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Abstract of “ Traffic-low models: analysis, estimation and control ” by Chao Xia,
Ph.D., Brown University, May 2017

My research focuses on the study of traffic-flow models and their applications. Macro-
scopic and microscopic models are the two main approaches: macroscopic models
describe the spatial quantities of traffic, such as density, velocity and flux; while mi-

croscopic models simulate the behavior of individual cars based on their interaction.

For the macroscopic model, we study the Lighthill-Whitham equation, and ac-
count for multiple traffic scenarios by modifying the original Lighthill-Whitham equa-
tion. We also study several microscopic car-following models: the optimal velocity
model, the full velocity difference model, the modified GHR model and the intelligent

driver model. The main research work include:

e Investigate the collision behavior of the microscopic car-following model. We
theoretically prove the collision-free property of several car-following models
through fast-slow system technique, and also carry out numerical simulations
to provide a valid reference to the dynamics of traffic collisions.

e Apply data assimilation technique (ensemble Kalman filter and particle filter)
to estimating the traffic states and uncertain parameters. An augmented ap-
proach is proposed to simultaneously assimilate the Eulerian sensor data and
Lagrangian GPS data.

e Study the phenomenon of capacity discharge in the lane-drop scenario. Macro-
scopically, we model the lane-drop scenario with inhomogeneous Lighthill-
Whitham equation, and then proposed two controlling strategies to guide ve-
hicles smoothly through the bottleneck: (1) change driving habit through fun-

damental diagram; (2) merge vehicles in advance through virtual lane usage.
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CHAPTER ONE

Introduction



1.1 Motivation and preliminaries

Traffic flow theory and modeling started in the 1930. This field has gained consider-
able attention as overall traffic demand has increased and more data as well as easy
access to computing power has become available. Traffic is everywhere in our daily
life. There is a growing need for accurate traffic information so that the public can
efficiently schedule their trips, and the government can better provide traffic control
strategies. Thus, modeling, analyzing, estimating and controlling the dynamics of
traffic flow are of great importance. First of all, I would like to have a overview of

traffic flow: (a) traffic-flow models (b) traffic-flow observation.

Mathematical models for traffic flow come in many different flavors. Common
models range from microscopic models for individual cars to macroscopic models
for car densities and possibly other quantities. As the name indicates, macroscopic
models formulate the relationship among the spatial quantities such as density, ve-
locity and flow. In contrast, microscopic models simulate individual vehicle-driver
unites, so the dynamic variables of the models represent properties like the position

and velocity of individual vehicles.

The macroscopic traffic models are usually described in a partial-differential equa-
tion (PDE) to build a relationship between spatial quantities [39, 54, 63]. The
most well-known macroscopic model is the Lighthill-Whitham-Richard (LWR) model
[54, 63], which describes the the evolution of traffic by the vehicle density accord-
ing the conservation law. The LWR model can be modified to account for multiple
traffic scenarios through velocity-density relation or flux-density relation. The com-
mon traffic scenarios include normal traffic, traffic lights, on-/off-ramps, construction

zones, traveling bottlenecks and lane drops.



The microscopic traffic models include the acceleration and lane-changing mod-
els [61]. The acceleration models are formulated by coupled ordinary differential
equations, which describe the variables of individual vehicles, such as positions and
velocities. The lane-changing models involve the vehicles interaction across different
lanes, and specify the rules for merging. The microscopic models are able to provide
traffic simulation in a realistic road profile, and the well-known traffic simulators in-
clude AIMSUN (advanced interactive microscopic simulator for urban and nonurban
networks), PARAMICS (parallel microscopic simulation) and VISSIM (Verkehr in
Stadten simulation) [59]. The dynamics of the microscopic models is an interesting

area so that the models can better simulate the realistic traffic.

Different aspects of traffic dynamics are captured by different measurement meth-
ods. Traffic-flow observations come from a variety of sources and are available as
functions of time. Stationary sensors, such as induction loops or cameras, provide
the flux, average velocity, and local density of cars that move pass the fixed sensor
location. GPS data from cell phone or navigation devices, on the other hand, provide
information about the positions and velocities of individual cars that move with the
traffic flow. We refer to observations that come from a fixed observation location as
Eulerian observations and to observations that come from parcels that move with the
traffic flow as Lagrangian observations. Both Eulerian and Lagrangian observations
have their own advantages and disadvantages with respect to collection cost, data
accuracy, traffic coverage or even driver privacy. A lot of comparative studies are
done to compare the properties of both types of observation. They are used in dif-
ferent circumstances for calibration, estimation and prediction based on the impacts

of their advantages and disadvantages.



1.2 Thesis objectives

There are a lot of interesting traffic topics, ranging from the theoretic study of
traffic-flow models, to their application in realistic traffic scenarios. There are three

objectives related to traffic-flow modeling in my thesis:

e Studying the dynamics of car-following models

Car-following models are widely used in traffic simulation because of its vari-
ability in the formula of ordinary differential equations. The traffic dynamics
of these models are of great importance, and thus have received plenty of study
from scholars. However, the collision behavior of car-following models remains
a challenging problem. One difficulty is that the traffic system of multiple
vehicles is complicated when all interactions among vehicles are taken into
consideration. Previous study for making inferences about the collision behav-
ior depended on vast numerical simulations. On one side, the study cannot
provide a theoretical analysis of the car-following models from its essence. On
the other side, the inferences from the simulations could be misleading in the
existence of numerical error. In my thesis, we carry out a theoretical analysis of
the collision behavior of four well-known car-following models. We show that
the modified GHR model and the intelligent driver model are collision-free un-
der all traffic circumstances. We also show that the numerical errors introduce

collisions that the model doesn’t support.

e Assimilating Eulerian and Lagrangian data in traffic-flow models

Data assimilation of traffic low remains a challenging problem. One diffi-
culty is that data come from different sources ranging from stationary sensors

and camera data to GPS and cell phone data from moving cars. Sensors and



cameras give information about traffic density, while GPS data provide infor-
mation about the positions and velocities of individual cars. Previous methods
for assimilating Lagrangian data collected from individual cars relied on spe-
cific properties of the underlying computational model or its reformulation in
Lagrangian coordinates. These approaches make it hard to assimilate both Eu-
lerian density and Lagrangian positional data simultaneously. In this thesis, we
propose an alternative approach that allows us to assimilate both Eulerian and
Lagrangian data. We show that the proposed algorithm is accurate and works
well in different traffic scenarios and regardless of whether ensemble Kalman
or particle filters are used. We also show that the algorithm is capable of
estimating parameters and assimilating real traffic observations and synthetic

observations obtained from microscopic models.

Providing traffic control strategies to maximize capacity in lane-drop bottle-

neck

Lane drop is a location where number of lanes provided decreases. Empiri-
cal observations at lane-drop bottleneck revealed that there is a drop in the
bottleneck discharge rate when queues form in the upstream of the lane drop.
Even though the research results show that lane changes are the main cause of
the drop in discharge rate, the relevant traffic control to maximize the capacity
is still a challenging problem. One difficulty is that the interaction between
lanes are complicated to quantify, and that there are a lot of parameters to
specify. Previous methods to maximize capacity either attempted to develop
cooperative lane-changing models to reduce the queues in the upstream of lane
drop or formulated a conservation equation for individual lane to optimize the
density transfer between adjacent lanes. These approaches focus on the inter-
action rules between lanes, which are complicated to quantify, and not target

to maximize capacity directly. In my thesis, we introduce the inhomogeneous



LWR model to account for the change of lane number, and use one continuity
equation to model the total density. When the maximal capacity is guaranteed
by the inhomogeneous LWR model, we attempt to smooth the velocity curve
so that the embedded vehicles are comfortable to follow it. We show the traf-
fic pattern by the inhomogeneous LWR model and its property to maximize
capacity. We also show two controlling strategies to smooth and narrow the

velocity gap in the solution to the inhomogeneous LWR model.

Outlines

The work is organized as follows. In Chapter 2, we provide an overview of macro-
scopic traffic models (LWR model) as well as the fundamental diagram, and a discus-
sion of multiple traffic scenarios based on LWR model, which will be used to test the
efficacy of our proposed assimilation method in Chapter 5. In Chapter 3, we provide
an overview of microscopic traffic models, and give a detailed introduction to the
well-known car-following models, along with notations and setup for the following
chapter. Chapter 4 provides the analysis of the stability and collision behavior of the
car-following models. The theoretical proof as well as the numerical implementation
is shown to be in agreement. In Chapter 5, we have a detailed discussion of the
traffic observations and data assimilation approaches. Then we proposed an alterna-
tive approach that allows us to assimilate both Eulerian and Lagrangian data, and
show the accuracy and efficacy of this approach in multiple traffic scenarios. The
lane-drop bottleneck is investigated in Chapter 6. The inhomogeneous LWR model
is introduced to account for the multi-lane traffic scenarios. We provide two control-
ling strategies to maximize the capacity while providing a comfortable velocity curve
for vehicles to follow. Finally, Chapter 7 includes an overall discussion, conclusion

and directions for future work.



CHAPTER TWwO

Review: macroscopic traffic

models



2.1 Introduction

A macroscopic traffic model is a mathematical traffic model that formulates the
relationships among traffic flow characteristics like density, flow, mean speed of a
traffic stream. The characteristics are locally aggregated, which vary across space
and time, i.e., they correspond to dynamic fields. Thus, macroscopic models are
able to describe collective phenomena such as the evolution of congested regions or
the propagation of traffic wave ([73]). Macroscopic models [19, 42, 54, 63] describe
traffic flow analogously to liquids or gases in motion. Hence they are sometimes

called hydrodynamics models.

Since the legendary paper [54, 63] by Lighthill, Whitham and Richards, dynam-
ical macroscopic traffic flow modeling became a central focus for both theoretical-
and application-oriented research. This is a first order model based on the scalar
conservation law. The first-order model was complemented by second-order model
by Payne [60], in an attempt to avoid some known deficiencies of the first-order
model. However, in Daganzo’s note [20], it described the logical flows of the higher
order continuum models. In our research, we will focus the first-order model [54, 63]

and its variants.

Conventionally, the macroscopic models are derived from integrating the micro-
scopic traffic flow models and converting the single-entity level characteristics to
system level characteristics ([5, 25]). In [5], it establishes a connection between a
microscopic follow-the-leader model based on ordinary differential equation and a
semidiscretization of a macroscopic continuum model based on a conservation law.
They also show rigorously that, at least in the homogeneous case, the macroscopic

model can be viewed as the limit of the time discretization of the microscopic model



as the number of vehicles increase, with a scaling in space and time.

The foundations of macroscopic model are the hydrodynamic relation “flow equals
density times speed” and the continuity equation, which describes the temporal
evolution of the traffic flow characteristics. The vehicle flux-density relation is called
the fundamental diagram of traffic, which is a modeling choice. Traffic flux refers
to the number of passing vehicles per unit time, and traffic density refers to the
number of vehicles per unit length. Then the vehicle velocity is defined such as the
flow-density relation is satisfied. More details about the fundamental diagram will

be provided in section §2.2.1.

The macroscopic models are particularly useful when one is interested in macro-
scopic quantities and the microscopic effects (lane changes, driver-vehicle type, ac-
celeration) need not be considered. Some main applications of macroscopic model

include:

e Macroscopic models can be used to study the spatiotemporal evolution of con-
gested traffic pattern, and simulate the effects of traffic flow breakdown caused
by high traffic load, bottleneck and disturbance of drivers.

e Macroscopic models can be modified to account for realistic road profiles, such
as traffic lights, on-/off-ramps, change in the number of lanes, intersections,
construction zone and so on.

e Flow and aggregated speed data from stationary detectors and trajectories of
moving cars allow us to estimate and predict the traffic states. Since most
of this information is not well known, it is typically more common to use
macroscopic models for traffic estimation.

e From the analysis of the spatiotemporal dynamics on highways, we can im-

plement model-based traffic low optimization to increase the efficiency and
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stability of traffic flow.

The traffic pattern and wave propagation are well studied in [49, 54, 63, 73]. In this
chapter, we touch on the variations of macroscopic model to account for road pro-
files mentioned above. In chapter §5, we will apply the Lighthill-Whitham-Richards
model to provide traffic evolution at later times, and focus on the estimation of traffic
states and uncertain parameters. In chapter §6, we study the lane-drop bottleneck
and discuss the potential optimization strategies based on the Lighthill-Whitham-
Richards model.

2.2 Lighthill-Whitham-Richard model

This section reviews the theory of scalar first-order conservation law, known as the
Lighthill-Whitham-Richard (LWR) partial differential model [54, 63]. The LWR
model describes the evolution of traffic by the vehicle density p(x,t) at location x
and time t. For simplicity, we consider a ring road of length L but emphasize that
roads with other boundary conditions can also be treated by our approach. In the
absence of sinks and sources, the conservation law for the vehicle density p(z,t) with

periodic boundary conditions is given by

Dip(z,t) + Bpp(p(z, 1)) =0, =z €T, (2.1)

p(l‘, 0) = pO(I),

where po(x) denotes the initial data, and T denotes the circle of circumference L
that reflects the periodic boundary conditions we employ. The equation describes

the rate of change of density in terms of gradients of the flow.
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The flux function ¢(p) expresses the dependence of the vehicle flux ¢ on the
density p; this relationship is usually referred to as the fundamental diagram. We
assume that ¢ is defined on the interval [0, pax], Where ppax is the maximal density

achievable on the road.

For traffic flow, we can write ¢(p) = pV(p), where the function V(p) relates
velocity v and density p for densities p € [0, pmax]. The function V(p) is a mod-
eling choice: examples include the Daganzo—Newell velocity function [76] and the

Greenshields affine velocity function [36].

2.2.1 Fundamental diagram

Fundamental diagram of traffic flow is the plot of the traffic flux ¢ versus the traffic
density p. According to [64], the two-phase traffic theory divides traffic flow into
free flow for low densities, and congested flow for large densities. Figure 2.1 is
the fundamental diagram from Seibold’s paper [64]. In the free flow regime, flux
increases as density increases, while in the congested flow regime, flux decrease as

density increases.

The flux-density relation can be mathematically written as p(p) = pV (p), where
velocity function V'(p) relates velocity v and density p. The algebraic expression of
the velocity function is a modeling choice, and it is typically constructed to fit ex-
perimental data. We will briefly introduce the the Daganzo—Newell velocity function

[76] and the Greenshields affine velocity function [36], which are used in §5 and §6.
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Figure 2.1: Fundamental diagram from [64]. Flow-density data obtained from sensor measurement
data, aggregated over time intervals of At = 30s (left). The free flow curve and a synchronized
flow region of fundamental diagram (right).

Greenshields velcoity function: It is one of the earliest introduced velocity

functions by Greenshields. It expresses a linear relationship between the speed and

density: the velocity linearly decreases as the density increases.

0 = Vi(p) = i (1— p ) 22)

pmax

where v.x is the maximal free-flow velocity, and pp,.x is the maximal density achiev-
able on the road. This model remains useful because of its simplicity. The velocity

function and respective fundamental diagram are shown in Figure 2.2.

Daganzo-Newell velocity function: It is a widely used velocity function by
assuming a constant velocity in free-flow regime, and a hyperbolic velocity in the

congestion regime:
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where p, is called the critical density that separates the free-flow regime and conges-
tion regime. The Daganzo-Newell velocity gives a triangular fundamental diagram.

The velocity function and respective fundamental diagram are shown in Figure 2.2.

A A

Vi(p)
V(p)

¢(p)
o(p)

p > 4 >

Figure 2.2: Velocity functions and respective fundamental diagrams for Greenshields (left) and
Daganzo-Newell (right).

2.2.2 Characteristic curve

The LWR equation is a first-order PDE, we could use the method of characteristics to
discover curves along which the PDE becomes an ODE. The LWR equation without
viscous term can be written in a quasilinear form:

dp

E‘i‘%@(ﬂ)

o _

5 =0 (2.4)
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The characteristic equations for the original system with initial conditions are:

%:1, t0) =0

& — ¢ (p), x(0)=um

% =0, p(0)=p(zo,0)

Because of t = s from the first equation, x and p can be expressed as functions of ¢:

z(t) = ¢'(p)t + 2o

p(t) = p(x0,0) = po(wo)

Therefore, we get this relation p(z(t),t) = po(xo) = po(z — ¢'(p)t). In this case, the
characteristic lines are straight lines with slope ¢’(p), and the value of p remains
constant along the characteristic line. Therefore, the solution of Lighthill-Whitham
model comes from following characteristic curve back from (z,t) to a point when
t=0:

pz,t) = po(x — &' (p(,1))t) (2:5)

Riemann problem: The initial problem (2.4) with discontinuous initial condition

of the form

pl,0) = - (2.6)

is called a Riemann problem. By using the characteristic method presented above,

we can obtain two characteristic curves:

r = ¢ (pp)t + o

z = ¢'(pr)t + o
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The slopes of the characteristic curve can be understood as wave speed. We use new

notations Ay and Ag to represent the wave speeds in Riemann problem.

Solutions Based on the relation of A, and Ay, the solution to the Riemann problem
can be traveling wave, shock wave and rarefaction. The relations include \;, = Ag,
AL > Ar and A\, < Ag, which are plotted in Figure 2.3.

At . ) ) At ) At

(a) AL = AR (b) AL > AR (C) AL < Ar

Figure 2.3: Characteristic curves of the Riemann problem when wave speeds (a) A\, = Ag, (b)
AL > Ag and (C) AL < AR

We substitute the Greenshields velocity function into the flux function, and
obtain ¢(p) = pPUmax(l — p/pmax). The slope of the characteristic curve becomes

&'(p) = Vmax(1 — 2p/Pmaz), which is a linear decreasing function respect to density

p. The Riemann solutions include:

e Traveling wave (A, = Agp = \)
The wave doesn’t change the speed from upstream to downstream, so it is a

traveling wave with speed A. The solution can be expressed as

p(z,t) = po(z — At) (2.7)

e Shock wave (A > Ag)

When the wave speed in upstream is greater than downstream, a discontinuity
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will be generated and propagated. This is shock wave.

The Rankine-Hugoniot jump condition determines the position of a shock at a
given time. This condition emerges when one consider the equation in integral

form by integrating the LWR respect to x:

2

@), p(z,t)dr 4+ o(p)[z2 =0

Then we can obtain the wave speed of the shock

\ = Plor) —¢lpr) _ AL+ Ar
PL = PR 2

(2.8)

The discontinuity propagating with speed \ satisfies the entropy condition

because A\, > A > Ar holds.

e Rarefaction (A < Ag)
The whole situation changes. Even though there is a shock wave solution
satisfying the Rankine-Hugoniot condition, the shock wave doesn’t satisfy the

entropy condition because of A\j < A < Apg.

A weak solution satisfying the entropy condition is rarefaction wave:

p
PL T < )\Lt
p(l‘,t) = w(x/t) )\Lt S T S /\Rt ) (29)
PR T > Mgt
\

where w(.) is a smooth function with w(Ay) = pr and w(Ag) = pr.

So far, we are discussing the homogeneous LWR model and the solutions to the

Riemann problem. In Chapter 6, we will introduce the inhomogeneous LWR model
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to account for the change of lane number.

2.3 Traffic scenarios based on LWR model

As we know, the original LWR equation (2.1) models the conservation of traffic flow
in absence of sources or sinks. In addition, the velocity function V(p) is assumed
not dynamic, which is unable to describes a dynamic relation between velocity and
density. Therefore, the original LWR equation is limited to model more complicated

road profiles.

The main road profiles include normal traffic (§ 2.3.1), on-/off-ramp (§ 2.3.2),
traffic lights (§ 2.3.3), construction zone (§ 2.3.4), traveling wave (§ 2.3.5), change in
the number of lanes (§ 6.2), and so on. In this section, we modify the existing LWR
model to account for effects of the first five traffic scenarios. The modifications make
the macroscopic model more accurate to describe the realistic traffic. The change in

the number of lanes is a particular traffic scenario we will discuss in more details in

§ 6.2,

2.3.1 Normal traffic

In the LWR model (2.1), the adaption of speed to traffic density is instantaneous,
because the relation v(x,t) = ¢(p(z,t))/p(x,t) holds if function ¢ and p are appro-
priately defined. This means that it takes zero time for a driver to change driving
speed according to the density. It is normal that some fine structure of traffic is

missing in the LWR model.
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In the normal traffic, the drivers need response time to adjust the velocity, so
the relation v(z,t) = p(p(x,t))/p(x,t) doesn’t hold when density experiences big
changes. In [81], the researcher exploit the relation between driver memory and
viscosity to develop a viscous continuum model, which takes the drivers’ response
time into consideration through a diffusion term on the right-hand-side of the LWR
equation. Therefore, we introduce the viscous LWR model to describe the normal

traffic:

pr + (pVa(p)), = €pus (2.10)

where ¢ is the diffusion coefficient, which acts as a smoothing factor in the model.

The diffusion term with diffusion coefficient ¢ has two other advantages: this
term accounts for low-level noise when updating the traffic states at later times;
from the perspective of numerical solution, the introduction of small diffusion term

can produce a weak solution that satisfies the entropy condition.

The viscous LWR model (2.10) will act as the base model for the following traffic

scenarios: on-/off-ramps, traffic lights, construction zone and traveling bottleneck.

2.3.2 On-/off-ramps

Ramp is a road junction of the highway system: an on-ramp provides access to the
specific part of a road system, while an off-ramp is one-way lane for departing a
main highway. The sketch of on-/off-ramps is shown in Figure 2.4. Mathematically,
on-/off-ramps imply additional in-/outflows, which have to be added to the section

boundaries where the on-/off-ramps are.
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Figure 2.4: On-/off-ramps allow vehicles to enter or exit a controlled-access highway.

Let {x%"}ier and {x?ﬁ}jej be the positions of on-ramps and off-ramps, and
{o(t) }ier and {S%(t)}jes are time-dependent flows of on-ramps and off-ramps
respectively. The ramp flow is positive for on-ramps, and negative for off-ramps.
Instead of using a delta function 6(z — 29") and 6(z — 2°%) to indicate the loca-

7

tions of sources sinks, we introduce sech functions f(z — x$") = sech(z — 29") and
f(z—2°%) = sech(z —29%) to represent the spread effect of ramps. This consideration
comes from the phenomenon that ramps would affect the areas nearby rather the

specific points.

By addition source and sink terms to the viscous LWR equation (2.10), we get

the model for on-/off-ramps scenario:

et (PVa(p))e = epun+ Y@ f(w =) + > @ () f(x — 25T, (2.11)

€T jeJ

In this scenario, spatial shocks are generated around the on-ramp and off-ramp.
Specifically, a density bump appears around the on-ramp, while a density valley
appears around the off-ramp. More details about the ramp positions and ramp flows

will be mentioned in § 5 when estimating traffic states in on-/off-ramps scenario.
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2.3.3 Traffic lights

The traffic lights on the road force vehicles to decelerate and accelerate periodi-
cally, resulting a periodic oscillations of the vehicle density along the road. In this
circumstance the velocity function is dynamic corresponding to the color of traffic

lights.

In the traffic light scenario, we place a traffic light at position z{ on the road,
and set three sub-periods for yellow light T}, red light T and green light 77. We
introduce a deceleration factor to account for the effects from traffic light, and the

velocity function becomes:

v(z,t) = Vg(p(z,t))a(x, t; 2}) (2.12)

where a(z,t;2%) is the deceleration factor from a traffic light at position x%. The
function a(x,t;x%) is periodic in time ¢ with period T, which is the total length of
three sub-periods T' = T/ + T] + T/. In Figure 2.5, The traffic light cycle has a
period of T' = 6 minutes, which consists of yellow light time 7Y}, red light time 77

and green light time 77 as follows:

e During yellow lights, drivers within LY miles (see Figure 2.5(a)) notice the
yellow lights, and they are decelerating. The drivers out of the range will drive

normally.

e During red lights, cars within L} miles (see Figure 2.5(b)) are forced to stop,
and those following within 2L] are decelerating when approaching the traffic

light.

e During green lights T} (see Figure 2.5(c)), traffic flows normally and the ve-
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locity is exactly equal to the predetermined velocity function.

(a) a(x, t;af), t e T} (b) a(x,t;zf),t € T (c) a(z, t;2f),t € TY
T 1 —\ |
0 . - 0 - : - 0

0 af — LY x$ 0 zi — 2L :z'[l — L7 af 0 x4

(a) Yellow light period T} (b) Red light period 77 (c) Green light period T

Figure 2.5: Deceleration factor a(z,t; 2{) in traffic light scenario: (a) yellow light period; (b) Red
light period; (c) Green light period.

The modified LWR model for traffic lights is mathematically given by:

pe+ (Ve (p(x, 1) alz, ;27)) , = puas (2.13)
(
0.5 (w,t) € (2§ — LY, 25) x T}
0 (z,t) € (¢f — Li,27) x T}

a(x, t;zh) = < (2.14)

(2f — L —2)/L] (x,t) € (a1 — 205,21 — L)) x T}

1 otherwise,

More details about the length of lights (77,77, T}) and the effect region (LY, L) will

be mentioned in § 5 when estimating traffic states in traffic light scenario.

2.3.4 Construction zone

When approaching a construction zone, we can see signs or signals like “SLOW?”,
“ROAD WORK AHEAD”, “SINGLE LANE AHEAD?” or even “STOP”. Around the
construction zone, typically the drivers are experiences slow speed and lane merge.
In this circumstance, the velocity function is dynamic corresponding to effects of

construction zone.

Let 2% be the location of a construction zone, which is a constant. We introduce
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a bottleneck factor a(z — x%) to account for the slow-down effects from construction

zone. Then the velocity function becomes:

P+ (pVG(p>a(x - xl{))z = €Pza; (2'15)

where z? is the location of the bottleneck. The quantity a(z — 2?) is the bottleneck
factor, which can be written as the product of severity coefficient and spread effect
a(z — %) = cf(x — 28). The severity coefficient ¢ reflects the degree of influence of
the construction zone or traffic accident, and f(z — 2%) represents the spread effect
of the bottleneck. In this scenario, a stationary density bottleneck appears around

b
xl:

More details about the bottleneck position 24, severity coefficient ¢ and the spread

effect f(z—2%) will be mentioned in § 5 when estimating traffic states in construction

zone.

2.3.5 Traveling bottleneck

We also construct a traveling bottleneck scenario, for which we use a model similar
to that of the stationary bottleneck in §2.3.4. To account for a traveling bottleneck,
we allow the position of the bottleneck to be time-dependent, and the macroscopic

model can be described as:

ot (pVelp)alz — 24(1))), = epre. (2.16)
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where z%(t) is the location of traveling bottleneck, which is assumed to be time-

dependent.

The traveling bottleneck scenario can be used to model slow truck, moving con-
struction zone, moving snowplows and so on. In this traffic scenario, we would like

test the assimilation efficacy of our algorithm in time-dependent parameter x8(t).

More details about the traveling bottleneck position 2%(t) will be mentioned in

§ 5 when estimating traffic states and parameters.

2. Parameter estimation for real traffic data In addition to estimating sim-
ulated traffic states and parameters, we are interested in applying the developed
approach to real traffic data. In this section, we use data from the Minnesota De-

partment of Transportation [70].



CHAPTER THREE

Review: microscopic traffic models
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3.1 Introduction to microscopic traffic models

A microscopic traffic model is an import class of model in traffic simulation. In con-
trast to macroscopic traffic model, microscopic model simulates individual vehicle-
driver entities, so the dynamic variables of the models represent microscopic proper-
ties like the position and velocity of individual vehicles. Conventionally, the micro-
scopic models can be used to derive the macroscopic models through micro-macro

transition.

The mathematical formulations include car-following models and cellular automa-

ton models.

e The car-following models are time-continuous models, which are defined by
ordinary differential equations describing the vehicles’ positions and velocities.
It is assumed the accelerations of the drivers depend only on their own ve-
locities, the velocity of the leading vehicle, and the distance to the leading
vehicle. Usually the driving behavior can be affected by multiple leading ve-
hicles. Then the acceleration function can be generalized to account for more
variables. Well-known car-following models include the optimal velocity model
8], the velocity difference model [46], the GHR model [32] and the intelligent

driver model [72].

e The cellular automaton models describe traffic dynamics in a completely dis-
crete way: space is subdivided into cells, time into time steps, and speed or
acceleration are integer multiples of the corresponding units. Fach road section
can either be occupied by a vehicle or empty. Examples of cellular automaton

models include Nagel-Schreckenberg model[57], and other refined models.
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Compared to the car-following models, the advantages and disadvantages of the
cellular automaton models are due to the discrete scaling of time, space and state
variables. Even though the cellular automaton models are easy and fast to simulate,
they lack robustness because of the discrete nature. Therefore, we will focus on

car-following models in our study.

Traffic simulation is an interesting and important application of car-following
models. Car-following models, together with lane-changing models [61] are devel-
oped and implemented in a microscopic simulation framework. In [59], a compara-
tive evaluation of car-following behavior in a number of well-known traffic simulators,
including AIMSUN (advanced interactive microscopic simulator for urban and nonur-
ban networks), PARAMICS (parallel microscopic simulation) and VISSIM (Verkehr

in Stadten simulation).

The dynamics of car-following models is another important area for investigation.
In Chapter 4, we will discuss the stability and collision behavior of car-following

models.

3.2 Car-following models

Microscopic models describe traffic flow dynamics in terms of single vehicles. As
the most important representatives of microscopic traffic flow models, car-following
models describe traffic dynamics from the perspective of individual driver-vehicle

units with interaction to the leading ones.

In continuous-time models, these car-following models are defined by coupled

ordinary differential equations, and the drivers’ responses are informed by their own
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velocities, headways and the velocities of the leading vehicles. Many car-following

models are of the form:

Un+1 Up, Un—%
vehicle n + 1 %cle n %cle n—1
Tp+1 Tn Tn—1
(S S >t

b T 4,

Figure 3.1: Notations for car-following models: vehicles are numbered from front to back
such that vehicle n follows vehicle n — 1. For vehicle n, x, denotes position, v, denotes
velocity, £, denotes length and d,, denotes gap.

ity = 22D )
dt
dvy,(t) (3.1)
Op(t) = ;t = faccel (Un, Un_1,dn),  dp = Tn_1 — Ty — by,

where

x, : the position of vehicle n,

v, : the speed of vehicle n,

Up_1 : the speed of the leading vehicle n — 1,

¢, : the length of vehicle n,

d, : the gap between vehicle n and the leading vehicle n — 1,

faccel © the acceleration function.

In recent years, car-following models have received increasing attentions both in
mathematics and engineering. Many car-following models have been developed and
studied in the past half century. In [14, 17, 39], the dynamical behavior and proper-
ties of car-following models have been reviewed, including the formula, parameters,

steady state, stability, trajectories, etc.
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In this section, we will focus on four well-known continuous car-following models,
which are frequently used in traffic simulations. These models are (i) the optimal ve-
locity model, (ii) the full velocity difference model, (iii) the modified Gazis-Herman-

Rothery model, and (iv) the intelligent driver model.

3.2.1 The optimal velocity model

The optimal velocity model was originally proposed by Bando et al. in [8], which
assumed that each vehicle has a distance-dependent optimal velocity V(-). In this
model, the driver controls the acceleration to maintain an optimal velocity according
to the motion of the leading vehicle. In addition, a constant adaption time 7 is
introduced to reflect the driver’s sensitivity to adapt to the optimal velocity. The

optimal velocity model can be written as:
(3.2)

where d,, is the gap to the leading vehicle, V(-) is the optimal velocity function
that depends on the distance to the leading vehicle, and 7 is the adaption time.
The acceleration equation describes the adaption of actual speed v, to the optimal
velocity V(d,,) on a time scale given by the adaption time 7. The smaller the adaption
time 7 is, the faster the vehicle adapts to the optimal velocity. The optimal velocity
function V(-) is a modeling choice: common choices are hyperbolic tangent and
piecewise function. In this study, we will use the hyperbolic tangent function by

Bando et al.:
tanh(d,,/As — ) + tanh /3
d,) =V
Vdn) = Vo 1 + tanh 3
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where Vj is the desired speed, As is the transition width and £ is the form factor.
Figure 3.2 shows how these parameters change the shape of optimal velocity function
V(). The bigger the desired speed V; is or the smaller the transition width As is,
the greater the optimal velocity will be. For the form factor g, larger values shift
the optimal velocity curve to right. Overall the optimal velocity model is easy to
understand and implement, but it has a strong dependency on the parameters and

simulation results can be unrealistic.

@
8
m
3
<
8

@
3

Optimal Velocity (mph)
5

Optimal Velocity (mph)
s

Optimal Velocity (mph)

»
S

o 10 20 30 40 50 o 10 20 30 40 50 0 10 20 30 40 50
Headway (m) Headway (m) Headway (m)

(a) Desired speed Vj (b) Transition width As (c) Form factor j3

Figure 3.2: Optimal velocity function in respect to parameter V, As and

3.2.2 The velocity difference model

The main deficiency of optimal velocity model is that it does not take the speed of
the leading vehicle into consideration. Thus the full velocity mode was proposed in
[46] by extending the optimal velocity model with an additional linear stimulus for
the speed difference. On one hand, if the speed of vehicle n is larger than that of
the leading vehicle, additional deceleration will be generated to slow it down. On
the other hand, if the following vehicle is slower than the leading vehicle, additional
acceleration will be generated to speed it up. Thus, the full velocity difference model

has better stability than the optimal velocity model. The mathematical formula is
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as follows:

(3.3)
Un(t) = =" — (U — Vn-1)

where (v, —v,_1) is the velocity difference to the leading vehicle n — 1, and + is the
sensitivity factor for speed difference. Parameter v measures the driver’s sensitivity
to speed difference: the greater 7 is, the more sensitivity the driver has. When v = 0,
the full velocity difference model (3.3) reduces to the optimal velocity model (3.2).
According to the simulations in [46], the full velocity difference model predicts the
correct delay time of car motion and kinematic wave speed at jam density. However,
the sensitivity term + does not depend on the gap d,,, which can generate a significant

and unrealistic deceleration even when the leading vehicle is far away.

3.2.3 The modified GHR model

The Gazis-Herman-Rothery (GHR) model is the most well-known model from the
late fifties by Gazis et al. ([32]). This model is based on the intuition that the
acceleration is proportional to the velocity difference; it also includes an explicit

time delay to account for driver’s reaction time. The general formula of the GHR

model is a delay ODE:

On(t+T) = Mup_1 — vy)

where T is the reaction time, and X is a relaxation rate. Here we modified the
original GHR model based on the following considerations: firstly we replace the

delay formula by the adaption to the optimal velocity with reaction time 7; then we
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use the reciprocal spacing for the relaxation rate, i.e., A = di; lastly the sensitivity
n
Uy — Uppe
—n—n ¥ Lo velocity difference is bounded from above in order to avoid unrealistic
n

acceleration generated by negative speed difference v, — v,_; and small gap d,.
With these sensible modifications, the stimulus is able to characterize the distance-
dependent sensitivity to velocity difference as well as realistic acceleration. The

modified formula can be written as:

on(t) = 2Un) = <—77M,A) | (3.4)

where 7 is a constant sensitivity parameter, and A is the upper bound of acceleration.
The modified GHR model is an improvement over the optimal velocity model and
the full velocity difference model, since it generates distance-dependence stimulus to

velocity difference.

3.2.4 The intelligent driver model

The intelligent driver model is a novel continuous model by considering the real
driving behavior, which was proposed by Treiber et al. in the work [72]. In this
model, the driving behaviors such as keeping a ”safe distance”, driving at a desired
speed and preferring comfortable accelerations are taken into consideration. The
main idea behind this model is to superpose (I) the acceleration tendency on a
free road by comparing the current velocity to the desired velocity, and (II) the

deceleration tendency in the presence of interactions by comparing the current gap
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to the desired safe distance. The mathematical formula is as follows:

where a is the comfortable acceleration, V{ is the desired velocity, ¢ is the accel-
eration exponent and d* is the desired distance. In model (3.5), term I represents
the acceleration tendency with exponent ¢ controlling the reduction of acceleration
when velocity approaches the desired velocity Vj, and term II represents deceleration
tendency away from the leading vehicle by comparing the current gap d,, and the
desired distance d*. The form of desired distance d* is also a modeling choice, and

we use the expression from book [73] in this paper:

d*(Vn, U — Vp1) = do + max (O7 v, T + M) :

2v/ab

where dy is the minimum gap to keep, b is the comfortable deceleration, T is the
reaction time of drivers. Larger minimum gap dy, longer time gap 7', or smaller
deceleration b will induce larger desired distance d*, and thus larger gap d, for a
driver to keep. The intelligent driver model is simple, and only has a few intuitive

parameters with realistic values and reproduces collective dynamics.



CHAPTER FOUR

Dynamics of car-following models
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4.1 Stability analysis

Instability of traffic flow results in traffic waves, which is also called stop-and-go
waves. This is mainly caused by the delays in adapting the speed to the actual traffic

condition, which are consequences of finite acceleration and deceleration capability.

In this section, we would like to make a stability analysis of the car-following

models without using a Taylor approximation.

4.1.1 Stability analysis of car-following model

The system of N vehicles on a ring road of length L can be describe as:

Un41 Un Uﬂ—%
vehicle n + 1 %\/ehéde n mcle n—1
: () o™ () O
Tn+1 Tn Tn—1
S > >t

l, dn

Figure 4.1: Notations for car-following models: vehicles are numbered from front to back
such that vehicle n follows vehicle n — 1. For vehicle n, x,, denotes position, v, denotes
velocity, £,, denotes length and d,, denotes gap.

When studying the interactions between two adjacent vehicles, the headway
rather than the vehicle length matters. Without loss of generosity, we can set the
¢, = 0. By introducing the headway d,, between vehicle n — 1 and n, the coupled

ordinary differential equations become:

dn(t) = Vp-1(t) — vn(t)

Un(t) = faccel (Un7 Un—1, dn) 5
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The steady-state gap is d. = L/N and the steady-state velocity v, satisfies faccel(Ve, Ve, de) =
0, from which an explicit expression of v, can be obtained as v, = V,(d.). As in the
analysis for stability, we assume small deviations y,, and u,, from steady state d. and

Ve.

dy(t) = d + ya(t)

Un(t) = ve + up(t)

(i) By substituting these in, we get odes for the deviations:

dy, dd,
= —— = Up_1 — U
du,  dv, '
W a Qylp, + A lp—1 + AdlYn
where a, = % 0y Q] = g{)a—cjell . and ag = % .. In addition, moving along

the space of steady-state solutions by simultaneously changing d, and v, =
vp_1must not change the acceleration fac.o;, S0 we can obtain a relationship

between partial derivatives in steady-state:

0 = aqdd. + (a, + a;)dve = aqdd, + (a, + a;)V.(d.)dd,

resulting in

aq = _Vé<de)(av + al) (43)

It is assumed that ay > 0, a, < 0 and a; > 0. Because of equation (4.3), it is

easy to know that a, + a; < 0.
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We can solve equation (4.2) by using Fourier-Ansatz:

yn(t) — ge)\t+ink" un(t) — ae)\tJrink
Inserting the ansatzs into odes (4.2) results in
A 1 —e U
—ag A — (ay, + ae™*) i

The resulting solvability condition assumes the form of a quadratic equation
1
N4 p(A+aq(k) =0 or Ay =3 (—p(k;) + /p2(k) — 4q(k)>

where p(k) = —a, — a;e™* > 0 and q(k) = aq(1 — e7).

Stability condition is equivalent to Re(A1/2) < 0, i.e. Re(y/p?(k) —4q(k)) <
Re(p(k))

Rewrite p?(k) — 4q(k) as Re"” = X + 1Y, then it becomes
Re(/p2(k) — 4q(k)) = VRcos /2 < Re(p(k)) (4.4)
with

Re(p(k) = —a, — a; cos(—k)
X = Rcos(p) = (a, + a;cos(—k))? — a sin®(—k) — 4ay(1 — cos(—k))

Y = Rsin(p) = 2a;sin(—k)(a, + a; cos(—k)) + 4aysin(—k) (4.5)
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Take squares on inequality (4.4):

Rcos*(0/2) = R(1 + cos(p))/2 < Re(p(k))*

Use cos ¢ = X/R and simplify the inequality as:

R < 2Re(p(k))* — X

Take squares on both sides and substitute R? = X? + Y2

X2 4+Y?% < (2Re(p(k))* — X)?

Remove the items X2 on both sides:

Y? < 4Re(p(k))? — 4XRe(p(k)) (4.6)

Next we will plug in the formula of Y and Re(p(k)), and simplify the expression

Y? — (4Re(p(k))* — 4XRe(p(k))) wn)
= 16a4[aqsin®(—k) + (a, + a; cos(—k))(ay, — a,)(1 — cos(—k))] < 0

It is assumed that agy > 0, a, < 0, ¢; > 0 and a, + a; < 0. Therefore, the

inequality (4.7) becomes:

a, + a;cos(—k) 1 — cos(—k)
ay+a;  sin’(—k)

I 1I

Vilde) < (@ — ay)

Because of a, + a; cos(—k) < a, + a; < 0, the part I > 1 with equality holding
if cos(—k) = 1. The part II is co when cos(k) = £1, and it is 1/(1 + cos(—k))
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when cos(—k) # £1. Then we can get that II > 1/2 for sure.

In sum, the stability condition is

Vilde) < 5 (a — ay) (4.8)

N —

There are three main factors determining the stability of traffic flow: the suf-
ficient sensitivity V.(d.), speed sensitivity a, and lead speed sensitivity «;.
System of greater anticipation to the lead car (bigger a;) will favor stability,
which means anticipative driver can better adjust deviations and thereby the

system is stable.

(iv) the stability condition for specific models

Optimal Velocity Model(OVM): V. =V, a, = —1/7,4, =0

V'(d,) < —

2T

Full Velocity Difference(FVDM): V, =V, a, = —1/7 —v,a; =~

, 1
V(de)<5+’}/

Modified Gazis-Herman-Potts Model(GHP): V. =V, a, = —1/7—1/d.,a; =
1/d.

Intelligent Driver Model(IDM):

Vi(d.) <

(s0.+ Tv)(y/fve +aT) 20 (_)

dg Vo Vo
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with
So + vT

V1) = —————
e (v) Tty
da (2)3 B (so—i—TUe)(\/%ve—l—ZaT)

o = Vo Vo dz
(so + Tve) \/%ve
a; = d2

4.2 Model calibration

In this section, the parameters of the car-following models are calibrated to the
empirical traffic data. This procedure of calibration makes the car-following mod-
els not only realistic to reflect driving behaviors, but also comparable to simulate

microscopic traffic.

The model parameters may fall into two types: (a) parameters that determine
the macroscopic flux-density relation (fundamental diagram); (b) parameters that
do not contribute the flux-density relation, but instead describe the driving habit

and sensitivity: such as adaption time and comfortable acceleration.

4.2.1 Flux-density relation

Flux-density formula

Fundamental diagram of traffic flow is the plot of the traffic flux @ (the number of

passing vehicles per unit time) versus the traffic density p (the number of vehicles
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per unit length). According to [64], the two-phase traffic theory divides traffic flow
into free flow for low densities, and congested flow for large densities. In the free
flow regime, flux increases as density increases, while in the congested flow regime,

flux decrease as density increases. Please see Figure 4.2.

Next we will induce the macroscopic flux-density relation from the microscopic
car-following models through steady-state equilibrium. Firstly, the steady-state

speed v, and steady-state gap d, satisfy the following relation:
faccel(U&Ua de) =0= Ve = %(de) or de = De(“e)y

where D, is the inverse function of V.. The equilibrium formula of the car-following
models are as follows: (al) the optimal velocity model, the full velocity difference

model, and the modified GHR model; (a2) the intelligent driver model

B _ ., tanh(d,,/As — 3) + tanh 3
(al) Ve(de) =V(de) =V 1+ tanh 3

(a2)  De(ve) = (s0 + v.T) (1 - (”70)5> K

Secondly, a micro-macro relation between gap d. and the macroscopic density p can

be built as:

where ¢ is the average length of vehicles. Thus by combining the relations above,
we obtain the flux-density relation for the car-following models: (al) the optimal

velocity model, the full velocity difference model, and the modified GHR model;
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(a2) the intelligent driver model

(al) Q(p) = p(d.) x Ve(d.)

(a2) Q(p) = p(de) x D' (de)

Flux-density data

We now apply the formula above to calibrating the car-following models using data
that is provided by California Department of Transportation. The traffic data is
collected by the Caltrans Performance Measurement System (PeMS) [69], which
provides flow, speed and occupancy data across the vehicle detector stations (vds)
in the form of time series over days of operation. These sensors span the the freeway

system across all major metropolitan areas of the State of California.

We recall the results from [24], which used data from a 28 mile stretch of Freeway
1-880S (between 29th Avenue on-ramp in Oakland and the Auto Mall Parkway on-
ramp in Fremont) [24]. The data is aggregated over time intervals of 5 minutes over
98 days that were identified as functioning over 80% between February 2007 and
March 2008. The scatter plot of flux-density (density data is computed based on

flow and occupancy) data is shown in Figure 4.2(a).

The paper [24] presented a method for automated and empirical calibration of
freeway traffic flow characters. The parameters for flux-density relation are shown
in Figure 4.2(b) and Table 4.1, including free-flow speed vgee, maximal flux Quax,

congestion speed w and jam density ppax.
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Figure 4.2: Automatic calibration of the fundamental diagram from [24]. (a) The scatter of
flux-density data collected by PeMS. (b) The estimation of main parameters by regression.

Description Parameter Value Unit
Free-flow speed Vfree 63.3 miles/hour
Maximal flux Qmax 2031 vehicles/hour
Congestion speed param- w 10.1 miles/hour
eter

Jam density Pmax 232 vehicles/mile

Table 4.1: Parameters from auto-calibration of the fundamental diagram

4.2.2 Model calibration

All parameters for the car-following models in § 3.2 consist of: (a) the parameters
that determine the flux-density relation; (b) the parameters that describe the driving
habit and sensitivity. For type (a), the parameters are estimated by tuning the flux-
density curve to mimic the desired triangle shape in Figure 4.2. The flux-density
relations produced by the car-following models with the calibrated parameters are

shown in Figure 4.3.

For type (b), the parameters take the typical values that were used or estimated
in the research work [37, 50]. In [50], the car-following behavior is studied on the
basis of (publicly available) trajectory datasets recorded by a vehicle equipped with
an radar sensor. The car-following models (except the modified GHR model) were

calibrated by minimizing the deviation between observed dynamics and the simulated
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Figure 4.3: Calibration for flux-density relation. (a) The flux-density relation for (al) in equation
(4.9). (b) The flux-density relation for (a2) in equation (4.9). The blue solid line represents the
flux-density relation for the car-following models, while the red dashed line represents the relation
from PeMS traffic data.

trajectory. The remainder parameter for the modified GHR model is from [37]. The

data used for calibration are the trajectories of 4, 733 vehicles provided through the

FHWA Next Generation Simulation (NGSIM) project.

4.3 Collision behavior

As the main component of traffic systems, car-following models have become of in-
creased importance in traffic simulation and safety research. In [14, 39, 59], the
dynamical behaviors and properties of car-following models have been well studied
and reviewed. Among these traffic dynamics, we are most interested in the colli-
sion behavior (collision-prone behavior and collision-free behavior) of car-following
models, which focuses on the critical situation of potential collisions between two

adjacent vehicles.

The collision behavior of traffic models are closely related to the traffic safety
studies [11, 13, 75], and the collision analysis could act as a guide for microscopic

simulation, especially for lane-changing models [61]. Scholars are interested in the
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Description Para Value Type/Ref
Optimal velocity model

Adaption time T 1.5s (b)[50]
Desired speed Vo 68 mph (a)
Transition width As  30m (a)
Form factor o4 0.5 (a)
Vehicle length 14 7 m (a)
Others

Sensitivity factor v 0.65 st (b)[50]
Sensitivity parameter n 12m/s (b)[37]
Acceleration bound A 3m/s*>  (b)[50]
Intelligent driver model

Desired velocity Vo 69 mph (a)
Acceleration a 1.5m/s*  (b)[50]
Acceleration exponent J 8 (a)
Minimum gap So 2 m (a)
Safe time gap T 1.5s (a)
Deceleration b 3m/s*>  (b)[50]
Vehicle length 14 5m (a)

Table 4.2: Parameter values for car-following models. Type (a) parameters determine the flux-
density relation, while type (b) parameters describe the driving habit and sensitivity terms.

drivers for collision-free behavior, which could be used to develop the sensitivity
terms in new traffic models [18]. In addition, artificial intelligence, as the ultimate
goal of traffic studies, would make a good use of these collision-free behavior to
enhance the cooperative collision avoidance in highways [12]. However, evaluating
the collision behavior of different car-following models is a complex and crucial task,
which has to determine the effects of specific components and parameters. Thus,
most assertions of the collision behaviors are based on the microscopic simulations

rather than the theoretical analysis.

In this section, we would like to carry out a theoretical analysis of the collision
behavior of four well-known continuous car-following models: the optimal velocity
model [8], the full velocity difference model [46], the modified GHR model [32] and
the intelligent driver model [72]. There are two main goals of the work: (1) identify

whether the car-following models are collision-prone or collision-free with theoretical
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analysis; (2) simulate the collision behavior of the car-following models for a com-
parison between theoretical and computational results. Specifically, we will show
that the optimal velocity and the full velocity difference models are collision-prone
regardless of the parameters, and that the modified GHR and intelligent driver mod-
els are unconditionally collision-free regardless. In addition, our study discovers that
the simulation is not valid to assert the collision behavior, since the numerical errors

could introduce collisions even though the theoretical results do not support them.

4.3.1 Simulation of two-vehicle system

Collision behavior can be described as collision-prone or collision-free: collision-prone
means that the vehicles generate collisions in critical scenarios, while collision-free
means that the vehicles can avoid collisions appropriately in any critical scenario.
In the context of the car-following models in (3.1): a model is called collision-free
if collision (i.e. x,(t) = x,q1(t) for two adjacent vehicles n and n + 1 at some
time ¢) cannot occur; a model is called collision-prone if collisions could occur under
some circumstances. In this section, we provide an intuition of the collision behavior

through the phase portrait analysis.

Collision simulations

Consider a simple scenario: there are two vehicles on a road. The leading vehicle is
moving with a constant speed ¢, and the other vehicle is following it according to

a car-following model. This traffic system can be simplified by introducing the gap
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dy = 11 — x5 and the speed difference wy = v; — vo:

$1(t) =C,
i1(t) =0, dy(t) = ws(1),
_ (4.10)
To(t) = vo(t), W (t) = — faccer(€c — wa, ¢, da),
Ua(t) = faccel(V2, V1, d2),

\

We are interested in the behavior when the following vehicle approaches the leading
one with a faster speed (i.e. da(0) > 0, wq(0) < 0). If the gap da(t) between vehicles

goes negative some time, we claim that the collision-prone behavior is observed.

In our simulation, we take the parameters for the car-following models from Ta-
ble 4.2, and assume that the leading vehicle moves with a constant speed ¢ = 10mph.
The phase portraits (da, wy) of the car-following models are shown in Figure 4.4, with

the collision boundary dy = 0 highlighted by the red dashed line. We can conclude:

e [t is obvious to observe that the optimal velocity model and the full veloc-
ity difference model are collision-prone in this simply two-vehicle system. In
the following subsection, we will justify that these two models are generally

collision-prone independent of parameter settings.

e Collisions are not observed in the modified GHR model and the intelligent
driver model in this simple two-vehicle system. In §4.3.2, a rigorous proof will
be provided to show that these two models are collision-free in multiple-vehicle

system.
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Figure 4.4: Phase portraits of car-following models.
the critical situation of collisions.
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Collisions in the optimal velocity and full velocity difference models

The two-vehicle system (4.10) is specified for the optimal velocity model (with v = 0)

and the full velocity difference model:

d2 = Wa,

(4.11)
Wy = —2 (V(da) + wy — ¢) — yws.

The phase portrait of the system is sketched in Figure 4.5. The trajectory through
the origin is critically collision-free (ds > 0, but dy(¢) = 0 for some time t). For the
trajectories to its left, the gap do will definitely go negative, and thus generating
collisions. The region (dy, ws) that could lead to negative gap is called the collision

region, which is the area to the left of the critical trajectory in Quadrant IV.

I R
ZA N
Vit ’““Q\\\\\\\
il

-10 0 10 20 30 40 50

Figure 4.5: Analysis of collision-prone behavior in optimal velocity model and full velocity
difference model.

Let us investigate the field direction along the y axis, i.e. the collision boundary

d2:02
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e Origin (dy = 0,y = 0): the filed direction is up because of (d, 1) = 0,¢>
0). Along the x axis with small gap dy < V7!(c), the field direction is also

upright. Please see the black arrows in Figure 4.5.

e Negative y axis (do = 0,wy < 0): the filed direction is up-left because of
(dg,wg) = (w2 <0,¢— (% + y)we > O). Here the constants ¢, 7, are all pos-
itive. Thus, the gap dy will go negative soon and collisions occur. Please see

the magenta arrows in Figure 4.5.

e Positive y axis near the origin (de = 0,wy > 0): the filed direction is always
to the right because of d; = wy > 0. Thus the two-vehicle system goes back to

the normal situation from collisions. Please see the green arrows in Figure 4.5.

Based on the analysis above, the optimal velocity model and full velocity differ-
ence model are collision-prone, independently of parameter settings. However, the
collision region can be reduced through appropriate parameter settings, such as the
sensitivity parameter v. By adding the speed sensitivity —yws, the full velocity dif-
ference model has a much smaller collision region compared to the optimal velocity
model (see Figure 4.4). This is why the full velocity model is often claimed to be

collision-free in simulation [73] even though it is collision-prone in theory.

4.3.2 Proof of collision-free behavior

In this section, we aim to prove that the modified GHR model and the intelligent
driver model are collision-free. The analysis approach developed in this paper can
be applied to other car-following models to study their collision behavior. There
are two traffic scenarios studied here: the collision-free proof for traffic on a straight

road is presented first, while the last part focuses on traffic on a ring road.
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The collision behavior of the car-following models can be concluded as:

Theorem 4.1. The optimal velocity model (3.2) and the full velocity difference model

(3.3) are collision-prone, which is independent of parameter settings.

Theorem 4.2. The modified GHR model (3.4) and the intelligent driver model (3.5)
are collision-free under all traffic scenarios no matter it is a straight road or a ring

road.

Traffic on a straight road

There are n vehicles on a straight road: vehicles are labeled 1,2, ..., n from front to

back, and the leading vehicle 1 is moving at a constant speed c. As below, we define

x; : the position of vehicle i, i=1,...,n

v; : the speed of vehicles, i=1,...,n

d; = x;_1 — x; : the headway of vehicle i, i=2,....,n

w; = v;_1 — v; : the speed difference of vehicles i and i —1, i=2,....,n

The full system of n vehicles can be expressed in terms of x; and v;, which can be

also written in terms of d; and w;:

( r
T =c d2 = W2
@1 =0 wZ = _faccel<c — Wy, C, d2)
Tg = Uy = dg = W3 (412)

7'}2 - faccel(v% c, d2> w3 - faccel(v% U1, d2> - faccel(v?)a (%D d3)
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The idea behind the proof is mathematical induction. Firstly, we show that the
system of 2 vehicles is collision-free. We then show that system of j vehicles is also
collision-free given the system of j — 1 is known to be collision-free, which is the
inductive step. In the proof, we only consider the critical scenario that the following
vehicle is approaching the leading vehicle with a faster speed but a small gap ahead.

Otherwise collisions never happen.

Modified GHR model As mentioned earlier, we focus on the critical scenario
when (la) w; < 0 and the gaps are small. Then the full system for the modified
GHR model can be simplified as:

dz = Ws
Wy = _7715_22 - %_(V(dQ) + wo — C)
d3 = W3 (413)

Wy =~ + 02+ 1 (V(da) = V(d3) — ws)

T

where the stimulus —7%* can provide strong repulsions when the gaps d; are very

i

small, and thus these terms will dominate in a critical scenario. We use the technique

of fast system to analyze the modified GHR model by substituting d; = eg; and
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wy = —n2 — £(V(eqa) + w2 — ¢)
/ (4.14)

wy = =gt + 052+ 2(V(eq) — V(egs) — ws)

where the terms contain € can be treated as small perturbations. When ¢ = 0, the

system (4.14) becomes the fast system:

gy = W2
wh = =1
¢ = ws (4.15)

q2

wy = =N+ 0z

Next we will divide the proof into two parts: firstly we would like to show that
the fast system (4.15) is collision-free; then we go back to the original system (4.14),

and show that the perturbations do not impact the collision-free property.

(i) The fast system could be generally written as

Q; :Wja

W, _ W;
W/;:ajﬁ—ﬁjcg—;, aj20,5j>0
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We start with a general form of fast system with non-negative parameters o;
and positive parameter ;. These parameters can be specified based on the

car-following models. The solution of system (#) satisfies:

Q) @ , W; Wi W;
) WL -—J—i-O{' J _AR._7
6] Q] j BJ Q] J Qj—l ﬁ] Q]
TQj
-1
-
= (X;
7Qj
Taking the integral on both sides gives:
d d

Thus during the period of (1a) w; < 0, we conclude the following:

M)%exp {W}-(O) ngj(T)}

Next we will show that the gaps {Q;(T)};=23... » never go negative during the

(4.17)

critical traffic scenario given the positive initial conditions {Q;(0) > 0};203...

e For the second vehicle with ay = 0, 53 = 1, the gap @), satisfies:

Qu(T) > Qu(0) cxp { Wj;(’)} ~ B,

which guarantees that the second vehicle never collides with the leading

vehicle, and the positive lower bond is Bs.
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e For the third vehicle with a3 = B3 = 1, the gap Q)3 satisfies:

0u(T) > Qy(0) 2T p{ijO)} _ B,

ex
Q2(0)

where the gap for the second vehicle Q(t) has been proved positive for
any time 7' no-negative. Thus, the third vehicle never collides with the

second vehicle in a critical scenario.

e For the last vehicle n, we can similarly prove that it will not collide with
its leading vehicle n — 1. Thus, by using this induction method, the fast

system (4.15) is surely collision-free.

(ii) Next we analyze the perturbation terms in equation (4.14) and evaluate their
impact in the collision-free property. As mentioned earlier, collisions are only
possible when the gaps are very small 0 < {¢;};=23,..,» < 1. Thus, we study
the perturbation terms only when the gaps are less than the predetermined

thresholds.

e For the second vehicle, the perturbation term is in bold as follows:

s = W2

wy = N2 — =(V(eq2) +wz —c), ¢>0

q2

The threshold for ¢, is (1b) 0 < e < V~"(ws) , which defines a corner

area in Quadrant IV enclosed by the curve ¢ = 0,ws < 0 and the curve

V(eqs) + we = 0. Then the perturbation term satisfies:

(16)
—~(Veg) +ur—c) > —=(0-¢) >0
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Take the differential of trajectory ws(ga):

dwy W) n 1 €
—==2__1 4 - (= — < —— 4.18
i d + ( —(V(eq) + w; c)> < (4.18)

The slope along the trajectory ws(ge) is negative, which is steeper than
that of the fast system (4.15). The comparison of the slopes is demon-
strated in Figure 4.6. Once a trajectory ws(qy) enters the threshold area
(defined by 0 < eqa < V! (wy)), it will cross the trajectories of the fast
system nearby to the upright direction. As proved earlier, the fast system
is collision-free, and its trajectories never go across the collision boundary
d; = 0. Therefore, it is easy to observe that the original system is more

conservative than the fast system under the critical circumstance.

ﬂ\
Wi | g
||/| \ = = = system 1
1 J — system 2
(| \
b \ —> slopes
1
1
0 1
1
\

Figure 4.6: Slope comparison. System 1 (dashed green line) represents the fast system
(4.15) and system 2 (solid blue) represents the original car-following system (4.14).

e For the third vehicle, the perturbation term is in bold as follows:

/
q3 = W3

/

wh =gz =gt + 2(V(egz) — V(egs) + ws)
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It is known that the second vehicle never collide, i.e. ¢2(T") > 0, so we set

the threshold for gap g3 as (1c¢) 0 < g3 < go. Otherwise, collisions can not

occur. Then the perturbation term satisfies:

Take the differential of trajectory ws(gs):

7 - wsge - % w_3

dws — w} nwa Ui 1 re
aws _ Wi _ ~(V(eqz) — V(eqs) — ws)
dqg <T > (4.19)

w3q2 q3

The slope along the trajectory ws(gs) is negative and steeper than that of
the fast system. Thus, we could infer that the third vehicle never collide

based on the similar analysis and comparison of slopes in Figure 4.6.

e For the last vehicle n, we can prove the same results. Thus, the original

system (4.14) of the modified GHR model is collision-free.

In summary, the modified GHR model has been proved collision-free on a straight

road.

Intelligent driver model The analysis for the intelligent driver model is similar
to that in the previous section. We reform the formula of the intelligent driver
model under the critical traffic scenario (1a) w; < 0, and compare it with the proved

collision-free fast system.



57

The full system for the intelligent driver model can be simplified as:

d2:w2
§ (o) \ 2
i =afo () + (257
ds = ws (4.20)

As mentioned earlier, collision are only possible when the gaps are very small 0 <
d; < 1, so we study the system only when the gaps are less than the predetermined
thresholds.

e For the second vehicle, we only consider the circumstance of small gap with

(2b) do < min(1,dy/2). The acceleration of the speed difference can be bounded

from below:

wWa

2
(4.20) ol-14 (02)5+ <d0+U2T —d112w2/2\/ab)
2

2
(20) S S vol wowe/2v/ab
>a -1+ or+or +— 4 L2/ 2/ab
2dy  2d, do ds
- 2

(20) S0 UQ'LU2/2\/% 191

a —_—
@ (2 w2\ 14w
Y i (50 Y2 5

¢ ( 4 4ab) ds

sz v\ —2w

> 20 72 2

T ( 1 4ab> ds
_ _p
— 52 dQv

where the right-hand-side is a formula of fast system as in (#) by introducing
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as = 0 and [y = 2amin (%, 4%) 