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Introduction

An economic model can be understood as a theoretical construct that, by simplifying a

complex reality, seeks to aid in the understanding and/or prediction of economic pro-

cesses. As such, for the most part, these models are not meant to replicate an intricate

reality but intend to help in the understanding of the processes that drive observed out-

comes and, if desired, to be used in the prediction of responses to unobserved economic

environments.1

Though economic models can be thought as interesting theoretical exercises to bet-

ter understand specific economic processes2, special interest lies in checking whether

these models can be supported by empirical evidence and/or be useful to predict behav-

ior in out-of-sample economic environments. For that, it is important to understand the

connection between the theory and its empirical counterpart. Axiomatizations provide

the description of the implications of the model in terms of observable behavior, deliv-

ering necessary and sufficient conditions that are equivalent to the theoretical model.3

Consider, for example, the utility maximization model, that is the focus of Chapter 1.

Utility functions are unobservable, but their behavioral manifestation -choices- are not.

The Generalized Axiom of Revealed Preference (GARP henceforth) provides the neces-

sary and sufficient conditions on observed behavior for it to be consistent with a decision

1For more on the role of models in economics refer to (Gibbard and Varian 1978), (Sugden 2000),
(Sugden 2009), (Mäki 2005), (Caplin and Schotter 2010), among others.

2Notable examples are the "The Market for Lemons: Quality Uncertainty and the Market Mechanism"
by (Akerlof 1970) and "Job Market Signalling", (Spence 1973).

3(Dekel and Lipman 2010) argue for the value provided to axiomatic derivations.

1
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maker that behaves as if her choices maximize her utility function among feasible al-

ternatives.

Understanding the behavioral implications of the model is not only relevant for test-

ing its empirical validity; but it is also important to understand them when selecting

among theories for modeling behavior. Two seemingly distinct behavioral models can-

not be teased apart if they result in the same observed data; that is, if for a sequence

of decision problems the behavioral implications of two competing models are not sig-

nificantly distinct, then the theoretical differences between the models are irrelevant.4

The empirical content of a model depends on the behavior that pretends to explain and

available data; i.e. comparisons across competing models can only be made conditional

on the behavior that is intending to explain for the considered sequences of economic

environments. For example, the satisficing model5 is a highly influential and intuitive

model of bounded rationality, but it cannot be tested using standard choice data; its be-

havioral implications are indistinguishable from those of a standard utility maximizer.

In Chapter 2, my coauthors and I propose an alternative way to test for the satisficing

model based on stochastic choice data. Assuming that preferences are fixed, but search

order may change randomly, the model predicts that stochastic choice can only occur

amongst elements that are always chosen, while all other choices must be consistent

with standard utility maximization. Adding the assumption that the probability distri-

bution over search orders is the same for all choice sets makes the satisficing model a

subset of the class of random utility models.

The empirical content of a model and the suitability of it to explain a given data set

depends on the sequence of decision problems that is being studied. Consider again the

utility maximization model. If the decision maker faces menus of alternatives A= {a, b}
4(Gul, Pesendorfer, et al. 2008)
5(Simon 1955)
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and B = {c, d}, the utility maximization model has no empirical content, i.e. any pro-

file of choices from those menus can be rationalized. Consider now a decision maker

choosing from A′ = {a, b, c} and B′ = {b, c, d}, for those sets of feasible alternatives the

theory has empirical content.

The empirical content of a model also depends on the behavior that seeks to ex-

plain/predict. For example, assume that the decision maker chooses C(A′) = {a}; then

any choice from B′ would be consistent with the model, i.e. choices from A′ are not

informative about the predictions of the model for B′. This latter example raises a few

questions when considering limited data sets; what information can be learned about

preferences? what predictions can be made based on observed behavior?. These ques-

tions are addressed, for the case of the utility maximization model, in Chapter 1. As

discussed in (De Clippel and Rozen 2014) the latter is not a trivial question, for many

bounded rationality models. The authors show that for some models, it is the case that

a limited data set may be consistent with a subset of possible menus but no extension

for a complete data set would be.

(Gabaix and Laibson 2008) describes the seven key properties of useful economic

models: parsimony, tractability, conceptual insightfulness, generalizability, falsifiability,

empirical consistency, and predictive precision. The last three properties pertain to the

relation between the theoretical model and its empirical counterpart. A model is falsifi-

able if it makes non trivial predictions on behavior, i.e. if there is some feasible behavior

profile that is inconsistent with the model. As a simplification of the reality, a model is

not expected to perfectly explain human behavior in all possible circumstances. How-

ever, as researchers, we are interested in the empirical accuracy of the model, and when

observed behavior is not consistent with the model, the degree to which the model fits

the data. This is known as the goodness of fit criterion.
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The goodness of fit of a model is not the only relevant criteria when judging the suit-

ability of a model. The limitations of this criterion are specially relevant when dealing

with axiomatic models with limited data sets, as discussed in Chapter 1. In particular,

a model may be empirically accurate because data was indeed generated by a decision

maker that behaves as the theory prescribes; but it could be also the case that it is empir-

ically accurate because, for the considered sequence of decision problems, the model

prescribes weak (loose) predictions, such that almost any behavior would be consis-

tent with the theory. This caveat relates to predictive precision. A model that delivers

more precise predictions is desirable because it facilitates its evaluation and testing,

furthermore, "A model with predictive precision may even be useful when it is empirically

inaccurate(...) In general, models that make approximately accurate strong predictions

are much more useful than models that make exactly accurate weak predictions. "6. Fig-

ure 1 illustrates the importance of predictive precision and how empirically inaccurate

models can be useful if they deliver strong predictions.

Chapter 1 exploits the connection between the predictive precision and the power to

identify inconsistent behavior conditional on observed choices, proposing a predictive

ability approach for model assessment. This approach provides a meaningful answer to

the tension between the severity of the violations (fit) and the sensitivity of the test to

detect them (power), a long standing problem in the literature when dealing with ax-

iomatic representations for behavioral models. The discussion in the chapter is centered

around the utility maximization model, though most results extend to a general class of

behavioral models. Utility maximization is a core assumption in economics for which

the generalized axiom of revealed preference (GARP) provides a nonparametric test.

However, two problems arise when testing GARP. First, it provides an extremely sharp

6(Gabaix and Laibson 2008)
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Figure 1: Relation between empirical consistency, falsifiability and predictive ability. Em-
pirical consistency -fit- is important but does not implies usefulness of the model. Even when
falsifiable it may not restrict behavior enough to allow for learning about underlying behavior.

test since rejection occurs after only one violation. Second, even when a data set passes

the test, it cannot necessarily be understood as a success for the theory since conditions

may be so undemanding that any behavior would pass it. Then, the predictive ability

approach developed in the chapter naturally establishes a meaningful trade-off between

empirical accuracy and falsifiability for models of consumer behavior, a long standing

problem in the literature. Intuitively, better predictions are the result of a lot of rev-

eled preference information –better degree of identification of underlying preferences–

while requiring small errors for data to be consistent with the model.

This dissertation emphasizes the importance of the empirical implications for models

of behavior. Chapter 1 discusses the limitations of goodness of fit approach for axiomatic

models when dealing with incomplete data sets. The lack of power to identify inconsis-

tent behavior with limited data sets can be captured by uncertainty to predict behavior

based in the model. By accounting for this uncertainty and allowing for empirically

inaccurate behavior, the predictive ability approach provides a meaningful criterion to
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study the suitability of a theory to model observed behavior. Chapter 2 provides a novel

set of conditions to identify whether a decision maker behaves as satisficing, in contrast

to standard utility maximizer. This is done by exploiting the structure of stochastic

choice data without requiring data on the decision process itself.

Outline The outline of this dissertation is as follows. Chapter 1 presents a predictive

approach for the assessment of the suitability of models when these are described by

a set of axioms.7 Chapter 2 presents necessary and sufficient conditions for stochastic

choice data to be consistent with the satisficing model.8 Finally Section Conclusion

closes presenting a summary of the main results and open lines of future research.

7The content of this chapter has been presented before in the paper "Predictive Ability and the Fit-
Power Trade-Off in Theories of Consumer Behavior"

8The content of this chapter has been circulated under the title "Satisficing and Stochastic Choice"
coauthored with Victor H. Aguiar and Mark Dean.



Chapter 1

Predictive Ability and the Fit-Power

Trade-Off in Theories of Consumer

Behavior

1.1 Introduction

The existence of a utility function that represents preferences is a core assumption in

economics. The Generalized Axiom of Revealed Preferences (GARP henceforth) pro-

vides an elegant axiomatic test for the validity of this assumption. For GARP, rejection

occurs after only one violation, providing a sharp test which most data sets violate. This

is a common feature of all models that are described using a set of behavioral axioms.

Axioms provide elegant nonparametric tests, but only provide binary information as to

whether a particular data set is consistent with the model. In case of inconsistent data,

axiomatizations say nothing about the significance of the departures from the model.

This is known as the goodness of fit problem in the literature.

A series of goodness of fit measures have been proposed to address the sharpness

7
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of the rationality test. Most of these measures are based on an intuitive moment of the

data related to the adjustments to income needed to remove the violations by making

them no longer feasible.1 The significance of these measures is difficult to gauge since

the experimental design may be such that no or very loose constraints are imposed on

the data. For example, if budget sets are nested, any data set would exhibit perfect

consistency with GARP since no constraints are imposed by the model. This is known

in the literature as the power problem since it relates to the probability of identifying

violations when the data is generated by a non-rational process.2

This chapter assesses the performance of the model by asking whether the model

is useful to make precise predictions about behavior. A good model is one which pro-

vides precise predictions, reducing the uncertainty of forecasted behavior for unseen

economic environments. More precise predictions are the result of a large amount

of revealed preference information that can be learned from data, while requiring a

small error for observed behavior to be consistent with the model. Given behavior,

more stringent environments that impose more demanding constraints on data to sat-

isfy the model, result in more precise revealed preference information learned from

data. However, more demanding environments increase the likelihood of detecting vio-

lations, leading to overall bigger errors. Hence, the predictive ability approach provides

a meaningful way to integrate fit and the degree to which the data constrains the model.

In order to construct the predictive distribution of choices in a new environment, I

extend the model to embed it in a statistical framework allowing for an additive error

component. Within this framework, I recover the "candidate model" – the most likely

sequence of rational choices that generated the data– and an estimate for the error pro-

1Notable examples are (Afriat 1967), (Varian 1990) and (Echenique, Lee, and Shum 2011)
2See (Andreoni and Harbaugh 2013) for an extensive analysis of the power problem when testing for

GARP.
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cess. Next, I combine these two to compute the predictive distribution generated by

the extended model. For an out-of-sample economic environment, I first construct the

set of choices that are consistent with the "candidate model". This is the "supporting

set" first introduced by (Varian 1982). For an alternative in the "supporting set", the

model predicts that choices are given by that alternative plus the error. Then, follow-

ing the intuition of Bayesian model averaging, I construct the predictive distribution

as the distribution of choices on the "supporting set" plus the distribution of the error

process. Without prior information, all alternatives in the supporting set are assumed

to be equally likely. This distribution can be interpreted as the prediction that can be

made by only assuming the nonparametric model, given observed behavior. This con-

struction extends to a general class of behavioral models, provided the availability of

an algorithm to recover the "candidate model". For GARP, it is available in the form of

a minimum distance estimator provided by (Kocoska 2012).

The predictive distribution reflects two sources of uncertainty when forecasting be-

havior: "model uncertainty", which derives from the fact that there may be different

preference relations that are consistent with observed data3; and "error uncertainty",

which derives from the fact that the decision maker may not perfectly maximize her

utility. A model is better for prediction if it reduces either or both sources of uncer-

tainty when forecasting behavior. Hence, the predictive distribution implicitly defines a

trade-off between the amount of information that can be learned about preferences and

the severity of the violations, naturally extending the prediction that would result from

the axiomatization to allow for error. As I discuss in Section 1.4, there is a strong link

between the amount of recoverable revealed preference information and the power of

data set to highlight violations.

3To illustrate this point consider the following simple example. Let the universe of choices be {a, b, c},
and let observed data be such that a is chosen when {a, b}were available, and a chosen from {a, c}. Then
we may have a � b � c or a � c � b with equal probability.
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For a researcher considering a model for predicting behavior for a particular appli-

cation, the predictive distribution is a sufficient statistic to compute optimal choices and

expected losses due to incorrect predictions. For a set of candidate models, the predic-

tive distribution can be used to calculate an analog of the marginal likelihood of each

model, that is, how likely observed data are given the model. Given a prior on the likeli-

hood of each candidate model, marginal likelihoods can be used to construct Bayes-like

factors for model selection. Marginal likelihoods can also be used to compute weights

for bayesian model averaging (BMA) to account for uncertainty with respect to model

selection. The BMA predictive distribution is constructed as the weighted average of

the predictive distribution provided for each candidate model, where the weights are

given by the likelihood of the model given observed data.

For a researcher that does not have a particular application of interest but seeks

to appraise the predictive performance of the model, I provide two intuitive statistics

that summarize the information content of the predictive distribution. These statistics

define a complete order of data sets and/or models in the domain of predictive dis-

tributions. These summary statistics are: (i) the size of the shortest α− level credible

set for predicted choices and (ii) the Kullback-Leibler divergence measure between the

predictive distribution and an uninformative prior. These measures reflect the extent of

both sources of uncertainty, model and error, and can be used for the design of exper-

iments. The selection of the economic environment in which to predict behavior may

affect the results, therefore, I propose a leave-one-out construction for these measures

to remove any arbitrariness in this regard. The leave-one-out (LOO) predictive preci-

sion measures are computed based on the predictive distribution constructed for each

observed economic environment considering all remaining observations.
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I study the empirical performance of the predictive measures in their application to

the experimental data from (Choi, Fisman, Gale, and Kariv 2007). As expected, mea-

sures of predictive precision are positively correlated with measures of goodness of fit

and with the amount of information that can be extracted from data. I find that more

observations lead to more precise predictions since the additional revealed preference

information outweighs the potential increase in estimated errors. Finally, I compare the

performance of the Cobb-Douglas model, nested into the rationality model, and GARP,

which does not make any assumption about the shape of the utility function. When

comparing the two models, the results show that the nonparametric utility maximiza-

tion model provides more precise predictions than a model that assumes Cobb-Douglas

preferences, since the additional precision of the latter model is outweighed by the mis-

specification error.

This chapter ties together the goodness of fit and power literatures. The information

provided by standard goodness of fit measures is captured by the predictive precision

measures through the recovered error process, as shown in Proposition 1.21. Addi-

tionally, the LOO predictive precision measures reflect power, through the size of the

supporting set. Given the projection using J − 1 observations, the supporting set is the

subset of feasible choices, in the J th economic environment, that are jointly consistent

with the projection. Conditional on the projection, its relative size is the probability of

choices being consistent with the model, if they were to be generated uniformly at ran-

dom from the set of feasible choices. Then, the relative size of the supporting set is the

complement of the probability of detecting violations in the J th economic environment

under (Becker 1962) definition of irrational behavior; that is, power –as traditionally

understood in the literature, (Bronars 1987)– conditional on the projection.4 Hence,

4To illustrate this point consider a decision maker choosing from {a, b, c} and {a, c}. If a (or c) is
chosen from {a, b, c} then {a, c} imposes demanding constraints since it is possible to violate GARP. On
the other hand, if b is chosen from {a, b, c} then any choice from {a, c} would be consistent with GARP.
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this approach provides a meaningful trade-off between fit and power, a long standing

problem in the literature.

Current approaches that combine fit and power, as (Beatty and Crawford 2011),

measure power consistent with (Bronars 1987) approach. However, this approach fails

to account for the actual pattern of choices observed.5 Observed choices determine

whether the new budget set constrains data or not. This is important since, for the

empirical application -50 observations-, standard power is approximately one for all

subjects which does not allow to differentiate among the stringentness of different de-

signs. I show that two subjects that faced identical economic environments and whose

behavior is consistent with GARP, can produce significantly different predictions for the

same economic environment due to differences in the supporting set. I show that uncon-

ditional power masks significant differences in the amount of preference information

that can be inferred for different subjects to predict behavior.

Outline The outline of this chapter is as follows. Section 1.2 presents the main re-

sults of revealed preference theory, its testable implications and the challenges that it

presents for testing. Section 1.3 introduces the construction of the predictive distribu-

tion and discusses its properties. Section 1.4 shows that the predictive distribution is a

sufficient statistic for a decision maker that wants to select a model to predict behav-

ior. For a researcher that does not have an application in mind, I show how to use the

predictive distribution to construct the marginal likelihood of the model and measures

that summarize the predictive performance of the model. Section 1.5 shows the empir-

ical performance of the proposed measures in its application to the experimental data

from (Choi, Fisman, Gale, and Kariv 2007). Section 1.6 offers a review of the literature

5(Andreoni and Harbaugh 2013) presents a series of power measures and indices whose behavior
depend on the characteristics of choices in the population and experimental design.
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concerning rationality testing and how the approach followed in this chapter compares

to existing approaches. Finally, section 1.7 concludes.

1.2 The Rationality Model

1.2.1 Axiomatization

When facing a set of feasible alternatives, the choices made by a decision maker reveal

information about her own preference relation, chosen alternatives are revealed to be

better than non-chosen ones. This is the concept of (directly) revealed preference,

first introduced by (Samuelson 1938). (Houthakker 1950) extended it by imposing

transitivity on the direct revealed preferred relation. Let {q j}Jj=1 be the sequence of

observed choices, with q j ∈ RL
+. The set of feasible alternatives is determined by the

decision maker’s budget constraints, that is, for all j ∈ {1, . . . , J}, p j · q j ≤ x j, where

p j ∈ RL
++ is the price vector faced by the decision maker in environment j, and x j her

income. Then, chosen alternatives q j are said to be revealed preferred to the other

feasible alternatives that were not chosen. Formally,

Definition 1.1 (Directly Revealed Preferred) q j is directly revealed preferred to q̃ if p j ·

q j ≥ p j · q̃, and it is strictly revealed preferred if p j · q j > p j · q̃

Definition 1.2 (Revealed Preferred) q j is revealed preferred to q̃ if there is a chain of

directly revealed preferred bundles linking q j to q̃

(Afriat 1967) theorem shows that revealed preference theory provides a nonpara-

metric condition on consumer’s choices that is necessary and sufficient for observed be-

havior to be consistent with non satiated utility maximization: the generalized axiom

of revealed preference (GARP). This axiom imposes internal consistency on the infor-

mation contained in the revealed preference relation for preferences to be represented

by a well behaved utility function. Formally,
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x

(a) Data consistent with GARP

x

(b) Data inconsistent with GARP

Figure 1.1: The goodness of fit problem. The sharpness of the test is evidenced in the above
figure. Panel 1.1a shows data that is perfectly consistent with GARP, while in panel 1.1b one
observation -x- was perturbed. The data in panel 1.1b is not longer consistent with utility
maximization.

Definition 1.3 (Generalized Axiom of Revealed Preference (GARP)) If q j is revealed

preferred to q̃, then q̃ is not strictly revealed preferred to q j

1.2.2 Challenges for Testing

Two main problems arise when testing for the revealed preference conditions: fit and

power. First, GARP delivers a sharp test, since rejection occurs after one violation, re-

gardless of the number of consistent observations and/or severity of the violations.

Figure 1.1 depicts the case of a decision maker for which we observed 14 choices.

Panel 1.1a shows the case of perfectly consistent choices, while panel 1.1b shows the

same choices but choice x has been slightly perturbed. The data in panel 1.1b is no

longer consistent with GARP. Most empirical studies find violations to the deterministic

axiomatization.6

6From the empirical point of view, several studies have shown the existence of GARP violations in
different settings, cross section data ((Blundell, Browning, and Crawford 2003), (Beatty and Crawford
2011) and (Echenique, Lee, and Shum 2011), among others); laboratory experiments ((Andreoni and
Miller 2002), (Sippel 1997), (Choi, Fisman, Gale, and Kariv 2007), among others); as well as in field
experiments (for example in (Harbaugh, Krause, and Berry 2001)).



15

Naturally one may ask how severe these violations are. This is known in the literature

as the goodness of fit problem. Measures of fit have been proposed in the literature that

are, for the most part, based on the extent of the income adjustment to budget sets

required to remove inconsistencies by making them no longer feasible. These provide

intuitive measures of the size of the departures, but a high goodness of fit measure

can hardly be understood as a success for the model. Good fit could indicate behavior

closely consistent with rationality or failure to detect violations.

The stated conditions may deliver very loose or non restrictive constraints on data.

For example, if the decision maker faces nested budget sets any behavior is consistent

with GARP. Then one may ask how sensitive the test is to detect departures from ratio-

nality. Conditional on observed behavior, the more the data constrains choices, the

more precise the identification of the preference relation generating choices. The link

between the amount of revealed preference information that can be learned from data

and the sensitivity of the test to detect violations of GARP is studied in Section 1.4.4.

The literature has addressed this problem by providing power indices. These in-

dices measure the probability of observing GARP violations if choices were to be gen-

erated uniformly at random from the set of feasible alternatives, see (Bronars 1987)

and (Beatty and Crawford 2011). However, the sensitivity of the test to detect de-

partures from the model does not only depend on the number and tightness of the

constraints imposed by the model, but also on the interaction of these with observed

choices. To illustrate this point consider the problem shown in figure 1.2. The budget

sets faced by the decision maker can be informative -as in Panels 1.2b and 1.2c- or not

informative at all, as in Panel 1.2a. Moreover, given observed budget sets, the proba-

bility of detecting violations of GARP depends on observed behavior, and therefore the
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(a) Uninformative design
Regardless of Choices

(b) Informative budget sets
Informative choices

(c) Potentially informative design
Uninformative choices

Figure 1.2: The power of the rationality test. This figure presents hypothetical budget sets
faced by a decision maker. Panel 1.2a shows two nested budget sets. Independent of observed
behavior it is impossible to detect violations of GARP or learn about underlying behavior. Pan-
els 1.2b and 1.2c both depict the same budget sets. This design is potentially informative. The
budget sets in panel 1.2b are informative given the distribution of choices, while for panel 1.2c
these do not allow to infer significant information about the process generating the choices.

information that can be inferred from choices. This is shown in Panels 1.2b and 1.2c.

1.3 Prediction Based on Axiomatic Models

Economic models are theoretical constructions that simplify and represent economic

processes to help in the description, understanding and/or prediction of human behav-

ior. As simplifications models are not meant to replicate a complex reality. Even if the

model is not empirically accurate; it may still be useful in predicting human behavior.

Consider the following example.

Example 1.4 (GARP) A researcher wants to predict behavior for budget set, B0, defined

by prices p0 = (1, 1) and income x0 = 3.5. She models consumers’ behavior by assuming

that they are utility maximizers. For that she observes two decision makers A and B,

choosing bundles from two budget sets. The information is described in Table 1.1.
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Obs px py x qA qB

1 5 1 5
�

1
5 , 4
� �

5
8 , 15

8

�

2 1 2 5
�

4, 1
2

� �

1
2 , 9

4

�

Table 1.1: Data for Example 2.3 Data for consumers A and B, choosing from B(p1, x1) and
B(p2, x2)

This example is depicted in Figure 1.3. For budget set B0, choices qA
1 and qA

2 are not

informative even if they are consistent with GARP, since any bundle from B0 would be

consistent with them. On the other hand, even if inconsistent with GARP, choices for decision

maker B can potentially provide more information for predicting behavior on B0. For either

qB
1 and qB

2 there is just a subset of feasible choices on B0 that would be consistent with them

and GARP. Allowing for error would deliver even more precise predictions that result from

the intersection of the choices that are jointly consistent with minimally perturbed qB
1 and

qB
2 .

This example shows that empirical accuracy may be important but it is not the only

relevant attribute of a model. In this regard, (Gabaix and Laibson 2008) recognizes

that "predictive precision is infrequently emphasized in economics research". They argue

that "strong predictions are desirable because they facilitate model evaluation and model

testing (...) Models with predictive precision are useful tools for decision makers who are

trying to forecast future events or the consequence of new policies.".

Ideally, the best model is the one that shows the best fit given observed data and

imposes stringent constraints on data, but these two properties tend to be mutually in-

consistent. In section 1.4.4, I show that there is a link between the amount of informa-

tion that can be learned from data about preferences and the extent to which the model

imposes demanding constraints in data. Thus, by proposing a predictive approach to

assess the suitability of the model, this chapter provides a meaningful compromise be-
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(a) Subject A (b) Subject B

Figure 1.3: Relation between empirical consistency, falsifiability and predictive ability.
Empirical consistency -fit- is important but does not implies usefulness of the model. Even when
falsifiable it may not restrict behavior enough to allow for learning about underlying behavior.

tween fit and power. First, I extend the model to embed it in a statistical framework,

allowing for an additive error to behavior. Within this framework, I recover the revealed

preference information and error process from the data. Next, I construct the predictive

distribution as the expected distribution of choices for an unobserved economic envi-

ronment, given the information recovered from data.

The predictive ability of a model is not an inherent property of the model, but it

depends on the behavior that seeks to predict. Therefore the analysis is performed for

the pair model-data –MD-program–, allowing for the comparison across data sets for a

given model or across models for a given data set.

The standard practice in economics is to do comparisons based on their accuracy

explaining observed behavior (fit). But when dealing with axiomatizations, this cri-

terion favors general models that deliver loose predictions, since models that deliver

more precise predictions may fail to explain observed behavior.
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Information criteria methods extend goodness of fit measures to account for model

complexity7, penalizing empirical accuracy to avoid overfitting. These are mostly used

in the context of parametric model selection, where increasing the number of regressors

almost always improves fit. In the context of axiomatic models, there is a similar trade

off between the generality of the model and its empirical accuracy: general models are

most likely empirical accurate but provide wide predictions, while more specific models

potentially induce bigger errors but providing more precise predictions.

In finite samples, axiomatic models induce an additional source of uncertainty since,

conditional on a sequence of rational choices and the error process, the model deliv-

ers a set prediction even for perfectly consistent data. In what follows I define this

uncertainty as "model uncertainty". In this chapter, I follow the intuition of Bayesian

Model Averaging (BMA) to account for "model uncertainty", by averaging across the

predictions delivered by the model –that is, all preference relations consistent with the

revealed preference information inferred from data–.

1.3.1 Set up

The econometrician observes choices made by an individual that faces J decision prob-

lems. Observed data, D consists of choices
�

q j
	J

j=1
and prices and income

�

p j, x j
	J

j=1

with q j ∈ RL
+, p j ∈ RL

++ and x j ⊆ R++ for all j = 1, . . . , J , thus D ≡
�

q j, p j, x j
	J

j=1
.

Assuming local non satiation8, x j = p j ·q j.9 Let B : RL+1
++ → R

L
+ be the feasible consump-

tion correspondence which is defined by imposing the affordability and non-negativity

7See (Akaike 1998)
8Definition (Local Non Satiation) For any q ∈ X and every ε > 0 there exists a y ∈ X such that

‖q− y‖ ≤ ε such that y is preferred to q.
9Data on income it is not required in the analysis that follows, however, for the sake of uniformity on

notation I keep income as a separate variable since new economic environments are defined by prices
and income.
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constraints, that is

B
�

p j, x j
�

≡ {q̃ ∈ RL
+ : p j · q̃ ≤ x j ≡ p j · q j}

Let B(p, x) =
∏J

j=1 B(p j, x j) be the set of feasible consumption bundles sequences.

The model is a correspondence M : B(p, x)→M ⊂ B(p, x) that maps from the set of

feasible choices to the subset of feasible choices that is consistent with the model. That

is

M≡M (B(p, x)) = {m ∈ B(p, x) : m satisfies the model}

Before extending the model to allow for error, I discuss the properties of the pre-

diction provided by the deterministic model. The predictive distribution for the ex-

tended model –Section 1.3.3– expands the deterministic prediction to incorporate error

in choices, and therefore inherits its properties.

1.3.2 Predictions Based on GARP

Given a vector of choices consistent with the model, m ∈ M (B), I define S ⊆ B0 as the

subset of B0 such that (m, s) ∈M
�

B, B0
�

for all s ∈ S. I call this set the "supporting set".

The "supporting set" is the prediction delivered by the axiomatic model, and, coincides

precisely with the supporting set defined by (Varian 1982) when the model is GARP.

Formally,

Definition 1.5 (Supporting set) Let m ≡
�

m1, . . . , mJ
�

be a vector of choices consistent

with the model, i.e. m ∈M(B(p, x)). Given a new economic environment B0, I define the

"supporting set" given m, S0(m), as

S0(m)≡ S
�

p0, x0|m
�

≡
�

s ∈ B0| (m, s) ∈M
�

B
�

{p, p0}, {x , x0}
��	

(1.1)
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S0 (m)

(a) Choices and Supporting set (b) Choices and Supporting set

Figure 1.4: Observed choices are a relevant determinant of the "supporting set".

The size of this "supporting set" reflects the tightness of the identification of the un-

derlying behavioral process, since, by definition, each distinct alternative in the "sup-

porting set" represents a behavioral distinguishable and well-behaved preference rela-

tion that is consistent with observed data. Therefore, the size of the "supporting set"

reflects "model uncertainty", which depends on observed behavior, the distribution of

budget sets and the number of observations. To illustrate these dependencies consider

the following examples.

Example 1.6 (GARP - "Supporting set" depends on observed choices) The researcher

has information on two decision makers (a) and (b) that have faced the same budget sets.

She is considering GARP as a model two predict choices. Their choices are presented in

Table 1.2.

Case pA xA qA pB xB qB p0 x0

(a) (5,1) 5
�

17
40 , 25

8

�

(1, 2) 5 (1.5,1.75) (1,1) 3.5

(b) (5,1) 5
�

1
4 , 15

4

�

(1, 2) 5 (3.5,0.75) (1,1) 3.5

Table 1.2: Data for Example 1.6

This data is depicted in Figure 1.4. Given observed budget sets, choices for decision

maker (a) provide more information for predicting behavior in B0 that the decision maker’s
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(a) Choices and Supporting set (b) Choices and Supporting set

Figure 1.5: Observed economic environments are an important determinant of the "sup-
porting set".

(b) choices, showing that the size of the supporting set depends on observed choices.

Example 1.7 (GARP - "Supporting set" depends on observed budget sets) The researcher

has information on two decision makers, (a) and (b), that have faced different budget sets,

but still have chosen the same consumption bundles. She is considering GARP as a model

to predict choices. Table 1.3 summarizes the data for these two consumers.

Case pA xA qA pB xB qB p0 x0

(a)
�

2.15, 5
3

�

10 (1,2) (2.5,1) 6 (3.5,1.5) (3,5) 15

(b) (1, 1) 3 (1,2) (1,1) 5 (3.5,1.5) (3,5) 15

Table 1.3: Data for Example 1.7

This data is shown in Figure 1.5. For the same observed choices and same objective B0,

the results are considerably different, showing that the "supporting set" also depends on the

environment in where choices were observed.

For any B0 the "supporting set" is non-empty if and only if it is constructed from a

sequence of choices consistent with the model. The size of the "supporting set" (weakly)

shrinks with the number of observations10, since more constraints restrict the set of
10Figure 1.6 shows simulations results that illustrate the convergence of the "supporting set" for a

rational consumer and a randomly selected B0 when J increases.
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Figure 1.6: "Supporting set" and number of observations Relative size of the supporting set

as the number of observations increases. The relative size is defined as ‖S
0(m)‖
‖B0‖ . Budget sets B

were generated at random such that p1 ∼ U[3, 10], p2
p1
∼ U[.5, 1.5] and x ∼ U[90, 105] and

choices were generated such that m j ≡ ar gmaxq j∈B j min
¦

q j
1, 1

2q j
2

©

. Fixing B0, the supporting

set is constructed based on {mi , pi , x i}ki=1 with k = 1,5, 10,25, 50,100, 200,500.

behavior that is consistent with them. At the limit, when the considered model is GARP,

the "supporting set" is a compact and convex set. Finally, for a sequence of budget

sets that becomes dense in space of prices and income, the "supporting set" for GARP

converges to a point. The latter point implies that, in the limit, if the sequence of

budget sets is demanding "enough" –in the sense that they intersect sufficiently enough–

the preference relation that generates the data is point identified. These results are

formalized in Proposition 1.8.

Proposition 1.8 (Properties of the "Supporting set") Let B0 be the economic environ-

ment for which the "supporting set" is constructed.

1. S0 (m) 6= ; if and only if m ∈M(B)

2. Let BJ ,BJ+1 be a set of J and J + 1 budget sets respectively, with mJ ∈ M(BJ) and

mJ+1 =
�

mJ , mJ+1
�

∈M(BJ+1) then S0 (mJ+1) ⊆ S0 (mJ)

Moreover if M= {m ∈ B|m satisfies GARP} then
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1. S0(m) is a compact, convex set

2. For an increasing sequence of budget sets Cn such that Cn ⊂ Cn+1 ⊂ . . . and
⋃

n{C
n}

is dense in RL×n
++ , then mn ∈ B(Cn) such that mn >> 0 S0 (mn)→ m0

Proof. Follows from (Mas-Colell 1978) and (Blundell, Browning, and Crawford

2008).

1.3.3 Stochastic Extension and Predictive Distribution

I extend the axiomatic model to allow for error, embedding it in a statistical framework.

This stochastic extension is constructed under the assumption that observed choices are

the result of decision maker’s maximization of her own utility function, m ∈M, plus an

idiosyncratic error, truncated due to feasibility constraints,

q j = m j + ε̃ j with
�

m1, . . . , mJ
�

∈M

This error can be understood as measurement error or error made by consumers when

making decisions. The proposed approach does not rely on the nature of the error

process; however, the predictive distribution constructed below does so. The reader in-

terested in extending the construction proposed below for alternative error structures

–for instance, error with respect to decision maker’s perception of her own utility func-

tion or with respects to prices– needs to estimate the "candidate model" and the error

process consistent with such alternative definition.

By definition, observed and rational choices are feasible, that is, q ∈ B(p, x) and

m ∈ M ⊆ B(p, x). Therefore the effective error process, ε̃, is restricted such that per-

turbed choices are feasible11. Feasibility imposes two sets of constraints, nonnegativity

11Alternatively one can consider the truncation of the distribution of the error process to its domain.
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and affordability. First, for each budget set feasibility constraints restrict the distribu-

tion of the error process to lie on the budget hyperplane, that is such that p j · ε j = 0.

Nonnegativity constraints are imposed as follows,

q j = ar gminq̃ j∈B j‖m j + ε j − q̃ j‖ (1.2)

for all j = 1, . . . , J , with ε j ∼ Fε|p j ·ε j=0 and m ∈M (B(p, x)) where Fε is a well behaved

distribution. Formally, I assume that, before imposing feasibility, the error process has

a symmetric distribution with mean, median and mode 0, such that assigns decreas-

ing probability to extreme values –the probability density function is decreasing in the

absolute value of the error–. Formally,

Assumption 1 (Unconstrained Error Process) The unconstrained process ε j ∈ RL is

assumed to be i.i.d. with continuous and symmetric p.d.f. with mean, median and mode

0L and such that ∇ε f (ε j)T Diag(ε j)< 0 for all ε j 6= 0 and εqm, for all m ∈M (B(p, x))

and for all for j = 1, . . . , J.

The stochastic extension is defined for the domain where the empirical implications

of the model are defined. In doing so, it allows the recovery of a "candidate model" in

the budget sets faced by the decision maker and from it a natural construction of the

predictive distribution for choices, extending the "supporting set" to reflect noise. I call

this extension Mε.

Extending the model to allow for error induces a new source of uncertainty when

predicting behavior; I call this uncertainty "error uncertainty". 12 Therefore, I extend

The assumption adopted in this chapter is consistent with a fixed latent error process. The analysis could
be carried out with this alternative assumption, but special attention should be paid to the estimation of
the error process.

12In this chapter I abstract from uncertainty with respect to the systematic component that generated
the data. When predicting behavior for an axiomatic model three sources of uncertainty arise: (i) "error
uncertainty" as described above; (ii) "model uncertainty" since for a given sequence of rational choices the
model yields a multiple prediction; and (iii) "DGP uncertainty" which refers to the uncertainty about the
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the "supporting set" -Definition 1.5- to reflect this new source of uncertainty. First,

I recover the revealed preference information from data by the way of a minimum

distance estimator.

Definition 1.9 (Projection of observed choices onto the model) The problem is to find

the projection ÒmMD of q onto M, the minimum distance estimator, as the solution to

ÒmMD ≡ ar gminm‖vec(q)− vec(m)‖

s.t m ∈M (B)

The estimation defined above cannot be performed following standard mathemat-

ical tools due to the topology of the set of sequence of choices that is consistent with

the model. For GARP, (Kocoska 2012) proposes a series of derivative-free algorithms

to find the "closest" rational sequence of choices to observed behavior, in the economic

environments in which choices were observed. This projection requires to minimize the

distance between observed behavior and rational choices, for each possible sequence of

rational choices, that is, for each possible preference order.13

This projection yields an estimate for the "candidate model" and for the error pro-

cess.14 Next, I construct the "supporting set" for the estimated "candidate model". As

discussed before, its size reflects the "model uncertainty". Finally I compute the predic-

process that generated the data. For the main specification of the predictive distribution in this chapter I
fix the data generating process to be the most likely one given data. In section 1.4.2 I proposed a model
averaging alternative to account for uncertainty on the DGP.

13Note that the results of this projection is dependent of measurement units. However, the projection
technique is flexible to allow for the inclusion of weights, therefore one could weight by prices, or the
ratio of prices to income, to remove the dependency with respect to the units of measurement.

14In section 1.3.4 I show an algorithm to recover the underlying distribution of the error process even
for small samples.
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B0

S0

s0

Distribution of s0 + bε|s0

(a) The expected distribution of choices

B0S0

s0sA
0 sB

0sC
0 sD

0

(b) The predictive distribution

Figure 1.7: Predictive Distribution - Intuition. The predictive distribution in the case of only
one dimension.

tive distribution by extending this construction to reflect the estimated error process.

Given assumption 1, the "candidate model" is a vector of choices that most likely

generated observed choices, given data. For ÒmMD , the estimated "candidate model",

each distinct sequence of choices
�

ÒmMD , s0
�

with s0 ∈ S0 (ÒmMD) represents a distinct

behavioral functional among the ones consistent with model M. Expected choices con-

ditional on
�

ÒmMD , s0
�

are given by the distribution of s0+ bε|s0, where the distribution of

bε|s0 is estimated from the residuals of the projection. Figure 1.7 shows the intuition for

the predictive distribution conditional on s0. Thus, I define the predictive distribution as

the distribution of s+ bε|s with s ∼ FS0(ÒmMD ). Without imposing further assumptions15 all

s0 ∈ S0 (ÒmD) are equally likely, therefore FS0(ÒmMD ) is assumed to be uniform on the sup-

porting set. Figure 1.7b shows the expected distribution conditional different choices

from the "supporting set". The predictive distribution is the average distribution for all

such distributions.

Definition 1.10 (Predictive Distribution for B0 given MD) Let observed choices q be

generated by a systematic component m ∈ M and an error process ε consistent with as-

15If the researcher has prior information available, this definition can be extended to reflect this prior
information. In particular, I will not longer be the case that all behavioral functionals constructed with
different choices from the "supporting set" are equally likely. For a given prior, now the distribution of
choices on the supporting set is given by the truncation of the prior to the "supporting set".
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sumption 1, such that

q = m+ ε̃ such that m ∈M(B(p, x)) and q ∈ B(p, x)

where ε̃ is the truncation of the error process to satisfy feasibility constraints -consistent

with equation 1.2-. Let ÒmD be a consistent estimator of m, and define bε = q− ÒmD . Then,

I define the predictive distribution as the distribution of the random variable

S + bε(S) with S ∼ US0(ÒmD ) and bε(S)∼ F0
bε
|S

where F0
bε
|S is the truncation of the estimated distribution of the residuals consistent with

assumption 1 such that S + bε(S) ∈ B0, and US0(ÒmD ) is an uniform distribution over the

supporting set. Let f 0
MD be the predictive density, then

f 0
MD(y) =

∫

s∈S0(m̂D )

1
∫

s∈S0(m̂D )
ds

�

∫

η:p0·η=p0·s
1
�

y = ar gmin ỹ∈B0‖ ỹ −η‖
	

f 0
ε
(η− s) dη

�

ds

where f 0
ε
(ξ)∝ 1

�

p0 · ξ= 0
	

fε(ξ)

Definition 1.10 combines a (non-standard) frequentist projection tool with a quasi-

bayesian16 model averaging technique to construct the predictive distribution. By defi-

nition, each distinct alternative from the "supporting set" represents and observationally

distinct behavior among the ones consistent with the model. Then, the predictive dis-

tribution is constructed as the average distribution across all these behaviors; where

the weights are given by their relative likelihood, following the intuition of BMA. The

following example illustrates this construction.

Example (Continued 2.3) The predictive distributions for the decision makers A and B

16A fully Bayesian approach would require the definition of a suitable prior over the set of well-behaved
preference orders and a mechanism for updating, this is left for future research.
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(a) Subject A (b) Subject B

Figure 1.8: Relation between empirical consistency, falsifiability and predictive ability.
Empirical consistency -fit- is important but does not imply usefulness of the model. Even when
falsifiable it may not restrict behavior enough to allow for learning about underlying behavior.

discussed in Example 2.3 are depicted in Figure 1.8. For consumer A the projection is equal

to observed choices, i.e. ÒmA = qA; then estimated errors are 0. Therefore, the predic-

tive distribution is given by a uniform distribution on the "supporting set" S0
�

m̂A
�

= B0.

On the other hand, choices observed for consumer B are not consistent with GARP. The

closest rational sequence of choices to observed data is ÒmB
1 = qB

1 and ÒmB
2 =

�

5
9 , 20

9

�

, thus

bεB
1 = (0, 0) and bεB

2 =
�

− 1
18 , 1

36

�

. The "supporting set" is then defined by S0
�

m̂B
�

=
�

q ∈ R2
++ : q1 + q2 = 3.5 and 3

8 ≤ q1 ≤ 2
	

. The resultant predictive distributions confirm

the intuition that the data for decision maker A, though consistent with the model, de-

liver less informative predictions than the data for decision maker B. Figure 1.9 shows the

predictive density for qA
1 and qB

1 over B0.

The predictive distribution for model M given observed data D can be understood

as the expected distribution of choices given data D as prescribed by model M. Its

variance reflects the uncertainty of predicting behavior due to the error process –"error

uncertainty"– and the systematic component –"model uncertainty"–. By construction,

this distribution extends the "supporting set" to allow for error, and coincides with it

if observed behavior is perfectly consistent with the model; case in which the predic-
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Figure 1.9: Predictive densities for Example 2.3. The predictive densities for good 1 in B0

constructed from the information in Example 2.3 following definition 1.10.

tive distribution is given by an uniform distribution over the "supporting set". If the

"supporting set" converges to a point under a sufficient information condition on the

distribution of the budget sets –as it holds for GARP– then the predictive distribution

converges to the distribution of the error process centered in the point prediction of the

model. These properties are formalized in Theorem 1.11.

Theorem 1.11 (Properties of the Predictive Distribution) Let f 0
MD be the predictive den-

sity for B0 based on the extended model Mε, conditional on data D =
�

p j, x j, q j
	J

j=1
con-

structed as in Definition 1.10. Let Y 0
MD be a random variable with probability density f 0

MD .

1. Reflects recovered error process

If S0 (ÒmMD−A) = S0 (ÒmMD−B) and ‖vec(ÒεA)‖> ‖vec(ÒεB)‖ then

Diag
�

Var
�

Y 0
MD−A|Y

0
MD−A ∈ B(s̄,δ)

��

≥ Diag
�

Var
�

Y 0
MD−B|Y

0
MD−B ∈ B(s̄,δ)

��

for all δ > 0 such that B(s̄,δ) ⊂ B0 where s̄ =
∫

S0(ÒmMD−A)
s

∫

S0(ÒmMD−A)
ds

ds

2. Reflects the tightness of identification
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If ‖vec(ÒεA)‖= ‖vec(ÒεB)‖ and S0 (ÒmMD−A) ⊃ S0 (ÒmMD−B) then

Diag
�

Var
�

Y 0
MD−A|Y

0
MD−A >> 0

��

> Diag
�

Var
�

Y 0
MD−B|Y

0
MD−B >> 0

��

3. Limiting Behavior

For an increasing sequence of budget sets Cn such that Cn ⊂ Cn+1 ⊂ . . . and
⋃

n{C
n}

is dense in RL×n
++ , with qn ∈ B(Cn) such that qn >> 0, with S0

�

Òmn
MD

�

→ m0 then

F0
MD → m0 + F0

e |m
0

where F0
e is the distribution of the underlying error process centered in m0 truncated

to B0.

4. Varian

If q ∈M then Y 0
MD ∼ US0(q) where US0(q) is a uniform distribution on S0(q).

Unless otherwise stated all proofs are relegated to Appendix 1.A.

The effect of the number of observation on the predictive distribution is, in principle,

ambiguous. An additional observation potentially enhances predictive precision due to

the shrinkage of the supporting set, Proposition 1.8. However, as the identification of

the systematic component gets tighter, behavior previously consistent with the model

would not longer be consistent, potentially increasing the variance of the error process

and therefore increasing the dispersion of the predictive distribution.

This construction provides a predictive distribution that :(i) is of interest for a re-

searcher seeking to use the nonparametric model as a way of predicting behavior, this

is shown in Section 1.4.1; and, (ii) allows for the assessment of the predictive ability,
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Figure 1.10: Histogram of Pro jec ted−SSR
Generated−SSR for J = 10,25, 50,100, and 100 repetitions. Choices

where generated from a Cobb-Douglas utility function u(x , y) =px y plus ε consistent with the
truncation defined in section 1.3.1, where the underlying error process is ε ∼ N(0, 5). B(p, x)
was generated such that p1 ∼ U[5,10], p2

p1
∼ U[.5, 2] and w∼ U[80,120].

which is shown in Sections 1.4.2 and 1.4.3.

1.3.4 On the Estimation of the Error Process

Under some conditions discussed above, GARP is point identified. Therefore, in the

limit definition 1.9 provides a consistent estimator of m and consequently for the distri-

bution of ε. Unfortunately, small samples are the norm rather than the exception when

testing for axiomatic models of behavior17.

For any sample size, the residuals from the projection provide the relevant measure

of the departures from the model. Nevertheless, the construction of the predictive dis-

17Without imposing homogeneity assumptions the relevant dimension is the number of observations
per decision making unit. Many data sets have information available for a large number of subjects,
but cross-sectional studies have been shown to fail when accounting for heterogeneity in behavior,
see (Lewbel 2001).
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tribution, requires a consistent estimate for the underlying error process.18 For small

samples, the recovered residuals underestimate the underlying error process. Consider

figure 1.10, where choices were generated in the context of the rationality model with

ε ∼ N(0, 5) and J = 10, 25,50, 100. The underestimation of the residual process is sig-

nificant for all considered sample sizes. The gap between ‖ε‖ and ‖bε‖ is jointly defined

by the error process and the sample size, given B(p, x).

In this section I propose a pseudo parametric approach for the estimation of the error

process. The approach remains nonparametric on the identification of the systematic

component but assumes a parametric assumption on the error process consistent with

assumption 1. Let Fθ
ε

be the distribution of the error process before the truncation,

parametrized by θ . For example, if Fθ
ε
= N (µ,σ2), then θ ≡ (µ,σ2). The problem

then reduces to consistently estimate θ .

Relying on the structure of GARP, I propose two algorithms to simulate the distri-

bution Fθ
ε

without computing the projection in each iteration.19 The first approach

constructs the consistent set M given D by intersecting, in a sequential manner, the

supporting set for each budget set. For each i chosen at random from the set of ob-

servations J ≡ {1, . . . , J}, first it constructs S i(m̂−i). Then chooses k ∈ J \ {i} and

constructs Sk(m̂−{i,k}) and do so until J is exhausted. The results for the estimation of

this algorithm in a simulation setting are presented in Table 1.4. The results show that,

even for a small sample of J = 40, the algorithm significantly improves the estimation

18Note that the predictive distribution here is constructed by incorporating the error process for each
element in the "supporting set". Alternatively one could construct the prediction as the "supporting set"
allowing for error in its boundary. If the researcher were to follow this alternative approach, then the
relevant error process is the recovered error process.

19Ideally θ̂ can be estimated from the simulation of the effective (observed) error process for an ex-
haustive grid on θ , that is θ̂ = ar gminθ0

‖Fθ0
e Fe‖, where Fe is the observed distribution of the error

process and Fθe is the simulated effective distribution of the error process for θ = θ0. Estimating θ̂ in
this manner implies computing the projection of simulated data to the model for each iteration in the
simulation for each possible value of θ which is really expensive computationally.
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σ
u(·) 0.5 1 2 3 5 10

x
1
4
1 x

3
4
2 0.9040 0.7618 0.4052 0.6251 0.9218 0.9808

x
1
2
1 x

1
2
2 0.9570 0.8816 0.5528 0.5149 0.8918 0.9794

Table 1.4: Simulations for the Algorithms. Kolmogorov-Smirnov two tailed test statistics
with respect to measure constructed based on the projection for σ = 3 for two alternative
distributions over a CD utility function.

of the underlying error process with respect a nonparametric estimation of the distri-

bution of the residuals of the projection.

The second approach exploits the symmetry of f θ
ε

-Assumption 1- to estimate θ

as the parameters that maximize the hits to the set of rational choices from observed

choices. These algorithms are formally defined in Appendix 1.B.1.

1.4 Predictive Performance Analysis

1.4.1 Decision Making and the Predictive Distribution

The predictive distribution is a sufficient statistic for a researcher that seeks to predict

behavior based on the model. Consider a decision problem where the utility of the deci-

sion maker, v(·), depends on her own decision, a, and on the behavior of the consumer

(or consumers), q, that could depend on a. The decision maker models consumer’s de-

cision by a model M. Given observed data D, the expected distribution of choices for a

new economic environment, B0, conditional on a and M, is the predictive distribution,

F0
MD(q|a). The knowledge of the predictive distribution allows the decision maker to

compute her optimal choice, a∗|M = ar gminaEF0
MD (q|a)

[v(a, q(a))] , and the expected

value of her decision, v∗|M = EF0
MD (q|a∗)

[v(a∗|M , q(a∗|M))]. The expected value of the

problem can be interpreted as the negative of the loss due to the uncertainty when
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predicting behavior by assuming the model M. Under standard concavity assumptions

on the preferences of the decision making, if consumers behavior affects the optimal

choice, then higher uncertainty to predict behavior translates in lower expected utility.

To illustrate the relevance of the predictive distribution in decision making, consider

the following example.

Example 1.12 (GARP vs Cobb-Douglas) The producer of good 1 in this economy wants

to project her revenue for B0. Her utility function is v : R→ R+. For simplicity assume that

there is only one consumer, whose choices maximize her utility function u=min {2x , 3y}

without error, but this is unknown to the researcher. Choices are observed for the same

budget sets as in Example 2.3. The researcher is considering two alternative models of

behavior, GARP -model I- and Cobb-Douglas utility function-model II-. Figure 1.11 shows

the predictive distribution for both models. Even if empirically inaccurate, the more specific

model -model II- provides more information to predict behavior. Specifically, for GARP the

Revenue is uniformly distributed in [0.38, 3.45], with expected revenue 1.915 and variance

0.79. On the other hand, the Cobb-Douglas model yield a predictive distribution with two

mass points in {1.16, 2.52}. For model II the expected revenue is 1.84 while the variance

is 0.4624. The best model for the decision maker depends on her preferences, that is the

best model is the one that maximizes her expected utility, i.e.
∫

supp(q0
MD )

v
�

p0 · q̃
�

f 0
MD(q̃)dq̃.

If v = Revenue then she prefers GARP, while if the utility is concave in revenue, she may

prefer model II.

Given a set of candidate models, the decision maker can either exploit the informa-

tion provided by all models to construct a average predictive distribution, where the

weights for each candidate model is provided by their marginal likelihood. This con-

struction is discussed in Section 1.4.2. If the decision maker seeks to choose one model

from the set of candidates, she chooses the model that maximizes her expected utility
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(a) Model I (b) Model II

Figure 1.11: Relation between empirical consistency, falsifiability and predictive ability.

–or minimizes the expected loss–. The optimal model depends on the preferences of the

decision maker -v(·)-, the particular application -B0- and available data -D-. Conditional

on B0 and D, sufficient conditions have been proposed in the literature for a model to

be better than others in terms of predictive information, see (Blackwell et al. 1951),

(Cabrales, Gossner, and Serrano 2010). Such conditions cannot be generalized for any

v(·), and do not provide a complete order. To allow for a complete comparison, in

Section 1.4.3 I provide a series of statistics that summarize the predictive information

extracted from data D given the model M.

1.4.2 Marginal Likelihood and Model Averaging

Given a set of k candidate models, M1, . . . ,Mk, the researcher interested in predicting

behavior can use the predictive distribution to compute weights for model averaging.

The model averaging predictive distribution (MAPD) is defined as the average of the

he predictive distribution for each of the candidate models constructed as in Defini-

tion 1.10, where the weights are constructed as the relative likelihood of each of these

models. The MAPD induces a new source of uncertainty when predicting behavior,

"DGP uncertainty", that refers to the fact that there are many plausible models that may
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be generating observed behavior.

I follow the intuition of Leave-one-out (LOO) cross validation to compute the LOO

marginal likelihood.20 For each observation j ∈ {1, . . . , J} the predictive distribution

over B j is constructed with the observations excluding j, as in definition 1.10. The

likelihood to correctly predict behavior can be computed as

p
�

q j|MD− j

�

= f j
MD− j
(q j)

where f j
MD− j

is the probability density function for predictive distribution F J
MD− j

as de-

fined in 1.10 for data D for which observation j is not considered. This probability

provides a measure of the predictive performance of the model in sample; the better

the model the more accurate predictions it delivers and the higher the probability of

correctly predicting observed behavior. 21

Definition 1.13 (Model Evidence ("Marginal Likelihood")) Let F J
MD− j

be the predictive

distribution as in Definition 1.10 constructed for B j from data D for which observation j

is not considered and let f j
MD− j

be its probability density function. Then,

p (q|Mε) =
J
∏

j=1

f j
MD− j
(q j)

Given a prior distribution on the set of candidate models π : (M1, . . . ,Mk)→ [0, 1],
20By construction, the "posterior marginal likelihood" does not reflect "model uncertainty" since, if I

were to include q j when constructing the predictive distribution for B j , the supporting set collapses to
Òm j and the predictive distribution collapses to the distribution of the error process. To reflect the true
uncertainty for predicting behavior I proceed with the LOO predictive distribution.

21An alternative measure of the predictive performance in sample can be constructed from defini-
tion 1.15. For observation j define C j

�

q j
�

as the biggest HPD set that does not contain q j , then
1 − P

�

C j
�

q j
��

is the confidence at which the researcher can be certain that the interval prediction for
the model contains observed data.
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the posterior probability of the model can be computed by

p(Mε
k|D)∝ p

�

q|Mε
k

�

×π(Mk)

Then, the average predictive distribution, is defined as the weighted average of the

predictive distributions for all candidate models. Formally,

f 0
BMA(M1,...Mk)D

(y) =
k
∑

i=1

p
�

Mε
k|D

�

f 0
MkD
(y)

1.4.3 Measures of Predictive Ability

Predictive Model Assessment and Model Selection

The marginal likelihood as in Definition 1.13, can be understood as the probability of

correctly predicting observed behavior under the extended model, when the prediction

is perform considering the other J − 1 observations. As constructed, even if slightly

different from the standard definition22, the marginal likelihood provides a measure

of the evidence for the model. If the decision maker seeks to choose one model from

the set of candidate models, this can be done from the marginal likelihood. The Bayes

factor provides a summary of the evidence provided by the data in favor of one model

22Note that if we were to include the observation j when computing p(q j |Mε
k), this collapses to the

distribution of the error process around the "candidate model"; that is,

Definition 1.14 (Model Evidence ("Posterior Marginal Likelihood")) Let ÒmD be a consistent estimator
of m as in definition 1.10, and let f

bε be the estimation of the underlying error process from bε = q − ÒmD .
Then,

p (q|Mε; m= ÒmD) =
J
∏

j=1

§

1
�

q j >> 0
	

f
bε

�

q j − Òm j
D

�

+
�

1−1
�

q j >> 0
	�

∫

q̃ j :q j≡ar gmina∈B j ‖q̃ j−a‖
f
bε

�

q̃ j − Òm j
D

�

dq̃ j
ª
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versus the other. 23

Bayes Factori,k =
p(q|Mε

i )

p(q|Mε
k)

The critical value to decide for one model over other depends on the loss function. For

interpretation it can be useful to consider twice the logarithm of the Bayes factor since

it has the same structure as the familiar deviance and likelihood ratio test statistics.24

Alternatively, the logarithm of the marginal likelihood of the data can be interpreted

as a predictive score, then the logarithm of the Bayes factor can be interpreted as the

difference on the predictive scores for the considered models.

Measures of Predictive Precision

Given a data set D, a more informative model delivers tighter predictions. For a given

model M, a data setDA provides more information than otherDB, if it allows for the con-

struction of more informative predictive distributions. Then, a natural way to measure

the performance of a MD−program is by measuring the dispersion of its predictive dis-

tribution. The two summary statistics I propose are: (i) the size of the smallest α-level

confidence interval and (ii) the Kullback-Leibler divergence measure with respect to an

uninformative prior. The former follows the natural intuition that more useful models

deliver "narrower" confidence sets, while the latter collapses on a measure of the en-

tropy of the predictive distribution; better models reduce the uncertainty for predicting

behavior.

Size of the Smallest α-level Confidence/Credible Interval The performance of the

MD program can be gauged by sizing the certainty to predict behavior by imposing

the model M given observed data D. I measure it by the size of the smallest α-level

confidence/credible connected set–that is the highest posterior density set among all

23For a extensive analysis of Bayes factors and their interpretation refer to (Kass and Raftery 1995)
24Its interpretation as the likelihood ratio test depends on defining on of the models as the null hy-

pothesis and the other as the alternative.
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connected subsets of B0. The smaller the α-level HPD interval (set) the more precise

the predictions delivered by model M given observed data D. I define the predictive

precision measure as the relative size of the complement of the HPD interval. Formally,

Definition 1.15 (Predictive Precision - Credible Set) Let C0
α

be the 100(1−α)% high-

est posterior density (HPD) connected set for the predictive distribution F0 constructed given

model M. That is,

C0
α
≡ ar gminCα|Cα is connected : PF0 (q ∈ Cα) = 1−α

Conditional on data, {q j, p j}Jj=1, the predictive precision α measure for budget set B0 is

defined by

PP0
α
|MD ≡ 1− P

�

q0 ∈ C0
α

�

(1.3)

where P= UB0 is the uniform distribution over the budget set B0

The smaller C0
α
, the bigger

�

C0
α

�c
. Under (Becker 1962)’s model of irrational behav-

ior, there is nothing that can be learned from data, therefore PP0
α
|Becker = α. 25 Then,

PP0
α
|MD − α can be interpreted as the improvement in precision of predicting behavior

by using the model M with respect to not using any model at all.

Information theory based measures An alternative way to measure the usefulness

of the MD−program is by sizing the gain in information to predict behavior by as-

suming model M given data D with respect to an uninformative prior. Let F0 be the

predictive distribution constructed for B0 given model M, and let P be an uniform dis-

tribution over B0, P = UB0
26. I propose to measure the predictive ability of the model

by the "distance" between these distributions. The proposed "metric" in this chapter

25This is not the same as data being generated by this alternative data generating process and then
imposing GARP as a model. This measure can be constructed to provide further information to the
researcher about the power and significance of the measure

26This measure can be constructed for any other probability measure that the researcher consider
pertinent, the results and properties are qualitatively the same.
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is the Kullback-Leibler divergence measure27, while not a metric in the formal sense,

the KL-divergence measure provides an intuitive measure of the gain in information by

imposing the model.

Definition 1.16 (Predictive precision index - Information theory) Let F0 be the pre-

dictive distribution constructed for B0 given model M and data D and let P= UB0 . Then,

PP0
K L|MD ≡ DK L

�

F0||P
�

(1.4)

The connection between the Kullback-Leibler divergence measure and Shannon en-

tropy,

DK L

�

F0||P
�

= −H( f 0)− EF0 (lnp)

Since P= UB0 , then EF0 (lnp) = ln 1
n = − ln n where n=

∫

B0 d x , then

PP0
K L|MD = ln n−H

�

f 0
�

where H(·) is the Shannon entropy, and f 0 is the density function for F0, has been well

established in the literature. The entropy of the predictive distribution is the uncertainty

of predicting an outcome by using it. Then, maximizing this measure is equivalent to

minimizing the entropy of the predictive distribution.

Comparison of MD programs

An intuitive way to make the comparison across programs is based on the predictive pre-

cision measures. In order to use these measures independently of the selection of B0,

27If the researcher is interested in an alternative measure, e.g. Hellinger or Total Variation, all the
results in this chapter follow through.
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I propose a "leave-one-out" (LOO) estimation.28 The leave-one-out predictive precision

measure is constructed as an average, across observations, of the predictive precision

measures constructed for B j for model M and data D− j, i.e. data D where observation j

is excluded. This average can be constructed as a simple arithmetic or geometric mean,

weighted mean, median, or any other summary statistic that the researcher considers

relevant.

Definition 1.17 (Leave-one-out Predictive Precision (PPLOO)) The leave one out pre-

dictive precision measure for program MD is defined as that is

PP LOO
MD =M

�
¦

PP j
− j

©J

j=1

�

whereM is an average summary statisticM (·) ∈ {mean,median, . . . } and

PP j
− j = PP j

M{D\D j}

The leave-one-out predictive precision removes the arbitrariness in the selection of

budget sets while allowing to measure the tightness of the identification of underlying

behavior for the observed budget sets. Section 1.4.4 shows the relationship between

this approach and the power literature.

Let PP0|MD ∈
�

PP0
α
|MD , PP0

K L|MD
	

. The proposed measures inherit the desirable

properties from the predictive distribution, favoring more informative predictive dis-

tributions. Let �P
0 be the linear order induced by PP0|MD on programs, that is MADA is

said to be more informative than MBDB, i.e. MADA �P
0 MBDB, if and only if PP0|MADA >

28Alternatively a "grid" simulation over a representative sequence of budget sets can be constructed.
Computing the predictive precision measures for a sequence of budget sets and summarizing these pro-
vide the researcher with an informative measure of the predictive ability of the model given observed
behavior. But in order to remove any dependency on the selection of the particular sequence of budget
sets, this sequence needs to be exhaustive enough, incurring additional computational costs.
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PP0|MADA.

Definition 1.18 (Information order) The information order, �P
0 P, is defined by the

partial order induced by measure PP0|MD on programs. That is,

MADA �P
0 MBDB ⇔ PP0|MADA > PP0|MBDB

Conditional on data D, the information order defines a complete order on the set of

models. Then a model M is said to be predictive-wise more informative than M̃, for B0

conditional on D if

M�P
0|D M̃⇔ PP0|MD > PP0|M̃D

Analogously, conditional on the model M, the information order defined a linear order

on data sets. D is said to be predictive-wise more informative than D ′ conditional on

model M if

D �P
0|M D

′⇔ PP0|MD > PP0|MD′

Properties of Measures of Predictive Ability

The leave-one-out (LOO) predictive precision measures allow the researcher to assess

the performance of the model-data program in terms of its predictive ability regardless

of the particular forecasting application. The LOO predictive precision measures favor

MD programs that are (i) empirically more accurate and/or (ii) more specific. This

is because these measures summarize the fit of the data for the considered model, and

the extent of the uncertainty to identify the systematic model component from observed

behavior, through the effect of the error process and supporting set respectively.

Theorem 1.19 (Program Selection) Let MD and M̃D ′ be two alternative model-data

programs. Assume that M and M̃ are two models with convex supporting sets and assumed



44

that the predicitive distributions are defined consistent with Definition 1.10. Then,

1. If S j
�

m̂− j|MD
�

= S j
�

m̂− j|M̃D ′
�

for all j and ‖vec(ε̂)‖ < ‖vec( ˆ̃ε)‖. Then there

exists ᾱ ∈ (0, 1) such that for all α < ᾱ MD �P
α

M̃D ′

2. If ‖vec(ε̂)‖ = ‖vec( ˆ̃ε)‖ and M ⊂ M̃. Then there exists ᾱ ∈ (0,1) such that for all

α < ᾱ MD �P
α

M̃D ′

3. For increasing dense sequences Dn and D ′n such that S0(m̂n) → {m0} S0( ˜̂mn) →

{m̃0} for any B0 with m̂n = ˆ̃mn consistent estimators for the systematic component

for sequences of programs MDn and M̃D ′n respectively, if ‖vec(ε)‖< ‖vec(ε̃)‖ then

MDn �P M̃D ′n

where MADA �P MBDB ⇔ PP LOO
MADA > PP0

MBDB

Understanding the Contribution to Predictive Precision: Fit vs Power

The construction defined in 1.10 allows the disentanglement of the contribution of

fit and the certainty of predicting the systematic component, to predictive precision.

First, I construct the predictive distribution that would be obtained if observed behav-

ior were equal to the projection. This "zero-error" predictive distribution reflects the

uncertainty of predicting behavior only due to "model uncertainty". The predictive pre-

cision measures constructed based on this "zero-error" predictive distribution are better

than for the overall predictive distribution, due to the effect of the error process. Thus

PP0
MD |ε=0 ≥ PP0

MD |ε̂, and

Contribution of ε to PP0
MD = PP0

MD |ε=0 − PP0
MD |ε̂
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1.4.4 Comparison to other measures in the literature

Comparison to goodness of fit measures

To address the sharpness of GARP, several goodness of fit measures have been proposed

in the literature. Conditional on the sequence of observed budget sets, the proposed

measures reflect other measures in the literature through the effect on the error process.

I consider the comparison to three types of measures: (i) Houtman-Maks index (HM),

(ii) Afriat and (iii) the Money Pump Index (MPI). While HM is a counting measure

that measures the size of the largest subset of choices that is consistent with GARP, (ii)

and (iii) are measures of the extent of the violations. Afriat’s measure is defined as

the minimum perturbation to income required to remove all inconsistencies, therefore

reflecting the extent of the worst violation. MPI measures "amount of money that could

be extracted from the consumer" that violates GARP, therefore providing a measure of

the mean extent of these violations. Formally,

Definition 1.20 (Measures of fit) Set M= GARP and data set D.

The Houtman-Mask29 index is defined as

HM =max
|DM |

J
such that D|JM ∈M|JM

where JM is a subset of {1, . . . , J}.

The Afriat30 index is defined as

e∗ = ar gmaxeD ∈M(e)

where M(e) imposes the acyclicality condition on the Revealed Preference-e binary relation
29(Houtman and Maks 1985)
30(Afriat 1967)
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where q j is said to be revealed preferred to qk at efficiency level e if ep j · q j > p j · qk.

The Money Pump Index31 for each sequence (qk1 , . . . , qkn) /∈M is defined as

M PI(qk1 pk1 ),...,(qkn ,pkn )

∑n
l=1 pkl ·

�

qkl − qkl+1
�

∑n
l=1 pkl · qkl

Proposition 1.21 (Connection to Goodness of Fit Measures) Consider M= GARP and

assume that D j = D ′ j for all j 6= i, q, q′ >> 0, and m̂ = m̂′. Then, there exists ᾱ ∈ (0, 1)

such that

1. If HM(q)> HM(q′) then MD �P
α

MD ′

2. If Af riat(q)> Af riat(q′) then MD �P
α

MD ′

3. If M PI(q)< M PI(q′) then MD �P
α

MD ′

for all α < ᾱ

Proposition 1.21 shows that, conditional on the identification of the systematic com-

ponent, the LOO predictive precision measure reflects the extent of the violations of the

model. As discussed in section 1.2.2, high fit can be the result of behavior generated by

a rational decision maker or the inability of the program to detect departures from the

model. Therefore, the propose information order does not replicate the order defined

by measures of fit in the literature but partially reflects the information provided by

them.

Comparison to approaches that account for power

For a given model, there are two sources of uncertainty: the uncertainty to predict the

systematic component and the error process. Measures of fit only provide information

about the first of these sources of uncertainty. Good fit can hardly be interpreted as a

31(Echenique, Lee, and Shum 2011)
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success for the model since conditions may be so undemanding that "anything goes".

The standard approach in the literature is to assess the significance of measures of fit

is to compare the results to those that would be obtained if data were to be generated

randomly from a uniform distribution over feasible choices–(Bronars 1987)–, consistent

with the definition of irrational behavior proposed by (Becker 1962). Given fit, higher

power is desirable, and given power higher fit is desirable, but the ranking prescribed

by these two properties tends to be negatively correlated and most approaches do not

provide a way to combine fit and power.

(Beatty and Crawford 2011) (BC henceforth) incorporates (Bronars 1987) adjusting

a measure of fit by the size of the target area, defined as the probability of choices being

rational if they were to be generated by a random subject, that is, an ex-ante measure

of power. Formally,

Definition 1.22 (Measure of Success ((Beatty and Crawford 2011))) BC defines the

measure of success as m = r − a where r ∈ {0,1} is a measure of pass/fail with respect,

r = 1⇔ q ∈ M(B)32 and a ∈ {0, 1} is a measure of the target area, that is the relative

size of the set of consistent choices relative to the whole outcome space.

BC measure provides a statistic that, by controlling for the stringentness of the con-

straints imposed by the model, allows to compare across behaviors that may not have

been observed in the same economic environments. By adopting a measure of power in

the spirit of (Bronars 1987) the authors do not account for the actual pattern of choices

observed. As it was argued in previous sections, this is a significant determinant when

assessing whether the model is imposing demanding constraints on data or not.

32BC also proposes a continuous version of success that reflects the distance between observed data
and the set of sequences of choices that are consistent with the model; that is, r ∈ [0, 1].
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By construction, the predictive ability approach accounts for power conditional on

choices, through the effect on the "supporting set". For each observation j ∈ {1, . . . , J},

the predictive precision measures constructed using observations {1, . . . , J}\{ j}, reflect

the size of the "supporting set", S j(m̂− j) –Theorem 1.19–. Then under (Becker 1962)

hypothesis of irrational behavior, we have that,

‖S j(m̂− j)‖
‖B j‖

= 1− P
�

(m̂− j, q j) /∈M
�

where m̂− j ∈M|D \ D j and P = UB j . That is, the relative size of the "supporting set" is

the complement probability of detecting violations to GARP in B j under the assumption

that choices are irrational, conditional on a sequence of choices for budget sets Bi with

i 6= j consistent with the model.

Exploiting this relation between the ability to infer information from data to predict

behavior and power, the proposed measures tie together the literature on fit and power

providing a meaningful trade off in terms of their contribution to predict behavior. By

construction, the assessment of power in this chapter is done conditional on observed

choices. In doing so, these measures do not replicate the information provided by BC

measure. Next example illustrates the relevance of the difference between ex-ante and

conditional power.

Example (Continued Example 2.3) Consider again choices presented in Example 2.3.

The measures of predictive precision are PP0
α
|MDA = 0.05, PP0

α
|MDB = 0.56 for the measure

defined in 1.15 and PP0
K L|MDA = 0.01 PP0

K L|MDB = 0.21 for decision maker A and B respec-

tively. According to these measure GARP provides more precise predictions for DB than DA.

By construction qA ∈ M while qB /∈ M, then success rate for subject A is bigger than for

subject B, rA > rB, while the size of the target area is identical, by construction, for both

subjects, aA = aB. Therefore (Beatty and Crawford 2011) would decide in favor of DA.
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Figure 1.12: Comparison BC and predictive ability measures Data in (Beatty and Crawford
2011).

The difference between ex-ante power and a conditional assessment of power is

important when studying the empirical performance of a model. In section 1.5 I show

that, for the considered data set, power adjustments in the spirit of (Bronars 1987) be-

come negligible, since ex-ante power rapidly converges to 1. That is, for small samples

BC measure allows to account for differences in the design that could lead to differ-

ences in the power to identify inconsistencies, as shown in Figure 1.12, but these dif-

ferences become indistinguishable as the number of observations increases. This seem-

ingly uniform power across different subjects however mask significant differences on

the amount of information that can be inferred from data to predict behavior. Fig-

ure 1.13 shows that, even for small samples, BC measure masks significant differences

on predictive ability that show seemingly identical power.
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Figure 1.13: Comparison BC and predictive ability measures Even when BC measures allow
to differentiate among designs when the sample size is small, this measure still masks significant
differences in the predictive ability the model given observed behavior. These computations
were realized for the data studied in (Beatty and Crawford 2011).

1.4.5 Optimal Design of Experiments

The proposed measures can be used for optimal experimental design. Consider a re-

searcher that needs to design a sample/experiment to maximize the predictive power

of a model M and has available information about past behavior, DJ ≡
�

D j
	J

j=1
.

Problem 1.23 Let B0 be the objective budget set for which the researcher wants to predict

behavior33. The researcher has data on behavior for J economic environments, DJ . She

has been offered a set of experiments to run, and she seeks to optimize precision to predict

behavior.

For a set of candidate experimental designs BJ+1
1 , . . . , BJ+1

d , assuming the data gener-

ating process is stable across all observations, BJ+1 can be chosen using the proposed

33If there is not an application in mind the researcher can follow the approach presented in Sec-
tion 1.4.2 to maximize the amount of information to identify underlying behavior
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measures of predictive precision. If the objective is to predict behavior, the optimal se-

lection of BJ+1 is the one that improves the predictive precision the most. To construct

the predictive distribution including BJ+1, I first construct the predictive distribution

for BJ+1 conditional on data from observations {1, . . . , J}. Then, either (i) construct

a point prediction from the predictive distribution by computing its mean, median or

highest likelihood; or (ii) use the information from the predictive distribution to com-

pute a weighted measure of predictive precision for B0 where weights are given by their

likelihood given F J+1|MDJ .

Definition 1.24 (Optimal Design - Point Prediction) Let q̂J+1 ≡ ar gmaxq̃ f J+1(q̃), where

f J+1
MDJ (·) is the predictive density for budget set BJ+1 constructed using DJ . The optimal se-

lection is defined by

BJ+1
optimal ≡ ar gmax B̃J+1 PP0

MD̃J+1

where D̃J+1 ≡ DJ ∪
�

q̂J+1, p̃J+1, x̃ J+1
	

and let B̃J+1 ≡ B(p̃J+1, x̃ J+1) for some prices p̃J+1

and income x̃ J+1 such that B̃J+1 6= Bi for all i ∈ {1, . . . , J}.

Definition 1.25 (Optimal Design - Full Predictive Distribution) Let f J+1
MDJ (·) be the pre-

dictive density for budget set BJ+1 constructed usingDJ , then the optimal selection is defined

by

BJ+1
optimal ≡ ar gmax B̃J+1

∫

B̃J+1

f J+1
MDJ (q̃J+1)PP0|MD̃J+1 dq̃J+1

where D̃J+1 ≡ DJ ∪
�

q̃J+1, p̃J+1, x̃ J+1
	

and let B̃J+1 ≡ B(p̃J+1, x̃ J+1) for some prices p̃J+1

and income x̃ J+1 such that B̃J+1 6= Bi for all i ∈ {1, . . . , J}.

The example below illustrates how this criterion works.

Example (Continued 2.3) Consider again the decision maker A from example 2.3. The

researcher is considering expanding the sample to consider an additional observation from

a third budget set B3 and wants to select it to improve its forecast on B0. She is considering

two alternatives B3
a and B3

b as shown in table 1.5.
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Obs px py x q̂3

3a 1.75 1.25 5 (1.427, 2.002)

3b
3
4 2 5 (1.255, 3.321)

Table 1.5: Experimental design. Data for consumer A, choosing from B1 and B2. The re-
searcher is considering expanding the sample to include a third observation from B3 to tight the
prediction for B0. The two alternatives he is considering are B3

a and B3
b. q̂3

a is computed as in
definition 1.24

The computation for the expected predictive precision if budget set B3 is incorporated

follows Definition 1.24. The estimated q̂3 is displayed in the table above. For D̃3
a the

predictive precision measures for forecasting on B0 are given by PP0
α
|MD̃3

a = 0.39 and

PP0
K L|MD̃

3
a = 0.12; while for D̃3

b the predictive precision measures for forecasting on B0

are given by PP0
α
|MD̃3

b = 0.05 and PP0
K L|MD̃

3
b = 0.01. For predicting behavior on B0, it

is expected that B3
a aids forecasting to a larger extent than B3

b. The respective predictive

distributions are depicted in Figure 1.14.

Note that if the researcher seeks to design the sample but does not have any in-

formation available, the best it can be done is to maximize the ex-ante probability of

detecting violations for B0, that is, power as it is traditionally understood in the revealed

preference theory.

1.5 Empirical Application

In this section I use data from (Choi, Fisman, Gale, and Kariv 2007) to show that: (i)

more observations lead to more precise predictions, (ii) the proposed measures provide

additional information to value the usefulness of a model and do not replicate the rank-

ing prescribed by other measures in the literature, and finally (iii) I use the proposed

measures to compare the predictive performance of GARP versus the maximization of
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(a) Expanding the Sample to include B3
a (b) Expanding the Sample to include B3

b

Figure 1.14: Optimal experimental design for prediction

a Cobb-Douglas utility function.

This data set was obtained from a series of experiments designed to study decisions

under uncertainty. The 93 subjects in the experiment are presented with a graphical

interface displaying standard, two dimensional, budget constraints on the screen. The

experiment was conducted at the Experimental Social Science Laboratory at UC Berke-

ley and each session consisted of 50 independent decision rounds. Summary statistic

are shown in Appendix 1.C.

1.5.1 Effect of Additional Information

Additional information enhances the identification of the systematic component which

has two effects: (i) improves the precision due to the shrinkage of the supporting set

and (ii) improves the identification of the underlying error process which increases

uncertainty of predicting behavior. Ex-ante, the net effect is ambiguous. Intuitively, an

additional observation from a budget set that intersects at least one of the previously

observed ones, may improve the identification of the systematic component by making

previously consistent behavior not longer congruent with the model. But, if that is the

case, the distance between that observation and the closest consistent one, given by the
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Sample Mean for 25(half) and 50(full) observations per subject

Full Half Difference Test-statistic P-value
R2 0.9916 0.9968 -0.0052 1.6403 0.1051

(0.0023) (0.0020) (0.0032)
Adj R2 0.1071 0.1118 -0.0046 0.4220 0.6742

(0.0072) (0.0092) (0.0109)
Mean ex-ante prob 0.1124 0.0967 0.0157 1.3663 0.1759

(0.0084) (0.0095) (0.0115)
BC with r discrete 0.2078 0.6232 -0.4154 -5.7306*** 0.0000

(0.0465) (0.0556) (0.0725)
BC with r continuous 0.9923 0.9967 -0.0044 -1.4482 0.1492

(0.0022) (0.0020) (0.0030)
Size supporting 0.5219 0.6301 -0.1081 -9.9913*** 0.0000

(0.0062) (0.0116) (0.0108)
PP CI (95%) 0.5186 0.4246 0.0941 14.9986*** 0.0000

(0.0056) (0.0072) (0.0063)
PP KL 0.2572 0.1664 0.0909 8.1483*** 0.0000

(0.0096) (0.0058) (0.0112)

Table 1.6: Summary statistics for (Choi, Fisman, Gale, and Kariv 2007) - half and full
sample. Data for 77 subjects, (Choi, Fisman, Gale, and Kariv 2007), test for differences in
means. Standard error in (). BC with r discrete defines r = 1 if and only if observed data is
consistent with GARP and 0 otherwise; while BC with r continuous defines r = R2 from the
projection.

change in the magnitude of the observed error process.

To study the effect of additional information in the ability to predict behavior, I

compare the predictive ability constructed when considering the first 25 observations

with the same measures constructed considering the entire sample.34 The results are

presented in table 1.6. This table displays the mean across subjects for measures of fit,

adjusted fit, BC measures and the predictive precision measures –PP–, for the full sample

–first column– and the first half of the sample –second column–. The third column dis-

plays the difference between column 1 and column 2; while columns 4 and 5 show the

t-statistic and p-value for the hypothesis that these means are not significantly different.

Raw fit and the mean ex-ante probability of detecting violations are not significantly

34For a robustness check, the same exercise is realized by splitting the sample into odds and even
observations, using the former to construct the measures and compare to the whole sample. The results
are not significantly difference. Table 1.12 in Appendix 1.C
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different when comparing 25 versus 50 observations. Therefore there is evidence that

preferences are stable and that the process for budget set is stable as well.

The BC measure provides contradictory information when using the discrete or the

continuous measure of success. This is explained by the fact that, for the considered

data, the relative size of the target set is approximately 0 for all subjects. Thus, the

discrete version adjusts a binary measure of whether the data satisfy GARP by a mea-

sure that is approximately 0 for all subjects, therefore providing the same information

as the deterministic test. Since the number of rational individuals drops from 63%

to almost 20% when moving from 25 to 50 observations, the discrete measure favors

smaller samples. On the other hand, the continuous version of BC measure collapses to

the measure of success considered, therefore it cannot significantly detect differences

when considering 25 of 50 observations, since there are not significant differences in fit.

In contrast, the predictive precision measures improve with additional observations.

The precision when predicting behavior is significantly improved due to the enhanced

identification of the systematic component which is shown in the shrinkage of the "sup-

porting set". Although the difference in the ex ante mean probability of detecting vio-

lations is not significant, the overall probability increases with the sample size, which

explains the significant difference of the mean size of the supporting set. Nevertheless,

the effect of conditional power is not negligible even for the full sample, providing in-

formation about the stringentness of the constraints across subjects in contrast to BC

measure. This is further studied in next section.
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Subject 516 Subject 313
R2 0.9998 0.9999
Varian 0.9750 0.9700
BC 0.9998 0.9999

R2 −
�

1− P(viol)
�

0.2836 0.2931
PP CI (95%) 0.6096 0.4867
PP KL 0.3134 0.2636
Size supporting 0.4335 0.5713

Table 1.7: Statistics comparison. Data for subjects 516 and 313, (Choi, Fisman, Gale, and
Kariv 2007)

1.5.2 Empirical Performance of Predictive Ability Measures and Com-

parison to Other Measures in the Literature

The difference between the predictive measures and BC measure of success can be

shown by comparing two subjects. Consider subjects 516 and 313, the choices for

these subjects are shown in Figure 1.15 in the Appendix. Figure 1.16 in the Appendix,

shows the predictive distribution for good 1, constructed based on the data for these two

subjects for four randomly generated environments. For some of these new economic

environments, the data indeed provides distinct information to predict behavior –Panels

1.16a and 1.16b– while for others the different is subtle or almost none -Panels 1.16c

and 1.16d–. Table 1.7 shows that, even when standard goodness of fit measures and

adjusted ones35 would indicate that the performance of the model is better for subject

313, subject 516 generates a more informative predictive distribution. This is because

even if ex ante the design seems to be more demanding for subject 313, a closer look

reflects that, given observed choices, more information can be inferred from choices for

subject 516, as can be seen from the comparison of the mean size of the supporting set.

35In the spirit of the measure proposed by (Beatty and Crawford 2011), but considering the mean
ex-ante probability of detecting probability instead of the overall probability to capturing differences in
experimental design across individuals.
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1.5.3 Model Comparison: GARP vs. Parametric Specification

I use the predictive approach for the comparison between the nonparametric rationality

model and a nested parametric model where choices are generated by a Cobb-Douglas

utility function plus error. The parameters that characterize the preferences of each

decision maker are allowed to be individual specific.

By assuming a parametric DGP that delivers a point prediction, one may expect the

predictive distribution for the Cobb-Douglas model to be more informative than for a

more general model (GARP) that comprises it. But in being more restrictive, the para-

metric model induces misspecification error which increases its entropy. In the consid-

ered sample, the latter effect dominates, as can be seen from the results in table 1.8, and

the difference is statistically significant. The only case in which the parametric model

outperforms GARP is for subject 603, given her irregularities36 throughout all measures

of behavior has not been taken into account in the empirical analysis performed in

previous sections.

1.6 Relation to the Literature

This chapter relates to two large bodies of literature: (i) revealed preference testing,

measures of fit and power adjustments for GARP and (ii) model comparison and model

selection. By proposing the use of the predictive distribution to measure the success of

a nonparametric model of utility maximization while allowing for error. To my knowl-

edge, the construction of such distribution is novel in the literature. (Adams 2013)

allows for error, but identifies only a point forecast estimate by applying the "minimum

discrimination information principle". The approach developed in this chapter identi-

fies instead a predictive distribution, which is both more informative and can be used

36Varian Index < 0.3



58

to measure the quality of the model.

Microeconomic theory has approached the problem of assessing the quality of the

model when observed choices are not perfectly rational by proposing goodness of fit

measures based on some intuitively appealing moment of the data associated with the

monetary cost of the departures from the model. Section 1.4.4 discusses the relation

between the predictive performance approach developed in this chapter with the most

salient approaches for goodness of fit in the literature.

A common problem that plagues the literature of goodness of fit is the effect of the

relative distribution of budget sets on the ability to detect departures from rationality.

The literature has approached the problem by studying the "power" of the rational-

ity test; understood as the probability of finding violations given observed economic

environments for some alternative behavioral process. (Beatty and Crawford 2011)

proposes a measure of predictive success that combines fit and power following the ax-

iomatization provided by (Selten 1991), the relation between this measure and the ap-

proach presented in this chapter is shown in Section 1.4.4. In a similar vein, (Hoderlein

and Stoye 2009) and (Andreoni and Harbaugh 2013) tackle this problem by propos-

ing alternative measures of power. The predicting precision measures proposed in this

chapter combine fit and power by sizing the informational content of the predictive dis-

tribution providing a meaningful trade off between the two.

This chapter uses a projection technique to identify the systematic component and

the error process from data. Others have proposed the use of similar techniques as

(Varian 1985) and (Fleissig and Whitney 2005), but I further impose feasibility con-

straints. Under the behavioral assumption that choices are rational but observed with

error it naturally follows that the rational component must lie in the set of feasible
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GARP CD Difference| CI for Difference
PP CI 0.5140 0.2436 0.2702 0.2406 0.2999

(0.0059) (0.0157) (0.0149) t-statistic 18.14
PP KL 0.3422 0.2552 0.0870 0.0609 0.1131

(0.0104) (0.0094) (0.0131) t-statistic 6.64
‖vec(bε)‖ 558.49 20504.6 -19946.1 -24466.2 -15246.1

(187.67) (2301.9) (2271.3) t-statistic -8.78

Table 1.8: Model Comparison. Comparison GARP vs a Cobb Douglas utility function - Means

choices; and by definition observed choices are feasible as well. (Halevy, Persitz, and

Zrill 2014) proposes a projection technique that considers the feasibility constraints

but it is based on a parametric assumption over the utility function–that is, the data

is projected onto the subset of feasible choices that are consistent with the assumed

parametric form, inducing misspecification error. The projection technique employed

in this chapter only relies on the nonparametric constraints imposed by GARP.

Finally, this chapter relates to papers in the model selection literature. The informa-

tion criteria literature deals with trade-off between the goodness of fit of the model and

the complexity of the model providing tools for model selection, see (Akaike 1998) and

(Geisser and Eddy 1979). (Geisser and Eddy 1979) deals with model comparison in

the context of parametric models, Section 1.4.2 shows how the predictive distribution

proposed in this chapter can be used for such constructions.

1.7 Conclusion

Rationality is one of the most prevalent assumptions in economics but empirically is

almost surely violated. GARP provides an elegant nonparametric test for rationality,

but only one violation causes the data to be declared as inconsistent. The aim of this

chapter is to assess the quality of these models when the data may not pass the de-

terministic test relying solely on the necessary and sufficient conditions provided by

the axiomatization. I develop a framework that, combining fit and the uncertainty to
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predict consistent behavior, gauges the quality of the model by its predictive ability

given observed data. By extending the nonparametric prediction for GARP provided

by (Varian 1982) to a allow for error, I provide a novel construction for the predictive

distribution of axiomatic models. This distribution is a sufficient statistic for a decision

maker that seeks to select a model to predict behavior. For a researcher that does not

have an application in mind the predictive distribution can be used to compute mea-

sures of the performance of the model based on marginal likelihood and two intuitive

statistics that summarize the predictive performance of the model.

This approach provides a joint measure of the quality of the model-data, therefore

allowing for the comparison across data sets and/or behavioral models. The tradeoff

between these two features of the model is made conditional on observed data, there-

fore outperforming other measures of fit prevalent in the literature. Other measures

that combine fit and power in the literature do not allow to differentiate among many

model-data sets since power adjustments rapidly become insignificant. In contrast, the

predictive precision measures allow to differentiate between cases that seemingly have

the same power, but deliver significantly different predictive distributions.

The proposed predictive precision measures exhibit, theoretically and empirically,

the desired properties. Noisier data performs worse and more demanding environments

deliver more informative predictive distributions. Moreover, increasing the number of

observations allows the researcher to extract more information from data, which results

in more precise predictions.

By combining fit and power, the predictive precision measures are more informative

than standard measures in the literature. By relying solely on the axiomatization pro-

vided by GARP, without any further assumption on behavior and allowing for individual
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specific behavior, I avoid misspecification biases common in the recoverability/demand

estimation literature. By imposing the constraints implied by the model when projecting

the data, I overcome the concerns raised by (Lewbel 2001) with respect to the common

econometric approaches. Finally, the framework proposed in this chapter allows for

model comparison featuring a natural trade off between the generality of the model

and its empirical accuracy.
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1.A Proofs

1.A.1 Proofs of Section 1.3

Proof of Theorem 1.11. (1) From Definition 1.10 the predictive distribution, condi-

tional on data D is given by

f 0
MD(y) =

∫

s∈S0(ÒmMD )

1
∫

s∈S0(ÒmMD )
ds

fε (x − s)1
�

y = ar gmin ỹ>>0‖ ỹ − x‖
� 1

�

(x − s) · p0 = 0
�

∫

x:(x−s)·p0=0 fε(x − s)d x
ds

(1.5)

Given assumption 1, the distribution of Y 0
MD on B(s̄,δ) ⊂ B0 with

s̄ =

∫

S0(ÒmMD−A)

s
∫

S0(ÒmMD−A)
ds

ds

is symmetric around s̄, and its mean is precisely s̄. Then, given that Y 0
MD−A and Y 0

MD−B,

only differ on the variance of the error process, for all δ > 0 such that B(s̄,δ) ⊂ B0

E
�

Y 0
MD−A|Y

0
MD−A ∈ B(s̄,δ)

�

= E
�

Y 0
MD−B|Y

0
MD−B ∈ B(s̄,δ)

�

= s̄ (1.6)

Furthermore, distribution 1.5 truncated to B(s̄,δ) is given by

f 0
MD(y|y ∈ B(s̄,δ)) =

1
Pf 0

MD
(y ∈ B(s̄,δ))

1
S

∫

s∈S0(ÒmMD )

fε (y − s)
1

A(s)
ds (1.7)

where A(s) ≡
∫

x:(x−s)·p0=0
fε(x − s)d x and S ≡

∫

s∈S0(ÒmMD )
ds. Note that, before the trun-

cation the predictive distribution is a mixture of distributions with same variance but

different mean, where the weighting scheme is dictated by the uniform distribution on

the supporting set. Therefore, the variance of the mixture is given by a weighted av-

erage of each of the mixing components, that is the variance of the error process, plus

the variance of the distribution for location parameters, which in this case would be the

variance of S ∼ US0 .
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By construction, the density of Y 0
MD is symmetric around s̄ before the truncation, and

it is also symmetric for any B(s̄,δ), such that B(s̄,δ) ⊂ B0. Moreover, by convexity of

the supporting set, it follows that the variance of the symmetric truncation is a func-

tion of the overall variance and the result follows, that is ‖vec(ε̂A)‖ > ‖vec(ε̂B)‖, then

Diag (ΣA)≥ Diag (ΣB) and the result follows.

(2)From previous point we have that the effect of a bigger supporting set on the

untruncated predictive distribution is through the variance the distribution of the lo-

cation parameter on the supporting set. By the properties of the supporting set it fol-

lows that for SA ∼ US0(ÒmMD−A), and SB ∼ US0(ÒmMD−B) with S0(ÒmMD−A) ⊃ S0(ÒmMD−B) then

Var(SA) > Var(SB). Therefore the variance of the predictive distribution before the

truncation, depends on the variance of the location parameter, therefore on the size of

the supporting set.

(3) and (4) follow by Definition 1.10, where the convergence of the distribution to

the distribution of the error process follow by standard consistency properties of the

least squares estimation when the truncation is not binding (q >> 0).

1.A.2 Proof of Section 1.4.3

Proof of Theorem 1.19. From theorem 1.11 we know that the untruncated distribu-

tion increases its variance when variance of the error process or the size of the support-

ing set increases. Then, by definition 1.15, the PPα is defined as the smallest and con-

nected set Cα such that PF0
MD
(y ∈ Cα)≥ 1−α. Moreover, given convexity of the support-

ing set, this set would contain s =
∫

s∈S0 sds
∫

s∈S0 ds
, for all α < ᾱ with ᾱ = 1−maxy∈B0\RL

++ f 0
MD (y)

.

Then (1) and (2).

Finally, for two point identify models, the predictive distribution converges to the
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distribution of the error process, Theorem 1.11, truncated due to feasibility constraints.

As in (1), conditionally in the supporting set, in this case given Òmn = Òm̃m; if ‖vec(ε)‖<

‖vec(ε̃)‖ then the variance of the untruncated distribution for M̃D ′ increases. Defining

ᾱ as above, the result follows.

1.A.3 Proofs of Section 1.4.4

Proof of Proposition 1.21.

1. Let QA ⊂ {1, . . . , J} be the maximal subset of choices that is consistent with the

model, that is qQA ∈M
�

B
�

{pi, x i}i∈QA

��

, then HM(qA) =
‖QA‖

J . HM(qA)> HM(qB)⇒

QA >QB, then it must be the case that bεi
A · bε

i
A < bε

i
B · bε

i
B, and the results follows from

Theorem 1.19.

2. Af riat(qA) > Af riat(qB) ⇒ ∃ j ∈ {1, . . . , J}. Let eA = Af riat(qA) and assume,

without loss of generality that the perturbed revealed preference that imposes

the cheapest taxation37 on the value of e the efficiency index is such that eA =

ar gmaxeepi · qi
A ≥ pi · q j

A > ar gmaxeepi · qi
B ≥ pi · q j

B, that is if and only if eA ≡
pi ·q j

A

pi ·qi
A
> eB ≡

pi ·q j
B

pi ·qi
B

which given local non satiation we get pi · q j
A > pi · q j

B → pi ·
�

q j
A− q j

B

�

> 0, which in turn implies that bεi
A · bε

i
A < bεi

B · bε
i
B, and the results follows

from Theorem 1.19.

3. −M PI(qA) > −M PI(qB) if and only if there exists a sequence of choices that

involves observation qi and constitutes a cycle, namely Ji ⊆ {1, . . . , J} with i ∈ Ji.

That is, {q j} j∈Ji /∈MB
�

{p j, x j}
�

. Moreover, from the definition of the M PI implies

that for at least one observation k 6= i in Ji if and only if, pk·(qk
A−qi

A)+pi ·(qi
A−qk

A)<

pk · (qk
B − qi

B) + pi · (qi
B − qk

B), which in turn implies that

qi
A ·
�

pi − pk
�

< qi
B ·
�

pi − pk
�

⇔
�

qi
B − qi

A

�

·
�

pi − pk
�

> 0

37The argument follows if q jR(e)qi
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which in turn implies that bεi
A · bε

i
A < bεi

B · bε
i
B, and the results follows from from

Theorem 1.19.

1.B Error Process

1.B.1 Algorithms - Estimation of the Error Process in Finite Samples

Algorithm 1.26 (Simulation of Fθε by simulating M sequentially) Input: DataD, pro-

jection Òm and θ

Output: vector e2 ∈ RM×L where M is the number of repetitions for the simulation.

1. Choose M and set, m= 1

2. Find a randomize order Im and set i = 1

3. Take Im(i) and draw zm
Im(i) ∼ U

�

Supp
�

pIm(i)
, x Im(i)

�

|Òm−Im(i)

�

4. Draw em
j from Fθ

ε
for j = 1, . . . , J, and compute ym = zm

j + em

5. If ym ∈ B(p, x), set qm = ym and go to 6. Otherwise compute qm from ym consis-

tently with equation 1.2

6. If qm ∈ M then set e2
m = 0, m = m + 1 and i = i + 1. Otherwise compute e2

m =

min {qm − Òm, qm − zm}

7. Repeat steps 3-6 M times

Algorithm 1.27 (Computation of σ2
ε assuming bq = m) Input: choice data q, observed

economic environments
�

pi, x i
	J

i=1
, projection bq and σ2

Output: vector e1 ∈ RM×L where M is the number of repetitions for the simulation.
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1. Choose M and set, m= 1

2. Draw em
j from N

�

0,σ2
�

for j = 1, . . . , J, and compute ym = bq+ em

3. If ym ∈ B(p, x), set qm = ym and go to 4. Otherwise compute qm from ym consis-

tently with equation 1.2

4. If xm ∈M(B(p, x)) then set e1
m = 0 and m= m+1. Otherwise compute e1

m = qm−bq

5. Repeat steps 2-4 M times

Algorithm 1.28 (Computation of σ2
ε by simulating M(B(p, x ))) Input: data on choices

q, observed economic environments
�

pi, x i
	J

i=1
, projection bq and σ2

Output: vector e3 ∈ RM×L where M is the number of repetitions for the simulation.

1. Simulate the rational choice set

(a) Choose N, and set n= 1 i = 1, and set JN = ;

(b) Choose j at random from the set JJ = {1, . . . , J} \ JN and set I n(i) = j

(c) Draw zn
In( j) ∼ U [Supp (B(p, x)In(i)) |bqJJ]

(d) Set JN = JN ∪ I n(i) and repeat steps 1b-1c until JJ = ;

(e) Set M n
sim (B(p, x)) = zn

2. Simulate the distribution of the Q statistic

(a) Choose M and set, m= 1

(b) Choose zm at random from the set Msim (B(p, x))

(c) Draw em
j from N

�

0,σ2
�

for j = 1, . . . , J, and compute ym = zm
j + em
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(d) If ym ∈ B(p, x), set qm = ym and go to 2e. Otherwise compute qm from ym

consistently with equation 1.2

(e) If qm ∈ M(B(p, x)) then set e3
m = 0 and m = m + 1. Otherwise compute

e = qm − bq

(f) Repeat steps 2b-2e M times

1.B.2 Performance of Algorithms 1.26, 1.27 and 1.28 for Simulated

Data

Algorithms - σ2
ε - DGP 1 Algorithms - σ2

ε - DGP 2

σ 1 2 3 1 2 3

0.5 0.8850 0.9040 0.5370 0.9470 0.9570 0.5905

1 0.7405 0.7618 0.1794 0.8287 0.8816 0.2901

2 0.3128 0.4052 0.3592 0.4016 0.5528 0.2444

3 0.5876 0.6251 0.6460 0.4786 0.5149 0.5313

5 0.8631 0.9218 0.8087 0.8192 0.8918 0.7196

10 0.9765 0.9808 0.8497 0.9775 0.9794 0.8024

Table 1.9: Simulations algorithms. Kolmogorov-Smirnov two tailed test statistics with respect
to measure constructed based on the projection for σ = 3 for two alternative distributions over
a CD utility function.
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1.C Tables

1.C.1 Data

Table 1.10: Summary statistics. Summary statistics for the proposed measures and other
standard measures from the literature applied to the experimental data from (Choi, Fisman,
Gale, and Kariv 2007).

Measure Mean Median Std. dev. Min Max

Considering all the observed Budget set N = 81

Rational? 0.1975 0.0000 0.4006 0.0000 1

Afriat 0.9568 0.9810 0.0642 0.6860 1.0000

Varian 0.8898 0.9440 0.1568 0.2290 1.0000

HM index 47.1235 48 3.2418 29 50

# violations WARP 4.8889 4.0000 5.3852 0 27

# violations GARP 43.2099 6.0000 104.2718 0 559

Mean ex-ante prob viol 0.1108 0.0984 0.0731 0.0028 0.3775

Raw R2 0.9906 0.9994 0.0214 0.8597 1.0000

Adjusted R2 0.1072 0.1023 0.0640 0.0009 0.2806

Weighted R2 0.9906 0.9994 0.0207 0.8720 1.0000

Size supporting 0.5231 0.5267 0.0538 0.3693 0.6415

PP CI (95%) 0.5141 0.5106 0.0533 0.3835 0.6358

PP KL 0.2458 0.2236 0.0831 0.1432 0.6064

PP Hellinger 0.3229 0.3179 0.0818 0.1751 0.6006

PP TV 0.4102 0.4001 0.0590 0.2977 0.5574

Raw R2, adjusted R2 and weighted R2 are defined as in 1.29, 1.30 and 1.31 respectively.

PP Hellinger is defined consistent with 1.16 using the Hellinger distance between the

two distributions, PP0
in f o−Hell |D =

1p
2





p
F0 −

p
P




2. PP TV uses the Total Variation

metric, PP0
in f o−T V |D =

1
2‖F

0 − P‖1
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Table 1.11: Summary statistics - half of the sample. Summary statistics for the proposed
measures and other standard measures from the literature applied to the experimental data
from (Choi, Fisman, Gale, and Kariv 2007).

Measure Mean Median Std. dev. Min Max

Considering half of observations per individual N = 76

Rational? 0.6316 1.0000 0.4856 0.0000 1

Mean ex-ante prob viol 0.0979 0.0791 0.0833 0.0028 0.4704

Raw R2 0.9968 1.0000 0.0177 0.8516 1.0000

Size supporting 0.6315 0.6317 0.1015 0.0000 0.8091

PP CI (95%) 0.4245 0.4285 0.0639 0.2752 0.6515

PP KL 0.1686 0.1640 0.0478 0.0856 0.4139

PP Hellinger 0.2349 0.2237 0.0930 0.0894 0.6910

PP TV 0.3157 0.3179 0.0729 0.1653 0.6196

Raw R2, adjusted R2 and weighted R2 are defined as in 1.29, 1.30 and 1.31 respectively.

PP Hellinger is defined consistent with 1.16 using the Hellinger distance between the

two distributions, PP0
in f o−Hell |D =

1p
2





p
F0 −

p
P




2. PP TV uses the Total Variation

metric, PP0
in f o−T V |D =

1
2‖F

0 − P‖1

Mean - Odd Half Mean - First Half Difference |Test-statistic| P-value

R2 0.9978 0.9967 -0.0011 0.4927 0.6236

(0.0060) (0.0177) (0.0022)

Adj R2 0.1139 0.0965 -0.0174 1.2401 0.2188

(0.1069) (0.0663) (0.0140)

PA CI (95%) 0.4202 0.4255 0.0053 0.8371 0.4052

(0.0542) (0.0639) (0.0064)

Table 1.12: Comparison - half of observations. Robustness check for the comparison between
full sample and first half of the observations. The table shows that results are not significantly
different when considering the first 25 observations or the odd observations

Alternative Goodness of Fit Measures (Blundell, Browning, and Crawford 2008)
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proposed that when allowing for a stochastic component when conciliating the data

with the revealed preference conditions for utility maximization, the measure of the

distance between data and restricted estimators of demand provide a natural formula-

tion for a test statistic for the null of rationality. Alternative, one can construct goodness

of fit measures as a measure of the distance of data from the models. I propose to con-

struct: (1) a raw goodness of fit, (2)an adjusted goodness of fit and (3) a weighted

goodness of fit. The raw goodness of fit is defined as the coefficient of determination

constructed from the residuals of the projection. Formally,

Definition 1.29 (Raw R2) Let bε be defined as the residuals from the projection exercise

then

R2
l = 1−

‖vec(ε̂)− vec(ε̂)‖
‖vec(q)− vec(q)‖

(1.8)

As other measures of fit proposed in the literature, the empirical fit of the rationality

model is tightly related to the ex-ante probability of detecting violations to the model

given the observed economic environments and not only noisy, and the former is par-

ticularly significant in small samples. Them I propose to adjust the measure of fit the

ex ante probability of detecting violations to the model given observed economic envi-

ronments. These measure is closely related to (Beatty and Crawford 2011), though the

considered measure here is the product of the two factors instead of the difference, and

uses the mean ex-ante probability instead the overall probability. If I were to consid-

ered the overall probability for the considered sample the adjustment is approx. 1 for

all subjects. Formally,

Definition 1.30 (Adjusted measure of goodness of fit) Define the adjusted measure of

goodness of fit as

R
2
≡ Adjusted Goodness of fit≡ Goodness of fit× Pr[Violation model] (1.9)
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where Goodness of fit is defined as in 1.30 and Pr[Violation model] is defined as the mean

of the ex-ante probability of detecting a violation to the model given observed economic

environments.

Finally, the weighted measure of fit is a measure of fit where each of observation

is weighted by how unlikely (ex-ante) is to observed such behavior given observed

economic environments; that is,

Definition 1.31 (Adjusted measure of goodness of fit - Weighted R2) If there exists

a j such that p j 6= 0, then the weighted measure of goodness of fit is given by

R2
l,weighted = 1− R2

l = 1−
‖ω

�

vec(ε̂)− vec(ε̂)
�

‖

‖ω (vec(q)− vec(q))‖
(1.10)

otherwise it is equal to zero.

The weights are given by

Definition 1.32 (Weights) Consider the weight function ω such that

eω j =







p j i f bε j = 0

1− p j i f bε j 6= 0
(1.11)

and ω j =
eω j

∑J
j eω

with p j ≡ Pr
�

violat ion j|− j|q1, . . . , q j−1, q j+1, . . . , qJ

�
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1.C.2 Comparison Between Subjects 313 and 516

Figure 1.15: Comparison between subjects Data from Table 1.7

(a) Subject 516 (b) Subject 313
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(a) p0 = (6.41, 2.05) and x0 = 102.51 (b) p0 = (2.54,5.33) and x0 = 97.13

(c) p0 = (2.65, 0.66) and x0 = 95.67 (d) p0 = (8.61,39.38) and x0 = 103.46

Figure 1.16: Predictive densities - comparison. Predictive densities for Subjects 313 and 516
where B0 where randomly generated.



Chapter 2

Satisficing and Stochastic Choice - with

Victor Aguiar and Mark Dean

2.1 Introduction

People often do not pay attention to all the available alternatives before making a choice.

This fact has lead to an extensive recent literature aimed at understanding the observ-

able implications of models in which the decision maker (DM) has limited attention.1

In an important recent paper, (Manzini and Mariotti 2014) characterize the stochastic

choice data generated by a decision maker (DM) who has standard preferences, but

only notices each alternative in their choice set with some probability. The chosen item

is therefore the best alternative in the ‘consideration set’ of noticed items, which may

be a strict subset of the items which are actually available.

The idea that a DM may not search exhaustively through all available alternatives

is not new. (Simon 1955) introduced the concept of satisficing: an intuitively plausible

choice procedure by which the DM searches through alternatives until they find one that

1Notable examples include (Masatlioglu, Nakajima, and Ozbay 2012), (Caplin, Dean, and Martin
2011), (Eliaz and Spiegler 2011), and (Salant and Rubinstein 2008).

75
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is ‘good enough’, at which point they stop and choose that alternative.2 This model has

been hugely influential, both within economics, and in other fields such as psychology

((Schwartz, Ward, Monterosso, Lyubomirsky, White, and Lehman 2002)) and ecology

((Ward 1992)).

Despite the popularity of the satisficing model, testing its predictions can prove

challenging. It has long been known that standard choice data, which records only

the choices made from different choice sets, cannot be used to disentangle satisfic-

ing from utility maximization (see (Caplin, Dean, and Martin 2011) for a discussion).

Researchers have therefore typically resorted to richer data sets in order to test the

satisficing model. for example, (Caplin, Dean, and Martin 2011) make use of ‘choice

process’ data, which records the evolution of choice with decision time, while (Santos,

Hortacsu, and Wildenbeest 2012) use the order in which alternatives were searched as

recorded from their internet browsing history.

In this chapter, we characterize the observable implications of the satisficing choice

procedure for stochastic choice data. Such data has been heavily studied in the eco-

nomics literature.3 We assume that the DM has a fixed utility function and satisficing

level. In any given choice set, they search sequentially until they find an alternative

which has utility above their satisficing level, at which point they stop and choose that

alternative. If they search the entire choice set and do not find a satisficing alterna-

tive then they choose the best available option. We assume that search order varies

randomly, leading to stochasticity in choice. On the one hand, this chapter is related

to the work of (Manzini and Mariotti 2014) (henceforth MM). It specifies a procedure

by which attention is allocated, while MM is agnostic in this regard. On the other,

2(Caplin, Dean, and Martin 2011) show that satisficing behavior can be optimal under some circum-
stances

3See for example (Block and Marschak 1960, Luce and Suppes 1965, Falmagne 1978, Gul and
Pesendorfer 2006, Gul, Natenzon, and Pesendorfer 2014, Manzini and Mariotti 2014)
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it provides an alternative test of the satisficing model to that of (Caplin, Dean, and

Martin 2011) and (Santos, Hortacsu, and Wildenbeest 2012), using a data set which is

readily available in many settings.

Our main observation is that the satisficing model implies that choice is stochastic

only in choice sets where there are multiple alternatives above the satisficing level. If

this is the case, then the order of search will affect the chosen alternative. If not, then

either the choice set will be fully searched and the best option deterministically chosen,

or the single satisficing alternative will always be chosen. This allows us to behaviorally

identify the alternatives that are satisficing for the decision maker.

Without further restriction, any stochastic choice data set can trivially be made com-

mensurate with the satisficing choice procedure by assuming that all alternatives are

above the satisficing level, and the resulting distribution of choices reflects the distri-

bution of search orders in that choice set. In order to generate meaningful behavioral

implications, we must place further restrictions on the satisficing model. For our main

theorem we make the assumption that the distribution of search orders has a full support

property (i.e., each item has a positive probability of being searched first), and also rule

out the possibility of indifference. This allows us to identify the set of above-reservation

alternatives and characterize satisficing with two simple intuitive conditions. The first

states that choice can be stochastic only amongst elements that are always chosen (with

some probability) when available. The second says that revealed preference, defined

via the support of the random choice rule in each set, must satisfy the Strong Axiom of

Revealed Preference (SARP). Under these conditions, the data will admit a satisficing

representation and the satisficing set, utility function and distribution over search or-

ders can be identified to a high degree of precision.
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Our baseline specification puts no restrictions on the relationship between the dis-

tribution of search orders across different choice sets. We next consider a refinement

of the satisficing model in which the distribution of search order in each choice set is a

manifestation of the same underlying search distribution. In order to guarantee such a

representation we need a third axiom: the Total Monotonicity condition of (Block and

Marschak 1960). This condition on its own is necessary and sufficient for the data to

be commensurate with the random utility model (RUM). Thus, the fixed distribution

satisficing model is the precise intersection between satisficing and random utility.

We discuss three extensions to our results in which we relax the assumptions of full

support, no indifference and the observation of a complete data set. We show that a

satisficing model without full support, but with fixed distribution is equivalent to the

random utility model. Allowing for indifference (but maintaining the full support as-

sumption) is equivalent to dropping the requirement that stochasticity only take place

amongst always chosen alternatives. If data is incomplete, our necessary and sufficient

conditions are unchanged, but our ability to identify above satisficing elements is re-

duced. We finishing studying the extensions to allow for random utility threshold and

for random utility. The random utility threshold results in a model that is behaviorally

equivalent to the baseline model with full support. We fully characterize the behavioral

implications of the extension to allow for random utility and show that it does not pro-

vide further information about the utility order among satisficing alternatives.

Section 2.2 describes our set up. Section 2.3 characterizes the satisficing model.

Section 2.4 considers the extensions described above, while section 2.5 discusses the

related literature.
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2.2 Set Up

2.2.1 Data

We consider a finite abstract choice set X , and let D ⊆ 2X \ ; be the set of menus in

which behavior is observed. We assume that data comes in the form of a random choice

rule, p : X ×D 7→ [0,1], which specifies for each menu A∈ D the probability of choosing

each element a ∈ A (for example, if the DM has a one third probability of choosing x

from {x , y, z} then p(x , {x , y, z}) = 1
3).

Definition 2.1 (Data set) A data set consists of a set if menus D ⊆ 2X \ ; and a random

choice rule p : X ×D 7→ [0,1] such that
∑

a∈A p(a, A) = 1 ∀A ∈ D. We say a data set is

complete if D = 2X \ ;.

Random choice rules have been heavily studied in the theoretical, as well as the

applied literature.4 In practice, while a random choice rule is not directly observable,

it can be estimated from observed choice frequencies, pooling either across repeated

choices by the same individual, or by aggregating across the choices of different indi-

viduals.

2.2.2 The Satisficing Model

The satisficing choice procedure can be described as follows: when faced with a menu

of options to choose from, the DM searches through the available alternatives one by

one. If, at any point, they come across an alternative which is ‘good enough’, they stop

searching and select that alternative from the menu. If they exhaustively search all al-

ternatives without finding an element which satisfies their criteria, then they choose the

best available alternative from the set. Note that the standard model of rational choice
4Examples of early theoretical work include (Block and Marschak 1960) and (Luce and Suppes 1965).

More recent work includes (Gul and Pesendorfer 2006, Manzini and Mariotti 2014, Gul, Natenzon, and
Pesendorfer 2014).
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is a limiting case of the satisficing model in which no alternative is ‘good enough’.

As a concrete example, consider a DM searching for a book to buy in a bookshop

prior to a flight. They examine the available books one by one, looking for one which

satisfies their requirements (humorous, has good reviews, long enough to last the flight,

not by Dan Brown). If they find such a book, they immediately go to the checkout and

buy it. If they search the entire selection and don’t find a book which matches this cri-

teria then they go back and choose the best of the books that they did see.

The satisficing choice procedure therefore has three building blocks. The first is a

fixed utility function u : X → R, which describes the preferences of the DM. Following

(Manzini and Mariotti 2014), for our main results we rule out indifference, and there-

fore assume that u is injective. We discuss the implications of allowing indifference in

section 2.4.2.

The second model element is a utility threshold u∗, which we will refer to as the

reservation utility. This defines the concept of ‘good enough’: an alternative x ∈ X is

good enough if u(x) ≥ u∗. We define U∗ = {a ∈ X |u(x) ≥ u∗} as the set of satisficing

elements according to u and u∗. For convenience, we will assume that there is at least

one satisficing element: i.e. u∗ ≤ max x∈X u(x). This assumption has no behavioral im-

plication: a model in which only the best available alternative is above the reservation

utility is indistinguishable from one in which there is no such alternative. However, it

will streamline the statement of identification results in section 2.3.

The third element of the satisficing model is the order in which search occurs. A

search order for a choice set A is defined by a linear order on that set.5 We use RA to

5i.e. a complete, transitive and antisymmetric binary relation on A with the interpretation ‘searched
no later than’.
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denote the set of linear orders on A, with rA a typical element in RA. Our key assump-

tion is that the order of search is determined stochastically: we use γA : RA→ [0, 1] to

denote the probability distribution over the set RA, which we call a ‘stochastic search

order’. Abusing notation slightly, we will use γA(x rA y) to denote the probability of all

search orders in which x appears before y: i.e. γA(rA ∈ RA|x rA y).

We are agnostic about the source of this stochasticity. It could be that the DM ran-

domly decides the order of search - in our example, sometimes the DM search through

the books alphabetically, while sometimes they do so by genre. Alternatively, it could

be that the random choice rule is generated by a DM who is faced by choice situations

which are framed in different ways,6 with the framing unobservable to the researcher.

For example, sometimes the bookstore puts the thrillers at the front of the store, while

sometimes they put the romantic comedies at the front. These ‘frames’ affect the order

in which the DM searches (though not their preferences), but are not known to the

researcher.

A data set can be represented by the satisficing model if there exists a utility func-

tion, satisficing level and family of stochastic search orders which would generate the

observed choice probabilities:

Definition 2.2 (General Satisficing Model (GSM)) A data set (D, p) has a Generalized

Satisficing Model (GSM) representation if there exists an injective u : X → R, u∗ ∈ R such

6In the sense of (Salant and Rubinstein 2008).
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Order (1) (2) (3) (4) (5) (6)
1st a a b b c c
2nd b c a c a b
3rd c b c a b a

γA
1
12

1
6

1
3

1
24

1
8

1
4

Table 2.1: An example of the satisficing model

that u∗ ≤ max x∈X u(x), and {γA}A∈D such that, for any A∈ D and a ∈ A

p(a, A) =



























γA (rA|a rA b ∀ b ∈ A\{a} s.t. u(b)≥ u∗) if u(a)≥ u∗

1 if a = arg maxx∈A u(x)< u∗

0 Otherwise

(2.1)

To illustrate how the model works consider the following example.

Example 2.3 Let A = {a, b, c} and γA be as displayed in table 2.3. Consider first the

case where a, b are satisficing alternatives, while c is not, that is u(a), u(b) > u∗ > u(c).

Then, no matter the search order, c will never be chosen, and so p(c, A) = 0. However,

as the DM will chose a if a is seen before b and b otherwise, their frequency depends on

γA. In particular, p(a, A) = 3
8 and p(b, A) = 5

8 . If instead all alternatives are below the

satisficing level (i.e. u∗ > max x∈Au(x)) then choice will be independent of search order:

all alternatives will always be searched, and the best subsequently chosen.
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2.3 Characterizing the Satisficing Model.

2.3.1 A Negative Result

The aim of this chapter is to describe properties of a stochastic choice data set which

are necessary and sufficient to guarantee a satisficing representation. However, our first

result is negative: without further refinement, the GSM model provides no restriction

on such a data set.

Proposition 2.4 Any data set (D, p) has a GSM representation.

All proofs are relegated to the appendix

The GSM is flexible enough to match any data set because it places no restriction

on the distribution over search orders in each decision problem. Thus one can always

construct a distribution of search orders that will match the data by assuming that all

alternatives are above the satisficing level.

To derive testable restrictions for the satisficing model, we introduce a ‘full support’

condition on the distribution of search orders. This restrictions will allow us to iden-

tify satisficing alternatives as those which are chosen with positive probability in every

choice set in which they appear. We can then utilize the underlying structure of the

GSM model to derive behavioral restrictions. Intuitively, the stochastic nature of search

generates stochastic behavior among satisficing alternatives. In contrast, we expect to

observe deterministic utility maximizing behavior among choice sets which consist only

of non-satisficing alternatives.

For the remainder of this section we concentrate on the simple case of full support,

no indifference and complete data. We identify the behavioral conditions which charac-

terize the resulting model. We also consider a special case of the model in which there
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is consistency in the distribution of search orders between choice sets. This additional

restriction ensures that our model is behaviorally equivalent to a subset of the class of

random utility models (RUMs). In section 2.4 we discuss extensions in which we drop

the full support, no indifference, and complete data conditions.

2.3.2 Full Support Satisficing Models

Our model adds to the GSM the assumption that, in each choice set, any item will be

searched first with some positive probability.

Assumption 2 (Full Support) For any a ∈ A and all A ∈ D: γA(rA ∈ RA : a rA b ∀b ∈

A\{a})> 0.

We describe a GSM which additionally satisfies this assumption as a Full Support

Satisficing Model (FSSM)

Definition 2.5 (Full Support Satisficing Model (FSSM)) A data set (D, p) has a Full

Support Satisficing Model (FSSM) representation if it has a GSM representation in which

the stochastic search order satisfies Full Support.

The assumption of Full Support has an important implication: we can identify

above-reservation alternatives as those which are always chosen with positive prob-

ability in any choice set in which they appear. This is because Full Support implies that,

for each such alternative, a search order in which it is searched first occurs with pos-

itive probability in each choice set, ensuring that it will be chosen. Furthermore, any

alternatives that are not above reservation utility will be chosen with zero probability

in any choice set which contains an above reservation utility alternative.

We define the set of alternatives which are always chosen:

Definition 2.6 (Always Chosen Set) For any data set (D, p), we define the always cho-

sen set as W ∗ = {a ∈ X |p(a, A)> 0 for all A∈ D such that a ∈ A}.
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For any complete data set generated by a FSSM, W ∗ must be equivalent to the set

of above-reservation alternatives.

Lemma 2.7 Assume a complete data set (D, p) admits an FSSM representation. Then, for

any such representation W ∗ = U∗.

As we discuss in section 2.4.3, if the data set is not complete then W ∗ may be a strict

superset of U∗: a below satisficing alternative may always be chosen because it is only

observed in choice sets containing other below satisficing alternatives.7

Using the (observable) set W ∗, we can define the first of two behavioral conditions

which characterize the FSSM. It states that stochastic choice must only occur amongst

elements of W ∗. This follows from the fact that stochasticity in the satisficing model

occurs only from stochasticity in search order.

Axiom 2.8 (Deterministic no satisficing choice) If a ∈ X\W ∗ then either p(a, A) = 0

or p(a, A) = 1 for all A∈ D.

The second condition ensures that the preference information revealed by a data set

is well behaved. In order to state the condition, we introduce the following definitions.

Definition 2.9 (Stochastic Revealed Preference) Define C(A) = {a ∈ A|p(a, A)> 0}.

a is stochastically revealed directly preferred to b if, for some A ∈ D a, b ∈ A and

a ∈ C(A). a is stochastically revealed preferred to b if {a, b} is in the transitive closure of

the stochastically revealed directly preferred relation. a is stochastically strictly revealed

preferred to b if, for some A∈ D, a ∈ C(A) and b /∈ C(A).

Notice that, for data generated by a FSSM, these revealed preference concepts align

with the underlying utility function except in the case of two alternatives above that sat-

isficing level. Such objects will be revealed indifferent to each other, yet may in fact be

7Completeness can be replaced for a weaker condition on the richness of the data set which requires
observing choices from all two and three element sets.
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ranked according to the utility function. It is a defining feature of the satisficing model

that utility differences above the threshold u∗ are unimportant for behavior. Neverthe-

less, the FSSM implies that the stochastic revealed preference information must obey

the Strong Axiom of Revealed Preference.

Axiom 2.10 (SARP) C(A) must obey SARP: if a is stochastically revealed preferred to b

then b must not be stochastically strictly revealed preferred to a.

Our first result is that axioms Axiom 2.8 and Axiom 2.10 are necessary and sufficient

for a data set to have a FSSM representation

Theorem 2.11 The following are equivalent:

1. A stochastic choice dataset (D, p) is generated by a FSSM.

2. A stochastic choice dataset (D, p) satisfies Axiom 2.8 and Axiom 2.10.

To understand the sufficiency of the two axioms -Axiom 2.8 and Axiom 2.10-, note

first that SARP allows us, through Afriat/Richter’s theorem (Richter 1996), to con-

struct a utility function which represents the stochastic revealed preference relation.

Moreover, the elements of W ∗ will be maximal according to that utility representation,

allowing for a u∗ such that all elements of the always chosen set can be assigned a

utility greater or equal than u∗; while all the elements that are not always chosen are

assigned an utility level below u∗. Axiom 2.8 guarantees deterministic choice in sets

which contain at most one above-reservation alternatives, and SARP again ensures that

such choices are utility maximizing. For all other choice sets, Axiom 2.8 ensures that

alternatives with utility below u∗ (and so outside W ∗) are not chosen, and a suitable

stochastic search order can be constructed from the random choice rules to explain the

pattern of choice amongst above satisficing alternatives.
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Notice that, while Lemma 2.7 relies on the completeness of the data set, Theorem

2.11 does not. The behavioral content of the FSSM model is the same regardless of

whether the data set is complete. However, the degree to which elements of the rep-

resentation can be identified will be reduced in incomplete data sets, as we discuss in

section 2.4.3.

The following examples illustrate the empirical content of the FSSM by presenting

data sets which violate each of our axioms.

Example 2.12 (Violation of Axiom 2.8) Let X = {a, b, c}, and let p (a, {a, b}) = 1,

p (b, {b, c}) = 1
2 , p (a, {a, c}) = 1 and p (a, {a, b, c}) = 1. This does not satisfy Axiom 2.8

since W ∗ = {a}, but p (b, {b, c}) = 1
2 /∈ {0,1}. This behavior is incommensurate with the

FSSM because the fact that b is chosen probabilistically from {b, c} indicates that it must

be above the satisficing level, yet this means that it should be chosen some of the time from

{a, b, c} due to the full support assumption.

Example 2.13 (Violation of Axiom 2.10) Let X = {a, b, c}, and let p (a, {a, b}) = 1,

p (b, {b, c}) = 1, p (a, {a, c}) = 0 and p (a, {a, b, c}) = 1. This does not satisfy Ax-

iom 2.10 since p (a, {a, b}) = 1 means that a is stochastically strictly revealed preferred to

b, p (b, {b, c}) = 1 means that b is stochastically revealed preferred to c, while p (c, {a, c}) =

1 means that c is stochastically strictly revealed preferred to a . Such behavior is also in-

commensurate with the FSSM as, in each case, the uniquely chosen object must have a

utility strictly higher than those which are not chosen, either because all are below the

satisficing level, in which case the best option is chosen, or because only the chosen object

is above the satisficing level.

Theorem 2.11 shows the extent to which the FSSM can be tested and differentiated

from other models. First, note that any data set in which p(a, A) > 0 for all A ∈ D will

trivially satisfy both Axiom 2.8 and Axiom 2.10, and so admit an FSSM representation.



88

This is because any data set in which the random choice rule has full support in ev-

ery choice set can be rationalized by an FSSM in which every alternative is above the

satisficing level, and the resulting pattern of choice is driven by the choice-set specific

distribution over search orders. Second, note that the standard model of utility maxi-

mization (without indifference) is a limit case of the FSSM in which |W ∗| = 1. Third,

notice that an alternative interpretation of the FSSM is a model in which attention is

complete and choices are governed by a preference relation which has indifference only

amongst maximal elements. A model in which such indifference is resolved using a ran-

dom tie breaking rule with full support amongst maximal elements is equivalent to the

FSSM.

Recoverability in the FSSM

In the case of a complete data set which satisfies Axiom 2.8 and Axiom 2.10, many of

the elements of the FSSM can be uniquely identified

Theorem 2.14 Let (D, p) be a complete data generated by an FSSM (u, u∗, {γA}A∈D). For

any FSSM representation of the data (ū, ū∗, {γ̄A}A∈D)

1. U∗ = Ū∗

2. For all a, b /∈ U∗, u(a)> u(b)⇒ ū(a)> ū(b)

3. γA(arAb ∀b ∈ {A∩ U∗} \ {a}) = γ̄A(arAb ∀b ∈ {A∩ U∗} \ {a}) for all A ∈ D,

a ∈ A∩ U∗

Theorem 2.14 tells us that, in a complete data set we can uniquely identify the

above-satisficing elements, the preference ordering over non-satisficing elements, and

the probability that one satisficing element will be seen before another in any choice

set.
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2.3.3 Fixed Distribution Satisficing Models

So far, we have allowed stochastic search order to vary arbitrarily between choice sets:

an alternative that is likely to be searched first in choice set A may be very unlikely

to be searched first in choice set B. However, in some cases such an assumption may

be inappropriate. For example, consider the case in which the probability of search is

governed by the ‘salience’ of different alternatives: a book with a bright pink cover may

be more likely to be looked at before one with a dark brown cover regardless of the set

of available alternatives.

We now consider the implications of a satisficing model with full support in which

the probability distribution over search orders is invariant to the set of available alter-

natives. We call this the ’fixed distribution’ property.

Assumption 3 (Fixed Distribution) There exists a ΓX : RX → [0,1] such that, for every

A∈ D and rA ∈ RA

γA(rA) = ΓX (rX |rA ⊂ rX )

For every choice set A, it is as if the DM draws a search order from a distribution

ΓX over linear orders on the grand set of alternatives X . They then follow that search

order, ignoring any alternatives that are not in fact available in A.

Definition 2.15 (Fixed Distribution Satisficing Model (FDSM)) A data set (D, p) has

a Fixed Distribution Satisficing Model (FDSM) representation if it has a FSSM represen-

tation in which the family of stochastic search orders {γA}A∈D satisfy Fixed Distribution.

The conditions Axiom 2.8 and Axiom 2.10 are necessary for FDSM but not suffi-

cient, implying that the FDSM is a strict subcase of FSSM. In order to obtain sufficiency,
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we make use of the Total Monotonicity condition of (Block and Marschak 1960). Total

Monotonicity by itself is a sufficient and necessary condition for Random Utility Maxi-

mization in our environment. This implies that the FDSM is the exact intersection of the

FDSM model with the Random Utility model of Block-Marschak and (Falmagne 1978).

In order to define the total monotonicity condition, we first need to define the fol-

lowing function for each A∈ D and a ∈ A:

f (a, A) =
∑

D∈B(A)

(−1)|D\A|p(a, D).

where B(A) is the class of supersets of A (i.e., B(A)≡ {D ∈ D|A⊆ D}).

(Block and Marschak 1960) and (Falmagne 1978) proved that the following behav-

ioral axiom called Total Monotonicity (or Block-Marschak Monotonicity) is necessary

and sufficient for a RUM representation:

Axiom 2.16 (Total Monotonicity) f (a, B)≥ 0 for all a ∈ X , for all B ∈ D.

Observe that f depends only on the data set so this axiom is testable.

Note that Total Monotonicity implies ‘standard’ monotonicity: the probability of

choosing any given alternative falls as more alternatives are added to the choice set -

that is p(a, A) ≥ p(a, B) when A ⊆ B.8 However, it is also stronger than this condition

as we can see in the following example: Set X = {a, b, c, d}, let p(a, {a, b}) = 0.2,

and p(a, {a, b, c}) = p(a, {a, b, d}) = 0.19 and p(a, {a, b, c, d}) = 0.17. We check

f (a, {a, b}) = p(a, {a, b}) + p(a, {a, b, c, d})− [p(a, {a, b, c}) + p(a, {a, b, d})] and ob-

serve that f (a, {a, b}) = −0.01 negative and violating total monotonicity. However, we

8To see this take the Mobius inverse representation of p(a, A) =
∑

D∈B(A) f (a, D) and p(a, B) =
∑

D′∈B(B) f (a, D′) and note that if D ∈ B(B) then D ∈ B(A) and f (a, D) ≥ 0 by total monotonicity, then
we have that p(a, A)≥ p(a, B).
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can see that standard monotonicity holds in this example.

Clearly, a FDSM cannot lead to a failure of regularity. If it did that would mean

that a given satisficing item is more likely to be found first in a bigger menu than in

a smaller one, which is not consistent with the idea that the probability of any search

order is fixed across menus. The higher order monotonicity conditions implied by total

monotonicity can be interpreted as saying that the likelihood of a satisficing item being

found first decreases with the size of the menu, but the marginal effect of adding a new

option to the menu decreases with its size. In the example above f (a, {a, b})≥ 0 means

that the impact of adding one additional item c in the menu {a, b} on the probability

of choosing a – i.e. p(a, {a, b}) − p(a, {a, b, c}) – is bigger that the impact of adding

the same item c in the bigger menu {a, b, d} on the probability of choosing a – i.e.

p(a, {a, b, d})− p(a, {a, b, c, d})).

We are ready to state the main result of this section.

Theorem 2.17 The following are equivalent:

1. A complete stochastic choice dataset (D, p) is generated by a FDSM.

2. A complete stochastic choice dataset (D, p) satisfies Axiom 2.8, Axiom 2.10 and Total

Monotonicity (Axiom 2.16).

Note that, unlike Theorem 2.11, Theorem 2.17 requires a complete data set.

Recoverability in the FDSM

In the case of a complete data set which satisfies Axiom 2.8, Axiom 2.10 and Total

Monotonicity (Axiom 2.16) several of the elements of the FDSM can be identified. In

particular, the identification of the search orderings is improved upon the FSSM recov-

erability.
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Theorem 2.18 Let (D, p) be a complete data generated by an FDSM (u, u∗, ΓX ) such that

X \ U∗ 6= ;. For any FDSM representation of the data (ū, ū∗, Γ X )

1. U∗ = Ū∗

2. For all a, b /∈ U∗, u(a)> u(b)⇒ ū(a)> ū(b)

3. ΓX (arX b) = Γ X (arX b) all A∈ D and a, b ∈ U∗

Theorem 2.18 tells us that, in a complete data set, we can identify the above-

satisficing elements, granted that there is a positive probability of being seen before

some above-satisficing element. Moreover, we can identify the preference ordering

over the alternatives that are surely non-satisficing elements, and the probability that

one revealed satisficing element will be seen before another in any choice set, for those

elements that are surely satisficing.

2.3.4 Comparative Statics

In this section we study the comparative statics of the model with respect to the primi-

tives of the model. We first study the behavioral implications of changes on the utility

threshold. If we observe two decision makers, I and Ĩ , that face the same menus and

are such that u∗I > u∗
Ĩ

and identical otherwise, then we expect to observed that set of

always satisficing alternatives for decision maker I is weakly smaller -and a subset- of

the set of always satisficing alternatives for decision maker Ĩ . Intuitively, lower utility

thresholds are associated to a bigger set of satisficing alternatives and, therefore, a big-

ger set of alternatives that are always chosen when present in a menu. The following

claim formalizes this intuition.

Claim 2.19 Let I = (u, u∗, {γA}A∈D) and Ĩ = (u, ũ∗, {γA}A∈D) be two FSSM (FDSM) deci-

sion makers then:

1. If u∗ > ũ∗ then |W ∗| ≤ |W̃ ∗|
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2. If |W ∗|< |W̃ ∗| then u∗ > ũ∗

To study the effect of the utility threshold on the well being of DMs, we first introduce

some definitions.

Definition 2.20 (Utility Distribution) For a FSSM (FDSM) decision maker I = (u, u∗, {γA}A∈D)

we define the utility distribution for menu A as the distribution over utility levels implied

by the model

pI(ũ, A) =
∑

a∈A

1{u(a) = ũ}p(a, A)

and the cumulative distribution function

FI(u, A) =
∑

u≤u

pI(u, A)

Definition 2.21 (Expected Utility) The expected utility for a FSSM (FDSM) decision maker

I = (u, u∗, {γA}A∈D) when choosing from menu A is given by

E I
u(A) =

∑

a∈A

pI(u(a), A)u(a)

We show that a FSSM (FDSM) that has a lower utility threshold would make worse

decisions. To understand this, consider two FSSM decision makers I = {u, u∗, {γA}A∈D}

and Ĩ = {u, ũ∗, {γA}A∈D}with u∗ > ũ∗. Then, for any A∈ D, |A∩U∗| ≤ |A∩ Ũ∗|. Therefore

a DM with a lower threshold is now randomizing including alternatives with lower

ex-ante utility level when satisficing alternatives are available menu. The following

example illustrates how this mechanism works.

Example 2.22 Let A = {a, b, c} and for simplicity assume that u(a) = 1, u(b) = 2 and

u(c) = 3. Let u∗ = 2.5 and ũ∗ = 1.5, and consider the search orders from Example 2.3.
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For decision maker I, p(c, A) = 1 and p(a, A) = p(b, A) = 0,

FI(u, A) =











0 if u< 3

1 if u≥ 3

and E I
u(A) = 3. For decision maker Ĩ , p(a, A) = 0, p(b, A) = 11

24 and p(b, A) = 13
24 , therefore

F Ĩ(u, A) =



























0 if u< 2

11
24 if 2≤ u< 3

1 if u≥ 3

and E Ĩ
u(A) =

61
24 < 3.

This result is formalized in Proposition 2.23.

Proposition 2.23 (Utility Threshold) Let I = (u, u∗, {γA}A∈D) and Ĩ = (u, ũ∗, {γA}A∈D)

be two FSSM, with cumulative probability distribution over utility levels FI(u, A) and F Ĩ(u, A).

If u∗ > ũ∗ then FI(u, A)≤ F Ĩ(u, A) for all u. Moreover, if FI(u, A)≤ F Ĩ(u, A) with FI(u, A) 6=

F Ĩ(u, A) then u∗ > ũ∗.

Corollary 2.24 Under the conditions of Proposition 2.23, u∗ ≥ ũ∗ then E I
u(A)≥ E Ĩ

u(A) for

all a ∈ D. Moreover, if E I
u(A)> E Ĩ

u(A) then u∗ > ũ∗.

To analyze the overall cost in terms of utility for a decision maker that utilizes a

lower utility threshold we note that, from Corollary 2.24, if u∗ ≥ ũ∗ then

∑

A∈D

E I
u(A)≥

∑

A∈D

E Ĩ
u(A)

and the last inequality is strict whenever {a ∈ A : ũ∗ ≤ u(a)< u∗ for some A∈ D} 6= ;.
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Corollary 2.25 Under the conditions of Proposition 2.23 and assuming complete data

sets, if u∗ ≥ ũ∗ then |U∗| ≤ |Ũ∗|. Moreover, if {a ∈ A : ũ∗ ≤ u(a)< u∗ for some A∈ D} 6= ;

then |U∗|< |Ũ∗|

A direct implication of Corollary 2.25 is that, whenever a satisficing decision maker

lowers her utility threshold, the relative size of the set of irrational choices, |U
∗|
|X | , in-

creases.

Alternatively, we can study the effect of changes in the search orders. Intuitively,

if the relative probability of search orders changes in such a way that search orders

congruent with preference orders become more likely then the expected utility of their

decisions improve. The following example illustrates how this mechanism works.

Example 2.26 Consider again example 1 with u(a), u(b) > u∗ > u(c) and search orders

γA and γ̃A as shown in Table 2.2; where γ̃A({a, b, c}) = γA({a, b, c})+ 1
12 and γ̃A({b, a, c}) =

γA({b, a, c}) − 1
12 . Note that for DM I we have that pI(a, A) = 3

8 , pI(b, A) = 5
8 and

pI(c, A) = 0; while for DM Ĩ we have that p Ĩ(a, A) = 11
24 , p Ĩ(b, A) = 13

24 and p Ĩ(c, A) = 0.

For simplicity assume that u(a) = 3 and u(b) = 2. Correspondingly, the cumulative dis-

tribution functions are given by

FI(u, A) =



























0 if u< 2

5
8 if 2≤ u< 3

1 if u≥ 3

with E I
u(A) =

19
8 .

F Ĩ(u, A) =



























0 if u< 2

13
24 if 2≤ u< 3

1 if u≥ 3
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Order (1) (2) (3) (4) (5) (6)
1st a a b b c c
2nd b c a c a b
3rd c b c a b a

γA
1
12

1
6

1
3

1
24

1
8

1
4

γ̃A
1
6

1
6

1
4

1
24

1
8

1
4

Table 2.2: Changes in the probability of search orders and its effect on DM’s well-being.

with E I
u(A) =

59
24 >

19
8 .

This result is formalized in Appendix 2.A.9.

2.4 Extensions

In this section we extend our model by relaxing in turn the assumptions of full support,

no indifference, and complete data

2.4.1 Fixed Distributions Without Full Support

As discussed in section 2.3.1, the GSM model is vacuous without the full support as-

sumption. Here we consider the empirical implication of dropping full support but

maintaining the fixed distribution assumption. In such a case the identification of sat-

isficing elements as those that are always chosen breaks down. A satisficing element a

may not be chosen in some sets if it is always searched after another satisficing element

b. To illustrate this point consider the following example.

Example 2.27 Let X = {a, b, c, d}, U∗ = {a, b} and Γ a distribution over search orders on

X with full support and where each possible search order is equally likely; moreover assume

that u(c) > u(d). Then, for any menu such that U∗ ⊆ A, p(a, A) = p(b, A) = 1
2 , and if
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A∩ U∗ 6= ;, then p(U∗, A) = 1 and p(c, A) = p(d, A) = 0. Finally, p(c, {c, d}) = 1 and

p(d, {c, d}) = 0. Note that this is the standard case describe in section 2.3.3. Now, notice

that since we do not assume that Γ needs to have full support on the set of search orders on

X , the same data set can be generated by the following fixed distribution satisficing model

without full support: Ū∗ = X , Γ ((a, b, c, d)) = Γ ((b, a, c, d)) = 1
2 and Γ (rX ) = 0 for all rX

linear order on X , such that rX /∈ {(a, b, c, d), (b, a, c, d)}. Furthermore, this alternative

representation is not unique.

Because it is not possible to identify the satisficing alternatives the only implication

of the satisficing model without full support, but with fixed distribution is Total Mono-

tonicity - in other words it is behaviorally indistinguishable from the random utility

model. This can be seen by noting that a RUM can be reinterpreted as a satisficing

model with fixed distribution by assuming that all alternatives are above the reserva-

tion level, and treating the preference orderings from the random utility model as search

orders in the satisficing model.

Proposition 2.28 The following are equivalent:

1. A complete stochastic choice dataset (D, p) is generated by a FDSM without Full

Support.

2. A complete stochastic choice dataset (D, p) satisfies Axiom 2.16.

2.4.2 Allowing for Indifference

Here we relax the no indifference assumption while keeping the Full Support conditions.

Allowing for indifference potentially introduces stochasticity among non-satisficing al-

ternatives due to the DM’s rule to break ties. We assume that tie breaking works as

follows, if the DM is indifferent between two or more alternatives, and needs to choose

one of them, she chooses at random from the set of indifferent alternatives with prob-
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abilities induced by the tie-breaking rule T .

Definition 2.29 (Tie-breaking rule) Let T : X×D → R++9 be a function that assigns tie

breaking weights to alternatives. In case of indifference between two or more alternatives

in menu A, the DM applies the induced tie breaking rule as follows:

T (a|A∼a) =
T (a, A)

∑

b∈A∼a T (b, A)
(2.2)

where T (a|A∼a)> 0 is the always positive probability that a is chosen when a is indifferent

to all the elements in the set A∼a ≡ {b ∈ A : u(b) = u(a)}, and superior to all other elements

in A (i.e. u(a)≥ u(b) for all b ∈ A).

Note that if |A∼a |= 1 then T (a|A∼a) = 1, and that
∑

b∈A∼a T (a|A∼a) = 1 in general.

We now extend the Full Support Search Model to allow for indifferences.

Definition 2.30 (Full Support Search Model with Indifferences (FSSMI)) A data set

(D, p) has a Full Support Search Model with Indifferences (FSSMI) representation if there

exists u : X → R, u∗ ∈ R such that u∗ ≤maxa∈X u(a), stochastic search orders{γA}A∈D that

satisfies Fixed Distribution and tie breaking rule T : X×D → R++, such that, for any a ∈ A

p(a, A) =



























γA (arAb ∀ b s.t. u(b)> u∗) if u(a)≥ u∗

T (a|A∼a) if a ∈ argmaxx∈A u(x)< u∗

0 Otherwise

(2.3)

The following example illustrates the FSSMI.

9Note that we rule out deterministic tie breaking since, the behavior of a DM that is indifferent between
two alternatives a and b and always chooses a over b is behaviorally indistinguishable from a DM that
prefers a over b.
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Example 2.31 Consider again example 2.3, and assume that DM’s choices can be repre-

sented by a Full Support Seach Model with Indifferences. Let U∗ = {a}, and let u(b) = u(c).

Then, p(a, A) = 1, p(b, A) = p(c, A) = 0 for all A such that a ∈ A. Let the tie breaking

rule be generated by T (b, {{b, c}) = 1 and T (c, {b, c}) = 2, then p(b, {b, c}) = 1
3 , and

p(c, {b, c}) = 2
3

Axiom 2.8 is no longer necessary for the FSSMI model: stochasticity can occur

amongst alternatives that are not always chosen due to indifference. In fact, it turns

out that the behavioral implication of allowing for indifference is precisely the removal

of this axiom from our set of necessary and sufficient conditions.

Theorem 2.32 The following are equivalent:

1. A complete stochastic choice dataset (D, p) is generated by a FSSMI.

2. A complete stochastic choice dataset (D, p) satisfies Axiom 2.10.

Theorem 2.32 highlights that the satisficing model without indifference can be rein-

terpreted as a standard optimizing model with random tie breaking, but allowing for

indifference only amongst the best alternatives.

Recoverability in the FSSMI

Given u∗ ≤maxa∈X u(a), the extension of the model to allow for ties, does not obscure

the identification result for the satisficing set as in 2.6, where the always chosen set

coincides with the satisficing set, i.e. W ∗ = U∗. The following theorem describes the

degree to which the other elements of the model cannot be identified.

Theorem 2.33 Let (D, p) be a complete data generated by an FSSMI (u, u∗, {γA}A∈D , T ).

For any FDSMI representation of the data (ū, ū∗, {γA}A∈D , T̄ )

1. U∗ = Ū∗
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2. For all a, b /∈ U∗, u(a)≥ u(b)⇒ ū(a)≥ ū(b)

3. γA(arAb ∀b ∈ {A∩ U∗} \ {a}) = γ̄A(arAb ∀b ∈ {A∩ U∗} \ {a}) for all A ∈ D,

a ∈ A∩ U∗

4. T (a|A∼a) = T̄ (a|A∼a) for all a ∈ A, A∈ D.

Theorem 2.33 tells us that in a complete data set we can uniquely identify the above-

satisficing elements, the preference ordering among non-satisficing elements, the tie

breaking rule when used and the probability that one satisficing element is seen before

another in any choice set. Its proof follows from Theorem 2.14 when the identification

of the tie breaking rule is established. The identification of the former (tie braker rule)

holds because whenever it is used, it is calibrated from the empirical choice probability

among elements that are not revealed to be satisficing.

2.4.3 Incomplete Datasets

Here we relax the complete data set assumption while keeping the full support distribu-

tion condition and assuming no indifference. We do not work with the fixed distribution

assumption since Total Monotonicity is not well defined for incomplete data sets, and

the literature on Random Utility Models has not dealt with this extension.

Notice that complete data is not a necessary assumption for Theorem 2.11. Thus, if

we drop completeness, the implications of the model are not affected, but identification

becomes weaker. To see this note W ∗ may be a strict superset of U∗ since a below-

satisficing alternative may be always chosen because it is only observed in choice sets

containing below-satisficing alternatives. The accuracy with which we can identify the

primitives of the model given observed data depends on the richness of the data set.
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Theorem 2.34 Let (D, p) be a data set (that needs not to be complete) that satisfies Ax-

iom 2.8 and Axiom 2.10. Then for a FSSM (u, u∗, {γA}A∈D) represents the data if and only

if

1. fW ⊆ U∗ ⊆W ∗

2. u must represent the stochastic revealed preference relation on X \ U∗: that is if a is

stochastically strictly revealed preferred to b then u(a) > u(b), and if a is revealed

preferred to b then u(a)≥ u(b) for any a, b ∈ X \ U∗

3. γA(a rA b ∀b ∈ (U∗ ∩ A) \ {a}) = p(a, A) for all A∈ D, a ∈ U∗ ∩ A.

where fW ≡ {a ∈ X |∃A∈ D, s.t p(a, A) ∈ (0,1)}.

Theorem 2.34 tells us that, when dealing with incomplete data sets one can only

identify with certainty satisficing choices, if these have been observed chosen when

other satisficing alternatives were available as well; that is, if we see them being chosen

stochastically. As we established before, the satisficing set is a subset of the set of always

chosen alternatives, but with incomplete data it may be a strict subset. Furthermore,

one can only partially recover the preference order for the revealed not satisficing al-

ternatives. Finally, the search orders can only be identify up to the set of those that

coincides with the one generated from the relative probabilities of the elements that

surely are in U∗.

2.4.4 Random Utility and Random Threshold

Now we turn to the study of two variants of the satisficing model where we allow ran-

domness in tastes and in the threshold rule. The first generalizes the constant threshold

assumption and allows it to be random but common across all items and menus. The

second variant focuses on letting utility taken as fixed before to be also random (i.e.,

random utility).
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Random Threshold

Here we explore the satisficing model when we allow for a random threshold. We estab-

lish the somewhat surprising result that assuming a random threshold that is indepen-

dent of the search process and common across items and menus, adds no generality to

the satisficing model. In fact, these variants are indistinguishable from the FSSM/FDSM

with constant threshold.

The probability of any item of being satisficing is given by the probability of the

common random threshold (CRT) variable of being below this number. It is common

because it remains the same across menus and items. We assume throughout the re-

maining of the section that the random threshold is independent of the random search.

Definition 2.35 (FSSM with Common Random Threshold (FSSM-CRT)) A data set (D, p)

has a a Full Support Satisficing Model with Common Random Threshold (FSSM-CRT) if

there exists an injective u : X → R, a continuous random variable u∗ ∼ Fu∗(·) such that

τ(a) = Pr(u(a)> u∗) = 1− Fu∗(u(a)) with suppor t(u∗) ⊆ R such that |U∗,CRT | ≥ 2 with

U∗,CRT = {x ∈ X : τ(x) > 0}, and {γA}A∈D with the Full Support property, such that, for

any A∈ D and a ∈ A:

p(a, A) =
∑

rA∈RA

τ(a)
∏

b∈A:brAa

(1−τ(b))γA(rA) +
∏

c∈A

(1−τ(c))1(u(a)> u(b)∀b ∈ A\{a}).

(2.4)

Notice that the term τ(a)
∏

b∈A:brAa(1−τ(b))measures the probability of item a ∈ A

being satisficing given that all items searched before it in menu A under fixed search

rA where not satisficing, similarly
∏

c∈A(1− τ(c)) is the probability of not finding any-

thing satisficing in A,10 and 1(u(a) > u(b)∀b ∈ A) = 1 when a is maximal under u
10Notice that the summation of the first term of the expression over all items P(A) =

∑

c∈A

∑

rA∈RA
τ(c)

∏

b∈A:brAc(1−τ(b))γA(rA) = 1−
∏

c∈A(1−τ(c)), thus the 1− P(A) =
∏

c∈A(1−τ(c)) is
the residual probability.
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in A and zero otherwise. We assume also that the productory over the empty set is 1,
∏

;(1−τ(b)) = 1.

We first study the implications of CRT assumption with the Full Support assumption

on the search process.

Lemma 2.36 A complete stochastic choice dataset (D, p) that can be generated by a FSSM-

CRT satisfies Deterministic no satisficing choice (Axiom 2.8) and SARP (Axiom 2.10).

The previous lemma allows us to establish the following equivalence result.

Theorem 2.37 The following statements are equivalent:

1. A complete stochastic choice dataset (D, p) can be generated by a FSSM.

2. A complete stochastic choice dataset (D, p) can be generated by a FSSM-CRT.

Now we explore the CRT assumption combined with the fixed distribution assump-

tion over the random search.

Definition 2.38 (FDSM with Common Random Threshold (FDSM-CRT)) A data set

(D, p) has a Fixed Distribution Satisficing Model with Common Random Threshold (FDSM-

CRT) representation if it has a FSSM-CRT representation in which the family of stochastic

search orders {γA}A∈D satisfy the Fixed Distribution property.

In what follows, we will prove that the FDSM-CRT is behaviorally indistinguishable

from the FDSM. But first we need two technical lemmata.

Lemma 2.39 A weighed sum of totally monotonic mappings p̂i : X × D 7→ [0,1] for

i ∈ {1, · · · , I} with I ≥ 1 an integer, evaluated at some (a, A) such that a ∈ A and A ∈

D, P̂(a, A,ω) =
∑I

i=1ωi p̂i(a, A) with ωi ≥ 0 a non-negative weight also satisfies total

monotonicity.
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Lemma 2.40 The mapping P̂ : X × D 7→ [0, 1] defined by (a, A) 7→ T (A)1(u(a) >

u(b)∀b ∈ A\{a}) for a fixed a ∈ A is totally monotone, where T (A) =
∏

c∈A(1−τ(c)).

With this in hand we are ready to state and prove the empirical implications of

FDSM-CRT.

Lemma 2.41 A complete stochastic choice dataset (D, p) that can be generated by a FDSM-

CRT satisfies Deterministic no satisficing choice (Axiom 2.8), SARP (Axiom 2.10) and Total

Monotonicity (Axiom 2.16).

The previous lemma allows us to establish the empirical equivalence between FDSM

with and without CRT.

Theorem 2.42 The following statements are equivalent:

1. A complete stochastic choice dataset (D, p) can be generated by a FDSM.

2. A complete stochastic choice dataset (D, p) can be generated by a FDSM-CRT.

We conclude that adding the CRT does not add generality to the FSSM and FDSM

as it does not change the empirical implications of these satisficing models.

Random Utility FDSM

Here we focus on a variant of the FDSM where we also allow for random utility.11 We

consider a model where there is a probability measure ρ : U 7→ [0, 1] defined over

a domain of injective utilities defined on X denoted by U . For a given element in

the support u ∈ U , we assume that the DM is consistent with FDSM or pF DSM
u with

{u, u∗, {γA}A∈D} (i.e. u∗, and {γA}A∈D common for each u ∈ U ):

11We omit the variant of FSSM with random utility as it is too non-restrictive, in fact, the reader can
easily check using the results in this section that the necessary and sufficient condition that characterizes
FSSM with random utility is the Degeneracy condition (A 2.44).
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Definition 2.43 (Random Utility FDSM representation (RU-FDSM)) A data set (D, p)

has a Random Utility FDSM representation (RU-FDSM) if it is the average of the FDSM

models over all possible utilities in (ρ,U ):

p(a, A) =
∑

u∈U

ρ(u)pF DSM
u (a, A)

We note that the new model does not satisfy SARP (Axiom 2.10) nor Deterministic

non satisficing choice (Axiom 2.8). It satisfies however:

Axiom 2.44 (Degeneracy) For x ∈ X\W ∗ and A∩W ∗ 6= ; then p(x , A) = 0.

Notice also the following direct results for RU-FDSM:

Claim 2.45 If the data set (D, p) has a RU-FDSM representation, then W ∗ = {a ∈ X :

p(a, A) > 0, ∀A∈ D} ≡ {a ∈ X : ∃ u ∈ U ,ρ(u) > 0, u(a) > u∗} corresponds to the set of

“sometimes” satisficing items. Also X\W ∗ corresponds to the set of never satisficing items.

Now we considering the following property, where any item that is satisficing for

some fixed utility is satisficing for all utilities in the domain of the random utility (ρ,U ).

This property is closer to the FDSM as it restricts the taste variation for satisficing items.

Definition 2.46 (Always satisficing random utility distribution) A random utility dis-

tribution is always satisficing if for any item x ∈ X such that for some u ∈ U with

ρ(u) > 0, and u(x) > u∗ it follows that for any other û ∈ U with ρ(û) > 0 it also

holds that û(x)> u∗.

It is clear that this property allows for a sharper interpretation of W ∗. In fact, con-

sider the following claim.

Claim 2.47 If complete stochastic choice dataset (D, p) can be generated by a RU-FDSM

with Always satisficing random utility distribution, then if a ∈ W ∗ it follows that Pr(u :

u(a) > u∗) = 1 and Pr(u : u(b) > u∗) = 0 for b ∈ X\W ∗. Thus W ∗ = {a ∈ X : u(a) >

u∗∀u ∈ U ,ρ(u)> 0} is the set of always satisficing items.
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We are ready to characterize the RU-FDSM, and we notice already that it is observa-

tionally equivalent to the RU-FDSM with Always satisficing random utility distribution.

Theorem 2.48 The following are equivalent:

1. A complete stochastic choice dataset (D, p) can be generated by a RU-FDSM.

2. A complete stochastic choice dataset (D, p) satisfies Axiom 2.16 and Degeneracy (Ax-

iom 2.44).

3. A complete stochastic choice dataset (D, p) can be generated by a RU-FDSM with

Always satisficing random utility distribution.

Identification of the Utility of Satisficing Items with Random Utility and Random

Threshold.

After studying the FSSM and the FDSM a less satisfactory feature of the models is that

we cannot recover information about the utility of satisficing elements. It is an interest-

ing question to explore whether this characteristic of the FSSM/FDSM is inherent to the

general satisficing procedures or not. In this section we use the partial exploration of

random threshold/random utility variants of the satisficing model to try to contribute to

answer this question. In general, we find that inferring information about the intensity

of the utility of satisficing items is still problematic.

For the case of a common random threshold Theorem 2.42 says that in a complete

standard stochastic choice dataset (D, p) FDSM and FDSM-CRT are indistinguishable

from one another. In fact, this gives as a corollary that the random threshold distri-

bution u∗ ∼ Fu∗ is not identified. We can only separate the elements that have a pos-

itive probability of being over the threshold from those that have a zero probability

of surpassing it (this follows from the fact that W ∗ ≡ U∗ in the case of FDSM and

W ∗ ≡ {a ∈ X : τ(a) > 0} in the FDSM-CRT). This partially identifies the support of Fu∗
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(up to monotone transformations of the random variable) but not the actual distribu-

tion. The following corollary follows trivially from Theorem 2.42.

Corollary 2.49 If a complete stochastic choice dataset (D, p) can be generated by a FDSM-

CRT, then the utility of satisficing elements such that U∗,CRT = {a ∈ X : τ(a) > 0} is not

identified.

From Theorem 2.42 it is also clear that only restricting the search procedure cap-

tured by {γA}A∈D beyond the fixed distribution assumption we can hope to obtain more

information about the random variable u∗ and about the utility level of satisficing items.

In fact this seems to be true for a uniform search restriction (and the implications of

such model are left as an open question).

The RU-FDSM clearly contains the FDSM-CRT/FDSM and is not contained by the

latter by Theorem 2.48. In consequence, we expect no gains in allowing random utility

to identify utility of satisficing items. However, RU-FDSM is interesting because one

could argue that the fact that some items are falling below the fixed threshold u∗ ran-

domly could help to identify some form of average utility like the quantity Pr(u : u(a)>

u∗) =
∑

u∈U ρ(u)1(u(a) ≥ u∗). However, we have the following corollary of Theorem

2.48 that establishes that Pr(u : u(a)> u∗) is not identified.

Corollary 2.50 If a complete stochastic choice dataset (D, p) can be generated by a RU-

FDSM (i.e., a list (ρ,U , pF DSM
u ) with Pr(u ∈ U : u(a) > u∗) =

∑

u∈U ρ(u)1(u(a) ≥

u∗) > 0 for a ∈ W ∗ and zero otherwise, there is an alternative representation RU-FDSM

with Always satisficing propery of the dataset (D, p) (i.e, a list (ρ∗,U ∗, p∗,F DSM
u )) such that

Pr(u ∈ U ∗ : u(a)> u∗) = 1 if a ∈W ∗ and zero otherwise.

Recall, that FDSM allows us to recover 1(u(a) > u∗) only, which implies the lack

of identification of utility (or utility intensity for satisficing items). Thus the RU-FDSM

fares no better than the FDSM in identifying satisficing items utility levels, because
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under the Always satisficing property Pr(u ∈ U ∗ : u(a)> u∗) is numerically equivalent

to 1(u(a)> u∗), because if a ∈W ∗ then 1(u(a)> u∗) = 1 and zero otherwise.

2.5 Relation to Existing Literature

The paper closest in spirit to ours is (Manzini and Mariotti 2014), which characterizes

the random choice generated by a DM who makes choices by optimizing on a stochasti-

cally generated consideration set. As in our model, preferences are deterministic, with

randomness in choice coming from stochastic changes is attention. However, the behav-

ioral implications of the two models are quite different, with the satisficing model being

the more general. In the set up of MM, all alternatives are always chosen with positive

probability in each set. In such a data set, axioms Axiom 2.8 and Axiom 2.10 are always

satisfied, and so the FSSM is trivially more general than the stochastic consideration set

model. Moreover, the FDSM also nests the stochastic consideration set model. This fol-

lows from the fact that, when restricted to the class of data in which all alternatives are

chosen with positive probability, the FDSM model is equivalent to the class of all RUMs,

and the model of MM is a strict subset of this class. Moreover, the FSSM and FDSM can

accommodate data sets in which not all alternatives are chosen with positive probability.

Our work also contributes to the literature aimed at testing the satisficing model.

It is well known that standard deterministic choice data cannot be used to distinguish

rational choice from satisficing behavior, implying that richer data is needed. (Caplin,

Dean, and Martin 2011, Caplin and Dean 2011) showed how to test the satisficing

model using ‘choice process’ data, which records not just final choice made by a deci-

sion maker, but also how choices change with contemplation time. (Santos, Hortacsu,

and Wildenbeest 2012) utilize data in which the sequence of search is recorded to test

the satisficing model. This chapter describes the implication of the satisficing model for
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stochastic choice data, which is arguably easier to collect that either choice process or

search data.

Another relevant paper is (Rubinstein and Salant 2006) that studies the implications

of choices from lists that include as a special case a variant of the satisficing model where

the DM chooses the first element in a list (that could be put one to one with a linear

search/ordering) that is above a threshold, if none she chooses the last one. We differ

from this effort in that we assume we do not observe the lists or linear orderings, in-

stead we infer the distribution of the linear search from the frequency of choice.

Ours is not the first paper to characterize the behavior of random choice rules.

Much of the previous work has focused on random utility models (RUMs), in which

the DM chooses in order to maximize a utility function, drawn from some distribu-

tion (see for example (Block and Marschak 1960, Falmagne 1978, Gul, Natenzon, and

Pesendorfer 2014)). As discussed above, the FSSM is behaviorally distinct from the

class of RUMs. It is easy to construct examples of FSSMs which violate regularity, and

so cannot be modeled as the resulting from random utility maximization. Moreover,

RUMs are not guaranteed to satisfy either axioms Axiom 2.8 or Axiom 2.10. In contrast

the FDSM is behaviorally a subset of the class of RUMs. Total monotonicity Axiom 2.16

is necessary and sufficient for a RUM representation (Falmagne 1978).
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2.A Proofs

2.A.1 Proof of Proposition 2.4

Proof. For any data set (D, p), set U : X → [0, 1] to be any arbitrary one to one real

valued function and set u∗ = −2; then U∗ = X . For any menu A∈ D, let ra
A be the set of

linear orders on A such that a r b for all b ∈ A.
�

ra
A

	

a∈A
therefore defines partition on

RA. Define

γA(rA) =
p(a, A)
|ra

A |
where rA ∈ ra

A

Such a representation will generate p as, for any a, u(a)≥ u∗

γA

�

rA|a ra
A b ∀ b s.t. u(b)≥ u∗

�

= γA

�

rA ∈ ra
A

�

= p(a, A)

2.A.2 Proof of Lemma 2.7

Proof. (W ∗ ⊆ U∗) Let a ∈ W ∗ then for any given A ∈ D we have p(a, A) > 0 then

either: (i) a ∈ U∗ or (exclusive) (ii) u(a) > u(b) for all b ∈ A and U∗ ∩ A= ;. Assume

a /∈ U∗ then (since U∗ 6= ;) there exists b ∈ U∗ and, by completeness of the data, there is

a menu A′ ∈ D such that a, b ∈ A′, and therefore p(a, A′) = 0, so we have a contradiction.

(U∗ ⊆W ∗) Let a ∈ U∗ ⇒ u(a)> u∗, by FSSM

p(a, A) = γA (rA|arAb ∀b ∈ A s.t. u(b)> u∗)> 0

where the last inequality follows from Full Support assumption.
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2.A.3 Proof of Theorem 2.11

Proof. First we prove that (1) implies (2). To prove that a data set (D, p) that admits

a FSSM representation satisfies Axiom 2.8 first notice that U∗ ⊆ W ∗ even for incom-

plete data sets. To see this note that if a ∈ U∗ then u(a) ≥ u∗ and since the data has a

FSSM representation then p(a, A) = γA (rA|a rA b ∀b ∈ A∩ U∗\{a}) for all A∈ D. Given

the full support assumption, γA (rA|a rA b ∀b ∈ A∩ U∗\{a})> 0 for all A∈ D, therefore

p(a, A)> 0 for all A∈ D which in turn implies that a ∈W ∗.

Then if a /∈ W ∗ we have that a /∈ U∗, which in turn implies that u(a) < u∗. Since

u is injective, there exists a a∗A = ar gmaxa∈Au(a). Then either (i) a = ar gmaxb∈Au(b)

or (ii) u(a) <maxb∈A u(b). If (i) since the data has a FSSM representation p(a, A) = 1;

while if (ii) p(a, A) = 0. In either case Axiom 2.8 follows.

To show that Axiom 2.10 holds, assume, by the way of contradiction, that (i) a is

stochastically revealed preferred to b and (ii) b is stochastically strictly revealed pre-

ferred to a. From (ii), given that data admits a FSSM we must have (by the full support

assumption) that u(a)< u∗ and u(a)< u(b). If a is stochastically revealed preferred to

b then there must exist a sequence of alternatives c1, ..., cN and choice sets A1, ..., AN−1,

such that c1 = a, cN = b, cn, cn+1 ∈ An and cn ∈ C(An). If u(b) > u∗ then it must be

the case that u(cN−1) > u∗ (otherwise cN−1 could not be chosen with positive proba-

bility when cN was available). Iterating on this argument implies that u(a) > u∗. If

u(b)< u∗ then this implies that u(cN−1)> u(b). If u(cn)< u∗ for all n then iterating on

this argument implies that u(a)> u(b). Otherwise, the previous argument implies that

u(a)> u∗. Either provides a contradiction.

Now we prove that (2) implies (1). For A ⊆ X \W ∗, C(A) ≡ {a ∈ A|p(a, A) = 1}

from Axiom 2.8. Given Axiom 2.10, we can generate an injective utility function using
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Afriat/Richter’s theorem, such that u : X \W ∗→ [0, u] and C(A) = ar gmaxa∈Au(a) for

all A ∈ D such that A∩W ∗ = ;. Fix u∗ > u , enumerate the elements in W ∗ as a1, ...aN

and let u(an) = u∗+n for all an ∈W ∗. Thus u : X → R is injective and U∗ ≡W ∗. Further-

more, notice that Axiom 2.10 implies that W ∗ is non-empty, so that u∗ ≤ max x∈X u(x).

For every A such that A∩W ∗ is non-empty, let A∗ ≡ A∩W ∗ and define RA∗ the set of all

linear orders on A∗, and let RA(rA∗) be the set of all linear orders rA ∈ RA that induce the

linear order rA∗ ∈ RA∗ .Then, set the probability of the set of linear orders that generate

each rA∗ as

γA

�

rA ∈ RA(rA∗)| ai rA∗a j ∀a j ∈ A∗\{ai}
�

=
p(ai, A)

|
�

rA∗ ∈ RA∗ : ai rA∗a j ∀a j ∈ A∗\{ai}
	

|

for all ai ∈ A∗. Finally, distribute the probability mass above uniformly across the ele-

ments in RA(rA∗). For any rA ∈ RA(rA∗), for a given rA∗:

γA(rA) = γA

�

rA ∈ RA|ai rA∗a j ∀a j ∈ A∗\{ai}
�

/|RA(rA∗)|

Where | · | stands for the cardinality map. Note that, as rA ∈ RA(rA∗)| ai rA∗a j ∀a j ∈

A∗\{ai} for some ai ∈ A∗, and as p(ai, A)> 0 by construction of W ∗ this distribution will

have full support on RA.

If A∩W ∗ = ; then for all rA ∈ RA define

γ(rA) =
1
|RA|

Thus, between them u, u∗ and {γA}A∈D satisfy the requirements of an FSSM. To verify

that we can generate (D, p) notice that if we face a menu A we have the following cases:
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(i) if A∩W ∗ = A then u(a) > u∗ for all a ∈ A and, for each a, p(a, A) = γA(rA ∈

RA|a rA b ∀b ∈ A\{a}), to see that this is true observe that γA(rA ∈ RA|a rA b ∀b ∈

A\{a}) =
∑

rA∈RA
1
�

rA : rA∗ such that ai rA∗a j ∀a j ∈ A∗
�

γA(rA) = p(a, A).

(ii) If A∩W ∗ = ; then p(a, A) = 1 if u(a) > u(b) for all b ∈ A\{a} and zero other-

wise. This follows directly from the fact that u was constructed to represent choice on

such sets.

(iii) If A ∩W ∗ ⊂ A and A ∩W ∗ 6= ; then we have p(a, A) = γA(rA|a rA b ∀b ∈

(A∩W ∗)\{a}) if u(a) ≥ u∗ and p(a, A) = 0 if u(a) < u∗. To see that this is true observe

that by definition of W ∗ and Axiom 2.8 p(A∩W ∗, A) = 1. To see that this is true, observe

that if we assume that p(A∩W ∗, A)< 1 we must have that p(a, A)> 0 for some a /∈W ∗

but that means by Axiom 2.8 that p(a, A) = 1 which is a contradiction of the fact that

p(A∩W ∗, A)> 0.

Then p(a, A) = 0 if u(a)< u∗. For a, b ∈ A∩W ∗, the result follows as in (i).

2.A.4 Proof of Theorem 2.14

Proof. To prove (1) assume, by contradiction, that U∗ 6= U
∗

and let v ∈ U
∗
\ U∗. Then,

it must be the case that u(v) < u∗ and u(v) ≥ u∗. By completeness and the fact that

U∗ 6= ;, ∃a ∈ U∗ and a A∈ D such that A= {a, v}. Given that the data is represented by

(u, u∗, {γA}A∈D), p(a, A) = 1. On the other hand, since (u, u∗,
�

γA

	

A∈D) also represents

the data it is the case that p(a, A) ∈ (0,1), which establishes a contradiction.

To prove (2) notice that from (1) U∗ = U
∗
. Since, (u, u∗, {γA}A∈D) and (u, u∗,

�

γA

	

A∈D)

are generated by the same FSSM, then u and u∗ represent the preferences given by def-

inition 2.9 for all a /∈ U∗. Therefore, it must be the case that u is a strictly increasing
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transformation of u. on X/U∗

To prove (3) assume, by contradiction, that for some A∈ D, a ∈ A∩ U∗

γA(arAb ∀b ∈ {A∩ U∗} \ {a}) 6= γ̄A(arAb ∀b ∈ {A∩ U∗} \ {a})

then p(a, A|γA) 6= p(a, A|γA)which in turn implies both, (u, u∗, {γA}A∈D) and (u, u∗,
�

γA

	

A∈D)

cannot represent the same data.

2.A.5 Proof of Theorem 2.17

Proof. First we prove (1) implies (2). If the complete data is generated by a FDSM then

there is a triple (u, u∗, ΓX ), take a realization of ΓX with support on RX and call it rX , then

define the linear ordering on X �X : (1) a �X b if arX b and a, b ∈ U∗, (2) a �X b if

u(a) > u(b) and a, b /∈ U∗ and (3) a �X b if a ∈ U∗, b /∈ U∗. Now, assign this linear

ordering �X the probability ΓX (rX ). It is direct to see that there is a Random Utility

Maximization model without indifference with realizations �X with probability ΓX (rX ).

By (Block and Marschak 1960) it follows that the generated data set (D, p) satisfies

Total Monotonicity (Axiom 2.16). The fact that Axiom 2.8 and Axiom2.10 hold follows

from Theorem 2.11.

Second we prove (2) implies (1). Because FDSM is a subcase of FSSM and Ax-

iom 2.8 and Axiom 2.10 hold we can build an utility u : X 7→ R and a threshold u∗ ∈ R

such that u(x) ≥ u∗ for all x ∈ W ∗ and u(x) < u∗ for all x ∈ X\W ∗. Finally, if a com-

plete stochastic choice dataset (D, p) satisfies Axiom 2.16 then the model is a Random

Maximization Utility model so we can recover a distribution over linear orders on X

ΓQ
X : RX 7→ [0,1] such that p(a, A) = ΓQ

X (arX b ∀ b ∈ A) thanks to (Falmagne 1978).

Call its support RX the set of quasi-search ordering, because they are the results of both
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deterministic (degenerate) utility maximization choice and fixed random searching and

satisficing behavior. To construct the ΓX we build each element of its support by tak-

ing an element of the support of the Quasi-search ordering rX ∈ RX and we restrict it

to W ∗. Here we define an equivalence class on RX if they have the same restriction

rX |W ∗, if we have any two elements rX , r ′X ∈ RX that have the same restriction to W ∗

(i.e., x rX y ⇐⇒ x r ′X y for x , y ∈ W ∗) we say rX ≡W ∗ r ′X , the equivalence class set

is denoted as [rX ]≡W∗
= {r ′X ∈ RX |rX ≡W ∗ r ′X } then we assign to the representative of

the equivalence class or the restriction rX |W ∗ the probability corresponding to the sum
∑

r ′X∈[rX ]≡W∗
ΓQ

X (r
′
X ). For any given restricted ordering rX |W ∗ we build its transitive clo-

sure or the set of transitive extensions to X and call this set RX (rX ) ⊂ X × X . We assign

each of the elements of this set r̂X ∈ RX (rX ) the probability
∑

rX∈[rX ]≡W∗
ΓQ

X (rX )/|RX (rX )|

where the numerator is the probability of the restricted to W ∗ quasi-search ordering

rX |W ∗ and the denominator is the cardinality of the previously defined set. Doing this

for all elements of RX we build a new support RX with probabilities as indicated that

provide us with ΓX .

Note that ΓX has full support due to how W ∗ is constructed. Because W ∗ is the al-

ways chosen set, we know that any element of the set of restrictions rX |W ∗ such that

for each a ∈ W ∗, arX b for all b ∈ W ∗\{a} has positive probability. It follows that by

definition, for any A ∈ D, and for any x ∈ W ∗ we have p(x , A) > 0, this means that

ΓQ
X (rX ∈ RX : x rX y ∀y ∈ X\{x}) > 0. This implies that all representatives of the

equivalence class of restricted orderings rX |W ∗ where x is searched first in W ∗ have

positive probability. Then we have extended them to X with the uniform distribution

for each set RX (rX ) thus preserving the full support for the whole X . The reason is that

the transitive closure to X of any rX |W ∗ contains linear search orders that have each

x ∈ W ∗ as the first searched element, because it contains the ordering that preserves

the elements in W ∗ in the top and the rest at the bottom. But also it contains search
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orders with each element of X\W ∗ at the top for each of such elements and W ∗ at the

bottom all with positive probability.

We have extended each restriction rX |W ∗ such that we can let ΓX be the fixed dis-

tribution of search orders. We have built a FDSM or a triple (u, u∗, ΓX ). To verify that

this FDSM model generate (D, p) notice that if we face a menu A we have the following

cases:

(i) if A∩W ∗ = A then p(a, A) = ΓX (rX ∈ RX | a rX b ∀b ∈ A\{a}), to see that this is

true observe that ΓX (rX ∈ RX | a rX b ∀b ∈ A\{a}) = ΓQ
X (rX ∈ RX |a rX b ∀b ∈ A\{a}).

In this case the first equality follows from the equivalence to random utility when re-

stricted to W ∗.

(ii) If A∩W ∗ = ; then p(a, A) = 1 if u(a)> u(b) for all b ∈ A\{a} and zero otherwise.

This is direct from the fact that u represents C in such sets.

(iii) If A∩W ∗ ⊂ A then we have p(a, A) = ΓX (rX |a rX b ∀b ∈ (A∩U∗)\{a}) if u(a)≥

u∗ and p(a, A) = 0 if u(a)< u∗. To see that this is true observe that by definition of W ∗

and Axiom 2.8 p(A∩W ∗, A) = 1 then p(a, A) = 0 if u(a)< u∗. For a, b ∈ A∩W ∗ observe

that by construction ΓX (rX ∈ RX |arX b ∀b ∈ (A∩ U∗)\{a}) = ΓQ
X (rX ∈ RX |arX b ∀b ∈

(A∩W ∗)\{a}). Finally, observe that ΓQ
X (rX ∈ RX |arX b ∀b ∈ (A∩W ∗)\{a}) = ΓQ

X (rX ∈

RX |arX b ∀b ∈ A\{a}) = p(a, A) because the facts that p(c, A) = 0 for any c /∈W ∗ and

that ΓQ
X represents choice implies that ΓQ

X (rX ∈ RX |crX a) = 0.

2.A.6 Proof of Theorem 2.18

Proof. For (1) and (2) we use the results of Theorem 2.14.
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(3) follows from the fact that W ∗ ≡ U∗ and the FDSM behaves as Random Utility

in this for the elements in W ∗. Assume by contradiction that ΓX (x rX y) 6= Γ X (x rX y) for

some x , y ∈W ∗ but that means that in the menu {x , y}, p(x , {x , y}|ΓX ) 6= p(x , {x , y}|Γ X )

which is a contradiction.

2.A.7 Proof of Claim 2.19

Proof. To prove (1) note first that it is trivial that W ∗ ⊆ W̃ ∗. Moreover, a difference in

the utility threshold level only affects decisions if {a ∈ X : u(a) ∈ [ũ∗, u∗)} ∩ A 6= ;, for

some A ∈ D, otherwise W ∗ = W̃ ∗. Assume now that Ã ≡ {a ∈ X : u(a) ∈ [ũ∗, u∗)} 6= ;.

By the definition of the FSSM (FDSM), it is the case Ã ⊂ W̃ ∗ and we get the desired

result.

To prove (2) note that DM are identical up to u∗, ũ∗ then if W ∗ 6= W̃ ∗, it must be

the case that u∗ 6= ũ∗. Assume by the way of contradiction that u∗ ≤ ũ∗, then ũ∗ > u∗.

Then, by the same argument as above either W ∗ = W̃ ∗ or {a ∈ X : u(a) ∈ [u∗, ũ∗)} 6= ;

and then W ∗ \ W̃ ∗ 6= ; which induces a contradiction.

2.A.8 Proof of Proposition 2.23

Proof. First we prove that if u∗ ≥ ũ∗ then FI(u, A)≤ F Ĩ(u, A) for all u.

For any menu A∈ D, a change in the utility threshold level only affects decisions if

there exists a ∈ A such that u(a) ∈ [ũ∗, u∗), otherwise FI(·, A) = F Ĩ(·, A) and the result

is trivially true. Now consider the case where there exists at least one a ∈ A such that

u(a) ∈ [ũ∗, u∗). We have two cases, (i) A∩ U∗ = ; or (ii) A∩ U∗ 6= ;.

If (i) and | {u : u= u(a) ∈ [ũ∗, u∗) for some a ∈ A} | = 1 then FI(·, A) = F Ĩ(·, A) and

we have the desired result. If | {u : u= u(a) ∈ [ũ∗, u∗) for some a ∈ A} | > 1 then the
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result follows by noticing that

F Ĩ(u, A) =



























0 for u< ũ∗

∑

a:ũ∗≤u(a)<maxa∈A u(a) p
Ĩ(a, A) for ũ∗ ≤ u<maxa∈A u(a)

1 for maxa∈A u(a)≤ u

with
∑

a:ũ∗≤u(a)<maxa∈A u(a) p
Ĩ(a, A)> 0 given full support assumption. On the other hand,

FI(u, A) =



























0 for u< ũ∗

0 for ũ∗ ≤ u<maxa∈A u(a)

1 for maxa∈A u(a)≤ u

If (ii) then we have that for any a ∈ A∩ [ũ∗, u∗), it is the case that u(a) < u(b) for

all b ∈ U∗ ∩ A 6= ;. Since A∩ U∗ 6= ; and A∩ Ũ∗ 6= ;, then

∑

b∈U∗∩A

pI(b, A) =
∑

b∈Ũ∗∩A

p Ĩ(b, A)

∑

b∈Ũ∗∩A

p Ĩ(b, A) =
∑

b∈U∗∩A

p Ĩ(b, A) +
∑

b∈(Ũ∗\U∗)∩A

p Ĩ(b, A)

By the full support assumption
∑

b∈(Ũ∗\U∗)∩A p Ĩ(b, A)> 0. Then

F Ĩ(u, A) =







































0 for u< ũ∗

∑

a:ũ∗≤u(a)≤u p Ĩ(a, A) for ũ∗ ≤ u< u∗

(1− β)FI(u, A) for ũ∗ ≤ u< u∗

1 for u≥ u∗

with β =
∑

a:ũ∗≤u(a)<u∗ p Ĩ(a, A).
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Therefore,

F Ĩ(u, A)− FI(u, A) =







































0 for u< ũ∗

∑

a:ũ∗≤u(a)≤u p Ĩ(a, A)> 0 for ũ∗ ≤ u< u∗

βFI(u, A)> 0 for ũ∗ ≤ u< u∗

0 for u≥ u∗

then F Ĩ(u, A)≥ FI(u, A) for all u.

Now we prove that if FI(u, A)≤ F Ĩ(u, A) for all u with FI(u, A) 6= F Ĩ(u, A) then u∗ ≥ ũ∗.

First notice that if FI(u, A) 6= F Ĩ(u, A) then it must be the case that u∗ 6= ũ∗. Assume by

the way of contradiction that u∗ ≤ ũ∗, then ũ∗ > u∗. Following the same argument as

in the previous part we have that, if there exists a ∈ A such that u(a) ∈ [u∗, ũ∗) then

FI(u, A)≥ F Ĩ(u, A) for all u with FI(u, A) 6= F Ĩ(u, A) which leads to a contradiction.

2.A.9 Comparative Statics with Respect to Search Orders

First, we introduced the following class of equivalent search order for a given A∈ D.

Definition 2.51 ({a, b}-equivalent search orders) Let γA, γ̃A be two probability distri-

butions over search orders RA for some A ∈ D. We say that γA, γ̃A are {a, b}-equivalent

search orders for menu A if γA(rA) = γ̃A(rA) for all rA such that r∗A\{a} = r̃A\{a} and r∗A\{b} =

r̃A\{b} for some a, b ∈ A.

Proposition 2.52 (Salience of Satisficing Elements) Let I = (u, u∗, {γA}A∈D) and Ĩ =

(u, u∗, {γ̃A}A∈D) be two FSSM, with cumulative probability distribution over utility levels

FI(u, A) and F Ĩ(u, A). Let γA and γ̃A be {a, b}− equivalent search orders as in Defini-

tion 2.51 with γA(r∗A) = γ̃A(r∗A)+ε and γA(r̃A) = γ̃A(r̃A)−ε for some ε ∈
�

γ̃(r̃A), 1− γ̃A(r∗A)
�

and ar∗A b and br̃Aa.
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If u(a) ≥ u(b) then FI(·, A) FOSD F Ĩ(·, A). Moreover, if FI(u, A) ≤ F Ĩ(u, A) with

FI(u, A) 6= F Ĩ(u, A) then u(a)> u(b)≥ u∗

Proof. First we prove that if u(a) > u(b) then FI(·, A) FOSD F Ĩ(·, A). There are four

possible cases: (i) a, b /∈ U∗ then FI(·, A) = F Ĩ(·, A). (ii) If a ∈ U∗ and b /∈ U∗, under

the conditions of the proposition then FI(·, A) = F Ĩ(·, A). iii If b ∈ U∗ and a /∈ U∗, un-

der the conditions of the proposition then FI(·, A) = F Ĩ(·, A). (iv) Finally, consider the

case where a, b ∈ U∗. Under the conditions of the proposition pI(a, A) > p Ĩ(a, A) and

pI(b, A) < p Ĩ(b, A) while pI(c, A) = p Ĩ(c, A) for all c ∈ A\ {a, b} and the results follows

from u(a)> u(b)

Now we prove that if FI(u, A) ≤ F Ĩ(u, A) for all u with FI(u, A) 6= F Ĩ(u, A) then

u(a) > u(b) ≥ u∗. Notice that the change in the probabilities of search orders only

affects the relative probability of a, b being seen first, leaving unaltered all other rel-

ative probabilities. Therefore, the change from {γ̃A}A∈D to {γA}A∈D only has an effect

on the distribution over utility levels if {a, b} ⊆ U∗. Moreover, given the conditions

of the proposition, pI(a, A) > p Ĩ(a, A) and pI(b, A) < p Ĩ(b, A). Then it must be that

u(a) > u(b). To show the latter, assume by contradiction that u∗ ≤ u(a) < u(b), then

F Ĩ(u(a), A)< FI(u(a), A) which leads to a contradiction.

Corollary 2.53 Under the conditions of Proposition 2.52, u(a) ≥ u(b) if and only if

E I
u(A)≥ E Ĩ

u(A).

2.A.10 Proof of Proposition 2.28

Proof. First we prove that (1) implies (2). If a complete data has a FDSM without

full support representation then there is a triple (u, u∗, ΓX ), take a realization of ΓX with

support on some subset or all RX and call it rX , then define the linear ordering on X
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�X : (1) a �X b if arX b and a, b ∈ U∗, (2) a �X b if u(a) > u(b) and a, b /∈ U∗ and (3)

a �X b if a ∈ U∗, b /∈ U∗. Now, assign this linear ordering �X the probability ΓX (rX ). It

is direct to see that there is a Random Utility Maximization model without indifference

with realizations �X with probability ΓX (rX ). By (Block and Marschak 1960) it follows

that the generated data set (D, p) satisfies Total Monotonicity (Axiom 2.16).

Now we prove that (2) implies (1). If a complete stochastic choice dataset (D, p)

satisfies Axiom 2.16 then the model is a Random Maximization Utility model so we

can recover a distribution over linear orders on X ΓX : RX 7→ [0, 1] such that p(a, A) =

ΓQ
X (arX b∀ b ∈ A) thanks to (Falmagne 1978). Interpret ΓX as a fixed distribution search

order, and select any injective u : X → R and u∗ such that u(x) > u∗ for all x ∈ X . By

construction this triple (u, u∗, ΓX ) generates the observed data.

2.A.11 Proof of Theorem 2.32

Proof. First we prove that (1) implies (2). To show that Axiom 2.10 holds, assume,

by the way of contradiction, that (i) a is stochastically revealed preferred to b and (ii)

b is stochastically strictly revealed preferred to a. From (ii), given that data admits a

FSSMI we must have (by the full support assumption) that u(a) < u∗ and u(a) < u(b).

If a is stochastically revealed preferred to b then there must exist a sequence of alter-

natives c1, ..cN and choice sets A1, ..., AN−1, such that c1 = a, cN = b, cn, cn+1 ∈ An and

cn ∈ C(An). If u(b) > u∗ then it must be the case that u(cN−1) > u∗ (otherwise cN−1

could not be chosen with positive probability when cN was available). Iterating on this

argument implies that u(a) > u∗. If u(b) < u∗ then this implies that u(cN−1) > u(b). If

u(cn) < u∗ for all n then iterating on this argument implies that u(a) ≥ u(b) . Other-

wise, the previous argument implies that u(a)> u∗. Either provides a contradiction.

Now we prove that (2) implies (1). We say two items are revealed stochastically in-
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different if a is revealed stochastically preferred to b and b is revealed stochastically pre-

ferred to a, in that case we denote aI∗b. We modify this relation I∗ ⊆ X×X by removing

its elements that have at least one item from always chosen set W ∗ that is non-empty by

SARP. Formally we define the relation I = {(a, b) ∈ X×X : (a, b) ∈ I∗ a ∈ X\W ∗ or

b ∈ X\W ∗}∪ D(W ∗) where D(W ∗) is the diagonal ordering in W ∗ (i.e., it contains only

the elements (a, a) ∈ W ∗ ×W ∗). I is an equivalence relation because it is reflexive,

symmetric and transitive. Because Axiom 2.10 holds I∗ is an equivalence relation, and

I is still an equivalence relation because it only eliminates the indifference of the items

in W ∗ except for reflexivity, namely the elements (a, a) ∈ I∗ for a ∈W ∗. By Axiom 2.10

and the definition of W ∗ no item in X\W ∗ is revealed indifferent to an item in W ∗. The

relation I induces an equivalence class that we denote as [a]. We concentrate on the

quotient set X I = X/I , we define the canonical projection j : X 7→ X/I and its inverse

mapping j−1 : X/I 7→ X . We let D I ≡ { j(A)}A∈D be the indexed set by D. In particu-

lar define pI : X I × D I 7→ [0, 1] as p(aI , AI) =
∑

a∈ j−1(aI )∩A p(a, A) for A ∈ D such that

j(A) = AI and aI ∈ AI , this mapping is well defined. If Axiom 2.10 holds it follows that

the quotient dataset {p(aI , AI)}aI∈X I ,AI∈D I also satisfies SARP. Also observe, that in the

quotient dataset the always chosen set W I ,∗ = {aI ∈ X I : p(aI , AI) > 0 ∀AI ∈ D I} is

such that j−1(aI) ∈W ∗for all aI ∈W I ,∗, this follows from the construction of I because

the equivalence classes in W ∗ are singletons. Observe also that Axiom 2.8 holds in the

quotient dataset {p(aI , AI)}aI∈X I ,AI∈D I , because if bI ∈ X I\W I ,∗ then either p(bI , AI) = 0

or (exclusively) p(bI , AI) = 1. In fact, the set X I is a finite choice set with elements asso-

ciated with degenerates probabilities of choice p([a]∩ A, A) =
∑

a∈[a]∩A p(a, A) ∈ {0, 1}

if [a] ⊆ X\W ∗. To see this is true assume that p([a] ∩ A, A) ∈ (0,1) and [a] ⊆ X\W ∗,

this means that there is a third element c ∈ A such that c ∈ A\[a], that is stochastically

revealed preferred to all a ∈ [a] (i.e, p(c, A) > 0) and of course all elements a ∈ [a]

are stochastically revealed preferred to c, but that means that aIc for all a ∈ [a] which

means that c ∈ [a], this is a contradiction. By theorem 2.11 we conclude that the
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quotient dataset {p(aI , AI)}aI∈X I ,AI∈D I can be generated by a FSSM without indifference,

thus we build a triple (u, u∗{γ}AI∈DI ), that generates the quotient dataset.

With this in hand we build the FSSMI in the actual dataset {p(a, A)}a∈x ,A∈D . (i) We

build a utility function u : X 7→ R, by the composition u= u ◦ j where j is the canonical

projection defined above. By construction u(a) > u∗ for all a ∈ W ∗ and u(a) = u(b) if

b ∈ [a]. Moreover, u(b)< u∗ for all b ∈ X\W ∗.

(ii) The search probabilities are defined over the quotient set, we build search proba-

bilities for the actual set X . γ defines a full support search distribution on each AI ∈ D I .

Now we define γ by the following algorithm: For each menu A ∈ D, we obtain the

menu AI ≡ j(A) ∈ D I in the quotient dataset, then take RAI the support of γAI , now for

any element rAI ∈ RAI define the restriction rAI |W I ,∗. Now build the set of linear search

orders on A RA(rAI |W I ,∗) = {rA ∈ RA : a, b ∈W ∗, arAb i f j(a)rAI |W I ,∗ j(b)}. We assign

to each element rA ∈ RA(rAI |W I ,∗), the probability γA(rA) =
∑

r ′
AI∈RAI

γAI (r ′AI )1(r ′AI |W I ,∗ =

rAI |W I ,∗)/|RA(rAI |W I ,∗)|. This construction provides as with {γA}A∈D that defines a FS

random linear ordering on each D.

(iii) To build the menu dependent tie breaking rules we calibrate them as follows

T (a, A) = p(a, A) if a ∈ X\W ∗ and a ∈ [a] such that p([a]∩A, A) = 1. If p([a]∩A, A) = 0

then we let T (a|A∼a) = 1/|[a] ∩ A|. This guarantees a tie breaking rule that is always

positive and that adds up to 1 as required.

We have generated a tuple (u, u∗, {γA}A∈D , T ) or a FSSMI representation that gener-

ates the complete dataset {p(a, A)}a∈X ,A∈D . To verify this claim, notice that this follows

immediately from applying Theorem 2.11 to generate the quotient dataset, and noticing

that for non-satisficing elements we can generate the actual dataset using the calibrated



124

tie breaking rule directly and observing that the elements in W I ,∗ have a one to one cor-

respondence to the elements in W ∗.

2.A.12 Proof of Theorem 2.33

Proof. (1)-(3) follows from Theorem 2.18. To prove (4) notice that, given U∗ = Ū∗,

for all a /∈ U∗, if T (a|A∼a) 6= T̄ (a|A∼a) then, from the definition of the model p(a, A) 6=

p(a, A).

2.A.13 Proof of Theorem 2.34

Proof. To prove (1) notice that, since we do not allow for ties, p(a, A) ∈ (0,1) if a ∈ U∗

then fW ⊆ U∗. Moreover if a ∈ U∗ then, given the full support assumption, p(a, A) > 0

for all A∈ D then a ∈W ∗ as in Theorem 2.11.

(2) follows from Axiom 2.10. Notice that SARP does not requires complete data sets

to guarantee the existence of a utility function that represents the revealed preference

relation.

(3) follows from the definition of the model. Note that identification is only possible

when surely revealed satisficing elements are available together in a menu. That is,

we can identify the probability of a seen first than b in A ∈ D, i.e. γA(arAb ∀b ∈

(A∩ U∗)\{a}) if a ∈ A∩ U∗. Moreover notice that if this is the case, then a, b ∈ W̃ .
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2.A.14 Proof of Lemma 2.39

Proof. In order to prove the total monotonicity condition for P̂(a, A,ω), we first need

to define the following function for all i ∈ {1, · · · , I} for each A∈ D and a ∈ A:

fi(a, A) =
∑

D∈B(A)

(−1)|D\A| p̂i(a, D)

where B(A) is the class of supersets of A (i.e., B(A)≡ {D ∈ D|A⊆ D}).

Now define

f (a, A) =
∑

D∈B(A)

(−1)|D\A| P̂(a, A,ω)

Observe that

f (a, A) =
∑

D∈B(A)

(−1)|D\A|
I
∑

i=1

ωi p̂i(a, A)

by definition. We can interchange the first summation operator with the the second

summation operator because the first does not depend on i, then

f (a, A) =
I
∑

i=1

ωi

∑

D∈B(A)

(−1)|D\A| p̂i(a, A)

which implies:

f (a, A) =
I
∑

i=1

ωi fi(a, A),

by the assumption that each of the mappings p̂i is totally monotonic we have that

fi(a, A)≥ 0 for all i ∈ {1, · · · , I} thus establishing the result.

2.A.15 Proof of Lemma 2.40

Before the proof of Lemma 2.40 we need the following preliminaries.

Remark 2.54 It will be useful to notice that the FDSM-CRT can be written in the following
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form:

p(a, A) =
∑

rx∈RX

pM M
rA=rX |A,τ(a, A)γ(rX ) + pM M

τ
(o, A)1(u(a)> u(b)∀b ∈ A\{a}),

where pM M
rA=rX |A,τ(a, A) = τ(a)

∏

b∈A:brAa;rA=rX |A
(1 − τ(b)) is numerically equivalent to the

MM probability of a ∈ A being chosen and rX |A is the restriction of the ordering rX to the

set A. And pM M
τ
(o, A) =

∏

c∈A(1− τ(c)) is numerical equivalent to the MM probability of

the default alternative. Here there is no default alternative and we mean by pM M(o, A) the

probability of no element in A being satisficing (keeping the MM notation for intuition).

Definition 2.55 (Successive differences for mappings) The successive differences for

a mapping p̂ : X ×D 7→ [0, 1] for a fixed a ∈ A and A ∈ D and the probability p̂(a, A), is

defined recursively as:

∆A1
p̂(a, A) = p̂(a, A)− p̂(a, A∪ A1) for A, A1 ∈ D,

∆An
· · ·∆A1

p̂(a, A) = ∆An−1
· · ·∆A1

p̂(a, A)−∆An−1
· · ·∆A1

p̂(a, A∪ An) for all n ≥ 2 and

for all A, A1 · · ·An ∈ D.

Definition 2.56 (Weakly increasing successive differences) For a mapping p̂ : X ×

D 7→ [0, 1] and a fixed a ∈ X , and all A ∈ D such that a ∈ A and any {Ai}ni=1 ∈ D
n the

mapping p̂ satisfies the weakly increasing successive difference property when the successive

differences are non-negative ∆An
· · ·∆A1

p̂(a, A)≥ 0 for all n≥ 1.

Proof. Notice that any mapping p̂ : X ×D 7→ [0,1] for a fixed (a, A) such that a ∈ A

for all A∈ D is totally monotone if and only if it satisfies the weakly increasing succes-

sive differences ((Molchanov 2005)).

Define P̂(a, A) = T (A)1(u(a) > u(b)∀b ∈ A\{a}) where T (A) =
∏

c∈A(1 − τ(c))

is totally monotone by MM (since T (A) = pM M ,τ(o, A) is numerically equivalent to
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the probability of a default choice in MM as explained in the remark) and thus sat-

isfies for all A ∈ D such that a ∈ A and any {Ai}ni=1 ∈ D
n the weakly increasing

successive differences ∆An
· · ·∆A1

(1 − P(A)) ≥ 0 for all n ≥ 1, the same is true for

Ca(A) = 1(u(a)> u(b)∀b ∈ A\{a}) such that∆An
· · ·∆A1

1(u(a)> u(b)∀b ∈ A\{a})≥ 0.

Notice that

∆A1
P̂(a, A) = P̂(a, A)− P̂(a, A∪ A1)

= T (A)Ca(A)− T (A∪ A1)Ca(A∪ A1)

=



























0 Ca(A) = 0

∆A1
T (A) Ca(A∪ A1) = 1

T (A) Ca(A) = 1, Ca(A∪ A1) = 0

Also for the next difference ∆A2
∆A1

P̂(a, A) = T (A)Ca(A) − T (A ∪ A1)Ca(A ∪ A1) −

[T (A∪ A2)Ca(A∪ A2)− T (A∪ A1 ∪ A2)Ca(A∪ A1 ∪ A2)].

Now

∆A2
∆A1

P̂(a, A) = ∆A1
P̂(a, A)−∆A1

P̂(a, A∪ A2)

=























































0 Ca(A) = 0

∆A1
T (A) Ca(A∪ A1) = 1, Ca(A∪ A2) = 0

T (A) Ca(A) = 1, Ca(A∪ A1) = 0, Ca(A∪ A2) = 0

∆A2
T (A) Ca(A) = 1, Ca(A∪ A2) = 1, Ca(A∪ A1) = 0

∆A2
∆A1

T (A) Ca(A∪ A1 ∪ A2) = 1

.

Then we notice that in general the following properties hold:
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(i) Null operator: ∆;∆An−1
· · ·∆A1

T (A) = 0,

(ii) Absorption: ∆An−1
∆An−1

· · ·∆A1
T (A) =∆An−1

· · ·∆A1
T (A).

∆A1
P̂(a, A) ∈ {∆X1

T (A)} for X1 ∈ {;, A1} and its value depends on the value of Ca(A)

and Ca(A∪ A1) but in any case we have

∆X1
T (A)≥ 0 for all X1 ∈ {;, A1}. Notice that ∆;T (A) = 0.

Also,∆A2
∆A1

P̂(a, A) ∈ {∆X2,2
∆X2,1

T (A)}where X2,1 ∈ {;, A1, A2} and X2,2 ∈ {;, A1, A2}

where the actual combination depends on the values of the vector

{Ca(A∪ X2,1 ∪ X2,2)}X2,1∈{;,A1,A2},X2,2∈{;,A1,A2}

again in any case:

∆X2,2
∆X2,1

T (A) ≥ 0 where X2,1 ∈ {;, A1, A2} and X2,2 ∈ {;, A1, A2}. Notice that

∆;∆X2,1
T (A) = ∆X2,1

T (A) −∆X2,1
T (A) = 0, ∆A2

∆A2
T (A) = ∆A2

T (A) −∆A2
T (A∪ A2) =

∆A2
T (A).

The induction hypothesis is:

∆An−1
· · ·∆A1

P̂(a, A) ∈ {∆Xn−1,n−1
· · ·∆Xn−1,1

T (A)} for Xn−1,i ∈ {;, A1, A2, · · ·An−1} for all

i ∈ {1, · · · , n− 1},

with∆Xn−1,n−1
· · ·∆Xn−1,1

T (A)≥ 0 for any Xn−1,i ∈ {;, A1, A2, · · ·An−1} for all i ∈ {1, · · · , n−

1}.
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We have to prove that

∆An
· · ·∆A1

P̂(a, A)≥ 0,

Notice that ∆An
· · ·∆A1

P̂(a, A) = ∆An−1
· · ·∆A1

P̂(a, A) − ∆An−1
· · ·∆A1

P̂(a, A ∪ An) by

definition.

Now by the induction step:

∆An
· · ·∆A1

P̂(a, A) ∈ {∆Xn−1,n−1
· · ·∆Xn−1,1

T (A)−∆Xn−1,n−1
· · ·∆Xn−1,1

T (A∪An)} for Xn−1,i ∈

{;, A1, A2, · · ·An−1} for all i ∈ {1, · · · , n− 1}.

Finally by the definition of the difference operator:

∆Xn−1,n−1
· · ·∆Xn−1,1

T (A)−∆Xn−1,n−1
· · ·∆Xn−1,1

T (A∪ An) =∆An
∆Xn−1,n−1

· · ·∆Xn−1,1
T (A).

We notice that ∆An
∆Xn−1,n−1

· · ·∆Xn−1,1
T (A) ≥ 0 is positive by total monotonicity of

T , that preserves works for any combination of Xn−1,i ∈ {;, A1, A2, · · ·An−1} for all i ∈

{1, · · · , n− 1}.

Thus ∆An
· · ·∆A1

P̂(a, A) ≥ 0 for any fixed a ∈ A and all such A ∈ D and for all

{Ai}ni=1 ∈ D
n for all n≥ 1.

We conclude that P̂ is a total monotone mapping.
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2.A.16 Proof of Lemma 2.36

Proof. (I) If the data is generated by FSSM-CRT then it satisfies SARP.

First notice that if τ(a) > 0 then it follows under full support that p(a, A) > 0.

Furthermore, by full support and common threshold we observe also that p(a, A) > 0

when there is a b ∈ A\{a} such that τ(b) > 0 only if τ(a) > 0. Notice that if there is a

b ∈ A\{a} with τ(b)> 0 and τ(a) = 0, then by the common threshold and monotonic-

ity of a CDF Fu∗ we know that it cannot be the case that u(a) > u(b), thus p(a, A) = 0

(because τ(a) = 0 implies the term 1(u(a) > u(b) ∀ b ∈ A\{a}) = 0) under the CRT

assumption).

To show that Axiom 2.10 holds, assume, by the way of contradiction, that (i) a is

stochastically revealed preferred to b and (ii) b is stochastically strictly revealed pre-

ferred to a. From (ii), given that data admits a FSSM-CRT we must have (by the full

support assumption) that τ(a) = Pr(u(a) > u∗) = 0 and u(a) < u(b). If a is stochas-

tically revealed preferred to b then there must exist a sequence of alternatives c1, ..cN

and choice sets A1, ..., AN−1, such that c1 = a, cN = b, cn, cn+1 ∈ An and cn ∈ C(An). If

τ(b) = Pr(u(b)> u∗)> 0 then it must be the case that τ(cN−1) = Pr(u(cN−1)> u∗)> 0

(otherwise cN−1 could not be chosen with positive probability when cN was available).

Iterating on this argument implies that τ(a) = Pr(u(a)> u∗)> 0.

If τ(b) = Pr(u(b) > u∗) = 0 then this implies that u(cN−1) > u(b). If Pr(u(cn) >

u∗) = 0 for all n then iterating on this argument implies that u(a) > u(b) . Otherwise,

the previous argument implies that τ(a) = Pr(u(a) > u∗) > 0. Either provides a con-

tradiction.

(II) A dataset that has a FSSM-CRT representation satisfies the Deterministic no sat-
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isficing choice axiom.

Observe that W ∗ = {a ∈ X |τ(a) = Pr(u(a) > u∗) > 0} under full support, in that

sense when a ∈ X\W ∗ and we have a menu A such that a ∈ A: (i) Either there is a

b ∈ W ∗ ∩ A in which case u(b) > u(a) because τ(b) > τ(a) = 0 only if u(b) > u(a).

This is because Pr(u(b)> u∗)> 0= Pr(u(a)> u∗) only if u(b)> u(a) thus p(a, A) = 0

(under the common random threshold). (ii) Or there is no b ∈ W ∗ ∩ A in which case

1− P(A) = 1, thus making the probability p(a, A) = 1(u(a) > u(c) ∀ c ∈ A) which is by

definition either p(a, A) = 0 or p(a, A) = 1.

2.A.17 Proof of Theorem 2.37

Proof. First we prove that (1) implies (2).

If a dataset is generated by a FSSM with parameters {{γA}A∈D , u, u∗} then it can be

generated by a FSSM-CRT {{γA}A∈D , uRT ,τ} with τ(a) = Pr(u(a) > u∗) where u∗ is

a constant random variable, such that τ(a) = 1 for all elements in FSSM such that

u(a) > u∗ and τ(b) = 0 for u(b) < u∗, with the same utility uRT ≡ u and the same

random search function γRT
A ≡ γA. In other words, FSSM is a special case of FSSM-CRT

with a constant threshold.

Now we prove that (2) implies (1).

If a dataset is generated by FSSM-CRT by Lemma 2.36 it satisfies satisfies Determin-

istic no satisficing choice (Axiom 2.8), SARP (Axiom 2.10). Thus by Theorem 2.11 we

can build an FSSM that generates the data. Thus (2) implies (1).
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2.A.18 Proof of Lemma 2.41

Proof. (I) If the data is generated by FDSM-CRT then p(a, A) satisfies total monotonic-

ity for all a ∈ A and all A⊆ X .

We define the MM model for a fixed linear search rA as pM M
rA,τ (a, A) = τ(a)

∏

b∈BrA(a)
(1−

τ(b)) and pM M
τ
(o, A) =

∏

c∈A(1−τ(c)). Now notice that the FDSM-CRT can be written

as the average of the MM models, plus a correction for non satisficing cases.

p(a, A) =
∑

rx∈RX

pM M
rA=rX |A,τ(a, A)γ(rX ) + pM M

τ
(o, A)1(u(a)> u(b) ∀ b ∈ A\{a})

It is evident by MM that pM M
rA,τ (a, A) satisfies total monotonicity for all rA ∈ RA there-

fore by Lemma 2.39 we know that a summation (here a convex combination) of total

monotonic mappings also satisfies total monotonocity, thus the term
∑

rx∈RX
pM M

rA=rX |A,τ(a, A)γ(rX )

satisfies total monotonicity.12 The same argument is used for pM M
τ
(o, A) that by MM is

also totally monotonic.

Also, notice that the indicator function 1(u(a) > u(b) ∀b ∈ A\{a}) satisfies to-

tal monotonicity because it can be understood a degenerate random utility distribu-

tion. We know also that pM M
τ
(o, A)1(u(a) > u(b)∀b ∈ A\{a}) is totally monotonic by

Lemma 2.40.13

12Notice that p̂(a, A) =
∑

rx∈RX
pM M

rA=rX |A,τ(a, A)γ(rX ) satisfies total monotonicity however this term is a
quasi-probability because it does not necessarily adds up to 1, so it is not a RUM in general. RUM is
equivalent to total monotonicity, being non negative and adding up to 1.

13A non-constructive but equally valid argument is that 1− pM M
τ (o, A)1(u(a) > u(b) ∀b ∈ A\{a}) can

be understood as the capacity of a random set that is the union of two other two independent random
sets with capacities 1− pM M

τ (o, A) and (1−1(u(a)> u(b)∀b ∈ A\{a})) corresponding to the random sets
Ŵ = {x ∈ X : u(a) > u∗} where u∗ is the random threshold and B(a) = {b ∈ X : u(b) > u(a)} that is
the deterministic set of better than a items under the utility u. By (Molchanov 2005) pM M

τ (o, A)1(u(a)>
u(b) ∀b ∈ A\{a}) is totally monotone, and pM M

τ (o, A)1(u(a)> u(b) ∀b ∈ A\{a}) = Pr(Ŵ ∪B(a)∩A= ;)
the probability that A does not have anything satisficing or better than a.
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Since p(a, A) is the summation of two totally monotonic mappings again by Lemma 2.39

we conclude that p(a, A) satisfies total monotonicity.

(II) If the data is generated by FDSM-CRT then it satisfies SARP. This follows from

the fact that FDSM-CRT is an special case of FSSM-CRT and by Lemma 2.36 we know

that it satisfies SARP.

(III) A dataset that has a FDSM-CRT representation satisfies the Deterministic no

satisficing choice axiom. This follows from the fact that FDSM-CRT is an special case of

FSSM-CRT and by Lemma 2.36 we know that it satisfies the Deterministic no satisficing

choice axiom.

2.A.19 Proof of Theorem 2.42

Proof. First we prove that (1) implies (2).

If a dataset is generated by a FDSM with parameters {{γA}A∈D , u, u∗} then it can be

generated by a FDSM-CRT {{γA}A∈D , uRT ,τ} with τ(a) = Pr(u(a) > u∗) where u∗ is

a constant random variable, such that τ(a) = 1 for all elements in FDSM such that

u(a) > u∗ and τ(b) = 0 for u(b) < u∗, with the same utility uRT ≡ u and the same

random search function γRT
A ≡ γA. In other words, FDSM is a special case of FDSM-CRT

with a constant threshold.

Now we prove that (2) implies (1).

If a dataset is generated by FDSM-CRT by Lemma 2.41 it satisfies satisfies Deter-

ministic no satisficing choice (Axiom 2.8), SARP (Axiom 2.10) and Total Monotonicity

(Axiom 2.16). Thus by Theorem 2.17 we can build an FDSM that generates the data.
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Thus (2) implies (1).

2.A.20 Proof of Theorem 2.48

Proof. First we prove that (1) implies (2).

First we recall that for a fixed u ∈ U , pF DSM
u (a, A) satisfies Total Monotonicity (Ax-

iom 2.16). By Lemma 2.39, the weighted average of totally monotonic mappings is also

totally monotone p(a, A) =
∑

u∈U ρ(u)p
F DSM
u (a, A), thus RU-FDSM is totally monotone.

Second we notice that if x ∈ X\W ∗ it is never satisficing that is for all u ∈ U with

ρ(u)> 0, u(x)< u∗, this means that for any fixed u ∈ U , pF DSM
u (x , A) = 0 if A∩W ∗ 6= ;,

this in turn implies that p(x , A) =
∑

u∈U ρ(u)p
F DSM
u (x , A) = 0. Thus degeneracy is es-

tablished for RU-FDSM.

Now we prove that (2) implies (3).

With Claim 2.45 in hand, we define the following virtual dataset. We define the

equivalence class ∼= {(a, b) ∈ X ×X : a ∈ X\W ∗, b ∈ X\W ∗}∪{(c, c) ∈ X ×X : c ∈W ∗}

(it is symmetric, reflexive and transitive).

We define the set X∼ = X/ ∼ as the quotient space with respect to the equiva-

lence relation. In words, we are “shrinking” all never satisficing elements to a sin-

gleton. We concentrate on the quotient set X∼ = X/ ∼, we define the canonical

projection j : X 7→ X/ ∼ and its inverse mapping j−1 : X/ ∼7→ X . We let D∼ ≡

{ j(A)}A∈D be the indexed set by D. In particular define p∼ : X∼ × D∼ 7→ [0, 1] as

p(a∼, A∼) =
∑

a∈ j−1(a∼)∩A p(a, A) for A∈ D such that j(A) = A∼ and a∼ ∈ A∼, this mapping

is well defined. If Degeneracy (Axiom 2.44) holds it follows that the quotient dataset
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{p(a∼, A∼)}a∼∈X∼,A∼∈D∼ satisfies Deterministic not satisficing choice (Axiom 2.8) in X∼,

because defining W ∗∼ = {a∼ ∈ X∼|p∼(a∼, A∼) > 0 ∀ A∼ ∈ D∼}, we notice X∼\W∼∗ cor-

responds by construction to a singleton {z∼} ≡ X∼\W∼∗ when there is non-satisficing

element (or empty if not) with probability p(z∼, A∼) =
∑

a∈ j−1(z)∩A p(a, A) ∈ {0, 1} in all

A∼ ∈ D∼. In particular, it is exactly 1 only when A∼ ≡ {z∼} and zero otherwise. Also no-

tice that Degeneracy implies SARP in {p(a∼, A∼)}a∼∈X∼,A∼∈D∼ , because all x∼, y∼ ∈W ∗∼

are declared stochastically revealed preferred to one another (i.e., stochastically re-

vealed indifferent) and x∼ ∈ W ∗∼ is always strictly revealed preferred to z∼ (or the

non-satisficing singleton {z∼} ≡ X∼\W∼∗). Thus C∼(A∼) = {a∼ ∈ A∼ : p∼(a∼, A∼) > 0}

satisfies SARP. Also it is simple to see that the dataset in the quotient space X∼ also

satisfies total monotonicity because p(a∼, A∼) =
∑

a∈ j−1(a∼)∩A p(a, A) for A∈ D such that

j(A) = A∼ and a∼ ∈ A∼ is a sum of total monotonic mappings p(a, A) by (2) Total Mono-

tonicity (Axiom 2.16). By the theorem that characterizes the FDSM (Theorem 2.17) the

dataset {p(a∼, A∼)}a∼∈X∼,A∼∈D∼ in the quotient space has a FDSM representation, thus

we build a triple (u, u∗, {γ}A∼∈D∼), that generates the quotient dataset.

With this in hand we build the RU-FDSM in the actual dataset {p(a, A)}a∈X ,A∈D . (i)

We build a utility function u : X 7→ R, by the composition u = u ◦ j where j is the

canonical projection defined above. By construction u(a) > u∗ for all a ∈ W ∗ and

u(b) < u∗ for all b ∈ X\W ∗. We build now (ρ,U ), by making all elements in it have

the following restriction û ∈ U with ρ(û) > 0 is such that û(a) = u(a) for all a ∈ W ∗.

For b ∈ X\W ∗ we use total monotonicity (Axiom 2.16) that holds for the restricted

dataset {p(a, A)}a∈X\W ∗,A∈D,A⊆X\W ∗ to obtain a random utility by (Falmagne 1978) de-

fined on X\W ∗, we notice that under this p(a, A) = ρ(û : û(a) > û(b)∀b ∈ A\{a}) for

a ∈ A⊆ X\W ∗, we fix an injective utility ûX\W ∗ : X\W ∗ 7→ R with ρ(ûX\W ∗) compatible

with ρ(ûX\W ∗ : ûX\W ∗(a) > ûX\W ∗(b)∀b ∈ A\{a}) with A ⊆ X\W ∗ (we omit the trivial

construction). We extend ûX\W ∗ : X\W ∗ 7→ R to the grand set X , by defining û : X 7→ R
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using û(a) = u(a) for all a ∈W ∗ and û(b) = ûX\W ∗ for all b ∈ X\W ∗, this is an injective

utility in X with mass ρ(û) = ρ(ûX\W ∗). We have built (ρ,U ) that has the Always sat-

isficing random utility property.

(ii) The search probabilities are defined over the quotient set, we build search proba-

bilities for the actual set X . γ defines a full support search distribution on each A∼ ∈ D∼.

Now we define γ by the following algorithm: For each menu A∈ D, we obtain the menu

A∼ ≡ j(A) ∈ D∼ in the quotient dataset, then take RA∼ the support of γA∼ , now for any el-

ement rA∼ ∈ RA∼ define the restriction rA∼ |W∼∗. Now build the set of linear search orders

on A RA(rA∼ |W∼,∗) = {rA ∈ RA : a, b ∈ W ∗, arAb i f j(a) rA∼|W∼∗ j(b)}. We assign to

each element rA ∈ RA(rA∼ |W∼∗), the probability γA(rA) =
∑

rA∼′∈RA∼
γA∼(rA∼′)1(rA∼′ |W∼∗ =

rA∼ |W∼∗)/|RA(rA∼ |W∼∗)|. This construction provides as with {γA}A∈D that defines a Full

Support random linear ordering on each D and by Total Monotonicity (Axiom 2.16) γ

has the Fixed Distribution property and we build γ on the basis on it, extending it to the

original dataset with a uniform rule, it follows that {γA}A∈D has the Fixed Distribution

property.

It is clear that for fixed u ∈ U constructed above with ρ(u) > 0, we have an FDSM

with (u, u∗, {γA}A∈D}) where u, {γA}A∈D are constructed above and u∗ is the same as the

FDSM in the quotient space. Thus we have built a RU-FDSM

p(a, A) =
∑

u∈U

ρ(u)pF DSM
u (a, A)

with FDSM with (u, u∗, {γA}A∈D})with the always satisficing property for (ρ,U ). Finally,

this generates the dataset (p,D) by noticing that for a ∈ W ∗ p(a, A) = pF DSM
u (a, A) for

any fixed u ∈ U with ρ(u) > 0 (thanks to the always satisficing property), so the fact

that the constructed RU-FDSM (with always satisficing property) generates this proba-
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bilities follows from Theorem 2.17. For a ∈ X\W ∗, we have p(a, A) = 1(∀c ∈ A : u(c)≤

u∗)ρ(u : u(a) > u(b)∀b ∈ A\{a}) for any fixed u ∈ U with ρ(u) > 0 (again due to the

always satisficing property), we have two cases 1(∀c ∈ A : u(c)≤ u∗) = 1, in which case

the fact that the construted RU-FDSM generates the data follows from (Falmagne 1978)

as these cases are equivalent to random utility in the restricted dataset defined in X\W ∗.

The remaining case is 1(∀c ∈ A : u(c) ≤ u∗) = 0 in which case we know that ∃c ∈ A

such that c ∈ W ∗ and by Degenaracy (Axiom 2.44) we conclude that p(a, A) = 0 as it

should be. Thus the constructed RU-FDSM generates the data.

Finally we prove (3) implies (1).

We notice that if complete stochastic choice dataset (D, p) can be generated by a

RU-FDSM with Always satisficing random utility distribution, it is by definition a special

case of RU-FDSM, with the additional Always satisficing restriction on (ρ,U ) thus the

dataset (D, p) is also generated by a RU-FDSM.



Conclusion

Chapter 1 proposes a predictive ability approach for the assessment of the performance

of a model when this is described by a set of axioms. Following this approach, I judge the

model for how useful it is in terms of providing precise predictions. Intuitively, higher

precision comes as a result of lots of information about preferences that can be inferred

from data while requiring small errors to satisfy the model. Therefore, the predictive

ability approach establishes a natural trade-off between fit and power conditional on

observed behavior, providing a meaningful answer to the fit and power problems, a

long standing problem in the literature. Moreover, by considering conditional power

the proposed approach reflects also the effect of the actual pattern of choices observed,

and I show that traditional power masks significant differences on the amount of infor-

mation that it can be learned from data to predict behavior.

Additionally, the construction provided for predictive distribution can be used to

forecast consumer’s responses to policy or market interventions. I study the perfor-

mance of the proposed measures with the experimental data from Choi et al (2007).

As expected my measures are positively correlated with the amount of preference infor-

mation that can be learned from data and with other measures of fit in the literature only

through the error process. I also show that more observations enhance predictive pre-

cision -the additional revealed information outweighs the potential increase in errors-.

Finally, I find that the non-parametric utility maximization model provides more precise

138
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predictions than a model that assumes Cobb-Douglas preferences: the additional pre-

cision of the latter model is outweighed by the larger error process needed to fit the data.

The proposed predictive precision measures are shown to be related to the extent of

the identification of the systematic component of the process that generated the data.

Therefore these measures can be "inverted" to optimally design an experiment to test

for a given set of candidate models. An avenue for future research is to produce an

efficient way to conduct experimental design based on these measures, which can be of

greatly interest for the experimental field. Concretely this project requires: (i) provid-

ing a general, computationally feasible, algorithm for the construction of the predictive

distribution; (ii) streamlining the connection between power and predictive precision

for general context and providing a feasible algorithm for experimental selection and

(iii) studying the finite samples and asymptotic properties of these measures for general

models of behavior.

The proposed approach to assess the performance of a model is a broad approach

that can be applied to a myriad of behavioral models. However, successfully applying

this approach to other models, that may deliver empirical implications in more general

contexts, depends on the extension of the predictive distribution to these contexts. In

general, the predictive distribution will reflect the two types of uncertainty described

above. However, the nature of the error process may differ for different economic en-

vironments. For example, the error process should exhibit a different structure when

dealing with preferences over lotteries, menus, sets of discrete alternatives or prefer-

ences over consumption bundles. One could think as defining the error process for

discrete choices as the minimal number of swaps required to make consistent the re-

vealed preference information -in the case of utility maximization- inferred from data,

as in (Apesteguia and Ballester 2013).
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Chapter 2 develops necessary and sufficient conditions for stochastic choice data

to be consistent with satisficing, assuming that preferences are fixed, but search or-

der may change randomly. The model predicts that stochastic choice can only occur

amongst elements that are always chosen, while all other choices must be consistent

with standard utility maximization. Adding the assumption that the probability distri-

bution over search orders is the same for all choice sets makes the satisficing model a

subset of the class of random utility models.
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