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Introduction 

During auditory language comprehension, a listener’s principal objective is to 

infer what meaning the speaker intended to convey. For a healthy adult communicating in 

his or her native language, this task is typically both effortless and errorless. What makes 

this behavioral generalization noteworthy is the fact that there is rarely just one possible 

interpretation of a given acoustic signal; in fact, perceptual uncertainty is ubiquitous in 

speech communication. Indeed, listeners are faced with uncertainties arising from 

countless sources ranging from unclearly produced speech to imperfect listening 

conditions to inescapable ambiguities inherent in language (e.g., homophony). It is easy 

to see how the challenge posed by such pervasive uncertainty might be crippling to a 

speech processing system that relied exclusively on these ambiguous acoustic cues 

available in the perceived speech signal to decode a speaker’s meaning. A fundamental 

question, then, regards how the perception of speech can be so robust despite these 

barriers. 

In the present work, it is argued that at least part of the answer to that question is 

that even though much ambiguity exists, when one source of information is unreliable, 

there are usually other cues available in the signal that can be leveraged to understand the 

speaker’s intended meaning. For instance, although the spoken word /bɔrd/ could be an 

exemplar of either the word board or of bored, words are rarely uttered in isolation, and – 

most of the time – there is little doubt as to which meaning to assign to the lexically 

ambiguous speech token. This is, in large part, because the word’s linguistic and extra-

linguistic context provides another cue that can aid in the extraction of meaning, 

particularly when the acoustic cues are degraded or insufficient. 
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While this explanation may appear straightforward, it raises the key question of 

how multiple sources of information are integrated by the speech processing system. It is 

that question which is the focus of this thesis. More specifically, the present work 

employs behavioral experiments and computational modeling in order to investigate how 

so-called bottom-up acoustic cues available in the sensory signal and top-down 

information about which words or sounds are likely in a given context are integrated 

during online auditory language comprehension. 

For the purpose of exposition, let a word be defined as the discrete linguistic unit 

that stands at the juncture between the sound information perceived by the listener in the 

speech signal and the underlying meaning associated with the signal (Blumstein, 2009). 

Spoken word recognition, then, represents a critical sub-routine of auditory language 

comprehension if a listener is to extract meaning from the perceived signal. A given word 

can be thought of as being associated with (1) a lexical form that defines how the word 

sounds, and (2) the word’s meaning. When a speech token that resembles the lexical form 

of a word is perceived, that word can be recognized and its meaning accessed. 

When it comes to recognizing a spoken word, acoustic cues in the sensory signal 

are certainly the paramount source of information available to the speech perception 

system. The perceptual system is adept at decoding the speech signal based on auditory 

cues alone. These information sources, which are the product of low-level sensory and 

phonetic processing of the input, are referred to as bottom-up cues. 

However, as important as bottom-up cues are, much research has shown that, in 

addition to integrating a host of bottom-up cues, word recognition also involves the 

recruitment of top-down information that is not immediately available in the signal, but 
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instead relies on cognitive or higher-level linguistic processing. A general conclusion of 

this line of research is that listeners tend to perceive things that are more probable; for 

instance, identification is biased towards words rather than non-words (Ganong, 1980) 

and towards contextually consistent or sensible words over words that are inconsistent or 

nonsensical given the context (e.g., Borsky et al, 1998; Fox & Blumstein, in press).  

Although the roles of both bottom-up and top-down cues are well attested, this 

thesis examines the basic computational principles that underlie their integration. 

Although a number of models have sought to tackle the question of how top-down cues 

come to influence speech perception, several issues remain unclear. Firstly, a long-

standing, much-debated topic regards whether the observed biases in listeners’ responses 

(toward words over non-words and toward contextually consistent words over 

inconsistent words) reflect the direct, top-down modulation of perceptual processing of 

the input or whether they reflect processing biases at a later decision-making level (see, 

e.g., McClelland, Mirman & Holt, 2006; Norris, McQueen & Cutler, 2000). Secondly, 

despite substantial evidence that sentential context influences spoken word recognition, 

existing models lack an explicit characterization that can account for these effects. 

Thirdly, another weakness of existing spoken word recognition models is that they 

largely ignore the enormous variability that exists in the observed sizes of top-down 

effects. Finally, the extent to which patients with aphasia experience deficits in top-down 

processing and cue integration during speech perception is poorly understood. 

In the present work, each of these four issues is considered in turn. Empirical and 

computational methodologies are employed in order to probe the questions each issue 

poses. Ultimately, the results of this thesis provide a more complete picture of the 
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computations that take place at the interface between the perceptual processing of speech 

and the cognitive and linguistic processing of language, while also establishing a novel 

theoretical basis that promises to guide future work. 
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Chapter 11 

Top-down effects of syntactic sentential context on phonetic processing 

1.1. Introduction 

During auditory language comprehension, listeners integrate information from a 

variety of sources in their categorization of sounds and words, especially when 

confronted with degraded or ambiguous speech. Besides low-level acoustic cues, listeners 

are also sensitive to higher-level information that is not immediately available in the raw 

sensory input. For instance, listeners exhibit a lexical bias in their categorization of a 

phonetically ambiguous segment between /g/ and /k/ such that they label the segment as 

/g/ more often when followed by –ift, but as /k/ more often when followed by –iss 

(Ganong, 1980; see also Burton, Baum & Blumstein, 1989; Burton & Blumstein, 1995; 

Connine, 1990; Connine & Clifton, 1987; Fox, 1984; McQueen, 1991; Miller & Dexter, 

1988; Myers & Blumstein, 2008; Pitt, 1995; Pitt & Samuel, 1993). 

Moreover, when a stimulus is phonetically ambiguous between two words (e.g., 

between goat and coat), listeners exhibit a semantic bias such that they label the 

ambiguous word as goat more often when embedded in a sentence like The busy farmer 

hurried to milk the… but as coat more often in The elderly tailor had to dry-clean the… 

(Borsky, Tuller & Shapiro, 1998; Connine, 1987; Connine, Blasko & Hall, 1991; Garnes 

& Bond, 1976; Guediche, Salvata & Blumstein, 2013; Miller, Green & Schermer, 1984). 

Like semantic information, syntactic (Isenberg, Walker & Ryder, 1980; van Alphen & 

McQueen, 2001), morphosyntactic (Martin, Monahan & Samuel, 2012), and pragmatic 

                                                
1 At the time of submission of this dissertation, a version of Chapter 1 is currently in 
press at the Journal of Experimental Psychology: Human Perception and Performance 
(http://dx.doi.org/10.1037/a0039965). This article may not exactly replicate the 
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information (Do, 2011; Rohde & Ettlinger, 2012) have all been shown to bias listeners’ 

identifications of phonetically ambiguous words. 

From this robust literature, it is clear that sensory processing alone cannot explain 

listeners’ judgments about the identities of spoken words and sounds. In order for higher-

level information to influence spoken word recognition, perceptual input must make 

contact with lexical representations which act as a gateway to the semantic, syntactic and 

other properties of words, and those lexical representations must then be able to influence 

behavioral responses in tasks like those described above (Samuel, 2011). 

1.1.1. Models of Spoken Word Recognition: Competing Frameworks 

There exists, however, a longstanding debate about how those lexical 

representations come to influence spoken word recognition (for reviews, see McClelland, 

Mirman & Holt, 2006; McQueen, Norris & Cutler, 2006). Two competing families of 

spoken word recognition models – interactive models and autonomous models – each 

account for the effects of higher-level cues by appealing to different mechanisms. In 

particular, they differ in how pre-lexical (i.e., perceptual/phonetic) representations and 

lexical representations influence one another. Both approaches allow for a bottom-up 

flow of information such that pre-lexical processing of speech modulates the extent to 

which competing lexical representations are supported. However, only interactive models 

of spoken word recognition, exemplified by TRACE (McClelland & Elman, 1986; 

McClelland, 1991), incorporate top-down feedback projections that, conversely, allow 

lexical representations to modulate the extent to which competing pre-lexical 

representations are supported (see also Adaptive Resonance Theory; Grossberg, 1980, 

2003; Grossberg & Myers, 2000). 
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Autonomous models of spoken word recognition, on the other hand, eschew top-

down modulation of phonetic processing. Instead, they account for lexical and contextual 

effects on listeners’ responses by positing that both higher-level and lower-level 

information can influence phonemic decisions, but it is maintained that pre-lexical 

representations remain faithful to the bottom-up acoustic input. Thus, under the 

autonomous view, the observed biases reflect the integration of multiple information 

sources, but, crucially, this integration does not affect lower-level phonetic processing 

itself (see, e.g., Norris, McQueen & Cutler, 2000; McQueen, Jesse & Norris, 2009). A 

succession of autonomous models has been proposed in the literature, including Race 

(Cutler & Norris, 1979; Cutler, Mehler, Norris & Segui, 1987), Shortlist (Norris, 1994), 

Merge (Norris et al., 2000), and Shortlist’s Bayesian implementation (Norris & 

McQueen, 2008). Although each varies in its details, none allows for higher-level 

modulation of phonetic processing through feedback (McQueen et al., 2006; see also 

Fuzzy Logical Model of Speech Perception; Massaro, 1989). 

Thus, any behavioral demonstration of lexical or contextual biases in phoneme 

judgments could, in theory, be explained at the level of the judgment itself (a post-

perceptual explanation, as in autonomous models), or by direct modulation of pre-lexical 

processing prior to the judgment (a perceptual explanation, as in interactive models). 

Because of this, interactive and autonomous models of spoken word recognition have, in 

practice, proven difficult to distinguish. However, past work suggests that these two 

frameworks may diverge in their predictions about the time course of these effects. 

1.1.2. Time Course of Sentential Context Effects 
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One result that proponents of autonomous models have cited as incompatible with 

TRACE (and interactive models more generally) concerns the time course of lexical and 

contextual effects. Specifically, they contend that if top-down feedback can directly alter 

the activation of pre-lexical representations (as it can in TRACE), then the influence of 

higher-level information could only grow or remain stable as a function of processing 

time, but could not diminish (McQueen, 1991; Tuinman, Mitterer & Cutler, 2014; van 

Alphen & McQueen, 2001). According to this argument, top-down biasing information 

within an interactive framework tends to overwrite the ambiguous bottom-up input 

pattern, shaping it and pulling it towards a pattern that would be expected for lexically- or 

contextually-consistent speech. 

For instance, in one experiment, the identification of phonetically ambiguous 

function words (between de and te; roughly the and to in Dutch) was shown to be biased 

by manipulating the target words’ grammaticality in context (van Alphen & McQueen, 

2001). Ambiguous stimuli were labeled as /de/ more often in sentences like We 

verstoppen [?] schaatsen (We hide [the]/[to] skates; de-biased) than in sentences like We 

behoren [?] schaatsen (We ought [to]/[the] skate; te-biased] (cf. Isenberg, Walker & 

Ryder, 1980). Importantly, though, when responses were divided into bins based on 

reaction time (cf. Fox, 1984), contextual biases from an immediately preceding syntactic 

cue were strongest in fast responses and grew weaker with time. A similar pattern of 

results was found for the time course of syntactic context effects on a different type of 

phonetic judgment by Tuinman, Mitterer and Cutler (2014). 

Can interactive models account for a smaller contextual bias in slower responses 

than in faster ones? Van Alphen and McQueen (2001) argue that they cannot: if 
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ambiguous bottom-up information has been overwritten by top-down feedback such that 

even early activation levels at the pre-lexical level are biased by context, then the original 

(ambiguous) pre-lexical representation cannot be recovered in order to yield more 

ambiguous (i.e., less biased) responses later in processing. That is, in interactive models, 

feedback permanently and irrevocably biases the bottom-up record of the unbiased pre-

lexical representation (Massaro, 1989). Although Dahan, Magnuson and Tanenhaus 

(2001) dismiss this argument on the grounds that using response latencies to track top-

down influences on pre-lexical activation “is not straightforward” (p. 321), it remains 

unclear to what extent the time course of sentential context effects on spoken word 

recognition does, in fact, challenge interactive models of speech perception. 

The present work aimed to examine this question by testing two possible 

alternative explanations of previous time course data (van Alphen & McQueen, 2001; 

Tuinman et al, 2014). Specifically, two experiments investigated whether characteristics 

of the experimental designs in earlier work might have allowed subjects to adopt 

strategies that would not only explain the diminishing bias effect, but also undermine the 

ability of those data to distinguish between interactive and autonomous models. 

Following previous work that showed diminishing contextual biases, both of the present 

experiments examined syntactic sentence context effects on subjects’ perception of 

phonetically ambiguous speech. Experiment 1.1 tested whether the diminishing influence 

of sentential context would persist when subjects could not plan contextually congruent 

responses prior to the presentation of the target stimulus. Experiment 1.2 tested whether 

the diminishing bias effect would persist when subjects were induced to engage in 

phoneme identification rather than word identification strategies. 
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1.2. Experiment 1.1 

In prior work (van Alphen & McQueen, 2001; Tuinman et al, 2014), the 

experimental design allowed subjects to identify the contextually appropriate response 

before hearing the ambiguous target segment. For example, in van Alphen and 

McQueen’s (2001) study, a preceding context biased the identification of an acoustically 

ambiguous target between de and te. Because this experiment utilized a single continuum 

with only two alternatives (de and te), subjects could have identified and prepared a 

grammatically congruent response before they encountered the target. This raises the 

question of whether some responses might reflect decisions that were generated before 

processing of the target could have actually begun. If the responses that were fastest were 

disproportionately contaminated with such pre-planned decisions, it would not be 

surprising to observe a fast-arising bias that appears to weaken at longer RTs (once 

subjects had heard the target word). Importantly, this explanation would not challenge 

interactive models; button-presses planned before a stimulus is presented could not bear 

on whether the pre-lexical representation of that stimulus is modulated by interactive 

feedback. 

Thus, Experiment 1.1 utilized two voice-onset time (VOT) continua, rather than 

just one: a noun–verb continuum (bay–pay) and a verb–noun continuum (buy–pie), 

crossing target word voicing with syntactic category bias. Tokens from these VOT 

continua were appended to noun-biasing and verb-biasing sentence contexts (e.g., Valerie 

hated the..., Brett hated to...), and subjects identified the initial segment of sentence-final 

targets (/b/ vs. /p/). In this way, subjects could not know which phonemic response (/b/ 

vs. /p/) was congruent with the contextual bias of a sentence until the target word was 
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presented, thereby preventing them from anticipating or planning a specific button-press 

response before hearing the target word.  

1.2.1. Methods 

1.2.1.1. Materials 

1.2.1.1.1. Target Word Selection 

Sixteen monolingual volunteers who spoke American English participated in a 

norming study to confirm that the four critical targets words (bay, pay; buy, pie) had 

strong syntactic category biases in the expected directions. The four targets were included 

in a randomly ordered list of 40 words that included words from a variety of syntactic 

categories. For each word in the list, subjects wrote one sentence “that might be heard in 

everyday speech,” and their responses were coded for the target words’ part of speech 

usage in each sentence. The noun targets (bay and pie) were each used by at least 15 of 

16 subjects as a noun; the verb targets (pay and buy) were each used by at least 14 

subjects as a verb. Thus, bay/pay and buy/pie were judged to be sufficiently biased 

noun/verb and verb/noun minimal pairs, respectively. 

  1.2.1.1.2. Sentence Contexts 

Twenty main verbs (e.g., hate, want) that could be followed by either a noun 

phrase or an infinitive phrase (e.g., hate the bay; hate to pay) were identified. Forty 

sentence contexts (20 noun-biased; 20 verb-biased) were then constructed by 

concatenating a first name, the past tense form of the main verb, and either the or to, 

yielding pairs of sentence contexts like Valerie hated the... and Brett hated to... The full 

list of contexts can be found in Appendix A. This design helped ensure that participants 

could not use information from the main verb to predict the target word.  In this way, any 
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syntactic bias effect on responses could be attributed to the influence of the immediately 

preceding function word. 

   1.2.1.1.3. Stimulus Recording 

Sentences ending with the target words were recorded by a female monolingual 

native American English speaker in a sound-dampened room with an Edirol digital 

recorder (model R09-HR; Sony microphone model ECM-MS907; sampled: 44,100 Hz / 

24 bits / stereo; resampled in BLISS speech-editing software: 22,050 Hz / 16 bits / mono; 

Mertus, 1989). Target words were spliced out of the sentences’ waveforms yielding 40 

partial sentences (20 noun-biased, 20 verb-biased). 

1.2.1.1.4. Target Word Manipulation 

A natural token of bay and of buy served as base tokens for two VOT continua, 

constructed using the BLISS waveform editor (Mertus, 1989). Beginning with the base 

voiced token of bay, an acoustically modified voiceless end of the bay–pay continuum 

and each intermediary token were generated by successively adding aspiration from the 

middle of the aspiration of a naturally-produced pay token and removing pitch periods of 

equal duration from the onset of the vowel of the natural bay token. This procedure 

yielded 12 stimuli with VOTs ranging from 2 to 64 milliseconds. The onset’s burst was 

amplified (2x) for all tokens in the continuum because the aspiration from the pay token 

rendered the burst in the natural bay inaudible. Tokens of the buy–pie continuum were 

generated in the same manner, yielding 12 stimuli with VOTs ranging from 3 to 62 

milliseconds. As with the bay–pay continuum, the onset’s burst was amplified (3x) for all 

tokens in the continuum. Twenty milliseconds of silence was appended to the beginning 

of each token of both continua. The waveforms of all stimuli across the two continua 
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were normalized for amplitude so that the highest peaks of the waveforms were equally 

high. 

   1.2.1.1.5. Target Word Token Selection 

Ten monolingual native English-speaking volunteers from the Brown University 

community participated in a norming study whose goal was to select the eight target 

stimuli: two ambiguous tokens and one token from each phonetic category endpoint for 

each continuum. Twenty trials each of the 12 tokens of each continuum (480 total trials) 

were presented in isolation (without sentential context) binaurally to participants in 

random order. Participants responded whether each target began with a “p” or “b” by 

pressing a corresponding button (response mapping was counterbalanced between 

subjects) and were instructed to respond as quickly as possible while maintaining 

accuracy, and to guess if they were unsure. 

The two tokens from each continuum with the identification rates closest to 50% 

and the highest mean response reaction times (Pisoni & Tash, 1974) were selected as the 

ambiguous tokens from each continuum. Endpoint tokens of each continuum were 

selected such that each the /b/ and /p/ was equidistant from the ambiguous pair. Table 1.1 

shows the results for the eight selected tokens. 
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Continuum Token # VOT (ms) Mean % p Mean RT (ms) 
bay–pay 2 7 1.5 591 
bay–pay 4 18 42.5 794 
bay–pay 5 24 74 778 
bay–pay 7 35 97.5 655 
buy–pie 2 7 2 609 
buy–pie 4 18 39 852 
buy–pie 5 23 79 826 
buy–pie 7 34 86.5 720 

Table 1.1. Mean classification rates and reaction times (RTs) for the selected tokens from 
each voice-onset time (VOT) continuum 
 

1.2.1.2. Participants 

Fifty self-reported native monolingual American English speakers with normal 

hearing from the Brown University community volunteered or received course credit to 

participate in Experiment 1.1. None had participated in any of the norming studies 

reported earlier. Due to technical difficulties, one subject’s incomplete data were 

excluded from analysis. 

1.2.1.3. Task 

Each of the eight selected tokens was appended to each of the 40 sentence 

contexts, yielding 320 stimuli. The resulting design crossed two levels of CONTINUUM 

(bay–pay, buy–pie) with two levels of CONTEXT (noun-biased, verb-biased) and four 

tokens from each VOT continuum. All sentences were presented binaurally in a random 

order after eight practice trials. Participants were instructed to indicate whether the last 

word in each sentence began with a “b” or a “p” by pushing the appropriate button with 

either the index or middle finger of their dominant hand (response mapping was 

counterbalanced between subjects). The experiment did not advance to the next trial until 

a subject responded, but participants were instructed to respond as quickly as possible 
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while maintaining accuracy, and to guess if they did not know. They were also warned 

that some sentences might not make sense. Reaction times were measured from the onset 

of the target word. 

1.2.2. Results 

 
Figure 1.1. Mean proportion of /p/-responses to tokens from each VOT continuum in 
Experiment 1.1 after noun-biasing and verb-biasing sentence contexts. Error bars 
represent standard error. 
 

The results of Experiment 1.1 are shown in Figure 1.1. Because this study was 

designed to examine contextual effects on the processing of ambiguous speech, data from 

responses to the two middle tokens in each continuum were analyzed. The mean 

proportion of /p/-responses for those intermediate tokens in each context and continuum 
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are summarized in Figure 1.2. Individual subjects’ data were excluded if they did not 

make at least 10% /b/-responses and 10% /p/-responses to the ambiguous tokens in a 

given continuum. Based on this criterion, all 49 subjects perceived at least one of the 

continua ambiguously (36 for bay–pay continuum; 46 for the buy–pie continuum; 33 for 

both continua). Finally, 205 trials (1.31% of responses) with extreme reaction time (RT) 

values were removed prior to analysis (>3 standard deviations from the mean RT for a 

given subject/target/context). 

 

Figure 1.2. Mean proportion of /p/-responses to ambiguous tokens from each VOT 
continuum in Experiment 1.1 after noun-biasing and verb-biasing sentence contexts. 
Error bars represent standard error. 
 

To test for an effect of sentential context on the identification of ambiguous 

stimuli, the data were analyzed using mixed effects logistic regression (Baayen, Davidson 

& Bates, 2008; Jaeger, 2008); a detailed description of the analyses can be found in the 
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Appendix C. The regression model included fixed effects for CONTEXT (verb-biased vs. 

noun-biased), CONTINUUM (bay–pay vs. buy–pie), and VOT (the VOT of each ambiguous 

token), along with all their two- and three-way interactions. All random intercepts and 

slopes were included for both subjects and items (i.e., main verbs; e.g., hated). Since the 

CONTINUUM factor crossed voicing (/b/ vs. /p/) and syntactic category bias (noun vs. 

verb), the critical test of a syntactic context effect is a CONTEXT × CONTINUUM 

interaction. A significant CONTEXT × CONTINUUM interaction would indicate that, after 

hearing the (which requires a noun rather than a verb), subjects were more likely to report 

hearing a /p/ if the target came from the buy–pie continuum, and more likely to perceive a 

/b/ if it came from the bay–pay continuum. As suggested by Figure 1.2’s reversal in 

direction of the context effect within each continuum, the results showed a robust 

CONTEXT × CONTINUUM interaction (β = 2.27, SE = 0.30, |z| = 7.53, p < 0.001). Follow-

up tests confirmed a crossover interaction between CONTEXT and CONTINUUM, indicated 

by a significant simple effect of CONTEXT on responses to stimuli from each continuum, 

but in opposite directions (bay–pay: β = -1.37, SE = 0.19, |z| = 7.34, p < 0.001; buy–pie: β 

= 0.95, SE = 0.20, |z| = 4.82, p < 0.001). All other effects that reached significance in the 

omnibus and follow-up analyses are reported and discussed in the Appendix C. 

The central aim of Experiment 1.1 was to examine whether the obtained syntactic 

context effect was modulated by response latency. Thus, following the analysis procedure 

of Tuinman and colleagues (2014), we divided responses into two RT ranges (fast vs. 

slow) to test for differences in the size of this contextual bias. To do this, the responses of 

each participant within each cell of the experiment’s design (20 responses for each 

subject/context/continuum/token, less outliers) were ranked according to their RTs. Then, 
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from each ranked list of RTs, the eight trials (40%) with the shortest RTs were labeled 

fast (mean RT = 577 ms, SD = 149 ms) and the eight trials (40%) with the longest RTs 

were labeled slow (mean RT = 1,012 ms, SD = 410 ms), omitting the mid-range. 

Together, the fast and slow RT ranges constituted a binary factor: SPEED. 

Tuinman and colleagues (2014) showed that sentential context interacted with 

SPEED such that subjects’ responses were less influenced by context at slow RTs than fast 

RTs. However, in the present study, CONTEXT (i.e., the vs. to) has the opposite effect on 

responses to stimuli from the bay–pay continuum than for stimuli from the buy–pie 

continuum. Therefore, the CONTEXT and CONTINUUM factors were recoded into a single 

factor (BIAS) with two levels (/p/-congruent vs. /b/-congruent), each corresponding to 

two types of trials. Trials were classified as /p/-congruent when a verb-biasing context 

(e.g., Brett hated to...) preceded a target from the bay–pay continuum (because a pay-

response is congruent with the context in these trials) and when a noun-biasing context 

(e.g., Valerie hated the...) preceded a target from the buy–pie continuum (because a pie-

response is congruent with the context in these trials). Conversely, trials were /b/-

congruent if they contained a verb-biasing context and a target from the buy–pie 

continuum (“...to /?ai/”) or a noun-biasing context and a target came from the bay–pay 

continuum (“the /?ei/”). Visually, the /p/-congruent trial-types correspond to the two 

conditions in Figure 1.2 with higher rates of /p/-responses, while the lower bars represent 

/b/-congruent trials. 

Having created the SPEED and BIAS factors, we examined whether there was a 

BIAS × SPEED interaction similar to what was observed in previous work (Tuinman et al, 

2014; cf. van Alphen & McQueen, 2001). Figure 1.3 shows the mean proportion of /p/-
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responses subjects made for ambiguous tokens in /p/-congruent and /b/-congruent 

conditions in each of the RT ranges. A logistic regression analysis with fixed effects for 

BIAS, SPEED, VOT, their two- and three-way interactions, and all corresponding random 

intercepts and slopes for subjects and items was conducted (see the Appendix C for 

details). This analysis revealed a significant BIAS × SPEED interaction (β = 0.51, SE = 

0.15, |z| = 3.30, p < 0.001), wherein responses were more likely to be syntactically 

congruent – and hence show a larger bias effect – in faster responses (61.6% /p/-

responses to ambiguous tokens in /p/-congruent conditions vs. 41.4% in /b/-congruent 

conditions) than in slower responses (/p/-congruent: 55.6%; /b/-congruent: 42.0%). 

Additional effects that reached significance are reported and discussed in the Appendix 

C. 
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Figure 1.3. Mean proportion of /p/-responses in fast and slow responses to ambiguous 
tokens in /p/-congruent (“...to /?ei/” and “the /?ai/”) and /b/-congruent (“...the /?ei/” and 
“to /?ai/”) conditions in Experiment 1.1. Results indicate a weaker effect of BIAS in slow 
responses than in fast responses (see main text). Error bars represent standard error. 
 
 1.2.3. Discussion 

Experiment 1.1 was designed to investigate one possible alternative explanation 

for previous results showing a diminishing influence of context on spoken word 

recognition (van Alphen & McQueen, 2001; Tuinman et al., 2014). Here, as in previous 

work, acoustic targets were manipulated to be phonetically ambiguous between two 

words and embedded in sentential contexts that rendered one of those words 

ungrammatical (or at least less plausible). However, unlike previous studies in which 

subjects could identify which response (button-press) would be congruent with the 

context before the target was presented, Experiment 1.1’s design made it impossible for 

responses to the target stimuli to be systematically biased by the context if such responses 
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were planned prior to target presentation. Despite the addition of this control, the results 

of Experiment 1.1 showed that contextual biases on spoken word recognition still 

diminished over time, replicating earlier results. 

Having ruled out this alternative explanation, the central theoretical question that 

remains is whether the observation of a weakening bias effect in Experiment 1.1 (and 

elsewhere; van Alphen & McQueen; Tuinman et al, 2014) is inconsistent with interactive 

speech perception models. As described earlier, this interpretation follows from the 

argument that top-down feedback permanently overwrites pre-lexical information in such 

models (e.g., TRACE). However, this argument rests on the critical assumption that 

subjects’ decisions (both in previous experiments and in Experiment 1.1) tap into pre-

lexical processing levels. In previous studies (van Alphen & McQueen, 2001; Tuinman et 

al., 2014), subjects made word identification decisions, which reflect the relative 

activation of competing lexical representations. Results reflecting lexical-level decisions 

cannot be taken as evidence either for or against top-down feedback to pre-lexical levels. 

Similarly, although Experiment 1.1 employed a phoneme identification task, it remains 

possible that subjects were monitoring for the four possible target words (bay, pay, buy, 

pie) and learning that each response button corresponded to two words, and thus were 

implicitly engaging in word identification. Experiment 1.2 aimed to resolve this potential 

issue by making lexical-level decisions difficult, if not impossible. 

1.3. Experiment 1.2 

Experiment 1.2 considered a second factor important for the interpretation of 

contextual influences that diminish in slower responses. Previous studies showing this 

pattern of results employed word identification tasks, not phoneme identification tasks 
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(van Alphen & McQueen, 2001; Tuinman et al., 2014). It is essential to consider the task-

specific linking hypothesis (cf. Magnuson, Mirman & Harris, 2012; Tanenhaus, 

Magnuson, Dahan & Chambers, 2000) that transforms model activations into behavioral 

predictions in TRACE: “word identification responses are assumed to be based on 

readout from the word level, and phoneme identification responses are assumed to be 

based on readout from the phoneme level” (McClelland & Elman, 1986; p. 21). Thus, 

since subjects were identifying words (not phonemes), a model like TRACE would 

predict that lexical responses should reflect word-level (not phoneme-level) activations. 

Consequently, the time course of context effects demonstrated in previous work may not, 

in fact, be inconsistent with either interactive models (generally) or TRACE (specifically) 

because word identification data are not relevant to the question of the presence or 

absence of feedback from lexical to pre-lexical nodes. 

Experiment 1.2 modified the design of Experiment 1.1 to discourage subjects 

from adopting word identification strategies. In particular, subjects performed a phoneme 

identification task in which the critical target stimuli from the bay–pay and buy–pie 

continua were embedded among twenty filler target words beginning with /b/ or /p/. We 

hypothesized that, when responding to 24 unique target words, subjects would have to 

monitor for the identity of a target’s initial consonant in order to perform the phoneme 

identification task rather than utilizing word-level strategies. As such, subjects’ responses 

in Experiment 1.2 should reflect the relative evidence for competing pre-lexical 

representations, a prerequisite to using any time course analysis to discriminate between 

models with and without interactive feedback. 
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The stimuli for Experiment 1.2 included sentences of the same form as 

Experiment 1.1 (e.g., Brett hated to...), but 160 sentences ending with critical targets (an 

acoustically manipulated token from either the bay–pay or buy–pie continuum) were 

embedded among 800 sentences ending with filler targets. 

1.3.1. Methods 

1.3.1.1. Materials 

   1.3.1.1.1. Critical Targets 

 The same 8 critical target tokens used in Experiment 1.1 were used in Experiment 

1.2. 

   1.3.1.1.2. Filler Targets 

Twenty words (10 beginning with /b/; 10 beginning with /p/) were selected to 

serve as filler targets in Experiment 1.2 (for a complete list, see Appendix B). The list of 

filler words included nouns (e.g., bull), verbs (e.g., put), and syntactically ambiguous 

words (e.g., plan). The syntactic bias of each filler word (rate of usage of the word as a 

noun vs. a verb) was computed using the Penn Treebank (Marcus, Marcinkiewicz & 

Santorini, 1993), and the list of filler words beginning with /b/ and /p/ were balanced for 

their average syntactic bias. Finally, of the twenty filler words, eight of them composed 

four minimal pairs (e.g., bull, pull) so that, when combined with the critical targets, half 

of the targets in Experiment 1.2 comprised minimal pairs. The same female speaker that 

recorded the stimuli for Experiment 1.1 read aloud sentences ending with the filler target 

words. The filler targets were then spliced out of the recorded sentences, scaled to have 

the same maximum volume as the critical targets, and appended to 20 ms of silence (like 
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the critical targets), but were not acoustically manipulated (e.g., by altering the VOT of 

onsets). 

   1.3.1.1.3. Sentence Contexts 

Each critical and filler target was appended to each of the forty sentence contexts 

used in Experiment 1.1; for each of the twenty main verbs (that is, for each item; e.g., 

hated), there was a set of noun-biasing and verb-biasing contexts (Valerie hated the..., 

Brett hated to...) followed by every critical and filler target. Of the twenty item-sets, ten 

were randomly selected for each participant in Experiment 1.2, and that participant heard 

all sentence stimuli associated with those ten items (noun-biased and verb-biased 

sentences, ending in all critical and filler targets). Thus, the design remained fully within-

subjects and within-items, although not every subject heard the same items. As in 

Experiment 1.1, critical stimuli included four tokens from each of the VOT continua. In 

an effort to balance the likelihood that subjects would hear a sentence that ended with any 

given word, participants heard each of their filler sentences twice over the course of 

Experiment 1.2. In all, subjects heard 800 filler trials (10 items * 2 levels of CONTEXT * 

20 filler target words * 2 presentations) and 160 critical trials (10 items * 2 levels of 

CONTEXT * 2 levels of CONTINUUM * 4 tokens from each VOT continuum), yielding a 

total of 960 trials. 

1.3.1.2. Participants 

Twenty Brown University undergraduates who were self-reported native 

monolingual American English speakers with normal hearing received course credit to 

participate in Experiment 1.2. None had participated in Experiment 1.1 or any previous 

norming study. 
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1.3.1.3. Task 

The task was identical to Experiment 1.1: all critical and filler sentences were 

presented binaurally in a random order after eight practice trials and participants were 

asked to indicate with a button-press whether the last word in each sentence began with a 

“b” or a “p” (response mapping was counterbalanced between subjects). All instructions 

were the same as in Experiment 1.1. Subjects were offered three breaks (after every 240 

stimuli). 

 1.3.2. Results 

Phoneme identification responses to trials ending with filler words were highly 

accurate (98.2% correct). This was unsurprising because all filler words were naturally 

produced tokens, so they were not phonetically ambiguous. Responses to critical trials 

from each continuum are shown in Figure 1.4. All further analyses followed the same 

approach as Experiment 1.1’s analyses, independently fitting identical logistic regression 

models using subjects’ responses to ambiguous tokens from the two VOT continua 

(additional details in the Appendix C). Using the same criterion as in Experiment 1.1, a 

subject’s data were excluded if the intermediate tokens of a continuum were not 

perceived ambiguously (the responses of 18/20 subjects were included for at least one 

continuum: 15 for bay–pay; 13 for buy–pie; 10 for both). No trials warranted removal 

following an RT outlier analysis (same criteria as Experiment 1.1). 
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Figure 1.4. Mean proportion of /p/-responses to tokens from each VOT continuum in 
Experiment 1.2 after noun-biasing and verb-biasing sentence contexts. Error bars 
represent standard error. 
 

The results of the first three-factor (CONTEXT × CONTINUUM × VOT) mixed effects 

regression revealed a significant CONTEXT × CONTINUUM interaction (β = 2.75, SE = 

0.51, |z| = 5.34, p < 0.001; see Figure 1.5), confirming that subjects’ phonemic decisions 

about ambiguous targets were influenced by the grammaticality of targets given a 

preceding context. Follow-up tests confirmed the crossover interaction (opposite effects 

of CONTEXT in each continuum; bay–pay: β = -1.87, SE = 0.25, |z| = 7.46, p < 0.001; 

buy–pie: β = 0.66, SE = 0.27, |z| = 2.45, p < 0.02). Other effects are reported and 

discussed in the Appendix C. 
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Figure 1.5. Mean proportion of /p/-responses to ambiguous tokens from each VOT 
continuum in Experiment 1.2 after noun-biasing and verb-biasing sentence contexts. 
Error bars represent standard error. 
 

To test whether the influence of context on phoneme identification diminished 

over time, trials were recoded and split into two RT ranges (fast: mean RT = 616 ms, SD 

= 157 ms; slow: mean RT = 1,063 ms, SD = 423 ms) for a three-way BIAS × SPEED × VOT 

logistic regression, as in Experiment 1.1. This analysis provided no evidence of a BIAS × 

SPEED interaction (p > 0.86; see Figure 1.6). That is, the effect of the syntactic 

manipulation on the rate of /p/-responses did not diminish between faster responses (/p/-

congruent: 60.6%; /b/-congruent: 40.6%) and slower responses (/p/-congruent: 61.3%; 

/b/-congruent: 41.9%). Other effects are discussed in the Appendix C. 
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Figure 1.6. Mean proportion of /p/-responses in fast and slow responses to ambiguous 
tokens in /p/-congruent (“...to /?ei/” and “the /?ai/”) and /b/-congruent (“...the /?ei/” and 
“to /?ai/”) conditions in Experiment 1.2. Unlike Experiment 1.1, the BIAS effect in 
Experiment 1.2 is as strong in slow responses as in fast responses (see main text). Error 
bars represent standard error. 
 
 1.3.3. Discussion 

The goal of Experiment 1.2 was to examine contextual influences on the 

identification of ambiguous targets using a task designed to elicit phonemic decisions. Of 

particular interest was the time course of such context effects, and especially whether 

these results would differ from previous word identification experiments (van Alphen & 

McQueen, 2001; Tuinman et al, 2014) and from Experiment 1.1, in which it was unclear 

whether subjects were engaging in word or phoneme monitoring strategies. Experiment 

1.2, like Experiment 1.1, showed that syntactic context has a robust effect on subjects’ 

responses (including their fastest responses). However, unlike Experiment 1.1, 

Experiment 1.2 showed that this contextual bias on phoneme identification was as strong 
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in slow responses as it was in fast responses. Van Alphen and McQueen (2001) argue that 

if the fast-arising bias in phoneme responses was the result of lexical feedback to pre-

lexical representations (as hypothesized by interactive models), then “there should have 

been a similar shift (if not a stronger one as more time elapsed with more feedback) in 

slow responses” (p. 1069). Indeed, results of Experiment 1.2 are consistent with these 

predictions and thus support the view that pre-lexical representations are modulated by 

lexical feedback, as hypothesized by interactive models. Additionally, the results of 

Experiment 1.2 suggest that tasks in which word identification decisions are required or 

may be used strategically by participants may not tap pre-lexical representations. 

1.4. General Discussion 

The present work aimed to evaluate the validity of claims that the time course of 

context effects on speech perception is incompatible with interactive models of speech 

perception (cf. van Alphen & McQueen, 2001; Tuinman et al., 2014). According to this 

view, context effects within an interactive system should remain stable or grow over 

time, but they should not become weaker, because biasing feedback from lexical 

representations irreversibly overwrites an initially ambiguous representation of the 

acoustic input. Once pre-lexical representations are altered by top-down modulation, 

there is no recovering the record of the ambiguous signal, so the size of the bias effect 

should not diminish. Crucially, this logic is predicated on the assumption that subjects’ 

responses reflect activation levels of pre-lexical representations, an assumption that 

Experiments 1.1 and 1.2 examined more closely. 

Two key results emerged from Experiments 1.1 and 1.2. Firstly, as already 

discussed, the results of Experiment 1.2 suggest that when an experimental task is 



 
30 

designed to tap into pre-lexical processing, contextual influences on speech perception 

are robust and persistent over time. Secondly, the biasing effects from a preceding 

sentential context arose very rapidly in both experiments. In the present studies, the 

button-press that would represent a contextually congruent response depended on the 

target stimulus itself, so it was impossible for a crossover interaction to emerge unless 

subjects waited to hear the target stimuli. In other words, the fact that subjects’ fast 

responses were biased suggests that the processing of ambiguous speech is influenced by 

the grammatical properties of competing words, that this influence is virtually immediate, 

that this rapid influence is not attributable to pre-planned responses, and that top-down 

expectations rapidly propagate to bias both lexical and pre-lexical representations. As 

such, our data provide strong evidence for immediate top-down effects from sentence 

context effects on speech perception. Taken together, these results suggest that the time 

course of contextual effects on phoneme recognition does not, in fact, challenge the 

interactive modeling framework. Next, we consider the extent to which these results 

actually support interactive models, and how they constrain autonomous models. 

1.4.1 Implications for Interactive Models of Speech Perception 

Despite the fact that subjects responded to the same stimuli in Experiments 1.1 

and 2, the time course of the contextual bias effect differed between experiments, with 

Experiment 1.1’s results matching the pattern obtained by word identification tasks (van 

Alphen & McQueen, 2001; Tuinman et al., 2014). An important question is why 

lexically-driven and phonemically-driven responses would generate different patterns 

with respect to the time course of context effects. Recall that in TRACE, outputs in n-

alternative forced-choice tasks (such as phoneme monitoring/identification or visual 
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world eye-tracking) are generated probabilistically from among a set of alternatives that 

is identified depending on the task and stimuli (cf. Luce, 1959). TRACE’s decision model 

keeps track of a running average of activation levels of the alternatives, which are nodes 

in a single layer of the model (cf. McClelland & Rumelhart, 1981). For instance, in a 

phoneme identification task, two units in the Phoneme layer (e.g., /b/ and /p/) constitute 

the output alternatives that are tracked (McClelland & Elman, 1986; McClelland, 1987), 

while in word recognition or visual world eye-tracking tasks, nodes in the Word layer 

(e.g., bear and pear) are identified as the output alternatives (e.g., Allopenna, Magnuson 

& Tanenhaus, 1998; Dahan, Magnuson & Tanenhaus, 2001; Dahan, Magnuson, 

Tanenhaus & Hogan, 2001; Magnuson, Dixon, Tanenhaus & Aslin, 2007; Magnuson, 

Tanenhaus, Aslin & Dahan, 2003; McMurray, Tanenhaus & Aslin, 2002). Since different 

tasks dictate that outputs reflect activation dynamics in different layers of the model, it is 

not surprising to observe unique patterns of results for word vs. phoneme identification 

tasks. 

Nevertheless, TRACE (or any other model) still must explain why Word-level 

activations become less biased over time even though biased Phoneme-level activations 

persist. This question can only be fully addressed once models of speech perception 

incorporate sentence-level representations (cf. Strand, Simenstad, Cooperman & Rowe, 

2014). However, it seems likely that an interactive model could capture this difference. A 

model with a relatively strong stabilizing force (i.e., decay) at the lexical level or a 

quickly decaying influence of lexical expectation from “supra-lexical” levels of 

representation would predict a transient context effect in word identification responses. 

Notably, Word-level decay is the strongest decay parameter in TRACE (McClelland & 
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Elman, 1986). Meanwhile, as van Alphen and McQueen (2001) suggest, pre-lexical 

representations that are modulated by lexical feedback may not recover from the top-

down biasing influence (or at least may not recover as quickly as the lexical 

representations), leading to more persistent context effects on phoneme identification 

responses (as in Experiment 1.2). 

1.4.2. Implications for Autonomous Models of Speech Perception 

It is less clear to what extent the results of Experiment 1.2 challenge autonomous 

models of speech perception. Van Alphen and McQueen (2001) note that “if...sentential 

context effects are the result of a decision bias, predictions about their time course are 

much less clear” (p. 1059). As they acknowledge, their verbal account (Coltheart, Rastle, 

Perry, Langdon & Ziegler, 2001; Magnuson, Mirman & Harris, 2012; Mirman & Britt, 

2013) of sentential context effects on word recognition could predict many patterns of 

results, including the one their experiments suggest. Nonetheless, the present results do 

challenge one theoretical proposal they offer. In their data, responses in the slowest RT 

range failed to show a significant effect of preceding context. They ultimately interpret 

this as consistent with a model in which context effects on subjects’ decisions are time-

limited such that sentence-level processing can only bias responses while the syntactic 

parse of the sentence remains ambiguous (see also Mattys, Melhorn & White, 2007). 

However, the persistent top-down effects on subjects’ responses in Experiment 1.2 

challenges the view that sentence context has a time-limited effect (see also Bicknell, 

Jaeger & Tanenhaus, 2015; Bicknell, Tanenhaus & Jaeger, 2015; Connine, Blasko & 

Hall, 1991; Szostak & Pitt, 2013). In fact, even when the diminishing bias effect was 

replicated (in Experiment 1.1 and by Tuinman et al, 2014), the slow responses were still 
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significantly biased. Thus, any autonomous model of speech perception must be able to 

account for long-lasting contextual biases on both phoneme and word identification 

responses. 

1.4.3. Predicting Behavior with Computational Models of Speech Perception 

The present work underscores the need for explicit, testable computational models 

bridging speech perception and sentence processing, while also highlighting the 

importance of appropriately interpreting existing models’ predictions. Neither TRACE 

nor Merge makes any predictions about sentential context effects. Indeed, McClelland 

and Elman (1986) conceded this point when they introduced TRACE, explicitly leaving 

the question to future research: “We have not yet included...higher level contextual 

influences in TRACE, though of course we believe they are important” (p. 60). In order 

to understand the mechanisms underlying speech perception in naturalistic environments, 

it is necessary to develop and test models in which spoken sounds/words are 

accompanied by a rich linguistic and non-linguistic context. 

1.5. Conclusion 

Interactive and autonomous models represent two powerful theories, each of 

which are capable of explaining many data regarding speech perception. Despite decades 

of arguments, rejoinders, clarifications, and revisions, they have proven difficult to 

distinguish. Given the persistence of the debate and the considerable power of each 

modeling framework, some have wondered whether any unique predictions exist that 

might settle the question (Cutler et al., 1987; Pitt & Samuel, 1993). The goal of this study 

was to assess whether the time course of context effects on speech perception is 

incompatible with interactive models, as has been proposed. Our results suggest that this 
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claim is unwarranted. Indeed, when an experiment is designed to tap into pre-lexical 

processing dynamics, the persistent influence of top-down lexical feedback can be 

observed. Our findings, therefore, indicate that there is even less evidence against 

interactive models of spoken word recognition than previously thought. On the other 

hand, while the present results provide some constraints for autonomous models, they 

cannot entirely rule out such a framework. Ultimately, it is clear that the lack of overt, 

testable, divergent predictions represents a fundamental barrier to resolving this long-

running theoretical debate. Given this critical gap, we believe that the development of 

well-constrained, explicit computational models must play a central role in future 

research investigating the mechanisms underlying spoken word recognition. 

1.6. Overview of Next Steps 

Unfortunately, as noted earlier, neither TRACE nor Merge is designed to 

explicitly model the role of sentential context in spoken word recognition. In fact, as we 

will discuss in Chapter 2, despite strong evidence illustrating context effects (as seen in 

the experiments reported here in Chapter 1), the influence of sentential context on speech 

perception is poorly characterized in existing psycholinguistic models. In order to address 

this major gap, we now turn to the task of developing a computational model of speech 

perception capable of explaining top-down effects from a word’s sentence context. As we 

will further show in Chapter 3, the model developed in Chapter 2 also provides a 

straightforward, natural account for the enormous variability in the size of top-down 

effects across different subjects, stimuli and experiments – an issue that has been almost 

completely ignored by previous models of speech perception. Finally, as we will discuss 

in Chapters 3 and 4, developing such a model promises to generate novel, testable 
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predictions that can elucidate properties of the cognitive and perceptual processing 

underlying auditory language comprehension in both healthy adults and patients with 

brain damage. 
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Chapter 2 

Bayesian Integration of Acoustic and Sentential Evidence in Speech: 

The BIASES Model of Spoken Word Recognition in Context 

2.1. Introduction 

2.1.1. Brief Introduction 

In order to comprehend spoken language, a listener must ultimately map a 

perceived acoustic waveform onto some meaningful interpretation of the speaker’s 

message. The processing that underlies this complex phenomenon can be thought of as 

consisting of at least three subroutines: pre-lexical speech processing, spoken word 

recognition, and auditory sentence comprehension. While all three of these are, of course, 

critical for arriving at an accurate, contextualized understanding of the meaning behind 

some speech that reaches a listener, spoken word recognition occupies a critical juncture 

between the lower-level perceptual processing of a signal and the higher-level processing 

by which listeners recruit linguistic and world knowledge to construe the meaning of the 

words they identify. Because of the crucial role words play as the gatekeepers of 

meaning, characterizing the computations involved in the recognition of spoken words is 

of critical importance (for recent reviews, see Mattys, 2013; Maguson, Mirman & Myers, 

2013; Tanenhaus, 2007). 

The fundamental computational problem (Marr, 1982) that must be solved in 

order to recognize words in speech is to infer which word (or sequence of words) was 

most likely to have been produced by the speaker. This decoding of the perceived speech 

stream would be trivial if words were consistently produced with a single acoustic form, 

any given acoustic signal corresponded to exactly one word, and perception always took 



 
37 

place under noise-free conditions. However, none of these facts is true of speech 

perception in the real world. Quite to the contrary, the number of ways in which noise, 

ambiguity, and uncertainty can compromise processing is daunting. 

Nonetheless, despite all of the potential barriers to successful mapping of signal to 

meaning, healthy listeners rarely experience difficulties in speech processing. Even when 

speech is intentionally degraded in the laboratory to tax the perceptual system, sounds 

and words are typically perceived with high accuracy (e.g., Luce & Pisoni, 1998; Cutler, 

Weber, Smits & Cooper, 2004). Indeed, listeners often fail to notice when a segment in a 

word is replaced with white noise or a cough (Warren & Obusek, 1971), and, when they 

do, it seldom impedes comprehension. 

What accounts for this robustness in the face of such pervasive degradation? A 

complete understanding of this issue requires, minimally, answering two fundamental 

questions: what cues are available to the listener, and how are these cues leveraged in 

order to overcome the ambiguity inherent in the input. Broadly, investigations of the first 

question – which cues do listeners utilize during speech recognition – have shown that 

listeners integrate both bottom-up (sensory-based) and top-down (knowledge-based) cues 

(for review, see Samuel, 2011). That is, in addition to leveraging bottom-up acoustic cues 

derived from perceptual processing of the speech signal such as voice-onset time and 

formant values, listeners also exploit cues that require higher-level cognitive processing 

of the signal. For instance, listeners are sensitive to whether or not different potential 

interpretations (e.g., goat vs. coat) of some speech input are sensible given the preceding 

sentential context (e.g., The busy farmer hurried to milk the...) (Borsky, Tuller & Shapiro, 

1998). 
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The second question – how the various cues are integrated and come to influence 

speech recognition – is the focus of the present work. This wide-ranging question has 

motivated a host of theoretical and computational models focusing on different aspects of 

speech processing from how multiple distinct bottom-up cues are weighted (e.g., Massaro 

& Oden, 1980; Nearey, 1990, 1997; Oden & Massaro, 1978; Repp, 1982, 1983; Toscano 

& McMurray, 2010) to how multisensory information sources are combined (e.g., Diehl 

& Kluender, 1989; Fowler & Rosenblum, 1991; Kluender, 1994; Massaro, 1987; 

McGurk & MacDonald, 1976; Ostrand, Blumstein & Morgan, 2011; Rosenblum, 2005) 

to what mechanisms give rise to lexical biases on word recognition (Elman & 

McClelland, 1988; McClelland, Mirman & Holt, 2006; McQueen, Norris & Cutler, 2006; 

McQueen, Jesse & Norris, 2009; Norris, McQueen & Cutler, 2000). However, one major 

theoretical gap that remains concerns how top-down information available from a 

sentence context is integrated with bottom-up cues. This gap is especially conspicuous 

given that everyday speech rarely features words produced and perceived in isolation, 

and sentential context has consistently been shown to impact the recognition of spoken 

words (e.g., Borsky et al, 1998; Lieberman, 1963; Warren & Warren, 1970). The present 

work aims to narrow this gap by advancing one approach to modeling the integration of 

top-down and bottom-up cues during speech perception. In particular, we argue that 

viewing speech perception through the lens of Bayesian cue integration provides a 

powerful, principled framework to understand a wide range of behavioral data. To this 

end, we outline the issues addressed in this chapter, which is organized into three parts. 

2.1.2. Overview of Chapter 2 
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First, we address the question of why this gap exists at all. We discuss several 

practical and theoretical bottlenecks associated with representing sentential context and 

modeling the mechanisms by which context might come to influence spoken word 

recognition. 

Second, we argue that these challenges motivate the specification of a 

computational-level (Marr, 1982) model of spoken word recognition capable of explicitly 

integrating bottom-up and top-down information sources. We present a Rational Analysis 

(Anderson, 1990) of spoken word recognition in context and propose that a Bayesian 

modeling approach may offer key insights into the information processing that underlies 

spoken language processing. 

Third, we introduce BIASES (short for Bayesian Integration of Acoustic and 

Sentential Evidence in Speech), a Bayesian model of spoken word recognition in context. 

BIASES is a novel, flexible computational framework for simulating human behavior in 

word recognition tasks and for testing psycholinguistic theories about how bottom-up and 

top-down information sources are represented and integrated by listeners. Adopting a 

model like BIASES involves embracing three basic assumptions: (1) that listeners are 

sensitive to fine-grained acoustic properties of spoken words; (2) that they are also 

sensitive to fine-grained differences in the chances of encountering different words in a 

given sentence context; and (3) that, when identifying spoken words, they integrate these 

information sources with consideration for the relative reliability of each available cue. 

We review the robust empirical evidence that supports these assumptions, and, in turn, 

the Bayesian approach to spoken word recognition. 

2.2. Sentential Context and Connectionist Models of Spoken Word Recognition 
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Existing computational models of spoken word recognition have not directly 

addressed how a word’s processing is influenced by its sentential context. Before 

motivating the present model, it is worth reviewing the evidence under consideration and 

possible explanations for why current models fail to account for this evidence. 

2.2.1. Modulation of Spoken Word Recognition by Sentential Context 

Several decades of research have made it clear that the recognition of a spoken 

word is not independent of its context. Words that are unintelligible when presented in 

isolation can be readily identified in context (Lieberman, 1963; Pickett & Pollack, 1963; 

Hunnicutt, 1985; Fowler & Housum, 1987), and prior exposure to an acoustically clear 

prime sentence improves listeners’ recognition of conceptually related words in a 

subsequent acoustically degraded sentence (Guediche, Reilly & Blumstein, 2014). 

Moreover, in addition to facilitating recognition of speech in noise, a word’s context can 

shape a listener’s interpretation of spoken words that are ambiguous between two or more 

words in their language. For instance, words that have been digitally manipulated to 

replace a critical speech segment with extraneous non-speech acoustic material (such as a 

cough or white noise) are more often recognized as words that are consistent with the 

context in which the word was presented: /*il/, where * represents the digitally 

substituted non-speech sound, may be identified as wheel, heel, peel or meal depending 

on other words appearing in the same sentence (e.g., axle, shoe, orange or table) (Warren 

& Warren, 1970; Warren & Sherman, 1974). 

Furthermore, related evidence shows that such contextual effects are not restricted 

to the restoration phonetic information that is missing altogether. This line of work 

utilizes fine-grained acoustic manipulations of phonetically relevant parameters of natural 
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speech tokens to render the resulting stimuli ambiguous between two possible words. 

When these stimuli are presented in sentences that are consistent with one word or the 

other, they tend to be perceived as the word that is congruent with the context in which it 

is embedded. For example, subjects are more likely to identify a phonetically ambiguous 

stimulus between goat and coat as goat when it follows a sentence like The busy farmer 

hurried to milk the... that when after sentences like The careful tailor stopped to button 

the... (Borsky, Shapiro & Tuller, 1998). Such biases have been widely corroborated, 

whether the manipulated contextual constraints operate at the semantic (Borsky et al, 

1998; Garnes & Bond, 1976; Miller, Green & Schermer, 1984; Connine, 1987; Guediche, 

Salvata & Blumstein, 2013), syntactic (Fox & Blumstein, in press; Tuinman, Mitterrer, & 

Cutler, 2014; van Alphen & McQueen, 2001), morphological (Martin, Monahan & 

Samuel, 2011), or pragmatic level (Rohde & Ettlinger, 2012; Do, 2011). 

With such strong evidence for contextual effects on spoken word recognition, it is 

somewhat surprising that word recognition models have thus far offered no explicit 

account for these data. The treatment of sentential context in most existing spoken word 

recognition models can generally be classified into four categories. First, some models 

ignore the role of sentential context, focusing on other aspects of spoken word 

recognition (e.g., PARSYN: Luce, Goldinger, Auer & Vitevitch, 2000; ARTWORD: 

Grossberg & Myers, 2000; Merge: Norris, McQueen & Cutler, 2000; LAFF: Stevens, 

2002). A second group of models explicitly leave the question to future research (e.g., 

LAFS: Klatt, 1979; TRACE: McClelland & Elman, 1986; MINERVA 2: Goldinger, 

1998; Hintzman, 1986). A third set of models asserts that incorporating sentential context 

would be a “straightforward” extension of the more basic model (e.g., NAM: Luce & 
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Pisoni, 1998; Shortlist: Norris, 1994; Shortlist B: Norris & McQueen, 2008; SpeM: 

Scharenborg, Norris, ten Bosch & McQueen, 2005; see also Norris, McQueen & Cutler, 

2015). Finally, there are some theories about what role sentential context might play in 

speech recognition have been presented (e.g., Logogen: Morton, 1969; Race: Cutler & 

Norris, 1979; Cohort: Marslen-Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978). 

Several members of this set – most notably the Cohort model – were prominent theories 

that guided early research on spoken word recognition, and, although they have been 

abandoned in light of empirical challenges to some of their specific claims, the principles 

they embodied (e.g., graded activation, competition, autonomous vs. interactive model 

architectures) remain influential today. 

However, with respect to the subject of the present work – sentential influences 

on spoken word recognition – this fourth group exemplifies what has probably been the 

most common treatment of the issue. That is, many theories have relied on “verbal 

models” which might explain some aspects of processing that is likely implicated (or, just 

as often, what sorts of processing might be precluded; cf. Shillcock & Bard, 1993; 

Tanenhaus, Leiman & Seidenberg, 1979; Tanenhaus & Lucas, 1987) during sentence-

level speech processing. However, these models have a number of disadvantages, chief 

among them being that they are often incompletely specified. While verbal models are 

critical to theory development and are useful for generating and testing many predictions, 

it is often difficult or impossible to assess a theory’s adequacy or viability if it is not 

mathematically or computationally implemented, and it is even more difficult to compare 

its predictions to another competing theory (see, e.g., Magnuson, Mirman & Harris, 



 
43 

2012). In short, theories and models falling into the third and fourth categories above 

leave much work to be done. 

The lack of a comprehensive model of spoken word recognition in context is 

probably attributable to a number of factors. For one, many difficult and important 

questions can be (and have been) explored without the additional complication of 

modeling what are logically more abstract representations and cognitive functions (e.g., 

the composition of meaning). However, the exclusion of sentence-level information in 

existing models of speech perception can also be traced to major challenges presented by 

the predominant modeling approach to examining higher-level influences on word 

recognition. 

2.2.2. Challenges in Modeling Context Effects on Spoken Word Recognition 

Many of the most influential models of spoken word recognition, including 

TRACE (McClelland & Elman, 1986), Shortlist (Norris, 1994), and Merge (Norris, 

McQueen & Cutler, 2000), are based on interactive activation networks (McClelland & 

Rumelhart, 1981; Rumelhart & McClelland, 1981, 1982). In such models, cognitive 

representations are connected to one another in a network, with each representation 

characterized by some amount of activation. Activation propagates through the network 

as a function of the connections between representations and the sensory input presented 

to the network. In localist connectionist models of spoken word recognition, each 

representation is designated by a node that stands for a linguistically-relevant unit (e.g., a 

word or a phoneme), and these nodes are organized into layers (cf. McClelland & 

Rumelhart, 1986; Page, 2000). The nodes within a given layer represent mutually 

exclusive hypotheses (cf. Smolensky, 1986) about which linguistic units might be 
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(underlyingly) present within a given speech signal. For instance, the words goat and 

coat would be represented as unique nodes in the Word layer of a model because a 

spoken word may be an exemplar of goat or coat, but not both. Although the exact details 

of how units are connected differ from model to model, nodes within a layer are typically 

connected via inhibitory connections, while mutually consistent linguistic units (e.g., a 

word-initial /g/ in the Phoneme layer and goat in the Word layer) would be connected via 

excitatory connections. Critically, though, if some node A is connected to some other 

node B via an excitatory connection, then when node A increases in activation, node B 

will also tend to increase in activation. On the other hand, if the connection from node A 

to node B is inhibitory, then when node A increases in activation, node B will tend to 

decrease in activation (for a recent review of interactive activation models in speech 

perception, see McClelland, Mirman, Bolger & Khaitan, 2014). 

2.2.2.1. Challenges of Modeling Context Effects: Representing Context 

Given this modeling framework, it is not immediately clear how one should 

incorporate sentential context. Perhaps the most obvious question is: how should 

sentence-level information be represented? In order to capture semantic context effects 

(e.g., more GOAT responses after sentences about milking than buttoning), semantic 

relationships among words must somehow be incorporated into the model. This might be 

made possible by constructing a layer of semantic features that has excitatory connections 

to some nodes in the Word layer based on the words’ meanings (Chen & Mirman, 2012; 

Cree, McRae, McNorgan, 1999; Rogers & McClelland, 2004). Alternatively, it might be 

possible to ignore semantic features altogether and, instead, connect word units such that 

words can excite other related words based on semantic associativity norms (Deerwester, 
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Dumais, Fornas, Landauer & Harshman, 1990; Dumais, 2004; Landauer & Dumais, 

1997) or other measures (Fellbaum, 1998; Miller, 1995; Miller, Beckwith, Fellbaum, 

Gross & Miller, 1990; Miller & Fellbaum, 1991). However, it is not clear which of these 

possibilities (or what other solution) is more consistent with the organization of listeners’ 

semantic knowledge (cf. Andrews, Vigliocco & Vinson, 2009; De Deyne & Storms, 

2008; Riordan & Jones, 2011; Steyvers & Tenenbaum, 2005), nor is it clear from existing 

data which model would best explain context effects in the domain of word recognition. 

Moreover, while some such model enhancement might be able to capture semantic 

context effects, explaining syntactic and pragmatic context effects would require the 

addition of more connections and/or layers (cf. McClelland, St. John & Tarban, 1989; 

Recchia, Sahlgren, Kanerva & Jones, 2015; Rohde, 2002; St. John & McClelland, 1990; 

Strand, Simenstad, Cooperman & Rowe, 2014). 

2.2.2.2. Challenges of Modeling Context Effects: Activation Dynamics 

Even if this the issue of representation could be solved, it is not straightforward to 

merely add more connections to the architecture of an existing activation-based model 

because it is not clear how contextual information should come to influence words’ 

activation levels. Adopting the same activation dynamics assumptions used in existing 

models, the effect of sentential context might be excitatory (for words that are supported 

by the context). On the other hand, the effects could be implemented via inhibitory 

connections, essentially ruling out words that are not supported by the context (Marslen-

Wilson & Tyler, 1980; Marslen-Wilson & Welsh, 1978; for a similar approach in spoken 

word production, see Dell, Oppenheim, & Kittredge, 2008). Alternatively, rather than 

directly altering words’ activation levels, sentential context might induce adjustments to 
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words’ propagation threshold (a parameter governing the amount of activation required 

before a node’s activation begins to influence other nodes in the network) or their 

activation gain (a parameter governing how easily words become more activated). 

There is no a priori reason to believe that one of these mechanisms is more likely 

than any other, so additional assumptions and free parameters are needed. Furthermore, 

what works for modeling semantic context effects, where contextual cues (e.g., milked) 

tend to support specific words (e.g., goat), may not be able to capture syntactic context 

effects, where contextual cues (e.g., the) tend to support categories of words (e.g., nouns), 

but not specific words (see Fox & Blumstein, in press). 

2.2.2.3. Challenges of Modeling Context Effects: Representing Time 

A third issue that makes it difficult to model sentential influences on word 

recognition in connectionist models arises from the way activation dynamics transpire 

over time as the speech signal unfolds. Recall that nodes in the same layer are generally 

considered to be mutually inhibitory: when more than one word is partially activated, the 

most activated representation(s) tends to crowd out other active nodes (Thomas & 

McClelland, 2008). This architectural feature is almost universally true of the Word 

layers of localist spoken word recognition models (Gaskell, 2007), as it allows activation-

based models to account for competition among multiple lexical candidates during 

recognition (Allopenna, Magnuson & Tanenhaus, 1998; Andruski, Burton & Blumstein, 

1994; Frauenfelder & Floccia, 1998; Gaskell & Marslen-Wilson, 1999, 2002; Magnuson, 

Dixon, Tanenhaus & Aslin, 2007; McMurray, Tanenhaus & Aslin, 2002; McMurray, 

Tanenhaus, Aslin & Spivey, 2003; McMurray, Tanenhaus, Aslin, Spivey & Subik, 2008; 

McQueen, Norris & Cutler, 1994; Norris, McQueen & Cutler, 1995; Righi, Blumstein, 
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Mertus & Worden, 2009; Utman, Blumstein & Burton, 2000; Vitevitch & Luce, 1998, 

1999). 

However, this crucial architectural feature becomes problematic when the model 

is scaled up in order to account for sentential context effects, where multiple words 

should become activated in sequence. In the Merge model (Norris et al, 2000), for 

instance, activation of a lexical representation at one point in time will tend to suppress 

activation levels of other words at future points in time. Even if segmentation of the 

speech signal into words is taken for granted, it is clear that adapting Merge to account 

for sentential context effects would depend on how context is represented and how it 

comes to influence words’ activation levels. 

TRACE (McClelland & Elman, 1986), on the other hand, deals with time in a 

very different way, replicating the entire network for each time slice, so the inhibitory 

word-word connections only act on words that begin at the same point in time. From its 

inception, the implausibility of this aspect of TRACE’s architecture has been widely 

acknowledged by the model’s proponents and opponents alike (McClelland, Mirman & 

Holt, 2006; Norris, 1994) because of the enormous number of nodes required to model 

continuous speech. Therefore, modeling context effects by adding additional connections 

between associated words at different time-points or adding additional layers replicated 

for every time-point along with the rest of TRACE, would only exacerbate this problem. 

Meanwhile, Shortlist’s (Norris, 1994) representation of time is based on time-

delayed recurrent neural networks (Elman 1990; Norris, 1988, 1990, 1993), which 

occupy a middle ground between the drawbacks of Merge and TRACE. Still, Norris’ 

(1994) brief discussion of how Shortlist might be adapted in order to account for the 
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various sentential context effects observed in the literature does not directly address 

either the representation of context or how the dynamic modulation of activation in the 

time-delayed network would function. 

2.2.2.4. Context Effects Without Connectionist Models 

While all of these issues stem from important questions about spoken word 

recognition, they also pose significant challenges that even the most successful existing 

models have, so far, not addressed. Ultimately, however, these hurdles arise directly from 

the first choice made at the inception of each model: the choice to adopt a connectionist 

framework. Existing models were designed to address the architecture of a system 

supporting isolated word recognition, and adapting these architectures to solve a distinct 

computational problem – recognizing spoken words within the rich context of natural 

language – is a limiting approach when it comes to modeling context effects. As an 

alternative, it is possible to characterize the information processing architecture that must 

underlie any explanation of sentence-level influences on the recognition of spoken words, 

while acknowledging that there might be many possible architectures (representational 

systems, activation/dynamical assumptions, and implementations of time-varying input 

and processing) that could achieve the necessary computations (Marr, 1982). In the 

present work, we take this alternate path, analyzing the computational problem associated 

with word recognition in context from the beginning. 

2.3. A Computational-Level Analysis of Spoken Word Recognition 

A useful starting point for a computational analysis of spoken word recognition is 

with a rational analysis (Anderson, 1990), wherein a cognitive system is considered with 

respect to the system’s goals, the environment in which the system must operate, and the 
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computational limitations of the system (Anderson, 1991). Anderson’s (1990) Principle 

of Rationality presumes that a cognitive system is optimized with respect to these factors, 

so, to the extent that some data do not fit the rational model’s predictions, these 

discrepancies will suggest that the modeler’s original assumptions about the system’s 

goals, environment, or limitations were inaccurate. These inconsistent data, in turn, guide 

the updating of a rational model’s initial assumptions. 

2.3.1. Bayesian Models of Spoken Word Recognition 

Recent years have seen a notable rise in the application of rational analysis to 

questions in speech perception. Feldman, Griffiths and Morgan (2009) presented a 

rational analysis of speech sound perception and categorization, showing that the 

listeners’ discrimination and perceptual classification of vowel tokens could be explained 

by assuming their behavior reflected optimal (Bayesian) perceptual inference under 

uncertainty. In the same vein, Shortlist B (Norris & McQueen, 2008) exemplifies the 

rational analysis approach to spoken word recognition, accounting for several classic 

effects in the psycholinguistic literature without appealing to the notion of activation at 

all. Although their details differ, and although only the latter model focuses on word 

recognition specifically, both models follow the same basic logic. Similarly, the present 

model of spoken word recognition in context also follows this logic, so we now turn to an 

outline of the foundational principles these models share. 

Any rational analysis of a cognitive system must begin by identifying the goal of 

the system. Following Norris and McQueen (2008), and as suggested at the outset of this 

chapter, we take the purpose of the speech recognition system to be the recovery of the 

word (or words) produced by the speaker. For the purpose of exposition, we limit the 
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present discussion to a special case wherein the listener’s goal is to infer the most likely 

single word given the perceived speech signal. 

How would a rational system achieve this goal? If there is only one word that 

could possibly have produced the perceived signal, then the optimal decision is obvious: 

if all other words have been ruled out, then the signal must be an exemplar of the only 

remaining option (Doyle, 1890). However, since such certainty is often elusive when 

recognizing words in the real world, how should a rational system select the most 

probable word given incomplete information? 

Under this view, spoken word recognition amounts to a specific case of a more 

general problem: inference under perceptual uncertainty. All such computational 

problems share the same mathematically optimal solution, which is defined by the ideal 

observer framework (Geisler, 2003; Geisler & Kersten, 2002). An ideal observer is one 

that always makes the best possible guess when identifying the likely source of some 

observed data, and its behavior is given by Bayes’ rule (Knill, Kersten & Yuille, 1996). 

According to Bayes’ rule (Equation 2.1), for any exhaustive set of mutually exclusive 

hypotheses H, the probability that any given hypothesis hi in H is true, given some 

observed data d, is given by: 

Equation 2.1 

𝑝 ℎ! 𝑑 =
𝑝 𝑑 ℎ! 𝑝(ℎ!)
𝑝 𝑑 ℎ! 𝑝(ℎ!)!!∈!

 

Because the denominator of the right side of Bayes’ rule is constant over all hj in H, 

Bayes’ rule is often stated in its proportional form (Equation 2.2): 

Equation 2.2 

𝑝 ℎ! 𝑑 ∝ 𝑝 𝑑 ℎ! 𝑝(ℎ!) 
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The key principle embodied by Bayes’ rule is that, having observed d, the so-

called posterior probability of a given alternative, 𝑝 ℎ! 𝑑 , depends on two general 

classes of information: how representative of that alternative d is, and on how probable 

the alternative (hi) was in the first place. These two pieces of information are referred to, 

respectively, as an alternative’s likelihood, 𝑝 𝑑 ℎ! , and its prior probability, 𝑝(ℎ!). An 

ideal observer integrates these two sources of information by computing the posterior 

probability for each alternative in H, and ultimately selecting the alternative with the 

largest posterior probability. 

In the domain of spoken word recognition, a hypothesis is a word wi that the 

speaker might have produced, so the hypothesis space is an entire vocabulary of size Nw, 

and the observed data is the acoustic signal A perceived by the listener. Thus, an ideal 

observer model of spoken word recognition is given in Equation 2.3’s restatement of 

Bayes’ rule: 

Equation 2.3 

𝑝 𝑤! 𝐴 =
𝑝 𝐴 𝑤! 𝑝(𝑤!)
𝑝 𝐴 𝑤! 𝑝(𝑤!)

!!
!!!

 

2.3.2. Prior Expectations in Spoken Word Recognition: Lexical Frequency 

Equation 2.3 underlies the Shortlist B model presented by Norris and McQueen 

(2008). One of the most significant contributions of Shortlist B was a computational 

account of word frequency effects on spoken word recognition, a category of effects that 

ranks among the most robust findings throughout the psycholinguistic literature (e.g., 

Connine, Mullennix, Shernoff & Yellen, 1990; Dahan, Magnuson & Tanenhaus, 2001; 

Howes, 1954; Luce, 1986; Marslen-Wilson, 1987; Pollack, Rubenstein & Decker, 1960; 

Savin, 1963; Taft & Hambly, 1986). Following Norris’ (2006) Bayesian Reader model of 
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visual word recognition, Shortlist B adopts each word’s relative frequency as an estimate 

of its prior probability 𝑝(𝑤!). Although this innovation is theoretically straightforward, it 

allowed Shortlist B to account for several classic effects, such as improved accuracy 

when subjects identify frequent words in noise compared to less frequent words (Luce & 

Pisoni, 1998). 

Two observations about the role of the prior in a Bayesian model bear noting. 

First, a Bayesian spoken word recognizer will never “hallucinate” (cf. Norris et al, 2000) 

a word that bears no resemblance to the acoustic signal, no matter how frequent it may 

be. This follows from the fact that words that are entirely incompatible with some 

perceived signal are realized in the model with a likelihood 𝑝 𝐴 𝑤! = 0, and this will 

also entail that the posterior 𝑝 𝑤! 𝐴 = 0. In the same vein, if no other words are 

consistent with a given acoustic signal, then even the rarest words can be clearly 

perceived (Doyle, 1890). 

Second, even though a word’s estimated frequency never changes in Shortlist B, 

the relative influence of the prior on subjects’ behavior (as modeled by the posterior) will 

not be the same for all possible acoustic signals. Rather, the prior’s influence on the 

posterior will be largest when the likelihood is most uncertain – that is, when there are 

many possible words that are somewhat consistent with the input. In contrast, when 

perceptual uncertainty is low, such that the likelihood is peaked over one or a small 

number of words, the same prior will be less influential on the posterior. As Norris and 

McQueen (2008) point out, this second observation matches findings of an interaction 

between word frequency and stimulus quality in word recognition accuracy data: the 
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more degraded a stimulus is by noise, the larger the observed advantage for frequent 

words (Luce & Pisoni, 1998). 

It is clear that Shortlist B, and the Bayesian framework more generally, offers 

straightforward explanations for a broad range of phenomena spanning concepts as basic 

as lexical frequency, neighborhood density and lexical competition, perceptual 

confusability, and lexical influences on speech segmentation and word recognition. 

However, it is just as important to observe that these effects follow automatically from 

the basic principles that are mathematically required by a Bayesian model. As Norris and 

McQueen (2008) suggest, for many of the effects examined, their model could not be 

made to predict anything but the established finding and still be called “Bayesian.” This 

stands in contrast to activation-based models of spoken word recognition, which require 

many architectural and dynamical assumptions and whose performance depend heavily 

on exact parameter settings within such models (Pitt, Kim, Navarro & Myung, 2006; see 

Norris, 2006 for discussion). That such a well-constrained model achieves such broad 

empirical coverage offers strong support for the notion that spoken word recognition 

might reflect optimal inference in the face of uncertain input. 

2.3.3. Prior Expectations in Spoken Word Recognition: Sentential Context 

Despite Shortlist B’s successes, the rational analysis approach to computational 

modeling stresses the importance of revising a model’s assumptions when a model cannot 

account for certain data. One type of data that is not accounted for by Shortlist B is the 

influence of sentential context on spoken word recognition. Indeed, the model assumes 

that the probability of each word in a sequence is independent of any other (non-
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overlapping) words in a multi-word speech signal. Clearly, this assumption is not 

warranted. 

In acknowledging this fact, Shortlist B’s creators suggest how a more complete 

Bayesian model might approach this issue: “In all of the simulations reported here, we 

assume that [a word’s prior probability] can be approximated by the word’s frequency of 

occurrence in the language. However, [the word’s prior] will also be influenced by 

factors outside the scope of the present model, such as semantic or syntactic context” 

(Norris & McQueen, 2008, p. 362). Since words do not occur randomly in language, an 

optimal listener’s prior expectation over which words are likely should be highly context-

dependent. Just as a model assuming that all words are equally likely fails to explain 

effects of word frequency, a model that assumes that some word is equally likely to occur 

in every context will necessarily fail to explain effects of sentential context. 

The main goal of the present work is to relax the assumption of a context-

independent prior. To do so, we begin with the basic approach of Norris and McQueen 

(2008), but – in the tradition of rational analysis – we update their assumptions in order to 

investigate whether behavioral patterns of context effects on spoken word recognition can 

also be explained by an ideal observer model. We also diverge from some other aspects 

of Shortlist B, most notably by adopting a model of words’ likelihood functions that 

explicitly takes into account acoustic cues in the speech signal (see also Clayards, 

Tanenhaus, Aslin & Jacobs, 2008; Feldman et al, 2009; Feldman et al, 2013). This 

approach emphasizes the power of the Bayesian framework to explain lawful, fine-

grained variability in how cues as disparate as sentential context and acoustic input 

interact during spoken word recognition. 
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2.4. BIASES: Bayesian Integration of Acoustic and Sentential Evidence in Speech 

As already discussed, Bayes’ rule describes the optimal way of combining two 

information sources – prior knowledge about which words a listener is likely to 

encounter, incorporated into the prior term 𝑝(𝑊), and acoustic data perceived by a 

listener, incorporated into the likelihood term 𝑝 𝐴 𝑊 .2 However, it is also useful to 

invoke another common interpretation of Bayes’ rule that is particularly applicable to 

modeling the effects of preceding context on spoken word recognition. As suggested by 

the standard nomenclature of priors and posteriors, Bayes’ rule is often presented as an 

equation describing optimal belief updating. Put simply, if 𝑝(𝑊) indexes a listener’s set 

of beliefs about how likely each possible word is prior to observing the relevant data (A), 

then 𝑝 𝑊 𝐴  represents a listener’s updated set of beliefs about the identity of the 

unknown word after integrating the new perceptual data, A. 

Since the posterior, 𝑝 𝑊 𝐴 , depends on the prior, 𝑝(𝑊), and the likelihood, 

𝑝 𝐴 𝑊 , it is intuitive that the likelihood drives the updating of a listener’s beliefs. For 

instance, when the newly observed A is highly unlikely to be a token of a particular word 

(wj), then the prior belief for wj is revised downwards, rendering the posterior belief 

𝑝 𝑤! 𝐴  smaller than the prior expectation 𝑝(𝑤!) . On the other hand, the more 

representative of wj the observed signal A is, the more 𝑝(𝑤!) will be revised upwards, 

causing 𝑝 𝑤! 𝐴  to gain support relative to other words. Within incremental sentence 

processing theories (Hale, 2001; Levy, 2008; Marslen-Wilson, 1973, 1975), this updating 

                                                
2 By convention, we use capital italicized letters to refer to a random variable. For 
instance, the prior distribution 𝑝(𝑊) defines the prior probability of each possible state of 
the random variable W. That is, if there are Nw words that a listener could hear, then 
𝑝(𝑊) is a vector with Nw entries, such that each word wj has some prior probability 
0 ≤ 𝑝 𝑤! ≤ 1 and the sum 𝑝(𝑤!)

!!
!!! = 1. 
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process can be thought of as iterative, such that, after integrating each new piece of 

information or at each new time-step, the newly computed posterior becomes the updated 

prior for the next step in time. 

Our model adopts this perspective in order to incorporate the influence of a 

preceding sentence context, C, on the recognition of a spoken word. Rather than 

assuming a static prior across all contexts, 𝑝(𝑊), we assume that listeners make use of a 

conditional prior, 𝑝(𝑊|𝐶), such that their prior lexical expectations depend on the 

context up to that point (e.g., Altmann & Kamide, 1999; Eberhard, Spivey-Knowlton, 

Sedivy & Tanenhaus, 1995; Kamide, Altmann & Haywood, 2003). Upon observing some 

subsequent speech, A, an ideal speech recognizer should update its contextually-

conditioned prior beliefs by evaluating the probability that A was a token of each possible 

word. Given the simplifying assumption that listeners expect words to be pronounced 

with roughly the same acoustic form irrespective of which words preceded it (an 

assumption we address in greater depth in Chapter 4), the probability that A was a token 

of word wi is given by Bayes’ rule (Equation 2.4): 

Equation 2.4 

𝑝 𝑤! 𝐶,𝐴 =
𝑝(𝑤!|𝐶)𝑝 𝐴 𝑤!
𝑝(𝑤!|𝐶)𝑝 𝐴 𝑤!

!!
!!!

 

The model presented in Equation 2.4 serves as the basis for the remainder of this 

chapter. It represents a way of identifying which words were probably present in an 

imperfectly perceived speech signal by combining information from the preceding 

sentential context with subsequent acoustic cues. With this function in mind we will refer 

to this model as the BIASES model, short for Bayesian Integration of Acoustic and 

Sentential Evidence in Speech. As we will show, the model’s name also foreshadows the 
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type of effect that it predicts should result when sentential evidence is brought to bear 

during word recognition. Next, we detail our implementations of the two fundamental 

components of BIASES: the context-dependent conditional prior, 𝑝(𝑊|𝐶) , and the 

likelihood function that relates words to their acoustic forms, 𝑝 𝐴 𝑊 . 

2.4.1. Conditional Prior: A Model of Listeners’ Contextual Knowledge 

To define a conditional prior 𝑝(𝑊|𝐶) for BIASES, every lexical candidate wi 

must be assigned a probability of occurrence following each possible context. A 

conditional prior has two basic properties. First, in general, for a given context, some 

words will be more expected than others. This property is what makes any prior 

(conditional or not) informative: if all words are equally likely in some context, then the 

posterior is proportional to the likelihood alone. This is clearly not the case in human 

language, and listeners do clearly do not treat all words as being equally likely in a 

particular sentence context. Second, and in contrast to previous work (e.g., Norris & 

McQueen, 2008), different contexts will support the same word to different extents. It is 

this property that makes a prior conditional: 𝑝(𝑤!|𝐶 = 𝑐!) need not equal 𝑝(𝑤!|𝐶 = 𝑐!). 

As already discussed, whereas Shortlist B employed a context-independent lexical 

frequency prior, a key goal of BIASES is to incorporate a conditional prior that more 

accurately assumes listeners’ access to context-dependent lexical expectations. 

To do so in a computational model like BIASES, we must quantify the level of 

support that a given context provides for a word. It is undoubtedly the case that many 

factors collude to create a listener’s expectation for any given word. A complete model of 

how context influences the probability of subsequent words would certainly depend on 

semantic (e.g., Borsky et al, 1998) and syntactic (e.g., Fox & Blumstein, in press) 
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information contained within the preceding linguistic context, but it would also depend 

on many other information sources that are available to a listener. For instance, a full 

model would need to address how listeners make pragmatic inferences about the 

implicatures in prior linguistic context (e.g., Rohde & Ettlinger, 2012), how listeners 

might employ speaker-specific and situation-specific knowledge about likely words or 

grammatical structures (e.g., Fine & Jaeger, 2013; Fine, Jaeger, Farmer & Qian, 2013; 

Kamide, 2012; Horton, 2007; van Berkum, van den Brink, Tesink, Kos & Hagoort, 

2008), and how listeners treat knowledge about which words or concepts have recently 

been uttered in a discourse or are in common ground (e.g., Horton & Keysar, 1996), to 

name just a few. Quantifying the influence of such factors on subjects’ lexical 

expectations is clearly not trivial, and doing is beyond the scope of the current modeling 

effort. Instead, we focus on an admittedly limited model of context in order to illustrate 

the explanatory power of the BIASES model, and the Bayesian framework more 

generally. 

2.4.1.1. Conditional Expectations from n-gram Language Models 

Most modern automatic speech recognition systems operate under the same 

fundamental hypothesis embraced by BIASES: that a word’s context-independent 

frequency can capture only a fraction of the prior knowledge available during word 

recognition. The solution implemented in these models incorporates local semantic and 

syntactic context via language models (Jelinek, 1990, 1997). Put simply, an n-gram 

language model is a conditional probability distribution over lexical candidates given the 

n-1 immediately preceding words. As n increases, the probability distribution over 

possible words is conditioned on more information, and, consequently, the conditional 
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expectations for different lexical candidates become more fine-grained. For instance, a 

bigram language model 𝑝(𝑊!|𝑊!!!) estimates a word Wt’s probability based on only the 

previous word, Wt-1, while a trigram language model 𝑝(𝑊!|[𝑊!!!,𝑊!!!]) estimates Wt’s 

probability given that [Wt-2,Wt-1] preceded Wt.3 Intuitively, trigram language models make 

more specific predictions than bigram language models: fewer words are likely to follow 

...hated to... than just to...  

On the other hand, a unigram language model (n = 1) is simply a formal 

definition of a lexical frequency distribution. A word’s frequency 𝑝(𝑤!) can be computed 

by collapsing over all Nc possible preceding contexts via summation (referred to as 

marginalization; Equation 2.5). 

Equation 2.5 

𝑝 𝑤! = 𝑝 𝑤! 𝐶 = 𝑐!

!!

!!!

= 𝑝 𝑊! = 𝑤! 𝑊!!! = 𝑤!

!!

!!!

 

The observation presented in Equation 2.5 provides a mathematical justification for 

Norris and McQueen’s (2008) original claim that (as they reiterated later) “frequency and 

context have the same explanation in a Bayesian model” (Norris, McQueen & Cutler, 

2015, p. 4). 

2.4.1.2. Consequences of Adopting an n-gram Language Model Prior 

BIASES implements a language model as its conditional prior 𝑝(𝑊|𝐶) for spoken 

word recognition. This decision has some obvious drawbacks, but also some important 

benefits. Under the strictest interpretation, the assumption entailed by employing an n-

                                                
3  Note that trigram language models are order-sensitive. That is, in general, 
𝑝(𝑊!|[𝑊!!!,𝑊!!!]) ≠ 𝑝(𝑊!|[𝑊!!!,𝑊!!!]); intuitively, a listener’s expectation for the 
word pay is not the same after hearing: wanted to and to wanted. 
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gram language model in this way is that all relevant information in C can be summarized 

by knowing the identities of the n-1 words preceding the target word. Clearly, as 

discussed earlier, such a model is severely impoverished compared to listeners’ actual 

contextual knowledge. That said, even a bigram language model constitutes far richer 

prior than Shortlist B’s unigram language model (Norris & McQueen, 2008), which 

cannot account for any contextual effects on word recognition. 

Language models might be considered among the simplest possible models 

capable of predicting context-specific modulation of word recognition. For example, a 

bigram language model would predict that, if wi tends to follow wt-1 more often than wj 

follows wt-1, listeners should tend to identify an acoustic signal A that is perfectly 

ambiguous between wi and wj as wi when the word preceding it was wt-1. To the extent 

that such a model might account for some aspects of human behavior, it would suggest 

some commonalities between the detailed, linguistically relevant information contained 

within a listener’s contextual knowledge and the transition probabilities between 

sequential words. 

Note that it does not follow that listeners’ models of context necessarily represent 

these word-by-word transition probabilities explicitly (see Levy, 2008 for discussion). 

This is another benefit of adopting a language model as BIASES’s model of context for 

the purposes of the present computational-level analysis. The choice allows us to remain 

theory-neutral with respect to the actual representation of context used by listeners. We 

regard a language model as a convenient, useful tool to summarize some fraction of the 

information contained within a sentential context. As naïve as language models are, 

evidence suggests that they predict a number of measures in language processing, such as 
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reading times and eye fixations during reading (e.g., Hale, 2001, 2006; Levy, 2008; 

McDonald & Shillcock, 2003a, 2003b). By implementing a language model as the 

conditional prior in BIASES, we aim to test whether the predictive power of such models 

observed in psycholinguistic studies of reading will transfer to the domain of spoken 

language processing. 

Of course, not all contextual influences on speech recognition will be explained 

by a standard language model. As just one example, Rohde and Ettlinger (2012) show 

that listeners’ ratings of a phonetically ambiguous pronoun between he and she are biased 

towards the presumed gender of a referent who was the most likely “causer” of some 

event (cf. Garvey & Caramazza, 1974; McDonald & MacWhinney, 1995; Koornneef & 

van Berkum, 2006). Subjects preferentially rated phonetically ambiguous pronouns as he 

in sentences like Noah frightened Claire because [?e] drove 100 miles per hour, but as 

she if the referents’ names/genders were reversed. Such an effect would be difficult to 

explain with a basic language model, because the result appears to rely on 

inferential/causal reasoning above and beyond words’ co-locational probabilities. Thus, 

the decision to use a language model as BIASES’s model of context will prevent us from 

capturing effects like this one, but it is not implausible that Bayesian models of pragmatic 

reasoning (Bergen, Levy & Goodman, 2014; Frank & Goodman, 2012; Franke, 2009; 

Goodman & Stuhlmuller, 2013; Jager, 2012) could be incorporated into a Bayesian 

model of speech perception like BIASES. 

While some sentential context effects are unlikely to find explanation in any sort 

of standard language model, the ability to account for other findings will depend on the 

precise specifications adopted for a language model. Indeed, most previously reported 
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semantic context effects could not be explained by a bigram language model. For 

example, the same word (the) immediately precedes the phonetically ambiguous target 

word in every stimulus sentence in Borsky and colleagues’ (1998) study showing that 

subjects made more GOAT responses in goat-biased than in coat-biased sentences. A 

trigram language model, on the other hand, would likely explain at least some of the 

differences between goat-biased (...milk the...) and coat-biased (...button the...) sentences, 

but it would also predict that the entire semantic context effect observed in the study is 

driven by the word that appeared two words before the target, irrespective of the rest of 

the context (e.g., whether the sentence featured a farmer or a tailor as its subject). 

Whether or not this is true, what we hope to have made clear from the preceding 

examples is that the ability for a prior based on a language model to account for sentential 

influences on word recognition will depend on the sort of language model used and the 

sort of context effect examined. 

A final observation about the consequences of selecting a language model as a 

prior regards a practical challenge it poses. Although more complex language models 

produce more fine-grained predictions, specificity of predictions trades off with sparsity 

of data (e.g., Katz, 1987). That is, as n increases, it becomes more difficult to estimate the 

probabilities associated with an n-gram language model because the number of possible 

contexts grows exponentially: if there are 10 words in a language, then there are 10 

possible contexts in a bigram language model and 102 = 100 two-word sequences for 

which to estimate probabilities. For a trigram language model in the same ten-word 

language, one must estimate all 103 = 1,000 probabilities (each word in each of the 102 = 

100 possible two-word contexts). While most “possible” three-word sequences may 
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never occur in language, some sequences that are rare but do occasionally occur in 

language may never occur in a given corpus from which the language model is being 

estimated. If the corpus were to be taken as a perfectly reliable model of language, then 

those sequences will erroneously be assigned a prior probability of 0, making it 

impossible for a Bayesian word recognizer to observe that sequence in the future. 

Although smoothing methods can be applied to ensure that all word sequences 

have some small but nonzero prior probability (Church & Gale, 1991; Dagan, Marcus & 

Markovitch, 1993; Good, 1953; Goodman, 2001; Katz, 1987; Jelinek & Mercer, 1985), 

these methods will also tend to reduce the model’s ability to predict context-specific 

variability. When there is little information that might differentiate between the prior 

probabilities of two similarly rare sequences, they will tend to be treated as equally likely. 

Thus, although a bigram language model will lack a great deal of information that 

listeners will have access to, it will also provide a reliably-estimated language model 

capable of capturing context-dependent response patterns when those effects tend to be 

driven by the word immediately preceding the target that subjects are tasked with 

recognizing. 

2.4.1.3. BIASES’ Conditional Prior: A Bigram Language Model 

With these factors in mind, and acknowledging the various limitations associated 

with language models, we adopted a bigram language model as the conditional prior for 

BIASES. As such, only the immediately preceding word influences the prior probability 

of the subsequent word. Furthermore, to examine how well BIASES could fit human 

behavior, the experiments we conducted utilized stimuli designed to elicit sentential 

context effects on word recognition that were driven by the immediately preceding word 
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(Fox & Blumstein, in press). In particular, the simulations and experiments reported here 

evaluated the influence of different function words (to vs. the) on the identification of the 

next word in a sentence. Fox and Blumstein showed that subjects were more likely to 

recognize a phonetically ambiguous word between bay and pay as pay when it was 

preceded by a sentence like Brett hated to... than when it was preceded by a sentence like 

Valerie hated the... According to BIASES, the basic explanation for this effect is that the 

two critical function word contexts (to vs. the) differentially influence a listener’s prior 

expectations for immediately subsequent target words (bay vs. pay). 

As we will show, despite this simplistic model of listeners’ contextual knowledge, 

BIASES does remarkably well at predicting subjects’ behavioral responses, including the 

overall pattern, patterns of subject-by-subject variability, and several other fine-grained 

quantitative predictions. We also conduct another set of simulations to examine the extent 

to which a richer model of context might account for additional, even more fine-grained 

context-specific patterns in our empirical results. 

2.4.1.4. Additional Constraints on Prior Expectations: Forced-Choice 

Our simulations invoke one other piece of contextual information that we assume 

subjects exploit. Since subjects receive a set of instructions before performing the 

experimental task in the laboratory, these instructions further constrain the conditional 

prior model of context that listeners use while recognizing words in the study. 

Specifically, we assume that, once instructed to identify the target word as either bay or 

pay, subjects assign all other words a prior probability of 0. This same assumption is 

almost universally implicit in other models of spoken word recognition. For instance, in 

TRACE (McClelland & Elman, 1986), responses during multiple-alternative forced-
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choice tasks (such as phoneme or word identification experiments) are generated 

probabilistically from among a set of alternatives that is identified based on the task and 

stimuli (cf. Luce, 1959; McClelland & Rumelhart, 1981). By reading activation levels out 

from only a few “clamped” response alternatives, TRACE’s decision model has the effect 

of nullifying any prior probability of a response from any other words outside of the 

predefined set. Similarly, the output nodes of other models (e.g., Shortlist: Norris, 1994; 

Merge: Norris et al, 2000; Shortlist B: Norris & McQueen, 2008) are pre-specified “on-

the-fly” based on task demands. Although they are not strictly driven by theoretically 

interesting assumptions about human cognition, it makes sense that computational 

models of human behavior should account for such exogenous factors, and this is 

especially true for ideal observer models. As Norris (2006) puts it, which model will 

produce optimal behavioral responses “is critically dependent on the precise specification 

of the task or goal” (p. 330). 

With this additional constraint, the summation over all possible words in the 

denominator of Equation 2.4 can be simplified to the sum of two terms: one proportional 

to the posterior probability of pay given C and A, and the other proportional to the 

posterior probability of bay. Equation 2.6 incorporates this assumption, giving the 

posterior probability of pay, where w1 = pay and w2 = bay. 

Equation 2.6 

𝑝 𝑤! 𝐶,𝐴 =
𝑝(𝑤!|𝐶)𝑝 𝐴 𝑤!

𝑝 𝑤! 𝐶 𝑝 𝐴 𝑤! + 𝑝(𝑤!|𝐶)𝑝 𝐴 𝑤!
 

This posterior probability distribution in Equation 2.6 gives the expected rate with 

which a subject should identify an acoustic stimulus as pay in a given context, if that 

subject were optimally combining the information sources we are assuming. To the 
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extent that subjects deviate from this behaviorally, Andersons’s Principle of Rationality 

(1990) would demand that we update our assumptions. Note that the expected posterior 

probability of subjects making a BAY response, 𝑝 𝑤! 𝐶,𝐴 , is equal to 1− 𝑝 𝑤! 𝐶,𝐴 . 

Finally, as pointed out by Feldman and colleagues (2009), in the case of modeling 

two-alternative forced choice, the posterior in Equation 2.6 can be rewritten to take the 

form of a logistic function. By dividing both the numerator and denominator of the right 

side of Equation 2.6 by the quantity in the numerator and applying inverse functions 

(exponential power and natural logarithm), Equation 2.6 can be rewritten as shown in 

Equation 2.7: 

Equation 2.7 

𝑝 𝑤! 𝐴,𝐶 =
1

1+ 𝑒! !"#! !! !
! !! !

!!"#! ! !!
! ! !!

 

2.4.1.5. Implementing BIASES’ Prior: Corpus Estimates, Smoothing 

An advantage of modeling subjects’ responses in a two-alternative forced choice 

word identification task is that the implementation of BIASES’ prior is quite flexible – 

flexible enough, in fact, that 𝑝 𝑤! 𝐶  and 𝑝 𝑤! 𝐶  need not actually be proper 

probabilities at all. To see this, one need simply note that the influence of the prior, 

log ! !! !
! !! !

, is only dependent on the ratio of the prior probabilities of w1 or w2. A 

consequence of this is that their probabilities could just as easily be replaced by numeric 

values that are proportional to the words’ relative prior probabilities. Because the prior in 

this implementation of BIASES is estimated from a bigram language model, counts from 

a corpus of the number of times w1 and w2 follow C in sequence will suffice (𝜂 𝐶,𝑤!  

and 𝜂 𝐶,𝑤! , respectively; see Equation 2.8). 
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Equation 2.8 

log
𝑝 𝑤! 𝐶
𝑝 𝑤! 𝐶

= log
𝑝 𝑊! = 𝑤! 𝑊!!! = 𝐶
𝑝 𝑊! = 𝑤! 𝑊!!! = 𝐶 = log

𝜂 𝐶,𝑤!
𝜂 𝐶,𝑤!

!!
!!!
𝜂 𝐶,𝑤!
𝜂 𝐶,𝑤!

!!
!!!

= log
𝜂 𝐶,𝑤!
𝜂 𝐶,𝑤!

 

Of course, many other words in the corpus besides w1 and w2 will also follow C 

(that is, 𝜂 𝐶,𝑤!
!!
!!! ≫ 𝜂 𝐶,𝑤! + 𝜂 𝐶,𝑤! ). However, the fact that the normalizing 

term (which represents the sum of all occurrences of C with any word) cancels out in 

Equation 2.8 reflects the assumption that subjects engaged in a two-alternative forced 

choice word identification task will only consider the relative contextual evidence for w1 

and w2 in responding. 

The data for BIASES’s bigram language model were collected from the 2009 

Google Books corpus (Michel et al, 2010). Rather than assuming that the corpus counts 

of the relevant bigrams (the bay, the pay, to pay, to bay) were perfect estimates for 

subjects’ contextual knowledge, model-fitting (see Chapter 3) allowed for “add-alpha” 

smoothing (Lidstone, 1920). Under such a model, one value 𝛼 is added to all bigram 

counts, and the fitting process selects the 𝛼 that minimizes the overall deviation of the 

model predictions from the data. As mentioned earlier, while the benefit of smoothing is 

that it protects against overconfidence in our estimate of listeners’ prior (especially in 

estimates of the probability of relatively uncommon bigrams), higher values of 𝛼 tend to 

diminish the specificity of the predictions of the model. As the smoothing parameter 𝛼 

grows larger (and greater than the raw counts in the bigram language model itself), the 

model approaches a uniform distribution that renders w1 and w2 equally likely to follow 

every context. 
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2.4.2. Likelihood Term: Mapping an Acoustic Signal onto Lexical Forms 

One of the most fundamental observations about speech communication is that 

there is no one-to-one mapping between words and their acoustic realizations (cf. 

Liberman, Cooper, Shankweiler & Studdert-Kennedy, 1967). On one hand, it is clear that 

signal-to-word mapping is many-to-one: perfectly understandable productions of the 

same word can take on countless acoustic realizations that may differ from one another 

along many dimensions. On the other hand, signal-to-word mapping is also sometimes 

one-to-many: the same acoustic signal may, on different occasions, be perceived as 

different sounds (e.g., Ganong, 1980; Liberman, Harris, Hoffman & Griffith, 1957; 

Sawusch & Jusczyk, 1981), words (e.g., Borsky et al, 1998; Fox & Blumstein, in press), 

or sequences of words  (e.g., Foss & Swinney, 1973; Kim, Stephens & Pitt, 2012). 

Together, these two facts underlie the likelihood term in BIASES and how it interacts 

with the model’s conditional prior term. 

2.4.2.1. Likelihood Functions: Many-to-One Mapping 

The immediate function of the likelihood term 𝑝(𝐴|𝑊) in BIASES is to formalize 

the many-to-one mapping from speech tokens to words. 𝑝 𝐴 𝑊  is best described as a 

composite of Nw likelihood functions, where Nw is the number of words in the lexicon, 

because each word wi has its own likelihood function 𝑝(𝐴|𝑤!) . 𝑝(𝐴|𝑤!)  defines a 

listener’s phonetically-detailed knowledge about how wi tends to be pronounced. Implicit 

in each word’s likelihood function is the notion that not all productions of a word will be 

equally clear, and some realizations will be more typical than others. Work examining the 

influence of category goodness and internal category structure has shown that fine-

grained acoustic properties in speech modulate perception, recognition and lexical access 
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(Andruski, Blumstein & Burton, 1994; Blumstein, Myers & Rissman, 2005; Kessinger & 

Blumstein, 2003; McMurray, Tanenhaus & Aslin, 2002, 2009; Miller, 1994; Miller & 

Volaitis, 1989; Pisoni & Tash, 1974; Volaitis & Miller, 1992). This internal category 

structure is modeled within 𝑝(𝐴|𝑤!) by making the more typical realizations of wi more 

probable than less typical realizations. 

The model assumes an acoustic space, 𝒜 , comprised of all possible speech 

waveforms, and each ax in 𝒜 is a point within that multidimensional acoustic space. Each 

word, wi, occupies some subspace of 𝒜 comprised of all possible pronunciations of wi. 

The likelihood function of wi, 𝑝(𝐴|𝑤!), assigns some probability to every possible ax. For 

most values of ax, it will effectively be the case that 𝑝 𝑎! 𝑤! = 0; after all, although 

each word in a lexicon can be pronounced in many4 ways, most possible waveforms will 

bear no similarity to some given wi. However, among those speech tokens (values of ax) 

that might plausibly be exemplars of wi, the ones that most resemble wi will be most 

probable according to 𝑝(𝐴|𝑤!). In this way, the role of the likelihood term of BIASES, 

𝑝(𝐴|𝑊), is to evaluate, for each lexical candidate wi, how representative of wi a 

perceived speech token ax is. 

Of course, just as the likelihood function of wi will ensure that 𝑝 𝑎! 𝑤! = 0 for 

most ax, the overall effect of 𝑝(𝐴|𝑊) is that, for a given acoustic signal ax, 𝑝 𝑎! 𝑤! = 0 

for most words. As discussed earlier, when 𝑝 𝑎! 𝑤! = 0 for all words but one, only one 

word will have a nonzero posterior probability, and there will be no question about the 

identity of the token ax. Indeed, given the multiplicity of available bottom-up, acoustic 

                                                
4 Indeed, because at least some relevant dimensions of 𝒜 are continuous (e.g., VOT, 
vowel duration, formant values), BIASES assumes that the sample space of possible 
pronunciations of any word is infinite. Thus, formally, 𝑝(𝐴|𝑤!) must be a probability 
density function. 
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cues that comprise the many dimensions of 𝒜 , it may very often be possible to 

distinguish words and speech sounds from one another (see, e.g., Nearey, 1990, 1997). 

However, there is not always such a consistent mapping from a given acoustic signal to 

one (and only one) word. Put simply, while the many-to-one mapping between speech 

tokens and words lies at the heart of each word’s likelihood function, the computational 

challenge that a spoken word recognition system must overcome arises due to the one-to-

many (or at least one-to-more-than-one) mappings between a signal and multiple possible 

lexical candidates. In such cases, the system must adjudicate among the various words 

that the perceived signal resembles to any degree. 

2.4.2.2. Phonetic Ambiguity: One-to-Many Mapping 

Under what circumstances would an optimal listener believe that, for more than 

one word, 𝑝 𝑎! 𝑤! > 0? Feldman and colleagues (2009) identified several factors 

responsible for creating uncertainty in the mapping of a signal onto a single, best-

matching word. Here, we classify these factors into two general categories. In short, the 

noisier the environment is and the more acoustically similar two words are, the more 

likely it is that the perceived signal ax will be ambiguous between the two words. 

One source of uncertainty is noise, which distorts the speaker’s production of a 

word (sx) and can cause the perceived acoustic signal (ax) to be ambiguous between 

multiple words, even when sx may not have been. For instance, as already discussed, 

early research in the phoneme restoration paradigm (Warren, 1970; Samuel, 1981, 1996) 

showed that masking a short segment of uninterrupted, natural speech with a cough or 

white noise could render the corrupted signal (/*il/) consistent with any of several lexical 

candidates (e.g., wheel, heel, peel, meal) (Warren & Warren, 1970; Warren & Sherman, 
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1974). In general, adding noise to stimuli tends to “smear out” a word wi’s likelihood 

function: to accommodate more variability in the acoustic signal due to noise, more 

values of ax will count as possible realizations of wi. The result of this smearing is that 

some values of ax may come to correspond to multiple possible words (Luce & Pisoni, 

1998; Warren & Warren, 1970) or sounds (e.g., Cutler, Weber, Smits & Cooper, 2004; 

Miller & Nicely, 1955; Smits, Warner, McQueen & Cutler, 2003; Warner, Smits, 

McQueen & Cutler, 2005). 

While the effect of noise is to increase the uncertainty of the speech signal after it 

is produced, a second source of uncertainty emerges naturally and is inescapable, even in 

a completely noiseless environment. Distinct words are sometimes characterized by 

overlapping likelihood functions; this occurs when the acoustic space corresponding to 

one word intersects with that of another word. A trivial example illustrating this fact is 

the case of homophony: if a speaker produces sx = /baɪ/, sx could correspond to several 

words (buy, by, or bye) because all three words share virtually identical spaces of possible 

pronunciations (but see, e.g., Gahl, 2008). The present work considers a less extreme 

example of how phonetic ambiguity may lead to lexical ambiguity. While homophony 

inevitably leads to lexical ambiguity, the phonetic ambiguity examined here arises when 

the likelihood functions of a pair of word-initial segments (/b/ and /p/) overlap in acoustic 

space. 

The primary acoustic dimension on which /b/ and /p/ differ is voicing, with tokens 

of /p/ tending to be realized with longer voice-onset time (VOT) values than tokens of /b/ 

(Lisker & Abramson, 1964). Figure 2.1 displays two theoretical acoustic cue distributions 

over VOTs: one for word-initial /b/ and one for word-initial /p/. Although tokens of each 
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category can generally be distinguished on the basis of VOT alone, the two categories’ 

distributions overlap such that tokens with some intermediate VOT values could 

plausibly be an exemplar of either /b/ or /p/. Although other acoustic dimensions of a 

spoken word also provide reliable cues that can distinguish /b/-initial tokens from /p/-

initial tokens (e.g., Klatt, 1975; Lisker, 1986; Miller & Dexter, 1988; Repp, 1984; 

Stevens & Klatt, 1974; Summerfield, 1981), much work has shown that, holding other 

variables constant, listeners perceive segments with some VOT values as phonetically 

ambiguous between /b/ and /p/ (Clayards et al, 2008; Connine, Blasko & Wang, 1994; 

Connine, Titone & Wang, 1993; Fox & Blumstein, in press; Ganong, 1980; Liberman, 

Harris, Kinney & Lane, 1961; McMurray, Clayards, Tanenhaus & Aslin, 2008; 

McMurray et al, 2002, 2009; Miller & Dexter, 1988; Miller et al, 1984; Pisoni & Lazarus, 

1974; Toscano & McMurray, 2012; Wood, 1976). 

A consequence of this phonetic ambiguity for spoken word recognition is that an 

acoustic token /?eɪ/ with a phonetically ambiguous VOT could correspond to either bay 

or pay (Fox & Blumstein, in press). Thus, speech tokens whose initial consonants have 

intermediate VOT values exhibit a one-to-many mapping from acoustic signal to lexical 

forms, and, as illustrated in Figure 2.1, this one-to-many mapping can be modeled by 

assuming that bay and pay have overlapping likelihood functions. 
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Figure 2.1. Examples of normally distributed probability density functions for two 
categories: /b/ and /p/, or for bay and pay under the assumption that these words are 
otherwise (i.e., besides VOT) identical in their acoustic cue distributions. The light grey 
line represents the marginal density function, showing the relative amount of total 
probability mass associated with each voice-onset time (VOT) across all categories. The 
dashed black line indicates the category boundary (χ), defined as the point in acoustic 
space (or the plane in acoustic space, if the likelihood model has more than one 
dimension) for which the probability density functions of two or more categories are 
equal. It can be equivalently defined as the point/plane for which the posterior probability 
distribution over a given set of categories is uniformly distributed when the prior 
probabilities of the set’s members are also equal. 
 

2.4.2.3. BIASES’ Likelihood Term: A Mixture of Gaussians 

An important issue that remains is the specification of each word’s likelihood 

function. As already discussed, a complete model of the likelihood function for a word 

would define which acoustic signals could be recognized as a word, as well as how good 

an exemplar each possible signal would be. Although, in reality, such a model would be 

extremely complex and require a highly multidimensional space, the present model is far 
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simpler. Following prior work (e.g., Clayards et al, 2008), we assume that the likelihood 

functions of word-initial voicing minimal pairs (e.g., bay and pay) can be approximated 

by normal distributions over a single continuous dimension, VOT (see also Kleinschmidt 

& Jaeger, in prep; Kronrod, Coppess & Feldman, 2012; Munson, 2011). Under this 

assumption, listeners expect that if they were to perceive a given word wi, the probability 

that it would be realized with different initial VOT values (A) is given by a normal 

distribution (see Equation 2.9A/B), where 𝜇! represents the mean initial VOT for wi and 

𝜎!! represents the variance in wi’s initial VOT. 

Equation 2.9A 

𝐴|𝑤!  ~ 𝑁(𝜇! ,𝜎!!) 

Equation 2.9B 

𝑝 𝐴 𝑤! =
1

2𝜋𝜎!!
!

𝑒
!(!!!!)

!

!!!
!  

If the acoustic form of wi is assumed to be normally distributed, 𝜇! represents the 

most probable acoustic signal associated with wi, and the further a stimulus is from this 

prototypical VOT, the less representative of wi the exemplar will be (and the lower its 

likelihood will be). Since each word wi has a Gaussian likelihood function 𝑝 𝐴 𝑤!  

defined by its mean (𝜇!) and variance (𝜎!!) parameters, the full likelihood model of 

BIASES, 𝑝 𝐴 𝑊 , which is a composite of all Nw words’ likelihood functions, takes the 

form of a mixture of Gaussians. Gaussian mixture models are a common approach to 

statistical models of speech categorization and phoneme category learning (de Boer & 

Kuhl, 2003; Clayards et al, 2008; Dillon, Dunbar & Isardi, 2013; Feldman et al, 2009, 

2013; McMurray, Aslin & Toscano, 2009; Toscano & McMurray, 2010; Vallabha, 
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McClelland, Pons, Werker & Amano, 2007) in which there exists some number of 

categories, and the exemplars of each category are normally distributed according to its 

category’s mean and variance (or covariance matrix, in the case of multiple perceptual 

dimensions). Note that, for the present formalization of BIASES, the likelihood 

distribution over VOTs for each phonetic category (/b/ vs. /p/) is equivalent to the 

likelihood distribution over VOTs for each word (bay vs. pay) because (1) these two 

words are assumed not to differ on any other acoustic dimensions besides the VOT of 

their initial stop consonants, and (2) these words are assumed to be deterministically 

related to their associated phonetic categories. Admittedly, as we discuss later, it seems 

likely that neither of these assumptions is warranted; Chapters 3 and 4 illustrate some 

interesting and insightful implications of relaxing these assumptions. In any case, under 

these simplifying assumptions, in order to infer the most likely category label for a given 

exemplar ax, ax must be compared to each category’s likelihood function (see Equation 

2.9B). 

Previous work suggests that listeners’ perceptual identification behavior can be 

approximated by modeling words’ likelihoods with a Gaussian mixture model over VOT 

values. In a study by Clayards and colleagues (2008) listeners identified acoustic stimuli 

along a VOT continuum between two words (e.g., beach and peach), and subjects’ 

identification functions were consistent with an optimal Bayesian recognizer’s behavior. 

A between-subject manipulation in their study provides further support for the modeling 

of words’ likelihood functions using a mixture of Gaussians approach: two groups of 

subjects were exposed to different distributions of VOTs that implied either high overlap 

or less overlap in the words’ likelihood functions (i.e., either higher values of 𝜎!! or lower 
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values of 𝜎!!, respectively). Results showed that, when the overlap between the likelihood 

functions of beach and peach appeared to be higher, subjects perceived a greater number 

of the intermediate tokens from the continuum as ambiguous (Clayards et al, 2008). 

Despite this modeling success, the Gaussian mixture model employed by 

Clayards and colleagues (2008) is not without its weaknesses. For instance, although they 

manipulated the acoustic variability of the stimuli for different subjects, the stimuli 

presented to any one group mimicked likelihood functions that had equal variance terms 

for both candidate words (e.g., beach and peach). Their model, in turn, also presumed 

that 𝜎!! = 𝜎!!. In reality, it is not generally the case that the initial VOTs of words with an 

initial /b/ and words with an initial /p/ are distributed with equal variance (Lisker & 

Abramson, 1964; Kronrod, Coppess & Feldman, 2012). In fact, VOT distributions, as 

measured in spoken word and segment production experiments (e.g., Baese-Berk & 

Goldrick, 2009; Fox, Reilly & Blumstein, 2015), tend to exhibit non-Gaussian skew, and 

evidence suggests that the distribution of VOTs of word-initial voiced stops in English 

(especially /b/) is highly bimodal (Lisker & Abramson, 1964; see also Docherty, Watt, 

Llamas, Hall & Nycz, 2011). 

Nonetheless, despite their divergence from speech production data, computational 

models of speech perception that have adopted the mixture of Gaussians approach and 

assumed equal variance across categories have achieved substantial success in capturing 

the overall patterns associated with category goodness and internal phonetic category 

structure (Clayards et al, 2008; Feldman et al, 2009; Kleinschmidt & Jaeger, 2015). 

Because of this fact, and because of the computational benefits associated with adopting 

this simplification (namely, the existence of a closed-form likelihood function), the 
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likelihood model implemented in BIASES was identical to the mixture of Gaussians 

employed by Clayards and colleagues (2008). In principle, any likelihood function could 

replace that of Clayards and colleagues (2008) in BIASES. For now, we simply 

acknowledge that BIASES could be enhanced with more detailed (and realistic) 

likelihood functions that incorporate more acoustic cues (see, e.g., Feldman et al, 2013) 

and/or less simplistic distributional assumptions (see, e.g., Kleinschmidt & Jaeger, in 

prep; Kronrod, Coppess & Feldman, 2012). 

Critically, though, unlike Clayards and colleagues (2008), and unlike other 

Bayesian models of speech perception that have adopted similar models of the likelihood 

term (Feldman et al, 2009; Kleinschmidt & Jaeger, 2015), the key innovation in BIASES 

is the inclusion of a context-dependent conditional prior which is integrated with the 

likelihood function. The model proposed by Clayards and colleagues (2008) fits the basic 

shape of subjects’ responses to isolated words despite their assumption of equal prior 

probabilities for beach and peach because their likelihood model captures fundamental 

properties of subjects’ signal-to-word mapping. Here, we adopt this same likelihood 

function in formulating BIASES in order to leverage the successes of their isolated word 

recognition model, while extending it to incorporate sentential context effects. 

2.4.2.4. Comparing the Likelihood Terms in BIASES and Shortlist B 

Finally, it is worth pointing out another fundamental difference between BIASES 

and Shortlist B (Norris & McQueen, 2008). In addition to its assumption of a context-

independent prior based on lexical frequency instead of the conditional prior embraced by 

BIASES, Shortlist B also differs from BIASES in the mathematical form of its likelihood 

term. Although the likelihood function adopted in BIASES is identical to that of Clayards 
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and colleagues (2008) and closely related to that of Feldman and colleagues (2009), 

Norris and McQueen’s (2008) Shortlist B takes a very different approach. Rather than 

explicitly relating the acoustic properties of the speech signal to phonemes or words, 

Norris and McQueen (2008) avoided specifying a likelihood function that would directly 

relate to an acoustic signal. Instead of relying on assumptions about the distributions of 

acoustic cues and the ways in which these different cues covary, Shortlist B’s likelihood 

model abstracts over all of the acoustic cues in speech to capture, broadly, the 

confusability of different words in the lexicon. Specifically, they assume that – whatever 

likelihood model subjects use – the same one that underlies subjects’ performance in 

spoken word recognition tasks should also underlie their performance in lower-level 

perceptual tasks. Under this assumption, McQueen and Norris (2008) used perceptual 

confusion data from a gating task (Smits et al, 2003; Warner et al, 2005) to infer subjects’ 

likelihood functions and taught Shortlist B, for each diphone in Dutch (e.g., /ba/), how 

likely subjects should be to perceive that diphone as itself or any other Dutch diphone 

(e.g., /ba/, /pa/, /da/, /bɪ/, ...). 

The obvious advantage of Shortlist B’s approach is that it can remain agnostic as 

to the computations that map an acoustic signal onto one or more words, so it can be 

applied to a large vocabulary without making many assumptions about pre-lexical 

representations or pre-lexical processing. However, the key question that motivated the 

development of BIASES was how bottom-up and top-down information sources are 

weighted and combined during spoken word recognition. In light of this question, the 

nature of the likelihood function and how it fits into the larger computational framework 

will play an important role in understanding the predictions of BIASES, as we discuss 
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later. Thus, unlike Shortlist B, BIASES is capable of making fine-grained predictions 

about how acoustic-phonetic properties of speech and context-specific lexical predictions 

jointly modulate subjects’ recognition of spoken words. 

2.4.3. Integrating Prior Context and Perceptual Input in BIASES 

Substituting the likelihood function (Equation 2.9) into the model of subjects’ 

posterior (Equation 2.7), and simplifying based on the stated assumption of equal 

variance in the VOT distributions (𝜎!! = 𝜎!! = 𝜎!) for pay (w1) and bay (w2), yields 

Equation 2.10 (cf. Feldman et al, 2009): 

Equation 2.10 

𝑝 𝑤! 𝐴,𝐶 =
1

1+ 𝑒! !"#! !! !
! !! !

!!(!!!)
 

where 

χ =
𝜇! + 𝜇!
2  and 𝑔 =

𝜇! − 𝜇!
𝜎!  

Equation 2.10 represents the optimal (Bayesian) posterior probability that a 

particular acoustic signal (A) following a particular sentence context (C) is an exemplar 

of the word pay, given the assumptions outlined above. Following a rational analysis 

approach (Anderson, 1990), Equation 2.10 can also be interpreted as an estimate of the 

optimal rate of PAY responses subjects should make when responding to different stimuli 

in different sentence contexts during a two-alternative forced choice word identification 

task. 

Finally, in order to evaluate the extent to which the predictions of BIASES are 

consistent with actual subjects’ behavior, it is possible to simulate responses from 

BIASES based on the assumption that, on a given trial (t) consisting of a context and 
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acoustic stimulus pairing (ct, at), a subject’s final identification decision (Zt) is 

probabilistically generated from a Bernoulli distribution with 𝜃! = 𝑝 𝑤! 𝑎! , 𝑐!  (see 

Equation 2.11). 

Equation 2.11 

𝑍!|𝑎! , 𝑐! ~ 𝐵𝑒𝑟𝑛(
1

1+ 𝑒
! !"#! !! !!

! !! !!
!!(!!!!)

) 

An oft-cited intuitive metaphor for Bernoulli-distributed random variables is the 

process of flipping a biased coin: the probability of a PAY response is like the probability 

of a coin-flip coming out heads, and different experimental conditions or stimuli affect 

the bias of the “coin” towards “heads” (𝜃!) differently. In particular, Equation 2.10’s 

posterior distribution describes the way stimulus and context conditions in a given trial 

influence the probability of a PAY response on that trial. 

2.4.4. Conclusion and Next Steps 

In sum, Equation 2.11 provides us with an explicit method of generating 

behavioral responses. The ability to simulate behavior from BIASES in this way affords 

many advantages. In Chapter 3, we take two somewhat different approaches to the 

simulation of behavioral data with BIASES. First, by providing to BIASES assumed 

values for all of the underlying parameters (𝜇!, 𝜇!, 𝜎!, and 𝑝 𝑤! 𝑐!  for every wi and cj 

relevant to the experiment) needed to generate behavioral responses, we can examine 

properties of the model’s behavior, and examine the extent to which empirical data match 

those predictions. As we will demonstrate, this approach reveals that our chosen 

theoretical framework provides some much-needed clarity for research in the field of top-

down effects, organizing a confusing literature rife with apparent inconsistencies. 
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Moreover, in the spirit of iterative updating of cognitive models that is fundamental to the 

rational analysis approach (Anderson, 1990), this approach allows us to identify 

enhancements to the model that are critical for capturing and “post-dicting” existing 

behavioral data. One major disadvantage to this approach is that, in order to generate 

responses, we must make even more assumptions about the latent structure of perceptual 

and cognitive processing that give rise to the behavioral responses we can observe. 

On the other hand, a second approach allows us to discover features of the model 

underlying observed behavior, rather than making assumptions about the model’s 

features. By generating data from BIASES over a very wide, weakly constrained range of 

possible parameter settings and comparing the simulated behavioral response patterns 

under different conditions to real data from human subjects, we can learn about the likely 

distribution of those parameters. As we will demonstrate, even though all we can actually 

observe is on the left side of Equation 2.11 (i.e., subjects’ responses to different 

stimulus/context pairings), this approach allows us to infer the distributions of all of the 

unknown parameters that ultimately give rise to those responses. Moreover, this approach 

can be used to directly compare the relative fit and explanatory power of different 

theories and models that make disparate assumptions about aspects of auditory language 

processing. 

As we will discuss, each approach has its own benefits and shortcomings, but 

both approaches can be leveraged to reveal important insights about the human speech 

perception system, and especially about how top-down information sources such as 

sentential context modulate word recognition. 
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Chapter 3 

Exploring and Evaluating the BIASES Model of Spoken Word Recognition in Context 

3.1. Understanding Top-Down Effects in BIASES 

Although the theoretical and mathematical underpinnings of BIASES were 

presented in Chapter 2, Chapter 3 aims to explore the model’s more fine-grained 

predictions about how higher-level (e.g., contextual) and lower-level (e.g., perceptual) 

information sources conspire during spoken word recognition to produce top-down 

effects on speech perception. To that end, Chapter 3 is divided into three main sections. 

First, Chapter 3 examines the mathematical form of BIASES more closely. We 

implement BIASES and perform two preliminary simulation studies to illustrate how a 

minimalistic implementation of BIASES can replicate subjects’ sensitivity to a preceding 

function word when identifying a stimulus that is phonetically ambiguous between a 

noun and verb (Fox & Blumstein, in press) and how the computational principles inherent 

to BIASES not only account for the overall pattern, but also provide fine-grained 

quantitative predictions about expected variability and asymmetries in the size of context 

effects on spoken word recognition. 

Second, we consider a major problem that is often ignored in the literature, and 

especially by computational models: the enormous amount of unexplained variability in 

the size of top-down effects on speech processing. These issues are discussed with 

consideration for how these data can be captured by BIASES. The present model recasts 

previously overlooked or poorly understood behavioral patterns and asymmetries, 

suggesting that apparent inconsistencies in top-down effect on speech perception (cf. Pitt 

& Samuel, 1993) actually follow from the theoretical principles embodied by BIASES. 
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Illustrative simulations demonstrate the unique ability of BIASES to explain and predict 

lawful variability in the patterns of top-down effects across stimuli and across studies. 

Finally, Experiment 3.1 is conducted in order to directly test one novel prediction 

made by BIASES, and the model’s simulated behavior is compared to human 

performance on an auditory word identification task. These new experimental data are 

also used in two model comparison analyses to demonstrate that the utility of this 

computational model extends beyond providing a theoretical framework for contextual 

influences on word recognition. BIASES also represents a novel tool for comparing 

psycholinguistic theories about the two inputs to the model, including both the lower-

level pre-lexical processing of speech that maps speech sounds to words, and the higher-

level processing of sentences that reflects how listeners utilize contextual and linguistic 

information during auditory language processing.  

Overall, the results of the simulations and the experimental analyses suggest that 

subjects’ recognition of spoken words in context exhibit certain hallmarks of a Bayesian 

cue integration system. Generally speaking, BIASES highlights the fact that top-down 

effects on speech perception offer a unique window into perceptual processing, cognitive 

processing, and the interface of cognitive and perceptual representations in human 

language function. 

3.1.1. Overview of the Mathematical Form of BIASES 

Recall Equation 2.10’s statement of the form of the posterior probability 

distribution, reproduced in Equation 3.1 (substituting in a new term, Π, to summarize the 

effect of the prior): 

Equation 3.1 
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𝑝 𝑤! 𝐴,𝐶 =
1

1+ 𝑒! !!!(!!!)  

where 

Π = log
𝑝 𝑤! 𝐶
𝑝 𝑤! 𝐶

, χ =
𝜇! + 𝜇!
2  and 𝑔 =

𝜇! − 𝜇!
𝜎!  

As described in Chapter 2, Equation 3.1 represents the present model’s estimate 

of 𝑝 𝑤! 𝐴,𝐶 , the probability that a target stimulus was pay, given the voice-onset time 

(VOT) of its initial stop, A, given that it followed sentence context C, and given that the 

listener is performing a two-alternative forced choice word identification task with two 

possible candidates (w1 = pay and w2 = bay). The acoustic forms of pay and bay are 

modeled as having Gaussian distributions with means 𝜇! and 𝜇!, respectively, and shared 

variance term 𝜎! (𝜎! = 𝜎!! = 𝜎!!). 𝑝 𝑊 𝐶  is reflects the strength of the contextual bias 

towards one of the other candidate word, and it is estimated from a corpus. Finally, 

Equation 3.1’s logistic form is a consequence of a key non-linguistic constraint: the use 

of a two-alternative forced choice task. 

There are three key terms within the sigmoidal posterior (see Equation 3.1): (1) Π, 

the term summarizing the relative prior support for the candidate words, (2) g, the logistic 

function’s gain term, and (3) χ, which denotes the VOT that is exactly halfway between 

the category means. Here, we discuss the interpretation of g, χ and Π in turn and explore 

their role predicting the distribution of top-down effects in spoken word recognition. 

3.1.1.1. Components of BIASES: Phonetic Category Structure (g) 

The primary effect of g is to control the slope of the logistic, with higher values of 

g indicating a sharper identification curve. As implied by the definition of g in Equation 

3.1, greater separation between the means of the pay and bay (𝜇! − 𝜇!) and lower 
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variability (𝜎!) in the expected distribution of productions of pay and bay are associated 

with steeper slopes. Simulation Study 3.1 illustrates the nature of g’s influence on the 

posterior probability function and on the size of sentential context effects on word 

recognition. The details behind these stimulations and their key conclusions are described 

in Box 3.1. 

Figures 3.1 and 3.2 illustrate the tradeoff between category variance and category 

separation. The shape (i.e., steepness) of the resulting posterior sigmoids in Figure 3.2 is 

affected by changing either the distance between the means of the underlying normally 

distributed density functions in Figure 3.1 (left vs. right panels of the figures) or the 

underlying category variance of the normal probability density functions (or, 

equivalently, the standard deviations, as indicated in the top vs. bottom panels of Figures 

3.1 and 3.2). 

Intuitively, and as described in Chapter 2, the less overlap there is between two 

words’ likelihood functions (Figure 3.1), the fewer acoustic values (here, VOTs) there 

will be that are ambiguous between pay and bay (Figure 3.2). Note that g is the term that 

differed between groups in the study by Clayards and colleagues (2008). By manipulating 

the apparent variance of the VOT distributions of /b/- and /p/-initial minimal pair words 

(e.g., beach and peach), Clayards and colleagues were tapping into the denominator of g. 

Finally, note that, after hearing a sentence context C, all other terms in the 

posterior remain constant no matter what stimulus A is presented to the listener. In 

particular, the prior information (Π) does not influence the slope of the posterior 

distribution in BIASES (due to a conditional independence assumption; see Chapter 2), 

while g determines the overall shape of the posterior distribution over the acoustic space.  
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Box 3.1. Description of Simulation Study 3.1 
Goal: Illustrate influence of two aspects of underlying phonetic category structure on 

posterior probability function and size of sentential context effects. 
Design: 4 simulated phonetic category structures in a 2 × 2 design 
Parameters of BIASES Manipulated: 𝜇! − 𝜇! ∈ {64,36} , 𝜎! ∈ {15!, 20!} 
Parameters of BIASES Held Constant: χ = 32 , 𝑝 𝑤! 𝑐! = 0.75 , 𝑝 𝑤! 𝑐! = 0.25 
Results displayed in: Figures 3.1-3.5, Table 3.1 
Key conclusions: 
1. BIASES’ gain parameter (g), which characterizes the slope of the sigmoidal posterior 

(cf. Feldman et al, 2009), is the ratio of 𝜇! − 𝜇! (the distance between the means of 
the two words’ distributions over VOTs) and 𝜎! (the shared variance of each word’s 
VOT distribution). 

2. Because 𝜇! − 𝜇! and 𝜎! are collinear (having opposite effects on g), they are not 
identifiable parameters when fitting a model that assumes equal category variance. 
The tradeoff between these features of BIASES’ likelihood model can be visualized 
in the top-right and bottom-left simulated phonetic category structures in Figure 3.1, 
where distinct likelihood functions yield identical posteriors (Figure 3.2-3.3) with the 
same gain parameter (see Table 3.1). Consequently, model-fitting in Chapters 3-4 
assumes values for 𝜇! − 𝜇! (from Lisker & Abramson, 1964; for a similar approach, 
see Kleinschmidt & Jeager, 2015) and fits 𝜎!. 

3. Although the magnitude of the effective category boundary shift between two prior 
contexts (χ!! − χ!!) depends on g, the maximum expected effect size (Δ!"#) is 
independent of it (see Table 3.1; Figure 3.4 vs. 3.3). However, a narrower range of 
VOTs exhibit top-down effects, so it would be more difficult, practically speaking, to 
detect a large top-down effect size if VOTs are sampled from the space. 

4. For all 4 likelihoods examined in Simulation Study 3.1, the locus (𝑎) of the maximum 
expected effect size (Δ!"#) was consistently collocated with the category boundary 
(χ) (Figure 3.4). Note, however, that χ was confounded with the midpoint of the 
effective category boundaries for the prior contexts (χ!!, χ!!). We discuss this point in 
Simulation Study 3.2 (see Box 3.2). 

5. When measured for each prior context relative to a neutral baseline, the expected 
effect size for any given VOT is asymmetrical (in general); the locus of the maximum 
effect size is at the midpoint between χ and the prior context’s effective category 
boundary (χ!!) (Figure 3.5). 
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Figure 3.1. Results of Simulation Study 3.1: Influence of 𝜇! − 𝜇! and 𝜎! on probability 
density functions, 𝑝 𝑉𝑂𝑇 𝑤! . 𝑝 𝑉𝑂𝑇 𝑤! : solid/colored curves; category boundary (χ): 
dashed/grey vertical line; 𝜇! for each 𝑝 𝑉𝑂𝑇 𝑤! : dotted/colored vertical lines 
 

 
Figure 3.2. Results of Simulation Study 3.1: Influence of 𝜇! − 𝜇! and 𝜎! on posterior 
probability function, 𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! : solid/black curves; χ: dashed/grey vertical line 
 

µ1 − µ2 = 64 µ1 − µ2 = 36

σ
=

15
σ
=

20

−25 0 25 50 75 100 −25 0 25 50 75 100
VOT (ms)

Pr
ob

ab
ili

ty
 D

en
si

ty
:  

 p
(V
O
T

|w
i)

wi = bay
wi = pay

µ1 − µ2 = 64 µ1 − µ2 = 36

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

σ
=

15
σ
=

20

−25 0 25 50 75 100 −25 0 25 50 75 100
VOT (ms)

Po
st

er
io

r P
ro

ba
bi

lit
y 

of
 p
ay

:  
 p

(w
1|
V
O
T

)



 
88 

3.1.1.2. Components of BIASES: Category Boundary (𝛘) 

To understand the roles of the two remaining terms, Π and χ, consider, first, a 

hypothetical context 𝑐! in which w1 and w2 are both equally probable a priori, such that 

𝑝 𝑤! 𝐶 = 𝑐! = 𝑝 𝑤! 𝐶 = 𝑐! = 0.5 (cf. Clayards et al, 2008; Feldman et al, 2009). In 

this perfectly neutral context, Π = Π!! = log ! !! !!
! !! !!

= log !.!
!.!
= log 1 = 0. When this 

condition (Π = 0) is fulfilled, and when it also true that 𝐴 = χ, the entire right side of 

Equation 3.1 becomes !
!!!!

= 0.5. That is, χ is the point in acoustic space for which, if 

presented with that stimulus in a perfectly neutral context, a listener would, in theory, be 

equally likely to select either response: 𝑝 𝑤! 𝐴, 𝑐! = 𝑝 𝑤! 𝐴, 𝑐! = 0.5. This point, χ, 

is referred to as the category boundary. Note that, because BIASES assumes that the 

variability 𝜎! associated with each word’s likelihood function is equal, χ is guaranteed to 

be located exactly halfway between 𝜇! and 𝜇!, as it is defined in Equation 3.1. However, 

note that if 𝜎!! ≠ 𝜎!! ≠ 𝜎!, then it is not, in general, true that χ = !!!!!
!

. 

3.1.1.3. Components of BIASES: Prior Context (𝚷) 

How, then, does the prior information contained within Π influence spoken word 

recognition? Because the influence of Π is constant for a given C (i.e., independent of A) 

the overall effect of the prior is to produce a translation (i.e., a horizontal shift) of the 

logistic function towards the mean of the less probable word (Feldman et al, 2009). 

Figure 3.3 (also from Simulation Study 3.1) illustrates this for the same distributions 

displayed in Figures 3.1 and 3.2. Shifting the logistic means that a stimulus with the same 

word-initial VOT will be more likely to be recognized as an exemplar of the 
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contextually-supported word (relative to context 𝑐!, in which both lexical candidates are 

equally probable; black posterior distribution in Figures 3.2 and 3.3). 

 
Figure 3.3. Results of Simulation Study 3.1: Influence of 𝜇! − 𝜇! and 𝜎! on posterior 
probability function, incorporating prior contexts: 𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! : solid/colored 
curves; χ: dashed/grey vertical line; χ!! for each Π!: dashed/colored vertical lines 
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the effective category boundary (χ!). Unlike the “baseline” category boundary (χ = χ!!) 

defined earlier, which depends on characteristics of the likelihood function alone (cf. 

Clayards et al, 2008), the effective category boundary χ!  still, of course, depends on the 
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larger when g is smaller (i.e., shallower). Ultimately, the location of the effective 

category boundary for a given context is given by Equation 3.2: 

Equation 3.2 

χ! = χ−
Π!
𝑔  

How can we summarize the meanings of each of the terms in BIASES (Equation 

3.1)? Firstly, g encapsulates the model of the phonetic category structure that comprises 

the likelihood functions of pay and bay (Figure 3.1) and gives the posterior probability 

distribution its slope (Figure 3.2). While g controls the overall shape of the posterior, Π 

and χ  convey information about the posterior’s “location” in acoustic space. They 

determine, for instance, which VOTs will be most ambiguous. Along with g, χ also 

derives from the likelihood term, representing the location (in acoustic space) of the 

(unbiased) category boundary. Meanwhile, the influence of sentential context is 

completely contained within Π, which indexes the relative amount of support a context C 

provides to one or the other candidate word. It is Π’s context-dependent biasing effect on 

the posterior distribution (Figure 3.3) that we focus on in the present model. Simulation 

Study 3.1 has already shown that the two elements of g (𝜇! − 𝜇! and 𝜎!) have an 

influence on the magnitude of shifts in the effective category boundary, controlling for 

prior context. Next, we explore the basic predictions of BIASES, focusing on how 

different factors within the model influence the predicted size of the effect of prior 

context on subjects’ word identification responses. 

3.1.2. Towards Model-based Analyses of Top-Down Effects 

 3.1.2.1. Shifting of Invisible Category Boundaries 
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As discussed above, the “baseline” category boundary, χ, is the point at which a 

given VOT is equally likely to come from both categories’ distributions (Figure 3.1). In 

the case considered here (and elsewhere, e.g., Clayards et al, 2008; Feldman et al, 2009), 

where the mixture distribution that comprises the model’s likelihood term is effectively 

constrained to consider two Gaussian distributed categories with equal variance, χ lies at 

the midpoint of the two categories’ means (!!!!!
!

). χ is a fundamental property of 

phonetic category structure. In Simulation Study 3.1, all phonetic category structures 

assumed χ (=32), and this was held constant for all those examined. 

However, in practice, χ is not straightforward to measure. For one, we cannot 

directly observe the phonetic category structure that underlies a subject’s behavioral 

responses to acoustic tokens. Instead, we are bound to try to infer χ from a subject’s 

identification or discrimination of speech tokens. However, even this is difficult, since 

the definition of χ presupposes equal prior probability. In reality, such a state is difficult 

to confidently tap into experimentally: due to pervasive effects of lexical and phonotactic 

frequency on subjects’ recognition of speech sounds (e.g., Connine, Titone & Wang, 

1993; Massaro & Cohen, 1983; Pitt & McQueen, 1998), many assumptions are required 

if one hopes to confidently infer its value (see Pitt & Samuel, 1993 for a discussion of 

this issue). In short, although the action of the prior in BIASES is attributed to a shift 

produced relative to an unobservable category boundary (see Equation 3.2), the same 

principles can be captured without explicitly relying on some assumed or inferred value 

of χ by examining relative effective category boundary shifts. 

In other words, although the biased posterior distributions in Figure 3.3 (in blue 

and red) are, based on the cognitive model (Equation 3.1), computed by biasing the latent 
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(i.e., unobserved), neutral posterior (in black), in practice, an experimenter would 

compare data from two observed (biased) conditions to one another. Later, we do 

consider another type of experimental design that includes a designated “neutral” 

condition (e.g., Fox, 1984; Guediche et al, 2013; van Alphen & McQueen, 2001), and we 

argue that even in those conditions, subjects’ responses are probably not completely 

unbiased, so the so-called neutral conditions are actually more likely to be just a third 

bias condition with an intermediate Π! . In any case, for now, we focus on the far more 

common 2-condition experimental design. 

Formally, to the extent that any shift in the effective category boundary, χ!!, is 

observed in context, c1, it is relative to another context, c2, with some other prior Π!!. 

Equation 3.3 is a generalization of Equation 3.2, giving the magnitude of the VOT 

boundary shift between two biased contexts. 

Equation 3.3 

χ!! − χ!! = χ−
Π!!
𝑔 − χ−

Π!!
𝑔 =

Π!! − Π!!
𝑔 =

log 𝑝 𝑤! 𝑐!𝑝 𝑤! 𝑐!
− log 𝑝 𝑤! 𝑐!𝑝 𝑤! 𝑐!
𝑔  

 Equations 3.3 supersedes Equation 3.2 (and is more general) because the neutral 

prior (Π!! = log !.!
!.!
= 0) that, by definition, characterizes χ!! = χ could be substituted 

into Equation 3.3 to obtain Equation 3.2. Table 3.1 reports the relative effective category 

boundary shift for each simulation in Simulation Study 3.1, and they can be visualized as 

the difference between the VOT of the dashed/red line and that of the dashed/blue line in 

Figure 3.3. As previously mentioned, the boundary shift is inversely proportional to the 

value of g. 
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 𝜇! − 𝜇! = 64 𝑚𝑠 𝜇! − 𝜇! = 36 𝑚𝑠 

𝜎 = 15 𝑚𝑠 

χ = 32 χ = 32 
g = 0.28 g = 0.16 
𝑎 = 32 𝑎 = 32 

Δ!"# = 0.50 Δ!"# = 0.50 
χ!! − χ!! = 7.72 χ!! − χ!! = 13.73 

𝜎 = 20 𝑚𝑠 

χ = 32 χ = 32 
g = 0.16 g = 0.09 
𝑎 = 32 𝑎 = 32 

Δ!"# = 0.50 Δ!"# = 0.50 
χ!! − χ!! = 13.73 χ!! − χ!! = 24.41 

Table 3.1. Summary of Results of Simulation Study 3.1: Influence of underlying 
phonetic category structure on posterior probability function and size of sentential 
context effects. 
 

3.1.2.2. Boundary Shifts vs. Effect Sizes 

However, even having skirted one practical issue by avoiding reliance on an 

unobservable parameter value, another practical issue remains that, ultimately, suggests 

that merely explaining top-down effects as arising from shifting category boundaries is 

not ideal for the goal of accurately assessing and predicting top-down effects in actual 

behavioral data. 

To see this, consider the methodological and analytic techniques utilized by 

behavioral research examining top-down effects. Typically, experimenters construct an 

acoustic continuum and/or select a relatively small number of stimuli with discrete step 

sizes. In many cases, the durations of these step sizes are influenced by other practical 

constraints such as  the need to splice waveforms at zero-crossings to avoid 

discontinuities which introduce acoustic artifacts such as clicks into the stimuli. Then, 

participants are presented with these tokens in different contexts for identification. The 

experimenter is effectively sampling from the subject’s posterior distribution in order to 

characterize the listener’s underlying prior and likelihood model. Finally, the 
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experimenter adopts some analytic technique, typically aimed at producing evidence that 

responses to the same acoustic tokens were categorized reliably differently between 

conditions (such as logistic regression or ANOVA over proportions of response-types by 

condition). 

At no point in the process does the notion of a category boundary or some 

underlying horizontal shift arise. Of course, that does not mean it is not a useful 

characterization of the underlying model. It may suggest that either the “horizontal” shift 

of the biased sigmoid relative to another sigmoid (from another condition) or the 

“vertical” differences in the rate of categorization decisions is epiphenomenal, or even 

that both are. However, what is important about this observation for the present work is 

that the comparison of “effective category boundaries” across conditions is a theoretical 

construct and removed from real empirical research. That is, however fundamental or 

epiphenomenal a category boundary is to phonetic category structure, it is in some ways 

incidental to experimental research on top-down effects on spoken word recognition. 

It should be noted that there are analysis techniques that are exceptions to the ones 

described above. For instance, some researchers do explicitly estimate boundaries for 

subjects in different conditions (e.g., Baum, 2001; Blumstein et al, 1994) and then 

compute statistics about the shift in the boundary between conditions. Obviously, this 

technique is neatly connected to the theory espoused here, but these statistics ultimately 

rely on estimates (not directly observed category boundaries). Statistics based on derived 

measures are necessarily less accurate than the original data themselves (see, e.g., Pitt & 

Samuel, 1993). Also, using a single summary statistic ignores many fine-grained details 

regarding the distribution of top-down effects (cf. Pitt & Samuel, 1993). We address this 
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analysis technique later (Chapter 4), ultimately showing that an explicit, model-based 

analysis approach allows for richer inferences about the nature of variability in top-down 

effects. 

3.1.2.3. Predicting Effect Sizes 

In order to better understand the way BIASES integrates prior information with 

bottom-up acoustic data with an eye towards the ultimate need to understand effect size 

(i.e., the “vertical” differences in response rates for a given acoustic stimulus), we first 

defined the function underlying BIASES’ expected effect size when comparing the rate 

of pay-responses for any pair of contexts, for any VOT, as shown in Equation 3.4: 

Equation 3.4 

Δ
Π!!
Π!!

,
χ
𝑔 ,𝐴 = 𝑝 𝑤! 𝐴, 𝑐! − 𝑝 𝑤! 𝐴, 𝑐! =

1

1 + 𝑒! !!!!!(!!!)
−

1

1 + 𝑒! !!!!!(!!!)
 

 

where  

Π!! = log ! !! !!
! !! !!

        χ = !!!!!
!

      and      𝑔 = !!!!!
!!

 

For ease of exposition, we refer to the function defined in Equation 3.4 as Δ 𝐴  

with the understanding that Δ 𝐴  is meaningless unless there are other parameter values 

provided to it ({Π!! ,Π!! , χ,𝑔}). As expressed by Equation 3.4, Δ 𝐴  is equal to the 

difference between the posterior probabilities of a pay-response to a stimulus (A) after 

context c1 vs. c2. As such, the function’s shape will clearly depend on the same factors on 

which the posterior depends. For that reason, the first two arguments to the function are 

related to: (1) the biasing information in the prior of each posterior distribution (Π!! and 

Π!!), and (2) the two components of the posterior that are based on the phonetic category 
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structure defined by the likelihood function (χ and g, which do not change from context 

to context). 

While it is simple to demonstrate that Δ 𝐴  is the difference of two sigmoidal 

curves (more specifically, a sigmoid and that same sigmoid under translation), the 

function is not easy to express (cf. difference of sigmoids membership function: e.g., in 

Berkan & Trubatch, 1997). However, despite not having a simple, closed form, Δ 𝐴  

does have certain properties that are straightforward. More importantly, those properties 

are critical to the predictions and simulations discussed in this chapter and Chapter 4, so 

we review them now and illustrate several of them via simulation.5 

Figures 3.4 and 3.5 are the final two Figures associated with Simulation Study 3.1 

(see Box 3.1 for a summary of these simulations, and Table 3.1 for a summary of their 

results). Figure 3.4 illustrates the shape of Δ 𝐴  over the acoustic space for same four 

simulated phonetic category structures in Figures 3.1-3.3. A few points bear special note: 

Property 1. If Π!! > Π!! , then Δ 𝐴 > 0  for all values of A, although Δ 𝐴  

approaches 0 for values of A further from Δ 𝐴 ’s peak, which we 

denote 𝑎. Thus, in line with intuition, subjects should never show a 

reversal of a sentence context effect, on average. 

Property 2. Δ 𝐴  is symmetrical under the assumptions imposed on BIASES in 

Chapter 2; in particular, Δ 𝑎 − 𝑥 = Δ 𝑎 + 𝑥  if 𝜎! = 𝜎!! = 𝜎!!. 

                                                
5 Note that Δ 𝐴  is not a perfect tool for all purposes. For instance, although it does 
approximate the expected effect size after many trials in each context are completed, it is 
not meant to simulate behavioral data directly. After all, like the boundary shift, effect 
size is a derived measure that is epiphenomenal (from the explanatory standpoint of 
BIASES). Thus, the function is used for illustrative purposes, but all actual simulated 
behavioral data in Chapters 3 and 4 are generated using Equation 2.11 and subtracted to 
illustrate expected effect sizes. 
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Property 3. In general, it not possible to compute a definite integral for the sum or 

difference of two sigmoids. This is notable because the integral of 

Δ 𝐴  (i.e., the total area between Δ 𝐴  and the x-axis) is equal to the 

area between the 2 posteriors being compared: 𝑝 𝑤! 𝐴, 𝑐! −

𝑝 𝑤! 𝐴, 𝑐! . However, numerical methods can be used to approximate 

this value, and, conveniently, the total area under Δ 𝐴 , and therefore 

the total area between the 𝑝 𝑤! 𝐴, 𝑐!  and 𝑝 𝑤! 𝐴, 𝑐!  is equal to the 

magnitude of the effective category boundary shift between the two 

contexts (cf. Equation 3.3), as shown in Equation 3.5: 

Equation 3.5 

Δ 𝐴 = 𝑝 𝑤! 𝐴, 𝑐! − 𝑝 𝑤! 𝐴, 𝑐! =
log 𝑝 𝑤! 𝑐!𝑝 𝑤! 𝑐!

− log 𝑝 𝑤! 𝑐!𝑝 𝑤! 𝑐!
𝑔 = χ!! − χ!! 

Property 4. If the maximum expected difference in the posteriors is located (in 

acoustic space) at 𝑎  and has an effect size of magnitude Δ!"# , 

Equations 3.6 and 3.7 give those values. 𝑎 occurs at the midpoint of 

the two posterior probability distributions’ effective category 

boundaries. 

Equation 3.6 

𝑎 = argmax
!!∈𝒜

Δ 𝑎! =
χ−

Π!!
𝑔 + χ−

Π!!
𝑔

2 = χ−
log 𝑝 𝑤! 𝑐!𝑝 𝑤! 𝑐!

+ log 𝑝 𝑤! 𝑐!𝑝 𝑤! 𝑐!
2𝑔  

Equation 3.7 

Δ!"# = Δ 𝑎 =
1

1+ 𝑒!
!
! !"#! !! !!

! !! !!
!!"#! !! !!

! !! !!

−
1

1+ 𝑒!
!
! !"#! !! !!

! !! !!
!!"#! !! !!

! !! !!
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Property 5. As is obvious from Equation 3.7, the value Δ!"# is independent of the 

specific characteristics of the phonetic category structure (i.e., the 

likelihood) in BIASES, including both χ and 𝑔. Unsurprisingly, Δ!"# 

does depend on the relative strengths of the biases of the prior contexts 

being compared. Simulation Study 3.2 further examines this issue (see 

Box 3.2; Figures 3.6-3.9; Tables 3.2-3.3). 

One thing that we can conclude from these simulations and observations is that 

the effective category boundary shift – which underlies the model’s explanation of top-

down effects on spoken word recognition – is, indeed, closely tied to overall differences 

in the influence of two prior contexts on speech recognition (e.g., Property 3), but this 

shift does not tell the whole story of top-down effects on speech perception. According to 

BIASES, different effect sizes should be observed as a function of the underlying 

phonetic category structure (see Simulation Study 3.1) and as a function of the relative 

strengths of the biases of the two contexts being compared (see Simulation Study 3.2). 

In short, BIASES predicts fine-grained variation in the size of top-down effects 

that should be observed in subjects’ responses to different acoustic tokens in different 

sentential contexts. The distribution and shape of the Δ 𝐴  curve (i.e., expected top-down 

effects as a function of VOT, for a given pair of contexts) depends on many factors. This 

general statement is of great theoretical interest because of the enormous variability and 

inconsistency in top-down effects observed in the literature (see, e.g., Pitt & Samuel, 

1993).  It is this issue to which we now turn. 
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Figure 3.4. Results of Simulation Study 3.1: Influence of 𝜇! − 𝜇! and 𝜎! on Δ 𝐴 =
𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! − 𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! . Δ 𝐴 : solid black curves; χ : dashed/grey 
vertical line. 
 

 
Figure 3.5. Results of Simulation Study 3.1: Influence of 𝜇! − 𝜇! and 𝜎! on Δ 𝐴 =
𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! − 𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! . Δ 𝐴 : solid/colored curves; χ: dashed/grey 
vertical line.  

µ1 − µ2 = 64 µ1 − µ2 = 36

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

σ
=

15
σ
=

20

−25 0 25 50 75 100 −25 0 25 50 75 100
VOT (ms)

Ef
fe

ct
 S

iz
e:

 D
iff

er
en

ce
 in

 P
os

te
rio

r P
ro

ba
bi

lit
ie

s o
f p
ay

:
p(
w

1|
V
O
T

,c
1) 
− 
p(
w

1|
V
O
T

,c
2)

µ1 − µ2 = 64 µ1 − µ2 = 36

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

σ
=

15
σ
=

20

−25 0 25 50 75 100 −25 0 25 50 75 100
VOT (ms)

Ef
fe

ct
 S

iz
e:

 D
iff

er
en

ce
 in

 P
os

te
rio

r P
ro

ba
bi

lit
y 

of
 p
ay

 (v
s. 

ne
ut

ra
l):

p(
w

1|
V
O
T

,c
i) 
− 
p(
w

1|
V
O
T

,c
N

)

Prior Probability of pay:   p(w1|ci)
c1 = 0.75 c2 = 0.25



 
100 

 
Figure 3.6. Example simulation from Simulation Study 3.2: Illustrates posterior 
probability distributions as a function of VOT and prior context (𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! ; top 
panel), effect size as a function of VOT for those two prior contexts (Δ 𝐴 ; middle 
panel), and effect size as a function of VOT for each of those two prior contexts relative 
to a neutral baseline (bottom panel). All panels simulated in this illustration represent 
priors 𝑝 𝑤! 𝑉𝑂𝑇, 𝑐! = 0.9 and 𝑝 𝑤! 𝑉𝑂𝑇, 𝑐! = 0.25, with 𝜇! − 𝜇! = 64, χ = 32, and 
𝜎! = 20!. In all panels: χ: dashed/grey vertical line; χ!! for each Π!!: dashed/colored 
vertical lines; Δ!"#: magnitude of solid/orange vertical marker; 𝑎: VOT of solid/orange 
vertical marker; χ!! − χ!!: magnitude of solid/black horizontal marker. For top panel: 
𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! : solid/colored curves; 𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! : dotted/grey curve. For 
middle panel: Δ 𝐴 = 𝑝 𝑤! 𝑉𝑂𝑇, 𝑐! − 𝑝 𝑤! 𝑉𝑂𝑇, 𝑐! : solid/black curve; For bottom 
panel: Δ 𝐴 = 𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! − 𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! : solid/colored curves; Δ!"# of 
each context’s posterior relative to cN: magnitude of solid/colored vertical markers.  
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Figure 3.7. Results of Simulation Study 3.2: Influence of 𝑝 𝑤! 𝐶 = 𝑐!  and 𝜎!  on 
posterior probability function, incorporating prior contexts: 𝑝 𝑤! 𝐶 = 𝑐! : colored curves 
(solid: 𝜎 = 20; dashed: 𝜎 = 30); χ: dashed/grey vertical line; χ!! for each Π!: colored 
vertical lines (solid: 𝜎 = 20; dashed: 𝜎 = 30) 

 

p(w1|c1)=0.25 p(w1|c1)=0.75 p(w1|c1)=0.9

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

p(w
1 |c

2 )=0.25
p(w

1 |c
2 )=0.75

p(w
1 |c

2 )=0.9

−25 0 25 50 75 100 −25 0 25 50 75 100 −25 0 25 50 75 100
VOT (ms)

Po
st

er
io

r P
ro

ba
bi

lit
y 

of
 p
ay

:  
 p

(w
1|
V
O
T

,C
)

Prior Probability of pay:   p(w1|ci)
c1
c2

σ
σ = 20
σ = 30



 
102 

 
Figure 3.8. Results of Simulation Study 3.2: Influence of 𝑝 𝑤! 𝐶 = 𝑐!  and 𝜎!  on 
Δ 𝐴 = 𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! − 𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! ; Δ 𝐴 : black curves (solid: 𝜎 = 20; 
dashed: 𝜎 = 30); χ: dashed/grey vertical line 

 
Figure 3.9. Results of Simulation Study 3.2: Influence of 𝑝 𝑤! 𝐶 = 𝑐!  and 𝜎!  on 
Δ 𝐴 = 𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! − 𝑝 𝑤! 𝑉𝑂𝑇,𝐶 = 𝑐! ; Δ 𝐴 : colored curves (solid: 𝜎 = 20; 
dashed: 𝜎 = 30); χ: dashed/grey vertical line  
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Box 3.2. Description of Simulation Study 3.2 
Goal: Illustrate influence of the strength of contextual priors and one aspect of phonetic 

category structure on posterior probability function and size of sentential context 
effects. 

Design: 2 phonetic category structures; 3 fully crossed levels of contextual bias in 2×3×3 
design 

Parameters of BIASES Manipulated: 𝜎! ∈ {20!, 30!} , 𝑝 𝑤! 𝐶 = 𝑐! ∈ {0.25,0.75,0.90} 
, 𝑝 𝑤! 𝐶 = 𝑐! ∈ {0.25,0.75,0.90} 

Parameters of BIASES Held Constant: χ = 32 , 𝜇! − 𝜇! = 64 
Results displayed in: Figures 3.6-3.9, Table 3.2-3.3 
Key conclusions: 
1. Figure 3.6 illustrates the geometric interpretations of several critical variables in 

Chapter 3. 
2. As in Simulation Study 3.1, the magnitude of the effective category boundary shift 

between two prior contexts (χ!! − χ!!) depends on g (Figure 3.7), but the maximum 
expected effect size (Δ!"#) is independent of g. To see this, compare the solid and 
dashed curves in Figure 3.7. They peak at the same height. Note, also, that in Table 
3.2 and Table 3.3, Δ!"# is the same for the same panel in each table. Table 3.2 lists 
the summary statistics for the simulations using 𝜎! = 20!  and Table 3.3 lists 
summary statistics for the simulations using 𝜎! = 30!. Each colored panel represent 
a pair of prior contexts, with tan panels showing no expected context effects (see 
Figures 3.7-3.8), blue panels having higher posteriors for c1, red panels having higher 
posteriors for c2, and darker panels (of each hue) corresponding to larger expected 
effect sizes. Δ!"# depends only on the prior contexts’ biases’ strengths. 

3. Nonetheless, despite Δ!"# being independent of BIASES’ likelihood function, the 
VOT at which the maximum expected effect size is found (𝑎) is not (see Figure 3.8). 
As Equations 3.6 and 3.7 suggest, 𝑎 lies midway between the two priors’ effective 
category boundaries, which depend on g. Note the divergence between Tables 3.2 and 
3.3 in 𝑎 for the same panel (i.e., priors). 

4. Similarly, the magnitude of the effective category boundary shift between two prior 
contexts (χ!! − χ!!) depends on g and the priors (see Figure 3.7). 

5. When measured for each prior context relative to a neutral baseline, the expected 
effect size for any given VOT is asymmetrical (in general); the locus of the maximum 
effect size is at the midpoint between χ and the prior context’s effective category 
boundary (χ!!) (see Figures 3.6 and 3.9). 

 
Tables 3.2-3.3. Summary of Results of Simulation Study 3.2: Influence of of 
𝑝 𝑤! 𝐶 = 𝑐!  and 𝜎! on posterior probability distribution and size of sentential context 
effects (Table 3.2: 𝜎! = 20!; Table 3.3: 𝜎! = 30!). Each colored panel represent a pair 
of prior contexts, with tan panels showing no expected context effects (see Figures 3.7-
3.8), blue panels having higher posteriors for c1, red panels having higher posteriors for 
c2, and darker panels (of each hue) corresponding to larger expected effect sizes. 
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𝜎! = 20! 𝑝 𝑤! 𝑉𝑂𝑇, 𝑐!  

 = 0.25 = 0.75 = 0.90 
𝑝
𝑤
!
𝑉𝑂
𝑇,
𝑐 !

 

=
0.
25

 

χ = 32 χ = 32 χ = 32 
g = 0.16 g = 0.16 g = 0.16 
𝑎 = 38.87 𝑎 = 32.00 𝑎 = 28.57 
Δ!"# = 0.00 Δ!"# = 0.50 Δ!"# = 0.68 

χ!! − χ!! = 0.00 χ!! − χ!! = 13.73 χ!! − χ!! = 20.60 
=
0.
75

 

χ = 32 χ = 32 χ = 32 
g = 0.16 g = 0.16 g = 0.16 
𝑎 = 32.00 𝑎 = 25.13 𝑎 = 21.70 

Δ!"# =−0.50 Δ!"# = 0.00 Δ!"# = 0.27 
χ!! − χ!! = −13.73 χ!! − χ!! = 0.00 χ!! − χ!! = 6.87 

=
0.
90

 

χ = 32 χ = 32 χ = 32 
g = 0.16 g = 0.16 g = 0.16 
𝑎 = 28.57 𝑎 = 21.70 𝑎 = 18.27 

Δ!"# =−0.68 Δ!"# =−0.27 Δ!"# = 0.00 
χ!! − χ!! = −20.60 χ!! − χ!! = −6.87 χ!! − χ!! = 0.00 

Table 3.2. Summary of Results of Simulation Study 3.2 (simulations utilizing 𝜎! = 20!). 
 

𝜎! = 30! 𝑝 𝑤! 𝑉𝑂𝑇, 𝑐!  
 = 0.25 = 0.75 = 0.90 

𝑝
𝑤
!
𝑉𝑂
𝑇,
𝑐 !

 

=
0.
25

 

χ = 32 χ = 32 χ = 32 
g = 0.07 g = 0.07 g = 0.07 
𝑎 = 47.45 𝑎 = 32.00 𝑎 = 24.28 
Δ!"# = 0.00 Δ!"# = 0.50 Δ!"# = 0.68 

χ!! − χ!! = 0.00 χ!! − χ!! = 30.90 χ!! − χ!! = 46.35 

=
0.
75

 

χ = 32 χ = 32 χ = 32 
g = 0.07 g = 0.07 g = 0.07 
𝑎 = 32.00 𝑎 = 16.55 𝑎 = 8.83 

Δ!"# =−0.50 Δ!"# = 0.00 Δ!"# = 0.27 
χ!! − χ!! = −30.90 χ!! − χ!! = 0.00 χ!! − χ!! = 15.45 

=
0.
90

 

χ = 32 χ = 32 χ = 32 
g = 0.07 g = 0.07 g = 0.07 
𝑎 = 24.28 𝑎 = 8.83 𝑎 = 1.10 

Δ!"# =−0.68 Δ!"# =−0.27 Δ!"# = 0.00 
χ!! − χ!! = −46.35 χ!! − χ!! = −15.45 χ!! − χ!! = 0.00 

Table 3.3. Summary of Results of Simulation Study 3.2 (simulations utilizing 𝜎! = 30!).  
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3.2. Evaluating BIASES 

A central motivation behind the development of BIASES is to provide a 

theoretical explanation and computational framework within which to examine top-down 

effects from sentential context in spoken word recognition tasks. The foregoing work 

(Chapters 2 through 3.1) has focused on this task. However, BIASES provides more than 

a framework; as discussed above, BIASES also provides an explicit mathematical model 

that makes specific, fine-grained quantitative predictions about the distribution of top-

down effects on spoken word recognition. Thus, it is important to evaluate the extent to 

which BIASES can account for observed variability in such effects, and the extent to 

which its novel predictions are borne out experimentally. 

3.2.1. Observed Variability in the Size of Top-Down Context Effects 

Despite the strong evidence for top-down effects on spoken word recognition (see 

Chapter 2), substantial heterogeneity remains to be explained in the fine-grained details 

of the results in studies of this class of phenomenon. Pitt and Samuel (1993) provide a 

thorough review of such variability for lexical effects, but we discuss a few examples 

here. 

Observed effects vary depending on the source of bias (e.g., lexical, sentential, 

monetary payoff). Among lexical effects, the degree of top-down influence depends on 

the position of the manipulated phonetic cues in the word (e.g., word-initial: Ganong, 

1980; word-medial: Connine, 1990; word-final: McQueen, 1991; see also Mattys, 

Melhorn & White, 2007). Among sentential context effects, the sizes of semantic, 

syntactic and pragmatic effects are not consistent. Even restricting analysis to top-down 

effects from syntactic sentential context on speech recognition, effect sizes vary greatly 
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(see Chapter 1; Fox & Blumstein, in press). Such effects are reminiscent of word 

frequency effects (Connine et al, 1993) in phoneme identification tasks (see Pitt & 

Samuel, 1993 for a related explanation of inconsistent lexical effects due to word 

familiarity/frequency). 

In addition to varying with the nature of the biasing information, top-down effects 

also depend on characteristics of the acoustic stimuli that comprise the test continua. 

Most obviously and most consistently across studies, top-down effects are larger for more 

phonetically ambiguous stimuli and they vanish or are very small for tokens that are 

clearly identifiable. Other acoustic manipulations that reduce stimulus quality or 

otherwise render the tokens more ambiguous tend to be associated with larger effect sizes 

(e.g., Burton & Blumstein, 1995; McQueen, 1991; Pitt & Samuel, 1993). On the other 

hand, top-down effects are elusive when stimuli are more faithful to the phonetic 

properties of real speech and have a greater number of reliable bottom-up acoustic cues 

(e.g., Burton, Baum & Blumstein, 1989). Indeed, there is even some indication that the 

size and prevalence of top-down effects depends on the specific phonetic contrasts and 

the acoustic cues being manipulated in the stimuli (e.g., /sh/–/ch/ vs. /sh/–/h/ vs. /sh/–/s/ 

vs. /b/–/m/ vs. /b/–/d/ vs. /b/–/p/ vs. /g/–/k/ vs. /t/–/d/). 

Furthermore, there is a high degree of individual subject variability in the extent 

to which subjects exhibit top-down effects, even within a homogenous population of 

healthy, monolingual English-speaking young adults with normal hearing (see, e.g., 

Chapter 1; Fox & Blumstein, in press). Far more variability exists when considering the 

size of such effects in elderly adults (e.g., Abada et al, 2008) or patients with aphasia (see 

Chapter 4; see also Baum, 2001; Blumstein et al, 1994; Boyczuk & Baum, 1999).  
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Finally, a review of the literature shows that there are also strong task effects and 

an influence of an experiment’s demand characteristics on the observed size of top-down 

effects on speech recognition. Chapter 1 discussed the role of stimulus predictability, 

experimental task (phoneme vs. word identification), and response latency in determining 

the expected size of top-down effects (see Fox & Blumstein, in press; cf. Bicknell, Jeager 

& Tanenhaus, in press; Bicknell, Tanenhaus & Jeager, submitted; Connine, Blasko & 

Hall, 1991; McClelland, 1987; Pitt & Samuel, 1993; Szostak & Pitt, 2013; van Alphen & 

McQueen, 2001). Pitt and Samuel (1993) also acknowledge apparent modulations of top-

down effects in mixed vs. blocked designs, and they highlight the potential for 

differences in measured effect sizes due to differences in the analytic techniques 

experimenters select. 

In some cases, such variability may be due to chance. However, it is also possible 

that the observed asymmetries and inconsistencies are not merely noise, but are, in fact, 

systematic variation attributable to the basic principles underlying speech perception and 

the probabilistic Bayesian framework within which we are have formulated an 

explanation of sentential context effects on spoken word recognition. Because BIASES 

offers a formal, mathematical model of context effects on speech perception, it is possible 

to evaluate the quantitative predictions of the model in light of available data. In this way, 

not only can we validate many of the fundamental principles underlying BIASES, but we 

can also identify shortcomings of BIASES and take measures to improve the model’s 

empirical coverage. 

Next, we consider four sources of variability, examining whether and/or how 

BIASES might capture the observed irregularities, and, in the process, relaxing some of 
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the simplifying assumptions adopted when the model was introduced in Chapter 2. 

Specifically, we examine two sources associated with the likelihood term of BIASES 

(variability in the ambiguity of phonetic cues based on VOT and based on additional 

cues) and two sources associated with the prior term of BIASES (variability based in the 

strength of prior context and based on a “neutral” context). 

3.2.2. Variability in the Ambiguity of Phonetic Cues: VOT 

One well-documented source of variability in top-down effects on spoken word 

recognition is variability along a continuum; top-down effects are not typically observed 

for phonetically unambiguous endpoint stimuli. For example, stimuli with very short 

VOTs are not good exemplars of /p/, as reflected in the likelihood distribution for /b/ and 

/p/ in Figure 3.1. There is a vanishingly small probability that a word-initial /p/ will be 

pronounced with a VOT of 10 ms, so the posterior probability (see Figure 3.2) of a /p/-

response for such a token is virtually zero. Even when the prior context strongly supports 

a word beginning with /p/ (see Figure 3.3) subjects are not likely to make a /p/-response; 

after all, the posterior in Bayes’ rule is proportional to the product of the prior and the 

likelihood, so acoustic tokens that are not at all representative of /p/ (i.e., have a 

likelihood close to zero) will not tend to show reliable context effects. The same is true of 

stop consonant tokens with VOTs of 50 ms, for example, because the likelihood that that 

VOT is a token of bay is practically zero. This can be seen clearly in Figure 3.4, where no 

context effects are observed for these VOT values. 

This pattern has been replicated in the literature, going back to Ganong’s original 

lexical effect (1980); for instance, a large effect for intermediate VOTs and much smaller 

or nonexistent effects for endpoint VOT tokens can be seen in the data from Chapter 1 
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(Fox & Blumstein, in press; see Chapter 2 for discussion). This is not a strictly Bayesian 

pattern: many models are capable of capturing this sort of effect. However, the pattern 

exemplified in Figure 3.4 is a fundamental property of the Bayesian framework (e.g., 

Massaro, 1989; Norris & McQueen, 2008), rather than the consequence of a design 

choice within the model. This contrasts with other models, such as Merge (Norris et al, 

2000), which prevents top-down information from influencing responses to endpoint 

tokens by implementing a “bottom-up priority rule” that only allows higher-level sources 

to affect decisions if the acoustic information is ambiguous (Norris et al, 2000). 

Importantly, in order to explicitly implement something like Merge’s bottom-up priority 

rule, a model must define some additional computational machinery and/or assumptions 

to govern when bottom-up decisions are protected from contextual influences vs. when 

top-down information is integrated. 

Although other cue integration models (e.g., Toscano & McMurray, 2010), which 

focus on the integration of multiple acoustic cues in speech perception, also exhibit 

reliability-based cue-weighting like the present model, BIASES also makes fine-grained 

quantitative predictions about the distribution of top-down effects across VOTs that can 

be compared to patterns in empirical data. To the extent that these specific predictions are 

borne out, it would suggest that there exist certain hallmarks of Bayesian cue integration 

in behavioral results. This issue is examined further later in this chapter. 

3.2.3. Variability in the Ambiguity of Phonetic Cues: Additional Cues 

Although, up to now, we have assumed that VOT is the primary acoustic 

dimension on which voiced and voiceless stop consonants (e.g., /b/ and /p/) are 

distinguished in speech perception (Liberman et al, 1961), listeners also make use of a 
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large variety of other acoustic cues in their judgments about voicing in natural speech 

stimuli (see, e.g., Klatt, 1975; Lisker, 1986; Miller & Dexter, 1988; Repp, 1984; Stevens 

& Klatt, 1974; Summerfield, 1981). A complete model of top-down effects on spoken 

word recognition, then, would include all of these cues in the likelihood model that maps 

acoustic stimuli to words. 

Burton, Baum and Blumstein (1989) investigated one cue in particular – the 

amplitude of the burst of the stop consonant. In natural speech, VOT and burst amplitude 

co-vary (Lisker & Abramson, 1964; Pickett, 1980; Zue, 1976), even though most VOT 

continua hold burst amplitude constant in an attempt to isolate the effect of VOT duration 

on speech recognition. Burton and colleagues (1989) showed that not only were subjects 

sensitive to manipulations of burst amplitude as a cue to voicing in stop consonants, but 

that the size of top-down effects as determined by the emergence of a lexical effect in 

their responses differed depending on whether the stimuli in the test VOT continuum 

varied from token to token in both the burst amplitude and VOT or just in VOT. Top-

down effects occurred when only VOT varied, and were not, in fact, significant when 

burst amplitude and VOT co-varied along the continuum (as in natural speech). 

How might this asymmetry be explained within the Bayesian framework? Clearly, 

BIASES is not equipped to explain this effect under its original assumptions because it 

assumes that VOT is the only relevant acoustic cue to a word onset’s identity. A simple 

adaptation, however, can explain how this effect emerges. First, we must incorporate both 

the burst amplitude and the VOT of a given stimulus into BIASES’ likelihood function, 

𝑝 𝐴 𝑊 = 𝑝 𝑏𝑢𝑟𝑠𝑡,𝑉𝑂𝑇 𝑊 . With this change, the likelihood function is two-

dimensional instead of one-dimensional; note that, while this is still surely an 
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oversimplification, since many other acoustic cues also influence word recognition, it 

illustrates the adaptability of BIASES. Next, we created an arbitrary range of burst 

amplitudes that was higher for voiceless tokens than voiced tokens (cf. Lisker & 

Abramson, 1964). 

Finally, a simulation was conducted to compare the expected size of top-down 

effects in responses to stimuli from two simulated VOT continua: a VOT continuum with 

a single burst amplitude across all token and a VOT continuum with VOT values that co-

varied with burst amplitude. Arbitrary mean and variance parameters were selected from 

among those used in Simulation Study 3.1 (any choice shows the same basic pattern, but 

the actual size of the effective category boundary shift depends on this choice; see Figure 

3.3 and Table 3.1). Figure 3.10 shows the posterior probability distributions for the two 

simulated continua in two biasing contexts (blue vs. red) and a baseline neutral context 

(black). 

 
Figure 3.10. Results of two model simulations of posterior probability distributions 
assuming the same biasing/neutral contexts and identical underlying likelihood models. 
Simulations on the left and right only varied in whether of not the VOTs of the stimuli 
were correlated with burst amplitude of the simulated stimuli (right) or not (left). 
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As can be seen, the expected category boundary shift (and effect sizes) are smaller 

for the second simulated stimulus set (burst amplitude and VOT co-varied) than in the 

first simulated stimulus set (VOT varies with a constant value for burst amplitude: the 

mean amplitude of the voiceless stop’s burst). It is important to note that the model is the 

same in both simulations (it is BIASES with the updated likelihood model to include 

burst amplitude as an acoustic cue) – only the characteristics of the simulated stimulus 

sets vary between the two simulations. 

Next we consider two sources of variability related to the prior of BIASES. 

3.2.4. Variability in the Strength of Prior Cues 

 Figure 3.11 is a reproduction of Figure 1.2 (in Chapter 1; Fox & Blumstein, in 

press), which shows the results of Experiment 1 from that study: the proportion of /p/-

responses made to ambiguous tokens (i.e., the intermediate VOT values as defined in 

Chapter 1) from the bay–pay and buy–pie continua following noun-biasing (e.g., Valerie 

hated the...) and verb-biasing (e.g., Brett hated to...) sentence contexts. Recall that the 

bay–pay continuum was designed to be a noun–verb continuum and the buy–pie 

continuum was designed to be a verb–noun continuum. As explained in Chapter 1 and as 

can be seen in Figure 3.11, consistent with predictions, subjects exhibited a significant 

CONTEXT x CONTINUUM interaction, wherein they were more likely to make /p/-

responses when the most common grammatical category of the /p/-endpoint was 

consistent with the grammatical cue provided by the preceding function word (to vs. the). 

While this effect was quite robust, with the simple effects of CONTEXT being 

significant and in opposite directions in each level of CONTINUUM, the effect sizes 

were not identical. This can be seen clearly in Figure 3.11: the magnitude of the effect of 
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CONTEXT in the buy–pie continuum (β = 0.95) is smaller than the effect’s magnitude in 

the bay–pay continuum (β = -1.37). Moreover, visual inspection of Figure 3.11 suggests 

that the primary level of CONTEXT that is driving the interaction is the verb-biasing (to) 

level: the proportion of /p/-responses is far more disparate between the two continua 

following the verb-biasing contexts than the noun-biasing contexts. 

 
Figure 3.11. Reproduction of Figure 1.2. Mean proportion of /p/-responses to ambiguous 
tokens from each VOT continuum in Experiment 1 of Chapter 1 after noun-biasing and 
verb-biasing sentence contexts. Error bars represent standard error. (Fox & Blumstein, in 
press) 
 
 One possible explanation for this asymmetry lies in the strength of the biasing 

information in the prior of BIASES. Intuitively, if the targets (i.e., bay, pay, buy, pie) all 

represent relatively “good” nouns (i.e., they are sensible and/or grammatically acceptable 

following the), but only pay and buy represent “good” verbs (i.e., they are acceptable 

following to), then the second asymmetry should be predicted: the verb-biasing contexts 

0.0

0.2

0.4

0.6

0.8

1.0

bay−pay buy−pie
continuum

pr
op

or
tio

n 
"p

"−
re

sp
on

se
s the to



 
114 

should drive the interaction. The stronger overall magnitude of the bias observed in the 

bay–pay continuum might occur under many circumstances, including if pay was 

particularly likely to follow to and bay was particularly unlikely, thereby creating a bias 

much stronger in that condition than in the others. To determine whether this intuitive 

explanation could quantitatively capture the asymmetry observed for these particular 

contexts and target words, we implemented the prior of BIASES (bigram language 

model; see Chapter 2) for these stimuli. 

Table 3.4 provides corpus counts of the number of tokens of each of the function 

word / target bigrams (e.g., to pay, the buy) appears in the Google Books corpus (Michel 

et al, 2010). As described in Chapter 2, a smoothing parameter6 is added to every corpus 

count (Lidstone, 1920) to yield an estimate of the conditional prior for each word, given 

the preceding context.  

 
 ...bay ...pay ...buy ...pie 

to... 91,314 17,383,444 7,423,403 6,709 

the... 3,236,957 945,799 56,284 249,243 
Table 3.4. Number of tokens of each bigram found to the 2009 Google Books corpus 
(Michel et al, 2010) 
 

Furthermore, the likelihood model was improved so as to allow the rime (i.e., 

vowel + glide) of the target stimulus to influence the likelihood of BIASES, rather than 

just the VOT of the initial stop consonant of the stimulus (see Chapter 4 for more detail 

on the mathematical details of this improvement). Words that differed from a target 

                                                
6 Although any value of alpha will give the basic same pattern of results (i.e., the same 
ordering of effect sizes), different values will accentuate the disparities between the 
contexts and continua to greater or lesser extents. For the present simulations the value, 
1x107 was utilized to illustrate the similarity between the model predictions and the 
experimental results. 
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stimulus in its rime were assigned a likelihood (and therefore a posterior probability) of 

zero; that is, for every trial on which a subject heard /?ei/, the only words competing for 

recognition were bay and pay. 

The smoothed corpus estimates were incorporated into BIASES as the conditional 

prior. For the likelihood model, arbitrary mean and variance parameters were selected 

from among those used in Simulation Study 3.1 (any choice shows the same basic 

pattern). Figure 3.12 shows the posterior probability distributions for the two continua in 

each context (left panels) and reproduces Figure 1.1 (right panels) for comparison. 

 

 
 
Figure 3.12. Model simulations of posterior probability distributions (left) and original 
data (right) for the bay–pay (top) and buy–pie (bottom) continua in the noun- and verb-
biasing contexts (verb-biasing: blue on left / dashed on right; noun-biasing: red on left / 
solid on right). Right panels are a reproduction of Figure 1.1. Mean proportion of /p/-
responses to tokens from each VOT continuum in Experiment 1 of Chapter 1 after noun-
biasing and verb-biasing sentence contexts. Error bars represent standard error. (Fox & 
Blumstein, in press) 
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Finally, from the resulting posterior distributions, 20 sets (i.e., 20 subjects) of 20 

behavioral responses were simulated in for each context condition for an ambiguous VOT 

(randomly selected VOT value within 5 ms of the assumed category boundary). Figure 

3.13 shows the mean proportion of /p/-responses in each continuum to the ambiguous 

VOT value after each context. The same pattern of results seen in Figure 3.11 can be 

observed there: the overall interaction is robust, there is a larger effect of context in the 

bay–pay continuum than in the buy–pie continuum, and the effect is largely driven by the 

verb-biasing contexts. Importantly, these results are obtained without any significant 

efforts at parameter-fitting; rather, the pattern of results that emerges is inherent to a 

Bayesian model that assumes, like BIASES, that the prior word should bias the 

perception of subsequent spoken words when they are phonetically ambiguous. Thus, 

these results strongly suggest that variability in the strength of prior information in a 

sentence context modulates the size of observed top-down effects in systematic and 

predictable ways. 
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Figure 3.13. Model simulations of behavioral response rates for the bay–pay (left bars) 
and buy–pie (right bars) continua in noun-biasing (red) and verb-biasing (blue) sentence 
contexts. Mean proportion of simulated /p/-responses to randomly selected ambiguous 
VOT (within 5 ms of simulated category boundary) by 20 subjects with 20 Bernoulli 
(independent and identically distributed) trials. Error bars represent standard error of 20 
simulated subject means. Compare to Figure 3.11 (or Figure 1.2). (cf. Fox & Blumstein, 
in press) 
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continuation (e.g., He painted the...). Researchers have also attempted to include 

similarly neutral contexts in lexical effect studies by using continua between two non-

words or between two words (e.g., Fox, 1984). The goal of such studies is generally to 

compare each biasing context to the neutral context in order to illustrate that sentential 

context effects are affecting the identification of stimuli relative to a neutral context. 

However, it has often been observed that the neutral context may differ 

significantly from only one of the biasing contexts, or the effect size may be larger in one 

direction than the other. These asymmetries have rarely been discussed in detail in the 

literature. Nonetheless, because BIASES demands that even the allegedly “neutral” 

context have some prior (whether 0.5 or not), this exercise serves as a reminder that one 

must explicitly model the prior on even the neutral context. It may be that the sentence 

contexts representing the neutral condition are, indeed, truly unbiased: 𝑝 𝑤! 𝐶 = 𝑐! =

0.5. In such a case, the asymmetries might be explained by asymmetric prior biases for 

the two biasing contexts: there is no guarantee that stimuli in the two biasing contexts 

will be equally biasing away from a perfectly neutral context, as in Simulation Study 3.1 

(see Box 3.1) where 𝑝 𝑤! 𝐶 = 𝑐! = 0.75  and 𝑝 𝑤! 𝐶 = 𝑐! = 0.25 . Indeed, in 

Simulation Study 3.2 (see Box 3.2), prior contexts that were not equally biased compared 

to the neutral context were examined, with asymmetries resulting (see Figures 3.6 and 

3.9). 

This issue is explored further later in this chapter, but, for the moment, it is simply 

worth noting that one important conclusion from this discussion is that an experimentally 

defined “neutral” context may not be neutral at all: there may be biases inherent in even 

those “neutral” stimuli, and – even if they are neutral – the only conditions under which 
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one should expect equal effect sizes of each context in comparison to the “neutral” 

condition is when stimuli are perfectly evenly biased around the perfectly neutral context. 

These conditions are unlikely to be met without extremely tight experimental design 

controls, but BIASES allows an experimenter to predict in advance of an experiment the 

likely effect sizes when comparing stimuli from different conditions. Thus, BIASES can 

be employed for power analyses and experimental design purposes. 

3.3. Testing Predictions of BIASES: Experiment 3.1 

In order to further examine the extent to which fine-grained predictions of 

BIASES could be observed in empirical data, a new set of stimuli was constructed and 

Experiment 3.1 was conducted. In particular, there were two goals: (a) to determine 

whether by-subject differences in pay-response rates to different acoustic stimuli 

predicted specific patterns of top-down effects, and (b) to determine whether there is 

evidence that subjects’ responses to stimuli following a “neutral” context actually reflect 

Bayes-optimal processing. These two goals were addressed by two model comparison 

analyses examining the results of Experiment 3.1. 

3.3.1. Methods 

3.3.1.1. Subjects 

 15 healthy young adults participated in Experiment 3.1 as part of a multi-

experiment session, although all 15 subjects completed this experiment first. Participants 

either received course credit or 8 dollars. All subjects were right-handed monolingual 

native speakers of American English, and all participants self-reported having normal 

hearing and no known neurological diseases. 

3.3.1.2. Materials 
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The stimuli for this study were comprised of 4 acoustic tokens from a voice-onset 

time continuum between bay and pay, each of which was appended to a set of noun- and 

verb-biasing sentence contexts (e.g., He hated the... vs. He hated to...). Stimuli were 

recorded in a soundproof booth on an Edirol digital recorder (model R09-HR) with a 

Sony microphone (model ECM-MS907) (sampling rate: 44.1 kHz; 24 bits; stereo) and 

then were resampled in BLISS speech-editing software (Mertus, 1989) (sampling rate: 

22.05 kHz; 16 bits; mono: left). The speaker was a male native speaker of American 

English. All sentence frames (e.g., He hated...), biasing function words (to/the), and 

naturally produced target tokens of bay and pay were produced in isolation multiple times 

and tokens were selected from among them for use in the experiment proper. The list of 

sentence frames consisted of the same 20 main verbs that were used by Fox and 

Blumstein (2015; see also Chapter 1), but first names were replaced with the pronoun 

“He” to reduce differences in stimulus duration and ensure subject would not be able to 

learn mappings between names and subsequent function words. 

Three contexts were appended to each of the 20 sentence frames. A naturally 

produced token of the, a naturally produced token of to (both of duration 125 ms), and 

125 ms of unintelligible but spectrally similar speech babble (the initial and final 40 ms 

of which were ramp up/down respectively). This third condition was dubbed the “noise” 

condition. In total, this yielded 60 sentence contexts (20 main verbs crossed with the 

three conditions; He hated to.../the.../[noise]...). To each of these 60 contexts, each of 4 

acoustically manipulated tokens from a VOT continuum between bay and pay were 

appended (yielding 240 total sentences for each subject to respond to in the experiment). 
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Tokens of the VOT continuum were constructed by concatenating: the unaltered 

burst of a pay token; a variable amount of aspiration from the natural pay token (duration 

depended on duration of vowel removed – see below); the first quasiperiodic pitch period 

from the natural pay token; and all but the first N pitch periods of a naturally produced 

token of bay, where N = the stimulus number - 1. The duration of the N pitch periods that 

were removed was equal to the amount of aspiration added from the pay token in order to 

ensure all tokens were the same duration, overall (within 1 ms of 439 ms). In this way, 7 

VOT tokens were created. Four tokens with VOTs of 3, 22, 31, 48 ms were selected for 

stimuli because the middle two were judged to be the most ambiguous and other two 

were strong endpoint tokens. 

3.3.1.3. Procedure 

All subjects heard all stimuli binaurally over headphones in a random order in a 

sound-dampened booth and were instructed to respond whether the last word of each 

sentence was bay or pay, by pressing the appropriately marked button as quickly and 

accurately as possible, and to guess if they did not know. The buttons were 

counterbalanced across subjects. Subjects were told ahead of time that some sentences 

would not make sense. Subjects completed 2 practice trials before the experiment began. 

The experiment took about 12 minutes to complete.  There were no breaks included 

during the experiment. 

3.3.2. Results: Logistic Regression Analysis of Biased Contexts 

The results for Experiment 3.1 are analyzed throughout the remaining sections of 

Chapter 3. First, we consider only the results for the two biasing contexts (shown in 
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Figure 3.14). Subsequent analyses examined the results of all three conditions (including 

noise). 

To test for an effect of sentential context on speech recognition, the data were 

analyzed using mixed effects logistic regression (Baayen, Davidson & Bates, 2008; 

Jaeger, 2008) (see Chapter 1). There was evidence of a strong influence of VOT on the 

rate of pay-responses (β = 0.31, p < 0.001) and also a strong sentential context effect (β = 

3.03, p < 0.001). Figure 3.15 shows the results by illustrating the effect size as a function 

of VOT. 

 

 
Figure 3.14. Mean proportion of pay-responses to tokens from the bay–pay VOT 
continuum after noun-biasing and verb-biasing sentence contexts. Error bars represent 
standard error. 

 
Figure 3.16 shows the by-subject variability in effect sizes for responses to each 

VOT token. However, Figure 3.17 shows that subjects also vary in their underlying 

likelihood model. In particular, in their responses to these tokens, subjects’ expected 
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category boundaries differ: some subjects appear to expect exemplars of pay to have 

much longer VOTs than other subjects. Because of this, we examined two models for 

BIASES: one in which subjects, all share the same category boundary, and one in which 

subjects differ. If subjects do, indeed, differ in their category boundary, then they should 

also vary in their expected effect size for a given VOT token. 

 
Figure 3.15. Mean difference in proportion of pay-responses to tokens from the bay–pay 
continuum after verb- vs. noun-biasing sentence contexts. Error bars represent standard 
error. 
 

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50
VOT (ms)

Bi
as

 E
ffe

ct
 S

ize
 (t

o 
− 

th
e)



 
124 

 
Figure 3.16. For each subject (N=15), difference in proportion of pay-responses to 
tokens from bay–pay continuum after verb- vs. noun-biasing contexts. Error bars 
represent standard error.  
 

 
Figure 3.17. For each subject (N=15), their best-fitting (see section 3.3.2) unbiased 
posterior probability distributions (probability of pay-response to tokens from the bay–
pay VOT continuum after a theoretical context that is truly neutral). 
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3.3.3. Results: Model Comparison 1 – Subject Variability 

BIASES was implemented as a hierarchical Bayesian statistical model for further 

analysis. For the present analyses, only the data from responses to the VOT tokens after 

noun- and verb-biasing contexts (not in the noise context) were considered. Two separate 

versions of the model were implemented: in one version, subjects shared one group 

parameter for the mean of the normal likelihood function for their /b/ category and in the 

other version,  the mean of the likelihood function could differ between subjects (the 

hyperprior on subjects’ 𝜇! was presumed to be normally distributed). 

As noted in Simulation Study 3.1 (see Box 3.1), because the current simulations 

of BIASES assume equal category variance (as do Feldman et al, 2009; Clayards et al, 

2008; Kleinschmidt & Jeager, 2015), category variance and distance between category 

means are confounded. Thus, all model-fitting analyses assume a distance between 

categories based on VOT distributions from production data reported by Lisker and 

Abramson (1964): 𝜇! − 𝜇! = 55 𝑚𝑠. 

Tables 3.5 and 3.6 show the results of the model-fitting with and without by-

subject variability, respectively. All chains converged, as judged from visual inspection 

of the chains and the Gelman-Rubin statistics for each model: multivariate psrf = 1.01 for 

both models and point estimates were all between 1.00 and 1.01 (with upper 95% 

confidence intervals of 1.00-1.03). 

Critically, the DIC (popt) was computed for each model in order to determine 

whether the additional parameters allowing subjects to differ in their phonetic category 

structure improved the model fit significantly. Penalized deviance scores were 514 for the 

group-level model and 398.3 for the hierarchical model, despite having penalty terms of 
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6.602 and 44.99, respectively. Table 3.6 provides estimates and HDIs for the parameters 

in the hierarchical version of BIASES. 

 Median Mean SD 95% HDI min 95% HDI max 
𝛼 0.089 0.090 0.016 0.059 0.120 
σ2 266.93 267.51 11.61 246.05 290.97 
𝜇! 0.15 0.44 0.43 -0.37 1.26 

Table 3.5. Summary of posterior Markov chains from model that assumed group-level 
category structure (i.e., same 𝜇! for all subjects).  
 

 Median Mean SD 95% HDI min 95% HDI max 
𝛼 0.060 0.061 0.012 0.040 0.085 
σ2 235.98 236.44 10.77 216.10 257.90 
𝜇!! 0.41 0.44 1.30 -2.12 3.04 

1
𝜏!!

= 𝜎!!
! 21.08 24.13 12.27 7.36 48.97 

Table 3.6. Summary of posterior Markov chains from model that assumed hierarchical 
phonetic category structure (i.e., variable 𝜇! for subjects). 
 

A posterior distribution was also obtained for each subject’s 𝜇!, so we determined 

the median of each of these 15 posterior distributions and added half of the assumed 

𝜇! − 𝜇! (i.e., 27.5 ms) to compute a single point estimate for an approximate category 

boundary for each subject. Subjects’ boundaries, calculated in this way, ranged between 

20.72 ms and 33.37 ms (mean = 27.95, SD = 4.02). In order to illustrate the improved 

model fit obtained by hierarchical modeling of phonetic category structure, we computed 

the distance of each VOT token from the estimated boundary for each subject (calculated 

from the median of the subject’s posterior distribution) and re-plotted Figure 3.16 with an 

x-axis reflecting the adjustment of subjects’ boundaries to coincide at a single point. This 

can be seen in Figure 3.18. In short, subjects show larger effects when the model predicts 

that they should show larger effects (e.g., closer to the category boundary), and this fine-

grained variability among subjects is neatly captured by BIASES’ assumption that 
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subjects are not all identical in their phonetic expectations for acoustic realizations of 

exemplars of /b/ and /p/. 

 
Figure 3.18. For each subject (N=15), the difference in the proportion of pay-responses 
to tokens from the bay–pay VOT continuum after verb-biasing vs. noun-biasing sentence 
contexts. Note that, unlike Figure 3.16 and others, the x-axis is adjusted for subjects’ 
VOT boundaries. Error bars represent standard error. 
 

3.3.4. Results: Model Comparison 2 – Inherent Biases in “Neutral” Priors 

The previous analyses of the results of Experiment 3.1 have focused on the data 

from the noun-biasing and verb-biasing condition, but ignored the third “noise” condition 

in which subjects heard sentences like He hated [noise] /?ay/. 

As discussed earlier, when experimenters include a “neutral” condition, how 

subjects respond to stimuli in that baseline condition must be modeled just like subjects’ 

responses to biased contexts. Next, we examined eight possible models of subjects’ 

conditional priors in order to understand the principles underlying subjects’ responses to 
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stimuli both in the biasing contexts and the noise condition employed in the current 

experiment. 

If, in the noise condition, subjects are equally biased towards bay and pay, then 

the noise context would lie closest to the noun-biased sentence contexts because those 

noun-biased contexts are less biased, overall, than the verb-biased contexts (see Table 

3.4). Note that, as discussion above, it is not likely that responses to the noise condition 

will lay perfectly midway between the noun- and verb-biasing contexts. 

On the other hand, BIASES makes a different prediction about how subjects 

should respond in the noise condition. In particular, one principle of Bayesian models is 

that, when some information is not available, the optimal way to integrate that (lack of) 

information is to “believe” (in the Bayesian sense) each possible value of the cue to the 

extent that that cue was likely. This is called marginalization (see Chapter 2). In the 

present circumstances, this would mean that subjects’ responses to stimuli in the noise 

condition should be closer to the verb-biasing contexts rather than the noun-biasing 

contexts. Thus, the “neutral” assumption and the Bayesian (marginalization) assumption 

make opposite predictions about where subjects’ responses to stimuli in the noise 

condition should fall. 

Figure 3.19 displays the results of subjects’ responses to the noise condition 

added to the same data presented in Figure 3.14. As can be seen, responses in the noise 

condition lie closer to the verb-biased context than to the noun-biased context, suggesting 

that subjects were performing marginalization. However, to confirm this, we conducted a 

model comparison to evaluate the extent to which the marginalization model improved in 

fit over other alternative models. 
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Figure 3.19. Mean proportion of pay-responses to tokens from the bay–pay VOT 
continuum following the noun-biasing (e.g., He hated the...) and verb-biasing (e.g., He 
hated to...) sentence contexts (see also Figure 3.14), as well as in the noise condition 
(e.g., He hated [noise]...). Error bars represent standard error. 
 

Eight models were compared (see Table 3.7); they differed on the assumed prior 

for the context conditions (to.../the...) and the assumed prior for the noise condition. For 

four models, the priors for the context conditions were estimated based on the standard 

bigram model (described in Chapter 2), considering only probability of bay vs. pay based 

only on the preceding word (to vs. the). The remaining four models employed a more 

complex trigram language model for their priors, considering the probability of bay vs. 

pay based not only on the previous word (to vs. the) but also on the main verb preceding 

that. The four models of each type each employed a different model for the prior when 

subjects heard the target after the noise condition. These models varied in complexity. 

One model assumed that subjects treated bay and pay as equally likely after hearing the 

noise condition (Equal Priors). A second presumed subjects were biased based on the 
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lexical frequency of bay and pay. A third assumed that subjects considered the 

probability of bay and pay after marginalizing over the possible bigram contexts in the 

experiment (to and the). Finally, a fourth model assumed that subjects marginalized over 

all possible trigram contexts in the experiment (to and the, but only for after the main 

verbs in the study). 

If subjects were performing optimally and making use of all information available 

to them, BIASES predicts that they should respond after the biasing contexts (to.../the...) 

based on the trigram prior, and that they should marginalize over all trigrams in 

Experiment 3.1. Indeed, the model comparison’s results support that finding (see Table 

3.7). Table 3.8 reports the best-fitting model parameters for this best-performing model. 

Assumed Prior for 
Context Conditions 

Assumed Prior for 
Noise Condition 

Mean 
Deviance 

Penalty 
Term 

Penalized 
Deviance 

Bigram (to.../the...) Equal Priors 680.4 36.35 716.8 
Bigram (to.../the...) Lexical Frequency 517.3 41.87 559.2 
Bigram (to.../the...) Context-Sensitive (Bigram) 501.9 39.77 541.6 
Bigram (to.../the...) Context-Sensitive (Trigram) 699.9 41.14 741 
Trigram (marginal) Equal Priors  778.9 39.55 818.4 
Trigram (marginal) Lexical Frequency 578.1 40.75 618.9 
Trigram (marginal) Context-Sensitive (Bigram) 505.4 39.31 544.7 
Trigram (marginal) Context-Sensitive (Trigram) 474.5 40.31 514.8 
Table 3.7. Summary of Model Comparison 2. Shaded row is best-fitting model, which 
was the model that assumed subjects make use of not only bigram contexts (i.e., the prior 
word), but also the second-back word (i.e., trigram contexts) in their contextual priors. 
This was the most detailed representation of contextual information tested. 
 

 Median Mean SD 95% HDI min 95% HDI max 
𝛼 0.044 0.044 0.007 0.031 0.059 
σ2 214.71 214.83 7.89 199.96 230.83 
𝜇! 0.35 0.35 1.24 -2.10 2.74 

1
𝜏!!

= 𝜎!!
! 18.35 20.77 7.89 7.07 40.68 

Table 3.8. Summary of posterior Markov chains from best-fitting model in Model 
Comparison 2 (shaded model in Table 3.7; fully trigram-driven context model). Note that 
all models assumed hierarchical phonetic category structure (i.e., variable 𝜇!  for 
subjects). 
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 3.3.5. Conclusion 

 In conclusion, the results of Chapter 3 suggest that listeners’ behavior exhibits 

many hallmarks of a Bayesian spoken word recognition system. Overall, the results lend 

support to the validity and utility of BIASES for explaining and predicting subjects’ 

speech recognition behavior in experimental tasks. BIASES is capable of accounting for 

a wide range of variability that is usually ignored by other computational models, 

including variability among subjects, variability due to speech cues other than VOT, and 

variability due to prior contexts in an experiment. These findings, along with the 

theoretical contribution of BIASES – as a model of speech perception in sentential 

context – illustrate the novelty of the present work. An even more powerful 

demonstration of the utility of BIASES, though, would be to leverage it to inform 

theoretical debates in psychology or neuroscience. One key goal of computational 

modeling is to advance scientific theory by testing and comparing competing hypotheses. 

This is the aim of Chapter 4. 
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Chapter 4 

Top-Down Effects on Spoken Word Recognition in Aphasia: 

A Model-Based Assessment of Information Processing Impairments 

4.1. Introduction 

4.1.1. Brief Introduction 

In order to understand spoken language, a listener must ultimately map a 

continuous acoustic waveform onto discrete lexical forms, which stand at the interface 

between sound and meaning. However, spoken word recognition is not only influenced 

by the so-called bottom-up speech signal; as the signal undergoes higher-level cognitive 

processing, other information sources exert top-down influence on speech perception (for 

review, see Samuel, 2011). For instance, perception is lexically biased: a phonetically 

ambiguous segment between /b/ and /p/ tends to be identified as /b/ when followed by –

ash (because bash is an English word, but not *pash), but as /p/ when followed by –ast 

(where past is a word, but not *bast) (Ganong, 1980). Similarly, perception is 

contextually biased: a phonetically ambiguous stimulus between two words (e.g., bay and 

pay) tends to be recognized as bay after a noun-biasing sentence context (e.g., Valerie 

hated the...), but as pay after a verb-biasing sentence context (e.g., Brett hated to...) (Fox 

& Blumstein, in press). Although the mechanisms underlying the integration of bottom-

up and top-down cues remain the subject of considerable debate (see, e.g., McClelland, 

Mirman & Holt, 2006; Norris, McQueen & Cutler, 2000), there is no question that both 

types of information influence speech recognition. 

Top-down effects on speech perception are of particular interest because they 

reflect dynamics at the confluence of perceptual and cognitive processing, so their 
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emergence and the characteristics of their distribution can reveal key insights about many 

aspects of human language function (see Chapter 3). Given the theoretical significance of 

this class of phenomena, it is noteworthy that far less is known about the pattern of such 

top-down effects in patients with aphasia. Most such individuals experience at least some 

receptive language impairments (Boller, Kim & Mack, 1977; Goodglass, Gleason & 

Hyde, 1970), with deficits arising at many different levels of processing (Goodglass, 

1993; Lesser, 1978). What grants the status of top-down effects in patients with aphasia 

special importance, however, is the substantial evidence that lexical processing – that is, 

processing at the level where sound contacts meaning – is particularly vulnerable in 

aphasic syndromes (for review, see Blumstein, 2007). 

For example, a classic finding about lexical processing by neurologically healthy 

adults is that, upon hearing a prime word (e.g., cat), the processing of a subsequent target 

that is a semantic associate of the prime (e.g., dog) is automatically facilitated relative to 

processing when the prime was not related (e.g., table), as measured by the time required 

to accurately decide that dog is a word (Meyer & Schvaneveldt, 1971). Moreover, the 

extent to which listeners access cat (and, in turn, the extent to which processing of dog is 

facilitated) is modulated by the acoustic (or phonological) distance from cat of a 

“mispronounced” prime, as indicated by the monotonic ordering of lexical decision 

latencies for dog after four different prime conditions (from fastest to slowest): cat < *gat 

< *wat < table (Milberg, Blumstein & Dworetsky, 1988a). Although the implicit 

processing of semantic associates of perceived primes is typically spared in aphasia (i.e., 

cat primes dog; Milberg & Blumstein, 1981; Milberg, Blumstein & Shrier, 1982), 

patients fail to exhibit the characteristic graded sensitivity observed in healthy adults 
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(Milberg, Blumstein & Dworetsky, 1988b), a result that has been interpreted as evidence 

for lexical processing deficits in such patients. 

Nonetheless, it remains unclear what mechanisms are responsible for the observed 

dysfunctions (for review, see Mirman, Yee, Blumstein & Magnuson, 2011). One theory 

argues that lexical processing deficits arise directly from disruptions to processing 

dynamics at the level of the lexical representations themselves (Blumstein & Milberg, 

2000; Janse, 2006; McNellis & Blumstein, 2001). However, in order to definitively 

conclude that lexical information is, indeed, specifically implicated, it is important to rule 

out the possibility that what appear to be lexical processing impairments are actually just 

downstream consequences of impairments in the bottom-up processing of the speech 

signal. Unfortunately, since auditory word processing must inevitably require both 

bottom-up speech processing and accessing the lexical representation, it is easy to see 

why it has been difficult to rule out this alternative explanation. 

However, top-down lexical and contextual effects on speech perception may offer 

a unique window through which to view this question. For instance, the lexical effect 

(Ganong, 1980) taps information stored within lexical representations because it reflects a 

comparison between two phonologically similar interpretations of a stimulus, only one of 

which corresponds to a lexical representation. The existence of one representation (bash) 

in the lexicon and the corresponding absence of another (*pash) conspire to bias subjects’ 

identification of speech stimuli toward words. As such, to the extent that patients or 

groups of patients differ in the size of their lexical effect from controls, these differences 

might be taken to suggest disruptions arising at the lexical level itself. On the other hand, 

listeners’ identification of spoken words and sounds should, of course, also be affected by 
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bottom-up phonetic and phonological processing deficits. Therefore, the pattern of lexical 

or contextual effects on speech perception in a patient with a bottom-up processing 

deficit might also be expected to diverge from the performance of healthy control 

subjects. 

The critical question, then, is “When it comes to top-down speech processing, are 

there unique predictions about the expected consequences of ‘virtual lesions’ at different 

levels of the spoken word recognition system?” It is not necessarily intuitive how – even 

in a healthy speech processing system – phonetic, phonological, lexical and sentential 

processing levels interact during online speech perception and ultimately drive subjects’ 

responses to, for instance, a stimulus that is ambiguous between bash and *pash. This 

challenge is multiplied when attempting to deduce how disruptions at different 

processing levels or to specific cognitive mechanisms might affect the behavior of 

patients with brain damage and a complex constellation of symptoms at any (or 

potentially many) of those processing levels. Thus, it is difficult to generate clear 

predictions about expected patterns of top-down effects in patients with aphasia, and it is 

also difficult to draw any strong conclusions about the relationship between such data and 

the nature of those patients’ fundamental information processing deficits, without first 

identifying a theoretical lens through which to view the data. 

To that end, the present work enlists the BIASES model (Bayesian Integration of 

Acoustic and Sentential Evidence in Speech; Chapters 2-3), a probabilistic computational 

model of spoken word recognition that has been shown to successfully capture key 

aspects of top-down effects on speech perception in healthy adults. As we will show, 

BIASES makes clear predictions about how fine-grained differences in the size and 
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distribution of top-down influences from lexical and contextual cues should be expected 

to emerge as a function of which information-processing levels are disrupted. Thus, by 

examining the specific patterns of top-down effects from lexical and sentential context in 

patients with Broca’s aphasia (BA) and Wernicke’s or Conduction aphasia (W/CA), and 

comparing those results to the distribution of top-down effects in healthy controls, it is 

possible to distinguish between the independent contributions of a range of processing 

impairments (including at acoustic-phonetic, phonological, lexical, and contextual 

processing levels), even when multiple such impairments may coexist in a single patient 

or group of patients. 

4.1.2. Overview of Chapter 4 

The central aim of this chapter is to investigate the nature of top-down processing 

in patients with aphasia and to evaluate the extent to which the pattern of deficits 

observed in two groups – patients with Broca’s aphasia (BA) and patients with 

Wernicke’s or Conduction aphasia (W/CA) – might inform the broader theoretical 

question regarding the locus of patients’ apparent lexical processing deficits. To that end, 

we further elaborate a Bayesian model of speech perception presented in earlier chapters, 

the BIASES model (Bayesian Integration of Acoustic and Sentential Evidence in Speech; 

Chapters 2-3). The fundamental principles embodied by this iteration of BIASES, which I 

call BIASES-A are consistent with its parent model, as discussed earlier. For example, 

preceding words can still bias a listener’s identification of a stimulus via a context-

dependent conditional prior, and the model’s likelihood function still computes the 

relative fit of candidate representations given some acoustic values. 
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However, both the prior and likelihood terms of BIASES-A take different forms 

than they did when the model was introduced. These adaptations are critical for the 

model to address the question of theoretical interest here. In fact, in some ways, BIASES-

A relaxes some of the assumptions present in the minimalist version of BIASES 

presented in Chapters 2-3. For instance, the drastically oversimplified likelihood function 

in BIASES, 𝑝 𝐴 𝑤! , characterized each word as a distribution over VOTs, implicitly 

ignoring subsequent cues (such as the rest of the word). This assumption was sufficient 

for modeling the perception of minimally paired words (e.g., bay vs. pay) that only differ 

as a function of VOT, but it must be updated in order to account for lexical biases arising 

as a function of subsequent phonological information (e.g., whether the rime of the word 

is –ast or –ash). Of course, while adding complexity to the model in this was improves its 

ability to accurately characterize the human speech processing system, relaxing certain 

assumptions requires committing to certain additional assumptions. However, most 

importantly, this approach illustrates with one of the key strengths of BIASES: its 

flexibility. The architecture of BIASES and its fundamental properties do not change 

when the prior and likelihood functions are updated to more accurately capture additional 

findings about human cognition and perception. Thus, while the main goals of this 

chapter are to assess the prevalence of top-down effects on speech perception in patients 

with aphasia and to address the theoretical question about the locus of lexical processing 

deficits in aphasia, this work also serves as a demonstration of the broad range of 

questions that BIASES can be leveraged to study. Chapter 4 is organized into 4 parts.  

First, we briefly review the evidence for lexical processing deficits in aphasia, 

with special focus on two clinical groups – patients with Broca’s aphasia (BAs) and 
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patients with Wernicke’s or Conduction aphasia (W/CAs). Patients belonging to each 

group exhibit a unique pattern of lexical processing deficits. These results motivated the 

proposal of a theory referred to here as the Lexical Activation Hypothesis (Blumstein & 

Milberg, 2000; Janse, 2006; McNellis & Blumstein, 2001), which posits that the observed 

impairments emerge due to disruptions at the level of patients’ lexical representations. 

However, as mentioned earlier, it is unclear whether the impairments might be fully 

accounted for by bottom-up processing deficits, which are known to afflict most patients 

with aphasia. Although relatively little is known about top-down processing in patients 

with aphasia, and although it is not necessarily obvious how top-down processing might 

be implicated in or affected by lexical processing deficits, we propose that a model-based 

analysis of top-down effects on speech perception may offer unique insights about the 

nature of lexical processing deficits, more broadly. 

Second, we review the basic principles embodied by the BIASES model of speech 

perception and show how this probabilistic model can be theoretically linked to the 

Lexical Activation Hypothesis, which is predicated on a connectionist/activation-based 

approach to cognitive modeling. We update several assumptions and components of 

BIASES, calling this iteration BIASES-A, for Aphasia, highlighting the model’s viability 

for not only capturing the fine-grained statistics of language function (see Chapter 3), but 

also its ability to reveal novel insights about the sometimes subtle details of language 

dysfunction. Alternatively, the A could stand for Activation, highlighting another critical 

contribution of this chapter: linking BIASES to more traditional (that is, connectionist) 

theories, models and approaches to thinking about spoken word recognition. We review 

the mathematical form of BIASES-A, briefly addressing the most important implications 
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of the changes from BIASES. Finally, we outline the present work’s model-based 

approach to the characterization of top-down processing deficits in patients with aphasia. 

Third, we present Simulation Study 4.1 and Experiment 4.1. Simulation Study 4.1 

examines how information processing deficits at different levels should be expected to 

emerge in behavioral responses during an experiment testing for a lexical effect in 

patients with aphasia (Simulation Study 4.1). Experiment 4.1, conducted over two 

decades ago (Blumstein, Burton, Baum, Waldstein & Katz, 1994), examined the lexical 

effect in patients with aphasia. The present study’s model-based reanalysis of its original 

data offers new insights into the specific deficits responsible for the patterns reported in 

the original study. 

Fourth, Simulation Study 4.2 and Experiment 4.2 follow the same approach as 

was taken in Simulation Study 4.1 and Experiment 4.1, but they examine the sentential 

context effects examined in previous chapters. We argue that Chapter 4’s computational 

and behavioral results, together, lend support to the key ideas embodied by the Lexical 

Activation Hypothesis. 

4.1.3. Lexical Processing in Aphasia 

4.1.3.1. Lexical Processing Deficits 

Lexical access and spoken word comprehension is often profoundly disrupted in 

aphasia. Recall the early illustration of this by Milberg, Blumstein and Dworetsky 

(1988a, 1988b), who employed a lexical decision paradigm wherein subjects heard a 

prime-target pair and were instructed to decide whether the target was a word (e.g., dog) 

or a non-word (e.g., *jand). On those trials for which the target was a word (dog), the 

prime that immediately preceded it could come from one of four categories: it could be 
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an unrelated word (table), a semantically related word (cat), a “close” mispronunciation 

of the semantically related prime (*gat), or a “distant” mispronunciation of the semantic 

associate (*wat). Healthy controls tend to correctly identify the target stimulus, dog, as a 

word fastest when it was immediately preceded by the correctly pronounced, 

semantically related prime (cat), followed in order of speed by *gat, *wat, and table, 

suggesting that lexical access to a word (and therefore to its semantic associates) is 

graded based on the phonological similarity of the input to the word (Milberg et al, 

1988a; see also, e.g., Connine, Blasko & Titone, 1993; Connine, Titone, Dellman & 

Blasko, 1997; McMurray, Tanenhaus & Aslin, 2002; Utman, 1997; Utman et al, 2001). 

In contrast, BAs exhibit semantic priming effects when dog is preceded by the 

correctly pronounced prime, cat, but they fail to show priming in either of the 

mispronunciation conditions. On the other hand, patients with W/CA are equally primed 

by *gat and *wat as they are by cat (Milberg et al, 1988b). These results have been 

interpreted as evidence that lexical access is disrupted in both patient groups, but that the 

nature of this disruption is not the same for all patients (see also Janse, 2006; Utman et al, 

2001; Yee, Blumstein & Sedivy, 2008; but see, e.g., Del Toro, 2000; Tyler, 1992). In 

BAs, it is more difficult for bottom-up information to activate a lexical representation: 

only a very good perceptual match for cat is able to access the lexical-semantic network 

that must be engaged in order to facilitate subsequent recognition of dog. In W/CAs, 

though, even a poor match between the bottom-up signal and the stable phonological 

form of a word is able to access that word’s meaning. Clearly, deviation from typical 

lexical processing dynamics in either direction is likely to impair word comprehension in 

the real world, where speech is noisy and error-laden (Dell, 1988; Vitevitch, 1997, 2002) 
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and words very often belong to dense phonological neighborhoods (e.g., cat is similar to 

hat, bat, pat, rat; Luce & Pisoni, 1998). Thus, the locus of lexical processing impairments 

is of great interest. 

4.1.3.2. The Lexical Activation Hypothesis 

What is the source of these lexical processing deficits? One theory holds that each 

group’s impairment can be traced to the resting activation level of lexical representations 

(Blumstein & Milberg, 2000; Janse, 2006; McNellis & Blumstein, 2001). According to 

this perspective, referred to here as the Lexical Activation Hypothesis, the extent to which 

*gat primes dog depends not only on the degree of phonological match between a *gat 

and cat, but also on the baseline activation of cat. Consider a model of semantic priming 

in which activation spreads (cf. Collins & Loftus, 1975) from cat to dog only after the 

activation level of cat exceeds some propagation threshold (cf. Rumelhart, 1989), and, 

thereafter, the amount of priming is related to the amount of supra-threshold activation 

(up to some maximum activation level). McNellis and Blumstein (2001) showed such a 

model captures the graded priming results in healthy controls (Milberg et al, 1988a), and 

alterations to the resting activation levels could explain the patterns in BA and W/CA 

(1988b). Lower resting activation levels rendered it impossible for poorly matching input 

to exceed cat’s propagation threshold, thereby preventing semantic priming by both close 

(*gat) and distant (*wat) mispronunciations (as in BA), while raising resting activation 

levels caused cat’s activation not only to exceed its propagation threshold, but also to 

quickly reach its maximum level, yielding ceiling-level facilitation of recognition of dog 

following cat, *gat, and *wat (as in W/CA). 

4.1.3.3. Alternative Accounts of Lexical Processing Deficits 
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Critically, the Lexical Activation Hypothesis posits that the locus of the lexical 

processing deficit is inherent to the lexical representation: words’ resting activation levels 

are responsible for the observed impairment. However, some alternative explanations 

implicate the bottom-up processing of the speech signal and the time course of lexical 

activation. For example, the same pattern as was observed in W/CAs would be expected 

if those patients had perfectly normal lexical-level representations, but they sometimes 

misperceived *gat and *wat as cat. Since auditory comprehension is very frequently 

impaired in patients with W/CA (Blumstein, Baker & Goodglass, 1977a; Eggert, 1977; 

Luria, 1976; Robson, Keidel, Lambon Ralph & Sage, 2012), this possibility raises an 

important issue. Indeed, even though phonetic and phonological processing deficits are 

not as universally associated with BAs, virtually all patients, including BAs, appear to 

have at least some difficulties  (Baker, Blumstein & Goodglass, 1981; Basso et al, 1977; 

Blumstein et al, 1977a, 1977b, 1984; Carpenter & Rutherford, 1973; Jauhiainen & 

Nuutila, 1977; Leeper, Shewan & Booth, 1986; Metz-Lutz, 1992; Miceli et al, 1978, 

1980; Sasanuma et al, 1976; Utman et al, 2001; Yeni-Komshian & Lafontaine, 1983). 

This is consistent with neuroimaging research pointing to the involvement of both 

anterior and posterior brain regions in phoneme perception (Belin, Zatorre, Hoge, Evans 

& Pike, 1999; Blumstein, Myers & Rissman, 2005; Burton, 2001; Burton, Small & 

Blumstein, 2000; Poeppel, 1996). 

Notably, Milberg and colleagues (1988b) did try to rule out this explanation. In a 

post-experiment lexical decision task, patients in both groups were shown to correctly 

reject *gat and *wat as non-words while also correctly accepting cat as a word. In line 

with this finding, many other studies also suggest that, generally speaking, individual 
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subjects’ lexical processing deficits cannot be fully predicted by their bottom-up pre-

lexical processing deficits alone (Baker et al, 1981; Basso et al, 1977; Blumstein et al, 

1977a, 1977b, 1984; Carpenter & Rutherford, 1973; Caplan et al, 1995; Caplan & Utman, 

1994; Csepe et al, 2001; Gow & Caplan, 1996; Jauhiainen & Nuutila, 1977; Leeper, 

Shewan & Booth, 1986; Metz-Lutz, 1992; Miceli et al, 1978, 1980; Sasanuma et al, 

1976; Yeni-Komshian & Lafontaine, 1983). Nevertheless, Robson and colleagues (2012) 

argue that the primary deficit in W/CA is at the level of the phonological code (cf. Luria, 

1976), suggesting that these studies’ inability to find a significant correlation between 

W/CAs’ phonological processing deficits and their other comprehension difficulties is 

due to unduly heterogeneous clinical populations, poor task selection, and other factors. 

Additionally, it has also been suggested that Milberg and colleagues’ (1988b) 

inability to detect priming in BAs following the mispronunciation conditions might have 

resulted not from an inherent disruption to lexical representations, but rather from a 

disruption to the dynamics (i.e., time course) of bottom-up lexical activation (Prather, 

Zurif, Love & Brownell, 1997; Swinney, Zurif & Prather, 1989; Swinney, Prather & 

Love, 2000). However, recent results using eye-tracking methodologies (which achieve 

more fine-grained temporal resolution than the priming paradigms) have disputed the 

idea that the time course of lexical activation is delayed in BA (for review, see Mirman et 

al, 2011; Yee et al, 2008). 

4.1.3.4. Top-Down Effects and Lexical Processing 

It is apparent that at least part of the theoretical bottleneck that has made the 

debate between bottom-up and lexical-level accounts of patients’ lexical processing 

deficits difficult to resolve arises from the inherent difficulty in teasing apart bottom-up 
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processing which accesses lexical information and lexical-level information during 

typical word recognition tasks. For any task that evaluates behavioral responses to 

auditory words, potential lexical-level disruptions and potential downstream effects of 

bottom-up processing disruptions are necessarily confounded. However, top-down 

effects, are somewhat unique. Top-down effects measure the extent to which higher-level 

information sources – including lexical-level information (like lexical status or 

frequency) and contextual information that influences lexical-level predictions (cf. 

Chapter 2) – bias the perception of spoken words or sounds. What does it mean to 

observe a top-down effect for a given acoustic stimulus? If the same word-initial segment 

that is phonetically ambiguous between /b/ and /p/ is labeled /b/ when followed by –ash, 

more often than when followed by –ast, then this means that, for the same bottom-up 

stimulus, lexical-level information is influencing subjects’ ultimate speech recognition 

(Ganong, 1980). 

The significance of this observation is that the sizes of lexical or contextual 

effects are scaled with the strength of bias provided by top-down cues. However, bottom-

up processing will also influence the ultimate size of the top-down effects: if the bottom-

up processing reveals that a stimulus is almost certainly an exemplar of some particular 

word or phonetic category, then the top-down cue will have little impact on the response 

rate and there will not be a large top-down effect observed (cf. Chapters 2-3). Put another 

way, the ultimate size of a lexical or contextual effect on the perception of a stimulus will 

be influenced by both the bottom-up and the top-down processing of the stimulus (which 

includes lexical-level information and contextual information). As such, disrupting either 

bottom-up or lexical-level processing is likely to lead to behavioral differences in the size 
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of top-down effects on speech perception. The challenge is to separate out the influences 

of each. This theoretical and computational challenge is addressed from an information-

processing standpoint by the BIASES model (Bayesian Integration of Acoustic and 

Sentential Evidence in Speech; Chapters 2-3), and it is to this model that we now turn. 

4.2. Applying BIASES to Spoken Word Recognition in Aphasia 

4.2.1. Brief Overview of BIASES 

The BIASES model of speech perception describes the mathematically optimal 

way of combining top-down information sources (such as lexical frequency or the 

contextual predictability of a word) and bottom-up information sources (such as acoustic 

cues in the stimulus). In Chapter 3, it was shown that BIASES provides a principled 

account for a number of fine-grained differences in the sizes of top-down effects on 

speech perception, explaining how properties of the model’s prior (which corresponds to 

top-down information sources) and the model’s likelihood  (which corresponds to 

bottom-up information sources) should influence the ultimate size of the top-down effect 

for a given pair of conditions (e.g., two sentential contexts) and for a given acoustic 

signal (e.g., for a given voice-onset time, or VOT). Critically, though, the model’s 

predictions about how large a top-down effect should be depend on the information 

contained within a model’s prior and likelihood functions. Thus, if the underlying 

information contained within either the prior or the likelihood term of BIASES is 

disrupted, or if the information processing dynamics that govern the computations within 

the prior or the likelihood term of BIASES are disrupted, the expected size of top-down 

effects for a given pair of contexts and a given acoustic stimulus will also change. 
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Thus, in order to gain some insight into the nature of the information processing 

deficits in aphasia, we adapted the parent model, BIASES, to allow for the examination 

of how different “virtual lesions” to a child model, BIASES-A (for Aphasia), should 

influence the predicted sizes of top-down effects from lexical status, from lexical 

frequency and from sentence contexts. 

4.2.2. From Activations to Probabilities: Lexical Activation Hypothesis 

BIASES is a probabilistic computational model which, like Shortlist B (Norris & 

McQueen, 2008), but unlike connectionist models of spoken word recognition (e.g., 

TRACE: McClelland & Elman, 1986; Shortlist: Norris, 1994; Merge: Norris, McQueen 

& Cutler, 2000), does not rely on any notion of activation. Instead, the amount of support 

for a given candidate in some set of mutually exclusive alternatives (e.g., a word in the 

lexicon) is related to its probability, which is computed relative to the other candidates. 

While this approach has many advantages (see, e.g., Chater, Tenenbaum & Yuille, 2006; 

Norris, 2006; Norris & McQueen, 2008) it is important to consider the relationship 

between probabilistic models and activation-based models (for recent reviews, see 

McClelland, 2009, 2013; McClelland, Mirman, Bolger & Khaitan, 2014). 

This is particularly crucial for the present modeling effort because, while BIASES 

does not rely on any notion of activation, the theoretical claim instantiated within the 

Lexical Activation Hypothesis about the underlying basis of lexical processing deficits in 

aphasia is couched within the language of words’ baseline levels of activation: BAs have 

lower baseline levels of activation than healthy adults, while W/CAs have higher baseline 

levels of activation than healthy adults. This raises the following critical question: what 

sort of lesion to the lexical information in BIASES would mimic the effects of changes in 
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baseline activation levels described by the Lexical Activation Hypothesis? The answer to 

this question requires drawing three theoretical links between activation-based models 

and probabilistic models. 

First, note that real-valued activation levels in a finite set of units in a 

connectionist model can be scaled (i.e., each divided by the sum of the activations of the 

entire set) in order to create a probability distribution, and, critically, this computation 

preserves the relevant ratios of all pairs of activation levels (Hinton & Sejnowski, 1983; 

Khaitan & McClelland, 2010; Luce, 1959; McClelland, 1991; McClelland, Mirman, 

Bolger & Khaitan, 2014; Movellan & McClelland, 2001; for a tutorial and review, see 

McClelland, 2013). Second, lexical frequency (which, by definition, characterizes a 

probability distribution over the lexicon) has a robust effect on spoken word recognition 

and speech perception (e.g., Connine, Mullennix, Shernoff & Yellen, 1990; Dahan, 

Magnuson & Tanenhaus, 2001; Howes, 1954; Luce, 1986; Marslen-Wilson, 1987; 

Pollack, Rubenstein & Decker, 1960; Savin, 1963; Taft & Hambly, 1986). Applying the 

converse relationship described in the first theoretical link (connecting activation levels 

to probabilities), suggests that words’ baseline lexical activations should be scaled by 

their lexical frequencies (see, e.g., Dahan, Magnuson & Tanenhaus, 2001). Thirdly, the 

last step is to determine how to mimic the raising and lowering of the baseline lexical 

activation of words in an activation-based framework? The approach we take is to 

transform the probability of each word wi in the lexicon of Nw words by applying the 

function A (for Activation), which is defined in Equation 4.1: 

Equation 4.1 

𝚨 𝑝 𝑤! ,𝜙 =
𝑝(𝑤!)!

𝑝(𝑤!)!
!!
!!!

 



 
148 

The function A raises each wi’s probability to the same exponent (𝜙), and then 

rescales the distribution so that it sums to one (as is required for any probability 

distribution). Crucially, A has the following four properties: 

Property 1. For 𝜙 = 1: 𝚨 𝑝 𝑤! ,𝜙 = 𝑝 𝑤!  for all wi 

Property 2. For 𝜙 > 1: 𝚨 𝑝 𝑤! ,𝜙 < 𝑝 𝑤!  for less probable (initially) wi 

    𝚨 𝑝 𝑤! ,𝜙 > 𝑝 𝑤!  for more probable (initially) wi 

Property 3. For 𝜙 < 1: 𝚨 𝑝 𝑤! ,𝜙 > 𝑝 𝑤!  for less probable (initially) wi 

    𝚨 𝑝 𝑤! ,𝜙 < 𝑝 𝑤!  for more probable (initially) wi 

Property 4. For 𝜙 = 0: 𝚨 𝑝 𝑤! ,𝜙 = !
!!

 for all wi 

When 𝜙 > 1, the distribution becomes more extreme, or peaked, with the most 

probable words becoming even more probable and the least probable words becoming 

even less likely, so a virtual lesion that increases 𝜙 will cause the “rich to get richer.” 

Conversely, when 𝜙 < 1, the distribution becomes more uniform, essentially “watering 

down” frequency effects in the initial, un-lesioned distribution. Smaller values of 𝜙 

reduce frequency effects further and further until 𝜙 = 0, at which point frequency effects 

are totally eliminated by functionally transforming the prior distribution over words into 

the uniform distribution: 𝐴(𝑝 𝑊 ,𝜙 = 0) = 𝑈𝑛𝑖𝑓(1,𝑁!).  

4.2.2.1. Preliminary Simulations: Lexical Activation Hypothesis 

In order to establish the theoretical link between BIASES-A and the Lexical 

Activation Hypothesis, we must determine how 𝜙 relates to changes in lexical activation 

levels. That is, will increases in the baseline lexical activation levels (as hypothesized to 

underlie the lexical processing deficits in W/CAs) more closely match Property 2 (the 

“rich get richer” case) or Property 3 (the “watering down” case)? 
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In order to match the Lexical Activation Hypothesis to the computational 

approach embodied by the function A, we simulated a simple example with a “toy 

lexicon” of Nw = 20 words. For each word wi, a frequency fi between 10 and 100 was 

randomly determined (𝑓!~𝑈𝑛𝑖𝑓(10,100) ) to serve as that wi’s effective baseline 

activation value, yielding a lexicon with activation values represented by the vector F 

(containing the frequencies for all Nw words). Then, in two separate simulations with the 

same lexicon F, to mimic the predicted activation levels for patients with BA and W/CA 

(McNellis & Blumstein, 2001), we either subtracted or added the same value, 𝜂, to each 

word’s activation level, yielding a new baseline activation vector 𝐹! = 𝐹 ± η.7 Finally, 

for both the activation subtraction simulation (𝐹!"! = 𝐹 − η) and the activation addition 

simulation (𝐹!/!"
! = 𝐹 + η), the “pre-lesion” activation vector, F, and the updated “post-

lesion” baseline activation vector, F’, were normalized to obtain pre-lesion and post-

lesion probability distributions (Equations 4.2-4.4): 

Equation 4.2 

𝑝 𝑊 =
𝐹
𝑓!

!!
!!!

 

Equation 4.3 

𝑝!" 𝑊 =
𝐹!"!

𝑓!
!!
!!!

=
𝐹 − η
𝑓! − η

!!
!!!

 

Equation 4.4 

𝑝!/!" 𝑊 =
𝐹!/!"
!

𝑓!!
!!
!!!

=
𝐹 + η
𝑓! + η

!!
!!!

 

                                                
7 To prevent any of the words’ activation levels from becoming negative, 𝜂 was set to 
half of the least frequent word’s activation value (𝜂 = !"# (!)

!
). 
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Figure 4.1 shows the effects of subtracting and adding to the baseline activation 

levels for the corresponding probability distributions. Decreasing words’ baseline 

activation levels (the mechanism implicated in lexical processing deficits in BA, 

according to the Lexical Activation Hypothesis) enhances frequency effects. The most 

frequent words (i.e., words with relatively higher pre-lesion activation levels) became 

even more probable, and the rarest words became even less probable. Conversely, 

increasing words’ baseline activation levels (the mechanism implicated in lexical 

processing deficits in W/CA, according to the Lexical Activation Hypothesis) diminishes 

frequency effects. The most frequent words and the least frequent words have less 

disparate post-lesion probabilities. 

 
Figure 4.1. Results of simulations of Lexical Activation Hypothesis: the probability of 
each word before and after the virtual lesion. Virtual lesions involved either increasing or 
decreasing the activation level of each word by a constant amount (cf. McNellis & 
Blumstein, 2001). 
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Connecting the Lexical Activation Hypothesis and this simulation’s results back 

to the probabilistic model (BIASES-A) and the function A, it is clear that decreasing the 

baseline activation levels of words corresponds to increasing 𝜙 (see Property 2 of A), 

while increasing baseline activation levels of words correspond with decreasing 𝜙 (see 

Property 3 of A). At an intuitive level, if baseline activation levels are increased by a 

constant amount (as in W/CAs; Blumstein & Milberg, 2000) while leaving the threshold 

for lexical access or word recognition constant (McNellis & Blumstein, 2001), and 

thereby requiring less bottom-up activation to achieve lexical access (i.e., *wat primes 

dog as much as cat in W/CA; Milberg et al, 1988b), then the activation of the lexical 

representation will not be a very reliable cue to the actual presence of the word in the 

speech signal. Consequently, lexical-level cues should be less reliable for W/CAs than 

they are for healthy adults; from an information processing perspective, less reliable cues 

should be down-weighted, which is precisely the effect of decreasing 𝜙. The opposite is 

true of decreasing baseline activation levels and increasing 𝜙: the eventual activation of a 

lexical representation in BA is a more reliable cue to the actual presence of the word in 

the speech signal, leading to greater reliance on lexical-level information. 

Note that, while our approach in the activation-based simulations above was 

designed to match the approach taken by McNellis and Blumstein (2001) in their proof-

of-concept computational implementation of the Lexical Activation Hypothesis 

(adding/subtracting a constant value η to each word’s activation level; cf. Morton, 1969; 

see also Norris, 2006), this approach is not mathematically equivalent to A’s exponential 

re-weighting of the entire distribution by 𝜙. Our central aim was to match the overall 

directionality of the effects of parametric manipulations in the activation-based and 
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probabilistic frameworks on extreme values (e.g., the most and least frequent words). It is 

also worth noting that McNellis and Blumstein (2001) did not explicitly account for 

frequency effects. What is most important, though, is that while the details of the present 

probabilistic approach are not identical to the approach taken by McNellis and Blumstein 

(2001), the overall theoretical link is clear: the Lexical Activation Hypothesis should 

predict that, if controls have 𝜙 = 1, then behavioral responses in BAs should be more 

influenced by lexical-level information (𝜙 > 1), while W/CAs should exhibit less of an 

influence from lexical-level information (𝜙 < 1). 

4.2.2.2 Implications for Top-Down Effects on Speech Perception 

Having derived the theoretical implications of the Lexical Activation Hypothesis 

for the probabilistic modeling approach, it is now possible to deduce principled 

predictions about the influence of lexical-processing deficits on top-down processing of 

speech. Because the Lexical Activation Hypothesis, as interpreted here, predicts that 

lexical-level information will be weighted more by BAs than by healthy controls, but less 

by W/CAs than by healthy controls, lexical status should have a greater influence on 

BAs’ responses to stimuli ambiguous between a word and non-word, but it should have a 

weaker influence on W/CAs’ responses. Implicit in this conclusion is the assumption of a 

relationship between “lexical status” and “lexical frequency.” This assumption represents 

the basic principle that non-words are, in the limit, not so different from very low 

frequency words. Thus, the effects of lexical status and frequency effects are given a 

unified, if simple, explanation within the prior of the BIASES model: listeners expect to 

encounter more probable stimuli (see Chapters 2-3). Since non-words are less probable 

than words (see also, Norris & McQueen, 2008), an effect of lexical status might be 
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thought of as a special case of a lexical frequency effect. It is worth noting that since 

Ganong’s (1980) original demonstration of the lexical effect, a number studies have 

reported hints of frequency effects (e.g., Fox, 1984; Fox & Blumstein, in press; Newman 

et al, 1997) and Connine, Blasko and Titone (1993) showed that the frequency of words 

within an experiment could drive top-down effects on speech perception that mirrored 

Ganong’s lexical effect (1980). 

Note, however, that, since lexical frequency is estimated by counting the number 

of times a word appears in some corpus, all non-words will, by definition, have a lexical 

frequency of 0. Clearly, subjects must be capable to recognize a string of phonemes that 

they have never heard before. While most speech an adult will hear on any given day will 

be composed of words in her lexicon, there must be some mechanism to “back off” to 

when a listener encounters foreign words, new words, or proper nouns such as names 

they have never heard before. Additionally some such computational machinery is 

obviously critical for learning in infancy and childhood (Feldman, Griffiths, Goldwater & 

Morgan, 2013). Even more relevant to the current situation, in the context of an 

experimental setting like Ganong’s (1980), in which subjects hear dozens or sometimes 

hundreds of trials, they often identify the stimulus as a non-word. Thus, a subject’s prior 

expectation should certainly not be completely determined by the lexical frequency of a 

stimulus as estimated from a corpus. In order to account for top-down effects of both 

lexical status and lexical frequency, what is needed is a prior that is influenced by 

frequency, but which also allows subjects to “expect the unexpected,” as the case may be 

for non-words (with a corpus-estimated frequency of 0). 
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Thus, in order to account for the effect of lexical status on spoken word 

recognition within the probabilistic framework, a simple approach is to allow non-words 

have some small prior probability (Norris & McQueen, 2008; see also Chapters 2-3). In 

the current model, the prior probability for a non-word is estimated by fitting a smoothing 

parameter (Lidstone, 1920) to healthy controls’ lexical effect data. Based on the success 

of parallel assumptions about BIASES in modeling the sizes of sentential context effects 

(see Chapter 3), we assume that control subjects are optimally making use of lexical 

information (𝜙 = 1), but that their lexical prior includes lexical frequency information 

that is smoothed by some positive and nonzero “pseudo-count” (𝛼), which serves as an 

estimate of the prior expectancy for all non-words. It is further assumed that patients’ 

underlying model of lexical information is the same as the controls’ model (i.e., the same 

frequency counts for all words and the same smoothing parameter, 𝛼), but that patients 

may weight this information differently than the controls (𝜙). 

It is important to note that drawing a relationship between lexical status and 

lexical frequency does not demand that every possible non-word be explicitly represented 

in the mental lexicon alongside every word, albeit with a different (lower) effective 

frequency estimate; indeed, this would not be a very plausible lexicon. Rather, we adopt 

the theoretical perspective that, during speech perception, candidate word-forms compete 

for recognition in a lexical buffer (Blumstein, 1994, 1998). A candidate’s prior 

probability is determined by the sum of 𝛼 (the smoothing parameter discussed above) and 

a candidate’s lexical frequency (0 for non-words, but non-zero and positive for words). 

This framework allows all candidates (whether words or non-words) to have some 

baseline probability of being perceived (related to 𝛼), while a word’s prior is also 
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influenced by its frequency. Because a constant 𝛼 is added to the counts of all words, the 

prior probability of any word (with a nonzero frequency estimate) is greater than that of a 

non-word, allowing the model to capture top-down effects of lexical status (Ganong, 

1980), and the prior probability of a given word is greater than that of any less frequent 

word, allowing the model to capture top-down effects of lexical frequency (Connine et al, 

1993). Moreover, this framework predicts that the relative size of shifts in categorization 

due to lexical status should be more apparent the more common the word in a non-

word/word pair (e.g., a greater bias towards past in *bast–past than towards bash in 

*bash–pash) is. We return to this prediction later. 

The conclusions of this section are summarized in Table 4.1. 
 

Clinical 
Diagnosisa 

Semantic Priming 
Lex. Dec. Latenciesb 

Baseline 
Lex. Act.c 

p(W) 
weightd 

Lexical 
Effectse 

Frequency 
Effectsf 

W/CA cat=*gat=*wat<table 𝜌!/!" > 𝜌!  𝜙 < 1 𝜆!/!" < 𝜆!  “watered down” 
Control cat<*gat<*wat<table 𝜌!  𝜙 = 1 𝜆!  typical 

BA cat<*gat=*wat=table 𝜌!" < 𝜌!  𝜙 > 1 𝜆!" > 𝜆!  “rich get richer” 
Table 4.1. Summary of Probabilistic Approach to the Lexical Activation Hypothesis: 
a W/CAs = Wernicke’s or Conduction Aphasia; BA = Broca’s Aphasia; b Semantic 
Priming Lexical Decision Task; patterns of response latencies for YES responses to dog 
(Milberg, Blumstein & Dworetzky, 1988); c Pattern of resting activation levels (𝜌) 
according to Lexical Activation Hypothesis (Blumstein & Milberg, 2000; McNellis & 
Blumstein, 2001); d Pattern of weighting of lexical information (𝜙) in probabilistic 
approach that matches effects of baseline lexical activation modulation; see Equation 1 
and Figure 1; e Predicted effects of model lesion on the influence of lexical status (𝜆); 
based on 𝜙; f Predicted effects of model lesion on the influence of lexical frequency 
information; based on 𝜙 
 

4.2.3. Implementing BIASES-A 

As described in Chapter 2, the fundamental assumption of BIASES is that when 

subjects categorize speech stimuli, their responses reflect both (1) the relative perceptual 

match between the available acoustic signal and each candidate response, and (2) the 

relative predictability of each candidate, irrespective of what was ultimately perceived. In 
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that sense, BIASES reflects the optimal integration of a bottom-up, perceptually driven 

processing stream and a top-down, expectation-driven processing stream. The 

introduction of BIASES in Chapters 2 and 3 places much focus on modeling the top-

down constraints on expectations for future words provided by sentential context. 

However, as discussed above (and in Chapter 2), lexical status and lexical frequency can 

also serve to constrain expectations for upcoming linguistic material (cf. Norris & 

McQueen, 2008). Equation 4.5 encapsulates the fundamental properties of BIASES: 

Equation 4.5 

𝑝 𝑤! 𝐴 ∝ 𝑝 𝐴 𝑤! 𝑝(𝑤!) 

In short, subjects’ word identification decisions are generated based on the 

posterior probability function, 𝑝 𝑊 𝐴 , which is proportional to the product of the 

likelihood, 𝑝 𝐴 𝑊 , and the prior, 𝑝(𝑊). While the likelihood function indexes how 

representative of each candidate word the perceived speech signal is, the prior indexes 

how probable each candidate word was to begin with (or, a priori). Also, recall that 

BIASES implements the influence of sentential context, C, by allowing C to constrain the 

prior, 𝑝 𝑊 𝐶 . 

While the basic form of Equation 4.5 also underlies BIASES-A (the “child model” 

presented in this chapter), several adaptions were made to BIASES, the effects of which 

were (a) to enhance the breadth of the empirical coverage of BIASES, and, importantly 

for the questions addressed in this chapter, (b) to leverage the theoretical framework 

provided by BIASES for the purpose of providing a computational-level explanation for 

fine-grained differences in the patterns of top-down effects in patients with aphasia. In 

doing so, several simplifying assumptions made during the initial presentation of 
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BIASES were revisited, ultimately yielding a more complicated, but also more realistic 

and more accurate, model of human speech perception. 

 4.2.3.1. Adapting the Prior and Likelihood of BIASES 

The model was enhanced in four main ways. First, the likelihood function was 

updated to include a phonological-processing stage interceding between the acoustic and 

lexical level. Second, the likelihood model was updated in another way to allow the rime 

of a stimulus to influence speech recognition, rather than only accounting for acoustic 

information available from the onset’s VOT. Third, a smoothing parameter was added in 

order to allow novel phonological forms to have nonzero prior probabilities. Finally, a 

lexical buffer was added to the model, following work suggesting that the phoneme 

identification task may not necessarily tap phonemic processing, per se (Fox & 

Blumstein, in press; Swinney & Prather, 1980). 

In the updated model, BIASES-A, upon perceiving a monosyllabic stimulus, 

Bayes’ rule gives the probability of recognizing a candidate word-form, fi, given the 

initial segment’s voice-onset time, V, and the stimulus’s rime, R (Equation 4.6). 

Equation 4.6 

𝑝 𝑓! 𝑉,𝑅 =
𝑝(𝑓!)𝑝 𝑉,𝑅 𝑓!
𝑝(𝑓!)𝑝 𝑉,𝑅 𝑓!

!!
!!!

 

Assuming that the VOT and rime are independent cues to the phonological form 

of the stimulus yields Equation 4.7: 

Equation 4.7 

𝑝 𝑓! 𝑉,𝑅 =
𝑝(𝑓!)𝑝 𝑅 𝑓! ,𝑉 𝑝 𝑉 𝑓!
𝑝(𝑓!)𝑝 𝑅 𝑓! ,𝑉 𝑝 𝑉 𝑓!

!!
!!!

=
𝑝(𝑓!)𝑝 𝑅 𝑓! 𝑝 𝑉 𝑓!
𝑝(𝑓!)𝑝 𝑅 𝑓! 𝑝 𝑉 𝑓!

!!
!!!
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In the current model, and as shown in Equation 4.8, we assume rimes to be 

deterministically related to word-forms; while this is certainly not true of real speech, the 

lexical effect stimuli examined in this study (see Experiment 4.1’s Methods) were 

blocked by continuum, so subjects only heard stimuli with a single rime many times for 

half of the experiment, and then the rime switched for all of the stimuli for the rest of the 

experiment. Thus, for our purposes, it is probably safe to assume that participants could 

accurately map rimes to associated word-forms. In particular, the lexical effect continua 

considered here ranged from *dut to toot and duke to *tuk (see Experiment 4.1’s 

Methods). 

Equation 4.8 

𝑝 𝑟/!"/ 𝑓! = 1 𝑓! ∈ {/𝑡𝑢𝑡/,/𝑑𝑢𝑡/}
0 𝑓! ∈ {/𝑡𝑢𝑘/,/𝑑𝑢𝑘/}

 

𝑝 𝑟/!"/ 𝑓! = 0 𝑓! ∈ {/𝑡𝑢𝑡/,/𝑑𝑢𝑡/}
1 𝑓! ∈ {/𝑡𝑢𝑘/,/𝑑𝑢𝑘/}

 

 Add-alpha smoothing (Lidstone, 1920) was implemented for the prior. Thus, even 

word-forms that never appeared in the Brown corpus (Kucera & Francis, 1963) had some 

prior probability. Equation 4.9 indicates the smoothed frequency estimates for all four 

relevant word forms (prior to normalization) in Experiment 4.1, where 𝜅!""! and 𝜅!"#$ 

are lexical frequency counts of those words in the Brown corpus and 𝛼 is the smoothing 

parameter, fit as described earlier. 

Equation 4.9 

𝑝 𝑓! ∝

𝜅!""! + 𝛼 𝑓! =/𝑡𝑢𝑡/
𝛼 𝑓! =/𝑑𝑢𝑡/
𝛼 𝑓! =/𝑡𝑢𝑘/

𝜅!"#$ + 𝛼 𝑓! =/𝑑𝑢𝑘/
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The second term of the likelihood function, 𝑝 𝑉 𝑓! , which mapped VOTs onto 

word-forms, was modeled such that the mixture components of the Gaussian mixture 

model were onsets (namely, either /t/ or /d/) with normally distributed VOTs (still 

assuming equal category variance). As a simplifying assumption, it was assumed that the 

distribution of VOTs for a word’s initial consonant depends on which consonant the word 

begins with (/t/ vs. /d/), but is otherwise independent of the identity of the word itself (but 

see, e.g., Baese-Berk & Goldrick, 2009; Fox, Reilly & Blumstein, 2015). Equations 4.10 

– 4.12 show how 𝑝 𝑉 𝑓!  is expanded to account for a phonological processing level. 

Equation 4.10 

𝑝 𝑉 𝑓! = 𝑝 𝑉, 𝜊! 𝑓!

!!

!!!

= 𝑝 𝜊! 𝑓! 𝑝 𝑉 𝑓! , 𝜊!

!!

!!!

= 𝑝 𝜊! 𝑓! 𝑝 𝑉 𝜊!

!!

!!!

 

Equation 4.11 

𝑝 𝑉 𝑓! = 𝑝 𝑜/!/ 𝑓! 𝑝 𝑉 𝑜/!/ + 𝑝 𝑜/!/ 𝑓! 𝑝 𝑉 𝑜/!/  

Equation 4.12 

𝑉|𝜊!  ~ 𝑁(𝜇! ,𝜎!!) 

𝑝 𝑉 𝜊! =
1
2𝜋𝜎!!

! 𝑒
!(!!!!)

!

!!!
!  

Additionally, a parameter was added that allows perceptual processing of the 

onset’s VOT to be degraded, with the degree of degradation assumed to be independent 

of the value of the onset’s VOT, as shown in Equation 4.13. 

Equation 4.13 

𝑆|𝑣 ~ 𝑁(𝑣,𝜎!!) 

𝑆|𝜊!  ~ 𝑁(𝜇! ,𝜎!! + 𝜎!!) 
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𝑆|𝜊!  ~ 𝑁(𝜇! ,𝜎! + 𝜎!!) 

 4.2.3.2. Modeling Speech Processing Deficits in BIASES-A 

In addition to the assumptions outlined above, BIASES-A makes three basic 

assumptions, listed in Equation 4.14, about speech processing in healthy adults (young 

controls and age-matched [to the patients] controls). First, the relationship between word-

forms and their onsets is assumed to be deterministic. Secondly, we assume that 𝜎!!, the 

additional variance associated with perceptual processing deficits, is 0 for all healthy 

control subjects. That is because, when equal category variance is assumed, unless a 

noise manipulation is included in the experiment (cf. Feldman et al, 2009), 𝜎!! and 𝜎!! are 

not identifiable parameters in model-fitting. Thirdly, as mentioned earlier, we assume that 

healthy controls optimally weight lexical information after fitting a smoothing parameter, 

𝛼, to the model. 

Equation 4.14 

𝜀!" = 𝜀!"# = 0 

𝜎!!!" = 𝜎!!!"# = 0 

𝜙!" = 𝜙!"# = 1 

Critically, these three assumptions were not made about speech processing in 

patients with aphasia. To the extent that patients do not have perfect lexical-phonological 

processing, BIASES-A implements this as shown in Equations 4.15 – 4.17. 

Equation 4.15 

𝑝 𝑜/!/ 𝑓! = 1− 𝑝 𝑜/!/ 𝑓! = 1− 𝜀 𝑓! ∈ {/𝑡𝑢𝑡/,/𝑡𝑢𝑘/}
𝜀 𝑓! ∈ {/𝑑𝑢𝑡/,/𝑑𝑢𝑘/}

 

Equation 4.16 
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𝑉|𝑓!  ~  
1− 𝜀 ∙ 𝑁(𝜇/!/,𝜎/!/! )+ 𝜀 ∙ 𝑁(𝜇/!/,𝜎/!/! ) 𝑓! ∈ {/𝑡𝑢𝑡/,/𝑡𝑢𝑘/}
𝜀 ∙ 𝑁(𝜇/!/,𝜎/!/! )+ 1− 𝜀 ∙ 𝑁(𝜇/!/,𝜎/!/! ) 𝑓! ∈ {/𝑑𝑢𝑡/,/𝑑𝑢𝑘/}

 

Equation 4.17 

𝑉|𝑓!  ~  

1
2𝜋𝜎!! ∙ 𝑒!

(!!!/!/)!

!!! + 𝜀 ∙ 𝑒!
(!!!/!/)!

!!! − 𝑒!
(!!!/!/)!

!!! 𝑓! ∈ {/𝑡𝑢𝑡/,/𝑡𝑢𝑘/}

1
2𝜋𝜎!! ∙ 𝑒!

(!!!/!/)!

!!! + 𝜀 ∙ 𝑒!
(!!!/!/)!

!!! − 𝑒!
(!!!/!/)!

!!! 𝑓! ∈ {/𝑑𝑢𝑡/,/𝑑𝑢𝑘/}
 

Figure 4.2 illustrates simulations teasing apart the influence of lexical-

phonological processing impairments (𝜀 > 0) and acoustic-phonetic processing deficits 

(𝜎!! > 0) on the model’s likelihood function. Finally, Equation 4.18 summarizes the full 

model for the new BIASES-A from which behavioral data can be simulated, where 

𝑝 𝑧! 𝑉, 𝑟/!"/  is the probability of a /t/-response given a stimulus with VOT value V 

from the */dut/–toot continuum and 𝑝 𝑧! 𝑉, 𝑟/!"/  is the probability of a /t/-response 

given a stimulus with VOT value V from the duke–*/tuk/ continuum. 

Equation 4.18 

𝑝 𝑧! 𝑉, 𝑟/!"/ =
1

1+ 𝑒

! !∙!"#!!""!!!! !!"#

!
!
(!!!/!/)!

! !!!!!
!
!!∙ !

!
(!!!/!/)!

! !!!!!
!
!!

!
(!!!/!/)!

! !!!!!
!

!
!
(!!!/!/)!

! !!!!!
!
!!∙ !

!
(!!!/!/)!

! !!!!!
!
!!

!
(!!!/!/)!

! !!!!!
!

 

 

𝑝 𝑧! 𝑉, 𝑟/!"/ =
1

1+ 𝑒

! !∙!"# !
!!"#$!!

!!"#

!
!
(!!!/!/)!

! !!!!!
!
!!∙ !

!
(!!!/!/)!

! !!!!!
!
!!

!
(!!!/!/)!

! !!!!!
!

!
!
(!!!/!/)!

! !!!!!
!
!!∙ !

!
(!!!/!/)!

! !!!!!
!
!!

!
(!!!/!/)!

! !!!!!
!
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Figure 4.2. Dissociable influences of two bottom-up processing components on speech 
recognition. Acoustic-phonetic and lexical-phonological processing deficits are modeled 
as unique information processing transformations that, together, comprise the likelihood 
function of BIASES-A. Virtual lesions to each has unique effects on the probability 
density functions, 𝑝 𝑉 𝑓! , of each fi, where each fi is a lexical candidate (e.g., toot vs. 
*dut) competing for recognition in a lexical buffer. The influence of acoustic-phonetic 
processing impairments (modeled as an increase in the category variance, σN) is to render 
a wider range of VOTs “somewhat representative” of each fi. The influence is assumed to 
be uniform over all onsets (and therefore over all fi). On the other hand, the influence of 
lexical-phonological processing impairments is modeled as an increased chance of 
“mishearing” the onset due to an increasingly noisy mapping between word-forms and 
onsets, where the probability of an errant lexical-phonological mapping is given by 
𝜀 = 𝑝 /𝑡/ 𝑑𝑢𝑡 = 𝑝 /𝑑/ 𝑡𝑜𝑜𝑡 . The rate of noisy mappings is assumed to be 
symmetrical across word-forms: the probability of a word-form whose true onset is /d/ 
(e.g., *dut, duke) being activated when the listener perceives a /t/ onset is equal to ε, 
which is also equal to the probability of a word-form whose true onset is /t/ (e.g., toot, 
*tuk) being activated when the listener perceives a /d/ onset. The influence of ε is to 
increase the bimodality of the density function since BIASES’ likelihood is a mixture of 
Gaussians. Although it is possible for both levels of processing to be impaired (and for 
BIASES to detect both impairments by implicitly identifying and teasing apart their 
independent contributions; see results of Experiment 4.1), the simulations presented here 
only vary one dimension at a time. On the left panels, σN = 0, while on the right ε = 0 
(baseline levels). 
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4.3. Top-Down Effects of Lexical Status on Spoken Word Recognition in Aphasia 

Simulation Study 4.1 and Experiment 4.1 were designed to investigate the role of 

lexical status in spoken word recognition in aphasia. As discussed earlier, the classic 

finding about top-down lexical effects on phoneme identification is that listeners (who 

are neurologically healthy) show biases in their labeling of a phonetically ambiguous 

spoken segment based on the subsequent phonetic material when only one of the two 

competing candidate labels for the segment would represent a word in the listener’s 

language (Ganong, 1980). 

Although the stimuli and task used in Experiment 4.1 and simulated in Simulation 

Study 4.1 are described in greater detail later on (see Sections 4.3.2.1.2 - 4.3.2.1.3), the 

following represents an overview of key aspects of the Methods. Subjects (including both 

healthy controls and patients with aphasia) heard tokens from a VOT continuum between 

/d/ and /t/ that were immediately followed by one of two rimes (/-uk/ or /-ut/) and their 

task was to decide whether the first segment was an exemplar of a /d/ or of a /t/. 

Critically, when the segment was followed by /-uk/, a /d/-response corresponded to a 

word-response (because duke is a word, but */tuk/ is not), but when the segment was 

followed by /-ut/, a /t/-response corresponded to a word-response (because toot is a word, 

but */dut/ is not). In this stimulus set, the presence of a top-down lexical effect would 

therefore be realized if, for the same ambiguous VOT token, /t/-responses were more 

likely in the /-ut/ condition than in the /-uk/ condition (Blumstein et al, 1994; Burton, 

Baum & Blumstein, 1989). 

As described earlier, BIASES-A captures this lexical bias by assuming that 

subjects’ prior expectations for the words duke and toot are stronger than their 
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expectations for non-word stimuli like */tuk/ and */dut/. As discussed in Chapter 3, just 

how strong the lexical bias is appears to be (i.e., how large the top-down lexical effect is) 

depends on several factors, including the strength of subjects’ top-down lexical 

expectations (captured by the model’s prior) and the degree of bottom-up acoustic 

ambiguity of a stimulus (captured by the model’s likelihood). Consequently, to the extent 

that patients with aphasia suffer from disruptions to either their lexical-level processing 

or their bottom-up acoustic/phonetic/phonological processing, signatures of these 

impairments should be present in their behavioral response patterns. BIASES-A allows us 

to characterize the signatures associated with different functional linguistic deficits. 

To that end, Simulation Study 4.1 examines the expected consequences of 

disruptions at three levels of processing and Experiment 4.1 assesses the extent to which 

patients actually do exhibit atypical patterns of top-down effects in their behavioral 

responses to these stimuli. Ultimately, we can leverage the theoretical framework 

provided by BIASES-A in order to assess the extent to which the responses of patients 

with BA and patients with W/CA indicate bottom-up processing deficits, lexical-level 

processing deficits, or both. 

4.3.1. Simulation Study 4.1: Lexical Effects in Aphasia 

Simulation Study 4.1 examined the independent contributions of lesions at three 

different processing levels on the expected size of lexical effects. The results of these 

simulations are summarized in Figure 4.3. In short, lesions to the prior (ϕ, which controls 

the weighting of lexical/frequency information) predict atypical patterns in behavioral 

results that are most notable for the exaggerated (when ϕ > 1) or diminished (when ϕ < 1) 

effect sizes close to the phonetic category boundary (where acoustic information is most 
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ambiguous). On the other hand, as illustrated in Figure 4.2, lesions to the likelihood (ε > 

0 or σN > 0) tend to predict atypicalities with respect to which VOT values are judged to 

be ambiguous, while the maximum effect size remains relatively unchanged. For lexical-

phonological processing deficits, patients tend to mix up endpoint tokens (e.g., by 

mislabeling, or mishearing, clear exemplars of */tuk/ as duke) at higher rates. Note that 

the size expected top-down effects is greater at the /t/ end of the VOT continuum than at 

the /d/ end of the continuum. This is the result of the /t/ endpoint token that is a word is 

less frequent than the /d/ endpoint token that is a word (𝜅!"#$ > 𝜅!""!), illustrating the 

interacting roles of the prior and the likelihood during speech integration. Finally, for 

acoustic-phonetic processing impairments, lesions are expected to induce top-down 

effects for a wider array of VOTs, just as the addition of noise would cause. 
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Figure 4.3. Summary of results of Simulation Study 4.1: Effect of manipulating each 
parameter on the predicted lexical effect size, as a function of VOT. Each curve 
represents the difference between the posterior probability functions of the /*ut/ (/t/-
biased) and /*uk/ (/d/-biased) conditions. In each panel, only the labeled parameter was 
manipulated; other baseline parameter values (ϕ = 1; ε = 0; σN = 0) were held constant in 
order to observe the effects of each parameter independently. Solid curves represent the 
simulation in each panel for which all baseline assumptions were held constant. Each 
panel summarizes four simulations (i.e., four levels of the relevant parameter for that 
panel), whose coloration corresponds to the panel number in which that simulation is 
further detailed in Figures 4.4, 4.5 or 4.6. Coloration darkens from simulation 1-4, 
because the boundary shift associated with that simulation also increased from simulation 
1-4 in each panel. This can be seen in Figures 4.4, 4.5 or 4.6, which show the two 
conditions’ posterior probability curves, as a function of VOT. 
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Figure 4.4. Detailed Results of Simulation Study 4.1: Effect of weighting lexical 
information (ϕ) on expected rate of voiceless (/t/) responses, as a function of VOT and 
rime of the stimulus (/uk/ vs. /ut/), which corresponded to opposing lexical biases for the 
initial consonant. The panel with solid lines represents the baseline assumptions (ϕ = 1; ε 
= 0; σN = 0), and each other panel manipulated only the listed parameter value; all others 
remained at baseline. The vertical grey line denotes the phoneme category boundary in 
the simulations (the VOT at which, for an unbiased prior, the posterior probability of /t/- 
and /d/-response are equal. 

 

 
Figure 4.5. Detailed Results of Simulation Study 4.1: Effect of efficacy of phonological 
processing (ε) on expected rate of voiceless (/t/) responses, as a function of VOT and 
rime of the stimulus (/uk/ vs. /ut/), which corresponded to opposing lexical biases for the 
initial consonant. The panel with solid lines represents the baseline assumptions (ϕ = 1; ε 
= 0; σN = 0), and each other panel manipulated only the listed parameter value; all others 
remained at baseline. The vertical grey line denotes the phoneme category boundary in 
the simulations (the VOT at which, for an unbiased prior, the posterior probability of /t/- 
and /d/-response are equal. 
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Figure 4.6. Detailed Results of Simulation Study 4.1: Effect of efficacy of acoustic-
phonetic processing (σN) on expected rate of voiceless (/t/) responses, as a function of 
VOT and rime of the stimulus (/uk/ vs. /ut/), which corresponded to opposing lexical 
biases for the initial consonant. The panel with solid lines represents the baseline 
assumptions (ϕ = 1; ε = 0; σN = 0), and each other panel manipulated only the listed 
parameter value; all others remained at baseline. The vertical grey line denotes the 
phoneme category boundary in the simulations (the VOT at which, for an unbiased prior, 
the posterior probability of /t/- and /d/-response are equal. 
 

4.3.2. Experiment 4.1: Lexical Effects in Aphasia 

Based on the simulations with BIASES-A presented in Simulation Study 4.1, and 

based on the logic outlined above in Section 4.2.2 (see Table 4.1 for a summary), it is 

clear that the Lexical Activation Hypothesis predicts that BAs should exhibit exaggerated 

lexical effects compared to healthy control subjects and W/CAs should exhibit 

diminished (or perhaps even undetectable) lexical effects. However, as discussed earlier, 

both patient groups may also suffer from bottom-up processing deficits. Simulation Study 

4.1 further illustrated that bottom-up and lexical-level processing deficits have distinct 

signatures in the expected behavioral results, suggesting that, by analyzing the fine-

grained pattern of behavioral responses from a study examining the lexical effect in 

patients with aphasia (as compared to healthy listeners) in light of the predictions of 
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BIASES-A, it may be possible to tease apart the impacts of different functional 

impairments and infer the nature of the underlying deficits in the BAs and W/CAs. 

To that end, the data from Experiment 4.1, described below, were examined in 

order to evaluate the extent to which these data support the predictions of the Lexical 

Activation Hypothesis. As previously mentioned, the data for Experiment 4.1 were 

originally presented by Blumstein and colleagues (1994). Here, we reanalyze the raw data 

from that study using the model-based approach. 

 4.3.2.1. Methods 

For a detailed description of the participants, stimuli, and procedure of the 

original study by Blumstein and colleagues (1994), readers should consult that article. 

However, a summary is provided below. 

 4.3.2.1.1. Subjects 

A total of thirty subjects participated in Experiment 4.1, including 10 young 

control subjects, 8 age-matched control subjects, 6 patients diagnosed with Broca’s 

aphasia, and 6 patients diagnosed with either Wernicke’s or Conduction aphasia. 

Ten Brown University students participated, serving as the young control (YC) 

sample. All reported having normal hearing and being native speakers of English. 

Eight right-handed males with a mean age of 64.0 years (minimum: 55; 

maximum: 75; sd: 6.5) participated, serving as the age-matched control (AMC) sample. 

All reported having normal hearing and being native speakers of English. 

Six patients with Broca’s aphasia (mean age: 58.3 years; minimum: 44; 

maximum: 72; sd: 9.9) participated, comprising the BA sample. Four other patients with 

Broca’s aphasia were originally selected to participate in the study, but were excluded 
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from the original study after a pre-test because they were unable to accurately identify 

phonetically unambiguous exemplars of the stimuli included in the study. Patients’ 

clinical diagnoses were determined based on clinical and neurological examinations 

(including CT scans) and performance on the Boston Diagnostic Aphasia Examination 

(BDAE) (Goodglass & Kaplan, 1983). 

Six patients with Wernicke’s or Conduction aphasia (mean age: 65.2 years; 

minimum: 52; maximum: 78; sd: 11.2) participated, comprising the W/CA sample. Four 

additional patients with Wernicke’s aphasia were excluded from the original study after 

failing the same pre-test administered to the patients in the BA sample, and clinical 

diagnoses were determined according to the same criteria. 

4.3.2.1.2. Stimuli 

The stimuli for Experiment 4.1 were comprised of a total of 14 acoustic tokens 

from two continua that crossed initial consonant voicing with lexical status. In particular, 

they consisted of 7 tokens from a continuum between a word and a non-word (W-NW 

continuum; duke–*tuk) and 7 acoustic tokens with the same word-initial voice-onset time 

(VOT) values, but ending in a different final consonant (NW-W continuum; *dut–toot). 

The stimuli were a subset of those used in another previously published study 

(Burton, Baum & Blumstein, 1989). Burton and colleagues (1989) constructed two 12-

step VOT continua. A naturally produced token of duke served as the /d/ endpoint of the 

duke–*tuk continuum. The other 11 steps of the duke–*tuk continuum were constructed 

by acoustically manipulating this token’s waveform, splicing out successively longer 

portions of the vowel and inserting equal durations of aspiration from the naturally 

produced *tuk token. Additionally, the duke token’s burst was replaced with the *tuk 
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token’s burst, and the amplitude of the burst varied over the continuum (see Burton et al, 

1989). Finally, the tokens of the *dut–toot continuum was constructed by replacing the 

final /k/ of the tokens from the duke–*tuk continuum with the final /t/ from a naturally 

produced token of *dut, thus ensuring that the W-NW continuum and the NW-W 

continuum did not differ acoustically except in their final consonant. 

Blumstein and colleagues (1994) selected 7 of the 12 stimuli from each VOT 

continuum, corresponding to two /d/ endpoint tokens (VOTs = 14.7 and 18.7 ms), two /t/ 

endpoint tokens (VOTs = 55.7 and 60.2 ms), and three phonetically ambiguous tokens 

with intermediate VOTs (VOTs = 34.2, 37.3, and 41.7 ms). 

  4.3.2.1.3. Procedure 

The seven tokens from each VOT continuum were binaurally presented over 

headphones to each participant 10 times. Subjects heard stimuli from each continuum in 

two separate tests separated by a short break (order of presentation of the two continua 

was counterbalanced across subjects). The 70 trials for a given continuum were randomly 

ordered and presented in blocks of 10 trials, with sequential blocks separated by a 6-

second interval. Trials within a block were separated by a 3-second inter-stimulus 

interval for young control subjects and a 4-second inter-stimulus interval for all older 

subjects (age-matched controls and all patients with aphasia). Subjects were instructed to 

identify the first sound of each stimulus as either “d” or “t” by pressing the appropriately 

labeled button (counterbalanced across subjects) with their preferred hand as quickly and 

accurately as possible. Prior to each test, all subjects completed 12 randomly ordered 

practice trials, including at least one trial with each of the 7 tokens from the continuum 

being tested and 5 additional trials with randomly selected tokens from that continuum. 
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Prior to the experiment, all patients with aphasia completed a pretest in which 

they heard each of the /d/ and /t/ endpoint stimuli from each continuum (VOTs = 14.7 ms 

and 60.2 ms) ten times. Only participants who achieved at least 70% accuracy on each of 

the endpoint VOTs completed the experiment (six participants in each patient group). 

 4.3.2.2. Results: Statistical Analyses 

The results of Experiment 4.1, as originally reported by Blumstein and colleagues 

(1994) are shown in Figure 4.7. Recall that, to the extent that subjects tend to label 

stimuli with the same word-initial VOT as beginning with a /t/ more often in the *dut–

toot continuum than in the duke–*tuk continuum, those results would suggest that 

subjects are biased towards the word endpoint of each continuum, and such results 

would, in turn, represent evidence of top-down effects from lexical status on speech 

recognition. 
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Figure 4.7. Results of Experiment 4.1: for each group, the proportion /t/-responses as a 
function of voice-onset time (VOT) for the /*ut/ (/t/-biased) and /*uk/ (/d/-biased) 
conditions. Error bars represent by-subject standard error. Results represent reanalysis of 
raw data from Blumstein et al (1994). PWA = Patients with aphasia. 
 

 4.3.2.2.1. Motivation and Interpretation of Logistic Regressions 

We reanalyzed the raw data from Experiment 4.1 (that is, the number of /t/-

responses by each subject, for each VOT value, in each continuum: duke–*tuk vs. *dut–

toot) using mixed effects logistic regression (Baayen, Davidson & Bates, 2008; Jaeger, 
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2008), implemented using the lme4 package (Bates, Maechler, Bolker & Walker, 2014) 

in R (R Core Team, 2014). As noted earlier, the coefficients of a logistic regression relate 

directly to the underlying parameters of a Bayesian model of speech perception in the 

context of a two-alternative forced choice task (Feldman et al, 2009, Appendix B; see 

also Kleinschmidt & Jeager, 2015, Appendix, pp. 200-201). In particular, the theoretical 

framework defined by BIASES implies the appropriate structure for the logistic 

regression models, and how significance levels should be interpreted. 

Consistent with the theoretical framework provided by BIASES, all analyses 

reported in this section included independent fixed effects for RIME (β2) (/-ut/ vs. /-uk/; 

or, equivalently, /t/-biased stimulus vs. /d/-biased stimulus) and for VOT (β1) (modeled 

here as a continuous, linear fixed effect). No RIME × VOT interaction term was 

included, reflecting the principle that the prior and the likelihood are independent sources 

of information in the Bayesian framework (cf. Chapter 2). Any significant main effect of 

RIME suggests an influence of lexical status. A significant main effect of VOT suggests 

that subjects’ likelihood of making a /t/-response depends on the VOT of the stimulus. 

Thus, these two fixed effects reflect top-down and bottom-up processing, respectively. 

Additionally, whenever analyses included subjects from more than one group 

(e.g., a comparison of Young and Age-Matched Controls or a comparison of all three 

groups of Elderly subjects to one another), a fixed effect of GROUP was included in the 

model, along with its interactions with both RIME and VOT. Critically, a significant 

interaction between RIME and GROUP would reflect reliable differences in top-down 

processing between the two groups being compared, while a significant interaction 

between VOT and GROUP would reflect reliable differences in the bottom-up processing 
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between the two groups. Typically, if two groups differ in their best-fitting intercept 

coefficient (β0), it would indicate that subjects from the two groups differed reliably from 

one another in the locus of their category boundary. However, this result could also be 

attributable to between-group differences in top-down processing due to the default 

choice of contrasts used to code factors in these models, a point to which we will return 

later. 

Finally, all analyses also included random by-subject intercepts, thereby allowing 

subjects to vary in their category boundary around some overall group mean (cf. Chapter 

3). Prior to analysis, VOT was centered (mean = 0) and RIME was deviation-coded 

(contrasts: -0.5/0.5 for /-uk/ and /-ut/, respectively). Deviation-coding was also used for 

the GROUP factor in analyses comparing groups. In comparisons of the two control 

groups (Young vs. Age-Matched) the older subjects were represented by the positive 

contrast. In comparisons of the elderly subjects (Age-Matched Controls vs. BAs vs. 

W/CAs), the GROUP factor was coded using two planned contrasts. These contrasts were 

selected to be Age-Matched Controls vs. BAs and Age-Matched Controls vs. W/CAs, 

with Age-Matched Controls being coded as the negative contrast in both cases. 

All results are reported in tables that include the best-fitting estimate of each 

regression coefficient (β), the estimate’s standard error (SE), Wald’s z statistic for the 

estimate of that parameter (|z|), and the significance level of the statistic (p). Table 4.2 

summarizes the theoretical interpretation of each logistic regression coefficient. 
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Coefficient Factor Related Terms in 
BIASES Interpretation of Significance 

β0 Intercept −𝑏 = −
𝜇!! − 𝜇!!

2𝜎!
 reflects estimate of category boundary 

β1 VOT 𝑔 =
𝜇! − 𝜇!
𝜎!

 reliable bottom-up influence of acoustic-
phonetic cues on recognition (likelihood) 

β2 RIME log
𝑝(𝑓!)
𝑝(𝑓!)

 reliable top-down influence of lexical 
status on recognition (prior) 

Table 4.2. Summary of theoretical interpretations of logistic regression coefficients 
 

  4.3.2.2.2. Control Subjects: YCs vs. AMCs 

In order to confirm that Experiment 4.1’s stimuli elicited a reliable lexical effect 

for the healthy control subjects, the data from all Young Control subjects (YCs) and all 

Age-Matched Control subjects (AMCs) were submitted to logistic regression. 

Unsurprisingly, results (see Table 4.3) revealed contributions of both bottom-up and top-

down effects on speech perception. No significant differences between the two control 

groups emerged, but there was a marginally significant RIME × GROUP interaction, 

suggesting that the AMCs may be somewhat more influenced by lexical status than YCs. 

Coefficient β SE |z| p 
β0 -1.511 (-1.610) 0.286 (0.286) -5.273 (-5.638) < 0.001 (< 0.001) 
β1 0.449 (0.452) 0.028 (0.029) 15.958 (15.458) < 0.001 (< 0.001) 
β2 0.762 (0.916) 0.177 (0.183) 4.314 (5.012) < 0.001 (< 0.001) 

β0: YC vs. AMC -0.807 (-0.599) 0.572 (0.570) -1.412 (-1.052) 0.158 (0.293) 
β1: YC vs. AMC -0.078 (-0.087) 0.055 (0.057) -1.418 (-1.512) 0.156 (0.131) 
β2: YC vs. AMC 0.627 (0.313) 0.353 (0.365) 1.777 (0.858) 0.076 (0.391) 

Table 4.3. Results of logistic regression analysis of Experiment 4.1 (Blumstein et al, 
1994) that included Young and Age-Matched Controls. Shaded boxes indicate 
statistically significant effects. Statistics in parentheses report the comparable statistic for 
an identical analysis that excluded one young control subject (see main text). β0 = 
intercept (related to phoneme category boundary); β1 = VOT (related to gain/slope of 
sigmoid); β2 = RIME (related to size of the boundary shift introduced by the 
lexical/frequency bias); β: best-fitting estimate of each regression coefficient, SE: the 
estimate’s standard error, |z|: Wald’s z statistic for the estimate of that parameter, p: the 
significance level of the test statistic. 
 

Further examination of the potential source of this effect revealed that one of the 

10 YC subjects showed large “anti-lexical effects” on all three ambiguous tokens: across 
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all three tokens, the subject made 79% /t/-responses to the duke–*tuk continuum, but only 

45% /t/-responses to the *dut–toot continuum. When this subject’s data are excluded 

(statistics reported in parentheses in Table 4.3 to facilitate comparison), the overall 

pattern is the same, but the marginal RIME × GROUP interaction evaporates completely. 

This suggests that the marginally significant interaction was being driven by a single 

subject’s atypical behavioral pattern. Although it is impossible to know why this subject 

was so strongly biased in the opposite direction than predicted, the follow-up analysis 

suggests that this subject is an outlier. Therefore, in the model-based analyses, this 

subject’s anomalous data were excluded in order to prevent group-level parameter 

estimation from being unduly influenced. 

With no evidence that the YCs and AMCs differed substantially in their overall 

pattern of responses to these data, each group’s data were analyzed separately. Results 

were consistent with the conclusion of the first analysis, showing both bottom-up and 

top-down influences on speech recognition in both YCs (Table 4.4) and AMCs (Table 

4.5). This was true whether or not the atypical YC subject was included in the analysis 

(see parentheses of Table 4.4), although the effect of lexical status was more reliable 

when those data were excluded. 

Coefficient β SE |z| p 
β0 -1.102 (-1.299) 0.352 (0.346) -3.126 (-3.751) 0.002 (< 0.001) 
β1 0.486 (0.492) 0.041 (0.044) 11.736 (11.086) < 0.001 (< 0.001) 
β2 0.447 (0.754) 0.223 (0.242) 2.002 (3.119) 0.045 (0.002) 

Table 4.4. Results of logistic regression analysis of Experiment 4.1 (Blumstein et al, 
1994) that included only Young Controls. Statistics in parentheses report the same value 
for an identical analysis that excluded one young control subject (see main text). β0 = 
intercept (related to phoneme category boundary); β1 = VOT (related to gain/slope of 
sigmoid); β2 = RIME (related to size of the boundary shift introduced by the 
lexical/frequency bias); β: best-fitting estimate of each regression coefficient, SE: the 
estimate’s standard error, |z|: Wald’s z statistic for the estimate of that parameter, p: the 
significance level of the test statistic. 
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Coefficient β SE |z| p 
β0 -1.926 0.464 -4.155 < 0.001 
β1 0.412 0.038 10.798 < 0.001 
β2 1.083 0.275 3.941 < 0.001 

Table 4.5. Results of logistic regression analysis of Experiment 4.1 (Blumstein et al, 
1994) that included only Age-Matched Controls. Shaded boxes indicate statistically 
significant effects. β0 = intercept (related to phoneme category boundary); β1 = VOT 
(related to gain/slope of sigmoid); β2 = RIME (related to size of the boundary shift 
introduced by the lexical/frequency bias); β: best-fitting estimate of each regression 
coefficient, SE: the estimate’s standard error, |z|: Wald’s z statistic for the estimate of that 
parameter, p: the significance level of the test statistic. 

 
In general, these effects were consistent with the results reported by Blumstein 

and colleagues (1994), although, where they found no significant lexical effect in the 

YCs, the present results did. Given that the data are identical, this is likely due, at least in 

part, to our use of a more powerful statistical approach: the analyses of Blumstein and 

colleagues only examined shifts in the estimated phoneme category boundary as a 

function of lexical status. However, any minor differences between the present results 

and those originally reported are of little importance to the theoretical interpretation of 

the data. 

  4.3.2.2.3. Elderly Subjects: AMCs vs. BAs vs. W/CAs 

 A logistic regression examined all of the elderly participants, including the 

AMCs, and patients from both clinically defined groups, BAs and W/CAs. The results of 

this analysis are shown in Table 4.6. Overall, there was a significant lexical effect on 

subjects’ responses (more /t/-responses in the *dut–toot continuum than in the duke–*tuk 

continuum), and an overall effect of VOT on subjects’ responses (more /t/-responses to 

stimuli with longer VOTs). 
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Coefficient β SE |z| p 
β0 -0.794 0.174 -4.554 < 0.001 
β1 0.190 0.012 15.367 < 0.001 
β2 0.736 0.120 6.133 < 0.001 

β0: AMC vs. BA 0.587 0.494 1.189 0.234 
β0: AMC vs. W/CA 1.491 0.494 3.021 0.003 
β1: AMC vs. BA -0.209 0.026 -8.101 < 0.001 
β1: AMC vs. W/CA -0.197 0.026 -7.632 < 0.001 
β2: AMC vs. BA 0.672 0.313 2.148 0.032 
β2: AMC vs. W/CA -1.245 0.309 -4.031 < 0.001 

Table 4.6. Results of logistic regression analysis of Experiment 4.1 (Blumstein et al, 
1994) that included Age-Matched Controls (AMC), patients with Broca’s aphasia (BA), 
and patients with Wernicke’s or Conduction aphasia (W/CA). Shaded boxes indicate 
statistically significant effects. β0 = intercept (related to phoneme category boundary); β1 
= VOT (related to gain/slope of sigmoid); β2 = RIME (related to size of the boundary 
shift introduced by the lexical/frequency bias); β: best-fitting estimate of each regression 
coefficient, SE: the estimate’s standard error, |z|: Wald’s z statistic for the estimate of that 
parameter, p: the significance level of the test statistic. 
 

However, both BAs and W/CAs differed from AMCs with respect to both of these 

effects. In particular, the influence of VOT on speech recognition was diminished in each 

of the patient groups when compared to the controls. Weaker effects of VOT correspond 

to a shallower slope of the sigmoidal categorization curve; for reference, a shallower 

slope is also the expected effect of adding Gaussian noise to a stimulus (Feldman et al, 

2009). Thus, this pattern in the results indicates that BAs and W/CAs in Experiment 4.1 

both exhibited bottom-up perceptual processing deficits relative to AMCs. 

On the other hand, the patterns of lexical effects displayed by the BAs and 

W/CAs are quite different. Results indicated that both patient groups appeared to differ 

significantly from AMCs in the extent to which rime (i.e., lexical status) influenced 

speech perception, but in opposite directions. Whereas BAs were more influenced by 

lexical status compared to AMCs, W/CAs were less influenced than AMCs. Notably, this 

is precisely the prediction that emerged in the simulations that aimed to specify the 
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relationship between the Lexical Activation Hypothesis and a probabilistic speech 

perception model like BIASES. 

Finally, W/CAs also differed significantly from AMCs in the best-fitting 

intercept. This result has two possible interpretations. The simplest interpretation is that 

W/CAs (but not BAs) have a different overall category boundary compared to AMCs. 

This would suggest that these patients’ underlying phonetic expectations for the VOTs of 

exemplars of the /t/ and/or /d/ phoneme categories are different from controls. While this 

is certainly possible, there is little evidence that patients with aphasia exhibit 

fundamentally different phonetic category structure from healthy controls. Quite to the 

contrary, evidence suggests that, while overall performance on phoneme discrimination 

and categorization tasks is very often impaired in patients with aphasia (including 

W/CAs), the typical signatures of phonetic category structure are preserved (Blumstein, 

Tartter, Nigro & Statlender, 1984; Blumstein et al, 1977b), even in patients who present 

with specifically impaired acoustic-phonetic processing (e.g., Caplan & Aydellott Utman, 

1994; Gow & Caplan, 1996). 

Alternatively, the apparent shift in W/CAs’ phonetic category boundary could 

also be explained as an artifact of the smaller lexical effects. The decision to fit the 

logistic regressions with assumed contrasts for the RIME factor that were equally far 

from zero (/-uk/: -0.5; /-ut/: 0.5) implied that the strength of the bias towards /t/ imposed 

by the *dut–toot continuum and the strength of the bias towards /d/ in the duke–*tuk 

continuum should be equal. That is, the fit boundary is exactly halfway between the 

theoretical boundaries for the two VOT continua. However, if the bias created by the 

smoothed lexical frequency prior towards duke is stronger than the bias towards toot, as 
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predicted by BIASES, then the actual phoneme category boundary should tend to be 

closer to the implicit category boundary of the *dut–toot continuum. On the other hand, if 

W/CAs show a smaller effect of lexical status, overall, then the best-fitting category 

boundary should be closer to the midpoint between the implicit category boundaries of 

the two continua (or, if there is no effect of the prior and lexical status, both continua 

should have the same implicit category boundary, which should be the phonetic category 

boundary (χ = !!!!!
!

). 

To further examine the pattern of lexical effects in the two patient groups, each 

group’s data were analyzed separately. Results confirmed that BAs (Table 4.7) exhibited 

a robust influence of lexical status. Moreover, bottom-up cues (VOT) also influenced 

speech recognition, although the raw effect size was weaker than in both the control 

groups. Finally, as suggested by Figure 4.7, W/CAs (Table 4.8) showed no evidence of 

top-down effects from lexical status. It is especially notable that, although their bottom-

up perception of the VOT continua was comparable to BAs, showing a significant effect 

of VOT with a similar effect size, the primary dimension on which these groups differed 

was in the extent to which lexical-level information influenced speech recognition. 

Coefficient β SE |z| p 
β0 -0.493 0.103 -4.768 < 0.001 
β1 0.085 0.006 13.257 < 0.001 
β2 1.057 0.173 6.129 < 0.001 

Table 4.7. Results of logistic regression analysis of Experiment 4.1 (Blumstein et al, 
1994) that included only patients with Broca’s aphasia (BAs). Shaded boxes indicate 
statistically significant effects. β0 = intercept (related to phoneme category boundary); β1 
= VOT (related to gain/slope of sigmoid); β2 = RIME (related to size of the boundary 
shift introduced by the lexical/frequency bias); β: best-fitting estimate of each regression 
coefficient, SE: the estimate’s standard error, |z|: Wald’s z statistic for the estimate of that 
parameter, p: the significance level of the test statistic. 
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Coefficient β SE |z| p 
β0 -0.048 0.156 -0.307 0.759 
β1 0.091 0.006 13.998 < 0.001 
β2 0.112 0.167 0.669 0.503 

Table 4.8. Results of logistic regression analysis of Experiment 4.1 (Blumstein et al, 
1994) that included only patients with Wernicke’s or Conduction aphasia (W/CAs).. 
Shaded boxes indicate statistically significant effects. β0 = intercept (related to phoneme 
category boundary); β1 = VOT (related to gain/slope of sigmoid); β2 = RIME (related to 
size of the boundary shift introduced by the lexical/frequency bias); β: best-fitting 
estimate of each regression coefficient, SE: the estimate’s standard error, |z|: Wald’s z 
statistic for the estimate of that parameter, p: the significance level of the test statistic. 
 

  4.3.2.2.4. Summary of Results of Statistical Analyses 

Figure 4.8 provides an alternate way of visualizing differences in the size of top-

down effects from lexical status for each group over the entire continuum. For each 

subject’s responses to each of the seven VOT tokens, we computed the difference in the 

proportion of /t/-responses in the /t/-biased continuum (*dut–toot) and the /d/-biased 

continuum (duke–*tuk), and plotted the mean difference (i.e., effect size) for each group 

at each VOT. In summary, there are at least five tentative conclusions that find support in 

the statistical analyses presented above. All are also clearly visible in Figure 4.8: 

1. Lexical status influences speech categorization in both YCs and AMCs. 

2. Those effects only arise at intermediate VOTs; unambiguous speech tokens 

are consistently and accurately perceived by healthy adults, even when those 

speech tokens are non-words (e.g., *dut). 

3. The size of top-down lexical effects and their distribution is nearly identical 

between YCs and AMCs. 

4. The mean size of the lexical effect in patients with BA is greater than in 

control subjects and lexical influences appear over a wider array of the VOT 

continua. 
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5. There is no evidence for an influence of lexical status on speech 

categorization is W/CAs. 

 
Figure 4.8. Results of Experiment 4.1: Difference between proportion /t/-responses in the 
/*ut/ (/t/-biased) and /*uk/ (/d/-biased) conditions as a function of voice-onset time 
(VOT), for each group. Error bars represent by-subject standard error. Results represent 
reanalysis of raw data from Blumstein et al (1994). PWA = Patients with aphasia 
 

4.3.2.3. Results: Model-Based Analyses 

The statistical analyses described above provide some evidence for differences in 

the sizes of top-down effects from lexical status in patients with aphasia compared with 
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healthy controls. Most interestingly, the results suggest that the identification of stimuli 

by BAs may be more influenced by lexical status than in healthy control subjects, while 

W/CAs are less influenced by lexical-level information. According to the simulations 

summarized earlier in Table 4.1, this is precisely the pattern predicted by the Lexical 

Activation Hypothesis. 

4.3.2.3.1. Motivation of Model-Based Analyses 

However, despite these intriguing results, the interpretability of the findings is 

limited by the analytic techniques employed. Recall that in Chapter 3, it was shown that 

the size of a boundary shift depends on many factors. Teasing apart competing 

explanations is not always straightforward. For instance, consider Figures 4.4 and 4.6 in 

Simulation Study 4.1: in one simulation, manipulating the strength of the bias modulates 

the size of the boundary shift, while in the other simulation, manipulation the efficacy of 

acoustic-phonetic processing also modulates the size of the boundary shift. Only one of 

these parameters is associated with lexical-level processing, so it would be a mistake to 

conclude from the presence of a larger boundary shift in one group that the difference is 

attributable to lexical-level processing deficits. 

While logistic regression models are much more powerful than comparisons of 

inferred category boundaries, even these models have other shortcomings. Foremost 

among these is the relative inflexibility of using generalized linear models (e.g., logistic 

regression). Such models require a number of assumptions that are not necessarily 

appropriate for the present work. For instance, consider the influence of ε on expected 

categorization behavior (see Figure 4.5). The implementation of a fitting procedure for 

data with asymptotes other than 0 and 1 is not straightforward (Wichmann & Hill, 2001), 
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but these asymptotes are a direct prediction of our model if subjects suffer from lexical-

phonological processing impairments. Furthermore, as with the model intercept that 

differed between AMCs and W/CAs above (see Table 4.6), some coefficients in logistic 

regression analyses can be influenced by both top-down and bottom-up factors. This fact 

makes it difficult to isolate the differences caused by lexical-level deficits and those 

caused by bottom-up processing impairments. Moreover, since multiple unique 

parameters associated with bottom-up processing dynamics (here, acoustic-phonetic and 

lexical-phonological processing) are lumped together and expected to influence  the same 

coefficients in a regression model, it is virtually impossible to recover the independent 

influences of different bottom-up information sources. 

Fortunately, model-based Bayesian data analysis makes is possible to explicitly 

evaluate the independent contributions of multiple interacting model parameters to the 

observed behavioral data. Such an analytic approach is more theoretically informed, more 

flexible, more powerful and, ultimately, yields more informative results. Rather than 

attempting to interpret the relationship between model parameters and regression 

coefficients (as in Table 4.2), this approach directly models the parameters and processes 

of interest. Another advantage, especially in situations such as the current one, when data 

is limited, is that the Bayesian data analysis approach allows a researcher to explicitly 

choose which parameters should be shared or different between groups or individuals. 

4.3.2.3.2. Key Results of Model-Based Analyses 

Table 4.9 provides a summary of the posterior distributions of the parameters that 

were fit in the present analysis (i.e., the “best-fitting” model parameters). 
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Mean SD 95% HDI min 95% HDI max 

𝛼 1.25 0.27 0.78 1.82 
σ2 175.28 10.74 154.18 196.59 

 𝜇! 8.04 0.22 7.63 8.50 
BAs: σN 148.93 82.52 13.64 310.09 

W/CAs: σN 154.00 67.59 35.69 295.54 
BAs: ε 0.14 0.03 0.09 0.19 

W/CAs: ε 0.13 0.02 0.09 0.17 
BAs: ϕ 1.36 0.30 0.77 1.94 

W/CAs: ϕ -0.12 0.20 -0.51 0.25 
Table 4.9. Summary statistics of posterior distributions of Bayesian data analysis of 
Experiment 4.1 (Blumstein et al, 1994). HDI = highest density interval. 
 
 First, it is worth noting that the mean VOT of the /d/ onset (𝜇!) was estimated to 

be approximately 8 ms, which is very close to the 5 ms value reported in the seminal 

analysis of VOTs in English by Lisker and Abramson (1964). This suggests that subjects 

treated the stimuli like real speech and their responses indicated a category boundary in 

the typical range. 

Of critical interest was the extent to which behavioral responses of BAs and 

W/CAs might reflect either bottom-up or top-down processing deficits (or both) 

compared to healthy adults. As suggested by the statistical analyses reported earlier, the 

model-based analysis provided strong evidence that both patient groups exhibit bottom-

up and top-down impairments, but the model-based analyses offer a more detailed picture 

of the specific deficits underlying abnormal response patterns. 

Considering those parameters associated with the efficacy of bottom-up 

processing first, the results suggest that BAs and W/CAs both suffer from acoustic-

phonetic processing deficits, as well as from lexical-phonological deficits. Notably, for 

both groups, the severity of these bottom-up processing deficits is quite similar in total 

magnitude (at the group level). 
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However, when it comes to lexical processing deficits, W/CAs showed significant 

deficits compared to AMCs (and YCs). As discussed earlier, their responses indicated a 

weaker influence of lexical status (i.e., frequency) information on phonetic speech 

categorization decisions. Meanwhile, BAs’ lexical processing deficits were trending in 

the opposite direction. Among these patients, there was a tendency to weight lexical-level 

cues more heavily than controls (and much more than W/CAs8), as predicted by the 

Lexical Activation Hypothesis. 

It is important to note that the simulations in Simulation Study 4.1 focused on 

illustrating the expected independent impacts of virtual lesions to each processing level of 

the computational model. The exploratory simulations did suggest the existence of 

distinct, independent behavioral signatures of bottom-up and lexical-level processing 

impairments, and the results of the model-based Bayesian data analysis presented here 

further suggest that the subtle, fine-grained effects of each parameter could be 

distinguished from one another in the data. However, a more powerful demonstration of 

this result would be a direct illustration that simulating new behavioral data from a model 

with the recovered parameter estimates for each group or subjects produced similar 

patterns of results as the original data. This technique is referred to as a posterior 

predictive check (PPC), and PPCs can also used to evaluate whether or not a model is 

sufficient to capture all of the key aspects of the behavioral data. 

To further evaluate the ability of the model to fit the data, a posterior predictive 

check (PPC) was performed. 100 random samples were selected from the joint posterior 

distribution of the model, and parameter values for a given sample were set to the 

                                                
8 Subtracting the posterior chains’ samples (BA-W/CA) gives a 95% HDI of [0.26, 3.54], 
confirming the behavioral divergence on this task for these two clinically defined groups. 
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sampled value in the corresponding Markov chain. For each sample we simulated data 

from the model, and we ran all of the statistical analyses reported in Section 4.3.2.2 on 

the simulated data. This yielded 100 samples of each of 6 statistical analyses. For each 

logistic regression coefficient in each statistical test, we computed the mean coefficient 

estimate (β) and we determined how many of the statistical tests reached significance at 

the 0.05 level. To the extent that statistical tests on new, generated data give similar 

inferences as the same statistical tests on the original data, it would suggest that the 

model from which the data were generated captures some fundamental aspects of the 

generative model underlying the psychological processes giving way to the relevant 

empirical data. 

The results are shown in Table 4.10. In general, the PPCs’ coefficient estimates 

and pattern of significances were consistent with the statistics of the original 

experimental data. Overall, these results suggest that the posterior accurately captured the 

critical aspects of and patterns in the original data. Figures 4.9 and 4.10 superimpose the 

results of the PPC onto the original experimental data shown in Figures 4.7 and 4.8. 
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Experiment 4.1: 
Lexical Effect 

Results: 
Experiment 4.1 Results: PPC 

logistic 
regression  coefficient β p mean 

β 
% sims 
p<.05 

C
on

tro
l S

ub
je

ct
s β0 -1.610 < 0.001 -1.349 100 

β1 0.452 < 0.001 0.380 100 
β2 0.916 < 0.001 0.786 96 

β0: YC vs. AMC -0.599 0.293 0.006 13 
β1: YC vs. AMC -0.087 0.131 0.006 14 
β2: YC vs. AMC 0.313 0.391 0.033 15 

El
de

rly
 S

ub
je

ct
s 

β0 -0.794 < 0.001 -0.697 100 
β1 0.190 < 0.001 0.185 100 
β2 0.736 < 0.001 0.582 99 

β0: AMC vs. BA 0.587 0.234 0.378 48 
β0: AMC vs. W/CA 1.491 0.003 0.921 99 
β1: AMC vs. BA -0.209 < 0.001 -0.203 100 
β1: AMC vs. W/CA -0.197 < 0.001 -0.194 100 
β2: AMC vs. BA 0.672 0.032 0.905 68 
β2: AMC vs. W/CA -1.245 < 0.001 -1.347 91 

Y
C

s β0 -1.299 < 0.001 -1.352 100 
β1 0.492 < 0.001 0.377 100 
β2 0.754 0.002 0.770 84 

A
M

C
s β0 -1.926 < 0.001 -1.346 100 

β1 0.412 < 0.001 0.383 100 
β2 1.083 < 0.001 0.803 92 

B
A

s β0 -0.493 < 0.001 -0.508 100 
β1 0.085 < 0.001 0.083 100 
β2 1.057 < 0.001 1.034 98 

W
/C

A
s β0 -0.048 0.759 -0.236 45 

β1 0.091 < 0.001 0.087 100 
β2 0.112 0.503 -0.092 11 

Table 4.10. Summary of the results of a Posterior Predictive Check (PPC) examining the 
reliability of the model fit to data from Experiment 4.1 (Blumstein et al, 1994). 
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Figure 4.9. Results of Experiment 4.1 (data points; cf. Figure 4.7) with superimposed 
model fits (solid lines). For each group (panel), two curves display the two sigmoidal 
posterior probability functions of the /*ut/ (/t/-biased) and /*uk/ (/d/-biased) conditions. 
Young and Age-Matched Controls were fit together. Points indicate proportion /t/-
responses in the /*ut/ (/t/-biased) and /*uk/ (/d/-biased) conditions for each VOT, for each 
group. Error bars represent by-subject standard error. PWA = Patients with aphasia. 
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Figure 4.10. Results of Experiment 4.1 (data points; cf. Figure 4.8) with superimposed 
model fits (solid lines). For each group (panel), the curve represents the difference 
between two sigmoidal posterior probability functions of the /*ut/ (/t/-biased) and /*uk/ 
(/d/-biased) conditions (cf. Figure 4.8). Young and Age-Matched Controls were fit 
together. Points indicate difference between proportion /t/-responses between the /*ut/ 
(/t/-biased) and /*uk/ (/d/-biased) conditions as a function of VOT, for each group. Error 
bars represent by-subject standard error. PWA = Patients with aphasia. 
 

4.3.2.4. General Discussion of Results of Experiment 4.1 

Together with the results of the statistical analyses reported in Section 4.3.2.2, the 

results of the model-based analyses in Section 4.3.2.3 provide evidence for the 
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diminished influence of lexical status on the phoneme categorization decisions of patients 

with W/CA, and (although somewhat less clear) the results may also suggest greater 

influence of lexical status on the phoneme categorization decisions of patients with BA. 

These conclusions would be consistent with the predictions of the Lexical Activation 

Hypothesis. At the same time, the analyses also point towards bottom-up processing 

impairments (at both the acoustic-phonetic and lexical-phonological levels) in both 

groups of patients, a finding that is in line with a great deal of work on speech perception 

in patients with aphasia (Baker, Blumstein & Goodglass, 1981; Basso et al, 1977; 

Blumstein et al, 1977a, 1977b, 1984; Carpenter & Rutherford, 1973; Jauhiainen & 

Nuutila, 1977; Leeper, Shewan & Booth, 1986; Metz-Lutz, 1992; Miceli et al, 1978, 

1980; Sasanuma et al, 1976; Utman et al, 2001; Yeni-Komshian & Lafontaine, 1983). 

At least two other general methodological conclusions also warrant mention. For 

one, regardless of patient classification, all the patients have a constellation of deficits 

ranging from acoustic-phonetic to lexical-phonological to lexical-level processing 

deficits. Although many standard statistical techniques are more limited in the kinds of 

data they can model and in the kinds of inferences they allow us to draw, BIASES (and in 

particular BIASES-A) and hierarchical Bayesian data analysis techniques provide a 

powerful and principled framework for teasing apart subtle differences in the expected 

influence of different model parameters on subjects’ response patterns. 

Secondly, another important conclusion is that ignoring patients’ clinical 

classification (and lumping all patients with aphasia into a single group; e.g., “patients 

with aphasia”, or PWA) would preclude us from observing these divergent patterns. To 

see this, consider Figures 4.11 and 4.12, which merge the two patient groups into one, as 
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compared to Figures 4.7 and 4.8. It is immediately clear that bottom-up processing 

deficits are implicated in the broad PWA group, but the opposing lexical-level processing 

impairments in the two patient groups essentially cancel each other out. Consequently, 

ignoring clinically relevant classifications could threaten to mask the existence of any 

lexical-processing deficits at all. 

Figure 4.11. Results of Experiment 4.1, merging clinically defined patient groups (BAs 
and W/CAs) into one single group (PWA = Patients with aphasia). For each group, the 
proportion of /t/-responses as a function of voice-onset time (VOT) for the /*ut/ (/t/-
biased) and /*uk/ (/d/-biased) conditions. Error bars represent by-subject standard error. 
Results represent reanalysis of raw data from Blumstein et al (1994). 
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Figure 4.12. Results of Experiment 4.1, merging clinically defined patient groups (BAs 
and W/CAs) into one single group (PWA = Patients with aphasia). Difference between 
proportion /t/-responses in the /*ut/ (/t/-biased) and /*uk/ (/d/-biased) conditions as a 
function of voice-onset time (VOT), for each group. Error bars represent by-subject 
standard error. Results represent reanalysis of raw data from Blumstein et al (1994). 

 
4.4. Top-Down Effects of Sentence Context on Spoken Word Recognition in Aphasia 

Broadly, the results of Experiment 4.1 provide evidence that spoken word 

recognition in patients with aphasia is affected by multiple functional linguistic deficits, 

including a deficit at the level of lexical processing, as well as deficits in bottom-up 

processing of the speech signal, and that those deficits (and their consequent effects) 

differ as a function of clinical diagnosis. However, unlike the stimuli in Experiment 4.1, 

everyday speech rarely features words uttered in isolation, and it is important to note that, 

in individuals without aphasia, linguistic context has consistently been shown to impact 

recognition of acoustically ambiguous words. Words that are unintelligible when 

presented in isolation can often be identified in context (Lieberman, 1963; Pickett & 

Pollack, 1963; Hunnicutt, 1985; Fowler & Housum, 1987). Furthermore, as discussed at 

length in Chapters 1-3, stimuli that (when presented in isolation) are perceived as 

ambiguous between two possible words (e.g., between bay and pay) tend (when 

presented in sentences) to be perceived as whichever word is more congruent with a 
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preceding context (e.g., as bay after sentences like He hated the... but as pay after 

sentences like He hated to...) (Fox & Blumstein, in press; see also Borsky et al, 1998; 

Connine, 1987; Garnes & Bond, 1976; Guediche et al, 2013; Miller et al, 1984; Rohde & 

Ettlinger, 2012; Tuinman et al, 2014; van Alphen & McQueen, 2001). 

Importantly, most work examining lexical access impairments in aphasia has 

examined the recognition of isolated words (but see, e.g., Friederici, 1983; Baum, 2001). 

It remains unclear to what extent spoken word recognition processes in brain-injured 

patients with aphasia have access to the same information sources during auditory 

language processing that have been shown to influence speech perception in healthy 

subjects. This question is also of special interest because sentential context might, in fact, 

reduce apparent lexical processing deficits in such patients by providing top-down 

support for those lexical candidates whose processing could ordinarily be impaired when 

perceived in isolation (as in Experiment 4.1). 

Thus, Simulation Study 4.2 and Experiment 4.2 were designed to explore the 

nature of top-down processing of words by patients with aphasia when the words are 

embedded in sentential contexts. In particular, the goal of Simulation Study 4.2 was 

similar to that of Simulation Study 4.1, but further considered the role of sentential 

context. That is, Simulation Study 4.2 investigates the expected consequences of 

disruptions at the three levels of processing considered in Simulation Study 4.1 (acoustic-

phonetic processing, lexical-phonological processing, and lexical processing), as well as 

at the level of contextual integration during auditory sentence processing. As we will 

show, by simulating disruptions at each level of processing in BIASES-A, it is possible to 

generate fine-grained quantitative predictions about the expected patterns of top-down 
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effects in patients with various linguistic deficits. 

As with Experiment 4.1, Experiment 4.2 was designed to evaluate the extent to 

which patients with BA and W/CA actually exhibit atypical patterns of top-down effects 

in their behavioral responses to stimuli embedded in sentences that support one or the 

other lexical candidate. The stimuli and task employed in Experiment 4.2 (detailed in 

Sections 4.4.2.1.2 – 4.4.2.1.3) resembled the stimuli and task described in Chapters 1-3: 

subjects (including both healthy controls and patients with aphasia) heard tokens from a 

VOT continuum between bay and pay after noun-biasing and verb-biasing sentence 

contexts (e.g., He hated the... vs. He hated to...) and their task was to decide whether the 

last word of each sentence was bay or pay. Applying the theoretical lens represented by 

BIASES-A, we submitted these data to a model-based analysis in order to assess the 

extent to which the responses of patients with BA and patients with W/CA provide 

evidence for bottom-up processing deficits, lexical-level impairments, deficits affecting 

the integration of cues from a preceding sentence context, or some combination thereof. 

4.4.1. Joint Modeling Contextual and Lexical Effects on Word Recognition 

In order to model potential deficits at both lexical and contextual levels of 

processing and their independent effects on spoken word recognition, one addition was 

made to BIASES-A. The only difference in the mathematical formulation of BIASES-A 

was to allow context, C, to influence subjects’ responses. This was implicit in the original 

formulation of BIASES-A, because (as described in Chapter 2; see Equation 2.5) lexical 

frequency is equal to the total number of times the word appears after any context. 

However, since Experiment 4.1 did not involve any sentential contexts preceding the 

target stimulus, there could be no influence of context. In order to model the task 



 
197 

examined in Experiment 4.2, though, it was critical to incorporate into BIASES-A both 

(1) a parameter than can model lexical-level impairments, and (2) a parameter that can 

model contextual integration impairments. To do so, the form of BIASES-A was updated 

(Equation 4.19): 

Equation 4.19 

𝑝 𝑓! 𝐶,𝑉,𝑅 =
𝑝 𝑓! 𝐶 𝑝 𝑉,𝑅 𝑓! ,𝐶

𝑝 𝑓! 𝐶 𝑝 𝑉,𝑅 𝑓! ,𝐶
!!
!!!

 

In the updated model, BIASES-A, upon perceiving a monosyllabic stimulus and 

the preceding context (here, limited to the function words to vs. the), Bayes’ rule gives 

the probability of recognizing a candidate word-form, fi, given the context, C, the initial 

segment’s voice-onset time, V, and the stimulus’s rime, R. As described earlier, we 

assume that a subject’s task is to identify the word-form of a stimulus. Equation 4.19’s 

prior term can be expanded according to Bayes’ rule (Equation 4.20). 

Equation 4.20 

𝑝 𝑓! 𝐶 ∝ 𝑝 𝐶 𝑓! 𝑝(𝑓!) 

Put simply, Equation 4.20 states that the prior probability of a candidate word-

form following context C is proportional to the product of the lexical frequency of the 

word-form, 𝑝(𝑓!), and 𝑝 𝐶 𝑓! , a term related to the proportion of times the word fi 

follows C compared with any other preceding context. That is, 𝑝 𝐶 𝑓!  will be high if, 

when fi occurs in a sentence, it usually occurs after C. For instance, the word Francisco 

almost always occurs after San, so 𝑝 𝐶 = 𝑆𝑎𝑛 𝑓! = 𝐹𝑟𝑎𝑛𝑐𝑖𝑠𝑐𝑜  is high (even though 

many other cities have names beginning with San). On the other hand, 𝑝 𝐶 𝑓!  might be 

low in two situations: (1) if, when fi occurs in sentences, it usually occurs after something 

other than C (e.g., 𝑝 𝐶 = 𝑆𝑎𝑠ℎ𝑎 𝑓! = 𝑂𝑏𝑎𝑚𝑎 ≪ 𝑝 𝐶 = 𝐵𝑎𝑟𝑎𝑐𝑘 𝑓! = 𝑂𝑏𝑎𝑚𝑎 ), or (2) 
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if fi occurs in many contexts such that the occurrence of fi is not specific to context C 

(e.g., 𝑝 𝐶 𝑓! = 𝑆𝑚𝑖𝑡ℎ . Thus, Equation 4.20’s manipulation of 𝑝 𝑓! 𝐶  includes a term 

associated with contextual integration and a term associated with lexical-level 

(frequency) information. The values for 𝑝 𝐶 𝑓!  were estimated from the Google n-grams 

corpus (Michel et al, 2010) and were smoothed as described in Chapters 2-3. 

The same basic assumptions about 𝑝 𝑉,𝑅 𝑓! ,𝐶 , the likelihood function of 

BIASES-A described earlier, were maintained here including: that the phonological form 

of a monosyllabic stimulus is composed of an onset and a rime, that the onset and the 

rime are conditionally independent cues to the phonological form of the stimulus, that 

rimes are deterministically related to word-forms, that rimes are consistently perceived 

accurately, that VOT is the only acoustic cue to the identity of the onset of the stimulus, 

that the VOTs of acoustic realizations of a given onset follow normal distributions with 

equal variance for all onsets, and that the distribution of VOTs conditionally independent 

of lexical or higher-level information given the identity of the onset. Simplifying 

Equation 4.19 accordingly and applying the straightforward algebraic manipulations 

described in Chapter 2 (see Equations 2.6-2.7) yields Equation 4.21 (f1 = pay; f2 = bay). 

Equation 4.21 

𝑝 𝑓! 𝐶,𝑉,𝑅 =
1

1+ 𝑒
! !"#! ! !!

! ! !!
!!"#!(!!)!(!!)

!!"#! ! !!
! ! !!

!!"#
! !! !! ! ! !!

!!
!!!

! !! !! ! ! !!
!!
!!!

 

In order to model the effects of impairments at the acoustic-phonetic, lexical-

phonological, and lexical levels of processing, the same three parameters ( 𝜎!!, 𝜀,𝜙 ) 

were included as described earlier. A fourth parameter (𝜔) was also included to model 
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the influence of impairments in the integration of a preceding contextual cue during 

spoken word recognition, as shown in Equations 22-24. 

Equation 4.22 

𝑝 𝑓! 𝐶,𝑉,𝑅 =
1

1+ 𝑒
! !∙!"#! ! !!

! ! !!
!!∙!"#!(!!)!(!!)

!!"#! ! !!
! ! !!

!!"#
! !! !! ! ! !!

!!
!!!

! !! !! ! ! !!
!!
!!!

 

Equation 4.23 

𝑝 𝑜/!/ 𝑓! = 1− 𝑝 𝑜/!/ 𝑓! = 1− 𝜀 𝑓! = 𝑝𝑎𝑦
𝜀 𝑓! = 𝑏𝑎𝑦 

Equation 4.24 

𝑉|𝜊!  ~ 𝑁(𝜇! ,𝜎! + 𝜎!!) 

Finally, in the present task, the rime of the target stimulus was always /ei/, 

allowing for yet another simplification. Equation 4.25 summarizes a full model for 

BIASES-A that allows for independent estimation of parameters associated with 

contextual integration and lexical-level processing, where 𝑝 𝑧!"# 𝐶,𝑉  is the probability 

of a pay-response given a stimulus with VOT value V after context C. 

Equation 4.25 

𝑝 𝑧!"# 𝐶,𝑉 =
1

1 + 𝑒

! !∙!"#! ! !"#
! ! !"! !!∙!"#!(!"#)!(!"#)!!"#

!
!
(!!!/!/)!

! !!!!!
!
!!∙ !

!
(!!!/!/)!

! !!!!!
!
!!

!
(!!!/!/)!

! !!!!!
!

!
!
(!!!/!/)!
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4.4.2. Simulation Study 4.2: Sentential Context Effects in Aphasia 

Simulation Study 4.2 examined the independent contributions of lesions at four 

different processing levels on the expected size of top-down sentential context effects. 

The results of these simulations are summarized in Figure 4.13. First, it is worth noting 
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that, as in Simulation Study 4.1 (see Figure 4.3), lesions to the likelihood function (ε > 0 

or σN > 0) can best be characterized as driving changes with respect to the distribution of 

top-down effects over VOT values, but not in the maximum effect size itself. As was 

seen with the lexical effect simulations (see Figure 4.6), acoustic-phonetic processing 

impairments (governed by the parameter σN) can be expected to induce top-down effects 

for a wider array of VOTs (see Figure 4.17). Meanwhile, lexical-phonological processing 

deficits (governed by the parameter ε) are associated with greater effect sizes for endpoint 

tokens of the VOT continua (see Figure 4.16), reflecting the bottom-up “mishearing” of 

acoustically clear exemplars of bay and pay (cf. Figure 4.5; see also Figure 4.2). 

As for lesions affecting the weighting of information at the lexical level (governed 

by the parameter ϕ), recall that this parameter was realized responsible for changes in the 

maximum effect size in the lexical effect simulations (see Figures 4.3 and 4.4). In the 

present simulations of sentential context effects, that role is played instead by ω, the 

parameter responsible for the weighting of contextual information during word 

recognition (see Figure 4.14; compare the leftmost panels of Figure 4.13 and Figure 4.3). 

This discrepancy is due to the nature of the two tasks being considered and the notion of 

effect size in the two studies. The two conditions being directly compared in studies of 

the lexical effect (as in Simulation Study 4.1) differ as a function of lexical information, 

the influence of which is affected by varying ϕ; however, the two conditions being 

directly compared in studies of sentential context effects (as in Simulation Study 4.2) 

differ as a function of how strongly different words are predicted by the preceding cues 

(i.e., the vs. to), the influence of which is affected by varying ω. When contextual cues 

are weighted more strongly (when ω > 1), the relative fit of the candidates (bay vs. pay) 



 
201 

with the perceived contextual cue will have a greater influence on subjects’ behavioral 

responses, leading to exaggerated top-down context effects, especially when acoustic 

information is most ambiguous (i.e., close to the phonetic category boundary). The 

opposite is predicted when contextual cues are weighted less strongly (i.e., when ω < 1): 

the relative fit of competing candidates with the preceding context will be a less reliable 

predictor of subjects’ responses, which will be reflected in diminished top-down context 

effects. 

Although lesions at the lexical level do predict the same types of effects in an 

experiment examining the size of top-down effects from sentential context on subjects 

categorization decisions between two words (like the present study) as they do in studies 

of the lexical effect, they are still predicted to have an effect on word recognition 

performance. Specifically, increasing and decreasing the weighting of lexical-level cues 

(governed by the parameter ϕ) tends to shift the locus (on the VOT continuum) of the 

maximum effect size (see panel 2 of Figure 4.13 and Figure 4.15). The reason for this lies 

in the relationship between lexical status and lexical frequency. Recall that the current 

model essentially treats non-words as “very low frequency words” such that every word 

that appears in a corpus is more frequent than any non-word, while incorporating a 

mechanism to allow the word recognition system to perceive stimuli that are not found in 

the corpus from which lexical frequencies are estimated (see Section 4.2.2.2). Because 

bay is a less frequent word than pay, increasing the weighting of lexical (i.e., frequency) 

cues leads to a stronger overall bias toward pay responses – independent of the preceding 

context – while decreasing the weighting of the frequency information will tend to reduce 

the top-down bias towards pay (see Figure 4.15). The overall effect of this parametric 
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variation of ϕ is that as ϕ increases, the center of the distribution of top-down effects 

shifts closer to the mean of the VOT distribution for the /b/ onset, and as ϕ decreases, the 

center of the distribution of top-down effects shifts closer to the (unweighted) category 

boundary between the /b/ and /p/ onsets’ VOT distributions. The stronger the frequency 

bias (i.e., the higher ϕ becomes), the more susceptible otherwise clear tokens of bay are to 

top-down biasing effects from the sentence context, because pay is already highly 

favored as a response; the weaker the frequency bias (i.e., as ϕ approaches 0), the more 

top-down effects begin to reflect only the fit between the candidates and the preceding 

context rather than by the lexical frequency of the candidates themselves. 

 
Figure 4.13. Summary of results of Simulation Study 4.2: Effect of manipulating each 
parameter on the predicted sentential context effect size, as a function of VOT. Each 
curve represents the difference between the posterior distributions of the to... (pay-biased) 
and the... (bay-biased) conditions. In each panel, only the labeled parameter was 
manipulated; other baseline parameter values (ω = 1; ϕ = 1; ε = 0; σN = 0) were held 
constant in order to observe the effects of each parameter independently. Solid curves 
represent the simulation in each panel for which all baseline assumptions were held 
constant. Each panel summarizes four simulations (i.e., four levels of the relevant 
parameter for that panel), whose coloration corresponds to the panel number in which 
that simulation is further detailed in Figures 4.14, 4.15, 4.16 or 4.17. Coloration darkens 
from simulation 1-4, because the boundary shift associated with that simulation also 
increased from simulation 1-4 in each panel. This can be seen in Figures 4.14, 4.15, 4.16 
or 4.17, which show the two conditions’ posterior probability curves, as a function of 
VOT. 
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Figure 4.14. Detailed Results of Simulation Study 4.2: Effect of weighting of contextual 
information (ω) on expected rate of voiceless (pay) responses, as a function of VOT and 
the function word the preceded the stimulus (to... vs. the...), which corresponded to 
opposing contextual biases on the initial consonant. The panel with solid lines represents 
the baseline assumptions (ω = 1; ϕ = 1; ε = 0; σN = 0), and each other panel manipulated 
only the listed parameter value; all others remained at baseline. The vertical grey line 
denotes the phoneme category boundary in the simulations (the VOT at which, for an 
unbiased prior, the posterior probability of pay- and bay-response are equal. 
 

 
Figure 4.15. Detailed Results of Simulation Study 4.2: Effect of weighting of lexical 
information (ϕ) on expected rate of voiceless (pay) responses, as a function of VOT and 
the function word the preceded the stimulus (to... vs. the...), which corresponded to 
opposing contextual biases on the initial consonant. The panel with solid lines represents 
the baseline assumptions (ω = 1; ϕ = 1; ε = 0; σN = 0), and each other panel manipulated 
only the listed parameter value; all others remained at baseline. The vertical grey line 
denotes the phoneme category boundary in the simulations (the VOT at which, for an 
unbiased prior, the posterior probability of pay- and bay-response are equal. 
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Figure 4.16. Detailed Results of Simulation Study 4.2: Effect of efficacy of phonological 
processing (ε) on expected rate of voiceless (pay) responses, as a function of VOT and 
the function word the preceded the stimulus (to... vs. the...), which corresponded to 
opposing contextual biases on the initial consonant. The panel with solid lines represents 
the baseline assumptions (ω = 1; ϕ = 1; ε = 0; σN = 0), and each other panel manipulated 
only the listed parameter value; all others remained at baseline. The vertical grey line 
denotes the phoneme category boundary in the simulations (the VOT at which, for an 
unbiased prior, the posterior probability of pay- and bay-response are equal. 

 

 
Figure 4.17. Detailed Results of Simulation Study 4.2: Effect of efficacy of acoustic-
phonetic processing (σN) expected rate of voiceless (pay) responses, as a function of VOT 
and the function word the preceded the stimulus (to... vs. the...), which corresponded to 
opposing contextual biases on the initial consonant. The panel with solid lines represents 
the baseline assumptions (ω = 1; ϕ = 1; ε = 0; σN = 0), and each other panel manipulated 
only the listed parameter value; all others remained at baseline. The vertical grey line 
denotes the phoneme category boundary in the simulations (the VOT at which, for an 
unbiased prior, the posterior probability of pay- and bay-response are equal. 
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4.4.3. Experiment 4.2: Sentential Context Effects in Aphasia 

Based on the simulations with BIASES-A presented in Simulation Study 4.2, and 

based on the logic outlined above in Section 4.2.2 (see Table 4.1 for a summary), the 

predictions of the Lexical Activation Hypothesis for Experiment 4.2 are considerably 

subtler than in Experiment 4.1. In particular, it is that BAs should exhibit exaggerated 

frequency effects compared with healthy control subjects and W/CAs should exhibit 

diminished (or perhaps even undetectable) frequency effects. According to Simulation 

Study 4.2, these effects would be realized as essentially horizontal shifts (along a VOT 

continuum) of the entire distribution of top-down context effects. 

However, both patient groups may also suffer from bottom-up processing deficits, 

as seen in Experiment 4.1. Moreover, it is not altogether clear whether patients would be 

expected to differ from healthy controls in the extent to which they weight contextual 

cues (ω) during spoken word recognition. Baum (2001) showed that patients divided 

based on fluency (non-fluent vs. fluent) showed top-down effects of semantic sentential 

context in their identification responses of the first segments of words from two VOT 

continua (bath–path and dent–tent). While fluency does tend to correlate with clinical 

diagnosis (BAs tend to be non-fluent while W/CAs tend to be fluent), there were many 

other types of patients included in Baum’s (2001) study that did not fall into the groups in 

question. Furthermore, the nature of the contextual cue in the present study (the vs. to, 

which are cues to the grammatical class of the subsequent word) is quite different from 

the semantic cues examined by Baum (2001). Finally, the analysis techniques employed 

by Baum (2001) suffer from the same issues discussed in Section 4.3.2.3.1; specifically, 

the size of boundary shifts can be influenced by both bottom-up and top-down factors, so 
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it remains unclear whether patients might differ from healthy control subjects in their 

weighting of sentential/contextual cues to the syntactic category of the target word when 

identifying that target word. 

Whether or not patients differ from healthy controls in the size of their top-down 

sentential context effects, Simulation Study 4.2 illustrated distinct signatures of bottom-

up, lexical-level, and sentential processing deficits. Thus, following the same approach as 

was taken to the analysis of Experiment 4.1, it should be possible to tease apart the 

impacts of different functional linguistic impairments and infer the nature of the 

underlying deficits in patients with BA and W/CA. To that end, Experiment 4.2 

investigated top-down effects from sentential context in healthy controls and patients 

with BA and W/CA. 

 4.4.3.1. Methods 

 4.4.3.1.1. Subjects 

Data analyzed in Experiment 4.2 came from a total of fifty subjects, 14 of whom 

participated in the present study as described here (8 age-matched control subjects, 3 

patients diagnosed with Broca’s aphasia, and 3 patients diagnosed with either Wernicke’s 

or Conduction aphasia). The remaining data came from 36 young, healthy control 

subjects who participated in Experiment 1.1, described in Chapter 1 (Fox & Blumstein, in 

press). 

Eight right-handed elderly adults (3 male) with a mean age of 73.3 years 

(minimum: 66; maximum: 78; sd: 4.6) participated, serving as the age-matched control 

(AMC) sample. All reported having age-appropriate hearing and being native speakers of 

English. 
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Three patients with Broca’s aphasia (mean age: 70.3 years; minimum: 63.3; 

maximum: 78.1; sd: 7.4) participated, comprising the BA sample, and three patients with 

Wernicke’s or Conduction aphasia (mean age: 69.8 years; minimum: 65.1; maximum: 

78.5; sd: 7.6) participated, comprising the W/CA sample. As in Experiment 4.1, all 

patients’ clinical diagnoses were determined based on clinical and neurological 

examinations (including CT scans and, where possible, MRIs) and performance on the 

Boston Diagnostic Aphasia Examination (BDAE) (Goodglass & Kaplan, 1983). Clinical 

and lesion information about the patients with aphasia who participated in Experiment 

4.2 is summarized in Appendix D. 

The young control (YC) sample included data from 36 native monolingual 

speakers of American English with self-reported normal hearing who participated in 

Chapter 1’s Experiment 1.1 (Fox & Blumstein, in press). As described in Chapter 1, a 

total of 50 subjects participated in the experiment. One was excluded due to technical 

difficulties and, of the 49 remaining subjects, 36 perceived some tokens of the bay–pay 

continuum as ambiguous (defined as making at least 10% /b/-responses and 10% /p/-

responses to the two intermediate VOT tokens of the bay–pay continuum). 

  4.4.3.1.2. Stimuli 

The stimuli for Experiment 4.2 were comprised of 4 acoustic tokens from a voice-

onset time continuum between bay and pay, each of which was appended to a set of 

noun- and verb-biasing sentence contexts (e.g., Valerie hated the... vs. Brett hated to...). 

Beginning with a naturally produced token of bay, Fox and Blumstein (in press; see also 

Chapter 1) created a 12-step bay–pay VOT continuum by successively removing pitch 

periods from the vowel of the bay token and adding aspiration from a naturally-produced 
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pay token of equal duration between bay’s burst (which was amplified 2x in all tokens) 

and the onset of glottal pulsing. Fox and Blumstein selected 4 of the 12 tokens for 

inclusion in their study, corresponding to one bay endpoint token (VOT = 7 ms), one pay 

endpoint token (VOT = 35 ms), and two phonetically ambiguous tokens with 

intermediate VOTs (VOTs = 18 and 24 ms). 

Minimally paired sentence contexts were selected such that, by changing only the 

function word that immediately preceded the target token, the contexts would create a 

bias for a noun (e.g., bay) vs. a verb (e.g., pay). For instance, the verb hated could be 

followed by either a noun phrase (e.g., the bay) or an infinitive phrase (e.g., to pay), so 

Valerie hated the... and Brett hated to... served as noun- and verb-biasing contexts, 

respectively. Experiment 4.2 employed a subset of 10 of Fox and Blumstein’s 20 main 

verbs (e.g., hate, want). That reduced stimulus list can be found in Appendix E. Each of 

the four tokens was appended to each sentence context ending in to... and the... for a total 

of 80 trials (4 tokens × 10 main verbs × 2 contexts). 

Note that, as mentioned earlier, data for the YCs came from Experiment 1.1 (Fox 

& Blumstein, in press), which included 20 main verbs (instead of 10). The full stimulus 

list for Experiment 1.1 can be found in Appendix A. Furthermore, although those subjects 

also responded to stimuli from a similarly constructed buy–pie continuum, the data 

reanalyzed here from those subjects only included their responses to the bay–pay 

continuum since it was this continuum whose VOT tokens were also stimuli in the 

present experiment, Experiment 4.2. 

  4.4.3.1.3. Procedure 
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All sentences were presented to participants binaurally over headphones in a 

random order with a 4-second inter-stimulus interval between trials. AMCs and patients 

with aphasia completed a minimum of 6 practice trials (some patients received more 

practice trials in order to adjust the volume to an appropriate level and to ensure they 

understood the task). Subjects were instructed to identify the last word of each sentence 

as either bay or pay by pressing the appropriately labeled button with their preferred hand 

(response mapping counterbalanced between subjects) as quickly and accurately as 

possible. Participants were warned that some sentences might not make sense, and they 

were instructed to guess if they did not know. Note that participants also completed other 

tasks during the same experimental session (sometimes before this task; sometimes after 

it). 

Again, note that, since data for the YCs came from Experiment 1.1 (Fox & 

Blumstein, in press), the procedure differed slightly from what is described above. Most 

notably, YCs in Experiment 1.1 were instructed to identify the first sound of the last word 

in each sentence (either “b” or “p”) instead of the last word of each sentence. 

  4.4.3.1.4. Methodological Differences Between Subject Groups 

To briefly summarize the methodological disparities between the data from the 

YCs and the data from the elderly subjects (AMCs, BAs, and W/CAs), two are most 

notable: (1) the elderly subjects who participated in Experiment 4.2 heard a subset of the 

stimuli heard by YCs in Experiment 1.1 (and the duration of Experiment 4.2 was thus 

shorter) and, (2) elderly subjects performed a word identification task while YCs 

performed phoneme identification task (at least explicitly; see Fox & Blumstein, in 

press). These differences recommend caution in drawing any conclusions based on direct 
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comparisons of the younger and older subjects’ responses. Importantly, though, the 

critical contrasts of interest involve comparing results among the age-matched groups of 

participants in Experiment 4.2 (AMCs, BAs, and W/CAs). The rationale behind the 

inclusion of data from Experiment 1.1 (discussed in more detail later) was that, within the 

hierarchical Bayesian data analysis framework, it is possible to leverage assumed 

commonalities between the cognitive processing underlying the two datasets, while still 

accounting for key differences between them. 

 4.4.3.2. Results: Statistical Analyses 

The results of Experiment 4.2, including the results of reanalysis of data originally 

reported by Fox and Blumstein (in press) are shown in Figure 4.18. Recall that, to the 

extent that subjects tend to label stimuli with the same word-initial VOT as pay more 

often in the verb-biasing context (to...) than after the noun-biasing context (the...), those 

results would represent evidence of top-down effects from sentential context on speech 

recognition. 

All statistical analyses of the present data followed exactly the approach to the 

logistic regression analyses taken in Experiment 4.1 (see Section 4.3.2.2.1). Because the 

two conditions being compared in the design of Experiment 4.2 differed as a function of 

which function word context preceded the target word, all analyses reported here 

included independent fixed effects for CONTEXT (β2) (the... vs. to...; or, equivalently, 

noun vs. verb-biased or bay- vs. pay-biased) and for VOT (β1) (modeled here as a 

continuous, linear fixed effect). No CONTEXT × VOT interaction term was included, 

reflecting the principle that the prior and the likelihood are independent sources of 

information in the Bayesian framework (cf. Chapter 2). Any significant main effect of 
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CONTEXT suggests an influence of sentential context. A significant main effect of VOT 

suggests that subjects’ likelihood of making a pay-response depends on the VOT of the 

stimulus. Thus, these two fixed effects reflect top-down and bottom-up processing, 

respectively. 

As in the analyses of Experiment 4.1, whenever analyses included subjects from 

more than one group, a fixed effect of GROUP was included in the model, along with its 

interactions with both CONTEXT and VOT. A significant interaction between 

CONTEXT and GROUP would reflect reliable differences in top-down effects of 

contextual information between the two groups being compared, while a significant 

interaction between VOT and GROUP would reflect reliable differences in bottom-up 

processing between the two groups. The results of Simulation Study 4.2 suggest that the 

weighting of lexical-level (frequency) information may be associated with the location of 

the inferred category boundary. Consequently, it would be difficult to determine whether 

differences between two groups in their best-fitting intercept coefficient (β0) is more 

likely driven by differences in lexical-level processing or in the locus of their phonetic 

category boundaries. Moreover, interpretation of any comparisons of elderly subjects 

with YCs is complicated by the methodological disparities discussed in Section 4.4.3.1.4. 

As with the analyses of Experiment 4.1, random by-subject intercepts allowed for 

subject variability with respect to their category boundaries (cf. Chapter 3). Coding of 

fixed effects was identical to analysis of Experiment 4.1, with a deviation-coded 

CONTEXT factor (contrasts: -0.5/0.5 for the... and to..., respectively) replacing the RIME 

factor. All results are reported in tables that include the best-fitting estimate of each 



 
212 

regression coefficient (β), the estimate’s standard error (SE), Wald’s z statistic for the 

estimate of that parameter (|z|), and the significance level of the statistic (p). 

Note that the theoretical interpretations of the logistic regression coefficients are 

somewhat different for Experiment 4.2 than for Experiment 4.1 (see Table 4.2): β2 

reflects the influence of context, not of lexical status/frequency, and β0 reflects not only 

the category boundary (a feature of the likelihood function), but also the influence of 

lexical-level processing (a top-down effect related to the model’s prior). 

 
Figure 4.18. Results of Experiment 4.2: for each group, the proportion pay-responses as 
a function of VOT in the to... (pay-biased) and the... (bay-biased) conditions. Error bars 
represent by-subject standard error. Results for Young Controls represent reanalysis of 
raw data from Experiment 1.1 (Fox & Blumstein, in press). PWA = Patients with aphasia. 
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  4.4.3.2.1. Control Subjects: YCs vs. AMCs 

First, the data from all young control subjects (YCs) and all age-matched control 

subjects (AMCs) were submitted to logistic regression. Unsurprisingly, results (see Table 

4.11) revealed significant effects from both bottom-up and top-down information sources 

on speech perception. Groups did not differ in the strength of their sentential context 

effects (β2). The analysis also indicated that the two control groups differed in their 

intercept (β0) and in the size of the effect of VOT (β1) with results suggesting that the 

responses of AMCs were less influenced by VOT than YCs and that their category 

boundary occurred at a higher VOT value. 

The former finding could be interpreted as evidence for bottom-up processing 

deficits (cf. Abada, Baum & Titone, 2008) and the latter could be interpreted as evidence 

of either a different phonetic category structure in older adults or as evidence for a 

weaker effect of lexical-level processing. However, as highlighted in Section 4.4.3.1.4, it 

is difficult to isolate the source of these disparities because several differences between 

these data are confounded, including at least the following: (1) the age of the participants, 

(2) differences in the other stimuli subjects heard during the experiment, (3) the duration 

of the experiment, and (4) the experimental task employed. 
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Coefficient β SE |z| p 
β0 -0.318 0.234 -1.359 0.174 
β1 0.260 0.010 26.492 < 0.001 
β2 1.317 0.132 9.995 < 0.001 

β0: YC vs. AMC -1.097 0.468 -2.341 0.019 
β1: YC vs. AMC -0.071 0.019 -3.730 < 0.001 
β2: YC vs. AMC 0.377 0.263 1.432 0.152 

Table 4.11. Results of logistic regression analysis of Experiment 4.2 that included Young 
and Age-Matched Controls. Shaded boxes indicate statistically significant effects. β0 = 
intercept (related to phoneme category boundary and lexical-level processing); β1 = VOT 
(related to gain/slope of sigmoid); β2 = CONTEXT (related to size of the boundary shift 
introduced by the contextual bias); β: best-fitting estimate of each regression coefficient, 
SE: the estimate’s standard error, |z|: Wald’s z statistic for the estimate of that parameter, 
p: the significance level of the test statistic. Results for Young Controls represent 
reanalysis of raw data from Experiment 1.1 (Fox & Blumstein, in press). 
 

Given the between-group differences, follow-up tests were conducted to examine 

each group’s data separately. Results showed that both YCs (Table 4.12) and AMCs 

(Table 4.13) exhibited strong effects of both bottom-up and top-down influences on 

speech recognition. Whatever the source of the differences between the YCs and AMCs, 

the results suggest that the two groups’ data should not be fit together in the model-based 

analyses (Section 4.4.3.3). Based on these results, the model-based analyses fit unique 

values of 𝜇! (related to the phonetic category boundary, χ) for YCs and AMCs and 

allowed AMCs to have a greater category variance than YCs. 

Coefficient β SE |z| p 
β0 0.230 0.197 1.167 0.243 
β1 0.297 0.008 36.418 < 0.001 
β2 1.129 0.088 12.850 < 0.001 

Table 4.12. Results of logistic regression analysis of Experiment 4.2 that included only 
Young Controls. Shaded boxes indicate statistically significant effects. β0 = intercept 
(related to phoneme category boundary and lexical-level processing); β1 = VOT (related 
to gain/slope of sigmoid); β2 = CONTEXT (related to size of the boundary shift 
introduced by the contextual bias); β: best-fitting estimate of each regression coefficient, 
SE: the estimate’s standard error, |z|: Wald’s z statistic for the estimate of that parameter, 
p: the significance level of the test statistic. Results for Young Controls represent 
reanalysis of raw data from Experiment 1.1 (Fox & Blumstein, in press). 
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Coefficient β SE |z| p 
β0 -0.865 0.415 -2.085 0.037 
β1 0.224 0.018 12.344 < 0.001 
β2 1.503 0.249 6.036 < 0.001 

Table 4.13. Results of logistic regression analysis of Experiment 4.2 that included only 
Age-Matched Controls. Shaded boxes indicate statistically significant effects. β0 = 
intercept (related to phoneme category boundary and lexical-level processing); β1 = VOT 
(related to gain/slope of sigmoid); β2 = CONTEXT (related to size of the boundary shift 
introduced by the contextual bias); β: best-fitting estimate of each regression coefficient, 
SE: the estimate’s standard error, |z|: Wald’s z statistic for the estimate of that parameter, 
p: the significance level of the test statistic. 

 
  4.4.3.2.2. Elderly Subjects: AMCs vs. BAs vs. W/CAs 

 A logistic regression examined all of the elderly participants, including the 

AMCs, BAs and W/CAs. Notably, this between-group comparison does not suffer from 

the same methodological disparities as the comparison of the YCs and AMCs. The results 

of this analysis are shown in Table 4.14. Overall, there was a significant top-down 

contextual biasing effect on subjects’ responses (more pay-responses after verb-biasing 

contexts than noun-biasing contexts), and an overall effect of VOT on subjects’ responses 

(more pay-responses to stimuli with longer VOTs). 

Coefficient β SE |z| p 
β0 -0.531 0.364 -1.457 0.145 
β1 0.154 0.012 13.085 < 0.001 
β2 1.382 0.187 7.371 < 0.001 

β0: AMC vs. BA 2.054 1.085 1.893 0.058 
β0: AMC vs. W/CA -1.379 1.103 -1.250 0.211 
β1: AMC vs. BA -0.197 0.029 -6.832 < 0.001 
β1: AMC vs. W/CA 0.055 0.038 1.466 0.143 
β2: AMC vs. BA -0.999 0.500 -1.999 0.046 
β2: AMC vs. W/CA 0.747 0.604 1.236 0.216 

Table 4.14. Results of logistic regression analysis of Experiment 4.2 that included Age-
Matched Controls (AMC), patients with Broca’s aphasia (BA), and patients with 
Wernicke’s or Conduction aphasia (W/CA). Shaded boxes indicate statistically 
significant effects. β0 = intercept (related to phoneme category boundary and lexical-level 
processing); β1 = VOT (related to gain/slope of sigmoid); β2 = CONTEXT (related to size 
of the boundary shift introduced by the contextual bias); β: best-fitting estimate of each 
regression coefficient, SE: the estimate’s standard error, |z|: Wald’s z statistic for the 
estimate of that parameter, p: the significance level of the test statistic. 
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BAs differed from AMCs with respect to both of these effects, and there was a 

marginal difference (p = 0.058) between BAs and AMCs in their intercept. In particular, 

the influence of VOT on speech recognition was diminished in BAs compared to AMCs, 

corresponding to a shallower slope of the sigmoidal categorization curve, suggesting 

bottom-up processing deficits. The effect of sentential context was weaker in BAs than 

AMCs, suggesting impairments in the integration of sentential cues during word 

recognition. The marginal difference in the intercept between BAs and AMCs suggested 

that BAs had an inferred category boundary at a much lower VOT value than AMCs, 

which could correspond either to a disruption in BAs’ internal phonetic category structure 

or increased weighting of lexical-level information. Notably, the latter interpretation is 

consistent with the Lexical Activation Hypothesis. Previous research has suggested 

fundamental aspects of phonetic category structure are preserved in aphasia (Blumstein et 

al, 1984; Blumstein et al, 1977b; Caplan et al, 1994; Gow & Caplan, 1996), even while 

discrimination, categorization, and acoustic-phonetic processing is impaired, so there is 

little reason to suspect that phoneme category boundaries differ between AMCs and BAs. 

No significant differences were found between W/CAs and AMCs. However, the 

direction of the (non-significant) regression coefficient corresponding to the inferred 

category boundary was opposite that of the difference between BAs and AMCs. This is 

the direction predicted by the Lexical Activation Hypothesis. 

To further examine the pattern of sentential context effects in the two patient 

groups, each group’s data were analyzed separately. Results confirmed that both BAs 

(Table 4.15) and W/CAs (Table 4.16) exhibited a robust influence of sentential context in 

their responses. The VOT of the stimuli also influenced speech recognition in both BAs 
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and W/CAs, although the raw effect size for BAs was much weaker than in both of the 

control groups (cf. Tables 4.12 and 4.13). 

Coefficient β SE |z| p 
β0 0.486 0.205 2.370 0.018 
β1 0.054 0.014 3.759 < 0.001 
β2 0.863 0.283 3.046 0.002 

Table 4.15. Results of logistic regression analysis of Experiment 4.2 that included only 
patients with Broca’s aphasia (BAs). Shaded boxes indicate statistically significant 
effects. β0 = intercept (related to phoneme category boundary and lexical-level 
processing); β1 = VOT (related to gain/slope of sigmoid); β2 = CONTEXT (related to size 
of the boundary shift introduced by the contextual bias); β: best-fitting estimate of each 
regression coefficient, SE: the estimate’s standard error, |z|: Wald’s z statistic for the 
estimate of that parameter, p: the significance level of the test statistic. 
 

Coefficient β SE |z| p 
β0 -1.292 1.111 -1.163 0.245 
β1 0.189 0.028 6.874 < 0.001 
β2 1.835 0.427 4.296 < 0.001 

Table 4.16. Results of logistic regression analysis of Experiment 4.2 that included only 
patients with Wernicke’s or Conduction aphasia (W/CAs). Shaded boxes indicate 
statistically significant effects. β0 = intercept (related to phoneme category boundary and 
lexical-level processing); β1 = VOT (related to gain/slope of sigmoid); β2 = CONTEXT 
(related to size of the boundary shift introduced by the contextual bias); β: best-fitting 
estimate of each regression coefficient, SE: the estimate’s standard error, |z|: Wald’s z 
statistic for the estimate of that parameter, p: the significance level of the test statistic. 
 

  4.4.3.2.3. Summary of Results of Statistical Analyses 

Figure 4.19 provides an alternate way of visualizing differences in the size of top-

down effects from sentential context for each group over the entire continuum. For each 

subject’s responses to each of the four VOT tokens, we computed the difference in the 

proportion of pay-responses in the verb-biased condition (to...) and the noun-biased 

condition (the...), and plotted the mean difference (i.e., effect size) for each group at each 

VOT. In summary, there are at least five tentative conclusions that find support in the 

statistical analyses presented above. 

1. Sentential context influences speech categorization in all groups, including 

both patient groups. 



 
218 

2. For the healthy controls and for the W/CAs, those effects tend to arise most 

strongly at intermediate VOTs; unambiguous speech tokens less likely to be 

susceptible to contextual biases. 

3. The behavior of YCs and AMCs appear to reflect differences in the bottom-up 

processing of the tokens from the VOT continua; this may be due to 

methodological differences in the way those two datasets were collected. 

4. There is fairly robust evidence for differences between BAs and AMCs in 

both top-down and bottom-up speech processing, but it is difficult to draw 

strong conclusions from the present analyses. 

5. The present analyses do not provide clear evidence for differences between 

behavioral response patterns of AMCs and W/CAs. 
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Figure 4.19. Results of Experiment 4.2: Difference between proportion pay-responses in 
the to... (pay-biased) and the... (bay-biased) conditions as a function of voice-onset time 
(VOT), for each group. Error bars represent by-subject standard error. Results for Young 
Controls represent reanalysis of raw data from Experiment 1.1 (Fox & Blumstein, in 
press). PWA = Patients with aphasia. 
 

4.4.3.3. Results: Model-Based Analyses 

4.4.3.3.1. Motivation of Model-Based Analyses 

The statistical analyses proved difficult to interpret for several reasons. Firstly, the 

data for the YCs came from a different experiment than the data for the AMCs, BAs and 

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

Young Controls Age−Matched Controls

PWA: Broca's PWA: Wernicke's/Conduction

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0 10 20 30 40 50 0 10 20 30 40 50
VOT (ms)

C
on

te
xt

 E
ffe

ct
 S

ize
: %

pa
y to

 −
 %

pa
y th

e



 
220 

W/CAs. Secondly, there was limited data, with only three patients in each clinical group. 

Thirdly, simulations with BIASES-A in Simulation Study 4.2 suggested that the intercept 

parameter of the logistic regression can be influenced by both bottom-up and top-down 

processing components, so differences between groups were ambiguous. Moreover, the 

logistic regression analyses in Experiment 4.2 suffer from the same shortcomings 

described earlier (see Section 4.3.2.3.1). 

Many of these problems are addressed by the model-based Bayesian data analysis 

approach described in Section 4.3.2.3.1. Its ability to distinguish between the subtle 

influences of many parameters while avoiding typical assumptions of many standard 

statistical tests (e.g., frequentist logistic regression) and its ability to make the most out of 

limited data by employing theoretically informed hierarchical modeling are especially 

advantageous for the present analyses. 

4.4.3.3.2. Key Results of Model-Based Analyses 

Table 4.17 provides a summary of the posterior distributions of the parameters 

that were fit in the present analysis (i.e., the “best-fitting” model parameters). 
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Mean SD 95% HDI min 95% HDI max 

𝛼 0.82 0.09 0.65 1.01 
σ2 221.81 5.99 210.60 233.07 

YCs: 𝜇! -5.95 0.18 -6.29 -5.60 
Elderly: 𝜇! -0.95 0.65 -2.13 0.46 
AMCs: σ2

N 85.41 24.48 39.85 135.76 
BAs: σ2

N 698.09 357.85 99.27 1467.97 
W/CAs: σ2

N 201.58 74.12 64.17 345.73 
BAs: ε 0.13 0.09 9.00e-05 0.31 

W/CAs: ε 0.03 0.03 5.36e-06 0.09 
BAs: ϕ 2.03 0.47 1.15 3.01 

W/CAs: ϕ -0.09 0.50 -0.99 0.97 
BAs: ω 0.91 0.32 0.35 1.56 

W/CAs: ω 1.29 0.37 0.54 2.02 
Table 4.17. Summary statistics of posterior distributions of Bayesian data analysis of 
Experiment 4.2. HDI = highest density interval. 
 

The most theoretically important results regard the posterior distributions of the 

BAs and W/CAs and the extent to which the present model-based analysis could 

confidently infer differences in the posterior estimates between the patient groups and the 

AMCs. Three key results emerged. First, BAs were substantially more impaired in their 

bottom-up acoustic-phonetic processing of speech tokens (𝜎!!) compared to AMCs. 

Interestingly, no such difference between AMCs and W/CAs was found. 

The other two key results regard each patients’ weighting of lexical-level 

(frequency) information. Recall that optimal weighting of frequency information, which 

is assumed for AMCs, is given by 𝜙 = 1. To the extent that 𝜙 can be confidently 

assessed to be greater than 1 for some group, it suggests that those subjects are 

overweighting frequency information, which is the prediction the Lexical Activation 

Hypothesis makes for BAs (see Table 4.1). To the extent that 𝜙 can be confidently 

assessed to be less than 1 for some group, it suggests that those subjects are 

underweighting frequency information, which is the prediction the Lexical Activation 
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Hypothesis makes for W/CAs (see Table 4.1). According to Kruschke (2011) a parameter 

can be confidently assessed to be different from some value if the 95% HDI of that 

parameter’s posterior distribution excludes that value. 

The second key finding was that patients with BA reliably overweight frequency 

information, and the third key finding was that patients with W/CA reliably underweight 

frequency information. Both results are exactly what is predicted by the Lexical 

Activation Hypothesis. This result can be seen visually in Figures 4.18 and 4.19 as the 

apparent shift of the entire distribution of top-down effects to the left for the BAs (to be 

centered over lower VOT values, which correspond to bay, the less frequent candidate 

word) or to the right for W/CAs (to be centered closer to the overall phonetic category 

boundary). However, among the many other differences between the behavioral patterns, 

it is virtually impossible to confidently asses the status of each effect’s reliability without 

a theoretically and analytically powerful technique like the one presented here. The 

power of this analysis technique is that it can separate out all of the other differences 

between the distributions of responses and isolate the influence of each parameter on 

subjects’ behavior. 

As in the analyses of the results from Experiment 4.1, we performed a posterior 

predictive check (PPC) in order to evaluate the ability of the fit model to accurately 

capture the key aspects of the behavioral data. The PPC proceeded exactly as described in 

Experiment 4.1 (see Section 4.3.2.3.2): 100 random samples were selected from the joint 

posterior distribution of the model, and parameter values for a given sample were set to 

the sampled value in each corresponding Markov chain. For each sample we simulated 

data from the model, and we ran all of the statistical analyses reported in Section 
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4.4.3.3.1 on the simulated data. This yielded 100 samples of each of 6 statistical analyses. 

For each logistic regression coefficient in each statistical test, we computed the mean 

coefficient estimate (β) and we determined how many of the statistical tests reached 

significance at the 0.05 level. To the extent that statistical tests on new, generated data 

give similar inferences as the same statistical tests on the original data, it would suggest 

that the model from which the data were generated captures some fundamental aspects of 

the generative model underlying the psychological processes giving way to the relevant 

empirical data. 

The results are shown in Table 4.18. Figures 4.20 and 4.21 superimpose the 

results of the PPC onto the original experimental data shown in Figures 4.18 and 4.19. 

The PPCs’ coefficient estimates and pattern of significances were somewhat consistent 

with the statistics of the original experimental data, but future work should examine 

possible shortcomings. The inconsistencies in this method may be related to the fact that 

the HDIs of some parameters were quite large (see Table 4.17), which is indicative of a 

dataset with inconsistent or too little data. It is also possible that inconsistencies may be 

due to incorrect assumptions in the model. These are important questions for future work. 
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Experiment 4.2: 
Sentential Context Effect 

Results: 
Experiment 4.2 Results: PPC 

logistic 
regression  coefficient β p mean 

β 
% sims 
p<.05 

C
on

tro
l S

ub
je

ct
s β0 -0.318 0.174 -0.24 94 

β1 0.260 < 0.001 0.21 100 
β2 1.317 < 0.001 0.97 100 

β0: YC vs. AMC -1.097 0.019 -0.87 100 
β1: YC vs. AMC -0.071 < 0.001 -0.07 85 
β2: YC vs. AMC 0.377 0.152 0.07 7 

El
de

rly
 S

ub
je

ct
s 

β0 -0.531 0.145 -0.34 92 
β1 0.154 < 0.001 0.11 100 
β2 1.382 < 0.001 1.01 100 

β0: AMC vs. BA 2.054 0.058 1.64 100 
β0: AMC vs. W/CA -1.379 0.211 -0.98 92 
β1: AMC vs. BA -0.197 < 0.001 -0.14 100 
β1: AMC vs. W/CA 0.055 0.143 0.01 12 
β2: AMC vs. BA -0.999 0.046 -0.41 28 
β2: AMC vs. W/CA 0.747 0.216 0.42 15 

Y
C

s β0 0.230 0.243 0.20 98 
β1 0.297 < 0.001 0.25 100 
β2 1.129 < 0.001 0.93 100 

A
M

C
s β0 -0.865 0.037 -0.67 100 

β1 0.224 < 0.001 0.18 100 
β2 1.503 < 0.001 1.01 97 

B
A

s β0 0.486 0.018 0.48 80 
β1 0.054 < 0.001 0.04 64 
β2 0.863 0.002 0.81 60 

W
/C

A
s β0 -1.292 0.245 -0.83 96 

β1 0.189 < 0.001 0.12 100 
β2 1.835 < 0.001 1.23 85 

Table 4.18. Summary of the results of a Posterior Predictive Check (PPC) examining the 
reliability of the model fit to data from Experiment 4.2. 
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Figure 4.20. Results of Experiment 4.2 (data points; cf. Figure 4.18) with superimposed 
model fits (solid lines). For each group (panel), two curves display the two sigmoidal 
posterior probability functions of the to... (pay-biased) and the... (bay-biased) conditions. 
Points indicate proportion pay-responses in the to... (pay-biased) and the... (bay-biased) 
conditions for each VOT, for each group. Error bars represent by-subject standard error. 
PWA = Patients with aphasia. 
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Figure 4.21. Results of Experiment 4.2 (data points; cf. Figure 4.19) with superimposed 
model fits (solid lines). For each group (panel), the curve represents the difference 
between proportion pay-responses in the to... (pay-biased) and the... (bay-biased) 
conditions as a function of voice-onset time (VOT). Points indicate difference in 
proportion pay-responses in the to... (pay-biased) and the... (bay-biased) conditions for 
each VOT, for each group. Error bars represent by-subject standard error. PWA = 
Patients with aphasia. 
 

4.4.3.4. General Discussion of Results of Experiment 4.1 and 4.2 

Together with the results of Experiment 4.1, the present work provides evidence 

for diminished influence of lexical status and frequency information on word recognition 
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in patients with W/CA, and for greater influence of lexical status and frequency 

information on word recognition in patients with BA. These conclusions are consistent 

with the original predictions of the Lexical Activation Hypothesis. At the same time, the 

analyses may also point towards bottom-up processing impairments (especially at the 

acoustic-phonetic level) in patients. However, the present results suggest that lexical 

processing deficits are not likely to be accounted for as downstream effects of bottom-up 

processing deficits alone. 

Methodologically, the present results have also illustrated the relative power of 

hierarchical Bayesian data analysis techniques over traditional methods. Having 

developed a computational model, BIASES, which served as a theoretical lens through 

which to view the issue of lexical processing deficits in aphasia, it was possible to avoid 

many of the inadequate and inappropriate assumptions of more traditional statistical 

analyses. Ultimately, we were able to draw novel, rich, and principled conclusions from 

previously published data (Blumstein et al, 1994) and from another dataset with several 

significant limitations (e.g., it was collected in two separate experiments with different 

methods and it featured a relatively small number of patients and trials). This represents a 

promising direction for future work interested in teasing apart subtle differences in the 

expected influences of different model parameters on subjects’ response patterns. 

Finally, as discussed earlier, aphasia is a heterogeneous disorder of language. 

Ignoring this fact – for instance, by analyzing data without respect for their 

symptomology, clinical diagnosis, or underlying neurological etiology/lesion site – is not 

theoretically motivated and is likely to miss important differences in patients, both from 

each other and from healthy control subjects.  
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Conclusion 

 During auditory language comprehension, bottom-up acoustic cues in the 

sensory signal are critical to listeners’ ability to recognize spoken words, but listeners are 

also sensitive to higher-level processing; in general, identification of ambiguous targets is 

biased by prior expectations (e.g., words over non-words, contextually consistent words 

over inconsistent words). The focus of the present work has been to better characterize 

how such top-down cues are integrated with bottom-up cues. In particular, the goal was 

to improve our understanding of the computational principles underlying top-down 

effects on speech perception, especially those top-down effects which arise from a word’s 

sentential context. 

Chapter 1 considered a longstanding debate: do top-down effects result from 

interactive modulation of perceptual processing or from entirely autonomous, decision-

level processing? Although some past work suggested that the time course of top-down 

effects was incompatible with interactive models, Experiments 1.1 and 1.2 illustrated 

that, with appropriate controls, the predictions of interactive models were supported. 

Ultimately, though, two major weaknesses of existing spoken word recognition 

models (whether interactive or autonomous) are that they ignore the role of sentential 

context and that they ignore the enormous variability in the size of top-down effects. To 

address these gaps, Chapter 2 introduced BIASES (short for Bayesian Integration of 

Acoustic and Sentential Evidence in Speech), a newly developed computational model of 

speech perception. 

Chapter 3 demonstrated BIASES’ ability to predict and explain fine-grained 

variability and asymmetries in previously published work, as well as in novel 
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experimental data from Experiment 3.1. The results of Chapter 3 indicate that many of 

the hallmarks of a Bayesian cue integration model are present in listeners’ behavior 

during spoken word recognition tasks. 

Finally, Chapter 4 employed BIASES to examine top-down processing in patients 

with aphasia. Experiment 4.1 reanalyzed previously published data (Blumstein et al, 

1994) regarding top-down effects of lexical status on speech perception in patients with 

aphasia. Experiment 4.2 examined new data regarding top-down effects of sentential 

context in patients with aphasia. Model-based analysis of these data suggested that 

patients with aphasia experience both bottom-up processing deficits and lexical-level 

processing deficits, and that the lexical processing deficits are consistent with the 

predictions of the Lexical Activation Hypothesis (Blumstein & Milberg, 2000; McNellis 

& Blumstein, 2001). Importantly, those impairments differ as a function of patients’ 

clinical diagnoses. 

The BIASES model has the potential to guide future experimental research and 

help advance both psycholinguistic and neurolinguistic theory. This work offers new 

insights into the computations occurring at the interface between the perceptual 

processing of speech and the cognitive and linguistic processing of language. 
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Appendix A: Context Sentences for Experiments 1 & 2 

Noun-biased (bay/pie)  Verb-biased (buy/pay) 

Tom liked the...  Dennis liked to... 

Jill preferred the...  Stephanie preferred to... 

Valerie hated the...  Brett hated to... 

Theresa chose the...  Bethany chose to... 

Ronald remembered the... Christopher remembered to... 

Austin forgot the...  Rob forgot to... 

Lillian neglected the...  Eliza neglected to... 

Justin wanted the...  Joe wanted to... 

Tina loved the...  Nathan loved to... 

Noah prepared the...  Dustin prepared to... 

Jasmine demanded the... Tyler demanded to... 

Josh declined the...  Grant declined to... 

Celia offered the...  Kristen offered to... 

Mark meant the...  Kate meant to... 

Sue needed the...  Megan needed to... 

Eileen expected the...  Dorothy expected to... 

Katherine requested the... Lance requested to... 

Tony knew the...  Bob knew to... 

Tracy promised the...  Carl promised to... 

Abigail thought the...  Jacqueline thought to... 
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Appendix B: Filler Target Words for Experiment 2 

build put 

beat pick 

break print 

blame play 

block plan 

brief press 

back pack 

bet pet 

bear pair 

bull pull 
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Appendix C: Supplementary Materials 

Complete Results and Discussion of Experiment 1 

A.1. Details of Analysis Procedures 

Because subjects’ responses were categorical (/p/ vs. /b/), the data were analyzed 

using mixed effects logistic regression (Baayen, Davidson & Bates, 2008; Jaeger, 2008), 

implemented using the lme4 package (Bates, Maechler, Bolker & Walker, 2014) in R (R 

Core Team, 2014). Factorial main effects (CONTEXT, CONTINUUM, BIAS, and SPEED) 

were deviation-coded (contrasts: 0.5, -0.5; positive contrasts corresponded to noun-

biased, buy–pie, /p/-congruent, and fast trials). VOT was a centered, continuous fixed 

effect. Since the design was fully within-subjects and within-items (an item corresponded 

to a main verb; e.g., hated), the maximal random effects structure (Barr, Levy, Scheepers 

& Tily, 2013) for this design included all random intercepts, slopes and interactions for 

every subject and item. In order to achieve convergence while minimizing the risk of 

inferential bias (Barr et al., 2013), random correlations were excluded. 

A.2. Supplementary Results/Discussion 

Besides the two critical findings discussed in the main text (CONTEXT × 

CONTINUUM and BIAS × SPEED interactions), our results provided evidence that several 

other factors influence subjects’ responses. Most are attributable to phonetic factors in 

our stimuli and well-established observations about how context effects interact with 

phonetic factors in speech perception. 

A.2.1. Analysis 1a (omnibus): CONTEXT × CONTINUUM × VOT 

In addition to the crucial CONTEXT × CONTINUUM interaction in Experiment 1, 

there was a main effect of VOT (β = 0.42, SE = 0.04, |z| = 11.70, p < 0.001) such that 
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tokens with longer VOTs were more often labeled as beginning with /p/, as expected 

given that VOT is the primary cue distinguishing the /b/ and /p/ categories in English 

(Liberman, Harris, Kinney & Lane, 1961).  

A significant VOT × CONTEXT interaction (β = 0.10, SE = 0.03, |z| = 3.58, p < 

0.001) replicates previous work showing that the size of a top-down bias depends on the 

acoustic ambiguity of the stimuli (Burton, Baum & Blumstein, 1989; Ganong, 1980; 

McQueen, 1991; Pitt & Samuel, 1993; Tuinman et al, 2014; van Alphen & McQueen, 

2001). As Figure 1.1 suggests, the closer a token’s mean rate of /p/-responses was to the 

phoneme category boundary (the VOT at which one would expect to see 50% /b/-

responses and 50% /p/-responses), the larger the difference between subjects’ /p/-

response rates at the two levels of CONTEXT appears to be. 

VOT interacted with CONTINUUM (β = 0.18, SE = 0.03, |z| = 6.30, p < 0.001), 

suggesting a somewhat stronger influence of VOT in the buy–pie continuum than in the 

bay–pay continuum. Although the exact source of this asymmetry is not immediately 

obvious, one should not necessarily expect the effect of VOT to pattern identically in the 

bay–pay and buy–pie continua, because VOT is only one of many cues to the identity of 

phonetically ambiguous (between /b/ and /p/) stimuli. Burst amplitude (Repp, 1984), 

subsequent vowel duration (Miller & Dexter, 1988; Summerfield, 1981), vowel identity 

(Klatt, 1975; Stevens & Klatt, 1974), and the lexical frequency of continuum endpoints 

(Fox, 1984) can all influence voicing decisions about phonetically ambiguous stimuli, 

and although it is not clear which of these (if any) contributed to this asymmetry in 

Experiment 1, it is unclear how any of these factors could account for the theoretically 

important CONTEXT × CONTINUUM interaction.  
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Finally, a significant main effect of CONTEXT (β = -0.36, SE = 0.12, |z| = 2.89, p < 

0.004) such that subjects were more likely to make /p/-responses after verb-biasing 

sentences than after noun-biasing sentences reflected the fact that the simple effect of 

CONTEXT was stronger in the bay–pay continuum (β = -1.37; /p/-responses to ambiguous 

tokens: 44.4% in noun-biased contexts vs. 65.5% in verb-biased contexts) than in the 

buy–pie continuum (β = 0.95; /p/-responses to ambiguous tokens: 58.4% in noun-biased 

contexts vs. 38.5% in verb-biased contexts). Further research would be necessary to 

identify the specific source of this asymmetry, but one possibility is that the syntactic 

manipulation was more efficacious in the bay–pay continuum because the specific items 

in the experiment (e.g., Brett hated to...) created stronger preferences when judging 

between bay and pay than between buy and pie. Importantly, though, no matter the cause 

of this or any of the other ancillary effects discussed here, the prediction that CONTEXT 

would have robust, contrasting effects in the two continua was borne out by the data. 

A.2.2. Analysis 1b (follow-up tests): CONTEXT × VOT 

In addition to the reported simple effects of CONTEXT in the by-continuum 

follow-up tests, both analyses, as in the omnibus analysis, revealed simple effects of VOT 

(bay–pay: β = 0.33, SE = 0.03, |z| = 11.58, p < 0.001; buy–pie: β = 0.50, SE = 0.04, |z| = 

13.74, p < 0.001) in the expected direction. Finally, there was a significant interaction 

between CONTEXT and VOT in the bay–pay continuum (β = 0.12, SE = 0.03, |z| = 3.48, p 

< 0.001) and marginal interaction in the buy–pie continuum (β = 0.07, SE = 0.04, |z| = 

1.80, p = 0.07), suggesting that ambiguous tokens were differentially impacted by 

CONTEXT in both continua (see Appendix C for discussion). 

A.2.3. Analysis 2: BIAS × SPEED × VOT 
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In addition to the BIAS × SPEED interaction, the results revealed a main effect of VOT (β = 

0.36, SE = 0.03, |z| = 12.47, p < 0.001) and a main effect of BIAS (β = 0.99, SE = 0.14, |z| 

= 7.21, p < 0.001), such that /p/-responses were more likely when targets had longer 

VOTs and in trials for which the CONTEXT and CONTINUUM jointly made /p/ the 

congruent response. There was also a significant VOT × SPEED interaction (β = 0.09, SE = 

0.03, |z| = 3.12, p < 0.002), suggesting that slower responses to a token were less 

influenced by that token’s VOT. 

 

Complete Results and Discussion of Experiment 2 

B.1. Details of Analysis Procedures 

Analyses followed the same approach as Experiment 1’s. When occasional 

convergence failures occurred, the random effects structure was simplified by removing 

random slopes for factors involving the VOT factor. In all cases, this simplification 

allowed for convergence, and the pattern of results (i.e., which fixed effects reached 

significance) was identical to the results of the unconverged models with all of the 

random effects. 

B.2. Supplementary Results/Discussion 

Besides the two critical findings of Experiment 2 discussed in the main text 

(CONTEXT × CONTINUUM interaction, but no BIAS × SPEED interaction), there was 

evidence that several other effects influenced subjects’ responses, including effects 

replicating most patterns seen in Experiment 1 (see above). However, aside from 

differing in the presence of a BIAS × SPEED interaction, Experiments 1 and 2 differed in a 

few other ways. In particular, the critical tokens were, on the whole, less often identified 
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as /p/ in Experiment 2 than in Experiment 1, even for the /p/-endpoint tokens (pay-

endpoint: 96.0% vs. 77.0% /p/-responses in Experiment 1 vs. 2; pie-endpoint: 86.8% vs. 

76.5%). Such a pattern is consistent with earlier studies showing that the distributional 

statistics of acoustic-phonetic cues (e.g., VOTs) within an experimental context can 

produce range effects in the perception of phonetic category structure (Clayards, 

Tanenhaus, Aslin & Jacobs, 2008). An analysis of the VOTs of the ten naturally 

produced /p/-initial filler targets showed that these fillers had a mean VOT of 90 ms (with 

the shortest VOT being 71 ms), in contrast to 35 and 34 ms VOTs for the two critical /p/-

endpoint stimuli. Thus, it appears that the longer VOTs of the filler targets affected the 

perception of voicing in the critical target stimuli such that the boundary between the /p/ 

and /b/ stimuli was now skewed towards fewer /p/ and more /b/ responses, consistent 

with range effects (Brady & Darwin, 1978). 

B.2.1. Analysis 1a (omnibus): CONTEXT × CONTINUUM × VOT 

In addition to the crucial CONTEXT × CONTINUUM interaction in Experiment 2, 

main effects of CONTEXT (β = -0.67, SE = 0.20, |z| = 3.28, p < 0.002) and VOT (β = 0.22, 

SE = 0.05, |z| = 4.91, p < 0.001) emerged in Experiment 2, both matching patterns 

observed in Experiment 1. 

B.2.2. Analysis 1b (follow-up tests): CONTEXT × VOT 

Follow-up tests in each continuum revealed significant simple effects of CONTEXT 

(see main text), as well as simple effects of VOT (bay–pay: β = 0.21, SE = 0.04, |z| = 5.75, 

p < 0.001; buy–pie: β = 0.21, SE = 0.05, |z| = 4.65, p < 0.001). 

B.2.3. Analysis 2: BIAS × SPEED × VOT 
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Although there was no evidence for a BIAS × SPEED interaction, the results showed a main 

effect of BIAS (β = 1.01, SE = 0.21, |z| = 4.73, p < 0.001) which corresponds to the 

CONTEXT × CONTINUUM interaction in the primary analysis, and a main effect of VOT (β 

= 0.18, SE = 0.03, |z| = 5.40, p < 0.001). 

 

 
  



 
238 

Appendix D: Patient Characteristics for Experiment 4.2 
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Table A.1. All parameters from model-based analyses of Experiments 1 and 2   
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Appendix E: Sentence Contexts for Experiment 4.2 
 
Noun-biased (bay)  Verb-biased (pay) 

Theresa chose the...  Bethany chose to... 

Jasmine demanded the... Tyler demanded to... 

Valerie hated the...  Brett hated to... 

Tom liked the...  Dennis liked to... 

Sue needed the...  Megan needed to... 

Celia offered the...  Kristen offered to... 

Jill preferred the...  Stephanie preferred to... 

Ronald remembered the... Christopher remembered to... 

Katherine requested the... Lance requested to... 

Justin wanted the...  Joe wanted to... 
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