, let U be as in Example 2.2.19. On U , we have I•D|U = (ID, 1)|U , and hence, by

Example 2.3.36, I•D|U is integrally closed. Thus, so is I•D = j∗(I•D|U).

For integrally closed Rees algebras, we can generalize the operation of taking Veronese

subalgebra as follows:

Definition 2.3.39 (Veronese translate). For an integrally closed Rees algebra I• on X and

q = a
b
∈ Q>0, the Veronese q-translate of I• is defined as

Iq• := IC

(⊕
d∈N

Iad · tbd
)
⊂ OX [t].

Since we are passing to integral closures, Iq• is well-defined, independent of the presentation of

q as a quotient of two positive integers a
b
. For d ∈ N>0, note that the Veronese d-translate of

I• is the same as the dth Veronese subalgebra of I•. By default, we shall also set I0• := OX [t].

Finally, by a Veronese translate of I• we always mean Iq• for some q ∈ Q>0.

With respect to the above definition, we can extend Lemma 2.3.28(ii) as follows:

Corollary 2.3.40. Let x ∈ X, and let I• be an integrally closed Rees algebra on X. Let

q1, . . . , qm ∈ Q>0, and J1, . . . , Jm be ideals on X. If Iqi• is Ji-admissible at x for every 1 ≤ i ≤

m, then Iq• is
∏

i Ji-admissible at x, where q :=
∑

i qi.

67



Proof. Choose a common b ∈ N>0 so that for every 1 ≤ i ≤ m, qi = ai
b

for some ai ∈ N>0.

By Lemma 2.3.28(iii), the hypothesis implies that Iai• = Iai• is J b
i -admissible at x for every

1 ≤ i ≤ m. Let a :=
∑

i ai. By Lemma 2.3.28(ii), Ia• = Ia• is (
∏

i Ji)
b-admissible at x. By

Lemma 2.3.28(iii) again, Iq• is
∏

i Ji-admissible at x. □

2.3.D. Normalized weighted blow-ups. In this subsection we assume that X is normal.

Definition 2.3.41 (Normalized weighted blow-ups). The normalized weighted blow-up of X

along a Rees algebra I• on X is the normalization of BlI• X (denoted BlnormI• X), or equivalently,

ProjX (IC(I•)).

Note that IC(I•) is not always a Rees algebra (Remark 2.3.34), and thus the normalized

weighted blow-up BlnormI• X of X is not always proper (not always of finite type but always

separated, quasi-compact and universally closed) over X.

Example 2.3.42. Adopt the setup in Example 2.2.19. Then the Cartierification (Exam-

ple 2.3.19) of D in X is the normalized weighted blow-up of X along (IND, N) by Exam-

ple 2.3.38. In other words,

BlI•D X = Blnorm(IND,N)X =
(
X
(
N
√
ND

))norm
.

The integral closure I•D = IC
(
(IND, N)

)
is always finitely generated and hence a Rees algebra

by Proposition 2.2.16(i).

The universal property of weighted blow-ups in Theorem 2.3.20 has a neater re-interpretation

after passage to normalizations:

Theorem 2.3.43 (Universal property of normalized weighted blow-ups). For a Rees algebra

I• on X, the normalized weighted blow-up π : BlnormI• X → X satisfies the following universal
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property. Let f : T → X be a morphism, where T is normal and such that f−1(V (I1)) is

nowhere dense. Then there exists at most one lift g : T → BlnormI• X of f , and such a lift exists

if and only if IC(f−1(I•)OT ) = (ID, 1) for some effective Cartier divisor D on T . If this is the

case, then D = g−1(E).

Proof. By Theorem 2.3.20, the lifts T → BlnormI• X are equivalent to the set of Cartier

divisors D such that f−1(IC(In))OT ⊂ InD for every n ≥ 1 with equality for sufficiently divisible

n (locally on T ). Since T is normal, the Rees algebra (ID, 1) is integrally closed and the condition

is equivalent to IC
(
f−1(I•)OT

)
⊂ (ID, 1) with equality for sufficiently divisible n. This means

that we have an equality of Rees algebras (Examples 2.3.36 and 2.3.37). In particular, D is

unique. □

A partial converse to Corollary 2.3.23 is:

Proposition 2.3.44. Let X be a normal, quasi-compact scheme. Every normalized weighted

blow-up of X is a normalized Kummer blow-up Blnorm(I,d) X of X.

Proof. Let I• be a Rees algebra on X, and let X ′ = BlIC(I•)X. By Proposition 2.3.7, there

exists a positive integer d such that Id• is generated in degree 1. Let T• be the dth truncation

of I•. By Example 2.3.37, IC(I•) = IC(T•), so X ′ = BlIC(T•)X. By definition, T• is the dth

dilation of Id•. Thus, X ′ = BlIC(T•)X = BlIC(Id,d)X = Blnorm(Id,d)
X. □

Under an additional hypothesis on stackiness, we can also describe a Kummer blow-up as

an ordinary blow-up followed by a Cartierification.

Proposition 2.3.45. Let X be a normal scheme, I ⊂ OX be an ideal, and d be a positive

integer. If the normalized Kummer blow-up Blnorm(I,d) X → X is representable over an open subset

U ⊂ Blnorm(I,d) X with complement of codimension ≥ 2, then:

(i) BlnormI X has an effective Q-Cartier divisor D such that dD is the exceptional divisor

on BlnormI X.
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(ii) Blnorm(I,d) X → X can be factored as follows:

Blnorm(I,d) X
p−−−−→ BlnormI X

q−−−−→ X

where q is the normalized blow-up of X along I, and p is the Cartierification of D in

BlnormI X.

Proof. Let E (resp. E ′) denote the exceptional divisor on BlnormI X (resp. Blnorm(I,d) X). By

the universal property of BlnormI X, the map Blnorm(I,d) X → X factors uniquely through BlnormI X

as follows:

Blnorm(I,d) X
p−−−−→ BlnormI X

q−−−−→ X.

Since Blnorm(I,d) X has no relative stackiness over X in codimension 1, and since p is a coarse

moduli space (Proposition 2.1.5(iii)), p is an isomorphism in codimension 1, and thus p induces

an identification of Weil divisors of both sides. Since p−1(E) = dE ′ with E ′ a Cartier divisor

on Blnorm(I,d) X, there exists a Weil divisor D on BlnormI X such that dD = E.

Next, set Y := BlnormI X, and we show that p can be identified with the Cartierification of

D, i.e. π : BlI•D Y → Y . We do so by comparing the universal properties of π and q ◦ p. Let

f : T → Y be a morphism from a normal scheme T , where f−1(D) is nowhere dense in T , i.e.

(q ◦ f)−1(V (I)) is nowhere dense in T (for example, f = π or f = p). Then:

(a) f factors uniquely through π if and only if f ∗D is an effective Cartier divisor on T (Exam-

ple 2.2.19).

(b) f factors uniquely through p if and only if

IC
(
(q ◦ f)−1(I, d)OT

)
= IC(f−1(IE, d)OT )

= IC(f−1(I•D)OT ) = I•f∗D
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is generated in degree 1 by the underlying ideal of an effective Cartier divisor on T (Theo-

rem 2.3.43). Note that the last equality above holds since both sides are integrally closed

Rees algebras whose dth Veronese subalgebras coincide.

By inspection, the universal properties in (a) and (b) coincide, as desired. □

2.3.E. Zariski-Riemann spaces. For the remainder of §2.3, we will give a convenient re-

formulation of integrally closed Rees algebras on varieties in terms of certain objects on their

Zariski-Riemann spaces. In this subsection, we begin by first recalling the notion of Zariski-

Riemann spaces, originally referred to as “Riemann manifolds” by Zariski [Zar39], in his proof

of resolution of singularities in dimensions 2 and 3. We fix a variety X over a field k (= integral,

separated scheme over k), and let K = K(X) be its field of fractions.

Definition 2.3.46 (Zariski-Riemann space of K/k). We define ZR(K/k) in steps:

(i) As a set,

ZR(K/k) := {valuation rings R of K containing k}.

We usually denote an element R of ZR(K/k) by its corresponding valuation ν : K∗ ↠

G instead, where G = {aR : a ∈ K∗} is the value group of ν. In that case, we write

Rν for R, and Gν for G. We denote the unique maximal ideal of Rν by mν , and its

residue field by κν = Rν/mν .

(ii) As a topological space, ZR(K/k) has a basis of open sets of the form

U(a1, a2, . . . , am) :=
{
ν ∈ ZR(K/k) : Rν ⊃ k[a1, a2, . . . , am]

}
where m ∈ N and a1, a2, . . . , am ∈ K∗.
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(iii) Finally, as a locally ringed space, ZR(K/k) is equipped with the sheaf of rings:

OZR(K/k)(U) :=
⋂
ν∈U

Rν where U ⊂ ZR(K/k) is open.

In particular, OZR(K/k)(U(a1, a2, . . . , am)) is the integral closure of k[a1, a2, . . . , am] in

K [Mat89, Theorem 10.4]. Then OZR(K/k) is a subsheaf of the constant sheaf K on

ZR(K/k), and the stalk of OZR(K/k) at ν is Rν .

(iv) ZR(K/k) also carries a sheaf of ordered groups Γ = K∗/O∗ZR(K/k), whose sections over

an open set U are:(sν)ν∈U ∈
∏
ν∈U

Gν :

for every ν ∈ U , there exists an open neighbourhood

V ⊂ U of ν and some a ∈ K∗ such that for all ν ′ ∈ V ,

sν′ = ν ′(a)


and whose stalk at ν is Gν , with a morphism of sheaves of ordered groups val : K∗ ↠ Γ.

The image val(OZR(K/k) \ {0}) ⊂ Γ is the sheaf of monoids consisting of non-negative

sections of Γ, denoted Γ+. Its sections over an open set U are:(sν)ν∈U ∈
∏
ν∈U

Gν :

for every ν ∈ U , there exists an open neighbourhood

V ⊂ U of ν and some 0 ̸= a ∈ OZR(K/k)(V ) such that

for all ν ′ ∈ V , sν′ = ν ′(a)

 .

Convention 2.3.47. If k = Q or Z/p (depending on its characteristic), we can neglect the

base k. That is, a k-variety will be called a variety, and we write ZR(K/k) as ZR(K).

We now focus on two properties of ZR(K/k). Firstly:

Lemma 2.3.48. ZR(K/k) is quasi-compact.

This is well-known, cf. [Mat89, Theorem 10.5]. Secondly and more importantly:
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Lemma 2.3.49. ZR(K/k) can be identified with the inverse limit of projective models of

K/k in the category of locally ringed spaces.

2.3.50. Let us expound on Lemma 2.3.49 further. A projective model of K/k is a projective

k-variety X whose field of functions K(X) is isomorphic to K. For every ν ∈ ZR(K/k), there

exists a unique dotted arrow making the triangles in the diagram below commute:

Spec(K) X

Spec(Rν) Spec(k)

generic pt.

fν

The composition Spec(κν) = Spec(Rν/mν) → Spec(Rν)
fν−→ X designates a point xν on X,

which is called the center of Rν on X [Har77, Exercise II.4.5]. This gives an injective local

k-homomorphism f#
ν : OX,xν → Rν of local rings whose field of fractions is K, in which case we

say Rν dominates OX,xν [Har77, Lemma II.4.4].

The projective models of K/k form an inverse system as follows. An arrow from a projective

model Xa to another Xb is a birational morphism φa→b : Xb → Xa. For every ν in ZR(K/k),

φa→b necessarily maps the center (xν)b of Rν on Xb to the center (xν)a of Rν on Xa. In other

words, φb
a induces a local homomorphism φ#

a→b of local rings with field of fractions K, which

makes the diagram below commute:

OXa,(xν)a OXb,(xν)b

Rν

φ#
a→b

(fν)
#
a (fν)

#
b

The join X of two projective models Xa and Xb admits birational morphisms X → Xa and

X → Xb, whence this is indeed an inverse system.

Proof of Lemma 2.3.49. We prove this in steps.

73



2.3.51 (Step 1 : ZR(K/k) is the set-theoretic inverse limit). As shown above, a point

ν ∈ ZR(K/k) determines a collection of points {xν ∈ X : X is a projective model of K/k},

which is compatible with the arrows in the inverse system, and hence determines a point in the

inverse limit.

Conversely, a point in the inverse limit is a collection of points Σ = {yΣ ∈ X : X is a

projective model of K/k} which is compatible with the arrows in the inverse system. Let R be

the direct limit of the system whose objects are the local rings OX,xΣ
, and whose arrows are given

by the local k-homomorphisms of local rings. Note that R is a local ring. By [Har77, Theorem

I.6.1A], R is a valuation ring of K containing k, and hence determines a point ν ∈ ZR(K/k).

For each projective model X of K/k, OX,xΣ
is the unique local ring of X dominated by R, i.e.

the center of R on X is xΣ. On the other hand, given a point ν ∈ ZR(K/k), Rν is the direct

limit of the system of local rings OX,xν [Har77, Theorem I.6.1A]. This establishes the desired

one-to-one correspondence of points.

2.3.52 (Step 2 : ZR(K/k) is the topological inverse limit). The inverse limit topology

on ZR(K/k) is the coarsest topology such that for every projective model X of K/k, the map

πX : ZR(K/k)→ X, which maps each ν ∈ ZR(K/k) to the center xν of Rν on X, is continuous.

To see this, fix a projective model X of K/k. Let U = Spec(A) ⊂ X be an open affine subset.

Then π−1X (Spec(A)) consists of those ν ∈ ZR(K/k) for which there exists a dotted arrow filling

in the diagram below:

K A

Rν k

Since A is a finitely generated k-algebra, write A = k[a1, a2, . . . , an] for ai ∈ K∗. Then

U(a1, a2, . . . , an) = π−1X (Spec(A)). Conversely, given a1, a2, . . . , an ∈ K∗, there are an+1, . . . , am ∈

K∗ such that A = k[a1, a2, . . . , am] has fraction field K. The projection Ti 7→ ai gives a presen-

tation of A as A ≃ k[T1, T2, . . . , Tm]/p for some prime ideal p ⊂ k[T1, T2, . . . , Tm]. Homogenize
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p ⊂ k[T1, . . . , Tm] to a homogeneous prime ideal P ⊂ k[T1, . . . , Tm, Tm+1]. Then U = Spec(A)

is an open affine subset of X = Proj(k[T1, . . . , Tm+1]/P), which is a projective model of K/k

with π−1X (Spec(A)) = U(a1, . . . , am) ⊂ U(a1, . . . , an). Since open affines form a basis for Zariski

topology, this step is complete.

2.3.53 (Step 3 : ZR(K/k) is the inverse limit in the category of locally ringed spaces).

Set O := lim−→X
π−1X OX , where the direct limit is taken over projective models X of K/k. In

other words, O is the sheaf of rings on ZR(K/k) as the inverse limit in the category of locally

ringed spaces [Gil11, Theorem 4 and Corollary 5]. It remains to show that O = OZR(K/k).

For this, observe there are morphisms π−1X OX → OZR(K/k), adjoint to the canonical morphisms

OX → (πX)∗OZR(K/k), for each projective model X of K/k. Together they culminate in a

morphism O ′ → OZR(K/k) which is an isomorphism on stalks, cf. second-to-last sentence in

2.3.51. □

Definition 2.3.54 (Zariski-Riemann space of a k-variety). More generally, we can define

the Zariski-Riemann space of the k-variety X. Let K(X) denote the field of fractions of X.

Note that not every ν ∈ ZR(K(X)/k) possesses a center xν on X, but if it does, the center xν

is unique. Therefore, we set

ZR(X/k) := {ν ∈ ZR(K(X)/k) : ν has a center on X} ⊂ ZR(K/k).

Note that if X/k is proper, ZR(X/k) is simply ZR(K(X)/k). We let ZR(X/k) inherit its

topology, sheaf of rings OZR(X/k), and sheaf of ordered groups ΓX from ZR(K(X)/k). As before,

one can identify ZR(X/k) with the inverse limit of the system of modifications X ′ → X in the

category of morphisms of locally ringed spaces with target X. We write πX for the morphism

ZR(X/k) → X sending each ν ∈ ZR(X/k) to the center of ν on X. As in Convention 2.3.47,

if k = Q or Z/p, we will write ZR(X/k) as ZR(X).
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2.3.55. ZR(X/k) is quasi-compact and open in ZR(K(X)/k). This can be seen as fol-

lows. First suppose X = Spec(A) is an affine k-variety, with A generated as a k-algebra by

x1, . . . , xn ∈ K. In this case, we have seen earlier that ZR(X/k) is U(x1, . . . , xn), and is quasi-

compact [Mat89, Theorem 10.5]. In general, since X is covered by finitely many affine opens,

one deduces that ZR(X/k) is quasi-compact and open in ZR(K(X)/k).

2.3.56 (Functoriality with respect to dominant morphisms). If f : X ′ → X is a dominant

morphism of k-varieties, f induces a morphism ZR(f) : ZR(X ′/k)→ ZR(X/k) of locally ringed

spaces, which maps Rν 7→ Rν ∩K(X). The morphism OZR(X/k) → ZR(f)∗OZR(X′/k) is given by

the inclusion
⋂

ν∈U Rν ↪→
⋂

η∈ZR(f)−1(U)Rη over an open set U , and is stalk-wise given by the

local homomorphism Rν ∩K(X) ↪→ Rν . This morphism OZR(X/k) → ZR(f)∗OZR(X′/k) descends

to a morphism of sheaves of ordered groups ΓX → ZR(f)∗ΓX′ , as well as a morphism of sheaves

of monoids ΓX,+ → ZR(f)∗ΓX′,+.

We conclude this section with one more noteworthy fact:

Lemma 2.3.57. Let X be a k-variety, with πX : ZR(X/k)→ X. Then X is normal if and

only if the morphism π#
X : OX → (πX)∗OZR(X/k) is an isomorphism of sheaves on X.

Proof. Only the forward implication is not clear. Since open affines form a basis for the

Zariski topology on X, it suffices to check this isomorphism on open affines U = Spec(A) ⊂ X.

Since X is normal, OX(U) = A is normal, whence by [Mat89, Theorem 10.4],

OX(U) =
⋂{

Rν : ν ∈ ZR(K(X)/k), Rν ⊃ A
}

But the set of ν ∈ ZR(K(X)/k) such that Rν ⊃ A is precisely the set of ν ∈ ZR(X/k) which

has a center on U = Spec(A) ⊂ X. Thus, OX(U) =
⋂

ν∈π−1
X (U)Rν = OZR(K(X)/k)(π

−1
X (U)). □
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2.3.F. Valuative ideals and idealistic classes. As before, let X be a variety over a field

k. In this subsection and the next, we introduce the relevant objects on ZR(X) which would

allow us to re-formulate the notion of integrally closed Rees algebras on X.

Definition 2.3.58 (Valuative ideals, cf. [ATW19, §2.2]). A valuative ideal over X is

defined to be a section γ ∈ Γ(ZR(X/k),ΓX,+).

2.3.59 (Ideals ⇝ Valuative ideals). A non-zero ideal I ⊂ OX determines a valuative ideal

γI over X as follows. For every ν ∈ ZR(X/k), recall that xν denotes the center of ν on X, and

f#
ν : OX,xν → Rν denotes the corresponding local k-homomorphism. We set

γI,ν := min{ν(g) : g ∈ Ixν ⊂ OX,xν},

where ν(g) will always be an abbreviation for ν(f#
ν (g)). This minimum exists in (Gν)+. Indeed,

if Ixν is generated by g1, . . . , gr ∈ OX,xν , then γI,ν = min{ν(gi) : 1 ≤ i ≤ r}. Moreover, if we let

1 ≤ j ≤ r be such that ν(gj) = γI,ν , then f#
ν (Ixν )Rν is the principal ideal (f#

ν (gj))Rν of Rν .

We next claim that

(γI,ν)ν∈ZR(X/k) ∈
∏

ν∈ZR(X/k)

(Gν)+

defines the desired valuative ideal γI over X. For this we need to check that it is a com-

patible collection of germs of ΓX,+. Indeed, fix an arbitrary ν ∈ ZR(X/k), and assume that

g1, . . . , gr ∈ OX,xν generate Ixν , with ν(gj) = min{ν(gi) : 1 ≤ i ≤ r}. There exists an affine

open neighbourhood Vν of xν in X such that g1, . . . , gr extend to sections of I over Vν which

generate the stalk of I at every point in Vν . Then Uν = π−1X (Vν) ∩ U
(
gi
gj

: i ̸= j
)

is an open

neighbourhood of ν in ZR(X/k) such that for all ν ′ ∈ Uν , γν′ = ν ′(gj).

In fact, the same argument shows that any valuative ideal over X arising from an ideal on

X is locally represented by generators of that ideal:
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Lemma 2.3.60. For a non-zero ideal I ⊂ OX , there exist:

(i) a finite open affine cover V = {Vℓ : 1 ≤ ℓ ≤ m} of X;

(ii) for each 1 ≤ ℓ ≤ m, a finite open cover Uℓ = {Uℓ,j : 1 ≤ j ≤ rℓ} of π−1X (Vℓ);

(iii) for each 1 ≤ ℓ ≤ m, sections {gℓ,j : 1 ≤ j ≤ rℓ} of I over Vℓ, which generate I at

every point of Vℓ,

such that for each 1 ≤ ℓ ≤ m, each 1 ≤ j ≤ rℓ, and every ν ∈ Uℓ,j, we have γI,ν = ν(gℓ,j).

Proof. For every x ∈ X, there exists g1, . . . , gr ∈ Ix and an open affine neighbourhood

x ∈ Vx ⊂ X such that g1, . . . , gr extend to sections of I over Vx generating I at every point

of Vx. Since X is quasi-compact, there exists a finite open subcover of {Vx : x ∈ X}, say

V = {Vℓ : 1 ≤ ℓ ≤ m}. For each ℓ, let gℓ,1, . . . , gℓ,rℓ ∈ I(Vℓ) be the sections chosen earlier.

For each 1 ≤ j ≤ rℓ, let Uℓ,j = π−1X (Vℓ) ∩ U
( gℓ,i
gℓ,j

: i ̸= j
)
. For all ν ∈ π−1X (Vℓ), we have

xν ∈ Vℓ, whence Ixν is generated by {gℓ,j : 1 ≤ j ≤ rℓ}, so γI,ν = min{ν(gℓ,j) : 1 ≤ j ≤ rℓ}.

From this, it is immediate that π−1X (Vℓ) =
⋃rℓ

j=1 Uℓ,j. The conclusion is also immediate. □

Definition 2.3.61 (Idealistic classes). Any valuative ideal γ = γI over X arising from a

non-zero ideal I on X will be called an idealistic class over X.

2.3.62 (Valuative ideals ⇝ Ideals). Conversely, every valuative ideal γ over X determines

an ideal Iγ on X, whose sections over an open set U ⊂ X are:

Iγ(U) = {g ∈ OX(U) : ν(g) ≥ γν for every ν ∈ π−1X (U)}

where we remind the reader that π−1X (U) = {ν ∈ ZR(X/k) : xν ∈ U}.

2.3.63. If I is an ideal of a ring A, the integral closure IC(I) of I [Laz04, §9.6.A] in A

consists of elements a ∈ A which satisfy a “weighted integral equation”:

an + c1a
n−1 + · · ·+ cn−1a+ cn = 0, where ci ∈ I i.
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We say I is integrally closed in A if I = IC(I). Observe that I ⊂ IC(I) ⊂
√
I, where

√
I is the

radical of I. In the next section, we will prove that:

(a) IC(I) is an ideal of A,

(b) if I is an ideal on X, the presheaf IC(I) on X given by U 7→ IC(I(U)) is a sheaf,

(c) and the following lemma, which was essentially noted in [Hir77]:

Lemma 2.3.64.

(i) If γ is a valuative ideal over X, then Iγ is integrally closed in OX .

(ii) Let I ⊂ OX be a non-zero ideal, with associated idealistic class γ = γI over X. Then

Iγ = IC(I).

In particular, 2.3.59 and 2.3.62 define a one-to-one correspondence between non-zero, integrally

closed ideals of OX and idealistic classes over X.

2.3.G. Valuative Q-ideals and idealistic exponents. Fix a variety X over a field k as in

§2.3.F.

Definition 2.3.65 (Valuative Q-ideals). Let ΓX,Q denote the sheaf of ordered groups ΓX⊗Q

on ZR(X/k), and let ΓX,Q+ denote the sheaf of monoids on ZR(X/k) consisting of non-negative

sections of ΓX,Q+. Then a valuative Q-ideal over X is a section γ in Γ(ZR(X/k),ΓX,Q+).

Remark 2.3.66. Since γ is “locally constant” and ZR(X/k) is quasi-compact, there exists

a sufficiently large natural number N ≥ 1 such that N · γ is a valuative ideal over X.

2.3.67 (Rees algebras⇝ Valuative Q-ideals). A non-zero Rees algebra I• (Definition 2.3.1)

on X determines a valuative Q-ideal γI• over X by:

γI• := (γI•,ν)ν∈ZR(X/k) ∈
∏

ν∈ZR(X/k)

(Q⊗Gν)+
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where

γI•,ν := min

{
1

n
· ν(g) : 0 ̸= gtn ∈ (In)xν , n ≥ 1

}
.

As before in 2.3.59, we have to show:

(i) this minimum exists in (Q⊗Gν)+,

(ii) (γI•,ν)ν∈ZR(X/k) defines a compatible collection of germs, and hence, defines a valuative

Q-ideal over X.

For (i), fix ν ∈ ZR(X/k), and suppose g1t
n1 , . . . , grt

nr generate (I•)xν as a OX,xν -algebra. Then

we claim:

γI•,ν = min

{
1

ni

· ν(gi) : 1 ≤ i ≤ r

}

from which (i) is immediate. Indeed, suppose gtn ∈ Ixν . Then we can write

gtn =
∑

d=(d1,...,dr)
d1n1+···+drnr=n

ad ·
r∏

i=1

(git
ni)di in OX,xν [t]

which means

g =
∑

d=(d1,...,dr)
d1n1+···+drnr=n

ad ·
r∏

i=1

gdii in OX,xν .

Consequently,

1

n
· ν(g) ≥ min

{
1

n

r∑
i=1

dini ·
(

1

ni

· ν(gi)

)
: d1n1 + · · ·+ drnr = n

}

≥ min

{(
1

n

r∑
i=1

dini

)
·min

{
1

ni

· ν(gi) : 1 ≤ i ≤ r

}
: d1n1 + · · ·+ drnr = n

}

= min

{
1

ni

· ν(gi) : 1 ≤ i ≤ r

}

as desired.
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For (ii), there exist an affine open neighbourhood Vν of xν in X such that g1t
n1 , . . . , grt

nr

extend to sections of I• over Vν which generate the stalk of I• at every point in Vν . Let 1 ≤ j ≤ r

such that γI•,ν = 1
nj
· ν(gj). Then Uν = π−1X (Vν) ∩ U

(
g
nj

i /g
ni
j : i ̸= j

)
is an open neighbourhood

of ν in ZR(X/k) such that for all ν ′ ∈ Uν , γν′ = 1
nj
· ν ′(gj).

Remark 2.3.68. Let I be a non-zero ideal on X, with Rees algebra I• (Example 2.3.6).

Then γI• = γI .

Moreover, imitating the proof of Lemma 2.3.60 yields the analogous lemma:

Lemma 2.3.69. For a non-zero Rees algebra I• on X, there exist:

(i) a finite open affine cover V = {Vℓ : 1 ≤ ℓ ≤ m} of X;

(ii) for each 1 ≤ ℓ ≤ m, a finite open cover Uℓ = {Uℓ,j : 1 ≤ j ≤ rℓ} of π−1X (Vℓ);

(iii) for each 1 ≤ ℓ ≤ m, sections {gℓ,jT nℓ,j : 1 ≤ j ≤ rℓ} of I• over Vℓ, which generate I•

at every point of Vℓ (as a OX,y-algebra),

such that for each 1 ≤ ℓ ≤ m, each 1 ≤ j ≤ rℓ, and every ν ∈ Uℓ,j, we have γI•,ν = 1
nℓ,j
· ν(gℓ,j).

Definition 2.3.70 (Idealistic exponents, cf. [Hir77, Definition 3]). A valuative Q-ideal

γ = γI• over X arising from a non-zero Rees algebra I• on X will be called an idealistic exponent

over X.

2.3.71 (Valuative Q-ideals⇝ Rees algebras). Conversely, let γ be a valuative Q-ideal over

X. As in 2.3.62, γ also determines an ideal Iγ on X whose sections g over an open set U satisfy

ν(g) ≥ γν for every ν ∈ π−1X (U) = {ν ∈ ZR(X/k) : xν ∈ U}. Slightly more generally, given any

m ∈ N, we have the valuative Q-ideal mγ, and similarly the ideal Imγ on X. Together these

Imγ form an OX-subalgebra of OX [t]:

I•γ :=
⊕
m∈N

Imγ · tm ⊂ OX [t]

81



In general, I•γ is not a Rees algebra on X, but Proposition 2.3.73(ii) below says I•γ is a Rees

algebra on X whenever γ is an idealistic exponent over X. Note that I•γ contains the Rees

algebra of Iγ, but these are rarely equal, cf. Corollary 2.3.75.

Lemma 2.3.72. Let γ be a valuative Q-ideal over X. Then I•γ is integrally closed in OX [t].

Proof. It suffices to show that whenever a non-zero homogeneous section gtr of OX [t] over

an open set U ⊂ X satisfies an equation of the form

(gT r)n + a1(gt
r)n−1 + · · ·+ an−1(gt

r) + an = 0, ai ∈ I•γ(U),

then gtr is a section of I•γ over U . By writing each ai as a sum of homogeneous sections in

I•γ(U) and comparing degrees, we may assume that each ai is αit
ir for some αi ∈ Iirγ(U). If

r = 0, there is nothing to show. If r > 0, we have

gn + α1g
n−1 + · · ·+ αn−1g + αn = 0 in OX(U).

Let ν ∈ π−1X (U) ⊂ ZR(X/k). We claim that there must exist some 1 ≤ j ≤ n such that

jν(g) ≥ ν(αj). Indeed, if not, then iν(g) < ν(αi) for all 1 ≤ i ≤ n, so ν(gn) < ν(αig
n−i) for all

1 ≤ i ≤ n. This implies gn + α1g
n−1 + · · · + αn−1g + αn ̸= 0, a contradiction. Now our claim

implies ν(g) ≥ 1
j
ν(αj) ≥ rγν , so g ∈ Irγ(U), as desired. □

Proposition 2.3.73. Let γ = γI• be the idealistic exponent over X arising from a non-zero

Rees algebra I• on X. Then:

(i) I•γ = IC(I•).

(ii) In particular, I•γ is a finite I•-module, and hence is a Rees algebra on X.

Recall that IC(I•γ) denotes the integral closure of I• in OX [t] (Definition 2.3.32).
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Proof. By Lemma 2.3.72, I•γ contains IC(I•). We check the converse on stalks: let x ∈ X,

and it suffices to show that whenever a homogeneous element gtn of OX,y[t] is not integral over

(I•)y, then gtn is not in (I•γ)y. Fixing generators g1t
n1 , . . . , grt

nr for (I•)y as a OX,x-algebra,

our goal is to find ν ∈ ZR(X/k) whose center xν on X is x, and such that

1

n
ν(g) < min

{
1

ni

ν(gi) : 1 ≤ i ≤ r

}
.

Let

A = OX,x

[
gni
gni

: 1 ≤ i ≤ r

]
and let I be the ideal of A generated by {gni /gni : 1 ≤ i ≤ r} and the maximal ideal mX,x of

OX,x. We claim that 1 /∈ I. If not,

(2.8) 1 = α +
∑

j=(j1,...,jr)
j1+···+jr≥1

βj

r∏
i=1

(
gni
gni

)ji

where α ∈ mX,x and only finitely many βj ∈ OX,x are non-zero. Since 1 − α is a unit in OX,x,

we may assume α = 0. For each 1 ≤ i ≤ r, let si = max
{
ji : there exists j = (j1, . . . , jr) such

that βj ̸= 0
}

. Multiplying (2.8) throughout by g
∑r

i=1 nisi =
∏r

i=1(g
ni)si , we get

g
∑r

i=1 nisi =
∑

j=(j1,...,jr)
j1+···+jr≥1

βj

r∏
i=1

(
gnjii · gni(si−ji)

)
=

∑
j=(j1,...,jr)
j1+···+jr≥1

(
βj

r∏
i=1

gnjii

)
· g

∑r
i=1 ni(si−ji)

which implies

(gtn)
∑r

i=1 nisi −
∑

j=(j1,...,jr)
j1+···+jr≥1

(
βj

r∏
i=1

(git
ni)nji

)
· (gtn)

∑r
i=1 ni(si−ji) = 0

which is an integral equation for gtn over (I•)x = OX,x[git
ni : 1 ≤ i ≤ r], a contradiction.

Therefore, I is a proper ideal of A, so there exists a maximal ideal p of A containing I. By

[Mat89, Theorem 10.2], there exists ν ∈ ZR(K(X),k) such that Rν ⊃ A and mν ∩ A = p.
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Consequently, {gni /gni : 1 ≤ i ≤ r} ⊂ p ⊂ mν , whence for each 1 ≤ i ≤ r, gni/gni /∈ Rν . This

means that for each 1 ≤ i ≤ r,

ν

(
gni

gni

)
< 0, which implies

1

n
ν(g) <

1

ni

ν(gi),

as desired. Moreover, p ∩ OX,x = mX,x, so mν ∩ OX,x = mX,x. Thus, the center of ν on X is

necessarily x. Note that in particular, ν ∈ ZR(X/k). This proves (i). Then (ii) is a consequence

of Remark 2.3.34. □

Corollary 2.3.74. Together 2.3.67 and 2.3.71 describe a one-to-one correspondence be-

tween non-zero, integrally closed Rees algebras on X and idealistic exponents over X.

This follows from Proposition 2.3.73, and so does the next corollary (cf. Remark 2.3.68):

Corollary 2.3.75. Let I be a non-zero ideal on X, with associated idealistic class γ = γI

over X. Then the Rees algebra I•γ associated to γ is the integral closure of the Rees algebra I•

of I in OX [t].

We can now tie some loose ends from the end of §2.3.F. If I is an ideal of a ring A, note

that the Rees algebra I• of I is integrally closed in A[t] if and only if Ir is integrally closed

in A for all r ≥ 1. In the same vein, IC(Ir) is the tr-graded piece of IC(I•) for all r ≥ 1. In

particular, IC(I) must be an ideal of A, i.e. we get assertion (a) in 2.3.63. Assertion (b) in

2.3.63 is proven similarly. We also deduce Lemma 2.3.64 from results in this section:

Proof of Lemma 2.3.64. Let γ be a valuative ideal over X. By Lemma 2.3.72, I•γ is

integrally closed in OX [t]. Using the preceding paragraph, we get (i). For (ii), Corollary 2.3.75

says that Iγ, being the t1-graded piece of I•γ, is equal to the t1-graded piece of IC(I•), i.e. equal

to IC(I). □

We conclude this subsection with some miscellaneous remarks. Firstly:
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2.3.76 (Functoriality with respect to dominant morphisms). Let f : X ′ → X be a dominant

morphism of k-varieties. Recall from 2.3.56 that f induces a morphism ZR(f) : ZR(X ′/k) →

ZR(X/k) of locally ringed spaces, which induces a morphism of ordered groups ΓX → ZR(f)∗ΓX′ ,

as well as a morphism of sheaves of monoids ΓX,+ → ZR(f)∗ΓX′,+. Tensoring with Q, we also

get a morphism of ordered groups ΓX,Q → ZR(f)∗ΓX′,Q, and a morphism of sheaves of monoids

ΓX,Q+ → ZR(f)∗ΓX′,Q+. In particular, for every valuative Q-ideal γ over X, we can consider

the pullback of γ to X ′, denoted f−1(γ)OX′ . If γ is an idealistic exponent γI• where I• is some

non-zero Rees algebra on X, then f−1(γ)OX′ is simply γf−1(I•)OX′ . More generally, whenever

f : X ′ → X is a morphism of k-varieties satisfying the condition that I•OX′ is non-zero, we can

define the pullback f−1(γ)OX of γ = γI (resp. γ = γI•) as above.

Secondly, we give a re-characterization of admissibility (Definition 2.3.27) in terms of valu-

ative Q-ideals:

Lemma 2.3.77 (Valuative criterion for admissibility). If X is integral and x ∈ X, then

(i) =⇒ (ii) =⇒ (iii), where:

(i) I• is J-admissible at x.

(ii) For every open affine neighbourhood Spec(A) ⊂ X of x, γI•|A ≤ γJ |A.

(iii) There exists an open affine neighbourhood Spec(A) ⊂ X of x such that γI•|A ≤ γJ |A.

If I• is integrally closed, (iii) =⇒ (i). In particular, if X is a variety, I• is J-admissible implies

that γI• ≤ γJ , with the converse holding if I• is integrally closed.

Proof. There is nothing to show for (ii) =⇒ (iii), and (i) =⇒ (ii) follows from 2.3.59 and

2.3.67. If I• is integrally closed, (i) is equivalent to the statement that I• is IC(J)-admissible.

By 2.3.71 and Corollary 2.3.74, the latter is clearly implied by (iii). □

Thirdly, we can also translate the universal property of the normalized weighted blow-up

(Theorem 2.3.43) in terms of idealistic exponents:
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Theorem 2.3.78. Let γ be an idealistic exponent on an normal k-variety X. The normal-

ized weighted blow-up

BlIγ,• X = ProjX(Iγ,•)
π−−−−→ X

satisfies the following universal property. Let f : T → X be a dominant morphism, where T is

a normal and integral scheme. Then there exists at most one lift g : T → Blγ X of f and such a

lift exists if and only if γOT is equal to the idealistic exponent over T arising from an effective

Cartier divisor D on T . If this is the case, then D = g−1(E), where E is the exceptional divisor

on Blγ X.

We remark that the morphism π in the above theorem is known as the weighted blow-up of

X along the idealistic exponent γ in [ATW19, Section 3.3]. Finally, we introduce a convenient

notation that we shall adopt moving ahead, especially in Chapter 3:

Convention 2.3.79 (Convention on integrally closed Rees algebras). In light of the the dis-

cussion in this subsection, we adopt the following conventions in this thesis. For gi ∈ Γ(X,OX)

and qi = ai
bi
∈ Q>0, the notation I• = (gq11 , . . . , g

qr
r ) refers to IC(I•) or its corresponding ide-

alistic exponent, where I• = (ga11 , b1) + · · · + (garr , br). It is important to note that because of

the passage to integral closure, this notation is well-defined, independent of the presentation of

qi as a quotient of two positive integers ai
bi

. The inspiration behind this notation is as follows.

Interpreting (gq11 , . . . , g
qr
r ) as an idealistic exponent, its stalk at ν ∈ ZR(X/k) can be easily

remembered as:

(gq11 , . . . , g
qr
r )ν = min

{
q1ν(g1), . . . , qrν(gr)

}
.

Slightly more generally, for non-zero ideals Ii ⊂ OX and qi = ai
bi
∈ Q>0, the notation I• =

(Iq11 , . . . , I
qr
r ) refers to IC(I•) or its corresponding idealistic exponent, where I• = (Ia11 , b1) +

· · ·+(Iarr , br)+(Ia, b). Note that for I• = (Iq11 , . . . , I
qr
r ) as in the preceding sentence and q ∈ Q>0,
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then the Veronese q-translate Iq• (Definition 2.3.39) is

Iq• = (Iq1q1 , . . . , Iqrqr )

so we occasionally write Iq• as (Iq11 , . . . , I
qr
r )q.

2.4. Weighted normal cones

2.4.A. Weighted closed embeddings. A weighted closed embedding Z• ↪→ X is a sequence

of closed subschemes (Z1 ⊂ Z2 ⊂ Z3 ⊂ · · · ) ↪→ X whose corresponding ideal sheaves (· · · ⊂

I3 ⊂ I2 ⊂ I1 ⊂ OX) define a Rees algebra I• on X. We call Z1 the co-support of Z•.

2.4.1. Given Z• ↪→ X as above, we can forget the weighting and form

(i) the conormal algebra CZ1/X :=
⊕

n≥0(I1)
n/(I1)

n+1, and

(ii) the conormal sheaf N ∨
Z1/X

:= I1/I
2
1 ,

(iii) the normal cone CZ1X := SpecX(CZ1/X).

For every n, the weighting defines a decreasing filtration F on (I1)
n/(I1)

n+1 where for d ∈ N,

the dth filtered piece is F d =
(
(I1)

n ∩ Id + (I1)
n+1
)
/(I1)

n+1.

We next introduce the weighted analogues of the above constructions:

Definition 2.4.2. Associated to a weighted closed embedding Z• ↪→ X are

(i) its weighted conormal algebra CZ•/X :=
⊕

n≥0 In/In+1 = Iext• /(t−1),

(ii) its weighted conormal sheaf N ∨
Z•/X

:= (CZ•/X)+/(CZ•/X)2+, and

(iii) its weighted normal cone CZ•X := SpecX(CZ•/X).

Note that the sheaf N ∨
Z•/X

has a natural N-grading induced from that of the weighted conormal

algebra. Recall too from Definition 2.3.13 that:

(iv) the projectivized weighted normal cone ProjX(CZ•/X) of Z• ↪→ X is the exceptional

divisor E of the weighted blow-up BlZ• X → X.
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In the event that Z1 is a point, (iv) can also be considered as the projectivized weighted tangent

cone of Z• ↪→ X.

2.4.B. Deformation to the weighted normal cone. We will now generalize the classical

deformation to the normal cone [Ful84, §5.2] to the weighted case2. Recall that in the classical

case, given a closed embedding i : Z ↪→ X, there is a flat morphism π : DZX → A1 such that

π−1(0) = CZX is the normal cone and π−1(p) = X for all p ̸= 0. More precisely, there is a

closed embedding k : Z ×A1 ↪→ DZX such that outside 0 ∈ A1, the embedding k is identified

with k|A1∖0 = i × 1 : Z × Gm ↪→ X × Gm and over 0, the embedding k is the zero section

k|0 = s : Z ↪→ CZX of the normal cone. One can also replace A1 with P1.

Let us first begin with some generalities.

Definition 2.4.3 (Weighted cones). For a quasi-coherent, finitely generated graded OX-

algebra R with R0 = OX , we call C = SpecX(R) the weighted cone of R.

If R is generated in degree 1, we simply call C the cone of R. Note that every twisted

weighted bundle (Definition 2.2.3) is a weighted cone.

2.4.4 (Zero section). Every weighted cone C = SpecX(R) over X admits a zero section

s : X ↪→ C, induced by the surjection R ↠ R0 = OX . This closed embedding s : X ↪→ C

fits into a weighted closed embedding s• : X• ↪→ C with s1 = s. This weighted embedding

s• : X• ↪→ C is defined by the Rees algebra I• on C given by

Id :=
⊕
n≥d

Rn for d ∈ N.

Note that the weighted normal cone CX•C recovers C. Finally, C → X is a twisted weighted

bundle, if and only if s• is a regular weighted embedding.
2We use the notation DZX ⊂ DZX instead of M◦

ZX ⊂MZX and the special point 0 instead of ∞.
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Definition 2.4.5. Let i• : Z• ↪→ X be a weighted embedding. The deformation to the

weighted normal cone is DZ•X = SpecX(Iext• ).

We make the following observations:

(i) The grading equips DZ•X with a Gm-action.

(ii) The inclusion OX [t−1] ⊂ Iext• induces a Gm-equivariant map p : DZ•X → X ×A1.

(iii) The induced morphism π : DZ•X → A1 is flat since t−1 is regular on Iext• .

(iv) The filtration (Iext≥d ) induces a weighted closed Gm-equivariant embedding k• : (Z ×

A1)• ↪→ DZ•X.

Note that k1 is induced by the surjection Iext• → Iext• /(Iext+ ) = (OX/I1)[t
−1] so (Z × A1)1 =

Z1 ×A1. In general, however, (Z ×A1)n ̸= Zn ×A1, e.g. Iext• /(Iext≥2 ) is OX/I2 in degrees ≤ 0

and I1/I2 in degree 1.

Proposition 2.4.6 (Deformation to the weighted normal cone). Consider the sequence

(Z ×A1)•
k•−→ DZ•X

p−→ X ×A1 → A1.

(i) Outside 0 ∈ A1, this restricts to

Z• ×Gm ↪
i•×1−−−→ X ×Gm

1−→ X ×Gm → Gm

(ii) Over 0 ∈ A1, this restricts to

Z• ↪
s•×1−−−→ CZ•X → X → {0}

where s• is the weighted zero section.

Proof. Outside 0, we are inverting t−1. This gives

Iext• [t] = OX [t±1] and (Iext≥d ) = Id[t
±1].
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Over 0, we are taking the quotient with t−1 which gives

Iext• /(t−1) =
⊕
n≥0

In/In+1 = CZ•/X and (Iext≥d ) =
⊕
n≥d

In/In+1. □

2.4.C. Compactified version. There is also a compactified version of the deformation to

the normal cone which is projective over X ×A1 (or X ×P1). This is constructed as DZX =

BlZ×{0}(X ×A1). Similarly, given a weighted embedding i• : Z• → X, we let

DZ•X = BlZ•×{0}(X ×A1)

where Zn × {0} ↪→ X ×A1 is the natural map. To describe DZ•X, we first need to introduce

projective completions of weighted cones.

Definition 2.4.7 (Projective completion). Fix a quasi-coherent, finitely generated graded

OX-algebra R with R0 = OX , with corresponding weighted cone C. Let y be an indeterminate

(with degree 1), and let R[y] denote the quasi-coherent graded OX-algebra whose degree d piece

is:

R[y]d := Rd ⊕Rd−1 · y ⊕ · · · ⊕R1 · yd−1 ⊕R0 · yd.

Then the projective completion of C, denoted P(C ⊕ 1), is defined as

P(C ⊕ 1) := ProjX(R[y]).

The projectivized weighted cone P(C) := ProjX(R) sits inside ProjX(R[y]) as the “hyperplane

at infinity” cut out by y = 0, whose complement is the y-chart D+(y) := [SpecX(R[y]y) / Gm] =

SpecX(R), which coincides with the cone C, cf. §2.1.C.

Proposition 2.4.8. Let Z• ↪→ X be a weighted embedding, and let π denote the composition

DZ•X := BlZ•×{0}(X ×A1)
p−→ X ×A1 pr2−−→ A1.
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Then:

(i) The exceptional divisor of BlZ•×{0}(X×A1) is canonically identified with the projective

completion P(CZ•X ⊕ 1) of the weighted normal cone CZ•X.

(ii) π−1(0) = p−1 (X × {0}) is canonically identified with

BlZ• X ∪E P(CZ•X ⊕ 1)

where E = P(CZ•X) is the exceptional divisor of BlZ• X.

(iii) The deformation to the weighted normal cone DZ•X is naturally identified as the open

substack DZ•X ∖ BlZ• X.

Proof. Let A1 = Spec(Z[u]). Let J• be the Rees algebra of the embedding Z•×{0} ↪→ X×

A1. Then Jext
• = Iext• [u, U ]/(t−1U − u). In particular, CZ•×{0}/X×A1 = Jext

• /(t−1) = CZ•/X [U ]

and the part (i) follows.

For part (ii), the fiber π−1(0) corresponds to t−1U = u = 0 and thus splits up in two

components. The first, t−1 = 0, is the exceptional divisor P(CZ•X ⊕ 1), the second, U = 0, is

BlZ• X = ProjX(Iext• ) and their intersection t−1 = U = 0 is the exceptional divisor E.

For part (iii), the open set in question is

D+(U) =
[
SpecX(Iext• [U,U−1]) / Gm

]
= SpecX(Iext• ) = DZ•X. □

2.5. Weighted blow-ups along regular and smooth centers

Recall that if Z ↪→ X is a regular embedding, then it is a quasi-regular embedding [Stacks,

00LN], i.e. the conormal sheaf N ∨
Z/X = I/I2 is locally free and the canonical surjection

SymOZ
(N ∨

Z/X) = SymOZ
(I/I2)↠

⊕
n≥0 I

n/In+1 = CZ/X is an isomorphism. In this section we

first introduce and discuss the notions of quasi-regular weighted embeddings and regular weighted

embeddings. However, we forewarn the reader that even if Z• ↪→ X is a quasi-regular weighted
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embedding, there are only local isomorphisms between SymOZ1
(N ∨

Z•/X
) and CZ•/X , which in

general are not compatible with each other. The former is a weighted (or graded) vector bundle

(2.2.9) while the latter in general is a twisted weighted vector bundle (Proposition 2.5.4).

In the noetherian case, a weighted embedding is regular, if and only if it is quasi-regular

(Corollary 2.5.11). In this case there is a simple description of the extended Rees algebra Iext•

(Proposition 2.5.9) and the charts of the weighted blow-up (Corollary 2.5.12).

2.5.A. Quasi-regular weighted embeddings. Let x1, x2, . . . , xm be global sections of OX

and d1, d2, . . . , dm be positive integers such that I• = (x1, d1) + · · ·+ (xm, dm). We consider the

graded polynomial ring (OX/I1)[X1, X2, . . . , Xm] where Xi has degree di. We have a natural

graded homomorphism

α : (OX/I1)[X1, X2, . . . , Xm]→ CZ•/X =
⊕
n≥0

In/In+1

taking Xi to xi ∈ Idi/Idi+1. This map is evidently surjective.

Definition 2.5.1. We say that (x1, d1), . . . , (xm, dm) is a quasi-regular sequence if α is

bijective.

When d1 = d2 = · · · = dm = 1, then In = In1 and this is the usual notion of a quasi-regular

sequence x1, x2, . . . , xm.

Proposition 2.5.2. The following are equivalent:

(i) x1, x2, . . . , xm is quasi-regular.

(ii) (x1, d1), . . . , (xm, dm) is quasi-regular for any d1, d2, . . . , dm ∈ Z>0.

Proof. We prove that if (x1, d1), . . . , (xm, dm) is quasi-regular for some d1, d2, . . . , dm ∈

Z>0, then so is (x1, e1), . . . , (xm, em) for every sequence e1, e2, . . . , em ∈ Z>0. Let J• = (x1, e1)+
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· · ·+ (xm, em) and note that I1 = J1. For a multi-index α ∈ Nm, let |α|d = d1α1 + · · ·+ dmαm

and |α|e = e1α1 + · · ·+ emαm.

By quasi-regularity of (x1, d1), . . . , (xm, dm), we have that Ia/Ia+1 is a free OX/I1-module

with generators xα such that |α|d = a. We have a filtration

Ia/Ia+1 = Ia ∩ J1/Ia+1 ⊃ (Ia ∩ J2 + Ia+1)/Ia+1 ⊃ · · ·

By definition, we have the inclusion

(2.9)
⊕
|α|d=a
|α|e≥b

(OX/I1)x
α ⊂ (Ia ∩ Jb + Ia+1)/Ia+1.

Claim. The inclusion (2.9) is an equality.

Proof of Claim. To see this, let z ∈ Ia ∩ Jb. Then by definition of J•, we have that

z =
∑
|α|e≥b zαx

α for some (non-unique) zα ∈ OX . Let c = min{|α|d : zα ̸= 0}. If c ≥ a, then

z mod Ia+1 is in the left hand side and we are done.

If c < a and there exists α with |α|d = c and zα /∈ I1, then it follows by quasi-regularity of

(x1, d1), . . . , (xm, dm) that z ∈ Ic ∖ Ic+1. This contradicts that z ∈ Ia.

Finally, suppose that c < a and zα ∈ I1 = (x1, x2, . . . , xm) for all α such that |α|d = c.

Then z can be written as a polynomial
∑

α z̃αx
α where the non-zero terms have |α|d > c and

|α|e ≥ b. Repeating the argument with this expression of z increases c and eventually c ≥ a

and we get the desired equality. △

Next, we show that the equality (2.9) implies that (x1, e1), . . . , (xm, em) is quasi-regular.

Indeed, let f(X) =
∑
|α|e=b fαX

α ∈ OX [X1, X2, . . . , Xm] be a polynomial that is homogeneous of

degree b with respect to the ei-grading, and such that the image of f in (OX/J1)[X1, X2, . . . , Xm]

is non-zero. We want to show that f(x) /∈ Jb+1. Set a = min{|α|d : fα /∈ I1}, so that by

the quasi-regularity of (x1, d1), . . . , (xm, dm), f(x) ∈ Ia ∖ Ia+1. Then the image of f(x) in
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(Ia ∩ Jb + Ia+1)/Ia+1 is non-zero, and is not contained in (Ia ∩ Jb+1 + Ia+1)/Ia+1, by the claim

and the hypothesis that f(X) is homogeneous of degree b. In other words, f(x) /∈ Jb+1, as

desired. □

Definition 2.5.3. A weighted closed embedding Z• ↪→ X is quasi-regular if at every

point p ∈ |Z1|, there exists a smooth neighborhood U → X of p, a quasi-regular sequence

x1, x2, . . . , xm on U , and d1, d2, . . . , dm ∈ Z>0, such that I•|U = (x1, d1) + · · ·+ (xm, dm).

Proposition 2.5.4. A weighted closed embedding Z• ↪→ X is quasi-regular if and only if

the weighted normal cone CZ•/X → Z1 is a twisted weighted vector bundle.

Proof. If I• = (x1, d1) + · · · + (xm, dm) for a quasi-regular sequence, then we have seen

that CZ•/X is a graded polynomial ring. Conversely, if CZ•/X → Z1 is a twisted weighted vector

bundle, then locally on X we have that CZ•/X is a graded polynomial ring OZ1 [X1, X2, . . . , Xm].

If we take any preimages xi ∈ Idi of Xi ∈ Idi/Idi+1, then (x1, d1), . . . , (xm, dm) is quasi-regular.

□

Remark 2.5.5. Recall that the weighted conormal sheaf N ∨
Z•/X

is a graded vector bundle

whereas the unweighted conormal sheaf N ∨
Z1/X

is equipped with a filtration (§2.4). There is

a canonical surjection N ∨
Z•/X

→ GrF (N ∨
Z1/X

) but it is not an isomorphism of OZ1-modules in

general, see Example 2.5.7. For d ≥ 1, the dth graded pieces are as follows:

(N ∨
Z•/X)d ≃

Id/Id+1

(Id/Id+1) ∩ (CZ•/X)2+

GrdF (N ∨
Z1/X

) ≃ Id
(I21 + Id+1) ∩ Id

≃ Id/Id+1(
(I21 ∩ Id) + Id+1

)
/Id+1

.

Remark 2.5.6. If Z• ↪→ X is quasi-regular, then the canonical surjection N ∨
Z•/X

↠

GrF (N ∨
Z1/X

) in Remark 2.5.5 is an isomorphism. Indeed, we may assume we are in the local

situation where I• = (x1, d1) + · · ·+ (xm, dm) for a quasi-regular sequence x1, x2, . . . , xm ∈ OX ,
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and positive integers d1, d2, . . . , dm. By Definition 2.5.1, (N ∨
Z•/X

)d is only non-zero (in which

case it is locally free as an OZ1-module) in degrees d ∈ {d1, d2, . . . , dm}, and the same holds for

GrdF (N ∨
Z1/X

). It remains to note that the canonical surjection carries the free generators xi in

each non-zero degree of N ∨
Z•/X

to free generators in the corresponding degree of GrdF (N ∨
Z1/X

).

Example 2.5.7. For a counterexample, consider on X = A1
k = Spec(k[x]) the Rees algebra

I• = (x, 1) + (x2, 3). Then (N ∨
Z•/X

)d ̸= 0 if and only if d ∈ {1, 3}, where (N ∨
Z•/X

)1 = (x)/(x2)

and (N ∨
Z•/X

)3 = (x2)/(x3). On the other hand, Gr1F (N ∨
Z1/X

) = (x)/(x2), and GrdF (N ∨
Z1/X

) = 0

for d ̸= 1.

2.5.B. Regular weighted embeddings. As before, suppose first that we have global sections

x1, x2, . . . , xm of OX and positive integers d1, d2, . . . , dm such that I• = (x1, d1) + · · ·+ (xm, dm).

We have the graded polynomial ring

OX [t−1, X1, X2, . . . , Xm]

where we let deg(t−1) = −1 and deg(Xi) = di. There is a natural map

OX [t−1, X1, X2, . . . , Xm]→ Iext• ⊂ OX [t±1]

of graded OX-algebras that takes each Xi to xit
di and t−1 to t−1. We note that t−diXi − xi is

in the kernel of β, so that we obtain a map

B := OX [t−1, X1, X2, . . . , Xm]/(t−diXi − xi : 1 ≤ i ≤ m)
β−−−−→ Iext• .

Note that β is surjective.

The next lemma generalizes [Stacks, 0G8S].
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Lemma 2.5.8. The kernel of β equals the kernel of B → Bt−1, i.e. ker β =
⋃

n≥1 AnnB(t−n).

In particular, β is bijective if and only if t−1 ∈ B is a non-zero divisor.

Proof. B
β−→ Iext• ↪→ OX [t±1] has the same kernel as β, and factors through the localization

B → Bt−1 . The result follows since Bt−1 → OX [t±1] is an isomorphism. □

The following proposition generalizes [Stacks, 0BIQ]. For the definition of H1-regular se-

quences, see [Stacks, 062D]. For noetherian stacks, H1–regular is equivalent to regular.

Proposition 2.5.9. If x1, x2, . . . , xm is an H1-regular sequence, then β is bijective, so that

BlI• X = ProjX(Iext• )
≃−−−−→ProjX

(
OX [t−1, X1, X2, . . . , Xm]

(t−diXi − xi : 1 ≤ i ≤ m)

)
.

Proof. If x1, x2, . . . , xm ∈ OX is an H1-regular sequence, the sequence x1, x2, . . . , xm, t
−1

in OX [t−1, X1, X2, . . . , Xm] is also H1-regular [Stacks, 0668]. At the same time, the sequence

t−d1X1 − x1, t−d2X2 − x2, . . . , t−dmXm − xm, t−1 generates the same ideal, and hence is also H1-

regular [Stacks, 066A]. Thus, t−1 ∈ B is a non-zero divisor [Stacks, 068L]. □

Question 2.5.10. Is x1, x2, . . . , xm always an H1-regular sequence if β is bijective?

The following corollary shows that the answer is ‘yes’ in the noetherian case.

Corollary 2.5.11. Let I• = (x1, d1) + · · ·+ (xm, dm) as before. Consider the conditions

(i) x1, x2, . . . , xm is an H1-regular sequence.

(ii) β is bijective.

(iii) x1, x2, . . . , xm is a quasi-regular sequence.

Then (i) =⇒ (ii) =⇒ (iii). If X is locally noetherian, then the three conditions are equivalent.
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Proof. We have seen that (i) =⇒ (ii) and if X is locally noetherian then (iii) =⇒ (i). It

thus remains to prove (ii) =⇒ (iii). But if β is bijective, then

CZ•/X = Iext• /(t−1) = OX [t−1, X1, X2, . . . , Xm]/(t−1, x1, x2, . . . , xm)

= OZ1 [X1, X2, . . . , Xm]

so the sequence x1, x2, . . . , xm is quasi-regular. □

Note BlI• X is covered by the charts D+(xi · tdi) for 1 ≤ i ≤ m. As a consequence of

Proposition 2.5.9 and Lemma 2.1.2 (with A = Z, a = di, and r = xi · tdi), we can explicate

these charts:

Corollary 2.5.12 (Charts for blow-ups along regular weighted embeddings). If x1, x2, . . . ,

xm is an H1-regular sequence, then for each 1 ≤ i ≤ m, the chart D+(xi · tdi) of BlI• X is:

[
SpecX

(
OX [t−1, X1, X2, . . . , Xm][X−1i ]

(t−djXj − xj : 1 ≤ j ≤ m)

)
/ Gm

]

=

[
SpecX

(
OX [t−1, X1, X2, . . . X̂i, . . . , Xm]

(t−di − xi) + (t−djXj − xj : 1 ≤ j ≤ m, j ̸= i)

)
/ µµµdi

]

where X̂i means Xi omitted, and the action of µµµdi corresponds to the weights wtZ/di(Xj) = dj

for j ̸= i, wtZ/di(t
−1) = −1.

Slightly more generally, let A be a finitely generated abelian group, D(A) be the correspond-

ing diagonalizable algebraic group, and let D(A) act on X. Assume that x1, x2, . . . , xm ∈ OX

is an A-homogeneous H1-regular sequence, with weights wtA(xi) = ai for 1 ≤ i ≤ m. Let

I• = (x1, d1) + · · · + (xm, dm). Then I• is an A-graded Rees algebra on X, so I• descends to a

Rees algebra I• on [X / D(A)].
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Consider the diagram:

D+(xi · tdi) BlI• X X

[D+(xi · tdi) / D(A)] [BlI• X / D(A)] [X / D(A)]

where the right morphism in the bottom row is also the weighted blow-up BlI• [X / D(A)] →

[X / D(A)]. The next corollary obtains a description for [D+(xi ·tdi) / D(A)] which is analogous

to that for D+(xi · tdi) in the previous corollary:

Corollary 2.5.13 (Charts for blow-ups along regular weighted embeddings, with respect

to a D(A)-action). For 1 ≤ i ≤ m, the chart [D+(xi · tdi) / D(A)] of BlI• [X / D(A)] is:[
SpecX

(
OX [t−1, X1, X2, . . . X̂i, . . . , Xm]

(t−di − xi) + (t−djXj − xj : 1 ≤ j ≤ m, j ̸= i)

)
/ D(A′)

]

where A′ = A⟨−ai
di
⟩ := (A ⊕ Z)/⟨(ai, di)⟩ and the action of D(A′) corresponds to the weights

wtA′(Xj) = aj − dj aidi for j ̸= i, wtA′(t−1) = ai
di
.

Proof. Note that the chart is, by Proposition 2.5.9:

[
SpecX

(
OX [t−1, X1, X2, . . . , Xm][X−1i ]

(t−djXj − xj : 1 ≤ j ≤ m)

)
/ D(A)×Gm

]

where the action of D(A)×Gm is expressed via the weights wtA⊕Z(Xj) = (aj, dj) for 1 ≤ j ≤ m,

and wtA⊕Z(t−1) = (0,−1). The corollary thus follows from Lemma 2.1.2, with A there replaced

by A⊕ Z here, a there replaced by (ai, di) here, and r = Xi. □

Motivated by the results above, we conclude the subsection with:

Definition 2.5.14 (Regular weighted closed embeddings). A weighted closed embedding

Z• ↪→ X is regular if at every point p ∈ |Z1|, there exists a smooth neighborhood U → X of
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p, a regular sequence x1, x2, . . . , xm on U , and positive integers d1, d2, . . . , dm, so that I•|U =

(x1, d1) + · · ·+ (xm, dm).

2.5.C. Weighted blow-ups along regular centers. In this subsection we assume that X

is noetherian and regular, and we let Z• ↪→ X be a weighted closed embedding.

Definition 2.5.15 (Regular centers). A weighted closed embedding Z• ↪→ X is called a

regular center, if its co-support Z1 is regular and Z• ↪→ X is a regular weighted embedding.

Recall that the latter condition is equivalent to the weighted normal cone CZ•/X → Z1 being

a twisted weighted vector bundle (Proposition 2.5.4). Note that while Z1 being regular ensures

that Z1 ↪→ X is a regular embedding, it does not imply that Z• ↪→ X is a regular weighted

embedding (Example 2.5.7).

The above definition means that smooth locally around each point p ∈ |Z1|, I• = (x1, d1) +

· · · + (xm, dm), where x1, x2, . . . , xm is a regular sequence that can be extended to a regular

system of parameters at p, and d1, d2, . . . , dm are positive integers. Note that Definition 2.5.15

coincides with the notion of “centers” in [ATW19, Section 2.4].

Corollary 2.5.16. If Z• ↪→ X is a regular center, then the deformation to the weighted

normal cone DZ•X = SpecX(Iext• ) is regular. In particular, the weighted blow-up BlZ• X ⊂[
DZ•X / Gm

]
is regular.

Proof. By Proposition 2.5.4, the weighted normal cone CZ•X is a twisted weighted vector

bundle over Z1, hence regular if Z1 is regular. Since CZ•X is the Cartier divisor t−1 = 0 in

DZ•X and its complement is X ×Gm, it follows that DZ•X is regular. □
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2.5.D. Weighted blow-ups along smooth centers.

Definition 2.5.17 (Smooth centers). Let X → S be a smooth morphism of algebraic

stacks. A weighted closed embedding Z• ↪→ X is called a smooth center if Z1 → S is smooth

and Z• ↪→ X is a regular weighted embedding.

Let X → S be a smooth morphism which is relatively Deligne–Mumford. We say that a

sequence x1, x2, . . . , xr ∈ Γ(X,OX) is a coordinate system if dx1, dx2, . . . , dxr gives a basis for

ΩX/S. Equivalently, the sections induce an étale morphism X → An
S. Then smooth-locally on

X, a coordinate system always exists and given a smooth closed substack Z, a subset of the

coordinate system can be chosen to generate IZ .

Thus, Z• ↪→ X is a smooth center if and only if we can find, smooth-locally on X, a

coordinate system x1, x2, . . . , xr such that I• = (x1, d1) + (x2, d2) + · · · + (xm, dm) for m ≤ r.

For the remainder of this subsection, we focus on the local case where this holds on X itself.

Adopting the notation in Corollary 2.5.12, Corollary 2.5.16 can be made more precise as follows:

Proposition 2.5.18. Let Z• ↪→ X be a smooth center. On DZ•X, the sequence

t−1, X1, X2, . . . , Xm, xm+1, . . . , xr

is a Z-homogeneous coordinate system. In particular, it is a Z-homogeneous coordinate system

on the total space of the Gm-torsor on BlZ• X. On the chart D+(xi · tdi) of BlI• X, we also

have a µµµdi-torsor as in Corollary 2.5.12 and on its total space, we have the Z/diZ-homogeneous

coordinate system

t−1, X1, X2, . . . , X̂i, . . . , Xm, xm+1, . . . , xr

In both cases, wtZ/di(t
−1) = −1 and wtZ/di(Xj) = dj.

Proof. Since X → Ar
S is étale, we can assume that X = Spec OS[x1, x2, . . . , xr]. Then

DZ•X = Spec OS[t−1, X1, X2, . . . , Xm, xm+1, . . . , xr] = Ar+1
S by Proposition 2.5.9 and the total

100



space of the µµµdi-torsor is the closed subscheme defined by Xi = 1, hence isomorphic to Ar
S.

The proposition follows. □

Slightly more generally, adopt the hypotheses and notations of Corollary 2.5.13, and more-

over assume that x1, x2 . . . , xm, xm+1 . . . , xr is an A-homogeneous coordinate system. Equiva-

lently, the induced map X → [Ar/D(A)] is étale. Then it is immediate that:

Corollary 2.5.19. Let Z• ↪→ X be a smooth center, and let I• be as in Corollary 2.5.13.

On the chart D+(xi · tdi) of BlI• [X / D(A)], the sequence

t−1, X1, X2, . . . , X̂i, . . . , Xm, xm+1, . . . , xr

is an A′-homogeneous coordinate system on the total space of the D(A′)-torsor with wtA′(t−1) =

ai
di

and wtA′(Xj) = aj − dj aidi .

The homogeneous coordinate systems above can also be interpreted as sequences of sections

of line bundles on the stack D+(xi · tdi) itself. Similarly, in the A-graded case xi · tdi is also only

a section of a line bundle.

2.6. Toric weighted blow-ups

In this section, we consider toric varieties and stacks over S = Spec(Z). Let N be a lattice

and let Σ be a fan in NR = N ⊗Z R. Then associated to Σ is the toric variety XΣ.

2.6.1 (Stacky fans). More generally, let (Σ, β) be a stacky fan [GS15, Definition 2.4]. That

is, Σ is a fan in LR where L is a lattice, and β : L→ N is a homomorphism of lattices with finite

cokernel. Associated to (Σ, β) is the toric stack XΣ,β := [XΣ/Gβ], where Gβ is the kernel of the

homomorphism of tori Tβ : TL = Hom(L∨,Gm) → Hom(N∨,Gm) = TN induced by β, and Gβ

acts on XΣ via the inclusion of tori Gβ ⊂ TL ↷ XΣ. Every fan Σ in NR can be considered as

a stacky fan, by taking L = N and β to be the identity 1 on N , in which case XΣ = XΣ,1. In
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addition, if Σ[1] denotes the set of rays of Σ, we may also associate to Σ the stacky fan (Σ̂, β),

where:

(i) β : ZΣ[1] → N sends each standard basis vector eρ of ZΣ[1] (for ρ ∈ Σ[1]) to the first

lattice point on ρ, and

(ii) Σ̂ is the fan in ZΣ[1] generated by {σ̂ : σ ∈ Σ}, where for every cone σ in Σ, σ̂ =∑
ρ∈σ[1] eρ.

Since Σ̂ is smooth, the associated toric stack XΣ := XΣ̂,β is smooth, and moreover has good

moduli space XΣ. If Σ is simplicial, XΣ has finite stabilizers and coarse space XΣ. We refer

to this as Cox’s quotient construction of toric varieties [CLS11, Section 5.1]. For more details,

see [BCS05, FMN10, GS15] and §4.1.A.

2.6.2 (Coarse toric weighted blow-up). Let N be a lattice, and let Σ be a smooth3 fan in

NR = N ⊗ R. Let γ be a maximal cone in Σ with rays ρ1, ρ2, . . . , ρn generated by primitive

lattice points u1,u2, . . . ,un. Let v be a lattice point contained in relint(γ). Then it can be

uniquely expressed as v =
∑n

i=1 diui for some di ∈ N>0.

Consider the subdivision Σ∗(v) of Σ at v, i.e. this is the set of all cones in Σ ∖ {γ}, as

well as the cones generated by subsets of {u1,u2, . . . ,un,v} not containing {u1,u2, . . . ,un}.

Letting XΣ∗(v) be the corresponding toric variety, the identity map on N is compatible with

the fans Σ∗(v) and Σ, and thus induces a toric morphism

XΣ∗(v) −→ XΣ

which is the coarse space of the weighted blow-up of XΣ along I• := (ID1 , d1) + · · ·+ (IDn , dn)

(cf. 2.6.3), where each IDi
is the ideal of the torus-invariant divisor Di ⊂ XΣ corresponding to

the ray ρi. The new ray ρE = R≥0v in Σ∗(v) corresponds to the exceptional divisor E.

3More generally, we only require every cone containing σ to be smooth: this ensures that the Di are Cartier divi-
sors in a neighborhood of D1∩· · ·∩Dn. Alternatively, if Σ is not smooth, we could work with Cox’s construction,

namely the stacky fan (Σ̂, β) as in 2.6.1 and the associated smooth toric stack XΣ̂,β , cf. Remark 2.6.4.
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2.6.3 (Toric weighted blow-up). In fact, we can recover the stack-theoretic weighted blow-

up in 2.6.2. To do so we deploy a “partial” Cox construction. Retaining the notation and

hypotheses in 2.6.2, consider the lattice N ′ = N ⊕ Z and the homomorphism β : N ′ → N

defined by β(u, 0) = u and β(0, 1) = v. This gives the exact sequence

0 −→ Z
α−−−−→ N ′

β−−−−→ N −→ 0 where α(1) = (v,−1).

We lift the fan Σ∗(v) in NR to a fan Σ′(v) := {σ′ : σ ∈ Σ∗(v)} in N ′R, where:

(a) we lift every ray ρ ∈ Σ[1] with generator u to the ray ρ′ with generator u′ := (u, 0),

and the ray ρE = ⟨v⟩ is lifted to the ray ρ′E generated by v′ := (0, 1),

(b) and generally, every σ ∈ Σ∗(v) is lifted to the cone σ′ =
∑

ρ∈σ[1] ρ
′.

Then β induces Σ′(v) → Σ∗(v), which is a bijection on cones. It is also natural to augment

Σ′(v) to Σ′(v) by adding the cones ρ′1 + · · ·+ ρ′n and γ′ := ρ′1 + · · ·+ ρ′n + ρ′E. Likewise β also

induces Σ′(v)→ Σ, although it is only a bijection on maximal cones. We now claim that:

(i) XΣ′(v) = Spec(Iext• ) ∖ V (I+) ↪→ XΣ′(v) = Spec(Iext• ),

(ii) α induces the Gm-action on both XΣ′(v) ↪→ XΣ′(v) and β induces a toric morphism

XΣ′(v) → XΣ.

(iii) XΣ′(v) ↪→ XΣ′(v) → XΣ descends to
[
XΣ′(v) / Gm

]
↪→
[
XΣ′(v) / Gm

]
→ XΣ, which is

the weighted blow-up BlI• XΣ → XΣ, with I• = (ID1 , d1) + · · ·+ (IDn , dn) as in 2.6.2.

In particular, BlI• XΣ is the toric stack XΣ′(v),β associated to the stacky fan (Σ′(v), β).

To see these, let σ ∈ Σ be a maximal cone and let σ′ ∈ Σ′(v) be the corresponding maximal

cone. This induces a toric morphism Uσ′ → Uσ given by the monoid homomorphism

Mσ := σ∨ ∩M β∨|Mσ−−−−−−−→ (σ′)∨ ∩M ′ = Mσ′

induced by β∨ : M := N∨ → (N ′)∨ =: M ′ = M⊕Z where β∨(m) =
(
m,m(v)

)
. Let ι : M →M ′

be given by ι(m) = (m, 0).
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Case 1: If σ ̸= γ, then Mσ′ = ι(Mσ)⊕ Z = β∨(Mσ)⊕ Z, so that Uσ′ = Uσ ×Gm
projection−−−−−→ Uσ,

and the Gm-action on Uσ′ is trivial on the first factor, and is given by multiplication

on the second factor.

Case 2: If σ = γ, then Mγ′ = ι(Mγ) ⊕ N. Letting u∨1 ,u
∨
2 , . . . ,u

∨
n be the dual basis to

u1,u2, . . . ,un, the Gm-action on Uγ′ corresponds to the weights α∨(u∨i , 0) = u∨i (v) =

di and α∨(0, 1) = −1. Moreover, since β∨(u∨i ) = (u∨i , di) for every 1 ≤ i ≤ n, the

morphism Uγ′ → Uγ can be written as

Spec(Z[x′1, x
′
2, . . . , x

′
n, t
−1])

t−dix′
i ← [ xi−−−−−−−→ Spec(Z[x1, x2, . . . , xn])

where V (xi) = Di, V (x′i) ⊂ Uγ′ is the torus-invariant divisor corresponding to ρ′i, and

V (t−1) ⊂ Uγ′ is the torus-invariant divisor corresponding to ρ′E.

In addition, if Z is the union of the two torus orbits in XΣ′(v) corresponding to the two cones

ρ′1 + · · · + ρ′n and γ′, then Z = V (x′1, . . . , x
′
n) ⊂ Spec(Z[x′1, x

′
2, . . . , x

′
n, t
−1]) = Uγ′ . These

descriptions agree with Proposition 2.5.9.

Remark 2.6.4. More generally, let (Σ, L
β−→ N) be a stacky fan where Σ is smooth. Let

σ ∈ Σ be a maximal cone generated by rays ρ1, ρ2, . . . , ρn with lattice generators ui. Pick

a lattice point v contained in relint(σ) and write v as v =
∑n

i=1 dibi for unique di ∈ N>0.

As in 2.6.2, let Σ∗(v) be the subdivision of Σ at v. As in 2.6.3, define a homomorphism

β′ : L′ = L ⊕ Z → L in the same manner, and lift Σ∗(v) in LR to a fan Σ′(v) in L′R in the

same manner. Set β′(v) := β ◦ β′ : L′ → N , and let I• = (ID1 , d1) + · · · + (IDn , dn), where

each IDi
is the ideal of the torus-invariant divisor Di ⊂ XΣ,β. Then the weighted blow-up

BlI• XΣ,β → XΣ,β can be identified with the toric morphism XΣ′(v),β′(v) → XΣ,β induced by β′.
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Example 2.6.5 (A local description of weighted blow-ups via root stacks and ordinary

blow-ups). The above toric interpretation also motivates a local description of weighted blow-

ups along regular centers via a sequence of root stacks (Example 2.2.13), followed by a usual

blow-up, and finally a sequence of “de-root-ings”. For convenience, let us illustrate this via an

example, which is no less informative than the general case.

Let X = A2
C = Spec(C[x1, x2]), i.e. the toric variety associated to the standard fan Σstd

in R2. Consider the weighted blow-up of X along I• = (x1, 3) + (x2, 2). Let Di = V (xi) for

i = 1, 2. Then there exists a canonical identification as shown in the dotted arrow below:

Bl(
x
1/3
1 ,x

1/2
2

)X( 3
√
D1,

2
√
D2

) (
BlI• X

)(
3
√
D′1,

2
√
D′2
)

BlI• X

X
(

3
√
D1,

2
√
D2

)
X

usual blow-up

≃ sequence of

root stacks

weighted blow-up

sequence of root stacks

where D′i is the proper transform of Di in BlI• X. The corresponding stacky fans are shown

below:

root−−−−−−→

root−−−−−−→

−→ usual
blow-up

−→ weighted
blow-up

e1

e2

1 2 3

1

2

0
1

2

e1

e2

1 2 3

1

2

0
1

2

e1

e2

1 2 3

1

2

0
1

2 3

e1

e2

1 2 3

1

2

0
1

2

3

In the diagram above, each corner illustrates a fan Σ in the usual lattice N = Z2, as well

as some markings which define a homomorphism β : Zk → N , where β(ei) is marked with the

circle that is labeled i. The data (Σ, β) at each corner defines a stacky fan (Σ, β).
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In addition, the diagram suggests that there are compatible canonical identifications be-

tween the (x′1 := x1 · t3)-chart (resp. (x′2 := x2 · t2)-chart) of BlI• X and the (x
1/3
1 )′-chart (resp.

(x
1/2
2 )′-chart) of Bl(x1/3,y1/2)X( 3

√
D1,

2
√
D2). This can be visualized as follows:

(x1, x2)
root
⇝
(
x
1/3
1 , x

1/2
2

)
blow-up
⇝


(
x
1/3
1 ,

x
1/2
2

x
1/3
1

)
on the (x

1/3
1 )′-chart(

x
1/3
1

x
1/2
2

, x
1/2
2

)
on the (x

1/2
2 )′-chart

de-root
⇝



(
x
1/3
1 , x2(

x
1/3
1

)2) on the x′1-chart(
x1(

x
1/2
2

)3 , x1/22

)
on the x′2-chart.

We leave it to readers to convince themselves of the general case.

2.7. Weighted blow-ups along toroidal centers

In this section, we require the language of logarithmic geometry, and we follow the conven-

tions in [Ogu18]. Throughout this section, fix a fs logarithmic scheme X. We use the same

letter X to refer to its underlying scheme, and we always denote the logarithmic structure on

X by α = αX : MX → OX , where MX is a sheaf of monoids. We also remind the reader that

MX denotes the characteristic MX/O∗X of MX .

2.7.A. Fs logarithmic structures on weighted blow-ups. For most applications, it usu-

ally suffices to work within the fs category of logarithmic schemes:

Definition 2.7.1. We say a logarithmic scheme X is fs, if X admits a covering U (in the

Zariski or étale topology, depending if MX is a sheaf in the Zariski or étale topology) such that

the pullback of MX to each U ∈ U admits a chart subordinate to a fs (= fine and saturated)

monoid M . Equivalently, each U ∈ U admits a strict morphism U → Spec(M → Z[M ]) for a

fs monoid M . See [Ogu18, Proposition II.1.1.3, Definition II.2.1.5, and Corollary II.2.3.6].
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2.7.2. In what follows, x always denotes a point in X, while x denotes a geometric point

over x. If X is fs, one can show the following desirable properties:

(i) M
gp

X,x is a free abelian group of finite rank r(x) [Ogu18, Proposition I.1.3.5(2)]. (Note

r(x) is independent of choice of x over x.)

(ii) r(x) = rank(M
gp

X,x) is upper semi-continuous on X, i.e. for each n ∈ N,

X(≤n) := {x ∈ X : rank(M
gp

X,x) ≤ n}

is Zariski open inX [Ogu18, Corollary II.2.16]. In particular, X∗ := {x ∈ X : MX,x :=

O∗X,x} is a Zariski open in X, called the locus of triviality of X.

(iii) For each n ∈ N,

X(n) := {x ∈ X : rank(M
gp

X,x) = n} ⊂ X(≤n)

is a Zariski closed subscheme of X(≤n), and has the following étale-local description:

for all x ∈ X(n), OX(n),x = OX,x/I(x), where I(x) is the ideal of OX,x generated by

the image of the unique maximal ideal M+
X,x of MX,x under MX,x

αX,x−−→ OX,x [AT17,

2.2.10].

(iv) After replacing X by an étale neighbourhood of x, X admits a fine chart M →

Γ(X,MX) that is neat at x, i.e. the composition M → Γ(X,MX)→MX,x →MX,x

is an isomorphism [Ogu18, Proposition III.1.2.7].

If MX is Zariski, all statements apply with x replaced by the scheme-theoretic point x ∈ X,

and (iv) holds after replacing X by a Zariski neighbourhood of x.

Following [AT17, 2.2.10], we make the following
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Definition 2.7.3. Let X be a fs logarithmic scheme. The logarithmic stratification of X

is the stratification given by {X(n) : n ∈ N} in 2.7.2. For each x ∈ X, we set sx = X(n) for

n = rank(M
gp

X,x), and sx is called the logarithmic stratum through x.

From now on, X denotes a fs logarithmic scheme. Let I• be a Rees algebra on X.

2.7.4 (Monomial part). The monomial part MI• of I• is the sheaf of monoids on X defined

as the cartesian product of the right square in the diagram:

(2.10)

MX MI• I•

MX MX ⊕N OX [t]
(1, 0)

where MX ⊕N → OX [t] is (m, k) 7→ αX(m)tk for local sections m of MX and k of N, and I•

and OX [t] are considered as sheaves of monoids under multiplication. Note that via the map

MX
αX−−→ OX = I0 ⊂ I•, the injection MX ↪→ MX ⊕N factors through MI• ↪→ MX ⊕N. In

fact, the left square of (2.10) is also cartesian.

We can now define two properties:

Definition 2.7.5 (Monomial ideals and Rees algebras). We say I• is monomial if the image

of MI• → I• in (2.10) generates I• as a OX-algebra. We also say an ideal I ⊂ OX is monomial

if its associated Rees algebra I• (Example 2.3.6) is monomial. Equivalently, there exists an

ideal Q ⊂MX such that the image of Q under MX
αX−−→ OX generates I as an ideal.

Definition 2.7.6 (Fs Rees algebras). We say that I• is fs if its monomial part MI• is a fs

sheaf of monoids. Equivalently, MI• is saturated and finitely generated over MX .

2.7.7 (Logarithmic structure on BlI• X). Likewise, for the extended Rees algebra Iext• on

X, the monomial part MIext• of Iext• is the sheaf of monoids given by the cartesian product of
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the right square of the following diagram:

(2.11)

MX ⊕ (−N) MIext• Iext•

MX ⊕ (−N) MX ⊕ Z OX [t±1]

where MX⊕Z→ OX [t±1] is similarly defined, MX⊕(−N) ↪→MX⊕Z is the canonical injection

which factors through MIext• , and likewise the left square of (2.11) is cartesian.

The top row MIext• → Iext• of (2.11) defines a logarithmic structure (and not just a pre-

logarithmic sructure, cf. Lemma 2.7.8 below) on the deformation to the normal cone SpecX(Iext• ),

as well as the weighted blow-up BlI• X = ProjX(Iext• ) = [SpecX(Iext• ) ∖ V (Iext+ ) / Gm]. Note

that this logarithmic structure on BlI• X can also be defined via the top row MI• → I• of (2.10)

and the usual presentation BlI• = [SpecX(I•)∖V (I+) / Gm]. This can be checked by passage to

charts. For various reasons (e.g. the deformation to the normal cone, and Proposition 2.7.17),

we usually work with Iext• rather than I•.

If I• is fs, then Mext
• is saturated and finitely generated over MX ⊕ (−N) (and vice versa),

in which case the aforementioned logarithmic structures are fs. Likewise, note too that I• is

monomial if and only if the image of MIext• → Iext• in (2.11) generates Iext• as a OX-algebra.

Lemma 2.7.8. Let I• be a Rees algebra on X. Then MI• → I• and MIext• → Iext• are both

logarithmic morphisms of sheaves of monoids.

Proof. A local section
∑e

i=d cit
i of OX [t±] is invertible if and only if d = e and cd is

invertible in OX . Therefore, the bottom row MX ⊕ Z → OX [t±1] in (2.11) is logarithmic.

Consequently, since the square (2.11) is cartesian, so is the top row MIext• → Iext• in (2.11). The

same argument works to show the top row MI• → I• in (2.10) is logarithmic. □

109



Remark 2.7.9. Note that under the above logarithmic structure on BlI• X in 2.7.7, the

ideal IE = (t−1) underlying the exceptional divisor E on BlI• X is a monomial ideal in the sense

of 2.7.5.

2.7.B. Weighted blow-ups along toroidal centers. In this subsection, we assume further

that X is toroidal, that is:

Definition 2.7.10. We say that a fs logarithmic scheme X is toroidal (or logarithmically

regular) at a point x ∈ X [Kat94, Definition 2.1], if for some (and hence any) geometric point

x over x,

sy is regular at x and the equality dim(OX,x) = rank(M
gp

X,x) + dim(Osx,x) holds.

If X is a fs Zariski logarithmic scheme, we say X is logarithmically regular at x ∈ X, if the

same statement holds with y replaced by the scheme-theoretic point x throughout. We say X

is toroidal (or logarithmically regular) if X is toroidal at every point x ∈ X. We also say X is

strict toroidal if X is toroidal and MX is a sheaf in the Zariski topology.

Let us first review some facts pertaining to toroidal schemes:

2.7.11. Let X be a fs logarithmic scheme.

(i) In general, for every x ∈ X, dim(OX,x) ≤ rank(M
gp

X,x) + dim(Osx,x) [Kat94, Lemma

2.3].

(ii) Let U = X∗ be the triviality locus of X, with open embedding j : X∗ ↪→ X. If X

is logarithmically regular, then αX : MX → OX is injective, and the image of αX is

j∗(O∗U) ∩ OX . If X ̸= U , then D is a divisor on X, sometimes called the toroidal

divisor of X. See [Kat94, Theorem 3.2.4] and [Niz06, Proposition 2.6].

If MX is Zariski, then the above statements hold with x replaced by the scheme-theoretic points

x ∈ X. In addition,
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(iii) If X is toroidal, X is Cohen-Macaulay and normal [Kat94, Theorem 4.1]. In particu-

lar, X is reduced, and if X is locally noetherian, X is a disjoint union of its irreducible

components. Moreover, X is catenary, so each non-empty logarithmic stratum X(n)

of X has pure codimension n.

(iv) If X is toroidal at all its closed points, X is toroidal [Kat94, Proposition 7.1].

(v) If f : X̃ → X is a logarithmically smooth morphism of fs logarithmic schemes with X

toroidal, then X̃ is also toroidal [Kat94, Theorem 8.2].

2.7.12. Let k be a field, and endow Spec(k) the trivial logarithmic structure. Then:

(i) Every regular k-scheme is a toroidal k-scheme by equipping it the trivial logarithmic

structure. If k = k, strict toroidal k-varieties correspond to the toroidal embeddings

without self-intersections in [KKMSD73]. More generally, toroidal k-varieties are

general toroidal embeddings, i.e. possibly with self-intersections.

(ii) If X is toroidal, X is logarithmically smooth over k. The converse is true if k is

perfect [Kat94, Proposition 8.3].

(iii) Assume X is strict toroidal. For x ∈ X, fix x1, x2, . . . , xn ∈ OX,x which reduce to

a regular system of parameters x1, x2, . . . , xn of Osx,x, fix a local fs chart β : M →

Γ(U,MX) that is neat at x, and fix a coefficient field κ for ÔX,x. Then the induced

surjective homomorphism

κJX1, X2, . . . , Xn,MK Xi 7→xi−−−−−−−→ ÔX,x

is an isomorphism [Kat94, Theorem 3.2(1)]. For this reason, we call x1, x2, . . . , xn

a system of ordinary parameters at x, and we call any element of β(M ∖ {0}) a

monomial parameter at x.

We are now ready to introduce the key notion of this subsection:
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Definition 2.7.13 (Toroidal centers). A fs weighted closed embedding Z• ↪→ X is toroidal

or logarithmically regular (resp. is called a toroidal center) if I• = MI• + I ′• for a Rees algebra

I ′• on X such that V (I ′•OX(n)) ↪→ X(n) is a regular weighted closed embedding (resp. a regular

center) for every logarithmic stratum X(n) ⊂ X.

Setup 2.7.14. Let X be a toroidal logarithmic scheme, and Z• ↪→ X be a toroidal weighted

closed embedding. Our next goal is to give a local description of the weighted blow-up BlI• X →

X, similar to the one for regular weighted blow-ups in Proposition 2.5.9. Fix x ∈ X. After

replacing X by an étale neighbourhood of x in X, there is a fs chart M → Γ(X,MX) that is

neat at x.

We set up the following diagram, whereM⊕(−N) ↪→M⊕Z factors throughMIext• ↪→M⊕Z,

and the squares are cartesian:

(2.12)

M ⊕ (−N) MIext• MIext• Iext•

M ⊕ (−N) M ⊕ Z MX ⊕ Z OX [t±1]

chart

chart

Then MIext• →MIext• is a chart. Moreover, the induced injection M
(1,0)
↪−−→ M ⊕ (−N) ↪→ MIext•

gives Z[MIext• ] the structure of a Z[M ]-algebra, and the chart M → MX also gives OX the

structure of a Z[M ]-algebra. Note too that because of the leftmost cartesian square in (2.12),

(MIext• )gp/Mgp = Z.

In addition, after possibly shrinking X further, there are global sections x1, x2, . . . , xk of

OX and positive integers d1, d2, . . . , dk such that

Iext• = MIext• + (x1, d1) + (x2, d2) + · · ·+ (xk, dk).

Let aX denote the ideal in OX generated by the image of M ∖{1} under M
chart−−−→MX

αX−−→ OX ,

and let a denote the ideal in Z[M ] generated by M ∖ {1}. Then aX = aOX , and V (aX) ⊂ X
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is the logarithmic stratum sx of X passing through x, and is also the logarithmic stratum with

the highest rank in X. Since I• is toroidal, we may also choose x1, x2, . . . , xk so that their

images x1, x2, . . . , xk under OX ↠ Osx = OX/aX = OX ⊗Z[M ] Z[M ]/a form a regular sequence

in Osx . Furthermore, if I• is a toroidal center, we may also choose x1, x2, . . . , xk so that the

subscheme V (x1, x2, . . . , xk) ⊂ sx is regular.

Lemma 2.7.15 (Kato’s Lemma). Assume Setup 2.7.14. Then x1, x2, . . . , xk is also a regular

sequence in OX . In fact, for every monoid homomorphism M → P with P a fine monoid, and

any ideal J of P , the images of x1, x2, . . . , xk in OX ⊗Z[M ] Z[P ]/(J) remain a regular sequence.

Proof. Let R := OX⊗Z[M ]Z[M ]/a = OX⊗Z[M ]Z. Note that since the short exact sequence

0 → a → Z[M ] → Z[M ]/a = Z → 0 can be split by the canonical inclusion Z ↪→ Z[M ], we

have R[M ] = OX . Since the image x1 of x1 under OX ↠ R is a non-zero divisor, it follows that

x1 ∈ R[P ] = OX ⊗Z[M ] Z[P ] satisfies the hypotheses in [Kat94, Lemma 6.3], so the image of

x1 in R[P ]/(J) = OX ⊗Z[M ] Z[P ]/(J) is a non-zero divisor.

Next, suppose by induction that we have shown for some 1 ≤ ℓ < k that the images of

x1, . . . , xℓ in R[P ]/(J) is a regular sequence. Set Rℓ := OX/(x1, x2, . . . , xℓ) ⊗Z[M ] Z[M ]/a =

OX/(x1, x2, . . . , xℓ) ⊗Z[M ] Z. Since the images x1, x2, . . . , xℓ, xℓ+1 of x1, x2, . . . , xℓ, xℓ+1 under

OX ↠ R form a regular sequence, it follows that xℓ+1 ∈ Rℓ[P ] = OX/(x1, x2, . . . , xℓ)⊗Z[M ] Z[P ]

satisfies the hypotheses in [Kat94, Lemma 6.3] (with respect to Rℓ instead of R), so the image of

xℓ+1 in Rℓ[P ]/(J) = OX/(x1, x2, . . . , xℓ)⊗Z[M ] Z[P ]/(J) = R[P ]/(J, x1, x2, . . . , xℓ) is a non-zero

divisor. □

2.7.16. We return back to Setup 2.7.14. For every (m, e) ∈ MIext• ⊂ M ⊕ Z, let mte be

the corresponding monomial in OX ⊗Z[M ] Z[MIext• ], where m ∈M is regarded as an element in

OX under M
chart−−−→MX

αX−−→ OX . In particular, t−1 ∈ OX ⊗Z[M ] Z[MIext• ]. Consider the graded

polynomial ring

OX ⊗Z[M ] Z[MIext• ][X1, X2, . . . , Xk]
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where deg(Xi) = di, and deg(mte) = e for (m, d) ∈MIext• ⊂M ⊕ Z. There is a natural map

OX ⊗Z[M ] Z[MIext• ][X1, X2, . . . , Xk]→ Iext• ⊂ OX [t±1]

of graded OX-algebras induced by MIext•

chart−−−→ MIext• ↪→ Iext• that takes each Xi to xit
di . Note

that t−diXi − xi is in the kernel of β for every 1 ≤ i ≤ k, so that we obtain a map

B := OX ⊗Z[M ] Z[MIext• ][X1, X2, . . . , Xm]/(t−diXi − xi : 1 ≤ i ≤ k)
β−−−−→ Iext• .

Note that β is surjective. Similar to Proposition 2.5.9, we have:

Proposition 2.7.17. β is bijective, so that

BlI• X = ProjX(Iext• )
≃−−−−→ProjX

(
OX ⊗Z[M ] Z[MIext• ][X1, X2, . . . , Xk]

(t−diXi − xi : 1 ≤ i ≤ k)

)
.

Proof. By the same argument as in Lemma 2.5.8, it suffices to show that t−1 ∈ B is a

non-zero divisor. By Kato’s Lemma 2.7.15, x1, x2, . . . , xk is a H1-regular sequence in OX ⊗Z[M ]

Z[MIext• ]/(t−1). Thus, x1, x2, . . . , xk, t
−1 ∈ OX ⊗Z[M ] Z[MIext• ][X1, X2, . . . , Xk] is a H1-regular

sequence [Stacks, 0668]. At the same time, the sequence td1X1−x1, t−d2X2−x2, . . . , t−dkXk−

xk, t
−1 generates the same ideal, and hence, is also H1-regular [Stacks, 066A]. Consequently,

t−1 ∈ B is a non-zero divisor [Stacks, 068L]. □

Corollary 2.7.18. If I• is monomial, then π : BlI• X → X is logarithmically smooth.

Proof. This is a local question, so we may assume that we are in Setup 2.7.14. Then

Proposition 2.7.17 says π is ProjX(OX ⊗Z[M ] Z[MIext• ])→ X, with Mgp
Iext•

/Mgp = Z, whence the

corollary follows. □
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For the next corollary, we fix (m1, e1), (m2, e2), . . . , (mr, er) ∈MI• so that MIext• =
〈
(m1, e1),

(m2, e2), . . . , (mr, er),M ⊕ (−N)
〉
, and hence

I• = (x1, d1) + (x2, d2) + · · ·+ (xk, dk) + (m1, e1) + (m2, e2) + · · ·+ (mr, er)

where each mi is regarded as an element in OX under M
chart−−−→ MX

αX−−→ OX . Then BlI• X is

covered by the charts D+(xi · tdi) for 1 ≤ i ≤ k and D+(mi · tei) for 1 ≤ i ≤ r. As a consequence

of Proposition 2.7.17 and Lemma 2.1.2 (with A = Z, a = di or ei, and r = xi · tdi or mi · tei),

we can explicate these charts:

Corollary 2.7.19 (Charts for blow-ups along toroidal weighted embeddings).

(i) For each 1 ≤ i ≤ k, the chart D+(xi · tdi) of BlI• X is:

[
SpecX

(
OX ⊗Z[M ] Z[MIext• ][X1, X2, . . . , Xk][X−1i ]

(t−djXj − xj : 1 ≤ j ≤ k)

)
/ Gm

]

=

[
SpecX

(
OX [t−1, X1, X2, . . . X̂i, . . . , Xk]

(t−di − xi) + (t−djXj − xj : 1 ≤ j ≤ k, j ̸= i)

)
/ µµµdi

]

where X̂i means Xi omitted, and the action of µµµdi corresponds to the weights wtZ/di(Xj)

= dj for j ̸= i, wt(mte) = e for (m, e) ∈MIext• .

(ii) For each 1 ≤ i ≤ r, the chart D+(mi · tei) of BlI• X is:

[
SpecX

(
OX ⊗Z[M ] Z[MIext• ][(mit

ei)−1][X1, X2, . . . , Xk]

(t−djXj − xj : 1 ≤ j ≤ k)

)
/ Gm

]

=

[
SpecX

(
OX ⊗Z[M ] Z

[
MIext• /⟨(mi, 0) ∼ (0,−ei)⟩

]
[X1, X2, . . . , Xk]

(t−djXj − xj : 1 ≤ j ≤ k)

)
/ µµµei

]

where MIext• /⟨(mi, 0) ∼ (0,−ei)⟩ is the quotient of MIext• by the congruence relation

generated by (mi, 0) ∼ (0,−ei), and the action of µµµei corresponds to the weights

wtZ/ei(Xj) = dj for j ̸= i, wt(mte) = e for (m, e) ∈MIext• /⟨(mi, 0) ∼ (0,−ei)⟩.

Finally, let us specialize our discussion to the case of toroidal centers.
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Corollary 2.7.20. Let X be a toroidal logarithmic scheme. If Z• ↪→ X is a toroidal

center, then the deformation to the weighted normal cone DZ•X = SpecX(Iext• ) is toroidal. In

particular, the weighted blow-up BlZ• X ⊂
[
DZ•X / Gm

]
is toroidal.

Proof. This is a local question, so we may assume that we are in Setup 2.7.14. By

Proposition 2.7.17, we have

Iext• /(t−1)
≃←−−−− OV (x1,x2,...,xk) ⊗Z[M ] Z[MIext• ][X1, X2, . . . , Xk]/(t−1)

with (MIext• )gp/Mgp = Z. This implies the weighted normal cone CZ•X = SpecX
(
Iext• /(t−1)

)
,

endowed with the idealized logarithmic structure induced by MIext• ↪→ Iext• ↠ Iext• /(t−1) and the

ideal sheaf
(
(0,−1)

)
⊂ MIext• , is idealized logarithmically smooth over V (x1, x2, . . . , xk) ⊂ X.

Since V (x1, x2, . . . , xk) ⊂ X is toroidal [ATW20b, Lemma 5.1.2], CZ•X is therefore idealized

toroidal. It then follows that DZ•X = SpecX(MIext• → Iext• ) is toroidal at points in CZ•X =

V (t−1) ⊂ DZ•X. On the other hand, the open complement of CZ•X in DZ•X is the toroidal

scheme X ×Gm. This completes the proof. □

Corollary 2.7.21. Any toroidal center I• on a toroidal scheme X is integrally closed in

OX [t].

Proof. Since X and DZ•X = SpecX(Iext• ) are toroidal, they are in particular normal

(2.7.11). Consequently, Iext• must be integrally closed. □
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CHAPTER 3

Logarithmic resolution via weighted blow-ups along toroidal centers

3.1. Toroidal centers in characteristic zero

3.1.A. Preliminaries. This chapter concerns the theorems outlined in §1.2.A. Throughout

this chapter, we fix a field k of characteristic zero. Although ideals on toroidal Deligne-Mumford

stacks over k [ATW20a, §3.3.3] are the main objects of interest in the results of §1.2.A, a

significant portion of the paper instead deals with ideals on strict toroidal k-schemes (Defini-

tion 2.7.10). There are two reasons for this:

(a) Étale locally a toroidal Deligne-Mumford stack over k is a strict toroidal k-scheme,

cf. [GR18, Proposition 12.5.46].

(b) The constructions and discussions in this paper are étale-local. This is indeed a feature

of Theorem A in §1.2.A.

Henceforth, we shall assume Y is a strict toroidal k-scheme (with the exception of Corol-

lary 3.3.17), and denote its logarithmic structure by αY : MY → OY . We follow any conventions

and notations outlined in §2.7. We also fix the following notations:

D1
Y — logarithmic tangent sheaf of Y

D∞Y — sheaf of logarithmic differential operators on Y [ATW20a, §3.3]

D≤nY — sheaf of logarithmic differential operators on Y of order ≤ n

At a closed point y ∈ Y , the stalk of D1
Y at y can be described as follows, cf. [ATW20a,

Lemma 3.3.4] or [Que22a, Lemma B.9]. Fix a system of ordinary parameters x1, x2, . . . , xn at

y, and fix a basis m1,m2, . . . ,mr(y) ∈M Y,y =: M for the free abelian group M
gp

Y,y of rank r(y).

With respect to these data are the following differential operators of order 1:

(i) ∂xi
which vanishes on M and satisfies ∂xi

(xj) = δij,
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(ii) mi∂mi
which vanishes on every xi and satisfies mi∂mi

(mj) = δijmi.

Then D1
Y,y is a free OY,y-module with basis ∂x1 , ∂x2 , . . . , ∂xn , ∂m1 , ∂m2 , . . . , ∂mr(y)

. Since we are in

characteristic zero, D∞Y is generated as a OY -algebra by D1
Y (where the ring structure on D∞Y

is given by composition). In addition, with respect to an ideal J on Y , we adopt the following

notations:

D≤nY (J) — ideal on Y generated by the image of J under D≤nY

D∞Y (J) — ideal on Y generated by the image of J under D∞Y

It turns out that D∞Y (J) coincides with the following notion, cf. the subsequent lemma:

Definition 3.1.1. The monomial saturation MY (J) of J is the intersection of all monomial

ideals (Definition 2.7.5) on Y containing J .

When Y is clear from context, we usually drop Y from the subscripts in the aforementioned

notations, e.g. we sometimes just write M (J) instead of MY (J).

Lemma 3.1.2 (cf. [ATW20a, Corollary 3.3.12, Theorem 3.4.2 and Lemma 3.5.2]).

(i) D∞Y (J) = MY (J).

(ii) J is monomial if and only if D≤1Y (J) = J .

(iii) If f : Ỹ → Y is a logarithmically smooth morphism of strict toroidal k-schemes,

then D≤n
Ỹ

(f−1(J)OỸ ) = f−1(D≤nY (J))OỸ for all n ∈ N, and MỸ (f−1(J)OỸ ) =

f−1(MY (J))OỸ .

(iv) If Q is a monomial ideal on Y , then D≤nY (Q · J) = Q ·D≤nY (J) for all n ∈ N.

Additionally, we require the following notion, which is the logarithmic analogue of the

classical order of ideals at points:

Definition 3.1.3. The logarithmic order of J at y is defined as log-ordy(J) := ordy(J |sy) ∈

N ⊔ {∞}, where sy is the logarithmic stratum through y, cf. Definition 2.7.3.
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Lemma 3.1.4 (cf. [ATW20a, Lemma 3.6.3, Lemma 3.6.5, Corollary 3.66 and Lemma

3.6.8]).

(i) log-ordy(J) = inf
{
m ∈ N : D≤mY (J)y = OY,y

}
, where inf(∅) =∞.

(ii) log-ordy(J) =∞ if and only if y ∈ V (MY (J)).

(iii) MY (J)y = OY,y if and only if log-ordy(J) <∞.

(iv) If f : Ỹ → Y is a logarithmically smooth morphism of strict toroidal k-schemes, and

ỹ ∈ Ỹ maps to y ∈ Y , then log-ordỹ(f
−1(J)OỸ ) = log-ordy(J).

Together the first two parts of the lemma say that log-ordy(J) is upper semi-continuous on

Y . Indeed:

(i) For n ∈ N, V (D≤nY (J)) is the locus of points y ∈ Y satisfying log-ordy(J) > n,

(ii) V (MY (J)) is the locus of points y ∈ Y satisfying log-ordy(J) =∞.

Therefore, since Y is noetherian, the maximum logarithmic invariant

max log-ord(J) := max
y∈Y

log-ordy(J)

of J exists. Finally, as specified in Theorem A, weighted blow-ups along toroidal centers

(Definition 2.7.13) play a big role in this chapter, and the next section studies them in the

setting of characteristic zero. To better formulate various results in this chapter, we make the

following definition:

Definition 3.1.5 (Q-toroidal centers). A Q-toroidal center on Y is any Veronese translate

(Definition 2.3.39) of a toroidal center on Y . We usually reserve the notation I• for Q-toroidal

centers (as opposed to I•).

3.1.B. Weighted blow-ups along toroidal centers in characteristic zero. We start by

recalling and fixing some conventions for the remainder of this thesis:
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3.1.6 (Local presentation of toroidal centers). For the remainder of this subsection, let I•

be a toroidal center on Y . For each y ∈ Y , fix a local fs chart β : M → Γ(U,MY ) that is neat at

y (so M ≃M Y,y). Replacing Y by a neighbourhood of y, we may assume Setup 2.7.14 for I•.

Fix (m1, e1), (m2, e2), . . . , (mr, er) ∈ MI• so that MIext• =
〈
(m1, e1), (m2, e2), . . . , (mr, er),M ⊕

(−N)
〉
, as in the paragraph before Corollary 2.7.19. Then

I• = (x1, d1) + (x2, d2) + · · ·+ (xk, dk) + (m1, e1) + (m2, e2) + · · ·+ (mr, er)

in the sense of Definition 2.3.5, where each mi is regarded in OX via M
β−→MX

αX−−→ OX .

Next, since I• is integrally closed (Corollary 2.7.21), we find it more convenient in this

chapter to follow Convention 2.3.79 and express I• as

(3.1) I• =
(
x
1/d1
1 , x

1/d2
2 , . . . , x

1/dk
k ,m

1/e1
1 ,m

1/e2
2 , . . . ,m1/er

r

)
.

Without loss of generality, we always assume d1 ≥ d2 ≥ · · · ≥ dk. Letting e := lcm(ei : 1 ≤ i ≤

r) and Q be the ideal

Q :=
(
m

e/e1
1 ,m

e/e2
2 , . . . ,me/er

r

)
⊂M,

we can further simplify I• as

(3.2) I• =
(
x
1/d1
1 , x

1/d2
2 , . . . , x

1/dk
k , Q1/e

)
Likewise, any Q-toroidal center I• can be written in a neighbourhood of any y ∈ Y as

(3.3) I• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

a)

for some positive rational numbers a1 ≤ a2 ≤ . . . ≤ ak and a, some ordinary parameters

x1, x2, . . . , xk at y (cf. 2.7.12(iii)), and an ideal Q ⊂M Y,y. The expression in (3.2) (resp. (3.3))
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will be referred to as a local presentation of a toroidal center I• (resp. a Q-toroidal center I•)

at y.

3.1.7. Next, let us explicate the weighted blow-up of Y along I•. For the purposes of this

chapter, we will always work locally around some y ∈ Y , and assume that I• has the local

presentation (3.1) at y (with d1 ≥ d2 ≥ · · · ≥ dk). Replacing Y by the neighbourhood of y on

which that local presentation is defined, we recall from Proposition 2.7.17 that the weighted

blow-up of Y along I• can then be written as follows:

Y ′ := BlI• Y = ProjY (Iext• ) = ProjY

(
OY ⊗Z[M ] Z[MIext• ][x′1, x

′
2, . . . , x

′
k]

(udix′i − xi : 1 ≤ i ≤ k)

)
π−−−−→ Y(3.4)

where u := t−1 is the monomial in Z[MIext• ] given by (0,−1) ∈MIext• , and

x′i := xi · tdi ∈ I• for every 1 ≤ i ≤ k.

Recall that E = V (u) is the exceptional divisor on Y ′, cf. Remark 2.3.15. Let IE denote the

ideal sheaf of E ⊂ Y ′. By Corollary 2.7.20, Y ′ is toroidal under the logarithmic structure

induced by MIext• → Iext• in (2.12). In addition, for each 1 ≤ i ≤ r, let

m′i := mi · tei ∈ I•

be the monomial in Z[MIext• ] given by (mi, ei) ∈ MIext• . Then the map M → MIext• , which is

part of the data of (3.4), maps

mi 7→ ueim′i for every 1 ≤ i ≤ r.

Finally, recall that Y ′ is covered by the charts D+(x′i) for 1 ≤ i ≤ k, and the charts D+(m′i)

for 1 ≤ i ≤ r, cf. Corollary 2.7.19 for a description of these charts. Then we have the following

fundamental lemma:
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Lemma 3.1.8. For any ideal J ⊂ OY , we have

π−1
(
D≤1Y (J)

)
OY ′ ⊂ I−d1E ·D≤1Y ′

(
π−1(J)OY ′

)
.

Proof. Let W = SpecY (Iext• )∖V (Iext+ ) be the total space of the Gm-torsor on Y ′, which is

toroidal (Corollary 2.7.20). Letting π′ denote W → Y ′ → Y , the map π′∗ΩY → ΩW is defined

by the following rules: 
dxi

xi
=

dx′
i

x′
i

+ di
du
u

for 1 ≤ i ≤ k

dmi

mi
=

dm′
i

m′
i

+ ei
du
u

for 1 ≤ i ≤ r

so that TW → π′∗TY is induced by

x′i∂x′
i

= xi∂xi
for 1 ≤ i ≤ k

m′i∂m′
i

= mi∂mi
for 1 ≤ i ≤ r

u∂u =
∑k

i=1 dixi∂xi
+
∑r

i=1 eimi∂mi

For 1 ≤ i ≤ k, the total space of the µµµdi-torsor on the chart D+(x′i) of BlI• X is V (x′i−1) ⊂ W .

Letting πx′
i
: V (x′i − 1) ⊂ W → Y ′ → Y , the map TV (x′

i−1) → π∗x′
i
TY is then induced by



∂xj
= u−dj∂x′

j
for 1 ≤ j ≤ k, j ̸= i

mj∂mj
= m′j∂m′

j
for 1 ≤ j ≤ r

∂xi
= d−1i u−di

(
u∂u −

∑
1≤j≤k
j ̸=i

x′j∂x′
j
−
∑

1≤j≤r eim
′
j∂m′

j

)
Since d1 ≥ di, the lemma holds on the chart D+(x′i) of BlI• Y . On the other hand, for 1 ≤ i ≤ r,

the total space of the µµµei-torsor on the chart D+(m′i) of BlI• X is V (m′i − 1) ⊂ W . Letting
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πm′
i
: V (m′i − 1) ⊂ W → Y ′ → Y , the map TV (m′

i−1) → π∗m′
i
TY is similarly induced by



∂xj
= u−dj∂x′

j
for 1 ≤ j ≤ k

mj∂mj
= m′j∂m′

j
for 1 ≤ j ≤ r, j ̸= i

mi∂mi
= e−1i

(
u∂u −

∑
1≤j≤k x

′
j∂x′

j
−
∑

1≤j≤r
j ̸=i

eim
′
j∂m′

j

)
Since d1 ≥ 0, the lemma likewise holds on the charts D+(m′i) of BlI• Y for 1 ≤ i ≤ r. □

The above lemma will allow us to extend Lemma 2.3.30, which says that for any ℓ ∈ N>0,

Iℓ• is J-admissible if and only if π−1(J)OY ′ = IℓE · J ′ for an ideal J ′ ⊂ OY ′ .

Corollary 3.1.9. Assume that Iℓ• is J-admissible for an integer ℓ ≥ d1, so that π
−1(J)OY ′ =

IℓE · J ′ for an ideal J ′ ⊂ OY ′. Then for any integer 0 ≤ j ≤ ⌊ℓ/d1⌋, we have:

(3.5) π−1
(
D≤jY (J)

)
OY ′ ⊂ Iℓ−jd1E ·D≤jY ′ (J ′).

That is, π−1
(
D≤jY ′ (J)

)
OY ′ = Iℓ−jd1E · J ′j for an ideal J ′j ⊂ D≤jY ′ (J ′) ⊂ OY ′.

Proof. We proceed by induction. We already noted the base case j = 0. Assume (3.5) for

some 1 ≤ j < ⌊ℓ/d1⌋, and we shall prove (3.5) for j + 1. Since we are in characteristic zero, we

have D≤mY (J) = D≤1Y (D≤m−1Y (J)) for every m ∈ N>0, and thus:

Iℓ−jd1E ·D≤j+1
Y ′ (J ′) = D≤1Y ′

(
Iℓ−jd1E ·D≤jY ′ (J ′)

)
⊃ D≤1Y ′

(
π−1
(
D≤jY (J)

)
OY ′

)
by (3.5)

⊃ Id1E · π
−1
(
D≤j+1

Y (J)
)

OY ′ by Lemma 3.1.8. □

The above corollary can in turn be combined with Lemma 2.3.30 to study the behaviour

of admissibility of Q-toroidal centers under the operation D≤jY , cf. part (i) of the next lemma.

For the remainder of this subsection, let I• be a Q-toroidal center on Y . Fixing any y ∈ Y and
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replacing Y by a neighbourhood of y in Y , we may also assume that I• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

a)

as in (3.3).

Lemma 3.1.10. Assume I• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

a) is J-admissible, and let j ∈ N>0.

Then:

(i) If a1 ≥ j, then I(a1−j
a1

)
•
is D≤jY (J)-admissible.

(ii) I(a1+j
a1

)
•
is (xj1 · J)-admissible.

Proof. Fix a sufficiently divisible ℓ ∈ N>0 such that I• = Iℓ• for some toroidal center I• =

(x
1/d1
1 , x

1/d2
2 , . . . , x

1/dk
k , Qa/ℓ) on Y . For (i), we have ℓ = a1d1 ≥ jd1, so Corollary 3.1.9 implies

that π−1
(
D≤jY (J)

)
OY ′ ⊂ Iℓ−jd1E . By Lemma 2.3.30, I(a1−j

a1

)
•

= I(ℓ−jd1)• is D≤jY (J)-admissible.

For (ii), since x1 = x′1u
d1 on Y ′ = BlI• Y , we have π−1(xj1 · J)OY ′ ⊂ π−1(J)OY ′ · Ijd1E ⊂ Iℓ+jd1

E ,

where the last inclusion is provided by Corollary 3.1.9 again. Thus, by Lemma 2.3.30 again,

I(a1+j
a1

)
•

= I(ℓ+jd1)• is (xj1 · J)-admissible. □

As a consequence, we obtain our first constraint on Q-toroidal centers that are admissible

at y. This constraint will be refined further in §3.2.B.

Corollary 3.1.11. Assume that log-ordy(J) = b1 < ∞. If I• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

a) is

J-admissible at y with k ≥ 1, then a1 ≤ b1.

Proof. By replacing Y by an open neighbourhood of y, we may assume that I• is J-

admissible and D≤b1Y (J) = (1). Assume for a contradiction that a1 > b1. By Lemma 3.1.10(i),

we then have I(a1−b1
a1

)
•

is D≤b1Y (J)-admissible. Since D≤b1Y (J) = (1), this forces I(a1−b1
a1

)
•

=

OY [t]. But this is not possible, since

I(a1−b1
a1

)
•

=
(
xa1−b11 , x

a2(a1−b1)/a1
2 , . . . , x

ak(a1−b1)/a1
k , Qa(a1−b1)/a1

)
with a1 − b1 > 0. □
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3.1.C. Local invariants of Q-toroidal centers in characteristic zero. The preceding

Corollary 3.1.11 suggests that it is perhaps meaningful to consider the following local invariant

of a Q-toroidal center I• on a strict toroidal k-scheme Y :

Definition 3.1.12 (Local invariant of a Q-toroidal center). For y ∈ Y , we define the

invariant of I• at y as

invy(I•) :=


(a1, a2, . . . , ak,∞) if Q ̸= ∅

(a1, a2, . . . , ak) if Q = ∅

where I• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

a) is a local presentation of I• at y, as in (3.3). Note that if

(I•)y = OY,y[t], then the local presentation of I• at y is I• = (Q = ∅), so that invy(I•) = ().

The objective of this subsection is to show invy is well-defined:

Theorem 3.1.13. invy(I•) and the number k of finite entries in invy(I•) are both inde-

pendent of choice of local presentation of I• at y.

To prove this theorem, fix y ∈ Y . After replacing Y by a neighbourhood of y, we may assume

that globally on Y , I• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

a), where x1, x2, . . . , xk are ordinary parameters

at y. For the next two lemmas, let us extend x1, x2, . . . , xk to a system of ordinary parameters

x1, x2, . . . , xn at y.

Lemma 3.1.14 (Exchange). Suppose that k ≥ 1. Assume that x′1, x2, . . . , xn is a system

of ordinary parameters at y for which I• is (x′a11 )-admissible. After possibly replacing Y by a

neighbourhood of y, we have I• =
(
(x′1)

a1 , xa22 , . . . , x
ak
k , Q

a
)
.

Proof. The hypothesis says that I• ⊃
(
(x′1)

a1 , xa22 , . . . , x
ak
k , Q

a
)
. This is necessarily an

equality, by passing to

Ôsy ,y = κ(y)Jx1, x2, . . . , xnK = κ(y)Jx′1, x2, . . . , xnK
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and observing that the κ(y)-dimensions of each tn-graded piece of both sides match. □

Lemma 3.1.15. Suppose that k ≥ 1. Let f · tℓ ∈ I• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

a) be a

homogeneous section, and write its image f of f under OY → OY,y ↠ Osy ,y → Ôsy ,y =

κ(y)Jx1, x2, . . . , xnK as

f =
∑
v∈Nn

cv · xv :=
∑

v=(v1,v2,...,vn)∈Nn

cv · xv11 xv22 · · ·xvnn for cv ∈ κ(y).

Then
∑k

i=1
vi
ai
≥ ℓ for every v ∈ Nn with cv ̸= 0.

Proof. We may replace Y with sy, and reduce to the case where Y is a smooth k-scheme

with trivial logarithmic structure, and I• = (xa11 , x
a2
2 , . . . , x

ak
k ). By replacing I• with Iℓ•, we

may assume ℓ = 1, i.e. I• is (f)-admissible. Next, note that:

(i) there are only finitely many v ∈ Nn for which cv ̸= 0 and
∑k

i=1 vi/ai = ν(f) :=

min
{∑k

i=1 vi/ai : v ∈ Nn, cv ̸= 0
}

, and

(ii) I• is (xv)-admissible for any monomial xv for which cv ̸= 0, because I• is the integral

closure of a Rees algebra generated by monomials.

Given these two reasons, we may simply consider R := κ(y)[x1, x2, . . . , xn], replace f by

∑
v∈Nn∑k

i=1 vi/ai=ν(f)

cv · xv ∈ R

and replace I• by I• ∩ R = (xa11 , x
a2
2 , . . . , x

ak
k ) ⊂ R. Letting K be the field of fractions of R,

consider the following valuation ν ∈ ZR(K/κ(y)) defined by:

ν

(∑
v∈Nn

ca · xv
)

= min

{
k∑

i=1

vi
ai

: v ∈ Nn, cv ̸= 0

}
.
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Since I• is (f)-admissible, Lemma 2.3.77 implies

ν(f) = γ(f),ν ≥ γI•,ν = min{ai : ν(xi) : 1 ≤ i ≤ k} = 1 = ℓ. □

We can now return back to our original goal:

Proof of Theorem 3.1.13. Suppose I• admits two local presentations at y:

(xa11 , x
a2
2 , . . . , x

ak
k , Q

a) = I• =
(
(x′1)

b1 , (x′2)
b2 , . . . , (x′k)bk , (Q′)a

)
By considering the image I • of I• under OY → OY,y → Osy ,y, note that k = 0 if and only

if I • = 0 if and only if ℓ = 0, in which case it is immediate that Q ̸= ∅ if and only if

Q′ ̸= ∅, i.e. the lemma is immediate. Henceforth, we may assume k, ℓ ≥ 1. By replacing

I• by Iℓ• for some sufficiently divisible ℓ ∈ N, we may assume a1, b1 ∈ N>0. In particular,

I• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

a) is (x′1)
b1-admissible. By Corollary 3.1.11, we have a1 ≤ b1. By

reversing roles, we also have a1 ≥ b1, whence a1 = b1. Applying Lemma 3.1.10(i) repeatedly,

we have I(1/a1)• = (x1, x
a2/a1
2 , . . . , x

ak/a1
k , Qa/a1) is (x′1)-admissible. Extending x1, x2, . . . , xk

to a system of ordinary parameters x1, x2, . . . , xn at y, let us write the image of x′1 under

OY → OY,y → Osy ,y → ÔY,y = κ(y)Jx1, x2, . . . , xnK as
∑

v∈Nn cv · xv for some ca ∈ κ(y). By

Lemma 3.1.15, we see that for v ∈ Nn with cv ̸= 0, we have

v1 +
k∑

i=2

via1/ai ≥ 1.

Let k0 := max{1 ≤ i ≤ k : ai = a1} ≥ 1. It follows from the above inequality that x′1 ∈

(x1, x2, . . . , xk0) + m2
sy ,y ⊂ Osy ,y, where msy ,y is the maximal ideal of Osy ,y. Thus, after possibly

re-ordering x1, x2, . . . , xk0 , we may replace x′1 so that (x′1, x2, . . . , xn) is a system of ordinary

parameters at y. Applying Lemma 3.1.14, we obtain

(
(x′1)

a1 , xa22 , . . . , x
ak
k , Q

a
)

= I• =
(
(x′1)

b1 , (x′2)
b2 , . . . , (x′k)ak , (Q′)a

)
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Let us now restrict to the hypersurface H = V (x′1) ⊂ Y , where

(
xa22 , . . . , x

ak
k , Q

a
)

= I•OH =
(
(x′2)

b2 , . . . , (x′k)ak , (Q′)a
)
.

We now apply induction hypothesis to conclude k = ℓ, ai = bi for 2 ≤ i ≤ k = ℓ, and Q ̸= ∅ if

and only if Q′ ̸= ∅ (so invy(I•) is well-defined). □

Because of Theorem 3.1.13, we can make the following definition:

Definition 3.1.16 (Reducedness). Let I• be a Q-toroidal center on Y . We say I• is

reduced at y ∈ Y if

invy(I•) = (1/d1, 1/d2, . . . , 1/dk, ∗) (∗ = empty or ∞)

where either k = 0, or d1, . . . , dk ∈ N>0 with gcd(d1, d2, . . . , dk) = 1. We also say I• is reduced

if it is reduced at every y ∈ Y , in which case I• is a toroidal center on Y .

3.1.17 (Reduction). Given any Q-toroidal center I• on Y and y ∈ Y , let invy(I•) =

(a1, a2, . . . , ak, ∗), where the final entry ∗ is either empty or ∞. If k ≥ 1, there always exists

q ∈ Q>0 such that:

(i) for every 1 ≤ i ≤ k, aiq = 1/di for di ∈ N>0,

(ii) and moreover, gcd(d1, d2, . . . , dk) = 1.

If k = 0, set q := 1. Then Iq• is reduced at y, and is called the reduction of I• at y.

3.2. Maximal contact elements and coefficient ideals

In this section, let J ⊂ OY be an ideal on a strict toroidal k-scheme Y . In this section, we

extend various classical notions in the theory of resolution of singularities to the logarithmic

geometric setting.
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3.2.A. Maximal contact elements. Let y ∈ V (J) ⊂ Y and assume a := log-ordy(J) <∞.

Definition 3.2.1 (Maximal contact elements, cf. [Kol07, Definition 3.79]). A maximal

contact element of J at y is an element of D≤a−1(J)y that has logarithmic order 1, i.e. can be

extended to a system of ordinary parameters at y. The vanishing locus of a maximal contact

element of J at y, defined locally around y, is called a hypersurface of maximal contact for J

at y. The ideal D≤a−1(J)y ⊂ OY,y is called the maximal contact ideal of J at y.

It is well-known that hypersurfaces of maximal contact play a crucial role in resolution

of singularities in characteristic zero, in the sense that they always exist and they allow for

arguments to proceed via induction on dimension: namely, one passes to a hypersurface of

maximal contact in the induction step.

Lemma 3.2.2. If char(k) = 0, a maximal contact element of J at y always exists.

Proof. If char(k) = 0, then D≤a(J) = D≤1(D≤a−1(J)) for any a ∈ N>0. If a =

log-ordy(J), we have D≤1(D≤a−1(J))y = (1), from which the lemma follows. □

Definition 3.2.3 (MC-invariant, cf. [Kol07, Definition 3.53]). We say J is MC-invariant

at y if D≤a−1(J)y ·D≤1(J)y ⊂ Jy.

The reason why we care about such a property is reflected in the following

Theorem 3.2.4 (Invariance of maximal contact for MC-invariant ideals). Assume J is

MC-invariant at y. For every pair of maximal contact elements x and x′ of J at y, there exist

strict and étale morphisms

Ỹ
ϕx−−−−−−−−−−⇒
ϕx′

Y

from a strict toroidal k-scheme Ỹ into Y , and a point ỹ of Ỹ such that ϕx(ỹ) = y = ϕx′(ỹ),

satisfying the following properties:
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(i) ϕ∗x(J) = ϕ∗x′(J);

(ii) ϕ∗x(x) = ϕ∗x′(x′) in D≤a−1(J̃), where J̃ denotes the ideal in (i).

Our proof of Theorem 3.2.4 follows the proofs of [W lo05, Lemma 3.5.5], [ATW20a, Lemma

5.3.3] and [Kol07, Theorem 3.92] very closely. For completeness, we provide it here. Let us

first fix some notation: let κ/k be a field extension, M be a sharp monoid, and consider the

logarithmic κ-algebra M → κJx1, . . . , xn,MK =: R, with maximal ideal m = (x1, . . . , xn,M \

{1}) and sheaf D = DM→R of logarithmic differential operators with order filtration D≤m. For

an ideal b ⊂ m of R, we say an automorphism ψ of R is of the form 1 + b, if ψ fixes M and

maps each xi to xi + fi for some fi ∈ b. Let J ⊂ R be an ideal.

Lemma 3.2.5 (cf. [Kol07, Proposition 3.94]). The following statements are equivalent:

(i) ψ(J) = J for every automorphism ψ of the form 1+ b.

(ii) b ·D≤1(J) ⊂ J .

(iii) bm ·D≤m(J) ⊂ J for every m ∈ N>0.

Proof. Assume (iii). Let ψ be an automorphism of the form 1+ b, and for all 1 ≤ i ≤ n,

let bi ∈ b such that ψ(xi) = xi + bi. Similar to Taylor’s expansion, we have:

ψ(f) = f +
n∑

i=1

bi · ∂xi
f +

1

2

n∑
i,j=1

bibj · ∂xi
∂xj

f + · · ·

i.e. for any ℓ ≥ 1, we get

ψ(f) ∈ J + b ·D≤1(J) + · · ·+ bℓ ·D≤ℓ(J) + mℓ+1 ⊂ J + mℓ+1.

By Krull’s Intersection Theorem, this implies ψ(f) ∈ J , so we get (i).

Next, assume (i). Let b ∈ b, and let 1 ≤ i ≤ n. For general λ ∈ k, the endomorphism on R,

which maps (x1, . . . , xn) 7→ (x1, . . . , xi−1, xi+λb, xi+1, . . . , xn) and fixes M , is an automorphism
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of R of the form 1+ b. Therefore, for every f ∈ J , and every ℓ ≥ 1,

f + λb · ∂xi
f + · · ·+ (λb)ℓ · ∂ℓxi

f ∈ ψ(f) + mℓ+1 ⊂ I + mℓ+1.

For ℓ+ 1 general elements λ = λ0, . . . , λℓ in k, the column vector obtained from

1 λ0 λ20 · · · λℓ0

1 λ1 λ21 · · · λℓ1
...

...
...

. . .
...

1 λℓ λ2ℓ · · · λℓℓ


·



f

b∂xi
f

...

bℓ∂ℓxi
f


has entries in J +mℓ+1, and the Vandermonde matrix (λji ) is invertible. In particular, b ·∂xi

f ∈

J + mℓ+1. By Krull’s intersection theorem again, b · ∂xi
f ∈ J . Since b ·D≤1(J) is generated by

elements of the form b · f or b · ∂xi
f for b ∈ b, f ∈ J and 1 ≤ i ≤ n, we get (ii).

Finally, assume (ii). We prove by induction that bm ·D≤m(J) ⊂ J for every m ∈ N>0. The

ideal bm+1 ·D≤m+1(J) is generated by elements of the form b0 · · · bm ·D≤1(g) for b0, . . . , bm ∈ b

and g ∈ D≤m(J). Then:

b0 · · · bm ·D≤1(g) = b0 ·D≤1(b1 · · · bm · g)−
m∑
i=1

D≤1(bi) · (b0 · · · b̂i · · · bm · g)

∈ b ·D≤1(bm ·D≤m(J)) + bm ·D≤m(J) ⊂ b ·D≤1(J) + bm ·D≤m(J) ⊂ J,

where the last two inclusions hold by the induction hypothesis. This proves (iii). □

We can now return back to our original goal:

Proof of Theorem 3.2.4. Let x2, . . . , xn ∈ Osy ,y such that x, x2, . . . , xn and x′, x2, . . . , xn

are both regular systems of parameters of Osy ,y. We have

κJx, x2 . . . , xn,MK = ÔY,y = κJx′, x2, . . . , xn,MK, where κ = κ(y) and M = M Y,y.
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Consider the endomorphism ψ of ÔY,y, which maps (x, x2, . . . , xn) 7→ (x′ = x+(x′−x), x2, . . . , xn)

and fixes M . Since x′, x2, . . . , xn are linearly independent modulo m2
Y,y (where mY,y is the maxi-

mal ideal of OY,y), ψ is an automorphism of ÔY,y. Moreover, since x and x′ are maximal contact

elements at y, we have x′ − x ∈ D≤a−1(Ĵy), whence ψ is an automorphism of ÔY,y of the form

1+D≤a−1(Ĵy). Finally, since J is MC-invariant at y, we have D≤a−1(Ĵy)·D≤1(Ĵy) ⊂ Ĵy, whence

Lemma 3.2.5 implies ψ(Ĵy) = Ĵy.

Our goal now is to “realize” this automorphism ψ on ÔY,y on some strict, étale neighbour-

hood Ỹ of y. We first extend both (x, x2, . . . , xn) and (x′, x2, . . . , xn) to systems of logarithmic

coordinates at y:

(
x, x2 . . . , xN ,M

β−−−−→ Γ(U,MY |U)
)

and
(
x′, x2 . . . , xN ,M

β−−−−→ Γ(U,MY |U)
)
.

After shrinking Y if necessary, Y admits strict and étale morphisms

Y
τx−−−−−−−−−−⇒
τx′

Spec(M → k[X1, . . . , XN ,M ])

induced by the ring morphisms τ#x , τ#x′ : k[X1, . . . , Xn]⇒ Γ(Y,OY ) mapping (X1, X2, . . . , XN) 7→

(x, x2, . . . , xN) and (X1, X2, . . . , XN) 7→ (x′, x2, . . . , xN) respectively, as well as the chart β : M →

Γ(Y,MY ). Finally, we obtain the desired Ỹ , by forming the following cartesian square (in the

category of fs logarithmic schemes):

Ỹ Y

Y Spec(M → k[X1, . . . , XN ,M ])

ϕx′

ϕx τx′

τx

Since both τx and τx′ are strict and étale, ϕx and ϕx′ are also strict and étale. Moreover,

ϕ∗x(x) = ϕ∗x(τ ∗x(X1)) = ϕ∗x′(τ ∗x′(X1)) = ϕ∗x′(x′). Note that τx and τx′ maps y to the same point

in Spec(M → k[X1, . . . , XN ,M ]), so there is a unique point ỹ ∈ Ỹ which is mapped to y via
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ϕx and ϕx′ . Finally, the completion of Ỹ at ỹ is the graph of the automorphism ψ on ÔY,y, and

since ψ(Ĵy) = Ĵy, we may shrink Ỹ if necessary to arrange for ϕ∗x(J) = ϕ∗x′(J). □

3.2.B. Coefficient ideals. In this section, we recall the method of taking coefficient ideals.

This method originates from Hironaka [Hir64], and has been studied extensively in the papers

of Bierstone-Milman ([BM08], etc), Encinas-Villamayor ([EV00], etc), W lodarczyk [W lo05],

and many others. Our treatment closely follows [ATW19], which studies coefficient ideals from

the Rees algebra approach of [EV07b]. At the end of this section, we briefly indicate why they

are necessary for the purposes of this chapter.

Definition 3.2.6 (Coefficient Rees algebras). For a ∈ N>0, the ath coefficient Rees algebra

of J is the Rees algebra G•(J, a) ⊂ OY [t] on Y generated by D≤j(J) · ta−j for 0 ≤ j < a. In

other words, its graded pieces are

Gm(J, a) :=

(
a−1∏
j=0

(D≤j(J))cj : cj ∈ N,
a−1∑
j=0

(a− j)cj ≥ m

)
⊂ OY for m ∈ N.

The main reason for putting each D≤j(J) in degree a− j is the following easy lemma:

Lemma 3.2.7. Let y ∈ V (J) ⊂ Y , a ∈ N>0.

(i) If log-ordy(J) ≥ a, then log-ordy(Gm(J, a)) ≥ m for every m ∈ N.

(ii) If log-ordy(J) < a, then Gm(J, a)y = (1).

Proof. For (i), each term
∏a−1

j=0 (D≤j(J))cj in Gm(J, a) has logarithmic order at y:

a−1∑
j=0

cj · log-ordy(D
≤j(J)) =

a−1∑
j=0

cj(log-ordy(J)− j) ≥
a−1∑
j=0

cj(a− j) ≥ m

whence log-ordy(Gm(J, a)) ≥ m. (ii) follows from the inclusion D≤a−1(J)a ⊂ Gm(J, a). □
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Remark 3.2.8. The formation of G•(J, a) is functorial with respect to logarithmically

smooth morphisms, i.e. if f : Ỹ → Y is a logarithmically smooth morphism of toroidal k-

schemes, then f−1(G•(J, a))OỸ = G•(f
−1(J)OỸ , a). This is because the formation of D≤j(J)

is likewise functorial with respect to logarithmically smooth morphisms.

Lemma 3.2.9. Let a ∈ N>0, and G• = G•(J, a). Fix y ∈ V (J) ⊂ Y such that log-ordy(J) =

a. Then:

(i) D≤1(Gm+1) = Gm for every m ∈ N.

(ii) D≤m−1(Gm) = G1 = D≤a−1(J) for every m ∈ N. In particular, m = log-ordy(Gm),

and any maximal contact element of J at y is also a maximal contact element for

Gs(J, a) at y.

(iii) For every m ∈ N, Gm is MC-invariant at y.

(iv) Gℓ·Gm = Gℓ+m wheneverm ≥ (a−1)·lcm(2, . . . , a) and ℓ is a multiple of lcm(2, . . . , a).

In particular, this holds if m ≥ a!.

(v) (Gm)j = Gjm whenever m = r · lcm(2, . . . , a) for some r ≥ a − 1. In particular, this

holds for m = a!.

(vi) (D≤i(Gm))m ⊂ Gm−i
m whenever m = r · lcm(2, . . . , a) for some r ≥ a− 1, and 0 ≤ i <

m. In particular, this holds for m = a!.

Proof. This is the “logarithmic” analogue of [Kol07, Proposition 3.99]. The proof there

works verbatim, although we should point out an inconsequential difference: for the inclusion

Gm ⊂ D≤1(Gm+1) in (i), the proof utilizes a maximal contact element x of J at a point, which

in the logarithmic case is an ordinary parameter, and hence the corresponding logarithmic

derivation is still ∂
∂x

. □

With the exception of property (vi), all the properties in Lemma 3.2.9 are self-explanatory.

For example, property (v) says that the a!-Veronese subalgebra Ga!•(J, a) of G•(J, a) is gener-

ated in degree 1, i.e. it is the Rees algebra of:
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Definition 3.2.10 (Coefficient ideals). For a ∈ N>0, the ath coefficient ideal of J is

C(J, a) := Ga!(J, a) ⊂ OY .

It is well-established in the literature that the coefficient ideal (and its variants) provides

a method to enrich an ideal with its higher derivatives, which retains information that would

otherwise be lost when one restricts the original ideal (as opposed to the coefficient ideal)

to a hypersurface of maximal contact. Next, let us explicate property (vi) in Lemma 3.2.9.

Following [Kol07, Definition 3.83], we first formalize it into a definition:

Definition 3.2.11 (D-balanced). Let y ∈ V (J) ⊂ Y such that a := log-ordy(J) <∞. We

say J is D-balanced at y if

D≤i(J)ay ⊂ Ia−iy for every 0 ≤ i < a.

In other words, property (vi) of Lemma 3.2.9 says that the ath coefficient ideal C(J, a) is

D-balanced at points y ∈ V (J) ⊂ Y satisfying log-ordy(J) = a.

3.2.12 (What does the “D-balanced” property achieve?). The “D-balanced” property plays

a subtle role in this chapter. To start, let y ∈ Y , let x be a maximal contact element of J

at y ∈ V (J) ⊂ Y . For simplicity, let us replace Y by a neighbourhood of y in Y so that the

hypersurface H = V (x) ⊂ Y of maximal contact for J at y is globally defined. If one extends

x to a system of ordinary parameters at y, it is not hard to see that

(3.6) D≤1(JOH) ⊂ D≤1(J)OH .

Note, however, that the reverse inclusion does not hold in general. To quote [Kol07, Definition

3.83], the “D-balanced” property provides a partial remedy to this issue.
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To explain why the lack of equality in (3.6) poses an issue, consider the following setup.

Let I• be a Q-toroidal center on Y , and assume the restriction I•OH of I• to H is JOH-

admissible at y. Then a repeated application of Lemma 3.1.10(i) tells us that after replacing

I•OH by some power of itself, I•OH is D≤i(JOH)-admissible at y. Unfortunately, since the

reverse inclusion in (3.6) does not hold,

I•OH is D≤i(JOH)-admissible at y ≠⇒ I•OH is D≤i(J)OH-admissible at y.

However, if J is D-balanced at y, i.e. D≤i(J)ay ⊂ Ja−i
y , then we obtain the following chain of

implications:

I•OH is JOH-admissible at y =⇒ I(a−i)•OH is Ja−iOH-admissible at y

=⇒ I(a−i)•OH is D≤i(J)aOH-admissible at y

=⇒ I(a−i
a )•OH is D≤i(J)OH-admissible at y.

The first and last implications follow from Lemma 2.3.28(iii). It turns out that this strategy is

crucial in §3.3.B, cf. the proof of Theorem 3.3.9.

3.2.C. Formal decomposition of coefficient ideal. Let y ∈ V (J) ⊂ Y , and assume a :=

log-ordy(J) <∞. Let x1 be a maximal contact element of J at y ∈ Y . Extending it to a system

of ordinary parameters x1, . . . , xn at y, we have ÔY,y = κJx1, x2 . . . , xn,MK, where κ = κ(y)

and M = M Y,y. For m ∈ N>0, we set

(i) Ĝm(J, a) := Gm(J, a)ÔY,y,

(ii) Gm(J, a) := Ĝm(J, a)/(x1) ⊂ κJx2, . . . , xn,MK,

(iii) and G̃m(J, a) = Gm(J, a)κJx1, x2, . . . , xn,MK.
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Lemma 3.2.13 (Formal decomposition). For m ∈ N>0, we have:

Ĝm(J, a) = (xm1 ) + (xm−11 )G̃1(J, a) + · · ·+ (x1)G̃m−1(J, a) + G̃m(J, a).

In particular, if Ĉ(J, a) := C(J, a)ÔY,y, we have:

Ĉ(J, a) = (xa!1 ) + (xa!−11 )G̃1(J, a) + · · ·+ (x1)G̃a!−1(J, a) + G̃a!(J, a).

Proof. We shall prove by induction on m. The base case m = 1 is clear from the definition

of Ĝ1(J, a). For integers N ≥ m, we have the ideals (xN+1
1 ) ⊂ Ĝm(J, a), which are stable under

the linear operator x1∂x1 . Thus, x1∂x1 descends to a linear operator on Ĝm(J, a)/(xN+1
1 ), and

decomposes it into a direct sum of ℓ-eigenspaces for integers 0 ≤ ℓ ≤ N . These ℓ-eigenspaces are

independent of choice of N ≥ m. More precisely, the ℓ-eigenspace is of the form xℓ1 · Ĝ
(ℓ)
m (J, a)

for a fixed subspace Ĝ
(ℓ)
m (J, a) ⊂ κJx2, . . . , xn,MK independent of N ≥ m. That is,

Ĝm(J, a)/(xN+1
1 ) =

N⊕
ℓ=0

xℓ1 · Ĝ(ℓ)
m (J, a).

Here, Ĝ
(0)
m (J, a) = Gm(J, a), and Ĝ

(ℓ)
m (J, a) = κJx2, . . . , xn,MK for ℓ ≥ m. For 0 < ℓ < m,

Ĝ(ℓ)
m (J, a) = ∂ℓx1

(
xℓ1 · Ĝ(ℓ)

m (J, a)
)
⊂ D≤ℓ(Ĝm(J, a)) ∩ κJx2, . . . , xn,MK

= Ĝm−ℓ(J, a) ∩ κJx2, . . . , xn,MK ⊂ Gm−ℓ(J, a),

where the equality in the second line follows from Lemma 3.2.9(i). Thus, we get:

Ĝm(J, a) ⊂ G̃m(J, a) + (x1)G̃m−1(J, a) + · · ·+ (xm−11 )G̃1(J, a) + (xm1 ).

The induction hypothesis gives:

(x1)G̃m−1(J, a) + · · ·+ (xm−11 )G̃1(J, a) + (xm1 ) = (x1)Ĝm−1(J, a) ⊂ Ĝm(J, a).
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Since G̃m(J, a) ⊂ Ĝm(J, a) as well, the lemma follows. □

3.3. A local singularity invariant in characteristic zero

In this section, we outline the main constructions and ideas involved in the proof of Theo-

rem A. As before, J denotes an ideal on a strict toroidal k-scheme Y .

3.3.A. Definition of invariant. Before defining a local singularity invariant for V (J) ⊂ Y ,

let us first fix the following:

3.3.1 (A well-ordered set). For k ∈ N>0, we define:

Nk,!
>0 :=

{
(bi)

k
i=1 ∈ Nk

>0 : b1 ≤
b2

(b1 − 1)!
≤ b3∏2

j=1 (bj − 1)!
≤ · · · ≤ bk∏k−1

j=1 (bj − 1)!

}

Nk,!
∞ :=

(
Nk−1,!

>0 × {∞}
)
⊔Nk,!

>0

and for d ∈ N>0, we set:

N≤d,!>0 :=
{

(0)
}
⊔

(
d⊔

k=0

Nk,!
>0

)
and N≤d,!∞ :=

{
(0)
}
⊔

(
d⊔

k=0

Nk,!
∞

)
.

We well-order the set N≤d,!∞ by the lexicographic order <, with a caveat : our lexicographic order

considers truncations of sequences to be strictly larger, e.g. in N≤3,!∞ , we have:

(0) < (1, 2, 8) < (1, 3, 6) < (1, 3) < (1, 4, 24) < (1,∞) < (1) < (∞) < ().

3.3.2. Next, we associate the following preliminary data to the ideal J at a point y ∈ Y :

(i) a sequence (b1, . . . , bk) ∈ N≤n,!>0 where k ≤ n := codimsy({y}),

(ii) a finite sequence of ordinary parameters x1, . . . , xk at y,

(iii) and an ideal Q ⊂M := M Y,y.

We define these in steps. To begin, let us consider cases:
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Case 1a If log-ordy(J) = 0 (i.e. y /∈ V (J) ⊂ Y ), we set k := 1, b1 := 0, and Q := ∅. Let x1 be

any ordinary parameter at p.

Case 1b If log-ordy(J) =∞ (i.e. M (J)y ̸= (1)), we set k := 0, that is, we do not define any bi

or xi. Define Q to be the image of M (J)y under MY,y →M Y,y, which we denote by

M (J)y. Note that if Jy = M (J)y = 0, then Q = ∅.

Case 2 If not, set b1 := log-ordy(J) ∈ N>0 and let x1 be a maximal contact element of J at

y (Definition 3.2.1).

In Case 2 , set J [1] = J , and we shall define the remaining bi, xi and Q by means of induction.

Assuming that J [i], bi, xi are defined for i ≤ ℓ, we set

J [ℓ+ 1] := C(J [ℓ], bℓ)OV (x1,...,xℓ) ⊂ OV (x1,...,xℓ).

In what follows, we pull back the logarithmic structure MY on Y back to define a logarithmic

structure αV (x1,...,xℓ) : MV (x1,...,xℓ) → OV (x1,...,xk) on V (x1, . . . , xℓ). Note that since x1, . . . , xℓ are

ordinary parameters at y, V (x1, . . . , xℓ) is a strict toroidal k-scheme under this logarithmic

structure [ATW20b, Lemma 5.1.2].

Case A If log-ordy(J [ℓ+ 1]) =∞ (i.e. M (J [ℓ+ 1])y ̸= (1)), we set k := ℓ, that is, no further

bi or xi are defined. Define Q to be the preimage of M (J [ℓ+ 1])y under the canonical

isomorphism M Y,y
≃−→M V (x1,...,xk),y.

Case B If not, set bℓ+1 := log-ordy(J [ℓ + 1]) ∈ N>0, and define xℓ+1 to be a lifting to OY of

the maximal contact element of J [ℓ+ 1] at y.

This concludes the induction. Although different choices of ordinary parameters xi can be made

above, the next lemma shows that the bi and Q are well-defined:

Lemma 3.3.3. b1, b2, . . . , bk and Q are independent of the choices of ordinary parameters

xi. In particular, the number of bi’s is also independent of choices of ordinary parameters xi.
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Proof. Fix a choice of ordinary parameters x1, x2, . . . , xk as in 3.3.2, and we proceed by

induction on k. The case k = 0 is Case 1b and it occurs if and only if M (J)y ̸= (1),

in which case there are no bi and the definition of Q does not require choices. Henceforth,

consider k ≥ 1 (i.e. log-ordy(J) < ∞). Evidently the integer b1 = log-ordy(J) requires no

choices. If b1 = 0, we are in Case 1a and there is nothing to show as well. Thus, we

assume b1 > 0. Let x′1 be another maximal contact element of J at y. Because C(J, b1) is

MC-invariant (Lemma 3.2.9(iii)), and x1, x
′
1 are still maximal contact elements of C(J, b1) at y

(Lemma 3.2.9(ii)), we can apply Theorem 3.2.4 to C(J, b1): we get strict and étale morphisms

ϕx1 , ϕx′
1
: Ỹ ⇒ Y , and a point ỹ ∈ Ỹ such that ϕx1(ỹ) = y = ϕx′

1
(ỹ). Moreover, ϕ∗x1

(C(J, b1)) =

ϕ∗x′
1
(C(J, b1)) =: J̃ and ϕ∗x1

(x1) = ϕ∗x′
1
(x′1) =: z ∈ Ĩ. Letting J [2] = C(J, b1)OV (x1) and J [2′] =

C(J, b1)OV (x′
1)

, we have:

ϕ∗x1
(J [2]) = J̃OV (z) = ϕ∗x′

1
(J [2′]).(3.7)

If k = 1, we are in Case A above. By [Ogu18, Proposition IV.3.1.6] and Lemma 3.1.2(iii),

ϕ∗x1

(
M (J [2])

)
= M

(
J̃OV (z)

)
= ϕ∗x′

1

(
M (J [2′])

)
.(3.8)

Since ϕx1 is strict, ϕ♭
x1

: ϕ∗x1
(MY )→MỸ is an isomorphism. We therefore get isomorphisms

M V (x1),y
≃←−−−−M Y,y

≃−−−−→ ϕ∗x1
(MY )

ỹ

≃−−−−→M Ỹ ,ỹ

which maps M (J [2])y on the left, isomorphically, onto ϕ∗x1

(
M (J [2])

)
ỹ

on the right. The same

statement holds with V (x1) replaced by V (x′1), ϕx1 replaced by ϕx′
1
, and J [2] replaced by J [2′].

Combining this with (3.8), one concludes that Q is also independent of choices (and there can

be no more bi’s).
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On the other hand, if k ≥ 2, we are in Case B above. Then (3.7) implies

log-ordy(J [2]) = log-ordỹ(J̃OV (z)) = log-ordy(J [2′]).

Thus, b2 is independent of choices. By induction hypothesis, the remaining b3, b4, . . . , bk and Q

are independent of choices. □

We are now ready to define the key invariant associated to an ideal at a point:

Definition 3.3.4 (Invariant). The invariant of J at y ∈ Y is defined as:

invy(J) =


(
b1,

b2
(b1−1)! ,

b3
(b1−1)!(b2−1)! , · · · ,

bk∏k−1
i=1 (bi−1)!

)
if Q = ∅(

b1,
b2

(b1−1)! ,
b3

(b1−1)!(b2−1)! , · · · ,
bk∏k−1

i=1 (bi−1)!
,∞
)

if Q ̸= ∅

where (b1, b2, . . . , bk) and Q are defined for J at y as in 3.3.2. For the remainder of this chapter,

we denote the finite entries of invy(J) by ai. In particular, a1 = b1. Note that the set of all

possible invariants of ideals at points in Y can be well-ordered by the same lexicographic order

in 3.3.1, since it is order-isomorphic to N
≤dim(Y ),!
∞ in 3.3.1.

3.3.5. Note that invy(J) is:

(i) the empty sequence () if and only if Jy = 0, i.e. y /∈ Supp(J) (support of J).

(ii) (0) if and only if Jy = (1), i.e. y /∈ V (J) ⊂ Y .

(iii) (a1) for an integer a1 ≥ 1 if and only if Jy = (xa11 ) for an ordinary parameter x1 at y.

(iv) (∞) if and only if M (Jy) ̸= (1), i.e. y ∈ V (M (J)) ⊂ Y .

Lemma 3.3.6. invy satisfies the following properties:

(i) If 1 ≤ log-ordy(J) = a1 < ∞, and x1 is a maximal contact element of J at y, then

invy(J) =

(
a1,

invy

(
C(J,a1)OV (x1)

)
(a1−1)!

)
.

(ii) invy(J) is upper semi-continuous on Y , with respect to the lexicographic order in 3.3.1.
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(iii) Let V (J) inherit its logarithmic structure from Y via the inclusion V (J) ↪→ Y . Then

V (J) is toroidal at y if and only if invy(J) is the constant sequence (1, 1, . . . , 1) of

length equal to the height of Jy ⊂ OY,y.

(iv) If f : Ỹ → Y is a logarithmically smooth morphism of strict toroidal k-schemes which

maps ỹ ∈ Ỹ to y ∈ Y , then invỹ(f
−1(J)OỸ ) = invy(J).

Proof. Part (i) is evident from Definition 3.3.4, while part (iv) follows from Lemma 3.1.4(iv)

and Remark 3.2.8. Part (iii) is a consequence of [ATW20b, Theorem 5.1.2]. For part (ii), fix

some p ∈ Y , and we need to show the locus Z := {y ∈ Y : invy(J) ≥ invp(J)} is closed in Y .

We do so by induction on k = length(J, y). If k = 0, Z = Y \ Supp(J). Since Y is a disjoint

union of its irreducible components (2.7.11(iii)), Supp(J) is a union of some of the irreducible

components of Y , whence it is open (and closed) in Y , so Z is closed in Y . Now assume k ≥ 1.

If a1 = 0, Z = Y . If a1 = ∞, then Z = V (M (J)) by Lemma 3.1.4(ii). Finally, if a1 ∈ N>0,

then we first recall that the locus W of points y ∈ Y with log-ordy(J) > a1 is V (D≤a1(J)), cf.

Lemma 3.1.4(i). Using part (i) of this lemma and induction hypothesis, the locus W ′ of points

y in V (x1) such that invy(C(J, a1)OV (x1)) ≥ (a1−1)! ·(a2, . . . , ak) is closed in V (x1) (and hence,

in Y ). Note that if y ∈ W ′, then log-ordy(J) ≥ a1; if not, C(J, a1)y = (1) (Lemma 3.2.7(ii)),

whence invy(C(J, a1)OV (x1)) = (0) < (a1 − 1)! · (a2, . . . , ak), a contradiction. By part (i) of this

lemma again, Z = W ∪W ′, so Z is closed in Y . □

Because Y is noetherian, part (ii) of the preceding lemma implies part (i) of

Corollary 3.3.7 (Maximum invariant).

(i) max inv(J) := maxy∈Y invy(J) exists.

(ii) If f : Ỹ → Y is a logarithmically smooth and surjective morphism of strict toroidal

k-schemes, then max inv(f−1(J)OỸ ) = max inv(J).
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Definition 3.3.8. Let y ∈ Y . For a choice of ordinary parameters x1, x2, . . . , xk associated

to J at y as in 3.3.2, we define a Q-toroidal center I (J, y)• on a neighbourhood of y in Y :

I (J, y)• :=



(
xb11 , x

b2
(b1−1)!

2 , x
b3

(b1−1)!·(b2−1)!

3 , . . . , x

bk∏k−1
i=1

(bi−1)!

k

)
if Q = ∅(

xb11 , x
b2

(b1−1)!

2 , x
b3

(b1−1)!·(b2−1)!

3 , . . . , x

bk∏k−1
i=1

(bi−1)!

k , Q
1∏k

i=1
(bi−1)!

)
if Q ̸= ∅

where (b1, . . . , bk) and Q are defined for J at y as in 3.3.2. We call I (J, y) the Q-toroidal

center associated to J at y. We take a moment to elucidate two “peculiar” cases:

(i) If k = 0 and Q = ∅ (i.e. Jy = 0), then I (J, y)• = () is the zero Rees algebra.

(ii) If k = 1 and b1 = 0 (i.e. Jy = (1)), we use the convention that x01 := 1, i.e.

I (J, y)• = OY,y[t].

For the remainder of this chapter, we denote I (J, y)• by (xa11 , x
a2
2 , . . . , x

ak
k , Q

1/d), where Q ⊂

M := M Y,y is an ideal, ai were similarly defined in Definition 3.3.4, and d is always the positive

integer
∏k

i=1 (bi − 1)!. Observe from definition that invy(I (J, y)•) = invy(J).

We will soon observe in Corollary 3.3.10 that the stalk of I (J, y)• at y does not actually

depend on the choice of ordinary parameters x1, x2, . . . , xk associated to J at y, which justifies

the omission of x1, x2, . . . , xk from the notation.

3.3.B. Unique admissibility of associated Q-toroidal centers.

Theorem 3.3.9 (Unique admissibility). Let y ∈ Y , and let I• be a Q-toroidal center on a

neighbourhood U of y ∈ Y that is J-admissible at y. Then:

(i) For any choice of ordinary parameters xi at y as in 3.3.2, I (J, y)• is J-admissible at

y.
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(ii) We have invy(I•) ≤ invy(J). Consequently, we have the characterization:

invy(J) = max

invy(I•) :

I• is a Q-toroidal center on a neigh-

bourhood of y that is J-admissible at

y

 .

(iii) Assume invy(I•) = invy(J), and let I• = ((x′1)
a1 , (x′2)

a2 , . . . , (x′k)ak , Q′a) be a local

presentation of I• at y. For any choice of ordinary parameters x1, x2, . . . , xk associ-

ated to J at y as in 3.3.2, we have I• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

′a) after possibly shrinking

U .

Before proving the theorem, let us note an immediate consequence of Theorem 3.3.9:

Corollary 3.3.10. The stalk of I (J, y)• at y does not depend on the choice of ordinary

parameters x1, x2, . . . , xk associated to J at y.

The following lemma will be crucial in the induction step of the proof of Theorem 3.3.9:

Lemma 3.3.11. Let I• = ((x′1)
a1 , (x′2)

a2 , . . . , (x′k)ak , (Q′)a) be a Q-toroidal center on a

neighbourhood of a point y ∈ Y , where k ≥ 1, and a1 ∈ N>0. Then:

(i) Suppose I• is J-admissible at y. Then for any integer 1 ≤ a ≤ a1 and s ≥ 1, I(m/a)•

is Gm(J, a)-admissible at y.

(ii) Conversely, if I(a−1)!• is C(J, a)-admissible at y for some integer 1 ≤ a ≤ a1, then

I• is J-admissible at y.

In particular, for any integer 1 ≤ a ≤ a1, I• is J-admissible at y if and only if I(a−1)!• is

C(J, a)-admissible at y.

Proof. If I• is J-admissible at y, re-iterating Lemma 3.1.10(i) tells us that for all 0 ≤

j ≤ a− 1, I(
a1−j
a1

)
• is D≤j(J)-admissible at y. For c0, . . . , ca−1 ∈ N, Lemma 2.3.28(ii) implies

that I(∑a−1
j=0

a1−j
a1

cj

)
• is

(∏a−1
j=0 (D≤j(J))cj

)
-admissible at y. Since a ≤ a1, we have a−j

a
≤
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a1−j
a1

for 0 ≤ j ≤ a − 1, whence I(
∑a−1

j=0
a−j
a

cj)• is
(∏a−1

j=0 (D≤j(J))cj
)
-admissible at y. For

(c0, . . . , ca−1) ∈ Na satisfying
∑a−1

j=0 (a− j)cj ≥ m, we have
∑a−1

j=0
a−j
a
cj ≥ m

a
, and hence,

I(m/a)• is
(∏a−1

j=0 (D≤j(J))cj
)
-admissible at y. By Lemma 2.3.28(i) and Definition 3.2.6, (I•)m/a

is Gm(J, a)-admissible at y. This proves (i).

Conversely, if I(a−1)!• is C(J, a)-admissible at y, then in particular I(a−1)!• is J (a−1)!-

admissible at y. By Lemma 2.3.28(iii), I• is J-admissible at y. This proves (ii). □

Proof of Theorem 3.3.9(i). Throughout this proof, let us write I• := I (J, y)• =

(xa11 , x
a2
2 , . . . , x

ak
k , Q

1/d). We proceed by induction on the length L of invy(J) = invy(I•).

There is nothing to show if L = 0. For L = 1, the case invy(I•) = (a1), with a1 ∈ N, is

evident. If invy(I•) = (∞), then I• is J-admissible at y because M (J)y ⊃ Jy.

Henceforth, assume L ≥ 2, so in particular, the first entry in invy(I•) is an integer

a1 ≥ 1. By Lemma 3.3.11(i), we may replace J by C := C(J, a1) and replace I• by I(a1−1)!•.

By Lemma 2.3.29, we may pass to completion at y, and instead show that Î(a1−1)!• :=

I(a1−1)!•ÔY,y ⊃ C•ÔY,y =: Ĉ•. By Lemma 3.2.13 we can decompose

Ĉ = (xa1!1 ) + (xa1!−11 )G̃1 + · · ·+ (x1)G̃a1!−1 + G̃a1!, where G̃a1!−i := G̃a1!−i(J, a1),

and therefore, it remains to show Î(a1−1)! ⊃ (xi1 · G̃a1!−i) for every 0 ≤ i ≤ a1!. The case i = a1!

is immediate from the definition of Î .

For the remaining 0 ≤ i < a1!, let us replace Y by a neighbourhood of y so that the hyper-

surface H := V (x1) ⊂ Y of maximal contact for J at y is globally defined. By Lemma 3.3.11(i),

as well as the induction hypothesis (applied to COH at y ∈ H), I(a1−1)!•OH is COH-admissible

at y. By Lemma 2.3.28(iii), we see that

I(a1−1)!(a1!−i)•OH =
(
x
a2(a1−1)!(a1!−i)
2 , . . . , x

ak(a1−1)!(a1!−i)
k , Q(a1−1)!(a1!−i)/d

)
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is C(a1!−i)OH-admissible at y. (In the above expression, note that each xi is more precisely the

reduction of xi modulo x1 = 0.) By parts (i) and (vi) (= C is D-balanced at y) of Lemma 3.2.9,

we have (Ga1!−i)
a1!
y = D≤i(C)a1!y ⊂ Ca1!−i

y . Thus, I(a1−1)!(a1!−i)•OH is also Ga1!
a1!−iOH-admissible

at y. Consequently, by passing to the completion ÔH,y and then extending to ÔY,y = ÔH,yJx1K,

the t1-graded piece of

Î(a1−1)!(a1!−i)• =
(
x
a1!(a1!−i)
1 , x

a2(a1−1)!(a1!−i)
2 , . . . , x

ak(a1−1)!(a1!−i)
k , Q(a1−1)!(a1!−i)/d

)
contains G̃a1!

a1!−i. Next, by Lemma 3.1.10(ii), the t1-graded piece of

Î(a1−1)!a1!• =
(
xa1!a1!1 , x

a2(a1−1)!a1!
2 , . . . , x

ak(a1−1)!a1!
k , Q(a1−1)!a1!/d

)
contains (xia1!1 ·G̃a1!

a1!−i), so Lemma 2.3.28(iii) implies that the t1-graded piece of Î(a1−1)!• contains

xi1 · G̃a1!−i, as desired. □

The proof of the remaining parts is similar to the earlier proof of Theorem 3.1.13. We will

prove both parts simultaneously.

Proof of Theorem 3.3.9(ii) & (iii). Again, we prove both parts by induction on the

length L of invy(J). There is nothing to show if L = 0. For L = 1, there is also nothing to

show for the cases invy(J) = (0) and invy(J) = (∞). If invy(J) = (a1) with a1 ∈ N>0, then

Jy = (xa11 ) for an ordinary parameter x1 at y, and both parts are immediate.

Henceforth, assume L ≥ 2. Let

I• = ((x′1)
α1 , (x′2)

α2 , . . . , (x′ℓ)
αℓ , (Q′)α)

be a local presentation of I• at y. Since L ≥ 2, the first entry in invy(J) is the integer

1 ≤ a1 = log-ordy(J) < ∞. Consequently, ℓ ≥ 1. Applying Corollary 3.1.11, α1 ≤ a1. If

α1 < a1, invy(I•) ≤ invy(J) follows. Thus, assume α1 = a1 for the remainder of this proof.
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Let x1 be any maximal contact element for J at y. Applying Lemma 3.1.10(i) repeatedly,

I(1/a1)• = (x′1, (x
′
2)

α2/a1 , . . . , (x′ℓ)
αℓ/a1 , (Q′ ⊂ M)α/a1) is D≤a1−1(J)-admissible at y, and hence,

(x1)-admissible at y. Extending x′1, x
′
2, . . . , x

′
ℓ to a system of ordinary parameters x′1, x

′
2, . . . , x

′
n

at y, and passing to completion at y, we can write the image of x1 under OY,y ↠ Osy ,y →

Ôsy ,y = κ(y)Jx′1, . . . , x′nK as
∑

v∈Nn cv(x′1)
v1 · · · (x′n)vn for some cv ∈ κ(y). By Lemma 3.1.15, for

any v ∈ Nn such that cv ̸= 0, we have:

v1 +
k∑

i=2

via1/αi ≥ 1.

Consequently, if we let ℓ0 = max{1 ≤ i ≤ ℓ : αi = a1} ≥ 1, then the image of x1 in Osy ,y

lies in (x′1, . . . , x
′
ℓ0

) + m2
sy ,y, where msy ,y is the maximal ideal of Osy ,y. Therefore, after possibly

reordering x′1, . . . , x
′
ℓ0

, we may replace x′1 by x1 so that (x1, x
′
2, . . . , x

′
n) is a system of ordinary

parameters at y. By Lemma 3.1.14, we obtain

I• = (xa11 , (x
′
2)

α2 , . . . , (x′k)αℓ , (Q′)α).

The next natural step is to pass to the induction step.

We may replace Y by a neighbourhood of y so that the hypersurface H := V (x1) of maximal

contact for J at y is globally defined. Let C := C(J, a1). By Lemma 3.3.11(i), I(a1−1)!• is C-

admissible at y. In particular,

I(a1−1)!•OH = ((x′2)
α2(a1−1)!, . . . , (x′k)αk(a1−1)!, (Q′)α(a1−1)!)

is COH-admissible at y ∈ H. By the induction hypothesis for part (ii) of the theorem (applied

to COH at y ∈ H), we see that

invy(I(a1−1)!•OH) = (a2(a1 − 1)!, . . . , ak(a1 − 1)!, ∗) ≤ invy(COH)
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where the final entry ∗ is either empty or ∞, so that

invy(I•OH) = (a2, . . . , ak, ∗) ≤
1

(a1 − 1)!
· invy(COH).

Applying Lemma 3.3.6(i), we obtain

invy(I•) = (a1, a2, . . . , ak, ∗) =
(
a1, invy(I•OH)

)
≤
(
a1,

invy(COH)

(a1 − 1)!

)
= invy(J)

which completes the induction step for part (ii) of the theorem. On the other hand, in the event

that invy(I•) = invy(J) (i.e. I• = (xa11 , (x
′
2)

a2 , . . . , (x′k)ak , (Q′)α)), then by Lemma 3.3.6(i), we

have

invy(I•(a1−1)!OH) = (a2(a1 − 1)!, . . . , ak(a1 − 1)!, ∗) = invy(COH)

where the final entry ∗ is either empty or ∞. For any extension of x1 to a choice of ordinary

parameters x1, x2, . . . , xk associated to J at y (3.3.2), we may therefore apply the induction

hypothesis for part (iii) of the theorem (to I(a1−1)!•OH which is COH-admissible at y ∈ H) to

obtain:

I•OH = ((x′2)
a2 , . . . , (x′k)ak , (Q′)a) = (xa22 , . . . , x

ak
k , (Q

′)a).

In the above expression, each x′i is more precisely the reduction of x′i modulo x1 = 0, and

similarly each xi is the reduction of xi modulo x1 = 0. We claim that this implies

I• = (xa11 , (x
′
2)

a2 , . . . , (x′k)ak , (Q′)a) = (xa11 , x
a2
2 , . . . , x

ak
k , (Q

′)a).

This equality of integrally closed Rees algebras can be checked directly, but it is more straight-

forward to check it using idealistic exponents, cf. the next remark. This completes the induction

step for part (iii) of the theorem. □
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Remark 3.3.12. Let I• be a Q-toroidal center, and assume that globally on Y we have

I• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

a). For each 1 ≤ i ≤ k, consider

x′i = (λi,1x1 + · · ·+ λi,i−1xi−1) + xi,

where λi,j are sections of OY . Then we claim that I• = ((x′1)
a1 , (x′2)

a2 , . . . , (x′k)ak , (Q′)a). To

check this painlessly, we simply pass to idealistic exponents: it then suffices to check that for

every ν ∈ ZR(Y/k), we have the following equality:

min
(
{aiν(xi) : 1 ≤ i ≤ k} ∪ {aν(q) : q ∈ Q}

)
= min

(
{aiν(x′i) : 1 ≤ i ≤ k} ∪ {aν(q) : q ∈ Q}

)
which is not a difficult exercise. More generally, note that one can replace each xi by

x′i = (λi,1x1 + · · ·+ λi,i−1xi−1) + xi + (λi,i+1xi+1 + · · ·+ λi,ℓxℓ),

where ℓ = max{1 ≤ j ≤ k : aj = ai}, and once again λi,j are sections of OY .

Combining Theorem 3.3.9(ii) with Lemma 2.3.28 and Lemma 3.3.11, we obtain:

Corollary 3.3.13. Let y ∈ Y . Then:

(i) invy(J
d) = d · invy(J) for any d ∈ N>0.

(ii) If log-ordy(J) = a1 ∈ N>0, then invy(C(J, a)) = (a − 1)! · invy(J) for any integer

1 ≤ a ≤ a1.

3.3.C. The associated toroidal center. Recall from Corollary 3.3.7 that max inv(J) :=

maxy∈Y invy(J) exists. In this subsection, we use unique admissibility from the previous sub-

section to prove:
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Theorem 3.3.14. There exists a unique J-admissible Q-toroidal center I (J)• on Y such

that for all y ∈ Y , the stalk of I (J)• at y is:

(I (J)•)y =


I (J, y)• if invy(J) = max inv(J)

OY,y[t] if invy(J) < max inv(J).

The above theorem says that set-theoretically, the co-support of I (J)• consists of points

y ∈ Y for which invy(J) = max inv(J), and therefore by definition can be interpreted as the

“worst singular” locus of V (J) ⊂ Y . We make the following

Definition 3.3.15 (Associated toroidal center). The Q-toroidal center associated to J is

I (J)• in Theorem 3.3.14. We also define the toroidal center I (J)• associated to J to be

the reduction (3.1.17) of I (J)• at any point y ∈ Y satisfying invy(J) = max inv(J). This is

well-defined, independent of the choice of y, by the previous theorem. Note too that I (J)• is

a reduced toroidal center on Y in the sense of Definition 3.1.16.

Proof of Theorem 3.3.14. Let V denote the open locus in Y whose points are those

y ∈ Y where invy(J) < max inv(J). We need to show that we can glue the following:

(i) OV [t], and

(ii) for each y ∈ Y with invy(J) = max inv(J), the Q-toroidal center I (J, y)• restricted

to an sufficiently small open affine neighbourhood U of y.

To this end, fix y ∈ Y with invy(J) = max inv(J). Let

(3.9) I (J, y)• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

1/d)

be a local presentation of I (J, y)• at y as in Definition 3.3.8, defined on an open affine neigh-

bourhood U of y in Y . Recall that x1, x2, . . . , xk are choices of ordinary parameters associated
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to J at y, and Q = M (J [k + 1])y ⊂M V (x1,...,xk),y = M Y,y =: M as in 3.3.2. We need to show

that after possibly shrinking U , the following are true for any y′ ∈ U :

(a) If invy′(J) = max inv(J), then the stalks of I (J, y)• and I (J, y′)• at y′ coincide.

(b) If invy′(J) < max inv(J), then the stalk of I (J, y)• at y′ is OY,y′ [t].

For (a), x1, . . . , xk are also ordinary parameters associated to J at y′. By Theorem 3.3.9(iii),

we can therefore express

I (J, y′)• = (xa11 , x
a2
2 , . . . , x

ak
k , (Q

′)1/d)

where Q′ = M (J [k + 1])y′ ⊂M V (x1,...,xk),y′
≃←−M Y,y′ =: M ′. It remains to note that the ideal

of MY |U generated by the image of Q = M (J [k + 1])y under a chart β : M → Γ(U,MY ) is

M (J [k + 1])), from which (a) follows.

For (b), let invy′(J) = (α1, α2, . . . , αℓ, ∗) < max inv(J), where the final entry ∗ is either

empty or ∞. Note that we must have k ≤ ℓ. Let us first consider the case when there exists

1 ≤ j ≤ k such that αj < aj. Let j0 = min{1 ≤ j ≤ k : αj < aj}, so that x1, x2, . . . , xj0−1 are

ordinary parameters associated to J at y′. Let J [j − 1] ⊂ OV (x1,...,xj0−1) be the ideal defined

inductively as in 3.3.2. Then αj0 < aj0 implies that log-ordy′(J [j−1]) < log-ordy(J [j−1]) =: s,

so D≤s−1(J)y ̸= (1) but D≤s−1(J)y′ = (1). Thus, there exists some section δ ∈ D≤s−1(J) over

U such that δ is in the maximal ideal mY,y of OY,y, but is also an unit in OY,y′ . (If U = Spec(A)

and y, y′ ∈ U correspond to prime ideals p, p′ ⊂ A, then any δ ∈ D≤s−1(J)|U ∖ p′ suffices.) By

replacing δ by δ2, we may assume that δ ∈ m2
Y,y. If xj0 is already a unit in OY,y′ , (b) is evident

from (3.9). If not, xj0 + δ is a unit in OY,y′ and is also an ordinary parameter associated to J

at y. Because of Theorem 3.3.9(iii), we are allowed to replace xj0 by xj0 + δ in (3.9), and (b)

follows.

The second case occurs when αi = ai for all 1 ≤ i ≤ k. In this case, x1, x2, . . . , xk are also

ordinary parameters associated to J at y′. We always rule out the case Q = ∅ (which occurs
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if and only if J [k + 1]y = 0, or equivalently, invy(J) = (a1, . . . , ak)), by shrinking U so that

U ∩ Supp(J [k + 1]) = ∅. We then have Q ̸= ∅, so that k < ℓ with α′k+1 < ∞, and hence

M (J [k + 1])y′ = (1). Arguing as in (a) completes the proof for (b) in the second case. □

3.3.D. Functoriality of associated toroidal center.

Lemma 3.3.16. Let f : Ỹ → Y be a logarithmically smooth morphism of strict toroidal

k-schemes, which maps ỹ ∈ Y to y ∈ Y . Then

f−1(I (J, y)•)OỸ = I (f−1(J)OỸ , ỹ)•

on an open neighbourhood of ỹ ∈ Ỹ . If f is moreover surjective, f−1(I (J)•)OỸ = I (f−1(J)OỸ ).

Proof. We may replace Y with an open neighbourhood of y on which a presentation

I (J, y)• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

1/d) as in Definition 3.3.8 is defined. We proceed by induction

on k. There is nothing to show if log-ordy(J) = 0, i.e. Jy = (1). If log-ordy(J) = ∞, then

f−1(M (J))OỸ = M (f−1(J)OỸ ) by Lemma 3.1.2(iii), and the lemma is immediate. On the

other hand, if a1 := log-ordy(J) ∈ N>0, then any maximal contact element x1 of J at y is

also a maximal contact element of f−1(J)OỸ at ỹ. Let H (resp. H̃) be the hypersurface

V (x1) ⊂ Y (resp. V (x1) ⊂ Ỹ ) with the induced logarithmic structure from Y (resp. Ỹ ). Then

f : H̃ = f−1(H)→ H is logarithmically smooth, so Remark 3.2.8 gives:

C(f−1(J)OỸ , a1)OH̃ =
(
f−1
(
C(J, a1)

)
OỸ

)
OH̃ = f−1(C(J, a1)OH)OH̃ .

The proof concludes by applying the induction hypothesis to the ideal C(J, a1)OH on H, and

the morphism f : H̃ = f−1(H)→ H. □
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Corollary 3.3.17. Let Y be a toroidal Deligne–Mumford stack over k, and fix an atlas

r : Y1 := Y0 ×Y Y0
p1−−−−−−−−−−⇒
p2

Y0
q−−−−→ Y

for Y , where Y0 and Y1 are strict toroidal k-schemes. Let y ∈ |Y |.

(i) If y0, y
′
0 ∈ Y0 are points over y, then invy0(q

−1(J)OY0) = invy′0
(q−1(J)OY0).

(ii) If y0 ∈ Y0 is a point over y, the Q-toroidal center I (q−1(J)OY0 , y1)• descends to a

Q-toroidal center I (J, y)• on an open substack of Y containing y.

In particular, the Q-toroidal center I (q−1(J)OY0)• descends to a Q-toroidal center I (J)• on

Y .

Proof. Let (y0, y
′
0) ∈ Y1 denote the point mapping to yi via pi for i = 1, 2. Since p1,2

are both strict and étale, Lemma 3.3.6(iii) implies invy0(p
−1(J)OY0) = inv(y0,y′0)

(r−1(J)OY1) =

invy′0
(p−1(J)OY0), so part (i) follows. If that invariant is equal to max inv(p−1(J)OY0), then

Lemma 3.3.16 implies p∗1I (p−1(J)OY0 , y0)• = I
(
r−1(J)OY1 , (y0, y

′
0)
)
• = p∗2I (p−1(J)OY0 , y

′
0)•.

If not, evidently the same equality holds (they are all equal to OY1,(y0,y′0)
[t]). Therefore, we obtain

the desired descent in the final statement. Part (ii) is a consequence of the final statement by

replacing Y with an invariant open neighbourhood of y1 on which I (JOY0 , y1)• is defined. □

3.4. Iterative logarithmic resolution in characteristic zero

3.4.A. Invariant drops with each weighted blow-up along associated toroidal center.

Let J be a non-zero ideal on a strict toroidal k-scheme Y . Write max inv(J) = (a1, a2, . . . , ak, ∗)

as in Definition 3.3.4, and let I (J)• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

1/d) be a presentation of I (J)• at

any y ∈ Y with invy(J) = max inv(J) as in Definition 3.3.8. As always, ∗ is either empty or

∞, depending on whether Q = ∅ or not.

Next, if k ≥ 1, since a1 ∈ N>0, there exists a unique ℓ ∈ N>0 so that ai/ℓ = 1/di for every

1 ≤ i ≤ k, and gcd(d1, d2, . . . , dk) = 1 (cf. 3.1.17). If k = 0, we set ℓ = 1. Then the toroidal
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center I (J)• associated to J (Definition 3.3.15) has the following local presentation at every

y ∈ Y with invy(J) = max inv(J):

(3.10) I (J)• = I (J)(1/ℓ)• =
(
x
1/d1
1 , x

1/d2
2 , . . . , x

1/dk
k , Q1/dℓ

)
.

Recall that if k = 0, d = 1. The main goal of this subsection is to demonstrate the following

Theorem 3.4.1 (Invariant drops). Let π : Y ′ := BlI (J)•(Y ) → Y be the weighted blow-up

of Y along the toroidal center I (J)• associated to J . Let E be the exceptional divisor of π,

with ideal sheaf IE ⊂ OY ′. Then:

(i) Y ′ is a toroidal Deligne–Mumford stack over k.

(ii) π is an isomorphism away from the closed locus of points y ∈ Y satisfying invy(J) <

max inv(J).

(iii) We have ℓ = max{m ∈ N : π−1(J)OY ′ ⊂ ImE }. In particular, if we write π−1(J)OY ′ =

IℓE · J ′, then J ′ ⊂ OY ′ is the weak transform π−1∗ (J) of J under π.

(iv) max inv(J ′) < max inv(J).

For the definition of weak transform, see Definition 2.3.31. In fact, for the purposes of

induction, we must consider a slight generalization:

Theorem 3.4.2. More generally, for any c ∈ N>0, consider the weighted blow-up π : Y ′ :=

BlI (J)(1/c)•(Y )→ Y along the toroidal center I (J)(1/c)•. Let E be the exceptional divisor of π,

with ideal sheaf IE ⊂ OY ′. Then:

(i) Y ′ is a toroidal Deligne–Mumford stack over k.

(ii) π is an isomorphism away from the closed locus of points y ∈ Y satisfying invy(J) <

max inv(J).

(iii) We have ℓc = max{m ∈ N : π−1(J)OY ′ ⊂ ImE }. In particular, if we write π−1(J)OY ′ =

IℓcE · J ′, then J ′ ⊂ OY ′ is the weak transform π−1∗ (J) of J under π.
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(iv) max inv(J ′) < max inv(J).

We first prove the first three parts:

Proof of Theorem 3.4.2(i), (ii) & (ii). Part (i) follows from Corollary 2.7.20, while

part (ii) follows from the definition of I (J)•, cf. Theorem 3.3.14. For part (iii), we have

max{m ∈ N : π−1(J)OY ′ ⊂ ImE } = max{m ∈ N : I (J)(m/c)• is J-admissible}, by Lemma 2.3.30.

Since I (J)ℓ• = I (J)•, the latter is equal to ℓc by Theorem 3.3.9(i). □

We now work towards part (iv) of the theorem, starting with the case k = 0, i.e. max inv(J) =

() or (∞). If max inv(J) = (), J vanishes on at least one connected component of Y . Since

J ̸= 0, J is also non-zero on at least one component of Y . Then I (J)• is the zero Rees algebra

on the components Yα of Y on which J is zero, and is OYβ
[t] on the remaining components Yβ

of Y . Then the weighted blow-up BlI (J)• is simply the inclusion of the components
⊔

β Yβ ↪→ Y

(i.e. it “blows the Yα’s out of existence”), and Theorem 3.4.2(iv) is clear. On the other hand:

Lemma 3.4.3 (“Cleaning up”). If max inv(J) = (∞), Theorem 3.4.2(iv) holds.

Proof. Fix y ∈ Y such that invy(J) = max inv(J) = (∞). It suffices to show that

invy′(J
′) < invy(J) for every y′ ∈ |Y ′| mapping to y under π. For that reason we replace Y by

a neighbourhood of y so that the presentation I (J)• = (Q) at y (3.10) is defined on Y , i.e. we

have a chart M → Γ(Y,MY ) that is neat at y, with Q ⊂M = M Y,y. As in 3.1.7, we can then

write

Y ′ = ProjY (OX ⊗Z[M ] Z[M ′])
π−−−−→ Y where M ′ = MI (J)ext

(1/c)•

where M → M ′ maps m 7→ ucm′ for every m ∈ Q. Here, u = t−1 is the monomial in Z[M ′]

corresponding to (0,−1) ∈ M ′, and m′ = m · tc is the monomial in Z[M ′] corresponding to

(m, c) ∈ M ′. Since π : Y ′ → Y is logarithmically smooth (Corollary 2.7.18), Lemma 3.1.2(iii)
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implies that M (π−1(J)OY ′) = π−1(M (J))OY ′ , so that

(3.11) M (π−1(J)OY ′)y′ = π−1(M (J)y)OY ′,y′ = π−1(Q)OY ′,y′ .

Since every m ∈ Q ⊂M factors as ucm′ in M ′, and Y ′ is covered by (m′)-charts where m varies

over a finite set of generators for Q, we have:

(3.12) π−1(Q)OY ′,y′ = (uc) = IcE.

Combining Theorem 3.4.2(iii) with (3.11) and (3.12), we obtain

π−1(J)OY ′,y′ = IcE,y′ · J ′y′ = M (π−1(J)OY ′)y′ · J ′y′ .

Taking M (−) on both sides and applying Lemma 3.1.2(iv), we obtain

M (π−1(J)OY ′)y′ = M (π−1(J)OY ′)y′ ·M (J ′)y′ .

so that by Nakayama’s lemma, M (J ′)y′ = OY ′,y′ , i.e. a′1 := log-ordy′(J
′) < ∞. Thus,

invy′(J
′) = (a′1, . . . ) < (∞) = invy(J). □

For the case k ≥ 1, the next lemma (and its corollary) shows we can replace J by the

coefficient ideal C := C(J, a1):

Lemma 3.4.4 (cf. [BM08, Lemma 3.3]). Assume k ≥ 1, so that a1 := log-ordy(J) ∈ N>0.

Let C := C(J, a1). Then:

(i) π−1(C)OY ′ ⊂ Ia1!d1cE , i.e. π−1(C)OY ′ = Ia1!d1cE · C ′ for some ideal C ′ ⊂ OY ′.

(ii) We have the inclusions: (J ′)(a1−1)! ⊂ C ′ ⊂ C(J ′, a1).
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Proof. By definition, we have:

π−1(C)OY ′ =

(
a1−1∏
j=0

(π−1(D≤jY (J)cj)OY ′ : cj ∈ N,

a1−1∑
j=0

(a1 − j)cj ≥ a1!

)
.

By Theorem 3.4.2(iii), π−1(J)OY ′ = Ia1d1cE · J ′. Therefore, by Corollary 3.1.9, we see that for

every 1 ≤ j < a1,

π−1(D≤j(J))OY ′ ⊂ I
(a1−j)d1c
E ·D≤j(J ′).

Plugging this into the first equation yields:

π−1(C)OY ′ ⊂ Ia1!d1cE ·

(
a1−1∏
j=0

(D≤j(J ′))cj : cj ∈ N,

a1−1∑
j=0

(a1 − j)cj ≥ a1!

)
= Ia1!d1cE · C(J ′, a1).

From this, we obtain (i) and the second inclusion in (ii). Thus, we get the second inclusion

C ′ ⊂ C(J ′, a1). The first inclusion in (ii) follows from the inclusion

π−1(C)OY ′ ⊃ π−1(J (a1−1)!)OY ′ = Ia1!d1cE · (J ′)(a1−1)!

where the inclusion follows from the definition of C, and the equality follows from Theo-

rem 3.4.2(iii). □

Corollary 3.4.5. For every point y′ ∈ |Y ′| over y, we have:

(i) invy′(C
′) = (a1 − 1)! · invy′(J

′).

(ii) invy′(J
′) < invy(J) if and only if invy′(C

′) < invy(C).

Proof. By Lemma 3.4.4(ii), we have:

invy′
(
(J ′)(a1−1)!

)
≥ invy′(C

′) ≥ invy′(C(J ′, a1 − 1)),
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but Corollary 3.3.13(ii) implies invy′(C(J ′, a1)) = (a1 − 1)! · invy′(J
′) = invy′

(
(J ′)(a1−1)!

)
.

This forces equality throughout, yielding part (i). Part (ii) follows from part (i) and Corol-

lary 3.3.13(ii). □

Proof of Theorem 3.4.2(iv). Fix y ∈ Y such that invy(J) = max inv(J), and it suffices

to show that invy′(J
′) < invy(J) for any y′ ∈ Y ′ mapping to y under π. For that reason we

replace Y by a neighbourhood of y so that the presentation I (J)• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

1/d)

at y (3.10) is defined on Y .

We induct on the length L of invy(J). First consider the base case L ≤ 1. The cases

inv(J) = (∞) and invy(J) = () have already been settled (resp. before) in Lemma 3.4.3. On

the other hand, if invy(J) = (a1) with a1 <∞, then Jy = (xa11 ), and π is the weighted blow-up

of (x
1/c
1 ) with weak transform J ′y′ = (1). Henceforth, assume L ≥ 2. In particular, k ≥ 1.

Then we may and can replace J by C, because of Corollary 3.4.5, as well as the fact that

I (J)• = I (C)•, which is implied by I (C)• = I (J)(a1−1)!• = I (J)a1!d1•.

Let us outline the setup for induction. Let H := V (x1) ⊂ Y , i.e. a hypersurface of maximal

contact for J at y. Let IH(J)• denote the reduction of I (J)•OH = (xa22 , . . . , x
ak
k , Q

1/d) at y,

i.e.

IH(J)• = I (J)(c′/ℓ)•OH = (x
c′/d2
2 , . . . , x

c′/dk
k , Qc′/dℓ)

where c′ := gcd(d2, . . . , dk). Then

I (COH)• =
(
x
a2(a1−1)!
2 , . . . , x

ak(a1−1)!
k , Q(a1−1)!/d

)
= I H

(a1−1)!• = IH(J)( ℓ(a1−1)!

c′

)
•

so IH(J)• = I (COH)•. Since the length of invy(COH) is < L, the induction hypothesis

implies in particular that the invariant of COH at y drops after the weighted blow-up of H

along

I (COH)( 1
cc′

)
•

= IH(J)( 1
cc′

)
•

=
(
x
1/d2c
2 , . . . , x

1/dkc
k , Q1/dℓc

)
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which coincides with the the proper transform H ′ := V (x′1) → V (x1) := H of H under the

weighted blow-up along I (J)(1/c)• = (x
1/d1c
1 , x

1/cd2
2 , . . . , x

1/dkc
k , Q1/dℓc). For the remainder of the

proof, we shall adopt all the conventions introduced in 3.1.7 for π : Y ′ = BlI (J)(1/c)• Y → Y . To

leverage on the preceding setup, we consider the following cases for y′:

(a) y′ is in the x′1-chart of Y ′;

(b) otherwise, y′ is in the proper transform H ′ = V (x′1).

For case (a), the local section xa1!1 of C factors as xa1!1 = ua1!d1c · 1 in COY ′ = Ia1!d1cE · C ′ =

(ua1!d1c · C ′). Therefore, C ′y′ = (1), i.e. invy′(C
′) = (0) < invy(C), as desired. For case (b), we

saw earlier that the induction hypothesis implies:

invy′(C
′OH′) < invy(COH).(3.13)

Moreover, the local section xa1!1 of C now factors as xa1!1 = ua1!d1c ·(x′1)a1! in COY ′ = Ia1!d1cE ·C ′ =

(ua1!d1c ·C ′). Thus, (x′1)
a1! ⊂ C ′y′ , so that log-ordy′(C

′) ≤ a1!. We now split (b) into two further

sub-cases:

(bi) If log-ordy′(C
′) < a1!, then a fortiori invy′(C

′) < invy(C).

(bii) On the other hand, if log-ordy′(C
′) = a1!, then x′1 is a maximal contact element for

C ′ at y′, whence:

invy′(C
′) =

(
a1!,

invy′(C(C ′, a1!)OH′)

(a1!− 1)!

)
by Lemma 3.3.6(i)

≤
(
a1!,

invy′(C(C ′OH′ , a1!))

(a1!− 1)!

)
since C(C ′, a1!)OH′ ⊃ C(C ′OH′ , a1!)

=
(
a1!, invy′(C

′OH′)
)

by Corollary 3.3.13(ii)

<
(
a1!, invy(COH)

)
by (3.13)

= (a1 − 1)! · invy(J) by Lemma 3.3.6(i)

= invy(C) by Corollary 3.3.13(ii).
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This completes the proof of the induction step. □

3.4.B. Proof of main theorems in §1.2.A.

Proof of Theorem B. By hypothesis, X ̸= Y . Let J be the underlying non-zero ideal

of X ⊂ Y . We take I• = I (J)• (Definition 3.3.15), with weighted blow-up π : Y ′ → Y to

be πI (J)• : BlI (J)• Y → Y . Then part (i) follows from Theorem 3.4.2(i) and Remark 2.7.9,

while part (ii) is Theorem 3.4.2(ii). For part (iii), the proper transform J̃ of J under π always

contains the weak transform J ′ of J under π (cf. Definition 2.3.31), and thus by definition,

max inv(J̃) ≤ max inv(J ′). Since max inv(J ′) < max inv(J) by Theorem 3.4.2(iv), we are done.

Finally, functoriality with respect to logarithmically smooth, surjective morphisms of pairs

follows from Lemma 3.3.16. □

To deduce Theorem A from Theorem B, we require an additional observation:

Lemma 3.4.6. Let J ⊂ OY be an ideal. If max inv(J) is the constant sequence (1, 1, . . . , 1)

of some length c, then the locus C consisting of points y ∈ Y such that invy(J) = max inv(J)

is both open and closed in X.

Proof. We may assume that Y is a smooth, strict toroidal k-scheme. We already know

from Lemma 3.3.6(ii) that C is also closed in X. To show C is open in X, let y ∈ C, and let

x1, . . . , xc be ordinary parameters associated to J at y (3.3.2), defined on some open U ⊂ Y .

Then I (J, y)• is simply the Rees algebra associated to the ideal (x1, . . . , xc), so that:

(a) Jy ⊂ (x1, . . . , xc), by Theorem 3.3.9(i).

(b) By the definition of < in 3.3.1, note that for p ∈ U ∩ X, we have invp(J) =

(a1, . . . , aℓ) < max inv(J) = (1, 1, . . . , 1) (of length c), if and only if

invp(J) = (

length c︷ ︸︸ ︷
1, 1, . . . , 1, ac+1, . . . , aℓ) with ℓ > c.
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By 3.3.2, that happens if and only if Jp|V (x1,...,xc) ̸= 0, i.e. Jp ̸⊂ (x1, . . . , xc).

Set U ′ := (U ∩X) ∖ V
(
(x1, . . . , xc) : J

)
. Then U ′ is open in X, contains the point p (by (a)),

and is moreover contained in C (by (b)). Since p ∈ C was arbitrary, we conclude that C is

open in X. □

Proof of Theorem A. If X = Y , there is nothing to show. If not, we define Π induc-

tively. After the kth step of the algorithm (i.e. we have defined Yk
πk−→ Yk−1

πk−1−−−→ · · · π1−→ Y0 = Y

with proper transforms Xi ⊂ Yi of X), we undertake the following steps for the (k + 1)th step:

(i) If max inv(Xk ⊂ Yk) = (1, 1, . . . , 1) of some length c, then Lemma 3.4.6 says that

the locus Ck consisting of points y ∈ |Yk| such that invy(Xk ⊂ Yk) = max inv(Xk ⊂

Yk) = (1, 1, . . . , 1) (of length c) is both open and closed in Xk, and hence is a smooth

connected component of Xk. We consider two cases:

(ia) If Ck = Xk, we then stop at the kth step.

(ib) If Ck ̸= Xk and max inv(Xk ∖ Ck ⊂ Yk) = (1, 1, . . . , 1) of some length c′ > c, we

repeat step (i) with Xk ⊂ Yk replaced by Xk ∖ Ck ⊂ Yk. Otherwise, we proceed

to step (ii) with Xk ⊂ Yk replaced by Xk ∖ Ck ⊂ Yk.

(ii) If max inv(Xk ⊂ Yk) ̸= (1, 1, . . . , 1) of any length c, we apply Theorem B to Xk ⊂ Yk,

which gives us πk+1 : Yk+1 → Yk and proper transform Xk+1 ⊂ Yk+1 of Xk which

satisfies max inv(Xk+1 ⊂ Yk+1) < max inv(Xk ⊂ Yk).

Under this procedure, observe that at every point y of X, the invariant of proper transforms

Xi ⊂ Yi at points y′ ∈ Xi above y must eventually drop to (1, 1, . . . , 1) of some length, and

moreover, cannot drop to (0) without first dropping to (1, 1, . . . , 1) of some length. This is

because X is reduced and generically toroidal, and therefore so are the proper transforms Xi

of X. Since the lengths of these invariants are bounded above by dim(Y ) = dim(Y ′) (cf.

Definition 3.3.4), this procedure eventually terminates to the desired Π.
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Finally, if f : Ỹ → Y is a logarithmically smooth morphism of toroidal Deligne–Mumford

stacks over k, and the logarithmic embedded resolution of X ⊂ Y is Π: YN
πN−→ YN−1

πN−1−−−→

· · · π1−→ Y0 = Y , then it follows from the functoriality in Theorem B that the logarithmic

embedded resolution ofX×Y Ỹ ⊂ Ỹ agrees step-by-step with the pullback of Π along f : Ỹ → Y :

YN ×Y Ỹ
f∗πN−−−→ YN−1 ×Y Ỹ

f∗πN−1−−−−→ · · · f∗π1−−→ Ỹ

after removing any f ∗πi which are empty blow-ups, which may occur whenever f is not surjec-

tive. □

Remark 3.4.7. Note that the proof of Theorem A simplifies if one assumesX ⊂ Y is of pure

codimension c. In that case, one iterates Theorem B until max inv(Xk ⊂ Yk) = (1, 1, . . . , 1) of

length c, and the procedure terminates. Indeed, Ck = Xk in part (i) of the proof of Theorem A,

because they both contain the dense open X log−sm ⊂ X, and are both of pure codimension c

in Yk.

Next, to deduce Corollary C from Theorem A, we require the following:

Lemma 3.4.8 (Re-embedding principle for Theorem B). Let X be a reduced, closed substack

of a toroidal Deligne–Mumford stack Y over k. Let Y1 be the fiber product Y ⊗k A1 in the

category of fs logarithmic Deligne-Mumford stacks, where A1 := Spec(k[x0]) and k are given

the trivial logarithmic structure. Then:

(i) For every y ∈ |X|, invy(X ⊂ Y1) is the concatenation (1, invy(X ⊂ Y )).

(ii) Let (X ⊂ Y ) 7→ (X ′ ⊂ Y ′) be the procedure in Theorem B. Then Y ′ is canonically

identified with the proper transform of Y = Y × {0} ⊂ Y1 under the weighted blow-up

Y ′1 → Y1. Under this identification, we have X ′ = X ′1.

Proof. We may assume Y is a strict toroidal k-scheme. Letting J denote the ideal of X

in Y , the ideal J1 of X in Y1 is (x0) + J . For any y ∈ |X|, D≤1Y (J1)p = (1), with x0 being a
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maximal contact element for J1. As in 3.3.2, we then have J [2] = J1OV (x0)=Y = J . Therefore,

part (i) follows by definition of the invariant (Definition 3.3.4).

For part (ii), part (i) implies that there is a canonical identification

{y ∈ Y : invy(J) = max inv(J)} ≃←−−−→ {p1 ∈ Y1 : invp1(J1) = max inv(J1)}

which sends y 7→ (y, 0). Moreover, for any y ∈ Y with invy(J) = max inv(J), if

I (J, y)• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

1/d)

as in Definition 3.3.8, then

I
(
J1, (y, 0)

)
• = (x0, x

a1
1 , . . . , x

ak
k , Q

1/d)

from which the first assertion of part (ii) follows. Moreover, if J ′ (resp. J ′1) denotes the

underlying ideal of X ′ ⊂ Y ′ (resp. X ′1 ⊂ Y ′1), then I ′1 = (x′0) + I ′ where (x′0) is the proper

transform of (x0) under the weighted blow-up Y ′1 → Y1, whence X ′ = X ′1. □

Proof of Corollary C. Since X can be embedded, locally in the étale topology, as

a closed subscheme of pure codimension in a pure-dimensional, toroidal k-scheme, the corol-

lary follows once we show the following. Given two strict closed embeddings of X into pure-

dimensional, toroidal Deligne–Mumford stacks Yi over k (for i = 1, 2), the logarithmic reso-

lutions of X obtained from the logarithmic embedded resolutions of X ⊂ Y1 and X ⊂ Y2 in

Theorem A coincide. First assume that dim(Y1) = dim(Y2): in this case, the two embeddings

are étale locally isomorphic. By the functoriality of Theorem A, the logarithmic embedded res-

olutions of X ⊂ Y1 and X ⊂ Y2 are étale locally isomorphic, whence the resulting logarithmic

resolutions of X coincide. In general, this reduces to the earlier case, by a repeated application

of Lemma 3.4.8. □
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Proof of Corollary D. We give X the trivial logarithmic structure, in which case

X log−sm = Xsm. We apply Corollary C to produce a logarithmic resolution Π : X+ → X.

Since X+ is toroidal with toroidal divisor D+ := Π−1(X ∖Xsm), we can apply [W lo20b, The-

orem 6.5.1] to resolve its toroidal singularities: it gives us a projective, birational morphism

Ψ : X++
w → X+ where:

(i) X++
w is a smooth Deligne–Mumford stack over k.

(ii) Ψ is an isomorphism over (X+)sm ⊂ X+.

(iii) Ψ−1(D+) is a simple normal crossings divisor.

Moreover, the procedure X+ 7→ X++
w is functorial with respect to smooth morphisms X̃+ →

X+. Noting that Xsm ≃ Π−1(Xsm) ⊂ (X+)sm, the composition

Φw : X++
w

Ψ−−−−→ X+ Π−−−−→ X

supplies a weak version of Corollary D, namely: Φw is proper, but possibly not projective, and

X++
w is not necessarily a scheme.

To deduce the corollary from its aforementioned weaker version, we apply destackification

in the sense of Bergh–Rydh [BR19, Theorem 7.1]. In the language of loc. cit, we apply

destackification to the standard pair (X++
w , D++

w ) where D++
w is the simple normal crossings

divisor Π−1(X ∖Xsm), and the morphism Φw : X++
w → X. We obtain a projective, birational

morphism φ : X ++ → X++
w such that we have

(X ++, φ−1(D++
w )) (X++

w , D++
w ) X

(X++, D++)

relative coarse space over X

φ Φw

projective

and such that both (X ++, φ−1(D++
w )) and (X++, D++) are standard pairs. Moreover, this

procedure is functorial with respect to smooth morphisms that are stabilizer preserving. Con-

sequently, the diagonal arrow X++ → X supplies the desired Φ. □
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3.4.C. An example. We show, by way of example, that the toroidal Deligne-Mumford stacks

Yi in Theorem A is not necessarily smooth over k, and the proper transform XN = YN ×Y XN

is also not necessarily smooth over k. This necessitates the need for resolution of toroidal

singularities, as outlined in the proof of Corollary D above.

We revisit the following singular surface in [ATW19, §8.3]:

X = V (J) = V (x2yz + y4z) ⊂ Y = A3
k.

While Y1 and Y2 for this example are smooth over k, we will see below that Y3 is not. We do

this by focusing on a particular chart at each step of our logarithmic resolution.

3.4.9 (Step 1 ). Since D≤4(J) = (x, y, z), we have max inv(X ⊂ Y ) = inv(0,0,0)(X ⊂ Y ) =

(4, 4, 4), and I (J)• = (x4, y4, z4). Thus, the first step in our logarithmic resolution involves

the blow-up Y1 → Y along I (J)• = (x, y, z), which is not only a strict toroidal k-scheme, but

also smooth over k.

For convenience, let us replace Y1 by one chart on this blow-up, namely:

Y1 := Spec(N1 → k[x1, y1, u1])
π1−−−−−→ Y = Spec(k[x, y, z])

where x1u1 ←[ x, y1u1 ←[ y, u1 ←[ z, and V (u1) ⊂ Y1 is the equation of the exceptional divisor.

We underline u1 because its vanishing locus also defines the toroidal divisor on Y1. On this

chart, the total transform of X ⊂ Y is u41(x
2
1y1 + y41u1) = 0, with proper transform

X1 := V (J1) := V (x21y1 + y41u1) ⊂ Y1 = Spec(N1 → k[x1, y1, u1]).

3.4.10 (Step 2 ). Next, D≤1(J1) = (x1y1, x
2
1 + 4y31u1, y

4
1u1) and D≤2(J1) = (x1, y1), whence

C(J1, 3)|y1=0 = (x61). Therefore, max inv(X1 ⊂ Y1) = (3, 3) < (4, 4, 4) = max inv(X ⊂ Y ), and
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I (J1)• = (x31, y
3
1). The second step in our logarithmic resolution involves the blow-up Y2 → Y1

along I (J1)• = (x1, y1). Similar to the earlier step, Y2 is a smooth, strict toroidal k-scheme.

Again, we replace Y2 by one chart on this blow-up, namely:

Y2 := Spec(N2 → k[x2, u2, v2])
π2−−−−−→ Y1 = Spec(N1 → k[x1, y1, u1])

where x2v2 ←[ x1, u2v2 ←[ u1, v2 ←[ y1, and V (v2) ⊂ Y2 is the equation of the exceptional

divisor. As before, we underline u2 and v2 because the union of their vanishing loci defines the

toroidal divisor on Y2. On this chart, the total transform of X1 ⊂ Y1 is v32(x
2
2 + u2v2) = 0, with

proper transform

X2 := V (J2) := V (x22 + u2v2) ⊂ Y2 = Spec(N2 → k[x2, u2, v2]).

3.4.11 (Step 3 ). Finally, D≤1(J2) = (x2, u2v2), whence max inv(X2 ⊂ Y2) = (2,∞) <

(3, 3) = max inv(X1 ⊂ Y1). Since C(J2, 2)|x2=0 = (u2v2), we have I (J2)• = (x22, u2v2). Thus,

the third step in our logarithmic resolution involves the weighted blow-up Y3 → Y2 along

I (J2)• = (x2, (u2v2)
1/2). We know Y3 is a toroidal Deligne-Mumford stack over k, but this

time the following chart of Y3 is a scheme that is not smooth over k:

U3 := Spec(M → k[u2, v2, w, u2v2w
−2]) ⊂ Y3

π3−−→ Y2 = Spec(N2 → k[x2, u2, v2]).

Here, w ←[ x2, V (w) is the equation of the exceptional divisor on U3, and M is the (saturated)

submonoid of N3 generated by e1, e2, e3, and e1 + e2 − 2e3. As before, we underline u2,

v2, and w to indicate that the union of their vanishing loci defines the toroidal divisor on

the aforementioned chart. Moreover, on this chart, the total transform of X2 ⊂ Y2 is w2(1 +

u2v2w
−2) = 0, with proper transform

X3 ∩ U3 := V (1 + u2v2w
−2) ↪→ U3 = Spec(M → k[u2, v2, w, u2v2w

−2]).
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Note that max inv(U3 ∩ Y3 ⊂ U3) = (1) < (2,∞) = max inv(X2 ⊂ Y2), so our logarithmic

embedded resolution algorithm stops here (for this chart). In other words, X3 is toroidal on

U3. However, as a scheme,

X3 ∩ U3 ≃ Spec

(
k[u, v, w]

(uv + w2)

)

is not smooth over k.
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CHAPTER 4

Resolution of singularities via multi-weighted blow-ups

4.1. Multi-weighted blow-ups: local aspects

4.1.A. Multi-weighted blow-ups on affine spaces. Throughout this chapter, we follow the

conventions on fans in Convention 1.0.1. We first review the notion of fantastacks in [GS15].

In the process, we will also fix some notation.

Definition 4.1.1 (Fantastacks). Given a lattice N with dual lattice M = N∨, let Σ be a

fan in NR, and β : Zr → N a homomorphism with finite cokernel, satisfying the conditions:

(a) Every ray in Σ[1] contains some β(ei).

(b) Every β(ei) lies in the support of Σ.

Let Σ denote the set of all sub-cones σ′ of cones σ in NR such that σ′[1] ⊂ σ[1], in which case

we say σ′ can be inscribed in σ, and write σ′ ⊏ σ. We call Σ the augmentation of Σ. For each

cone σ in Σ, we associate to it the cone σ̂ in Rr = Zr ⊗ R generated by those ei such that

β(ei) ∈ σ. Then Σ̂ := {σ̂ : σ ∈ Σ} is a fan in Rr, that is generated by cones in {σ̂ : σ ∈ Σ}.

The fantastack XΣ,β associated to (Σ, β) is the toric stack XΣ̂,β associated to the stacky fan

(Σ̂, β). That is:

XΣ,β :=
[
XΣ̂ / Gβ

]
, where Gβ := Ker

(
Gr

m = TZr

Tβ−→ TN

)
where:

(i) XΣ̂ is the toric variety associated to the fan Σ̂ on Zr.

(ii) TN = HomGrp−Sch(N∨,Gm) (resp. TZr) is the torus of N (resp. Zr).

(iii) Tβ is the homomorphism of tori induced by β.
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(iv) Gβ acts on XΣ̂ as a subgroup of Gr
m = TZr .

4.1.2. Given a fan Σ in NR, we saw in 2.6.1 that there is a canonical fantastack XΣ

associated to the toric variety XΣ. Slightly more generally, let r = #Σ[1], and define β so that

it sends each standard basis vector eρ indexed by a ray ρ in Σ to some lattice point on ρ. For

each ρ ∈ Σ[1], write β(eρ) as bρ · uρ for some bρ ∈ N>0. Then we usually write XΣ,β as XΣ,b,

where b = (bρ)ρ∈Σ[1] ∈ N
Σ[1]
>0 . If b is the unit vector (1, 1, . . . , 1), then XΣ,b = XΣ.

4.1.3 (Cox presentation for fantastacks). By [CLS11, §5.1], we can express

XΣ̂ = Ar ∖ V (JΣ) = Spec(k[x1, x2, . . . , xr]) ∖ V (JΣ) =
⋃{

Uσ : σ ∈ Σ[max]
}

where

JΣ =

xσ :=
∏

1≤i≤r
β(ei)/∈σ

xi : σ ∈ Σ[max]


is sometimes known as the irrelevant ideal, and Uσ := Spec(k[x1, x2, . . . , xr][x

−1
σ ]) for each

maximal cone σ ∈ Σ. Then XΣ,β admits a covering by principal open substacks D+(σ) :=

[Uσ / Gβ], as σ varies over all maximal cones of σ. We call D+(σ) the xσ-chart of XΣ,β, and

sometimes denote it byD+(xσ). We cana also defineD+(σ) for every cone σ in the augmentation

Σ of Σ.

4.1.4. As already noted in 2.6.1, Σ̂ is a smooth fan. Moreover, the torus of XΣ,β is Gr
m/Gβ,

which is isomorphic to TN via Tβ. In other words, fantastacks are smooth toric Artin stacks

with trivial generic stabilizer.

4.1.5 (Good moduli space of fantastacks). By definition, the morphism β is compatible

with the fans Σ̂ and Σ, and therefore induces a toric morphism XΣ̂ → XΣ, which descends to

the good moduli space XΣ,β → XΣ, cf. [GS15, Example 6.24].
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We can now make the key definition of this chapter:

Definition 4.1.6 (Multi-weighted blow-ups on affine spaces). A multi-weighted blow-up of

the n-dimensional affine space An is the composition

ϑ : XΣ,b
good moduli space−−−−−−−−−−−−−−→ XΣ → An

where:

(i) Σ is a fan in Rn = (Zn)R with |Σ| = (Zn)+R = Rn
≥0, i.e. Σ subdivides the standard

fan Σstd in Rn and hence induces a proper, birational morphism XΣ → XΣstd
= An,

(ii) b ∈ N
Σ[1]
>0 as in 4.1.2,

(iii) and XΣ,b → XΣ is the good moduli space in the preceding 4.1.4.

4.1.7. Every multi-weighted blow-up ϑ is birational, as explained in 4.1.4. By [Alp13,

Theorem 4.16], the good moduli space morphism XΣ → XΣa is universally closed and surjective.

Therefore, so is ϑ.

Convention 4.1.8. For the remainder of this thesis, set N = Zn, and M = (Zn)∨. We will

make the obvious identification Σstd[1] = [n]. Given a fan Σ in NR whose support is N+
R = Rn

≥0,

we always view [n] = Σstd[1] as a subset of Σ[1], and we denote the complement Σ[1] ∖ [n] by

Σ[ex]. We call the rays in [n] ⊂ Σ[1] standard rays, and the rays in Σ[ex] exceptional rays.

This terminology will be justified later, cf. 4.1.19. In addition, for a set S, we write AS (resp.

ZS) to mean k[xs : s ∈ S] (resp. the free Z-module with basis {es : s ∈ S}. Moving ahead, for

n ∈ N>0, An shall mean A[n], and Zn means Z[n].

4.1.9 (Explicating multi-weighted blow-ups). Let us further assume that

(4.1) bi = 1 for every i ∈ [n] = Σstd[1] ⊂ Σ[1].
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Then the homomorphism β : ZΣ[1] → Zn induced by b (as in 4.1.2) fits nicely into the short

exact sequence:

0→ ZΣ[ex]

α =

B

−I


−−−−−−→ ZΣ[1]

β =

[
I B

]
−−−−−−−→ Zn → 0

where I denotes the identity matrix of order #Σ[ex] and B = (Bi,ρ)1≤i≤n, ρ∈Σ[ex] is the matrix

whose ρth-indexed column is uρ for each ρ ∈ Σ[ex]. Unravelling the definitions, let us highlight

some key details:

(i) The matrix β =

[
Ik B

]
induces the following commutative diagram:

XΣ̂ = AΣ[1] ∖ V (JΣ) AΣa[1] An = Spec(k[x1, x2, . . . , xn])

XΣ,b =
[
XΣ̂ / G

Σ[ex]
m

]
open

stack-theoretic quotient

ϑ

where we follow the preceding convention and write

AΣ[1] = Spec
(
k[x′1, x

′
2, . . . , x

′
n]
[
x′ρ : ρ ∈ ex(a)

])
so that the morphism AΣ[1] → An is induced by the homomorphism k[x1, x2, . . . , xn]→

k[x′1, x
′
2, . . . , x

′
n]
[
x′ρ : ρ ∈ Σ[ex]

]
which maps

xi 7→

x′i · ∏
ρ∈Σ[ex]

(x′ρ)
Bi,ρ

 =

x′i · ∏
ρ∈Σ[ex]

(x′ρ)
bρ·uρ,i


for every 1 ≤ i ≤ n. For ρ ∈ Σ[ex], the corresponding coordinate x′ρ of AΣ[1] will

occasionally be written as uρ during examples (e.g. §4.1.B and §4.4.A).

(ii) On the other hand, the matrix α =

 B

−Ik

 determines the action of GΣ[ex]
m on XΣ̂ ⊂

AΣ[1] = Spec
(
k[x′1, x

′
2, . . . , x

′
n]
[
x′ρ : ρ ∈ Σ[ex]

])
as follows:

(a) For every 1 ≤ i ≤ n, x′i has ZΣ[ex]-grading (Bi,ρ)ρ∈Σ[ex] = (bρ · uρ,i)ρ∈Σ[ex].
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(b) For every ρ ∈ Σ[ex], x′ρ has ZΣ[ex]-grading −eρ = (−δρ,ρ̃)ρ̃∈Σ[ex].

(iii) By Definition 4.1.1(i), XΣ,b admits an open cover by x′σ-charts D+(σ) = D+(x′σ) :=[
Uσ / GΣ[ex]

m

]
, where σ varies over all maximal cones σ of Σ. Recall from 4.1.3 that

for every cone σ in Σ, we have:

Uσ = Spec
(
k[x′1, x

′
2, . . . , x

′
n]
[
x′ρ : ρ ∈ ex(a)

] [
(x′σ)−1

])
where

x′σ :=
∏

ρ∈Σ[1]∖σ[1]

x′ρ.

(iv) The orbit-cone correspondence for XΣ̂ descends to an orbit-cone correspondence for

XΣ,b. More precisely, there is a correspondence between the torus orbits of XΣ,b

and the cones in the augmentation Σ of Σ as follows. For every cone σ in Σ, its

corresponding GΣ[1]
m -orbit Oσ of XΣ̂:

Oσ := Uσ ∖
⋃{

Uσ′ : σ′ ⊏ σ, σ′ ̸= σ
} closed
↪−−−→ Uσ

descends to its corresponding
(
GΣa[1]

m / Gex(a)
m

)
-orbit O(σ) of XΣ:

O(σ) :=
[
Oσ / Gex(a)

m

]
= D+(σ) ∖

⋃{
D+(σ′) : σ′ ⊏ σ, σ′ ̸= σ

}
= V

(
x′ρ : ρ ∈ σ[1]

) closed
↪−−−→ D+(σ).

Note that since Uσ =
⊔
{Oσ : σ′ ⊏ σ}, we also have

D+(σ) =
⊔{

O(σ) : σ′ ⊏ σ
}
.

Convention 4.1.10. For most parts in this chapter (with the exception of §4.2.A), we

usually only consider b = (bρ)ρ∈Σa[1] ∈ N
Σ[1]
>0 satisfying the hypothesis in (4.1), i.e. bi = 1

for every i ∈ [n] ⊂ Σ[1]. In this case, we usually view b as a vector in N
Σ[ex]
>0 . Vice versa,
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any b = (bρ)ρ∈Σ[ex] ∈ N
Σ[ex]
>0 will always be considered as a vector (bρ)ρ∈Σ[1] in N

Σ[1]
>0 by setting

bi = 1 for every i ∈ [n].

Remark 4.1.11. In the event that bρ ̸= 1 for some ρ ∈ Σ[ex], one can still explicate the

multi-weighted blow-up XΣ,b in the same way as 4.1.9, although partially. Namely:

XΣ,b =
[(

AΣ[1] ∖ V (JΣ)
)
/ D

(
Coker

(
β∨
))] ϑ−−−−→ An

where ϑ is induced by k[x1, x2, . . . , xn]→ k[x′1, x
′
2, . . . , x

′
n]
[
x′ρ : ρ ∈ Σ[ex]

]
which maps

xi 7→ (x′i)
bi ·

∏
ρ∈Σ[ex]

(x′ρ)
bρ·uρ,i

and where D(Coker(β∨)) acts via the morphism of diagonalizable groups obtained from (ZΣ[1])∨

↠ Coker(β∨) by applying D(−) := HomGrp−Sch(−,Gm). Alternatively, one can resort to the

next remark. Finally, XΣ,b likewise admits an open cover by x′σ-charts D+(σ) with the same

description, and the same orbit-cone corrrespondence for XΣ,b persists.

Remark 4.1.12. For i = 1, 2, let bi = (bi,ρ)ρ∈Σ[1] ∈ N
Σ[1]
>0 be such that for each ρ ∈ Σ[1],

b2,ρ = cρ · b1,ρ for some cρ ∈ N>0.

Then XΣ,b2 can be obtained from XΣ,b1A
n by iteratively taking cρ

th root stacks (cf. Ex-

ample 2.2.13, [Cad07b, Definition 2.3.1], or [AGV08, Appendix B]) along each coordinate

hyperplane V (x′ρ) of Bla,b1 An.

Most multi-weighted blow-ups on affine spaces An used in applications are “canonically

associated” to a monomial ideal a ⊂ k[x1, x2, . . . , xn]. We focus on these next.
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Setup 4.1.13. LetN = Zn andM = (Zn)∨. Consider a monomial ideal a of k[x1, x2, . . . , xn]

under the logarithmic structure induced by the chart Nn → k[x1, x2, . . . , xn] sending each stan-

dard basis vector ei of Nn to xi (cf. Definition 2.7.5). That is, a monomial in k[x1, x2, . . . , xn]

is xa := xa11 x
a2
2 · · · xann for some a ∈ Nn, and a is generated by a finite set of monomials. Then

associated to a are the following classical notions:

(i) the submonoid Γa = {a ∈M+ : xa ∈ a} ⊂M+,

(ii) the Newton polyhedron Γ+(a) of a given by the convex hull of Γa in M+
R ,

(iii) and the normal fan Σa of Γ+(a), which is a subdivision of Σstd in N , and hence induces

a proper, birational toric morphism XΣa → An.

These are reviewed in slightly greater generality in the next chapter, cf. §5.1.A and §5.1.B. We

also follow the conventions pertaining to Newton polyhedra there. For example, we shall denote

faces of Γ+(a) by ς, and denote facets of Γ+(a) by τ instead of ς. Additionally, for every integer

0 ≤ k ≤ n, there is an inclusion-reversing “dual” correspondence between k-dimensional cones

σ of Σa and (n− k)-dimensional faces ς of Γ+(a), and we notate this “duality” as follows:

(a) ςσ is the face of Γ+(a) dual to a cone σ in Σa, while σς is the cone in Σa dual to a face

ς of Γ+(a).

(b) If σ is a maximal cone in Σa, we denote the vertex ςσ of Γ+(f) by vσ = (vσ,i)
n
i=1

instead. If ς is a facet τ of Γ+(a), then we denote the ray σς as ρτ instead.

(c) Given a ray ρ in Σ with dual facet τ of Γ+(a), we denote the affine span of τρ by Hρ

or Hτ . We also let Nρ(a) = Nτ (a) be the natural number so that Hρ has the equation

{a ∈MR : a · uρ = Nρ(a)} in MR.

Additionally, in this chapter, we usually write ex(a) := Σa[ex], and we also set ex+(a) := {ρ ∈

Σa[1] : Nρ(a) > 0}. Note that ex+(a) ⊃ ex(a), since the set of rays in ex+(a) correspond to the

set of facets of Γ+(a) that are not contained in any coordinate hyperplane in N .
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Remark 4.1.14. The Newton polyhedron Γ+(a) is “invariant” under the lens of logarith-

mic geometry. More precisely, Γ+(a) is independent, up to symmetry, of any change in local

coordinates at 0 ∈ An which respects the logarithmic structure on An induced by the chart

Nn → k[x1, x2, . . . , xn] sending each ei 7→ xi. Indeed, any such coordinate change corresponds

to a monoid automorphism of Nn ⊕ O∗An,0, which must map each (ei, 1) to (ej, µ) for some

j ∈ [n] and µ ∈ O∗An,0.

Definition 4.1.15 (Multi-weighted blow-ups along monomial ideals). For b ∈ N
Σa[1]
>0 , the

multi-weighted blow-up of An along a and b is the composition

ϑa,b : Bla,b An := XΣa,b
good moduli space−−−−−−−−−−−−−−→ XΣa → An

as in Definition 4.1.6. When b is the unit vector (1, 1, . . . , 1) in N
ex(a)
>0 , we instead write the

above expression as ϑa : Bla An → An. This should not be confused with the usual blow-up of

An along a, which we have denoted by Bla An. In fact, we will see later that the normalization

of Bla An is precisely XΣa , cf. Remark 4.2.15.

As hinted before Setup 4.1.13, Bla An is, in a specific sense that will be spelled out later

in §4.2.A, the “canonical” multi-weighted blow-up of An associated to a. In fact, in §4.2.A,

we define more generally the “canonical” multi-weighted blow-up Bla• An of An associated a

monomial Rees algebra a• on An.

4.1.16. Two monomial ideals can possess the same normal fan, and thus yield the same

multi-weighted blow-up. Below we list some essential examples:

(i) Γ+(a) = Γ+(IC(a)), cf. 2.3.35 for definition of IC(a). Indeed, IC(a) = {xa : a ∈ Γ+(a)}.

(ii) Let f1, . . . , fr be monomials generating a. For any ℓ ∈ N>0, IC(aℓ) = IC(f ℓ
1 , . . . , f

ℓ
r ),

so (i) says aℓ and (f ℓ
1 , . . . , f

ℓ
r ) have the same Newton polyhedra.
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(iii) For any a ∈ Nn, Σxa·a = Σa. However, while the multi-weighted blow-up along xa · a

is the same as that along a, there might be a subtle difference in their “exceptional”

divisors (cf. Remark 4.1.24).

(iv) Lastly, as ℓ varies, although the Newton polyhedron of aℓ varies, the normal fan of aℓ

remains the same, and so does the multi-weighted blow-up of aℓ.

4.1.B. Examples. We illustrate 4.1.9 via two examples. Both examples are multi-weighted

blow-ups along monomial ideals. The first example is old, i.e. we already encountered its kind

back in Chapter 2:

Example 4.1.17 (Weighted blow-ups). Let d1, d2, . . . , dn ∈ N>0, and ℓ := lcm(d1, d2, . . . , dn).

The weighted blow-up of An = Spec(k[x1, x2, . . . , xn]) along the smooth center (x1, d1) +

(x2, d2) + · · · + (xn, dn) =
(
x
1/d1
1 , x

1/d2
2 , . . . , x

1/dn
n

)
(cf. Conventions 2.3.79) is also the multi-

weighted blow-up Bla,b An, where a = (x
ℓ/d1
1 , x

ℓ/d2
2 , . . . , x

ℓ/dn
n ) and b = gcd(d1, d2, . . . , dn) ∈

N>0 = N
ex(a)
>0 .

Instead of showing this in full generality, it is more direct to demonstrate this claim via the

following explicit example. Namely, consider a = (x2, y3, z3) ⊂ k[x, y, z], and b = gcd(2, 3, 3) =

1. We draw the Newton polyhedron Γ+(a), which has four facets:

e∨y

e∨z

e∨x
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Taking a cross-section of the normal fan Σa, we obtain:

ex

ez

ey

u
z′z′z′

x′x′x′
y′y′y′

where u = (3, 2, 2) is the normal vector to the shaded facet of Γ+(a) above. The vertices

(2, 0, 0), (0, 3, 0) and (0, 0, 3) of Γ+(a) correspond to the maximal cones of Σa represented above

by brown, magenta and cyan-coloured triangles, which also correspond to the x′, y′ and z′-charts

on Bla A3 = [XΣ̂a
/ Gm], where XΣ̂a

= A4 ∖ V (JΣa) = A4 ∖ V (x′, y′, z′).

As in 4.1.9, the morphism ϑa : Bla A3 → A3 can be read off the following matrix:

[
I3 u

]
=


1 0 0 3

0 1 0 2

0 0 1 2

 ⇝



x = x′u3

y = y′u2

z = z′u2

and the Gm-action on XΣ̂a
can be read off from the matrix:

 u

−1

 =



3

2

2

−1


⇝



x′ has Z-weight 3

y′ has Z-weight 2

z′ has Z-weight 2

u has Z-weight −1

This is precisely the description of the weighted blow-up of A3 along (x, 3) + (y, 2) + (z, 2) =(
x1/3, y1/2, z1/2

)
as in Proposition 2.5.9.
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Example 4.1.18 (A new example). The Newton polyhedron Γ+(a) of the monomial ideal

a = (x2, y2z, z3) ⊂ k[x, y, z] has five facets:

e∨y

e∨z

e∨x

We sketch a cross-section of the normal fan Σa:

ex

ez

ey

u1

u2

y′z′y′z′y′z′

x′x′x′

z′u2z′u2z′u2

where u1 = (3, 2, 2) and u2 = (1, 0, 2) are the normal vectors to the shaded facets of Γ+(a)

above. The vertices (2, 0, 0), (0, 2, 1) and (0, 0, 3) of Γ+(a) correspond to the maximal cones

of Σa represented above by the brown, magenta and cyan-coloured regions, and these also

correspond to the x′, y′z′, and z′u1-charts on Bla A3 = [XΣ̂a
/ Gm] respectively, where XΣ̂a

=

A5 ∖ V (JΣa) = A5 ∖ V (x′, y′z′, z′u2).
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The morphism ϑa : Bla A3 → A3 can then be determined from the following matrix:

[
I3 u1 u2

]
=


1 0 0 3 1

0 1 1 2 0

0 0 1 2 2

 ⇝



x = x′u31u2

y = y′u21

z = z′u21u
2
2

and the G2
m-action on XΣ̂a

can be determined from the matrix:


u1 u2

−1 0

0 −1

 =



3 1

2 0

2 2

−1 0

0 −1


⇝



x′ has Z2-weight (3, 1)

y′ has Z2-weight (2, 0)

z′ has Z2-weight (2, 2)

u1 has Z2-weight (−1, 0)

u2 has Z2-weight (0,−1)

4.1.C. Exceptional divisors and transforms. The presentation ϑ : XΣ,b =
[
XΣ̂ / G

Σ[ex]
m

]
→

An induces an isomorphism

Pic (XΣ,b)
≃−−−−→ PicG

Σ[ex]
m

(
XΣ̂

)
where the right hand side denotes the GΣ[ex]

m -equivariant Picard group of XΣ̂. In particular,

for each d ∈ ZΣ[ex], there are tautological line bundles O(d) := OXΣ,b
(d) on XΣ,b, which

correspond to the trivial line bundle OX
Σ̂

on XΣ̂ endowed with the GΣ[ex]
m -linearization given by

the “d-shift”, i.e.

ϑ∗O(d) = OX
Σ̂
(d) :=

(
˜k[x′1, . . . , x
′
n]
[
x′ρ : ρ ∈ Σ[ex]

])
(d)

∣∣∣
X

Σ̂a
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where (̃·) refers to the passage to the associated sheaf of OX
Σ̂
-modules [Har77, Chapter II.5],

and the ZΣ[ex]-grading of x′i and x′ρ in the right hand side can be obtained by subtracting d

from their respective ZΣ[ex]-gradings in 4.1.9(ii).

4.1.19 (Exceptional divisors on a multi-weighted blow-up). For every ρ ∈ Σ[ex], recall that

the corresponding coordinate x′ρ on XΣ̂ has ZΣ[ex]-weight −eρ (4.1.9(iib)), and hence there is

an injection

O(eρ) ↪→ O(0) = O

induced by multiplication by x′ρ, which embeds O(eρ) as an ideal sheaf on XΣ,b cutting out

the divisor

Eρ := V (x′ρ) ⊂XΣ,b

which we claim is an irreducible exceptional divisor of the multi-weighted blow-up ϑ : XΣ,b →

An (which explains the terminology “exceptional rays” in Convention 4.1.8). Indeed, using

Lemma 2.1.2 and the description of JΣ in 4.1.3, observe that ϑ maps the complement in XΣ,b

of
⋃
{Eρ : ρ ∈ Σ[ex]}, i.e.

U =
[
Spec

(
k[x′1, x

′
2, . . . , x

′
n]
[
(x′ρ)

±1 : ρ ∈ Σ[ex]
])

∖ V (JΣ) / GΣ[ex]
m

] open substack
↪−−−−−−−→XΣ,b

isomorphically onto the complement U in An of the closed subscheme

V

 ∏
i∈[n]∖σ[1]

xi : σ ∈ Σ[max]

 codimension ≥ 2, if #Σ[ex] ≥ 1
↪−−−−−−−−−−−−−−−−−−−−→ An.

Remark 4.1.20. If Σ = Σa for a monomial ideal a ⊂ k[x1, x2, . . . , xn], we have

U = An ∖ V

xv/∏
i∈[n]

x
Ni(a)
i : v ∈ vert(Γ+(a))

 = An ∖ V

a :
∏
i∈[n]

x
Ni(a)
i

 .
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where the first equality follows from the inclusion-reversing correspondence between cones σ in

Σ and faces ς of Γ+(a). Noting that a is the integral closure IC
(
xv : v ∈ vert(Γ+(a))

)
, we have

V (a) = V (xv : v ∈ vert(Γ+(a))), and therefore the second equality follows.

The remainder of this section is devoted to the various transforms of ideals under a multi-

weighted blow-up along a monomial ideal. We first make the following definition, which is part

of the subsequent proposition.

Definition 4.1.21. Given an ideal J ⊂ k[x1, x2, . . . , xn], the Newton polyhedron Γ+(J) of

J is defined as the Newton polyhedron of the monomial saturation of J (Definition 3.1.1) under

the logarithmic structure on An induced by the chart Nn → k[x1, x2, . . . , xn] sending each ei

to xi, cf. Setup 4.1.13. Therefore, for u = (ui)
n
i=1 ∈ Nn and m ∈ N, we will say that Γ+(J) is

bounded below by the hyperplane
∑n

i=1 ui · ei = m if for every g =
∑

a∈Nn ca · xa ∈ J , we have

u · a ≥ m whenever ca ̸= 0.

Lemma 4.1.22. Let ϑ : XΣ,b → An be a multi-weighted blow-up of An, and O := OXΣ,b
.

Then we have:

(i) Let J ⊂ k[x1, x2, . . . , xn] be an ideal. For (nρ)ρ∈Σ[1] ∈ NΣ[1], the ideal sheaf ϑ−1(J)O

underlying the total transform V (J)×An,ϑ XΣ,b satisfies the inclusion

ϑ−1(J)O ⊂
∏

ρ∈Σ[1]

(x′ρ)
bρ·nρ

if and only if for every ρ ∈ Σ[1], the Newton polyhedron Γ+(J) of J is bounded below

by the hyperplane
∑n

i=1 uρ,i · ei = nρ.

(ii) Moreover, if ϑ = ϑa,b : Bla,b An → An and J = a, we have equality in (i):

(4.2) ϑ−1a,b(a)O =
∏

ρ∈ex+(a)

(x′ρ)
bρ·Nρ(a)

(cf. Setup 4.1.13 for the definitions of ex+(a), Ni(a), and Nρ(a)).
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Before giving the proof, let us illustrate it by re-visiting Example 4.1.18:

Example 4.1.23. Let a = (x2, y2z, z3), and consider ϑa : Bla A3 → A3. Using the equa-

tions in Example 4.1.18, one computes the following:

(i) Let J = (x2 + y2 + z2) ⊂ k[x, y, z]. Its total transform ϑ−1a (J)OBla A3 is (x′2u61u
2
2 +

y′2u41 + z′2u41u
4
2), which is contained in (u41), but is contained neither in (ui1) for i ≥ 5,

nor in (uj2) for j ≥ 1. This agrees with Lemma 4.1.22(i): the Newton polyhedron

of J has the vertices v1 = (2, 0, 0), v2 = (0, 2, 0) and v3 = (0, 0, 2), and we have

min1≤i≤3 u1 · vi = 4 and min1≤i≤3 u2 · vi = 0.

(ii) The total transform ϑ−1a (a)OBla A3 of a equals

(x′2u61u
2
2, y
′2z′u61u

2
2, z
′3u61u

6
2) = (u61u

2
2) · (x′2, y′2z′, z′3).

The ideal (x′2, y′2z′, z′3) is the unit ideal on each chart of Bla A3, so ϑ−1a (a)OBla A3 =

(u61u
2
2). This agrees with Lemma 4.1.22(ii): note that Nei(a) = 0 for 1 ≤ i ≤ 3,

Nu1(a) = 6, and Nu2(a) = 2.

Proof of Lemma 4.1.22. It suffices to compute on the smooth cover XΣ̂ of XΣ,b. By

replacing J in (i) by its monomial saturation, we may assume J is monomial. Recall from

4.1.9(i) that for every monomial xa ∈ J , we have:

(4.3) xa =
n∏

i=1

(x′i)
bi·ai ·

∏
ρ∈Σ[ex]

(x′ρ)
bρ·(uρ·a) in ϑ−1(J)O.

Then part (i) follows from (4.3), since it says that for every ρ ∈ Σ[ex] (resp. i ∈ [n]) and

a ∈ Γ+(J), we have uρ · a ≥ nρ (resp. ai ≥ ni), if and only if (x′ρ)
bρ·nρ divides xa (resp. (x′i)

bi·ni

divides xa).

The forward inclusion in (ii) follows from (i). For the reverse inclusion, it suffices to compute

locally on the open charts Uσ ⊂ XΣ̂a
as σ varies over all maximal cones of Σa. Therefore, fix a
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maximal cone σ of Σa, and, as in Setup 4.1.13, let vσ = (vσ,i)
n
i=1 be the corresponding vertex

of Γ+(a). Setting a = vσ in (4.3), we have

xvσ =
n∏

i=1

(x′i)
bi·vσ,i ·

∏
ρ∈ex(a)

(x′ρ)
bρ·(uρ·vσ) in ϑ−1a,b(a)O.

Recalling that x′ρ is invertible on Uσ for any ρ ∈ Σa[1] ∖ σ[1], we obtain:

ϑ−1a,b(a)O ⊃ (xvσ) =
∏

i∈[n]∩σ[1]

(x′i)
bi·vσ,i ·

∏
ρ∈ex(a)∩σ[1]

(x′ρ)
bρ·(uρ·vσ) on Uσ,

To complete the proof of (ii), it remains to note the following. For each ρ ∈ ex(a)∩σ[1], we have

vσ ∈ τρ, which implies uρ ·vσ = Nρ(a). Likewise, if ρ = i ∈ [n]∩σ[1], we have vσ,i = Ni(a). □

Remark 4.1.24. In Lemma 4.1.22(ii), note that for every i ∈ [n], Ni(a) > 0 if and only

if a ⊂ (xi), i.e. V (a) ⊃ V (xi). Analogous to how the usual blow-up of An along a divisor D

does nothing except declare D to be “exceptional”, the multi-weighted blow-up ϑa,b similarly

declares the divisor V (x′i) ⊂ Bla,b An to be “exceptional” for every i ∈ [n] ∩ ex+(a), i.e. every

i ∈ [n] with a ⊂ (xi). In this sense, Lemma 4.1.22(ii) expresses the total transform of a as a

sum of “exceptional” divisors V (x′ρ) for ρ ∈ ex+(a). This discussion should be compared to the

observation in Remark 4.1.20.

Next, we explicate two classical transforms for multi-weighted blow-ups along monomial

ideals:

Definition 4.1.25 (Proper transform). Set O := OBla,b An . The proper (or strict) transform

of an ideal J ⊂ k[x1, x2, . . . , xn] under the multi-weighted blow-up ϑa,b : Bla,b An → An is

˜ϑ−1a,b(J)O :=

ϑ−1a,b(J)O :
∏

ρ∈ex+(a)

(x′ρ)
∞

 :=
⋃

(nρ)∈Nex+(a)

ϑ−1a,b(J)O :
∏

ρ∈ex+(a)

(x′ρ)
nρ

.
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Equivalently, by Lemma 4.1.22(ii), the proper transform of V (J) ⊂ An under ϑa,b is the scheme-

theoretic closure of V (ϑ−1a,b(J)O) ∖ V (ϑ−1a,b(a)O) in Bla,b An.

Definition 4.1.26 (Weak transform). Set O := OBla,b An . The weak (or birational, or con-

trolled) transform of an ideal J ⊂ k[x1, . . . , xn] under the multi-weighted blow-up ϑa,b : Bla,b An

→ An is

(ϑa,b)−1∗ (J) :=
(
ϑ−1a,b(J)O

)
·
∏

ρ∈ex+(a)

(x′ρ)
−bρ·Nρ(J)

where for each ρ ∈ ex+(a), Nρ(J) is the largest natural number nρ such that:

(i) ϑ−1a,b(J)O ⊂ (x′ρ)
bρ·nρ , i.e. ϑ−1a,b(J)O = (x′ρ)

bρnρ · J ′ for some ideal J ′ ⊂ O;

(ii) or equivalently, by Lemma 4.1.22(i), the Newton polyhedron Γ+(J) of J is bounded

below by the hyperplane
∑n

i=1 uρ,i · ei = nρ.

Remark 4.1.27. Similar to what was noted in Definition 2.3.31, we always have

(ϑa,b)−1∗ (J) ⊂ ˜ϑ−1a,b(J)O

with equality if J is a principal ideal. As with usual blow-ups, if J is radical, so is the proper

transform ˜ϑ−1a,b(J)O. In other words, if V (J) ⊂ An is reduced, so is its proper transform in

Bla,b An.

As with the case of usual blow-ups, it is a more intricate issue to identify generators of

proper transforms, as opposed to generators for weak transforms. For example:

Example 4.1.28. Consider the non-principal ideal J = (x2 + y2, z − y2) ⊂ k[x, y, z] and

the multi-weighted blow-up ϑa in Example 4.1.18.

(i) The total transform ϑ−1a (J)OBla A3 of J under πa is

(x′2u61u
2
2 + y′2u41, z

′u21u
2
2 − y′2u41) = (u21) · (x′2u41u22 + y′2u21, z

′u22 − y′2u21).
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Hence, the weak transform (πa)
−1
∗ (J) of J under ϑa is

u−21 · ϑ−1a (J)OBla A3 = (x′2u41u
2
2 + y′2u21, z

′u22 − y′2u21).

(ii) On the other hand, while we have

x2 + y2 = u41 · (x′u21u22 + y′2) and z − y2 = u21 · (z′u22 − y′2u21),

the proper transform ˜ϑ−1a (J)OBla A3 of J under ϑa is not generated by the elements

x′u21u
2
2 + y′2 and z′u22− y′2u21. Indeed, note that x2 + z = (x2 + y2) + (z− y2) ∈ J , and

x2 + z = x′2u61u
2
2 + z′u21u

2
2 = u21u

2
2 · (x′2u41 + z′).

Thus, x′2u41 + z′ ∈ ˜ϑ−1a (J)OBla A3 , but x′2u41 + z′ /∈ (x′u21u
2
2 + y′2, z′u22 − y′2u21).

4.1.D. Multi-graded Rees algebras and idealistic exponents. In this subsection, we re-

interpret some of the earlier discussions, in terms of multi-graded Rees algebras and idealistic

exponents.

4.1.29 (Multi-graded Rees algebras). The discussion in 4.1.9 can be summarized by the

compact, but notation-heavy, statement that Bla,b An equals:

(4.4)

(SpecAn(R) ∖ V (JΣa)) /  B

−Ik


Gex(a)

m


where

(4.5) R = R(a,b) :=
OAn [x′1, . . . , x

′
n]
[
x′ρ : ρ ∈ ex(a)

](
x′i ·
∏

ρ∈ex(a) (x′ρ)
bρ·uρ,i − xi : 1 ≤ i ≤ n

)
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and the matrix  B

−Ik


records the Zex(a)-grading of each x′i and each x′ρ as in 4.1.9(ii), and hence, describes the Gex(a)

m -

action displayed above.

We provide a re-interpretation of the Zex(a)-graded OAn-algebra R = R(a,b) as a multi-

graded Rees algebra on An. Consider the homomorphism of Zex(a)-graded OAn-algebras R →

OAn [t±ρ : ρ ∈ ex(a)] defined by

x′i 7→

xi · ∏
ρ∈ex(a)

tbρ·uρ,iρ

 for 1 ≤ i ≤ n

x′ρ 7→ (1 · t−1ρ ) for ρ ∈ ex(a).

(4.6)

This is an isomorphism of R onto its image

R• := OAn

[
t−1ρ : ρ ∈ ex(a)

] xi · ∏
ρ∈ex(a)

tbρ·uρ,iρ : 1 ≤ i ≤ n


⊂ OAn

[
t±ρ : ρ ∈ ex(a)

]
.

(4.7)

The image R• is a Zex(a)-graded Rees algebra on An, i.e. it is a finitely generated, quasi-coherent

Zex(a)-graded OAn-subalgebra

R• =
⊕

m∈Zex(a)

Rm ⊂ OAn [t±ρ : ρ ∈ ex(a)]

satisfying the following three conditions:

(i) R0 = OAn .

(ii) 1 · t−1ρ ∈ R• for all ρ ∈ ex(a).

(iii) For every m ∈ Zex(a), we have Rm =
⋂

ρ∈ex(a) Rmρ·eρ .

Note that under (i), (ii) is equivalent to:
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(ii′) Rm+eρ ⊂ Rm for every m ∈ Zex(a) and ρ ∈ ex(a).

In particular, (ii) already implies the forward inclusion in (iii). Moreover, note that (iii) is

redundant if #ex(a) = 1.

We usually make the identification R = R•, and hence, will not make any distinction

between both sides of (4.6). Occasionally we neglect the negative degrees, and only work

with the Nex(a)-graded part of R•, which is a Nex(a)-graded Rees algebra on An, i.e. a finitely

generated, quasi-coherent Nex(a)-graded OAn-subalgebra
⊕

m∈Nex(a) Rm ⊂ OAn [tρ : ρ ∈ ex(a)]

satisfying (i), (ii′) and (iii) with the phrase “m ∈ Zex(a)” in the last two conditions are replaced

by “m ∈ Nex(a)”.

Remark 4.1.30 (Alternative description of the proper transform). It is also under the

interpretation in 4.1.29 that the proper transform of a closed subscheme V (J) ⊂ An under

ϑa,b : Bla,b An → An has a natural description. Namely, it is given by the similar-looking

expression: (SpecV (J)

(
ROV (J)

)
∖ V (JΣa)

)
/  B

−Ik


Gex(a)

m

 .
If one interprets this as the “multi-weighted blow-up of V (J) along ROV (J)”, this description

parallels that in Corollary 2.3.25 and [Har77, Corollary II.7.15].

For 4.1.31 below only, let Y denote a k-variety, e.g. Y = An. In §2.3.G, we defined a

one-to-one correspondence between non-zero, integrally closed, N-graded Rees algebras on Y

and idealistic exponents over Y . This can be immediately promoted to an one-to-one corre-

spondence between non-zero, integrally closed, Nk-graded Rees algebras R• on Y and k-tuples

γ = (γ[ρ] : ρ ∈ [1, k]) of idealistic exponents over Y .
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4.1.31 (Tuples of idealistic exponents). Let ZR(Y ) denote the Zariski-Riemann space of Y ,

and let πY : ZR(Y )→ Y denote the morphism of locally ringed spaces which maps ν ∈ ZR(Y )

to the center xν of ν on Y (Definition 2.3.54). Then:

(a) Given a k-tuple γ := (γ[ρ] : ρ ∈ [1, k]) of idealistic exponents over Y , let R [ρ]
• be

the integrally closed, N-graded Rees algebra on Y associated to each γ[ρ]. Then the

integrally closed Nk-graded Rees algebra R• :=
⊕

m∈Nk Rm · tttm on Y associated to

γ is defined by Rm :=
⋂

ρ∈[1,k] R
[ρ]
mρ for every m ∈ Nk. In other words, for any open

U ⊂ Y ,

Rm(U) :=

{
g ∈ OY (U) :

ν(g) ≥ mρ · (γ[ρ])ν for every

ν ∈ π−1Y (U) and ρ ∈ [1, k]

}
.

(b) Conversely, given an non-zero, integrally closed, Nk-graded Rees algebra R• on Y , we

associate a k-tuple γ := (γ[ρ] : ρ ∈ [1, k]) of idealistic exponents over Y , where each

γ[ρ] is the idealistic exponent over Y associated to the non-zero, integrally closed,

N-graded Rees algebra R [ρ]
• :=

⊕
m∈N Rm·eρ · tm. In other words, the stalk of γ[ρ] at

each ν ∈ ZR(Y ) is:

(γ[ρ])ν := min

{
1

mρ

· ν(g) : 0 ̸= g · tttm ∈ (R•)xν with mρ ≥ 1

}
.

Together, (a) and (b) give the desired one-to-one correspondence.

4.1.32. Under the above one-to-one correspondence, the Nex(a)-graded part of R(a,b)•

in (4.7) then corresponds to the tuple γ(a,b) :=
(
γ(a,b)[ρ] : ρ ∈ ex(a)

)
of #ex(a) idealistic

exponents over An, where each γ(a,b)[ρ] is defined stalk-wise at each ν ∈ ZR(An) by:

(4.8)
(
γ(a,b)[ρ]

)
ν

:= min
i∈[n]
uρ,i ̸=0

(
1

bρ · uρ,i

· ν(xi)

)
.
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Following Convention 2.3.79, for each ρ ∈ [1, k], we shall use the suggestive notation

(
x

1
bρ·uρ,i
i : i ∈ [n], uρ,i ̸= 0

)

to denote the corresponding integrally closed, N-graded Rees algebra R(a,b)[ρ].

Our next objective is to give a coordinate-free interpretation of the weak transform (Defi-

nition 4.1.26) in terms of the idealistic exponents in γ(a,b).

Setup 4.1.33. For the remainder of this subsection, fix a monomial ideal a on An and

b ∈ N
ex(a)
>0 . Let ϑ̃ := ϑ̃a,b denote the composition

XΣ̂a

stack-theoretic−−−−−−−−→
quotient

→ Bla,b An ϑa,b−−→ An.

aFor an ideal J on An (orXΣ̂a
), let γJ denote the idealistic exponent over An (orXΣ̂a

) associated

to J (cf. 2.3.59). Let ϑ̃−1(γ)O denote the pullback of γ to XΣ̂a
via ϑ̃. Unless otherwise

mentioned, set O := OXΣa
, and set γ[ρ] := γ(a,b)[ρ] for ρ ∈ ex(a). For i ∈ [n], we also set

γ[i] := γ(xi).

To re-interpret the weak transform, we begin with the elementary lemma:

Lemma 4.1.34. For (kρ)ρ∈Σa[1] ∈ NΣa[1], the following statements are equivalent:

(i) ϑ̃−1(J)O ⊂
∏

ρ∈Σa[1]
(x′ρ)

kρ.

(ii) ϑ̃−1(γJ)O ≥
∑

ρ∈Σa[1]
kρ · γ(x′

ρ).

(i′) ϑ̃−1(J)O ⊂ (x′ρ)
kρ for every ρ ∈ Σa[1].

(ii′) ϑ̃−1(γJ)O ≥ kρ · γ(x′
ρ) for every ρ ∈ Σa[1].

Proof. (i)⇐⇒ (i′) is evident. Both (i)⇐⇒ (ii) and (i′)⇐⇒ (ii′) follow from the fact that

if X is a normal variety, J is an ideal on X, and D is a divisor on X with underlying ideal ID,
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then γD ≤ γJ if and only if ID ⊃ J . Indeed, by Lemma 2.3.57, both statements are equivalent

to J · I−1D ⊂ OX . □

Our next goal is to provide a re-characterization of statement (ii′) in Lemma 4.1.34 in terms

of idealistic exponents over An. Before doing that, we need the following lemma:

Lemma 4.1.35. For each ρ ∈ Σa[1], we have:

ϑ̃−1(γ[ρ])O ≥ γ(x′
ρ).

Proof. Let ν ∈ ZR(XΣ̂a
) be arbitrary. If ρ = i ∈ [n], the lemma then follows from:

γ(x′
i),ν

= ν(x′i) = ν(xi)−
∑

ρ∈ex(a)

(bρ · uρ,i) · ν(x′ρ) ≤ ν(xi) =
(
ϑ̃−1(γ[i])O

)
ν
.

If instead ρ ∈ ex(a), we have, for every 1 ≤ i ≤ n such that uρ,i ̸= 0:

γ(x′
ρ),ν = ν(x′ρ) =

1

bρ · uρ,i

·

ν(xi)− ν(x′i)−
∑

ρ̃∈ex(a)∖{ρ}

(bρ̃ · uρ̃,i) · ν(x′ρ̃)


≤ 1

bρ · uρ,i

· ν(xi).

Taking the minimum over all such 1 ≤ i ≤ n, the lemma follows. □

Let ZR(ϑ̃) : ZR(XΣ̂a
) → ZR(An) denote the morphism of Zariski-Riemann spaces induced

by ϑ̃ (cf. 2.3.56). For each ρ ∈ Σa[1], let ν ′ρ be the divisorial valuation on XΣ̂a
induced by

V (x′ρ) ⊂ XΣ̂a
, and let νρ = ZR(ϑ̃)(ν ′ρ). By 4.1.9(i), νρ(xi) = bρ · uρ,i for every ρ ∈ Σa[1] and

1 ≤ i ≤ n.

Proposition 4.1.36. For ρ ∈ Σa[1] and k ∈ Q>0, the following statements are equivalent:

(i) γJ ≥ k · γ[ρ].

(ii) ϑ̃−1(γJ)O ≥ k · γ(x′
ρ).
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(iii) γJ,νρ ≥ k
(
= k · (γ[ρ])νρ = k · γ(x′

ρ),ν
′
ρ

)
.

Proof. (i) =⇒ (ii) follows from Lemma 4.1.35. For (ii) =⇒ (iii), we localize the inequality

in (ii) at ν := ν ′ρ to obtain γJ,νρ =
(
ϑ̃−1(γJ)O

)
ν
≥ k · γEρ,ν = k. For (iii) =⇒ (i), (iii) says that

for f =
∑

a ca · xa ∈ J , we have

(4.9) min
ca ̸=0

{
n∑

i=1

ai · (bρ · uρ,i)

}
= νρ(f) ≥ γJ,νρ ≥ k.

Then for arbitrary ν ∈ ZR(An) and f =
∑

a ca · xa ∈ J , we have

ν(f) ≥ min
ca ̸=0

{
n∑

i=1

ai · ν(xi)

}
≥ min

ca ̸=0


n∑

i=1
uρ,i ̸=0

ai · (bρ · uρ,i)

(
1

bρ · uρ,i

· ν(xi)

)
≥ (γ[ρ])ν ·min

ca ̸=0

{
n∑

i=1

ai · (bρ · uρ,i)

}

≥ k · (γ[ρ])ν

where the last inequality follows from (4.9). Therefore, γJ,ν = min{ν(f) : f ∈ J} ≥ k · (γ[ρ])ν .

□

Remark 4.1.37. The above discussion suggests that we can interpret γJ as the “New-

ton polyhedron Γ+(J) of J”, and γ[ρ] as the “hyperplane
∑n

i=1 (bρ · uρ,i) · ei = k”. Then

Proposition 4.1.36(i) translates to the statement that “Γ+(J) is bounded below by the hy-

perplane
∑n

i=1 (bρ · uρ,i) · ei = k” (Definition 4.1.21). Combining Lemma 4.1.34 and Proposi-

tion 4.1.36, we get a re-interpretation of Lemma 4.1.22(i) in terms of idealistic exponents. This

re-interpretation is justified by (4.9), which says that for every a ∈ Γ+(J), (bρ · uρ) · a ≥ k.

Remark 4.1.38. Let us apply Proposition 4.1.36 to J = a. For every ρ ∈ Σa[1], one

can compute that γa,νρ = bρ · Nρ(a), so the proposition says γa ≥ (bρ · Nρ(a)) · γ[ρ]. In fact,

sup{k ∈ Q>0 : γa ≥ k · γ[ρ]} = bρ · Nρ(a), because whenever γa ≥ k · γ[ρ], then k ≤ γa,νρ =
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bρ · Nρ(a). By Lemma 4.1.34, we therefore have ϑ̃−1(γa)O ≥
∑

ρ∈ex+(a) (bρ ·Nρ(a)) · γ(x′
ρ). In

fact, Lemma 4.1.22(ii) says more: this inequality is an equality!

By the equivalences in Lemma 4.1.34 and Proposition 4.1.36, the following definition of the

weak transform is equivalent to Definition 4.1.26, and should be compared to Lemma 2.3.30

and Lemma 2.3.77:

Definition 4.1.39 (Weak transform, re-visited). Set O := OBla,b An . The weak transform

of an ideal J ⊂ k[x1, . . . , xn] under the multi-weighted blow-up ϑa,b : Bla,b An → An can be

also be defined as

(ϑa,b)−1∗ (J) :=
(
ϑ−1a,b(J)O

)
·
∏

ρ∈ex+(a)

(x′ρ)
−Kρ(J)

where for each ρ ∈ ex+(a), Kρ(J) is the largest natural number kρ such that γJ ≥ kρ · γ[ρ] (or

equivalently, γI,νρ ≥ kρ).

4.2. Multi-weighted blow-ups: canonical aspects

4.2.A. Canonicity of multi-weighted blow-ups, I. In this section, we continue to follow

the conventions in Setup 4.1.13, and we endow An with the toroidal logarithmic structure

induced by Nn ei 7→xi−−−→ k[x1, x2, . . . , xn]. Let a• be a monomial Rees algebra on An under the

above logarithmic scheme (Definition 2.7.5), i.e. a finitely generated, N-graded OAn-subalgebra

a• =
⊕

m∈N am · tm ⊂ OAn [t] such that a0 = OAn , am ⊃ am+1 for every m ∈ N, and each am is

a monomial ideal of k[x1, x2, . . . , xn] in the sense of Setup 4.1.13.

We give a definition of Bla• An, which generalizes the notion of Bla An (Definition 4.1.15)

for a monomial ideal a on An, before demonstrating that this notion is canonically associated

to a•.

Definition 4.2.1 (Multi-weighted blow-ups along monomial Rees algebras). Fix a suffi-

ciently large ℓ ∈ N>0 such that the ℓth Veronese subalgebra aℓ• of a• is generated in degree 1.
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The multi-weighted blow-up of An along a• is then defined as:

ϑa• : Bla• An := Blaℓ,b̃ An
ϑ
aℓ,b̃−−−→ An

where

b̃ :=

(
ℓ

gcd
(
ℓ,Nρ(aℓ)

) : ρ ∈ Σaℓ [1]

)
∈ N

Σaℓ
[1]

>0

(cf. Remark 4.1.11 and Convention 4.1.10). We endow Bla• An with the toroidal logarithmic

structure “dictated by that of An = Spec(Nn ei 7→xi−−−→ k[x1, . . . , xn]) and the exceptional divisors

on Bla• An”. Namely, it is obtained by descent from the following toroidal logarithmic structure

on AΣa[1] ∖ V (JΣa):

NΣa[1] → k[x′1, . . . , x
′
n]
[
x′ρ : ρ ∈ ex(a)

]
which sends eρ 7→ x′ρ for every ρ ∈ Σa[1].

Note that if a• is generated in degree 1, then Bla• An equals Bla1 An in Definition 4.1.15.

It is also simple but essential to verify that:

Lemma 4.2.2. The definition of Bla• An does not depend on the choice of ℓ ∈ N>0 such

that aℓ• is generated in degree 1.

Proof. Let ℓ, L ∈ N>0 be such that both aℓ• and aL• are generated in degree 1. By

comparing aℓ• and aL• with aℓL•, we reduce to the case where L = rℓ for some r ∈ N>0. Then

aL = (aℓ)
r, and thus the normal fans of aℓ and of aL are identical. In particular, Σaℓ [1] = ΣaL [1].

Lastly, note that Nρ(aL) = r · Nρ(aℓ) for every ρ ∈ Σaℓ [1] = ΣaL [1], so ℓ/ gcd(ℓ,Nρ(aℓ)) =

L/ gcd(L,Nρ(aL)). □

Remark 4.2.3.

(i) Note that Bla• An = BlIC(a•) An, cf. 4.1.16.
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(ii) For any ℓ ∈ N>0 such that aℓ• is generated in degree 1, consider the Veronese (1/ℓ)-

translate of the Rees algebra a•ℓ associated to the monomial ideal aℓ, i.e.

a
(1/ℓ)•
ℓ = IC

(⊕
d∈N

adℓ · tdℓ
)

cf. Convention 2.3.79. Then a
(1/ℓ)•
ℓ is simply the integral closure IC(a•) of a• in OAn [t],

since they are both integrally closed and their ℓth Veronese subalgebras coincide. In

particular, Bla• An = Bl
a
(1/ℓ)•
ℓ

An.

4.2.4. Before stating the key proposition of this subsection, let us temporarily assume

a• is integrally closed in OAn [t], and let us consider the weighted blow-up of An along a•

(Definition 2.3.12), i.e.

Bla• An := ProjAn(a•)
πa•−−−−−→ An.

Since An is toroidal under the logarithmic structure induced by Nn ei 7→xi−−−→ k[x1, x2, . . . , xn],

and a• is monomial and integrally closed (and hence a toroidal center on An), we know from

Corollary 2.7.20 that Bla• An carries a logarithmic structure under which it is toroidal. As

in 2.7.7, this logarithmic structure is induced by the chart Γ ↪→ aext• defined by the following

cartesian square

(4.10)

Γ aext•

Nn ⊕ Z k[x1, x2, . . . , xn][t±]

where the bottom row sends each (a,m) ∈ Nn ⊕ Z to xat−m, and aext• is the extended Rees

algebra of a•, cf. 2.3.4. Recall that t−1 ∈ aext• cuts out the exceptional divisor E = V (t−1) on

Bla• An = ProjAn(aext• ).

If we write a• = a(1/ℓ)• for a monomial ideal a on An and ℓ ∈ N>0 as in Remark 4.2.3(ii),

then Γ can be explicated as the saturation of the submonoid of Nn⊕Z generated by Nn+1 and

194



(v,−ℓ) for vertices v of the Newton polyhedron Γ+(a), cf. 4.1.16(i). Moreover, as v varies over

the vertices of Γ+(a), the (xv · tℓ)-charts of Bla• An

D+

(
xv · tℓ

)
:=
[
SpecAn

(
a•
[
(xv · tℓ)−1

])
/ Gm

]
.

form an open cover of Bla• An, cf. §2.1.C and 4.1.16(i).

Then the “canonicity” implied in the title of this subsection is the following result:

Proposition 4.2.5. Bla• An is the canonical smooth, toroidal Artin stack over BlIC(a•) An.

The canonicity asserted in the above proposition is in the sense of Satriano in [Sat13],

which we will now recall in detail.

4.2.6. Given a toroidal k-scheme Y , Satriano demonstrates in [Sat13, §3] that there is a

smooth, toroidal Artin stack Y over Y , which satisfies the following universal property. Any

sliced resolution [Sat13, Definition 2.6] from a fs logarithmic scheme (T,MT ) to (Y,MY ) factors

uniquely as a strict morphism (T,MT )→ (Y ,MY ) followed by (Y ,MY )→ (Y,MY ). We call

Y → Y the canonical smooth, toroidal Artin stack over Y .

In [Sat13, Proposition 3.1], Satriano gives the following local description of Y → Y . Let

Y = Spec(Γ ↪→ k[Γ ]) for a sharp, toric monoid Γ . Let C(Γ) denote the rational cone generated

by Γ in MR := Γ gp ⊗Z R, and C(Γ)∨ be the dual cone in NR := M∨
R. For an extremal ray ρ of

C(Γ)∨, we denote by uρ the first lattice point on ρ.

Let F denote the free monoid on the set S of extremal rays ρ of C(Γ)∨, and consider

ι : Γ ↪→ F which sends

(4.11) v 7→ (uρ · v)ρ∈S for v ∈ Γ ⊂ C(Γ).
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Then ι is a minimal free resolution, in the sense of [Sat13, Definition 2.3]. Setting D(−) :=

HomGrp−Sch(−,Gm), ι induces the morphism

[Spec(F ↪→ k[F ]) / D(F gp/Γ gp)]→ Spec(Γ ↪→ k[Γ ]) which is Y → Y.

Remark 4.2.7. By descent, Satriano’s demonstration immediately generalizes for a toroidal

Artin stack Y over k. We may appeal to descent, because Satriano’s construction commutes

with strict, smooth morphisms. More precisely, given a strict morphism f : Ỹ → Y between

toroidal Artin stacks, the canonical smooth, toroidal Artin stack over Ỹ is the cartesian product

Ỹ ×Y Y in the category of fs logarithmic Artin stacks, where Y → Y is the canonical smooth,

toroidal Artin stack over Y . This can be seen using the universal property in 4.2.6. Indeed,

it suffices to note that given any sliced resolution g : T → Ỹ , the composition g ◦ f : T → Y

is still a sliced resolution, because the induced morphism M Y,f(p) →M Ỹ ,p is an isomorphism

for all geometric points p of Ỹ . Thus, g ◦ f factors uniquely as T
strict−−−→ Y → Y , and hence g

factors uniquely as T
strict−−−→ Y ×Y Ỹ → Ỹ .

In particular, Satriano’s construction can be explicated for a toric Artin stack Y arising from

a stacky cone (σ, β) [GS15, Definition 2.4]. Here, β is a homomorphism of lattices N → L with

finite cokernel, and we assume σ is a strongly convex, rational cone in NR := N ⊗Z R. The

dual morphism β∨ : L∨ → N∨ is injective, and the dual cone σ∨ in N∨R yields the sharp, toric

monoid Γ := σ∨ ∩N∨, and hence gives rise to the affine toric variety Spec(Γ ↪→ k[Γ ]). We then

get the toric stack Y := [Spec(Γ ↪→ k[Γ ]) / G], where G := D(Coker(β∨)) acts as a subgroup

of the torus TN := D(N) (with D(−) := HomGrp−Sch(−,Gm)).

4.2.8. With the above notation, the canonical smooth, toroidal Artin stack Y over Y can be

constructed as follows. Let F denote the monoid on the set S of extremal rays ρ of σ = C(Γ)∨,

and set N∨F := F gp. The same rule in (4.11) defines an embedding of lattices η∨ : N∨ ↪→ N∨F ,
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which restricts to a minimal free resolution ι : Γ ↪→ F , and fits in the commutative diagram:

(4.12)

0 L∨ N∨F Coker(β∨F ) 0

0 L∨ N∨ Coker(β∨) 0

β∨
F

β∨

η∨

The stacky cone (σstd, βF ), where σstd is the standard cone on NF and βF : NF → L is

the dual of β∨F , then induces the corresponding smooth toric stack [Spec(F ↪→ k[F ]) / GF ],

where GF := D(Coker(βF )) acts as a subgroup of the torus TNF
:= D(NF ) (with D(−) :=

HomGrp−Sch(−,Gm)). Finally the above commutative diagram induces the toric morphism

[Spec(F ↪→ k[F ]) / GF ]→ [Spec(Γ ↪→ k[Γ ]) / G] which is Y → Y.

Proof of Proposition 4.2.5. Without loss of generality (cf. Remark 4.2.3(i)), we may

replace a• by IC(a•). Write a• = a(1/ℓ)• for a monomial ideal a on An, and ℓ ∈ N>0. Our

approach is to first compute 4.2.8 for the toric Artin stack

M :=

[
SpecAn(Γ

(4.10)
↪−−−−−−→ aext• ) / Gm

]

before doing the same for Bla• An, which is a strict, open substack of M.

4.2.9 (Step 1). By definition, the toric Artin stack M arises from the stacky cone (σ, β),

whose dual is given by

β∨ = (1Zn , 0) : Zn ↪→ Zn+1 and σ∨ ∩ Zn+1 = Γ

i.e. σ := C(Γ)∨ ⊂ Rn+1, and β : Zn+1 → Zn is the projection onto the first n factors. Next,

the extremal rays of σ are the normal rays to the facets of C(Γ), and so the set S of their first

lattice points is the disjoint union of:

(i) {ei : 1 ≤ i ≤ n}, and
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(ii)
{

ũρ :=
(

ℓ
gcd(ℓ,Nρ(a))

· uρ,
Nρ(a)

gcd(ℓ,Nρ(a))

)
: ρ ∈ Σa[1] with Nρ(a) > 0

}
.

Indeed, (i) is evident since the coordinate hyperplanes ei = 0 (1 ≤ i ≤ n) intersect C(Γ) in

facets. For (ii), note that the intersection of C(Γ) with the hyperplane en+1 = −ℓ is canonically

identified with Γ+(a), and the (non-empty) intersection of every other facet of C(Γ) with this

hyperplane en+1 = −ℓ corresponds to a unique facet τρ of Γ+(a) satisfying Nρ(a) > 0.

4.2.10 (Step 2). Let us re-write S as the following disjoint union:

(i) S1 := {ei : 1 ≤ i ≤ n with Ni(a) > 0}, and

(ii) S2 :=
{

ũρ :=
(

ℓ
gcd(ℓ,Nρ(a))

· uρ,
Nρ(a)

gcd(ℓ,Nρ(a))

)
: ρ ∈ Σa[1]

}
.

We take the indexing set of S2 to be Σa[1], and we denote the indexing set of S1 by I := {1 ≤

i ≤ n : Ni(a) > 0}.

By 4.2.8, the canonical smooth, toroidal Artin stack M over M arises from the stacky cone

(σstd, βF ), where σstd is the standard cone on ZI⊕ZΣa[1], and the dual of βF fits in the following

commutative diagram:

(4.13)

0 Zn ZI ⊕ ZΣa[1] Coker(β∨F ) 0

0 Zn Zn+1 Z 0

β∨
F

β∨

η∨

Here, the matrix of η∨ has rows given by ei for i ∈ I and ũρ for ρ ∈ Σa[1], and matrix of β∨F is

obtained by deleting the last column of the matrix of η∨. Recall that η∨ restricts to a minimal

free resolution ι : Γ ↪→ NI ⊕NΣa[1]. Explicitly:

M =
[
Spec

(
NI ⊕NΣa[1] ↪→ k[χi : i ∈ I][x′ρ : ρ ∈ Σa[1]]

)
/ D

(
Coker(β∨F )

)]
and M →M is induced by

(4.14) xi 7→ χi ·
∏

ρ∈Σa[1]

(x′ρ)
ℓ

gcd(ℓ,Nρ(a))
·uρ,i and t−1 7→

∏
ρ∈Σa[1]

(x′ρ)
Nρ(a)

gcd(ℓ,Nρ(a))
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where χi := 1 whenever i ∈ [n] ∖ I.

4.2.11 (Step 3). We show, in this step, the following strengthening of Proposition 4.2.5:

Proposition 4.2.12. Let a• = a(1/ℓ)• for some monomial ideal a on An and ℓ ∈ N>0. For

every maximal cone σ of Σa, D+(σ) ⊂ Bla• An is the canonical smooth, toroidal Artin stack

over D+(xvσ · tℓ) ⊂ Bla• An.

Proof of Proposition 4.2.12. Since D+(xvσ · tℓ) is a strict, open substack of M, Re-

mark 4.2.7 says that the canonical smooth, toroidal Artin stack over D+(xvσ · tℓ) is Mσ :=

D+(xvσ · tℓ)×M M
strict, open
↪−−−−−−→M . To explicate Mσ, note that (4.14) maps

xvσ · tℓ 7→
∏
i∈I

χ
vσ,i
i ·

∏
ρ∈Σa[1]

(x′ρ)
ℓ

gcd(ℓ,Nρ(σ))
·(
∑n

i=1 vi·uρ,i−Nρ(a))

where vσ,i ≥ Ni(a) > 0 for all i ∈ I, and
∑n

i=1 vi · uρ,i − Nρ(a) > 0 if and only if vσ /∈ τρ, i.e.

ρ ̸⊂ σ. Therefore, Mσ is equal to:

[
Spec

(
NI ⊕NΣa[1] → k

[
χ±i : i ∈ I

][
x′ρ : ρ ∈ Σa[1]

][
(x′σ)−1

])
/ D

(
Coker(β∨F )

)]
.

For every i ∈ I, note that the image of ei in Coker(β∨F ) (= the weight of χi under the Coker(β∨F )-

grading) has infinite order. Therefore, by Lemma 2.1.2, we have:

Mσ =
[
Spec

(
NΣa[1] → k

[
x′ρ : ρ ∈ Σa[1]

][
(x′σ)−1

])
/ D

(
Coker

(
β̃∨
))]

where β̃∨ is the composition Zn
β∨
F

↪−→ ZI ⊕ ZΣa[1] projection−−−−−→→ ZΣa[1], and D(Coker(β̃∨)) acts as a

subgroup of the torus D(ZΣa[1]) = TZΣa[1] .

Since the matrix of β̃∨ has rows given by ℓ
gcd(ℓ,Nρ(a))

·uρ for ρ ∈ Σa[1], it follows by definition

that Mσ = D+(σ) ⊂ Bla• An (this also means that their logarithmic structures coincide). □
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Finally, as σ varies over all maximal cones of Σa, the charts D+(σ) cover Bla• An, and the

charts D+(xvσ · tℓ) cover Bla• An. Since Satriano’s construction is canonical, this completes the

proof of Proposition 4.2.5. □

Remark 4.2.13. Let a• = a(1/ℓ)• be as before. Then the morphism

Bla• An =
[
Spec

(
k[x′1, . . . , x

′
n][x′ρ : ρ ∈ ex(a)]

)
∖ V (JΣa) / D

(
Coker

(
β̃∨
))]

Bla• An =
[
Spec

(
aext•
)
∖ V (aext+ ) / Gm

]
is induced by:

xi 7→ (x′i)
ℓ

gcd(ℓ,Nρ(a)) ·
∏

ρ∈ex(a)

(x′ρ)
ℓ

gcd(ℓ,Nρ(a))
·uρ,i for 1 ≤ i ≤ n

t−1 7→
∏

ρ∈Σa[1]

(x′ρ)
Nρ(a)

gcd(ℓ,Nρ(a)) .

(4.15)

Remark 4.2.14. The morphism Bla• An → Bla• An is evidently toric (in particular,

logarithmically smooth), and birational. Since ϑa• : Bla• An → An is universally closed

(Remark 4.1.7), and πa• : Bla• An → An is proper (Proposition 2.1.5(ii)), we deduce that

Bla• An → Bla• An is universally closed. Therefore, it is also surjective, since it is both dom-

inant and closed. Finally, as a birational morphism it is small, i.e. it has no exceptional

divisors. This can be seen from Remark 4.2.13, or directly from the fact that Bla• An is normal

and therefore smooth in codimension 1.

Remark 4.2.15. If a• is generated in degree ℓ, the coarse moduli space of Bla• An is the

usual blow-up BlIC(aℓ) An of An along IC(aℓ) (Proposition 2.1.5(iii)). We claim that this coin-

cides with the good moduli space XΣaℓ
of Bla• An. The reader can check this computationally,

but we propose a more direct approach. By [Alp13, Theorem 6.6], there exists a unique
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morphism ι : XΣaℓ
→ BlIC(aℓ) An making the following diagram commute:

Bla• An XΣaℓ

Bla• An BlIC(aℓ) An

good moduli space

ι

coarse moduli space

It remains to note that ι is a birational and integral morphism between normal schemes, and

hence an isomorphism [Stacks, 0AB1]. Indeed, ι is birational, because Bla• An → Bla• An

is an isomorphism above An ∖ V (a1) ⊂ An. To see that ι is integral, it suffices, by [Stacks,

01WM], to observe that:

(i) ι is affine. Indeed, for every vertex v of Γ+(aℓ), the preimage of the coarse space of

D+(xv · tℓ) ⊂ Bla• An is the good moduli space of D+(v) ⊂ Bla• An (cf. Proposi-

tion 4.2.12), and they are both affine.

(ii) ι is universally closed, since Bla• An → BlIC(aℓ) An is universally closed by Re-

mark 4.2.14 and [Ols16, Theorem 11.1.2(ii)], and good moduli spaces remain sur-

jective after any base change [Alp13, Propositions 4.7(i) and 4.16(i)].

4.2.B. Canonicity of multi-weighted blow-ups, II. We consider in this section a slightly

more general setting than §4.2.A. Given 0 ≤ r ≤ n, we instead endow An with the following

logarithmic structure:

(4.16) An;r := Spec(Nr ei 7→xn−r+i−−−−−−−−−−→ k[x1, x2, . . . , xn−r, xn−r+1, . . . , xn]).

Here, we underline xi for i > n− r to emphasize that the union of their vanishing loci defines

the toroidal divisor on An;r. Note that the case r = n was considered in §4.2.A. For a ∈ Nr,

we write xa for the image of a under Nr → k[x1, x2, . . . , xn−r, xn−r+1, . . . , xn].
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Setup 4.2.16. Let j be an ideal on An;r of the form (xa11 , x
a2,
2 . . . , xakk , a), where 0 ≤ k ≤

n − r, ai ∈ N>0, and a is a monomial ideal on An;r in the sense of Definition 2.7.5, i.e. a is

generated by monomials in xn−r+1, . . . , xn. We set ℓ := lcm(a1, a2, . . . , ak) (:= 1 if k = 0), set

di := ℓ/ai for 1 ≤ i ≤ k, and set j• := j1/ℓ• := (x
1/d1
1 , x

1/d2
2 , . . . , x

1/dk
k , a1/ℓ), i.e. the integral

closure in OAn [t] of the OAn-subalgebra generated by {xi · tdi : 1 ≤ i ≤ k} and a · tℓ, cf.

Convention 2.3.79.

4.2.17. Analogous to 4.2.4, before stating our main objective of this subsection, let us

consider the weighted blow-up of An along j• (Definition 2.3.12), i.e.

Blj• An := ProjAn(j•)
πj•−−−−−→ An.

Similar to before, we know from Corollary 2.7.20 that Blj• An carries a logarithmic structure

under which it is toroidal. As in 2.7.7, this logarithmic structure is induced by the chart

Γ2 ↪→ jext• defined by the following cartesian squares

(4.17)

Γ2 Γ jext•

Nr ⊕ Z Nn ⊕ Z k[x1, x2, . . . , xn][t±]

where Nr⊕Z ↪→ Nn⊕Z is induced by the canonical injection of Nr into the last r coordinates of

Nn and the identity on Z, Nn⊕Z maps each (a,m) ∈ Nn⊕Z to xat−m, and jext• is the extended

Rees algebra of j•, cf. 2.3.4. Moreover, via the canonical splitting Nn ⊕ Z = Nn−r ⊕ (Nr ⊕ Z)

of Nr ⊕ Z ↪→ Nn ⊕ Z in (4.17), we can write Γ = Γ1 ⊕ Γ2, where:

(i) Γ1 denotes the submonoid of Nn−r generated by (ei,−di) for 1 ≤ i ≤ k and (ei, 0) for

k < i ≤ n− r.

(ii) Γ2 denotes the saturation of the submonoid of Nr ⊕Z generated by Nr+1 and (v,−ℓ)

for every vertex v of Γ+(a).
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Recall again that t−1 ∈ jext• cuts out the exceptional divisor E = V (t−1) on Blj• An =

ProjAn(jext• ). Finally, Blj• An;r is covered by the following charts:

(i) D+

(
xi · tdi

)
=
[
SpecAn

(
j•
[
(xi · tdi)−1

])
/ Gm

]
for 1 ≤ i ≤ k, and

(ii) D+

(
xv · tℓ

)
=
[
SpecAn

(
j•
[
(xv · tℓ)−1

])
/ Gm

]
for vertices v of Γ+(a).

4.2.18 (Logarithmic structure on Blj A
n). On the other hand, we may also consider Blj A

n

as defined in Definition 4.1.15. For the next proposition, we endow Blj A
n with the toroidal

logarithmic structure obtained by descent from the following toroidal logarithmic structure on

AΣj[1] ∖ V (JΣj
):

Nr ⊕Nex(j) → k[x′1, . . . , x
′
n−r, x

′
n−r+1, . . . , x

′
n]
[
x′ρ : ρ ∈ ex(j)

]
which sends ei 7→ x′n−r+i for 1 ≤ i ≤ r, and eρ 7→ x′ρ for ρ ∈ ex(j). We denote by Blj A

n;r the

resulting logarithmic Artin stack. Using the language introduced in 4.2.6, we can now state the

main objective of this section:

Proposition 4.2.19. Blj A
n;r is the canonical smooth, toroidal Artin stack over Blj• An;r.

We prove this via Proposition 4.2.5, and the following digression:

4.2.20. We return to the discussion in 4.2.8. Adopting the notation there, we suppose

further that N∨ = N∨1 ⊕N∨2 for sublattices N∨i ⊂ N∨, and hence Γ = Γ1⊕Γ2 for the submonoids

Γi := Γ ∩N∨i ⊂ Γ , such that Γ1 is a free monoid of finite rank satisfying Γ gp1 = N∨1 , i.e. its free

generators form a basis of N∨1 . We re-define Y as

Y := [Spec(Γ2 ↪→ k[Γ ]) / G]

which is a toroidal Artin stack by hypothesis. As before, our goal here is to explicate the

canonical smooth, toroidal Artin stack Y over Y .
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Recall that in 4.2.8, F denotes the free monoid on the set S of extremal rays ρ of σ, N∨F

denotes F gp, and we defined an embedding of lattices η∨ : N∨ ↪→ N∨F which restricts to a

minimal free resolution ι : Γ ↪→ F . We claim that there exists free submonoids Fi ⊂ F such

that:

(i) F = F1 ⊕ F2.

(ii) SetN∨Fi
:= F gp

i . Then η∨ : N∨
≃−→ N∨F decomposes as η∨1⊕η∨2 , where η∨1 = η∨|N∨

1
: N∨1

≃−→

N∨F1
which restricts to ι1 : Γ1

≃−→ F1, and η∨2 = η∨|N∨
2

: N∨2 ↪→ N∨F2
which restricts to a

minimal free resolution ι2 : Γ2 ↪→ F2. Moreover, ι = ι1 ⊕ ι2.

Combining this claim with (4.12) yields the logarithmically smooth morphism

[Spec(F2 ↪→ k[F ]) / GF ]→ [Spec(Γ2 ↪→ k[Γ ]) / G] .

and moreover shows that it is Y → Y .

Proof of claim. For i = 1, 2, let σi denote the dual cone in N of C(Γi) ⊂ N∨i ⊂ N∨, and

let σ′i denote the dual cone in Ni of C(Γi) ⊂ N∨i . Since Γ = Γ1 ⊕ Γ2 ⊂ N∨1 ⊕N∨2 = N∨, we have

σ = σ1 ∩ σ2, with:

σ1 = σ′1 ⊕N∨2 and σ2 = N∨1 ⊕ σ′2.

Thus, we may decompose S = S1 ⊔ S2, where Si is the set of extremal rays of σi. For i = 1, 2,

let Fi denote the free monoid on Si. Then part (i) is immediate, while part (ii) follows from

the definition of η∨ (in 4.2.8), together with the following pair of observations:

(i) {uρ : ρ ∈ S1} = {(uρ, 0) : ρ extremal ray of σ′1}

(ii) {uρ : ρ ∈ S2} = {(0,uρ) : ρ extremal ray of σ′2}

where uρ denotes the first lattice point on ρ. △

Proof of Proposition 4.2.19. It suffices to assume k ≥ 1, or else we are in the situation

of Proposition 4.2.5. We may also assume a ̸= 0, or else Blj• An is already smooth over k and is
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equal to Blj A
n, cf. Example 4.1.17. Our approach is to first re-visit 4.2.10 for the toric Artin

stack

M :=

[
SpecAn(Γ

(4.17)
↪−−−−−−→ jext• ) / Gm

]
before using 4.2.20 to deduce the canonical smooth, toroidal Artin stack over

M′ :=

[
SpecAn(Γ2

(4.17)
↪−−−−−−→ jext• ) / Gm

]

which contains Blj• An;r as a strict, open substack.

4.2.21 (Step 1). Before re-visiting 4.2.10 for M, let us first establish the following lemma:

Lemma 4.2.22. Assume k ≥ 1 and a ̸= 0. For any ρ ∈ ex(j):

(i) ℓ divides Nρ(j).

(ii) The corresponding facet τρ of Γ+(j) contains the vertices {ai ·e∨i : 1 ≤ i ≤ k}. In other

words, ai · uρ,i = Nρ(j) for every 1 ≤ i ≤ k.

(iii) uρ,i = 0 for every k < i ≤ n− r.

Proof of Lemma 4.2.22. Let ρ ∈ ex(j). Let τρ denote the corresponding facet of Γ+(j),

whose affine span is given by
∑n

i=1 uρ,i · ei = Nρ(j).

On one hand, note that Γ+(j)∩ {en−r+1 = · · · = en = 0} is the Newton polyhedron Γ+(x) of

x := (xa11 , x
a2
2 , . . . , x

ak
k ) ⊂ k[x1, x2, . . . , xn−r], and that there is only one ray ρ̃ ∈ ex+(x), whose

corresponding facet τρ̃ of Γ+(x) has the affine span
∑k

i=1
ℓ
ai
· ei = ℓ.

On the other hand, τρ ∩ {en−r+1 = · · · = en = 0} is a facet of Γ+(x) whose affine span is∑n−r
i=1 uρ,i · ei = Nρ(j). Since ρ ∈ ex(j), we must have Nρ(j) > 0, so the facet of Γ+(x) in the

preceding sentence must be τρ̃ in the preceding paragraph. By comparing equations, and noting

that gcd
(

ℓ
ai

: 1 ≤ i ≤ k
)

= 1, part (i) follows. Parts (ii) and (iii) are also now immediate. □

Let us note in addition that since k ≥ 1 and a ̸= 0, then ex+(j) = ex(j), i.e. Ni(j) = 0

for all i ∈ [n]. Therefore, combining 4.2.10 with the above observations, the canonical smooth,
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toroidal Artin stack M over M arises from the stacky cone (σstd, βF ), where σstd is the standard

cone on ZΣj[1], and the dual of βF fits in the following commutative diagram:

(4.18)

0 Zn ZΣj[1] Coker(β∨F ) 0

0 Zn Zn+1 Z 0

β∨
F

β∨

η∨

Here, the matrix of η∨ has rows given by
(
uρ,

Nρ(j)

ℓ

)
for ρ ∈ Σj[1], and the matrix of β∨F has

rows given by uρ for ρ ∈ Σj[1]. Explicitly:

M =
[
Spec

(
NΣj[1] → k[x′ρ : ρ ∈ Σj[1]]

)
/ D(Coker(β∨F ))

]
and M →M is induced by

(4.19) xi 7→ xi ·
∏

ρ∈ex(j)

(x′ρ)
uρ,i and t−1 7→

∏
ρ∈ex(j)

(x′ρ)
Nρ(j)

ℓ .

4.2.23 (Step 2). By Lemma 4.2.22(ii), we have, for every 1 ≤ i ≤ k:

η∨(ei,−di) = ei +
∑

ρ∈ex(j)

(
uρ,i −

Nρ(j)

ai

)
· eρ = ei

i.e. (4.19) maps xi · tdi 7→ x′i. By part (iii) of the same lemma, we have, for every k < i ≤ n− r,

η∨(ei, 0) = ei, i.e. (4.19) maps xi 7→ x′i. Therefore, η∨ maps Γ1 isomorphically onto N[1,n−r] ⊂

ZΣj[1].

On the other hand, it is plain that η∨ maps Γ2 into N[n−r+1,n] ⊕Nex(j) ⊂ ZΣj[1]. By 4.2.20,

we know η∨|Γ2 is a minimal free resolution of Γ2, and the canonical smooth, toroidal Artin stack

M ′ over M′ is the stack quotient of

Spec
(
N[n−r+1,n] ⊕Nex(j) → k[x′1, x

′
2, . . . , x

′
n−r, x

′
n−r+1, . . . , x

′
n][x′ρ : ρ ∈ ex(j)]

)
by the action of D(Coker(β)∨) ⊂ D(ZΣj[1]) = TZΣj[1] .
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4.2.24 (Step 3). By Remark 4.2.7, the canonical smooth, toroidal Artin stack over Blj• An;r

is

Blj• An;r ×M′ M ′ strict, open
↪−−−−−−→M ′

which is scheme-theoretically identical to Blj• An;n ×M M , i.e. the canonical smooth, toroidal

Artin stack over Blj• An;n. By Proposition 4.2.5 and Lemma 4.2.22(i), the latter is Blj A
n;n.

Therefore, the former is Blj A
n with the logarithmic structure induced from that of M ′, i.e.

Blj A
n;r. □

Remark 4.2.25. The morphism Blj A
n;r → Blj• An;r is logarithmically smooth. Of course,

it also satisfies all the properties listed in Remark 4.2.14 and Remark 4.2.15.

Remark 4.2.26. It is possible to say more in Lemma 4.2.22. First we note that Γ+(j)∩{e1 =

· · · = en−r = 0} is the Newton polyhedron Γ+(a) of a ⊂ k[xn−r+1, . . . , xn]. Correspondingly, for

ρ ∈ ex(j), τρ∩{e1 = · · · = en−r = 0} must be a facet τρ of Γ+(a) (for some ρ ∈ Σa[1]). Moreover,

since Nρ(j) > 0, we must have Nρ(a) > 0. Then ρ 7→ ρ sets up a one-to-one correspondence

ex(j) = ex+(j)
≃−→ ex+(a). Through this correspondence, Lemma 4.2.22 can be supplemented

as follows:

uρ,i =
ℓ

gcd(ℓ,Nρ(a))
· uρ,i for n− r < i ≤ n

Nρ(j) =
ℓNρ(j)

gcd(ℓ,Nρ(a))
.

In particular, the number Nρ(j)

ℓ
in (4.19) is equal to

Nρ(a)

gcd(ℓ,Nρ(a))
.

Corollary 4.2.27. Suppose that a1 divides lcm(a2, . . . , ak) (:= 1 if k = 1). Let An−1;r =

V (x1) ⊂ An;r, and set j1 := j|V (x1) = (xa22 , . . . , x
ak
k , a) ⊂ k[x2, . . . , xn−r, xn−r+1, xn]. Then the

proper transform V (x′1) of V (x1) ⊂ An;r under ϑj : Blj A
n;r → An;r is canonically identified

with ϑj1 : Blj1 An−1;r → An−1;r.
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Proof. We saw at the start of 4.2.23 that V (x1 · td1)×Blj• An;r Blj A
n;r = V (x′1). Thus, by

Remark 4.2.7, V (x′1) is the canonical smooth, toroidal Artin stack over V (x1 · td1).

On the other hand, V (x1 · td1), being the proper transform of An−1;r = V (x1) ⊂ An;r

under Blj• An;r → An;r, is equal to Blj1• An−1;r, where j1• = j•|V (x1) = j
1/ℓ
1 . By hypothesis,

ℓ = lcm(a2, . . . , ak), whence Proposition 4.2.19 implies that the canonical smooth, toroidal

Artin stack over V (x1 · td1) is also Blj1 An−1;r. Combining this with the preceding paragraph,

the corollary follows. □

To lift the hypothesis in Corollary 4.2.27, one needs to consider a natural extension of the

discussion in this section, which we do not need for purposes of this chapter. Nevertheless we

treat this briefly below:

4.2.28. Slightly more generally, for any c ∈ N>0, we may consider

j1/c• := j1/ℓc := (x
1/d1c
1 , . . . , x

1/dkc
k , a1/ℓc)

i.e. the integral closure in OAn [t] of the OAn-subalgebra generated by {xi · tdic : 1 ≤ i ≤ k} and

a · tℓc. Scheme-theoretically, the multi-weighted blow-up of An;r along j1/c• is defined as:

ϑ
j
1/c
•

: Bl
j
1/c
•

An := Blj,b An ϑj,b−−→ An

where

b :=

(
ℓc

gcd
(
ℓc,Nρ(j)

) : ρ ∈ ex(j)

)
=

 c

gcd
(
c, Nρ(j)

ℓ

) : ρ ∈ ex(j)

 .

The same toroidal logarithmic structure on AΣj[1] ∖ V (JΣj
) in 4.2.18 descends to a toroidal

logarithmic structure on Bl
j
1/c
•

An. We denote by Bl
j
1/c
•

An;r the resulting logarithmic Artin

stack. If c = 1, note that Blj• An;r = Blj A
n;r. Then:

(i) By the same method of proof as Proposition 4.2.19, it is the canonical smooth, toroidal

Artin stack over Bl
j
1/c
•

An;r := ProjAn

(
j1/c•
)
.
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(ii) Corollary 4.2.27 has the following natural generalization, with a similar proof. Let

An−1;r = V (x1) ⊂ An;r and j1 = j|V (x1), so that j1• = j
1/ℓ1
1 , where ℓ1 := lcm(a2, . . . , ak)

(:= 1 if k = 1). Then the proper transform V (x′1) of V (x1) ⊂ An;r under ϑ
j
1/c
•

is

ϑ
j
1/cc′
1•

: Bl
j
1/cc′
1•

An−1;r → An−1;r, where c′ := ℓ/ℓ1.

4.3. Iterative resolution of singularities in characteristic zero

This section concerns the results outlined in §1.2.B. We adopt the same notations and

conventions outlined in §3.1.A. Similar to §3.1.A, while ideals on smooth, toroidal Artin stacks

over k are the main objects of interest in the results of §1.2.B, it suffices to consider ideals on

smooth, strict toroidal k-schemes.

Henceforth, fix a smooth, strict toroidal k-scheme Y , and an ideal J ⊂ OY . With respect

to Y and J , the constructions and definitions in §3.3 apply, and we freely assume them and

their accompanying notation in this section. These include:

(i) the local invariant invy(J) of J at y ∈ Y as in §3.3.A, together with the preliminary

data x1, x2, . . . , xk, b1, b2, . . . , bk, and Q ⊂M = M Y,y as in §3.3.2,

(ii) the local Q-toroidal center I (J, y)• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

1/d) associated to J at y ∈ Y

(Definition 3.3.8),

(iii) and the toroidal center I (J)• associated to J (Definition 3.3.15).

4.3.A. Multi-weighted blow-up along the associated toroidal center. Motivated by

the discussion §4.2.B, we make the following:

Definition 4.3.1. The multi-weighted blow-up BlI (J)• Y of Y along I (J)• is the compo-

sition

ϑ : BlI (J)• Y
ζ−−−−→ BlI (J)• Y

π−−−−→ Y,
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where π is the weighted blow-up of Y along I (J)• (Definition 2.3.12), and

(4.20) BlI (J)• Y
ζ−−−−→ BlI (J)• Y

is the canonical smooth, toroidal Artin stack, in the sense of 4.2.6 (i.e. [Sat13, §3]), over the

toroidal Deligne–Mumford stack BlI (J)• Y .

Remark 4.3.2. Since π is an isomorphism away from the closed locus of points y ∈ Y such

that invy(J) = max inv(J) (Theorem 3.4.2(ii)), the same holds for ϑ.

While BlI (J)• Y is a global quotient stack, we warn that BlI (J)• Y is typically not. Never-

theless, BlI (J)• Y is locally a quotient stack, cf. 4.3.3 and 4.3.5 below.

4.3.3 (Local description of the multi-weighted blow-up in Definition 4.3.1). Fix y ∈ Y

such that invy(J) = max inv(J). Let us replace Y by a neighbourhood U of y on which a

presentation I (J, y)• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

1/d) as in Definition 3.3.8 is defined. In particular,

I (J)• = (xa11 , x
a2
2 , . . . , x

ak
k , Q

1/d), cf. Theorem 3.3.14. Since Y is smooth and toroidal, we can

extend x1, x2, . . . , xk to a system of ordinary coordinates (x1, x2, . . . , xn−r) at y (with n−r ≥ k)

and a system of mononial parameters (xn−r+1, . . . , xn) at y. After possibly shrinking U , this

local system of logarithmic coordinates at y then induces an étale, strict morphism

U
xxx−−−−→ An;r = Spec(k[x1, x2, . . . , xn−r, xn−r+1, . . . , xn]).

We set

j := I (J)d ∩ OAn = integral closure in OAn of
(
xa1d1 , xa2d2 , . . . , xakdk , a

)
j• := I (J)• ∩ OAn;r [t] =

(
x
1/d1
1 , x

1/d2
2 , . . . , x

1/dk
k , a1/dℓ

)
where a := Q ∩ k[xn−r+1, . . . , xn] is a monomial ideal on An;r that generates Q. Moreover,

j• = j1/ℓd, with ℓ := lcm(ai : 1 ≤ i ≤ k) (:= 1 if k = 0), cf. §4.2.B. Recall too that d = 1 if
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k = 0. Then we have the commutative diagram with cartesian squares:

(4.21)

BlI (J)• U Blj A
n;r

BlI (J)• U Blj• An;r

U An;r

étale, strict

ϑ
ϑj = ϑj•

π

étale, strict

πj•

xxx

where πj•
is the weighted blow-up in 4.2.17, and ϑj is the multi-weighted blow-up of An along

j, cf. Definition 4.1.15 and 4.2.18. Next, since xxx∗j• = I (J)•, the bottom square of (4.21) is

cartesian, i.e.

BlI (J)• U = U ×An;r Blj• An;r.

Moreover, since Blj A
n;r is the canonical smooth, toroidal Artin stack over Blj• An;r (Proposi-

tion 4.2.19), we deduce from Remark 4.2.7 that the top square of (4.21) is cartesian, i.e.

BlI (J)• U = BlI (J)• U ×Blj• An;r Blj A
n;r.

Finally, we make a few remarks:

(i) Since Blj A
n;r → Blj• An;r is logarithmically smooth, birational, universally closed,

surjective, and small (Remark 4.2.25), so is BlI (J)• U → BlI (J)• U .

(ii) Since πj is birational, surjective, and universally closed (Remark 4.1.7), so is π.

(iii) If k = 0, ϑ is logarithmically smooth (Corollary 2.7.20), and thus by (i), so is π. This

is not true if k ≥ 1.

(iv) On the other hand, if Q = 0, then BlI (J)• U is smooth over k, so BlI (J)• U =

BlI (J)• U (cf. beginning of proof of Proposition 4.2.19).

(v) BlI (J)• U admits a good moduli space, and it coincides with the coarse moduli space

of BlI (J)• U , which is equal to the usual blow-up BlI (J)d U (Proposition 2.1.5(iii)).
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Indeed, because the bottom square of (4.21) is cartesian, we have

BlI (J)• U = BlI (J)d U ×Blj An Blj• An.

Thus,

BlI (J)• U = BlI (J)d U ×Blj An Blj A
n.

Since Blj A
n is the good moduli space of Blj A

n (Remark 4.2.25), it follows from

[Alp13, Proposition 4.7(i)] that BlI (J)d U is the good moduli space of BlI (J)• U .

Remark 4.3.4. Because of Remark 4.3.2, the remarks in 4.3.3(i)–(v) globalize immediately.

For example, (v) implies that BlI (J)• Y admits a good moduli space, and it coincides with the

coarse moduli space BlI (J)d Y of BlI (J)• Y , cf. [Alp13, Proposition 4.7(ii)].

4.3.5 (Local description via multi-graded Rees algebras). Let y ∈ U ⊂ Y be as in 4.3.3. As

in 4.1.29, one may express BlI (J)• U as

[
SpecU

(
RU
•
)
∖ V (JΣj

) / Gex(j)
m

]
where RU

• is the Zex(j)-graded Rees algebra

OU

[
t−1ρ : ρ ∈ ex(j)

] xi · ∏
ρ∈ex(j)

tuρ,iρ : 1 ≤ i ≤ n

 ⊂ OU

[
t±ρ : ρ ∈ ex(j)

]

and the Gex(j)
m -action is induced by the Zex(j)-grading on RU

• . As in (4.6), we set x′i := xi ·∏
ρ∈ex(j) t

uρ,i
ρ for 1 ≤ i ≤ n, and x′ρ := t−1ρ for ρ ∈ ex(j). Moreover, if Q ̸= 0, the morphism

BlI (J)• U =
[
SpecU

(
RU
•
)
∖ V (JΣj

) / Gex(j)
m

]

BlI (J)• U = [SpecU(I (J)•) ∖ V (I (J)+) / Gm]
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is then induced by

x′i 7→ xi ·
∏

ρ∈ex(j)

(x′ρ)
uρ,i

t−1 7→
∏

ρ∈ex+(j)

(x′ρ)
Nρ(j)

ℓd =


∏

ρ∈ex+(a) (x′ρ)
Nρ(a) if k = 0∏

ρ∈ex(j) (x′ρ)
Nρ(j)

ℓd if k ≥ 1

(4.22)

cf. (4.15) and (4.19).

We next turn our attention to the various natural transforms of J under the multi-weighted

blow-up of Y along I (J)•. We first recall the following:

4.3.6. Let Y ′ := BlI (J)• Y , and let d and ℓ be as in 4.3.3. By Theorem 3.4.2(iii),

(4.23) π−1(J)OY ′ = (t−1)ℓ · J ′

where (t−1) is the ideal sheaf IE ⊂ OY ′ underlying the exceptional divisor E ⊂ Y ′, and J ′ ⊂ OY ′

is the weak transform π−1∗ (J) of J under π (Definition 2.3.31).

Definition 4.3.7. Let Y ′ := BlI (J)• Y , Y ′ := BlI (J)• Y , and ζ : Y ′ → Y ′ as in (4.20). We

define the weak transform of J under ϑ : Y ′ → Y as

ϑ−1∗ (J) := ζ−1(J ′)OY ′

where J ′ is the weak transform of J under π.

The next proposition shows the above definition agrees with Definition 4.1.26.
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Proposition 4.3.8 (Local description of weak transform of J). Let p ∈ U ⊂ Y be as in

4.3.3, and set U ′ := BlI (J)• U . Then the restriction of ϑ−1∗ (J) to U ′ ⊂ Y ′ is equal to

(
ϑ−1(J)OU ′

)
·
∏

ρ∈ex+(j)

(x′ρ)
−Nρ

where for each ρ ∈ ex+(j), Nρ is the largest natural number nρ such that ϑ−1(J)OU ′ ⊂ (x′ρ)
nρ.

Proof of Proposition 4.3.8. If Q = 0, then BlI (J)• U = BlI (J)• U , and there is noth-

ing to show. Henceforth, assume Q ̸= 0. Let RU
• be defined as in 4.3.5. Under the correspon-

dence in 4.1.31, RU
• corresponds to a tuple γU := (γ[ρ] : ρ ∈ ex(j)) of #ex(j) idealistic exponents

over U , where each γ[ρ] is the idealistic exponent over U associated to the following integrally

closed, N-graded Rees algebra on U :

R [ρ]
• :=

(
x

1
uρ,i

i : i ∈ [n], uρ,i ̸= 0

)

cf. 4.1.32. For each i ∈ [n], we also set γ[i] to be the idealistic exponent over U associated

to the ideal (xi) on U . Finally, γJ denotes the idealistic exponent over U associated to JOU .

Then we have:

Proposition 4.3.9 (Local description of weak transform of J , explicated). With the above

hypotheses and notations, we have, for every ρ ∈ ex+(j):

Nρ = Kρ =
Nρ(j)

d

where Kρ is the largest natural number kρ such that γJ ≥ kρ · γ[ρ]. If k ≥ 1, this number is also

equal to ai · uρ,i for every 1 ≤ i ≤ k.

Proof of Proposition 4.3.9. The equality Nρ = Kρ can be shown by the same methods

in the proofs of Lemma 4.1.34 and Proposition 4.1.36.
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For the equality Nρ = Nρ(j)

d
, we prove the cases k = 0 and k ≥ 1 separately. If k = 0,

we make the canonical identification ex+(j) = ex+(a), and for every ρ in that set, note that

Nρ(j) = Nρ(a). In this case, I (J)• is the integral closure in OY [t] of the Rees algebra of

Q = M (J). By Lemma 4.1.22(ii):

ϑ−1(Q)OU ′ =
∏

ρ∈ex+(a)

(x′ρ)
Nρ(a).

Since Q ⊃ J , the left hand side contains ϑ−1(J)OU ′ , so that Nρ ≥ Nρ(a) for every ρ ∈ ex+(a).

Conversely, by the definition of Nρ, ϑ
−1(J)OU ′ ⊂

∏
ρ∈ex+(j) (x′ρ)

Nρ . Taking monomial saturation

M (−), we get:

ϑ−1(Q)OU ′ = M
(
ϑ−1(J)OU ′

)
⊂

∏
ρ∈ex+(j)

(x′ρ)
Nρ

where the first equality follows from Lemma 3.1.2(iii), since ϑ is logarithmically smooth if

k = 0 (4.3.3(iii)). That inclusion shows the other inequality Nρ(a) ≥ Nρ for every ρ ∈ ex+(a),

as desired.

If k ≥ 1, we show instead that Kρ = Nρ(j)

d
. By Lemma 2.3.77,

Kρ = max
{
kρ ∈ N>0 : R [ρ]

kρ• is J-admissible
}
.

By Lemma 4.2.22(ii), Nρ(j) = (aid) · uρ,i for every 1 ≤ i ≤ k and uρ,i = 0 for all k < i ≤ n− r.

Therefore, we have

R [ρ](
Nρ(j)

d

)
•

=

(
xa11 , x

a2
2 , . . . , x

ak
k ,
(
x
Nρ(j)/uρ,i
i : n− r < i ≤ n, uρ,i ̸= 0

)1/d)
.

Letting ρ 7→ ρ be the one-to-one correspondence ex+(j)
≃−→ ex+(a) in Remark 4.2.26, the same

remark says that

R [ρ](
Nρ(j)

d

)
•

=

(
xa11 , x

a2
2 , . . . , x

ak
k ,
(
x
Nρ(a)/uρ,i
i : n− r < i ≤ n, uρ,i ̸= 0

)1/d)
.(4.24)
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By Remark 4.1.38, we have

γQ ≥ Nρ(a) · γ[ρ] for every ρ ∈ ex+(j)(4.25)

where γ[ρ] is the idealistic exponent over U associated to the integrally closed Rees algebra(
x
1/uρ,i
i : n− r < i ≤ n, uρ,i ̸= 0

)
on U . From (4.24) and (4.25), we deduce that R [ρ](

Nρ(j)

d

)
•

con-

tains I (J, y)• =
(
xa11 , x

a2
2 , . . . , x

ak
k , Q

1/d
)
. Since I (J, y)• is J-admissible at y (Theorem 3.3.9(i)),

so is R [ρ](
Nρ(j)

d

)
•
, whence Kρ ≥ Nρ(j)

d
. On the other hand, a1 = log-ordy(J), whence Corol-

lary 3.1.11 implies that for any kρ >
Nρ(j)

d
, R [ρ]

kρ• cannot be J-admissible at y, as desired. □

We return back to the proof of Proposition 4.3.8. Applying ζ−1(−) ·OY ′ to (4.23) and then

applying (4.22) and Proposition 4.3.9, we obtain the desired equality:

ϑ−1(J)OY ′ =
(
ζ−1(J ′)OY ′

)
·
∏

ρ∈ex+(j)

(x′ρ)
Nρ(j)

ℓd
·ℓ = ϑ−1∗ (J) ·

∏
ρ∈ex+(j)

(x′ρ)
Nρ . □

The next proposition shows that the same equality in Definition 4.3.7 holds as well for

proper transforms:

Proposition 4.3.10. Let J̃ (resp. J̃π) denote the proper transform of J under ϑ : Y ′ :=

BlI (J)• Y → Y (resp. π : Y ′ := BlI (J)• Y → Y ). Then we have:

J̃ = ζ−1(J̃π)OY ′

where ζ was the morphism Y ′ → Y ′ (4.20) in Definition 4.3.1.

Proof. Recall that V
(
J̃
)

(resp. V
(
J̃π
)
) is the smallest closed substack of Y ′ (resp. Y ′)

containing V
(
ϑ−1(J)OY ′

)
∖ V

(
ϑ−1(I (J)1)OY ′

)
(resp. V

(
π−1(J)OY ′

)
∖ V

(
π−1(I (J)1)OY ′

)
).

The proposition then follows from the following equalities:

ζ−1
(
V
(
π−1(J)OY ′

))
= V

(
ϑ−1(J)OY ′

)
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ζ−1
(
V
(
π−1(I (J)1

)
OY ′)

)
= V

(
ϑ−1(I (J)1)OY ′

)
and the fact that ζ is closed, cf. 4.3.3(i). □

We can finally deduce:

Theorem 4.3.11 (Invariant drops in a well-ordered set). Let J ⊂ OY be a non-zero ideal,

and let J̃ be its proper transform under ϑ : Y ′ := BlI (J)• Y → Y . Then

max inv(J̃) ≤ max inv(ϑ−1∗ (J)) < max inv(J).

and all three maximum invariants are contained in the well-ordered set N
≤dim(Y ),!
∞ , cf. 3.3.1.

Proof. We adopt the notation in Definition 4.3.7, and Proposition 4.3.10. Since ζ is

logarithmically smooth and surjective (4.3.3(i)), we have

max inv
(
ϑ−1∗ (J)

)
= max inv

(
ζ−1(J ′)OY ′

)
= max inv(J ′) < max inv(J)

where the middle equality is given by Lemma 3.3.6(iii), and the strict inequality is given by

Theorem 3.4.2(iv). Recall from Definition 3.3.4 that the lengths of max inv(J) and max inv(J ′)

are bounded above by dim(Y ) = dim(Y ′), and hence, so is the length of max inv
(
ϑ−1∗ (J)

)
.

Moreover, since J̃ ⊃ ϑ−1∗ (J) (Remark 4.1.27), we also have max inv(J̃) ≤ max inv
(
ϑ−1∗ (J)

)
.

Finally, the proposition, together with Lemma 3.3.6(iii), imply that

max inv
(
J̃
)

= max inv
(
ζ−1(J̃π)OY ′

)
= max inv

(
J̃π
)
.

Since the length of max inv
(
J̃π
)

is also bounded above by dim(Y ) = dim(Y ′), so is the length

of max inv
(
J̃
)
. □
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4.3.12 (Functoriality). Given a strict, smooth, and surjective morphism f : Ỹ → Y of

smooth, strict toroidal k-schemes, we have

Ỹ ×Y BlI (J)• Y = BlI (f−1(J)O
Ỹ
) Ỹ

where as always, the fiber product is taken in the category of fs logarithmic Artin stacks.

Indeed, since I (f−1(J)OỸ )• = f−1(I (J)•)OỸ (Lemma 3.3.16), we have Ỹ ×Y BlI (J)• Y =

BlI (f−1(J)O
Ỹ
)• Ỹ . As a consequence,

Ỹ ×Y BlI (J)• Y =
(
Ỹ ×Y BlI (J)• Y

)
×BlI (J)• Y BlI (J)• Y

= BlI (f−1(J)O
Ỹ
)• ×BlI (J)• Y BlI (J)• Y.

Since BlI (J)• Y is by definition the canonical smooth, toroidal Artin stack over BlI (J)• Y ,

Remark 4.2.7 implies that Ỹ ×Y BlI (J)• Y is then the canonical smooth, toroidal Artin stack

over BlI (f−1(J)O
Ỹ
)• Ỹ , and is therefore by definition BlI (f−1(J)O

Ỹ
) Ỹ .

4.3.B. Proof of main theorems in §1.2.B.

Proof of Theorem F. By hypothesis, X ̸= Y . Let J be the underlying non-zero ideal

of X ⊂ Y . We set π : Y ′ → Y to be π : BlI (J)• Y → Y in Definition 4.3.1. Then part (i)

is immediate, part (ii) follows from Remark 4.3.2, part (iii) follows from Theorem 4.3.11, and

part (iv) follows from parts (ii) and (iv) of 4.3.3 (cf. Remark 4.3.4). Finally, functoriality with

respect to strict, smooth, and surjective morphisms of pairs follows from 4.3.12. □

Proof of Theorem E. This can be deduced from Theorem F in the same way as how

one deduces Theorem A from Theorem B, cf. §3.4.B. We leave this to the reader. □

As in §3.4.B, to deduce Corollary G from Theorem E, we require the following adaptation

of Lemma 4.3.13:
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Lemma 4.3.13 (Re-embedding principle for Theorem F). Let X be a reduced, closed sub-

stack of a smooth, toroidal Artin stack Y over k. Let Y1 be the fiber product Y ⊗k A1 in the

category of fs Artin stacks, where A1 := Spec(k[x0]) and k are given the trivial logarithmic

structure. Then:

(i) For every y ∈ |X|, invy(X ⊂ Y1) is the concatenation (1, invy(X ⊂ Y )).

(ii) Let (X ⊂ Y ) 7→ (X ′ ⊂ Y ′) be the procedure in Theorem F. Then Y ′ is canonically

identified with the proper transform of Y = Y × {0} ⊂ Y1 under the weighted blow-up

Y ′1 → Y1. Under this identification, we have X ′ = X ′1.

Proof. We may assume Y is a strict toroidal k-scheme. Then part (i) is Lemma 3.4.8(i).

Part (ii) also follows the same way as Lemma 3.4.8(ii), except that one also needs Corol-

lary 4.2.27. □

Proof of Corollary G. Since X can be embedded, locally in the smooth topology, as

a closed subscheme of pure codimension in a pure-dimensional, smooth, toroidal k-scheme,

the corollary follows once we show the following. Given two strict closed embeddings of X

into pure-dimensional, smooth, toroidal Artin stacks Yi over k (for i = 1, 2), the resolutions

of singularities of X obtained from the embedded resolutions of singularities of X ⊂ Y1 and

X ⊂ Y2 in Theorem E coincide. First assume that dim(Y1) = dim(Y2): in this case, the two

embeddings are smooth locally isomorphic. By the functoriality of Theorem E, the embedded

resolutions of singularities of X ⊂ Y1 and X ⊂ Y2 are smooth locally isomorphic, whence the

resulting resolutions of singularities of X coincide. In general, this reduces to the earlier case,

by a repeated application of Lemma 4.3.13. □

Finally, we sketch how one can obtain Corollary D from Corollary G. The first ingredient

is a special case of [ER20, Theorem 2.11].
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Theorem 4.3.14 (Reduction of stabilizers: smooth, toroidal case). Let X be a smooth

Artin stack over k that admits a good moduli space X, has affine diagonal, and has no generic

stackiness. Let E ⊂ X be a simple normal crossings divisor. Then there exists a canonical

sequence of saturated blow-ups [ER20, Definition 3.2] of Artin stacks Φ: XN
ϕN−→ XN−1

ϕN−1−−−→

· · · ϕ1−→ X0 = X along smooth, closed substacks Ci ⊂ Xi, together with simple normal crossings

divisors Ei ⊂ Xi with E0 = E, such that:

(i) Each Xi is a smooth Artin stack over k admitting a good moduli space Xi
φi−→ Xi.

(ii) Each |Ci| is the locus in Xi of points of maximum dimensional stabilizer.

(iii) Each ϕi restricts to an isomorphism Xi ∖ ϕ−1i (Ci−1)
≃−→ Xi−1 ∖ φ−1i−1(φi−1(Ci−1)).

(iv) Each Ei is the inverse image of Ci−1 ∪ Ei−1 under ϕi.

(v) The maximum dimension of the stabilizers of points of Xi is strictly smaller than that

of the stabilizers of points of Xi−1.

(vi) The final stack XN has finite inertia, with coarse moduli space XN
φN−−→ XN .

(vii) Each ϕi induces a schematic blow-up of good moduli spaces Xi → Xi−1, which is an

isomorphism over Xi−1 ∖ φi−1(Ci−1).

The sequence Φ does not depend on E. This procedure X 7→ XN is functorial with respect to

strong morphisms [ER20, Definition 6.8].

A second proof of Corollary D. We apply Corollary G to a pure-dimensional, re-

duced scheme X of finite type over k, endowed with the trivial logarithmic structure. We

obtain a proper, birational morphism Π : X+ → X, where X+ is a pure-dimensional, smooth

Artin stack over k, Π is an isomorphism over Xsm ⊂ X, and E := Π−1(X ∖Xsm) is a simple

normal crossings divisor on X+. Now apply the above theorem to the pair (X,E) to obtain

a proper, birational morphism Φ: X++
w → X+ such that X++

w is a smooth Artin stack over

k with finite inertia, Φw := Φ ◦ Π is an isomorphism over Xsm ⊂ X, and Φ−1w (X ∖ Xsm) is a
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simple normal crossings divisor on X++
w . The remainder of the proof now follows in the same

way as outlined in the second paragraph of the first proof of Corollary D in §3.4.B. □

4.4. Examples and further remarks

4.4.A. Examples. Throughout this section, we freely adopt the notation introduced in Chap-

ters 3.3, 4.2 and 4.3.

Example 4.4.1. Let Y = A3;3 = Spec(N3 → k[x, y, z]), and consider the following hyper-

surface:

X := V (J) := V
(
x2 + y2z + z3

)
⊂ Y.

Then max inv(J) = (∞), and I (J)• is the integral closure in OY [t] of the Rees algebra of

M (J) = (x2, y2z, z3). Let π : Y ′ := BlI (J)• Y → Y , which was explicated in Example 4.1.18.

By the equations therein, the total transform of I is:

(4.26) π−1(J)OY ′ = u61u
2
2 ·
(
x′2 + y′2z′ + z′3u42

)︸ ︷︷ ︸
proper transform J ′

.

Finally, D≤1(J ′) = (x′2, y′2z′, z′3u42) which is the unit ideal on the x′-chart, y′z′-chart, and

z′u2-chart of Y ′. Therefore, max inv(J ′) = (1) < (∞) = max inv(J), and we get resolution of

singularities in one step.

The above is an example of a polynomial that is not just non-degenerate, but in fact

non-degenerate with respect to all faces of its Newton polyhedron, cf. Definition 1.3.1. We

bring this to the reader’s attention because Example 4.4.1 is then manifested by a general

phenomenon which was earlier observed in [BN20, Proposition 8.31] for all polynomials that

are non-degenerate with respect to all faces of its Newton polyhedron:

Theorem 4.4.2. Let f ∈ k[x1, . . . , xn] be a polynomial that is non-degenerate with respect

to all faces of its Newton polyhedron, and assume xi does not divide f for every 1 ≤ i ≤ n. Then
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the multi-weighted blow-up of An along the monomial saturation a(f) of (f) (Definition 4.1.21)

is an embedded resolution of singularities for V (f) ⊂ An;n = Spec(Nn → k[x1, . . . , xn]).

In other words, the embedded resolution of singularities in Theorem E, applied to the pair

V (f) ⊂ An;n = Spec(Nn → k[x1, . . . , xn]), terminates after one step.

We remark that we impose the condition that xi does not divide f for every 1 ≤ i ≤ n,

so that V (f) ⊂ An;n is generically toroidal, and hence satisfies the hypotheses of Theorem E.

The same proof below, with some minor modifications, continues to work if one drops that

condition.

Proof. Let a := a(f), and πa : Bla An =
[
XΣ̂a

/ GE(a)
m

]
→ An. Let σ be an arbitrary cone

in Σ̂a, and let σ denote its image under the morphism β : ZΣa(1) → Zn which sends eρ 7→ uρ

for every ρ ∈ Σa(1) (Definition 4.1.15). By definition of Σ̂a, there is a smallest cone σ′ in Σa

such that σ is a sub-cone of σ′. Let τ be the face of Pa = Pf dual to σ′. If O(σ) denotes the

GΣ̂a(1)
m -orbit of XΣ̂a

corresponding to σ, we claim the proper transform of V (f) ⊂ An under π

is non-singular on the
(
GΣ̂a(1)

m / GE(a)
m

)
-orbit

[
O(σ) / GE(a)

m

]
⊂
[
XΣ̂a

/ GE(a)
m

]
= Bla An. This

claim proves the proposition, since XΣ̂a
=
⊔

σ∈Σ̂a
O(σ). We prove the claim in three steps.

4.4.3 (Step 1). Let Uσ denote the affine toric variety associated to the cone σ in Σ̂a. By

(4.4) and (4.5), D+(σ) :=
[
Uσ / GE(a)

m

]
⊂ Bla An is:

SpecAn

OAn [x′1, . . . , x
′
n]
[
x′ρ : ρ ∈ E(a)

]
[(x′σ)−1](

x′i ·
∏

ρ∈E(a) (x′ρ)
uρ,i − xi : 1 ≤ i ≤ n

)
 / GE(a)

m


where

(4.27) x′σ :=
∏

ρ∈Σa(1)∖σ(1)

x′ρ with σ(1) := {ρ ∈ Σa(1) : ρ ⊂ σ}.
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Next, by Lemma 2.1.2, the assignment x′ρ 7→ 1 for every ρ ∈ E(a) ∖ σ(1) identifies D+(σ) with

(4.28)

SpecAn

OAn [x′1, . . . , x
′
n]
[
x′ρ : ρ ∈ E(a) ∩ σ(1)

]
[(x′σ)−1](

x′i ·
∏

ρ∈E(a)∩σ(1) (x′ρ)
uρ,i − xi : 1 ≤ i ≤ n

)
 / GE(a)∩σ(1)

m


where we re-define x′σ as

x′σ :=
∏

i∈[1,n]∖σ(1)

x′i.

4.4.4 (Step 2). Write f =
∑

a∈Nn ca · xxxa. By Lemma 4.1.22(i), the total transform of f on

(4.28) is:

f =
∏

ρ∈E(a)∩σ(1)

(x′ρ)
Nρ(a) ·

∑
a∈Nn

ca · (xxx′)a ·
∏

ρ∈E(a)∩σ(1)

(x′ρ)
(a·uρ)−Nρ(a)


︸ ︷︷ ︸

proper transform f ′

.

Let us record two essential observations about f ′:

(i) If a ∈ Nn ∩ τ , then for every ρ ∈ σ(1), we have a ∈ τ ⊂ Hρ, i.e. a · uρ = Nρ(a). In

particular, if ρ = i ∈ [1, n] ∩ σ(1), we note separately that this means ai = 0.

(ii) If a ∈ Nn ∖ τ , there exists ρ ∈ σ(1) such that a ∈ Nn ∖Hρ, i.e. a · uρ > Nρ(a). This

is because τ =
⋂

ρ∈σ′(1)Hρ =
⋂

ρ∈σ(1)Hρ.

4.4.5 (Step 3). Finally,

[
O(σ) / GE(a)

m

]
= V

(
x′ρ : ρ ∈ σ(1)

) closed
↪−−−→ D+(σ).

Combining the above with (4.28), we get the identification

(4.29)
[
O(σ) / GE(a)

m

]
=
[
Spec

(
k
[
(x′i)

± : i ∈ [1, n] ∖ σ(1)
])
/ GE(a)∩σ(1)

m

]
.
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Moreover, by 4.4.4(i)–(ii), the restriction of f ′ to (4.29) is:

∑
a∈Nn∩τ

ca · (xxx′)a.

Since the above expression matches that of fτ , the claim follows. □

The next three examples (Examples 4.4.6, 4.4.7, 4.4.9) will re-visit the same hypersurface

X = V (I) = V (f) := V (x2 + y2z + z3) ⊂ A3 from before, but we explore what happens if we

vary the toroidal logarithmic structure on A3.

Example 4.4.6. Consider Y = A3;2 = Spec(N2 → k[x, y, z]). Then we have max inv(J) =

(2,∞), and I (J)• = (x, (y2z, z3)1/2). The multi-weighted blow-up π : Y ′ := BlI (J)• Y → Y

is schematically the same as the one in Example 4.4.1, and we still have (4.26) (but x′ is no

longer underlined) and resolution of singularities in one step.

Example 4.4.7. Next, consider Y = A3;0 (trivial logarithmic structure). Then max inv(J) =

(2, 3, 3), and I (J)• = (x1/3, y1/2, z1/2). The multi-weighted blow-up π : Y ′ := BlI (J)• Y → Y

is the weighted blow-up of Example 4.1.17. By the equations therein, the total transform of I

is:

π−1(J)OY ′ = u6 ·
(
x′2 + y′2z′ + z′3

)︸ ︷︷ ︸
proper transform J ′

.

We have D≤1(J ′) = (x′, y′z′, y′2 + 3z′2, z′3) which is the unit ideal on the x′-chart, y′-chart,

and z′-chart of Y ′. Thus, we have max inv(J ′) = (1) < (∞) = max inv(I), i.e. resolution of

singularities in one step.

Remark 4.4.8. Example 4.4.7 is also part of a more general phenomenon: namely, X =

V (J) has a (3, 2, 2)-weighted homogeneous isolated singularity at 0 ∈ A3, and hence, its singu-

larities are resolved after the (3, 2, 2)-weighted blow-up of A3 in 0. From the viewpoint of the

monodromy conjecture of Denef–Loeser [DL92b], this resolution is “more minimal” than the
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one in Example 4.4.1, since it has one less exceptional divisor, namely the one corresponding to

the B1-facet [LVP11, Definition 3] of the Newton polyhedron of (f). This begs the question

of whether in general and to what extent Theorem 4.4.2 can be refined in this direction. This

is the content of the following Chapter 5.

Example 4.4.9. Finally, consider Y = A3;1 = Spec(N → k[x, y, z]). Then max inv(J) =

(2,∞) and I (J)• = (x, z1/2). Then π : Y ′ := BlI (J)• Y → Y is

[
SpecA3

(
OA3 [x′, z′, u]

(x′u− x, z′u2 − z)

)
∖ V (x′, z′) / Gm

]
→ A3;1

so the total transform of J under π is

π−1(J)OY ′ = u2 ·
(
x′2 + y2z′ + z′3u4

)︸ ︷︷ ︸
proper transform J ′

.

Note that V (J ′) ⊂ Y ′ is non-singular in every chart except the z′-chart of Y ′. Nevertheless, we

have max inv(J ′) = (2, 2,∞) < (2,∞) = max inv(J), and I (J)• = (x′, y, u2). The composition

π′ : Y ′′ := BlI (J ′)• Y
′ → Y ′

π−→ Y is

[
SpecA3

(
OA3 [x′′, y′, z′, u′, v]

(x′′u′v3 − x, y′v2 − y, z′u′2v2 − z)

)
∖ V

(
x′′v, z′(x′′, y′, u′)

)
/ G2

m

]
→ A3;1

and the total transform of J under π′ is

π′−1(J)OY ′′ = u′2v6 ·
(
x′′2 + y′2z′ + z′3u′4

)︸ ︷︷ ︸
proper transform J ′′

.

We have D≤1(J ′′) = (x′′, y′z′, z′3u42) which is the unit ideal on every chart of Y ′′. Thus,

max inv(J ′′) = (1) < (2, 2,∞) = max inv(J ′), and we achieve resolution of singularities in

two steps.

225



Remark 4.4.10. Note that the Newton polyhedron of the first center I (J)• = (x, z1/2) ⊂

k[x, y, z] in Example 4.4.9 contains the B1-facet of the Newton polyhedron of (f). As mentioned

in the preceding remark, B1-facets are known to be “problematic” from the viewpoint of the

monodromy conjecture, cf. [LVP11]. Indeed, we saw above that the first multi-weighted

blow-up in Example 4.4.9 did not completely resolve the singularities of X = V (J) ⊂ Y .
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CHAPTER 5

Around the monodromy conjecture of Denef–Loeser

5.1. Nuts and bolts

5.1.A. Newton Q-polyhedra and piecewise-linear convex Q-functions. We begin by

reviewing some fundamentals in convex geometry in §5.1.A and §5.1.B. A reader who is familiar

with convex geometry can skip to §5.1.C. Throughout this chapter, we adopt the conventions

in 1.3.2. Along the way we also fix some conventions and notations for the remainder of this

chapter.

Definition 5.1.1 (Newton Q-polyhedra). By a rational, positive half-space in M+
R , we

mean any set of the form

H+
u,m :=

{
a ∈M+

R : a · u ≥ m
}
⊂M+

R

for some 0 ̸= u ∈ N+ and m ∈ N>0. We also set:

Hu,m :=
{
a ∈M+

R : a · u = m
}
⊂M+

R .

We call an intersection of finitely many rational, positive half-spaces in M+
R a Newton Q-

polyhedron (with the empty intersection defined as M+
R), typically denoted by the letter Γ+.

Equivalently, a Newton Q-polyhedron is the convex hull in MR of
⋃
{a + M+

R : a ∈ S} for a

finite subset of points S ⊂M+
Q .

Remark 5.1.2. If the vertices of a Newton Q-polyhedron Γ+ also lie in M+, then Γ+ is

simply known as a Newton polyhedron.
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Convention 5.1.3 (Conventions on Newton Q-polyhedra). In Convention 1.3.2, we out-

lined a few conventions on the Newton polyhedron Γ+(f) of a polynomial f ∈ k[x1, . . . , xn].

The same conventions make sense for a Newton Q-polyhedron, and moving ahead we will also

adopt them for Newton Q-polyhedra.

5.1.4 (Piecewise-linear convex Q-functions). We may associate, to a Newton Q-polyhedron

Γ+, a piecewise-linear, convex function φ : N+
R → R≥0 defined as follows:

φ(u) := inf
a∈Γ+

a · u for every u ∈ N+
R .

Recall this means that there exists a finite set S ⊂M+
R such that φ(u) = mina∈S a · u for every

u ∈ N+
R . Indeed, for the above φ, we may take S = vert(Γ+). In fact, since vert(Γ+) ⊂ M+

Q ,

φ is a piecewise-linear, convex Q-function, that is, either of the following equivalent conditions

hold for φ:

(i) φ is a piecewise-linear, convex function such that φ(N+) ⊂ Q≥0.

(ii) There exists a finite set S ⊂M+
Q such that φ(u) = mina∈S a · u.

This sets up a one-to-one correspondence between:

{
Newton Q-polyhedra in M+

R

}
←→

{
piecewise linear, convex, Q-

functions φ : N+
R → R≥0

}
.

Indeed, we claim that every φ in the right hand side arises uniquely from the following Newton

Q-polyhedron:

(5.1) Γ+ =
{
a ∈M+

R : a · u ≥ φ(u) for all u ∈ N+
R

}
=
⋂

u∈N+
R

H+
u,φ(u).

Proof of claim. It remains to demonstrate Γ+ is a Newton Q-polyhedron. Let S =

{a1, . . . , ar} ⊂ M+
Q be such that φ(u) = mini∈[r] ai · u for every u ∈ N+

R . Then Γ+ is the

intersection of all rational, positive half-spaces in M+
R containing S:
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(i) If H+
u,m contains S, then ai · u ≥ m for every i ∈ [r], so that if a ∈ Γ+, a · u ≥

mini∈[r] ai · u ≥ m. Thus, Γ+ ⊂ H+
u,m.

(ii) Conversely, let a ∈
⋂{

H+
u,m : u ∈ N+, m ∈ N>0, S ⊂ H+

u,m

}
. To show a ∈ Γ+, it

suffices to show for every u ∈ N+ that a·u ≥ mini∈[r] ai · u. To this end, fix k ∈ N>0 so

that kai ∈M+ for every i ∈ [r], and set m := kmini∈[r] ai · u ∈ N>0. Then S ⊂ H+
ku,m,

so the hypothesis implies a ∈ H+
ku,m. This means that k(a ·u) ≥ m = kmini∈[r] ai · u,

i.e. a · u ≥ mini∈[r] ai · u as desired.

Thus, Γ+ is the convex hull in MR of
⋃
{a + M+

R : a ∈ S}. Since S ⊂ M+
Q is finite, so is

vert(Γ+) ⊂ S. Therefore, Γ+ only has finitely many faces. For each facet τ of Γ+, let uτ be the

unique primitive vector in N+ that is normal to the affine hyperplane spanned by τ . Then Γ+

is the following finite intersection of rational, positive half-spaces in M+
R :

(5.2) Γ+ =
⋂

τ≺1Γ+

H+
uτ ,φ(uτ )

and hence a Newton Q-polyhedron. △

5.1.5. As a consequence of (5.2), we obtain the following alternative description of φ in

terms of facets of Γ+ (as opposed to points in Γ+):

φ = min S

where

S :=

{
linear functions ℓ : N+

R → R≥0 such

that ℓ(uτ ) ≥ Nτ for every facet τ ≺1 Γ+

}
.

Recall from Convention 5.1.3 that for every τ ≺1 Γ+, Nτ ∈ Q>0 is defined via the equation{
a ∈MR : a · uτ = Nτ

}
of the affine span Hτ of τ in MR.

229



5.1.B. Newton Q-polyhedra and their normal fans. We continue to follow Conven-

tion 1.3.2, and in addition, we follow any conventions on fans in Convention 1.0.1.

5.1.6 (Normal fans). Every Newton Q-polyhedron Γ+ also naturally induces a fan Σ in N+
R ,

called the normal fan of Γ+, whose cones σ correspond in an inclusion-reversing manner with

faces ς ≺ Γ+. Namely, let φ be the piecewise linear, convex, rational function associated to Γ+,

and we define the normal fan Σ as follows:

Σ :=
{
σa : a ∈M+

R

}
where for each a ∈ Γ+,

σa :=
{
u ∈ N+

R : φ(u) = a · u
}
.

This is a closed convex cone in N+
R : indeed, if u1, u2 ∈ σa, then

a · (u1 + u2) = a · u1 + a · u2 = φ(u1) + φ(u2) ≤ φ(u1 + u2) ≤ a · (u1 + u2)

which forces equality throughout, i.e. u1 + u2 ∈ σa. In particular, we obtain an alternative

characterization of σa:

Corollary 5.1.7. For a ∈ Γ+, σa is the largest closed convex cone in N+
R on which φ is the

linear function u 7→ a · u. □

5.1.8. Our next goal is to explicate σa further; in particular, we will see that σa is a convex

rational polyhedral cone in N+
R . To do this, let us first introduce a notion dual to σa. Namely,

for each u ∈ N+
R , the first meet locus of u is defined as:

ςu :=
{
a ∈M+

R : φ(u′) ≤ a · u′ for all u′ ∈ N+
R with equality if u′ = u

}
= {a ∈ Γ+ : φ(u) = a · u} ≺ Γ+.
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Note that ς0 = Γ+. Here are some other observations about ςu:

(i) For 0 ̸= u ∈ N+
R , ςu = Hu,φ(u) ∩ Γ+, i.e. Hu,φ(u) is a supporting hyperplane of Γ+.

Every proper face of Γ+ is ςu for a 0 ̸= u ∈ N+
R .

(ii) Every facet τ of Γ+ is ςuτ
for a unique primitive vector uτ ∈ N+, namely the one

normal to the affine hyperplane spanned by τ .

(iii) For each i ∈ [n], the following statements are equivalent:

(a) ui = 0.

(b) ςu is non-compact in the ith coordinate, i.e. ςu + R≥0e
∨
i = ςu.

(c) There exists a ∈ ςu such that a + e∨i ∈ ςu.

In particular, (iii) says that ςu is compact if and only if all coordinates of u are non-zero. We

will also need the following lemma:

Lemma 5.1.9.

(i) Let u1,u2 ∈ N+
R. Then ςu1

∩ ςu2
⊂ ςu1+u2

, with equality if and only if ςu1
∩ ςu2

̸= ∅.

(ii) Let a, a′ ∈ Γ+. For every 0 < t < 1, σa ∩ σa′ = σta+(1−t)a′.

Proof. We first prove (i). Let a ∈ ςu1
∩ ςu2

. Then

a · u1 + a · u2 = φ(u1) + φ(u2) ≤ φ(u1 + u2) ≤ a · (u1 + u2)

which forces equality throughout, i.e. a ∈ ςu1+u2
, as desired. Conversely, if ςu1

∩ ςu2
̸= ∅, then

u1,u2 ∈ σa for some a ∈ Γ+. For a′ ∈ ςu1+u2
,

a′ · (u1 + u2) = φ(u1 + u2)

= φ(u1) + φ(u2) by Corollary 5.1.7

≤ a′ · u1 + a′ · u2.
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This forces equality throughout, so φ(ui) = a′ · ui for each i = 1, 2, i.e. a′ ∈ ςu1
∩ ςu2

. This

settles (i). Next, let us prove (ii). Firstly, if u ∈ σa ∩ σa′ , then a, a′ ∈ ςu. By convexity of ςu,

we have

ta + (1− t)a′ ∈ ςu

for every 0 ≤ t ≤ 1, i.e. u ∈ σta+(1−t)a′ for every 0 ≤ t ≤ 1. Secondly, if u ∈ σta+(1−t)a′ for

0 < t < 1, then

φ(u) = (ta + (1− t)a′) · u = ta · u + (1− t)a′ · u

≥ tφ(u) + (1− t)φ(u) = φ(u)

which forces equality throughout. Since t > 0 and 1 − t > 0, this means φ(u) = a · u and

φ(u) = a′ · u, i.e. u ∈ σa ∩ σa′ . □

The next lemma is the key step towards explicating σa:

Lemma 5.1.10. For a ∈ Γ+ and u ∈ N+
R, u generates an extremal ray of σa if and only if

a ∈ ςu ≺1 Γ+.

Proof. We may assume u ̸= 0. For the reverse implication, let u1, u2 ∈ σa such that

u1 + u2 ∈ ⟨u⟩. We want to show u1, u2 ∈ ⟨u⟩. By Lemma 5.1.9(i), we have ςu1
∩ ςu2

=

ςu1+u2
= ςu. By hypothesis, ςu is maximal among all faces of Γ+ containing a, so the above

forces ςui
= ςu for i = 1, 2. Since the affine span of ςu is an affine hyperplane in NR, this means

that ui ∈ ⟨u⟩ for i = 1, 2, as desired.

Next, let us show the forward implication. Firstly, since u ∈ σa, a ∈ ςu. It remains to show

that ςu is maximal among all proper faces ς ≺ Γ+ containing a. To this end, let ς be a proper

face of Γ+ that contains ςu, and choose 0 ̸= u′ ∈ σa such that ς = ςu′ . For every i ∈ [n] such

that ui = 0, we have

ςu + R≥0e
∨
i = ςu ⊂ ςu′
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which implies u′i = 0 (cf. 5.1.8(iii)). Therefore, for N ≫ 0, Nu − u′ ∈ N+
R . In fact, we claim

that for N ≫ 0, we also have Nu−u′ ∈ σa. If not, for every N ≫ 0, we have Nu−u′ ∈ N+
R∖σa,

i.e. there exists a′N ∈ vert(Γ+) so that

φ

(
u− 1

N
u′
)

= a′N ·
(

u− 1

N
u′
)
< a ·

(
u− 1

N
u′
)
.

Since vert(Γ+) is finite, there exists a constant subsequence (a′Nk
)k≥1 = (a′, a′, a′, · · · ) of (a′N)N≫0.

For all k ≥ 1, we have

a′ ·
(

u− 1

Nk

u′
)
< a ·

(
u− 1

Nk

u′
)
.(5.3)

Letting k → ∞, we obtain a′ · u ≤ a · u. But a ∈ ςu, so a · u = φ(u) ≤ a′ · u. This forces

a′ · u = a · u, i.e. a′ ∈ ςu. In addition, ςu ⊂ ςu′ , so a, a′ ∈ ςu′ , i.e. a′ · u′ = φ(u′) = a · u′.

However, these conclusions that a′ · u = a · u and a′ · u′ = a · u′ would contradict (5.3). Thus,

our earlier claim holds, i.e. by replacing u by a sufficiently large multiple of itself, we may

assume u− u′ ∈ σa. Since u generates an extremal ray of σa, one has that u′ and u− u′ both

lie in R≥0u. In particular, ς = ςu′ = ςu, as desired. □

Corollary 5.1.11. For a ∈ Γ+, σa is a convex rational polyhedral cone in N+
R. More

precisely,

σa = ⟨uτ : a ∈ τ ≺1 Γ+⟩.

In particular, σa ̸= {0} if and only if a lies in the boundary of Γ+.

Proof. Since σa is a closed convex cone inside N+
R , σa is generated by its extremal rays

[Roc70, Theorem 18.5]. Moreover, since there are finitely many facets of Γ+ containing a, the

preceding lemma says σa has finitely many extremal rays. □

For the next corollary, we recall that the relative interior relint(ς) of a polyhedron ς in MR

is the interior of ς in its affine span in MR.
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Corollary 5.1.12. For a ∈M+
R and u ∈ N+

R, the following statements are equivalent:

(i) u ∈ relint(σa).

(ii) ςu =
⋂
{τ ≺1 Γ+ : a ∈ τ}, where

⋂
∅ := Γ+

(iii) a ∈ relint(ςu).

Moreover, for u ∈ σa, we have
⋂
{τ ≺1 Γ+ : a ∈ τ} ≺ ςu.

Proof. We may assume u ̸= 0. Note that (ii) ⇐⇒ (iii), since
⋂
{τ ≺1 Γ+ : a ∈ τ} is the

unique face ς of Γ+ such that a ∈ relint(ς). For (i) ⇐⇒ (ii), it suffices to focus on the case

u ∈ σa (since otherwise, a /∈ ςu), and by the preceding corollary u =
∑

a∈τ≺1Γ+
λτuτ for some

λτ ∈ R≥0. By repeatedly applying Lemma 5.1.9(i), we have

ςu =
⋂{
ς(λτuτ )

: a ∈ τ ≺1 Γ+
}

=
⋂{

τ ≺1 Γ+ : a ∈ τ and λτ > 0
}

which contains
⋂
{τ ≺1 Γ+ : a ∈ τ} as a face. It remains to note that we can arrange {λτ : a ∈

τ ≺1 Γ+} ⊂ R>0 if and only if u ∈ relint(σa). □

5.1.13. The preceding corollary sets up a natural correspondence between:

{
faces ς ≺ Γ+

}
←→

{
cones σ in Σ

}
ς 7−→ σς

ςσ ←− [ σ

which is defined as follows. Given ς ≺ Γ+, σς := σa for any a ∈ relint(ς). We call σς the cone

in Σ dual to ς. Conversely, given σ in Σ, ςσ := ςu for any u ∈ relint(σ). We call ςσ the face of

Γ+ dual to σ. Then:

(i) If faces ς, ς′ ≺ Γ+ correspond to cones σ, σ′ in Σ, then ς ≺ ς′ if and only if σ ≻ σ′.

Indeed, the reverse implication is given by the preceding corollary. For the forward
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implication, Corollary 5.1.11 says that every extremal ray of σ′ is an extremal ray

of σ. We also note that if relint(σ) ∩ relint(σ′) ̸= ∅, then ς = ςu = ς′ for any

u ∈ relint(σ) ∩ relint(σ′), i.e. σ = σ′. The preceding two sentences together imply

that σ′ ≺ σ.

(ii) If a face ς ≺ Γ+ corresponds to a cone σ in Σ, then dim(ς) + dim(σ) = n. This follows

by induction on dim(σ), where the induction step is supplied by (i).

(iii) If a facet τ ≺1 Γ+ corresponds to a ray ρ in Σ, note that uτ = uρ.

Corollary 5.1.14. Σ is a fan in NR whose support |Σ| equals N+
R.

Proof. That Σ is a fan in NR follows from Lemma 5.1.9(ii), Corollary 5.1.11, and 5.1.13.

It remains to see that |Σ| ⊃ N+
R . Indeed, if u ∈ N+

R , fix any a ∈ ςu ≺ Γ+, and we have u ∈ σa,

as desired. □

Convention 5.1.15. For ρ ∈ Σ[1], we will denote the facet ςρ = ςu ≺1 Γ+ dual to ρ by

τρ or τu instead, cf. Convention 1.3.2. Likewise, for τ ≺1 Γ+, we denote the ray στ ∈ Σ[1]

dual to τ by ρτ instead, cf. Convention 1.0.1. Then the following corollary is immediate from

Corollary 5.1.11 and Corollary 5.1.12:

Corollary 5.1.16. For a face ς ≺ Γ+, we have:

σς =
〈
ρτ : ς ≺ τ ≺1 Γ+

〉
.

Dually, for a cone σ in Σ, we have:

ςσ =
⋂{

τρ : ρ ∈ σ[1]
}
, where

⋂
∅ := Γ+.

The next corollary follows from the preceding corollary, and 5.1.8(iii).
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Corollary 5.1.17. Let ς be a face of Γ+, and σ be the cone in Σ dual to ς. For i ∈ [n],

let {e∨i = 0} denote the coordinate hyperplane in NR defined by e∨i = 0. Then the following

statements are equivalent:

(i) σ ⊂ {e∨i = 0}, i.e. for every ρ ∈ σ[1], uρ,i = 0.

(ii) ς is non-compact in the ith coordinate, i.e. ς+ R≥0e
∨
i = ς.

(iii) There exists a ∈ ς such that a + e∨i ∈ ς.

In particular, ς is compact if and only if σ is not contained in any coordinate hyperplane

{e∨i = 0} in NR.

Remark 5.1.18. In this paragraph, we give an alternative argument for the inequality

φ ≤ min S in 5.1.5.

Let ℓ ∈ S , fix any u ∈ N+
R , and it suffices to show ℓ(u) ≥ φ(u). Indeed, let Σ be the fan

in NR arising from Γ+ as above. Since the support of Σ is N+
R , u lies in relint(σ) for some cone

σ ∈ Σ. By Corollary 5.1.11, u =
∑

τ≺1Γ+
λτuτ for some λτ ∈ R≥0, where λτ > 0 if and only if

uτ is an extremal ray of σ. Thus

ℓ(u) =
∑
τ≺1Γ+

λτℓ(uτ ) ≥
∑
τ≺1Γ+

λτNτ =
∑
τ≺1Γ+

λτφ(uτ ) = φ(u)

where the last equality follows from Corollary 5.1.7, as desired.

5.1.C. A quick lemma on multi-weighted blow-ups. Consider a fan Σ in NR whose

support |Σ| is N+
R , e.g. the normal fan of a Newton Q-polytope as in §5.1.B. We recall from

Definition 4.1.6 that Σ induces multi-weighted blow-ups of An:

ϑ : XΣ,b =
[
XΣ̂ / G

Σ[ex]
m

]
→ An for b = (bρ)ρ∈Σ[1] ∈ N

Σ[1]
>0 .
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Starting from §5.2, our discussion will utilize multi-weighted blow-ups, and we will freely assume

any conventions introduced in §4.1, e.g. Convention 4.1.8 and the notations in 4.1.9. Our

discussion will also involve the next lemma, and more importantly, its corollary:

Lemma 5.1.19. Let σ be a cone in the augmentation Σ of Σ. If σ satisfies the condition:

D+(σ) ∩ ϑ−1Σ (0) ̸= ∅

then σ is not contained in any coordinate hyperplane {e∨i = 0} in NR.

Proof. Indeed, for i ∈ [n], we have:

σ ⊂ {e∨i = 0} ⇐⇒ uρ,i = 0 for every ρ ∈ σ[1]

⇐⇒ ϑ#
Σ (xi) =

∏
ρ∈Σ[1]

(x′ρ)
bρ·uρ,i is invertible on D+(σ)

⇐⇒ D+(σ) ∩ ϑ−1Σ

(
V (xi)

)
= ∅

=⇒ D+(σ) ∩ ϑ−1Σ (0) = ∅. □

Corollary 5.1.20. We have:

ϑ−1Σ (0) ⊂
⊔
O(σ) :

σ ∈ Σ not contained in

any coordinate hyperplane

in NR

 .

Additionally, we relate the above corollary to §5.1.B as follows:

5.1.21. If Σ is the normal fan of a Newton Q-polytope Γ+, note that a cone σ ∈ Σ is not

contained in any coordinate hyperplane in NR if and only if
⋂
{τρ : ρ ∈ σ[1]} ≺ Γ+ is compact.

Indeed, if σ ∈ Σ, we have
⋂
{τρ : ρ ∈ σ[1]} = ςσ (Corollary 5.1.16), so the assertion follows

from Corollary 5.1.17. Otherwise, let σ′ be the smallest cone in Σ such that σ ⊏ σ′. Then

237



⋂
{τρ : ρ ∈ σ[1]} =

⋂
{τρ : ρ ∈ σ′[1]} = ςσ′ (cf. 5.1.13 and Corollary 5.1.16), so the assertion

still follows from Corollary 5.1.17.

5.2. Preliminaries and examples

5.2.A. A stack-theoretic re-interpretation of a classical embedded desingularization

of non-degenerate polynomials. We return to the setting at the start of §1.3: namely, let

f =
∑

a∈Nn ca · xa ∈ k[x1, . . . , xn] be a non-degenerate polynomial, and let Γ+(f) denote the

Newton polyhedron of f . Let Σ(f) denote the normal fan of Γ+(f), cf. §5.1.B.

It is known in the literature that one can construct, using Σ(f), an embedded desingulariza-

tion of V (f) ⊂ An above 0 ∈ An (in fact, more is true, cf. the next theorem). This construction

manifests in various equivalent forms in the literature, e.g. in Varchenko [Var76, §10] and more

recently, in Bultot–Nicaise [BN20, Proposition 8.31] and Theorem 4.4.2 (= [AQ21, Theorem

5.1.2]). As motivated in §1.3 (cf. 1.3.12, 1.3.13, 1.3.14), we follow the last approach. Indeed,

by following the description in 4.1.9, the proof of Theorem 4.4.2 shows:

Theorem 5.2.1. The multi-weighted blow-up of An:

ϑΣ(f) : XΣ(f) → An

is a stack-theoretic embedded desingularization of V (f) ∪ V (x1x2 · · ·xn) ⊂ An above the origin

0 ∈ An.

5.2.2. This means ϑ−1Σ(f)

(
V (f)∪V (x1x2 · · ·xn)

)
is a simple normal crossings divisor at every

point in ϑ−1Σ(f)(0). To explicate this, we note from 4.1.9(i) that:

ϑ#
Σ(f)(f) =

∑
a∈Nn

ca · (x′)a ·
∏

ρ∈Σ(f)[ex]

(x′ρ)
a·uρ

where for each a = (a1, . . . , an) ∈ Nn, (x′)a := (x′1)
a1 · · · (x′n)an . Setting Nρ := Nτρ =

infa∈Γ+(f) a · uρ for each ρ ∈ Σ[1] (cf. Conventions 5.1.3 and 5.1.15, as well as 5.1.5), we
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define the proper transform of f under ϑΣ(f) as:

(5.4) f ′ :=
ϑ#
Σ(f)(f)∏

ρ∈Σ(f)[1] (x
′
ρ)

Nρ
=
∑
a∈Nn

ca · (x′x′x′)a−n ·
∏

ρ∈Σ(f)[ex]

(x′ρ)
a·uρ−Nρ

where n :=
(
Ni : i ∈ [n]

)
. In other words, V (f ′) ⊂ XΣ(f) is the proper transform of all

irreducible components of V (f) ⊂ An that are not contained in V (x1x2 · · ·xn) ⊂ An. Note

that since f is non-degenerate, V (f ′) ⊂ XΣ(f) is reduced. Then the preceding theorem is

asserting that at every point in ϑ−1Σ(f)(0) ⊂XΣ(f), V (f ′) ⊂XΣ(f) is smooth, and intersects the

smooth divisors {V (x′ρ) ⊂XΣ(f) : ρ ∈ Σ(f)[1]} transversely.

5.2.3. We next claim that via an appropriate motivic change of variables formula, the

desingularization ϑΣ(f) of V (f) ⊂ An supplies a set of candidate poles for Zmot,0(f ; s) given by

Θ(f) := {−1} ∪
{
sτ : τ ≺1 Γ+(f) with Nτ > 0

}
(cf. (1.5)).

To this end, we find it the most convenient to appeal to the formula in [LCMMVVS20,

Theorem 4]. Other formulae that apply to our context include [BN20, Theorem 5.3.1], [Yas06,

Theorem 3.41], or [SU21, Theorem 1.3], although the first demands some background on

logarithmic geometry, and the latter two are less explicit. However, as it is, the embedded

desingularization ϑΣ(f) of V (f) ⊂ An does not satisfy the key hypothesis of [LCMMVVS20,

Theorem 4], since XΣ(f) typically does not have finite stabilizers. Nevertheless this can be

resolved by further subdividing the fan Σ(f) to a simplicial fan ΣΣΣ(f) without adding new rays.

5.2.4 (Frugal simplicial subdivisions). From 5.2.4 to 5.2.6, let Σ be a fan in NR whose

support |Σ| is N+
R , and we fix a subdivision ΣΣΣ of Σ such that:

(i) ΣΣΣ is a simplicial fan, i.e. every cone σσσ in ΣΣΣ is a simplicial cone, i.e. σσσ[1] is a linearly

independent set for every σσσ ∈ ΣΣΣ.
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(ii) Every cone σσσ in ΣΣΣ can be inscribed in some cone σ in Σ (in which case one writes

σ ⊏ σ′), cf. Definition 4.1.1.

Such a ΣΣΣ always exists by [DH01, Lemma 2.8], and we call any such ΣΣΣ a frugal simplicial

subdivision of Σ. Note too that ΣΣΣ[1] = Σ[1].

5.2.5. Let (Σ̂, β) denote the stacky fan associated to Σ in NR, cf. 2.6.1. Since ΣΣΣ[1] = Σ[1],

the stacky fan associated to Σ̂ is of the form (Σ̂ΣΣ, β) for the same homomorphism β : ZΣ[1] = N̂ →

N = Zn appearing in (Σ̂, β). Moreover, Σ̂ΣΣ is a sub-fan of Σ̂. Indeed, recall from Definition 4.1.1

that Σ̂ΣΣ is generated by {σ̂σσ : σσσ ∈ ΣΣΣ}, where for every cone σσσ in ΣΣΣ,

σ̂σσ =
〈
eρ : ρ ∈ σσσ[1]

〉
⊂ ZΣΣΣ[1] = N̂ .

If σ is a cone in Σ such that σσσ ⊏ σ, σ̂σσ is then a face of the cone σ̂ = ⟨eρ : ρ ∈ σ[1]⟩ in Σ̂, and

hence is in Σ̂, as desired. Consequently, the toric morphism induced by the inclusion Σ̂ΣΣ ⊂ Σ̂ is

a Gβ-equivariant open immersion X
Σ̂ΣΣ
↪→ XΣ̂, which descends to the open immersion of stacks

in the following commutative diagram:

(5.5)

XΣΣΣ =
[
X

Σ̂ΣΣ
/ Gβ

] [
XΣ̂ / Gβ

]
= XΣ

An

open

ϑΣΣΣ ϑΣ

Explicitly, adopting the notations in the description of ϑΣ : XΣ → An in 4.1.9, the open

immersion XΣΣΣ ↪→XΣ identifies the former with the following open substack of the latter:

XΣΣΣ =
⋃{

D+(σσσ) : σσσ ∈ ΣΣΣ[max]
}
⊂XΣ

where for each σσσ ∈ ΣΣΣ[max], we set

x′σσσ :=
∏

ρ∈Σ[1]∖σσσ[1]

x′ρ.
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and

(5.6) D+(σσσ) :=
[
Spec

(
k[x′1, . . . , x

′
n]
[
x′ρ : ρ ∈ Σ[ex]

][
x′−1σσσ

])
/ GΣ[ex]

m

]
⊂ XΣ

is also the σσσ-chart of XΣΣΣ (4.1.9(iii)). Note too that for every σ in Σ and σσσ in ΣΣΣ such that σσσ ⊏ σ,

we have D+(σσσ) ⊂ D+(σ), since x′σ divides x′σσσ.

5.2.6. Since ΣΣΣ is a simplicial fan, XΣΣΣ has finite stabilizers, i.e. XΣΣΣ has finite quotient

singularities. While this assertion is classical in toric geometry [CLS11, Theorem 11.4.8], we

will need, for each σσσ ∈ ΣΣΣ[max], an explicit presentation of the σ-chart D+(σσσ) ⊂ XΣΣΣ as the

stack quotient of a smooth k-scheme by an action of a finite abelian group. This presentation

will be used later in 5.2.7.

Let us start from the expression in (5.6). Firstly, since x′ρ is invertible on D+(σσσ) for ρ ∈

Σ[ex] ∖σσσ[1], and their ZΣ[ex]-weights {−eρ : ρ ∈ Σ[ex] ∖σσσ[1]} are linearly independent over Z,

we observe from Lemma 2.1.2 that by setting

x′ρ = 1 for every ρ ∈ Σ[ex] ∖σσσ[1]

we obtain an isomorphism

(5.7) D+(σσσ) =
[
Spec

(
k[x′1, . . . , x

′
n]
[
x′ρ : ρ ∈ σσσ[ex]

][
x′−1σσσ

])
/ Gσσσ[ex]

m

]
where:

(i) σσσ[ex] := Σ[ex] ∩σσσ[1].

(ii) x′σσσ becomes
∏

i∈[n]∖σσσ[1] x
′
i.

(iii) The action Gσσσ[ex]
m ↷ Spec(k[x′1, . . . , x

′
n][x′ρ : ρ ∈ σσσ[ex]][x′−1σσσ ]) is specified as follows.

For each i ∈ [n], the Zσσσ[ex]-weight of x′i is (uρ,i)ρ∈σσσ[ex], and for each ρ ∈ σσσ[ex], the

Zσσσ[ex]-weight of x′ρ is −eρ.
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Secondly, since σσσ is simplicial,

{
uρ : ρ ∈ σσσ[1]

}
=
{
ei : i ∈ [n] ∩σσσ[1]

}
⊔
{
uρ : ρ ∈ σσσ[ex]

}
is linearly independent, and hence, so is

(5.8)

(uρ,i)i∈[n]∖σσσ[1] = uρ −
∑

i∈[n]∩σσσ[1]

uρ,iei : ρ ∈ σσσ[ex]

 .

Moreover, since dim(σσσ) = n, we have #σσσ[1] = n, so that:

#σσσ[ex] + n = #σσσ[ex] + #
(
[n] ∩σσσ[1]

)
+ #

(
[n] ∖σσσ[1]

)
= #σσσ[1] + #

(
[n] ∖σσσ[1]

)
= n+ #

(
[n] ∖σσσ[1]

)
i.e. #([n]∖σσσ[1]) = #σσσ[ex]. Consequently, the vectors in (5.8) are the columns of an invertible

square matrix B̃ of order #σσσ[ex], which implies that the set of rows of B̃:

{
(uρ,i)ρ∈σσσ[ex] : i ∈ [n] ∖σσσ[1]

}
=
{
Zσσσ[ex]-weights of x′i : i ∈ [n] ∖σσσ[1]

}
is linearly independent. Together with the fact that x′i is invertible on D+(σσσ) for i ∈ [n]∖σσσ[1],

we observe again from Lemma 2.1.2 that by setting

x′i = 1 for every i ∈ [n] ∖σσσ[1]

in (5.7), we obtain an isomorphism

(5.9) D+(σσσ) =
[
Spec

(
k
[
x′ρ : ρ ∈ σσσ[1]

])
/ µµµ
]

where:
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(i) µµµ := HomGrp−Sch(A,Gm), where A is the finite abelian group

A :=
Zσσσ[ex]〈

(uρ,i)ρ∈σσσ[ex] : i ∈ [n] ∖σσσ[1]
〉 .

(ii) Letting (−) denote the quotient Zσσσ[ex] ↠ A, we specify the action µµµ↷ Spec(k[x′ρ : ρ ∈

σσσ[1]]) as follows. If i ∈ [n] ∩ σσσ[1], the A-weight of x′i is (uρ,i)ρ∈σσσ[ex]. If ρ ∈ σσσ[ex], the

A-weight of x′ρ is −eρ.

Since {D+(σσσ) : σσσ ∈ ΣΣΣ[max]} covers XΣΣΣ, the expression in (5.9) in particular shows that XΣΣΣ has

finite stabilizers.

5.2.7. In this paragraph, we compute the relative canonical divisor KϑΣΣΣ of ϑΣΣΣ. For each

σσσ ∈ ΣΣΣ[max], recall that the composition

ϑΣΣΣ(σσσ) : D+(σσσ)
(5.9)
==

[
Spec

(
k
[
x′ρ : ρ ∈ σσσ[1]

])
/ µµµ
] open
↪−−→XΣΣΣ

ϑΣΣΣ−→ An

is induced by the k-algebra homomorphism

ϑΣΣΣ(σσσ)# : k[x1, . . . , xn]→ k
[
x′ρ : ρ ∈ σσσ[1]

]
which maps

xi 7→
∏

ρ∈σσσ[1]

(x′ρ)
uρ,i =: αi

for every i ∈ [n]. We then compute, for each i ∈ [n]:

ϑΣΣΣ(σσσ)∗
(
dxi
)

=
∑
ρ∈σσσ[1]

uρ,iαi ·
dx′ρ
x′ρ

.

Letting S([n],σσσ[1]) denote the set of bijections θ : [n]
≃−→ σσσ[1], we therefore have:

ϑΣΣΣ(σσσ)∗
(
dx1 ∧ dx2 ∧ · · · ∧ dxn

)
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=
∑

θ∈S([n],σσσ[1])

∏
i∈[n]

uθ(i),iαi

x′θ(i)
· dx′θ(1) ∧ dx′θ(2) ∧ · · · ∧ dx′θ(n)

=

∏
i∈[n] αi∏
ρ∈σσσ[1] x

′
ρ

·

 ∑
θ∈S([n],σσσ[1])

∏
i∈[n]

uθ(i),i · dx′θ(1) ∧ dx′θ(2) ∧ · · · ∧ dx′θ(n)


=
∏

ρ∈σσσ[1]

(x′ρ)
|uρ|−1 ·

(
det(Bσσσ) · ∧ρ∈σσσ[1]dx

′
ρ

)
where:

(i) |uρ| := uρ,1 + uρ,2 + · · ·+ uρ,n,

(ii) Bσσσ denotes the square matrix of order n whose ρth column is the vector uρ for ρ ∈ σσσ[1],

which is invertible since σσσ is simplicial,

(iii) ∧ρ∈σσσ[1]dx′ρ := dx′θ(1) ∧ dx′θ(2) ∧ · · · ∧ dx′θ(n) for a fixed θ ∈ S([n],σσσ[1]).

From the above computation, we obtain

KϑΣΣΣ |D+(σσσ) =
∑
ρ∈σσσ[1]

(
|uρ| − 1

)
· V (x′ρ).

Finally, since {D+(σσσ) : σσσ ∈ ΣΣΣ[max]} is an open cover of XΣΣΣ, we deduce that

(5.10) KϑΣΣΣ =
∑
ρ∈Σ[1]

(
|uρ| − 1

)
· V (x′ρ).

5.2.8. Returning to our claim in 5.2.3, fix a frugal simplicial subdivision ΣΣΣ(f) of the normal

fan Σ(f). We then have:

ϑ−1ΣΣΣ(f)

(
V (f)

)
XΣΣΣ(f) XΣ(f) An

π−1ΣΣΣ(f)

(
V (f)

)
XΣΣΣ(f)

coarse space

closed

coarse space

open ϑΣ(f)

closed πΣ(f)

where:

(i) πΣΣΣ(f) is proper and birational.
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(ii) XΣΣΣ(f) has finite quotient singularities (5.2.6).

(iii) π−1ΣΣΣ(f)

(
V (f)

)
is a Q-simple normal crossings divisor [LCMMVVS20, Definition 1.6]

at every point in π−1ΣΣΣ(f)(0) ⊂ XΣΣΣ(f). Indeed, ϑΣΣΣ(f) factors as XΣΣΣ(f)

open
↪−−→XΣ(f)

ΠΣ(f)−−−→ An

in the above diagram. We therefore deduce, from (5.4), that:

(5.11) ϑ−1ΣΣΣ(f)

(
V (f)

)
= V (f ′) +

∑
ρ∈Σ(f)[1]

Nρ · V (x′ρ)

where each V (x′ρ), as well as V (f ′), is now regarded as a divisor in XΣΣΣ(f)

open
↪−−→XΣ(f).

By Theorem 5.2.1, ϑ−1ΣΣΣ(f)

(
V (f)

)
is a simple normal crossings divisor at every point

in ϑ−1ΣΣΣ(f)(0) ⊂ XΣΣΣ(f). It remains to note that π−1ΣΣΣ(f)

(
V (f)

)
is the coarse space of

ϑ−1ΣΣΣ(f)

(
V (f)

)
, since the coarse space morphism XΣΣΣ(f) → XΣΣΣ(f) maps the latter onto the

former.

In other words, πΣΣΣ(f) : XΣΣΣ(f) → An is an embedded Q-desingularization of V (f) ⊂ An above the

origin 0 ∈ An, in the sense that it satisfies (i), (ii) and (iii) above.

We additionally note that the motivic change of variables formula in [LCMMVVS20,

Theorem 4] applies more generally for any embedded Q-desingularization π : Y → X of D1 +

D2 ⊂ X above a closed subscheme W ⊂ X: the proof in loc. cit. works verbatim, once one

recognizes that:

(a) [LCMMVVS20, Theorem 2] is a general change of variables rule for the Q-Gorenstein

motivic zeta function via any proper and birational morphism of pure-dimensional Q-

Gorenstein varieties.

(b) After applying [LCMMVVS20, Theorem 2], note that the remainder of the proof of

[LCMMVVS20, Theorem 4] only uses the fact that π−1(D1+D2) ⊂ Y is a Q-simple

normal crossings divisor at every point in π−1(W ).
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We can therefore apply [LCMMVVS20, Theorem 4] with π := πΣΣΣ(f), D1 := V (f), D2 := 0,

and W = {0}. Together with (5.10) and (5.11), we deduce that Zmot,0(f ; s) lies in

Mk

[
L−s

] [ 1

1− L−(s+1)

] [
1

1− L−(Nρs+|uρ|)
: ρ ∈ Σ(f)[1]

]

i.e. Θ(f) = {−1} ∪
{
− |uρ|

Nρ
: ρ ∈ Σ(f)[1], Nρ > 0

}
is a set of candidate poles for Zmot,0(f ; s).

5.2.B. A case study for Theorem H.

5.2.9. In §5.2.A we explained why there is a set of candidate poles Θ(f) for Zmot,0(f ; s)

whose elements, with the possible exception of −1, are naturally indexed by facets τ ≺1 Γ+(f)

satisfying Nτ > 0. Namely, the preimage of V (f) ⊂ An under the multi-weighted blow-up

XΣ(f) → An is a simple normal crossings divisor at points above 0 ∈ An, comprising of:

(i) the proper transform of the irreducible components of V (f) ⊂ An that are not con-

tained in V (x1x2 · · · xn) ⊂ An,

(ii) the proper transform of V (xi) ⊂ An for every i ∈ [n] with xi | f ,

(iii) and the irreducible exceptional divisors of ΠΣ(f),

where the irreducible components in (ii) and (iii) are naturally indexed by the facets τ ≺1 Γ+(f)

satisfying Nτ > 0.

It is therefore natural to imagine that a proof of Theorem H would involve showing that

V (f) ⊂ An is also desingularized by a multi-weighted blow-up θΣ† of An where Σ† is the

normal fan of a Newton Q-polyhedron Γ †+ obtained from Γ+(f) by “dropping the facets in B”

(cf. Theorem I). Ideally, one hopes that every supporting hyperplane of Γ+(f), except those

intersecting Γ+(f) in a face of some facet in B, should also be a supporting hyperplane of Γ †+.

In this section we show that this idea works for three non-degenerate polynomials.
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Example 5.2.10. Let f = x21 + x1x
4
2 + x32x3 + x33. On the left side of the diagram below,

we shaded the facets of Γ+(f) that are not contained in any coordinate hyperplane Hi in MR.

For now the red vertex and dashed lines, and the right side of the diagram, should be ignored.

e∨2

e∨3

e∨1

e1

e2

e3

u1

u2 u3

Among the shaded facets, we used a darker shade for the non–B1-facet

τ1 :=
{
a ∈ Γ+(f) : a · u1 = 18

}
where u1 := 9e1 + 4e2 + 6e3

with candidate pole −19
18

, and used a lighter shade for the two B1-facets

τ2 :=
{
a ∈ Γ+(f) : a · u2 = 8

}
where u2 := 4e1 + e2 + 5e3

τ3 :=
{
a ∈ Γ+(f) : a · u3 = 1

}
where u3 := e1 + e3

with candidate poles −5
4

and −2 respectively. Together τ2 and τ3 form a pair B of adjacent

B1-facets of Γ+(f) with consistent base direction 3. Then Theorem H asserts that Θ†,B(f) =

{−1,−19
18
} ⊊ {−1,−19

18
,−5

4
,−2} = Θ(f) is also a set of candidate poles for Zmot,0(f ; s).

To show that we execute our idea in 5.2.9. Indeed, we first note that

Γ+(f) = H+
u1,18
∩H+

u2,8
∩H+

u3,1
(cf. 5.1.1 for notation).
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Since Hu2,8 and Hu3,1 intersect Γ+(f) in the two B1-facets τ2 and τ3, we “drop” H+
u2,8

and H+
u3,1

from Γ+(f) to define the Newton Q-polyhedron:

Γ †+ = H+
u1,18

which we have outlined in red on the left side of the above diagram.

Illustrated on the right side of the diagram is a cross-section of the normal fan Σ† of Γ †+,

except that the rays ⟨u2⟩ and ⟨u3⟩, as well as the 2-dimensional cones ⟨u1,u2⟩, ⟨u2,u3⟩ and

⟨e3,u2⟩ which are outlined by dotted line segments, are not in Σ† but originally in Σ(f). In

comparison, the 2-dimensional cone ⟨e3,u1⟩ in Σ†, which is outlined by the dashed thick line

segment, is originally not in Σ(f).

Finally, we consider the following multi-weighted blow-up of A3:

ϑΣ† : XΣ† =
[
Spec

(
k[x′1, x

′
2, x
′
3, u1]

)
∖ V (x′1, x

′
2, x
′
3) / Gm

]
→ A3

induced by the homomorphism ϑ#
Σ† : k[x1, x2, x3] → k[x′1, x

′
2, x
′
3, u1] mapping x1 7→ x′1u

9
1, x2 7→

x′2u
4
1 and x3 7→ x′3u

6
1. We show next that ϑΣ† is a stack-theoretic embedded desingularization of

V (f) ⊂ A3 above 0 ∈ A3. We first compute that ϑ#
Σ†(f) = u181 · f ′, where the proper transform

of f under ϑΣ† is given by f ′ := x′21 + x′1x
′4
2 u

7
1 + x′32 x

′
3 + x′33 . Since

∣∣ϑ−1
Σ† (0)

∣∣ = |V (u1)| ⊂ |XΣ†|,

it suffices to show V (f ′|V (u1)) = V
(
x′21 + x′32 x

′
3 + x′33

)
⊂ V (u1) is smooth. Indeed, if J

(
f ′|V (u1)

)
denotes the Jacobian ideal of f ′|V (u1), note

√(
f ′|V (u1)

)
+ J

(
f ′|V (u1)

)
=
√(

x′1, x
′2
2 x
′
3, x
′3
2 + 3x′23 , x

′3
3

)
=
(
x′1, x

′
2, x
′
3

)
is the unit ideal on XΣ† , as desired.

Remark 5.2.11. In the above example, note that unlike Γ+(f), Γ †+ has a vertex with non-

integer coordinates, namely the red vertex 9
2
e∨2 .
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Remark 5.2.12. Moreover, the morphism ϑΣ† is the weighted blow-up of A3 along the

center (x1, 9) + (x2, 4) + (x3, 6) =
(
x
1/9
1 , x

1/4
2 , x

1/6
3

)
, cf. first paragraph of Example 4.1.17. We

also remark V (f) has a semi-quasihomogeneous singularity at 0 ∈ A3 (with the same weights

9 on x1, 4 on x2 and 6 on x3), and the strong monodromy conjecture is known for semi-

quasihomogeneous hypersurfaces, cf. [BBV21]. In fact, the proof also uses weighted blow-ups.

The next example, together with its remark, shows that the hypothesis in Theorem H that

“B has consistent base directions” cannot be dropped :

Example 5.2.13. Let f = x21 + x2x3. In the diagram below we shaded only the facets of

Γ+(f) that are not contained in any coordinate hyperplane Hi in MR. As with the previous

example we ignore the red/blue vertices and dashed lines for now.

e∨2

e∨3

e∨1

The two shaded facets of Γ+(f):

τ1 :=
{
a ∈ Γ+(f) : a · u1 = 2

}
where u1 := e1 + 2e2

τ2 :=
{
a ∈ Γ+(f) : a · u2 = 2

}
where u2 := e1 + 2e3

are adjacent B1-facets with the same candidate pole −3
2
, but together they form a set of B1-

facets with inconsistent base directions 2 and 3.
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Thus, Theorem H does not apply to the set B = {τ1, τ2}. In fact, our idea in 5.2.9 fails

in this scenario. Indeed, “dropping” both H+
u1,2

and H+
u2,2

from Γ+(f) = H+
u1,2
∩ H+

u2,2
yields

Γ †+ = M+
R , but the multi-weighted blow-up of A3 along M+

R is the identity morphism on A3!

Nevertheless, in Theorem H one could take B to be either {τ1} or {τ2}, although in either

case Θ†,B(f) = {−1,−3
2
} is the same set as Θ(f). In spite of that, our idea in 5.2.9 should

still say something of consequence. Namely, for B = {τ1} (resp. B = {τ2}), we claim that the

multi-weighted blow-up of A3 along the Newton polyhedron

Γ †,τ1+ = H+
u2,2

(resp. Γ †,τ2+ = H+
u1,2

)

is a stack-theoretic embedded desingularization of V (f) ⊂ A3 above 0 ∈ A3.

To verify this claim, let us first outline, in the diagram above, the Newton polyhedra Γ †,τ1+

and Γ †,τ2+ in blue and red respectively. On the left (resp. right) side of the diagram below, we

also sketched a cross-section of the normal fan Σ†,τ1 (resp. Σ†,τ2) of Γ †,τ1+ (resp. Γ †,τ2+ ), keeping

the same conventions as before in Example 5.2.10.

e1

e2

e3

u1

u2

e1

e2

e3

u1

u2

From this diagram we see that the following multi-weighted blow-up of A3:

ϑΣ†,τ2 : XΣ†,τ2 =
[
Spec

(
k[x′1, x

′
2, x3, u1]

)
∖ V (x′1, x

′
2) / Gm

]
→ A3

is induced by the homomorphism ϑ#

Σ†,τ2 : k[x1, x2, x3] → k[x′1, x
′
2, x3, u1] mapping x1 7→ x′1u1,

x2 7→ x′2u
2
1 and x3 7→ x3. (This is the weighted blow-up of A3 along the center (x1, 1)+(x2, 2) =(

x1, x
1/2
2

)
.) Thus, ϑ#

Σ†,τ2 (f) = u21 · f ′, where f ′ := x′21 + x′2x3 defines the proper transform of f
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under ϑΣ†,τ2 . It remains to note the Jacobian ideal J(f ′) of f ′ is
(
x′1, x

′
2, x3

)
, i.e. the unit ideal

on XΣ†,τ2 . The same can be shown with τ2 replaced by τ1.

Remark 5.2.14. In fact, for f = x21 + x2x3, Θ(f) = {−1,−3
2
} is the smallest set of

candidate poles for Zmot,0(f ; s). To see this, it suffices to show that −3
2

is a pole of Ztop,0(f ; s)

(cf. Remark 1.3.6), which we compute via the embedded resolution of V (f) ⊂ A3 given by the

blow-up of A3 in 0 ∈ A3:

π : Bl0 A3 = ProjA3

(
OA3

[
x′1 := x1t, x

′
2 := x2t, x

′
3 := x3t, t

−1])→ A3.

Here, π−1
(
V (f)

)
= 2 · E1 + E2, where E1 := V (t−1) is the exceptional divisor of π, and

E2 := V
(
x′21 + x′2x

′
3

)
is the proper transform of V (f) under π. Moreover, the relative canonical

divisor is Kπ = 2 · E1. Since π−1(0) = E1 ≃ P2, we have by definition [CLNS10, Chapter 1,

§3.3] that:

Ztop,0(f ; s) =
Eu(E1 ∖ E2)

2s+ 3
+

Eu(E1 ∩ E2)

(s+ 1)(2s+ 3)

=
Eu
(
P2 ∖ V (x′21 + x′2x

′
3)
)

2s+ 3
+

Eu
(
V (x′21 + x′2x

′
3) ⊂ P2

)
(s+ 1)(2s+ 3)

=
Eu
(
P2 ∖ V (x′21 + x′2x

′
3)
)
s+ Eu(P2)

(s+ 1)(2s+ 3)

[GS]
==

s+ 3

(s+ 1)(2s+ 3)
.

Example 5.2.15. Let f = x2x3 + x21x
2
2 + x21x

2
3. Depicted on the left side of the diagram

below is Γ+(f), where a darker shade is used for the non–B1-facet:

τ1 :=
{
a ∈ Γ+(f) : a · u1 = 2

}
where u1 := e2 + e3

with candidate pole −1, and a lighter shade is used for the two B1-facets:

τ2 :=
{
a ∈ Γ+(f) : a · u2 = 2

}
where u2 := e1 + 2e2
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τ3 :=
{
a ∈ Γ+(f) : a · u3 = 2

}
where u3 := e1 + 2e3

each with candidate poles −3
2
. Although τ2 and τ3 have different base directions 2 and 3,

they are non-adjacent and hence still form a set B of B1-facets of Γ+(f) with consistent base

directions.

e∨2

e∨3

e∨1

e1

e2

e3

u1

u2

u3

Consequently, Theorem H says that Θ†,B(f) = {−1} ⊊ {−1,−3
2
} = Θ(f) is also a set of

candidate poles for Zmot,0(f ; s). To see this, we proceed as with previous examples: we “drop”

H+
u2,2

andH+
u3,2

from Γ+(f) =
⋂{

H+
ui,2

: 1 ≤ i ≤ 3
}

to define the Newton polyhedron Γ †+ = H+
u1,2

,

which we have outlined in red on the left side of the above diagram.

On the right side we sketched the normal fan Σ† of Γ †+, keeping the same conventions as

before in Example 5.2.10. The multi-weighted blow-up of A3:

ϑΣ† : XΣ† = ProjA3

(
OA3

[
x′2 := x2t, x

′
3 := x3t, u1 := t−1

])
→ A3.

is then simply the blow-up of A3 along V (x2, x3) ⊂ A3. We have ϑ#
Σ†(f) = u21 · f ′, where

f ′ := x′2x
′
3 + x21x

′2
2 + x21x

′2
3 defines the proper transform of f under ϑΣ† . If J(f ′) denotes the

Jacobian of f ′, we then have:

√
(f ′) + J(f ′) =

√(
x1x′22 + x1x′23 , x

′
3 + 2x21x

′
2, x
′
2 + 2x21x

′
3, x
′
2x
′
3

)
=
√(

x′3 + 2x21x
′
2, x
′
2 + 2x21x

′
3, x
′
2x
′
3, x1x

′
2, x1x

′
3

)
=
(
x′2, x

′
3

)
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which is the unit ideal on XΣ† , i.e. ϑΣ† is a stack-theoretic embedded desingularization for

V (f) ⊂ A3 as desired.

Remark 5.2.16. While Θ(f) ∖ {−3
2
} = {−1} is a set of candidate poles for Zmot,0(f ; s),

−3
2
still induces a monodromy eigenvalue of f near 0 ∈ C3.

5.3. Proof of main theorem

5.3.A. Dropping a set of facets from a Newton Q-polyhedron. In this section, we fix a

Newton Q-polyhedron Γ+, with associated piecewise-linear, convex Q-function φ (§5.1.A), and

associated normal fan Σ in NR (§5.1.B). We first fix the following conventions for the remainder

of this paper:

Convention 5.3.1. If two rays ρ1, ρ2 ∈ Σ[1] satisfy ρ1 + ρ2 ∈ Σ[2], we say that ρ1 and ρ2

are adjacent in Σ, and write

ρ1 ⌢ ρ2 in Σ.

Given τ, τ ′ ≺1 Γ+, note τ ⌢ τ ′ (Convention 5.1.3) if and only if ρτ ⌢ ρτ ′ in Σ, cf. 5.1.13.

5.3.2. Throughout this section, consider a subset B of facets of Γ+ that are not contained

in any translate mei +Hi of any coordinate hyperplane Hi in M+
R . For any such B, we set

Σ[1]|B :=
{
ρτ ∈ Σ[1] : τ ∈ B

}
⊂ Σ[1].

As motivated in §5.2.B, we study in this section the Newton Q-polyhedron obtained from Γ+

by “dropping the facets in B”:

Definition 5.3.3. Recalling from (5.1) that

Γ+ =
⋂

τ≺1Γ+

H+
uτ ,Nτ
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we define the B-cut of Γ+ to be the following Newton Q-polyhedron:

Γ †,B+ :=
⋂{

H+
uτ ,Nτ

: τ ≺1 Γ+, τ /∈ B
}
⊃ Γ+.

We call its normal fan in NR the B-cut of Σ, and denote it by Σ†,B. When B is unambiguous

from context, we write Γ †+ for Γ †,B+ and Σ† for Σ†,B.

Lemma 5.3.4. Let τ ≺1 Γ+ such that τ /∈ B. Then:

(i) There exists a (unique) facet τ † ≺1 Γ †+ such that τ † ∩ Γ+ = τ .

(ii) If moreover τ is not adjacent to any facet in B, then τ † = τ . In other words, τ

remains a facet of Γ †+.

Proof. For (i), note that

τ = Huτ ,Nτ ∩
⋂{

H+
uτ ′ ,Nτ ′

: τ ′ ≺1 Γ+
}
.

Set

τ † := Huτ ,Nτ ∩ Γ †+ = Huτ ,Nτ ∩
⋂{

H+
uτ ,Nτ

: τ ′ ≺ Γ+, τ
′ /∈ B

}
from which it follows that τ † ∩ Γ+ = τ . Since τ ⊂ τ † ⊂ Huτ ,Nτ , dim(τ †) = n− 1, i.e. Huτ ,Nτ is

a supporting hyperplane for Γ †+, and τ † is a facet of Γ+. For (ii), note that since every face of τ

is the intersection of a subset of facets of τ , we have:

τ = Huτ ,Nτ ∩
⋂{

H+
uτ ′ ,Nτ ′

: τ ′ ≺1 Γ+, τ
′ ⌢ τ

}
.

By hypothesis, {τ ′ ≺ Γ+ : τ ′ ⌢ τ} ⊂ {τ ′ ≺ Γ+, : τ ′ /∈ B}. Therefore, τ ⊃ τ †, which proves

(ii). □
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5.3.5 (A correspondence). The preceding lemma sets up an injection

{
facets of Γ+

}
∖B ↪−−−→

{
facets of Γ †+

}
τ 7−−−→ τ †

(5.12)

which is in fact a bijection, since we have assumed that each facet in B is not contained in

mei + Hi for any i ∈ [n] and m ∈ Q>0. We will freely adopt this correspondence for the

remainder of this paper. Note that in particular, Σ†[1] = Σ[1] ∖ Σ[1]|B. For ρ ∈ Σ†[1], we may

therefore consider ρ as a ray in Σ[1]: in that case, we continue to denote by τρ the facet of Γ+

dual to ρ in Σ[1]. On the other hand, we denote by τ †ρ the facet of Γ †+ dual to ρ in Σ†[1]. This

does not contradict the notation in (5.12).

5.3.6. Let φ† : N+
R → R≥0 be the piecewise-linear, convex Q-function corresponding to the

Newton Q-polyhedron Γ †+, cf. 5.1.4. By 5.1.5 and 5.3.5, φ† can be explicated as

φ† = min S †

where

S † :=

{
linear functions ℓ : N+

R → R≥0 such that

ℓ(uτ ) ≥ Nτ for every facet τ ≺1 Γ+ not in B

}
.

We also note that for every facet τ ≺1 Γ+ not in B,

(5.13) φ(uτ ) = Nτ = φ†(uτ ).

For the remainder of this section, we switch our focus to the cones in Σ†. For later purposes

(e.g. in §5.3.C), we occasionally state some of our definitions and results for cones in the

augmentation Σ
†

of Σ†.

Definition 5.3.7. We say a cone σ in Σ
†

is old if σ can be inscribed in some cone σ′ in Σ

(in which case one writes σ ⊏ σ′). If not, we say σ is new.
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Lemma 5.3.8.

(i) For any cone σ in Σ, the cone σ† in NR generated by rays in

σ[1] ∖ Σ[1]|B

is a cone in Σ† (hence, all its faces are old cones in Σ†). Moreover, for every u ∈ σ†,

φ†(u) = φ(u).

(ii) For every facet τ ≺1 Γ+ with τ ∈ B, we have:

φ†(uτ ) < φ(uτ ).

Proof. For (i), let a ∈ relint(ςσ), so that σ = σa = {u ∈ N+
R : φ(u) = a · u}, cf. 5.1.13.

Let σ†a := {u ∈ N+
R : φ†(u) = a · u}, which by definition is a cone in Σ†. We claim that

σ†a[1] = σa[1] ∖ Σ[1]|B, which would prove (i). Indeed, given any τ ≺1 Γ+ not in B, we have

φ†(uτ ) = φ(uτ ), cf. (5.13), and hence we have φ†(uτ ) = a · uτ if and only if τ is dual to a ray

in σa[1] ∖ Σ[1]|B. By Corollary 5.1.11 and 5.3.5, this proves our claim.

For (ii), we apply the above argument to the case where σ is the ray ρτ in Σ dual to τ ≺ Γ+,

and we obtain that for a ∈ relint(τ), we have {u ∈ N+
R : φ†(u) = a ·u} = {0}. Combining that

with the fact that a ∈ Γ+ ⊂ Γ †+, we must have φ†(uτ ) < a · uτ = φ(uτ ). □

Lemma 5.3.9. Let σ be a cone in Σ†.

(i) If there is an extremal ray ρ of σ that is not adjacent in Σ to any ray in Σ[1]|B, then

σ is old.

(ii) If moreover dim(σ) = 2, then σ is a cone in Σ.

Proof. By Lemma 5.3.4(ii), the facet τρ ≺1 Γ+ dual to ρ ∈ Σ[1] remains a facet of Γ †+.

Therefore, the face ς ≺ Γ †+ dual to σ, being a face of τρ, remains a face of Γ †+. Consequently, for
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every τ ≺1 Γ+ such that τ /∈ B, we have the following equivalences:

(5.14) ς ≺ τ ⇐⇒ ς ⊂ Huτ ,Nτ ⇐⇒ ς ≺ τ †.

The reverse implication in (5.14) means that σ is inscribed in the cone in Σ dual to the face

ς ≺ Γ+, as desired.

If dim(σ) = 2, let ρ and ρ′ be the extremal rays of σ. By Corollary 5.1.16, ς = τ †ρ ∩ τ
†
ρ′ . By

(5.14), ς is a face of both τρ and τρ′ . Since ς is a (n − 2)-dimensional face of Γ+, ς is a face

of exactly two facets of Γ+, which by the preceding sentence are necessarily τρ and τρ′ . This

means that the cone in Σ dual to the face ς ≺ Γ+ is generated by ρ and ρ′, i.e. is equal to σ.

In particular, σ is a cone in Σ. □

By part (i) of the preceding lemma, we see that if σ is a new cone in Σ†, then all its extremal

rays must be adjacent in Σ to some ray in Σ[1]|B. The next proposition refines that observation.

We first introduce some notation:

5.3.10 (An equivalence relation). For any subset B of facets of Γ+, we use the same symbol

∼ to denote the equivalence closure of ⌢ (cf. Conventions 5.1.3 and 5.3.1) on either B or

Σ[1]|B. We also let B/∼ denote the set of equivalence classes of B under ∼.

Proposition 5.3.11. Let k := #B/∼, and let B/∼ = {⊺1,⊺2, . . . ,⊺k} be a total order on

B/∼, and for each ℓ ∈ [k], let ⊺≤ℓ :=
⋃
{⊺j : j ≤ ℓ}. Then for any new cone σ in Σ†,B, there

exists a unique ℓ ∈ [k] such that:

(i) σ cannot be inscribed in any cone in Σ†,⊺≤ℓ−1.

(ii) σ is a cone in Σ†,⊺≤ℓ.

Moreover, every extremal ray of σ is adjacent in Σ to some ray in Σ[⊺ℓ].

Remark 5.3.12. We remind the reader that for any ℓ ∈ [k], Σ†,⊺≤ℓ is the ⊺≤ℓ-cut of Σ, as

in Definition 5.3.3. Note that if ℓ > 1, Σ†,⊺≤ℓ is also the ⊺ℓ-cut of Σ†,⊺≤ℓ−1 . This observation will
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be used for the purposes of induction in the proof below. Finally, note that Σ†,⊺≤k is simply

Σ†,B.

Proof. Proceed by induction on k = #B/∼. If k = 1, this was Lemma 5.3.9(i). If k > 1,

we consider two cases:

(a) If σ can be inscribed in some cone in Σ†,⊺≤k−1 , then let σ′ be the smallest cone in

Σ†,⊺≤k−1 such that σ ⊏ σ′. Then we claim σ = σ′. Indeed, by Lemma 5.3.9(i),

all the extremal rays of σ′ are adjacent in Σ to some ray in Σ[1]|⊺≤k−1
, and hence,

σ′[1]∩Σ[1]|⊺k = ∅. By Lemma 5.3.8(i), σ′ is therefore a cone in Σ†,⊺≤k = Σ†,B. Given

that σ ⊂ σ′ are both cones in Σ†,B, and σ does not lie in any proper face of σ′ but

can be inscribed in σ′, we must have σ = σ′, as desired. Therefore, σ was already a

new cone in Σ†,⊺≤k−1 , and the proposition follows by induction hypothesis.

(b) Otherwise, only the last sentence of the proposition needs proof. By Lemma 5.3.9(i),

every extremal ray of σ is adjacent in Σ†,⊺≤k−1 to some ray in Σ[1]|⊺k . Since every ray

in Σ[1]|⊺k is by definition not adjacent in Σ to any ray in Σ[1]|⊺≤k−1
, Lemma 5.3.9(ii)

says that every extremal ray of σ is in fact adjacent in Σ to some ray in Σ[1]|⊺≤k−1
.

This completes the induction. □

Remark 5.3.13. Given that the total order on B/∼ plays an auxiliary role in the above

proof, the following stronger assertion should be true. Namely, for any new cone σ in Σ†, there

exists a unique ⊺ ∈ B/∼ such that σ was already a new cone in Σ†,⊺ (so every extremal ray

of σ is adjacent to some ray in Σ[⊺]). However, this stronger assertion is not needed for this

chapter.

We conclude this section with one more crucial observation:

Lemma 5.3.14. For a cone σ in Σ
†
, the following statements are equivalent:

(i) σ is new.
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(ii)
⋂
{τρ : ρ ∈ σ[1]} = ∅.

Moreover, if σ is old and not contained in any coordinate hyperplane {e∨i = 0} in NR, then⋂
{τρ : ρ ∈ σ[1]} is a compact face of Γ+.

Proof. For (ii) =⇒ (i), suppose σ is inscribed in a cone σ′ in Σ. By Corollary 5.1.16, the

face ς′ ≺ Γ+ dual to σ′ is ς′ =
⋂
{τρ : ρ ∈ σ′[1]}. Since σ[1] ⊂ σ′[1], we have ς′ =

⋂{
τρ : ρ ∈

σ′[1]
}
⊂
⋂{

τρ : ρ ∈ σ[1]
}

, so that in particular, the latter must be non-empty.

For (i) =⇒ (ii), set ς :=
⋂
{τρ : ρ ∈ σ[1]}. If ς ̸= ∅, then ς is a (non-empty) face of Γ+.

In that case we claim that σ is inscribed in the cone σ in Σ dual to ς ≺ Γ+, a contradiction.

Indeed, letting ς denote the face of Γ †+ dual to σ ∈ Σ†, the claim amounts to the following

implication for every τ ≺1 Γ+:

ς ≺ τ † =⇒ ς ≺ τ.

That implication follows from {τ † ≺1 Γ †+ : ς ≺ τ †} = {τ †ρ : ρ ∈ σ[1]} (Corollary 5.1.16) and

the definition of ς. Finally, for the last statement, σ is also not contained in any coordinate

hyperplane in NR. By Corollary 5.1.17, ς is therefore compact. □

5.3.B. Dropping a set of B1-facets with consistent base directions. In this section,

let f ∈ k[x1, . . . , xn] be a non-degenerate polynomial. We specialize the earlier discussion in

§5.3.A to the case when Γ+ is the Newton polyhedron Γ+(f) of f , and B is a set of B1-facets of

Γ+(f) with consistent base directions, cf. Definition 1.3.10. As in §5.2.A, let Σ(f) denote the

normal fan of Γ+(f). Before that, we state (without proof) some easy observations:

5.3.15. Suppose Γ+(f) has a B1-facet τ with apex v and corresponding base direction

i ∈ [n]. Let J(τ) := {j ∈ [n] : τ is non-compact in the jth coordinate} (cf. Corollary 5.1.17), so

that by definition i /∈ J(τ). Then:
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(i) Let τ c denote the convex hull of vert(τ) = vert(Hi ∩ τ) ∪ {v} in M+
R . Then τ =

τ c +
∑

j∈J(τ) R≥0ej.

(ii) Hi ∩ τ ≺1 τ .

(iii) τ is not contained in any translate mek +Hk of any coordinate hyperplane Hk in MR.

(iv) The facet τi of Γ+(f) dual to the ray ⟨ei⟩ in Σ(f) is Hi∩Γ+(f). In other words, Nτi = 0

(recall 5.1.5 for definition of Nτi).

5.3.16. For a set B of B1-facets of Γ+(f), the following are equivalent:

(i) B is a set of B1-facets of Γ+(f) with consistent base directions.

(ii) For every ⊺ ∈ B/∼, there exists v ∈
⋂
{vert(τ) : τ ∈ ⊺} and i ∈ [n] such that every τ

in ⊺ is a B1-facet with apex v and corresponding base direction i.

In (ii), we call v an apex of ⊺ with corresponding base direction i ∈ [n].

Convention 5.3.17. Let Γ †+ denote the B-cut of Γ+(f), and let Σ† denote its normal fan

in NR. We also fix, for each ⊺ ∈ B/∼, an apex v⊺ of ⊺ and denote the corresponding base

direction by b(⊺). For the remainder of this section, we fix a new cone σ in Σ†, and let ς denote

the face of Γ †+ dual to σ. With respect to an auxiliary total order B/∼ = {⊺1,⊺2, . . . ,⊺k} on

B/∼, let ℓ be the unique natural number in [k] for which σ satisfies the properties stated in

Proposition 5.3.11. We then set ⊺ := ⊺ℓ.

Proposition 5.3.18. For each ρ ∈ σ[1], τρ is adjacent to some facet in ⊺. Moreover:

(i) ⟨eb(⊺)⟩ is an extremal ray of σ.

(ii) The cone σ◦ in NR generated by the rays in

σ[1] ∖ {⟨eb(⊺)⟩}

is a face of σ (and hence is a cone in Σ†) that can be inscribed in the maximal cone

in Σ(f) dual to the vertex v⊺ of Γ+(f).
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(iii) The face

ς
◦ :=

⋂{
τρ : ρ ∈ σ◦[1]

}
≺ Γ+(f)

has empty intersection with Hb(⊺). Moreover, for every τ ∈ ⊺, ς◦ ∩ τ is either {v⊺} or

a non-compact face of τ containing v⊺.

Proof. The first statement is a restatement of the last property in Proposition 5.3.11. For

ρ ∈ σ[1], let τ be a facet in ⊺ adjacent to τρ. Then τ ∩ τρ is a facet of τ , and if ρ ̸= ⟨eb(⊺)⟩, τ ∩ τρ

cannot be equal to Hb(⊺) ∩ τ , and hence must contain v⊺ (cf. 5.3.15(i)). In particular, v⊺ ∈ τρ.

Therefore, we deduce that

(5.15) v⊺ ∈
⋂{

τρ : ρ ∈ σ[1] ∖ {⟨eb(⊺)⟩}
}
.

If ⟨eb(⊺)⟩ /∈ σ[1], then (5.15) becomes v⊺ ∈
⋂{

τρ : ρ ∈ σ[1]
}

, which contradicts Lemma 5.3.14.

This proves (i).

For (ii), (5.15) already shows that σ◦ can be inscribed in the cone in Σ(f) dual to the vertex

v⊺ of Γ+(f). It remains to show σ◦ is a cone in Σ†. More precisely, we show σ◦ is dual to the

face

(5.16) ς
◦ :=

⋂{
τ †ρ : ρ ∈ σ◦[1]

}
≺ Γ †+.

By Corollary 5.1.16, this amounts to showing that
{
τ †ρ : ρ ∈ σ◦[1]

}
are the only facets τ † ≺1 Γ †+

containing ς◦. Indeed, any facet τ † ≺1 Γ †+ containing ς◦ must also contain the face ς ≺ Γ †+ dual

to σ ∈ Σ†, and hence, must be dual to an extremal ray ρ in σ[1]. It remains to observe that

that ρ cannot be ⟨eb(⊺)⟩, since v⊺ ∈ ς◦ (5.15) but v⊺ /∈ Hb(⊺) ∩ Γ+(f).

Finally, we prove (iii). By Lemma 5.3.14, we obtain:

∅ =
⋂{

τρ : ρ ∈ σ[1]
}

=
(
Hb(⊺) ∩ Γ+(f)

)
∩
⋂{

τρ : ρ ∈ σ◦[1]
}
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= Hb(⊺) ∩ ς◦.

In particular, for every τ ∈ ⊺, ς◦∩τ is a face of τ that does not intersect the facet Hb(⊺)∩τ ≺1 τ .

By (5.15), ς◦∩τ also contains v⊺. Since the only compact face of τ satisfying those two conditions

is {v⊺} (cf. 5.3.15(i)), this proves (iii). □

As an immediate consequence of the preceding proposition, we have:

Corollary 5.3.19. Every a ∈ ς◦ has b(⊺)th coordinate ≥ 1.

Proof. Since ς◦ ∩ Hb(⊺) = ∅, all vertices of ς◦ have b(⊺)th coordinate > 0. On the other

hand, since Γ+(f) is a Newton polyhedron, all vertices of ς◦ have integer coordinates, and hence,

must have b(⊺)th coordinate ≥ 1. □

For later purposes, the preceding corollary is however not sufficient. We instead need the

following refinement:

Proposition 5.3.20. If the face ς ≺ Γ †+ dual to σ is compact, then every a ∈ ς◦∖ {v⊺} has

b(⊺)th coordinate > 1.

5.3.21. We prove the preceding proposition after a few observations and results. For the

remainder of this section, let ς◦ denote the face of Γ †+ dual to σ◦, cf. (5.16). By Corollary 5.1.16,

we have:

ς =
⋂{

τ †ρ : ρ ∈ σ[1]
}

=
(
Hb(⊺) ∩ Γ †+

)
∩
⋂{

τ †ρ : ρ ∈ σ◦[1]
}

= Hb(⊺) ∩ ς◦
(5.17)

and

ς
◦ =

⋂{
τρ : ρ ∈ σ◦[1]

}
=
⋂{

τ †ρ ∩ Γ+(f) : ρ ∈ σ◦[1]
}

= ς◦ ∩ Γ+(f).

(5.18)
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From these equalities we deduce the next lemma. In particular, note that part (ii) of the next

lemma refines Proposition 5.3.18(iii).

Lemma 5.3.22. If ς is compact, then:

(i) Both ς◦ and ς◦ are either non-compact in the b(⊺)th coordinate, or compact.

(ii) For any τ ∈ ⊺, we have ς◦ ∩ τ = ς◦ ∩ τ = {v⊺}.

Proof. (i) follows from (5.17) and (5.18), since Hb(⊺) is non-compact in the ith coordinate

for i ∈ [n] ∖ {b(⊺)}. For (ii), we note, from (i) and the fact that any τ ∈ ⊺ cannot be non-

compact in the b(⊺)th coordinate (Definition 1.3.8(ii)), that ς◦ ∩ τ is a compact face of τ , and

hence is {v⊺} by Proposition 5.3.18(iii). Note finally that ς◦ ∩ τ = ς◦ ∩ τ by (5.18). □

Proposition 5.3.23. If ς is compact, then ς◦ is either {v⊺} or 1-dimensional. In the latter

case, the affine span of ς◦ contains v⊺, and intersects Hb(⊺) at a point.

Proof. By Lemma 5.3.22(ii), we have:

(5.19) ς
◦ ∩

⋃{
τ : τ ∈ ⊺

}
= {v⊺}.

To exploit the above equation, we consider the (B∖ ⊺)-cut of Γ+(f), i.e.

(5.20) Γ ‡+ = Γ †+ ∩
⋂
τ∈⊺

H+
uτ ,Nτ

⊂ Γ †+

and let Σ‡ be its normal fan in NR. For ρ ∈ Σ‡[1] = Σ(f)[1] ∖ Σ[1]|B∖⊺, we also let τ ‡ρ denote

the facet of Γ ‡+ dual to ρ. We make a few important observations:

(a) Firstly, by Lemma 5.3.4(ii), each τ ∈ ⊺ is still a facet of Γ ‡+. That is, for ρ ∈ Σ[⊺],

τ ‡ρ = τρ.

(b) Secondly, by replacing B by B ∖
⋃
{⊺j : j > ℓ} (recall from Convention 5.3.17 that

B/∼ = {⊺1,⊺2, . . . ,⊺k} with ⊺ = ⊺ℓ), we may assume that σ cannot be inscribed in
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any cone in Σ‡, cf. Proposition 5.3.11. We then have:

∅ =
⋂{

τ ‡ρ : ρ ∈ σ[1]
}

by Lemma 5.3.14

=
(
Hb(⊺) ∩ Γ ‡+

)
∩
⋂{

τ ‡ρ : ρ ∈ σ◦[1]
}

=
(
Hb(⊺) ∩ Γ ‡+

)
∩
⋂{

τ †ρ ∩ Γ ‡+ : ρ ∈ σ◦[1]
}

by Lemma 5.3.4(i)

= Γ ‡+ ∩
(
Hb(⊺) ∩ Γ †+

)
∩
⋂{

τ †ρ : ρ ∈ σ◦[1]
}

= Γ ‡+ ∩
(
Hb(⊺) ∩ Γ †+

)
∩ ς◦ (5.17)

== ς ∩ Γ ‡+

i.e. ς ⊂ ς◦ ∖ Γ ‡+. In particular, ς◦ ∖ Γ ‡+ ̸= ∅. We also note that

ς
◦ (5.18)

== ς◦ ∩ Γ+(f) ⊂ ς◦ ∩ Γ ‡+

i.e. in particular, ς◦ ∩ Γ ‡+ is a (non-empty) face of Γ ‡+.

(c) Thirdly, by (5.20), any line segment connecting a point in Γ †+ ∖ Γ ‡+ to a point in Γ ‡+

must pass through a point in

⋃{
Γ ‡+ ∩Huτ ,Nτ : τ ∈ ⊺

} (a)
==

⋃{
τ : τ ∈ ⊺

}
.

By (5.19), we therefore deduce that any line segment connecting a point in ς◦∖ Γ ‡+ to

a point in ς◦ ∩ Γ ‡+ ≺ Γ ‡+ must pass through v⊺.

We can now conclude the proof by considering two cases.

Case 1: Suppose that v⊺ is always one of the two vertices of every line segment connecting a

point in ς◦ ∖ Γ ‡+ to a point in ς◦ ∩ Γ ‡+. Then we claim ς◦ ∩ Γ ‡+ = {v⊺}. If not, choose

a point a1 ∈ (ς◦ ∩ Γ ‡+) ∖ {v⊺}. By (b), we may also choose a point a2 in ς◦ ∖ Γ ‡+.

By (c), the line segment connecting a1 to a2 must contain v⊺ in its relative interior,
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contradicting the hypothesis of this case. From our claim we obtain:

{v⊺} = ς◦ ∩ Γ ‡+ ⊃ ς◦ ∩ Γ+(f)
(5.18)
== ς◦ ⊃ {v⊺}

which forces ς◦ = {v⊺}.

Case 2: Suppose there exists a line segment l connecting some a1 ∈ ς◦∖Γ ‡+ to some a2 ∈ ς◦∩Γ ‡+

that contains v⊺ in its relative interior. In particular, note a1 ̸= v⊺ ̸= a2, so that

dim(ς◦) ≥ dim(ς◦ ∩ Γ ‡+) ≥ 1. We claim that in fact

dim(ς◦) = dim(ς◦ ∩ Γ ‡+) = 1.

Indeed, given any a′1 ∈ ς◦ ∖ Γ ‡+, (c) implies that the line segment connecting a′1 to

a2 must contain v⊺, and thus a′1 must lie on the affine span of l. Likewise, given any

a′2 ∈ ς◦ ∩ Γ
‡
+, the line segment connecting a1 to a′2 must contain v⊺, and thus a′2 must

lie on the affine span of l.

Finally, by (5.18), ς◦ = ς◦ ∩ Γ+(f) ⊂ ς◦ ∩ Γ ‡+, so dim(ς◦) ≤ dim(ς◦ ∩ Γ ‡+) = 1. Since

ς
◦ always contains v⊺, we conclude that ς◦ is either {v⊺} or 1-dimensional.

Together these two cases prove the first statement of the proposition. For the second statement,

first note that dim(ς◦) = 1 only occurs in Case 2. In that case, we also have dim(ς◦) = 1 and

ς
◦ ∩ Γ+(f) = ς◦, so the affine span of ς◦ must be equal to the affine span of ς◦. By (5.17), ς◦

has non-empty intersection with Hb(⊺) (namely, the face ς ≺ Γ †+). That intersection must be a

point since v⊺ ∈ ς◦ ⊂ ς◦ has b(⊺)th coordinate 1. □

Remark 5.3.24. From the proof above, one may supplement Proposition 5.3.23 as follows.

If dim(ς◦) = 1, then dim(ς◦) = 1 and dim(ς) = 0, i.e. σ ∈ Σ†[max]. Note however that if

ς
◦ = {v⊺}, dim(ς◦) and dim(ς) are arbitrary.
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Proof of Proposition 5.3.20. We saw that ς◦ is either {v⊺} or 1-dimensional. There

is nothing to show in the former case. In the latter case, we saw that v⊺ is the only point in ς◦

with b(⊺)th coordinate 1. Combining this with Corollary 5.3.19 finishes the proof. □

5.3.C. A refined desingularization of non-degenerate polynomials above the origin.

In this section, let f ∈ k[x1, . . . , xn] be a non-degenerate polynomial, and we continue adopting

the conventions outlined at the start of §5.3.B and in Convention 5.3.17. We show next that

the following multi-weighted blow-up of An:

ϑΣ† : XΣ† → An

supplies a stack-theoretic embedded desingularization of V (f) ⊂ An above the origin 0 ∈ An

(Definition 1.3.15). Let us first make this goal concrete.

5.3.25. For the remainder of this section, we write

f =
∑
a∈Nn

ca · xa ∈ k[x1, . . . , xn]

where c0 = f(0) = 0, and adopt the notations in 4.1.9 (but with Σ there replaced by Σ† here).

By 4.1.9(i), the total transform of f under ϑΣ† is:

ϑ#
Σ†(f) =

∑
a∈Nn

ca · (x′)a ·
∏

ρ∈Σ†[ex]

(x′ρ)
a·uρ

where for each a = (a1, . . . , an) ∈ Nn, (x′)a := (x′1)
a1 · · · (x′n)an . Next, for each ρ ∈ Σ†[1] =

[n] ⊔ Σ†[ex] (cf. Convention 4.1.8), we set:

(5.21) Nρ := Nτρ = inf
a∈Γ+(f)

a · uρ = inf
a∈Γ†+

a · uρ
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cf. Conventions 1.0.1 and 5.1.3, as well as 5.1.5 and 5.3.6. In the same way as 5.2.2, we define

the proper transform of f under ϑΣ† as:

(5.22) f ′ :=
Π#

Σ†(f)∏
ρ∈Σ†[1] (x

′
ρ)

Nρ
=
∑
a∈Nn

ca · (x′)a−n ·
∏

ρ∈Σ†[ex]

(x′ρ)
a·uρ−Nρ

where n :=
(
Ni : i ∈ [n]

)
. We can now state our goal more precisely in the following theorem:

Theorem 5.3.26. At points in ϑ−1
Σ† (0) ⊂XΣ†, the divisor

V (f ′) ⊂XΣ†

is smooth and intersects the divisors
{
V (x′ρ) ⊂XΣ† : ρ ∈ Σ†[1], Nρ > 0

}
transversely. In other

words,

ϑ−1
Σ†

(
V (f)

)
⊂XΣ†

is a simple normal crossings divisor at every point in ϑ−1Σ (0) ⊂XΣ†.

Proof. We prove this theorem in steps.

5.3.27. Let Σ
†

be the augmentation of Σ†. For an arbitrary cone σ in Σ
†
, we will need a

simplified presentation for the σ-chart D+(σ) of XΣ† . Let us first recall from 4.1.9(iii) that

D+(σ) =
[
Spec

(
k[x′1, . . . , x

′
n]
[
x′ρ : ρ ∈ Σ†[ex]

][
x′−1σ

])
/ GΣ†[ex]

m

]
where x′σ =

∏
ρ∈Σ†[1]∖σ[1] x

′
ρ. Since x′ρ is invertible on D+(σ) for ρ ∈ Σ†[ex] ∖ σ[1], and their

ZΣ†[ex]-weights {−eρ : ρ ∈ Σ†[ex] ∖ σ[1]} are linearly independent over Z (4.1.9(ii)), we observe

from Lemma 2.1.2 that by setting

x′ρ = 1 for every ρ ∈ Σ†[ex] ∖ σ[1]
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we obtain an isomorphism:

(5.23) D+(σ) =
[
Spec

(
k[x′1, . . . , x

′
n]
[
x′ρ : ρ ∈ σ[ex]

][
x′−1σ

])
/ Gσ[ex]

m

]
where:

(i) σ[ex] := Σ†[ex] ∩ σ[1].

(ii) x′σ becomes
∏

i∈[n]∖σ[1] x
′
i.

(iii) The action Gσ[ex]
m ↷ Spec(k[x′1, . . . , x

′
n][x′ρ : ρ ∈ σ[ex][x′−1σ ]) is specified as follows.

For each i ∈ [n], the Zσ[ex]-weight of x′i is (uρ,i)ρ∈σ[ex], and for each ρ ∈ σ[ex], the

Zσ[ex]-weight of x′ρ is −eρ ∈ Zσ[ex].

On the right hand side of (5.23), the expression for the proper transform f ′ of f under ϑΣ†

becomes:

(5.24) f ′ =
∑
a∈Nn

ca · (x′)a−n ·
∏

ρ∈σ[ex]

(x′ρ)
a·uρ−Nρ .

5.3.28. For a cone σ in Σ
†
, we deduce from (5.23) an expression for the (GΣ†[1]

m / GΣ†[ex]
m )-

orbit O(σ) of XΣ† corresponding to σ, cf. 4.1.9(iv):

O(σ) =
[
Spec

(
k
[
x±i : i ∈ [n] ∖ σ[1]

])
/ Gσ[ex]

m

]
= V

(
x′ρ : ρ ∈ σ[1]

) closed
↪−−−→ D+(σ).

(5.25)

For σ ∈ Σ
†

not contained in any coordinate hyperplane {e∨i = 0} in NR, we claim that

at every point in O(σ), the divisor V (f ′) ⊂ XΣ† is smooth and intersects the divisors in

{V (x′ρ) ⊂ XΣ† : ρ ∈ σ[1], Nρ > 0} transversely. By Corollary 5.1.20, this claim proves the

theorem. We consider two cases.
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5.3.29 (Case A). Assume that σ is old. Using the simplified expression for D+(σ) in (5.23)

and the corresponding expression for f ′ in (5.24), we claim:

f ′|V (x′
ρ : ρ∈σ[1]) =

∑
a∈Nn∩

⋂
{τρ : ρ∈σ[1]}

ca · (x′)a−n

=
∑

a∈Nn∩
⋂
{τρ : ρ∈σ[1]}

ca ·
∏

i∈[n]∖σ[1]

(x′i)
ai−Ni .

(5.26)

Indeed, the only a ∈ Nn, whose corresponding monomial

(x′)a−n ·
∏

ρ∈σ[ex]

(x′ρ)
a·uρ−Nρ

in f ′ remains non-zero after setting x′ρ = 0 for all ρ ∈ σ[1], must satisfy:

(i) a · uρ = Nρ for every ρ ∈ σ[ex], i.e. a ∈ τρ for every ρ ∈ σ[ex];

(ii) a · ei = ai = Ni for every i ∈ [n] ∩ σ[1], i.e. a ∈ τi for every i ∈ [n] ∩ σ[1].

Next, since σ is old, we know from 5.1.21 and Lemma 5.3.14 that
⋂
{τρ : ρ ∈ σ[1]} is a (non-

empty) compact face ς ≺ Γ+. Then the expression for f ′|V (x′
ρ : ρ∈σ[1]) in (5.26) matches the

expression for fς/x
n (1.2), after replacing x′i in the former with xi for each i ∈ [n] ∖ σ[1]. By

the non-degeneracy assumption on f , fς/x
n is smooth on the torus Gn

m ⊂ An, which implies

that

V
(
f ′|V (x′

ρ : ρ∈σ[1])
)
⊂ O(σ)

is smooth, i.e. at every point in O(σ) ⊂XΣ† , the divisor V (f ′) ⊂XΣ† is smooth and intersects

the divisors in {V (x′ρ) ⊂XΣ† : ρ ∈ σ[1]} transversely.

5.3.30 (Case B). Assume that σ is new. Let σ′ be the smallest cone in Σ† such that σ ⊏ σ′.

With respect to σ′, we fix, as in Convention 5.3.17, a corresponding ⊺ ∈ B/∼ with apex v⊺ and

base direction b(⊺), such that all the hypotheses, observations and results in §5.3.B hold. In

particular, R≥0eb(⊺) must be an extremal ray of σ, or else σ is old by Proposition 5.3.18(ii).
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Letting σ◦ be the cone in NR generated by the rays in σ[1]∖{⟨eb(⊺)⟩}, we consider the following

factorization of (5.25):

O(σ) = V
(
x′ρ : ρ ∈ σ[1]

)
=
[
Spec

(
k
[
x±i : i ∈ [n] ∖ σ[1]

])
/ Gσ[ex]

m

]
↪→ V

(
x′ρ : ρ ∈ σ◦[1]

)
=
[
Spec

(
k[x′b(⊺)]

[
x±i : i ∈ [n] ∖ σ[1]

])
/ Gσ[ex]

m

]
↪→ D+(σ)

where the expression for V (x′ρ : ρ ∈ σ◦[1]) is similarly deduced from (5.23). Next, set ς◦ :=⋂
{τρ : ρ ∈ σ◦[1]}. Similar to Case A, we have:

f ′|V (x′
ρ : ρ∈σ◦[1]) =

∑
a∈Nn∩ ς◦

ca · (x′)a−n

=
∑

a∈Nn∩ ς◦
ca · (x′b(⊺))ab(⊺) ·

∏
i∈[n]∖σ[1]

(x′i)
ai−Ni .

(5.27)

(Recall that Nb(⊺) = 0, cf. 5.3.15(iii).) We now claim that there exists g ∈ k[x′b(⊺)]
[
x′i : i ∈

[n] ∖ σ[1]
]

such that

(5.28) f ′|V (x′
ρ : ρ∈σ◦[1]) = cv⊺ · x′b(⊺) ·

∏
i∈[n]∖σ[1]

(x′i)
vi−Ni + (x′b(⊺))

2 · g

where each vi is the ith coordinate of v⊺. The general case can be reduced to the aforementioned

case where σ ∈ Σ†. This reduction is standard (similar to 5.1.21), so we have chosen to explicate

this separately in Remark 5.3.31 below. Consequently, we deduce from (5.28) that

∂f ′|V (x′
ρ : ρ∈σ◦[1])

∂x′b(⊺)

∣∣∣
V (x′

b(⊺))
= cv⊺ ·

∏
i∈[n]∖σ[1]

(x′i)
vi−Ni

which is a unit on O(σ) = V (x′ρ : ρ ∈ σ◦[1]) ∩ V (x′b(⊺)), since cv⊺ ̸= 0 (v⊺ is a vertex of Γ+(f))

and x′i is invertible on O(σ) for each i ∈ [n] ∖ σ[1] (5.25). Thus, V
(
f ′|V (x′

ρ : ρ∈σ◦[1])

)
is smooth

at every point in O(σ) ⊂ V
(
x′ρ : ρ ∈ σ◦[1]

)
, i.e. at every point in O(σ) ⊂ XΣ† , the divisor
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V (f ′) ⊂XΣ† is smooth and intersects the divisors in

{
V (x′ρ) ⊂XΣ† : ρ ∈ σ[1], Nρ > 0

}
⊂
{
V (x′ρ) ⊂XΣ† : ρ ∈ σ◦[1]

}
transversely. This completes the proof.

□

Remark 5.3.31. In this remark, we prove (5.28) for all cones σ ∈ Σ
†
. Retain the notation

in the above proof. Letting (σ′)◦ be the cone in NR generated by the rays in σ′[1]∖{⟨eb(⊺)⟩} (as

in Proposition 5.3.18(ii)), we have σ◦ ⊏ (σ′)◦. In fact, (σ′)◦ is also the smallest cone in Σ† such

that σ◦ ⊏ (σ′)◦. If not, σ◦ lies in a proper face of (σ′)◦. Since (σ′)◦ ≺ σ′ (Proposition 5.3.18(ii)),

σ = σ◦+ ⟨eb(⊺)⟩ must also lie in a proper face of σ′ = (σ′)◦+ ⟨eb(⊺)⟩, contradicting our choice of

σ′. Consequently, ⋂{
τ †ρ : ρ ∈ σ◦[1]

}
=
⋂{

τ †ρ : ρ ∈ (σ′)◦[1]
}

cf. 5.1.13 and Lemma 5.1.16. Intersecting both sides of the above equality by Γ+(f), we obtain

ς
◦ =

⋂
{τρ : ρ ∈ (σ′)◦[1]}. Then (5.28) follows from the preceding sentence together with (5.27),

Proposition 5.3.20, and 5.1.21.

We conclude this section by proving the main theorems of this chapter:

Proof of Theorems H and I. After replacing Σ(f) with Σ†, the argument in 5.2.8

works verbatim. Fixing a frugal simplicial subdivision ΣΣΣ† of Σ† (5.2.4), we have:

ϑ−1
ΣΣΣ†

(
V (f)

)
XΣΣΣ† XΣ† An

π−1
ΣΣΣ†

(
V (f)

)
XΣΣΣ†

coarse space

closed

coarse space

open ϑ
Σ†

closed π
Σ†

where:

(i) πΣΣΣ† is proper and birational.
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(ii) XΣΣΣ† has finite quotient singularities (5.2.6).

(iii) π−1
ΣΣΣ†

(
V (f)

)
⊂ XΣΣΣ† is a Q-simple normal crossings divisor [LCMMVVS20, Definition

1.6] at every point in π−1
ΣΣΣ† (0) ⊂ XΣΣΣ† . Indeed, ϑΣΣΣ† factors as XΣΣΣ†

open
↪−−→XΣ†

Π
Σ†−−→ An in

the above diagram. We therefore deduce, from (5.22), that:

(5.29) ϑ−1
ΣΣΣ†

(
V (f)

)
= V (f ′) +

∑
ρ∈Σ†[1]

Nρ · V (x′ρ)

where each V (x′ρ), as well as V (f ′), is now regarded as a divisor in XΣΣΣ†
open
↪−−→ XΣ† .

By Theorem 5.3.26, ϑ−1
ΣΣΣ†

(
V (f)

)
is a simple normal crossings divisor at every point in

ϑ−1
ΣΣΣ† (0) = ϑ−1

Σ† (0) ∩ XΣΣΣ† . It remains to note that π−1
ΣΣΣ†

(
V (f)

)
is the coarse space of

ϑ−1
ΣΣΣ†

(
V (f)

)
, since the coarse space morphism XΣΣΣ† → XΣΣΣ† maps the latter onto the

former.

In other words, πΣΣΣ† : XΣΣΣ† → An is an embedded Q-desingularization of V (f) ⊂ An above

the origin 0 ∈ An, in the sense that it satisfies (i), (ii) and (iii) above. As noted in 5.2.8,

[LCMMVVS20, Theorem 4] applies more generally to our case of π := πΣΣΣ† , D1 := V (f),

D2 := 0, and W = {0}. Together with (5.10) and (5.29), we deduce that Zmot,0(f ; s) lies in

Mk

[
L−s

] [ 1

1− L−(s+1)

] [
1

1− L−(Nρs+|uρ|)
: ρ ∈ Σ†[1] = Σ(f)[1] ∖ Σ(f)[B]

]

i.e. Θ†,B(f) = {−1} ∪
{
− |uρ|

Nρ
: ρ ∈ Σ(f)[1]∖Σ(f)[B] with Nρ > 0

}
is indeed a set of candidate

poles for Zmot,0(f ; s). □

5.4. Further remarks and future directions

5.4.A. On a potential refinement of Theorem H in the case of B1-facets. In this

section, we revisit Theorem H and explain why the theorem does not seem to give a complete

answer even in the case of B1-facets. Recall that Ztop,0(f ; s) denotes the topological zeta

function of f at the origin 0 ∈ An, cf. 1.3.5 and Remark 1.3.6.
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5.4.1. Using our conventions, [ELT22, Proposition 3.8] can be stated as follows. Let

S◦ ⊂ Θ(f) ∖ {−1}. If F(f ; s◦) is a set of B1-facets with consistent base directions for every

s◦ ∈ S◦, then every pole of Ztop,0(f ; s) is contained in Θ(f) ∖ S◦. This can be seen as a

consequence of our Theorem H as follows. Indeed, we first note an immediate consequence of

Theorem H:

Corollary 5.4.2. Let s◦ ∈ Θ(f) ∖ {−1}. If F(f ; s◦) is a set of B1-facets with consistent

base directions, then Θ(f) ∖ {s◦} is a set of candidate poles for Zmot,0(f ; s).

Proof of statement in 5.4.1. In view of Remark 1.3.6, Corollary 5.4.2 in particular

implies that for every s◦ ∈ S◦, every pole of Ztop,0(f ; s) is contained in Θ(f) ∖ {s◦}. Thus,

every pole of Ztop,0(f ; s) is contained in Θ(f) ∖ S◦ =
⋂{

Θ(f) ∖ {s◦} : s◦ ∈ S◦
}

. □

5.4.3. Unfortunately, it is not immediate that the motivic analogue of 5.4.1 is true. Namely,

for S◦ ⊂ Θ(f) ∖ {−1}, one could pose the following question. If F(f ; s◦) is a set of B1-facets

with consistent base directions for every s◦ ∈ S◦, then is Θ(f)∖ S◦ a set of candidate poles for

Zmot,0(f ; s)?

One key difficulty behind this question lies in our current lack of understanding of the zero

divisors in the localized Grothendieck ring of k-varieties Mk = K0(Vark)[L−1]. More precisely,

while Corollary 5.4.2 says that Θ(f) ∖ {s◦} is a set of candidate poles for Zmot,0(f ; s) for each

s◦ ∈ S◦, it is not clear if that would imply that Θ(f) ∖ S◦ =
⋂{

Θ(f) ∖ {s◦} : s◦ ∈ S◦
}

is a set

of candidate poles for Zmot,0(f ; s).

5.4.4. Nevertheless, one could try the following different line of attack to the question posed

in 5.4.3. For S◦ ⊂ Θ(f) ∖ {−1}, one can hope that if F(f ; s◦) is a set of B1-facets of Γ+(f)

with consistent base directions for each s◦ ∈ S◦, then so is F(f ;S◦) :=
⊔
{F(f ; s◦) : s◦ ∈ S◦}.

If this is true, Theorem H would give a positive answer to the question in 5.4.3. Unfortunately,

in general this statement is just not true. For that reason among others, we believe that the
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notion of “consistent base directions” is still incomplete for the case of B1-facets. In what

follows, we present a broader notion that is motivated by [ELT22, Conjecture 1.3(i)], although

for the case of B1-facets, ours is slightly broader than theirs.

Definition 5.4.5. A set B of B1-facets of Γ+(f) has compatible apices if there exists, for

each facet τ ∈ B, a choice of a distinguished apex vτ with corresponding base direction b(τ),

such that b(τ1) = b(τ2) for every pair of adjacent facets τ1, τ2 ∈ B sharing the same distinguished

apex vτ1 = vτ2 . In this case we call {vτ : τ ∈ B} a set of compatible apices for B.

Remark 5.4.6. If B has consistent base directions, then B has compatible apices, cf. 5.3.16.

In view of 5.4.4, the next lemma supports the narrative that the notion of “compatible

apices” is possibly the correct notion to consider:

Lemma 5.4.7. Let S◦ ⊂ Θ(f) ∖ {−1}. If F(f ; s◦) is a set of B1-facets of Γ+(f) with

compatible apices for each s◦ ∈ S◦, then so is F(f ;S◦) :=
⊔
{F(f ; s◦) : s◦ ∈ S◦}.

Proof. For every s◦ ∈ S◦, fix a compatible set of apices {vτ : τ ∈ F(f ; s◦)} for F(f ; s◦).

We claim that {vτ : τ ∈ F(f ;S◦)} is a compatible set of apices for F(f ;S◦). Suppose not.

Then there exists adjacent facets τ1, τ2 ∈ F(f ;S◦) such that vτ1 = vτ2 =: v but b(τ1) ̸= b(τ2).

Letting ς := τ1 ∩ τ2, observe that:

(i) v ∈ vert(ς), and the b(τ1)
th and b(τ2)

th coordinates of v are both 1.

(ii) Any w ∈ vert(ς) ∖ {v} lies in Hb(τ1) ∩Hb(τ2).

(iii) ς is compact in the b(τ1)
st and b(τ2)

th coordinates.

Together, these imply that ς is contained in the hyperplaneH inMR defined by eb(τ1)−eb(τ2) = 0.

In fact, since ς ≺1 τ1, τ2, we have ς = H ∩ τ1 = H ∩ τ2. For i = 1, 2, sτi is the unique

positive rational number for which s−1τi
· (1, 1, . . . , 1) lies on the affine span of τi, or equivalently,

s−1τi
· (1, 1, . . . , 1) lies on the affine span of τi ∩H = ς. Since that last condition is independent

of i, we deduce sτ1 = sτ2 , a contradiction to the first sentence of this proof. □

274



Motivated by [ELT22, Conjecture 1.3(i)], one could ask the following:

Question 5.4.8. Are the following statements true?

(i) Let B be a set of B1-facets of Γ+(f) with compatible apices. Then

Θ†,B(f) := {−1} ∪
{
sτ : τ ≺1 Γ+(f) with Nτ > 0 and τ ̸∈ B

}
is a set of candidate poles for Zmot,0(f ; s).

(ii) Let S◦ ⊂ Θ(f)∖{−1}. If F(f ; s◦) is a set of B1-facets of Γ+(f) with compatible apices

for each s◦ ∈ S◦, then Θ(f) ∖ S◦ is a set of candidate poles for Zmot,0(f ; s).

Note (i) is a generalization of Theorem H, (i) implies (ii) by Lemma 5.4.7, and (ii) in particular

gives a positive answer to the question posed in 5.4.3.

Unfortunately, these are false, as indicated by a counterexample in [LPS22, Example 2.2.2].

Nevertheless, some refinement should be true, and this will be pursued in a separate sequel.

For now, we have:

Theorem 5.4.9 (= Theorem J). If n = 3, Question 5.4.8(i) is positive.

Indeed, this follows from Theorem H and the following lemma:

Lemma 5.4.10. Let n = 3, and let B be a set of B1-facets of Γ+(f). Then B has consistent

base directions if and only if B has compatible apices.

Proof. Suppose there exists a compatible set of apices {vτ : τ ∈ B} for B. We then claim

that whenever two facets τ1, τ2 ∈ B are adjacent and b(τ1) ̸= b(τ2), then one of τ1 or τ2, say τ2,

satisfies the following:

(a) τ1 is the only facet in B adjacent to τ2.

(b) vτ1 is also an apex for τ2, with corresponding base direction b(τ1).
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Admitting this claim, we re-assign τ2 with the base direction b(τ1). Repeating this re-assignment

of base direction for all such pairs (τ1, τ2) in B would then culminate in a set of consistent base

directions for B. To prove the claim, we make three successive observations:

(i) Firstly, every facet of τ1, with the exception of Hb(τ1) ∩ τ1 ≺1 τ1, contains vτ1 (cf.

5.3.15(i)). Thus, vτ1 is a vertex of τ1∩τ2 ≺1 τ1. Likewise, vτ2 is a vertex of τ1∩τ2 ≺1 τ2.

We conclude τ1∩ τ2 is the line segment in M+
R connecting the vertex vτ1 to the vertex

vτ2 .

(ii) Secondly, by re-ordering coordinates if necessary, we may assume b(τ1) = 1 and b(τ2) =

2. Since vτ1 ∈ vert(τ1 ∩ τ2) ∖ {vτ2} ⊂ vert(τ2) ∖ {vτ2}, the 2nd coordinate of vτ1 is

0. Likewise, the 1st coordinate of vτ2 is 0. Summing up, we have vτ1 = (1, 0, a) and

vτ2 = (0, 1, b) for some a, b ∈ N.

(iii) Thirdly, we claim that besides vτ1 and vτ2 , there can only be at most one other v ∈

vert(Γ+(f)) satisfying v · (e1 + e2) ≤ 1, and moreover such a v must equal (0, 0, c) for

some c ∈ N. Indeed, if v = (v1, v2, v3) ∈ vert(Γ+(f)) satisfies v·(e1+e2) = v1+v2 ≤ 1,

then (v1, v2) = (0, 0), (1, 0) or (0, 1). The case (v1, v2) = (1, 0) cannot happen since

otherwise v − vτ1 ∈ Re∨3 , but no two distinct vertices of Γ+(f) can differ by a vector

in
∑n

i=1 R≥0e
∨
i or in

∑n
i=1 R≤0e

∨
i . Likewise, (v1, v2) ̸= (0, 1), or else v − vτ2 ∈ Re∨3 .

Thus, (v1, v2) = (0, 0). Note too that there cannot be two distinct v,v′ ∈ vert(Γ+(f))

of the form (0, 0, c) for c ∈ N, or else v − v′ ∈ Re∨3 .

Returning back to the claim, we deduce from (iii) that the hyperplane He1+e2,1 = {a ∈M+
R : a ·

(e1+e2) = 1} intersects Γ+(f) in (τ1∩τ2)+R≥0e
∨
3 . Thus, if He1+e2,1 is a supporting hyperplane

for Γ+(f), either τ1 or τ2 is (τ1 ∩ τ2) + R≥0e
∨
3 . Otherwise, by (iii) there must exist a unique

v ∈ vert(Γ+(f)) such that v · (e1 + e2) < 1, and v = (0, 0, c) for some c ∈ N. Then the convex

hull of (τ1∩ τ2)∪{v} in M+
R is a 2-dimensional face of Γ+(f) that contains τ1∩ τ2 as a face, and
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hence, must be either τ1 or τ2. In either case one verifies from its respective conclusion that

our claim holds. □

5.4.B. Other remarks and directions.

5.4.11 (Looking beyond B1-facets). It is natural to ask if the consideration of B1-facets

is sufficient for the monodromy conjecture for non-degenerate polynomials in n ≥ 4 variables.

The answer is no: in [ELT22], the authors described what they call a B2-facet, and showed

that for the case n = 4, certain configurations of B1 and B2-facets of Γ+(f) contribute to fake

poles of Ztop,0(f ; s). For general n, the authors also gave, in [ELT22, Conjecture 1.3(i)], a

conjectural description of when a configuration of facets of Γ+(f) could culminate in fake poles

of Ztop,0(f ; s). There does not seem to be a clear connection between their conjectural descrip-

tion and our methods. In fact, Larson–Payne–Stapledon recently supplied a counterexample

[LPS22, Example 2.2.1] to that conjecture. Nevertheless we anticipate the case of B2-facets,

which we are pursuing in a sequel, would demystify matters.

5.4.12 (On Corollary K). While half of the proof of Corollary K was input from this

chapter, the other half uses observations that are proven separately in [LVP11]. Nevertheless,

we expect that one can use the stack-theoretic embedded desingularization ϑΣ† : XΣ† → An of

V (f) ⊂ An above 0 ∈ An in §5.3.C to re-prove the other half of Corollary K, via a “stack-

theoretic analogue” of A’Campo’s formula [A’C75] for the monodromy zeta function, e.g.

[MM13, Theorem 2.8]. For brevity, we omit pursuing this here.
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