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A Customizable Implementation 

    Humans are diploid organisms: we have two copies of DNA.  We inherit one 
variation of our genes from our father and one from our mother: these two 
sequences are called haplotypes. A genotype consists of both of an 
individual’s haplotypes.  
    To sequence DNA, we cut it into small fragments our machines can read, 
but by doing this we lose information about which strands any differences we 
observe come from. 
    We can use the EM algorithm to phase short sequences, which finds the 
most likely haplotypes that can be assigned to each strand. To do so, however, 
we must enumerate every possible potential answer, which quickly becomes 
intractable. 
   Current long-range techniques rely on the Markov Assumption: only local 
information is used in order to simplify calculations. My research studied how 
current methods could be improved by capturing long-range dependencies. 
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My work has revolved around designing an in-house implementation of this 
data structure (currently the foundation of the gold-standard BEAGLE phasing 
software). This allows us to experiment with different parameters and 
metrics, as well as provides us with the ability to extend and augment its base 
functionality.  
 

OUTPUT COMPARISON WITH THE INDUSTRY STANDARD 
 
               BEAGLE                                         Custom Implementation 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The data in the left column is the output 
of the BEAGLE algorithm when applied to 
a short segment of Mildew sequence data. 
The output on the right is the result of the implementation for the Istrail Lab.  
 
Figures on the left reproduced from  Ankinakatte and Edwards, 20151 

    It is convenient to treat a sequence of DNA as a long string. Human DNA is 
mostly identical, so let us consider only  those  places where two haplotypes 
vary by one base (SNPs). Let us further assume that there are only two 
variants (the biallelic assumption). 
    We symbolically represent a haplotype as a string {0,1}n. We combine two 
haplotypes to form a genotype: where they agree, we place that symbol, and 
where they disagree we use the symbol 2. Given a set of such genotypes, can 
we infer the haplotypes over the binary alphabet that most likely gave rise to 
the genotypes? 

    We observe that if there are n ambiguous sites in the genotype, there are 
potentially 2n explanations.  We avoid enumerating all of them by making the 
assumption that we only need local information to make a good prediction 
about an ambiguous symbol. 
    This makes intuitive sense if we phrase it like this: some genes only have a 
small number of variations. For us to predict which variation you have, we 
only need to know which gene we are looking at - we don’t need information 
from several genes ago. 
    It becomes important, then, to recognize the pattern you are in, but we 
should only remember as much as we need to make a good prediction.  We 
turn to a specific type of data structure that can help us perform this 
recognition: The APFA. 

True Haplotype Genotype  Possible Haplotypes  

1100101 1202101  1101101 1100101  

1001101 1000101 1001101 

    While the Markov assumption is especially convenient for this sort of data, 
there are long-range dependencies that are not being leveraged in order to 
make more accurate decisions. The way DNA folds and interacts, sequences 
that are very far apart can interact, which indicates that knowledge of one of 
those far away sequences will inform our phasing of the other. The Markov 
Assumption ignores these sorts of correlations. 
    It is therefore worthwhile to examining ways to use information from 
biology to enhance the algorithm – sequence data from long reads and the 
powerful haplotype assembly software HapCompass to help inform decisions 
that are currently being made purely statistically. This research is ongoing. 

Acyclic Probabilistic Finite Automata (APFA) 

An APFA M is defined as a 7-tuple (Q, q0, qf ,, , ,  ) where  
•  Q is a finite set of states 
•  q0  Q is the starting state 
•  qf   Q is the final state 
•    is a finite alphabet  
•      is the final symbol 
•   : Q {  { }}  Q  {qf} is the transition function 
•   : Q {  { }}  [0,1] is the next symbol probability function  
 

Storing the strings in this way allows us to infer the most likely haplotypes 
given ambiguous genotypes and a training set. The more strings we train on, 
the better the estimate. 

Merging Criterion 

    A primary goal of my research was to examine the merging criteria used to 
create the final APFA from the initial tree. Whenever two nodes merge back 
into one node, this constitutes a “loss of memory” for the model: although 
the sequences are different , future events depend only on this one collapsed 
node. 
    It is worrisome, then, that there is no universally agreed-upon “best” 
metric for determining when nodes are similar enough to merge them. In 
particular, I was interested in the functional difference between the Ron et. 
al. merging criterion and the Browning and Browning implementation, which 
modifies it to account for a higher variance in nodes with lower observed 
counts. 
 
Ron et. al. 
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For some constant threshold , two nodes u and v are similar  
if for every string s: 

 
 (pu(s) / pu) – (pv(s) / pv )  <  

 

The threshold  is allowed to vary as a function of the node counts. 
 

| (pu(s) / pu) – (pv(s) / pv )| < 0.5(nu
-1+ nv

-1)1/2 
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