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Chapter 1

Introduction

Nanoscale systems have been an extremely active area of research in recent years.

Topics ranging from nano-machines to nano-crystalline-coatings have flooded engi-

neering and physics journals with novel ideas and practical applications. With exper-

iments showing exciting new behavior for materials at the nano-scale it has become

increasingly more important to try and understand the underlying physics such that

the benefits can be harnessed and applied to industrial and commercial applications.

Of particular interest are the systems that show superior mechanical properties at a

nanoscale relative to their bulk counterparts.

The scientific community was first introduced to the idea of improving mechanical

properties with decreasing size by Hall (1951) and Petch (1953). They were the first

to show flow stress for a polycrystalline material will increase with decreasing grain

size. These studies also established a simple relationship or “size-scaling” where the

flow stress increases proportionally to the inverse of the square root of the grain-size,

σ ∝ d−1/2. The current speculated mechanism responsible for this hardening is the

piling up of dislocations at grain boundaries resulting in higher stresses necessary

for either dislocation avalanches to penetrate the grain boundary or for dislocation

nucleation on the opposite side of the grain boundary (Louchet et al. (2006)). The

1
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scaling arises from the summation of the 1/d stress contribution from each dislocation

inhibited at the grain boundary (Armstrong et al. (1966); Friedman and Chrzan

(1998)).

Since the introduction of Hall-Petch behavior other properties have been shown

to improve at smaller lengths scales and many have speculated on the mechanisms

responsible for the behavior. For example, as grain sizes in polycrystals decrease,

experimental and numerical studies indicate that these materials exhibit increasing

strengths; Van Swygenhoven et al. (1999, 2003, 2002); Derlet and Van Swygenhoven

(2002); Schiøtz et al. (1998, 1999); Yamakov et al. (2002, 2001). Many single-phase

nanocrystalline materials have been studied to understand the deformation mecha-

nisms related to decreasing grain size. More recently hardness and wear have also

been shown to depend on grain size by Farhat et al. (1996). Hardness tests show

that the same d−1/2 scaling arises due to a mechanism similar to that responsible

for scaling of the flow stress . Wear also shows a lower peak coefficient of friction

with decreasing grain size because less energy is expended by plowing and shearing

of smaller grains.

The d−1/2 scaling begins to break down as crystalline materials approach the nano-

grain (ng) sizes, d < 100 nm. For the ng regime the scaling exponent is greater than

the −1/2 exponent of larger grain sizes. Materials consisting of ngs are more depen-

dent on locations of dislocation sources (Louchet et al. (2006)) and the activation

of secondary, non-dislocation mechanisms, such as grain boundary sliding, which be-

come active (Schiøtz et al. (1998, 1999)). For ng materials with grain sizes d < 10

nm the material actually begins to soften as the secondary mechanisms dominate the

deformation resulting in a “Reverse Hall-Petch” behavior (Schiøtz et al. (1998)).
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For crystalline materials the question of how to optimize superior nano-scale prop-

erties without compromising other properties ultimately drives a large amount of in-

dustrial research. One aspect that has not been significantly studied is the effect of

introducing a second phase into the nano-crystal. The introduction of a second phase

has been shown to stabilize nanocrystals and allow properties to improve beyond

their single phase limits (Ping et al. (2000)). Yet, experiments to elucidate nanocrys-

talline mechanical properties are difficult to perform because most processes used to

create nanocrystals, e.g. electro-deposition, are only capable of creating sheets with

thicknesses of ∼ 100 µm that contain a significant amount of impurities.

Nano-crystalline composite Ag-Ni (Cheng and Drew (1997)), Al-Ge (Adams et al.

(1992)) coatings, with two phases separated, have been made through co-deposition

methods. Fucutani et al. (2004) have shown that with strictly controlled deposition

conditions the nanostructure of Al-Si films is close to an idealized cylindrical morphol-

ogy with 7-10 nm crystal Al cylinders embedded in the amorphous Si matrix. Such

nanocomposites may improve the stability of nanomaterials against grain growth and

creep, may improve stiffness, and may enhance other mechanical properties such as

hardness and wear resistance. Nanocomposites are thus an attractive area for investi-

gation but only one computational study has been done on two-phase nanocomposites.

A Ni-Ag composite has been studied numerically using Molecular Dynamics(MD), and

it was found that the introduction of a second phase decreases the tensile strength of

the composite and also reduces the effectiveness of grain boundary sliding, grain ro-

tations, and recrystallization in acting as deformation mechanisms, relative to single

phase composites (Qi and Cheng (2004)). To this point the limited MD studies have

not examined the metal/ceramic composites commonly used for coatings and have

not studied the effect of strain rates.
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As seen from experiments an important component of composites mechanical re-

sponse is the behavior of the two phase interface. Metal/silicon interfaces have been

studied previously on a very limited scale. Baskes et al. (1994) and Gall et al. (2000)

studied (001) out of plane oriented Ni(110)/Si(100) and Al(100)/Si(100) interfaces,

respectively. Baskes et al. studied the results on the interface associated with atomic

mismatch. The low energy interface configurations resulted in a ripple effect at the

metal/Si interface. Gall et al. concluded that premature failure and residual bonding

of the metal onto the Si interface results from a stress concentration created by the

ripple energy at the interface. Gall et al. also studied failures associated with small

voids in the metal near the interface, resulting in lower interfacial tensile strengths as

the void size increases. These simulations exhibited high strength interfaces on the

order of 6-9 GPa and significantly enhanced toughness relative to a normal Griffith

fracture.

Beyond polycrystalline, materials size-scaling has also been reported in single

crystal metals, and extends to length scales smaller than those at which secondary

mechanisms are activated in polycrystalline materials. Without grain boundaries, pile

up mechanisms are not responsible for the scaling exhibited by single crystals thus the

hardening must come from an alternate source. Many experimental studies elucidate

the size effects in single crystals. Aifantis (1999) showed increasing flow stress with

decreasing nanowire diameter, with simulations by Diao et al. (2004); Park et al.

(2006) supporting the findings. In thin films Espinosa et al. (2004) shows increasing

yield stress, with decreasing film thicknesses down to ∼ 100 nm. Bulge tests of free

standing Cu films also show yield stress depends on film thickness and passivation (Nix

(1989); Lane et al. (2000); Nicola et al. (2006); Xiang and Vlassak (2006)). Columns

under compression show increasing yield stress with decreasing cross sectional area

as reported by Uchic et al. (2004). Similarly, Greer et al. (2005); Greer and Nix
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(2005) performed compression tests on Au nanopillars, seen in Figure 1.1 and reported

increases in yield stress and flow stress with decreasing pillar diameter. Recently

nanoindentation of single crystals have also shown size-scaling for nm length scales

(Nix and Gao (1998); Nix et al. (2007); Zong et al. (2006)) as well as fracture toughness

(Lane et al. (2000)). Size scaling of flow stress has also been advanced by Sieradzki

et al. (2006) and Volkert and Lilleodden (2006) in the context of the diameter of

whiskers and columns.

Several models over a range of length scales have been developed to model crys-

talline materials and have varying success in capturing scaling. At the smallest length

scales < 10 nm, models describe the nucleation of individual dislocations. Energetic

considerations are used to determine critical quantities during the nucleation process.

The two most significant models are the Rice-Thomson (RT), (Rice and Thomson

(1974)) and Peierls-Nabarro (PN), (Rice (1992)), models, both of which are 2-D meth-

ods. While quite general, they have been applied to simple indentation by Shenoy

et al. (2000). The RT model estimates the force per unit length, PFF
cr , necessary for

the existence of a stable dislocation at a critical distance d from the indenter. There

are two competing forces acting on the dislocation: the force due to the field of the

indenter, σL(a, d) and the stress due to the image force attracting the dislocation to

the surface, σd
xz(a, d), where a is the radius of the indenter. Setting the equilibrium

distance equal to the dislocation core radius d = rc, the resulting critical pressure for

nucleation is Pcr = (µb/(1 − ν))
√

a/rc. The only unknown is rc, which is estimated

from atomistic simulations. This model sets a lower limit for the nucleation pres-

sure since it only determines the equilibrium pressure, but it does predict a scaling

exponent of 1/2 for the 2-D problem.

The PN method circumvents the need for a critical distance by explicitly consid-

ering the process by which the full burgers vector is created, i.e. the relative sliding of
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neighboring atomic planes, and the maximum shear stress τmax during that process.

Nucleation occurs when the applied shear stress on the slip plane from the indenter

attains the maximum value, σL
xz(a, 0) = τmax. Analytical solutions are not trivial

since the stress solution at an edge is usually singular, which is again resolved us-

ing atomistic simulations. Atomistic simulations alone, using MD methods, are also

useful in modeling scaling but to this point are extremely limited by the size of the

systems that can be modeled. Both the RT and PN methods become very cumber-

some when the number of dislocations increases, as a series of linked equations must

be solved to determine the equilibrium positions for each dislocation. Even with the

more complexity with increasing numbers of dislocations recent work on a PN-type

model for multiple dislocation emission from a crack tip has been successful Warner

et al. (2007).

Another set of models combine length scales in an attempt to capture the detail

of the atomistic energetics and the robustness of continuum methods. One example

of this linking of length scales is the quasicontinuum (QC) method Tadmor et al.

(1996). Many models similar to QC exist including a version that passes dislocations

from the atomistics to a discrete dislocation region, described below, but much is left

to be done (Shilkrot, Curtin and Miller (2002); Shilkrot, Miller and Curtin (2002);

Miller et al. (2004)).

The discrete dislocation (DD) models developed by van der Giessen and Needle-

man (1995); Deshpande et al. (2005), remove the details associated with atomistics

that are not generally necessary to capture material behavior at micro-length scales.

DD models treat all dislocations as line defects in a 2-D plane strain formulation.

A general DD simulation consists of an elastic body with a random distribution of

dislocation sources and obstacles. Under an applied load, the stress and strain fields

are solved given the current dislocation distribution. The forces on the dislocations
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are then used to move the dislocations according to a mobility law, and other con-

stitutive rules for nucleation, annihilation, and pinning/depinning at obstacles are

invoked. The DD model has recently predicted size scaling for indentation at the

sub-micron level, Widjaja et al. (2005, 2007), and for thin film yielding Chng et al.

(2006).

Increasing the length scale further introduces an important class of models for

describing size dependent plastic flow which do not account for discrete plastic enti-

ties, the strain-gradient-plasticity theories (Fleck et al. (1994); Fleck and Hutchinson

(1997, 2001)). These models introduce a length scale and additional scale-dependent

constitutive behavior into the framework of conventional plasticity theories. Just as

the grain size for polycrystals sets a size scale for the deformation, the idea of scaling

due to large strain gradients and geometrically necessary dislocations (GNDs)(Nix

and Gao (1998)), has a microstructural characteristic length, l̂ , which scales with

L2/b where, L is the distance between dislocation obstacles and b the Burgers vec-

tor. A schematic of the GND concept is shown in Figure 1.2. By introducing the

concept of GNDs, size scaling is captured for length scales of < 1 µm. The scaling

for the GNDs comes from the argument that the shear strength τ is a function of

the density of dislocations; τ = αµb
√

ρG + ρs where ρG is the GND density, ρs the

statistically stored dislocation density, µ the shear modulus, and α is a constant nor-

mally set to 0.5. The density is easily calculated through geometric considerations

for a known amount of deformation and an assumed plastic zone volume. Since the

density decreases with contact area the corresponding shear strength will decrease as

well, resulting in the size scaling for indentation and other contact problems. The

characteristic length scale then becomes l̂ = b(µ/σo)
2 = 4/(3bρs) = 4L2

s/(3b) where

Ls is the distance between the statistically stored dislocations. Nix and Gao show
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excellent agreement between experiments and the GND strain gradient plasticity con-

siderations for contact edge lengths of ∼ 750 nm with hardnesses of ∼ 2 GPa for the

indentation of Cu. Zong et al. (2006) reports for the indentation of Ni, Ag and Au

with hardnesses ∼ 2− 5 GPa at contact edge lengths of <∼ 750 nm for a range of in-

denter geometries, with a good fit to the Nix-Gao model. The Nix-Gao model clearly

fails for edge lengths < 100 nm or smaller, Qu et al. (2004), which is rationalized by

the fact that the plastic volume in the Nix-Gao model is too small at small contact

lengths.

Another key model that incorporates several components of the models already

discussed has been developed by (Gerberich:05,Gerberich:06). Gerberich has at-

tempted to capture the scaling at length scales 5 nm < ` < 500 nm by using the PN

and RT models as a framework for the energetics of multiple dislocation avalanche

events. Since the RT and PN models include all energies necessary to nucleate a

dislocation the model is extended to multiple dislocations by predicting the work as-

sociated with dislocation motion. Since it becomes increasingly more complicated to

keep track of locations for a large number of dislocations and to determine the inter-

action stresses associated with these dislocations, a generic description of this energy

is given as: fdδexc = δWp + δS + δU`. Here fdδexc is the external work, δWp is the

change in plastic energy, δS is the change in surface energy and δU` is the change in

elastic energy. The model is minimized to determine an equilibrium contact area that

will support the dislocation structures in the bulk. This model attempts to account

for all of the energy associated with the process of nucleating a single dislocation loop

during indentation and then apply it to multiple nucleations. To account for multiple

events, approximate distance and shear stresses are used to determine the work done

on moving dislocations. The model neglects specific interaction energies and uses a

similar relation to that of the Nix-Gao to describe the motion and interactions over an
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approximate plastic volume. Neglecting the actual interactions result in the model’s

inability to capture specific scaling at ` < 500 nm.

While the above models fail to capture scaling for ` < 500 nm recent experiments

by Wang et al. (2006) and Nix et al. (2007) show a size-scaling for a length scales of

100 nm < ` < 500 nm. Wang et al. (2006) performed compression experiments on

extremely well-characterized single-crystal Au pyramids shown in Figure 1.3 (Wang

et al. (2006)). The hardness (contact pressure) versus contact edge length `c over

the range `c ∼ 100 − 600 nm reaches peaks of ] ∼ 2.5 Gpa and shows a scaling

H ≈ `−0.75
c independent of the starting contact edge length, which is slightly lower

than the scaling predicted by the Nix-Gao and PN models. Independently, Nix et

al. (2007) performed indentation experiments on a Au (100) single crystal thin film

using a Berkovich indenter. This is essentially the inverse problem of the pyramid

since the slope of the Berkovich indenter is almost exactly the same as that of the

pyramid. The similar geometries between the two experiments results in roughly the

same number of dislocations necessary to accommodate the deformation. Assuming

that the deformation and high stress is local to the point of contact it is not surprising

that the indentations show a scaling of H ≈ `0.5
c with hardnesses of ∼ 2.5 GPa at

`c ∼ 100 nm. These experiments now show scaling of the flow stress at a length scale

< ` < 500 nm that is not captured by any of the models presented above.

This work examines two important systems introduced above: i) Al-Si nanocom-

posites under tension, ii) Au nano-asperities under compression. Nanocomposites as

mentioned are the next natural progression in the study of nanograin materials. With

single phase nanomaterials primarily understood it is important to understand the

influence of introducing a second phase. In this case Al-Si is chosen because it is a

material of interest for the automotive industry. In composite systems, the role of bi-

material interfaces can be predominant, and so the work begins with a detailed study
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of the deformation, strength, and fracture energy of a set of Al-Si interfaces having

various orientations. The work then turns to the Al-Si nanocomposites and examines

elastic response, plastic deformation mechanisms and failure processes as well as mak-

ing comparisons to Al polycrystals all with the goal of understanding how to enhance

the macroscopic behavior of the composite. Au asperities, on the other hand, are im-

portant because they represent the smallest defects of generally rough surfaces. These

surfaces could belong to large gears in a turbine or small electrical contacts but either

way the properties of the surface are important in predicting system behavior. Previ-

ous experiments have been performed which capture hardness scaling for ` < 500 nm

which offers the unique opportunity to compare atomistic models with experiments.

This work studies the compression of extremely well-characterized nanoscale asper-

ities in the form of Au pyramids, similar to those of the Wang experiments, using

large-scale molecular dynamics simulations. The simulations are extensive, not only

including large sizes, large initial contact lengths, and large depths of indentation,

but also including variations in temperature and stacking fault energy (by using dif-

ferent interatomic potentials). The MD simulation also allows for the deformation

mechanisms to be determined through visualization. To understand the size scaling,

and the origin of possible differences between the MD and experiment, we propose

an energy-based model, using the deformation mechanisms from the MD, to predict

a lower limit for the hardness versus contact size, similar to that of Gerberich et al.

Each component of the energy is examined to determine what specifically dominates

the scaling at different length scales. The nanoasperity study thus establishes a basis

for the hardness scaling for ` < 500 nm.

The rest of the thesis is presented as follows. Ch. 2 contains a comprehensive

review Molecular Dynamics and interatomic potentials. Followed by the MD simula-

tions of Al/Si interface in Ch. 3 including strength and toughness analysis. In Ch. 4
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the Al/Si study is extended to the deformation and failure of nanocomposites. The

work then shifts the the Au nanoasperities with Ch. 5 focusing on the MD simula-

tions. Ch. 6 will then take the information gained from the MD and present the basis

for an energetic model to predict the hardness of the asperity compression. Finally

closing remarks will be made in Ch. 7.

Figure 1.1: Compression of nano pillars performed by Greer et al. Clear dislocation
bands appear at late stages of compression, Greer and Nix (2005).
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Figure 1.2: Schematic of the generation of geometrically necessary dislocations
(GNDs) during an indentation process taken from Nix and Gao (1998).
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Figure 1.3: a)AFM image of pyramid array on (001) Au single crystal surface; b)
single pyramid with (114) facets; c) Pyramid profile before and after compression by
a flat mica indenter. From experiments performed by Wang et al. (2006).



Chapter 2

Simulation Details

2.1 Atomic Potentials

In nanoscale systems, e.g. nanocomposites and nanoasperities, molecular dynam-

ics is used to study the atomic response to exterior loading. Molecular dynamics

(MD) is a method used to describe the motion of individual atoms using Newton’s

equations of motion in some iterative process over a desired time, t, at a given time

increments, dt. The ultimate desired outcome of MD is the new atomic positions

of an atomic configuration under some external influence, whether that be a load,

temperature or any number of other effects. In order to progress the atomic positions

and velocities, the forces acting on a single atom must be accurately described. Many

methods have been proposed to describe these forces.

The earliest methods used to describe fluid motion were generic potentials called

Lennard-Jones (LJ) potentials which determined the total energy of a system with

two simple terms attributed to the repulsion and attraction of particles (Allen and

Tildesley (1989)). A simple example and probably the most common form is called

14



15

a LJ 6-12 potential and is expressed as:

V =
∑

i

∑

j>i

vLJ(rij) =
∑

i

∑

j>i

4ε

[

(

σ

Rij

)12

−
(

σ

Rij

)6
]

(2.1)

where V is the total energy of the system and vLJ is the individual contribution to

the energy for each atom i and j interaction at a spacing of Rij . The energy of the

interaction between atoms i and j are summed up for the entire system to give a

total energy. For this potential, ε is the energetic minimum for a single atom-to-atom

interaction which leads to an equilibrium atomic spacing of σ. As mentioned the

potential has two competing terms, the attractive term and the repulsive term; at

distances R greater than the equilibrium spacing, R > σ, the potential is attractive

while at R < σ the potential is repulsive. The force on i from j is determined by simply

taking the derivative of the energy with respect to the atom spacing, fij = dvLJ
ij /Rij.

2.1.1 Embedded Atom Method

LJ potentials give a clear picture of the atomistic attractive and repulsive nature

but lack the detail necessary to effectively predict the more complicated electron

fields in metallic interactions. The most widely accepted inter-atomic potential used

for metallic materials is the Embedded Atom Method (EAM), developed by Foiles et

al. (1984, 1986); Daw and Baskes (1983, 1984). For the Au nanoasperities, to model

the Au-Au interaction, two different potentials are implemented, Auu3 (Foiles et al.

(1986)) and Au2, (Park and Zimmerman (2005)). The EAM potential is slightly more

complicated than LJ because of an additional term which accounts for the background

electron density at a given atom location in addition to the pair interaction between
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atoms. EAM determines the total energy of the system as

Etot =
∑

i

Fi(ρh,i) +
1

2

∑

i

∑

j( 6=i)

φij(Rij) (2.2)

The two important aspects of the energy are: Fi(ρh,i) the energy necessary to embed

an atom into a host electron density ρh,i, and φij(Rij) the pair potential between atoms

i and j at a distance Rij . The host electron density is defined as the superposition of

the density for each atom,

ρh,i =
∑

j( 6=i)

ρa
j (Rij) (2.3)

where the density for each atom is defined using Hartree-Fock wave functions (Clementi

and Roetti (1974); McLean and McLean (1981)) as ρa(R) = nsρs(R)+ndρd(R). Here,

ns and nd define the number of electrons in the s and d orbitals respectively. The

total number of outer electrons is fixed which results in only ns as an adjustable

parameter for the embedding function. For the Au2 potential, the electron density is

defined as ρ(R) = R8(e−βMR + 211e−2βMR) while for the Auu3 potential this function

is fit to an atomic configuration of 5d106s1. In the former expression, βM is a fitting

parameter for the function. The pair potential, on the other hand, is more easily

described using the effective charges, φAB = ZA(R)ZB(R)/R, of atom types A and

B which allows for the analysis of alloys. The effective charge is assumed to take the

form Z(R) = Z0(1 + βRnu)e−αR where Z0 is the number of outer electrons and α, β

and ν are left as adjustable parameters. These functional forms with five adjustable

parameters ns, βM , α, β and ν, are then fit to several bulk constants: the sublimation

energy, lattice constant, elastic constants, vacancy-formation energy, and the internal

energy for the specified elements. While the methods of determining the potentials

are similar, the values of the fitting parameters are slightly different and Au2 is also

fit to the stacking fault energy. The values of the most important constants for this
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Table 2.1: Lattice constant ao, cohesive energy Eo, bulk modulus B, elastic con-
stants C and stacking fault energy γsf as predicted by the Auu3 and Au2 potentials
compared with the experimental values

ao(Å) Eo(eV) B(GPa) C11(GPa) C12(GPa) C44(GPa) γsf (mJ/m2)

Auu3 4.08 3.93 167 183 159 45 4.71
Au2 4.08 3.93 166.67 185.8 157.1 38.949 31
Exp 4.08 3.93 166.67 186 157 42 32

study are listed in Table 2.1.1 for both potentials. Using these potentials yield elastic

constants for the (001) orientation of E = 35.5 GPa, µ = 45 GPa and ν = 0.46 for

Auu3 and E = 42 GPa, µ = 39 GPa and ν = 0.46 for Au2. It is not the differences in

the elastic constants for the (001) orientation as well as the large discrepancy between

the stacking fault energies in Table 2.1.1. The Elastic properties for these potentials

are confirmed in Ch. 5.

2.1.2 Modified Embedded Atom Method

EAM models the interactions for metals very well but has some limitations. For

materials that have direction-dependent bonding, a more complicated description of

the energy is required. Initial direction-dependent potentials introduced an energy

penalty for bond angles between three atoms at nonpreferable orientations (Phillips

(2001)). For this study the Modified Embedded Atom Method (MEAM) is used to

describe the interatomic interactions between Al-Al, Si-Si, and Al-Si (Baskes (1992);

Lee et al. (2003)). This potential is similar to the more common EAM potentials but

does allow for the directional dependence of the Si bonding; details of the agreement

between MEAM and experimental and ab-initio calculations are contained in Baskes

(1992); Lee et al. (2003); Daw and Baskes (1984). MEAM not only predicts the bulk

properties of Si but can also predict the experimentally observed 7x7 DAS recon-

struction of Si(111) as the most stable structure among other NxN DAS structures
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(Takahashi et al. (1999)).

MEAM defines the energy E of the system as the sum of energies for each atom i,

having energy contributions from an embedding function F that depends on a local

electron density ρ̄i, and a pair potential φ, so that

E =
∑

i



F (ρ̄i) +
1

2

∑

j( 6=i)

φ(Rij)



 , F (ρ̄i) = AEc
ρ̄i

ρ̄o
ln

ρ̄i

ρ̄o
(2.4)

where A is a constant, Ec is the cohesive energy, and ρ̄o is a reference electron density.

The pair potential only depends on the distance between atoms i and j, Rij. The

actual angular dependence of the potential is buried in the definition of ρ̄i, which

represents the electron density at atomic site i. The electron density is determined

using

ρ̄i = ρ
(o)
i

√

1 + Γi (2.5)

with

Γi =
3
∑

k=1

t(k)

(

ρ
(h)
i

ρ
(o)
i

)2

(2.6)

where t is an adjustable parameter used to weight directional dependence, ρ
(o)
i is a

spherically symmetric term, and the ρ
(h)
i represent the angular dependent terms of
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the electron density as

(ρ
(o)
i )2 =

∑

j 6=i

ρ
a(o)
i (Rij)

(ρ
(1)
i )2 =

∑

α

[

∑

j 6=i

ρ
a(1)
i (Rij)

Rα
ij

Rij

]2

(ρ
(2)
i )2 =

∑

α,β

[

∑

j 6=i

ρ
a(2)
i (Rij)

Rα
ijR

β
ij

R2
ij

]2

− 1

3

[

∑

j 6=i

ρ
a(2)
i (Rij)

]2

(ρ
(3)
i )2 =

∑

α,β,γ

[

∑

j 6=i

ρ
a(3)
i (Rij)

Rα
ijR

β
ijR

γ
ij

R3
ij

]2

− 3

5

∑

α

[

∑

j 6=i

ρ
a(3)
i (Rij)

Rα
ij

Rij

]2

(2.7)

where

ρa(h)(Rij) = exp
[

−β(h)(Rij/re − 1)
]

(2.8)

is the electron density from a neighboring atom at a distance Rij from the atom of

interest. The α, β, and γ variables are summed over the three directional components

of the distance vector between atoms i and j.

The initial versions of MEAM which only determined energies between first nearest

neighbors (1NN) contained many problems. It was determined early in the develop-

ment of the MEAM that for body centered cubic (bcc) structures there were other

structures with lower energies and that surface energies of common orientation (100),

(110) and (111) were not close to the experimental values (Lee et al. (2001)). It

was determined that by simply including the second nearest neighbors (2NN) MEAM

could again correctly predict the low energy structure, and surface energies were much

closer to expected values. Shortly there after similar problems arose in face centered

cubic (FCC) structures, such as Al. MEAM actually predicted the hexagonal close

packed (hcp) atomic structure as more stable than FCC (Lee et al. (2003)). Early

simulations performed with older versions of MEAM potentials did show under ten-

sion FCC Al would transform fairly quickly to an hcp structure. Including the 2NN
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interactions with a screening function resolve these issues. The screening function ac-

counts for the interaction of a 2NN considering a 1NN can be in between the nucleus

and 2NN. The values of the elastic constants for this potential were not confirmed

here.

2.2 Molecular Dynamic Details

Molecular dynamics is an excellent tool to model atomic motion using the poten-

tials established above. Unlike molecular statics (MS), which uses energy minimiza-

tion to find an equilibrium structure (i.e. Congegate Gradient Methods), MD uses the

forces and velocities to step the atom motions forward in time. Many different soft-

ware packages exist to perform these types of simulations ranging from basic Fortran

codes written by graduate students to commercial codes with gui interfaces. Here

two different codes are used to run the simulations: Baskes’ own MEAM code for the

Al-Si calculations and the Large-scale Atomic/Molecular Massively Parallel Simula-

tor (LAMMPS) for the much larger Au asperity simulations. Besides the different

potentials, the dynamics machinery is primarily the same, consisting of an integrator

to step the simulation in time and a thermostat/barostat to control the important

environmental/boundary conditions.

Atomic positions are determined by integrating the equations of motions numer-

ically. Many different methods of integrating these equations exist with varying de-

grees of precision and effectiveness. The basic integrators for MD generally take the

current positions, velocities, and forces to determine the positions and velocities after

an increment in time, ∆t, using Newton’s equations of motion. Different methods are

used here for the two different MD packages. For the simulations here a Nordseick

integrator (Nordsieck (1962); Beeler Jr. (1983)) is implemented for the MEAM po-

tential and the Verlet integrator (Verlet (1967)) for the EAM potential, each using a
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time step of 1 fs.

The Nordsieck integrator is a scheme that requires a large amount of memory

to integrate the equations of motion which is not ideal for larger systems but is

sufficient for the Al/Si simulations. The first step is to determine the first five scaled

time derivatives of the atom coordinate x(t) as:

v1 = (dx/dt)∆t,

v2 = (
1

2
)(d2x/dt2)(∆t)2,

v3 = (
1

6
)(d3x/dt3)(∆t)3,

v4 = (
1

24
)(d4x/dt4)(∆t)4,

v5 = (
1

120
)(d5x/dt5)(∆t)5

(2.9)

Which are then used to predict the positions and derivatives at time (t + ∆t) as:

x(t + ∆t) = x(t) + v1 + v2 + v3 + v4 + v5,

v1(t + ∆t) = v1(t) + 2v2(t) + 3v3(t) + 4v4(t) + 5v5(t),

v2(t + ∆t) = v2(t) + 3v3(t) + 6v4(t) + 10v5(t),

v3(t + ∆t) = v3(t) + 4v4(t) + 10v5(t),

v4(t + ∆t) = v4(t) + 5v5(t),

v5(t + ∆t) = v5(t)

(2.10)

These are not the correct values of the positions and derivatives but simply a pre-

diction which is now used to compute the new force f(t + ∆t) and a displacement

function, Φ = (1/2)(f/m)(∆t)2 − v2(t + ∆t). With these values the new corrected
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positions and derivatives are calculated using:

xc(t + ∆t) = x(t + ∆t) + c0Φ,

vc
n(t + ∆t) = vn(t + ∆t) + cnΦ

(2.11)

where n = 1, 2, ...5 and the constants cn depend on the order to which the scheme

is taken (in this case 5th order) and are 3/16, 251/360, 1, 11/18, 1/6 and 1/60 for

c0 − c5 respectively. The Nordsieck method does not loss stability or accuracy during

incrementation.

For the pyramid simulations, a specific type of Verlet integrator called velocity

Verlet is implemented to integrate the equations of motion. The positions and veloc-

ities for an increment of dt is given by:

x(t + dt) = x(t) + dtv(t) +
1

2
dt2at (2.12)

and

v(t + dt) = v(t) +
1

2
dt[a(t) + a(t + dt)] (2.13)

Notice in the expression for v(t + dt), the accelerations for t and t + dt are required.

This implies that there must be an intermediate force calculation between Eq 2.12

and Eq 2.13. This intermediate force calculation is performed using the positions

determined from Eq 2.12. An intermediate velocity is also determined just before

the force calculation by:

v(t +
1

2
dt) = v(t) +

1

2
dta(t) (2.14)

Calculating an intermediate velocity saves on storage space, requiring storage of only

one acceleration rather than two. Once the forces and thus accelerations are calculated
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the final portion of the velocity is determined using:

v(t + dt) = v(t +
1

2
dt) +

1

2
dta(t + dt) (2.15)

which is nothing more than the same expression from Eq 2.13. These integrators are

excellent for progressing the atomic structure in time but will only result in systems

with conserved energy. For all simulations 0.001 ps is used for the time increment.

For the simulations performed here, conserving energy is not the most desirable

method of dynamics. Here we would like to define the pressure and temperature

(NPT dynamics) so it is necessary to implement tools to control these values. The

Nose/Hoover barostat and thermostat are the most common method of control for

the environmental parameters of the system (Nose (1984); Hoover (1985); Allen and

Tildesley (1989)). The thermostat is created by allowing energy to flow to a large

reservoir which adds an extra degree of freedom, s, to the simulation with a cor-

responding momentum, ps. The atomic velocities are then related to the position

time-derivatives by v = s dx/dt. The new degree of freedom is extended to the po-

tential and kinetic energy and changes the equations of motion to dampen out extra

energy which would ultimately result in a lower temperature. The new equations of

motion are

ẍ =
f

ms2
− 2ṡẋ

s
(2.16)

Qs̈ =
∑

i

mẋ2
i − (f + 1)

kBT

s
(2.17)

where f is the force on the atom, m is the mass, Q is the thermal inertia parameter

or the damping coefficient. Also, f is the number of degrees of freedom for N atoms

(3N − 3), T is the desired temperature and kB is the Boltzmen constant.

With an effective method for controlling the temperature, the pressure can now

be addressed. The best method for constraining the pressure is to adjust the volume
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of the simulation box to relieve or induce pressure. To do this, a Lagrange multiplier

χ is introduced which represents the rate of dilation of the system. Combining the

temperature and pressure constraints results in new equations of motion:

ṡ = p/mV 1/3

ṗ = f− (χ + ξ)p

ξ̇ =

(

∑

i

| pi |2 /m − fkBT

)

/Q

χ = V̇ /3V

χ̇ = (℘ − P )V/t2P kBT

(2.18)

where V is the volume of the simulation ℘ is the instantaneous pressure, tp is a

relaxation parameter for the fluctuations of the pressure and ξ is another Lagrange

multiplier defined as:

ξ =

(

∑

i

pi · fi
)

/

(

∑

i

| pi |2
)

(2.19)

With these new equations of motion the pressure and temperature are effectively

controlled and the fluctuations due to the dynamics are damped using the Q and ts

values. Trial and error is used to determine which values of the constants converge

the energy, temperature and pressure of the system in the fewest time steps. These

values used for each particular simulation are stated later in the thesis.

2.3 Measures of Deformation and Stress

Three important parameters used in the analysis of molecular dynamics systems

are Centro-Symmetry, Effective Strain and the Virial Stress. Centro-symmetry is a

parameter used to determine the local strain an atom undergoes and is also a way to
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locate stacking faults and dislocations. Centro-Symmetry is defined as:

C =
∑

j=1,6

| Rij + Rij+6 |2 (2.20)

where Rij and Rij+6 are the vectors from the atom of interest, i, to the 12 nearest

neighbors of that atom in an FCC structure. The vectors are paired such that Rij

and Rij+6 are the six pairs of opposite atoms and result in a measure of the local

deformation about the object atom, since the only time the result is non zero occurs

when deformation is nonhomogenous (Kelchner et al. (1998)). For a perfect lattice this

value is 0 Å2. Kelchner has shown that the centro-symmetry captures the departure

from a perfect FCC lattice in shear and that the value ranges from 0.5 − 4 Å2 for

partial dislocations, 4 − 20 Å2 for stacking faults and > 20 Å2 represents surface

atoms.

To visualize the deformation mechanisms in various materials, we analyze the

local effective strain field throughout the material, using the following effective strain

mapping method. As an example the method will be described for the nanocomposite

Al/Si which lends itself to the method well since it is essentially a 2D system. First,

a two-dimensional projection of the first two (011) planes of atoms in the unstrained

state are used as nodes to create a triangular mesh of elements, with some atoms near

the grain boundary removed to ensure that all elements have sizes on the order of

the atomic spacing. Under an applied strain, each atom displaces by some amount u

and the corresponding elements deform as characterized by the deformation gradient

F = I + ∇u . The Lagrangian strain tensor E = 1/2(FT F − I), is then calculated

and the effective strain Ee = 1/2 [(E1 −E2)
2 + E2

1 + E2
2 ]

1/2
is determined from the

principle values of the Lagrangian strain, {Ei}. The effective strains for elements

having atom nodes that deform elastically are on the order of the macroscopic strain,

i.e. much smaller than the strain associated with a stacking fault. However, the
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effective strains for elements in which the atom nodes slide relative to one another,

either by dislocation motion or grain boundary motion, are very large, on the order

of 100%. Thus, a contour map of the effective strain clearly shows both dislocation

motion, appearing as straight lines traversing a grain corresponding to the dislocation

slip, and grain boundary sliding-like phenomena, appearing as irregular deformation

along the grain boundaries.

Virial stress is a parameter used to quantify the stress a single atom is experiencing

(McLellan (1974)) and is defined as:

σαβ =
1

Ω

∑

i

(

−m(i)(v(i)
α − v̄α)(v

(i)
β − v̄β) +

1

2

∑

j

(xj
α − xi

α)f ij
β

)

(2.21)

where Ω is the volume of a region containing i atoms and α and β define the Cartesian

components of stress. The stress consists of two components; first, a dynamic portion

defined by the mass m(i), velocity v
(i)
α of atom i and the local velocity v̄α, and finally

a static portion consisting of the atomic positions of atoms i and j, x
(i)
α , and the force

between atoms i and j, f ij
β . For many cases the dynamic portion is much smaller than

the portion defined by the forces between atoms (e.q. the models studied here) so the

velocity portion is neglected. In this instance the interpretation of the local stress

must be approached with caution but the virial stress gives a reasonable expression

for a macroscopic stress value.



Chapter 3

Al/Si Interfaces: MD Study

With single phase nanomaterials primarily understood it is important to under-

stand the influence of introducing a second phase into the system. Here Al-Si com-

posites are chosen to study the influence of introducing a ceramic particle into a metal

polycrystalline material. Al-Si is chosen because it is a material of interest for the

automotive industry. Recent experimental work by some automotive companies have

focused on Al-Si as an attractive coating material (Olk and Haddad (2006),Olk et

al. (2006). In composite systems, the role of bimaterial interfaces can dominate the

strength and failure, and so the work on composites begins with a detailed study

of the deformation, strength, and fracture energy of a set of Al-Si interfaces having

various orientations. Highly mismatched Al/Si interfaces show good tensile strength

and significantly enhanced fracture energy relative to structurally-well-matched in-

terfaces, suggesting the possibility that nanocomposites can have good strength and

toughness.

27
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3.1 Al-Si Interface Structures

The interface geometries are generated by creating one slab of each material, using

the zero-temperature lattice constant, with the desired surfaces and placing them in

contact with one another, as shown in Figure 3.1. Al/Si systems are excellent for

use in periodic MD simulations because their lattice constants, 4.041 Å for Al and

5.42 Å for Si, have a near perfect 4 to 3 relationship which lends itself perfectly to

a repetitive periodic system. For these simulations in order to maintain a perfect

cubic structure for each element type as well as periodicity in the z-direction a [110]

crystalligraphic orientation with a 11.45 Å thickness is chosen. This requires the Si

slab to consist of six atomic layers while there are eight atomic layers for the Al slab.

The length in the y-direction (perpendicular to the [110] z-direction and the interface

normal) is varied in each case until the lattice mismatch between the two elements is

accommodated and periodic boundary conditions can be applied in the y-direction.

It is important to use a [110] z-direction to optimize the plasticity and slip systems

available for plasticity. A [110] z-direction gives for active slip systems that are

perpendicular to the thin z-direction. If the slip systems are not perpendicular to the

periodic thickness slip will propegate itself through the periodicity and interact with

itself unrealistically. The x-direction is normal to the interface and is the direction of

the prescribed displacement. Periodic boundary conditions are not implemented in

the x-direction. The interface model is then relaxed using molecular statics (T=0K),

holding the two ends along the x-direction fixed while the y- and z-directions are

allowed to translate, to create the bonded interface. The system is then annealed at

a temperature of 300 K for 20 ps, with damping coefficients of Q = 1 and ts = 0.1.

With fixed ends, the annealing creates a residual tensile stress along the loading axis

x. From this state, the sample is deformed by holding one end of the sample fixed and

displacing all remaining atoms in increments of 1% strain from their current positions,
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and relaxing the system using Molecular Dynamics at the prescribed temperature,

300 K, for 20 ps after each strain increment.

3.2 Interface Maximum Tensile Strength

This study investigates nine different interfaces, ranging from well-matching Al(111)/Si(111)

to highly mismatched Al(113)/Si(335). We calculate a stress-strain curve for each in-

terface sample, which consists of an initial linear region followed by some slight fluc-

tuations associated with thermal activity leading up to a rapid post-peak decline, but

it has little importance because the response is associated with the relative lengths

and moduli of the two phases in the loading direction. The property of interest is

the maximum tensile strength σT , i.e. the peak of the stress-strain curve, which we

have extracted from the data and shown in Table 3.1; σT varies from 3.9-7.4 GPa

among the different interfaces. Figure ?? shows the corresponding fracture surfaces.

The fracture surfaces show three basic types of failure: (1) near perfect cleavage of

the Al surface with small amounts or no Al sticking to the Si surface (interfaces B,

D, and F), (2) significantly rough Al interface with Al sticking to the Si surface and

no dislocation activity (interfaces E, G, H), and (3) significantly rough Al interface

with sticking to the Si surface and dislocations emitted from the interface into the

Al slab (interfaces A and C). The two highest tensile strengths B and C are not of

the same failure type and the interfaces with lower strengths can have any type of

fracture surface, and so the tensile strength does not correlate directly with the failed

surface morphology and method of failure.

Several factors conspire to establish the tensile strength. The most important

factor is the interfacial bonding, which is related to the orientations of both Al and

Si and to the lattice mismatch. Since Al has more-uniformly distributed metallic

bonds while Si has more-directional covalent bonds, the Al/Si interfacial bonding
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Table 3.1: Al/Si bimaterial interface orientations and tensile strengths.

Interface Al Surface Si Surface σT (GPa)

A 100 100 6.4
B 111 111 7.2
C 100 111 7.4
D 111 100 5.6
E 110 100 5.3
F 111 112 5.0
G 113 335 3.9
H 221 113 4.8
I 110 331 4.1

is mainly determined by the orientation and dangling bonds at the Si surface as

shown by Baskes et al. (1994) and Gall et al. (2000). The Si surfaces, cleaved along

different orientations, vary in the amount of dangling bonds and surface roughness.

Si (111) has one dangling bond per atom per surface unit cell, resulting in an atomic

density of 0.078/Å2. The surface densities are defined as the number of atoms with

dangling bonds in each surface unit cell before any surface reconstruction. In the

case of Si (111) there are two atoms with dangling bonds per unit cell with area

of a/
√

2 ×
√

3a/
√

2, where a is the lattice parameter, resulting in a density of
√

3/a2 = 0.078/Å2. Continuing with the other surface densities: Si(100) has two

dangling bonds per atom and atomic density of 0.0675/Å2 ; Si(112) has atomic steps

on the surface with two atoms per unit cell, one atom having one dangling bond and

the other having two dangling bonds, and an atomic density of 0.055/Å2; Si(113)

has one atom with two dangling bonds per cell, and an atomic density of 0.041/Å2;

Si(331) has 2 atoms per surface unit cell, each one has one dangling bond, and an

atomic density of 0.062/Å2; Si(335) has three atoms in the unit cell, two have one

dangling bond and one has two dangling bonds, and an atomic density of 0.062/Å2.

Si(111) surface thus has the highest atomic density with all dangling bonds normal
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to the surface. With high number of bonds that are normal to the interface they tend

to attract Al atoms in a normal direction with out creating high stress concentrations

and so the interface of Al/Si(111) is generally smooth and uniform. The strongest

interfaces B and C consist of Si(111) surfaces, with strengths of 7.2 and 7.4 GPa

respectively, and the interfaces with Si(111) have the least adhesive transfer. In

contrast, although the Si(100) surface is one of the denser surfaces, some atoms have

two dangling bonds along the cleaved surface forming 35o angles with the surface.

With two bonds available at an angle many irregular bonds between the Al and Si

will occur including two Si atoms bonding with a single Al atom leaving some Al

atoms without shared bonds with the Si interface. This creates weaker and non-

uniform interfaces: interfaces with Si(100) (A, D, E) have strengths in the range of

5.3-6.4 GPa. The remaining interfaces created with the rougher and less dense Si

surfaces (F, G, H, I) are the weakest, with strengths between 3.9-5.0 GPa. These

rough surfaces would normally reconstruct to minimize the surface energy but due

to the introduction of the Al surface small voids are created at the interface before

annealing. When the interface is annealed at 300K Al atoms migrate to fill the

voids present at the interfaces, creating stress concentrations in the Al. These stress

concentrations lead to premature failure of the interface and cause more adhesive

transfer of Al to Si surfaces. Only motion of Al atoms at the interface are seen

during relaxation. There are not dislocations from the slabs moving to the interface,

since they are created perfectly clean, nor are there dislocations nucleated from the

interface during relaxation.

Another factor determining the strength of the interfaces is the orientation of

the Al(111) planes with respect to the direction of the applied load. Most of the

failures occur by separation of Al(111) planes, either from one another or along the

Si interface. Hence, if the Al(111) planes are perpendicular to the loading then the
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stresses required to cause failure are lower than if these Al(111) planes are rotated

away from perpendicular with respect to the loading axis. The stronger of the two

interfaces with Si(111), C, has the Al(111) planes rotated with respect to the loaded

direction. The effect of the orientation of Al(111) is even more dramatic in the case

of interfaces A and D: A is stronger by 0.8 GPa with the exact same Si structure at

the interface. The rotated Al(111) planes have less importance when the Si surface is

extremely rough. When the Si surface is rough, the more important factor is how well

the Al matches with the Si surface. In comparing cases H and G, the Si surfaces have

a similar roughness but G has an Al(113) surface that is relatively smooth compared

to that of the Al(221). However, the match of the flat Al(113) with the rough Si (335)

creates an interface with several stress concentrations while the peaks on Al(221) fit

almost perfectly into the troughs of the Si(113). Therefore, interface H has smaller

local stresses and a strength 0.9 GPa higher than G.

Overall, the combined effects of the Al(111) orientations and Si surface orien-

tations and topologies are consistent with the observations that (i) the strongest

interface is C, consisting of the Al (100) interface with rotated Al (111) planes and a

Si (111) interface with its tightly packed and low bond initial structure, the two best

possibilities, and (ii) the weakest interface is G, comprised of the Al (113) surface

and the Si (335) surface which has a high number of dangling bonds and significant

cavities at the interface. All other interfaces are some combination of the strengths

and weakness in the bonding leading to intermediate tensile strengths.

3.3 Interface Fracture Energy

Another important aspect of the interface failure is the fracture energy, since poly-

crystalline fracture requires propagation of a crack in addition to crack nucleation.

Three components comprise the total energy for the failed interface simulation: the
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bulk energy of each of the slabs; the energy associated with the fixed-end boundary

conditions; and the fracture surface energy. Of interest is the fracture surface en-

ergy versus the clean surface energy and the fracture surface work of separation WS

compared to the Griffith work of separation WG.

The surface energies can be calculated very easily from the simulation cells given

knowledge of the bulk cohesive energy Eα
COH of each atom type α. A block of the

desired material is created with all directions periodic except x, which has free surfaces

of the desired orientation (ijk). The total energy ET of such a system consists of the

bulk cohesive energy of the slab Ea
B = NaEα

COH and the total surface energy γα
(ijk),

with Nα the number of atoms of type α. The surface energy per unit area is then

γ̄α
(ijk) = (ET − Eα

B)/2A (3.1)

where A is the total area associated with the projection of the free surface onto the

simulation cell, i.e. the y-z planar area. The total clean surface energy for the Al-Si

system, γ = (γ̄Al
(ijk) + γ̄Si

(lmn)), gives the total energy of the two surfaces per unit area.

The fractured surface energy cannot be determined in the same manner as the perfect

surfaces because the energies associated with the fixed ends in the simulation, Efe,

are unknown a priori. To determine Efe, we calculate the total energy ES of a sample

consisting of the two slabs for each material with the ends fixed and with an interface

separation sufficient to ensure that the two sides of the interface do not interact and

obtain

Efe = ES − EAl
B − ESi

B − Aγ (3.2)

The energy per unit projected area of the fractured surface configuration can then be

calculated as

EF = (ET − EAl
B − ESi

B − Efe)/A (3.3)
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For fracture propagation, we are also interested in the energy of the as-created

interfaces. The initial interface simulation cells have a small amount of strain en-

ergy present from holding the ends fixed during relaxation. If the annealed interfaces

are used without changing the boundary conditions this extra strain energy would

be erroneously associated with the interface. To eliminate this strain energy, the

originally-fixed ends are relaxed while holding their y-z positions fixed. Such a struc-

ture now consists of three energy components: EB, the new relaxed end energy Efe,

and the interface energy EI . The interface energy per unit area is then

EI = (ET − EB − Efe)/A (3.4)

With the above surface energies properly calculated, the work of fracture for the

actual separated interfaces, WS , is given by

WS = EF − EI (3.5)

while the Griffith work of fracture, WG, associated with perfect cleavage fracture of

the as-fabricated interface is given by

WG = γ − EI (3.6)

We can thus define a toughness enhancement factor as

T = WS/WG (3.7)

The various energies associated with all the interfaces are shown in Table 3.2. The

values of WG vary by as much as a factor of 2 between the interfaces but in general are

small. The actual fractured surface energies EF can equal γ, but are usually higher
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due to roughness and/or deformation. Fracture surfaces that show little roughness

and almost no residual adhesion of Al on Si (B, D, F) have fracture surface energies

nearly identical to the clean surface energy, WS ∼ WG , and thus T ∼ 1, and are

characterized as brittle. The fractured surfaces that are more irregular with consider-

able Al adhesion on the Si (A, C, E, G, H, I) have higher EF values relative to the γ

values, and thus T > 1, and are characterized as ductile. These ductile interfaces are

broken up into two types of failure: those that fail after dislocation emission during

failure (A and C) and those that do not emit dislocations from the interface(E, G, H,

I). The toughest interfaces, with T ∼ 2.0 − 2.2, emit dislocations from the interface

into the Al slab, which permit energy to be absorbed by the bulk of the material and

away from the high local stresses at the interface. The extra energy resulting from

the dislocations is a component of energy that is not directly related to the structure

of the surface. The remaining ductile interfaces show lower toughness of T ∼ 1.4−1.7

that are caused by the roughness of the Al surface and the fraction of the Al surface

with a local (111) orientation. As mentioned before, much of the fractured Al fails

along the (111) planes that results in surface energies reflecting the lower energy of

this close packed orientation. Al (111) has a surface energy of 0.0366 eV/Å2 versus

energies of 0.0492 eV/Å2 and 0.0526 eV/Å2 for Al (100) and Al (110). An interface

can fail with only moderate toughness enhancement over the brittle value by creating

a rough interface consisting of Al (111) planes. The differences between G and I are

good examples of the role the Al (111) surface has in determining toughness: G has

a smoother fracture surface but contains significant Al (110) structure, while I has

significant roughness but much of the failed Al surface area is locally (111) causing

a lower final fracture energy. It is also interesting to note which Al interfaces lead

to particular types of failures. The most brittle interfaces are created using Al (111)
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Table 3.2: Interface and fracture energies for various Al/Si interfaces.

Label Al Si EI γ EF WG WD T
Surface Surface (eV/Å2) (eV/Å2) (eV/Å2) (eV/Å2) (eV/Å2)

A 100 100 0.113 0.163 0.224 0.050 0.108 2.2
B 111 111 0.098 0.141 0.140 0.042 0.041 1.0
C 100 111 0.113 0.153 0.193 0.040 0.079 2.0
D 111 100 0.112 0.151 0.158 0.039 0.046 1.2
E 110 100 0.115 0.167 0.195 0.052 0.078 1.5
F 111 112 0.103 0.136 0.147 0.033 0.043 1.3
G 113 335 0.121 0.147 0.165 0.025 0.044 1.7
H 221 113 0.117 0.148 0.167 0.031 0.049 1.6
I 110 331 0.087 0.152 0.179 0.065 0.092 1.4

surfaces. The Al (111) has a tendency to keep its initial structure when failing in-

dependent of the Si structure. The toughest interfaces come from those constructed

with Al (100) surfaces. The Al (100) interface is the structure that is most likely

to emit dislocations because of the near 45 degree orientation of the Al (111) slip

planes allowing lower tensile stresses needed to approach the necessary shear stresses

required for slip. Correlating the two sets of results on strength and fracture energy,

the two properties are dominated by two main factors: the Si surface structure and

the orientation of Al (111) planes. The strongest interfaces are those that have a high

Si surface density with uniformly distributed dangling bonds normal to the surface.

The toughness of the interfaces is dominated by the orientation of Al (111) planes

relative to the direction of the applied load. The orientations of both Al and Si can

be used together to create interfaces that are strong and tough, as shown for interface

A which has the tough Al surface and the strong Si surface. Most poorly-matched

interfaces incorporate the worst combination of rotated Al (111) planes and rough Si

surface, leading to interfaces with relatively low strengths and toughnesses. While
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these toughnesses and strengths are relatively low compared to more-perfect inter-

faces, the strengths are still high compared to those of bulk materials. Based on

our results, Al-Si composites are not expected to show low-strain crack nucleation at

the Al-Si interfaces nor easy propagation once cracks are nucleated; both aspects are

encouraging for the performance and functionality of Al-Si.
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Figure 3.1: Schematic of the bimaterial interface test geometry.
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Figure 3.2: Fracture morphologies for various Al/Si interface failures A-I(see Table
3.3).



Chapter 4

Al/Si composites: MD Study

4.1 Al-Si Nanocomposite Structures

With a detailed study of the deformation, strength, and fracture energy of a set

of Al-Si interfaces having various orientations completed the topic of Al-Si nanocom-

posites can now be investigated. Since highly mismatched Al/Si interfaces show good

tensile strength and significantly enhanced fracture energy relative to structurally-

well-matched interfaces, it is possible that nanocomposites can have good strength

and toughness. The study here examines several aspects of Al-Si nanocomposites

including elastic response, plastic deformation mechanisms and failure processes as

well as making comparisons to Al polycrystals. The elastic responses of the nanocom-

posites are shown to depend on several factors including amount of Si content as well

as the orientation of the highly anisotropic Si particles. MD results also indicate

that the mechanisms of nanocomposite deformation are quite different from the Al

polycrystal, with dislocation activity suppressed but Al-Si interface deformation en-

hanced. These competing effects lead to macroscopic behavior similar to Al polycrys-

tals in low-Si-content nanocomposites but to higher yield stresses in higher-Si-content

nanocrystals. With increased deformation at the interfaces it is not surprising that

40
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the dominate failure mechanism is at the interfaces. The normal loads at which the

composites fail are found to be lower than loads for the bicrystal due to composite

stress concentrators. A self consistent Eshelby analysis, Eshelby (1957) predicts the

stress concentration and in combination with known interface failure stresses is used

to determine remote loadings that result in composite failure.

The polycrystal nanocomposite geometry studied here contains eight columnar

hexagonal grains having diameters of 5 nm. All grains have a common crystal orien-

tation parallel to the columnar z-axis. A z-thickness of 1.145nm accommodates the

periodic mismatch (less than 0.5%) between the Al and the Si such that the composite

consists of eight atomic layers in the Al grains and six atomic layers in the Si grains

in the thickness direction. A schematic of the polycrystal structure is shown in Fig-

ure 4.1. The in-plane (x-y) crystallite orientation of each grain is randomly chosen,

leading to a range of grain boundaries angles and a range of resolved shear stresses

acting on the primary slip systems. Nanocomposite samples are created by assigning

an Al or Si identity to each grain and growing the appropriate crystal structure from

the center of the grain following the assigned cell orientation until the crystal reaches

the grain boundary. The as-constructed system size is 25.6nm x 14.78nm x 1.145nm

and contains approximately 25,000 atoms.

The use of columnar grain structures is well-established in the literature (Yamakov

et al. (2001, 2002, 2003)) as a means of studying deformation mechanisms and trends

in nanomaterial behavior in a computationally-efficient manner. Nonetheless, some

remarks are warranted. Selection of the (110) grain texture yields four available

(111) slip planes in every fcc grain of the system, which is sufficient for general

plastic deformation in 2d. Thus, deformation via both dislocation plasticity and grain-

boundary sliding is possible in these materials. The small sample thickness limits the

deformation to nearly 2d plane strain conditions, so that the occurrence of cross-slip,
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grain rotation, dislocation junction formation, and/or dislocation multiplication is

reduced relative to a 3d grain structure. The thickness is large enough, however, that

the activation energy for dislocation nucleation at finite temperature is relatively close

to the correct value Zhu and Yip (2004); plasticity is thus not artificially enhanced

by low nucleation barriers as would be the case for much smaller thicknesses. Since

experimental microstructures in Al-Si tend toward columnar structures, the overall

geometry used here has some similarities to materials that have been fabricated.

We have examined 10 nanograin polycrystals with 3 different Si concentrations.

To focus on the effect of the Si additions, two sets of nanocomposite structures consist

of crystal orientations that are held fixed, with Si grains simply replacing identically-

oriented Al grains. Each set thus consists of (i) an all-Al polycrystal containing 8 Al

grains (8Al), (ii) a nanocomposite containing 7 Al grains and 1 Si particle (7Al-1Si)

substituted at the location of grain 1 with the same orientation as the replaced Al

particle, and (iii) a nanocomposite containing 6 Al grains with 2 Si particles (6Al-2Si),

with one Si particle at grain 1 and one Si particle at grain 8. Set 1 was generated with

random orientations while Set 2 was constructed with all grain boundary mismatch

angles larger than 22.5. To augment this set of simulations, we have generated 4

nanocomposites, denoted Random 1-4, with random grain orientations that are com-

pletely different than the two sets above. Materials Random 1 and 2 contain 1 Si

particle and Random 3 and 4 contain 2 Si particles. Random 3 has two Si particles

separated in the same location as the configurations in Set 1 and 2, while Random 4

has the Si particles adjacent to one another at grains 6 and 1.

After creating each nanocomposite material, the system is annealed for 20 ps at

300 K, using NPT dynamics and full periodic boundary conditions, to relax the as-

built interface structures and to reach local equilibrium for the entire specimen. The

tensile loading is then applied in increments of 1% strain in the x-direction, followed by
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relaxation at 300 K for 20 ps while holding the cell length along x fixed with all other

lengths free to relax. Due to the constraints on the system during annealing, small

amounts of compressive residual stress are present at the starting state deemed to

be zero deformation. The computed stress-strain curves, with strain measured from

the zero deformation state, are thus corrected by substracting the residual strain

(shifting the as-computed stress-strain curves to negative strains) so that the state of

zero global stress coincides with a state of zero strain in all nanocomposites. Stresses

in the system are measured using the Virial expression, from Chap. 2, to compute

the product of the atomic stress and atomic volume (McLellan (1974)), and the result

is divided by the undeformed perfect crystal volume per atom. The global applied

stress is computed by summing the Virial contributions from all of the atoms and

dividing the result by the entire cell volume.

4.2 Composite Elastic Response

Ten different polycrystals were created and strained to failure. The tensile stress-

strain curves for nanocomposite Set 1 are shown in Figure 4.2a and those for Set 2 are

shown in Figure 4.2b. The stress-strain curves for all four 7Al-1Si nanocomposites

and all four 6Al-2Si nanocomposites are shown in Figures 4.3a,b, respectively. The

initial response of all materials is nearly linear up to at least ∼ 2% strain. We compute

an effective tensile elastic modulus by fitting a linear line through the data up to 2%

strain for each composite; the resulting values are shown in Table 4.1.

Considering the average over all specimens of the same Si content, there is a 4%

increase with 1 Si and an 11% increase with 2 Si. As a check of these values a

self-consistent Eshelby analysis for cylindrical, elastically-isotropic Si particles with

E=165 GPa embedded in a homogeneous elastically-isotropic Al matrix with E =

68 GPa is used to predict these increases. For a generic anisotropic material the
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Table 4.1: Effective tensile elastic moduli for Al-Si nanocomposites, in GPa.

8Al 7Al-Si 6Al-2Si
Set 1 67.7 70.9 91.6
Set 2 65.5 69.1 73.9

Random 1 — 66.3 —
Random 2 — 70.9 —
Random 3 — — 65.5
Random 4 — — 64.9

composite stiffness is determined using:

C̄ = Cm(I + vfG)−1 (4.1)

where C̄ is the composite stiffness matrix, vf is the volume fraction of Si, and G is

defined as:

G = [(Cm − Cp)(S− vf(S− Id)) − Cm]−1 [Cp − Cm] (4.2)

Where Cm and Cp are the stiffness matrices for the Al matrix and Si particle respec-

tively. S is the Eshelby tensor which contains components of elastic coefficients and

ultimately relates the constrained and stress free strains in the analysis. This simple

analysis results in a composite stiffness matrix and the directional Young’s modulus

is determined by calculating the compliance matrix from C̄ (Eshelby (1957); Lee and

Paul (2005)). The Eshelby analysis predicts increases of ∼ 11% and ∼ 24% for the

7Al-1Si and 6Al-2Si composites, respectively . Thus, the computed elastic stiffening

upon introduction of relatively stiff Si particles is roughly consistent with, but some-

what lower than, analytic estimates. The lower values may be due to the additional

compliance from the highly-mismatched Al-Si interfaces in a small-grain material;

grain boundary compliance in single-phase materials reduces overall stiffness in the

5 nm grain size range (Latapie and Farkas (2003)) so a similar grain-size-dependent
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effect should exist in nanocomposites.

Although within one set of identical orientations the effective modulus increases

steadily but modestly with Si content, the modulus data for the composite systems

shows considerable scatter. This can be partially attributed to the differing particu-

lar orientations of the Si particles. Al is relatively isotropic (modulus vs orientation

ranging from 63-73 GPa) and so Al textures will not significantly influence the stiff-

ness, consistent with our data for the two 8Al materials. In contrast, the modulus

of a Si crystal with a (110) out-of-plane orientation varies from 182 GPa for loading

along (11̄1) to 130 GPa for loading along (001). For the 6Al-2Si material of Set 1,

the Si particles have effective moduli of 180 GPa and 181 GPa, while for the 6Al-2Si

material of Set 2, the Si particle effective moduli are 181 GPa and 150 GPa; this is

roughly consistent with the observation that 6Al-2Si in Set 1 has a higher effective

composite modulus than that in Set 1. These large fluctuations of effective modulus

appearing in nanocomposites consisting of only a few grains should disappear in sys-

tems with more grains. The 7Al-1Si composites show a smaller dependence on the

Si orientation, due to the dominant isotropic behavior of Al and the role of Al/Si

interfaces.

4.3 Plastic Deformation Mechanisms

The onset of non-linearity in the stress-strain curves in Figures 4.2 and 4.3 cor-

relates well with the generation of dislocations or grain boundary motion; therefore

we define the yield stress by these two indications. The inclusion of Si increases

the material yield stress. The 8Al polycrystals yield at ∼ 1.5 GPa, the 7Al-1Si

nanocomposites yield at ∼ 1.5 − 2.5 GPa, and the 6Al-2Si nanocomposites yield at

∼ 2.5 − 3.0 GPa. Beyond the onset of non-linearity around 2-3% strain and up to
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significant plasticity levels (∼ 4.5%) the stress-strain responses of the 8Al and 7Al-

1Si nanocomposites with the same orientations are quite similar. However, the actual

deformation mechanisms are quite different. Figures 4.4a,b,c show the contours of

effective strain Ee(See Chap. 2) for nanocomposite Set 1 at ∼ 4.6% applied strain.

The 8Al nanocrystal shows several dislocations emitting from the grain boundaries

and distributed grain boundary sliding/shearing, similar to behavior found by Farkas

et al. (2002) for (110) columnar Ni at a similar grain size. In contrast, the 7Al-1Si

and 6Al-2Si nanocomposites with the exact same grain orientations show essentially

no dislocations in the Al grains and only a small amount of sliding/shearing along

the Al-Al grain boundaries. Rather, most of the deformation in the nanocomposites

is due to sliding/shearing along the Al/Si interfaces. The 6Al-2Si nanocomposites

show even less activity within the Al and more distributed deformation among the

more-prevalent Al/Si interfaces as compared to the 7Al-1Si materials. The reduc-

tion of dislocation activity at essentially the same strain level accounts for the higher

yield stresses exhibited for the higher-Si-content composites. Figures 4.5a,b,c show

the contours of effective strain Ee for nanocomposite Set 2 at ∼ 3.7% applied strain,

∼ 1% lower than that in Set 1, Figure 4.4. Set 2 thus shows much less dislocation

activity that is similar among the samples. But, the general observation that the 8Al

polycrystal has more deformation along the Al/Al grain boundaries while the 7Al-1Si

and the 6Al-2Si nanocomposites show deformation primarily along the Al/Si inter-

faces is the same as found for Set 1. Similar to Set 1, the introduction of a second Si

particle causes the deformation to be spread more evenly across the Al/Si interfaces.

The remaining nanocomposite simulations with other random grain orientations show

similar trends.

The inclusion of Si particles thus reduces the generation of dislocations in Al
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grains, which leads to higher yield stresses exhibited for the higher Si content com-

posites. The inclusion of Si particles also reduces the relative motion of the Al grains

by decreasing both sliding/shearing along the grain boundaries and dislocation from

the boundaries, but this is largely compensated by severe deformation at the Al/Si

interface. Since both dislocation and grain boundary mechanisms are suppressed,

which are the types of deformation mechanisms suggested to replace one another

as grain size decreases, this phenomenon may be independent of grain size. The

change in deformation mechanism upon introduction of Si particles and the accom-

panying increase in yield stress thus imply the potential for enhanced hardness in

Al-Si nanocomposites. We discuss this conclusion vis a vis recent experiments later.

4.4 Nanocomposite Failure Processes

Upon attaining ∼ 5% strain, all the materials studied here begin to show signifi-

cant dislocation activity and increased Al/Al grain boundary sliding, suggesting that

the Si particles can no longer inhibit these deformation mechanisms at high stresses.

At strains of ∼ 5.5%, all the materials are on the verge of failure or localization,

as indicated by a decreasing stress with increasing applied strain (Figures 4.2 and

4.3). Interestingly, the material failure strength, defined as the maximum stress, is

nearly the same for all systems so that the Si additions provide little or no additional

strength in tensile simulations. Nonetheless, the mechanisms of failure in the 8Al

and in the Al-Si nanocomposites are completely different. Briefly summarizing the

results shown below, the two 8Al nanocrystals show similar void generation at triple

junctions or grain boundaries accompanied by localized shearing, followed in one case

by propagation of a transgranular crack and in the other case by linkage of voids

along the grain boundaries, leading to failure. In contrast, the Al-Si nanocompos-

ites all show increasing localized deformation at the Al-Si interfaces, leading to void
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generation and ultimate debonding at one of those interfaces.

The failure strength of the Al polycrystals reaches values of ∼ 3 GPa. Figure

4.6 shows the distribution of tensile stress σxx and the atomic structure before and

after fracture, along with the effective strain mapping after fracture in the two Al

polycrystals. The areas of alternating high and low stress along the grain boundaries

represent the grain boundary mismatch; the more important stress contours are those

extending over many atoms and representing stress in response to the applied loading.

The two 8Al materials show different failure modes. The 8Al in Set 1, which contains

predominantly low angle boundaries, first exhibits grain coalescence and annihilation

of some triple junctions as seen in simulations of nanocrystalline Pd, (Haslam et

al. (2001)) and, Ag-Ni (Qi and Cheng (2004)), followed by formation of a brittle

crack initiating at a stress concentration (circle in Figure 4.6a1) near the annihilated

triple junction and propagating in a grain having planes aligned perpendicular to the

loading axis. The 8Al in Set 2, which has all high angle grain boundaries, fails by

the coalescence of grain boundary voids into a crack, similar to MD simulations of

nanocrystalline Ni Farkas and Curtin (2005). Near both cracks, a localized shear-

band-like deformation appears with the crack growth, as shown in both Figure 4.6a3

and 4.6b3.

In the Al-Si nanocomposites, failure is dominated by local orientations and stress

concentrators at particular Al/Si interfaces that lead to void generation and failure.

Failure is thus similar to that seen for Al/Si bimaterials discussed in Chap. 3 and dif-

fers from the crack growth accompanied by shear bands found in the Al polycrystals.

Figures 4.7a-d show the tensile stress distribution for the four different 7Al-1Si mate-

rials just before or at failure, ∼ 5.5% strain. In contrast to the uniform distribution of

stresses near the grain boundaries in the Al polycrystals (Figures 4.5,4.6), the stresses

for the composite are concentrated within the Si particle, leading to higher stresses at
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the Al/Si interfaces. Failure occurs by void formation at a particular interface in each

material. Figures 4.8a-d show the interface damage in the 7Al-1Si nanocomposites at

a deformation of ∼ 7.5% strain, using the effective strain mapping to clearly show the

damage. The various samples are at different stress levels, and conveniently show the

progression of damage. Figure 4.8b, at the highest stress of 2.8 GPa, shows the early

stage where several voids have formed at Al/Si interfaces. Figures 4.8a,c, at a lower

stress of 2.5 GPa, both show one major crack formed along one Al/Si interface after

void coalescence. Figure 4.8d, at the lowest stress of 1.3 GPa, shows total separation

of two Al/Si interfaces. In contrast to the 8Al case, there is no localized shear band

accompanying the crack growth. Instead, the crack grows only by void coalescence

at the Al/Si interface.

To assess the nanocomposite failure more quantitatively, we have analyzed the

tensile stress normal to each failing Al/Si interface by transforming the stress tensor

for each 7Al-1Si composite into the appropriate orientation. Figures 4.9a-d show the

tensile component of the rotated stress tensor that is normal to the failing interface,

with the star indicating the failing interface. The stresses acting normal to the inter-

faces that first exhibit voids are ∼ 4− 5 GPa, which are ∼ 1− 2 GPa higher than the

remote loading. This stress concentration is attributed predominantly to the stress

concentration caused by the elastic mismatch between the stiff particle and the softer

matrix. The Eshelby analysis is also used to predict the stress concentration at the

interface. The concentration is determined from:

σij =(1 + βB)σA
ij − B(σA

iknknl + σA
lknkni) +

B

1 − ν
σA

jknjnkninl

+
1 − 2ν

3(1 − ν)
BσA

jknjnkδil −
1 − 2ν

3(1 − ν)
AσA(ninl −

1

3
δil

(4.3)
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where σA
ij is the remote load, ni is the interface normal at the point of stress concen-

tration and ν is Poisson’s ratio for the matrix. A and B are defined as:

A =
κp − κm

(κm − κp)α − κm
(4.4)

and

B =
µp − µm

(µm − µp)β − µm
(4.5)

where κm, µm and κp, µp are the bulk and shear moduli for the matrix and particle

respectively and α and β are:

α =
1

3

1 + ν

1 − ν
, β =

2

15

4 − 5ν

1 − ν
(4.6)

The analysis predicts that the elastic mismatch generates a stress concentration of

∼ 1.5. At the average maximum remote load of 2.8 GPa, the local interface tensile

stress is thus predicted to be 4.3 GPa, consistent with the observed magnitudes of the

local stresses shown in Figure 9. Differences in geometry, the effects of triple points

Tvergaard and Hutchinson (1988); Picu and Gupta (1996), and interfacial compliance

(Gao (1995)) can modify this result, but the simple analysis rationalizes the observed

stress concentrations.

Proceeding further, the interfaces that fail for three of the 7Al-1Si nanocomposites

are Al(110)/Si(331) , Al(113)/Si(335) , and Al(221)/Si(113), which were previously

examined in the bimaterial simulations (Table 3.1). The strengths of these interfaces

are ∼ 4−5 GPa, i.e. in the same range as the local stresses acting on these boundaries

at the point of failure (see Figure 4.9. The nanocomposite interfaces also fail similarly

to the bimaterial samples, with voids nucleating at the interface, leading to debonding

with some Al remnants adhering to the Si grains after the crack has opened. There-

fore, these lower-strength, but well-formed and annealed Al/Si interfaces control the
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onset of failure in the Al-Si nanocomposites.

For the 6Al-2Si nanocomposites, the failure modes and strengths are very similar

to those of the 7Al-1Si composites. The stresses within Si particles are larger and

distributed more evenly relative to the 7Al-1Si, but the normal interface stresses are

comparable. Failure is initiated at one of the boundaries in the form of voids. The

nanocomposite with two adjacent Si particles is similar to the nanocomposite with

two separated particles. There is thus little effect of Si content on the mechanism or

strength of the nanocomposite over the range of Si content studied here.

4.5 Experimental Comparison

As noted early, there are new experimental results available for the hardness and

modulus of thin-film Al-Si nanocomposites fabricated by co-deposition via sputtering

(Olk and Haddad (2006); Olk et al. (2006)). These films consisted of 5-15nm Al

crystallites embedded in an amorphous Si (aSi) matrix with Si content from 17 to

65 at% and ∼ 10% Oxygen content, believed to exist as amorphous SiO2. These

materials differ from those studied here in numerous ways: (i) our microstructure is

the inverse of the experimental one, (ii) we use crystalline Si (cSi), (iii) our Si contents

are 10 at% (7Al-1Si) and 19.6 at% (6Al-2Si), (iv) our Al grain size is at the low end

of the experimental range, (v) our materials contain no oxide phases. Thus, only

rough comparisons can be made and we restrict our discussion to the low-Si content

materials.

The measured elastic modulus of 55-100 GPa is in the range of our predicted

values. Overall, there is no clear trend of increasing modulus with increasing Si

content in the experimental data, which could be due to porosity, low modulus of

amorphous Si Tan et al. (1972) and/or oxide phases , or significant surface roughness.

Of more interest is the flow behavior. Materials with ∼ 20 at% Si show a hardness of
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H ∼ 3 GPa, suggesting a yield stress of H/3 ∼ 1 GPa as compared to our simulated

yield stresses of ∼ 2.5 − 3.0 GPa. The measured hardness values also increase with

increasing Si content, qualitatively consistent with the simulations although over a

different range of Si content.

In general, the simulation yield strengths are higher than the experimental values;

this is consistent with most studies of nanocrystalline materials and can be attributed

to several factors. The simulated materials have defect-free grains so that deformation

mechanisms are limited to the grain boundaries whereas the experimental materials

likely have defects in the grains that can contribute to early plastic deformation

and lower yield stresses. The other defects, such as porosity and oxide phase in

the experimental materials may contribute other effects. There are other trends and

features in the experimental data with regard to, for example, Al crystallite size, that

are beyond the scope of our considerations here. However, using the present results

as a baseline, we are now developing simulation microstructures to investigate the

role of grain size and other microstructures for Al-Si nanocomposites.
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Figure 4.1: Schematic of periodic cell construction for the Al/Si nanocomposites.
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Figure 4.2: Stress-strain curves for Al-Si nanocomposites: a) Set 1 ; b) Set 2.
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Figure 4.3: Stress-strain curves for Al-Si nanocomposites: a) 7Al-1Si samples ; b)
6Al-2Si samples.
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Figure 4.4: Effective strain mappings in Set 1 nanocomposites at ∼ 4.6% strain: a)
8Al, 4.5% strain; b) 7Al-1Si, 4.7% strain c) 6Al-2Si, 4.6% strain.
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Figure 4.5: Effective strain mappings in Set 2 nanocomposites at ∼ 3.7% strain: a)
8Al, 3.7% strain; b) 7Al-1Si, 3.5% strain c) 6Al-2Si, 3.9% strain.
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Figure 4.6: Tensile stress σxx and effective strain mapping distribution in 3 Al
nanocrystal materials: a1) Set 1 at, 5.5%; a2) and a3) Set 1 at 8.5%; b1) Set 2
at, 5.7% b2) and b3) Set 2 at 8.7%.
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Figure 4.7: Tensile stress σxx distribution for the four different 7Al-1Si nanocompos-
ites around 5.5% strain: a) Set 1 at 5.7%; b) Random 1 at 5.6%; c) Random 2 at
5.5%; d) Set 2 at 5.5%.
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Figure 4.8: Effective strain mappings for 7Al-1Si nanocomposites with significant
failure: a) Set 1; b) Random 1; c) Random 2; d) Set 2.
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Figure 4.9: Tensile stress distribution along rotated axis shown, corresponding to the
normal stress across the failing interface, in a) 5.7% strain of Set 1, b) 5.6% strain of
Random 1, c) 5.5% strain of Random 2 and d) 5.5% of Set1.



Chapter 5

Molecular Dynamic Results of

Single Asperity Indentation

To study the plastic response of nanorough surfaces, the compression of extremely

well-characterized nanoscale asperities in the form of Au pyramids, similar to those of

the Wang experiments, are studied using large-scale molecular dynamics simulations.

Simulation results of nanoscale pyramids under compression over contact lengths be-

tween ∼ 4 − 40 nm are presented here. The contact area and force are accurately

calculated during deformation, leading to predictions for the hardness (contact pres-

sure) versus contact size that show nearly-quantitative agreement with experimental

hardness versus contact size and that exhibit a scaling of H ≈ `−0.32
c . As found in

the experiments, the MD hardness is also independent of the initial contact size and

depends only on the current edge length. The MD simulation also allows for the

deformation mechanisms to be determined through visualization. The simulations

are extensive, not only including large sizes, large initial contact lengths, and large

depths of indentation, but also including variations in temperature and stacking fault

energy (by using different interatomic potentials).

62
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5.1 EAM Potentials and MD Parameters

To initial confirm the potentials being used for these simulations were indeed the

Auu3 and Au2 potentials the elastic constants of each must be checked. In order

to check the potentials a simulation of a Au cube is constructed with dimensions of

ao × ao × ao with four atoms. The cell employs full periodic boundary conditions

and fixes the pressures to be zero using the Nose-Hoover barostat. The cube is

slowly compressed to determine the (001) Youngs moduli and Poissons ratios for each

potential. The resulting pressure vs. depth for each potential are shown in Figure

5.1. Since the moduli and ratios match the expected results perfectly we are confident

the potentials are being implemented correctly and indeed they are the potentials we

expect. Note that the moduli do not stay linear for very large displacements. Non-

linearity becomes significant at strains of ∼ 1%. The non-linerity is due to the nature

of the eam potential. The potential has an energy well that is only linear for very small

deformations away from the equilibrium lattice constant. The experimental stacking

fault energy for Au is 32 mJ/m2 which would make Au2, with a stacking fault energy

of 31 mJ/m2, an obvious choice as the better potential to use in these simulations.

Unfortunately, when this work was started the Au2 potential was not available, so

the majority of the MD simulations are performed using the Auu3 potential. The

effects of using different potentials will be discussed in the results section.

Beyond defining the potentials used for these simulations it is also necessery to

define the damping cofficients for the Nose/Hoover thermostat. Damping parameters

from Ch. 2 are defined as Q = 10 and ts = 0.25 for ∼ 0 K and Q = 500 and ts = 0.5

for 300 K.
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5.2 Au Pyramid structure

As-fabricated pyramids are built using the appropriate temperature-dependent

lattice constant and are then relaxed for 200-2,000 ps at temperature until the ener-

gies, pressures, and temperatures converge in the absence of any applied loads. The

pyramid is then compressed by an indenter of radius R through an applied force act-

ing between the indenter and any Au atoms of the form f(r) = −k(r−R)2 for r < R

and f = 0 for r > R where r is the distance from the atom to the center of the

indenter. We use a force constant k = 100 (eV/nm) and R = 10, 000 nm to model

a nearly rigid, nearly flat indenter. Different force constants have been studied and

changes in this value do not affect the results. The indenter is displaced downward

at a rate of 0.01 nm/ps. Note that for the largest pyramid, the simulation has been

carried out to an indentation depth of 5.7 nm, which required 320 hours of CPU

time on 400 Apple G4 processors on the Virginia Tech System X High-Performance

Computational Facility.

The total force ft is measured during indentation as the sum of the forces act-

ing between the indenter and all the Au atoms. The contact area A is determined

numerically using the projected area of all atoms interacting with the indenter. The

numerical scheme accounts for slight overlaps and the non-symmetric deformations

which occur at large indentation depths not included in simple volume conservation

approximations. Other methods can be used to determine the contact area: such

as counting the atoms in contact with the indenter and multiplying by a constant

area, but the method used does not significantly affect the results significantly. The

hardness is then H = fT /A. When making comparisons to the experiments and to

explain scaling effects, however, a more useful measure is the contact edge length

`c. Since the contact area is nearly square at all times, `c =
√

A is accurate for the

MD simulations. At large sizes where the existence of discrete steps on the facetted
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surface becomes of less importance, the edge length can be related to the indentation

depth δ through the average pyramid facet slope m as `c = [`ci + 2δ/m] where `ci is

the initial contact edge length. The experiments discussed later determine `c through

geometric considerations assuming constant volume plastic deformation as described

by Wang et al. (2006).

Two types of fully three dimensional Au pyramid asperities are constructed with

four sides comprised of (114) or (118) facets truncated near the peak to form a square

top surface. Top and bottom surfaces have [001] normals, as shown schematically in

Figure 5.2. The pyramid is truncated on the lateral sides, where dislocations never

venture, to optimize the volume of material participating in the plastic deformation.

Truncating the sides of the pyramid also optimizes the parallel computing. Since par-

allel MD simulations divide the volume of the simulation equally between processors,

as opposed to dividing the atoms, it is more computationally efficient to reduce free

space. Periodic boundary conditions are applied on the lateral (x and y) sides with a

controlled zero pressure. Defining the pressure on the sides of the pyramid to be zero

allows for expansion in the lateral directions and more accurately models a free pyra-

mid. A small flattened region around the edge of the pyramid is included to eliminate

the sharp angles that would otherwise exist due to the periodicity and that would

cause spurious dislocation nucleation during testing. The vertical (z) displacements

of the bottom three atomic layers of the pyramid are fixed at zero. The top sur-

face is loaded by a nearly-flat indenter as described above. Several different pyramid

sizes and shapes were studied to check scaling effects and to examine the influence

of the fixed boundary location on the pressure and force. The details of the different

simulations geometries are shown in Table 5.2. The important pyramid dimension

is the initial contact length along the top surface; which controls the pressure nec-

essary for the onset of plasticity and the ultimate scaling of the hardness. The edge
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Table 5.1: Dimensions and important factors for each of the seven different MD
simulations analyzed; T is the temperature, h is the height and b is the base length.

Pyramid Potential Facet `c(nm) T (K) h (nm) b (nm) Atoms

1 Auu3 (114) 1.7 1 16.8 78.5 2,877,990
2 Auu3 (114) 1.7 1 42.1 91.4 15,603,067
3 Auu3 (114) 1.7 300 16.8 78.5 2,877990
4 Auu3 (114) 4.6 1 41.5 91.4 15,602,754
5 Auu3 (114) 8.6 1 63.8 130.1 50,506,734
6 Auu3 (118) 1.7 l 11.4 79.3 2,365,870
7 Au2 (114) 1.7 1 16.8 78.5 2,877,990

lengths studied here range between `ci = 1.7 − 8.6 nm. The pyramids have heights

that range between 17 to 60 nm, resulting in atom totals of 2,877,990 to 50,506,734.

Two different slopes are examined: the (114) facets represent the majority of the

simulations and a (118) faceted pyramid is studied to assist in the understanding and

development of the energetics model.

5.3 MD Loading vs. Indentation Depth

Figure 5.3 shows the force versus depth for three simulations with the same initial

`ci = 1.7 nm but different heights and temperatures. The vertical line indicates the

indentation depth (∼2 nm) for which the dislocations in the smallest simulation reach

the bottom of the simulation cell. The results show that the proximity of the fixed

boundary has no affect on the results even beyond when the first dislocation reaches

the bottom boundary. All subsequent simulation results shown here occur prior to this

point and are unaffected by the boundary conditions, and thus effectively simulate

infinite pyramids. The forces are determined in post-processing from the atomic

configuration at a given instant and thus show some fluctuations relative to time-

averaged forces. For an edge length of 1.7 nm a force of 10 nN can fluctuate by ±0.5

nN corresponding to atomic vibrations of 0.004 nm. These fluctuations are small and
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usually average out over a surface with some atoms closer and others further away.

At small contact lengths, we obtain data every picosecond so as to capture the first

drop in force and subsequently obtain data every 5-10 ps. Closer examination of the

force data at small depths reveals slight differences in the depth at which the first

drop occurs. It is unclear what exactly causes these differences. Only a very small

amount of the differences in depth is due to elasticity (∼ 1%), which is determined

from a simple continuum model with similar geometries to the MD models. Without

elasticity the only other possible cause of these differences is fluctuations in pressure.

The first drop occurs at a depth of 0.25 nm and 0.35 nm for pyramids with heights of

16.8 and 42.1 nm, respectively. However, the forces at which these events occur are

nearly the same. This motivates the use of contact edge length as a size measure in

preference to simply the depth of indentation.

5.4 Effect of Temperature on MD

It is also important to examine the effect of temperature on the material response

for the asperities. Most of the simulations are run at 1K in order to extract data

relatively free of high frequency fluctuations. However to make comparisons with

experimental work performed at room temperature, a single simulation is run at 300K.

The load vs. depth for this simulation is also shown in Figure 5.3. As expected, there

are larger fluctuations in the 300K simulation but the general force response is nearly

identical to that obtained at lower temperatures. This result is not surprising since

it has previously been shown that at low temperatures the mechanical properties of

Au do not change significantly (Imura and Saka (1983); Zhang et al. (1995)). The

simulations at both temperatures are run at high loading rates (10 m/s) compared

to the experiments, and so thermally-activated phenomena remain largely prohibited

even at 300K. Keeping this issue in mind, we will nonetheless compare simulations
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at 1K with experimental data.

5.5 Pressure/Hardness Results

While force is an important measurement it does not capture the material response

and size-scaling. Thus, the rest of the data will be presented in terms of contact

pressure/hardness. The effective hardness is easily determined by dividing the force by

the contact area, as mentioned previously. Now with both forces and areas measured,

the pressure/hardness is calculated. The results are shown in Figure 5.4 as hardness

(contact pressure) vs. contact edge length for four (114) pyramids with varying initial

edge contact lengths and heights at T = 1K. The hardness initially increases rapidly

with minimal change in contact length as the pyramid deforms elastically. Slight

fluctuations arise due to the pressure modulations at the periodic boundaries and the

large free surface area but they do not affect the pressures needed to induce plastic

events nor the deformation mechanisms. At higher loads, the system stabilizes and the

fluctuations dampen out quickly. Following the initial increase, the pressure reaches

a critical value at which time a drop occurs. In previous studies of indentation these

drops in load and pressure have been shown to accompany a plastic event in the

form of a dislocation nucleation, Nix and Gao (1998). The exact deformation for this

simulation will be discussed later. For initial edge lengths of 1.7, 4.6 and 8.6 nm,

the first plastic events occur at pressures of 8.0-8.7, 5.2 and 3.6 GPa respectively.

Thus, the pressure for the first plastic event decreases with increasing initial contact

edge length, i.e. there is a size-scaling phenomenon. After a pressure drop, the

pyramid then undergoes re-loading with a rapidly increasing pressure indicative of

no change in contact area until another plastic event occurs. The second plastic

events require pressures of 10.2-10.6, 7.1 and 5.5 GPa, for the three sizes, respectively.

The pressure for the second event also decreases with increasing initial contact edge
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length. Moreover, the pressure for the second plastic event is actually larger than for

the first event, an unexpected phenomenon that must be understood mechanistically

and quantitatively. We argue below that this hardening occurs due to dislocation

interaction energies that are absent for the first plastic event. The scaling for the

first two plastic events are shown in Figure 5.5 with scalings of H ∼ `−0.45
c and

H ∼ `−0.4
c respectively. Each discrete plastic event results in a pressure drop followed

by another elastic loading until the next critical pressure is reached again followed by

a plastic event. This sequence continues clearly for several discrete plastic events up

to `c ∼ 15 nm, beyond which the pressure drops and subsequent reloadings become

more irregular and influenced by noise in the force and area measurements. The exact

pressures at nucleation for larger edge lengths are also approximate since data is only

collected every 10 ps and the nucleation events can occur between the data points.

While exact hardnesses are not known the scaling of the hardness should still be

captured. While the initial peak pressures and subsequent drops are of interest, the

most important feature of the material response is that all the simulations converge to

a common absolute magnitude and size-scaling with increasing contact length. Figure

5.4 shows that by `c = 10 nm all simulations have the same response. This size-scaling

would not be apparent if the data were examined with respect to indentation depth.

Thus, the hardness of the material depends only on the current contact area or edge

length after an initial transient stage. Hence, the hardness is independent of the prior

history of deformation, i.e. there is a unique size-scaling of the hardness. This result

is in general agreement with experiments as shown later.

5.6 Deformation Mechanisms

Several stages of deformations are depicted in Figure 5.7a-c where only atoms with

a high centro-symmetry parameter, Kelchner et al. (1998) i.e. atoms not in a perfect



70

FCC structure, are shown. The first onset of plasticity is always the formation of

a stacking fault half octahedron (SFHO) (Figure 5.7a), created by the simultaneous

nucleation of four a/6(112)-type partial dislocations along the four (111) planes inter-

secting the four contact edges of the specimen. The SFHO consists of stacking faults,

on each of the (111) planes, that intersect along [110] directions to form energetically

favorable junctions with a a/3[100] Burgers vector bounded by the top (001) surface.

Figure 6.3 shows a schematic of the SFHO structure and the burgers vectors involved

in the formation of the structure. For the largest contact length studied here, 8.6 nm,

the nucleation occurs at the corners of the top surface as two Shockley partials spread

along the adjacent (111) planes with the [110] junction. With increasing pressure and

indentation depth, a second SFHO is nucleated from the now-larger contact edge,

in what is the beginning of a sequence of nested SFHOs that form with increasing

indentation depth.

Under further compression, the [100] junctions can act as sources for the forma-

tion of new partial dislocations which emit into the body with Burgers vectors in

the direction of the facet surface, as seen in Figure 5.7b. The emission occurs for

each (111) plane in either direction but all four partials always extend in the same

clock/counter-clock wise direction for the four different planes. Further emissions can

also occur in opposite directions to the previously nucleated partials. Once emission

begins there are many complicated interactions between the dislocation structures

with previously nucleated dislocations and subsequent nucleations. These extra dis-

locations form and annihilate, but are inhibited by the subsequent SFHO formation,

as seen in Figure 5.7c where spreading for a majority of the stacking faults has been

suppressed while others have expanded past the last SFHO and a full dislocation has

been created. After the first few SFHOs, the expansion of the stacking faults can also

act as barriers for the formation of a subsequent perfect SFHO
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These interactions can also have an effect on the nested nature of the SFHOs.

Once dislocation nucleation begins the interior SFHOs can begin to rotate to form

twins between interior and exterior SFHOs. Since the nested SFHOs, in some cases,

are separated only by a single plane of atoms, it is energetically favorable to eliminate

the stacking fault spacing that could only be one atomic plane. A rotating of one of

the nested SFHOs relative to the next nearest SFHO eliminates the space between

the stacking faults and results in a twin boundary. Figure 5.8 shows how the surface

atoms dissipate the high energy structures with rotation and twinning. The twinning

results in a healing on the opposite face of the SFHO and also creates a surface step

that is associated with the partial dislocation that was previously emitted from the

junctions. The formation of steps confirms that the nucleated dislocations have a

different Burgers vector than those nucleated to form the SFHOs.

As the dislocation activity continues via nucleation of new dislocations the spread-

ing begins to take on a four-fold symmetry as specific (111) planes begin to dominate

the slip. Figure 5.9 shows the deformation of the atoms with a high centro-symmetry

parameter as seen from the bottom of the pyramid once the four-fold symmetry has

begun to develop. The deformation is seen to develop in a controlled manner moving

short distances in a fairly symmetric fashion as suggested by the spatial range of the

elastic stresses. Figure 5.10 just how the range of the maximum resolved shear stress

in the pyramid is quite limited. Due to the self similar structure of the pyramid the

range of the stress field should have the same shape independent of the edge length

which limits the range of the driving force for dislocations to a function dependent

on the current edge length. Beyond the range of the dislocations the formation of

full dislocations is seen in Figure 5.9 which further suggests an ultimate change in

deformation mechanisms away from the spreading of partial dislocations with large

stacking faults.



72

5.7 Effect of Geometry and Potential on MD Hard-

ness

The simulations presented thus far have focused on the most common pyramid

structure found on polished surface using a single atomic potential. While (114)

faceted pyramids are the most energetically favorable surface asperities other geome-

tries do exist randomly on polished surfaces. Also, the potential used thus far, Auu3,

is a reasonable potential for elastic response but under estimates the stacking fault

energy which might influence nucleation pressures and hardness convergence. In order

to determine what affect each of these factors has on the MD simulations, different

simulations are performed on a (118) faceted pyramid as well as a (114) pyramid

using the Au2 potential with a more realistic stacking fault energy (31 mJ/m2). The

results for these simulations are shown with respect to the (114) faceted pyramid

using the Auu3 potential in Figure 5.11. The (118) pyramid has the same initial con-

tact edge length as the smallest (114) pyramid but has a larger ∆L = 2.02 nm which

accounts for the shallower geometry of the facet. The larger ∆L is clearly seen in

the hardness data with jumps in edge length of 2.02 nm accompanying each hardness

drop, rather than alternating values of 0.86 and 1.44 nm. For the (118) pyramid the

first pressure necessary to induce plasticity is approximately the same as that for the

(114) pyramid. The fact that the initial peak pressures are so close suggests that the

first pressure is a nucleation process purely dependent on the current edge length and

does not depend on the structure after deformation. This will be discussed further in

the next section. The pressure after nucleation, on the other hand, is substantially

lower than that of the (114) pyramid. This large drop again will be discussed further

in the next chapter but should be dependent on the fact that the change in contact

area after the first nucleation is much larger for the (118) pyramid versus the (114).
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Again the important aspect of the MD simulations is that the hardness eventually

converges to a similar value to that of the (114) pyramid at larger edge lengths which

again suggests that the scaling eventually only depends on the current edge length.

The simulation using the Au2 potential has nearly the exact same response as the

Auu3 potential as seen in Figure 5.11. The peak pressures and hardness convergence

do not show any significant differences. The similarities suggest that the stacking

fault energy does not have any significant influence on the response of the asperity up

to energies of γsf = 0.32 eV/mJ2. These stacking faults are still small relative to the

energies of other models. To determine the true influence of stacking fault energie a

study of a material with a much larger value should be studied.

5.8 Unloading of Single Asperity

For contact problems the permanent plastic deformation is always an important

aspect of analysis. By unloading the pyramids at different stages of the deformation,

the amount of permanent plastic deformation can be determined as well as the un-

loading modulus of the system. The unloading has been checked at several different

stages of indentation including after the first SFHO nucleation, after three SFHOs

have been nucleated, and finally just before dislocations reach the bottom of the sim-

ulation the load vs. displacement curves are shown in Figure 5.12 with the ”x”’s

representing the three unloading points. For the first unloading after the nucleation

of the first SFHO, the structure simply returns to its initial structure with no perma-

nent plasticity. Along with the structure returning to its initial structure the energy

is also completely recovered. Any energy lost due to motion of dislocations is small

and thus the indentation process at this point is completely reversible. The second

unloading, after three SFHOs have been nucleated is not reversible but shows very
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little permanent plasticity. The difference for this unloading is that a single dislo-

cation has passed beyond the nested SFHOs. The pyramid does return to perfect

internal fcc structure but there is net mass transport via the dislocations nucleated

from the SFHO junctions and the twinning from the top to the sides of the pyramid.

This is represented by the 12.53 eV of unrecovered energy which is the difference in

areas under the loading and unloading curves as calculated from Figure 5.12. The

final unloading, however, shows significant permanent plasticity, as seen in Figure

5.13 with much of the material transported to the facets resulting in a much larger

final contact area. This is related to so-called trench filling, an important feature in

understanding nanoscale friction. The hysteresis due to this atomic rearrangement is

large. At a depth of 3.3 nm the `ci = 1.7 nm simulation has reached a current edge

length of `c = 52 nm and the total energy input to the system is ∼ 12 × 103 eV.

Upon unloading ∼ 4 × 103 eV are recovered which leaves ∼ 8 × 103 eV of unrecover-

able energy. Some of this energy is stored in the system in form of dislocations and

geometric changes associated with change in total energy of the MD system which is

∼ 1130 eV . This leaves a significant amount of energy that has been dissipated due

to either dislocation motion. This difference in energy must be that which was dis-

sipated by the Nose-Hoover modeling methods which dampen the energy to control

the temperature and the pressure.

5.9 Comparing MD with Experiments

To elucidate the scaling of the hardness with the contact length and to make

a connection with the experiments by Wang et al. (2006), Figure 5.14 shows the

hardness versus contact edge length for four pyramids with initial contact edge lengths

of 36.2, 36.3, 46.3 and 78.2 nm compared to the MD results in a log-log plot. The
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initial edge lengths are not seen in the data due to the data appearing in a log-

log form. The initial contact length for the experiments was deduced using a local

stiffness approach Wang et al. (2006). Due to the self-similar nature of the pyramids

when the contact areas for the pyramids are the same the local stiffness for each

pyramid will be the same. Knowing this fact allows for calibration of the contact

area for different size pyramids. The experimental data shows the same trend as the

MD results: an initial transient rise during flattening of the as-fabricated pyramid top

that is presumably accompanied by some initial dislocation nucleation, followed by a

power-law softening of the pressure versus contact edge length. The gap in size scale

between simulations and experiments is less than a factor of 3; the simulations extend

to 37 nm and the experiments, although starting as small as 36 nm, begin showing

power-law softening at ∼ 100 nm. Not only is the softening trend similar between

the simulations and experiments, but the absolute magnitude of the pressure differs

by less than a factor of 2 between the end of the simulations and the beginning of the

experiments, with the data sets able to be connected by a single smooth curve. This

level of agreement between MD and real experiments is unprecedented, and is due

to three factors: (i) the exceptional uniformity of the real fabricated pyramids with

regard to structure, single-crystal nature and orientation, and the absence of pre-

existing dislocations, all of which are reproduced in the MD model, (ii) the ability to

perform normal compression tests on these samples, and (iii) the ability to perform

large-size MD simulations with extensive amounts of deformation.

Comparing the simulations and experiments in more detail, both show power-law

scaling, but with different exponents. The experimental hardness scales with a range

of H ≈ `−0.55
c −`−0.91

c and has an average value of H ≈ `−0.75
c , which is somewhat softer

than the MD data, which scales as H ≈ `−0.32
c . Power-law scaling is not expected

a priori, although a variety of power-law behaviors have been observed in different
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experiments, due to material characteristic lengths and other mechanisms Greer et al.

(2005); Greer and Nix (2005); Sieradzki et al. (2006); Volkert and Lilleodden (2006).

One example of this is the indentation of (001) Au single crystals Nix et al. (2007).

This data is also shown in Figure 5.14 by squares and triangles. These experiments

were performed using a Berkovich indenter with a tip radius of 45 nm. While the

data was initially reported in terms of depth this can easily be converted to an edge

length for the known indenter geometry. The geometries between the Berkovich

indenter and the pyramids are surprisingly similar and should result in increases of

contact area that are approximately the same at a given depth of indentation. The

indentations show a response nearly identical to the experiments performed on the

pyramids. The indentations also approach the values of the MD with a H ≈ `−0.5
c

scaling. The indentation data further supports that at small length scales the size-

scaling depends on the edge length. Clearly to fit, a single (nonpower-law) smooth

curve through the entire set of data, experimental and simulation, requires a curve

with multiple slopes representing varying scaling parameters. The varying scaling

parameters with increasing pyramid size suggest a possible mechanism change from

MD to experiments. Thus the deformation mechanisms observed in the MD, which

lead us to a model for the size-scaling of the hardness is discussed next.

The MD and experiments result in several key findings. First, the initial and

second peak pressures scale with the edge length as H ≈ `
−(0.4−0.5)
c . Second, the

second peak pressure is higher than the first nucleation pressure. Third, the hard-

ness ultimately converges to a common scaling that is independent of deformation

history with H ≈ `−.35
c . Fourth, there are well defined dislocation structures which

store the plastic energy and the size is set by the edge length. Fifth, the majority

of the energy is either reversible or stored in dislocation structures and little is dis-

sipated in dislocation motion. Finally, there is a transition in the scaling between
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the MD and Experimental lengths which could be due to a mechanism transition to

the nucleation of full dislocations from the preexisting SFHO structures. Now with

the deformation mechanisms understood, the scaling as well as local features of the

pressure are explained through the development of an energetic model.

Figure 5.1: Stress-Strain curves for the Auu3 and Au2 potentials for compression in
the (001) directions. The (001) Young’s Modulus is determined from a linear fit at
small strains.



78

Figure 5.2: Schematic of molecular dynamic simulation. With base size b, total height
h and initial contact edge length `c.
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Figure 5.3: Force-displacement curve for three simulations with the Auu3 potential
and initial edge length of 1.7nm with different total sizes and run at different tem-
peratures, as defined by Table 5.2; with the inset showing a blow up of the response
at small displacements including the first force drop which occurs at the same load
for large and small systems.
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Figure 5.4: Hardness for the 5 different MD simulations of (114) pyramids performed
using the Auu3 potential. The first peak hardnesses are labeled with an ”x” while
the second peak hardnesses are labeled with a ”*”.
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Figure 5.5: Scaling for the first two hardness peaks of the MD simulations as a
function of edge length. The scaling for the first peak (red) is H ∼ `−0.45

c and the
second peak (blue) is H ∼ `−0.4

c .
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Figure 5.6: Schematic of the stacking fault half octahedron burgers vectors and line
senses, line sense (black arrows) and burgers vectors for the initial partial dislocations
(red arrows), and [001] junctions formed (blue arrows).
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Figure 5.7: Views of the atomic structure after various depths of compression; a)
after the first SFHO; b) showing early stages of dislocation nucleation from SFHO
junctions; c) after formation of the third SFHO, showing formation of one full dislo-
cation loop. Colors are assigned based on the Centro-Symmetry parameter Kelchner
et al. (1998).
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Figure 5.8: Images of the surface atoms evolution during the compression; a) the first
and second layers have been injected into the third layer; b) twinning and rotation
begin which annihilate some of the stacking faults; c) the rotation and twins result
in dislocations passing to the facets resulting in surface steps. Atoms are colored
according to their initial layer position from top to bottom: Red-Blue-Green.
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Figure 5.9: Deformation at a late stage of compression, as viewed from underneath
the pyramid. Colors are again assigned based on the Centro-Symmetry parameter
Kelchner et al. (1998).
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Figure 5.10: The maximum resolved shear stress(MRS) determined by the molecular
dynamics; a) just before the first SFHO nucleation; b) just after the nucleation of the
first SFHO
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Figure 5.11: Hardness for two MD simulations run with 1) different geometry,(118)
facets, and 2) a different potential, Au2, compared with the h = 16.8 nm (114) control
pyramid. The (118) pyramid has the same `c = 1.7 nm as the control pyramid while
the Au2 potential simulation uses the exact same atomic structure as the control.
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Figure 5.12: Unloading of the pyramid, with `c = 1.7 nm and a height of 16 nm, at
three different positions marked by the ”x”s, i) after the first SFHO formation, ii)
after three SFHOs and iii) after a significant amount of plasticity.
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Figure 5.13: Atomic positions of surface atoms after unloading of the structure with
clear surface steps and permanent plastic deformation.
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Figure 5.14: Log-log plot of the hardness vs. edge length for the MD simulations the
Wang and Nix experiments.



Chapter 6

Energetic Model for

Size-Dependent Plasticity

6.1 Development of Energetic Model

6.1.1 Energetic Model Formulation

The deformation mechanisms controlling plasticity during compression of a nano-

asperity are now well defined from the MD simulations. Based on the observed

deformation mechanism of stacking fault half octahedrons (SFHOs), an energy-based

model is developed to predict the minimum pressure necessary to form a sequence

of SFHOs, and thus obtain the scaling of hardness versus contact size for lengths of

10 nm < ` < 100 nm. The model determines the applied force necessary to provide

sufficient energy to nucleate each successive SFHO into the material containing the

prior SFHO structures, and is conceptually similar to the model of Gerberich et al.

(2006).

The total energy inequality compares the change in external loading to the change

in elastic energy plus the energy associated with injecting new dislocations in the form

91
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of an SFHO as shown schematically in Figure 6.1. The general energy inequality for

the process is

δWext > δUe + δUdis + δUτ + δUS (6.1)

Here, δWext = f∆u is the external work done on the system by the indenter and δUe =

Uf
e −U i

e is the difference between final and initial stored elastic energies. Furthermore,

δUdis is the total energy change in the dislocation structure, including the self energy

of the new SFHO, the image interactions with the pyramid, and interactions between

the dislocations in the SFHO, and interactions with prior SFHOs. The term δUτ is

the work done by SFHO dislocation motion against the applied field and δUS is the

change in surface energy associated with loss of atomic ledges on the surface due to

injection of the SFHO into the bulk of the pyramid. Below, we evaluate each energy

term in detail.

At contact length `c and applied force f = P`2
c , the stored elastic energy before

nucleation is

U i
e = (α`3

c)(P
2
i /2E) = αf2/2`cE (6.2)

where E is the elastic modulus for the (001) crystal orientation and α a dimensionless

compliance parameter which sets the effective volume for the elastic strain energy.

After nucleation, the geometry and force changes yield an elastic energy of

Uf
e = (α(`c + ∆L)3)(P 2

f /2E) = α(f + ∆f)2/2(`c + ∆L)E (6.3)

where ∆f is non-zero under constant displacement conditions (see below). The change

in elastic energy is the difference of Eqs. 6.3 and 6.2.

The energy associated with introducing a new SFHO structure, δUdis, is com-

prised of two major components, the SFHO self energy and the interaction energies

among all the SFHO dislocations. From simple geometry, each SFHO generates a
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total dislocation line length of 4`c with energy 4wself `c where wself is the core energy

per unit length of the [100] dislocations making up the SFHO. Each SFHO also gen-

erates a total stacking fault area of
√

3`2
c with energy

√
3γ`2

c where γ is the stacking

fault energy. The core and stacking fault are associated with the energy of the final

structure only. The image energy per unit length of each dislocation in the SFHO

is due to interaction with the free surface during insertion of the SFHO, and is de-

noted by wim. The interactions among all the various dislocations are complicated

and difficult to handle exactly. Symmetry of the SFHO structures in the pyramid

permits some simplifications, and a few assumptions will be made to capture the most

important interaction energies. First, all interaction energies will be excluded except

those between the four dislocations comprising a single SFHO, denoted as wsfho, and

those between a newly nucleated dislocation in the SFHO and the N nearest parallel

dislocation in the previously-formed SFHOs, denoted as w||, where N will be chosen

below.

The work necessary to move the dislocations, Uτ , is defined through an average

shear stress τ acting over the slip plane. The shear stress is related to the applied

load as τ = Cθ cos θf/(
√

3`2
c), where Cθ is a parameter accounting for the averaging

of the stress over the area
√

3`2
c of the slip planes and θ is the angle between the

applied load and the slip plane. Once τ is determined, the work done in moving the

partial dislocations forming an SFHO is determined through Uτ = Abpτ , where A is

the swept area
√

3`2
c and bp is the partial burger’s vector. Combining all of the above

terms yields the work to move the dislocations of Uτ = Cθbp cos θf .

The final component of energy is the change in surface energy, δUs arising from

the annihilation of an atomic ledge. We denote the ledge energy per unit length

as EL. The total length of annihilated edge is the same as the length of nucleated

dislocation, 4`c, and hence δUs = 4`cEL.
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We insert the various energy contributions into Eq 6.4 and rearranged such that

external work and initial internal energy are on the left side of the inequality while

the internal work and final energies of the system after the formation of a new SFHO

are on the right side. To simplify the notation, we factor out the edge length `c

and write the total of the interaction and ledge energies per unit length as W =

wself + wsfho + w|| + wim − EL. The energy inequality then reads

f∆u +
αf2

2`cE
>

α(f + ∆f)2

2(`c + ∆L)E
+
√

3Cθbp cos θf +
√

3γ`2
c + 4`cW (6.4)

At small f , the inequality cannot be satisfied. As f increases, a critical value is

reached at which there is equality, indicating that it is energetically feasible for a new

SFHO to exist in the system. Equality in the energy equation thus sets a lower bound

for the force necessary to nucleate the next SFHO. Upon formation of the new SFHO,

the pyramid has a new edge length `c + ∆L and new internal energy and dislocation

structure.

With the energy now described generally, we examine loading under the conditions

of constant force and constant displacement. Neither case describes the actual loading

exactly due to the finite elasticity of the indenter that has not been included in the

energy, thus the two cases represent limiting situations, usually differing by small

terms. For constant force, ∆f = 0 and the displacement change ∆u must be computed

as follows. The total displacement consists of elastic and plastic components ∆u =

∆ue + ∆up. The change in elastic displacement is ui
e − uf

e where ui
e = αf/E`c and

uf
e = αf/E(`c + ∆L). The change in plastic displacement is simply the z component

of the burgers vector for the nucleated partial dislocations, up = bp cos θ. Thus the

displacement change is

∆u = uf
e − ui

e + up =
αf

E(`c + ∆L)
− αf

E`c

+ bp cos θ =
−αf∆L

E`c(`c + ∆L)
+ bp cos θ (6.5)
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For constant displacement, ∆u = 0 and we must compute the change in force ∆f .

The total displacement is again defined by an elastic and plastic component, but now

with a change in the force and zero total displacement. Specifically,

0 = uf
e − ui

e + up =
α(f + ∆f)

E(`c + ∆L)
− αf

E`c
+ bp cos θ (6.6)

Solving for ∆f gives

∆f =
f∆L

`c
− bpE(`c + ∆L) cos θ

α
(6.7)

We can now write the energy equality equation for either loading condition. For

constant force, we use Eq 6.5 to obtain the energy balance

αf2

2E`c
− α∆Lf2

E`c(`c + ∆L)
+bp cos θf >

αf2

2E(`c + ∆L)
+Cθbp cos θf +4W`c+

√
3γ`2

c (6.8)

while for constant displacement we use Eq 6.7 and ∆u = 0 to obtain

αf2

2E`c
− αf2∆L

E`c(`c + ∆L)
+ bp cos θf − α

2E(`c + ∆L)

[

f∆L

`c
− bpE cos θ(`c + ∆L)

α

]2

>
αf2

2E(`c + ∆L)
+ Cθbp cos θf + 4W`c +

√
3γ`2

c

(6.9)

Solving for the force at equality and dividing by the contact area `2
c yields the corre-

sponding hardness (contact pressure) at nucleation of the next SFHO. For constant

force, we use Eq 6.8 to obtain

P+
c =

Ebp cos θ(1 −Cθ)(1 + ∆L
`c

)

α∆L

[

1 ±
√

1 − 2α∆L(4W/`c +
√

3γ)

E(1 + ∆L
`c

)[bp cos θ(1 −Cθ)]2

]

(6.10)
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while for constant displacement, we use Eq 6.9 to obtain

P+
c =





Ebp cos θ(1 − Cθ

1+∆L

`c

)(1 + ∆L
`c

)

α∆L





·






±

√

√

√

√

√1 −





2α∆L(4W/`c +
√

3γ)

E(1 + ∆L
`c

)2[bp cos θ(1 − Cθ

1+∆L

`c

)]2
+

∆L

`c(1 − Cθ

1+∆L

`c

)











(6.11)

Eqs. 6.10 and 6.11 give the pressure necessary for nucleation. The pressure after

nucleation is determined for constant force conditions through the change in geometry,

P−
c = P+

c `2
c/(`c +∆L)2 and for constant displacement conditions the changes in force

and geometry, P−
c = (P+

c `2
c + ∆f)/(`c + ∆L)2.

There are two differences in the critical pressure between the two loading condi-

tions, both related to `c ∼ ∆L . The first difference is between Cθ and Cθ/(1+∆L/`c)

which becomes negligible for large edge lengths. The second difference is an extra

term in the constant displacement solution inside of the square root proportional to

`c ∼ ∆L. Since this term has a similarly 1/`c scaling to the other term in the square

root, it leads to a constant shift in the prediction of the hardness, relative to the

constant force case, at large `c. The consequence of these extra terms at small edge

lengths will be discussed in more detail below.

There are a few critical observations regarding the pressures in Eqs. 6.10 and 6.11

since there is a square root in the results. The combinations of physical quantities

assigned to many of the constants in Eqs. 6.10 and 6.11 makes it possible to end

up with imaginary solutions under specific conditions. Figure 6.2 shows the pressure

for a unity edge length normalized by the leading coefficients of Eq. 6.10 versus the

normalized energy associated with the SFHOs for Cθ 6= 0. This figure shows that

Eq. 6.10 establishes an upper and lower limit to the pressure as well as a maximum

SFHO energy which can be accommodated for any given edge length. The upper
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and lower limits are defined by choosing the positive and negative values of Eq. 6.10

respectively. If the energy associated with the SFHO is zero, i.e. 4W/`c +
√

3γ = 0,

then two solutions exist to the function: first, the trivial solution of P = 0 and

secondly, the solution of P = 2Ebp cos θ(1 −Cθ)(1 + ∆L/`c)/α∆L.

The two results are the upper and lower limits and any values of pressure between

these limits will provide enough energy for the discrete deformation to take place. The

lower limit is straightforward to understand, with out a minimal amount of energy no

work can be done. The upper limit on the other hand is a little less intuitive, since the

total change in elastic energy has a quadratic dependence on the pressure (force) and

is negative, eventually with increasing force accommodating the elasticity requires

more energy than will be available once the energy just to move the dislocations is

accounted for, establishing the upper limit. Again examining Figure 6.2 by increasing

the energy, or introducing the energies associated with the SFHO, the two solutions

for the force approach each other and eventually reach a point at which they meet.

This meeting point establishes a limit for a ratio of the available energies. The energy

ratio must be ≤ 1 leading to

4W/`c +
√

3γ <
Ebp[cos θ(1 − Cθ)]

2

2α∆L
(6.12)

Which again is again saying that the energy stored by the SFHO and its fields must be

less than or equal to the available elastic energy. The same can be done for constant

displacement considerations where the maximum energy is defined by

4W/`c +
√

3γ <
Ebp[cos θ(1 − Cθ)]

2

2α∆L

(

1 − ∆L

`c(1 − Cθ/(1 + ∆/`c))

)

(6.13)

The constant displacement is missing energy from external work that can offset some

of the change in elastic energy so this condition is generally more stringent than that
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of Eq. 6.12. When the energy of the dislocation structure is added, the conditions

under which the energy balance can be satisfied are yet more stringent.

We now examine the scaling of the pressure for `c >> ∆L. For constant force, the

highest order term `c is that associated with the stacking fault energy. However, the

magnitude of this energy is much smaller than that of the other terms out to large `c

corresponding to the range of experiments. Hence, it can be neglected for practical

purposes. This is consistent with our MD results for a Au potential with a much

higher stacking fault energy that shows nearly identical response to the low-stacking

fault simulations. The scaling of the pressure is thus controlled by the dislocation

interaction energy plus ledge energy term 4W/`c. For large `c, we can then expand

the square-root term in the critical pressure to lowest order and obtain an estimate

of the scaling. For the constant force case (the constant displacement case is similar),

we obtain

P+
c =

4W/`c

bp cos θ(1 −Cθ)
(6.14)

In this result, the structural compliance α does not appear, so that the elasticity

changes are negligible in this limit. The energy input is controlled by the external

work, which is consumed in creating and moving the new SFHO. If W is independent

of `c then the model predicts a scaling of 1/`c, which is much faster than observed in

the MD or experiments. However, as we will see below, the dislocation interaction en-

ergies scale with a sum over ln(length) and can contribute non-negligibly at moderate

edge lengths, 10 nm < `c < 100 nm. Furthermore, the expansion of the square root

to lowest order is not sufficiently accurate in this size range, and corrections further

decrease the scaling with `c.

With the general results of the energy model now established, and broad trends

and limits identified, we now turn to evaluation of the specific energy contributions



99

in the model to make predictions for comparison against the simulations and experi-

ments.

6.1.2 Dislocation Energies

Eqs. 6.10 and 6.11 show that the hardness (pressure) is a unique function of the

current contact length, the dislocation energetics (γ, W ), elastic modulus (E), and

geometry (α, ∆L). To make quantitative predictions for the pressure, each of these

quantities must be evaluated. We start here with the dislocation interaction energies,

which dominate the scaling in the large edge length limit.

The self energy of the dislocation is approximated from elasticity as Hirth and

Lothe (1968)

wself ≈ µb2/4π(1 − ν) (6.15)

The energies wsfho, w||, and wim, are functions of the length of the dislocations. The

interaction energy between any two coplanar dislocations is given by Hirth and Lothe

(1968)

W12 =
µ

4π
{(b1 · ξ1)(b2 · ξ2) − 2[(b1 × b2) · (ξ1 × ξ2)]

+
1

1 − ν
[b1 · (ξ1 × e3)][b2 · (ξ2 × e3)]}I(xα, yβ)

+
µ

4π(1 − ν)
[(b1 · e3)(b2 · e3)]{R(xα, yβ)

− cos θ[xα ln t(xα, yβ) + yβ ln s(xα, yβ)]}

(6.16)

The Burgers vectors b and line senses ξ for the SFHOs in the present problem are

defined as shown in Figure 6.3. The remaining functions are integrals are given by

I(x, y) = x ln
R + y − xcosθ

x
+ y ln

R + x− ycosθ

y
(6.17)
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R2(x, y) = x2 + y2 − 2xycos(θ) (6.18)

t = xcosθ − y + R (6.19)

s = ycosθ − x + R (6.20)

The summations of α, β = 1, 2 are of the form

I(xα, yβ) = I(x1, y1) − I(x1, y2) − I(x2, y1) + I(x2, y2) (6.21)

The interaction energy wsfho among the four (100) dislocations making up one SFHO

reduces to an interaction between one dislocation (b1 = a/3[100]; ξ1 = 1/
√

2[011])

with its two adjacent dislocations at θ = 60o (b2 = a/3[01̄0]; ξ2 = 1/
√

2[101]) and

with its one opposite dislocation at θ = 90o (b2 = a/3[1̄00] ; ξ2 = 1/
√

2[01̄1]).

At the intersection of the four dislocations (the SFHO apex) there is a singularity

that is not realistic at the atomic level, and so a small length of each dislocation is

excluded from the interaction calculation and accounted for below by an additional

junction energy parameter. Figure 6.4 shows the computed interaction energy per

unit length of dislocation for various excluded lengths ranging from b/4 to 2b, and

is scales approximately as wsfho ∝ ln(∆L/`c). The interaction energy w|| for a new

SFHO dislocation interacting with the parallel dislocations of the preexisting SFHOs

follows the same general formula, but is simplified due to the parallel geometry and

the equal burgers vectors and line senses (Figure 6.5). The interaction between a pair

of such parallel dislocations is given by

W|| = (
µ

4π
(b1 · ξ1)(b2 · ξ2) +

µ

4π(1 − ν)
{(b1 · e3)(b2 · e3)

+ [(b1 × ξ1) · e3][e3 · (b2 × ξ2)]})I(xα, yβ)

+
µ

4π(1 − ν)
(b1 · e3)(b2 · e3)R(xα, yβ)

(6.22)
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with

I(x, y) = R − 1

2
(y − x) ln s +

1

2
(x − y) ln t (6.23)

R(x, y) =
[

(x − y)2 + δ2
]1/2

(6.24)

t = R + x − y (6.25)

s = R + y − x (6.26)

where δ is the normal distance between the pair of dislocations. The interaction is

then simplified further since b1 · ξ1 = b2 · ξ2 = 0, (b1 × ξ1) · e3 = e3 · (b2 × ξ2) = 0, and

b1 · e3 = b2 · e3 = a/3.

For a generic newly nucleated SFHO the parallel dislocations have lengths of

x1 = 0, x2 = `c, y1 = δ, and y2 = `c − δ. With b = a/3, a single parallel interaction

per unit length of new dislocation is

w|| =
µb2

4π(1 − ν)`c
[I(xα, yβ) + R(xα, yβ)] (6.27)

Substituting in `c and δ results in:

w||
4π(1 − ν)`c

µb2
= 4

√
2

δ

`c
− 4

√

1 − 2
δ

`c
+ 4

(

δ

`c

)2

+
δ

`c

ln













(
√

2 − 1)

(

√

1 − 2 δ
`c

+ 2
(

δ
`c

)2

+ δ
`c
− 1

)

(
√

2 + 1)

(

√

1 − 2 δ
`c

+ 2
(

δ
`c

)2

− δ
`c

+ 1

)













+
1

2
ln









√

1 − 2 δ
`c

+ 2
(

δ
`c

)2

− δ
`c

+ 1
√

1 − 2 δ
`c

+ 2
(

δ
`c

)2

+ δ
`c
− 1









(6.28)

As the edge length becomes large relative to the spacing δ/`c << 1, a power series
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expansion yields the asymptotic result

w|| =
µb2

4π(1 − ν)

[

2 ln

(

2`c

δ

)

− 4

]

(6.29)

which is in excellent agreement with the full expression of Eq (6.22). Figure 6.6

shows the comparison of Eq 6.29 with the exact solution for a newly nucleated SFHO

with the nearest previously nucleated SFHO as the edge length, `c of the new SFHO

increases. The fluctuations are associated with the changes in 2δ = ∆L = 0.86, 1.44

nm for the (114) pyramid facet. Again the figure shows how well the approximate

solution compares to the full solution from Eq 6.28. The total interaction of a new

SFHO dislocation with N previous parallel dislocations is obtained by summing the

energy due to each interaction with a spacing for the ith interaction,δ, equal to the

sum of the j previous incremental increases in the dislocation spacing, ∆Lj/2, between

the new SFHO and the ith, δ =
i
∑

j=1

∆Lj/2, resulting in a total interaction energy of:

w|| =
µb2

4π(1 − ν)

N
∑

i=1















2 ln















4`c

i
∑

j=0

∆Lj















− 4















(6.30)

The actual result of changing N will be discussed later. The energy associated with

image forces is calculated as the interaction of a dislocation with its image dislocation

across the (assumed flat) pyramid surface, and employs the same general interaction

expressions used to determine wsfho. In this case, a dislocation with b1 = a/6[020],

ξ1 = 1/
√

2[1̄01̄] interacts with the image dislocation having b2 = a/6[020], ξ2 =

1/
√

2[1̄01] and θ = 90o. The resulting energy per unit length is wim = µb2(
√

2 −

2)/4π(1 − ν) = (
√

2 − 2)wself .
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All of the interaction energies consist of the dislocation core energy, defined in Eq

6.15, multiplied by either a constant or a term depending on the geometry (∆L, `c, δ).

A comparison of all the energies versus edge length is shown in Figure 6.8, where w||

is the energy between the nearest previously nucleated SFHO. Even for the single

near-neighbor interaction, w|| is the largest energy term and increases with increasing

edge length. With the inclusion of additional dislocations beyond near-neighbor as

in Eq 6.30, w|| is clearly the dominant energy in the nucleation process and has the

strongest dependence on edge length.

6.1.3 Ledge Energy

To calculate the ledge energy per unit length EL a simple periodic MD simulation

is run with two parallel free (001) surfaces each containing a ledge. For this system

the total energy is ET = ECOHN +γ001A+EL`e where ECOH the cohesive energy per

atom, N is the number of atoms, γ(001) is the (001) surface energy per unit area, A is

the total surface area of both free surfaces, and `e is the total length of both ledges.

For this potential, the cohesive energy is ECOH = −3.93 eV/atom but the (001)

surface energy is not known. A supplementary simulation was performed to calculate

the surface energy using the same geometry as above but without the ledges so that

the total system energy is ET = ECOHN + γ(001)A. The total energy is determined

by running the simulation using NPT dynamics at 1 K and zero lateral pressure and

the resulting surface energy is γ(001) = 5.79 eV/nm2, exactly the value reported in the

literature by Foiles et al. (1984). Computation of ET for the first system with the

two ledges then leads to a ledge energy per unit length of EL = 0.32 eV/nm. This

energy is fairly small compared to the dislocation interaction energies, except at the

very smallest length scales.
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6.1.4 Determination of α

We use elasticity theory to compute the value of the pyramid structural compliance

parameter α. We assume the pyramid to be a homogeneous, anisotropic, linearly

elastic material and use a finite element model (FEM) to compute the response under

an applied compressive load. The elastic constants of the Auu3 EAM potential are

C11 = 183 GPa, C12 = 153 GPa and C44 = 45 GPa. The dimensions for the

simulation are exactly the same as those of the largest MD simulation having `c = 8.6

nm. Symmetry permits for the reduction of the sample to a 1/4 model with the

following boundary conditions: fixed normal displacement of the (100) and (010)

and free opposite (1̄00) and (01̄0) surfaces. The use of free surfaces is not quite

the same as the periodic boundary conditions used in the MD simulations but the

boundaries are far enough from the loading that the results should not be affected.

The bottom surface is also held fixed in the (010) direction as in the MD simulations.

The indentation is simulated as a uniform displacement of the top surface.

The FEM calculation provides the elastic strain energy in the pyramid as a func-

tion of the applied force. To compute α, we thus equate the strain energy obtained

from the FEM model to the definition of the strain energy in Eq 6.2 and use the FEM-

computed force. This yields α = 0.35 for the (114) pyramid. The elastic response is

independent of initial contact length and boundary locations due to the local strain

field and the self-similarity of the pyramid. The computed value of α is thus relevant

for any (114) pyramid. However, there are some differences between the MD and the

FEM that cannot be accounted for: (i) the non-linearity in the atomic potentials at

high loads, (ii) the surface elasticity of the atomistic pyramid surfaces, and (iii) the

stepped nature of the facets. The latter two effects are likely small.

To ensure accuracy of the FEM results in the presence of singularities near the
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edges of contact, we compare separate FEM results against the known analytic solu-

tion for a cylindrical flat punch. The force of cylindrical punch with radius r on an

isotropic infinite solid, at a depth of h is f = 2Ehr/(1 − ν2). The energy stored in

the material is found by simply integrating the force with respect to h, yielding

U =

∫

fdh =
Eh2r

(1 − ν2)
(6.31)

Writing the depth as a function of force gives h = f(1−ν2)/2Er which can be inserted

into Eq 6.31 along with the contact edge length for the circular punch, `c = 2r to give

U = f2(1−ν2)/2E`c. Before the analytic energy expression can be compared to Eq 6.2

the force of Eq 6.2 is divided by the appropriate contact area for a cylindrical punch,

π`2
c/4, rather than the contact area for a square punch, `2

c . Making the necessary

area adjustment leads to U = P 2α`3
c/2E = 8f2α/π2`cE. Setting these two results

equal yields α = (1 − ν2)π2/16 = 0.478. An FEM simulation of the same problem

gives the same value to within numerical accuracy. Using elastic constants for the

Au2 EAM potential, we expect α = 0.481 and again the FEM predicts the correct

value. These values of α are much higher than the (114) pyramid due to geometry

and isotropy. We used the FEM simulations to compute α for a square punch on a

flat surface and for indentation of a (118) pyramid. Using the Auu2 elastic constants

for a flat punch having the same contact area as the (114) pyramid results in an α

almost exactly the same as that for (114) pyramid. Similarly, indentation of the (118)

pyramid yields nearly the same value of α, with very minor differences that are within

the range of values seen by simply changing the resolution of the mesh at the corners

of the indentation. Figures 6.9a-c show the normal stress distribution along one of

the simulations symmetric faces. In all cases, most of the stress is concentrated just

below the indenter and off at a 45o angle from the edge of the contact. Since the

stress field does not change the α value will not change either.
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We attempted to use the MD results directly to determine α but this is not suffi-

ciently accurate. We compute the total change in the atomistic energy between each

nucleation event should be equal to the stored elastic energy as previously predicted if

the deformation is linear elastic (no dislocation motion). Figure 6.7 shows the alpha

values for two atomistic simulations with 1.7 and 4.6 nm initial contact edge lengths.

There are large fluctuations in the initial stages of the data most likely associated

with non-linear elasticity and fluctuations associated with the barostat. After the

nucleation of dislocations, the estimated α values stabilize between 0 ∼ 1 but with

large fluctuations. These results suggest that at small edge lengths the linear elastic

approximation may not be sufficiently accurate for predicting the hyperelastic energy

stored in the system.

6.1.5 Model Predictions versus MD and Experiments

To make quantitative predictions using the energy model requires values for sev-

eral other parameters appearing in Eqs. 6.10 and 6.11. From the (001) atomic layer

spacing and the slope of the (114) facets, geometry dictates that ∆L alternates be-

tween 0.86 and 1.44 nm. We use the known stacking fault energy γ = 4.7mJ/m2 from

Park and Zimmerman (2005) for this potential. The self energy wself is not known

for this EAM potential, and so is estimated from dislocation theory as noted earlier

in Eq 6.15 resulting in wself = 0.77 eV/nm.

Since µb2/4π(1 − ν) is only an approximation for wself and also appears as the

coefficient for all of the other dislocation energy terms (wsfho, wim, w||), we allow for

an adjustable parameter Cw to scale the dislocation energies, so that W = Cw(wself +

w|| + wim + wsfho) − EL. To account for the length of dislocation excluded in the

calculation of wsfho, we allow for another adjustable parameter Ccut so that wsfho ∝

[µb2/4π(1 − ν)](ln(∆L/`c) + Ccut). This approximation is not exact since Ccut will



107

scale with the edge length of the previous nucleation but should give a reasonable

representation of the neglected energy. We recall that there is a third parameter

Cθ < 1 relating the applied force to the resolved shear stress on the slip plane, which

can be estimated from the resolved shear stresses computed in the elastic FEM model.

Lastly, the maximum number of dislocations N included in the parallel interaction

energy, Eq 6.30, is unspecified. We consider N = 5, 10 below, since we do observe

multiple SFHOs but also annihilation due to twinning and since we have neglected

the other non-parallel dislocation interactions beyond the first SFHO.

From the asymptotic result of Eq 6.29, and neglecting the small ledge and stacking

fault energies, we can see that the pressure at large `c is directly proportional to Cw

and with an inverse and weaker dependence on Cθ for Cθ not approaching unity.

The parameter Ccut adds a constant to the overall energy and thus to the predicted

pressure in this regime. So, increasing any of these parameters increases the energy

to form the SFHOs and increases the associated pressure. There is thus no unique

fit of the several adjustable parameters to the large length data. As noted earlier,

however, the size-scaling in this regime is controlled by the overall `−1
c modified by

the logarithmic terms in the dislocation energy Eq 6.30, and is thus unaffected by

the precise values of the various adjustable parameters. At smaller values of `c, the

dependence is too complex to ascertain any simple dependencies.

Due to possible imaginary solutions, corresponding to insufficient initial energy

and/or external work, the adjustable parameters cannot assume any values at all. Cw,

Ccut, and/or Cθ must be chosen in order to satisfy Eqs ??. The MD study shows the

creation of SFHOs at small scales and very high loads, so the true energy inequality

must be satisfied. Moreover, since we observe `
−1/2
c scaling for the nucleation of

the first SFHO, we expect SFHO formation in this regime to be controlled by an

additional energy barrier, not included in our model, such that the total available
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energy is above the minimum necessary. Lastly, the elastic FEM study shows the

expected stress concentrations near the edge of contact that can drive nucleation of

SFHOs over the local energy barrier presented by the material’s innate resistance to

interplanar slip.

Nonetheless, we fit the constant force model to the MD result for the first SFHO

nucleation at the smallest edge length, `c = 1.7 nm, expected to be the most chal-

lenging regime for the model, and simultaneously fit to the large-length limit in the

range of the experimental data. We obtain the results for the pressures before and

after each successive SFHO nucleation at small scales in Figures 6.10 and for the

larger length scales in Figure 6.11. Figures 6.10a and 6.11a are for N = 10, Cw = 0.7,

Cθ = 0.2, and Ccut = 2 corresponding to a cut-off of 2b for wsfho from Figure 6.4

while Figures 6.10b and 6.11b are for N = 5, Cw = 1.0, Cθ = 0.2, and Ccut = 0.09

with wsfho energies again determined with a cut off of 2b. These parameters are both

chosen to fit the data as best as possible without giving imaginary results. Examin-

ing Figure 6.10, the results for N = 5 are much lower than N = 10. This is due to

the lower value of Ccut which has a larger influence at small edge lengths where the

SFHO junction has a more significant contribution to the total energy. For the first

nucleation event, in each case, dislocation interactions are absent and so the predicted

pressures are too low and exhibit `−1
c scaling rather than the observed `

−1/2
c scaling.

After the first nucleation, the dislocation interactions drive an increase in the pres-

sure to nucleate the next SFHO, a trend qualitatively consistent with the MD results.

Subsequent SFHOs are nucleated with the pressure rising, due to interactions, over

some range of contact lengths but then falling at larger length scales as the increasing

interaction energy per unit length is offset by the overall `−1
c scaling. This behavior

is also qualitatively consistent with the MD results. The magnitude of the pressure

drops upon SFHO nucleation, and their variation, is also generally captured by the
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model at the small scales.

At larger length scales, Figure 6.11, both models predict a convergence of the

pressures to a common curve, due to the dominance of the dislocation interaction en-

ergies and loss of sensitivity to those SFHOs formed earlier in the indentation. Again

the N = 5 case has lower magnitudes relative to the experiments and the N = 10

predictions even though the model is adjusted to attempt to match both the MD

and the experiments. For N = 5, the energies are just insufficient to generate the

observed pressures over the entire range of size scales. In the regime `c ∼ 10−40 nm,

for N = 10, the model predicts quite well both the magnitude of the pressure and

the `
−(0.3−0.4)
c scaling found in the MD. This scaling emerges due to a complex com-

petition between various `−1
c and ln `c dependencies and the changing elastic energy.

At larger scales `c > 40− 100 nm, the scaling evolves to power laws of `
−(0.5−0.7)
c with

a magnitude comparable to the experiments (a feature fit, however). As discussed

above the model is expected to eventually have a scaling of `−1
c as ∆L << `c but

these results show that even at edge lengths of ∼ 500 nm the ln `c from w|| is still

large enough to inhibit the scaling from dropping off. Overall, the model predictions

indicate a transition from a nucleation-dominated regime for the early SFHOs, here

`c < 10 nm, to dislocation-interaction-dominated regime at larger sizes.

The constant displacement prediction with fitting parameters of N = 10, Cw =

0.7, Cθ = 0.2, and Ccut = 0.1 is shown in Figure 6.11. Due to there being less energy

available for the creation of the SFHO, particular at small edge lengths, relative to the

constant force assumption it is necessary to decrease the SFHO. Since the combination

of Cw and Cθ determines the magnitudes at the experimental length scales in order

to decrease the energy necessary for creation the Ccut parameter is adjusted. The

results as expected are very similar to the constant force predictions but at smaller

edge lengths `c < 40 nm the predictions are lower than the constant force predictions
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due to the extra negative term in Eq 6.11 associated with the relaxing of the system

towards the indenter.

We have fit the model to the first nucleation pressure at the smallest size because

the energetics are the simplest: before nucleation there are no defects and after nucle-

ation there is a single SFHO. However, this regime is likely dominated by nucleation

controlled by excess energy barriers. It is thus important to show that even with much

larger initial edge lengths > 40 nm the model can still predict the experimental data.

Figure 6.13 shows the predictions for `ci = 60 nm and `ci = 100 nm, for N = 10. The

model predicts a rise in hardness that eventually drops off and achieves a magnitude

and scaling matching the experiments. The rise in pressure for the model is steeper

than for the experiments, attributed to due roundness of the real pyramids. This

further confirms the effectiveness of the model.

While a few assumptions are made here to obtain the good agreement between

the energy model and the MD, they are not unreasonable. Since the interaction en-

ergies are the most dominant factor in the scaling and over-all behavior, the number

of dislocations included in calculations is the assumption requiring the most justifi-

cation. There is some number of dislocations that interact with the newly nucleated

dislocations and affect the length at which the scaling transition occurs. In order

for the model to correctly capture the magnitudes of the experiments the minimum

number of dislocation is N = 7. While using N = 7 is capable of predicting the

correct experimental magnitudes the highest real solutions predicted are much lower

than the MD simulations hardnesses. If fewer dislocations are chosen the constants

for Cw, Cθ and Ccut necessary to capture the experimental magnitudes will result in

imaginary values for the MD length scale. The predictions that capture the MD and

experiments the best is for N = 10. There is a limit to the number of interactions

that can be included. With increasing N the Cw, Cθ and Ccut must decrease in order
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to capture the magnitudes. Eventually the energies modified by the fitting parame-

ters become much too small to be realistic. Setting a maximum value to N in this

fashion suggests that dislocations eventually begin to disappear which is supported

by the MD in which it is shown that dislocations annihilate and or spread eventually

exiting the system through the surface.

We can also use the model to examine the role of the stacking fault energy. The

EAM potential used in the MD predicts a very low stacking fault energy, 4.7 mJ/m2.

To examine the effects of the low stacking fault energy, a second EAM potential

with a more realistic stacking fault energy (32 mJ/m2) Park and Zimmerman (2005)

was used in the MD, and pressure versus contact edge length is almost unchanged,

indicating insensitivity to the stacking fault energy as seen in Figure 5.11 from Ch.

5. Model predictions for hardness using the new potential are compared with the

MD and the experiments in Figure 6.15. Since the new potential may differ in other

respects, we adjust the model parameters to fit the MD data and obtain Cw = 0.5,

Cθ = 0.3, and Ccut = 2.1 for N = 10; these values are rather close to those used

for the original potential. Thus, the model confirms that the pressure in the MD

range is independent of the stacking fault energy. The pressure is slightly different

at the experimental lengths, however. For larger edge lengths, the model predicts a

minimum hardness defined by the stacking fault energy. For the first potential, that

limit was very small, 0.075 GPa, and hence negligible. For the more-realistic stacking

fault energy, that limit is 0.52 GPa, large enough to increase the predicted scaling to

`−0.5
c in the experimental size range, with magnitudes above those of the experiments.

However, stacking faults annihilating and full dislocation formation begin occur at

much smaller scales, as seen by the MD, so that the stacking fault energy contribution

should be eliminated at larger scales. The analytic model presented above is general

and can be applied to other types of deformation as long as the mechanisms are
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known for the process. As an example the model is applied to the deformation of

the (118) pyramid. If we apply the energy model to the (118) pyramid with the new

value for ∆L = 2.02 nm with fitting parameters of Cw = 1.1, Cθ = 0.2, and Ccut = 0.7

for N = 7. The hardness values are slightly lower than the (114) predictions due to

the larger spacing between parallel dislocations, which reduces the interaction energy

and thus the pressure. Without any experimental data to compare the larger edge

lengths to it is difficult to tell if these fitting parameters will indeed capture correct

magnitudes at `c > 40 nm. Even though the magnitudes are not captured as well as

the (114) case, the analytic model does predict the scaling of data and sets a lower

bound for the hardnesses.

6.2 Nix-Gao Predictions

For larger length scales many modelers have employed the methods of Nix and Gao

to explain the size scaling due to strain gradient plasticity and the nucleation of GNDs.

For reference we will compare our results to those that would be achieved through

the Nix-Gao Model. As described in the Introduction the Nix-Gao model predicts

a maximum shear stress through the density of dislocations present in a confined

volume using the Taylor relation τ = αNGµbp
√

ρss + ρGND where ρss and ρGND are the

densities of statistically stored and GND dislocations respectively. Also, αNG ≈ 0.3

is the Taylor factor, µ = 45 GPa is again the shear modulus and bp = 0.17 nm is

the burgers vector for a partial dislocation unlike the energetic model which uses the

burgers vectors for the SFHO junctions. For the system studied here of nanoasperities

the material is primarily defect free at the onset of loading which requires ρss = 0

leaving only ρGND to define all of the plasticity. During the compression of a pyramid,

the SFHOs are exactly the GNDs for the analysis, and thus the total length of GNDs

versus initial edge length and depth of compression can be computed analytically.
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These SFHO GNDs define a length scale for the system and influence the stresses

necessary to emit new GNDs and/or to expand/nucleate statistical dislocations.

Proceeding quantitatively, geometry requires the total length of the GND in an

SFHO nucleated at contact edge length `c to be 4`c and the volume of the SFHO to be

Vsfho = `3
c/3

√
2. SFHOs are described relative to an initial contact length of `ci, such

that the nth SFHO occurs at a compression depth of ∆u = na/2, where a/2 is the

(100) interplanar spacing, and adds an additional GND length of 4[`ci + ∆L(n− 1)].

For a realistic (114) ∆L will alternate between 0.86 nm and 1.44 nm as described in

the previous section. Here an average of the two will be taken to simplify the model.

In the previous model where dislocation spacing is required to determine interaction

energies the differences in ∆L are more critical. While some detail is left out be

averaging ∆L the overall scaling behavior will not be affected. Here it is important

to only capture the approximate length of dislocations present in a given volume since

the volume is approximated as well. So returning to the definition of ∆L relative to

the slope requires ∆L = 2∆u/m nm for a (114) pyramid. Assuming that no twinning

or annihilation exists the number of SFHOs created up to the current edge length `c

is then n = (`c − `ci)/∆L. These GNDs exert stresses on some volume of material

surrounding this last SFHO, i.e. V = βVsfho where β is a geometric parameter as

determined below. The GND density at the current contact edge length `c is thus

a sum of GND line lengths from all the SFHOs formed starting from `ci up to the

current length `c, divided by the appropriate volume, and is given by

ρGND(lc) =
3
√

2

β`3
c

n
∑

i=1

4[`ci + ∆L(i − 1)] =
6
√

2

β`c∆L

[

1 − ∆L

`c

+
`ci(∆L− `ci)

`2
c

]

(6.32)

Now proceeding under the assumption of ρss ∼ 0, using Eq 6.32 in the Taylor formula,

we obtain a resolved shear stress τ as a function of the initial and current contact

edge lengths and the volume factor β, τ = τ (`c, `ci, β). This resolved shear stress is
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related to the contact pressure through some ratio Cθ = τ/P , leading to a predicted

pressure of

P =
1

Cθ

√
β

αNGµbp

√

βρGND (6.33)

where
√

β has been factored out. To obtain Cθ, we refer to Figure 5.10a which

shows the resolved shear stresses resulting from an applied contact pressure with no

SFHOs Since this field is self-similar with respect to contact edge length, we obtain

Cθ by relating the average shear stress over the effective volume V = βVsfho to the

current contact pressure. The volume, V , is selected such that it contains the atoms

with relatively high shear stresses near the area of contact. Thus, Cθ depends on

β; with larger β yielding smaller Cθ; the interplay between these two parameters

partially cancel each other in Eq 6.33, minimizing the effect of any specific choice

for β. Selecting β = 2 results in the typical volume within which other SFHOs and

statistical dislocations exist, we obtain the ratio Cθ = 0.2. The definition of Cθ here

is nearly the same as the definition in the development of the energetic model. It

is important to note that these numbers are highly dependent on specific geometry

chosen to determine β as well as several other factors including the value of αNG

chosen. It is not clear exactly whether the maximum resolved shear stress, the average

shear stress or some combination of these shear stresses for the active slip system,

should be used to calculate Cθ, which will also determine what αNG to use in the

calculations. Using a range of well-justified choices for αNG and β result in variations

of the prediction of about a factor of two; the general agreement between the model

and the MD/Experiments thus remains largely intact although precise numbers may

vary.

The predictions of Eq 6.33 for the three different initial contact edge lengths sim-

ulated in the MD, (1.4 nm, 4.6 nm, 8.6 nm) are shown in Figure 6.16 along with

the MD and experimental data. The theory, with one slightly adjustable parameter,
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qualitatively predicts the hardening behavior at the very onset of deformation and

the subsequent softening behavior for larger contact lengths excluding the first nucle-

ation. Since the model requires a dislocation density in order to predict the maximum

resolved shear stress the first stress cannot be determined without some sort of nu-

cleation criterion similar to the PN and RT models. The analysis also accurately

captures the convergence of the pressures for larger depths of indentation showing

the dependence on current contact length only, with an ideal power law scaling of

H ≈ `−0.5
c for `c >> `ci. This predicted scaling is again between the scaling found in

the MD and the experiments. Furthermore, the model provides remarkable quantita-

tive agreement in magnitude with the MD and experimental results, aside from the

differences in power-law scaling. It is very surprising that the Nix-Gao model predicts

the behavior of the MD so well especially at small edge lengths. Care needs to be

taken when interpreting results of the Nix-Gao model at length scales < 100 nm since

the interaction energies for this model are assumed under the Taylor relation to have a

fairly large distance between them relative to the lengths scales being discussed here.

As shown earlier dislocations that are very close to each other will eventually result

in a 1/r singularity that is not captured through these general interaction energies.

It may just be coincidence that for this geometry the other important energetic con-

siderations, the ledge energy and image forces, reduce the large energy from the close

proximity interactions to values that are predicted by the Nix-Gao model. However,

it is not surprising that the scaling for edge lengths approaching the experimental

sizes is well captured. As shown for the energetics, the interaction energies eventually

dominate the expression which ultimately results in `−0.5
c scaling. Another aspect of

the model to consider is the fact that twinning and healing do not exist. If these

were to occur then the density of dislocations would decrease as the effective volume

increases resulting in further softening. Softening could also occur if full dislocation
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emission is considered rather than partial as the total length of dislocation nucleated

would decrease faster than the increase in burgers vector.

Figure 6.1: Schematic showing the deformation and dislocation structure assumed for
the energetic model before and after SFHO nucleation.
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Figure 6.2: Graph showing the possible normalized forces possible by increasing the
normalized energy necessary for an SFHO, for a given edge length
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Figure 6.3: Schematic of the stacking fault half octahedron burgers vectors and line
senses, line sense (black arrows) and burgers vectors for the initial partial dislocations
(red arrows), and (001) junctions formed (blue arrows).
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Figure 6.4: The interaction energies vs. edge length for a single dislocation in the
SFHO experiences due to the other three dislocations as a function of dislocation
length. Each line represents the energy for a different length of dislocation removed
at the tip of the SFHO to remove the analytic singularity form the interaction energy.
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Figure 6.5: Schematic for the interaction energy of two parallel dislocations for sub-
sequent SFHOs.
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Figure 6.6: Interaction energy, w||, for only the first interaction, N = 1 for increasing
edge lengths, `c. The distance between the newly nucleated SFHO and the nearest
previous SFHO alternates between 2δ = ∆L = 0.86 and 1.44 nm as defined by the
(114) facet . The red line is the exact solution while the blue line represents the
approximation from Eq 6.29.
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Figure 6.7: Results of α from two of the molecular dynamics simulations with `ci = 1.7
nm and `)ci = 4.6 nm as a function of indenter depth.
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Figure 6.8: Graph of energies vs. edge length for the different interaction and self
energies that contribute to making up the total energy attributed to the formation of
the dislocations of a new SFHO
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Figure 6.9: Stress distribution in the loading direction (S22) for three FEM simula-
tions; a. (114) pyramid; b. (118) pyramid; c. Flat square punch.



125

Figure 6.10: Hardness vs. contact edge lengths for nanopyramids, as predicted by
the energy-based model at small contact edge lengths, showing accurate predictions
of the MD for (a) N = 10 and (b) N = 5. In each case the red, blue and green lines
are the energetic predictions for `ci = 1.7, 4.6 and 8.6 nm, respectively. The black
lines are the results from the MD simulations where the ”X” marks the spot of the
first SFHO nucleation pressure.
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Figure 6.11: Predictions of hardness vs. edge length up to experimental length scales,
with solid red lines showing pressure before nucleation and after nucleation for con-
stant force where (a) N = 10 and (b) N = 5. Dark gray lines are the Wang et al.

(2006) experiments performed on Au pyramids. Triangles and squares are Nix et al.

(2007) data for Berkovich indentation of Au (001) films.
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Figure 6.12: Predictions of hardness vs. edge length up to experimental length scales,
with solid red lines showing only the real solutions for the pressure before and after
nucleation for constant displacement. Dark gray lines are the Wang et al. (2006)
experiments performed on Au pyramids. Triangles and squares are Nix et al. (2007)
data for Berkovich indentation of Au (001) films.
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Figure 6.13: Prediction for `ci = 60, 100 nm compared with the experimental pyramid
compression. The energetic model effectively captures the magnitudes and scaling
even with large initial edge lengths.
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Figure 6.14: Prediction using the energetic model for the (118) faceted pyramid
compared to the corresponding MD results.
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Figure 6.15: Prediction using the energetic model for the Au2 potential with a stack-
ing fault energy of 32 mJ/nm2 compared to the MD results and experimental pyramid
compression.
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Figure 6.16: Hardness vs. edge length results of the Nix-Gao model (red lines) as
applied to the pyramid compression compared with the MD (black lines) and Au
pyramid compression experiments (grey lines).



Chapter 7

Concluding remarks

This study has focused on two important aspects of size scaling in systems with

important engineering applications. The study of the interfaces and composites of a

common casting material and more recently protective coating, Al/Si, has taken the

understanding of nanocrystalline materials beyond the well described single phase

materials or two phase metals and examines the metal/ceramic nanocomposite for

the first time. Examination of the Au nanoasperities offers a study of the smallest

length scales of surface roughness and offers and excellent opportunity to compare

experiments and models of the size-dependent plasticity at length scales of 5 − 500

nm.

Three main features of the failure and deformation of Al-Si nanocomposites have

been demonstrated through the present molecular dynamics simulations. First, gen-

eral mismatched Al-Si interfaces are expected to have reasonably high tensile strengths

(4-6 GPa) approaching those of the ideal interfaces (∼ 7 GPa) but with fracture en-

ergies that can be more than twice as large as those for ideal interfaces. Second, the

presence of Si grains substantially reduces the deformation in the Al grains and at the

Al/Al interfaces but leads to substantial local strains along the Al/Si interfaces in the

form of sliding/shearing. With higher Si content, e.g. 6Al-2Si, the Al deformation is

132
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constrained further and the Al/Si interface deformations are more distributed, with

an associated increase in the nanocomposite yield stress with increasing Si content.

Third, the nanocomposites fail primarily along the Al/Si interface at local tensile

stresses, and via failure mechanism, similar to the corresponding bimaterial simula-

tions. Thus, upon introduction of Si grains the deformation and failure are dominated

by the Al/Si interfaces. Overall, introduction of the Si grains causes higher elastic

modulus and yield strength, but no difference in failure strength, as compared to all-

Al nanograin polycrystals. Our results further suggest that control of the interfaces

through material modification may thus be one route by which Al/Si nanocomposite

properties could be enhanced even further. Coupled with the expected increase in sta-

bility of nanocomposite microstructures over those of single-phase metals, the present

work indicates that these nanocomposites can have a range of attractive properties.

Additional work is needed to understand the role of grain size, and associated changes

in the relative roles of dislocation and grain-boundary deformation, on the nanocom-

posite properties, and on more-realistic microstructures containing more grains and

including 3d structure.

Using large-scale molecular dynamics has revealed key features of the size-dependent

plastic deformation of nanoscale asperities under contact compression which are ex-

tended to general size-scaling for other processes. First, there is a unique size-scaling

of the hardness which depends solely on the current contact area, in agreement

with experimental trends seen in asperity compression as well as Berkohvich in-

dentation. Second, there is power-law scaling of the hardness with contact length,

HMD ≈ `−0.32
c as compared to Hexpt ≈ `−0.75

c . Third, with the simulation and ex-

perimental sizes approaching one another, unprecedented quantitative agreement is

found, with HMD ≈ 4 GPa for `c = 36 nm and Hexpt ≈ 2.5 GPa for slightly larger

contact lengths of `c = 100 nm. Fourth, the simulations show that the main plastic
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deformation mechanism is successive nucleation of stacking-fault half octahedra. Fi-

nally, unloading shows that at small length scales the deformation is reversible, but

as soon as dislocations begin to intersect and twinning occurs deformation becomes

permanent and the unloaded structures have increased contact areas due to mass

transport but the majority of the energy is conserved by the plastic structures.

With the insight from the MD an analytic model that incorporates the energy cost

of nucleating the s.f.h.o. dislocation structure predicts a lower bound for the hardness

in qualitative and quantitative agreement with the MD. With just four adjustable

parameters, Cθ, Cw, Ccut and N , the model sets a lower bound for the first nucleation

event as well as a similar effective scaling, H ≈ `−0.5
c . The model also captures the

increase in hardness after the first nucleation event due to the interaction energy with

the previously nucleated s.f.h.o. Along with the increase in hardness other important

features of the hardness associated with alternating edge lengths are captured by the

energetics. From the model the scaling can easily be explained by the contribution

of the dislocation interaction energies which keep the energy from dropping off to the

predicted ideal `−1
c scaling. The model thus establishes a lower bound for the hardness

magnitudes and effectively captures the scaling for both MD and experiments. The

model also suggests a transitions from nucleation driven scaling for `c < 10 nm to

interaction driven scaling for larger length scales..

One great benefit of the model is that only geometry and material properties are

needed as model inputs, making it broadly applicable to other asperity geometries

and perhaps other nanoscale deformation experiments. This study successfully es-

tablishes an understanding of the size-scaling for nanoscale asperities at lengths not

previously described by other models, PN, RT and Nix-Gao methods. Ultimately

large-scale MD and the energetic model bridge the proverbial gap between atomistics
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and experimental length scales and establish the size-scaling origins of nanoscale as-

perities ranging in size from 5− 500 nm, and can be used to predict contact hardness

and eventually friction behavior of realistic multiple-asperity surfaces.
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