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PREFACE

This dissertation consists of three self-contained chapters with a focus on the tools which

use information in estimation and the effect of dynamic information revelation on ef-

fort provision. Chapters 1 and 2 both consider the setting of Moment Condition models,

which have gained much popularity in Economics since the introduction of the Generalized

Method of Moments (GMM) estimator of Hansen (1982). The Moment Condition itself is

a population assumption which, when correctly defined, ties down a relationship between

the true value of an unknown parameter and the moments of the Data Generating Process.

An alternative estimation method that can lead to substantial improvements over GMM

is Minimum Divergence (MD) estimation, which consists of minimally reweighing the data

set using a contrast or discrepancy function. This minimal reweighing procedure results

in “implied” probabilities, which are the weights that are closest to the uniform weights

while ensuring that a sample version of the Moment Condition holds. Chapter 1, ”Proba-

bilities implied by Misspecified Moment Conditions”, asks the hereto unasked question of

whether there is such a thing as a population counterpart to these implied probabilities.

In this joint work with Eric Renault, we limit ourselves to the popular subclass of MD

called the Empirical Cressie-Read Estimators. This large class contains the most popular

estimators in Empirical Likelihood, Exponential Tilting, Continuous Updating GMM, and

Minimum Hellinger Distance, where a long standing question has been which estimator

is the most desirable. We show that it takes some restrictive conditions on the Moment

Conditions and on the contrast function to ensure the existence of the population implied

probabilities. In particular, when the moment functions are unbounded the population

implied probabilities do not exist for many contrast functions including the most famous

one, namely that of Empirical Likelihood. The first consequence of this non-existence,

which we address in this chapter, happens when the model is misspecified so that there

is no parameter value which satisfies the Moment Constraint assumption. In this setting
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we show that there is no way to define and conduct inference about a pseudo-true value,

something which the literature on robustness to misspecification has relied on previously.

While Chapter 1 shows that Empirical Likelihood is not attractive from a misspecifica-

tion standpoint, it still retains the best higher order efficiency properties in the class of MD

estimators. In fact, as a direct corollary of the results in Chapter 1 there are no estimators

in the popular Empirical Cressie-Read class which are both higher order efficient and are

equipped to handle misspecification. Chapter 2, ”Bounded Tilting Estimation”, moves

beyond the Empirical Cressie-Read and proposes a new class of estimators which simulta-

neously has both of the desirable properties. In this joint work with Susanne Schennach,

we propose the Higher Order Efficient Bounded Tilting Estimator which is also a subclass

of the MD estimators but defined using a discrepancy function that satisfies some intri-

cate properties. The first such property is that the resulting tilting function, a mapping

which uses the data points and parameter value to compute the implied probabilities,

must be bounded which immediately grants guaranteed existence of the population im-

plied probabilities. Secondly, by further limiting the discrepancy function to satisfy some

differentiability properties, it is also higher order efficient in the sense of the second order

mean squared error of its bias corrected version.

Chapter 3, ”Responses to Information Obfuscation in the Laboratory”, switches focus

away from Econometric theory towards exploring the use of information in effort moti-

vation in a laboratory setting. In this joint work with Kristin Petersmann, we explore

situations where the principal cannot motivate the agent with money. Instead, informa-

tion about the unknown difficulty of a task can be revealed over time by the principal to

incentivize the agent to provide effort. Ely and Szydlowski (2020) derived a theoretically

optimal information disclosure policy for this setup. It consists of the principal sending a

signal about the true task difficulty after the agent has exerted a certain amount of effort.

We conduct an experiment which first explores whether subjects act as predicted by the

theory in responding to the choice of information structure and further tests whether reci-
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procity plays a role in their responses. We find significant deviations from the theoretically

optimal responses, which cause an information disclosure policy that delays information

revelation just as the theoretically optimal one does but avoids the information obfusca-

tion to perform better overall. Further, unlike in the labor market setting of Charness

(2004), we do not observe the presence of reciprocity in the subjects’ decisions.
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CHAPTER 1

PROBABILITIES IMPLIED BY MISSPECIFIED MOMENT CONDITIONS

1.1 Introduction

We consider throughout a H-dimensional random vector Yθ indexed by some unknown

parameter θ ∈ Θ. Yθ is a known function K(Z, θ) of θ and of some primitive random

vector Z, and is hence endowed with a probability measure Pθ which depends on θ. The

parameter of interest θ may be finite or infinite dimensional, both of which have received

much attention in the literature (see for example Hansen (1982) for the finite dimensional

case, and Ai and Chen (2003), Ai and Chen (2007), Darolles et al. (2011), or Otsu (2007)

for the infinite dimensional case). We are interested in inference on θ based on the moment

conditions:

E [Yθ] = 0 (1.1)

The moment model is said to be well-specified (resp. misspecified) if there exists (resp.

there does not exist) a parameter value θ ∈ Θ for which the conditions (1.1) are fulfilled.

Irrespective of whether the model is misspecified or not, the recent literature on inference

by minimum contrast (also referred to as minimum divergence, see for example Corcoran

(1998)) starts by looking for a change of measure Mθ ≥ 0 for each θ, which is the solution

of:

min
M

E [φ(M)] (1.2)

s.t. E[M ] = 1

E [MYθ] = 0

1



where φ is a given contrast function and the expectations are taken with respect to

Pθ. φ being referred to as a contrast function simply means that it is a strictly convex

function defined on R∗+ such that:1

φ(1) = 0

In practice, the statistician will minimize a sample counterpart of (1.2) for each given

value of θ. From a sample {Zi}ni=1, the solution of the sample counterpart to (1.2) will

deliver implied probabilities {qγi,n(θ)}ni=1 that depend on the data only through the vector

(Yi,θ)1≤i≤n = [K(Zi, θ)]1≤i≤n . Even more importantly, it can be shown that in terms of

first order asymptotics, it is immaterial to replace each implied probability qγi,n(θ) by an

infeasible one qγ∗i,n(θ) that depends on the data only through Yi,θ for the same observation

number i. qγi,n(θ) depends on Yj,θ, j 6= i only through sample counterparts to popula-

tion moments of Yθ and by replacing these sample counterparts by the actual population

moments we get what we refer to as the infeasible implied probability qγ∗i,n(θ). Intuitively

then, since there is no first order asymptotic difference between sample moments and pop-

ulation moments under some i.i.d assumption, there is no first order asymptotic difference

between the two implied probabilities. Note however that this point of view overlooks the

possibility to pre-average the consecutive values Yi+h,θ, h = −$n, ...− 1, 0, 1, ...$n with a

convenient bandwidth $n to take care of serial dependence in moment functions.

The fact that qγ∗i,n(θ) depends on the data Zj, j = 1, ..., n, only through Yi,θ justifies

that we consider in the population minimization problem (1.2) only changes of measure

M = M (Yθ) that depend on the state of nature only through the value of the random

moment function Yθ. The rationale for this minimization is an obvious implication of

Jensen inequality (jointly with φ(1) = 0), telling us that:

On the one hand:

1This condition ensures that no change of measure at a point y, i.e. M(y) = 1, leads to no contrast
between the measures at y.

2



E[M ] = 1 =⇒ E [φ(M)] ≥ 0

and on the other hand when not only E[M ] = 1 but also E [MYθ] = 0, then:

E [φ(M)] = 0⇐⇒ E [Yθ] = 0

In particular, the value of objective function of the minimization problem (1.2) is zero

if and only if E [Yθ] = 0. In this case, the minimum is reached at only one (up to an almost

sure equality) change of measure Mθ which is identical to the constant 1 and hence does

not change the measure at all.

More generally, the change of measure Mθ defines the probability density function of a

probability measure Qθ with respect to the probability measure Pθ of the random vector

Yθ:

Mθ(y) =
dQθ

dPθ
(y)

When applied to the probability distribution Pθ the change of measure (aptly for its

name) changes Pθ into Qθ, since Mθ(y)dPθ(y) = dQθ(y). This in particular means that:

E [Mθg(Yθ)] =

∫
Mθ(y)g(y)dPθ(y) =

∫
g(y)dQθ(y)

For obvious reasons, it is natural to dub the probability measure Qθ = MθPθ the

“population implied probabilities”. For any transformation g(Yθ) of Yθ, the weighted

average of observations {g(Yi,θ)}ni=1 computed with respective weights qγi,n(θ):

n∑
i=1

qγi,n(θ)g(Yi,θ)

3



is the sample analog of the population expectation E [Mθg (Yθ)] .

The focus and interest of this chapter is on the existence and uniqueness of the pop-

ulation implied probabilities, and hence naturally on the change of measure Mθ solution

of (1.2), in the case when Yθ has a non-zero mean. While clearly relevant for misspecified

moment models, note that this issue is relevant even for the study of well-specified mo-

ment models since then the moment vector E [Yθ] is different from zero except for some

true unknown value(s) θ0 of the parameters θ of interest.

When it is well-defined, a possible use of this change of measure is to allow inference on

θ through the minimization of the sample counterpart of the population profile criterion,

defined by the following optimization problem:

min
θ∈Θ

E [φ(Mθ)] (1.3)

In the case of a well-specified (resp. misspecified ) moment model, the minimization of

the population profile criterion (1.3) is supposed to characterize the true unknown value

θ0 (resp. the pseudo-true value θ∗) of θ. The sample counterpart of this minimization

is common practice in the Minimum Empirical Discrepancy and GEL literature. An

important message of the present chapter is that, as far as population criterions are

concerned, the existence of the solution Mθ to the minimization (1.2) is far from being

granted. Of course, the implications of this population issue would differ depending on

whether the moment model is well-specified or misspecified.

In the case of a well-specified moment model that identifies the true unknown value θ0,

θ0 defines the only change of measure M = Mθ0 such that E [φ(M)] = 0. Since E [φ(M)] >

0 for any other change of measure consistent with the constraints of the minimization

problem (1.2), one can consider by abuse of language that Mθ0 solves the minimization

program (1.3), even though Mθ may not be defined for some values θ ∈ Θ. However, this

remark may lead one to question the interpretation of the implied probabilites qγi,n(θ) for

4



the θ 6= θ0 for which the population counterpart does not exist.

In the case of a misspecified moment model, this issue is even more harmful since then

it is possible that Mθ does not exist for all θ ∈ Θ , in which case a pseudo-true value θ∗

(about which inference would be sensible) is impossible to define in the classical sense.

While these specific issues will be discussed in more detail in the conclusion, the

first task of this chapter is to state general conditions under which population implied

probabilities may or may not exist for values of θ such that E (Yθ) 6= 0. In a nutshell,

following the seminal work of Csiszár (1995), sufficient conditions for existence of implied

probabilities can be stated, either through assumptions on the moment functions (by

assuming that the support of the random vector Yθ is bounded), or through assumptions

on the contrast function (by assuming that φ is differentiable with a derivative φ′ such

that limm=∞ φ
′(m) = +∞) . We will then show that these sufficient conditions are close

to being necessary by setting a special focus on the Cressie-Read family of constrasts φγ,

indexed by γ ∈ R, and defined by:

φγ (M) =
Mγ+1 − 1

γ (γ + 1)
,∀γ 6= 0 (1.4)

knowing that the above definition for γ = −1 must be understood as a limit case:

φ−1 (M) = − log (M)

while, following a common convention:

φ0 (M) = M log(M)

We note that:

lim
m=∞

φ′γ(m) = +∞⇐⇒ γ ≥ 0

5



When this condition is violated and the moment condition is non-zero, that is γ < 0

and E [Yθ] 6= 0, we can show that it takes a very small departure from a bounded moment

function for the optimization problem (1.2) to not have a solution. Namely, it takes an

absolutely continuous variable Yθ with bounded strictly positive density in a neighborhood

of the line αE [Yθ] , α > 0 to be able to build a sequence {M (j)}∞j=1 of changes of measure

consistent with the constraints of (1.2) such that:

lim
j=∞

E
[
φγ(M

(j))
]

= 0 (1.5)

The construction of this sequence takes only a minor extension of a proof initially

proposed by Hansen et al. (2016) (HHM hereafter). While HHM’s initial result was for

the case of Empirical Likelihood (EL), that is φ−1 (M) = − log (M) , we extend the result

to what we will dub Empirical-Likelihood-like (EL-like) constrast functions, which are the

φγ indexed by γ < 0. Note that for any M consistent with the constraints of (1.2):

E [Yθ] 6= 0 =⇒ E [φγ(M)] > 0

so that the limit result (1.5) implies that a solution Mθ for the minimization (1.2) does

not exist for the EL-like contrasts φ = φγ, γ < 0.

By contrast, when γ ≥ 0 a solution Mθ exists for the minimization (1.2) even if Yθ

is unbounded under regularity condition due to Csiszár (1995). By extension of the case

of Euclidean Empirical Likelihood (γ = 1), we will dub Chi-Square-like (χ2-like) all the

constrast functions φγ indexed by γ ≥ 0.

The rest of this chapter is organized as follows. Section 2 explores and characterizes

the conditions for existence using the aforementioned work of Csiszár, Section 3 then

gives the non-existence result for the EL-like contrast functions, and Section 4 concludes

by examining closer the implications of this non-existence.

6



1.2 Conditions for Existence of Population Implied Prob-

abilities

1.2.1 The case of bounded variables

For a given value θ ∈ Θ we consider first the case when ||Yθ||∞ < ∞. With some slight

abuse of notation the boundedness of the H components Yj,θ of Yθ allows us to consider

2H non-negative random variables aj:
2

aj(Y ) = L− Yj,θ, aj+H(Y ) = Yj,θ − l, j = 1, ..., H

where it is assumed that we have with probability one, for all j = 1, .., H :

l ≤ Yj,θ ≤ L

Note that, by considering a given value of θ, we simplify notation by not making

explicit the dependence of the functions aj(Y ), j = 1, ..., 2H and of l and L on θ. Then,

for any probability density function M(y) w.r.t. Pθ we can characterize the constraint

E [MYθ] = 0 by the following system of 2H inequalities:

∫
aj(y)M(y)dPθ(y) ≤ L,∀j = 1, ..., H (1.6)∫
aj(y)M(y)dPθ(y) ≤ −l,∀j = H + 1, ..., 2H

In order to apply the results of Csiszár (1995), we will maintain the assumption:

Assumption A1: The probability distribution Pθ of the random vector Yθ is absolutely

2In order for this not to be confused with the realizations Yi,θ discussed in the introduction we use j
to denote which member of the H-dimensional vector Yθ we are referring to
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continuous with respect to some σ-finite measure λ:

dPθ
dλ

(y) = hθ(y)

and hθ(y) > 0 λ−almost everywhere.

Note that the strict positivity of hθ(y) λ−almost everywhere is hardly restrictive since

by definition:

[hθ(y) = 0,∀y ∈ B] =⇒ Pθ(B) = 0

and then, the dominating measure λ can always be chosen such that λ(B) = 0. In

this context, Cziszár studies the linear inverse problem (1.6) by looking for a probability

density function s(y) with respect to the measure λ solution of a minimization problem:

min
s

∫
hθ(y)f

(
s(y)

hθ(y)

)
dλ(y) (1.7)

s.t.

∫
aj(y)s(y)dλ(y) ≤ L,∀j = 1, ..., H∫
aj(y)s(y)dλ(y) ≤ −l,∀j = H + 1, ..., 2H

where f is a given differentiable strictly convex function on R+
∗ , satisfying:

f(1) = f ′(1) = 0

The objective funtion of (1.7) is well-defined precisely because hθ(y) > 0 λ−almost

everywhere. Note that if we consider a contrast function φ as in the introduction that is

differentiable, we get a well-suited function f by considering:

f(u) = φ(u)− φ′(1) [u− 1]

Note also that if M stands for the probability density with respect to Pθ of some

8



probability measure Q on RH , we can define s = Mhθ and check that it is indeed a

probability density function with respect to the measure λ:

s(y) = M (y)hθ(y) =
dQ

dPθ
(y)

dPθ
dλ

(y) =
dQ

dλ
(y) (1.8)

The fact that Q is then a probability measure gives us the second constraint E[M ] =∫
M(y)hθ(y)dλ(y) =

∫
dQ(y) = 1 trivially. Note then that by rewriting (1.7) with the

notations of (1.8) (and using M as the argument for the minimization), we get

min
M

∫
f [M(y)] dPθ(y)

s.t.

∫
aj(y)M(y)dPθ(y) ≤ L,∀j = 1, ..., H∫
aj(y)M(y)dPθ(y) ≤ −l,∀j = H + 1, ..., 2H

which can be rewritten:

min
M

E [f [M (Yθ)]]

s.t.E [M (Yθ)Yθ] = 0

Moreover, it is worth noting that:

E [f [M (Yθ)]] = E [φ [M (Yθ)]]− φ′(1) [E [M (Yθ)]− 1] = E [φ [M (Yθ)]]

since by definition, as mentioned before, E[M(Yθ)] = 1. In other words, the mini-

mization problem (1.7) is nothing but the minimization problem of interest (1.2) with the

change of variable M → s.

Regarding the minimization problem (1.7), Theorem 3(i), p177, in Csiszár (1995) tells

us that, thanks to the non-negativity of the random variables aj(Yθ), j = 1, ..., 2H and to

Assumption A1, a solution sθ to the problem (1.7) (the so-called D-projection problem

9



in Cziszar’s terminology) always exists. Then, from the above discussion, we do have a

solution:

Mθ(y) =
sθ(y)

hθ(y)
, λ− ae

to our problem of interest (1.2). The function sθ is the D-projection of hθ on the set

of functions s defined by inequalities (1.6) (with M(y) replaced by s(y)/hθ(y)).

Remark: The boundedness assumption is popular in the model selection literature,

see for example Chen et al. (2007), but is mostly referred to ensure
√
n convergence of

the solution to the sample counterpart to our minimization problem over θ (1.3). The

message of the exposition above is then that such an assumption also could, and in some

situations perhaps should, be made in order to guarantee the reweighting problem (1.2)

actually has a solution in the population when the model is misspecified so that, under

some regularity conditions, the problem (1.3) also has a solution in the population.

1.2.2 The general case

As discussed in the introduction, unboundedness may be harmful to the minimization

problem (1.2). To better understand why this is and to explore what conditions on contrast

functions may provide a hedge against it, it is worth looking at the first order conditions of

the minimization problem (1.2) in the context of assumption 1. The Lagrangian function

of (1.2) is:

L =

∫
φ [M(y)]hθ(y)dλ(y)− a

{∫
M(y)hθ(y)dλ(y)− 1

}
− b′

{∫
M(y)yhθ(y)dλ(y)

}

where a ∈ R and b ∈ RH are Lagrange multipliers corresponding to the constraints

E[M ] = 1 and E[MYθ] = 0 respectively. Under mild regularity conditions including a

differentiable contrast function, the first order conditions become (for λ− a.e. value of y)

10



after differentiation w.r.t. M(y):

φ′ [M(y)]hθ(y)− ahθ(y)− b′yhθ(y) = 0 (1.9)

By right-multiplying by M(y) (resp. M(y)y′), integrating w.r.t. y, and using the

constraints of (1.2), we get one equation (resp. H equations) to determine the Lagrange

multipliers a and b respectively:

a∗ = E [M(Yθ)φ
′ [M(Yθ)]]

E [M(Yθ)YθY
′
θ ] b
∗ = E [M(Yθ)Yθφ

′ [M(Yθ)]]

By plugging these values of a and b into (1.9), we get the optimal value of M(y) for all

y (up to λ− a.e. equality) by inverting the, thanks to strict convexity, strictly increasing

function φ′. Since Assumption A1 guarantees the density to be non-zero, we can write:

φ′ [M(y)] = a∗ + b∗′y, λ− a.e.

In particular if a solution Mθ exists, we will have almost surely:

φ′ [Mθ(Yθ)] = a∗ + b∗′Yθ (1.10)

The identity (1.10) displays clearly the issue we are facing for existence of a solution

Mθ. If the random variable Yθ is not bounded, the linear function [a∗ + b∗′Yθ] is not

bounded either. Since the function φ′ is strictly increasing, the divergence of Yθ must

be coupled with a divergence of the density function Mθ, leading to the divergence of

φ′ [Mθ(Yθ)] thanks our next maintained assumption A2:

Assumption A2:

lim
m=∞

φ′(m) = +∞
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In the context of the Cressie-Read family (1.4) of contrasts:

φ′γ(m) =
mγ

γ
,∀γ 6= 0

φ′0(m) = log(m) + 1

we note that assumption A2 is fulfilled if and only if γ ≥ 0, as opposed to the EL-like

contrasts (γ < 0) where:

lim
m=∞

φ′γ(m) = 0

While assumption A2 appears to be necessary for the existence of Mθ in case of an

unbounded variable Yθ (as confirmed by the pretty general construction in the next section

of a counter-example for all EL-like contrasts), we can again use Csiszár (1995) to show

to what extent it is sufficient.

If we want to relax the boundedness assumption on Yθ, we can simply consider the

system (1.6) of inequalities with arbitrary values of numbers l and L (that are not bounds

anymore), for instance l = L = 0, and variables aj(Y ), j = 1, .., 2H, which are not assumed

anymore to be non-negative. As in the former subsection, we still note the equivalence

betwen Cziszar’s projection problem (1.7) and our problem of interest (1.2), through the

change of variable M −→ s.

Regarding the minimization problem (1.7), Theorem 3(iii), p177, in Csiszár (1995) tells

us that, thanks to Assumptions A1 and A2, and in spite of the fact that the functions

aj(Y ), j = 1, .., 2H may take both positive and negative values, a solution sθ to the

problem (1.7) always exists as soon as:

∫
f ∗
[
αa−j (y)

]
hθ(y)dλ(y) <∞,∀α > 0,∀j = 1, ..., 2H

where:

a−j (y) = max (0,−aj(y))
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and f ∗ denotes the convex conjugate of f :

f ∗(v) = sup
u

[uv − f(u)]

As Csiszár reminds us (see formula (3.3) p177), our assumption A2 allows us to char-

acterize the convex conjugate of f(u) = φ(u)− φ′(1) [u− 1] as follows:

f ∗(v) =

∫ v

0

(f ′)−1(z)dz =

∫ v

0

(φ′)−1 [z + φ′(1)] dz

To fit our optimization problem (1.2) into the context we choose our functions:

aj(Y ) = −Yj,θ, aj+H(Y ) = Yj,θ, j = 1, ..., H

Which then, when applied to the assumption made by Csiszár, becomes:

Assumption A3: For all α > 0 and all j = 1, ..., H :

E
{
f ∗
[
αY +

j,θ

]}
<∞, E

{
f ∗
[
αY −j,θ

]}
<∞

where:

y+ = max (y, 0) , y− = max(−y, 0)

f ∗(v) =

∫ v

0

(φ′)−1 [z + φ′(1)] dz

Then, from the above discussion, under Assumptions A1, A2, and A3 a solution in the

form:

Mθ(y) =
sθ(y)

hθ(y)
, λ− ae

exists to our problem of interest (1.2).
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This result ensures very generally the existence of implied probabilities for any χ2-like

Cressie Read contrast φγ,γ ≥ 0, since we can show:

Lemma 1: For the Cressie-Read contrast function φγ with γ ≥ 0, a necessary and

sufficient condition for assumption A3 with φ = φγ is:

For γ > 0, |Yj,θ|
γ+1
γ is integrable for all j = 1, ..., H.

For γ = 0, Yθ has a finite Laplace transform E [exp (t′Yj,θ)] for all t′ ∈ Rh for all

j = 1, ..., H.

Not surprisingly, the smaller the index γ, the more restrictive is the needed integrability

assumptions on Yθ for existence of implied probabilities. The condition for γ = 0 is

tantamount to assume the integrability at any order, which is as expected the limit case

(when γ −→ 0) of the assumption needed in the case γ > 0. However, it is worth noting

that the necessary and sufficient condition put forward by lemma 1 is very natural. To

see that, we first note that when using the contrast function φγ to solve (1.2), we work

with changes of measure M ≥ 0 such that φγ(M) is integrable, meaning with standard

notations that M ∈ Lγ+1 when γ ≥ 0. Thus, we want that:

M ∈ Lγ+1 =⇒MYj,θ ∈ L1,∀j = 1, .., H

in order to be able to impose the constraint E [MYθ] = 0. By virtue of Holder’s

inequality, this assumption will be fullfilled if:

Yj,θ ∈ Lp,∀j = 1, .., H

such that:

1

p
+

1

γ + 1
= 1
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that is:

p =
γ + 1

γ

that is nothing but the condition put forward for lemma 1. For instance, with Eu-

clidean Empirical Likelihood (γ = 1), we need to use changes of measure M with finite

variance and the corresponding moment functions, components of Yθ, must have finite

variance as well.

1.3 Non-Existence of Population Implied Probabilities for

EL-like Contrasts

While the previous section provided good news in the shape of sufficient conditions for

existence, as already announced in the introduction we can prove the non-existence of

population implied probabilities by building a sequence of changes of measure consistent

with the constraints of (1.2) such that:

lim
j=∞

E
[
φγ(M

(j))
]

= 0 (1.11)

Our first remark is that as long as the minimization (1.2) with φ = φγ amounts to the

maximization of E (Mγ+1) (meaning −1 < γ < 0), any sequence {M (j)}∞j=1 of changes of

measure leading to the zero-limit in (1.5) with γ = −1, also leads to a zero limit with

φ = φγ for any γ in ]− 1, 0[ :

Lemma 2: If {M (j)}∞j=1 is a sequence of random variables of unit expectation such

that:

lim
j=∞

E
[
log(M (j))

]
= 0 (1.12)
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Then:

lim
j=∞

E
[
φγ(M

(j))
]

= 0,∀γ ∈]− 1, 0[

Fix a θ ∈ Θ such that E [Yθ] 6= 0 . In order to build a sequence {M (j)}∞j=1 which fulfills

the constraints of (1.2) and is conformable to (1.12), we will slightly extend a proof by

HHM.

First, for any ε > 0 and α > 0 , Gε
θ(α) stands for the closed ball of center [−αE (Yθ)]

and radius ε. We will then maintain the following assumption:

Assumption A4:

(i) The variable Yθ is absolutely continuous (with respect to the Lebesgue measure)

with a continuous probability density function hθ.

(ii) There exists ε̄ > 0 and B > 0 such that, for all α > 0, hθ is strictly positive on

Gε̄
θ(α) and:

sup {hθ(y); y ∈ Gε̄
θ(α)} ≤ B

(iii) There exists ᾱ > 0 such that:

sup
α>ᾱ
{hθ(y); y ∈ Gε̄

θ(α)} ≤ 1

It is worthwhile to emphasize the difference between Assumptions A4 (ii) and (iii).

On the one hand, Assumption A4(ii) only maintains that the continuous function hθ is

bounded on any compact set Gε̄
θ(α) indexed by α > 0, and since all these compact sets

are balls of the same radius ε̄, we may assume that the bound is uniform over α > 0.

On the other hand, since the function hθ is integrable, it goes to zero at infinity in any

direction. Thus, when the center [−αE (Yθ)] of the ball Gε̄
θ(α) is large enough, we simply

make sure that hθ is sufficiently small in the ball. Hence Assumption A4(iii).
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The intuition behind HMM’s construction of the requested sequence {M (j)}∞j=1 lies in

the observation we made in the previous section that there is a problem when Yθ takes

on values that become arbitrarily large and γ < 0 (for which the first derivative of the

contrast function does not go to ∞). The key idea is then to consider for some π ∈]0, 1[

and some l > 0 a random variable:

M = 1− π +
π

l

1G(Yθ)

h (Yθ)
(1.13)

where 1G stands for the indicator function of a set G:

1G(y) = 1 if y ∈ G

1G(y) = 0 otherwise

and G = Gε
θ(α) for a convenient choice of ε and α. This is tantamount to the change of

measure M taking a mass π and distributing it into the neighborhood G while reweighting

the neighborhood so that the resulting distribution is uniform on G. We note that the

numbers l, ε, α can be easily chosen so that M in (1.13) fulfills the constraints of (1.2):

First, E(M) = 1 if and only if l is the Lebesque measure of G,

Second, with this choice of l, E(MYθ) = 0 if and only if:

α =
1− π
π

To see that, note that by considering the expectation of the uniform distribution on

the ball with center [−αE (Yθ)], we have:

∫
Gεθ(α)

y

l
dy = −αE (Yθ)

Note that at this stage ε is not subject to any constraint except that we assume ε ≤ ε̄
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to be sure that h(.) is strictly positive on Gε
θ(α). For the next step we will however allow

ε to vary with j, in other words to consider εj.

HHM build the requested sequence M (j) by applying (1.13) with an arbitrary sequence

π = πj going to zero when j goes to infinity. Then, we obviously have a sequence M (j)

converging to 1 in probability if:

lim
j=∞

Pr
[
Yθ ∈ G

εj
θ (αj)

]
= 0, αj =

1− πj
πj

This limit will be warranted by choosing the sequence of radius εj going itself to zero

when j goes to infinity. The challenge will then be to choose this sequence in order to

also ensure the desired limit:

lim
j=∞

E
[
φγ(M

(j))
]

= 0,∀γ < 0

It is worth keeping in mind that this construction tightly relies on the fact that the

moment function Yθ is not bounded since it has a strictly positive density on the balls

G
εj
θ (αj) whose center [−αjE (Yθ)] drifts to infinity when j goes to infinity.

We can then show:

Theorem 1: For any sequence πj ∈]0, 1[ going to zero and:

αj =
1− πj
πj

Mj(θ) = 1− πj +
πj
lj(θ)

1Gj(θ)(Yθ)

h (Yθ)

Gj(θ) = G
εj
θ (αj)

where lj(θ) is the Lebesgue measure of G
εj
θ (αj), there exists a sequence εj on ]0, ε̄[

such that:

lim
j=∞

E
[
φγ(M

(j))
]

= 0,∀γ < 0
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The proof of theorem 1 is given in the Appendix. For γ = −1, it closely follows the

proof proposed by HHM. The proof is even simpler for γ < −1 since it does not require

a specific choice of the sequence εj going to zero. For γ ∈] − 1, 0[, there is no additional

proof needed thanks to lemma 1.

A key implication of our Theorem 1 is then simply that there can be no such thing

as population implied probabilities for an unbounded continuous random variable when

using EL-like contrasts for all θ which do not satisfy the moment condition (1.1).

1.4 Conclusion

Given the results in sections 2 and 3, we must discuss their implications for researchers.

Combining the non-existence and existence results for EL-like contrasts, we see that un-

less the moment function Yθ is bounded there is no solution to the population reweighting

problem for that θ when E[Yθ] 6= 0. For misspecified models (E[Yθ] 6= 0 ∀θ ∈ Θ) the popu-

lation profile criterion (1.3) can hence no longer have a solution. This in particular means

that the standard robustness analysis technique of analyzing convergence of an estimator

θ̂ towards a pseudo-true value (the solution to (1.3)) no longer works since the pseudo-true

value defined in that way no longer exists. While this does not preclude convergence of

the estimator, it continues and completes the analysis of Schennach (2007) since indeed

this also means that
√
n convergence towards the pseudo-true value is impossible. Hence

in the language of the misspecification literature, any estimator which uses an EL-like

contrast function will not be robust to (global) misspecification.

This problem is solved for the χ2-like contrasts by the sufficient condition provided

in section 2. This together with some regularity conditions on the function K(z, θ) gives

existence of a pseudo-true value around which inference can be made. Given this result

it seems natural to assume that a pseudo-true value will also exist if one solves the

reweighting problem with the χ2-like contrasts and the optimization over θ with a EL-like

19



contrast, as is done in Schennach’s ETEL estimator and the ETHD estimator of Antoine

and Dovonon (2018). As an avenue for future research, this however also implies that any

estimator using such a combination method should be able to guarantee robustness to

misspecification given that one can use a standard “uniform convergence of optimization

problem” proof approach for consistency. This mixing of contrasts is also relevant in

testing where Chaudhuri and Renault (2017) have proposed a novel way to use more than

one contrast. To allude to another future avenue of research, in this setting it also appears

massively important that the implied probabilities behave nicely under misspecification,

since the alternative is by definition always misspecified under the null, if one is looking

to guarantee equivalence results between testing procedures.
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1.5 Appendix

1.5.1 Proof of lemma 1

For γ > 0, we have:

φ′(m) =
mγ

γ
=⇒ (φ′)

−1
(z) = [γz]1/γ

Moreover:

f(u) = φ(u)− φ′(1) (u− 1)

=⇒ f ′(u) = φ′(u)− φ′(1)

so that:

u = (f ′)
−1

(z)⇔ z = φ′(u)− φ′(1)

=⇒ (f ′)
−1

(z) = (φ′)
−1

[z + φ′(1)] = [γz + γφ′(1)]
1/γ

= [γz + 1]1/γ

From Csiszár (1995):

f ∗(v) =

∫ v

0

(f ′)
−1

(z)dz =

∫ v

0

[γz + 1]1/γ dz

=
1

γ + 1

{
[γz + 1]

γ+1
γ

}v
0

Thus the conditions of Assumption A3 can be written for every α > 0 and all j =

1, ..., H :

E
{
f ∗
[
αY +

j,θ

]}
=

1

γ + 1

{
E
[
(γαY +

j,θ + 1)
γ+1
γ

]
− 1
}
<∞

E
{
f ∗
[
αY −j,θ

]}
=

1

γ + 1

{
E
[
(γαY −j,θ + 1)

γ+1
γ

]
− 1
}
<∞
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that is for all j = 1, ..., H :

E
[
(Y +

j,θ)
γ+1
γ

]
< ∞

E
[
(Y −j,θ)

γ+1
γ

]
< ∞

Since for all p > 1, E[(X + 1)p] <∞ if and only if E[Xp] <∞ since the Lp spaces are

Banach. I.e since 1,−1 ∈ Lp, if X + 1 ∈ Lp then X = (X + 1) − 1 ∈ Lp and vice versa.

The above is true if and only if :

E[(|Yj,θ|)
γ+1
γ ] =E[1y>0(Y +

j,θ)
γ+1
γ ] + E[1y<0(Y −j,θ)

γ+1
γ ]

=E
[
(Y +

j,θ)
γ+1
γ

]
+ E

[
(Y −j,θ)

γ+1
γ

]
<∞

Where the second line follows since the functions are zero outside the indicators.

This condition is equivalent to integrability of |Yj,θ|
γ+1
γ which must be met for all of the

individual functions aj j = 1, ..., H.

For γ = 0 we have φ′(m) = ln(m) + 1 so that:

f ′(u) = φ′(u)− φ′(1) = ln(u) + 1− ln(1)− 1 = ln(u)

This then implies (f ′)−1(z) = eu so that:

f ∗(v) =

∫ v

0

(f ′)
−1

(z)dz =

∫ v

0

ezdz

= {ez}v0

= ev − 1

Applying this to the conditions of Assumption A3 we get:
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E
{
f ∗
[
αY +

j,θ

]}
= E

[
eαY

+
j,θ

]
− 1 <∞

E
{
f ∗
[
αY +

j,θ

]}
= E

[
eαY

−
j,θ

]
− 1 <∞

Which is true if and only if E[eα|Yj,θ|] < ∞ using the same reasoning as for γ > 0.

This condition being true for all α > 0 is then equivalent to:

E[eβYj,θ ] <∞ ∀β ∈ R

This must again hold true for all aj j = 1, ..., H. Next notice that by the Cauchy-

Schwarz inequality, where tj denotes component j of the vector t in lemma 1:

E[exp(t′Yθ)] ≤
H∏
j=1

E[exp(2tjYj,θ)]
1
2

So if the laplace transform of each component Yj,θ is finite for all βj ∈ R, so must

the laplace transform of the vector Yθ for any t ∈ RH . If the laplace transform is finite,

so must each individual component Yj,θ have a finite laplace transform since we may use

tk = 0 ∀k 6= j. QED

1.5.2 Proof of lemma 2

Since:

E
[
φγ(M

(j))
]
≥ 0,∀j = 1, 2, ..

we only need to show that:

lim
j=∞

supE
[
φγ(M

(j))
]
≤ 0
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that is:

lim
j=∞

inf E
[
(M (j))γ+1

]
≥ 1

We have by Jensen inequality for the concave function log :

log
{
E
[
(M (j))γ+1

]}
≥ E

{
(γ + 1) log

{
M (j)

}}
Hence:

lim
j=∞

E
[
log(M (j))

]
= 0 =⇒ lim

j=∞
inf log

{
E
[
(M (j))γ+1

]}
≥ 0

and by taking exponential:

lim
j=∞

inf
{
E
[
(M (j))γ+1

]}
≥ 1

QED

1.5.3 Proof of theorem 1

Case 1) γ < −1

As in the proof of lemma 2, we only need to show that:

lim
j=∞

supE
[
φγ(M

(j))
]
≤ 0

which, in the case of γ < −1, means:

lim
j=∞

supE
[
(M (j))γ+1

]
≤ 1

By definition:

M
(j)
d ≤M (j) ≤M (j)

u
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where:

M
(j)
d = 1− πj

M (j)
u = 1− πj +

πj
lj(θ)

Hj(θ)

Hj(θ) = sup

{
1

hθ(y)
; y ∈ Gεj

θ (αj)

}

Note that Hj(θ) is finite since hθ is continuous and strictly positive on the compact

set G
εj
θ (αj).

Let us denote:

M (j) = βjM
(j)
d + (1− βj)M (j)

u , βj ∈ [0, 1]

By convexity of the function gγ(x) = xγ+1, we have:

gγ
(
M (j)

)
≤ βjgγ

(
M

(j)
d

)
+ (1− βj) gγ

(
M (j)

u

)
= gγ

(
M

(j)
d

)
+ (1− βj)

[
gγ
(
M (j)

u

)
− gγ

(
M

(j)
d

)]

Note that:

lim
j=∞

gγ

(
M

(j)
d

)
= lim

j=∞
[1− πj]γ+1 = 1

since the sequence πj converges towards zero. Therefore, we only need to show that:

lim
j=∞

sup
[
gγ
(
M (j)

u

)
− gγ

(
M

(j)
d

)]
≤ 0

Note that by definition:

Hj(θ) ≥
1

hθ [−αjE (Yθ)]

and:

lim
j=∞

hθ [−αjE (Yθ)] = 0

since E (Yθ) 6= 0, the sequence λj converges to infinity and the non-negative integrable
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function hθ must go to zero at infinity. Thus, since γ + 1 < 0:

lim
j=∞

Hj(θ) = +∞ =⇒ lim
j=∞

M (j)
u = +∞ =⇒ lim

j=∞
gγ
(
M (j)

u

)
= 0

Hence:

gγ

(
M

(j)
d

)
≥ 0 =⇒ lim

j=∞
sup

[
gγ
(
M (j)

u

)
− gγ

(
M

(j)
d

)]
≤ 0

QED

Case 2) γ = −1

We need to show:

lim
j=∞

supE
[
− log(M (j))

]
≤ 0

that is:

lim
j=∞

inf E
[
log(M (j))

]
≥ 0

Let us denote:

π0
j (θ) = Pr

[
Yθ ∈ G

εj
θ (αj)

]
We will use several times the fact that, by choosing εj ≤ ε̄, we have by virtue of

assumption A4(ii):

π0
j (θ) ≤ BV ol

[
G
εj
θ (αj)

]
where V ol

[
G
εj
θ (λj)

]
= lj , the volume of the ball G

εj
θ (αj), is a function V (θ, εj),

independent of αj and such that:

lim
ε→0

V (θ, ε) = 0 (1.14)

Moreover:

sup
j≥1

lj(θ) = l̄(θ) ≤ V (θ, ε̄)
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By definition:

E
[
log(M (j))

]
=
(
1− π0

j (θ)
)

log [1− πj] +

∫
G
εj
θ (αj)

log

{
1− πj +

πj
lj(θ)

1

hθ(y)

}
hθ(y)dy

Since πj converges to zero, we only have to show that:

lim
j=∞

inf

∫
G
εj
θ (αj)

log

{
1− πj +

πj
lj(θ)

1

hθ(y)

}
hθ(y)dy ≥ 0

However:

log

{
1− πj +

πj
lj(θ)

1

hθ(y)

}
≥ log

{
πj
lj(θ)

1

hθ(y)

}
≥ log

{
π0
j

lj(θ)

1

hθ(y)

}

where the second inequality is warranted since, by virtue of (1.14), we get π0
j ≤ πj by

choosing εj small enough. Thus, we only need to show that:

lim
j=∞

inf

∫
G
εj
θ (αj)

log

{
π0
j

lj(θ)

1

hθ(y)

}
hθ(y)dy ≥ 0

Note that, by (1.14), when choosing εj going to zero when j →∞, we also have lj(θ)

going to zero, so that for j large enough:

∫
G
εj
θ (αj)

log

{
1

lj(θ)

}
hθ(y)dy =

∫
G
εj
θ (αj)

|log [lj(θ]|hθ(y)dy ≤M log [lj(θ] lj(θ)

=⇒ lim
j=∞

∫
G
εj
θ (αj)

log

{
1

lj(θ)

}
hθ(y)dy = 0

Hence, we only have to show that:

lim
j=∞

inf

∫
G
εj
θ (αj)

log

{
π0
j

hθ(y)

}
hθ(y)dy ≥ 0
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However:

lim
j=∞

inf

∫
G
εj
θ (αj)

log
{
π0
j

}
hθ(y)dy = lim

j=∞
inf π0

j log(π0
j ) = 0

since π0
j ≤ πj goes to zero like πj. Hence we only have to show that:

lim
j=∞

sup

∫
G
εj
θ (αj)

log {hθ(y)}hθ(y)dy ≤ 0

This inequality is directly implied by assumption A4 (iii), since for j large enough:

αj =
1− πj
πj

> ᾱ =⇒ log {hθ(y)} ≤ 0,∀y ∈ Gεj
θ (αj)

QED

28



CHAPTER 2

BOUNDED TILTING ESTIMATION

2.1 Introduction

We are concerned with a moment condition model using a H dimensional vector valued

non-linear moment function g(X, θ) where X is a random vector and θ ∈ Θ a finite dimen-

sional vector of parameters of interest. The moment condition pins down a relationship

between the true parameter value and the moments of the distribution of the random

vector X through the following equation:

E[g(X, θ0)] = 0 (2.1)

We say that the moment condition model is well specified (resp. misspecified) if such a

θ0 satisfying (2.1) exists (resp. if such a θ0 does not exist). The methodology of estimating

θ0 in a well specified model has seen change throughout the last couple of decades. Hansen

(1982) introduced the desirable GMM estimator, which remained standard practice until

it was pointed out that the finite sample properties are not optimal. New estimators

were proposed which take advantage of the moment condition (2.1) to improve the finite

sample performance. These include Empirical Likelihood (EL), Exponential Tilting (ET),

and Continuous Updating GMM (CUE). These estimators are members of a subclass of

the Minimum Divergence Estimators or Minimum Discrepancy Estimators (MD) (well

explained by Corcoran (1998)), which this chapter will now set its focus on.

The MD estimators are first order equivalent to two-step efficient GMM under regu-

larity conditions, implying that they reach the semi-parametric efficiency bound. They

are also one-step estimators so that reliance on an arbitrary first step estimator is unnec-
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essary and further they possess great computational properties since they can be written

as the solution to a saddle point problem. A persistent interest of the literature in recent

years has then been to determine which estimators in the class are most desirable. A

particular focus has been set on the Empirical Cressie-Read Estimators (ECR), of which

the aforementioned EL, ET, and CUE are members. Since these estimators all share the

same desirable properties mentioned above, the exploration of how to further narrow them

down has been funneled into two directions.

First there is the question of higher order efficiency. This was first explored by Newey

and Smith (2004) who showed that bias-corrected EL is second order efficient in the class of

Generalized Empirical Likelihood (GEL) estimators (a large subclass of MD estimators).

Later Ragusa (2011) generalized the idea and showed that bias-corrected EL is second

order efficient in the entire class of MD estimators. This analysis suggests that EL is

the most desirable estimator from this perspective. The second point of comparison is

how the estimators stand up to model misspecification. Imbens et al. (1995) argued that

EL would suffer in a misspecified model due to an asymptote in its influence function,

something which was later formalized by Schennach (2007) who showed that EL is not
√
n

consistent in a misspecified model when the moment function g is unbounded. Schennach

also showed that ET is robust to misspecification, suggesting that it is the most desirable

estimator from this perspective. Schennach also suggested that by using a combination

estimator Exponentially Tilted Empirical Likelihood (ETEL), one can retain the higher

order properties of EL while also being robust to misspecification like ET.

The problem is that to gain robustness to misspecification, heavy assumptions must

be made on the DGP X and on the moment function g to ensure that the asymptotic

reweighting problem which the MD class uses has a solution. Without such a solution

the concept of robustness is ill-defined and can hence not be explored. An exploration

of sufficient conditions which guarantee existence of such a solution for the ECR class

is given by Renault and Wahlstrom in Chapter 1 of this Dissertation. We showed that
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depending on the choice of divergence function different assumptions must be made on

the existence of moments of the transformed random variable Yθ = g(X, θ) for all fixed θ.

ET and ETEL both require a bounded moment generating function for Yθ. The purpose

of this chapter is to produce a class of estimators in the MD class which gets around this

issue and is robust without assumptions on the DGP, while also retaining the higher order

efficiency of the EL estimator.

Since the ECR subclass is well explored and understood and none of the members have

an easy way to get around the issue, to do this we move beyond this subclass into the full

class of MD estimators. A simple way around the misspecification problem turns out to be

to choose estimators that have a bounded tilting function. This ensures that robustness

is possible with the only assumption being that the random variable Yθ = g(X, θ) is

absolutely continuous for all θ ∈ Θ, which is also necessary to assume for the other

estimators. Within this class, there are natural suggestions of tilting functions which

satisfy all the necessary requirements - combinations of scaled CDFs with full support

on R. By choosing the CDFs in the appropriate manner one can also attain the same

higher order efficiency as EL just like ETEL, but without any assumptions on the DGP

other than the usual regularity conditions. In other words, we present a large subclass of

MD estimators which are heretofor unexplored and which have the optimality properties

which both strands of literature have been searching for.

The rest of this chapter is organized as follows. Section 2 reviews the Minimum

Divergence Estimators, their first and higher order efficiency, and results about misspec-

ification. Section 3 defines the bounded tilting estimators, proves their higher order effi-

ciency and their behavior under misspecification. Section 4 gives an example of an easily

implementable tilting function and shows its performance in simulations and Section 5

concludes.
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2.2 Review of Key Concepts in Minimum Divergence Esti-

mation

2.2.1 The Estimator

To exploit the moment condition (2.1) in the sample, the MD estimators fix θ ∈ Θ and

minimally reweight the data points {xi}ni=1 using a weight vector w = {wi}ni=1 so that a

sample counterpart to this moment condition holds true while the weights sum to 1. For

each θ we then ask “how much” reweighting is necessary to achieve this and then the θ

which requires the least amount of reweighting is our estimator θ̂q, where the amount is

defined using a divergence function q.

Formally, the Minimum Divergence Estimators θ̂q are defined using a strictly convex

twice differentiable divergence function q in the following optimization problem:

θ̂q = argminθ∈Θmin{wi}
1

n

n∑
i=1

q(nwi) (2.2)

s.t.
n∑
i=1

wig(xi, θ) = 0

n∑
i=1

wi = 1

Where q(1) = q̇(1) = 0 and d2

dx2
q(1) = 1. For clarity, when we reference a divergence

function in the rest of this chapter we will implicitly assume it is strictly convex and

twice continuously differentiable. The ECR family we referred to in the introduction is

the family of divergence functions qγ indexed by γ and we write it here for reference:
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qγ (x) =



xγ+1−1
γ(γ+1)

, ∀γ 6= 0,−1

− log (x) , γ = −1

x log(x), γ = 0

Denoting by λ the Lagrange multiplier for the first constraint and µ the Lagrange

multiplier for the second constraint we may write the Lagrangian as:

L(θ, w, λ, µ) =
1

n

n∑
i=1

q(nwi)− λ′
n∑
i=1

wig(xi, θ)− µ(
n∑
i=1

wi − 1) (2.3)

An interior solution to (2.2) must set all the partial derivatives of L to 0. Denoting

by G(x, θ) = ∂g(x,θ)
∂θ′

, and q̇(x) = dq(x)
dx

we get from the partial derivatives of θ and wi

respectively:

n∑
i=1

wiλ
′G(xi, θ) = 0

and

q̇(nwi)− λ′g(xi, θ)− µ = 0 ∀i = 1, ..., n

The partial derivative with respect to wi we may then use to yield a closed form for

wi in terms of the Lagrange multipliers and the moment function g:

wi =
1

n
q̇−1(µ+ λ′g(xi, θ))

The mapping q̇−1 is known as the tilting function, which determines the optimal

weights from the value of the Lagrange multipliers and the value of the moment func-

tion. We may use this to rewrite the constraints into
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1

n

n∑
i=1

q̇−1(µ+ λ′g(xi, θ))g(xi, θ) = 0,
1

n

n∑
i=1

q̇−1(µ+ λ′g(xi, θ)) = 1

This together with the partial derivative with respect to θ gives us a set of estimating

equations:

n∑
i=1

ρ(xi, θ̂q, λ̂q, µ̂q) = 0

Where:

ρ(x, θ, λ, µ) =


q̇−1(µ+ λ′g(x, θ))λ′G(x, θ)

q̇−1(µ+ λ′g(x, θ))g(x, θ)

q̇−1(µ+ λ′g(x, θ))− 1
n

 (2.4)

In addition to the estimating equation formulation above, a big advantage of the

MD estimators is that they allow for a saddle point problem formulation. As is shown

in Ragusa (2011) on page 7 equation (4) the dual problem to (2.2) has the following

formulation:

θ̂q = argmaxθ∈Θmin(µ,λ)∈Λn(θ)
1

n

n∑
i=1

q∗(µ+ λ′g(xi, θ))− µ (2.5)

With

Λn(θ) = {(µ, λ′) : µ+ λ′g(xi, θ) ∈ Dom(q∗),∀i = 1, ..., n}

And where q∗ is the convex conjugate of q:

q∗(v) := supu∈dom(q)[uv − q(u)]

The function q∗ must then satisfy q∗(0) = 0 and d
dx
q∗(0) = d2

dx2
q∗(0) = 1 and just like q

be twice continuously differentiable and strictly convex. The inner optimization problem
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over (µ, λ) is different from that of its primal in that it only requires dim(g(., .)) + 1

parameters to be estimated, unlike its primal counterpart which requires n parameters

(one weight for each data point). This makes the estimation procedure much faster and

easier to execute. In our simulations later on in this chapter we use the dual formulation

to produce our results.

Remark: Note the presence of the −µ at the end of the optimization problem in (2.5).

This is there to generate the equivalence between the FOC of (2.5) and the FOC of (2.2).

In the latter we have:

1

n

n∑
i=1

q̇−1(µ+ λ′g(xi, θ)) = 1

Which corresponds to the partial derivative of (2.5) with respect to µ.

2.2.2 First and Higher Order Asymptotics

We now briefly summarize the results from Ragusa Ragusa (2011) on the asymptotics of

the MD estimators that are relevant for our chapter. We refer our readers to his chapter for

more details on the topics. All the results in this section are valid for the ECR estimators

as well since they are also MD estimators. We first recite the assumptions for the first

order asymptotics:

Assumption 1. (a) θ0 ∈ Θ is the unique solution to E[g(X, θ)] = 0; (b) Θ is compact;

(c) g(., θ) is continuous in θ at all θ ∈ Θ w.p.1; (d) E[supθ|g(X, θ)||2] < ∞; (e) Ω =

E[g(X, θ0)g(X, θ0)′] is non-singular

Assumption 2. (a) θ ∈ int(Θ); (b) g(x, θ) is continuously differentiable in a neighborhood

N of θ0; (c) E[supθ∈N ||G(X, θ)||] <∞; (d) Rank(G) = dim(θ), G = E[G(X, θ0)]

Under these assumptions Ragusa shows that the MD estimators have the same first

order properties as the GEL estimators (which use a generalized homogeneous tilting

function), and those are equivalent to two-stage GMM and are hence efficient:
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Theorem 1. (Ragusa Ragusa (2011) Theorems 5-6 p.12)

1) Under Assumption 1 we have:

θ̂q →p θ0, µ̂q = op(n
− 1

2 ), and λ̂q = Op(n
− 1

2 )

2) Under Assumptions 1 and 2 we have:

√
n

 λ̂q

θ̂q − θ0

→d N

(
0,

P 0

0 Σ

)

where Σ = (G′Ω−1G)−1 and P = Ω−1(IM −GΣG′Ω−1) with M = dim(g(., .))

Ragusa also conducts a thorough investigation of the higher order properties of the

MD class in his section 5, just as Newey and Smith (2004) who base their work on the

discussion of Rothenberg (1984). The starting point is the Op(n
−2) expansion of an

estimator θ̂:

(θ̂ − θ0) =
in√
n

+
bn
n

+
cn√
nn

+
rn
n2

Where in, bn, cn, and rn are Op(1). This allows Ragusa to define first the higher order

bias (of order O(n−1)) of θ̂ as:

Bias1(θ̂) =
E[bn]

n

Secondly Ragusa defines the O(n−2) Mean Squared Error, denoted by MSE2(θ̂), of θ̂

as:

MSE2(θ̂) =
E[ini

′
n]

n
+

Ξ

n

where

Ξ := E[
bnb
′
n

n
] + E[(

bn√
n

+
cn
n

)i′n)] + E[in(
bn√
n

+
cn
n

)′]
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The higher order efficiency of the estimators is in regards to MSE2, but to exclude

unreasonable estimators from consideration Ragusa first limits his discussion to Bias Cor-

rected estimators θ̂c = θ̂ − Ê[bn]
n

. He then defines higher order efficiency, just like Newey

and Smith (2004), as:

Definition 1. (Ragusa (2011) Definition 5 p.17) The bias corrected estimator θ̂c is second

order efficient if for any other bias corrected estimator θ
c

there exists a positive definite

matrix Π such that MSE2(θ̂c)−MSE2(θ
c
) = Π + o(n−2).

To prove his higher order efficiency result he needs one more set of assumptions:

Assumption 3. There is b(x) with E[||b(x)||6] < ∞ such that for 0 ≤ j ≤ 4 and all x,

∂jg(x,θ)
∂θj

exists on a neighborhood N of θ0, supθ∈N ||∂
jg(x,θ)
∂θj
|| ≤ b(x), and for each θ ∈ N

||∂
4g(x,θ)
∂θ4

− ∂4g(x,θ0)
∂θ4

|| ≤ b(x)||θ − θ0||.

Also, q∗ is four times continuously differentiable with Lipschitz fourth derivative in a

neighborhood of zero.

Under these assumptions Ragusa shows that q∗3 = ∂3

∂x3
q∗(0) is the only thing which

matters for second order efficiency. In particular, any bias corrected estimator which has

the same q∗3 will also have the same higher second order MSE. This together with the fact

that Newey (2004) have shown that bias corrected EL is second order efficient in the sense

of our above definition (and q∗3 = 2 for EL) yields:

Theorem 2. (Ragusa (2011) Corollary 1 p.21) If assumptions 1, 2, and 3 hold then all

bias corrected MD estimators with q∗3 = 2 are second order efficient in the sense of the

above definition.

The main take aways from this section are then that all MD estimators are just as

good as GMM in the first order, and if q∗3 = 2 they are also second order efficient. Note

that while the normalizations q∗(0) = 0 and d
dx
q∗(0) = d2

dx2
q∗(0) = 1 are inconsequential in

defining the MD estimators since you can always rescale them to satisfy these conditions,
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these normalizations are necessary in the above theorem since otherwise the optimality

condition of q∗3 = 2 will change.

Remark: Note that EL is the only member of the class of ECR estimators which is

second order efficient.

Remark: Newey and Smith (2004) require q∗4 = 6 for this result but Ragusa shows

that this is not necessary. Similarly to the situation for the ETEL estimator of Schennach

(2007) the difference in the third order terms between the estimators is uncorrelated with

the first order term so that the higher order variances are the same.

2.2.3 Misspecification, Pseudo-True Values, and Robustness

Let us now formalize what we mean with robustness to misspecification. Should there

not exist any θ ∈ Θ for which E[g(X, θ)] = 0, the model is misspecified. We may then

ask which θ is the “closest” to satisfying the moment constraints in the population, where

closest refers to the least divergence according to some divergence function q. This θ∗q

is known as the pseudo-true value and is the solution to the population optimization

problem:

θ∗q = argminθ∈ΘminME[q(M)] (2.6)

s.t. E[Mg(X, θ)] = 0

E[M ] = 1

Note here that the M are functions of g(X, θ), and in particular they are change of

measure random variables. Also note that the pseudo-true value also depends on the

choice of divergence function q. We say that an estimator is robust to misspecification if

|θ̂q − θ∗q | = Op(
1√
n
). However, as pointed out by Renault and Wahlstrom in Chapter 1 of

this dissertation, the existence of such a θ∗q is far from granted. In order for robustness
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to be possible such a θ∗q must exist so we will explore what is necessary for θ∗q to exist.

Following the logic in Chapter 1 such a θ∗q existing necessitates the existence of a solution

to the reweighting problem:

Mθ = argminME[q(M)] (2.7)

s.t. E[Mg(X, θ)] = 0

E[M ] = 1

for all θ ∈ Θ. Renault and Wahlstrom show in Chapter 1 that the existence of such an

Mθ necessitates assumptions on the divergence function q and on the random variable X

for a fixed θ using the work of Csiszár (1995). These conditions are then translated to the

Cressie-Read family of q.

As is shown in Chapter 1, Csiszár’s work is applicable to the entire class of MD

estimators. For existence of such a change of measure random variable Mθ we need

conditions both on q and on the random variable Yθ = g(X, θ) for every fixed θ. The

conditions necessary depend on what assumptions one is willing to make on Yθ, since

there is a trade-off in the assumptions made on Yθ and how stringent one must be with

q. If the random variable Yθ is bounded, which is the strongest assumption possible, the

only conditions necessary to apply Csiszár’s results are:

Condition 1. The random variable Yθ is absolutely continuous with respect to some σ-finite

measure for every fixed θ

Condition 2. q(1) = q̇(1) = 0

As is explained in Renault and Wahlstrom (2020), condition 1 is there to make the

optimization problem at hand (2.7) fit into Csiszár’s work. Condition 2 simply ensures

that the function q creates a distance when integrated over. This is exactly the condition
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which we impose on the optimization problem (2.2) that define the MD estimators. Note

that there is no need to place any condition on the second derivative of q here for Csiszár’s

results to hold. The imposition of these conditions are just to simplify the analysis since

any function that is twice continuously differentiable and strictly convex can be rescaled

to satisfy these conditions arbitrarily. The reason we maintained the second derivative

normalization in the previous subsections was to get the optimality condition for Theorem

2 but the rescaling plays no role here. Under these conditions Csiszár shows:

Theorem 3. (Csiszár (1995) Theorem 3 ii) p.177)

Under conditions 1 and 2, Mθ exists for every θ if Yθ is bounded in every direction for

every θ.

To move beyond the boundedness assumption we need to add two more conditions,

one on q and one on the random variable Yθ. Denote by Yj,θ the j−th component of the

vector Yθ. Also, let dom(q̇) = (0, a) with a ∈ (1,∞]. These conditions are then:

Condition 3. limx→aq̇(x) =∞

Condition 4. E[q∗(α|Yj,θ|)] <∞ for all α > 0 and j = 1, .., H for every θ ∈ Θ

where q∗ is once again the convex conjugate of q:

q∗(v) = supu∈dom(q)[uv − q(u)]

Under these conditions Csiszár also proves the existence of Mθ.

Theorem 4. (Csiszár (1995) Theorem 3 iii) p.177)

Under conditions 1,2,3, and 4, Mθ exists for every θ ∈ Θ.

We now explain the conditions that are used. Condition 3 can be understood by

analogy to the first order conditions which come from (2.7), explained in Chapter 1. The

solution Mθ must satisfy the following first order condition almost surely (see Chapter 1

page 11 equation 1.10):
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q̇(Mθ) = µ∗ + λ∗Yθ

where µ∗ and λ∗ are the values of the Lagrange multipliers that are pinned down from

setting the partial derivatives of the Lagrangian to zero under mild differentiability con-

ditions.

If Yθ is unbounded then the RHS of this equation is also unbounded and can diverge

to +∞. Since q̇ is strictly increasing (since q is strictly convex), if we want the LHS to

also diverge to +∞ we must let Mθ move to the upper bound of the domain of q̇ and we

need q̇ to diverge to +∞ there.

Remark: Notice that it is tempting to use the same analogous explanation to suggest

that one should also impose the condition limx→0q̇(x) = −∞, as Ragusa (2011) suggests.

It turns out however that this is not necessary for the existence of a solution to the

problem but rather to ensure that the solution Mθ is strictly positive (almost surely).

To understand why this is the case consider what happens when Yθ diverges to −∞ for

a given θ. Since q̇ is strictly increasing, this must be coupled with Mθ moving towards

zero. However, when it reaches zero the constraint associated with λ∗ (E[MYθ)] = 0) is

automatically fulfilled so the Lagrange multiplier becomes zero. This then means that as

long as limx→0q̇(x) = µ∗ the FOC holds.

Condition 4 comes from a clever derivation by Cziszar using Orlicz spaces, but is

beyond the scope of this chapter. We provide instead some intuition behind it as follows.

For the minimizer Mθ in (2.7) to exist we must guarantee that it satisfies E[MθYθ] = 0,

while the only thing we know is that E[q(M)] < ∞ for all M under consideration in the

optimization problem. We then need to ensure that any sequence of Mj which converges

to Mθ satisfies E[MjYθ] → E[MθYθ], which implies what we need. If the sequence Mj

converges in L1 this is guaranteed, and condition 4 gives exactly this convergence.

We finish this section with the fact that the existence theorems of the change of

measure random variable Mθ coupled with a continuity arguement can then guarantee

41



existence of a pseudo-true value by an application of Berge’s Maximum Theorem:

Corollary 1. Let Z = ∪θZθ be the union of Zθ, the spaces of absolutely continuous random

variables with respect to the same σ-finite measure as Yθ. Assume that conditions 1 and

2 hold for Yθ bounded and 1,2,3, and 4 hold for Yθ unbounded.

If the correspondence C : Θ ⇒ Z with C(θ) = {M ∈ Z : E[MYθ] = 0 and E[M ] = 1} is

continuous and Θ is compact, θ∗q exists.

Proof. Under the conditions we have that Mθ exists for every θ. The correspondence

being continuous makes Mθ continuous by Berge’s Maximum Theorem. The optimization

problem which defines θ∗q is then simply minimizingMθ over Θ, whereMθ is continuous and

Θ is compact - which guarantees the existence of θ∗q by the Extreme Value Theorem.

Remark: The assumptions necessary for the correspondence C to be continuous vary

with Yθ since the only thing which changes with θ is the condition E[MYθ] = 0.

Remark: The existence of a pseudo-true value does not guarantee robustness, which

we defined as
√
n consistency towards the pseudo-true value by itself. For robustness of

θ̂q one would need additional assumptions to guarantee the uniform convergence of the

optimization problem (2.2) to (2.6). This is however immaterial for the discussion since

the main problem at hand in the robustness question is whether there is something to

converge towards in the first place.

2.3 Beyond ECR - Bounded Tilting

Now that we are equipped with the tools necessary, let us first explain the choice to depart

from the ECR estimators. When applying Csiszár’s conditions to the ECR estimators,

Renault and Wahlstrom show in Chapter 1 that the only estimators in the class which can

have a pseudo-true value when Yθ is unbounded are the ones with γ ≥ 0. Condition 4 in the

ECR setting is equivalent to E[|Yj,θ|
γ+1
γ ] <∞ for all j when γ > 0 and E[exp(tYj,θ)] <∞
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for all j and t ∈ R when γ = 0. When γ < 0, condition 3 does not hold and Renault and

Wahlstrom show that no solution can exist to the optimization problem.

In other words, for the change of measure random variable Mθ to exist for the ECR

class either boundedness or one of the above conditions must be assumed. In addition,

the only member of the ECR class which is higher order efficient is EL (with γ = −1).

The work of Renault and Wahlstrom then effectively proves that no estimator in the class

can be both higher order efficient as well as be robust to misspecification with somewhat

reasonable assumptions (as pointed out by Schennach (2007), a bounded moment function

is not reasonable) at the same time. Our goal now will be to move beyond ECR to achieve

this, as well as make the assumptions on the DGP as weak as possible.

We will restrict ourselves to Yθ that satisfy condition 1 of Csiszár, and see how weak

we can make any additional assumptions on Yθ to guarantee existence of Mθ. As long

as our q fits in the MD class, condition 2 is fulfilled so we must pick a q which gives us

conditions 3 and 4. The condition which includes Yθ is condition 4 and the only way that

we can guarantee it without making any assumptions on the GDP is to ensure that q∗

is bounded, which should not be surprising given the trade-off between assumptions on q

and on Yθ. Choosing a bounded q∗ is facilitated by the following lemma:

Lemma 1. For q∗ twice continuously differentiable and strictly convex we have:

q∗(v) =

∫ v

0

q̇−1(x)dx

For all v ∈ Dom(q).

Proof. Notice that q∗(v) = vq̇−1(v) − q(q̇−1(v)), where q̇−1 exists because of the twice

continuous differentiability and strict convexity, and taking its derivative yields:

q̇∗(v) = q̇−1(v) + v
∂

∂v
q̇−1(v)− ∂

∂v
q̇−1(v)q̇((q̇−1(v))

Cancelling the last two terms yields the equality:
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q̇∗(v) = q̇−1(v)

Then normalizing q∗(0) = 0 finishes the proof

Lemma 1 shows that there is an intimate link between the convex conjugate q∗ and

the tilting function q̇−1. By imposing conditions on q so that we get a bounded tilting

function we are then implicitly also imposing conditions on q∗. This brings us to the

definition of our Bounded Tilting Estimators:

Definition 2. A Bounded Tilting Estimator is a MD estimator which uses a bounded

tilting divergence function qb which satisfies:

a) qb is twice continuously differentiable and

b) dom(q̇b) = (0, a) with a ∈ (1,∞)

c) limx→aq̇b(x) =∞

The three conditions together ensure that a) the tilting function q̇−1
b is well defined,

b) is bounded, and c) allows the first order conditions to hold respectively. We then know

that:

Lemma 2. For a twice continuously differentiable strictly convex function q, let Dom(q)

be bounded. Then if q̇−1 is bounded, q∗ is also bounded.

Proof. Twice continuously differentiable means that q̇ is continuous and strictly convex

implies that q̇ is strictly increasing which implies that q̇ is invertible. Hence, Range(q̇−1) =

Dom(q) and if Dom(q) is bounded then Range(q̇−1) is bounded.

By Lemma 1, q∗ is the integral of q̇−1 and integrating a bounded function over a

bounded domain yields a bounded integral. Hence, q∗ is bounded.

We can then simply apply Csiszár’s theorems to yield:

Theorem 5. When Yθ is absolutely continuous with respect to a σ-finite measure for all θ,

Mθ exists for all θ for all bounded tilting divergence functions qb .
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Proof. The proof is simply verifying that the qb satisfy Csiszár’s conditions explained in

the previous section, and applying theorem 4.

Condition 1 is assumed, condition 2 holds because the bounded tilting estimators are

MD estimators, condition 3 is given from c) in the definition of qb, and finally condition 4

follows from lemmas 1 and 2, since the expectation of a bounded function is also bounded.

Hence by Theorem 4 Mθ exists.

Since all Bounded Tilting Estimators are equally well-equipped to deal with misspec-

ification, we will now narrow down the scope to the ones which are also higher order

efficient in the sense of section 2.3. What we require to apply Theorem 2 are the neces-

sary differentiability properties together with ∂3

∂x3
q∗b (x)|0 = 2. By lemma 1 the latter is

implied by ∂2

∂x2
q̇−1
b (x)|0 = 2. We are then equipped to give our next definition:

Definition 3. A Higher Order Efficient Bounded Tilting Estimator (EBTE) is a Bounded

Tilting Estimator with bounded tilting divergence function qb∗ that also satisfies:

a) qb∗ is four times continuously differentiable with Lipschitz fourth derivative in a

neighborhood of zero

b) ∂2

∂x2
q̇−1
b∗ (x)|0 = 2

By our choice of qb∗ we are then immediately granted with the main theorem of this

section:

Theorem 6. Under assumptions 1, 2, and 3, the EBTE are higher order efficient and

when Yθ is absolutely continuous with respect to a σ-finite measure for all θ, Mθ exists for

all θ for all bounded tilting divergence functions qb∗

We have then arrived at a subclass of the MD estimators which deal with misspecifi-

cation without any additional assumptions on the DGP and are higher order efficient.
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2.4 Suggested EBTE and Simulations

2.4.1 Suggested EBTE

We now give an example of a tilting function q̇−1 which gives a member in this subclass

of EBTE. The tilting function must be strictly increasing and bounded. To find such a

candidate it makes sense to look at CDFs over the entire real line, most of which also

satisfy the necessary Lipschitz differentiability criterion. However, the candidate must also

satisfy the necessary order conditions q∗(0) = 0, d
dx
q∗(0) = d2

dx2
q∗(0) = 1, and d3

dx3
q∗(0) = 2

which translate to q̇−1(0) = d
dx
q̇−1(0) = 1 and d2

dx2
q̇−1(0) = 2 by Lemma 1. q∗(0) = 0 is

inconsequential because we simply normalize
∫
q̇−1(x)dx|x=0 = 0. This leaves us with 3

equations which must hold simultaneously. A simple family of CDFs which has a sufficient

number of adjustable parameters is the combination of the Cauchy and the Logistic CDFs

in the following manner:

q̇−1(x) = 2 ∗ (
1

π
arctan(

x− a
b

) +
1

2
+

1

1 + e−
x−c
d

)

With b =
2
√

6+5
√

3π−3

10π
, d =

2(2
√

3π+
√

6+5
√

3π)

9(
√

3π−2)
, a =

√
3b, and c = ln(2)d.

This yields the tilting function of an estimator in the EBTE class which we will call

the Cauchy-Logistic EBTE.

2.4.2 Monte Carlo Simulations

We will now explore how our suggested example behaves in simulations. We will explore

two setups in line with both Ragusa (2011) and Schennach (2007). The first setup explores

the higher order efficiency of the proposed estimator, and is based on the design of Hall

and Horowitz (1996). We use 13 sequences of independent random variables {{xi,j}ni=1}13
j=1

where:
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(xi,1, xi,2) ∼i.i.d N ([0, 0], 0.16I), xi,3 ∼i.i.d t5, xi,j ∼i.i.d χ2
1 j = 4, ..., 13

We define q(θ, x, y) = exp(−0.72− θ(x+ y) + 3y)− 1 and implement four designs:

1) g(X, θ) = [q(θ,X1, X2), X2 q(θ,X1, X2)]′

2) g(X, θ) = [q(θ,X1, X2), X2 q(θ,X1, X2), X3 q(θ,X1, X2), X4 q(θ,X1, X2)]′

3) g(X, θ) = [q(θ,X1, X2), X2 q(θ,X1, X2), X4 q(θ,X1, X2), ..., X7 q(θ,X1, X2)]′

4) g(X, θ) = [q(θ,X1, X2), X2 q(θ,X1, X2), X4 q(θ,X1, X2), ..., X13 q(θ,X1, X2)]′

Design 2) is as suggested by Ragusa (2011) and Designs 3) and 4) are versions of what

was done by Schennach (2007). Design 1) is symmetric whereas designs 2)-4) impose

skewness and an increase in kurtosis. We implement 10000 replications for each design at

n = 100 and n = 400. We discard the samples where the estimators failed to converge.1

The results are shown in the tables below, together with the same results for EL and ET

for comparison:

Table 2.1: Bias, Variance, Median, and Inter-Quartile Range (IQR) of EL, ET, and
Cauchy-Logistic EBTE for n = 100 at 10000 replications (Design 1)

Design 1): n=100

Estimator EL ET Cauchy-Logistic

Bias 0.056 0.072 0.063

Variance 0.083 0.088 0.086

Median 3.033 3.048 3.039

IQR 0.382 0.388 0.385

1This was detected by checking if providing three different starting points to the optimization routine
gave different optima.
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Table 2.2: Bias, Variance, Median, and Inter-Quartile Range (IQR) of EL, ET, and
Cauchy-Logistic EBTE for n = 100 at 10000 replications (Design 2)

Design 2): n=100

Estimator EL ET Cauchy-Logistic

Bias 0.113 0.181 0.149

Variance 0.093 0.118 0.107

Median 3.087 3.144 3.115

IQR 0.340 0.430 0.418

Table 2.3: Bias, Variance, Median, and Inter-Quartile Range (IQR) of EL, ET, and
Cauchy-Logistic EBTE for n = 100 at 10000 replications (Design 3)

Design 3): n=100

Estimator EL ET Cauchy-Logistic

Bias 0.162 0.267 0.226

Variance 0.103 0.147 0.131

Median 3.137 3.222 3.188

IQR 0.409 0.462 0.442

Table 2.4: Bias, Variance, Median, and Inter-Quartile Range (IQR) of EL, ET, and
Cauchy-Logistic EBTE for n = 100 at 10000 replications (Design 4)

Design 4): n=100

Estimator EL ET Cauchy-Logistic

Bias 0.284 0.450 0.399

Variance 0.127 0.213 0.182

Median 3.249 3.382 3.343

IQR 0.458 0.572 0.540
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Table 2.5: Bias, Variance, Median, and Inter-Quartile Range (IQR) of EL, ET, and
Cauchy-Logistic EBTE for n = 400 at 10000 replications (Design 1)

Design 1): n=400

Estimator EL ET Cauchy-Logistic

Bias 0.019 0.022 0.019

Variance 0.020 0.020 0.020

Median 3.014 3.018 3.015

IQR 0.192 0.192 0.191

Table 2.6: Bias, Variance, Median, and Inter-Quartile Range (IQR) of EL, ET, and
Cauchy-Logistic EBTE for n = 400 at 10000 replications (Design 2)

Design 2): n=400

Estimator EL ET Cauchy-Logistic

Bias 0.031 0.053 0.039

Variance 0.020 0.021 0.021

Median 3.024 3.045 3.032

IQR 0.193 0.196 0.195

Table 2.7: Bias, Variance, Median, and Inter-Quartile Range (IQR) of EL, ET, and
Cauchy-Logistic EBTE for n = 400 at 10000 replications (Design 3)

Design 3): n=400

Estimator EL ET Cauchy-Logistic

Bias 0.046 0.085 0.064

Variance 0.021 0.023 0.022

Median 3.043 3.080 3.059

IQR 0.190 0.201 0.196
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Table 2.8: Bias, Variance, Median, and Inter-Quartile Range (IQR) of EL, ET, and
Cauchy-Logistic EBTE for n = 400 at 10000 replications (Design 4)

Design 4): n=400

Estimator EL ET Cauchy-Logistic

Bias 0.084 0.156 0.123

Variance 0.021 0.026 0.024

Median 3.079 3.148 3.115

IQR 0.195 0.216 0.206

We can see that our Cauchy-Logistic EBTE performs more in line with the EL es-

timator than the ET with the difference between the estimators performance decreasing

significantly with sample size as expected. As we move from Design 1) and 2) to de-

signs 3) and 4) we see all three estimators’ performing worse as a result of the increased

skewness and kurtosis in the n = 100 designs. This effect is much less noticeable in the

n = 400 designs but still there nevertheless. Designs 1) and 2) were based on Ragusa

(2011) and the results are very similar to his for both the EL and the ET estimators while

at the same time the Cauchy-Logistic EBTE performs approximately as well as Ragusa’s

Quartic Tilting estimator.

Our second simulation setup is intended to test how the estimators deal with mis-

specification. This setup was also used by both Ragusa and Schennach with moment

function:

g(x, θ) = [x− θ, (x− θ)2 − 1]′

Our random variable xi follows either a correctly specified model (we call this model

C) or a misspecified model (we call this model M):
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C) {xi}ni=1 ∼i.i.d N (0, 1)

M) {xi}ni=1 ∼i.i.d N (0, 0.64)

To see how the estimator using our Cauchy-Logistic tilting function perform we once

again compare it to EL and ET. Our simulation entails first 10000 replications of n = 1000,

followed by 2000 replications of n = 5000. The results are depicted in tables 2.9 and 2.10

respectively, where the standard deviations of the estimators are shown.

Table 2.9: Standard deviations of EL, ET, and Cauchy-Logistic EBTE estimators for
Models C and M defined in the text with n = 1000

n=1000

Estimator EL ET Cauchy-Logistic

Model C 0.0315 0.0315 0.0315

Model M 0.0547 0.0308 0.0280

Table 2.10: Standard deviations of EL, ET, and Cauchy-Logistic EBTE estimators for
Models C and M defined in the text with n = 5000

n=5000

Estimator EL ET Cauchy-Logistic

Model C 0.0144 0.0144 0.0144

Model M 0.0520 0.0140 0.0123

Our Cauchy-Logistic EBTE performs as well as the other estimators in the well spec-

ified model, as is also highlighted in the previous simulation setup. As predicted, in the

misspecified model our EBTE performs even better than ET which is well equipped to

handle misspecification. This suggests that, even when the DGP is such that ET admits

a pseudo-true value, there may still be further benefits to using a bounded tilting func-
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tion. Note finally that just like Schennach (2007) we find that the EL variance in the

misspecified model is significantly larger than the others and also does not decrease with

sample size by the expected
√

5 factor like the others do.

2.5 Conclusion

Since the introduction of Hansen’s GMM there have been ample resources devoted to

finding ways to improve upon the techniques and the ECR estimators did so in many

ways. Unfortunately the search for the “best member” of this subclass of MD estimators

has been misguided in that there are no members which can satisfy the two requirements

of robustness to misspecification and higher order efficiency simultaneously. Even then,

previous suggestions of ways to get around this issue have come with the requirement

of heavy assumptions on the DGP and moment condition function g. Our approach of

looking at a different subclass of the MD estimators which have a bounded tilting function

eliminates the need for any assumptions to guarantee a solution to the asymptotic tilting

problem and, by narrowing our scope to members which satisfy a derivative condition, we

produce the class of EBTE which is also higher order efficient. This effectively renders the

class of ECR estimators obsolete and finishes the search for GMM’s replacement according

to the two criteria we have followed in this chapter.

A natural way to produce bounded tilting functions is to use combinations of scaled

CDFs and we provide an example which we dub the Cauchy-Logistic EBTE. We simulate

the Cauchy-Logistic EBTE together with EL and ET in first a well specified setting

with varying degrees of skewness and kurtosis. The Cauchy-Logistic EBTE performs

more in line with EL than ET as suggested by its higher order efficiency. Secondly we

impose a misspecified model, where our simulations show that the Cauchy-Logistic EBTE

outperforms both EL and ET.

While the EBTE class completes the search for the “best estimator” according to the
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two strands of research we have mentioned, we hope that this may pave the way for future

research and hence we leave the reader with an open question. Since these estimators are

both first order and higher order efficient while at the same time ensuring robustness to

misspecification with minimal assumptions, can we further narrow down the class to yield

even more optimality or implementability properties?
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CHAPTER 3

RESPONSES TO INFORMATION OBFUSCATION IN THE LABORATORY

3.1 Introduction

There are many real-life settings in which a principal is concerned with the amount of

effort an agent exerts on a task of difficulty ex-ante unknown to both the principal and

the agent, and where the principal can only motivate the agent with information about

the difficulty rather than monetary rewards. Consider as an example a college professor

and an undergraduate student. The professor wants the student to work hard to reach

the objectives of her course, while the student only cares about passing the course while

exerting as little effort as possible. There might be long term benefits that the student

receives from learning as much as possible. However, we assume that these are not realized

until a later point in time and, hence, the incentives of the professor and student are not

aligned in this particular situation. When the course starts it is not clear to the professor

what constitutes a passing grade since the quality distribution of her students has not

yet been revealed. However, after the first midterm or homework, the professor will have

more information and can choose how much of this to communicate to the students. Since

the effort provision is continuous throughout the course, revealing perfectly the threshold

necessary to pass enables the student to reduce the amount of effort she provides to just

pass.

Ely and Szydlowski (2020) study this problem and derive a theoretically optimal in-

formation revelation strategy for the principal. The key to this strategy is not only what

signal to send but also when to send it - precisely because time passes as effort is provided.

The prescribed strategy for when an agent is sufficiently optimistic about task difficulty

to start exerting effort - or in our example, to enroll in the course - is dubbed by Ely and
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Szydlowski (2020) as “leading the agent on” (LEAD)1. We restrict ourselves to the binary

case where the difficulty level can only be high or low, leading to a high or low amount of

effort necessary for the agent to complete the task respectively. In this case, the LEAD

strategy has the principal committing to truthfully send a signal according to an ex-ante

specified probability distribution about the true difficulty level after the agent has exerted

enough effort to have finished the low difficulty task. This signal truthfully reports high

difficulty but misreports the low difficulty as high difficulty just often enough to make

the agent indifferent between stopping and continuing with the effort provision until the

difficult task is complete. The aspects of committing ex-ante to a signal structure and

revealing truthfully the realization to the agent link this work to the growing literature

of Bayesian Persuasion. The term was coined by Kamenica and Gentzkow (2011) but the

main ideas were first introduced by Aumann et al. (1995) in their work on repeated games

with incomplete information.

The optimality of the LEAD strategy relies on the receiving agent maximizing her own

financial interest in a rational manner. However, it is a well-established finding across all

strands of the experimental economics literature that observed behavior deviates from

the perfectly rational homo economicus. Consequently, in this project, we explore the

setting laid out above through the use of a discretized version of the model from Ely and

Szydlowski (2020) in the laboratory. The principal, which we refer to as the Sender in

our experiment, chooses an information structure which is implemented by a computer

and the agent, which we refer to as Receiver, needs to respond to this information2. We

abstract away from real effort in the experiment in that responding to the information

is done by choosing how many consecutive periods to participate in. Choosing not to

participate in a given period ends the interaction between the Sender and Receiver. The

1When the agent is not sufficiently optimistic about the task difficulty, the optimal strategy derived
by Ely and Szydlowski (2020) is dubbed “Moving the Goalposts” and requires an additional signal to be
sent before the agent starts providing effort.

2We use these expressions to conform with the existing experimental literature on Bayesian Persuasion.
See, for example, Fréchette et al. (2019) and Nguyen (2017).
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Receiver receives a reward if she participates up to and including a threshold period.

Theoretically this problem is equivalent to the effort provision setup but the framing is

more general.

As mentioned above, our interest is in whether the agents are rational and profit

maximizing which we explore in our experimental setting through the responses of the

Receivers. For this purpose we do not allow the Senders to freely choose how and when

to send information. Since we are also interested in the optimality of the LEAD strategy

we do not restrict the Senders to only choose the LEAD strategy but rather give them

a discrete list of information structures to choose from. This list consists of the LEAD

strategy along with three other focal policies: full information about the threshold period

before the agent has to make any decisions, no information about the threshold period at

any point, and a strategy that keeps the same timing of the LEAD strategy but reveals

the true threshold period fully rather than misreporting sometimes3.

Our experimental results show that compliance, i.e. optimal theoretical response to a

given information structure, varies with the informational content provided in the infor-

mation structures4. The compliance rate is increasing with information. This behavior

actually leads the LEAD strategy to be outperformed by providing the Receiver with full

information about the threshold period after the Receiver has participated in the num-

ber of periods that corresponds to the low threshold period. In our model section and

in calculating the optimal responses, we are assuming that the subjects are risk-neutral,

just as Ely and Szydlowski (2020). However, allowing for some degree of risk-aversion

yields the theoretical prediction that the delayed full information strategy outperforms

the LEAD strategy. Hence, subjects exhibiting a range of different risk-attitudes is a

feasible explanation for this observation.

3To be precise, we are only using approximately the optimal LEAD strategy. This is because the
optimal policy makes the agent indifferent between continuing the effort provision and stopping while our
version makes continuing strictly preferable.

4Throughout the chapter, we will use the expression “informational content” to not only express the
amount but also the timing of the information. Hence, an information structure that provides the same
information amount as another but at a later point is considered to have lower information content.
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Moreover, we find that when Receivers receive full information about the threshold

period before having to make participation choices, they participate on average in more

periods than theoretically predicted. Receiving information through any of the other

three information structures leads to a lower than optimal average participation, where

the gap between actual and optimal average participation is increasing in the amount of

uncertainty contained in the information structure. Reciprocity would perfectly explain

this finding. The LEAD strategy, as the name suggests, involves the agent being led

on. That means that the principal withholds at first and then obfuscates information to

prompt the agent to exert as much effort as possible for the principal’s personal gain.

Stringing an agent along for the principal’s own benefit might lead the agent to forgo

some own benefit to hurt the principal. In experimental labor markets it has been shown

that the agent punishes the principal if a suggested wage rate is perceived as unfair.

Examples include Fehr et al. (1998), Charness and Rabin (2002), and Charness (2004).

Charness (2004) establishes a positive relationship between effort and wage. Additionally,

he shows that for low wage rates the average effort is lower when the wage rate was chosen

by a subject employer rather than a random process. This suggests that in our setting,

leading the agent on might provoke a similar response of negative reciprocity from the

agent. At the same time, presenting the agent with as much information as possible might

make the agent willing to reciprocate and exert some additional, unprofitable effort. This

is supported by findings in the same paper, Charness (2004): For high wage rates, the

average effort is higher when the wage rate was chosen by a subject employer rather than

a random process.

Hence, our second set of findings is in regards to whether the non-compliance with

the theoretical optimal response to the information structures can be explained by the

responses of the Receivers exhibiting reciprocity. To our knowledge we are the first to

analyze reciprocity of an agent towards a principal when the principal reveals information
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rather than sets a wage in an effort-provision setting5. The latter has been extensively

studied in the experimental literature in the labor market context. For example, Fehr

et al. (1998) simulate labor markets in the lab with some subjects taking on the role of

the employer and others the role of the employee. The authors compare effort provision

when wages are determined by employers or by an external process. In line with this

research, in our experiment the information structure chosen by the Sender is only imple-

mented half of the time, while the other half of the time the computer randomizes which

information structure is implemented. The Receiver is informed about which information

structure was chosen and whether it was chosen by the Sender or the computer. Our

experimental results show that when the Sender is generous with the information and

chooses to reveal the true threshold period before the Receiver has to make any choices,

then the Receiver participates in more periods on average than when it was chosen ran-

domly by the computer. While this can be interpreted as positive reciprocity towards the

Sender, this result is not robust to outliers and can be explained by two subjects making

mistakes. For the remaining information structures, the findings are not in line with the

experimental labor market with the Receivers participating in weakly more periods on av-

erage for every structure and every message when it was chosen by the Sender compared

to when it was chosen by the computer.

At its core, our experiment is concerned with how to motivate effort provision in the

lab. We have found that delayed information revelation leads to higher effort provision

than revealing all the information before an agent starts exerting effort or not revealing

any information at all. Whether full or obfuscated information is provided after a delay

does not have an impact on the effort exerted in our experiment. As such our project

contributes and is related to the literature on this topic. DellaVigna and Pope (2018)

study factors that motivate effort provision when effort is rewarded with a flat payment.

Subjects receive a flat payment no matter how much effort they exert and are incentivized

5Reciprocity in relationship to information has been studied before but not in the effort-provision
setting. Au and Li (2018) study Bayesian Persuasion in the presence of reciprocity.
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by additional monetary payoffs. The treatment closest to our experiment is one where

subjects are paid a bonus for completing a certain number of tasks. However, the task

is such that subjects can easily infer how many tasks they have completed correctly.

Eriksson et al. (2009) compare effort provision under different feedback rules. However,

all information provision is in terms of relative performance compared to an opponent and

only the best performing agent receives a prize. Chen and Schildberg-Hörisch (2018) also

vary amount of feedback provided. They consider only individual performance but test

how the information impacts effort provision in a post-revelation effort task compensated

in a piece-rate fashion.

The remainder of this chapter is organized as follows: Section 1.2 revisits Ely and Szyd-

lowski (2020) and adapts their binary framework for experimental analysis by discretizing

effort provision. Section 1.3 outlines the experimental design and the implementation in

the laboratory. It also includes the hypotheses we are looking to test in our experiment.

Section 1.4 presents and discusses the results of the experiment. Section 1.5 concludes.

Screenshots and complete experimental instructions are included in the appendix to this

chapter, section 1.6.

3.2 Model

3.2.1 Setup

Just as in Ely and Szydlowski (2020), we consider an agent who works on behalf of a

principal. The agent spends effort e on her work in increments until the agent chooses to

quit. In Ely and Szydlowski (2020) the increments are continuous making the variable e a

continuous variable whereas we will discretize and normalize so that the incremental effort

provision is 1 unit6. The effort provided by the agent produces an output y(p, e) which

6You can think of this as there being effort choices et for each discrete period t. The agent then in
each period decides whether et = 1 or et = 0. If et = 0 is ever chosen the game ends. The total effort e
is then e =

∑s
t=0 et with s being the period in which the agent stops
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is determined by her productivity level p and her effort level. While Ely and Szydlowski

(2020) normalize the productivity parameter to 1 - something which we will do later - it

is useful to see the effect it has on the derivations. For simplicity we assume a production

function of the form y(p, e) = pe. The effort is also costly to the agent in that each unit

of effort provided costs c. When the agent chooses to stop providing effort the agent is

rewarded with a payoff R > 0 if and only she has produced more than a threshold x > 0

(i.e. if y(p, e) ≥ x).

As in Ely and Szydlowski (2020) the threshold x is unknown to the agent which

induces uncertainty about whether the task has been successfully completed or not at a

given effort level. We formalize this uncertainty by giving the agent a prior with CDF F

over the unknown x ∈ X ⊂ Z+, where X is the space of possible thresholds7. To make the

setup easier to understand for our subjects, just like Ely and Szydlowski (2020) do in the

introductory part of their paper, we limit ourselves to a binary set-up where X = {xl, xh},

where xl indicates a low and xh a high threshold. We can summarize the beliefs about

the true success threshold using a parameter µ instead of the CDF F :

x =


xl with probability µ

xh with probability 1− µ
(3.1)

For simplicity, and for applicability in our experimental design, we also do not include

discounting in this model. We also make the innocuous addition that we endow the agent

with a budget that she can use to pay for effort with and hence we write the agents

expected payoff from providing an effort level e as:

πa(e) = E[1[x ≤ pe]R− ec] = B + F (pe)R− ec (3.2)

The principal does not pay the cost of the agents reward but still receives a benefit

7Since we have discretized the effort levels e we may also discretize the space X and let it take only
whole positive numbers.
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r > 0 from each unit produced by the agent. We can hence write the principal’s expected

payoff as:

πp(e) = rpe (3.3)

While the agent does not know the threshold x, the principal does and can hence

choose what information to disclose and when to disclose it. However, the principal must

commit to a revelation policy before learning the threshold and we assume, just like in Ely

and Szydlowski (2020), that the agent knows the policy and understands the principal’s

commitment. The theoretical work in Ely and Szydlowski (2020) is then done to produce

an “optimal” revelation policy for the principal - the policy which maximizes the payoff of

the principal. As described in the introduction one goal of this chapter is to see whether

the optimal policy derived in Ely and Szydlowski (2020) works as predicted in a lab

setting. To derive the optimal information policy we must first understand the incentives

of the agent. We can then write the agent’s expected payoff function as:

πa(e) =


B − ec if e < xl

p

B + µR− ec if xl
p
≤ e < xh

p

B +R− ec if xh
p
≤ e

(3.4)

Since in all three cases incremental units of effort only decreases the payoff unless it

moves you into a higher case, there are only three possible rational options for the agent

to make in her effort choice. These are e = {0, xl
p
, xh
p
} which lead to expected payoffs

πµa = {B,B + µR− xlc
p
, B +R− xhc

p
} respectively.

We now make the same assumptions as those in Ely and Szydlowski (2020), the first

of which will ensure that working until xh units are produced without any additional

information is never rational but working until xl units can be rational.

Assumption 4. xl
p
< R

c
< xh

p
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We also maintain the assumption that the task xh is not too difficult by assuming

that:

Assumption 5. xh−xl
p

< R
c

We summarize what these two assumptions give us in the following lemma:

Lemma 3. Assumption 1 implies that there is no µ for which it is rational to work until

xh units are produced but also that ∃ µ̄ ∈ (0, 1) for which the agent will work until xl units

are produced if µ ≥ µ̄.

Assumption 2 implies that an agent who has worked until xl units are produced will find

it profitable to work until xh units are produced if she is told with certainty that X = xh.

Proof. For the Assumption 1 implication, consider the “best case” for xh where the agent

knows with certainty that it is the true threshold (µ = 0). This leads to a choice between

π0
a = {B,B − xlc

p
, B + R − xhc

p
}. Clearly choosing xh

p
strictly dominates xl

p
but under

assumption 1, 0 also strictly dominates xh
p

since:

R

c
<
xh
p
⇐⇒ R− xhc

p
< 0 ⇐⇒ B +R− xhc

p
< B ⇐⇒ π0

a(
xh
p

) < π0
a(0)

Consider then the tradeoff between choices 0 and xl
p

. Because of the slack in the

assumption there must exist a µ̄ such that for all µ > µ̄ it is rational to start working and

work until xl
p

units are provided. We find this µ̄ by solving:

µ̄R− cxl
p

= 0,

which gives us

µ̄ = c
xl
pR
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For the Assumption 2 implication, consider the tradeoff between xh
p

and xl
p

when µ = 0:

xh − xl
p

<
R

c
⇐⇒ B − xlc

p
< B +R− xhc

p
⇐⇒ π0

a(
xl
p

) < π0
a(
xh
p

)

3.2.2 Optimal revelation policy

In deriving the optimal revelation policy, Ely and Szydlowski (2020) consider the effect

of using information as a carrot to get the agent to produce effort. Telling the agent that

she will receive information about the true state of the world after producing xl units will

be an incentive in itself. To investigate this, we first define the benefit to the agent of full

information disclosure after xl
p

units of effort:

V (µ) = µR + (1− µ)[R− cxh − xl
p

]

With probability µ the agent is told that the true state is xl, stops working, and

receives benefit R and with probability 1 − µ the agent is told that the true state is xh

and keeps working until then because of assumption 2.

The cost to pay for this information is that the agent must work until xl
p

effort has

been provided and she must hence give up cxl
p

. The range of priors for which the agent is

willing to provide xl
p

units of effort and get the full information revelation is hence:

V (µ)− cxl
p
≥ 0

We may hence define µ̃, the smallest value of µ for which the agents is willing provide

xl
p

units of effort to receive the information as:

R− (1− µ̃)(c
xh − xl

p
)− cxl

p
= 0
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Or after simplifying:

µ̃ =
xh − pR

c

xh − xl

Note that given assumption 2, we have that µ̄ > µ̃.

Ely and Szydlowski (2020) prove that if µ > µ̃ the the principal can do better than

fully revealing the state after an effort of xl
p

has been provided by sending a signal instead.

They call the information structure which the principal optimally employs the “leading

the agent on”(LEAD) strategy. For the remainder of this chapter we will focus exclusively

on this case by assuming that:

Assumption 6. µ > µ̃

Since there is slack in assumption 6, the optimal strategy involves telling the agent

that she will receive a signal s after xl units have been produced. This signal will extract

as much of the agent’s surplus as is possible. The probability structure of this signal is:

Table 3.1: Signal structure

x = xl x = xh
s = xl 1− q 0
s = xh q 1

The signal s discloses the true state xh if xh is the true state, and says that the state is

xh with probability q and xl with probability 1− q if the true state is xl. After receiving

a signal of xl, an agent knows with certainty that the true success threshold is xl and will

stop working. After receiving a signal of xh, the agent does not with certainty know what

the state is. If we can ensure that the agent complies with the signal’s outcome (provides

xh
p

if the signal outcome is xh) then the principal can extract more effort from the agent

than under full information by making q as large as possible.

We will hence need two familiar conditions to hold, an Individual Rationality constraint

(IR) and an Incentive Compatibility constraint (IC). The IC constraint will ensure that
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the agent complies with the signal outcome. The IR constraint will ensure that it is

(weakly) profitable for the agent to start providing effort and go until xl
p

to receive the

information given that the IC constraint holds.

Starting with the IC constraint, the agent will always comply with the signal if the

signal realization is xl since this implies that the state is xl with probability 1. However

the reason for why an IC constraint is necessary is that the agent will not always comply

with the signal if the signal realization is xh. The trade off for the agent is between

receiving B +R− xhc
p

from working until xh
p

and receiving B +R(1−P (xh|s = xh))− xlc
p

from staying at xl
p

. This means that in order for the agent to comply we need:

B +R− xhc

p
> B +R(1− P (xh|s = xh))−

xlc

p

Which we may rewrite to:

P (xh|s = xh) > c
xh − xl
pR

Writing this in terms of q and µ we get since P (xh|s = xh) = 1−µ
1−µ+qµ

:

1− µ
1− µ+ qµ

> c
xh − xl
pR

Simplifying this we get a constraint on q:

q < [
1− µ
µ

][
1− cxh−xl

pR

cxh−xl
pR

] = q∗IC (3.5)

Given the above IC constraint we can now evaluate the IR constraint. Notice that

should the IC constraint not hold, then the agent may choose not to work until xh
p

upon a

signal realization of xh which would change the trade off. Now, with this signal structure

the agent knows the probabilities of the signal realizations and hence the willingness to

start working at 0 effort provided is determined by a different condition on µ than when
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full information was provided. The agent knows that with probability µp = (1− q)µ, the

probability of a signal realization of xl, she will stop at xl
p

and the condition is hence:

V (µp)− c
xl
p
≥ 0

Which becomes the following condition on q:

q <
R− cxh

p
+ µcxh−xl

p

µcxh−xl
p

= q∗IR (3.6)

Combining the IC and IR conditions we can show the following:

Proposition 7. Under assumptions 4, 5, and 6 and if:

i) µ < µ̄

Then the IR constraint (3.6) is the binding inequality and hence the optimal distortion

level q∗ is q∗IR. This leads to the agent’s ex-ante utility being set to zero. The agent

completes the task with probability one.

ii) µ > µ̄

Then the IC constraint (3.5) is the binding inequality and hence the optimal distortion

level q∗ is q∗IC . This does not lead to the agent’s ex-ante utility being set to zero but the

agent still completes the task with probability one.

Proof. We start by comparing q∗IC and q∗IR:

q∗IR
q∗IC

=

R−cxh
p

+µc
xh−xl
p

µc
xh−xl
p

[1−µ
µ

][
1−cxh−xl

pR

c
xh−xl
pR

]

=
1− c xh

pR
+ µcxh−xl

pR

(1− µ)(1− cxh−xl
pR

)
(3.7)

Working with the denominator we can see that:

1− c xh
pR

+ µc
xh − xl
pR

= (1− µ)(1− cxh − xl
pR

)− c xl
pR

+ µ
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Plugging this into (3.7) we get:

q∗IR
q∗IC

=
(1− µ)(1− cxh−xl

pR
)− c xl

pR
+ µ

(1− µ)(1− cxh−xl
pR

)

Notice that 1 − cxh−xl
pR

> 0 by our assumption 5, which means that the fraction is

clearly bigger than 1 if −c xl
pR

+ µ > 0. In other words:

q∗IR > q∗IC ⇐⇒ −c xl
pR

+ µ > 0 ⇐⇒ µ > µ̄ (3.8)

Since both the IR and IC constraint must hold it must be that q∗ = q∗IC iff µ > µ̄.

When we have µ < µ̄ then q∗ is optimal in that it extracts all the agent’s surplus so

there cannot exist a better strategy for the principal. This is because the IR constraint

binding equates to the agent being indifferent between getting 0 and taking part of the

mechanism.

When we have µ > µ̄ the agent will still comply with the signal outcome and hence

complete the task with probability one. There cannot exist a better information revela-

tion strategy for the principal because once xl has been reached we have maximized the

probability that the agent continues to xh
p

. Sending a signal at time 0 which tells the

truth about xh would make it so that the agent will sometimes not start and hence not

complete the task with probability 1 which means that we cannot do better than using q∗.

Telling the truth about xl means that we cannot make the agent more pessimistic about

xl and hence we can not improve our q∗.

This proposition agrees with Ely and Szydlowski (2020) for µ < µ̄ but when µ > µ̄ the

incentive constraint binds before the IR constraint and hence the proposition disagrees

with it in that you cannot extract all the surplus from the agent. A comment must be

made here in regards to the Ely and Szydlowski (2020) model in which the authors do not

consider an IC constraint. It is not clear whether such a constraint is necessary in their

setup but the logic above makes it clear why we need it here. Perhaps further inspection
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of the model of Ely and Szydlowski (2020) with this IC constraint in mind is necessary.

3.3 Experimental design and implementation

Section 3.2 presented the optimal information structure, denoted by LEAD, in a dis-

cretized version of the binary setting of Ely and Szydlowski (2020). The optimality of the

information structure depends on the agents responding to it in the theoretically optimal

way. However, as mentioned in the introduction, it is not clear how well this strategy will

perform in the laboratory with subjects responding to it. Hence, we design a laboratory

experiment to test how agents respond to being lead on and to other focal information

structures about the threshold x. We further design it to test whether attribution influ-

ences the amount of effort invested into a task. We will now formalize these goals into

testable hypotheses and discuss our design choices.

In the implementation, we use a version of stated effort. This is because in order

to define the optimal information revelation as elaborated on in section 3.2, we require

a constant and known cost of effort and in the “stated-effort approach [...] there is no

uncertainty regarding an individual’s cost of effort” (Charness et al., 2018). Subjects have

to decide how many consecutive periods to participate in by, starting in the first period,

choosing to continue or stop participating. Choosing to participate incurs a cost of c = $1

that is deducted from a budget of B = $10 that each subject is endowed with. Subjects

will win a reward R = $8 if they participate for sufficiently many periods. How many

periods are sufficient is randomly determined before subjects begin making participation

choices. It is either xl = 5 periods with probability µ = 2
3

or xh = 9 periods with

probability 1− µ = 1
3
. In this way we create a common prior for all the subjects. We call

the last period in which participation is necessary to win the reward the threshold period.

In choosing this set-up, we are implicitly setting p = 18. The Sender earns r = $1.50

8Note that this is another reason for not opting for subjects to complete real-effort tasks. The
productivity of subjects would have varied, once again making it impossible to calculate the optimal
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for each period the Receiver participates in. The numbers have been chosen to conform

with all the assumptions made in section 3.2. Theoretically this problem is equivalent to

the effort provision setup but is general enough so as to not influence subjects’ decisions

by creating associations. Also, we will rename the principal to “Sender” and the agent

to “Receiver” in our implementation to conform with existing experimental literature on

information design.

As outlined in the introduction, our interest lies in the Receivers’ behavior so we

do not care how Senders choose information structures and, hence, do not allow them

to freely choose how and when to send information. Instead, we provide the Senders

with the following discrete list of strategies. Limiting the choice of the Senders to a list

is attractive from an implementation standpoint due to findings from Fréchette et al.

(2019). In a laboratory setting they test, amongst other things, Bayesian Persuasion

and show that the Sender behavior is very heterogeneous, with a large group of subjects

over-communicating and another large group of subjects under-communicating. Since

even in their one-dimensional setting there is a wide range of chosen signal structures,

adding the time dimension would likely result in too much heterogeneity to statistically

compare the performances of the different structures. The following is the list chosen for

our implementation:

Information Structures:

A - Full information before period 1

B - No information

C - Partial information after 5 periods

D - Full information after 5 periods

Information structures A and D can be seen as benchmarks in that they illustrate the

benefits of just delaying information as opposed to both delaying and obfuscating as in C.

information revelation.

69



The Sender obfuscates information in C by reporting a signal realization. The underlying

signal structure is depicted in table 3.1 in section 3.2, and setting q = q∗ is the LEAD

strategy. For our implementation we choose q = 2
3
, which is only approximately equal to

LEAD. Setting q = q∗ would make the subject exactly indifferent between continuing to

9 and stopping participation. We allow for some slack so that continuing is strictly better

than stopping after 5 periods. This choice of q satisfies both our IC and IR constraint as

defined in equations (3.5) and (3.6). Note that when we explain information structure C

to the subjects in the instructions (see section 1.6.2), we give the updated probabilities

of each state after receiving the message “The threshold period is 9.” The reason we do

this is that information structure C is difficult as it is. Receivers are informed about the

timing and the signal structure. Then, based on their prior they have to make a choice

about whether to start participating or not. Finally, they have to use Bayesian updating

after receiving the signal, if they have chosen to participate long enough to receive the

message, and use this updated information to make a choice about whether to continue

participating or stop. Experimental papers including Tversky and Kahneman (1973) and

Charness and Levin (2005) provide convincing evidence that subjects in the laboratory

have difficulty using Bayesian updating correctly9. We are not concerned with this and,

hence, reduce the complexity of the structure by an aspect that we already know subjects

are not good at. As a final remark, B is included to not make D seem like an acceptable

compromise.

The risk neutral optimal response by the agents to these informations structures is as

follows:

Optimal Response:

A - Participate for 5 periods if the threshold period is revealed to be 5 and participate

for 0 periods if it is revealed to be 9

B - Always participate in 5 periods

9A more extensive list can be found in the introduction of the latter paper.
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C - Participate for 5 periods if the signal realization is 5 and participate for 9 periods

if it is 9

D - Participate for 5 periods if the threshold period is revealed to be 5 and participate

for 9 periods if it is revealed to be 9

We are now equipped to formulate our first goal of the experiment into a testable

hypothesis:

Hypothesis 1. (Compliance) Receivers respond optimally to the choice of information

structure as defined above.

A plausible reason for hypothesis 1 not to hold is positive and negative reciprocity10.

As mentioned in the introduction, in experimental labor markets it has been shown, for

example by Charness (2004), that agents punish their principals if they suggest a wage

rate that is perceived as unfair and reward their principals by additional effort provision if

they suggest a wage rate that is perceived as generous. This behavior was in comparison

to the benchmark where the wage rate was randomly drawn or set by the experimenter.

While these effects of positive and negative reciprocity caused by attribution have so far

only been shown when the principal could directly determine a payoff-relevant variable,

we are interested to test whether this plays a role in participation choices of the Receiver

in our setting when the Sender chooses when and how much information to send. To test

this we need a comparison of Receiver behavior when the information structure is chosen

either by a computer or by a participant Sender. In the implementation of our experiment

we are limiting ourselves to one treatment where the Sender’s choice is implemented with

50% probability and a random computer choice is implemented with 50% probability.

This is different from Charness (2004) where in one treatment, the employers’ choices

are implemented and in the other treatment, a random process (or the experimenter)

10We shall adhere to Charness’s definition of reciprocity in that it is “the degree to which an intentional
choice by a self-interested party induces a change, relative to the same choice being made without that
party’s volition, in a responding party’s willingness to sacrifice money to help her” Charness (2004).
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determines the wage rate. When the wage is not determined by the employers, they

do not have any impact on the experiment and exist for the sole purpose of receiving a

payoff based on the effort choices of the employees, a problem which we eliminate with

our setup as every Sender always has to make a choice that could be implemented. Of

course, the Receiver is informed about whether the amount and timing of the information

was selected by another subject in the role of the Sender or by the computer (see Figure

1.9 in section 1.6.1) so that we can see whether it has an impact. This allows us to test

the following hypothesis:

Hypothesis 2. (Reciprocity) Receivers respond with positive reciprocity when the Sender

truthfully reveals the threshold period either before the Receiver needs to make choices or

after 5 periods and Receivers respond with negative reciprocity when the Sender addition-

ally obfuscates or never sends any information.

Let us now provide some more detail about the actual implementation of our exper-

iment in the laboratory. Each subject takes part in two Sender-Receiver interactions.

In one interaction, the subject takes on the role of a Sender and is paired with another

subject taking on the role of a Receiver and vice versa. A subject does not learn anything

about the outcome from the interaction in which she was the Sender before having to

make her choice as a Receiver. No participant faces the same other participant in both

these interaction. While this setup allows us to only obtain one observation from each

subject, we are guaranteed that learning or reacting to past experiences does not impact

our data.

Each interaction consists first of an information stage, and then of a participation

stage made up of ten periods. In the information stage (see figure 1.8 in section 1.6.1),

the Sender has to choose one of the four information structures introduced above. After

choosing, different than in the model introduced in section 3.2, the Sender does not learn

the true threshold. This is because if the Sender’s choice is selected to be the structure

according to which the Receiver receives information, it is implemented by the computer
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so that the Sender cannot make any mistakes in implementing it11. In the participation

stage, the Receiver has to choose after how many periods to end participation and with

it the interaction. The interaction ends either if the Receiver has spent her entire budget,

i.e. participated in 10 periods, or if the she chooses not to participate in one of the ten

periods. The Receiver is provided with all the necessary information to make her choice

(see figures 1.10, 1.11, and 1.12 in section 1.6.1).

The true threshold period along with the number of periods that the Receiver has

chosen to participate in determines the earnings for the Sender and Receiver for an inter-

action. The earnings functions are given by:

πR = B + 1[x ≤ e]R− ce

πS = re

Subjects are paid the earnings of one of the two interactions, randomly determined,

along with a $5 show-up fee. Detailed paper instructions (included in section 1.6.2) were

handed out before the beginning of the experiment. Subjects kept and could refer to the

instructions until the end of the experiment. After the instructions were read out, the

subjects had to answer a series of understanding questions. Subjects could not move on to

the next part of the experiment without answering all of these correctly. Subjects played

5 practice rounds before the start of the two payoff-relevant interactions. Each of these

practice rounds also consisted of two interactions, but subjects played against themselves.

We ran 7 sessions in the Brown University Social Science Experimental Laboratory

(BUSSEL) in March 202012. Participants were students from Brown University and the

Rhode Island School of Design (RISD), recruited through the BUSSEL website. A total

of 126 subjects participated in the experiment. Each experimental session lasted between

11This is in accordance with Fréchette et al. (2019).
12We ran an 8th session but one of the subjects chose to leave the session while it was running.

Consequently, we were not able to collect data from the 19 participants in that session.
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45 minutes and one hour. Average earnings, including a $5 show-up fee, were $14.13. The

experiment was programmed and conducted with the experiment software z-Tree (Fis-

chbacher, 2007). Table 3.2 provides an overview of the data we have collected. The“Total”

column provides the number of observations of each information structure/threshold pe-

riod/message combination. In the “Sender” and “Computer” columns, these numbers are

split up based on whether the info structure was chosen by the Sender or the computer.

The rightmost column as well as “Sender total” and “Computer total” provide aggregate

observation numbers for each information structure.

Table 3.2: Data overview

Info Threshold Message Sender Sender Computer Computer Total
struc- period total total
ture

A
5 5 9

14
10

11
19

25
9 9 5 1 6

B
5 - 2

4
13

19
15

23
9 - 2 6 8

C
5

5 13
25

13
20

31
459 3 2

9 9 9 5 14

D
5 5 10

17
11

16
21

33
9 9 7 5 12

60 66 126

3.4 Results and discussion

In this section we present the two main sets of results of our experiment in response to

the two hypotheses laid out in section 1.3. The first set of results deals with how well

subjects comply with the theoretically predicted behavior, as outlined in hypothesis 1. To

answer this, we consider the data as a whole and pool the data from when the information

structure is chosen by a Sender and by the computer. We also provide some insight on our

findings through the lens of risk aversion. Our second set of results addresses the existence

of reciprocity in the choices of the Receivers in response to hypothesis 2. To answer this
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we split the data set into observations where the information structure was chosen by

the Sender and where the information structure was chosen by the computer. Comparing

these two subsets of our data allows us to see whether there is a causal attribution effect,

and more specifically whether the choices exhibit reciprocity.

3.4.1 Compliance

To understand compliance it is best to first examine the choices made as a whole. Figure

3.1 shows the choices made by the Receivers as well as the theoretically optimal behavior.

The size of the blue circles illustrates the number of participants who made the choice.

The larger the circle the more participants chose a structure. The category shows the

info structure and the message sent13. As a reference we reiterate the list of information

structures from the previous section:

Information Structures:

A - Full information before period 1

B - No information

C - Partial information after 5 periods

D - Full information after 5 periods

Figure 3.1 makes clear that the compliance rates are quite different across the infor-

mation structures. 100% of subjects optimally responded to receiving the message “The

threshold period is 5.”and 66.67% to“The threshold period is 9.”under information struc-

ture A. Only 26.10% of subjects responded optimally to information structure B. 65.38%

of subjects optimally responded to receiving the message “The threshold period is 5.” and

63.16% to “The threshold period is 9.” under information structure C. 95.24% of subjects

optimally responded to receiving the message “The threshold period is 5.” and 66.67%

13B has no message to the Receiver so is not split into two.
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Figure 3.1: Optimal and chosen number of periods participated in

to “The threshold period is 9.” under information structure D. Across all information

structures and messages, 68.25% of the subjects responded optimally to the information

they received. There is a direct relationship between the compliance rates and the infor-

mativeness of the information structure. A, which is the most informative, had the best

compliance rate followed by D which is less informative due to the time delay. C had

an even worse compliance rate and B had by far the worst. These aggregate rates are

displayed later in table 3.3.

Given the compliance rates of the subjects, we now compare how well the different

information structures perform compared to one another. Figure 3.2 shows the optimal

average number of periods participated in and was weighted using the realized probabilities

of each of the states and messages.

There is also a trend in the average periods participated in comparison to the optimal

average. When presented with information structure A subjects actually on average par-

ticipate in more periods than would be theoretically optimal. However, for the remaining

three structures, the average actual number of periods participated in is lower than the op-

timal number, where the gap is strictly increasing in the amount of uncertainty contained

in the information structure. Overall, D, i.e. providing full information after 5 periods,
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Figure 3.2: Optimal and chosen average number of periods participated in

outperforms all other information structures. Note that this is true even though some

subjects chose to participate in 10 periods after receiving information structure C. On

the other hand upon getting C many subjects chose to stop immediately after 0 periods

which is the driving force behind D outperforming C. We conclude that the knowledge

that the information received after period 5 is accurate makes the subjects more willing

to start participating. This speaks against the theoretical findings of section 3.2 which

suggest C is optimal.

Let us now present a quantitative analysis of this qualitative result by checking whether

the number of periods participated in for each information structure is significantly dif-

ferent from the optimal amount. Table 3.3 shows that just as illustrated in figure 3.2 the

actual number of periods participated in is significantly lower than the optimal number

of periods participated in for information structures B and C. A and D have actual

means insignificantly different from the theoretical optimum. Both C and D outperform

information structures A and B significantly, but as can be seen in the table the average

periods participated in for D is insignificantly larger than that of C14. This is an impor-

tant point to emphasize since this shows that the only real benefit for the Sender comes

14With a p-value of 0.255.
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from delaying the information, and the addition of obfuscation does improve her outcome.

Table 3.3: Optimal and chosen average number of periods participated in by info structure

Actual Optimal Diff Compliance
mean mean

Periods participated in for A 4.2 3.8 0.4 92.00%
(25) (0.2957)

Periods participated in for B 3.26087 5 -1.73913** 26.10%
(23) (0.0370)

Periods participated in for C 5.35556 6.68889 -1.33333** 64.44%
(45) (0.0125)

Periods participated in for D 5.78788 6.45455 -0.66667 84.85%
(33) (0.1098)

The numbers in parentheses under the means are numbers of observations. The number in
parentheses under the difference is the p-value. Estimates are from one-sample t tests where
we compared the actual mean to the optimal mean. Note that ** indicates p < 0.05.

To summarize, for the two structures with accurate information about the true thresh-

old period, subjects did not participate in a number of periods that was statistically sig-

nificantly different from the optimal number, while in the two structures with either no

information or sometimes wrong information about the true threshold periods, subjects

participated in statistically significantly fewer periods than optimal. There is hence an

effect on the difference between average actual and actual optimal participation of the

informativeness of the information structure. In addition, as mentioned earlier and as can

be seen from the final column in table 3.3, informational content also has an effect on the

compliance rate in that it is increasing in informativeness of the information structure. We

will explore this finding in regards to risk attitudes shortly. First we finish the compliance

data by showing the proportion of subjects who chose what information structure.

Table 3.4: Frequency of each information structure

Information Structure Percentage Number
A 22.22% 28
B 11.11% 14
C 34.13% 43
D 32.54% 41

Table 3.4 summarizes how frequently each information structure was chosen by par-
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ticipants in the role of Senders, even though not all of these structures ended up being

implemented. Information structures C and D were by far the most popular information

structures to choose. These two structures theoretically predict the highest amount of

participation in expectation under risk neutrality and it seems that subject Senders ex-

pected to achieve the highest participation by choosing either of these two information

structures. This does not only show that the majority of subjects correctly understood

our set-up but also that the theoretical results practically appealed to subjects.

Risk attitudes

As previously mentioned, the participation choices depicted in figure 3.1 seem to suggest

that choices are driven by different risk attitudes of subjects, especially since the compli-

ance is a function of information (and timing). The optimal response in the figure was

calculated assuming risk neutrality. Let us extend our compliance analysis by allowing

for different risk attitudes using the CARA utility realization15:

u(c) =


−1
r
exp(−ry) for any r 6= 0

y if r = 0

The parameter r indicates whether an agent is risk-neutral (r = 0), risk-averse (r > 0),

or risk-loving (r < 0).

For information structure A, risk attitudes do not impact the optimal choices. For

any value of r, the agent should participate in 5 periods if the threshold period is revealed

to be 5 and should participate in 9 periods if the threshold period is revealed to be 9.

For information structure B, there are only two potential optimal choices: partici-

pating in 0 periods or participating in 5 periods. Participating in 0 periods is optimal

if r > 0.045 and participating in 5 periods is optimal if r ≤ 0.045. Note that going to

9 is never optimal because it leads to a guaranteed payoff of 9 which is smaller than a

15The functional form for CARA was adapted from Barseghyan et al. (2018).
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guaranteed payoff of 10 from not starting to participate.

For information structure C, we have to start with the choice at period 5. If the

message is that the threshold period is 5, then the agent should stop participating. But

if the message is that the threshold period is 9, then risk attitude determines whether it

is more optimal to stay at 5 or go to 9. It is optimal to stay at 5 for r < −0.10 and it

is optimal to go to 9 if r ≥ −0.10. To conclude the analysis of the optimal strategy, we

have to see what the agent chooses at period 0 given what they would choose at period

5. For r < −0.10, the agent will optimally start and then stop at 5 no matter what the

message. For −0.10 ≤ r < 0.474591, the agent will start and stop at 5 after receiving the

message that the threshold period is 5 and continue until 9 after receiving the message

that the threshold period is 9. And for r ≥ 0.474591, the agent will never start.

For information structure D, if the agent has participated until receiving the message,

then she will always conform with the message. This leaves the decision whether she will

start to participate or not. She will choose not to participate for r > 1.07146 and will

choose to start participating for r ≤ 1.07146.

We summarize the optimal participation choices for all values of r separately for each

information structure in figure 3.3.

Let us denote the ranges from left to right as I (risk-loving), II (close to risk neutral),

III (slightly risk-averse), IV (very risk-averse), and V (extremely risk-averse)16. For risk-

category I, D induces the highest participation in expectation. This is because for the

LEAD strategy, risk-loving agents are willing to take a gamble and stop participation after

5 periods if they get a message that the true threshold period is 9. For risk categories II

and III, C - our approximate LEAD strategy - is expected to induce the highest amount

of participation in expectation, for risk category IV , D is expected to induce the highest

amount of participation in expectation. This is because agents faced with LEAD decide

to never start participating. For risk category V , A is the only information structure that

16We have used the optimal responses to each information structure and message according to risk
category II to calculate the optimal in figures 1 and 2 and in table 3.
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Figure 3.3: Optimal participation choices for all values of r

induces in expectation a non-zero amount of participation and, hence, leads in expectation

to the highest amount of participation. We reproduce figure 3.1 and figure 3.2 given the

optimal choices for each risk-profile separately in figures 3.4 and 3.5 respectively.

We can also re-derive the compliance rates assuming each different risk-attitude level.

These are summarized in table 3.5.

Table 3.5: Compliance rate for each different risk attitude category

Information I II III IV V
structure
A 92% 92% 92% 92% 92%
B 26.10% 26.10% 52.17% 52.17% 52.17%
C 20.00% 64.44% 64.44% 22.22% 22.22%
D 84.85% 84.85% 84.85% 84.85% 6.06%
Total 60.32% 68.25% 73.02% 57.94% 37.30%

We can see that the largest overall compliance happens if we assume that the risk

parameter r of subjects was laying in risk-attitude category III. Experimental findings

have actually shown that real-life coefficients of absolute risk-aversion lie in this interval

of r. Take as example Beetsma and Schotman (2001) who estimate the CARA parameter

to be r = 0.12.
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Figure 3.4: Optimal and chosen number of periods participated in by information choice
and message, by risk level

82



Figure 3.5: Optimal and actual average number of periods participated in by information
structure, by risk level
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The most interesting analysis happens however if we allow subjects to display varying

degrees of risk-attitude, in which case we can explain 88.89% of all Receivers’ decisions17.

In addition, if we limit ourselves to these 88.89% and regions II, III, and IV and re-

calculate the theoretical optimal of C by adding together the weighted optimals in each

region, we get a theoretical average of 5.01 which is not statistically significantly different

from what our subjects actually chose. In other words, allowing for a reasonable range of

heterogeneity in risk attitudes makes information structure D theoretically optimal since

it’s optimum is the same across II, III, and IV . Heterogeneity in risk attitudes hence

provides a reasonable explanation for the behavior which we find in our compliance sec-

tion. In addition, this highlights a potentially important point about information design

in that it fails to account for said heterogeneity, making it potentially not a good guide

in practice.

3.4.2 Reciprocity

To isolate the reciprocity effect we compare the data in which the Sender’s choice was

implemented against the data in which the computer randomized the choice. Table 3.6

presents a summary of how the average number of periods participated in varies by the

information structure the Receiver faced, the true threshold period, as well as by who chose

the information structure. We can see that the average number of periods participated

in is weakly higher for every information structure and threshold period whenever the

information structure was chosen by a participant Sender compared to the computer. A

possible explanation of the phenomenon is that the Sender is more present in the Receivers

mind when the information structure was chosen by the Sender. This however does not

seem like a very convincing explanation since during the practice rounds, each subject

takes on the role of Sender and Receiver and also acts as the Sender during the first

17The choice of participating in 5 periods after receiving full information that the threshold period is 9
immediately or after 9 periods, participating in 9 periods when receiving no information or after receiving
the message that the state is 5 from information structures C or D, or participating in 10 periods cannot
be explained with risk-attitudes.
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interaction of the payoff-relevant round. Clearly altruism can also play a role but as long

as it is not too heterogeneous between the two groups it should be controlled for in the

comparison.

Table 3.6: Average number of periods participated in by information structure, true
threshold period, and who chose the information structure

Information Threshold Sender Computer
structure period

A
5 5.00 (9) 5.00 (10)
9 1.22 (5) 0.00 (1)

B
5 4.50 (2) 3.23 (13)
9 4.50 (2) 2.50 (6)

C
5 5.13 (16) 4.47 (15)
9 6.67 (9) 6.40 (5)

D
5 5.40 (10) 5.00 (11)
9 8.42 (7) 4.60 (5)

The number of observations in each cell is in parentheses.

This qualitative finding is confirmed by a quantitative analysis, the results of which

are depicted in table 3.7. In the first specification we can see that overall, the number of

periods participated in is significantly higher when the information structure was chosen

by the Sender rather than the computer. Given the large difference in the occurrences of

B in the second specification, we exclude info structure B in our comparison of average

periods participated in. While the mean is still higher when the Sender chose the infor-

mation structure than when the computer chose it, the difference is no longer statistically

significantly different.

Based on our analysis in the previous section, we are most interested in the information

structures C and D which had the surprising result that D outperforms C. The next two

specifications compare the average number of periods participated in just for C and D.

We can see that the number of periods participated in for C is not statistically significantly

different depending on whether the information structure was chosen by the Sender or the

computer but for D it is. In the last two specifications we can see that this difference is

largely driven by the behavior of subjects when the state is 9. To illustrate the behavioral
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Table 3.7: Difference in periods participated in based on whether the information structure
was chosen by the computer or by a participant Sender

Sender Computer Diff
mean mean

Periods participated 5.4667 4.3030 1.1636**
(60) (66) (0.0345)

Periods participated (excluding B) 5.535714 4.829787 0.7059271
(56) (47) (0.2041)

Periods participated (only C) 5.68 4.95 0.73
(25) (20) (0.4838)

Periods participated (only D) 6.647059 4.875 1.772059**
(17) (16) (0.0273)

Periods participated (only D, state = 5) 5.4 5 0.4
(10) (11) (0.3062)

Periods participated (only D, state = 9) 8.428571 4.6 3.828571*
(7) (5) (0.0598)

The numbers in parentheses under the means are numbers of observations. The
number in parentheses under the difference is the p-value. Estimates are from two-
sample t tests with unequal variance. Note that * indicates p < 0.1 and ** indicates
p < 0.05.

difference, we have re-produced figure 3.1 separately for when the info structure was chosen

by the computer and when it was chosen by the Sender in figure 3.6.

Due to the different realized distributions of structures and realizations, let us compare

the difference between average actual and optimal number of periods participated in by the

Receivers, separately for the computer and subject Senders. The results are depicted in

figure 3.7, where the information structures are ordered by their“informativeness”. We can

see that when the Sender chooses the information structure, then the Receiver participates

on average in more periods than optimal following information received according to

structure A and the optimal amount following information received according to structure

D. We can also surprisingly see that the gap when the info was sent by a subject Sender

is smaller for structure B than for structure C.

We can further see that when the computer chooses the information structure, then

the Sender participates on average the optimal number of periods following information

received according to structure A and fewer than the optimal number of periods follow-
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Figure 3.6: Optimal and chosen number of periods participated in by information choice
and message, by who chose the info structure

Figure 3.7: Optimal and chosen number of periods participated in by information choice

ing information received according to any other information structure. The difference

decreases in the amount of information communicated to the Receiver. Let us interpret

these findings in terms of the reciprocity definition by Charness (2004), referenced in

footnote 9. Receivers exhibit positive reciprocity towards the Sender if the Sender chose

information structure A. This effect is statistically significant at the 10% level with a

one-sided alternative. Note that this finding is not robust to outliers. Consider figure 3.6.

What drives the difference is that some subjects respond with participating in 5 periods to

receiving the message “The true threshold period is 9.” in information structure A. This

behavior seems to be a mistake. Even if the subjects who made this choice had wanted to
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benefit the Sender, they could have improved both their own and the Sender’s payoff by

continuing participation all the way to 9. Changing it to 9 would increase the Receiver’s

payoff by $4 and the Sender’s payoff by $6. Eliminating these observations leads to perfect

compliance with A, 5 and A, 9 no matter who sends the information structure. We hence

conclude that there is no positive reciprocity in information structure A. We might want

to interpret the behavior in response to information structure D as positive reciprocity

since the difference is also significantly different at the 10% level. All the subjects are

willing to participate in a positive number of periods. Moreover, in response to D, 5, some

subjects are willing to participate in 9 rather than 5 periods, which increases the Sender’s

earnings by $6 while it reduces own earnings by $4. However, we might be hesitant to

call this reciprocity since the average participation coincides with the theoretical optimum

when the Sender chose the information structure. Hence, there is an attribution effect

(the fact that the sender chose as opposed to a computer randomizing has an effect) but

reciprocity does not seem to be the correct concept to describe it. For C, the difference is

not statistically significant and for B, we have collected so few observations with a subject

Sender that a conclusion is not possible.

3.5 Conclusion

Ely and Szydlowski (2020) recently made an interesting contribution to the Bayesian

Persuasion literature by analyzing a principal-agent setup where the principal provides

information, as opposed to monetary incentives, to extract effort from the agent. We have

discretized their binary framework and studied it in the laboratory. Our results show that

subjects do not deviate from the theoretically optimal responses when presented with full

information before acting - which is equivalent to the typical Bayesian Persuasion setting

- or delayed full information. However, subjects exert less effort than predicted when

presented with no information or delayed partial information. The informativeness of
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the principal’s choice of information structure can then be seen as immediately affecting

the willingness of agents to comply with the theoretical optimum, and in addition the

informativeness also affects how far away the average participation is from the theoretical

optimum. Additionally we find that there is no real additional benefit to the use of a signal

rather than providing the agents with full information when using delayed information

disclosure. This calls into question the optimality of Ely and Szydlowski’s LEAD strategy

in practice. We provide a plausible explanation for this in allowing for heterogeneity of risk

attitudes among our subjects. In doing so we are able to explain 88.89% of their choices

and we also find that by recalculating the theoretical optima with this heterogeneity in

mind, the LEAD strategy is beaten by delayed full information both theoretically as well

as in practice. This suggests and important avenue for further research in finding the

theoretically optimal information disclosure policy under heterogeneous risk attitudes.

While we expected to see a similar response to that of the subjects in Charness (2004)

in that for the better information structures the response would be positive reciprocity

and negative for the worse information structures, we find no such result. There seems

to be a clear attribution effect for information structure D in which the true state of the

world is revealed after 5 periods, but it does not fall in line with the behavior discussed

by Charness which would see the subjects playing the theoretical optimum against the

computer. We observe the subjects playing the theoretical optimum when another subject

sent the information and much less than is optimal when faced with the computer. It

should also be mentioned that in the wage rate setting of Charness it is much clearer

what constitutes “nice” and “bad” behavior on the part of the principal which is setting

a higher and lower wage rate respectively. In our setting it is perhaps not immediately

clear what would be the representative “nice” and “bad” behavior, which would explain

why we do not observe the reciprocity and punishment we expected. The main take-away

from this is that in real-life settings where the principal only provides information as an

incentive, the principal can act closely to the optimal without punishment concerns.
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3.6 Appendix

3.6.1 Screenshots

The following figures show the relevant screenshots from our experiment. Figure 3.8 shows

the Sender’s decision screen during the information stage of the interaction. Figure 3.9

shows the first screen of the participation stage on which the Receiver is informed about

according to which information structure she will receive information about the threshold

period and about whether this information structure was chosen by the Sender or by the

computer. Figures 3.10 and 3.12 show the Receiver’s decision screen before and after the

Receiver has received a message. Figure 3.11 gives an example of a message screen.

Figure 3.8: Sender’s decision screen

Figure 3.9: First screen of participation stage
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Figure 3.10: Receiver’s decision screen before she receives a message

Figure 3.11: Message screen

Figure 3.12: Receiver’s decision screen after she receives a message
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3.6.2 Experimental instructions

In this section of the appendix, we reproduce the experimental instructions. A copy of

these was handed out to the participants after they signed a consent form but before the

experiment started. These instructions were read out aloud.

Overview

This experiment consists of interactions between an agent who sends information (a

Sender) and an agent who receives and acts on the information (a Receiver).

The act in question is that the Receiver must choose how many consecutive periods to

participate in. To this end, in each period, the Receiver can choose to continue participat-

ing or end the interaction. Choosing to participate in a period incurs a cost, which is paid

for using a budget that the Receiver is endowed with. The Receiver will win a reward if he

or she participates for sufficiently many periods before ending the interaction. How many

periods are sufficient to win the reward is randomly determined before the start of the

interaction, and it can be either 5 with probability 2/3 or 9 with probability 1/3. We will

refer to the number of the last period a Receiver must participate in to win the reward as

the threshold period, so if the Receiver will win the reward after participating in 5 periods,

we call the threshold period 5, and if the Receiver will win the reward after participating

in 9 periods, we call it 9. We will call this part of the interaction the Participation Stage.

The information that the Sender can send to the Receiver is regarding this unknown

threshold period. The Sender instructs the computer on when and how much information

about the threshold period is going to be sent to the Receiver. We call this part of the

interaction the Information Stage, and it precedes the Participation stage.

An interaction then goes as follows. First the threshold period is randomly determined

but not revealed to either of the two agents. Then follows the Information Stage, and

then the Participation Stage.

You will take part in two interactions. In the first you will take on the role of the
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Sender for another participant in this room who takes the role of the Receiver. In the

second you will take on the role of the Receiver and will be paired with another participant

who takes on the role of the Sender. You are guaranteed not to face the same participant

in both of these interactions and both interactions are anonymous.

We now explain each of the stages in detail and then explain how the earnings are

calculated.

Stage 1: Information stage (You are the Sender)

In this stage, the Sender instructs the computer on when and how to send information to

the Receiver about the threshold period. There are four possible information structures,

i.e. ways in which the computer communicates information about the threshold period to

the Receiver, the Sender can choose from:

A) Full information at the beginning of the participation stage:

The computer will send the message “The threshold period is 5.” if the threshold

is drawn to be the 5th period and will send the message “The threshold period is

9.” if the threshold is drawn to be the 9th period. The message is sent right at the

beginning of the participation stage.

B) No information:

The computer never sends a message with information about the true threshold

period.

C) Partial information after period 5 :

The computer can send the message “The threshold period is 5.” or “The threshold

period is 9.” If the computer sends the message“The threshold period is 5.”, then the

true threshold period is 5. But if the computer sends the message “The threshold

period is 9.”, then the true threshold period is either 5 with probability 2/5 or
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is 9 with probability 3/5. The message is sent after period 5 if the Receiver has

participated until then.

D) Full information after period 5 :

The computer will send the message “The threshold period is 5.” if the threshold is

drawn to be the 5th period and will send the message “The threshold period is 9.”

if the threshold is drawn to be the 9th period. The message is sent after period 5 if

the Receiver has participated until then.

After the Sender has made his or her decision, with probability 1/2 the Sender’s

choice is implemented and, with probability 1/2, one of the four information structures

is randomly chosen and implemented by the computer. Which information structure is

implemented as well as whether it was chosen by the Sender (another participant), or

randomly by the computer will be reported to the Receiver right at the beginning of the

second stage. Note that the choice of information structure does not directly impact the

earnings of the Sender, which instead only depends on the participation choices made by

the Receiver that the Sender is matched with. Further detail will be provided below.

Stage 2: Participation stage (You are the Receiver)

In this stage the Receiver will receive and then act on the information about the threshold

period. On the first screen of the stage, the Receiver will be informed about which

information structure will be used and whether it was chosen by the computer or by the

Sender (another participant).

If the information structure chosen is A (i.e. the Receiver learns about the threshold

period before having to make any decisions) then the second screen of the stage shows a

message containing the threshold period. If the chosen information structure is B, C, or

D, there is no message screen displayed at this time.

Now it is time for the Receiver to act, and the next screen is the period 1 participation

screen on which the Receiver must choose whether to participate in this period or not.
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This is the first of 10 identical such screens. The decision to participate in the period is

made by choosing “yes” or “no” on the menu and confirming the choice. As mentioned

previously, participating in a period is costly in that choosing “yes” deducts $1 from the

budget of $10 that the Receiver is endowed with. For your reference, your current budget

is displayed on the top left of the screen together with the current period, the number of

periods you have participated in, the information structure, and whether the information

structure was chosen by the Sender or by the computer. Choosing “yes” further leads to

another identical participation screen with updated values. The Receiver is then faced

with the same participation decision, and this continues until either the Receiver runs

out of money or he or she decides to not participate in a period by choosing “no” on a

participation screen.

If the information structure chosen was C (i.e. the Receiver gets partial information

about the threshold period after 5 periods) or D (i.e. the Receiver learns about the

threshold period after 5 periods), a message screen will appear with the relevant message

after choosing “yes” on the 5th period participation screen and confirming the choice.

After acknowledging the message the 6th period participation screen follows.

If the Receiver has participated in at least as many periods as the threshold period (i.e.

has chosen “yes” on the 5th period participation screen in case the threshold period is 5 or

has chosen “yes” on the 9th period participation screen in case the threshold period is 9)

when the stage ends, the Receiver earns a reward of $8. Whatever amount of the budget

is not spent on participation will be part of the Receiver’s earnings. We now explain in

more detail how the earnings for both the Sender and the Receiver are calculated.

Earnings calculation

The earnings are calculated the same way in each of the two interactions. Only one of

them is chosen randomly with equal probability to be paid out along with the $5 show-up

fee.
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The Receiver’s earnings if he or she participates at least until the threshold period are:

Earnings for Receiver with reward = $10− $1 ∗ number of periods participated in+ $8.

The Receiver’s earnings if he or she does not participate until the threshold period are:

Earnings for Receiver without reward = $10− $1 ∗ number of periods participated in.

The Sender’s earnings regardless of whether the Receiver earns the reward or not are:

Earnings for Sender = $1.5 ∗ number of periods the Receiver participated in.

All possible earnings combinations are summarized in Table 1 below.

Understanding questions and practice rounds

Now you must answer correctly a series of understanding questions about the experiment.

Then you will take part in 5 practice rounds. Each practice round consists of two inter-

actions. Just as in the payoff-relevant round, you will first make a choice as a Sender and

then as a Receiver. However, during these practice rounds, you will not be paired with

other participants. This means that during the participation stage if the info structure

implemented was chosen by a Sender, it is the one you chose as Sender during the in-

formation stage. The practice rounds are meant for you to familiarize yourself with the

screens and tasks of both roles. We strongly urge you to take these rounds seriously as
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this might help you increase your earnings in the payoff relevant round that will follow

the practice rounds. However, all the choices that you make in the practice rounds are

unpaid and they do not affect the actual experiment.

Only after the understanding questions and the 5 practice rounds do the two payoff

relevant interactions start, where you are paired with two actual participants in the room.

The start of the payoff-relevant interactions will be clearly marked in the program that is

used for the experiment.

Final Summary

Before we start, let us remind you of the following:

1. The threshold period (which is the period the Receiver must participate up to and

including to win the reward) is either 5 with probability 2/3 or 9 with probability

1/3.

2. In the Information stage the Sender chooses from the following 4 information struc-

tures:

A) The threshold period is revealed before period 1.

B) The threshold period is never revealed.

C) More information about the threshold period is given after period 5.

D) The threshold period is revealed after period 5.

3. With 1/2 probability the Sender’s choice is used, and with 1/2 probability the

computer randomly chooses the information structure.

4. In the Participation stage the Receiver chooses to participate until he or she wants

to stop, and earns a reward of $8 if he or she has participated up to and including

the threshold period.
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5. Participation costs $1 per period and is paid for using a budget of $10.

6. The Sender earns $1.50 per period the Receiver has participated in.

7. Each participant in the experiment will be a Sender in one interaction and a Receiver

in another interaction - you do not interact with the same person twice.

8. The total earnings from the experiment are the earnings in one of the two interac-

tions, randomly determined, plus $5 show-up fee.
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