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CHAPTER ONE

Introduction
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Partial differential equations (PDEs) arise in a multitude of mathematics and engineering

applications, hence the development of numerical methods for approximating the solu-

tions of PDEs has inspired abundant and valuable research. In this thesis, we focus on the

finite element method, which has become one of the most powerful tools in computational

mathematics and engineering. In recent years, a framework known as the finite element

exterior calculus (FEEC) emerged, catalyzing a new approach for analyzing numerical

methods whose approximation spaces comprise differential complexes. The FEEC ap-

plies the calculus of differential forms, long studied in differential geometry, to Hilbert

complexes, leading to a unification of many concepts in vector calculus as well as provid-

ing an elegant framework for proving the well-posedness of finite element methods.

The FEEC capitalizes on the ability of certain differential complexes to succinctly

express structural properties of PDEs. These properties may then be preserved in their re-

spective numerical approximations, yielding a sophisticated theory that ties together clas-

sical results in finite element methods through a deeper mathematical understanding. This

powerful framework emerged in the study of PDEs for elasticity and electromagnetism

[7, 8, 9, 18, 39], where certain differential complexes arose that had been well-studied in

the homological algebra literature [48]. Perhaps the most significant work leading to the

adoption of FEEC among a broader mathematical community is a 2006 publication by

Arnold, Falk, and Winther [11], which led to an intensive effort to apply these tools to the

analysis of numerical methods for PDEs. To fully introduce the FEEC requires a treat-

ment of concepts from homological algebra and Hodge theory, but as the results of this

thesis are mainly confined to Hilbert spaces of functions of two and three variables, and

thus are described using vector calculus, we will restrict our discussion to a class of dif-

ferential complexes used in our results, specifically cochain complexes, and their relevant

properties. For a more thorough treatment of the FEEC, we refer the reader to [12, 6, 11].

Here, we introduce the cochain complex, which is a sequence of vector spaces V k and
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linear maps dk that map one vector space to the next, as in

· · · −→ V k−1 dk−1

−→ V k dk−→ V k+1 −→ · · ·

such that dk ◦ dk−1 = 0, and we denote this complex by (V, d). Each complex considered

in this thesis is finite, where V k = 0 if k < 0 or if k is large enough. An important

example of a cochain complex is the de Rham complex. In the case where Ω is a domain

in R3, the de Rham complex may be described using vector calculus:

R3 → C∞(Ω)
grad−→ C∞(Ω;R3)

curl−→ C∞(Ω;R3)
div−→ C∞(Ω)→ 0. (1.0.1)

This sequence indeed forms a complex due to the vector calculus identities grad curl = 0

and curl div = 0. It is also important to define the Hilbert complex, which consists of a

sequence of Hilbert spaces V k and closed, densely-defined linear operators dk from V k to

V k+1 such that the range of dk is a subset of the domain of dk+1.

A cochain map is formed from one cochain complex (V, d) to a second cochain com-

plex (W,d) by linear maps πk : V k → W k that form a diagram:

· · · V k−1 V k V k+1 · · ·

· · · W k−1 W k W k+1 · · · .

πk−1

dk−1

πk

dk

πk+1

dk+1

dk−1 dk dk+1

A key property of the cochain map is that the above diagram commutes, i.e.,

dk−1πk−1V k−1 = πkdk−1V k−1. Furthermore, the cochain map is said to be bounded if

for each k, there exists a constant c such that for every v ∈ V k, ‖πkv‖kV ≤ c‖v‖kV , where

‖ ·‖V is the norm associated with the spaces V k. Moreover, when theW k spaces represent

finite element spaces, and πk is the projection associated with a simplicial triangulation

that maps from a Sobolev space into W k, the boundedness of the cochain complex is
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important for the numerical stability of the finite element approximation [6].

We are especially interested in the case where the domain Ω in the de Rham complex

(1.0.1) is given a simplicial triangulation Ωh, and we develop projections πk (i.e., degrees

of freedom) mapping the smooth function spaces of (1.0.1) to a sequence of finite element

spaces on Ωh that preserve the cochain complex properties. It is in this sense that the finite

element spaces of this thesis are structure preserving.

The study of exact sequences of finite element spaces was originally used to discretize

the de Rham sequence [10]

R→ H1(Ω)
grad−→ H(curl ; Ω)

curl−→ H(div ; Ω)
div−→ L2(Ω)→ 0.

The H1(Ω)-conforming finite elements were used to solve the Laplace equation [28]; the

H(curl ; Ω)-conforming finite element spaces were used to discretize Maxwell’s equations

[49]; and the H(div ; Ω) and L2(Ω) finite element pairs we used to discretize Darcy flow

[26]. We are interested in discretizing a sequence with smoother component spaces, so

that the advantageous structure-preserving properties of exact sequences of finite element

spaces can be used to find stable finite element spaces to discretize, for example, Stokes

flow and the biharmonic equation.
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1.1 Stokes complex

We consider the strong form of the Stokes equations, where the unknowns are the velocity,

the vector-valued function u, and the pressure, the scalar function p:

−µ∆u+ grad p = f, in Ω,

div u = 0, in Ω,

(1.1.1)

where Ω is a simply-connected domain in R3 and µ is a constant that represents viscosity.

We impose no-slip (homogeneous Dirichlet) boundary conditions for simplicity. A finite

element method for approximating (1.1.1) is based on its weak formulation, which is stated

as follows: find the velocity u ∈ H̊1(Ω,R3) and the pressure p ∈ L̊2(Ω) such that

a(u, v)− (p, div v) = (f, v), ∀v ∈ H̊1(Ω,R2),

(div u, q) = 0, ∀q ∈ L̊2(Ω),

(1.1.2)

where (·, ·) is the L2-inner product, L̊2(Ω) = {p ∈ L2(Ω) :
∫

Ω
p = 0}, and the bilinear

form a(u, v) is given by a(u, v) = µ(gradu, grad v).

In order to derive the Galerkin method for solving (1.1.2), one must select finite-

dimensional normed spaces Vh and Ph associated with the triangulation Ωh such that

Vh ⊂ H̊1 and Ph ⊂ L̊2. Then the approximate solution is (uh, ph) ∈ Vh × Ph, which

must satisfy

a(uh, v)− (ph, div v) = (f, v), ∀v ∈ Vh,

(div uh, q) = 0, ∀q ∈ Ph.

One issue that may arise with this discretization is that the pressure ph may not be unique.
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Indeed, the space of functions {ph ∈ Ph : (ph, div v) = 0 ∀v ∈ Vh} may include spurious

pressure modes. To resolve this issue, the function spaces Vh and Ph must satisfy the

Babuska-Brezzi condition [14, 19, 36]:

inf
p∈Ph, p 6=0

sup
v∈Vh, v 6=0

(p, div v)

‖v‖H1(Ω)‖p‖L2(Ω)

= βh > 0. (1.1.3)

If (1.1.3) holds, then ph is unique.

The physical condition of conservation of mass, imposed on the velocity in the strong

form (1.1.1) as div u = 0, may not be enforced in the discretization unless special care is

taken in the choice of the spaces Vh and Ph. Classical Stokes element pairs such as the

MINI elements, the P2-P0 elements, and the Taylor-Hood elements (see [16, Chapter 8])

do not enforce mass conservation, and the development of mass-conserving finite element

pairs has been an active area of research. An equivalent way of enforcing conservation

of mass is for the spaces Vh and Ph to satisfy the exactness property of an appropriate

cochain complex. The Hilbert spaces containing the solutions u and p of the continuum

equation (1.1.1) form a sequence within the Stokes complex,

0→ H2(Ω)
grad−→ H1(curl ; Ω)

curl−→ H1(Ω)
div−→ L2(Ω)→ 0, (1.1.4)

which we have stated without boundary conditions for simplicity. The space H1(curl )

represents the space of H1 vector fields such that their curl is also in H1. Suppose that

the projections πV : H1(Ω) → Vh and πS : L2(Ω) → Ph are chosen such that Vh
div−→ Ph

satisfies the subcomplex property, i.e., div Vh ⊂ Ph. Since the Galerkin equation

(div uh, q) = 0

holds for all q ∈ Ph, and since the subcomplex property yields div uh ∈ Ph, it follows
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that (div uh, div uh) = 0, from which we infer that div uh = 0. Therefore the discretiza-

tion enforces incompressibility of the numerical solution uh for any mesh size h. Such

projections πV and πP form a commuting diagram:

H1 L2

Vh Ph.

πV

div

πP

div

If the projections πV and πP are also bounded, the theory of FEEC can be used to show that

such spaces Vh and Ph indeed satisfy the Brezzi condition (1.1.3). This example shows

how a cochain complex and its associated commuting diagrams may be used to develop

finite element methods that are consistent, stable, and mass conserving.

1.2 Geometrically refined meshes

Devising finite element methods for the Stokes equations on a general triangulation is

an active area of research, as most natural choices of finite element pairs do not yield

stable methods, e.g., the P2 − P1 finite elements. One approach to resolving this issue

is to consider different types of mesh geometries, such that the stability and convergence

properties of the finite element pairs may depend on the choice of the mesh family.

One such mesh geometry is known as the Alfeld refinement, which is obtained by

connecting each vertex of each simplex with one interior “split” point. In two dimensions,

this refinement is often called the “Clough-Tocher refinement”, where each triangle is split

into three sub-triangles, and in three dimensions, the Alfeld refinement splits a tetrahedron

into four sub-tetrahedra. In 1992, Arnold and Qin [13] showed that the P2 − P1 finite

elements are indeed stable if the mesh is an Alfeld refinement. Zhang [61] extended this
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work to three dimensions, and Guzmán and Neilan [38] extended this work to arbitrary

dimensions using several different finite element pairs with any polynomial degree.

The Clough-Tocher finite elements were first introduced in 1965 as a way of reduc-

ing the polynomial order needed to construct a C1 finite element space, and they were

used by Clough and Tocher to analyze plate bending [25]. The C1 interpolants could be

constructed with cubic polynomials requiring only nine local degrees of freedom on each

macro-element [51]. Zhang used the Alfeld refinement to solve the Stokes equations in

three dimensions [61]. Alfeld extended this work to three dimensions in [2].

Peter Alfeld’s work has been deeply influential within the spline and finite element

communities. Although we do not attempt to thoroughly summarize the significance of

Alfeld’s work here, we wish to acknowledge those of his ideas upon which this thesis

builds and extends. In particular, Alfeld introduced the first C2 element based on a split

of the triangle, where he used the double Clough-Tocher split [1]. Following this work,

Alfeld and others, including [54], [41], [42], [43], [44], [45], [3], [4], and [46], introduced

many macro-elements based on the Clough-Tocher and Powell-Sabin splits of a triangle.

Furthermore, Alfeld’s work [2] introduced the first C1 three-dimensional macro-element

based on what is now commonly known as the Alfeld split of a tetrahedron. An essential

property of this macro-element, observed by Alfeld in [2], is that C1 polynomial inter-

polants on the Alfeld split have intrinsic supersmoothness at the split point and at the

vertices. In two dimensions, a C1 piecewise polynomial on a Clough-Tocher split has two

continuous derivatives at the split point (this holds for any choice of split point as long

as it is strictly interior to the triangle). In three dimensions, a C1 piecewise polynomial

on the Alfeld split is C3 at the split point and C2 at the vertices. Alfeld and Schumaker

defined the general notion of supersmoothness in [5], and Sorokina [57] characterized the

supersmoothness for more general simplicial particians of polytopal domains in arbitrary

dimensions.
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Fu, Guzmán, and Neilan’s work [33] showed that C1 piecewise polynomials on an

Alfeld split in any dimension n ≥ 2 are connected to the Stokes finite element pairs via

a de Rham sequence of piecewise polynomial spaces on a macro-element. They proved

the exactness of these sequences on one macro-element, i.e., on a single Alfeld split of a

simplex. Then they constructed degrees of freedom for three-dimensional finite element

spaces that would induce global finite element spaces on the entire triangulation with the

same exactness properties. In order to construct these degrees of freedom, they found it

was necessary to use the intrinsic supersmoothness properties of piecewise polynomials

on the Alfeld split geometry, and they needed to add some regularity at the vertices to

the Stokes finite element pairs in the sequence. For example, as mentioned above, since

Alfeld showed that C1 piecewise polynomials on the Alfeld split are C2 at the vertices [2],

so their degrees of freedom for this space included data for the second derivatives on the

vertices. In this sense, some of these degrees of freedom are not natural, and this issue

motivates the work in this thesis. Our goal is to consider other types of splits for which

the finite element spaces have degrees of freedom that do not rely on any supersmoothness

properties, and instead only use regularity intrinsic to the PDE we aim to discretize. We

considered the Powell-Sabin split in two dimensions and its three-dimensional analogue,

the Worsey-Farin split, which turned out to be fruitful in this aspect. We are able to prove

the exactness of sequences where the spaces have the same regularity properties as those in

[33], and the degrees of freedom for these spaces require data with only as much regularity

as the space.

A different approach was taken by Christensen and Hu [23], where they considered

low-order approximations in any dimension while using different types of splits for each

space in the de Rham sequence. For the first, smoothest space in the sequence, they

used the split with the most refinement (which is the so-called Worsey-Piper split in three

dimensions), and for the nth space in the sequence, they used the Alfeld split in the case
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where the pressure space was assumed to be continuous. If the pressures were allowed to

be discontinuous, no splitting was used. In two dimensions, however, Christiansen and Hu

were able to define a de Rham sequence with arbitrarily high polynomial order and with

the same (Clough-Tocher) split for each space in the sequence.

In our work, we seek to avoid the seemingly unnatural reliance on supersmoothness by

considering different types of splits. In particular, we develop finite element spaces on the

Powell-Sabin split in two dimensions and the Worsey-Farin split in three dimensions that

form exact sequences, and we are able to determine degrees of freedom for each space that

are more natural in the sense that they do not make use of any supersmoothness properties

and only rely on the smoothness intrinsic to the problem.

1.3 Finer splits

As discussed above, in order to define local exact sequences that would induce global

spaces with the desired smoothness and without using any supersmoothness properties in

the degrees of freedom, we considered Powell-Sabin splits in two dimensions and Worsey-

Farin splits in three dimensions. We describe the Powell-Sabin split here. Let Ω ⊂ R2 be a

polygonal domain, and let Th be the simplicial, shape-regular triangulation of Ω. Then the

Powell-Sabin triangulation T ps
h is obtained as follows. We select an interior point of each

triangle T ∈ Th and adjoin this point with each vertex of T . Next, the interior points of

each adjacent pair of triangles are connected with an edge. For any T that shares an edge

with the boundary of Ω, an arbitrary point on the boundary edge is selected to connect

with the interior point of T so that each T ∈ Th is split into six triangles. See Figure

1.1. One common choice of interior points that produces a well-defined triangulation is

the incenter of each T ∈ Th, i.e., the center point of the largest circle that fits within T
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Figure 1.1: (left) A triangulation of the unit square, and (right) its Powell-Sabin refine-
ment.

[47]. We define the setM(T ps
h ) to be the points of intersection of the edges of Th with the

edges that adjoin interior points. An interesting fact about the meshes constructed is that

the points inM(T ps
h ) are singular vertices of the mesh T ps

h ; see [56]. In this thesis, we will

construct finite element spaces on the Powell-Sabin split that form exact sequences such

that the first space of the sequence is the space of C1 piecewise polynomials, and the last

two spaces are inf-sup stable Stokes finite element pairs. This work has been published in

Calcolo Volume 57, Number 2; see [37].

Related to our work on the Powell-Sabin split are the papers [62, 63] by S. Zhang,

where conforming finite element pairs are proposed and studied for the Stokes problem

on Powell-Sabin meshes. Zhang showed that if the discrete velocity space is the linear

Lagrange finite element space, and if the pressure space is the image of the divergence

operator acting on the discrete velocity space, then the resulting pair is inf-sup stable.

However, by design, the discrete pressure spaces in [62, 63], and correspondingly the

range of the divergence operator, is not explicitly given. Practically, this issue is bypassed

by using the iterative penalty method to solve the finite element method without explicitly

constructing a basis of the discrete pressure space. In this thesis, we will explicitly con-

struct the discrete pressure space and characterize the space of divergence-free functions

for any polynomial degree.
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Figure 1.2: A representation of the Worsey-Farin split with two faces shown.

The Worsey-Farin split was first introduced by Worsey and Farin in 1987 [60] in order

to construct a C1 interpolant with data given only at the vertices and mid-edge points of an

n-dimensional triangulation. We describe the Worsey-Farin split in R3 here. Let Ω ⊂ R3

be a polyhedral domain, and let Th be the simplicial, shape-regular triangulation of Ω.

Then the Worsey-Farin triangulation T wf
h is obtained as follows. We select an interior

point of T and adjoin this point with each vertex of T . The interior points of adjacent

tetrahedra are then connected via an edge. The intersection of this edge with the shared

face F of the two adjacent tetrahedra is added to the triangulation, and this point is then

connected by three new edges with vertices of F . This intersection point always lies on

the interior of the face F as long as the interior points of the tetrahedra T ∈ Th are chosen

as the incenters [47]. If T shares a face with the boundary of Ω, an arbitrary point on the

boundary face is selected to split the face into three sub-triangles. See Figure 1.2. We

will construct finite element spaces on the Worsey-Farin split that form exact sequences,

generalizing the results on the Powell-Sabin split.

These types of triangulations have been of interest within the spline community for
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a long time. Sorokina and Worsey [58] developed C1 piecewise quadratic splines on

generalized Powell-Sabin splits for any dimension Rn, which is equivalent to a Worsey-

Farin split in R3. In an extension of this work, Floater and Hu [31] characterized the

supersmoothness of Cr splines with r ≥ 1 on different split geometries. Furthermore,

Kolesnikov and Sorokina [40] used algebraic geometry techniques in addition to spline

techniques to find the dimension of C1 splines on the Alfeld split of any n-dimensional

simplex. Foucart and Sorokina conjectured the dimension formula for general Cr splines

on n-dimensional Alfeld splits [32], and this work was extended by Schenck to Cr splines

in 2014 [55]. The book [47] by Lai and Schumaker contains an exhaustive study of smooth

splines on many different types of splits in two and three dimensions. Lai and Schumaker

also proved many geometrical results for triangulations based on these splits. For exam-

ple, the Worsey-Piper split, which is a refinement where the faces of a tetrahedron are split

by Powell-Sabin splits, does not induce a well-defined triangulation unless the original

mesh satisfies some restrictive conditions on its geometry. In contrast, Lai and Schumaker

showed that mesh refinements induced by the Worsey-Farin split are indeed well-defined

when the split points are incenters. Many of these results from the spline literature in-

formed, inspired, and enhanced our work.

Here, we outline the results contained in this thesis. In Chapter 2, we present useful

definitions, vector calculus identities, and finite element spaces that are fundamental to the

understanding of our results in the succeeding chapters. Chapter 2 also includes discussion

on existing results on the Clough-Tocher, Powell-Sabin, and Worsey-Farin splits. Our

work on exact sequences on Powell-Sabin splits is presented in Chapter 3, and Chapter 4

is the first part of our work on Worsey-Farin splits, where the exactness of sequences and

the dimension counts of certain finite element spaces are proved. In Chapter 5, we develop

unisolvent degrees of freedom that form commuting projections with the exact sequences

of Chapter 4 in the lowest order case. We extend these results to degrees of freedom for
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any polynomial order in Chapter 6.



CHAPTER TWO

Notation and Finite Element Spaces
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2.1 Finite Elements

In this section, we develop some basic notation and terminology for describing the finite

elements spaces used in this thesis.

Definition 2.1.1 (Mesh [30]). Let Ω be a polygonal (resp., polyhedral) subset of R2 (resp.,

R3). A mesh is a union of N compact, connected, disjoint, non-empty subsets Ti of Ω

known as cells or elements such that {Ti} forms a partition of Ω, i.e.,

Ω =
N⋃
i=1

Ti, and T̊i ∩ T̊j = ∅ for i 6= j.

We will focus on meshes where each element is a triangle (in R2) or a tetrahedron (in

R3), otherwise known as simplices.

Definition 2.1.2 (Simplex, Simplicial triangulation [30]). Let n ≥ 1, and let {x0, . . . , xn}

be a family of points in Rn such that the vectors {x1 − x0, . . . , xn − x0} are linearly

independent. Then the convex hull 〈x0, . . . , xd〉 of these points is called a simplex. A mesh

Th such that each cell T ∈ Th is a simplex is called a simplicial triangulation.

The meshes used in this thesis will be simplicial triangulations represented by Th,

where h is a parameter that represents the level of refinement of the mesh. For each

element T ∈ Th, the diameter hT of T is defined hT = diam(T ) = maxx1,x2∈T |x1 − x2|,

which is the largest Euclidean distance between two vertices of T . Then the mesh size h

is defined as maxT∈Th hT . A family of meshes where h is decreasing and accumulates at

zero will be denoted by {Th}h>0. The set of vertices of a triangulation Th is denoted by

∆0(Th), edges are denoted by ∆1(Th), triangles are denoted by ∆2(Th), and tetrahedra are

denoted by ∆3(Th). All of these mesh entities are referred to as facets of the triangulation.

Definition 2.1.3 (Shape-regular [30]). Given a cell T ∈ Th, let ρT represent the diameter
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of the largest ball that can fit within T . A family of meshes {Th}h>0 is said to be shape-

regular if there exists a positive constant β0 such that for every h and for each T ∈ Th,

βT = hT/ρT ≤ β0.

If a family of triangulations is shape-regular, the triangles cannot become too “flat”

as h goes to zero. This property is important in obtaining global error estimates and in

proving that numerical solutions converge to the true solution.

Each finite element space in this thesis will be a space of piecewise polynomials on a

simplicial triangulation. For r ∈ N, let Pr(S) be the space of polynomials of degree less

than or equal to r with domain S, where Pr(S) = {0} if r < 0. We represent piecewise

polynomial functions on a triangulation Th of Ω ⊂ Rn as

Pr(Th) = {q ∈ L2(Th) : q|S ∈ Pr(S), ∀S ∈ ∆n(Th)}.

Now we are ready to describe some important finite element spaces, with the aim of

describing well-known exact sequences and setting up the smoother extensions of these

sequences developed in Chapters 3 - 6. Let S be a domain in Rd, with d = 2 or 3, and

let nS be the outward unit normal of S on ∂S. Let p ∈ Pr(S) with r ≥ 0, and let

q ∈ [Pr(S)]d. We represent the Hilbert space of square-integrable functions by L2(S),

and L̊2(S) = {p ∈ L2(S) :
∫
S
p = 0}. We will refer to the following Sobolev spaces

throughout the thesis.

H1(S) = {p ∈ L2(S) : grad p ∈ L2(S)},

H̊1(S) = {p ∈ H1(S) : p = 0 on ∂S},

H(div ;S) = {q ∈ [L2(S)]2 : div q ∈ L2(S)},

H̊(div ;S) = {q ∈ H(div ;S) : q · nS = 0 on ∂S}.
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Furthermore, we let [x1, x2]> be a basis for R2, and we use the convention that the two-

dimensional curl operator maps vector functions to scalar functions; specifically, given a

vector function v, curl v = ∂x1(v ·x2)−∂x2(v ·x1). The rot operator maps a scalar function

u to a vector function and is defined rot u = [∂x2u,−∂x1u]>. In three dimensions, the curl

of a vector function v has the usual definition curl v = grad × v. Now, letting d = 2 or 3,

we can define the useful Sobolev spaces

H(curl ;S) = {q ∈ [L2(S)]d : curl q ∈ L2(S)},

H̊(curl ;S) = {q ∈ H(curl ;S) : q × nS = 0 on ∂S},

H(rot ;S) = {p ∈ L2(S) : rot p ∈ [L2(S)]2},

H̊(rot ;S) = {p ∈ H(rot ;S) : p = 0 on ∂S},

where the definition of curl should be understood from the dimension of the domain S,

and the rot operator is only applied when the dimension d = 2.

Ciarlet defined a finite element as follows.

Definition 2.1.4 (Finite element [24]). A finite element consists of a triplet {T, V,Σ} such

that

(i) T is a simplex of a triangulation Th of a domain Ω ⊂ Rn,

(ii) V is a vector space of functions p : T → Rm for some positive integer 1 ≤ m ≤ n,

and

(iii) Σ is a set of linear functionals {σ1, . . . , σk} acting on the members of V such that

the linear mapping p ∈ V satisfies

p→ (σ1(p), . . . , σk(p)) ∈ Rk (2.1.1)
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is bijective. The linear functionals {σ1, . . . , σk} are called the local degrees of free-

dom.

A consequence of the bijectivity of the mapping (2.1.1) is that there exists a basis

{v1, . . . , vk} of V such that σi(vj) = δij for 1 ≤ i, j ≤ k, where δij is the Kronecker delta.

This is often referred to as unisolvence, which is defined formally below.

Definition 2.1.5 (Unisolvence [30]). The set Σ is unisolvent if and only if the following

properties are satisfied.

(i) dimV = |Σ| = k,

(ii) for any v ∈ V , if σj(v) = 0 for j = 1, . . . , k, then v = 0.

Here, we describe several particular finite element spaces that will be referenced

throughout the thesis. The Lagrange finite elements are continuous piecewise polynomials

used to discretize the H1 space. The degrees of freedom for a Lagrange finite element on

a triangulation consists of function evaluations at the nodes. In particular, if {T, V,Σ}

is a finite element where T is a simplex and k = dimV , and if there is a set of points

{x1, . . . xk} in T such that σi(v) = v(xi) for all v ∈ V and for each 1 ≤ i ≤ k, then

{T, V,Σ} is a Lagrange finite element.

Let Ω ⊂ Rd for d = 2 or 3, and let Th be a triangulation of Ω. Nédélec introduced four

families of three-dimensional finite element spaces in two papers, [49] and [50], known

as the H(div ; Th)- and H(curl ; Th)-conforming elements of the first and second kinds.

Raviart and Thomas introduced an H(div ; Th)-conforming two-dimensional finite ele-

ment space in [53], of which the H(div ; Th)-conforming Nédélec finite elements of the

first kind are the three-dimensional extension. Hence these finite element spaces are often

appropriately called the Nédélec-Raviart-Thomas finite element spaces. We will some-

times refer to these spaces simply as “Nédélec spaces”.
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The Sobolev space H(div ; Th) arises frequently in many problems in partial differen-

tial equations. Piecewise polynomials are H(div ; Th)-conforming if they have a contin-

uous normal component on the facets of Th. Given a simplex T of a triangulation in Rd

with d = 2 or 3, the Raviart-Thomas space RT dr of Rd-valued polynomials is given by

RT dr = [Pr(T )]d ⊕ xP̃r(T ),

where P̃r(T ) are homogeneous polynomials [53]. Homogeneous polynomials have the

form

∑
|α|=r

cαx
α1
1 · · ·x

αd
d

for some constants cα, and where α is a multi-index of degree r. Letting n represent

the outward unit normal of T on ∂T , a function q ∈ RT dr (T ) is fully determined by the

degrees of freedom

∫
f

(q · n)p ds, p ∈ Pr(f), ∀f ∈ ∆d−1(T ), (2.1.2a)∫
T

q · p dA, p ∈ [Pr−1(T )]d. (2.1.2b)

Another divergence-conforming finite element space for two-dimensional triangula-

tions was introduced by Brezzi, Douglas, and Marini in [21], and was extended to three

dimensional simplices by Nédélec [50] and by Brezzi et al. [20]. Nédélec’s definition

is as follows. Given a triangle or tetrahedron T , the Brezzi-Douglas-Marini (or Nédélec)

H(div ;T )-conforming finite element space is denoted by V 2
r (T ) = [Pr(T )]d, with r ≥ 1

and d = 1 or 2, where any function v ∈ V 2
r (T ) is fully determined by the degrees of
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freedom

∫
f

(v · n)p ds, p ∈ Pr(f), ∀f ∈ ∆d−1(T ), (2.1.3a)∫
T

v · p dx, p ∈ Rr−1(T ) for r ≥ 2, (2.1.3b)

where Rr(T ) = [Pr−1(T )]d ⊕ Sr(T ), and Sr(T ) = {p ∈ Pr(T ) : (p · x) = 0}.

For piecewise polynomials to be H(curl ; Th)-conforming, their tangential compo-

nent must be continuous. In our work, we will only need to use the Nédélec elements

of the second kind. Although Nédélec only considered three-dimensional H(curl ; Th)-

conforming finite elements, we can also use the two-dimensional rotation operator to de-

fine H(rot ; Th)-conforming finite elements. If T is a triangle in Th, and Vr = [Pr(T )]2,

then the Nédélec degrees of freedom are given by

∫
e

(v · t)p ds, ∀p ∈ Pr(e), ∀e ∈ ∆1(T ), (2.1.4a)∫
T

v · p dA, ∀p ∈ RTr−1(T ), r ≥ 2. (2.1.4b)

If T is a tetrahedron and V = [Pr(T )]3, then the degrees of freedom are

∫
e

(v · t)p ds, p ∈ Pr(e), ∀e ∈ ∆1(T ), (2.1.5a)∫
F

v · p dA, p ∈ RT 2
r−1(F ), ∀F ∈ ∆2(T ), r ≥ 2, (2.1.5b)∫

T

v · p dx, p ∈ RT 3
r−2(T ), r ≥ 3, (2.1.5c)

which are the Nédélec degrees of freedom for three dimensional H(curl ;T )-conforming

finite elements.

The L2-conforming finite elements approximate functions that are not necessarily con-
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tinuous. These types of elements are frequently used in discretizations of the Poisson

equations, Stokes equations, and elasticity. If T is either a triangle or a tetrahedron,

and V = Pr(T ), then a function v ∈ V is fully determined by the degrees of freedom

σi(v) = v(xi), where {xi}ki=1 (with k = dimV ) is a set of points in T defined by

x =


(i/r, j/r), 0 ≤ i+ j ≤ r, T is a triangle,

(i/r, j/r, `/r), 0 ≤ i+ j + ` ≤ r, T is a tetrahedron.

Now that we have described the local Nédélec-Raviart-Thomas and Lagrange finite

element spaces and given their degrees of freedom, we are ready to formalize their notation

on a triangulation. Let Fh represent the simplicial triangulation of a triangle F . Let r ≥ 0.

The Nédélec spaces of the second kind on Fh are denoted as

V 0
r (Fh) = Pr(Fh) ∩H1(F ), V̊ 0

r (Fh) = V 0
r (Fh) ∩ H̊1(F ),

V 1
div ,r(Fh) = [Pr(Fh)]2 ∩H(div ;F ), V̊ 1

div ,r(Fh) = V 1
div ,r(Fh) ∩ H̊(div ;F ),

V 1
curl ,r(Fh) = [Pr(Fh)]2 ∩H(curl ;F ), V̊ 1

curl ,r(Fh) = V 1
curl ,r(Fh) ∩ H̊(curl ;F ),

V 2
r (Fh) = Pr(Fh), V̊ 2

r (Fh) = Pr(Fh) ∩ L̊2(F ).

Next, let Th represent the simplicial triangulation of a tethrahedron T . The Nédélec

spaces of the second kind on Th are denoted as

V 0
r (Th) = Pr(Th) ∩H1(T ), V̊ 0

r (Th) = V 0
r (Th) ∩ H̊1(T ), (2.1.6)

V 1
r (Th) = [Pr(Th)]3 ∩H(curl ;T ), V̊ 1

r (Th) = V 1
r (Th) ∩ H̊(curl ;T ), (2.1.7)

V 2
r (Th) = [Pr(Th)]3 ∩H(div ;T ), V̊ 2

r (Th) = V 2
r (Th) ∩ H̊(div ;T ), (2.1.8)

V 3
r (Th) = Pr(Th), V̊ 3

r (Th) = Pr(Th) ∩ L̊2(F ). (2.1.9)
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It is well known that the Nédélec spaces form an exact sequence [12, 11].

Lemma 2.1.6. Let r ≥ 2, and let Fh be a triangulation of a triangle F . The following

sequences are exact, i.e., the range of each map is the kernel of the succeeding map.

R −−→ V 0
r (Fh)

rot
−−→ V 1

div ,r−1(Fh)
div

−−→ V 2
r−2(Fh) −−→ 0, (2.1.10)

0 −−→ V̊ 0
r (Fh)

rot
−−→ V̊ 1

div ,r−1(Fh)
div

−−→ V̊ 2
r−2(Fh) −−→ 0. (2.1.11)

Now let r ≥ 3, and let Th be a triangulation of a tetrahedron T . The following sequences

are exact.

R −−→ V 0
r (Th)

grad

−−→ V 1
r−1(Th)

curl

−−→ V 2
r−2(Th)

div

−−→ V 3
r−3(Th) −−→ 0, (2.1.12)

0 −−→ V̊ 0
r (Th)

grad

−−→ V̊ 1
r−1(Th)

curl

−−→ V̊ 2
r−2(Th)

div

−−→ V̊ 3
r−3(Th) −−→ 0. (2.1.13)

We can also state an equivalent result of (2.1.14) - (2.1.15) where instead of rot and

div , the two-dimensional operators grad and curl are used. The following result follows

from Lemma 2.1.6 by rotating the coordinate axes. Let r ≥ 2, then

R −−→ V 0
r (Fh)

grad

−−→ V 1
curl ,r−1(Fh)

curl

−−→ V 2
r−2(Fh) −−→ 0, (2.1.14)

0 −−→ V̊ 0
r (Fh)

grad

−−→ V̊ 1
curl ,r−1(Fh)

curl

−−→ V̊ 2
r−2(Fh) −−→ 0. (2.1.15)

The goal of our work is to extend these results to include the smoother finite element

spaces defined below, which are of interest for solving the Stokes equations, Maxwell’s

equations, and the biharmonic equation.
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The Lagrange spaces on Fh are denoted as

L0
r(Fh) = Pr(Fh) ∩ C(F ), L̊0

r(Fh) = L0
r(Fh) ∩ H̊1(F ), (2.1.16a)

L1
r(Fh) = [L0

r(Fh)]
2, L̊1

r(Fh) = [L̊0
r(Fh)]

2, (2.1.16b)

L2
r(Fh) = L0

r(Fh), L̊2
r(Fh) = L̊0

r(Fh) ∩ V̊ 2
r (Fh). (2.1.16c)

Notice that there is some redundancy in this notation: L0
r(Fh) = V 0

r (Fh), and L̊0
r(Fh) =

V̊ 0
r (Fh). The Lagrange spaces on Th are denoted as

L0
r(Th) = Pr(Th) ∩ C(T ), L̊0

r(Th) = L0
r(Th) ∩ H̊1(T ), (2.1.17)

L1
r(Th) = [L0

r(Th)]
3, L̊1

r(Th) = [L̊0
r(Th)]

3, (2.1.18)

L2
r(Th) = [L0

r(Th)]
3, L̊2

r(Th) = [L̊0
r(Th)]

3, (2.1.19)

L3
r(Th) = L0

r(Th), L̊3
r(Th) = L̊0

r(Th) ∩ V̊ 3
r (Th). (2.1.20)

The same redundancy exists in the three-dimensional case as before, namely L0
r(Th) =

V 0
r (Th) and L̊0

r(Th) = V̊ 0
r (Th). Despite the overlap in notation for the two-dimensional

and three-dimensional spaces above, the correct definitions are decipherable from the di-

mension of the triangulation of the underlying space (e.g., V 2
r (Fh) versus V 2

r (Th)).

Let grad F and div F represent the two-dimensional gradient and divergence opera-

tors on F , and let curl F represent the two-dimensional scalar curl on F . The following

“smooth spaces” on Fh are denoted with and without boundary conditions as

S0
r (Fh) = {v ∈ L0

r(Fh) : grad Fv ∈ [C(F )]2}, (2.1.21a)

S̊0
r (Fh) = {v ∈ S0

r (Fh) : v = 0 and grad Fv = 0 on ∂F}, (2.1.21b)

S1
curl ,r(Fh) = {v ∈ L1

r(Fh) : curl Fv ∈ C(F )}, (2.1.21c)

S̊1
curl ,r(Fh) = {v ∈ S1

r (Fh) : v = 0 and curl Fv = 0 on ∂F}, (2.1.21d)
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S1
div ,r(Fh) = {v ∈ L1

r(Fh) : div Fv ∈ C(F )}, (2.1.21e)

S̊1
div ,r(Fh) = {v ∈ Sdiv ,r(Fh) : v = 0 and div Fv = 0 on ∂F}, (2.1.21f)

S2
r (Fh) = L2

r(Fh), (2.1.21g)

S̊2
r (Fh) = L̊2

r(Fh). (2.1.21h)

On the triangulation Th of a tetrahedron T , the smooth spaces are denoted by

S0
r (Th) = {v ∈ L0

r(Th) : grad v ∈ [C(T )]3}, (2.1.22a)

S̊0
r (Th) = {v ∈ S0

r (Th) : v = 0 and grad v = 0 on ∂T}, (2.1.22b)

S1
r (Th) = {v ∈ L1

r(Th) : curl v ∈ C(T )}, (2.1.22c)

S̊1
r (Th) = {v ∈ S1

r (Th) : v = 0 and curl v = 0 on ∂T}, (2.1.22d)

S2
r (Th) = {v ∈ L2

r(Th) : div v ∈ C(T )}, (2.1.22e)

S̊2
r (Th) = {v ∈ S2

r (Th) : v = 0 and div v = 0 on ∂T}, (2.1.22f)

S3
r (Th) = L3

r(Th), (2.1.22g)

S̊3
r (Th) = L̊3

r(Th). (2.1.22h)

We are interested in connecting these smooth spaces with Stokes element pairs via

exact sequences. On general triangulations, it is not known how to form exact sequences

involving these smooth spaces. Our approach is to consider different refinements of gen-

eral triangulations on which we are able to formulate exact sequences using these spaces

and to derive the appropriate commuting projections (i.e., degrees of freedom).
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2.2 Vector calculus identities

In the course of proving the main results of this thesis, we will often invoke instances of

the Stokes Theorem (i.e., integration by parts), which are stated in the identities below.

Suppose that T is a tetrahedron and that F is a face in ∆2(T ). Let ∂T represent the

boundary of T consisting of the faces F ∈ ∆2(T ), and let n represent the outward unit

normal to T on ∂T . For functions u, ψ ∈ Pr1(T ) and v, φ ∈ [Pr2(T )]3 with r1, r2 ≥ 0, we

will need the following instances of integration by parts [22].

∫
T

gradu · φ dx = −
∫
T

udiv φ dx+

∫
∂T

nuφ dA, (2.2.1a)∫
T

curl v · φ dx =

∫
T

v · curlφ dx+

∫
∂T

(n× v) · φ dA, (2.2.1b)∫
T

div vψ dx = −
∫
T

v · gradψ dx+

∫
∂T

(n · v)ψ dA. (2.2.1c)

Notice that the differential dx is used for three-dimensional integrands, and the differential

dA is used for two-dimensional integrands.

Let nF represent the outward unit normal to T on a face F ∈ ∆2(T ). Then we denote

the tangential components nF × v × nF on F by vF , and we denote the restriction of u to

F as uF . Let [e1, e2]> be an orthonormal basis spanning the plane containing F . Then we

will define the following surface operators on F .

grad FuF = nF × gradu× nF ,

curl FvF = curl v · nF ,

div FvF = ∂e1(v · e1)F + ∂e2(v · e2)F .

(2.2.2)

We also use the two-dimensional rotated gradient rot FuF = grad FuF × nF .

We can now state the Stokes Theorem for the surface faces F ∈ ∆2(T ). Let u, v, φ,
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and ψ be defined as before, and let n∂F represent the outward unit normal to F on ∂F (so

n∂F is tangent to the face F ). Then we have

∫
F

grad FuF · φF dA = −
∫
F

uFdiv FφF dA+

∫
∂F

n∂FuFφF ds, (2.2.3a)∫
F

curl FvF ψF dA =

∫
F

vF · curl (ψFnF ) dA+

∫
∂F

(n∂F × vF ) · (ψFnF ) ds, (2.2.3b)∫
F

div FvF ψF dA = −
∫
F

vF · grad FψF dA+

∫
∂F

(n∂F · vF )ψF ds. (2.2.3c)

We have used dx for two-dimensional integrands and ds for one-dimensional integrands.

2.3 The Clough-Tocher split

Let us describe the Clough-Tocher split. Let Ω ⊂ R2 be a polyhedral domain, and let Th

be a simplicial, shape-regular triangulation of Ω. Then the Clough-Tocher triangulation

T ct
h is obtained as follows. We select an interior point of each triangle F ∈ Th and adjoin

this point with each vertex of F , so that each F ∈ Th is split into three triangles. See

Figure 2.1. We denote the Clough-Tocher split of F by F ct .

Given an orthonormal basis [e1, e2]> of R2, we use the convention that a vector-valued

function v has curl v = −∂x2(v ·e1)+∂x1(v ·e2), and grad v = ∂x1(v ·e1)e1 +∂x2(v ·e2)e2.

It should be understood from context whether we refer to the two-dimensional scalar curl

or to the three-dimensional vector curl.

The dimensions of the Nédélec and Lagrange spaces on the Clough-Tocher split were

given in [6] and [33], respectively.

dimV 0
r (F ct ) =

3

2
r2 +

3

2
r + 1, dim V̊ 0

r (F ct ) =
3

2
r2 − 3

2
r + 1, (2.3.1)
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Figure 2.1: Representation of the Clough-Tocher split of a triangle.

dimV 1
div ,r(F

ct ) = 3(r + 1)2, dim V̊ 1
div ,r(F

ct ) = 3r(r + 1), (2.3.2)

dimV 2
r (F ct ) =

3

2
(r + 1)(r + 2), dim V̊ 2

r (F ct ) =
3

2
(r + 1)(r + 2)− 1, (2.3.3)

dimL0
r(F

ct ) =
1

2
(3r2 + 3r + 2), dim L̊0

r(F
ct ) =

1

2
(3r2 − 3r + 2), (2.3.4)

dimL1
r(F

ct ) = 3r2 + 3r + 2, dim L̊1
r(F

ct ) = 3r2 − 3r + 2, (2.3.5)

dimL2
r(F

ct ) =
1

2
(3r2 + 3r + 2), dim L̊2

r(F
ct ) =

3

2
r(r − 1). (2.3.6)

We note that the dimension of V 1
curl ,r(F

ct ) (resp., V̊ 1
curl ,r(F

ct )) is equal to the dimension

of V 1
div ,r(F

ct ) (resp., V̊ 1
div ,r(F

ct )).

The spaces Skr (F ct ) and S̊kr (F ct ) have the dimension counts [33]:

dimS0
r (F

ct ) =
3

2
(r2 − r + 2), dim S̊0

r (F
ct ) =

3

2
(r2 − 5r + 6), (2.3.7)

dimS1
r (F

ct ) = 3r2 + 3, dim S̊1
r (F

ct ) = 3r2 − 9r + 6, (2.3.8)

dimS2
r (F

ct ) =
1

2
(3r2 + 3r + 2), dim S̊2

r (F
ct ) =

3

2
r(r − 1). (2.3.9)
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We will use the following intermediate spaces when developing commuting projec-

tions on the Worsey-Farin split.

Lemma 2.3.1. We define the spaces R0
r(F

ct ) := {v ∈ S0
r (F

ct ) : v|∂F = 0}, R1
r(F

ct ) :=

{v ∈ S1
div ,r(F

ct ) : v|∂F = 0}. Then, we have

dimR0
r(F

ct ) =
3

2
(r − 1)(r − 2), dimR1

r(F
ct ) = 3(r − 1)2.

Proof. Let v ∈ Rk
r(F

ct ). To calculate the dimension of Rk
r(F

ct ), we must count the

number of constraints imposed by setting v|∂F = 0.

(i) Case k = 0. In this case, v is a scalar function, so on each (external) edge e ∈

∆1(F ct ), setting v|e = 0 requires r + 1 constraints. As v is continuous, the values of v at

the vertices ∆0(F ct ) need only be counted once. Hence the number of constraints imposed

is 3(r + 1)− 3 = 3r. Therefore dimR0
r(F

ct ) = dimS0
r (F

ct )− 3r = 3
2
(r2 − 3r + 2) =

3
2
(r − 1)(r − 2).

(ii) Case k = 1. Now v is a two-dimensional vector function, hence the argument

above must be applied in both components of v. Therefore setting v|∂F = 0 imposes 6r

constraints, so dimR1
r(F

ct ) = dimS1
div ,r(F

ct )− 6r = 3r2 + 3− 6r = 3(r − 1)2.

Now we are ready to state the results of [33] on the Clough-Tocher split.

Theorem 2.3.2. Let r ≥ 3. The following sequences are exact [33].

R −−→ L0
r(F

ct )
grad

−−→ V 1
curl ,r−1(F ct )

curl

−−→ V 2
r−2(F ct ) −−→ 0, (2.3.10a)

R −−→ S0
r (F

ct )
grad

−−→ L1
r−1(F ct )

curl

−−→ V 2
r−2(F ct ) −−→ 0, (2.3.10b)

R −−→ S0
r (F

ct )
grad

−−→ S1
r−1(F ct )

curl

−−→ L2
r−2(F ct ) −−→ 0, (2.3.10c)

0 −−→ L̊0
r(F

ct )
grad

−−→ V̊ 1
curl ,r−1(F ct )

curl

−−→ V̊ 2
r−2(F ct ) −−→ 0, (2.3.10d)
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0 −−→ S̊0
r (F

ct )
grad

−−→ L̊1
r−1(F ct )

curl

−−→ V̊ 2
r−2(F ct ) −−→ 0, (2.3.10e)

0 −−→ S̊0
r (F

ct )
grad

−−→ S̊1
r−1(F ct )

curl

−−→ L̊2
r−2(F ct ) −−→ 0. (2.3.10f)

Theorems 2.3.2 has an alternate form that follows from a rotation of the coordinate

axes, where the operators grad and curl are replaced by rot and div , respectively.

Corollary 2.3.3. Let r ≥ 3. The following sequences are exact [33].

R −−→ L0
r(F

ct )
rot
−−→ V 1

div ,r−1(F ct )
div

−−→ V 2
r−2(F ct ) −−→ 0, (2.3.11a)

R −−→ S0
r (F

ct )
rot
−−→ L1

r−1(F ct )
div

−−→ V 2
r−2(F ct ) −−→ 0, (2.3.11b)

R −−→ S0
r (F

ct )
rot
−−→ S1

r−1(F ct )
div

−−→ L2
r−2(F ct ) −−→ 0, (2.3.11c)

0 −−→ L̊0
r(F

ct )
rot
−−→ V̊ 1

div ,r−1(F ct )
div

−−→ V̊ 2
r−2(F ct ) −−→ 0, (2.3.11d)

0 −−→ S̊0
r (F

ct )
rot
−−→ L̊1

r−1(F ct )
div

−−→ V̊ 2
r−2(F ct ) −−→ 0, (2.3.11e)

0 −−→ S̊0
r (F

ct )
rot
−−→ S̊1

r−1(F ct )
div

−−→ L̊2
r−2(F ct ) −−→ 0. (2.3.11f)

2.4 The Alfeld split

Next, we describe the Alfeld split. Let T be a tetrahedron with vertices {x1, . . . , x4}, and

let z0 be an interior point of T . The Alfeld split T a = 〈x1, . . . , x4, z0〉 of T is constructed

by connecting each vertex xi with the interior point z0 by an edge, resulting in a triangu-

lation with 4 tetrahedra, 10 edges, and 5 vertices. The Alfeld refinement T ah of a general

triangulation is achieved by constructing an Alfeld split on each triangle T ∈ Th, and such

a refinement is always a well-defined triangulation as long as each split point is chosen to

be strictly interior to the original simplex.
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Fu, Guzmán, and Neilan extended the results of Lemma 2.1.6 to smoother sequences

on the Alfeld split, as detailed in the following theorem.

Theorem 2.4.1. The following sequences are exact.

R −−→ L0
r(T

a )
grad

−−→ V 1
r−1(T a )

curl

−−→ V 2
r−2(T a )

div

−−→ V 3
r−3(T a ) −−→ 0, (2.4.1a)

R −−→ S0
r (T

a )
grad

−−→ L1
r−1(T a )

curl

−−→ V 2
r−2(T a )

div

−−→ V 3
r−3(T a ) −−→ 0, (2.4.1b)

R −−→ S0
r (T

a )
grad

−−→ S1
r−1(T a )

curl

−−→ L2
r−2(T a )

div

−−→ V 3
r−3(T a ) −−→ 0, (2.4.1c)

R −−→ S0
r (T

a )
grad

−−→ S1
r−1(T a )

curl

−−→ S2
r−2(T a )

div

−−→ L3
r−3(T a ) −−→ 0. (2.4.1d)

Furthermore, the following sequences with boundary conditions are exact.

0 −−→ L̊0
r(T

a )
grad

−−→ V̊ 1
r−1(T a )

curl

−−→ V̊ 2
r−2(T a )

div

−−→ V̊ 3
r−3(T a ) −−→ 0, (2.4.2a)

0 −−→ S̊0
r (T

a )
grad

−−→ L̊1
r−1(T a )

curl

−−→ V̊ 2
r−2(T a )

div

−−→ V̊ 3
r−3(T a ) −−→ 0, (2.4.2b)

0 −−→ S̊0
r (T

a )
grad

−−→ S̊1
r−1(T a )

curl

−−→ L̊2
r−2(T a )

div

−−→ V̊ 3
r−3(T a ) −−→ 0, (2.4.2c)

0 −−→ S̊0
r (T

a )
grad

−−→ S̊1
r−1(T a )

curl

−−→ S̊2
r−2(T a )

div

−−→ L̊3
r−3(T a ) −−→ 0. (2.4.2d)

It is important to note that the exactness of these sequences is proved on a single

macroelement, and that constructing global spaces (i.e., finite element spaces on the entire

triangulation) with the desired exactness and smoothness properties requires particular

attention. The approach to constructing such global spaces begins with the degrees of

freedom for the local spaces, where the idea is to show that a function p defined on Th by

the degrees of freedom Σ(T ) for each T ∈ Th has the desired properties on all of Th. For

example, in the case of the Lagrange finite element spaces, one must show that the local

degrees of freedom on each T induce a global function that is continuous on all of Th.

In order to develop commuting projections for their sequences on the Alfeld split,
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Fu, Guzmán, and Neilan found that they needed to consider finite element spaces with

some extra smoothness at the vertices. In particular, they considered subspaces of

Skr−k(T
a ), Lkr−k(T

a ), and V k
r−k(T

a ) that have C2−k continuity on the vertices of T in the

cases 0 ≤ k ≤ 2, and degrees of freedom associated with these derivatives at the vertices

were included. It turns out that functions in S0
r (T

a ) are intrinsically C2 at the vertices of

T . Fu, Guzmán, and Neilan introduced the following spaces with added continuity at the

vertices.

L1
c,r(T

a ) = {v ∈ L1
r(T

a ) : v is C1 on ∆0(T )},

V 2
c,r(T

a ) = {v ∈ V 2
r (T a ) : v is C0 on ∆0(T )},

L̊1
c,r(T

a ) = L1
c,r(T

a ) ∩ L̊1
r(T

a ),

V̊ 2
c,r(T

a ) = V 2
c,r(T

a ) ∩ V̊ 2
r (T a ).

Next, they proved that the following sequence that includes these modified spaces is

exact.

R −−→ S̊0
r (T

a )
grad

−−→ L̊1
c,r−1(T a )

curl

−−→ V̊ 2
c,r−2(T a )

div

−−→ V̊ 3
r−3(T a ) −−→ 0. (2.4.3a)

For all other sequences, any additional smoothness required for their degrees of freedom

turned out to be inherent properties of the component spaces due to supersmoothness. Fu,

Guzmán, and Neilan went on to develop degrees of freedom on the three-dimensional

Alfeld split that induce global spaces that form exact sequences analogous with the local

sequences presented above. Since the exactness of the sequences proved in [33] applies

more generally to these spaces in any dimension, we first aimed to construct similarly

general commuting projections that would yield exact global sequences for any dimension.

To this end, we considered the space S0
r (T

a ) on the Alfeld split in four dimensions,
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with the goal of extending the commuting projections of [33] R4 first. In the course of

devising a set of degrees of freedom for S0
r (T

a ), we discovered that up to eighth-order

derivatives on the vertices of T would be needed, many of which would be multi-valued.

These constraints are arduous and, in a sense, unnatural, so this study led us to conclude

that it would be more practical to consider other types of splits. We present the details of

this study here.

Let the four-dimensional simplex T have five vertices {xi} with 1 ≤ i ≤ 5, and

let T a represent the Alfeld split of T , which is formed by adding an interior point z0

that is connected to the five vertices of T via five interior edges. Then T a has five 4-

dimensional facets, which we call 4-simplices, as well as 10 tetrahedra, 10 triangles, and

5 edges interior to T a . We label these five 4-simplices Qi = 〈x1, . . . , x̂i, . . . , x6〉, where

the notation x̂i means that vertex xi is not in the set, and 〈·〉 represents the convex hull.

Then any vertex xi of T is contained in four of these 4-simplices. Recall that ∆s(T )

denote the set of facets of T of dimension s. The critical idea of the following discussion

is that along an interface between two facets, a derivative of a continuous function in the

direction tangent to the interface is continuous along that interface.

A special property of the Alfeld refinement of a simplex is that of supersmoothness,

which is when a piecewise polynomial with a prescribed smoothness inherits additional

regularity due to the geometry of the triangulation. We will make use of the result that a

C1 polynomial on a three-dimensional Alfeld split is C2 at the vertices and C3 at the split

point. This result was proven in Alfeld’s 1984 paper [2] and, using a different approach,

in the 2010 paper of Sorokina [57].

We will use the three-dimensional supersmoothness properties to show that a piece-

wise C1 polynomial on a four-dimensional Alfeld split must be C3 at the vertices. Let q

be a C1 piecewise polynomial on the four-dimensional Alfeld split. Consider a vertex of
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T , say x1, and let y0 be an arbitrary point on the interior edge e16. Let Py0 be a hyperplane

that contains y0 but does contain the edge e16. Then the intersection of the hyperplane Py0

with T is a three-dimensional simplex that has y0 as an interior vertex, and the boundary

vertices occur at the intersections:

y1 = Py0 ∩ 〈x1, x2, x6〉, y2 = Py0 ∩ 〈x1, x3, x6〉,

y3 = Py0 ∩ 〈x1, x4, x6〉, y4 = Py0 ∩ 〈x1, x5, x6〉.

Then the points y1, y2, y3, y4 are vertices of the resulting three-dimensional triangulation,

which is an Alfed split, and we denote it by T y. Since q is a C1 function on T , it is C1 on

T y. Then by Sorokina’s and Alfeld’s supersmoothness result mentioned above, it follows

that q is C3 on y0. Since y0 and Py0 are chosen arbitrarily, it follows that q is C3 at any

point along the interior edge e16. In particular, q is C3 at the vertex x1. Hence q ∈ C3(S)

for any S ∈ ∆0(T ).

Now, we will show how many 4th-order derivatives of q are continuous at xi. Since

some of the 4th-order derivatives of q may not be continuous at each vertex xi ∈ ∆0(T ),

we will also determine how many values the fourth derivatives of q may take at each xi.

Suppose that ti6 is the unit vector tangent to edge ei6 = 〈xi, z0〉, where 1 ≤ i ≤ 5,

and let ti6 be oriented such that it points away from the interior point z0. Since T is

non-degenerate, it follows that any 4 of these vectors ti6 will form a spanning set of R4.

Hence with an abuse of notation, we can write each partial derivative of q with respect to

a selection of four of these edges.

The vertex x1 lies in the intersection ofQ2∩Q3∩Q4∩Q5. A fourth-order derivative of

q is continuous at x1 if it is continuous across all interfaces between these four Qi’s at x1.

Notice that interior edge e16 = Q2 ∩Q3 ∩Q4 ∩Q5, which means that t16, the unit vector



35

tangent to e16, is tangent to all four {Qi}4
i=2, hence it is tangent to all interfaces between

them. So any order derivative of q with respect to e16 is continuous at x1, such as ∂4q/∂e4
16.

We will choose the four directions tangent to the edge set E1 = {e16, e26, e36, e46} as a

basis to represent derivatives of q in the following discussion. It is convenient to choose

e16 to belong to this set while considering smoothness at x1, but the other three edges in

E1 may be chosen arbitrarily from the remaining four interior edges.

Now we will prove that 32 fourth-order partial derivatives of q are continuous at x1.

This leaves 3 fourth-order derivatives to be multi-valued at x1, since the number of fourth-

order partial derivatives in R4 is 1 + 3
(

4
3

)
+
(

4
2

)
+ 4
(

4
1

)
= 35. First, consider derivatives of

the form

∂

∂e16

∂3q

∂ei26∂e
j
36∂e

k
46

, i+ j + k = 3. (2.4.4)

There are ten of these derivatives. Since q ∈ C3(x1), ∂3q

∂ei26∂e
j
36∂e

k
46

is continuous at x1. Since

t16 is tangent to every 4-simplex,

∂

∂e16

∂3q

∂ei26∂e
j
36∂e

k
46

is a tangential derivative of a continuous function at x1, so (2.4.4) is continuous at x1. The

same logic yields that the 6 derivatives of the form

∂2

∂e2
16

∂2q

∂ei26∂e
j
36∂e

k
46

, i+ j + k = 2

are continuous at x1, and the 3 derivatives of the form

∂3

∂e3
16

∂3q

∂ei26∂e
j
36∂e

k
46

, i+ j + k = 1

are continuous at x1. So far, we have identified 20 fourth-order partial derivatives of q that
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are continuous at x1, leaving 15 total four-order derivatives remaining. Now, consider the

15 derivatives of the form

∂4q

∂ei26∂e
j
36∂e

k
46

, i+ j + k = 4. (2.4.5)

Case 1. Suppose i, j, k < 4, i.e., we exclude the derivatives of the form ∂4q/∂e4
`6 with

` = 2, 3, 4. Without loss of generality, suppose i, j > 0. Using the fact that q is C3 at x1,

∂3q

∂ei−1
26 ∂e

j
36∂e

k
46

is continuous at x1. The vector t26 is tangent to the 4-simplices Q3, Q4, and Q5, hence it

is tangent to the interfaces at the pairwise intersections of these three 4-simplices. So

∂

∂e26

∂3q

∂ei−1
26 ∂e

j
36∂e

k
46

∣∣∣∣
Q3

(x1) =
∂

∂e26

∂3q

∂ei−1
26 ∂e

j
36∂e

k
46

∣∣∣∣
Q4

(x1) =
∂

∂e26

∂3q

∂ei−1
26 ∂e

j
36∂e

k
46

∣∣∣∣
Q5

(x1).

Following similar logic,
∂3q

∂ei26∂e
j−1
36 ∂ek46

is continuous at x1, and the partial derivative ∂/∂e36 is tangential toQ2, Q4, andQ5, hence

it is tangential to their pairwise intersections. This yields

∂

∂e36

∂3q

∂ei26∂e
j−1
36 ∂ek46

∣∣∣∣
Q2

(x1) =
∂

∂e36

∂3q

∂ei26∂e
j−1
36 ∂ek46

∣∣∣∣
Q4

(x1) =
∂

∂e36

∂3q

∂ei26∂e
j−1
36 ∂ek46

∣∣∣∣
Q5

(x1),

(2.4.6)

and we know from the previous argument and by commuting the partials that the second

and third values in (2.4.6) are equal to

∂

∂e36

∂3q

∂ei26∂e
j−1
36 ∂ek46

∣∣∣∣
Q3

(x1).
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Therefore,
∂4q

∂ei26∂e
j
36∂e

k
46

∣∣∣∣
Q2

(x1) =
∂4q

∂ei26∂e
j
36∂e

k
46

∣∣∣∣
Q3

(x1),

so this derivative is continuous at x1. The same logic holds in the cases i, k > 0 and

j, k > 0, so any derivative of the form (2.4.5) where i, j, k < 4 is continuous at x1. In other

words, derivatives that do not have any partials with respect to edge e16 are continuous as

long as partials with respect to at least two different edges appear in the derivative.

Case 2. Without loss of generality, suppose i = 4, so j = k = 0. Then ∂4q/∂e4
26 is

tangential to 4-simplices Q3, Q4, and Q5. Therefore, the derivative is continuous across

the interfaces Q3 ∩Q4, Q3 ∩Q5, and Q4 ∩Q5, and

∂4q

∂e4
26

∣∣∣∣
Q3

(x1) =
∂4q

∂e4
26

∣∣∣∣
Q4

(x1) =
∂4q

∂e4
26

∣∣∣∣
Q5

(x1).

However, e26 is not tangential to Q2, so it is not necessarily continuous across the inter-

faces Q2 ∩Q3, Q2 ∩Q4, and Q2 ∩Q5. Hence

∂4q

∂e4
26

∣∣∣∣
Q2

(x1)

may take on a different value at x1 than on the other 4-simplices, so this derivative has

2 values at x1. The same argument holds for the cases j = 4 and k = 4, yielding three

4th-order partial derivatives of q that take two values at x1.

The same argument holds on the other vertices, where the important edge direction

e16 is replaced by ei6 in the proof above for each vertex xi. Hence in applying degrees of

freedom D4q(xi) requires 35 + 3 constraints on each of the five vertices of ∆0(T ).

Let Pc1r (T a ) represent the space of C1 piecewise polynomials on T a , and let P̊c1r (T a )

represent the space of piecewise polynomials in Pc1r (T a ) that are equal to zero on ∂T .
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The number of exterior DOFs should be

dimPc1r (T a )− dim P̊c1r (T a ) =
5

3
r3 − 15

2
r2 +

155

6
r − 20.

For a facet S ∈ ∆d(T
a ), 0 ≤ d ≤ 4, let P̂r(S) represent the space of polynomials

that vanish at the vertices of the simplex S. For S ∈ ∆d(T ), let bS ∈ Pd+1(S) denote

the corresponding bubble function. There holds DαbS|F = 0 for all F ∈ ∆m(S) and

|α| ≤ d−m− 1 for m = 0, 1, . . . , d− 1. For example, consider the case d = 3. Then we

have that the bubble function bS ∈ P4(S) with S ∈ ∆3(T ) satisfy

grad bS|F = 0 ∀F ∈ ∆1(S), D2bS|F = 0 ∀F ∈ ∆0(S).

Furthermore, we have that D3bS|F 6= 0 for F ∈ ∆0(S). Now we can state the degrees of

freedom and their dimension for the exterior facets of T in the following theorem.

Theorem 2.4.2. Let r ≥ 9. A function v ∈ S0
r (T

a ) may be uniquely determined on ∂T by

the following degrees of freedom.

No. of DOFs

Dαv(S), S ∈ ∆0(T ), |α| ≤ 4 365, (2.4.7a)∫
S

vκ ds, S ∈ ∆1(T ), κ ∈ Pr−10(S), 10(r − 9), (2.4.7b)∫
S

∂v

∂ni
κ ds, S ∈ ∆1(T ), κ ∈ Pr−9(S), 30(r − 8), (2.4.7c)∫

S

∂2v

∂ni∂nj
κ ds, S ∈ ∆1(T ), κ ∈ Pr−8(S), 60(r − 7), (2.4.7d)∫

S

vκ dA, S ∈ ∆2(T ), κ ∈ Pr−9(S), 5(r − 7)(r − 8), (2.4.7e)∫
S

∂v

∂ni
κ dA, S ∈ ∆2(T ), κ ∈ Pr−7(S), 10(r − 5)(r − 6), (2.4.7f)∫

S

vκ dx, S ∈ ∆3(T ), κ ∈ Pr−8(S),
5

6
(r − 5)(r − 6)(r − 7), (2.4.7g)
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∫
S

∂v

∂nS
κ dx, S ∈ ∆3(T ), κ ∈ P̂r−5(S),

5

6
(r − 2)(r − 3)(r − 4)− 20. (2.4.7h)

Proof. The number of DOFs given above is 5
3
r3 − 15

2
r2 + 155

6
r − 20, which is exactly the

desired amount.

The conditions (2.4.7a) - (2.4.7d) yield Dαv|S = 0 for all S ∈ ∆1(T ) and |α| ≤ 2.

Thus, on S ∈ ∆2(T ), we have v = b3
Sq and ∂v/∂n(i)

S = b2
Spi for some q ∈ Pr−9(S) and

pi ∈ Pr−7(S). Thus the conditions (2.4.7e) - (2.4.7f) imply v = 0 and grad v = 0 on all

S ∈ ∆2(T ).

Now let S ∈ ∆3(T ). Since v|∂S = 0 and grad v|∂S = 0, we have v = b2
Sq and

∂v/∂nS = bSp with bS ∈ P4(S), q ∈ Pr−8(S), and p ∈ Pr−5(S). The DOFs (2.4.7g) then

imply that v|S = 0.

Note that Dα(∂n/∂nS) = Dα(bSp) = 0 on ∆0(S) and |α| ≤ 3. But on ∆0(S), we

have D3(bSp) = D3bSp because D2bS = 0 and grad bS = 0 on ∆0(S). Since D3bS 6= 0,

on ∆0(S), we must have that p vanishes on ∆0(S), i.e., p ∈ P̂r−5(S). Thus, the DOFs

(2.4.7h) imply ∂v/∂nS = 0 for all S ∈ ∆3(T ). Therefore v|∂T = 0 and grad v|∂T = 0,

which is the desired result.

To achieve the full unisolvent set of degrees of freedom for S0
r (T

a ), one needs to add

the DOFs
∫
T

grad (v) · p dx for all p ∈ grad S̊0
r (T

a ), where S̊0
r (T

a ) = {v ∈ S0
r (T

a ) :

v|∂T = 0 and grad v|∂T = 0}.

In summary, we have seen that fourth-order derivative data is sufficient on the vertices

for the degrees of freedom, although the supersmoothness of C1 polynomials on Alfeld

splits only yields smooth third-order derivatives. Hence the fourth-order derivatives are

multi-valued, further complicating the degrees of freedom. Since the degrees of freedom
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on the four-dimensional Alfeld split seem to be arduous to the point of being impractical,

we wanted to see whether we could devise degrees of freedom for the smoother spaces

that would only rely on the smoothness inherent in the problem. This goal led us to

consider other types of splits with more facets: the Powell-Sabin split in two dimensions

and its three-dimensional analogue, the Worsey-Farin split. These splits and their relevant

properties are discussed in the next sections.

2.5 The Powell-Sabin split

Let us describe the Powell-Sabin split. Let T be a triangle with vertices z1, z2, and z3,

labeled counter–clockwise, and let z0 be an interior point of T . Denote the edges of T

by {ei}3
i=1, labeled such that zi is not a vertex of ei, i.e., ei = [zi+1, zi+2]. We denote the

outward unit normal of ∂T restricted to ei as ni and the tangent vector by ti. Let z3+i be

an interior point of edge ei. We then construct the triangulation T ps = {T1, . . . , T6} by

connecting each zi to z0 for 1 ≤ i ≤ 6; see Figure 2.2. We let Eb(T ps) be the set containing

the six boundary edges of T ps. We also letM(T ps) = {z4, z5, z6} and use the notation for

z ∈ M(T ps), T (z) = {K1, K2}, where each Ki ∈ T ps have z as a vertex. We also set

T (z) = K1 ∪K2. Let z ∈M(T ps), then we define the jump as follows

[[p]](z) = p1(z)m1 + p2(z)m2,

where pi = p|Ki
and mi is the outward pointing normal to Ki perpendicular to e. We see

then that [[p]](z) = (p1(z)− p2(z))m1 = −(p1(z)− p2(z))m2.

Let µ be the unique piecewise linear function on the mesh T ps such that µ(z0) = 1 and
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Figure 2.2: A pictorial description of a Powell-Sabin split of a triangle.

µ = 0 on ∂T . We use the notation∇µi := ∇µ|ei = ∇µ|T (z3+i) and note that

1

|∇µi|
∇µi = −ni (i = 1, 2, 3), (2.5.1)

and hence

∇µi · ti = 0 (i = 1, 2, 3). (2.5.2)

One main result of Chapter 4 is to show that sequences with these smoother component

spaces are exact. An integral component of this result is a characterization of the range of

the divergence operator acting on the (vector-valued) Lagrange space. For example, it is

known [56, Proposition 2.1] that if v ∈ L̊1
r(T

ps) then div v is continuous at the vertices

z4, z5, z6. In particular, this is because each of these vertices is a singular vertex, i.e., the

edges meeting at the vertex fall on exactly two straight lines. Hence, in order to extend

Lemma 2.1.6 and to characterize the range of div L̊1
r(T

ps), we will consider the spaces

V2
r (T ps) = {q ∈ V 2

r (T ps) : q is continuous at z4, z5, z6},

V̊2
r (T ps) = V2

r (T ps) ∩ L̊2(T ).

(2.5.3)
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Now we can write the sequences for which we will prove exactness in Chapter 4.

R −→ L0
r(T

ps)
rot−→ V 1

div ,r−1(T ps)
div−→ V 2

r−2(T ps) −→ 0, (2.5.4a)

R −→ S0
r (T

ps)
rot−→ L1

r−1(T ps)
div−→ V 2

r−2(T ps) −→ 0, (2.5.4b)

R −→ S0
r (T

ps)
rot−→ S1

div ,r−1(T ps)
div−→ L2

r−2(T ps) −→ 0, (2.5.4c)

0 −→ L̊0
r(T

ps)
rot−→ V̊ 1

div ,r−1(T ps)
div−→ V̊ 2

r−2(T ps) −→ 0, (2.5.4d)

0 −→ S̊0
r (T

ps)
rot−→ L̊1

r−1(T ps)
div−→ V̊2

r−2(T ps) −→ 0, (2.5.4e)

0 −→ S̊0
r (T

ps)
rot−→ S̊1

div ,r−1(T ps)
div−→ L̊2

r−2(T ps) −→ 0. (2.5.4f)

2.6 The Worsey-Farin split

Figure 2.3: Representation of a Worsey-Farin split (with two faces shown).

Here, we describe the Worsey-Farin split. Let T be a tetrahedron with vertices

{x1, x2, x3, x4}, and let z0 be an interior point of T . Denote the faces of T by Fi =

〈x1, . . . , x̂i, . . . x4〉, with 1 ≤ i ≤ 4, where the notation x̂i indicates that xi is not in Fi.

Let zi be an interior point of face Fi. Then the triangulation Twf , consisting of the tetra-

hedra Kwf
i = 〈z0, zi, x1, . . . , x̂i, . . . , x4〉, with 1 ≤ i ≤ 4, is constructed by connecting

each zi to the vertices of Fi and to the interior point z0 via an edge. The resulting split

Twf has 12 tetrahedra, 30 triangles, 26 edges, and 9 vertices; see Figure 2.3. Recall that
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∆d(S) represents the set of d-dimensional facets of a simplicial triangulation S, and we

let ∆I
d(S) represent the set of d-dimensional facets that are interior to S. We let Ki be

the tetrahedron 〈x1, x2, . . . , x̂i, . . . , x4, z0〉. Since the triangulation Twf is a refinement of

the Alfeld split T a of T using the same interior split point z0, we can denote the set of

tetrahedra {Ki} by ∆3(T a ). The triangulation Kwf
i of Ki ∈ ∆3(T a ) is constructed by

splitting the face of Ki that lies on the boundary of T by a Clough-Tocher split with the

split point zi as in Figure 2.4. The outward unit normal of T on a face F ∈ ∆2(T ) is

denoted by nF , and the outward unit normal of a face F on ∂F is denoted n∂F , which is

tangent to the plane containing F . Furthermore, each interior edge e of the triangulation

F ct of a face F ∈ ∆2(T ) is associated with two unit vectors that are both tangent to F ,

which we write as [t, s]>, where t is the unit vector tangent to e and s is normal to t; see

Figure 2.4. Then [t, s, nF ]> forms a basis for R3.

Figure 2.4: Representation of the triangulation Kwf
4 where K ∈ ∆3(T a ).

The Worsey-Farin refinement of a triangulation admits a special structure where any

two macroelements attach. Let Th be a triangulation of a domain Ω ⊂ R3, and let T1 and

T2 be adjacent tetrahedra in Th that share a face F = 〈x1, x2, x3〉 as in Figure 2.5. Then

the construction of the Worsey-Farin refinement T wf
h proceeds by adding the incenters z1

0

and z2
0 of T1 and T2, respectively, as well as a new edge 〈z1

0 , z
2
0〉, that intersects the interior
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Figure 2.5: The interface F ct of adjacent triangulations Kwf
1 and Kwf

2 within a Worsey-
Farin refinement.

of F . Such an intersection point always exists when the interior points z1
0 and z2

0 are

chosen to be the incenters of the tetrahedra T1 and T2, respectively [47]. This intersection

point is labeled z4, and three interior edges of F , {〈z4, xi〉}3
i=1, are added. Figure 2.5 is a

representation of the resulting triangulation. Furthermore, the tetrahedron 〈z1
0 , x1, x2, x3〉

is labeled K1, and 〈z2
0 , x1, x2, x3〉 is labeled K2. These tetrahedra are each split into three

subtetrahedra in the course of the Worsey-Farin refinement, and the triangulations of K1

and K2 are represented by Kwf
1 and Kwf

2 .

Since the edges 〈z1
0 , z4〉 and 〈z2

0 , z4〉 are colinear, the triangles 〈z1
0 , z4, x1〉 and

〈z2
0 , z4, x1〉 are coplanar. Similarly, triangles 〈z1

0 , z4, x2〉 and 〈z2
0 , z4, x2〉 are coplanar. Thus

the 3-dimensional facet 〈z1
0 , x1, z

2
0 , x2〉 forms a tetrahedron, as shown in Figure 2.6, where

the face 〈z1
0 , xi, z

2
0〉 is the union of the two coplanar triangles 〈z1

0 , z4, xi〉 and 〈z2
0 , z4, xi〉

for i = 1, 2. In the same way, 〈z1
0 , x1, z

2
0 , x3〉 and 〈z1

0 , x2, z
2
0 , x3〉 form tetrahedra.
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Figure 2.6: Representation of one of three tetrahedra formed between two adjacent
Worsey-Farin splits by the colinearity of points {z1

0 , z4, z
2
0}.

Remark 2.6.1. The importance of this structure is that the natural extension of a piecewise

polynomial from Kwf
1 to all of Kwf

1 ∪ Kwf
2 maintains its original smoothness properties

across the interior faces of Kwf
2 , since all the faces of a given subtetrahedron in Kwf

1 are

coplanar to the faces of the adjacent subtetrahedron of Kwf
2 .

Next, we discuss the formation of singular edges in the Worsey-Farin refinement of a

triangulation.

Definition 2.6.2. An edge e is a singular edge if the faces of the triangulation that meet at

edge e fall on exactly two planes.

Each of the interior edges of Fi is a singular edge since the interior triangles of each

Twf ∈ T wf
h meeting at these edges are coplanar. A singular edge occurs when each

triangle intersecting at that edge lies in one of two planes, i.e., every point along a singular

edge is a singular point. This property leads to some additional continuity of functions in

the ranges of the Lagrange spaces, curlL1
r(T wf

h ) and divL2
r(T wf

h ), so we need to define
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some new spaces that incorporate this additional continuity. Let ∆d(S) represent the set

of subsimplices of S that have dimension d.

V2
r (Twf ) = {v ∈ V 2

r (Twf ) : v × nF |F is continuous on each F ∈ ∆2(T )}, (2.6.1a)

V̊2
r (Twf ) = {v ∈ V2

r (Twf ) : v · nF |F = 0 on each F ∈ ∆2(T )}, (2.6.1b)

V3
r (Twf ) = {q ∈ V 3

r (Twf ) : q|F is continuous on each F ∈ ∆2(T )}, (2.6.1c)

V̊3
r (Twf ) = {q ∈ V3

r (Twf ) :

∫
T

q = 0}, (2.6.1d)

where q|F is the restriction of q to a face F of T . We will prove in Chapter 4 that div :

L̊2
r(T

wf )→ V̊3
r (Twf ) is surjective, and therefore div L̊2

r(T
wf ) = V̊3

r−1(Twf ).

Now we can state the sequences that will be shown to be exact in Chapter 5.

R −−→ L0
r(T

wf )
grad

−−→ V 1
r−1(Twf )

curl

−−→ V 2
r−2(Twf )

div

−−→ V 3
r−3(Twf ) −−→ 0, (2.6.2a)

R −−→ S0
r (T

wf )
grad

−−→ L1
r−1(Twf )

curl

−−→ V 2
r−2(Twf )

div

−−→ V 3
r−3(Twf ) −−→ 0, (2.6.2b)

R −−→ S0
r (T

wf )
grad

−−→ S1
r−1(Twf )

curl

−−→ L2
r−2(F ct )

div

−−→ V 3
r−3(Twf ) −−→ 0, (2.6.2c)

R −−→ S0
r (T

wf )
grad

−−→ S1
r−1(Twf )

curl

−−→ S2
r−2(Twf )

div

−−→ L3
r−3(Twf ) −−→ 0. (2.6.2d)

We will also show that the following sequences with boundary conditions are exact.

0 −−→ L̊0
r(T

wf )
grad

−−→ V̊ 1
r−1(Twf )

curl

−−→ V̊ 2
r−2(Twf )

div

−−→ V̊ 3
r−3(Twf ) −−→ 0, (2.6.3a)

0 −−→ S̊0
r (T

wf )
grad

−−→ L̊1
r−1(Twf )

curl

−−→ V̊2
r−2(Twf )

div

−−→ V̊ 3
r−3(Twf ) −−→ 0, (2.6.3b)

0 −−→ S̊0
r (T

wf )
grad

−−→ S̊1
r−1(Twf )

curl

−−→ L̊2
r−2(Twf )

div

−−→ V̊3
r−3(Twf ) −−→ 0, (2.6.3c)

0 −−→ S̊0
r (T

wf )
grad

−−→ S̊1
r−1(Twf )

curl

−−→ S̊2
r−2(Twf )

div

−−→ L̊3
r−3(Twf ) −−→ 0. (2.6.3d)

It is useful to have the dimension counts of each of the spaces that make up (2.6.2)
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and (2.6.3) in developing their degrees of freedom. Here, we state some known dimension

counts of the Nédélec and Lagrange spaces on the Worsey-Farin split.

Lemma 2.6.3. Let r ≥ 0. The following dimension counts may be found in [6], pp. 86–87.

dimV 0
r (Twf ) = (2r + 1)(r2 + r + 1),

dimV 1
r−1(Twf ) = 6r3 + 2r,

dimV 2
r−2(Twf ) = max{3r(2r − 1)(r − 1), 0},

dimV 3
r−3(Twf ) = max{2r(r − 1)(r − 2), 0}.

Lemma 2.6.4. The following dimension counts may be found in [47] and [6].

dimL0
r(T

wf ) = (2r + 1)(r2 + r + 1),

dimL1
r−1(Twf ) = max{3(2r − 1)(r2 − r + 1), 0},

dimL2
r−2(Twf ) = max{3(2r − 3)(r2 − 3r + 3), 0},

dimL3
r−3(Twf ) = max{(2r − 5)(r2 − 5r + 7), 0}.

We prove new formulae for the dimension of the smooth spaces Skr (Twf ) in Chapter

5. In the next chapter, we prove the exactness of sequences on the Powell-Sabin split as

stated in Section 2.5 and derive commuting projections for these sequences that induce the

appropriate global spaces.



CHAPTER THREE

Exact Sequences on Powell-Sabin Splits
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3.1 Exact sequences on a macro triangle

The goal of this section is to extend Lemma 2.1.6, the exact sequences formed by Nédélec

spaces on general triangulations, to incorporate the smoother spaces defined in Section

2.1. Throughout this chapter, will use the form (2.5.4) of the exact sequences using the

two-dimensional rot and div operators, so for ease of notation, we will simply represent

V 1
div ,r(T

ps) by V 1
r (T ps) and S1

div ,r(T
ps) by S1

r (T
ps).

First, we show that div L̊1
r(T

ps) = ker V̊2
r−1(T ps), where the spaces V2

r−1(T ps) and

V̊2
r−1(T ps) are defined as in (2.5.3). Notice that ker V̊2

r−1(T ps) = V̊2
r−1(T ps), since the

entire space is mapped to zero in the sequence (2.5.4e). In the following lemma, we show

that the mapping div : L̊1
r+1(T ps)→ V̊2

r−1(T ps) is injective.

Lemma 3.1.1. For any r ≥ 0, V̊2
r (T ps) ⊆ div L̊1

r+1(T ps).

Proof. Let v ∈ L̊1
r+1(T ps), so by the Stokes theorem (2.2.3c), we have

∫
T

div v dx =

∫
∂T

ni · v dx = 0,

since v|∂T = 0. Let ei ∈ ∆1(T ), and we can see that div v is continuous along ei. Letting

zi+3 be the split point of ei as in Figure 2.2, and letting the unit vector ti be tangent to ei,

we have that ∂ti(v · ti) = 0 along ei since v · ti is zero on ei. Let si be the unit vector

tangent to edge 〈z0, zi+3〉 that intersects edge ei at zi+3. Then the derivative ∂si(v · si) is

continuous at zi+3 because v is continuous along 〈z0, zi+3〉. Since ti and ni form a basis

for R2, we can write

si = (si · ti)ti + (si · ni)ni,
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and solving for ni yields

ni =
si − (si · ti)ti

si · ni
.

It follows that, along ei,

div v = ti · grad (v · ti) + ni · grad (v · ni)

= 0 +
si

si · ni
· grad

(
v ·
(
si − (si · ti)ti

si · ni

))
−

(si · ti)ti
si · ni

· grad

(
v ·
(
si − (si · ti)ti

si · ni

))
=

si
(si · ni)2

· grad (v · si)−
(si · ti)si
(si · ni)2

· grad (v · ti)−

(si · ti)ti
(si · ni)2

· grad (v · si) +
(si · ti)2ti
(si · ni)2

· grad (v · ti).

(3.1.1)

The first term on the right hand side of (3.1.1) is continuous because v · si is continuous

on T , therefore si · grad (v · si) is continuous along 〈z0, zi+3〉, which includes the point

zi+3. Hence si · grad (v · si) is continuous along ei. By the same logic, si · grad (v · ti) is

continuous along ei since v · ti is continuous on T . The third term is continuous because

v · si is zero along ei, hence ti · grad (v · si) is zero on ei as well. By the same logic,

ti · grad (v · ti) is also zero along ei. Therefore div v is continuous along ei and has

average zero in T , so div v ∈ V̊2
r (T ps).

It remains to show that div L̊1
r+1(T ps) ⊆ V̊2

r (T ps). We proceed using multiple steps

proved in the following lemmas, where our goal is ultimately to construct a function v ∈

L̊1
r+1(T ps) for any given q ∈ V2

r (T ps) such that div v = q. First, we will need the following

remark.

Remark 3.1.2. For any function v ∈ [Pr(T ps)]d, with d = 1, 2, such that v|∂T = 0, there

exists a function w ∈ [Pr−1(T ps)]d such that v = µw.
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Lemma 3.1.3. Let q ∈ V2
r (T ps) and r ≥ 1, then there exists w ∈ L1

r(T
ps) and g ∈

V 2
r−1(T ps) such that µsq = div (µs+1w) + µs+1g for any s ≥ 0.

Proof. Let bi ∈ P1(ei) be the linear function such that q|ei − bi vanishes at the end points

of ei. Because q − bi vanishes at the endpoints and q is continuous at z3+i, there exists

ai ∈ L0
r(T

ps) such that ai|ei = (q − bi)|ei and supp ai ∈ T (z3+i). Note that ai|ej = 0 for

i 6= j.

Next, using (2.5.1) and the Nédélec degrees of freedom (2.1.3), we construct a unique

function w1 ∈ [P1(T )]2 such that

(s+ 1)w1 · ∇µi = bi on ei, i = 1, 2, 3.

We set `i = ∇µi
|∇µi|2 ,

w2 =
1

s+ 1
(a1`1 + a2`2 + a3`3), and w = w1 + w2.

We then see that, on ei,

(s+ 1)w · ∇µi = (s+ 1)w1 · ∇µi + (s+ 1)w2 · ∇µi = bi + ai = q.

Therefore the function (s + 1)w · ∇µ − q vanishes on ∂T , which implies that µv =

(s+ 1)w · ∇µ− q for some v ∈ V 2
r−1(T ps); see Remark 3.1.2.

Finally we compute

µsq = µsq+div (µs+1w)−µs+1div (w)−µs(s+1)w·∇µ = div (µs+1w)−µs+1(div (w)+v).

The proof is complete upon setting g = −(divw + v).



52

Lemma 3.1.4. For any θ ∈ V 2
r (T ps) with r ≥ 0, there exists ψ ∈ L1

1(T ps) and γ ∈

V2
r (T ps) such that

µsθ = div (µsψ) + µsγ for any s ≥ 0. (3.1.2)

Proof. Given θ ∈ V 2
r (T ps), we define ai ∈ L0

1(T ps) uniquely by the conditions

ai(zj) = 0, j = 0, 1, 2, 3, ai(z3+j) = 0, j 6= i, [[∇ai · ti]](z3+i) = [[θ]](z3+i).

We clearly have supp ai ∈ T (z3+i). Setting ψ = a1t1 + a2t2 + a3t3 we have

divψ|ei = ∇ai · ti,

and therefore, by the construction of ai, γ := θ− divψ ∈ V2
r (T ps). Furthermore, we have

ψ · ∇µ|T (z3+i) = aiti · ∇µ|T (z3+i) = 0 for i = 1, 2, 3 by (2.5.2), and so ψ · ∇µ = 0 in T . It

then follows that

µsθ − div (µsψ) = µs(θ − divψ)− sµs−1∇µ · ψ = µsγ.

We combine the previous two lemmas to obtain the following.

Lemma 3.1.5. Let q ∈ V2
r (T ps) and r ≥ 1. Then there exists v ∈ L1

r(T
ps) and Q ∈

V2
r−1(T ps) such that µsq = div (µs+1v) + µs+1Q for any s ≥ 0.

The last lemma handles the lowest order case which follows from [33, Lemma 3.11].

Lemma 3.1.6. Let q ∈ V2
0 (T ps) with

∫
T
µsq = 0. Then there exists w ∈ L1

0(T ps) such that

µsq = div (µs+1w) for any s ≥ 0.
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We can now state and prove the main result.

Theorem 3.1.7. For each p ∈ V̊2
r (T ps), with r ≥ 0, there exists a v ∈ L̊1

r+1(T ps) such that

div v = p.

Proof. We adopt similar arguments to those given in [38]. Let pr = p and suppose we

have found wr−j ∈ L1
r−j(T

ps) for 0 ≤ j ≤ `−1 and pr−j ∈ V2
r−j(T

ps) for 0 ≤ j ≤ ` such

that

div (µj+1wr−j) = µjpr−j − µj+1pr−(j+1) for all 0 ≤ j ≤ `− 1. (3.1.3)

We can then apply Lemma 3.1.5 to find wr−` ∈ L1
r−`(T

ps) and pr−(`+1) ∈

V2
r−(`+1)(T

ps) such that

div (µ`+1wr−`) = µ`pr−` − µ`+1pr−(`+1). (3.1.4)

Hence, by induction we can find wr−j ∈ L1
r−j(T

ps) for 0 ≤ j ≤ r − 1 and pr−j ∈

V2
r−j(T

ps) for 0 ≤ j ≤ r such that (3.1.4) holds. Therefore,

div (µwr + µ2wr−1 + · · ·+ µrw1) = p− µrp0.

We have that
∫
T
µrp0 = 0 and hence by Lemma 4.1.9 we can find w0 ∈ L1

0(T ps) such that

div (µr+1w0) = µrp0. The result follows after setting v = µwr + µ2wr−1 + · · ·µrw1 +

µr+1w0.

We have several corollaries that follow from Theorem 3.1.7. First we show that the

analogous result without boundary conditions is satisfied.

Corollary 3.1.8. For each p ∈ V 2
r (T ps) there exists a v ∈ L1

r+1(T ps) such that div v = p.
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Proof. Let p ∈ V 2
r (T ps). By Lemma 4.1.6 there exists w ∈ L1

1(T ps) and g ∈ V2
r (T ps)

with

p = divw + g.

We let ψ = ( 1
|T |

∫
T
g)1

2
x ∈ L1

1(T ps) and hence
∫
T

divψ =
∫
T
g. We then have

p = div (w + ψ) + (g − divψ).

By Theorem 3.1.7 there exists a θ ∈ L̊1
r+1(T ps) such that div θ = g − divψ. Therefore,

we have

p = div (w + ψ + θ).

The proof is complete after we set v = w + ψ + θ.

Corollary 3.1.9. For each p ∈ L̊2
r(T

ps) (resp., p ∈ L2
r(T

ps)) there exists a v ∈ S̊1
r+1(T ps)

(resp., v ∈ S1
r+1(T ps)) such that div v = p. Likewise for each v ∈ L̊1

r(T
ps) (resp.,

v ∈ L1
r(T

ps)) with div v = 0 there exists a z ∈ S̊0
r+1(T ps) (resp., z ∈ S0

r+1(T ps)) such that

rot z = v.

Proof. Let p ∈ L̊2
r(T

ps) ⊂ V̊2
r (T ps) and we can apply Theorem 3.1.7 to find v ∈

L̊1
r+1(T ps) such that div v = p. However, clearly v ∈ S̊1

r+1(T ps).

Next, let v ∈ L̊1
r(T

ps) ⊂ V 1
r (T ps) be divergence–free. Lemma 2.1.6 shows that there

exists z ∈ V̊ 0
r (T ps) such that rot z = v. Since v is continuous and vanishes on the

boundary, we have rot z ∈ [C(T )]2 and z|∂T = 0, rot z|∂T = 0. Thus z ∈ S̊0
r (T

ps) by

definition.

This proof applies mutatis mutandis to the statements without boundary conditions.

Remark 3.1.10. To summarize, Lemma 2.1.6, Theorem 3.1.7, and Corollaries 3.1.8 and
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3.1.9 show that the following two sets of sequences are exact:

R −→ L0
r(T

ps)
rot−→ V 1

r−1(T ps)
div−→ V 2

r−2(T ps) −→ 0,

R −→ S0
r (T

ps)
rot−→ L1

r−1(T ps)
div−→ V 2

r−2(T ps) −→ 0,

R −→ S0
r (T

ps)
rot−→ S1

r−1(T ps)
div−→ L2

r−2(T ps) −→ 0,

and

0 −→ L̊0
r(T

ps)
rot−→ V̊ 1

r−1(T ps)
div−→ V̊ 2

r−2(T ps) −→ 0,

0 −→ S̊0
r (T

ps)
rot−→ L̊1

r−1(T ps)
div−→ V̊2

r−2(T ps) −→ 0,

0 −→ S̊0
r (T

ps)
rot−→ S̊1

r−1(T ps)
div−→ L̊2

r−2(T ps) −→ 0.

3.2 Dimension counts

We can easily count the dimensions of the smooth spaces Skr (T ps) via the rank–nullity

theorem and the exactness of sequences (k = 0, 1):

dimSkr (T ps) = dim rangeSkr (T ps) + dim kerSkr (T ps)

= dim kerLk+1
r−1(T ps) + dim kerLkr(T

ps)

= dimLk+1
r−1(T ps)− dim rangeLk+1

r−1(T ps) + dimLkr(T
ps)− rangeLkr(T

ps)

= dimLk+1
r−1(T ps) + dimLkr(T

ps)− dim kerV k+2
r−2 (T ps)− dim kerV k+1

r−1 (T ps)

= dimLk+1
r−1(T ps) + dimLkr(T

ps)− dimV k+1
r−1 (T ps).
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Now we easily find

dimLkr(T
ps) =

(
2

k

)[
3r2 + 3r + 1

]
, dimV k

r (T ps) =


3r2 + 3r + 1 k = 0,

6r2 + 12r + 6 k = 1,

3r2 + 9r + 6 k = 2.

Thus, we have

dimSkr (T ps) =


3r2 − 3r + 3 k = 0,

6r2 + 3 k = 1,

3r2 + 3r + 1 k = 2.

Similar calculations also show that

dim S̊kr (T ps) =


3(r − 2)(r − 3) k = 0,

6(r − 1)(r − 2) k = 1,

3r(r − 1) k = 2.

3.3 Commuting projections on a macro triangle

In this section we define commuting projections. In order to do so, we give the degrees of

freedom for C1 polynomials on a line segment. Let a < m < b, and define the space

Wr({a,m, b}) = {v ∈ C1([a, b]) : v|[a,m] ∈ Pr([a,m]) on v|[m,b] ∈ Pr([m, b])).

The classical degrees of freedom for Wr({a,m, b}) is given in the next result.

Lemma 3.3.1. Let r ≥ 1. A function z ∈ Wr({a,m, b}) is uniquely determined by the
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following degrees of freedom.

z(a), z(b)

z′(a), z′(b) if r ≥ 2,

z(m), z′(m) if r ≥ 3,∫ m

a

z(x)q(x) for all q ∈ Pr−4([a,m]),∫ b

m

z(x)q(x) for all q ∈ Pr−4([m, b]).

Other degrees of freedom are given in the next lemma. Its proof is found in the ap-

pendix.

Lemma 3.3.2. Let r ≥ 1. A function z ∈ Wr({a,m, b}) is uniquely determined by the

following degrees of freedom.

z(a), z(b) (3.3.1a)∫ m

a

z(x)q(x) for all q ∈ Pr−2([a,m]), (3.3.1b)∫ b

m

z(x)q(x) for all q ∈ Pr−2([m, b]). (3.3.1c)

Lemma 3.3.3. Suppose that q ∈ S0
r (T

ps) with q|ei = 0 for some i ∈ {1, 2, 3}. Then

q|T (z3+i) = µp|T (z3+i) for some p ∈ L0
r−1(T ps)

∣∣
T (z3+i)

, and p ∈ C1(T (z3+i)). In particular,

if q|∂T = 0, then q = µp for some p ∈ L0
r−1(T ps) and p|T (z3+i) ∈ C1(T (z3+i)) for

i = 1, 2, 3.

Proof. The statement q|T (z3+i) = µp|T (z3+i) is a consequence of Remark 3.1.2. Because q

and µ are continuous, it follows that p is continuous, i.e., p ∈ L0
r−1(T ps)

∣∣
T (z3+i)

. We also
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have ∇q = µ∇p+ p∇µ, and therefore

µ∇p|T (z3+i) =
(
∇q − p∇µ

)
|T (z3+i).

Since ∇µ is constant on T (z3+i), we find that µ∇p|T (z3+i) is continuous. Because µ is

positive in the interior of T (z3+i), we conclude that∇p is continuous on T (z3+i).

We are now ready to give degrees of freedom (DOFs) for functions in S0
r (T

ps).

Lemma 3.3.4. A function q ∈ S0
r (T

ps), with r ≥ 2, is uniquely determined by

q(zi),∇q(zi) 1 ≤ i ≤ 3, (9 DOFs) (3.3.2a)

q(z3+i), ∂tq(z3+i) 1 ≤ i ≤ 3, if r ≥ 3, (6 DOFs) (3.3.2b)∫
e

∂nq p ∀p ∈ Pr−3(e), e ∈ Eb(T ps), (6(r − 2) DOFs) (3.3.2c)∫
e

qp ∀p ∈ Pr−4(e), e ∈ Eb(T ps), (6(r − 3) DOFs) (3.3.2d)∫
T

rot q · rot p ∀p ∈ S̊0
r (T

ps), (3(r − 2)(r − 3) DOFs) (3.3.2e)

Proof. The number of DOFs given is 3r2 − 3r+ 3 = dimS0
r (T

ps). We will show that the

only function q for which (3.3.2a)–(3.3.2e) are equal to zero must be zero on T . Suppose

that q vanishes on (3.3.2a)–(3.3.2d) restricted to a single edge ei. Then q satisfies all

conditions of Lemma 3.3.1 on each edge of T , so q ≡ 0 on ei. It then follows from Lemma

3.3.3 that q|T (z3+i) = µp|T (z3+i), where p ∈ C1(T (z3+i)) is a piecewise polynomial of

degree (r− 1). We then have∇q|ei = p∇µi|ei , and so by (3.3.2a), p = 0 on the endpoints

of ei. Also (3.3.2c) yields
∫
e
pw∂nµ = 0 for all w ∈ Pr−3(e) and for all e ∈ Eb(T ps)

with e ⊂ ei. Since ∂nµ is constant on each edge e ∈ Eb(T ps), we have
∫
e
pw = 0 for all

w ∈ Pr−3(e) and e ⊂ ei. Using Lemma 3.3.2, it follows that p ≡ 0 on ei. Thus∇q|ei = 0.

We conclude that if q vanishes on (3.3.2), then q ∈ S̊0
r (T

ps). Finally, condition (3.3.2e)
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yields rot q = 0 on T , and hence q ≡ 0 on T .

Lemma 3.3.5. A function v ∈ L1
r(T

ps) is uniquely determined by

No. of DOFs

v(zi), 1 ≤ i ≤ 3, 6, (3.3.3a)∫
ei

(v · ni) ds, if r = 1, (3.3.3b)

[[div v]](z3+i), 1 ≤ i ≤ 3, 3, (3.3.3c)

v(z3+i) · ni, 1 ≤ i ≤ 3, if r ≥ 2, 3, (3.3.3d)∫
e

v · w ds, ∀w ∈ [Pr−2(e)]2, ∀e ∈ Eb(T ps), 12(r − 1), (3.3.3e)∫
T

v · rot w dx, ∀w ∈ S̊0
r+1(T ps), 3(r − 1)(r − 2), (3.3.3f)∫

T

div v w dx, ∀w ∈ V̊2
r−1(T ps), 3r(r + 1)− 4. (3.3.3g)

Proof. The number of degrees of freedom given is 6r2+6r+2 which equals the dimension

of L1
r(T

ps). We show that if v ∈ L1
r(T

ps) vanishes on (3.3.3), then v is identically zero.

Suppose that v vanishes on (3.3.3a)–(3.3.3e) restricted to a single edge ei. Recall

that T (z3+i) = T2i+1 ∪ T2i+2 is the union of two triangles that have z3+i as a vertex,

and ni and ti are, respectively, the outward normal and unit tangent vectors of the edge

ei = ∂T ∩ ∂T (z3+i). Let si be a unit vector that is tangent to the interior edge [z0, z3+i],

which is necessarily linearly independent of ti. Thus we may write

v|T (z3+i) = aiti + bisi
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for some ai, bi ∈ L0
r(T

ps)|T (z3+i). We then see that

div v|T (zi+3) = ∂tiai + ∂sibi.

Because bi is continuous on T (z3+i) we have that [[∂sibi]](zi+3) = 0 and hence 0 =

[[div v]](z3+i) = [∂tiai](z3+i). Therefore ai|ei is C1 on ei. To continue, we split the proof

into two step.

Case r = 1:

By the first set of DOFs (3.3.3a), there holds ai(zj) = bi(zj) = 0 for j ∈ {1, 2, 3}\{i}.

Because ai|ei is piecewise linear and C1, we conclude that ai ≡ 0 on ei. Next, using

(3.3.3b) yields ∫
ei

bi(si · ni) = 0.

Because si · ni 6= 0, we conclude that
∫
ei
bi = 0. Since bi vanishes at the endpoints of ei,

and since bi is piecewise linear on ei, we conclude that bi = 0 on ei, and therefore v|ei = 0.

Case r ≥ 2:

Again, there holds ai(zj) = bi(zj) = 0 by the first set of DOFs (3.3.3a). Combining

Lemma 3.3.2 with the DOFs (3.3.3e), noting that ai is C1 on ei, then yields ai = 0 on ei.

Likewise the DOFs (3.3.3a), (3.3.3e), and (3.3.3d) show that bi = 0 on ei. We conclude

that v|ei = 0.

Thus, if v vanishes on (3.3.3) then v ∈ L̊1
1(T ps). The DOFs (3.3.3g) then show that

div v = 0, and therefore, by Corollary 3.1.9, v = rot z for some z ∈ S̊r+1(T ps). Finally,

by (3.3.3f), we conclude that v ≡ 0.
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Lemma 3.3.6. A function q ∈ V 2
r (T ps) is uniquely determined by

No. of DOFs

[[q]](z3+i), 1 ≤ i ≤ 3, 3, (3.3.4a)∫
T

q dx, 1, (3.3.4b)∫
T

qp dx, ∀p ∈ V̊2
r (T ps), 3(r + 1)(r + 2)− 4. (3.3.4c)

Proof. If q ∈ V 2
r (T ps) is such that (3.3.4a) are zero then q is continuous at z3+i for 1 ≤

i ≤ 3. Then (3.3.4b) yields that q ∈ V̊2
r (T ps), and it follows from (3.3.4c) that q ≡ 0 on

T .

Lemma 3.3.7. A function v ∈ S1
r (T

ps) is uniquely determined by the following degrees of

freedom.

No. of DOFs

v(zi), div v(zi), 1 ≤ i ≤ 3, 9, (3.3.5a)∫
ei

v · ni ds, 1 ≤ i ≤ 3, if r = 1, (3.3.5b)

v(z3+i) · n, div v(z3+i), 1 ≤ i ≤ 3, if r ≥ 2, 6, (3.3.5c)∫
e

v · w ds, ∀w ∈ [Pr−2(e)]2, ∀e ∈ Eb(T ps), 12(r − 1), (3.3.5d)∫
e

(div v)q ds, ∀q ∈ Pr−3(e), ∀e ∈ Eb(T ps), 6(r − 2), (3.3.5e)∫
T

v · rot q dx, ∀q ∈ S̊0
r+1(T ps), 3(r − 1)(r − 2), (3.3.5f)∫

T

(div v)q dx, ∀q ∈ L̊2
r−1(T ps), 3(r − 1)(r − 2). (3.3.5g)

Proof. If v vanishes at the DOFs, then v ∈ S1
r (T

ps) ⊂ L1
r(T

ps) vanishes on (3.3.3a)–

(3.3.3e). The proof of Lemma 3.3.5 then shows that v|∂T = 0, and therefore
∫
T

div v =

0. Using (3.3.5a),(3.3.5c), and (3.3.5e), we also find that div v|∂T = 0, i.e., div v ∈
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L̊2
r−1(T ps). The DOFs (3.3.5g) yield div v = 0 in T , and therefore v = rot q for some

q ∈ S̊0
r+1(T ps) by Corollary 3.1.9. Finally (3.3.5f) gives v ≡ 0. Noting that the number of

DOFs is 6r2 + 3, the dimension of S1
r (T

ps), we conclude that (3.3.5) form a unisolvent set

over S1
r (T

ps).

Lemma 3.3.8. Let q ∈ L2
r(T

ps) with r ≥ 1. Then q is uniquely determined by the following

degrees of freedom.

No. of DOFs

q(zi), 1 ≤ i ≤ 3, 3, (3.3.6a)

q(z3+i), 1 ≤ i ≤ 3, 3, (3.3.6b)∫
e

qp ds, ∀p ∈ Pr−2(e), ∀e ∈ Eb(T ps), 6(r − 1), (3.3.6c)∫
T

q dx, 1, (3.3.6d)∫
T

qp dx, ∀p ∈ L̊2
r(T

ps), 3r(r − 1). (3.3.6e)

Proof. Let q ∈ L2
r(T

ps) such that all DOFs (3.3.6) are equal to zero. The conditions

(3.3.6a)–(3.3.6c) yield that q ≡ 0 on ∂T . Therefore, using (3.3.6d), q ∈ L̊2
r(T

ps), and by

(3.3.6e), q ≡ 0 on T .

The next two theorems show that projections induced by the degrees of freedom given

in Lemmas 3.3.4–3.3.8 commute.

Theorem 3.3.9. Let Πr
0 : C∞(T ) → S0

r (T
ps) be the projection induced by the DOFs

(3.3.2), that is,

φ(Πr
0p) = φ(p), ∀φ ∈ DOFs in (3.3.2).

Likewise, let Πr−1
1 : [C∞(T )]2 → L1

r−1(T ps) be the projection induced by the DOFs
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(3.3.3), and let Πr−2
2 : C∞(T ) → V 2

r−2(T ps) be the projection induced by the DOFs

(3.3.4). Then for r ≥ 2, the following diagram commutes

R C∞(T ) [C∞(T )]2 C∞(T ) 0

R S0
r (T

ps) L1
r−1(T ps) V 2

r−2(T ps) 0.

Πr
0

rot

Πr−1
1

div

Πr−2
2

rot div

In other words, we have for r ≥ 2

div Πr−1
1 v =Πr−2

2 div v, ∀v ∈ [C∞(T )]2, (3.3.7a)

rot Πr
0p =Πr−1

1 rot p, ∀p ∈ C∞(T ). (3.3.7b)

Proof. (i) Proof of (3.3.7a). We take v ∈ [C∞(T )]2. Since ρ := div Πr−1
1 v−Πr−2

2 div v ∈

V 2
r−2(T ps), we only need to prove that ρ vanishes at the DOFs (3.3.4). For the jump

condition at points z3+i for 1 ≤ i ≤ 3, we have

[[ρ]](z3+i) = [[div Πr−1
1 v − Πr−2

2 div v]](z3+i) = [[div Πr−1
1 v − div v]](z3+i) = 0,

where we have used the definitions of Πr−2
2 and Πr−1

1 along with the DOFs (3.3.4a) and

(3.3.3c).

For the interior DOFs, we have,

∫
T

ρ =

∫
T

(
div Πr−1

1 v − div v
)

=

∫
∂T

(
Πr−1

1 v − v
)
· n = 0,

where we have used the definitions of Πr−1
1 and Πr−2

2 and DOFs (3.3.4b) and either

(3.3.3b) if r = 2 or (3.3.3e) if r ≥ 3. Finally, for any p ∈ V̊2
r−2(T ps),

∫
T

ρp =

∫
T

(
div Πr−1

1 v − Πr−1
2 div v

)
p = 0
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by the definitions of Πr−1
1 and Πr−2

2 along with DOFs (3.3.4c) and (3.3.3g). By Lemma

3.3.6, ρ is exactly zero on T , and the projections in (3.3.7a) commute.

(ii) Proof of (3.3.7b). Let p ∈ C∞(T ) and set ρ := rot Πr
0p− Πr−1

1 rot p ∈ L1
r−1(T ps).

We will show that ρ vanishes for all DOFs (3.3.3).

First, for each vertex zi with 1 ≤ i ≤ 3,

ρ(zi) = rot Πr
0p(zi)− Πr−1

1 rot p(zi) = rot p(zi)− Πr−1
1 rot p(zi) = 0, (3.3.8)

by (3.3.2a) and (3.3.3a). Furthermore, at nodes z3+i, we have by (3.3.3c)

[[div ρ]](z3+i) = [[div rot Πr
0p− div Πr−1

1 rot p]](z3+i)

= −[[div Πr−1
1 rot p]](z3+i)

= −[[div rot p]](z3+i) = 0,

For the DOFs on each edge e ∈ Eb(T ps), we will use that rot ϕ ·n = ∂tϕ and rot ϕ ·t =

−∂nϕ. Then we have, for r ≥ 3,

ρ(z3+i) · ni = (rot Πr
0p(z3+i)) · ni −

(
Πr−1

1 rot p(z3+i)
)
· ni

= ∂tp(z3+i)−
(
Πr−1

1 rot p(z3+i)
)
· ni

= ∂tp(z3+i)− rot p(z3+i) · ni = 0

(3.3.9)

by (3.3.2b) and (3.3.3d). If r = 2 (so that ρ ∈ L1
1(T ps)),

∫
ei

ρ · ni =

∫
ei

(
rot Π0

rp− Π1
r−1rot p

)
· ni =

∫
ei

∂ti
(
Π0
rp− p

)
= 0

by (3.3.3b) and (3.3.2a), so (3.3.7b) is proved.
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Now let r ≥ 3. We have, for all q ∈ Pr−3(e) and for all e ∈ Eb(T ps),

∫
e

(ρ · n)q =

∫
e

(rot (Πr
0p− p) · n) q

=

∫
e

∂t (Πr
0p− p) q

= −
∫
e

(Πr
0p− p) ∂tq = 0,

by (3.3.3e), (3.3.2b) and (3.3.2d). Likewise, for q ∈ Pr−3(e),

∫
e

(ρ · t)q =

∫
e

((
rot Πr

0p− Πr−1
1 rot p

)
· t
)
q

=

∫
e

(rot (Πr
0p− p) · t) q

=

∫
e

−∂n (Πr
0p− p) q = 0

by (3.3.3e) and (3.3.2c). For the interior DOFs, for any w ∈ S̊0
r−1(T ps), we have

∫
T

ρ · rot w =

∫
T

(
rot Πr

0p− Πr−1
1 rot p

)
· rot w = 0

by (3.3.2e) and (3.3.3f). Finally, for any w ∈ V̊2
r−2(T ps),

∫
T

div ρw =

∫
T

div
(
rot Πr

0p− Πr−1
1 rot p

)
w

=

∫
T

−div (rot p)w = 0

where we used the DOF (3.3.3g). Therefore ρ is equal to zero on T , and the identity

(3.3.7b) is proved.

Theorem 3.3.10. Let Πr
0 : C∞(T ) → S0

r (T
ps) be the projection induced by the DOFs

(3.3.2), that is,

φ(Πr
0p) = φ(p), ∀φ ∈ DOFs in (3.3.2).
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Likewise, let $r−1
1 : [C∞(T )]2 → S1

r−1(T ps) be the projection induced by the DOFs

(3.3.5), and let $r−2
2 : C∞(T ) → L2

r−2(T ps) be the projection induced by the DOFs

(3.3.6). Then for r ≥ 2, the following diagram commutes

R C∞(T ) [C∞(T )]2 C∞(T ) 0

R S0
r (T

ps) S1
r−1(T ps) L2

r−2(T ps) 0.

Πr
0

rot

$r−1
1

div

$r−2
2

rot div

In other words, we have for r ≥ 2

rot Πr
0p =$r−1

1 rot p, ∀p ∈ C∞(T ), (3.3.10a)

div$r−1
1 v =$r−2

2 div v, ∀v ∈ [C∞(T )]2. (3.3.10b)

Proof. (i) Proof of (3.3.10a). Let p ∈ C∞(T ) and ρ := rot Πr
0p−$r−1

1 rot p ∈ S1
r−1(T ps).

We show that ρ vanishes on (3.3.5).

First,

ρ(zi) = rot Πr
0p(zi)−$r−1

1 rot p(zi) = 0,

div ρ(zi) = −divϕr−1
1 rot p(zi) = −div rot p(zi) = 0,

by the definitions of Πr
0 and $r−1

1 along with DOFs (3.3.2a) and (3.3.5a).

Next, if r = 2,

∫
ei

ρ · ni =

∫
ei

(
rot Πr

0p−$r−1
1 rot p

)
· ni

=

∫
ei

(
rot Πr

0p− Πr−1
1 rot p

)
· ni = 0,



67

using (3.3.5b), (3.3.3b) and (3.3.7b). Similar arguments show that, for r ≥ 3,

ρ(z3+i) · ni = (rot Πr
0p(z3+i)− Πr−1

1 rot p(z3+i)) · ni = 0,∫
e

ρ · w =

∫
e

(rot Πr
0p−$r−1

1 rot p) · w =

∫
e

(rot Πr
0p− Πr−1

1 rot p) · w = 0,

and

∫
T

ρ · rot w =

∫
T

(rot Πr
0p− Πr−1

1 rot p) · w = 0.

Next using (3.3.5c) gives

div ρ(z3+i) = −div$r−1
1 rot p(z3+i) = −div rot p(z3+i) = 0,

and (3.3.5e) yields

∫
e

(div ρ)q = −
∫
e

(div$r−1
1 rot p)q = −

∫
e

(div rot p)q = 0

for all q ∈ Pr−4(e) and e ∈ Eb(T ps). The same arguments, but using (3.3.5g), gives

∫
T

(div ρ)q = 0 ∀q ∈ L̊2
r−1(T ps).

Applying Lemma 3.3.7 shows that ρ ≡ 0, and so (3.3.10a) holds.

(ii) Proof of (3.3.10b). For some v ∈ [C∞(T )]2, we define ρ := div$r−1
1 v −

$r−2
2 div v ∈ L2

r−2(T ps). Then we need only show that ρ is zero for all DOFs in (3.3.6).

For the vertex DOFs, we have for each zi,

ρ(zi) = div$r−1
1 v(zi)−$r−2

2 div v(zi) = 0,
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by (3.3.5a) and (3.3.6a). Next, for each i = 1, 2, 3,

ρ(z3+i) = div$r−1
1 v(z3+i)−$r−2

2 div v(z3+i) = 0,

where we have used (3.3.5a) and (3.3.6b). Similar arguments show that

∫
e

ρq = 0 ∀q ∈ Pr−4(e), e ∈ Eb(T ps),

by (3.3.5e) and (3.3.6c), and that

∫
T

ρq = 0 ∀q ∈ L̊2
r−2(T ps)

by (3.3.5g) and (3.3.6e). Using (3.3.6d) and (3.3.5b) if r = 2 or (3.3.5d) if r > 2,

∫
T

ρ =

∫
T

div$r−1
1 v −$r−2

2 div v =

∫
T

div ($r−1
1 v − v) =

∫
∂T

($r−1
1 v − v) · n = 0.

Therefore, ρ ≡ 0 on T by Lemma 3.3.8, and (3.3.10b) is proved.

3.4 Global spaces on Powell-Sabin refinements

In this section, we study the global finite element spaces induced by the degrees of freedom

in Section 3.3. We let Th represent the simplicial triangulation of the polygonal domain

Ω ⊂ R2, and T ps
h represent the Powell-Sabin refinement of Th, as discussed in the intro-

duction. We define the setM(T ps
h ) to be the points of intersection of the edges of Th with

the edges that adjoin interior points. We also let Eb(T ps
h ) be the collection of all the new

edges of T ps
h that were obtained by sub-dividing edges of Th. We let E(Th) be the edges
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of Th. By the construction of T ps
h every x ∈ M(T ps

h ) belongs to edges that lie on two

straight lines. Therefore, these vertices are singular vertices [56]. It is important to note

that to make our global spaces to have the correct continuity it is essential to construct the

meshes in such a way [47, 52]. Furthermore, as previously mentioned, the divergence of

continuous, piecewise polynomials have a weak continuity property at singular vertices,

i.e., at the vertices inM(T ps
h ). In detail, let z ∈ M(T ps

h ) and suppose that z is an interior

vertex. Then it is a vertex of four triangles K1, . . . , K4 ∈ T ps
h . For a function q we define

θz(q) := |q|K1(z)− q|K2(z) + q|K3(z)− q|K4(z)|.

Then, if v is a continuous piecewise polynomial with respect to T ps
h , there holds

θz(div v) = 0 [56].

The degrees of freedom stated in Lemmas 3.3.4–3.3.8 induce the following spaces

S0
r (T

ps
h ) ={q ∈ C1(Ω) : q|T ∈ S0

r (T
ps)∀T ∈ Th},

S1
r (T

ps
h ) ={v ∈ [C(Ω)]2 : div v ∈ C(Ω), v|T ∈ S1

r (T
ps)∀T ∈ Th},

L1
r(T

ps
h ) ={v ∈ [C(Ω)]2 : v|T ∈ L1

r(T
ps)∀T ∈ Th},

L2
r(T

ps
h ) ={p ∈ C(Ω) : p|T ∈ L2

r(T
ps)∀T ∈ Th},

V2
r (T ps

h ) =
{
p ∈ L2(Ω) : p|T ∈ V 2

r (T ps)∀T ∈ Th, θz(p) = 0, ∀z ∈M(T ps
h ) and

z an interior node
}
.

Remark 3.4.1. Let z ∈ M(T ps
h ) be an interior vertex and T1, T2 ∈ Th share a common

edge where z lies. Then θz(q) = 0 if and only if [[q1]](z) = [[q2]](z) where qi = q|Ti .

Therefore, the local degrees of freedom for V 2
r (T ps) with the jump condition (3.3.4a) do

indeed induce the global space V2
r (T ps

h ) above.



70

We list the degrees of freedom of these spaces. The global DOF come directly from

the local DOF. We list them here to be precise.

It follows from Lemma 3.3.4 that a function q ∈ S0
r (T

ps
h ), with r ≥ 2, is uniquely

determined by

q(z), ∇q(z) for every vertex z of Th,

q(z), ∂tq(z) ∀z ∈M(T PS
h ), if r ≥ 3,∫

e

∂nq p ∀p ∈ Pr−3(e), for all e ∈ Eb(T PS
h )∫

e

qp ∀p ∈ Pr−4(e), for all e ∈ Eb(T PS
h ),∫

T

rot q · rot p ∀p ∈ S̊0
r (T

ps), for all T ∈ Th.

Remark 3.4.2. The degrees of freedom for r = 2 coincide with the known degrees of

freedom of Powell-Sabin [52, 47]. Recently, results for polynomial degrees r = 3, 4 have

appeared [34, 35].

Lemma 3.3.5 shows that a function v ∈ L1
r(T

ps
h ) is uniquely determined by the values

v(z), for every vertex z of Th,∫
e

(v · n), ∀e ∈ E(Th), if r = 1,

[[div v]](z), ∀z ∈M(T ps
h ),

v(z) · n, ∀z ∈M(T ps
h ), if r ≥ 2,∫

e

v · w, ∀w ∈ [Pr−2(e)]2, ∀e ∈ Eb(T ps
h ),∫

T

v · rot w, ∀w ∈ S̊0
r+1(T ps),∀T ∈ Th,∫

T

div v w, ∀w ∈ V̊2
r−1(T ps),∀T ∈ Th.
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A function q ∈ V2
r (T ps

h ), for r ≥ 0, is uniquely determined by

[[q]](z), ∀z ∈M(T ps
h ),∫

T

q = 0, ∀T ∈ Th,∫
T

qp ∀p ∈ V̊2
r (T ps

h ),∀T ∈ Th.

A function v ∈ S1
r (T

ps
h ) is determined by the following degrees of freedom.

v(z), div v(z) for every vertex z of Th,∫
e

(v · ni), ∀e ∈ E(Th), if r = 1,

v(z) · n, div v(z) ∀z ∈M(T ps
h ), if r ≥ 2,∫

e

v · w ∀w ∈ [Pr−2(e)]2, e ∈ Eb(T ps
h ),∫

e

(div v)q ∀q ∈ Pr−3(e), e ∈ Eb(T ps
h ),∫

T

v · rot w ∀w ∈ S̊0
r+1(T ps) for all T ∈ Th,∫

T

div v w ∀w ∈ L̊2
r−1(T ps) for all T ∈ Th.

A function q ∈ L2
r(T

ps
h ), if r ≥ 1, is determined by the degrees of freedom

q(z) 1 ≤ i ≤ 3, for every vertex z of Th,

q(z) 1 ≤ i ≤ 3, ∀z ∈M(T ps
h ),∫

e

qp ∀p ∈ Pr−2(e), ∀e ∈ Eb(T ps),∫
T

q∫
T

qp ∀p ∈ L̊2
r(T

ps
h ).
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Each of the following sequences of spaces forms a complex.

R −→ S0
r (T

ps
h )

rot−→ L1
r−1(T ps

h )
div−→ V2

r−2(T ps
h ) −→ 0, r ≥ 2, (3.4.2a)

R −→ S0
r (T

ps
h )

rot−→ S1
r−1(T ps

h )
div−→ L2

r−2(T ps
h ) −→ 0, r ≥ 3. (3.4.2b)

Remark 3.4.3. The spaces L1
1(T ps

h ) and divL1
1(T ps

h ) were considered by Zhang [62] for

approximating incompressible flows. In particular, he proved inf-sup stability of this pair.

However, he does not explicitly write the relationship V2
r−2(T ps

h ) = divL1
r−1(T ps

h ), which

we know holds.

Additionally, we can define commuting projections. For example, for the sequences

(3.4.2a) and (3.4.2b), we define πri such that, for 0 ≤ i ≤ 2, πri v|T = Πr
i (v|T ) for all

T ∈ Th. By using Theorem 3.3.9, we find that following diagram commutes:

R C∞(S) [C∞(S)]2 C∞(S) 0

R S0
r (T

ps
h ) L1

r−1(T ps
h ) V2

r−2(T ps
h ) 0.

πr
0

rot

πr−1
1

div

πr−2
2

rot div

Similarly, defining the projections χriv|T = $r
i (v|T ) for i = 1, 2, it follows from Theorem

3.3.10 that the following diagram commutes:

R C∞(S) [C∞(S)]2 C∞(S) 0

R S0
r (T

ps
h ) S1

r−1(T ps
h ) L2

r−2(T ps
h ) 0.

πr
0

rot

χr−1
1

div

χr−2
2

rot div

The proofs that these projections commute are similar to the local cases. The top se-

quences (the non-discrete spaces) are exact if S is simply connected [27]. In the next

result, we will show that the bottom sequences (the discrete spaces) are also exact on

simply connected domains.
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Theorem 3.4.4. Suppose that Ω is simply connected. Then the sequence (3.4.2a) is exact

for r ≥ 2, and the sequence (3.4.2b) is exact for r ≥ 3.

Proof. Suppose that v ∈ L1
r−1(T ps

h ) satisfies div v = 0. Using the inclusion S1
r−1(T ps

h ) ⊂

H(div; Ω) and standard results, there exists q ∈ H(rot; Ω) such that v = rot q. Because

v is a piecewise polynomial of degree r − 1, it follows that q is a piecewise polynomial

of degree r. Moreover, v is continuous and therefore q ∈ C1(S). Thus it follows that

q ∈ S0
r (T

ps
h ). Note that this result shows that if v ∈ L1

r−1(T ps
h ) satisfies div v = 0, then

v = rot q for some q ∈ S0
r (T

ps
h ).

Thus to prove the result, it suffices to show that the mappings div : L1
r−1(T ps

h ) →

V 2
r−2(T ps

h ) and div : S1
r−1(T ps

h ) → L2
r−2(T ps

h ) are surjections. This will be accom-

plished by showing that dim(divL1
r−1(T ps

h )) = dimV 2
r−2(T ps

h ) and dim(divS1
r−1(T ps

h )) =

dimL2
r−2(T ps

h ).

Denote by V, E, and T the number of vertices, edges, and triangles in Th, respectively.

The degrees of freedom given above show that, for r ≥ 2,

dimS0
r (T

ps
h ) = 3V + (4r − 8)E + 3(r − 2)(r − 3)T,

dimL1
r−1(T ps

h ) = 2V + (4r − 6)E + 3(r − 2)(r − 3)T +
(
3(r − 1)r − 4

)
T,

dimV 2
r−2(T ps

h ) = E + T +
(
3(r − 1)r − 4

)
T.

We then find, by the rank–nullity theorem and the Euler relation V− E + T = 1 that

dim(divL1
r−1(T ps

h )) = dimL1
r−1(T ps

h )− dim(rot S0
r (T

ps
h ))

= dimL1
r−1(T ps

h )− dimS0
r (T

ps
h ) + 1

= dimL1
r−1(T ps

h )− dimS0
r (T

ps
h ) + (V− E + T)
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= 2V + (4r − 6)E + 3(r − 2)(r − 3)T +
(
3(r − 1)r − 4

)
T

−
(
3V + (4r − 8)E + 3(r − 2)(r − 3)T

)
+ (V− E + T)

= E + T +
(
3(r − 1)r − 4

)
T = dimV 2

r−2(T ps
h ).

Likewise, we have for r ≥ 3,

dimS1
r−1(T ps

h ) = 3V + (6r − 12)E + 3(r − 2)(r − 3)T + 3(r − 2)(r − 3)T,

dimL2
r−2(T ps

h ) = V + (2r − 5)E + T + 3(r − 2)(r − 3)T,

and therefore

dim(divS1
r−1(T ps

h )) = dimS1
r−1(T ps

h )− dimS0
r (T

ps
h ) + (V− E + T)

= 3V + (6r − 12)E + 6(r − 2)(r − 3)T

−
(
3V + (4r − 8)E + 3(r − 2)(r − 3)T

)
+ (V− E + T)

= V + (2r − 5)E + 3(r − 2)(r − 3)T + T = L2
r−2(T ps

h ).

We have developed smooth finite element spaces on Powell-Sabin splits that form

exact sequences in two dimensions. In the following sections, we extend this work to

higher dimensions using the Worsey-Farin split.

3.5 An Application of Powell-Sabin finite elements

As discussed in the introduction, the finite elements developed in this thesis have applica-

tions to fluid flow problems. Here, we discuss another application: eigenvalue problems
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in electro-magnetics. The results in this section are not ours; they have appeared in [17].

With permission from the authors, we will present their findings here to exhibit an impor-

tant application of the Powell-Sabin finite elements and exact sequences developed in this

chapter.

It is well known that using Lagrange finite elements to solve the eigenvalue problem of

electro-magnetics normally leads to spurious eigenvalues. However, interestingly, Wong

and Cendes [59] numerically found that if one uses the Powell-Sabin split with linear

Lagrange elements, the numerical eigenvalues seem to converge to the correct ones. The-

oretical justification of this fact remained open until recently [17]. The key to the analysis

in [17] is the use of the exact sequence properties developed earlier in this chapter. Let us

describe the problem. For an overview of finite elements for eigenvalue problems we refer

the reader to [15].

Let Ω ⊂ R2 be a contractible polygonal domain and consider the eigenvalue problem

(rot u, rot v) = η2(u, v) ∀v ∈ H̊(rot; Ω).

Given a finite element space V̊h ⊂ H̊(rot; Ω), a finite element method seeks uh ∈ V̊h\{0}

and ηh ∈ R satisfying

(rot uh, rot vh) = η2
h(uh, vh) ∀vh ∈ Vh.

It is well known that the Nédélec finite elements do well for this problem and that La-

grange elements generally do not do well. For example, if one uses a generic Delaunay

triangulation (see Figure 3.1) and quartic finite elements, Table 3.2 (which is from [17])

shows that the first twenty eigenvalues do not convergence.

On the other hand, using linear Lagrange elements with Powell-Sabin triangulations,
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Figure 3.1: Unstructured mesh with h ≈ 1/10

one can prove that the eigenvalues converge [17]. In Table 3.1 (which is from [17]), one

sees convergence to the first eigenvalue. In fact, we see that the first eigenvalue converges

like h2.

h error of first eigenvalue rate
2−3 1.084194558097806E-1
2−4 3.835460507298371E-2 1.8228
2−5 2.952141736802360E-3 1.8768
2−6 7.488421347368046E-4 1.9790

Table 3.1: The rate of convergence with respect to h of first non-zero eigenvalue using for
Powell–Sabin split and the linear Lagrange finite element space.

h error of first twenty eigenvalues rate
2−2 8.38611345105E-03
2−3 5.61831120933E-05 7.2217
2−4 59.2176263988 -20.008
2−5 59.2176264065 0.000

Table 3.2: Maximum error of the first 20 eigenvalues on (non-perturbed) Delaunay trian-
gulations using quartic Lagrange elements
.



CHAPTER FOUR

Exact Sequences on Worsey-Farin Splits
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4.1 Local Exact Sequences

A crucial result is to prove the local sequences are exact. The first sequences are the ones

with homogeneous boundary conditions.

0 −−→ V̊ 0
r (Twf)

grad

−−→ V̊ 1
r−1(Twf)

curl

−−→ V̊ 2
r−2(Twf)

div

−−→ V̊ 3
r−3(Twf) −−→ 0, (4.1.1a)

0 −−→ S̊0
r (T

wf)
grad

−−→ L̊1
r−1(Twf)

curl

−−→ V̊2
r−2(Twf)

div

−−→ V̊ 3
r−3(Twf) −−→ 0, (4.1.1b)

0 −−→ S̊0
r (T

wf)
grad

−−→ S̊1
r−1(Twf)

curl

−−→ L̊2
r−2(Twf)

div

−−→ V̊3
r−3(Twf) −−→ 0, (4.1.1c)

0 −−→ S̊0
r (T

wf)
grad

−−→ S̊1
r−1(Twf)

curl

−−→ S̊2
r−2(Twf)

div

−−→ L̊3
r−3(Twf) −−→ 0. (4.1.1d)

The second set of sequences do not have boundary conditions.

R → V 0
r (Twf)

grad

−−→ V 1
r−1(Twf)

curl

−−→ V 2
r−2(Twf)

div

−−→ V 3
r−3(Twf) → 0, (4.1.2a)

R → S0
r (T

wf)
grad

−−→ L1
r−1(Twf)

curl

−−→ V 2
r−2(Twf)

div

−−→ V 3
r−3(Twf) → 0, (4.1.2b)

R → S0
r (T

wf)
grad

−−→ S1
r−1(Twf)

curl

−−→ L2
r−2(Twf)

div

−−→ V 3
r−3(Twf) → 0, (4.1.2c)

R → S0
r (T

wf)
grad

−−→ S1
r−1(Twf)

curl

−−→ S2
r−2(Twf)

div

−−→ L3
r−3(Twf) → 0. (4.1.2d)

We know that the first sequences (4.1.1a) and (4.1.2a) are exact by Nédélec [50]. The

major result of this section is the following results.

Theorem 4.1.1. Let r ≥ 3. Then the sequences (4.1.1) are exact.

Proof. Again, we already know that (4.1.1a) is exact. The exactness of the rest of the

sequences follow from the following results that are found below. Corollaries 4.1.17,
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4.1.18, Theorem 4.1.5, and Theorem 4.1.11.

Similarly we can prove.

Theorem 4.1.2. Let r ≥ 3. Then the sequences (4.1.2) are exact.

Then we will use the following result which goes back to Arnold and Qin [13].

Lemma 4.1.3. Let F ∈ ∆2(T ), then for ω ∈ V̊ 2
r (F ct). There exists a ρ ∈ L̊1

r+1(F ct) such

that div Fρ = ω on F . Similarly, there exists η ∈ L̊1
r+1(F ct) such that curl Fη = ω.

We also need the well known result that follows from a simple argument.

Lemma 4.1.4. Let F ∈ ∆2(T ), then for ω ∈ V̊ 1
r (F ct) and div Fρ = 0. There exists a

ρ ∈ L̊0
r+1(F ct) such that rot Fρ = ω on F .

4.1.1 Surjectivity of the divergence operator on discrete local spaces

The goal of this section is to prove the following results.

Theorem 4.1.5. Let r ≥ 0. Then:

(i) for each p ∈ V̊3
r (Twf), there exists a v ∈ L̊2

r+1(Twf) such that div v = p.

(ii) for each p ∈ V̊ 3
r (Twf), there exists a v ∈ L2

r+1(Twf)∩ V̊ 2
r+1(Twf) such that div v = p.

(iii) for each p ∈ V 3
r (Twf), there exists a v ∈ L2

r+1(Twf) such that div v = p.
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(iv) for each p ∈ L̊3
r(T

wf) (resp., p ∈ L3
r(T

wf)), there exists a v ∈ S̊2
r+1(Twf) (resp.,

v ∈ S2
r+1(Twf)) such that div v = p.

The proofs of Theorems 4.1.5 parts i and ii depend on four preliminary lemmas.

Lemma 4.1.6. Let r ≥ 1 and s ≥ 0 be integers. Then for any q ∈ V3
r (Twf), there exists

w ∈ L2
r(T

wf) and g ∈ V 3
r−1(Twf), such that µsq = div (µs+1w) + µs+1g.

Proof. Let q ∈ V3
r (Twf) and s ≥ 0. Because q|Fi

is continuous on each Fi ∈ ∆2(T ),

there exists bi ∈ Pr(Fi) such that bi = q|Fi
on ∂Fi. Thus q − bi is continuous on Fi and

vanishes on ∂Fi. Consequently, there exists ai ∈ L2
r(T

wf) such that ai = (q − bi) on Fi

and supp(ai) ⊆ Ki. Using the divergence-conforming Nédélec degrees of freedom of the

second kind [50] , and the fact that gradµi is parallel to the outward unit normal of Fi,

there exists w1 ∈ [Pr(T )]3 such that

(s+ 1)w1 · gradµi = bi on Fi.

We also define w2 ∈ L2
r(T

wf)

w2 :=
1

s+ 1

4∑
i=1

ai`i,

where `i := gradµi
|gradµi|2 . Finally, we set w := w1 + w2 ∈ L2

r(T
wf). We then see that

q − (s+ 1)w · gradµ = 0 on ∂T,

and, hence, there exists p ∈ V 3
r−1(Twf) such that

q = (s+ 1)w · gradµ+ µp on T.
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Setting g := divw − p ∈ V 3
r−1(Twf) we have

µsq =(s+ 1)µsw · gradµ+ µs+1p = div (µsw) + µs+1g.

We will need the following result in several occasions.

Lemma 4.1.7. Let F ∈ ∆2(T ) and K ∈ T a be such that F ⊂ ∂K. If p ∈ L̊1
r(F

ct) then

there exists q ∈ L1
r(T

wf) such that q|F = p, supp(q) ⊂ K and q · nF = 0 on K.

Proof. Let t, s, nF be an orthonormal set with t and s parallel to F . Then p = at+ bs for

some a, b ∈ L̊0
r(F

ct). We extend a and b to all of K, which we denote by ã, b̃ ∈ L̊0
r(K

wf),

by setting all the other Lagrange degrees of freedom to be zero. In particular ã and b̃ vanish

on ∂K\F . Hence, we can further extend them by zero to all of T and ã, b̃ ∈ L̊0
r(T

wf). We

set q = ãt+ b̃s.

Lemma 4.1.8. For any θ ∈ V 3
r (Twf), with r ≥ 0, there exists ψ ∈ L2

r+1(Twf) ∩ V̊ 2
r+1(Twf)

and γ ∈ V3
r (Twf) such that

µsθ = div (µsψ) + µsγ ∀s ≥ 0. (4.1.3)

Proof. Let Ki ∈ ∆3(T a) be the tetrahedron containing the face Fi ∈ ∆2(T ), and let

κi ∈ V 3
0 (Twf) be defined on Ki as κi = 1

|Fi|

∫
Fi
θ. Then on Fi,

∫
Fi

(θ − κi) = 0,

so (θ − κi)Fi
∈ V̊ 2

r (F ct
i ) by definition. Hence, by Lemma 4.1.3, there exists a function
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ρi ∈ L̊1
r+1(F ct

i ) such that

divFi
ρi = (θ − κi) on Fi. (4.1.4)

Since ρi vanishes on ∂Fi, by Lemma 4.1.7, there exists an extension ψi ∈ L3
r+1(Twf)

such that (ψi)Fi
= ρi, supp(ψi) ⊆ Ki, and ψi · nFi

= 0 on Ki. We then define ψ =∑3
i=0 ψi ∈ L3

r+1(Twf) ∩ V̊ 2
r+1(Twf). The construction of ψ, and using (4.1.4), yields the

identities

ψ · nFi
=0 on Ki, (4.1.5)

divψ =divFi
ρi on Fi. (4.1.6)

Now set γ := θ−divψ, so that γ = κi on Fi by (4.1.6) and (4.1.4). Since κi is continuous

on Fi, it follows that γ ∈ V3
r (Twf). Rearranging yields θ = divψ + γ, which proves the

result in the case s = 0. Furthermore, since gradµ is parallel to nFi
on each Ki, we have

by (4.1.5),

µsθ − div (µsψ) = µsθ − µsdivψ − sµs−1ψ · gradµ = µsγ,

which is the desired result.

Lemma 4.1.9. Let q ∈ V3
r (Twf) with r ≥ 1, and s ≥ 0. Then there exists v ∈ L2

r(T
wf) and

Q ∈ V3
r−1(Twf) such that µsq = div (µs+1v) + µs+1Q.

Proof. By Lemma 4.1.6, there exist w ∈ L2
r(T

wf) and g ∈ V 3
r−1(Twf) such that

µsq = div (µs+1w) + µs+1g.
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Since g ∈ V 3
r−1(Twf), Lemma 4.1.8 yields the existence of ψ ∈ L2

r(T
wf) and Q ∈

V3
r−1(Twf) such that

µs+1g = div (µs+1ψ) + µs+1Q.

Therefore, µsq = div (µs+1(w + ψ)) + µs+1Q. Setting v = w + ψ achieves the desired

result.

The final preliminary lemma follows from a result shown in [33].

Lemma 4.1.10. Let s ≥ 0, and let q ∈ V3
0 (Twf) with

∫
T
µsq = 0. Then there exists

w ∈ L2
0(Twf) such that µsq = div (µs+1w).

Proof. Since q ∈ V3
0 (Twf) it is easy to see that q ∈ V 3

0 (T a). From [33, Lemma 3.11], there

exists w ∈ [P0(T )]3 ⊂ L2
0(Twf) such that div (µs+1w) = q.

We can now prove Theorem 4.1.5 Parts i and ii.

proof of Theorem 4.1.5, Part i. Let 1 ≤ ` ≤ r − 1 and pr = p. Suppose we have con-

structed wr−j ∈ L2
r−j(T

wf) with 0 ≤ j ≤ `− 1 and pr−j ∈ V3
r−j(T

wf) with 0 ≤ j ≤ ` such

that

div (µj+1wr−j) = µjpr−j − µj+1pr−(j+1), 0 ≤ j ≤ `− 1.

We apply Lemma 4.1.9 to find wr−` ∈ L2
r−`(T

wf) and pr−(`+1) ∈ V3
r−(`+1)(T

wf) such that

div (µ`+1wr−`) = µ`pr−` − µ`+1pr−(`+1). (4.1.7)
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By induction, there exists wr−` ∈ L2
r−`(T

wf) for 0 ≤ ` ≤ r − 1 and pr−` ∈ V3
r−`(T

wf) for

0 ≤ ` ≤ r such that (4.1.7) holds. Therefore,

div (µwr + µ2wr−1 + · · ·+ µrw1) = p− µrp0.

By the hypothesis
∫
T
p = 0, there holds

∫
T
µrp0 = 0. By Lemma 4.1.10, there exists

w0 ∈ L2
0(Twf) such that div (µr+1w0) = µrp0. The result follows by setting v = µwr +

µ2wr−1 + · · ·+ µrw1 + µr+1w0.

proof of Theorem 4.1.5, Part ii. By Lemma 4.1.8 (with s = 0), there exists ψ ∈

L2
r+1(Twf) ∩ V̊ 2

r+1(Twf) and γ ∈ V3
r (Twf) satisfying

p = divψ + γ.

Note that
∫
T
p = 0, and

∫
T

divψ =
∫
∂T
ψ · n = 0 since ψ · n = 0 on ∂T . Thus, we have

that
∫
T
γ = 0 which implies γ ∈ V̊3

r (Twf). Therefore, we apply Part i of Theorem 4.1.5 to

find g ∈ L̊r+1(Twf) such that div g = γ. The result follows by setting v = ψ + g.

We now prove Parts iii and iv of Theorem 4.1.5, which are corollaries to Parts i and ii

of Theorem 4.1.5.

proof of Part iii. We decompose p = (p − p) + p where p := 1
|T |

∫
T
p. There exists w ∈

[P1(T )]3 such that divw = p, and by Part ii of Theorem 4.1.5 we have ψ ∈ L2
r+1(Twf) ∩

V̊ 2
r+1(Twf) such that divψ = p− p. Thus, setting v := ψ + w completes the proof.

proof of Part iv. Let p ∈ L̊3
r(T

wf) ⊂ V̊3
r (Twf). Applying Part i of Theorem 4.1.5, we find

v ∈ L̊2
r+1(Twf) such that div v = p. But clearly v ∈ S̊2

r+1(Twf), since div v is continuous

and has average zero by definition of L̊3
r(T

wf).
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4.1.2 Surjectivity of the curl operator on discrete local spaces

The main goal of this section is to derive the analagous results of Section 4.1.1, but for the

curl operator; that is, we show the curl operator acting on piecewise polynomial spaces

with respect to the Worsey–Farin split is surjective onto spaces of divergence–free func-

tions. Before making this precise and to prove the result, we first state a simple result that

will be used many times in the arguments below.

The main results of this section are the following.

Theorem 4.1.11. Let r ≥ 0. Then:

(i) for any v ∈ V̊2
r (Twf) satisfying div v = 0 there exists w ∈ L̊1

r+1(Twf) satisfying

curlw = v.

(ii) let v ∈ V 2
r (Twf) with div v = 0. Then there exists w ∈ L1

r+1(Twf) such that

curlw = v.

(iii) for each v ∈ L̊2
r(T

wf) (resp., v ∈ L2
r(T

wf)) where div v = 0, there exists a

w ∈ S̊1
r+1(Twf) (resp., w ∈ S1

r+1(Twf)) such that curlw = v.

(iv) for each v ∈ S̊2
r (T

wf) (resp., v ∈ S2
r (T

wf)) where div v = 0, there exists w ∈

S̊1
r+1(Twf) (resp., w ∈ S1

r+1(Twf) such that curlw = v.

We omit the proofs of Parts iii and iv of Theorem 4.1.11 since they follow easily from

Parts i and ii of the same theorem.
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Before we prove Parts i and ii of Theorem 4.1.11, we first establish several lemmas.

Lemma 4.1.12. Let r ≥ 0 and let v ∈ V̊2
r (Twf). Then there exist functions z ∈ [Pr(Twf)]3

and γ ∈ [Pr−1(Twf)]3 such that

v = gradµ× z + µγ, (4.1.8)

and so gradµ×z is continuous on F for each F ∈ ∆2(T ). Moreover, z · t is single-valued

for all e ∈ ∆1(T ), where t is a unit tangent vector to e.

Proof. By [33, Lemma 4.1], there exists z ∈ [Pr(Twf)]3 and γ ∈ [Pr−1(Twf)]3 such that

(4.1.8) holds. For each F ∈ ∆2(T ), there holds v = gradµ×z on F , and hence gradµ×z

is continuous on F . Following exactly the proof of [33, Lemma 4.2], we see that z · t is

single-valued for all e ∈ ∆1(T ).

Lemma 4.1.13. For any v ∈ V̊2
r (Twf), with r ≥ 1, and any integer s ≥ 0, there exists

w ∈ L1
r(T

wf) and g ∈ V 2
r−1(Twf) such that

µsv = curl (µs+1w) + µs+1g. (4.1.9)

Proof. From Lemma 4.1.12, there exists z ∈ [Pr(Twf)]3 and γ ∈ [Pr−1(Twf)]3 satisfying

(4.1.8) with z× gradµ continuous on F for each F ∈ ∆2(T ) and z · t is single-valued for

all e ∈ ∆1(T ). Let {Fi}3
i=0 be the four faces of T . For each i we choose bi ∈ [Pr(Fi)]2 so

that bi = gradµ × z on ∂Fi, which we are allowed to do since z × gradu continuous on

Fi. Since z · t is single valued for all e ∈ ∆1(T ) we have that bi · t = bj · t if e = Fi ∩ Fj .

Hence, using the curl-conforming Nédélec degrees of freedom of the second kind [50],

there exists w1 ∈ [Pr(T )]3 such that

gradµ× w1 = bi on Fi, 0 ≤ i ≤ 3.
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Since gradµ×z|Fi
−bi ∈ L̊1

r(F
ct
i ), according to Lemma 4.1.7, there exists ai ∈ L1

r(T
wf)

such that supp (ai) ⊂ Ki and gradµ× ai = gradµ× z − bi on Fi. We set w2 :=
∑3

i=0 ai

and finally w := 1
s+1

(w1 + w2) ∈ L1
r(T

wf). Hence,

(s+ 1)gradµ× w =gradµ× w1 + gradµ× w2

=bi + gradµ× ai

=gradµ× z on Fi, 0 ≤ i ≤ 3.

Thus, we have φ ∈ [Pr−1(Twf)]3 such that

(s+ 1)gradµ× w = gradµ× z + µφ= v + µ(θ − γ) on T. (4.1.10)

We write curl (µs+1w) = (s+ 1)µsgradµ× w + µs+1curlw = µsv + µs+1(curlw −

γ + φ). Setting g := −(curlw − γ + φ), we have that (4.1.9) holds. Finally, since µsv · n

and curl (µs+1w) ·n are single-valued on interior faces, µs+1g ·n is single-valued. Because

µ is continuous and strictly positive in the interior of T , this implies g · n is single-valued

on interior faces, and thus g ∈ V 2
r−1(F ct).

We will use the following Lemma repeatedly.

Lemma 4.1.14. For any g ∈ V̊ 2
r (Twf) we have that gF ∈ H(div F ;F ) for F ∈ ∆2(T ).

Proof. Let e ∈ F ct, and let f be the corresponding an internal face of Twf that has e as

an edge. We let t be a unit vector parallel to e and set s = t × nF . Note that {nF , s, t}

forms an orthonormal basis of R3. To prove gF ∈ H(divF ;F ), it suffices to show gF · s

is single-valued on e.

Let nf be a unit-normal to f . Since nf ·t = 0, we have that nf = (nf ·s)s+(nf ·nF )nF
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and thus, g · nf = g · s(nf · s) + g · nF (nf · nF ) on e. However, g · nF = 0 on F by

definition of V̊ 2
r (Twf), and so g · nf = g · s(nf · s) on e. Since g · nf is single valued on

e (since e ⊂ ∂f and g ∈ V 2
r (Twf) ) we have that g · s is single valued on e. Finally, since

gF · s = g · s we conclude gF ∈ H(divF ;F ).

Lemma 4.1.15. Let r ≥ 0 and s ≥ 0. For any g ∈ V̊ 2
r (Twf) there exists ψ ∈ L1

r+1(Twf)

and γ ∈ V̊2
r (Twf) such that

µsg = curl (µsψ) + µsγ.

Proof. By Lemma 4.1.14, gF ∈ H(div F ;F ) for F ∈ ∆2(T ). Next, let {Fi}3
i=0 be the

four faces of T . We use the (two-dimensional) divergence-conforming Nédélec degrees of

freedom to construct pi ∈ [Pr(Fi)]2 so that for r ≥ 1,

pi · (nF × t) = gFi
· (nF × t) on e, ∀e ∈ ∆1(Fi),

where t is tangent to the edge e. If r = 0, we can satisfy the above equation for two of

the three edges, however, on the third edge the equation will be automatically be satisfied

since divFi
(gFi
− pi) = 0.

Using gFi
− pi ∈ V̊ 1

div,r(F
ct
i ) and Stokes theorem, there holds

∫
Fi

div (gFi
− pi) = 0

and, hence, div (gFi
− pi) ∈ V̊ 2

r−1(F ct
i ). By Lemma 4.1.3, there exists mi ∈ L̊1

r(F
ct
i ) so

that divFi
mi = divFi

(gFi
− pi) on Fi. Thus, if we let θi := pi +mi we have θi ∈ L1

r(F
ct
i )

and gFi
− θi ∈ V̊ 1

div,r(F
ct
i ) with divFi

(gFi
− θi) = 0. By Lemma 4.1.4, there exists κi ∈

L̊0
r+1(F ct

i ) such that rotFi
κi = gFi

−θi. Since κi vanishes on ∂Fi there exists βi ∈ L̊0
r+1(Twf)

with supp (βi) ⊂ Ki such that βi = κi on Fi. We let ψ =
∑3

i=0 βinFi
∈ L̊1

r+1(Twf). Note

that this immediately implies that gradµ× ψ ≡ 0 on T . Also, we have that

curlψ = grad βi × nFi
= rot Fi

(κi) = gFi
− θi on Fi.
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Setting γ = g − curlψ we see that γ ∈ V̊ 2
r (Twf) . Moreover, noting, in addition, to

the above equation, that curlψ|Fi
= (curlψ)Fi

since curlψ · nFi
= 0 on Fi, we see that

γFi
= θi ∈ L1

r(F
ct
i ) and, hence, γ ∈ V̊2

r (Twf). Finally, since gradµ × ψ ≡ 0 we have

curl (µsψ) = µscurlψ = µs(g − γ).

Lemma 4.1.16. Let r ≥ 1, s ≥ 0 then for any v ∈ V̊2
r (Twf) such that div (µsv) = 0 on T

there exists w ∈ L1
r(T

wf) and g ∈ V̊2
r−1(Twf) satisfying µsv = curl (µs+1w) + µs+1g.

Proof. By (4.1.9) we have w1 ∈ L1
r(T

wf) and q ∈ V 2
r−1(Twf) satisfying

µsv = curl (µs+1w1) + µs+1g1 (4.1.11)

By our hypothesis we have 0 = div (µs+1g1) = µs((s + 1)gradµ · g1 + µdiv g1). Hence,

(s + 1)gradµ · g1 + µdiv g1 = 0 on T which implies (gradµ) · g1 = 0 on ∂T . In

other words, we have g1 ∈ V̊ 2
r−1(Twf). We then apply Lemma 4.1.15 to write µs+1g1 =

div (µs+1w2) + µs+1g2 where w2 ∈ L1
r(T

wf) and g2 ∈ V̊2
r−1(Twf). The proof is complete if

we set w := w1 + w2 and g = g2.

Now we can prove Parts i and ii of Theorem 4.1.11.

proof of Part i of Theorem 4.1.11. Assume that we have found wr, . . . , wr−j with w` ∈

L1
r(T

wf) and gr−(j+1) ∈ V̊2
r−(j+1)(T

wf) such that

v = curl (µwr + µ2wr−1 + · · ·+ µj+1wr−j) + µj+1gr−(j+1).

Since div (µj+1gr−(j+1)) = 0 on T , we apply apply Lemma 4.1.16 to get

µj+1gr−(j+1) = curl (µj+2wr−(j+1)) + µj+2gr−(j+2),
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where wr−(j+1) ∈ L1
r−(j+1)(T

wf) and gr−(j+2) ∈ V̊2
r−(j+2)(T

wf). It follows that

v = curl (µwr + µ2wr−1 + · · ·+ µj+1wr−j + µj+2wr−(j+1)) + µj+2gr−(j+2).

Continuing by induction, we have

v = curl (µwr + µ2wr−1 + · · ·+ µrw1) + µrg0, with g0 ∈ V̊2
0 (Twf).

It is easy to see that g0 ∈ V̊ 2
0 (T a). Hence by Lemma 4.3 in [33] there exists w0 ∈

[P0(T )]3 ⊂ L1
0(Twf) such that curl (µr+1w0) = µrg0. Setting w := µwr + µ2wr−1 +

· · ·+ µr+1w0 completes the proof.

proof of Part ii of Theorem 4.1.11. Set φ = v − ΠRT
0 v, where ΠRT

0 v is the lowest-order

Raviart-Thomas projection of v on T . Then
∫
Fi
φ·nFi

= 0 for each Fi ∈ ∆2(T ). Applying

Lemma 4.1.3, there exists a ρi ∈ L̊1
r+1(F ct

i ) such that curl Fi
ρi = φ · nFi

on Fi. By Lemma

4.1.7 we can extend ρi to a function pi ∈ L1
r+1(Twf) with support only on Ki, such that

n× pi × n = ρi on Fi. We let p =
∑3

i=0 pi ∈ L1
r+1(Twf). Hence, curl p · nFi

= φ · nFi
on

Fi. Furthermore, there exists s ∈ [P1(T )]3 such that curl s = ΠRT
0 v. We set ψ := s+ p ∈

L1
r+1(Twf), then

v · nFi
= (φ+ ΠRT

0 v) · nFi
= (curlψ) · nFi

on Fi.

Hence, we see that v − curlψ ∈ V̊ 2
r (Twf). By Lemma 4.1.15 we have v − curlψ =

curlm + γ where m ∈ L1
r+1(Twf) and γ ∈ V̊2

r (Twf). By Part i of Theorem 4.1.11, there

exists z ∈ L̊1
r+1(Twf) such that curl z = γ. Settingw = ψ+m+z completes the proof.
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4.1.3 Surjectivity of the gradient operator on discrete local spaces

Corollary 4.1.17. For each v ∈ L̊1
r(T

wf) (resp., v ∈ L1
r(T

wf)) with curl v = 0, there exists

a w ∈ S̊0
r+1(Twf) (resp., w ∈ S0

r+1(Twf)) such that gradw = v.

Proof. Let v ∈ L̊1
r(T

wf) ⊂ V̊ 1
r (Twf) such that curl v = 0. Then there existsw ∈ V̊ 0

r+1(Twf)

such that gradw = v. However, clearly w ∈ S̊0
r+1(Twf).

Another simple corollary is the following result:

Corollary 4.1.18. For each v ∈ S̊1
r (T

wf) (resp., v ∈ S1
r (T

wf)) where curl v = 0, there

exists a w ∈ S̊0
r+1(Twf) (resp., w ∈ S0

r+1(Twf)) such that gradw = v.

4.2 Dimension Counts

Here, we give dimension counts for the spaces that will be used in the next section where

we give degrees of freedom. We start by listing the dimension counts of the the Nédélec

and Lagrange spaces. These counts follow from well-known dimension formulas of these

spaces and the fact that Twf contains 9 vertices, 26 edges, 30 faces, and 12 tetrahedra.

dimV 0
r (Twf) = (2r + 1)(r2 + r + 1), dimV 1

r (Twf) = 2(r + 1)(3r2 + 6r + 4)

(4.2.1a)

dimV 2
r (Twf) = 3(r + 1)(r + 2)(2r + 3), dimV 3

r (Twf) = 2(1 + r)(2 + r)(3 + r),

(4.2.1b)

dim L0
r(T

wf) = (2r + 1)(r2 + r + 1), dim L1
r(T

wf) = 3 dimL0
r(T

wf). (4.2.1c)
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and of course and dim L2
r(T

wf) = dim L1
r(T

wf).

With homogenous boundary conditions, we use that Twf contains 1 internal vertex, 8

internal edges, and 18 internal faces to conclude

dim V̊ 0
r (Twf) = (2r − 1)(r2 − r + 1), dim V̊ 1

r (Twf) = 2(r + 1)(3r2 + 1),

(4.2.2a)

dim V̊ 2
r (Twf) = 3(1 + r)(2 + r)(1 + 2r), dim V̊ 3

r (Twf) = 2r3 + 12r2 + 22r + 11,

(4.2.2b)

dim L̊0
r(T

wf) = (2r − 1)(r2 − r + 1), dim L̊1
r(T

wf) = 3(2r − 1)(r2 − r + 1),

(4.2.2c)

dim L̊2
r(T

wf) = 3(2r − 1)(r2 − r + 1), dim L̊3
r(T

wf) = (r − 1)(2r2 − r + 2).

(4.2.2d)

In order to calculate the dimension count of the rest of the spaces, we need the di-

mension counts of V̊2
r (Twf) and V̊3

r (Twf). For each F ∈ ∆2(T ), let eF ∈ ∆I
1(F ct) be an

arbitrary, but fixed, internal edge of F ct.

Lemma 4.2.1. Let p ∈ V 1
div,r(F

ct) and suppose that

∫
eF

[[p · t]]m = 0 for all m ∈ Pr(eF ) (4.2.3a)∫
e

[[p · t]]m = 0 for all m ∈ Pr−1(e),∀e ∈ ∆I
1(F ct)\{eF}, (4.2.3b)

where t is the unit vector tangent to an edge e. Then, p ∈ L1
r(F

ct).

Proof. Let e ∈ ∆I
1(F ct), and let s be a vector parallel to F that is perpendicular to the

edge e. Then since p ∈ V 1
div,r(F

ct), [[p · s]] = 0. In order to show that p ∈ L1
r(F

ct) we need

to show that [[p · t]] = 0 for all internal edges e ∈ ∆I
1(F ct). By (4.2.3a) this is certainly
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true for e = eF . In fact, this shows that p is continuous accross eF . Since [[p · s]] = 0

on the two remaining edges this show that p is continuous on the interior vertex z. In

particular, [[p · t]](z) vanishes on the two remaining edges. Hence, using (4.2.3b) shows

that [[p · t]] = 0.

Corollary 4.2.2. Let v ∈ V̊ 2
r (Twf) and suppose that for all F ∈ ∆2(T ), the following

holds

∫
eF

[[vF · t]]m = 0 for m ∈ Pr(eF ),∫
e

[[vF · t]]m = 0 for m ∈ Pr−1(e),∀e ∈ ∆I
1(F ct)\{eF}.

Then, v ∈ V̊2
r (Twf).

Proof. By Lemma 4.1.14 we have vF ∈ V 1
div ,r(F

ct) for all F ∈ ∆2(T ). The result now

follows by applying Lemma 4.2.1.

We see that the number of constraints in Corollary 4.2.2 is 4(3r+1). We use this result

to determine the dimension of the space V̊2
r (Twf).

Lemma 4.2.3. Let v ∈ V̊2
r (Twf) with r ≥ 1. Then v is fully determined by the following

degrees of freedom.

v|f · nf (a), ∀a ∈ ∆0(T ), ∀f ∈ ∆I
2(Twf), a ⊂ f, (4.2.4a)∫

e

(v|f · nf )κ ds, ∀κ ∈ Pr−2(e), ∀e ∈ ∆1(T ), ∀f ∈ ∆2(Twf),⊂ e ⊂ f, (4.2.4b)∫
e

(vF · t)κ ds, ∀κ ∈ Pr−2(e), ∀e ∈ ∆1(F ct)\∆I
1(F ct),∀F ∈ ∆2(T ), (4.2.4c)∫

F

vF · κ dx, ∀κ ∈ L̊1
r(F

ct), ∀F ∈ ∆2(T ), (4.2.4d)∫
T

v · κ dx, ∀κ ∈ V 2
r−1(Twf). (4.2.4e)
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Here t is tangent to e. Furthermore, dim V̊2
r (Twf) = 6r3 + 21r2 + 9r + 2.

Proof. From Corollary 4.2.2 we have

dim V̊2
r (Twf) ≥ dim V̊ 2

r (Twf)− 4(3r + 1) = 6r3 + 21r2 + 9r + 2. (4.2.5)

We see that the number of DOFs from (4.2.4a) are 12 = 4 · 3. There are 6(r − 1) DOFs

for (4.2.4b) and 12(r− 1) DOFs for (4.2.4c). We have 4(3(r− 1)(r− 2) + 3(r− 1) + 2)

DOFs from (4.2.4d), and finally 3r(2r + 1)(r + 1) for (4.2.4d). Hence, the total number

of DOFs (4.2.4) is

3r(2r + 1)(r + 1) + 12(r − 1)(r − 2) + 42(r − 1) + 20 = 6r3 + 21r2 + 9r + 2.

Hence, we will prove that dim V̊2
r (Twf) = 6r3 + 21r2 + 9r + 2 if we show the constraints

(4.2.4) determine a function v ∈ V̊2
r (Twf). To this end, suppose that the DOFs (4.2.4)

vanish. The DOFs (4.2.4a) shows that v vanishes ∀a ∈ ∆0(T ). The DOFs (4.2.4b) and

(4.2.4b) show that v vanishes ∀e ∈ ∆1(T ). Also, the DOFs (4.2.4d) show that vF vanishes

∀F ∈ ∆2(T ). Thus, v = 0 on ∂T and so v = µw where w ∈ V 2
r−1(Twf). Finally, (4.2.4e)

shows that w vanishes. Thus, v ≡ 0.

In a similar fashion, but significantly easier way we can show that.

dimV3
r (Twf) ≥ dimV 3

r (Twf)− 4(2(r + 1) + r) = 2(r3 + 6r2 + 5r + 2). (4.2.6)

Lemma 4.2.4. It holds dimV3
r (Twf) has dimension 2(r3 + 6r2 + 5r + 2).
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Proof. We can easily show that the following DOFs determine q ∈ V3
r (Twf)

∫
F

qp dA, ∀p ∈ L2
r(F

ct), ∀F ∈ ∆2(T ), (4.2.7a)∫
T

qp dx, ∀p ∈ V 3
r−1(Twf). (4.2.7b)

The number of DOFs are 2(r3 + 6r2 + 5r + 2) which are exactly the number given by

(4.2.6).

Theorem 4.2.5. For r ≥ 1, it holds

dim S̊0
r (T

wf) = max{2(r − 2)(r − 3)(r − 4), 0},

dim S̊1
r (T

wf) = max{3(2r − 3)(r − 2)(r − 3), 0},

dim S̊2
r (T

wf) = max{2(r − 2)(3r2 − 6r + 4), 0},

dim S̊3
r (T

wf) = (r − 1)(2r2 − r + 2).

Proof. Using the exactness of the sequences (4.1.1) we have

dim S̊0
r (T

wf)− dim L̊1
r−1(Twf) + dim V̊2

r−2(Twf)− dim V̊ 3
r−3(Twf) = 0,

dim S̊0
r (T

wf)− dim S̊1
r−1(Twf) + dim L̊2

r−2(Twf)− dim V̊3
r−3(Twf) = 0,

dim S̊0
r (T

wf)− dim S̊1
r−1(Twf) + dim S̊2

r−2(Twf)− dim L̊3
r−3(Twf) = 0.

This along with (4.2.2) and Lemmas 4.2.3–4.2.4 give the result.

Theorem 4.2.6. For r ≥ 1, it holds:

dimS0
r (T

wf) = 2r3 − 6r2 + 10r − 2, dimS1
r (T

wf) = 3r(2r2 − 3r + 5),

dimS2
r (T

wf) = 6r3 + 8r + 2, dimS3
r (T

wf) =
(
2r + 1)(r2 + r + 1).
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Proof. Using the exactenss of the sequences (4.1.2) we have, for r ≥ 3,

dimS0
r (T

wf)− dim L1
r−1(Twf) + dimV 2

r−2(Twf)− dimV 3
r−3(Twf) = 1,

dimS0
r (T

wf)− dimS1
r−1(Twf) + dim L2

r−2(Twf)− dimV 3
r−3(Twf) = 1,

dimS0
r (T

wf)− dimS1
r−1(Twf) + dimS2

r−2(Twf)− dim L3
r−3(Twf) = 1.

Using this with (4.2.2) give the result.

For small r, some of these spaces are trivialized. In particular, when r = 1, 2,

S0
r (T

wf) = Pr(T ), and S1
1(Twf) = [P1(T )]3.



CHAPTER FIVE

Commuting Projections on

Worsey-Farin Splits: Lowest

Polynomial Order
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In this chapter, we develop unisolvent sets of degrees of freedom that define commuting

projections for the complexes considered in Chapter 4. We restrict our study to the case

of the lowest non-trivial polynomial order, r = 3. We present this case separately for

readability, as even the lowest order case requires significant effort. The commuting pro-

jections for general polynomial orders, which generalize the results of this chapter, are

presented in Chapter 6.

Before we discuss commuting projections on the Worsey-Farin split, we will need

some new lemmas relating to piecewise polynomials on the Clough-Tocher split. In the

following lemma, we provide degrees of freedom for space S0
3(F ct ) that will be used in

the projection for S0
3(Twf ).

Lemma 5.0.1. A function q ∈ S0
3(F ct ) is fully determined by the degrees of freedom

q(a), ∇q(a), ∀a ∈ ∆0(F ), (5.0.1a)∫
e

∂q

∂ne
ds, ∀e ∈ ∆1(F ), (5.0.1b)

where ne represents the outward unit normal vector to edge e.

Proof. Let q ∈ S3
0(F ct ) such that q vanishes on (5.0.1). Since q is cubic, it follows from

the DOFs (5.0.1a) that q|e = 0 for each edge e ∈ ∆1(F ). Then if t is the unit vector

tangential to an edge e ∈ ∆1(F ), ∂q/∂t is also zero along e. Using the fact∇q(a) = 0 for

all a ∈ ∆0(F ) and DOFs (5.0.1b), it follows that ∇q|e = 0 as well. Then q ∈ S̊0
3(F ct ) =

{0}, since dim S̊0
3(F ct ) = 0.

Next, we show that the space S0
2(Twf ) reduces to S0

2(T a ) on the Alfeld split of T . We

will also use this result in proving unisolvency of the degrees of freedom for S0
3(Twf ).

In defining commuting projections, we will make use of the following definitions.
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Definition 5.0.2. Given a face F ∈ ∆I
1(F ct ), each edge e ∈ ∆I

1(F ct ) is associated with

two orthonormal vectors, [t, s]>. The unit vector t is tangent to the edge e and points

outward from the split point z of F ct . The unit vector s is orthogonal to t and tangent to

the face F , oriented such that s×nF = t. Furthermore, let r be the unit vector orthogonal

to t and s that is tangent to the interior face f ∈ ∆I
2(Twf ) that contains edge e.

In the remainder of this thesis, the edge associated with vectors t, s, or r should be

inferred from the context. For example, in the expression
∫
e
v · t ds, the unit vector t

should be understood to be the tangent vector of the edge e. For any face F in the Worsey

Farin split we designate an edge eF ∈ ∆I
1(F ct ). We will also make use of the notion of a

“jump” of a function across an edge, as defined below.

Definition 5.0.3. Suppsoe that F ∈ ∆2(T ), e ∈ ∆I
1(F ct ) and f ∈ ∆2(Twf ) with e ⊂ f .

Furthermore, let T1, T2 ∈ ∆2(Twf ) with f = T1 ∩ T2 and let si be proportional to nF × t

with si pointing out of Ti (here t is a tangent vector to e). We define the jump as

[[p]]e = p|T1s1 + p|T2s2 on e.

5.1 SLVV degrees of freedom

We will first consider the sequence (4.1.2b), which we denote as the “SLVV” sequence.

Proposition 5.1.1. We can construct the projections:

Π0
3 : C∞(T )→ S0

3(Twf ),

Π1
2 : [C∞(T )]3 → L1

2(Twf ),

Π2
1 : [C∞(T )]3 → V 2

1 (Twf ),
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Π3
0 : C∞(T )→ V 3

0 (Twf ),

such that the following diagram commutes.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
3(Twf ) L1

2(Twf ) V 2
1 (Twf ) V 3

0 (Twf ) 0.

Π0
3

grad

Π1
2

curl div

Π2
1 Π3

0

grad curl div

In other words, we have

grad Π0
3q = Π1

2grad q, ∀q ∈ C∞(T ),

curl Π1
2v = Π2

1curl v, ∀v ∈ [C∞(T )]3,

div Π2
1w = Π3

0divw, ∀w ∈ [C∞(T )]3.

This proposition will be proved using the following Lemmas.

Lemma 5.1.1. A function q ∈ S0
3(Twf ) is fully determined by the degrees of freedom

No. of DOFs

q(a), ∀a ∈ ∆0(T ), 4, (5.1.1a)

grad q(a), ∀a ∈ ∆0(T ), 12, (5.1.1b)∫
e

∂q

∂n±e
ds, ∀e ∈ ∆1(T ), 12, (5.1.1c)

where ∂
∂n±

e
represents two normal derivatives to edge e, so that n+

e , n
−
e and t, the unit

vector tangent to e, form a basis of R3. Then the DOFs (5.1.1) define the projection

Π0
3 : C∞(T )→ S0

3(Twf ).

Proof. The number of degrees of freedom in (5.1.1) is 28, which is consistent with the
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dimension count of S0
3(Twf ) in (4.2.6).

Let q ∈ S3
0(Twf ) such that q vanishes on the DOFs (5.1.1a) - (5.1.1c). On each face

F ct , q|F is zero by Lemma 5.0.1. Then we write q = µp for some piecewise quadratic

function p on Twf . Let F ∈ ∆2(T ) and let K ∈ T a contain F . Then since µ is linear on

K, p ∈ C1 on K. Moreover, grad q = pgradµ on F and so p vanishes on ∂F . Hence, we

have that p ∈ R0
2(F ct ) = {0}. Thus grad q = 0 on ∂T , or q ∈ S̊0

3(Twf ) = {0}.

Figure 5.1: Representation of the Clough-Tocher split with associated interior edge vec-
tors.

Lemma 5.1.2. Given a triangulation F ct of a face F ∈ ∆2(T ), the spaces S0
2(F ct ) and

P2(F ct ) are equivalent.

Proof. Notice that S0
2(F ct ) ⊆ P2(F ct ) = 6, hence dimS0

2(F ct ) ≤ dimP2(F ct ). How-

ever, from the formula for the dimension of S0
2(F ct ) in (2.3.7), we see that dimS0

2(F ct ) =

6. It follows that these two spaces must be equivalent.
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We will use Corollary 4.2.2 and Lemma 5.1.2 to determine a unisolvent set of degrees

of freedom for L1
2(Twf ).

Lemma 5.1.3. A function v ∈ L1
2(Twf ) is fully determined by the following degrees of

freedom.

No. of DOFs

v(a), ∀a ∈ ∆0(T ), 12, (5.1.2a)∫
e

v ds, ∀e ∈ ∆1(T ), 18, (5.1.2b)∫
F

curl FvF p dA, ∀p ∈ V̊ 2
1 (F ct ), ∀F ∈ ∆2(T ), 32, (5.1.2c)∫

e

[[curl v · t]]e ds, ∀e ∈ ∆I
1(F ct )\{eF}, ∀F ∈ ∆2(T ), 8, (5.1.2d)∫

eF

[[curl v · t]]eF q ds, ∀q ∈ P1(e),∀F ∈ ∆2(T ), 8, (5.1.2e)∫
T

curl v · q dx, ∀q ∈ curl L̊1
2(Twf ), 27. (5.1.2f)

Then the DOFs (5.1.2) define the projection Π1
2 : [C∞(T )]3 → L1

2(Twf ).

Proof. The total number of degrees of freedom is 105, which matches the dimension count

for L1
2(Twf ) in Lemma 2.6.4.

Let v ∈ L1
2(Twf ) such that v vanishes on the DOFs (5.1.2). On a face F ∈ ∆2(T ),

v|∂F = 0 due to DOFs (5.1.2a) - (5.1.2b). Since v|∂F = 0, we have vF ∈ L̊1
2(F ct ),

so using sequence (2.3.10b) on the Clough-Tocher split F ct yields curl FvF ∈ V̊ 2
1 (F ct ).

Then curl FvF = 0 by DOF (5.1.2c). Using that vF ∈ L̊1
2(F ct ), and by the exactness of

(2.3.10b), there exists a function p ∈ S̊0
3(F ct ) such that grad Fp = vF . But S̊0

3(F ct ) =

{0}, therefore p = 0 and vF = 0 on F .
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Next, using (5.1.2d) - (5.1.2e) and Corollary 4.2.2, we have that (curl v)F is continuous

on F . By Lemma 6.1.3 we have that grad F (v · nF ) is continuous on F. Thus v · nF |F ∈

R0
2(F ct) = {0}. Hence v|∂T = 0, so v ∈ L̊1

2(Twf ). By DOF (5.1.2f), curl v = 0 on

T . By exactness of the sequence (4.1.2c), there exists a function q ∈ S̊0
3(Twf ) such that

grad q = v. However, S̊0
3(Twf ) = {0}, therefore v = 0.

Lemma 5.1.4. A function w ∈ V 2
1 (Twf ) is fully determined by the following degrees of

freedom.

No. of DOFs∫
F

w · nF dA, ∀F ∈ ∆2(T ), 4, (5.1.3a)∫
F

(w · nF )p dA, ∀p ∈ V̊ 2
1 (F ct ), ∀F ∈ ∆2(T ), 32, (5.1.3b)∫

e

[[w · t]]e ds, ∀e ∈ ∆I
1(F ct )\{eF}, ∀F ∈ ∆2(T ), 8, (5.1.3c)∫

eF

[[w · t]]eF q ds, ∀q ∈ P1(e), ∀F ∈ ∆2(T ), 8, (5.1.3d)∫
T

(divw)q dx, ∀q ∈ V̊ 3
0 (Twf ), 11, (5.1.3e)∫

T

w · q dx, ∀q ∈ curl L̊1
2(Twf ), 27. (5.1.3f)

Then the DOFs (5.1.3) define the projection Π2
1 : [C∞(T )]3 → V 2

1 (Twf ).

Proof. The total number of DOFs in (5.1.3) is 90, which is consistent with our dimension

count for V 2
1 (Twf ) from Lemma 2.6.3.

Let w ∈ V 2
1 (Twf ) such that w vanishes on the DOFs (5.1.3). Then the triangulation

F ct of a face F ∈ ∆2(T ), it follows from (5.1.3a) that w · nF |F ∈ V̊ 2
1 (F ct ). Then by

(5.1.3b), w · nF |F = 0. Using (5.1.3c) - (5.1.3d) and Corollary 4.2.2 w ∈ V̊2
1 (Twf ), so

divw ∈ V̊ 3
0 (Twf ) by the sequence (4.1.1b). Therefore (5.1.3e) yields divw = 0. By the

exactness of sequence (4.1.1b), there exists v ∈ L̊1
2(Twf ) such that curl v = w. Then
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(5.1.3f) yields w = 0.

Lemma 5.1.5. A function p ∈ V 3
0 (Twf ) is fully determined by the following degrees of

freedom.

∫
T

p dx, (1 DOF) (5.1.4a)∫
T

pq dx, ∀q ∈ V̊ 3
0 (Twf ). (11 DOFs) (5.1.4b)

Then the DOFs (5.1.4) define the projection Π3
0 : C∞(T )→ V 3

0 (Twf ).

Proof. Let p ∈ V 3
0 (Twf ) such that p vanishes on the DOFs (5.1.4). Then the average of p

on T is zero by (5.1.4a), so p ∈ V̊ 3
0 (Twf ). Therefore by (5.1.4b), p = 0.

5.2 SLVV commuting diagram

Theorem 5.2.1. Given the definitions of the projections Π0
3,Π

1
2,Π

2
1, and Π3

0 in Lemmas

5.1.1 - 5.1.5, the diagram (5.1.1) of Proposition 5.1.1 commutes, i.e.,

grad Π0
3q = Π1

2grad q, ∀q ∈ C∞(T ), (5.2.1a)

curl Π1
2v = Π2

1curl v, ∀v ∈ [C∞(T )]3, (5.2.1b)

div Π2
1w = Π3

0divw, ∀w ∈ [C∞(T )]3. (5.2.1c)

Proof. (a) Proof of (5.2.1a). Given q ∈ C∞(T ), let ρ = grad Π0
3q − Π1

2grad q, and we

aim to show ρ = 0. Then ρ ∈ L1
2(Twf ), so it is sufficient to show that ρ vanishes on the

DOFs of Lemma 5.1.3. From (5.1.2a), we have ρ(a) = grad Π0
3q(a) − Π1

2grad q(a) = 0

for each a ∈ ∆1(T ) by (5.1.1a) and (5.1.2a). Using (5.1.1a), (5.1.1b), and (5.1.2b), for
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each e ∈ ∆1(T ),

∫
e

ρ ds =

∫
e

grad Π0
3q − Π1

2grad q ds

=

∫
e

grad (Π0
3q − q) ds

=

∫
e

∂

∂n+
e

(Π0
3q − q)n+

e +
∂

∂n−e
(Π0

3q − q)n−e +
∂

∂t
(Π0

3q − q)t ds

=

∫
e

∂

∂t
(Π0

3q − q)t ds

= (Π0
3q(a2)− q(a2))− (Π0

3q(a1)− q(a1)) = 0,

where a1 and a2 are the vertices of edge e.

Next, by (5.1.2c), for all p ∈ V̊ 2
1 (F ct ) and for each F ∈ ∆2(T ),

∫
F

curl FρF p dA =

∫
F

curl F (grad Π0
3q − Π1

2grad q)p dA

=

∫
F

curl F (grad (Π0
3q − q)p dA = 0,

since the curl of a gradient is zero. By (5.1.2d), for each e ∈ ∆I
1(F ct ) and for every

F ∈ ∆2(T ),

∫
e

[[curl (ρ) · t]]e ds =

∫
e

[[curl (grad Π0
3q − Π1

2grad q) · t]]e ds

=

∫
e

[[curl (grad (Π0
3q − q)) · t]]e ds = 0.

Similarly, from (5.1.2e), we have

[[curl (ρ) · t]]e(z) = [[curl (grad Π0
3q − Π1

2grad q) · t]]e(z)

= [[curl (grad (Π0
3q − q)) · t]]e(z) = 0.
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Finally, using (5.1.2f), for every p ∈ L̊1
2(Twf ),

∫
T

curl ρ · curl p dx =

∫
T

curl (grad Π0
3q − Π1

2grad q) · curl p dx

=

∫
T

curl (grad (Π0
3q − q)) · curl p dx = 0.

Then by Lemma 5.1.3, it follows that ρ = 0, therefore grad Π0
3q = Π1

2grad q.

(b) Proof of (5.2.1b). Given v ∈ [C∞(T )]3, let ρ = curl (Π1
2v) − Π2

1curl v. Then

ρ ∈ V 2
1 (Twf ), so we need only show that ρ vanishes on the DOFs (5.1.3). We apply the

Stokes Theorem of Equation (2.2.3b) as well as (5.1.2b) and (5.1.3a) to get

∫
F

ρ · nF dA =

∫
F

(curl (Π1
2v)− Π2

1curl v) · nF dA

=

∫
F

curl F ((Π1
2v − v)F ) dA

= 0.

Next, for all p ∈ V̊ 2
1 (F ct ), we have

∫
F

(ρ · nF )p dA =

∫
F

((curl (Π1
2v)− Π2

1curl v) · nF )p dA

=

∫
F

(curl (Π1
2v − v) · nF ) p dA = 0,

where we used (5.1.2c) and (5.1.3b). Using (5.1.3c), for every e ∈ ∆I
1(F ct )\{eF} and for

each F ∈ ∆2(Twf ),

∫
e

[[ρ · t]]e ds =

∫
e

[[curl (Π1
2v − v) · t]]e ds = 0

by (5.1.2d). Similarly, we can show that ρ vanishes on the DOFs (5.1.3d).
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Next, using (5.1.3e), for all q ∈ V̊ 3
0 (Twf ),

∫
T

(div ρ)q dx =

∫
T

(div curl (Π1
2v − v))q dx = 0.

Finally, using (5.1.3f), for any q ∈ curl L̊1
2(Twf ),

∫
T

ρ · q dx =

∫
T

curl (Π1
2v − v) · q dx = 0

by (5.1.2f). Therefore ρ = 0, and curl (Π1
2v) = Π2

1curl v.

(c) Proof of (5.2.1c). Set ρ = div Π2
1w − Π3

0divw, where w ∈ [C∞(T )]3, so that

ρ ∈ V 3
0 (Twf ). We will show that ρ vanishes on (5.1.4). By the Stokes Theorem from

Equation (2.2.1c) as well as (5.1.4a) and (5.1.3a), we have

∫
T

ρ dx =

∫
T

div Π2
1w − Π3

0divw dx

=

∫
T

div (Π2
1w − w) dx

=

∫
∂T

(Π2
1w − w) · n dA

= 0.

For all q ∈ V̊ 3
0 (Twf ), by (5.1.4b) and (5.1.3e),

∫
T

ρq dx =

∫
T

(div Π2
1w − Π3

0divw)q dx =

∫
T

div (Π2
1w − w)q dx = 0.

Therefore by Lemma 5.1.5, ρ = 0.
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5.3 SSLV degrees of freedom

Now we will develop commuting projections for the sequence (4.1.2c) with r = 3.

Proposition 5.3.1. Let Π3
0 : C∞(T )→ S0

3(Twf ) be the projection defined in Lemma 5.1.1.

We can construct projections

π1
2 : [C∞(T )]3 → S1

2(Twf ),

π2
1 : [C∞(T )]3 → L2

1(Twf ),

π3
0 : C∞(T )→ V 3

0 (Twf )

such that the following diagram commutes.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
3(Twf ) S1

2(Twf ) L2
1(Twf ) V 3

0 (Twf ) 0.

Π0
3

grad

π2
1

curl div

π1
2 π0

3

grad curl div

In other words, we have

grad Π3
0q = π2

1grad q, ∀q ∈ C∞(T ),

curlπ2
1v = π1

2curl v, ∀v ∈ [C∞(T )]3,

div π1
2w = π0

3divw, ∀w ∈ [C∞(T )]3.

We will make use of the following Lemma in determining the degrees of freedom for

S1
2(Twf ).

Lemma 5.3.1. A function v ∈ S1
2(Twf ) is fully determined by the following degrees of

freedom.
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No. of DOFs

v(a), ∀a ∈ ∆0(T ), 12, (5.3.1a)

curl v(a), ∀a ∈ ∆0(T ), 12, (5.3.1b)∫
e

v ds, ∀e ∈ ∆1(T ), 18. (5.3.1c)

Then the DOFs (5.3.1) define the projection π1
2 : [C∞(T )]3 → S1

2(Twf ).

Proof. The number of degrees of freedom in (5.3.1) is 42, which matches the dimension

count of S1
2(Twf ) from the formula in Theorem 4.2.6.

Let v ∈ S1
2(Twf ) such that v vanishes on the DOFs (5.3.1), and let F ∈ ∆2(T ). The

DOFs (5.3.1a) and (5.3.1c) yield that v|e = 0 for each e ∈ ∆1(T ). Furthermore, since

curl v is linear, it follows from (5.3.1b) that curl v|e = 0 as well. Hence vF ∈ S̊1
2(F ct ) =

{0} by the dimension count given in (2.3.8).

Also, since curl v is continuous on F and vF = 0 it follows from Lemma 6.1.3 that

grad F (v · nF )|F is continuous. Therefore v · nF |F ∈ R0
2(F ct) = {0}. It follows that

v|∂T = 0.

Since curl v ∈ V̊ 1
1 (Twf) we can apply Lemma 4.1.14 to deduce that (curl v)F ∈

R1
1(F ct ) = {0}, where we also used that (curl v)F = 0 on ∂F . We already had that

curl v · nF = 0, so curl v|F = 0 on each face F ∈ ∆2(T ).

Now we have v ∈ S̊1
2(Twf ), but dim S̊1

2(Twf ) = 0 by Theorem 4.2.5, therefore v =

0.

Lemma 5.3.2. A function w ∈ L2
1(Twf ) is fully determined by the following degrees of

freedom.
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No. of DOFS

w(a), ∀a ∈ ∆0(T ), 12, (5.3.2a)∫
F

w · nF dA, ∀F ∈ ∆2(T ), 4, (5.3.2b)∫
e

[[divw]]e ds, ∀e ∈ ∆I
1(F ct )\{eF}, ∀F ∈ ∆2(T ), 8, (5.3.2c)∫

T

divw v dx, ∀v ∈ div L̊2
1(Twf ), 3. (5.3.2d)

Then the DOFs (5.3.2) define the projection π2
1 : [C∞(T )]3 → L2

1(Twf ).

Proof. The number of degrees of freedom in (5.3.2) is 27, which matches the dimension

count of L2
1(Twf ) from Lemma 2.6.4.

Let w ∈ L2
1(Twf ) such that w vanishes on the DOFs (5.3.2). Then by (5.3.2a), w|e =

0 for every e ∈ ∆1(T ). Then, by (5.3.2b), we have w · nF |F ∈ L̊2
1(F ct ), and since

dim L̊2
1(F ct ) = 0 by (2.3.6), it follows that w · nF = 0 on F . Let K ∈ ∆3(T a) with

F ∈ ∆2(K). Thus, we can write w · nF = µψ for some ψ ∈ P0(Twf). However, since

w · nF is continuous on K and µ is linear on positive on K it must be that ψ is continuous

on K. Moreover, since nF · grad (w · nF ) = ψgradµ · nF on F which implies that

nF · grad (w · nF ) is continuous on F .

Using DOFs (5.3.2c) - (5.3.2d) and Lemma 6.3.2, we have that divw|F ∈ L̊2
0(F ct )

for each F ∈ ∆2(T ). We can write div FwF = divw|F − nF · grad (w · nF ) and, hence,

div FwF is continuous which implies that wF ∈ R1
1(F ct ) = {0}.

Now we have w ∈ L̊2
1(Twf ), so by (5.3.2d), divw = 0. Then we can use the exactness

of the sequence (4.1.1c) to see that there exists a function q ∈ S̊1
2(Twf ) such that curl q =

w. But dim S̊1
2(Twf ) = 0 by Theorem 4.2.5, therefore q = 0, so w = 0.
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In order for the projections of Proposition 5.3.1 to commute, we must use a new set of

degrees of freedom for the space V 3
0 (Twf ).

Lemma 5.3.3. A function p ∈ V 3
0 (Twf ) is fully determined by the following degrees of

freedom.

No. of DOFs∫
e

[[p]]e ds, ∀e ∈ ∆I
1(F ct )\{eF}, ∀F ∈ ∆2(T ), 8, (5.3.3a)∫

T

p dx, 1, (5.3.3b)∫
T

pq dx, ∀q ∈ V̊3
0 (Twf ), 3. (5.3.3c)

Then the DOFs (5.3.3) define the projection π3
0 : C∞(T )→ V 3

0 (Twf ).

Proof. The number of DOFs in (5.3.3) is equal to 12, which is the dimension of V 3
0 (Twf )

given in Lemma 2.6.3.

Let p ∈ V 3
0 (Twf ) such that the DOFs (5.3.3) are zero. Since p is piecewise constant,

the DOFs (5.3.3a) yield that p is continuous on each F ∈ ∆2(Twf ). Furthermore, it

follows from (5.3.3b) that p ∈ V̊3
0 (Twf ), and using (5.3.3c), p = 0.

5.4 SSLV commuting diagram

In this section, we prove that the degrees of freedom presented in Section 5.3 yield com-

muting projections for the sequence (4.1.2c).

Theorem 5.4.1. Given the definitions of the projections π1
2, π

2
1, and π3

0 from Lemmas 5.3.1
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- 5.3.3 as well as Π0
3 from Lemma 5.1.1, the diagram in Proposition 5.3.1 commutes, i.e.,

grad Π3
0q = π1

2grad q, ∀q ∈ C∞(T ), (5.4.1a)

curlπ1
2v = π2

1curl v, ∀v ∈ [C∞(T )]3, (5.4.1b)

div π2
1w = π0

3divw, ∀w ∈ [C∞(T )]3. (5.4.1c)

Proof. (a) Proof of (5.4.1a). Set ρ = grad Π3
0q − π2

1grad q ∈ S1
2(Twf ). We show that ρ

vanishes on (5.3.1).

We have ρ(a) = grad (Π3
0q(a)−q(a)) = 0 using (5.3.1a) and (5.1.1a). Using (5.3.1b),

curl ρ(a) = curl (grad (Π3
0q(a) − q(a))) = 0 since the curl of a gradient is always zero.

Then we use (5.3.1c) and (5.1.1a) so that

∫
e

ρ ds =

∫
e

grad (Π3
0q − q) ds

=

∫
e

∂

∂n+
e

(Π0
3q − q)n+

e +
∂

∂n−e
(Π0

3q − q)n−e +
∂

∂t
(Π0

3q − q)t ds

=

∫
e

∂

∂t
(Π0

3q − q)t ds

= (Π0
3q(a2)− q(a2))− (Π0

3q(a1)− q(a1)) = 0,

where a1 and a2 are the vertices of edge e. Thus, ρ vanishes on the DOFs (5.3.1), so ρ = 0

by Lemma 5.3.1, and the identity (5.4.1a) holds.

(b) Proof of (5.4.1b). Set ρ = curlπ1
2v−π2

1curl v ∈ L2
1(Twf ). We show that ρ vanishes

on (5.3.2). By (5.3.2a) and (5.3.1a), we have ρ(a) = curl π1
2v(a)− π2

1curl v(a) = 0. Then

using the Stokes Theorem of Equation (2.2.3b) as well as (5.3.2b) and (5.3.1c),

∫
F

ρ · nF dA =

∫
F

curl F (π1
2v − v)F dA

=

∫
∂F

((π1
2v − v)F × nF ) · 1 ds = 0,
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since (π1
2v − v)F is orthogonal to nF . By (5.3.2c), for any e ∈ ∆I

1(F ct )\{eF} of each

F ∈ ∆2(T ),

∫
e

[[div ρ]]e ds =

∫
e

[[div (curl π2
1v − π1

2curl v)]]e ds

=

∫
e

[[div (curl (π2
1v − v))F ]]e ds = 0.

Then by (5.3.2d), for every κ ∈ div L̊2
1(Twf )

∫
T

div ρ κ dx =

∫
T

div (curl π1
2v − π2

1curl v)κ dx

=

∫
T

div (curl (π1
2v − v))κ dx = 0.

Therefore ρ vanishes on the DOFs (5.3.2), so ρ = 0 by Lemma 5.3.2. Thus the identity

(5.4.1b) holds.

(c) Proof of (5.4.1c). Set ρ = div π2
1w − π0

3divw, where w ∈ [C∞(T )]3. We

will show that ρ vanishes on (5.3.3). Using (5.3.3a) and (5.3.2c), we have, for any

e ∈ ∆I
1(F ct )\{eF} in F ∈ ∆2(T ),

∫
e

[[ρ]]e ds =

∫
e

[[div (π2
1w − w)]]e ds = 0.

Next, using Stokes Theorem of Equation (2.2.1c) as well as (5.3.3b) and (5.3.2b),

∫
T

ρ dx =

∫
T

div (π2
1w − w) dx =

∫
∂T

(π1
2w − w) · n dA = 0.

Finally, using the Stokes Theorem (2.2.1c) again, in addition to (5.3.2d) and (5.3.3c), for

all q ∈ V̊3
0 (Twf ),

∫
T

ρq dx =

∫
T

div (π2
1w − w)q dx = 0,
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since div L̊2
1(Twf ) = V̊3

0 (Twf ) by the sequence (4.1.2c). Thus ρ vanishes on (5.3.3), so

ρ = 0 by Lemma 5.3.3. Therefore the identity (5.4.1c) holds.

5.5 SSSL degrees of freedom

Next, we will determine degrees of freedom for the spaces S2
1(Twf ) and L3

0(Twf ) of the

sequence (4.1.2d) such that the following proposition holds.

Proposition 5.5.1. We can construct projections $2
1 : [C∞(T )]3 → S2

1(Twf ) and $3
0 :

C∞(T )→ L3
0(Twf ) such that the following diagram commutes.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
3(Twf ) S1

2(Twf ) S2
1(Twf ) L3

0(Twf ) 0.

Π3
0

grad

π2
1

curl div

$1
2 $0

3

grad curl div

In other words, we have

grad Π3
0q = π1

2grad q, ∀q ∈ C∞(T ), (5.5.1a)

curl π1
2v = $2

1curl v, ∀v ∈ [C∞(T )]3, (5.5.1b)

div$2
1w = $3

0divw, ∀w ∈ [C∞(T )]3. (5.5.1c)

Lemma 5.5.1. A function w ∈ S2
1(Twf ) is fully determined by the degrees of freedom

w(a), ∀a ∈ ∆0(T ), (12 DOFs) (5.5.2a)∫
F

w · nF dA, ∀F ∈ ∆2(T ). (4 DOFs) (5.5.2b)

Then the DOFs (5.5.2) define the projection $2
1 : [C∞(T )]3 → S2

1(Twf ).
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Proof. The number of degrees of freedom is 16, which matches the dimension of S2
1(Twf )

given in Theorem 4.2.6.

Let w ∈ S2
1(Twf ) such that w vanishes on the DOFs (5.5.2). Then by (5.5.2a), w|e = 0

for all e ∈ ∆1(T ). Then wF ∈ R1
1(F ct ). But dimR1

1(F ct ) = 0 by Lemma 2.3.1, so

wF = 0 on F . Furthermore, by (5.5.2b), we have w · nF ∈ L̊2
1(F ct ), which has dimension

equal to 0 by (2.3.6), hence w · nF = 0 on F . Then there exists a constant vector c ∈ R3

such that w = cµ. Hence divw = cdiv µ, which is only continuous if c = 0. Since divw

is continuous by definition of the space S2
1(Twf ), it follows that w = 0.

Lemma 5.5.2. A function p ∈ L3
0(Twf ) is fully determined by the degree of freedom∫

T
p dx. This DOF defines the projection $3

0 : C∞(T )→ L3
0(Twf ).

Proof. Let p ∈ L3
0(Twf ) such that

∫
T
p dx = 0. Since p is a constant on T with average 0,

it follows that p = 0. This is the correct number of DOFs, as the dimension of the space

L3
0(Twf ) is 1 by Lemma 2.6.4.

5.6 SSSL commuting diagram

Theorem 5.6.1. Given the definitions of projections$2
1 and$3

0 in Lemmas 5.5.1 - 5.5.2 as

well as the projections Π0
3 and π1

2 from Lemmas 5.1.1 and 5.3.1, respectively, the diagram

of Proposition 5.5.1 commutes, i.e.,

grad Π0
3q = π1

2grad q, ∀q ∈ C∞(T ), (5.6.1a)

curlπ1
2v = $2

1curl v, ∀v ∈ [C∞(T )]3, (5.6.1b)

div$2
1w = $3

0divw, ∀w ∈ [C∞(T )]3. (5.6.1c)
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Proof. (a) The identity (5.6.1a) holds by Theorem 6.4.1.

(b) Proof of (5.6.1b). Let v ∈ [C∞(T )]3 and set ρ = curl π1
2v −$2

1curl v ∈ S2
1(Twf ).

We will show that ρ vanishes on the DOFs (5.5.2). First, ρ(a) = curlπ1
2v(a) −

$2
1curl v(a) = 0 by (5.5.2a) and (5.3.1a). Then using the Stokes Theorem of Equation

(2.2.3b), as well as (5.5.2b) and (5.3.1c), we have

∫
F

ρ · nF dA =

∫
F

curl F (π1
2v − v)F dA =

∫
∂F

((π1
2v − v)F × nF ) · 1 ds = 0,

since (π1
2v − v)F is orthogonal to nF . Thus ρ vanishes on (5.5.2), so ρ = 0 by Lemma

5.5.1. Hence the identity (5.6.1b) holds.

(c) Proof of (5.6.1c). Let w ∈ [C∞(T )]3, and set ρ = div$2
1w−$3

0divw ∈ L3
0(Twf ).

The only DOF is
∫
T
ρ dx, so

∫
T

ρ dx =

∫
T

div ($2
1w − w) dx =

∫
∂T

($2
1w − w) · n dA = 0,

by Stokes Theorem of Equation (2.2.1c) and (5.5.2b). Thus ρ = 0 by Lemma 5.5.2, so the

identity (5.6.1c) holds.

5.7 Global sequences and commuting diagrams

In this section, we discuss the global finite element spaces induced by the degrees of free-

dom from Sections 5.1, 5.3, and 5.5. Let Th be the triangulation of the polygonal domain

Ω ⊂ R3, and let T wf
h be the Worsey-Farin refinement of Th. Before we discuss global

finite element spaces, we must first revisit the discussion of singular edges of Section 2.6.
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By construction, every edge connecting a vertex of ∆0(Th) with a split point of a face

in ∆2(Th) is a “singular edge”, meaning the edge is in the intersection of four triangles

that together lie in two planes (see Definition 2.6.2). In other words, the interior edges of

the Clough-Tocher splits F ct of T wf
h are singular edges. In order for the global spaces to

have the correct continuity across adjacent macro-elements, we must define an operator

θe(·) in terms of the singular edges of T wf
h that places a condition on the multiple values a

piecewise polynomial may take at these edges.

Definition 5.7.1. We define the set E(T wf
h ) as the collection of edges that are internal to a

Clough-Tocher split of a face F ∈ ∆2(Th), i.e., E(T wf
h ) is the set of singular edges of the

triangulation T wf
h .

Definition 5.7.2. Let e ⊂ ∆I
1(F ct ) be an internal edge. Let T1, T2 ∈ Th be such that

F = T1 ∩ T2. Furthemore, let K1
i , K

2
i ∈ ∆3(Twf

i ), 1 ≤ i ≤ 2 be such that e ⊂ Kj
i , 1 ≤

i ≤ 2, 1 ≤ j ≤ 2 and K2
1 shares a face with K1

2 then we define

θe(p) = |p1
1 − p2

1 + p1
2 − p2

2| on e,

where pji = p|Kj
i
.

Note that if θe(p) = 0 if and only if [[p1]]e = [[p2]]e where pi = p|Ti .

Now, we are ready to consider the following global finite element spaces on T wf
h .

S0
3 (T wf

h ) = {q ∈ C1(Ω) : q|T ∈ S0
3(Twf )∀T ∈ Th}, (5.7.1a)

S1
2 (T wf

h ) = {v ∈ [C(Ω)]3 : curl v ∈ [C(Ω)]3, v|T ∈ S1
2(Twf )∀T ∈ Th}, (5.7.1b)

S2
1 (T wf

h ) = {w ∈ [C(Ω)]3 : divw ∈ C(Ω), w|T ∈ S2
1(Twf )∀T ∈ Th}, (5.7.1c)

L1
2(T wf

h ) = {v ∈ [C(Ω)]3 : v|T ∈ L1
2(Twf )∀T ∈ Th}, (5.7.1d)

L2
1(T wf

h ) = {w ∈ [C(Ω)]3 : w|T ∈ L2
1(Twf )∀T ∈ Th}, (5.7.1e)
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V 2
1 (T wf

h ) =
{
w ∈ H(div ; Ω) : w|T ∈ V 2

1 (Twf )∀T ∈ Th, θe(w · t) = 0,

∀e ∈ E(T wf
h )
}
, (5.7.1f)

V 3
0 (T wf

h ) = {p ∈ L2(Ω) : p|T ∈ V 3
0 (Twf )∀T ∈ Th, θe(p) = 0∀e ∈ E(T wf

h )}, (5.7.1g)

V 3
0 (T wf

h ) = P0(T wf
h ). (5.7.1h)

We will refer to the spaces (5.7.1) as global spaces, since they are defined for the entire tri-

angulation T wf
h of the domain Ω. The ranges of the Lagrange finite element spaces are par-

ticularly affected by the presence of singular edges, which are reflected in the definitions

of the spaces V k
r (T wf

h ) above by the presence of the condition involving θe. The following

lemma describes an intrinsic property of the curl of functions belonging to L1
2(T wf

h ) on

singular edges in E(T wf
h ).

Lemma 5.7.3. Let the function v ∈ L1
2(T wf

h ), and let e be a singular edge in E(T wf
h ).

Then θe(curl v · t) = 0.

Proof. We use the same notation as Lemma 5.7.2. We have that

θe(curl v · t)

=|curl v1
1 · t− curl v2

1 · t+ curl v1
2 · t+ curl v2

2 · t|

=|(grad (v1
1 · s) · n− grad (v1

1 · n) · s)− (grad (v2
1 · s) · n− grad (v2

1 · n) · s)

+ (grad (v1
2 · s) · n− grad (v1

2 · n) · s)− (grad (v2
2 · s) · n− grad (v2

2 · n) · s)|

Here we used that curlw · t = grad (w · s) · n− grad (w · n) · s.

We know that the following vanish since s is tangent to F and v is continuous.

grad (v1
1 · n) · s− grad (v2

2 · n) · s =0 on e,

grad (v2
1 · n) · s− grad (v1

2 · n) · s =0 on e.
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Let fi ∈ ∆2(Twf
i ) be the faces such that e ⊂ fi. We know that fi belong to the same

plane, which we call f, and we let r be a vector tangent to both f and perpendicular to t.

We can write

n = ar + bs,

where a := 1
(r·n)

and b := − (r·s)
(r·n)

. Hence, on e

grad (v1
1 · s) · n− grad (v2

1 · s) · n+ grad (v1
2 · s) · n− grad (v2

2 · s) · n

=agrad ((v1
1 − v2

1) · s) · r + agrad ((v1
2 − v2

2) · s) · r

+ bgrad ((v1
1 − v2

2) · s) · s+ bgrad ((v1
2 − v2

1) · s) · s

=0. (5.7.2)

Next, we describe an intrinsic property of the divergence of functions belonging to

L2
1(T wf

h ) on singular edges E(T wf
h ).

Lemma 5.7.4. Let w ∈ L2
1(T wf

h ), and let e be a singular edge in E(T wf
h ). Then

θe(divw) = 0.

Proof. We use the same notation as Lemma 5.7.2. We have that

θe(divw)

=|divw1
1 − divw2

1 + divw1
2 + divw2

2|

=|
(
grad (w1

1 · n) · n+ grad (w1
1 · s) · s+ grad (w1

1 · t) · t
)

−
(
grad (w2

1 · n) · n+ grad (w2
1 · s) · s+ grad (w2

1 · t) · t
)

+
(
grad (w1

2 · n) · n+ grad (w1
2 · s) · s+ grad (w1

2 · t) · t
)
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−
(
grad (w2

2 · n) · n+ grad (w2
2 · s) · s+ grad (w2

2 · t) · t
)
|

=|grad (w1
1 · n) · n− grad (w2

1 · n) · n+ grad (w1
2 · n) · n− grad (w2

2 · n) · n|.

Here we used that since t, s are tangent to F and w is continuous we obtain

grad (w1
1 · t) · t− grad (w2

2 · t) · t =0 on e,

grad (w2
1 · t) · t− grad (w1

2 · t) · t =0 on e,

grad (w1
1 · s) · s− grad (w2

2 · s) · s =0 on e,

grad (w2
1 · s) · s− grad (w1

2 · s) · s =0 on e.

As we did in (5.7.2) we can show that

grad ((w1
1 − w2

1 + w1
2 − w2

2) · n) · n = 0 on e.

Let us now describe what it means for a set of degrees of freedom to “induce” a global

space, using the S0
3 (T wf

h ) space as an example. Let T1 and T2 be two tetrahedra in Th

that share a face F . Suppose we have the locally-defined functions q1 ∈ S0
3(Twf

1 ) and

q2 ∈ S0
3(Twf

2 ) such that the degrees of freedom for q1 and q2 are set equal to each other on

the face F . Specifically, using Lemma 5.1.1, suppose that we have

q1(a) = q2(a) ∀a ∈ ∆0(F ),

grad q1(a) = grad q2(a) ∀a ∈ ∆0(F ),∫
e

∂q1

∂n±e
ds =

∫
e

∂q2

∂n±e
ds ∀e ∈ ∆1(F ).

Let χ(S) be the characteristic function on a simplex S. If it follows from these degrees of



121

freedom that the function q1χ(T1)+q2χ(T2) isC1 across the face F , then the function must

also be C1 on all of T1∪T2. Then we can infer that the local degrees of freedom of Lemma

5.1.1 induce the global space (5.7.1a). In this section, we will show that the degrees of

freedom presented in Sections 5.1, 5.3, and 5.5 induce the global spaces of (5.7.1). From

this result, the exactness of sequences made up of these global spaces follows from the

fact that the local spaces that induce these global spaces form exact sequences within each

macroelement.

Let us define some notation used in this section. We let T1 and T2 be adjacent tetra-

hedra in Th that share a face F , as before. Let K1 and K2 be tetrahedra in ∆3(T a
1 ) and

∆3(T a
2 ), respectively, such that K1 and K2 share the face F . Let F ct represent the trian-

gulation of F in Th, and let Kwf
i be the triangulation of Ki, where 1 ≤ i ≤ 2. Without

loss of generality, we choose nF = n1, the outward normal to T1 on F .

Lemma 5.7.5. The local degrees of freedom stated in Lemma 5.1.1 induce the global

space S0
3 (T wf

h ).

Proof. Let q1 ∈ S0
3(Twf

1 ) and q2 ∈ S0
3(Twf

2 ) such that the DOFs (5.1.1) for q1 and q2 are

equal on F . Then we extend q to K2 as in Remark 2.6.1, and we define p = q1− q2. Using

Lemma 5.1.1, we see that p and grad p must be zero on F since the DOFs (5.1.1) applied

to p are zero on F . Therefore q1 = q2 and grad q1 = grad q2 on F , so q1χ(T1) + q2χ(T2)

is C1 on T1 ∪ T2. It follows that the DOFs (5.1.1) of Lemma 5.1.1 induce the global space

S0
3 (T wf

h ).

Next, we consider the global Lagrange space L1
2(T wf

h ), where we must show that the

intrinsic property describe in Lemma 5.1.3 is induced by the local DOFs (5.1.2) in addition

to continuity between macroelements.
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Lemma 5.7.6. The local degrees of freedom stated in Lemma 5.1.3 induce the global

space L1
2(T wf

h ).

Proof. We let v1 ∈ L1
2(Twf

1 ) and v2 ∈ L1
2(Twf

2 ) such v1− v2 vanishes on the DOFs (5.1.2)

associated with the triangulation F ct of the face F , and we extend v1 to K2 as in Remark

2.6.1. Then we define w = v1 − v2, and following the proof of Lemma 5.1.3, we see

that w = 0 on F since the DOFs (5.1.2) applied to w are equal to zero on F . Hence,

v := v1χ(T1) + v2χ(T2) is continuous on all of T1 ∪ T2. It follows that the local DOFs

(5.1.2) induce the global space L1
2(T wf

h ).

Lemma 5.7.7. The local degrees of freedom of Lemma 5.1.4 induce the global space

V 2
1 (T wf

h ).

Proof. Let w1 ∈ V 2
1 (Twf

1 ) and w2 ∈ V 2
1 (Twf

2 ) such that w1 − w2 vanishes on the DOFs

(5.1.3a) - (5.1.3d) associated with the triangulation F ct of F . Then we extend w1 to K2

in Twf
2 as in Remark (2.6.1), and we define v = w1 − w2. Then by Lemma 5.1.4, v

vanishes on F . In particular, v · nF = 0 on F , and it follows that w := w1χ(T1) +

w2χ(T2) is divergence-conforming across F . For each e ∈ ∆I
1(F ct ), we also have that

0 = [[w1 · t]]e − [[w2 · t]]e by (5.1.3c) - (5.1.3d) and Corollary 4.2.2, which implies that

θe(w · t) = 0. Therefore, the DOFs (5.1.3) induce the global space V 2
1 (T wf

h ).

Lemma 5.7.8. The local degrees of freedom in Lemma 5.1.5 induce the global space

V 3
0 (T wf

h ).

Proof. Let p1 ∈ V 3
0 (Twf

1 ) and p2 ∈ V 3
0 (Twf

2 ), such that
∫
F
p1 dA =

∫
F
p2 dA, as in the

DOFs (5.1.4a). The DOFs (5.1.4) yield that p1χ(T1) + p2χ(T2) is piecewise constant on

Kwf
1 ∪Kwf

2 , therefore these DOFs induce the global space V 3
0 (T wf

h ).
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Now we can see that the sequence

R −−→ S0
3 (T wf

h )
grad

−−→ L1
2(T wf

h )
curl

−−→ V 2
1 (T wf

h )
div

−−→ V 3
0 (T wf

h ) −−→ 0 (5.7.3a)

forms a complex, which follows from Theorem 4.1.2 and Lemmas 5.7.5 - 5.7.8. Fur-

thermore, we can define commuting projections Π̃j
i by Π̃j

iv|T = Πj
i (v|T ) for all T ∈ Th,

with 0 ≤ i, j ≤ 3. Using Theorem 6.4.1, we get the following commuting diagram for

sequence (5.7.3a).

R C∞(Ω) [C∞(Ω)]3 [C∞(Ω)]3 C∞(Ω) 0

R S0
3 (T wf

h ) L1
2(T wf

h ) V 2
1 (T wf

h ) V 3
0 (T wf

h ) 0.

Π̃0
3

grad

Π̃1
2

curl div

Π̃2
1 Π̃3

0

grad curl div

Next, we will show that the DOFs for the local spaces S1
2(Twf ), L2

1(Twf ), and V 3
0 (Twf )

of sequence (4.1.2c) with r = 3 induce the global spaces S1
2 (T wf

h ), L2
1(T wf

h ), and

V 3
0 (T wf

h ), respectively.

Lemma 5.7.9. The local degrees of freedom in Lemma 5.3.1 induce the global space

S1
2 (T wf

h ).

Proof. Let v1 ∈ S1
2(Twf

1 ) and v2 ∈ S1
2(Twf

2 ) such that v1 − v2 vanishes on the DOFs

(5.3.1) associated with the triangulation F ct of the face F . We extend v1 to K2 as in

Remark 2.6.1, and we define w = v1 − v2. Then by Lemma 5.3.1, w and curlw vanish

on F . Hence v1χ(T1) + v2χ(T2) is continuous with continuous curl on F ct , so the DOFs

(5.3.1) induce the global space S1
2 (T wf

h ).

Lemma 5.7.10. The local degrees of freedom stated in Lemma 5.3.2 induce the global

space L2
1(T wf

h ).
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Proof. Let w1 ∈ L2
1(Twf

1 ) and w2 ∈ L2
1(Twf

2 ) such that w1 − w2 vanishes on the DOFs

(5.3.2a) - (5.3.2c) associated with the triangulation F ct of the face F . We extend w1 to K2

as in Remark 2.6.1, and set v = w1 − w2. By following the proof of Lemma 5.3.2 we can

show that v = 0 on F . Then we see that w := w1χ(T1) + w2χ(T2) is continuous accross

F .

Lemma 5.7.11. The local degrees of freedom stated in Lemma 5.3.3 induce the global

space V 3
0 (T wf

h ).

Proof. Let p1 ∈ V 3
0 (Twf

1 ) and p2 ∈ V 3
0 (Twf

2 ) such that p1 − p2 vanishes on the DOFs

(5.3.3a) associated with the triangulation F ct of the face F . We extend p1 to K2 as in

Remark 2.6.1.

Given an edge e ∈ ∆I
1(F ct ), and using DOF (5.3.3a), we have that [[p1]]e = [[p2]]e,

which implies that θe(p) = 0, where p = p1χ(K1) + p2χ(K2).

Now we can see that the sequence

R −−→ S0
3(T wf

h )
grad

−−→ S1
2(T wf

h )
curl

−−→ L2
1(T wf

h )
div

−−→ V3
0 (T wf

h ) −−→ 0

forms a complex. Furthermore, we can define commuting projections π̃ji such that π̃ji v|T =

πji (v|T ) for all T ∈ Th. Then by using Theorem 6.4.1, we get the following commuting

diagram.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
3 (T wf

h ) S1
2 (T wf

h ) L2
1(T wf

h ) V 3
0 (T wf

h ) 0.

Π̃0
3

grad

π̃1
2

curl div

π̃2
1 π̃3

0

grad curl div

From Lemma 5.5.2, we see that the dimension of the final space of sequence (4.1.2d),
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L3
0(Twf ), is 1, i.e., L3

0(Twf ) is the space of constant scalar functions on T . However, in the

global setting, it is not possible for a locally constant function to be globally continuous

unless it is a global constant. Therefore, in the case r = 3, the sequence (4.1.2d) is

only conforming on the global Worsey-Farin refinement T wf
h if it consists of trivial global

polynomial spaces. In the next chapter, we develop commuting projections for general

polynomial order r, and we will show that the sequence (4.1.2d) is non-trivial in the global

setting when r ≥ 4.



CHAPTER SIX

Commuting Projections on

Worsey-Farin Splits: General

Polynomial Order
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In this chapter, we extend the results of Chapter 5 to general polynomial orders. In par-

ticular, we develop projections for the local, three-dimensional finite element spaces de-

scribed in Section 2.1 such that the diagrams associated with the exact sequences (4.1.2a) -

(4.1.2d) commute. Furthermore, we ensure that, in the lowest order case, these projections

recover those defined in Chapter 5, where we set the polynomial order r = 3.

6.1 SLVV degrees of freedom

First, we give degrees of freedom for the local finite element spaces in the sequence

(4.1.2b) such that the following proposition holds.

Proposition 6.1.1. Let r ≥ 3. There exists projections

Π0
r : C∞(T )→ S0

r (T
wf ),

Π1
r−1 : [C∞(T )]3 → L1

r−1(Twf ),

Π2
r−2 : [C∞(T )]3 → V 2

r−2(Twf ),

Π3
r−3 : C∞(T )→ V 3

r−3(Twf )

such that the following diagram commutes.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
r (T

wf ) L1
r−1(Twf ) V 2

r−2(Twf ) V 3
r−3(Twf ) 0.

Π0
r

grad

Π1
r−1

curl div

Π2
r−2 Π3

r−3

grad curl div
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In other words, the following identities hold.

grad Π0
rq = Π1

r−1grad q, ∀q ∈ C∞(T ),

curl Π1
r−1v = Π2

r−2curl v, ∀v ∈ [C∞(T )]3,

div Π2
r−2w = Π3

r−3divw, ∀w ∈ [C∞(T )]3.

(6.1.1)

The degrees of freedom for each of the spaces S0
r (T

wf ), L1
r−1(Twf ), V 2

r−2(Twf ), and

V 3
r−3(Twf ) will define the projections Π0

r,Π
1
r−1,Π

2
r−2, and Π3

r−3, respectively.

Now, we give degrees of freedom for S0
r (T

wf ) for r ≥ 3. When r < 3, this space

reduces to Pr(T ).

Lemma 6.1.1. A function q ∈ S0
r (T

wf ), with r ≥ 3, is fully determined by the following

degrees of freedom.

No. of DOFs

q(a), ∀a ∈ ∆0(T ), 4, (6.1.2a)

grad q(a), ∀a ∈ ∆0(T ), 12, (6.1.2b)∫
e

qκ ds, ∀κ ∈ Pr−4(e), ∀e ∈ ∆1(T ), 6(r − 3), (6.1.2c)∫
e

∂q

∂n±e
κ ds, ∀κ ∈ Pr−3(e), ∀e ∈ ∆1(T ), 12(r − 2), (6.1.2d)∫

F

grad F q · κ dA, ∀κ ∈ grad F S̊
0
r (F

ct ), ∀F ∈ ∆2(T ), 6(r − 2)(r − 3), (6.1.2e)∫
F

(nF · grad q)κ dA, ∀κ ∈ R0
r−1(F ct ), ∀F ∈ ∆2(T ), 6(r − 2)(r − 3), (6.1.2f)∫

T

grad q · κ dx, ∀κ ∈ grad S̊0
r (T

wf ), 2(r − 2)(r − 3)(r − 4), (6.1.2g)

where ∂
∂n±

e
represents two normal derivatives to edge e, so that n+

e , n
−
e and t, the unit

vector tangent to e, form a basis of R3. Then the DOFs (6.1.2) define the projection

Π0
r : C∞(T )→ S0

r (T
wf ).
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Proof. The dimension of S0
r (T

wf ) is 2r3− 6r2 + 10r− 2, which is equal to the sum of the

number of the given DOFs.

Let q ∈ S0
r (T

wf ) such that q vanishes on the DOFs (6.1.2). On each edge e ∈ ∆1(T ),

q|e = 0 by DOFs (6.1.2a) - (6.1.2c). Furthermore, grad q|e = 0 by DOFs (6.1.2b) and

(6.1.2d). Then q|F ∈ S̊0
r (F

ct ) for each F ∈ ∆2(T ), and (6.1.2e) yields grad F q|F = 0.

Hence q|F is constant, and since q|∂F = 0, it follows that q|F = 0 for each F ∈ ∆2(T ).

Now we can write q = µp, where p ∈ L0
r−1(Twf ). Since µ is linear on each K ∈

∆3(T a ), and q|K ∈ S0
r (K

wf ), it follows that p ∈ Sr−1
0(Kwf ), hence p|F ∈ Sr−1

0(F ct ).

We have that grad q = µgrad p+ pgradµ, hence on F , nF · grad q|F = p(nF · gradµ)|F .

Since grad q|∂F = 0, it follows that p|∂F = 0. Therefore p ∈ R0
r−1(F ct ), so p|F = 0 by

(6.1.2f). Now grad q|∂T = 0, hence q ∈ S̊0
r (T

wf ), and by (6.1.2g), we have grad q = 0.

Therefore q = 0, which is the desired result.

Remark 6.1.2. In two dimensions, the work of [29] provided nodal degrees of freedom

for the space S0
r (F

ct ) with r ≥ 3.

Lemma 6.1.3. Let e be an internal edge of F ct , and let t and s be unit vectors tangent

and orthogonal to e, respectively, as in Definition 5.0.2. Let v ∈ L1
k(T

wf ) for some k ≥ 0.

If v × nF = 0 on F , then [[curl v · t]]e = [[grad (v · nF ) · s]]e.

Proof. Since [t, s, nF ]> forms an orthonormal basis of R3, we write v = att+ass+annF ,

where at = v · t, as = v · s, and an = v ·nF . Since v×nF = 0 on F , we have at = as = 0

on F . Then, on F ,

grad F (at) = grad F (as) = 0. (6.1.3)
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Since curl v can be written as grad at × t+ grad as × s+ grad an × nF , we have

curl v · t = (grad as × s+ grad an × nF ) · t. (6.1.4)

We can also write grad as as

grad as = (t · grad as)t+ (s · grad as)s+ (nF · grad an)nF ,

hence

(grad as × s) · t = (nF · grad as)(nF × s) · t, (6.1.5)

since (t× s) · t = 0 and (s× s) · t = 0.

Let f be the interior face of Twf that contains e, and let r be the unit vector tangent to

f and orthogonal to t. Then r may be written r = (r · s)s+ (r · nF )nF , therefore

nF =
r − (r · s)s
r · nF

.

Then by (6.1.3), on F we have

nF · grad as =
1

r · nF
(r − (r · s)s) · grad as

=
1

r · nF
(r · grad as − s · grad as)

=
1

r · nF
(r · grad as).

(6.1.6)

Since r is tangent to f and as is continuous, we have [[r · grad as]]e = 0, which yields

[[nF · grad as]]e = 0 and in turn implies [[(grad as × s) · t]]e = 0 by (6.1.5). It follows that

[[curl v · t]]e = [[(grad an × nF ) · t]]e.
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We expand grad an in terms of [t, s, nF ]> as

grad an = (t · grad an·)t+ (s · grad an)s+ (nF · grad an)nF .

So (grad an×nF ) ·t = (s ·grad an(s×nF )) ·t, since (t×nF ) ·t = 0 and (nF ×nF ) ·t = 0.

Because (s × nF ) · t = 1, it follows that (grad an × nF ) · t = s · grad an. Therefore

[[curl v · t]]e = [[s · grad an]]e = [[s · grad (v · nF )]]e, which is the desired result.

We remind the reader that the notation ker L̊1
r−1(F ct ) represents the space {v ∈

L̊1
r−1(F ct ) : curl Fv = 0}, which is equal to the space grad F S̊

0
r (F

ct ). Now we are

ready to give the degrees of freedom for L1
r−1(Twf ).

Lemma 6.1.4. A function v ∈ L1
r−1(Twf ), with r ≥ 3, is fully determined by the following

degrees of freedom.

No. of DOFs

v(a), 12, (6.1.7a)∫
e

v · κ ds, ∀κ ∈ [Pr−3(e)]3, ∀e ∈ ∆1(T ), 18(r − 2), (6.1.7b)∫
e

[[curl v · t]]eκ ds, ∀κ ∈ Pr−3(e), ∀e ∈ ∆I
1(F ct )\{eF},

∀F ∈ ∆2(T ), 8(r − 2), (6.1.7c)∫
eF

[[curl v · t]]eFκ ds, ∀κ ∈ Pr−2(eF ), ∀F ∈ ∆2(T ), 4(r − 1), (6.1.7d)∫
F

(v · nF )κ dA, ∀κ ∈ R0
r−1(F ct ),∀F ∈ ∆2(T ), 6(r − 2)(r − 3), (6.1.7e)∫

F

curl FvFκ dA, ∀κ ∈ V̊ 2
r−2(F ct ),∀F ∈ ∆2(T ), 6r2 − 6r − 4, (6.1.7f)∫

F

vF · κ dA, ∀κ ∈ ker L̊1
r−1(F ct ),∀F ∈ ∆2(T ),6(r − 2)(r − 3), (6.1.7g)∫

T

curl v · κ dx, ∀κ ∈ curl L̊1
r−1(Twf ), 4r3 − 9r2 − 7r + 21, (6.1.7h)∫

T

v · κ dx, ∀κ ∈ grad S̊0
r (T

wf ), 2(r − 2)(r − 3)(r − 4). (6.1.7i)
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Then the DOFs (6.1.7) define the projection Π1
r−1 : [C∞(T )]3 → L1

r−1(Twf ).

Proof. The dimension of L1
r−1(Twf ) is 6r3 − 9r2 + 9r − 3, which is equal to the number

of DOFs in (6.1.7). Let v ∈ L1
r−1(Twf ) such that v vanishes on the DOFs (6.1.7). Then

v|e = 0 for each edge e ∈ ∆1(T ) by (6.1.7a) - (6.1.7b), so vF ∈ L̊1
r−1(F ct ) on each

F ∈ ∆2(T ). From (2.3.10d), we can see that curl FvF ∈ V̊ 2
r−2(F ct ). Then (6.1.7f) yields

curl FvF = 0 and by the exactness of the sequence (2.3.10d), we have vF ∈ ker L̊1
r−1(F ct ),

so vF = 0 by (6.1.7g).

Since curl v · nF = 0 on F it follows from Corollary 4.2.2, DOFs (6.1.7c) - (6.1.7d)

that [[curl v · t]]e = 0 for each e ∈ ∆I
1(F ct ). Hence, by Lemma 6.1.3, v · nF ∈ S0

r−1(F ct ),

and since v · nF |∂F = 0, we have v · nF |F ∈ R0
r−1(F ct ). Then v · nF |F = 0 by (6.1.7e).

We, therefore, conclude that v|∂T = 0.

Now v ∈ L̊1
r−1(Twf ), so curl v = 0 by (6.1.7h). Using the exactness of sequence

(4.1.1b), there exists a p ∈ S̊0
r (T

wf ) such that grad p = v. So by (6.1.7i), v = 0, which is

the desired result.

Next, we can write the degrees of freedom for V 2
r−2(Twf ).

Lemma 6.1.5. A function w ∈ V 2
r−2(Twf ), with r ≥ 3, is fully determined by the following

degrees of freedom.

No. of DOFs∫
e

[[w · t]]eq ds, ∀q ∈ Pr−3(e), ∀e ∈ ∆I
1(F ct )\{eF},

∀F ∈ ∆2(T ), 8(r − 2), (6.1.8a)∫
eF

[[w · t]]eF q ds, ∀q ∈ Pr−2(eF ), ∀F ∈ ∆2(T ), 4(r − 1), (6.1.8b)
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∫
F

w · nF q dA, ∀q ∈ V 2
r−2(F ct ), ∀F ∈ ∆2(T ), 6r(r − 1), (6.1.8c)∫

T

(divw)q dx, ∀q ∈ V̊ 3
r−3(Twf ), 2r3 − 6r2 + 4r − 1, (6.1.8d)∫

T

w · q dx, ∀q ∈ curl L̊1
r−1(Twf ), 4r3 − 9r2 − 7r + 21. (6.1.8e)

Then the DOFs (6.1.8) define the projection Π2
r−2 : [C∞(T )]3 → V 2

r−2(Twf ).

Proof. The dimension of V 2
r−2(Twf ) is 6r3− 9r2 + 3r+ 12, which is the number of DOFs

in (6.1.8). Let w ∈ V 2
r−2(Twf ) such that w vanishes on (6.1.8). By DOF (6.1.8c), we have

w ·nF = 0 on each F ∈ ∆2(T ). By DOFs (6.1.8a) - (6.1.8b), and Corollary 4.2.2 we have

that w ∈ V̊2
r−2(Twf ), so divw = 0 by (6.1.8d). By the exactness of sequence (4.1.1b),

there exists a v ∈ L̊1
r−1(Twf ) such that curl v = w. Therefore w = 0 by (6.1.8e), which is

the desired result.

Lemma 6.1.6. A function p ∈ V 3
r−3(Twf ), with r ≥ 3, is fully determined by the following

degrees of freedom.

No. of DOFs∫
T

p dx, 1, (6.1.9a)∫
T

pq dx, ∀q ∈ V̊ 3
r−3(Twf ), 2r(r − 1)(r − 2)− 1. (6.1.9b)

Then the DOFs (6.1.9) define the projection Π3
r−3 : C∞(T )→ V 3

r−3(Twf ).

Proof. The dimension of V 3
r−3(Twf ) is 2r(r− 1)(r− 2), which is the number of DOFs in

(6.1.9).

Let p ∈ V 3
r−3(Twf ) such that p vanishes on (6.1.9). From (6.1.9a), we have that

p ∈ V̊ 3
r−3(Twf ). Hence by (6.1.9b), p = 0, which is the desired result.
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6.2 SLVV commuting diagram

Theorem 6.2.1. Let r ≥ 3. Given the definitions of the projections Π0
r,Π

1
r−1,Π

2
r−2, and

Π3
r−3 in Lemmas 6.1.1 - 6.1.6, the diagram of Proposition 6.1.1 commutes, i.e.,

grad Π0
rq = Π1

r−1grad q, ∀q ∈ C∞(T ), (6.2.1a)

curl Π1
r−1v = Π2

r−2curl v, ∀v ∈ [C∞(T )]3, (6.2.1b)

div Π2
r−2w = Π3

r−3divw, ∀w ∈ [C∞(T )]3. (6.2.1c)

Proof. (i) Proof of (6.2.1a). Given q ∈ C∞(T ), let ρ = grad Π0
rq − Π1

r−1grad q ∈

L1
r−1(Twf ). Then to show (6.2.1a) holds, it is sufficient to show that ρ vanishes on the

DOFs (6.1.7) of Lemma 6.1.4.

Using (6.1.7a) and (6.1.2b), we have ρ(a) = grad Π0
rq(a) − Π1

r−1grad q(a) = 0 for

each a ∈ ∆0(T ). Using (6.1.7b) and (6.1.2d), for each e ∈ ∆1(T ) and for any κ ∈

[Pr−3(e)]3, where e ∈ ∆1(T ),

∫
e

ρ · κ ds =

∫
e

grad (Π0
rq − q) · κ ds

=

∫
e

( ∂

∂n+
e

(Π0
rq − q)n+

e +
∂

∂n−e
(Π0

rq − q)n−e +
∂

∂t
(Π0

rq − q)t
)
· κ ds

=

∫
e

∂

∂t
(Π0

rq − q)t · κ ds

= 0,

where the last line follows from (6.1.2a). Using (6.1.7c), for each e ∈ ∆I
1(F ct )\{eF}, for

all F ∈ ∆2(T ), and for any κ ∈ Pr−3(e),

∫
e

[[curl ρ · t]]eκ ds =

∫
e

[[curl grad (Π0
rq − q) · t]]eκ ds = 0,
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since the curl of the gradient is zero. By the same reasoning, the DOFS (6.1.7d) of ρ

vanish. By (6.1.7e), for any κ ∈ R0
r−1(F ct ),

∫
F

(ρ · nF )κ dA =

∫
F

(grad (Π0
rq − q) · nF )κ dA = 0,

by (6.1.2f).

Similarly, using (6.1.7f),
∫
F

curl FρF κ dA = 0 for every κ ∈ V̊ 2
r−2(F ct ). Next, for

κ ∈ ker L̊1
r−1(F ct ),

∫
F

ρF · κ dA =

∫
F

grad F (Π0
rq − q) · κ dA = 0

using (6.1.2e) and (6.1.7g).

On the macro-elements, we use (6.1.7h) so that for all κ ∈ curl L̊1
r−1(Twf ),

∫
T

curl ρ · κ dx =

∫
T

curl grad (Π0
rq − q) · κ dx = 0.

Finally, we use (6.1.7i) to see that for all κ ∈ grad S̊0
r (T

wf ),

∫
T

ρ · κ dx =

∫
T

grad (Π0
rq − q) · κ dx = 0,

by (6.1.2g). Hence by Lemma 6.1.4, ρ = 0, and the identity (6.2.1a) is proved.

(ii) Proof of (6.2.1b). Given v ∈ [C∞(T )]3, let ρ = curl Π1
r−1v − Π2

r−2curl v ∈

V 2
r−2(Twf ). To prove that (6.2.1b) holds, we will show that ρ vanishes on the DOFs (6.1.8)

of Lemma 6.1.5.

On the interior edges e ∈ ∆I
1(F ct )\{eF} of each face F ∈ ∆2(T ), and for all q ∈
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Pr−3(e), we have

∫
e

[[ρ · t]]e q ds =

∫
e

[[curl (Π1
r−1v − v) · t]]e q ds = 0,

using (6.1.7c) and (6.1.8a). Similarly, using the DOFs (6.1.8c) of ρ vanish.

To show that the DOFs (6.1.8c) of ρ vanish we consider first constant functions and

then functiosn orthognal to constants. To this end, we use (6.1.8c), (6.1.7b) and the Stokes

Theorem of Equation (2.2.3b), so that

∫
F

ρ · nF dA =

∫
F

curl F (Π1
r−1v − v)F dA = 0,

Here we used that r ≥ 3. Moreover, for any p ∈ V̊ 2
r−2(F ct ), from (6.1.8c), we have

∫
F

ρ · nF p dA =

∫
F

curl F (Π1
r−1v − v)Fp dA = 0.

On the macro-elements, it follows from (6.1.8d) that for all p ∈ V̊ 3
r−3(Twf)

∫
T

(div ρ)p dx =

∫
T

div curl (Π1
r−1v − v)p dx = 0.

Finally, for all p ∈ curl L̊1
r−1(Twf ), it follows from (6.1.7h) and (6.1.8e)

∫
T

ρ · p dx =

∫
T

curl (Π1
r−1v − v) · p dx = 0.

Hence by Lemma 6.1.5, ρ = 0, and the identity (6.2.1b) is proved.

(iii) Proof of (6.2.1c). Given w ∈ [C∞(T )]3, let ρ = div Π2
r−2w − Π3

r−3divw ∈

V 3
r−3(Twf ). We will show that ρ vanishes on the DOFs (6.1.9), so that ρ = 0 and identity

(6.2.1c) holds.
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First, by (6.1.8c), (6.1.9a), and the Stokes Theorem of Equation (2.2.1c), we have

∫
T

ρ dx =

∫
T

div (Π2
r−2w − w) dx =

∫
∂T

(Π2
r−2w − w) · n dx = 0.

Next, using (6.1.8d) and (6.1.9b), for any q ∈ V̊ 3
r−3(Twf ),

∫
T

ρq dx =

∫
T

div (Π2
r−2w − w)q dx = 0,

since V̊ 3
r−3(Twf ) = div V̊2

r−2(Twf ). Then by Lemma 6.1.6, ρ = 0, and the identity (6.2.1c)

is proved.

6.3 SSLV degrees of freedom

In this section we consider the sequence that will allow Lagrange elements for the third

space. The third and last space will be especially well suited for fluid flow problems as

the introducton describes.

Proposition 6.3.1. Let r ≥ 3. There exists projections

π1
r−1 : [C∞(T )]3 → S1

r−1(Twf ),

π2
r−2 : [C∞(T )]3 → L2

r−2(Twf ),

π3
r−3 : C∞(T )→ V 3

r−3(Twf )

such that the following diagram commutes.
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R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
r (T

wf ) S1
r−1(Twf ) L2

r−2(Twf ) V 3
r−3(Twf ) 0.

Π0
r

grad

π1
r−1

curl div

π2
r−2 π3

r−3

grad curl div

In other words, the following identities hold.

grad Π0
3q = π1

2grad q, ∀q ∈ C∞(T ),

curlπ1
2v = π2

1curl v, ∀v ∈ [C∞(T )]3,

div π2
1w = π3

0divw, ∀w ∈ [C∞(T )]3.

(6.3.1)

We will define degrees of freedom for each of the spaces S1
r−1(Twf ), L2

r−2(Twf ), and

V 3
r−3(Twf ) that determine the projections π1

r−1, π
2
r−2, and π3

r−3, respectively, such that the

identities (6.3.1) hold.

Lemma 6.3.1. A function v ∈ S1
r−1(Twf ), with r ≥ 2, is fully determined by the following

degrees of freedom.

No. of DOFs

v(a), ∀a ∈ ∆0(T ), 12, (6.3.2a)

curl v(a), ∀a ∈ ∆0(T ), 12, (6.3.2b)∫
e

v · q ds, ∀q ∈ [Pr−3(e)]3, ∀e ∈ ∆1(T ), 18(r − 2), (6.3.2c)∫
e

curl v · q ds, ∀q ∈ [Pr−4(e)]3, ∀e ∈ ∆1(T ), 18(r − 3), (6.3.2d)∫
F

curl FvF q dA, ∀q ∈ L0
r−3(F ct ), ∀F ∈ ∆2(Twf ), 6r2 − 30r + 40, (6.3.2e)∫

F

(v · nF )q dA, ∀q ∈ R0
r−1(F ct ), ∀F ∈ ∆2(Twf ), 6(r − 2)(r − 3), (6.3.2f)∫

F

vF · q dA, ∀q ∈ ker S̊1
r−1(F ct ), ∀F ∈ ∆2(Twf ), 6r2 − 30r + 32 (6.3.2g)∫

F

(curl v)F · q dA, ∀q ∈ R1
r−2(F ct ), ∀F ∈ ∆2(Twf ), 12(r − 3)2, (6.3.2h)∫

T

curl v · q dx, ∀q ∈ curl S̊1
r−1(Twf ), (4r − 11)(r − 3)(r − 4), (6.3.2i)
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∫
T

v · q dx, ∀q ∈ grad S̊0
r (T

wf ), 2(r − 2)(r − 3)(r − 4). (6.3.2j)

Then the DOFs (6.3.2) define the projection π1
r−1 : [C∞(T )]3 → S1

r−1(Twf ).

Proof. The dimension of S1
r−1(Twf ) is 6r3−27r2+51r−30, which is equal to the number

of DOFs in (6.3.2).

Let v ∈ S1
r−1(Twf ) such that v vanishes on (6.3.2). Then DOFs (6.3.2a) and (6.3.2c)

yield that v|e = 0 for every e ∈ ∆1(T ). Furthermore, it follows from DOFs (6.3.2b) and

(6.3.2d) that curl v|e = 0 for each e ∈ ∆1(T ).

Since curl FvF ∈ L̊0
r−2(F ct ), there exists a function β ∈ L0

r−3(F ct ) such that

curl FvF = λFβ, where λF is the continuous linear function on F such that λF (z) = 1 at

the split point z and λF |∂F = 0. Thus we have curl FvF = 0 by (6.3.2e). From the ex-

actness of sequence (2.3.10e), it follows that vF ∈ ker S̊1
r−1(F ct ), so vF = 0 by (6.3.2g).

Since curl v is continuous and vF = 0, by Lemma 6.1.3 we have that grad (v · nF )|F is

continuous. Therefore, v · nF |F ∈ R0
r−1(F ct ), so v · nF |F = 0 by (6.3.2f).

Since curl v ∈ V̊ 1
r−2(Twf) we can apply Lemma 4.1.14 to deduce that (curl v)F ∈

R1
r−2(F ct ), where we also used that (curl v)F = 0 on ∂F . Hence, by (6.3.2h), we have

that (curl v)F = 0. We already had that curl v · nF = 0, so curl v|F = 0 on each face

F ∈ ∆2(T ).

On the macro-elements, we use (6.3.2i) to see that curl v = 0. By the exactness of

sequence (4.1.1b), there exists a p ∈ S̊0
r (T

wf ) such that grad p = v. Hence by (6.3.2j),

v = 0, which is the desired result.
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Lemma 6.3.2. Let p ∈ V 3
r (Twf ) and r ≥ 0. For F ∈ ∆2(Twf ), if

∫
e

[[p]]eq ds = 0 ∀q ∈ Pr(e) e ∈ ∆I
1(F ct )\{eF}, and (6.3.3a)∫

eF

[[p]]eF ds = 0 ∀q ∈ Pr−1(eF ) eF ∈ ∆I
1(F ct ), (6.3.3b)

then p|F is continuous.

Proof. We label the three triangles in ∆2(F ct ) as Q1, Q2, and Q3 such that eF = Q1∩Q2.

We let pi = p|Qi
and let z ∈ ∆I

0(F ct). Since p ∈ V 3
r (Twf ), condition (6.3.3a) yields that

[[p]]e = 0 for both interior edges e ∈ ∆I
1(F ct )\{eF}. It follows that p1(z) = p2(z) and

p2(z) = p3(z), therefore p is continuous at z. Hence [[p]]eF (z) = 0. Then, (6.3.3b) shows

that [[p]]eF = 0.

Lemma 6.3.3. A functionw ∈ L2
r−2(Twf ), with r ≥ 3, is fully determined by the following

degrees of freedom.

No. of DOFs

w(a), ∀a ∈ ∆0(T ), 12, (6.3.4a)∫
e

w · q ds, ∀q ∈ [Pr−4(e)]3, ∀e ∈ ∆1(T ), 18(r − 3), (6.3.4b)∫
F

(w · nF )q dA, ∀q ∈ L0
r−3(F ct ),

∀F ∈ ∆2(T ), 6(r − 2)(r − 3) + 4, (6.3.4c)∫
e

[[divw]]eq ds, ∀q ∈ Pr−3(e), e ∈ ∆I
1(F ct )\{eF},

∀F ∈ ∆2(T ), 8(r − 2), (6.3.4d)∫
eF

[[divw]]eF q ds, ∀q ∈ Pr−4(eF ), eF ∈ ∆I
1(F ct ),

∀F ∈ ∆2(T ), 4(r − 3), (6.3.4e)∫
F

wF · q dA, ∀q ∈ R1
r−2(F ct ), ∀F ∈ ∆2(T ), 12(r − 3)2, (6.3.4f)
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∫
T

divw q dx, ∀q ∈ div L̊2
r−2(Twf ), 2(r − 3)(r − 2)(r + 2) + 3, (6.3.4g)∫

T

w · q dx, ∀q ∈ curl S̊1
r−1(Twf ), (4r − 11)(r − 3)(r − 4). (6.3.4h)

The the DOFs (6.3.4) define the projection π2
r−2 : [C∞(T )]3 → L2

r−2(Twf ).

Proof. The dimension of L2
r−2(Twf ) is 3(2r−3)(r2−3r+3), which is equal to the number

of DOFs in (6.3.4).

Let w ∈ L2
r−2(Twf ) such that w vanishes on the DOFs (6.3.4). Using DOFs (6.3.4a)

and (6.3.4b), we have that w|e = 0 for every e ∈ ∆1(T ), hence w · nF |F ∈ L̊0
r−2(F ct ).

Then there exists a function β ∈ L0
r−3(F ct ) such that w · nF |F = λβ. Hence by (6.3.4c),

β = 0, so w · nF |F = 0. Let K ∈ ∆3(T a) with F ∈ ∆2(K). Thus, we can write

w · nF = µψ for some ψ ∈ Pr−3(Twf). However, since w · nF is continuous on K

and µ is linear on positive on K it must be that ψ is continuous on K. Moreover, since

nF ·grad (w ·nF ) = ψgradµ ·nF on F which implies that nF ·grad (w ·nF ) is continuous

on F .

Using DOFs (6.3.4d) - (6.3.4e) and Lemma 6.3.2, we have that divw|F ∈ L̊2
r−3(F ct )

for each F ∈ ∆2(T ). We can write div FwF = divw|F − nF · grad (w · nF ) and, hence,

div FwF is continuous which implies that wF ∈ R1
r−2(F ct ). By (6.3.4f), it follows that

wF = 0 on F .

Now we have that w ∈ L̊2
r−2(Twf ). On the macro-element, divw ∈ L̊2

r−3(Twf ), so

by (6.3.4g), divw = 0. Using the exactness property of sequence (4.1.1b), there exists

a function p ∈ S̊1
r−1(Twf ) such that curl p = w. Then by (6.3.4h), w = 0, which is the

desired result.

Lemma 6.3.4. A function p ∈ V 3
r−3(Twf ), with r ≥ 3, is fully determined by the following
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degrees of freedom.

No. of DOFs∫
e

[[p]]eq ds, ∀q ∈ Pr−3(e), e ∈ ∆I
1(F ct )\{eF},

∀F ∈ ∆2(T ), 8(r − 2), (6.3.5a)∫
eF

[[p]]eF q ds, ∀q ∈ Pr−4(eF ), eF ∈ ∆I
1(F ct ), ∀F ∈ ∆2(T ), 4(r − 3), (6.3.5b)∫

T

p dx, 1, (6.3.5c)∫
T

pq dx, ∀q ∈ V̊3
r−3(Twf ), 2r3 − 6r2 − 8r + 27. (6.3.5d)

Then the DOFs (6.3.5) define the projection π3
r−3 : C∞(T )→ V 3

r−3(Twf ).

Proof. The dimension of V 3
r−3(Twf ) is 2r(r − 1)(r − 2), which is equal to the number of

DOFs in (6.3.5).

Let p ∈ V 3
r−3(Twf ) such that p vanishes on the DOFs (6.3.5). Then by (6.3.5a) -

(6.3.5b), [[p]]e = 0 for every e ∈ ∆I
1(F ct ) for each F ∈ ∆2(T ). Combined with (6.3.5c),

it follows that p ∈ V̊3
r−3(Twf ). So by (6.3.5d), p = 0.

6.4 SSLV commuting diagram

Theorem 6.4.1. Let r ≥ 3, and let Π0
r : C∞(T ) → S0

r (T
wf ) be the projection defined

in Lemma 6.1.1, let π1
r−1 : [C∞(T )]3 → S1

r−1(Twf ) be the projection defined in Lemma

6.3.1, let π2
r−2 : [C∞(T )]3 → L2

r−2(Twf ) be the projection defined in Lemma 6.3.3, and let

π3
r−3 : C∞(T )→ V 3

r−3(Twf ) be the projection defined in Lemma 6.3.4. Then the following

diagram commutes.
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R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
r (T

wf ) S1
r−1(Twf ) L2

r−2(Twf ) V 3
r−3(Twf ) 0.

Π0
r

grad

π1
r−1

curl div

π2
r−2 π3

r−3

grad curl div

In other words, we have

grad Π0
rq = π1

r−1grad q, ∀q ∈ C∞(T ), (6.4.1a)

curl π1
r−1v = π2

r−2curl v, ∀v ∈ [C∞(T )]3, (6.4.1b)

div π2
r−2w = π3

r−3divw, ∀w ∈ [C∞(T )]3. (6.4.1c)

Proof. (i) Proof of (6.4.1a). Let q ∈ C∞(T ), and set ρ = grad Π0
rq − Π1

r−1grad q. Then

ρ ∈ S1
r−1(Twf ), so we must show that ρ vanishes on the DOFs (6.3.2).

For each a ∈ ∆0(T ), ρ(a) = grad Π0
rq(a) − Π1

r−1grad q(a) = 0 by (6.1.2a) and

(6.3.2a). Then, using (6.3.2b), curl ρ(a) = curl (grad (Π0
rq − q)) = 0. By (6.3.2c), we

have, for all p ∈ [Pr−3(e)]3 on each e ∈ ∆1(T ),

∫
e

ρ · p ds =

∫
e

grad (Π0
rq − q) · p ds

=

∫
e

(
∂

∂n+
e

(Π0
rq − q)n+

e +
∂

∂n−e
(Π0

rq − q)n−e +
∂

∂t
(Π0

rq − q)t
)
· p ds

=

∫
e

∂

∂t
(Π0

rq − q)(p · t) ds by (6.1.2d)

= −
∫
e

(Π0
rq − q)

∂

∂t
(p · t) ds by (6.1.2a)

= 0. by (6.1.2c)

Next, using (6.3.2d), for all p ∈ [Pr−4(e)]3,

∫
e

curl ρ · p ds =

∫
e

curl grad (Π0
rq − q) · p ds = 0.
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On the faces, from (6.3.2e), we have for all p ∈ L0
r−3(F ct ),

∫
F

curl FρF p dA =

∫
F

curl Fgrad F (Π0
rq − q)p dA = 0.

Using (6.1.2f) and (6.3.2f), for all p ∈ R0
r−1(F ct ),

∫
F

(ρ · nF )p dA =

∫
F

(nF · grad (Π0
rq − q)) p dA = 0.

Next, using (6.3.2g), we have for all p ∈ ker S̊1
r−1(F ct ),

∫
F

ρF · p dA =

∫
F

(grad F (Π0
rq − q)F ) · p dA = 0,

where we have used (6.1.2e) and the result grad F S̊
0
r (F

ct ) = ker S̊1
r−1(F ct ) due to the

exactness of sequence (2.3.10f). Then we use (6.3.2h) and (6.1.2e), so that for all p ∈

R1
r−2(F ct ),

∫
F

(curl ρ)F · p dA =

∫
F

(curl (grad (Π0
rq − q)))F · p dA = 0.

On the macro-elements, we use (6.3.2i) so that, for all p ∈ curl S̊1
r−1(Twf ),

∫
T

curl ρ · p dx =

∫
T

curl grad (Π0
rq − q) · p dx = 0.

Lastly, we use (6.1.2g) and (6.3.2j) to see that, for every p ∈ grad S̊0
r (T

wf ),

∫
T

ρ · p dx =

∫
T

grad (Π0
rq − q) · p dx = 0.

Therefore, by Lemma 6.3.1, ρ = 0, and the identity (6.4.1a) is proved.

(ii) Proof of (6.4.1b). Let v ∈ [C∞(T )]3, and set ρ = curl π1
r−1v − π2

r−2curl v. Then
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ρ ∈ L2
r−2(Twf ), so we must show that ρ vanishes on the DOFs (6.3.4). By (6.3.2b) and

(6.3.4a), ρ(a) = curlπ1
r−1v(a) − π2

r−2curl v(a) = 0. By (6.3.2d) and (6.3.4b), for all

p ∈ [Pr−4(e)]3 where e ∈ ∆1(T ),

∫
e

ρ · p ds =

∫
e

curl (π1
r−1v − v) · p ds = 0.

By (6.3.4c) and (6.3.2e), for every p ∈ L0
r−3(F ct ),

∫
F

(ρ · nF )p dA =

∫
F

curl F ((π1
r−1v)F − vF )p dA = 0.

Using (6.3.4d), for all p ∈ Pr−3(e), e ∈ ∆I
1(F ct )\{eF} and F ∈ ∆2(T ), we have

∫
e

[[div ρ]]ep ds =

∫
e

[[div curl (π1
r−1v − v)]]ep ds = 0.

Similarly, (6.3.4e) yields that
∫
eF

[[div ρ]]eF p ds = 0 for p ∈ Pr−2(e). Next, using (6.3.4f),

for any p ∈ R1
r−2(F ct ), we have

∫
F

ρF · p dA =

∫
F

(curl (π1
r−1v − v))F · p dA = 0

by (6.3.2h).

By (6.3.4g) and for any p ∈ div L̊2
r−2(Twf ),

∫
T

div ρ p dx =

∫
T

div curl (π1
r−1v − v)p dx = 0.

Finally, by (6.3.2i), (6.3.4h), and for any p ∈ curl S̊1
r−1(Twf ),

∫
T

ρ · p dx =

∫
T

curl (π1
r−1v − v) · p dx = 0.
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Therefore, ρ = 0 by Lemma 6.3.3, which is the desired result.

(iii) Proof of (6.4.1c). Let w ∈ [C∞(T )]3, and set ρ = div π2
r−2w − π3

r−3divw. Then

ρ ∈ V 3
r−3(Twf ), so we must show that ρ vanishes on the DOFs (6.3.5).

First, we see from (6.3.4d) and (6.3.5a) that for any p ∈ Pr−3(e), e∆I
1(F ct )\{eF} and

F ∈ ∆2(T ), we have

∫
e

[[ρ]]ep ds =

∫
e

[[div (π2
r−2w − w)]]ep ds = 0.

Similarly, we can show that ρ vanish on the DOFs of (6.3.5b).

On the macro-elements, we use (6.3.5c), (6.3.4c), and the Stokes Theorem of Equation

(2.2.1c) to see that

∫
T

ρ dx =

∫
T

div (π2
r−2w − w) dx =

∫
∂T

(π2
r−2w − w) · nF dA = 0.

Lastly, for any p ∈ V̊3
r−3(Twf ),

∫
T

ρ p dx =

∫
T

(π2
r−2w − w)p dx = 0

by (6.3.4g) and (6.3.5d) and using the fact div L̊2
r−2(Twf ) = V̊3

r−3(Twf ) (from the ex-

actness of sequence (4.1.1c)). Therefore ρ = 0 by Lemma 6.3.4, which is the desired

result.
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6.5 SSSL degrees of freedom

Proposition 6.5.1. Let r ≥ 3. We can construct the projections

$2
r−2 : [C∞(T )]3 → V 2

r−2(Twf ),

$3
r−3 : C∞(T )→ V 3

r−3(Twf )

such that the following diagram commutes.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
r (T

wf ) S1
r−1(Twf ) S2

r−2(Twf ) L3
r−3(Twf ) 0.

Π0
r

grad

π1
r−1

curl div

$2
r−2 $3

r−3

grad curl div

In other words, the following identities hold.

curlπ1
2v = $2

1curl v, ∀v ∈ [C∞(T )]3,

div$2
1w = $3

0divw, ∀w ∈ [C∞(T )]3.

(6.5.1)

We will define degrees of freedom for each of the spaces S2
r−2(Twf ) and L3

r−3(Twf )

that determine the projections $2
r−2 and $3

r−3, respectively, such that the identities (6.5.1)

hold.

Lemma 6.5.1. A function w ∈ S2
r−2(Twf ), with r ≥ 3, is fully determined by the following

degrees of freedom.

No. of DOFs

w(a), 12, (6.5.2a)

divw(a), 4, (6.5.2b)
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∫
e

w · q ds, ∀q ∈ [Pr−4(e)]3, ∀e ∈ ∆1(T ), 18(r − 3), (6.5.2c)∫
e

divwq ds, ∀q ∈ Pr−5(e), ∀e ∈ ∆1(T ), 6(r − 4), (6.5.2d)∫
F

(w · nF )q dA, ∀q ∈ L0
r−3(F ct ), ∀F ∈ ∆2(T ), 6(r − 2)(r − 3) + 4, (6.5.2e)∫

F

wF · q dA, ∀q ∈ R1
r−2(F ct ), ∀F ∈ ∆2(T ), 12(r − 3)2, (6.5.2f)∫

F

divw q dA, ∀q ∈ L2
r−4(F ct ), ∀F ∈ ∆2(T ), 6(r − 3)(r − 4) + 4, (6.5.2g)∫

T

divwq dx, ∀q ∈ L̊3
r−3(Twf ), (r − 4)(2r2 − 13r + 23), (6.5.2h)∫

T

w · q dx, ∀q ∈ curl S̊1
r−1(Twf ), (4r − 11)(r − 3)(r − 4). (6.5.2i)

Then the DOFs 6.5.2 define the projection $2
r−2(Twf ) : [C∞(T )]3 → S2

r−2(Twf ).

Proof. The dimension of S2
r−2(Twf ) is 6r3−36r2+80r−62, which is equal to the number

of DOFs in (6.5.2).

Let w ∈ S2
r−2(Twf ) such that w vanishes on the DOFs (6.5.2). Then from (6.5.2a) and

(6.5.2c), w|e = 0 for each e ∈ ∆1(T ), and divw|e = 0 by (6.5.2b) and (6.5.2d).

On each F ∈ ∆2(T ), w · nF |F ∈ L̊0
r−2(F ct ), hence there exists a function β ∈

L0
r−3(F ct ) such that w · nF |F = λβ. Then w · nF |F = λβ = 0 by (6.5.2e). As we did

in the proof of Lemma 6.3.3, since w, divw are continuous and w · nF vanishes on F ,

we have that div FwF is continuous. Hence, wF ∈ R1
r−2(F ct ). Therefore (6.5.2f) yields

wF = 0. Now we have divw ∈ L2
r−3(F ct ) and divw vanishes on ∂F . So, divw|F = 0

by (6.5.2g), therefore w ∈ S̊2
r−2(Twf ).

On the macro-element, we have that divw = 0 by (6.5.2h). So by the exactness of

sequence (4.1.1c), there exists a v ∈ S̊1
r−1(Twf ) such that curl v = w. Hence by (6.5.2i),

w = 0, which is the desired result.
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Lemma 6.5.2. A function p ∈ L3
r−3(Twf ), with r ≥ 3, is fully determined by the following

degrees of freedom.

No. of DOFs

p(a), 4, (6.5.3a)∫
e

pq ds, ∀q ∈ Pr−5(e),∀e ∈ ∆1(T ), 6(r − 4), (6.5.3b)∫
F

pq dA, ∀q ∈ L2
r−4(F ct ), ∀F ∈ ∆2(T ), 6(r − 3)(r − 4) + 4, (6.5.3c)∫

T

p dx, 1, (6.5.3d)∫
T

pq dx, ∀q ∈ L̊3
r−3(Twf ), (r − 4)(2r2 − 13r + 23). (6.5.3e)

Then the DOFs (6.5.3) define the projection $3
r−3(Twf ) : C∞(T )→ L3

r−3(Twf ).

Proof. The dimension of L3
r−3(Twf ) is (2r− 5)(r2 − 5r+ 7), which matches the number

of DOFs in (6.5.3).

Let p ∈ L3
r−3(Twf ) such that p vanishes on the DOFs (6.5.3). Then by (6.5.3a) and

(6.5.3b), p|e = 0 for every e ∈ ∆1(T ). For each F ∈ ∆2(T ), we have that p|F ∈

L̊2
r−3(F ct ), so p|F = 0 by (6.5.3c). Then by (6.5.3d), we have p ∈ L̊3

r−3(Twf ), and by

(6.5.3e), p = 0.

6.6 SSSL commuting diagram

Theorem 6.6.1. Recall that Π0
r : C∞(T ) → S0

r (T
wf ) is the projection defined in

Lemma 6.1.1, π1
r−1 : [C∞(T )]3 → S1

r−1(Twf ) is the projection defined in Lemma

6.3.1, $2
r−2 : [C∞(T )]3 → L2

r−2(Twf ) is the projection defined in Lemma 6.5.1, and
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$3
r−3 : C∞(T ) → V 3

r−3(Twf ) is the projection defined in Lemma 6.3.4. Then the follow-

ing diagram commutes.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
r (T

wf ) S1
r−1(Twf ) S2

r−2(Twf ) L3
r−3(Twf ) 0.

Π0
r

grad

π1
r−1

curl div

$2
r−2 $3

r−3

grad curl div

In other words, we have

grad Π0
rq = π1

r−1grad q, ∀q ∈ C∞(T ), (6.6.1a)

curlπ1
r−1v = $2

r−2curl v, ∀v ∈ [C∞(T )]3, (6.6.1b)

div$2
r−2w = $3

r−3divw, ∀w ∈ [C∞(T )]3. (6.6.1c)

Proof. (i) Proof of (6.6.1a). The identity (6.6.1a) holds by Theorem 6.4.1.

(ii) Proof of (6.6.1b). Let v ∈ [C∞(T )]3, and set ρ = curlπ1
r−1v − $2

r−2curl v.

Then ρ ∈ S2
r−2(Twf ), so we must show that ρ vanishes on the DOFs (6.5.2). By

(6.3.2b) and (6.5.2a), ρ(a) = curlπ1
r−1v(a) − curl v(a) = 0, and by (6.5.2b), div ρ(a) =

div curl π1
r−1v(a)− div curl v(a) = 0 for each a ∈ ∆0(T ).

For all e ∈ ∆1(T ) and for all p ∈ [Pr−4(e)]3,

∫
e

ρ · p ds =

∫
e

curl (π1
r−1v − v) · p ds = 0

by (6.3.2d) and (6.5.2c). Using (6.5.2d), for all p ∈ Pr−5(e), we have

∫
e

div ρ p ds =

∫
e

div curl (π1
r−1v − v)p ds = 0.
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On each face F ∈ ∆2(T ), for every p ∈ L0
r−3(F ct ),

∫
F

(ρ · nF )p dA =

∫
F

curl F ((π1
r−1v)F − vF )p dA = 0

by (6.3.2e) and (6.5.2e). For each p ∈ R1
r−2(F ct ), we have

∫
F

ρF · p dA =

∫
F

curl (π1
r−1v − v)F · p dA = 0,

where we used (6.3.2h) and (6.5.2f). Next, for every p ∈ L2
r−4(F ct ), (6.5.2g) yields

∫
F

div ρ p dA =

∫
F

div curl (π1
r−1v − v) p dA = 0.

On the macro-element Twf , for each p ∈ L̊3
r−3(Twf ), we use (6.5.2h) so that

∫
T

div ρ p dx =

∫
T

div curl (π1
r−1v − v)p dx = 0.

Finally, for all p ∈ curl S̊1
r−1(Twf ),

∫
T

ρ · p dx =

∫
T

curl (π1
r−1v − v) · p dx = 0,

by (6.3.2i) and (6.5.2i). Therefore, by Lemma 6.5.1, ρ = 0, and the identity (6.6.1b) is

proved.

(iii) Proof of (6.6.1c). Let w ∈ [C∞(T )]3, and set ρ = div$2
r−2w−$3

r−3divw. Then

ρ ∈ L3
r−3(Twf ), so we must show that ρ vanishes on the DOFs (6.5.3).

For all a ∈ ∆0(T ), ρ(a) = div$2
r−2w(a) − $3

r−3divw(a) = 0 by (6.5.2b) and
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(6.5.3a). On each edge e ∈ ∆1(T ) and for all p ∈ Pr−5(e),

∫
e

ρ p ds =

∫
e

div ($2
r−2w − w)p ds = 0

by (6.5.2d) and (6.5.3b).

On each face F ∈ ∆2(T ), using (6.5.3c), we have, for all p ∈ L2
r−4(F ct ),

∫
F

ρ p dA =

∫
F

div ($2
r−2w − w) p ds = 0,

by (6.5.2g).

Now we use (6.5.3d) and the Stokes Theorem of Equation (2.2.1c) to see that

∫
T

ρ dx =

∫
T

div ($2
r−2w − w) dx =

∫
∂T

($2
r−2w − w) · n dA = 0

by (6.5.2e). Then by (6.5.2h) and (6.5.3e), for any p ∈ L̊3
r−3(Twf ),

∫
T

ρ p dx =

∫
T

div ($2
r−2w − w)p dx = 0.

Hence ρ = 0 by Lemma 6.5.2, and the identity (6.6.1c) is proved.

6.7 Global spaces and commuting diagrams

In this section, we discuss the global finite element spaces of any polynomial order induced

by the degrees of freedom of Sections 6.1, 6.3, and 6.5, thereby extending the results of

Section 5.7. We let Th be the triangulation of the polygonal domain Ω ⊂ R3, and we let

T wf
h be the Worsey-Farin refinement of Th. Recall the operator θe(·) and the set E(T wf

h )
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given in Definitions 5.7.2 and 5.7.1, respectively. We will show that the projections defined

in Sections 6.1, 6.3, and 6.5 induce the following global spaces.

S0
r (T wf

h ) = {q ∈ C1(Ω) : q|T ∈ S0
r (T

wf )∀T ∈ Th},

S1
r−1(T wf

h ) = {v ∈ [C(Ω)]3 : curl v ∈ [C(Ω)]3, v|T ∈ S1
r−1(Twf )∀T ∈ Th},

S2
r−2(T wf

h ) = {w ∈ [C(Ω)]3 : divw ∈ C(Ω), w|T ∈ S2
r−2(Twf )∀T ∈ Th},

L1
r−1(T wf

h ) = {v ∈ [C(Ω)]3 : v|T ∈ L1
r−1(Twf )∀T ∈ Th},

L2
r−2(T wf

h ) = {w ∈ [C(Ω)]3 : w|T ∈ L2
r−2(Twf )∀T ∈ Th},

V 2
r−2(T wf

h ) = {w ∈ H(div ; Ω) : w|T ∈ V 2
r−2(Twf )∀T ∈ Th,

θe(w · t) = 0∀e ∈ E(T wf
h )},

V 3
r−3(T wf

h ) = {p ∈ L2(Ω) : p|T ∈ V 3
r−3(Twf )∀T ∈ Th, θe(p) = 0∀e ∈ E(T wf

h )},

V 3
r−3(T wf

h ) = Pr−3(T wf
h ).

These spaces generalize those defined in Chapter 5 to arbitrary polynomial order. Let T1

and T2 be adjacent tetrahedra in Th that share a face F . Let K1 and K2 be tetrahedra

in T a
1 and T a

2 , respectively, such that K1 and K2 share the face F . Let F ct represent

the triangulation of F ct in T wf
h , and let Kwf

i be the triangulation of Ki in T wf
h , where

1 ≤ i ≤ 2. Given a simplex S ∈ ∆s(T wf
h ), with 0 ≤ s ≤ 3, let χ(S) represent that

characteristic function that equals 1 on S and 0 otherwise. Without loss of generality, we

choose nF = n1, the outward normal to T1 on F .

Remark 6.7.1. Due to the singular edges formed through a Worsey-Farin refinement of

a triangulation, the global space L1
r(T wf

h ) with r ≥ 1 has the same inherent property

described in Lemma 5.7.3 for the case r = 1. Let T ∈ Th, F ∈ ∆2(T ), and e ∈ ∆I
1(F ct ).

Then for any w ∈ L1
r(T wf

h ),

θe(curlw · t) = 0, (6.7.1)



154

where t is the unit tangent vector to edge e. The proof of this result is exactly the same as

the proof of Lemma 5.7.3. Similarly, any function v ∈ L2
r(T wf

h ) satisfies

θe(div v) = 0. (6.7.2)

This result follows using the same proof as Lemma 5.7.4.

Now we will show that the local DOFs of Section 6.1 induce the associated global

spaces. As these proofs are quite similar to those in Section 5.7 in the lowest order case,

we only include a sketch of the proofs of the general results.

Lemma 6.7.2. The local degrees of freedom stated in Lemma 6.1.1 induce the global

space S0
r (T wf

h ).

Proof. Let q1 ∈ S0
r (T

wf
1 ) and q2 ∈ S0

r (T
wf
2 ) such that q1 − q2 vanishes on the DOFs

(6.1.2a) - (6.1.2f) associated with the triangulation F ct . We extend q1 to K2 according

to Remark 2.6.1, and we set p = q1 − q2. Then by Lemma 6.1.1, we have p = 0 and

grad p = 0 on F , therefore the function q1χ(K1) + q2χ(K2) is C1 across F . Therefore

the DOFs (6.1.2) induce the global space S0
r (T wf

h ).

Lemma 6.7.3. The local degrees of freedom stated in Lemma 6.1.4 induce the global

space L1
r−1(T wf

h ).

Proof. Let v1 ∈ L1
r−1(Twf

1 ) and v2 ∈ L1
r−1(Twf

2 ) such that v1 − v2 vanishes on the DOFs

(6.1.7a) - (6.1.7g) associated with the triangulation F ct of the face F , and we extend v1 to

K2 as in Remark 2.6.1. Then we set w = v1−v2, and following the proof of Lemma 6.1.4,

w = 0 on F , since w vanishes on the DOFs (6.1.7) on F . Hence, v := v1χ(T1) + v2χ(T2)

is continuous on all of T1 ∪ T2. It follows that the local DOFs (6.1.7) induce the global

space L1
r−1(T wf

h ).
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Lemma 6.7.4. The local degrees of freedom stated in Lemma 6.1.5 induce the global

space V 2
r−2(T wf

h ).

Proof. Let w1 ∈ V 2
r−2(Twf

1 ) and w2 ∈ V 2
r−2(Twf

2 ) such that w1−w2 vanishes on the DOFs

(6.1.8a) - (6.1.8d) associated with the triangulation F ct of the face F . We extend w1 to K2

as in Remark 2.6.1 and set v = w1 − w2. Then by Lemma 6.1.5, v = 0 on F . Therefore

w := w1χ(K1) + w2χ(K2) is divergence-conforming across F . For each e ∈ ∆I
1(F ct ),

we also have [[w1 · t]]e − [[w2 · t]]e = 0, and it follows that θe(w · t) = 0. Therefore, the

DOFs (6.1.8) induce the global space V 2
r−2(T wf

h ).

Lemma 6.7.5. The local degrees of freedom stated in Lemma 6.1.6 induce the global

space V 3
r−3(T wf

h ).

Proof. The DOFs (6.1.9) simply determine the piecewise polynomials Pr−3(Twf ). Hence

these DOFs naturally induce the global piecewise polynomial space Pr−3(T wf
h ).

Now we can see that the following sequence forms a complex by Theorem 6.2.1 for

r ≥ 3.

R −−→ S0
r (T wf

h )
grad

−−→ L1
r−1(T wf

h )
curl

−−→ V2
r−2(T wf

h )
div

−−→ V 3
r−3(T wf

h ) −−→ 0.

Furthermore, for 0 ≤ k ≤ 3 and r ≥ 3 we have commuting projections Π̃k
r−k such that

Π̃k
r−kv|T = Πk

r−k(v|T ) for all T ∈ Th. Then by Theorem 6.2.1, the following diagram

commutes.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
r (T wf

h ) L1
r−1(T wf

h ) V 2
r−2(T wf

h ) V 3
r−3(T wf

h ) 0.

Π̃r
3

grad

Π̃1
r−1

curl div

Π̃2
r−2 Π̃3

r−3

grad curl div
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Next, we will show that the global analogue of sequence (4.1.2c) is induced by the

local DOFs of Section 6.3.

Lemma 6.7.6. The local degrees of freedom stated in Lemma 6.3.1 induce the global

space S1
r−1(T wf

h ).

Proof. Let v1 ∈ S1
r−1(Twf

1 ) and v2 ∈ S1
r−1(Twf

2 ) such that v1 − v2 vanishes on the DOFs

(6.3.2a) - (6.3.2h) associated with the triangulation F ct . We extend v1 to K2 as in Remark

2.6.1, and we set w = v1 − v2. Then by Lemma 6.3.1, w = 0 and curlw = 0 on F ,

therefore the DOFs (6.3.2) induce the global space S1
r−1(T wf

h ).

Lemma 6.7.7. The local degrees of freedom stated in Lemma 6.3.3 induce the global

space L2
r−2(T wf

h ).

Proof. Let w1 ∈ L2
r−2(Twf

1 ) and w2 ∈ L2
r−2(Twf

2 ) such that w1 − w2 vanishes on the

DOFs (6.3.4a) - (6.3.4f) associated with the triangulation F ct of the face F . We extend

w1 to K2 as in Remark 2.6.1, and set v = w1 − w2. Since v vanishes on the DOFs

(6.3.4a) - (6.3.4f), it follows from Lemma 6.3.3 that v = 0 on F . Then we see that

w := w1χ(T1)+w2χ(T2) is continuous across F , hence the DOFs of Lemma 6.3.3 induce

the global space L2
r−2(T wf

h ).

Lemma 6.7.8. The local degrees of freedom stated in Lemma 6.3.4 induce the global

space V 3
r−3(T wf

h ).

Proof. Let q1 ∈ V3
r−3(Twf

1 ) and q2 ∈ V3
r−3(Twf

2 ) such that q1 − q2 vanishes on the DOFs

(6.3.5a) - (6.3.5b) associated with the triangulation F ct of the face F . We extend q1 to K2

as in Remark 2.6.1. Given an edge e ∈ ∆I
1(F ct ), and using DOFs (6.3.5a) - (6.3.5b), we

have that [[q1]]e = [[q2]]e, which implies θe(q) = 0, where q = q1χ(K1) + q2χ(K2).
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Now we can see that the following sequence forms a complex by Theorem 6.4.1 for

r ≥ 3.

R −−→ S0
r (T wf

h )
grad

−−→ S1
r−1(T wf

h )
curl

−−→ L2
r−2(T wf

h )
div

−−→ V3
r−3(T wf

h ) −−→ 0.

Furthermore, for 1 ≤ k ≤ 3 and r ≥ 3 we have commuting projections π̃kr−k such

that π̃kr−kv|T = πkr−k(v|T ) for all T ∈ Th, and by Theorem 6.4.1, the following diagram

commutes.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
r (T wf

h ) S1
r−1(T wf

h ) L2
r−2(T wf

h ) V 3
r−3(T wf

h ) 0.

Π̃r
3

grad

π̃1
r−1

curl div

π̃2
r−2 π̃3

r−3

grad curl div

Lastly, we will show that the global analogue of sequence (4.1.2d) is induced by the

local DOFs of Section 6.5.

Lemma 6.7.9. The local degrees of freedom stated in Lemma 6.5.1 induce the global

space S2
r−2(T wf

h ).

Proof. Let w1 ∈ S2
r−2(Twf

1 ) and w2 ∈ S2
r−2(Twf

2 ) such that w1 − w2 vanishes on the

DOFs (6.5.2a) - (6.5.2g) associated with the triangulation F ct . We extend w1 to K2 as in

Remark 2.6.1, and we set v = w1 − w2. Then by Lemma 6.5.1, v = 0 and div v = 0 on

F . Therefore, the local DOFs (6.5.2) induce the global space S2
r−2(T wf

h ).

Lemma 6.7.10. The local degrees of freedom stated in Lemma 6.5.2 induce the global

space L3
r−3(T wf

h ).

Proof. Let q1 ∈ L3
r−3(Twf

1 ) and q2 ∈ L3
r−3(Twf

2 ) such that q1 − q2 vanishes on the DOFs

(6.5.3a) - (6.5.3d) associated with the triangulation F ct of the face F . We extend q1 to K2
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as in Remark 2.6.1, and we set p = q1− q2. It follows from Lemma 6.5.2 that p = 0 on F ,

which means q := q1χ(K1) + q2χ(K2) is continuous across F . Therefore the local DOFs

(6.5.3) induce the global space L3
r−3(T wf

h ).

Now we can see that the following sequence forms a complex by Theorem 6.6.1 for

r ≥ 3.

R −−→ S0
r (T wf

h )
grad

−−→ S1
r−1(T wf

h )
curl

−−→ S2
r−2(T wf

h )
div

−−→ L3
r−3(T wf

h ) −−→ 0.

For 2 ≤ k ≤ 3 and r ≥ 3, we have commuting projections $̃k
r−k such that $̃k

r−kv|T =

$k
r−k(v|T ) for all T ∈ Th, and by Theorem 6.6.1, the following diagram commutes.

R C∞(T ) [C∞(T )]3 [C∞(T )]3 C∞(T ) 0

R S0
r (T wf

h ) S1
r−1(T wf

h ) S2
r−2(T wf

h ) L3
r−3(T wf

h ) 0.

Π̃r
3

grad

π̃1
r−1

curl div

$̃2
r−2 $̃3

r−3

grad curl div

We have developed smooth finite element spaces on Worsey-Farin splits that for ex-

act sequences in three dimensions, and we constructed commuting projections for these

spaces. In the following section, we will use numerical experiments to verify our two-

dimensional results on Powell-Sabin splits.
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