
Applications of RandomizedAlgorithms to Counting Problems
Approximate	solution	to	the	Binary	Contingency	Tables	Problem	using	Markov	Chain	Monte	Carlo	methods

Yashil	Sukurdeep &	Professor	Paul	Dupuis,	Department	of	Applied	Mathematics,	Brown	University,	Providence,	RI,	USA

Binary	Contingency	Tables	Problem Algorithm	I:	Straightforward	MCMC Algorithm	II:	Parallel	Tempering	(PT)

r1
.
.
.
rm

c1 . . . cn

The binary contingency
tables problem is to
count the number of
{0,1}-valued m x n
matrices with row sums
and column sums given
by two vectors of positive
integers, r = (r1, …, rm)
and c = (c1, …, cn)
respectively.

Why	is	this	problem	of	interest?	
It is an NP-hard problem, making it interesting from a
theoretical perspective. It is also interesting from an
applied perspective, with applications in biology,
statistics and economics. In fact, the problem stems
from Darwin, who collected data on birds living in the
Galapagos islands. Darwin presented his data in a
binary table, and wanted to know how likely it was that
he observed the data that he collected. To find answers
to the question, knowledge of the number of binary
tables with row and column sums equal to those in
Darwin’s table would be helpful!

Performance	&	Open	Questions

The idea is to construct a Markov chain on X , the
space of all m x n binary tables with column sums
satisfied, whose target distribution is:

𝜋 𝑥 = 	
𝑒&	

'
()(+)

𝑍(
					∀	𝑥	ϵ	X ,

where 𝜏 ϵ ℝ+ is the temperature parameter, 𝑍(is the
normalization constant, and 𝑉 𝑥 , the energy function,
is given by:

𝑉 𝑥 = 	2 2𝑥34 	−	𝑟3

7

48'

9

38'

With this choice of energy function, 𝜋 𝑥 takes its
maximal value when 𝑉(𝑥) = 0, and 𝑉(𝑥) = 0 iff all the
row sums are satisfied. Hence, 𝜋 places higher
probability on tables with row sums r = (r1, ..., rm)
and column sums c = (c1, …, cn).
For convergence to the desired target distribution 𝜋,
we evolve a table x from X for a single dynamical step
using the Gibbs move below:

• Pick a column j ϵ {1,…,n} from x uniformly at random.
• Pick a ‘1’ and a ‘0’ uniformly at random from column j,

and swap them to obtain a new table y.
• Set the next table in the Markov chain equal to y with

probability 𝛿 = min 1, 𝑒&
@
A) B . Otherwise, set it to x.

By the ergodic theorem, we can estimate the
probability of the set of binary tables with row sums r
and column sums c by computing the fraction of times
that our Markov chain of length T visits binary tables
with energy 𝑉(𝑥) = 0. We can then convert our
probability estimates into ‘count’ estimates for the
number of binary tables with row sums r and column
sums c.

PT involves running independent Markov chains at two
(or more) temperatures on X, with each chain having
target distribution:

𝜋3 𝑥 = 	
𝑒&	

'
(C
)(+)

𝑍(C
					∀	𝑥	ϵ	X , 𝑖 = 1,2		

where 𝜏', 𝜏F	ϵ ℝ+ are the temperatures (with 𝜏' < 𝜏F),
𝑍(C are the normalization constants, and 𝑉 𝑥 is the
same energy function as the one used in algorithm I.

In PT, the global system of Markov chains should
converge to the product measure of the stationary
distributions: 𝜋 = 	𝜋'	x	𝜋F. To ensure this, we evolve
each individual chain for K dynamical steps using the
Gibbs move from algorithm I. This updates the
locations of the two chains to two tables x(1) and x(2).
We then attempt to swap these locations with
acceptance probability 𝛿 = min 1, 𝐴 , where:

𝐴 = 	
𝑒&

'
(@
)(+ J)	𝑒&

'
(J
)(+ @)

𝑒&
'
(@
)(+ @)	𝑒&

'
(J
)(+ J)

We can then compute probability estimates and
‘count’ estimates just as described for algorithm I.

Darwin’s	Table
Bezáková,	I.,	Bhatnagar,	N.	and	Vigoda,	E.	
(2007),	Sampling	binary	contingency	tables	
with	a	greedy	start.	Random	Struct.	Alg.,	30:	
168–205.	doi:10.1002/rsa.20155

Straightforward MCMC gives unbiased, low-variance
estimates for low-dimensional problems (m, n < 10).
PT can handle higher dimensional problems, and
reduces variance of estimates. Open questions include:

• Selecting temperatures to optimize performance?
• Effects of the energy landscape on performance?
• Can we improve on the performance of parallel

tempering by using infinite swapping (INS)?

