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Introduction 

Adverse drug events (ADEs) are a significant challenge facing global public health. In addition to causing 

clinical harm to patients that can range from a minor headache to death, ADEs represent an economic burden 

in the form of hospital admissions, prolonged stays, and additional treatments. Although exact figures vary 

between sources, the estimated annual cost in the United States alone is $30.1 billion, where each incident can 

amount to $3,000 depending on severity1,2. Spontaneous reporting systems are valuable resources for post-

market pharmacovigilance, presenting collected reports of ADEs and medication errors that are voluntarily 

submitted by clinicians, healthcare facilities, and patients. The US Food and Drug Administration (FDA) 

adverse event reporting system (FAERS) is one such database. As with all spontaneous reporting systems, 

limitations exist for FAERS; a report for a drug and adverse effect does not necessarily demonstrate a causal 

relationship between them, and not all adverse events for a particular drug may be reported3. A recently 

curated and standardized version of FAERS has been made publicly available, called the Adverse Event Open 

Learning through Universal Standardization (AEOLUS). Using data originating in FAERS, AEOLUS provides 

standardized data and correlative statistics about drugs administered for an indication and the adverse 

outcomes4. 

While an estimated 50% of ADEs are preventable and result from a medication error, many are the result of 

other factors like genetic variations that lead to a heightened drug sensitivity. Pharmacogenomics focuses on 

the study of pharmacology in the context of genetics, aiming to develop therapies that maximize efficacy and 

minimize risk of ADEs. The Pharmacogenomics Knowledge Base (PharmGKB)5, developed by the 

Pharmacogenomics Research Network, facilitates exploring the effect of genetic variation on drug response. 

Many of the examined variants are single nucleotide polymorphisms (SNPs), which are the focus of this study, 

and SNPs associated with an increased risk of ADEs are of particular interest. The data contained within 

PharmGKB are the product of utilizing natural language processing techniques on clinical studies from 

PubMed and verification through manual curation. The vocabulary for reference SNP cluster IDs (RSIDs) and 

drugs are primarily standardized through dbSNP6 and DrugBank7. An annotation for a given variant indicates 

that a peer-reviewed article exists containing an association between a gene, drug, and disease. A Singaporean 
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study evaluated the prevalence of hospitalizations related to ADEs and observed that around 30% of ADEs 

present at admission were caused by drugs with PharmGKB annotations8.  

The role of pharmacogenomic tests in clinical practice has been expanding, with recent advances in technology 

that make genome-wide studies both economically and practically feasible. Several publications have 

demonstrated the potential clinical utility of pharmacogenomic tools, which reduced re-hospitalizations and 

lowered health care costs by 84% compared to controls9,10. Clinical applications of personalized medicine are 

partially limited by the current shortcomings of genome-wide association studies that include difficulty 

obtaining large sample sizes, particularly for minority populations11. Short of genomic testing being available 

and affordable to inform every clinical encounter, direct-to-consumer (DTC) genetic testing is an emerging 

technology that has the potential to fill the gap of available genomic data. For instance, 23andMe is a leading 

producer of DTC tests and provides consumers with their genetic information without the need for a healthcare 

professional. This information includes inherited variants associated with risk factors for conditions and 

hypersensitivities to drugs. Earlier this year, 23andMe received FDA approvals to market their tests to assess 

the genetic risk for breast cancer and for ten diseases including Parkinson’s and late-onset Alzheimer’s 

disease12. Among other limitations, however, its genetic tests do not detect all relevant mutations13. Its 

intended use is to prompt counseling from healthcare professionals rather than as a diagnostic tool, but the 

wealth of information that this accessible technology can provide may have promising utility for research 

purposes.  23andMe variant profiles for over 777 individuals are currently available at the Harvard Personal 

Genome Project (PGP)14.  

This exploratory study focused on two objectives. The first was to examine the clinical relevance of DTC 

reports through a thorough examination of the population data. This was in part achieved by obtaining clusters 

within the population using unsupervised learning methods. The secondary focus of this study was to explore 

the variants themselves, considering both locations within the genome and prevalence across DTC reports. 

While not diagnostic, 23andMe data might serve as an additional source of patient-supplied information for the 

prescription of drugs and prompt additional, clinical-grade genetic tests when necessary. In particular, co-
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occurring variants were used to discover pharmacogenomic associations that may guide future research 

directions or act as a separate resource by creating a networks of drugs and adverse events.  

 

Methods 

Exploration of PGP Patient Profiles 

PGP reports were downloadable as text files, containing data in columns corresponding to the RSID, 

chromosome, position number, and affected alleles. Less common file types like vcf and bam were converted 

to csv or txt when appropriate. When participants uploaded multiple files, the most recent report was used. In 

some cases, the most recent profiles included fewer variants than the originals, so in these situations the more 

complete upload was selected. Six participants uploaded reports from Gene for Good, and eight reports were 

generated from AncestryDNA, which were kept only if standard 23andMe profiles were not available.  

To better describe the population of reports from PGP, the contents were compared, specifically attempting to 

find subgroups within the population. The approach presented here was to form groups by population as 

defined by the 1000 Genomes Project. Allele frequencies by population for each variant were scraped from 

PharmGKB, and an individual was assigned to one of 5 aggregate and 26 individual populations by examining 

the genotypes of all variants within his/her genetic report. The aggregate populations were African (AFR), Ad 

Mixed American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS). Individual populations 

were subpopulations within the defined aggregate ones (e.g. Northern Europeans from Utah, or CEU, was a 

subpopulation of EUR). The preliminary classification model used in this study was Naive Bayes, and the 

results of this model were compared to clusters formed using principal component analysis (PCA). PCA is a 

dimensionality reduction algorithm that obtains a new set of uncorrelated values from a set of observations 

through linear transformations of the original features. The variants within genetic reports were grouped by 

chromosome, and for each chromosome, the genotypes were value encoded for all individuals and saved as a 

separate file. For selected chromosomes, clusters were presented in a scatter plot using the first two principal 

components, where the points were colored by classified populations.  
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PharmGKB: Variant-drug Associations 

Only variant-drug associations previously identified to increase the risk for ADEs were included in this study. 

The Variant and Clinical Associations file from PharmGKB included this information and referred to the type 

of association as a phenotype category. The categories were either one or combinations of the following: 

toxicity, efficacy, dosage, metabolism/PK, and other. Each variant-drug pair additionally contained a summary 

of the publication’s findings. Annotations involving RSIDs were filtered for significance, and the annotations 

were divided into those that indicated increases and decreases in the incidence of a particular event. First, only 

the toxicity associations were examined. Language patterns of the summaries were analyzed and a series of 

regular expressions were devised to obtain a vocabulary for relevant outcomes; for example, outcomes usually 

were found between the phrases “risk/severity/likelihood of” and a conditional word like “when.” Outcomes 

like “dose reduction” or “non-response” were examples of those mislabeled as toxicity. This vocabulary was 

then applied to classify toxicity annotations hidden within other categories. 

Next, the effect of genetic variation on a drug was summarized. For this study, a group of 42 drugs that treat 

mental health or psychiatric disorders was selected and obtained from Drugs.com15. Localization of ADE-

related variants was examined by first joining the Variant and Clinical Associations file with data that included 

spatial information from dbSNP. Gene maps were scraped from the Online Mendelian Inheritance in Man 

(OMIM), which contained both cytogenetic locations and positions according to the Genome Reference 

Consortium human genome (build 37 or GRCh37). Location densities were plotted for selected chromosomes 

and drugs to visualize regions in which ADE-related variants were found.  

Using PGP to Find Associated Variants and Drugs Within a Population 

Variants commonly present in individuals within a population were found in this study by matching the 

23andMe patient profiles to the annotated PharmGKB RSIDs. The results were one-hot encoded with columns 

representing RSIDs and rows representing individuals. From this, co-occurring variants were examined by 

grouping subsets of reports that contained a particular variant. RSIDs were considered related in a particular 

group if they were present in 90% of the subset, an arbitrary significance level. Overall association between 

variants was determined by examining all subgroups. 
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Briefly, for each annotated RSID, the related variants were found. Within these related variants, those that had 

annotations for the drug of interest were obtained, and lastly with these variants, the occurrence of all drugs 

were counted. The fraction of RSIDs associated with a given drug was calculated, and higher values suggested 

that the drug should be closely related to the drug of interest. Since the type of association between drugs 

captured using this methodology was unknown, multiple means of validation were necessary. DrugBank 

included a list of interacting drugs, which was compared to the drugs indicated by genetic association. 

AEOLUS provided similar information on interactions in the form of case reports. Within a case, a drug may 

be considered a primary suspect, secondary suspect, concomitant, or interacting drug. For cases where the drug 

of interest was the primary suspect, all interacting drugs were obtained. For cases where the drug of interest 

was an interacting drug, the primary suspect was considered an interacting drug.  

Mapping Variants to Adverse Events 

Adverse event information from PharmGKB and AEOLUS was used to map variants to adverse events. 

AEOLUS contains reports of ADEs without indications of genetic association. For a particular drug, outcomes 

from all cases in which it was the primary suspect and only administered drug were examined. Edges were 

drawn between outcomes within a case and represented as pairs of associated ADEs, and the total occurrence 

of these pairs reflected the degree of correlation. Some of these relationships contained outcomes included in 

PharmGKB associations, which facilitated a partial mapping of RSIDs directly to ADEs. These annotated 

ADEs were manually curated for the drug of interest from the annotations file and standardized to the 

vocabularies used in the AEOLUS database.  

Gephi Visualization  

Gephi is a visualization software for networks16. The application has several force-directed layout algorithms 

to distribute nodes and edges, and the layouts used in each graph were chosen to most clearly display clusters 

and associations. The Fruchterman-Reingold layout models nodes and edges with attractive and repulsive 

forces and distributes them such that the overall energy of the system is minimized. In the force atlas layout, 

nodes and edges similarly repulse and attract, but the layout favors bringing poorly connected nodes closer to 

very connected nodes. Lastly, the Yifan Hu layout combines standard methods but treats clusters as a single 
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node when determining repulsive forces. Gephi offers several statistical measures to assist in quantifying node 

associations. The modularity of a network measures the connectedness of a graph and its calculation involves 

comparing the density of edges within a community and those between communities. Communities are 

indicative of some form of association17. 

Relationships between drugs were visualized using Gephi with edge weights represented by the ratio of 

associated RSIDs. The classes of drugs were defined using PubChem18 and the standard anatomical therapeutic 

chemical (ATC) classification system obtained from the Kyoto Encyclopedia of Genes and Genomes 

(KEGG)19. The nodes were colored by drug class or by modularity to best display associations; the node sizes 

were proportional to its degree, or number of incoming and outgoing edges. Associations between ADEs were 

visualized using a similar approach, where nodes and edge weights represented outcomes and the correlations 

between them. The ADEs found in PharmGKB annotations were labeled on the visualization, and the results 

were filtered by edge weight, using the Yifan Hu layout in combination with the force-directed algorithms. 

Similarly, the nodes were colored by modularity and sized proportional to its weighted degree. 

 

Results 

DTC Genomic Reports  

777 DTC reports were downloaded from 23andMe or other sources and used for the analysis. The number of 

RSIDs in each report ranged from 546,058 to 1,003,774. 89.5% of the 1,586 unique annotated RSIDs were 

among the variants detected by the 23andMe genetic tests, and 410 out of 466 variants on VIP genes (88.0%) 

were contained. 497 out of the 523 unique drugs (95.0%)  had at least one associated variant within the reports.  

To explore groups within all reports, individuals were classified by aggregate and individual populations. A 

majority of individuals were classified as EUR (95.1%), while AMR and EAS each constituted 1.54% of the 

sample and AFR and SAS each were 0.09%. The total counts for the individual populations grouped by 

aggregate population are shown in Figure 1a along with the population definitions. Figure 1b shows scatter 

plots obtained by plotting the first two principal components after using PCA. The clustering method was 
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applied to variants on chromosomes 1, 2, 11, and 19 and on a combination of those chromosomes. 

Chromosome 1 had the greatest number of variants at 154,024, which was ultimately projected to two 

dimensions that captured approximately 61.0% of the cumulative variance. 

 

 

 

 

Variant-Drug Annotations 

The PharmGKB annotations file contained 2,588 unique variant-drug pairs, capturing 1,586 unique RSIDs and 

523 unique drug and drug combinations. PharmGKB contained variant annotations for 987 genes, of which 59 

were genes containing Very Important Pharmacogene (VIP) summaries. VIP genes typically have been 

a 

b 

Figure 1. (a) Classification of individuals to individual population using Naïve Bayes with definitions 

taken from the International Genome Sample Resource (IGSR). (b) Clustering of individuals based on 

variants located on chromosomes 1, 2, 11, and 19. PCA was used to project the data to the first two 

principal components. 
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reviewed by the FDA and Clinical Pharmacogenetic Implementation Consortium (CPIC) and have been 

studied in a large number of high-level publications. ABCB1, DPYD, and DRD were three VIP genes with the 

greatest number of variant annotations. Some variant-drug associations were extensively studied in multiple 

publications; for example, 68 studies reported genetic associations between clopidogrel and rs4244285 on the 

CYP2C19 gene, and 38 studies did for warfarin and rs9923231 on VKORC1.  

Table 1 summarizes shared variant-drug associations for 26 of the 42 mental health drugs examined in this 

study, grouped by classifications curated from PubChem. Figure 2 shows location densities for chromosomes 

1, 2, 11, and 19 to explore potential association between drug and location of ADE-related variants. Coordinate 

positions originated from build 37 of the reference genome. Drugs with the greatest number of variants on each 

chromosome were plotted; for example, antipsychotics, paroxetine, hydrochlorothiazide, olanzapine, and 

gemcitabine were selected for chromosome 11.  

 

Table 1. Shared variants for atypical antipsychotics (except haloperidol, which is a typical antipsychotic),  

anticonvulsants (AC), selective serotonin reuptake inhibitors (SSRI),  and tricyclic antidepressants (TCA). The 

presence of a variant-drug annotation is denoted by a dot 
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Associated Drugs 

Drugs that treat mental illnesses were chosen for this analysis. The network of drug associations is shown in 

Figure 3a, where the nodes represent drugs and are colored by modularity clusters. The labeled nodes are those 

identified from Drugs.com, and the non-labeled are those that were only present in PharmGKB annotations. 

Therefore, non-labeled drugs connected by edges or in the same cluster are those with a possible association 

determined through shared RSIDs. For example, the labeled nodes within the green community are exclusively 

selective serotonin reuptake inhibitor (SSRI) drugs (ecitalopram, citalopram, fluvoxamine, and sertraline) and 

phenothiazine antipsychotics (chlorpromazine, fluphenazine, thioridazine, and trifluoperazine). Non-labeled 

nodes within the cluster include the drug class antipsychotics and milnacipran, which is a serotonin-

norepinephrine reuptake inhibitor. Other nodes in the cluster were caffeine, fenofibrate, terbinafine, and 

ticlopidine. The latter three drugs had only singular connections to sertraline in the cluster. 

Paroxetine was chosen to perform a closer analysis on associated drugs for a specific use case. The resulting 

network around paroxetine is shown in Figure 3b, and 34 drugs were found to be related, in addition to two 

Figure 2. Location densities for ADE-related variants on chromosomes 1, 2, 11, and 19. The four or five 

drugs with the greatest number of variants on each chromosome were plotted.  
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drug classes, antipsychotics, and taxanes. One reason for association may be drug interactions, and DrugBank 

provides an extensive list of interactions obtained from drug labels and scientific literature. For paroxetine, 

DrugBank lists 779 interacting drugs, although a majority of them cite outcomes that were excluded from this 

study such as a decrease in serum concentration of a drug. Thirty out of the thirty-four 23andMe predicted drug 

interactions were listed as interacting drugs in DrugBank, and five of these had outcomes that matched the 

types of toxicities reported in the PharmGKB annotations. The drugs associated to paroxetine were also 

compared to those found in reported cases from AEOLUS. Twenty-four drugs were obtained, and every drug 

was listed among the interacting drugs on DrugBank, while thirteen of them had toxicity-related outcomes. 

There was no overlap between associated drugs found through AEOLUS and 23andMe genetic reports. 

 

Figure 3. Network of mental health drugs based on pharmacogenetics. (a) An overall network that was 

distributed using a force-directed algorithm, and the nodes were colored by modularity to indicate clusters (b) 

Closer figure of the network of drugs associated with paroxetine. 
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Variant-ADE Associations 

Adverse events for paroxetine were examined within the AEOLUS database, and the resulting associations are 

graphed in Figure 4a. ADEs with a PharmGKB variant annotation were labeled; nausea, fatigue, and suicidal 

ideation were found to occur the most frequently and had the greatest weighted degrees. The network was 

filtered by edge weight to limit the associations to those connected to one or more of the three outcomes 

(Figure 3b). While many of these ADEs were linked to both nausea and fatigue, two communities are 

distinguishable. Notably, dizziness, vomiting, and headache were clustered with nausea; and tremors, vertigo, 

and confusional state were grouped with fatigue. From these results, there was no clear relationship between 

the variants. Nausea and vomiting each had one variant RSID; patients with rs762551 had an increased risk of 

fatigue, and the variant is located on chromosome 15, affecting CYP1A2. rs1176744 was associated with 

discontinuation syndrome and nausea, and it is located on chromosome 11, affecting HTR3B5. 

 

 

 

 

 

 

 

 

Figure 4. Network of adverse events associated with paroxetine: (a) Network of ADEs reported in cases where 

paroxetine was the only drug administered. (b) Network of ADEs related to nausea, fatigue, and suicidal 

ideation.  

 

 



 12 

Discussion 

Exploration of PGP Patient Reports 

In this study, Naïve Bayes was the introductory model used to classify an individual’s population, where 

features were the variant genotypes. The underlying assumption for this algorithm is that the features are 

independent. For this problem, the features are the genotypes for all variants in the genetic report, but 

independence may be violated, particularly for variants located in the same region of a chromosome. Without 

the true demographic information of the individuals, it is impossible to completely evaluate the results, but the 

aggregate and individual population predictions were compared to assess whether the results were reasonable. 

Namely, a reasonable result here was one in which the predicted individual population belonged to the 

predicted aggregate population. Sixteen individuals (2.06%) had inconsistent results. Several individuals with 

a EUR aggregate population were designated as Puerto Rican (PUR) or Colombian (CLM), both of which 

belonging to the AMR aggregate. There was one instance where an AMR individual was predicted to be 

Bengali (BEB), belonging to the SAS subpopulation. The analyses presented for associated drugs may include 

ethnic biases related to the population being predominantly European. Since the significance of single 

mutations can differ between populations, future work should study trends in each population to capture 

possible variations between ethnic groups. However, additional genetic data would be required since the 

currently available data is lacking, particularly for non-European populations. 

Due to the ambiguity of self-reported ethnicities, PCA was used to obtain groups within the population of 

genetic reports, which were then compared to the assigned populations. The chromosomes were chosen to 

match those used in the plots of location density. Although questionable as a form of validation, the 

comparison was a useful exercise to search for agreement between the two methods. The clusters did not seem 

to be separated by aggregate populations particularly since a majority of individuals were classified as EUR. 

Nevertheless, the scatter plots did suggest that there were groups separable by genetic profile. The plot for 

chromosome 19 showed the most deviation; when PCA was performed on combined data from the four 

chromosomes, the resulting plot was similar to those for chromosomes 1, 2, and 11, which masked the 
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differences seen for chromosome 19. This suggests that clusters formed for each chromosome depend on the 

genes and variants located on each and that the underlying significance may be chromosome-specific. 

Of particular interest is whether ADE-related variants co-occur within the population, and forming clusters 

within the population of reports may be an informative start. While co-occurring variants were used in creating 

the pharmacogenomic drug network, this was based only on variant identities while disregarding variant 

genotypes. The co-occurrence of variants with relevant genotypes associated with a condition or ADE has yet 

to be successfully studied. One future approach would be to search within the previously formed clusters to 

discover groups of co-occurring variants; it is quite possible that groups of variants exist since as few as two 

dimensions captured over sixty percent of the cumulative variance for over one hundred thousand mutations.  

Another approach would be to examine co-occurrence for variants associated with a particular drug or adverse 

outcome. For the latter, grouping by ADE is necessary since one genotype for a particular SNP may be 

associated with a decreased risk of one ADE, yet another genotype may be associated with an increase risk of a 

different ADE. To do this, additional natural language processing techniques should be tested to standardize 

adverse event names. 

Location of Variants 

The location density plot in Figure 1 supports two ideas. The first is that similar drugs may be associated with 

variants that are located in similar regions of a chromosome, which is a reasonable conclusion particularly if 

the variants are located on a gene that affects a metabolic pathway. Each plot in the figure supports this, but 

chromosomes 2 and 19 demonstrate sharper localizations of variants for the selected drugs. For example, 

efavirenz and nevirapine are non-nucleoside reverse transcriptase inhibitors that treat HIV-1 infections with 

aligned peaks on chromosome 19. The two drugs had eleven and nine ADE-related variants, respectively, of 

which four were common to both. Table 1 similarly demonstrated that an ADE-related variant may affect 

multiple drugs, usually within the same class of drugs. Platinum compounds displayed no significant peak on 

chromosome 19, which agrees with a secondary observation, namely that locations of ADE-related variants 

may be distributed across distant loci. As another example on chromosome 1, which is the largest in the human 

genome, capecitabine and fluorouracil have bimodal distributions with peaks located approximately 108 units 
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apart. A similar phenomenon was observed for antipsychotics and olanzapine on chromosome 11, although 

with a shorter distance separating the peaks.  

Associated Drugs 

Population 23andMe data combined with PharmGKB annotations is a potentially useful resource in 

pharmacogenomics by indicating related RSIDs and, consequently, drugs. The network of drugs built in this 

work (Figure 2) was based only on genetic and population data. Drug associations may be examined through 

shared pathways or structural similarities, but a genetic association may encompass those relationships or 

involve alternative ones. One example is drugs that have a combined therapeutic effect but are chemically 

different. For example, cyclophosphamide is an alkylating antineoplastic agent with similar affected genes to 

cisplatin, a platinum-based agent without an alkylating group, and studies have shown encouraging results for 

combination treatments using the two drugs20. In a clinical setting, knowledge of drugs associated with genetic 

profiles may be important when prescribing alternate lines of treatment for an indication. For example, 

carboplatin and cisplatin are platinum-based chemotherapy drugs that share structured indications on 

DrugBank; while analogues, the drugs have no shared genes, and therefore one treatment may be prescribed 

instead of the other to mitigate ADEs. 

The modularity of the network was dependent on edge weights between drugs. For two drugs to be strongly 

correlated using this methodology, the associated variants for both must commonly co-occur in the patient 

population. While variants on different chromosomes have no association by definition of being unlinked, they 

may have a nonrandom tendency to be co-inherited, referred to as linkage disequilibrium. One reason for this 

is a shared function between the variants, which are then associated during selection. Although the typical use 

for this quantity is for locations on the same chromosome, the original calculation allowed for the 

consideration of different chromosome21. When looking at co-occurring variants affecting weight gain, the 

analysis demonstrated that variants on different chromosomes may have a nonrandom tendency to co-occur. 

When the steps were repeated for drugs causing neutropenia, it was observed that some variants on different 

chromosomes co-occurred while others did not. For example, RSIDs on chromosomes 7 and 12 affected 

sensitivity to clozapine but did not co-occur in the two largest sets, whereas RSIDs on chromosomes 7 and 13 
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did for valganciclovir. As previously mentioned, these analyses were performed only for variant identities, and 

additional examination of individual genotypes is needed. 

Successful grouping of drugs, which is assessed in detail below, would indicate that annotated RSIDs are 

captured in 23andMe data, supporting the potential clinical utility of DTC tests. Table 1 shows that drugs in 

the same classification tend to share variant annotations and are expected to be grouped in the same modularity 

class. Measures of precision and recall were calculated by comparing the clustering for drugs with drug 

classes. Each cluster represented a drug classification, and true positive was defined as a drug whose node that 

was correctly colored. For example, the green cluster in Figure 2 corresponded to phenothiazine antipsychotics 

and the adjacent blue cluster was SSRIs. The average precision of this methodology was 0.701, and the recall 

was 0.752. Classes that had fewer than three drugs, among other exceptions, were not included in the averaged 

values. The green modularity class mentioned in the results lowered these values due to the coverage of two 

drug classifications that otherwise were clustered with high precision.  

Quantifying precision and recall for this application is difficult because the nature of drug association is 

uncertain. Here, they were calculated according to drug classification, which is an imperfect measure since 

drugs with different classifications may share other similarities like drug interactions or chemical structure. For 

example, iloperidone, an atypical antipsychotic, was clustered with several tricyclic antidepressants due to 

drug interactions, which were included in the list of “moderate” interactions in the drug’s boxed warning19. 

Conversely, some drugs of different classifications were grouped in the same modularity class like atenolol 

and verapamil. While the former is a beta blocker and the latter is a calcium channel blocker, they share one 

annotated RSID and are both prescribed for angina and high blood pressure. 

The levels of precision and recall obtained in this study support the proposed methodology for discovering 

potential drug associations. Returning to the green cluster from above, fenofibrate, terbinafine, and ticlopidine 

were grouped drugs that lack clear similarities in structure or indication. It would be interesting to investigate 

if these unrelated drugs would be removed from the modularity cluster with the introduction of more data or if 

there is an underlying genetic association that might make an individual prone to ADEs from both drugs. 

Caffeine was also an associated drug, and it has known effects on psychiatric symptoms and potential 
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interactions with antipsychotic medications23,24. Although this association has been documented in preliminary 

scientific studies, this is an example of discoveries that may have interesting research or clinical implications.  

As mentioned earlier, drug interactions are one possible association depicted by the clustering. One attempt to 

verify this association was through DrugBank. Paroxetine was chosen for this purpose because its associations 

were concentrated in two separate clusters. There was no overlap between possibly related drugs through 

variants and through AEOLUS case reports. The number of drug interactions on DrugBank is rather large, so 

the list should be curated for significance or another means of verification may be necessary. If drug 

interactions found through genetic variants can be verified, associations that are unexpected may be have 

clinical and research potential.  

Variant-ADE associations in this study focused only on the outcomes for paroxetine, but in the future the 

network of ADEs should be mapped across a larger set of drugs to obtain a more comprehensive network. 

Many of the outcomes shown in Figure 2a had one or two connecting edges; the addition of more nodes and 

edges would facilitate the formation of more distinct clusters. It is interesting that less distinct groups were 

already formed from this limited demonstration; for example, headache, vomiting, and dizziness commonly 

occur alongside feelings of nausea. Expanding the network of associated outcomes to include a variety of 

drugs would further investigate the notion that ADEs have characteristic pathways that genetic variants may 

affect. There was no obvious genetic correlation between fatigue, nausea, and suicidal ideation when treated 

with paroxetine. The variants were located on different chromosomes and affected unrelated genes. An 

interesting observation is that the variant associated with paroxetine and fatigue affects CYP1A2, and the 

CYP1A2 enzyme metabolizes caffeine. A recent study demonstrated an increased serum concentration of 

paroxetine with the coadministration of caffeine23.    

Potential Clinical Utility of DTC-Derived Data  

One of the principal aims of this study was to assess the potential clinical utility for DTC genetic testing like 

23andMe. These genetic tests have the potential to increase the accessibility of personal genetic data, which 

can be used as an additional source of information that is more comprehensive and consistent than what is 

normally provided in patient history forms. 88% of annotated variants and 95% of drugs were contained within 
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all genetic profiles, which suggests that a majority of variant-drug associations are included in the 23andMe 

screening. As mentioned previously, the variant-drug associations from PharmGKB were not fully captured in 

the annotations file due to the limited rule-based approach used in this feasibility study. The categories of some 

annotations were inconsistent with the findings contained within the summaries. For instance, some 

associations of toxicity were related to dosage reductions, while an example association within the dosage 

category involved an increased risk of neutropenia. In particular, an alternate method is necessary to capture 

these inconsistencies that involve outcomes outside of the curated vocabulary.  

While consumer genetic tests are not intended for diagnostic purposes, the information obtained from a 

population perspective may have clinical utility. Given the results of this study, 23andMe profiles could be 

used to alert patients and medical practitioners of potential ADEs, prompting a more comprehensive genetic 

test in the clinic. At the minimum, a screening process could include rapid comparison of a DTC profile like 

23andMe to a knowledgebase of RSIDs associated with drug toxicity (e.g., sourced from PharmGKB). The 

genetic profile for an individual that indicates an increased chance for an adverse event to one drug might also 

suggest that ADEs are probable for another, whether it is due to drug interactions or a separate affected 

pathway. The drug and ADE relationships examined in this study demonstrate that valid associations may be 

obtained by examining genetic information at a population level. That being said, more work is required to 

validate the findings and to expand the analyses beyond a single drug and drug group. 

Limitations  

One of the major shortcomings Lu et al. discussed was the significant genetic variations between different 

populations. Here, individuals were assigned populations using allele frequencies calculated based on self-

reported ethnicities, which raises separate concerns of ethnicity having confounding cultural factors or race 

being a social construct. More importantly, the population data used in this study lacked labelled demographic 

information, and as a result many of the analyses performed were from an unsupervised learning perspective. 

Lastly, the sample size of genetic reports was on the smaller size for a population study, particularly if further 

research should be performed on the smaller clusters formed. The addition of data that is labelled and in 

greater quantity could facilitate the study of the concepts presented here in a more rigorous manner. 
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Conclusion 

This study demonstrated that 23andMe genetic reports test for a majority of variants with clinical annotations 

for drug hypersensitivity, which is important to note if this technology will be used as a clinical tool to flag the 

potential need for full diagnostics. The FDA has established special controls that need to be met to demonstrate 

safety and effectiveness for genetic tests that assess risk for conditions. Among these controls are expectations 

of clinical performance and labeling, so beginning with VIP-designated genes that affect drug pathways might 

be a promising approach to obtain approval for assessing risk for drug sensitivity.  

Preliminary results also suggest that associations between drugs can be obtained by examining genetic profiles 

at a population level. The pharmacogenomic network presented here was partly dependent on ADE-related 

variants co-occurring within reports. From a research perspective, these associations could guide future 

research directions or serve as an additional pharmacogenetic resource. In future work, co-occurring variants 

will be pursued further. 
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