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This dissertation by Daniela Scidá is accepted in its present form

by the Department of Economics as satisfying the

dissertation requirements for the degree of Doctor of Philosophy.

Date

Eric Renault, Advisor

Recommended to the Graduate Council

Date

Adam McCloskey, Reader

Date

Mardi Dungey, Reader

Approved by the Graduate Council

Date

Peter Weber, Dean of the Graduate School



Vita
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Preface

This dissertation is comprised of the following three chapters: (1) “Causality and

Markovianity: Information Theoretic Measures” (joint work with Eric Renault), my

job market paper entitled (2) “Structural VAR and Financial Networks: A Mini-

mum Distance Approach to Spatial Modeling,” and my third year paper entitled (3)

“GMM with Minimum Mean Squared Error.” All three chapters are about economet-

ric methodology for time series, with a particular focus on model selection and loss

functions. They include both theoretical and empirical developments about Informa-

tion Theory in Econometrics, Generalized Method of Moments, Networks, and Spatial

Modeling. The common feature of all the econometric methodologies developed in

this dissertation is the applicability to financial econometrics.

Chapter 1 contributes to the Information Theory in Econometrics literature. Many

Information Theoretic Measures have been proposed for a quantitative assessment of

causality relationships. While Gouriéroux, Monfort, and Renault (1987) had intro-

duced the so-called Kullback Causality Measures, extending Geweke’s (1982) work

in the context of Gaussian VAR processes, Schreiber (2000) has set a special focus

on Granger causality and dubbed the same measure “transfer entropy.” Both papers

measure causality in the context of Markov processes. One contribution of this chap-

ter is to set the focus on the interplay between measurement of (non)-markovianity

and measurement of Granger causality. Both can be framed in terms of prediction

of how much the forecast accuracy is deteriorated when some relevant conditioning

information is forgotten. In this chapter we argue that this common feature between

(non)-markovianity and Granger causality has led people to overestimate the amount

of causality because what they consider as a causality measure may also convey a

measure of the amount of (non)-markovianity. We set a special focus on the design of

measures that properly disentangle these two components. Furthermore, this disen-
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tangling leads us to revisit the equivalence between the Sims and Granger concepts of

non-causality and the Log-Likelihood Ratio tests for each of them. We argue that a

proper assessment of Granger causality implies testing for non-nested hypotheses. For

the sake of illustration, we provide some quantitative assessment of the overestima-

tion of Granger causality due to a confusion with non-markovianity. The numerical

evidence shows that the amount of overestimation can be serious in certain scenarios.

Chapter 2 fits the network literature, and, more precisely, it focuses on the esti-

mation of financial networks. Spatial models are a natural way to analyze spillovers

or network effects. However, these models only provide an estimate of the overall

network influence parameter and require the researcher to know a-priori how individ-

uals are connected to each other. Since data on network ties are seldom available,

researchers have mostly relied on ad-hoc network structures. In this paper, I put

forth a methodology to estimate both the network matrix and the overall network

influence parameter in a time series framework. I show that a time series spatial

model is a constrained Structural Vector Autoregressive (SVAR) model. Based on

these restrictions, the main theoretical contribution of this paper is to propose a two-

step minimum distance approach to estimate the (row-standardized) network matrix

and the overall network influence parameter from the SVAR estimates. I discuss

machine learning methods, based on the PC-algorithm, as one possible identification

strategy of SVAR models. To assess the restrictiveness of the constraints imposed by

the spatial model on the SVAR model, I develop a Wald-type test. The methodology

is illustrated through an application to financial integration among countries based

on daily realized volatility data for the 2003-2015 period. I discuss different network

measures and graphical tools to interpret the network effects. I find that the overall

network influence was the highest during the financial crisis in 2008. After the crisis,

the network influence decreased, though it did not return to pre-crisis levels.

Chapter 3 contributes to the generalized method of moments literature. In this
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chapter I revisit the concepts of redundancy and partial redundancy when moments

are unbiased, i.e. equal to zero, but their estimators are asymptotically biased. I

show that, under these circumstances, redundancy and partial redundancy should be

understood in terms of Asymptotic Mean Squared Error (AMSE) instead of efficiency.

For this purpose, I first reassess what an optimal weighting matrix for a Generalized

Method of Moments (GMM) estimator would be under the presence of asymptotic

bias in the estimator of the moment conditions. Next, based on this new definition of

optimal weighting matrix, I show that adding valid moment conditions does not hurt

in terms of AMSE. As a result, this framework allows us to keep the standard point

of view that additional moment conditions cannot increase asymptotic MSE under

AMSE-efficient GMM. Then, using these results, I derive and reinterpret the necessary

and sufficient conditions for redundancy and partial redundancy as originally defined

by Breusch, Qian, Schmidt, and Wyhowski (1999). I also provide a discussion about

the role, in terms of redundancy, of the variance bias trade-off.
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Chapter 1

Causality and Markovianity:

Information Theoretic Measures

1.1 Introduction

As first raised by Geweke (1982, p.304), using measures of causality is important, be-

yond testing for independence or unidirectional causality, because “in the typical case

in which the hypothesis of independence . . . is not literally entertained,” it requires

that one be able to measure the actual degree of causality. We argue in this paper

that this measurement issue should be adjusted according to the goal of the study. On

the one hand, following Sims (1972, p.540), one may want to question “the practice

of making causal interpretations of distributed lag regressions of income on money”

or, more generally, to make an economic interpretation of the evidence of some degree

of causality. While, on the other hand, one may simply want to choose a forecast-

ing formula, in the spirit of Hoel (1947). The former objective entails a measure of

causality that may be different from the one needed for the latter objective.

According to this duality of objectives, we emphasize that two alternative mea-

sures of causality may be relevant, depending upon the question at stake. The dif-
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ference is actually due to a new point of view on causality measurement. The main

contribution of our new approach is to disentangle the measure of Granger causality

with a measure of non-Markovianity.

Geweke’s (1982) measure of linear feedback has been path-breaking and led to a

very general Kullback causality measure proposed by Gouriéroux, Monfort, and Re-

nault (1987) (GMR throughout) for a general process under the maintained assump-

tion that (X, Y ) is a Markov process of order p. This Kullback causality measure has

been more recently dubbed “transfer entropy” by Schreiber (2000). Even though this

framework has a very general validity, we question in this paper a maintained point

of view shared by Geweke (1982), GMR, as well as Schreiber (2000), and summarized

as follows by GMR (p.390): “despite the fact that the process X does not have a

marginal autoregressive representation of order p, the marginal regression has to be

performed after a truncation at this order p.” We introduce the bold notation for

the definition of “this order p” because it encapsulates our difference with the former

literature.

We stress that obviously if (X, Y ) is jointly Markov of order p, it is also Markov of

order (p+r) for any positive number r. While this non-uniqueness of Markov order is

immaterial for statistical inference about the joint process (X, Y ), it is crucial when

stating as GMR (p.390) that “the marginal regression has to be performed after a

truncation at this order p.” We note that when the marginal regression is performed

after a truncation at order (p+r), increasing r could dramatically reduce the Granger

causality measure. Of course, when Y does not cause X in the Granger sense, X is

itself Markov of order p. This is the reason why Geweke (1982, p.309) notes that

the auto-regression of X on p of its own lags is constrained maximum likelihood

(constrained by the non-causality hypothesis) so that the proposed causality measure

corresponds to the likelihood ratio test.

However, we argue that, when measuring causality, we precisely have in mind a
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case where causality is at play, so that X is not marginally a Markov process of order

p. There is no reason to perform a regression of X on only p (or even p + r) of its

own lags. Increasing r decreases the causality measure and it is only for r tending

to infinity that we rightly assess the degree of causality. The overestimated causality

measure obtained by a marginal regression on (p+ r) lags encapsulates not only the

right causality measure, but also a measure of “non-Markovianity.” That is, how far

the process X is from being Markov of order (p + r). While, generalizing Geweke

(1982), GMR prove asymptotic equivalence between their Kullback causality measure

and the aforementioned likelihood ratio test statistic, this equivalence is valid only

under the null hypothesis of non-causality. In contrast, we consider, like Geweke

(1982, p.304), that it is precisely in the typical case in which the hypothesis of non-

causality is “not literally entertained” that the causality measure is useful. Hence, one

needs to revisit the measure proposed by Geweke (1982) and generalized by GMR.

The main innovation of this paper is to revisit the issue of causality measure in

a framework of non-nested hypotheses. We argue that, when the process (X, Y ) is

assumed to be Markov of order p, assessing the degree of Granger causality from

Y to X is not equivalent to comparing the probability distributions of X given p

lagged values, including and not including lagged values of Y . When lagged values

of Y are not included, the probability distribution of X given its own lagged values

should rather include (p+ r) lags, with a large r. Since the Kullback contrast is not

endowed with the symmetry property of a genuine distance, considering two non-

nested models leads to two possible candidates for a causality measure: either the

DGP (Data Generating Process) corresponds to the model where having only p lags of

X is compensated by including p lags of Y , or it corresponds to the model where not

including lagged values of Y is compensated by having p+r, instead of p, lagged values

of X. In the former case, the causality measure is given by the Kullback contrast

between the DGP and the closest candidate distribution without causality, evaluated
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at the DGP. In the latter case, one works the other way round by maintaining the

assumption that the process X alone is Markov of order (p+r). That is, one wonders

what is the probability distribution the closest to the DGP, when allowing for only

p lags on the distribution of X given the past but adding past p values of Y to the

conditioning information. The Kullback contrast computed in this manner provides

an alternative causality measure.

These two alternative causality measures correspond to the two possible strategies

for the Cox procedure of Modified Likelihood Ratio (MLR) principle for testing non-

nested hypotheses. The first approach tests whether the null hypothesis “(X, Y )

Markov of order p” can be rejected by considering the performance of a forecasting

equation where X can be forecasted from (p + r) of its own lags. We argue that

this first point of view is better suited for addressing the issue of the choice of a

forecasting formula, in the spirit of Hoel (1947). When the Kullback measure takes

a large value, it means that a large number of lagged values of X is not sufficient

to mimic the actual predicting distribution of X given p lagged values of X and Y

jointly. Following Hoel’s (1947) terminology, the multivariate framework allowing for

the forecast of X by using not only its own past but also the past of other variables

Y can be seen as “the new forecasting formula,” while working only with the past of

X is the “old formula.” Then, it is natural to make the null hypothesis correspond to

the new formula. Typically we have in mind circumstances in which the new formula

has some advantages in terms of parsimony because [p. dim(Y )] < [r. dim(X)].

The second approach tests whether the null hypothesis “X Markov of order (p+r)”

can be rejected by considering the performance for forecasting X of an alternative

model for (X, Y ) that is jointly Markov of order p. Rejecting the null hypothesis in

this context provides evidence of Granger causality from Y to X that is even more

compelling than the standard likelihood ratio test computed with the constrained

version of a parametric model for a process (X, Y ) jointly Markov of order p. In fact,
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in this situation, the Cox MLR test statistic tells us that not only the p lagged values

of Y have significant coefficients when the forecasting formula includes p lagged values

of X, but also they are significant if one adds a large number r of lagged values of

X. Therefore, our second Kullback causality measure and the associated Cox test

is better suited when the question at stake is really the theoretical question of non-

causality from Y to X (see, e.g., the discussion in Sims, 1972).

As extensively discussed by Pesaran and Weeks (2001), the dual aspect of tests

for non-nested hypotheses leads to two different interpretations: model choice for

the purpose of decision making or testing for the empirical validity of a theoretical

prediction. The former interpretation, and thus our first causality measure, is more

about decision making: choosing the best forecasting formula. By contrast, the second

causality measure is really assessing the amount of causality from Y to X, in the sense

of a theoretical statement.

Besides the aforementioned existing causality measures, as well as the application

in econometrics of the Cox principle for MLR (see, e.g., Fisher and McAleer, 1981;

Pesaran, 1982; and Gouriéroux and Monfort, 1994), the methodology set forth in this

paper is also related to the concept of “asymmetric VAR” as put forward by Hsiao

(1979, 1981) and Keating (2000). The idea of asymmetric VAR is to identify different

lag orders for different variables entering a multivariate autoregressive process. The

latter authors have precisely stated the importance of this approach for causality test-

ing. For instance Keating (2000, p.2) emphasizes that “each equation of a bivariate

VAR could have 3 lags of output and 6 lags of money,” which is analogous to us

having a larger number (p+ r) of lags for the candidate exogenous variables X.

Finally, it is worth noting that the mutual implications between non-Markovianity

and causality that has obliged us to cautiously derive a strategy of non-nested hy-

potheses is immaterial in the context of Sims non-causality. It has been documented

in the literature that Sims and Granger non-causality are not fully equivalent for
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at least two reasons: role of initial variables (Chamberlain, 1982 and Florens and

Mouchart, 1982) as well as the impact of a third variable Z included in the fore-

casting environment (Dufour and Tessier, 1993). While the introduction of a third

variable (or a set of variables) Z in the environment is beyond the scope of this paper,

we revisit the role of initial values in the context of causality measures. It sheds more

light on the interpretation of the non-equivalence pointed out by Chamberlain (1982)

and Florens and Mouchart (1982), but also on the role of the Markov assumption in

discussing this equivalence (see also Florens, Mouchart, and Rolin, 1993).

This paper is organized as follows. In the second section, we revisit the Kullback

causality measures for Sims and Granger non-causality (from Y to X) as already in-

troduced by GMR. However, in contrast with these authors, we do not maintain any

Markov assumption. This allows us to characterize the difference between the two

concepts and their measures through a concept and a measure of initiation of X by

Y . In the third section, we analyze extensively the impact of the Markov assumption

on our causality measures. More generally, we document the possible overestimation

of causality measures due to the discrepancy between a true value and a pseudo-true

value. Besides the theoretical definition of the measures, we describe their sample

counterparts and their connection with a Cox procedure for testing non-nested hy-

potheses. The asymmetry of the Cox procedure leads us to explicitly disentangle

two testing strategies, depending on whether the focus of interest is the choice of

a practical forecasting formula or really an empirical assessment of some theoretical

statement on non-causality. For sake of illustration we provide in section four some

numerical evidence of the overestimation of Granger causality due to a confusion

with non-markovianity. Finally, section five provides some concluding remarks and

sketches some paths for extensions. The main mathematical proofs are gathered in

the Appendix.

6



1.2 Information theoretic causality measures

1.2.1 General framework

We consider a multivariate discrete time process that starts at time t = −$ and is de-

noted by {Zt; t ≥ −$}. Each component Zt is partitioned into two subvectors, Xt and

Yt, whose ranges are respectively <(X) and <(Y ), some subsets of Euclidean spaces;

the range of Zt is <(X)×<(Y ). Vectors (X
′

t+h, X
′

t+h−1, ..., X
′
t)
′, (Y

′

t+h, Y
′

t+h−1, ..., Y
′
t )′

and (Z
′

t+h, Z
′

t+h−1, ..., Z
′
t)
′ are denoted by X t+h

t , Y t+h
t and Zt+h

t respectively. The prob-

ability distribution of the process {Zt; t ≥ −$} is defined by:

(i) The probability distribution of the initial vector Z0
−$ which is assumed to have a

probability density function f0

(
z0
−$
)

= f0

(
x0
−$, y

0
−$
)

with respect to a product

measure ⊗$i=0µ(dz−i) where µ(dz) is itself a product measure µx(dx) × µy(dy)

on <(X)×<(Y );

(ii) The conditional probability distributions of Zt given Zt−1
−$ , for any t ≥ 1, which

are assumed to have a p.d.f. f0t

(
zt
∣∣zt−1
−$
)

with respect to µ (which, for notational

simplicity, is assumed to be the same for all t).

The joint p.d.f. of Zt
−$ with respect to ⊗ti=−$µ(dzi) is:

f0t

(
zt−$

)
= f0

(
z0
−$
) t∏
i=1

f0i

(
zi
∣∣zi−1
−$
)

Note that the notation f0t

(
zt
∣∣zt−1
−$
)

allows the process {Zt; t ≥ −$} to be non-

stationary. For instance, even in the case of a Markov process of order p ≤ $ + 1,

that is, the case when

f0t

(
zt
∣∣zt−1
−$
)

= f0t

(
zt
∣∣zt−1
−p+1

)
,

7



the transition density f0t(zt | zt−1
−p+1) may depend on t. In order to accommodate

non-stationarity, our definitions below of non-causality depend on the range of ob-

servations, namely t = 1, ..., T , on top of possibly some conditioning initial values

t = 0,−1, ...,−$. In other words, every time we write “Y does not cause X” in some

sense, the reader should understand that “Y does not cause X between dates (−$)

and T .”

1.2.2 Kullback measure of Sims causality

Following Chamberlain’s (1982) extension of Sims’ (1972) concept of non-causality,

we first define:

Definition 1.1 (Sims non-causality). Y does not cause X in the Sims sense

(Y.NCS.X) if, for all t = 1, ..., T :

f0t

(
yt
∣∣xT−$, yt−1

−$
)

= f0t

(
yt
∣∣xt−$, yt−1

−$
)

Following GMR, we define a Kullback measure of causality from Y to X, in the

Sims sense, by considering the set of all possible p.d.f.s ft
(
zt−$

)
, t = 1, 2, ..., T ,

for which, possibly by contrast with the Data Generating Process (DGP) f0t

(
zt−$

)
,

t = 1, 2, ..., T , there is no causality in the Sims sense from Y to X:

HS[Y 9 X] = {fT (·) ; Y.NCS.X}

with, by definition,

fT
(
zT−$

)
= f

(
z0
−$
) T∏
t=1

ft
(
zt
∣∣zt−1
−$
)

Then, we can define a discrepancy between the DGP and the non-causality hy-
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pothesis in the Sims sense by solving the program:


Min

1

T
E0 log

(
f0T

(
zT−$

)
fT (zT−$)

)

s.t. fT (·) ∈ HS[Y 9 X]

(1.1)

We define our Kullback measure of Sims causality from Y to X, denoted by

CSY→X(T ), as the value of the minimization program (1.1). We can show that:

Proposition 1.1. The value of the program (1.1) is:

CSY→X(T ) =
1

T

T∑
t=1

E0 log

(
f0t

(
yt
∣∣xT−$, yt−1

−$
)

f0t

(
yt
∣∣xt−$, yt−1

−$
))

The notation CSY→X(T ) stresses that the Sims causality measure depends on the

range {1, 2, ..., T} of observations, while the initial date (−$) is considered throughout

as given.

Then, obviously:

Corollary 1.1.

CSY→X(T ) ≥ 0

CSY→X(T ) = 0⇔ Y.NCS.X

1.2.3 Initiation of X by Y

The Sims non-causality property allows the econometrician to write down a model in

which endogenous variables yt are explained by predetermined variables, that com-

prises past endogenous variables, yt−1
−$ , as well as past and present exogenous variables,

xt−$. However, in order to fully specify the conditional probability distribution of the

observed path zT1 given the initial values z0
−$, it also takes a specification of the ini-

tiation of the observed path xT1 of exogenous variables by possibly the endogenous
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ones y0
−$. This is obvious from the following decomposition where both the roles of

Sims non-causality and initiation are displayed in bold notations:

fT
(
zT−$

)
f0 (z0

−$)
= fT

(
xT1
∣∣x0
−$,y

0
−$
) T∏
t=1

ft
(
yt
∣∣xT−$, yt−1

−$
)

(1.2)

While Sims non-causality is about some simplification of the second part of the

RHS of Eq. (1.2), the initiation issue arises from the first part. We then define:

Definition 1.2 (Non-initiation). Y does not initiate X (Y.NI.X) if:

fT
(
xT1
∣∣x0
−$, y

0
−$
)

= fT
(
xT1
∣∣x0
−$
)

Similarly to the methodology of causality measurement described above, we will

define a Kullback measure of initiation of X by Y by considering the set of all possible

p.d.f. ft
(
zt−$

)
, t = 1, 2, ..., T , for which, possibly by contrast with the DGP f0t

(
zt−$

)
,

t = 1, 2, ..., T , there is no such initiation:

HIN [Y 9 X] = {fT (·) ; Y.NI.X}

Then, we can characterize a discrepancy between the DGP and the non-initiation

hypothesis by solving the program:


Min

1

T
E0 log

(
f0T

(
zT−$

)
fT (zT−$)

)

s.t. fT (·) ∈ HIN [Y 9 X]

(1.3)

We define our Kullback measure of initiation of X by Y , denoted by CINY→X(T ),

as the value of the minimization program (1.3). We can show that:
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Proposition 1.2. The value of the program (1.3) is:

CINY→X(T ) =
1

T

T∑
t=1

E0 log

(
f0t

(
xt
∣∣xt−1
−$, y

0
−$
)

f0t

(
xt
∣∣xt−1
−$
) )

Then, obviously:

Corollary 1.2.

CINY→X(T ) ≥ 0

CINY→X(T ) = 0⇔ Y.NI.X

It is worth noting that CINY→X(T ) is a Cesaro mean of a sequence ut with

ut = E0 log

(
f0t(xt

∣∣xt−1
−$, y

0
−$
)

f0t(xt
∣∣xt−1
−$
) )

Following Chamberlain (1982), we consider the following condition (R):

Condition (R).

lim
t=∞

ut = 0

Under regularity conditions, our Condition (R) is equivalent to condition (R)

introduced by Chamberlain (1982, p.571). Chamberlain (1982, p.571) notes that

“condition (R) requires that the current effect of y’s from the distant past vanishes;

similar assumptions are routine in the analysis of aggregate time-series data.” Even

though stationarity is not a maintained assumption for us, Condition (R) is obviously

related to the concept of ergodicity. From the aforementioned Cesaro mean argument,

we deduce that:
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Proposition 1.3. Under Condition (R):

lim
T=∞

CINY→X(T ) = 0

It is worth noting that more often than not, at least in a stationary environment,

this limit will be a decreasing limit because the sequence ut itself should be non-

increasing. To see that, imagine the case of a process {Zt; t ≥ −$} that is stationary

Gaussian. Then, the question is akin to the behavior of a function:

h(n) = E log

(
f (Z|X1, X2, ..., Xn, Y )

f (Z|X1, X2, ..., Xn)

)
, n = 1, 2, .., N (1.4)

when p.d.f.s are computed from the joint Gaussian distribution of a vector (Z,X1, X2,

..., XN , Y )′. Obviously, the difference between the numerator and the denominator in

(1.4) is fully explained by the informational content of the difference:

Y − E[Y |X1, X2, ..., Xn]

Thus, this difference should obviously be reduced when n increases.

1.2.4 From Sims causality to Granger causality

Following Granger’s (1969) approach to causality, we now define:

Definition 1.3 (Granger non-causality). Y does not cause X in the Granger sense

(Y.NCG.X) if, for all t = 1, ..., T :

f0t

(
xt
∣∣xt−1
−$, y

t−1
−$
)

= f0t

(
xt
∣∣xt−1
−$
)

Following GMR, we define a Kullback measure of causality from Y to X, in the

Granger sense, by considering the set of all possible p.d.f.s ft
(
zt−$

)
, t = 1, 2, ..., T for
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which, possibly by contrast with the Data Generating Process (DGP) f0t

(
zt−$

)
, t =

1, 2, ..., T there is no causality in the Granger sense from Y to X:

HG[Y 9 X] = {fT (·) ; Y.NCG.X}

Then, we can define a discrepancy between the DGP and the non-causality hy-

pothesis in the Granger sense by solving the program:


Min

1

T
E0 log

(
f0T

(
zT−$

)
fT (zT−$)

)

s.t. fT (·) ∈ HG[Y 9 X]

(1.5)

We define our Kullback measure of Granger causality from Y to X, denoted by

CGY→X(T ), as the value of the minimization program (1.5). We can show that:

Proposition 1.4. The value of the program (1.5) is:

CGY→X(T ) =
1

T

T∑
t=1

E0 log

(
f0t

(
xt
∣∣xt−1
−$, y

t−1
−$
)

f0t

(
xt
∣∣xt−1
−$
) )

Then, obviously:

Corollary 1.3.

CGY→X(T ) ≥ 0

CGY→X(T ) = 0⇔ Y.NCG.X

Moreover, the comparison of propositions 1.1, 1.2, and 1.4 shows that:

Proposition 1.5.

CGY→X(T ) = CSY→X(T ) + CINY→X(T )
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Then, since all these measures are non-negative, we deduce:

Corollary 1.4. Y does not cause X in the Granger sense if and only if the two

following conditions are fulfilled:

(i) Y does not cause X in the Sims sense

(ii) Y does not initiate X

In other words, Proposition 1.5 sheds some new light on an issue already pointed

out by Florens and Mouchart (1982, p.587) “Granger non-causality still implies, but

is not equivalent to, Sims non-causality. Some care has to be taken (..) in order

to handle the initial condition properly.” Similarly to Theorem 3 in Chamberlain

(1982, p.575), the conjunction of Proposition 1.4 and 1.5 shows that the equivalence

is restored for large T if condition (R) holds:

Corollary 1.5. Under Condition (R):

lim
T=∞

CGY→X(T ) = lim
T=∞

CSY→X(T )

1.3 Causality measures and pseudo-true values

1.3.1 General issue

For the purpose of statistical inference, causality measures have mainly been stud-

ied, so far, in the context of stationary Markov processes. Hence, we will maintain

throughout the assumption that the process {Zt; t ≥ −$} is stationary Markov of

order p. This assumption is especially convenient to simplify the expression of the

Granger causality measure:

CGY→X(T ) = E0 log
[
f0

(
xt
∣∣xt−1
t−p, y

t−1
t−p
)]
− 1

T

T∑
t=1

E0 log
[
f0t

(
xt
∣∣xt−1
−$
)]

(1.6)
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where f0

(
xt
∣∣xt−1
t−p, y

t−1
t−p
)

stands for the time invariant transition p.d.f. of this station-

ary Markov process. It is worth stressing that by contrast, in spite of stationarity,

f0t

(
xt
∣∣xt−1
−$
)

depends in general on t because the process {Xt; t ≥ −$} is not Markov

and thus the number of relevant lagged values in the conditioning information in-

creases with t. In the context of a parametric model, the marginal transition p.d.f.

and the expectation of its logarithm may be computed by using the ARMA structure

of the process {Xt; t ≥ −$}. However, this difficulty seems to have been largely

overlooked in the literature. Instead of computing properly the causality measure

CGY→X(T ) in (1.6) as the value of the minimization program (1.5), people would in

general prefer to simplify the computation by solving instead:


Min

1

T
E0 log

(
f0T

(
zT−$

)
fT (zT−$)

)

s.t. fT (·) ∈ HGc[Y 9 X]

(1.7)

where HGc[Y 9 X] is a strict subset of HG[Y 9 X] because some of the prop-

erties assumed for the DGP have been imposed to the candidate density function

fT (·). Obviously, this approach will lead in general to overestimate the actual level

of causality, when the distance between the DGP and the reduced set HGc[Y 9 X]

is actually also due to some other constraints. Examples of this issue in the extant

literature are described below.

1.3.2 Causality and markovianity

Most of extant empirical applications of causality measures lie within a Markov frame-

work: the process (X, Y ) is assumed to be stationary Markov of some order p. Ex-

amples of application include Gaussian VAR(p) models (Geweke, 1982), Qualitative

Panel data models (Bouissou, Laffont, and Vuong, 1986) and lattices in physical sys-

tems (Schreiber, 2000). All these examples fit within the framework described above
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if we maintain the assumption that the number ($+1) of initial values is not smaller

than p.

As already mentioned, Geweke (1982, p.309) is led to “begin by supposing that

for purpose of estimation, all lag lengths in the canonical form have been truncated

at p.” It is a way to acknowledge that he has solved the minimization program (1.7)

with:

HGc[Y 9 X] = HG [Y 9 X|p] (1.8)

= {fT (·) ;Y.NCG.X and Z ∼Mar(p)}

where the notation Z ∼ Mar(p) means that the process {Zt; t ≥ −$} is stationary

Markov of order p. We can show more generally that:

Proposition 1.6. If Z ∼ Mar(p), and p ≤ q ≤ $ + 1, the value CGY→X(q) of the

program (1.7) with HGc[Y 9 X] = HG [Y 9 X|q] is:

CGY→X(q) = E0 log
[
f0

(
xt
∣∣xt−1
t−p, y

t−1
t−p
)]
− E0 log

[
f0

(
xt
∣∣xt−1
t−q
)]

The proof of Proposition 1.6 is straightforward from (1.6) with the Mar(q) as-

sumption in the definition of HGc[Y 9 X]. Moreover, note that since by stationarity

and Markov property the Granger causality measure does not depend on T anymore,

we have simplified the notation.

Obviously:

Corollary 1.6.

q ≤ q′ ≤ $ + 1⇒ CGY→X(q) ≥ CGY→X(q′) ≥ CGY→X(T )

It is worth noting that CGY→X(q) overestimates the actual measure CGY→X(T ) of

causality precisely because it adds a term measuring the amount of non-markovianity
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at degree q for the process X. More precisely

Corollary 1.7. If Z ∼Mar(p), and p ≤ q ≤ $ + 1:

CGY→X(q)− CGY→X(T ) =
1

T

T∑
t=1

E0 log

(
f0t

(
xt
∣∣xt−1
−$
)

f0

(
xt
∣∣xt−1
t−q
) ) = MX(q)

where MX(q) is the value of the minimization program:


Min

1

T
E0 log

(
f0T

(
zT−$

)
fT (zT−$)

)

s.t. X ∼Mar(q)

(1.9)

Recall that Z ∼ Mar(p) is the maintained assumption. The reason why it is the

markovianity of the process X that is now at stake is the following. Obviously X is

Markov of order p when Y does not cause X in the Granger sense (see Florens et al.,

1993 for necessary and sufficient conditions). However, when looking for the p.d.f.s

with non-causality the closest to the DGP, there is no reason to limit ourselves to

stochastic processes that are themselves Markov of order p. After all, when Y does

cause X, one may sometimes realize that the accuracy loss (in forecasting a future

value of X) due to omission of the past values of Y in the conditioning information

is not so important when one allows herself to keep a large number of lagged values

of X in the conditioning information. In this case, a large value of CGY→X(p) may

rather be seen as a signal that X is far from being a Markov process (of the small

order q considered) rather than evidence of a high degree of causality from Y to X.

Actually, Corollary 1.7 points out the right additive decomposition to assess the trade

off between causality and non-markovianity:

CGY→X(q) = CGY→X(T ) +MX(q) (1.10)

If we think about Kullback-Leibler discrepancy (KL herefafter) as a squared norm
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in some Hilbert space (see for instance the formula of KL in the case of Gaussian

distributions, Kullback (1968, p.189) or Gouriéroux and Monfort (1995, p.15), see

also the example in the next subsection), equality (1.10) looks like an application

of Pythagoras’ theorem. The non-causality property Y.NCG.X and the Markov

property X ∼ Mar(q) (when Z = (X ′, Y ′)′ ∼ Mar(p), p ≤ q) look like defined by

two “orthogonal directions”, the squared distances to them being additive.

Over-estimation of the causality measure CGY→X(T ) due to the Markov measure

MX(q) is of course maximum for the choice q = p, which is typically the common

practice in applications (due to the fact that X is Markov of order p when Y does

not cause X). By contrast, since the theory tells us that we should rather consider

a model with an infinite number of lags, in practice one would have a large number

q. A possible way to devise a proper asymptotic theory for this practice would be

to consider a number qT of lags going to infinity with T , albeit slower than T (see,

e.g., Berk, 1974).1 Another possible approach would be to resort to ARMA models

(see Boudjellaba, Dufour, and Roy, 1992 and Dufour, Pelletier, and Renault, 2006

for related discussions). The example of Gaussian transition densities will allow us to

assess even further the possible over-estimation of causality due to the use of pseudo-

true values.

1.3.3 The case of a parametric model for a Markov process

In this section, we discuss more explicitly the assessment of a causality measure like

CGY→X(p) as characterized in Proposition 1.6 above:

CGY→X(p) = E0 log
[
f0

(
xt
∣∣xt−1
t−p, y

t−1
t−p
)]
− E0 log

[
f0

(
xt
∣∣xt−1
t−p
)]

1We are grateful to a referee for this suggestion.
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under the maintained assumption that the process (X, Y ) is Markov of order p with

transition densities defined by a parametric model:

f0

(
xt, yt

∣∣xt−1
t−p, y

t−1
t−p
)

= f
(
xt, yt

∣∣xt−1
t−p, y

t−1
t−p; θ

0
)

where θ0 stands for the true unknown value of the parameter vector θ ∈ Θ ⊂ Rp.

1.3.3.1 The case of a Gaussian process

It is the case of the Gaussian VAR(p) as studied by Geweke (1982). For the sake of

notational simplicity, we will assume throughout that the process X is of dimension

1. Then, the conditional probability distribution of Xt given (X t−1′

t−p , Y
t−1′

t−p )
′

(resp.

given X t−1
t−p ) is the normal distribution with mean mt = E[Xt | (X t−1′

t−p , Y
t−1′

t−p )
′
] (resp.

m∗t = E(Xt | X t−1
t−p )) and variance σ2 (resp. σ∗2) where:

mt (resp. m∗t ) is the affine regression of Xt on (X t−1′

t−p , Y
t−1′

t−p )
′

(resp. on X t−1
t−p )

and:

σ∗2 = σ2 + V ar [mt −m∗t ] (1.11)

Then, by virtue of the formula for KL in the case of Gaussian distributions:

CGY→X(p) = log

(
σ∗

σ

)
+

1

2

(
σ2

σ∗2
− 1

)
+
V ar [mt −m∗t ]

2σ∗2
= log

(
σ∗

σ

)
(1.12)

where the last equality is obtained thanks to (1.11). As noted by GMR, this provides

a parametric interpretation of the KL causality measure in terms of pseudo-true value.
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More precisely, we can write:

f0

(
xt, yt

∣∣xt−1
t−p, y

t−1
t−p
)

= f
(
xt, yt

∣∣xt−1
t−p, y

t−1
t−p; θ

0
)

where θ0 stands for the true unknown value of the parameter vector θ whose com-

ponents include the coefficients of the affine function E[(Xt, Yt) | (X t−1′

t−p , Y
t−1′

t−p )
′
] as

well as the parameters to describe the residual variance (including the parameter σ2

for the residual variance of Xt). Thus, instead of solving (1.7) over a set of proba-

bility distributions defined by (1.8), one could have contemplated rather solving the

minimization program (1.7) with:

HGc[Y 9 X] = {fT (·) ; Y.NCG.X and

∃θ ∈ Θ, f
(
xt, yt

∣∣xt−1
t−p, y

t−1
t−p
)

= f
(
xt, yt

∣∣xt−1
t−p, y

t−1
t−p; θ

)}
(1.13)

It turns out that (1.13) does not add any constraint with respect to (1.8). As it

is obvious from (1.11) and (1.12) we actually have:

CGY→X(p) = E0 log
[
f
(
xt
∣∣xt−1
t−p, y

t−1
t−p; θ

0
)]
− E0 log

[
f
(
xt
∣∣xt−1
t−p; ν(θ0)

)]
(1.14)

where ν(θ0) defines the KL pseudo-true value of θ, that is the value of θ that makes the

transition density f
(
xt, yt

∣∣xt−1
t−p, y

t−1
t−p; θ

)
the closest possible (in the KL sense) to the

DGP, subject to restrictions defined by (1.13). From (1.11) and (1.12) respectively,

we see that f
(
xt
∣∣xt−1
t−p, y

t−1
t−p; ν(θ0)

)
is the normal distribution with mean:

m∗t = E
(
Xt

∣∣X t−1
t−p ; θ0

)
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and variance:

σ∗2 = (σ0)2 + V ar
[
E
(
Xt

∣∣∣(X t−1′

t−p , Y
t−1′

t−p )
′
; θ0

)
− E

(
Xt

∣∣X t−1
t−p ; θ0

)]

Formula (1.14) explains why Geweke (1982) noticed that the sample counterpart

of the Kullback causality measure is nothing but (up to scaling) the Likelihood Ratio

test (LR hereafter) statistic for the null of non-causality. A sample counterpart of

the pseudo-true value is the constrained Maximum Likelihood Estimator (MLE) of θ.

Of course, due to inequalities of Corollary 1.6, it may be misleading to test for non-

causality by just looking at the sample counterpart of CGY→X(p). A reinterpretation

of this problem in terms of testing strategy is that, as usual, the likelihood ratio test

does not take properly into account the need to compare models of similar dimensions.

The Akaike Information Criterion (AIC) approach put forward in this context by

Polasek (1994, 2002) does not fix this issue. We would have a valid comparison

between models of similar dimensions if we would have compared a specification

Markov of order p for Z (with causality from Y to X) with a specification Markov of

order p
[
1 + dim(Y )

dim(X)

]
for X in isolation.

1.3.3.2 The general case

GMR go one step further by proposing more generally to compute causality measures

within a given parametric model by using the pseudo-true value. More precisely, they

would generally consider:

HG∗c [Y → X] = {fT (·) ; Y.NCG.X and

∃θ ∈ Θ, f
(
xt, yt

∣∣xt−1
t−p, y

t−1
t−p
)

= f
(
xt, yt

∣∣xt−1
t−p, y

t−1
t−p; θ

)}
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instead of

HGc[Y 9 X] = {fT (·) ; Y.NCG.X and Z ∼Mar(p)}

As a result, they come up with an alternative causality measure (see their formula

for D̃ on page 384) generalizing the idea of (1.14) above:

CG∗Y→X(p) = E0 log
[
f
(
xt
∣∣xt−1
t−p, y

t−1
t−p; θ

0
)]
− E0 log

[
f
(
xt
∣∣xt−1
t−p; ν(θ0)

)]
However, it is worth realizing that the coincidence between the two definitions of

causality measures (CGY→X(p) = CG∗Y→X(p)) that we found in the former subsection

does not generalize beyond the simple Gaussian setting. Obviously, HG∗c [Y 9 X] is

a strict subset of HGc[Y 9 X] and we should find more often than not that:

CG∗Y→X(p) > CGY→X(p) (1.15)

As already mentioned, GMR show in their Theorem 8 that, under the non-

causality hypothesis, the sample counterparts of the two causality measures do not

differ by more than a oP (1/T ) term, so that after re-scaling by a factor (2T ) to com-

pute a likelihood ratio test statistic, one is led to two asymptotically equivalent test

statistics. But once more, this equivalence is valid only under the null hypothesis

of non-causality, that is precisely the case when causality measurement is irrelevant.

By contrast , when it is relevant, by tightening her hands within a given parametric

model, the econometrician will in general overestimate even more the actual amount

of causality, by comparison with only maintaining the Markov (of same order p) as-

sumption for the zero-causality proxy of the DGP. To see that, a simple generalization

of the example of the former section featuring now conditional heteroskedasticity is

sufficiently compelling. Let us assume now that both X and Y are univariate, p = 2,
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and the conditional probability distribution of Xt given (X t−1′

t−2 , Y
t−1′

t−2 )
′

is the normal

distribution with mean mt and variance σ2
t defined by:

mt = c+ aXt−1 + bYt−1 (1.16)

σ2
t = ω + α (Xt−1 − c− aXt−2 − bYt−2)2

Obviously the conditional distribution of Xt given X t−1
t−2 does not belong in general

to the parametric model delineated by conditional normality with mean and variance

in the parametric specification (1.16). Therefore:

E0 log
[
f
(
xt
∣∣xt−1
t−2; ν(θ0)

)]
< E0 log

[
f0

(
xt
∣∣xt−1
t−2

)]
which in turns implies (1.15). The econometrician who uses an estimator of

CG∗Y→X(p) to assess the amount of causality from Y to X will overestimate this

amount for two reasons. First, when X is forecasted from its own past, a Markov

model of order p = 2 is not appropriate. A higher order would give a more reliable as-

sessment. Second, even within the set of processes that are Markov of order 2, there is

no reason to believe that X in isolation is properly described by a AR(1)−ARCH(1)

model conformable to (1.16) (with b = 0). It is well known that the GARCH model

is not robust to marginalization (see Nijman and Sentana, 1996).

1.3.4 Testing non-nested hypotheses

The main lesson of this section is that, when wondering whether there is a significant

amount of causality from Y to X, one should not tight her hands by assuming that

a model that sets the focus on the dynamics of X in isolation should be determined

by the model at stake for the joint dynamics of X and Y . The two models should

be non-nested. Of course, this comes with an important consequence when it comes
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to testing. Since, as shown above, the sample counterpart of KL causality measures

leads naturally to likelihood ratio tests, we should resort to the Cox procedure for

testing non-nested hypotheses (see, e.g., Cox, 1962; Pesaran, 1974; and Gouriéroux

and Monfort, 1994). When causality from Y to X is not precluded, we have in mind

a parametric model where the process (X, Y ) is Markov of order p with transition

densities defined by:

f
(
xt, yt

∣∣xt−1
t−p, y

t−1
t−p
)

= f
(
xt, yt

∣∣xt−1
t−p, y

t−1
t−p; θ

)
, θ ∈ Θ

The corresponding maximum (conditional) log-likelihood function evaluated under

this hypothesis, let us call it H (X|Y ), is:

LT

{
θ̂T ; H (X|Y )

}
=

T∑
t=1

log
[
f
(
xt, yt

∣∣∣xt−1
t−p, y

t−1
t−p; θ̂T

)]

where θ̂T stands for the (conditional) MLE in this model.

By contrast, when we want to maintain the null hypothesis of (Granger) non-

causality from Y to X, we contemplate an asymmetric model in which the process X

is Markov of order q > p:

f
(
xt, yt

∣∣xt−1
−$, y

t−1
−$
)

= f
(
xt
∣∣xt−1
t−q; λ

)
f
(
yt
∣∣xtt−p, yt−1

t−p; λ
)
, λ ∈ Λ (1.17)

Note that we have assumed in (1.17) that Yt is independent of Zt−r for r > p. Let

us call H(X | X) this model. It is just an example of a possible way to specify the

dynamics of (X, Y ) in an asymmetric fashion. For instance, the extant literature on

asymmetric VAR (see, e.g., Keating, 2000) would rather assume:

f
(
xt, yt

∣∣xt−1
−$, y

t−1
−$
)

= f
(
xt
∣∣xt−1
t−q; λ

)
f
(
yt
∣∣xtt−q, yt−1

t−p; λ
)
, λ ∈ Λ
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Even though we will stick to the specification (1.17) for sake of expositional sim-

plicity, it is important to keep in mind that different specifications are always possible

for the factor f
(
yt
∣∣xt−$, yt−1

−$
)

which is not the focus of our interest regarding a KL

measure of Granger causality from Y to X. The corresponding maximum (condi-

tional) log-likelihood function evaluated under hypothesis H(X | X) is:

LT

{
λ̂T ; H (X|X)

}
=

T∑
t=1

{
log
[
f
(
xt

∣∣∣xt−1
t−q; λ̂T

)]
+ log

[
f
(
yt

∣∣∣xtt−p, yt−1
t−p; λ̂T

)]}

The usual LR test statistic is defined by:

ξLRT = 2
[
LT

{
θ̂T ; H(X | Y )

}
− LT

{
λ̂T ; H(X | X)

}]

Under the null hypothesis H(X | Y ), the normalized version of ξLRT tends to:

plim
T=∞

1

2T
ξLRT = E

[
log
(
f
(
xt
∣∣xt−1
t−p, y

t−1
t−p; θ

0
))]
− E

[
log
(
f
(
xt

∣∣∣xt−1
t−q; λ̃(θ0)

))]

where λ̃(θ0) is the pseudo-true value of λ under the maintained hypothesis H(X | Y ).

In other words, with an obvious extension of the notations introduced in the previous

subsection we have:

plim
T=∞

1

2T
ξLRT = CG∗Y→X(q) (1.18)

Recall that in the particular case of a Gaussian process, we have CG∗Y→X(q) =

CGY→X(q). More generally, the message of the result (1.18) is the following regard-

ing the value added by the introduction in this paper of a new causality measure

CG∗Y→X(q) with q > p. A Cox test based on the above LR test statistic (after proper

centering and rescaling) will be interpreted as follows. If the Cox test does not succeed

to reject the null while q is large in front of p, it means that the VAR(p) model for
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(X, Y ) (or more generally a Markov(p) model) does not do a bad job in forecasting

X with a parsimonious model of 2p regressors instead of a large number q of regres-

sors taken from the own lagged values of X. In contrast, in the case where q = p,

the non-causality hypothesis becomes nested within the VAR(p) model and failing

to reject means that the causality measure is not sufficiently large for a compelling

evidence of causality from Y to X.

However, it must be acknowledged that there is no such thing as a free lunch and

both strategies, either taking q = p as Geweke (1982) and GMR or taking q much

larger than p as advocated in this paper have their own shortcomings. On the one

hand, as discussed above (see also the next section for quantitative evidence), taking

q = p may lead the researcher to believe that there is a large amount of causality

from Y to X, while it may be rather the non-markovanity of X that is at stake. On

the other hand, taking q > p implies that we are testing for non-nested hypotheses,

which comes with a cost, as well explained by Dastoor (1981, p.115) “we can only

accept or reject the hypothesis that is under test, without any implication whatsoever

for the alternative.”

The bottom line is that the Cox test based on (1.18) can only accept or reject

the null hypothesis that the forecasting performance of a VAR(p) model for (X, Y )

(or more generally a Markov(p) model) is not dominated by the one based on a large

number q of regressors taken from the own lagged values of X. This is exactly the

aforementioned Hoel’s (1947) point of view. We will reject the null when causality

from Y to X is not sufficiently strong to improve the forecast accuracy by comparison

with the alternative “univariate” forecasting strategy based only on lagged values of

X. In other words, the approach is more “model selection” than “hypothesis testing”

according to the classification in Pesaran and Weeks (2001, p.288): “Model selection

is more appropriate when the objective is decision making”, namely forecasting X in

this case. If by contrast we have in mind a hypothesis testing approach that is “better
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suited to inferential problems where the empirical validity of a theoretical prediction

is the primary objective”, like the absence of feedback from income to money in the

Sims example, we should rather consider the non-nested testing problem the other

way round, that is, under the null hypothesis H(X | X) defined by (1.17) against the

alternative of the VAR(p) model for (X, Y ). In this case:

plim
T=∞

1

2T
ξLRT = E

[
log
(
f
(
xt

∣∣∣xt−1
t−p, y

t−1
t−p; θ̃(λ

0)
))]
− E

[
log
(
f
(
xt
∣∣xt−1
t−q; λ

0
))]

= −CG∗∗Y→X(q)

where it must be understood that the new causality measure CG∗∗Y→X(q) is non-

negative (it is not the opposite of CG∗Y→X(q)) because expectations are now computed

under the maintained hypothesis H(X | X) with a true value λ0 and a pseudo-true

value θ̃(λ0).

1.4 Quantitative Assessment

Consider a Gaussian process (X, Y ) with a VAR(1) representation; we take X and Y

univariate. We focus on the Granger causality measure from Y to X. The DGP of

(X, Y ) is given by

Xt

Yt

 = A

Xt−1

Yt−1

+

ut
vt

 , A =

a b

c d

 , Σ = V ar


ut
vt


 =

 σ2
u ρσuσv

ρσuσv σ2
v


(1.19)

We can consider a matrix A that can be diagonalized and rewrite it as follows:

Xt

Yt

 = M

λ1 0

0 λ2

M−1

Xt−1

Yt−1

+

ut
vt

 (1.20)
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where M is the square (2 × 2) matrix whose ith column is the mi eigenvector of A,

and λi, i = 1, 2, is the corresponding ith eigenvalue of A.

This reparametrization is useful for two purposes. First, to easily guarantee a

causal VAR process when choosing parameter values, that is, |λi| < 1 (i.e. inside

the unit circle), for i = 1, 2. Second, to understand how the results change when

the persistence of past information (i.e. Xt−1 and Yt−1) in the DGP changes. More

precisely, with

X∗t
Y ∗t

 = M−1

Xt

Yt


we have X∗t

Y ∗t

 =

λ1 0

0 λ2


X∗t−1

Y ∗t−1

+M−1

ut
vt



with

X∗t =
m22

Det(M)
Xt −

m12

Det(M)
Yt

Y ∗t =
−m21

Det(M)
Xt +

m11

Det(M)
Yt

and similar expressions apply for X∗t−1 and Y ∗t−1. Therefore, to interpret λ1 as “mostly

about” the persistence of X and λ2 as “mostly about” the persistence of Y , we

conveniently fix M as follows

M =

0.9329 −0.2492

0.3601 0.9684

 , Det(M) = 0.99322
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Indeed, with this choice of M we obtain that

X∗t = β1Xt−1 + β2Yt−1,
|β1|
|β2|

> 3.8

Y ∗t = β3Xt−1 + β4Yt−1,
|β4|
|β3|

> 2.5

such that λ1 (respectively λ2), autoregressive coefficient of X∗t (respectively Y ∗t ), is

mostly informative about the persistence of X (respectively Y ).

Our goal is to study CGY→X as computed by a researcher who “wrongly” sticks

to GMR and Schreiber (2000) using q lags, with q ≥ p, for the marginal of Xt instead

of the correct measure which takes $+ 1. Hence, the marginal autoregression for Xt

is

Xt =

q∑
j=1

αjXt−j + εt, E[εt] = 0, V [εt] = σ2
ε (q) (1.21)

Remark 1.1. Notice that here the underlying model for the joint process (X, Y ) is

the following Asymmetric VAR model, where the equation for Yt remains unchanged

when compared to the DGP,

Xt =

q∑
j=1

αjXt−j + εt, E[εt] = 0, V [εt] = σ2
ε (q)

Yt = γ Xt−1 + δ Yt−1 + ηt, E[ηt] = 0, V [ηt] = σ2
η

or in matrix notationXt

Yt

 = A1

Xt−1

Yt−1

+ · · ·+ Aq

Xt−q

Yt−q

+

εt
ηt

 ,
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where

A1 =

α1 0

γ δ

 , Aj =

αj 0

0 0

 for j = 2, ..., q, Σq =

 σ2
ε ρqσεση

ρqσεση σ2
η


This leads to the following Kullback measure of Granger causality

CGY→X(q) =
1

2
log

σ2
ε (q)

σ2
u

(1.22)

where we write σ2
ε (q) instead of σ2

ε to make explicit the dependence of the result on

the choice of q. Our interest is on a population measure of Granger causality as a

function of λ1, λ2, σu, σv, and ρ for different values of q. This can be derived in

closed form solution as shown in the Appendix. All the numerical evidence is coded

in Mathematica version 10.0.1.0.

Figure 1.1 depicts how CGY→X(q) changes as q increases, for a fixed configuration

of the parameters of the model. Notice that CGY→X(q) is decreasing in q, which is

consistent with our theoretical finding that if we do not include enough lags of X

we end up overestimating the amount of causality. Indeed, the distance between

two points is our measure of degree of non-markovianity. In addition, we see that the

bigger jump is attained going from the order of the VAR in the DGP q = p = 1, to the

next order q = p+1 = 2.2 Finally, it is worth noting that after a finite number of lags

(q = 4 in this figure) the measure stabilizes. The limit value is about 0.127, which we

can interpret as the true value of CGY→X . This shows that, for all practical purposes,

we do not need to include an infinite amount of lags to perform a regression; a finite

number of lags, large enough, would be sufficient not to overestimate the amount of

causality.

2Given that we need to choose the value of five parameters to display this graph, it is difficult
to show all possible scenarios. However, it is important to remark that the overall observed pattern
is consistent across different configurations of parameters, beyond the one chosen for this particular
figure.
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Figure 1.1: Comparison of CGY→X(q) across q for fixed values of
the parameters: λ1 = −0.6, λ2 = 0.9, ρ = 0.5, σu = 1, σv = 1.

There can be cases in which the amount of overestimation is severe. This is

a significant concern as it might lead to wrong conclusions about the amount of

causality present in the problem at hand. For instance, in Figure 1.2, if we choose

q = p = 1 we are lead to think that the amount of causality is around 0.20, while

the true measure (i.e. for q > 3) is close to zero. The magnitude of the causality

measure across values of q is displayed in Table 1.1. Notice that the true amount of

causality cannot be exactly zero as in that case, from Corollary 1.6, we know that

CGY→X(1) = CGY→X(2) = · · · = CGY→X = 0.

Figure 1.2: Comparison of CGY→X(q) for q = 1, 2, ..., 10: λ1 = −0.8,
λ2 = 0.8 ρ = −0.99, σu = 1, σv = 1
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Table 1.1: Value of CGY→X(q) for q = 1, 2, ..., 10

q 1 2 3 4 5 6 7 8 9 10

CGY →X (q) 0.2011 0.0146 0.0026 0.0016 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015

The intuition in this particular case is as follows. The persistence of X (i.e. λ1)

and the persistence of Y (i.e. λ2) are of the same order of magnitude, although of

opposite signs since if λ1 = λ2 there would be no causality, i.e., CGY→X = 0. Since the

correlation between ut and vt is close to −1, after one period most of the information

contained in the past of Y is already contained in the past of X.3 As a result, we see

a huge drop in the amount of causality going from q = 1 to q = 2. This is consistent

with the idea that because X is highly persistent, and given that Y does not carry

much additional information after one period, the degree of non-markovianity between

q = 1 and q = 2 is of a considerable size.

To further the analysis on how persistence of the past of X impacts CGY→X(q)

across values of q, in Figure 1.3 we compare CGY→X(1), CGY→X(2), and CGY→X(3)

across values of λ1 for given values of the reminding parameters. The overall effect of

λ1 on CGY→X(q) is comprised of two components. On the one hand, the amount of

causality increases with the absolute value of the difference between λ1 and λ2, i.e.,

|λ1−λ2|. The larger this difference, all else equal, the larger the value of CGY→X(q).

In particular, when this difference is zero, i.e. λ1 = λ2, there is no causality.4 As a

result, the amount of causality needs not to be close to zero when λ1 is low. This is

particularly the case here since the persistence of the past of Y (i.e. λ2) is also small.5.

On the other hand, when there is causality, the amount of overestimation increases

with |λ1−λ2|. The difference across CGY→X(q) becomes particularly noticeable when

3This can be easily seen by thinking in terms of impulse response functions.
4This is clear from Eq. (1.20). For instance, in Figure 1.3, CGY→X(q) = 0 at λ1 = 0.2 since

λ2 = 0.2.
5For completeness, supplementary examples where the past of Y is highly persistent are provided

in the Additional Figures and Tables section of the appendix. In addition, Table 1.2 in the appendix
shows how CGY→X(2) changes as a function of σu/σv for different configurations of parameters that
give CGY→X(1) = 0.10.
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going from q = 1 to q = 2.

Figure 1.3: Comparison of CGY→X(1), CGY→X(2) and CGY→X(3) for different
values of λ1, and fixed values of the other parameters: λ2 = −0.2, ρ = −0.8, σu = 1,
σv = 2.

1.5 Concluding remarks

A common practice in econometrics amounts to assume that, when considering a

sufficiently large number of state variables, the joint dynamics can be properly rep-

resented as a Markov process. Prominent examples of this practice are the extensive

use of VAR processes in macro-econometrics as well as the use of diffusion processes

in finance. This paper starts from the observation that, when a joint process (X, Y )

is Markov, the statement that Y does not cause X entails two different phenomena:

On the one hand, X will be in isolation a Markov process of the same order as (X, Y ),

and, on the other hand, information about lagged values of Y does not improve the

performance of forecasts of X by comparison with what can be done using only past

information about X. We argue in this paper that, in the opposite situation where Y

does cause X, the two above properties (and their negations) should be disentangled

when it comes to measurement of the strength of causality. On the one hand, how far

is X to be a Markov process of the same order as (X, Y )? On the other hand, how

much can we improve the accuracy of the forecasts of X by using past information
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about Y ?

We note that the extant literature on causality measurement (Geweke, 1982;

GMR; Schreiber, 2000) has failed to disentangle these two components and, as a

result, may lead to the misleading belief that Y powerfully causes X, whereas we

would actually be able to forecast X accurately only from its own past, at the cost

of a larger number of lags than by using also the past of Y . Our understanding of

the reason why the extant literature has failed to disentangle the two is that when

testing for non-causality, the main focus is on size control and, thus, the behavior

of the test statistic is essentially studied under the null hypothesis of non-causality

when the two above statements are true together. We advocate in this paper an

alternative strategy when testing for (non)-causality. One would actually consider

two non-nested hypotheses: One focused on using Y to help forecasting X, and one

focused on using a large number of lags to forecast X from its own past.

The price to pay for testing non-nested hypotheses is that the treatment is not

symmetric: “we can only accept or reject the null hypothesis that is under test,

without any implication whatsoever for the alternative” (Dastoor, 1981, p.115). We

acknowledge that, as stressed more generally by Pesaran and Weeks (2001), the two

ways to perform the Cox test for non-nested hypotheses correspond to two different

points of view: Either defining the null hypothesis as the Markov property for (X, Y )

puts the emphasis on the usefulness of a multivariate model (including Y ) to forecast

X, or, conversely, one would test the null that a large number of its own lags is

sufficient to describe the dynamics of the X process, which is more a statement about

“economic exogeneity” of X with respect to Y . In the former case, failing to reject the

null advocates for the multivariate forecast. The issue of interest is more about non-

nested comparison via predictive ability, as currently fashionable in the forecasting

literature (for a recent illustration, see Noureldin, Shephard, and Sheppard, 2014).

In the latter case, the issue that is addressed is in line with the research agenda put
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forward for instance by Sims (1972) about exogeneity of money. In other words, the

first approach corresponds to a measure of forecasting performance while the second

one is more about genuine theoretical causality.

A natural extension of this paper would be to revisit these causality measures

between Y and X in a conditional setting given additional state variables Z. Then,

one should distinguish direct and indirect causality relationships, paving the way for

different intensities of causality relationships at different horizons (see Dufour and

Renault, 1998). Then, one should revisit the causality measures at different horizons

(see also Dufour and Taamouti, 2010) in order to accommodate two kinds of time

lags: time lag for Markov property, and time lag for impact of the cause on the effect.

1.A Additional figures and tables

(a) λ2 = 0.9 (b) λ2 = −0.9

Figure 1.4: Comparison of CGY→X(1), CGY→X(2) and CGY→X(3) for different values of λ1, and fixed
values of the other parameters: ρ = −0.8, σu = 1, σv = 2.

(a) λ2 = 0.9 (b) λ2 = −0.9

Figure 1.5: Comparison of CGY→X(1), CGY→X(2) and CGY→X(3) for different values of λ1, and fixed
values of the other parameters: ρ = 0.5, σu = 1, σv = 1.
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Table 1.2: Analysis of CGY→X(2) for CGY→X(1) = 0.10

5th Pctl 95th Pctl Median σu/σv

0.05697 0.09999 0.0992 0.1
0.06780 0.09994 0.0967 0.25
0.03823 0.09991 0.0913 0.5
0.02877 0.09929 0.0779 1
0.03406 0.08588 0.0664 2
0.04004 0.07411 0.0622 4
0.00000 0.06823 0.0596 10
Note: For each value of σu/σv , CGY→X(2) is
computed for different configurations of λ1,λ2,
and ρ, that give CGY→X(1) = 0.10. The
statistics (5th percentile, 95th percentile and
median) are then computed based on these
values of CGY→X(2).

1.B Mathematical appendix

1.B.1 Proof of Proposition 1.1

Consider the following decomposition
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Since expectations are by definition computed under the true DGP, we obviously

have for any fT (·) ∈ HS that each of the three terms in the above decomposition are

non-negative. Therefore, the minimization of (1.23) will obviously lead to set the first
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two terms to zero, since it is possible to set the denominator equal to the denominator

while staying within HS. Then, to fully characterize the solution of (1.23), we only

have to minimize the third term, that is, to maximize:
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since, by the constraint of non-Sims causality that must be fulfilled by fT (·), we know

that:
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By the Law of Iterated Expectations (LIE), the above maximization is equivalent to
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Finally, by means of the Kullback inequality, it follows that for each t and

for a given (xt−$, yt−1
−$), the conditional expectation is maximized by choosing
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(
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−$
)
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(
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)
. Hence, we result follows.
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1.B.2 Proof of Proposition 1.2

Consider the following decomposition
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Since expectations are by definition computed under the true DGP, we obviously

have for any fT (·) ∈ HIN that each of the three terms in the above decomposition

are non-negative. Therefore, the minimization of (1.24) will obviously lead to set the

first and third terms to zero, since it is possible to set the denominator equal to the

denominator while staying within HIN . Then, to fully characterize the solution of

(1.23), we only have to minimize the second term, that is, to maximize:
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By LIE, the above maximization is equivalent to maximizing
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. Hence, the result follows.

1.B.3 Proof of Proposition 1.4

Consider the following decomposition
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Since expectations are by definition computed under the true DGP, we obviously

have for any fT (·) ∈ HG that each of the three terms in the above decomposition

are non-negative. Therefore, the minimization of (1.25) will obviously lead to set the

first and last terms to zero, since it is possible to set the denominator equal to the

denominator while staying within HG. Then, to fully characterize the solution of

(1.25), we only have to minimize the third term, that is, to maximize:
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since, by the constraint of non-Sims causality that must be fulfilled by fT (·), we know

that:
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1.B.4 Proof of Corollaries 1.1, 1.2 and 1.3

The proof of these corollaries is obvious from the following lemma (See GMR for a

proof of this lemma which corresponds to their Lemma 1).

Lemma 1.1. Let X, Y, Z be three random vectors whose joint p.d.f., with respect to

a given σ-finite measure, is denoted by f(X, Y, Z). We have:

(i)

E log

(
f(X |Y, Z)

f(X |Y )

)
≥ 0

(ii) This expectation is equal to zero if and only if, almost surely:

f(X |Y, Z) = f(X |Y )
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1.B.5 Proof of Proposition 1.5

We have:
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The numerator of the above product can be rewritten as:
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Plugging this result in (1.26) and noting that one factor cancels out with the

denominator, we end up with:
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1.B.6 Closed form solution for CGY→X(q) in equation (1.22)

We first derive a closed form expression for σ2
ε (q) in terms of population moments of

X and Y . Let Zq = [Xt−1, ..., Xt−q]
′ then6

σ2
ε (q) = V ar(Xt)− Cov(Xt, Zq)V ar(Zq)

−1Cov(Zq, Xt) (1.27)

6Let β := [α1, ..., αq]
′ be a q×1 vector. The equation for σ2

ε (q) is derived using that Xt = β′Zq+εt,
β′ = Cov(Xt, Zq)V ar(Zq)

−1, and V ar(β′Zq) = Cov(Xt, Zq)V ar(Zq)
−1Cov(Zq, Xt).
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Notice that the value of σ2
ε (q) depends on q through Zq. Hence we have

CGY→X(q) =
1
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log
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σ2
u

(1.28)

where Ωq is the symmetric matrix of size q whose generic element is:

(Ωq)ij = γXX|i−j|

To compute γXXh, h = 0, 1, 2, · · · , q, we use the following recursion formulas:

Γ(h) =

γXXh γXY h

γY Xh γY Y h

 = AhΓ(0)

Γ(0) = AΓ(0)A′ + Σ

solved as

V ec Γ(0) = (Id4 − A⊗A)−1 V ec(Σ)

where Id4 is the identity matrix of order 4, and V ec(C) stands for the vectorization

of some matrix C.
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Chapter 2

Structural VAR and Financial

Networks: A Minimum Distance

Approach to Spatial Modeling

2.1 Introduction

The global financial crisis that originated in the US in 2008 gave rise to a large amount

of literature on financial networks, especially in recent years (see, e.g., Billio, Getman-

sky, Lo, and Pelizzon (2012), Yang and Zhou (2013), Diebold and Yilmaz (2014)).

Researchers realized that, in the current global economy, financial institutions are

tightly connected to each other, which ultimately leads to some risk amplification.

Indeed, financial connectedness plays a crucial role as a spillover mechanism when

facing a financial crisis because it can jeopardize the stability of the financial sys-

tem as a whole. In many contexts, however, financial connectedness or the network

structure is unknown due to data limitations and the sensitive nature of financial

information. Consequently, the question of how to model a financial network has

gained the attention of many researchers.
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There are two models commonly used to study network effects: spatial models

and Structural Vector Autoregressive (SVAR) models. Spatial models have been

studied for decades, in particular since Anselin (1988), and have a growing number of

applications. These models have the advantage that they allow for the disentangling

of the overall network influence parameter from the network matrix itself. The former

is a scalar that provides a macro (or global) measure on how important the network

effect is as a whole (i.e., how the network as a whole influences any individual of the

system), while the latter focuses on micro (or individual) network effects and provides

information on who is connected with whom and the strength of each individual

connection. However, the use of spatial models in the financial econometrics literature

is quite recent (see e.g., Cohen-Cole, Kirilenko, and Patacchini (2013), Borovkova

and Lopuhaa (2012)). One of the main challenges to using spatial models is that the

network must be known a priori. Indeed, the network (i.e., spatial weight matrix)

relies mainly on the chosen definition for neighbor or distance between geographical

units. However, no natural geographic definition of a network exists when it comes to

financial settings. As a result, in the absence of data on the network ties, the network

matrix is typically ad-hoc when using a spatial model.

Unlike spatial models, SVAR models provide an estimate of the network matrix.

These models have been widely used both within Economics, e.g., in Macroeconomics,

and outside Economics, e.g., in the Neurosciences, to estimate contemporaneous or

network effects among a system of variables. SVAR models are a natural choice as

they allow for the modeling of not only lagged dynamics—for instance, volatility tends

to be strongly serially correlated—but also of the so called network effect, that is,

how individuals in the system affect each other contemporaneously.1 As an example,

if we have data on volatility of the main stock return indexes of countries A, B, and

1The reader should understand “individuals” here as the statistical entities being studied (e.g.,
people, countries, states, banks, etc.). The network for these individuals is built based on some
characteristic (i.e., variable) of interest (e.g., volatility of a stock return).
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C, we are interested in measuring how much the volatility observed in B (and/or C)

at time t contributes to the volatility observed in A at time t after controlling for

lagged dynamics. These models are flexible in that the matrix of contemporaneous

effects is left unrestricted (beyond the restrictions needed for identification purposes).

However, unlike spatial models, SVAR models do not disentangle the overall network

influence parameter from the network matrix itself. Having an assessment of the

overall network influence is particularly insightful to understanding whether a network

has a higher (or lower) impact in different periods of time. In the context of the

global financial crisis of 2008, was the network influence stronger during the crisis,

when compared to the pre-crisis period, as a result of banks (or countries) becoming

highly interconnected with each other?

In this paper, I show that a time series version of a spatial autoregressive model (T-

SAR hereafter) is a restricted SVAR model.2 This allows me to estimate the network

while, at the same time, disentangling the overall network influence parameter from

the network matrix. Moreover, the elements of a row of the network matrix sum

to one (i.e., it is row-standardized), a common choice among spatial models as it

eases interpretation. For instance, in our A,B,C example, when the network matrix

is row-standardized how much B and C affect A’s volatility at time t is a weighted

average of B’s volatility and C’s volatility at time t. Based on the restrictions imposed

by the T-SAR on the SVAR, I propose a two-step Minimum Distance Estimation

(MDE) approach to estimate the closest spatial model to the SVAR model; this is the

main theoretical contribution of the paper. In the MDE approach the constrained

estimator is obtained from a quadratic form based on the unconstrained estimator.

First, I estimate the network matrix in the unconstrained SVAR. Then, in a second

step, I minimize the standardized distance between this estimate and the network

matrix that is subject to the constraints implied by the T-SAR model.

2I say a “time series” version since spatial models are commonly used for cross-sectional data.
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In addition, I construct a test to assess the restrictions on the SVAR imposed

by spatial modeling. The test statistic corresponds to a Wald-type test, thus it can

be interpreted as a measure of the distance between the unrestricted (SVAR) and

restricted (T-SAR) models. The MDE approach has the advantage, over constrained

Maximum Likelihood Estimation (MLE), that it delivers a closed form solution for

both the constrained estimator and the test statistic. The solution is a function of

the matrix of constraints and the unconstrained estimator. This is useful to better

understand the relationship between the constrained and unconstrained parameters.

Furthermore, the MDE estimators are asymptotically equivalent to constrained MLE,

so there is no efficiency cost from using the MDE approach (see, e.g., Gourieroux and

Monfort (1989a)).

To estimate the T-SAR model from the SVAR, we first need to choose a SVAR

identification strategy. In this paper, I explore machine learning methods based on

the PC-algorithm as a data-driven strategy for identification of the SVAR.3 In view

of the limited use of these methods with financial data, I conduct a simulation study

to derive guidelines for its implementation.4 Once we obtain the network estimates,

results can be interpreted through various micro and macro connectivity measures,

built from the network estimates, and through graphical analysis. In particular,

I propose to study the network globally via cohesive-blocks analysis, macro network

effect (through the scalar coefficient of the spatial model), and the network impact by

order of neighbors (i.e., direct and indirect neighbors). To the best of my knowledge,

these three measures are new to the financial networks literature.5

Finally, I present an application of the methodology to financial integration among

3The acronym “PC” in PC-algorithm refers to that named after the authors Peter Spirtes and
Clark Glymour (Spirtes, Glymour, and Scheines, 2000).

4For general simulation studies see, e.g., Spirtes et al. (2000) and Kalisch and Bühlmann (2007).
5I also propose the use of the Fruchterman-Reingold (FR hereafter) layout instead of the com-

monly used circle layout to graph the network. The FR layout, unlike the circle layout, reveals
the underlying community structure by assigning node locations such that similar nodes are closer
together. For instance, it is useful to visually detect communities (or blocks), bridges, and central
nodes.
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countries using daily realized return volatility data from June 2003 to March 2015. I

apply the MDE methodology to the main stock indexes of 15 countries plus the Eu-

ropean Union leading index. Even though the problems caused by the financial crisis

of 2008 were due to connectivity among financial institutions, I focus on countries

instead because these problems were ultimately dealt with on a country basis and

had country level financial implications. The empirical findings show that the overall

network influence was stronger during the 2008 crisis period, which is in line with

other papers’ findings that the network connections became more dense during that

period (see e.g., Billio, Getmansky, Lo, and Pelizzon (2012)). Looking at specific time

periods, the analysis shows that even though the overall network influence decreased

post crisis, it remained above the pre-crisis level during the January 2013 to March

2015 period. This might be attributable to financial problems in the Euro-area, in

particular those regarding Greece’s debt crisis. Furthermore, a cohesive-blocks study

shows that while there were distinct blocks within the network in the pre-crisis pe-

riod, in the crisis period, however, all countries formed one cohesive block (with the

exception of Australia and Mexico). This supports the idea that the crisis was indeed

a global one that put many countries in the same “basket.”

This paper relates to several papers in both the financial econometrics and spatial

models literature. In the financial econometrics literature, two prominent examples

are the work of Billio, Getmansky, Lo, and Pelizzon (2012) and Diebold and Yilmaz

(2014). Billio et al. (2012) estimate the network in a VAR framework by means

of a pairwise-Granger causality approach. It has the advantage that, by focusing

on reduced form estimates, it avoids the SVAR identification problem. However,

their approach does not measure the strength of the connections since it is based on

counting the number of significant Granger causality connections. My constrained

SVAR approach encompasses these Granger causality methods, since it identifies in

particular the zero coefficients in lag matrices. Diebold and Yilmaz (2014) estimate
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the network in a VAR framework by means of generalized variance decomposition

(GVD). Even though, the GVD approach has the advantage of treating each variable

symmetrically avoiding the order dependency issue of a Cholesky-type decomposition,

the structural shocks are not necessarily orthogonal to each other. Also, their paper

is different in that all individuals in the network are connected to each other to some

degree. In the spatial models literature, two recent examples are Manresa (2015) and

Lam and Souza (2015). The former proposes a methodology to estimate spillover

effects (i.e., the network) in a panel-data framework, but it looks instead at how

characteristics of others affect an individual in the network. The latter proposes a

method to estimate the network matrix by means of an Adaptive LASSO estimator;

however, it does not disentangle the overall network influence parameter from the

network matrix.

This paper is organized as follows. Section 2.2 introduces the theoretical frame-

work for SVAR models and discusses identification issues. Section 2.3 presents the

Minimum Distance Estimator of the closest spatial model to the SVAR. Also, this

section presents the test to assess how restrictive the constraints imposed by the

spatial model on the SVAR model are. Section 2.4 discusses how to implement the

MDE methodology using a data-driven identification strategy for the SVAR, based

on the PC-algorithm. In addition, this section conducts a simulation study to assess

the performance of the PC-algorithm to uncover the causal structure of the network.

Section 2.5 addresses how to interpret and analyze the network matrix through differ-

ent connectivity measures, both at a local and global level. Section 2.6 illustrates the

methodology through an application to financial integration among countries by using

data on daily log-realized return volatility of each country’s main stock index. Finally,

Section 2.7 presents concluding remarks. Proofs are gathered in the Mathematical

Appendix 2.A; additional graphs and tables are gathered in Appendix 2.B.
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2.2 A primer on SVARs

2.2.1 Preliminaries

In this paper I consider a K-dimensional vector of variables Yt = (y1,t, y2,t, ..., yK,t)
′

observed at time t = 1, 2, · · · , T , and the number of initial periods needed are defined

according to the autoregressive order, p. Without loss of generality, it is assumed

that the vector process {Yt} is in deviation from its mean. Hence, {Yt} has zero mean

and the deterministic terms are dropped from all the models presented in this paper.

The following matrix notations and operations are used throughout this paper. IK

is the identity matrix of order K. A row-standardized matrix W is a square matrix

of real numbers, with each row summing to 1. ι is a vector of ones. O is a matrix of

zeros, not necessarily square. The vectorization of a matrix C is denoted by vec(C). If

A and B are conformable matrices, define A×B as the matrix multiplication. Define

A⊗B as the Kronecker product between matrices A and B. If A and B have the

same dimensions, define A� B as the Hadamard product (or element-wise product)

between matrices A and B. Let A be an m × m matrix, then denote Diag(A) the

m× 1 vector containing the diagonal elements of A.

2.2.2 The structural and reduced form VAR model

A Structural Vector Autoregressive (SVAR) model of order p for the dynamics of {Yt}

is given by

AYt = B1Yt−1 + · · ·+BpYt−p + εt, (2.1)

where A is a K×K matrix with ones on its main diagonal, Bi, i = 1, ..., p, is a K×K

coefficient matrix, and εt is a K-dimensional white noise term, that is, E(εt) = 0,

E(εtε
′
t) = Σε and E(εtεs) = 0 for s 6= t, with Σε a diagonal and positive definite
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covariance matrix. In the literature, this is known as the A-model, in which Σε is

always assumed to be a diagonal matrix but the unit main diagonal assumption on

A is not required.6 Although the unit main diagonal assumption on A is not part of

the definition of an A-model, it is generally a maintained assumption because it is

without loss of generality and it is useful for interpreting the model. This allows us

to write the model’s k-th equation with yk,t as the left-hand variable. That is, we can

re-write the model as

Yt = GYt +B1Yt−1 + · · ·+BpYt−p + εt (2.2)

where G = IK −A is a K×K coefficient matrix with zero elements on its main diag-

onal. Then, G can be interpreted as a network matrix or matrix of contemporaneous

effects. In other words, each variable contemporaneously affects other variables of

the system but not itself (i.e., no self-loops). The usefulness of this assumption will

become clear in Section 2.3 when I discuss the relationship between SVAR models

and spatial models.

The parameters of the SVAR model (2.1) are identified from the reduced form

model, known as the Vector Autoregressive (VAR) model. The reduced form repre-

sentation implied by the structural model in (2.1) is given by:

Yt = A1Yt−1 + · · ·+ ApYt−p + ut (2.3)

where Ai = A−1Bi, i = 1, ..., p, ut = A−1εt, and ut is a K-dimensional white noise,

with ut ∼ (0,Σu). The parameters of the reduced form model are (A1, · · · , Ap,Σu),

where the covariance matrix Σu is a symmetric and positive definite matrix. The

reduced form VAR in equation (2.3) is causal provided that the roots of the charac-

6See Lütkepohl (2007) for further details.
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teristic equation det(IK −A1z − · · · −Apzp) = 0 lie outside the complex unit circle.7

Only causal VAR models are considered in this paper.

2.2.3 Identification of SVAR models

2.2.3.1 The identification problem

Recovering the SVAR parameters from the reduced form VAR coefficients requires

further identifying restrictions. The identification problem is discussed in what fol-

lows. The parameters of interest are typically comprised of A, the contemporaneous

effect parameters, and Bi, i = 1, ..., p,, the lagged effect parameters. Ideally, the

structural parameters would be identified from the reduced form parameters. How-

ever, there is an infinite set of different values of Bi, i = 1, ..., p, and A which all imply

the exact same probability distribution for the observed data, making it impossible

to infer from the data alone what the true values for Bi, i = 1, ..., p, and A are.

In other words, without additional restrictions, the SVAR parameters are not

identified from the reduced form VAR parameters. This is a well known result in

the SVAR literature, a simple proof of this result can be found in Gottschalk (2001,

p.3) and further discussion can be found in Rubio-Ramı́rez, Waggoner, and Zha (2010,

p.669) and Kilian (2013, p.519). This is the identification problem: without additional

assumptions, i.e., identifying restrictions, no conclusions regarding the structural pa-

rameters of the “true” model can be drawn from the data. Without them, different

structural models give rise to the same reduced form.

7For the case of p = 1, this condition is often stated as “the VAR is causal provided the eigenvalues
of A1, λ, have modulus less than 1.” This is an equivalent statement since the eigenvalues of A1

satisfy the equation det(IKλ−A1) = 0 and are equal to the inverses of the roots of the characteristic
equation det(IK −A1z) = 0. When p > 1 the eigenvalues’ condition is about an augmented matrix
based on A1, ..., Ap, instead of on the eigenvalues of these matrices directly.
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2.2.3.2 Identification restrictions

The matrix of coefficients A and Σε can be recovered from Σu if additional restrictions

are imposed. For simplicity of exposition, some of these restrictions discussed in what

follows have already been imposed in model (2.1). For identification of the SVAR,

there are two types of restrictions which are standard in the literature, namely, the

orthogonality restriction and restrictions on the matrix A.8

The orthogonality restriction consists of assuming that the variance covariance

matrix of the structural innovations, Σε, is diagonal. Given Σu, we want to write:

Σu = A−1ΣεA
′−1

Since Σu is symmetric it has K(K + 1)/2 free parameters. Given that Σε is assumed

diagonal, it has K parameters. Thus, the dimension of the space of parameters for A

is:

K(K + 1)

2
−K =

K(K − 1)

2

Out of the K2 parameters of A, we only have a space of dimension K(K − 1)/2.

Hence we need

K2 − K(K − 1)

2
=
K(K + 1)

2

restrictions for local identification.

Even though it is without loss of generality that we can normalize the main di-

agonal elements of A to one, this reduces the number of restrictions needed by K.

Therefore, we need K(K − 1)/2 restrictions after adopting this normalization. The

8Identification restrictions and conditions presented in this section are extracted from Lütkepohl
(2007). Sign and inequality restrictions are beyond the scope of this paper.
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simplest approach in the literature to comply with the remaining number of restric-

tions is to use exclusion restrictions on the matrix A, i.e., to set some elements of A

to zero.

Remark 2.1. Given εt, the kth element of εt = Aut can be written as:

εkt =
K∑
h=1

akhuht

=
∑
h6=k

akhuht +

(
akk
λk

)
(uktλk).

We can choose, w.l.o.g., λk = akk. Therefore, the normalized diagonal elements of A

are of the form ãkk = akk/λk = 1 ∀k. This is w.l.o.g. as it amounts to a rescaling of

ukt.

Lütkepohl (2007) characterizes what it takes to give relevant constraints. Given

the orthogonality restriction, local and global identification can be formally stated

based on the set of restrictions on A as follows. Formally, the restrictions on A can

be written as CAV ec(A) = cA, where CA is a K(K + 1)/2 × K2 selection matrix

and cA is a suitable K(K + 1)/2× 1 fixed vector. Therefore, the restrictions have to

be such that the system of equations

Σu = A−1Σε(A
−1)′ and CAV ec(A) = cA (2.4)

has a unique solution, at least locally. The proposition below, corresponding to

Proposition 9.1 of Lütkepohl (2007), presents a necessary and sufficient rank condition

for local uniqueness of the solution.9

Proposition 2.1. (Local identification of the A-model) Let Σε be a K ×K positive

definite diagonal matrix. Then, for a given symmetric, positive definite K×K matrix

9See Lütkepohl (2007, p.360) for a proof of this proposition.
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Σu, an r×K2 matrix CA and a fixed r× 1 vector cA, the system of equations in (2.4)

has a locally unique solution for A and the diagonal elements of Σε if and only if

rk


−2D+

K(Σu⊗A−1) D+
K(A−1⊗A−1)DK

CA 0

0 Cσ

 = K2 +
1

2
K(K + 1)

where DK is a K2× 1
2
K(K + 1) duplication matrix, D+

K = (D′KDK)−1D′K, and Cσ is

a 1
2
K(K − 1) × 1

2
K(K + 1) selection matrix which selects the elements of vech(Σε)

below the main diagonal.

Although the above proposition provides necessary and sufficient conditions for

local identification of the so called A-model, global identification is not guaranteed.10

In the case of the A-model, if in addition the diagonal elements of A are restricted to

1, then the solution to system (2.4) is also globally unique (Lütkepohl, 2007, p.361).

Remark 2.2. (Normalization of Σε) The covariance matrix of the structural inno-

vations is sometimes normalized such that Σε = IK. Nonetheless, this normalization

is not convenient for our purposes. The reason is that if Σε = IK, since εt = Aut, the

matrix A has to be normalized so that AΣuA
′ = Σε = IK is obtained. However, we

will see in the next section, that in the analogy with spatial models we need A to have

main diagonal set to unity. This is another normalization of the system. In other

words, if we set Σε = IK we can no longer have the diagonal elements of A equal to

unity without loss of generality.

Summing up, in this paper, I follow the orthogonality restriction in taking Σε a

diagonal matrix. Based on the above discussion, I do not normalize Σε = IK ; instead,

I normalize the system by setting the main diagonal elements of A to unity. Regarding

10For a thorough discussion on identification, and, in particular, on global identification see Rubio-
Ramı́rez, Waggoner, and Zha (2010). See also Kilian (2013) for an additional discussion and examples
in Macroeconomics.
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the K(K − 1)/2 identification restrictions, I choose in this paper to always impose

them as exclusion restrictions. A specific set of at K(K − 1)/2 coefficients of A are

constrained to be zero.

These zero restrictions are often founded on some economic theory relevant to

the problem at hand. However, this has led to an extensive discussion in the SVAR

literature of the subjectivity of these restrictions (see, e.g., Kilian (2013, p.520)). In

this paper, I do not take a stand on this issue and simply require the order condition

for identification to be satisfied. In the Implementation section, however, I explore

a data-driven approach to derive the zero restrictions as a means to avoid the afore-

mentioned subjectivity issue. This is one possible solution, but the reader is left free

to choose an alternative strategy.

2.3 A Minimum Distance approach to spatial mod-

eling

2.3.1 SVAR and spatial modeling

The previous section introduced one of the main models discussed in this paper,

the SVAR model in (2.2). This section presents the second model used throughout

this paper, a “time series” version of a spatial model. The “time series” version of

the spatial model considered here corresponds to a time series version of the Spatial

Autoregressive model (SAR), hereafter T-SAR model.11 The T-SAR model over time

t = 1, ..., T is given by:

11The results could be extended to alternative spatial models like the Mixed regressive SAR model
(MSAR) that allows for exogenous covariates. In this case we would have to consider an extended
SVAR model as well.
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Yt = ρWYt + Γ1Yt−1 + · · ·+ ΓpYt−p + εt (2.5)

where ρ is a scalar coefficient, W is a K × K row-standardized matrix of spatial

weights with zero elements on its main diagonal, Γi, i = 1, ..., p, is a K×K matrix of

coefficients, and εt is a K-dimensional noise term with εt ∼ (0,Σε) and Σε diagonal.

In this model, the network matrix is given by W as its kth row captures the contem-

poraneous effect of yt,j, ∀j 6= k, on yt,k. The parameter ρ captures how strong this

network dependence is.

The next proposition makes use of the following terminology. We refer to the rows

of G that have all their elements equal to zero as “zero rows” and those that have

both zero and non-zero elements as “mixed rows.” In the A-model considered in this

paper, the main diagonal of G is always zero. Hence, all rows of G will always have

at least one zero element. Other exact zeros in G correspond to the zero restrictions

needed for identification. It can be shown that the T-SAR model is a particular case

of the SVAR model. This is stated in the proposition below.

Proposition 2.2. Assume the SVAR is identified. Let l be the number of zero rows

of G, with 0 ≤ l ≤ K − 1. Let P be a K ×K permutation matrix that reorders the

rows of G such that the first l rows correspond to the l zero rows of G. The T-SAR

model (2.5) is a constrained SVAR model (2.2) with (K − 1 − l) independent linear

restrictions on G given by:

RPGι
K

= 0 (2.6)
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where

R
(K−1)×K

=

 Il Ol×(K−l)

O(K−l−1)×l R(K−l−1)×(K−l)

 (2.7)

with

R =



−1 1 0 0 · · · 0 0

0 −1 1 0 · · · 0 0

0 0 −1 1 · · · 0 0

. . . . . . . . . . . . . .

0 0 0 0 · · · −1 1


(2.8)

The proof of this proposition is presented in Appendix 2.A. Notice that if all the

rows of G have at least one non-zero element, i.e., l = 0, then there is no need for a

permutation matrix. Moreover, the restriction matrix in Proposition 2.2 simplifies to

R = R.

The intuition of the proof of Proposition 2.2 is discussed in what follows. First,

notice that both models take the following form:

Yt = C0Yt + C1Yt−1 + · · ·+ CpYt−p + εt

where Ci, i = 0, 1, ..., p, is a K ×K matrix of coefficients, C0 has zero elements on its

main diagonal, and εt is a serially uncorrelated error term with εt ∼ (0,Σε).

Based on this observation, and the assumption that the SVAR models is identified,

it follows that since Γi and Bi are unrestricted for i = 1, ..., p, the difference involves

the matrices ρW and G. For simplicity of exposition, consider first the case in which

all the rows of G have at least one non-zero element. Since W is a row-standardized

matrix, each of its rows sums to one, and each row of ρW sums to ρ. Therefore, since
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the restrictions on G amount to constraining the rows of G to add up to the same

quantity, the result follows. Consider next the case where some rows of G have all

their elements equal to zero, i.e., l > 0, which becomes a trickier case. The key is to

isolate all the zero rows from the rest and impose the restrictions on the submatrix

of G that only includes its mixed rows. The former task is accomplished by using the

permutation matrix P , while the latter task is accomplished by using the extended

matrix of restrictions R instead of R. Intuitively, given that some rows of G have

all their elements equal to zero, the sum of these elements is zero as well while the

restrictions have to be imposed only on the coefficients that need to be estimated.

Finally, notice that in the extreme case where l = K − 1 there is only one row with

some non-zero elements; therefore showing the result from Proposition 2.2 becomes

trivial.

2.3.2 A Minimum Distance estimator

As stressed in the introduction, data on financial networks is either confidential or

non-existent, leading researchers to adopt ad-hoc network matrices when it comes

to spatial modeling. This motivates the methodology in this section. I propose

a Minimum Distance Estimation (MDE) procedure to estimate ρ and W from the

estimate of the SVAR network matrix G. In addition, I propose in the next section

a test for the restrictions that the spatial model imposes on the SVAR model.

Consider again the SVAR(p) model in (2.1), and its reduced form from (2.3).

We want to estimate this model subject to the constraints in (2.6) for observations

Yt, t = 1, ..., T , and given initial values Y0, ..., Y1−p. The standard approach would

be to estimate it by Maximum Likelihood (ML). This involves first estimating the

reduced form VAR to obtain a consistent estimator of Σu, and then computing the

concentrated log-likelihood function to maximize it subject to the constraints. More
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specifically, the constrained log-likelihood to be maximized is


L(A,B) =

−TK
2

ln(2π) +
T

2
ln|A|2 − T

2
ln|B|2 − T

2
trace

{(
AB′−1B−1A′

)
Σ̂u

}
s.t. RPAι

K
= 0

(2.9)

where Σ̂u = T−1
∑T

t=1 ûtû
′
t, ût = Yt −

∑p
i=1 ÂiYt−i, the Âi are the estimates of the

reduced form coefficient matrices Ai, i = 1, ..., p, and εt ∼ N (0,Σε) with Σε = BB′

and B diagonal matrix. Notice that since A = IK −G and RPIKιK = 0 always, it is

equivalent to state the constraint in terms of A instead of G.

However, this procedure leads to a non-linear system of equations in terms of A and

B to be maximized subject to the constraints. This approach has the disadvantage

that it requires numerical methods, and, therefore, it has no closed form solution.

A closed form solution is useful to better understand the dependence of the results

on the restrictions imposed on the SVAR model, and the relationship between the

constrained and unconstrained parameters. It also has the clear advantage that the

solution is exact. Therefore, I propose an alternative approach based on minimum

distance estimation.

The MDE approach is simpler in that the constrained estimator is obtained from

a quadratic form based on the unconstrained estimator. It allows us to replace the

initial objective function given by the constrained MLE problem, which can be rather

complex, by a quadratic function (in the parameters) which is usually easier to opti-

mize. The constrained estimator appears then as an estimator in two stages: in the

first stage, we determine the unconstrained estimator; then, in the second stage, we

solve the MDE optimization problem to obtain the constrained estimator. The main

advantage of this method is that it delivers closed form solutions for the constrained

estimator as well as for the test statistic. A closed form solution is useful to better

understand the relationship between the constrained and unconstrained parameters.

In addition, it has the nice property that it provides estimators asymptotically equiv-
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alent to constrained Maximum Likelihood, so there is no efficiency cost from using

the MDE approach. An extensive discussion and a proof of this last result can be

found in Gourieroux and Monfort (1989a,b, p.79 and p.383 respectively)

Before stating the MDE problem, a few issues need to be addressed. First, notice

that since A = IK − G, it is equivalent to apply minimum distance estimation on

G instead of A. The relationship between the T-SAR and SVAR models is rather

based on G. Hence, the MDE problem will be based on G as well. Second, the

coefficients of the G matrix are not asymptotically degenerate. However, we have

some linear restrictions for identification purposes that introduce some degenerate

properties. These linear restrictions are zero restrictions. To delete the singularities

it is necessary and sufficient to delete the zero coefficients from G. Third, restrictions

in Proposition 2.2 have to be redefined accordingly. This will be done through a

matrix H. A detailed procedure to adapt the MDE setup to account for these issues

is discussed in what follows.

Let G be the K ×K matrix of parameters to estimate, and let Ĝ and Ĝc be the

unconstrained and constrained SVAR estimator of G respectively. Denote vec(Ĝnz)

the vector where I have erased all the zeros of vec(Ĝ), with nz the number of non-

zero elements in G. I delete the zeros that are identically equal to zero due to the

restrictions. Then, vec(Ĝ) and V̂ = V̂ ar[vec(Ĝ)] have to be replaced in the MDE

problem by vec(Ĝnz) and V̂nz = V̂ ar[vec(Ĝnz)] respectively. Therefore, the MDE

program is given by:


Min

vec(Gnz)

(
vec(Ĝnz)− vec(Gnz)

)′
V̂ −1
nz

(
vec(Ĝnz)− vec(Gnz)

)
s.t. H vec(Gnz) = 0

(2.10)

where V̂nz is an estimator of the asymptotic variance-covariance matrix Vnz =

AVar[vec(Ĝnz)], with AVar standing for the asymptotic variance. It only remains to
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define the matrix of constraints H accordingly.

In our case, G can have either of two types of rows: “zero rows” and “mixed

rows” as defined in Section 2.3.1. Let nzr denote the number of mixed rows, where

the notation “nzr” stands for “not zero rows.” Notice that the number of non-zero

elements of G is not equal to the number of mixed rows times the number of columns

of G, i.e., nz 6= nzr ∗ K. The reason is that there are also zero elements coming from

mixed rows. The following example illustrates these concepts:

Example 2.1.

G =


0 0 0

g21 0 g23

g31 g32 0


−→ zero row}

mixed rows

where K = 3, nz = 4, nzr = 2.

The matrix H of constraints imposed on vec(Gnz) can be constructed according

to algorithm 2.2 below. Mathematically, the resulting H is given in the following

theorem:

Theorem 2.1. (Matrix of constraints H) Restrictions (2.6) that characterize the

T-SAR as a constrained SVAR are equivalent to:

H vec(Gnz) = 0

with

H
(nzr−1)×nz

=
{
Ps
[
(ι′K ⊗Rnzr)

′ �
(
vec(G∗nzr)ι

′
(nzr−1)

)]}′
(2.11)

where vec(Gnz) is vec(G) with non-zero elements erased, Gnzr is G with zero rows

erased, G∗nzr is Gnzr with its non-zero elements replaced by ones, and Ps is a nz ×
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(nzr∗K) selection matrix that selects non zero rows of a given matrix or vector. If the

ith element of vec(G∗nzr) is different from zero, then the ith column of Ps corresponds

to the ith canonical vector; otherwise the ith column of Ps is a column of zeros.

Algorithm 2.2 (Algorithm to construct H).

1. Let Gnzr be equal to G but with zero rows deleted, and let Rnzr be

built as R from equation (2.8) but with dimensions (nzr−1)×nzr.

Notice that Gnzr will still contain the zeros coming from the mixed

rows. Compute H0 = ι′
K
⊗Rnzr.

a

2. Replace non-zero elements of Gnzr by ones, and denote this matrix

by G∗nzr. The matrix G∗nzr simply tracks where zero and non-zero

elements of Gnzr are located.

3. Multiply each column of H ′0 by vec(G∗nzr) element wise (i.e.,

Hadamard product). Call this object H. This will pin down rows

in H ′0 that should be deleted as they correspond to zero elements

in vec(G∗nzr).

4. Delete the zero rows in H.

5. Finally, H = H′ and has dimensions (nzr − 1)× nz.

aFor computational ease, when coding this algorithm Gnzr can be replaced by
Ĝnzr.

The solution of the MDE program is presented in the next proposition. Let

vec(Ĝc
nz) be the minimum distance estimator of vec(Gnz) subject to the constraint

H vec(Gnz) = 0, and let λ be the Lagrange multiplier of the MDE problem. Then,

vec(Ĝc
nz) can be derived from the Lagrangian by minimizing with respect to vec(Gnz)
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and λ, and then solving for vec(Gnz). The solution to this minimization program is

given in the following proposition:

Proposition 2.3. (Minimum Distance Estimator) The Minimum Distance Estimator

vec(Ĝc
nz) of the minimization problem (2.10), is given by

vec(Ĝc
nz) = vec(Ĝnz)− V̂nz H ′

{
H V̂nz H

′
}−1

H vec(Ĝnz) (2.12)

where H is defined as in equation (2.11), and V̂nz = V̂ ar[vec(Ĝnz)]. The estimator of

the asymptotic variance-covariance matrix of vec(Ĝc
nz) is given by

V̂ c
nz = V̂nz − V̂nzH ′

{
H V̂nz H

′
}−1

H V̂nz (2.13)

The proof is given in Appendix 2.A.

Finally, it is straightforward to obtain the estimate of the spatial weights or net-

work matrix Ŵ from Ĝc. Indeed, it only requires to recall that Ĝc = ρ̂Ŵ and that the

sum of the elements of any mixed row of Ĝc is equal to ρ̂. Furthermore, the standard

error of ρ̂ can be computed from the variance-covariance matrix of Ĝc.

Corollary 2.1. (Ŵ and ρ̂) Let MP be the set of mixed rows of Ĝc, and denote [Ĝc]j

the jth row of Ĝc. Then, for any j ∈MP

ρ̂ = [Ĝc]j ιK , ŜE ρ̂ =

√
V̂ ar

(
[Ĝc]j ιK

)
=

√√√√ K∑
i=1

V̂ ar
(
gcji
)

+
∑
i 6=i′

Ĉov
(
ĝcji, ĝ

c
ji′

)

and

Ŵ = ρ̂−1Ĝc

The proof is omitted since Corollary 2.1 holds by construction of Ĝc.
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2.3.3 Test for a spatial model

We want to test whether the restrictions imposed by the T-SAR spatial model hold.

For this purpose, we let the null hypothesis correspond to the spatial model (restricted

model), and the alternative hypothesis be the SVAR(p) model (unrestricted model).

That is, we are interested in testing:

H0 : T-SAR [restricted model]

H1 : SVAR(p) [unrestricted model]

The MDE approach provides a natural Wald-type test statistic; this is stated in

the next proposition.

Proposition 2.4. (Minimum Distance Test Statistic) Consider the MDE problem

in (2.10) and the solution given in Proposition 2.3. The test statistic to test the

constraints H vec (G)nz = 0 imposed on vec (G)nz, has a closed form representation

given by

SD = T
(

vec(Ĝnz)− vec(Ĝc
nz)
)′
V −1
nz

(
vec(Ĝnz)− vec(Ĝc

nz)
)

d→ χ2
nzr−1 (2.14)

where Vnz = AVar[vec(Ĝnz)].

The number of restrictions is nzr−1, that is the number of mixed rows minus one,

since the restrictions impose that all mixed rows of G add up to the same quantity.

In addition, notice that V −1
nz is a generalized inverse of AV ar[vec(Ĝnz)− vec(Ĝnz)

c].

The proof is given in Appendix 2.A.

Since the test statistic takes the quadratic form m′AV ar(m)−m, with AV ar(m)−

a generalized inverse of AV ar(m), it can be interpreted as a standardized distance

measure. As stated in Ullah (1996, p.137), “Many of the currently used econometric

tests, such as the likelihood ratio, the score and Wald tests, can in fact be shown to be
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in terms of appropriate distance measures.” A Wald-type test can be interpreted as a

measure of the distance between the unrestricted and restricted value under the null

hypothesis. Given that the null hypothesis in this paper corresponds to the spatial

model, the test statistic can be interpreted as a measure of the distance to a spatial

model. In other words, it provides a measure of how far the spatial model is from

the SVAR model, or how restrictive the parametrization imposed by a spatial model

is. The larger the value of the SD statistic, the bigger the distance is and the more

restrictive the spatial model is.

2.4 Implementation

2.4.1 Identification via machine learning

Implementation of the MDE procedure is simple given identification of the SVAR.

However, the issue of identification of SVAR models is not an easy problem to address.

In the time series literature, a popular approach has been the use of recursive systems

as they can be identified through a Cholesky decomposition of the reduced form VAR

residuals; yet it is well known in this literature that identification of SVAR models

through a Cholesky decomposition carries an ordering problem (see e.g., Cooley and

Leroy (1985), Stock and Watson (2001), Kilian (2013)). Namely, a different order of

the variables in the system leads to a different network pattern.

To circumvent the ordering issue, in this section, I examine the use of data-driven

methods that deliver a data driven ordering in a recursive overidentified system.

This solution, which was proposed in the SVAR literature to deal with the ad-hoc

ordering, consists of inferring the causal structure from the data by means of machine-

learning, specifically a graph-theoretic approach. The most popular algorithm in the

machine learning literature is the PC-algorithm from the seminal work by Spirtes,

Glymour, and Scheines (2000). This machine learning method has been widely used
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in macroeconomics, psychology, and biostatistics, but it has not been explored much

in the context of financial networks. An example in the financial networks literature

is the work of Yang and Zhou (2013) that applies the PC-algorithm for the study of

credit risk spillovers.

2.4.1.1 The general issue

Section 2.2.3.2 stressed that the orthogonality restriction plus the restriction on the

main diagonal elements of A do not deliver identification of the SVAR model, as

K(K−1)/2 additional restrictions are still needed. One solution adopted in the SVAR

literature to address this identification problem is to recover the structural matrix of

coefficients A through a triangular factorization, also known as LDL decomposition,

of Σu given by A−1Σε(A
′)−1. This decomposition facilitates identification of A and

Σε as it requires A to be lower triangular, therefore imposing the required number of

restrictions for identification.

However, it is well known that making A lower triangular, as a result of the tri-

angular factorization, is not without consequence. This imposes a recursive ordering

of the K variables involved; which means that, depending on the variables ordering,

different matrices A are obtained. As an illustration of the foregoing, consider the

following example for K = 3:

Example 2.2. Let Yt = (y1,t, y2,t, y3,t). Consider the SVAR model (2.2) with p =

1.The triangular factorization of Σu implies the following ordering:

A−1 =



1 0 0

a21 1 0

a31 a32 1


⇒ A =



1 0 0

a21 1 0

a31 a32 1


where aij represents the ijth element of the inverse of A, and I have used that the
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inverse of an invertible lower triangular matrix is also lower triangular. Recalling

that G = (IK − A), the SVAR model has the following causal ordering:

y1,t = b1,11y1,t−1 + b1,12y2,t−1 + b1,13y3,t−1 + ε1,t

y2,t = −a21y1,t + b1,21y1t−1 + b1,22y2t−1 + b1,23y3t−1 + ε2,t

y3,t = −a31y1,t − a32y2,t + b1,31y1,t−1 + b1,32y2,t−1 + b1,33y3,t−1 + ε3,t

In other words, the implied causal ordering is: y1,t → y2,t, and y1,t → y3,t ← y2,t. Now

consider a different ordering of the variables in Yt, say Yt = (y3,t, y2,t, y1,t), where I

have interchanged y1,t and y3,t. It is easy to see that the implied causal ordering now

is y3,t → y2,t, and y3,t → y1,t ← y2,t.

The lower triangular factorization approach, which is a variant of the classi-

cal Cholesky decomposition, corresponds to a just-identified system. That is, each

Cholesky ordering corresponds to a just-identified SVAR, and, as formerly shown,

they are all observationally equivalent. However, as illustrated in the above example,

different orderings translate into different network dynamics. In absence of additional

information, this poses the problem that we cannot identify the network, which is pre-

cisely what we are interested in, from this decomposition alone.

2.4.1.2 A graph-theoretic approach to identification: The PC-algorithm

A solution that has been proposed in the SVAR literature to deal with the ad-hoc

ordering consists of inferring the causal structure from the data by means of a graph-

theoretic approach.12 This idea of a data driven methodology was first promoted

by Swanson and Granger (1997), and has been referred to as “Empirical Identifi-

cation”. Furthermore, it has been extensively discussed by Demiralp and Hoover

(2003) and later by Moneta (2008), and Hoover, Demiralp, and Perez (2009) among

12The reader unfamiliar with graph theory is advised to read the Network Terminology section of
Appendix 2.A.
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others. Causal relationships, like the ones described by a SVAR, can be represented

by a graph where causal variables are connected to their effects through arrows, as

shown by Pearl (2000) and Spirtes, Glymour, and Scheines (2000). The graph of

the data generating process can alternatively be represented by zero restrictions over

the matrix A. Moreover, to reduce the complexity of a graph-theoretic approach the

literature focus on the so called “Directed Acyclic Graphs” (DAGs) as these graphs

represent recursive orderings and hence are easier to handle.

Graphical causal models are based on conditional independence analysis and are

implemented sequentially on the estimated residuals from the reduced form VAR

through a search algorithm. Once the contemporaneous causal structure is recov-

ered, the estimation of the lagged autoregressive coefficients allows us to identify the

complete SVAR model. Several search algorithms have been developed to recover the

contemporaneous causal ordering. The algorithm discussed in this paper is the so-

called PC-algorithm, since it is one of the most widely used among search algorithms.

The PC algorithm is a search algorithm that has been adopted in a variety of

fields to build DAGs, which are a type of graphical models as stated in definition

2.7. The search procedure is comprised of a few steps that can be easily summarized

as follows. The algorithm starts with a complete undirected graph; the maximum

number of edges in an undirected graph without a self-loop (i.e., directed cycle) is

K(K − 1)/2 for K nodes. This leaves at least K(K − 1)/2 zero restrictions on

A which are needed to fulfill the order condition for identification. The algorithm

then continues by recursively removing edges between vertices based on conditional

independence tests of size α. This yields an undirected graph called the skeleton of

the DAG as defined in 2.8. The last step consists of (partially) orienting the remaining

edges to produce a (partial) DAG as a final output.13 The exact algorithm and and

13The PC-algorithm runs in the worst case in exponential time, as a function of the number of
nodes. However, if the true DAG is sparse, which is often a reasonable assumption, this reduces
time to a polynomial runtime.
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a simple example based on five nodes is provided in Appendix 2.A.

Remark 2.3. The PC algorithm is a useful tool to uncover the underlying causal or-

dering. However, many times, the PC algorithm cannot determine the DAG uniquely

but only the corresponding equivalence class of the DAG. An equivalence class con-

tains DAGs that have the same conditional independence information. That is, they

share the same skeleton and directed edges, but some of the edges remain undirected.

Consequently, the resulting output of the PC algorithm is most commonly referred to

as a Completed Partially Directed Acyclic graph (CPDAG) (see Spirtes et al. (2000)).

In spite of this, the PC algorithm has proven to be useful in that it reveals at least

partially the causal ordering.

The PC algorithm is not assumption free. Indeed, the algorithm is based on two

main assumptions that establish a link between causation and partial correlation as

stated in Spirtes et al. (2000).14,15 Let G = (V,E) be a graph consisting of a set of

nodes or vertices V = {1, ..., K} and a set of edges E ⊆ V × V , i.e., the edge set

is a subset of ordered pairs of distinct nodes. In our SVAR framework, the set of

nodes corresponds to the components of a random vector Yt ∈ RK . If there is a

directed edge i → j, node i is said to be a parent of node j, while node j is said

to be a descendant of node i. Descendants can also be more than one vertex away.

For instance, if there is a directed edge i → j → l, then l is also a descendant of i.

Naturally, i is an ancestor of j if and only if j is a descendant of i.

Let P be a probability distribution on RK , and let V ∼ P. For each i ∈ V , denote

Parents(i) the set of parents of i and Descendants(i) the set of descendants of i.

Then, we can state the first assumption:

14An additional assumption that is in general (implicitly) assumed is causal sufficiency, which
states that there are no omitted variables that cause two of the included variables. In other words,
causal sufficiency assumes that there are no latent confounders of any two observed variables.

15Consistency of the PC-algorithm, and other search algorithms, has been addressed in particular
in Spirtes et al. (2000) and Robins, Scheines, Spirtes, and Wasserman (2003) in the context of causal
inference. See also Zhang and Spirtes (2002) and Uhler, Raskutti, Bühlmann, and Yu (2013) for a
discussion on uniform consistency.
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Assumption A1. (Causal Markov Condition) The directed acyclic graph G over V

and the probability distribution P(V ) satisfies the Markov condition if and only if for

every vertex i ∈ V ,

i |= V \ {Descendants(i) ∪ Parents(i)} | Parents(i)

where V \ C = {j ∈ V | j 6∈ C}.

In words, G satisfies the causal Markov condition if and only if each variable is

conditionally independent of its non-descendants given its parent variables. It implies

that we can write probabilities of variables by conditioning just on each variable’s

parents (i.e., we do not have to condition on grandparents, great grandparents, aunts,

uncles or children). This assumption is also known as the local Markov property.

As an example, assume we have data on volatility of main stock return indexes of

countries A, B, C, D, and E. Also assume that A→ B → C → D, and A→ E. In

this case, to test independence between A and D it is enough to condition on B (i.e.,

parent), we do not need to condition on C (i.e., grandparent) nor E (i.e., descendant).

The second assumption requires the use of d-separation concept, which can be

formally defined as:

Definition 2.1. (d-separation) Let i, j ∈ V , i 6= j, a set S ⊆ V is said to d-separate

(directionally separate) i from j if and only if S blocks every path from node i to j.

Notice that d-separation implies conditional independence: if S blocks all paths

from i to j, then i |= j | S. However, the converse is not necessarily true. To reverse

this, and conclude that if i |= j | S then it must be that S d-separates i and j, an

additional assumption called the “Faithfulness condition” is necessary. This assump-

tion states that a distribution P is faithful to a DAG G if no conditional independence

relations other than the ones entailed by the Markov property are present. That is,
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Assumption A2. (Faithfulness condition) P is faithful with respect to G if for any

i, j ∈ V , with i 6= j, and any set S ⊆ V ,

i |= j | {r; r ∈ S} ⇐⇒ i and j are d-separated by the set S

In other words, a distribution is faithful to a DAG if all the conditional indepen-

dence relations for P can be derived from d-separation. Intuitively, the faithfulness

condition states that if we see zero correlation between two variables, the reason we

see it is because there is no edge between these variables and not cancellation of

structural parameters. Consider again the example from the introduction where we

have data on volatility of main stock return indexes of countries A, B, and C. As-

sume A affects B directly (i.e., A → B), and A affects B indirectly through C (i.e.,

A→ C → B). Moreover, assume the direct effect increases volatility on B while the

indirect effect decreases volatility on B. If the two effects happen to be of the exact

same magnitude, given that they are of opposite sign, they would cancel each other

out. As a result, we would obtain that A is independent of B contradicting the graph.

This is an example of a violation of faithfulness. Notice that this type of violation is

unlikely to happen, at least in the financial networks context, since it requires effects

to exactly offset one another.

Remark 2.4. In the multivariate Gaussian case, conditional independence can be

inferred from partial correlations. Therefore, the normality assumption allow us to

assess conditional independence by conducting tests based on partial correlations in-

stead. Therefore, in the multivariate Gaussian case the Markov and faithfulness as-

sumptions can be equally stated in terms of partial correlations.
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2.4.1.3 Implementing the algorithm

The implementation of the PC Algorithm is overall simple. In this paper, I use the

R package pcalg of Kalisch, Mächler, Colombo, Maathuis, and Bühlmann (2012).

The “original” PC-algorithm is known to be order-dependent, in the sense that the

output depends on the order in which the variables are given (Colombo and Maathuis

(2014, p.1)). As a result, in this paper I use the modifications to the PC-algorithm

proposed by Colombo and Maathuis (2014), which the authors show produce a fully

order independent output. This has been incorporated in the pcalg package through

the majority rule together with the solve conflict options.16,17 The input of the PC-

Algorithm is the estimate of the covariance matrix of ut, Σ̂u, obtained from the

reduced form VAR.18 Notice that the search algorithm employs a statistic based on

the residuals and not the variable Yt itself. The main reason for this choice of input

is to filter Yt from its VAR dynamics.

As explained in Section 2.4.1.2, the output from imputing Σ̂u into the PC-Algorithm

is a CPDAG. Sometimes the algorithm returns a fully directed graph, in which case

we refer to the output as a DAG. Many times, however, some edges are not oriented

(bidirected edges in the graph) which results in a CPDAG. If the output is indeed

a CPDAG, this implies a set of possible DAGs. A possible solution, is to select a

DAG from this set based on some criterion and/or prior information. In this paper, I

propose to select a DAG based on a Maximum Likelihood criterion, this is explained

in the simulations section.

For the remainder of this subsection, assume that we have a DAG either directly

16Colombo and Maathuis (2014) introduced a less strict version of the conservative PC-algorithm
option for the v-structures called majority rule. In this case, the triple a − b − c is marked as
“ambiguous” if and only if b is in exactly 50 percent of such separating sets or no separating set was
found. If b is in less than 50 percent of the separating sets it is set as a v-structure, and if in more
than 50 percent it is set as a non v-structure (for more details see Colombo and Maathuis (2014)).

17Sampling errors (or hidden variables) can lead to conflicting information about edge directions.
The solve conflict option introduces a modification to the PC-algorithm to address this problem.

18Alternatively, it is also possible to use the residuals directly; the results do not change based on
this choice.
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from the PC-algorithm or from choosing one from the set of possible DAGs. This

DAG shows graphically the causal structure among the K variables of interest, and

tells us which entries of G are set to exact zeros. To recover this causal order in a

matrix form, we need to compute the adjacency matrix of the graph. This matrix

will only have zeros and ones. The matrix G with zero and one entries is equal to the

transpose of the adjacency matrix from the PC-algorithm. For instance, if we observe

j → i, then the entry (i, j) in G is non-zero while the entry (j, i) is set to zero. Then,

once we know the causal structure of the contemporaneous variables, we know which

entries of A = IK − G are non-zero. Based on this information, we can estimate

the non-zero entries of the overidentified system through Maximum Likelihood. This

will provide an estimate of the weight of each connection discovered by the search

algorithm.

2.4.2 Estimation of overidentified SVAR models

The SVAR model in this paper is estimated by Maximum likelihood (ML).19 Assume

we estimated the reduced form model to obtain Â1, ..., Âp and Σ̂u, and we applied

the PC-algorithm to pin down the zero and non-zero entries of A. For simplicity

of exposition, consider that the PC-algorithm delivers a DAG; that is, there are no

undirected edges and the DAG is unique. Based on this result, the matrix A is

estimated imposing the zero restrictions implied by the PC-algorithm. Assume next

that εt ∼ N (0,Σε), with Σε = BB′ and B a K ×K matrix. Then, we can substitute

Â1, ..., Âp, in the log-likelihood function and maximize it with respect to A and B.

The steps to estimate the SVAR can be summarized as follows:

1. Estimate the reduced form coefficients Âp = (Â1, ..., Âp) and the covariance

matrix of the residuals Σ̂u.

19See Lütkepohl (2007, Chapter 9, p.372) for further details.
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2. Apply the PC-algorithm to retrieve the causal structure of the variables and,

therefore, the zero restrictions in the matrix A = IK −G.

3. Substitute Ap for Âp in the log-likelihood, rearrange, and maximize w.r.t. A

and B, with Σε = BB′. The concentrated log-likelihood to be maximized after

rearranging is:

L(A,B) = −KT
2

ln(2π) +
T

2
ln|A|2 − T

2
ln|B|2 − T

2
trace

{(
A′B′−1B−1A

)
Σ̂u

}
(2.15)

where Σ̂u = 1
T

∑T
t=1 ûtû

′
t, and ût = Yt −

∑p
l=1 ÂlYt−l.

This procedure leads to a non-linear system of equation in terms of A and B to

be maximized subject to the identifying restrictions.20 Maximization of this function

is done by means of numerical methods.

2.4.3 Simulations

For the purpose of assessing how well the PC-algorithm pins down the “zeros” (no

connection) and “ones” (connections) in the network matrix G, I conduct several

simulation exercises. I work with G instead of the restricted network matrix Gc from

the MDE procedure, since their zeros and ones structure coincide by construction.

This exercise is based on K individuals, i.e., Yt = [y1,t, ..., yK,t], and the data is

simulated from the following SVAR process:

AYt =

p∑
l=1

BlYt−l + εt

where Yt is in deviation from its mean.

20We can easily extend this procedure to allow for a constant term. If the model includes a
constant term, we need to replace Ap by Π = [A0 A

p]′, and define Xt as Xt = [1 Y ′t−1, ..., Y
′
t−p]

′.
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The matrices A, Σε, and B1, .., Bp are calibrated to match features of financial

data since we are interested in assessing the performance of the PC-algorithm in a

financial network framework. I use data from the Application section to construct the

Data Generating Process (DGP). The data consists of daily realized log-volatility of

returns, for K countries’ main stock indexes, from June 25, 2003 to March 1, 2007.21 I

apply the methodology to this data and take the resulting matrices Â, and B̂1, ..., B̂p

as the true DGP for simulating samples from the SVAR process. The lag order (i.e.,

p) of the SVAR is chosen by means of a Bayesian Information Criterion (BIC) in the

reduced form model, with pmax = 10. Finally, Yt is simulated using the described

specification for T = 1000 periods, and s = 500 replications. In addition, for each

simulation exercise, the Monte Carlo simulation study compares the performance of

the PC-algorithm across values of its tuning parameter α, i.e., significance level of

the independence test. This is is done to provide guidelines in terms of the choice of

α.

The different scenarios considered are: α = {0.2, 0.15, 0.1, 0.05, 0.01, 0.005, 0.001,

0.0005, 0.0001} and K = {8, 16}. In what follows, I focus on results for K = 16 as

this is the same K as in the application; results for K = 8 are available in Appendix

2.B. For each of these configurations, and each simulation, I compute the following

measures to assess performance: Accuracy (ACC), Structural Hamming Distance

(SHD), True Positive Rate (TPR) and Specificity (SPC). For a given configuration,

the values reported below correspond to an average of each measure across simulations

(i.e., mean ACC, mean TPR, etc.). These measures are standard in the DAG and

network literature; definitions and interpretations are provided in Appendix 2.A for

the reader unfamiliar with them.

The simulation exercise presented here explores the performance of the PC-

21This corresponds to the so called “Pre-crises” period in the Application section. This period has
been chosen because it is a period of relatively normal activity in the stock market, though other
periods could be used instead.

75



algorithm implemented with the majority rule together with the solve conflict options

(MajRSC option hereafter). As previously mentioned, the combination of these op-

tions, which was proposed by Colombo and Maathuis (2014), renders the algorithm

fully order independent. Figure 2.1 displays the simulation results.22
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Figure 2.1: Comparison of MajRSC option to implement the PC-algorithm
across values of α, s = 500. DGP generated using MajRSC option, α = 5%,
K = 16, and p = 1. Mean ACC, TPR, SPC, and SHD reported.

The MajRSC option performs the best across the four measures for a value of α

equal to 0.05, although results for 0.1 are very similar. For α = 0.05 the value of

ACC is quite high (approx. 0.9) meaning that, on average, 90% of the zeros and ones

observed in a simulation are also present in the DGP. This suggests that, overall,

the algorithm performs well. If we look at its performance for detecting zeros and

ones separately we observe some disparity. On average, the value of SPC is still

high (approx. 0.9), while the TPR is a bit lower (i.e., 70%). This means that the

PC-algorithm is better at correctly picking up zeros (i.e., no connection) between

22The DGP was calibrated using the MajRSC option with α = 5%. Other options and values of
α are explored in Appendix 2.B. Conclusions are similar.
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individuals. Nevertheless, a TPR of 70% is quite good, as it means that on average

the algorithm correctly recovers 70% of the links (i.e., connections) present in the

DGP. To assess whether it is always the case that the best α coincides with the one

chosen to calibrate the DGP, I also constructed DGPs with α = {0.10, 0.0001} and

repeated the simulation exercise. The results are presented in Appendix 2.B, and

they also suggest the use of α equal to 0.05 setting aside the former concern.23 Other

simulation exercises are presented in Appendix 2.B for the interested reader.

Finally, I address what to do in cases where the PC-algorithm returns some edges

that are not oriented. As explained in Section 2.4.1.3, many times, some edges are

not oriented (bidirected edges in the graph) which results in a CPDAG and gives rise

to a set of possible DAGs. The simplest option is to leave these edges as bidirected

as long as the order condition for identification is still satisfied. An alternative, is

to direct these edges based on some additional criterion and assess the performance

of this choice through simulations. In this paper, I explore the use of a maximum

likelihood criterion. First I generate all possible DAGs from the partially directed

graph produced by the PC-algorithm. Notice that some of the possible combinations

of edges orientation may deliver a graph that contains cycles. To restrict the possi-

bilities to acyclical graphs I check for cycles by applying the following lemma (see,

e.g., Hearon (1972) or Saaty and Busacker (1965) for a proof of this lemma):

Lemma 2.1. Let A be an adjacency matrix for a directed graph G = {V,E}, such

that Aij = 1 if Vi → Vj ∈ E, and Aij = 0 otherwise. G has no directed cycles if and

only if A is nilpotent. That is, G is acyclic if and only if AK = 0.

Once I single out the acyclic graphs, I estimate the model for each possible DAG

and pick the one that maximizes the log-likelihood.

Of course, there is no free lunch: this approach is computationally intensive espe-

23Notice that the results in the Appendix also compare MajRSC with another option to implement
the algorithm.
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cially when the number of undirected edges goes beyond eight, which may occasionally

be the case. Also, sometimes, there could be no acyclical graph and one has to choose

a graph with a cycle, but this problem may as well arise in any other approach. To

address the former issue, I apply the following rule: if the number of bidirected edges

is above eight, then, I first orient the edges in excess of eight using a t-statistic rank-

ing criterion. This criterion consists of orienting each of these bidirected edges in the

direction of the more significant connection. In other words, it consists of deleting

the edge that is less significant in the pair of edges that conforms the bidirected edge.

For each pair of edges that conforms a bidirected edge I compute the difference of

t-statistics. Then, I rank these differences from highest to lowest. Finally, assume

that the number of bidirected edges in excess of eight is q, I orient the pairs with the

q highest differences using the t-statistic ranking criterion. The remaining bidirected

edges are oriented with the ML criterion.

The results of this approach are shown in Table 2.1. In this table, I compare

the percentage of times a coefficient in the network is correctly recovered in a set of

100 simulations; this allows to assess improvements in terms of prediction. The top

and bottom panels present this performance measure for before and after orienting

bidirected edges with the ML criterion respectively. Non-zero coefficients are high-

lighted in blue. For instance, in the top panel 72% of the time the PC-algorithm

correctly recovers the coefficient for (Y1, Y2), while after redirecting bidirected edges

this percentage increases to 82%. Our goal of orienting the bidirected edges is to

increase the probability of correctly detecting a connection when there is one. From

the comparison of the two panels in Table 2.1 it is clear that the ML criterion helps to

achieve that goal as all the values in blue are higher in the bottom panel. Therefore,

I apply this criterion in the application section.
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Table 2.1: Percentage of times each coefficient in the network is correctly
recovered in s = 100 simulations. Top panel corresponds to the network matrix
produced by the PC-algorithm. In the bottom panel bidirected edges had been
oriented using ML criterion. DGP and simulations use MajRSC option, α = 5%,
and K = 16. p = 1 in the DGP.

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16
Y1 100 72 56 66 44 47 55 100 100 100 99 100 72 100 100 100
Y2 88 100 100 40 85 100 51 93 100 100 72 100 100 100 100 100
Y3 77 100 100 63 74 66 100 81 100 100 100 100 100 100 100 100
Y4 49 45 33 100 45 52 33 80 100 99 100 100 100 100 100 100
Y5 72 51 37 37 100 62 61 100 100 100 100 100 100 100 100 100
Y6 89 100 36 31 32 100 35 99 100 100 99 100 100 100 99 100
Y7 74 56 100 57 33 68 100 100 100 100 99 100 100 100 100 100
Y8 99 95 82 81 100 98 99 100 78 100 100 88 100 87 100 100
Y9 100 99 100 99 100 100 98 78 100 38 100 100 67 99 100 35
Y10 99 100 100 100 100 100 100 100 86 100 99 99 69 100 99 98
Y11 100 91 100 100 100 100 99 100 100 99 100 100 100 65 70 99
Y12 100 100 100 100 100 100 100 45 99 98 100 100 21 61 100 98
Y13 74 100 100 100 100 100 100 100 53 29 100 51 100 99 99 91
Y14 100 100 100 100 100 99 100 64 100 100 92 30 99 100 54 99
Y15 100 100 100 100 100 99 100 100 100 99 95 100 100 88 100 97
Y16 100 100 100 100 100 100 100 100 81 98 99 98 29 98 98 100

(a) Network from PC-algorithm

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16

Y1 100 82 71 75 62 42 67 100 100 100 99 100 65 100 100 100
Y2 77 100 100 26 64 100 36 95 100 100 87 100 100 100 100 100
Y3 66 100 100 42 55 49 100 88 100 100 100 100 100 100 100 100
Y4 36 50 53 100 57 38 51 85 100 99 100 100 100 100 100 100
Y5 55 69 66 21 100 43 34 100 100 100 100 100 100 100 100 100
Y6 92 100 58 48 53 100 56 99 100 100 99 100 100 100 99 100
Y7 59 73 100 37 55 46 100 100 100 100 100 100 100 100 100 100
Y8 99 95 82 79 100 98 99 100 84 100 100 85 100 91 100 100
Y9 100 99 100 99 100 100 98 78 100 69 100 100 80 99 100 63
Y10 99 100 100 100 100 100 100 100 66 100 100 100 38 100 100 98
Y11 100 81 100 100 100 100 100 100 100 99 100 100 100 81 89 99
Y12 100 100 100 100 100 100 100 97 99 98 100 100 49 49 100 99
Y13 84 100 100 100 100 100 100 100 47 52 100 39 100 99 99 62
Y14 100 100 100 100 100 99 100 63 100 100 81 56 100 100 71 99
Y15 100 100 100 100 100 99 100 100 100 99 87 100 100 69 100 98
Y16 100 100 100 100 100 100 100 100 57 100 100 100 65 99 99 100

(b) Network with no bidirected edges: ML approach

2.5 Measures of connectivity

In this section, I discuss several measures of connectivity to analyze the network W

from the previous section. Since most of these measures are from the network litera-

ture, they rely heavily on network or graph theory concepts. All the terminology used

in what follows is properly defined in the Network Terminology section of Appendix

2.A. The reader unfamiliar with graph theory is advised to read that section of the

appendix before going through the current section.
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2.5.1 Network preliminaries

Mathematically, a network of K individuals can be represented by a K×K adjacency

matrix A. In its most simple form, the adjacency matrix is basically a matrix of zeros

(no connections) and ones (connections) such that entry ij equals 1, i.e., [A]ij = 1, if

node i and node j are connected, otherwise [A]ij = 0. The adjacency matrix needs not

be limited to have entries comprised of zeros and ones (“zero-one” type hereafter).

Many times, weights are added to each connection to account for the strength of

the connection, instead of considering each as equally important. Furthermore, in

a general network context, the adjacency matrix need not be symmetric. This is

particularly the case of directed networks where [A]ij = 1 reads as “i influences j”,

while [A]ji = 1 reads as “j influences i.” Notice that, by definition, the adjacency

matrix corresponds to the transpose of the network matrix depicted by W in the

restricted SVAR (or by G in the unrestricted SVAR) from the previous section.

In this paper, I work with weighted adjacency matrices, unless otherwise stated,

since the entries of W (or G) are not assumed to be zeros and ones.24 Moreover, the

adjacency matrix corresponding to W (or G) is not restricted to be symmetric. As a

result, this adjacency matrix provides not only the strength of connections but also

their direction, and whenever necessary either or both dimensions may be ignored for

the sake of analysis.

2.5.2 The measures

In what follows, I summarize a subset of measures that potentially reveal different

features of the network. Several measures of connectedness can be computed from a

given network to uncover the relationships that it embodies. Some of the measures

from the networks literature have been adopted in the financial network literature for

24For some network measures these weights might be ignored. This will be explicitly stated when
necessary.
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the study of financial phenomena. For instance, Billio et al. (2012) uses degree, close-

ness, and eigenvector centrality, among other measures for the analysis of systemic

risk; while Diebold and Yilmaz (2014) focus on degree (in-degree and out-degree)

and diameter for the study of volatility connectedness among banks. It is important

to bear in mind, however, that a network is a complex system and, as such, each

measure only captures a dimension of it. The ensemble of these measures is what

allows us to build a broad picture about the network. In particular, discrepancies

among them (i.e., low correlation) are valuable as they may reveal a different aspect

of the network.

In the spatial econometrics literature, spatial statistics are classified as either

global or local, depending on whether they characterize the network as a whole or

a particular component of it. Similarly, in the network literature measures can be

classified as either macro, to describe broad characteristics of the network, or micro, to

compare nodes individually and understand how each of them relates to the network

as a whole (see Jackson (2008, p.37)). In this paper, therefore, I distinguish between

global (or macro) and local (or micro) measures and split the analysis accordingly. In

addition, in Appendix 2.A I briefly discuss the layout chosen in this paper to graph

the network.

Measures of centrality are the most widely used to assess micro aspects of a net-

work. In this paper I consider four measures of centrality, from the network literature,

as they complement each other.25 Let A be the adjacency matrix corresponding to

the network W , i.e., A = W ′, we define the following micro measures:

1. Degree centrality: This is the simplest measure of centrality. It ranges between

0 and 1 and represents how well a node is connected in terms of number of

25See Jackson (2008) for further details.
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direct connections (in or out), on average. Formally, for node i we have

Ci←j
d =

#{j : [A]ji 6= 0}
K − 1

[In-degreei]

Ci→j
d =

#{j : [A]ij 6= 0}
K − 1

[Out-degreei]

Ci−j
d = Ci←j

d + Ci→j
d [Total-degreei]

However, degree centrality overlooks several important features of a network. For

instance, it does not account for how well located a node is in the network. That is,

a node could have few links, but it could lie in a pivotal location in the network.

2. Closeness centrality: This measure reflects how close a node is, on average, to

any other node. Intuitively, it describes the extent of influence of a node on

the network. Being close to every other node can be important in situations

where something is transmitted through the network. Formally, the closeness

centrality of a vertex i is defined by the inverse of the average length of the

shortest paths to/from any other vertex j in the graph:

Ci
cl =

K − 1∑
j 6=i l(j, i)

where l(j, i) is the (shortest) distance between i and j given by the shortest

path between i and j.26

3. Betweenness centrality : According to Borgatti (2005, p.60) this measure can be

defined as “the share of times that a node j needs a node i (whose centrality is

being measured) in order to reach a node k via the shortest path.” Formally,

let Pi(kj) denote the number of shortest paths from j to k through i, and let

P (kj) be the total number of shortest paths between k and j. We can estimate

26If there is no (directed) path between vertex j and i then the total number of vertices is used
in the formula instead of the path length.
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how important i is in terms of connecting k and j by looking at the ratio

Pi(kj)/P (kj) (Jackson, 2008, p.39). Then, averaging over all pairs of nodes

(excluding node i) gives

Ci
be =

∑
k 6=j: i/∈{k,j}

Pi(kj)/P (kj)

(K − 1)(K − 2)/2

Intuitively, high-betweenness vertices (i.e., ratio closer to 1) lie on a large num-

ber of non-redundant shortest paths between other vertices; they can thus be

thought of as “bridges” or “boundary spanners.” In contrast, low-betweenness

vertices (i.e., ratio closer to 0) are less critical to other vertices.

Given that we have a weighted directed network, I compute the shortest path be-

tween node i and j by summing the inverse weights involved in each path connecting

the two nodes and then choosing the path with the smallest value of total inverse

weight. In addition, I “normalize” the weights by the average weight in the net-

work for interpretation purposes (see Opsahl, Agneessens, and Skvoretz (2010)). The

main advantage of this normalization is that it makes the measure (e.g., closeness)

comparable across networks with different weight ranges.

These three first measures are straightforward to compute from the adjacency ma-

trix. However, they focus mostly on “quantity” rather than “quality” of connections.

That is, we may be interested in assessing not only how well connected or how close a

node is to many other nodes, but also whether it is connected to other “central” nodes

or “key players” in the network. Hence the next measure is based on the premise that

a node’s importance is determined by how important its neighbors are.

4. Bonacich Power centrality : This measure generalizes degree centrality by taking

into account the prestige of a node’s neighbors. Bonacich proposed that a node’s

centrality (or prestige) is equal to a function of the prestige of those they are

connected to. Hence, if a node is connected to very central nodes then it should
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have higher centrality than those with the same degree but connected to less

central nodes.27 Bonacich Power centrality is defined as

CBP (α, β) = α(IK − βA)−1Aι

where CBP (α, β) is a K × 1 vector containing the power centrality measure of

every node, β is an attenuation parameter with |β| < 1/λAι (the reciprocal of

the largest eigenvalue of A), and α > 0 is a scaling parameter. Intuitively, β

allows one to control how the value of being connected to other nodes decays

with distance. In other words, it reflects the radius of power. Small values of

β weight local structure, larger values weight global structure. If β is positive,

then a node has higher centrality when tied to nodes who are central (e.g., status

matters). If β is negative, a node is more powerful only as its neighbors become

weaker (e.g., competition dominates). As β approaches zero, we consider only

direct connections, hence, we obtain degree centrality.28

Even though centrality measures are quite popular, they only focus on local as-

pects of the network, while, as discussed above, it is also important to analyze the

network as a whole. In this paper, I propose to study the network globally via

cohesive-blocks analysis, ρ, and the network impact by order of neighbors. While

cohesive-blocks analysis comes from the network literature, the two other measures

are related to the spatial econometrics literature. They are defined as follows:

1. Cohesive-blocks analysis : This analysis is based on the skeleton of the network

graph (i.e., the undirected graph). Cohesion is closely related to concepts of

strong ties among the members of embedded social groups or closed social cir-

cles. Structural cohesion is defined as the minimal number of individuals in a
27As each node’s power depends on each other node’s power simultaneously, the solution to this

problem is based on fixed point theory and matrix algebra.
28When β → 1/λA, this is equal to the familiar eigenvector centrality score, up to a multiplicative

constant.
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network that need to be removed to disconnect the group (Moody and White

(2003)). Equivalently, it can be defined as the minimum number of independent

paths linking each pair of individuals in the network. Intuitively, networks are

structurally cohesive if they remain connected even when nodes are removed.

Formally, define vertex connectivity as the minimum number of nodes κ whose

deletion from a graph G disconnects it. Then, cohesive blocking is a method

of determining hierarchical subsets of graph vertices based on their structural

cohesion (or vertex connectivity).

Definition 2.2. (κ-cohesive) For a given graph G = (V,E), S ⊂ V is said to

be maximally κ-cohesive if 6 ∃ S ′ ⊃ S, such that S ′ is l-cohesive with l ≥ κ.

Cohesive blocking is a process through which, given a κ-cohesive set of vertices,

maximally l-cohesive subsets are recursively identified with l > κ. Thus a

hierarchy of vertex subsets is found, with the entire graph G at its root (i.e.,

κ = 0).29 As a result, cohesive blocking generates a network hierarchy in which

individuals are “nested” at different levels. In this paper, I use the structural

cohesion algorithm of Moody and White (2003) that is implemented in the

igraph R package (i.e., cohesive.blocks).

2. ρ-measure: The parameter ρ from Section 2.3.2 is a natural global measure of

the overall network influence. Since W is row-standardized, the parameter ρ

can be interpreted as a measure of the overall strength of network dependence.

For instance, in the volatility connectedness example, a positive value of ρ will

indicate that nodes in the network are expected to have higher volatility values

if, on average, their neighbors have high volatility values.

3. Impact by order of neighbors : Taking the r-th power of the network matrix W

provides the impact of r-th order neighbors. We can expect that the impact

29As defined in the igraph R package documentation.
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declines, on average, as we move from lower-order neighbors to higher-order

neighbors. In particular, the pattern of decay can be of interest to assess the

persistence of spillovers. Since the network influence as a whole is governed by

ρ, I compute the impact by order of neighbor using powers of ρW . The average

total impact for r-order neighbors is given by

Nh
r

= K−1ι′
K

(ρW )rι
K

2.6 Application to financial integration

A natural application of the MDE methodology is studying financial integration

among countries. Financial integration is a phenomenon in which financial markets in

neighboring, regional and/or global economies are closely linked together. Financial

integration is a natural application since it relies on the idea that countries affect each

other through time at a financial level and, hence, belong to a certain network. When

a crisis takes place, the negative shock spreads to multiple countries (in different in-

tensities) due to the fact that they are financially connected. This may affect financial

integration patterns among countries as, for example, some links might break while

others may strengthen. These ideas are closely related to the concept of financial

contagion “contagion will be said to occur when the impact of the systematic risk on

individual volatility processes is even stronger during the crisis period” (Dungey and

Renault, 2013, p.2).

For this application, I use daily realized return volatility data at 10-min intervals

(RV10) of main stock indexes of a set of countries from the Oxford Man Realized

Volatility Library (Heber, Lunde, Shephard, and Sheppard, 2009). The sampling in-

terval was chosen to account for the trade-off between minimizing micro-structural

bias (from using high-frequency intra-day data at low intervals) and minimizing sam-
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pling error (from using larger sampling intervals). The sample consists of 16 world

leading indexes from June 2003 through March 2015. The list of indexes is given

in Table 2.2. The European Union leading index (EURO STOXX50) is included to

control for missing eurozone countries that are not readily available in the Oxford

Man data set (e.g., Greece, and Portugal).30 The application is coded in R.

I study volatility connectedness since, as phrased in Diebold and Yilmaz (2014,

p.125), “First, if volatility tracks investors fear... then volatility connectedness is

the ‘fear connectedness’ expressed by market participants as they trade... Second, ...

we are particularly interested in crises, and volatility is particularly crisis-sensitive.”

Connectedness in mean has also been studied in the literature, though to a lesser

degree. An example is the paper by Billio, Getmansky, Lo, and Pelizzon (2012) which

looks at connectedness in mean return in a Granger Causality sense. However, they

acknowledge that there might be higher order effects not captured by connectedness in

mean, and they found that causal relationships are even stronger if we also take into

account the level of risk financial institutions may face, i.e., their volatility (Billio

et al., 2012, p.551). The use of volatility has the additional advantage that log-

volatility is approximately Gaussian; therefore it is suitable for the PC-algorithm

which invokes normality.31

Furthermore, I analyze the network in different periods of time. The underlying

reason is to explore whether the 2008 crisis changed the connectivity patterns ob-

served in the network before, during and after the crisis. Accordingly, the analysis is

conducted by dividing the data into four time periods called hereafter: pre-crisis pe-

riod (06/25/2003 - 03/01/2007), crisis period (03/02/2007 - 02/26/2010), post-crisis

period (03/01/2010 - 12/28/2012), and euro-crisis period (01/02/2013 - 03/05/2015).

30The EURO STOXX50 index covers 50 stocks from 12 eurozone countries: Austria, Belgium,
Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal and Spain.

31There are other algorithms available, like the VAR-LiNGAM algorithm in Moneta, Entner,
Hoyer, and Coad (2013) but it is currently limited to a rather small number (N = 8) of individuals
in the network.
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Table 2.2: List of stock return indexes in the sample by country, K=16.

Index Country Code Index Country Code

AEX The Netherlands NLD Nikkei 225 Japan JPN
DAX Germany DEU KOSPI South Korea KOR
IBEX 35 Spain ESP HSI Hong Kong HKG
FTSE 100 United Kingdom GBR FTSTI Singapore SGP
CAC 40 France FRA DJIA USA USA
FTSE MIB Italy ITA MXX Mexico MEX
SSMI Switzerland CHE BVSP Brazil BRA
EURO
STOXX 50 European Union EURO AORD Australia AUS

Notice that the period after the “crisis period” is split into two for the purpose of

separately studying the period where a new set of austerity measures in Greece were

being discussed, upon revision of Greece’s second bailout package, to deal with the

Greek government-debt crisis. The dates delimiting each period have been carefully

selected based on several sources: dates chosen in the financial network literature

(e.g., Diebold and Yilmaz (2014), Billio et al. (2012)), the detailed survey on crisis

dates in Dungey, Milunovich, Thorp, and Yang (2015), and the discussion on the

topic in Contessi, De Pace, and Guidolin (2014). In addition, the time periods were

chosen based on key dates, for instance: the turning point in the US monetary policy

in 2003 (in 06/25/2003 the Fed set the interest rate at 1%), the first time Bear Stearns

hedge fund acknowledged its financial problem (03/01/2007), and the time when the

real magnitude of Greece’s high government-debt was revealed (03/01/2010). Time

series and distributional plots of the data for the full period are shown in Appendix

2.B.
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2.6.1 The local measures

To study the network I use the local and global measures described in Section 2.5.32

Hereafter, to simplify exposition, I will refer to members of the network as countries

even though EURO STOXX50 corresponds to more than one country. The micro

measures are summarized in Tables 2.3 and 2.4 below. The first table shows in-

degree, out-degree, and total-degree for each country and each period. Overall, the

number of connections, on average, decreased after the crisis, and, in particular,

during the euro-crisis period. Intuitively, many links might have been broken due to

the crisis. Moreover, even though degree increased during the crisis, after this period

it decreased to levels below the pre-crisis period.

If we look at in-degree, we see that the European countries had higher, though

diverse, levels prior to the crisis. This may be associated with membership in the

European Union. During the crisis period, however, some of the observed disparities

evened out possibly because countries in the EU were in one way or another subject

to the same financial shocks. In addition, the higher level of in-degree from the UK

in the euro-crisis period may reflect its status as a global financial hub. In terms of

out-degree, it is also the case that dispersion as well as mean degree decreased after

the crisis period. A feature worth noticing is that US out-degree was higher than in-

degree during the whole period. Another interesting feature is that the higher amount

of out-degree during the crisis belongs to France (0.40) while during the post-crisis

period it belongs to Germany (0.27). This may be attributable to their level of

involvement during the corresponding periods. Finally, in the euro-crisis period, the

highest value of out-degree corresponds to the EURO STOXX50 index which may be

due to the effect that Greece’s debt crisis events were having at the time on the rest

of the European Union.

32Notice that I do not look into pairwise values of these measure given that there are sixteen
countries, four centrality measures (plus the in, out and total distinction in degree centrality), and
four time periods.
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Table 2.3: Degree Centrality. The sample is from June 25th, 2003 to March 5th, 2015, K=16.
The analysis is divided in four periods: pre-crisis period (06/25/2003 - 03/01/2007), crisis period
(03/02/2007 - 02/26/2010), post-crisis period (03/01/2010 - 12/28/2012), and euro-crisis period
(01/02/2013 - 03/05/2015).

In Out Total In Out Total In Out Total In Out Total
NLD 0.13 0.33 0.47 0.20 0.13 0.33 0.20 0.07 0.27 0.07 0.20 0.27
DEU 0.27 0.13 0.40 0.13 0.07 0.20 0.07 0.27 0.33 0.13 0.07 0.20
ESP 0.27 0.07 0.33 0.20 0.13 0.33 0.00 0.13 0.13 0.13 0.00 0.13
GBR 0.13 0.33 0.47 0.13 0.20 0.33 0.13 0.20 0.33 0.27 0.07 0.33
FRA 0.20 0.20 0.40 0.00 0.40 0.40 0.13 0.20 0.33 0.07 0.13 0.20
ITA 0.00 0.33 0.33 0.27 0.20 0.47 0.20 0.13 0.33 0.13 0.07 0.20
CHE 0.27 0.07 0.33 0.27 0.07 0.33 0.13 0.13 0.27 0.07 0.13 0.20
EURO 0.20 0.20 0.40 0.13 0.27 0.40 0.27 0.07 0.33 0.00 0.27 0.27
JPN 0.07 0.20 0.27 0.27 0.07 0.33 0.07 0.13 0.20 0.13 0.07 0.20
KOR 0.13 0.00 0.13 0.13 0.20 0.33 0.13 0.13 0.27 0.13 0.00 0.13
HKG 0.20 0.13 0.33 0.13 0.07 0.20 0.13 0.00 0.13 0.07 0.13 0.20
SGP 0.07 0.07 0.13 0.13 0.20 0.33 0.13 0.13 0.27 0.07 0.13 0.20
USA 0.07 0.13 0.20 0.13 0.20 0.33 0.07 0.20 0.27 0.00 0.20 0.20
MEX 0.20 0.07 0.27 0.07 0.07 0.13 0.13 0.07 0.20 0.13 0.07 0.20
BRA 0.13 0.00 0.13 0.27 0.07 0.33 0.13 0.07 0.20 0.13 0.07 0.20
AUS 0.07 0.13 0.20 0.00 0.13 0.13 0.07 0.07 0.13 0.07 0.00 0.07

Index Pre-crisis Crisis Post-crisis Euro-crisis

Note: “In + Out” may slightly differ from “Total” in some cases due to rounding.

Even though each country has only a few in or out connections, it can still be

central to the network in different ways. Centrality measures capturing features

other than degree are closeness, betweenness, and Bonacich power. The results for

these measures are given in Table 2.4. As explained in Section 2.5, closeness is a good

measure to single out countries that may influence others in the network because they

are “close” to most countries. They are “close” in the sense that they are positioned

in the network near to many nodes. During the pre-crisis period, the highest value of

closeness correspond to Italy (0.46), followed by The Netherlands (0.36). In the case

of Italy, the high value of closeness may have been related to the unstable economic

situation that Italy was facing well before the crisis due to a prolonged low-growth

period starting around 1995 (the last year when the Lira devalued with respect to

the Deutsche Mark). In the case of The Netherlands the observed value of closeness

may have been related to its strong position in world trade. Not surprisingly, other

values that are relatively high correspond to France (0.30), UK (0.22), and Germany
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(0.23), as these countries are leading countries within the European Union.

In the crisis period, although values of closeness remained similar on average,

dispersion decreased, implying that countries became more equally close to each other.

This is consistent with the idea that as the financial instability spread during this

time period, countries became more financially connected and the situation was indeed

global. In particular, not surprisingly, we see that the US became much closer to the

rest of the world (increase from 0.07 to 0.15), and that France became even more

influential (i.e., closer). The lowest values are observed for Hong Kong and Japan. In

the post-crisis period, the average level of closeness and dispersion returned overall

to pre-crisis levels, with the higher values corresponding to EU countries. In the

euro-crisis period, however, closeness values decreased even further possibly because

the inability of the EU to solve Greece’s debt crisis problems continued to create

more financial instability. The higher value of closeness corresponds to the EURO

STOXX50 (0.27), followed by France (0.20).

Betweenness serves as a complementary measure to closeness. It allows us to pin

down countries considered central to the network because they are a means to reaching

other countries. In other words, it allows us to identify which countries play the role

of a bridge connecting different countries in the network. It is natural to see some zero

values for this measure since some countries may not connect others. In the pre-crisis

period, the highest value of betweenness corresponds to The Netherlands (0.36) and

Germany (0.36) followed by EURO STOXX50 (0.30). Comparing the pre-crisis to

the crisis period, we see that many countries with a zero value of betweenness now

have positive values. In fact, most countries have a positive value of betweenness in

the crisis-period. This is an interesting feature because it may be reflecting spillovers

that took place during the crisis.
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Table 2.4: Centrality Measures: closeness, betweenness, and Bonacich power centrality. The
sample is from June 25th, 2003 to March 5th, 2015, K=16. The analysis is divided in four periods:
pre-crisis period (06/25/2003 - 03/01/2007), crisis period (03/02/2007 - 02/26/2010), post-crisis
period (03/01/2010 - 12/28/2012), and euro-crisis period (01/02/2013 - 03/05/2015).

B. Power B. Power
b = 0.33 b = 0.33

NLD 0.36 0.36 1.91 0.17 0.06 0.73
DEU 0.23 0.36 0.64 0.12 0.03 0.37
ESP 0.00 0.00 0.42 0.15 0.06 0.53
GBR 0.22 0.00 1.65 0.17 0.13 1.10
FRA 0.30 0.28 0.83 0.43 0.00 2.69
ITA 0.46 0.00 2.33 0.17 0.16 0.97
CHE 0.11 0.00 0.34 0.13 0.11 0.44
EURO 0.20 0.30 0.88 0.22 0.16 1.24
JPN 0.15 0.24 0.81 0.08 0.15 0.54
KOR 0.06 0.00 0.00 0.13 0.20 0.93
HKG 0.15 0.29 0.88 0.08 0.00 0.31
SGP 0.15 0.21 0.42 0.13 0.21 0.78
USA 0.07 0.09 0.29 0.15 0.25 1.17
MEX 0.07 0.01 0.12 0.14 0.24 0.52
BRA 0.06 0.00 0.00 0.13 0.25 0.30
AUS 0.04 0.00 0.58 0.13 0.00 0.54

Betweenness
Pre-crisis Crisis

Index Closeness Betweenness Closeness

B. Power B. Power
b = 0.33 b = 0.33

NLD 0.26 0.15 0.59 0.17 0.05 1.54
DEU 0.27 0.10 2.07 0.10 0.03 0.63
ESP 0.30 0.00 1.02 0.06 0.00 0.00
GBR 0.32 0.30 1.49 0.09 0.14 0.54
FRA 0.33 0.55 1.45 0.20 0.01 1.32
ITA 0.27 0.41 1.34 0.07 0.01 0.34
CHE 0.30 0.18 1.23 0.10 0.05 0.87
EURO 0.15 0.32 0.63 0.27 0.00 2.21
JPN 0.08 0.15 0.69 0.07 0.00 0.34
KOR 0.07 0.03 0.52 0.06 0.00 0.00
HKG 0.06 0.00 0.00 0.07 0.05 0.80
SGP 0.07 0.23 0.46 0.08 0.13 1.07
USA 0.11 0.27 1.01 0.10 0.00 1.64
MEX 0.07 0.20 0.31 0.08 0.15 0.70
BRA 0.06 0.28 0.39 0.09 0.14 0.58
AUS 0.06 0.16 0.29 0.06 0.00 0.00

BetweennessCloseness Betweenness Closeness
Post-crisis Euro-crisis

Index

Note: In Bonacich power centrality the scaling parameter α is set to 1.
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These spillovers continued during the post-crisis period, but did not extend to

the euro-crisis period. In particular, in the crisis period we see the role of the US

as a connecting bridge; it has the highest value of betweenness (0.25) together with

Brazil who is a leader in Latin America and is more internationally exposed than other

Latin American countries. In the post-crisis period, the highest values of betweenness

correspond to France (0.55), Italy (0.41), EURO STOXX50 (0.32), and UK (0.30).

In particular, it may be reflecting the central role of France in the EU and the role

of the UK as a financial center. Also, the value for the US remained relatively high

(0.27) during this period.

In the euro-crisis period, however, only the UK preserves a high value of be-

tweenness relative to other EU countries (0.14) possibly due to the UK’s continued

position as a financial hub. After the post-crisis period, low values of betweenness are

observed in most countries. A plausible interpretation is that many financial relations

were broken, helping, to some extent, to stop negative spillover effects. Other high

values, in relative terms, correspond to Mexico (0.15), Brazil (0.14) and Singapore

(0.13).

Regarding Bonacich prestige or power centrality, a few features are worth notic-

ing. Bonacich power centrality allows us to detect “powerful” countries in the sense

that they are connected to countries who are powerful (i.e., very central) themselves.

Recall that this measure depends on the tuning parameter β. In Table 2.4, I present

Bonacich power for β (b in the table) equal to 0.33 to weight more global structure.33

Looking at the broad picture, it is interesting to see that pre-crisis UK had more

“prestige” than the US (1.65 vs 0.29). However, in the crisis period this difference

evened out (1.10 vs 1.17). In addition, in the crisis period we see the rising role of

France who became a very powerful player (highest value of Bonacich power, 2.69).

An interesting feature, not already captured by other measures, is the role of Ger-

33I also tried a lower value of β, b = 0.25, that weights more local structure. Results are fairly
similar with either choice of b.
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many in the post-crisis period. Bonacich power shows that in the post-crisis period

Germany became the most powerful player (2.07) followed by the UK (1.49) and

France (1.45). However, in the euro-crisis period Germany’s position is no longer

that prestigious. We see that EURO STOXX50 now has the highest value (2.21),

followed by France (1.32) and the US (1.64).

2.6.2 The global measures

A graphical representation of the network in each period, using the Fruchterman-

Reingold layout, is given in Appendix 2.B. These graphs provide evidence of distinc-

tive changes in connectivity patterns across the periods considered. For instance, the

network in the euro-crisis period compared to the crisis period has tighter clusters.

Notice that nodes positions are not fixed across graphs exactly because fixing them

would prevent us from finding changes in connectivity patterns; this is one advantage

over circle layouts. To uncover these changes in connectivity patterns we can use a

cohesive-blocks analysis.

The cohesive-blocks analysis in Figure 2.2 shows very distinctive patterns across

periods. Not only is it consistent with the features previously discussed in the central-

ity measures analysis, but also it allows us to better understand what these measures

were capturing. In the pre-crisis period we see that only the EU countries belong to a

marked cohesive-block. However, the events of the crisis may have brought countries

closer financially as the result of important spillovers. Indeed, with the exception of

Mexico and Australia, all countries became part of one big cohesive-block.

In the post crisis period, we see a picture similar to that of the pre-crisis period.

This is likely the case as the spillovers that took place during the crisis decreased in

this period. Many countries entered a recovery phase, while some others were still

dealing with the financial and economic instability brought by the financial crisis. One

clear difference, though, is the case of Spain. The financial crisis hit harder in the
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Figure 2.2: Cohesive-blocks analysis by period. The sample is from June 25th, 2003 to March 5th,
2015, K=16. The analysis is divided in four periods: pre-crisis period (06/25/2003 - 03/01/2007),
crisis period (03/02/2007 - 02/26/2010), post-crisis period (03/01/2010 - 12/28/2012), and euro-
crisis period (01/02/2013 - 03/05/2015). Node’s colors correspond to different degree of cohesiveness:
light blue κ = 1, green κ = 2, purple κ = 3, dark pink κ = 4. Cohesive-blocks are marked by shaded
area.

EU among its weaker members. Namely, Ireland, Portugal, Italy, Spain, and Greece.

This is likely why we see Spain left out of the EU cluster. One may have expected to

see the same pattern for Italy, however, this may not be the case as Italy was already

in a critical situation before the crisis even started; the crisis only worsened Italy’s
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situation. In contrast, Spain was doing well before the crisis and was brought into a

deep financial crisis only after the events of 2008.

In the euro-crisis period, however, the pattern is quite different from the previous

pictures. There are three very distinctive clusters plus Australia: the EU countries,

the Asian countries, and countries in the American continent. A likely explanation is

that Greece’s debt crisis situation isolated the EU from the rest of the world, turning

the UK into a central link to the non-EU world. Furthermore, this may suggest

that, after the crisis, countries tried to reduce their future vulnerability to spillovers

effects. Since Greece’s situation became a deeper problem after the second bailout was

unsuccessful (i.e., end of post-crisis period), it is reasonable not to see the euro-crisis

patterns in the post-crisis period.

The ρ-measure in each period of time (i.e., ρ̂) is given in Table 2.5 below, with

standard errors in parentheses. During the crisis period this measure was the highest

(0.82), meaning that the network as a whole mattered the most during this time

period. Furthermore, after the crisis period even though the strength of the network

connectedness decreased (from 0.75 to 0.71), it did not return to pre-crisis levels

(0.67). This may be attributable to the financial problems in the Euro area, in

particular, those regarding Greece’s debt crisis situation.

Table 2.5: ρ-measure across time periods. The
sample is from June 25th, 2003 to March 5th,
2015, K=16.

Pre-crisis 0.6712 (0.0072)
Crisis 0.8187 (0.0072)
Post-crisis 0.7455 (0.0068)
Euro-crisis 0.7075 (0.0076)

Period rho-measure

Note: std. errors in parentheses.

In addition to period specific analysis of the ρ-measure, I conduct a rolling-sample
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exercise to shed some light on the dynamics of connectedness embedded in this mea-

sure. I estimate the model using a rolling-sample window of 500 days; the windows

are rolled through the sample one day at a time. This gives a total of 2471 samples

and, therefore, 2471 conditional values of ρ̂. The advantage of using this technique is

basically to look at any changing property, the ρ-measure in our case, of a series over

time. We obtain an estimate of the property over time instead of one single constant

measure for specific periods (i.e., pre-crisis, crisis, post-crisis, and euro-crisis).
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Figure 2.3: Rolling-sample plot of ρ̂. The rolling estimation window is 500
days, and windows are rolled by one day at a time. Dates reported correspond
to the ending date of the rolling window. The solid black line corresponds to a
smoothed conditional mean.

Figure 2.3 shows that until the beginning of 2006 the overall network influence

was around 0.6. Afterwards, we see that there is a persistent increase in the overall

strength of connectivity that achieves its maximum around August/September 2008;

this coincides with the peak moment of the 2008 crisis. Following that peak we

see the network influence stays relatively high though stable (around 0.75) for a

considerable period of time until the end of 2009, and then it slowly starts to increase

during 2010. This last observation coincides with the timing of the sovereign debt

crisis that erupted in Greece, Ireland, and Portugal in 2010. The overall network

influence then continues to slowly increase until July of 2012, which coincides with
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the timing of when the European Stability Mechanism (ESM) was planned to be

ratified.34 Subsequently, the overall strength of connectivity decreases; this pattern

persists during most of 2013. After that, ρ̂ starts to increase again. This last increase

may be associated with the unstable financial and economic situation taking place in

Greece and the associated instability brought to the EU. In particular, it is important

to notice that at the end of the full period the levels of ρ̂ did not return to pre-crisis

levels.
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Figure 2.4: Average total network impact by order of neighbor across periods.
The sample is from June 25th, 2003 to March 5th, 2015, K=16. The analysis is
divided in four periods: pre-crisis period (06/25/2003 - 03/01/2007), crisis period
(03/02/2007 - 02/26/2010), post-crisis period (03/01/2010 - 12/28/2012), and
euro-crisis period (01/02/2013 - 03/05/2015).

Finally, I look at the average impact of the network by order of neighbor for each

time period. The underlying idea of looking at this measure is to see whether countries

get affected mostly through their direct connections or whether the connections of

their connections also play an important role. For instance, in an analogy with a

34The European Stability Mechanism (ESM) was established by a treaty among the eurozone
countries as a permanent rescue funding program to succeed the temporary European Financial
Stability Facility (EFSF) and the European Financial Stabilization Mechanism (EFSM) in July
2012. However, it had to be postponed and only entered into force in September 2012.
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network of friends: first order neighbors are direct friends, second order neighbors

correspond to friends of direct friends, while 3rd order neighbors are friends of friends

of direct friends, and so on so forth. In Figure 2.4 we see that, overall, except for the

post-crisis period, up to 6th order neighbors have some indirect impact. As expected,

the impact is decreasing with the neighbor order, starting at around 0.7 in the crisis

and post-crisis periods and at 0.63 in the pre-crisis and euro-crisis periods. It is

interesting to see that in the post-crisis period the rate of decay is lower than in other

periods and that some influence is found up to 11th order neighbor. This finding

may be the result of strong spillover effects happening during this period, which

is in agreement with observations made when analyzing the betweenness measure.

Surprisingly, we do not see a differential rate of decay for the crisis period when

compared to the pre-crisis period. However, the impact of direct connections is higher

in the crisis period (0.70) which is consistent with our previous findings. As expected,

in the euro-crisis period the effect of higher order neighbors decays at the fastest rate

and also displays the lowest levels.

2.7 Conclusion

A common practice in the spatial econometrics literature is to assume that the spatial

weight (or network) matrix is row-standardized and pre-multiplied by a scalar param-

eter that captures the overall network influence. This parametrization of the network

has shown to be very useful for interpretation purposes; hence its popularity among

users of spatial-type models. When modeling networks across geographical space, the

network is known and defined based on some notion of geographical distance. All

efforts center on estimating the overall network influence parameter. In contrast, in

settings unrelated to geographical ties, the use of spatial models is generally unfea-

sible due to lack of data on network ties. Some papers have addressed this issue by
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proposing a methodology to estimate the network from the data. Two recent exam-

ples are Manresa (2015) and Lam and Souza (2015), although in the former spillovers

take place through a variable X (i.e., individual’s characteristics) instead of Y (i.e.,

the output variable) and in the latter there is no disentangling of the overall network

influence parameter from the network matrix (i.e., W ∗ = ρ W is estimated instead).

In this paper I addressed these shortcomings by developing a two step procedure

based on a minimum distance approach which allows for the estimation of both the

scalar parameter ρ and the row-standardized network matrix W . This was done

in a SVAR context by interpreting the time series spatial model (i.e., T-SAR) as a

constrained SVAR. Moreover, I developed a test to assess the constraints imposed by

the T-SAR model on the SVAR model. Implementation of the MDE methodology

is straightforward given identification of the SVAR, which is an unresolved issue

in the time series literature. In this paper I explored one possible identification

strategy involving machine learning methods, although the MDE methodology is not

limited to this identification approach. However, there is no free lunch. Data-driven

methods deliver many times only partial solutions to the ordering problem, and there

are no general guidelines on which algorithm to implement and which options to

choose when implementing it. This paper, through a simulation exercise, shed some

light on these issues when using financial data. Finally, the MDE methodology was

illustrated through an application to financial integration among countries based on

daily realized volatility data for the period June 2003 through March 2015. Both the

cohesive-blocks analysis and the overall network influence parameter moving window

exercise supported the existence of an interplay between crises and changes in financial

integration patterns.

The financial networks literature currently faces two main challenges. On the one

hand, how does one estimate the network links given that data on the network struc-

ture is seldom available, and, on the other hand, how does one model the channels
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or mechanisms through which the network or spillover effects take place. While ad-

dressing the former makes possible the study of network effects, providing answers to

the latter is crucial to better understanding the determinants underlying the observed

spillover patterns. This paper contributed to the literature with regard to the first

challenge. The simplest approach to the second challenge would consist of extend-

ing the model to allow for exogenous covariates (e.g., individual’s characteristics).

A more sophisticated approach would require the design of a structural model for

network formation in financial settings. This is left for future research.
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Appendix

2.A Mathematical appendix

2.A.1 Proof of Proposition 2.2

First, notice that both models take the following form:

Yt = C0Yt + C1Yt−1 + · · ·+ CpYt−p + εt

where Ci, i = 0, 1, ..., p, is a K ×K matrix of coefficients, C0 has zero elements on its

main diagonal; and εt is a serially uncorrelated error term with εt ∼ (0,Σε).

In the T-SAR model C0 = ρW and Ci = Γi, for i = 1, ..., p, while in the SVAR

model C0 = G and Ci = Bi, for i = 1, ..., p. Under the assumption that the SVAR is

identified, and since Γi and Bi are unrestricted, it is enough to show that if RPGι
K

=

0 the SVAR can be written as the T-SAR model.

If l = K − 1 the proof is trivial. Take 0 ≤ l < K − 1, without loss of generality

assume that the first l rows of G have all its elements equal to zero. Then

PGι
K

= Gι
K

=



0

...

0∑K
j=1 g(l+1)j

...∑K
j=1 gKj


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Hence,

RPGι
K

= 0 ⇐⇒



g(l+1),1 + · · ·+ g(l+1),K = g(l+2),1 + · · ·+ g(l+2),K

g(l+2),1 + · · ·+ g(l+2),K = g(l+3),1 + · · ·+ g(l+3),K

...

g(K−1),1 + · · ·+ g(K−1),K = gK,1 + · · ·+ gK,K

(2.16)

This imposes that all the rows of constrained G sum to the same quantity. Let that

quantity be ρ, then taking common factor ρ

C0 = ρ



0 · · · 0

...
...

...

0 · · · 0

g(l+1),1

ρ
· · · g(l+1),K

ρ

g(l+2),1

ρ
· · · g(l+2),K

ρ

...
...

...

gK,1

ρ
· · · gK,K

ρ


and noticing that by construction

∑K
j=1

gi,j
ρ

= 1, for i = (l + 1), ..., K, the result

follows.

Finally, it is left to show that there are (K−1− l) independent linear restrictions.

It is obvious from (2.16) that the constraints are linear, and that there are (K−1− l)

nontrivial restrictions. Assume again, w.l.o.g., that the first l rows of G correspond

to the zero rows. Therefore:

RPGι
K

= 0 ⇐⇒ RGι
K

= 0 ⇐⇒ RG[K−l]ιK = 0 (2.17)

where R is the (K − 1− l)× (K − l) matrix defined in equation (2.8), G[K−l] is the

(K − l)×K submatrix of G obtained by selecting only the the K − l mixed rows of
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G. By properties of the Kronecker product we can rewrite 2.17 as:

(ι′
K
⊗R) vec(G[K−l]) = 0

To show independence notice that this system is an homogeneous system of linear

equations of the form Φx = 0, with Φ = (ι′
K
⊗R) and x = vec(G[K−l]). This system

has K − 1 − l independent linear restrictions if the rank of Φ is K − 1 − l. From

equation (2.8) it is clear that the rank of R and, therefore, of (ι′
K
⊗R) is K − 1 −

l. The latter holds since by properties of the Kronecker product rank(C1⊗C2) =

rank(C1) rank(C2). Hence, the result follows.

2.A.2 Proof of Theorem 2.1

We need to show that the matrix of constraints H applied to vec(Gnz) is correctly

defined. That is, it constrains the mixed rows of G to add up to the same quantity.

We have that:

H =
{
Ps
[
(ι′K ⊗Rnzr)

′ �
(
vec(G∗nzr)ι

′
(nzr−1)

)]}′
=
[
(ι′K ⊗Rnzr)�

(
vec(G∗nzr)ι

′
(nzr−1)

)′]
P ′s

where Rnzr has dimensions (nzr − 1) × nzr and is defined as in (2.8), and Ps is a

nz × (nzr ∗ K) selection matrix. Using that vec(Gnz) = Ps vec(Gnzr) we have:

H vec(Gnz) =
[
(ι′K ⊗Rnzr)� (vec(G∗nzr)ι

′
(nzr−1))

′]P ′sPs vec(Gnzr)

=
[
(ι′K ⊗Rnzr)� (vec(G∗nzr)ι

′
(nzr−1))

′] vec(Gnzr)
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where I used that P ′sPs is equal to a modified (nzr ∗ K)× (nzr ∗ K) identity matrix

such that the ith element of its main diagonal is replaced by a zero if the ith element

of vec(Gnzr) is zero.

The next step makes use the following property of Hadamard product:

Lemma A1. (See Horn and Johnson (1994, p.305)) Define the diagonal matrix, Dx,

of size n with entries from a vector x ∈ Rn by

[Dx]ij =

 [x]i if i = j

0 otherwise

Suppose A,B are m × n matrices. Then the ith diagonal entry of the matrix ADxB
′

coincides with the ith entry of the vector (A ·B)x for all i = 1, 2, ...,m. That is,

[ADxB
′]ii = [(A�B)x]i for all 1 ≤ i ≤ m

By Lemma A1,

{
[ι′K ⊗Rnzr]�

[
vec(G∗nzr) ι

′
(nzr−1)

]′}
vec(Gnzr)

= Diag
{

[ι′K ⊗Rnzr] Dvec(Gnzr)

[
vec(G∗nzr) ι

′
(nzr−1)

]}
(2.18)

Without loss of generality, assume that the first l rows of G are zero, with 0 ≤

l ≤ K. Therefore, nzr = K − l and we have:

vec(Gnzr) =

[
g(l+1),1 · · · gK,1 · · · · · · g(l+1),K · · · g(K−1),K gK,K

]′
(2.19)

where the elements corresponding to gi,i are equal to 0 for i = (l + 1), .., K. Notice

that if l = K − 1 there exist only one row that is not all zeros, hence the problem of

specifying the restriction matrix becomes trivial. As a result, I consider l < K − 1
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hereafter.

Using (2.19) we can write:

Dvec(Gnzr) ×
[
vec(G∗nzr) ι

′
(nzr−1)

]
=



g(l+1),11{g∗
(l+1),1

6=0} · · · g(l+1),11{g∗
(l+1),1

6=0}

...
...

...

gK,11{g∗K,1 6=0} · · · g(K+1),11{g∗K,1 6=0}

. . . . . . . . . . . . . . . . . . .

g(l+1),K1{g∗
(l+1),K

6=0} · · · g(l+1),K1{g∗
(l+1),K

6=0}

...
...

...

gK,K1{g∗K,K 6=0} · · · gK,K1{g∗K,K 6=0}


(2.20)

Next, notice that [ι′K ⊗Rnzr] = [Rnzr| · · · |Rnzr] is a (nzr−1)× (nzr ∗ K) matrix.

Since all the columns of (2.20) are the same, pre-multiplying it by [ι′K ⊗Rnzr] gives

a matrix with all its columns equal to:

[Rnzr| · · · |Rnzr]×



g(l+1),11{g∗
(l+1),1

6=0}

...

gK,11{g∗K,1 6=0}

. . . . . . . . .

g(l+1),K1{g∗
(l+1),K

6=0}

...

gK,K1{g∗K,K 6=0}



=


−
[
g(l+1),11{·} + · · ·+ g(l+1),K1{·}

]
+
[
g(l+2),11{·} + · · ·+ g(l+2),K1{·}

]
...

−
[
g(K−1),11{·} + · · ·+ g(K−1),K1{·}

]
+
[
gK,11{·} + · · ·+ gK,K1{·}

]


Finally, using that all the columns of
{

[ι′K ⊗Rnzr] Dvec(Gnzr)

[
vec(G∗nzr) ι

′
(nzr−1)

]}
are
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the same, we obtain that:

Diag
{

[ι′K ⊗Rnzr] Dvec(Gnzr)

[
vec(G∗nzr) ι

′
(nzr−1)

]}

=


−
[
g(l+1),11{·} + · · ·+ g(l+1),K1{·}

]
+
[
g(l+2),11{·} + · · ·+ g(l+2),K1{·}

]
...

−
[
g(K−1),11{·} + · · ·+ g(K−1),K1{·}

]
+
[
gK,11{·} + · · ·+ gK,K1{·}

]


hence the result follows.

2.A.3 Proof of Proposition 2.3

The Minimum Distance Estimator, vec(Ĝc
nz), can be derived from the Lagrangian

by minimizing with respect to vec(Gnz) and λ, and then solving for vec(Gnz). The

Lagrangian for the minimization problem in (2.10) is given by

L =
(

vec(Ĝnz)− vec(Gnz)
)′
V̂ −1
nz

(
vec(Ĝnz)− vec(Gnz)

)
− λ′H vec(Gnz) (2.21)

Differentiation with respect to vec(Gnz)
′ and λ yields the first order conditions

∂L
∂ vec(Ĝc

nz)
: − 2V̂ −1

nz vec(Ĝnz) + 2V̂ −1
nz vec(Ĝc

nz)−H ′λ = 0 (2.22)

∂L
∂λ

: H vec(Ĝc
nz) = 0 (2.23)

Premultiplying (2.22) by HV̂nz we have

−2H vec(Ĝnz) + 2H vec(Ĝc
nz)−HV̂nzH ′λ = 0
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Then solving for λ and using (2.23) gives

λ = −2(HV̂nzH
′)−1H vec(Ĝc

nz)

Substituting back into (2.22) gives the solution for vec(Ĝc
nz)

vec(Ĝc
nz) = vec(Ĝnz)− V̂nz H ′

{
H V̂nz H

′
}−1

H vec(Ĝnz) (2.24)

To derive the estimator of the asymptotic covariance matrix of vec(Ĝc
nz), V̂

c
nz,

define M = Inz−P̄ , with M an idempotent matrix and P̄ = V̂nz H
′
{
H V̂nz H

′
}−1

H.

Rewrite (2.24) as vec(Ĝc
nz) = M vec(Ĝnz). Then,

V̂ c
nz = MV̂nzM

′ = V̂nz − 2V̂nzP̄
′ + P̄ V̂nzP̄

′ = V̂nz − V̂nzH ′
{
H V̂nz H

′
}−1

H V̂nz

= MV̂nz (2.25)

where I have used the expression for P̄ .

2.A.4 Proof of Proposition 2.4

From (2.12) we have that

√
T
(

vec(Ĝnz)− vec(Ĝc
nz)
)

= V̂nz H
′
{
H V̂nz H

′
}−1√

TH vec(Ĝnz) (2.26)

We know that
√
T
(

vec(Ĝnz)− vec(Gnz)
)

d→ N (0, Vnz), then

√
T
(
H vec(Ĝnz)− 0

)
d→ N (0, HVnzH

′) (2.27)
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Also, from equation (2.13) we have that

Vnz − V c
nz = VnzH

′{HVnzH ′}−1HVnz (2.28)

Using the results from (2.27) and (2.28) in (2.26) we have that

√
T
(

vec(Ĝnz)− vec(Ĝc
nz)
)

d→ N (0, Vnz − V c
nz)

Recalling that a quadratic form of a normal distribution has a χ2 distribution,

T
(

vec(Ĝnz)− vec(Ĝc
nz)
)′

[Vnz − V c
nz]
−
(

vec(Ĝnz)− vec(Ĝc
nz)
)

d→ χ2
(nzr−1)

where (nzr − 1) is the number of restrictions on vec (G)nz, and [Vnz − V c
nz]
− is a

generalized inverse of [Vnz − V c
nz].

It is left to show that V −1
nz is a generalized inverse of [Vnz − V c

nz]. This amounts to

show that if Cg is a generalized inverse of C then C Cg C = C:

[Vnz − V c
nz] V

−1
nz [Vnz − V c

nz] = [Vnz − V c
nz]− V c

nz + V c
nzV

−1
nz V

c
nz

We need to show that the last two terms cancel out. Using the expression for V c
nz in

(2.13) we have:

V c
nzV

−1
nz V

c
nz − V c

nz

= V c
nz

[
V −1
nz V

c
nz − Inz

]
=
[
Vnz − VnzH ′{HVnzH ′}−1HVnz

] [
Inz −H ′{HVnzH ′}−1HVnz − Inz

]
= −VnzH ′{HVnzH ′}−1HVnz + VnzH

′{HVnzH ′}−1HVnzH
′{HVnzH ′}−1HVnz

= 0
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2.A.5 Steps of the PC-algorithm

I present here the steps of the PC-Algorithm as described in Spirtes et al. (2000,

p.117-119).

The PC-Algorithm

1. Form the complete undirected graph G on the vertex set V .

2. n = 0.

repeat

repeat

select an ordered pair of variables i and j that are adjacent in

G such that Adjacencies(G, i)\{j} has cardinality greater than

or equal to n, and a subset S of Adjacencies(G, i)\{j} of cardi-

nality n, and if i and j are d-separated given S delete edge i− j

from G and record S in Sepset(i, j) and Sepset(j, i);

until all ordered pairs of adjacent variables i and j such that

Adjacencies(G, i)\{j} has cardinality greater than or equal to n and

all subsets S of Adjacencies(G, i)\{j} of cardinality n have been

tested for d-separation;

n = n+ 1;

until for each ordered pair of adjacent vertices i, j, Adjacencies(G, i)\{j}

is of cardinality less than n.

3. For each triple of vertices i, j, k such that the pair i, j and the pair j,

k are each adjacent in G but the pair i, k are not adjacent in G, orient

i− j − k as i→ j ← k if and only if j is not in Sepset(i, k).
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The PC-Algorithm (continued)

4. repeat

If i → j, j and k are adjacent, i and k are not adjacent, and

there is no arrowhead at j, then orient j − k as j → k.

If there is a directed path from i to j, and an edge between i

and j, then orient i− j as i→ j.

until no more edges can be oriented.

Let Adjacencies(G, V ) be the set of vertices adjacent to V in the directed acyclic

graph G. In the algorithm, the graph G is continually updated, so Adjacencies(G, V )

is constantly changing as the algorithm progresses.

The next example, based on five nodes, provides further details on each step.

Example 2.3. (Based on Spirtes, Glymour, and Scheines (2000, p.118)35) Assume

we have 5 nodes (or variables) A, B, C, D, E. The true graph (i.e., DGP) is given

in Figure 2.5a.

(a) Unknown True DGP (b) Complete undirected graph

Figure 2.5: PC-Algorithm

35This example was adopted from Richardson (2012)
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1. Complete undirected graph: The starting point is to form a complete undi-

rected graph G on the vertex set V as shown in Figure 2.5b. The complete

undirected graph shows an undirected edge between every variable of the system,

i.e., every variable in V is connected with lines having no arrows.

2. Remove edges: Edges between variables are removed sequentially based on

zero correlation or partial correlation (conditional correlation). Each edge is

subjected to tests that the correlation between its endpoints is zero. For instance,

we first test H0 : ρij = 0, where ρij is the population (unconditional) correlation

between nodes i and j. If a correlation is judged to be not different from zero,

we remove the edge between the two end points of the corresponding edge. Edges

surviving these unconditional correlation tests are then subjected to conditional

correlation tests, e.g., H0 : ρij.k = 0, where ρij.k is the population correlation

between i and j conditional on variable k. If these conditional correlations equal

zero we pick up the edge i, j.36

This stage makes use of Fisher’s z statistic, “d-separation” concept, and gives

rise to the concept of “sepset” (i.e., separation set) which is used in the next

stage for orientation purposes:

(a) Statistic: Fisher’s z-transformation is used to test for significance from

zero, i.e., ρij.S = 0:

z(ρij.S, T ) =
1

2
log

(
|1 + ρij.S|
|1− ρij.S|

)

where ρij.S is the population correlation between i and j given S. Let |S|

equal the number of variables in S. If the variables i, j, and S are normally

36The PC-algorithm adds some sophistication to this step in order to increase tractability and
reduce the curse of dimensionality. In other words, the algorithm is done such that it avoids testing
every single conditional correlation unnecessarily. The details of this sophistication are given in the
description of the algorithm.
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distributed then37

√
T − |S| − 3 (ẑ − z)

a∼ N (0, 1)

(b) d-separation: A non-endpoint vertex V on a path between i and j is said

to be a collider if the path takes the form i · · · → V ← · · · j. A path π is

said to d-connect i and j unconditionally if i and j are at the endpoints of

π and there are no colliders on π. If there is no path d-connecting i and j

then they are said to be d-separated.

(c) Sepset: The conditioning variable(s) on removed edges between two vari-

ables is called the sepset of the variables whose edge has been removed. For

vanishing zero order conditioning information the sepset is the empty set.

• If we remove the edge between i and j through unconditional correlation

test, ρij = 0, then the Sepset(i, j) is {}, and we denote it as Sij = ∅.

• If we remove this edge by conditioning on k, ρij.k = 0, then the

Sepset(i, j) is k, and we denote it as Sij = k.

In the current example we check dependencies of degree D = 0, 1, 2 since there

are no dependencies of degree 3 or more:

• D = 0 (Zero order independencies): There is no pair of variables d-

separated given the empty set, so the initial graph is unchanged.

• D = 1 (First order independencies): We have that B and C are d-separated

given {A}, thus we remove the B−C edge and record the sepset of BC as

SBC = {A}. Next, since A and E are d-separated given {D} we remove

the A − E edge and record SAE = {D}. Similarly, since B and E are

d-separated given {D} we remove the B − E edge and write SBE = {D}.
37See Spirtes et al. (2000, p.128) for further details.
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Finally, we have that C and E are d-separated given {D}, thus, we remove

the C−E edge and record SCE = {D}. In summary we have the following

independencies of first order:

B |= C | A A |= E | D

B |= E | D C |= E | D

• D = 2 (Second order independencies): We have only one second order

independency. Namely, A and D are d-separated given B,C, thus, we

remove edge A − D and the record its sepset as given by SAD = {B,C}.

Formally, A |= D | {B,C}.

This completes the elimination stage, and Figure 2.5b reduces to Figure 2.6.

This last figure gives the skeleton of the graph.

Figure 2.6: Skeleton PC-Algorithm

3. Edge Direction: Edges are directed by considering triples, the following rules

apply:

(a) If we have i− k − j but i and j are not adjacent, and k 6∈ Sij then orient

as i→ k ← j.

(b) If there is a directed path from i to k, and an edge between k and j, e.g.,

i→ k − j, then direct k − j as k → j.
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(c) If i→ k → j and there is an edge i− j, then orient it as i→ j.

(d) If i and k are not adjacent, but i − l − k and i → j ← k and l − j, then

direct this last edge as l→ j.

In our example, since D 6∈ SBC = {A}, we orient B → D ← C. The other

triples (B,A,C), (A,B,D), (A,C,D), (B,D,E) and (C,D,E) do not lead to

further orientation, since the middle vertex is in each sepset. Since (B,D,E)

is such that B → D−E, then we orient D−E as D → E. The resulting graph

from the PC-algorithm is shown in Figure 2.7. Notice that the bidirected edges

A ↔ B and A ↔ C simply represent edges that were not oriented (i.e., these

are undirected edges).

Figure 2.7: CPDAG after PC-Algorithm

2.A.6 Measures of performance for the PC-algorithm

Each element of the network matrix can take two possible values: 0 or 1. This leads to

two possible outcomes, positive (predicting that there is a connection, i.e., a value of

1), or negative (predicting that there is no connection, i.e., a value of 0). The elements

in the network matrix obtained from each simulation may or may not match those of

the network from the DGP. There are four possible cases to be considered:

i. True positive (TP): 1 is identified as 1

ii. False positive (FP): 0 incorrectly identified as 1
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iii. True negative (TN): 0 correctly identified as 0

iv. False negative (FN): 1 incorrectly identified as 0

Based on this classification we can defined the following measures:

i. Accuracy: ACC = (TP + TN)/(P +N)

ii. True Positive Rate (or Sensitivity): TPR = TP/P

iii. Specificity: SPC = TN/N

where P and N stand for the number of positives and negatives in the DGP respec-

tively.

While ACC provides an overall assessment of how well the PC-algorithm performs

at returning the true network structure (both zeros and ones), TPR and SPC focus

on correctly detecting a connection and a no-connection respectively. In a given

simulation, ACC provides the proportion of true results (both true connections and

true no-connections) among the total number of elements in the network delivered by

the simulation. An accuracy of 100% means that the simulated network is exactly the

same as the one given by the DGP. In contrast, TPR focus exclusively on whether

we are correctly detecting a connection where there should be one. That is, what

proportion of the ones in the DGP are also present in a given simulation. As an

example, a TPR of 60% means that 60% of the links in the DGP are also present in

the network produced by a given simulation. It is important to keep in mind that

even if TPR is 100% there could be other links in the simulated network that come

from false positives.38 SPC is the true negative rate (TNR), it gives what proportion

of the zeros found in a simulation correspond to true zeros in the DGP. Notice that

38To address this concern, we could also look at the Positive Predictive Value (PPV) which
measures the proportion of positives found in a given simulation that are in fact true positives. The
difference between the TPR and the PPV lies in the denominator of the rate: while the former
divides by the number of ones in the DGP, the latter divides by the number of ones in the network
delivered by the simulation.
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this rate is the complement of the False Positive Rate (FPR), i.e., FPR = 1− SPC.

Moreover, from the above formulas, it is clear that ACC is a weighted average of TPR

and SPC with weights related to the prevalence rate (i.e., P/(P +N)):

ACC = TPR× prevalence + SPC × (1− prevalence)

Finally, the Structural Hamming Distance (SHD) is a metric that directly com-

pares the structure of the learned and the original networks. The SHD between two

CPDAGs is the number of the following operators required to make the CPDAGs

match: add or delete an undirected edge, and add, remove, or reverse the orientation

of an edge (see Tsamardinos, Brown, and Aliferis (2006) for further details). It can

be interpreted as the minimum number of operations needed to go from the graph

delivered by a simulation to the true graph. This measure is usually used to assess

the overall quality of fit which requires to focus simultaneously on the TPR and SPC

(or FPR). A large SHD suggests a poor fit, while a small SHD suggests a good fit.

2.A.7 Network terminology

In simple terms, a network is a graph which is comprised of an arrangement of nodes,

each representing an individual in the network, joined by a set of lines or connecting

arrows, that depict the relationships among these individuals. Formally,

Definition 2.3. (Graphical model) A graphical model, G = (V,E), is a system of

nodes (or vertices) V = {1, ..., K} and connecting edges (or lines) E ⊆ V × V , where

K is the number of variables or nodes in the system.

A graph can be classified as either undirected, i.e., when the edges have no orien-

tation, or directed, when the edges are arrows indicating the direction of the relation.

Based on these notions, two main types of graphs can be defined; namely, undirected

and directed graphs. A special case of directed graphs corresponds to the so called
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Directed Acyclic Graph (DAG), which has gained attention in the SVAR literature as

the graphical representation of a recursive system is given by a DAG. Hence, in this

paper I particularly focus on DAGs. Moreover, I adopt the following convention, from

DAGs, regarding edge definitions. An edge (i, j) ∈ E is called directed if (i, j) ∈ E

but (j, i) 6∈ E for some i, j ∈ V . If both (i, j) ∈ E and (j, i) ∈ E, the edge is called

undirected.39 In the former case, the directed edge is denoted as i→ j, while in the

latter case the undirected edge is denoted as i− j.

Formal definitions of both undirected and DAG graphs are given next. An undi-

rected graph, G = (V,E), consists of the set V of nodes and E of edges, which are

unordered pairs of elements of V . Formally,

Definition 2.4. (Undirected graph) A graph G = (V,E) is called undirected if ∀i, j ∈

V , (i, j) ∈ E if and only if (j, i) ∈ E.

The definition of Directed Acyclic Graph requires the following two concepts:

Definition 2.5. (Directed cycle) A graph G = (V,E) has a directed cycle, if ∃ a

sequence of directed edges {(i1, i2), (i2, i3), · · · , (iK−1, iK)}, such that (ik, ik+1) ∈ E

for each k ∈ {1, · · · , K − 1}, with i1 = iK.

A directed graph, G = (V,E), consists of the set V of nodes and E of edges, which

are ordered pairs of elements of V . The convention adopted in this paper is that all

edges need to be directed to have a directed graph. If only some edges are directed,

then the graph is called partially directed. Formally,

Definition 2.6. (Directed graph) A graph G = (V,E) is directed if ∀i, j ∈ V , if

(i, j) ∈ E then (j, i) 6∈ E.

Now we are condition to define a DAG:

39This definition of undirected edges is specific to DAGs since it assumes that a bidirected edge
is an edge with no direction. This may not be the convention adopted in other contexts where
bidirected edges and undirected edges need to be distinguished.
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Definition 2.7. (Directed Acyclic Graph) A graph G = (V,E) is called a Directed

Acyclic Graph (DAG) if all edges are directed and there are no directed cycles.

A related concept is the notion of skeleton of a DAG,

Definition 2.8. (Sketelon of a DAG) The graph generated by replacing all directed

edges of a DAG with undirected edges is called a skeleton.

This concept has shown to be useful whenever we want to focus on the structure

of the network regardless of the direction of connectivity. For instance, we will look

at the skeleton to study the presence of cohesive-blocks within the network.

Figure 2.8 below illustrates the aforementioned graph concepts. Notice that the

skeleton of the DAG shown in (c) coincides with the undirected graph given in (a).

A

B

C

D

(a) Undirected Graph

A

B

C

D

(b) Directed Graph
(with a cycle)

A

B

C

D

(c) Directed Acyclic Graph

Figure 2.8: Examples of Graphs

Finally, I define the concept of a path in a network as many of the connectedness

measures presented in the next section invoke it.

Definition 2.9. (Path) A path in a graph G = (V,E) between nodes i and j is a se-

quence of edges i1i2, i2i3, · · · , iK−1iK such that ikik+1 ∈ E for each k ∈ {1, 2, · · · , K−

1}, with i1 = i and iK = j and such that each node in the sequence {i1, · · · , iK} is

distinct.
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2.A.8 Graphical representation of the network

It has become a common practice in the financial networks literature to graph the

network using a circle layout. Circle graphs are commonly used to visualize which

nodes are most highly connected, their emphasis is on rankings. The nodes are located

at equal distances around a circle, and nodes that are highly connected are very easy to

quickly locate because of the density of lines. Moreover, it is convenient for comparing

graphs since node’s positions can be easily fixed. However, this representation has an

important shortcoming, it fails at revealing the underlying structure of the network.

For instance, a circle layout does not allow one to visually detect communities (or

blocks), nor bridges or central nodes.

In this paper, I propose the use of the Fruchterman-Reingold layout as an alterna-

tive for analyzing either one network or when the number of graphs to be compared

is relatively small. The Fruchterman-Reingold algorithm is a force-based graph lay-

out algorithm. Force-based means that it treats each vertex and edge as if it were a

physical object whose position is influenced by forces around it. It is based on the

spring algorithm, which introduces attraction forces between connected nodes and

repulsion forces between disconnected nodes. All edges are treated as springs, so

that the network will oscillate until a minimum force between nodes is reached. The

force-directed graph drawing algorithms is a class of algorithms for drawing graphs

in an aesthetically pleasing way. Their purpose is to position the nodes of a graph

so that all the edges are of more or less equal length and there are as few crossing

edges as possible. In simple words, it assigns locations to nodes such that nodes that

are “more similar” are closer together. For instance, two nodes are “similar” to the

extent that they have similar shortest paths to all other nodes.
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2.B Additional tables and graphs

2.B.1 Other simulation exercises

2.B.1.1 K = 16

It is well known in the VAR literature that “... standard VARs rarely employ more

than six to eight variables” (Bernanke, Boivin, and Eliasz, 2005, p.388). Since the

number of parameters in a VAR increases with the square of the number of variables

included, as the number of variables increases the estimates become noisier. One

possible solution to address the concern of using a relatively large number of variables,

i.e., K=16, is to estimate the reduced form VAR by Least Absolute Shrinkage and

Selection operator (LASSO-VAR). Sparsity in the reduced form model allows us to

delete weak and indirect links among variables that would lead to spurious relations

in the reduced form; hence, it delivers VAR estimates that are more reliable (see

Davis, Zang, and Zheng (2012)).

The conjecture in this paper is that LASSO-VAR techniques are potentially useful

in two dimensions. First, it provides less noisy estimates of the variance-covariance

matrix of the residuals, which is the input of the PC-algorithm. In other words, the

conjecture is that a better input could help pin down the connections in the network

and their directions better. Second, LASSO-VAR provides more precise estimates

of the reduced form lagged coefficients, which are used to estimate the structural

lagged coefficients. Although there is evidence in the literature that LASSO-VAR

provides more precise reduced form lagged coefficients, it is unclear whether it could be

beneficial for the purpose of uncovering the network structure via the PC-algorithm.

The first simulation exercise compares the performance of the PC-algorithm for

two choices of reduced form estimation methods: LASSO-VAR versus standard VAR

estimation. It is clear from Figure 2.9 that LASSO-VAR performance to uncover the

network is almost identical to standard VAR, mitigating the second potential benefit.
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A plausible explanation for this result is that the benefits of LASSO in the reduced

form do not translate well due to the presence of nonlinearities when going from the

VAR to the SVAR. Another possibility is that even K = 16 may not be big enough to

capture the advantages of using LASSO; but this is beyond the scope of this paper.

Since LASSO-VAR at least improves in one dimension, I adopt this method in the

paper.
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Figure 2.9: Comparison of LASSO-VAR and VAR estimation meth-
ods in the reduced form across values of α, s = 500. DGP generated
using MajRSC option, α = 5%, K = 16, and p = 1. Mean ACC, TPR,
SPC, and SHD reported.

The second simulation exercise compares the MajRSC option to an alternative

option for calling the PC-algorithm in R. Sometimes “sampling errors, non faithful-

ness, or hidden variables can also lead to non-extendable CPDAGs, meaning that

there does not exist a DAG that has the same skeleton and v-structures as the graph

found by the algorithm. An example of this is an undirected cycle consisting of the

edges a-bc-d and d-a. In this case it is impossible to direct the edges without creating

a cycle or a new v-structure.” (Kalisch et al., 2012). In this situation one can use

the option “u2pd = retry” (Retry option hereafter), then, up to 100 combinations of
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Figure 2.10: Comparison of MajRSC (MM) and Retry (MR) options
to implement the PC-algorithm across values of α, s = 500. DGP
generated using MajRSC option, α = 5%, K = 16, and p = 1. Mean
ACC, TPR, SPC, and SHD reported.

possible directions of the ambiguous edges are tried, and the first combination that

results in an extendable CPDAG is chosen.40 In the simulation exercise, I compare

the performance of the PC-algorithm using the MajRSC option versus the Retry

option. Furthermore, I construct a DGP with each option and conduct simulations

using Retry vs MajRSC in each case. The notation adopted in all the graphs (i.e.,

MM, MR, RM, RR) uses the first letter to refer to the DGP and the second letter to

refer to the option used in the simulations.

Figure 2.10 displays the simulation results that uses the MajRSC option for the

DGP (with α = 5%). Both MajRSC and Retry options perform quite similar regard-

ing ACC and SPC. Although performance in terms of SHD is quite similar only for

values of α between 0.2 and 0.05, these are the values of α that deliver the best (i.e.,

lower) values of SHD. However, the MasjRSC option dominates in terms of TPR.

The gap between the two options is of at least ten percentage points, with a TPR in

40If no valid combination is found, an arbitrary DAG is generated on the skeleton as in the option
”rand”, and then converted into its CPDAG.
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the MajRSC option of approximately 70% for values of α between 0.2 and 0.05 and a

maximum at α = 0.05. All the measures achieve their best values at α = 0.05, which

coincides with the α chosen to obtain the calibrated DGP, although values between

0.2 and 0.05 work almost as well. To assess whether it is always the case that the best

α coincides with the one chosen to calibrate the DGP, I also constructed DGPs with

α = {0.10, 0.0001} and repeated the simulation exercise. The results are presented in

figures 2.11 and 2.12, and they also suggest the use of α equal to 0.05 setting aside

the former concern.
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Figure 2.11: Comparison of MajRSC (MM) and Retry (MR) options
to implement the PC-algorithm across values of α, s = 500. DGP
generated using MajRSC option, α = 10%, K = 16, and p = 1. Mean
ACC, TPR, SPC, and SHD reported.

Finally, in Figure 2.13 the DGP is instead constructed using the Retry option. In

the simulations, the performance of both options in terms of ACC and SPC is again

quite similar, while the Retry option does now a better job in terms of SHD. Since the

DGP is constructed with the Retry option, one would expect this option to perform

better now in terms of TPR. Even though the TPR gap shrank for values of α between

0.2 and 0.05, a surprising result is that the MajRSC option still dominates the Retry
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option in terms of TPR. Summing up, both figures suggest the use of MajRSC and

to choose α of 0.10 or 0.05.
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Figure 2.12: Comparison of MajRSC (MM) and Retry (MR)
options to implement the PC-algorithm across values of α, s =
500. DGP generated using MajRSC option, α = 0.01%, K = 16,
and p = 1. Mean ACC, TPR, SPC, and SHD reported.
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Figure 2.13: Comparison of MajRSC (RM) and Retry (RR)
options to implement the PC-algorithm across values of α, s =
500. DGP generated using Retry option, α = 5%, and K = 16,
and p = 1. Mean ACC, TPR, SPC, and SHD reported.
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2.B.1.2 K = 8
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Figure 2.14: Comparison of MajRSC and Retry options to im-
plement the PC-algorithm across values of α, s = 500. DGP
generated using MajRSC option, α = 5%, N = 8, and and p = 2.
Mean ACC, TPR, SPC, and SHD reported.
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Figure 2.15: Comparison of MajRSC and Retry options to imple-
ment the PC-algorithm across values of α, s = 500. DGP generated
using Retry option, α = 5%, N = 8, and and p = 2. Mean ACC,
TPR, SPC, and SHD reported.
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2.B.2 Application
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Figure 2.16: Time series plot of daily real-
ized return volatility - Full period (06/25/2003 -
03/05/2015), K=16.
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Figure 2.17: Distribution of daily realized re-
turn log-volatility (demeaned data) - Full period
(06/25/2003 - 03/05/2015), K=16.
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Chapter 3

GMM with Minimum Mean

Square Error

3.1 Introduction

The theory of Generalized Method of Moments (GMM) has grown widely since

Hansen’s (1982) seminal paper. Among the contributions to this literature, we focus

on redundancy. It is well known in the GMM estimation literature that incorporating

an additional set of moment conditions to the initial set will not hurt asymptotically

the GMM estimator in terms of efficiency.1 However, even in that case, it is also well

known from Breusch, Qian, Schmidt, and Wyhowski (1999) that these extra moments

may not help improve efficiency either. When that is true, we say that these extra

moments are redundant for the estimation of the full set of parameters, given the

initial set of moment conditions. Similarly, the addition of extra moments may not

help increase efficiency for only some of the parameters, in which case we say that

they are partially redundant for the estimation of those parameters given the original

set of moments.

1By “will not hurt asymptotically in terms of efficiency” we mean that it will not decrease
efficiency, or, in other words, it will not increase the asymptotic variance.
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The notions of redundancy and partial redundancy were first formally introduced

by Breusch et al. (1999); in a later paper, Qian (2002) revisited the notion of partial

redundancy more thoroughly. In this paper we revisit this literature and extend it to

a more general setting. More specifically, we consider moments that are unbiased, i.e.,

equal to zero, but whose estimators are asymptotically biased. Think, for instance, of

the “Kernel Moment Estimator” of Gagliardini, Gouriéroux, and Renault (2011). As

a result, we can no longer talk about redundancy in terms of asymptotic variance since

the asymptotic bias also comes into play. Therefore, we need a broader definition of

redundancy and partial redundancy.

The contribution of this paper is twofold. First, we reassess what an optimal

weighting matrix for a GMM estimator would be under the presence of asymptotic

bias in the estimator of the moment conditions. Second, based on this new definition

of optimal weighting matrix, we derive and reinterpret the necessary and sufficient

conditions for redundancy and partial redundancy, which can now be interpreted

in terms of the bias-variance trade off. The methodology we propose in this paper,

though quite natural in both cases, is not obvious at first glance. For re-examining the

definition of optimal weighting matrix we follow the ideas in the paper by Gagliar-

dini et al. (2011), entitled “Efficient derivative pricing by the extended method of

moments.” This is one of the most related work in the extant literature. While their

approach put together parametric and non-parametric rates of convergence, here we

consider only parametric rates for sake of notational simplicity. However, an induced

application of the methodology developed in this paper, still work in progress, is about

misspecified asset pricing models. In regard to redundancy and partial redundancy,

we follow quite closely the paper by Breusch et al. (1999). This leads us to discuss

focused moment selection in the spirit of DiTraglia (2015), but the approach is differ-

ent since we always consider AMSE-efficient GMM estimators. Another related work,

is the paper by Cheng and Liao (2015). However, their objective is slightly differ-
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ent. Although they do consider relevance, their aim is to avoid including redundant

moment conditions after consistently eliminating invalid ones.

Notice that the optimal GMM weighting matrix, say W , is set in general such

that it minimizes the asymptotic variance of the parameter’s estimator, say θ̈T , of θ.

This leads to setting W = Ω−1, where Ω is the asymptotic variance of the estimator

of the moments conditions, call it ḡ. However, in the presence of asymptotic bias the

natural choice for W will be the one that minimizes the Asymptotic Mean Square

Error (AMSE) instead of asymptotic variance only. Intuitively, if we were to ignore

the asymptotic bias, we would be obtaining a more precise estimator around a value

that is not the true value θ0. As a result, that choice of weighting matrix would not

be adequate. Therefore, we propose to choose a weighting matrix that accounts for

both asymptotic bias and variance. Namely, to choose W = M−1, where M is the

AMSE of the estimator of the moment conditions.

It is thus natural to redefine both redundancy and partial redundancy in terms

of AMSE. That is, the aim is now to assess whether the extra moments help reduce

the initial AMSE of the whole set of parameters or a subset of it, respectively. For

simplicity of exposition, assume that the initial moment conditions are based on a

function g1, i.e., we have E[g1(·; θ0)] = 0, while the additional moments are based on

g2, with g = (g′1 g′2)′. In this paper, we show that adding extra moments cannot

hurt in terms of AMSE. Hence, redundancy and partial redundancy conditions can be

derived by looking directly at the difference between two AMSEs: the one obtained

when we use the initial set of moments and that obtained when we use the full set

of moments. However, following Breusch et al. (1999), we know this direct approach

can be algebraically demanding and hard to interpret.

Breusch et al. (1999) propose instead to exploit the idea that the GMM estimator

derived from moments based on g1 and g2 is numerically equal, in general, to another

GMM estimator based on moments from g1 and the residual of a projection of g2
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on g1. This approach was very useful in their paper to the extent that it made the

variance-covariance matrix of the moment estimators block-diagonal. This was key

for them since it allowed the delivery of an expression for the asymptotic variance

directly comparable to the one obtained when only the initial set of moments was

used. More precisely, the asymptotic variance was decomposed in two terms: one

equal to the asymptotic variance when only the first set of moments was used, and

the other term coming from the addition of the second set of moments.

However, in presence of asymptotic bias, the focus is not on the asymptotic vari-

ance matrix but rather on the AMSE matrix as it was explained above. As a result,

their approach is no longer the best since it does not provide, in general, a block-

diagonal AMSE matrix, making the comparison between AMSEs not straightforward.

Accordingly, the question is how can we transform the additional moment conditions

such that we achieve a block-diagonal AMSE matrix? After careful examination of

the methodology, we believe that the answer we suggest is quite satisfactory in that it

preserves the simplicity of the original method and can be seen as a natural general-

ization of the transformation of moments based on g2 found in Breusch et al. (1999).

Namely, we propose to replace in the expression for the projection of g2 on g1 the

matrices based on blocks of Ω, i.e., Ω21 and Ω−1
11 , by the analogous matrices based

on blocks of M , i.e., M21 and M−1
11 . This transformation, though it will not deliver

a block-diagonal asymptotic variance matrix for the moment estimators, in general,

it will deliver a block-diagonal AMSE matrix. As desired, the comparison between

AMSEs becomes now more straightforward.

We may wonder why looking at redundancy or partial redundancy is of relevance

since, as we show in the paper, adding moment conditions does not hurt in terms of

AMSE. The natural question is why not simply add all the moments? The answer

is twofold. On the one hand, examining conditions in this more general framework

with asymptotic bias allows us to study more closely the variance-bias trade-off. In
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particular, from the redundancy conditions we show that having some asymptotic

bias is not unfavorable, in terms of AMSE, in certain situations. On the other hand,

in some cases adding extra moment conditions, in presence of asymptotic bias, might

lead to more complicated estimators, in the sense that the estimator of the param-

eter becomes computationally intensive. As a result, the conditions derived in this

paper might help us assess the information contained in the extra moments before we

unnecessarily complicate our estimation procedure.

The remainder of the paper is organized as follows. In Section 3.2, we derive

the optimal choice of weighting matrix for GMM under a non-zero bias case for the

estimator of the moment conditions. We give an intuitive explanation of why this is

a natural choice in our more general framework. In Section 3.3, we derive conditions

for redundancy of one set of moment conditions given a second set. We provide

several equivalent forms to state the same redundancy condition, and explain the

underlying intuition. In Section 3.4, we establish partial redundancy of one set of

moment conditions, for the estimation of a subset of the parameters, given a second

set of moments. As in the case of redundancy, we provide conditions for partial

redundancy in several equivalent forms. We briefly compare what partial redundancy

requires with respect to full redundancy. Section 3.5 concludes. Some of the proofs

are relegated to Appendix 3.A.

3.2 Optimal Choice of Weighting Matrix W

In this section, we derive the optimal choice of weighting matrix for a GMM estimator

in the more general framework of non-zero asymptotic bias of the estimator of the

moment conditions. This section plays a key role to understand the results derived

in the rest of the paper.

In this paper, we consider a simple setup, in which we estimate a p × 1 vector
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of true values of parameters θ0 using different sets of moment conditions. The key

difference with respect to standard GMM settings, is that we allow our estimator to

have a non-zero asymptotic bias. More precisely, let the set of moment conditions be

given by: 
E[g1(yt; θ0)] = 0

E[g2(yt; θ0)] = 0 for t = 1, ..., T

(3.1)

where yt is a scalar random variable for simplicity, and g1(yt; θ0) and g2(yt; θ0) have

dimension k1 and k2 respectively.

Define, g(yt; θ) =

[
g1(yt; θ)

′ g2(yt; θ)
′

]′
, for t = 1, ..., T , so that E[g(yt; θ0)] = 0 is

the vector that contains all the moment conditions k = k1 + k2.

We assume that:

Assumption 3.1. The true value of the parameter, θ0, is fully identified from the

first set of moments only, and thus we take k1 ≥ p:

E[g1(yt; θ)] = 0 ⇔ θ = θ0 (3.2)

In addition, for simplicity of exposition, we assume the following:

Assumption 3.2. The data consists of a finite number T of observations, y1, ..., yT .

The process {yt : t ∈ N} on Y ⊂ R, is strictly stationary and ergodic.

Assumption 3.3. {g(yt; θ) : t ∈ N} is a martingale difference sequence (m.d.s.).

Remark 3.1. On the one hand, Assumption 3.3 can be relaxed to allow for some

more complicated time series settings, like mixing conditions for processes, instead of

m.d.s. On the other hand, the main message can be transmitted by just focusing on

the most restricted but simplest case: i.i.d.

Let θ̈T be a GMM estimator of θ based on the full set of moment conditions (3.1)
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and a weighting matrix W . The minimization problem is the following:

θ̈T = argmin
θ∈Θ

QT (θ),

with

QT (θ) = ḡ(θ)′Wḡ(θ)

ḡ(θ) = (Ê[g1(yt; θ)]
′ Ê[g2(yt; θ)]

′)′ (3.3)

where Ê[gi(yt; θ)] denotes the sample average estimator of E[gi(yt; θ0)], for i = 1, 2;

and W is a positive definite (p.d.) weighting matrix.

Remark 3.2. Notice that we need W in order to derive our estimator of θ. As it is

standard in GMM settings we can first take W = I, where I is the identity matrix,

obtain a consistent estimator of the parameter and hence a consistent estimator for

W , say WT . Next, estimate our parameter using the estimator of the weighting matrix

WT .

We consider a GMM estimator that is subject to non-zero asymptotic bias due to

the fact that the asymptotic distribution of the estimator of the moment conditions

is such that2

Assumption 3.4. The asymptotic distribution of the estimator of the moment con-

ditions is given by

√
T ḡ(θ0)

d−→ N (b0, Ω) (3.4)

where ḡ(θ0) is the sample average estimator of E[g(yt; θ0)], b0 is the asymptotic bias,

and Ω is the asymptotic variance-covariance matrix.

2A more complicated version of this estimator arises in the so called “Kernel Moment Estimator”
of Gagliardini, Gouriéroux, and Renault (2011), with the caveat that in addition they consider more
complex identification settings due to the nature of their problem.
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Remark 3.3. It is important to understand the implications of Assumption 3.4—

namely that, even though we consider moment conditions that are unbiased, the es-

timator of these moments is asymptotically biased and as a result the estimator of

the parameter is also asymptotically biased. We should take some caution in what

we mean by “asymptotically biased.” This qualification should be understood in the

following sense: we say the estimator of the moment conditions, ḡ, is asymptotically

biased in the sense that
√
T ḡ has a nonzero asymptotic bias, but the asymptotic bias

of ḡ alone which is b0/
√
T converges to zero as T →∞.

We make the following standard assumption about Ω:

Assumption 3.5. Ω is a finite and non-singular variance-covariance matrix.

We also make standard assumptions on the parameter space and the function g:

Assumption 3.6. Θ is an open subset of Rp that contains θ0.

Assumption 3.7. g(·; θ) and ∂g/∂θ(·; θ) are Borel measurable for each θ ∈ Θ and

∂g/∂θ(y; ·) is continuous on Θ for each y ∈ R.

Assumption 3.8. ∂g(y1; θ)/∂θ is first moment continuous at θ0 and E[∂g/∂θ(y1; θ0)]

exists, is finite, and has full rank.

Assumption 3.9. plimT→∞
∂ḡ′

∂θ′
(θ̈T ) = J0, and plimT→∞WT = W .

Remark 3.4. By Lemma 3.1 of Hansen (1982), under Assumptions 3.7 and 3.8, if

E[g(y1; θ0)] exists and is finite, then g(y1; θ) is first moment continuous at θ0. This

last property, is important to guarantee consistency (see consistency Theorem 2.1 of

Hansen, 1982).

In this situation, the asymptotic distribution of the GMM estimator using a

weighting matrix W will be slightly modified to take into account the asymptotic

138



bias as follows:

√
T (θ̈T − θ0)

d−→ N (B∞, (J
′
0WJ0)−1J ′0WΩWJ0(J ′0WJ0)−1) (3.5)

where B∞ = −(J ′0WJ0)−1J ′0Wb0 is the asymptotic bias of
√
T (θ̈T−θ0), and J0 = J(θ0)

is the (k× p) limit Jacobian matrix as defined in (3.14) in Section 3.3. The details of

the derivation of (3.5) are quite standard, and thus are relegated to the Appendix.

Notice that, the optimal weighting matrix W is set in general such that it min-

imizes the asymptotic variance of
√
T (θ̈T − θ0), which leads to setting W = Ω−1,

where Ω is the asymptotic variance of
√
T ḡ(θ0). However, in the presence of asymp-

totic bias, the natural choice for W will be one that minimizes the AMSE instead of

only asymptotic variance as in the standard case. Intuitively, if we were to ignore the

asymptotic bias, we would be obtaining a more precise estimator around a value that

is not θ0. Hence, that choice of weighting matrix would not be adequate. The right

approach is therefore, to choose a weighting matrix that accounts for both asymptotic

bias and variance, that is:

AMSE
[√

T (θ̈T − θ0)
]

= Avar
[√

T (θ̈T − θ0)
]

+ Abias2
[√

T (θ̈T − θ0)
]

= (J ′0WJ0)−1J ′0WΩWJ0(J ′0WJ0)−1

+ (J ′0WJ0)−1J ′0Wb0b
′
0WJ0(J ′0WJ0)−1

= (J ′0WJ0)−1J ′0W [Ω + b0b
′
0]WJ0(J ′0WJ0)−1

= (J ′0WJ0)−1J ′0WM0WJ0(J ′0WJ0)−1 (3.6)

with

M0 : = Ω + b0b
′
0 (3.7)

Abias2 : = Abias Abias′ (3.8)
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where Avar and Abias stand for the asymptotic variance and bias respectively.

As a result, the optimal choice of the weighting matrix is W = M−1
0 since in this

case AMSE reduces to (J ′0M
−1
0 J0)−1.3 Hence, we can define the following Optimal

GMM estimator in presence of asymptotic bias:

Definition 3.1 (Optimal GMM in presence of asymptotic bias). A GMM

estimator is said to be optimal in presence of asymptotic bias when the weighting

matrix used equals the inverse of the AMSE of the estimator of the moment functions,

evaluated at the true value of the parameter.

Let θ̈T be the optimal GMM estimator of θ, then its asymptotic distribution is

given by

√
T (θ̈T − θ0)

d−→ N (B∞, (J
′
0M

−1
0 J0)−1J ′0M

−1
0 ΩM−1

0 J0(J ′0M
−1
0 J0)−1) (3.9)

with

B∞ = −(J ′0M
−1
0 J0)−1J ′0M

−1
0 b0 (3.10)

where B∞ is the asymptotic bias of
√
T (θ̈T − θ0) when W = M−1

0 , Ω is defined in

(3.4), J0 is defined in (3.5), and M0 is defined in (3.7).

In this paper, we will only consider optimal GMM estimators as framed in Defi-

nition 3.1.

3Notice, however, that under this choice of W the asymptotic variance will still take a
sandwich form (J ′0M

−1
0 J0)−1J ′0M

−1
0 ΩM−10 J0(J ′0M

−1
0 J0)−1. It is clear from the above expres-

sion, that only in absence of asymptotic bias we will get the reduced formula for the asymp-
totic variance, since if M0 = Ω then Avar = (J ′0M

−1
0 J0)−1J ′0M

−1
0 ΩM−10 J0(J ′0M

−1
0 J0)−1 =

(J ′0Ω−1J0)−1J ′0Ω−1ΩΩ−1J0(J ′0Ω−1J0)−1 = (J ′0Ω−1J0)−1.
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3.3 Redundancy in presence of Asymptotic Bias

In this section, we introduce the concept of redundancy, and provide necessary and

sufficient conditions under which it holds true. We first give a detailed explanation

of how the standard methodology used to derive conditions for redundancy has to

be altered in order to account for asymptotic bias in the estimator of the moment

conditions. Next, we present the main result of the paper in Theorem 3.2, namely

several equivalent necessary and sufficient conditions for redundancy. Finally, we pro-

vide a brief discussion on the bias-variance trade-off that takes place in our modified

framework.

3.3.1 Redundancy for two sets of moment conditions

In this subsection, we derive necessary and sufficient conditions for redundancy of

one set of moment conditions given a second set. We first explain the approach by

which we derive these redundancy conditions, and then introduce the main result of

the paper.

Consider the following partition of the asymptotic bias and variance of the esti-

mator of the moment conditions,

b0 =

b01

b02

 (3.11)

and

Ω =

Ω11 Ω12

Ω21 Ω22

 (3.12)

where b0i is the asymptotic bias of
√
TÊ[gi(yt; θ0)], for i = 1, 2; and Ωij is the asymp-

totic variance-covariance matrix between
√
TÊ[gi(yt; θ0)] and

√
TÊ[gj(yt; θ0)] with
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i, j = 1, 2.

In Section 3.2, we derived that the optimal weighting matrix for GMM in presence

of asymptotic bias is the inverse of

M0 = Ω + b0b
′
0 =

Ω11 + b01b
′
01 Ω12 + b01b

′
02

Ω21 + b02b
′
01 Ω22 + b02b

′
02

 :=

M11 M12

M21 M22

 (3.13)

where M0 is finite and non-singular, given that Ω is assumed finite and non-singular.

Define

J0 = E

[
∂g(yt; θ0)

∂θ′

]
= E

∂g1(yt; θ0)

∂θ′
∂g2(yt; θ0)

∂θ′

 :=

J01

J02

 (3.14)

We assume the following about the identification of the parameters:

Assumption 3.10. J01 has full column rank.

Remark 3.5. Assumption 3.10 implies that θ0 is fully identified by the first set of

moment conditions only, and thus we require k1 ≥ p as stated in Section 3.2. Notice

that this is a local identification assumption, while assumption 3.1 is about global

identification.

Let θ̂T and θ̈T be the GMM estimators of θ based on the moment conditions

E[g1(yt; θ0)] = 0 only, and the full set of moments in (3.1) respectively. The optimal

weighting matrices are M−1
11 and M−1

0 respectively. Under our assumptions, and

following the derivations in Section 3.2, we have that the asymptotic distributions of

our estimators are given by,

√
T (θ̂T − θ0)

d−→ N (B1∞, (J
′
01M

−1
11 J01)−1J ′01M

−1
11 Ω11M

−1
11 J01(J ′01M

−1
11 J01)−1) (3.15)
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and

√
T (θ̈T − θ0)

d−→ N (B∞, (J
′
0M

−1
0 J0)−1J ′0M

−1
0 ΩM−1

0 J0(J ′0M
−1
0 J0)−1) (3.16)

with

B1∞ = −(J ′01M
−1
11 J01)−1J ′01M

−1
11 b01 (3.17)

where B∞ is defined in (3.10).

The extra moment conditions based on g2 can never hurt asymptotically, in the

sense that they cannot increase the asymptotic mean square error since the difference

AMSE[
√
T (θ̂T − θ0)]− AMSE[

√
T (θ̈T − θ0)] = (J ′01M

−1
11 J01)−1 − (J ′0M

−1
0 J0)−1

(3.18)

is positive semi-definite (p.s.d).4 Hence, we can state the following definition

Definition 3.2 (Redundancy). We say g2 is redundant given g1 if the optimal GMM

estimator of θ based on the first set of moments in (3.1) only, has the same AMSE

as the optimal GMM estimator of θ based on the full set of moments in (3.1)—that

is, if the difference in equation (3.18) is zero.

3.3.1.1 Transforming the Moment Conditions

Here we discuss in detail how the moment conditions should be manipulated in order

to work with more suitable expressions to derive the conditions for redundancy later

in the paper.

Deriving conditions for redundancy of g2 given g1 can be done simply by finding

conditions under which equation (3.18) is equal to zero. However, proceeding this

4The proof of this statement will become clear later in the paper, in Theorem 3.2, once we redefine
the moment conditions based on g2 and rewrite the expression for the AMSE.
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way can be algebraically demanding and hard to interpret. The following alternative

approach, based on Breusch et al. (1999), turns out to be much better in that it sheds

some light on the underlyings of redundancy.

The basic idea is that the estimator derived from moments based on g1 and g2 is

numerically equal to another estimator based on moments from g1 and the residual

of a projection of g2 on g1.

Let

EL[g2(yt; θ0) | g1(yt; θ0)] = Ω21Ω−1
11 g1(yt; θ0) (3.19)

and

r2(yt; θ0) = g2(yt; θ0)− EL[g2(yt; θ0) | g1(yt; θ0)] (3.20)

where EL[· | ·] is the linear projection of g2(yt; θ0) on g1(yt; θ0), and r2(yt; θ0) is

the residual in this linear projection. From these definitions, we can consider GMM

estimation based on the following set of moment conditions

E[ϕ(yt; θ0)] :=

E[g1(yt; θ0)]

E[r2(yt; θ0)]

 =

 E[g1(yt; θ0)]

E[g2(yt; θ0)− EL[g2(yt; θ0) | g1(yt; θ0)]]

 = 0

(3.21)

This new set differs from the original one in that g2(yt; θ0) has been replaced by

the residual in its projection on g1(yt; θ0). Then,

√
T ϕ̄(yt; θ0)

d−→ N (b̃0, Ω̃) (3.22)
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where

b̃0 =

 b01

b02 − Ω21Ω−1
11 b01

 (3.23)

and

Ω̃ =

Ω11 0

0 Ω22 − Ω21Ω−1
11 Ω12

 :=

Ω̃11 Ω̃12

Ω̃21 Ω̃22

 (3.24)

Hence, the weighting matrix is given by the inverse of

M̃0 = Ω̃ + b̃0b̃
′
0

:=

M̃11 M̃12

M̃21 M̃22

 (3.25)

with

M̃11 = Ω11 + b01b
′
01

M̃12 = b01[b02 − Ω21Ω−1
11 b01]′

M̃21 = [b02 − Ω21Ω−1
11 b01]b′01

M̃22 = [Ω22 − Ω21Ω−1
11 Ω12] + [b02 − Ω21Ω−1

11 b01][b02 − Ω21Ω−1
11 b01]′

and the limit Jacobian matrix now is

J̃0 = E

[
∂ϕ(yt; θ0)

∂θ′

]
=

 J01

J02 − Ω21Ω−1
11 J01

 :=

J̃01

J̃02

 (3.26)

This approach was very useful in Breusch et al. (1999) to the extent that it made

the variance-covariance matrix of the moment estimators block-diagonal. This was
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key in their paper since it allowed the delivery of an expression for the asymptotic

variance directly comparable to the one obtained when only the initial set of moments

was used. More precisely, the asymptotic variance was decomposed in two terms: one

equal to the asymptotic variance when only the first set of moments was used, and

the other term coming from the addition of the second set of moments. However, in

presence of asymptotic bias, the focus is not on the asymptotic variance matrix but

on the AMSE matrix as explained in the previous section. As a result, this approach

is not the best since it does not provide, in general, a block-diagonal AMSE matrix,

making the comparison between AMSEs not straightforward.

However, we say “in general” since there is an exception to this last statement.

From the expression of M̃0 it is clear that if M̃12 = 0 we will still get a block-diagonal

AMSE matrix. Since M̃12 = b01[b02 − Ω21Ω−1
11 b01]′, M̃12 will be zero if b01 = 0 or if

b02 = Ω21Ω−1
11 b01. The first condition simply means that the asymptotic bias coming

from the estimator of moments based on g1 is zero; while the second condition means

that the asymptotic bias coming from the estimator of moments based on r2(yt; θ0) is

zero, where E[r2(yt; θ0)] are the transformed moments that deliver a block-diagonal

Ω. Summing up, if after the transformation that makes Ω block-diagonal we have

zero asymptotic bias from the estimator of either set of moment conditions in (3.21),

then M̃12 = 0 and, as a result, we will also have a block-diagonal AMSE matrix.

A natural generalization of Breusch et al.’s (1999) transformation of moments

based on g2 would be to replace in the expression for the projection of g2 on g1

the matrices Ω21 and Ω−1
11 by M21 and M−1

11 . This transformation, though it will

not deliver, in general, a block-diagonal asymptotic variance matrix for the moment

estimators, it will deliver a block-diagonal AMSE matrix. The underlying rationale

can be easily justified as follows:
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Analogous to having C∗ = Ω21Ω−1
11 as the solution to

C∗ = argmin
C
Avar[g2 − Cg1]

where Avar[X] is the asymptotic variance of X; we can think there exists a matrix

B∗ such that

B∗ = argmin
B
AMSE[g2 −Bg1]

It is straightforward to show our conjecture that B∗ = M21M
−1
11 :

Proof. Let B∗ = argminB AMSE[g2 −Bg1], we have that:

AMSE[g2 −Bg1] = Avar[g2 −Bg1] + [Abias(g2 −Bg1)][Abias(g2 −Bg1)]′

= Ω22 +BΩ11B
′ − Ω21B

′ −BΩ12 + [b02 −Bb01][b02 −Bb01]′

where we have used the notation for asymptotic variance and bias provided in (3.12)

and (3.11) respectively.

Thus the FOC is given by:

2B∗Ω11 − 2Ω21 − 2(b02 −B∗b01)b′01 = 0

⇔ B∗[Ω11 + b01b
′
01]− [Ω21 + b02b

′
01] = 0

⇔ B∗M11 −M21 = 0

⇔ B∗ = M21M
−1
11

Therefore, let

ELM [g2(yt; θ0) | g1(yt; θ0)] = M21M
−1
11 g1(yt; θ0) (3.27)
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and

r2M(yt; θ0) = g2(yt; θ0)− ELM [g2(yt; θ0) | g1(yt; θ0)] (3.28)

where ELM [· | ·] is the modified linear projection of g2(yt; θ0) on g1(yt; θ0), and

r2M(yt; θ0) is the residual in this modified linear projection. From these definitions,

we can consider GMM estimation based on the following set of moment conditions:

E[ψ(yt; θ0)] : =

 E[g1(yt; θ0)]

E[r2M(yt; θ0)]


=

 E[g1(yt; θ0)]

E[g2(yt; θ0)− ELM [g2(yt; θ0) | g1(yt; θ0)]]

 = 0 (3.29)

This new set differs from the original one in that g2(yt; θ0) has been replaced by

the residual in the modified projection on g1(yt; θ0). Then,

√
T ψ̄(yt; θ0)

d−→ N (b̆0, Ω̆) (3.30)

where

b̆0 =

 b01

b02 −M21M
−1
11 b01

 (3.31)

and

Ω̆ : =

Ω̆11 Ω̆12

Ω̆21 Ω̆22

 (3.32)
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with

Ω̆11 = Ω11

Ω̆12 = Ω12 − Ω11M
−1
11 M12

Ω̆21 = (Ω12 − Ω11M
−1
11 M12)′

Ω̆22 = Ω22 +M21M
−1
11 Ω11M

−1
11 M12 − Ω21M

−1
11 M12 − (Ω21M

−1
11 M12)′

Hence, after some algebra, the weighting matrix is given by the inverse of

M̆0 = Ω̆ + b̆0b̆
′
0

=

Ω11 + b01b
′
01 0

0 (Ω22 + b02b
′
02)−M21M

−1
11 M12


:=

M11 0

0 M22 −M21M
−1
11 M12


:=

M̆11 M̆12

M̆21 M̆22

 (3.33)

Finally, the limit Jacobian matrix is now given by

J̆0 = E

[
∂ψ(yt; θ0)

∂θ′

]

=

 J01

J02 −M21M
−1
11 J01

 :=

J̆01

J̆02

 (3.34)
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Remark 3.6. Though this approach is more straightforward and adequate for our

general framework, it can be shown, with some more algebra, that the redundancy

results below can also be obtained from the transformed moments (3.21).

Remark 3.7. Two special cases are worth noticing. If b02 − Ω21Ω−1
11 b01 = 0, or put

in a different way b02 = Ω21Ω−1
11 b01:

M21M
−1
11 = (Ω21 + b02b

′
01)(Ω11 + b01b

′
01)−1

= (Ω21 + Ω21Ω−1
11 b01b

′
01)(Ω11 + b01b

′
01)−1

= Ω21(I + Ω−1
11 b01b

′
01)(I + Ω−1

11 b01b
′
01)−1Ω−1

11

= Ω21Ω−1
11

Similarly, if b01 = 0 it is straightforward to see that M21M
−1
11 = Ω21Ω−1

11 . This

means that, if b02 − Ω21Ω−1
11 b01 = 0 or b01 = 0, transforming the moment conditions

such that the AMSE matrix is block-diagonal, reduces to transforming them just to

make Ω block-diagonal.

This is in line with our previous conclusion: “if after the transformation that

makes Ω block-diagonal we have zero asymptotic bias from the estimator of either

set of moment conditions in (3.21), then M̃12 = 0 and, as a result, we will also

have a block-diagonal AMSE matrix.” Overall, this tell us that in either of these two

cases to analyze redundancy we can simply rely on the transformation that makes Ω

block-diagonal. This is the foundation for our first result, Theorem 3.1, in the next

subsection.

Before moving to the results, it is useful to summarize the main notation intro-

duced so far and that will be used henceforward in this paper.
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Notation. Throughout this paper we use the following notation:

Compact notation: g := g(yt; ·); similarly gi := gi(yt; ·) for i = 1, 2.

The same compact notation applies to r2(yt; ·) and r2M(yt; ·).

b0: asymptotic bias (column) vector of the estimator of the full set of

moment conditions as defined in (3.11).

Ω: asymptotic variance matrix of the estimator of the full set of moment

conditions as defined in (3.12).

M0 = Ω+b0b
′
0: AMSE matrix of the estimator of the full set of moment

conditions as defined in (3.13).

J0: limit Jacobian matrix as defined in (3.14).

These objects are based on the moment conditions E[g(yt; θ0)] = 0 de-

fined in (3.1).

When the above objects have the “ ˜ ” symbol on top, they are based

instead on the modified set of moment conditions, E[ϕ(yt; θ0)] = 0,

defined in (3.21). That is, the projection using blocks of Ω.

When the above objects have instead the “ ˘ ” symbol on top, they are

based instead on the modified set of moment conditions, E[ψ(yt; θ0)] =

0, defined in (3.29). That is, the projection using blocks of M .

3.3.1.2 Redundancy Results

The main results of the paper are presented here. The theorems introduced in this

subsection are key to understanding the central message delivered in this paper. The-

orem 3.2 presents the more general result. The proof of this theorem is also given

here since it is simple and it provides some insights on the result.

Before establishing our first result, we introduce the following lemma that justifies
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using either the original or the modified set of moment conditions.

Lemma 3.1. Let Assumptions 3.1 - 3.10 hold. Let θ̈T be the GMM estimator of θ

based on the full set of moment conditions (3.1), using weighting matrix M−1
0 ; and

let θ̆T be the GMM estimator of θ based on the modified set of moment conditions

(3.29), using the weighting matrix M̆−1
0 . Then θ̈T is numerically equal to θ̆T .

The intuition is that since the moment conditions based on ψ(yt; θ0) in (3.29)

contain the same information as those based on g(yt; θ0) in (3.1), the GMM estimators

based on each of these sets are expected to be numerically equal.5 The proof is given

in the Appendix.

Remember that redundancy in our more general framework will be established in

terms of AMSE and not asymptotic variance as in the standard case. The intuition

is that, in our modified setting, we could also have a gain in terms of asymptotic

bias, which would be overlooked if we were to focus only on the asymptotic variance.

Thus, we need next to derive the expression for the AMSE.

The AMSE, for a choice of weighting matrix M̆−1
0 , is given by

AMSE = (J̆ ′0M̆
−1
0 J̆0)−1

=


[
J̆ ′01 J̆ ′02

]M̆−1
11 0

0 M̆−1
22


J̆01

J̆02



−1

=
(
J̆ ′01M̆

−1
11 J̆01 + J̆ ′02M̆

−1
22 J̆02

)−1

=
(
J ′01M

−1
11 J01 + J̆ ′02(M22 −M21M

−1
11 M12)−1J̆02

)−1

(3.35)

where we have used that M̆−1
11 = M−1

11 and that J̆01 = J01.

This expression facilitates the comparison with a situation where only moments

based on g1(yt; θ0) are used, since the inverse of the first term, (J ′01M
−1
11 J01)−1, corre-

5They will be numerically equal as long as the first step consistent estimators used for Ω and J0
are the same. Otherwise, they will just be asymptotically equivalent since both are consistent.
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sponds to the AMSE for that case. Consequently, we can think that the other term

arises from including also moments based on g2(yt; θ0).

Moreover, this expression provides a proof for our earlier statement that the extra

moment conditions given by g2 can never hurt asymptotically, in the sense that they

cannot increase the asymptotic mean square error. That is, using equation (3.35), it

is now straightforward to check that the difference

AMSE[
√
T (θ̂T − θ0)]− AMSE[

√
T (θ̆T − θ0)]

= (J ′01M
−1
11 J01)−1 −

(
J ′01M

−1
11 J01 + J̆ ′02M̆

−1
22 J̆02

)−1

(3.36)

is positive semi-definite.

Based on Lemma 1, the following two theorems state the conditions for g2 to be

redundant given g1.

Theorem 3.1 (Case of M̃12 = 0: zero asymptotic bias from g1 or r2). Under assump-

tions 3.1 - 3.10, if b01 = 0 or b02 − Ω21Ω−1
11 b01 = 0, then M̃12 = 0, and as a result the

following statements are equivalent:

(i) g2 is redundant given g1.

(ii) J̃02 := E[∂r2(yt, θ0)/∂θ′] = E{∂[g2(yt, θ0)− Ω21Ω−1
11 g1(yt, θ0)]/∂θ′} = 0.

(iii) J02 = Ω21Ω−1
11 J01.

(iv) There exists a k1 × p matrix A such that J01 = Ω11A and J02 = Ω21A.

Remark 3.8. Let θ̃T be the GMM estimator of θ based on the modified set of moment

conditions (3.21) using the weighting matrix M̃−1
0 . Notice that Lemma 3.1 holds with

θ̃T instead of θ̆T and M̃0 instead of M̆0 since as we showed in the previous subsection

when b01 = 0 or b02 − Ω21Ω−1
11 b01 = 0 we have that M21M

−1
11 = Ω21Ω−1

11 .
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Remark 3.9. Theorem 3.1 is simply a generalization of Theorem 3.1 in Breusch et al.

(1999). In their paper, they do not consider asymptotic bias in any of the moment

estimators. Our Theorem shows that the same result can be obtained if we do not

allow for asymptotic bias in either the estimator of moments based on g1 or on r2.

That is, their result can be seen as a particular case of our Theorem 3.1.

Proof. If the asymptotic bias coming from g1 is zero, that is b01 = 0, or the asymptotic

bias coming from r2 is zero, that is b02 − Ω21Ω−1
11 b01 = 0, we showed in the previous

subsection that M21M
−1
11 = Ω21Ω−1

11 , which means that we can use the transformation

that makes block-diagonal Ω since it also makes the AMSE matrix block-diagonal.

Therefore, the limit Jacobian Matrix reduces to the same as in Breusch et al. (1999),

that is matrix G in equation (14) of their paper. Thus, J̆02 = J̃02 = J02−Ω21Ω−1
11 J01 =

G2. As a result:

AMSE[
√
T (θ̂T − θ0)]− AMSE[

√
T (θ̆T − θ0)]

= (J ′01M
−1
11 J01)−1 −

(
J ′01M

−1
11 J01 + J̆ ′02M̆

−1
22 J̆02

)−1

= (J ′01Ω−1
11 J01)−1 −

(
J ′01Ω−1

11 J01 + J̃ ′02M̃
−1
22 J̃02

)−1

where we have that if b01 = 0, then M̃22 = Ω22 − Ω21Ω−1
11 Ω12 + b02b

′
02; while if b02 −

Ω21Ω−1
11 b01 = 0 then M̃22 = Ω22 − Ω21Ω−1

11 Ω12.

Since J01 and J̃02 are equal to Breusch et al. (1999) D1 and G2 matrices re-

spectively, the expression for the difference of AMSE is exactly equal to that for the

difference in asymptotic variance in their paper up to M̃22 which in their paper is

equal to Σ22 = Ω22 − Ω21Ω−1
11 Ω12. Hence, the proof follows from the proof of their

Theorem 1, since to establish the result the actual expression for Σ22 does not matter,

we only need it to be non-singular.

The next theorem presents a more general redundancy result, where we allow for

non-zero asymptotic bias coming from both g1 and g2, and from the estimator of the
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modified moments.

Theorem 3.2 (Case of non-zero bias). Under assumptions 3.1 - 3.10, the following

statements are equivalent:

(i) g2 is redundant given g1.

(ii) J̆02 := E[∂r2M(yt, θ0)/∂θ′] = E{∂[g2(yt, θ0)−M21M
−1
11 g1(yt, θ0)]/∂θ′} = 0.

(iii) J02 = M21M
−1
11 J01.

(iv) There exists a k1 × p matrix A such that J01 = M11A and J02 = M21A.

Remark 3.10. From condition (iii), it is clear that when the asymptotic bias coming

from g1 is zero, that is b01 = 0, or the asymptotic bias coming from r2 is zero, that is

b02−Ω21Ω−1
11 b01 = 0, since we showed that M21M

−1
11 = Ω21Ω−1

11 we are back to Theorem

3.1 and thus to Breusch et al. (1999)’s result.

Proof. (i) ⇔ (ii): The condition for redundancy of g2 given g1 is

(J ′01M
−1
11 J01)−1 = (J ′0M

−1
0 J0)−1,

or

J ′01M
−1
11 J01 = J ′0M

−1
0 J0,

From equation (3.35) this is equivalent to

J ′01M
−1
11 J01 = J ′01M

−1
11 J01 + J̆ ′02M̆

−1
22 J̆02.

and therefore to

J̆ ′02M̆
−1
22 J̆02 = 0
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This is possible if and only if J̆02 = 0 because J̆ ′02M̆
−1
22 J̆02 is p.s.d. and M̆−1

22 is

nonsingular. Thus (i) and (ii) are equivalent.

(ii) ⇔ (iii): This is straightforward from the definition of J̆02 in (3.34): J̆02 =

J02 −M21M
−1
11 J01 = 0 iff J02 = M21M

−1
11 J01.

(iii) ⇔ (iv): If (iii) holds, then (iv) holds with A = M−1
11 J01. Conversely, if (iv)

holds, then A = M−1
11 J01 and J02 = M21A = M21M

−1
11 J01.

Remark 3.11. Notice that condition (iii) can equivalently be stated in terms of Ω

and b0 as J02 = [Ω21 + b02b
′
01][Ω11 + b01b

′
01]−1J01. This is trivial, since by definition

M21 = [Ω21 + b02b
′
01] and M11 = [Ω11 + b01b

′
01], therefore J02 = M21M

−1
11 J01 iff J02 =

[Ω21 + b02b
′
01][Ω11 + b01b

′
01]−1J01.

3.3.2 Discussion: Two cases of Interest

In this subsection, we present a brief discussion on redundancy when we try to dis-

entangle asymptotic variance and bias reduction. Since redundancy is established in

terms of AMSE, it is natural to wonder whether we can say something solely in terms

of variance or bias.

3.3.2.1 Zero Variance Reduction

Theorem 3.2 establishes the conditions under which g2 is redundant given g1. As

explained before, in presence of asymptotic bias, this is done in terms of AMSE and

not just variance. However, since in many situations we might wonder about the

effect on the asymptotic variance in particular, it is then natural to wonder whether

we can say something only in terms of variance reduction.

Imagine we are singularly interested in variance reduction, and we want to un-

derstand what the impact of adding a second set of moments is in the asymptotic

variance, instead of focusing on the AMSE as a whole. We might be inclined to think

that in order to get a zero variance reduction in this more general case, we should apply
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the redundancy condition for the case where there is no bias, i.e., J02 = Ω21Ω−1
11 J01.6

The rationale for this thinking is that we would then be focusing on variance. How-

ever, we will see this is not in general the case. The following corollary provides a

first insight:

Corollary 3.1. J02 = Ω21Ω−1
11 J01 does not preclude variance reduction in general. If

in addition, the asymptotic bias of the modified moments is zero, b02−M21M
−1
11 b01 = 0,

or, more generally, Ω−1
11 Ω12 = M−1

11 M12, the variance reduction is zero. But this also

delivers a zero AMSE reduction.

The proof of this corollary is presented in the Appendix. The reader is encouraged

to go through the details of the proof to get further insights on this result.

The implications of condition J02 = Ω21Ω−1
11 J01 are worthy of further comment.

Under this condition, we have that J̆02 = (Ω21Ω−1
11 − M21M

−1
11 )J01. Since M21 =

[Ω21 + b02b
′
01] and M11 = [Ω11 + b01b

′
01] it is clear that in the case of zero asymptotic

bias, or just b01 = 0 or b02 = Ω21Ω−1
11 b01, as discussed in Theorem 3.1, J̆02 = 0. As a

result, there will be zero reduction in variance, and also in AMSE.

Moreover, as will be shown later on, it is sufficient to have zero asymptotic bias

in the modified moment conditions r2M to achieve this result. This has the same

flavor as Theorem 1 of Breusch et al. (1999) in the sense that there is no variance

reduction from adding moments based on g2 if under zero bias of the transformed

moments, r2M , we have that J02 = Ω21Ω−1
11 J01 = 0. This makes sense, since under

zero bias of the transformed moments, the asymptotic covariance matrix Ω̆ becomes

block-diagonal.

More precisely, notice that Ω̆21 = Ω21 −M21M
−1
11 Ω11. Therefore, the condition

Ω21−M21M
−1
11 Ω11 = 0 amounts to having Ω̆21 = 0 and thus also Ω̆12 = 0. Remember

that Ω̆21 and Ω̆12 are the covariance matrices between the moments based on g1 and

6This is the same condition as in the zero bias case from g1 or r2 from Theorem 3.1, or the full
zero bias case from Breusch et al. (1999).
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those based on the modified moment conditions r2M . In other words, what this

result is telling us, is that if the modified moment conditions are orthogonal to the

set of moments based on g1, then we get redundancy under the simpler condition

J02 = Ω21Ω−1
11 J01.

3.3.2.2 Bias reduction

In the same way that we might be interested in variance reduction alone, it is also

natural to wonder whether we can say something just in terms of bias reduction.

Unfortunately, as suspected based on the above results for the variance reduction

case, this is a difficult task. The corollary below provides a result in that direction:

Corollary 3.2. A zero asymptotic bias of the estimator of the modified moment

conditions E[r2M(yt; θ)], i.e., b̆02 = b02 − M21M
−1
11 b01 = 0, does not preclude, in

general, a bias reduction.

The proof of this corollary is given in the Appendix. The reader is again encour-

aged to go through the details of the proof to get further insights on this result.

Remark 3.12. Notice, however, that if J02 = M21M
−1
11 J01 then there will be not only

no bias reduction, but also no AMSE reduction as shown in Theorem 3.2.

We may also wonder if there is any particular situation in which we can get

full bias reduction, i.e., B̆∞ = 0. From the proof of Corollary 3.2, we can write

B̆∞ = −(J ′01M
−1
11 J01 + J̆ ′02M̆

−1
22 J̆02)−1(J ′01M

−1
11 b01 + J̆ ′02M̆

−1
22 b̆02). Given that the first

factor of B̆∞ is non-singular, B̆∞ = 0 if and only if the second factor is zero. Using,

that J̆02 = J02 −M21M
−1
11 J01, and that b̆02 = b02 −M21M

−1
11 b01 we get that B̆∞ = 0 if
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and only if

J ′01M
−1
11 b01 + J̆ ′02M̆

−1
22 b̆02

= J ′01M
−1
11 b01 + (J02 −M21M

−1
11 J01)′M̆−1

22 (b02 −M21M
−1
11 b01)

= 0

Clearly, J ′01M
−1
11 b01 6= 0, since this is the second factor for the asymptotic bias when

we use only moments based on g1. Hence, if b̆02 = b02 −M21M
−1
11 b01 = 0, i.e., zero

asymptotic bias from the modified moment conditions, then we won’t be able to

achieve full bias reduction. As a result, in order to achieve full bias reduction we will

require the two terms above to have opposite signs.

From all the discussion in this subsection, it remains to say that in both Corollary

3.1 and Corollary 3.2 we can appreciate how the usual variance-bias trade-off plays a

key role in making these corollaries hold.

3.4 Partial Redundancy in presence of Asymptotic

Bias

This section can be seen as an extension of the redundancy results for the case when

the focus is on a particular subset of the parameter set. Though we present here

the concept of partial redundancy and some interesting additional results, they are

immaterial to the main message of the paper which was presented in the previous

section. Hence it is upon the reader’s interests to go through the details of this

section.

So far we have derived conditions for redundancy focusing on the entire parameter

set. However, in many situations we are interested in the estimation of only a subset

of the parameters, and we might even think of the rest as nuisance parameters. It
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is then natural to wonder how the redundancy conditions would adapt in this case.

That is, when is one set of moment conditions redundant given the other set but

looking at only a subset of the parameters? This is known as partial redundancy.

In this section, we provide necessary and sufficient conditions for partial redun-

dancy of one set of moments given the other. The basic approach consists of parti-

tioning the parameter vector, and the corresponding Jacobian matrices in order to

disentangle the conditions for one subset of parameters only.

Consider the following partition of the p× 1 parameter vector θ

θ = (θ′1 θ′2)′ (3.37)

Next, consider the corresponding partition for the limit Jacobian matrices J0 and

J̆0 from equation (3.14) and (3.34) respectively,

J0 = E

[
∂g(yt; θ0)

∂θ′

]
= E


∂g1(yt; θ0)

∂θ′1

∂g1(yt; θ0)

∂θ′2
∂g2(yt; θ0)

∂θ′1

∂g2(yt; θ0)

∂θ′2


:=

J01

J02

 :=

J11 J12

J21 J22

 (3.38)

and

J̆0 = E

[
∂ψ(yt; θ0)

∂θ′

]
=

 J11 J12

J21 −M21M
−1
11 J11 J22 −M21M

−1
11 J12


:=

J̆01

J̆02

 :=

J̆11 J̆12

J̆21 J̆22

 (3.39)

For now, we continue to assume that θ0 = (θ′01 θ′02)′ is identified by the first set

of moments only. Hence we assume as before that J01 = [J11 J12] has a full column
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rank, and thus we require k1 ≥ p. We will slightly relax this assumption later in this

Section to allow only part of the parameter vector to be identified by the first set of

moments.

In order to establish the partial redundancy results, we will focus on θ1. First,

we need to derive partitioned expressions for the AMSE and extract from there the

AMSE for θ1.

From Section 3.3, the AMSE of the GMM estimator θ̂T of θ based on the first set

of moment conditions only, using weighting matrix M−1
11 is given by

AMSE[
√
T (θ̂T − θ0)] = (J ′01M

−1
11 J01)−1

=

J ′11M
−1
11 J11 J ′11M

−1
11 J12

J ′12M
−1
11 J11 J ′12M

−1
11 J12


−1

(3.40)

Then, the AMSE for θ̂1T will be given by the first block-partition of the inverse of

the above matrix. That is,

AMSE[
√
T (θ̂1T − θ01)] = (J ′11M

−1
11 J11 − J ′11M

−1
11 J12(J ′12M

−1
11 J12)−1J ′12M

−1
11 J11)−1

:= (Σθ1,k1)
−1 (3.41)

where we have applied the partitioned-matrix inverse rule to get the result.

Similarly, from Section 3.3, the AMSE of the GMM estimator θ̆T of θ based on
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the full set of moment conditions (3.29), using weighting matrix M̆−1
0 is given by

AMSE[
√
T (θ̆T − θ0)] = (J̆ ′0M̆

−1
0 J̆0)−1

= (J ′01M
−1
11 J01 + J̆ ′02M̆

−1
22 J̆02)−1

=

J ′11M
−1
11 J11 + J̆ ′21M̆

−1
22 J̆21 J ′11M

−1
11 J12 + J̆ ′21M̆

−1
22 J̆22

J ′12M
−1
11 J11 + J̆ ′22M̆

−1
22 J̆21 J ′12M

−1
11 J12 + J̆ ′22M̆

−1
22 J̆22


−1

(3.42)

where we have used the expression for AMSE in (3.35) from Section 3.3. Therefore,

the AMSE for θ̆1T will be given by the first block-partition of the inverse of the above

matrix. That is,

AMSE[
√
T (θ̆1T − θ01)]

=
[
(J ′11M

−1
11 J11 + J̆ ′21M̆

−1
22 J̆21)− (J ′11M

−1
11 J12 + J̆ ′21M̆

−1
22 J̆22)

×(J ′12M
−1
11 J12 + J̆ ′22M̆

−1
22 J̆22)−1(J ′12M

−1
11 J11 + J̆ ′22M̆

−1
22 J̆21)

]−1

:= (Σθ1,k)
−1 (3.43)

where we have applied again the partitioned-matrix inverse rule.

From the above expressions for AMSE, (3.41) and (3.43), a necessary and sufficient

condition for g2 to be partially redundant given g1 for θ1, is that Σθ1,k1 = Σθ1,k. This

gives rise to our next definition,

Definition 3.3 (Partial Redundancy for θ1). We say that g2 is partially redundant

for the estimation of θ1 given g1, if the optimal GMM estimator of θ1 based on the first

set of moments in (3.29) only, has the same AMSE as the optimal GMM estimator

of θ1 based on the full set of moments in (3.29). That is, if Σθ1,k1 = Σθ1,k.

Before stating the result, we will need the following lemma
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Lemma 3.2. Let Assumptions 3.1 - 3.10 hold. Define

A := J ′12M
−1
11 J12 + J̆ ′22M̆

−1
22 J̆22 (3.44a)

B := M̆−1
22 − M̆−1

22 J̆22A
−1J̆ ′22M̆

−1
22 (3.44b)

C := J̆21 − J̆22(J ′12M
−1
11 J12)−1(J ′12M

−1
11 J11). (3.44c)

Then B is positive definite, and Σθ1,k − Σθ1,k1 = C ′BC.

The proof of this lemma is given in the Appendix.

Now we are in the position to present our partial redundancy result,

Theorem 3.3. Under Assumptions 3.1 - 3.10, the following statements are equivalent

(i) g2 is partially redundant, for the estimation of θ1, given g1.

(ii) J̆21 = J̆22(J ′12M
−1
11 J12)−1(J ′12M

−1
11 J11).

(iii) J21 −M21M
−1
11 J11 = (J22 −M21M

−1
11 J12)(J ′12M

−1
11 J12)−1(J ′12M

−1
11 J11)

Proof. By definition, g2 is partially redundant, for the estimation of θ1, given g1

when Σθ1,k − Σθ1,k1 = 0. From Lemma 2, Σθ1,k − Σθ1,k1 = C ′BC and B is positive

definite. Hence, Σθ1,k = Σθ1,k1 if and only if C = 0. Conditions (ii) and (iii) are just

restatements of C = 0.

Remark 3.13. It is important to realize the relationship between redundancy and

partial redundancy. From the comparison of Theorem 3.3 and Theorem 3.2, we can

notice that if g2 is redundant given g1, we must have that g2 is partially redundant

given g1, for any subset of θ. This is the case since, g2 is redundant given g1 if

J̆02 = [J̆21 J̆22] = 0 which clearly implies the partial redundancy condition (ii).
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3.4.1 Special Case of Partial Redundancy

So far we have always maintained the assumption that the full set of true values of

the parameter, θ0, is identified from the first set of moments only. However, there

are situations in which this is not the case. That is, the first set of moments could

only identify part of the set of parameters. For instance, it could only depend on

part of the parameter set, say θ1. In this situation, our previous results will not hold.

Hence, it is interesting to study what it entails to achieve partial redundancy when

this assumption is relaxed.

For this purpose, we will focus on the simple case in which the first set of moment

conditions depends only on θ1, while the second set of moment conditions depends

on both θ1 and θ2. That is, the set of moment conditions is now given by


E[g1(yt; θ01)] = 0

E[g2(yt; θ01, θ02)] = 0 for t = 1, ..., T

(3.45)

Remark 3.14. This analysis could alternatively be carried out by using the GMM

equivalence of estimators when we concentrate out nuisance parameters (e.g., by re-

placing them with an estimate). For instance, Crepon, Kramarz, and Trognon (1997)

presents a good discussion on elimination of nuisance parameters, though in a case

with no asymptotic bias. This alternative approach goes beyond the scope of this paper,

hence the extension of their results is left for future research.

We continue with the notation from the previous section, with the caveat that now

J12 = 0 and as a result J̆22 = J22. Our identification assumptions are now slightly

modified in the following manner:

Assumption 3.11. The true value of the parameters θ01 and θ02 are fully identified

from the first and second set of moments only respectively.

Assumption 3.12. J11 and J22 are of full column rank.
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The definition below states what partial redundancy entails in this modified setup,

Definition 3.4 (Partial Redundancy for θ1). We say that g2 is partially redundant

for the estimation of θ1 given g1, if the optimal GMM estimator of θ1 based on the first

set of moments in (3.45) only, has the same AMSE as the optimal GMM estimator

of θ1 based on the full set of moments in (3.45).

Remark 3.15. If g1 and g2 are of dimension k1 and k2 respectively, and θ1 and θ2 are

of dimension p1 and p2 respectively, the identification assumption above requires that

k2 ≥ p2. In particular, if k2 = p2 we could think, as in the case with no asymptotic

bias (e.g., Ahu and Schmidt, 1995), that adding g2 does not affect the GMM estimate

of θ1, that is, g2 is partially redundant given g1. This can be easily shown since from

equation (3.43):

AMSE[
√
T (θ̆1T − θ01)] = [J ′11M

−1
11 J11 + J̆ ′21M̆

−1
22 J̆21 − J̆ ′21M̆

−1
22 J22(J ′22M̆

−1
22 J22)−1

× J ′22M̆
−1
22 J̆21]−1

where we have used that in this case J12 = 0 and J̆22 = J22.

Now if k2 = p2 then J22 is a non-singular square matrix. As a result, we can

apply distributive property of the inverse of a product of non-singular matrices to

(J ′22M̆
−1
22 J22)−1 in the above expression:

AMSE[
√
T (θ̆1T − θ01)] = [J ′11M

−1
11 J11 + J̆ ′21M̆

−1
22 J̆21 − J̆ ′21M̆

−1
22 J22J

−1
22 M̆22(J ′22)−1

× J ′22M̆
−1
22 J̆21]−1

= [J ′11M
−1
11 J11 + J̆ ′21M̆

−1
22 J̆21 − J̆ ′21M̆

−1
22 J̆21]−1

= [J ′11M
−1
11 J11]−1

which coincides with the AMSE in the case when we use moments based on g1 only.

Hence, as expected, g2 would be partially redundant, for the estimation of θ1, in this
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case.

However, when k2 > p2, adding the second set of moments could improve the

estimation of θ1 or not. We are interested in recognizing circumstances in which such

an improvement does not take place.

Theorem 3.4. Under Assumptions 3.2-3.9, 3.11, and 3.12, the following statements

are equivalent:

(i) g2 is partially redundant for the estimation of θ1 given g1.

(ii) J̆21 = J22(J ′22M̆
−1
22 J22)−1J ′22M̆

−1
22 J̆21.

(iii) There exists a p2 × p1 matrix R such that J̆21 = J22R.

where J̆21 = J21−M21M
−1
11 J11 and M̆22 = M22−M21M

−1
11 M12 as defined in equations

(3.39) and (3.33) respectively.

Proof. The AMSE of the GMM estimator of θ1 based on the first set of moment

conditions in (3.45) is given by

AMSE[
√
T (θ̂1T − θ01)] = (J ′11M

−1
11 J11)−1

:= (Σθ1,k1)
−1 (3.46)

since J12 = 0.

The AMSE of the GMM estimator of θ1 based on the full set of moment conditions

in (3.45) is given by

AMSE[
√
T (θ̆1T − θ01)] =

[
J ′11M

−1
11 J11 + J̆ ′21M̆

−1
22 J̆21 − J̆ ′21M̆

−1
22 J22

×(J ′22M̆
−1
22 J22)−1J ′22M̆

−1
22 J̆21

]−1

:= (Σθ1,k)
−1 (3.47)
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where we have used again that J12 = 0, and that J̆22 = J22.

Therefore, we get that

Σθ1,k − Σθ1,k1 = J̆ ′21M̆
−1
22 J̆21 − J̆ ′21M̆

−1
22 J22(J ′22M̆

−1
22 J22)−1J ′22M̆

−1
22 J̆21

= J̆ ′21

[
M̆−1

22 − M̆−1
22 J22(J ′22M̆

−1
22 J22)−1J ′22M̆

−1
22

]
J̆21

= J̆ ′21M̆
−1/2
22

[
I − M̆−1/2

22 J22(J ′22M̆
−1
22 J22)−1J ′22M̆

−1/2
22

]
M̆
−1/2
22 J̆21

(3.48)

Since L = [I − M̆−1/2
22 J22(J ′22M̆

−1
22 J22)−1J ′22M̆

−1/2
22 ] = [I −P ] is a projection matrix

onto the space orthogonal to M̆
−1/2
22 J22 , it is symmetric and idempotent. As a result,

we can use that L = LL in the above expression to obtain

Σθ1,k − Σθ1,k1

= J̆ ′21M̆
−1/2
22 LLM̆

−1/2
22 J̆21

= J̆ ′21M̆
−1/2
22

[
I − M̆−1/2

22 J22(J ′22M̆
−1
22 J22)−1J ′22M̆

−1/2
22

]
×
[
I − M̆−1/2

22 J22(J ′22M̆
−1
22 J22)−1J ′22M̆

−1/2
22

]
M̆
−1/2
22 J̆21

Thus,

Σθ1,k − Σθ1,k1

=
[
J̆ ′21M̆

−1/2
22 − J̆ ′21M̆

−1
22 J22(J ′22M̆

−1
22 J22)−1J ′22M̆

−1/2
22

]
×
[
M̆
−1/2
22 J̆21 − M̆−1/2

22 J22(J ′22M̆
−1
22 J22)−1J ′22M̆

−1
22 J̆21

]
=
[
J̆ ′21 − J̆ ′21M̆

−1
22 J22(J ′22M̆

−1
22 J22)−1J ′22

]
M̆−1

22

[
J̆21 − J22(J ′22M̆

−1
22 J22)−1J ′22M̆

−1
22 J̆21

]
=
[
J̆21 − J22(J ′22M̆

−1
22 J22)−1J ′22M̆

−1
22 J̆21

]′
M̆−1

22

[
J̆21 − J22(J ′22M̆

−1
22 J22)−1J ′22M̆

−1
22 J̆21

]
(3.49)
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which is positive semi-definite. Therefore, adding the second set of moments cannot

hurt the AMSE of the estimation of θ1.

(i) ⇔ (ii): The condition for partial redundancy of g2 for the estimation of θ1

given g1 is

Σθ1,k − Σθ1,k1 = 0

From equation (3.49) this occurs if and only if

[
J̆21 − J22(J ′22M̆

−1
22 J22)−1J ′22M̆

−1
22 J̆21

]
= 0

because the expression in equation 3.49 is p.s.d. and M̆−1
22 is non-singular. This is

equal to condition (ii). Thus (i) and (ii) are equivalent.

(ii) ⇔ (iii): If (ii) holds, then (iii) holds with R = (J ′22M̆
−1
22 J22)−1J ′22M̆

−1
22 J̆21.

Conversely, if (iii) holds, then R = (J ′22M̆
−1
22 J22)−1J ′22M̆

−1
22 J̆21 and J̆21 = J22R =

J22(J ′22M̆
−1
22 J22)−1J ′22M̆

−1
22 J̆21.

Remark 3.16. Notice that there is also a direct interpretation to the equivalence

between (i) and (iii).

From (3.49) we also have that

Σθ1,k − Σθ1,k1 = J̆ ′21M̆
−1/2
22 [I − P ]M̆

−1/2
22 J̆21

where P = [M̆
−1/2
22 J22(J ′22M̆

−1
22 J22)−1J ′22M̆

−1/2
22 ] is the projection onto the space spanned

by the columns of M̆
−1/2
22 J22.

Hence, Σθ1,k − Σθ1,k1 = 0 if and only if M̆
−1/2
22 J̆21 is in the column space of

M̆
−1/2
22 J22, or J̆21 is in the column space of J22, which is condition (iii).
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3.5 Concluding Remarks

The literature on redundancy until now has been based on asymptotically unbiased

estimators of the moment conditions, leading to a concept of redundancy and partial

redundancy defined in terms of efficiency of the estimator of the parameters only.

However, in the last decade, asymptotically biased estimators have started to gain

some support in estimation procedures. Hence the need to revisit these concepts

within this broader class of estimators, which includes asymptotically unbiased esti-

mators as a particular case.

In this paper, we focused on valid moment conditions under the caveat that its

estimators were asymptotically biased. Therefore we extended the redundancy litera-

ture to contemplate these cases. We revisited the concept of redundancy and partial

redundancy using AMSE as a criterion. First, we argued that the GMM optimal

weighting matrix should now be such that it minimizes AMSE instead of asymptotic

variance. As a result, we redefined this matrix to be equal to the inverse of the AMSE,

instead of asymptotic variance, of the estimator of the moment conditions. Next, we

showed that in this more general framework adding valid moments cannot hurt in

terms of AMSE. This parallels the well known result, in standard GMM settings,

that adding valid moments can never hurt the asymptotic efficiency of the optimal

GMM estimator.

Finally, we derived conditions for redundancy and partial redundancy in this

broader framework to assess the information that extra valid moment conditions add

to the estimation. We intended to deliver the idea that in certain situations we can

take advantage of asymptotic bias, and hence it is not always detrimental in terms of

AMSE reduction. In any case, we believe that extending the existent theory to work

with asymptotically biased estimators is a challenging topic for future research.
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3.A Appendix

In this appendix we present the proof of Lemmas and Theorems that were immaterial

to the main message of this paper and thus were relegated to the appendix.

3.A.1 GMM Estimator under Non-zero Asymptotic Bias

In this subsection we present a sketch of the proof for the derivation of the asymptotic

distribution of the GMM estimator under non-zero asymptotic bias.

Proof (Sketch of the proof). Let θ̈T be the GMM estimator of θ based on the full set

of moment conditions (3.1). The minimization problem from Section 3.2 is given by

θ̈T = argmin
θ∈Θ

QT (θ),

with

QT (θ) = ḡ(θ)′Wḡ(θ)

ḡ(θ) = (Ê[g1(yt; θ)]
′ Ê[g2(yt; θ)]

′)′

where Ê[gi(yt; θ)] denotes the sample average estimator of E[gi(yt; θ0)], for i = 1, 2,

and W is a p.d. weighting matrix.

Notice that this would deliver an unfeasible estimator since the weighting matrix

W is a population object as it is standard in GMM. As a result, we replace W with

a consistent estimator WT and derive the asymptotic distribution for the feasible es-

timator as it is standard in the literature.

From the first order condition
∂QT

∂θ
(θ̈T ) = 0 and a mean value expansion of ḡ(θ̈T )
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around θ0 we have that

∂QT

∂θ
(θ̈T ) =

∂ḡ′

∂θ
(θ̈T )WT ḡ(θ̈T ) = 0

⇒∂ḡ′

∂θ
(θ̈T )WT ḡ(θ0) +

∂ḡ′

∂θ
(θ̈T )WT

∂ḡ

∂θ′
(θ̄T )(θ̈T − θ0) = 0 (3.50)

where θ̄T is between θ̈T and θ0 component–wise.

We pre-multiply (3.50) by
√
T :

∂ḡ′

∂θ
(θ̈T )WT

√
T ḡ(θ0) +

∂ḡ′

∂θ
(θ̈T )WT

∂ḡ

∂θ′
(θ̄T )
√
T (θ̈T − θ0) = 0 (3.51)

We rewrite the above expression as

√
T (θ̈T − θ0) = −

[
∂ḡ′

∂θ
(θ̈T )WT

∂ḡ

∂θ′
(θ̄T )

]−1
∂ḡ′

∂θ
(θ̈T )WT

√
T ḡ(θ0) (3.52)

By assumption 3.4 and 3.5 we have that
√
T ḡ(θ0)

d−→ N (b0, Ω).

To conclude the proof we need the following additional lemma:

Lemma 3.3. Suppose Assumptions 3.1, 3.2, and 3.10 are satisfied. If (i) plimT→∞ θ̈ =

θ0; and (ii) plimT→∞WT = W ; then plimT→∞
∂ḡ

∂θ′
(θ̈T ) = plimT→∞

∂ḡ

∂θ′
(θ̄T ) = J0 and

plimT→∞
∂ḡ′

∂θ
(θ̈T )WT = J ′0W , where J0 is the limit Jacobian matrix as defined in

(3.14) in Section 3.3.

Proof (Sketch of the proof of Lemma A1). It is enough to show that plimT→∞
∂ḡ

∂θ′
(¯̄θT )

= J0 for any ¯̄θT such that ‖ ¯̄θT − θ0 ‖= Op(
1√
T

). Since ḡ is a sample average, under

assumptions 3.1, 3.2, and 3.10, by the LLN for stationary and ergodic processes,

∂ḡ

∂θ′
(¯̄θT ) =

Ê
(
∂g1

∂θ′
(¯̄θT )

)
Ê

(
∂g2

∂θ′
(¯̄θT )

)
 p−→

E
(
∂g1

∂θ′
(θ0)

)
E

(
∂g2

∂θ′
(θ0)

)
 = E

[
∂g

∂θ′
(θ0)

]
= J0 (3.53)
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Therefore, since WT is a consistent estimator of W , it is straightforward to show

that plimT→∞
∂ḡ′

∂θ
(θ̈T )WT = J ′0W .

Hence, by Lemma 3.3, under assumptions 3.1 - 3.10 and applying a CLT for

ergodic stationary m.d.s. processes (e.g., Hayashi, 2000, p. 106) the result follows.

3.A.2 Proof of Lemma 3.1

Proof. Let

Q =

 Ik1 0

−M21M
−1
11 Ik2

 (3.54)

Notice that we can write ψ(yt; θ0) = Q g(yt; θ0). Since Q is non-singular, it follows

that the optimal GMM estimator for θ based on E[g(yt, θ0)] = 0 is the same as the

optimal GMM estimator for θ based on E[ψ(yt; θ0)] = 0.

3.A.3 Proof of Corollary 3.1

Proof. The asymptotic variance of θ̆T is given by

Avar[
√
T (θ̆T − θ0)]

:= (J̆ ′0M̆
−1
0 J̆0)−1J̆ ′0M̆

−1
0 Ω̆M̆−1

0 J̆0(J̆ ′0M̆
−1
0 J̆0)−1

:= (J ′01M
−1
11 J01 + J̆ ′02M̆

−1
22 J̆02)−1

[
J ′01M

−1
11 Ω11M

−1
11 J01 + J̆ ′02M̆

−1
22 Ω̆21M

−1
11 J01

+J ′01M
−1
11 Ω̆12M̆

−1
22 J̆02 + J̆ ′02M̆

−1
22 Ω̆22M̆

−1
22 J̆02

]
(J ′01M

−1
11 J01 + J̆ ′02M̆

−1
22 J̆02)−1 (3.55)

where we have used the expressions for M̆−1
0 , J̆0, and Ω̆ given in equations (3.33),

(3.34), (3.32) respectively; we have also used the following equivalences: M̆−1
11 = M−1

11 ,

J̆01 = J01, and Ω̆11 = Ω11.
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If J02 = Ω21Ω−1
11 J01, then

J̆02 = J02 −M21M
−1
11 J01

= Ω21Ω−1
11 J01 −M21M

−1
11 J01

= (Ω21Ω−1
11 −M21M

−1
11 )J01 (3.56)

We want to compare the asymptotic variance in equation (3.55), under the condi-

tion in (3.56), to the one obtained when we only use moments based on g1. This last

asymptotic variance is given from equation (3.15) by

Avar[
√
T (θ̂T − θ0)] = (J ′01M

−1
11 J01)−1J ′01M

−1
11 Ω11M

−1
11 J01(J ′01M

−1
11 J01)−1 (3.57)

For no variance reduction from adding moments based on g2, we need that

Avar[
√
T (θ̂T − θ0)]− Avar[

√
T (θ̆T − θ0)] = 0 (3.58)

However, in general, it is not obvious that these two expressions for the asymptotic

variance will coincide. In fact, each term in (3.55) is a quadratic form, and thus this

expression will not reduce to (3.57) unless the extra terms are equal to zero. If we

impose the condition J02 = Ω21Ω−1
11 J01, this will only imply that J̆02 = (Ω21Ω−1

11 −

M21M
−1
11 )J01, which in general will not be zero. As a result, in contrast with the

zero bias case, we cannot preclude variance reduction even when J02 = Ω21Ω−1
11 J01. It

seems quite obvious that it would certainly be the case if J̆02 = 0, but in this situation

we would also have zero gain in AMSE based on Theorem 3.2.

Hence, one would like to find additional conditions to J02 = Ω21Ω−1
11 J01 under

which (3.58) holds. It is straight forward to show that if in addition b02−M21M
−1
11 b01 =

0 or Ω12 − Ω11M
−1
11 M12 = 0, then there will be zero variance reduction.

If in addition the asymptotic bias of the modified moments, b02 −M21M
−1
11 b01, is
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zero, then using the fact that M̆12 = 0 we get

M̆12 = Ω12 − Ω11M
−1
11 M12 + b02 −M21M

−1
11 b01 = 0

As a result, Ω12 − Ω11M
−1
11 M12 = 0, which can also be written as Ω21Ω−1

11 =

M21M
−1
11 . If we substitute this in the expression for J̆02 we get:

J̆02 = (Ω21Ω−1
11 −M21M

−1
11 )J01

= 0

Hence, we get zero variance reduction. However, we are back to the zero AMSE

reduction case from Theorem 3.2. That is, we also have no bias reduction.

3.A.4 Proof of Corollary 3.2

Proof. On the one hand, mimicking equation (3.10) it is clear that the asymptotic

bias using the modified moments is given by

B̆∞ = −(J̆ ′0M̆
−1
0 J̆0)−1J̆ ′0M̆

−1
0 b̆0

= −(J ′01M
−1
11 J01 + J̆ ′02M̆

−1
22 J̆02)−1(J ′01M

−1
11 b01 + J̆ ′02M̆

−1
22 b̆02) (3.59)

where we have used that J̆01 = J01, b̆01 = b01, M̆0 is block-diagonal with M̆11 = M11,

and the partition for b̆0.

On the other hand, from equation (3.17) the asymptotic bias, when we use mo-

ments based on g1 alone, is given by B1∞ = −(J ′01M
−1
11 J01)−1J ′01M

−1
11 b01.

If we compare B1∞ and B̆∞, we see that even if the asymptotic bias from the

modified moments is zero, i.e., b̆02 = b02−M21M
−1
11 b01 = 0, there is still hope for bias
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reduction:

B̆∞ = −(J ′01M
−1
11 J01 + J̆ ′02M̆

−1
22 J̆02)−1J ′01M

−1
11 b01

= −[J ′01M
−1
11 J01 + (J02 −M21M

−1
11 J01)′M̆−1

22 (J02 −M21M
−1
11 J01)]−1J ′01M

−1
11 b01

where we have used that J̆02 = J02 −M21M
−1
11 J01.

As a result, since (J02−M21M
−1
11 J01)′M̆−1

22 (J02−M21M
−1
11 J01) is a quadratic form

and M̆−1
22 is non-singular, unless J02 = M21M

−1
11 J01 and hence J̆02 = 0, this term

won’t be zero. In other words, even if the asymptotic bias of the modified moment

conditions is zero, we will get in general a bias reduction.

3.A.5 Proof of Lemma 3.2

Proof. For the proof of Lemma 2 we will first state the following result about inversion

of sum of matrices7 (e.g., Leamer, 1978, p. 324).

Lemma 3.4 (Matrix Inversion Lemma). If H, K and H + FKF ′ are non-singular,

then

(H + FKF ′)−1 = H−1 −H−1F (F ′H−1F +K−1)−1F ′H−1. (3.60)

We first prove that B in equation (3.44b) is nonsingular, which implies that it is

p.d. Note that M̆22 and A are non-singular, and that J12 is of full column rank so

J ′12M
−1
11 J12 is non-singular. Then, by the Matrix Inversion Lemma,

B := M̆−1
22 − M̆−1

22 J̆22A
−1J̆ ′22M̆

−1
22

= M̆−1
22 − M̆−1

22 J̆22(J̆ ′22M̆
−1
22 J̆22 + J ′12M

−1
11 J12)−1J̆ ′22M̆

−1
22

= [M̆22 + J̆22(J ′12M
−1
11 J12)−1J̆ ′22]−1 (3.61)

7This lemma is a special case of the Woodbury matrix identity, also known as Sherman-Morrison-
Woodbury formula or just Woodbury formula.
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Hence B is non-singular, and therefore p.d.

In order to prove that Σθ1,k − Σθ1,k1 = C ′BC we will write both expressions and

establish the equality term by term.

On the one hand, from (3.41) and (3.43) we have

Σθ1,k − Σθ1,k1

=
[
(J ′11M

−1
11 J11 + J̆ ′21M̆

−1
22 J̆21)− (J ′11M

−1
11 J12 + J̆ ′21M̆

−1
22 J̆22)

×(J ′12M
−1
11 J12 + J̆ ′22M̆

−1
22 J̆22)−1(J ′12M

−1
11 J11 + J̆ ′22M̆

−1
22 J̆21)

]
−
[
J ′11M

−1
11 J11 − J ′11M

−1
11 J12(J ′12M

−1
11 J12)−1J ′12M

−1
11 J11

]
=
[
J̆ ′21M̆

−1
22 J̆21 − J̆ ′21M̆

−1
22 J̆22A

−1J̆ ′22M̆
−1
22 J̆21

]
+
[
J ′11M

−1
11 J12(J ′12M

−1
11 J12)−1J ′12M

−1
11 J11 − J ′11M

−1
11 J12A

−1J ′12M
−1
11 J11

]
− J̆ ′21M̆

−1
22 J̆22A

−1J ′12M
−1
11 J11

− J ′11M
−1
11 J12A

−1J̆ ′22M̆
−1
22 J̆21 (3.62)

where A is defined in (3.44a).

On the other hand, we have that

C ′BC

=
[
J̆21 − J̆22(J ′12M

−1
11 J12)−1(J ′12M

−1
11 J11)

]′
B
[
J̆21 − J̆22(J ′12M

−1
11 J12)−1(J ′12M

−1
11 J11)

]
= J̆ ′21BJ̆21

+ J ′11M
−1
11 J12(J ′12M

−1
11 J12)−1J̆ ′22BJ̆22(J ′12M

−1
11 J12)−1J ′12M

−1
11 J11

− J̆ ′21BJ̆22(J ′12M
−1
11 J12)−1J ′12M

−1
11 J11

− J ′11M
−1
11 J12(J ′12M

−1
11 J12)−1J̆ ′22BJ̆21 (3.63)

where B and C are defined in equations (3.44b) and (3.44c) respectively.

The first term of (3.62) is equal to the first term of (3.63), since it can be rewritten

176



as

[
J̆ ′21M̆

−1
22 J̆21 − J̆ ′21M̆

−1
22 J̆22A

−1J̆ ′22M̆
−1
22 J̆21

]
= J̆ ′21

[
M̆−1

22 − M̆−1
22 J̆22A

−1J̆ ′22M̆
−1
22

]
J̆21

= J̆ ′21BJ̆21

The second terms are also equal, since the second term of (3.62) can be rewritten

as

J ′11M
−1
11 J12(J ′12M

−1
11 J12)−1J ′12M

−1
11 J11 − J ′11M

−1
11 J12A

−1J ′12M
−1
11 J11

= J ′11M
−1
11 J12LJ

′
12M

−1
11 J11 (3.64)

where L := (J ′12M
−1
11 J12)−1−A−1. Now, using the Matrix Inversion Lemma in (3.60)

we can rewrite A−1 as

A−1 =
[
J ′12M

−1
11 J12 + J̆ ′22M̆

−1
22 J̆22

]−1

= (J ′12M
−1
11 J12)−1 − (J ′12M

−1
11 J12)−1J̆ ′22N

−1J̆22(J ′12M
−1
11 J12)−1 (3.65)

where N := J̆22(J ′12M
−1
11 J12)−1J̆ ′22 + M̆22.

Substituting A−1 back in L we get

L = (J ′12M
−1
11 J12)−1J̆ ′22N

−1J̆22(J ′12M
−1
11 J12)−1 (3.66)

Now we use the Matrix Inversion Lemma again to yield N−1 = B as was done

in (3.61) above. Substituting this equality in the expression for L in (3.66), and this
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new expression for L back into (3.64), we get

J ′11M
−1
11 J12LJ

′
12M

−1
11 J11

= J ′11M
−1
11 J12(J ′12M

−1
11 J12)−1J̆ ′22BJ̆22(J ′12M

−1
11 J12)−1J ′12M

−1
11 J11 (3.67)

which is exactly equal to the second term of C ′BC in (3.63).

Finally, we show that the third terms are also equal. This implies that the fourth

terms are equal since the third and fourth terms are the transpose of each other. The

third term in (3.63) can be rewritten as

− J̆ ′21BJ̆22(J ′12M
−1
11 J12)−1J ′12M

−1
11 J11

= −J̆ ′21[M̆−1
22 − M̆−1

22 J̆22A
−1J̆ ′22M̆

−1
22 ]J̆22(J ′12M

−1
11 J12)−1J ′12M

−1
11 J11

= −J̆ ′21M̆
−1
22 J̆22[(J ′12M

−1
11 J12)−1 − A−1J̆ ′22M̆

−1
22 J̆22(J ′12M

−1
11 J12)−1]J ′12M

−1
11 J11 (3.68)

The term in brackets in the last expression is of the form P−1−(P +Q)−1QP−1 =

(P + Q)−1 if we take P = (J ′12M
−1
11 J12) and Q = J̆ ′22M̆

−1
22 J̆22; this equality can be

verified by noticing that (P +Q)[P−1− (P +Q)−1QP−1] = I. With this substitution,

(3.68) becomes

J̆ ′21M̆
−1
22 J̆22[(J ′12M

−1
11 J12) + J̆ ′22M̆

−1
22 J̆22]−1J ′12M

−1
11 J11

= J̆ ′21M̆
−1
22 J̆22A

−1J ′12M
−1
11 J11 (3.69)

which is the same as the third term of Σθ1,k − Σθ1,k1 in (3.62).

Therefore, the equality between Σθ1,k − Σθ1,k1 and C ′BC follows.
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