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CHAPTER 1: INTRODUCTION
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An Overview of Antimicrobial Resistance 

Global Burden of Antibiotic Resistance 

The global antimicrobial resistance crisis represents a critical threat to 

human health and our ability to prevent and control bacterial infections. In the 

United States alone, antimicrobial resistant infections result in an estimated 35,900 

deaths and nearly three million infections annually[1]. This health burden results in 

significant economic loss, with resistant infections costing the United States tens 

of billions of dollars a year in health care costs and lost productivity[1]. Globally, it 

is estimated that in 2019 there were 4.95 million deaths associated with 

antimicrobial resistant infections[2], and this number is only projected to grow. 

Projections for the year 2050 estimate that antimicrobial resistant infections will 

account for 10 million deaths annually and become the leading cause of death 

globally[3]. Without changes to current antibiotic stewardship practices and 

treatment strategies the global healthcare system is headed towards a post-

antibiotic era[4, 5]. To overcome the antimicrobial resistance crisis and ensure a 

future in which bacterial infections remain treatable, we must modify our current 

use of antibiotics and develop novel therapies. 

  

 The Rise in Resistant Infections 

Without significant innovations to limit the spread of antimicrobial 

resistance, bacterial infections will have an extremely negative impact on global 

health. In 2016, 270.2 million antibiotic prescriptions were written in the United 

States alone. Of these, the CDC estimates that 30% were prescribed for infections 
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that did not require antibiotics[6]. Fluoroquinolone antibiotics are commonly 

misused in healthcare settings, with an estimated 5% of these prescriptions being 

unnecessary and roughly 20% of all fluoroquinolones prescribed in situations when 

the drug was not recommended as a first-line antibiotic[6, 7]. One example of an 

increasingly resistant bacterial pathogen is drug resistant Neisseria gonorrhoeae. 

Between 2000 and 2007 N. gonorrhoeae infections resistant to ciprofloxacin (a 

fluoroquinolone) increased by 30%, leading to ciprofloxacin being no longer 

recommended as a first-line therapeutic[1]. In fact, some strains of N. gonorrhoeae 

have developed resistance to nearly all antibiotic classes leading to a rise in 

multidrug resistant infections[8-13]. Worryingly, some other bacterial pathogens, 

such as totally drug resistant (TDR) Mycobacterium tuberculosis, have become 

resistant to all current antibiotics[14]. Fortunately, some studies have suggested 

that reducing antimicrobial usage may be effective in reducing resistant infections 

in a hospital setting[15-19], suggesting that proper antimicrobial stewardship is a 

powerful strategy to mitigate the spread of resistance[20]. In addition to misuse of 

antibiotics in the healthcare setting, overuse of antibiotics in agriculture and 

aquaculture promotes the spread of antimicrobial resistance[21, 22]. 

Agricultural practices, specifically livestock production, use tens of 

thousands of tons of antimicrobials a year and this number is only expected to 

grow with the increased demand for livestock[23-25]. Use of antibiotics in 

agriculture is known to increase antibiotic concentrations in the associated 

soil/water resulting in the potential selection for antibiotic resistant bacteria in the 

environment[26-29]. Furthermore, resistant pathogens are able to transfer 
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between livestock and humans through farming and consumption making it 

imperative to limit the unnecessary use of antimicrobials in these agriculture 

settings[30-33]. Evidence has shown that effective limits to antimicrobial use in 

livestock can reduce the abundance of associated antimicrobial resistance[34]. In 

a Danish study, the occurrence of glycopeptide-resistant E. faecium isolated from 

chickens was reduced from 72.7% to 5.8%, coinciding with the ban of the 

glycopeptide antibiotic avoparcin in Denmark[34]. This work gives hope that 

significant policy changes will reduce the environmental burden of antimicrobial 

resistance genes in the agricultural setting. In addition to curbing the misuse and 

overuse of antimicrobials, we must develop novel antibiotics and therapeutic 

strategies. 

 

 Challenges and the Future of Antibiotic Therapy 

The introduction of antibiotics as therapeutics revolutionized medicine and 

has saved millions of lives. The identification and subsequent use of penicillin as 

an antimicrobial treatment marked the dawn of antibiotic discovery in the early 20th 

century[35-37]. Between 1930 and the 1960s, numerous broad-spectrum antibiotic 

classes were identified resulting in a potent arsenal of drugs targeted towards 

bacteria. Since this “golden era” of antibiotic discovery, there has been little 

innovation, and no novel classes of clinically useful antibiotics have been 

introduced in over 30 years[38-40]. Alongside the discovery of these new 

antimicrobials came the emergence of resistance to each drug[38, 41]. While the 

antibiotics remained potent for most of the 20th century, the rapid development and 
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spread of resistance combined with a lack of novel antimicrobial treatments has 

severely challenged our ability to treat infections. Despite the need for investment 

in novel drugs, most large pharmaceutical companies have abandoned antibiotic 

research and development due to the high cost of bringing a new drug to market, 

inevitable incidence of resistance, sparing use of novel antimicrobials as “last 

resort” drugs, and ultimately low return on investment [42-45]. Due to the resulting 

antibiotic resistance crisis, a number of small- and medium-sized enterprises have 

continued research into novel treatments that are currently in the preclinical stage 

with over 400 unique projects targeting direct-acting small molecules, potentiators, 

repurposed drugs, antibodies and vaccines, immune-modulators, antivirulence, 

microbiome, and phage therapies [46]. Global collaboration has led to the 

establishment of several non-profit agencies, including CARB-X and JPIAMR, 

focused on supporting the discovery of novel antimicrobials[47, 48]. In addition to 

developing new therapeutics, we must work to understand the process by which 

antimicrobial resistance develops on a molecular level in order to develop novel 

approaches to combat resistance. 

 

Mechanisms and Development of Antimicrobial Resistance 

Mechanisms of Antimicrobial Resistance 

 Soon after the discovery of penicillin, scientists had already found bacteria 

that could survive drug treatment, providing some of the earliest evidence of 

antimicrobial resistance [49, 50]. In the decades following, resistance has been 

identified for all antibiotic compounds in clinical use. Significant work has been 
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done to describe the mechanisms behind different forms of resistance, uncovering 

the unique strategies employed by bacteria to survive drug treatment[41]. Antibiotic 

resistance is separate from strategies such as ‘tolerance’ and ‘persistence’ in 

which bacteria are able to survive exposures to a typically lethal concentration of 

antibiotics without a change in minimum inhibitory concentration (MIC)[51-54]. 

These transient phenotypes are different from antibiotic resistance which is defined 

as an inheritable mechanism by which the bacteria are able to grow in high 

antibiotic concentrations due to an increased MIC[54]. 

 There are several basic mechanisms of resistance that are used by many 

different bacterial taxa to overcome antibiotic activity. Preventing entry of 

antibiotics through reduced cell permeability is an effective strategy for 

resistance. While some antibiotics are able to enter the cell through outer-

membrane porins, bacteria such as those in the family Enterobacteriaceae have 

been shown to resist carbapenems by reducing porin expression or expressing 

non-functional porins[55-57].  Preventing antibiotic entry is an effective strategy, 

however, members of Enterobacteriaceae and other bacterial families are also 

able to employ antibiotic modification/degradation mechanisms. Many of these 

bacteria, including the high priority pathogens Klebsiella pneumoniae and 

Acinetobacter baumannii, encode a form of β-lactamases that effectively hydrolyze 

β-lactam and carbapenem antibiotics rendering them inactive[58, 59]. Some 

resistant bacteria contain genes encoding for drug efflux pumps that can confer 

resistance to a wide range of antibiotic compounds. These efflux pumps can be 

fairly antibiotic specific, such as the tet family often found in gram-negative 
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bacteria[60, 61], or more general such as the multidrug resistant (MDR) efflux 

pumps that are found in a wide range of bacterial taxa[60, 62]. Changes in gene 

expression, such as the transcriptional activation of multidrug efflux pumps in 

Salmonella enterica serovar Typhimurium upon exposure to bile allow for transient 

activation of antibiotic resistance[63]. Card et al. performed a resistance evolution 

experiment in E. coli and found that all strains generally evolved resistance-

conferring mutations in the transcriptional regulator ompR responsible for altering 

gene expression of the porin, OmpF[64]. Finally, target modification and target 

protection can result in structural changes within bacterial machinery that prevent 

the binding of antibiotics[60, 65, 66]. These forms of resistance are the result of 

genetic determinants or modifications to existing genes. 

 Resistance is heritable and is the result of antibiotic resistance genes 

(ARGs) that encode for one of the aforementioned mechanisms. Resistance genes 

can be found chromosomally or on mobile elements such as plasmids, like the 

pNDM-CIT plasmid found in Citrobacter freundii which contains both an metallo-β-

lactamase and MDR efflux pump[60, 67]. Resistance can occur as dedicated 

resistance genes, duplicated genes,  or result from the insertion of a novel 

promoter or mutational events in existing genes[41]. Mutational events can include 

point mutations, insertion, or deletion mutations that result in changes in bacterial 

phenotype. 
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Development of Resistance Through Mutagenesis 

 Mutagenesis is a vital process for introducing novel genotypes and 

phenotypes in bacteria. This process is especially relevant in the evolution of 

antimicrobial resistance in pathogenic bacteria. In fact, most commonly used 

antibiotics have lost their efficacy due to the introduction of resistance-conferring 

mutations. One of the starkest examples of this is extensively drug-resistant 

Mycobacterium tuberculosis (XDR-TB), which is resistant to both first- and second-

line antibiotics due entirely to chromosomal mutations[68, 69]. Mutations in 

bacteria can be generated via exposure to stressors that directly mutagenize DNA 

or inhibit DNA repair enzymes, or stressors that activate bacterial stress responses 

involved in adaptive mutagenesis. MacLean et al. described these two 

mechanisms as stress-associated mutagenesis (SAM) and stress-induced 

mutagenesis (SIM), respectively[70]. When bacterial cells undergo SAM, 

genotoxic stressors such as UV light[71, 72], reactive oxygen species (ROS), or 

alkylating agents[73] physically damage DNA resulting in mutation. Additionally, it 

has been hypothesized that some stressors such as heavy metals may induce 

mutagenesis by interrupting necessary DNA-repair proteins[74-76]. In contrast, 

SIM mechanisms increase mutation rates via activation of mutagenic genes. 

These genes primarily include error-prone DNA polymerases[70, 77-80] and other 

“evolvability factors” such as Mfd[81]. SIM mechanisms can be induced by 

stressors such as antibiotics[80] and nutrient limitation[79], allowing bacteria to 

undergo adaptive mutation in order to increase the genetic diversity within a 

population and overcome stressful conditions. Stressors that can trigger both SAM 
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and SIM mechanisms are prevalent in bacterial environments, thus it remains 

imperative to study how these mechanisms contribute to the development of 

resistance. 

The role of mutagenesis has been recognized as a potential target for 

intervention to slow the development of antibiotic resistance[81-83]. Previous work 

in fungi has shown that the protein Hsp90, a molecular chaperone, plays a key role 

in the evolution of adaptive traits including resistance to anti-fungal drugs[84]. Later 

work by Shekhar-Guturja et al. identified a small molecule that could block the 

activity of Hsp90, thus inhibiting the evolution of resistance through this key 

pathway[85]. Recently, work has identified targets to inhibit pathways of adaptive 

evolution in bacteria in order to prevent the development of antibiotic resistance 

mutations. Ragheb et al. identified the DNA translocase Mfd as having a role in 

promoting mutagenesis in several species of bacteria. In Salmonela typhimurium 

grown in subinhibitory concentrations of antibiotics, Mfd was shown to significantly 

promote the evolution of resistance to rifampicin, phosphomycin, trimethoprim, 

kanamycin, and vancomycin[81]. Thus, the authors propose that Mfd could be a 

potential target to prevent drug-resistance mutations from developing in the 

context of infection. Additional research found another mutagenetic pathway in 

bacteria, the σS response, led to an increase in drug resistance development in 

response to antibiotic-induced reactive oxygen species [80]. The researchers 

found that the FDA-approved drug edaravone could reduce σS response-

dependent mutagenesis and inhibit subsequent resistance development[80]. This 

work shows that in addition to discovering novel antimicrobials, understanding and 
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targeting adaptive mutagenic pathways in bacteria is an effective way to prevent 

the development of resistance. 

  

 Horizontal Gene Transfer as a Mechanism to Spread Resistance 

 While resistance can be inherited or generated through de novo mutations, 

it can also be passed between bacteria through horizontal gene transfer (HGT). 

Along with mutagenesis, HGT plays a critical role in expanding the genetic diversity 

of bacteria, allowing DNA to be exchanged between cells. Interbacterial DNA 

transfer has contributed to the composition of a significant portion of bacterial 

genomes[86-89]. While the amount of laterally transferred DNA varies among 

bacterial species, some have an estimated 20% of their genome arising from HGT 

events[87, 89]. HGT can occur between bacteria through three main processes: 

conjugation, transduction, and natural transformation[90]. Conjugation occurs 

when chromosomal or plasmid DNA is transferred through a pilus structure 

physically joining two bacteria[91]. Transduction is a bacteriophage-mediated 

transfer of DNA between bacteria that are susceptible to the same 

bacteriophage[92]. Natural transformation is a process during which a bacterial cell 

is able to take up extracellular DNA and recombine it into its own genome[89, 90, 

93]. All these mechanisms play an important role in the spread of antimicrobial 

resistance between bacteria[32, 91, 94-98]. Instead of having to develop a 

resistance gene de novo, HGT can provide instantaneous resistance and rapid 

adaptation to an antibiotic environment. 
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Selection for Antibiotic Resistance 

 Antibiotic selection is a key factor in determining whether or not resistance 

genes will be maintained in a given environment. Resistance is often associated 

with having significant fitness costs that would select against resistant bacteria in 

an antibiotic-free environment[99, 100]. In situations where the cost of maintaining 

resistance is high, such as the blaCMY-2 plasmid-mediated multidrug resistance 

found in E. coli, antibiotic selection is necessary for long-term maintenance of 

resistance[101]. In other cases, the cost of resistance mutations may be too high 

for resistant bacteria to establish infections. In E. coli responsible for urinary tract 

infections, fosfomycin resistance can be conferred by mutations in the uhpT and 

glpT genes encoding for transporters responsible for fosfomycin into the cell. While 

these mutations occur readily, they also incur growth defects that prevent 

fosfomycin-resistant E. coli strains from establishing colonization in the bladder 

and causing infection[102, 103]. Lab-based experiments in 23 drug-resistant E. 

coli strains found that evolution for 60 days under antibiotic-free conditions lead to 

a loss in resistance to some, but not all antibiotics[104]. This suggests that 

antibiotic selection is necessary for some, but not all resistance genotypes. 

Further work examining antibiotic resistance and selection has found that 

little to no selection is needed to maintain some resistance mutations in bacterial 

populations. Marcusson et al. found that E. coli strains containing fluroquinolone-

resistance mutations had fitness advantages compared to susceptible strains in 

both in vitro and in vivo settings[105]. There is additional evidence that antibiotic 

resistant strains can persist in drug free environments via the evolution of 
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compensatory mutations, which alleviate the fitness costs of resistance 

mutations[106-109]. This data suggests that antibiotic selection is not necessary 

for maintaining antibiotic resistance genes, making it a priority to monitor 

resistance even in environments where antibiotic selection pressures are very low. 

 

 Selection for Resistance in Complex Microbial Communities 

Studies have found that microbial communities of the gut and the natural 

environment harbor diverse assemblages of resistance genes[110-112]. The total 

resistance gene content of a community is referred to as the “resistome”[113].  In 

these communities, resistance can be selected for by the introduction of antibiotics 

or other selective compounds. Even low, environmentally relevant concentrations 

of some antibiotics are sufficient to maintain resistance in bacteria[114, 115].  In 

the gut microbiomes of animals treated with antibiotics, there is evidence of 

enrichment of ARGs with activity against the antibiotic class present[27, 34, 116, 

117]. This suggests that antibiotics are capable of causing selection within an 

organism. The process by which selection occurs in all environments is dependent 

on a myriad of factors, but importantly the local concentrations of antibiotic to which 

bacteria are exposed. For example, during therapeutic use of antibiotics in 

humans, there is a heterogeneous environment creating concentration 

gradients[118]. Baquero and Negri first put forth the concept of “selective 

compartments” to describe how these pockets of different concentrations have the 

potential to select distinct resistance genotypes[119, 120]. This is an important 
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consideration when studying the selection of resistance in laboratory, therapeutic, 

and environmental settings. 

 

The Natural Environment and Organismal Microbiome is a Reservoir of 

Resistance 

Antimicrobial Resistance is an Ancient Natural Phenomenon 

 The environment represents an important reservoir for antibiotic resistance. 

Resistance originated in the natural environment long before antibiotics were used 

as therapeutics by humans, a phenomenon which has been highlighted by 

numerous studies[121-125]. Bacterial strains isolated from a cave thought to be 

undisturbed for millions of years were shown to have resistance to 14 commercial 

antibiotics[122]. Beringian permafrost ice cores estimated to be 30,000 years old 

contained bacterial resistance genes against β-lactam, tetracycline, and 

glycopeptide antibiotics[123]. While antibiotics and antibiotic resistance are 

commonly thought of in terms of the “weapon-shield” role they perform in the 

clinical setting, the ancient origins of ARGs have led to alternative explanations for 

their existence. It has been demonstrated that at sub-clinical concentrations (levels 

which occur naturally in environmental microbial communities) antibiotics can act 

as signaling molecules between bacteria[126-130], and some bacteria even utilize 

antibiotics as carbon sources[131]. Despite their ubiquity and fundamental role in 

bacterial life, there is evidence that ARG abundance has increased in the 

environment in association with the widespread anthropogenic use of antibiotics. 

Time course sampling of soil archives from the “Pre-Antibiotic” age (before 
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widespread anthropogenic use of antibiotics) through modern times revealed 

significant increases in all 18 ARGs examined by Knapp et al. Some genes were 

15 times more abundant in the most recently sampled soil (year 2008) compared 

to samples from the 1970s[121]. Combined, these studies illustrate the ancient 

origins of resistance and an association between human use of antibiotics and an 

increase in the abundance of ARGs in the environment. 

 

The Gut Microbiome as a Reservoir of Resistance 

 Resistance is not limited to the physical environment, but also the 

microbiota of organisms that live there. Today, the importance of bacteria as co-

habitants of humans and other animals has been widely recognized. In the past 

two decades, the microbiome field has made significant advances in 

understanding the role that bacteria play in host health and disease across the 

animal kingdom. Bacteria exist in and on nearly all of the body exposed to the 

environment and are important colonizers of the mouth, skin, and gastrointestinal 

tract (GIT). A majority of these microbes reside in the gut with the human GIT being 

home to an estimated 100 trillion bacterial cells[132, 133]. These GIT-associated 

bacteria provide numerous functions such as acting as a barrier against pathogen 

colonization[134], regulating epithelial cell and global immune function[135, 136], 

assisting in digestion[137], neurological function and behavior[138], and growth 

and development[133]. Beyond these beneficial functions, the host-associated 

bacteria in humans and wildlife have been shown to be diverse reservoirs of 

antimicrobial resistance genes[125, 139-145]. A study of the bacteria in dental 
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calculus from Swedish brown bears was able to provide a temporal view of 

antibiotic resistance associated with the bear oral microbiome over an 80-year time 

span, showing that human antimicrobial use has had an impact on ARGs in wildlife. 

The researchers found that the ARG abundance in the dental calculus bacteria of 

bears increased with extended anthropogenic antibiotic use over the past 80 

years[145]. Further research has implicated the natural environment as a route of 

introduction of pathogenic bacteria and ARGs into humans and the clinical setting. 

Several studies have found direct transfer of antibiotic resistant bacteria between 

animals and humans in farm and aquaculture settings[30, 31, 33, 146, 147]. This 

data suggests that both the microbiome and resistome of wild animals may be 

impacted by human antimicrobial use and are important reservoirs of ARGs that 

could spread to humans. 

 

The Marine Environment as a Reservoir of Resistance 

The marine environment is one of the most expansive, species-rich, 

ecologically and economically important habitats on earth. As such, it is a priority 

to study microbes and antimicrobial resistance within this environment and the 

organisms that inhabit it. It is home to an estimated 200,000 catalogued species 

of Eukaryotes, including ray-finned fishes (Actinopterygii), the most diverse group 

of vertebrates on earth [148].  Marine-associated bacteria are known to harbor a 

diverse array of resistance genes[149]. Studying ARGs in marine wildlife will allow 

us to monitor how anthropogenic changes impact the resistome of wild organisms 

in the marine environment and monitor environment to human transmission of 
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ARGs. Notably, many marine organisms exhibit highly migratory behavior which 

has implications for these animals being vectors of ARG dispersal across great 

distances[150].  

The microbiota of marine organisms commonly includes bacteria from 

potentially pathogenic genera such as Vibrio, Photobacterium, Campylobacter, 

and Pseudomonas[151]. Many pathogenic members of the genus Vibrio, including 

V. cholerae, V. parahaemolyticus, and V. vulnificus which are responsible for the 

human diarrheal disease cholerae and seafood poisoning respectively[152], are 

known to be capable of HGT and thus at significant risk of gaining resistance 

genes. HGT has even spread ARGs from the marine environment to the clinical 

setting, including the quinolone resistance gene qnrA that originated in the marine 

bacteria Shewanella algae[153]. This gene encodes for a pentapeptide repeat 

protein that binds to DNA gyrase, inhibiting the negative effects of 

fluoroquinolones[154]. This qnrA gene and other marine-originating qnr genes 

have been broadly disseminated to other bacteria including the family 

Enterobacteriaceae, and have been described in clinical infections of the 

pathogenic bacteria Klebsiella pneumoniae[155] and Enterobacter cloacae[156]. 

The diversity of antibiotic resistant genes, potential pathogens, and evidence for 

the transfer of resistant bacteria from the aquaculture environment to human hosts 

make studying the dynamics of antibiotic resistance in the marine environment a 

priority. 
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Sequencing Tools for Detection of Antimicrobial Resistance and Studying 

Microbiomes 

Limitations of Traditional Techniques 

 While antibiotic resistance has been observed in clinical isolates since the 

therapeutic use of antibiotics, the ability to use molecular tools to identify 

resistance is quite recent. Early reports of antibiotic resistance in Bacillus coli (now 

E. coli) occurred shortly after the introduction of penicillin as a therapeutic in 

1942[157], but well before the structure of DNA, the basis for much of molecular 

biology, had been solved. Traditionally, clinical microbiology techniques have been 

used to isolate, grow, and quantify antibiotic resistance in both clinical and 

environmental bacterial isolates. In order to detect an antibiotic resistant isolate, it 

was necessary to be able to grow the specimen in culture and perform subsequent 

susceptibility assays[158, 159]. However, this method is limited by our ability to 

culture only a small fraction of all bacterial species[160]. For successfully cultured 

microbes, antimicrobial susceptibility/resistance is typically represented by the 

minimum inhibitory concentration, or MIC. This value represents the minimum 

amount of antibiotic needed to inhibit bacterial growth. The MIC value can be 

experimentally determined using a variety of methods including the broth 

microdilution test or disc diffusion assay[159]. Upon determining susceptibility, 

either targeted or whole-genome shotgun sequencing must be performed to 

identify the genetic basis of resistance. This process of culturing and testing 

isolates has been instrumental to building our current knowledge of antibiotic 
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resistance genes. However, it is time consuming, low throughput, and is limited by 

scientists’ ability to culture bacteria in the lab. 

 

Sequencing Based Methods for Studying the Resistome 

 The increasing accessibility of genomic sequencing and the development 

of powerful bioinformatic tools has revolutionized our ability to detect both known 

and novel antibiotic resistance genes (ARGs). New methods allow for identification 

of known ARGs and prediction of potential ARGs in non-culturable organisms at a 

high throughput scale[41, 139]. These methods are particularly effective at 

identifying resistance genes from shotgun sequencing of complex microbial 

communities such as environmental or gut microbiomes[139, 161]. D’Costa et al. 

coined the term “resistome” to describe the total collection of ARGs in a 

community[113]. In order to characterize the resistome, DNA is isolated from a 

sample of interest and shotgun sequenced in order to obtain untargeted sequence 

reads from all the bacterial genomes present. Following shotgun sequencing, 

bioinformatic tools such as DeepARG[162] are used to query the sequencing reads 

against databases containing nucleotide sequences of previously identified ARGs 

such as the Comprehensive Antibiotic Resistance Database (CARD)[163] and the 

Universal Protein Knowledgebase (UNIPROT)[162, 164]. Recent developments in 

these computational pipelines have implemented deep learning, a power machine 

learning strategy, in order to not only identify known ARGs, but also predict 

potential ARGs that may not otherwise be detected using the traditional strict 

cutoffs of traditional “best hit” approaches[162]. Using bioinformatic pipelines, it is 
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now possible to assemble bacterial genomes from shotgun sequencing datasets 

using assembly tools such as MEGAHIT[165]. This provides the opportunity to 

construct full-length ARG sequences and contextualize them in terms of their host 

phylogeny and position within the genome. While these analyses are excellent at 

identifying known resistance genes in complex microbial communities and provide 

a high throughput method to sample the resistome of clinical or environmental 

samples, they rely on databases of previously identified and characterized 

sequences and thus detection of ARGs is limited to known genes. 

 In addition to using shotgun metagenomic sequencing for identification of 

ARGs, this data can be used to further interrogate the microbiome. Traditionally, 

microbiome studies have primarily focused on defining bacterial taxonomy and 

functional potential.  However, shotgun metagenomic sequencing is a powerful 

tool that provides an untargeted view of all the DNA in a given sample including 

bacterial, viral, eukaryotic parasites, host-derived sequences, and dietary 

signatures. Combining high throughput sequence alignment programs and 

databases of known sequences, it is possible to gain a more complete view of the 

microbiome. Beyond knowing what DNA is present in a sample, the use of 

metatranscriptomic sequencing of the RNA portion of a microbial community 

provides a view of the transcription activity within a sample[166-168]. In the context 

of antibiotic resistance, metatranscriptomics has the potential to show which 

resistance genes are being transcribed in response to external inputs such as 

antibiotic therapy[169]. Together, the use of modern high throughput sequencing 
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and bioinformatic analyses provide novel insights into complex microbial 

communities and associated antibiotic resistance. 

 

Thesis Overview and Summary of Findings 

 Antimicrobial resistance is a significant threat to our current arsenal of 

antibiotics and challenges the ability of healthcare professionals to deliver effective 

treatments for bacterial infections. In order to combat the threat of antimicrobial 

resistance, we must understand (1) how antibiotic resistance develops, (2) the 

dynamics and prevalence of resistance in the environment, and (3) how 

antimicrobial therapy affects resistance gene abundance and expression in the 

microbiome. 

Previous work has shown that antibiotic resistance can develop through the 

introduction of point mutations causing target modifications. Additionally, bacteria 

are exposed to genotoxic stressors which can cause mutations, which then 

undergo a process of selection. The work presented in Chapter 1 outlines the 

process by which stress-associated mutagenesis leads to spectinomycin 

resistance through a spectrum of mutations and a gradient of selection in the 

model organism B. subtilis. Using a combination of traditional microbiology and 

high throughput DNA sequencing methods, we are able to provide novel insights 

into the development and selection of spectinomycin resistance. We exposed the 

model bacteria B. subtilis to six different stressors including stationary phase 

stress, mitomycin C, ciprofloxacin, UV radiation, H2O2, and a metal CoCl2.  

Through sequencing nearly 4,500 individual resistant isolates, we were able to 
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identify 69 novel ribosomal mutations in the rpsE and rpsB genes of B. subtilis and 

find that different genotoxic agents cause unique, stress-specific spectra of 

mutations. Some of these mutational spectra are reflective of the DNA-damaging 

mechanism of the stressor, while others seemed to reflect a less defined stress-

induced mechanism. Finally, we grew several spectinomycin-resistant strains in 

competition under a range of drug concentrations in order to determine the impact 

of an antibiotic gradient on the selection of specific mutations within a mixed 

population. We show that the fitness of individual mutations and their ability to 

persist in a mixed population is determined by the local antibiotic concentration. 

Combined, this work identifies novel target mutations to spectinomycin and 

demonstrates that the path to resistance is determined by both the stressors 

present and subsequent antibiotic selection gradient. 

Understanding antibiotic resistance is not limited to defining the 

development and selection process that shapes resistance mutations in the 

laboratory setting. Environmental microbiomes have been shown to be important 

reservoirs of resistance, with high ARG diversity, gene exchange, and the potential 

for transmission from environment to humans. The microbiota of marine organisms 

represents an understudied potential reservoir of resistance with important 

ecological and economic implications. In Chapter 3, I study the dynamics of 

antibiotic resistance within the GIT microbiomes of 7 marine fish and sharks. I 

collected the GIT contents from wild populations of four demersal fish species that 

inhabit a local estuarine habitat, Narragansett Bay, RI, including Peprilus 

triacanthus (butterfish), Stenotomus chrysops (scup), Paralichthys dentatus 
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(summer flounder), and Mustelus canis (smooth dogfish), and three large pelagic 

shark species, Alopias vulpinus (thresher shark), Isurus oxyrinchus (shortfin mako 

shark), and Lamna nasus (porbeagle shark) that were collected off the coast of 

New England. Using a shotgun metagenomic sequencing approach, I was able to 

define the taxonomic and resistance gene composition of these unique microbial 

communities. From this data I made a novel finding that the abundance of ARGs 

appears to increase with trophic level. Higher trophic level organisms (summer 

flounder, smooth dogfish, mako shark, porbeagle shark, thresher shark), defined 

by their piscivorous feeding behavior, tended to have higher levels of resistance 

genes compared to the lower trophic level species that were primarily planktivores 

and benthivores (butterfish and scup). Additionally, the abundance of ARGs was 

also significantly associated with levels of Proteobacteria within the sample. Using 

a computation pipeline, I assembled bacterial genomes from all samples and found 

that genomes from the phylum Proteobacteria had, on average, higher levels of 

ARGs than genomes from other bacterial phyla. Additionally, through use of DNA 

metabarcoding and bacterial gene function analysis, I was able to define the 

dietary contents of these fish species and make inferences about diet-associated 

carbon utilization by bacteria within the GIT microbiota. This is the first report to 

identify a trophic accumulation of antibiotic resistance and link it to an association 

between ARGs and Proteobacterial abundance. 

While shotgun metagenomics is a valuable tool for defining the taxonomy, 

resistance gene content, and functional potential of the microbiome, it lacks the 

ability to determine which genes are being actively expressed. To this point, most 
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studies have used DNA sequencing to characterize the ARG composition of the 

gut resistome. In Chapter 4, I analyze resistance gene data from a dual DNA/RNA 

sequencing approach in order to define the impact of three antibiotics on the 

murine resistome. Mice were treated with either amoxicillin, doxycycline, or 

ciprofloxacin and the DNA and RNA of cecal contents was isolated and shotgun 

sequenced. I found that DNA sequencing revealed broad, untargeted changes to 

the resistome, but transcriptional changes were more targeted towards the 

antibiotic treatment. Amoxicillin and doxycycline induced an increase in 

abundance of β-lactamase and tetracycline resistance gene transcripts, 

respectively. Additionally, we observed a bloom in the bacteria Bacteroides 

thetaiotaomicron upon treatment with amoxicillin. Looking more closely at the 

metagenomically assembled genome of B. thetaiotaomicron, I found that it 

contains a class A β-lactamase which may have accounted for the increased 

abundance of β-lactamase gene transcripts and expansion of the B. 

thetaiotaomicron population during amoxicillin treatment. The data presented in 

this chapter demonstrates the benefits of a dual DNA/RNA sequencing 

methodology when studying the gut resistome in response to antibiotics. 

Sequencing of bacterial transcripts shows that the expression of antibiotic 

resistance genes is far more targeted than changes in resistance gene content 

would suggest. 

The work presented here provides novel insights into the development of 

resistance mutations, the role of the marine environment as a reservoir of 

resistance, and the functional response of the resistome to antibiotic perturbation. 



 24 

References 
1. Prevention, C.C.f.D.C.a., Antibiotic Resistance Threats in the United States, 

2019. 2019. 
2. Murray, C.J.L., et al., Global burden of bacterial antimicrobial resistance in 

2019: a systematic analysis. Lancet, 2022. 399(10325): p. 629-655. 
3. O’Neill, J., Antimicrobial Resistance: Tackling a crisis for the health and 

wealth of nations, L.R.o.A. Resistance, Editor. 2014. 
4. Alanis, A.J., Resistance to antibiotics: are we in the post-antibiotic era? Arch 

Med Res, 2005. 36(6): p. 697-705. 
5. Kwon, J.H. and W.G. Powderly, The post-antibiotic era is here. Science, 

2021. 373(6554): p. 471-471. 
6. CDC, Antibiotic Use in the United States, 2018 Update: Progress and 

Opportunities, C. US Department of Health and Human Services, Editor. 
2019. 

7. Kabbani, S., et al., Opportunities to Improve Fluoroquinolone Prescribing in 
the United States for Adult Ambulatory Care Visits. Clinical Infectious 
Diseases, 2018. 67(1): p. 134-136. 

8. Berg, S.W., et al., Cefoxitin as a Single-Dose Treatment for Urethritis 
Caused by Penicillinase-Producing Neisseria-Gonorrhoeae. New England 
Journal of Medicine, 1979. 301(10): p. 509-511. 

9. Boslego, J.W., et al., Effect of Spectinomycin Use on the Prevalence of 
Spectinomycin-Resistant and of Penicillinase-Producing Neisseria-
Gonorrhoeae. New England Journal of Medicine, 1987. 317(5): p. 272-278. 

10. Faruki, H., et al., A Community-Based Outbreak of Infection with Penicillin-
Resistant Neisseria-Gonorrhoeae Not Producing Penicillinase 
(Chromosomally Mediated Resistance). New England Journal of Medicine, 
1985. 313(10): p. 607-611. 

11. Altshuler, L.N., Gonorrhea in World War II. Am J Syph Gonorrhea Vener 
Dis, 1948. 32(2): p. 115-23. 

12. Knapp, J.S., et al., Frequency and Distribution in the United-States of 
Strains of Neisseria-Gonorrhoeae with Plasmid-Mediated, High-Level 
Resistance to Tetracycline. Journal of Infectious Diseases, 1987. 155(4): p. 
819-822. 

13. Ohnishi, M., et al., Is Neisseria gonorrhoeae Initiating a Future Era of 
Untreatable Gonorrhea?: Detailed Characterization of the First Strain with 
High-Level Resistance to Ceftriaxone. Antimicrobial Agents and 
Chemotherapy, 2011. 55(7): p. 3538-3545. 

14. Velayati, A.A., et al., Emergence of New Forms of Totally Drug-Resistant 
Tuberculosis Bacilli Super Extensively Drug-Resistant Tuberculosis or 
Totally Drug-Resistant Strains in Iran. Chest, 2009. 136(2): p. 420-425. 

15. Seppala, H., et al., The effect of changes in the consumption of macrolide 
antibiotics on erythromycin resistance in group a streptococci in Finland. 
New England Journal of Medicine, 1997. 337(7): p. 441-446. 

16. Kristinsson, K.G., Effect of antimicrobial use and other risk factors on 
antimicrobial resistance in pneumococci. Microbial Drug Resistance, 1997. 
3(2): p. 117-123. 



 25 

17. Gottesman, B.S., et al., Impact of Quinolone Restriction on Resistance 
Patterns of Escherichia coli Isolated from Urine by Culture in a Community 
Setting. Clinical Infectious Diseases, 2009. 49(6): p. 869-875. 

18. Dagan, R., et al., Seasonality of antibiotic-resistant Streptococcus 
pneumoniae that causes acute otitis media: A clue for an antibiotic-
restriction policy? Journal of Infectious Diseases, 2008. 197(8): p. 1094-
1102. 

19. Butler, C.C., et al., Containing antibiotic resistance: decreased antibiotic-
resistant coliform urinary tract infections with reduction in antibiotic 
prescribing by general practices. British Journal of General Practice, 2007. 
57(543): p. 785-792. 

20. Fishman, N., Antimicrobial stewardship. American Journal of Infection 
Control, 2006. 34(5): p. S55-S63. 

21. Tang, K.L., N.P. Caffrey, and D.B. Nobrego, Restricting the use of 
antibiotics in food-producing animals and its associations with antibiotic 
resistance in food-producing animals and human beings: a systematic 
review and meta-analysis (vol , pg e316, 017). Lancet Planetary Health, 
2017. 1(9): p. E359-E359. 

22. Tusevljak, N., et al., Antimicrobial Use and Resistance in Aquaculture: 
Findings of a Globally Administered Survey of Aquaculture-Allied 
Professionals. Zoonoses and Public Health, 2013. 60(6): p. 426-436. 

23. Van Boeckel, T.P., et al., Global trends in antimicrobial use in food animals. 
Proceedings of the National Academy of Sciences of the United States of 
America, 2015. 112(18): p. 5649-5654. 

24. Kirchhelle, C., Pharming animals: a global history of antibiotics in food 
production (1935-2017). Palgrave Communications, 2018. 4. 

25. Tiseo, K., et al., Global Trends in Antimicrobial Use in Food Animals from 
2017 to 2030. Antibiotics-Basel, 2020. 9(12). 

26. Zhu, Y.G., et al., Diverse and abundant antibiotic resistance genes in 
Chinese swine farms. Proceedings of the National Academy of Sciences of 
the United States of America, 2013. 110(9): p. 3435-3440. 

27. Qiao, M., et al., Fate of tetracyclines in swine manure of three selected 
swine farms in China. Journal of Environmental Sciences, 2012. 24(6): p. 
1047-1052. 

28. Jo, H., et al., Fish farm effluents as a source of antibiotic resistance gene 
dissemination on Jeju Island, South Korea. Environmental Pollution, 2021. 
276. 

29. Knapp, C.W., et al., Evidence of Increasing Antibiotic Resistance Gene 
Abundances in Archived Soils since 1940. Environmental Science & 
Technology, 2010. 44(2): p. 580-587. 

30. Peng, Z.X., et al., Whole genome sequencing and gene sharing network 
analysis powered by machine learning identifies antibiotic resistance 
sharing between animals, humans and environment in livestock farming. 
Plos Computational Biology, 2022. 18(3). 



 26 

31. Levy, S.B., G.B. Fitzgerald, and A.B. Macone, Spread of Antibiotic-
Resistant Plasmids from Chicken to Chicken and from Chicken to Man. 
Nature, 1976. 260(5546): p. 40-42. 

32. Lester, C.H., et al., In vivo transfer of the vanA resistance gene from an 
Enterococcus faecium isolate of animal origin to an E. faecium isolate of 
human origin in the intestines of human volunteers. Antimicrob Agents 
Chemother, 2006. 50(2): p. 596-9. 

33. Sun, J., et al., Environmental remodeling of human gut microbiota and 
antibiotic resistome in livestock farms. Nature Communications, 2020. 
11(1). 

34. Aarestrup, F.M., et al., Effect of abolishment of the use of antimicrobial 
agents for growth promotion on occurrence of antimicrobial resistance in 
fecal enterococci from food animals in Denmark. Antimicrobial Agents and 
Chemotherapy, 2001. 45(7): p. 2054-2059. 

35. Fleming, A., On the Antibacterial Action of Cultures of a Penicillium, with 
Special Reference to Their Use in the Isolation of B. Influenzae. British 
Journal of Experimental Pathology, 1929. 10(3): p. 226-236. 

36. Chain, E., et al., Penicillin as a chemotherapeutic agent. Lancet, 1940. 2: p. 
226-228. 

37. Abraham, E.P., et al., Further observations on penicillin. Lancet, 1941. 2: p. 
177-189. 

38. Lewis, K., Platforms for antibiotic discovery. Nature Reviews Drug 
Discovery, 2013. 12(5): p. 371-387. 

39. Lyddiard, D., G.L. Jones, and B.W. Greatrex, Keeping it simple: lessons 
from the golden era of antibiotic discovery. Fems Microbiology Letters, 
2016. 363(8). 

40. Hutchings, M.I., A.W. Truman, and B. Wilkinson, Antibiotics: past, present 
and future. Current Opinion in Microbiology, 2019. 51: p. 72-80. 

41. Boolchandani, M., A.W. D'Souza, and G. Dantas, Sequencing-based 
methods and resources to study antimicrobial resistance. Nature Reviews 
Genetics, 2019. 20(6): p. 356-370. 

42. Renwick, M. and E. Mossialos, What are the economic barriers of antibiotic 
R&D and how can we overcome them? Expert Opinion on Drug Discovery, 
2018. 13(10): p. 889-892. 

43. Ardal, C., et al., Antibiotic development - economic, regulatory and societal 
challenges. Nature Reviews Microbiology, 2020. 18(5): p. 267-274. 

44. Schaberle, T.F. and I.M. Hack, Overcoming the current deadlock in 
antibiotic research. Trends in Microbiology, 2014. 22(4): p. 165-167. 

45. Nelson, R., Antibiotic development pipeline runs dry - New drugs to fight 
resistant organisms are not being developed, experts say. Lancet, 2003. 
362(9397): p. 1726-1727. 

46. Theuretzbacher, U., et al., The global preclinical antibacterial pipeline. 
Nature Reviews Microbiology, 2020. 18(5): p. 275-285. 

47. Outterson, K., et al., Accelerating global innovation to address antibacterial 
resistance: introducing CARB-X. Nature Reviews Drug Discovery, 2016. 
15(9): p. 589-590. 



 27 

48. Kelly, R., et al., Public funding for research on antibacterial resistance in the 
JPIAMR countries, the European Commission, and related European Union 
agencies: a systematic observational analysis. Lancet Infectious Diseases, 
2016. 16(4): p. 431-440. 

49. Abraham, E.P. and E. Chain, An enzyme from bacteria able to destroy 
penicillin. Nature, 1940. 146: p. 837-837. 

50. Anderson, D.G., The Treatment of Infections with Penicillin (Concluded). 
New England Journal of Medicine, 1945. 232(15): p. 423-429. 

51. Handwerger, S. and A. Tomasz, Antibiotic Tolerance among Clinical 
Isolates of Bacteria. Annual Review of Pharmacology and Toxicology, 1985. 
25: p. 349-380. 

52. Cabral, D.J., J.I. Wurster, and P. Belenky, Antibiotic Persistence as a 
Metabolic Adaptation: Stress, Metabolism, the Host, and New Directions. 
Pharmaceuticals, 2018. 11(1). 

53. Michiels, J.E., et al., Molecular mechanisms and clinical implications of 
bacterial persistence. Drug Resistance Updates, 2016. 29: p. 76-89. 

54. Brauner, A., et al., Distinguishing between resistance, tolerance and 
persistence to antibiotic treatment. Nature Reviews Microbiology, 2016. 
14(5): p. 320-330. 

55. Tangden, T., et al., Frequent emergence of porin-deficient subpopulations 
with reduced carbapenem susceptibility in ESBL-producing Escherichia coli 
during exposure to ertapenem in an in vitro pharmacokinetic model. Journal 
of Antimicrobial Chemotherapy, 2013. 68(6): p. 1319-1326. 

56. Sho, T., et al., The Mechanism of High-Level Carbapenem Resistance in 
Klebsiella pneumoniae: Underlying Ompk36-Deficient Strains Represent a 
Threat of Emerging High-Level Carbapenem-Resistant K. pneumoniae with 
IMP-1 beta-Lactamase Production in Japan. Microbial Drug Resistance, 
2013. 19(4): p. 274-281. 

57. Baroud, M., et al., Underlying mechanisms of carbapenem resistance in 
extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and 
Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-
48 and NDM-1 carbapenemases. International Journal of Antimicrobial 
Agents, 2013. 41(1): p. 75-79. 

58. Queenan, A.M. and K. Bush, Carbapenemases: the versatile beta-
lactamases. Clinical Microbiology Reviews, 2007. 20(3): p. 440-458. 

59. Poulou, A., et al., Outbreak Caused by an Ertapenem-Resistant, CTX-M-
15-Producing Klebsiella pneumoniae Sequence Type 101 Clone Carrying 
an OmpK36 Porin Variant. Journal of Clinical Microbiology, 2013. 51(10): p. 
3176-3182. 

60. Blair, J.M.A., et al., Molecular mechanisms of antibiotic resistance. Nature 
Reviews Microbiology, 2015. 13(1): p. 42-51. 

61. Poole, K., Efflux-mediated antimicrobial resistance. Journal of Antimicrobial 
Chemotherapy, 2005. 56(1): p. 20-51. 

62. Abdi, S.N., et al., Acinetobacter baumannii Efflux Pumps and Antibiotic 
Resistance. Infection and Drug Resistance, 2020. 13: p. 423-434. 



 28 

63. Baucheron, S., et al., Bile-mediated activation of the acrAB and tolC 
multidrug efflux genes occurs mainly through transcriptional derepression 
of ramA in Salmonella enterica serovar Typhimurium. Journal of 
Antimicrobial Chemotherapy, 2014. 69(9): p. 2400-2406. 

64. Card, K.J., et al., Genomic evolution of antibiotic resistance is contingent on 
genetic background following a long-term experiment with Escherichia coli. 
Proceedings of the National Academy of Sciences of the United States of 
America, 2021. 118(5). 

65. Wilson, D.N., et al., Target protection as a key antibiotic resistance 
mechanism. Nature Reviews Microbiology, 2020. 18(11): p. 637-648. 

66. Wilson, D.N., Ribosome-targeting antibiotics and mechanisms of bacterial 
resistance. Nat Rev Microbiol, 2014. 12(1): p. 35-48. 

67. Dolejska, M., et al., Complete sequencing of an IncHI1 plasmid encoding 
the carbapenemase NDM-1, the ArmA 16S RNA methylase and a 
resistancenodulationcell division/multidrug efflux pump. Journal of 
Antimicrobial Chemotherapy, 2013. 68(1): p. 34-39. 

68. Ali, A., et al., Characterization of Mutations Conferring Extensive Drug 
Resistance to Mycobacterium tuberculosis Isolates in Pakistan. 
Antimicrobial Agents and Chemotherapy, 2011. 55(12): p. 5654-5659. 

69. Da Silva, P.E.A. and J.C. Palomino, Molecular basis and mechanisms of 
drug resistance in Mycobacterium tuberculosis: classical and new drugs. 
Journal of Antimicrobial Chemotherapy, 2011. 66(7): p. 1417-1430. 

70. MacLean, R.C., C. Torres-Barcelo, and R. Moxon, Evaluating evolutionary 
models of stress-induced mutagenesis in bacteria. Nature Reviews 
Genetics, 2013. 14(3): p. 221-227. 

71. Shibai, A., et al., Mutation accumulation under UV radiation in Escherichia 
coli. Sci Rep, 2017. 7(1): p. 14531. 

72. Rastogi, R.P., et al., Molecular mechanisms of ultraviolet radiation-induced 
DNA damage and repair. J Nucleic Acids, 2010. 2010: p. 592980. 

73. Bizanek, R., et al., Isolation and structure of an intrastrand cross-link adduct 
of mitomycin C and DNA. Biochemistry, 1992. 31(12): p. 3084-91. 

74. Kumar, V., et al., Cobalt and nickel impair DNA metabolism by the oxidative 
stress independent pathway. Metallomics, 2017. 9(11): p. 1596-1609. 

75. Hartwig, A., et al., Modulation by Co(Ii) of Uv-Induced DNA-Repair, 
Mutagenesis and Sister-Chromatid Exchanges in Mammalian-Cells. 
Mutation Research, 1991. 248(1): p. 177-185. 

76. Hartwig, A. and T. Schwerdtle, Interactions by carcinogenic metal 
compounds with DNA repair processes: toxicological implications. 
Toxicology Letters, 2002. 127(1-3): p. 47-54. 

77. Gutierrez, A., et al., beta-Lactam antibiotics promote bacterial mutagenesis 
via an RpoS-mediated reduction in replication fidelity. Nat Commun, 2013. 
4: p. 1610. 

78. Pedraza-Reyes, M. and R.E. Yasbin, Contribution of the mismatch DNA 
repair system to the generation of stationary-phase-induced mutants of 
Bacillus subtilis. J Bacteriol, 2004. 186(19): p. 6485-91. 



 29 

79. Ponder, R.G., N.C. Fonville, and S.M. Rosenberg, A switch from high-
fidelity to error-prone DNA double-strand break repair underlies stress-
induced mutation. Molecular Cell, 2005. 19(6): p. 791-804. 

80. Pribis, J.P., et al., Gamblers: An Antibiotic-Induced Evolvable Cell 
Subpopulation Differentiated by Reactive-Oxygen-Induced General Stress 
Response. Molecular Cell, 2019. 74(4): p. 785-+. 

81. Ragheb, M.N., et al., Inhibiting the Evolution of Antibiotic Resistance. Mol 
Cell, 2019. 73(1): p. 157-165 e5. 

82. Rosenberg, S.M. and C. Queitsch, Combating Evolution to Fight Disease. 
Science, 2014. 343(6175): p. 1088-1089. 

83. Cirz, R.T., et al., Inhibition of mutation and combating the evolution of 
antibiotic resistance. Plos Biology, 2005. 3(6): p. 1024-1033. 

84. Cowen, L.E. and S. Lindquist, Hsp90 potentiates the rapid evolution of new 
traits: drug resistance in diverse fungi. Science, 2005. 309(5744): p. 2185-
9. 

85. Shekhar-Guturja, T., et al., Dual action antifungal small molecule modulates 
multidrug efflux and TOR signaling. Nat Chem Biol, 2016. 12(10): p. 867-
75. 

86. Ochman, H., J.G. Lawrence, and E.A. Groisman, Lateral gene transfer and 
the nature of bacterial innovation. Nature, 2000. 405(6784): p. 299-304. 

87. Ragan, M.A., On surrogate methods for detecting lateral gene transfer. 
Fems Microbiology Letters, 2001. 201(2): p. 187-191. 

88. Dagan, T. and W. Martin, Ancestral genome sizes specify the minimum rate 
of lateral gene transfer during prokaryote evolution. Proceedings of the 
National Academy of Sciences of the United States of America, 2007. 
104(3): p. 870-875. 

89. Johnsborg, O., V. Eldholm, and L.S. Havarstein, Natural genetic 
transformation: prevalence, mechanisms and function. Research in 
Microbiology, 2007. 158(10): p. 767-778. 

90. Thomas, C.M. and K.M. Nielsen, Mechanisms of, and barriers to, horizontal 
gene transfer between bacteria. Nature Reviews Microbiology, 2005. 3(9): 
p. 711-721. 

91. Kruse, H. and H. Sorum, Transfer of Multiple-Drug Resistance Plasmids 
between Bacteria of Diverse Origins in Natural Microenvironments. Applied 
and Environmental Microbiology, 1994. 60(11): p. 4015-4021. 

92. Fard, R.M.N., M.D. Barton, and M.W. Heuzenroeder, Bacteriophage-
mediated transduction of antibiotic resistance in enterococci. Letters in 
Applied Microbiology, 2011. 52(6): p. 559-564. 

93. Johnston, C., et al., Bacterial transformation: distribution, shared 
mechanisms and divergent control. Nature Reviews Microbiology, 2014. 
12(3): p. 181-196. 

94. Whittle, G., N.B. Shoemaker, and A.A. Salyers, The role of Bacteroides 
conjugative transposons in the dissemination of antibiotic resistance genes. 
Cell Mol Life Sci, 2002. 59(12): p. 2044-54. 



 30 

95. Shoemaker, N.B., et al., Evidence for extensive resistance gene transfer 
among Bacteroides spp. and among Bacteroides and other genera in the 
human colon. Appl Environ Microbiol, 2001. 67(2): p. 561-8. 

96. Karami, N., et al., Transfer of an ampicillin resistance gene between two 
Escherichia coli strains in the bowel microbiota of an infant treated with 
antibiotics. J Antimicrob Chemother, 2007. 60(5): p. 1142-5. 

97. Smillie, C.S., et al., Ecology drives a global network of gene exchange 
connecting the human microbiome. Nature, 2011. 480(7376): p. 241-4. 

98. Stecher, B., et al., Gut inflammation can boost horizontal gene transfer 
between pathogenic and commensal Enterobacteriaceae. Proc Natl Acad 
Sci U S A, 2012. 109(4): p. 1269-74. 

99. Andersson, D.I. and B.R. Levin, The biological cost of antibiotic resistance. 
Current Opinion in Microbiology, 1999. 2(5): p. 489-493. 

100. Levin, B.R., et al., The population genetics of antibiotic resistance. Clinical 
Infectious Diseases, 1997. 24: p. S9-S16. 

101. Subbiah, M., et al., Selection Pressure Required for Long-Term Persistence 
of bla(CMY-2)-Positive IncA/C Plasmids. Applied and Environmental 
Microbiology, 2011. 77(13): p. 4486-4493. 

102. Nilsson, A.I., et al., Biological costs and mechanisms of fosfomycin 
resistance in Escherichia coli. Antimicrob Agents Chemother, 2003. 47(9): 
p. 2850-8. 

103. Olofsson, S.K. and O. Cars, Optimizing drug exposure to minimize selection 
of antibiotic resistance. Clinical Infectious Diseases, 2007. 45: p. S129-
S136. 

104. Dunai, A., et al., Rapid decline of bacterial drug-resistance in an antibiotic-
free environment through phenotypic reversion. Elife, 2019. 8. 

105. Marcusson, L.L., N. Frimodt-Moller, and D. Hughes, Interplay in the 
selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog, 
2009. 5(8): p. e1000541. 

106. Qi, Q., et al., The genomic basis of adaptation to the fitness cost of 
rifampicin resistance in Pseudomonas aeruginosa. Proceedings of the 
Royal Society B-Biological Sciences, 2016. 283(1822). 

107. MacLean, R.C., et al., The population genetics of antibiotic resistance: 
integrating molecular mechanisms and treatment contexts. Nature Reviews 
Genetics, 2010. 11(6): p. 405-414. 

108. Bjorkman, J., et al., Novel ribosomal mutations affecting translational 
accuracy, antibiotic resistance and virulence of Salmonella typhimurium. 
Molecular Microbiology, 1999. 31(1): p. 53-58. 

109. Sander, P., et al., Fitness cost of chromosomal drug resistance-conferring 
mutations. Antimicrobial Agents and Chemotherapy, 2002. 46(5): p. 1204-
1211. 

110. Allen, H.K., et al., Call of the wild: antibiotic resistance genes in natural 
environments. Nat Rev Microbiol, 2010. 8(4): p. 251-9. 

111. Wright, G.D., The antibiotic resistome: the nexus of chemical and genetic 
diversity. Nat Rev Microbiol, 2007. 5(3): p. 175-86. 



 31 

112. Hu, Y.F., et al., Metagenome-wide analysis of antibiotic resistance genes in 
a large cohort of human gut microbiota. Nature Communications, 2013. 4. 

113. D'Costa, V.M., et al., Sampling the antibiotic resistome. Science, 2006. 
311(5759): p. 374-7. 

114. Larsson, D.G.J., Pollution from drug manufacturing: review and 
perspectives. Philosophical Transactions of the Royal Society B-Biological 
Sciences, 2014. 369(1656). 

115. Stanton, T.B., J.S. McDowall, and M.A. Rasmussen, Diverse tetracycline 
resistance genotypes of Megasphaera elsdenii strains selectively cultured 
from swine feces. Applied and Environmental Microbiology, 2004. 70(6): p. 
3754-3757. 

116. Looft, T., et al., In-feed antibiotic effects on the swine intestinal microbiome. 
Proceedings of the National Academy of Sciences of the United States of 
America, 2012. 109(5): p. 1691-1696. 

117. Korry, B.J., D.J. Cabral, and P. Belenky, Metatranscriptomics Reveals 
Antibiotic-Induced Resistance Gene Expression in the Murine Gut 
Microbiota. Front Microbiol, 2020. 11: p. 322. 

118. Mukhopadhyay, S., et al., The Quantitative Distribution of Nebulized 
Antibiotic in the Lung in Cystic-Fibrosis. Respiratory Medicine, 1994. 88(3): 
p. 203-211. 

119. Negri, M.C., et al., Concentration-dependent selection of small phenotypic 
differences in TEM beta-lactamase-mediated antibiotic resistance. 
Antimicrob Agents Chemother, 2000. 44(9): p. 2485-91. 

120. Baquero, F. and M.C. Negri, Selective compartments for resistant 
microorganisms in antibiotic gradients. Bioessays, 1997. 19(8): p. 731-6. 

121. Knapp, C.W., et al., Evidence of increasing antibiotic resistance gene 
abundances in archived soils since 1940. Environ Sci Technol, 2010. 44(2): 
p. 580-7. 

122. Bhullar, K., et al., Antibiotic resistance is prevalent in an isolated cave 
microbiome. PLoS One, 2012. 7(4): p. e34953. 

123. D'Costa, V.M., et al., Antibiotic resistance is ancient. Nature, 2011. 
477(7365): p. 457-461. 

124. Van Goethem, M.W., et al., 1 A reservoir of 'historical' antibiotic resistance 
genes in remote pristine Antarctic soils. Microbiome, 2018. 6. 

125. Allen, H.K., et al., Call of the wild: antibiotic resistance genes in natural 
environments. Nature Reviews Microbiology, 2010. 8(4): p. 251-259. 

126. Martinez, J.L., Antibiotics and antibiotic resistance genes in natural 
environments. Science, 2008. 321(5887): p. 365-7. 

127. Linares, J.F., et al., Antibiotics as intermicrobial signaling agents instead of 
weapons. Proceedings of the National Academy of Sciences of the United 
States of America, 2006. 103(51): p. 19484-19489. 

128. Fajardo, A. and J.L. Martinez, Antibiotics as signals that trigger specific 
bacterial responses. Current Opinion in Microbiology, 2008. 11(2): p. 161-
167. 



 32 

129. Yim, G., H.M.H. Wang, and J. Davies, Antibiotics as signalling molecules. 
Philosophical Transactions of the Royal Society B-Biological Sciences, 
2007. 362(1483): p. 1195-1200. 

130. Romero, D., et al., Antibiotics as Signal Molecules. Chemical Reviews, 
2011. 111(9): p. 5492-5505. 

131. Dantas, G., et al., Bacteria subsisting on antibiotics. Science, 2008. 
320(5872): p. 100-103. 

132. Backhed, F., et al., Host-bacterial mutualism in the human intestine. 
Science, 2005. 307(5717): p. 1915-1920. 

133. Neish, A.S., Microbes in Gastrointestinal Health and Disease. 
Gastroenterology, 2009. 136(1): p. 65-80. 

134. Vollaard, E.J. and H.A.L. Clasener, Colonization Resistance. Antimicrobial 
Agents and Chemotherapy, 1994. 38(3): p. 409-414. 

135. Neish, A.S., et al., Prokaryotic regulation of epithelial responses by 
inhibition of I kappa B-alpha ubiquitination. Science, 2000. 289(5484): p. 
1560-1563. 

136. Atarashi, K., et al., Treg induction by a rationally selected mixture of 
Clostridia strains from the human microbiota. Nature, 2013. 500(7461): p. 
232-6. 

137. Boucias, D.G., et al., The hindgut lumen prokaryotic microbiota of the 
termite Reticulitermes flavipes and its responses to dietary lignocellulose 
composition. Molecular Ecology, 2013. 22(7): p. 1836-1853. 

138. Sampson, T.R., et al., Gut Microbiota Regulate Motor Deficits and 
Neuroinflammation in a Model of Parkinson's Disease. Cell, 2016. 167(6): 
p. 1469-+. 

139. Sommer, M.O.A., G. Dantas, and G.M. Church, Functional characterization 
of the antibiotic resistance reservoir in the human microflora. Science, 2009. 
325(5944): p. 1128-1131. 

140. Sommer, M.O., G.M. Church, and G. Dantas, The human microbiome 
harbors a diverse reservoir of antibiotic resistance genes. Virulence, 2010. 
1(4): p. 299-303. 

141. Forsberg, K.J., et al., The Shared Antibiotic Resistome of Soil Bacteria and 
Human Pathogens. Science, 2012. 337(6098): p. 1107-1111. 

142. Foti, M., et al., Antibiotic Resistance of Gram Negatives isolates from 
loggerhead sea turtles (Caretta caretta) in the central Mediterranean Sea. 
Marine Pollution Bulletin, 2009. 58(9): p. 1363-1366. 

143. Miller, R.V., K. Gammon, and M.J. Day, Antibiotic resistance among 
bacteria isolated from seawater and penguin fecal samples collected near 
Palmer Station, Antarctica. Canadian Journal of Microbiology, 2009. 55(1): 
p. 37-45. 

144. Rose, J.M., et al., Occurrence and patterns of antibiotic resistance in 
vertebrates off the Northeastern United States coast. Fems Microbiology 
Ecology, 2009. 67(3): p. 421-431. 

145. Brealey, J.C., et al., The oral microbiota of wild bears in Sweden reflects the 
history of antibiotic use by humans. Current Biology, 2021. 31(20): p. 4650-
+. 



 33 

146. Hu, Y.F., et al., The Bacterial Mobile Resistome Transfer Network 
Connecting the Animal and Human Microbiomes. Applied and 
Environmental Microbiology, 2016. 82(22): p. 6672-6681. 

147. Rhodes, G., et al., Distribution of oxytetracycline resistance plasmids 
between aeromonads in hospital and aquaculture environments: Implication 
of Tn1721 in dissemination of the tetracycline resistance determinant Tet A. 
Applied and Environmental Microbiology, 2000. 66(9): p. 3883-3890. 

148. Faircloth, B.C., et al., A Phylogenomic Perspective on the Radiation of Ray-
Finned Fishes Based upon Targeted Sequencing of Ultraconserved 
Elements (UCEs). Plos One, 2013. 8(6). 

149. Cuadrat, R.R.C., et al., Global ocean resistome revealed: Exploring 
antibiotic resistance gene abundance and distribution in TARA Oceans 
samples. Gigascience, 2020. 9(5). 

150. Arnold, K.E., N.J. Williams, and M. Bennett, 'Disperse abroad in the land': 
the role of wildlife in the dissemination of antimicrobial resistance. Biology 
Letters, 2016. 12(8). 

151. Egerton, S., et al., The Gut Microbiota of Marine Fish. Frontiers in 
Microbiology, 2018. 9. 

152. Fleming, L.E., et al., Oceans and human health: Emerging public health 
risks in the marine environment. Marine Pollution Bulletin, 2006. 53(10-12): 
p. 545-560. 

153. Poirel, L., et al., Origin of plasmid-mediated quinolone resistance 
determinant QnrA. Antimicrob Agents Chemother, 2005. 49(8): p. 3523-5. 

154. Tran, J.H., G.A. Jacoby, and D.C. Hooper, Interaction of the plasmid-
encoded quinolone resistance protein Qnr with Escherichia coli DNA 
gyrase. Antimicrob Agents Chemother, 2005. 49(1): p. 118-25. 

155. Martinez-Martinez, L., A. Pascual, and G.A. Jacoby, Quinolone resistance 
from a transferable plasmid. Lancet, 1998. 351(9105): p. 797-9. 

156. Wu, J.J., et al., Prevalence of plasmid-mediated quinolone resistance 
determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter 
cloacae in a Taiwanese hospital. Antimicrob Agents Chemother, 2007. 
51(4): p. 1223-7. 

157. Abraham, E.P. and E. Chain, An enzyme from bacteria able to destroy 
penicillin. 1940. Rev Infect Dis, 1988. 10(4): p. 677-8. 

158. Adu-Oppong, B., A.J. Gasparrini, and G. Dantas, Genomic and functional 
techniques to mine the microbiome for novel antimicrobials and 
antimicrobial resistance genes. Ann N Y Acad Sci, 2017. 1388(1): p. 42-58. 

159. Jorgensen, J.H. and M.J. Ferraro, Antimicrobial susceptibility testing: 
general principles and contemporary practices. Clin Infect Dis, 1998. 26(4): 
p. 973-80. 

160. Rappe, M.S. and S.J. Giovannoni, The uncultured microbial majority. Annu 
Rev Microbiol, 2003. 57: p. 369-94. 

161. Yang, J.H., et al., Antibiotic-Induced Changes to the Host Metabolic 
Environment Inhibit Drug Efficacy and Alter Immune Function. Cell Host & 
Microbe, 2017. 22(6): p. 757-+. 



 34 

162. Arango-Argoty, G., et al., DeepARG: a deep learning approach for 
predicting antibiotic resistance genes from metagenomic data. Microbiome, 
2018. 6(1): p. 23. 

163. Jia, B., et al., CARD 2017: expansion and model-centric curation of the 
comprehensive antibiotic resistance database. Nucleic Acids Res, 2017. 
45(D1): p. D566-D573. 

164. UniProt, C., UniProt: the universal protein knowledgebase in 2021. Nucleic 
Acids Res, 2021. 49(D1): p. D480-D489. 

165. Li, D., et al., MEGAHIT v1.0: A fast and scalable metagenome assembler 
driven by advanced methodologies and community practices. Methods, 
2016. 102: p. 3-11. 

166. Bikel, S., et al., Combining metagenomics, metatranscriptomics and 
viromics to explore novel microbial interactions: towards a systems-level 
understanding of human microbiome. Computational and Structural 
Biotechnology Journal, 2015. 13: p. 390-401. 

167. Hornung, B., et al., Studying microbial functionality within the gut ecosystem 
by systems biology. Genes and Nutrition, 2018. 13. 

168. Cabral, D.J., et al., Microbial Metabolism Modulates Antibiotic Susceptibility 
within the Murine Gut Microbiome. Cell Metabolism, 2019. 30(4): p. 800-+. 

169. Rowan-Nash, A.D., et al., Cross-Domain and Viral Interactions in the 
Microbiome. Microbiol Mol Biol Rev, 2019. 83(1). 



 35 

 

CHAPTER 2: Genotoxic Agents Produce 
Stressor-specific Spectra of Spectinomycin 
Resistance Mutations based on Mechanism 
of Action and Selection in Bacillus subtilis 

 
 
 

Originally published in Antimicrobial Agents and Chemotherapy, September 17, 
2021, Volume 65, Number 10 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2021 American Society for Microbiology 



 36 

Genotoxic Agents Produce Stressor-specific Spectra of 
Spectinomycin Resistance Mutations based on Mechanism of Action 

and Selection in Bacillus subtilis 
 
Benjamin J. Korry1, Stella Ye Eun Lee1, Amit K. Chakrabarti1, Ashley H. Choi1, 
Collin Ganser1, Jason T. Machan2,3, Peter Belenky1* 
 
1 Department of Molecular Microbiology and Immunology, Brown University, 
Providence, RI 02906, USA 
2 Department of Orthopedics, Warren Alpert Medical School of Brown University, 
Providence, RI 02903, USA 
3 Department of Surgery, Warren Alpert Medical School of Brown University, 
Providence, RI 02903, USA 
*  Lead Contact: peter_belenky@brown.edu 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 37 

Abstract  
Mutagenesis is integral for bacterial evolution and the development of 

antibiotic resistance. Environmental toxins and stressors are known to elevate the 
rate of mutagenesis through direct DNA toxicity known as stress-associated 
mutagenesis, or via a more general stress-induced process that relies on intrinsic 
bacterial pathways. Here, we characterize the spectra of mutations induced by an 
array of different stressors using high-throughput sequencing to profile thousands 
of spectinomycin resistant colonies of Bacillus subtilis. We found 69 unique 
mutations in the rpsE and rpsB genes, and that each stressor leads to a unique 
and specific spectrum of antibiotic resistance mutations. While some mutations 
clearly reflected the DNA-damage mechanism of the stress, others were likely the 
result of a more general stress-induced mechanism. To determine the relative 
fitness of these mutants under a range of antibiotic selective pressure, we used 
multi-strain competitive fitness experiments and found an additional landscape of 
fitness and resistance. The data presented here support the idea that the 
environment in which the selection is applied (mutagenic stressors that are 
present), and changes in local drug concentration, can significantly alter the path 
to spectinomycin resistance in B. subtilis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

Introduction 

While maintaining the integrity of DNA is vital to survival, the introduction of 

mutations is equally important for the long-term success of a population as it 

enables continued adaptation. In bacteria, mutations that lead to even a single 

nucleotide change can have an extensive impact on phenotype, such as by 

changing host tropism[1], altering virulence[2], and introducing antibiotic 

resistance[3]. Point mutations can be introduced through a variety of mechanisms 

including the induction of mutagenic DNA repair pathways[4-7], inhibition of DNA 

repair[8, 9], homologous recombination[10], replication errors[7, 10-12], and direct 

base damage[7, 13-15]. We now understand that the rate of mutations is not static 

and is elevated by a variety of stimuli, and the biology, genetics, and chemistry 

behind these mechanisms have been extensively studied[7, 16-21].  

 Environmental mutagens as well as bacterial stress responses play a key 

role in generating mutations that drive evolution and lead to antibiotic 

resistance[16, 22]. Mutagens such as heavy metals[23], ultraviolet (UV) 

radiation[24], and antimicrobials[25-28], as well as exposure to stressful conditions 

such as starvation[29], have been shown to induce antibiotic resistance through 

mutation. Additionally, previous work has shown that different stressors can 

produce different types of mutations[30-34]. These types of stressors have the 

capacity to cause mutation by directly damaging DNA through alkylation, oxidation, 

or crosslinking of bases, in a process termed stress-associated mutagenesis 

(SAM) by MacLean et al.[16]. Bacterial stressors can also act through stress-

induced mutagenesis (SIM) by regulating cellular genetic machinery that leads to 
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mutations, such as the induction of error-prone polymerases or inhibition of DNA 

repair genes [8, 9, 16, 35]. Since both of these mechanisms can act in response 

to a particular stressor, the spectrum of observed mutations would reflect a mixture 

of SAM and SIM.  

 Understanding the mechanisms by which bacteria develop antibiotic 

resistance is key to combating the current antibiotic resistance crisis, which results 

in millions of resistant infections and tens of thousands of deaths annually[36]. 

Instances of genetic mutation leading to resistance are well documented, and 

some of the most commonly used antibiotics have lost much of their efficacy due 

to the emergence of resistance-conferring mutations in a few bacterial genes. In 

fact, resistance to both first- and second-line drugs in M. tuberculosis is made 

possible by single point mutations in a number of genes, highlighting the great 

impact that single nucleotide substitutions can have on bacterial phenotypes[3].  

 Mutations that lead to resistance against ribosome-targeting antibiotics 

represent a major threat to our current medical practices. Spectinomycin is an 

aminocyclitol antibiotic which inhibits translocation of the peptidyl-tRNA from the 

A- to the P-site by binding to the 30S subunit[37-39]. This antibiotic is especially 

important as it is an effective option for treating Neisseria gonorrhoeae infections, 

which have become resistant to penicillin[40-42], sulfonamides[43], 

tetracycline[44], and worryingly, the cephalosporin, ceftriaxone[45, 46]. 

Spectinomycin resistance via single nucleotide mutations in ribosomal protein S5 

were identified previously N. gonorrhoeae[46, 47] in Escherichia coli[48, 49] and 

Bacillus subtilis[50] as well as other bacteria[51, 52]. In B. subtilis, both the rpsB 
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and rpsE genes that encode for the S2 and S5 proteins contain multiple sites where 

point mutations have the potential to confer resistance. Looking at the spectrum of 

mutations in these two genes can be useful for understanding how environmental 

stressors cause spectinomycin resistance mutations through a combination of SIM 

and SAM. 

In both experimentally and naturally selected mutations, the final product of 

the selection represents only a fraction of the total mutational landscape. This 

landscape is defined by the initial mutagenic stress such that different stressors 

will induce a different array of mutations[30-34] via combination of SIM and SAM 

mechanisms depending on the context of the stress[16]. This spectrum of 

mutations then undergoes various selective forces, including selection for 

antibiotic resistance[53-57] and bacterial fitness[16, 58-62], that shape the final 

mutational profile observed. Here, we utilize a high-throughput system employing 

traditional microbiological techniques in conjunction with next-generation 

sequencing to demonstrate the impact of an array of genotoxic stressors on the 

spectrum of spectinomycin mutations, characterizing the full mutational spectrum 

associated with each genotoxic agent within the rpsE gene of B. subtilis. We find 

that each stressor generates a unique set of mutations, some of which are 

reflective of their respective mechanisms of DNA toxicity and suggest SAM 

whereas others likely arise from SIM mechanisms. As part of this effort, we also 

identify novel spectinomycin resistance mutations in both the rpsE and rpsB genes 

of B. subtilis. From the full spectrum of stressor-specific mutations, selective 

processes narrow down the mutations to viable mutants. Utilizing a bacterial 
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competition assay combined with a sequencing approach; we find that, consistent 

with previous work, the fitness of various mutants is highly dependent on antibiotic 

concentration. Our results demonstrate that the full spectrum of available 

spectinomycin resistance mutations is narrowed down to a few mutations during 

multiple selection events. Thus, the final mutants that emerge are shaped by both 

the initial mutagen/stress and the subsequent level of antibiotic selection present. 

 

Results 

Genotoxic Agents Induce a Spectrum of Unique and Treatment-Specific 

Resistance Mutations 

Past work indicates that exposure to mutagens and other forms of stress 

can cause genotoxicity and induce mutations that lead to the development of 

resistance.  We tested the propensity of an array of genotoxic conditions, each 

inducing DNA damage through a different mechanism, to generate spectinomycin 

resistance in the wild-type (WT) background of B. subtilis 168 compared to no-

treatment controls. As growth phase is an important factor in stress response and 

mutagenesis[63-65], we exposed cells to mutagenic agents for 30 minutes during 

logarithmic phase or for 3 hours during stationary phase growth before removing 

the stressing agent and plating on spectinomycin selection media (100 µg/mL) to 

determine the number of resistant colonies generated. The benefit of this 

experimental design is that the stressor is experimentally and temporally separate 

from the following spectinomycin selection. The short exposure of stress prevents 

cells from undergoing multiple rounds of division and selection. Treatment 
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concentrations were determined by dose titration experiments and selected based 

on mutagen exposure levels that were able to potentiate mutagenesis while 

minimizing bacterial killing. The mutational frequency of each stressor is likely the 

result of an agent specific mechanism of action that can also change in a 

concentration-dependent manner for each of the agents [21]. For example, 

antibiotics like ciprofloxacin may induce DNA-mutations through either the direct 

mechanism on DNA gyrase/topoisomerase or via ROS induced damage. Here, 

stressor concentrations were determined using a dose titration and selecting 

concentrations that induced the greatest frequency of mutants. These experiments 

provided both the extent of mutagenicity of the different treatments, and also 

generated a compendium of thousands of individual resistant colonies that we 

used to elucidate the spectrum of mutations associated with each treatment. 

The frequency at which spectinomycin-resistant colonies were generated 

was dependent on both the type of mutagenic agent administered as well as the 

growth phase (Figure 1A). Mitomycin C, ciprofloxacin, and UV radiation all 

increased the frequency at which resistant colonies developed compared to 

untreated cells across growth phases, while hydrogen peroxide, and cobalt 

chloride caused an increase in resistant colony frequency only during logarithmic 

growth (Mann-Whitney U test, p < 0.05) (Figure 1A). In addition, untreated cells 

grown to stationary phase exhibited an increase in the formation of resistant 

colonies compared to untreated cells grown in logarithmic phase (Mann-Whitney 

U test, p < 0.05), likely reflecting the stress incurred by extended growth and the 

known phenomenon of stationary-phase mutagenesis in B. subtilis[63]. This data 



 43 

suggests that stressors that possess different mechanisms of DNA damage are 

capable of inducing spectinomycin resistance in B. subtilis to different degrees 

depending on both the type and timing of exposure. The fact that stressors further 

elevate mutations during stationary phase compared to untreated cells likely 

indicates that mutations derived from SAM mechanisms are additive to SIMs 

related to stationary phase. 

We utilized Sanger and whole-genome sequencing on a subset of colonies 

to determine the genetic basis of resistance in these mutagenized bacteria. These 

strategies identified base substitutions in two genes, rpsE and rpsB, encoding the 

ribosomal proteins S5 and S2, respectively (Table S1), aligning with a previous 

report which identified that spectinomycin resistance in B. subtilis can result from 

a single amino acid replacement in the ribosomal protein S5 [50]. More unique 

mutations were found in the rpsE gene compared to rpsB (Figure S1, S2), 

therefore we chose to examine the full spectrum of mutations in rpsE across all 

previously-generated spectinomycin resistant colonies using an amplicon-based 

next-generation sequencing strategy. 

We used the rpsE gene as a model to understand how different stressors 

can induce spectinomycin resistance through different routes of mutation leading 

to unique, stress-specific spectra of mutations. Previous work in both prokaryotic 

and eukaryotic models have suggested that some mutagens have mutational 

signatures[66]. We aimed to uncover the full mutational spectrum in rpsE by 

isolating and sequencing thousands of individual spectinomycin resistant colonies 

derived from cultures exposed to different treatments. In order to identify the 
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largest possible range of mutants, we employed a low selective pressure of less 

than 2x MIC (spectinomycin) and grew colonies on uncrowded plates, anticipating 

that this would enable recovery of isolates with both common and rare resistance 

mutations while reducing potential negative fitness impacts of individual mutations. 

To identify the mutational spectrum of various stressors, we performed rpsE 

amplicon sequencing on an Illumina MiSeq to an estimated average sequencing 

depth of roughly 1,500 reads per colony on a library of ~5,000 individual colonies 

from 10 different treatment conditions (~500 colonies per condition) representing 

at least 6 replicates per condition. 

Sequencing revealed that each treatment induced a unique set of non-

synonymous mutations, most commonly resulting in single amino acid changes 

(Figure 1B). In all of the conditions the relative abundance of colonies with an 

identified rpsE mutation is less than 100%, indicating that mutations occur outside 

of this gene, and the frequency at which a colony was found to contain a rpsE 

mutation varied between conditions. For example, it appears that the rpsE gene is 

more responsible for spectinomycin resistance in mitomycin C- treated cells 

(71.72%) compared to those exposed to UV radiation (12.4%) (Figure 1B). It is 

likely that the low percentage of rpsE mutations in some conditions resulted from 

a higher frequency of mutations in other genes, such as rpsB. This finding 

highlights the fact that given multiple gene targets, different stressors will 

repeatably and preferentially target certain genetic loci. 

 

 



 45 

Mutation Spectra Correspond to Stressor-Specific Mechanisms of Mutagenesis 

Examination of the spectrum of mutation corresponding to different 

stressors reveals both expected patterns of mutation based on known mechanism 

of mutagenesis and novel, broad patterns of mutation (Figure 1B). The DNA 

damage mechanism of mitomycin C [15], UV [14, 67], and H2O2 [68, 69] has been 

previously described, and thus we were able to predict what mutational spectrum 

these stressors would produce.  

   Mitomycin C, an antitumor drug, induces DNA damage by forming 

interstrand cross-links of guanosine residues at CpG sites [15, 70, 71]. The data 

here reveal that the majority of mitomycin C-induced spectinomycin-resistance 

mutations occur at a CG (nucleotides 88,89), where it accounted for over 50% of 

the rpsE mutations during both logarithmic (68.6%) and stationary (61.41%) phase 

growth. However, in all other treatments the G89C mutation was only present in a 

maximum of 8.54% of rpsE mutants. The mitomycin C mutation spectrum displays 

how patterns of mutation caused by DNA damage can be stress-specific, and in 

the case of mitomycin C is reflective of the particular DNA damage mechanism of 

the drug. Thus, in the case of mitomycin C, SAM likely plays a greater role than 

SIM. 

UV radiation also has a unique DNA-damaging mechanism that commonly 

targets adjacent pyrimidine bases leading to the C -> T base substitutions known 

as UV signature mutations [14, 67, 72]. A mutation in the rpsE gene was relatively 

rare among colonies generated by UV treatment (12.43% in logarithmic phase, 

18.22% stationary phase). This could reflect a lack of adjacent pyrimidine bases 
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that could result in a productive mutation in this gene. To determine whether this 

site was responsible for the majority of the resistance observed in UV treated cells, 

we Sanger sequenced the rpsB gene from 90 UV-treated colonies. Roughly 68% 

(62 colonies) of the colonies contained a C -> T mutation characteristic of UV 

damage (Figure 1C). These findings illustrate that the rpsB gene is a more 

common target for spectinomycin resistance mutations in the context of UV 

radiation exposure, likely due to the susceptible nucleotide sequence (adjacent 

cytosine bases) that lends itself to the UV signature C -> T mutation.  

This data suggests that bacterial evolution and development of antibiotic 

resistance through SAM is shaped by a combination of the mutagenic stress, the 

mechanism of DNA damage, the nucleotide composition of the resistance loci, and 

potential for the DNA damage to induce the type of mutation that will lead to 

resistance. Within the genome of B. subtilis, and even rpsE and rpsB, there are 

numerous sites of adjacent pyrimidines. However, out of all these sites that are 

subject to UV damage only the C74 site in rpsB is strongly selected for, likely based 

on its ability to provide resistance in a way that does not compromise cell viability. 

It is likely that some rpsE mutations were not detected due to epistatic or lethal 

mutations elsewhere in the genome, especially under highly mutagenic conditions. 

Ultimately, UV is another example where SAM is likely the predominant 

mechanism of mutagenesis leading to observed mutations. 

We also found an observable mutation signature in the case of hydrogen 

peroxide, analogous to observations made regarding mutations of the supF gene 

of E. coli[69].  Akasaka et al. found that the mutational spectra of hydrogen 
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peroxide was predominantly G:C -> C:G (40%) and G:C -> T:A (37.14 %) 

transversions[69]. We identified a similar profile of mutations in the B. subtilis rpsE 

gene (Table S2), finding that a large portion of the mutations were G -> C (23.9%) 

and G -> T (23.4%) transversions; however, we also observed a substantial 

number of G -> A transitions (32.2%) (Figure 1B). Interestingly, when the supF 

gene was exposed to hydrogen peroxide and then passaged through simian (CV-

1) cells, G:C -> A:T mutations represented 43.5% of the overall mutations[68]. The 

high abundance of mutations at guanine residues in both our data and previous 

studies is likely reflective of the mechanism of hydrogen peroxide damage, which 

forms hydroxyl radicals known to cause 8-oxodG lesions [73]. 

We also examined the mutational spectrum of stressors for which 

mutational spectra was unknown and could not be inferred by a distinct mechanism 

of DNA damage. Sequencing mutants generated by exposure to stationary phase 

stress, CoCl2, and ciprofloxacin provided an opportunity to observe novel 

mutational spectra and gain insights into new mechanisms of mutagenesis. 

Previous research into B. subtilis stationary phase mutagenesis revealed 

that subpopulations of stationary phase cells undergo adaptive mutagenesis [63], 

but there has not been significant investigation into the spectrum of mutation 

associated with this condition in B. subtilis. Overall, we found that stationary phase 

was not associated with an overrepresentation of a specific mutation, but rather 

there was a mostly even distribution among 4 different mutations. Such a 

distributed pattern was also observed in other treatments, such as ciprofloxacin 

during stationary phase. In the case of mitomycin C treatment, in both growth 
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phases, its contribution to the overall mutation spectrum is reduced by a signature 

mutation linked directly to a specific form of DNA-damage induced by the drug 

(Figure 1B). 

Cobalt (Co) in the form of cobalt chloride (CoCl2) has been shown to be 

mutagenic both in bacterial and mammalian cells[74, 75]. The generation of DNA-

damaging reactive oxygen species (ROS) has been proposed as a method by 

which metal ions induce toxicity and potentially mutagenesis[76, 77], but there is 

not substantial evidence to link Co-induced mutagenesis to ROS in bacteria[77]. 

However, we observe that the most common mutation in the rpsE gene of B. 

subtilis treated with CoCl2 is G -> T (46.2%) (Figure 1B), which could potentially 

be a signature of 8-oxo-dG mutations caused by ROS[78]. Interestingly, this is an 

even higher rate of G -> T mutations than the hydrogen peroxide treatment, which 

would be expected to exhibit more signatures of ROS-associated DNA damage. A 

potential alternate mechanism is that Co may cause toxicity through inhibition of 

DNA repair, independent of oxidative stress, as has been suggested to occur in E. 

coli[79]. However, based on the data presented here, we are unable to link Co 

mutagenesis to a distinct mechanism, though we do show that CoCl2 has the 

potential to induce base substitution mutations that result in antibiotic resistance 

through a unique spectrum of mutations. 

 Antibiotics are known to cause mutagenesis through activation of both SOS-

dependent[28] and independent pathways[80], which may be related to ROS 

production[25, 28]. Treatment of B. subtilis with ciprofloxacin led to an increase in 

the formation of spectinomycin resistant colonies (Figure 1A). The predominant 
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rpsE mutation of ciprofloxacin treatment is A67G in both log phase and stationary 

phase, with this mutant making up 21.94% and 17.41% of the relative abundance 

of resistant mutants, respectively (Figure 1B). However, while 80.61% of the rpsE 

mutant reads are A67G in log phase cells treated with ciprofloxacin, A67G was 

only 29.16% of rpsE mutations in ciprofloxacin-treated stationary phase cells 

(Figure 1B). This suggests that ciprofloxacin treatment has a variable mutation 

spectrum that depends on growth phase, and it is likely that the combined stress 

of stationary phase growth in addition to ciprofloxacin induced stress is responsible 

for a more diverse mutational spectrum during stationary phase growth. This 

highlights the importance of evaluating the mutational spectrum of mutagens at 

different growth phases and understanding the combinatorial impacts of stressors. 

It is also possible that the divergent signature observed between stationary and 

logarithmic phase cells treated with ciprofloxacin results from different rates of 

replication fork-stalling induced double strand breaks that may occur between 

dividing and non-dividing cells, potentially altering the relative contributions of SAM 

and SIM mechanisms.  

Bacterial evolution studies have revealed that, like many other organisms, 

bacteria exhibit transition bias, with transition mutations overrepresented relative 

to the unbiased Ti:Tv [81, 82]. Of the spectinomycin resistance mutations in the 

rpsE gene, the ratio of transitions to transversions is dependent on the type of 

mutagenic stress administered to the bacteria (Figure S4A). While ciprofloxacin 

and hydrogen peroxide treatments as well as stationary phase stress induced a 

higher ratio of transitions to transversions in rpsE than expected in an unbiased 
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scenario (Ti:Tv > 0.5), mitomycin C, UV radiation, and cobalt chloride treatment 

instead all resulted in further bias towards transversions (Ti:Tv < 0.5) (Figure S4A). 

Interestingly, across all the possible observed mutations, there were nearly 4 times 

more detected (37) transversion mutations compared to transitions (9). It has been 

proposed that amino acid level, transversion mutations are more likely to cause a 

change in the biochemical properties of amino acids and that transition mutations 

are more conservative [83, 84]. Therefore, it may be logical to assume that a 

resistance conferring mutation would be a transversion. However, a more recent 

meta-analysis found transition mutations to be only slightly more conservative than 

transversions [85], and thus there may be alternative explanations for the 

increased abundance of transversions observed here. Due to the different 

mutagenic pathways in each of the treatments, not all mutational spectra reflect a 

transversion bias, highlighting the unique stressor-specific pathways that lead to 

antibiotic resistance mutations. 

 

Location of Mutations in Ribosomal Proteins S5 and S2 

Alterations of the loop 2 region of the S5 protein have been shown to impact 

spectinomycin sensitivity in E. coli by disrupting the binding of the drug to the 

ribosome [86, 87]. Sanger sequencing of the entire rpsE gene revealed that the 

observed mutations were strictly limited to a small region of the protein and, in 

agreement with previous studies, these mutations were located along the loop 2 

region of the S5 protein (Figure S5A). We identified 63 unique rpsE mutant alleles 

with single, double, or triple nucleotide mutations (Figure S3). Of these 63 
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mutations, only 2 have been previously described in B. subtilis [50, 88]. We 

observed 6 different mutation sites in the S2 protein, but the most commonly 

mutated sites were at amino acid positions 22 and 25 (Figures S5B). The close 

proximity of these two sites and their high frequency of mutation in resistant 

colonies suggests that this region of the S2 protein may have an impact on the 

binding of spectinomycin to the ribosome. These localization patterns suggest that 

selection for mutations is dependent not only on the possible mutations generated 

by different stressors, but also that these mutations occur in sites that will provide 

a physiologic advantage such as resistance. 

 

Impact of DNA Repair Genes on the Frequency and Spectrum of Mitomycin C 

Induced Mutagenesis 

Based on the data presented above, the sequenced mutants likely result 

from variable combinations of SIM and SAM mechanisms. In order to ascertain the 

contributions of each mechanism, we decided to observe how disruption of 

processes known to be associated with SIM, including DNA damage repair 

processes and the SOS response, impacted the spectrum of spectinomycin-

resistant mutants generated through mitomycin C treatment. Specifically, we 

tested the mutation frequency and mutational spectrum of a library of previously-

validated mutants targeting processes related to DNA maintenance and repair[89]. 

Several mutants lacked genes involved in the SOS response including yhaO, 

yobH, yozK, uvrX, uvrA, uvrB, uvrC, recA, and dinB, which all are regulated by 

LexA, the transcriptional repressor of the SOS regulon[90, 91]. Other mutants 
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contained knockouts of genes involved in DNA maintenance and repair 

independent of the SOS response: radA, adaA, sbcD, recN, radC, mutSB, exoAA, 

mfd.  

In WT B. subtilis, we had observed that the spectrum of rpsE spectinomycin 

resistance mutations arising from mitomycin C exposure was dominated by a 

particular mutation of a CpG site, corresponding to the interstrand cross-linking 

that mitomycin C induces at these sites (Figure 1A, B). Previous work has 

suggested that such interstrand cross-links are repaired via the nucleotide excision 

repair pathway (NER) or by homologous recombination [70]. Mitomycin C is also 

an alkylating agent capable of generating mono-adducts at the N2 and N7 positions 

of guanine, which in B. subtilis are also repaired through NER, including both the 

UvrABC and MrfAB pathways [70]. 

Utilizing the mitomycin C mutagenesis conditions used previously during 

logarithmic growth, we found that the deletion of genes involved in DNA 

maintenance and repair had vastly different effects on the frequency of formation 

of spectinomycin resistant colonies (Figure 2A). DNA repair is a vital part of 

counteracting the mutagenic impacts of various genotoxic stressors. Compared to 

the frequency observed in WT, the ΔadaA, ΔyhaO, ΔrecN, ΔmutSB, ΔuvrA, ΔuvrB, 

and ΔuvrC deletions all significantly increased the frequency at which resistant 

colonies formed as a result of mitomycin C treatment (Mann-Whitney U test, p < 

0.0001). Surprisingly, most of the ΔrecN, ΔuvrA, ΔuvrB, and ΔuvrC colonies that 

formed on the spectinomycin selection plates could not be regrown in liquid media 

under selection, suggesting that these colonies were inviable or did not contain a 
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true resistance mutation. In contrast, resistant colonies from the ΔadaA, ΔyhaO, 

and ΔmutSB deletion strains had high rates of regrowth under selection compared 

to the ΔrecN, ΔuvrA, ΔuvrB, and ΔuvrC derived colonies, suggesting a heritable, 

genetically encoded resistance phenotype. Equally important are those genes that 

were shown to reduce the mutagenic impacts of mitomycin C treatment: strains 

with deletions in radA (a recA paralog), sbcD, yobH, yozK, uvrX, exoAA, mfd, and 

dinB all had reduced mutation frequencies compared to WT B. subtilis when 

treated with mitomycin C (Figure 2A). In fact, many of these deletion strains did 

not produce any spectinomycin resistant colonies after exposure to mitomycin C, 

nor did they not show increased sensitivity to mitomycin C. Our findings are in 

agreement with previous studies of mfd and dinB that have shown that these genes 

are necessary for mutagenesis and the development of antibiotic resistance[4, 8]. 

The knockout strain lacking radC, which encodes a protein repair homologue[92], 

had an increased in baseline mutation frequency, but did increase resistant 

mutants when exposed to mitomycin C. The decreased mutagenicity of strains 

lacking radA, sbcD, yobH, yozK, uvrX, exoAA, mfd, and dinB implies that these 

genes may play a role in the process of evolution and the development of antibiotic 

resistance through SIM. 

The three genes whose knockouts increased mitomycin C-induced 

mutation rates and could be regrown under selection, adaA, yhaO, and mutSB, 

are responsible for DNA repair in ways that could reduce DNA damage by 

mitomycin C. The adaA gene encodes for a methylphosphotriester DNA 

methyltransferase and is part of the adaptative response to DNA alkylation in B. 
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subtilis. The AdaA protein is the transcriptional regulator of alkA, which encodes a 

3-methyl glucosylase that can remove 7-meG lesions such as those formed by 

mitomycin C[90, 93, 94]. Therefore, deletion of adaA may lead to a higher 

frequency of mutant formation by shifting cells to a more mutagenic form of DNA 

repair. The yhaO gene, which is homologous with the DNA endonuclease gene 

sbcD, has been shown to interact with the nuclease SbcC and may play a role in 

the repair of interstrand cross-links[90, 95-97]. Finally, mutSB encodes the 

endonuclease MutS2, which may play a role in homologous recombination and 

potentially impact the mutational spectra in B. subtilis[98] through the involvement 

of this process in the repair of mitomycin C-induced damage[98, 99]. That 

increases in rates of mutant colonies appeared in B. subtilis strains deficient in 

genes thought to be directly involved in repair of mitomycin C-associated alkylation 

damage (adaA, yhaO, and mutSB) suggests that these genes are involved in 

limiting SAM rather than introducing mutations through SIM, which perhaps 

explains why the baseline mutation frequency was not increased when compared 

to the WT in any of the three mutants (Mann-Whitney U test, p > 0.05). 

To determine the impact of the ΔadaA, ΔyhaO, and ΔmutSB deletions on 

the spectrum of mutations, we sequenced the rpsE gene of the spectinomycin 

resistant colonies formed by mitomycin C mutagenesis in these mutants. The 

frequency at which a colony was found to contain a rpsE mutation was decreased 

in each of the deletion strains compared to WT, suggesting that mutations are 

more likely to form in other regions of the genome, such as in rpsB. Consistent 

with observations of the WT strain, the dominant rpsE mutation observed in these 
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deletion strains was the G89C mutation, which results in an arginine to proline 

amino acid substitution at position 30 (Figure 2B), suggesting that direct base 

damage is still the chief mechanism of mutagenesis. While this dominant mutation 

remained the same, the complement of other mutations appeared to differ from the 

WT strain. Compared to the WT, the ΔadaA- and ΔyhaO-derived colonies had a 

higher proportion of mutated reads containing double mutants with both a transition 

and transversion mutation in the same copy of rpsE: 0.67% for WT versus 11.92% 

and 7.26% for ΔadaA and ΔyhaO, respectively (Figure S4B). These data suggest 

that lacking adaA, yhaO, and mutSB increase mutagenicity during mitomycin C 

exposure, and while the mutation spectrum was still dominated by a particular G -

> C mutation, the array of other mutations appeared to be changed by the lack of 

these DNA-repair genes. Thus, these DNA repair systems play an important role 

in mutagenesis and the overall spectrum of mutations. 

 

Growth Phenotypes of Selected Spectinomycin Resistance Mutations 

Determining the functional impacts of the spectrum of mutations is critical 

for understanding their impacts on fitness and ultimately how they are selected for. 

Before a mutation results in a viable and antibiotic-resistant cell, the bacterium 

must be able to tolerate the mutation and overcome physiological barriers to 

survival and proliferation. In addition, relative fitness of the mutation is critical to 

the establishment of the newly-developed mutation in microbial environments with 

and without antibiotic selection. We aimed to quantify the potential fitness effects 

of different mutations to find out whether different mutations might be more suitable 
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for the development of resistance and which mutations would introduce 

physiological barriers to success. To better understand the physiologic 

significance of the spectinomycin resistance mutations observed in our data we 

isolated 11 unique mutants containing either single or double mutations in the rpsE 

gene (Table 1), which included 7 of the top 10 observed rpsE mutations in Figure 

1B. 

We then determined that the mutations had varying impacts on 

spectinomycin resistance, growth rate, and delay in onset of logarithmic growth 

phase (length of time it took a culture to reach OD600 = 0.2) (Table 1). The MIC90 

of spectinomycin for WT B. subtilis was 62.5 µg/mL while the various mutant 

strains had MIC90 values ranging from 250 µg/mL to >2,000 µg/mL (Table 1. The 

doubling time of WT B. subtilis was determined to be 27.53 minutes, while the 

doubling times of the mutant strains ranged from 28.06 up to 51.16 minutes (Table 

1). In general, growth rates were fairly similar across mutants, but there were 

significant differences in the time it took strains to exit lag phase and enter 

logarithmic growth. We found that most strains had a significant delay in reaching 

OD600 = 0.2 compared to WT (ANOVA, p < 0.05). These findings show that within 

the spectrum of possible resistance mutations, some may be better suited for 

growth under non-limiting conditions by having higher growth rates or the ability to 

reach exponential growth in less time, while others would be well-suited to survive 

higher antibiotic exposures due to increased MIC90 values. Previous reports of 

ribosomal protein S5 spectinomycin resistance mutations in E. coli noted that cold 

sensitivity was associated with these mutations [86, 87, 100, 101]. Indeed, we 
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found that one of the mutations, G27D, was unable to grow at 20oC, indicating cold 

sensitivity (Table 1). Taken together, these physiological differences in growth and 

resistance may play a role in shaping the spectrum of mutations observed under 

different conditions or environments. 

 

Determining the Fitness of Mutations through Competition Assays under a 

Gradient of Spectinomycin Concentrations 

When we initially conducted the mutagenesis assays, we noticed that the 

colonies that formed on spectinomycin selection plates were variable in size, 

suggesting that mutations may impact the relative fitness of the bacteria. To model 

the potential selective pressures or benefits provided by altered growth kinetics, 

we utilized bacterial competition assays in the presence and absence of 

spectinomycin. Twelve strains of B. subtilis - the 11 unique spectinomycin resistant 

mutants that were previously isolated and the WT background strain - were chosen 

for this experiment. Competition experiments were performed at spectinomycin 

concentrations that matched the MIC of the WT background (62.5 µg/mL, or “low”), 

the lowest MIC of the mutant backgrounds (250 µg/mL, or “medium”), and below 

the highest MIC of the mutant strains (1,000 µg/mL, or “high”). To initiate the 

experiment, multiple replicates of each strain were grown overnight and then mixed 

at approximately equal proportions. During initial growth, the microbial mixture was 

sampled at 0, 3, 6, 12, and 24 hours. Cultures were passaged every 24 hours, and 

the mixture was again sampled at the 48 and 72-hour timepoints. Using the 

Nanopore MinION sequencing technology, we were able to rapidly identify the 
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relative abundance of each strain at the various timepoints to determine how the 

level of antibiotic selection impacts the fitness of various mutant strains during 

competition. 

 While all the mutations tested were shown to confer some level of 

spectinomycin resistance, their ability to outcompete other strains was dependent 

on the level of selection they encountered. Over a short time period of 48 hours, 

with no antibiotic selection, the relative abundance of mutations did not change 

drastically, although the abundance of the strains containing the G83A, A67G, and 

G83A-G151T double mutation were significantly decreased at the 48-hour 

timepoint compared to the 3-hour timepoint (Stepdown Bonferroni, p < 0.0001) 

(Figure 3A). All three of these decreased mutants were shown to have a decreased 

growth rate compared to WT in the absence of drug (Table 1). Additionally, the 

A67G and G83A-G151T mutants were shown to have significantly lengthened 

exits from lag phase, possibly explaining their decrease in abundance (ANOVA, p 

< 0.01) (Table 1).  

At the 62.5 µg/mL spectinomycin concentration, reflective of the MIC for the 

WT B. subtilis strain, we found that there were substantial shifts in the relative 

abundance of the mutants (Figure 3A). At 48 hours, the first timepoint after the first 

passage, there was a significant expansion of the strain containing the G70A-

G82A double mutation (Stepdown Bonferroni, p < 0.0001) and a significant 

reduction in all other mutants (Stepdown Bonferroni, p < 0.0001) - except those 

containing the G64C or A78C mutations, which did not significantly change in 

relative abundance (Stepdown Bonferroni, p > 0.05) (Figure 3A). This trend was 
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again observed at the 72-hour timepoint where the G70A-G82A strain had 

expanded further to dominate the population, making up roughly 81% of the 

sequence reads (STDEV = + 1.77%). While there was a separate mutant strain 

containing the G82A mutation included in the competition, there was none 

containing G70A alone. The double mutant outcompeted the G82A mutant strain, 

indicating that this double mutation is likely beneficial under these conditions.  

 While we saw the sole dominance of the G70A-G82A double mutant strain 

at the low antibiotic concentration, this trend did not hold true for the medium 

concentration of 250 µg/mL. Under these conditions, the relative abundance of 

most strains began to diminish at 3 hours and continued until the point of extinction 

by 72 hours in all strains except those containing the A78C, G64C, G70A-G82A, 

and A67G mutations (Stepdown Bonferroni, p < 0.0001) (Figure 3A). By 48 hours 

the community had undergone a significant shift to mainly the A78C strain and 

G70A-G82A double mutant. This trend was sustained at 72 hours, although the 

relative abundance of the A67G and G64 strains still persisted at near baseline 

levels. 

 At the highest antibiotic concentration of 1,000 µg/mL, we observed a 

further change in the outcome of the competition experiment. Several of the 

strains, including those containing the G83A, G82A, G89C, A78T, G82T, and 

G83T mutations as well as the wild type strain, experienced a significant reduction 

in abundance within the first 24 hours of growth at this high concentration of 

spectinomycin (Stepdown Bonferroni, p < 0.0001). Of these strains, five of the 

seven had MIC90 values that were below the 1,000 µg/mL selective concentration 
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suggesting they were unable to compete due to an insufficient level of resistance 

(Figure 3A). However, two of the lost strains, G89C and G83T, had MIC90 values 

of at least 2,000 µg/mL, suggesting that a lack of ability to grow under the high 

drug concentration was not the key factor, but instead an inability to outgrow the 

other strains. This possibly suggests a growth defect under antibiotic stress 

compared to the dominant mutants. On the other hand, during the first 24 hours of 

growth, the A78C and G64C strains expanded to become a majority of the 

population. The first passaging after the 24-hour timepoint proved to have a 

significant effect on the population, allowing for further expansion of the A78C 

strain that neared significance (Stepdown Bonferroni, p = 0.064) followed by a 

reduction in the G64C strain (Stepdown Bonferroni, p < 0.0001). The final 72-hour 

timepoint marked both continued prevalence of the A78C strain as well as a 

significant expansion of the A67G strain (Stepdown Bonferroni, p = 0.0061), which 

had maintained a foothold in the total population throughout the previous 

timepoints. This final timepoint also marked a final reduction of the G64C and 

G70A-G82A double mutant (Stepdown Bonferroni, p < 0.0001) resulting in a 

population that consisted nearly entirely of the A78C and A67G strains. The fitness 

of the A78C mutation at this high concentration mirrors its activity in the medium 

drug concentration suggesting fitness of this mutation is enhanced at increased 

levels of spectinomycin selection. Spectinomycin dependence derived from a 

mutation in the rpsL gene was previously reported by Henkin et al. [102], however 

whole genome sequencing of the strains used in our competition assay did not 

reveal any mutations in the rpsL gene or other regions of the genome. 
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 In order to understand the fitness of different mutants across spectinomycin 

concentrations, we performed growth assays at each antibiotic concentration used 

in the competition experiment (Figure 3B). Antibiotic concentration had a dramatic 

effect on doubling time in the mutant and WT strains. However, within an antibiotic 

concentration the doubling of time of mutants was fairly similar, with the exception 

of G83A-G151T at no treatment, G82A at 250 µg/mL, and G82T, G83T, and G83A 

at 1,000 µg/mL, which all had significantly decreased doubling times compared to 

other mutants (ANOVA, p < 0.05) (Figure 3B, Table S3). Since the doubling time 

of most mutants was not able to explain the differences in fitness during the 

competition assays, we next looked at other growth parameters. We found that the 

most successful mutants at each antibiotic concentration were able to enter 

logarithmic phase growth more quickly than those they outcompeted. When we 

compared the time it took strains to exit lag phase, determined by the time it took 

strains to reach an OD600 = 0.2, we found that at the 0 µg/mL drug concentration 

those strains with the greatest latency in exit from lag phase times performed the 

poorest in the competition experiment (Figure 3A, B). Strains G83A-G151T, G83T, 

A67G, G70A-G82A all had significantly extended times to exit lag phase compared 

to their more successful counterparts (ANOVA, p < 0.05) (Figure 3B, Table S3). 

The addition of 62.5 µg/mL spectinomycin challenge during growth increased the 

time it took many of the mutants to exit lag phase, but the most successful mutant, 

G70A-G82A, did not experience any increase in the time it took to exit lag phase 

Figure 3B, Table S3). At the medium drug concentration of 250 µg/mL 

spectinomycin, we observed that the highly successful A78C and G70A-G82A 
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strains had the shortest times to exit from lag phase (Figure 3B, Table S3). At the 

highest spectinomycin concentration of 1,000 µg/mL the A78C mutant was one of 

the most successful and again had the shortest time to exit lag phase (Figure 3B, 

Table S3). Interestingly, the other mutant that was able to successfully compete at 

1,000 µg/mL, A67G, did not have a significant advantage in time to exit to lag 

phase. However, A67G did have one of the fastest doubling times at 1,000 µg/mL 

suggesting that the time to exit from lag phase was not the only determining factor 

in fitness at higher concentrations of spectinomycin. These growth assays suggest 

that a combination of factors including MIC90, doubling time, and the length of time 

to exit lag phase contributes to the fitness of mutations at different drug 

concentrations. 

 The initial strategy employed to observe the full mutational spectrum of 

different mutagens provided insight into the frequency of different mutations at a 

relatively low level of selection (100 µg/mL spectinomycin) and little to no 

competition between isolates. While this strategy allowed us to gain a more 

complete picture of the mutational landscapes (Figure 1B), it does not reflect the 

process of selection that occurs in natural bacterial populations that are exposed 

to stressors in which mutants must compete. Using nanopore sequencing, we 

introduce a high-throughput, rapid method to measure the fitness of different 

antibiotic resistant bacterial strains at different selection concentrations. While both 

the A78C and G70A-G82A double mutant had MIC90 values of at least 2,000 

µg/mL, well above all the selection concentrations used, they had vastly different 

population trajectories at different concentrations of spectinomycin. A78C grew to 
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the highest relative abundance of any strain by the 48 and 72-hour timepoints at 

the two higher levels of selection while it was unable to increase in abundance at 

the lowest level of selection where G70A-G82A displayed greater fitness (Figure 

3A). Using growth assays with spectinomycin pressure, we find that both doubling 

time and the length of time it took each mutant strain to exit lag phase likely 

impacted their success at different antibiotic concentrations (Figure 3B), with those 

strains that more rapidly entered logarithmic phase growth and were able to grow 

more rapidly in the presence of drug having greater success in the competition 

experiments. This finding is in agreement with Lenski et al. who previously 

demonstrated that a shortened lag phase plays a key role in fitness and success 

during bacterial evolution[103]. Additionally, some mutations that had 

comparatively high MIC90 values and were the predominant mutants that emerged 

from the mutagenesis assays, such as G89C, were unable to compete at any level 

of antibiotic selection. This may be due to the drastic structural change of the G89C 

mutation, which resulted in an amino acid change of arginine to proline in the S5 

ribosomal protein, which could have had detrimental effects on ribosome function. 

Taken together, the results of this competition experiment suggests that the fitness 

of individual mutations and their ability to persist in mixed populations is dependent 

on the concentration of spectinomycin selection. 

 

Discussion 

In this work, we define the distinct mutational spectra of several genotoxic 

stressors in the context of spectinomycin resistance in B. subtilis. Separate studies 
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have reported that stressors such as starvation[29], UV radiation[24], mitomycin 

C[15], and ROS[104] can generate specific and distinct types of mutations. 

Specific antibiotic resistance mutations have been shown to be the result of 

different types stress [30-34]. We sequenced thousands of individual colonies in 

order to uncover how genotoxic stress is linked to mutational signature and 

resulting spectinomycin resistance derived from ribosomal mutations. In doing so, 

we identified novel spectinomycin resistance mutations in both the S2 and S5 

proteins of B. subtilis, and further analyzed individual strains containing base 

substitutions to characterize the impacts of these mutations on bacterial fitness. 

Utilizing competition assays we add to existing evidence that shows the 

concentration of antibiotic pressure shapes which mutations emerge from a mixed 

population. This work describes the process by which spectinomycin resistance 

develops in B. subtilis through a stress-specific pattern of base substitutions, which 

are narrowed down to a unique spectrum of resistance mutations by a series of 

selective processes. 

 

Stress-Associated Mutagenesis Leads to Spectinomycin Resistance Through a 

Spectrum of Mutations and Gradient of Selection 

Figure 4 illustrates a process in which B. subtilis exposed to various 

stressors may undergo mutagenesis that leads to spectinomycin resistance 

through an initial generation of a stressor-specific spectrum of mutations followed 

by selection for viable and resistant mutants. Initially, we show that different forms 

of stress increase the formation of antibiotic resistant colonies (Figure 1A). Next, 
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we show that each stressor is associated with a unique spectrum of mutations 

(Figure 1B), in some cases reflecting the DNA-damaging mechanism of the 

mutagen. This suggests that for certain genotoxic agents, SAM likely plays a 

greater role in the observed spectrum. It is important to state that in this experiment 

we are only capturing the fraction of the total induced mutations that were selected 

by two criteria of cell viability followed by spectinomycin resistance. Thus, while 

the spectrum of all possible mutations is unique for each stressor, the observed 

mutations are quite limited. In order for a base substitution mutation to be 

generated, it must be possible in the context of the spectrum of mutation for a given 

stress condition. For example, mitomycin C-treated colonies often exhibit a G89C 

mutation that is never observed in the ciprofloxacin-treated colonies, as it is not 

part of the mutational repertoire of ciprofloxacin. Therefore, development of a 

resistance through a G89C mutation is only possible given a stress (mitomycin C) 

that has the potential to generate such a mutation.  

There are also clearly fundamental barriers to the development of antibiotic 

resistance through base substitution mutations, such as the ability of mutated cells 

to tolerate the mutation and proliferate. While our experimental methods only allow 

us to identify non-lethal mutations under optimal growth conditions, we do illustrate 

that the A67G mutation in rpsE results in a growth defect at 20oC (Table 1). The 

ability to grow at given environmental conditions, such as a certain temperature, 

represents an additional selective hurdle that a mutated cell must cross to become 

a viable antibiotic resistant bacterium. Once a bacterium undergoes a mutagenic 

process that results in viable antibiotic resistance, there is then a potential for 
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competition with other mutants that further narrows the spectrum of antibiotic 

resistance mutations (Figure 4). Resistant bacteria containing different mutations 

will be more or less competitive depending the antibiotic concentration present, 

and thus the encountered antibiotic concentration will further narrow the mutational 

spectrum (Figure 3A). 

 

Each Genotoxic Agent Causes a Unique Spectrum of Mutation that Reflect 

Mechanisms of DNA-Damage 

We provide a comprehensive view of spectinomycin resistance base 

substitution mutations in B. subtilis that allow us to demonstrate the stressor-

specific mutational signatures caused by various genotoxic agents. Using a low 

level of selection (< 2x MIC), uncrowded plates, collection of thousands of 

individual colonies, and next-generation sequencing allowed us identify stressor-

specific signatures of mutation. This novel approach allowed us to capture a wide 

range of base substitutions, including mutations that were both rare and potentially 

less fit. We have shown that each genotoxic stress applied causes a unique 

signature of antibiotic resistance mutations, and that mechanisms of SAM result in 

mutational spectra that are often reflective of the mutagens mechanisms of DNA 

damage (Figure 1A, B). For example, in stationary phase cells treated with UV or 

mitomycin C, the mutational spectrum was highly divergent from untreated 

stationary phase cells suggesting, that direct base damage characteristic of these 

mutagens plays a stronger role in the final mutational spectrum than stationary 

phase-induced stress (Figure 1B). While stationary phase stress has been 
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previously shown to be mutagenic[63], we show the additional role that external 

mutagens play in the mutational spectrum and development of resistance. 

DNA Maintenance and Repair Genes Contribute to the Frequency and Spectrum 

of Stress-Associated Spectinomycin Resistance Mutations in B. Subtilis 

Using a set of B. subtilis gene knockouts, each deficient in a single gene 

involved in DNA maintenance or repair, we show that the presence of certain 

genes can limit or exacerbate the generation of antibiotic resistance through 

mitomycin C-induced mutagenesis (Figure 2A). Our data show that the radA, sbcD, 

yobH, yozK, uvrX, exoAA, mfd, and dinB genes are essential to the mutagenic 

activity of mitomycin C in B. subtilis. Interestingly, some of these genes are 

involved in the SOS response of B. subtilis while others are not, suggesting that 

mutagenesis may be dependent on the activity of multiple DNA repair 

pathways[90, 91]. On the other hand, strains deficient in adaA, yhaO, or mutSB 

had an increased frequency of spectinomycin-resistant colony formation when 

exposed to mitomycin C. Understanding which DNA repair genes are involved in 

altering the rate of mutagenesis could be valuable in limiting the development of 

antibiotic resistance. 

 

Impact of a Spectinomycin Selection Gradient on the Fitness of Resistant Strains 

The development of antibiotic resistance is highly complex and involves a 

myriad of factors. The concentration of the antibiotic selection is one such factor 

that plays a key role in determining the evolutionary trajectory of a bacterial 

population when selecting for resistance [105]. While using a fixed selection 
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concentration allowed us to understand the spectrum of mutations caused by 

different mutagens, this homogenous selective force is not representative of 

antibiotic concentrations in nature and is often a constraint on studies of the 

evolution of resistance [106]. In therapeutic and naturally-occurring settings, 

antibiotics are part of heterogeneous environments, resulting in concentration 

gradients [107, 108]. It is vital to understand the role of these gradients in the 

selection of antibiotic resistance mutations. Here we build on the idea of “selective 

compartments” put forth by Baquero & Negri by studying the selection of different 

mutations across a gradient of antibiotic concentrations, by assessing mutational 

spectra and mutant fitness in the context of no, low, medium, and high antibiotic 

selection concentrations. In competition experiments using spectinomycin 

concentrations varying by less than one order of magnitude, we obtained highly 

disparate final populations with certain mutations showing a distinct fitness 

advantage at different drug concentrations (Figure 3A). Furthermore, these results 

show that the strength of antibiotic selection modulates the fitness of individual 

mutations based not on MIC alone. Instead, the fitness of mutations under 

selection is likely determined by growth dynamics, namely growth rate and the 

length of time to exit lag phase as well as MIC (Figure 3A, B, Table S3). 

 

Limitations 

This work has several limitations intrinsic to the system and methodologies 

that were used. While we were able to identify unique mutation spectrums for 

various bacterial stressors, this study only looked at the mutations from a single 
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concentration of a handful of stressors at a set timepoint. Different lengths of 

exposure could significantly alter the mutational spectrum of each stressor. In 

addition, our exposures were selected to limit the number of bacterial division 

cycles to approximately one division, and thus we would not detect additive 

mutations acquired through cycles of mutation and replication. While we could infer 

the mechanism behind mutagenesis for stressors that exhibited a signature 

mutation, we do not provide direct evidence for the molecular basis of DNA 

damage associated with each stressor, although in many cases these mechanisms 

have been thoroughly validated in the literature. Additionally, we mainly focus on 

the spectrum of mutations in a single gene, rpsE, in which resistance develops 

primarily through base substitution mutations, excluding the potential for studying 

insertion, deletion, or frameshift mutations. Therefore, we are unable to capture 

the “full” mutational spectrum, which also includes regions outside of rpsE as well 

as any deleterious mutations that did not make it through the selection process. 

Further work is necessary to fully define the array of deleterious mutations to 

understand the mutational spectrum of each stressor tested here, which would 

require whole-genome sequencing of both viable and unviable cells. Furthermore, 

we utilized the model organism B. subtilis, but it is possible that these stressors 

exhibit different spectra of mutation in other organisms based on taxa-specific 

stress responses. Finally, in terms of selection, we examined a fraction of the 

selection factors that shape which mutations are able to manifest viable, antibiotic-

resistant bacteria. There are many more drug concentrations, growth conditions, 

and other selective forces that are important for the development 
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 of antibiotic resistance in a population. Thus, future studies are needed to explore 

the role of other stressors and selective factors in shaping the development of 

antibiotic resistance. 
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Material and Methods 

Bacterial Strains 

The wild-type strain of Bacillus subtilis was B. subtilis 168 obtained from the 

Bacillus Genetic Stock Center (Columbus, OH, USA) 

(http://www.bgsc.org/index.php). All spectinomycin-resistant mutant strains were 

derived from this strain with the exception of those resistant isolates derived from 

the DNA-repair gene knockout strains in Figure 2. The DNA-repair knockout strains 

were originally generated by Koo et al. [89] and were obtained from the Bacillus 

Genetic Stock Center (Columbus, OH, USA) (http://www.bgsc.org/index.php). 

 

Stress Conditions 

Growth for all experiments occurred in Lysogeny Broth (LB) and at 37oC unless 

otherwise specified. Doses of each stress were determined by dose titration 

experiments with the goal of inducing mutagenesis and minimizing cell mortality or 

growth inhibition. The following concentrations/doses of each drug were used: 100 

ng/mL mitomycin C, 600 ng/mL ciprofloxacin, 118.5 µg/mL CoCl2, 0.3125 mM 

hydrogen peroxide, and 500 J/m2 UV administered using a FB-UVXL-1000 UV 

Crosslinker from the Spectronics Corporation (Westbury, New York). 

Spectinomycin Mutant Generation Experiments 

Logarithmic Phase Growth 

During logarithmic phase growth experiments, cells were grown overnight in SpC 

media (Table S7) for ~16 hours to an OD600 of at least 0.8. From the overnight 

cultures, subcultures were seeded 1:333 (WT strain) or 1:143 (Δ strains) into LB. 
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Cultures were grown at 37oC, shaking at 250 rpm, to an OD600 ~ 0.5 and stressors 

were then administered. Cells were grown with stressors for 30 minutes at 37oC, 

shaking at 300 rpm; exceptions were for UV treatments, involving a short exposure 

followed by 30 minutes of growth, and CoCl2, which was administered for 60 

minutes. Following the exposure to stressors, cells were washed with LB and 

grown in an equal volume of LB for 30 minutes at 37oC, shaking at 300 rpm. 

Following outgrowth, 40 µL of cells were serially diluted 10-fold in PBS and plated 

on LB agar (without selection) for counting of CFUs. The remainder of the cells 

were bead-spread on LB plates containing 100 µg/mL spectinomycin. Plates were 

grown for 16 hours at 37oC at which point CFU counts were taken from LB plates. 

Selection plates were grown for an additional 24 hours at room temperature and 

colonies were counted. 

Stationary Phase Growth 

For the stationary phase growth experiments, cells were grown overnight in SpC 

media (Table S7) for ~16 hours to an OD600 of at least 0.8. From the overnight 

cultures, subcultures were seeded 3:7 (WT strain) into LB. Cultures were grown at 

37oC, shaking at 250 rpm to an OD600 ~ 1.8, at which point stressors were 

administered. Cells were exposed to stressors for 3 hours at 37oC, shaking at 300 

rpm, except for UV treatments which involved a short exposure followed by 3 hours 

of incubation. Following the exposure to stressors, cells were washed with LB and 

incubated in an equal volume of LB for 30 minutes at 37oC, shaking at 300rpm. 

Following outgrowth, 40 µL of cells were serially diluted 10-fold in PBS and plated 

on LB agar without selection for counting CFUs. The remainder of the cells were 
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bead spread on LB plates containing 100 µg/mL spectinomycin. Plates were grown 

for 16 hours at 37oC, at which point CFU counts were taken from LB plates. 

Selection plates were grown for an additional 24 hours at room temperature and 

colonies were counted. 

 

Isolation, Growth, and DNA Extraction of Spectinomycin Resistant Mutants 

Individual colonies were manually isolated from LB spectinomycin selection plates 

using pipette tips. Each colony was grown in individual wells of a 96-well plates 

containing 200 µL of LB media with 100 µg/mL spectinomycin. Plates were grown 

for 16 hours at 37oC, shaking at 250 rpm and adjusted to have equal cell density 

in each well. 100 µL from each well was taken and pooled for DNA extraction. DNA 

extraction was performed using the ZymoBIOMICS DNA Miniprep Kit from Zymo 

Research (Irvine, CA, USA) following manufacturer’s instructions with final elution 

in 100 µL of molecular grade H2O. Total DNA concentration was measured using 

the SpectraMax M3 microplate reader from Molecular Devices LLC (San Jose, CA, 

USA) using the DNA Quantitation with the SpectraDrop Micro-Volume Microplate 

protocol. 

 

Illumina Sequencing Amplicon Library Preparation and Sequencing 

The rpsE gene was amplified from DNA derived from ~500 colonies from each 

condition. Primers used for generating amplicon libraries are listed in Table S5. A 

300 bp region of the rpsE gene was amplified using a common reverse primer and 

barcoded forward primer (Table S5), with primers for each condition using a unique 
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barcode. PCRs for each condition were performed in 25 µL triplicate reactions in 

a T100 thermal cycler from BioRad (Hercules, CA, USA) under the following 

conditions: 180 seconds at 98oC, 45 seconds at 98oC, 60 seconds at 60oC, 90 

seconds at 72oC, steps 2-4 repeated 34x, and a final step of 600 seconds at 72oC. 

PCR products of the triplet reactions of each condition were combined and purified 

using the NucleoSpin Gel and PCR Clean-up kit from Macherey-Nagel Inc. (Düren, 

Germany). 240 ng of purified amplicon from each condition were pooled together 

for the final sequencing library, which was sequenced at the Rhode Island 

Genomics and Sequencing Center at the University of Rhode Island (Kingston, RI, 

USA).  Amplicons were paired-end sequenced (2 × 250 bp) on an Illumina MiSeq 

platform using a 600-cycle kit with standard protocols. 

 

Illumina Amplicon Sequencing Analysis 

Raw paired-end FASTQ files were demultiplexed using idemp 

(https://github.com/yhwu/idemp). Reads were quality filtered, trimmed, de-noised 

and merged using DADA2[109]. Representative sequences (unique mutations) 

were determined and extracted using QIIME2 (version 2020.8)[110]. Processed 

reads were matched to representative sequences using the QIIME2 “Closed-

reference clustering” tool with vsearch[111] and the percent identity set to 1.00 (--

p-perc-identity 1.00) to only identify exact matches to representative sequences. 

Protein models of the mutations were generated using VMD version 1.9.3[112]. 

 

Generation of Spectinomycin Resistant Base Substitution Mutant Strains 
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To generate single-nucleotide rpsE mutant strains, PCR-amplified DNA of 

individually-isolated spectinomycin resistant colonies was used for natural 

transformation into the WT Bacillus subtilis 168 background strain. Natural 

transformation allowed us to transfer only the region of DNA containing the select 

S2 base substitution mutations we wanted to test, thus excluding any other 

possible sites of mutation that might have occurred in the generation of the initial 

spectinomycin-resistant colonies. DNA from 11 different colonies that were 

previously Sanger sequenced was used to amplify the rpsE. The same protocol 

used for generating the Sanger sequencing amplicons was used to generate the 

DNA used for transformation into the WT strain. Details of this protocol can be 

found in the “Sanger Sequencing” section of these methods and materials. The 

purified rpsE amplicons were then incorporated into the WT background using the 

following procedure for natural transformation. First, WT B. subtilis 168 was grown 

overnight (~16 hours) in LB at 37oC, shaking at 300 rpm. Second, the overnight 

culture was diluted 1:100 into 5mL of freshly prepared MNGE media and grown for 

7 hours at 37oC, shaking at 250 rpm, to an OD600 ~ 0.5. Third, 300 – 500 ng of the 

amplified rpsE gene from the previous PCR step was added to 400 µL aliquots of 

the cells, which were then grown for 60 minutes at 37oC, shaking at 300 rpm. 

Fourth, 100 µL of expression mix was added to each 400 µL culture and grown for 

an additional 60 minutes at 37oC, shaking at 300 rpm. Finally, the cells from each 

culture were pelleted, the supernatant was removed, the pellet was resuspended 

in 200 µL of LB and spread onto LB plates containing 100 µg/mL spectinomycin 

using glass beads. Plates were grown at 37oC for 24 hours and individual colonies 
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were picked and grown up in 2 mL of LB broth containing 100 µg/mL spectinomycin 

for selection. Frozen stocks of these mutants were generated and a portion of the 

cells was used to perform Sanger sequencing as described in the “Sanger 

Sequencing” section of these methods and materials to confirm the mutations 

present in the strains in Table 1 and Figure 3. Upon sequencing the isolates to 

confirm mutations, we identified 7 isolates with the expected mutation, and 4 

containing mutations (A78C, G83A, G83A-G151T, G70A-G82A) that developed 

spontaneously and did not correspond to the DNA added to the natural 

transformation assay. 

 

Competition Experiments between Spectinomycin-Resistant Base Substitution 

Mutant Strains 

The strains used for the competition experiment were generated as described 

above. Using the eleven mutants listed in Table 1, as well as WT B. subtilis 168, 

we performed growth competition experiments with no antibiotic selection or in 

media containing 62.5 µg/mL, 250 µg/mL, or 1,000 µg/mL of spectinomycin. These 

drug concentrations correspond to the MIC of the WT strain (62.5 µg/mL), the 

lowest MIC of the 11 isolates tested (250 µg/mL), and the second highest MIC of 

all the isolates (1,000 µg/mL). For each of the conditions, there were four biological 

replicates. Four cultures of each of the 12 strains used for this competition were 

grown overnight (~16 hours) at 37oC, shaking at 300rpm in LB broth with 100 

µg/mL selection added to the 11 spectinomycin resistant isolates. No selection was 

added to the WT cultures. The OD600 of overnight cultures was taken and all twelve 
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strains were added in equal proportions into a new culture containing LB broth with 

0, 62.5, 250, or 1,000 µg/mL spectinomycin with a final combined OD600 of 0.1. A 

2mL sample of cells was taken from the initial no antibiotic replicates immediately 

before starting incubation and was used for the T:0 timepoint for all concentrations. 

Cultures were then grown at 37oC, shaking at 250 rpm, and 500 µL of cells were 

taken at 3, 6, 12, and 24 hours. Immediately after the 24-hour timepoint, the 

cultures were passaged into fresh media (maintaining antibiotic selection) to an 

OD600 of 0.01. Additional samples were taken from cultures at 48 hours, 

immediately followed by another passaging of cells, and 72 hours after the initial 

T:0 timepoint. DNA from cells collected at each timepoint were extracted using the 

ZymoBIOMICS DNA Miniprep Kit from Zymo Research (Irvine, CA, USA) 

immediately after sampling. The extracted DNA was quantified using the Qubit 

High Sensitivity reagent with a Qubit 3.0 Fluorometer from Thermo Fisher Scientific 

(Waltham, MA, USA). The 24-hour, 250 µg/mL, replicate D sample had an issue 

with the extraction and could not be used for downstream processing. 

 

Nanopore MinION Sequencing Amplicon Library Preparation and Sequencing 

The samples from the competition experiment were prepared for sequencing on 

the Oxford Nanopore MinION (Oxford Nanopore Technologies, Oxford, UK). Due 

to the limitation of having only 96 barcodes and 100 samples, the 72-hour, no-

antibiotic samples were not sequenced.  The rpsE gene was amplified from the 

DNA of each sample taken during the competition experiment. PCRs for each 

sample were performed in 25 µL triplicate reactions in a T100 thermal cycler from 
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BioRad (Hercules, CA, USA) under the following conditions: 180 seconds at 98oC, 

45 seconds at 98oC, 60 seconds at 60oC, 90 seconds at 72oC, steps 2-4 repeated 

34x, and a final step of 600 seconds at 72oC. PCR products of the triplicate 

reactions of each condition were combined and purified using the NucleoSpin Gel 

and PCR Clean-up kit from Macherey-Nagel Inc. (Düren, Germany) and DNA was 

quantified using a Qubit 3.0 Fluorometer from Thermo Fisher Scientific (Waltham, 

MA, USA). 

Cleaned, quantified amplicons were then prepared for sequencing using the 

Native Barcoding Expansion 96 (EXP-NBD196) and Ligation Sequencing Kit 

(SQK-LSK109) from Oxford Nanopore Technologies (Oxford, UK). The protocol 

was followed according to the manufacturer instructions with any modifications 

detailed here. The protocol began with 240 fmol (50ng of 320bp amplicon) of DNA 

for each reaction. End prep was performed using the NEBNext Ultra II End 

repair/dA-tailing Module (E7546) from New England Biolabs (Ipswich, MA, USA) 

and the end repair reaction was performed in a T100 thermal cycler from BioRad 

(Hercules, CA, USA) at 20°C for 20 mins and 65°C for 20 mins. The native barcode 

ligation was performed using the Native Barcoding Expansion 96 (EXP-NBD196) 

(Oxford Nanopore Technologies, Oxford, UK) in conjunction with NEB Blunt/TA 

Ligase Master Mix (M0367) from New England Biolabs (Ipswich, MA, USA) 

according to manufacturer instructions. The barcoded DNA was quantified using 

the Qubit High Sensitivity reagent with a Qubit 3.0 Fluorometer from Thermo Fisher 

Scientific (Waltham, MA, USA). Adapter ligation was performed using the Ligation 

Sequencing Kit (SQK-LSK109) from Oxford Nanopore Technologies (Oxford 
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Nanopore Technologies, Oxford, UK) and NEBNext Quick Ligation Module 

(E6056) from New England Biolabs (Ipswich, MA, USA) according to manufacturer 

instructions. The final library was quantified using the Qubit High Sensitivity 

reagent with a Qubit 3.0 Fluorometer from Thermo Fisher Scientific (Waltham, MA, 

USA). Priming and loading the SpotON Flow Cell was performed using the Flow 

Cell Priming Kit (EXP-FLP002) (Oxford Nanopore Technologies, Oxford, UK) 

according to manufacturer instructions. Performed sequencing on the Oxford 

Nanopore MinION using MinKNOW (MinION Mk1B software) (Oxford Nanopore 

Technologies, Oxford, UK) with the default protocol and live basecalling turned 

OFF. The run was terminated after ~48 hours as none of the pores had shown 

sequencing activity for several hours. 

 

Nanopore MinION Sequencing Analysis 

Raw sequences were processed using the Guppy (version 4.0.11) software 

(Oxford Nanopore Technologies, Oxford, UK) via the command line interface. 

Basecalling was performed using the guppy_basecaller command with the default 

settings including use of the high accuracy (HAC) model. Basecalled sequences 

were then demultiplexed using the guppy_barcoder command with default 

settings. Demultiplexed reads were then filtered using the Filtlong command with 

the following parameters --min_length 400 --min_mean_q 9 --trim. Filtered reads 

were then mapped to a reference of the rpsE sequences from the 12 strains used 

in the competition experiment using the minimap2 version 2.17 mapping 
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software[113]. Finally, only mapped reads with 100 percent identity to the 

reference sequences were used for downstream analyses. 

 

Statistical Methods for Competition Experiments 

Generalize Estimating Equations were used for all hypothesis testing. 

Observations drawn from within a particular tube (and its subsequent passage 

tube) were nested as having correlated residual error. Relative abundance was 

modeled as binomial, with each strain’s count per total count across all strains. 

Adjusted counts were modeled as Poisson with the natural log of the absolute 

amount of starting DNA added to the library preparation as an offset in the model 

(creating dependent variable units as counts per ng of DNA input into the 

Nanopore Library Prep). All models also implemented classical sandwich 

estimation to adjust for how empirical variances may have differed from model 

assumptions. Comparisons were made between all timepoints for the no-drug 

selection group, and all timepoints except T:0 for the groups in which 

spectinomycin was added. A total of 163 hypothesis tests for relative changes 

between aliquots were carried out as orthogonal linear estimates (4 means) for 

each strain, maintaining an alpha of 0.05 using the Holm test to adjust each p-

value. The above statistical analyses were performed using Statistical Analysis 

Software, SAS (Cary, NC, USA). 

 

Whole Genome Sequencing 
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Four spectinomycin-resistant isolates with MICs of >1,000 µg/mL were selected 

for whole-genome sequencing. DNA from these selected isolates were extracted 

using the ZymoBIOMICS DNA Miniprep Kit from Zymo Research (Irvine, CA, USA) 

and quantified using a Qubit 3.0 Fluorometer from Thermo Fisher Scientific 

(Waltham, MA, USA). The metagenomic library was prepared using the NEB Next 

Ultra II DNA Library Prep Kit from New England Bio Labs (Ipswich, MA). 

Metagenomic libraries were sequenced on a NovaSeq 6000 or ISeq100 instrument 

(San Diego, CA). 

 

Whole Genome Sequencing Analysis 

Reads were trimmed with Trimmomatic (version 0.36) with SLIDINGWINDOW set 

at 4:20, MINLEN set at 50, and ILLUMINACLIP: TruSeq3-PE.fa:2:20:10[114]. 

Trimmed reads were assembled and single nucleotide variants were searched for 

using the Variation Analysis tool with BWA-mem/FreeBayes setting of the PATRIC 

webserver (version 3.5.38)[115]. 

 

Sanger Sequencing 

A portion of individual colonies used for Sanger sequencing of the rpsE and rpsB 

genes were boiled at 100oC for 15 minutes in 20 µL of TE buffer to lyse cells. A 1 

µL aliquot of a 1:10 dilution of boiled cell lysate was then used as template for PCR 

of the genes of interest. Primers pairs #388, 389 and #553, 554 were used to 

amplify the rpsE and rpsB genes, respectively (Table S4). PCRs for each gene 

were performed in 25 µL reactions in a T100 thermal cycler from BioRad (Hercules, 
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CA, USA) under the following conditions: 180 seconds at 98oC, 45 seconds at 

98oC, 60 seconds at 55oC, 90 seconds at 72oC, steps 2-4 repeated 34x, and a final 

step of 600 seconds at 72oC. PCR products were then purified using the 

NucleoSpin Gel and PCR Clean-up kit from Macherey-Nagel Inc. (Düren, 

Germany) and DNA was quantified on the SpectraMax M3 microplate reader from 

Molecular Devices LLC (San Jose, CA, USA) using the DNA Quantitation with the 

SpectraDrop Micro-Volume Microplate protocol. Amplicons were sequenced at 

Eurofins Genomics. Alignments of the Sanger sequencing data was performed 

using Unipro UGENE (version 1.32.0)[116]. 

 

Minimal Inhibitory Concentration Determination 

Minimal inhibitory concentrations (MICs) were determined using the broth dilution 

method [117]. Bacillus subtilis strains were grown overnight in LB. Overnight 

cultures were diluted 1:10,000 and added to a 96-well plate. Spectinomycin was 

added to a concentration of 1 mg/mL to cell culture media and serially diluted two-

fold across the plate. Cells were then incubated at 37oC, shaking at 300rpm for 

~20 hours and the OD600 was taken to measure growth using the SpectraMax M3 

microplate reader from Molecular Devices LLC (San Jose, CA, USA). MIC90 was 

recorded for all MIC experiments.  

 

Growth Rate Determination & Time to Exit Lag Phase 

Overnight cultures of B. subtilis strains grown in LB were diluted to an OD600 ~ 0.05 

and then grown in LB in triplicate at 37oC, shaking at 300rpm, for 390 minutes for 
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no drug conditions or 510 minutes with spectinomycin present, with OD600 

measurements taken every 30 minutes using the SpectraMax M3 microplate 

reader from Molecular Devices LLC (San Jose, CA, USA). The growth assays were 

performed with 0, 62.5, 250, and 1,000 µg/mL spectinomycin with 6 – 12 replicates 

in each group. To determine the doubling time of each strain, the growth curves 

from OD600 ~ 0.15 – 0.4 were fitted to an exponential growth function using default 

settings in Prism (version 8.0). The time to exit lag phase was determined by fitting 

a simple linear regression to estimate the time at which cultures reached OD600 = 

0.2. An ANOVA with an alpha of 0.05 was used to compare the doubling time and 

time to exit lag phase for each strain. 

 

Cold Sensitivity Determination 

Selected spectinomycin-resistant strains were grown up in LB with spectinomycin 

(100 µg/mL) in triplicate. Cultures were serially diluted 10-fold in PBS and 5 µL of 

each diluted was spot plated on LB plates with two sets of plates for each replicate. 

One set of replicates was grown for 18 hours at 37oC and the other for 84 hours at 

20oC. 
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Data Availability 

Raw Illumina rpsE amplicon sequencing reads were deposited in the NCBI 

Sequence Read Archive under the BioProject number PRJNA703389. The base 

called Nanopore rpsE amplicon sequencing reads were deposited in the NCBI 

Sequence Read Archive under the submission number PRJNA704934. Raw 

Illumina whole genome sequencing reads from the twelve strains used for the 

competition experiment were deposited in the NCBI Sequence Read Archive under 

the submission PRJNA748029. 
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Figures 

 
Figure 1. Genotoxic Agents Induce a Spectrum of Unique, Treatment-
Specific Resistance Mutations 
(A) Mutation frequency of spectinomycin resistance in WT B. subtilis treated with 
various stressors during logarithmic or stationary phase growth. Mutation 
frequency calculated by dividing the number of spectinomycin resistant colonies 
by the total number of cells. Significant differences between untreated and treated 
cells determined using Mann-Whitney U test (p < 0.0001 = ***). Horizontal LOD 
line represents the limit of detection. 
(B) Spectrum of nucleotide mutations in the rpsE gene of the spectinomycin-
resistant mutant colonies of WT B. subtilis. Notably, there were no mutations 
identified in the no treatment condition during logarithmic phase as this condition 
produced very few or no resistant colonies. In lieu of the resistant colonies, 
logarithmic phase cells were plated on non-selective media and 500 of these non-
resistant isolates were sequenced. 
(C) The relative abundance of nucleotide mutations in the rpsB gene from 90 
spectinomycin-resistant mutant colonies compared to the relative abundance of 
mutations from the rpsE gene from 480 colonies (including the 90 colonies 
displaying the rpsB mutations on the left), all of which were from UV-treated cells. 
(B-C) Each treatment represents ~500 colonies collected from 3 to 12 biological 
replicates. 
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Figure 2. Impact of DNA Repair Genes on the Frequency and Spectrum of 
Mitomycin C-induced Mutants 
(A) Mutation frequency of spectinomycin resistance in DNA repair-deficient B. 
subtilis treated with 100 ng/mL mitomycin C. Mutation frequency calculated by 
dividing the number of spectinomycin resistant colonies by the total number of 
cells. Bars represent mean + SEM (n=3 minimum). Significance between 
mitomycin C-treated and untreated WT, and between mitomycin C-treated WT and 
mitomycin C-treated DNA knockouts; determined using Mann-Whitney U Test (p 
< 0.0001 = ***). Horizontal LOD line represents the limit of detection. 
(B) Spectrum of nucleotide mutations in the rpsE gene of the mutant colonies from 
WT and DNA repair-deficient strains of B. subtilis treated with mitomycin C. Each 
treatment represents ~500 colonies collected from 3 to 12 biological replicates. 
 

 



 88 

 
Figure 3. Competition of Base Substitution Mutants over a Gradient of 
Selection 
(A) Stacked bar plots of the relative abundance of each strain within a mixed 
community at times 0, 3, 12, 24, 48, 72 hours under spectinomycin selection 
concentrations of 0, 62.5, 250, 1,000 µg/mL. Cultures were passaged to an OD600 
of 0.01 immediately after sampling of the 24- and 48-hour timepoints. Plots 
represent the average relative abundance ± SEM (n=4). Determination of 
statistical differences is described in the Methods section. 
(B) Growth rates of the twelve strains used in the competition experiments 
performed at each of the concentrations shown above in panel A (0, 62.5, 250, 
1,000 µg/mL spectinomycin). Points represent mean + SEM (n=6 minimum). Cell 
growth over time determined by measuring OD600 at 30 min time intervals. 
(A-B) The relative abundance plots in (A) are separated by drug concentration, 
and the line plots (B) correspond to the drug concentrations in the relative 
abundance plots shown directly above each plot. 
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Figure 4. Stress-Associated Mutagenesis Leads to Spectinomycin 
Resistance Through a Spectrum of Mutation and a Gradient of Selection in 
B. subtilis 
A graphical representation of the process by which stress-associated mutagenesis 
in B. subtilis leads to spectinomycin resistance through the generation of base 
substitution mutations and subsequent selection. The initial stress causes a stress-
specific pattern of mutations, but of all these mutations most are deleterious or do 
not impact antibiotic susceptibility (represented by the grey portion of the triangle). 
Deleterious or growth-inhibiting mutants are lost as they are unable to produce 
viable cells.  Of the viable mutations (denoted by the rainbow in the bottom portion 
of the pyramid), only a portion of the possible mutations will be able to manifest a 
resistance phenotype based on fundamental selection criteria such as that 
mutation being in the mutational repertoire of the stressor and not impacting cell 
viability. Transparent cells represent those that were unable to meet the selection 
requirements for resistance. Finally, the level of antibiotic selection pressure will 
ultimately determine the final spectrum of base substitution mutations in a mixed 
population. 
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Table 1. Growth Dynamics of Competition Strains 

Strain MIC90 
Cold 

Sensitivity Doubling Time Time to Exit Lag Phase 

AA BP 
MIC 

(ug/mML)  
Time 
(min) 

95% 
CI Significance 

Time 
(min) 

95% 
CI Significance 

WT WT 62.5 No 27.53 

22.28 
- 

34.93 - 136.58 

135.4 
- 

137.8 - 

R30P G89C 2,000 No 36.18 

22.88 
- 

65.57 ns 254.72 

240.0 
- 

269.5 **** 

K26N A78C >2,000 No 33.02 

27.65 
- 

40.00 ns 158.86 

154.0 
- 

163.7 * 

K26N A78T 500 No 26.55 

20.67 
- 

34.56 ns 171.15 

165.7 
- 

176.6 *** 

G28C G82T 500 No 35.05 

26.30 
- 

48.83 ns 194.03 

185.4 
- 

202.6 **** 

A22P G64C >2,000 No 39.69 

32.34 
- 

83.55 *** 211.81 

185.9 
- 

237.7 **** 

G28S G82A 250 No 28.06 

25.31 
- 

31.20 ns 133.37 

131.3 
- 

135.4 ns 

G28D G83A 500 No 44.48 

35.07 
- 

58.87 *** 148.64 

138.7 
- 

158.6 ns 

K23E A67G 2,000 Yes 40.37 

32.34 
- 

51.49 * 268.2 

258.4 
- 

278.0 **** 

G28V G83T >2,000 No 33.87 

31.36 
- 

36.69 ns 223.74 

221.3 
- 

226.2 **** 

G28D, 
G51C 

G83A, 
G151T >2,000 No 51.16 

41.28 
- 

65.95 **** 239.16 

236.1 
- 

242.3 **** 

V24I, 
G28S 

G70A, 
G82A >2,000 No 34.40 

28.99 
- 

41.40 ns 190.62 

186.7 
- 

194.6 **** 
Growth curves were used to calculate both doubling time and the length of time for stationary phase 
cells to exit lag phase and enter into logarithmic growth. Significant differences in doubling time 
and time to exit lag phase between each strain and WT was determined using an ANOVA (*p < 
0.05, ***p < 0.001, ****p < 0.0001). The minimum inhibitory concentration is the MIC90 of 
spectinomycin and cold sensitivity was determined by measuring growth at 20oC. 
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Supplementary Information 

Figure S1: Nucleotide alignment of rpsE gene sequences from sanger sequenced 
spectinomycin resistant colonies 
Figure S2: Nucleotide Alignment of rpsB gene sequences from sanger sequenced 
spectinomycin resistant colonies 
Figure S3: Nucleotide alignment of all unique rpsE sequences identified from 
MiSeq sequencing of the compendium of resistant isolates from Figure 1B. 
Table S1: Mutations from select whole genome sequenced spectinomycin 
resistant colonies. 
Table S2: Spectrum of H2O2 - Induced Mutations. A comparison of the spectrum 
of hydrogen peroxide induced mutations in the supF gene of E. coli (Akasaka et 
al. 1992) and rpsE from B. subtilis 168 (this work). 
Table S3: Growth rate and exit from lag phase of strains used in competition 
experiment at 0, 62.5, 250, or 1,000 µg/mL spectinomycin. 
Table S4: Sanger Sequencing Primers for rpsE and rpsB 
Table S5: rpsE Illumina Sequencing primers 
Table S6: Raw read counts and relative abundance from Illumina sequencing 
Table S7: Growth media used in this study 
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Figure S1. Alignment of rpsE gene sequences from sanger sequenced 
spectinomycin resistant colonies 
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Figure S2. Alignment of rpsB gene sequences from sanger sequenced 
spectinomycin resistant colonies 
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Figure S3. Alignment of all unique rpsE sequences identified from MiSeq 
sequencing of the compendium of resistant isolates from Figure 1B. 
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Figure S4. Relative Abundance of Transitions and Transversions in 
Spectinomycin Resistant Colonies 
(A) Relative abundance of transversions and transitions in the rpsE gene mutations 
from of the spectinomycin-resistant mutant colonies of WT B. subtilis. The TI:TA 
ratio is displayed above each bar. 
(B) Relative abundance of transversions and transitions in the rpsE gene mutations 
from WT and DNA repair-deficient strains of B. subtilis treated with mitomycin C. 
The TI:TA ratio is displayed above each bar. 
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Figure S5. Mutagenesis-Associated Changes in the Structure of Ribosomal 
Proteins S5 and S2 
(A) Protein structure of the S5 protein, with red highlighting the positions modified 
in the top 10 most common mutations (top), which are displayed in the amino acid 
alignment (bottom). 
(B) Protein structure of the S2 protein, with red highlighting the positions modified 
in the top 2 most common mutations (top), which are displayed in the amino acid 
alignment (bottom). 

A B
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Table S1. Mutations from Select Spectinomycin Resistant 
Colonies Mutations found in ribosomal genes through whole 
genome sequencing of four spectinomycin resistant colonies. There 
were two more mutations found in isolate #17 that resulted in single 
base substitutions in the yhcT and gcvT genes. 
Colony 
ID 

Mutated 
Gene 

Nucleotide 
Substitution Amino Acid 

#1 rpsB C74T Pro > Leu 
#6 rpsB C74T Pro > Leu 

#17 rpsB C74T Pro > Leu 
#4 rpsE G89C Arg > Pro 

 
 
 
 
 
 
Table S2. Spectrum of H2O2 – Induced Mutations  
A comparison of the spectrum of hydrogen peroxide 
induced mutations in the supF gene of E. coli (Akasaka 
et al. 1992) and rpsE from B. subtilis 168 (this work). 
Data here represent the percent of total mutations. 
 (Akasaka et al. 

1992) 
(Korry et al. 

2021) 
Transition   
G:C -> A:T 12.9% 31.7% 
G:C -> A:T 4.3% 10.0% 
Transversion   
G:C -> A:T 37.1% 23.0% 
G:C -> C:G 40.0% 23.9% 
A:T -> T:A 4.3% 11.4% 
A:T -> C:G 1.4% 0.0% 
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Table S3. Doubling time and exit from lag phase of competition experiment strains grown with 0, 62.5, 250, and 
1,000 ug/mL of spectinomycin. Doubling time (DT) and exit from lag phase (EfL) values are represented as mean (+ 
95% confidence interval) in minutes (n= 6 -12). 
Spectinomyci
n 

0ug/m
L   

62.5ug/m
L   

250ug/m
L   

1,000ug/m
L   

 

DT 
(95% 
C.I.) 

EfL (95% 
C.I.) 

DT (95% 
C.I.) 

EfL 
(95% 
C.I.) 

DT (95% 
C.I.) 

EfL (95% 
C.I.) 

DT (95% 
C.I.) 

EfL 
(95% 
C.I.) 

WT 

27.53 
(22.3 - 
34.9) 

136.58 
(135.4 - 
137.8)          

G89C 

36.18 
(22.9 - 
65.6) 

254.72 
(240.0 - 
269.5) 

45.25 
(31.8 - 
71.5) 

241.56 
(230.0 - 
253.2) 

68.26 
(44.7 - 
121.9) 

294.96 
(268.0 - 
322.0) 

104.2 (81.2 
- 138.4) 

320.95 
(277.6 - 
364.4) 

A78C 

33.02 
(27.7 - 
40.0) 

158.86 
(154.0 - 
163.7) 

31.34 
(24.5 - 
40.5) 

154.5 
(145.1 - 
163.9) 

48.51 
(38.5 - 
63.1) 

225.66 
(214.7 - 
236.7) 

55.14 (41.5 
- 77.9) 

241.41 
(219.6 - 
263.2) 

A78T 

26.55 
(20.7 - 
34.6) 

171.15 
(165.7 - 
176.6) 

32.06 
(24.7 - 
42.8) 

227.19 
(220.6 - 
233.7) 

71.62 
(51.2 - 
110.0) 

301.8 
(275.4 - 
328.2) 

61.52 (52.9 
- 72.6) 

307.32 
(300.1 - 
314.6) 

G82T 

35.05 
(26.3 - 
48.8) 

194.03 
(185.4 - 
202.6) 

43.29 
(35.7 - 
54.0) 

213.48 
(202.9 - 
224.3) 

103.5 
(84.1 - 
132.7) 

344.8 
(323.0 - 
366.6) 

149.1 (94.7 
- 312.1) 

431.69 
(348.4 - 
515.0)  

G64C 

49.69 
(32.3 - 
83.6) 

211.81 
(185.9 - 
237.7) 

55.66 
(41.9 - 
80.1) 

227.38 
(200.9 - 
253.9) 

88.8 
(73.3 - 
111.1) 

337.38 
(322.3 - 
352.5) 

86.84 (77.2 
- 97.8) 

407.37 
(381.6 - 
433.1) 

G82A 

28.06 
(25.3 - 
31.2) 

133.37 
(131.3 - 
135.4) 

104.8 
(78.9 - 
148.0) 

243.54 
(209.8 - 
277.3) 

146 (75.6 
- 1184) 

410.67 
(308.5 - 
512.8)    

G83A 

44.48 
(35.1 - 
58.9) 

148.64 
(138.7 - 
158.6) 

69.03 
(52.9 - 
94.0) 

168.3 
(144.7 - 
192.0) 

120.3 
(102.2 - 
144.5) 

269.38 
(242.5 - 
296.3) 

167.8 
(156.0 - 
181.0) 

324.27 
(292.8 - 
355.7) 

A67G 

40.37 
(32.3 - 
51.5) 

268.2 
(258.4 - 
278.0) 

47.89 
(35.1 - 
71.0) 

215 
(202.7 - 
227.3) 

57.02 
(40.9 - 
87.2) 

260.58 
(242.9 - 
278.3) 

77.91 (75.0 
- 80.9) 

312.5 
(302.6 - 
322.4) 

G83T 

33.87 
(31.4 - 
36.7) 

223.74 
(221.3 - 
226.2) 

74.06 
(54.5 - 
112.5) 

191.05 
(177.5 - 
204.6) 

86.73 
(63.6 - 
131.7) 

345.55 
(338.8 - 
352.4) 

146.7 
(128.3 - 
168.7) 

393.47 
(321.0 - 
465.9) 

G83A, G151T 

51.16 
(41.3 - 
66.0) 

239.16 
(236.1 - 
242.3) 

65.73 
(52.3 - 
85.6) 

227.92 
(213.6 - 
242.2) 

69.99 
(42.7 - 
155.3) 

248.45 
(201.1 - 
295.8) 

108.9 
(100.4 - 
118.2) 

283.12 
(252.8 - 
313.4) 

G70A, G82A 

34.4 
(29.0 - 
41.4) 

190.62 
(186.7 - 
194.6) 

65.44 
(50.0 - 
92.6) 

154.27 
(140.6 - 
168.0) 

62.35 
(52.3 - 
76.1) 

225.01 
(214.1 - 
235.9) 

120.6 
(111.4 - 
130.6) 

242.6 
(217.8 - 
267.4) 
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Table S4. Sanger Sequencing Primers for rpsE and rpsB 
Primer Sequence 
rpsE upstream FWD B. subtilis CTCGTGAAGCTGGACTTAAA 
rpsE downstream REV B. subtilis TTACACTTCGTTTGAGGGTA 
rpsB upstream FWD B. subtilis AAAAATGACCTAAGCGGAGG 
rpsB downstream REV B. subtilis TCCCTCTTATCACCTTTTGAATAGG 
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Table S5. Illumina Sequencing primers for rpsE 
Primer Primer Sequence 

5’ Illumina Adapter – Barcode – Pad – Linker – FWD Primer 
FWD01 AATGATACGGCGACCACCGAGATCTACACGCTAGCCTTCGTCGCTCTGGCGGC

TATCTCGTGAAGCTGGACTTAAA 

FWD02 AATGATACGGCGACCACCGAGATCTACACGCTTCCATACCGGAATCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD03 AATGATACGGCGACCACCGAGATCTACACGCTAGCCCTGCTACATCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD04 AATGATACGGCGACCACCGAGATCTACACGCTCCTAACGGTCCATCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD05 AATGATACGGCGACCACCGAGATCTACACGCTCGCGCCTTAAACTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD06 AATGATACGGCGACCACCGAGATCTACACGCTTATGGTACCCAGTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD07 AATGATACGGCGACCACCGAGATCTACACGCTTACAATATCTGTTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD08 AATGATACGGCGACCACCGAGATCTACACGCTAATTTAGGTAGGTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD09 AATGATACGGCGACCACCGAGATCTACACGCTGACTCAACCAGTTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD10 AATGATACGGCGACCACCGAGATCTACACGCTGCCTCTACGTCGTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD11 AATGATACGGCGACCACCGAGATCTACACGCTACTACTGAGGATTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD12 AATGATACGGCGACCACCGAGATCTACACGCTAATTCACCTCCTTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD13 AATGATACGGCGACCACCGAGATCTACACGCTCGTATAAATGCGTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD14 AATGATACGGCGACCACCGAGATCTACACGCTATGCTGCAACACTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD15 AATGATACGGCGACCACCGAGATCTACACGCTACTCGCTCGCTGTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD16 AATGATACGGCGACCACCGAGATCTACACGCTTTCCTTAGTAGTTCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD17 AATGATACGGCGACCACCGAGATCTACACGCTCGTCCGTATGAATCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD18 AATGATACGGCGACCACCGAGATCTACACGCTACGTGAGGAACGTCTGGCGG
CTATCTCGTGAAGCTGGACTTAAA 

FWD19 AATGATACGGCGACCACCGAGATCTACACGCTGGTTGCCCTGTATCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

FWD20 AATGATACGGCGACCACCGAGATCTACACGCTCATATAGCCCGATCTGGCGGC
TATCTCGTGAAGCTGGACTTAAA 

Revers
e 

CAAGCAGAAGACGGCATACGAGAT AGCATGCTAG GC 
CGTGTGGAATTGTAGTTCCA 

Sequen
cing 
FWD TCTGGCGGCT AT CTCGTGAAGCTGGACTTAAA 
Sequen
cing 
REV AGCATGCTAG GC CGTGTGGAATTGTAGTTCCA 
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Table S6. Raw read counts and relative abundance from Illumina sequencing 
 
 
 
 
 
 
Table S7. Growth media used in this study 
T base 0.2% (NH₄)₂SO₄; 0.6% KH2PO, 1.83% K2HPO4; 0.1% Na3C6H5O7; in 

molecular water 
SpC (5mL) 5mL T base; 50uL of 50% glucose; 75uL of 1.2% MgSO4, 100μL of 10% 

yeast extract; 125μL of 1% casamino acids 
10x MN 13.6% K2HPO4; 6.0% KH2PO4; 1.0% Na3C6H5O7; in molecular water 
MNGE 
(10mL) 

9.2mL 1 x MN; 1ml 20% glucose; 50µl 40% C5H8KNO4; 50uL 2.2mg/mL 
C6H8O7⋅Fe3+⋅NH3; 100uL 5mg/mL tryptophan, 30uL 1M MgSO4 

Expression 
Mix (1.05mL) 

500µl 5% yeast extract; 250µl 10% casamino acids; 250µl H2O; 50µl 
5mg/mL tryptophan 
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Abstract 
The natural marine environment represents a vast reservoir of antimicrobial 

resistant bacteria. The wildlife that inhabits this environment plays an important 
role as the host to these bacteria and in the dissemination of resistance. The 
relationship between host diet, phylogeny, and trophic level and the 
microbiome/resistome in marine fish is not fully understood. To further explore this 
relationship, we utilize shotgun metagenomic sequencing to define the 
gastrointestinal tract microbiomes of seven different marine vertebrates collected 
in coastal New England waters. We identify inter and intraspecies differences in 
the gut microbiota of these wild marine fish populations. Furthermore, we find an 
association between antibiotic resistance genes and host dietary guild, which 
suggests that higher trophic level organisms have a greater abundance of 
resistance genes. Additionally, we demonstrate that antibiotic resistance gene 
burden is positively correlated with Proteobacteria abundance in the microbiome. 
Lastly, we identify dietary signatures within the gut of these fish and find evidence 
of possible dietary selection for bacteria with specific carbohydrate utilization 
potential. This work establishes a link between host lifestyle/dietary guild, and 
microbiome composition and the abundance of antibiotic resistance genes within 
the gastrointestinal tract of marine organisms. 
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Introduction 

 Fish are the most diverse group of vertebrates on earth with over 34,000 

species inhabiting aquatic environments ranging from freshwater streams to the 

deep oceans [1]. They are essential to the ecosystems they inhabit, as well as the 

global food supply with fish providing over 3 billion people with 20% of their 

average protein consumption[2]. The global fishing industry is worth an estimated 

US$400 billion and employs nearly 60 million people worldwide making the health 

of the world’s fisheries of great economic importance[2, 3]. In order to ensure the 

future of this ecologically and environmentally invaluable group of organisms we 

must understand fish biology including their associated microbial communities. 

Fish harbor a large number of bacterial symbionts in their gastrointestinal tract 

(GIT), and these microbes have been shown to play a role in growth, development, 

and disease [4, 5]. They have coevolved with their microbial symbionts for over 

400 million years [6], yet despite their antiquity and diversity, the microbiota of fish 

remain understudied compared to those of mammals. To date most studies have 

utilized 16s sequencing to understand how dietary supplementation impacts 

growth, development, and health in the context of the microbiome in commercial 

fish species raised in aquaculture [4, 5, 7-13]. These methods are limited to broad 

taxonomic changes in fish that are raised in captive settings. Less is known about 

the microbiota of wild fish populations and few studies have implemented shotgun 

sequencing technologies to gain a broader perspective on the functional gene 

content of fish microbiota. 
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 The use of shotgun metagenomic sequencing on the gastrointestinal tract 

(GIT) contents of wild fish populations provides not only the taxonomic structure of 

the gut microbiota, but it’s functional potential, detection of dietary signatures and 

parasites [14-16], and identification of antimicrobial resistance genes (ARGs). The 

gut microbiomes of several wild marine fish have been sequenced and data 

suggests that habitat, diet, and host phylogeny play a role in shaping the GIT 

microbiome [14, 17-23]. Fewer studies have looked into antimicrobial resistance 

genes (ARGs) harbored by fish associated microbes [24-26]. Antimicrobial 

resistance is an increasing threat to human health with resistant organisms leading 

to 2.8 million infections and more than 35,000 deaths a year in the United States 

alone. The natural environment is known to be a reservoir of ARGs with wildlife 

playing a role in the dissemination of resistant microbes [27]. Utilizing databases 

of ARGs[28-31] and traditional microbiology culturing techniques we are beginning 

to see that ARGs are widespread throughout different environments and 

organisms. Studies have found ARGs in humans [32-34], animals [35-38], soils 

[33, 39], caves [40], ice cores [41], and marine environments [37, 42, 43] 

demonstrating that resistance can be found wherever bacteria live. Understanding 

the role of marine environments as a reservoir of antimicrobial resistance is crucial 

due to widespread aquaculture and seafood consumption and resulting 

interactions between humans and marine bacteria. 

 Narragansett Bay is the largest estuary in New England and provides an 

essential habitat for numerous commercially and ecologically important species 

[44]. Demersal fish species that inhabit the bay, including Peprilus triacanthus 
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(butterfish), Stenotomus chrysops (scup), Paralichthys dentatus (summer 

flounder), and Mustelus canis (smooth dogfish), each occupy different trophic 

positions based on previously defined dietary guilds – planktivore (butterfish), 

benthivore (scup), and predatory crustacivores/piscivores (summer flounder, 

smooth dogfish) [45]. These four species of interest represent a unique model in 

which to study the gut microbiome as they inhabit the same environment, differ in 

lifestyle and physiology, occupy specific trophic positions, and have direct 

predator/prey interactions. The waters off the coast of New England are also 

important fisheries and are home to larger migratory predators including Alopias 

vulpinus (thresher shark), Isurus oxyrinchus (shortfin mako shark), and Lamna 

nasus (porbeagle shark). Due to their position as apex predators, unique 

physiology, and highly migratory behavior, it remains a priority to better understand 

the shark GIT microbiome. In this work we aim to use shotgun metagenomic 

sequencing to define the microbiome composition and relationship between host, 

microbiota, and antimicrobial resistance in the GIT of four demersal marine species 

as well as three large migratory shark species. We find inter and intraspecies 

differences in the GIT microbiome based on host species and GIT sampling 

location, and that higher trophic level organisms with piscivorous diets have an 

increased abundance of ARGs. Additionally, this abundance of ARGs is positively 

correlated with the abundance of Proteobacteria. Using a barcoding approach to 

identify non-host/bacterial DNA signatures in the shotgun sequencing data 

combined with a functional assessment of the microbiome, we are able to infer 

dietary habits and bacterial carbohydrate utilization. These habits play a role in 
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determining the composition of the gut microbiota and, in turn, the levels of 

Proteobacteria and resulting abundance of detected ARGs. 

 

Results 

Sampling and Collection 

 Sampling of four demersal fish species, butterfish, scup, summer flounder, 

and smooth dogfish, was performed using an otter trawl in Narragansett Bay, RI, 

USA (Figure 1). Samples were collected at two sampling locations, Fox Island 

(upper bay) and Whale Rock (lower bay), during the months of May, June, July, 

August, and September between 2017 and 2021. During each sampling session, 

benthic water samples were also obtained using a niskin flask. The spiral valve 

contents of three large offshore sharks, thresher, mako, and porbeagle sharks, 

were obtained from specimens caught for recreational shark tournaments in the 

offshore waters from Rhode Island to Maine during July 2018 and July 2019.  

Microbial Diversity of the GIT of Wild Marine Fish  

Utilizing a whole genome shotgun sequencing approach followed by read 

filtering and taxonomic assignment via the Kraken2/Braken pipelines we were able 

to define the microbiome composition of seven fish/shark species and their 

seawater environment. We find that the gut microbiota of all species is 

predominantly composed of Proteobacteria (50.4%), Firmicutes (20.8%), and 

Bacteroidetes (10.0%) (Figure 2A). This finding matches those of previous studies 

that have identified Proteobacteria and Firmicutes as being the major constituents 

of the gut microbiota of marine fish[4, 5, 17, 23, 46-49]. Within the phylum 
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Proteobacteria, Photobacterium (5.6%), Vibrio (4.5%), Alivibrio (3.5%), and 

Edwardsiella (3.2%) were the most abundant genera found in the fish samples 

collected in the bay (Figure 2B). Here we observe significantly increased levels of 

Proteobacteria in benthivorous/piscivorous (scup, summer flounder, smooth 

dogfish) species compared to a plankivorous species (butterfish) (Mann-Whitney 

U test, p < 0.0001). Previous studies have also identified an increased abundance 

in Proteobacteria in omnivorous and carnivorous organisms compared to 

herbivores[5, 19, 49, 50] suggesting trophic level and dietary guild play a role in 

the level of Proteobacteria present in the gut microbiota. Due to a high degree of 

variability within sample types, fish species did not group together significantly 

within a principal coordinate analysis of Bray-Curtis Dissimilarity (Figure 2 C). 

However, the microbiomes of species clustered more separately when samples 

were separated by site and sampling time, suggesting that there may be significant 

temporal and spatial variability within the microbiome of fish (Figure S1 B, D). 

Between the samples collected at the two Narragansett Bay sampling locations 

there were notable differences in the microbiome composition of the summer 

flounder at the genus level; Photobacterium was significantly increased in the Fox 

Island population (padj < 0.05) and six less prominent genera were significantly 

increased in the Whale Rock population (padj < 0.05) (Figure S1 A, B Table S2). 

Surprisingly, no significant differences in taxonomy were found between the two 

sites in the butterfish and scup populations. This suggests that the microbiota of 

summer flounder may have characteristics unique to either the upper or lower bay 

locations, while the butterfish and scup populations are more homogeneous. 
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Shark Spiral Valves Harbor Species-Specific Microbiota 

The gut microbiota of sharks has only been characterized in a few 

reports[20, 21, 47, 51, 52], and represents an understudied area of shark 

physiology, which likely plays a major factor in host health. Here, we define the 

microbiota of four shark species, the mako shark, thresher shark, porbeagle, and 

smooth dogfish. Sharks have unique digestive architecture defined by the spiral 

valve, an organ that maximizes absorption and minimizes the length of GIT by 

increasing surface area through a corkscrew-like arrangement of intestinal tissue 

(Figure 3A). The spiral valve of all sharks was dominated by Proteobacteria 

(53.9%) and Firmicutes (18.0%), with Photobacterium (17.5%), Campylobacter 

(6.0%), and Dickeya (5.7%) the most prominent genera (Figure 3B, 2B). Analysis 

of the Bray-Curtis Dissimilarity metric revealed a significant difference between the 

microbiota of each species (PERMANOVA, p = 0.001), defined by distinct 

clustering in a principal coordinate analysis (Figure 3C). Previous studies of 

Elasmobranchii have also found an abundance of Photobacterium as well as 

Campylobacter in the spiral intestine of sharks[47, 52], but to date only one study 

utilizing 16s sequencing has examined the taxonomic differences between regions 

of the shark GIT[51]. 

Here, we compare the microbiota of the spiral valve (SV) to the distal 

intestine (DI) in smooth dogfish. The principal coordinate analysis plot of the Bray-

Curtis Dissimilarity metric displays the significantly distinct clustering of the SV and 

DI microbial communities (PERMANOVA, p = 0.018) (Figure 3E). These disparate 

communities are defined by a significantly greater abundance of Proteobacteria in 
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the DI (63.3%) compared to the SV (39.1%) (p = 4.55E-05), and a significantly 

reduced abundance of Actinobacteria in the DI (1.8%) compared to the SV (8.0%) 

(p = 1.89E-08) (Figure 3D, 3F, 3G). The most differentially abundant species 

between GIT sites was Photobacterium damselae, which was significantly more 

abundant in the DI compared to the SV (log2FC = 9.84, padj = 4.52E-74) (Figure 

3E). Such differences in microbial composition were not found in the GIT of the 

previously studied bonnethead shark (Sphyrna tiburo)[51], suggesting this may not 

be a universal phenomenon among sharks. Our findings suggest that the SV and 

DI represent unique ecological niches for commensal microbes, and that perhaps 

nutrient availability, host immunity, or oxygen levels may act as selective factors 

for bacterial colonization in these regions of the smooth dogfish GIT. 

The GIT Microbiota of Marine Fish act as a Reservoir of ARGs which are 

Associated with Proteobacteria 

 Environmental reservoirs of antimicrobial resistance play an important role 

in the selection, proliferation, and transfer of resistance genes [53]. We used the 

computation tool DeepARG [54] to identify resistance genes and find that the gut 

microbiota of marine fish represent one such reservoir of ARGs. Across all fish GIT 

samples we detected 518 different resistance genes covering 27 antibiotic 

resistance classes (Table S3). The most abundant resistance gene classes were 

multidrug (34.3%), macrolide, lincosamide, streptogramin (MLS) (16.1%), 

tetracycline (16.0%), and beta-lactam (4.6%) (Figure 4C). Recently, Collins et al. 

found multidrug and beta-lactam resistance genes in the microbiota of deep-sea 

fish [24], and similarly a study of ocean waters around the globe found tetracycline, 
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beta-lactam, and multidrug resistance genes to be the most prevalent resistance 

gene types in seawater [55]. These findings suggest resistance mechanisms may 

be conserved across bacteria that inhabit the marine environment and fish GIT.  

 An increase in antibiotic resistance gene abundance was associated with 

certain fish/shark species, specifically in higher trophic level organisms (Figure 4A, 

top). In general, those fish that exhibited piscivorous feeding behavior, occupying 

a higher trophic level, had a greater burden of antibiotic resistance. Rowan-Nash 

et al. found a significant correlation between Gammaproteobacteria and ARGs in 

human gut microbiota samples suggesting that the presence of certain bacteria 

may be driving levels of resistance in host-associated microbial communities[34]. 

Expanding on this idea, we examined the relationship between ARGs and 

Proteobacteria in the GITs of fish and found that samples from piscivores with a 

higher relative abundance of Proteobacteria harbored an increased abundance of 

ARGs compared to planktivorous/benthivorous species with less Proteobacteria 

(Figure 4A, bottom, Figure S2). A correlation analysis between ARG abundance 

and Proteobacteria relative abundance in fish within Narragansett Bay showed a 

significant positive correlation (r = 0.7971, R2 = 0.6353, p < 0.0001, Pearson’s 

correlation) (Figure 4B). When we factored in the large offshore shark species, we 

find that this trend generally holds true with the exception of the thresher shark, 

which despite having high levels of Proteobacteria had relatively low levels of 

ARGs (Figure S3). These findings show that fish with high levels of Proteobacteria 

are likely to have an increased level of detectable ARGs. Furthermore, this may 
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suggest that higher trophic level organisms with a more carnivorous diet and 

Proteobacteria rich gut microbiota will have a greater resistance gene burden. 

In order to determine the bacterial hosts of these resistance genes, 

metagenomically assembled genomes (MAGs) were assembled using the 

MetaWRAP assembly pipeline [56] and subsequently queried for ARGs. From all 

metagenomic reads across fish and water samples, we assembled 267 MAGs 

covering 9 bacterial phyla (Figure S4). We found that the MAGs from Firmicutes 

(n = 8), Fusobacteria (n = 2), and Proteobacteria (n = 121) had the highest 

prevalence of ARGs, and had significantly more resistance genes than MAGs from 

Bacteroidetes, Verrucomicrobia, Spirochaetes, Planctomycetes, and Tenericutes 

(n = 104) (Mann-Whitney U test, p < 0.05) (Figure 4D). Notably, the second most 

ARG-rich MAG was identified as Photobacterium damselae, which occurred at a 

high abundance in all the piscivorous fish and shark gut microbiota supporting the 

theory that higher trophic level organisms may harbor more ARGs (Figure 2C). 

Inferring Diet Through Metabarcoding of GIT Shotgun Metagenomic Data 

The levels of Proteobacteria were highly correlated with the relative 

abundance of ARGs in the fish microbiome. This relationship may be driven in part 

by the dietary inputs. Dietary analysis provides insight into the trophic structure 

and predator/prey relationships within a community and is a driving factor in 

shaping the gut microbiome. Traditionally techniques to study diet in wild animals, 

such as direct observation or stomach content analysis, have been low throughput 

and time consuming and are unable to identify phenotypically indistinguishable or 

rapidly digested prey items [57]. The use of DNA-barcoding methods circumvents 
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these issues by providing molecular level resolution that reduces the need for 

human identification of physical dietary components [57]. Additionally, molecular 

methods provide a high throughput alternative that can detect not only dietary 

items, but also potential parasites. Here, we utilize DNA-metabarcoding targeting 

the cytochrome c oxidase subunit I (COI) [58], elongation factor TU (tufA), and 

ribulose-1,5-bisphosphate carboxylase (rbcL) genes [59] to identify the diet and 

potential GIT parasites of seven marine species. 

Of the seven species examined in this study, four occupy a shared demersal 

habitat in Narragansett Bay, RI providing an opportunity to detect interspecies 

predation and differential dietary preferences within a habitat. The planktivorous 

butterfish had a diet primarily consisting of diatoms (Bacillariophyta), algae 

(Chlorphyta, Ochrophya, Haptophyta), and to a lesser extent arthropods 

(Arthropoda), characteristic of an organism occupying a low trophic level (Figure 

5A, B). The benthivorous scup occupies a higher trophic level than the butterfish, 

characterized by dietary signatures of diatoms (Bacillariophyta), arthropods 

(Arthropoda), and segmented worms (Annelida) which were known to be a major 

prey source for this benthic species (Figure 5A, B) [60]. At the order level we find 

that the Metazoan portion of the scup diet is derived from amphipods (Figure 5E). 

Previous dietary studies of both the summer flounder and smooth dogfish in New 

England waters identified these species as high trophic level predators preying on 

fish, squid, and crabs [61, 62]. It is notable that due to the feeding patterns of these 

species they were sometimes captured with empty stomachs and intestinal tracts 

resulting in an absence of detectable DNA markers making diet identification 
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impossible (Figure 5A). We find that these highly carnivorous species prey 

primarily on chordates in the class Actinopterygii (ray-finned fishes) as well as 

arthropods (Figure 5A, B, E). In summer flounder the Metazoan derived diet came 

from primarily Decapoda (crustaceans) and Clupeiformes (herring and anchovy 

family) (Figure 5E). The smooth dogfish DI contained Metazoan signatures of 

Stromatopoda (mantis shrimp) and fish across several orders (Figure 5E). DNA 

markers corresponding to butterfish and scup were found in the GIT of the high 

trophic level predators (summer flounder and smooth dogfish) suggesting that 

predation occurs within this benthic food web and represents a possible route of 

bacterial and ARG transfer from lower- to higher-trophic level organisms. We also 

obtained dietary signatures from three large migratory shark species that play an 

important role in the food web as apex predators. All three sharks exhibited 

piscivorous diets based on metabarcoding (Figure 5A, B, D, E). A closer look at 

order level taxonomy revealed that each shark had a fairly specialized diet with 

DNA from only one or two different prey species (Figure 5E). The COI dietary 

signatures for the thresher, mako, and porbeagle sharks were primary from 

Clupeiformes, Scombriformes, and Perciformes, respectively (Figure 5E). Using 

this metabarcoding approach for dietary contents we confirmed that the summer 

flounder, smooth dogfish, mako, thresher, and porbeagle sharks all had highly 

piscivorous diets compared to the butterfish and scup. Furthermore, these each 

species harbored a significantly distinct diet that was host specific (PERMANOVA, 

p = 0.006) (Figure 5C). These trends in prey preference likely influence the 

microbial communities inhabiting the GIT as diet is a strong modulator of the 
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microbiome. From a metabarcoding analysis of wild marine fish GIT samples we 

were able to infer diet, trophic interactions, and gain insights into the role of host 

diet in shaping the microbiota through nutrient availability and potential bacterial 

transfer between diet and host. 

Functional Differences in the Microbiota Linked to Host Diet and Trophic Level 

 The gut microbiota plays an important role in host digestion, increasing 

nutrient availability and uptake [4, 19, 63]. Host diet in turn plays a key role in 

determining the makeup of the gut microbiome, and evidence shows that dietary 

modulation and macronutrient availability can drastically alter the composition and 

function of the intestinal flora [12, 64, 65]. Through previous stomach content 

analyses [61, 62], and our own metabarcoding analysis (Figure 5), we are able to 

gain an understanding into the role of diet in shaping the gut microbiome of these 

marine fish. Investigation into the carbohydrate-active enzymes (CAZymes) known 

to play a role in metabolism of dietary polysaccharides revealed 120 differentially 

abundant CAZymes between the piscivorous and planktivorous/benthivorous 

species suggesting that the divergent diets of these groups may have an impact 

on the functional capacity of the microbiome (Figure 6A).  

Glycosaminoglycans, including chondroitin, are a group of diverse 

polysaccharides that are components of a variety of tissues including cartilage 

derived from mammals, marine fish, squid, and other organisms [66-71]. The diet 

of piscivorous fish, such as those studied here, include a number of organisms 

known to contain chondroitin (Arthropoda and Chordata). Thus, the piscivorous 

fish and sharks occupying a higher trophic level would likely have greater dietary 
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intake of this polysaccharide compared to the butterfish and scup, whose prey is 

less rich in chondroitin. We find that several CAZymes linked to chondroitin 

metabolism are significantly enriched in the piscivores compared to 

planktivores/benthivores (log2fc > 1.5, padj < 0.05) (Figure 6A, B). Interestingly, 

these genes were predominantly detected in MAGs isolated from the piscivorous 

species, summer flounder, smooth dogfish, thresher, mako, and porbeagle sharks 

(Table S4). This data suggests that host diet, associated with trophic level and 

dietary guild, may select for bacteria with particular carbohydrate utilization 

patterns. In this case, piscivorous fish and sharks likely have a more chondroitin 

rich diet and the abundance of chondroitin could provide an ecological niche for 

bacteria with chondroitin lyase and hydrolase enzymes. Chitin is one of the most 

abundant polysaccharides in nature and makes up the exoskeletons of many 

arthropods [72, 73]. Several chitinases were detected across nearly all the gut 

microbiota samples collected (Figure 6C), suggesting that the ability to utilize chitin 

may be a widespread trait among marine associated microbiomes likely due to the 

fact that chitin is ubiquitous in this environment. Overall, our evaluation of 

carbohydrate active enzymes within the fish gut microbiota suggests that the 

availability of dietary polysaccharides associated with different trophic levels may 

have a role in selecting for certain bacteria based on polysaccharide utilization. 

This finding has the potential to link host trophic level and related prey consumption 

with selection for specific microbes. 
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Discussion 

 Studying the microbiota of wild marine fish is important for monitoring the 

health of populations, understanding fundamental fish biology, and evaluating their 

role as an environmental reservoir of antimicrobial resistance. Here, we utilize 

shotgun metagenomic sequencing to define the microbial taxonomic composition, 

ARG burden, and dietary DNA signatures from GIT samples of seven marine 

fish/sharks. Across all GIT microbiota samples we find a predominance of 

Proteobacteria and Firmicutes, which is consistent with previous reports of marine 

fish gut microbiota [4, 5]. Each species harbored unique taxonomic profiles, which 

remained consistent between two sampling locations within the bay. The exception 

was that of the summer flounder, which had seven differentially abundant genera 

between the two sites including a significant increase in Photobacterium in the Fox 

Island samples (Figure 2A, S1). This is particularly interesting given that previous 

research of summer flounder within Narragansett Bay has found sex-based 

differences between the two sampling locations. Data suggests that the inshore 

habitat (Fox Island) has a higher proportion of females during the months our 

collections took place (May – September), whereas lower in the bay the Whale 

Rock location has a lower proportion of females[74]. Combined with other work 

showing that female summer flounder exhibit a faster growth rate[75], and that sex 

has an effect on microbiome composition in fish[76], future studies could examine 

whether the changes in summer flounder microbiota observed between the two 

sites are sex dependent. While the butterfish and smooth dogfish appeared to have 

consistent microbiome profiles across individuals, the scup and summer flounder 
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samples appeared to have greater intra-species microbiome variability highlighted 

by samples with high abundances of Proteobacteria (Figure S2). It is unclear the 

driving factors behind this variability, nor is it unique to our data set [76], but it 

should be taken into consideration when evaluating the data shown here and in 

future studies of fish microbiota. 

 The GIT microbiota of sharks has been studied in only a few species to date 

[20-22, 47, 51, 52], despite their important role as apex predators within the marine 

trophic structure. We define the microbiota of four shark species including three 

highly migratory pelagic species. These organisms shared core bacterial taxa at 

the class level (Figure 3B), while still having species- specific microbiome profiles 

(Figure 3C). The universal presence of Photobacterium across all shark samples 

presented here, as well as previously published shark GIT microbiomes[47, 52] 

suggests that this genus is an essential part of the microbiota in these animals. 

Interestingly, Campylobacter seems to be a significant member of the GIT 

microbiota of sharks in the Lamnidae family, of which representative species from 

all three extant members of this family (Carcharodon [52], Isurus [this study], 

Lamna [this study]) have shown an abundance of Campylobacter (Figure 2B). This 

is in contrast to sharks across almost all other Elasmobranchii families (Triakidae 

[this study], Alopiidae [this study], Carcharhinidae [20, 52], Rhincodontidae [20, 

52], Sphyrnidae [21, 51], Ginglymostomatidae [20]) that did not report significant 

levels of this bacterial genus in their GIT, suggesting that this may be evidence of 

phylosymbiosis [77], though more work would be needed to substantiate this 

theory. Additionally, we observe significant differences between the spiral valve 
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and distal intestine within smooth dogfish specimens (Figure 3D, E, F, G). This is 

in contrast to 16s sequencing studies of the bonnethead shark which observed no 

differences between these two sites along the GIT [51], thus providing novel 

evidence that there may be spatial differentiation of the microbiota within the 

elasmobranch GIT. Our finding suggests that sampling method (cloacal swab vs 

direct sampling of spiral valve contents) and location along the GIT have significant 

impact on the detected microbiome profile. 

 The position of Proteobacteria as a commensal in the microbiome of marine 

organisms is well established. Our data is consistent with this finding, and we also 

show that the genus Photobacterium is associated with piscivorous fish/sharks. 

While Photobacterium damselae is known to cause pathogenesis in both fish and 

humans [78, 79], ours and several other studies have recently found it in the GIT 

microbiome of marine fish suggesting it is likely a member of the natural gut flora. 

The Photobacterium MAGs assembled from both summer flounder and smooth 

dogfish contained genetic regions assigned to four different CAZymes related to 

chitinase activity (CMB50, GH18, GH19, and GH23) (Table S4) [80]. Due to the 

abundance of chitinous prey sources (Arthropoda) identified in the gut of many of 

these samples, perhaps as a commensal Photobacterium play a role in the 

utilization of dietary derived chitin. Future studies should focus on strain level 

analyses of Photobacterium to characterize potential genomic and phenotypic 

differences between pathogenic and commensal strains.  

 Environmental microbiomes act as reservoirs of bacteria harboring AMR. 

Here, we define the resistome of seven wild marine fish/shark species and find 
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that multidrug, MLS, tetracycline, and beta-lactam resistance genes are prevalent 

among these bacteria (Figure 4C). Interestingly, we identify a positive association 

between the abundance of Proteobacteria and level of ARGs within fish GIT 

microbiomes (Figure 4B). Proteobacteria abundance was found to be higher in 

piscivorous species compared to planktivores, likely leading to a greater ARG 

burden in higher trophic level species (Figure S3B). This study represents the first 

known report linking trophic level to ARG abundance. These findings are critical to 

understanding the dynamics of resistance in the context of marine food webs as 

well as the prevalence of resistant bacteria (especially pathogens) in highly 

migratory species such as the mako, thresher, and porbeagle sharks which have 

the ability to disperse such bacteria across great distances [81]. A recent study by 

Collins et al. identified a sparsity of resistance genes in the GIT of deep-sea fish 

that presumably experience a low level of anthropogenic impacts compared to the 

coastal species presented here [23]. The proximity to humans could be one factor 

leading to the much greater number of ARGs recovered from the samples 

presented here compared to those collected in the deep-sea. Previous work has 

shown that marine sediments with greater proximity to human activity have 

significantly higher abundances of ARGs compared to those in the less 

anthropogenically impacted waters [43, 82, 83].  

The composition of the microbiome is greatly affected by host diet, though 

interactions between diet and microbiota composition in wild fish populations 

remain less well understood. Here we utilize a metabarcoding approach to identify 

non-host/bacterial DNA in the GIT of marine fish and detect dietary signatures and 
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potential host parasites. Using several marker genes, we were able to discern prey 

items from GIT contents, representing a potentially less invasive alternative to 

traditional stomach content analyses. Interestingly, while squid has been reported 

to be a significant portion of the diet of summer flounder and smooth dogfish [61, 

62], we did not observe any dietary signatures indicative of the longfin squid native 

to Narragansett Bay. This could be due to the rapid degradation of this type of prey 

item in the stomach, and if so, would be an important caveat to using this approach 

for diet detection. The fact that dietary signatures could not be discerned for all 

samples may be a factor of gut transit time and that only a single feeding period is 

detected at one time using these metabarcoding techniques. While this is a 

possible limitation, this short time frame of detection is also a strength as it provides 

a snapshot of recent dietary activity. Additionally, we were able to identify a known 

parasitic Platyhelminthes worm of the genus Clistobothrium in the spiral valve 

contents of one of the mako shark specimens [84]. Metagenomic assembly 

allowed us to assembled a full COI sequence for this parasite displaying the power 

of shotgun metagenomic sequencing in identification of GIT parasites in wild 

animals (data not shown). Overall, the use of molecular barcoding techniques from 

shotgun metagenomic data provided insights into host dietary habits and trophic 

interactions between species in a complex marine ecosystem. This information is 

valuable to understanding the nutrient availability driving microbial selection within 

the GIT and ultimately shaping the gut microbiome. 

While this study effectively uses molecular techniques to define the 

microbiome, resistome, and dietary signatures, there are several limitations. As 
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with any study assigning taxonomy or gene identifications to sequencing data, the 

results are limited by the completeness of existing databases. This is evidenced 

here by the fact that a high proportion of the host-filtered reads (up to 90%) 

remained unclassified after taxonomic assignment. Further characterization of 

microbes from understudied environments is needed to improve databases in 

order to better characterize these unique microbial communities. As well as 

taxonomic assignment, our ability to identify antibiotic resistance genes is limited 

by the available sequence databases. For an ARG to be present in a database, it 

must be previously characterized. The characterization of resistance 

disproportionately occurs in pathogens due to the importance of resistance in 

clinical microbiology samples, and many human pathogens are Proteobacteria. 

Thus, there is a potential for existing ARG databases to be biased towards 

Proteobacterial ARGs, a fact that must be examined further to obtain a true picture 

of resistomes. Additionally, the data presented here is derived from shotgun DNA 

sequencing, thus it is only able to infer the functional potential of the genes 

identified. Without RNA sequencing and proteomics, we are unable to make strong 

conclusions regarding the activity of the microbes that inhabit the GIT. While these 

microbiome samples represent unique, previously unstudied species, there were 

limitations in obtaining more samples and thus it is possible some microbiome 

differences were not observed due to a low number of individuals sampled from 

each species. Despite these limitations, we are able to provide valuable insights 

into the microbiota and resistomes of wild marine fish occupying diverse dietary 

guilds and ecological niches. 
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Materials and Methods 

Sample Collection 

All Narragansett Bay fish samples, butterfish (n= 22), scup (n = 31), summer 

flounder (n = 20), smooth dogfish spiral valve (n = 5), smooth dogfish distal 

intestine (n = 6), were collected in the months of May, June, July, August, and 

September during 2017 – 2021 from the fish trawl surveys conducted by the 

University of Rhode Island Graduate School of Oceanography. Specimens were 

collected according to the IACUC protocols covering both this study as well as the 

work of the collection vessel. Fish trawl for samples was approved and permits 

were obtained from the Rhode Island Department of Environmental Management. 

The trawl was conducted by the R/V Cap’n Bert which utilized an otter trawl net 

with an effective opening of 6.5 m and towed at 2 knots for 30 minutes. Trawling 

was performed at two sites in Narragansett Bay, Rhode Island: Fox Island and 

Whale Rock (Figure 1). After the trawl was emptied on the deck, target fish were 

humanely euthanized and dissected and the intestinal contents were emptied into 

Zymo Research bashing bead lysis tubes (Irvine, CA, USA) containing 750uL of 

ZymoBIOMICS Lysis Solution (Irvine, CA, USA), shaken, and stored on ice until 

extraction. Water samples were collected ~1 m above the seafloor using a niskin 

flask. For each individual seawater sample (n = 12), one liter of seawater was 

filtered through a 0.22 μm membrane from which a 3x3 cm section was added to 

a Zymo Research bashing bead lysis tubes (Irvine, CA, USA) containing 750uL of 

ZymoBIOMICS Lysis Solution (Irvine, CA, USA), shaken, and stored on ice until 

extraction. The three large offshore shark species, thresher (n = 4), mako (n = 4), 
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and porbeagle shark (n = 5), were collected from specimens caught as part of 

recreational shark tournaments in Massachusetts and Rhode Island. The samples 

were caught in the offshore waters from Rhode Island to Maine. All shark samples 

were collected postmortem from sharks collected by licensed recreational 

fishermen. The sharks were dissected and contents from the spiral valve were 

transferred into Zymo Research bashing bead lysis tubes (Irvine, CA, USA) 

containing 750uL of ZymoBIOMICS Lysis Solution (Irvine, CA, USA), shaken, and 

stored on ice until they could be frozen and subsequently extracted. 

Permits and IACUC 

Narragansett Bay trawl samples were collected under the 2020 RIDMF Scientific 

Collector’s Permit #527. Fish were handled according to the Brown University 

IACUC Protocol Number AN2021-005. 

DNA Extraction 

DNA was extracted with the ZymoBIOMICS DNA miniprep kit from Zymo Research 

(Irvine, CA, USA) following the manufacturer’s instructions, with final elution in 100 

μl of molecular grade H2O. Extracted DNA was quantified using a QubitTM 3.0 

Fluorometer (Thermo Fisher Scientific, Waltham, MA, United States). 

Library Preparation and Sequencing 

Metagenomic libraries for samples BK001 – BK072 were prepared using the 

NEBNext UltraTM II FS DNA Library Prep Kit for Illumina (NEB) (Ipswich, MA, USA) 

and libraries were sequenced on the NovaSeq 6000 with v1.5 reagents. 

Metagenomic libraries for samples BK073 – BK114 were prepared using the 
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iGenomeX Riptide High Throughput Rapid DNA Library Prep (Twist Bioscience, 

San Francisco, CA, United States). 

Metagenomic Analysis 

Read Processing and Filtering 

Raw reads from metagenomic sequencing were processed using the KneadData 

wrapper script[85]. Reads were then trimmed using Trimmomatic (version 0.36) 

with SLIDINGWINDOW set at 4:20, MINLEN set at 50, and ILLUMINACLIP: 

TruSeq3-PE.fa:2:20:10 [86]. Sequences from contaminating host were filtered out 

using Bowtie2 [87]. Since fully sequenced genomes of the host species used in 

this study have not yet been sequenced, the next most phylogenetically similar fish 

with sequenced genomes were used as a reference during read filtering; 

Paralichthys olivaceus (PRJNA344006), Spondyliosoma cantharus 

(PRJEB12469), Pampus argenteus (PRJNA240272), Scyliorhinus canicular 

(PRJEB35945), and Carcharodon carcharias (PRJNA725502). In addition to this 

preprocessing, bacterial ribosomal reads were removed from the datasets using 

the SILVA 128 database[88].  

Taxonomic Identification 

Taxonomic classification of metagenomic reads was performed using Kraken2 

(version 2.1.2) [89]. The taxonomic output was analyzed in R (version 4.1.2) using 

the phyloseq package (version 1.38.0) to calculate alpha and beta diversity[90]. 

The PCoA analysis was performed using the Bray-Curtis dissimilarity metric[91]. 

Identification of Antimicrobial Resistance Genes 
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Processed reads were joined using the fastq-join function of the ea-utils 

package[92] and queried for antibiotic resistance genes using DeepARG (version 

2)[54] using the default settings (0.8 minimum coverage of alignment, E-value 

cutoff 1e-10, 50% minimum percentage of identity). Assembled genomes were 

queried for resistance genes using DeepARG (version 2) using the --genes flag 

and the default settings (0.8 minimum coverage of alignment, E-value cutoff 1e-

10, 50% minimum percentage of identity). 

Identification of Functional Genes 

Additionally, using the SAMSA2 pipeline[93] clean reads were merged using 

Paired-End Read Merger (PEAR) (version 0.9.10)[94] and aligned to the RefSeq, 

CAZy, and SEED subsystems databases using DIAMOND (version 0.9.12)[80, 93, 

95-97]. 

Metabarcoding for Diet Detection 

The origins of non -host/bacterial DNA content in the gut was determined by using 

blastn to align cleaned, merged reads to a custom database containing the 

cytochrome C oxidase subunit I gene (COI) sequences in the database generated 

by the CO-ARBitrator algorithm developed by Heller et al. [58] and all unique 

sequences from NCBI Gene search of the genes tufA, encoding for elongation 

factor TU, and rbcL, encoding for ribulose-1,5-bisphosphate carboxylase. Non 

host/bacterial DNA content alignments were filtered based on alignment length of 

> 100bp and percent identity > 97% with any singletons removed.  

Metagenomic Assembly, Binning, and Taxonomic Identification 
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Metagenomic assembly was conducted using the metaWRAP pipeline[56] with the 

--megahit flag. Binning was conducted using the metaWRAP binning module 

employing metabat2, maxbin2, and CONCOCT binning softwares. Final bins with 

completion > 50% completeness and < 5% contamination were used for 

downstream analysis. The Bin Annotation Tool (BAT) (version 5.2.3) was used for 

taxonomic classification of metagenome-assembled genomes [98]. 

Generation of Phylogenetic Tree 

The phylogenetic tree of MAGs was generated using PhyloPhlAn 3.0 using the “--

diversity high” flag[99].  

Statistical Analyses and Figure Generation 

Differential abundance of sequence annotations was determined using DESeq2 

(version 1.34.0) [93]. Beta diversity was analyzed with a PERMANOVA via the 

ADONIS function within the vegan R package (version 2.5-7). All figures were 

generated with GraphPad Prism (version 8.0) (GraphPad Software, La Jolla, CA, 

United States). 
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Figures 
 

 
Figure 1. Sample Collection and Experimental Overview 
The collection locations within the Narragansett Bay – Fox Island and Whale Rock. 
Trophic guild characterization of 7 fish and shark species examined in this study. 
Workflow of highlighting metagenomic analyses performed on DNA sequencing 
data. 
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Figure 2. Taxonomy and Diversity of Fish and Environmental Samples 
Relative abundance of bacterial phyla (A) and genera (B) averaged across 
samples within groups and error bars representing standard error of the mean. 
Principal coordinate analysis of Bray-Curtis Dissimilarity of all fish microbiota 
samples (excluding water samples) (C). 
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Figure 3. Taxonomy of Four Shark Species and Divergent Microbiota of 
Spiral Valve and Distal Intestine 
Diagram of the elasmobranch GIT with the stomach, spiral valve, and distal 
intestine labeled (adapted from De luliis and Pulerà 2019), and list of the four shark 
species included in this study (A).  Relative abundance of bacterial classes across 
individual spiral valve contents from four shark species (B). Principal coordinate 
analysis of Bray-Curtis Dissimilarity of spiral valve microbiota cluster by species 
and are significantly different from one another (PERMANOVA, p = 0.001) (C). 
Relative abundance of bacterial classes across individual spiral valve and distal 
intestine contents isolated from smooth dogfish (D). Principal coordinate analysis 
of Bray-Curtis Dissimilarity of smooth dogfish spiral valve and distal intestine 
microbiota cluster by GIT location and are significantly different from one another 
(PERMANOVA, p = 0.018) (E). Volcano plot of differentially abundant species 
between the smooth dogfish spiral valve and distal intestine. Points in red 
represent significantly different species with an adjusted p-value of < 0.05 and log2 
fold change of >1.5 (F). Significantly differentially abundant phlya with an adjusted 
p-value of < 0.05 and log2 fold change of >1.5. Phyla more abundant in the spiral 
valve are shown in red and those in more abundant in the distal intestine are blue 
(G). 
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Figure 4. Antimicrobial Resistance and Association Between ARGs and 
Proteobacteria 
(Bottom) Relative abundance of Proteobacteria in each species at the Fox Island 
(left) and Whale Rock location (right) with bars representing mean + standard error 
of the mean (A). (Top) ARGs normalized to bacterial reads in each species at the 
Fox Island (left) and Whale Rock location (right) with bars representing mean + 
standard error of the mean (A). The bars in A (top) correspond to those in A 
(bottom). Correlation between ARGs (y-axis) and Proteobacteria relative 
abundance (x-axis) (r = 0.7971, R2 = 0.6353, p < 0.0001) (B). Relative abundance 
of ARG classes averaged across samples for each species at each location with 
error bars representing standard error of the mean (C). Abundance of ARGs in 
each MAG with 50% > completeness and < 5% contamination (D). The colors of 
the stacked bars in this plot correspond to those in the legend above.  
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Figure 5. Dietary Signature Identification Through GIT Metabarcoding 
Relative abundance of dietary components at the phylum level determined through 
metabarcoding of shotgun metagenomics using the tufA, rbcL, and COI genes (A). 
Relative abundance of dietary components at the phylum level averaged across 
samples with error bars representing standard error of the mean (B). Principal 
coordinate analysis presenting the Bray-Curtis Dissimilarity analysis of the dietary 
components of seven fish species. Each species’ diet profile grouped separately 
(PERMANOVA, p = 0.006) (C). Normalized abundance of Actinopteri dietary 
signatures determined by using the COI reads from shotgun metagenomic 
sequencing of the fish GIT contents (D). Bars represent the average across 
samples within species and error bars represent standard error of the mean (D). 
Normalized abundance of Metazoa dietary signatures determined by using the COI 
reads from shotgun metagenomic sequencing of the fish GIT contents (E). Bars 
represent the average across samples within species and error bars represent 
standard error of the mean (E). (All data here are from the 69 samples collected in 
2021 and do not include previous collections) 
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Figure 6. Functional Differences in the Microbiota Linked to Host Diet and 
Trophic Level 
Volcano plot of differentially abundant CAZymes between planktivores/benthivores 
(butterfish and scup) and piscivores (summer flounder, smooth dogfish, thresher 
shark, porbeagle shark, mako shark) with three chondroitin metabolism genes 
highlighted (A). Points in red represent significantly different species with an 
adjusted p-value of < 0.05 and log2 fold change of >1.5.  Normalized counts of 
three chondroitin metabolism genes in each sample type (B). Normalized counts 
of eight CAZymes related to chitin metabolism across all samples (CPBR 
represents Copies per Bacterial Read) (C). 
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Supplementary Information 
 

 
Figure S1. Intra Species Microbiota Differences Between the Inner and Upper 
Bay Locations 
Genus level relative abundance (A) and Principal coordinate analysis of Bray-
Curtis Dissimilarity of Fox Island fish samples collected in 2021 (B). Genus level 
relative abundance (C) and Principal coordinate analysis of Bray-Curtis 
Dissimilarity of Whale Rock fish samples collected in 2021 (D). 
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Figure S2. Heterogeneity in Proteobacteria Blooms Associated with ARG 
Abundance 
Abundance of ARGs normalized to bacterial reads plotted for each sample 
separated by species. Below the normalized ARG abundance for each species is 
the genus taxonomy plot for the corresponding sample. 
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Figure S3. ARG Abundance and Association between ARGs and 
Proteobacteria (All Samples) 
ARGs normalized to bacterial reads in each species and water samples with bars 
representing mean + standard error of the mean (A). Correlation between ARGs 
(y-axis) and Proteobacteria relative abundance of all fish/shark samples (x-axis) (r 
= 0.6484, R2 = 0.4204, p < 0.0001) (B). 
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Figure S4. Phylogenic Tree of Assembled Bins 
Phylogenetic tree generated using PhyloPhlAn 3.0 with nodes displaying the 
taxonomy. The color of the node labels corresponds to the sample from which they 
originated – blue: water, green: butterfish, red: scup, yellow: summer flounder, 
grey: smooth dogfish, purple: shark. 
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Abstract 
Antibiotic resistance is a current and expanding threat to the practice of modern 
medicine. Antibiotic therapy has been shown to perturb the composition of the host 
microbiome with significant health consequences. In addition, the gut microbiome 
is known to be a reservoir of antibiotic resistance genes. Work has demonstrated 
that antibiotics can alter the collection of antibiotic resistance genes within the 
microbiome through selection and horizontal gene transfer. While antibiotics also 
have the potential to impact the expression of resistance genes, metagenomic-
based pipelines currently lack the ability to detect these shifts. Here, we utilized a 
dual sequencing approach combining shotgun metagenomics and 
metatranscriptomics to profile how three antibiotics, amoxicillin, doxycycline, and 
ciprofloxacin, impact the murine gut resistome at the DNA and RNA level. We 
found that each antibiotic induced broad, but untargeted impacts on the gene 
content of the resistome. In contrast, changes in ARG transcript abundance were 
more targeted to the antibiotic treatment. Doxycycline and amoxicillin induced the 
expression of tetracycline and beta-lactamase resistance genes, respectively. 
Furthermore, the increased beta-lactamase resistance gene transcripts could 
contribute to an observed bloom of Bacteroides thetaiotaomicron during amoxicillin 
treatment. Based on these findings, we propose that the utilization of a dual 
sequencing methodology provides a unique capacity to fully understand the 
response of the resistome to antibiotic perturbation. In particular, the analysis of 
transcripts reveals that the expression and utilization of resistance genes is far 
narrower than their abundance at the genomic level would suggest. 
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Introduction 

 Antibiotic resistance has emerged as a major threat to human health. In the 

United States, millions of people suffer from infections caused by antibiotic 

resistant bacteria, and tens of thousands die as a result[1]. Although antibiotic 

resistance is recognized to be an ancient phenomenon predating the therapeutic 

use of antibiotics[2-4], recent misuse and overuse of antibiotics has led to an 

increase in the selection for antibiotic resistance genes (ARGs) and has 

contributed to the spread of infections caused by antibiotic resistant bacteria. Thus, 

it is important to understand how antibiotic exposure impacts the abundance and 

expression of resistance genes in the host. Culture-independent methods of 

profiling entire microbial communities for ARGs have greatly expanded our ability 

to detect and track resistance elements utilizing high-throughput sequencing 

techniques[5-9]. This important development in detection has led to the discovery 

of ARGs in gut colonizing microbes. 

The gut microbiota is now recognized as an important element in human 

health and disease[10-13], and can serve as a reservoir of antibiotic resistant 

bacteria[14]. Research into the collection of ARGs within the microbiome, termed 

the “resistome”[15, 16], has begun to explore resistance genes within the gut. 

Studies have characterized the gut resistome in terms of composition[6, 14, 17], 

life history[7, 18, 19], geographic location[17, 20, 21], antibiotic perturbation[22, 

23], and other factors. In addition, horizontal gene transfer of ARGs between 

bacteria in the gut has been theorized to contribute to the spread of resistance[24-

29]. Since the gut microbiome is a reservoir of antibiotic resistance and has the 
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potential to promote HGT of ARGs, it is of particular importance to understand the 

role of antibiotics in shaping the landscape of antibiotic resistance in this microbial 

environment. 

Antibiotic therapy has been shown to have a dramatic impact on the 

microbiome, playing a role in gut dysbiosis[30-32], increasing susceptibility to 

infection[33, 34], and altering the composition of the gut resistome[23, 35, 36]. 

Less is known about how antibiotics promote ARG selection in vivo[22, 37], and 

the impact of antibiotics on the expression of resistance genes in the host. In 

response to antibiotic treatment, changes in the resistome may be stochastic, 

induced by the underlying changes in population structure, or more directed and 

targeted towards the drug administered. Here we utilize a dual sequencing 

methodology that employs both metagenomics and metatranscriptomics to reveal 

broad, untargeted changes in the resistome at the DNA level and a narrower, drug-

specific response at the RNA level. 

Materials and Methods 

Mouse Experiments 

In a previous study, we obtained total cecal DNA and RNA from six-week-

old female C57BL/6J mice that were treated with amoxicillin (0.1667 mg/mL) for 

12 hours, or ciprofloxacin (0.0833 mg/mL), or doxycycline hydrochloride (0.067 

mg/mL) for 24 hours[38]. All antibiotic treatments were administered in drinking 

water, which was provided ad libitum. Based on the estimate that a healthy mouse 

drinks 150 mL/kg of water per day, these concentrations were selected to 

administer a dosage of 25 (amoxicillin), 12.5 (ciprofloxacin), or 10 (doxycycline) 
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mg/kg/day[39]. Control mice were provided with pH-matched water. Each group 

had four mice that were split into at least two cages per group to account for cage 

effects. After the 12- or 24-hour treatments, mice were sacrificed and cecal 

contents were collected and stored in DNA/RNA Shield Collection and Lysis Tube 

from Zymo Research (Irvine, CA, USA). Samples were kept on ice prior to being 

transferred to -80°C for permanent storage.  Mouse experiments were carried out 

at the Brown University mouse facility with approval from the Institutional Animal 

Care and Use Committee of Brown University. 

Nucleic Acid Extraction and Quantification  

DNA and RNA were extracted from cecal samples using the ZymoBIOMICS 

DNA/RNA Miniprep Kit from Zymo Research (Irvine, CA, USA), eluted in nuclease-

free water, and stored at -80°C. Extracted DNA and RNA were quantified using the 

dsDNA-BR and RNA-HS kits on a Qubit™ 3.0 Fluorometer (Thermo Fisher 

Scientific, Waltham, MA, U.S.). 

Metagenomic and Metatranscriptomic Library Preparation  

Metagenomic libraries were prepared using the Ovation® Ultralow System 

V2 kit from NuGEN (San Carlos, CA, USA). DNA was sheared to a median 

fragment size of 300 bp using a Covaris S220 High Performance Ultrasonicator 

(Woburn, MA, USA), and used to prepare metagenomic libraries following the 

manufacturer’s protocol. Metatranscriptomic libraries were prepared using 

Ovation® Complete Prokaryotic RNA-seq Library System from NuGEN. Extracted 

RNA was first treated with DNA rDNase I to remove contaminating DNA. Next, 

host mRNA and bacterial ribosomal RNA was reduced using the MICROBEnrich 
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and MICROBExpress kits from Invitrogen (Carlsbad, CA, USA). This processed 

RNA was then used to generate metatranscriptomic libraries following the 

manufacturer’s protocol with the addition of AnyDeplete probes designed to 

specifically remove fragments originating from murine osteosarcoma virus, a 

known source of contamination sequences. 

Sequencing  

Metagenomic and metatranscriptomic libraries were sequenced on an 

Illumina HiSeqX using paired-end, 150 bp reads. Sequencing yielded an average 

of 26,113,145 (+11,436,616) and 85,599,941 (+ 11,674,614) raw reads per 

metagenomic and metatranscriptomic libraries, respectively. All reads were 

deposited in the NCBI Short Read Archive under BioProject numbers 

PRJNA504846 (metagenomics) and PRJNA515074 (metatranscriptomics). This 

data set was previously published by Cabral et al., 2019[38]. The DNA, RNA, and 

subsequent libraries and sequencing data were the same as those initially 

published in Cabral et al. Here, we reanalyze this data using a different set of 

pipelines and with a focus on the detection of antibiotic resistance genes.  

Processing of Raw Reads 

Raw reads from both metagenomic and metatranscriptomic sequencing 

were processed using the kneadData wrapper script[40]. Reads were trimmed with 

Trimmomatic (version 0.36) with SLIDINGWINDOW set at 4:20, MINLEN set at 50, 

and ILLUMINACLIP: TruSeq3-PE.fa:2:20:10 [41]. Sequences from contaminating 

C57BL/6NJ mouse genome and two murine retroviruses (murine osteosarcoma 

virus (accession NC_001506.1) and mouse mammary tumor virus (accession 



 160 

NC_001503)) were filtered out using Bowtie2[42]. In addition to this preprocessing, 

bacterial ribosomal reads were removed from the datasets using the SILVA 128 

database[43]. Based on the PCoA analysis of the metatranscriptomic derived 

resistomes we determined that doxycycline sample1was an outlier and it was 

removed from further analysis (Figure S1). Doxycycline sample 1 had roughly 10 

times the number of ARG hits relative to all other samples despite it being 

sequenced to a similar depth (Table S1). 

Taxonomic Analysis of Metagenomic Reads 

Cleaned metagenomic forward reads were classified against a database 

containing all prokaryotic genomes downloaded from NCBI RefSeq using Kaiju 

(version 1.7.0) using the MEM run mode and the default cutoffs for E-value and 

minimum required match length[44] (full relative abundance tables can be found in 

Table S2). The taxonomic output table was analyzed in R (version 3.5.2) using the 

phyloseq package (version 1.24.2) to calculate alpha and beta diversity 

metrics[45]. Principle coordinate analysis (PCoA) was performed using the Bray-

Curtis Dissimilarity metric[46]. 

Metagenomic Assembly and Binning 

The PATRIC webserver (3.5.43)[47] was utilized to bin and assign 

taxonomy to contigs assembled using metaSPAdes within SPAdes (3.13.0)[48]. 

Antibiotic Resistance Gene Analysis  

Processed reads were joined using the fastq-join function of the ea-utils 

package[49]. The joined reads were then queried for antibiotic resistance using 

DeepARG (version 1)[8] using the default settings (0.8 minimum coverage of 
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alignment, e-value cutoff 1e-10, 50% minimum percentage of identity) and 

excluding “predicted” resistance genes (full counts tables of ARGs and ARG 

classes can be found in Table S3). Antibiotic resistance genes at the DNA level 

from the metagenomic data were identified by running cleaned, merged PE reads 

through the DeepARG pipeline. On average 45,768 (± 10,213) ARG hits were 

obtained from an average 26,281,760 (± 5,410,439) cleaned paired-end (merged 

forward and reverse read files). Using the same method to identify ARGs at the 

RNA level from metatranscriptomic sequencing, we found an average of 14,576 (± 

6,147) ARG hits from an average 49,338,997 (± 10,392,548) cleaned paired-end 

(merged forward and reverse read files) reads. 

Statistical Analyses and Figure Generation 

Differential abundance of ARGs and ARG classes between treatments and 

controls was determined using DESeq2 (version 1.20.0)[50] in R (version 3.5.2) 

using default parameters. Statistical differences between alpha diversities were 

calculated in GraphPad Prism (version 8.0) (GraphPad Software, La Jolla 

California USA). All figures were generated using Prism 8.0, except supplementary 

Figure S4 which was generated using the Clustal Omega tool[51] on the EMBL-

EBI web server[52]. 
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Results & Discussion 

Microbial Diversity 

Antibiotic treatment was administered for either 12 hours for amoxicillin or 

24 hours for ciprofloxacin and doxycycline with untreated time-matched controls. 

The microbiome of the amoxicillin treated mice displayed a marked reduction in 

bacterial alpha diversity (p < 0.05, Mann-Whitney U test), however, no change in 

diversity was observed in mice treated with ciprofloxacin or doxycycline (Figure 

1A). Shifts in beta diversity were observed between each treatment and their 

respective controls indicating that these antibiotics elicit unique changes to the 

murine gut microbiome at a taxonomic level (p < 0.05, PERMANOVA) (Figure 1B). 

Perhaps the most drastic taxonomic change was the expansion of Bacteroides 

thetaiotaomicron in the microbiota of amoxicillin treated mice (Figure 1C, Figure 

S2). Overall, we found that out of the three antibiotics tested, amoxicillin has the 

most profound impact on the murine cecal microbiome community in terms of 

diversity and species relative abundance, while ciprofloxacin and doxycycline 

exhibit less drastic changes. A more detailed description of the taxonomic shifts is 

detailed in Cabral et al. 2019[38], while in this study we focus on the ARGs.  

ARG abundance 

While metagenomic analysis is commonly used to characterize the 

resistome, it can only report the genes found in the community but does not provide 

information about the actual expression of those genes. In the metagenomic data, 

we determined the average number of ARGs relative to total reads to calculate the 

relative abundance of ARGs in the community. There were 1.74E-03 (± 1.62E-04) 
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ARGs per read detected in the metagenomic data (Table S1), with an average of 

336 (± 14) unique ARGs found in each metagenomic sample (Figure S3A). In 

contrast to the metagenomic data, metatranscriptomics cannot describe the 

structure of the community, but it can identify the portion of the total genes actively 

transcribed by the microbiome. In the metatranscriptomic data, there were 3.1E-

04 (± 1.67E-04) ARGs per read (Table S1), with an average of 161 (± 40) unique 

ARGs found in each metatranscriptomic sample (Figure S3B). This data shows 

that there are more unique ARGs found in the DNA than in the RNA despite the 

higher sequencing depth used for metatranscriptomics. This discrepancy could 

indicate that many of the ARGs encoded in the microbiome are not actively 

transcribed with or without drug pressure. 

Resistome Diversity 

Two of the antibiotics examined, amoxicillin and ciprofloxacin, had unique 

impacts on the taxonomic composition of the microbiome resulting in 

corresponding shifts in the resistome diversity at the DNA level. Metagenomic data 

showed that compared to time-matched controls there was a significant increase 

in the Shannon diversity of the resistomes with amoxicillin (p < 0.05, Mann-Whitney 

U test), and a decrease in the Shannon diversity with ciprofloxacin (p < 0.05, Mann-

Whitney U test), while doxycycline treatment had no impact (Figure 2A). Analysis 

of the Bray-Curtis beta diversity revealed significant differences in amoxicillin and 

ciprofloxacin groups compared to their time-matched controls (p < 0.05, 

PERMANOVA), but not in the doxycycline treated group (p = 0.2, PERMANOVA) 

(Figure 2C). However, these shifts in ARG diversity profiles did not necessarily 
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reflect a drug specific selection but rather resulted from the overall shift in 

microbiome composition. We found that while treatment induced changes in alpha 

diversity of the resistome at the DNA level, it did not impact resistome alpha 

diversity at the RNA level (Figure 2B). The lower and more stable alpha diversity 

of the RNA reads compared to the DNA reads likely stems from the fact that many 

of the genes detected in the metagenomics are not actively transcribed under 

vehicle or antibiotic treatment. We also found that amoxicillin and ciprofloxacin did 

not significantly impact Bray-Curtis ARG diversity at the RNA level (p = 0.128, p = 

0.397, PERMANOVA). Additionally, in the metatranscriptomic data, doxycycline 

did induce a significant Bray-Curtis shift from the 24-hour controls (p < 0.05, 

PERMANOVA) (Figure 2D). This shift in beta-diversity may be driven by the 

induction of drug targeted ARG transcripts observed in the doxycycline treated 

samples. 

ARG Class Level Changes in Response to Antibiotics 

Antibiotic-induced shifts in ARG classes were determined using DESeq2 

and considered significant with a log2FC > 1.5 or < -1.5 and an adjusted p-value < 

0.05 (Figure 3A). At the DNA level, we did not find any changes in ARG classes 

that directly corresponded to antibiotic treatment. For example, the beta-lactam 

resistance class was not increased with amoxicillin. Instead, we report that the only 

significant changes in ARG classes were an increase in kasugamycin class ARGs 

in response to amoxicillin treatment, decreases in the fosmidomycin and 

trimethoprim classes in response to ciprofloxacin treatment, and a decrease in the 

fosmidomycin class in response to doxycycline treatment (Figure 3A). As a whole, 
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none of the treatments led to an induction of ARG classes targeted towards the 

drug administered.  

 In contrast to the lack of drug targeted changes at the DNA level, 

metatranscriptomic sequencing showed an induction of ARG classes targeted to 

two of the treatments at the RNA level (Figure 3B). Overall, there were a number 

of significant changes in ARG classes against beta-lactams, fosmidomycin, 

polymyxin, and trimethoprim in response to amoxicillin treatment, triclosan in 

response to ciprofloxacin treatment, and fosfomycin, rifampin, and tetracycline in 

response to doxycycline treatment. Most interestingly, amoxicillin significantly 

increased the abundance of the beta-lactam ARG class with log2FC 2.67 (padj = 

2.50E-04), and doxycycline increased the abundance of the tetracycline ARG class 

with log2FC 1.81 (padj 3.10E-21) in the RNA (Figure 3B). Thus, in contrast to the 

metagenomic data, metatranscriptomics shows a significant increase in ARG 

classes that are targeted to the antibiotic treatment and have the potential to 

provide a fitness advantage to members of the gut microbiota. 

ARG Level Changes in Response to Antibiotics 

Results from the differential abundance analysis show that the antibiotics 

tested have variable impacts on the abundance of AR genes and transcripts. At 

the metagenomic level, we found a set of differentially abundant genes that 

appeared general and unrelated to the antibiotic utilized. In contrast, the 

transcriptional response was much narrower and in the case of amoxicillin and 

doxycycline, it appears that antibiotic therapy promoted genes directly targeted to 

the drug utilized. This dichotomy between DNA and RNA level responses could 
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not have been detected without using a dual sequencing approach. Overall, there 

were fewer differentially abundant ARG transcripts (21 transcripts) found in the 

metatranscriptomic analysis compared to the number of differentially abundant 

ARGs (116 genes) in the metagenomic data (Figure 4A-F). This is a reflection of 

the fewer ARG reads found in the metatranscriptomic data, as well as the more 

specific response of the microbiome at a transcriptional level compared to the 

broad metagenomic changes. This is best exemplified by changes in ARGs 

targeted to antibiotic treatments, specifically amoxicillin and doxycycline. 

While the observations made at the ARG class level were fairly broad, the 

gene level data provided more insights into the direct impact of antibiotic 

administration on specific ARGs. The differential expression tool DESeq2 was 

used to analyze the antibiotic-induced changes in AR gene and transcript 

abundance (Figure 4A). We found 56 significantly elevated or reduced ARGs after 

amoxicillin treatment. Of these 56, two beta-lactamase genes of interest, cepA and 

bl2e_cepA, had significant increases in gene abundances of log2FC 4.96 (padj = 

4.10E-20) and log2FC 4.73 (padj = 6.72E-16), respectively. In addition to drug 

targeted genes, we also found increases in a much larger set of untargeted genes 

(42 genes). It is possible that these changes are the result of taxonomic shifts in 

bacteria that encode these genes, rather than a direct selection promoted by the 

induced resistance genes. The beta-lactamase genes increased in the 

metagenomic data are also increased at the RNA level, highlighted by significantly 

higher transcript abundances of log2FC 5.12 (padj = 2.40E-05), 4.93, (padj = 

2.01E-3), for cepA and bl2e_cepA, respectively (Figure 4B). This may suggest that 
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in response to amoxicillin the community increased transcription of beta-lactamase 

genes leading to increased bacterial fitness. Conversely, it is also possible that this 

change merely reflects a bloom in the bacterium encoding these transcripts rather 

than a direct transcriptional response. 

 To identify the bacterial origin of the beta-lactamase genes found in our 

dataset, bacterial genomes were assembled from metagenomic data. Within the 

B. thetaiotaomicron metagenomically assembled genome (MAG), we identified a 

region corresponding to a class A beta-lactamase gene with 100% protein 

sequence homology to a subclass A2 beta-lactamase. Due to its high degree of 

sequence similarity, this gene likely corresponds to the reads assigned to the cepA 

and bl2e_cepA genes (Figure S4). The relative bloom of B. thetaiotaomicron after 

amoxicillin treatment may account for the increase in both the cepA and bl2e_cepA 

gene abundance and transcript level abundance. It is possible that the survival of 

this taxa during amoxicillin treatment may be promoted by these genes, although 

we cannot make a definitive conclusion without more evidence. Various laboratory 

strains and patient isolates of Bacteroidales have been shown to exhibit high levels 

of resistance to beta-lactams including amoxicillin[53-55]. Previous research into 

B. thetaiotaomicron found that this bacterium produces outer membrane vesicles 

(OMVs) containing cephalosporinase enzymes that protect neighboring bacteria 

from beta-lactam antibiotics [55]. Because B. thetaiotaomicron is a common 

human commensal[56, 57], this work has interesting implications for the complex 

microbial environment of the gut microbiome where B. thetaiotaomicron could have 
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a role in modulating antibiotic activity across many taxa through OMV-secreted 

beta-lactamase enzymes. 

Metagenomic data showed that ciprofloxacin treatment induced significant 

changes in ARG abundance, most notably an increase in the relative abundance 

of several chloramphenicol, aminoglycoside, and MLS class genes, log2FC > 1.5 

(padj < 0.05), and a decrease in the abundance of genes related to multidrug and 

fosmidomycin resistance log2FC < -1.5 (padj < 0.05) (Figure 4C). No significant 

increases in fluoroquinolone resistance genes were found in this dataset, however, 

it should be noted that point mutations conferring resistances were not included in 

the ARG database used. Thus, fluoroquinolone resistance mutations in gyrA, gyrB, 

or parC could not be identified from this analysis and might be present in the 

resistome. No ARG transcripts corresponding to fluoroquinolone resistance were 

significantly elevated in the ciprofloxacin treated samples. The transcripts of tetC, 

muxC, and mdtC, all genes encoding efflux system components, were significantly 

increased by ciprofloxacin treatment (log2FC > 1.5, padj < 0.05) (Figure 4D). 

Although none of these genes have been shown to directly efflux ciprofloxacin, the 

fact that fluoroquinolone treatment exclusively increased transcription of efflux type 

ARGs remains interesting. 

At the DNA level, no genes were increased in abundance during 

doxycycline treatment; however, several were decreased in abundance. Although 

genes known to confer doxycycline resistance were detected in the metagenomic 

data (Table S3), they were not significantly changed due to doxycycline treatment 

(Figure 4E). While doxycycline did not increase the abundance of any tetracycline 
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class ARGs in the metagenomic data set, we did detect changes in the 

metatranscriptomic data. At the RNA level, doxycycline appears to have a targeted 

effect on the transcript abundance of tetracycline resistance genes with significant 

increases in the abundance of tet32, tet44, and tetW with log2FCs of 5.06, 4.63, 

and 4.07, respectively (padj = 1.6E-2, 1.2E-2, 2.2E-2, respectively) (Figure 4E). 

This distinct difference in gene versus transcript abundance of these tetracycline 

class ARGs suggests that while short-term treatment with doxycycline may not 

select for bacteria encoding these resistance genes, it may induce their 

expression. All three tetracycline resistance genes with increased transcript 

abundance, tet32, tet44, and tetW have been shown to offer protection to 

tetracycline antibiotics through ribosomal protection mechanisms[58-60]. The 

increased transcript abundance of several tet genes in response to doxycycline, 

combined with unchanged levels of these same tet genes in the metagenomic 

dataset, suggests that their elevated transcriptional activity may be providing 

protection and enabling the population of tet-carrying bacteria to remain stable 

during treatment. The doxycycline-induced expression of several tetracycline 

resistance genes highlights the need for increased transcriptional profiling of 

ARGs. Relying solely on metagenomics without utilizing metatranscriptomic 

sequencing, we would have missed this ARG activity that may contribute to 

bacterial survival during antibiotic pressure. 
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Conclusion 

In this study, we show that short-term antibiotic pressure leads to the 

expression of specific ARGs within the microbiome, but alters the metagenomic 

landscape in a less targeted way. We use both shotgun metagenomics and 

metatranscriptomics to profile how three antibiotics, amoxicillin (beta-lactam), 

doxycycline (tetracycline), and ciprofloxacin (fluoroquinolone), impact the diversity, 

composition, and transcriptional response of the murine gut resistome. We found 

that combining these two sequencing methods provides unique perspectives on 

ARGs in the microbiome that would have been missed by using metagenomics 

exclusively. For example, we found that at the RNA level a majority of the induced 

ARGs were targeted against the administered antibiotic, while at the DNA level we 

found more changes overall, but we did not find a drug-specific pattern. Our results 

show that both bactericidal and bacteriostatic antibiotic treatment alters the 

resistome at both the RNA and DNA level, but that these changes may be more 

specific to the drug administered at the transcript abundance level. 

This work highlights the impacts of three antibiotics on the murine cecal 

resistome as well as the importance of both metagenomic and metatranscriptomic 

profiling of ARGs. However, due to the current methodology, there are several 

limitations to this work that must be considered. Experiments were done in mice in 

a closed mouse facility with reduced exposure to environmental bacteria and the 

antibiotic exposure period was fairly short. Both of these factors will reduce the 

opportunity for new ARGs to enter the microbiome and for selection to act on 

existing ARGs. In addition, due to limitations in strain level identification from 
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current metagenomic methodologies, we are unable to predict whether or not there 

was selection of specific ARG containing strains following antibiotic treatment. 

Additionally, the computational pipeline utilized to detect ARGs is unable to identify 

point mutations and their contributions to the resistome. These aspects limit our 

ability to detect selective events and the evolution of resistance. Finally, these 

experiments were conducted with a limited sample size (n = 4), and no samples 

were collected at time 0. These two factors may limit our ability to detect smaller 

shifts in ARG levels with sufficient significance and may hinder the detection of 

baseline changes to the microbiota of the control mice over the course of the 

experiment. 

 Despite these limitations, we believe that the dual sequencing approach has 

real benefits over purely DNA-based approaches. The widespread use of common 

antibiotics such as those tested in this study contributes to the dissemination of 

resistance genes in the human population and our microbiomes. However, as 

demonstrated here, the presence of an ARG in the metagenome may not 

necessarily indicate that it will be transcribed at baseline or in response to 

antibiotics. Thus, as we continue to develop strategies to monitor resistance in 

patient populations it will be important to track both gene presence and expression. 
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Figures 
 

 
 
Figure 1: Antibiotic treatment has variable impacts on the diversity and 
taxonomic structure of the microbiome. (A) Shannon diversity index displayed 
as mean + SEM (p < 0.05 Mann-Whitney U test, n = 4). (B) PCoA based on Bray-
Curtis beta diversity. (C) Relative abundance of bacterial species displayed as 
mean + SEM (n = 4, top 250 most abundant species colored, full relative 
abundance table available in Table S2). 
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Figure 2: Antibiotics have variable impacts on the diversity and structure of 
the resistome. (A-B) Shannon diversity index based on resistance gene counts 
displayed as mean + SEM for both metagenomic and metatranscriptomic data (p 
< 0.05 Mann-Whitney U test). (C-D) PCoA based on Bray-Curtis of resistance gene 
counts for both metagenomic and metatranscriptomic data. 
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Figure 3: Differential abundance of antibiotic resistance gene classes. 
Changes in ARG class abundances after antibiotic treatment observed in (A) 
metagenomic and (B) metatranscriptomic data. The color scale represents log2 
fold change (log2FC > 1.5/ < -1.5 and padj < 0.05) (Full ARG class counts available 
in Table S3). 
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Figure 4: Differential abundance of antibiotic resistance genes. Changes in 
ARG abundances after antibiotic treatment observed in metagenomic (A, C, E) 
and metatranscriptomic data (B, D, F). Bars represent change in gene/transcript 
abundance after exposure to antibiotics displayed as log2 fold change + standard 
error (log2FC > 1.5/ < -1.5 and padj < 0.05) (Full ARG class counts available in 
Table S3). 
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Supplementary Data 
 
Table S1 – Number of cleaned merged reads and ARG hits detected per sample 
in the metagenomic and metatranscriptomic data. The numbers in parenthesis 
next to the “control” in the treatment column represent the timepoint at which the 
control sample was collected (in hours). The numbers after the treatment name (1 
- 4) represent the numbering of the four samples in each treatment group. 
Treatment Clean 

Reads 
Metageno

mic 

ARG Hits 
Metageno

mic 

Clean Reads 
Metatranscripto

mic 

ARG Hits 
Metatranscripto

mic 

Control 
(12) 1 

22,551,814 38,184 54,135,535 5,368 

Control 
(12) 2 

14,987,819 25,446 55,616,863 7,874 

Control 
(12) 3 

27,926,253 47,348 67,241,907 8,087 

Control 
(12) 4 

23,628,173 41,221 34,474,417 27,594 

Amoxicillin 
1 

27,113,593 36,827 42,340,472 14,427 

Amoxicillin 
2 

28,594,334 47,139 41,967,886 14,324 

Amoxicillin 
3 

36,967,463 57,183 48,806,177 11,350 

Amoxicillin 
4 

21,918,209 34,402 59,681,015 16,113 

Control 
(24) 1 

24,380,522 42,049 76,421,879 18,847 

Control 
(24) 2 

25,042,390 40,697 41,795,407 14,231 

Control 
(24) 3 

28,390,347 46,533 40,949,940 16,494 

Control 
(24) 4 

26,005,446 44,284 43,928,662 16,298 

Ciprofloxa
cin 1 

21,915,351 43,161 42,954,907 6,257 

Ciprofloxa
cin 2 

27,536,934 54,808 46,399,664 15,004 

Ciprofloxa
cin 3  

30,780,514 61,164 59,725,060 13,521 

Ciprofloxa
cin 4 

23,470,889 44,813 48,628,764 29,332 

Doxycyclin
e 1 

26,777,060 48,068 40,546,403 108,037 
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Doxycyclin
e 2 

20,214,974 37,301 44,226,004 14,729 

Doxycyclin
e 3 

39,177,796 71,030 44,420,451 11,237 

Doxycyclin
e 4 

28,255,309 53,699 43,725,928 15,858 
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Figure S1 - PCoA based on Bray-Curtis of resistance gene counts for 
metatranscriptomic data with the doxycycline samples highlighted. 
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Figure S2 - Relative abundance of bacterial species displayed for each 
metagenomic sample (top 250 most abundant species colored, full relative 
abundance table available in Table S2). 
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Figure S3 - Number of unique ARG types observed in both (A) metagenomic and 
(B) metatranscriptomic datasets (p < 0.05 Mann-Whitney U test). 
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Figure S4 - Multiple sequence alignment of cftxA, cepA, and bl2e_cepA protein 
sequences from the DeepARG V1 database, as well as the subclass A2 beta-
lactamase found in the B. thetaiotaomicron MAG in this study (labeled Btheta). The 
alignment was generated using Clustal Omega (1.2.4). 
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DIRECTIONS 
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Summary 

 The development and spread of antimicrobial resistance over the past 80 

years has weakened our current antibiotic arsenal and hindered our ability to treat 

bacterial pathogens. Through SAM and SIM mechanisms bacteria are able to 

rapidly develop resistance mutations. Additionally, the natural environment 

represents a vast reservoir of antimicrobial resistant (AMR) bacteria from which 

resistance and pathogens can be transmitted to humans. In order to combat the 

current antibiotic resistance crisis, it is necessary to gain a greater understanding 

of how resistance develops, where it occurs naturally in the environment, and 

improve strategies to track antibiotic resistance selection and development. My 

thesis provides novel insights into the dynamics of antibiotic resistance both at the 

molecular level and a broader environmental perspective. A discussion of these 

findings and future directions for these projects are addressed in the following 

section. 

In Chapter 2, I present work that illustrates the process by which novel 

ribosomal target modification mutations arise through genotoxic stress. Notably, 

we find that genotoxic agents cause stressor-specific signature mutations in which 

some mutational profiles clearly reflect the DNA-damaging mechanism of the 

stress. When resistant strains containing unique target mutations are grown 

together, as would be the case in a natural microbial community, we demonstrate 

that the final mutational spectrum is determined by the level of antibiotic selection. 

Together, these findings suggest that mutations arise from a combination of unique 
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stress-associated DNA damage, and subsequent fitness across a gradient of 

selection. 

Resistance is not unique to laboratory or clinical settings, though. To 

investigate the dynamics of antibiotic resistance in local wildlife, I studied the GIT 

microbiota and associated resistomes of seven marine fish species. The work in 

Chapter 3 represents one of the most extensive sequencing-based studies of 

marine fish microbiomes to date. Here, I report the first association between trophic 

level and ARG burden. Furthermore, through metagenomic genome assembly, we 

are able to find evidence that this increase in resistance genes is driven by an 

abundance of Proteobacteria. Finally, we are able to utilize a metagenomically 

based DNA barcoding approach to discern host dietary habits from GIT contents 

and link dietary carbohydrate availability to bacterial colonization within the fish 

gut. This work presents a novel look into the gut microbiota of wild fish and has 

implications for their role as a reservoir of antibiotic resistance. 

Recently, shotgun sequencing approaches have been used to characterize 

the resistomes of complex microbial communities. In Chapter 4 we expand on the 

metagenomic sequencing approach (DNA based) by implementing a 

metatranscriptomic analysis (RNA based) that focuses on resistance gene 

transcripts. In order to test this dual sequencing approach, we utilized data 

collected from the gut microbiota of mice treated with three different antibiotics. 

Our analyses suggest that using a dual sequencing approach uncovers antibiotic 

induced, targeted shifts in the expression of β-lactam and tetracycline resistance 

genes within the murine gut microbiota. Additionally, we find that the transcriptional 



 192 

activity of β-lactam resistance genes may be directly involved in the expansion of 

B. thetaiotaomicron within the gut microbiome during amoxicillin treatment. 

Together these findings demonstrate the strength of a dual sequencing approach 

in studying antimicrobial resistance. 

 

DNA Repair and Mutagenic Pathways as Novel Antimicrobial Targets 

 In order to combat the development of stress-induced resistance mutations, 

previous work has examined so called “anti-evolution” drug targets. Recent work 

has described bacterial pathways that increase rates of adaptive mutagenesis 

leading to the development of resistance mutations[1, 2]. In Chapter 2, we utilize 

a gene-knockout library of B. subtilis and find that mitomycin C associated 

mutagenesis is attenuated by the absence of certain genes involved in DNA repair 

and mutagenesis such as dinB and mfd (Chapter 2, Figure 2A). These and six 

other genes identified, including Y-family polymerases involved in translesion 

synthesis repair, represent possible targets for inhibiting the development of 

resistance in bacteria. Additionally, blocking bacterial DNA-repair mechanisms 

may be a way to increase the efficacy of current antibiotics. This approach is used 

in cancer chemotherapy. Orthologous DNA-repair mechanisms in tumor cells are 

known to reduce the efficacy of alkylating agents during chemotherapy of gliomas 

[3]. The development of poly(ADP-ribose)polymerase (PARP-1) inhibitors has 

been shown to increase the effectiveness of alkylating chemotherapeutics by 

preventing repair of alkylation damage in tumor cells[3]. A similar approach could 

be taken to potentiate antibiotic efficacy in bacteria. Our results identify potential 
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targets for inhibiting translesion synthesis repair of antibiotic-induced damage, 

which may have the potential to increase antibiotic efficacy. A future direction for 

this chapter of my thesis would be to test the mutagenicity and lethality of a broad 

range of antibiotics against the select DNA-repair gene knockouts used in this 

study. This would help elucidate which pathways of repair and mutagenesis are 

important to bacterial survival and resistance development in response to antibiotic 

stress. 

 

Understanding the Role of Mutagenesis in Antibiotic Resistance Development in 

Vivo 

 While the work in Chapter 2 examines the role of mutagenesis and selection 

in the development of resistance in vitro, it would be interesting and clinically 

relevant to study this process in vivo. The in vitro study presented here utilized 

standardized culturing methods and defined antibiotic concentrations. While this is 

useful at minimizing variables to answer fundamental microbiology questions, it is 

not able to recapitulate the process of mutagenesis and selection in the host. 

Within a host environment –either in the gut or site of infection– there are 

innumerable factors that cannot be re-created in the lab. Host immune response 

and antibiotic, oxygen, and nutrient concentration gradients are all key factors in 

shaping bacterial metabolic state and mutagenic response to stressors. 

Understanding how mutagenesis occurs in the host is vital to preventing the 

development of resistance in clinical settings such as the lungs of cystic fibrosis 

patients in which drug resistance mutations develop in the pathogen 
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Pseudomonas aeruginosa leading to treatment failure [4]. Future studies in the lab 

could undertake this question by using the mouse GIT as a model in which to test 

the development of resistance in enteric pathogens. Administering oral treatments 

of genotoxic agents and subsequently plating fecal samples on selective antibiotic 

media to isolate resistant bacteria would allow one to track the development of 

resistance in an in vivo setting. In order to gain temporal data and make this 

approach higher throughput, the fecal pellets could be sequenced daily to track 

changes in the mutational profile of the gut bacteria over time. This could provide 

further insights into the selection process within the GIT environment. 

 

Implications for the Trophic Accumulation of ARGs 

Wildlife plays a significant role as a reservoir of resistance with the potential 

to transfer pathogens and antibiotic resistance to humans. In Chapter 3 we 

examined the dynamics of antibiotic resistance within the microbiota of wild marine 

vertebrates. Our finding that ARGs are more abundant in higher trophic level 

organisms with piscivorous diets has implications for potential trophic 

accumulation of resistance in the GIT of predatory animals. We found that this high 

abundance of ARGs was associated with an increased relative abundance of 

Proteobacteria. This finding could suggest that organisms that harbor high 

Proteobacterial abundance in their GIT may be more significant reservoirs of 

ARGs. Proteobacteria are known to be prominently involved in the horizontal gene 

transfer of antibiotic resistance determinants [5]. Proteobacteria of the genus Vibrio 

were commonly found in the marine samples studied in Chapter 3 of this thesis, 
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and this genus is known for its ability to undergo HGT [6], which increases its 

potential to acquire resistance genes. Additionally, the gut environment is densely 

populated by bacteria, making it an optimal environment for cell-cell contact and 

resulting HGT [7]. Combined, this information implicates Proteobacteria rich GIT 

environments as reservoirs of ARG, and also as sites of enriched resistance gene 

transfer. To understand the role of HGT in the spread of ARGs within the gut 

microbiome, future studies could investigate the association of resistance genes 

with mobile genetic elements such as integrases, phages, or plasmids within 

assembled bacterial genomes. 

Our sampling was restricted to a limited number of species from a narrow 

geographic range in the North Atlantic. In order to understand if the association 

between trophic levels and ARGs is conserved across the animal kingdom we 

must look at the microbiota of a wide range of wildlife that occupy different 

ecological niches. Recently, Levin et al. published a paper regarding the gut 

microbiota of 184 different species from across the globe [8]. This represents a 

valuable trove of microbiome sequence data that could be utilized to further test 

the relationship between levels of ARGs, Proteobacteria abundance, and host 

trophic level. 

 

Utilizing Narragansett Bay Wildlife to Monitor Anthropogenic/Environmental 

Impacts on Antibiotic Resistance 

  The University of Rhode Island Graduate School of Oceanography fish 

trawl is a valuable scientific resource that has decades of sampling data from 
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Narragansett Bay. From this weekly trawl survey, we were able to obtain the fish 

samples used in Chapter 3 of this thesis. Due to the high frequency of sampling 

and collaboration formed with members of the URI GSO, samples from the bay 

could be used for a long-term monitoring effort. While we collected samples over 

a short time period, it would be interesting to answer questions about the long-term 

stability of fish GIT microbiota, as well as how environmental changes –such as 

climate changes or prey availability– alter the bacterial flora of the bay. 

Additionally, monitoring this benthic community could answer questions about how 

host diet alters the microbiome of wild marine fish as there are temporal 

fluctuations in fish populations and prey availability within the bay [9]. By continuing 

annual sampling and microbiome sequencing we can monitor levels of ARGs 

within Narragansett Bay fish populations and understand how environmental or 

anthropogenic disturbances impact the bay microbiome and resistome. 

 

Highly Migratory Species as Vectors of ARG and Pathogen Dissemination 

 We show in Chapter 3 that the GITs of wild marine fish act as reservoirs of 

antibiotic resistance. Some of these species, especially the large pelagic sharks 

(mako shark and thresher shark), exhibit highly migratory behavior. In fact, mako 

sharks are known to migrate thousands of kilometers a year from the North Atlantic 

to the Southern Caribbean Sea [10]. Throughout this migration, these sharks will 

be dispersing bacteria via fecal deposition and thus spreading bacteria and ARGs 

across great distances. Interestingly, previous work has shown that gulls laden 

with AMR bacteria were able to travel thousands of kilometers in a matter of days 
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and suggested this as a route of long-distance dispersal [11]. Further research 

found that gulls feeding at a landfill likely acquired resistant E. coli strains which 

they then dispersed at a separate breeding location [12]. These studies provide a 

precedent for wildlife-mediated dispersal of AMR bacteria, and due to the highly 

migratory nature of the mako shark and other marine species it would be 

interesting to investigate their role in the dispersal of AMR bacteria. 

 

Role of Tetracycline Genes during Doxycycline Therapy Revealed by 

Metatranscriptomics 

The findings in Chapter 4 suggest that previous intervention studies of the 

microbiome that rely solely on DNA metagenomic sequencing may not be getting 

a complete picture. This is especially true for potential antibiotic resistance activity. 

We found that mice treated with doxycycline (a tetracycline class antibiotic), did 

not display a significant increase in genes conferring resistance to tetracycline 

class antibiotics (Chapter 4, Figure 3A). However, gene transcripts associated with 

tetracycline resistance were significantly increased in doxycycline treated mice 

(Chapter 4, Figure 3B). Moreover, these tetracycline resistance genes, tet32, 

tet44, and tetW, all exhibit a target protection mechanism of resistance[13, 14]. 

Curiously, no efflux pump encoding tet resistance genes increased in transcript 

abundance as a result of doxycycline treatment. This suggests that tet efflux 

pumps may have a narrow range of efflux activity and are not effective against 

certain types of tetracycline class antibiotics such as doxycycline. Thus, target 

protection of the ribosome may be a more broadly acting resistance mechanism in 
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this class of antibiotics. Comparative in vitro studies of mechanistically different 

tetracycline resistance genes are needed in order to elucidate the breadth of 

resistance provided by either target protection or efflux mediated resistance 

mechanisms. More importantly, this is a strong example of the power of 

metatranscriptomic sequencing in revealing ARG activity that was unseen when 

looking at DNA sequencing alone. 

 

Limitations of Databases when Analyzing Microbiome Sequencing Data 

One important caveat when considering the data presented in Chapters 3 

and 4 of this thesis is the use of databases for defining both microbial taxonomy 

and antibiotic resistance. When studying microbial communities one of the most 

fundamental questions is “what’s there?”. To answer this question, we use 

unbiased shotgun sequencing approaches to sequence microbial DNA. In 

Chapters 3 and 4 of this thesis we used current bioinformatic pipelines[15, 16] and 

the most comprehensive bacterial sequence databases available[17] to identify 

what bacteria species inhabited murine GIT and marine environmental samples. 

Despite decades of effort culturing, classifying, and sequencing bacterial species, 

our existing databases remain limited to those species that have already been 

defined. A vast majority of bacterial species and genomes remain uncharacterized 

and make up what is referred to as “microbial dark matter”[18-21]. Furthermore, 

the limitations of taxonomic databases pose greater challenges to some datasets 

compared to others. Microbes from well-studied sources such as the GIT of lab 

mice are highly characterized and well represented in current taxonomic 
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databases. In contrast, microbes from less clinically relevant and under-studied 

samples such as the natural environment and the GIT of wild organisms are not 

as numerous in these databases. This is particularly evident in the datasets 

analyzed here. When looking at the percent of sequence reads that received a 

taxonomic annotation, we found that roughly 90 – 95% of sequences derived from 

the murine GIT in Chapter 4 were classified. In contrast, many of the fish GIT 

samples from Chapter 3 only had 10 – 20% read classification, meaning that a 

majority of these sequences could not be identified taxonomically. Further work is 

needed to illuminate the proverbial “microbial dark matter” that is prevalent within 

environmental microbial communities. 

In addition to the challenges facing taxonomic annotation, antibiotic 

resistance gene databases also have significant limitations. The Comprehensive 

Antibiotic Resistance Database (CARD) is an extremely valuable resource 

containing thousands of experimentally validated resistance gene sequences[22, 

23]. Using this resource, we were able to detect known resistance determinants 

from our sequencing data in Chapters 3 and 4 of this thesis. However, due to the 

fact that resistance is of particular interest in the clinical setting, and that antibiotic 

susceptibility testing is most common in clinical microbiology, the majority of 

resistance genes are likely described from human or livestock pathogens. 

Additionally, many of these pathogens such as those in the genus Neisseria, 

Shigella, Escherichia, Salmonella, Yersinia, Vibrio, and Acinetobacter are 

members of the phylum Proteobacteria [24]. Thus, it is likely that most of the ARGs 

that have been classified originate in Proteobacteria, making the current ARG 
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databases biased towards Proteobacterial resistance genotypes. This idea is 

reinforced by the findings of a recent study on mobile resistant genes. Researchers 

found that all the resistance genes in their study originated in Proteobacteria, and 

almost all of those Proteobacteria were associated with human or domestic animal 

infections[5]. Thus, it is likely that there are many more forms of resistance that 

might be found in non-pathogenic bacteria. Expanding the search for novel 

resistance genes across a wider taxonomic range of bacteria through techniques 

such as functional metagenomics will help us gain a more complete view of the 

resistome [25, 26]. 

 

Conclusion 

 The work presented in this thesis contributes novel findings to the field of 

antibiotic resistance. Through the use of traditional microbiology techniques and 

modern high-throughput sequencing technology, we were able to gain insights into 

the development, distribution, and activity of antibiotic resistance genes. The work 

here will provide the foundation for future projects examining the dynamics of 

resistance in the laboratory and the environment. 
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