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In the 1970s, deGennes discussed the fundamental geometry of smectic liquid crystals and established an
analogy between the smectic A phase and superconductors. It follows that smectic layers expel twist
deformations in the same way that superconductors expel magnetic field. We make a direct observation of
the penetration of twist at the edge of a single isolated smectic A layer composed of chiral fd virus particles
subjected to a depletion interaction. Using the LC-PolScope, we make quantitative measurements of the spatial
dependence of the birefringence due to molecular tilt near the layer edges. We match data to theory for the
molecular tilt penetration profile and determine the twist penetration length for this system.

I. Introduction

In the first edition of The Physics of Liquid Crystals,
deGennes discusses the fundamental stacked fluid layer geom-
etry of smectic phases, and points out that a unit vector field p̂
perpendicular to a continuous layer must have zero twist.1

Describing the slowly varying deformation of an initially flat
layer by a displacement function u(x, y), for small tilts of the
layer, px ) -∂u/∂x and py ) -∂u/∂y. Then, the twist of the p̂
field, t ) (∂py/∂x - ∂px/∂y) ) -(∂2u/∂y∂x - ∂2u/∂x∂y) ) 0.

For the smectic A phase composed of rodlike molecules, the
molecules are, on average, perpendicular to the smectic layers.
Therefore, over a layer as a whole, the director field n̂, which
is parallel to the local molecular alignment direction, must have
zero twist. However, as discussed in deGennes’s seminal paper
of 1972, on the analogy between the smectic A phase and a
superconductor, by allowing local tilting of n̂ relative to the
smectic layer normal, one can introduce twist at layer edges or
around defects in the smectic phase.2 This tilt of n̂, and the
resulting twist, penetrate only a small distance λt into the
otherwise perfect smectic layer, in analogy with the London
penetration length of a magnetic field into a superconductor. In
the smectic A phase, experience so far indicates that the twist
penetration length is significantly longer than the fundamental
ordering coherence length of the smectic phase, so that the
smectic A phase is analogous to a type II superconductor.

For a smectic A phase composed of chiral molecules, the
tendency to twist is not an externally applied deformation but
a natural tendency of the molecular packing that competes with
the tendency of the molecules to form smectic layers. If the
chiral perturbation on the layer packing is weak, then one has
an analogy with a type II superconductor in a magnetic field
below its lower critical magnetic field, and twist only penetrates

at layer edges, or around isolated defects that may exist in the
smectic phase. However, if the tendency to twist is strong
enough, it may disrupt the smectic system to the extent of
producing a systematic array of screw dislocations throughout
the smectic phase, in analogy with penetration of magnetic flux
quanta into a type II superconductor above its lower critical
magnetic field. This is the physical basis for the formation of
the magnificent, widely studied twist grain boundary (TGB)
smectic phases.3-5 In these phases, the molecular tilt relative
to the smectic layers is a maximum at each screw dislocation
core, and dies away with distance from the core, with a length
scale given by λt. In this context, the twist penetration length
plays a crucial role in the structure and free energy of the TGB
phase.

In this paper, we consider a system composed of a finite size
monolayer of rodlike virus particles, in which the molecules
tend to pack together parallel to the layer normal, so it is
effectively like a single layer of a smectic A phase. The
molecules are chiral, and have a tendency to form spontaneous
twist deformation, which competes with the fundamental layer
packing. In the case studied here, the twist tendency is weak
enough so that the molecules only tilt, and twist only penetrates,
at the edges of the layer, while far from the edges the molecules
remain perpendicular to the layer. The unique feature of our
system is that the constituent molecules are 880 nm long rodlike
viruses. It follows that the resulting characteristic length scale
of the system is large enough to be visualized directly with
optical microscopy. We make quantitative measurements of the
birefringence that is induced by the tilt of the molecules near
the layer edge, and compare our experimental results with the
theory of twist penetration into the interior of the layer. We
find good agreement between theory and experiment and
determine the characteristic length of twist penetration for this
system.† Part of the “PGG (Pierre-Gilles de Gennes) Memorial Issue”.
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II. Theory

For this problem, we simplify the general form of the smectic
A free energy presented by deGennes in analogy with super-
conductors. First, since the smectic layer is flat, and only director
tilt occurs, the smectic order parameter is simply a constant.
We ignore any change in the order parameter very near the edge
of the single smectic layer, in effect ignoring the possible
existence of a small but finite coherence length, and focus only
on the spatial variation of the director. Here, we consider first
a semi-infinite smectic layer in the x g 0 half-plane, in which
the director tilts by angle θ in the y direction, tangential to the
edge of the layer. The free energy is then

in which the first term is the twist energy density, with K2 being
the twist curvature elastic constant and q the spontaneous twist
wave vector. The second term is the tilt energy density. The
Euler-Lagrange equation is

in which the twist penetration length is λt ) (K2/C)1/2. This free
energy and Euler-Lagrange equation are completely analogous
to those for the problem of the remaining twist structure at the
edge of a cholesteric sample in a magnetic field large enough
to unwind the cholesteric helix. deGennes solved a similar
problem for twist at the edge of a nematic sample in a magnetic
field.1 The difference for the cholesteric problem, and for the
one we consider here, is the boundary condition that, at x ) 0,
dθ/dx ) q. The first integral of the Euler-Lagrange equation
is λtdθ/dx ) (sin(θ), and the solution for our case is

with θ0 ) -arcsin(qλt). θ0 is the maximum tilt angle at x ) 0.
In fact, our samples are disks of various radii, R, so that there

are further curvatures in addition to the simple twist of the semi-
infinite plane geometry. Again, for tilt of the director tangential
to the edge of the disk, and circular symmetry, so that the tilt
angle is a function of radius only, the free energy is

The K3 term is the bend energy density. At the center of the
disk, θ ) 0. We have solved this more complex problem for
disks of arbitrary radius using numerical methods and find that,
for disks of the size studied here, the solution for the semi-
infinite plane sample is almost indistinguishable in shape from
the correct solution, except that the maximum tilt at the edge
of the disk is significantly different. Therefore, for curve fitting
in our data analysis, we were able to use the analytic solution

for the semi-infinite plane case, with the maximum tilt angle
θ0 as a fitting parameter. The structure and energetics of small
circular disks will be presented elsewhere.

When the smectic layer is viewed from above, in the direction
normal to the layer, the interior of the layer is not birefringent.
Near the edges, however, the tilt of the director produces a
birefringent region. The retardance, R, at a point near the edge
with tilt angle θ is proportional to sin2(θ). In addition, R is
linearly proportional to the thickness d of the layer, the
concentration c of fd particles, and the local order parameter S:

∆nsat is the specific birefringence of a fully aligned bulk sample
of fd at unit concentration. ∆nsat was previously measured to
be (3.8 ( 0.3) × 10- 5 mL/mg.6 The order parameter for fd
bulk liquid crystalline suspensions at concentrations of ap-
proximately 100 mg/mL was measured to be above 0.95. Since
the rod concentration within the smectic layer is ∼100 mg/mL
(see below), to a first-order approximation, it is reasonable to
assume that rods within a smectic layer are almost perfectly
aligned. Therefore, we set S equal to 1 for our analysis. The
change in layer thickness near the edge is not known. If the
layer were exactly one rod-length thick, as the rods tilt, their
projected length on the layer normal would decrease the layer
thickness by a factor of cos(θ) and hence decrease the observed
retardance. While for small tilt angles the factor sin2(θ) in eq 6
dominates and the expected retardance increases with θ, for tilt
angles above 55°, the expected retardance would decrease if
the layer thickness would decrease by the factor cos(θ). This is
inconsistent with our data at the sample edge.

We fitted the retardance data versus distance from the edge
to two models, one that includes the factor cos(θ) and one that
assumes the layer thickness to remain constant right up to the
edge of the disk. We find that the derived twist penetration
length is independent of the model used, while the maximum
tilt angle at the disk edge is model dependent and not as well
determined by our analysis.

The image obtained in optical microscopy is characterized
by a resolution function, making a perfect point object at location
x0 have a finite width w. w is of the order λ/(2NA), with λ being
the wavelength of light and NA the numerical aperture of the
objective used. The resolution is characterized by an Airy
function, which we approximated by the Gaussian exp[-(x -
x0)2/w2]. We convolved the theoretical retardance function with
the Gaussian to compare our theoretical results with the
measured retardance versus distance from the edge of the
smectic layer.

III. Experimental Methods

The rodlike viruses used in this report are the 880 nm long
filamentous bacteriophage fd. The behavior of these particles
has been shown to resemble the behavior of hard rods, with
one important difference, the formation of a cholesteric instead
of a nematic phase.7,8 With increasing concentration, a pure
aqueous suspension of fd viruses will form isotropic, cholesteric,
and smectic phases. The current hypothesis is that the micro-
scopic origin of the cholesteric phase is a helical superstructure
assumed by the semiflexible viruses in aqueous suspension.9,10

The addition of polymer to suspensions of these rodlike viruses
acts to induce attractive depletion interactions among the
particles.11 A wealth of interesting and hierarchical self-
assemblage has been shown to exist in such systems.12,13 One
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type of structure formed in such a system is an isolated fluidlike
monolayer of rods, or a membrane, resembling a single layer
of a smectic A phase. These membranes are exactly the type
described by Helfrich14 for which he drew an analogy between
the free energies of lipid bilayers and smectic A liquid crystals.
The detailed mechanism for the formation of these colloidal
membranes, and their mechanical properties far away from the
edges, will be published elsewhere. Here, we use the fd
monolayers as model isolated smectic A layers, focusing on
how the chirality of the constituent molecules affects the
phenomenology at the monolayer edges.

fd virus was grown and purified using standard biological
procedures.7 The virus was then mixed with the polymer Dextran
(MW 500 000, SigmaAldrich). The final concentrations of rods
and polymer in suspension were 17.5 and 47.5 mg/mL,
respectively. All samples were prepared in a buffer solution
containing 20 mM Tris and 100 mM NaCl, at a pH of 8.0.
Membranes initially self-assemble in the bulk suspension but
eventually sediment to the coverslip surface due to their high
density. In order to suppress nonspecific binding of membranes
to the glass surface, the surfaces were coated with a thin layer
of agarose. Cleaned coverslips and glass slides where briefly
immersed in a hot 0.1% solution of agarose. Even after this
treatment, some membranes are pinned at specific points, as
evidenced by the absence of fluctuations. These membranes were
not used in our analysis.

Phase contrast and fluorescence images were taken on a
standard inverted microscope (Nikon TE2000) equipped with
a cooled CCD camera (CoolSnap HQ, Roper Scientific). For
fluorescence microscopy, individual viruses were labeled with
fluorescent dye (Alexa 488, Invitrogen) according to the
previously published protocol.15 Samples were prepared with a
precisely known small fraction of fluorescent virus particles,
which could be seen individually in the image of a membrane.

To obtain information about the spatial dependence of the
orientation of rods within a monolayer, we used a quantitative
polarized light microscope (LC-PolScope, Cambridge Research
and Instrumentation, Woburn, MA; http://www.cri-inc.com).
The LC-PolScope builds on the polarizing microscope by
replacing the traditional compensator with a liquid-crystal-based
universal compensator.16 The LC compensator is used to quickly
switch the polarization state of the trans-illuminating light. A
digital camera captures five raw images of the sample at circular
and ellipical polarization settings. The raw images are used to
calculate the retardance and slow axis orientation in each pixel
of the sample, producing two high resolution images, one of
the retardance and one of the slow axis orientation.17

We estimated the concentration of fd rods in a smectic
monolayer by counting the number of fluorescent rods in a finite
area disk membrane. We multiplied the number of fluorescent
particles with the concentration ratio of unlabeled to labeled
particles and divided by the disk area to estimate the number
of unlabeled fd particles per square micrometer of membrane
(3200 particles/µm2). Thus, the estimated fd concentration in a
smectic layer is about 100 mg/mL, based on the known
molecular weight 1.67 × 107 g/mol.7 We enter the estimated fd
concentration into eq 6 together with the previously mentioned
quantities for ∆nsat ) (3.8 ( 0.3) × 10- 5 mL/mg and S ) 1.
Assuming a constant membrane thickness of one rod length
(∼880 nm), the relationship between the observed retardance
and the twist angle at a point in the membrane becomes R )
3.3 sin2(θ) nm.

IV. Results and Analysis

A phase contrast image of a typical single-layer smectic
observed with the monolayer lying in the focal plane of the
microscope is shown in Figure 1a. A similar membrane that
contains a small fraction of fluorescently labeled rods is
examined with a fluorescence microscope (Figure 1b). Far away
from the layer’s edge, rods are viewed along their axial
directions. Consequently, they appear as isotropic dots. Upon
closer examination, it becomes evident that rods located within
a thin band close to the membrane’s edge are tilted with respect
to the layer normal. This is a first direct visual evidence of the
twist penetration along the membrane’s edges. However,
fluorescence images are not suitable for quantitative analysis
of this effect. To extract quantitative data about the twist
penetration length, we examine single monolayers with the LC-
PolScope. Far away from the layer edge, all of the rods point
perpendicular to the layer surface. Consequently, this region
appears isotropic when viewed with the LC-PolScope. At the
layer edge, the existence of rod tilting results in a bright
birefringent band. The LC-PolScope image shown in Figure 1c
confirms the existence of twist penetration. In addition, the map
of the slow axis of the birefringence in Figure 1d indicates that
rods tilt parallel to the layer edge, in agreement with the
fluorescence images.

All image analysis was performed using software written in
the IDL programming language. To obtain quantitative data on
the spatial decay of birefringence at the monolayer’s edge, we
first detect the edge using a thresholding and skeletonization
procedure. Subsequently, the intensity profiles of LC-PolScope
images, I(x), are taken along radial cuts normal to the edge.
Individual cuts are by themselves noisy, which prohibits any
quantitative analysis. To reduce noise, we average up to a few
hundred cuts taken along the edge of a single membrane. For

Figure 1. (a) Phase contrast image of a colloidal membrane viewed
in a face-on configuration. (b) Image of a membrane in which a small
fraction of rods are labeled with a fluorescent dye. Rods near the
membrane’s edges (indicated by an arrow) appear as short lines,
providing direct visual evidence of rod tilting. (c) Retardance image
of a membrane. The brightness of each pixel represents the retardance
of that point. (d) Orientation image of the slow axis of the birefringence,
confirming that rods tilt parallel to the membrane edges. Images in
panels c and d were recorded with the LC-PolScope. All scale bars are
5 µm.
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the averaging procedure to work, we need to translate each cut
along the x direction so that all the peaks overlap. Two methods
were employed to determine the maximum value of I(x) with
subpixel accuracy. Either a derivative is taken, and the signal
maximum is determined from where it crosses zero, or the signal
is fitted to a Gaussian. Both methods produced equivalent results.

The maximum retardance that would be observed exactly
at the layer edge is averaged with neighboring (lower) values by
the finite resolution of the microscope, so it is deduced indirectly
from the overall curve fitting procedure. Using the edge retardance
from the curve fitting procedure to determine the maximum tilt
angle at the edge also depends on a precise understanding of how
the layer thickness varies near the sample edge. For our analysis,
we use the simplest model of constant thickness and an abrupt
drop to zero thickness at the sample edge. We have also tried fitting
our data with the quantitatively unacceptable model including the
cos(θ) factor in the theoretical retardance function, and find that
the value we extract for the twist penetration length is the same
for both models. The maximum tilt angle at the disk edge is model
dependent, so it is less well determined by our analysis.

The averaged experimental measurements of the retardance
decay function extracted from a typical LC-PolScope image are
shown in Figure 2. The agreement between experimental data
(filled circles) and the theoretical retardance model convolved
with the resolution function (dashed line) is excellent. The width
of the peak in retardance at the sample edge, and especially the
decay of the measurements outside the edge of the disk (negative
x values), are mainly dependent on the width of the resolution
function, while the exponential decay of the measurements
toward the interior of the disk (positive x values) is dictated by
the decay of the molecular tilt function, and is essentially
independent of the width of the resolution function. Thus, the
determination of the twist penetration length is mostly inde-
pendent of both the details of the resolution function and the
precise behavior of the sample thickness very near the sample
edge. For this particular sample, we extract a twist penetration
length of λt ) 0.48 ( 0.01 µm. The other parameters determined
by the fitting procedure are the maximum tilt angle at a
membrane’s edge, θ0 ) 1.3 rad, and the resolution width
parameter, w ) 0.13 µm.

It is important to note that the twist penetration length is
independent of the intrinsic twist wave vector q of a liquid
crystalline material, depending only on the twist elastic constant
K2 and the value of the tilt energy parameter C. The prediction
of the theoretical model is that the value of the parameter q
only enters into determining the maximum tilt at the disk edge.
To verify this experimentally, we need to analyze quantitatively
disks of different diameters, since edge curvature affects this
boundary value. This analysis will be published elsewhere. In
the semi-infinite smectic layer model, the value of q is given
by q ) sin(θ0)/λt, which results in q ) 2.0 rad/µm, or a
cholesteric pitch of 3.1 µm, a reasonable number for the
cholesteric phase of this material.8 For the curved edge of a
finite diameter disk, the relationship between maximum tilt angle
and q is not so simple, as will be discussed elsewhere. In general,
higher curvature leads to lower values of maximum tilt. This,
plus the model dependence of our value for θ0 means that the
value of q derived here is only approximate, while the value of
the twist penetration length λt is accurately determined.

In conclusion, deGennes long ago presented a clear theoretical
understanding of how twist is expelled from layered systems
like the smectic A phase, and of how, for a weakly chiral smectic
A phase, twist penetrates only at sample edges. We are now
able to confirm his insights with direct observations of twist
penetration in a single smectic layer, and to measure the
important twist penetration length in this system. In the future,
we will explore the variation of the twisting strength in our
materials, to examine the fascinating regime of strong chirality,
in which twist penetrates our two-dimensional single-layer
smectic samples as quantized π-twist-wall defects, in analogy
with the flux-lattice phase of a type II superconductor, and with
the TGB phase of three-dimensional smectics.
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Figure 2. Retardance plotted as a function of the distance from the
membrane’s edge (+ distance is inside the membrane). The theoretical
model (dashed line) is compared to experimental data (full circles).
The twist penetration length extracted for this membrane is 0.48 µm.

Twist Penetration Length in a Single Smectic A Layer J. Phys. Chem. B, Vol. 113, No. 12, 2009 3913


