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Preface 
 

If I were a benevolent deity, my first act of compassion to mankind would be to 

create a biological machine for visual perception that was easy for neuroscientists to 

reverse engineer. I would take my inspiration from a camera. First, I would include an 

image-forming lens. Then, a sensor array: a set of neurons whose rate of discharge 

represented the presence of different visual features. Finally, a third component that 

cameras lack: a set of algorithms for using the state of the sensors to infer the state of the 

world. 

The benevolence, as I see it, lies in the clear delineation between the components, 

particularly the last two: a “representational” component and an “inferential” component. 

This lets the poor scientist trying to reverse engineer the system take the problem in turns. 

First, by observing the state of the sensors while varying the input, he could begin to 

understand the computations underlying the selectivity of the sensors. Then, by observing 

the state of the inference while monitoring the state of the sensors, he could begin to 

understand the inferential algorithms used to transform the sensor’s representation into 

perception and action. 

Neuroscientists have generally proceeded as though such a bipartite scheme exists 

and that activity in sensory brain areas (like the well-studied visual cortices) constitutes a 

part of the sensory representation. Rarely is this laid out as explicitly as it was by 

Kenneth Johnson in 1980, in the first of series of influential theoretical papers: 
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“The processes that intervene between a relatively peripheral array of neural activity and 
a subject’s decision in a discrimination task are split into two sections: a) the ascending 
sensory processes that provide the final patterns of neural activity on which 
discrimination is based, and b) a process that yields decision of the type required by the 
experimental design used in the psychophysical study.”                      (Johnson, 1980) 

Johnson’s two sections correspond closely to the “representational” and “inferential” 

components I just described. (He would go on to call them the sensory-neuronal (SN) and 

neuronal-decision (ND) components.) But even in cases where such a scheme is not as 

explicitly proposed, the same thinking is frequently apparent. 

The primary contribution of the work presented in this thesis is neuronal evidence 

for a significant flaw in this approach. The flaw is precisely the lack of a division of 

labor, particular at the levels of sensory processing beyond the periphery where the idea 

is typically invoked. In Chapter 1, I lay the groundwork for this argument, by introducing 

current thinking about how sensory signals are “decoded” to inform perceptual 

judgments. In Chapter 2, I present evidence from multi-electrode array recordings in 

behaving macaque monkeys showing that, even at the earliest stages of visual processing, 

the “sensors” (in this case V1 neurons) appear to receive input from downstream areas 

that are closely related to an “inference”-like procedure. This breaks the camera analogy 

and suggests a relationship between brain areas in sensory processing that is considerably 

more complex than is often imagined.  

 In Chapter 3, I discuss a related, albeit more practically-oriented, topic: how to 

control the allocation of animal subjects’ internal resources (that is, the “inference”-like 

procedure) in service of addressing the question posed earlier. I discuss a novel finding of 

deviations in the strategies monkeys employ in a discrimination task from those implied 

by task instruction, and present methods for detecting and controlling the strategies they 
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actually use. In Chapter 4, I summarize the main results and present new avenues for 

future research.    
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Chapter 1: Introduction 

 

1.1 Variability in the Responses of Sensory Neurons 

While the inner workings of the brain remain largely mysterious, a great deal of 

progress has been made in understanding the neural circuits that encode sensory inputs. 

Much of this progress has been made by measuring spiking activity in single neurons in 

sensory areas in response to controlled patterns of sensory stimulation. This work dates 

back to the early days of neuroscience, and has shed light on the exquisitely selective 

responses of neurons to various features of the external world, from the orientation of 

contrast edges in primary visual cortex (V1; Hubel & Wiesel (1959)) to single-whisker 

stimulation in the rodent barrel cortex (Welker, 1976) to complex visual forms like faces 

in regions of the primate inferotemporal cortex (Desimone, Albright, Gross, & Bruce, 

1984). 

One consistent feature of the data is the variability of stimulus-driven spiking 

responses, particularly in the cortex (Dean, 1981; Henry, Bishop, Tupper, & Dreher, 

1973; Tomko & Crapper, 1974). In other words, sensory cortical neurons generally do 

not respond the same way when confronted twice with the same sensory stimulus. This 

observation has potentially profound implications for the nature of the sensory 

representation available to downstream areas. Ideas about these implications have earned 

this variability the monicker “noise.” The early studies are the most explicit in laying out 

the motivation for this, which have become so widespread as to be almost taken for 

granted. For instance, Tolhurst, Movshon, & Dean (1983) state: 
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“It is generally thought that performance on psychophysical tasks is probabilistic … 
because identical physical stimuli elicit neural responses that vary randomly in amplitude 
from presentation to presentation. Since this variable neural representation of the sensory 
event alone is accessible to the observer, he must make a statistical decision as to 
whether a particular level of neural activity is more likely to be the response to a stimulus 
than a random fluctuation in some ongoing background activity.”            

[emphasis in the original] 
 

In other words, Tolhurst et al. are saying that the sensory neuronal variability that they 

measure (in area V1 in their case) is equivalent to a stochastic representation of the 

environment that constrains the quality of the inference that a subject might go on to 

make. In other words, this is the noise that constrains the subject’s performance. This is a 

natural interpretation given the point of view by which the neural underpinnings of 

perception can be neatly divided into a component that objectively represents sensory 

input and a component which interprets/decodes that representation in the service of 

perception and action.  

If this is correct, the practical implications are profound. Measurements of the 

statistical properties of sensory neurons would reveal the noise contaminating the brain’s 

sensory representation at any given moment in time. These could then be used to make 

testable predictions about causal effects on downstream computations, opening a pathway 

for investigating the neural mechanisms that transform the brain’s sensory representation 

into perception and action.  

An alternate view is that variable activity in sensory neurons at least partially 

reflects changes in non-sensory signals (“top-down”, “feedback”) that are not necessarily 

treated as “noise” by downstream areas. This would suggest a fundamentally different 

way of thinking about the relationship between “sensory” and “non-sensory” brain areas, 

and would challenge the view that variability in the activity of recorded neurons gives 
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experimenters access to the stochasticity that limits perceptual performance. Investigating 

this possibility is the goal of the work described in this dissertation. A driving hypothesis 

is that the processes that generate perceptual decisions themselves also act as an input to 

sensory brain areas.  

 

1.2 The Origin of Sensory Neuronal Variability 

Sensory neuronal variability presumably reflects changes over time in synaptic 

inputs to sensory neurons. But which synaptic inputs? Under the “variability=noise” 

view, the possibilities are, in principle, quite constrained. The only way to guarantee that 

sensory neuronal variability is “noise” is if it is an inherent feature of the feedforward 

pathways conveying sensory input. Variability in these pathways, and only these 

pathways, is fundamentally indistinguishable from noise. Variability in non-sensory 

inputs may contribute to uncertainty in the sensory representation as it is effectively read 

out downstream, or it may not. This depends on the origin of the non-sensory signals and 

the nature of the read out. 

We know from several lines of research that there is a diversity of inputs to 

sensory cortical areas that do not derive from afferent sensory input. First, direct 

anatomical evidence suggests massively convergent patterns of connectivity throughout 

the neocortex, most of which cannot be characterized as purely feedforward (Callaway, 

2004; Sillito, Cudeiro, & Jones, 2006). Even in primary visual cortex, it has been 

estimated that only about 5% of excitatory inputs come directly from the retina through 

the lateral geniculate nucleus (LGN) of the thalamus (Olshausen & Field, 2005). And this 

“feedforward” input relies on only a subset of the diverse neurotransmitter systems that 
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are known to play a role in cortical processing (Herrero et al., 2008; Hruba, Ott, Nieder, 

Pourriahi, & Nienborg, 2015; Paukert et al., 2014). This implies that we continue to lack 

a detailed understanding, even at the earliest stage of sensory cortical processing, of a 

great deal of the input. 

Second, the temporal statistics of sensory neuronal variability also suggest a role 

for central signals. The precise timing of spikes in response to a fixed stimulus tends to 

have more structure than would be predicted based on the average rate of discharge 

(Dean, 1981; Henry et al., 1973; Tomko & Crapper, 1974). This implies that some of the 

variability in firing rate is due to changes in the inputs, rather than (Poisson) randomness 

associated with spike generation, even in the presence of fixed sensory input. A recent 

study (Goris, Movshon, & Simoncelli, 2014) has proposed a model of sensory neuronal 

responses which incorporates both of these elements. This “modulated Poisson” model 

provides a much better fit to neuronal variability in visual cortex and the LGN, and 

demonstrates that the non-Poisson component increases in magnitude through the visual 

hierarchy, consistent with an increase in the proportion of sensory neuronal variability 

that is not generated by stochasticity in spike generation but rather variability in the 

inputs.  This suggests that the component of sensory neuronal variability that does not 

derive from sensory afferents increases through the visual hierarchy. 

Another crucial feature of sensory neuronal variability, which places anatomical 

constraints on its origin, is the fact that it tends to be weakly correlated amongst pairs of 

neurons. The average Pearson correlation between pairs of spike counts across repeated 

stimulus presentations tends to lie in the range of 0.1-0.2 (Cohen & Kohn, 2011). This 

suggests that a substantial fraction of the variability reflects common inputs. The 
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magnitude of spike-count correlation (rsc) is higher for pairs that are in close physical 

proximity and amongst those which share similar stimulus selectivity (Fig. 1.1; Bair, 

Zohary, & Newsome, 2001; Smith & Kohn, 2008). This has been used as evidence in 

favor of a “feedforward” origin, since anatomically, such pairs are more likely to share 

common afferent input. However, while the anatomical details of “feedback” pathways 

are less well understood, they too display marked selectivity, as evidenced by the effects 

of spatial and feature-based attention on visual cortical neurons that are highly specific 

(Maunsell & Treue, 2006; Reynolds & Chelazzi, 2004). In addition, rsc tends to remain 

positive even over large cortical distances, suggesting a component of sensory neuronal 

activity that is broadly coherent and inconsistent with the local structure of sensory 

inputs. Thus, a significant portion of rsc is likely to be due to common input from other 

sources. 

 

Fig. 1.1. Rsc depends on signal 
correlation and pairwise 
distance. Pseudocolor plot 
illustrating the positive dependence 
of noise correlations on signal 
correlation (in this case this is based 
on similarity in orientation tuning), 
and the negative dependence on 
physical distance. These 
measurements were made using 24-
contact linear multi-electrode 
arrays implanted in macaque V1 
(see Chapter 2 Methods). The 
image is smoothed with a Gaussian 
with s.d. of 10 pixels. 
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Several studies have also shown that non-sensory signals directly modulate the 

firing rate of sensory neurons, thus likely contributing to the “variability” observed in 

other studies where these factors were not controlled. For instance, reward, arousal, 

attention, anaesthesia and even locomotion appear to modulate the activity of neurons in 

visual cortex (Ecker et al., 2014; Goard & Dan, 2009; Niell & Stryker, 2010; Shuler & 

Bear, 2006). However, these studies have typically not analyzed how these factors relate 

to choices subject make in perceptual tasks, so whether these sources of variability are 

treated as noise by subjects is not known. 

The most well studied source of non-sensory inputs to visual cortex is visual 

attention. Attention refers to the “filtering” of sensory evidence in order to improve 

sensitivity to a particular stimulus feature of behavioral relevance (Carrasco, 2011). 

Visual attention has been proposed to act at an early stage in visual processing by 

modulating the sensory representation through feedback in order to increase signal-to-

noise in the encoding of the attended stimulus feature (Cohen & Maunsell, 2009; J. H. R. 

Maunsell & Treue, 2006; Mitchell, Sundberg, & Reynolds, 2009; Reynolds & Chelazzi, 

2004). This is broadly consistent with its known effects on visual cortical neurons: 

increases in response gain (Treue & Martínez Trujillo, 1999) and changes in correlated 

variability (Cohen & Maunsell, 2009), both of which are thought to improve the 

reliability of pooled sensory signals. However, recent thinking has cast doubt on the idea 

that visual attention acts by reducing the “noise” in the sensory representation. For one, 

there is no evidence that these modulations underlie the increased performance associated 

with attention. In fact, a recent study showed that these modulations persist in primate 

visual cortex despite functional lesions of the superior colliculus that strongly disrupt 
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visual attention (Zénon & Krauzlis, 2012). Another recent study implies that the 

reduction in noise correlation is due to an attenuation of ongoing variability in feedback 

signals (Rabinowitz, Goris, Cohen, & Simoncelli, 2015). This may mean that neuronal 

effects due to attention relate to changes in self-generated signals, rather than 

modulations of the statistical structure of the sensory representation. Thus, the effects of 

attention on visual cortical neurons do not necessarily bear on the fundamental question 

posed here: does variability in sensory neurons really function as noise in the sensory 

representation? 

1.3 Correlated Variability and Pooling 

In the absence of suitable data with which to address this question, the 

assumption that sensory neuronal variability does indeed act like “noise” in the sensory 

representation provides a powerful and tractable framework for thinking about the 

relationship between the activity of sensory neurons and the perceptual behavior of 

subjects. This framework has generated a number of important quantitative insights that 

have greatly influenced the approach taken in the experiment described in Chapter 2. 

These insights all relate to a fundamental observation: spike-count correlations 

between sensory neurons are essential to any account of psychophysical performance 

based on pooling. This insight was first reached by studies that observed that the 

performance of an ideal observer on a psychophysical task, if its responses were based 

simply on the spike counts of single recorded neurons, frequently approached or even 

exceeded the performance of the subjects themselves (Britten, Shadlen, Newsome, & 

Movshon, 1992; Celebrini & Newsome, 1994; Newsome, Britten, Movshon, & Shadlen, 
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1989; Romo, Hernández, Zainos, Brody, & Salinas, 2002; Tolhurst et al., 1983). This 

implies either that subjects’ choices are based on pooling very small numbers of neurons 

or that correlated variability vitiates any improvement associated with large pools. While 

the empirical finding that noise correlations were significantly positive (on average) 

demonstrated a way subjects’ performance could be reconciled with large pools (Britten 

et al., 1992; Zohary, Shadlen, & Newsome, 1994), the fact that these studies did not 

directly measure noise correlations at the population level nor have access to the 

decoding strategies subjects actually use renders these results difficult to interpret.  

The impact of correlated variability on performance in a common 

psychophysical paradigm—the two-alternative forced choice (2AFC) discrimination 

task—has been explored in theoretical studies in some detail. In a 2AFC discrimination 

task, subjects are required to classify a noisy stimulus as belonging to one of two 

categories. In the predominant theoretical model, decisions are made by linearly 

weighting the spike counts of a population of sensory neurons elicited by stimulus 

presentations (Haefner, Gerwinn, Macke, & Bethge, 2013; Moreno-Bote et al., 2014; 

Shadlen, Britten, Newsome, & Movshon, 1996; Zohary et al., 1994) and then applying a 

threshold to the resulting weighted sum to generate choices. I will refer to this as the 

“linear pooling model.” I wish to highlight two findings about the behavior of this model, 

which I will take in turn. Both of these findings point to the importance of a particular 

pattern of correlated variability for the perceptual judgments that arise. 
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1.3.1 Correlations with Choice and Between Neurons 

The first finding gives an account of how variability in sensory neurons affects 

subjects’ reports on a trial-by-trial basis, traditionally thought to underlie the 

experimentally observed correlations between single neurons and choices (choice-related 

activity). Choice-related activity was first observed in experiments using unit recordings 

in motion-selective areas in the macaque superior temporal sulcus (Britten, Newsome, 

Shadlen, Celebrini, & Movshon, 1996; Celebrini & Newsome, 1994). In those studies, 

subjects were trained to report the direction of coherent motion in a field of otherwise 

randomly moving dots. The two possible directions were always opposed, for instance 

leftward and rightward. The experimenters reasoned that if the variable neuronal 

responses they recorded provide the evidence supporting the animal’s choices, then that 

variability should correlate with choice, even across repeated trials using the same 

stimulus. Indeed, they found precisely such a correlation, a finding which has been 

repeated many times in similar experiments (for review, see Hendrikje Nienborg, Cohen, 

& Cumming, 2012). They quantified this effect as the probability with which an ideal 

observer could predict the subject’s choices using only the spike counts of a single 

neuron, a quantity known as “Choice Probability” (CP). Average CPs in many sensory 

areas across a variety of tasks tend to lie the range of 0.55-0.6, demonstrating a modest 

but above-chance correlation with choice in many neurons.  

This finding has led to the widespread use of CP (and a related measure used in 

detection tasks) as a proxy for the causal influence of single neurons on perceptual 

decisions (Cook & Maunsell, 2002; de Lafuente & Romo, 2005; Gu, Angelaki, & 

DeAngelis, 2008; Liu & Newsome, 2005; Price & Born, 2010; Smolyanskaya, Haefner, 
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Lomber, & Born, 2015; Uka & DeAngelis, 2004). However, Shadlen et al. (1996) 

pointed out a quantitative problem in this interpretation: given the vast numbers of 

sensory neurons in the brain presumably contributing to perceptual decisions, the 

influence of any one neuron on choice should be immeasurably small. Instead, CPs seem 

to be almost everywhere one puts an electrode.  

They identified a solution to the problem using a theoretical model. In their 

model, a subject’s choices on a given trial were the outcome of a comparison between 

two signals: one signal represented the summed spike counts of all the leftward tuned 

neurons and the other the summed spike counts of the rightward tuned neurons (a 

simplified two-pool version of linear pooling). The only way to get widespread CPs, they 

found, is if the trial-to-trial variability within the two pools is correlated. Then the 

correlated variability cannot be averaged away by pooling and the resulting choice is a 

comparison between the correlated component of the signal in the two pools (Fig. 1.2). 

This introduces widespread correlations between choice and individual neurons whose 

activity also reflects the correlated signal.  

More recent work (Haefner et al., 2013; Hendrikje Nienborg & Cumming, 2010) 

has confirmed and extended these findings. In the general case of linear pooling, where 

each neuron is assigned an arbitrary weight (positive or negative depending on which 

choice it supports), a neuron’s CP is given by: 

ܥ ௞ܲ ൌ
ଵ

ଶ
൅ ଶ

గ
sgnሺߦ௞ሻ arctanට2ߦ௞

ିଶ െ 1
ିଵ

			with   ߦ௞ ൌ
ሺ۱ఉሻೖ

ඥ஼ೖೖఉ౐۱ఉ
                (1.1) 

CPk is the CP of neuron k with respect to choice 1, β is the vector of read out weights and 

C is the covariance matrix (Haefner et al., 2013). The critical term in the equation is the 
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numerator of ߦ௞. This term is the element-wise product between two quantities: first, the 

spike-count covariance between neuron k and all others contributing to the decision, and 

second, the weights of all other neurons. Neuron k’s CP is monotonically related to their 

product. In the simplified two-pool model considered by Shadlen and colleagues, Haefner 

et al. (2013) showed using Eq. 1.1 that mean CP only depends on the average difference 

between within- and between-pool correlations, as first discovered by Nienborg & 

Cumming (2010) using simulations (Fig. 1.2). 

Figure 1.2. Influence of the 
structure of noise correlations on 
Choice Probability. Top panel: 
Illustration of the two-pool version 
of the pooling model, developed by 
Shadlen et al. (1996) to explain the 
observation of CP in MT in a 
direction discrimination task. The 
decision variable is computed as 
the difference between the sums of 
neuronal activity in two pools, one 
containing the neurons supporting 
direction 1 and the other those 
supporting direction 2 (here “up” 
and “down”). Bottom panel: 
Simulated mean CP in the model 
population as a function of two 
quantities: 1) difference in average 
noise correlation between members 
of the same pool (rwithin) and 
between members of opposite 
pools (rbetween), and 2) the average 
overall noise correlation. Average 
CP depends only on the first 
quantity, demonstrating that noise 
correlation structure, not 
magnitude, determines CP. For this 
simulation, the noise correlations 
were assumed to be uniform within 
a pool. (Figure reproduced from 
Nienborg & Cumming (2010)). 



12 
 

These theoretical studies of choice-related activity in the linear pooling model 

have enriched the interpretation of CP in two important ways. First, this works 

demonstrates that CP reflects more than a single neuron’s causal effect on choice. It 

mostly reflects the causal effect on choice of the other neurons with which a given 

neuron’s activity is correlated. Indeed, a neuron can systematically show CP with the 

wrong sign if its variability is correlated with neurons supporting its anti-preferred 

choice, no matter what read out weight is actually assigned to it. Nonetheless, this 

correlated “noise”, in the aggregate, still has a causal impact on choice, consistent with 

the traditional interpretation of CP. Furthermore, if one had sufficient information about 

the structure of the noise correlations, one could in principle identify the read out weights 

of single neurons.  

Second, this line of work has united a long debate about the correct interpretation 

of choice-related activity (Crapse & Basso, 2015; Bruce G. Cumming & Nienborg, 2016; 

Hendrikje Nienborg et al., 2012) with the central question at stake in this dissertation: the 

origin of sensory neuronal (co)variability. This provides a key starting point for the work 

discussed in Chapter 2, whose main goal is to identify whether the pattern of noise 

correlations in a sensory neuronal population reflects noise in sensory afferents or 

changes in central signals. The latter could come about as an effect of choice on sensory 

neurons. 

Several studies on choice-related activity in single neurons suggest this may be 

the case (for review, see: Cumming & Nienborg, 2016; Nienborg et al., 2012). One piece 

of evidence comes from the timecourse of CP within single trials, which typically shows 

an early increase followed by a plateau (Nienborg & Cumming, 2009; Shadlen et al., 
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1996). If CP reflects the causal influence of sensory neurons on choice, this must mean 

that (monkey) subjects tend to evenly weight evidence presented throughout the trial, and 

perhaps even discount early evidence. However, psychophysical reverse correlation 

shows that the reverse is true: on average, subjects more strongly weight early evidence 

in fixed-duration trials (Kiani, Hanks, & Shadlen, 2008; Nienborg & Cumming, 2009). 

This suggests a component of CP may be a feedback effect of the evolving decision 

process itself. 

Another line of evidence for this is the pronounced CPs observed in studies 

involving a perceptually bistable stimulus: the structure-from-motion cylinder (Dodd, 

Krug, Cumming, & Parker, 2001; Krug, Cumming, & Parker, 2004; Parker, Krug, & 

Cumming, 2002). This stimulus consists of two planes of dots drifting in opposite 

directions. The velocity of the dots follows a sinusoidal profile, consistent with the 

orthographic projection of a rotating cylinder. In the absence of disambiguating disparity 

cues, the direction of rotation is ambiguous and is perceived bistably. Dodd et al. (2001) 

trained monkeys to report the direction of rotational motion in the stimulus, while the 

amount of disambiguating disparity was varied to manipulate task difficulty. Because MT 

neurons are both motion- and direction-selective, they often display strong preference for 

one direction of rotation in the stimulus. On the ambiguous zero-disparity trials, they 

found an average CP of 0.67 in MT neurons, considerably higher than previously 

reported in the standard dot-motion task (0.55; Britten et al., 1996).  

This increase is inconsistent with the prediction of a feedforward origin of CP, 

because the strong perceptual stability elicited by the stimulus implies a weak influence 

of sensory neuronal variability on choice. A more satisfactory explanation is that the 
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strong variations in the subject’s perceptual state generate strong CPs via feedback. This 

view is bolstered by unpublished results from experiments in our lab. In these 

experiments, 500-ms pulses of disambiguating disparity were introduced at the beginning 

of zero-signal trials to bias subject’s perception of rotation direction. This manipulation 

introduced large changes in the firing rate of MT neurons that persisted until the end of 

the trial, as though the disambiguating disparity cue had not disappeared (Ali Mooeny 

and Bruce Cumming, personal communication). This further supports the view that 

choice-related signals in sensory neurons are driven by the subject’s perceptual state. 

Finally, it has been noted that the observation of CP across tasks that require the 

same set of neuronal signals to be pooled in contrasting ways is difficult to reconcile if 

the underlying pattern of noise correlations is fixed (Krug et al., 2004; Nienborg et al., 

2012). Rather, this points to noise correlations that change dynamically in a context-

dependent manner. This would be particularly strong evidence in favor of the view that 

CP does not reflect the effect of sensory noise, but rather reflects reorganization of 

functional connectivity that depends on the task context. Importantly, however, none of 

these studies has directly measured the structure of noise correlations simultaneously in a 

large population. While one study did demonstrate a task-dependent element to noise 

correlation structure (Cohen & Newsome, 2008), this was done using paired recordings, 

making the results too limited to directly test this idea. 

 

1.3.2 “Information-limiting” Noise Correlations 

The second major finding of the pooling model is a quantitative account of the 

effect of sensory neuronal variability on psychophysical performance. As mentioned 
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earlier, variability that is correlated between pairs of sensory neurons has a much greater 

impact on a pooled signal than uncorrelated variability. This insight has been explored 

quantitatively in a number of studies, which have converged on similar results (Abbott & 

Dayan, 1999; Averbeck, Latham, & Pouget, 2006; Johnson, 1980; Moreno-Bote et al., 

2014; Snippe & Koenderink, 1992). In the context of a 2AFC task, performance is 

degraded when correlations are proportional to the similarity in tuning between neuronal 

pairs. Another way of describing these correlations is that they are easily confused with 

the neuronal response to a change in the stimulus (Fig. 1.3). This pattern of rsc has 

recently been termed “differential” or “information-limiting” correlations (Moreno-Bote 

et al., 2014). This study demonstrated that, in the limit of infinite neurons and assuming 

subjects can use optimal linear decoders, only differential correlations limit performance. 

However, given finite numbers of neurons and/or suboptimal decoding, a range of 

correlations structures that approximate “differential” correlations will impact 

performance. 

It has been observed that these “differential” correlations are extremely similar to 

the pattern that gives rise to CP. For CP to exist, correlations must be higher within than 

between pools. For correlations to be “differential”, they must be proportional to 

similarity in task preference between pairs. For typical discrimination tasks, appropriate 

read out weights are closely related to a neuron’s tuning for the task. Thus there is a deep 

connection between the two findings about rsc structure in the pooling model. In fact, a 

recent study showed that, assuming a subject uses the optimal linear read out weights for 
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Figure 1.3. “Information-limiting” noise correlations. The discriminability of a sensory 
input is sensitive to the structure of noise correlations in sensory neurons. a. The response 
of a set of three sensory neurons to stimuli in a discrimination task. The solid line—f(s)—
shows the average response of the neurons to the stimuli as they vary along the dimension 
being discriminated. The cloud of points represents the response of the neurons to repeat 
presentations of a near-threshold stimulus at a fixed value of s. The shape of this cloud is 
determined by the noise correlations. When this cloud is not oriented parallel to f(s)—that 
is, its projection onto fʹ(s) is small—an optimal decision boundary can be placed such that 
the decisions are still sensitive to changes in the stimulus but insensitive to the noise. This 
means that the noise correlations have a minimal effect on choice, attenuating CP. b. When 
the correlations lie on fʹ(s) there is no decision boundary that maintains sensitivity to 
stimulus changes without being subject to noise contamination. These “differential” 
correlations thus necessarily have an effect on choice (i.e. introduce CP). (after Moreno-
Bote et al. (2014).) 

 

a given discrimination task, CPs can only be observed if there are differential correlations 

(Pitkow, Liu, Angelaki, DeAngelis, & Pouget, 2015a). Alternatively, if subjects 

suboptimally decode their sensory neurons, CP can be observed with a broader range of 

noise correlation structures (Fig. 1.3). 

The relationship between noise correlations and encoding of stimulus 

information described in these studies relies on the strong assumption that all sensory 

neuronal variability is noise. If it even partially reflects changes in centrally generated 

signals that are not interpreted as noise in the sensory representation, it would be unclear 

if any pattern of observed correlations actually limits performance. This would depend on 
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whether the decoding machinery can dissociate the effects of central signals on sensory 

neurons from those caused by the stimulus. Thus, the central question posed in this 

dissertation also has deep implications for interpreting the consequences of correlated 

variability on the information capacity of the brain’s sensory representation. 

 

1.4 Controlling the Psychophysical Strategies of Animal Subjects 

One way of defining noise is variability in a measurement unexplained by an 

experimental manipulation. Thus, one could argue on purely semantic grounds that 

sensory neuronal variability is “noise”, as experimental manipulations that probed the 

responses of sensory neurons have typically focused exclusively on the sensory inputs. 

This is for good reason. Testing other potential sources of input requires some way of 

manipulating them. 

Our driving hypothesis is that signals related to the decision process during a 

perceptual discrimination task contribute to structured noise correlations in sensory 

neurons. Testing this hypothesis requires identifying an effect of the subject’s decision 

process. As we will discuss in more detail in Chapter 2, our approach involved changing 

the set of stimuli monkey subjects need to discriminate to receive reward while 

maintaining a fixed retinal input. This allowed us to dissociate rsc structure that is fixed 

from that which depends on the task context.  

A critical assumption of this approach is changes in task instruction elicit 

appropriate changes in the subject’s internal task strategy. This assumption is shared with 

most prior psychophysical studies, that is typically only verified by showing that subjects 

are able to perform the task reasonably well after a change in instruction. However, in 
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principle, subjects can achieve high rates of reward using a task strategy that differs from 

the one suggested by task instruction. This possibility will not seem foreign to anyone 

who has experience training monkey subjects to perform psychophysical tasks.  

To address this potential confounding factor, we turn to psychophysical reverse 

correlation (PRC). PRC is an approach developed for use in human psychophysics to 

objectively probe the strategies subjects use in a psychophysical task. In Chapter 2, we 

briefly discuss our use of PRC to ensure that subjects performed the task as instructed. In 

Chapter 3, we provide a more detailed analysis. We reveal a novel and striking difference 

between human and macaque performance on the task. While human subjects can 

flexibly adopt new task strategies when the discriminanda change, macaque subjects 

require days or even weeks of retraining. During the retraining period, they slowly and 

continuously update their internal task strategy to match new instruction. Importantly, 

this slow timecourse is masked by the ability of the subjects to achieve reasonably high 

rates of reward while performing the “wrong” task. This reveals an interesting feature of 

macaque behavior that also demonstrates a potentially serious behavioral confound likely 

to be present in past studies. 

 

1.5 Summary 

Sensory neurons respond unpredictably to a fixed sensory input. Some of this 

response variability is correlated between neuronal pairs. A predominant view of this 

correlated variability is that it can confound any attempt to reconstruct the nature of the 

stimulus that elicited the response, because downstream brain areas must make a 

statistical decision based on pooling many sensory neurons. A lack of independence in 
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the individual neuronal signals that are pooled can degrade the reliability of pooling. 

However, a portion of the correlated variability may in fact reflect changes over time in 

modulatory/feedback inputs. How such common inputs impact the pooled neuronal 

signals that provide the sensory evidence for perceptual judgments is not well 

understood.  

An important experimental constraint can be provided by quantifying the portion 

of the structured spike-count correlations thought to impact perceptual performance in 

fact derive from feedback. This is the goal of Chapter 2. In that chapter, we present 

results from population recordings in macaque V1 while subjects perform a coarse 

orientation discrimination task using filtered noise stimuli. Given current feedforward 

models, the presence of choice-related activity implies that the structure of sensory 

neuronal variability takes a particular form. In Chapter 2, we empirically demonstrate the 

existence of structured noise correlations compatible with these predictions in area V1. 

However, we show quantitatively that these are mostly due to common inputs which 

change dynamically with the subject’s task (i.e. the set of orientations being 

discriminated), strongly implying they have a central origin. We also show quantitatively 

that CP is mostly due to the portion of spike-count correlation structure that changes 

dynamically with the task. This finding is compatible with the view that signals related to 

a subject’s perceptual choice are fed back to neurons in V1 supporting that choice, and 

that CP is mostly due to this feedback.  In addition, we show that the structured spike-

count correlations that change dynamically with the subject’s task degrade the perceptual 

performance of an ideal observer of the V1 population. This is because they introduce 

fluctuations in the V1 representation that mimic the effect of changing the stimulus along 
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the dimension being discriminated. We discuss what our results imply about the nature of 

the common feedback inputs that appear to underlie the V1 spike-count correlation 

structure, and discuss possible feedforward effect the spikes generated by the implied 

feedback signals may have on the perceptual decision. 

An important aspect of the approach taken in Chapter 2, shared with a number of 

past studies, is the attempt to control a subject’s allocation of internal resources by 

changing the task they perform. It is difficult to know that this approach has worked, 

particularly in animal subjects. Objective measures of task strategy, like psychophysical 

reverse correlation, can be used to address this problem. In Chapter 3, I discuss results 

from a PRC analysis of the behavior of the monkey subjects performing the orientation 

discrimination task used in the experiments discussed in Chapter 2. This demonstrates a 

fundamental and previously undocumented challenge in attempting to use task instruction 

to alter a subject’s allocation of internal resources and suggests strategies for overcoming 

this challenge. 
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Chapter 2:  

Choice-Related Feedback Influences the Structure of 

Correlated Variability in Visual Cortex 

 

2.1 Summary1 

The responses of neurons in sensory cortex typically covary weakly even with 

fixed sensory input (Cohen & Kohn, 2011). This correlated variability can limit how 

much information about the outside world can be extracted from sensory neurons (Abbott 

& Dayan, 1999; Averbeck & Lee, 2006; Cohen & Maunsell, 2009; Moreno-Bote et al., 

2014; Zohary et al., 1994). It is also thought to mediate the influence of firing rate 

fluctuations on perceptual decisions, in the form of choice-related activity (Choice 

Probability; CP; Britten et al., 1996; Haefner et al., 2013; Shadlen et al., 1996).  These 

hypotheses rely on the common assumption that rsc reflects unreliability in the sensory 

representation (Tolhurst et al., 1983). However, the origin of rsc is poorly understood. It 

may partially reflect variation in signals that do not derive from the periphery (i.e. “top-

down”, “feedback”) and which are not treated as noise in the sensory representation. Here 

we show, using array recordings from populations of neurons, that the structure of spike-

count correlations in primary visual cortex (V1) of behaving monkeys changes 

systematically with task instruction. This structure implies variability in feedback related 

to choice, clarifying longstanding uncertainty about the origin of CP (Cumming & 

Nienborg, 2016; Nienborg et al., 2012). This effect of feedback also implies an 

impairment of perceptual performance, if it is subsequently read out as sensory evidence 

                                                            
1 This chapter is based on a manuscript of the same title by Adrian Bondy and Bruce Cumming. 
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(Averbeck et al., 2006; Moreno-Bote et al., 2014; Ruff & Cohen, 2014).  Crucially, as we 

show these correlations reflect signals related to the subject’s awareness of the task 

context, they need not necessarily be treated as part of the sensory representation and 

therefore may not limit performance. Taken together, our results fundamentally change 

our understanding of the origin and implications of stimulus-independent variability in 

sensory brain areas, and demonstrate a need for models of perceptual decision making 

that include feedback onto sensory neurons. 

 

2.2 Introduction 

Decisions about sensory input have been described as the outcome of pooling the 

activity of large populations of noisy sensory neurons (Averbeck et al., 2006; Haefner et 

al., 2013; Moreno-Bote et al., 2014; Nienborg & Cumming, 2010; Shadlen et al., 1996; 

Zohary et al., 1994). In the context of perceptual discrimination, in which a subject must 

classify a noisy stimulus, the effect of correlated variability on the performance of 

pooling models has been explored in detail (Cohen & Maunsell, 2009; Ecker, Berens, 

Tolias, & Bethge, 2011; Haefner et al., 2013; Moreno-Bote et al., 2014; Nienborg & 

Cumming, 2010; Pitkow, Liu, Angelaki, DeAngelis, & Pouget, 2015b; Shadlen et al., 

1996; Sompolinsky, Yoon, Kang, & Shamir, 2001; Zohary et al., 1994). This work has 

given rise to two important conclusions: 1) noise correlations can dramatically impair 

performance (Abbott & Dayan, 1999; Averbeck et al., 2006; Moreno-Bote et al., 2014; 

Zohary et al., 1994) and 2) they give rise to a weak correlation between variability in 

single neurons and perceptual reports (Choice Probability; CP), consistent with the notion 

that CP observed in real neurons reflects the causal influence of correlated sensory 
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neuronal variability on perception (Haefner et al., 2013; Nienborg & Cumming, 2010; 

Shadlen et al., 1996). Both results depend crucially on how noise correlations are 

distributed amongst neuronal pairs with different stimulus preferences (rsc structure).  

These studies assumed that spike-count correlations in sensory neurons reflect 

variability in shared inputs that can lead to a less reliable representation of the sensory 

input, compared to the case of independent variability. However, while rsc implies that 

neuronal pairs share common input, some of this may derive from feedback and could 

even be under voluntary control. If so, its role in perceptual judgments will depend on the 

poorly understood nature of the pathways conveying this feedback, and in particular their 

relationship to ongoing decision processes. In principle, it would be possible for the 

spikes generated by feedback to be identifying as unrelated to the sensory representation. 

Thus, a feedback origin for noise correlations in sensory neurons may undermine both of 

the above conclusions. For this reason, identifying the sources of correlated noise in 

sensory neurons remains a major problem in systems neuroscience. 

 

2.3 Approach 

We sought to directly test the hypothesis that the structure of noise correlations 

in visual cortex reflects signals of central origin that vary during discrimination of a 

visual input. We measured rsc amongst populations of neurons in the primary visual 

cortex (V1) of two macaque (Macaca mulatta) subjects, in contexts with changing task 

instruction and fixed retinal input. Subjects performed a coarse orientation task (Nienborg 

& Cumming, 2014; Fig. 2.1a), discriminating two orthogonal orientations (for instance 

vertical versus horizontal), which were fixed in a given recording session, but varied 
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between sessions (Fig. 2.1d). The stimulus (Fig. 2.1b) consisted of dynamic white noise, 

filtered to vary the range of orientations present. On “zero signal” trials, the stimuli 

contained a uniform distribution of orientations that was independent of the 

discriminanda orientations. Measuring rsc across the zero-signal isolates any effect of task 

instruction on rsc. In practice, we found that combining trials of all signal levels did not 

qualitatively alter our results (Fig. 2.7) and increased signal-to-noise, so this is what we 

report.  The design of this task was in part conceived as an orientation analogue to the 

random-dot motion task (Newsome & Paré, 1988) used in many prior studies. Similar to 

that task, power in the stimulus is broadly distributed over the preferences of the neuronal 

population at low signal, while at high signals it is concentrated on a subpopulation.  

We used psychophysical reverse correlation (PRC; Ahumada J., 1996; Nienborg 

& Cumming, 2014; Nienborg & Cumming, 2007) to ensure that animals internal task 

strategies correctly reflected the discriminanda orientations. We found that subjects 

required multiple days of training to update their task strategies after a change in the 

discriminanda, so recordings were only performed after enough retraining for their task 

strategy to be appropriate (Fig. 2.3). This represents a significant improvement over past 

studies (Cohen & Newsome, 2008) that have not used these behavioral measures to 

confirm that animals are doing the task as assigned. In Chapter 3, we present more 

detailed results of the PRC analysis. 

We replicated the previous finding (Nienborg & Cumming, 2014) of a significant 

mean CP in V1 for this task (population average CP of 0.54; Fig. 2.6e). Assuming linear 

pooling, this requires a distribution of rsc such that neurons contributing to the same 

choice be more highly correlated, on average, than pairs contributing to opposite choices  
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Figure 2.1. Orthogonal orientation discrimination task.  a. The task, with the cardinal 
orientations as discriminanda. b. Single frames of the stimulus, at various signal strengths 
for both discriminanda orientations. c. Example psychometric function for monkey ‘lem’. 
Solid line is a probit fit, and error bars are 95% confidence intervals, assuming choices are 
binomially distributed. d. The distribution of task orientations used across all 41 sessions 
in both subjects. Blue arrow is the mean resultant vector. e. Hypothetical “fixed” rsc matrix 
for orientation that could generate CP for any pair of discriminanda. f, Hypothetical “task-
aligned” matrix that would generate CP for the cardinal (0º and 90º) task configuration. 
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(Haefner et al., 2013; Nienborg et al., 2012; Nienborg & Cumming, 2010; Shadlen et al., 

1996). To achieve this with a fixed correlation structure, for all task orientations, requires 

a relationship between rsc and pairwise orientation preference like that shown in Fig 2.1e. 

This pattern can be described using a correlation matrix indexed by pairwise orientation 

preference, which takes the form of a diagonal ridge. This can also be viewed as an 

extrapolation of the previously measured relationships between tuning similarity and rsc 

(Bair et al., 2001; Cohen & Kohn, 2011; Cohen & Maunsell, 2009; Kohn & Smith, 2005; 

Smith & Kohn, 2008; Zohary et al., 1994). An alternative possibility is that just those 

neurons involved in a given task are affected: correlations are high for pairs contributing 

to the same choice, low for pairs contributing to opposite choices, and unchanged for the 

rest. This produces a correlation matrix that resembles a square lattice (Fig. 2.1f). Such 

task-dependent changes would implicate feedback as the source of the structured 

correlations.  This lattice-like pattern would suggest a common feedback input that 

increased the firing rate of neurons supporting one choice while decreasing the firing rate 

of neurons supporting the other choice on some trials, and having the reverse effect on 

other trials.  This would be similar to a prediction based on fluctuations in feature-based 

attention between the two discriminanda orientations (Fig. 2.2; Ecker, Denfield, Bethge, 

& Tolias, 2016). 

Prior studies have been unable to fully distinguish these possibilities because they 

did not measure the full correlation matrix (in the task-relevant stimulus dimension). 

Without directly manipulating the feedback by controlling the task the subject performs, 

it would be impossible to distinguish these. Indeed, a number of past studies have 

measured noise correlation structure simply as the relationship between rsc and similarity 
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Figure 2.2. Structure of feedback 
suggested by the presence of 
lattice-like correlation structure 
in V1. The presence of task-aligned 
lattice structure in the V1 
correlation matrix for orientation 
(Fig. 2.1f) would suggest a common 
input to the V1 population whose 
effect was to increase the firing of 
neurons supporting choice 1 (e.g. 
0º) and decrease the firing rate of 
neurons supporting choice 2 (e.g. 

90º) on some trials (blue curve) and on other trials have the reverse effect (red curve). In 
fact, the matrix in Fig. 2.1f is generated simply as the outer product of one of these sine 
waves.  Variability in a common input of this sort correlates the spike counts of neurons 
preferring the same choice and decorrelates the spike counts of neurons preferring opposite 
choices. This is similar to a prediction based on fluctuations in feature-attention between 
the two discriminanda (Ecker et al., 2016). 

 
in stimulus preference, independent of the task being performed (Bair et al., 2001; Cohen 

& Maunsell, 2009; Cohen & Newsome, 2008; Kohn & Smith, 2005; Smith & Kohn, 

2008; Zohary et al., 1994). This is equivalent to estimating the diagonal marginal of these 

matrices. Since both matrices have similar diagonal marginals (correlation is higher near 

the diagonal, on average) such measurements make it impossible to distinguish these 

possibilities. While Cohen & Newsome (2008) did measure noise correlations while 

directly manipulating the task context, they used paired recordings, making it difficult to 

extrapolate the shape of the full correlation matrix from their data. 
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Figure 2.3. Subjects’ decision strategies change with task instruction.  a. To perform 
psychophysical reverse correlation, we first summarized each stimulus as the radial sum of 
its 2D Fourier amplitude spectrum, averaged across frames, to remove information about 
spatial frequency and phase. Examples shown here for several zero-signal trials, with 
dashed and solid lines corresponding to different choices. b. The psychophysical kernel 
(gray) is calculated as the difference between the two choice-conditioned average radial 
sums (“positive” minus “negative” choices). Axis labels and y-axis units are the same as 
in (a). Note that the peaks and troughs of the kernel are offset from the discriminanda 
orientations, indicating the subject is using a slightly misaligned task strategy (example 
session, monkey ‘lem’). c. Average kernel circular means (+/- 1 bootstrap s.e., obtained by 
resampling sessions) for the two groups of sessions shown in Fig. 2.4. The average 
(nominally “positive”) task orientations for the two groups are shown by the dashed lines. 
The two average kernel circular means are significantly different (p<10-3, bootstrap test) 
and closely aligned to their respective task orientations, demonstrating that subjects did use 
distinct decision strategies for the two groups of sessions. 
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2.4 Results 

2.4.1 Rsc Structure Changes with Task Instruction 

Single sessions yielded between 2 and 18 orientation-tuned units, too few to measure 

the full “noise correlation matrix for orientation” for each session. Instead, we first separated 

all 41 recording sessions into two subsets employing similar task orientations, and measured 

the smoothed, average correlation matrix associated with each subset. We found that the two 

matrices differed dramatically, but were each consistent with a fixed, lattice-like pattern that 

was simply offset diagonally by a distance reflecting the task orientations (Fig 2.4a,b). To 

summarize this, we aligned the data from each session relative to the discriminanda, and then 

summed these aligned matrices, producing a task-aligned population correlation matrix for 

orientation. This matrix shows a clear lattice structure (Fig. 2.4e), demonstrating that rsc 

structure changes with the subject’s task. This lattice structure was not present during 

separate blocks of trials during which the subject simply fixated passively but the same set of 

stimuli was shown (Fig. 2.11). This demonstrates that the dynamic changes depended on 

feedback deployed during active task engagement, and could not be explained, for instance, 

by an effect of task experience on local V1 circuitry. We also ruled out a number of other 

stimulus-driven effects as the source of the task-dependent noise correlations (see §2.7.1). 

The task-aligned average matrix showed symmetries characteristic of a particular 

type of square lattice (p4m; Schattschneider, 1978; also see Fig. 2.4g and more detailed 

discussion in §2.7.5). The best fitting lattice of this type explained 86% of the variance in the 

observed data, significantly higher than could be explained for shuffled data (Fig. 2.4h). The 

shuffling procedure randomly translated each data point along the diagonal, ruling out the 

possibility that the structure is simply a noisy manifestation of a diagonal ridge.  
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Figure 2.4 (caption on next page)  
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Figure 2.4. Rsc structure in V1 depends on task instruction a-b, Average rsc matrices 
for orientation observed for two subsets of sessions with mean discriminanda given by the 
Gabor icons. These determine the within-pool (black squares) and between-pool (white 
squares) centers in the matrices. Peaks and troughs in observed rsc are aligned to these 
locations. c-d. Square lattices fit to the data in (a) & (b) and obeying the symmetries in (g). 
A fixed diagonal offset (߶) was added to each lattice to optimize the fit.  This value closely 
matched the discriminanda. e. Average rsc matrix, combined across all sessions, with 
preferred orientations expressed relative to the discriminanda orientations for each session. 
(Because there were two discriminanda, there were two possible alignments for each 
session. We used the average.) f. Histograms of the best-fitting lattice offsets, obtained by 
resampling from the observed correlations. Color indicates which sessions were used, with 
the combined, task-aligned data in black. The best-fitting lattice offsets were not 
significantly different from the discriminanda (triangles). g. Lattice symmetries used to 
model the observed matrices. The lattice has circular boundary conditions and a 180° 
period. Color and saturation gradients indicate regions containing unique data. (For more 
detailed discussion, see §2.7.6). h. The combined data in (e) displayed a significantly 
higher lattice score than shuffled data (with no offset; p<0.01). Error bars indicate +/- 1 
bootstrap s.e. 

Allowing the lattice vertices to be offset from the discriminanda orientations did not 

significantly improve the fit, indicating a good alignment between the instructed task and the 

dynamic noise correlation structure of V1 (Fig. 2.4f). The lattice structure implies variability 

in a feedback signal that increases the spike rate of neurons contributing to one choice while 

it decreases the spike rate of neurons contributing to the other choice, similar to theoretical 

predictions based on fluctuations in feature attention (Ecker et al., 2016) or a Bayesian prior 

(Haefner, Berkes, & Fiser, 2014). 

We wondered whether aligning the data relative to the task obscured correlation 

structure that did not vary across sessions. To estimate the value of any fixed component in 

the correlation structure, we used multilinear regression to describe the rsc values recorded 

across all sessions as the sum of two components: a “fixed” component and a “task-aligned” 

component.  The fixed component was a correlation matrix for orientation that remained  
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Figure 2.5. Two-component 
multilinear regression 
model. We used a multilinear 
regression model with two 
components (“fixed” and 
“task-aligned”) to explain the 
observed noise correlations. 
The components were 
parameterized as the sum of 
8x8 von Mises basis 
functions. The centers and 
dispersion of the basis 
functions were fixed. 
(Because the data are 
periodic, edge effects are 
visible in this illustration.) 
The model parameters to be 
fit were the amplitudes of the 
basis functions. a. The fixed 
component was a function of 
pairwise preferred orientation 
alone. Example basis function 
centered on (45º,45º) in 
yellow. b,c. Observed 
correlation matrices 
reproduced from Fig. 2.4a,b 
for two subsets of sessions. 
The impact of the correlation 
values on the amplitude 
assigned to this basis function 
depends on their distance 
from the basis function 
center, illustrated by applying 
a contrast envelope to the 
data, centered on (45º,45º). 
Because the fixed component 
is invariant across sessions, 

the task on a given session plays no role. We found that the “fixed” structure tends to be 
inconsistent across sessions, leading to little variance explainable by this component. d. 
The “task-aligned” component was parameterized in the same way as the “fixed” 
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component, except that it is a function of pairwise preferred orientation relative to the task. 
Example basis function centered on (0º,0º) in yellow. In the task-aligned component, 0º 
and 90º always refer to the discriminanda orientations. e,f. Observed correlation matrices 
reproduced from Fig. 2.4a,b. The impact of the correlation values on the amplitude 
assigned to this basis function depends on their distance from the basis function center, 
illustrated by applying a contrast envelope centered on (0º,0º) in the task-aligned space. 
Because the correlations tended to change dynamically with the task, this component 
explained the greater part of the variance in the data. 

invariant across sessions. This was a function of pairwise orientation preference alone, and 

reflected aspects of the correlation structure that did not change with the subject’s task. The 

task-aligned component was also fixed, but it position changed dynamically with the 

subject’s task. This component was a function of preferred orientation relative to the task, 

and reflected correlation structured that changed dynamically. To confer smoothness on the 

components and to reduce the number of parameters in the model, each of these was fit as 

the sum of an 8x8 array of von Mises (closely similar to wrapped Gaussian) basis functions 

(See Fig. 2.5 and Methods). The only free parameters were the amplitudes of the basis 

functions.  

If the correlation structure changed completely with the task, the “task-aligned” 

component would explain all of the variance in the data. If the correlation structure was 

invariant across sessions, the “fixed” component would explain the variance. In fact, we 

found that the task-aligned component explained most of the variance (79%) and captured 

the lattice-like structure in the observed data (Fig. 2.6a). The fixed component had a 

markedly smaller amplitude, with a less organized structure (Fig. 2.6b). Removing the fixed 

component had little effect, while removing the task-aligned component dramatically 

impaired fit quality (Fig. 2.6c). This implies that the majority of structured noise correlations 

in V1 change dynamically with task instruction and are therefore top-down in origin. 
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Figure 2.6. The Task-dependent component of rsc can account for CP. a-b. Components of 
observed rsc structure, jointly estimated using multilinear regression. Average rsc values are 
close to zero because the model also included a constant term, reflecting the mean of the entire 
population. c. Goodness-of-fit for the joint model and two single-component models. d. 
Examples from a large distribution of random read out weight profiles consistent with task 
performance, used to predict CP. Uniform and sinusoidal weight profiles are illustrated in white 
and black, respectively. e. Histogram of observed CPs. The mean was significantly above 
chance (bootstrap test, cell resampling, p<0.01). CPs that were independently significant 
(p<0.05; bootstrap test, trial resampling) are shown in black. f. Observed (dashed) and mean 
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predicted (solid) CP profiles, signed with respect to the choice associated with positive weights. 
Observed profile smoothed with a von Mises kernel that approximated a wrapped Gaussian 
with 10° s.d. The two components are the same as in (a) and (b). g. Mean unsigned CPs 
associated with the profiles in (f), +/- 1 s.e. obtained from the distribution of read out weights 
(black bars) and by resampling from the data (gray bars). The predictions associated with the 
uniform and sinusoidal weight profiles in (c) are shown with white and black circles, 
respectively. Note that the mean observed CP is lower here than in (e) because all neurons are 
included, regardless of their selectivity in a particular task.  

2.4.2 Task-Dependent Changes in Rsc Structure Relate to Perceptual Choice 

Several observations suggest that the signal producing rsc structure is also related 

to the subject’s choices. First, when we measured rsc separately by choice, the amplitude 

of the structure was attenuated (Fig. 2.7c). Second, the amplitude was lower in high 

signal trials, where the presence of a strong signal inevitably reduces variability in choice 

(Fig. 2.7a,b).  

We also found that the average, task-aligned matrix (Fig. 2.4e) was low 

dimensional, in the sense that it could be well approximated (86% variance explained) by 

the Gram matrix consisting only of its first eigenvector, significantly better than could be 

replicated with shuffled data (Fig. 2.8a). (Before calculating the eigenspectrum, we 

removed the matrix mean and normalized by its trace.  This removed any flat 

eigenvectors reflecting mean correlation and ensured that the eigenvalues summed to 1. 

To correctly determine the estimation error of the eigenvectors given their arbitrary sign, 

we inverted the sign of resampled eigenvectors whose dot product with the observed 

eigenvector was negative.) 

The low dimensionality implies that V1 population activity, along the dimension 

spanned by preferred orientation relative to the discriminanda, was driven largely by a 

single principal component. This principal component closely resembled a sinusoid 
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whose phase was aligned to the task (Fig. 2.8b), and can be interpreted as reflecting the 

effect on V1 firing rates of a task-dependent top-down input: on trials when the firing 

rates of neurons tuned for task orientation 1 were above average, the firing rates of 

neurons tuned for task orientation 2 were below average, and vice versa. This is similar to 

the pattern of common input used to generate the prediction of a task-aligned correlation 

matrix in Fig. 2.1f.  The low dimensionality of the observed correlation matrix (in the  

 
 

Figure 2.7. Rsc structure depends on choice distribution. a. The task-aligned noise 
correlation matrix for orientation, averaged across sessions (as in Fig. 2.4e), computed 
separately by signal level. The matrix associated with the 0% signal trials reflects task-
dependent changes in noise correlation despite identical retinal input. A qualitatively 
similar task-aligned structure was apparent at non-zero signal levels. b. We quantified the 
slope of a type 2 regression of rsc at each signal level against rsc measured across all signal 
levels. We observed a significant inverse relationship (p<0.01, bootstrap test) between this 
slope and signal level (error bars are +/- 1 bootstrap s.e.). c. Scatter plot of rsc across all 
trials against rsc measured separately by choice and averaged. Identity line and type 2 
regression line are in dashed gray and solid black, respectively. The slope is 0.97, 
significantly less than 1 (p<0.05, bootstrap test), indicating a modest attenuation of the 
noise correlation structure, when measured across trials with no variability in choice. 
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space defined by preferred orientation relative to the task) implies that V1 population 

activity can be well described as a scalar multiple of this eigenvector. Given that the 

amplitude of correlation structure is related to variability in the subject’s choices, we 

speculate that this scalar variable may be correlated with the decision variable itself. 

We note that this finding is only partially related to more general attempts to 

understand the dimensionality of neuronal populations (for instance, Rigotti et al., 2013). 

Our analysis is specific to variability along the dimension defined by orientation 

preference. This allows us to identify the task-relevant source of variability, but ignores 

other aspects of V1 responses.   

Next, we used the assumption of linear pooling to quantify the respective 

influence on choice of the task-aligned and fixed components of rsc structure identified 

using multilinear regression. Because the readout weights are not directly observable, we 

randomly generated a large distribution of weight profiles that could support performance 

of the task (Fig. 2.6d) and used them to generate a distribution of predicted CPs. The 

uncertainty in CP prediction introduced by variability in the hypothetical read out weights 

was no greater than uncertainty in our measurements of the correlations (Fig. 2.6g), so 

our conclusions do not depend on knowing these readout weights. The relationship 

between predicted CP and orientation was similar to our data (Fig. 2.6f) - the first 

quantitative demonstration that the linear pooling model is consistent with experimentally 

observed measurements of rsc and CP.  However, the task-aligned component alone was 

sufficient to account for most of observed CP (82%), while the fixed component could 

explain only a small fraction. This is, in a sense, not surprising, given that we 

hypothesized the existence of a task-aligned lattice structure (Fig. 2.1f) based on the 
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observation of CP in the first place. And as we also showed, the common input suggested 

by that correlation structure increases the firing rate of neurons supporting one choice 

while decreasing the firing rate of neurons supporting the other choice, and vice versa. 

This is precisely the structure of trial-to-trial variability in population activity that would 

generate CP under the linear pooling model. 

 

Figure 2.8. Task-aligned rsc structure is low dimensional. a. Normalized eigenspectra 
associated with the average, task-aligned matrix in Fig. 2.4e and shuffled data, in black and 
gray respectively. Shuffling procedure is the same as in Fig. 2.4h. Error bars are +/- 1 s.e. 
Significantly more of the variance in the observed matrix could be explained by its first 
eigenvector (p<0.05, bootstrap test).  b. The first eigenvector of the matrix in Fig. 2.4e, +/- 
1 bootstrap s.e. 

Another possibility is that the decision may ignore the effect of feedback on V1 

entirely. Given that this feedback has an effect on V1 firing rates that follows a sinusoidal 

pattern whose amplitude may be related to a simple scalar value like a decision variable, 

we speculate that it would not be difficult for downstream decoding processes to use 

knowledge of this scalar value to discount the portion of V1 firing rates due to feedback.  

If this obtained, CP would not reflect an effect of neuronal activity on choice, but would 

reflect the effect of choice-related feedback on V1 neurons, which is subsequently 

ignored in decoding. Alternatively, the feedback we observe may both convey 
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information about the subject’s choice as well as contribute to changing it—a 

combination of both interpretations. This could be a useful mechanism of ensuring 

perceptual stability, and is similar to a theoretical implementation of probabilistic 

inference (Haefner et al., 2014; further discussion in §4.1).   

 

2.4.3 Task-Dependent Modulation of Rsc Structure Introduces “Differential” Correlations 

Lastly, we found that the task-dependent modulation of rsc would impair the 

performance on the task of an ideal observer of the V1 population. This is because the 

lattice-like rsc structure matches so-called “differential” correlations (Moreno-Bote et al., 

2014; compare Fig. 2.9b to Fig. 2.4e), which place an upper limit on the information 

capacity of a sensory neuronal population (assuming linear pooling). This is because the 

rsc structure describes variability in the V1 population between a state in which neurons 

preferring one choice are firing more than average and neurons preferring the other 

choice are firing less than average: precisely the structure of variability that mimics 

changes in the stimulus along the dimension being discriminated. 

 While there remains no proven method of identifying “differential” correlations 

given the limitations of real data, a range of correlation structures that approximate them 

can affect the amount of stimulus information decodable from finite populations 

(Moreno-Bote et al., 2014). Consequently, the task-dependent modulation of rsc structure 

we observe would have a detrimental effect on perceptual performance. Quantitative 

studies would need to be undertaken to assess the magnitude of this effect. Nonetheless, 

the apparent contamination of the sensory representation by feedback is a novel finding, 

and contrasts with the reported beneficial effects of spatial attention on information 
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capacity (Cohen & Maunsell, 2009; Mitchell et al., 2009).  However, our finding that rsc 

reflects variability in centrally-generated inputs highlights an important problem in 

making inferences about the effect of rsc: downstream areas may be able to discount the 

influence of feedback on sensory neurons. Consequently, measuring the information 

capacity of sensory neurons may require knowledge of the state of internal signals 

generated elsewhere in the brain. 

 

Figure 2.9. The task-dependent component of rsc resembles stimulus-driven 
(“differential”) correlations.  a. An example pair of neuronal responses (mean +/- 1 s.e.) 
to the task stimuli at various signal strengths. The product (fʹfʹ) of the regression line slopes 
(solid lines) is used as a measure of similarity in task-tuning. b, The matrix of average fʹfʹ 
values, as a function of pairwise orientation preference relative to the task. This structure 
is extremely similar to the structure of rsc we observed during task performance. c. Scatter 
plot of the task-aligned (putatively top-down) component of rsc (Fig. 2.6a) against 
normalized fʹfʹ values (see Methods), plotted for each recorded neuronal pair. 



41 
 

2.5 Discussion 

In this chapter, I presented evidence showing that the distribution of stimulus-

independent covariability in V1 neurons changes dynamically with task instruction 

during performance of a 2AFC orientation discrimination task, despite fixed retinal input. 

We observed a lattice-like noise correlation structure (in the space defined by pairwise 

orientation preference), such that rsc was high for pairs preferring the same 

discriminandum orientation and low for pairs preferring opposite discriminanda 

orientations. The fact that this structure changed dynamically with the task implies that it 

primarily reflects input from central sources, not noise in sensory afferents. Indeed, we 

could not detect a component of noise correlation structure that remained fixed across 

task contexts. We found that the task-dependent source of noise correlations predicted CP 

that was consistent with our data, under the assumption that the spikes generated by 

feedback are read out as though they were sensory evidence. This is the first experimental 

support for the predicted relationship of CP and rsc in the traditional feedforward 

framework. (While prior studies did address the relationship between these, the fact that 

the full correlation matrix was not measured does not provide a full test for the model). 

We also observed that the structured noise correlations introduced through 

feedback are closely similar to “differential” correlations: those which resemble stimulus 

fluctuations along the task axis. This implies that, if this variability is naively read out as 

sensory evidence, it would effectively “contaminate” the sensory representation, and 

reduce the psychophysical performance of the subject. This would be a significant 

departure from current hypotheses about the role of feedback to sensory areas, which 
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typically take the view that they function to improve the quality of the relevant sensory 

representation (Maunsell & Treue, 2006; Reynolds & Chelazzi, 2004).  

Several models for the decision making process would be consistent with our 

data. These can be categorized based on two factors: 1) whether downstream 

computations treat the spikes that arise through feedback as sensory noise (i.e. are 

“naively” read out); and 2) whether the feedback signal that introduces the structured 

noise correlations is itself correlated with the state of the decision process (that is, 

whether the amplitude of the sinusoidal modulation of firing rates relates to the decision 

variable). 

The first possibility (Fig. 2.10a) is that the feedback signals are naively read out 

and are not correlated with the state of the decision variable. In this scheme, CP arises 

entirely as a causal effect of the feedback on the sensory neurons, which is subsequently 

read out to inform choice. In a sense, this scheme is compatible with the original proposal 

for CP: that it reflects the causal effect of sensory neuronal variability on choice. While 

this was originally thought to be subserved by noise inherent in the sensory 

representation, to be consistent with our data this variability now derives from feedback. 

The origin of feedback, under this interpretation, while clearly constrained by the task 

being performed, would be unknown to the observer and not related to choice directly. 

The second possibility (Fig. 2.10b) is that both are true, such that the state of the 

decision process is correlated with the sensory neurons via feedback, and the resulting 

sensory neuronal variability influences the decision process. This creates a self-

reinforcing loop. As a consequence, CP emerges both as a causal effect of sensory 

neurons on choice and an effect of choice on sensory neurons.  
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Figure 2.10. Models of perceptual decision making consistent with our results. 
Schematic illustrations of the potential role of feedback in perceptual decision making. In 
all subpanels, the red lines indicate the pathways that generate CP. (The afferent input from 
LGN never contributes to CP because it cannot generate noise correlations with the 
appropriate structure given our results.) a. CP emerges through the causal influence of 
feedback on sensory neurons, which is read out as sensory evidence. Because feedback is 
not influenced by the decision variable, CP does not reflect the effect of choice on sensory 
neurons. b. CP emerges through the correlation between the decision variable and the 
feedback on the sensory neurons and the effect of sensory neurons on the decision variable, 
generating a self-reinforcing loop. (The correlation between the decision variable and 
feedback is illustrated as though the decision variable directly influences feedback, one 
plausible way this could arise. Another possibility is that the decision variable and the 
feedback share a common input). c. Feedback is discounted and is also not correlated with 
choice. As a result, no CP is observed in the sensory neurons. This would be inconsistent 
with the experimental data.  d. CP is generated solely through the effect of choice-related 
feedback on the sensory neurons. The effect is subsequently discounted by directly 
comparing the feedback and the sensory neuronal activity as part of the readout. (This 
comparison is implemented schematically by adding a direct inhibitory influence of the 
feedback on the decision). As a result, there is no detrimental effect of the introduction of 
“differential” correlations.  
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In these first two interpretations, the naïve decoding of feedback implies that 

performance is degraded by the introduction of “differential” correlations. Under the third 

scheme (bottom right, Fig. 2.10d), the state of the decision process influences feedback, 

but this component of the sensory neuronal response is ignored by the decoder. This can 

be implemented simply by comparing sensory neuronal activity with the feedback signal 

directly (here illustrated by introducing a direct inhibitory effect of feedback on the 

decision). Under this scheme, the structured noise correlations introduced by feedback 

have no influence on choice.  This has two consequences. First, observed CP is 

exclusively an effect of feedback, and second, the “differential” structure of the 

correlations has no impact on performance. This scheme would have the curious 

consequence of introducing feedback to sensory neurons only to ignore it downstream, 

and so for this reason it seems unlikely. 

In the final scheme (top right, Fig. 2.10c), feedback is ignored and is also not 

itself correlated with choice. This implies that the noise correlations which could 

influence choice are only those derived from the sensory input. In our experiment this 

corresponds to the fixed component of the correlation matrix. We showed in Fig. 2.6 that 

this can only generate very small CP. Because the feedback is not influenced by choice, 

there is also no feedback source of CP. Consequently, this scheme predicts no CP, and is 

therefore inconsistent with our data. 

We argue that the first (purely feedforward) scheme (Fig. 2.10a) is problematic 

for several reasons. First, under this view, CP entirely reflects the influence of sensory 

neuronal variability on choice. Therefore, the magnitude of CP must correlate with the 

influence of sensory evidence on the animal’s choices (i.e. the amplitude of the 
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psychophysical kernel). However, we found, similar to past studies, that CP stayed 

constant or even increased over the course of the trial (see §2.7.3;  Nienborg & 

Cumming, 2009; Shadlen et al., 1996) while subjects’ weighting of sensory evidence 

tends to decrease in fixed-duration trials (Kiani et al., 2008; Hendrikje Nienborg & 

Cumming, 2009). This mismatch suggests that CP results from more than the causal 

influence of sensory neuronal variability on choice. 

Second, this interpretation requires that the state of feedback signals during 

perceptual decision making not be influenced by choice itself. Evidence from other 

studies involving perceptual discrimination suggests that this is not the case. One strong 

line of evidence for this is the pronounced CPs observed in studies involving perceptually 

bistable stimuli (Dodd et al., 2001; see discussion in §1.3.1). In these tasks, zero-signal 

trials do not look ambiguous. Rather the percept fluctuates strongly between two 

alternative interpretations with equal probability. The perceptual stability elicited by 

these stimuli implies a relatively weak effect of sensory neuronal variability on choice, 

suggesting that this cannot be the origin of the large CPs. A more parsimonious 

explanation is that CP relates to variability in feedback related to the subject’s strong 

alternations in perceptual state. We also found evidence that the feedback inputs that 

manifest as structured spike-count correlations in V1 appear to scale with variability in 

subject’s choices. 

Thus, we conclude that CP at least partially derives from the fact that the 

common feedback input generates the structured correlations we observe in V1 is 

correlated with the state of the subject’s decision variable. However, we cannot say what 

downstream effect this feedback has. Either 1) it is ignored by the decoder, in which case 
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CP is entirely due to the effect of choice on sensory neurons and there is no detrimental 

effect of the “differential” structure (as in Fig. 2.10d) , or 2) spikes generated by feedback 

is read out naively as sensory evidence, in which case CP is the result of a self-

reinforcing loop of feedback and feedforward signals, and the structure of the resulting 

noise correlations would appear to limit the information capacity of the population (as in 

Fig. 2.10b). In either case, the relationship between sensory neuronal variability and the 

“noise” that limits perceptual performance is a complicated affair indeed. It is not well 

experimentally constrained, particularly in light of our results indicating rsc relates to 

poorly understood feedback signals. This poses serious problems for experimental 

attempts to measure the information capacity of sensory neurons without knowledge of 

the state of internally-generated feedback signals. This also undermines attempts to use 

CP as a reflection of the causal influence of sensory neurons on choice. 

Finally, we consider how the results may generalize to other tasks and brain 

areas. One reason for choosing to perform our experiment in V1 is because top-down 

effects have been reported to be weaker in early visual cortex (Maunsell & Cook, 2002; 

McAdams & Maunsell, 1999; Mehta, Ulbert, & Schroeder, 2000; Reynolds & Chelazzi, 

2004). Therefore, it seems reasonable to conclude from our results that CP is also 

generated by feedback later in the visual hierarchy, where feedback effects are typically 

stronger. Indeed, a more limited version of our results, using paired recordings, has 

previously been made in MT using a motion discrimination task (Cohen & Newsome, 

2008). Their measurements of noise correlations are consistent with a dynamic structure 

similar to our data, but with greater amplitude. Along the same lines, preliminary data 

from population recordings in area MT during a cylinder direction discrimination task 
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indicate task-dependent structured noise correlations similar to those reported here, but a 

great deal larger in amplitude (Incheol Kang and Bruce Cumming, personal 

communication), consistent with a feedback origin of the much larger CPs reported 

previously in MT using the same task (Dodd et al., 2001; Krug et al., 2004; Parker et al., 

2002). Nonetheless, further experiments would need to be performed to directly test the 

replicability of these results in other brain areas and using other experimental paradigms. 

2.6 Methods 

Electrophysiology 

We recorded extracellular spiking activity from populations of V1 neurons in 

two awake, head-fixed rhesus monkeys (Macaca mulatta).  Both were implanted with a 

head post and scleral search coils under general anaesthesia (Judge, Richmond, & Chu, 

1980).  In Monkey ‘lem’, a recording chamber was implanted over a craniotomy above 

the right V1 operculum, as described previously (Cumming & Parker, 1999), by which 

we introduced linear microelectrode arrays (U- and V-probes, Plexon; 24-contacts, 50 or 

60 µm spacing) at an angle approximately perpendicular to the cortical surface with a 

custom micro-drive. We positioned the linear arrays so that we roughly spanned the 

cortical sheet, as confirmed with current-source density analysis, and removed them after 

each recording session. In monkey ‘jbe’, a planar “Utah” array (Blackrock Microsystems; 

96 electrodes 1mm in length inserted to target supragranular layers, 400 um spacing) was 

chronically implanted, also over the right V1 operculum.  All procedures were performed 

in accordance with the US Public Health Service Policy on the humane care and use of 



48 
 

laboratory animals and all protocols were approved by the National Eye Institute Animal 

Care and Use Committee. 

Broadband signals were digitized at 30 or 40 kHz and stored to disk. Spike 

sorting was performed offline using custom software in MATLAB. First, spikes were 

detected using a voltage threshold applied to high-pass filtered signals. Next, triggered 

waveforms were projected into spaces defined either by principal components or 

similarity to a template.  Clusters boundaries were finally estimated with a Gaussian 

mixture model, and then rigorously verified and adjusted by hand when needed.  In the 

linear array recordings, spike sorting yield and quality was substantially improved by 

treating sets of three or four neighboring contacts as “n-trodes”.  As this was not possible 

with the Utah array, we excluded pairs of neurons recorded on the same electrode to 

avoid contamination by misclassification. Neurons from separate recording sessions were 

treated as independent. To reduce the possibility that a single neuron from the Utah array 

contributed to two datasets, we included only sessions that were separated by at least 48 

hours (with a median separation of 5 days). We excluded from analysis those neurons 

whose mean evoked firing rate did not exceed 7 spikes/second.   

Visual Stimuli 

All stimuli were presented binocularly (at zero disparity) on two gamma-corrected 

cathode ray tube (CRT) monitors viewed through a mirror haploscope, at 85 or 100Hz.  

The monitors subtended 24.1° x 19.3° (1280x1024 pixels).  The stimuli presented during 

performance of the discrimination task consisted of bandpass filtered dynamic white 

noise, as described previously (Nienborg & Cumming, 2014).  Stimuli were filtered in the 

Fourier domain with a polar-separable Gaussian.  The peak spatial frequency was 
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optimized for the recorded neuronal population (1 and 4 cpd medians for ‘lem’ and ‘jbe’, 

respectively) while the peak orientation could take one of two orthogonal values the 

animal had to discriminate in a given session. The angular s.d. of the filter modulated the 

orientation bandwidth (i.e. task difficulty) and was varied trial to trial. A 2D Gaussian 

contrast envelope was applied to the stimulus so that its spatial extent was as small as 

possible while still covering the minimum response fields of the neuronal populations 

being recorded. The median envelope s.d. was 0.6° for both animals.  The median 

stimulus eccentricity was 5.4° for ‘lem’ and 0.5° for ‘jbe’. In Fig. 2.1, we quantify 

orientation bandwidth as % signal strength.  This was calculated as 100 ∗ ܴ, where ܴ is 

the length of the resultant vector associated with the angular component of the stimulus 

filter.  A two-pass presentation procedure was used.  Each instance of a stimulus 

(generated with a given noise seed) was shown twice. This allowed us to control for any 

effect of fluctuations in the stimulus on firing rate (see §2.7.1 and Fig. 2.15). 

We estimated the preferred orientation of the neurons in separate blocks of trials, 

using 400-ms presentations of the following types of stimuli, presented at a range of 

orientations: 1) an orientation narrowband version of the stimulus described above (10° 

angular s.d.); 2) sinusoidal gratings; and 3) dynamic 1D noise patterns (random lines). 

The preferred orientation of a neuron was calculated as the circular mean of its 

orientation tuning curve.  From among the set of tuning curves elicited by the different 

stimulus types described above, we chose as the final estimate of preferred orientation the 

one with the smallest standard error, obtained by resampling trials. We excluded from 

further analysis all neurons where this exceeded 5°. On a subset of sessions, we also used 

these orientation-tuning blocks to present examples of the zero-signal orientation-filtered 
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noise stimuli. These were presented at the same location and size as during task 

performance, allowing us to calculate noise correlation structure in the absence of task 

engagement but identical retinal input. 

Orientation Discrimination Task 

The animals performed a coarse orientation discrimination task using 

orientation-filtered noise stimuli, described previously (Nienborg & Cumming, 2014).  

To initiate a trial, the subject had to acquire a central fixation square.  After a delay of 

50ms, the stimulus appeared for a fixed duration of 2 seconds.  The trial was aborted if 

the subject broke fixation at any point during the stimulus presentation, defined as either 

1) making a microsaccade covering a distance greater than a predefined threshold 

(typically 0.5°) or 2) a deviation in mean eye position from the center of the fixation 

point of more than a predefined threshold, typically 0.7°.  At the end of the stimulus 

presentation, two choice targets appeared.  These were Gabor patches of 2-3° in spatial 

extent, oriented at each of the two discriminandum orientations.  The locations of the 

choice targets depended on the task.  For discriminanda pairs near horizontal and vertical 

(-22.5° – +22.5° and 67.5° – 112.5°), the choice targets were positioned along the vertical 

meridian, at an eccentricity of about 3°, with the more vertically-oriented target appearing 

always in the upper hemifield.  For orientation pairs near the obliques (22.5° – 67.5° and 

112.5° – 157.5°), the choice targets were positioned along the horizontal meridian, at the 

same range of eccentricities, with the smaller of the two orientations always appearing in 

the left hemifield. (We use the convention that horizontal is 0° and that orientation 

increases with clockwise rotation.) To penalize random guessing, the amount of liquid 

reward delivered after correct choices was doubled with each consecutive correct choice, 
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up to a maximum of four times the initial amount. Since our hypothesis related to an 

effect of task engagement on neuronal activity, we applied a behavioral criterion to our 

data, excluding sessions where the subject’s psychophysical threshold (defined as the 

signal level eliciting 75% correct performance) exceeded 14% signal. 

  

Psychophysical Reverse Correlation 

We performed PRC to objectively measure the weights subjects applied to 

different stimulus orientations to make their choices. To do this, we first summarized the 

stimulus on each trial as the radial sum of its 2D Fourier amplitude spectrum, averaged 

across frames, to remove information about spatial frequency and phase. Psychophysical 

kernels were calculated as the difference between the two choice-conditioned radial 

sums. This was performed separately for each signal level and then the resulting kernels 

were averaged. 

Noise Correlation Measurements 

Noise correlations were calculated as the Pearson correlation between spike 

counts, counted over the 2 second duration of the stimulus, with a 50ms delay to account 

for the typical V1 response latency.  These spike counts were first z-scored separately for 

each experimental block (typically a set of 100-200 trials lasting about 10 minutes) and 

each stimulus condition. This normalization within blocks removes correlations related to 

long-term firing rate nonstationarities. Normalizing each stimulus condition allowed us to 

combine trials at different signal levels without introducing correlations related to 

similarity in stimulus response. We used a balanced z-scoring method proposed recently 

to prevent bias related to differences in choice distributions across signal levels (Kang & 
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Maunsell, 2012). We excluded pairs that were not simultaneously isolated for at least 25 

trials (total across signal levels).     

A main goal of the study was to measure how noise correlation varies with 

pairwise orientation.  We describe this relationship as a smoothed function estimated 

from measures of rsc combined across multiple recording sessions, which we then 

sampled discretely with 1° resolution. The smoothed estimates were obtained using 

kernel smoothing. We used a bivariate von Mises kernel, with zero correlation and equal 

dispersion in both dimensions.  A point in an estimated correlation matrix for orientation 

C was given as: 

۱ሺݔ, ሻݕ ൌ tanh
∑ ௭೔௄
೙
೔సభ ሺ௫,௬,ఏ೔,థ೔ሻ

∑ ௄೙
೔సభ ሺ௫,௬,ఏ೔,థ೔ሻ

 , where  ܭሺݔ, ,ݕ ,௜ߠ ߶௜ሻ ൌ ݁఑	ሺୡ୭ୱሺఏ೔ି௫ሻାୡ୭ୱሺథ೔ି௬ሻሻ   (2.1) 

 ௜ and ߶௜ are theߠ ,௜ is the ith (Fisher z-transformed) noise correlation measurementݖ

preferred orientations of the ith pair, and ߢ is the von Mises dispersion parameter. We set 

ߢ ൌ 1.3π, yielding a smoothing kernel closely approximating a bivariate wrapped 

Gaussian with 15° s.d. We also estimated the noise correlation matrix in a task-aligned 

coordinate frame (e.g. Fig. 2.4e), for which the preferred orientations of the ith pair 

relative to the task orientation were used for ߠ௜ and ߶௜.  Since there were always two 

orthogonal task orientations, we averaged across both choices of coordinate frame, such 

that ۱ሺݔ, ሻݕ ൌ ۱ሺݔ ൅ 90°, ݕ ൅ 90°ሻ. All angular quantities were doubled, as orientation 

has a period of 180°. 
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Square Lattice Approximations 

We observed that the task-dependent noise correlation structure resembled a 

square lattice. In other words, it was characterized by a set of identity-preserving 

transformations (i.e. a symmetry group), schematized in Fig. 2.4g. We wanted to identify 

the lattice ܆෡ obeying these symmetries that best described a given smoothed matrix X. 

The problem of identifying ܆෡ is easily decomposed into a series of independent problems 

for each element of ܆෡: ݔො௞ ൌ ௜ݔ ൅ ε௜	,  ො௞ byݔ ௜ that are those elements of X mapped ontoݔ∀

the symmetry group. Assuming normal error, we can easily find the maximum likelihood 

estimate of ݔො௞ by taking the sample means of the xi’s. To include the axis of anti-

symmetry about the mean, we first subtracted the mean of the matrix X and then inverted 

the sign of the data in the inverted regions. We then inverted the sign of these regions 

again after arriving at ܆෡. 

Regression Model 

We used a multilinear regression model to identify “fixed” and “task-aligned” 

components of the structured correlations we observed. Our approach was to describe the 

set of observations (811 individual pairwise noise correlation measurements, Fisher z-

transformed to produce normal error) in terms of a set of two underlying correlation 

structures: one defining rsc as a function of pairwise preferred orientation alone (“fixed”) 

and the other defining rsc as a function of pairwise preferred orientation relative to the 

task (“task-aligned”). Because the fixed matrix need not obey the lattice symmetries 

outlined above, these were not imposed in the regression model. We simply fit a 

description to the full correlation matrix. In order to provide a continuous and smooth 
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description of the data, each component was parameterized as the sum of an array of 

 :௜, was expressed asݕ ,evenly spaced basis functions. Each observation ݊	ݔ	݊

௜ݕ ൌ ௜ݔ
௙௜௫௘ௗ ∙ ௙௜௫௘ௗߚ ൅ ௜ݔ

௧௔௦௞ ∙ ௧௔௦௞ߚ ൅ ଴ߚ ൅                              (2.2)					௜ߝ

௜ݔ
௙௜௫௘ௗ and ݔ௜

௧௔௦௞  are length-n2 vectors of loadings onto the basis functions, which were 

given by evaluating the basis functions at the location corresponding to the pairwise 

orientation preference of the ith pair. ߚ௙௜௫௘ௗ and ߚ௧௔௦௞ are the length-n2 vectors of 

amplitudes of the basis functions (coefficients to be fit), ߚ଴ is a model constant, and  ∙  is 

the element-wise product. For the basis functions, we used bivariate von Mises functions, 

with zero correlation and equal dispersion in both dimensions. Thus the kth loading 

௜ݔ	)
௙௜௫௘ௗሺ݇ሻ or ݔ௜

௧௔௦௞ሺ݇ሻ) was given by: 

௜ሺ݇ሻݔ ൌ
௘ഉ	ቀౙ౥౩ቀഇ೔షഋೖ

భቁశౙ౥౩ቀഝ೔షഋೖ
మቁቁ

௓
                                               (2.3) 

where ߠ௜ and ߶௜ are the preferred orientations of the ith pair, ߤ௞ is a pair of orientations 

defining the location of the kth basis function, Z is a normalization constant such that the 

sum of all loadings for observation i (ݔ௜
௙௜௫௘ௗ ൅ ௜ݔ

௧௔௦௞	) is 1, and ߢ is the von Mises 

dispersion parameter. (For the loadings onto the task-aligned component, ߠ௜ and ߶௜ were 

expressed relative to the task. Because there were two discriminanda, we were forced to 

make an arbitrary choice of alignment, or to constrain the task-aligned component to have 

identical values at (0°,0°) and (90°,90°). The latter approach would have introduced an 

asymmetry in the number of degrees of freedom between the two components. Instead, 

we chose to make an arbitrary choice of alignment, and expressed orientation relative to 

the discriminanda reported by either an upward or leftward saccade.) Again, angular 

quantities were doubled and ߢ was set to 1.3π.	 We found that arrays of 8x8 were 
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sufficient to describe the structure of the two components.  Because the observations 

were pairwise correlations, it was sufficient only to fit the upper triangular portion of the 

array of basis functions.  Thus, the two-component model contained 73 parameters (36 

for each component, plus the model constant).   

We fit the model by finding the parameters (ߚ௙௜௫௘ௗ,  ଴) that minimizedߚ		&	௧௔௦௞ߚ

the L1 error (to encourage sparseness) plus two additional terms that encouraged 

smoothness and symmetric positive semi-definiteness (as the two components were 

meant to represent correlation matrices).  Thus the solution was obtained as: 

,መ௙௜௫௘ௗߚ ,	መ௧௔௦௞ߚ መ଴ߚ ൌ argmin
ఉ೑೔ೣ೐೏,	ఉ೟ೌೞೖ	,	ఉబ

		∑ ௜|௜ߝ| ൅ߙଵ߁ሺߚ௙௜௫௘ௗ ൅ ሻ	௧௔௦௞ߚ ൅ ௙௜௫௘ௗߚௌ௉஽ሺܦଶߙ ൅          ௧௔௦௞ሻߚ

(2.4) 

 is the discrete Laplace operator in two dimensions, corresponding to circular ߁

convolution with the following kernel: ൥
0 1 0
1 െ4 1
0 1 0

൩ and ܦௌ௉஽ሺܺሻ is the 2-norm between 

X and the nearest symmetric positive semidefinite matrix ෠ܺ, which is given by 

ሺܤ ൅ ܤ ሻ/2 where H is the symmetric polar factor ofܪ ൌ
൫஺ା஺ᇲ൯

ଶ
  (Higham, 1988). The 

 s controlled the strength of regularization and were chosen to produce the best fit (as’ߙ

measured with R2 under 50-fold cross-validation). The solution was obtained by gradient 

descent using the MATLAB function fminunc.  

While this model did not explain more than a small percentage (3.2%) of the 

variance of the observed noise correlations, this is not surprising as the raw correlation 

data do not vary smoothly with preferred orientation (reflecting both noise, and the fact 

that rsc is known to depend on parameters other than orientation (Cohen & Kohn, 2011; 

Kohn & Smith, 2005; Smith & Kohn, 2008). We therefore compared model performance 
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with the variance explained simply by a smoothed version of the raw data (sum of values 

in fixed and task aligned matrices was 3.6%). 

 

Choice Probability 

Choice Probability was calculated in the standard way, using zero-signal trials 

(K. H. Britten et al., 1996). To estimate the average CP of the population, and to generate 

the histogram in Fig. 2.6e, we included only those neurons (n=111) which could 

discriminate the task orientations (dʹ>1.2 at the highest presented signal level). 

In the linear pooling model, the relationship between the covariance matrix for a 

population of neurons, the readout weight of each neuron, and the CP of each neuron is 

given in Eq. 1.1, reproduced from Haefner et al. (2013). We used this predicted 

relationship to quantify the CPs that would be associated with the correlation structure we 

observed and the fixed and task-dependent components we identified.  CPs, correlations, 

and read out weights were described as functions of preferred orientation, relative to the 

task. We assumed a homogenous population of infinite size spanning this space, that we 

sampled discretely with 1° resolution. Since the read out weights were unknown, we 

generated a random distribution of plausible read out weights that could support task 

performance. To do this, we started with a vector of standard normal deviates and applied 

the 90° symmetry inherent in the task, such that ߚఏ ൌ 	െߚఏାଽ଴, where ߚఏ is the weight 

assigned to neurons with task-relative preferred orientation ߠ.  Then, we smoothed the 

read out weight profiles with a wrapped Gaussian kernel with 15° s.d. and excluded 

profiles which did not have a circular mean within 22.5° of choice 1 (0°). To guarantee 

real-valued CPs on [0,1], we performed the calculations using a symmetric positive 
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definite approximation (Higham, 1988) of the observed correlation matrices, which 

introduced negligible error.  For the CP predictions and for Fig. 2.6a, we expressed the 

task-aligned fit component as the average of both possible alignments (i.e. so that data at 

(0°,0°) and (90°,90°) are identical), although this was not directly imposed by the fitting 

procedure. 

Estimating mean covariance for a population of neurons is necessarily more 

error-prone than estimating mean correlation, as the former is sensitive to sampling error 

in measurements of average firing rate, so for this reason we preferred to perform the 

calculations using correlations (see §2.7.4). We can use correlations interchangeably with 

covariances in Eq. 1.1, under the simplifying assumption that the variance is uniform as a 

function of preferred orientation: If ઱ is the correlation matrix for a population with 

uniform variance ߙ, then it follows that: 

௞ߦ  ൌ
௔ሺ઱ఉሻೖ

ඥ௔ఀೖೖఉ౐ሺ௔઱ሻఉ
ൌ

ሺ઱ఉሻೖ
ඥఀೖೖఉ౐઱ఉ

	                                          (2.5) 

where  ߑ௞௞ ≡ 1 for all k. We felt that spike-count variance that depended systematically 

on preferred orientation was unlikely to be a feature of the V1 representations, and thus 

that the advantages of using correlations outweighed the cost of making this assumption.  

Pooling noise has the effect of uniformly scaling down CPs, such that ߦ௞ in Eq. 

1.1 is substituted with: 
ሺ۱ఉሻೖ

ට஼ೖೖሺఉ౐۱ఉାఙ೛೚೚೗
మ ሻ

 , where ߪ௣௢௢௟
ଶ  is the variance of the pooling 

noise6. We found that non-zero pooling noise was needed to avoid overestimating the 

magnitude of CP from the observed correlation structure.  We used a fixed amount of 

pooling noise in our predictions such that the average squared difference between the CP 

profile predicted from the observed correlation matrix and the observed CP profile was 
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minimized. Empirically, we found that pooling noise variance of 0.6 was optimal. Since 

our spike counts were normalized to have unit variance, this implies pooling noise whose 

variance is 60% of the average spike-count variance of single neurons. However, the 

overestimation of CPs may also be related to the assumption of a homogeneous 

population (Haefner et al., 2013), so the need to invoke pooling noise may be partially 

artifactual. 

 

Calculating Task-Tuning Similarity 

We compared the structure of task-aligned noise correlations with the structure 

of similarity in preference for the two discriminanda orientations. The latter was 

quantified using the product of the slopes of the tuning curves (fʹfʹ), where the tuning 

curves refer to changes in firing rate as a function of signal strength along the task axis.  

Recent theoretical work has shown important limitations on stimulus information 

conveyed by sensory neurons in which the covariance structure matches the structure of 

task-tuning similarity, measured in this way (Moreno-Bote et al., 2014). Since we made 

use of correlations, rather than covariances, in the present study, we normalized the task-

tuning similarity metric by the product of the standard deviations of the stimulus-

independent variability of each pair, averaged across stimulus conditions. 
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2.7 Appendix 

2.7.1 Possible Confounding Retinal Effects  

We considered whether the task-dependence of the noise correlation structure we 

observed could be explained without invoking central mechanisms.  First, we wondered 

whether the task-dependent changes in noise correlation structure were due simply to task 

experience and did not require active task engagement, for instance as a result of rewiring 

of local circuitry in visual cortex after training on a fixed set of orientations for several 

consecutive days. To address this, we interleaved presentations of the “zero-signal” 

filtered noise stimuli in the blocks of trials used to probe the orientation tuning of the 

neurons, during which the animal simply fixated passively. When we calculated rsc using  

 
Figure 2.11. Lattice-like rsc structure depends on active task engagement. a. Task-
aligned lattice-like noise correlation structure was present during performance of the 
orientation discrimination task, but was absent in separate blocks of trials used to measure 
neuronal orientation tuning, during which the animal fixated passively for reward. Noise 
correlations were calculated across interleaved presentations of the zero-signal orientation-
filtered noise stimulus in the fixation blocks.  During these blocks, the noise correlation 
matrix more closely resembled a diagonal ridge, demonstrating that the task-aligned lattice 
structure depends on active task engagement. Only 556 pairs were used, as not all recording 
sessions included fixation blocks with the zero-signal filtered noise stimuli interleaved. b. 
During the fixation blocks, the square lattice score associated with the correlation matrix 
was not significantly above chance at the p<0.05 level, unlike during task performance 
(error bars are +/- 1 bootstrap s.e.).  
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these trials, we found that the task-dependent pattern of noise correlations was abolished.  

Instead, we observed a matrix more closely resembling a diagonal ridge (Fig. 2.11). This 

confirms that the source of the task-aligned correlation structure indeed depends on active 

engagement in the task.  

 

Figure 2.12. Rsc structure is not influenced by stimulus history. a. Average, task-aligned 
noise correlation matrix for orientation (identical to Fig. 2.4e except without using z-scored 
counts). b. Average, task-aligned noise correlation matrix for orientation after normalizing 
spike counts to remove the influence of the stimulus on the preceding trial. Color scaling 
and axis labels as in (a). c. Scatter plot of the noise correlations before and after the 
normalization procedure, showing almost no effect. This demonstrates that stimulus history 
does not significantly influence observed noise correlations. 

Next, we considered the possibility that stimulus history influenced the firing rate 

of the neurons in ways that depended systematically on their tuning and thus created 

structured noise correlations that changed with the task. To rule this out, we used a 

different z-scoring procedure from the one described in the Methods. We broke trials 

down into groups for which the identity of the stimulus presented on that trial and on the 

preceding trial were the same. After z-scoring spike counts within these groups 

separately, counts no longer contained information about either stimulus.  If coordinated 

firing rate fluctuations driven by stimulus history led to task-dependent noise correlation 
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structure, then this normalization should attenuate it.  However, we found that this 

procedure had virtually no effect on the correlation structure (Fig. 2.12).   

We also reasoned that, if a mechanism related to stimulus history accounted for 

our results, we should see a marked attenuation of the correlation structure on trials 

following a long intertrial interval (i.e. a long delay before the subject acquired fixation). 

Following this reasoning, we performed a median split of the trials on each session based 

on the preceding ITI duration. The short ITI subset of trials was preceded by an average 

ITI of 1.1 seconds, while the long ITI subset was preceded by an average ITI of 4.8 

seconds.  We found that the lattice-like correlation structure was present in both subsets 

of trials.  In fact, the amplitude of the noise correlation structure and mean rsc was slightly 

increased for the long-ITI subset (Fig. 2.13), inconsistent with rsc structure being driven 

primarily by stimulus history.  

Both animals tended to make anticipatory microsaccades near the end of the trial 

that could predict the direction of their upcoming choice saccade (Fig. 2.14a), as reported 

in a prior study using the same task (Nienborg & Cumming, 2014). We were concerned 

that this introduced variability in the retinal image that influenced our measures of noise 

correlation. However, the direction of the choice saccade was not directly related to the 

orientations being reported, so it is unclear how this could generate structured noise 

correlations that depend on preferred orientation.  Nonetheless, to rule out a role for eye 

movements, we measured noise correlations across a subset of trials on each session for 

which fixational eye movements were not predictive of choice. To identify these trials, a 

linear classifier was trained to predict the subject’s choices using the time series of mean 
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Figure 2.13. Rsc structure is similar after short and long inter-trial intervals. a,b. The 
average, task-aligned correlation matrix for orientation for two subsets of trials, obtained 
from a median split based on the duration of the preceding inter-trial interval (ITI) for each 
session.  The lattice-like noise correlation structure is present in both subsets. Axis labels 
and color scale in (b) are the same as in (a). c. A scatter plot of the noise correlations for 
the half of the trials preceded by long ITIs against the other half. The dashed gray line is 
the identity line, and the solid black line is the (type II) regression line. The slope is 
significantly greater than 1 (p<0.05, bootstrap test), demonstrating an increase in the 
amplitude of the noise correlation structure after long ITIs. d. The mean noise correlation 
was also greater after long ITIs (p<0.01, bootstrap test).  Error bars represent +/- bootstrap 
s.e. This increase is in the opposite direction of any change that could be explained by 
correlations introduced by the identity of the preceding stimulus.  
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Figure 2.14. Rsc structure is not generated by fixational eye movements. a. The trial-
averaged trajectories of mean binocular eye position, from one example session from monkey 
‘lem’. Black and gray traces correspond to trials preceding leftward and rightward choice 
saccades, respectively. Red lines indicate eye position 1.5 seconds after stimulus onset, around 
which time the trajectories noticeably diverge. b. Eye position trajectories for a subset of trials 
from which choice could no longer be predicted, identified using a linear classifier after having 
removed the last quarter of the trial. c,d. Histograms of posterior probabilities, giving the 
chance that a trial was associated with a leftward choice saccade according to the classifier, 
before (c) and after (d) the trial-removal procedure. The white and black distributions represent 
trials followed by rightward and leftward choices, respectively. e,f. The task-aligned V1 noise 
correlation matrix for orientation (averaged across all sessions) was extremely similar before 
(e) and after (f) we applied the trial-removal procedure to each session, indicating that choice-
related fixational eye movements were not responsible for the structure we observed. Axis 
labels and color scale are same for (e) and (f). g. The Euclidean distance between the eye 
position trajectories associated with the two choices, as a function of time after stimulus onset. 
The distances before and after the trial-removal procedure are shown in blue and red, 
respectively, with error bars indicating +/- 1 s.e. obtained from resampling trials. The distance 
expected by chance, obtained by shuffling the choice labels, is shown in black with +/- 1 s.e. 
shown. h. Square lattice scores for the average, task-aligned correlation matrices before and 
after the trial removal procedure were not significantly different and were both significantly 
above chance level (p<0.01 and p<0.05, bootstrap test, respectively).    
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binocular eye-position recorded on each trial.  Then, trials were iteratively removed, 

starting with those furthest from the separating hyperplane, until classification 

performance was no better than chance (Fig. 2.14a-d).  This analysis was restricted to the 

first 1.5 seconds since considering later time points required discarding too many trials. 

We still observed the same pattern of structured noise correlations in the remaining trials 

(Fig. 2.14e-h), suggesting that choice-related eye movements did not play a significant 

role in generating our results. 

Lastly, we considered the influence of fluctuations in the white noise underlying 

our stimuli on co-fluctuations in neuronal firing rates. We used a two-pass experimental 

design in which each exact stimulus sequence was presented on two separate trials in 

each block. This allowed us to specifically identify the portion of firing rate covariability 

due to the common influence of the white noise variability. To do this, we calculated rsc 

for a pair of neurons after we permuted the indices of the paired repeat trials for one 

neuron, while preserving the indices for the other neuron. This preserved the exact 

spatiotemporal sequence of pixels on the monitor while destroying the temporal 

alignment of other common inputs that could drive noise correlations. We then computed 

the average, task-aligned matrix for orientation using these “stimulus-induced” noise 

correlations.  We found that the lattice structure was abolished, with pairwise correlations 

becoming tightly clustered near zero (Fig. 2.15). Thus, we can safely rule out rate 

covariability introduced by the stimulus as a prominent source of the noise correlation 

structure we report here. 
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Figure 2.15. Rsc structure is not driven by stimulus variability. a. The average, task-
aligned V1 noise correlation matrix for orientation (identical to Fig. 2.4e). b. The noise 
correlation matrix attributable to covariability introduced by trial-to-trial fluctuations in the 
stimulus, identified using a two-pass trial-shuffling procedure (see Methods). The task-
aligned lattice-like structure is abolished, and the amplitude of noise correlations is 
drastically reduced (note expanded color scale). The remaining structure resembles a weak, 
diagonal ridge. (Data from only 801 pairs, because a few pairs lacked sufficient two-pass 
trials for the analysis.) c. A scatter plot of the noise correlations before versus after the 
trial-shuffling procedure. There was no significant correlation between the two and the 
noise correlations after shuffling were centered very close to zero (mean of -4∗10-4). Red 
cross indicates the population average. 
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2.7.2  The Timecourse of Rsc Structure Within the Trial 

We were interested to know how the structured noise correlations we observed evolved 

over the course of single trials. To examine this, we calculated the average, task-aligned 

correlation matrix using spike counts from 200-ms windows centered on various time 

points during the 2 second stimulus presentation, with a 50ms offset to account for the 

typical V1 response latency.  We found that the lattice-like pattern was present at the very 

beginning of the trial and its amplitude stayed roughly constant throughout the trial (Fig. 

2.16). This pattern suggests that the feedback signals driving these correlations do not 

simply arise after the animal forms a decision about each individual stimulus. (We also 

noticed abrupt changes in rsc shortly after stimulus onset, similar to results reported in 

Churchland et al., 2010). 

Given the close theoretical link between noise correlation structure and choice-

related activity, we expected that correlation structure might follow a similar pattern to 

CP. However, we found that CP increased gradually over the course of the trial (Fig. 

2.16e), unlike the amplitude of noise correlation structure. This might reflect changes in 

readout weight during the trial, or that choices are not solely determined by a linear 

readout of the population. Other proposed models of perceptual decision making that 

include feedback may be able to account for this apparent divergence. We also cannot 

rule out that the increase in CP over the last quarter of the trial may be related to the 

choice-related differences in fixational eye position which became particularly 

pronounced at the end of the trial (Fig. 2.14). 
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Figure 2.16. Temporal dynamics of structured noise correlations. a. The average, task-
aligned V1 noise correlation matrix for orientation obtained using spike counts from 
various 200-ms windows during the stimulus presentation. The task-aligned lattice 
structure is present at all time points (4 examples shown). b-d. Plots showing the temporal 
dynamics of four statistical measures of the observed noise correlations (mean +/- 1 
bootstrap s.e.). The colored lines indicate the example time points shown in (a). The 
population mean noise correlation (b) showed a sharp drop shortly after stimulus onset and 
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then a gradual recovery over the course of the trial. The slope of the regression line of the 
noise correlations obtained in each 200-ms window against the noise correlations obtained 
from trial-length spike counts is in (c). Apart from an increased slope at the first time point, 
likely due to the onset of the visual stimulus, this showed no significant modulation over 
the course of the trial. The lattice score (d) was not significantly modulated over the course 
of the trial. e. Population mean CP, measured in 200-ms bins, showed a gradual increase 
over the duration of the trial (slope significantly positive, p<10-3, bootstrap test). Some of 
this may be due to choice-related fixational eye movements, which were particularly 
pronounced at the end of the trial (Fig. 2.14). Red dots indicate time points for which CP 
is not significantly above chance at the p<0.05 level (bootstrap test, false-discovery rate of 
0.05 ensured across comparisons using the Benjamini-Yekutieli procedure (Benjamini & 
Yekutieli, 2001)). Error bars indicate +/- 1 bootstrap s.e. The same set of cells is used as in 
Fig. 2.6e. f. Population mean PSTH, shown separately by preferred (blue) and anti-
preferred choices (red). The same set of cells is used as in Fig. 2.6e. N.B. All times include 
a 50-ms offset to account for the average response latency of V1 neurons. 

 

2.7.3 Correlation vs. Covariance 

The present study depended critically on comparing estimates of the spike-count 

covariability of subpopulations of neurons with different orientation tuning.  We 

quantified this covariability using the mean spike-count correlation.  A key advantage of 

using spike-count correlations is insensitivity to estimates of the spike-count variance.  

By contrast, measurements that do not normalize for spike-count variance will 

overweight more variable pairs.  In addition, using spike-count correlation allowed us to 

combine counts across experimental blocks and stimulus conditions without introducing 

artifacts related to changes in mean firing rate or firing rate variance, by applying z-

scoring.  This substantially increased the signal-to-noise ratio of our measurements, both 

by removing the confounding effect of long-term firing non-stationarities and increasing 

the number of trials that the measurements were based on. 

As a confirmation that this approach yielded results that generalize, we measured 

the average, task-aligned covariance matrix for orientation, using the same approach as 
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we used to generate the correlation matrix in Fig. 2.4e. To estimate covariance between a 

given pair of neurons, we used an average of the covariance measured separately by 

stimulus condition, weighted by the number of trials. We found that it displayed a 

qualitatively similar task-aligned lattice structure (Fig. 2.17). 

 

 Figure 2.17. The task-aligned 
structure of spike-count covariance. 
The average, task-aligned V1 covariance 
matrix for orientation. This is closely 
similar to the average noise correlation 
matrix shown in Fig. 2.4e, demonstrating 
that the procedure we used in the main 
analysis to normalize spike-counts 
individually for each neuron before 
averaging led to generalizable results. 

 

2.7.4 Laminar Distribution of CP and Rsc 

In monkey ‘lem’, recordings were performed using a 24-contact linear array, 

chronically inserted perpendicular to the dura. This allowed us to record from neuronal 

populations within individual cortical columns. We identified the laminar positions of the 

recorded units using current-source density (CSD) analysis (Mitzdorf & Singer, 1979), 

calculated as the second spatial derivative of the LFP voltages recorded across the 24 

channels. We identified the supragranular-granular and granular-infragranular borders 

using stereotypical features of the CSD profile (Maier, Aura, & Leopold, 2011). We 

identified layer 4c by comparing the visual latencies across the electrodes (Fig. 2.18a). 

We presume that the minimum latency corresponds to layer 4c, although we do not have 

independent confirmation of this. We wondered whether CPs and rsc differed across 
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laminae. Because V1 laminae receive distinct types of inputs, this could provide useful 

information about the source of the underlying signals. While there was a slight trend 

towards higher CPs for more superficial neurons, this was not significant (Fig. 2.18e). 

We did not see any noticeable difference in the noise correlation structure across laminae 

(Fig. 2.18g). 

 

Figure 2.18. Laminar distribution of CP and rsc. a. Pseudocolor plot of current-source 
density (CSD) profile following stimulus onset, example session. These were measured 
using a 24-contact linear array, inserted acutely in V1, roughly perpendicular to the dura. 
Light and dark regions correspond to current sinks and sources, respectively. Stereotypical 
features in the CSD profile mark the laminar boundaries of V1. Layer 4c is identified by 
the latency of the visual onset. b. Plot showing the temporal evolution of the laminar 
landmarks over the time elapsed during the example recording session. These were 
measured independently during each experimental block. Red lines correspond to the 
laminar boundaries, and the dashed blue line to layer 4c. These features remain in nearly 
fixed positions over the recording session relative to the linear array, with slow drift that is 
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consistent across the independently estimated laminar landmarks. Colored dots indicate the 
laminar positions of the recorded units. Their positions stay fixed relative to the estimated 
landmarks. c. Distribution of depths of recorded units across sessions, relative to layer 4c. 
(Negative values indicate units more superficial than layer 4c). d. Mean rsc was 
significantly higher for pairs in which at least one member was above layer 4c, than pairs 
in which at least one member was below layer 4c. (We tried breaking the correlations into 
groups in which both members of each pair were confined to the same lamina, but this 
resulted in too few pairs to make quantitative conclusions.) e. CPs recorded during 
performance of the orientation discrimination task, plotted against depth relative to layer 
4c. We observed a non-significant trend towards greater CPs at more superficial depths. 
(Negative values indicate units more superficial than layer 4c). f. CPs for neurons more 
and less superficial than layer 4c were not significantly different. Error bars are +/- 1 
bootstrap s.e. g. Observed noise correlation matrices for orientation, aligned to the task, for 
the two groups of noise correlations in (d). We subtracted the mean correlation so that we 
could better visualize any differences in correlation structure.  The two matrices appear 
qualitatively identical.  

2.7.5 The Square Lattice Model 

We observed that the task-aligned pattern of noise correlations obeyed a certain 

set of symmetries (Fig. 2.4g and reproduced in Fig. 2.19, below). We explicitly modeled 

these using a square lattice of type p4m (Schattschneider, 1978)2. Some of these 

symmetries were inherent in the data. For instance, the axis of diagonal symmetry is 

given by the fact that the data are Pearson correlations—r(i,j)=r(j,i), by definition. In 

addition, when the data is shown in a task-aligned coordinate frame (as in Fig. 2.4e), we 

averaged across both possible alignments (because there were always two orthogonal 

discriminanda) resulting in a matrix where the value at a given position (߶,	߶) is 

necessarily identical to the value at (߶+90º,	߶+90º). This makes some of the symmetries  

                                                            
2 The p4m lattice does not include an axis of diagonal symmetry, nor does it include any axes of anti-
symmetry about the mean. The addition of these symmetries was used specifically to model the structure in 
our data.  
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Figure 2.19. The square lattice model. a. Illustration of the lattice symmetries used to 
model the correlation structure (reproduced from Fig. 2.4g). b. The same symmetries can 
be illustrated without explicitly using any vertices of rotational symmetry. c. Illustration of 
the symmetries after shifting the lattice along the diagonal by an angle ߶. To fit the raw 
correlation matrices (i.e. not task-aligned) in Fig. 2.4, we used the angle ߶ that optimized 
the lattice score. d. Observed task-aligned correlation matrix (reproduced from Fig. 2.4e; 
top row) and surrogate data (other rows), obtained by randomly shuffling the correlation 
values but preserving the orientation preferences. e. Best-fitting square lattices (with no 
offset) for the correlation matrices in (d).  Axis labels and color scale as in (d). 
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modeled by the lattice trivial given the way the data was processed. However, the critical 

feature of the data—peaks and troughs in spike-count correlation at the within- and 

between-pool regions—was in no way constrained by the data processing.  

As an illustration, we generated several surrogate correlation matrices (Fig. 

2.19d), produced by randomly shuffling the correlation values of the neurons but 

preserving the orientation preferences. (This is different than the diagonal shuffling used 

to produce the data in Fig. 2.4h). These surrogates have been processed identically to the 

observed data in Fig. 2.4e (and reproduced in the top row of Fig. 2.19), but simply 

include shuffled correlation values. We then fit task-aligned lattices to these (Fig. 2.19e). 

Relatively little of the variance in these data is captured by the best-fitting task-aligned 

lattices, demonstrating that the high lattice score for the real data is not an artifact of the 

way the data has been processed, but reflects real symmetric structure in the data. 

Second, the best-fitting lattices contain a diversity of forms, and do not necessarily 

resemble the best-fitting lattice for the real data. In other words, the lattice symmetries, 

while they capture the symmetry relationships in the observed correlation structure, do 

not constrain the fits to take on the particular values we observed.  
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Chapter 3: 

Identifying Animal Subjects’ Internal 

Task Strategies with Psychophysical Reverse Correlation 

 

3.1 Introduction3  

In the preceding chapter, I discussed the finding that patterns of correlated 

variability in V1 change with a subject’s allocation of internal resources. Our approach to 

testing this hypothesis involved changing the set of orientations they needed to 

discriminate to obtain reward. A crucial assumption underlying this approach is that the 

animals changed their task strategy appropriately when task instruction changed. The 

validity of this assumption relates to a broader issue faced by studies involving animal 

subjects trained to make psychophysical judgments: simply put, are subjects performing 

any psychophysical task as instructed? In most studies, assumptions about the task 

strategies employed by animal subjects are verified by measuring overall performance (in 

terms of the reward rate, shape of the psychometric function, percent correct, etc.) 

However, this is only a valid test if deviations from the assumed task strategy necessarily 

impose measurable performance costs. In many cases, they do not.  

In this chapter, we discuss our efforts to determine our subjects’ decision 

strategies objectively. To do this, we use psychophysical reverse correlation (PRC). 

While widespread in the human psychophysics literature, PRC has been less often used to 

analyze animal behavior. First, we show using a simple model that subjects can obtain 

relatively high reward rates using a task strategy that most highly weights orientations 

                                                            
3 A subset of the data used for the analyses presented in this chapter was collected by Hendrikje Nienborg 
and Bruce Cumming. 
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other than the discriminanda orientations, thus generating psychophysical thresholds that 

appear consistent with subjects performing the task as instructed. We go on to show, 

using PRC, that our subjects frequently use such “misaligned” decision strategies. This is 

due to the striking finding that it requires days or even weeks of training to fully update 

their task strategy after a change in the discriminanda.  On the timescale of single training 

sessions, subjects’ behavior can be well characterized using a single, fixed task strategy, 

even if the set of discriminanda is not fixed. By contrast, we show that human subjects 

performing the same task are able to rapidly update their task strategy on the order of tens 

of trials. We go on to show that knowledge of the subject’s task strategy can predict 

psychophysical performance, providing insight into otherwise mysterious day-to-day 

variability in behavior. Lastly, we use a novel approach to assess whether subjects are 

truly at their perceptual thresholds, and show that our subjects typically are not, despite 

the use of standard procedures to ensure threshold performance. 

Taken together, our results demonstrate the utility of psychophysical reverse 

correlation as an approach to objectively measure the strategies employed by animal 

subjects in psychophysical tasks. We present evidence for a fundamental, and previously 

unappreciated, difference in the way humans and non-human primates perform 

discrimination tasks. This result highlights a serious potential confound in studies in 

which researchers seek to measure an effect on neuronal activity of changes in task 

instruction (for instance, Cohen & Newsome, 2008). Given our findings, it seems likely 

that subjects often employ a fixed strategy that lets them receive an acceptable rate of 

reward across multiple task contexts. We provide tentative suggestions for changes to 

typical training procedures and task designs that may mitigate this deficit. Whether or not 
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these will be successful, PRC can be used to obtain objective measures of the strategies 

animal subjects actually employ in future studies4. 

3.2 A Quantitative Motivation of the Problem 

First, we wanted to understand, using a quantitative model, the impact on 

performance if our subjects were to use the “wrong” orientations to motivate their 

choices. Recall that orientation amplitude in the stimuli used in our study is distributed 

according to a wrapped Gaussian. As a result of this design, a range of orientations near 

the center of the filter will provide useful evidence about the correct choice. In other 

words, there would seem to be a relatively low cost associated with a “misaligned” task 

strategy. We quantified the performance of a model subject whose decisions are made by 

comparing the amplitude of two orthogonal orientations, and ignoring all others. 

Performance is based solely on the discriminability of stimulus energy at those two 

orientations. This is determined by their angular difference (call this ߠ) from the 

discriminanda orientations, the orientation bandwidth of the stimulus, as well as noise in 

the stimulus and the decision process. The latter is the only free parameter, and is set to 

match the thresholds of the monkey subjects (see Methods).  

We found that the impact on performance of changing ߠ (a misaligned strategy) 

is markedly sublinear, and as a result is quite weak for small amounts of misalignment 

(Fig. 3.1). Surprisingly, a task strategy misaligned by 10º will decrease percent correct by 

only 2%. As ߠ increases, the difference in the mean amplitude at the two decision 

                                                            
4 We applied PRC analysis in the previous chapter to confirm that the subjects’ internal task strategies 
closely matched task instruction. This required breaks in recording after a change in the discriminanda 
during which subjects were retrained. 
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orientations becomes small relative to noise, and performance starts to degrade 

significantly. 

 

Figure 3.1. Simulated effect of task strategy “misalignment” on performance. a. The 
distribution of orientation in the stimulus at a variety of signal levels. Stimuli with 0º filter 
center are solid lines, and those with 90º filter center are dotted lines. The grey vertical 
lines indicate those orientations used by a hypothetical observer to inform choice. Offsets 
of these decision orientations from the true discriminanda orientations (decision boundary 
misalignment; ߠ) degrades performance. b. Quantification of performance as a function of 
 For small amounts of misalignment, the effect is modest, but performance degrades .ߠ
steeply as ߠ approaches 45º. Threshold refers to the % signal at which the subject is 75% 
correct. The psychometric function slope is inversely related to the threshold by a scale 
factor (see Methods for calculation of psychometric function slope). 

 

Thus, it is reasonable to conclude that significant deviations from the optimal 

decision boundary impair performance by amounts smaller than would be detectable 

given other sources of day-to-day behavioral variability, such as arousal, motivation, and 

the like.  It follows that overall performance is not a reliable test for whether a subject is 

performing the task as instructed. This conclusion is not specific to our task, but applies 

to any discrimination task in which changes in signal level affect the amplitude of a broad 

range of stimulus features. In fact, broad stimulus filters, rather than a broad distribution 
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of stimulus amplitude, would yield identical results (see Methods), raising the possibility 

of serious behavioral confounds in an even wider variety of studies involving animal 

behavior.  

3.3 Approach: Measuring Psychophysical Kernels 

We sought to measure the strategies subjects actually used to perform the task, 

particularly to verify that they update their strategies appropriately after a change in the 

discriminanda orientations. To do this, we borrowed an approach from human 

psychophysics that measures the small influence of random fluctuations in the stimulus 

on subject’s choices, analogous to the way receptive fields are measured by spike-

triggered averaging. This procedure is referred to as “psychophysical reverse correlation” 

(PRC) and the result is a “classification image” or “psychophysical kernel” (or simply 

“kernel”) which reflects the weights applied by the subject to various stimulus features 

(Eckstein & Ahumada, 2002).  Assuming the animal’s choices are made simply as a 

weighted average of the values of the stimulus features on a given trial, the (first-order) 

kernel is the maximum likelihood estimate of the linear weights. It is calculated as the 

difference between the average value of the stimulus features associated with the two 

choices. 

We combined training data from two subjects (‘lem’, who also contributed 

neuronal data to our study, and another monkey,‘ruf’, who did not) across two variants of 

the orientation discrimination task, for a total of 461 training sessions (359 from ‘lem’ 

and 102 from ‘ruf’). The first task (Task 1) used an orientation-filtered noise stimulus and 

is described in detail in the previous chapter. The second version of the task (Task 2) 
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involved a stimulus constructed slightly differently, but the task was otherwise identical. 

This version of the task used a “subspace” stimulus (Hendrikje Nienborg & Cumming, 

2007; Ringach, G., & Shapley, 1997). Individual frames were narrowband for orientation 

(10º s.d.), with center orientations sampled from a discrete set of orientations. On zero-

signal trials, all orientations in the set were equally likely to appear. Otherwise, the 

“signal” orientation occurred with an elevated probability that defined the nominal signal  

 

Figure 3.2. Measuring psychophysical kernels, Task 1.    a. Example stimulus frames at 
zero-signal. Each stimulus frame consists of independent white noise, filtered uniformly 
for orientation. b. Example amplitude spectrum of a zero-signal stimulus, averaged across 
frames. c. For the PRC analysis, we summarized each stimulus using the radial sum of its 
amplitude spectrum, to describe stimulus energy as a function of orientation. Shown here 
are these functions for a sample of zero signal stimuli, illustrating the random fluctuations 
in orientation energy introduced by the use of filtered noise. d. The psychophysical kernel 
is calculated as the difference (gray) of the two choice-conditioned radial sums (“positive” 
choice average in solid black and “negative” choice average in dashed black). Choices were 
signed according to an arbitrary rule. Note that the peak in the kernel is not located at the 
nominally “positive” orientation, which would correspond to an optimal kernel. 
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level. One way of stating the difference between the two tasks is that, in Task 1, 

orientation power varied across space, while in Task 2, it varied across time. All results 

generalized across subjects and the two task variants. 

 

Figure 3.3. Measuring psychophysical kernels, Task 2.  a. Example stimulus frames for 
a zero-signal trial. Each stimulus frame consists of independent white noise, filtered 
narrowly for orientation (10-degree orientation filter s.d.) with a center orientation draw 
randomly from a discrete uniform distribution. b. Histogram illustrating the distribution of 
orientations presented across frames on an example zero-signal trial. c. For the PRC 
analysis, we summarized each stimulus using the histogram of orientations presented. 
Several examples are shown here. Solid lines indicate the histograms associated with 
“positive” choices, and dashed lines are those associated with “negative” choices. d. The 
psychophysical kernel is calculated as the difference (gray) of the two choice-conditioned 
average orientation distributions (“positive” choice average in solid black and “negative” 
choice average in dashed black). Choices were signed according to the same arbitrary rule 
as was used in Task 1. Note that the peak in the kernel is again not located at the nominally 
“positive” orientation, which would correspond to an optimal kernel. 
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The motivation for using the subspace version of the task is that kernels required 

fewer trials to estimate. This is because the subspace task generated considerably larger 

fluctuations in orientation amplitude across trials. This generated a larger influence of 

stimulus variability on choice to measure with PRC. Kernels were calculated slightly 

differently for the two task variants. For Task 1, we summarized each stimulus as the 

radial sum of its 2D Fourier amplitude spectrum (to marginalize out spatial frequency and 

phase), averaged across frames. We then computed the kernel as the difference between 

the two choice-conditioned radial sums (Figure 3.2). For Task 2, we summarized each 

stimulus as the distribution of filter center orientations presented across frames. The 

kernel was then calculated as the difference between the two choice-conditioned 

distributions (Figure 3.3).  For both variants of the task, kernels were calculated 

separately for each nominal signal level and then averaged, so that their shape reflected 

the influence of random orientation fluctuations on choice, not the influence of changes 

in nominal signal.  

 

3.4 Results 

3.4.1 Shape of the Kernels 

We found that psychophysical kernels, expressed in this way as functions of 

orientation, typically followed a roughly sinusoidal shape (Figs. 3.2.d and 3.3.d). The 

smoothly varying shape of the kernels demonstrates that the animals integrated evidence 

broadly across a range of orientations. (Because the random stimulus fluctuations were 

independent across orientations, this is unrelated to the construction of the orientation-
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filtered stimuli5). In addition, the bimodality of the kernel shows that the subjects’ 

strategy involves comparing the relative strength of orientations at the positive and 

negative lobes of the kernel, rather than simply detecting the presence of a single 

orientation band. We confirmed using simulations involving a model observer that a 

strategy consisting of reporting the presence of a single orientation band, rather than a 

real binary discrimination, does not generate a bimodal kernel. Instead, the subtraction 

procedure used to generate kernels means that the resulting simulated kernel contains a 

single peak and is uniformly negative elsewhere (data not shown). 

3.4.2 Decision Strategies are Fully Described by 1st-Order Kernels 

Next, we sought to confirm that the measured psychophysical kernels did indeed 

capture the influence of the stimulus on the subject’s choices. This would not obtain 

under either or two conditions: 1) if we had too few trials to reliably estimate the kernel, 

or 2) if the animal’s decisions were based on non-linear combinations of orientations (in 

which case, higher-order kernels would be needed to describe behavior). To rule these 

out, we used the measured 1st order kernel to predict choices, and compared the accuracy 

to an objective measure of the maximum variance in the animal’s choices that is 

explainable by any model (Neri & Levi, 2006).  

If the first-order kernel is sufficient to capture the task strategy, then choices can 

be predicted by the vector projections of the stimuli onto the kernel, thresholded to 

                                                            
5 For Task 2, the random fluctuations were generated by sampling frames from a discrete set of 
orientations. Because we used filtered noise, this introduced fluctuations in orientation power that were not 
independent across orientations. However, kernels were not calculated by measuring the orientation power 
in the stimuli.  Rather, they were calculated as the empirical distribution of frames at each nominal 
orientation. In this subspace, the random fluctuations were independent. 
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produce binary choices (Fig. 3.4a-b). We set this threshold to match the observed 

distribution of the animal’s choices, and then compared the predicted choices to the 

animal’s actual choices. The prediction accuracy was expressed as the amount in excess 

of the prediction accuracy based simply on the distribution of choices at each signal level. 

(Given an observed 90% rate of choosing choice 1 for a given signal level, prediction 

accuracy of a random kernel trivially achieves an accuracy of 0.92, on average). 

The maximum variance explainable by any model of the subject’s choices can be 

determined by measuring the subject’s consistency in responses to identical stimuli. This 

gives an estimate of the amount of stimulus-independent noise affecting the decision 

process, which is unexplainable variance. To do this, we used a two-pass task design, 

such that each exact stimulus (i.e. same noise seed) was presented twice per block, and 

expressed self-consistency as the fraction of repeat trials eliciting the same choice. This 

was then normalized relative to the trivial prediction given the choice distributions, as 

with the kernel prediction accuracy. We found that the accuracy of the kernel in 

predicting choices matched, on average, the observed self-consistency, demonstrating 

that the estimated first-order kernel fully captured the influence of stimulus fluctuations 

on choices (Fig. 3.4c).  

3.4.3 Macaque Subjects Update Task Strategy Slowly 

We frequently observed significant deviations between the circular mean of the 

kernel and the (nominally positive) discriminandum orientation. In other words, the 

kernel was frequently not optimally aligned to the task. We found that these deviations 

were highly systematic and easily predicted from the subjects’ training history, revealing 
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a striking novel finding that macaque subjects’ task strategies are extremely slow to adapt 

to changing task instruction.  

 

Figure 3.4. Using the measured kernel to predict choices. a. Assuming the animal’s 
choices are based on a weighted average of the energy across stimulus orientations, choices 
can be modeled by projecting each stimulus onto the estimated kernel and applying a 
threshold to generate binary choices. Example kernel is the same as in Fig. 3.2d, observed 
when the subject was discriminating the cardinal orientations. b. Histogram of the 
projections of stimuli onto the example kernel in (a). Color indicates nominal signal level. 
Choices are determined by thresholding these projections. c. Scatter plot comparing the 
subject’s self-consistency in response to paired repeats of identical stimuli and the accuracy 
of the first-order kernel in predicting choices. Each dot represents a single training session. 
Only sessions in which the two-pass procedure was used are shown (n=347). Values are 
shown relative to those that would be predicted simply from the knowing the distribution 
of choices at each signal level. 

 

This result is easily illustrated by the kernels observed during an example two-

month training period from monkey ‘lem’, when he was performing the subspace variant 

of the task (Figure 3.5a). During this training period (at which point the subject was 

already expert), he first performed 9 day-long training sessions in which he had to 

discriminate orientations close to the cardinals, followed by a rapid switch to oblique 

discrimination which lasted 17 sessions, followed by another abrupt transition back to the 

cardinals.  
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When we measured kernels separately for each session, we found that they were 

remarkably slow to adapt to the abrupt task changes. In each of the three stable training 

periods, the kernel misalignment started at its maximum, reflecting the effect of the 

previous task, and then slowly decreased with exposure to the new task. In other words, 

the kernel slowly rotated in the direction of the new set of task orientations. This was a 

consistent feature of the behavior of both subjects (Fig 3.5b). Having observed this 

feature of the subjects’ behavior, we used training sessions to rotate the subject’s kernel, 

and then used tasks aligned with their kernels on sessions when we recorded.  

To quantitatively describe the influence on a subject’s kernel of prior task 

experience, we devised a multilinear regression model, fit separately to each of the two 

subjects, describing the circular mean (henceforth “peak”) of the kernel on a given 

training session as a weighted average of the (nominally positive) discriminanda 

orientations presented during the subject’s recent training history. The weights fit by 

these models describe the influence of training sessions as a function of number of days 

back. We found that such a model led to remarkably accurate predictions of day-to-day 

variability in kernel peak (80% and 62% variance explained; Fig. 3.5a,d). In both 

subjects, the fitted weights assigned to a session n training days back tended to decrease 

with n, demonstrating that training sessions that were most recent tended to have the most 

influence on the location of the kernel peak (Fig. 3.5c). However, the weights were 

significantly non-zero for at least ten training sessions back (equivalent to about 50,000 

trials), demonstrating that the subjects’ decision strategies are based on discriminanda 

that have not been presented for weeks, a striking quantitative demonstration of the 

hysteresis characterizing their task strategy. We even found that, in monkey ‘lem’, the  



86 
 

 

Figure 3.5. Timecourse of kernel rotation. a. Dynamics of kernel circular mean (“peak”) 
orientation over a training period of nine weeks for monkey ‘lem’ performing Task 1. Each 
data point represents a single day-long training session. The nominally positive 
discriminandum orientation for each session is shown in black. The observed kernel peak 
+/- 1 bootstrap s.e. is in gray. The kernel peak predicted by a multilinear regression model 
based on prior training history is in blue. Dashed green lines indicate abrupt task switches. 
b. The average kernel peak misalignment as a function of training sessions elapsed since 
an abrupt task switch. c. The weights assigned to prior training history by the multilinear 
regression model, as a function of number of days back. Error bars indicate +/- 1 s.e. 
obtained by cross-validation. d. Scatter plot of observed versus predicted kernel peak, 
demonstrating the model’s success in accounting for the variability in kernel peak using 
prior training history. Blue and red dots indicate sessions from monkeys ‘lem’ and ‘ruf’, 
respectively (n=461 total). 
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weight for n=0 (i.e. the current session) was near zero, suggesting that, for this animal, 

the task instruction on a given day does not begin to exert much influence on the task 

strategy until the follow training session! 

 

3.4.4 Kernel Misalignment Impairs Performance 

Using only the angle of kernel misalignment, we could predict a significant 

portion of the day-to-day variability in the animal’s performance (39%, cross-validated 

2nd-order polynominal regression). The systematic relationship between the angle of 

kernel misalignment and performance was consistent with the prediction from the simple 

model presented earlier, showing relatively modest impairment with small angles of 

misalignment but profound impairments otherwise (Fig. 3.6a). After the abrupt task 

switches, chosen to specifically challenge the previous day’s kernel, performance was 

frequently reduced to chance levels (Fig. 3.6b) for the entire training session, suggesting 

that the slow timecourse of kernel changes incurs severe reductions in reward rate on 

some sessions.  

We wondered whether the drop in performance on sessions when the animal was 

using a misaligned kernel came about as a secondary effect, perhaps due to decreased 

motivation caused by frustration with a new task, or whether it could be simply predicted 

given the shape of the kernel. We investigated this by modifying the structure of the task 

on a subset of training sessions, such that the animal was confronted with more than a 

single set of discriminanda, which were randomly interleaved trial to trial. Only at the 

end of the trial, when the choice targets appeared, was the animal explicitly cued about 

the discriminanda for that trial. 
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Figure 3.6. Observed effect of 
task strategy “misalignment” 
on performance. a. Scatter plot 
of performance (as measured 
using the slope of the 
psychometric function) against 
the angle of kernel misalignment. 
Blue and red dots indicate 
sessions from monkey ‘lem’ and 
‘ruf’, respectively (n=359 and 
102). Average across both 
animals, smoothed with a 
Gaussian with 1º s.d., is shown in 
black, +/- 1 bootstrap s.e. Green 
dots refer to subsets of trials from 
an example session in monkey 
‘lem’ (see Fig. 3.7). Marginal 
distribution of kernel 
misalignments, for both animals, 
is shown with the histogram 
(top). b. Example psychometric 
curves comparing performance 
on monkey ‘lem’ just before 
(green) and just after (red) the 
abrupt task switches shown in 
Fig. 3.5a. Just after task switches, 
when kernels were most 
misaligned, performance was 
sharply reduced, to chance or 
near-chance levels for the entire 
session (one session typically 
lasted about 3,000 trials). 
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The idea of using this interleaved task design was to minimize variability in 

cognitive factors like arousal, motivation, and the like that could differentiate 

performance across sets of orientations, such that the remaining variability would be 

explained simply by the kernel. 

 

Figure 3.7. Performance with 
interleaved orientation pairs. 
a. Kernel +/- 1 bootstrap s.e. 
observed on an example session 
when monkey ‘lem’ performed 
Task 1, with 3 pairs of near-
oblique orientations presented 
in randomly interleaved trials. 
Vertical gray line indicates 
kernel circular mean, and 
vertical gray bar indicates +/- 
bootstrap s.e. Colored lines 
indicate the three pairs of 
interleaved orientations. Solid 
and dashed lines indicate the 
nominally “positive” and 
“negative” discriminandum 
orientations, respectively. b. 
Psychometric functions plotted 
separately for each pair of 
discriminanda. Performance is 
negatively correlated with the 
angle between the circular mean 
of the kernel and the positive 
discriminandum orientation. 
Error bars indicate 95% 

bootstrap coverage intervals, and dashed lines are probit fits. c. Psychometric functions 
predicted by projecting stimuli onto the kernel, with Gaussian noise added to match overall 
percent correct. The match with the observed psychometric functions indicated that the 
differences in performance between the discriminanda can be explained simply as a result 
of a fixed task strategy. Error bars and axis labels are as in (b). 

 

  



90 
 

We calculated the animal’s performance separately for each orthogonal pair of 

orientations and found significant differences in performance (Fig. 3.7a). These were 

entirely predictable given the kernel (Fig. 3.7b,c), and performance followed the same 

function of kernel misalignment as seen across days (see green dots in Fig. 3.6). This 

confirms that the effect of kernel misalignment of performance can be explained as a 

direct effect of the shape of the kernel. 

3.4.5 Comparison with Human Subjects 

The finding that the macaque subjects required many days to update their task 

strategy suggested to us a profound difference in human and non-human behavior. To 

directly test this, we trained two human subjects (one completely naïve, trained much like 

a monkey—see Methods) on Task 1. The human subjects were presented only with two 

tasks—oblique and cardinal discriminations—in alternating blocks of 100 trials (Fig. 

3.8a). There was no cue indicating a block switch, although as with the monkeys, Gabor 

icons were presented after the stimulus presentation indicating the discriminanda. The 

humans reported their choice with a button press, and received feedback in the form of a 

full-field flash after incorrect choices. The human subjects achieved thresholds 

comparable to the macaques. 
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Figure 3.8. Human subjects rapidly update task strategy. a. Schematic illustrating the 
blockwise design of the human version of Task 1. Each block consisted of 100 trials. b. 
Kernels plotted individually by subject and block condition, +/- 1 bootstrap s.e, combined 
across 5 sessions for each subject. Upright gray dashed lines and transparent gray regions 
indicate the circular mean +/- 1 bootstrap s.e. Black bar indicates the nominally “positive” 
orientation. Subjects were able to adopt two distinct kernels for the two types of blocks. 

We measured kernels in the humans, separately according to the two block 

conditions, but combined across sessions (5 sessions per subject). The results were clear: 

subjects were able to adopt two different kernels, one appropriate for the cardinal 

discrimination blocks and one appropriate for the oblique discrimination blocks (Fig. 

3.8b). Thus, they are capable of flexibly switching task strategies on the order of, at most, 

tens of trials, confirming our hypothesis of an interspecies difference. We discuss later 

our conclusions about what this may indicate about the relative cognitive abilities of 

humans and non-human primates and whether changes in task design may be used to 

accelerate the rate at which animal subjects update their task strategy. 



92 
 

3.4.6 Are Subjects Really at Threshold? 

A common goal of experimental paradigms in which animal subjects make 

perceptual judgments is to reduce the signal-to-noise ratio of the stimuli until animals are 

forced to fully exploit the sensory evidence available to them. When subjects are at this 

threshold level of performance, changes in nominal signal level are, by definition, 

impossible to distinguish from noise. Subjects must learn that a procedure that feels like 

educated guessing in fact yields reward rates that are considerably higher than chance. If 

subjects are not at threshold, they can adopt a strategy of waiting for high-signal trials 

and then simply choose randomly on trials they detect as having little or no signal, a 

potentially serious behavioral confound. We demonstrate a novel means of detecting such 

behavior, and show that monkey subjects do, to some extent, employ it, even though 

typical methods of ensuring threshold performance were used.  

The principle behind our approach was to compare estimates of the animal’s 

sensitivity to stimulus fluctuations, using self-consistency measures, and their sensitivity 

to changes in nominal signal level, given by the shape of the psychometric function. To 

do this, we used the measured kernel as a means of modeling subject’s choices, as 

discussed above. This time, we added Gaussian noise to the projections of the stimuli 

onto the kernel prior to thresholding. The s.d. of this noise term was constrained so that 

the self-consistency of the resulting choices matched the observed self-consistency of the 

subject. If the subject is truly at threshold, this should provide an accurate model of the 

subject’s choices. If instead, this generates a psychometric function whose slope is lower 

than the one observed, it means the subject performs better in response to changes in 

nominal signal level than would be predicted based on their sensitivity to fluctuations in 
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the stimulus. This suggests that subjects are in fact able to distinguish stimulus 

fluctuations from changes in nominal signal level and are at their most sensitive when 

they detect the presence of nominal signal. This would mean they are not at threshold. In 

principle, this model can also overestimate the slope. This would mean that subjects are 

systematically more sensitive on zero-signal trials. It seems unlikely that subjects would 

systematically adopt such a strategy. 

 

Figure 3.9.  Self-consistency underpredicts overall performance. a. The psychometric 
function observed for an example session, monkey ‘lem’ (black). The psychometric 
function predicted using the observed kernel and decision noise constrained by the 
subject’s observed self-consistency in response to repeated trials (blue). Error bars are 95% 
bootstrap coverage intervals, and solid curves are probit fits. b. The distribution of slopes 
ratios of the psychometric functions (predicted/observed) across sessions. Only sessions 
for which the estimated kernel provided an adequate model of the subject’s behavior (that 
is, prediction accuracy matched observed self-consistency) were used (n=161 sessions, 
both subjects). The average slope ratio (0.8) was significantly less than 1 (p<10-5), 
indicating that subjects are generally more sensitive to changes in nominal signal level than 
would be predicted by their sensitivity to variability in the stimulus. 

For the majority of sessions (77%), we found that the slope reconstructed using 

this method was indeed smaller than the slope of the observed psychometric function, 

indicating that animals are less sensitive to stimulus fluctuations than to changes in 
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nominal signal level (Fig. 3.9). Across all sessions, the average slope ratio 

(predicted/observed) was 0.8. We observed considerable variability in the slope ratio 

across sessions, although it is difficult to say how much of this may be due to noise in the 

measurements that constrain the predictions. We conclude that, in general, subjects are 

able to distinguish stimulus fluctuations from changes in nominal signal level and are at 

their most sensitive when they detect the presence of nominal signal, violating a 

necessary condition of threshold performance (although this effect is modest). 

3.5 Discussion 

In this chapter, I discussed the use of psychophysical reverse correlation to probe 

the decision strategies of macaque subjects performing a 2AFC orientation discrimination 

task. Developed as a tool for human psychophysics, PRC has been less often used in 

animal studies. However, it is particularly useful for studying animal behavior, because 

our understanding of the decision strategies they employ is inherently limited, yet crucial 

for interpreting the data. 

The most striking result we obtained was that macaque subjects are remarkably 

slow to update their decision strategies when task instruction changes. We identified a 

significant influence of prior training history on the shape of the kernels that persisted for 

days or even weeks. This hysteresis impaired, in some cases devastatingly so, the 

subject’s ability to receive reward. By contrast, human subjects performing the same task 

were able to rapidly update their task strategy in a blockwise fashion within single 

sessions.  
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We considered whether the macaque subjects update their task strategies so 

slowly because they are incapable of doing otherwise. Alternatively, this may be a clever 

strategy lets the subjects achieve a desired rate of reward without having to change their 

kernel. A definite answer to this question would require a better understanding of the 

unknown objective functions that monkey subjects attempt to optimize in experimental 

settings. While it may be correct to presume that human subjects seek to maximize 

percent correct, monkey subjects likely assign positive weight to the rate of reward, 

negative weight to effort and attention expended, as well as weights on other factors that 

are not well understood. This makes it hard to use behavioral measures to assess their true 

capabilities. 

Nonetheless, several pieces of evidence point towards the view that our results 

reveal a novel and fundamental limitation. First, if the monkeys are in fact able to more 

quickly update their kernels, the fact that they did not do so suggests a considerable 

degree of effort that is traded off in some way against the increased rate of reward it 

would have entailed. Second, the slow updating of their kernels leads, in some cases, to 

severe and prolonged decreases in reward rate that persists for days. This was particularly 

striking on the occasions when we deliberately switched the task such that the subject’s 

kernel should dramatically impair performance. These abrupt task switches caused the 

subject’s performance to drop to near-chance levels, strong evidence that subjects find 

great difficulty in efficiently updating their kernels, even when it is necessary to obtain 

reward. This suggests a degree of inflexibility in the sensorimotor association underlying 

their performance that was unexpected. Nonetheless, it seems likely that changes in the 



96 
 

design of the task and training protocol may ameliorate this deficit. We discuss possible 

examples in Chapter 4.  

Whether or not these can mitigate the slow kernel updating we observed, the task 

design and training methods we used are similar to those that have been widely used in 

other studies involving animal subjects. This strongly suggests that animal subjects in 

many prior studies were not performing the task as instructed. As we have argued, 

measures of performance are not necessarily useful in guarding against this possibility. 

While we did observe some training sessions where the subject’s kernel misalignment 

dramatically impaired performance, these were typically the result of changed task 

instruction designed to produce this behavior based on prior knowledge of the subject’s 

kernel. Without this prior knowledge, these profound deficits are unlikely to be observed 

frequently. When they have been observed, experimenters have quite reasonably removed 

these sessions from their analysis, since good behavior is a prerequisite. The typical 

regime is the one in which the kernel is misaligned, but no so much as to produce a 

performance deficit that cannot simply be attributed to day-to-day variability in 

performance. Given that a systematic feature of measures that depend on animal subject’s 

performance (CPs, neurometric/psychometric threshold ratios, and others) is their 

pronounced variability (Britten et al., 1992; Yu, Dickman, DeAngelis, & Angelaki, 

2015), we speculate that some of this may have been due to the variable location of 

subject’s kernels, a factor which has not previously been considered. 

These results also suggest the possibility of an even more serious behavioral 

confound for neuroscience studies in which experimenters seek to understand an effect on 

neuronal activity of dynamically changing task instruction. Such studies may have 
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inadvertently compared data across conditions associated with identical, or at least very 

similar, decision strategies, particularly if the timescale of dynamic changes in the task is 

short (e.g. Cohen & Newsome, 2008). Including objective measures of the task strategies 

subjects actually employ will be an extremely useful means of avoiding such confounds 

in the future (see our use of PRC in Chapter 2). 

3.6 Methods 

Modeling A Misaligned Task Strategy 

To explore the impact on performance of a misaligned task strategy, we modeled 

the behavior of a subject performing Task 1. The model subject performed the task 

simply by comparing the relative power at two orthogonal orientations (that is, the task 

strategy only has support at two orientations, where it assigns values of equal magnitude 

and opposite sign). By construction of the stimulus (see Chapter 2 Methods), fluctuations 

in orientation power are normal, and it seems reasonable to model internal noise as an 

additional Gaussian term. Thus we can model the subject’s performance using the 

discriminability of two Gaussians with equal variance (given by the sum of the two noise 

terms) whose means are determined by the amplitude of the orientation filter applied to 

the stimulus at the two orientations used in the decision. Proportion correct is then given 

analytically: 0.5 ൅ 0.5 ∗ tanh ௗᇲ

√ଶ
 , where  

݀ᇱ ൌ ఎೈሺఏ,ఙ೚ೝ೔ሻି	ఎೈሺଽ଴ାఏ,ఙ೚ೝ೔ሻ

ఙ೙೚೔ೞ೐
                                             (3.1) 

,ௐሺФߟ  ሻ is the wrapped normal distribution with 180º-period, mean 0º, standardߪ

deviation ߪ, evaluated at angle Ф in degrees. ߪ௢௥௜ is the standard deviation of the 
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orientation filter applied to the stimulus, and ߪ௡௢௜௦௘ is the standard deviation of the noise 

term. ߠ is the angle between the decision orientations and the discriminanda. We set 

 ௡௢௜௦௘ to a fixed value to match the average percent correct of the animal subjects acrossߪ

a typical range of orientation bandwidths. 

This equation also has the form to describe the performance of a model subject 

whose stimulus filters are broad, but where the distribution of orientation in the stimulus 

is discrete, such that signal is varied by changing the relative orientation energy at two 

orthogonal orientations.  In this case ߠ describes the angle between the discriminanda and 

the center of a wrapped normal distribution describing the subject’s task strategy. We 

expect, but do not explicitly show, that the form of the solution would be qualitatively 

similar if both the task strategy and the distribution of stimulus energy were allowed to be 

broad. 

 

Predicting Kernel Peaks from Training History 

We used a multilinear regression model to predict the observed circular mean of 

a kernel on a given session n (Kn) given the set of nominally positive discriminanda 

orientations presented on m prior training sessions (On-m , On-m+1 , … , On-1) and on the 

current session (On). Because both the independent and explanatory variables in the 

model are circular, we used a circular-circular regression method that treats the problem 

linearly in terms of trigonometric functions of the original variables (Sarma & 

Jammalamadaka, 1993). The regression equations were given by: 

sinܭ௡ ൌ ௦௜௡ߚ ൅ ∑ ௜ߚ
௠
௜ୀ଴ sinܱ௡ି௜ ൅  (3.2)                                      ߝ

and 
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cosܭ௡ ൌ ௖௢௦ߚ ൅ ∑ ௜ߚ
௠
௜ୀ଴ cos ܱ௡ି௜ ൅  (3.3)                                    .ߝ

 ௜ is the coefficient reflecting the weight of the discriminandum orientation i sessionsߚ

back, and ߚ௦௜௡ and ߚ௖௢௦ are model constants. Circular variables were doubled, to account 

for the 180-degree period of orientation. The regression was solved with Tikhonov-

regularized least-squares. For the regularization, we used a 2nd-order finite difference 

operator (corresponding to convolution with the vector [1 -2 1]) as the Tikhonov matrix, 

in order to confer temporal smoothness on the coefficients. The optimal strength of 

regularization was determined empirically under 50-fold cross-validation. We also picked 

the training history length (m) empirically in the same manner. For monkey ‘lem’, we 

used m=33 days back.  For monkey ‘ruf’, we used m=12 days back. 

We experimented with an extended version of this model that allowed cross-

terms (that is, terms relating the sine of the explanatory variables to the cosine of the 

independent variable) but found that these additional terms did not improve model 

performance. 

 

Calculating the Slope of the Psychometric Function 

We used a probit model to fit the psychometric functions. The fitted dispersion 

parameter was used to quantify the slope of the fitted curve. (This is equivalent to the 

inverse of the s.d. of best-fitting cumulative Gaussian, and is proportional to the peak in 

the first derivative of the fitted curve.)  Because % signal was not directly comparable for 

the two task variants and due to inter-subject differences, slopes are shown after 

normalizing by the average across sessions, separately for each task variant and subject. 
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Human Psychophysics 

Human subjects performed a version of Task 1 (described in detail in Chapter 2). 

The stimuli were displayed in much the same way, with a few minor differences. The 

monitors subtended a smaller visual angle (21.8º x 17.4º), and subjects maintained head-

fixation using a chin rest. Subjects were instructed to fixate a central square, but eye 

position was not monitored. Stimuli were displayed for a duration of 600ms at 100 Hz, 

after which time the subject was free to make a choice by pressing one of two buttons. 

Incorrect choices were followed by a brief full-field flash. The stimulus was always 

displayed along the lower vertical meridian, with a peak spatial frequency of 1.1 cpd. For 

the two subjects AP and AGB, median envelope s.d.’s were 0.7º and 0.4º, and median 

eccentricities were 3.4º and 2.8º, respectively. The choice targets appeared to the left and 

right of the fixation point. Discriminanda within the range 0-90º corresponded to a 

rightward choice target and a right button press.  The naïve subject was told only that left 

and right button presses indicated choices, and that the feedback indicated an incorrect 

choice. No other instructions were given, so that this subject had to deduce the task 

requirements from feedback alone, as did the monkeys. Block switches were uncued. 
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Chapter 4:  

Summary and Future Directions 

 

4.1 Chapter 2 Summary and Future Directions 

Variability in the activity of sensory neurons in response to a fixed sensory 

stimulus is typically described as “noise” in the sensory representation. If this is correct, 

this variability places important constraints on the ability of downstream processes to 

correctly infer the sensory input. These constraints have been explored in a number of 

influential theoretical studies, with two notable conclusions about the consequences of 

structured noise correlations on 2AFC discrimination. First, these affect the reliability 

with which the stimulus can be reconstructed, and second, they affect the magnitude of 

correlations between variability in single neurons and perceptual choice. 

In Chapter 2, I presented the results of an experiment designed to test whether 

structured noise correlations are fixed or change dynamically with a subject’s task. The 

strategy was to record from populations of V1 neurons in behaving macaques using 

multi-electrode arrays, while the subjects performed an orientation discrimination task 

using orthogonal discriminanda. By changing the set of discriminanda from session to 

session, we could identify fixed and task-dependent components of noise correlation 

structure. 

This experiment revealed that the structure of noise correlations changed 

systematically with the subject’s task: rsc was high for pairs of neurons preferring the 

same discriminandum orientation and low for pairs preferring opposite discriminanda. A 
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multilinear regression model could not identify a significant portion of structured noise 

correlations that remained fixed.  

These data are consistent with the presence of a variable feedback signal that 

increases the firing rate of neurons contributing to one decision pool while decreasing the 

firing rate of neurons contributing to the other pool. Under the assumption that the noise 

correlations are naively read out using linear pooling, we found they would generate CP 

that quantitatively matched the data. Thus, the data may be reconciled with the 

interpretation of CP as a causal effect of sensory neuronal variability on choice, under the 

following assumptions: 1) the effects of feedback are read out as though they were 

sensory evidence, and 2) the feedback itself is not influenced by or in some other way 

correlated with the decision. Importantly, this is the first experimental evidence 

supporting the predictions of linear pooling relating CP and structured noise correlations, 

because we are the first to look at the entire correlation matrix. 

However, the necessity of the assumptions above presents problems with this 

interpretation, given other aspects of the data presented in Chapter 2 and in other studies. 

One such problem is that the structure of the noise correlations introduced by feedback 

are “differential”: that is, they mimic variability in the stimulus along the task axis. If 

these are naively read out as sensory evidence, this would contaminate the sensory 

evidence and reduce the subject’s performance. While quantitative studies would be 

needed to better understand the magnitude of this effect, one intriguing possibility is that 

downstream computations discount the influence of feedback on the sensory 

representation so as to avoid this, effectively segregating sensory and non-sensory 

components of variability. This would attenuate the feedforward effect of the structured 
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noise correlations on choice, necessitating the interpretation that some of observed CP is 

an effect of feedback. 

Next, several studies have found that CP plateaus or increases consistently (see 

§2.7.3; Hendrikje Nienborg & Cumming, 2009; Shadlen et al., 1996)) over the course of 

a fixed-duration trial. This cannot be reconciled with the reduced influence of stimulus 

fluctuations on choices, as measured with PRC (Kiani et al., 2008; Hendrikje Nienborg & 

Cumming, 2009).  This suggests that CP partially reflects an effect of the decision 

process itself. 

Perhaps the strongest evidence comes from studies in which subjects 

discriminate stimuli that are bistable (Dodd et al., 2001; see §1.3.1). This perceptual 

property implies a weak influence of sensory noise on the perceptual choice. The strong 

CPs observed in these studies therefore supports the alternative view that the variability 

in the subject’s perceptual state causally influences the firing rate of sensory neurons via 

feedback. 

Given these data, we believe our results support the view that the task-dependent 

structured noise correlation we observe in V1 reflects variability in a feedback signal 

related to the decision variable itself. Consequently, we conclude that signals related to 

perceptual inference/decision-making are present even at the earliest cortical processing 

stage for vision. This presents a fundamentally new view of sensory neuronal variability 

and suggests a complex relationship between sensory and non-sensory brain areas that 

cannot be captured by traditional models that divide perceptual processes into 

“representational” and “inferential” components (Johnson, 1980; Tolhurst et al., 1983).  

Because most theoretical studies have not included analysis of choice-related feedback 
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signals, it is not currently possible to make quantitative statements about the downstream 

effects of this feedback on the decision process. 

These results point to two directions for future research. The first is to investigate 

the unknown neural circuitry underlying the novel feedback that we observed as 

correlated variability in V1. One approach would be to causally manipulate candidate 

source areas while measuring any changes in the structure of correlated noise in V1. One 

potential candidate for the (at least proximate) source of the effects we observe in V1 is 

the dense cortico-cortical feedback from area V2 (Perkel, Bullier, & Kennedy, 1986). To 

address precisely this possibility, Rick Born’s group is currently undertaking a replication 

of our experiment with and without inactivation of area V2 using implanted cryoloops 

(Ponce, Lomber, & Born, 2008; Camille Gomez-Laberge and Rick Born, personal 

communication). If the task-dependent noise correlation structure is abolished or 

otherwise perturbed under V2 inactivation, this would add causal evidence to the 

argument we have made in favor of a top-down origin and would shed insight on its 

anatomical origins. A similar approach would be to use simultaneous recordings in V1 

and V2 or another candidate area to predict, in the trial-to-trial manner, the state of 

correlated fluctuations in V1 based on neuronal activity in the candidate area.  

Apart from corticocortical feedback, inputs from subcortical areas are also 

interesting potential sources of choice-related feedback to sensory cortices. For instance, 

area V1 receives significant extra-retinal inputs from the LGN (McAlonan, Cavanaugh, 

& Wurtz, 2008) and the pulvinar (Purushothaman, Marion, Li, & Casagrande, 2012). The 

pulvinar in particular serves as an important site of convergent inputs from diverse brain 

regions (Berman & Wurtz, 2011; Wurtz, McAlonan, Cavanaugh, & Berman, 2011) 
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including the basal ganglia (indirectly through the superior colliculus), a set of structures 

increasingly thought to play an important role in perceptual decision making (Ding & 

Gold, 2013; Krauzlis, Bollimunta, Arcizet, & Wang, 2014). The pulvinar projects broadly 

throughout visual cortex, making it potentially useful as a means of broadcasting aspects 

of the decision process to diverse visual areas. Future investigations into the role these 

and other structures play in perceptual decision making and in modulating the choice-

related activity of sensory neurons may shed light on the circuit architecture underlying 

our results. 

The finding that feedback to V1 introduces “differential” correlations also 

suggests serious problems for experimental attempts to estimate the “information 

capacity” of sensory neuronal populations using simultaneous recordings, an active area 

of current research (Cohen & Maunsell, 2009; Graf, Kohn, Jazayeri, & Movshon, 2011; 

Moreno-Bote et al., 2014; Zohary et al., 1994). The underlying assumption of these 

studies is that all correlated variability is equivalent to noise in the sensory representation. 

If a component is not, the results may not apply. More specifically, without knowledge of 

the state of centrally-generated signals originating elsewhere in the brain, the estimates of 

information capacity will necessarily be downwardly biased, and by an unknown amount. 

Therefore, such studies cannot provide meaningful results until the state of internal 

variables that influence correlations, and their role in the decision process, it better 

understood. 

A second promising avenue for future research is computational modeling. 

Currently, our understanding of the role of sensory neuronal variability in perceptual 

decision making is largely based on theoretical models, particularly because we lack the 
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experimental tools to measure variability at the population level and to manipulate it in 

ways that may reveal its causal influence on decisions. Given the presence of choice-

related feedback in sensory neurons, purely feedforward models are unlikely to provide a 

complete description of the processes underlying perceptual decision making.  

A significant problem with incorporating feedback signals into these models is 

that they introduce additional degrees of freedom without sufficient constraints to make 

the questions well posed.  One framework that incorporates feedback in a constrained, 

principled way has been proposed by Ralf Haefner and colleagues (Haefner et al., 2014). 

It describes perceptual decision making through the lens of Bayesian inference, assigning 

the algorithmic components of Bayesian inference (likelihoods, priors, and posteriors) to 

neuronal substrates of visual perception (Fig. 4.1a). (Currently the model has been 

formulated to describe data from the visual system, although there is no reason its results 

are not applicable to other modalities).  

In this framework, the likelihood consists of the sensory evidence transmitted in 

a feedforward manner from the retina. The prior consists of expectations about the 

structure of the visual world gained through past experience. This is represented as 

internally-generated feedback from downstream brain areas. These downstream areas are 

also responsible for the decision itself, but in the absence of sensory evidence their 

activity is dominated by the influence of the prior. For instance, during performance of 

the orthogonal orientation discrimination task we used, this prior would contain two 

peaks corresponding to the discriminanda orientations (Fig. 4.1b). Lastly, the posterior is 

represented in the population activity of visual cortical neurons themselves. This is the 

biggest departure from the pooling model. In the pooling model, activity in these neurons 
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represents a stochastic encoding of the visual input. In the Haefner model, it represents a 

probabilistic representation of the subject’s belief about the presence of features in the 

visual world, which includes both the feedforward influence of sensory evidence and 

feedback influence of the prior. Importantly, neurons represent all these variables 

probabilistically, creating trial-to-trial fluctuations that allow for predictions about CP 

and noise correlations. Finally, sensory neuronal activity causally influences the 

downstream areas, creating a self-reinforcing loop which generates dynamical structure 

over the course of single trials. (For this reason, the Haefner model falls into the category 

of models illustrated in Fig. 2.10b.) 

Figure 4.1. The Haefner model. 
a. As part of the generative model, 
sensory neurons (here, in V1) 
represent the posterior likelihood 
of the presence of visual features 
in the world. They are influenced 
both by a prior encoding context, 
beliefs, and expectations, and a 
likelihood encoding retinal input. 
B. On high-signal trials (trial with 
horizontal orientation shown) the 
strong likelihood dominates the 
posterior via feedforward inputs. 

On low-signal trials, the structure of the prior (induced by the expectation implicit in the 
task that one of the two discriminanda is present) becomes apparent, and affects the 
posterior through feedback. All curves represent the probability distribution of the encoded 
variable over orientation. (This figure is adapted from one that was generously shared by 
Richard Lange and Ralf Haefner). 

This model can reproduce several key findings in the perceptual decision making 

literature. First, it reproduces the finding that early evidence is more strongly weighted in 

a fixed-duration discrimination task.  The reason for this is the positive feedback loop 

that results from feedforward and feedback connections. Early evidence biases the 
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decision variable through feedforward connections, and the resulting feedback attenuates 

the influence of sensory input presented later in the trial.  

Second, the model predicts task-dependent structured noise correlations during a 

2AFC orientation discrimination task very similar to what we observed. The reason for 

this is that the subject’s prior contains peaks corresponding to the discriminanda (Fig. 

4.1b). The resulting feedback signal is sampled from this bimodal distribution (i.e. 

alternates between the two discriminanda across time) generating a lattice-like pattern of 

noise correlations similar to what we observed (Fig. 2.4e). 

Lastly, the model predicts a dynamic timecourse of CP that qualitatively matches 

our data (see §2.7.3) and those of past studies (Nienborg & Cumming, 2009). Early in the 

trial, CP primarily reflects the feedforward pathway because no coherent top-down belief 

has formed yet (that is, feedback alternates between both alternatives). As the trial 

progresses, the top-down belief becomes stronger (that is, more peaked around one 

orientation) due to the self-reinforcing feedforward and feedback connections in the 

model. This generates CP of higher magnitude later in the trial. 

Apart from its good fit to neuronal data, this model is also appealing because it 

provides a normative framework for understanding what otherwise appears to be a 

curious feature of our data: choice-related feedback “contaminates” the sensory 

representation. Under the rationale of the Haefner model, this contamination is a means 

of implementing prior beliefs. In the strict confines of psychophysical tasks, this may 

lead to suboptimal performance, since it leads to confusion about the causes of sensory 

neuronal firing. However, in naturalistic contexts, combining prior beliefs with sensory 

information, particularly when the sensory input is weak or ambiguous, may be adaptive. 
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Implementing this combination at early stages of sensory processing (and thus 

eliminating any unbiased stage of sensory representation) may have an additional 

advantage of promoting stability and consistency in any parallel downstream 

computations that rely on the sensory information (Luu & Stocker, 2016). 

The Haefner model has succeeded in providing a parsimonious account of a great 

deal of neuronal data that has been difficult to reconcile otherwise. However it requires 

further experimental validation. To this end, it makes several untested predictions. These 

emerge from the fact that the feedback relates directly to a subject having learned the 

implicit structure of the task. This predicts that CP and structured noise correlations will 

emerge over the course of learning and be correlated positively with performance6. Our 

data provide provisional experimental support for the second prediction. We found that 

one animal had consistently lower behavioral thresholds, and we also observed stronger 

CPs and structured noise correlations in this animal (data not shown). The experiments 

mentioned previously that are being undertaken by Rick Born’s group are also designed 

to explicitly examine the evolution of CP and structured noise correlations during 

learning. They plan to begin neuronal recordings in naïve monkey subjects, and continue 

recording as subjects becomes expert on the task.  

Another prediction is that the structure of noise correlations in a sensory area 

should reflect the structure of the task. For instance, in the context of 3AFC 

discrimination, the correlation matrix should have three peaks (corresponding to within-

                                                            
6 Increases in CP with learning have been previously observed (Law & Gold, 2008) and can be due to a 
variety of factors, such as decreases in pooling noise, making this a poor test for the Haefner model. 
However, a learning-associated increase in the amplitude of noise correlation structure is a unique 
prediction. 
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pool pairs) and three troughs (corresponding to between-pool pairs). This is a novel 

prediction which awaits experimental testing. 

The Haefner model makes a strong commitment to the view of perception as 

Bayesian inference, which may not be necessary for generating the model predictions. It 

will be important to know if other models of perceptual decision making that include 

choice-related feedback can explain the data without an explicitly Bayesian explanation. 

 

4.2 Chapter 3 Summary and Future Directions 

In Chapter 2, we identified a source of task-dependent feedback that manifested 

as changes in rsc structure in V1. A crucial assumption of our experimental design was 

that we could successfully manipulate subjects’ allocation of internal resources by 

changing the set of orientations they needed to discriminate to receive reward. Unlike 

prior studies, we objectively measured subjects’ task strategies using psychophysical 

reverse correlation, to confirm the validity of this assumption. We showed that they did 

update their psychophysical kernels to reflect task instruction.  

In Chapter 3, we explored aspects of the subjects’ psychophysical performance 

in more detail. Our main finding was that the monkey subjects slowly “rotate” their 

psychophysical kernels over a timescale of tens of thousands of trials after task 

instruction changes. Because task instruction was typically changed more frequently than 

this, the subjects usually used a task strategy which was somewhat misaligned. 

Occasionally, we chose a task to maximize difficulty given the subject’s kernel location. 

During these sessions, we found that the subjects’ performance dropped to chance levels 

for extended periods of time (>1,000 trials). By contrast, human subjects performing the 
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same task were able to rapidly adopt an appropriate kernel within tens of trials after a 

change in the discriminanda orientations.  

We found that we could predict almost half (39%) of the variability in the 

monkey subjects’ performance across sessions only with knowledge of the angle between 

the kernel peak orientation and the task orientation. Despite this clear relationship, 

subjects were able to maintain reasonably good performance with a modest degree of 

misalignment. Given other sources of behavioral variability, we conclude that the modest 

impact of kernel misalignment would be difficult to detect without directly measuring it. 

Our results suggest serious behavioral confounds in studies involving monkey 

psychophysics. These are likely to have gone unnoticed in prior studies. This is 

particularly concerning for studies in which the discriminanda are updated more 

frequently than subjects can update their kernels. Given that many such studies frequently 

change the discriminanda to match the preferences of recorded neurons, this is likely to 

be a widespread effect. Studies combining electrophysiology and psychophysics often 

report considerable variability in subject’s psychophysical thresholds (Britten et al., 1992; 

Yu, Dickman, DeAngelis, & Angelaki, 2015). The slow strategy updating characterized 

here may be an important contributing factor. This would have introduced a source of 

variability in measures that contain a behavioral component that was not accounted for.  

Studies of the neuronal effects of dynamic changes in task context may be 

particularly subject to confounds of this sort (Cohen & Newsome, 2008). In these studies, 

subjects may have been able to perform well across multiple task contexts while actually 

performing a fixed internal task strategy. Future studies will benefit from the use of PRC 

to identify and avoid confounds of this sort. 
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The slow kernel updating we observed in the monkey subjects is likely due to a 

combination of two factors: 1) a previously uncharacterized inflexibility in their 

sensorimotor contingencies, and 2) the use of training procedures that inadvertently 

incentivized them to adopt inflexible task strategies. Identifying the contribution of these 

two components will require further experimentation in training procedures and task 

designs. We discuss several changes that could be employed to encourage subjects to 

more rapidly update their task strategies. 

First, increasing the cost of incorrect choices during training would effectively 

increase the penalty for kernel misalignment and potentially incentivize subjects to adopt 

a more flexible strategy. Although we did use a reward structure that penalized random 

guessing (see Chapter 2 Methods), the use of task designs in which there are more than 

two alternatives would much more strongly penalize this strategy (by reducing the reward 

rate from 1 2ൗ  to 1 ݊ൗ , given	݊ alternatives). However, n-choice tasks (for n>2) create 

significant analysis hurdles: for instance, more sophisticated methods of measuring 

decision strategies than those employed here would be required. A useful middle ground 

may be to use a task designed to encourage flexible kernels during early training and one 

designed for efficient analysis during later sessions that contribute to the final dataset. 

Second, our subjects may also have been unintentionally encouraged to slowly 

update their strategy because we often kept the discriminanda the same for multiple 

training sessions in a row. If we had frequently changed the discriminanda at an early 

point in their training, this may have caused them to adopt more flexible kernels from the 

outset. Lastly, the fact that the choice target locations were fixed given the discriminanda 

(see Chapter 2 Methods) means that the subjects were not overtly incentivized to make 
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use of the oriented Gabor icons to inform their choices. In other words, they may have 

used a strategy that involved a low-level sensorimotor association rather than an abstract, 

categorical decision.  Trial-by-trial changes in the choice target locations may have 

encouraged the subjects to make better use of the orientation cues to form a categorical 

decision. Further work will be needed to clarify whether these or other methods can be 

employed to circumvent the slow kernel updating our subjects employed. 

For several reasons, we believe it is unlikely that the slow task strategy updating 

characteristic of the monkey subjects in our experiments is particular to discriminations 

in the orientation domain. First, it seems implausible that the behavioral limitation does 

not relate, at least in part, to constraints on domain-general processes downstream from 

visual cortex, rather than the specific way orientation is represented. Another argument 

relates to the widespread, albeit often anecdotal, observation that monkey subjects are 

poor to generalize across even slight changes in a task configuration. We speculate that 

the slow kernel updating we report may underlie these frequent reports of poor 

generalization. Finally, the most direct evidence comes from preliminary PRC data from 

monkeys performing a shape discrimination task (Long Sha and Roozbeh Kiani, personal 

communication). In this task, possible stimuli come from a set of complex shapes 

spanning a subspace defined by a set of predetermined features (for instance, one 

“dimension” might be indexed by the length of a triangle protruding from the right side 

of the object). The experimenters then arbitrarily chose hyperplanes in this high-

dimensional parameter space as the discrimination boundary defining the task. 

Preliminary data suggest that, after a change in the discrimination boundary, monkey 

subjects require multiple days of retraining during which time their internal decision 
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boundary slowly becomes closer and closer to the new optimal boundary. These results 

appear qualitatively similar to what we have reported in the orientation domain, despite 

the fact that this task involves a highly abstracted feature space that is presumably 

represented in a population of neurons anterior to V1. 

This shape discrimination task, while different from the task we used in a 

number of respects, also shares an important feature: changes in task instruction require 

subjects to reweight sensory evidence within a fixed feature space, and therefore likely 

contained within a single population of neurons. Another class of discrimination tasks 

involve stimuli that vary in multiple modalities encoded in physically distinct neuronal 

populations. For instance, Mante, Sussillo, Shenoy, & Newsome (2013) trained monkeys 

to perform a discrimination task involving a stimulus that could vary both in direction of 

motion and color. Importantly, motion and color are known to be represented in largely 

non-overlapping regions of visual cortex (DeYoe & Van Essen, 1988; Livingstone & 

Hubel, 1988; Zeki, 1978). Subjects were cued in a blockwise fashion which of the two 

features to discriminate to receive reward. Behavioral data confirmed that the subjects 

were able to rapidly adjust their task strategy from one using color to one using motion 

on the time scale of only tens of trials (three orders of magnitude faster than our monkeys 

updated their task strategies). We speculate that this ability may rely on the fact that 

subjects did not necessarily need to adjust any read out weights to do the task. Instead 

they only needed to switch modalities, which may be subserved by a switch between two 

fixed sets of readout weights applied to distinct sets of neurons. 
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4.3 Summary of Contributions 

Summary of Contributions: Chapter 2 

 We found that the structure of spike-count correlations in macaque V1 is not 

fixed, but rather changes systematically with the task being performed. We 

excluded a number of possible stimulus-driven factors that could explain this, 

strongly implying that the source of these dynamic changes is centrally generated 

and is directly caused by subjects’ engagement in the task.  

 Using a multilinear regression model, we separated the noise correlation structure 

into two components: one that was fixed and one that changed dynamically with 

the task. The vast majority of the variance was explained by the dynamic 

component. 

 The lattice-like correlation structure is consistent with the observed CPs, 

assuming linear pooling. However, this would require that the V1 spikes 

generated by feedback be naively read out as sensory evidence, because the fixed 

component of noise correlation structure was insufficient to generate CP of the 

appropriate magnitude. Alternatively, the source of feedback may be correlated 

with the ongoing decision process itself, implying that CP reflects an effect of 

choice on sensory neurons. 

 The lattice-like correlation structure closely resembles “differential” correlations. 

This implies that feedback contaminates the sensory representation, unless 

downstream computations can segregate self-generated and external sources of 

V1 activity. 
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Summary of Contributions: Chapter 3 

 Psychophysical reverse correlation demonstrates that monkey subjects’ 

psychophysical kernels frequently diverge from those suggested by task 

instruction in an orthogonal orientation discrimination task. Underlying this is a 

strong hysteresis in their task strategies—after a change in task instruction, 

subjects slowly update their kernels on the order of tens of thousands of trials.  

 We were able to predict 39% of the day-to-day variability in subjects’ 

psychophysical performance only with knowledge of the angle of kernel 

misalignment, identifying a source of behavioral variability in monkey 

psychophysical performance that has not previously been well documented. 

 By placing the discriminanda specifically to challenge subjects’ kernels, we could 

reduce their performance to chance for entire sessions (>1000 trials), 

demonstrating a profound deficit in the flexibility of their sensorimotor 

contingencies that strongly impairs their ability to receive reward. 

 Human subjects were able to rapidly update their psychophysical kernels to match 

task instruction even when the discriminanda were alternated in a blockwise 

fashion within single sessions, showing that the deficit is specific to animal 

subjects. 

 We found that monkey subjects were slightly more sensitive to changes in 

nominal signal level than predicted based on their sensitivity to random stimulus 

fluctuations. This suggests they are able to distinguish these and were thus not 

fully at their psychophysical threshold. 
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