Introduction

Humans are diploid organisms: we have two copies of DNA. We inherit one
variation of our genes from our father and one from our mother: these two
sequences are called haplotypes. A genotype consists of both of an
individual’s haplotypes.

To sequence DNA, we cut it into small fragments our machines can read,
but by doing this we lose information about which strands any differences we
observe come from.

We can use the EM algorithm to phase short sequences, which finds the
most likely haplotypes that can be assigned to each strand. To do so, however,
we must enumerate every possible potential answer, which quickly becomes
intractable.

Current long-range techniques rely on the Markov Assumption: only local
information is used in order to simplify calculations. My research studied how
current methods could be improved by capturing long-range dependencies.

Ambiguity in Genotypes

It is convenient to treat a sequence of DNA as a long string. Human DNA is
mostly identical, so let us consider only those places where two haplotypes
vary by one base (SNPs). Let us further assume that there are only two
variants (the biallelic assumption).

We symbolically represent a haplotype as a string {0,1}". We combine two
haplotypes to form a genotype: where they agree, we place that symbol, and
where they disagree we use the symbol 2. Given a set of such genotypes, can
we infer the haplotypes over the binary alphabet that most likely gave rise to
the genotypes?

True Haplotype Possible Haplotypes

1100101 1202101 1101101 1100101
1001101 1000101 1001101

Avoiding Combinatorial Explosion

We observe that if there are n ambiguous sites in the genotype, there are
potentially 2" explanations. We avoid enumerating all of them by making the
assumption that we only need local information to make a good prediction
about an ambiguous symbol.

This makes intuitive sense if we phrase it like this: some genes only have a
small number of variations. For us to predict which variation you have, we
only need to know which gene we are looking at - we don’t need information
from several genes ago.

It becomes important, then, to recognize the pattern you are in, but we
should only remember as much as we need to make a good prediction. We
turn to a specific type of data structure that can help us perform this
recognition: The APFA.
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Acyclic Probabilistic Finite Automata (APFA)

An APFA M is defined as a 7-tuple (Q, q,, 45,2 & T ¥ ) where

e Qis afinite set of states

d, € Qs the starting state

g £ Qis the final state

2’ is a finite alphabet

¢ 2 is the final symbol

T:Qx{X A ]} - Q w{qis the transition function

y:Qx{2 U{{}} —=[0,1]is the next symbol probability function

Storing the strings in this way allows us to infer the most likely haplotypes
given ambiguous genotypes and a training set. The more strings we train on,
the better the estimate.

A Customizable Implementation

My work has revolved around designing an in-house implementation of this
data structure (currently the foundation of the gold-standard BEAGLE phasing
software). This allows us to experiment with different parameters and
metrics, as well as provides us with the ability to extend and augment its base
functionality.

OUTPUT COMPARISON WITH THE INDUSTRY STANDARD

BEAGLE Custom Implementation
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The data in the left column is the output
of the BEAGLE algorithm when applied to
a short segment of Mildew sequence data.
The output on the right is the result of the implementation for the Istrail Lab.

Figures on the left reproduced from Ankinakatte and Edwards, 2015?

A Mathematically Rigorous Algorithm
for Long-Range Haplotype Phasing

Merging Criterion

A primary goal of my research was to examine the merging criteria used to
create the final APFA from the initial tree. Whenever two nodes merge back
into one node, this constitutes a “loss of memory” for the model: although
the sequences are different, future events depend only on this one collapsed
node.

It is worrisome, then, that there is no universally agreed-upon “best”
metric for determining when nodes are similar enough to merge them. In
particular, | was interested in the functional difference between the Ron et.
al. merging criterion and the Browning and Browning implementation, which
modifies it to account for a higher variance in nodes with lower observed
counts.

Ron et. al.

For some constant threshold p, two nodes u and v are similar
if for every string s:

| (pu(s)/p) = (p(s)/p,) | <n

Browning and Browning

The threshold o is allowed to vary as a function of the node counts.

| (p,(s)/p,) = (p,(s)/p,)| <0.5(n, 1+ n 1)1/

Capturing Long-Range Dependencies

While the Markov assumption is especially convenient for this sort of data,
there are long-range dependencies that are not being leveraged in order to
make more accurate decisions. The way DNA folds and interacts, sequences
that are very far apart can interact, which indicates that knowledge of one of
those far away sequences will inform our phasing of the other. The Markov
Assumption ignores these sorts of correlations.

It is therefore worthwhile to examining ways to use information from
biology to enhance the algorithm — sequence data from long reads and the
powerful haplotype assembly software HapCompass to help inform decisions
that are currently being made purely statistically. This research is ongoing.
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