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While the study of algebraic curves and their moduli has been a celebrated subject

in algebraic and arithmetic geometry, generalizations of many results that hold in

dimension 1 to higher dimensions has been a difficult task, and the subject of much

active research. This thesis is devoted to studying topics in the moduli and arithmetic

of certain classes of higher dimensional algebraic varieties, known as pairs of log

general type. Chapters 3 and 4 of this thesis are concerned with using birational

geometry of higher dimensional algebraic varieties to study the arithmetic of pairs

of log general type. Building upon work of Caporaso-Harris-Mazur, Hassett, and

Abramovich, Chapter 3 provides a careful analysis of the geometry of families of

pairs of log general type, in an attempt to study the sparsity of integral points on

such pairs under the assumption of the Lang-Vojta conjecture. Chapter 4 studies

uniform boundedness statements for heights on hyperbolic varieties of general type

that follow from Vojta’s height conjecture. The final chapter (Chapter 5) follows a

more geometric direction – we classify the log canonical models of pairs of elliptic

fibrations with weighted marked fibers using techniques from the minimal model

program. This chapter serves as the first step in constructing compactifications of

the moduli space of elliptic fibration pairs which is pursued separately.
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CHAPTER One

Introduction

1.1 Moduli of stable pairs

The moduli space of smooth curves of genus g and its Deligne-Mumford compact-

ification Mg have been the subject of active algebraic geometry research for many

decades. Not only is this space compact, but there is also a very explicit descrip-

tion of the objects which appear on the boundary – stable curves. These curves are

characterized by their singularities (at worst nodal), and by their positivity (ample

canonical bundle, equivalently finitely many automorphisms). The ubiquity of Mg

in algebraic geometry naturally led to a desire to obtain a similar story for higher

dimensions. That is, to construct geometrically meaningful, or modular compacti-

fications of moduli spaces of higher dimensional algebraic varieties. The standard

constructions for moduli spaces of curves relied on geometric invariant theory (GIT),

which became a standard technique for constructing compact moduli spaces. How-
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ever, when Gieseker [Gie] used GIT to construct the moduli space of smooth surfaces

of general type, he observed that his construction did not provide a modular com-

pactification. Later, Wang and Xu [WX, Theorem 3] showed that GIT will not

provide a compactification of moduli spaces of varieties of general type. The idea of

a variety being of general type (see Definition 2.0.2) will be ubiquitous throughout

this thesis. For now, we will say that these varieties are of interest from the view-

point of arithmetic and moduli, as they have many remarkable properties: e.g. they

have finitely many automorphisms, and the d-canonical map is generically injective.

As GIT was not going to be feasible tool in higher dimensions, it became clear

that additional techniques would be necessary to classify algebraic varieties. The

minimal model program (MMP) emerged as a tool to find the “simplest” birational

representative of an algebraic variety. The ideas of the MMP led Kollár & Shepherd-

Barron [KSB] to determine the correct class of objects, stable surfaces, that should

appear on the boundary of the moduli space of smooth surfaces of general type.

These objects generalize the notion of stable curves: they satisfy an analogous sin-

gularity condition (so called semi-log canonical singularities, see Definition 2.0.8),

and have the same positivity requirement. However, even with this discovery of

boundary objects, we still lacked many foundational aspects of the theory – e.g.

existence and projectivity of a compact moduli space for surfaces as well as higher

dimensions. The current status is much improved thanks to several people over

the past 30 years (Abramovich, Alexeev, Fujino, Hacon, Hassett, Kollár, Kovács,

McKernan, Patakfalvi, Shepherd-Barron, Viehweg, Xu, etc.).

More generally, we are often interested in moduli spaces of stable pairs (see

Definition 2.0.10). Knudsen introduced the moduli space of n-pointed smooth curves

of genus g, and a compactification thereof: Mg,n. The idea here, is that instead

of considering just equivalence classes of stable curves, we can enlarge the moduli
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problem by studying equivalence classes of stable curves with n chosen points. That

is, construct compactifications of the space of pairs (C,P = p1 + . . . + pn), where

C is a smooth curve of genus g and P is a divisor on C. One beautiful example of

this approach was carried about by Hassett, in his work on weighted stable pointed

curves [Has3], which gave one of the first instances of the interplay of birational

geometry and moduli theory. This work serves as the inspiration for Chapter 5.

A natural question arises: can we construct compactifications of moduli spaces

of pairs in higher dimensions? While there is a great deal of work in this area, there

are still quite a lot of foundational questions that still need to be answered.

The notion of what stable pairs should generalize stable pointed curves was iden-

tified first for surfaces [KSB], and later by Alexeev in all dimensions [Ale]. Moreover,

projectivity of the moduli space of recently proven by Kovács-Patakfalvi [KP]. There

are, however, still many issues – e.g. what is the “right” definition of the moduli

functor? Some of the major issues stem from an observation of Hassett [KP, Section

1.2], showing that a smooth pair (X,D) where X is a surface, can deform in a way

so that the limit of the divisor D is no longer a divisor. It is thus illuminating to

find concrete examples of moduli spaces of stable pairs which we hope will elucidate

some of the more mysterious phenomena.

The tools coming from birational geometry and the minimal model program are

used in all three chapters of this thesis, and these tools will be further discussed

below. Before doing so, we introduce some motivation for this thesis coming from

number theory (which inspire Chapters 3 and 4). After which we give a brief intro-

duction to the three subjects of this thesis, and discuss how they relate to the tools

provided by the minimal model program.
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1.2 Arithmetic of higher dimensional algebraic va-

rieties

We remarked above that varieties of general type are interesting from the moduli

viewpoint. It turns out that they are also interesting from an arithmetic perspective.

For instance, Faltings’ Theorem on the finiteness of k-rational points holds for curves

of general type defined over k (e.g. smooth curves of genus g ≥ 2). Conjecturally

(due to Bombieri, Lang, Vojta), varieties of general type in higher dimensions satisfy

similar properties – their k-rational points are believed to be Zariski sparse. Part

of this thesis is devoted to understanding the geometry of varieties of general type,

or pairs of log general type (see Definitions 2.0.5 and 2.0.6), with a view towards

applications in arithmetic. These include understanding the sparsity of rational and

integral points, as well as control on the arithmetic complexity (heights) of such

points. The viewpoints we take here, are via birational geometry and the minimal

model program, as well as studying the notion of hyperbolicity for families of Deligne-

Mumford stacks representable by schemes.

We now give a brief introduction to the three subjects of this thesis and put them

in context of the MMP.

1.3 Fibered Powers & Uniformity

Faltings’ Theorem [Fal2], states that a smooth curve of genus g ≥ 2 defined over

a number field k has finitely many k points. Recall that a smooth curve of genus

g ≥ 2 is a curve of general type, a notion of positivity for algebraic varieties which
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will be the subject of much of this thesis. There are many natural questions that

arise from this celebrated theorem – how does the number of points vary in a flat

family? What can be said for higher dimensional algebraic varieties? The former

question was investigated by Caporaso, Harris, and Mazur [CHM], and the latter is

an open conjecture due to Lang.

Conjecture 1.3.1 (Lang). Let X be a variety of general type over a number field

k. Then X(k) is not Zariski dense.

In 1997, Caporaso, Harris, and Mazur, show in their celebrated paper [CHM],

that various versions of Lang’s conjecture imply uniformed boundedness of rational

points on curves of general type, answering the first question above. More precisely,

they show that assuming Lang’s conjecture, for every number field k and integer

g ≥ 2, there exists an integer B(k, g) such that no smooth curve of genus g ≥ 2

defined over k has more than B(k, g) rational points. Similar statements were proven

for the case of surfaces of general type by Hassett [Has1], and eventually all positive

dimensional varieties of general type in a series of two papers by Abramovich and

Abramovich-Voloch ([Abr1] and [AV]). The essence of all of these papers, is a purely

algebro-geometric statement: the proof of a “fibered power theorem”, which analyzes

the behavior of families of varieties of general type.

The main idea is, given a family of varieties of general type f : X → B, can one

construct a variety of general type W and relate it back to the total space X of the

starting family? If this is true, Lang’s conjecture gives control over the rational points

of W , and thus control over the points of X. As alluded to in the beginning of the

introduction, it is often natural to ask how results for varieties extend to results for

pairs of a variety and a divisor. In this setting, the guiding question is to understand

how integral points behave on pairs of log general type. In a nutshell, we want to
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understand the behavior of points on the complement of a divisor inside a variety

with some positivity. A conjecture due to Lang-Vojta predicts that the set of integral

points on a pair of log general type is not Zariski dense on any model of the pair. We

thus ask, assuming this conjecture, can we prove uniform boundedness of integral

points on pairs of log general type, generalizing the result of Caporaso-Harris-Mazur

(and their generalizations) to the setting of pairs?

The first step is to prove the aforementioned fibered power theorem, which we

prove using the machinery of stable pairs, the minimal model program, and recent

work of Kovács-Patakfalvi. The main theorem (joint with Amos Turchet), which

appears in two slightly different versions, is the following.

Theorem 1.1. [AT1, Theorem 1.1] Let (X,D)→ B be a family of stable pairs with

integral and log canonical general fiber over a smooth projective variety B. Then after

a birational modification of the base B̃ → B, there exists an integer n > 0, a positive

dimensional pair (W̃ , ∆̃) of log general type, and a morphism (X̃n
B, D̃n)→ (W̃ , ∆̃).

Theorem 1.2. [AT1, Theorem 1.2] Let (X,D)→ B be a family of stable pairs with

integral and openly log canonical general fiber over a smooth projective variety B.

Then there exists an integer n > 0, a positive dimensional pair (W,∆) openly of log

general type, and a morphism (Xn
B, Dn)→ (W,∆).

We note that the term openly of log general type is not quite standard, but will be

introduced and motivated in the following chapter (see Definition 2.0.6 and 2.0.7).

This methods used in this chapter require a careful understanding of the geometry

and moduli of stable pairs – both their positivity and singularities. In an upcoming

paper [AT2], we apply this theorem to prove uniform boundedness results for integral

points on pairs of log general type, assuming the conjecture of Lang & Vojta.
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1.4 Height Uniformity

Yet another open conjecture in arithmetic geometry is Vojta’s conjecture, about

heights of points on algebraic varieties over number fields. The precise statement of

the conjecture is as follows:

Conjecture 1.4.1 (Vojta). [Voj, Conjecture 2.3] Let X be a nonsingular projective

variety over a number field k. Let H be a big line bundle on X and fix δ > 0. Then

there exists a proper Zariski closed subset Z ⊂ X such that, for all closed points

x ∈ X with x 6∈ Z,

hKX (x)− δhH(x) ≤ dk(k(x)) +O(1).

For a definition of the discriminant dk(k(x)) see Section 4.2.4.

In fact, if X is a variety of general type, then Vojta’s conjecture implies Lang’s

conjecture. As we have seen (e.g. [CHM]) that Lang’s conjecture implies a uniform

version of Lang’s conjecture, it is natural to ask if Vojta’s conjecture implies a similar

uniformity statement for height bounds. Indeed, Su-Ion Ih has shown [Ih1] that

Vojta’s height conjecture implies that the height of a rational point on a smooth

curve of general type is bounded uniformly in families. Ih later showed in [Ih2]

that the same is true for integral points on elliptic curves. The goal of my work

(joint with Ariyan Javanpeykar) is to generalize Ih’s results in [Ih1] by investigating

consequences of Vojta’s height conjecture for families of (algebraically) hyperbolic

varieties of general type – varieties where all integral subvarieties of X are of general

type.

Our main result is as follows. As a note to the reader, to state our theorem, we

will use heights on stacks as discussed in Section 4.2.4.
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Theorem 1.3. [AJ] Let k be a number field and let f : X → Y be a proper sur-

jective morphism of proper Deligne-Mumford stacks over k which is representable by

schemes. Let h be a height function on X and let hY be a height function on Y

associated to an ample divisor with hY ≥ 1. Assume Vojta’s height conjecture (Con-

jecture 1.4.1). Let U ⊂ Y be a constructible substack such that, for all t ∈ U , the

variety Xt is smooth and hyperbolic. Then there is a real number c > 0 depending

only on k, Y , X, and f such that, for all P in X(k) with f(P ) in U , the following

inequality holds

h(P ) ≤ c ·
(
hY (f(P )) + dk(TP )

)
.

See Section 4.2.4 for a description of dk(TP ). By constructible substack, we mean

a substack of an algebraic stack that is a finite union of locally closed substacks.

Note that one cannot expect uniform height bounds in the naive sense. Indeed,

for all P ∈ P2(Q) and all d ≥ 4, there is a smooth curve X of degree d in P2
Q with

P ∈ X(Q). Thus, for all d ≥ 4, there is no real number c > 0 depending only on

d such that for all smooth degree d hypersurfaces X ⊂ P2
Q and all P ∈ X(Q) the

inequality h(P ) ≤ c holds. In particular, there is no real number c > 0 such that for

all smooth quartic hypersurfaces X ⊂ P2
Q and all P ∈ X(Q) the inequality h(P ) ≤ c

holds. On the other hand, Lang’s conjecture on rational points of varieties of general

type implies that there is a real number c > 0 such that the cardinality of X(Q) is

at most c [CHM].

Moreover, one also cannot expect a stronger uniformity type statement for heights

on (not necessarily hyperbolic) varieties of general type. Indeed, if k is a number

field and f : X → Y is a smooth proper morphism of k-schemes whose geometric

fibres are varieties of general type and t is a point in Y such that Xt contains a copy
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of P1
k(t), then there is no real number c > 0 such that for all P ∈ Xt, the inequality

h(P ) ≤ c · hY (f(P )) holds.

Our proof of Theorem 1.3 uses the recent [AMV], which shows that Vojta’s

conjecture actually implies a version of the conjecture for stacks.

We argue that it is more natural to work in the stacks setting, as this allows us

to apply our results to moduli stacks of hyperbolic varieties, thus obtaining more

concrete results. In fact, as a first corollary of Theorem 1.3 we obtain the following

uniformity statement for curves.

Theorem 1.4. [AJ] Assume Conjecture 1.4.1. Let g ≥ 2 be an integer and let k be

a number field. There is a real number c depending only on g and k satisfying the

following. For all smooth projective curves X of genus g over k, and all P in X(k),

the following inequality holds

h(P ) ≤ c(g, k) ·
(
h(X) + dk(TX)

)
.

Finally, we also obtain a uniformity statement for certain hyperbolic surfaces.

Theorem 1.5. [AJ] Assume Conjecture 1.4.1. Fix an even integer a and a number

field k. There is a real number c depending only on a and k satisfying the following.

For all smooth hyperbolic surfaces S over k with c2
1(S) = a > c2(S) and all P in

S(k), the following inequality holds

h(P ) ≤ c ·
(
h(S) + dk(TS)

)
.

Theorem 1.3 applies to any family of varieties of general type for which the
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locus of hyperbolic varieties is constructible on the base. However, verifying the

constructibility of the latter locus is not straightforward.

We note that a conjecture of Lang (see [Lan2]) asserts that our notion of hy-

perbolicity for X is equivalent to being Brody hyperbolic, i.e., that there are no

non-constant holomorphic maps f : C → X(C). In particular, as the property of

being Brody hyperbolic is open in the analytic topology [Bro], Lang’s conjecture

implies that the property of being hyperbolic is open in the analytic topology. In

particular, assuming Lang’s conjecture, if the locus of smooth projective hyperbolic

surfaces is constructible in the moduli stack of smooth canonically polarized surfaces,

then [SGA, Exposé XII, Corollaire 2.3] implies that it is (Zariski) open.

1.5 Log canonical models of elliptic surfaces

As mentioned in the beginning of the introduction, one goal of the MMP is to

find distinguished birational models for algebraic varieties – in dimension one these

are the unique smooth projective models, but in higher dimensions we are led to

minimal and canonical models which may have mild singularities. More generally,

the log minimal model program takes as input a pair (X,D) consisting of a variety

and a divisor with mild singularities and outputs a log minimal or log canonical

model of the pair. Log canonical models and their non-normal analogues, semi-log

canonical (slc) models, are the higher dimensional generalization of stable curves and

lend themselves to admitting compact moduli spaces. Thus to compactify a moduli

space using the MMP, we must first determine the log canonical models.

Inspired by La Nave’s explicit stable reduction of elliptic surface pairs (X,S)
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in [LN], we give a classification of the log canonical models of elliptic surface pairs

(f : X → C, S+FA), where f : X → C is an elliptic fibration, S is a chosen section,

and FA is a weighted sum of reduced marked fibers FA =
∑
aiFi. We define an

elliptic fibration as a surjective proper flat morphism f : X → C from an irreducible

surface X to a proper smooth curve C with section S such that the generic fiber of

f is a stable elliptic curve. The goal of a joint research program with Dori Bejleri,

is to study the birational geometry of the moduli space of elliptic surfaces provided

by the minimal model program and twisted stable maps (see also [AB2] and [AB3],

which do not appear in this thesis).

Our first step, which is the subject of Chapter 5, is a complete description of

the log canonical models building on the classification of singular fibers of minimal

elliptic surfaces given by Kodaira and Nerón. The goal is to explicitly describe how

the log canonical models of elliptic surface pairs depend on the choice of the weight

vector A. Drawing inspiration from the Hasset-Keel program for Mg,n, we will use

these results to understand how the geometry of compactified moduli spaces of slc

elliptic surface pairs vary as we change the weight vector A [AB3].

Our first main result is the following classification (see Figure 1.1). See Definition

5.4.9 for the definitions of twisted and intermediate fibers.

Theorem 1.6. [AB1] Let (f : X → C, S+aF ) be an elliptic surface pair over C the

spectrum of a DVR with reduced special fiber F such that F is one of the Kodaira

singular fiber types or f is isotrivial with constant j-invariant ∞.

(i) If F is a type In fiber, the relative log canonical model is the Weierstrass model

for all 0 ≤ a ≤ 1.

(ii) For any other fiber type, there is an a0 so the relative log canonical model is
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(a) the Weierstrass model for any 0 ≤ a ≤ a0,

(b) a twisted fiber consisting of a single non-reduced component when a = 1,

or

(c) an intermediate fiber that interpolates between the above two models for

any a0 < a < 1.

The constant a0 = 0 for fibers of type I∗n, II
∗, III∗ and IV ∗, and a0 is as follows

for the other fiber types:

a0 =


5/6 II

3/4 III

2/3 IV

We also describe the singularities of the relative log canonical models in each

case.

Theorem 1.6 allows us to run the log minimal model program for (X,S + FA)

relative to the map f : X → C to produce a relative log canonical (or relatively

stable) model over the curve C. Indeed this question is local on the target so it

reduces to the case (X,S + aF ) where f : X → C is an elliptic fibration over the

spectrum of a DVR and F is the reduced special fiber. When the generic fiber of f is

smooth, F is one of the singular fibers in Kodaira’s classification. When the generic

fiber of f is a nodal elliptic curve, the fibration f must be isotrivial with constant

j-invariant∞ and we classify the singular fibers by explicitly using their Weierstrass

models.

In [LN], La Nave studied degenerations of Weierstrass elliptic surfaces. The

approach was to replace any cuspidal fibers with twisted fibers, study degenerations

using twisted stable maps of Abramovich-Vistoli, and then reinsert cuspidal fibers to
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obtain Weierstrass models. Theorem 1.6 can be seen as a generalization of La Nave’s

gluing procedure, which shows that instead the log minimal model program naturally

interpolates between the Weierstrass and twisted fibers. Using the local computation

Figure 1.1: Transitions between (left to right): Weierstrass, intermediate, and twisted fibers.

of relative log canonical models we generalize the elliptic surface canonical bundle

formula to elliptic surface pairs.

Theorem 1.7. [AB1] Let f : X → C be an elliptic fibration with section S. Fur-

thermore, let FA =
∑
aiFi be a sum of reduced marked fibers Fi with 0 ≤ ai ≤ 1.

Suppose that (X,S + FA) is the relative log canonical model over C. Then

ωX = f ∗(ωC ⊗ L)⊗OX(∆).

where L is the fundamental line bundle (see Definition 5.3.4) and ∆ is an effective

divisor supported on fibers of type II, III, and IV contained in Supp(F ). The con-

tribution of a type II, III or IV fiber to ∆ is given by αE where E supports the

unique nonreduced component of the fiber and

α =


4 II

2 III

1 IV

In continuing the log minimal model program on the relatively stable pair (X →

C, S + FA), sometimes the section S is contracted. This was first observed by La
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Nave when studying compactifications of the space of Weirstrass models (i.e. ai = 0

for all i) [LN]. La Nave called the result of such a contraction a pseudoelliptic surface.

In Proposition 5.6.4 we compute the formula

(KX + S + FA).S = 2g − 2 +
∑

ai

using [LN, Proposition 4.3.2] where g = g(C) is the genus of the base curve. The

section gets contracted by the log minimal model program precisely when (KX +S+

FA).S ≤ 0.

It follows that the section does not get contracted if and only if the base curve is

a Hassett weighted stable pointed curve [Has2] (Definition 5.6.5) with marked points∑
aipi where pi = f∗Fi. In particular, the log minimal model program results in a

pseudoelliptic only when C ∼= P1 and
∑
ai ≤ 2, or when C is an elliptic curve and

ai = 0 for all i.

Corollary 1.5.1. Let (f : X → C, S +FA) be an irreducible slc elliptic surface with

section S and marked fibers FA. Suppose that KX + S + FA is big. Then the log

canonical model of (X,S + FA) is either

(i) the relative log canonical model as described in Theorem 1.6, or

(ii) a pseudoelliptic surface obtained by contracting the section of the relative log

canonical model whenever (C, f∗FA) is not a weighted stable pointed curve (see

Definition 5.6.5).

When KX + S + FA is not big, there is a log canonical contraction mapping the

surface to a curve or point. We describe this with respect to a classification based

on L.
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Furthermore, we present a wall-and-chamber decomposition of the space of weight

vectors A. The log canonical model of (X → C, S + FA) remains the same within

each chamber and we describe how it changes across each wall. Through an explicit

example, we demonstrate a rational elliptic surface pair that exhibits each of these

transitions.



CHAPTER Two

Background

2.0.1 Birational Geometry

Definition 2.0.1. A line bundle L on a proper variety X is called big if the global

sections of Lm define a birational map for m > 0. A Cartier divisor D is called big

if OX(D) is big.

Definition 2.0.2. A proper variety X is of general type if for any desingularization

X̃ → X, the line bundle ωX̃ is big.

From the point of view of birational geometry and the minimal model program,

it has become convenient and standard to work with pairs. We define a pair (X,D)

to be a variety X along with an effective R-divisor D =
∑
diDi which is a linear

combination of distinct prime divisors.

Definition 2.0.3. Let (X,D) be a pair where X is a normal variety and KX + D

16
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is Q-Cartier. Suppose that there is a log resolution f : Y → X such that

KY +
∑

aEE = f ∗(KX +D),

where the sum goes over all irreducible divisors on Y . We say that (X,D) is:

• canonical if all aE ≤ 0,

• log canonical (lc) if all aE ≤ 1, and

• Kawamata log terminal (klt) if all aE < 1.

Remark 2.0.4. In particular, for a klt pair, the coefficients di in the decomposition

D =
∑
diDi are all strictly < 1. Similarly, for a lc pair, the coefficients are ≤ 1.

In what follows, we give the two definitions used for pairs (openly) of log general

type.

Definition 2.0.5. A pair (X,D) of a proper variety X and an effective Q-divisor

D is of log general type if:

• (X,D) has log canonical singularities and

• ωX(D) is big.

For applications to arithmetic (for instance in the upcoming [AT2]), it will be

useful to consider the following.

Definition 2.0.6. Let X be a quasi-projective variety and let X̃ → X be a desingu-

larization. Let X̃ ⊂ Y by a projective embedding and suppose D = Y \ X̃ is a divisor

of normal crossings. Then X is openly of log general type if ωY (D) is big.
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Note that this second definition is independent of both the choice of the desin-

gularization as well as the embedding; it is also a birational invariant. Moreover,

Definitions 2.0.5 and 2.0.6 are equivalent if the pair (X,D) has log canonical singu-

larities and one considers the variety X \ (D ∪ Sing(X)).

Just to reiterate, we will refer to Definition 2.0.5 by saying (X,D) is a pair of log

general type. We will refer to Definition 2.0.6 by stating that the pair is openly of log

general type, as the definition is motivated by considering the complement X \ D.

Throughout the course of this paper, we will take care to specify which definition we

are using.

Definition 2.0.7. By openly canonical, we mean that the variety X\D has canonical

singularities.

Definition 2.0.8. A pair (X,D =
∑
diDi) is semi-log canonical (slc) if X is

reduced, KX +D is Q-Cartier and:

(i) The variety X satisfies Serre’s condition S2,

(ii) X is Gorenstein in codimension 1, and

(iii) if ν : Xν → X is the normalization, then the pair (Xν ,
∑
diν
−1(Di) + Dν) is

log canonical, where Dν denotes the preimage of the double locus on Xν.

Remark 2.0.9. Semi-log canonical singularities can be thought of as the extension

of log canonical singularities to non-normal varieties. The only difference is that a

log resolution is replaced by a good semi-resolution (see Definitions 5.2.2 and 5.2.3).

Definition 2.0.10. A pair (X,D) of a proper variety X and an effective Q-divisor

D, is a stable pair if:

• The Q-Cartier Q-divisor ωX(D) is ample and
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• The pair (X,D) has semi-log canonical singularities

Definition 2.0.11. An slc family is a flat morphism f : (X,D) → B such that

for all m ∈ Z:

• each fiber (Xb, Db) is an slc pair,

• ωf (D)[m] is flat (see Definition 3.2.1), and

• (Kollár’s Condition) for every base change τ : B′ → B, given the induced

morphism ρ : (XB′ , DB′)→ (X,D) we have that the natural homomorphism

ρ∗(ωf (D)[m])→ ωf ′(D)[m]

is an isomorphism

We say that f : (X,D) → B is a stable family if in addition to the above, each

(Xb, Db) is a stable pair. Equivalently, KXb +Db is ample for every b ∈ B.



CHAPTER Three

Fibered Power Theorem for Pairs of Log General Type

3.1 Introduction

We work over an algebraically closed field of characteristic 0.

Recall from the introduction, that our main goal is to prove the following two

theorems:

Theorem 3.1 (Theorem 1.1). Let (X,D)→ B be a stable family with integral and

log canonical general fiber over a smooth projective variety B. Then after a birational

modification of the base B̃ → B, there exists an integer n > 0, a positive dimensional

pair (W̃ , ∆̃) of log general type, and a morphism (X̃n
B, D̃n)→ (W̃ , ∆̃).

Theorem 3.2 (Theorem 1.2). Let (X,D) → B be a stable family with integral,

openly canonical, and log canonical general fiber (see Definition 2.0.7) over a smooth

projective variety B. Then there exists an integer n > 0, a positive dimensional pair

20
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(W,∆) openly of log general type, and a morphism (Xn
B, Dn)→ (W,∆).

To prove Theorem 1.1, we show that it suffices to prove the following:

Theorem 3.3 (See Theorem 3.11). Let (X,D)→ B be a stable family with integral

and log canonical general fiber over a smooth projective variety B. Suppose that the

variation of the family f is maximal (see Definition 3.2.2). Let G be a finite group

such that (X,D) → B is G-equivariant. Then there exists an integer n > 0 such

that the quotient of the pair by a finite group of automorphisms, (Xn
B/G,Dn/G) is

of log general type.

Similarly, to prove Theorem 1.2, it suffices to prove the following:

Theorem 3.4 (See Theorem 3.10). Let f : (X,D) → B be a stable family with

integral, openly canonical, and log canonical general fiber over a smooth projective

variety B. Suppose that the variation of the family f is maximal. Let G be a finite

group such that (X,D) → B is G-equivariant. Then there exists an integer n > 0

such that the quotient (Xn
B/G,Dn/G) is openly of log general type.

We then obtain Theorem 1.2 by means of Theorem 1.1 and Theorem 3.11. More

specifically, we show that there is a birational transformation from (W̃ , ∆̃)→ (W,∆),

such that (W̃ , ∆̃) manifests (W,∆) as a pair openly of log general type.

The main tool of this paper is a recent result of Kovács-Patakfalvi which says

that given a stable family with maximal variation f : (X,Dε)→ B where the general

fiber is Kawamata log terminal (klt), then for large m the sheaf f∗(ωf (Dε))
m is big

[KP, Theorem 7.1]. Here, the divisor Dε denotes the divisor with lowered coefficients

(1−ε)D for a small rational number ε. Unfortunately the result of [KP] does not hold

for log canonical pairs (see Example 7.5 of [KP]). As a result, since D is not assumed
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to be Q-Cartier, one obstacle of this paper is showing that bigness of ωXn
B

(Dε,n) for

some n large enough allows you to conclude bigness of ωXn
B

(Dn). To do so, one must

first take a Q-factorial dlt modification, followed by a relative log canonical model.

The ideas here are present in Propositions 2.9 and 2.15 of [PX]. See Remark 3.3.4

below for a more detailed discussion.

Finally, we must guarantee that the fibered powers are not too singular. A priori,

it is unclear if taking high fibered powers to ensure the positivity of ωXn
B

(Dn) leads

to a pair with good singularities. This is ensured by the following statement:

Proposition 3.1.1 (See Proposition 3.4.4). Let f : (X,D) → B be a stable family

with integral and log canonical general fiber over a smooth projective variety B. Then

for all n > 0 the fibered powers (Xn
B, Dn) have log canonical singularities.

This statement also works after taking quotients by finite groups of automor-

phisms:

Proposition 3.1.2 (See Corollary 3.4.8). Let f : (X,D)→ B be an slc family with

integral and log canonical general fiber over a smooth projective variety B. Then for

n large enough, the quotient pair (Xn
B/G,Dn/G) also has log canonical singularities.

In fact, although we do not use this result, we prove:

Proposition 3.1.3 (See Proposition 3.4.6). The total space of the fiber product of

stable families over a stable base is stable.

The main result we seek then follows via the above methods after applying stan-

dard tools from moduli theory.
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Outline

We begin with some preliminary definitions and notation. In Section 3.3, we prove

that ωXn
B

(Dn) is big for a stable family of maximal variation with log canonical gen-

eral fiber. We prove that the fibered power theorem holds for max variation families

when the general fiber is both openly canonical and log canonical. Next in Section

3.4, we prove some results on singularities, namely we analyze the singularities of

fibered powers and study the effect of group quotients. We prove the fibered power

theorem for log canonical general fiber in the case of max variation. Finally, in Sec-

tion 3.5 we prove the full fibered power theorems by reducing to families of maximal

variation.

3.2 Preliminaries

We assume that all of our families (see Definition 2.0.11) of pairs satisfy Kollár’s

condition. Let X be a variety and F an OX-module. The dual of F is denoted

F? := HomX(F ,OX).

Definition 3.2.1. the m-th reflexive power of F to be the double dual (or reflexive

hull) of the m-th tensor power of F :

F [m] := (F⊗m)??.



24

3.2.1 Moduli space of stable pairs

Constructing the moduli space of stable pairs, denoted below by Mh, has been

a difficult task. A discussion of the construction of the moduli space Mh is not

necessary for this paper, but for sake of completeness we note that there exists a

finite set of constants, which we denote by h, that allows for a compact moduli

space. As long as the coefficients di appearing in the divisor decomposition are all

> 1
2
, there are no issues and we do in fact have a well defined moduli space. There

is no harm in assuming this outright.

We refer the reader to [Kol1] or to the introduction of [KP] for more details.

3.2.2 Variation of Moduli

Given a stable family f : (X,D)→ B, we obtain a canonical morphism:

ϕ : B →Mh

sending a point b ∈ B to the point of the moduli space Mh of stable pairs, classifying

the fiber (Xb, Db). This motivates the following definition.

Definition 3.2.2. A family has maximal variation of moduli if the corresponding

canonical morphism is generically finite.

Equivalently, the above definition means that the family is a truly varying family,

diametrically opposed to one which is isotrivial, where the fibers do not vary at all.
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3.2.3 Notation

Given a morphism of pairs f : (X,D) → B, we denote by (Xn
B, Dn) the unique

irreducible component of the nth fiber product of (X,D) over B dominating B. We

define Dn to be the divisor Dn :=
∑n

i=1 π
∗
i (D) where the maps πi : (Xn

B, Dn) →

B denote the projections onto the ith factors. We denote by fn the maps fn :

(Xn
B, Dn)→ B. Finally, we denote by Dε the divisor (1− ε)D and by Dε,n the sum

Dε,n :=
∑n

i=1 π
∗
i (Dε).

3.3 Positivity of the relative anti-canonical sheaf

Recall that to prove that the pair (Xn
B, Dn) is a pair of log general type, we must

show that

(a) ωXn
B

(Dn) is big and

(b) The pair (Xn
B, Dn) has log canonical singularities.

We also remind the reader that we will demonstrate in Section 3.4 that Theorem

3.11 implies Theorem 1.1. Therefore, in this section we will assume that the variation

of our family is maximal. More precisely, the goal of this section is to prove the

following proposition, tackling (a) of the above definition:

Proposition 3.3.1. Let f : (X,D) → B be a stable family with maximal variation

over a smooth, projective variety B with integral and log canonical general fiber, then

for n sufficiently large, the sheaf ωXn
B

(Dn) is big.
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As mentioned in the introduction, we will prove the above proposition by means

of the following slightly weaker statement:

Proposition 3.3.2. Let f : (X,Dε)→ B be a stable family with maximal variation

over a smooth, projective variety B with klt general fiber, then for n sufficiently large,

the sheaf ωXn
B

(Dε,n) is big.

Our proof of Proposition 3.3.2 requires the recent Theorem of Kovács and Patak-

falvi:

Theorem 3.5 ([KP, Theorem 7.1, Corollary 7.3]). If f : (X,Dε) → B is a stable

family with maximal variation over a normal, projective variety B with klt general

fiber, then f∗(ωf (Dε)
m) is big for m large enough. Moreover, ωf (Dε) is big.

Let S[n] denote the reflexive hull of the nth symmetric power of a sheaf. Then

the above theorem is equivalent to saying that, under the hypotheses, for any ample

line bundle H on B there exists an integer n0 such that

S[n0](f∗(ωf (Dε)
m)⊗H−1 (3.1)

is generically globally generated. We desire to show that this implies Proposition

3.3.2.

The proof of this statement essentially follows from Proposition 5.1 of [Has1], but

we include the proof for completeness to show how it extends to the case of pairs.

We begin with a lemma:

Lemma 3.3.3. Let f : (X,D) → B be a stable family over a smooth projective

variety B such that the general fiber has log canonical singularities. Then for all
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n > 0, the following formula holds:

ωXn
B

(Dn)[m] = π∗1ωf (D)[m] ⊗ · · · ⊗ π∗nωf (D)[m] ⊗ f ∗nωmB .

Proof. Recall that the relative dualizing sheaf satisfies the following equation:

ωfn(Dn) = π∗1ωf (D)⊗ · · · ⊗ π∗nωf (D)

where πj denotes the projection πj : Xn → X to the jth factor. Since B is smooth

we obtain:

ωXn
B

(Dn)[m] = ωfn(Dn)[m] ⊗ f ∗nωmB .

Since f : (X,D) → B is a stable family, there exists an integer m such that for all

b ∈ B, the sheaf ωf (D)[m]|Xb is locally free. Moreover, since this sheaf is locally free

on each fiber, ωf (D)[m] is also locally free for this m. We claim that the following

holds:

ωXn
B

(Dn)[m] = π∗1ωf (D)[m] ⊗ · · · ⊗ π∗nωf (D)[m] ⊗ f ∗nωmB .

Both sides of the equation are reflexive – the left hand side by construction, and the

right hand side because it is the tensor product of locally free sheaves. Therefore,

to prove the equivalence, we must show the two sides agree on an open set whose

complement has codimension at least two. Consider the locus consisting of both

the general fibers, which are log canonical and hence Q-Gorenstein, as well as the

nonsingular parts of the special fibers. Note that the complement of this locus is

of codimension at least two, because the singular parts of the special fiber are of

codimension one, thus of at least codimension two in the total space.

We will now give a proof of Proposition 3.3.2.
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Proof of Proposition 3.3.2. Let m ∈ Z be such that both ωf (Dε)
[m] is locally free

and f∗(ωf (Dε)
m) is big. First note that for n large enough, the sheaf

(
f∗(ωf (Dε)

m)
)[n] ⊗H−1

is generically globally generated. This follows since by Proposition 5.2 of [Has1], for

a r-dimensional vector space V , each irreducible component of the reflexive hull of

the mth tensor power of V , is a quotient of a representation S[q1](V )⊗· · ·⊗S[qk](V ),

where k = r!. Using this, we will prove that ωXn
B

(Dε,n) is big for large n. To do so,

it suffices to show that there are on the order of mn dimXη+b sections of ωXn
B

(Dε)
[m]

where b = dimB, and Xη denotes the general fiber.

By Lemma 3.3.3,

ωXn
B

(Dε,n)[m] = π∗1ωf (Dε)
[m] ⊗ · · · ⊗ π∗nωf (Dε)

[m] ⊗ f ∗nωmB .

The sheaf ωf (Dε) has good positivity properties – it is big by Corollary 7.3 of [KP],

but the sheaf ωB is somewhat arbitrary and could easily prevent ωXn
B

(Dε,n) from

being big. However, taking high enough powers of X allows the positivity of ωf (Dε)

to overcome the possible negativity of ωB.

Applying (fn)∗ gives, via the projection formula:

(fn)∗(ωXn
B

(Dε,n)[m]) =
(
f∗(ωf (Dε)

[m])
)n ⊗ ωmB

which is also a reflexive sheaf by Corollary 1.7 of [Har]. More specifically, it is the

push forward of a reflexive sheaf under a proper dominant morphism. Then the
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inclusion map ωf (Dε)
m → ωf (Dε)

[m] induces a map of reflexive sheaves:

(
f∗ωf (Dε)

m
)[n] →

(
f∗ωf (Dε)

[m]
)n

= (fn)∗(ωXn
B

(Dε,n)[m])⊗ ω−mB

which is an isomorphism at the generic point of B.

Let H be an invertible sheaf on B such that H ⊗ ωB is very ample. Then we

can choose n so that
(
f∗ωf (Dε)

m
)[n] ⊗H−m is generically globally generated for all

admissible values of m. But then

(
f∗ωf (Dε)

m
)[n] ⊗H−m = (fn)∗(ωXn

B
(Dε,n)[m])⊗ (H ⊗ ωB)−m

is also generically globally generated for the same m.

This sheaf has rank on the order of mn dimXη so there are at least this many

global sections. By our assumption on H, we have that (H ⊗ωB)m has on the order

of mb sections varying horizontally along the base B. By tensoring, we obtain that

the sheaf

(fn)∗
(
ωXn

B
(Dε,n)

)[m]

has on the order of mn dimXη+b global sections, and therefore ωXn
B

(Dε,n) is big.

Remark 3.3.4. The above proposition assumed that the general fiber (Xb, Db) had klt

singularities, but to prove Theorem 1.1 as stated, we must allow the general fiber to

have log canonical singularities. Unfortunately, we cannot just raise the coefficients

of D so that the pair has log canonial singularities, via twisting by εD to conclude

that ωXn
B

(Dn) is also big. This is because we do not know that the divisor D is

Q-Cartier. We remedy this situation with a Q-factorial divisorial log terminal (dlt)
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modification (see Section 1.4 of [Kol2] for an overview of dlt models), as explained

below.

First, the definition of a dlt pair.

Definition 3.3.5. Let (X,D) be a log canonical pair such that X is normal an

D =
∑
diDi is the sum of distinct prime divisors. Then (X,D) is divisorial log

terminal (dlt) if there exists a closed subset Z ⊂ X such that:

(i) X \ Z is smooth and D|X\Z is a snc divisor

(ii) If f : Y → X is birational and E ⊂ Y is an irreducible divisor such that

centerXE ⊂ Z then the discrepancy a(E,X,D) < 1

See Definition 2.25 in [KM] for a definition of the discrepancy of a divisor E with

respect to a pair (X,D).

Roughly speaking, a pair (X,D) is dlt if it is log canonical, and it is simple

normal crossings at the places where it is not klt. The following theorem of Hacon

guarantees the existence of dlt modifications.

Theorem 3.6. [KK, Theorem 3.1] Let (X,D) be a pair of a projective variety and

a divisor D =
∑
diDi with coefficients 0 ≤ di ≤ 1, such that KX + D is Q-Cartier.

Then (X,D) admits a Q-factorial minimal dlt model fmin : (Xmin, Dmin)→ (X,D).

The upshot here is that, starting with a log canonical pair (X,D) we can obtain

a model which is dlt and Q-factorial.

The statement that we will actually apply follows from Proposition 2.9 of [PX].
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Proposition 3.3.6. [PX, Proposition 2.9] Let f : (X,D) → B be a stable family

over a smooth variety B. Assume that the general fiber (Xb, Db) has log canonical

singularities and that the variation of the family is maximal. Then for each 0 < ε� 1

there exists a pair (Z,∆ε), an effective divisor ∆ on Z, and a morphism p : Z → X

such that:

(a) KZ + ∆ = p∗(KX +D),

(b) (Z,∆ε) is klt

(c) g : (Z,∆ε)→ B is a stable family

(d) The variation of g is maximal

(e) ∆−∆ε is an effective divisor such that Supp(ε∆) ⊂ Ex(p) ∩ Supp(p−1
∗ ∆)

Sketch of proof. The rough idea is to take a Q-factorial dlt modification of X, and

then shrink the resulting divisor so that the new pair (Z̃, ∆̃ε) is klt. Finally, taking

the relative log canonical model of (Z̃, ∆̃ε) → X yields a stable family with klt

general fiber and maximal variation.

Using the above discussion, we are now in position to prove the main statement

of this section, Proposition 3.3.1, whose proof is inspired by Proposition 2.15 of [PX].

Proof of Proposition 3.3.1. We begin with a stable family with maximal variation

f : (X,D)→ B such that the generic fiber is log canonical. The goal is to show that

ωXn
B

(Dn) is big for n sufficiently large.

First take p̃ : Z̃ → X to be a Q-factorial dlt modification of X, and let ∆̃ be a

divisor on Z̃ such that p̃∗(KX+D) = KZ̃+∆̃. Since Z̃ is Q-factorial by construction,
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we can lower the coefficients of the divisor ∆̃ by 0 < ε � 1, a rational number, to

obtain a klt pair (Z̃, ∆̃ε).

Define p : Z → X to be the relative log canonical model of (Z̃, ∆̃ε) → X.

Denoting by q : Z̃ 99K Z the induced morphism, we define ∆ to be the pushforward

∆ = q∗(∆̃). By Proposition 3.3.6, the new family g : (Z,∆ε)→ B is a stable family

with maximal variation such that the generic fiber is klt. Thus, by Proposition 3.3.2,

for n large enough, ωZnB(∆ε,n) is big.

Furthermore, since (Z,∆ε)→ X is the relative log canonical model of (Z̃, ∆̃ε)→

X, pluri-log canonical forms on Z̃ are the pull back of pluri-log canonical forms on Z.

From this we conclude that ωZ̃nB
(∆̃ε,n) is also big. Now since Z̃ is Q-factorial, we know

that ε∆ is a Q-Cartier divisor. This property allows us to enlarge the coefficients of

∆̃. Recall that ε∆ is effective by Proposition 3.3.6 (e), and thus ωZ̃nB
(∆̃n) is big as

well.

Since p̃ : Z̃ → X is a birational morphism and p̃∗(KX + D) = KZ̃ + ∆̃, pulling

back pluri-log canonical forms through p̃ preserves the number of sections. Thus, we

finally conclude that ωXn
B

(Dn) is big.

Finally, we prove the following theorem for pairs openly of log general type:

Theorem 3.7. Let f : (X,D)→ B be a stable family with integral, openly canonical,

and log canonical general fiber over a smooth projective variety B. Suppose that the

variation of the family f is maximal. Then ωXn
ss

(Dss
n ) is big, where (Xn

ss, D
ss
n ) denotes

the nth fibered power of the weak semistable model of the pair (X,D).

Proof. Consider the following diagram:
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(Xss, D
ss) (X̃, D̃) = X ×B1 B (X,D)

∆ ⊂ B1 B1 B

ϕ

πss

σ

g f

where (Xss, D
ss) → B1 denotes the weak semistable model (see Definition 0.4 of

[Kar]) of the family (X,D)→ B, and ∆ ⊂ B1 denotes the discriminant divisor over

which the exceptional lies. Such a model exists by [Kar]. Since taking the weak

semistable model gives a pair which is at worst openly canonical and log canonical,

we are not required to take a resolution of singularities. This is because, by definition

of both openly canonical and log canonical singularities, sections of ωXss(D
ss) give

regular sections of logarithmic pluricanonical sheaves of any desingularization.

More precisely, we have:

ϕ∗(ωg(D̃)) = ωπss(D
ss + E) ⊂ ωπss(D

ss + π∗ss(∆)).

Let π∗ss∆ = ∆ss. Then since ωg(D̃) is big by Theorem 3.5, so is ωg(D̃ − 1
n
∆ss).

Taking fibered powers as in Proposition 3.3.1, shows that ωX̃n
B1

(D̃n(−∆ss
n )) is also

big. Moreover,

ϕ∗n(ωX̃n
B1

(D̃n(−∆ss
n ))) ⊂ ωXn

ss
(Dss

n )(∆ss
n −∆ss

n ) = ωXn
ss

(Dss
n )

is big.

The definition of openly of log general type then implies that we have actually

shown the following:

Theorem 3.8. Let f : (X,D)→ B be a stable family with integral, openly canonical,
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and log canonical general fiber over a smooth projective variety B. Suppose that the

variation of the family f is maximal. Then there exists an integer n > 0 such that

(Xn
B, Dn) is openly of log general type.

3.4 Singularities

The purpose of this section is to prove that, assuming we begin with a pair (X,D)

with log canonical singularities, then fibered powers (Xn
B, Dn) also have log canonical

singularities for all n > 0. As the following example shows, it is necessary to restrict

the singularities, as there exist varieties Y such that ωY is a big, but Y is not of

general type!

Example 3.4.1. Let Y be the projective cone over a quintic plane curve C. Then

ωY is big (even ample), but Y is birational to P1 ×C, which has Kodaira dimension

κ(P1 × C) = −∞. So although ωY is big, Y is not openly of log general type.

The following proposition is a version of log inversion of adjunction:

Proposition 3.4.2 (Lemma 2.12 [Pat1]). The total space of an slc family over an

slc base has slc singularities.

This immediately implies:

Corollary 3.4.3. The total space of the product of slc families over an slc base also

has slc singularities.

Proof. Let f : (X1, D1) → B and g : (X2, D2) → B be two slc families over an slc

base B. Then the product family g : (X,∆)→ B is the total space of an slc family
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over either of the factors. Therefore both the product family as well as its total space

have slc singularities by Proposition 3.4.2.

Inductively, this shows that the fibered powers (Xn
B, Dn) have semi-log canonical

singularities. The statement that we will actually use to prove our result is the

following:

Proposition 3.4.4. Let f : (X,D) → B be a stable family with integral and log

canonical general fiber over a smooth projective variety B. Then for all n > 0 the

fibered powers (Xn
B, Dn) have log canonical singularities.

Proof. By Proposition 3.4.2, the total space of the family (X,D) is slc. In fact,

we will show that it is actually log canonical, which is equivalent to showing that

(X,D) is normal. Recall to show that the pair (X,D) is normal, it suffices to show

that it is regular in codimension one (R1) and satisfies Serre’s condition S2. Since

the general fiber has log canonical singularities, the fibers (Xb, Db) are R1 over the

general point of the base B. Over the special fibers, the singularities are of at least

codimension one in the fiber, and are thus at least codimension two in the total space.

Therefore, it follows that the total space (X,D) is R1. Finally, the pair (X,D) is S2

by definition, since it has semi-log canonical singularities.

Therefore, by Corollary 3.4.3, for all n > 0 the fibered powers (Xn
B, Dn) also have

log canonical singularities.

In fact, the following stronger statements are also true. Although we do not use

them in this paper, we hope that they may be of interest to readers:

Proposition 3.4.5. The fiber product of two stable families is a stable family.
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Proof. This result essentially follows from Proposition 2.12 in [BHPS]. We reproduce

the argument for the convenience of the reader.

Let f : (X,D) → B and g : (Y,E) → B be two stable families, and denote the

fiber product family by h : (Z, F )→ B. Since both families f and g are flat of finite

type with S2 fibers by assumption, and since we are assuming Kollár’s condition,

by Proposition 5.1.4 of [AH], we have that ω
[k]
X/B(D) is flat over B. Moreover, by

Lemma 2.11 of [BHPS], we have that

p∗Xω
[k]
X/B(D)⊗ p∗Y ω

[k]
Y/B(E)

is a reflexive sheaf on the product. By Lemma 2.6 of [HK], the above sheaf is

isomorphic to ω
[k]
Z/B(F ) on an open subset whose complement has codimension at

least two, and therefore we conclude that

ω
[k]
Z/B(F ) = p∗Xω

[k]
X/B(D)⊗ p∗Y ω

[k]
Y/B(E).

Moreover, Kollár’s condition holds, as by assumption both components of this fiber

product commute with arbitrary base change. Choosing a sufficient index k, namely

the least common multiple of the index of the factors, we see that ωZ/B(F ) is a

relatively ample Q-line bundle and thus we conclude that h : (Z, F ) → B is also a

stable family.

Proposition 3.4.6. The total space of the fiber product of stable families over a

stable base is stable.

Proof. By Proposition 2.15 in [PX] (see also [Fuj2] Theorem 1.13), if f : (X,D) →

(B,E) is a stable family whose variation is maximal over a normal base, then ωf (D)

is nef. First we note that it suffices to prove the statement over a normal base,
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since nef is a property which is decided on curves. Since normalization is a finite

birational morphism, nonnegative intersection with a curve is preserved. Thus, we

wish to show that this statement is true without the assumption that the variation

of f is maximal. Let B′ → B be a finite cover of the base so that the pullback

family f ′ : (X ′, D′) → B′ maps to g : (U ,D) → T , a family of maximal variation.

In this case ωf ′(D
′) is nef, as it is the pullback of ωg(D) which is nef. Since ωf ′(D

′)

is the pullback of ωf (D) by the finite morphism X ′ → X, the projection formula

implies that ωf (D) is nef as well. This shows that the sheaf ωf (D) is nef, regardless

of whether the variation of f is maximal or not. Then since ωf (D) is nef and f -

ample, and since the base is stable, ωB(E) is ample. Therefore, we can conclude that

ωX(D + f ∗E) = ωf (D)⊗ f ∗ωB(E) is ample.

The following theorem that we actually need follows from Proposition 3.3.1 and

Proposition 3.4.4.

Theorem 3.9. Let (X,D) → B be a stable family with integral and log canonical

general fiber and maximal variation over a smooth projective variety B. Then there

exists an integer n > 0 such that the pair (Xn
B, Dn) is of log general type.

Proof. By Proposition 3.3.1, we have that ωXn
B

(Dn) is big, and by Proposition 3.4.4,

the fibered powers (Xn
B, Dn) have log canonical singularities.

To prove the stronger Theorem 3.11, we must show that what we have proven

also works after taking the quotient by a group of automorphisms. This is precisely

the content of Proposition 3.4.7 and Corollary 3.4.9 below.

This claim essentially follows from the work of various authors in previous papers

in the subject. The approach is present in, for example, Lemma 3.2.4 of [AM] as
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well as Lemma 2.4 of [Pac]. We reproduce the statement in our case below:

Proposition 3.4.7. Let (X,D) be openly of log general type. There exists a positive

integer n such that the pair (Xn
B, Dn)/G is also openly of log general type.

Proof. Let H ⊂ X be the locus of fixed points of the action of G ⊆ Aut(X,D). Let

IH denote the corresponding sheaf of ideals. We have seen before that ωf (D) is big.

Then, for sufficiently large k, we have that the sheaf

ωf (D)⊗k ⊗ f ∗ω⊗kB ⊗ I
|G|
H

is big. If we pass to the kth fibered power, we have that

(ωXk
B

(Dk))
⊗k ⊗ f ∗kω⊗kB ⊗ Πk

i=1π
−1I |G|H

is also big.

The product Πk
i=1π

−1
i I

|G|
H ⊂

(
k∑
i=1

π−1
i I

|G|
H

)k

, and the latter ideal vanishes to

order at least k|G| on the fixed points of the action of G. Moreover, we have that

(ωfk(Dk))
⊗k ⊗ π∗kω⊗kB = (ωXk

B
(Dk))

⊗k.

This allows us to conclude that for n � 0, there are enough invariant sections of

ωXk
B

(Dk)
⊗n vanishing on the fixed point locus to order at least n|G|.

Now let

r : (X ,D)→ (Xk
B, Dk)

be an equivariant good resolution of singularities so that r−1(Dk) = D. Note that

such a resolution is guaranteed by Hironaka [Hir]. Since X \D does not necessarily
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have canonical singularities away from the general fiber, we have introduced excep-

tional divisors in the resolution that will alter sections of ωX(D). To fix this, we

simply apply the methods used in the proof of Theorem 3.7 – namely twist by some

small negative multiple of the divisor ∆ containing the exceptional.

To conclude the result, it suffices to show that invariant sections of (ωXk
B

(Dk))
⊗n

vanishing on the fixed point locus to order at least n · |G|, descend to sections of the

pluri-log canonical divisors of a good resolution of the quotient pair (Xn
B/G,Dn/G).

Denote by q : (X ,D)→ (X/G,D/G) the morphism to the quotient, and let

ϕ : (X̃/G, D̃/G)→ (X/G,D/G)

denote a good resolution. Then Lemma 4 from [Abr2] tells us that the invariant

sections of ωX (D)⊗n vanishing on the fixed point locus to order ≥ n|G| come from

sections of the pluri-log canonical divisors of a desingularization, i.e. sections of

ωX̃ (D̃)⊗n. Therefore, for n sufficiently large, the quotient pair (Xn
B, Dn)/G is openly

of log general type.

This also proves the following theorem:

Theorem 3.10. Let f : (X,D)→ B be a stable family with integral, openly canon-

ical, and log canonical general fiber over a smooth projective variety B. Suppose

that the variation of the family f is maximal. Let G be a finite group such that

(X,D) → B is G-equivariant. Then there exists an integer n > 0 such that the

quotient (Xn
B/G,Dn/G) is openly of log general type.

Furthermore, combining Proposition 3.4.7 with Proposition 3.4.4 yields:
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Corollary 3.4.8. Let f : (X,D)→ B be an slc family with integral and log canon-

ical general fiber over a smooth projective variety B. Then for n large enough, the

quotient pair (Xn
B/G,Dn/G) also has log canonical singularities.

This then gives an analogue to Proposition 3.4.7 for pairs of log general type:

Corollary 3.4.9. Let (X,D) be a pair of log general type. There exists a positive

integer n such that the pair (Xn
B, Dn)/G is also a pair of log general type.

Thus we have completed the proof of the following Theorem 3.11.

Theorem 3.11. Let (X,D) → B be a stable family with integral and log canoni-

cal general fiber over a smooth projective variety B. Suppose that the variation of

the family f is maximal (see Definition 3.2.2). Let G be a finite group such that

(X,D)→ B is G-equivariant. Then there exists an integer n > 0 such that the quo-

tient of the pair by a finite group of automorphisms, (Xn
B/G,Dn/G) is of log general

type.

Proof. This follows from Theorem 3.9 and Corollary 3.4.9.

The next and final section shows how to reduce the proof of the Theorem 1.1 to

Theorem 3.11. Then, we show that Theorem 1.2 follows from Theorem 1.1.
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3.5 Proof of Theorems 1.1 and 1.2 – Reduction to

case of max variation

The final section of this chapter is devoted to reducing the proofs of our two main

theorems to the case of maximal variation. We will use the existence of a tautological

family over a finite cover of our moduli space to show that, after a birational mod-

ification of the base, the pullback of a stable family with integral and log canonical

general fiber has a morphism to the quotient of a family of maximal variation by a

finite group. Then using the fact that our result holds for families of maximal vari-

ation, we will conclude that, after a modification of the base, a high fibered power

of the pullback of a stable family with integral and log canonical general fiber has a

morphism to a pair of log general type.

Finally, we show that if we add the assumption that the general fiber of our

family is openly canonical and log canonical, we can avoid taking a modification of

the base to prove Theorem 1.2.

Remark 3.5.1. As we will be using the moduli space of stable pairs Mh, we remind

the reader that we are in the situation where the coefficients of the divisor D are > 1
2
.

Unfortunately the moduli space Mh that we are working with does not carry

a universal family. The following lemma gives a tautological family, which can be

thought of as an approximation of a universal family.

Lemma 3.5.2 ([KP, Corollary 5.19]). There exists a tautological family (T ,D) over

a finite cover Ω of the moduli space Mh of stable log pairs. That is, there exists a

variety Ω, a finite surjective map ϕ : Ω→Mh and a stable family T → Ω such that

ϕ(x) = [(Tx,Dx)].
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Proposition 3.5.3. Let f : (X,D) → B be a stable family such that the general

fiber is integral and has log canonical singularities. Then there exists a birational

modification of the base B̃ → B, and a morphism (X̃, D̃) → B̃ to (TΣ̃, D̃)/G, the

quotient of a family of maximal variation by a finite group G

Proof. Let f : (X,D)→ B be a stable family such that the general fiber is integral

and has log canonical singularities. In particular, we do not assume that the variation

of f is maximal. There is a well defined canonical morphism B → Mh. Call the

image of this morphism Σ. Over this Σ lies the universal family (TΣ,D). Since Mh is

a stack, the maps (X,D)→ (TΣ,D) and B → Σ factor through the coarse spaces: Σ

and (T Σ,D). The general fiber of (T Σ,D)→ Σ is simply (S,DS)/K where (S,DS)

is a pair of log general type and K is the finite automorphism group.

Unfortunately there is no control on the singularities of Σ – if the singularities

are not too mild, the fibered powers (T nΣ ,Dn) have no chance of having log canonical

singularities. To remedy this we take a resolution of singularities. Using Proposition

3.5.2, we take a Galois cover followed by an equivariant resolution of singularities

to obtain Σ̃ → Σ. Call the Galois group of this cover H. Then over Σ̃, we have a

tautological family (TΣ̃, D̃). Here the general fiber is simply (S,DS), a pair of log

general type.

Consider the quotient map Σ̃ → Σ̃/H. Taking the pullback of (T Σ,D) through

Σ̃/H yields (TΣ̃/H , D̃
′). Letting G be the group G = H ×K, we can construct the

following diagram:
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(TΣ̃, D̃) (TΣ̃, D̃)/G (TΣ̃/H , D̃′) (T Σ,D) T

Σ̃ Σ̃/H Σ̃/H Σ Mh

ν

We claim that the map ν : (TΣ̃, D̃)/G→ (TΣ̃/H , D̃′) is actually the normalization

of (TΣ̃/H , D̃′). First note that (TΣ̃, D̃)/G is normal, and that the morphism ν is finite

since the morphism (TΣ̃, D̃)→ (T Σ,D) is. Therefore, to prove ν is the normalization

of (TΣ̃/H , D̃′), it suffices to prove that ν is birational. To do so, consider the following

diagram:

(TΣ̃, D̃) (TΣ̃, D̃)/H
(

(TΣ̃, D̃)/H
)
/K = (TΣ̃, D̃)/G

Σ̃ Σ̃/H Σ̃/H

From this diagram it is clear that the general fiber of (TΣ̃, D̃)/G → Σ̃/H is

precisely (S,DS)/K – the quotient by H identifies fibers and the quotient by K

removes the automorphisms. Since the map ν is an isomorphism over the generic

fibers, ν is a birational map and thus is the normalization of (TΣ̃/H , D̃′).

The pair (X,D) does not map to (TΣ̃/H , D̃′). Instead, consider a modification

of the base B̃ → B where B̃ = B ×Σ Σ̃/H. Then the pullback (X̃, D̃) maps to

(TΣ̃/H , D̃′). Since the pair (X̃, D̃) is normal and ν is the normalization, we see that

(X̃, D̃) also maps to (TΣ̃, D̃)/G. Finally, because the family (TΣ̃, D̃)/G → Σ̃/H is

the quotient of a family of maximal variation by a finite group, we have completed

the proof of the proposition.
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Proof of Theorem 1.1. Let (TΣ̃, D̃) denote the tautological family of maximal vari-

ation obtained in the proof of Proposition 3.5.3. Passing to nth fibered powers,

Theorem 3.11 guarantees that (T n
Σ̃
, D̃n) is of log general type. By Corollary 3.4.9,

(T n
Σ̃
, D̃n)/G is also of log general type for n sufficiently large. Thus the proof of

Theorem 1.1 follows from the above Proposition 3.5.3, as we have shown that after

modifying the base, we obtain a morphism from a high fibered power of our family

to a pair of log general type.

Finally, we prove Theorem 1.2, the fibered power theorem for pairs openly of log

general type.

Proof of Theorem 1.2. This proof essentially follows from the proof of Proposition

3.5.3. Assuming that the general fiber is openly canonical and log canonical, The-

orem 3.10 shows that, for n sufficiently large, the pair (T n
Σ̃
, D̃n)/G is openly of log

general type. Since there is a birational morphism (T n
Σ̃
, D̃n)/G → (T nΣ,Dn), it fol-

lows that (T nΣ,Dn) is also openly of log general type. Therefore, we have constructed

a morphism from a high fibered power of our family to a pair openly of log general

type, and have thus completed the proof of the theorem. The upshot here, is that

we do not have to modify the base of our starting family.



CHAPTER Four

Bounding Heights Uniformly in Families of Hyperbolic

Varieties

4.1 Introduction

In the statement of our main result we consider morphisms of algebraic stacks

f : X → Y which are representable by schemes, i.e., for all schemes S and all

morphisms S → Y , the algebraic stack X ×Y S is (representable by) a scheme.

Furthermore, a substack of an algebraic stack is constructible if it is a finite union

of locally closed substacks. Moreover, we will use the relative discriminant dk(TP ) of

a point on an algebraic stack over a number field k; we refer the reader to Section

4.2.4 for a precise definition of TP as well as the relative discriminant dk(TP ). Also,

to state our theorem, we will use heights on stacks as discussed in Section 4.2.4.

45
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We state our main theorem.

Theorem 4.1 (Theorem 1.3). Let k be a number field and let f : X → Y be a proper

surjective morphism of proper Deligne-Mumford stacks over k which is representable

by schemes. Let h be a height function on X and let hY be a height function on

Y associated to an ample divisor with hY ≥ 1. Assume Vojta’s height conjecture

(Conjecture 1.4.1). Let U ⊂ Y be a constructible substack such that, for all t ∈ U ,

the variety Xt is smooth and hyperbolic. Then there is a real number c > 0 depending

only on k, Y , X, and f such that, for all P in X(k) with f(P ) in U , the following

inequality holds

h(P ) ≤ c ·
(
hY (f(P )) + dk(TP )

)
.

Our proof of Theorem 1.3 uses the recent [AMV], which shows that Vojta’s

conjecture actually implies a version of the conjecture for stacks. Moreover, to prove

Theorem 1.3 we follow the strategy of Ih. Indeed, we combine an induction argument

with an application of Vojta’s conjecture to a desingularization of X (Proposition

4.3.1). This line of reasoning was also used in Ih’s work [Ih1, Ih2].

Theorem 4.2 (Theorem 1.4). Assume Conjecture 1.4.1. Let g ≥ 2 be an integer

and let k be a number field. There is a real number c depending only on g and k

satisfying the following. For all smooth projective curves X of genus g over k, and

all P in X(k), the following inequality holds

h(P ) ≤ c(g, k) ·
(
h(X) + dk(TX)

)
.

Finally, we also obtain a uniformity statement for certain hyperbolic surfaces.

Theorem 4.3 (Theorem 1.5). Assume Conjecture 1.4.1. Fix an even integer a and

a number field k. There is a real number c depending only on a and k satisfying the
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following. For all smooth hyperbolic surfaces S over k with c2
1(S) = a > c2(S) and

all P in S(k), the following inequality holds

h(P ) ≤ c ·
(
h(S) + dk(TS)

)
.

We refer the reader to Section 4.5 for precise definitions of the height functions

appearing in Theorems 1.4 and 1.5. We prove Theorems 1.4 and 1.5 by applying

Theorem 1.3 to the universal family of the moduli space of curves and the moduli

space of surfaces of general type, respectively. The technical difficulty in applying

Theorem 1.3 is to prove the constructibility of the locus of points corresponding to

hyperbolic varieties. In the setting of curves (Theorem 1.4) this is simple, whereas

the case of surfaces (Theorem 1.5) requires deep results of Bogomolov and Miyaoka

[Bog, Miy].

4.1.1 Hyperbolicity

In this subsection the base field k is a field of arbitrary characteristic, and all divisors

D are assumed to be Cartier.

Definition 4.1.1. Let X be a proper Deligne-Mumford stack of dimension n over

k. A divisor D on X is big if h0(X,OX(mD)) > c ·mn for some c > 0 and m� 1.

Recall that a projective geometrically irreducible variety X over k is of general

type if for a desingularization X̃ → Xred of the reduced scheme Xred, the sheaf ωX̃ is

big. Note that, if X is of general type and X̃ → Xred is any desingularization, then

ωX̃ is big.
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Definition 4.1.2. A projective scheme X over k is hyperbolic (over k) if for all

its closed subschemes Z, any irreducible component of Zk is of general type.

Note that, if X is a hyperbolic projective scheme over k, then X and all of its

closed subvarieties are of general type. Moreover, if L/k is a field extension, then X

is hyperbolic over k if and only if XL is hyperbolic over L.

For example, a smooth proper geometrically connected curve X over k is hyper-

bolic if and only if the genus of X is at least two. For another example, let X be

a smooth projective scheme over C and suppose that there exists a smooth proper

morphism Y → X whose fibres have ample canonical bundle such that, for all a in

X(C), the set of b in X(C) with Xa
∼= Xb is finite. Then X is hyperbolic. This is a

consequence of Viehweg’s conjecture for “compact” base varieties [Pat2].

4.1.2 Kodaira’s criterion for bigness

We assume in this section that k is of characteristic zero. Recall that for a big divisor

D on a projective variety, there exists a positive integer n such that nD ∼Q A+ E,

where A is ample and E is effective [KM, Lemma 2.60]. We state a generalization

of this statement (see Lemma 4.1.4) which is presumably known; we include a proof

for lack of reference.

Lemma 4.1.3. Let π : X → Y be a quasi-finite morphism of proper Deligne-Mumford

stacks over k. Let D be a divisor on Y . The divisor D is big on Y if and only if

π∗D is big on X.

Proof. This follows from the definition of bigness, and the fact that π∗π
∗D is linearly
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equivalent to mD, where m ≥ 1 is some integer.

If D is a divisor on a finite type separated Deligne-Mumford stack X over k with

coarse space X → X c, then D is ample (resp. effective) on X if there exists a positive

integer n such that nD is the pull-back of an ample (resp. effective) divisor on X c.

Note that, if X has an ample divisor, then X c is a quasi-projective scheme over k.

Lemma 4.1.4. Let X be a proper Deligne-Mumford stack over k with projective

coarse moduli space X c. If D is a big divisor on X , then there exists a positive

integer n such that nD ∼Q A+ E, where A is ample and E is effective.

Proof. Let π : X → X c denote the morphism from X to its coarse moduli space X c.

It follows from [Ols, Proposition 6.1] that there exists a positive integer m such that

mD is Q-linearly equivalent to the pullback of a divisor D0 on X c. As mD is a big

divisor on X , the divisor D0 is big on X c (Lemma 4.1.3). By Kodaira’s criterion for

bigness, there exists a positive integer m2 such that m2D0 is Q-linearly equivalent

to A + E, where A is an ample divisor on X c and E is an effective divisor on X c.

Write n = m ·m2. We now see that nD = m ·m2 · D ∼Q π∗m2D0 ∼Q π∗(A + E).

Since A := π∗A is ample, and E := π∗E is effective, this concludes the proof of the

lemma.

4.2 Vojta’s conjecture for varieties and stacks

In this section, we let k be a number field. We begin by recalling Vojta’s conjecture

for heights of points on schemes, using [AMV] and [Voj]. Our statement of the

conjecture is perhaps not the most standard, but is more natural for our setting as

we will need the extension of the conjecture to algebraic stacks.
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4.2.1 Discriminants of fields

We first recall discriminants of fields following Section 2 of [AMV].

Definition 4.2.1. Given a finite extension E/k, define the relative logarithmic

discriminant to be:

dk(E) =
1

[E : k]
log |Disc(OE)| − log |Disc(Ok)| =

1

[E : k]
deg(ΩOE/Ok), (2.1)

where the second equality follows from the equality of ideals (Disc(Ok)) = Nk/Q det ΩOk/Z.

4.2.2 Heights

In this paper we will use logarithmic (Weil) heights. For more details, we refer the

reader to [BG, HS].

Definition 4.2.2. Let d be [k : Q], and let Mk be a complete set of normalized abso-

lute values on k. The (logarithmic) height of a point P = [x0 : · · · : xn] ∈ Pn(K)

is defined to be:

hk(P ) =
1

d

∑
v∈Mk

log( max
0≤i≤n

{‖xi‖v}).

If X is a projective variety with a projective embedding ϕ : X ↪→ Pn, we can

define a height function hϕ : X → R given by

hϕ(P ) = h(ϕ(P )).

More generally, given a very ample divisor D on X, we define hD(P ) = h(ϕD(P )),

where ϕD is the natural embedding of X in Pn given by D. (We stress that hD is
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well-defined, up to a bounded function.)

Proposition 4.2.3. The Weil height machine satisfies the following properties.

(i) If f : X → Y is a morphism, then hX,f∗D = hY,D +O(1).

(ii) If D and E are both divisors, then hD+E = hD + hE +O(1).

(iii) If D is effective, hD ≥ O(1) for all points not in the base locus of D.

Proof. See [HS, Theorems B.3.2.b, B.3.2.c, and B.3.2.e].

4.2.3 Vojta’s conjecture

We again recall from the introduction Vojta’s conjecture for schemes (Conjecture

1.4.1).

Conjecture 4.2.4 (Vojta). [Voj, Conjecture 2.3] Let X be a nonsingular projective

scheme over k. Let H be a big line bundle on X and fix δ > 0. Then there exists

a proper Zariski closed subset Z ⊂ X such that, for all closed points x ∈ X with

x 6∈ Z,

hKX (x)− δhH(x) ≤ dk(k(x)) +O(1).

Note that the discriminant term dk(k(x)) equals zero when x is a rational point

of X.
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4.2.4 Vojta’s conjecture for stacks

Before stating the version of Vojta’s conjecture for Deligne-Mumford stacks, we

introduce some preliminaries, following Section 3 of [AMV]. If S is a finite set of

finite places of k, we let Ok,S be the ring of S-integers in k.

The stacky discriminant

Let X → Spec(Ok,S) be a finite type separated Deligne-Mumford stack. Given a

point x ∈ X (k) = X(k), we define Tx → X to be the normalization of the closure

of x in X . Note that Tx is a normal proper Deligne-Mumford stack over Ok,S whose

coarse moduli scheme is Spec(Ok(x),Sk(x)). Here Sk(x) is the set of finite places of k(x)

lying over S.

Relative discriminants for stacks

Definition 4.2.5. Let E be a finite field extension of k, and let T be a normal

separated Deligne-Mumford stack over OE whose coarse moduli scheme is SpecOE.

We define the relative discriminant of T over Ok as follows:

dk(T ) =
1

deg(T /Ok)
deg(ΩT /Spec(Ok)). (2.2)

Note that dk(T ) is a well-defined real number.
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Heights on stacks

Let X be a finite type Deligne-Mumford stack over k with finite inertia whose coarse

space Xc is a quasi-projective scheme over k. Fix a finite set of finite places S of

K and a finite type separated Deligne-Mumford stack X → Spec(OK,S) such that

XK ∼= X. Let H be a divisor on X. Let n ≥ 1 be an integer such that nH is the

pull-back of a divisor Hc on Xc. Fix a height function hHc for Hc on Xc.

Definition 4.2.6. We define the height function hH on X(k) with respect to H

to be

hH(x) := hHc(π(x)).

Note that hH is a well-defined function on X(k).

We now give another way to compute the height function, under suitable as-

sumptions on X. By [KV, Theorem 2.1], a finite type separated Deligne-Mumford

stack over k which is a quotient stack and has a quasi-projective coarse moduli space

admits a finite flat surjective morphism f : Y → X , where Y is a quasi-projective

scheme. Fix a height function hf∗H on Y . We define the height hH(x) of x ∈ X (k)

as follows. If x ∈ X (k), then we choose y ∈ Y (k) to be a point over x, and we define

hH(x) := hf∗(H)(y).

It follows from the projection formula (which holds for Deligne-Mumford stacks,

in particular see the introduction of [Vis]) that hH is a well-defined function on

X (k). Moreover, if H is ample, for all d ≥ 1 and C ∈ R, the set of isomorphism

classes of k-points x of X such that hH(x) ≤ C and [k(x) : k] ≤ d is finite. The

analogous finiteness statement for k-isomorphism classes can fail. However, the set
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of k-isomorphism classes of k-points x of X such that hH(x) + dk(Tx) ≤ C and

[k(x) : k] ≤ d is finite. In particular, as hH(x) + dk(Tx) has the Northcott property,

the expression hH(x) + dk(Tx) can be considered as “the” height of x [AMV].

Proposition 4.2.7 (Vojta’s Conjecture for stacks). Assume Conjecture 1.4.1 holds

and fix δ > 0. Let S be a finite set of finite places of k. Let X be a smooth

proper Deligne-Mumford stack over Ok,S whose generic fibre X = Xk is geometrically

irreducible over k. There is a proper Zariski closed substack Z ⊂ X such that, for

all x ∈ X(k) \ Z the following inequality holds

hKX (x)− δhH(x) ≤ dk(Tx) +O(1).

Proof. This is [AMV, Proposition 3.2].

4.3 Applying the stacky Vojta conjecture

We prove a generalization of [Ih2, Proposition 2.5.1] to morphisms of proper Deligne-

Mumford stacks, under suitable assumptions. We stress that our reasoning follows

Ih’s arguments in loc. cit. in several parts of the proof.

Let k be a number field, and let f : X → Y be a proper morphism of proper

integral Deligne-Mumford stacks over B = SpecOk,S, where X is a smooth algebraic

stack with a projective coarse moduli space. Let h be a height function on X and

let hY be a height function on Y associated to an ample divisor such that hY ≥ 1.

Let η be the generic point of Y , let Xη be the generic fibre of f : X → Y , and let Xk

be the generic fibre of X → B.

Proposition 4.3.1. Assume Conjecture 1.4.1. Suppose that the morphism f is
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representable by schemes, and that Xη is smooth and of general type. Then there

exists a real number c(k, S,Y , f) and a proper Zariski closed substack Z ⊂ X such

that, for all P in X (B) \ Z, the following inequality holds:

h(P ) ≤ c(k,Y , f) ·
(
dk(TP ) + hY(f(P ))

)
.

Proof. Let ∆ be an ample divisor on X such that the associated height h∆ on X

satisfies h∆ ≥ 1. Since Xη is smooth and of general type, by the Kodaira criterion

for bigness (Lemma 4.1.4), there exists an ample divisor A on Xη, an effective divisor

E on Xη, and a positive integer n such that

n(KXη) ∼Q A+ E.

For a small enough ε ∈ Q>0, we can rewrite

(KX − ε∆)|η = KXη − ε∆|η ∼Q

(
1

n
A+

1

n
E

)
− ε∆|η

=

(
1

n
A− ε∆|η

)
+

1

n
E.

Thus, there exists an effective divisor E ′ on Xη and a positive integer m such that

m

((
1

n
A− ε∆|η

)
+

1

n
E

)
∼Q E

′.

Taking Zariski closures of these divisors in X , it follows that there exists a vertical

Q-divisor F on X and an effective divisor E on X such that

KX − ε∆ + F ∼Q
1

m
E .
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Recall that Xk denotes the generic fibre of X → B. Note that Xk is a smooth

proper Deligne-Mumford stack over k with a projective coarse space. Moreover, Vo-

jta’s conjecture (Conjecture 1.4.1) implies Vojta’s conjecture for stacks (Proposition

4.2.7). Therefore, by Vojta’s conjecture for stacks (Proposition 4.2.7) applied to Xk,

there exists a proper Zariski closed substack Z ⊂ Xk such that, for all P ∈ Xk(k)\Z,

the following inequality

hKXk (P )− 1

2
εh∆(P ) ≤ dk(TP ) +O(1)

holds, where we compute all invariants with respect to the model X for Xk over B.

In particular, there exists a proper closed substack Z of X (namely, the closure of

Z in X ) such that, for all P in X (B) not in Z, the following inequality holds

hKX (P )− 1

2
εh∆(P ) ≤ dk(TP ) +O(1). (3.1)

Since F is a vertical divisor on X , there is an effective divisor G on Y such that

F ≤ f ∗G. Therefore, by Proposition 4.2.3, the inequality hF ≤ hf∗G + O(1) holds,

outside of Supp (f ∗G), and hf∗G = (hG ◦f)+O(1). In particular, since hY is a height

associated to an ample divisor, we see that hG ≤ O(hY) by [Lan1, Proposition 5.4].

Therefore, for all points t in Y(k) and all P ∈ Xt(B) \ Supp(f ∗G), the inequality

hF(P ) ≤ hf∗G(P ) +O(1) = hG(f(P )) +O(1) ≤ O
(
hY(f(P ))

)
+O(1)

holds, outside of Supp (f ∗G). In particular, replacing Z by the union of Z with

Supp(f ∗G), it follows that

hF ≤ O(hY ◦ f) +O(1) (3.2)
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outside Z. Since KX − ε∆ + F is effective, it follows that, replacing Z by a larger

proper closed substack of X if necessary, the inequality

hKX−ε∆+F ≥ O(1) (3.3)

holds outside Z by Proposition 4.2.3 (3).

Let dk(T ) be the function that assigns to a point P in X (k) the real number

dk(TP ). In particular, we obtain that

O(1) ≤ hKX−ε∆+F ≤ (hKX −
1

2
εh∆)− 1

2
εh∆ + hF +O(1)

≤ (hKX −
1

2
εh∆)− 1

2
εh∆ +O(hY ◦ f) +O(1)

≤ dk(T )− 1

2
εh∆ +O(hY ◦ f) +O(1),

where the inequalities follow from Equation (3.3), Proposition 4.2.3.(2), Equation

(3.2), and Vojta’s conjecture (3.1) respectively.

We conclude that, for all t in Y(B) and all P in Xt(B) \ Z the inequality

1

2
εh∆(P ) ≤ dk(TP ) +O(hY(t)) +O(1)

holds. Therefore, there is a real number c > 0 such that, for all t in Y(t) and all P

in Xt not in Z, the inequality

h∆(P ) ≤ c ·
(
dk(TP ) +O

(
hY(t)

))
+O(1)

holds. In particular, replacing c by a larger real number if necessary, we conclude
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that

h∆(P ) ≤ c ·
(
dk(TP ) + hY(t)

)
+O(1).

As ∆ is ample and h∆ ≥ 1, we conclude that, using [Lan1, Proposition 5.4] and

replacing c by a larger real number if necessary, for all t in Y(t) and all P in Xt not

in Z, the inequality

h(P ) ≤ O
(
h∆(P )

)
≤ c ·

(
dk(Tp) + hY(f(P ))

)
+O(1)

holds. In particular, replacing c by a larger real number c(k,Y , f) if necessary, we

conclude that the following inequality

h(P ) ≤ c(k,Y , f) · (dk(TP ) + hY(f(P )))

holds.

4.4 Uniformity results

In this section we prove Theorem 1.3.

Lemma 4.4.1. Let f : X → Y be a proper surjective morphism of proper Deligne-

Mumford stacks over k which is representable by schemes. Let h be a height function

on X and let hY be a height function on Y associated to an ample divisor with

hY ≥ 1. Assume Conjecture 1.4.1. Suppose that the generic fibre Xη of f : X → Y

is smooth and of general type. There exists a proper Zariski closed substack Z ⊂ X

and a real number c depending only on k, X, Y , and f , such that, for all P in
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X(k) \ Z, the following inequality holds

h(P ) ≤ c ·
(
hY (f(P )) + dk(TP )

)
.

Proof. We may and do assume that X and Y are geometrically integral over k.

Let µ : X̃ → X be a desingularization of X; see [Tem, Theorem 5.3.2]. Note

that f̃ : X̃ → Y is a proper surjective morphism of proper Deligne-Mumford stacks

whose generic fibre is of general type. Define Xexc ⊂ X to be the exceptional locus

of µ : X̃ → X, so that µ induces an isomorphism of stacks from X̃ \ µ−1(Xexc) to

X \Xexc. Note that Xexc is a proper closed substack of X, as X is reduced.

Let h̃ be the height function on X̃ associated to h, so that, for all P̃ in X̃, we

have h̃(P̃ ) = h(P ). As we are assuming Conjecture 1.4.1, it follows from Proposition

4.3.1 that there exists a proper Zariski closed substack Z̃ ⊂ X̃ such that, for all P̃

in X̃(k) \ Z̃, the following inequality

h̃(P ) ≤ c ·
(
hY (f̃(P )) + dk(TP )

)
holds, where c is a real number depending only on k, Y , X, and f . (Here we use

that X̃ → X only depends on X.)

Define Z to be the closed substack µ(Z̃) ∪ Xexc in X. Note that µ induces an

isomorphism from X̃ \ µ−1(Z) to X \ Z. Therefore, we conclude that, for all P in

X(k) \ Z, the inequality

h(P ) = h̃(P̃ ) ≤ c ·
(
hY (f(P )) + dk(TP )

)
holds, where P̃ is the unique point in X̃ mapping to X.
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Proof of Theorem 1.3. Since U is constructible, we have that U = ∪ni=1Ui is a finite

union of locally closed substacks Ui ⊂ Y . Let Yi be the closure of Ui in Y , let

Xi = X ×Y Yi, and let fi : Xi → Yi be the associated morphism. Note that Ui is

open in Yi. In particular, to prove the theorem, replacing X by Xi, Y by Yi, U by

Ui, and f : X → Y by fi : Xi → Yi if necessary, we may and do assume that U is

open in Y .

We now argue by induction on dimX. If dimX = 0, then the statement is clear.

As we are assuming Conjecture 1.4.1, it follows from Lemma 4.4.1 that there

exists a proper Zariski closed substack Z ⊂ X and a real number c0 > 0 depending

only on k, X, Y , and f such that, for all P in X(k) \ Z, the inequality

h(P ) ≤ c0 ·
(
hY (f(P )) + dk(TP )

)
(4.1)

holds.

Let X1, . . . , Xs ⊂ Z be the irreducible components of Z. For i ∈ {1, . . . , s},

let Yi = f(Xi) be the image of Yi in Y . Note that fi := f |Xi : Xi → Yi is a

proper morphism of proper integral Deligne-Mumford stacks which is representable

by schemes. Moreover, for t in the open subscheme Yi ∩ U of Yi, the proper variety

Xi,t is hyperbolic, as Xi,t is a closed subvariety of the hyperbolic variety Xt. Let hi

be the restriction of h to Xi, and let hYi be the restriction of hY to Yi.

Since Xi is a proper Zariski closed substack of X, it follows that dimXi < dimX.

Therefore, by the induction hypothesis, we conclude that there is a real number

ci > 0 depending only on k, Xi, Yi, and fi such that, for all P in Xi(k), the following
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inequality

h(P ) = hi(P ) ≤ ci ·
(
hYi(fi(P )) + dk(TP )

)
= ci ·

(
hY (f(P )) + dk(TP )

)
. (4.2)

holds. Let c′ := max(c1, . . . , cs). By (4.2), we conclude that, for all P in Z(k), the

inequality

h(P ) ≤ c′ ·
(
hY (f(P )) + dk(TP )

)
(4.3)

holds.

Combining (4.1) and (4.3), we conclude the proof of the theorem with c :=

max(c0, c
′).

4.5 Applications

In this section we apply our main result (Theorem 1.3) to some explicit families of

hyperbolic varieties, and prove Theorems 1.4 and 1.5.

4.5.1 Application to curves

For g ≥ 2 an integer, let Mg be the stack over Z of smooth proper genus g curves.

Let Mg be the stack of stable genus g curves. Note that Mg and Mg are smooth

finite type separated Deligne-Mumford stacks. Moreover, Mg → Mg is an open

immersion, and Mg is proper over Z. These properties of Mg and Mg are proven

in [DM]. We fix an ample divisor H on Mg.
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If X is a smooth projective curve of genus at least two over a number field k, we

let h : X(k)→ R be the height with respect to the canonical embedding X → P5g−6
k .

Moreover, we define the height of X to be the height of the corresponding k-rational

point of Mg with respect to the fixed ample divisor H on Mg (following Section

4.2.4).

If X is a smooth projective curve of genus at least two over k, and P is the

corresponding rational point of Mg, we let dk(TX) denote dk(TP ), as defined in

Section 4.2.4.

Proof of Theorem 1.4. Since U :=Mg is open in Y :=Mg, we can apply Theorem

1.3 to the universal family of stable genus g curves f : X → Y .

Remark 4.5.1. In Theorem 1.4, one can also use the (stable) Faltings height hFal(X)

of X (instead of the height h introduced above). Indeed, it follows from [Fal1, Paz]

that the Faltings height hFal(X) is bounded by h(X) + c, where c is a real number

depending only on the genus of X.

4.5.2 Hyperbolic surfaces

Recall that, if S is a smooth projective surface, then c2
1(S) = K2

S and c2(S) = e(S) is

the topological Euler characteristic. Moreover, by Noether’s lemma, they are related

by the following equality:

χ(S,OS) =
c1(S)2 + c2(S)2

12
.

In particular, the information of K2
S and χ(S) is equivalent to the data of c1(S)

and c2(S). Finally, we note that c2(S) ≥ 1 for any surface of general type S [Bea,
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X.1 and X.4].

A smooth proper morphism f : X → Y of schemes is a canonically polarized

smooth surface over Y if, for all y in Y , the scheme Xy is connected and ωXy/k(y) is

ample. If a and b are integers, we letMa,b over Z be the stack of smooth canonically

polarized surfaces S with c1(S)2 = a and c2(S) = b. Note that Ma,b is a finite type

algebraic stack over Z with finite diagonal (cf. [MM, Tan]).

We start by proving the following lemma.

Lemma 4.5.2. If S is a smooth hyperbolic surface over a field k, then S is canoni-

cally polarized.

Proof. If S is a (smooth) minimal surface of general type, then the canonical model

Sc is obtained by contracting all rational curves with self intersection −2 [Liu, Chap-

ter 9]. Consequently, the singularities on a singular surface in Ma,b(k) are rational

double points arising from the contraction of these −2 curves. As having a −2 ra-

tional curve would contradict S being hyperbolic, we see that Sc must be smooth,

and thus equal to S. As the canonical bundle on Sc is ample, we conclude that S is

canonically polarized.

LetMh
a,b ⊂Ma,b be the substack of hyperbolic surfaces, i.e., for a scheme S, the

objects f : X → S of the full subcategory Mh
a,b(S) of Ma,b(S) satisfy the property

that, for all s in S, the surface Xs is hyperbolic (Definition 4.1.2). We do not know

of any result on the algebraicity of Mh
a,b (nor the algebraicity of Mh

a,b ×Z SpecC).

However, if S is a minimal projective surface of general type over C and c2
1(S) >

c2(S), then Bogomolov proved [Bog] that S contains only a finite number of curves of

bounded genus, and thus S contains only finitely many rational and elliptic curves.



64

Yoichi Miyaoka [Miy, Theorem 1.1] proved a more effective version of Bogomolov’s

result, showing that in fact the canonical degree of such curves is bounded in terms

of c2
1 and c2. Using these results we are able to prove the following.

Lemma 4.5.3. If a > b, then Mh
a,b×Z SpecC is a constructible substack of Ma,b×Z

SpecC.

Proof. Let a and b be integers such that a > b. Let N be an integer such that,

for all S in Ma,b(C), the ample line bundle ω⊗NS/C is very ample. In particular, S is

embedded in Pn ∼= P(H0(S, ω⊗NS/C)). Let Hilba,b be the Hilbert scheme ofN -canonically

embedded smooth surfaces, and note that Ma,b = [Hilba,b/PGLn+1].

Let Hd be the Hilbert scheme of (possibly singular) curves of canonical degree d

in Pn. Let Hint
d be the subfunctor of geometrically integral curves. Since the universal

family over Hd is flat and proper, the subfunctor Hint
d is an open subscheme of Hd;

see [GW, Appendix E.1.(12)].

LetWa,b,d ⊂ Hint
d ×Hilba,b be the incidence correspondence subscheme parametriz-

ing parametrizing pairs (C, S) where the curve C is inside the surface S. (Note that

Wa,b,d is a closed subscheme of Hint
d × Hilba,b.)

By Miyaoka’s theorem [Miy, Theorem 1.1], there exist integers d1, . . . , dm which

depend only on a and b with the following property. A surface S ∈ Ma,b(C) is

hyperbolic if and only if, for all i = 1, . . . ,m, it does not contain an integral curve

of degree di.

Note that, by Chevalley’s theorem, for all d ∈ Z, the image of the composed

morphism

Wa,b,d ⊂ Hd × Hilba,b → Hilba,b →Ma,b
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is constructible. Let Ma,b,di be the stack-theoretic image of Wa,b,di in Ma,b. Since

a finite union of constructible substacks is constructible, the union
⋃m
i=1Ma,b,di is a

constructible substack of Ma,b.

Finally, by construction, a surface S in Ma,b(C) is hyperbolic if and only if it

is not (isomorphic to an object) in the constructible substack
⋃m
i=1Ma,b,di . As the

complement of a constructible substack is constructible, we conclude that Ma,b ×Z

SpecC is a constructible substack of Ma,b ×Z C.

We let Ma,b,Q be a compactification of Ma,b,Q with a projective coarse moduli

space; see [Hac, Section 2.5] for an explicit construction of such a compactification.

(As the stack of smooth canonically polarized surfaces is open in the stack of canon-

ical models, it suffices to compactify the latter, as is achieved in loc. cit. for all a

and b.) We now chooseMa,b to be a compactification ofMa,b over Z whose generic

fibreMa,b×Z SpecQ is isomorphic toMa,b,Q. If S is a smooth projective canonically

polarized hyperbolic surface over a number field k, we let h : S(k) → R be the

height with respect to the very ample divisor ω⊗34
S/k (see [Tan]). Moreover, we define

the height of S in Ma,b,Q(k) to be the height of the corresponding k-rational point

of Ma,b with respect to some fixed ample divisor H on Ma,b,Q (following Section

4.2.4). Also, if P is the rational point ofMh
a,b corresponding to S, then we let dk(TS)

denote dk(TP ) as defined in Section 4.2.4. (Here we compute dk(TP ) with respect to

the fixed Z-model Ma,b of Ma,b,Q.)

Proof of Theorem 1.5. By Lemma 4.5.3 and standard descent arguments, we con-

clude that Mh
a,b ×Z SpecQ is a constructible substack of Ma,b ×Z SpecQ. Also,

a smooth hyperbolic surface is canonically polarized by Lemma 4.5.2. Therefore,

the result follows from an application of Theorem 1.3 to the universal family over
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Y :=Ma,b,Q and the constructible substack U :=Mh
a,b in Y .

Remark 4.5.4. There are many examples of surfaces of general type with c2
1 > c2.

Some of the simplest examples are surfaces S with ample canonical bundle such that

there exist a smooth proper curve C and a smooth proper morphism S → C (see for

instance [Kod]).



CHAPTER Five

Log Canonical Models of Elliptic Surfaces

5.1 Introduction

We begin by recalling the main result (see Figure 1.1):

Theorem 5.1 (Theorem 1.6). Let (f : X → C, S + aF ) be an elliptic surface pair

over C the spectrum of a DVR with reduced special fiber F such that F is one of the

Kodaira singular fiber types (see Table 1), or f is isotrivial with constant j-invariant

∞.

(i) If F is a type In or N0 fiber (see Definition 5.5.3), the relative log canonical

model is the Weierstrass model (see Definition 5.3.3) for all 0 ≤ a ≤ 1.

(ii) For any other fiber type, there is an a0 such that the relative log canonical model

is

67
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(a) the Weierstrass model for any 0 ≤ a ≤ a0,

(b) a twisted fiber (see Defintion 5.4.9) consisting of a single non-reduced

component when a = 1, or

(c) an intermediate fiber (Definition 5.4.9) that interpolates between the above

two models for any a0 < a < 1.

The constant a0 = 0 for fibers of type I∗n, II
∗, III∗ and IV ∗, and a0 is as follows

for the other fiber types:

a0 =



5/6 II

3/4 III

2/3 IV

1/2 N1

We also describe the singularities of the relative log canonical models in each

case.

Theorem 5.2 (see Theorem 1.7). Let f : X → C be an elliptic fibration with

section S. Furthermore, let FA =
∑
aiFi be a sum of reduced marked fibers Fi with

0 ≤ ai ≤ 1. Suppose that (X,S + FA) is the relative log canonical model over C.

Then

ωX = f ∗(ωC ⊗ L)⊗OX(∆).

where L is the fundamental line bundle (see Definition 5.3.4) and ∆ is an effective

divisor supported on fibers of type II, III, and IV contained in Supp(F ). The con-

tribution of a type II, III or IV fiber to ∆ is given by αE where E supports the
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unique nonreduced component of the fiber and

α =


4 II

2 III

1 IV

Corollary 5.1.1. Let (f : X → C, S +FA) be an irreducible slc elliptic surface with

section S and marked fibers FA. Suppose that KX + S + FA is big. Then the log

canonical model of (X,S + FA) is either

(i) the relative log canonical model as described in Theorem 1.6, or

(ii) a pseudoelliptic surface obtained by contracting the section of the relative log

canonical model whenever (C, f∗FA) is not a weighted stable pointed curve (see

Definition 5.6.5).

We work over an algebraically closed field k of characteristic 0.

5.2 The log minimal model program in dimension

two

First we recall some facts about the log minimal model program that we will use

later. The standard reference is [KM] (for generalizations to log canonical surface

pairs see [Fuj1]).

Throughout this section, X will denote a connected surface, D =
∑
aiDi will be

a Q-divisor with 0 ≤ ai ≤ 1, and (X,D) will be referred to as a surface pair.
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We let NS(X) denote the Q-vector space of Q-divisors modulo numerical equiv-

alence. If f : X → S is a projective morphism, denote by N1(X/S) the Q-vector

space generated by irreducible curves C ⊂ X contracted by f modulo numerical

equivalence.

Let NE(X/S) ⊂ N1(X/S) be the closure of the cone generated by effective curve

classes. For any divisor D ∈ NS(X), we let

NE(X/S)D≥0 = NE(X/S) ∩ {C : D.C ≥ 0}.

The first step of the log minimal model program is to understand these cones:

Theorem 5.3. (Cone and contraction theorems for log canonical surfaces) Let (X,D)

be a log canonical surface pair and f : X → S a projective morphism.

(i) There exist countably many rational curves Cj ⊂ X contracted by f and

NE(X/S) = NE(X/S)(KX+D)≥0 +
∑
j

R≥0[Cj]

such that Rj := R≥0[Cj] is an extremal ray for each j. That is, Rj satisfies

x, y ∈ R whenever x+ y ∈ R for any curve classes x, y.

(ii) For each extremal ray R as above, there exists a unique morphism ϕR : X → Y

such that (ϕR)∗OX = OY and ϕR(C) = 0 for an integral curve C if and only

if [C] ∈ R. In particular, f : X → S factors as g ◦ϕR for a unique g : Y → S.

The pair (Y, (ϕR)∗D) is a log canonical surface pair.

The morphism ϕR is called an extremal contraction. The log minimal model

program takes as input a pair (X,D) and applies the above theorem repeatedly
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to construct a sequence of extremal contractions in hopes of reaching a birational

model f0 : (X0, D0) → S so that KX0 + D0 is f0-nef. That is, with NE(X0/S) =

NE(X0/S)(KX0
+D0)≥0. If it exists, the pair (X0, D0) is a log minimal model of

(X,D) over S. Note that this pair is not unique and depends on the sequence of

extremal contractions. For surfaces, it can be shown (e.g. using the Picard rank)

that a sequence of extremal contractions leads to a log minimal model after finitely

many steps. Once we reach a log minimal model, the next step is provided by the

abundance theorem:

Proposition 5.2.1. [AFKM, Kaw](Abundance theorem for log canonical surfaces)

Let (X,D) be a log canonical surface pair and f : X → S a projective morphism. If

KX +D is f -nef, then it is f -semiample.

A divisor B is f -semiample if the linear series |mB| induces a morphism ϕ|mB| :

X → PNS over S for m � 0. In this case, ϕ|mB| is a projective morphism with

connected fibers satisfying ϕ∗|mB|H = mB where H is the hyperplane class on PNS . In

particular, ϕ|mB|(C) = 0 if and only if B.C = 0 so ϕ|mB| is determined by numerical

data of the divisor B.

In the setting of the abundance theorem, the map ϕ|m(KX+D)| is the log canonical

contraction and the image (Y, (ϕ|m(KX+D)|)∗D) is the log canonical model of the pair

(X,D) over S. Thus

Y = ProjS

(⊕
n≥0

H0(X,n(KX +D))

)
.

More generally, if (X,D) is any pair projective over S, the log canonical model
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of (X,D) over S is the pair (Y, ϕ∗D) where

ϕ : X 99K Y = ProjS

(⊕
n≥0

H0(X,n(KX +D))

)

is the rational map induced by the linear series |m(KX +D)| for m� 0. Note that

the log canonical model is unique and KY + ϕ∗D is relatively ample over S.

The log minimal model program then gives us a method to compute the unique

log canonical model of an lc surface pair (X,D) projective over a base S. First use

the cone and contraction theorems to perform finitely many extremal contractions

of KX + D-negative curves to obtain a log minimal model (X0, D0) over S. Then

KX0 + D0 will be relatively semiample by the abundance theorem so that the log

canonical model is the image of the log canonical contraction ϕ0 : X0 → Y that

contracts precisely the curves C such that (KX0 +D0).C = 0.

5.2.1 SLC pairs and stable pairs

To obtain compact moduli spaces, one is naturally forced to allow non-normal sin-

gularities as in the case of stable curves. The non-normal analogue of log canonical

pairs are semi-log canonical pairs.

Definition 5.2.2. A surface is semi-smooth if it only has the following singular-

ities:

(i) 2-fold normal crossings (locally x2 = y2), or

(ii) pinch points (locally x2 = zy2).
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This naturally leads to the definition of a semi-resolution.

Definition 5.2.3. A semi-resolution of a surface X is a proper map g : Y → X

such that Y is semi-smooth and g is an isomorphism over the semi-smooth locus of

X. A semi-log resolution of a pair (X,D) is a semi-resolution g : Y → X such that

g−1
∗ D + Exc(g) is normal crossings.

Remark 5.2.4. As in the case of a log canonical pair, the definition of a semi-log

canonical pair can be rephrased in terms of a semi-log resolution (see Lemma 5.6.2).

Note in particular that log canonical models are stable pairs and often we will

use the words log canonical model and stable model interchangeably.

The cone, contraction, and abundance theorems for log surfaces hold as stated

above for slc surfaces (see [Fuj3]). Thus one hopes that one can run the log minimal

model program as described above to obtain the stable model of an slc pair (X,D).

However, this is not always the case. An extremal contraction of an slc pair might

result in a pair (X,D) where KX +D is not Q-Cartier! This becomes an important

issue in moduli theory. However, this issue does not occur for the specific non-normal

elliptic surfaces we consider in this paper.

5.3 Preliminaries on elliptic surfaces

In this section we summarize the basic theory of elliptic surfaces.
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5.3.1 Standard elliptic surfaces

We point the reader to [Mir] for a detailed exposition.

Definition 5.3.1. An irreducible elliptic surface with section (f : X → C, S) is

an irreducible surface X together with a surjective proper flat morphism f : X → C

to a smooth curve and a section S such that:

(i) the generic fiber of f is a stable elliptic curve, and

(ii) the generic point of the section is contained in the smooth locus of f .

We call (f : X → C, S) standard if S is contained in the smooth locus of f .

This differs from the usual definition in that we only require the generic fiber to

be a stable elliptic curve rather than a smooth one.

Definition 5.3.2. A surface is called relatively minimal if it semi-smooth and

there are no (−1)-curves in any fiber.

Note that a relatively minimal elliptic surface with section must be standard. If

(f : X → C, S) is relatively minimal, then there are finitely many fiber components

not intersecting the section. Contracting these, we obtain an elliptic surface with all

fibers reduced and irreducible:

Definition 5.3.3. A minimal Weierstrass fibration is an elliptic surface ob-

tained from a relatively minimal elliptic surface (f : X → C, S) by contracting all

fiber components not meeting S. We refer to this as the minimal Weierstrass

model of (f : X → C, S).
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Definition 5.3.4. The fundamental line bundle of a standard elliptic surface

(f : X → C, S) is L := (f∗NS/X)−1 where NS/X denotes the normal bundle of S in

X. For (f : X → C, S) an arbitrary elliptic surface, we define L := (f ′∗NS′/X′)
−1

where (f ′ : X ′ → C, S ′) is a semi-resolution.

Since NS/X only depends on a neighborhood of S in X, the line bundle L is

invariant under taking a semi-resolution or the Weierstrass model of a standard

elliptic surface. Therefore L is well defined and equal to (f ′∗NS′/X′)
−1 for (f ′ : X ′ →

C, S ′) the unique minimal Weierstrass model of (f : X → C, S).

The fundamental line bundle greatly influences the geometry of a minimal Weier-

strass fibration. The line bundle L has non-negative degree on C and is independent

of choice of section S [Mir]. Furthermore, L determines the canonical bundle of X:

Proposition 5.3.5. [Mir, Proposition III.1.1] Let (f : X → C, S) be either

• a Weierstrass fibration, or

• a relatively minimal smooth elliptic surface

. Then ωX = f ∗(ωC ⊗ L).

We prove a more general canonical bundle formula in Theorem 1.7.

Definition 5.3.6. We say that f : X → C is properly elliptic if deg(ωC⊗L) > 0.

final section of this chapter

It is clear that X is properly elliptic if and only if the Kodaira dimension κ(X) =

1.
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When (f : X → C, S) is a smooth relatively minimal elliptic surface, then f has

finitely many singular fibers. These are unions of rational curves with possibly non-

reduced components whose dual graphs are ADE Dynkin diagrams. The possible

singular fibers were classified independently by Kodaira and Néron. Table 5.1 gives

the full classification in Kodaira’s notation for the fiber. Fiber types In for n ≥ 1

are reduced and normal crossings, fibers of type I∗n, II
∗, III∗, and IV ∗ are normal

crossings but nonreduced, and fibers of type II, III and IV are reduced but not

normal crossings. With the exception of type I0, I1 and II, all irreducible components

of the fibers are −2 curves.

Definition 5.3.7. We will use reduced fiber to mean the reduced divisor F =

(f ∗(p))red corresponding to a (possibly nonreduced) fiber f ∗(p) for p ∈ C.

5.3.2 Weighted stable elliptic surfaces

Following the log minimal model program, in [AB3] we will study compactifications

of the moduli space of irreducible elliptic surfaces with section and marked fibers

obtained by allowing our surface pairs to degenerate to semi-log canonical (slc) stable

pairs.

Let A = (a1, . . . , an) ∈ Qn such that 0 < ai ≤ 1 for all i be a weight vector.

We consider elliptic surfaces marked by an A-weighted sum FA =
∑n

i=1 aiFi with Fi

reduced fibers.

Definition 5.3.8. An A-weighted slc elliptic surface is a tuple (f : X →

C, S + FA) where (f : X → C, S) is an elliptic surface with section and (X,S + FA)

is an slc pair. An A-weighted stable elliptic surface is an A-weighted slc elliptic

surface such that (X,S + FA) is a stable pair.
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Table 5.1: Kodaira’s classification of fibers. The numbers in the Dynkin diagrams represent
multiplicities of nonreduced components. Pictures shamelessly taken from Wikipedia.

Kodaira Type # of components Fiber Dynkin Diagrams

I0 1

I1 1 (double pt)

In, n ≥ 2 n (n intersection pts)

II 1 (cusp)

III 2 (meet at double pt)

IV 3 (meet at 1 pt)

I∗0 5
2

I∗n, n ≥ 1 5 + n
2 2 2

II∗ 9
2 4 6

3

5 4 3 2

III∗ 8
2 3 4

2

3 2

IV ∗ 7
2 3 2

2
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In this paper we consider only irreducible elliptic surfaces. As observed by La

Nave [LN], sometimes the log minimal model program contracts the section of an slc

elliptic surface.

Definition 5.3.9. A pseudoelliptic surface is a surface pair (Z, F ) obtained by

contracting the section of an irreducible slc elliptic surface pair (f : X → C, S + F̄ ).

By abuse of terminology, we call F the marked fibers of Z.

5.4 Relative log canonical models I: smooth generic

fiber

We begin by computing the relative log canonical models of an A-weighted elliptic

surface (f : X → C, S + FA) with smooth generic fiber.

The question of whether KX +S +FA is f -ample is local on the base. Therefore

we may assume that C = SpecR is a DVR with closed point s and generic point

η. We then have the surface pair (f : X → C, S + aF ) where F = f−1(s)red, and

0 ≤ a ≤ 1, with generic fiber Xη = f−1(η) a smooth elliptic curve. In particular, we

can make use of the classification of central fibers F in Table 1.

Since X is a normal 2-dimensional scheme and the pair is log canonical, we

may replace X with a minimal log resolution before running the log minimal model

program over C. For most central fiber types, this is the unique relatively minimal

smooth model. However, for the special fiber types II, III, IV the special fiber of

the relatively minimal model is not normal crossings so we must further resolve to

obtain a log resolution (see Remark 5.4.4).
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The section S passes through the smooth locus of f . In particular, S meets the

special fiber in the smooth locus of a uniquely determined reduced fiber component.

We fix notation and denote this component A (denoted by a black node in the dual

graph; see Table 1).

Lemma 5.4.1. Suppose F is a fiber of type In for n ≥ 0. Then for any 0 ≤ a ≤ 1, the

stable model of (X,S+aF ) is the surface pair obtained by contracting all components

of F not meeting the section so that only A remains. In particular, the stable model

is the Weierstrass model of (X,S) with a single An−1 singularity.

Proof. Denote the components of F not meeting the section by Di for i = 1, . . . , n−1.

D1 D2 Dn−2 Dn−1

A

Note that the surface is relatively minimal so that KX is pulled back from C by

Proposition 5.3.5. This allows us to conclude that KX .Di = KX .A = 0 for any

fiber component. Furthermore, since F is reduced and normal crossings, the pair

(X,S + aF ) is log canonical. We compute

(KX + S + aF ).Di = 0

(KX + S + aF ).A = 1.

As a result, we must contract all components Di independent of the coefficient a.

Next we consider a type I∗n fiber. The support of this fiber consists of n + 5

rational (−2)-curves and has dual graph affine Dn+4, where the root corresponds

to the component A. There is a chain of nonreduced multiplicity 2 components
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E0, . . . , En as well as 3 reduced components D1, D2 and D3, corresponding to the

remaining vertices of valence 1.

A

D1 E0 Ei

En

D2

D3

Lemma 5.4.2. Suppose F supports an I∗n fiber. Let ϕ : (X,S + aF ) → (Y, ϕ∗(S +

aF )) be the stable model of (X,S + F ) over C. Then we have the following:

(i) If a = 0 then ϕ contracts all components except A so that Y is the Weierstrass

model with a single Dn+4 singularity at the cusp of ϕ∗A;

(ii) If 0 < a < 1 then ϕ contracts all components except E0 and A. For n = 0 there

are three A1 singularities along ϕ∗E0. For n = 1, there is an A1 singularity

and an A3 singularity along ϕ∗E0. For n ≥ 2, there is an A1 and a Dn+2

singularity along ϕ∗E0.

(iii) If a = 1 then ϕ contracts every component except E0. When n = 0, there are

four A1 singularities along ϕ∗E0. When n = 1 there are two A1 singularities

and one A3 singularity along ϕ∗E0. When n ≥ 2, there are two A1 singularities

and a Dn+2 singularity along ϕ∗E0.

Proof. Again since X is relatively minimal over C, the canonical divisor KX ∼Q,f 0

so that KX .D = 0 for any fiber component D. Furthermore, the pair (X,S + aF )

is log canonical since X is smooth and S + aF is a normal crossings divisor. We

compute

(KX + S + aF ).Di = −a

for each leaf Di, since Di is disjoint from all components except either E0 or En.
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First suppose that a > 0. Then the log MMP contracts each leaf Di to obtain a

log terminal model with one A1 singularity along E0, and two A1 singularities along

En. Calling this map µ : X → X ′, we see that ϕ : X → Y factors as ϕ′ ◦ µ, where

ϕ′ : X ′ → Y is the log canonical contraction of (X ′, S ′ + aF ′). Here, for any divisor

D on X, we denote by D′ := µ∗D.

Now we compute

(KX′ + S ′ + aF ′).A′ = S ′.A′ + a(A′)2 + aA′.E ′0 = 1− a.

(KX′ + S ′ + aF ′).E ′i = a(E ′i)
2 + E ′i.(aE

′
i−1 + aE ′i+1) = 0

for i = 1, . . . , n− 1. We have used that µ is an isomorphism in a neighborhood of A

and of Ei for 1 ≤ i ≤ n− 1.

Next, we compute µ∗(E ′0) = E0 + 1/2D1 and µ∗(E ′n) = En + 1/2D2 + 1/2D3 so

that

(E ′0)2 = (E0 + 1/2D1)2 = −3/2

(E ′n)2 = (En + 1/2D2 + 1/2D3)2 = −1.

It follows that

(KX′ + S ′ + aF ′).E ′0 = 1/2a

(KX′ + S ′ + aF ′).E ′n = 0.

Therefore, when 0 < a < 1, the morphism ϕ′ contracts E ′i for i = 1, . . . , n leaving

ϕ′∗A
′ and ϕ′∗E

′
0. When a = 1, the morphism ϕ′ also contracts A′ leaving just ϕ′∗E

′
0.
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Finally, if a = 0, the intersection (KX + S).A = 1, and (KX + S).D = 0 for

any other fiber component D. Therefore, the morphism ϕ contracts all components

except A, and (Y, ϕ∗(S)) is the Weierstrass model. The resulting singularities of

(Y, ϕ∗(S + aF )) are deduced from the dual graphs of the trees of contracted compo-

nents.

Next we consider the Kodaira fibers of type II∗, III∗ and IV ∗, which have dual

graph affine E8, E7 and E6 respectively. There is a unique component E of valence

3, two leaves D1 and D2, and several valence 2 components Bj.

Proposition 5.4.3. Suppose that F supports a fiber of type II∗, III∗, or IV ∗. Let

ϕ : X → Y be the stable model of (X,S + aF ) over C. Then we have the following:

(i) If a = 0 then ϕ contracts all components except A so that Y is the Weierstrass

model,

(ii) if 0 < a < 1 then ϕ contracts all components except E and A, and

(iii) if a = 1 then ϕ contracts all components except E.

The singularities in each case are summarized in the table below:

a = 0 0 < a < 1 a = 1
II∗ E8 A1, A2, A4 A1, A2, A5

III∗ E7 A1, A2, A3 A1, 2A3

IV ∗ E6 A1, 2A2 3A2

Proof of Proposition 5.4.3. As before, (X,S + aF ) is log canonical and KX ∼Q,f 0
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so that KX .D = 0 for any fiber component D. We compute:

(KX + S + aF ).A = 1− a

(KX + S + aF ).E = a

(KX + S + aF ).Di = −a

(KX + S + aF ).Bj = 0.

If a = 0 then KX +S is nef and induces the morphism ϕ. In this case ϕ contracts

E, Di and Bj, and gives the Weierstrass model.

If a > 0, then KX + S + aF is no longer nef. Therefore, by the log MMP there

is an extremal contraction µ1 : X → X ′ contracting each leaf Di. As before, for any

divisor D on X, we denote by D′ := µ1∗D. Suppose one such Di meets the valence

3 component E. Then

µ∗1E
′ = E + 1/2Di

so that by the projection formula

(E ′)2 = (E + 1/2Di).E = −3/2.

This allows us to compute

(KX′ + S ′ + aF ′).E ′ = 1/2a.

If E does not meet any Di, then since µ1 is an isomorphism in a neighborhood of E:

(KX′ + S ′ + aF ′).E ′ = a.
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Let B be a valence 2 component of F on X that meets one of Di. Then B′ is a

valence one component passing through an A1 singularity, and therefore

µ∗1(B′) = B + 1/2Di

for some i, from which it follows that

(B′)2 = (B + 1/2Di)
2 = −3/2.

Now we can compute

(KX′ + S ′ + aF ′).B′ = −1/2a.

On the other hand, if B is a valence 2 component of F not meeting either D1 or D2,

then µ is an isomorphism in a neighborhood of B so that

(KX′ + S ′ + aF ′).B′ = 0.

Thus we must perform another extremal contraction µ2 : X ′ → X ′′ that contracts

exactly the valence 2 components that meet either D1 or D2, producing A2 singu-

larities.

For type II∗ fiber there is exactly one of these, denoted B1, meeting D1, and

then there are 4 valence 2 components (B2, . . . , B5) not meeting D1 or D2 (see figure

below).

D1 B1 E

D2

B2 B3 B4 B5 A



85

As before we use the notation µ2∗D
′ = D′′, and then

(µ2 ◦ µ1)∗E ′′ = E + 1/3D1 + 1/2D2 + 2/3B1

so that by the projection formula,

(E ′′)2 = (E + 1/3D1 + 1/2D2 + 2/3B1).E = −5/6.

The µi are isomorphisms in a neighborhood of A,B2, . . . , B5. This lets us compute:

(KX′′ + S ′′ + aF ′′).A′′ = 1− a

(KX′′ + S ′′ + aF ′′).B′′i = 0

(KX′′ + S ′′ + aF ′′).E ′′ = 1/6a

so that (KX′′ +S ′′+aF ′′) is f -nef and thus f -semiample by abundance (Proposition

5.2.1).

We take the log canonical contraction ϕ′′ : X ′′ → Y over C to obtain the stable

model with ϕ = ϕ′′ ◦ µ2 ◦ µ1. If 0 < a < 1 then ϕ′′ contracts B′′i and if a = 1 ϕ′′

contracts B′′i and A′′ completing the claim.

In a type III∗ fiber there is exactly one valence 2 component B1 meeting D1,

and valence 2 components B2, B3, B4 meeting neither D1 nor D2 as below:

D1 B1 B2 E

D2

B3 B4 A
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In this case we have

(µ2 ◦ µ1)∗B′′2 = B2 + 2/3B1 + 1/3D1,

and µ2 is an isomorphism away from B′′2 . By the projection formula,

(B′′2 )2 = (B2 + 2/3B1 + 1/3D1).B2 = −4/3.

Then we can compute:

(KX′′ + S ′′ + aF ′′).A′′ = 1− a

(KX′′ + S ′′ + aF ′′).B′′2 = −1/3a

(KX′′ + S ′′ + aF ′′).B′′3 = 0

(KX′′ + S ′′ + aF ′′).B′′4 = 0

(KX′′ + S ′′ + aF ′′).E ′′ = 1/2a

Therefore we must perform a third extremal contraction µ3 : X ′′ → X ′′′, that con-

tracts B′′2 and results in an A3 singularity along E ′′′. We have

(µ3 ◦ µ2 ◦ µ1)∗E ′′′ = E + 1/2D2 + 1/4D1 + 1/2B1 + 3/4B2

and so by the projection formula:

(E ′′′)2 = (E + 1/2D2 + 1/4D1 + 1/2B1 + 3/4B2).E = −3/4
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Therefore

(KX′′′ + S ′′′ + aF ′′′).A′′′ = 1− a

(KX′′′ + S ′′′ + aF ′′′).B′′′3 = 0

(KX′′′ + S ′′′ + aF ′′′).B′′′4 = 0

(KX′′′ + S ′′′ + aF ′′′).E ′′′ = 1/4a.

It follows that KX′′′ + S ′′′ + aF ′′′ is nef and thus f -semiample by abundance

(Proposition 5.2.1), so that there is a log canonical contraction ϕ′′′ : X ′′′ → Y to the

stable model over C so that ϕ = µ3 ◦ µ2 ◦ µ1 ◦ ϕ′′′. If 0 < a < 1, then ϕ′′′ contracts

B′′′3 and B′′′4 and if a = 1, then ϕ′′′ contracts B′′′i and A′′′ as claimed.

Finally, in a type IV ∗ fiber there are two valence 2 components B1 and B2 meeting

D1 and D2 respectively, and a valence 2 component B3 meeting neither component:

D1 B1 E1 B3

B2

D2

A

We have two A2 singularities along E ′′. Therefore

(µ2 ◦ µ1)∗E ′′ = E + 1/3D1 + 1/3D2 + 2/3B1 + 2/3B2

and by the projection formula,

(E ′′)2 = (E + 1/3D1 + 1/3D2 + 2/3B1 + 2/3B2).E = −2/3.

Furthermore, µi are isomorphisms in a neighborhood of B3 and A. This lets us
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compute:

(KX′′ + S ′′ + aF ′′).A′′ = 1− a

(KX′′ + S ′′ + aF ′′).B′′3 = 0

(KX′′ + S ′′ + aF ′′).E ′′ = 1/3a.

Thus KX′′ + S ′′ + aF ′′ is f -nef and thus f -semiample by Proposition 5.2.1, so

there is a log canonical contraction ϕ′′ : X ′′ → Y to the stable model over C so that

ϕ = µ2 ◦ µ1 ◦ ϕ′′. If 0 < a < 1, then ϕ′′ is the contraction of B′′3 and if a = 1, then

ϕ′′ contracts both B′′3 and A′′.

Finally, we are left with type II, III, IV fibers in Kodaira’s classification.

Remark 5.4.4. These fibers F are such that S+F is not a normal crossings divisor.

As such, (X,S + aF ) does not have log canonical singularities for a > 0, and so we

must first take a log resolution q : Z → X before we can run the log MMP with the

pair (Z, S + aF̃ + Exc(q)) to obtain the stable model. Here F̃ is the strict transform

of F , and we note that (Z, S + aF̃ + Exc(q)) is log canonical.

The dual graph of the special fiber of the log resolution looks as follows in each

case:

D1 E A

D2

However, the multiplicities and self intersections of the components vary depend-

ing on the type. Furthermore, since Z is not minimal over C, then KZ 6∼Q,f 0.
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Rather, the canonical class depends on the number of blowups performed to obtain

the log resolution.

Proposition 5.4.5. Suppose F supports a fiber of type II and let q : Z → X as

above. Let ϕ : Z → Y be the stable model of (Z, S + aF̃ + Exc(q)) over C. Then:

(i) if 0 ≤ a ≤ 5/6 then ϕ contracts all components except A so that Y is the

Weierstrass model of (X,S),

(ii) if 5/6 < a < 1 then ϕ contracts D1 and D2, and

(iii) if a = 1 then ϕ contracts all components except E.

Proof. The minimal log resolution q is obtained by three successive blowups so that

D1, D2 and E are exceptional divisors with self intersection −3, −2, and −1 re-

spectively. Furthermore, one can compute that A is a −6 curve. Here F̃ = A and

Exc(q) = D1 +D2 +E. The canonical bundle is given by KZ = q∗(KX)+D1 +2D2 +

4E. We compute:

(KZ + S + aA+D1 +D2 + E).A = 6− 6a

(KZ + S + aA+D1 +D2 + E).D1 = −1

(KZ + S + aA+D1 +D2 + E).D2 = −1

(KZ + S + aA+D1 +D2 + E).E = a

Therefore, there is an extremal contraction µ : Z → Z ′ contracting D1 and D2.

Denote by ∆′ := µ∗∆ for any divisor ∆ on Z. Then µ∗E = E + 1/3D1 + 1/2D2 and
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µ∗(KZ′) = KZ + 1/3D1. Using the projection formula, we calculate

(E ′)2 = (E + 1/3D1 + 1/2D2).E = −1/6

KZ′ .E
′ = (KZ + 1/3D1).E = −2/3,

which gives

(KZ′ + S ′ + aA′ + E ′).E ′ = a− 5/6

(KZ′ + S ′ + aA′ + E ′).A′ = 6− 6a.

When 0 ≤ a < 5/6, there is another extremal contraction ϕ : Z ′ → Y contracting

E ′ resulting in a stable model Y that is the Weierstrass model. When a = 5/6, we

see that KZ′ + S ′ + aF ′ is f -nef and thus f -semiample by abundance (Proposition

5.2.1). The log canonical contraction contracts E ′ resulting in the Weierstrass model

ϕ : Z ′ → Y . In either case the stable model is the same, but (Y, ϕ∗(S
′ + aA′)) has

log terminal (resp. log canonical) singularities for a < 5/6 (resp a = 5/6).

When 5/6 < a < 1, then KZ′ +S ′+ aF ′+E ′ is ample so that (Z ′, S ′+ aF ′+E ′)

is the stable model over C. This leaves the case a = 1: here KZ′ + S ′ + aF ′ + E ′ is

f -nef and thus f -semiample by (abundance) Proposition 5.2.1, and the log canonical

contraction ϕ : Z ′ → Y contracts A′ leaving just ϕ∗E.

Proposition 5.4.6. Suppose F supports a fiber of type III and let q : Z → X as

above. Let ϕ : Z → Y be the stable model of (Z, S + aF̃ + Exc(q)) over C. Then:.

(i) If 0 ≤ a ≤ 3/4 then ϕ contracts all components except for A resulting in the

Weierstrass model,

(ii) if 3/4 < a < 1 then ϕ contracts D1 and D2, and



91

(iii) if a = 1 then ϕ contracts all components except E.

Proof. The minimal log resolution q : Z → X is obtained by two successive blowups

at the point of tangency. We have exceptional divisors Exc(q) = D2 + E and F̃ =

A+D1 with self intersections A2 = D2
1 = −4, D2

2 = −2 and E2 = −1. Furthermore

KZ = q∗KX +D2 + 2E. Then:

(KZ + S + aF̃ + Exc(q)).A = 4− 4a

(KZ + S + aF̃ + Exc(q)).D1 = 3− 4a

(KZ + S + aF̃ + Exc(q)).D2 = −1

(KZ + S + aF̃ + Exc(q)).E = 2a− 1

Suppose that 0 ≤ a < 1/2. In this case there is an extremal contraction blowing

back down E and D2 – this is precisely the blow down q : Z → X. Denoting by

∆′ := q∗∆ for any divisor ∆ on Z, we have

(KX + S ′ + a(A′ +D′1)).A′ = 1

(KX + S ′ + a(A′ +D′1)).D′1 = 0

so that KX+S ′+a(A′+D′1) is f -nef and thus f -semiample by abundance (Proposition

5.2.1). The log canonical contraction ϕ′ : X → Y contracts D′1 resulting in the

Weierstrass model.

Now let 1/2 ≤ a < 3/4, in which case the first extremal contraction µ1 : Z → Z ′

contracts D2. Note that this is an isomorphism away from E, and we calculate that

µ∗1(E ′) = E + 1/2D2, giving (E ′)2 = −1/2. Since µ∗1KZ′ = KZ , we also have that
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KZ′ .E
′ = KZ .E = −1. Thus:

(KZ′ + S ′ + a(A′ +D′1) + E ′).E ′ = 2a− 3/2.

Since a < 3/4, there is a second extremal contraction µ2 : Z ′ → X contracting E ′ and

resulting in the minimal model X again. As before, the KX +S ′′+ a(A′′+D′′1) is f -

semiample and the log canonical contraction blows downD′′1 to obtain the Weierstrass

model.

When a = 3/4, we perform the first extremal contraction of D2 via µ1 : Z → Z ′

as above. Then KZ′ +S ′+a(A′+D′1) +E ′ is f -nef and the log canonical contraction

will contract E ′ and D′1 resulting in the Weierstrass model.

Now suppose 3/4 < a < 1; the first extremal contraction µ : Z → Z ′ contracts

D1 and D2 (since 3− 4a < 0). We compute that µ∗(E ′) = E + 1/2D2 + 1/4D1 and

µ∗K ′Z = KZ + 1/2D1, which gives

E ′2 = (E + 1/2D2 + 1/4D1).E = −1 + 1/2 + 1/4 = −1/4

K ′Z .E
′ = (KZ + 1/2B).E = −1/2.

This allows us to recompute

(KZ′ + S ′ + aA′ + E ′).E ′ = a− 3/4 > 0.

Therefore KZ′ + S ′ + aA′ + E ′ is f -ample and Z ′ is the stable model over C.

Finally, suppose that a = 1. As above, there is an extremal contraction µ :

Z → Z ′ contracting D1 and D2 but now (KZ′ + S ′ +A′ +E ′).A = 0 so that the log

canonical contraction ϕ : Z ′ → Y contracts A.
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Proposition 5.4.7. Suppose F supports a fiber of type IV and let q : Z → X be the

minimal log resolution. Let ϕ : Z → Y be the stable model of (Z, S + aF̃ + Exc(q))

over C. Then:

(i) if 0 ≤ a ≤ 2/3 then ϕ contracts all components except A resulting in the

Weierstrass model,

(ii) if 2/3 < a < 1 then ϕ contracts the leaves Di, and

(iii) if a = 1, ϕ contracts all components except E.

Proof. The minimal log resolution q : Z → X is the blowup of the triple point. The

exceptional divisor Exc(q) = E and F̃ = A + D1 + D2. The fiber components in X

are −2 curves therefore their strict transforms A and Di are −3 curves. Furthermore

KZ = q∗(KX) + E. Therefore KZ .A = KZ .Di = 1 and KZ .E = −1. It follows that

(KZ + S + aF + E).A = 3− 3a

(KZ + S + aF + E).Di = 2− 3a

(KZ + S + aF + E).E = 3a− 2.

We begin with the case 0 ≤ a < 2/3. Here, we see that KZ + S + aF + E is

not nef and there exists an extremal contraction of E. This is precisely the blowup

q : Z → X. Denoting ∆′ = q∗∆ for any divisor ∆ on Z, we have (A′)2 = (D′i)
2 = −2.

Therefore

(KZ′ + S ′ + aF ′).A′ = 1

(KZ′ + S ′ + aF ′).D′i = 0.
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Here we used that KX .∆ = 0 for any fiber component ∆ as X is relatively minimal

over C.

Now, we see that KX + S ′ + aF ′ is f -semiample and the morphism ϕ′ : X → Y

contracts D′i resulting in the Weierstrass model.

When a = 2/3 we have a similar outcome. In this case KZ + S + aF + E is

already and the morphism ϕ : Z → Y contracts Di and E so again we obtain the

Weierstrass model. The difference is that for a = 2/3, the singularities of the stable

model are strictly log canonical while they are log terminal for a < 2/3.

Next suppose that 2/3 < a < 1. In this case there is an extremal contraction

µ : Z → Z ′ that contracts the Di. Note that µ∗(E ′) = E+1/3D1+1/3D2, thus by the

projection formula (E ′)2 = −1/3. Furthermore, µ∗KZ′ = KZ+1/3D1+1/3D2. Since

KZ ∼Q,f E then by pushing forward we see that KZ′ ∼Q,f ′ E ′ where f ′ : Z ′ → C is

the elliptic fibration; that is E ′ and KZ′ are rationally equivalent over C. It follows

that KZ′ .A
′ = 1 and KZ′ .E = −1/3.

This allows us to compute:

(KZ′ + S ′ + aF ′ + E ′).A′ = 3− 3a

(KZ′ + S ′ + aF ′ + E ′).E ′ = a− 2/3

Therefore, KZ′ + S ′ + aF ′ + E ′ is f ′-ample µ : Z → Z ′ is the stable model over C.

Finally, suppose that a = 1. As above, there is an extremal contraction µ : Z →

Z ′ contracting the Di. Based on the above calculation, KZ′ +S ′+ aF ′+E ′ is f ′-nef

and f ′-semiample and the morphism ϕ′ : Z ′ → Y contracts A′. This leaves just

ϕ′∗E
′.
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In each of fibers type II, III and IV , the stable model over C is the Weier-

strass model for a ≤ a0 where a0 = 5/6, 3/4, 2/3 respectively. We summarize the

singularities obtained in the log canonical model for these fibers:

0 ≤ a ≤ a0 a0 < a < 1 a = 1
II A0 A∗1, A∗2 A∗1, A∗2, A∗5
III A1 A∗1, A∗3 A∗1, 2A∗3
IV A2 2A∗2 3A∗2

Here A0 denotes a smooth point at the cusp of the central fiber and A∗n−1 denotes

the singularity obtained by contracting a rational −n curve on a smooth surface. We

use this dual notation suggestively – this is further discussed in [AB2].

Remark 5.4.8. The numbers a0 above can easily be seen to be the log canonical

thresholds of the Weierstrass model with respect to the the corresponding central

fiber.

Definition 5.4.9. Given a relative log canonical model of an elliptic surface with

section f : X → C, we say that a fiber of f is a twisted fiber if it is irreducible but

non-reduced. We say that a fiber is an intermediate fiber if it is a nodal union of

a reduced component A and a non-reduced component E such that the section meets

the fiber along the smooth locus of A.

Remark 5.4.10. By the computations of this section, we see that the following are

equivalent:

• log canonical models at a = 1 of fibers that are not of type In;

• twisted fibers.

We can summarize the results above as stating that as we vary the coefficient a of

the central fiber, the log canonical model interpolates between a twisted fiber at a = 1
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and the Weierstrass fiber at a = 0. Below, we will see the same behavior in the

non-normal case.

5.5 Relative log canonical models II: nodal generic

fiber

We now turn to elliptic surfaces with nodal generic fiber. These must necessarily have

constant j-invariant ∞. Such an elliptic surface is non-normal with normalization a

birationally ruled surface over the same base curve.

As above we letX → SpecR = C be a flat elliptic fibration with section S over the

spectrum of a complete DVR. As usual F denotes the reduced divisor corresponding

to the central fiber. We begin with the Weierstrass fibrations (see also [LN, Lemma

3.2.2]):

Lemma 5.5.1. A Weierstrass fibration f : X → SpecR with nodal generic fiber

has equations y2 = x2(x − λtk) where t is the uniformizer in R and λ is a unit.

Furthermore, (X,S) is an slc pair if and only if k ≤ 2.

Proof. The form of the Weierstrass equation is given in [LN, Lemma 3.2.2]. The

section S is a smooth divisor passing through the smooth locus of f so (X,S) is slc if

and only if (X, 0) is slc. Let ν : Xν → X be the normalization. Then Xν is defined

by w2 = x− λtk and ν is induced by the homomorphism

k[x, y, t]

(y2 − x2(x− λtk))
→ k[w, x, t]

(w2 − (x− λtk))

y 7→ wx
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One can check that Xν is a smooth surface. The double locus x = y = 0 in X pulls

back to the locus x = 0 in Xν . This is the divisor Dν = {w2 = −λtk}. The pair

(Xν , Dν) is slc if and only if Dν is an at worst nodal curve and this occurs exactly

when k ≤ 2.

After reparametrizing, we may suppose λ = 1. Next we compute the fiber types

that appear in minimal log semi-resolutions of these slc Weierstrass models analogous

to Kodaira’s classification:

Lemma 5.5.2. Consider the equation y2 = x2(x− tk) as above.

(i) k = 0: y2 = x2(x − 1) is a semi-smooth surface and the elliptic fibration is a

trivial family with all fibers nodal cubics;

(ii) k = 1: the minimal log semi-resolution of y2 = x2(x− t) is an elliptic surface

f : Y → SpecR where the reduced central fiber is a nodal chain of rational

curves A,B,E and E supports a multiplicity two fiber component intersecting

both A and B;

(iii) k = 2: the minimal log semi-resolution of y2 = x2(x− t2) is an elliptic surface

with f : Y → SpecR with central fiber a nodal union of E and A where A is a

reduced rational curve and E is a nodal cubic.

Proof. (i) is clear.

For (ii), we blow up once at (0, 0, 0) to obtain a surface with two central fiber

components: a nonreduced component of multiplicity 2 supported on the exceptional

divisor of the blowup, and a reduced rational component given by the strict transform

of the central fiber of the Weierstrass model. In local coordinates, two of the charts
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are smooth and the relevant chart is u2 = v2t(u− 1) which has an A1 singularity at

(u, v, t) = (1, 0, 0) but is semi-smooth elsewhere. Blowing this up yields the semi-

resolution as described.

For (iii) we take the normalization of y2 = x2(x − t2) as in the proof of the

above lemma. This is the smooth surface w2 = x− t2 with wx = y and double locus

w2 = −t2 the union of two components Di intersecting at (x,w, t) = (0, 0, 0). The

central fiber of the normalization is the rational curve w2 = x. Then blow up (0, 0, 0)

to obtain a rational surface X ′ and let E ′ be the exceptional divisor, A′ the strict

transform of the fiber and D′i the strict transforms of the double locus. We may

glue back together the D′i to obtain a map µ : X ′ → X. Then X is a semi-smooth

elliptic surface resolving our Weierstrass fibration and the central fiber consists of

E = µ∗(E
′) and A = µ∗(A

′) as described.

Definition 5.5.3. The fibers Nk are the slc fiber types with Weierstrass equation

y2 = x2(x− tk) for k = 0, 1, 2.

The N0 case is clear:

Lemma 5.5.4. Let f : X → C with central fiber F of type N0. Then (X,S + aF )

is relatively stable over C for all 0 ≤ a ≤ 1.

Proposition 5.5.5. Suppose f : X → C is a type N1 fiber. Let q : Z → X be the

minimal log resolution. Let ϕ : Z → Y be the stable model of (Z, S + aF̃ + Exc(q))

over C. Then:

(i) when 0 ≤ a ≤ 1/2, ϕ contracts all components except A giving the Weierstrass

model;

(ii) when 1/2 < a < 1, then ϕ contracts all components except for A and E; and
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(iii) if a = 1, then ϕ contracts all components except E.

Proof. In the notation of Lemma 5.5.2, F̃ = A and Exc(q) = B + E. The central

fiber is A + B + 2E. One can check that A2 = B2 = −2 and E2 = −1 and that

KZ .A = KZ .B = 0, KZ .E = 0 by adunction ([KSB, Proposition 4.6]). We compute:

(KZ + S + aA+B + E).A = 2− 2a

(KZ + S + aA+B + E).B = −1

(KZ + S + aA+B + E).E = a.

There is an extremal contraction µ : Z → Z ′ contracting the (−2) curve B. Let-

ting D′ = µ∗D for any divisor D on Z, then (E ′)2 = −1/2 and the other intersection

numbers remain unchanged since µ is crepant. Thus

(KZ′ + S ′ + aA′ + E ′).A′ = 2− 2a

(KZ′ + S ′ + aA′ + E ′).E ′ = a− 1/2.

Therefore when a = 1, there is a semi-log canonical contraction ϕ : Z ′ → Y

contracting A′. When 1/2 < a < 1 then Z ′ is the stable model over C and ϕ = µ.

When a = 1/2 there is a semi-log canonical contraction µ : Z ′ → Y that contracts

E ′ obtaining the Weierstrass model. Finally when a < 1/2, there is still an extremal

contraction µ : Z ′ → Y contracting E ′ yielding again the Weierstrass model.

Proposition 5.5.6. Suppose f : X → C is a type N2 Weierstrass model, and let

q : Z → X be the minimal semi-log resolution as in Lemma 5.5.2 with reduced

central fiber F . Then the stable model ϕ : Z → Y of (Z, S + aF ) over C is a type

N0 Weierstrass model.
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Proof. The central fiber of Z → C is reduced with F = A+E where A is rational and

E is a nodal cubic such that A.E = 1. By adjunction ([KSB, Proposition 4.6]) we

deduce that KZ .E = 1 and KZ .A = −1. Furthermore, we must have A2 = E2 = −1

so we see that

(KZ + S + a(A+ E)).A = −1 + 1− a+ a = 0

(KZ + S + a(A+ E)).E = 1.

Therefore, KZ + S + aF is relatively semiample over C and the semi-log canonical

contraction ϕ : Z → Y contracts A yielding a Weierstrass model of type N0.

5.6 Canonical Bundle Formula

Using the above results, we can now compute the canonical bundle of a relatively

stable elliptic surface pair.

Theorem 5.4. Let f : X → C be a fibration where X is an irreducible elliptic

surface with section S. Furthermore, let FA =
∑
aiFi be a sum of reduced marked

fibers Fi with 0 ≤ ai ≤ 1. Suppose that (X,S + FA) is the relative log canonical

model over C. Then

ωX = f ∗(ωC ⊗ L)⊗OX(∆).

where ∆ is effective and supported on fibers of type II, III, and IV contained in

Supp(F ). The contribution of a type II, III or IV fiber to ∆ is given by αE where
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E supports the unique nonreduced component of the fiber and

α =


4 II

2 III

1 IV

It is important to emphasize here that only type II, III or IV fibers that are

not in Weierstrass form affect the canonical bundle. If all of the type II, III, and

IV fibers of f : X → C are Weierstrass, then the usual canonical bundle formula

ωX = f ∗(ωC ⊗ L) holds.

Before proceeding with the proof, we will need the following two lemmas:

Lemma 5.6.1. Let X be seminormal and µ : Y → X a projective morphism with

connected fibers. Then for any coherent sheaf F on X, we have that µ∗µ
∗F = F .

Proof. Note that µ∗OY = OX by the defining property of being seminormal. The

result then follows by the projection formula.

Lemma 5.6.2. Let (X,∆) be an slc pair and µ : Y → X a partial semi-resolution.

Write

KY + µ−1
∗ ∆ + Γ = µ∗(KX + ∆) +B

where Γ =
∑

iEi is the exceptional divisor of µ and B is effective and exceptional.

Then

µ∗OY (m(KY + µ−1
∗ ∆ + Γ)) ∼= OX(m(KX + ∆)).

Proof. There is an exact sequence

0→ µ∗OX(m(KX + ∆))→ OY (m(KY + µ−1
∗ ∆ + Γ))→ OmB(mB|mB)→ 0.
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If B = 0 then µ∗OX(m(KX + ∆)) ∼= OY (m(KY + µ−1
∗ ∆ + Γ)). Otherwise B2 <

0, since B ≥ 0 is exceptional and the intersection form on exceptional curves is

negative definite [Kol3, Theorem 10.1]. Therefore OmB(mB|mB) has no sections and

so µ∗OmB(mB|mB) = 0. In either case,

µ∗µ
∗OX(m(KX + ∆)) ∼= µ∗OY (m(KY + µ−1

∗ ∆ + Γ)).

On the other hand, µ∗µ
∗OX(m(KX + ∆)) = OX(m(KX + ∆)) by Lemma 5.6.1.

Proof of Theorem 1.7. The formula is true for Weierstrass fibrations by [Mir, Propo-

sition III.1.1]. These include fiber types N0, N2 and In for any coefficients as well

as the relative log canonical models of any fiber with coefficient a = 0. For marked

fibers of type In, I
∗
n, II

∗, III∗, and IV ∗ the minimal semi-resolution of the relative

log canonical model is crepant. It follows that f ∗(ωC ⊗ L) ∼= ωX away from type

II, III, IV , and N1 fibers contained in Supp(F ).

We can compute the contributions of these fiber types explicitly. In the minimal

log resolution Y , the fibers consist of components E,A, and Di, where A is a reduced

fiber intersecting the section S, and the components Di and S are disjoint, each

intersecting E transversely. Note that E and Di may support nonreduced fiber

components. We have a diagram

Y
q

  A
AA

AA
AA

p

��~~
~~
~~
~~

Z

g ��@
@@

@@
@@

@ X

f~~~~
~~
~~
~~

C

where X is the log canonical model over C, Z is the Weierstrass model, and Y is
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the minimal log resolution obtained by finitely many blowups. In each case we have

p∗ωX = ωY ⊗OY (B) where B is effective and p-exceptional.

Since the formula holds for Weierstrass models, we need to consider the other

fibers of type II, III, IV , and N1 appearing in X. These are obtained either by

contracting Di in Y , or by contracting Di and A. First consider when q contracts Di.

Since the Di are rational curves with negative self intesection on a smooth surface

Y , the singularities of (X, 0) are log canonical. In particular, by Lemma 5.6.2 we

have

q∗(ωY (
∑

Di)) = ωX .

On the other hand,

ωY = p∗g∗(ωC ⊗ L)⊗OY (B) = q∗f ∗(ωC ⊗ L)⊗OY (B).

Therefore, by the projection formula:

ωX = q∗(q
∗f ∗(ωC ⊗ L)⊗OY (B +

∑
Di)) = f ∗(ωC ⊗ L)⊗ q∗OY (B +

∑
Di).

Now OY (B +
∑
Di) is effective and isomorphic to OY away from E ∪

(
∪ Di

)
.

Since q∗OY = OX , it follows that q∗OY (B +
∑
Di) = OX(∆) where ∆ is effective

and supported on q(E ∪
(
∪Di

)
). The same argument works when q contracts the

Di and A.

Now we compute the contribution to ∆ from each type of fiber. This is a local

question in the neighborhood of such a fiber. Let ϕ : Y → Y ′ be the contraction of

the component A meeting the section induced by the transition from intermediate to

twisted fiber in the relative log canonical model. Let E denote the divisor supporting
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the nonreduced component of the intermediate fiber of Y and denote ϕ∗D := D′ for

any divisor D on Y .

As above, A2 = −n for n = 6, 4, 3, 2 for fibers of type II, III, IV , or N1 respec-

tively. Then

ϕ∗KY ′ = KY +
n− 2

n
A.

Furthermore, by the above, we know that

KY ′ = (f ′)∗(KC + L) + αE ′

for some α. Here f ′ : Y ′ → C and f : Y → C are the corresponding elliptic

fibrations. Then

ϕ∗((f ′)∗(KC + L)) + αϕ∗(E ′) = f ∗(KC + L) + αE +
α

n
A

Since ϕ∗KY = KY ′ as divisors and KY − f ∗(KC +L) is supported on E, we see that

KY = f ∗(KC + L) + αE

and by equating the two expressions for ϕ∗(KY ′) we get

α

n
=
n− 2

n

so α = n− 2.

Remark 5.6.3. For a type N1 fiber, α = 0 so N1 fibers don’t contribute to ωX a

posteriori.

Next we describe how the log canonical divisor intersects the section:



105

Proposition 5.6.4. Let (f : X → C, S + FA) be an A-weighted slc elliptic surface

that is stable over C. Then

(KX + S + FA).S = 2g − 2 +
∑
i

ai.

Proof. Let I ⊂ {1, . . . , n} be the indices such that ai = 1, and let J be the com-

plement of I. The section passses through the smooth locus of the surface in a

neighborhood of any fiber that is not marked with coefficient ai = 1. This includes

Fj for j ∈ J . Therefore this formula follows from the adjunction formula away from

Fi for i ∈ I. On the other hand, for the twisted fibers Fi, this is the content of

Proposition 4.3.2 of [LN].

Definition 5.6.5. [Has3] Let g ∈ Z≥0 and A = (a1, · · · , an) ∈ Qn be such that

0 < ai ≤ 1 and 2g − 2 +
∑
ai > 0. An A-weighted stable pointed curve is a pair

(C,DA =
∑
aipi) such that C is a nodal curve of genus g, the pi are in the smooth

locus of C, and ωC(DA) is ample.

Corollary 5.6.6. If (f : X → C, S + FA) is an A-weighted stable elliptic surface,

then (C,
∑
aipi) is an A-weighted stable pointed curve where pi = f∗Fi.

Let (f : X → C, S + FA) be an slc elliptic surface such that (C,
∑
aipi) is a

weighted stable pointed curve where pi = f∗Fi. In light of the above, we have that

the log canonical model of (X,S + FA) is the same as the log canonical model of

(X,S + FA) relative to the base curve C:

Corollary 5.6.7. Let (f : X → C, S+FA) be a relatively stable elliptic surface such

that (C,
∑
aipi) is a weighted stable curve. Then (X,S+FA) is stable. In particular,

(X,S + FA) is of log general type and its log canonical model is an elliptic surface.

We are left to consider the following:



106

Corollary 5.6.8. The log minimal model program contracts the section of an A-

weighted slc elliptic surface if and only if either

(i) C ∼= P1 and
∑
ai ≤ 2, or

(ii) C is a genus 1 curve and ai = 0 for all i.

In either of the two cases above, if X = E ×C is a product then the contraction

of the section S is the projection X → E resulting in an elliptic curve as the log

canonical model. Otherwise, the contraction of the section is birational and we

obtain a pseudoelliptic.

In case (a), if the pair is of log general type then the resulting pseudoelliptic

is the log canonical model. However, it is possible that that the pair is not of log

general type in which case the log minimal model program will continue with either

an extremal or log canonical contraction to produce a curve or point. In the next

section, we describe how to determine the coefficients for which this happens. This

is also discussed in greater detail in [AB3].

In case (b), the contraction of the section is necessarily the log canonical contrac-

tion and the resulting pseudoelliptic is the log canonical model.

5.7 Base curve of genus 0

In the last section we arrived at the log canonical model of an A-weighted elliptic

surface whenever the base curve has genus g ≥ 1. We are left to analyze genus 0

base curve case.
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Proposition 5.7.1. Let f : X → C be a properly elliptic surface with section S.

Then KX + S is big. In particular, any A-weighted slc properly elliptic surface is of

log general type.

Proof. By assumption, KX = G+E where G is an effective sum of fibers and E is an

effective divisor supported on fibral components. Then (KX + S).G > 1 so KX + S

is f -big and for a generic horizontal divisor D, the intersection (KX + S).D > 0. It

follows that KX + S + FA is big for any FA.

Corollary 5.7.2. Let (f : X → C, S) be a properly elliptic surface over P1. Then

the log canonical model of (f : X → C, S + FA) for any choice of marked fibers FA

is either

(i) the relative log canonical model over C, or

(ii) the pseudoelliptic formed by contracting the section of the relative log canonical

model.

This leaves degL = 1, 2. Note that if the generic fiber of f : X → P1 is smooth,

then degL = 1, 2 are exactly the cases corresponding to X being rational (degL = 1)

or birational to a K3 surface (degL = 2).

Proposition 5.7.3. Let (f : X → P1, S + FA) be an A-weighted slc elliptic surface

with section and marked fibers and suppose degL = 2.

(i) If A > 0, then KX +S+FA is big and the log canonical model is the pseudoel-

liptic obtained by contracting the section of the relative log canonical model;

(ii) If A = 0, then the minimal model program results in a pseudoelliptic surface

and the log canonical contraction contracts this surface to a point.
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Proof. (i) As a big divisor plus an effective divisor is big, it suffices to prove the

result for A = (ε, . . . , ε) for some 0 < ε � 1. In this case, each type II, III

and IV fiber in the relative log canonical model (g : Y → P1, S + FA) is a

Weierstrass model. Then ωY = g∗(ωP1 ⊗ L) by the canonical bundle formula,

but ωP1 ⊗ L = OP1 since L is degree 2. Therefore

KY + S + FA = S + ε
(∑

Fi

)

and the result follows as in Proposition 5.7.1.

(ii) If FA = 0 then the relative log canonical model is the Weierstrass model

(g : Y → P1, S) and KY = 0 as in part (a) so KY + S = S. We have S2 = −2

by the adjunction formula so there is an extremal contraction of S to obtain a

pseudoelliptic µ : Y → Y0 and µ∗(KY + S) = KY0 ∼Q 0. Therefore |mKY0 | is

basepoint free and induces a log canonical contraction to a point.

Proposition 5.7.4. Let (X,FA) be an A-weighted slc pseudoelliptic surface with

marked fibers FA. Denote by Y the corresponding elliptic surface and µ : Y → X

the contraction of the section. Suppose degL = 1 and 0 < A ≤ 1 such that KX +FA

is a nef and Q-Cartier Q-divisor. Then either

(i) KX + FA is big and the log canonical model is an elliptic or pseudoelliptic

surface;

(ii) KX + FA ∼Q µ∗Σ where Σ is a multisection of Y and the log canonical map

contracts X onto a rational curve;

(iii) KX + FA ∼Q 0 and the log canonical map contracts X onto a point.
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The cases above correspond to KX + FA having Iitaka dimension 2, 1 and 0 respec-

tively.

Proof. By the Abundance Conjecture in dimension two (Proposition 5.2.1), we know

that KX +FA is semiample. Let ϕ : X → Z be the Iitaka fibration. If ϕ is birational,

we are in situation (i) and κ(X,KX + FA) = 2. Thus suppose ϕ is not birational.

Let f : Y → C be the elliptic fibration whose section S is contracted to obtain

X and let µ : Y → X be this contraction. Consider g = ϕ ◦ µ : Y → Z. Let G be

a generic fiber of f . Then G2 = G.B = 0 for any fiber component B of the elliptic

fibration. Writing

µ∗(KX + FA) = KY + tS + F̃A

where F̃A is the strict transform of FA, we have that

µ∗(KX + FA).G = t.

On the other hand,

µ∗(KX + FA).G = (KX + FA).µ∗G ≥ 0

by the projection formula and the assumption that KX + FA is nef.

Suppose t = 0 so that µ∗(KX + FA).G = 0 for a general fiber G. It follows that

(KY +tS+F̃A).B = 0 for all fiber components B. Indeed in the case of a Weierstrass

of twisted fiber there is a unique fiber component B, and dB ∼Q G for some d ≥ 1.

For an intermediate fiber consisting of a reduced component A and a component E
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supporting a nonreduced component, we have that A+ dE ∼Q G for some d ≥ 2 so

(A+ dE).µ∗(KX + FA) = 0

but KX + FA is nef so A.µ∗(KX + FA) = E.µ∗(KX + FA) = 0.

Therefore µ∗(KX + FA) = KY + F̃A is trivial on both the fibers and the section

and so must be numerically trivial. By abundance, it must be rationally equivalent

to 0. Therefore, KX + FA ∼Q 0 so we are in case (iii) and ϕ : X → Z is the

contraction to a point. On the other hand, if ϕ : X → Z is the contraction to a

point, then it is immediate that KX + FA ∼Q 0 so that we are in case (iii) if and

only if t = 0.

This leaves only the case where t > 0 and ϕ : X → Z is a contraction onto a

curve. Note that Z is necessarily rational since the normalization of X is a rational

surface. Now µ∗(KX +FA) is ample on the generic fiber of f : Y → C and KX +FA

is base point free so it is linearly equivalent to an effective nonzero divisor D that

avoids the point µ(S). Therefore µ∗(KX + FA) is linearly equivalent to an effective

horizontal divisor. That is, µ∗(KX + FA) ∼Q Σ where Σ is an effective multisection

andKX+FA ∼Q µ∗Σ since Σ is contained in the locus where µ is an isomorphism.

Remark 5.7.5. The proposition above then gives us a method for determining which

situation of (i), (ii), and (iii) we are in. Indeed since KX +FA is nef, it is big if and

only if (KX+FA)2 > 0. Furthermore, KX+FA ∼Q 0 if and only if t = 0. Thus when

KX + FA is not big, it suffices to compute whether t > 0 or not to decide whether

the log canonical contraction morphism contracts the pseudoelliptic to a curve or a

point.
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5.8 Wall and chamber structure

In this section we briefly discuss the wall and chamber in the domain of weights A for

an A-weighted slc elliptic surface (f : X → C, S + FA). By the results in the rest of

the paper the log canonical model remains the same within each chamber and changes

across each wall. We use these walls in [AB3] to describe how compactifications of

the moduli space of A-weighted stable elliptic surfaces vary as the weight vector A

varies.

Finally we end with a detailed example of a rational elliptic surface to demon-

strate the various transitions the log canonical model undergoes across each type of

wall.

5.8.1 Transitions from twisted to Weierstrass form

First we note the weights for which the relative log canonical models change as the

weight decreases from 1 to 0:

• There is a wall at ai = 1 where a non-stable fiber transitions between twisted

and intermediate inside the chamber ai = 1− ε for 0 < ε� 1.

• There is a wall at ai = 5/6 where a type II fiber transitions between interme-

diate and Weierstrass.

• There is a wall at ai = 3/4 where a type III fiber transitions between interme-

diate and Weierstrass.

• There is a wall at ai = 2/3 where a type IV fiber transitions between interme-
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diate and Weierstrass.

• There is a wall at ai = 1/2 where a type N1 transitions between intermediate

and Weierstrass.

• There is a wall at ai = 0 where a non-stable fiber that is not of the above form

transitions from intermediate to Weierstrass.

Across each of these walls, the relative log canonical model exhibits a birational

transformation.

5.8.2 Contraction of the section

By Proposition 5.6.4, there is a wall at 2g(C) − 2 +
∑
ai = 0 where the section

is contracted by the log canonical contraction. In the chambers below the wall

the section is contracted by an extremal contraction. This contraction is birational

except in the case when X is birational to a product E × C in which case it is the

projection to E. Note that this wall only exists when g = 0 or when both g = 1 and

A = 0.

5.8.3 Pseudoelliptic Contractions

These transitions occur when a pseudoelliptic surface X is contracted to a rational

curve or a point. Let (f : Y → P1, S+FA) be the corresponding elliptic surface with

µ : Y → X the contraction of the section. By Proposition 5.7.1, these walls do not

occur for degL ≥ 3. When degL = 2, there is a single such wall at A = 0 when the

log canonical contraction contracts X to a point by Proposition 5.7.3.
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For degL = 1, Proposition 5.7.4 guarantees that there are possibly two such

walls. The first is when (KX + µ∗FA)2 = 0, so that (X,FA) is not of log general

type. If KX + µ∗FA ∼Q 0 then the log canonical contraction maps to a point. If

KX + µ∗FA 6∼Q 0, the log canonical contraction maps to a rational curve and there

is a further wall when t = (KX + µ∗FA).µ∗G = 0, where G is a general fiber of f .

At this wall the log canonical contraction maps to a point.

These walls are less explicit in that they depend on the particular configurations

of singular fibers that are marked. However, since there are only finitely many

combinations of singular fibers on Y with degL = 1, one may compute these walls

explicitly in any particular case as is illustrated by the following lemma and the

example in the next subsection.

Lemma 5.8.1. In the situation above, suppose ai < 1 for all i. Then there is a wall

at
∑
ai = 1 where the log canonical contraction maps to a point.

Proof. Without loss of generality we take f : Y → P1 to be the relative log canonical

model. Since ai < 1 for all i, the surface Y has no twisted fibers and so S passes

through the smooth locus of f and S2 = −1. Therefore µ : Y → X is the contraction

of a (−1) curve and we can compute explicitly

µ∗(KX + µ∗FA) = KY +
(∑

ai − 1
)
S + FA.

Therefore the coefficient in front of S becomes 0 precisely when
∑
ai = 1 and the

result follows by Proposition 5.7.4.
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5.8.4 A rational example

Let X → P1 be a rational elliptic surface that contains exactly two singular fibers

of type I∗0 whose existence follows from Persson’s classification of rational elliptic

surfaces [Per]. Denote the reduced singular fibers by F0 and F1. All other fibers are

smooth and we denote the class of a general fiber by G. We fix F1 to have coefficient

1 and give F0 and G the same coefficient α. Then A = (α, α, 1) and we have the pair

(X → C, S + α(G+ F0) + F1)

Since F1 is kept with coefficient 1 it is a twisted model for all α. Thus F1 ∼Q 1/2G.

Furthermore, by the canonical bundle formula, KX ∼Q −G since degL = 1 and there

are no fibers of type II, III, or IV . Putting this together (with FA = α(G+F0)+F1),

we have

KX + S + FA = S + αF0 + (α− 1/2)G.

When α = 1, the log canonical model is f : X1 → P1 with two twisted I∗0 fibers.

For 1/2 < α < 1, F0 becomes an intermediate fiber with components A and E in

the relative log canonical model. The log canonical model is an elliptic surface X1−ε

with a map X1−ε → X1 contracting A. Next we check

(KX + S + α(G+ F0) + F1).S = 2α− 1.

At α = 1/2 the section of X1 is contracted to a pseudoelliptic by the log canonical

contraction µ : X1−ε → X1/2.
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For α < 1/2 the map µ : X1−ε → X1/2 is an extremal contraction. Writing

µ∗(KX1/2
+ µ∗(FA)) = KX1−ε + tS + FA

we compute t = 4α− 1 by intersecting both sides with S and using that S2 = −1/2

since S passes through an A1 singularity along the twisted I∗0 fiber. Furthermore,

using F 2
0 = −1/2 for an intermediate I∗0 fiber,

(KX1−ε + tS + FA)2 = ((4α− 1)S + αF0 + (α− 1/2)G)2

= (4α− 1)2(−1/2) + 2(4α− 1)(2α− 1/2)− α2/2

=
1

2
[(4α− 1)2 − α2] =

1

2
(3α− 1)(5α− 1).

Therefore there is a pseudoelliptic contraction at α = 1/3 where KX1/2
+µ∗(FA) is

no longer big. Since t > 0 for 1/4 < α ≤ 1/3, the log canonical class is a multisection

and the log canonical contraction maps onto a rational curve. Finally at α = 1/4,

t = 0 so the log canonical class is trivial and the log canonical contraction maps to

a point.

Table 5.2: We show the transformation of the elliptic surface X → P1 as we lower the weight α
on F0 and G. We always keep F1 with a fixed weight 1.

0 ≤ α ≤ 1/4 1/4 < α ≤ 1/3 1/3 < α ≤ 1/2 1/2 < α < 1, elliptic α = 1, elliptic
pt curve pseudoelliptic F0 intermediate F0 twisted
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Mathématique de France, Paris, 2003. Séminaire de géométrie algébrique
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[MM] T. Matsusaka and D. Mumford. Two fundamental theorems on deforma-
tions of polarized varieties. Amer. J. Math., 86:668–684, 1964.

[Mir] Rick Miranda. The basic theory of elliptic surfaces. Dottorato di Ricerca
in Matematica. [Doctorate in Mathematical Research]. ETS Editrice, Pisa,
1989.

[Miy] Yoichi Miyaoka. The orbibundle Miyaoka-Yau-Sakai inequality and an
effective Bogomolov-McQuillan theorem. Publ. Res. Inst. Math. Sci.,
44(2):403–417, 2008.

[Ols] Martin Olsson. Integral models for moduli spaces of G-torsors. Ann. Inst.
Fourier, Grenoble, 62(4):1483–1549, 2002.

[Pac] Patricia Pacelli. Uniform bounds for stably integral points on elliptic
curves. Proc. of the Amer. Math Soc., 127(9):2535–2546, 1999.



120

[Pat2] Zsolt Patakfalvi. Viehweg’s hyperbolicity conjecture is true over compact
bases. Adv. Math., 229(3):1640–1642, 2012.

[Pat1] Zsolt Patakfalvi. Fibered stable varieties. Trans. Amer. Math. Soc.,
368(3):1837–1869, 2016.

[PX] Zsolt Patakfalvi and Chenyang Xu. Ampleness of the CM line bundle on the
moduli space of canonically polarized varieties. Algebr. Geom., 4(1):29–39,
2017.

[Paz] F. Pazuki. Theta height and Faltings height. Bull. Soc. Math. France,
140(1):19–49, 2012.

[Per] Ulf Persson. Configurations of Kodaira fibers on rational elliptic surfaces.
Math. Z., 205(1):1–47, 1990.

[Tan] S. G. Tankeev. A global theory of moduli for algebraic surfaces of general
type. Izv. Akad. Nauk SSSR Ser. Mat., 36:1220–1236, 1972.

[Tem] Michael Temkin. Functorial desingularization of quasi-excellent schemes in
characteristic zero: the nonembedded case. Duke Math. J., 161(11):2207–
2254, 08 2012.

[Vis] Angelo Vistoli. Intersection theory on algebraic stacks and on their moduli
spaces. Inventiones mathematicae, 97(3):613–670, 1989.

[Voj] Paul Vojta. A more general abc conjecture. International Mathematics
Research Notices, 1998(21):1103–1116, 1998.

[WX] Xiaowei Wang and Chenyang Xu. Nonexistence of asymptotic GIT com-
pactification. Duke Math. J., 163(12):2217–2241, 2014.


	Vitae
	Acknowledgments
	Introduction
	Moduli of stable pairs
	Arithmetic of higher dimensional algebraic varieties
	Fibered Powers & Uniformity
	Height Uniformity
	Log canonical models of elliptic surfaces

	Background
	Birational Geometry

	Fibered Power Theorem for Pairs of Log General Type
	Introduction
	Preliminaries
	Moduli space of stable pairs
	Variation of Moduli
	Notation

	Positivity of the relative anti-canonical sheaf
	Singularities
	Proof of Theorems 1.1 and 1.2 – Reduction to case of max variation

	Bounding Heights Uniformly in Families of Hyperbolic Varieties
	Introduction
	Hyperbolicity
	Kodaira's criterion for bigness

	Vojta's conjecture for varieties and stacks
	Discriminants of fields
	Heights
	Vojta's conjecture
	Vojta's conjecture for stacks

	Applying the stacky Vojta conjecture
	Uniformity results
	Applications
	Application to curves
	Hyperbolic surfaces


	Log Canonical Models of Elliptic Surfaces
	Introduction
	The log minimal model program in dimension two
	SLC pairs and stable pairs

	Preliminaries on elliptic surfaces
	Standard elliptic surfaces
	Weighted stable elliptic surfaces

	Relative log canonical models I: smooth generic fiber
	Relative log canonical models II: nodal generic fiber
	Canonical Bundle Formula
	Base curve of genus 0
	Wall and chamber structure
	Transitions from twisted to Weierstrass form
	Contraction of the section
	Pseudoelliptic Contractions
	A rational example


	Bibliography

