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Preface

The use of diagnostic tests and biomarkers is an essential part of medical care, and

plays an important role in guiding therapy decisions in the era of precision medicine.

In this dissertation, we address two major aspects of test evaluation, the assessment

of predictive accuracy and the assessment of the impact of tests on patient outcomes.

The predictive accuracy of tests is addressed in Chapters 1 and 2, while the impact

of tests on patient outcomes is addressed in Chapter 3.

In the practice of evidence based medicine, the ability to synthesize evidence from

primary studies of biomarkers is useful in optimizing health policy decision making.

However methodological developments in the area of synthesizing predictive values

have been limited. In Chapter 1, we put forth a new meta-analysis model to synthesize

and compare predictive values of biomarkers. This model provides a joint summary

assessment of the positive and negative predictive values.

In Chapter 2, we undertake a critical evaluation of the widespread use of hazard ratio

as a summary measure of the prognostic performances of biomarkers. From the results

of this study, we obtain a better understanding of the implications of using hazard

ratio to summarize, and compare prognostic performances of biomarkers. This study

also identifies essential information that should accompany the reporting of hazard

ratio to allow proper evaluation of the prognostic performances of a biomarker.

A key challenge in evaluating the impact of diagnostic tests on patient outcomes, such
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as morbidity, mortality, and health related quality of life, is that the pathway from

test to outcomes typically involves subsequent disease management and treatment

interventions. Modeling approaches, such as decision analysis and micro-simulation,

are commonly used to study the impact of tests. Randomized studies (also known

as diagnostic randomized controlled trials, DRCT) have also been utilized, but to a

lesser extent than modeling. In addition to the large sample size typically required,

DRCT studies are also prone to selection bias arising from noncompliance by study

participants to assigned tests and interventions. Recent work has laid out the for-

mal framework for evaluating DRCT designs, and derived formulas for sample size

and power computations. However the impact of noncompliance has not been ad-

dressed. In Chapter 3, we adapt and apply modern methods in causal inference to

estimate the causal outcomes of diagnostic tests in the presence of noncompliance.

The performance of these causal estimates are evaluated via simulation of different

scenarios.
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Chapter 1

Meta-analysis of predictive values

of biomarkers

Abstract

The evaluation of the predictive performance of biomarkers is a vital and growing area

of research in precision medicine. However, statistical methods for meta-analysis of

the predictive accuracy of tests, as measured by the positive and negative predictive

values (PPV and NPV respectively), have received limited attention in the literature,

in contrast to methods for meta-analysis of diagnostic accuracy. In this chapter, we

propose a hierarchical summary predictive ROC (HSPROC) curve model to sum-

marize estimates of PPV, NPV and disease prevalence jointly. The model accounts

for the relationship between PPV and NPV stemming from the dependence on the

threshold for test positivity, and also preserves the monotonicity of the summary

predictive ROC curve. The HSPROC curves generated from the model can be used

for comparison of different biomarkers. We applied the proposed method to two ex-

amples from the literature. The first is a meta-analysis of prognostic capabilities of

biomarkers for rapid rule-out of acute myocardial infarction, and the second is re-
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lated to biomarkers for acute pulmonary embolism. In both examples, comparisons

of prognostic capabilities of the different biomarkers considered are illustrated.

1.1 Introduction

The use of biomarkers is an essential tool of precision medicine and has given rise

to the rapidly growing literature of biomarker evaluation studies. A key objective of

biomarker evaluation studies is the assessment of the predictive performance, with

the hazard ratio as a commonly used metric for prediction of time-to-event outcomes

(Altman et al., 2012), and the positive and negative predictive values (PPV and

NPV respectively) as metrics for prediction of binary outcomes (Shiu and Gatsonis,

2008, Bossuyt et al., 2015). Recent examples of biomarker evaluation studies include

Efficace et al. (2015), Chung et al. (2014), Anitei et al. (2014), Liao et al. (2012),

Sørensen et al. (2013), Biliavska et al. (2013), etc. In this chapter, we focus on the

meta-analysis of studies reporting estimates of PPV and NPV where data are reported

in a form equivalent to a 2 by 2 table, with cut-offs unspecified and assumed varying

from study to study.

1.1.1 Meta-analysis of diagnostic accuracy

The dependence of test performance metrics on the threshold for declaring a positive

test result has led to the development of the Receiver Operating Characteristic (ROC)

curve, and has also been incorporated in methods for the meta-analysis of studies re-

porting estimates of test sensitivity and specificity. The construction of a summary

ROC (SROC) was proposed in Moses et al. (1993). This led to further developments

in models like the proper summary ROC curve based on maximum likelihood estima-

tion (Lloyd, 2000), the hierarchical summary ROC (HSROC) (Rutter and Gatsonis,
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2001) that accounted for different thresholds used in different studies, and the bi-

variate random-effects model (Reitsma et al., 2005, Chu and Cole, 2006) to provide

a “summary point” when performance estimates do not vary widely. The HSROC

and bivariate random-effects models were shown to be mathematically equivalent in

the absence of covariates (Harbord et al., 2007). A unifying framework for these two

approaches and the choice of summary ROC curves were discussed in Arends et al.

(2008). The HSROC and bivariate random-effects models are the preferred approach

to meta-analyze diagnostic test accuracies (Macaskill et al., 2010, Trikalinos et al.,

2012). Further developments expanded into cases where different studies used unequal

number of ordered categories (Dukic and Gatsonis, 2003), and in cases where studies

compared multiple index tests on the same participants in paired designs (Trikalinos

et al., 2014).

Although sensitivity and specificity are theoretically independent of disease preva-

lence, these values have been shown to vary with empirical disease prevalence (Leeflang

et al., 2013). Empirical disease prevalence can be viewed as a coarse marker for dis-

tinguishing study population characteristics with regards to disease spectrum. Differ-

ences in disease spectrum may lead to variations in observed test accuracy. A detailed

discussion of possible relationships between empirical disease prevalence and test ac-

curacy can be found in Leeflang et al. (2009). To account for variation in disease

spectrum between studies, Chu et al. (2009) proposed an extension of the bivariate

random-effects model to a tri-variate random-effects model to jointly model diag-

nostic accuracies and disease prevalence for studies that are prospectively designed.

This method assumes a correlation structure between logit transformed sensitivity,

specificity and prevalence using a multivariate normal distribution.
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1.1.2 Meta-analysis of predictive values

An indirect approach to estimating summary predictive values was suggested by some

authors (Macaskill et al., 2010, Trikalinos et al., 2012). In this approach, a meta-

analysis of sensitivity and specificity is conducted first. This is followed by a trans-

formation of the summary sensitivity and specificity to summary predictive values

using a range of plausible prevalence values. Implicit in the indirect approach is the

assumption that sensitivity and specificity are theoretically independent of disease

prevalence.

Methods to directly provide a summary point for the predictive values have been pro-

posed by Chu et al. (2009) using the alternative parameterization in the tri-variate

random-effects model, and by Leeflang et al. (2012) where the predictive values are

used in place of the diagnostic measures in the bivariate model. As with sensitivity

and specificity, there exists a trade-off between PPV and NPV due to their depen-

dence on the threshold for test positivity. In the literature, there are many instances

where the thresholds used in the studies are not the same, or not even reported. In

addition, measurements of biomarker can be heterogeneous due to the current state of

biomarker assay processes (de Gramont et al., 2015). Under such circumstances, the

reporting of a summary point may not be appropriate especially when meta-analyzing

predictive values of a biomarker.

Some limitations of the indirect approach are best illustrated in the predictive ROC

(PROC) space. The PROC curve consists of all possible pairs of PPV and (1-NPV)

as the threshold for test positivity traverses its full range. The PROC curve was

developed as a tool for characterizing the predictive performance of a test (Shiu

and Gatsonis, 2008). The summary PROC curve derived from using the indirect

approach may lead to a non-monotonic trade-off between PPV and NPV for a fixed

disease prevalence. A biomarker should ordinarily have measurements that are mono-
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tone with respect to the disease status. The lack of monotonicity in the PROC curve

implies that there are situations whereby a test does not have a unique NPV for a

given PPV, or vice versa. There will also be values of the threshold where trade-offs

between PPV and NPV do not occur even when the corresponding trade-offs between

sensitivity and specificity are occurring. Such behaviors are unrealistic and contradic-

tory to the requirement of a monotone relationship between biomarker measurement

and disease status.

In this chapter, we propose a Hierarchical Summary Predictive ROC (HSPROC)

model. The HSPROC model overcomes the limitations highlighted in the preceding

paragraphs, and produces a monotone summary predictive ROC curve for a binary

test given the observed data from multiple studies. In the next section, we will in-

troduce the basic assumptions, notation and definitions used throughout the chapter.

Section 1.3 will recapitulate the key characteristics of the PROC curve, and the condi-

tions required to achieve monotonicity. This will be followed by details of the model in

Section 1.4. Application of the proposed method to an example on the meta-analysis

of prognostic capabilities of biomarkers for rapid rule-out of acute myocardial infarc-

tion is presented in Section 1.5. More recently, Hattori and Zhou (2016) proposed

a method to estimate predictive curves that are separate plots of PPV vs. thresh-

old, and NPV vs. threshold. In Section 1.6, we will apply our proposed method to

the same example used in that paper to highlight the differences between the two

methods.

1.2 Assumptions, notation and definitions

We first describe the assumptions, mathematical notation and definitions related to

diagnostic and predictive accuracies used in this chapter. Let D be a binary variable
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denoting actual disease status, we define D = 1 as diseased and D = 0 as not

diseased. Similarly for test outcome, T , we define T = 1 as a positive test and T = 0

as a negative test. We assume that Y is a continuous measurement of the biomarker,

and without loss of generality, larger values of Y are more indicative of disease. For a

given cutoff or decision threshold, c, T = 1 when Y > c. The true positive rate (TPR)

and false positive rate (FPR) are defined as TPR(c) = P (Y > c|D = 1) = π1(c) and

FPR(c) = P (Y > c|D = 0) = π0(c), respectively. The sensitivity of the test is thus

equivalent to the TPR, and specificity of the test is equivalent to 1-FPR.

With disease prevalence of the population denoted as p = P (D = 1),

PPV (c) = P (D = 1|T = 1) =
π1(c)p

π1(c)p+ π0(c)(1− p)

NPV (c) = P (D = 0|T = 0) =
(1− π0(c)) (1− p)

(1− π0(c)) (1− p) + (1− π1(c)) p

For simplicity in notation, the dependence of TPR, FPR, π1, π0, PPV and NPV on

c will be dropped in the rest of the chapter. The ROC curve is defined as ROC(·) =

{(FPR, TPR)c∈R} for a cutoff c belonging to the set R of all possible threshold values.

1.3 Predictive ROC (PROC) curve

The PROC curve was described in detail by Shiu and Gatsonis (2008), and only the

key concepts will be summarized in this section.

The PROC curve is defined as {(1 − NPV, PPV )}c∈R for a cutoff c belonging to

the set R of all possible threshold values at a fixed prevalence. Examples of PROC

curves are shown in Figure 1.1 for the same test at different disease prevalences.

From the plot, we observe that the PROC curve is implicitly a function of disease

prevalence. The extreme points of the PROC curve correspond to threshold values

6



Figure 1.1: PROC curves generated using binormal model, ROC(t) = Φ{a+bΦ−1(t)}.
Here a = 2, b = 1, and t is the False Positive Rate (1-Specificity). Different values of
disease prevalence used are shown in the legend.

resulting in all cases being classified as either positive or negative, and thus depend

on the prevalence. This is in contrast to the ROC curve, which extends from the

point (0,0) to (1,1) regardless of disease prevalence. In the PROC curve, the value

of the threshold increases from the extreme where PPV equals to prevalence, to the

other extreme of the curve where 1-NPV equals to the prevalence.

At a fixed prevalence rate, the variation in the PROC curves corresponding to different

diagnostic performances as measured by the ROC curve is shown in the top row of

Figure 1.2. A test with good performance measures will have PROC and ROC curves

closer to the upper left corners of the respective plots. When TPR is equal to FPR

for TPR and FPR ∈ (0, 1), both PPV and 1-NPV are equal to the prevalence. When

the PROC curve passes through this point, the corresponding ROC curve passes

the 45◦ diagonal “guessing” line in the ROC plot, resulting in an improper ROC

curve (Egan, 1975) as shown in the bottom row of Figure 1.2. The trajectories of

a monotone versus a non-monotone PROC curve can be very different, and the lack

of monotonicity in the PROC curve implies that there are situations wherein a test
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does not have a unique NPV for a given PPV, and vice versa. A non-monotone

PROC curve also implies that for some range of threshold values, a trade-off between

PPV and NPV does not exist. It is hard to imagine a situation where this would

occur in reality under the assumption that larger values of Y are more indicative

of disease. Monotonicity of predictive accuracies with respect to the threshold is a

common assumption in models used for predictive accuracy (Moskowitz and Pepe,

2004, Huang et al., 2007).

A necessary and sufficient condition for PPV to be monotone with respect to the

threshold is that the conditional random variables T |D = 1 and T |D = 0 are hazard

rate ordered, i.e T |D = 0 ≤hr T |D = 1. Similarly for NPV, the necessary and

sufficient condition is that the conditional random variables are reversed hazard rate

ordered, i.e T |D = 0 ≤rh T |D = 1. These conditions are simultaneously satisfied

when the conditional random variables are likelihood ratio ordered, i.e T |D = 0 ≤lr

T |D = 1. It was shown in Egan (1975) that a concave ROC curve satisfies the

likelihood ratio order. Thus an effective way to ensure that the PROC curve is

monotone, while avoiding the complexity of modeling monotone PROC curves at

different prevalence values, is to have a concave ROC curve. This will be the approach

adopted in this chapter. Additional details on stochastic orders and the monotonicity

conditions are included in Appendix 1.A.

In the ROC context, the use of models that may give rise to improper ROC curves,

e.g. binormal models, has been investigated and discussed extensively. In support

for such models, it has been argued that these anomalies usually occur over a small

part of the ROC curve, and in some cases, occurs at the high end of the false positive

range that is of little interest for practical purposes (Pepe, 2004). More recently

however, Pesce et al. (2010) used decision analysis to argue for the use of proper

ROC models, and Huang et al. (2013) also suggested the use of proper ROC models
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Figure 1.2: PROC curves and corresponding ROC curves for binormal ROC models.
For the plots in the top row, the binormal model has parameters b = 1, p = 0.3, and
values of a are as shown in the legend. For the plots in the bottom row, the binormal
model has parameters a = 1, p = 0.3, and values of b are as shown in the legend.
Under the binormal ROC model, the ROC curve is proper only when b = 1.
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for biomarkers. For prognostic and predictive biomarkers, the key objective of the

model is to capture the proper behavior of the predictive values with changes in

threshold. We have shown that such anomalies, though small in the ROC space,

are amplified in the PROC space, and will lead to PROC curves that contradict the

underlying relationship between test measurement and disease condition. Thus with

the insight obtained from the PROC curve, models that will ensure monotone PROC

are more suitable for biomarkers.

1.4 HSPROC model

We assume the setting for the meta-analysis to involveK prospective studies with each

study providing a 2 by 2 contingency table of summary data. For studies k = 1 . . . K,

the notation used to represent the data in the kth study are (nk11, nk10, nk00, nk01),

representing the number of true positive, false positive, true negative and false nega-

tive cases respectively. Similarly, (nk1., nk0.) are the number of cases with positive and

negative test respectively. Empirical PPV and NPV for study k are thus determined

by nk11

nk1.
and nk00

nk0.
, respectively.

1.4.1 Bayesian hierarchical meta-regression model

Level I: Within-study variation

We assume a multinomial distribution for the counts in each study. Specifically we

assume, for studies k = 1 . . . K, the within-study variation is defined as

[nk11, nk10, nk00, nk01] ∼ Mult(Nk; qk1, qk2, qk3, qk4)
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where Nk =
∑

i

∑
j nkij. The cell probabilities are expressed in terms of TPR, FPR

and prevalence by qk1 = π1kpk, qk2 = π0k(1− pk), qk3 = (1− π0k) (1− pk), and qk4 =

1−
∑3

j=1 qkj. We then define the model as

logit(πβ1k) = θk + αk

logit(πβ0k) = θk

The form of the above model is derived from assuming a Lomax distribution with

a shape parameter of 1/β and scale parameter of eαk for the test measurement in

the diseased population, and a Lomax distribution with the same shape parameter,

but with a scale of 1 for the test measurement in the non-diseased population. The

use of Lomax distributions was described in Campbell and Ratnaparkhi (1993) and

Lloyd (2000), and important details for our application here are included in the

Appendix 1.B.

In the above notation, θk denotes the positivity criteria as it affects both π1 and π0;

αk denotes the accuracy parameter as it results in a translation of the PROC curve,

and also represents the difference between the true positive rate and false positive

rate; and β influences the slope of the PROC curve. Under the hierarchical model

used, the positivity criteria, accuracy parameter, and disease prevalence are allowed

to vary across studies, while β is assumed to be constant across studies in the studied

population.

Level II: Between-study variation

For the parameters that are allowed to vary across studies, we assume

αk|µα, σ2
α ∼ N(µα, σ

2
α); θk|Θ, σ2

θ ∼ N(Θ, σ2
θ); and logit(pk)|Π, σ2

Π ∼ N(Π, σ2
Π)

11



Additional study level covariates that are deemed to affect the mean of α, θ and p

can potentially be included into the model, but it should be noted that the number

of covariates that can be effectively incorporated is limited by the remaining de-

grees of freedom available after specifying the basic hierarchical model. These study

level covariates can be applied to explore the sources of variability related to differ-

ences in study design and execution, or to differences in patient groups and testing.

As an example, the study level covariate Z is included in the Level II model via

αk|µα, σ2
α, γα, Zk ∼ N(µα+γαZk, σ

2
α), with the corresponding prior for γα specified in

Level III.

The concavity of the resulting ROC curve can be enforced by specifying likelihood

and prior distributions for α that will result in positive support. Here we have chosen

instead to let data determine the posterior distribution of α. In the event that the

posterior distribution of α is in the negative region, resulting in a convex curve, a

monotone transformation of the test result can be found to give a concave curve.

Level III

The remaining hyperparameters are assumed to be mutually independent. Values for

the parameters in the prior distributions are chosen to better reflect plausible values

while maintaining a relatively diffuse distribution, except for β. As stated earlier, β

directly affects the slope of the PROC curve. As it turns out, the effect of β in the

ROC space is on the symmetry of the curve. When β = 1, the resulting ROC curve

is symmetric about the negative diagonal line of the ROC plot. A value of β > 1 will

result in a ROC curve closer to the upper boundary of the ROC plot, while 0 < β < 1

will lead to a ROC curve that is closer to the left vertical axis of the ROC plot. This

perspective allows us to set a prior for β as Exp(log 2), which will have a median at

1 while maintaining the full support for β.
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The remaining prior distributions are µα ∼ N(0, 1002), σα ∼ U(0, 100), Θ ∼ N(0, 1002),

σθ ∼ U(0, 100), Π ∼ N(0, 1002), and σΠ ∼ U(0, 100).

1.4.2 HSPROC model fitting

The proposed model can be implemented using open-source statistical computation

software. For the examples described in Sections 1.5 and 1.6, the model was imple-

mented in JAGS 4.2.0 (Plummer, 2003) via R 3.2.3 (R Core Team, 2015).

Since our interest is in the summary predictive performances of the test, and not the

predictive performance of the test in a new study, each set of simulated draws for

µα, Θ, β and Π are used to estimate the posterior distribution of functions of these

parameters like PPV, NPV, disease prevalence, sensitivity and specificity. Inference

could then be performed based on these posterior distributions.

The summary PROC curve given the observed data is generated by varying π0, and

using the medians of µa, β, and Π to compute the predictive values. Denoting the

medians of the respective posterior distribution of the parameters by tilde, and for

π0 ∈ [0, 1], the summary PROC curve is computed using the following expressions:

Θ(π0) = logit(πβ̃0 ); π1(π0) =
{
logit−1

[
µ̃α + logit

(
πβ̃0

)]}1/β̃

;

PPV (π0) =
1

1 + 1−logit−1Π̃

logit−1Π̃
π0

π1(π0)

; NPV (π0) = 1− 1

1 + 1−logit−1Π̃

logit−1Π̃
1−π0

1−π1(π0)

The summary PROC curve can be limited to the range of empirical FPR to avoid

extrapolating beyond the range of data. Different values of the prevalence from its

posterior distribution can also be used above to examine the behavior of the summary

PROC curve under different prevalence. Where relevant, a summary point can be

defined as the median PPV and NPV values from the respective posterior distribution.
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1.5 Example 1: Meta-analysis of prognostic ca-

pabilities of biomarkers for rapid rule-out of

acute myocardial infarction (AMI)

Lipinski et al. (2014) performed a meta-analysis to determine the prognostic capabil-

ities of different biomarkers for rapid rule-out of acute myocardial infarction (AMI).

Studies that assessed patients who presented to the emergency department with non-

traumatic chest pain, and measured Copeptin levels were included for consideration.

Case-control studies were excluded. 14 studies were eventually included in the meta-

analysis with a total of 9,244 patients. Data were presented in terms of the number

of true-positive, false-positive, false-negative, and true-negative. Some of the studies

also presented data using Troponin, High Sensitive (HS) Troponin, and combinations

of Copeptin with Troponin or HS Troponin. In the analysis, the authors computed the

empirical diagnostic and predictive accuracies for each study. Each of these accuracies

was then meta-analyzed separately using random-effects methods.

For the purpose of illustrating the utility of the proposed method to compare pre-

dictive capabilities of different biomarkers, we will restrict our analysis to Copeptin

(13 studies) and Troponin (11 studies) only. For Copeptin, a number of studies had

presented data using multiple cutpoints. To minimize the effect of correlation in

the data used for illustration, only one cutpoint will be selected from these stud-

ies for analysis, and the main consideration for the choice of cutpoint is to induce

greater heterogeneity in the data. For example, Balmelli/APACE presented data us-

ing Copeptin cutpoint of 10pmol/L and 14pmol/L, but only the data using the former

cutpoint will be used as there are already more studies using 14pmol/L as cutpoint.

Appendix 1.D.1 contains the data used for the meta-analysis of each biomarker. Re-

sults will be compared with the indirect approach. The HSROC model (Rutter and
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Gatsonis, 2001) will be used in the indirect approach computation.

1.5.1 HSPROC model computations

Eight different chains were used with diffuse starting values for the parameters Θ, µα,

β and Π, corresponding to Θ(0) ∈ {−30, 10}, µ(0)
α ∈ {−10, 30}, β(0) ∈ {0.1, 10}, and

Π(0) ∈ {−20, 10} respectively. JAGS’s automatic initial value generation function

was used for the remaining parameters. An adaptation period of 1000 iterations was

used, and this was followed by a burn-in of 100,000 iterations. 100,000 samples per

chain were obtained from the sampling process after applying a thinning interval of

100. All Level III parameters were monitored. Convergence was assessed by exam-

ining the traceplots and using Gelman-Rubin diagnostic with an upper limit of the

confidence interval of the potential scale reduction factor (PSRF) set at 1.01 for each

parameter. The upper confidence interval PSRF for the monitored parameters and

the corresponding multivariate PSRF attained were all 1.0.

1.5.2 Results from meta-analysis

The posterior distribution of the summary predictive values and prevalence is de-

scribed in Appendix 1.D.2, Tables 1.3 and 1.4 for Copeptin and Troponin respec-

tively. The posterior distribution of the summary sensitivity and specificity from

the HSPROC model is also described in the appendix for completeness. In this

particular meta-analysis, data for both biomarkers are from a similar population of

patients and we would expect the posterior distribution of the prevalence to be simi-

lar. The estimated posterior mean and median of prevalence for both biomarkers are

all approximately 0.2. The width of the 95% posterior interval is a reflection of the

uncertainty involved in the constituent studies, and would be expected to be different
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between the two biomarker data in this case.

Figure 1.3 shows the HSPROC curves, computed at the median prevalence of 0.2,

for Copeptin and Troponin. All summary curves were restricted to the range of

empirical FPR to avoid extrapolation. Empirical estimates for each study are also

included in the plots. The corresponding summary PROC curves from the indirect

approach are superimposed onto the respective plots for comparison. The summary

PROC curves from the indirect approach are observed to be non-monotone for both

biomarkers even when limited to the observed range of empirical FPR. The summary

points obtained from using the primary parameterization of the tri-variate random-

effects model (Chu et al., 2009) are also shown in the plots. For both biomarkers, the

covariance structures selected based on AIC are referred to as the partially reduced

model in Chu et al. (2009). The HSPROC curves at 2.5%, 50% and 97.5% quantiles

of the posterior distribution of prevalence are shown in Figure 1.4 to provide a sense

of the variation in the HSPROC curves with prevalence. Recall that each empirical

point has a different empirical prevalence associated with it. It is observed that

at different prevalence values, the shape of the HSPROC curves are influenced by

those studies that have empirical prevalence values similar to the prevalence that the

HSPROC curve assumed.

Differences in disease spectrum are known to affect predictive and diagnostic perfor-

mances. To investigate if disease spectrum may have induced heterogeneity in the test

accuracies, the logit transformed empirical prevalence logit(p̂k) of each study was also

included as a covariate to the accuracy parameter at the between study level. Specif-

ically αk|µα, σ2
α, γα, Zk ∼ N(µα + γαZk, σ

2
α) , where Zk = logit(p̂k). The resulting

posterior distributions are shown in Appendix 1.D.2, Tables 1.5 and 1.6 for Copeptin

and Troponin respectively. The posterior probability interval of γα for Copeptin

is almost symmetrical about 0, providing greater confidence that disease spectrum
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Figure 1.3: PROC curves for Troponin (top) and Copeptin (bottom) at a prevalence
of 0.2. Empirical estimates are shown as dots and scaled by sample size.
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Figure 1.4: PROC curves at the 2.5%, 50%, and 97.5% quantiles of the posterior
distribution of prevalence for Troponin (Top) and Copeptin (Bottom). Empirical
estimates are shown as dots and scaled by sample size.
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variation is not significant. For Troponin, approximatey 75% of the probability in-

terval of γα is in the positive region, indicating that the effect of disease spectrum

may not be ignored. To investigate this possibility, the studies for Troponin were

divided into 2 subsets with similar empirical prevalences within each subset. Subset

1 contains studies with empirical prevalence less than the median value of the empir-

ical prevalences (0.216), while the rest are in Subset 2. The resulting medians and

95% probability intervals of the posterior distributions of Subset 1’s PPV and NPV

are 0.631 [0.246, 0.919], and 0.963 [0.888, 0.998] respectively. Similarly for Subset 2,

they are 0.899 [0.628, 0.988], and 0.905 [0.740, 0.992] respectively. The observation

that stands out is the large 95% probability interval for Subset 1’s PPV. The lack

of precision in this estimate likely led to the posterior distribution for γα obtained

for Troponin to have a large portion in the positive region. A closer scrutiny of the

protocol for the studies in Subset 1 would be recommended to better understand the

possible sources of heterogeneity.

When comparison of the predictive accuracies of different biomarkers is required, it

is reasonable to assume that these different biomarkers are intended to be applied

to the same population. The HSPROC curves of the biomarkers should therefore

be compared at the prevalence rate of the target population. For a given prevalence

rate, the summary PROC curve of a biomarker will completely dominate another if

it resides to the upper left, where PPV and NPV are higher, and the curves do not

intersect. If the summary PROC curves intersect, then the choice of biomarker may

be made by limiting the comparison to the desired range of PPV or NPV. Using

Copeptin and Troponin as an example, Figure 1.5 shows the summary PROC curves

for the two modalities at various target prevalence values based on the full set of

studies without adjusting for any between study covariates. In all cases, Troponin has

better predictive values than Copeptin. It should be noted that we do not address the

complexity arising from correlation induced by measurements of different biomarkers
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Figure 1.5: HSPROC curves for Copeptin and Troponin at different target values for
prevalence. The set of HSPROC curves for Troponin are on the upper left of the plot.

taken from the same participants.

1.6 Example 2: Meta-analysis of prognostic capa-

bilities of biomarkers for acute pulmonary em-

bolism at high risk of short term death

In the second example, the data are from Becattini et al. (2007). The purpose of this

example is to compare the results from the HSPROCmodel and the model proposed in

Hattori and Zhou (2016). In the original study, the authors performed a meta-analysis

on studies reporting the odds ratio on whether elevated serum troponin levels identify
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patients with acute pulmonary embolism at high risk of short-term mortality. For the

example here, the data consist of twenty studies of which 12 studies used Troponin I

(total of 1303 patients), and the remaining 8 studies used Troponin T (total of 682

patients), Appendix 1.E.1.

Hattori and Zhou (2016) used the data from this study to illustrate their approach to

estimate summary predictive curves, i.e. PPV vs. threshold, and NPV vs. threshold

for Troponin I and T. They compared the prognostic capability of Troponin I vs. Tro-

ponin T using these estimated predictive curves under the assumption that thresholds

used were known and allowed to vary across studies, similarity of disease prevalence in

these studies, distribution of the test measurement is known and the same across all

studies, and that fixed effect (equal effect) model was adequate. Asymptotic normal

approximations were used to estimate confidence intervals for the summary predictive

values. Both the summary positive and negative predictive curves, Figure 5 of Hat-

tori and Zhou (2016), of Troponin T were found to be superior to the corresponding

curves for Troponin I, and the authors concluded that Troponin T was superior to

Troponin I.

We applied our model to this example using an approach similar to that described

in Section 1.5. Detailed results are included in Appendix 1.E.2. A comparison of the

two biomarkers at different target disease prevalence values is shown in Figure 1.6.

From this plot, we observe that Troponin T has better prognostic capabilities than

Troponin I across different disease prevalence values. The difference becomes larger at

higher prevalence. The dependency of both PPV and NPV on positivity threshold can

be easily discerned from the summary PROC curve at various target prevalences, and

more importantly, monotone summary PROC curves are ensured. Investigation of

sources of variability arising from between-study factors can also be easily performed

in a similar manner to the earlier example in Section 1.5.
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Figure 1.6: HSPROC curves for Troponin I and Troponin T at different target values
for prevalence. The HSPROC curve for Troponin T is closer to the upper left of the
plot at each value of prevalence.
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For this set of data, the two different models arrive at the same conclusion that

Troponin T has better prognostic capabilities than Troponin I. The results from

HSPROC model, Figure 1.6, allow comparisons of both PPV and NPV jointly across

different prevalence values between the 2 biomarkers. If the prevalence across studies

in the data is truly similar as assumed in Hattori and Zhou (2016), the posterior

distribution of the prevalence parameter in the HSPROC model will reflect that. The

key difference between the models is that in the HSPROC model, the focus is on

modeling the joint relationship between PPV, NPV, and prevalence. Modeling these

key components jointly will ensure a well behaved predictive ROC curve, and show

the interplay between PPV and NPV to indicate possible pairs of PPV and NPV that

can be achieved. In addition, this model provides predictive performances at different

values of prevalence.

1.7 Discussion

In this chapter, we have proposed a Bayesian hierarchical model to synthesize esti-

mates of PPV, NPV, and disease prevalence jointly. This model accounts for effects

of disease spectrum, and the dependence of both PPV and NPV on threshold. It

assumes that positivity thresholds used across studies are different and unknown.

Monotonicity of the summary PROC curve is ensured to yield physically meaning-

ful behavior. Computation of summary PROC curves at different disease prevalence

values to characterize the performance of the biomarker, and for comparing against

other biomarkers under specific target disease prevalence can be easily performed.

We believe this model fills a gap in the existing methods for the meta-analysis of

predictive accuracy for binary tests on binary outcomes. Existing approaches, also

referred to as the indirect method in this chapter, have difficulties in producing well
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behaved predictive values. We also noted that not all existing methods take advan-

tage of additional information available from prospectively designed trials to account

for prevalence, which serve as a proxy for disease spectrum, or account for differences

in threshold used across studies. The joint dependency of the predictive values on

threshold requires that predictive values be characterized as a pair. Separate assess-

ments of each predictive value do not necessarily lead to a proper characterization of

their joint dependence on the threshold. Thus, summary results for predictive values

should be quantified and assessed jointly via a PROC curve, rather than separately

through predictive curves. Examining each element of the predictive pair separately

could easily let problems like the non-monotone behavior go undetected.

Our proposed model to meta-analyze predictive values of biomarkers assumes avail-

ability of data in the form of a 2 by 2 contingency table, which is often the case in

practice. This model accounts for the prospective nature of the studies, and assumes

a multinomial distribution for the observed cell counts in the contingency table. An

underlying Lomax distribution for the distribution of the biomarker measurement,

or a monotonously transformed version of the measurement, is assumed to ensure a

monotone summary PROC curve. This is not necessarily a restriction on the general

application of the model as the PROC curve is a function of both disease prevalence

and the ROC curve. The latter pertains to the relationship between the survival

functions of the diseased and non-diseased populations, and not the distributions

themselves.

As noted earlier, the proposed model does not address the complexity arising from

the use of correlated data. It is common for studies to measure multiple biomarkers

on the same patient for greater trial efficiency. A similar situation is where results

based on multiple cut-points are reported within the same study. Extension of the

current model to allow for correlated data would be a relevant and useful topic for
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future research. Other related topics would be the extension of the proposed model

to a network meta-analysis setting, and settings where the reference standard is not

perfect.

The use of a Bayesian hierarchical model provides flexibility and ease in obtaining

estimates, and the corresponding posterior intervals. Computational demands of

MCMC algorithm are less of a constraint with improving computational power. We

believe the proposed model is therefore easily accessible to most meta-analysts.
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1.A Monotonicity

1.A.1 Stochastic Orders

Let X and Y be two random variables, then under the usual stochastic order,

X ≤st Y ⇐⇒ P (X ≥ x) ≤ P (Y ≥ x) ∀ x ∈ (−∞,∞)

Let rX(t) =
fX(t)

F̄X(t)
, where t ∈ R and F̄X(t) = 1−FX(t). Then X is said to be smaller

than Y in the hazard rate order (X ≤hr Y ) when

rX(t) ≥ rY (t) t ∈ R

Theorem 1.B.1 (Shaked and Shanthikumar, 2007) If X and Y are two ran-

dom variables such that X ≤hr Y , then X ≤st Y

Let

r̃X(t) =
d

dt
logFX(t) =

fX(t)

FX(t)

Then X is said to be smaller than Y in the reversed hazard rate order (X ≤rh Y )

when

r̃X(t) ≤ r̃Y (t) t ∈ R

Theorem 1.B.42 (Shaked and Shanthikumar, 2007) If X and Y are two ran-

dom variables such that X ≤rh Y , then X ≤st Y

Let X and Y be two random variables with densities f and g respectively. Then X

is said to be smaller than Y in the likelihood ratio order (X ≤lr Y ) when

f(x)g(y) ≥ f(y)g(x) ∀x ≤ y
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Theorem 1.C.1 (Shaked and Shanthikumar, 2007) If X and Y are two ran-

dom variables such that X ≤lr Y , then X ≤hr Y and X ≤rh Y , and therefore

X ≤st Y

Remark 1.C.2 (Shaked and Shanthikumar, 2007) Neither of the orders ≤hr and

≤rh (even if both hold simultaneously) implies the order ≤lr

1.A.2 Monotonicity of predictive values

Let Y denote the random variable T |D = 1 with a distribution of G, and X denote

the random variable T |D = 0 with a distribution of F .

PPV (c) =
[1−G(c)]p

[1−G(c)]p+ [1− F (c)](1− p)

d

dc
PPV (c) = − g(c)p

[1−G(c)]p+ [1− F (c)](1− p)
− [1−G(c)]p[−g(c)p− f(c)(1− p)]

{[1−G(c)]p+ [1− F (c)](1− p)}2

NPV (c) =
F (c)(1− p)

G(c)p+ F (c)(1− p)

d

dc
NPV (c) =

f(c)(1− p)

G(c)p+ F (c)(1− p)
− F (c)(1− p)[g(c)p+ f(c)(1− p)]

{G(c)p+ F (c)(1− p)}2
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Monotonicity of the predictive values with respect to the cut-off, c, can be determined

by taking the first derivative of the predictive values with respect to the cut-off.

d

dc
PPV (c) ≥ 0

−g(c){[1−G(c)]p+ [1− F (c)](1− p)}+ p[1−G(c)][g(c)p+ f(c)(1− p)] ≥ 0

g(c)[1−G(c)]p+ g(c)[1− F (c)](1− p) ≤ g(c)[1−G(c)]p+ f(c)[1−G(c)](1− p)

g(c)[1− F (c)] ≤ f(c)[1−G(c)]

g(c)

1−G(c)
≤ f(c)

1− F (c)

=⇒ X ≤hr Y

d

dc
NPV (c) ≤ 0

f(c)(1− p)[G(c)p+ F (c)(1− p)] ≤ F (c)(1− p)[g(c)p+ f(c)(1− p)]

f(c)G(c)p ≤ F (c)g(c)p

f(c)

F (c)
≤ g(c)

G(c)

=⇒ X ≤rh Y

From Theorem 1.C.1, we note that if X ≤lr Y , then X ≤hr Y and X ≤rh Y ,

thus satisfying the monotonicity conditions for PPV and NPV. The theorem further

implies that X ≤st Y , which is the fundamental assumption in diagnostic accuracy
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1.B Proper ROC curve model

1.B.1 Lomax distribution

X ∼ Lomax(scale = λ, shape = κ)

x ≥ 0, λ > 0, κ > 0

fX(x) =
κ

λ

(
1 +

x

λ

)−(κ+1)

FX(x) = 1−
(
1 +

x

λ

)−κ

E[X] =
λ

κ− 1
, κ > 1

Var(x) =
λ2κ

(κ− 1)2(κ− 2)
, κ > 2

1.B.2 ROC curve derivation

Let X be the result of a diagnostic test for the diseased population and that X ∼

Lomax(λ, κ). For the non-diseased population, let Y be the result of the diagnostic
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test and Y ∼ Lomax(1, κ). Then

FX(t) = 1−
(
1 +

t

λ

)−κ

FY (t) = 1− (1 + t)−κ

TPR(t) = π1(t) = 1− FX(t)

=

(
1 +

t

λ

)−κ

FPR(t) = π0(t) = 1− FY (t)

= (1 + t)−κ

∴ ROC(π0) =

[
1 +

1

λ

(
π
−1/κ
0 − 1

)]−κ

The derivation of the ROC curve model is as follows

logit
(
π
1/κ
0

)
= log

π
1/κ
0

1− π
1/κ
0

= log π
1/κ
0 − log

[
π
1/κ
0

(
π
−1/κ
0 − 1

)]
= − log

(
π
−1/κ
0 − 1

)
logit

(
π
1/κ
1

)
= log

π
1/κ
1

1− π
1/κ
1

= log

 1

1 + 1
λ

(
π
−1/κ
0 − 1

) 1 + 1
λ

(
π
−1/κ
0 − 1

)
1
λ

(
π
−1/κ
0 − 1

)


= log
λ

π
−1/κ
0 − 1

= log λ+ logitπ
1/κ
0
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Let β = 1
κ
, and α = log λ, where β > 0, −∞ < α <∞, then

logit
(
πβ0

)
= θ

logit
(
πβ1

)
= θ + α

and ROC(π0) can be expressed as ROC(π0) =
[
1 + e−α

(
π−β
0 − 1

)]−1/β

.
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1.C JAGS Code

### JAGS Model for HSPROC

model{

for (k in 1:K){

## Within Study Variation

Y[k,] ~ dmulti(q[k,], N[k])

q[k,1] <- tpr[k] * p[k]

q[k,2] <- fpr[k] * (1-p[k])

q[k,3] <- (1-fpr[k]) * (1-p[k])

q[k,4] <- 1 - q[k,1] - q[k,2] - q[k,3]

tpr[k] <- g1[k]^(1/b)

fpr[k] <- g0[k]^(1/b)

logit(g1[k]) <- theta[k]+a[k]

logit(g0[k]) <- theta[k]

logit(p[k]) <- logitp[k]

## Between Study Variation

a[k] ~ dnorm(mu_a, prec_a)

theta[k] ~ dnorm(Theta, prec_theta)

logitp[k] ~ dnorm(P, prec_P)

}

## Priors

mu_a ~ dnorm(0, 0.0001)

prec_a <- pow(sigma_a, -2)
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sigma_a ~ dunif(0, 100)

Theta ~ dunif(-10, 10)

prec_theta <- pow(sigma_theta, -2)

sigma_theta ~ dunif(0, 100)

P ~ dnorm(0, 0.0001)

prec_P <- pow(sigma_P, -2)

sigma_P ~ dunif(0, 100)

b ~ dexp(log(2))

}
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1.D Data and Results for Example 1

1.D.1 Data

Table 1.1: Copeptin Data

Study Cutpoint TP FP FN TN
Balmelli/APACE 10 131 327 58 685
Chenevier-Gobeaux 10.7 36 125 9 147
Giannitsis 10 95 137 41 230
Keller 13 172 240 127 847
Sebbane 13.1 36 42 16 100
Afzali 14 92 46 15 77
Charpentier 14 60 147 35 399
COPED 14 203 372 128 539
Eggers 14 57 60 71 172
Lotze 14 9 68 4 61
Maisel/CHOPIN 14 95 572 52 1183
Meune 14 7 14 6 31
Thelin 14 67 207 3 201

Table 1.2: Troponin Data

Study Cutpoint TP FP FN TN
Troponin
Afzali Troponin I, 40 ng/L 87 16 20 107
Balmelli/APACE Troponin T, 35 ng/L 127 24 61 973
Charpentier Troponin I, 100 ng/L 52 7 43 539
Chenevier-Gobeaux Troponin I, 140 or 60 ng/L 32 9 13 263
COPED Troponin T, 30 ng/L 224 0 107 911
Eggers Troponin I, 70 ng/L 92 13 36 219
Keller Troponin T, 30 ng/L 185 33 114 1054
Lotze Troponin T, 100 ng/L 11 38 2 91
Maisel/CHOPIN Troponin I, 0.04 ng/mL 118 184 38 1627
Meune Troponin I, 140 ng/L 12 2 1 43
Sebbane Troponin I, 40 ng/L 38 10 13 133

1.D.2 Results
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Table 1.3: Posterior distribution summaries of key parameter and diagnostic perfor-
mance measures for Copeptin.

Mean 2.5% 25% 50% 75% 97.5%

logit−1 (Π) 0.202 0.140 0.179 0.200 0.222 0.275
PPV 0.334 0.242 0.301 0.332 0.364 0.434
NPV 0.894 0.838 0.878 0.895 0.911 0.937

Sensitivity 0.692 0.575 0.654 0.693 0.730 0.804
Specificity 0.652 0.589 0.634 0.653 0.672 0.708

Table 1.4: Posterior distribution summaries of key parameter and diagnostic perfor-
mance measures for Troponin.

Mean 2.5% 25% 50% 75% 97.5%

logit−1 (Π) 0.203 0.131 0.176 0.200 0.226 0.291
PPV 0.786 0.607 0.738 0.793 0.842 0.919
NPV 0.934 0.888 0.923 0.936 0.947 0.965

Sensitivity 0.736 0.620 0.705 0.739 0.771 0.832
Specificity 0.948 0.888 0.936 0.952 0.965 0.984

Table 1.5: Posterior distribution summaries of parameters for Copeptin with logit(p̂k)
as between study covariate.

Mean SD 2.5% 25% 50% 75% 97.5%
Π -1.389 0.211 -1.811 -1.522 -1.388 -1.255 -0.971
Θ -6.242 3.155 -13.949 -7.906 -5.746 -4.021 -1.504
β 5.902 2.885 1.647 3.839 5.440 7.425 12.999
γα 0.185 0.712 -1.130 -0.220 0.135 0.537 1.777
µα 4.430 2.216 1.416 2.866 3.992 5.508 10.005
σΠ 0.724 0.180 0.464 0.599 0.694 0.815 1.161
σα 1.218 0.640 0.441 0.777 1.068 1.488 2.874
σθ 1.700 0.911 0.527 1.058 1.506 2.118 4.014

Table 1.6: Posterior distribution summaries of parameters for Troponin with logit(p̂k)
as between study covariate.

Mean SD 2.5% 25% 50% 75% 97.5%
Π -1.388 0.251 -1.890 -1.544 -1.388 -1.233 -0.889
Θ 1.114 1.532 -1.698 0.161 1.047 1.995 4.300
β 0.151 0.173 0.005 0.043 0.099 0.201 0.582
γα 0.157 0.261 -0.355 0.007 0.154 0.303 0.682
µα 2.767 0.551 1.952 2.448 2.696 2.990 4.003
σΠ 0.786 0.221 0.480 0.633 0.745 0.892 1.330
σα 0.435 0.247 0.158 0.282 0.380 0.518 1.036
σθ 0.629 0.254 0.340 0.471 0.574 0.718 1.245
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1.E Data and Results for Example 2

1.E.1 Data

Table 1.7: Troponin I Data

Study TP FP FN TN
1 Meyer 0 14 0 22
2 Douketis 0 5 0 19
3 Kucher 4 24 1 62
4 Mehta 1 17 1 19
5 Enea 4 16 0 6
6 La Vecchia 5 9 1 33
7 Douketis 6 56 10 386
8 Binder 6 40 1 77
9 Yalamanchili 8 16 9 114
10 Scridon 23 50 5 63
11 Amorim 2 40 1 17
12 Hsu 12 50 8 40

Table 1.8: Troponin T Data

Study TP FP FN TN
9 Giannitsis 8 10 1 37
10 Janata 5 36 0 65
11 Pruszczyk 8 24 0 32
12 Bova 7 19 1 33
13 Kostrubiec 9 30 6 55
14 Kline 2 18 0 161
15 Kaczynska 10 18 6 53
16 Tulevski 2 4 0 22

1.E.2 Results

36



Figure 1.7: PROC curves at the 2.5%, 50%, and 97.5% quantiles of the posterior
distribution of prevalence for Troponin I (Top) and Troponin T (Bottom). Empirical
estimates are shown as dots and scaled by sample size.
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Table 1.9: Posterior distribution summaries of key parameter and diagnostic perfor-
mance measures for Troponin I.

Mean 2.5% 25% 50% 75% 97.5%

logit−1 (Π) 0.073 0.035 0.059 0.072 0.086 0.122
PPV 0.137 0.063 0.108 0.133 0.162 0.232
NPV 0.965 0.928 0.957 0.968 0.977 0.991

Sensitivity 0.702 0.443 0.630 0.712 0.784 0.910
Specificity 0.648 0.491 0.605 0.653 0.696 0.776

Table 1.10: Posterior distribution summaries of key parameter and diagnostic perfor-
mance measures for Troponin T.

Mean 2.5% 25% 50% 75% 97.5%

logit−1 (Π) 0.095 0.037 0.070 0.089 0.112 0.187
PPV 0.256 0.100 0.194 0.248 0.308 0.464
NPV 0.983 0.928 0.976 0.991 0.998 1.000

Sensitivity 0.878 0.515 0.813 0.925 0.987 1.000
Specificity 0.736 0.606 0.705 0.741 0.773 0.838
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dewé, G. Steiner, D. Aletaha, J. S. Smolen, and K. P. Machold. Application of

39



the 2010 ACR/EULAR classification criteria in patients with very early inflamma-

tory arthritis: analysis of sensitivity, specificity and predictive values in the SAVE

study cohort. Annals of the Rheumatic Diseases, 72(8):1335–1341, aug 2013. doi:

10.1136/annrheumdis-2012-201909.

P. M. Bossuyt, J. B. Reitsma, D. E. Bruns, C. A. Gatsonis, P. P. Glasziou, L. Irwig,

J. G. Lijmer, D. Moher, D. Rennie, H. C. W. de Vet, H. Y. Kressel, N. Rifai, R. M.

Golub, D. G. Altman, L. Hooft, D. A. Korevaar, and J. F. Cohen. STARD 2015:

an updated list of essential items for reporting diagnostic accuracy studies. BMJ,

351, oct 2015.

G. Campbell and M. V. Ratnaparkhi. An application of Lomax distributions in re-

ceiver operating characteristic (ROC) curve analysis. Communications in Statistics,

22(6):1681–1697, 1993.

H. Chu and S. R. Cole. Bivariate meta-analysis of sensitivity and specificity with

sparse data: a generalized linear mixed model approach. Journal of Clinical Epi-

demiology, 59(12):1331–1332, 2006. doi: 10.1016/j.jclinepi.2006.06.011.

H. Chu, L. Nie, S. R. Cole, and C. Poole. Meta-analysis of diagnostic accuracy

studies accounting for disease prevalence : Alternative parameterizations and model

selection. Statistics in medicine, 28(18):2384–2399, 2009. doi: 10.1002/sim.

C. H. Chung, Q. Zhang, C. S. Kong, J. Harris, E. J. Fertig, P. M. Harari, D. Wang,

K. P. Redmond, G. Shenouda, A. Trotti, D. Raben, M. L. Gillison, R. C. Jordan,

and Q.-T. Le. p16 Protein Expression and Human Papillomavirus Status As Prog-

nostic Biomarkers of Nonoropharyngeal Head and Neck Squamous Cell Carcinoma.

Journal of Clinical Oncology, 32(35):3930–3938, sep 2014. ISSN 0732-183X. doi:

10.1200/JCO.2013.54.5228.

A. de Gramont, S. Watson, L. M. Ellis, J. Rodon, J. Tabernero, A. de Gramont, and

40



S. R. Hamilton. Pragmatic issues in biomarker evaluation for targeted therapies

in cancer. Nat Rev Clin Oncol, 12(4):197–212, apr 2015. ISSN 1759-4774. doi:

10.1038/nrclinonc.2014.202.

V. Dukic and C. Gatsonis. Meta-analysis of Diagnostic Test Accuracy Assessment

Studies with Varying Number of Thresholds. Biometrics, 59(4):936–946, 2003.

ISSN 0006341X. doi: 10.1111/j.0006-341X.2003.00108.x.

F. Efficace, G. Gaidano, M. Breccia, M. T. Voso, F. Cottone, E. Angelucci, G. Caocci,

R. Stauder, D. Selleslag, M. Sprangers, U. Platzbecker, A. Ricco, G. Sanpaolo,

O. Beyne-Rauzy, F. Buccisano, G. A. Palumbo, D. Bowen, K. Nguyen, P. Niscola,

M. Vignetti, and F. Mandelli. Prognostic value of self-reported fatigue on overall

survival in patients with myelodysplastic syndromes: a multicentre, prospective,

observational, cohort study. The Lancet Oncology, 16(15):1506–1514, nov 2015.

doi: 10.1016/S1470-2045(15)00206-5.

J. P. Egan. Signal detection theory and ROC analysis. New York: Academic Press,

1975.

R. M. Harbord, J. J. Deeks, M. Egger, P. Whiting, and J. A. C. Sterne. A unification

of models for meta-analysis of diagnostic accuracy studies. Biostatistics (Oxford,

England), 8(2):239–51, 2007. ISSN 1465-4644. doi: 10.1093/biostatistics/kxl004.

S. Hattori and X.-H. Zhou. Evaluation of predictive capacities of biomarkers based

on research synthesis. Statistics in Medicine, 35(25):4559–4572, nov 2016. ISSN

1097-0258. doi: 10.1002/sim.7018.

Y. Huang, M. S. Pepe, and Z. Feng. Evaluating the predictiveness of a continuous

marker. Biometrics, 63(4):1181–1188, 2007. ISSN 0006-341X. doi: 10.1111/j.1541-

0420.2007.00814.x.

Y. Huang, M. S. Pepe, and Z. Feng. Logistic regression analysis with standardized

41



markers. The Annals of Applied Statistics, 7(3):1640–1662, 2013. ISSN 1932-6157.

doi: 10.1214/13-AOAS634.

M. M. G. Leeflang, P. M. M. Bossuyt, and L. Irwig. Diagnostic test accuracy may vary

with prevalence: implications for evidence-based diagnosis. Journal of Clinical Epi-

demiology, 62(1):5–12, 2009. ISSN 08954356. doi: 10.1016/j.jclinepi.2008.04.007.

M. M. G. Leeflang, J. J. Deeks, A. W. S. Rutjes, J. B. Reitsma, and P. M. M. Bossuyt.

Bivariate meta-analysis of predictive values of diagnostic tests can be an alternative

to bivariate meta-analysis of sensitivity and specificity. Journal of clinical epidemi-

ology, 65(10):1088–97, 2012. ISSN 1878-5921. doi: 10.1016/j.jclinepi.2012.03.006.

M. M. G. Leeflang, A. W. S. Rutjes, J. B. Reitsma, L. Hooft, and P. M. M. Bossuyt.

Variation of a test’s sensitivity and specificity with disease prevalence. Cana-

dian Medical Association Journal, 185(11):E537–E544, 2013. ISSN 08203946. doi:

10.1503/cmaj.121286.

S. Liao, B. C. Penney, H. Zhang, K. Suzuki, and Y. Pu. Prognostic Value of the

Quantitative Metabolic Volumetric Measurement on 18F-FDG PET/CT in Stage

IV Nonsurgical Small-cell Lung Cancer. Academic Radiology, 19(1):69–77, 2012.

ISSN 10766332. doi: 10.1016/j.acra.2011.08.020.

M. J. Lipinski, R. O. Escárcega, F. D’Ascenzo, M. A. Magalhães, N. C. Baker,
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Chapter 2

Implications of using hazard ratio

to characterize performance of a

prognostic biomarker

Abstract

The hazard ratio is commonly reported in studies evaluating prognostic biomarkers.

In this chapter, we undertake a critical evaluation of the widespread use of hazard

ratio as a summary measure of the prognostic performance of biomarkers. We use

the framework of time-dependent receiver operating characteristic curves for this pur-

pose. Under the proportional hazard assumption, we show that the same hazard ratio

can result in very different levels of prognostic performance under different marker

positivity rates, and baseline hazard functions. For example, a biomarker with a

hazard ratio of 5.75 and marker positivity rate of 0.1 will at best only be able to

correctly predict approximately 40% of patients who will have the clinical outcomes,

and wrongly predict approximately 10% of patients who will not have the clinical out-

comes. We show that differences in prognostic performance for different hazard ratios

45



will diminish with time, and provide examples from the literature to illustrate the

inadequacies of using the hazard ratio alone to characterize prognostic performance

of biomarkers. Essential information that should accompany the reporting of hazard

ratios is identified to allow appropriate assessment of the prognostic performance of

a biomarker.

2.1 Introduction

Biomarkers are commonly used to predict the course of disease and response to ther-

apy. In 2001, the National Institutes of Health Biomarkers Definitions Working Group

proposed to define a biomarker as “a characteristic that is objectively measured and

evaluated as an indicator of normal biological processes, pathogenic processes, or

pharmacologic responses to a therapeutic intervention” (Atkinson A.J. et al., 2001).

In more recent years, new definitions have arisen to better distinguish the differ-

ent roles that biomarkers play (Sargent and Mandrekar, 2013, Ballman, 2015). A

predictive biomarker is defined as a marker, or combination of markers, that iden-

tify a specific treatment regimen that is effective only in a subgroup of patients. A

prognostic biomarker separates populations with regard to clinical outcomes in either

untreated patients or patients treated with standard treatment, and thus is useful in

guiding clinical decisions on whom to treat. The primary endpoints in trials of prog-

nostic and/or predictive biomarkers are usually overall, disease-free, or recurrence-free

survival (Sargent et al., 2005), which typically lead to the use of survival analysis on

data from such trials.

The Cox Proportional Hazard model, or Cox model (Cox, 1972), is the most com-

monly used method for analyzing survival outcomes. The model assumes that the

ratio of the hazard rates of two groups is constant over time (proportional hazard),
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and a linear relationship exists between the covariates and the log hazard function or

log hazard rates. The hazard rate quantifies the likelihood a patient will experience

an event during a defined interval of observation as a rate or percentage (Klein and

Moeschberger, 2003). In a review of 50 studies reporting on prognostic tumor markers

for cancer, Mallett et al. (2010) found that 98% of these studies used the Cox model.

According to the reporting guideline for tumor marker prognostic studies (Altman

et al., 2012), reporting a hazard ratio estimate or some other appropriate univariable

association measures to show the unadjusted prognostic strength is recommended.

The hazard ratio is also one of the two recommended outcome measures for survival

time data in the CONSORT statement (Moher et al., 2012). Furthermore, in system-

atic reviews involving effect measures for time-to-event (survival) outcomes, both the

Cochrane Handbook for Systematic Reviews of Interventions (The Cochrane Collab-

oration, 2011) and PRISMA (Liberati et al., 2009) suggest the use of hazard ratio as

the summary measure.

On the other hand, authors have cautioned against the widespread and sometimes

indiscriminate use of the hazard ratio. In the general context of survival analysis,

limitations on the use of the hazard ratio as a summary measure have been discussed

inWare (2006), Hernán (2010), Blagoev et al. (2012). In the area of systematic reviews

of prognostic tests, Rector et al. (2012) argued that the hazard ratio is just indicative

of whether a more definitive evaluation of the prognostic biomarker is warranted, and

has minimal direct impact on clinical practice. For situations where the proportional

hazard assumption is not valid, discussions of alternatives to the hazard ratio can be

found in Uno et al. (2014) and Uno et al. (2015). Nevertheless, we continue to see

the use of hazard ratio as the primary measure for characterizing the performance of

a prognostic biomarker in the literature even though no study has examined how well

the hazard ratio can be used for this purpose.
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In this study, we will focus on prognostic biomarkers and assume that the proportional

hazard assumption is valid. The results can be extended to predictive biomarkers,

but will need to bear in mind that the interpretations will be treatment specific. We

aim to gain greater insights into the suitability of using the hazard ratio in char-

acterizing the prognostic performance of a biomarker, by critically examining how

a prognostic biomarker’s hazard ratio translates to its prognostic performance over

time. To answer this question, we will make use of the clinically intuitive framework

of time-dependent Receiver Operating Characteristic (ROC) curves (Heagerty et al.,

2000) to characterize the influence of the hazard ratio on prognostic performance.

The next section will provide technical details on the approach adopted in this chapter

to study the implications of hazard ratios on prognostic capabilities of biomarkers. We

will present and discuss results primarily for binary prognostic biomarkers. Unique

features associated with continuous biomarkers will be highlighted. Two primary

studies involving binary biomarkers (Chung et al., 2014, Efficace et al., 2015) and

one other involving continuous biomarkers (Liao et al., 2012), are selected from the

literature to help illustrate the implications on prognostic performance based on the

reported hazard ratios. Each of these studies examined two or more biomarkers to

predict the same outcome. We will conclude with a discussion of the findings. In

the rest of the chapter, the terms prognostic biomarkers, biomarkers and markers are

used interchangeably.

2.2 Methods

2.2.1 Proportional hazard model

In this chapter, the proportional hazard model is written as log h(t) = log h0(t) +

βY , where h(t) and h0(t) are the hazard and baseline hazard functions, respectively.
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Y denotes biomarker measurement at baseline, with larger values of Y assumed to

be more indicative of disease status or event occurrence. The proportional hazard

assumption arises because the hazard function is proportional to the baseline hazard

function by a factor of exp(βY ), and β is also known as the log hazard ratio. The

nomenclature β and log hazard ratio will be used interchangeably from here on.

The relationship between survival probability and the hazard function is given by

ST |Y=y(t) = exp{−
∫ t
0
h(u; y)du}. In using the partial maximum likelihood estimation

method to estimate β, the specification of the baseline hazard function is not required,

and thus cannot be estimated directly.

Three different types of baseline hazard functions, namely constant, decreasing, and

unimodal, are utilized in this chapter to examine the effect of different baseline hazard

functions on the prognostic performance of biomarkers. The Generalized Weibull

distribution (Mudholkar et al., 1996) is used to allow specification of different forms

of the baseline hazard function, while maintaining the proportional hazard property.

The quantile function of the generalized Weibull distribution used is

Q(u) =


b
[
1−(1−u)λ

λ

]1/a
, λ ̸= 0

b[− log(1− u)]1/a, λ = 0

where a and b are respectively the shape and scale parameters in the Weibull distribu-

tion, and λ is the third parameter defined to extend the Weibull distribution to contain

unimodal and bathtub shaped hazard functions. The values of the parameters used for

the different baseline hazard functions are summarized in Table 2.1. The proportional

hazard assumption is attained with the specification ST |Y=y(t) =
{
ST |Y=0(t)

}exp(βy)
.
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Table 2.1: Parameter values for baseline hazard functions

Baseline hazard function a b λ
Constant 1 1 0
Decreasing 0.8 5 -1.5
Unimodal 3 5 -3

2.2.2 Time-dependent ROC curves

In classical ROC analysis of diagnostic tests, the binary target condition, often re-

ferred to as “disease status”, is assumed known and fixed. However in settings where

patients’ disease status can change with time, i.e. patients are initially free of disease

at the start of study but become diseased after time t, the classical approach is no

longer suitable. Time-dependent ROC analysis (Heagerty et al., 2000), ROC(t), was

thus developed to address how well a prognostic marker measured at baseline can

distinguish between patients who will become diseased, and those who will not in a

follow-up interval [0, t]. In the time dependent ROC framework, different definitions

of time dependent sensitivity and specificity were developed for specific purposes, and

these were summarized in Heagerty and Zheng (2005).

Let T denote disease onset time. Under the time dependent ROC framework, the

binary disease status D is defined as D(t) = 1 if T ≤ t, and D(t) = 0 if T > t. The

time dependent cumulative sensitivity and dynamic specificity are defined as

cumulative sensitivity(c; t) = P (Y > c|T ≤ t)

dynamic specificity(c; t) = P (Y ≤ c|T > t)

where c is the specified threshold value. Cumulative sensitivity is thus the proba-

bility that the biomarker measurement is above the specified threshold at baseline

for those with onset of disease in the follow-up interval, and dynamic specificity is

the probability that the measurement is below the threshold at baseline among those
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with no disease onset in the same follow-up interval. For each time t, the time-

dependent ROC curve is then obtained by plotting cumulative sensitivity against

1− dynamic specificity for all possible threshold values. Other commonly used defi-

nitions from Heagerty and Zheng (2005) include

incident sensitivity(c; t) = P (Y > c|T = t)

static specificity(c; t∗) = P (Y ≤ c|T > t∗)

where t∗ is a fixed follow-up time point. For this study, we will use cumulative

sensitivity and dynamic specificity for the time-dependent ROC as these definitions

have greater clinical relevance.

2.2.3 Binary biomarkers

For a binary marker, Y ∈ {0, 1}, the cumulative sensitivity or cumulative True Posi-

tive Rate (TPR) from the time-dependent ROC framework is defined as

TPR(t) = P (Y = 1|T ≤ t)

=
[1− ST |Y=1(t)]P (Y = 1)

[1− ST |Y=1(t)]P (Y = 1) + [1− ST |Y=0(t)]P (Y = 0)

=
[1− {ST |Y=0(t)}exp(β)]p

[1− {ST |Y=0(t)}exp(β)]p+ [1− ST |Y=0(t)](1− p)

where p = P (Y = 1) is the marker positivity rate, and the third equality is due to the

proportional hazard assumption. Similarly the dynamic False Positive Rate (FPR),
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or 1− dynamic specificity, is

FPR(t) = P (Y = 1|T > t)

=
ST |Y=1(t)p

ST |Y=1(t)p+ ST |Y=0(t)(1− p)

=
{ST |Y=0(t)}exp(β)p

{ST |Y=0(t)}exp(β)p+ ST |Y=0(t)(1− p)

Based on the definition of Y , β will be a non-negative real number. From the above

expressions for cumulative TPR(t) and dynamic FPR(t), it is noted that for 0 < p <

1, limt→∞ TPR(t) = p and limt→∞ FPR(t) = 0 for the range of β assumed here.

Under an equal misclassification cost assumption, the prognostic performance of

the binary prognostic marker can be measured using a time-varying version of the

Youden’s Index (Youden, 1950), J(t) = TPR(t) − FPR(t). Note that, if an em-

pirical ROC(t) curve is drawn using the points (0,0), (TPR(t), FPR(t)), and (1,1),

then the Youden’s Index is equivalent to 2AUC(t) − 1, where AUC(t) is the area

under the empirical ROC(t) curve. Hence J(t) = 0.8 is equivalent to an empirical

AUC(t) = 0.9.

2.2.4 Continuous biomarkers

When Y represents a continuous measurement of a biomarker, and denoting the

decision threshold by c, the cumulative TPR is defined as

TPR(c; t) = P (Y > c|T ≤ t)

=

∫∞
c

{
1− ST |Y=y(t)

}
fY (y)dy

1− ST (t)

=

∫∞
c

{
1− ST |Y=0(t)

exp(βy)
}
fY (y)dy∫∞

−∞

{
1− ST |Y=0(t)exp(βy)

}
fY (y)dy
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and the dynamic FPR is defined as

FPR(c; t) = P (Y > c|T > t)

=

∫∞
c
ST |Y=y(t)fY (y)dy

ST (t)

=

∫∞
c

{
ST |Y=0(t)

exp(βy)
}
fY (y)dy∫∞

−∞ ST |Y=0(t)exp(βy)fY (y)dy

The time-dependent ROC curve is then defined as ROC(v; t) = TPR(FPR−1(v; t); t).

A commonly used summary measure of the sensitivity and specificity over the range

of possible thresholds for the marker is the time-dependent area under the ROC curve,

AUC(t).

AUC(t) =

∫ 1

0

ROC(v; t)dv

or

AUC(t) =

∫ ∞

−∞
TPR(c; t)

∣∣∣∣∂FPR(c; t)∂c

∣∣∣∣ dc
From the expressions above, it is observed that

TPR(∞; t) = FPR(∞; t) = 0

TPR(−∞; t) = FPR(−∞; t) = 1

lim
t→∞

TPR(c; t) = 1− FY (c)

lim
t→∞

FPR(c; t) =

 0 , β > 0

1− FY (c) , β = 0

where FY (y) is the cumulative distribution of the continuous marker. It can also

be shown that AUC(t) = 0.5 when β = 0. For the purpose of this chapter, we

assume that Y ∼ N(0, 1). All numerical integrations were performed using adaptive

quadrature in R 3.2.3 (R Core Team, 2015).
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2.3 Results

For simplicity in notation, the dependence of TPR, FPR, ROC and AUC on t will be

dropped in the rest of the chapter.

2.3.1 Binary biomarker

For a binary marker, both TPR and FPR are functions of the marker positivity rate

(p), log hazard ratio (β), baseline hazard function and time (t). These relationships

can be represented in a plot shown in Figure 2.1, where the dependence on time

is through the marginal survival function. These curves were generated assuming a

constant baseline hazard function with parameters given in Table 2.1. For both TPR

and FPR curves, the horizontal line at the value of p represents the case when the

biomarker has no discriminating ability, i.e. β = 0, and TPR is equal to FPR. The

TPR lines (solid lines) for different values of β are above this horizontal β = 0 line,

and will eventually converge towards the value p as time increases. On the other

hand, FPR lines (dot-dash lines) originate from the value p, at the start and decrease

towards zero as time increases. With increasing values of β, the TPR and FPR lines

move further away from the reference horizontal line of β = 0. Three different colors

(black, red, and green) are cycled through continuously to facilitate the identification

of the corresponding log hazard ratio in the legend in Figure 2.1a. This legend applies

to Figures 2.1, 2.2 and 2.3.

Intuitively the trends indicate that at the point where measurements of biomarker are

taken, the patients will not have developed the event yet and will be in the event-free

group. Thus FPR will be the same as the marker positivity rate. On the other hand,

if time is allowed to increase infinitely, a majority of the patients will have the event

eventually. The true positive rate will then approach the marker positivity rate, while
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the false positive rate will decrease towards zero. Figure 2.1 shows two plots with

different marker positivity rates to illustrate the similar behavioral trends of TPR

and FPR with time. The actual time scale is also superimposed on each of the plots

as isochronic dashed lines. The shifts in the isochronic dashed lines will depend on

the baseline hazard function used. Keeping the marker positivity rate at 0.25, the

results from using unimodal and decreasing baseline hazard functions are shown in

Figure 2.2a and 2.2b respectively.

From the plots in Figure 2.1, we observed that at a fixed marker positivity rate, p, a

larger hazard ratio will result in better cumulative sensitivity and dynamic specificity.

However the improvements in specificity are much smaller than sensitivity in the

initial period, as shown by how tightly the FPR curves are bunched up together in

the early stages. This indicates that changes in specificity are not very sensitive to

changes in β, but can be sensitive to changes in the value of p in the short term.

From Figure 2.2, it is observed that different baseline hazard functions will result in

a geometrical translation of the isochronic lines in the plot. Higher baseline hazard

rates will see faster rates of decrease in cumulative sensitivity toward the value of p,

and faster rates of increase in dynamic specificity to 1, thus shifting the isochronic

lines to the right. Conversely, lower baseline hazard rates will shift the isochronic

lines to the left. Hence the shape of the plot for a given marker positivity rate is

largely invariant to the form of the baseline hazard function.

More importantly, the plots allow us to make the observation that for a practical range

of β from 0.5 to 1.5 (hazard ratio from 1.65 to 4.48), the cumulative sensitivity for a

marker with a positivity rate of 0.25 is at most 0.6 with the corresponding dynamic

specificity of approximately 0.75, regardless of the baseline hazard function. On the

other hand, a marker with a positivity rate of 0.75 will have at most a cumulative

sensitivity of approximately 0.9 with the corresponding dynamic specificity of 0.25
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Figure 2.1: Variation of TPR and FPR with log hazard ratio (β), and time t with
constant baseline hazard function for different marker positivity rates. Note that
S(t) = P (T ≤ t). Different color codings refer to the different levels of β, starting
from the horizontal line of β = 0 at the marker positivity rate. Different line-type cod-
ings are used to differentiate between TPR curves (solid), FPR curves (dot-dashed),
and isochronic time curves (dashed).
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Figure 2.2: Variation of TPR and FPR with log hazard ratio (β), and time (t) at
marker positivity rate p = 0.25. Baseline hazard functions are as indicated in each
sub-plot. Note that S(t) = P (T ≤ t). Different color codings refer to the different
levels of β, starting from the horizontal line of β = 0 at the value of p in accordance to
the legend in Figure 2.1. Different line-type codings are used to differentiate between
TPR curves (solid), FPR curves (dot-dashed), and isochronic time curves (dashed).

for the same range of β. Thus the same value of β implies very different ranges of

cumulative sensitivity/dynamic specificity for markers with different positivity rates.

The prognostic performance of biomarkers with different values of p, but the same

baseline hazard function, are shown in Figure 2.3. From the figure, we observe that

a maximum J exists for each value of log hazard ratio, and the occurrence of this

optimal point approaches the value of 1− S(t) = p with increasing log hazard ratio.

Furthermore, the prognostic performance for different hazard ratios are observed to

coalesce with increasing time. We also note that for a marker with prevalence of 0.25

and β = 1.75, J(t = 1) ≈ 0.35. However, a marker with prevalence of 0.75 and for the

same β = 1.75, J(t = 1) ≈ 0.8. Hence even when baseline hazard functions are the

same, larger hazard ratios do not necessarily imply better prognostic performance.

In another situation, we assume that we have two biomarkers Y1 and Y2 with the same
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Figure 2.3: Variation of J with log hazard ratio (β), and 1 − S(t) with constant
baseline hazard function at different values of p. The color codings are for different
values of β according to the legend in Figure 2.1a.

constant baseline hazard function. The reported statistics are β1 = 1.75, β2 = 0.35,

P (Y1 = 1) = 0.1 and P (Y2 = 1) = 0.25. The corresponding variations in TPR and

FPR are shown in Figure 2.4a. In this case, the cumulative sensitivity of biomarker

Y1 varies from approximately 0.4 to 0.1, and the dynamic specificity varies from 0.9

to 1 with increasing time. For biomarker Y2, the cumulative sensitivity varies from

approximately 0.321 to 0.250, and dynamic specificity varies from 0.75 to 1 with

increasing time. The prognostic performance of the two biomarkers are shown in

Figure 2.4b. In this case, we noted crossings in the cumulative sensitivity curves

and prognostic performance curves, implying that the superiority of the prognostic

performance of one biomarker relative to the other can depend on the time frame of

interest, which again will not be obvious from the hazard ratios alone.

So far in the examples that we have examined, we have assumed the same baseline

hazard function to allow us to investigate the effects of log hazard ratio and marker

positivity rate on the prognostic performance. However in an actual situation com-
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Figure 2.4: Variation of performance measures for 2 binary biomarkers with β1 = 1.75,
β2 = 0.35, P (Y1 = 1) = 0.1 and P (Y2 = 1) = 0.25.

paring the prognostic performance of two different binary biomarkers, the baseline

hazard function for each of the biomarker will have to be provided. This function

determines how fast or slow the performance measures travel along their respective

contours in the corresponding TPR(t)/FPR(t) vs. 1 − S(t) and J(t) vs. 1 − S(t)

plots. Clearly this will complicate the comparisons even further.

2.3.2 Continuous biomarker

The results for binary biomarkers can be extended to continuous biomarkers. In

this setting, the cumulative sensitivity and dynamic specificity are also functions of

the decision threshold c, and p is represented by the complement of the cumulative

distribution function of the continuous biomarker at c. The variation in the time-

dependent ROC curve with different values of log hazard ratio is shown in Figure 2.5

at a fixed time t = 1 for a constant baseline hazard function. We observe in Figure 2.5

that AUC increases with larger values of log hazard ratio for a fixed time. It is also

59



interesting to note that the ROC curves for different log hazard ratio values coalesce

with the passage of time regardless of the initial values (except for β = 0), Figure 2.5b

shown with t = 10. Intuition for this observation can be obtained from Figure 2.1 for

the binary biomarker. Assuming that the 2 plots in Figure 2.1 represent two points on

the ROC curve in Figure 2.5. The coalescence of the ROC curves is explained by the

respective coalescence of the TPR and FPR curves. We can also infer from this that

the time required for the ROC curves to coalesce will depend on the baseline hazard

function. This observation implies that in the long run, biomarkers with larger hazard

ratios have no prognostic advantages over biomarkers with lower hazard ratios, all

yielding similar ROC curves for sufficiently large t. This is similar to the observations

made for binary marker.

Another subtle observation is that the ROC curves will tend to become asymmetric

with time and move closer to the vertical axis in the ROC plot. This could be due

to the rate of decrease in FPR to zero being generally faster than the rate at which

TPR decreases to the value of p, and also the rate of decrease in FPR is also generally

faster for small p (large c) than large p (small c).

When we use a decreasing baseline hazard function, similar trends are observed, but

occurring over a longer period of time. For comparison purposes, we show the patterns

of the ROC curves at t = 10 in Figure 2.6a, and at t = 1× 107 in Figure 2.6b, which

is when coalescence becomes obvious for the decreasing baseline hazard function used

here. From Figures 2.5b and 2.6a, we note that AUC(t = 10) for a biomarker with a

constant baseline hazard rate and a log hazard ratio of 0.5, is greater than a biomarker

that has a decreasing baseline hazard function and a log hazard ratio of 1.5. Hence

it is possible to find examples to show that prognostic performance do not always

commensurate with the magnitude of the hazard ratio.

It is commonly known that the same continuous biomarker measured in different
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scales can lead to different values for log hazard ratio. More importantly, different

measurement scales may result in different baseline hazard function as the reference

condition may have changed. The scales of measurement for continuous biomark-

ers can add another dimension of complexity to the comparison of the prognostic

performance of biomarkers based on their hazard ratios alone. Thus distribution of

the biomarker and the corresponding baseline hazard function are critical pieces of

information required in evaluating prognostic performance.
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Figure 2.5: Variation of ROC(t) curves with different values of log hazard ratio, β,
at t = 1 and t = 10 with constant baseline hazard function. Different color codings
refer to the different levels of β, starting from the diagonal line with a gradient of 1
for the ROC(t) curve with β = 0.
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Figure 2.6: Variation of ROC(t) curves with different values of log hazard ratio, β,
at t = 10 and t = 10, 000, 000 with decreasing baseline hazard function. Different
color codings refer to the different levels of β, starting from the diagonal line with a
gradient of 1 for the ROC(t) curve with β = 0. The legend in Figure 2.5a applies to
the figures here.

2.4 Examples

Three recent studies from the literature are selected as examples to illustrate the im-

plications arising from the use of hazard ratio to characterize prognostic performance

of biomarker. None of the studies explicitly showed the results for testing of the

proportional hazard assumption, and not all reported that the assumption was valid.

For our purpose here, we assume that the proportional hazard assumption is valid in

all three studies. Baseline survival functions were digitized and extracted using Plot

Digitizer 2.6.8 (Huwaldt and Steinhorst). The data points are then fitted with a

linear model, − logS(t) = γ1t+ γ2t
2 + γ3t

3. Analyses are performed for the reported

time frame in the study to avoid extrapolation of data.
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2.4.1 Prognostic biomarkers of nonoropharyngeal head and

neck squamous cell carcinoma

In Chung et al. (2014), p16 protein expression and human papillomavirus (HPV)

status were studied as prognostic biomarkers of Nonoropharyngeal Head and Neck

Squamous Cell Carcinoma (non-OSPCC) in patients with non-OSPCC tumors who

were enrolled onto three prospective Radiation Therapy Oncology Group clinical tri-

als. Immunohistochemistry (IHC) was used to determine p16 expression, with positive

expression defined as strong and diffuse nuclear and cytoplasmic staining in ≥ 70% of

the tumor cells. HPV status was determined by in situ hybridization (ISH) for a range

of HPV types, and defined as positive when nuclear-specific staining was detected in

the tumor cells. The reported marker positivity rate and hazard ratio for progression

free survival outcome for positive p16 protein expression were estimated to be 0.238

and 0.63, respectively. The corresponding values for positive HPV status were esti-

mated to be 0.104 and 0.77, respectively. These results indicated that positive status

of the biomarkers was protective. In line with the convention used in general ROC

analyses, coding status of the biomarkers is reversed such that a positive indication

is associated with higher risk of non-OPSCC. Under this revised coding scheme for

the biomarkers, the marker positivity rate and hazard ratio for negative p16 protein

expression are estimated to be 0.762 and 1.587 respectively, and the marker positivity

rate and hazard ratio for negative HPV status are estimated to be 0.896 and 1.299

respectively. From Figure 1 of Chung et al. (2014), the baseline survival functions

for the reference groups based on p16 expression and HPV status were provided in

sub-plots (A) and (C), respectively.

Denote Y1 as negative p16 protein expression and Y2 as negative HPV status with

the respective parameters β1 = log(1.587), β2 = log(1.299), P (Y1 = 1) = 0.762 and

P (Y2 = 1) = 0.896. The corresponding variations in TPR and FPR are shown in
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Figure 2.7. As time increases, the cumulative sensitivity of biomarker Y1 varies from

approximately 0.835 to 0.762, and the dynamic specificity varies from approximately

0.238 to 1. For biomarker Y2, the cumulative sensitivity varies from approximately

0.918 to 0.896, and dynamic specificity varies from approximately 0.104 to 1 with

increasing time. The prognostic performance of the two biomarkers are shown in

Figure 2.8.

From the above example comparing negative p16 protein expression and negative

HPV status as prognostic biomarkers of non-OPSCC, while negative p16 protein ex-

pression has a higher hazard ratio than negative HPV status, it has better prognostic

performance only up to approximately 2.5 years from baseline biomarker measure-

ment. Beyond that, HPV performs better than p16 protein expression as a biomarker

for non-OPSCC. On the other hand, when having high sensitivity is of utmost im-

portance, then the results show that negative HPV status is a better prognostic

biomarker.

2.4.2 Prognostic value of self-reported fatigue on myelodys-

plastic syndromes

In this study by Efficace et al. (2015), the authors investigated the prognostic value of

self-reported fatigue on overall survival in patients with myelodysplastic syndromes.

Patients were enrolled within 6 months of diagnosis with an intermediate-2-risk or

high-risk score according to the International Prognostic Scoring System (IPSS). Self-

reported fatigue score was obtained from the fatigue scale of the European Organ-

isation for Research and Treatment of Cancer quality of life questionaire-core 30

(EORTC QLQ-C30) administered at baseline. The overall survival based on baseline

patient’s self-reported fatigue severity and IPSS risk group were provided in Figure

1 of Efficace et al. (2015). The fatigue score was dichotomized as low fatigue if the
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Figure 2.7: Variations of TPR and FPR for the 2 binary biomarkers in the example,
negative p16 and negative HPV. Negative p16 protein expression (black) has a log
hazard ratio of β1 = log(1.587), and marker positivity rate P (Y1 = 1) = 0.762.
Negative HPV status (red) has a log hazard ratio of β2 = log(1.299) (red), and
marker positivity rate of P (Y2 = 1) = 0.896. The plot on the left has 1− S(t) on the
horizontal scale, while the one on the right is actual time scale t.

value is lower than 34 points, and high otherwise. The reported hazard ratio for

self-reported fatigue was 1.622, or β1 = 0.484, and a marker positivity rate of 0.479.

The reported hazard ratio using IPSS risk categorization was 3.178, β2 = 1.156, with

a marker positivity rate of 0.264. Similar to the previous example, here we also

observe from Figure 2.9 that IPSS has a higher hazard ratio than self-reported fa-

tigue score, and better prognostic performance up to approximately 2 years. Beyond

that, self-reported fatigue performs better. In the case where having high sensitivity

is of utmost importance, self-reported fatigue is a better prognostic biomarker for

myelodysplastic syndromes.

The authors also reported the hazard ratio associated with a continuous self-reported

fatigue score. In this case, the fatigue scores ranged between 0 and 100, with higher

scores indicating higher levels of fatigue. The reported hazard ratio was 1.130 for
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Figure 2.8: Variations of the Youden Index J for the 2 binary biomarkers in the non-
OPSCC example, negative p16 and negative HPV. Negative p16 protein expression
(black) has a log hazard ratio of β1 = log(1.587), and marker positivity rate of P (Y1 =
1) = 0.762. Negative HPV status (red) has a log hazard ratio of β2 = log(1.299) (red),
and marker positivity rate of P (Y2 = 1) = 0.896. The plot on the left has 1 − S(t)
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Figure 2.9: Variation in the prognostic performance for the 2 binary biomarkers in
the self-reported fatigue example. Self-reported fatigue (black) has a log hazard ratio
of β1 = 0.484, and marker positivity rate of P (Y1 = 1) = 0.479. IPSS (red) has a log
hazard ratio of β2 = 1.156 (red), and marker positivity rate of P (Y2 = 1) = 0.264.
Both plots are based on actual time scale t.
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every 10 point shift difference on the scale. However no further details regarding

the distribution of the continuous self-reported fatigue score and the baseline hazard

function of the baseline reference group were provided. It is not clear from the paper

if the baseline reference group refers to those with zero fatigue score, or those with

mean score or median score if centering was performed. In this case, the reported

hazard ratio of 1.130 is uninformative with regards to the prognostic capability of

self-reported fatigue.

2.4.3 Prognostic value of quantitative metabolic volumetric

measurement on 18F-FDG PET/CT

The third example is based on the study by Liao et al. (2012), in which metabolic

tumor volume (MTV), total lesion glycolysis (TLG), and maximum standardized up-

take values (SUV) of whole body tumors were measured in nonsurgical patients with

Stage IV non-small cell lung cancer for assessment of their prognostic values. These

measurements were log transformed to reduce the skewness in the original scale. No

further details on the distributions of the transformed biomarker measurements were

provided. Survival functions were provided for dichotomized biomarkers based on

the median values. The reported hazard ratios for the continuous log transformed

biomarkers were 1.48, 1.37 and 1.27 respectively. The authors concluded that that

MTV and TLG measurements were better prognostic measures than SUV measure-

ments. However as shown earlier, only when all the biomarkers have the same dis-

tribution and the same baseline hazard rate, then it is possible to conclude that one

would have better prognostic performance than the other on the basis of a higher haz-

ard ratio. Comparison of the biomarkers’ prognostic performance can only be made if

their measurement distributions and the reference baseline hazard functions are pro-

vided. Hazard ratio alone is not sufficient to inform readers about the comparative
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prognostic performance of each continuous biomarker, and may even be potentially

misleading.

2.5 Conclusion

We have examined the implications of a reported hazard ratio in the context of prog-

nostic performance for both binary and continuous biomarker measurements under

the assumption that proportional hazard is valid. In the presence of valid propor-

tional hazard assumption, we have shown that the same hazard ratio can result in very

different prognostic performance under different marker positivity rates and baseline

hazard functions. In some cases, a much stronger association with the disease out-

come than typically observed in primary research is needed to provide a clinically

usable prognostic capability. For example, a biomarker with a hazard ratio of 5.75

and marker positivity rate of 0.1 will at best, only be able to correctly predict ap-

proximately 40% of patient who will have the clinical outcomes, and wrongly predict

approximately 10% of patients who will not have the clinical outcomes.

We have also demonstrated instances where the relative prognostic performance of

two binary biomarkers with different hazard ratios and marker positivity rates can

switch with time, thus illustrating that comparison of prognostic capabilities based

on hazard ratio alone can be misleading. In the case of continuous biomarkers, we

have found that the time-dependent ROC curves representing different hazard ratios

coalesce with time, thus minimizing any differences in prognostic performance due

to differences in hazard ratios. The rate at which the ROC curves coalesce depends

strongly on the baseline hazard functions. We have shown at a particular point in

time, that a biomarker with a constant baseline hazard rate and a hazard ratio of 1.65

could have a greater AUC than a biomarker with a different baseline hazard function
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and a hazard ratio of 4.48.

It is clear that hazard ratio alone is inadequate in conveying the information about

the prognostic performance of a biomarker. A large hazard ratio does not necessarily

imply better prognostic performance. In the examples selected from primary litera-

ture, we have shown the importance in presenting details on the distribution of the

biomarker, and the corresponding baseline hazard function or baseline survival func-

tion, to allow readers to properly assess the prognostic performance of the biomarker.

Missing any one of this information will make assessment of the prognostic perfor-

mance of the biomarker impossible.

In this study, we have only considered performance summary using Youden’s Index

and AUC. While these summary statistics have their own assumptions and limita-

tions, they remain widely used in current literature and better appreciated by most

consumers of such information. We also did not explicitly take censoring into ac-

count, but implicitly assume that the use of Cox model has appropriately addressed

censoring.

When the proportional hazard assumption is not valid, use of hazard ratio is not

indicated. However this has not prevented studies from reporting hazard ratios as the

prognostic capabilities of biomarkers. Two common cases when proportional hazard

assumption is not valid are when the survival curves cross each other, and when

the survival curves do not cross, but the proportionality constant varies with time.

The former case implies that the probability of survival of the patient subgroup with

larger values of biomarker measurement (e.g. biomarker positive group), becomes

higher than the lower valued biomarker subgroup (e.g. biomarker negative group) as

time progresses. This is a violation of the assumption that larger values of biomarker

measurement are more indicative of disease severity, or likelihood of event occurrences.

This will lead to very different behaviors in the time dependent TPR and FPR, with
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FPR possibly approaching 1 as time increases. In the other case where proportional

hazard assumption is not valid, the trends in TPR and FPR will not change from

what we have shown in this chapter since the method of time dependent ROC does

not make any assumption regarding proportionality in the hazard functions. However

the relationship between the different survival functions are no longer as well defined

as ST |Y=y(t) =
{
ST |Y=0(t)

}exp(βy)
. In order to make any assessment on the prognostic

capabilities, one would need the survival functions for all subgroups, and the reported

hazard ratio is of no use at all.

For a biomarker to be associated with the outcome, the distributions of the biomarker

in the biomarker positive and negative groups have to be different. Even when the

distributions have significant overlap, association measure will still be statistically sig-

nificant if the sample size is sufficiently large. In order to perform well as a prognostic

biomarker, the distributions of the biomarker in the two groups must be sufficiently

well separated at the time point of interest to allow discrimination. In conclusion,

hazard ratio on its own is not a good summary measure of the prognostic performance

of a biomarker. It is a summary measure that provides an overall association, but

does not adequately represent prognostic performance of a biomarker with time.
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Chapter 3

Causal inference in studies

comparing diagnostic test

outcomes

Abstract

Most studies of diagnostic tests are designed to assess only the diagnostic and/or

predictive performances of tests. In order to evaluate patient outcomes of diagnostic

tests, randomized studies (Diagnostic Randomized Controlled Trials, DRCTs) have

been utilized. A DRCT evaluates the impact of tests on patient outcomes by cou-

pling randomization with diagnostic tests and therapeutic interventions in a single

study. Randomization is used to eliminate bias arising from selection of patients into

a treatment strategy, and thus providing a valid estimate of the causal effect of the

treatment strategy. However this estimate of the causal effect can become biased in

the presence of noncompliance to the assignments of either test, therapeutic interven-

tion, or both. When test results dictate specific treatment recommendations, the test

can be seen as a randomizer to treatment, conditional on true disease status. Based
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on this insight, we used methods from the sequential randomization literature to ad-

just for selection bias arising from noncompliance in DRCT studies. In particular, we

adapted the Structural Nested Mean Model (SNMM) for use in DRCT designs to es-

timate the causal effect of a test strategy had, contrary to fact, all subjects remained

on protocol. The performances of the causal estimate obtained using SNMM were

evaluated via simulations. Simulations also revealed the deficiencies of the commonly

used intention to treat (ITT) approach in the presence of noncompliance in DRCT

studies. We applied the SNMM to a subset of the National Lung Screening Trial data

to illustrate its use.

3.1 Introduction

The key objective of clinical studies of diagnostic tests is typically the assessment

of diagnostic and/or predictive performance under specific clinical settings. However

when the research question of interest is the effect of tests on patient outcomes,

the diagnostic/predictive performances of tests alone are insufficient to answer this

question. An alternative class of study designs for this purpose is the Diagnostic

Randomized Controlled Trial (DRCT) (De Graaff et al., 2004, Bossuyt et al., 2000).

DRCTs take into consideration the impact of tests on patient outcomes, as mediated

by the therapeutic interventions. Here, the combination of a test and therapeutic

interventions is referred to as a treatment strategy, where the assignment of a specific

therapeutic intervention is guided by the result of the test, and the entire approach is

evaluated as a package. The key advantage of coupling randomization with diagnostic

tests and therapeutic interventions in a single study is that it allows one to eliminate

bias arising from selection of patients into a treatment strategy, thus providing a valid

estimate of the causal effect of the treatment strategy. DRCT designs have been

examined in Lijmer and Bossuyt (2002), Lu and Gatsonis (2013) and Hooper et al.
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(2013). Examples of DRCT designs in practice can be found in De Graaff et al.

(2003), Bogaerts et al. (2006), and also in the evaluation of approaches to screening

for cancer, such as the PLCO Cancer Screening Trial (Prorok et al., 2000) and the

National Lung Screening Trial (Gatsonis et al., 2011).

A basic DRCT design is the two-arm design (Lu and Gatsonis, 2013) shown in Fig-

ure 3.1. This design comprises two stages, namely the testing stage and the thera-

peutic intervention stage. In the first stage, patients are randomized to one of two

diagnostic tests, and patients are then assigned to a therapeutic intervention in the

second stage according to the test outcome. Unlike a typical diagnostic test accuracy

study where the test result is compared against the “gold” standard reference test,

carrying out the reference test is not necessary in a DRCT to meet the objective of

comparing the effectiveness of two tests. However considering the resources required

to conduct a DRCT, it is reasonable to assume that both the diagnostic tests and

therapeutic interventions under study have been shown to provide promising results,

or are standard of care approaches. In a variation to the two-arm DRCT, one of the

arms can be designated as the control arm. In the control arm, all patients are either

assigned one of the treatments, or randomized based on a known random allocation to

different treatments. Such a design is also known as a marker-based strategy design,

and it can be used for direct assessment of clinical usefulness of prognostic factors

(Sargent et al., 2005).

The commonly used approach for statistical analysis of a two-arm DRCT is the inten-

tion to treat (ITT) approach. Randomization allows an investigator to make causal

statements regarding the effect of a test strategy on patient outcomes. However even

for a well designed and executed trial, it is likely that some patients may change their

prescribed intervention after consultation with their health care provider, or choose

not to follow the assigned intervention, thus introducing selection bias. In the pres-
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ence of noncompliance, ITT analysis will only estimate the effect of randomization,

not the causal effect of one treatment strategy compared to the other on patient out-

comes. It has been shown that ITT analysis tends to bias the treatment effect towards

the null (White, 2005). In screening trials, which typically have large sample size and

low disease prevalence, even a small proportion of noncompliers will suffice in leading

to inaccurate or even misleading estimates of screening exam efficacy (Gareen, 2007).

In order to estimate efficacy of treatment strategies when noncompliance is present,

ITT analysis is unsuitable. Modern methods in causal inference have been used to

address noncompliance in typical randomized clinical trials. Randomization-based

efficacy estimators (White, 2005), or the instrumental variable approach (Imbens and

Angrist, 1994, Angrist et al., 1996, Frangakis and Rubin, 2002), have been used to

estimate the complier average causal effect or local average treatment effect. More

sophisticated methods like the family of “g-methods” of Robins and his co-workers are

also available to handle generalized treatment regimes g under complex longitudinal

settings with time-varying treatments (Robins, 1986, 1987, 1989, 1992, 1994, 2000).

One such method is the Structural Nested Mean Model (SNMM), which has been

used for compliance adjustment in randomized studies as described in Robins (1994,

1998), Robins and Rotnitzky (2004), Vansteelandt and Goetghebeur (2003). The

use of SNMM for compliance analysis under the scenario of exposure measurement

errors was also examined by Goetghebeur and Stijn (2005). A good overview of the

structural models is given in Vansteelandt and Joffe (2014).

In this chapter, we address the estimation of the causal effect of a test strategy on

patient outcomes in the presence of noncompliance in a DRCT, i.e. the causal ques-

tion of what would have been observed had, contrary to fact, all subjects remained on

protocol. For the purpose of this study, we first focus on the two-arm design shown

in Figure 3.1, and develop the approach to address the problem. We assume here
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that noncompliance occurs in both stages of the 2-arm design, and the type of non-

compliance actions considered here is switching of tests or therapeutic interventions.

The performance of the causal estimates will be evaluated using various simulation

scenarios. Based on this approach, we then extend it to a discordant pair design,

Figure 3.3. The approach described here will be applied to a subset of the National

Lung Screening Trial data (Aberle et al., 2011) to illustrate its use in estimating the

causal effect of the test strategy in a DRCT design.

3.2 National Lung Screening Trial (NLST)

The NLST is a randomized multicenter study comparing low dose helical computed

tomography (LDCT) with chest radiography (CXR) in the screening of current and

former heavy smokers for early detection of lung cancer. The 53,454 participants

enrolled were 55 to 74 years old, and had a history of at least 30 pack-years of smok-

ing. Participants were randomly assigned to undergo annual screening using either

LDCT (26,722 participants) or CXR (26,732 participants) for 3 years. The primary

endpoint of the study was lung cancer mortality. At each screening examination,

participants with positive screening results received follow-up recommendations for

diagnostic evaluation, and information on the diagnostic evaluation performed was

collected. A strict algorithm was applied to ascertain whether lung cancer was present

at the time of screening. This algorithm was described in the supplementary appendix

of Church et al. (2013). An endpoint verification process was used to verify deaths

from lung cancer. The estimated sensitivity and specificity of the different modalities

were 93.8% and 73.4% for LDCT, and 73.5% and 91.3% for CXR, respectively. Ac-

tual screening compliance at each of the three scheduled screens ranged from 98.5%

to 92.9% in the LDCT arm, and 97.5% to 89.5% in the CXR arm. The compliance

with diagnostic evaluation following a positive screen was not reported. The reported
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median duration of follow-up was 6.5 years, and the maximum duration was 7.4 years

in each group. Aberle et al. (2011) reported a relative reduction in mortality rate

from lung cancer with LDCT screening of 20% (95% CI, 6.8 to 26.7; P = 0.004) at

the completion of the study.

3.3 Notation

We will use the potential outcome framework for causal inference (Rubin, 1974) in

the analysis. In this framework, let Y a denote the potential outcome of a patient

that would have been observed if the patient had received treatment a. Following the

convention in statistics, upper case letters refer to random variables and lower case

letters refer to the values realized by the random variables. For a dichotomous treat-

ment, all patients will have 2 potential outcomes each, namely Y 0 and Y 1. However

only one of the potential outcomes can be observed for each patient, and this problem

is also known as the fundamental problem of causal inference (Holland, 1986). The

observed outcome is denoted as Y . The causal effects are then defined as comparisons

of potential outcomes Y 1 and Y 0 for the same patient. At a population level, the

average causal effect is then defined as the expected value of the difference in poten-

tial outcomes over the population of interest, i.e. E[Y 1−Y 0] when Y is a continuous

outcome.

With time varying or sequential treatments, we assume that measurements are col-

lected at fixed time points t0, t1, . . . , tK . Let Lm and Am denote respectively the auxil-

iary covariates measured and treatment received at time tm form = 0, . . . , K, and not

defined at t−1. We further assume that at a particular time point, tm, the variables

are ordered temporally such that auxiliary covariate measurements (Lm) will precede

treatment (Am). We use overbar to denote the history of a variable, and underbar for
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the future of a variable. As an example, the history of variable X up to time point tm

is X̄m = {X0, X1, . . . , Xm} for time points m = 0, . . . , K, and the entire history of X

is represented when subscript is omitted, i.e. X̄ = {X0, X1, . . . , XK}. Similarly, the

future of X from tm onward is
¯
Xm = {Xm, Xm+1, . . . , XK} for m = 0, . . . , K. In the

time varying or sequential treatments scenarios, the potential outcomes are denoted

by Y ā where ā = {a0, a1, . . . , aK}. For ease of notation, the potential outcome with

treatments set at 0 from time tm onward Y ām−1,
¯
am=0 will be written as Y ām−1,

¯
0 in the

rest of the chapter.

The notation used in the two-arm DRCT design is shown in Figure 3.1. In the first

stage, patients are randomized to one of two diagnostic tests (Z = 0 or 1), and the

actual test performed on the patient is A0. If patients adhere to the test assignment,

then A0 = Z. The test outcome (L1) based on test A0 is assumed to be binary,

with values of 1 or 0. Typically in a diagnostic test, 1 is used to denote a “positive”

test result (target condition present), and 0 to denote a “negative” test result (target

condition absent). In the rest of the chapter, we will use the shorthand disease/non-

disease to denote the presence/absence of the target condition. True binary disease

status is D, with 1 being diseased and 0 being non-diseased. We will first assume

that the target condition is ascertained, and then the case when the target condition

is not ascertained is considered in Section 3.6. Therapeutic interventions are coded

as 0 or 1, and patients are assigned to one of them based on the outcome of the

test. Assuming that therapeutic intervention 1 is a more aggressive treatment, then

patients who are indicated by the test to be diseased will be assigned therapeutic

intervention 1, and 0 otherwise. By this design, the test outcome is indicative of

therapeutic intervention assignment, and hence there is no further need to define a

new variable for therapeutic intervention assignment. Intervention actually received

by the patient is A1, and under full compliance of intervention assignment, A1 = L1.

We further denote patient outcome as Y , and the effect of a test strategy is essentially
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a form of aggregation of the patient outcomes under the assigned test arm.

Figure 3.1: DRCT two-arm design

The connections between the notation in the two-arm DRCT design and the nota-

tion for potential outcomes in sequential treatments can be made when one considers

K = 1, i.e. there are only two time points, t0 and t1, in the sequential treatments’

notation. The auxiliary covariates at t0 that constitute L0 are Z and D in the two-arm

DRCT design. At t1, L1 is the only auxiliary covariate in both the notation for DRCT

and sequential treatments. The sequential treatments A0 and A1 are respectively test

received, and therapeutic intervention received in the DRCT. Y a0,a1 will then de-

note the potential outcome that would be seen were the patient to receive test a0,

and therapeutic intervention a1. For dichotomous test and therapeutic intervention

options, each patient will have four potential outcomes. Recall that in the DRCT

scenario that we are considering here, the patient’s therapeutic intervention is based

on the test received, and the corresponding test outcome. Therapeutic intervention

is not intervened independently of the test. To avoid confusion with the conventional

notion in potential outcome framework that treatment interventions can be manip-

ulated independently, we use Y a0,a1=L1(a0) to remind ourselves that the therapeutic
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intervention is based on the test, and the corresponding test outcome. Although the

potential outcomes can also be represented as Y a0 under full compliance to therapeu-

tic intervention assignment made by the test result, we feel that this notation does

not convey the information that the effect of the test is mediated by the therapeutic

intervention received.

Thus in this analysis, the causal estimand that we are interested in for a continuous

Y is represented by

∆ = E
[
Y a0=1,a1=L1(a0=1) − Y a0=0,a1=L1(a0=0)

]

3.4 Structural Nested Mean Model (SNMM)

In the two-arm DRCT design, patients are effectively randomized twice when the

tests are not perfect. The first randomization occurs at the test assignment phase

with known probability of assignment as defined in the trial design, i.e. a marginal

randomization process. The second randomization is a conditional randomization

that occurs with the result of the test. The test outcome can be viewed as a random-

ization process conditioned on the disease status of the patient. Diseased patients are

allocated to test outcome L1 = 1 with probability equal to the test sensitivity, and

outcome L1 = 0 with probability of 1 − sensitivity. Likewise, non-diseased patients

are randomized to L1 = 0 and L1 = 1 with probability equal to the test specificity and

1− specificity, respectively. From this vantage point, the two-arm DRCT design has

strong resemblance to a sequential randomization trial, and this provides a starting

point for addressing the question in this chapter.

In a Structural Nested Mean Model (Robins, 1994), the effect of a treatment at tm

on the subsequent outcome mean when holding all future treatments fixed at their

83



reference level 0 is

E[Y ām−1,am,
¯
0 − Y ām−1,

¯
0|L̄m = ℓ̄m, Ām = ām] = γm(ℓ̄m, ām;ψ) = AmX

Tψ

By convention, the parameterization of γm(ℓ̄m, ām;ψ) is such that γm(ℓ̄m, ām; 0) = 0

represents the case of no treatment effect. It is further assumed here that the effect is

linear in ψ, and X is the covariate vector consisting of L̄m and Ām−1. The following

assumptions are needed for estimation:

1. Stable unit treatment value assumption (SUTVA) (Rubin, 1980). SUTVA is the

apriori assumption that the value of Y for patient i when exposed to treatment

a will be the same regardless of the mechanism used to assign the treatment,

and regardless of the treatments other patients received.

2. Consistency. For a given patient with treatment history Ā, then Y ā=Ā = Y for

that patient.

3. Sequential ignorability: Am ⊥⊥ Y ām−1,
¯
0|L̄m, Ām−1 = ām−1 for m = 0, . . . , K.

This assumption implies that at each time tm, the observed history of covariates

Lm and treatments Am−1 includes all risk factors of Am that are associated

with the outcome, which has all future treatments from tm onward held at the

reference level 0.

We further define

Hm(ψ) = Y −
K∑
l=m

γl(ℓ̄l, āl;ψ)

such that the expectation ofHm(ψ) equals the expected outcome that would have been

observed if treatments were suspended from tm onward, i.e. E[Hm(ψ)|L̄m, Ām−1] =

E[Y ām−1,
¯
0|L̄m, Ām−1] (See Appendix 3.A for the derivation).

From the sequential ignorability assumption, an estimator for ψ can be obtained by
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solving the estimating equations

n∑
i=1

K∑
m=0

(υi,m − E[υi,m|L̄i,m, Āi,m−1]
) (
Hi,m − E[Hi,m|L̄i,m, Āi,m−1]

)
Υi,m

(
Hi,m − E[Hi,m|L̄i,m, Āi,m−1]

)
 =

0

0



where

E[Hi,m|L̄i,m, Āi,m−1] = ΥT
i,mξ

υi,m(L̄i,m, Āi,m) = E

[
∂Hi,m(ψ)

∂ψ

∣∣∣∣ L̄i,m, Āi,m]

for n patients in the study. In the above formulation, E[Hi,m|L̄i,m, Āi,m−1] is linear

in ξ, and Υi,m is a vector of covariates for subject i at tm. When the previous

outcome is included in the confounder history, and the conditional variance of Hi,m

given L̄i,m, Āi,m is constant, local semiparametric efficiency is attained using the above

definition for υi,m (Vansteelandt and Joffe, 2014). This estimator also has the property

of being doubly robust, in the sense that as long as at least one of the specified models

for E[Am|L̄m, Ām−1] or E[Hm|L̄m, Ām−1] is correct, the first row of the estimating

equation has mean 0 at ψ̂ = ψ. Solving these estimating equations result in the

following expression for the estimators of ψ and ξ:

ψ̂
ξ̂

 =


n∑
i=1

K∑
m=0

(Ai,m − E[Ai,m|L̄i,m, Āi,m−1])Xi,m

Υi,m

[∑1
j=mAi,jX

T
i,j ΥT

i,m

]
−1


N∑
i=1

K∑
m=0

Yi

(Ai,m − E[Ai,m|L̄i,m, Āi,m−1])Xi,m

Υi,m




Variance of the estimators can be estimated using bootstrap samples. With the esti-
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mator ψ̂, the estimate for E[Y ā] can then be obtained using a Monte Carlo algorithm

to capture the dynamic nature of the assignment process.

So far we have used the identity link SNMM. More generally, the SNMM can be

written as g{E[Y ām−1,am,
¯
0|L̄m = ℓm, Ām = ām]}−g{E[Y ām−1,

¯
0|L̄m = ℓm, Ām = ām]} =

γm(ℓ̄m, ām;ψ), where g(·) is a known link function like identity, log, logit, or probit.

Unlike additive and multiplicative structural mean models for continuous and count

outcomes, solving logit or probit link SNMM for a dichotomous outcome is known to

be problematic, and it has been shown that no unbiased estimating equations exist

(Robins and Rotnitzky, 2004). When the outcome is dichotomous, the log link or

identity link functions can possibly be used, but keeping in mind that these models

will not guarantee that the predicted response probabilities are within the interval of

[0, 1].

3.5 Simulation

3.5.1 Setup & Analysis

In this section, we describe the scenarios used to simulate a two-arm DRCT design as

shown in Figure 3.1. The two hypothetical tests considered are Test 1 vs. Test 0, fol-

lowed by the appropriate therapeutic interventions, which in this case are Treatment

1 if tested positive, or Treatment 0 if tested negative.

Disease status is assumed to be the only confounder, and no other covariates are

simulated here for simplicity. Baseline covariate L0 consists of only D and Z, where

D is the disease status, Z is the test assignment, and the only measurement at t1 is

L1, the test outcome. A0 is the actual test received and A1 is the actual therapeutic

intervention received. Y is a continuous variable representing the log survival time of
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the patient.

The specific details of the simulation are given in Appendix 3.B.1. Here, we give a brief

outline of the simulation setup. Each patient’s potential outcomes are generated from

a bivariate normal distribution with mean given by µ = E[Y a1|D] = log 5 − 0.4D −

0.1a1 + 0.6Da1, depending on the disease condition of the patient. This design also

implies no direct effect of test received (a0) on the patient’s outcome, i.e. all effects

are mediated by the therapeutic intervention.

Disease prevalence, π = Pr(D = 1), is assumed to be 0.3. Two different scenarios

are considered for the diagnostic performances of the two tests, Table 3.1. In the

first scenario, Test 1 is better in both sensitivity and specificity. This presents a

straight forward scenario where one modality is clearly better than the other in terms

of performance. For the second scenario, the sensitivity of the two tests are the

same, but the specificity of Test 1 is slightly better than Test 0. This presents a more

challenging scenario where the separation between the performance of the 2 modalities

is a lot closer. These scenarios are based on the study performed by Deserno et al.

(2004) on preoperative nodal staging of patients with urinary bladder cancer using

enhanced vs. conventional MRI. Additional scenarios are included in Table 3.9 in

Appendix 3.B.2, including the scenario that uses the diagnostic performance of the

two tests as reported by Deserno et al. (2004).

Table 3.1: Diagnostic performance scenarios

Scenario
Test 1 Test 0

Sens1 Spec1 Sens0 Spec0
1 0.96 0.95 0.86 0.89
2 0.96 0.99 0.96 0.95
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The causal effect of treatment strategy, ∆, can be computed by defining

EY a0=1,a1=L1(a0=1) = µ1Sens1π + µ2(1− Sens1)π

+ µ3(1− Spec1)(1− π) + µ4Spec1(1− π)

EY a0=0,a1=L1(a0=0) = µ1Sens0π + µ2(1− Sens0)π

+ µ3(1− Spec0)(1− π) + µ4Spec0(1− π)

where µ1 = E[Y a1=1|D = 1], µ2 = E[Y a1=0|D = 1], µ3 = E[Y a1=1|D = 0], and

µ4 = E[Y a1=0|D = 0].

Probabilities of compliance to test and treatment assignments are modeled using a

logit model, with assignment and disease condition as covariates. Compliance prob-

ability arising from this model is as high as 95% for patients who are diseased and

assigned to either Test 1 or Treatment 1, and as low as 50% for diseased patients as-

signed to either Test 0 or Treatment 0. Unless stated otherwise, 1000 simulations were

performed with each simulation involving 1000 bootstrap iterations and n = 10000

simulated patients. Coverage is ascertained using the bootstrap percentile intervals

method.

In this two-arm DRCT design, the index for the time points are m = 0, 1 with K = 1.

For the analysis, models for γm(D, Ām;ψ), E[Hm(ψ)|L̄m, Ām−1], and E[Am|L̄m, Ām−1]

are specified as shown in Appendix 3.B.2. Estimation of E[Y a0,a1=L1(a0)] is obtained

via Monte Carlo simulation for a0 = {0, 1}. Estimates for the variance of ∆̂, i.e. σ̂2
∆̂
,

is obtained from the bootstrap samples.

For dichotomous outcome (5-year mortality risk), the corresponding causal estimand

of interest is

∆bin =
E[Y

a0=1,a1=L1(a0=1)
bin ]

E[Y
a0=0,a1=L1(a0=0)
bin ]

We use the same simulation setup as before, and define the dichotomous outcome as
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Ybin = 1 if Y ≤ log 5 and Ybin = 0 otherwise. The identity link SNMM is used to

estimate E[Y a0=1,a1=L1(a0=1)] and E[Y a0=0,a1=L1(a0=0)]. An alternative approach is to

use log link SNMM (Picciotto et al., 2012). The implementation details for log link

SNMM, and its simulation results are included in Appendix 3.C.

3.5.2 Results

The results from the simulation for continuous outcome are given in Table 3.2. Results

based on the ITT approach are also included for comparison purposes.

Table 3.2: Results from simulation scenarios. Bias = ∆̂ − ∆, “MSE” is the mean
squared error, and “Cvg” refers to the coverage of the 95% Confidence Interval.

SNMM ITT

SN ∆ ∆̂SNMM Bias MSE Cvg ∆̂ITT Bias MSE Cvg
1 0.0192 0.0191 -0.0001 0.0001 0.954 0.0048 -0.0144 0.0002 0.213
2 0.0028 0.0025 -0.0003 0.0001 0.953 0.0015 -0.0013 0.0001 0.936

As expected, the presence of noncompliance leads to biased estimates when using

the ITT approach, but the estimates from SNMM remain unbiased and have smaller

MSE with reasonable 95% Confidence Interval coverage. The coverage of the ITT’s

95% Confidence Interval in Scenario 1 is very poor (21.3%). However when the actual

causal effect is close to null (Scenario 2), ITT’s coverage recovered to a reasonable

level.

Table 3.3: Results from simulation scenarios. Bias = ∆̂bin−∆bin, “MSE” is the mean
squared error, and “Cvg” refers to the coverage of the 95% Confidence Interval.

SNMM ITT

SN ∆bin ∆̂SNMM Bias MSE Cvg ∆̂ITT Bias MSE Cvg
1 0.9421 0.9410 -0.0011 0.0016 0.933 0.9880 0.0459 0.0023 0.111
2 0.9883 0.9903 0.0021 0.0021 0.927 0.9928 0.0046 0.0001 1.000

For the simulation scenarios with binary outcomes, the results are tabulated in Ta-

ble 3.3. Similar to the previous scenarios, the estimates from SNMM are unbiased
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while those from ITT are biased towards the null. The SNMM’s coverage of the 95%

Confidence Interval remains reasonable for the binary outcome cases. In contrast, the

ITT’s coverage degrades rapidly when the true effect moves further away from the

null.

As mentioned in the previous section, results for the alternative log link SNMM

scenarios are given in Appendix 3.C.

3.6 Disease Condition Not Ascertained in Study

In this section, we consider the situation when the DRCT study did not perform

“gold” standard reference test to ascertain the disease condition D. As we have seen

so far, D is an important confounder and it is needed to provide an unbiased causal

estimate. To address this, we propose a multiple imputation procedure to impute

the missing disease condition based on the posterior distribution of D. We use the

same simulation scenario described in Section 3.5.1, but with disease condition (D)

not ascertained, to assess the performance of this multiple imputation procedure.

The approach to this problem is to make use of the test outcome, L1, which is a

measure of the patient’s disease status, but with an error or misclassification rate

determined by the accuracy of the test. Similar to Ogburn and VanderWeele (2012),

we assume that L1 ⊥⊥ A1, Y
a0,a1|D,A0. One could then impute the missing disease

status based on an appropriate imputation model. While test accuracies are assumed

to be known in the model below, suitable priors can be incorporated to allow for

estimated test accuracies. C0 and C1 are the compliance indicators at the test and

therapeutic intervention stages respectively, as defined in Appendix 3.B.1.

The imputation approach is based on the posterior distribution of D given the ob-
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served variables,

p(D|Y,A1, C1, L1, A0, C0, Z) ∝ p(Y |A1, D)p(C1|L1, D)p(L1|A0, D)p(C0|Z,D)p(D)

Yi|Ai,1, D ∼ N(µyi , σ
2
y)

µyi = β1 + β2Ai,1 + β3Di + β4Ai,1Di

Ci,1|L1, D ∼ Bernoulli(µci,1)

logit(µci,1) = α1 + α2Di + α3Li,1 + α4DiLi,1

Li,1|A0, D ∼ Bernoulli(µli)

µli = (1− Ai,0){Sens0Di + (1− Spec0)(1−Di)}

+ Ai,0{Sens1Di + (1− Spec1) ∗ (1−Di)}

Ci,0|Z,D ∼ Bernoulli(µci,0)

logit(µci,0) = α1 + α2Di + α3Zi + α4DiZi

Di ∼ Bernoulli(µd)

Priors specified are

µd ∼ Unif(0, 1), σy ∼ Unif(0, 5)

α1 ∼ N(0, 1002), α2 ∼ N(0, 1002), α3 ∼ N(0, 1002), α4 ∼ N(0, 1002)

β1 ∼ N(0, 1002), β2 ∼ N(0, 1002), β3 ∼ N(0, 1002), β4 ∼ N(0, 1002)

The procedure that will provide unbiased estimate and with appropriate coverage is

illustrated in Figure 3.2. Coverage is assessed using bootstrap percentile intervals.

The posterior distributions of the parameters for a typical simulation sample are sum-

marized in Table 3.4 for the scenario where Sens1 = 0.96, Spec1 = 0.95, Sens0 = 0.86,
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Figure 3.2: Flow chart for multiple imputation procedure

and Spec0 = 0.89. From the simulations, the estimate from SNMM for this scenario is

0.0202, and the corresponding bias and MSE are 0.001 and 0.0001 respectively. The

coverage attained is 0.93. The performance of ITT for this scenario will be similar

to the results shown in Table 3.2. The results are based on 100 simulation iterations

(niter), of which each iteration involves 200 bootstrap samples (nB), and 10 multiple

imputation sets within each bootstrap sample.
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Table 3.4: Summary Statistics for Posterior Distributions in the Bayesian approach

Actual Lower95 Median Upper95 Mean SD psrf
µd 0.300 0.291 0.302 0.311 0.302 0.005 1.000
σy 0.200 0.198 0.201 0.204 0.201 0.002 1.001
α1 1.700 1.602 1.658 1.713 1.658 0.028 1.002
α2 -1.700 -1.726 -1.603 -1.481 -1.603 0.063 1.003
α3 0.400 0.279 0.410 0.535 0.410 0.066 1.002
α4 -2.500 -2.709 -2.507 -2.295 -2.507 0.106 1.004
β1 1.609 1.604 1.610 1.615 1.610 0.003 1.001
β2 -0.100 -0.112 -0.100 -0.087 -0.100 0.006 1.001
β3 -0.400 -0.410 -0.400 -0.390 -0.400 0.005 1.001
β4 0.600 0.562 0.592 0.625 0.592 0.016 1.001

3.7 Extension to Discordant Pair Design

From a statistical perspective, a more efficient DRCT design is the discordant pair

design (Lu and Gatsonis, 2013). This is the design adopted in the MINDACT trial

(Bogaerts et al., 2006). In the discordant pair design, Figure 3.3, all patients undergo

both tests, i.e. A0 = 0 and A0 = 1. When the results of both tests agree, the patient

undergoes Treatment 1 (A1 = 1) if the tests are positive (L1 = 1 for both tests), or

Treatment 0 (A1 = 0) if the tests are negative (L1 = 0 for both tests). If the results

disagree, the patient is randomized to follow the result of either Test 1 or 0.

With full compliance to the test and treatment assignments, the causal estimate of

the effect of one test strategy versus another, ∆, can be obtained by ∆ = ∆discf ,

where ∆disc is the difference in effect between those who followed Test 1 vs. those

who followed Test 0 in the discordant population, and f = Pr(discordant) is the

discordant rate.

Under the discordant design, every patient will undergo both tests and full compliance

is assumed at the test assignment/receipt stage. We assume that noncompliance

occurs only in the therapeutic intervention (treatment) assignment/receipt stage. The

objective of the analysis is still to estimate ∆, the causal effect of treatment strategy
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Figure 3.3: DRCT discordant design

based on test A0 = 1 versus test A0 = 0.

The simulation setup from the previous section is used for the discordant pair design.

In this simulation, we consider the scenarios where outcome Y is continuous. We

further assume for the simulation that the patients are blinded to the results of both

tests, and are only informed of the therapeutic intervention assignment. In this case,

the SNMM approach for the discordant pair design is then reduced to the simpler

case of estimating the effect under different strata of A0 separately. Instead of the

two stages considered in the 2-arm design, the discordant design will only require

modeling of a single stage, which is the therapeutic intervention assignment/receipt

stage.

The results from the simulation of the discordant design, based on similar simulation

set-up as in the 2-arm design, are given in Table 3.5. Here we observe that the

performance of SNMM is better than in the 2-arm design (Table 3.2). This is likely

due to the fact that only a single stage of noncompliance adjustment is required in

the discordant pair design. Similar to the two-arm design, the performance of the

ITT estimate is worse when the true effect is away from the null.
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Table 3.5: Results from simulation scenarios for discordant pair design. Bias = ∆̂−∆,
“MSE” is the mean squared error, and “Cvg” refers to the coverage of the 95%
Confidence Interval. Note that MSE=0.0000 refers to < 1× 10−4.

SNMM ITT

SN ∆bin ∆̂SNMM Bias MSE Cvg ∆̂ITT Bias MSE Cvg
1 0.0192 0.0192 0.0000 0.0000 0.945 -0.0026 -0.0218 0.0005 0.000
2 0.0028 0.0028 0.0000 0.0000 0.945 0.0021 -0.0007 0.0000 0.915

3.8 Illustrative Example

In this section, we apply the approach for the two-arm DRCT described in this chapter

to the NLST data, as described earlier in Section 3.2. We will only use data from

the first screen and ignore the subsequent screens. In this way, the NLST design

resembles that of a two-arm DRCT design. Since disease conditions of the patients

prior to the baseline screen were ascertained in the NLST data, disease condition is

included as one of the baseline covariates in the SNMM.

Data from a subset of the NLST participants were extracted, and used for the anal-

ysis here. This subset consists of 18314 participants from the ACRIN Centers that

participated in this study. The summary statistics for this subset are tabulated in

Table 3.6.

Table 3.6: Summary statistics based on subset of 18314 participants, and actual test
received.

Modality Sensitivity Specificity Prevalence 5-year Mortality
CXR 0.697 0.922 0.008 0.0453
LDCT 0.908 0.770 0.012 0.0417

For the purpose of this illustrative example, compliance to test assignment is de-

fined as following randomization assignment to either LDCT or CXR. Compliance

to therapeutic intervention is defined as following recommended guidelines according

to test result, as reported by participants during follow-up over a period of one year

from screening date. For participants with positive screening results, compliance to
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therapeutic intervention refers to adhering to follow-up recommendations for diag-

nostic evaluation while noncompliance refers to not pursuing any follow-ups related

to lung cancer. On the other hand, compliance to therapeutic intervention for partic-

ipants with negative screening results refers to not pursuing any follow-ups related to

lung cancer. Follow-up recommendations for diagnostic evaluation can entail multiple

versions of treatment. For the intent and purpose here, we assume treatment varia-

tion irrelevance (VanderWeele, 2009) for the follow-up treatments on lung cancer, i.e.

the different versions of treatment have the same effect. Among participants who had

lung cancer at screening, compliance to test and therapeutic intervention assignments

based on the definitions used in this example were 100% and 50.3% respectively. For

the remaining participants, compliance to test and therapeutic intervention assign-

ments were 99.8% and 82.7% respectively.

In this example, we are interested in estimating the causal effect of a test strategy

based on LDCT on patient outcome (5-year mortality from lung cancer) if, contrary

to fact, all subjects had remained on protocol. In mathematical notation, this causal

effect is defined as ∆bin = E[Y
a0=1,a1=L1(a0=1)
bin ]/E[Y

a0=0,a1=L1(a0=0)
bin ]. Using the models

described in Appendix 3.B.2 for the two-arm DRCT, the estimates and corresponding

95% Confidence Interval based on SNMM approach with 100000 bootstrap iterations

are given in Table 3.7. For comparison purposes, the results from ITT and PP (Per

Protocol) analyses are also included in the table. In the PP analysis, only participants

who complied with both test and therapeutic intervention assignments are included.

Table 3.7: Analyses results for the causal estimate of the relative risk of 5-year mor-
tality for a test strategy based on LDCT.

Methods ∆̂ 95% CI
SNMM 0.794 [0.566, 1.108]
ITT 0.923 [0.801, 1.057]
PP 0.948 [0.812, 1.108]

In the presence of noncompliance, the ITT estimator is an estimate of the effect of
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randomization while the PP estimator is relevant to a subpopulation that cannot be

identified a priori. From the behavior of the ITT estimator observed in the simulation,

the estimate is likely to be biased towards the null, and the coverage of the 95%

Confidence Interval is likely to be very poor. The PP estimator is also a known biased

estimator of the causal estimand of interest, and here it showed an effect even closer to

the null. On the other hand, the SNMM estimator shows a stronger effect in the LDCT

strategy compared to CXR strategy. This result is not unreasonable considering that

the final reported result based on the entire study population of 53,454 participants

was a relative reduction in mortality rate of 20% (Aberle et al., 2011). The estimate

from SNMM is also consistent with the findings from the systematic review reported in

Humphrey et al. (2013). While the SNMM has a lower point estimate for the relative

risk, the SNMM’s confidence interval is wider than the other 2 approaches. The wider

confidence interval is expected considering the uncertainty involved in estimating the

potential outcomes. The confidence interval for SNMM is computed using bootstrap

percentile intervals method. More accurate bootstrap confidence intervals, as well

as larger bootstrap samples, can also be used to improve the confidence interval

estimation.

3.9 Discussion

In this chapter, we set out to address the question of obtaining a causal estimate

in a DRCT design when noncompliance is present, i.e. the causal question of what

would have been observed had, contrary to fact, all subjects remained on protocol.

The insight obtained from noting that the test is in effect a conditional randomizer,

allowed us to use methods from the sequential randomization literature, specifically

SNMM. The SNMM methodology has the flexibility to be adapted to the different

DRCT designs that exist in the literature today. In this chapter, we have laid out
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the general approach for using SNMM in a two-arm design, and in a discordant pair

design. Through simulations, we have established the viability of SNMM in providing

an unbiased estimate of the causal estimand of interest in DRCT designs under a set

of assumptions. While this has provided the statistician with a tool to potentially

overcome noncompliance in DRCT, it does not replace the need to have good clinical

trial planning, and execution. The simulations also highlighted the deficiencies in the

commonly used ITT approach in the presence of noncompliance in DRCT studies.

Not only were the ITT estimates biased, the 95% Confidence Interval coverage was

found to be as low as 11.1%.

As in most causal inference problems, the untestable assumption of ignorability re-

quires great care and subject matter knowledge. Sensitivity analysis should be per-

formed to determine how sensitive the analyses are to unmeasured confounder. Major

limitations of the SNMM are the difficulties associated with logit SNMM, and the

computationally intensive process for SNMM that are not based on a linear model

with identity link.

Various extensions to the current work would be important to pursue. The two-

arm DRCT design can be extended to include multiple stages, similar to the design

used in the NLST. However in this case, one would need to consider the effects of

prior tests and therapeutic interventions on later tests and interventions. When trials

are conducted over a prolonged period of time, one would also need to consider the

possibility that disease condition may change over time, and account for such a time

varying confounder in SNMM. When the patient outcome of interest is quality of

life related, then one can no longer make the assumption that the test has no direct

effect on the patient’s outcome as it may have an effect on the patient’s perceived

state of well-being. Similarly if the test is a prognostic/predictive biomarker, direct

effect should be included. Last but not least, we have assumed in the discordant pair
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design that patients are blinded to the results from both tests. This assumption can

be relaxed to allow generalizability.

The emphasis on patient centered outcomes research in recent years has expanded

the scope of the study of diagnostic tests to include the impact on subsequent care

and patient outcomes. However, the practical challenges in carrying out randomized

studies of diagnostic tests in this context and the emphasis on real world settings have

made evaluation of diagnostic tests using observational data increasingly attractive.

There is a strong similarity in the analytical approach between observational data

and randomized trial with noncompliance. The results from this study will therefore

contribute to the evaluation of diagnostic tests using observational data, and the

needs of comparative effectiveness research.

3.A Derivation of E[Hm(ψ)|L̄m, Ām−1]

Without loss of generality, assume that K = 1, then

H1(ψ) = Y − γ1(ℓ̄1, ā1;ψ)

E[H1(ψ)|L̄1, Ā1] = E[Y |L̄1, Ā1]− γ1(ℓ̄1, ā1;ψ)

= E[Y ā|L̄1, Ā1]− γ1(ℓ̄1, ā1;ψ)

= E[Y a0,0|L̄1, Ā1]

= E[Y a0,0|L̄1, A0]

= E[H1(ψ)|L̄1, A0]
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H0(ψ) = Y − γ1(ℓ̄1, ā1;ψ)− γ0(ℓ0, a0;ψ)

E[H0(ψ)|L0, A0] = E[Y − γ1(ℓ̄1, ā1;ψ)− γ0(ℓ0, a0;ψ)|L0, A0]

= E[Y − γ1(ℓ̄1, ā1;ψ)|L0, A0]− γ0(ℓ0, a0;ψ)

= E
[
E[Y − γ1(ℓ̄1, ā1;ψ)|L̄1, Ā1]|L0, A0

]
− γ0(ℓ0, a0;ψ)

= E[Y a0,0|L0, A0]− γ0(ℓ0, a0;ψ)

= E[Y 0,0|L0, A0]

= E[Y 0,0|L0]

= E[H0(ψ)|L0]
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3.B Main Simulation

3.B.1 Setup

Specific details for the simulation are as follows:

• Patient’s potential outcomes, E[Y a1 |D] = log 5 − 2σD − 0.5σa1 + 3σDa1 with

σ = 0.2. Here we have assumed that test has no direct effect on the outcome.

Outcomes are simulated as bivariate normal given disease condition with means,

µD =

µ1

µ2

 =

E[Y a1=1|D = 1]

E[Y a1=0|D = 1]

 =

1.71

1.21


and

µD̄ =

µ3

µ4

 =

E[Y a1=1|D = 0]

E[Y a1=0|D = 0]

 =

1.51

1.61


and covariance matrices

ΣD =

 σ2 −0.5σ2

−0.5σ2 σ2



ΣD̄ =

 σ2 0.8σ2

0.8σ2 σ2


• Probability of Disease: π = Pr(D = 1) = 0.3

• Causal Effect of Strategies, ∆ = EY a0=1,a1=L1(a0=1) −EY a0=0,a1=L1(a0=0), where

EY 1,ℓ1 = µ1Sens1π + µ2(1− Sens1)π + µ3(1− Spec1)(1− π) + µ4Spec1(1− π)

EY 0,ℓ1 = µ1Sens0π + µ2(1− Sens0)π + µ3(1− Spec0)(1− π) + µ4Spec0(1− π)
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• The models for probability of compliance are:

logit[Pr(C0 = 1|D,Z)] = 1.7− 1.7D + 0.4Z + 2.5ZD

logit[Pr(C1 = 1|D,L1)] = 1.7− 1.7D + 0.4L1 + 2.5L1D

The above model will result in the compliance distribution shown in Table 3.8.

Table 3.8: Simulated compliance distribution

Z = 0 Z = 1
D = 0 0.846 0.891
D = 1 0.5 0.948

• Number of subjects, n = 10, 000

• Number of bootstrap, B = 1000

• Number of simulations, Nsim = 1000

3.B.2 SNMM

In this two-arm DRCT design, the index for the time points are m = 0, 1 with K = 1.

The models used in the SNMM approach are described below with the subscript i for

the covariates dropped for ease of notation.

• At m = 1,

γ1(D,A1, A0;ψ) = ψ0A1 + ψ1A1D + ψ2A1A0 + ψ3A1DA0

and at m = 0,

γ0(D,A0;ψ) = ψ4A0 + ψ5A0D
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The coefficients can be written as

ψ =



ψ0

ψ1

ψ2

ψ3

ψ4

ψ5



• E[Hm|L̄m, Ām−1] = ξ0 + ξ1D + ξ2A0 + ξ3DA0 = Υξ

• E[Am|L̄m, Ām−1] are modeled using parametric models

logitPr(A0|D,Z) = ω00 + ω01D + ω02Z + ω03DZ

logitPr(A1|D,L1) = ω10 + ω11D + ω12L1 + ω13DL1

The parameters ω are estimated using maximum likelihood estimators.

• Estimation of E[Y a0,a1=L1(a0)] is obtained via Monte Carlo simulation.

1. Compute Ê[Y 0,0] = 1
n

∑n
i=1{Y −

∑1
l=0 γl(ℓ̄l, āl; ψ̂)}

2. µ̂D = 1
n

∑n
i=1Di

3. logit(pℓ1) = ωl1,0 + ωl1,1D + ωl1,2A0 + ωl1,3DA0

4. For iterations v = 1, . . . , V and a0,

(a) Draw dv from Bernoulli(µ̂D)

(b) Set av,0 = a0

(c) Draw ℓv,1 from Bernoulli(pℓ1 ; dv, av,0)

(d) Set av,1 = ℓv,1
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(e) δ̂v = Ê[Y 0,0] +
∑1

l=0 γl(dv, av,0, av,1; ψ̂)

5. Ê[Y a0,a1=L1(a0)] = 1
V

∑V
v=1 δ̂v

Here we have used V = 106.

• Finally ∆̂ = Ê[Y a0=1,a1=L1(a0=1)] − Ê[Y a0=0,a1=L1(a0=0)], and estimate for the

variance of ∆̂, σ̂2
∆̂
, is obtained from B bootstrap samples.

3.B.3 Simulation results

Results from different scenarios are given in Table 3.9.

The simulation results show that under full compliance, both ITT and SNMM provide

unbiased estimates. As expected, noncompliance leads to biased estimates when using

ITT approach, but the estimates from SNMM remain unbiased and have smaller MSE

with reasonable 95% coverage.
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3.C Binary outcome

When Ybin is a binary outcome, and the objective of the analysis is to estimate the

causal estimand

∆bin =
E[Y

a0=1,a1=L1(a0=1)
bin ]

E[Y
a0=0,a1=L1(a0=0)
bin ]

had, contrary to fact, all subjects remained on protocol, then the SNMM can be

defined as

E[Y
ām,

¯
0

bin |L̄m = ℓ̄m, Ām = ām]

E[Y
ām−1,

¯
0

bin |L̄m = ℓ̄m, Ām = ām]
= exp{γm(ℓ̄m, ām;ψ)}

Defining Hm(ψ) = Ybin exp
{
−
∑K

l=m γl(L̄l, Āl;ψ)
}
, then

⇒ E[Hm(ψ)|L̄m = ℓ̄m, Ām = ām] = E[Ybin|L̄m = ℓ̄m, Ām = ām] exp

{
−

K∑
l=m

γl(ℓ̄l, āl;ψ)

}

= E[Y
ām−1,

¯
0

bin |L̄m = ℓ̄m, Ām = ām]

For the 2-arm DRCT design that we are considering, the estimating equation for each

individual i is

Ui(ψ, ξ; Υ, J) =∑1
m=0(Am,i−E[Am,i|Ām−1,i,L̄m,i;α̂m])Jm,i[Ybin,i exp{−∑1

j=m γj(L̄j,i,Āj,i;ψ)}−exp{Υm(Ām−1,i,L̄m,i;ξ)}]
∑1

m=0Qm,i[Ybin,i exp{−∑1
j=m γj(L̄j,i,Āj,i;ψ)}−exp{Υm(Ām−1,i,L̄m,i;ξ)}]



This estimating equation does not have a closed form solution, but it can be solved
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as a minimization problem.

minimize
ψ,ξ

ŨTS−1
u Ũ

subject to γ0(ψ) + γ1(ψ) + Υ0(ξ) ≤ 0

γ1(ψ) + Υ1(ξ) ≤ 0

where

Ũ =
n∑
i=1

Ui

Su =
n∑
i=1

UiU
T
i

γ1(L̄1,i, Ā1,i;ψ) = (ψ1 + ψ2Di + ψ3A0,i + ψ4DiA0,i)A1,i

γ0(L̄0,i, Ā0,i;ψ) = (ψ5 + ψ6Di)A0,i

Υ1 = Υ0 = ξ1 + ξ2Di + ξ3A0,i + ξ4DiA0,i

J1,i =

[
1 Di A0,i DiA0,i 0 0

]T
J0,i =

[
0 0 0 0 1 Di

]T
Q1,i = Q0,i =

[
1 Di A0,i DiA0,i

]T

The constraints are derived from

exp{γm(ℓ̄m, ām;ψ)} =
E[Y

am−1,
¯
am

bin |L̄m = ℓ̄m, Ām = ām]

E[Y
ām−1,

¯
0

bin |L̄m = ℓ̄m, Ām = ām]

exp{γm(ℓ̄m, ām;ψ)} ≤ 1

E[Y
ām−1,

¯
0

bin |L̄m = ℓ̄m, Ām = ām]
=

1

E[Hm(ψ)|L̄m = ℓ̄m, Ām = ām]
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at m = 1,

exp{γ1(ℓ̄1, ā1;ψ)} =
E[Y a0,a1

bin |L̄1 = ℓ̄1, Ā1 = ā1]

E[Y a0,0
bin |L̄1 = ℓ̄1, Ā1 = ā1]

γ1(ℓ̄1, ā1;ψ) + Υ1(ℓ̄1, ā1; ξ) ≤ 0

at m = 0,

exp{γ1(ℓ̄1, ā1;ψ)} exp{γ0(ℓ0, a0;ψ)} =
E[Y a0,a1

bin |L̄1 = ℓ̄1, Ā1 = ā1]

E[Y 0,0
bin |L1 = ℓ1, A1 = a1]

γ1(ℓ̄1, ā1;ψ) + γ0(ℓ0, a0;ψ) + Υ0(ℓ0, a0; ξ) ≤ 0

A consistent estimate of E[Y 0,0
bin ] can be obtained by computing

1

n

n∑
i=1

Ybin,i

1∏
m=0

exp[−γm(L̄m,i, Ām,i; ψ̂)]

and this estimate can then be used to generate other average potential outcomes using

the same Monte Carlo approach as the continuous outcome case to derive the average

causal risk ratio E[Y a0=1,a1=L1(a0=1)]/E[Y a0=0,a1=L1(a0=0)].

Simulation results for 5-year survival are shown in Table 3.10. The results are based

on 19 and 12 simulations for scenarios 1 and 2 respectively, and 500 bootstrap samples

each. The constraint optimization algorithm constrOptim in R was used.
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