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Molecular shape and � exoelectricity
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Monte Carlo simulations were performed of systems of wedge-shaped objects formed from
Gay–Berne ellipsoids joined to Lennard–Jones spheres. We studied two diŒerent wedge shapes,
one more asymmetric than the other. The bend and splay � exoelectric coe� cients were
measured in the isotropic and smectic phases using linear response theory, and found to be
negligibly small in the isotropic phase. We found a close connection between the properties
of the intermolecular potential and the � exoelectric coe� cients measured in the smectic phase.
In particular, negligible bend coe� cients were found for both shapes and a larger magnitude
of the splay coe� cient for the more prominent wedge, in accord with Meyer’s original
mechanism for � exoelectricity. The less prominent wedge produced a splay � exoelectric
coe� cient with the opposite sign due to the attractive tail of the intermolecular potential and
the relative narrowness of the molecular head.

1. Introduction Subsequent to Meyer’s work, Prost and Marcerou [2]

In the � exoelectric eŒect a director deformation pro- proposed a � exoelectric mechanism based on molecular
duces an electrical polarization, similar to the phenomenon quadrupoles requiring neither the shape asymmetries
of piezoelectricity in solid crystals. The � exoelectric eŒect nor the dipole moments of Meyer’s original argument.
was � rst proposed by Meyer [1] who considered asym- Rather, molecular quadrupoles allow uneven charge distri-
metric molecules either wedge-shaped with longitudinal butions leading to polarizations in any given volume
dipole moments or ‘banana’ shaped with transverse when a splay is imposed (see � gure 3).
dipoles. In the absence of a director deformation, the Both the Meyer dipole and the Prost and Marcerou
packing of the molecules is similar to that of ellipsoidal- quadrupole mechanisms have been observed experi-
shaped or rod-like molecules (the additional asymmetries mentally [3–7]. Typically, the � exoelectric coe� cients
of the molecules have negligible eŒect) and the average are measured over a range of temperature in the nematic
polarization is zero. However, when a splay is imposed phase and their variation compared with that of the
upon a system of wedges or a bend upon a system of nematic order parameter S. Although it has been shown
bananas, the preferred packing of the molecules results in that for both the dipole and quadrupole mechanisms
a net alignment of dipoles leading to an overall polarization there are contributions to the � exoelectric coe� cients
of the medium (see � gures 1 and 2). Alternatively, an involving several powers of S, Marcerou and Prost used
applied electric � eld which aligns the dipoles induces a the dominant contributions —S for the quadrupole
splay or bend in the appropriately shaped system—this mechanism and S2 for the dipole mechanism—in the
is sometimes called the inverse � exoelectric eŒect. In analysis of their experimental data [4]. They found
either case, the net polarization P and the elastic � exoelectric coe� cients proportional to S for symmetric,
deformations are related by the � exoelectric coe� cients non-polar molecules, clearly demonstrating the quadrupole
e11 and e33 introduced by Meyer through the following mechanism. Quadratic variation with S was seen for
linear response relation: banana-shaped molecules with strong, transverse dipole

moments.P 5 e11
n̂( = ¯ n̂) 1 e33

n̂ Ö ( = Ö n̂) (1 )
In the smectic A phase, an additional � exoelectric

where n̂ is the director. The � rst term on the right hand coe� cient arises, representing the coupling between the
side of this equation corresponds to splay � exoelectricity net polarization and variations in the smectic layer
(relevant for wedges) and the second term to bend spacing [6, 8–10]. Speci� cally, there is an additional
� exoelectricity (relevant for bananas). contribution to the right-hand side of equation (1)

proportional to (q2u/qz2 ) ẑ, where u is the displacement
of the smectic layers whose normals are parallel to the*Author for correspondence;

e-mail: pelcovits@physics.brown.edu ẑ axis. Prost and Pershan [6] found this additional term
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Figure 1. (a) Wedges with longi-
tudinal dipoles under normal
nematic conditions; there is no
splay and no net polarization.
(b) Under an applied splay,
the preferred wedge alignment
results in a net polarization;
alternatively, an applied � eld
induces a splay due to the
wedge shape of the molecules. (a) (b)

Figure 2. (a) ‘Bananas’ with trans-
verse dipoles under normal
nematic conditions; there is no
bend and no net polarization.
(b) Under an applied bend,
the preferred banana alignment
results in a net polarization;
alternatively, an applied � eld
induces a bend due to the
banana shape of the molecules. (a) (b)

A systematic method for calculating � exoelectric
coe� cients based on molecular shape and multipole
properties would be very valuable. Mean-� eld theories
[2, 11–14] do not consider the short range � uctuations
in molecular alignment which can be quite important.
Computer simulations oŒer a way to assess the molecular
origins of � exoelectricity. In particular, simulations can
focus strictly on Meyer’s packing ideas without the
complication of dipolar interactions which could lead
to antiparallel alignment of side-by-side molecules. To
date, only one simulation study [15] of � exoelectricity
has been carried out. In this study the � exoelectric
coe� cients were evaluated for wedge-shaped molecules
interacting via a generalized Gay–Berne potential [16].Figure 3. Quadrupoles with a splay imposed. Within the
The molecules were modelled in this study (as well as incentral ‘layer’, plus charges from above are allowed to

enter, while plus charges below are expelled, leading to a ours) by a Gay–Berne ellipsoid with a Lennard–Jones
net polarization upwards. sphere attached near one end (see � gure 4). Two sets of

parameters were considered in [15], one with a slightly
more pronounced wedge shape than the other. Theto be negligible experimentally. The � exoelectricity of
� exoelectric coe� cients were evaluated using micro-the smectic C phase involves a total of 14 coe� cients

and is discussed in [9]. scopic expressions based on density functional theory,
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2. Molecular shape modelling
Using an approach similar to that of [15] we con-

structed a wedge-shaped molecule from a standard Gay–
Berne ellipsoid (or rod) with a sphere added near one
end (see � gure 4). The net interaction potential between
two wedge-shaped molecules labelled 1 and 2 then
consists of four terms, namely

Utot 5 Urod1-rod2 1 Usphere1-sphere2 1 Urod1-sphere2
1 Usphere1-rod2 (2)

where Urod1-rod2 is given by the original Gay–Berne
potential [17]:

Urod1-rod2(û1 , û
2 , r) 5 4e(û1 , û

2 , r̂)

Figure 4. Illustration of the basic geometric parameters of
Ö GC so

r Õ s(û1 , û2 . r̂) 1 so
D12

the wedge-shaped molecule composed of a rod and sphere.

Õ C so
r Õ s(û1 , û2 , r̂) 1 so

D6H (3)

and a larger value of e11
was obtained for the more

pronounced wedge. The bend � exoelectric coe� cient where û
1 , û

2
give the orientations of the long axes of

rods 1 and 2, respectively, and r 5 r1
Õ r2 , with thewas nearly zero, in agreement with Meyer’s suggestion

that bend � exoelectricity should not appear in a system centres of the rods located at positions r1 and r2 . The
parameter s(û1 , û2 , r̂) is the separation between the rodsof wedges.

In this paper we consider a similar model but extend at which the potential vanishes, and thus represents the
shape of the rods. Its explicit form isthe study in several ways. First, we evaluate the � exo-

electric coe� cients using linear response theory and the
� uctuation–dissipation theorem, which provide a com- s(û1 , û2 , r̂) 5 soG1 Õ

1
2

x C (r̂ ¯ û1 1 r̂¯ û2 )2
1 1 x(û1 ¯ û2 )putationally simpler and more direct means of evaluation

compared with density functional theory. Second, we
1

(r̂¯ û1
Õ r̂ ¯ û2 )2

1 Õ x(û1 ¯ û
2 ) DH Õ 1/2

(4)consider two model sets of molecular parameters, one
representing a molecule with signi� cantly more asym-
metry than either molecule considered in [15]. By where so 5 s) (de� ned below) and x is
exploring the intermolecular potentials for our two sets

x 5 [(s
d
/s) )2 Õ 1]/[(s

d
/s) )2 1 1]. (5)

of parameters we � nd that the less prominent wedges
Here s

d
is the separation between two rods when they(similar to the less prominent ones considered in [15])

are oriented end-to-end with Urod1-rod2 5 0, and s) is theprefer to align with their larger ends tilted toward each
corresponding separation when the two rods are side-other (because of the short range attractive interaction),
by-side. The well depth e(û1 , û

2 , r̂), representing thewhile the more prominent wedges prefer to align with
anisotropy of the attractive interactions, is written astheir larger ends tilted away from each other (in this

case the repulsive hard core interaction dominates).
e(û1 , û2 , r) 5 eoen (û1 , û2 )e ¾ m(û1 , û2 , r̂) (6)

These opposing tendencies in turn lead to opposite
wheresigns of the splay � exoelectric coe� cients. While Meyer’s

original argument considered only repulsive hard core e(û1 , û2 ) 5 [1 Õ x2(û1 ¯ û2 )2] Õ 1/2 (7)
interactions, it is consistent with his ideas to expect this

anddiŒerence in signs if attractive forces are also included.
As in [15], and also consistent with Meyer’s ideas, we

e ¾ (û1 , û2 , r̂) 5 1 Õ
1

2
x ¾ C (r̂ ¯ û

1 1 r̂¯ û
2 )2

1 1 x ¾ (û1¯ û2 )
1

(r̂ ¯ û
1

Õ r̂ ¯ û
2 )2

1 Õ x ¾ (û1 ¯ û2 ) D� nd a negligible value of the bend � exoelectric coe� cient.
The outline of this paper is as follows. In the next

section we present the details of our modelling of wedge- (8)
shaped molecules. Section 3 discusses the linear response

with x ¾ de� ned in terms of e
d

and e) , the end-to-end and
theory used to measure the � exoelectric coe� cients in

side-by-side well depths, respectively, as
our simulation. Our results are presented in § 4 and we
oŒer some concluding remarks in the � nal section. x ¾ 5 [1 Õ (e

d
/e) )1/m]/[1 1 (e

d
/e) )1/m]. (9)
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We measure all of our physical quantities in reduced To ascertain the eŒective shape of the composite rod–
sphere molecule we computed equipotential contoursunits in terms of the energy scale eo and the length scale

s
o
. For the adjustable parameters appearing in equations (with contour values close to zero). The contour plots

are shown for the two sets of parameters in � gures 5(6), (8) and (9), we used the values originally proposed
by Gay and Berne [17]: m 5 2, n 5 1, and e) /e

d
5 5. Our and 6, clearly indicating a wedge-like shape. To explore

the interaction and local packing of the molecules wechoices for the rod shape parameters s
d

and s) are
discussed below. computed the depths of the potential wells of Utot

for several diŒerent relative orientations of a pair ofThe interaction Usphere1-sphere2
is given by the ordinary

Lennard–Jones potential: molecules with relative tilt h. The results for the two sets
of molecular parameters are shown in � gures 7 and 8.
For the purposes of comparison corresponding curvesUsphere1-sphere2(r) 5 4e

o CAd

rB12
Õ Ad

rB6D (10)
for the original Gay–Berne potential Urod1-rod2 are shown
in � gure 9.

where d is the separation between the two spheres at
Comparing � gures 7 and 8 with � gure 9, we note that

which the potential Usphere1-sphere2 vanishes; i.e. it is a
in the twist (b) and bend (c) con� gurations there is left–

measure of the diameter of the sphere. The relative
right symmetry about 180ß , which is to be expected

position vector r is measured from the centre of sphere 1
given that all three molecular shapes are rotationally

to the centre of the sphere 2.
symmetric about the long molecular axis. Furthermore,

The interaction between the rod-like part of one molecule
this symmetry leads, as expected, to a zero bend � exo-

and the sphere of the other molecule, Urod1-sphere2 , is
electric coe� cient; twist will never produce a � exoelectric

given by a Gay–Berne potential generalized to mimic
polarization. On the other hand, for the splay con-

the interaction between non-equivalent particles [16].
� guration, � gures 7 (a) and 8 (a), the wedges do not

The range parameter s
rs (

û
1 , r

12
) and the energy para-

exhibit the left–right tilt symmetry (h � h 1 180ß ) seen
meter e

rs (
û
i
, û

j
) used in this potential are generalizations

in the twist and bend con� gurations as well as the
of the corresponding parameters in equations (4) and

splay con� guration, � gure 9 (a), of the Gay–Berne case.
(6), namely [16]:

This result is not surprising: tilting the larger end of
one wedge away from the larger end of another wedgesrs (û1 , r̂) 5 srso (1 Õ xrs (r̂ ¯ û1 ) ) Õ 1/2 (11)
(corresponding to h < 180ß in the � gures) should yield a

and diŒerent energy than tilting the larger ends toward each
other. More importantly, for each set of wedge para-e

rs (
û
1 , r̂) 5 1 (12)

meters there is an absolute minimum in the potential
with x

rs
de� ned as energy corresponding to a � nite but small splay angle.

For the more prominent wedge shape, � gure 8 (a), this
angle is approximately 10 ß ; i.e. the pair of wedges preferxrs 5

s2
d

Õ s2)
s2
d

1 d2
(13)

to align with their larger ends tilted away from each
other. For the less prominent wedge shape, � gure 7 (a),and
the angle corresponding to the absolute minimum is
nearly 360ß ; i.e. the wedges prefer to align with their larger

srso 5
1

Ó 2
(s2) 1 d2)1/2 . (14) ends tilted toward each other. As we shall see below,

this diŒerence yields � exoelectric coe� cients of opposite
signs for the two molecular shapes. While it might seemIn the rod–sphere potential the relative position vector

r is measured for the centre of the rod to the centre of surprising at � rst glance that the less prominent wedges
tilt toward each other, given the attractive interactionthe sphere.

We performed simulations for two sets of molecular between two spheres and the fact that d < s) , in this
case it is a reasonable result. For the more prominentparameters: a slightly wedge-shaped object with s) 5 1.0,

s
d

5 2.6, d 5 0.94, and a more prominent wedge with wedges the larger repulsive core of the spheres leads to
the expected tilting of the larger ends away from eachparameters s) 5 1.0, s

d
5 2.4, d 5 1.3. In the former case

the centre of the sphere was located at a distance D 5 1.3 other.
While the absolute minima of the pair potentials forfrom the centre of the rod, and at a distance D 5 1.2 in

the latter case. In terms of the steric dipole moment the two sets of wedge parameters correspond to non-
zero splay, note that this state is only slightly preferredp* 5 (4p/3)(d/2)3D introduced in [15], our parameters

correspond to values of P* of 0.565 and 1.38 respectively over the aligned state, h 5 0 ß , for the parameters of
� gure 7 (a) and the antiparallel aligned state, h 5 180ß ,(in [15] systems with dipole moments of 0.524 and 0.662

were studied). for the more prominent wedge of � gure 8 (a). There
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Figure 6. Potential energy contours showing the shape of the
rod–sphere composite for a more prominent wedge with
parameters s) 5 1.0, s

d
5 2.4, d 5 1.3.

of a system of 256 wedge-shaped molecules using both
sets of molecular parameters, we found, as expected on
symmetry grounds, no net spontaneous splay or electric
polarization (assuming molecular dipole moments parallel
to the long axis of the wedge). However, if an electric
� eld were applied to the system of prominent wedges,
we would expect the potential well corresponding to
non-zero splay to become deeper relative to that of the
antiparallel state h 5 180ß , leading to splay � exoelectricity.
For the slightly wedge-shaped objects of � gure 7, the
shallowness of the well corresponding to non-zero splay
makes it less obvious that splay � exoelectricity will exist.
However, in our simulations we do in fact splay � exo-
electricity in this case, albeit smaller than in the case of
the more prominent wedges and with the opposite sign.

We now turn to a discussion of how to extract the
� exoelectric coe� cients from our simulations.

(a)

(b)

Figure 5. Potential energy contours showing the shape of the
rod–sphere composite with parameters s) 5 1.0, s

d
5 2.6,

d 5 0.94: (a) side view showing wedge-like asymmetry;
3. Calculation of � exoelectric coe� cients(b) top view showing axial symmetry. The top view

To measure � exoelectric coe� cients in this simulation,contours are not completely circular due to a � nite number
of sample points. The side view data were generated by we used the linear response theory of Nemtsov and
� xing one wedge in the yz plane as shown, while a second Osipov [18]. The � exoelectric coe� cients in this method
wedge pointing up out of the plane and with its narrow are related to the response function of the system to an
end just touching the plane ‘scanned’ across the � rst

orientational stress. Using the � uctuation-dissipationwedge. For the top view data, both wedges were parallel;
theorem, the response function can be found from cor-one remained � xed while the other was moved around

the � rst in the same plane. relation functions of the polarization density and the
orientational stress tensor. The latter tensor is conjugate
to the orientational strain which yields � exoelectricity.is also a substantial subsidiary potential minimum for

antiparallel slightly wedge-shaped molecules. In our Thus, a calculation of the relevant correlation functions
yields the � exoelectric coe� cients.simulations in the absence of an external electric � eld
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(a)

(b)

(c)

Figure 7. Minimum well depths (calculated as a function of

(a)

(b)

(c)

Figure 8. The same as � gure 7 but for the more prominentmolecular separation) for molecular parameters s) 5 1.0,
s
d

5 2.6, d 5 0.94 for various relative orientations as wedges shown in � gure 6, with parameters s) 5 1.0,
s
d

5 2.4, d 5 1.3.shown: (a) splay, (b) twist and (c) bend con� gurations.
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Speci� cally, the splay and bend � exoelectric coe� cients
in the Nemstov–Osipov formalism are given by

e11 5 Õ E
abc

embc
n
a
nm/2

e33 5 E
abc

e
abmn

c
nm/2 (15)

where we use the summation convention over the Greek
indices (summed over the coordinate directions x, y and z).
The tensor e

abc
is the antisymmetric Levi–Civita tensor,

while the antisymmetric tensor E
abc

is the response
function satisfying

P
a

5 E
abc

c
bc

(16)

where c
ab

is the orientational strain tensor given by

c
ab

5
qh

a
qx

b

. (17)

Here h
a

denotes the rotation angle of the director about
the coordinate axis labelled by a. For small director
deformations dn̂, h~ sin h~ n̂ Ö dn̂, which then yields

c
bc

5 e
bmnnm

qnn

qx
c

. (18)

Symmetry considerations show that E
abc

has four
independent components in the nematic and smectic A
phases.

Using the � uctuation-dissipation theorem the com-
ponents of the response function E

abc
are given by

correlation functions of the orientational stress tensor
and polarization:

E
abc

5 Õ
b

V
7 p

bc
P

a
8 . (19)

Here b 5 1/kBT , V is the volume of the system, P 5 S
i
m
i
,

(m
i

is the dipole moment of molecule i ), and p
ab

is the
static orientational stress tensor given by

p
ab

5
1
2 �

i Þ j
r
ijb

t
ija

. (20)

In equation (20) r
ij

is the relative position vector of
molecules i and j, and t

ij
is the torque exerted by

molecule j on i.
In our simulations, then, we calculate the components

E
abc

of the response function by computing the correlation
functions in equation (19) as time averages (or MC
cycle averages) and then calculate e11 and e33 from
equation (15) (the director is also computed during the
simulations). We set the magnitude of the molecular

(a)

(b)

(c)

dipole moment to unity; its direction is given by û, theFigure 9. The same as � gure 7 but for Gay–Berne molecules
with parameters s) 5 1.0, s

d
5 3.0. long axis of the wedge. The torque on molecule i due to
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our generalized potential Utot is given by [19],

t
i
5 �

i Þ j

t
ij

5 û
i
Ö (Õ = uÃ Utot

). (21)

4. Results
We performed constant temperature and pressure

(with P* 5 Ps3o/eo 5 10) Monte Carlo simulations on
systems of 256 wedges, using the two sets of molecular
parameters described in § 2. The systems were equilibrated
for 250 000–500 000 cycles and cooled in dimensionless
temperature steps of 0.1 (the dimensionless temperature
is de� ned by T * ; kBT /eo). As in [15] we found a strong
preference for the system to form a smectic A phase,
even when the attractive part of the potential was
removed (in the ordinary GB system, removal of the
attractive forces tends to stabilize the nematic phase
[20]). The use of a diŒerent set of Gay–Berne parameters
for the attractive portion of the potential [21] (which
enhance the stability of the nematic phase for a system
of GB ellipsoids) did not stabilize the nematic phase
in the present case of wedge-like molecules—another
indication that the repulsive core shape is the dominant
factor in the possible formation of a nematic phase.

Stelzer et al. [15] found that the nematic phase is
absent for dipole moment p* 5 0.814, though they were
able to produce nematic phases over narrow temperature
ranges for p* 5 0.524 and 0.662. Thus, our inability to
produce a stable nematic phase for our molecules with

p* 5 1.38 is consistent with [15], but our inability to
produce a stable nematic for our less asymmetric shape
with p* 5 0.565 is not; the reason for this discrepancy is
not clear. We note that experimentally the splay and
bend � exoelectric coe� cients in the nematic and smectic
phases have been found to be virtually identical [6], while
the additional � exoelectric coe� cient which appears in
the smectic A phase but not in the nematic is negligibly
small. Thus, we proceeded to measure the splay and
bend � exoelectric coe� cients in the smectic phase using
the method outlined in § 3.

Interestingly, the smectic layers show a distinct domain
structure, see � gure 10 (a). Each domain is characterized
by a non-zero splay of the same sign, but the net

(a)

(b)
direction of the orientation vectors û whose heads corre-

Figure 10. View of the molecularcon� gurations in the smecticspond to the wide ends of the wedges � ips from one
layers for (a) wedges and (b) standard Gay–Berne ellipsoids.

domain to the next. This domain structure is not The arrows indicate the direction of the orientation vectors
observed in the Gay–Berne smectic, � gure 10 (b). Recall û whose heads correspond to the wide ends of the wedges.

The domains in the wedge case can be clearly seen.from � gures 7 (a) and 8 (a), that neighbouring wedges
prefer splay. The alternation of the net direction of the
molecular orientation vectors between domains maintains splay is thermally activated and should be expected to

appear in a system that exhibits splay � exoelectricity.parallel smectic layers and zero net electric polarization.
Note that this domain structure occurs in the absence It represents the essential physics of the � uctuation-

dissipation theorem that relates the � exoelectric coe� cientsof an externally applied elastic deformation or electric
� eld. While on average there is no spontaneous splay in (that would be measured in the presence of an external

� eld) to the thermal � uctuations of the director.the system, there is local spontaneous splay. This local



1159Molecular shape and � exoelectricity

Table. Flexoelectric coe� cients for the small ( p* 5 0.565) and large ( p* 5 1.38) wedges and for Gay–Berne ellipsoids. Data for
the small wedge was obtained in the isotropic phase at T * 5 3.5 and in the smectic phase at T * 5 2.9; corresponding values
for the large wedge were 2.5 and 1.9. Data for the Gay–Berne ellipsoids were obtained in the smectic phase at T * 5 0.745 and
P* 5 2.5. The nematic order parameter in each of the smectic phases was 0.9.

Molecular shape, phase e11 e33

Small wedge, isotropic phase 0.367 Ô 0.522 Õ 0.394 Ô 0.383
Large wedge, isotropic phase Õ 1.39 Ô 1.15 0.148 Ô 0.251

Gay-Berne ellipsoids, nematic phase Õ 0.394 Ô 0.581 Õ 0.0835 Ô 0.117

Small wedge, smectic phase Õ 2.08 Ô 0.211 Õ 0.061 Ô 0.054
Large wedge, smectic phase 13.6 Ô 0.052 Õ 0.005 Ô 0.012

Data for the small ( p* 5 0.565) and large ( p* 5 1.38) We studied wedges with two diŒerent parametrizations,
and found a close connection between the properties ofwedges and for Gay–Berne ellipsoids are shown in the

table. The Gay–Berne ellipsoids interact via the rod the intermolecular potential and the � exoelectric response
of the system. In particular, wedge-shaped molecules dopotential equation (3) with parameters s) 5 1.0, s

d
5 3.0,

m 5 2, and n 5 1. We note that the values of the � exo- not produce a measurable bend � exoelectric coe� cient,
and a more prominent wedge-shaped object produceselectric coe� cients for the system of ellipsoids are zero to

within the computed error; thus, in accord with Meyer’s a larger splay � exoelectric coe� cient, in accord with
Meyer’s original ideas on the origins of � exoelectricity.ideas, this system of symmetric objects does not exhibit

� exoelectricity. In the isotropic phase both the large and In the case of the less prominently shaped wedge we
have obtained a splay � exoelectric coe� cient with thesmall wedges also exhibit no � exoelectricity. However,

in the smectic phases of both wedges splay � exoelectricity opposite sign to that of the more prominent wedge due
to the attractive tail of the intermolecular potential andappears. Note the diŒerence in sign between the e11 data

in the smectic phase for the large and small wedges, the relative narrowness of the molecular head.
consistent with their opposite splays. The actual values
for the signs also are as expected: considering again We are grateful to Prof. G. Crawford for helpful
� gure 1 with the director n̂ taken to point upwards, the discussions. Computational work in support of this
splay shown is then positive and the resulting polarization research was performed at the Theoretical Physics
is parallel to n̂, implying that e11

> 0, see equation (1); Computing Facility at Brown University. This work was
this is the case for the large wedge. For the small wedge, supported by the National Science Foundation under
the splay is negative but the polarization is still parallel grants DMR9528092 and DMR9873849.
to n̂, implying e11

< 0 as observed. The magnitude of e11
is also larger for the large wedge, consistent with Meyer’s
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