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Abstract of “ Traffic-flow models: analysis, estimation and control ” by Chao Xia,
Ph.D., Brown University, May 2017

My research focuses on the study of traffic-flow models and their applications. Macro-

scopic and microscopic models are the two main approaches: macroscopic models

describe the spatial quantities of traffic, such as density, velocity and flux; while mi-

croscopic models simulate the behavior of individual cars based on their interaction.

For the macroscopic model, we study the Lighthill-Whitham equation, and ac-

count for multiple traffic scenarios by modifying the original Lighthill-Whitham equa-

tion. We also study several microscopic car-following models: the optimal velocity

model, the full velocity difference model, the modified GHR model and the intelligent

driver model. The main research work include:

• Investigate the collision behavior of the microscopic car-following model. We

theoretically prove the collision-free property of several car-following models

through fast-slow system technique, and also carry out numerical simulations

to provide a valid reference to the dynamics of traffic collisions.

• Apply data assimilation technique (ensemble Kalman filter and particle filter)

to estimating the traffic states and uncertain parameters. An augmented ap-

proach is proposed to simultaneously assimilate the Eulerian sensor data and

Lagrangian GPS data.

• Study the phenomenon of capacity discharge in the lane-drop scenario. Macro-

scopically, we model the lane-drop scenario with inhomogeneous Lighthill-

Whitham equation, and then proposed two controlling strategies to guide ve-

hicles smoothly through the bottleneck: (1) change driving habit through fun-

damental diagram; (2) merge vehicles in advance through virtual lane usage.
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Chapter One

Introduction



2

1.1 Motivation and preliminaries

Traffic flow theory and modeling started in the 1930. This field has gained consider-

able attention as overall traffic demand has increased and more data as well as easy

access to computing power has become available. Traffic is everywhere in our daily

life. There is a growing need for accurate traffic information so that the public can

efficiently schedule their trips, and the government can better provide traffic control

strategies. Thus, modeling, analyzing, estimating and controlling the dynamics of

traffic flow are of great importance. First of all, I would like to have a overview of

traffic flow: (a) traffic-flow models (b) traffic-flow observation.

Mathematical models for traffic flow come in many different flavors. Common

models range from microscopic models for individual cars to macroscopic models

for car densities and possibly other quantities. As the name indicates, macroscopic

models formulate the relationship among the spatial quantities such as density, ve-

locity and flow. In contrast, microscopic models simulate individual vehicle-driver

unites, so the dynamic variables of the models represent properties like the position

and velocity of individual vehicles.

The macroscopic traffic models are usually described in a partial-differential equa-

tion (PDE) to build a relationship between spatial quantities [39, 54, 63]. The

most well-known macroscopic model is the Lighthill-Whitham-Richard (LWR) model

[54, 63], which describes the the evolution of traffic by the vehicle density accord-

ing the conservation law. The LWR model can be modified to account for multiple

traffic scenarios through velocity-density relation or flux-density relation. The com-

mon traffic scenarios include normal traffic, traffic lights, on-/off-ramps, construction

zones, traveling bottlenecks and lane drops.
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The microscopic traffic models include the acceleration and lane-changing mod-

els [61]. The acceleration models are formulated by coupled ordinary differential

equations, which describe the variables of individual vehicles, such as positions and

velocities. The lane-changing models involve the vehicles interaction across different

lanes, and specify the rules for merging. The microscopic models are able to provide

traffic simulation in a realistic road profile, and the well-known traffic simulators in-

clude AIMSUN (advanced interactive microscopic simulator for urban and nonurban

networks), PARAMICS (parallel microscopic simulation) and VISSIM (Verkehr in

Stadten simulation) [59]. The dynamics of the microscopic models is an interesting

area so that the models can better simulate the realistic traffic.

Different aspects of traffic dynamics are captured by different measurement meth-

ods. Traffic-flow observations come from a variety of sources and are available as

functions of time. Stationary sensors, such as induction loops or cameras, provide

the flux, average velocity, and local density of cars that move pass the fixed sensor

location. GPS data from cell phone or navigation devices, on the other hand, provide

information about the positions and velocities of individual cars that move with the

traffic flow. We refer to observations that come from a fixed observation location as

Eulerian observations and to observations that come from parcels that move with the

traffic flow as Lagrangian observations. Both Eulerian and Lagrangian observations

have their own advantages and disadvantages with respect to collection cost, data

accuracy, traffic coverage or even driver privacy. A lot of comparative studies are

done to compare the properties of both types of observation. They are used in dif-

ferent circumstances for calibration, estimation and prediction based on the impacts

of their advantages and disadvantages.
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1.2 Thesis objectives

There are a lot of interesting traffic topics, ranging from the theoretic study of

traffic-flow models, to their application in realistic traffic scenarios. There are three

objectives related to traffic-flow modeling in my thesis:

• Studying the dynamics of car-following models

Car-following models are widely used in traffic simulation because of its vari-

ability in the formula of ordinary differential equations. The traffic dynamics

of these models are of great importance, and thus have received plenty of study

from scholars. However, the collision behavior of car-following models remains

a challenging problem. One difficulty is that the traffic system of multiple

vehicles is complicated when all interactions among vehicles are taken into

consideration. Previous study for making inferences about the collision behav-

ior depended on vast numerical simulations. On one side, the study cannot

provide a theoretical analysis of the car-following models from its essence. On

the other side, the inferences from the simulations could be misleading in the

existence of numerical error. In my thesis, we carry out a theoretical analysis of

the collision behavior of four well-known car-following models. We show that

the modified GHR model and the intelligent driver model are collision-free un-

der all traffic circumstances. We also show that the numerical errors introduce

collisions that the model doesn’t support.

• Assimilating Eulerian and Lagrangian data in traffic-flow models

Data assimilation of traffic flow remains a challenging problem. One diffi-

culty is that data come from different sources ranging from stationary sensors

and camera data to GPS and cell phone data from moving cars. Sensors and
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cameras give information about traffic density, while GPS data provide infor-

mation about the positions and velocities of individual cars. Previous methods

for assimilating Lagrangian data collected from individual cars relied on spe-

cific properties of the underlying computational model or its reformulation in

Lagrangian coordinates. These approaches make it hard to assimilate both Eu-

lerian density and Lagrangian positional data simultaneously. In this thesis, we

propose an alternative approach that allows us to assimilate both Eulerian and

Lagrangian data. We show that the proposed algorithm is accurate and works

well in different traffic scenarios and regardless of whether ensemble Kalman

or particle filters are used. We also show that the algorithm is capable of

estimating parameters and assimilating real traffic observations and synthetic

observations obtained from microscopic models.

• Providing traffic control strategies to maximize capacity in lane-drop bottle-

neck

Lane drop is a location where number of lanes provided decreases. Empiri-

cal observations at lane-drop bottleneck revealed that there is a drop in the

bottleneck discharge rate when queues form in the upstream of the lane drop.

Even though the research results show that lane changes are the main cause of

the drop in discharge rate, the relevant traffic control to maximize the capacity

is still a challenging problem. One difficulty is that the interaction between

lanes are complicated to quantify, and that there are a lot of parameters to

specify. Previous methods to maximize capacity either attempted to develop

cooperative lane-changing models to reduce the queues in the upstream of lane

drop or formulated a conservation equation for individual lane to optimize the

density transfer between adjacent lanes. These approaches focus on the inter-

action rules between lanes, which are complicated to quantify, and not target

to maximize capacity directly. In my thesis, we introduce the inhomogeneous
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LWR model to account for the change of lane number, and use one continuity

equation to model the total density. When the maximal capacity is guaranteed

by the inhomogeneous LWR model, we attempt to smooth the velocity curve

so that the embedded vehicles are comfortable to follow it. We show the traf-

fic pattern by the inhomogeneous LWR model and its property to maximize

capacity. We also show two controlling strategies to smooth and narrow the

velocity gap in the solution to the inhomogeneous LWR model.

Outlines

The work is organized as follows. In Chapter 2, we provide an overview of macro-

scopic traffic models (LWR model) as well as the fundamental diagram, and a discus-

sion of multiple traffic scenarios based on LWR model, which will be used to test the

efficacy of our proposed assimilation method in Chapter 5. In Chapter 3, we provide

an overview of microscopic traffic models, and give a detailed introduction to the

well-known car-following models, along with notations and setup for the following

chapter. Chapter 4 provides the analysis of the stability and collision behavior of the

car-following models. The theoretical proof as well as the numerical implementation

is shown to be in agreement. In Chapter 5, we have a detailed discussion of the

traffic observations and data assimilation approaches. Then we proposed an alterna-

tive approach that allows us to assimilate both Eulerian and Lagrangian data, and

show the accuracy and efficacy of this approach in multiple traffic scenarios. The

lane-drop bottleneck is investigated in Chapter 6. The inhomogeneous LWR model

is introduced to account for the multi-lane traffic scenarios. We provide two control-

ling strategies to maximize the capacity while providing a comfortable velocity curve

for vehicles to follow. Finally, Chapter 7 includes an overall discussion, conclusion

and directions for future work.



Chapter Two

Review: macroscopic traffic

models
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2.1 Introduction

A macroscopic traffic model is a mathematical traffic model that formulates the

relationships among traffic flow characteristics like density, flow, mean speed of a

traffic stream. The characteristics are locally aggregated, which vary across space

and time, i.e., they correspond to dynamic fields. Thus, macroscopic models are

able to describe collective phenomena such as the evolution of congested regions or

the propagation of traffic wave ([73]). Macroscopic models [19, 42, 54, 63] describe

traffic flow analogously to liquids or gases in motion. Hence they are sometimes

called hydrodynamics models.

Since the legendary paper [54, 63] by Lighthill, Whitham and Richards, dynam-

ical macroscopic traffic flow modeling became a central focus for both theoretical-

and application-oriented research. This is a first order model based on the scalar

conservation law. The first-order model was complemented by second-order model

by Payne [60], in an attempt to avoid some known deficiencies of the first-order

model. However, in Daganzo’s note [20], it described the logical flows of the higher

order continuum models. In our research, we will focus the first-order model [54, 63]

and its variants.

Conventionally, the macroscopic models are derived from integrating the micro-

scopic traffic flow models and converting the single-entity level characteristics to

system level characteristics ([5, 25]). In [5], it establishes a connection between a

microscopic follow-the-leader model based on ordinary differential equation and a

semidiscretization of a macroscopic continuum model based on a conservation law.

They also show rigorously that, at least in the homogeneous case, the macroscopic

model can be viewed as the limit of the time discretization of the microscopic model
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as the number of vehicles increase, with a scaling in space and time.

The foundations of macroscopic model are the hydrodynamic relation “flow equals

density times speed” and the continuity equation, which describes the temporal

evolution of the traffic flow characteristics. The vehicle flux-density relation is called

the fundamental diagram of traffic, which is a modeling choice. Traffic flux refers

to the number of passing vehicles per unit time, and traffic density refers to the

number of vehicles per unit length. Then the vehicle velocity is defined such as the

flow-density relation is satisfied. More details about the fundamental diagram will

be provided in section §2.2.1.

The macroscopic models are particularly useful when one is interested in macro-

scopic quantities and the microscopic effects (lane changes, driver-vehicle type, ac-

celeration) need not be considered. Some main applications of macroscopic model

include:

• Macroscopic models can be used to study the spatiotemporal evolution of con-

gested traffic pattern, and simulate the effects of traffic flow breakdown caused

by high traffic load, bottleneck and disturbance of drivers.

• Macroscopic models can be modified to account for realistic road profiles, such

as traffic lights, on-/off-ramps, change in the number of lanes, intersections,

construction zone and so on.

• Flow and aggregated speed data from stationary detectors and trajectories of

moving cars allow us to estimate and predict the traffic states. Since most

of this information is not well known, it is typically more common to use

macroscopic models for traffic estimation.

• From the analysis of the spatiotemporal dynamics on highways, we can im-

plement model-based traffic flow optimization to increase the efficiency and
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stability of traffic flow.

The traffic pattern and wave propagation are well studied in [49, 54, 63, 73]. In this

chapter, we touch on the variations of macroscopic model to account for road pro-

files mentioned above. In chapter §5, we will apply the Lighthill-Whitham-Richards

model to provide traffic evolution at later times, and focus on the estimation of traffic

states and uncertain parameters. In chapter §6, we study the lane-drop bottleneck

and discuss the potential optimization strategies based on the Lighthill-Whitham-

Richards model.

2.2 Lighthill-Whitham-Richard model

This section reviews the theory of scalar first-order conservation law, known as the

Lighthill-Whitham-Richard (LWR) partial differential model [54, 63]. The LWR

model describes the evolution of traffic by the vehicle density ρ(x, t) at location x

and time t. For simplicity, we consider a ring road of length L but emphasize that

roads with other boundary conditions can also be treated by our approach. In the

absence of sinks and sources, the conservation law for the vehicle density ρ(x, t) with

periodic boundary conditions is given by

∂tρ(x, t) + ∂xϕ(ρ(x, t)) = 0, x ∈ T, (2.1)

ρ(x, 0) = ρ0(x),

where ρ0(x) denotes the initial data, and T denotes the circle of circumference L

that reflects the periodic boundary conditions we employ. The equation describes

the rate of change of density in terms of gradients of the flow.
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The flux function ϕ(ρ) expresses the dependence of the vehicle flux ϕ on the

density ρ; this relationship is usually referred to as the fundamental diagram. We

assume that ϕ is defined on the interval [0, ρmax], where ρmax is the maximal density

achievable on the road.

For traffic flow, we can write ϕ(ρ) = ρV (ρ), where the function V (ρ) relates

velocity v and density ρ for densities ρ ∈ [0, ρmax]. The function V (ρ) is a mod-

eling choice: examples include the Daganzo–Newell velocity function [76] and the

Greenshields affine velocity function [36].

2.2.1 Fundamental diagram

Fundamental diagram of traffic flow is the plot of the traffic flux ϕ versus the traffic

density ρ. According to [64], the two-phase traffic theory divides traffic flow into

free flow for low densities, and congested flow for large densities. Figure 2.1 is

the fundamental diagram from Seibold’s paper [64]. In the free flow regime, flux

increases as density increases, while in the congested flow regime, flux decrease as

density increases.

The flux-density relation can be mathematically written as ϕ(ρ) = ρV (ρ), where

velocity function V (ρ) relates velocity v and density ρ. The algebraic expression of

the velocity function is a modeling choice, and it is typically constructed to fit ex-

perimental data. We will briefly introduce the the Daganzo–Newell velocity function

[76] and the Greenshields affine velocity function [36], which are used in §5 and §6.



12

Figure 2.1: Fundamental diagram from [64]. Flow-density data obtained from sensor measurement
data, aggregated over time intervals of ∆t = 30s (left). The free flow curve and a synchronized
flow region of fundamental diagram (right).

Greenshields velcoity function: It is one of the earliest introduced velocity

functions by Greenshields. It expresses a linear relationship between the speed and

density: the velocity linearly decreases as the density increases.

v = VG(ρ) = vmax

(
1− ρ

ρmax

)
(2.2)

where vmax is the maximal free-flow velocity, and ρmax is the maximal density achiev-

able on the road. This model remains useful because of its simplicity. The velocity

function and respective fundamental diagram are shown in Figure 2.2.

Daganzo-Newell velocity function: It is a widely used velocity function by

assuming a constant velocity in free-flow regime, and a hyperbolic velocity in the

congestion regime:

v = VDN =


vmax, if ρ ≤ ρc

−ω
(

1− ρmax

ρ

)
, if ρ > ρc

(2.3)
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where ρc is called the critical density that separates the free-flow regime and conges-

tion regime. The Daganzo-Newell velocity gives a triangular fundamental diagram.

The velocity function and respective fundamental diagram are shown in Figure 2.2.

⇢

�
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)
V

(⇢
)

V
(⇢

)
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⇢

�
(⇢

)

Figure 2.2: Velocity functions and respective fundamental diagrams for Greenshields (left) and
Daganzo-Newell (right).

2.2.2 Characteristic curve

The LWR equation is a first-order PDE, we could use the method of characteristics to

discover curves along which the PDE becomes an ODE. The LWR equation without

viscous term can be written in a quasilinear form:

∂ρ

∂t
+ ϕ′(ρ)

∂ρ

∂x
= 0 (2.4)
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The characteristic equations for the original system with initial conditions are:



∂t
∂s

= 1, t(0) = 0

∂x
∂s

= ϕ′(ρ), x(0) = x0

∂ρ
∂s

= 0, ρ(0) = ρ(x0, 0)

Because of t = s from the first equation, x and ρ can be expressed as functions of t:

x(t) = ϕ′(ρ)t+ x0

ρ(t) = ρ(x0, 0) = ρ0(x0)

Therefore, we get this relation ρ(x(t), t) = ρ0(x0) = ρ0(x− ϕ′(ρ)t). In this case, the

characteristic lines are straight lines with slope ϕ′(ρ), and the value of ρ remains

constant along the characteristic line. Therefore, the solution of Lighthill–Whitham

model comes from following characteristic curve back from (x, t) to a point when

t = 0:

ρ(x, t) = ρ0(x− ϕ′(ρ(x, t))t) (2.5)

Riemann problem: The initial problem (2.4) with discontinuous initial condition

of the form

ρ(x, 0) =


ρL, x ≤ 0

ρR, x > 0

(2.6)

is called a Riemann problem. By using the characteristic method presented above,

we can obtain two characteristic curves:

x = ϕ′(ρL)t+ x0

x = ϕ′(ρR)t+ x0.
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The slopes of the characteristic curve can be understood as wave speed. We use new

notations λL and λR to represent the wave speeds in Riemann problem.

Solutions Based on the relation of λL and λR, the solution to the Riemann problem

can be traveling wave, shock wave and rarefaction. The relations include λL = λR,

λL > λR and λL < λR, which are plotted in Figure 2.3.

x

t

0

(a) λL = λR

x

t

0

(b) λL > λR

x

t

0

(c) λL < λR

Figure 2.3: Characteristic curves of the Riemann problem when wave speeds (a) λL = λR, (b)
λL > λR and (c) λL < λR

We substitute the Greenshields velocity function into the flux function, and

obtain ϕ(ρ) = ρvmax(1 − ρ/ρmax). The slope of the characteristic curve becomes

ϕ′(ρ) = vmax(1 − 2ρ/ρmax), which is a linear decreasing function respect to density

ρ. The Riemann solutions include:

• Traveling wave (λL = λR = λ)

The wave doesn’t change the speed from upstream to downstream, so it is a

traveling wave with speed λ. The solution can be expressed as

ρ(x, t) = ρ0(x− λt) (2.7)

• Shock wave (λL > λR)

When the wave speed in upstream is greater than downstream, a discontinuity
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will be generated and propagated. This is shock wave.

The Rankine-Hugoniot jump condition determines the position of a shock at a

given time. This condition emerges when one consider the equation in integral

form by integrating the LWR respect to x:

d

dt

∫ x2

x1

ρ(x, t)dx+ ϕ(ρ)|x2x1 = 0

Then we can obtain the wave speed of the shock

λ =
ϕ(ρL)− ϕ(ρR)

ρL − ρR
=
λL + λR

2
(2.8)

The discontinuity propagating with speed λ satisfies the entropy condition

because λL > λ > λR holds.

• Rarefaction (λL < λR)

The whole situation changes. Even though there is a shock wave solution

satisfying the Rankine-Hugoniot condition, the shock wave doesn’t satisfy the

entropy condition because of λL < λ < λR.

A weak solution satisfying the entropy condition is rarefaction wave:

ρ(x, t) =


ρL x < λLt

w(x/t) λLt ≤ x ≤ λRt

ρR x > λRt

, (2.9)

where w(.) is a smooth function with w(λL) = ρL and w(λR) = ρR.

So far, we are discussing the homogeneous LWR model and the solutions to the

Riemann problem. In Chapter 6, we will introduce the inhomogeneous LWR model
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to account for the change of lane number.

2.3 Traffic scenarios based on LWR model

As we know, the original LWR equation (2.1) models the conservation of traffic flow

in absence of sources or sinks. In addition, the velocity function V (ρ) is assumed

not dynamic, which is unable to describes a dynamic relation between velocity and

density. Therefore, the original LWR equation is limited to model more complicated

road profiles.

The main road profiles include normal traffic (§ 2.3.1), on-/off-ramp (§ 2.3.2),

traffic lights (§ 2.3.3), construction zone (§ 2.3.4), traveling wave (§ 2.3.5), change in

the number of lanes (§ 6.2), and so on. In this section, we modify the existing LWR

model to account for effects of the first five traffic scenarios. The modifications make

the macroscopic model more accurate to describe the realistic traffic. The change in

the number of lanes is a particular traffic scenario we will discuss in more details in

§ 6.2.

2.3.1 Normal traffic

In the LWR model (2.1), the adaption of speed to traffic density is instantaneous,

because the relation v(x, t) = ϕ(ρ(x, t))/ρ(x, t) holds if function ϕ and ρ are appro-

priately defined. This means that it takes zero time for a driver to change driving

speed according to the density. It is normal that some fine structure of traffic is

missing in the LWR model.
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In the normal traffic, the drivers need response time to adjust the velocity, so

the relation v(x, t) = ϕ(ρ(x, t))/ρ(x, t) doesn’t hold when density experiences big

changes. In [81], the researcher exploit the relation between driver memory and

viscosity to develop a viscous continuum model, which takes the drivers’ response

time into consideration through a diffusion term on the right-hand-side of the LWR

equation. Therefore, we introduce the viscous LWR model to describe the normal

traffic:

ρt + (ρVG(ρ))x = ερxx, (2.10)

where ε is the diffusion coefficient, which acts as a smoothing factor in the model.

The diffusion term with diffusion coefficient ε has two other advantages: this

term accounts for low-level noise when updating the traffic states at later times;

from the perspective of numerical solution, the introduction of small diffusion term

can produce a weak solution that satisfies the entropy condition.

The viscous LWR model (2.10) will act as the base model for the following traffic

scenarios: on-/off-ramps, traffic lights, construction zone and traveling bottleneck.

2.3.2 On-/off-ramps

Ramp is a road junction of the highway system: an on-ramp provides access to the

specific part of a road system, while an off-ramp is one-way lane for departing a

main highway. The sketch of on-/off-ramps is shown in Figure 2.4. Mathematically,

on-/off-ramps imply additional in-/outflows, which have to be added to the section

boundaries where the on-/off-ramps are.
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xo↵
j xon

j

Figure 2.4: On-/off-ramps allow vehicles to enter or exit a controlled-access highway.

Let {xon
i }i∈I and {xoff

j }j∈J be the positions of on-ramps and off-ramps, and

{ϕon
i (t)}i∈I and {ϕoff

j (t)}j∈J are time-dependent flows of on-ramps and off-ramps

respectively. The ramp flow is positive for on-ramps, and negative for off-ramps.

Instead of using a delta function δ(x − xon
i ) and δ(x − xoff

i ) to indicate the loca-

tions of sources sinks, we introduce sech functions f(x − xon
i ) = sech(x − xon

i ) and

f(x−xoff
i ) = sech(x−xoff

i ) to represent the spread effect of ramps. This consideration

comes from the phenomenon that ramps would affect the areas nearby rather the

specific points.

By addition source and sink terms to the viscous LWR equation (2.10), we get

the model for on-/off-ramps scenario:

ρt + (ρVG(ρ))x = ερxx +
∑
i∈I

ϕon
i (t)f(x− xon

i ) +
∑
j∈J

ϕoff
j (t)f(x− xoff

j ), (2.11)

In this scenario, spatial shocks are generated around the on-ramp and off-ramp.

Specifically, a density bump appears around the on-ramp, while a density valley

appears around the off-ramp. More details about the ramp positions and ramp flows

will be mentioned in § 5 when estimating traffic states in on-/off-ramps scenario.
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2.3.3 Traffic lights

The traffic lights on the road force vehicles to decelerate and accelerate periodi-

cally, resulting a periodic oscillations of the vehicle density along the road. In this

circumstance the velocity function is dynamic corresponding to the color of traffic

lights.

In the traffic light scenario, we place a traffic light at position x`1 on the road,

and set three sub-periods for yellow light T y1 , red light T ri and green light T g1 . We

introduce a deceleration factor to account for the effects from traffic light, and the

velocity function becomes:

v(x, t) = VG(ρ(x, t))a(x, t;x`1) (2.12)

where a(x, t;x`1) is the deceleration factor from a traffic light at position x`1. The

function a(x, t;x`1) is periodic in time t with period T , which is the total length of

three sub-periods T = T yi + T ri + T gi . In Figure 2.5, The traffic light cycle has a

period of T = 6 minutes, which consists of yellow light time T y1 , red light time T r1

and green light time T g1 as follows:

• During yellow lights, drivers within Ly1 miles (see Figure 2.5(a)) notice the

yellow lights, and they are decelerating. The drivers out of the range will drive

normally.

• During red lights, cars within Lr1 miles (see Figure 2.5(b)) are forced to stop,

and those following within 2Lr1 are decelerating when approaching the traffic

light.

• During green lights T g1 (see Figure 2.5(c)), traffic flows normally and the ve-
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locity is exactly equal to the predetermined velocity function.

x`
1 � Ly

1
x`

10
0

1

a(x, t; x`
1), t 2 T y

1(a)

(a) Yellow light period T y1

0

1

a(x, t; x`
1), t 2 T r

1

0 x`
1 � Lr

1 x`
1

(b)

x`
1 � 2Lr

1

(b) Red light period T r1

x`
10

0

1

a(x, t; x`
1), t 2 T g

1(c)

(c) Green light period T g1

Figure 2.5: Deceleration factor a(x, t;x`1) in traffic light scenario: (a) yellow light period; (b) Red
light period; (c) Green light period.

The modified LWR model for traffic lights is mathematically given by:

ρt +
(
ρVG (ρ(x, t)) a(x, t;x`1)

)
x

= ερxx, (2.13)

a(x, t;x`1) =



0.5 (x, t) ∈ (x`1 − Ly1, x`1)× T y1

0 (x, t) ∈ (x`1 − Lr1, x`1)× T r1

(x`1 − Lr1 − x)/Lr1 (x, t) ∈ (x`1 − 2Lr1, x
`
1 − Lr1)× T r1

1 otherwise,

(2.14)

More details about the length of lights (T y1 , T
r
1 , T

g
1 ) and the effect region (Ly1, L

r
1) will

be mentioned in § 5 when estimating traffic states in traffic light scenario.

2.3.4 Construction zone

When approaching a construction zone, we can see signs or signals like “SLOW”,

“ROAD WORK AHEAD”, “SINGLE LANE AHEAD” or even “STOP”. Around the

construction zone, typically the drivers are experiences slow speed and lane merge.

In this circumstance, the velocity function is dynamic corresponding to effects of

construction zone.

Let xb1 be the location of a construction zone, which is a constant. We introduce



22

a bottleneck factor a(x− xb1) to account for the slow-down effects from construction

zone. Then the velocity function becomes:

ρt +
(
ρVG(ρ)a(x− xb1)

)
x

= ερxx, (2.15)

where xb1 is the location of the bottleneck. The quantity a(x− xb1) is the bottleneck

factor, which can be written as the product of severity coefficient and spread effect

a(x− xb1) = cf(x− xb1). The severity coefficient c reflects the degree of influence of

the construction zone or traffic accident, and f(x− xb1) represents the spread effect

of the bottleneck. In this scenario, a stationary density bottleneck appears around

xb1.

More details about the bottleneck position xb1, severity coefficient c and the spread

effect f(x−xb1) will be mentioned in § 5 when estimating traffic states in construction

zone.

2.3.5 Traveling bottleneck

We also construct a traveling bottleneck scenario, for which we use a model similar

to that of the stationary bottleneck in §2.3.4. To account for a traveling bottleneck,

we allow the position of the bottleneck to be time-dependent, and the macroscopic

model can be described as:

ρt +
(
ρVG(ρ)a(x− xb1(t))

)
x

= ερxx, (2.16)
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where xb1(t) is the location of traveling bottleneck, which is assumed to be time-

dependent.

The traveling bottleneck scenario can be used to model slow truck, moving con-

struction zone, moving snowplows and so on. In this traffic scenario, we would like

test the assimilation efficacy of our algorithm in time-dependent parameter xb1(t).

More details about the traveling bottleneck position xb1(t) will be mentioned in

§ 5 when estimating traffic states and parameters.

2. Parameter estimation for real traffic data In addition to estimating sim-

ulated traffic states and parameters, we are interested in applying the developed

approach to real traffic data. In this section, we use data from the Minnesota De-

partment of Transportation [70].



Chapter Three

Review: microscopic traffic models
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3.1 Introduction to microscopic traffic models

A microscopic traffic model is an import class of model in traffic simulation. In con-

trast to macroscopic traffic model, microscopic model simulates individual vehicle-

driver entities, so the dynamic variables of the models represent microscopic proper-

ties like the position and velocity of individual vehicles. Conventionally, the micro-

scopic models can be used to derive the macroscopic models through micro-macro

transition.

The mathematical formulations include car-following models and cellular automa-

ton models.

• The car-following models are time-continuous models, which are defined by

ordinary differential equations describing the vehicles’ positions and velocities.

It is assumed the accelerations of the drivers depend only on their own ve-

locities, the velocity of the leading vehicle, and the distance to the leading

vehicle. Usually the driving behavior can be affected by multiple leading ve-

hicles. Then the acceleration function can be generalized to account for more

variables. Well-known car-following models include the optimal velocity model

[8], the velocity difference model [46], the GHR model [32] and the intelligent

driver model [72].

• The cellular automaton models describe traffic dynamics in a completely dis-

crete way: space is subdivided into cells, time into time steps, and speed or

acceleration are integer multiples of the corresponding units. Each road section

can either be occupied by a vehicle or empty. Examples of cellular automaton

models include Nagel-Schreckenberg model[57], and other refined models.
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Compared to the car-following models, the advantages and disadvantages of the

cellular automaton models are due to the discrete scaling of time, space and state

variables. Even though the cellular automaton models are easy and fast to simulate,

they lack robustness because of the discrete nature. Therefore, we will focus on

car-following models in our study.

Traffic simulation is an interesting and important application of car-following

models. Car-following models, together with lane-changing models [61] are devel-

oped and implemented in a microscopic simulation framework. In [59], a compara-

tive evaluation of car-following behavior in a number of well-known traffic simulators,

including AIMSUN (advanced interactive microscopic simulator for urban and nonur-

ban networks), PARAMICS (parallel microscopic simulation) and VISSIM (Verkehr

in Stadten simulation).

The dynamics of car-following models is another important area for investigation.

In Chapter 4, we will discuss the stability and collision behavior of car-following

models.

3.2 Car-following models

Microscopic models describe traffic flow dynamics in terms of single vehicles. As

the most important representatives of microscopic traffic flow models, car-following

models describe traffic dynamics from the perspective of individual driver-vehicle

units with interaction to the leading ones.

In continuous-time models, these car-following models are defined by coupled

ordinary differential equations, and the drivers’ responses are informed by their own
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velocities, headways and the velocities of the leading vehicles. Many car-following

models are of the form:

vehicle n � 1vehicle n + 1

vn

xn

vehicle n

vn�1vn+1

xn+1 xn�1

dn
`n

Figure 3.1: Notations for car-following models: vehicles are numbered from front to back
such that vehicle n follows vehicle n − 1. For vehicle n, xn denotes position, vn denotes
velocity, `n denotes length and dn denotes gap.

ẋn(t) =
dxn(t)

dt
= vn(t),

v̇n(t) =
dvn(t)

dt
= faccel (vn, vn−1, dn) , dn = xn−1 − xn − `n

(3.1)

where

xn : the position of vehicle n,

vn : the speed of vehicle n,

vn−1 : the speed of the leading vehicle n− 1,

`n : the length of vehicle n,

dn : the gap between vehicle n and the leading vehicle n− 1,

faccel : the acceleration function.

In recent years, car-following models have received increasing attentions both in

mathematics and engineering. Many car-following models have been developed and

studied in the past half century. In [14, 17, 39], the dynamical behavior and proper-

ties of car-following models have been reviewed, including the formula, parameters,

steady state, stability, trajectories, etc.
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In this section, we will focus on four well-known continuous car-following models,

which are frequently used in traffic simulations. These models are (i) the optimal ve-

locity model, (ii) the full velocity difference model, (iii) the modified Gazis-Herman-

Rothery model, and (iv) the intelligent driver model.

3.2.1 The optimal velocity model

The optimal velocity model was originally proposed by Bando et al. in [8], which

assumed that each vehicle has a distance-dependent optimal velocity V(·). In this

model, the driver controls the acceleration to maintain an optimal velocity according

to the motion of the leading vehicle. In addition, a constant adaption time τ is

introduced to reflect the driver’s sensitivity to adapt to the optimal velocity. The

optimal velocity model can be written as:

ẋn(t) = vn(t)

v̇n(t) =
V(dn)− vn

τ
,

(3.2)

where dn is the gap to the leading vehicle, V(·) is the optimal velocity function

that depends on the distance to the leading vehicle, and τ is the adaption time.

The acceleration equation describes the adaption of actual speed vn to the optimal

velocity V(dn) on a time scale given by the adaption time τ . The smaller the adaption

time τ is, the faster the vehicle adapts to the optimal velocity. The optimal velocity

function V(·) is a modeling choice: common choices are hyperbolic tangent and

piecewise function. In this study, we will use the hyperbolic tangent function by

Bando et al.:

V(dn) = V0
tanh(dn/∆s− β) + tanh β

1 + tanh β
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where V0 is the desired speed, ∆s is the transition width and β is the form factor.

Figure 3.2 shows how these parameters change the shape of optimal velocity function

V(·). The bigger the desired speed V0 is or the smaller the transition width ∆s is,

the greater the optimal velocity will be. For the form factor β, larger values shift

the optimal velocity curve to right. Overall the optimal velocity model is easy to

understand and implement, but it has a strong dependency on the parameters and

simulation results can be unrealistic.
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Figure 3.2: Optimal velocity function in respect to parameter V0, ∆s and β

3.2.2 The velocity difference model

The main deficiency of optimal velocity model is that it does not take the speed of

the leading vehicle into consideration. Thus the full velocity mode was proposed in

[46] by extending the optimal velocity model with an additional linear stimulus for

the speed difference. On one hand, if the speed of vehicle n is larger than that of

the leading vehicle, additional deceleration will be generated to slow it down. On

the other hand, if the following vehicle is slower than the leading vehicle, additional

acceleration will be generated to speed it up. Thus, the full velocity difference model

has better stability than the optimal velocity model. The mathematical formula is
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as follows:

ẋn(t) = vn(t),

v̇n(t) =
V(dn)− vn

τ
− γ(vn − vn−1)

(3.3)

where (vn − vn−1) is the velocity difference to the leading vehicle n− 1, and γ is the

sensitivity factor for speed difference. Parameter γ measures the driver’s sensitivity

to speed difference: the greater γ is, the more sensitivity the driver has. When γ = 0,

the full velocity difference model (3.3) reduces to the optimal velocity model (3.2).

According to the simulations in [46], the full velocity difference model predicts the

correct delay time of car motion and kinematic wave speed at jam density. However,

the sensitivity term γ does not depend on the gap dn, which can generate a significant

and unrealistic deceleration even when the leading vehicle is far away.

3.2.3 The modified GHR model

The Gazis-Herman-Rothery (GHR) model is the most well-known model from the

late fifties by Gazis et al. ([32]). This model is based on the intuition that the

acceleration is proportional to the velocity difference; it also includes an explicit

time delay to account for driver’s reaction time. The general formula of the GHR

model is a delay ODE:

v̇n(t+ T ) = λ(vn−1 − vn)

where T is the reaction time, and λ is a relaxation rate. Here we modified the

original GHR model based on the following considerations: firstly we replace the

delay formula by the adaption to the optimal velocity with reaction time τ ; then we
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use the reciprocal spacing for the relaxation rate, i.e., λ =
η

dn
; lastly the sensitivity

−ηvn − vn−1

dn
to velocity difference is bounded from above in order to avoid unrealistic

acceleration generated by negative speed difference vn − vn−1 and small gap dn.

With these sensible modifications, the stimulus is able to characterize the distance-

dependent sensitivity to velocity difference as well as realistic acceleration. The

modified formula can be written as:

ẋn(t) = vn(t),

v̇n(t) =
V(dn)− vn

τ
+ min

(
−ηvn − vn−1

dn
, A

)
,

(3.4)

where η is a constant sensitivity parameter, and A is the upper bound of acceleration.

The modified GHR model is an improvement over the optimal velocity model and

the full velocity difference model, since it generates distance-dependence stimulus to

velocity difference.

3.2.4 The intelligent driver model

The intelligent driver model is a novel continuous model by considering the real

driving behavior, which was proposed by Treiber et al. in the work [72]. In this

model, the driving behaviors such as keeping a ”safe distance”, driving at a desired

speed and preferring comfortable accelerations are taken into consideration. The

main idea behind this model is to superpose (I) the acceleration tendency on a

free road by comparing the current velocity to the desired velocity, and (II) the

deceleration tendency in the presence of interactions by comparing the current gap



32

to the desired safe distance. The mathematical formula is as follows:

ẋn(t) = vn(t),

v̇n(t) = a

[
1−

(
vn
V0

)δ]
︸ ︷︷ ︸

I

+

[
−a
(
d∗(vn, vn − vn−1)

dn

)2
]

︸ ︷︷ ︸
II

, (3.5)

where a is the comfortable acceleration, V0 is the desired velocity, δ is the accel-

eration exponent and d∗ is the desired distance. In model (3.5), term I represents

the acceleration tendency with exponent δ controlling the reduction of acceleration

when velocity approaches the desired velocity V0, and term II represents deceleration

tendency away from the leading vehicle by comparing the current gap dn and the

desired distance d∗. The form of desired distance d∗ is also a modeling choice, and

we use the expression from book [73] in this paper:

d∗(vn, vn − vn−1) = d0 + max

(
0, vnT +

vn(vn − vn−1)

2
√
ab

)
,

where d0 is the minimum gap to keep, b is the comfortable deceleration, T is the

reaction time of drivers. Larger minimum gap d0, longer time gap T , or smaller

deceleration b will induce larger desired distance d∗, and thus larger gap dn for a

driver to keep. The intelligent driver model is simple, and only has a few intuitive

parameters with realistic values and reproduces collective dynamics.



Chapter Four

Dynamics of car-following models
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4.1 Stability analysis

Instability of traffic flow results in traffic waves, which is also called stop-and-go

waves. This is mainly caused by the delays in adapting the speed to the actual traffic

condition, which are consequences of finite acceleration and deceleration capability.

In this section, we would like to make a stability analysis of the car-following

models without using a Taylor approximation.

4.1.1 Stability analysis of car-following model

The system of N vehicles on a ring road of length L can be describe as:

vehicle n � 1vehicle n + 1

vn

xn

vehicle n

vn�1vn+1

xn+1 xn�1

dn
`n

Figure 4.1: Notations for car-following models: vehicles are numbered from front to back
such that vehicle n follows vehicle n − 1. For vehicle n, xn denotes position, vn denotes
velocity, `n denotes length and dn denotes gap.

When studying the interactions between two adjacent vehicles, the headway

rather than the vehicle length matters. Without loss of generosity, we can set the

`n = 0. By introducing the headway dn between vehicle n − 1 and n, the coupled

ordinary differential equations become:

ḋn(t) = vn−1(t)− vn(t)

v̇n(t) = faccel (vn, vn−1, dn) ,

(4.1)
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The steady-state gap is de = L/N and the steady-state velocity ve satisfies faccel(ve, ve, de) =

0, from which an explicit expression of ve can be obtained as ve = Ve(de). As in the

analysis for stability, we assume small deviations yn and un from steady state de and

ve.

dn(t) = de + yn(t)

vn(t) = ve + un(t)

(i) By substituting these in, we get odes for the deviations:

dyn
dt

=
ddn
dt

= un−1 − un
dun
dt

=
dvn
dt

= avun + alun−1 + adyn

(4.2)

where av = ∂faccel
∂vn
|e, al = ∂faccel

∂vn−1
|e and ad = ∂faccel

∂dn
|e. In addition, moving along

the space of steady-state solutions by simultaneously changing dn and vn =

vn−1must not change the acceleration faccel, so we can obtain a relationship

between partial derivatives in steady-state:

0 = addde + (av + al)dve = addde + (av + al)V ′e(de)dde

resulting in

ad = −V ′e(de)(av + al) (4.3)

It is assumed that ad > 0, av < 0 and al > 0. Because of equation (4.3), it is

easy to know that av + al < 0.
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(ii) We can solve equation (4.2) by using Fourier-Ansatz:

yn(t) = ŷeλt+ink, un(t) = ûeλt+ink

Inserting the ansatzs into odes (4.2) results in

 λ 1− e−ik

−ad λ− (av + ale
−ik)

 ·
ŷ
û

 = 0

.

The resulting solvability condition assumes the form of a quadratic equation

λ2 + p(k)λ+ q(k) = 0 or λ1/2 =
1

2

(
−p(k)±

√
p2(k)− 4q(k)

)

where p(k) = −av − ale−ik > 0 and q(k) = ad(1− e−ik).

(iii) Stability condition is equivalent to Re(λ1/2) < 0, i.e. Re(
√
p2(k)− 4q(k)) <

Re(p(k))

Rewrite p2(k)− 4q(k) as Reiϕ = X + iY , then it becomes

Re(
√
p2(k)− 4q(k)) =

√
R cosϕ/2 < Re(p(k)) (4.4)

with

Re(p(k) = −av − al cos(−k)

X = R cos(ϕ) = (av + al cos(−k))2 − a2
l sin2(−k)− 4ad(1− cos(−k))

Y = R sin(ϕ) = 2al sin(−k)(av + al cos(−k)) + 4ad sin(−k) (4.5)
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Take squares on inequality (4.4):

R cos2(ϕ/2) = R(1 + cos(ϕ))/2 < Re(p(k))2

Use cosϕ = X/R and simplify the inequality as:

R < 2Re(p(k))2 −X

Take squares on both sides and substitute R2 = X2 + Y 2:

X2 + Y 2 < (2Re(p(k))2 −X)2

Remove the items X2 on both sides:

Y 2 < 4Re(p(k))2 − 4XRe(p(k)) (4.6)

Next we will plug in the formula of Y and Re(p(k)), and simplify the expression

Y 2 − (4Re(p(k))2 − 4XRe(p(k)))

= 16ad[ad sin2(−k) + (av + al cos(−k))(avd − av)(1− cos(−k))] < 0

(4.7)

It is assumed that ad > 0, av < 0, al > 0 and av + al < 0. Therefore, the

inequality (4.7) becomes:

V ′e(de) < (al − av)
av + al cos(−k)

av + al︸ ︷︷ ︸
I

1− cos(−k)

sin2(−k)︸ ︷︷ ︸
II

Because of av + al cos(−k) ≤ av + al < 0, the part I ≥ 1 with equality holding

if cos(−k) = 1. The part II is ∞ when cos(k) = ±1, and it is 1/(1 + cos(−k))
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when cos(−k) 6= ±1. Then we can get that II > 1/2 for sure.

In sum, the stability condition is

V ′e(de) ≤
1

2
(al − av) (4.8)

There are three main factors determining the stability of traffic flow: the suf-

ficient sensitivity V ′e(de), speed sensitivity av and lead speed sensitivity al.

System of greater anticipation to the lead car (bigger al) will favor stability,

which means anticipative driver can better adjust deviations and thereby the

system is stable.

(iv) the stability condition for specific models

• Optimal Velocity Model(OVM): Ve = V , av = −1/τ, al = 0

V ′(de) <
1

2τ

• Full Velocity Difference(FVDM): Ve = V , av = −1/τ − γ, al = γ

V ′(de) <
1

2τ
+ γ

• Modified Gazis-Herman-Potts Model(GHP): Ve = V , av = −1/τ−1/de, al =

1/de

V ′(de) <
1

2τ
+

1

de

• Intelligent Driver Model(IDM):

V ′e(de) ≤
(s0 + Tve)(

√
a
b
ve + aT )

d2
e

+
2a

v0

(
ve
v0

)3
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with

V−1
e (v) =

s0 + V T√
1− (v/v0)δ

av = −4a

v0

(
ve
v0

)3

−
(s0 + Tve)(

√
a
b
ve + 2aT )

d2
e

al =
(s0 + Tve)

√
a
b
ve

d2
e

4.2 Model calibration

In this section, the parameters of the car-following models are calibrated to the

empirical traffic data. This procedure of calibration makes the car-following mod-

els not only realistic to reflect driving behaviors, but also comparable to simulate

microscopic traffic.

The model parameters may fall into two types: (a) parameters that determine

the macroscopic flux-density relation (fundamental diagram); (b) parameters that

do not contribute the flux-density relation, but instead describe the driving habit

and sensitivity: such as adaption time and comfortable acceleration.

4.2.1 Flux-density relation

Flux-density formula

Fundamental diagram of traffic flow is the plot of the traffic flux Q (the number of

passing vehicles per unit time) versus the traffic density ρ (the number of vehicles
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per unit length). According to [64], the two-phase traffic theory divides traffic flow

into free flow for low densities, and congested flow for large densities. In the free

flow regime, flux increases as density increases, while in the congested flow regime,

flux decrease as density increases. Please see Figure 4.2.

Next we will induce the macroscopic flux-density relation from the microscopic

car-following models through steady-state equilibrium. Firstly, the steady-state

speed ve and steady-state gap de satisfy the following relation:

faccel(ve, ve, de) = 0⇒ ve = Ve(de) or de = De(ve),

where De is the inverse function of Ve. The equilibrium formula of the car-following

models are as follows: (a1) the optimal velocity model, the full velocity difference

model, and the modified GHR model; (a2) the intelligent driver model

(a1) Ve(de) = V(de) = V0
tanh(dn/∆s− β) + tanh β

1 + tanh β

(a2) De(ve) = (s0 + veT )

(
1−

(
ve
V0

)δ)− 1
2

Secondly, a micro-macro relation between gap de and the macroscopic density ρ can

be built as:

ρ = ρ(de) =
1

de + `
,

where ` is the average length of vehicles. Thus by combining the relations above,

we obtain the flux-density relation for the car-following models: (a1) the optimal

velocity model, the full velocity difference model, and the modified GHR model;
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(a2) the intelligent driver model

(a1) Q(ρ) = ρ(de)× Ve(de)

(a2) Q(ρ) = ρ(de)×De
−1(de)

(4.9)

Flux-density data

We now apply the formula above to calibrating the car-following models using data

that is provided by California Department of Transportation. The traffic data is

collected by the Caltrans Performance Measurement System (PeMS) [69], which

provides flow, speed and occupancy data across the vehicle detector stations (vds)

in the form of time series over days of operation. These sensors span the the freeway

system across all major metropolitan areas of the State of California.

We recall the results from [24], which used data from a 28 mile stretch of Freeway

I-880S (between 29th Avenue on-ramp in Oakland and the Auto Mall Parkway on-

ramp in Fremont) [24]. The data is aggregated over time intervals of 5 minutes over

98 days that were identified as functioning over 80% between February 2007 and

March 2008. The scatter plot of flux-density (density data is computed based on

flow and occupancy) data is shown in Figure 4.2(a).

The paper [24] presented a method for automated and empirical calibration of

freeway traffic flow characters. The parameters for flux-density relation are shown

in Figure 4.2(b) and Table 4.1, including free-flow speed vfree, maximal flux Qmax,

congestion speed ω and jam density ρmax.
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Figure 4.2: Automatic calibration of the fundamental diagram from [24]. (a) The scatter of
flux-density data collected by PeMS. (b) The estimation of main parameters by regression.

Description Parameter Value Unit
Free-flow speed vfree 63.3 miles/hour
Maximal flux Qmax 2031 vehicles/hour
Congestion speed param-
eter

ω 10.1 miles/hour

Jam density ρmax 232 vehicles/mile

Table 4.1: Parameters from auto-calibration of the fundamental diagram

4.2.2 Model calibration

All parameters for the car-following models in § 3.2 consist of: (a) the parameters

that determine the flux-density relation; (b) the parameters that describe the driving

habit and sensitivity. For type (a), the parameters are estimated by tuning the flux-

density curve to mimic the desired triangle shape in Figure 4.2. The flux-density

relations produced by the car-following models with the calibrated parameters are

shown in Figure 4.3.

For type (b), the parameters take the typical values that were used or estimated

in the research work [37, 50]. In [50], the car-following behavior is studied on the

basis of (publicly available) trajectory datasets recorded by a vehicle equipped with

an radar sensor. The car-following models (except the modified GHR model) were

calibrated by minimizing the deviation between observed dynamics and the simulated
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Figure 4.3: Calibration for flux-density relation. (a) The flux-density relation for (a1) in equation
(4.9). (b) The flux-density relation for (a2) in equation (4.9). The blue solid line represents the
flux-density relation for the car-following models, while the red dashed line represents the relation
from PeMS traffic data.

trajectory. The remainder parameter for the modified GHR model is from [37]. The

data used for calibration are the trajectories of 4, 733 vehicles provided through the

FHWA Next Generation Simulation (NGSIM) project.

4.3 Collision behavior

As the main component of traffic systems, car-following models have become of in-

creased importance in traffic simulation and safety research. In [14, 39, 59], the

dynamical behaviors and properties of car-following models have been well studied

and reviewed. Among these traffic dynamics, we are most interested in the colli-

sion behavior (collision-prone behavior and collision-free behavior) of car-following

models, which focuses on the critical situation of potential collisions between two

adjacent vehicles.

The collision behavior of traffic models are closely related to the traffic safety

studies [11, 13, 75], and the collision analysis could act as a guide for microscopic

simulation, especially for lane-changing models [61]. Scholars are interested in the
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Description Para Value Type/Ref
Optimal velocity model
Adaption time τ 1.5 s (b)[50]
Desired speed v0 68 mph (a)
Transition width ∆s 30 m (a)
Form factor β 0.5 (a)
Vehicle length ` 7 m (a)
Others
Sensitivity factor γ 0.65 s−1 (b)[50]
Sensitivity parameter η 12 m/s (b)[37]
Acceleration bound A 3 m/s2 (b)[50]
Intelligent driver model
Desired velocity v0 69 mph (a)
Acceleration a 1.5m/s2 (b)[50]
Acceleration exponent δ 8 (a)
Minimum gap s0 2 m (a)
Safe time gap T 1.5 s (a)
Deceleration b 3 m/s2 (b)[50]
Vehicle length ` 5 m (a)

Table 4.2: Parameter values for car-following models. Type (a) parameters determine the flux-
density relation, while type (b) parameters describe the driving habit and sensitivity terms.

drivers for collision-free behavior, which could be used to develop the sensitivity

terms in new traffic models [18]. In addition, artificial intelligence, as the ultimate

goal of traffic studies, would make a good use of these collision-free behavior to

enhance the cooperative collision avoidance in highways [12]. However, evaluating

the collision behavior of different car-following models is a complex and crucial task,

which has to determine the effects of specific components and parameters. Thus,

most assertions of the collision behaviors are based on the microscopic simulations

rather than the theoretical analysis.

In this section, we would like to carry out a theoretical analysis of the collision

behavior of four well-known continuous car-following models: the optimal velocity

model [8], the full velocity difference model [46], the modified GHR model [32] and

the intelligent driver model [72]. There are two main goals of the work: (1) identify

whether the car-following models are collision-prone or collision-free with theoretical
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analysis; (2) simulate the collision behavior of the car-following models for a com-

parison between theoretical and computational results. Specifically, we will show

that the optimal velocity and the full velocity difference models are collision-prone

regardless of the parameters, and that the modified GHR and intelligent driver mod-

els are unconditionally collision-free regardless. In addition, our study discovers that

the simulation is not valid to assert the collision behavior, since the numerical errors

could introduce collisions even though the theoretical results do not support them.

4.3.1 Simulation of two-vehicle system

Collision behavior can be described as collision-prone or collision-free: collision-prone

means that the vehicles generate collisions in critical scenarios, while collision-free

means that the vehicles can avoid collisions appropriately in any critical scenario.

In the context of the car-following models in (3.1): a model is called collision-free

if collision (i.e. xn(t) = xn+1(t) for two adjacent vehicles n and n + 1 at some

time t) cannot occur; a model is called collision-prone if collisions could occur under

some circumstances. In this section, we provide an intuition of the collision behavior

through the phase portrait analysis.

Collision simulations

Consider a simple scenario: there are two vehicles on a road. The leading vehicle is

moving with a constant speed c, and the other vehicle is following it according to

a car-following model. This traffic system can be simplified by introducing the gap
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d2 = x1 − x2 and the speed difference w2 = v1 − v2:



ẋ1(t) = c,

v̇1(t) = 0,

ẋ2(t) = v2(t),

v̇2(t) = faccel(v2, v1, d2),

=⇒


ḋ2(t) = w2(t),

ẇ2(t) = −faccel(c− w2, c, d2),

(4.10)

We are interested in the behavior when the following vehicle approaches the leading

one with a faster speed (i.e. d2(0) > 0, w2(0) < 0). If the gap d2(t) between vehicles

goes negative some time, we claim that the collision-prone behavior is observed.

In our simulation, we take the parameters for the car-following models from Ta-

ble 4.2, and assume that the leading vehicle moves with a constant speed c = 10mph.

The phase portraits (d2, w2) of the car-following models are shown in Figure 4.4, with

the collision boundary d2 = 0 highlighted by the red dashed line. We can conclude:

• It is obvious to observe that the optimal velocity model and the full veloc-

ity difference model are collision-prone in this simply two-vehicle system. In

the following subsection, we will justify that these two models are generally

collision-prone independent of parameter settings.

• Collisions are not observed in the modified GHR model and the intelligent

driver model in this simple two-vehicle system. In §4.3.2, a rigorous proof will

be provided to show that these two models are collision-free in multiple-vehicle

system.
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(c) Modified velocity model
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(d) Intelligent driver model

Figure 4.4: Phase portraits of car-following models. The x-axis represents the gap d2 between
vehicles, and the y-axis represents the speed difference w2. The red dashed line d2 = 0 represents
the critical situation of collisions.
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Collisions in the optimal velocity and full velocity difference models

The two-vehicle system (4.10) is specified for the optimal velocity model (with γ = 0)

and the full velocity difference model:


ḋ2 = w2,

ẇ2 = − 1
τ

(V(d2) + w2 − c)− γw2.

(4.11)

The phase portrait of the system is sketched in Figure 4.5. The trajectory through

the origin is critically collision-free (d2 ≥ 0, but d2(t) = 0 for some time t). For the

trajectories to its left, the gap d2 will definitely go negative, and thus generating

collisions. The region (d2, w2) that could lead to negative gap is called the collision

region, which is the area to the left of the critical trajectory in Quadrant IV.
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Figure 4.5: Analysis of collision-prone behavior in optimal velocity model and full velocity
difference model.

Let us investigate the field direction along the y axis, i.e. the collision boundary

d2 = 0:
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• Origin (d2 = 0, w2 = 0): the filed direction is up because of (ḋ2, ẇ2) = (0, c
τ
>

0). Along the x axis with small gap d2 < V−1(c), the field direction is also

upright. Please see the black arrows in Figure 4.5.

• Negative y axis (d2 = 0, w2 < 0): the filed direction is up-left because of

(ḋ2, ẇ2) =
(
w2 < 0, c

τ
− ( 1

τ
+ γ)w2 > 0

)
. Here the constants c, τ, γ are all pos-

itive. Thus, the gap d2 will go negative soon and collisions occur. Please see

the magenta arrows in Figure 4.5.

• Positive y axis near the origin (d2 = 0, w2 > 0): the filed direction is always

to the right because of ḋt = w2 > 0. Thus the two-vehicle system goes back to

the normal situation from collisions. Please see the green arrows in Figure 4.5.

Based on the analysis above, the optimal velocity model and full velocity differ-

ence model are collision-prone, independently of parameter settings. However, the

collision region can be reduced through appropriate parameter settings, such as the

sensitivity parameter γ. By adding the speed sensitivity −γw2, the full velocity dif-

ference model has a much smaller collision region compared to the optimal velocity

model (see Figure 4.4). This is why the full velocity model is often claimed to be

collision-free in simulation [73] even though it is collision-prone in theory.

4.3.2 Proof of collision-free behavior

In this section, we aim to prove that the modified GHR model and the intelligent

driver model are collision-free. The analysis approach developed in this paper can

be applied to other car-following models to study their collision behavior. There

are two traffic scenarios studied here: the collision-free proof for traffic on a straight

road is presented first, while the last part focuses on traffic on a ring road.
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The collision behavior of the car-following models can be concluded as:

Theorem 4.1. The optimal velocity model (3.2) and the full velocity difference model

(3.3) are collision-prone, which is independent of parameter settings.

Theorem 4.2. The modified GHR model (3.4) and the intelligent driver model (3.5)

are collision-free under all traffic scenarios no matter it is a straight road or a ring

road.

Traffic on a straight road

There are n vehicles on a straight road: vehicles are labeled 1, 2, . . . , n from front to

back, and the leading vehicle 1 is moving at a constant speed c. As below, we define

xi : the position of vehicle i, i = 1, . . . , n

vi : the speed of vehicle i, i = 1, . . . , n

di = xi−1 − xi : the headway of vehicle i, i = 2, . . . , n

wi = vi−1 − vi : the speed difference of vehicles i and i− 1, i = 2, . . . , n

The full system of n vehicles can be expressed in terms of xi and vi, which can be

also written in terms of di and wi:

ẋ1 = c

v̇1 = 0

ẋ2 = v2

v̇2 = faccel(v2, c, d2)

. . .

=⇒



ḋ2 = w2

ẇ2 = −faccel(c− w2, c, d2)

ḋ3 = w3

ẇ3 = faccel(v2, v1, d2)− faccel(v3, v2, d3)

· · ·

(4.12)
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The idea behind the proof is mathematical induction. Firstly, we show that the

system of 2 vehicles is collision-free. We then show that system of j vehicles is also

collision-free given the system of j − 1 is known to be collision-free, which is the

inductive step. In the proof, we only consider the critical scenario that the following

vehicle is approaching the leading vehicle with a faster speed but a small gap ahead.

Otherwise collisions never happen.

Modified GHR model As mentioned earlier, we focus on the critical scenario

when (1a) wj < 0 and the gaps are small. Then the full system for the modified

GHR model can be simplified as:



ḋ2 = w2

ẇ2 = −ηw2

d2
− 1

τ
(V(d2) + w2 − c)

ḋ3 = w3

ẇ3 = −ηw3

d3
+ ηw2

d2
+ 1

τ
(V(d2)− V(d3)− w3)

· · ·

(4.13)

where the stimulus −ηwi
di

can provide strong repulsions when the gaps di are very

small, and thus these terms will dominate in a critical scenario. We use the technique

of fast system to analyze the modified GHR model by substituting dj = εqj and
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t = εT : 

q′2 = w2

w′2 = −ηw2

q2
− ε

τ
(V(εq2) + w2 − c)

q′3 = w3

w′3 = −ηw3

q3
+ ηw2

q2
+ ε

τ
(V(εq2)− V(εq3)− w3)

· · ·

(4.14)

where the terms contain ε can be treated as small perturbations. When ε = 0, the

system (4.14) becomes the fast system:



q′2 = w2

w′2 = −ηw2

q2

q′3 = w3

w′3 = −ηw3

q3
+ ηw2

q2

· · ·

(4.15)

Next we will divide the proof into two parts: firstly we would like to show that

the fast system (4.15) is collision-free; then we go back to the original system (4.14),

and show that the perturbations do not impact the collision-free property.

(i) The fast system could be generally written as


Q′j = Wj,

W ′
j = αj

Wj−1

Qj−1
− βj Wj

Qj
, αj ≥ 0, βj > 0

(#)
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We start with a general form of fast system with non-negative parameters αj

and positive parameter βj. These parameters can be specified based on the

car-following models. The solution of system (#) satisfies:

βj
Q′j
Qj

+W ′
j

(#)
= βj

Wj

Qj

+ αj
Wj−1

Qj−1

− βj
Wj

Qj

= αj
Wj−1

Qj−1

= αj
Q′j−1

Qj−1

Taking the integral on both sides gives:

d

dt
(βj lnQj +Wj) =

d

dt
(αj lnQj−1), (4.16)

Thus during the period of (1a) wj < 0, we conclude the following:

Qj(T ) = Qj(0)

(
Qj−1(T )

Qj−1(0)

)αj
βj

exp

{
Wj(0)−Wj(T )

βj

}
≥ Qj(0)

(
Qj−1(T )

Qj−1(0)

)αj
βj

exp

{
Wj(0)

βj

} (4.17)

Next we will show that the gaps {Qj(T )}j=2,3,··· ,n never go negative during the

critical traffic scenario given the positive initial conditions {Qj(0) > 0}j=2,3,··· ,n:

• For the second vehicle with α2 = 0, β2 = η, the gap Q2 satisfies:

Q2(T ) ≥ Q2(0) exp

{
W2(0)

η

}
= B2

which guarantees that the second vehicle never collides with the leading

vehicle, and the positive lower bond is B2.
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• For the third vehicle with α3 = β3 = η, the gap Q3 satisfies:

Q3(T ) ≥ Q3(0)
Q2(T )

Q2(0)
exp

{
W3(0)

η

}
= B3

where the gap for the second vehicle Q2(t) has been proved positive for

any time T no-negative. Thus, the third vehicle never collides with the

second vehicle in a critical scenario.

• · · ·

• For the last vehicle n, we can similarly prove that it will not collide with

its leading vehicle n− 1. Thus, by using this induction method, the fast

system (4.15) is surely collision-free.

(ii) Next we analyze the perturbation terms in equation (4.14) and evaluate their

impact in the collision-free property. As mentioned earlier, collisions are only

possible when the gaps are very small 0 < {qj}j=2,3,··· ,n � 1 . Thus, we study

the perturbation terms only when the gaps are less than the predetermined

thresholds.

• For the second vehicle, the perturbation term is in bold as follows:


q′2 = w2

w′2 = −ηw2

q2
− ε

τ
(V(εq2) +w2− c), c ≥ 0

The threshold for q2 is (1b) 0 < εq2 ≤ V−1(w2) , which defines a corner

area in Quadrant IV enclosed by the curve q2 = 0, w2 ≤ 0 and the curve

V(εq2) + w2 = 0. Then the perturbation term satisfies:

− ε
τ

(V(εq2) + w2 − c)
(1b)

≥ − ε
τ

(0− c) ≥ 0
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Take the differential of trajectory w2(q2):

dw2

dq2

=
w′2
q′2

= − η
q2

+
1

w2

(
− ε
τ

(V(εq2) + w2 − c)
) (1a)(1b)

≤ − η
q2

(4.18)

The slope along the trajectory w2(q2) is negative, which is steeper than

that of the fast system (4.15). The comparison of the slopes is demon-

strated in Figure 4.6. Once a trajectory w2(q2) enters the threshold area

(defined by 0 < εq2 ≤ V−1(w2)), it will cross the trajectories of the fast

system nearby to the upright direction. As proved earlier, the fast system

is collision-free, and its trajectories never go across the collision boundary

dj = 0. Therefore, it is easy to observe that the original system is more

conservative than the fast system under the critical circumstance.

di

wi

0

system 1

system 2

slopes

Figure 4.6: Slope comparison. System 1 (dashed green line) represents the fast system
(4.15) and system 2 (solid blue) represents the original car-following system (4.14).

• For the third vehicle, the perturbation term is in bold as follows:


q′3 = w3

w′3 = ηw2

q2
− ηw3

q3
+ ε

τ
(V(εq2)−V(εq3) +w3)
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It is known that the second vehicle never collide, i.e. q2(T ) > 0, so we set

the threshold for gap q3 as (1c) 0 < q3 ≤ q2. Otherwise, collisions can not

occur. Then the perturbation term satisfies:

ε

τ
(V(εq2)− V(εq3)− w3)

(1c)

≥ ε

τ
w3

(1a)

≥ 0

Take the differential of trajectory w3(q3):

dw3

dq3

=
w′3
q′3

=
ηw2

w3q2

− η

q3

+
1

w3

( ε
τ

(V(εq2)− V(εq3)− w3)
)

(1a)(1b)

≤ ηw2

w3q2

− η

q3

(4.19)

The slope along the trajectory w3(q3) is negative and steeper than that of

the fast system. Thus, we could infer that the third vehicle never collide

based on the similar analysis and comparison of slopes in Figure 4.6.

• · · ·

• For the last vehicle n, we can prove the same results. Thus, the original

system (4.14) of the modified GHR model is collision-free.

In summary, the modified GHR model has been proved collision-free on a straight

road.

Intelligent driver model The analysis for the intelligent driver model is similar

to that in the previous section. We reform the formula of the intelligent driver

model under the critical traffic scenario (1a) wj < 0, and compare it with the proved

collision-free fast system.
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The full system for the intelligent driver model can be simplified as:



ḋ2 = w2

ẇ2 = a

[
−1 +

(
v2
V0

)δ
+
(
s∗(v2,−w2)

d2

)2
]

ḋ3 = w3

ẇ3 = a

[(
v3
V0

)δ
−
(
v2
V0

)δ
+
(
s∗(v3,−w3)

d3

)2

−
(
s∗(v2,−w2)

d2

)2
]

· · ·

(4.20)

As mentioned earlier, collision are only possible when the gaps are very small 0 <

dj � 1, so we study the system only when the gaps are less than the predetermined

thresholds.

• For the second vehicle, we only consider the circumstance of small gap with

(2b) d2 < min(1, d0/2). The acceleration of the speed difference can be bounded

from below:

ẇ2
(4.20)
= a

−1 +

(
v2

V0

)δ
+

(
d0 + v2T − v2w2/2

√
ab

d2

)2


(2b)

≥ a

−1 +

(
s0

2d2

+
s0

2d2

+
v2T

d2

+
v2w2/2

√
ab

d2

)2


(2b)

≥ a

( s0

2d2

)2

+

(
v2w2/2

√
ab

d2

)2


(2b)

≥ amin

(
s2

0

4
,
v2

2

4ab

)
1 + w2

2

d2

≥ amin

(
s2

0

4
,
v2

2

4ab

) −2w2

d2

= −β2
w2

d2

,

(4.21)

where the right-hand-side is a formula of fast system as in (#) by introducing
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α2 = 0 and β2 = 2amin
(
s20
4
,
v22
4ab

)
. Take the differential of trajectory w2(d2):

dw2

dd2

=
ẇ2

ḋ2

(4.21)(2a)

≤ −β2

d2

(4.22)

The slope along the trajectory w2(d2) is negative and steeper than that of the

fast system. Thus the second vehicle never collides based on the analysis and

comparison of slopes in Figure 4.6.

• For the third vehicle, we only consider the circumstance of small gap with

(2c) d3 < min(d2, 1, d0/2). The acceleration of the speed difference can be

bounded from below:

ẇ3
(4.20)
= a

( v3

V0

)δ
−
(
v2

V0

)δ
+

(
d0 + v3 − v3w3/2

√
ab

d3

)2

−
(
d0 + v2 − v2w2/2

√
ab

d2

)2


(2a)

≥ a

(d0 + v3 − v3w3/2
√
ab

d3

)2

−
(
d0 + v2 − v2w2/2

√
ab

d2

)2


(2c)

≥ 4a

[(
d0 + v3 − v3w3/2

√
ab

d3

)
−
(
d0 + v2 − v2w2/2

√
ab

d2

)]
(2c)

≥ 4a

(
d0 + v3

d3

− d0 + v2

d3

+
−v3w3/2

√
ab

d3

− −v2w2/2
√
ab

d2

)
(2a)

≥ 4a

(
−v3w3/2

√
ab

d3

− −v2w2/2
√
ab

d2

)

= α3
w2

d2

− β3
w3

d3

(4.23)

where the right-hand-side is also a formula of the fast system as in (4.15) by

introducing α = 2v2
√
a√

b
and β3 = 2v3

√
a√

b
. Take the differential of trajectory
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w3(d3):

dw3

dd3

=
ẇ3

ḋ3

(4.23)(2a)

≤ α3
w2

w3d2

− β3
1

d3

(4.24)

The slope along the trajectory w3(d3) is negative and steeper than that of the

fast system. Thus the third vehicle never collide based on the analysis and

comparison of slopes in Figure 4.6.

• · · ·

• For the last vehicle n, we can prove the same results. Thus, the original system

(4.20) of the intelligent driver model is collision-free.

Traffic on a ring road

There are n vehicles on a ring road with the same notations as on a straight road.

Unlike the straight road scenario, there is no leading vehicle moving at a constant

c, and each vehicle can be influenced by the rest of vehicles rather than only the

leading vehicles. Despite the increased complexity of the ring road scenario, similar

mathematical analysis can be applied to prove the collision-free property.

The full system of n vehicles can be expressed in terms of xi and vi, which can
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be also written in terms of di and wi:

ẋ1 = v1

v̇1 = faccel(v1, vn, d1)

ẋ2 = v2

v̇2 = faccel(v2, v1, d2)

. . .

=⇒



ḋ1 = w1

ẇ1 = faccel(vn, vn−1, dn)− faccel(v1, vn, d1)

ḋ2 = w2

ẇ2 = faccel(v1, vn, d1)− faccel(v2, v1, d2)

· · ·

(4.25)

The idea behind the proof is mathematical induction. Specifically, the proof can

be divided into three steps:

(i) The vehicles are on a ring road, so the sum of the gaps is equal to the length

of road L all the time:

d1(t) + d2(t) + · · ·+ dn(t) = L

The averaged gap is L/n. At time t0, there is at least one vehicle k0, whose

headway is above the averaged gap L/n (Pigeonhole Principle). Since the

vehicle speed is bounded by the maximal speed V0, there must exist a time

period ∆ = L/nV0 such that the vehicle k0 will not collide with its leader.

Thus, vehicle k0 is collision-free during time [t0, t1], where t1 = t0 + ∆.

(ii) Given a collision-free vehicle k0 is collision-free, we intend to show that its

following vehicles are all collision-free during the period [t0, t1]. Firstly, we

consider its following vehicle k0 + 1. For any time t ∈ [t0, t1], the following

vehicle k0 + 1 must stay in one of the following circumstances:
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(a) wk0+1 ≥ 0 or dk0+1 ≥ min(dk0 , d0/2, 1): there is no need to worry about

collisions between vehicle k0 and k0 + 1. There is because positive speed

difference wk0+1 is increasing the gap dk0+1, and that collisions cannot

occur with the gap dk0+1 larger than the predetermined threshold.

(b) wk0+1 < 0 and 0 < dk0+1 < min(dk0 , d0/2, 1): according the proof in

§4.3.2, the slope of trajectory wk0+1(dk0+1) is negative and steeper than

that of the fast system (#), which has already shown collision-free. Thus,

the vehicle k0 + 1 never collides based on the comparison of slopes in

Figure 4.6.

By mathematical induction, we can repeat this process and show that all ve-

hicles are collision-free during the period [t0, t1].

(iii) By repeating step 1 and 2, we can show that the system is collision-free during

[t1, t2], [t2, t3], · · · . The length of each period is ∆ = L/nV0

(iv) It is obvious ∆ + ∆ + ∆ + · · · = ∞, so the traffic system is theoretically

collision-free forever.

4.3.3 Numerical results

The main goal is to study the collision-prone and collision-free behaviors of car-

following models: the optimal velocity model and the full velocity difference model

are shown collision-prone independent of parameter settings through the phase por-

trait analysis in §4.3.1; while the modified GHR model and the intelligent driver

model are shown collision-free through mathematical analysis in §4.3.2.

In this section, we carry out the traffic simulations to test the consistency of
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collision behaviors to the theoretical analysis. The parameter settings are based on

the calibration results in §4.2. In addition, we investigate how the numerical errors

potentially influence the collision behaviors, and discover that the numerical errors

can introduce collisions even though the model does not support them.

Monte Carlo simulation: counts of collisions

We put 28 vehicles on a ring road of 350m length: the initial positions and velocities

are randomly picked according to the uniform distribution; with the same initial

conditions, the vehicles will move 20 seconds based on the four car-following models.

In order to make the results representative of the collision behaviors, we implement

the Monte Carlo simulation with 500 iterations. We count the number of collisions

by analyzing the vehicle trajectories, and the resulting distribution is in Figure 4.7.

• The averaged number of collisions in the optimal velocity model reaches as

many as 25.85, while it is only 3.87 for the full velocity difference model.

This is consistent to our phase portrait analysis in §4.3.1. For the full velocity

difference model, it is uncommon to observe collisions in simulation if the initial

conditions are not extremely critical. This is why this model is often claimed

to be collision-free in simulation [73].

• There are a few collisions in the modified GHR model and the intelligent driver

model, even though they are collision-free theoretically. This is because the

numerical errors bring collisions that are not supposed to exist. Thus, the col-

lision behaviors in simulation cannot used to conclude whether a car-following

model is collision-prone or collision-free.
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Figure 4.7: Trajectories of car-following models. The x-axis represents the bins of collisions
observed, and the y-axis represents the counts of collision in percentage.
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Why can collisions occur in simulations of collision-free models?

It is an interesting phenomena that collisions still numerically exist in the theoreti-

cally collision-free car-following models. An intuition for this comes from the phase

portraits in Figure 4.4: when the trajectory gets close to the y-axis (di = 0), it is

easy to be pushed across the y-axis by numerical errors. Therefore, we are interested

in studying whether the collisions in the simulations of collision-free car-following

models could diminish or even disappear with finer meshes of time.

Monte Carlo simulation The basic setting is the same: there are28 vehicles

on a ring road of 350m length with randomly picked initial conditions. We run

the numerical scheme for different time step h, and repeat this process with 4000

iterations for different initial conditions. The meshes of time are getting finer and

finer according to the following table:

Total time T 20s 20s 20s · · · 20s
Mesh points n 400 800 1200 · · · 6000
Time step h = T/n 0.0500s 0.0250s 0.0167s · · · 0.0033s

Table 4.3: Setting of time steps in Monte Carlo simulation

There are two ways to record the trajectories of vehicles, and thus there are two

ways to count collisions respectively:

(i) Update the positions of vehicles every h time, but only record the trajectories

at the fixed time points [0.05s, 0.10s, 0.15s, · · · , 20s], i.e. the recording time

interval is ∆T = 0.5s. Then the number of collisions are counted based on the

trajectories that are linearly interpolated among these 400 fixed time points.

(ii) Update the positions of vehicles every h time, and record the trajectories every
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time step until 20s [h, 2h, 3h, · · · , nh = 20s], i.e. the recording time interval is

∆T = h. Then the number of collisions are counted based on the trajectories

that are linearly interpolated among these n = 20/h time points.

The main difference between the two methods above is the time interval ∆T for

recording trajectories and measuring collisions. The intuition tells that the more

frequent we check vehicles’ positions, the more collisions we observe. The Monte

Carlo simulations are implemented in the modified GHR model with Euler explicit

scheme, and the results are shown in Figure 4.8.
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Figure 4.8: The relationship of collision counts over time step h. The red dots represent the
simulation results, and the blue line is a fitted line from linear regression.

The simulation results are valid to show that the collisions caused by the numer-

ical errors will diminish with smaller time step h. Thus, by choosing a sufficiently

small time step h in simulations will effectively avoid these unrealistic collisions from

the collision-free car-following models. In Figure 4.8, we also observe that the num-

ber of collisions is approximately proportional to the exponentiation of time step h:

for the first counting method with ∆T = 0.05s, Counts ∝ O(h2), and for the second

counting method with ∆T = h, Counts ∝ O(h1).

Even thought it is hard to figure out how the collisions are related to numerical
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errors, we guess that they are proportional to the truncation error of the Euler explicit

scheme. The local truncation error of Euler explicit scheme is h2, which coincides

with the first counting method, and the global truncation error is h1, which also

coincides with the second counting method. An descriptive explanation might be:

for a numerical scheme with accuracyO(hp), the local truncation error is proportional

toO(hp+1)), which directly affects the collision behaviors in one time step h. Then by

checking M points in the vehicle trajectories, we could observe MO(hp+1) collisions

in the simulations. For the first counting method with time interval ∆T = 0.05, we

check M = 400 equally distributed points along the trajectories, and thus observe

around 400O(hp+1) = O(hp+1) in simulations. For the second counting method with

time interval ∆T = h, we check n = 20/h equally distributed points along the

trajectories, and thus observe around 20/hO(hp+1) = O(hp).

Investigation for Euler explicit scheme In the previous part, we come up

with a guess that the number of observed collisions is related to the accuracy of

the numerical scheme. The general proof should be complicated and beyond the

scope of this paper. In this part, we would like to provide a brief discussion about

Euler explicit scheme in a simplified traffic situation. Here we only consider the

second counting method with a time interval ∆T = h, and show that the number of

collisions is proportional to O(h1).

We only put two vehicles on a straight road with the leading vehicle moves at

a constant speed c, and study what (d, w) values can generate collisions. In order

to have a collision within a time step h, the following relation d(t) + w(t)h < 0

must hold. This relation sketches a triangle region, and a collision will definitely

occur within one time step h if current (d, w)) falls into it (red checks in Figure 4.9).

In addition, any initial conditions (d(0), w(0)) whose trajectory interacts with this
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triangle area will definitely generate a collision, too. Thus, the (d, w) values that

generates collisions are in the triangle region plus the supplementary region (red

diamonds in Figure 4.9).

d

w

(V0 � c)h

V
0
�

c

0

Figure 4.9: Region partition of initial condition (d,w): the red checks and diamonds area is
collision-prone; the blue lines area is collision-free.

It is observed that the area of this (d, w) region depends on the picked time step

h, so we could study how the collisions diminishes by studying how the region area

shrink when time step h decreases. The regions are sketched in red for different time

step h in Figure 4.10. By linear regression, the region area is proportional to O(h1).

4.3.4 Discussion

We aim to study the collision behavior of the car-following models. Specifically, we

studied four well-known continuous car-following models: the optimal velocity model,

the full velocity difference model, the modified GHR model, and the intelligent driver

model. The parameter setting is based on the model calibration using historical

traffic data. The optimal velocity model and the full velocity difference model has

been shown collision-prone independent of parameter settings through the phase

portrait analysis in §4.3.1, while the modified GHR and the intelligent driver model
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Figure 4.10: (d,w) collision region for different time step h (h1 : h2 : · · · : h8 : h9 = 1 : 2 : · · · : 8 :
9).

are proved to be collision-free through mathematical analysis in §4.3.2.

In addition to the theoretical analysis of the collision property, we carry out ex-

periments to simulate the trajectories of the car-following models. The simulation

results are consistent with our theoretical analysis except that numerical errors intro-

duce collisions that the model does not support. More simulations are implemented

to show that the number of the observed collisions is proportional to the truncation

error of the numerical scheme.

The study of collision behavior provides a theoretical reference for the car-

following models. The collision behavior will be taken into consideration when de-

signing new models or studying artificial intelligence. In the future work, we will

combine these collision-free models with lane-changing model to construct a complete

traffic system.



Chapter Five

Data assimilation for traffic flow

estimation
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5.1 Introduction

Estimating the traffic state on a network of highway is a challenging problem. With

the availability of stationary sensor data, traffic cameras, and GPS cell phone data,

more and more data can now be used to predict car density, velocity and travel

time in real time. Predicting traffic involves (i) a model that provides the traffic at

later times based on given initial condition and (ii) techniques to incorporate and

assimilate actual traffic-state observations into the initial conditions to improve the

model forecast. To formulate a framework for estimating traffic flow, we therefore

need a mathematical model of traffic flow, a sense of what types of observations are

available, and a scheme for assimilating these observations into the model. We now

discuss these three ingredients in turn.

Mathematical models for traffic flow come in many different flavors. Common

models range from cellular automata or microscopic car-following models for indi-

vidual cars to macroscopic discrete or partial-differential equation (PDE) models for

car densities, velocities, and possibly other quantities [39, 54, 63]. Knowledge of the

positions and velocities of all cars on a road or road network is required to success-

fully employ a microscopic model. Since most of this information is not well known,

it is typically not feasible to use such models for traffic flow prediction. Thus,

macroscopic models are used more frequently for traffic estimation. A commonly

used minimal macroscopic PDE model is the Lighthill–Whitham equation [54]. This

model is discussed in more detail in §2.

Traffic-flow observations come from a variety of sources and are available as

functions of time. Stationary sensors, such as induction loops or cameras, provide

the flux, average velocity, and local density of cars that move past the fixed sensor
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location. GPS data from cell phones or navigation devices, on the other hand,

provide information about the positions and velocities of individual cars that move

with the traffic flow. We refer to observations that come from a fixed observation

location as Eulerian observations and to observations that come from parcels (cars)

that move with the traffic flow as Lagrangian observations.

There are a number of different data-assimilation techniques available that help

incorporate traffic observations at discrete times into an underlying model. Most of

these are based on a Bayesian statistics analysis that treats the forecast from the

model as the prior distribution and then calculates a posterior distribution based on

the available observations. Commonly, traffic estimators employ ensemble Kalman

filters for this calculation. The main limitation of the existing data-assimilation

techniques stems from the fact that sensor and GPS data require very different

assimilation approaches: it is therefore technically involved to use existing techniques

to assimilate Eulerian and Lagrangian observations simultaneously.

The main contribution of our research is to propose a method that provides

an efficient alternative approach to the assimilation of Lagrangian GPS data, whilst

keeping the ability to simultaneously assimilate Eulerian sensor data. In this part, we

will discuss the efficacy and accuracy of the proposed method for assimilating sensor

and GPS data in traffic flow. Specifically, we will demonstrate that the proposed

algorithm is robust with respect to different traffic scenarios and its implementation

using ensemble Kalman filter or particle filter. Thus, our method provides a viable

alternative to existing data assimilation techniques in their ability to assimilate both

Eulerian and Lagrangian data.
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5.2 Underlying macroscopic traffic model

We use the viscous Lighthill-Whitham equation as the underlying core macroscopic

mathematical model of traffic flow. The velocity v and density ρ is linearly related

by the Greenshields function.

ρt + (ρVG(ρ))x = ερxx, (5.1)

VG(ρ) = vmax

(
1− ρ

ρmax

)
, (5.2)

where vmax is the maximal free-flow velocity. Traffic jams manifest themselves as

shock waves in (5.1), see Figure 5.1, which travel with characteristic speed c, where

positive speeds correspond to propagation of traffic jams against the traffic flow.
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Figure 5.1: Evolution into a shock in the viscous Lighthill–Whitham equation (5.1). The shock
is moving backward with gradually decreasing amplitude.

Given a solution ρ(x, t) of (5.1), we can recover the movement of individual cars.

Indeed, if (pi(t))i=1,2,···Nc denote the positions of Nc individual cars as functions of

time, then these functions satisfy the ordinary differential equations

dpi
dt

= V (ρ(pi, t)), i = 1, 2, · · · , Nc, (5.3)

which can be solved to provide car positions for all times given their initial locations

at t = 0.
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The macroscopic model (5.1) can be used to describe normal traffic flow in the

absence of ramps, traffic lights, and construction zones. In §2, we have added ad-

ditional terms to the model (5.1) to capture the effects of on- and off-ramps, traffic

lights, road construction sites, and traveling bottlenecks. The modifications allow

us to simulate common traffic scenarios and therefore enable us to better test and

validate the data assimilation strategies proposed here. In the next section, we will

focus on (5.1) but stress that the techniques outlined in this section will also apply

to the modifications of Lighthill-Whitham model.

5.3 Eulerian and Lagrangian observations

There are two main categories of observation models in traffic state estimation: one

is Eulerian observation in which data is collected from stationary sensors on the

road such as cameras, induction loops, and radar; the other type is Lagrangian

observation, which includes the position and velocity data from moving vehicles

equipped with GPS devices or cell phones.

As explained earlier, it is technically involved to use existing techniques to as-

similate Eulerian and Lagrangian observation simultaneously. If we use a partial

differential equation for the car density ρ(x, t) at position x and time t as our un-

derlying model, then sensor data produce estimates for the car density ρ(x0, t) at

the sensor location x0, which can be compared directly to the prediction made by

the model. GPS data, on the other hand, are Lagrangian in nature, that is, they

provide the location x(t) and velocity v(t) of an individual car as it moves with the

traffic but cannot produce an estimate of the car density at that moving location.

In particular, such data cannot be assimilated directly into a density-based model.
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Two approaches have been considered to accomplish the assimilation of La-

grangian data. First, the underlying model can be written in terms of Lagrangian

coordinates [79, 80] that move with the speed of the underlying cars, which makes

it possible to assimilate Lagrangian observations. However, it is then much more

difficult to assimilate Eulerian observations (such as sensor data); moreover, the

approach outlined in [79, 80] was applied only to certain types of Eulerian observa-

tions (namely the velocities of cars measured at fixed sensor locations, but not the

densities or fluxes recorded at these fixed locations). Second, one can convert the

partial differential equation for the density to an equation for the velocity by in-

verting the density-velocity function V (ρ) and then assimilate velocity observations

[76, 77]; however, this inversion may not be possible for other models.

We now introduce our proposed approach that can efficiently assimilate Eulerian

and Lagrangian data simultaneously.

5.3.1 Continuous observation models

Eulerian observation data: Sensors deployed at fixed positions along roads are

capable of counting the number of vehicles passing by as well as reporting the flux

at their location as a function of time. Thus, if there are Ns sensors positioned at

the fixed locations (qi)i=1,2,··· ,Ns on a ring road T, then the complete system of traffic

model (M) and Eulerian observation operators (D) is given by

(M) ρt(x, t) + ∂xϕ(ρ(x, t)) = ερxx(x, t), x ∈ T

(D) hϕ(ρ) := (ϕ(ρ(qi, t)))i=1,2,··· ,Ns .

(5.4)
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An advantage of Eulerian sensor data is their high accuracy: modern traffic sensors

are so sensitive that the probability of missing or over-counting a vehicle is below

0.1% ([1]). However, the Eulerian data is expensive to collect, and fixed locations

of sensors limit the observation coverage. Note also that the Eulerian observation

function hϕ(·) maps the vehicle density ρ to the vehicle flux ϕ(ρ) and is therefore

typically nonlinear: the nonlinearity of the observation function will influence the

efficacy of data assimilation, especially for the ensemble Kalman filter, and requires

special treatment which will be discussed in §5.4.2.

Lagrangian observation data: Lagrangian observations consist typically of the

positions and velocities of moving vehicles collected by GPS devices or cell phones.

If there are Nc cars equipped with these devices, and their positions and velocities

are denoted by (p, v) := (pj, vj)j=1,2,··· ,Nc , then the complete system of the traffic

model (M), capable of tracking the macroscopic traffic density and the positions of

the Nc individual cars, and the Lagrangian observation operators (D) is given by

(M)


ρt(x, t) + ∂xϕ(ρ(x, t)) = ερxx(x, t), x ∈ T

ṗj(t) = vj(t) = V (ρ(pj(t), t)), j = 1, 2, · · · , Nc

(D)


hp(p, v) = p

hv(p, v) = v.

(5.5)

Thus, in contrast to previous methods for assimilating Lagrangian data that

relied on its reformulation in Lagrangian coordinates or reshaping the macroscopic

traffic model in terms of velocity or spacing [79, 80], our approach adds the governing

equations for the positions of individual cars to the macroscopic model by exploiting

that our constitutive law relates density and velocity.
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The main advantage of Lagrangian data is the broad coverage of traffic states as

the tracked vehicles travel along the road. The disadvantage is that density informa-

tion is not collected directly. Furthermore, the observation noise of Lagrangian data

is relatively large (see below for details) and depends, for instance, on the carrier’s

signal and weather conditions.

Eulerian and Lagrangian observation data: We now outline how Eulerian and

Lagrangian data can be assimilated simultaneously by concatenating the systems

(5.4) and (5.5) that we introduced above. The resulting system for the traffic flow

model (M) and the observation operator (D) is given by

(M)


ρt(x, t)

ṗj(t)

vj(t)

 =


ερxx(x, t)− ∂xϕ(ρ(x, t))

V (ρ(pj(t), t))

V (ρ(pj(t), t))

 j = 1, 2, · · · , Nc

j = 1, 2, · · · , Nc

(D)


hϕ(ρ)

hp(p, v)

hv(p, v)

 =


(ϕ(ρ(qi, t)))i=1,2,··· ,Ns

p

v

 .
(5.6)

The framework proposed in (5.6) is capable of assimilating both Eulerian sensor and

Lagrangian GPS data as it is a closed system for the density ρ and the locations and

velocities of the Nc vehicles from which GPS data are gathered. We note that we

will consider Nc to be fixed but emphasize that our framework allows this quantity

to depend on function of time as long as it changes slowly compared to the time

scale over which GPS data are collected.

Observation errors: We assume that the observation errors for sensor, GPS po-

sition, and GPS velocity data are independent and normally distributed with zero
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mean. As mentioned above, the observation noise ηϕi for sensor data has a variance

of 0.1%ϕ(qi, t). Based on the current accuracy of GPS data, we assume that position

and velocity measurements have errors with standard deviation of 5.12m ([35]) and

0.0707m/s ([58, 62]), respectively. Using these assumptions, the covariance matrix

of the observation errors can be written as

R(t) =


0.1% (ϕ(qi, t))i=1,...,Ns 0 0

0 (5.12m)2 INc 0

0 0 (0.0707m/s)2 INc

 , (5.7)

where IN denotes the N ×N identity matrix.

5.3.2 Discretized observation models

We now discuss the numerical implementation of the continuous scheme (5.6), which

is obtained by discretization in space and time. Recall that we consider a ring road

T of length L.

First, we consider the discretization of the traffic model (M) given by


ρt(x, t)

ṗj(t)

vj(t)

 =


ερxx(x, t)− ∂xϕ(ρ(x, t))

V (ρ(pj(t), t))

V (ρ(pj(t), t))

 j = 1, 2, · · · , Nc

j = 1, 2, · · · , Nc.

(5.8)

For the spatial discretization, we pick a large integer M , define a spatial step size

∆x := L/M , and choose M consecutive mesh points xm ∈ T that are equally spaced

along the ring road with distance ∆x. Time is discretized by choosing a small positive

time step ∆T and evaluating solutions at times t = n∆T for integers n ∈ N.
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The traffic state at time t = n∆T consists of the densities at each mesh point

xm ∈ T as well as the GPS positions and velocities of tracked vehicles and is therefore

given by

X(t) := [ρ(x1, t), . . . , ρ(xM , t)︸ ︷︷ ︸
densities

, p1(t), . . . , pNc(t)︸ ︷︷ ︸
GPS positions

, v1(t), . . . , vNc(t)︸ ︷︷ ︸
GPS velocities

]T . (5.9)

The discretized system obtained from solving (5.8) numerically can then be written

as

X(t) = f(X(t−∆T );θ(t−∆T )), (5.10)

where θ(t) denotes system parameters, which may be constant or vary in time. The

function f is obtained using the following numerical schemes. First, we discuss

how we discretize the viscous Lighthill–Whitham equation for the density ρ(x, t)

that appears in (5.8): for periodic boundary conditions, we approximate the spatial

derivatives in the viscous Lighthill–Whitham equation for the density ρ(x, t) using

spectral differentiation matrices in physical space as outlined in [71, (3.10) in §3]; for

non-periodic boundary conditions, we discretize the spatial derivatives using finite

differences. Next, we describe how we evaluate the equations for the positions and

velocities (pj, vj) that appear in (5.8): to determine the values ρ(pj, t) of the density

at arbitrary positions pj, we interpolate ρ from its known values ρ(xm, t) at the

mesh points xm using trigonometric interpolation ([40]). Finally, we integrate the

resulting system of differential equations from time t−∆T to time t using a third-

order Runge–Kutta method.

We now move to the observations. Using the observation errors introduced above,
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Eulerian and Lagrangian observations can be written as

Y(t) = h(X(t)) + η(t), η(t) ∼ N (0,R(t)), (5.11)

where h(X(t)) with X(t) given in (5.9) is defined via

h(X(t)) := (ϕ(ρ(q1, t)), . . . , ϕ(ρ(qNs , t)), p1(t), . . . , pNc(t), v1(t), . . . , vNc(t))
T . (5.12)

In order to evaluate ρ(qi, t) at the location qi of a sensor, we can either arrange

that qi coincides with a mesh point xm or again use trigonometric interpolation

([40]). We remark that the expression in (5.12) can be modified easily to account for

the situation where we have observations from sensors only or from GPS data only

available for data assimilation.

5.4 Ensemble methods

The goal of data assimilation is to accurately predict the states and parameters of a

numerical model by incorporating available information obtained from observations

into the model. In our work, this technique is carried out to estimate the traffic

states and uncertain parameters in the traffic flow models described above. A general

introduction to data assimilation and filters is provided in this section.

We first review two common sequential data assimilation methods, the particle

filter (PF) and the ensemble Kalman filter (EnKF). The goal of each of these meth-

ods is to estimate the Bayesian prior and posterior probability distributions using an

ensemble of possible states, as they change in time. First, define the state of interest

to be X, and the observation Y to be a noisy function of the state: Y = h(X) + η,
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where the observation error is normally distributed η ∼ N (0,R) with N (·, ·) denot-

ing the Gaussian distribution. Then, we are interested in estimating the posterior

probability distribution p(X|Y) given a prior distribution p(X) based on our current

knowledge of the state, and a likelihood distribution p(Y|X) of the observations Y

given the state X, based on our knowledge of the noise in the observations. Bayes’

rule gives the true posterior distribution in this case:

p(Xt|Y1:t) ∝ p(Yt|Xt)

∫
p(Xt|Xt−1)p(Xt−1|Y1:t−1) (5.13)

where p(Y|X) is Gaussian likelihood with Y|X ∼ N (h(X),R). In both the PF and

EnKF methods, these distributions are approximated by a weighted ensemble of the

state X given by {Xi, wi}Nei=1 which implies the distribution

Ne∑
i=1

wiδ(X−Xi) with
Ne∑
i=1

wi = 1 , (5.14)

where δ(X−Xi) is the Dirac delta centered at Xi. Generally for the EnKF, wi =

1/Ne. Between the observation times, the weights are kept fixed and the state

variables are evolved according to the dynamics of the system. The main difference

between the two methods comes at the time when observations are available. This

is described in the next two subsections. We will use the notation that {Xf
i , w

f
i }Nei=1

is the ensemble from the prior distribution p(X) whereas {Xa
i , w

a
i }Nei=1 is from the

posterior distribution p(X|Y).

5.4.1 Particle filter

The posterior is approximated by updating the weights but leaving the particle

positions fixed, i.e., Xa
i = Xf

i := Xi. The updated weights are obtained by applying
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Bayes’ rule to the weights as follows:

wai =
p(Y|Xi)w

f
i∑Ne

j=1 p(Y|Xj)w
f
j

, (5.15)

that is, the updated weights are found by multiplying the likelihood of that particle

by the previous weight and normalizing to sum to 1. This is the simplest imple-

mentation of the PF, also known as sequential importance sampling ([27, 34]). For

a more complete derivation of the particle filter and the proposal distributions, see

[26, 66, 68].

Due to the finite nature of the approximation and the recursive updating of the

weights, sequentially applying this algorithm eventually leads to one particle with

very high weight, while the rest of the particles have almost zero weight (so-called

“filter divergence” or “weight collapse”.) To prevent the weights of the ensemble con-

centrating on a single state, various resampling methods for the ensemble states may

be used ([74]). The basic idea behind each of these methods is to monitor when a pre-

determined threshold is hit (for example, when the “effective sample size” becomes

small ([51])), and to then resample the particles from the discrete approximation

of the posterior distribution and reset all weights to 1/Ne. We approximate the

effective sample size to be

Neff ≈
1∑Ne

i=1w
2
i

=


Ne for wj = 1/Ne

1 for wj = δij

(5.16)

as in [51]. We will apply resampling when Neff < N thresh
eff for a predetermined thresh-

old N thresh
eff that will typically be a small fraction of the total number of particles

Ne.
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One major drawback of the PF is that it has been shown to fail in high dimen-

sions ([67]). Thus, in the case where the state of interest is a spatially-discretized

function over some domain, the PF is intractable. However, when the state dimen-

sion is small enough and the number of particles is large enough, the PF can provide

an accurate approximation to the exact Bayesian posterior distribution. This is es-

pecially useful if this distribution is skewed or multimodal, which is often the case

when the dynamical system governing the state is nonlinear.

5.4.2 Ensemble Kalman filter

Like the PF, the EnKF [28, 29] employs an ensemble of state vectors {Xi}i=1...Ne to

represent the posterior distribution; however, unlike the PF, the ensemble members

are equally weighted for the entire assimilation window. Instead of updating the

weights at analysis times, the members themselves are updated according to an

ensemble approximation of the traditional Kalman filter update step, given here by

the so-called perturbed observation EnKF [15, 29, 43]

Xa
i = Xf

i + K(Y −HXf
i + ηi), (5.17)

K = PfHT
(
HPfHT + R

)−1
, (5.18)

where Xf
i is the forecast of the ith ensemble member, Xa

i is the ith updated (analysis)

ensemble member, H is the observation operator, K is the Kalman gain matrix, R

is the covariance of the observation error, and ηi ∼ N (0,R) are the observation

perturbations. Pf is the forecast ensemble covariance given by

Pf =
1

Ne − 1

Ne∑
i=1

(Xf
i − X̄f )(Xf

i − X̄f )T , X̄f =
1

Ne

Ne∑
i=1

Xf
i . (5.19)
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Nonlinear observation function: We note that the update step requires that the

observation operator H is linear. However, the observation function given in (§5.12

equation 5.12) is nonlinear, and we will therefore outline how we adjust the update

step to accommodate the nonlinear observation function. Instead of calculating the

operator H and the covariance matrix Pf separately when estimating the state Xa
i

in (5.17) and (5.18), we follow [56] and treat PfHT and HPfHT as follows as single

entities:

HPfHT =
1

Ne − 1

Ne∑
i=1

(Zf
i − Z̄f )(Zf

i − Z̄f )T , Z̄f :=
1

Ne

Ne∑
i=1

Zf
i , (5.20)

PfHT =
1

Ne − 1

Ne∑
i=1

(Xf
i − X̄f )(Zf

i − Z̄f )T , X̄f :=
1

Ne

Ne∑
i=1

Xf
i , (5.21)

where Zf
i := h(Xf

i ) denotes the ensembles projected into observation space. Simi-

larly, the term HXf
i in (5.17) is replaced by Zf

i .

Localization: There has been a lot of work towards improving the EnKF to make

it feasible for very high dimensional systems; in particular, covariance inflation and

localization have provided significant improvement of the performance of the EnKF

(see [4, 38, 43, 44]). Since the ensemble size is often much smaller than the dimension

of the state, spurious correlation will arise in the sample covariance matrices. Local-

ization is a method in which these spatially long-range correlations are diminished:

in particular, this is often implemented via a Schur product of the sample covariance

matrix and some sort of cutoff matrix.

One common localization method applies an exponential decay function, such

as the Gaspari–Cohn function in [31], to the forecast covariance matrix Pf . In our

formulation of the Kalman gain matrix, the forecast covariance matrix Pf is not
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directly accessible as we provide only HPfHT and PfHT through (5.20) and (5.21),

respectively. As in [44], we could now apply elementwise localization separately to

each of these two matrices: localization of PfHT would account for the assumption

that observations at a given location would only affect the density and car positions

near that location, while localization of HPfHT would correspond to localizing the

effect observations at different positions have on each other.

Alternatively, if we interpret the operator K = (Kij) loosely as a weight matrix

where the (i, j)th entry Kij determines how much the jth entry of the observation

vector affects the ith entry of the state vector, then we can apply localization directly

to the matrix K to ensure that observations at a certain location affect only nearby

states. Specifically, we assume that only mesh points within 0.5 miles of the location

of a sensor are affected by Eulerian observations. We then define an exponential

decay localization function for the jth column of the Kalman gain matrix K via

e−d|xm−(qj+s)| with |xm − qj| < 0.5 miles, (5.22)

where xm is the coordinate of the mth mesh point, qj is the coordinate of the jth

sensor, and d is a decay coefficient that describes the decay rate of the localization

function. Since cars detected by a sensor will have travelled a certain distance s

during time step ∆T , we center the localization at qj + s. Throughout, we use the

parameters d = 0.5 and s = 0.35 miles. We use the same localization function also

for Lagrangian observations: we set d = 1.2 and choose s = 0 as there will be no

time delay for positions and velocities collected from GPS data.

Figure 5.2 shows that applying localization directly to the Kalman gain matrix

turns out to be very similar to applying localization to the forecast covariance matrix.

Indeed, our numerical results show that the observation covariance HPfHT + R is
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Figure 5.2: Comparison of the scaled Kalman gain matrices with localization applied to
the forecast covariance matrix (left) and directly to the Kalman gain matrix (right).

dominated by its diagonal elements: using the notation I for the identity matrix,

we then see that the Kalman gain matrix, with localization applied to the forecast

covariance matrix, can be approximated by the Kalman gain matrix with direct

localization:

(
loc ◦ (PfHT )

) (
I ◦ (HPfHT ) + R

)−1
= loc ◦

(
PfHT

(
I ◦ (HPfHT ) + R

)−1
)

≈ loc ◦
(
PfHT

(
HPfHT + R

)−1
)
.

Inflation: The EnKF is not immune to filter divergence, where the prior ensemble

spans a smaller and smaller space until the observations no longer have any effect

in the analysis step ([4]). The EnKF is prone to artificial collapse of the covariance

matrix. To address this issue, the covariance may be “inflated” before the Kalman

update step is performed. We use two different inflation algorithms for the EnKF.

First, we employ a constant scalar inflation for the simulations of multiple traffic



86

scenarios as the localization algorithm described above does not significantly tighten

the covariance matrix. Second, for the computations with realistic traffic data, we

use adaptive inflation as described in [2, 3].

5.4.3 Parameter estimation

The macroscopic model we utilize may contain parameters whose values are not

known: for instance, the expression (5.2) for the Greenshields velocity function con-

tains the parameters vmax and ρmax, which will generally be unknown.

We briefly describe three approaches for how data assimilation may be used

to estimate parameters in addition to the state of interest. One approach is the

augmented-vector method, in which the parameters to be estimated are appended

to the state vector ([6, 55]) and are updated concurrently. Another approach is the

“separated” method [9], in which the state is updated first, followed by updating the

parameters, using localization on the state and non-global parameters. The third

approach applies a two-stage filter [65] that consists of applying the EnKF to the

state estimate and the PF to the parameters.

There are then several methods that may be used to model the evolution of the

parameters between assimilation steps. The parameters may be kept fixed between

time steps (persistence model, see [23]), but this can lead to degeneracy (sample

attrition) when using PF methods. In [55], the authors suggest an artificial evolution

of parameters between observations, in which the parameter evolution model is given
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by

θt+1 = θt + ξt+1, (5.23)

ξt+1 ∼ N (0,Wt+1), (5.24)

where Wt+1 is a specified covariance matrix. In [78], multiplicative parameters were

estimated by evolving the parameters under a temporally smoothed version of the

persistence model. It was shown that this results in smooth temporal variation of

the parameters, which in turn prevents blow-up of the model.

The augmented-vector approach is used to estimate parameters, and artificial

evolution is introduced to time-varying parameters.

5.5 Numerical results

5.5.1 Performance criteria

In this paper, we use both absolute and relative root-mean-square-errors (RMSE)

as performance indicators to assess different scenarios. The absolute performance

index at time tn is defined as

RMSEA =

√∑M
m=1(ρm(tn)− ρ̂m(tn))2

M
, (5.25)

while the corresponding relative performance index is given by

RMSER =
RMSEA

ρmax

, (5.26)
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where ρmax is the maximal density in the macroscopic model. Here, M is the number

of mesh points used to discretize a given highway stretch, ρm(tn) denotes the true

density at the mth mesh point xm at time tn, and ρ̂m(tn) denotes the corresponding

estimation from data assimilation. For those traffic scenarios with unknown maximal

density ρmax, the denominator in the relative RMSE is replaced by the average∑M
m=1 ρm(tn)/M of the true density.

5.5.2 Traffic scenarios with true underlying model

The main goal of this part is to apply data assimilation to estimate traffic states

and parameters using the theory described in § 5.3 and § 5.4. Specifically, we will

investigate

(i) assimilation of Eulerian and Lagrangian data in dynamic traffic flow;

(ii) efficacy of Lagrangian data assimilation;

(iii) impact of sensor location on data assimilation;

(iv) parameter estimation of traffic flow models.

We note that the first three topics are investigated under the assumption that the

estimator has the exact values of model parameters, and the emphasis is placed on

the capability of traffic state estimators. However, in the last topic, the parameter

estimation is activated with the intent of investigating the capability of parameter

estimators.
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Basic setup: In the simulations outlined in § 5.5.2, the underlying model for the

data assimilation is the same as the model generating the truth; in each case, the

viscous Lighthill-Whitham equation (5.1) is used with additional terms to simulate

various traffic scenarios, to be outlined individually below. We will show that data

assimilation can be used to reduce the error in simulating these scenarios when

imperfect initial data is used. The initial data for density is set as the truth plus

10% noise through Fourier coefficients of the density curve.

For each traffic scenario and associated macroscopic system, we consider traffic

flow on a ring road of length L = 50 miles, which is equally divided into 256 mesh

points for the numerical computation. The truth is generated by initializing the

system with the profile

ρ0(x) = 0.5ρmax + 0.4ρmaxsech(x− L/2), (5.27)

and the parameters

ρmax = 45 cars/mile, vmax = 75 miles/hour, ε = 0.1. (5.28)

For the data assimilation algorithm, the underlying model is taken to be the

same as that generating the synthetic truth; however, the initial conditions for the

ensemble are the noisy density curves after adding noise directly through the Fourier

coefficient. Aside from the fourth investigation, where parameter estimation is em-

ployed, we use the same systems parameters in both the generation of the truth and

the data assimilation.

The Eulerian and/or Lagrangian observations are collected and assimilated every

one minute, and the entire simulation has 180 total updates. For the Eulerian
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observation system, we place Ns = 8 stationary sensors equidistantly along the

ring road. For the Lagrangian observation system, we pick Nc = 15 cars with GPS

devices that are initially equally spaced along the ring road. The ensemble size is 30

for the EnKF and 300 for the PF because of the high dimension of the state vector.

In each of the following investigation, we will outline the traffic scenarios to

be studied and the associated macroscopic models, followed by the results of data

assimilation in estimating the traffic states which emerge.

1. Data assimilation of Eulerian and Lagrangian data First, we demon-

strate that the proposed algorithm can be used to assimilate Eulerian, Lagrangian,

and combined Eulerian-Lagrangian observations into a macroscopic model to accu-

rately estimate traffic states. To test the algorithm, we consider a ring road with

a traffic light for our simulations and assimilate sensor and GPS data. In order to

better evaluate the performance of the algorithm, we will compare the results also

to those obtained by simulating the macroscopic model with the same initial data

and parameter values but without assimilating observations.

The traffic light scenario is described in § 2.3.3 by the following equation

ρt +
(
ρVG (ρ(x, t)) a(x, t;x`1)

)
x

= ερxx,

a(x, t;x`1) =



0.5 (x, t) ∈ (x`1 − Ly1, x`1)× T y1

0 (x, t) ∈ (x`1 − Lr1, x`1)× T r1

(x`1 − Lr1 − x)/Lr1 (x, t) ∈ (x`1 − 2Lr1, x
`
1 − Lr1)× T r1

1 otherwise,

The traffic light is placed in the middle of the road with x`1 = 25. We set the lights
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length (|T y1 |, |T r1 |, |T y1 |) = (10, 190, 400) seconds and response distances (Ly1, L
r
1) =

(1, 0.8) miles in order to generate significantly oscillating traffic flow.

We use the above model and the initial conditions and parameters from the basic

setup to generate the truth. The same system and parameters are used for the

underlying data assimilation model, with perturbed initial conditions.

Results: We carried out simulations using the algorithm described in § 5.3 with

the EnKF and PF for (i) Eulerian observations only, (ii) Lagrangian observations

only, (iii) both Eulerian and Lagrangian observations, and (iv) no observations. The

simulation results based on the traffic lights scenario are shown in Figure 5.3: panels

(a) and (b) contain the results for the EnKF and PF, respectively. The relative

RMSE for the cases (i)-(iii) ranges between 1% and 2% after 3 hours, while the

relative RMSE for case (iv) (no observations) is above 7%. The results suggest that

our algorithm is capable of assimilating any combination of Eulerian and Lagrangian

data and performs well independently of whether we use the EnKF or PF.

0 0.5 1 1.5 2 2.5 3 !
 

No DA
EnKF Sensors
EnKF GPS
EnKF Sensors&GPS

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
el

at
iv

e
R

M
S
E

Time(hours)

(a)

No DA
PF Sensors
PF GPS
PF Sensors&GPS

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.5 1 1.5 2 2.5 3 !
 Time(hours)

R
el

at
iv

e
R

M
S
E

(b)

Figure 5.3: Traffic state estimation in the traffic light scenario. Shown is the relative RMSE for
assimilating no data (yellow dashed dot), Eulerian data (blue dashed), Lagrangian data (magenta
dotted), and both Eulerian and Lagrangian data (green solid) using the (a) EnKF and (b) PF.
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2. Efficacy of Lagrangian data assimilation In practice, either position or

velocity data can be collected through GPS devices. Thus, we are interested in

the efficacy and accuracy of different Lagrangian observations. According to the

statistical data of GPS devices on the internet, the error of position data has a

standard deviation around 5.12 meters [35], while the error of velocity data has a

standard deviation around 0.0707 m/s [58, 62]. In this section, both the EnKF

and PF are used to assimilate three groups of different Lagrangian observations in

a normal traffic scenarios: (1) positions of vehicles, (2) velocities of vehicles, (3)

combined positions and velocities of vehicles.

we simulate a scenario of unimpeded traffic flow, which we model via the viscous

Lighthill-Whitham system (2.10)

ρt + (ρVG(ρ))x = ερxx

with no additional terms added. The initial conditions and parameters are as out-

lined in basic setup.

Results: The simulation results are shown in Figure 5.4. Figure 5.4(a) shows the

relative RMSE of Lagrangian data assimilation for different observation data using

the EnKF. The error for assimilating position data (solid blue) approaches 3.5%, the

error for assimilating velocity data (dashed blue) approaches 0.4% and the error for

assimilating both data (dotted blue) approaches 0.1%. In contrast, Figure 5.4(b)

shows the comparison based on the PF: the error for assimilating velocity data

(dashed magenta) approaches 0.25%, and the errors for assimilating position data

and both data (solid and dotted magenta lines) approach 0.4%. The phenomenon

that assimilating both is less accurate initially is related to the “curse of dimension-
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ality” of the PF: the dimension of observations is doubled when assimilating both

data, but we are unable to correspondingly increase the ensemble size to compensate.
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Figure 5.4: Traffic state estimation comparison for Lagrangian data assimilation based on different
observation data from normal traffic flow modeled by (2.10). Shown is the relative RMSE for the
(a) EnKF and (b) PF, where we assimilate position data only (solid), velocity data only (dotted),
and combined position and velocity data (dashed).

For both the EnKF and PF, we can see that assimilating velocity data is more

accurate compared to assimilating position data, which is consistent with the fact

that velocity data has smaller observation noise than position data. However, the PF

has a stronger tolerance of observation noise since the difference of error between as-

similating velocity data and position data is much smaller compared to those by the

EnKF. In addition, the performance of the EnKF can be improved with combined

observation data, while the performance of the PF is limited by the number of par-

ticles with combined observation data. Therefore, we will use combined Lagrangian

data for EnKF, while only use velocity data for PF in other simulations.

3. Impact of sensor location on data assimilation When the Department of

Transportation installs sensors on the road, an important consideration is where to

install them in order to optimize the amount of traffic information collected by them.

In this section, we are interested in studying the impact of the configuration of sensors
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in the presence of on-/off-ramps or bottlenecks in order to efficiently place sensors

near ramps and bottlenecks. We will use two traffic scenarios for investigation: an

on-/off-ramps scenario and a stationary bottleneck scenario.

The on-/off-ramps scenario is described in § 2.3.2 with the following formula:

ρt + (ρVG(ρ))x = ερxx +
∑
i∈I

ϕon
i (t)f(x− xon

i ) +
∑
j∈J

ϕoff
j (t)f(x− xoff

j ),.

we place one on-ramp at xon
1 = 37.5 miles and one off-ramp at xoff

1 = 12.5 miles on

the road, and set constant flow ϕon
i (t) = 2ρmax for the on-ramp and ϕoff

i (t) = 4ρmax

for the off-ramp. Three comparative experiments are designed where a sensor is

installed (1) at the ramp, (2) 0.5 miles upstream to the ramp, and (3) 0.5 miles

downstream to the ramp.

The stationary bottleneck scenario is describe in § 2.3.4 with the following for-

mula:

ρt +
(
ρVG(ρ)a(x− xb1)

)
x

= ερxx.

We set the bottleneck at xb1 = 25 miles, severity coefficient c = 1 and spread effect

f(x) = 1 − 0.5sech(x). In this scenario, a stationary density bottleneck appears

around xb1. Three comparative experiments are designed where a sensor is installed

(1) at the bottleneck, (2) one mile upstream to the bottleneck, and (3) one mile

downstream to the bottleneck.

Results: The simulation results for ramps are shown separately in Figure 5.5(a)

and 5.5(b), and those for the bottleneck are shown in Figure 5.5(c). In Figure 5.5(a),

it is observed that the performance of data assimilation is improved by moving a
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Figure 5.5: Evaluation of various sensors configurations using the EnKF. Results for different
sensor locations near (a) on-ramps, (b) off-ramps, and (c) bottlenecks are shown, where the solid
curves correspond to sensor locations upstream to the target location, the dotted curves represent
sensors at the target location, and the dashed curves represent locations downstream to the target
location.

sensor from downstream to upstream of the on-ramp. While in Figure 5.5(b), unlike

the on-ramp case, the performance is improved by moving a sensor from upstream

to downstream of the off-ramp. In Figure 5.5(c), it shows that the performance

is improved by moving a sensor from upstream to downstream of the bottleneck.

By studying the shape of density on the ring road, we find that a density bump is

generated gradually upstream to the on-ramp. Therefore, installing a sensor slightly

upstream can provide more traffic information and thereby improve the performance

of the EnKF. In contrast, a density valley is generated gradually downstream to the

off-ramp or the bottleneck, so installing a sensor slightly downstream can provide

more traffic information.

In summary, the locations of sensors do impact the performance of data assimila-

tion when using the EnKF: the simulation results suggest installing sensors upstream

of on-ramps and downstream of off-ramps and bottlenecks. In contrast, the PF per-

forms well regardless of the locations of sensors (simulation results not shown).

4. Parameter estimation of traffic-flow models In previous parts, we showed

that our algorithm successfully assimilates traffic states when the parameters in the
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underlying traffic model are known. However, in practical applications, these pa-

rameters are not known and need to be estimated when traffic data are assimilated.

Hence, we are interested in the efficacy of data assimilation when traffic parameter

estimation is activated. In this part, we consider two traffic scenarios for investiga-

tion: an on-/off-ramps scenario and traveling bottleneck scenario. For each scenario,

the basic setup for generating the truth and the underlying model for data assimi-

lation is the same as in the setup; however, the parameters in the underlying traffic

model for data assimilation are now taken as unknown.

The model for the on-/off-ramps scenario is as described in the 3rd case for on/off-

ramps, and the unknown parameters include maximal density ρmax, maximal velocity

vmax, the fluxes of on-ramp ρon
1 and the fluxes of off-ramp ρoff

1 . These parameters are

taken to be constant throughout the simulation.

The traveling bottleneck scenario is described in § 2.3.5 with the formula:

ρt +
(
ρVG(ρ)a(x− xb1(t))

)
x

= ερxx.

The position of the bottleneck is assumed to move back and forth periodically ac-

cording to the formula xb1(t) = L/2 + L/4 cos(2πt/3). The unknown parameters

include maximal density ρmax, maximal velocity vmax, taken to be constant, and the

bottleneck location xb1(t), which is time-dependent.

Results: As shown in Figure 5.6(a), the relative RMSE by using the EnKF (blue

dashed line) and the PF (magenta dashed line) hovers around 3% and 2%, respec-

tively, after 3 hours of assimilating Eulerian observations. In Figure 5.6(b), the

relative RMSE by using the EnKF (blue dash line) and the PF (magenta dash line)

is around 10% and 20%, respectively, after 3 hours of assimilating Lagrangian ob-
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servations. Observations of the flux, which is the product of density and velocity,

can balance the estimation of ρmax and vmax and thereby provide accurate estimation

with an error below 5%. However, Lagrangian observations, especially of velocity

data, cannot provide as good a balance between density and velocity as Eulerian ob-

servations, and we indeed find that Lagrangian observations are less efficient when

the parameters are unknown. We also see in Figure 5.6(c) and 5.6(d) that the PF

estimator (magenta dashed) is more sensitive when considering the estimated fluxes

as these oscillate around the true flux value near the ramps.
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Figure 5.6: Estimation of traffic states and parameters in the ramps scenario: shown are the
relative RMSE for assimilating (a) Eulerian and (b) Lagrangian observations as well as the results
of parameter estimation for (c) Eulerian and (d) Lagrangian observations. Estimated are the
maximal density ρmax, the maximal velocity vmax, the flux of the on-ramp ρon

1 , and the flux of the
off-ramp ρoff

1 . PEOFF represents that the parameters are known, while PEON represents that the
parameter estimation is considered.

In the bottleneck scenario, the conclusions are similar as those in the ramps

scenario. The relative RMSEs are below 5% in Figure 5.7(a) and below 9% in
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Figure 5.7(b), which means our approach has provided a very good state estimator.

In addition, Figure 5.7(c) and 5.7(d) demonstrate the dynamical tracking capability

of our approach for the time-varying parameter xb1(t).
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Figure 5.7: Estimation of traffic states and parameters in the traveling bottleneck traffic scenario:
shown are the relative RMSE for assimilating (a) Eulerian and (b) Lagrangian observations and
the results of parameter estimation for (c) Eulerian and (d) Lagrangian observations, where we
estimate the maximal density ρmax, the maximal velocity vmax, and the time-dependent bottleneck
location xb1.

In summary, our approach is capable of providing accurate estimations for both

constant and time-varying parameters. Generally Lagrangian observations are more

efficient when estimating traffic states, but Eulerian observations appear to be slightly

more efficient when parameter estimation is activated.
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5.5.3 Traffic scenarios with unknown underlying model

The simulations in §5.5.2 used the same traffic model for (i) generating the truth

and (ii) assimilating data in our algorithm. The main goal of this section is to test

the implementation of data assimilation to estimate traffic states when the truth is

not generated by the underlying model for the data assimilation scheme.

More specifically, in case 1, we will use data assimilation to estimate traffic states

using observations generated from a microscopic traffic flow model. Then, in case 2,

we will apply parameter estimation to real traffic data obtained from the Minnesota

Department of Transportation.

5. Truth generated from microscopic models We are interested in testing

the sensitivity with respect to the model used in the data assimilation algorithm in a

controlled environment. In this section, we generate synthetic observations using an

extended optimal-velocity type microscopic model and assimilate the data using the

macroscopic LWR equation under two different scenarios of highway traffic. These

scenarios, to be described in more detail below, are obtained by different choices of

the parameters and initial conditions in the microscopic model.

We begin with an overview of the microscopic model, followed by the results

when using data assimilation to estimate traffic states in each of the scenarios. In

our simulations below, we will study each scenario separately using the EnKF to

assimilate Lagrangian observations (vehicle positions) from the microscopic model

to estimate the macroscopic traffic density. To compare the predicted traffic densities

with the truth, we transform the microscopic traffic data into continuous densities

on the ring road.
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The microscopic optimal-velocity model attempt to model traffic through differ-

ential equations governing the evolution of the individual cars’ positions and veloci-

ties. In general, these models allow for each car to adjust its velocity and accelera-

tion based on the position and/or velocity of its neighbors. We focus on an extended

optimal-velocity type model introduced in [16] in which the drivers adjust their ve-

locity according to not only the headway but also the relative velocity to the car in

front. In this model, the position pn(t) and the individual target headway sn(t) of

the nth vehicle evolve according to

τ p̈n = Vg tanh

(
pn+1 − pn − sn

`0

)
+ V0 − ṗn (5.29)

αṡn =
Vg
`0

(s̄− sn)− β (ṗn+1 − ṗn) ,

where the dot symbol denotes d/dt. Here τ is the reaction time, and the right hand

side of the equation is the so-called optimal velocity function. The adjustment V

depends on the difference of the headway pn+1 − pn from the target headway sn

that encompasses the car length plus a safety distance. A common choice for this

function is V(u) = tanh(u), which we will use in this paper. Since V(0) = 0, the

quantity V0 represents an optimal velocity at which the car drives when the headway

is equal to the optimal headway sn. The quantity Vg represents a velocity gain, and

by considering an infinite headway, we have V(∞) = 1, so that the quantity Vg + V0

gives an effective speed limit for the drivers. The parameter `0 is a characteristic

length scale which describes the pace at which the driver attempts to achieve the

optimal velocity.

The second equation describes the evolution of the individual target headway

sn(t): the term s̄ − sn describes the relaxation of sn(t) to an optimal headway s̄,

while the term β(ṗn+1 − ṗn) takes into account that drivers may increase speed
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if the car in front does so. The parameters α and β are dimensionless: α is a

measure of the overall adjustment time of the individual headways, while β measures

how proactively drivers react to changes of the relative velocity. Note that setting

(α, β) = 0 recovers the standard optimal-velocity model [8].

We consider the situation of N cars driving on a circular road of fixed length L

under the generalized OV model described above which is achieved by adding the

periodicity conditions

pn+N = pn + L, sn+N = sn . (5.30)

It was shown in [16] that the model (5.29) admits both free-flow and traffic

jam (traveling wave) solutions. In this paper, we take the following choice of the

parameters Vg, V0, `0, s̄, τ which were obtained from Japanese highway data ([7, 30]):

Vg = 37.57 mi/hr, V0 = 34.30 mi/hr, `0 = 38.15 ft, τ = 0.5 s, s̄ = 82.00 ft ,

(5.31)

and we consider two different scenarios of highway traffic, to be described below,

obtained by different choices of the parameters α, β,N, L and initial conditions. In

the first scenario, a square wave evolves into a shock with gradually decreasing

amplitude (a solution that can also qualitatively be found in the macroscopic LWR

model), while the second scenario describes the emergence of a traveling wave with

fixed amplitude (which cannot be generated by the LWR model).

Results (square wave scenario): The first scenario is that of a long circular

road consisting of a large number of cars engaged in free flow interacting with a
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small traffic jam region. We set (α, β) = (1, 4) and the length L = 22 miles. To

initialize the positions of the cars, we place cars equally spaced along the road with

a fixed density of 40 cars per mile except for a two mile stretch in which the density

is increased to 130 cars per mile for a total of N = 1060 cars. This gives that the

initial headways are sf0 = 131.95 ft in the free flow region and sj0 = 40.61 ft in the

traffic jam region. The initial velocities of the cars are taken to be

vf0 = Vg tanh

(
sf0 − s̄
`0

)
+ V0, vj0 = Vg tanh

(
sj0 − s̄
`0

)
+ V0 , (5.32)

for the free flow and jam regions, respectively. We initialize the system with the

above conditions and compute the local density at each time step using a circular

kernel density estimator in Matlab. In terms of density, the initial condition resem-

bles a square wave which evolves into a shock with decreasing amplitude over time

(Figure 5.8).

The simulation results for the first scenario are shown in Figure 5.8. We observe

that the estimated density (green circled line) gradually converges to the true value

(blue starred line). This is plausible as the viscous Lighthill–Whitham model can

generate a traveling shock with decreasing amplitude as demonstrated in §5.2. With

the aid of data assimilation, the macroscopic model provides an accurate estimation

for the traveling shock wave transferred from microscopic traffic data.

6. Truth generated from microscopic models
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Figure 5.8: Estimating microscopic data in scenario 1 using the EnKF. True and estimated density
values are represented by blue pluses and green circles, respectively.

Results (traveling wave scenario): The second scenario describes the propa-

gation of a traffic jam or traveling wave solution. We set (α, β) = (4, 0.01) and the

length L = 2.5 miles. We place N = 150 cars offset from an equal spacing of length

(n− 1)L/N on the road with initial positions and velocities

pn(0) =
(n− 1)L

N
+ 10 sin

(
2π(n− 1)

N

)
, vn(0) = Vg tanh

(
s0 − s̄
`0

)
+ V0, (5.33)

where s0 = 87.97 ft is the initial average headway. Figure 5.9 shows the evolution of

the local density of this system. After a short time, a traffic jam, or traveling wave,

emerges that travels backwards against the flow of traffic.
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Also shown in Figure 5.9 are the results of the simulation using data assimilation.

We observe that the estimated density (green circles) is smoothed out rapidly and

does not converge to the true density value (blue pluses). Unlike the previous case,

the macroscopic model cannot provide an accurate estimation even though data

assimilation is used. This is not unexpected as the viscous Lighthill–Whitham model

cannot generate a traveling square wave shape with stable amplitude and is therefore

not capable of reproducing the correct density profile.
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Figure 5.9: Estimating microscopic data in scenario 2 using the EnKF. True and estimated density
values are represented by blue pluses and green circles, respectively.

In summary, a macroscopic model may produce inaccurate results if the model

is not capable of generating dynamical features present in the traffic flow data that

need to be assimilated.

2. Parameter estimation for real traffic data In addition to estimating sim-

ulated traffic states and parameters, we are interested in applying the developed
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approach to real traffic data. In this section, we use data from the Minnesota De-

partment of Transportation [70].

A freeway strip of I-35E with length 7.175 miles between Main Street and Hwy

96E is considered. There are 14 consecutive detectors S1535-S1548 along this stretch,

as well as three on-ramps and one off-ramp (see Figure 5.10). We picked two repre-

sentative time periods from a day for simulation: one is late night (00:01am-00:30am)

when free flow is expected, and the other is rush hour (05:31pm-06:00pm) when traf-

fic jams are expected. The Minnesota Department of Transportation provides traffic

density, velocity and flow data collected from the sensors, and the density data of

ramps. All traffic data are collected each minute.

0 1 2 3 4 5 6 7
 !
 

A Strip of Highway I-35E

Sensors On-ramps O↵-ramps

Figure 5.10: A strip of highway I-35E in Minnesota. Cars are moving from left to right.
Sensors, on-ramps, and off-ramps are labelled using blue stars, red pluses, and green circles,
respectively.

We use a macroscopic model that takes the on- and off-ramps into account,

and assimilate the flux data collected from the sensors using the EnKF. We also

estimate the unknown maximal density ρmax and the maximal velocity vmax. The

density profiles of the ramps are artificially taken as unknown and are replaced by

the average density value during a period. In contrast to the simulation presented

in previous sections, we use an adaptive inflation algorithm [2] here.

Results: The simulation results for late night traffic are shown in Figure 5.11.

The relative RMSE by assimilating all observation approaches 15%, while the rela-



106

tive RMSE by not assimilating observations approaches 40%. The parameter esti-

mation in 5.11(b) shows that estimated maximal velocity v̂max is approximately 85

miles/hour, and the maximal density ρ̂max decreases to below 30 cars/mile. This is

a reasonable description of late night traffic.

The simulation results for rush hour traffic are shown in Figure 5.12. The ap-

proach results in a decrease of error from 15% to 8%. Since the flow of ramps is quite

stable during rush hour, the average density value for ramps are close to the true

density value which explains why our approach results in a less drastic improvement

when compared to the previous case. In Figure 5.12(b), the estimated maximal

velocity v̂max is still approximately 85 miles/hour, but the maximal density ρ̂max

increases to 150 cars/mile, which is characteristic of traffic flow during rush hour.

In summary, the efficacy of our approach has been validated by the real traffic

data from Minnesota Department of Transportation. Estimation for traffic states is

significantly improved in both late night and rush hour conditions, and the estimation

for parameter is consistent with characteristics of traffic scenarios.
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Figure 5.11: Relative RSME (a) and parameter estimate (b) are shown for data assimilation of
real traffic data taken during late night. Observations are taken from all sensors (solid), half the
sensors (dotted), or no sensors (dashed).
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Figure 5.12: Relative RSME (a) and parameter estimate (b) are shown for data assimilation of
real traffic data collected during rush hour. Observations are taken from all sensors (solid), half
the sensors (dotted), or no sensors (dashed).

5.6 Discussion

We studied several aspects of traffic flow prediction: mathematical traffic models,

observation models, and data assimilation techniques. Specifically, we reviewed the

Lighthill-Whitham macroscopic model that is used as the basic underlying traffic

model in data assimilation (§5.2). We then discussed two types of observations:

Eulerian sensor data and Lagrangian GPS data, and developed a formulation that

is capable of assimilating the Eulerian and Lagrangian observations simultaneously

(§5.3). We also investigated how our approach could be used to estimate traffic

states as well as parameters using the EnKF and PF (§5.4).

The initial motivation of this paper was to propose an efficient approach that

could assimilate both Eulerian sensor data and Lagrangian GPS data simultane-

ously. The idea behind our approach is to append the differential equations for the

positions and velocities of the vehicles to the macroscopic traffic model in order to

solve them simultaneously. Unlike the previous methods, our approach is capable of

handling flux data, position data and velocity data efficiently without reformulation
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in Lagrangian coordinates or reshaping the macroscopic traffic model. This approach

has been shown to accurately estimate traffic states in different traffic scenarios with

true underlying traffic model (Case 1, Case 4). We also studied how the choice of

filters and observations affect data assimilation: compared to the EnKF, the PF is

less sensitive to observation noise and sensor locations, but its computation cost is

higher (Case 2); the positions of sensor locations impact the accuracy of the EnKF,

and relevant suggestions for installing sensors are provided (Case 3). However, this

approach is less accurate when the true traffic model is unknown and an estimated

underlying traffic model is used (Case 5, Case 6).

One limitation we reported on in §5.5.3 is that the accuracy of data assimilation

is reduced significantly if the underlying traffic model cannot reproduce the actual

traffic flow from which observations are collected: in such a situation, the model

error is very large and will therefore dominate the overall error. Hence, to increase

accuracy in such cases requires the development of better, more accurate traffic flow

models that are capable of reproducing a wider range of traffic flows.

Another limitation is that the proposed approach for assimilating Lagrangian

observations requires knowledge of the velocity of a vehicle at a given position: in our

macroscopic model for the density, the velocity was given explicitly as a function of

the density, which allowed us to access the velocity in our algorithm. If the underlying

traffic-flow model does not provide information about the velocity of vehicles at any

specified position, our method for assimilating Lagrangian observations will not work.

There are various extensions that could be implemented to improve the frame-

work presented here. First, the proposed data assimilation approach was only applied

to simplified traffic scenarios such as on and off ramps, traffic lights, and bottlenecks

that were implemented in the LWR equation. In practice, the road network is typ-
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ically more complicated and may include, for instance, intersections and multiple

lanes. An exciting extension would be to expand the above framework to more com-

plex and realistic traffic scenarios. Second, it would be interesting to see whether the

algorithm could be extended to use parameter estimation to relay traffic information

to drivers. For instance, the period of traffic lights could be estimated by data as-

similation, and thus the waiting time could be provided to drivers. Data assimilation

could also be used to predict the location and duration of congestion caused by slow

trucks or road constructions.



Chapter Six

Traffic control in lane-drop

scenarios
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6.1 Introduction

A lane drop is defined as a location on a highway where the number of lanes provided

decreases. The reasons for a lane drop can be varied: the road construction may

close the usage of some lanes during road work; an unexpected traffic accident also

restricts the usage of the shoulder lane; the highway may reduce the number of lanes

when space is limited, and so on.

The merge bottleneck from lane drop is an interesting traffic phenomena. An

increase in lane-changing maneuvers will form queues in the upstream of the lane

drop, and the queues are propagating backward. Traffic was studied upstream and

downstream of a bottleneck in the lane drops. Recent empirical observations [10] at

freeway merge bottlenecks revealed: a drop in the bottleneck discharge rate when

queues form upstream, which is also called capacity drop. Further, it is shown that

the bottleneck’s discharge flow is about 10% lower than the prevailing flow observed

prior to queue formation. Upon bottleneck activation, flow reduction occurs sequen-

tially in time and space. In [53], numerical simulation results were in agreement with

the findings of the empirical studies at merge bottlenecks. In addition, it strongly

suggested that lane changes are the main cause of the drop in discharge rate.

Two types of approaches have been considered to reduce the capacity drop of

merge bottleneck. One type of approach attempts to develop cooperative lane-

changing models so that the lane-changing behavior is more efficient. Like in [41, 48],

cooperative lane-changing systems were developed microscopically in order to smooth

the merges. However, this microscopic approach is complicated to specify and there

are lot of parameters to quantify. The other type of approach [52] embeds the ve-

hicles as discrete particles in a multi-lane stream using the kinematic wave model.
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It attempts to maximize capacity through efficiently controlling the lane-changing

ratio between adjacent lanes. However, this macroscopic approach formulates a con-

servation equation for individual lane.

In this chapter, we would like to introduce a macroscopic approach to model and

analyze the multi-lane traffic, by using only one continuity equation. Then we will

develop controlling strategies based on this continuity equation to maximize the road

capacity in lane drop. The chapter is organized as follows. In § 6.2, we describe the

inhomogeneous LWR equation that used to model multi-lane traffic, and analyze the

solutions to Riemann problems. In § 6.3, we develop two controlling strategies in

order to maximize road capacity in lane drop. Then we conclude with a discussion

of our results and open problems in § 6.4.

6.2 Inhomogeneous LWR model

In this section we will first briefly review the homogeneous LWR model, and then

introduce the inhomogeneous LWR model to describe the multi-lane traffic by taking

the number of lanes into consideration(§ 6.2.1). In addition, we analyze the solutions

to the Riemann problems of inhomogeneous LWR equation by applying the supply–

demand theory (§ 6.2.2). In § 6.2.3, we explore the traffic pattern on a ring road and

the efficiency of LWR equation to organize the road capacity.

The LWR model studies the traffic dynamics based on the conservation law. We

have described the LWR model in § 2.2. In this model, the traffic is described by
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the vehicle density ρ and vehicle flux ϕ:

∂ρ

∂t
+
∂ϕ

∂x
= 0, (6.1)

where flux is a function of density via ϕ(ρ). The solutions to the Riemann problems

of homogeneous LWR model are already discussed in § 2.2 using the method of char-

acteristics, which include traveling wave, shock wave and rarefaction. In addition,

we generated multiple traffic scenarios by adding additional terms to capture the

respective effects.

The vehicle flow is defined as a function of traffic density ρ: ϕ = ϕ(ρ), which

is independent of the location x. Therefore, the LWR model is only for modeling a

homogeneous road, where flow function is uniform with respect to location x. That

is, the LWR model has limited modeling capacity when the traffic scenario becomes

complicated.

In this section, we will focus on the traffic scenarios with multiple lanes, where

the number of lanes are location dependent, and introduce the inhomogeneous LWR

model to account for the changes of the number of lanes.

6.2.1 Model description

We are interested in modeling the traffic scenarios with multiple lanes macroscopi-

cally. One well-known method to model multi-lanes was developed by Daganzo in

[21, 22, 53]. It formulated a conservation equation for each lane, and the right hand

side of each conservation equation is the net lane-changing rate onto the current lane

from adjacent lanes. The lane-changing rate consists of the sources from neighbor
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lanes and sink to neighbor lanes, which depends on the nearby traffic at a specific

location and time.

However, the interaction between lanes can be very complicated to quantify in

lane-drop scenarios if we use a conservation equation for each lane. In addition, we

are only interested in the dynamics of the aggregated traffic characteristics instead of

the inner interaction between lanes. Therefore, we use another approach mentioned

in [73] (chapter 7.2), which formulates the averaged density and flux with only one

continuity equation:

∂(Iρ)

∂t
+
∂(Iϕ)

∂x
= 0 (6.2)

where ρ is the averaged density per lane and ϕ is the averaged flux per lane. The

function I(x) is the number of lanes at location x, which models the the lane changes

before a lane closure or after a new lane open. The number of lanes is integer in

reality, but I(x) can be non-integer to account for partial lane usage. For example,

a value of I = 1.5 of a realistic 2-lane road indicates the second/shoulder lane is less

frequently used, and the flow on this lane is only half of the averaged flow on the

other lane.

By introducing the notations for total density and total flux

ρtotal(x, t) = I(x)ρ(x, t),

ϕtotal(x, t) = I(x)ϕ(x, t),

the conservation law (6.2) for multi-lane traffic can be rewritten in a form that is

similar to the homogeneous LWR model:

∂ρtotal

∂t
+
∂ϕtotal

∂x
= 0. (6.3)
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Unlike the homogeneous LWR model, the total vehicle density ρtotal and total vehicle

flux ϕtotal are not directly related with respected to a fixed flux-density relation.

Instead, they are related corresponding to a lane-dependent flux-density relation:

ϕtotal(x, t) = ϕtotal(ρtotal, I(x))

= I(x)ϕ

(
ρtotal

I(x)

)
. (6.4)

A lane-drop traffic scenario

In the whole chapter, we will focus on a simplified lane-drop traffic scenario where it

changes from two lanes to one lane. The analysis of solutions and traffic controlling

strategies in the following sections are also based on this specific lane-drop scenario.

Extension to generalized multi-lane traffic scenarios will be discussed in final section

§ 6.4. The lane-drop scenario is shown in the figure below:

0 x

I(x) = 2 I(x) = 1

Figure 6.1: Lane-drop scenario from two lanes to one lane.

The lane drop is at the origin with x = 0, and there are two lanes in the upstream

x < 0 and one lane in the downstream x > 0.

The fundamental diagram is a modeling choice, which is the plot of traffic flux

ϕ versus traffic density ρ. According to [64], the two-phase traffic theory divides

traffic flow into free flow for low densities, and congested flow for large densities,
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which together form a reversed λ shape. The fundamental diagram we use to model

multi-lane traffic is shown in Figure 6.2. The shape of the fundamental diagram is

determined by the parameters from [24]. (see model calibration in § 4.2)

fr
ee
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w congested

flow

⇢

�

�max

⇢max

v m
a
x !

Figure 6.2: Fundamental diagram ϕ(ρ). The slope of the free flow region is the maximal
velocity vmax, and the slope of the congested flow is the congestion parameter ω. The
maximal density is ρmax, and the maximal flux is ϕmax.

Description Parameter Value Unit
Free-flow speed vmax 63.3 miles/hour
Maximal flux ϕmax 2031 vehicles/hour
Congestion speed parameter ω −10.1 miles/hour
Jam density ρmax 232 vehicles/mile

Table 6.1: Parameters from auto-calibration of the fundamental diagram

The critical density ρcrit is the divider of free flow and congested flow in the

fundamental diagram. It is easy to calculate the critical density via

ρcrit = Qmax/vmax ≈ 32.09vehicles/mile (6.5)

The critical density is a very important bifurcation point in multi-lane traffics. We

will talk about it with more details when analyzing the solution to multi-lane traffic

in the following subsection.
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By using the Equation (6.4), we obtain the fundamental diagram for multiple-

lane traffic. It is of the same reversed λ shape, but scaled in both x-axis and y-axis

according to the lane number I(x). The Figure 6.3 shows the fundamental diagram

for the simplified lane-drop scenario in Figure 6.1.

�max

⇢max

v m
a
x !

⇢total

�total

2�max

2⇢max

I(x) = 1

I(x) = 2

Figure 6.3: The flux-density relation of ϕtotal(ρtotal, I(x)) in lane-drop scenario. The red solid
line represents the fundamental diagram for road of one lane, while the green dashed dotted line is
for road of two lanes.

6.2.2 Solutions to Riemann problems

Next, we will investigate the solutions to the inhomogeneous LWR equation. The

problem with discontinuous initial traffic states and lane number of the following

form:

ρtotal(x, 0) =


ρL, x ≤ 0

ρR, x > 0

, I(x) =


2, x ≤ 0

1, x > 0

. (6.6)

is called a Riemann problem to the inhomogeneous LWR model. In § 2.2, we have

reviewed the characteristic method, and used it to solve the homogeneous LWR

model. The solutions include traveling wave, shock wave and rarefaction. For the

inhomogeneous LWR model (6.2), there are some analytical and numerical studies

[42, 45, 47] to investigate the solutions to Riemann problems. In our study, we adopt
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the method called wave separation, which was introduced in article [42]. Specifically,

the separation method includes:

(i) first, we introduce a stationary wave between the road branches of different

number of lanes. The stationary wave is subject to entropy condition. More

details about the entropy condition between road branches are explained as

follows.

(ii) then, we use the characteristic method to solve the homogeneous LWR model

for each road branch with constant number of lanes. The solution for each

road branch is also subject to the entropy condition. The entropy condition

for homogeneous LWR is listed earlier in § 2.2.

According to the article [42], the solutions to Riemann problems of the inhomoge-

neous LWR model exist and are unique if the following two entropy conditions are

satisfied:

Entropy 1: the waves from left (upstream) to right (downstream) should increase

their wave speeds so that they don’t cross each other.

Entropy 2: the standing wave can not cross the transition curve ρtotal/I(x) = ρcrit.

The left side of the transition curve is ρtotal/I(x) < ρcrit, and the right side of the

transition curve is ρtotal/I(x) ≥ ρcrit.

According to [47], the entropy condition can be transferred into a supply-demand

framework. Supply–demand framework is relatively easy to understand the traf-

fic flow. Another advantage about supply–demand framework is that it can guide

you to find standing wave between branches through analyzing the boundary flux.
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Therefore, we will use it to construct the standing wave that satisfies the entropy

conditions, and then get the unique solution to the Riemann problem. Next let us

briefly review the supply–demand theory in traffic.

Supply and demand function

We start with showing the supply and demand function in multi-lane traffic scenarios.

The traffic supply function computes the traffic flow to supply for the upstream cell:

the supply of the free flow is the maximal flow, while the supply of the congested

flow is only itself. The mathematical expression is as follows:

S(ρtotal) = I(x)ϕ(max(ρcrit, ρtotal/I(x)))

=


I(x)ϕ(ρcrit), ρtotal/I(x) < ρcrit

I(x)ϕ(ρtotal/I(x)), ρtotal/I(x) ≥ ρcrit

(6.7)

The traffic demand function computes the traffic flow to demand from the down-

stream cell: the demand of the free flow is itself, while the demand of the congested

flow is the maximal flow. The mathematical expression is as follows:

D(ρtotal) = I(x)ϕ(min(ρcrit, ρtotal/I(x)))

=


I(x)ϕ(ρtotal/I(x)), ρtotal/I(x) ≤ ρcrit

I(x)ϕ(ρcrit), ρtotal/I(x) ≥ ρcrit

(6.8)

Let two adjacent cells be i and i + 1 with total vehicle density ρtotal,i and ρtotal,i+1.

According to the supply–demand theory, the boundary flux is determined by the

supply from downstream and the demand from upstream. Specifically, the boundary

flux from cell i to cell i + 1 is the smaller of the supply of the cell i + 1 and the
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demand of the cell i. This is in agreement to our intuition.

ϕ∗i,i+1 = min(S(ρtotal,i+1), D(ρtotal,i)) (6.9)

The Godunov method is used to solve the LWR model, which is a conservative

numerical scheme suggested by S. K. Godunov [33]. It is a conservative finite-volume

method which solves exact, or approximate Riemann problems at each inter-cell

boundary. The Godunov method is equivalent to the supply–demand theory when

calculating the boundary flux. The formula of Godunov method can be rewritten

as:

ρj+1
total,i = ρjtotal,i −

∆t

∆x

(
ϕ∗i,i+1 − ϕ∗i−1,i

)
(6.10)

Analytic solution to Riemann problem

It is convenient to find the unique solution to the Riemann problem by using the

idea of boundary flux. Given two initial vehicle density ρL and ρR in the Riemann

problem, we can first calculate the boundary flux at the origin x = 0. That is

ϕ∗L,R = min(S(ρR), D(ρL)) by the supply–demand theory. As the standing wave has

speed 0 at the origin, the flux close to the lane drop must equals to the boundary

flux.

Next we have to figure out the two transitional vehicle densities in the upstream

ρA and downstream ρB of the standing wave. At least one of the transitional densities
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can be determined by the calculated boundary flux as follows:

if ϕ∗L,R = D(ρL) =⇒ ρA = min(ρcrit, ρL/I(x)) (6.11)

if ϕ∗L,R = S(ρR) =⇒ ρB = max(ρcrit, ρR/I(x)) (6.12)

For instance, if ϕ∗L,R = D(ρL) < S(ρR), then we can figure out ρA by using the

formula above. Next, we have to specify the other transitional density ρB. First,

the vehicle flow corresponding to ρB should be the same as the boundary flow ϕ∗L,R

because of the standing wave at origin. As the fundamental diagram has a reversed

λ shape, there are at most two admissible densities for ρB. Then we can apply the

two entropy conditions Entropy 1 and Entropy 2 to pick the unique transitional

density for ρB.

The last step is to solve two Riemann problem for homogeneous LWR equations

in the upstream and downstream branches. The characteristic method can be applied

here. The two Riemann problems are:

ρ(x, 0) =


ρL, x ≤ 0

ρA, x = 0−
(6.13)

ρ(x, 0) =


ρB, x = 0+

ρR, x > 0

(6.14)

The typical density solution to the Riemann problem is sketched in Figure 6.4.

There is a standing wave in the origin that is subject to entropy condition. Two

wave solutions are in upstream and downstream based on the characteristic method.
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⇢A

⇢B

⇢R

Figure 6.4: The wave solution to Riemann problem of inhomogeneous LWR. ρL and ρR are the
initial conditions. ρA and ρB are the transitional traffic states in the upstream and downstream of
the standing wave.

Examples

We will show how to apply the wave separation method to solve the following Rie-

mann problem:

ρtotal(x, 0) =


2ρcrit, x < 0

0, x > 0

, I(x) =


2, x < 0

1, x > 0

. (6.15)

First, we have to compute the boundary flux by using the supply–demand theory:

D(ρL) = 2ϕmax

S(ρR) = ϕmax

ϕ∗L,R = min(S(ρR), D(ρL)) = ϕmax

The computations show that the standing wave has boundary flux of ϕmax. The

downstream transitional vehicle density is ρB = max(ρR, ρcrit) = ρcrit because of

ϕ∗L,R = S(ρR). The upstream transitional vehicle density can be ρcrit or ρcrit + ρmax

because their respective vehicle fluxes equal the boundary flux ϕ∗L,R. By checking

the two entropy conditions, we find that only ρA = ρcrit + ρmax satisfies the entropy

conditions.



123

The initial traffic conditions as well as the transitional traffic states are indicated

in the fundamental diagram in Figure 6.5(a). The wave solution by using the sep-

aration method is illustrated in Figure 6.5(b). It is a shock wave between state L

and A, which is moving backward with speed ω = ϕtotal(ρL,2)−ϕtotal(ρA,2)
ρL−ρA

. The standing

wave is stationary at the origin. It is a traveling wave between state B and R, which

is moving forward with speed vmax. We will justify that this weak solution satisfies

both entropy conditions.

⇢total

�total

I(x) = 1

I(x) = 2

L

R

AB

(a) Traffic states in fundamental diagram.

0 xI(x) = 2 I(x) = 1

L

A

B

R

⇢total

(b) Wave solution in density ρtotal.

Figure 6.5: The weak solution to Riemann problem (6.15) of inhomogeneous LWR model.

Entropy 1: the waves from left (upstream) to right (downstream) should increase

their wave speeds so that they don’t cross each other. The waves’ speeds from

upstream to downstream are ω, 0 and vmax. It is obvious that the relation

ω < 0 < vmax holds.

Entropy 2: the standing wave can not cross the transition curve ρtotal/I(x) = ρcrit.

The two transitional states ρA and ρB around the standing wave both satisfy

ρtotal/I(x) ≥ ρcrit. That means they do not across the transition curve.
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6.2.3 Traffic pattern on a ring road

With the ability to solve the Riemann problems of inhomogeneous LWR model, we

can explore the traffic in more complicated road structure. We are most interested

in the traffic pattern by the inhomogeneous LWR on a ring road with two branches:

one branch is of one lane, and the other branch is of two lanes. On one side, we could

observe how the inhomogeneous LWR model generates congestion pattern. On the

other side, we would like to understand how LWR model efficiently organizes and

distributes traffic.

The ring road profile is shown in Figure 6.16. There are two road branches: the

one-lane branch is of length L1 and the two-lane branch is of length L2. Here, we

just set the length ratio L2 : L1 = 1 : 1 for investigating the traffic pattern, and then

make a conclusion for a general case in the end of this subsection.

L2 : L1 = 1 : 1

Figure 6.6: A ring road with two branches: one-lane branch with length L1 and two-lane branch
with length L2. The ratio is L2 : L1 = 1 : 1.

The initial densities on the ring road are described in equation (6.16) and Fig-

ure 6.7. This Riemann problem has periodic boundary condition at x = L1/ − L2
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(we will use x = L1 to represent the boundary in the following discussion).

ρtotal(x, 0) =


ρ2, −L2 < x < 0

ρ1, 0 < x < L1

, I(x) =


2, −L2 < x < 0

1, 0 < x < L1

. (6.16)

Road capacity refers the maximal traffic flow (vehicles per hour) obtainable on a

0
x

I(x) = 2 I(x) = 1

⇢total

⇢1

⇢2

L1�L2

Figure 6.7: Initial conditions of the Riemann problem on a ring road with two branches. The
first branch is of two lanes from −L2 to 0, and the second branch is of one lane from 0 to L1. The
boundary is periodic.

given road using all available lanes. Therefore, the two-lane branch has double road

capacity of the one-lane branch. The road capacity of this ring road is restricted by

the one-lane branch, so the overall road capacity is only ϕmax. In the fundamental

diagram of the ring road, there are two points that can provide the exact road

capacity ϕmax. Please see Figure 6.8 for positions of these two critical points C1 and

C2. The analysis shows that the averaged density (ρ1 + ρ2)/2 determines the traffic

pattern of the ring road, and there are three regimes controlled by the points C1 and

C2. The three regimes are:

Regime 1:
ρ1 + ρ2

2
≤ ρC1 (6.17)

Regime 2: ρC1 <
ρ1 + ρ2

2
≤ ρC1 + ρC2

2
(6.18)

Regime 3:
ρ1 + ρ2

2
>
ρC1 + ρC2

2
(6.19)

with ρC1 =ρcrit, ρC2 = ρcrit + ρmax
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Figure 6.8: The fundamental diagram of the ring road. There are two points C1 and C2 which
can provide the road capacity ϕmax.

Next we will show the traffic pattern in each regime as well as provide the analytic

solution to the Riemann problems:

• Regime 1: ρ1+ρ2
2
≤ ρC1

ρC1 is the critical density in the fundamental diagram, where maximal traffic

flux is achieved. In a one-lane road, when the vehicle density is less than

ρC1 , it is free flow; when the vehicle density is above ρC1 , it is congested flow.

Therefore, the intuition tells us that it should be free flow everywhere if the

initial average density is not more than the critical density ρC1 .

For the Regime ρ1+ρ2
2
≤ ρC1 , there is at least one density (ρ1 or ρ2) should be

less than or equal to the critical density ρC1 . There are two sub cases for this

Regime 1: (a) both ρ1 and ρ2 are less than or equal to the critical density; (b)

only one density of ρ1 and ρ2 is less than or equal to the critical density.

– Case 1: ρ1 ≤ ρC1 and ρ2 ≤ ρC1

This is a trivial case. When the initial densities on both road branch are

less than or equal to the critical density ρC1 , it is a traveling wave with
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maximal speed vmax. The traveling wave consists of two traffic states:

ρ1 and ρ2. The distance between the two discontinuities are exactly the

length L1 of road branch.

In Figure 6.9, we show the traveling wave solution to the following Rie-

mann problem (6.20) in which both ρ1 and ρ2 are less than or equal to

the critical density ρC1 . The traveling wave in Figure 6.9 has two density

states: 0.5ρC1 and 0.8ρC1 . Even though we switch the initial density for

two branches, the stationary wave solution is the same.

ρtotal(x, 0) =


0.5ρC1

0.8ρC1

or


0.8ρC1 , −L2 < x < 0

0.5ρC1 , 0 < x < L1

. (6.20)

0

x

I(x) = 2 I(x) = 1

⇢total

L1�L2

x

x

�total

vave
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vmax

�max

vmax vmax

vmax vmax

Figure 6.9: The weak solution to Riemann problem (6.20) on a ring road. The plots are vehicle
density, velocity and flux from top to bottom.

– Case 2: ρ1 > ρC1 or ρ2 > ρC1

In this case, one of the branches has an initial density above the critical

density ρC1 . Even though the analytic solution is more complicated in the
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beginning, the stationary solution is still a traveling wave with maximal

speed vmax. The traveling wave consists of two traffic states: min(ρ1, ρ2)

and ρC1 . The distance between the two discontinuities is not necessarily

the length of roach branch, but is uniquely determined by the conservation

of vehicles. Let D be the length with density ρC1 , then it must satisfy the

relation ρ1L1 + ρ2L2 = min(ρ1, ρ2)(L1 + L2 −D) + ρC1D.

In Figure 6.10, we show that the traveling wave solution to the following

Riemann problem (6.21) in which only one of ρ1 and ρ2 is less than or

equal to the critical density ρC1 . The traveling wave in Figure 6.9 has two

density states: 0.5ρC1 and 1ρC1 . The length with density ρC1 is 1.4L1.

Even though we switch the initial density for two branches, the stationary

wave solution is the same.

ρtotal(x, 0) =


1.2ρC1

0.5ρC1

or


0.5ρC1 , −L2 < x < 0

1.2ρC1 , 0 < x < L1

. (6.21)

0

x

I(x) = 2 I(x) = 1

⇢total

L1�L2
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x
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vmax

�max

vmax vmax

vmax vmax

Figure 6.10: The weak solution to Riemann problem (6.21) on a ring road. The plots are vehicle
density, velocity and flux curves from top to bottom.
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• Regime 2: ρC1 <
ρ1+ρ2

2
≤ ρC1

+ρC2

2

ρC1 is the critical density in the fundamental diagram of one-lane road where

maximal traffic flux is achieved. In the fundamental diagram of two-lane road,

there are two densities ρC1 and ρC2 whose respective fluxes are exactly the

maximal traffic flux ϕmax of the one-lane road. When the average road density

is above the critical density ρC1 , it is impossible to see free flow everywhere.

Congestion exists somewhere.

For the condition ρ1+ρ2
2
≤ ρC1

+ρC2

2
, there is at least one inequality of ρ1 ≤ ρC1

and ρ2 ≤ ρC2 hold. When ρ1 ≤ ρC1 , the capacity supply of the one-lane

road branch is ϕmax. When ρ2 ≤ ρC2 , the capacity supply of the two-lane

road branch is above ϕmax. Therefore, there is at least one road branch that

can provide capacity ϕmax, and generate free flow with density ρC1 . Then the

free flow stays on the road branch of one lane after traveling. In contrast,

congestion occurs on the road branch of two lanes in the upstream of the

lane drop location (origin x = 0). Because the average density is bounded by

ρC1
+ρC2

2
, the congestion will only occur on the road branch of two lanes, and

not propagate backward to the branch boundary x = L1. The free flow on the

road branch of one lane is not influences by the congestion.

The stationary weak solution is a standing wave, which consists of two traffic

states: ρC1 and ρC2 . The density ρC2 only occurs on the road branch of two

lanes in the upstream of the lane drop location. The two discontinuities are

both standing waves. The length of the density ρC2 is uniquely determined

by the conservation of vehicles. Let D be the length with density ρC2 , then it

must satisfy the relation ρ1L1 +ρ2L2 = ρC1(L1 +L2−D)+ρC2D. Even though

it is not free flow everywhere, we can observe the maximal vehicle flux ρmax

everywhere.
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The parameter setting of the fundamental diagram indicates ρC2 ≈ 8.23ρC1 .

Then the Regime 2 becomes ρC1 <
ρ1+ρ2

2
≤ 4.615ρC1 . In Figure 6.11, we show

the stationary wave solution to the following Riemann problem (6.22) in which

ρ1 + ρ2 = 7ρC1 . The stationary wave solution in Figure 6.11 has two density

states: ρC1 and ρC2 . Even though we switch the initial density for two branches,

the stationary wave solution is the same.

ρtotal(x, 0) =


3ρC1

4ρC1

or


4ρC1 , −L2 < x < 0

3ρC1 , 0 < x < L1

. (6.22)
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I(x) = 2 I(x) = 1
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Figure 6.11: The weak solution to Riemann problem (6.22) on a ring road. The plots are vehicle
density, velocity and flux curves from top to bottom.

The extreme situation is shown in Figure 6.12 with initial condition ρ1+ρ2
2

=

4.615ρC1 . The stationary wave has two density states: ρC1 and ρC2 . The

discontinuities are standing with zero speed. The congestion makes up the

whole road branch of two lanes.

• Regime 3: ρ1+ρ2
2

>
ρC1

+ρC2

2

As mentioned earlier, in the fundamental diagram of two-lane road, there are
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Figure 6.12: The weak solution to Riemann problem (ρ1+ρ2
2 = 4.615ρC1

) on a ring road. The
plots are vehicle density, velocity and flux curves from top to bottom.

two densities ρC1 and ρC2 whose respective fluxes are exactly the maximal

traffic flux ϕmax of the one-lane road. When the average road density is above

ρC1
+ρC2

2
, it is impossible to see a sustainable free flow on the road branch of

one lane. That is, congestion could exist everywhere on the ring road.

The stationary solution consists of two shock waves, which are moving back-

ward with speed ω on each road branch. The shock wave evolves into another

shock wave when it hits the origin (x = 0) or the boundary (x = L1). In total,

there are four types of shock waves even though we can observe only two shock

waves at a time. For each road branch, the shock discontinuity consist of two

fixed density states, which are uniquely determined by the initial conditions.

Next, we will introduce the shock waves case by case.

For the condition ρ1+ρ2
2

>
ρC1

+ρC2

2
, there is at least one inequality of ρ1 ≥ ρC1

and ρ2 ≥ ρC2 hold. The two cases for Regime 3 are: (a) both inequalities hold

for ρ1 and ρ2; (b) only one inequality holds for ρ1 or ρ2.

– Case 1: ρ1 ≥ ρC1 and ρ ≥ ρC2
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The road capacity of both branches are restricted by the supply ϕtotal(ρ1, 1)

and ϕtotal(ρ2, 2). Then the stationary solution has a capacity switch be-

tween ϕtotal(ρ1, 1) and ϕtotal(ρ2, 2) on each road branch. There are two

corresponding densities called ρ̃1 and ρ̃2 which satisfy

ϕtotal(ρ1, 1) = ϕtotal(ρ̃2, 2),

ϕtotal(ρ̃1, 1) = ϕtotal(ρ2, 2).

Please see Figure 6.13 for the positions of these densities in fundamental

diagram. The density ρ̃2 has equal flux to density ρ1, and the density

ρ̃1 has equal flux to density ρ2. The shock wave on the road branch of

one lane is made up with ρ1 and ρ̃1, and the shock wave on the road

branch of two lanes is made up with ρ2 and ρ̃2. In total, there are four

possible types of shock waves on the ring road, and they will disappear

and regenerate when hitting the origin or boundary. The evolution rules

are: shock(ρ2, ρ̃2)↔ shock(ρ1, ρ̃1) and shock(ρ̃2, ρ2)↔ shock(ρ̃1, ρ1).

�max

⇢total

�total

2�max
I(x) = 1

I(x) = 2

C1 C2

⇢1 ⇢2⇢̃1 ⇢̃2

Figure 6.13: The fundamental diagram of the ring road. The density ρ̃2 has equal vehicle flux to
the given initial density ρ1. The density ρ̃1 has equal vehicle flux to the given initial density ρ2.

In Figure 6.14, we show the shock wave solution to the following Riemann

problem (6.23) in which ρ1 > ρC1 and ρ2 > ρC2 . Both shock waves are
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moving with speed ω. When the shock wave hits the origin (x = 0) or

the boundary (x = L1), it disappears on the current road branch, but

evolves into another shock on the other road branch. In this case, the

distance between the two observed shocks are exactly the length L1 of

roach branch because the two shocks waves are generated simultaneously.

ρtotal(x, 0) =


ρC2 + 2ρC1 , −L2 < x < 0

2ρC1 , 0 < x < L1

. (6.23)
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Figure 6.14: The weak solution to Riemann problem (6.22) on a ring road. The plots are vehicle
density, velocity and flux curves from top to bottom.

– Case 2: ρ1 < ρC1 or ρ < ρC2

In this case, one of the inequality ρ1 < ρC1 or ρ < ρC2 holds. Even though

the analytic solution is more complicated at the beginning, the stationary

solution still consists of two shocks wave. Because of the inequality ρ1 <

ρC1 or ρ < ρC2 , the capacity supply could somehow reach the maximal

flux ϕmax. Without loss of generosity, we just assume ρ1 < ρC1 fo the

following analysis. Then the stationary solution has a capacity switch
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between ϕmax and ϕtotal(ρ2, 2). The four densities states in the stationary

solution are ρC1 , ρC2 , ρ2 and ρ̃1:

ϕtotal(ρC1 , 1) = ϕtotal(ρC2 , 2),

ϕtotal(ρ̃1, 1) = ϕtotal(ρ2, 2).

In Figure 6.15, we show the piecewise shock wave solution to the following

Riemann problem (6.24) in which ρ1 ≤ ρC1 and ρ2 > ρC2 . Both shock

waves are moving with speed ω. When the shock wave hits the origin

(x = 0) or the boundary ( x = L1), it disappears on the current road

branch, but evolves into another shock on the other road branch. The

evolution rules are: shock(ρ2, ρC2)→ shock(ρC1 , ρ̃1) and shock(ρC2 , ρ2)→

shock(ρ̃1, ρC1). In this case, the distance between the two observed shocks

are not necessary the length L1 of roach branch, but is uniquely deter-

mined by the conservation of vehicles. Let D be the length with capacity

ϕmax, then it must satisfy the relation ρ1L1+ρ2L2 =
ρC1

+ρC2

2
D+ ρ2+ρ̃1

2
(L1+

L2 −D).

ρtotal(x, 0) =


ρC2 + 2ρC1 , −L2 < x < 0

0.5ρC1 , 0 < x < L1

. (6.24)

Generalization of traffic pattern on a ring road

The discovery of traffic pattern on a ring road can be generalized to any ring road pro-

file. The general road profile is shown in Figure 6.16. There are two road branches:

the k1-lane branch is of length Lk1 , and the k2-lane branch is of length Lk2 with the
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Figure 6.15: The weak solution to Riemann problem (6.24) on a ring road. The plots are vehicle
density, velocity and flux curves from top to bottom.

length ratio Lk2 : Lk1 = λ2 : λ1. The Riemann problem is described in (6.25) with

periodic boundary condition at x = Lk1 or −Lk2 .

Lk2 : Lk1 = �2 : �1

Figure 6.16: A ring road with two branches: k1-lane branch with length Lk1 and k2-lane branch
with length Lk2 . The ratio is Lk2 : Lk1 = λ2 : λ1.

ρtotal(x, 0) =


ρ2, −Lk2 < x < 0

ρ1, 0 < x < Lk1

, I(x) =


k2, −Lk2 < x < 0

k1, 0 < x < Lk1

. (6.25)
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Without loss of generosity, we just assume k2 > k1. The road capacity of the

k1-lane branch is k1ρmax. In the fundamental diagram of the ring road, there are two

points that can provide exact k1ρmax capacity. These two points are called C1 and

C2. The averaged density λ1ρ1+λ2ρ2
λ1+λ2

determines the traffic pattern of the ring road.

There are three regimes controlled by the points C1 and C2.

Regime 1:
λ1ρ1 + λ2ρ2

λ1 + λ2

≤ ρC1 (6.26)

Regime 2: ρC1 <
λ1ρ1 + λ2ρ2

λ1 + λ2

≤ λ1ρC1 + λ2ρC2

λ1 + λ2

(6.27)

Regime 3:
λ1ρ1 + λ2ρ2

λ1 + λ2

>
λ1ρC1 + λ2ρC2

λ1 + λ2

(6.28)

with ρC1 =k1ρcrit, ρC2 = k1ρcrit + (k2 − k1)ρmax

6.3 Controlling strategies

In this section, we will develop two controlling strategies based on the multi-lane

LWR model such that the wave solution can provide smooth velocity solution without

losing the road capacity. The vehicles are embedded in this macroscopic stream and

their movements obey the velocity solution.

The study of traffic pattern on a ring road indicates that the multi-lane LWR

model is efficient in organizing traffic density, and thus capable to maximize the

capacity. In order to better show our proposed controlling strategies, we use a traffic

scenario to explain: there is a straight road with a lane drop at the origin (x = 0).

A wave of vehicles (density 2ρcrit) is approaching the lane drop. The scenario can be
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mathematically formulated as:

ρtotal(x, 0) = ρ0(x) =


2ρcrit, x << 0

0, otherwise

, I(x) =


2, x < 0

1, x > 0

. (6.29)

Then complete LWR model as well as the initial conditions and boundary conditions

is as follows:

∂ρtotal

∂t
+
∂ϕtotal

∂x
= 0 (6.30)

IC: ρtotal(x, 0) = ρ0(x) (6.31)

BC: ρtotal(−∞, t) = 2ρcrit, ρtotal(∞, t) = 0 (6.32)

Let us analyze the wave solution to the equation above. First, it is equivalent to a

Riemann problem of homogeneous LWR equation in the upstream branch (x < 0).

The solution is a traveling wave with speed vmax. When the traffic density 2ρcrit

reaches the lane drop (x = 0), it becomes a Riemann problem of inhomogeneous

LWR equation with initial conditions: ρL = 2ρcrit and ρR = 0. We have figured out

the unique solution that satisfy the entropy conditions. (Please see § 6.2.2 for the

solution analysis.) The evolution of the solution is sketched in the Figure 6.17.

The stationary solution consists of three waves: the shock wave ρL − ρA moving

backward with speed ω, the standing wave ρA−ρB at the lane drop, and the traveling

wave ρB − ρR moving forward with speed vmax.

With the density solution to the multi-lane LWR equation, we can compute the

respective velocity/flux solution by using the velocity/flux function. By taking the
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Figure 6.17: The evolution of the solution to Riemann problem (6.29). In the top figures, a
traveling wave moving forward with speed vmax. In the bottom figures, the solution consists of a
shock wave moving backward, a standing wave at the origin and a traveling wave moving forward.

lane number I(x) into consideration, the velocity and flux functions become:

ϕtotal(ρtotal, I(x)) = I(x)ϕ

(
ρtotal

I(x)

)

vave(ρtotal, I(x)) =


ϕtotal

ρtotal
, ρtotal 6= 0

vmax, ρtotal = 0

We plot the velocity and flux curves together with the density solution to the multi-

lane LWR equation in Figure 6.18. From the flux curve in the bottom, we observe

that the total flux ϕtotal equals to the road capacity ρmax in the downstream even

though there is a queue in the upstream. In other words, the phenomena of capacity

drop is not observed in the multi-lane LWR model.

This is an exciting discovery. If the vehicles on the road can adjust the speed

based on the velocity solution from multi-lane LWR model and use zipper merging,

then there is no so-called capacity drop. This maximizes the capacity usage of

highways, and efficiently avoids delays. It is not hard to realize if all the vehicles are

self-driving cars or they can communicate with a central control system. The vehicle

at position x and time t moves with speed vave(x, t) of the velocity solution. Because
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Figure 6.18: The wave solution to (6.29). The plots are density curve, velocity curve and flux
curve from top to bottom.

the density–velocity relation follows the fundamental diagram, the vehicles always

stay at a safe velocity based on current headways. Therefore, we are interested

in guiding vehicles to go through the lane-drop bottleneck by obeying the velocity

solution from the multi-lane LWR.

However, the velocity curve generated by the multi-lane LWR system is not

applicable for a vehicle to follow because of the huge velocity jumps. Even though,

the self-driving cars can adjust speed fast enough to follow the velocity curve, it

definitely sacrifices the comfort of the passengers by using extreme acceleration or

deceleration.

Therefore, our goal is to build a multi-lane LWR system, which can generate

efficient and comfortable average velocity vave(x, t) for vehicles to follow while max-

imizing the capacity. The desired average velocity vave(x, t) is a smoothly changing

curve that avoids extreme acceleration and deceleration. Here, we still use the fun-

damental diagram to restrict the velocity–density relation in order to guarantee the
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safety. There are two potential controlling strategies to generate a comfortable aver-

age velocity: (a) lower the velocity jumps vL/vA and vB/vA; (b) smooth the velocity

jumps vL/vA and vB/vA.

In the next two subsections, we will show the controlling strategies through pro-

viding the traffic explanation and mathematical formula.

6.3.1 Virtual lane usage

When the vehicles approach the lane drop, the vehicles on the dropping lane will

merge into other existing lanes gradually. The common senses tell us that drivers

should reduce the usage of the dropping lanes and merge into other lanes earlier.

Otherwise, the vehicles have to cut in by forcing the vehicles on the target lane to

stop. The rushed cut-in can disrupt the ongoing traffic flow and bring stop-and-go

wave.

The idea of early merge when approaching the lane drop can be mathematically

understood as virtual lane usage. In the original multi-lane LWR model, the number

of lanes I(x) jumps from 2 to 1 immediately at the origin (x = 0). It means drivers

are still taking full use of the shoulder lane until the lane drop. As explained in

§ 6.2, I(x) can be non-integer to account for partial lane usage. For example, a

value of I(x) = 1.5 represents the shoulder lane is less frequently used. In order to

demonstrate the idea of virtual lane usage, the lane number I(x) should gradually

decreases from 2 to 1.

We pick a road strip of length L in the upstream of the lane drop, and set the

lane number I(x) as 1.5 instead of 2. The idea is shown in Figure 6.19. As shown in
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Figure 6.19(a), the density gap between state L and A is determined by the difference

of lane number I(x). When we pick a road strip of 1.5 lanes in Figure 6.19(b), there

are more transitional states between the gap L/A. The fundamental diagram of the

virtual 1.5 lanes is in the orange dashed line.

⇢total

�total

I(x) = 1

I(x) = 2

L

R

AB

(a) Original fundamental diagram (green
dashed dotted line) for one-lane and two-
lanes traffic in multi-lane LWR model.
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I(x) = 2

L
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C

D

E

(b) Introduced fundamental diagram (or-
ange dashed line) for 1.5-lane traffic in the
upstream of the lane drop.

Figure 6.19: Comparison of fundamental diagram: (a) lane number I(x) decreases from 2 to 1;
(b) lane number I(x) decreases from 2 to 1.5, then to 1.

Next let us analyze the wave solution to the multi-lane LWR system with virtual

lane usage. There are two lane drops in the road profile now. First, the solution

is a traveling wave with speed vmax in the upstream branch (x < −L). Then, it

becomes a Riemann problem of inhomogeneous LWR model with initial conditions:

2ρcrit and 0 in the branch (−∞, 0). By using the supply–demand theory, it is not

hard to compute the boundary flux and figure out the two transitional states C and

E. The density E becomes a new traveling wave with speed vmax in the branch

(−L, 0). When the state E arrives the second lane drop x = 0, another Riemann

problem of inhomogeneous LWR model is generated with initial conditions: ρE and

0. By using the supply–demand theory, we figure out the two transitional states D

and B. The shock wave E/D move backwards with speed ω, and evolves into shock

wave C/A across the first lane drop (x = −L). The wave solution, including density,

velocity and flux, is plotted in Figure 6.20.
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Figure 6.20: The wave solution to (6.29) after introduce a virtual lane I(x) = 1.5. The plots are
density curve, velocity curve and flux curve from top to bottom.

There are two shock waves L/C and C/A moving backward with the same speed

ω. There are two standing wave at the lane drop location x = 0 and x = −L′.

It is a traveling wave between state B and R in the downstream, which is moving

forward with speed vmax. We will justify that this weak solution satisfies both entropy

conditions.

Entropy 1: the waves from left (upstream) to right (downstream) should increase

their wave speeds so that they don’t cross each other. The waves’ speeds from

upstream to downstream are still ω, 0 and vmax. It is obvious that the relation

ω < 0 < vmax holds.

Entropy 2: the standing wave can not cross the transition curve ρtotal/I(x) = ρcrit.

The two transitional states ρA and ρD at lane drop x = 0 satisfy ρtotal/I(x) ≥ ρcrit.

The two transitional states ρD and ρB at lane drop x = 0 satisfy ρtotal/I(x) ≥ ρcrit.

That means that they do not across the transition curve.
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6.3.2 Reshaped fundamental diagram

When the vehicles approach the lane drop, congestions occur because of non-uniform

lane-changing behaviors. The common senses tell us that drivers should slow down

when approaching the lane drop in attempt to leave enough headway for the merging

purpose. For example, drivers usually drive 50mph when the headway is 20m. Then

the drivers should drive only 40mph with the same headway when there is a lane

drop ahead. This action can avoid over-congestion so that vehicles are relatively

further away from each other.

The change of driving habit when approaching the lane drop can be mathemat-

ically understood as the change of the velocity–density relation in the regime of

congested flow in the fundamental diagram. The change of velocity–density relation

is equivalent to the change of the flux–density relation, so we can reshape the flux-

density relation around the lane drop area. Therefore, an alternative fundamental

diagram is introduced as the controlling strategy in order to narrow the density gap

ρL/ρA, and thus narrow the velocity gap vL/vA.

The comparison is shown in Figure 6.21. As shown in Figure 6.21(a), the density

gap between state L and A is determined by the shape of the flux-density relation

in the congested flow. When we propose an alternative flux-density relation in Fig-

ure 6.21(b) under the original relation, the density gap is narrowed. The alternative

flux-density relation is in the orange dashed line.

Next let us analyze the wave solution to the multi-lane LWR system with the

modified flux-density relation. First, the solution is a traveling wave with speed

vmax in the upstream branch (x < 0). Then, it becomes a Riemann problem of

inhomogeneous LWR model with initial conditions: ρL = 2ρcrit and ρR = 0. By
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Figure 6.21: Comparison of fundamental diagram: (a) original shape with transitional state A;
(b) alternative shape with transitional state A′.

using the supply–demand theory, it is not hard to compute the boundary flux and

figure out the two transitional states A′ and B. The wave solution, including density,

velocity and flux, is plotted in Figure 6.22.
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Figure 6.22: The wave solution to (6.29) after reshaping the fundamental diagram. The plots are
density curve, velocity curve and flux curve from top to bottom. The original wave solution is in
blue dashed line.

It is a shock wave between state L and A′, which is moving backward with speed

ω′ =
ϕL−ϕA′
ρL−ρA′

. The standing wave is stationary at the origin. It is a traveling wave

between state B and R, which is moving forward with speed vmax. We will justify
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that this weak solution satisfies both entropy conditions.

Entropy 1: the waves from left (upstream) to right (downstream) should increase

their wave speeds so that they don’t cross each other. The waves’ speeds from

upstream to downstream are ω′, 0 and vmax. It is obvious that the relation

ω′ < 0 < vmax holds.

Entropy 2: the standing wave can not cross the transition curve ρtotal/I(x) = ρcrit.

The two transitional states ρA′ and ρB around the standing wave both satisfy

ρtotal/I(x) ≥ ρcrit. That means that they do not across the transition curve.

6.3.3 Optimization in controlling strategies

In the last two parts, we introduced idea of traffic control via reshaped fundamental

diagram and virtual lane usage. In this part, we would like to provide more insights

for the parameter setting in the two controlling strategies.

virtual lane usage

The goal of virtual lane usage is to smooth the velocity jump so that the vehicles are

comfortable to follow. Consider the velocity jump that consists the higher velocity

vL and the lower velocity vA. The jump vL/vA is moving backward with speed ω,

and the jump vA/vL is standing with speed zero. Please see Figure 6.23 for lane

number I(x) and average velocity vave(x).

First, we investigate the comfort requirement on the velocity solution vave, then
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we attempt to obtain the comfort requirement on the virtual lane I(x) through the

relation between vave(x) and I(x).

vave
vL

vA

I

1

2

!

vL

x

x
sLA sAL

s

Figure 6.23: Lane number I(x) (top) and average velocity vave(x) (bottom) using virtual lane
usage.

The comfortable acceleration and deceleration are denoted by a and b (see § 4.2).

The comfort requirements on velocity vave include: the deceleration from vL to vA

should not be greater than |b|; the acceleration from vA to vL should not be greater

than a. The deceleration can be computed as:

lim
∆t→0

vave(x)− vave(x+ (vave(x) + ω)∆t)

∆t

= lim
∆t→0

vave(x)− vave(x)− (vave(x) + ω)v′ave(x)∆t

∆t

=− (vave(x) + ω)v′ave(x)

(6.33)

The acceleration can be computed as:

lim
∆t→0

vave(x+ vave(x)∆t)− vave(x)

∆t

= lim
∆t→0

vave(x) + vave(x)v′ave(x)∆t− vave(x)

∆t

=vave(x)v′ave(x)

(6.34)
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Therefore, the requirements on the velocity vave can be written as:

(vave(x) + ω)v′ave(x) ≤ |b| (6.35)

vave(x)v′ave(x) ≤ a (6.36)

In Figure 6.23, let s represent the span function I(x) takes from 2 to 1, sLA represent

the span from velocity vL to vA, and sAL represent the span from velocity vA to vL.

The length of the spans satisfy the following relation:

sAL = 1s (6.37)

sLA =
vmax + |w|
vmax

s (6.38)

The shapes of sAL and sLA in velocity vave(x) are determined by the lane number

I(x) via the fundamental diagram. Then we would like to derive the relation between

lane number I(x) and the shapes of sAL and sLA by using the fundamental diagram.

The relation is shown in Figure 6.24.

The virtual lane I(x) = k will bring two transitional states: state C in slope

sLA and state D in slope sAL. The density and flux of these states can be inferred

form the fundamental diagram, and then we can compute the velocity by using

vave = ϕtotal/ρtotal:

ϕC = kϕmax, ρC = kρcrit + (2− k)ρmax =⇒ vC =
kϕmax

kρcrit + (2− k)ρmax

ϕD = ϕmax, ρD = ρcrit + (k − 1)ρmax =⇒ vD =
ϕmax

ρcrit + (k − 1)ρmax

By incorporating the scaling factor in Equation (6.37) and (6.38) into consideration,

the relation between velocity lane number I(x) and velocity vave(x) can be explicitly

expressed as follows. We are only interested in the shapes of sAL and sLA, so neither
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Figure 6.24: The relation between lane number I(x) and velocity vave(x). (a)&(b) The slopes
sLA and sAL corresponding to lane number I(x); (c) fundamental diagram with virtual lane.

the time term nor the position shift is included in the expression.

vave(x) =
I(x)ϕmax

I(x)ρcrit + (2− I(x))ρmax

(6.39)

vave

(
vmax + |w|
vmax

x

)
=

ϕmax

ρcrit + (I(x)− 1)ρmax

(6.40)

By substituting the relation into the requirements on the velocity vave, we can get

the requirements on the lane number I(x). From the perspective of comfort, there is

a variety of functions I(x) that could provide smooth velocity changes that satisfy

the comfort requirements in Equations (6.35) and (6.36). From the perspective of

efficiency, we would like to find a function I(x) that has the shortest span s. Thus,
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the road design becomes an optimization question:

min s(I(x)) given


(vave(x) + ω)v′ave(x) ≤ |b|

vave(x)v′ave(x) ≤ a

(6.41)

This method can be generalized to other velocity gaps. The key consideration of

comfort is enforced through the comfortable acceleration a and deceleration b.

reshaped fundamental diagram

The goal of reshaped fundamental diagram is to narrow the velocity gap vL/vA.

However, the speed of the shock wave will increase when the gap is narrowed. In

Figure 6.25, we show the contrary relation between vA′ and ω′:
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Figure 6.25: The velocity gap and shock wave speed in reshaped fundamental diagram. A′ is the
intersection of the alternative fundamental diagram with line BA.

The velocity at state A′ is equivalent to the slope of line OA, and the speed

of shock wave is equivalent to the slope of line LA′. It can be observed that: the

velocity gap vL−vA′ is narrowed when A′ moves aways from state A; in contrast, the
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shock wave speed ω′ increases when A′ moves aways from state A. How to choose

an alternative fundamental diagram in this controlling strategy depends on the op-

timization question we are interested. Here I only provide two potential objective

functions:

• Usually drivers prefer not to vary velocity dramatically, so the smaller gap

vL − vA′ is preferred.

• As mentioned in the virtual lane usage, another objective could be the com-

fortable experience is acceleration and deceleration.

From the practical perspective, the objective function could be a combination of

both velocity gap and the span. The weights w1 and w2 are used to balance the two

sub-objectives. Like the virtual lane usage, we prefer to have smaller span s. Unlike

the analysis earlier, we should use the reshaped fundamental diagram to derive the

relation between vave and I(x). The optimization question becomes:

minw1(vL − vA′) + w2s(I(x)) given


(vave(x) + ω′)v′ave(x) ≤ |b|

vave(x)v′ave(x) ≤ a

(6.42)

6.4 Discussion

In this chapter, we aim to study the lane-drop bottleneck, and provide relevant

controlling strategies to maximize capacity. In the introduction, we described the

lane-drop bottleneck, and the capacity loss phenomena. Observations show that

the queues formed by the lane-changing behavior will bring capacity loss in the

downstream of lane drop.
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In § 6.2, we introduced a macroscopic approach to model the multi-lane traffic,

which uses only one continuity equation (multi-lane LWR model). Then we analyzed

the solutions to the multi-lane LWR model by applying the supply–demand theory.

The study of traffic pattern demonstrated that the multi-lane LWR model is effi-

cient in organizing the traffic density and maximizing the road capacity. Therefore,

we attempted to modify the multi-lane LWR equation, such that the vehicles can

comfortably follow the velocity solution to the modified equation.

We proposed two controlling strategies in § 6.3 to overcome the velocity gap in

the original velocity solution. The strategy of virtual lane usage represents the idea

of early merge when approaching the lane drop. It aims to smooth the velocity gap

in order to generate comfortable acceleration and deceleration for the vehicles. The

lane usage I should gradually decrease in the upstream of the lane drop under the

comfort requirements. The strategy of reshaped fundamental diagram represents the

idea of slow-down driving when approaching the lane drop. It attempts to narrow

the velocity gap by sacrificing the speed of the backward shock wave. The slope of

the congested flow in the fundamental diagram should be appropriately reshaped to

narrow the velocity gap.

The biggest advantage of the proposed traffic control is that it efficiently max-

imizes the capacity through controlling the macroscopic flow using the multi-lane

LWR model. The two control strategies represent the common senses in lane drop,

which is easy to understand and quantify. The design of the target multi-lane LWR

system can be concluded as an optimization question, and the objective function is

a modeling choice.

The proposed controlling strategies can applied to artificial intelligence of traffic.

In the future, the vehicles will be self-driving or they could communicate with a
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central control system. Under this circumstance, their movements can obey the

velocity solution to the multi-lane LWR system. That is, the control in traffic flow

is reflected on the movement of individual vehicle.



Chapter Seven

Conclusion
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In the project of traffic-flow models, I have a systematic study of both macroscopic

and microscopic traffic models as well as their dynamics and applications. In this

thesis, we mainly investigate three interesting traffic-flow problems: the collision be-

havior of car-following models, traffic estimation using data assimilation techniques,

and the traffic control in lane-drop bottleneck. The discoveries and results are sum-

marized as follows:

Collision behavior of car-following models

First, we studied the collision behavior of four well-known car-following models:

the optimal velocity model, the full velocity difference model, the modified GHR

model and the intelligent driver model. The parameter setting is based on the model

calibration using historical traffic data.

• We applied the phase portrait techniques to showing that the optimal velocity

model and the full velocity difference model are collision-prone. This collision-

prone behavior is independent of parameter setting.

• We also applied the fast-slow system techniques and mathematical induction

to proving that the modified GHR model and the intelligent driver model are

collision-free in any traffic scenarios.

• The simulations results are in agreement with the theoretical analysis. How-

ever, collisions can be occasionally observed from the trajectories generated by

the collision-free models: the modified GHR model and the intelligent driver

model.

• More simulations are implemented to show that the numerical errors introduce
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collisions that the model does not support. In addition, the number of observed

collisions is proportional to the truncation error of the numerical scheme.

In the study of the collision behavior of car-following model, we identified the driver

to prevent collisions in critical situation, which can be taken into consideration when

designing new acceleration models in the future. In addition, the collision-free model

can be used in artificial intelligence, in which the self-driving vehicles can move

according to the collision-free acceleration models.

In the future work, we would like to study the collision behavior of lane-changing

models so that we can combine these safe car-following model and lane-changing to

construct a complete traffic system.

Traffic estimation using data assimilation

Second, we investigated the data assimilation techniques which can be used to esti-

mate the traffic states and uncertain parameters, including ensemble Kalman filter

and particle filter. The initial motivation was to propose an efficient approach that

could assimilate both Eulerian and Lagrangian GPS data simultaneously.

• We proposed an alternative approach that allows us to assimilate both Eulerian

and Lagrangian GPS data simultaneously. The idea behind it is to append the

differential equations for the positions and velocities of the vehicles to the

macroscopic traffic model in order to solve them simultaneously.

• For ensemble Kalman filter and particle filter, we used custom localization,

inflation, weight collision diagnose and resampling methods, which are suitable

for traffic flow estimation.
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• We added additional terms to the LWR model to capture the effects of on-

/off-ramps, traffic lights, road construction and traveling bottlenecks. The

proposed approach is accurate and works well in different traffic scenarios. In

addition, the proposed approach can improve the accuracy when applied to

realistic traffic data from Minnesota Department of Transportation.

• We compared the performance of ensemble Kalman filter and particle filter.

The proposed approach is accurate and works well regardless of which ensemble

Kalman filter or particle filter is used. Compared to ensemble Kalman filter,

the particle filter is less sensitive to observation noise and sensor locations, but

its computation cost is higher.

One limitation we reported is that the accuracy of data assimilation can be reduced

significantly if the underlying traffic model cannot reproduce the actual traffic flow

from which observation are collected. Hence, more accurate traffic models and cali-

bration are needed to improve the estimation accuracy.

There are various extension that could be implemented in the future work. An

exciting extension would be to apply the proposed data assimilation approach to

more complicated and realistic road network. Second extension would be to use

parameter estimation to relay traffic information to drivers. For instance, data as-

similation can be used to predict the location and duration of congestion caused by

slow trucks or road constructions.

Traffic control in lane-drop bottleneck

We also studied the lane-drop bottleneck, in which there is capacity drop when

queues form in the upstream of the lane drop. Capacity drop brings unnecessary
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congestion, and reduce the usages of roads. Therefore, we would like to propose

some controlling strategies in order to maximize the capacity.

• We introduced only one continuity equation (inhomogeneous LWR model) to

model the multi-lane traffic. This macroscopic approach focuses on the aggre-

gated traffic characteristics instead of the interactions between lanes.

• The multi-lane LWR model was shown efficient in organizing the traffic density,

and thus maximize the traffic flow in the lane drop. Therefore, we would like

to have vehicles adjust their speeds based on the velocity solution to the multi-

lane LWR model.

• We applied two controlling strategies to adjust the velocity curve such that it

is comfortable for vehicles to follow. The first strategy targeted to smooth the

velocity gaps in the velocity solution through virtual lane usage. The second

strategy attempted to narrow the velocity gaps in the velocity solution through

reshaped fundamental diagram.

In the future work, we would like to combine the proposed controlling strategies

with zipper merging to build an intelligent control system. The acceleration and

lane-changing behavior of individual vehicles are communicated through this system

in order to reduce traffic delay in lane-drop bottleneck. In addition, we look forward

to applying this approach to other traffic bottlenecks, for instance ramp bottleneck

and accident bottleneck.
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