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CHAPTER 1 

Introduction: Following a Crowd and Visual Information  
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Imagine the end of a football game. Everyone stands from their seats and attempts 

to exit the stadium. While it may seem each pedestrian in the crowd has individual 

locomotor behavior, their motion is influenced by the motion of their neighbors also trying 

to egress. If one attendee slows down relative to all the other people in the queue to exit, 

those attendees behind the first slow down as well. And so, all the pedestrians coordinate 

and walk together toward the exit. This global pattern of motion emerges from local 

interactions of that system’s lower-level components (Couzin & Krause, 2003); this case, 

interactions between the individual pedestrians. 

Humans navigate complex crowds like this on a daily basis. These can range from 

quick interactions between pedestrians on the sidewalk to coherent motion on a train station 

platform as a hundred people walk to board their train. While in a crowd, a pedestrian needs 

to generate paths and avoid collisions, all while moving with neighbors as a group to reach 

their destination. Human crowds exhibit complex dynamic behavior, but how collective 

motion emerges from the local interactions between individual pedestrians remains an open 

question. This question of interpersonal coordination is a perception and action problem 

that I am going to analyze and model. 

Research on collective motion primarily began with a mathematical approach that 

sought to formalize rules for how an individual agent within the collective interacts with 

their neighbors. Very early work exploring these rules looked at how the collective 

behavior seen in fish schooling might emerge from simple rules between individual fish, 

in a position-based approach to measuring fish motion (Breder, 1954), as opposed to 

velocity-based approaches that rely on alignment of velocity vectors. This work 

demonstrated that macroscopic schooling behavior emerges from a bottom-up combination 
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of all the microscopic attraction and repulsion interactions between individual fish. Other 

work has shown how pursuit and escape interactions in insect swarms (analogous to 

attraction and repulsion between agents) also produced macroscopic collective motion 

(Romanczuk, et al. 2009). These findings showed that escape-inspired interactions led to a 

homogeneous distance between all agents within a simulation (as all agents would repel 

one another), while the pursuit-inspired interactions caused the formation of grouped 

clusters. Importantly, the combination of these interactions led to stable collective motion. 

However, both these works only examined how the cohesion was maintained given 

properties of attraction and repulsion, without explicit descriptions for alignment, a 

behavior clearly seen in the fish schools and bird flocks (Couzin et al., 2002).  

Vicsek et al. (1995) took a different approach to simulations of collective behavior. 

Here the focus was on how alignment behaviors between individual agents (here termed 

“self-propelled particles”) in a collective led to self-ordered systems. Multiple simulations 

were performed where the initial particle positions were kept constant while the interaction 

parameters were varied. This was to find how the parameters lead to different patterns of 

motion. Each simulation varied particle direction of motion and distance (density) between 

particles. Speed was kept constant. Each particle matched the mean direction of all 

neighbors within a fixed radius on the next time step, and all particles were synchronously 

updated per time step. Simulations demonstrated that different forms of collective behavior 

emerged as density and direction of motion were varied. Low density (particles were 

spaced farther apart) and low variation in direction led to particles forming small groups of 

coherent motion, with each group having random mean direction; high density and low 

variation in direction led to ordered motion across all particles; and when both parameters 
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were high, it led to simulations with random motion and little coherence across all particles. 

These simulations demonstrated how varied parameters of initial conditions for bottom-up 

alignment interactions can lead to a wide range of macroscopic patterns of behaviors and 

are foundational for simulation work on collective motion. However, this work focused on 

only one potential alignment behavior between agents: alignment of direction, and 

neglected (for simplicity’s sake) alignment of velocity.  

Research since then has shown that agents in collective groups do align their speed 

with neighbors (Rio et al., 2014; Rio, Dachner, & Warren, 2018), and this alignment 

capability adds another degree of freedom to the macroscopic patterns of motion in a 

collective. In addition, this early form of self-propelled particles did not consider attraction 

and repulsion between agents, which is also a component of the interactions of individuals 

in collective behavior, and thus agents within this architecture are prone to collisions 

(although later accounted for, see Vicsek & Zafeiris, 2012). 

Early computer animation work combined these four types of agent-based 

interactions (attraction, repulsion, speed alignment, heading alignment) into zonal models 

of collective behavior, as a means of avoiding the need to dictate explicit trajectories for a 

large number of animated agents (Reynolds, 1987). This work produced collective motion 

by modeling an agent’s interactions with their neighbors as governed by three rules in 

concentric zones: repulsion, alignment, and attraction. In the first nearest zone, agents were 

repulsed by neighbors, preventing collisions. In the second zone, agents aligned their 

direction of motion with neighbors, producing collective motion. In the third and farthest 

zone, agents were attracted to their neighbors, ensuring the crowd would remain together. 
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These methods created qualitatively realistic looking bird flocks as a basis for computer 

animations of collective behavior in animals. 

Later work used this zonal framework to model real biological systems that 

demonstrate collective behavior (Couzin et al., 2002). By varying the radii of the three 

zones, these agent-based models produced macroscopic behaviors that simulated state 

changes in fish schools, for example between torus-shaped schools and parallel motion in 

a specific direction. This work demonstrated how collective behavior likely emerges from 

individual interactions, not by direction from some form of hierarchical leadership. 

However, none of the discussed research attempted to apply these rules to pedestrian 

interactions. 

The classic framework by which pedestrian agent-based interactions have been 

simulated is the Social Force Model (Helbing & Molnar, 1995). This framework was an 

attempt to simulate macroscopic collective motion in human crowds by simulating simple 

heuristic-based rules for individual pedestrian interactions. This modeling framework 

defined theoretical factors of social behavior as being analogous to physical forces acting 

on objects. For example, the social behavior of not standing near other people is analogous 

to the physical force of repulsion between two particles. The primary drive for these forces 

was the distance between simulated individual pedestrians, essentially following an 

attraction, repulsion structure. Simulations were able to demonstrate lane formation and 

congestion of a crowd into a narrow egress. Still, like the previously discussed distance-

based models which only simulated attraction and repulsion between agents (Breder, 1954; 

Romanczuk & Couzin, 2009), the Social Force Model failed to account for the alignment 

of speed and heading behaviors between pedestrians. In addition, this model made no 
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considerations for how the information that controls these forces is perceived by the agents 

with the model, which likely led to unrealistic responses from agents. This leads to the 

most critical weakness of the early form of the Social Force Model: it was not based on 

real interactions between pedestrians in crowds. For example, while the model reduced the 

influence of neighbors behind a given agent, it was not zero. It is likely that neighbors 

outside the field of view of a given pedestrian do not influence that pedestrian’s behavior 

- as any changes in behavior outside the field of view cannot be directly observed, only 

indirectly observed if crowd change information is transferred through mediating 

neighbors. Later versions of the model did incorporate a more theoretically accurate field 

of view (Moussaïd, et al., 2011). However, these additions do not make this model 

controlled by visual information. In addition, there is an even greater concern: the 

grounding of the Social Force Model. As the model was based on heuristic rules assumed 

by the authors and not grounded with empirical evidence, it cannot necessarily be 

generalized to real crowds. 

The collective motion research presented thus far was conceptualized and 

investigated from an overhead third-person perspective and not in consideration for 

empirical evidence from crowds or the information used in collective behavior. Little 

research has explored the visual perspective of a pedestrian nested within a crowd. The 

body of research on crowd behavior to date has modeled how multiple agents interact with 

each other and whether collective behavior emerges from those interactions, but has largely 

failed to consider the sources of information that govern these interactions. While their 

primary focus was on exploring what rules generate global structure in crowds and flocks, 

they are a important groundwork to explore the complex behaviors observed in human 
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crowds. This modeling approach provides meaningful insights into the emergent behaviors 

of collective motion in crowds and how individuals within crowds may interact and 

coordinate with one another. However, pedestrians move through a crowd with a first-

person perspective: they are embedded in and see the crowd, and use that information to 

govern their behavior. Thus, models with a consideration for the information used for 

collective behavior must be examined as well. This is especially true for visual information, 

as it is the primary sense a pedestrian would use in a crowd (Schellinck & White, 2011). 

Recent work has proposed methods that simulate crowd behavior using input 

variables inspired by visual information (Ondřej et al., 2010; Moussaïd, et al., 2011; Dutra 

et al., 2017). The common thread for information input to these models was distance 

information between neighbors in crowds, i.e. the closest distance between the physical 

edges of two neighbors, or the time to closest contact. While these sources of distance 

information can be obtained visually, these are not true vision-based models for collective 

behavior. First, these models are not collective motion models in the classical sense. Under 

the constraints of the given models, collective motion is unlikely to actually occur in 

simulation, and usually only occurs when agents are already in near-alignment. This is even 

though collective motion in human crowds is ubiquitous (Warren, 2018). Second, they 

make assumptions about the information used to guide collective behavior. These models 

are more accurately described as distance-information models, not of visual models. Metric 

distance can be reconstructed from visual input, but it is possible that animals use other 

sources of visual information (that is informative about and correlated with distance) to 

guide behavior in collective motion scenarios, i.e. optical expansion, occlusion. 
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Consideration for the sources and uses of information in collective motion scenarios is vital 

for their modeling. 

Other work has taken this ‘vision-inspired’ approach even farther. Bastien & 

Romanczuk (2020) derived a minimal generalized first-person perspective model for 

collective motion. This model used the binary presence or absence of neighbor edge and 

shape by location in the visual field as input, and no other visual properties (i.e. motion or 

occlusion). By shifting the response weights to neighbor presence by spatial location, 

multiple forms of collective motion were simulated, from non-convergent motion, to 

rotating disks, to swarms. The advantage of this model is it is generalizable, allowing it to 

be applied to collective motion seen in simple forms of animal life. However, while it is a 

theoretical approach motivated by visual systems, more grounding with empirical study 

would be necessary to demonstrate its applicability. In addition, it may be too simple 

regarding human pedestrians, as it does not use motion nor occlusion as forms of input. 

Strandberg-Peshkin et al., (2013) is perhaps the closest current approach to a visual 

model for collective motion. Here, occlusion (calculated as the minimum threshold for 

detecting the subtended visual angle of a neighbor on the retina) and proportion of 

neighbors that previously responded was input to determine the likelihood of response by 

a simulated individual agent. Results were compared to experiments investigating 

information transfer in fish schools. Their findings show better performance with a visual 

model, compared to other collective motion models that relied on metric or topological 

neighborhood information. This implies that visual information and the proportions of 

neighbor behavior are combined in fish schooling and that these same concepts may be 

good candidates for modeling human locomotor behavior in crowds. 
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Unfortunately, the modeling approaches presented thus far have not provided a 

proper account of collective behavior human crowds. These models have typically 

contained two related issues: (1) the agents responded to their neighbors based on heuristics 

determined by the designers, because (2) the models lacked experimental evidence to 

ground the formulations of their microscopic interactions. The agents in these models often 

interact with neighbors in ways that would not be visible to a real pedestrian. While 

descriptively useful, this ignores the fact that in a crowd, a pedestrian can likely only 

respond to available visual information. Failing to incorporate visibility can create 

neighbor interactions that would otherwise be implausible. For example, an agent in a 

model may respond to a neighbor that is occluded by closer neighbors, or to a neighbor 

located outside that agent’s field of view. Moreover, visual information is generated in 

accordance with the laws of optics, such as linear perspective, and may be provide 

indications for how distance information is derived and used. A computational dynamic 

model of crowd motion grounded in visual information could better describe the locomotor 

behaviors of an individual pedestrian, and thus be more accurate at predicting the 

interactions between all agents in a human crowd. Without an examination of the sensory 

information that guides local interactions between individuals, it is hard to gauge how well 

these models capture actual human crowd behavior. This is especially true when the models 

discount visual perception, which is likely to be the dominant source of information 

governing locomotor behaviors in human crowds (Bonneaud & Warren, 2014). 

Previous research in visual perception has explored many visual mechanisms that 

may play a role in individual locomotion in a crowd, including motion processing, object 

tracking, distance perception, and higher-order optical variables (Burr & Thompson, 2011; 
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Chen, 2012; Geisler, 2008; Gibson, 1979). But these lines of research have primarily 

focused on simple visual stimuli, typically in situations where the participant is stationary. 

However, a human crowd is visually complex, involving many of the previously mentioned 

optical variables, in addition to the visual motion generated by the individual, who is also 

moving and embedded within the crowd itself. Both the crowd’s motion and an individual’s 

movement create a complex locomotor-control scenario, in which the individual uses 

continuously updated information about the immediately visible neighbors to move with a 

crowd. 

The failure to consider visual information in most crowd models, and consequently 

the control laws that govern behavioral responses to that information, leads to multiple 

unknowns about the mechanics of human crowds. The purpose of this dissertation is to 

investigate and model the visual information that governs pedestrian following and to 

simulate collective motion using this information. 

 Previous work has found that people can generate collective motion by ‘following’ 

their neighbors; specifically, by aligning their locomotion vector with a weighted average 

of neighbor vectors in a neighborhood (Dachner & Warren, 2014; Rio, Dachner, & Warren, 

2018; Warren, 2018). Other collective motion models have found that following a single 

neighbor through locomotion alignment was not required for coordination (Romanczuk & 

Couzin, 2009; Moussaid et al., 2011). However, these models need more empirical 

grounding, models of fish schools to perform better when alignment is considered 

(Strandberg-Peshkin et al., 2013), and pedestrians successfully walk together in groups, 

demonstrating cooperation in crowds (Rio, Dachner, & Warren, 2018).  
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 The purpose of the VENLab’s current research is to study if following behavior is 

sufficient to explain collective crowd motion, through the study of the dynamics of 

perception and action. This is accomplished by describing the interactions between an 

individual and their environment and then characterizing the evolution of this interaction 

over time (Fajen & Warren, 2003). This framework has successfully simulated the 

behavioral evolution of following a crowd. This has been accomplished through a bottom-

up modeling approach of simulating a given agent in the crowd by sampling the means of 

their neighbors’ speeds and heading (direction of motion) as input to compute how that 

simulated agent should change locomotion on the next time step. Comparisons to empirical 

and observational data have produced accurate results, suggesting that pedestrians can use 

neighbor speed and heading to follow a crowd (Rio, Dachner, & Warren, 2018; Warren & 

Dachner, 2017, 2018). 

 However, such crowd models are based on physical variables, not the visual 

information available to a pedestrian in a crowd. As human pedestrians will largely rely on 

visual information to navigate, it necessitates exploring how this information is perceived 

and then used for action. There are multiple visual variables humans could be using to 

locomote in crowds (e.g. edges and shapes; Bastian & Romanczuk, 2020). However, here 

we focus on three motion-based variables: the (1) optical expansion and (2) angular 

velocity (change in bearing direction) of neighbors as they change speed or turn relative 

the follower, and the loss of information about a neighbor due to (3) occlusion. These have 

been chosen as humans have been previously shown to be sensitive to these variables 

(Regan & Beverley, 1973; Regan & Beverley, 1979; Regan & Hamstra, 1993; Hoffmann, 

1994; Wann, et al., 2011; Trent & Warren, 2017). Incorporating these optical variables into 
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a model of collective motion would significantly advance our understanding of the visual 

control of pedestrian behavior, strengthen crowd simulation for a variety of applications, 

and make models of collective motion more ecologically valid. 

 The remaining chapters of this dissertation are organized as follows: Chapter 2 

develops, fits, and tests a model for following a single neighbor that relies on visual 

information. This work begins in this way so as to take a bottom-up approach, where once 

the interactions of a pedestrian and a single neighbor are understood, these rules can be 

generalized to multiple neighbors by the concept of superposition. Chapter 3 expands the 

model to include multiple neighbors (by the superposition of interactions) to account for 

collective motion and following a crowd. Chapter 4 experimentally tests whether neighbor 

occlusion influences following a crowd and then adds and tests this as a component to the 

model. Chapter 5 examines the model’s performance using multi-agent simulations of large 

crowds with varied initial conditions to test the robustness of the model for collective 

motion and to find novel predictions. Chapter 6 tests other sources of visual information 

that a pedestrian may use in a crowd. Finally, Chapter 7 concludes the dissertation by 

discussing the overarching themes found with visual information and following a crowd 

and outlining future work. 
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CHAPTER 2 

 
The Visual Model: Following a Leader  
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2.1 Introduction 

 In previous research on following in pairs of pedestrians (dyads), we have found 

that a pedestrian aligns their velocity (speed and heading direction) with a leading neighbor 

during following (Dachner & Warren, 2014; Rio, et al., 2014). When this coupling is 

replicated across multiple neighbors, the follower's trajectory in a crowd can be closely 

simulated (Rio, Dachner, & Warren, 2018). This is consistent with the principle of 

superposition, in which the response to a group is the linear combination of the response 

to each neighbor. In addition, these previous works found that an individual trajectory of a 

follower (with one neighbor or a crowd) can be simulated using models inspired by mass-

spring equations. These are the Behavioral Dynamics Models for following a single or 

multiple neighbors. 

 A similar method can be employed to understand what visual information a 

pedestrian in a crowd uses to follow their neighbors. Chapter 2 will describe and model the 

visual control of following a single neighbor, so it can be replicated across all the neighbor 

interactions in a larger crowd, based on principles of superposition. I will begin by 

describing a behavioral dynamics model for following a single leader that uses optical 

variables as input, fit that model using real pedestrian dyads, and then test whether the 

model generalizes across a larger range of distances and eccentricities (the relative angle 

between a modeled agent’s heading and a neighbor, where 0° is the follower’s current 

heading direction) in a controlled virtual reality study. 
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2.2 The Visual Model 

 Two sources of visual information that human pedestrians are sensitive to and may 

use for following a single neighbor are optical expansion (change in visual angle over time, 

or �̇�) and angular velocity (change in eccentricity [angle direction to a neighbor, or β] over 

time, or �̇�) of the followed neighbor (Regan & Hamstra, 1993). Through the application 

of Euclid’s Laws of Visual Angles, equations can be derived that describe visual control 

laws for speed and heading to follow a moving neighbor or crowd of neighbors.  

In order to understand how a follower uses these optical variables, it needs to be 

understood how these descriptive variables change as a leader moves relative to a follower. 

This change is dependent on how the leader’s relative speed or heading offsets from zero 

(when both follower and leader have aligned locomotion), based on their eccentricity from 

the follower. To demonstrate this tradeoff in Figure 2.1, a follower is following a leader at 

various eccentricities. If the leader is at 0° eccentricity (directly in front of the follower’s 

heading direction) and slows down, the leader optically expands, but their angular velocity 

is zero (Figure 2.1, panel a). However, if that same leader turns left, their optical expansion 

is now zero, but their angular velocity starts to increase (Figure 2.1, panel b). 

This relationship is reversed if that leader is at +90° eccentricity (directly to the 

right of the follower’s heading). A leader turning left optically expands, while their angular 

velocity remains zero (Figure 2.1, panel c), whereas a leader that slows down increases 

angular velocity, while optical expansion is zero (Figure 2.1, panel d). At +45° eccentricity, 

turning left or slowing down both create optical expansion and angular velocity (Figure 

2.1, panels e & f). These optical variables tradeoff with eccentricity to specify whether a 

leader has changed relative speed, direction, or both, from zero. By nulling (i.e. canceling) 
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changes in optical expansion and angular velocity, a pedestrian follower can approximately 

match speed and heading of a leader. This leads to the follower aligning their locomotion 

with a pedestrian neighbor using only optical variables. 

Figure 2.2 demonstrates simple examples of how a leader’s change in relative 

motion produce changes in these optical variables as observed by a follower. Here, a 

pedestrian is following a 0.4 m wide leader that is 1 m distant, both moving an initial speed 

of 1.0 m/s, and at an initial heading of 0° (the same direction). Panel (a) of Figure 2.2 shows 

potential positions of the leader relative to the follower, along a 180° eccentricity arc (-90° 

to the left to +90° to the right). Here the neighbor slows down relative to the follower by -

Figure 2.1. Information relationship between a follower and a leader. As relative speed or 

heading of the leader change, optical expansion (�̇�) and angular velocity (�̇�) change based 

on eccentricity (β) from the follower. 
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0.1 m/s. Panel (b) of Figure 2.2 shows how optical expansion and angular velocity change 

by eccentricity as the follower observes that neighbor slowing down. Optical expansion is 

numerically computed by the change over time of visual angle:  

𝜃 =  2 ∙ 𝑡𝑎𝑛−1(𝑐/2𝑑) 

and angular velocity is computed by the change over time of bearing: 

𝛽 =  𝑡𝑎𝑛−1(𝑥𝐿 − 𝑥𝐹 , 𝑦𝐿 − 𝑦𝐹)  − 𝜙𝐹 
 

where 𝜃 is the visual angle the leader as observed by the follower, 𝛽 is the eccentricity 

angle to the leader from the follower, c is the diameter of the leader (0.4 m), 𝑑 is the 

Figure 2.2. Changes in optical expansion and angular velocity of a 0.4 m wide leader that 

is 1 m distant across eccentritirices ranging from -90° to left to 90° to right. 

(1) 

(2) 
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distance to the leader (1 m at timestep 1), (𝑥𝐿 , 𝑦𝐿) is the leader’s position, (𝑥𝐹 , 𝑦𝐹) is the 

follower’s position, and 𝜙𝐹 is the follower’s heading direction. Note there is zero optical 

expansion at ±90° eccentricity, and zero angular velocity at 0° eccentricity. Panels (c) & 

(d) of Figure 2.2 show the optical computations of a neighbor turning left 90°, so that their 

speed 0.0 m/s in the ‘x’ dimension and 1.0 m/s in the ‘y’ dimension. The opposite result is 

found compared to panel (b) of Figure 2.2; now there is zero optical expansion at 0° 

eccentricity and zero angular velocity at ±90° eccentricity. These two sources of optical 

information, across a range of eccentricities, can serve as control laws for following. 

 Based upon Euclid’s Laws of Visual Angles, two asymmetries in the visual 

information available to a follower are evident. The asymmetry is that a follower will 

observe different magnitudes of optical change dependent on whether a leader’s relative 

motion moves them closer or farther from the follower. In a simple example in Figure 2.3 

panel (a), a leader (0.4 m wide, 1 m distant) speeds up by +0.1 m/s or slows down by -0.1 

m/s. While the magnitude of relative speed change is identical, the magnitude of optical 

Figure 2.3. Asymmetries in optical information. Panel (a) demonstrates that indetical 

magnitudes in leader speed change produce asymetrical magnitudes of optical expansion. 

Panel (b) demonstrates an inverse relationship between angular velocity and distance. 
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expansion is not: a neighbor slowing down produces greater overall expansion than a 

neighbor speeding up (this is true for angular velocity as well). The second asymmetry is 

that a follower will observe different magnitudes of optical change dependent on a leader’s 

distance. Figure 2.3 panel (b) shows a simple example where three leaders (each 0.4 m 

wide) turn left 90° at three distances: 1 m, 2 m, and 3 m. While the direction of turn is 

identical, there is an inverse relationship between distance and optical change: the shorter 

the distance, the greater the angular velocity (as is also true for optical expansion). These 

asymmetries in optical information make a novel predication: asymmetries in optical 

information may lead to asymmetries in human following behavior. 

To build a model for following a single leader based on optical variables, these 

optical variables are transformed and scaled, so that two properties are derived: (1) 

depending on eccentricity, optical expansion and angular velocity trade off influence to 

determine the follower's change in speed, and conversely (2) angular velocity and optical 

expansion trade off as complementary functions of eccentricity to determine the follower's 

change in heading. These transformations lead to the following control laws for speed 

alignment: 

�̈� =  − 𝑐1 ∙ 𝑠𝑖𝑛(𝛽) ∙ �̇� − 𝑐2 ∙ 𝑐𝑜𝑠(𝛽) ∙ �̇� 

and for heading alignment: 

�̈� = − 𝑐3 ∙ 𝑐𝑜𝑠(𝛽) ∙ �̇� + 𝑐4 ∙ 𝑠𝑖𝑛(𝛽) ∙ �̇� 

where �̈� is the radial acceleration of the follower, �̈� is the angular acceleration of the 

follower’s heading direction, 𝛽 is the eccentricity of the leader, �̇� is the angular velocity 

of the leader, and �̇� is the expansion rate of the leader. 𝑐1−4 are free parameters, fit to data 

from a leader/follower dyad experiment. To explain why each component of the equation 

(3) 

(4) 
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is multiplied by the sine or cosine of eccentricity, consider following scenario: there is a 

leader at -45° eccentricity (to the left) or a leader a +45° eccentricity (to the right). If each 

leader expands equivalently toward a follower, they specify identical amounts of 

expansion. However, the heading response of the follower will vary dependent on which 

side (eccentricity) of the follower the leader is on. When the leader is expanding on the left 

side, the follower should turn right in response. Conversely, when the leader is expanding 

on the right side, the follower should turn left in response. The scaled term of eccentricity 

produces the appropriate magnitude of response for a given leader eccentricity. 

 To fit the free parameters for Equations (3) and (3), Experiment 1 was conducted. 

 

2.3 Experiment 1 - Leader / Follower Dyads 

Experiment 1 investigated the locomotion dynamics of following and was 

conducted as a part of a larger study. In this experiment, we recorded leader-follower dyads 

in which the leader was a confederate given pre-trial instructions to either change speed or 

direction. 

Participants 

 12 participants were recruited at Brown University, 5 female and 7 male. None 

reported any visual or motor impairment. The research protocol was approved by Brown 

University’s Institutional Review Board, in accordance with the principles expressed in the 

Declaration of Helsinki. Informed consent was obtained from all participants, who were 

paid for their time. 
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Apparatus 

 The experiment was conducted in the Sayles Hall space at Brown University. 

Sixteen infrared motion capture cameras (Qualisys, Deerfield, IL) were placed around a 14 

x 20 m tracking area and used to record head position and orientation at 60 Hz. Each 

participant wore a lightweight bicycle helmet with five passive reflective markers on 

protruding stalks in a unique configuration, so each participant could be independently 

identified, and position and orientation could be derived. 

Procedure 

 In two separate blocks, one participant (designated the follower) was either directly 

behind or side-by-side another participant (designated the leader; a confederate). The 

follower was instructed to walk with the leader and stay with them if they changed speed 

or direction, while maintaining a constant distance. On each trial, the participants walked 

to starting marks on the floor that specified the initial interpersonal distance (1, 2, or 4 m). 

Before each trial, the leader received covert written instructions, directing them to make 

two changes during that given trial. These instructions contained directions to either change 

speed or direction (but not both). In the speed change trials, the leader received one of the 

four following instructions: (1) speed up and then speed up again, (2) speed up - slow down, 

(3) slow down - slow down, (4) slow down - speed up. In the direction change trials, the 

leader received one of the four following instructions: (1) turn right and then turn right 

again, (2) turn right - turn left, (3) turn left - turn left, (4) turn left - turn right. Blocks also 

contained two control trials in which the leader received covert written instructions to not 

change speed nor direction. The leader was trained and performed two practice trials on 

these instructions before the follower entered the hall and data was recorded. 
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To initiate the trial, the experimenter gave a verbal “begin” command to both 

participants, who started walking forward. The leader then made their instructed changes 

while walking about 20 m across the hall, varying the timing and magnitude of each change 

at will. The ten possible sequences and three initial distances were presented once in a 

random order, yielding 30 trials per block. 

Design 

 The experiment had a 2x3x10 factorial design: 2 walking scenarios (Following, 

Side-by-side), 3 initial distances (1, 2, 4 m), and ten instructed sequences. This was 

repeated across three sessions with different participants, for a total of 180 trials. 

Data processing 

 Due to tracking errors in the large hall, head positions and orientations were 

successfully recovered on 85% of the trials. There was a total of 153 usable trials, 72 trials 

in the Following scenario and 81 trials in the Side-by-Side scenario. The time series of 

head position in the horizontal plane were filtered using a 4th-order low-pass Butterworth 

filter with a cutoff frequency of 0.6 Hz. This was to remove tracker noise and reduce 

oscillations due to the step cycle. The first two seconds of every trial was removed, so that 

the participant was at a steady-state of locomotion for analysis and modeling. The last 

second of every trial was removed, to avoid any errors due to filtering at the edges of 

recorded data (see Howarth & Callaghan, 2009). Speed and heading of each participant 

were computed from the filtered position data as the displacement between successive time 

steps. 



 

23 

 

2.4 Experiment 1 - Results 

Representative trials for the Following condition, in which the leader changed 

speed or heading, appear in Figure 2.4 and for the Side-by-side condition in Figure 2.5. 

These plot the position, speed, and heading for both leader and follower. In all cases, the 

leader initiates the change in locomotion first and then the follower aligns their locomotion 

with the leader. The coupling strength was high, with a mean correlation between leader 

and follower for speed of Pearson’s r = 0.87 in speed changing trials and a mean correlation 

for heading of r = 0.85 in heading changing trials. These experimental results provide clear 

evidence that leader and follower are strongly coupled, and thus are satisfactory data for 

fitting the free parameters in the visual model. 

Figure 2.4. Representative trials from the Following condition in Experiment 1. Panels 

(a-c) show position (circle is the starting point, x is the end point of the trial), speed, and 

heading for a speed up - slow down 2 m initial distance condition. Panels (d-f) show 

position, speed, and heading for a right - left 1 m initial distance condition. 
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2.5 Fitting the Model 

To find the best fitting parameters for the speed and heading equations of the visual 

model, the experimental trials were simulated, and the resulting time series compared to 

the human data. Each trial was simulated by taking the leader’s time series of position and 

the follower’s initial position, speed, and heading as inputs to Equations (3) and (4).  

 Model performance was evaluated on each trial by computing the root-mean-

squared-error (RMSE) between the model and human time series for each equation 

independently. Performance for the two parameters for Equation (3) (radial acceleration) 

were evaluated by taking RMSE between the follower’s and model’s speed, in speed 

change trials only. Performance for the two parameters for Equation (4) (angular 

acceleration) were evaluated by taking RMSE between the follower’s and model’s heading, 

Figure 2.5. Representative trials from the Side-by-side condition in Experiment 1. Panels 

(a-c) show position (circle is the starting point, x is the end point of the trial), speed, and 

heading for a slow down – speed up 1 m initial distance condition. Panels (d-f) show 

position, speed, and heading for a left-right 4 m initial distance condition. 

 



 

25 

 

in heading change trials only. Thus, the performance of each equation’s two parameters 

was evaluated independently. This was due to heading not varying in the speed condition 

and vice versa. The parameters were fit using a cross-validation criteria. On each iteration, 

trials were randomly distributed into a training set (made up of 75% of trials) and a test set 

(made up of the remaining 25%). The Broyden-Fletcher-Goldfab-Shanno Method (Shanno, 

1985) for numerical optimization was used to find the set of parameter values for a given 

training set that minimized the RMSE for each fit parameter. These training parameters 

were then used to simulate the trials in the test set and used to calculate the mean RMSE 

across the trials in the test set. A new iteration was then begun, randomly distributing trials 

between training and test sets, until 100 iterations were conducted. The final fixed 

parameters were calculated by taking the value that corresponded to the mean RMSE from 

the test sets across all iterations. The final parameter values and corresponding RMSE and 

mean correlations across all trials can be found in Table 2.1. The resulting parameter values 

were fixed for all subsequent simulations of the visual model in this dissertation, to avoid 

overfitting and to produce a predictive model that will generalize to new experimental 

conditions. 

 

2.6 Experiment 1 – Model Simulations 

 The mean correlation (Pearson’s r) between follower and model for speed and 

heading were strong (speed: r = 0.75, heading: r = 0.77). Thus, the visual model closely 

reproduces the time series, and accounts for the coordination of speed and heading of 

following a single leader using only optical expansion, angular velocity, and eccentricity 

as inputs. 
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 To demonstrate how these fit parameters tradeoff in their respective control laws, 

Figure 2.6 takes the numerically computed optical expansions and angular velocities from 

the simple examples in Figure 2.2 and computes the respective simulated speed and 

heading changes using Equations (3) & (4) and the fit parameters. The first row of panels 

in Figure 2.6 show the computed speed and heading changes from a leader slowing down 

Equation Mean RMSE  SD RMSE Mean r SD r 

Angular 

Velocity 

Parameter 

Expansion 

Parameter 
 

 

Speed 0.167 m/s  0.152 0.75 0.55 𝑐1 = 0.180 𝑐2 = 0.72  

Heading 5.972 deg  0.503 0.77 0.44 𝑐3 = 14.38 𝑐4 = 59.71  

 

Table 2.1. Mean and standard deviation of RMSE, mean and standard deviation of 

correlation (Pearson’s r), and fit parameters from the optimization process using 

Experiment 1 as input, for Equations (3) and (4). 

 

Figure 2.6. Computed speed and heading changes using Equation’s (3) & (4), using the 

toy examples from Figure 2.2. Panel’s (a-c) show a neighbor slowing down -0.1 m/s,  
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-0.1 m/s. Regardless of eccentricity, a leader slowing down causes the model to slow down 

(panel b), with little change in heading (panel c). The second row of Figure 2.6 shows the 

respective computations of speed and heading changes of a neighbor turning left by 90°. 

Here, regardless of eccentricity, a leader’s left turn causes little change in speed (panel e) 

and a larger change in heading (panel f). 

 Figure 2.7 and Figure 2.8 show the representative trials from Experiment 1, together 

with simulations of the follower using Equations (3) and (4) and the fit parameters. These 

show the time series for position, speed, and heading for four trials. In each, the blue dashed 

curve is the trajectory of the model, which accurately simulates the follower’s locomotor 

behavior.  

Figure 2.7. Representative simulations from the following condition of Experiment 1. 

The model (blue dashed curve) simulates follower trajectory. 
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 However, Experiment 1 alone does not validate that model. While the model uses 

optical variables as input, the follower participants in Experiment 1 may have been using 

other sources of information to control locomotion and follow the leader. In addition, due 

to the constraints of the experiment, the behavior of the leader cannot be perfectly 

controlled and may vary in unknown ways. However, this is a benefit for parameter fitting, 

as it gives more variation to fit with. To demonstrate the generalizability of the visual 

model, Experiment 2 was conducted. This experiment brought following one neighbor into 

a virtual reality environment, ensuring that pedestrians can follow a controlled single target 

using only the 2D optical information of expansion and angular velocity. 

 

Figure 2.8. Representative simulations from the side-by-side condition of Experiment 1. 

The model (blue dashed curve) simulates follower trajectory. 
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2.7 Experiment 2 - Following a Virtual Leader 

 Experiment 2 investigated the locomotion dynamics of following using virtual 

reality techniques. The purpose of the experiment was to test the visual model by 

manipulating the optical information presented to the participant during walking, to see 

whether the model generalizes to a wider range of conditions, and to see if the computed 

asymmetries in visual information produce asymmetries in human following. Specifically, 

to test the efficacy of the proposed optical variables, the participant followed a virtual target 

pole in empty space, while the optical expansion and/or the angular velocity of the target 

was perturbed, and the participant's walking trajectory was recorded. Based on Figure 2.1, 

we predict that if the target’s optical expansion is perturbed when the target is at 0° 

eccentricity from the participant, the participant should change speed. While ±90° 

eccentricity was not possible in this experiment (given the limited field of view of the head-

mounted display), if the target’s optical expansion is perturbed when the target is at ±60° 

eccentricity from the participant, the participant should change speed and heading. 

Participants 

 12 participants were recruited at Brown University, 8 female and 4 male. None 

reported any visual or motor impairment. The research protocol was approved by Brown 

University’s Institutional Review Board, in accordance with the principles expressed in the 

Declaration of Helsinki. Informed consent was obtained from all participants, who were 

paid for their time. 

Apparatus 

 The experiments were conducted in the Virtual Environment Navigation 

Laboratory (VENLab) at Brown University. Participants walked in a 12 x 14 m tracking 
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area while wearing a stereoscopic head-mounted display (HMD, Oculus Rift DK1, 640 x 

800 pixels per eye, 90° view, 60 Hz frame rate, 100% binocular overlap). Head position 

and orientation were recorded with an ultrasonic/inertial tracking system (Intersense IS-

900, 60 Hz sampling rate) and used to update the display (50–67 ms latency). 

 

 

Procedure  

 Participants began each trial by facing toward an orientation pole floating in space. 

After 3 seconds, the orientation pole disappeared and the target to be followed appeared 

within their field of view, moving away from the participant. Participants were instructed 

to over headphones to “walk with the target as if walking down the street with it, while 

maintaining a consistent distance and orientation to the target”.  

Displays 

 The target was a virtual pole that appeared to be 0.4 m in width, 2 m in height (with 

approximately 1.6 m below eye level, dependent on participant eye height), floating in a 

black featureless space. The target appeared at five initial eccentricities relative to the 

participant’s initial facing direction: -60˚ and -30˚ (to left of the participant), 0˚ (directly in 

front of the participant), and +30˚ and +60˚ (to the right of the participant) and it could 

appear at 2 distances (1 m, 4 m). To remove distance information, there was no ground 

plane and the target was presented synoptically. Specifically, the calculated target position 

was at an infinite distance, and its subtended visual angle and visual direction were 

dynamically computed to simulate an object with a consistent size and eccentricity from 

the participant's viewpoint. Thus, the only information available to the participant was 2D 
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optical variables of expansion and angular velocity. At the beginning of the trial, the target 

pole would appear to move forward on a straight path (parallel to the participant's facing 

direction) at 0.8 m/s. 4.5 seconds into the trial, the pole's visual angle and/or angular 

velocity was perturbed to simulate a change in the pole's speed (-0.2, 0, or +0.2 m/s) or 

direction (-30˚ leftward, 0˚, or +30˚ rightward) or both. For example, with a target ahead 

of the participant (0˚ eccentricity), the visual angle of the pole was perturbed to create an 

optical expansion rate specifying a -0.2 m/s decrease in the pole's speed, or the angular 

velocity of the pole was increased to specify a 30˚ turn to the right, or both. With a target 

at an eccentricity of 60˚, a particular combination of optical expansion and rightward 

angular velocity would specify a -0.2 m/s decrease in the pole's speed, while a different 

combination would specify a 30˚ turn to the right. Figure 2.9 diagrams all target starting 

positions relative to the participant and a rightward trajectory for one target. After the 

participant walked the length of the room (approximately 10 m), the participant heard a 

voice over headphones that said ‘end’, that trial would be over, and the target would 

Figure 2.9. Diagram of the 10 target starting positions of Experiment 2 by distance (1 m, 4 

m) and eccentricity (0˚, ±30˚, ±60˚) relative to the participant, with one rightward trajectory 

plotted. 
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disappear. A new orientation pole would then appear, signifying the beginning of the next 

trial.  

Design 

 The experiment had a 5x2x3x3 factorial design: 5 target eccentricities (-60˚, -30˚, 

0˚, +30˚, +60˚), 2 target distances (1 m, 4 m), 3 simulated speed perturbations (-0.2 m/s, no 

change, +0.2 m/s), 3 simulated heading perturbations (+30˚, no change, -30˚). This was 

replicated twice over two blocks, for a total of 180 trials. 

Data processing 

 2160 trials were recorded across participants. Of those, 214 had to be thrown out 

due to tracking errors, leaving 1949 usable trials (90% of trials). The time series of head 

position (x, y) in the horizontal plane were filtered using a 4th-order low-pass Butterworth 

filter with a cutoff frequency of 0.6 Hz. This was to remove tracker noise and reduce 

oscillations due to the step cycle. The first two seconds of every trial was removed, so that 

the participant was at a steady-state of locomotion for analysis and modeling. The last 

second of every trial was also removed, to avoid any errors due to filtering at the edges of 

recorded data (see Howarth & Callaghan, 2009). Time series of speed and heading for each 

trial were computed from the filtered position data as the displacement between successive 

time steps. 

 Because the stimuli target only changed in optical size and angular velocity (instead 

of physically moving through space away from the participant), the target’s specified 

position, speed, and heading were used for analysis and modeling. This specified position 

was calculated by taking the distance specified by the visual angle of a 0.4 m object at an 

angle specified by the target’s eccentricity from the participant’s known position at every 
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time step (this causes the oscillations seen in target leader time series (red) in Figure 2.10, 

as the target’s position is computed from participant position, which oscillates). 

 

2.8 Experiment 2 - Results 

 Representative trials from Experiment 2 appear in Figure 2.10. These plot the 

position, speed time series, and heading time series for the participant and the target pole 

Figure 2.10. Representative trials from Experiment 2. Panels (a-c) shows a 4 m initial 

distance, 0° eccentricity trial, where the target’s angular velocity specified a right turn, with 

constant optical size. Panels (d-f) shows a 1 m initial distance, 60° eccentricity trial, with 

constant angular velocity and a change in optical size that specified the target slowed down. 

Note that the target expanded while at an eccentricity ≠ 0°. To the participant this specified 

a target slowing down and turning slightly inward, which caused an accompanying change 

in participant trajectory. Panels (g-i) shows a 1 m initial distance, -30° eccentricity trial, 

where angular velocity specified a left turn and the optical size changed to specify the target 

sped up. 
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as specified by the 2D optical variables of optical expansion and angular velocity. The 

coupling strength was high, with a mean correlation between participant and target of r = 

0.51 for speed and r = 0.53 for heading across all trials.  

 As demonstrated by Euclid’s Laws and Figure 2.3, identical magnitudes of a 

leader’s relative change in speed or heading can be observed by a follower as asymmetrical 

magnitudes of optical expansion and angular velocity. These asymmetries are produced by 

two methods of motion: (1) whether the leader’s relative motion brings them toward or 

away from the follower, and (2) whether the leader’s motion is at a close or far distance. 

In order measure if the asymmetries computed in Figure 2.3 cause asymmetrical locomotor 

responses when following a single leader in Experiment 2, the mean time series was 

computed in each condition for each participant and compared across conditions that match 

up with the computed asymmetries. 

 Figure 2.11 addresses the asymmetry of optical information produced by motion 

toward or away from a follower. Panel (a) shows the mean speed change across all 

participants in response to the target’s change in optical expansion at an eccentricity of 0˚. 

Comparing when the target contracted (specifying that it sped up; green curve) to when the 

target expanded (specifying that it slowed down, red curve), participants responded more 

quickly and to a greater degree when the target expanded, which is relative motion toward 

the participant. A repeated measures ANOVA comparing the mean final participant speeds 

across the last two seconds (shaded yellow region) found a significant difference across the 

three conditions (F(2, 33) = 288.55, p < 0.001). Post hoc comparisons (Figure 2.11, panel 

c) found a significant differences between the contraction condition and the control (t(22) 

= 15.32, p < 0.001) and between the expansion condition and control (t(22) = 21.30, p < 
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0.001), demonstrating that optical expansion controls participant speed at 0˚ eccentricity. 

In addition, a post hoc comparison between the expansion and contraction conditions found 

participants changed speed more in response to a target expanding compared to contracting 

(t(22) = -4.87, p < 0.001). 

 Figure 2.11, panel (b) shows the mean heading change across all participants in 

response to the target’s change in angular velocity at an eccentricity of 60˚. Here the 

participant’s heading has been collapsed across 0˚ when the target turned toward or away 

Figure 2.11. Speed and heading response to target optical expansion and angular velocity 

changes. Participant data demonstrates that the asymmetry of optical information caused 

by the relative direction of motion of a leader causes an asymmetrical speed and heading 

change in a follower. 
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from the participant. Comparing when the target turned toward the participant (pink curve) 

to when the target turned away (light blue curve), participants responded again responded 

more to relative motion toward them. A repeated measures ANOVA comparing the mean 

final participant heading across the last two seconds (shaded yellow region) found a 

significant difference across the three conditions (F(2, 33) = 145.81, p < 0.001). Post hoc 

comparisons (Figure 2.11, panel d) found a significant differences between the target 

turning toward condition and the control (t(22) = 21.55, p < 0.001) and between the target 

turning away condition and control (t(22) = 17.98, p < 0.001), demonstrating that angular 

velocity controls participant heading at 60˚ eccentricity. In addition, a post hoc comparison 

between the turned toward and turned away conditions found heading changed more in 

response to a target’s relative motion toward the participant (t(22) = 3.8259, p = 0.002). 

 The results of panels (c) and (d) together demonstrate that optical information can 

act as control laws in speed for following and that the asymmetry of optical information 

caused by the relative direction of motion of a leader causes asymmetrical speed and 

heading changes in a follower. 

 Figure 2.12 addresses the asymmetry of optical information produced by motion at 

a close or far distance. Panel (a) shows the mean speed change across all participants in 

response to the target’s change in optical expansion when the target was at 1 m distance 

compared to 4 m. Comparing when the target changed rate of expansion at 1 m (red curve) 

to when the target was at 4 m (orange curve), participants responded more quickly and to 

a greater degree when the target was closer. A repeated measures ANOVA comparing the 

mean final participant speeds across the last two seconds (shaded yellow region) found a 

significant difference across the four conditions (F(3, 44) = 76.76, p < 0.001). Post hoc 
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comparisons (Figure 2.12, panel c) found a significant differences between the 1 m change 

condition and the control (t(22) = 14.82, p < 0.001) and between the 4 m change condition 

and control (t(22) = 16.68, p < 0.001), demonstrating that changes in optical expansion 

cause a reduced influence on participant speed at greater distances. In addition, a post hoc 

comparison between the 1 m and 4 m optical expansion conditions found participants 

changed speed more in response to a closer target compared to a farther one (t(22) = 6.73, 

p < 0.001). 

 Figure 2.12, panel (b) shows the mean heading change across all participants in 

response to the target’s change in angular velocity when the target was at 1 m distance 

compared to 4 m. Here the participant’s heading has been collapsed across 0˚, across left 

and right participant turns. Comparing when the target changed angular velocity at 1 m 

(light blue curve) to when the target was at 4 m (dark blue curve), participants responded 

more quickly and to a greater degree when the target was closer. A repeated measures 

ANOVA comparing the mean final participant headings across the last two seconds 

(shaded yellow region) found a significant difference across the four conditions (F(3, 44) 

= 210.84, p < 0.001). Post hoc comparisons (Figure 2.12, panel d) found a significant 

differences between the 1 m change condition and the control (t(22) = 18.37, p < 0.001) 

and between the 4 m change condition and control (t(22) = 16.34, p < 0.001), demonstrating 

that changes in angular velocity cause a reduced influence on participant heading at greater 

distances. In addition, a post hoc comparison between the 1 m and 4 m angular velocity 

conditions found participants changed heading more in response to a closer target 

compared to a farther one (t(22) = 4.56 , p < 0.001). 
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 The results of panels (c) and (d) together demonstrate that the asymmetry of optical 

information caused by the distance of a leader cause asymmetrical speed and heading 

changes in a follower. 

 Taken together, the results from Experiment 2 provide clear evidence optical 

expansion and angular velocity are effective information for the control of pedestrian 

following. The asymmetries present in Experiment 2 further demonstrate that pedestrians 

use optical information (as opposed to direct changes in speed and heading) to align 

locomotion with a leader when following. This is a critical property of pedestrian 

Figure 2.12. Speed and heading response to target changes at 1 m compared to 4 m. 

Participant data demonstrates that the asymmetry of optical information caused by the 

distance to a leader causes an asymmetrical speed and heading change in a follower. 
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following, one that the visual model of following is equipped to reproduce. This allows 

Experiment 2 to serve as a test for the visual model for following, based on optical 

expansion and angular velocity. 

 

2.9 Experiment 2 – Model Simulations 

 To compare the behavioral and visual models, all trials in Experiment 2 were 

simulated using both models with fixed parameters, taking the participant's initial 

conditions as input. The behavioral model (Dachner & Warren, 2014; Rio et al., 2014) 

relies on the physical variables of speed, heading, and distance of the leader and follower 

as input. A theoretical limitation of the behavioral model is that it cannot account for the 

Figure 2.13. Representative trials from Experiment 2. Each trial was simulated using the 

visual model and the behavioral model. 
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asymmetries found in follower response in Experiment 2 and instead relies on the physical 

variables that are not directly perceived. Thus, the computed physical variables served as 

input to the behavioral model, whereas the target's computed visual angle and angular 

velocity were taken as input to the visual model. Figure 2.13 shows representative trials 

from Experiment 2 modeled using both the visual model and the behavioral model. 

 The mean time series for both models was taken across conditions for comparison. 

Figure 2.14 plots the model means from the conditions previously plotted in Figure 2.11, 

which looked at the optical asymmetry due to whether a leader’s relative motion is toward 

or away from a follower. Panel (a) shows the mean speed change across both models, 

simulating a follower’s response to the target’s change in optical expansion at an 

eccentricity of 0˚. Critically, the visual model (dashed curves) captured the asymmetrical 

response to a target contracting (green; specifying the target sped up) compared to 

expanding (red; specifying the target slowed down), while the behavioral model (dotted 

Figure 2.14. Mean speed and heading time series of both models for changes in optical 

expansion and angular velocity for motion toward and away from the follower. Shaded 

regions are the 95% confidence interval of participant data. Results demonstrate that the 

visual model better simulates asymmetrical response caused by the relative direction of 

motion of a leader. 
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curves) did not capture this asymmetry. The shaded regions are the 95% confidence 

interval of the participant data, further demonstrating the visual model’s speed simulations 

perform more closely to participant data. 

 Figure 2.14, panel (b) shows the mean heading change across both models, 

simulating a follower’s response to the target’s change in angular velocity at an eccentricity 

of 60˚ (collapsed across 0˚). As with the speed time series, the visual model (dashed curves) 

captured the asymmetrical response to a target turning toward (pink) compared to turning 

away (blue), while the behavioral model (dotted curves) did not. Here again the asymmetry 

is simulated by the visual model, where a target turning away caused a reduced maximal 

turn compared to a target turning toward the model. The shaded regions are the 95% 

confidence interval of the participant data, again demonstrating the visual model’s heading 

simulations also perform more closely to participant data. 

 Together, these simulations demonstrate a follower’s asymmetrical response to a 

leader’s relative motion toward or away from the follower is likely driven by the 

asymmetry in optical variables, as predicted by Euclid’s laws of optics. 

  Figure 2.15 plots the model means from the conditions previously plotted in Figure 

2.12, which looked at the optical asymmetry due to the distance between leader and 

follower. Panel (a) shows the mean speed change across both models, simulating a 

follower’s response to the target’s change in optical expansion when the target was at 1 m 

distance compared to 4 m (collapsed across the control speed of 0.8 m/s). As with the 

previous asymmetry, the visual model (dashed curves) captured the asymmetrical response 

between a close target (red, 1 m) and a far target (orange; 4 m), while the behavioral model 

(dotted curves) did not capture this asymmetry. The shaded regions are the 95% confidence 
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interval of the participant data, further demonstrating the visual model’s speed simulations 

perform more closely to participant data. 

 Figure 2.15, panel (b) shows the mean heading change across both models, 

simulating a follower’s response to the target’s change in angular velocity when the target 

was at 1 m distance compared to 4 m. Here again, the visual model (dashed curves) 

captured the asymmetrical heading response between a close target (dark blue, 1 m) 

compared to a far target (light blue, 4 m), while the behavioral model (dotted curves) did 

not. The asymmetry due to distance is simulated by the visual model. The shaded regions 

are the 95% confidence interval of the participant data, again demonstrating the visual 

model’s heading simulations also perform more closely to participant data. 

 Due to Euclid's law of visual angles, closer targets produce larger visual change, 

than farther targets, eliciting a faster and larger response. This asymmetry is what is 

captured by the visual model, allowing it to simulate asymmetries in both speed and 

heading that the behavioral model cannot capture. 

Figure 2.15. Mean speed and heading time series of both models for changes in optical 

expansion and angular velocity, comparing effect of distance. Shaded regions are the 95% 

confidence interval of participant data. Results demonstrate that the visual model better 

simulates asymmetrical response caused by distance to the leader. 
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 Quantitative measures of error between the participants and models for speed time 

series and heading time series were taken in order to test which model best captured 

participant behavior (Figure 2.16). Tests comparing the mean metric distance between 

participant position and model position over time revealed that the visual model has 

significantly less RMSE for speed (t(22) = 2.21, p < 0.001), and less RMSE for heading 

(t(22) = 10.05, p < 0.001) than the behavioral model. Bayesian model comparison (Nuijten, 

et. al, 2015) yielded a scaled JZS Bayes Factor of BF10 = 3.13 for speed, indicating 

substantial evidence for support of the speed component of the visual model, and a scaled 

JZS Bayes Factor of BF10 = 5649731 for heading, indicating decisive evidence for support 

of the heading component of the visual model. There was also less error in measured 

position (x, y) distance between the participant data and the visual model compared with 

the behavioral model, but quantitative analysis was not conducted on these means, as 

position is not independent from speed and heading. These results demonstrate that the 

visual model performs better than the behavioral model on each metric. This finding 

implies that the visual model relies on the same optical variables that human pedestrians 

Figure 2.16. Comparison of error measurements between the participant and each model: 

mean metric distance between participant position and model positions, RMSE for speed, 

and RMSE for heading. In all cases, the visual model produces less error. 
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use to control following (optical expansion and angular velocity) as opposed to the physical 

variables of speed and heading, which themselves must be derived from optical variables 

by the visual system. This property allows the visual model to capture asymmetries and 

effects of distance the behavioral model cannot. 

 

2.10 Discussion 

 The presented results provide clear evidence for the strength of a model for 

following a leader based on visual input. Experiment 1 demonstrated that pedestrian 

followers successfully align their speed and heading with that of a leader, and that dyad 

pedestrians are tightly coupled in their locomotor behaviors. Experiment 2 demonstrated 

that optical variables alone are sufficient to explain following behavior. Specifically, 

optical expansion and angular velocity trade off in controlling the follower’s speed and 

heading as a function of the leader’s eccentricity. The results from both studies were then 

used to test a visual model for following a single target. This model was fit to the 

trajectories from Experiment 1, and generalized to the trajectories from Experiment 2 with 

the fixed parameters found in Experiment 1. This model can capture aspects of pedestrian 

following (such as effects of distance and asymmetries in alignment response) that a 

behavioral model cannot. This power of the visual model is likely due to the fact it is driven 

by visual information, which is inherently asymmetrical, as derived by Euclid’s law of 

visual angles and demonstrated by Figure 2.3. This information asymmetry drives 

asymmetrical locomotor following behaviors in pedestrians. 
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2.11 Conclusion 

 We believe that the ability of a pedestrian to follow their neighbor is a critical 

component of collective crowd behavior. Thus far we have derived a visual control model 

that accounts for following a single neighbor. We now propose to scale up this model to 

explain following a crowd. The subsequent chapters will determine how the visual model 

accomplishes this task. If the model scales up to larger crowds, it can be applied to large-

scale simulations of collective motion and tackle open questions about the information 

pedestrians use to follow not just one neighbor, but a whole crowds. The aim of this project 

is a simple empirically-grounded model of the visual coupling that can serve as a basis for 

understanding self-organized collective motion. 
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CHAPTER 3 

 

 The Visual Model: Following a Crowd 

  



 

47 

 

3.1 Introduction 

 It is widely believed that collective motion in human crowds emerges from the local 

interactions between individual pedestrians. In many models of collective motion, a critical 

interaction is following a neighbor, in which the velocity vector (speed and heading 

direction) is aligned with the neighbor's velocity vector. Based on experiments on 

pedestrian following, Chapter 2 formalized this interaction as a visual control law in which 

the follower's speed and heading are controlled by the optical expansion and angular 

velocity of a leader. In addition, Chapter 2 showed how the visual model, which uses 

optical variables as input, performs better than a behavioral model that uses the physical 

variables of speed and heading as input. Evidence shows that the optical information of a 

leader is inherently asymmetrical when observed by a follower. These asymmetries lead to 

asymmetrical following behaviors, which are captured by the visual model. 

 The visual control law for following a single neighbor may be extended to 

following a crowd in a crowd by the principle of superposition (Rio, Dachner, & Warren, 

2018). Thus, the interaction rule for a single neighbor found in Chapter 2 can be applied to 

the interactions in a whole crowd. Chapter 3 will derive an averaging version of the visual 

model and experimentally test it using three datasets of crowd behavior, to test whether the 

visually-guided location principles found in Chapter 2 also apply across a crowd. 

 

3.2 Visual model for following a crowd 

 Equations (3) and (4) in Chapter 2 describe a visual model for following a single 

neighbor that takes their optical expansion, angular velocity, and eccentricity as input. 

Similar equations will be used for following a crowd, due to the assumption that the 
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superposition principle applies to following in a crowd (Rio, Dachner, & Warren, 2018). 

This assumption states that the response to multiple neighbors is the sum (or average) of 

the responses to each individual neighbor. That is, the responses are independent, and can 

be linearly combined. Chapter 3 will take the equations that describe the control law for an 

individual neighbor (as derived in Chapter 2), and apply them to each neighbor in a crowd, 

where the visual control law for speed is given by:  

�̈� =
1

𝑛
∑(− 𝑐1 ∙ 𝑠𝑖𝑛(𝛽𝑖) ∙ �̇�𝑖 − 𝑐2 ∙ 𝑐𝑜𝑠(𝛽𝑖) ∙ �̇�𝑖)

𝑛

𝑖=1

 

and the visual control law for heading is given by: 

�̈� =
1

𝑛
∑(− 𝑐3 ∙ 𝑐𝑜𝑠(𝛽𝑖) ∙ 𝜓𝑖

̇ + 𝑐4 ∙ 𝑠𝑖𝑛(𝛽𝑖) ∙ 𝜃�̇�)

𝑛

𝑖=1

 

where �̈� is the follower’s radial acceleration, �̈� is the follower’s angular acceleration, 𝛽𝑖 is 

the eccentricity neighbor i, 𝜓𝑖
̇  is the angular velocity of neighbor i, and 𝜃�̇� is the optical 

expansion rate of neighbor i. 𝑐1−4 are the same parameters as found in Chapter 2, which 

are held fixed to avoid overfitting and to demonstrate the visual model generalizes from 

single to multiple neighbors. The optical variables are computed from the follower's 

observation point for each neighbor in the field of view, summed, and then divided by the 

number of neighbors within the field of view, yielding the mean of optical influence across 

the crowd in view. 

 Note, the model will ignore any neighbors that are beyond ±90° eccentricity 

reflecting the fact that a pedestrian in the crowd cannot perceive neighbors outside the field 

of view (FOV). This is important, because it restricts information transfer in the crowd to 

(5) 

(6) 
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passing from the front of the crowd toward the back, and does not allow for the back-most 

neighbors in a crowd to directly influence those in the front. 

 Also note that, in the visual model, a pedestrian's neighborhood does not have a 

limited range of interaction. With the behavioral model, neighbors beyond 5 m no longer 

influence the pedestrian, reflecting an exponential decay with distance observed in 

empirical data (Rio, Dachner, & Warren, 2018). In the visual model, the observed decay 

with distance is a natural consequence of Euclid's law of visual angles. When computing 

the average influence, the visual model divides by n, where n is the total number of 

neighbors in the field of view. However, it may become necessary to define a cutoff for n, 

based on detection thresholds for optical expansion (Regan & Beverley, 1979a; Wann, et 

al., 2011; Hoffmann, 1994) and angular velocity (Regan & Beverley, 1973b; Trent & 

Warren, 2017), below which a neighbor’s relative motion is not perceived. This threshold 

would capture three interacting variables for how object motion translates to optical 

expansion and angular velocity: target size, target distance, and magnitude of motion 

change. 

 In this chapter, I test whether the visual model (Equations 5 & 6) generalizes from 

single to multiple neighbors by simulating two datasets from previous crowd experiments. 

Experiment 3 models the effect of neighbor distance within a virtual crowd on the 

participant's control of heading and speed, and Experiment 4 models the effect of distance 

to the virtual crowd as a whole. 
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3.3 Experiment 3 - Effect of Distance in a Crowd 

 Experiment 3 is crowd data taken from Experiment 2 in Rio, Dachner, & Warren 

(2018). The original purpose of the experiment was to find if the influence of perturbed 

neighbors in a crowd decreased with their distance from the participant. This effect was 

modeled by weighting the influence of each neighbor in the behavioral model, with a 

weight decayed exponentially with distance (Rio, Dachner, & Warren, 2018). The data will 

be simulated with both the behavioral and the visual model in order to compare the two 

models. In theory, the visual model can naturally capture an effect of distance. As metric 

distance increases to a neighbor moving at a fixed speed, their relative angular velocity and 

optical expansion rate decreases in accordance with Euclid's law of visual angles. 

Specifically, as distance increases, the visual angle subtended by an object (as well as it's 

rate of change for a moving object) decreases with the arctangent of the inverse of distance, 

which is approximated by an exponential function. This should lead to naturally reduced 

influence of distant neighbors in the visual model, without requiring the explicit distance 

weight in the behavioral model. 

Participants 

 10 participants were recruited at Brown University, 6 female and 4 male. None 

reported any visual or motor impairment. The research protocol was approved by Brown 

University’s Institutional Review Board, in accordance with the principles expressed in the 

Declaration of Helsinki. Informed consent was obtained from all participants, who were 

paid for their time. 

Apparatus 

 The experimental apparatus was identical to Experiment 2. 
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Procedure 

 Participants were instructed to walk as naturally as possible, to treat the virtual 

pedestrians as if they were real people, and to stay together with the crowd. On each trial, 

the participant walked to the start pole and faced the orienting pole. After 2 seconds, the 

poles disappeared and the virtual crowd appeared; 1 second later, a verbal command 

(“Begin”) was played over headphones and the virtual crowd began walking. The display 

continued until the participant had walked about 12 m; a verbal command (“End”) signaled 

the end of the trial. In each experiment, there were eight heading trials and eight speed 

trials per condition, presented in a randomized order, with 80 trials in each 1-hour session. 

Displays 

 The virtual environment consisted of a granite-textured ground plane with a green 

start pole and a red orienting pole (3 m high, 0.2 m radius, 12.7 m apart) and blue sky. The 

virtual crowd was generated using 3D human models (WorldViz Complete Characters), 

animated with a walking gait at a randomly varied phase. Thirty virtual humans were 

positioned on two circles (radius 1.5 m, 3.5 m) with the participant at the center to enhance 

the sense of immersion. Twelve neighbors (N = 12) were experimentally manipulated, and 

appeared on two 90° arcs centered on the initial walking direction, within the HMD field 

of view. Five of these neighbors were placed at equal intervals on the 1.5 m radius arc (near 

zone), and seven on the 3.5 m radius arc (far zone); their positions were then subjected to 

Gaussian jitter in polar coordinates (distance r standard deviation = 0.15 m; eccentricity β 

standard deviation = 8°). The remaining 18 neighbors were also placed at equal intervals 

and similarly jittered. A different configuration was generated for each trial; all participants 
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received the same set of configurations, but virtual humans were randomly assigned to the 

positions.  

 During a trial, all virtual humans accelerated from a standstill (0 m/s) to a speed of 

1.0 m/s over a period of 3 seconds in the participant’s walking direction, following an ogive 

function (μ = 0, σ = 0.5 seconds) fit to previous data. On perturbation trials, after 2 seconds 

a subset (S) of the 12 neighbors then changed their heading direction (±10° left or right) or 

speed (±0.3 m/s) over a period of 0.5 seconds, following another ogive function (μ = 0, σ 

= 0.083 seconds). 

Design 

 Experiment 3 had a 2x2x2x5 factorial design: 2 perturbations (heading or speed) x 

2 direction (left/right or fast/slow) x 2 distance (near or far row) x 5 number perturbed (0, 

3, 6, 9, 12 in subset), for a total of 40 conditions. There were 4 repetitions per condition, 

for a total of 160 trials per participant. These trials were run across two sessions on 

consecutive days, in a randomized order. 

Data processing  

 Data was processed using the same procedures from Experiment 2. Trials were 

simulated using the visual and behavioral models as before. 

 

3.4 Experiment 3 - Results 

 To quantify the results of Experiment 3, participant mean final speed and heading 

was taken across the last two seconds of every trial in response to crowd perturbations. 

Both mean final speed and heading were collapsed across the control (1.0 m/s and 0°, 
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respectively), broken down by distance conditions and the number of perturbed neighbors 

(Figure 3.1). The response to the near row is greater than the far row for both speed and 

heading perturbations, and the curves converge when all 12 neighbors are perturbed. 

Results showed a significant effect on participant speed from neighbor distance (F(1, 9) = 

22.93, p < 0.001) and number of perturbed neighbors (F(4, 36) = 34.28, p < 0.001). 

Similarly, they showed a significant effect on participant heading from neighbor distance 

(F(1, 9) = 71.57, p < 0.001) and number of perturbed neighbors (F(4, 36) = 244.66, p < 

0.001). Taken together, these results are consistent with the superposition and neighbor 

distance hypotheses for following in a crowd and provide a good dataset to test the visual 

model for following in a crowd. 

 

3.5 Experiment 3 – Model Simulations 

 To compare the behavioral and visual models, all trials in Experiment 3 were 

simulated using both models, taking the participant's initial conditions as input. The visual 

Figure 3.1. Mean final speed (a) and heading (b) of the last two seconds of participant data 

from Experiment 3, broken down by distance conditions and number of neighbors 

perturbed. Results are consistent with superposition and distance hypotheses. 
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model used equations (5) and (6) and took the fixed parameters found in Chapter 2 for the 

visual model of following a single leader. The behavioral model used Equations (4.1) and 

(4.2) and the fixed parameters from Rio, Dachner, and Warren (2018). Representative trials 

and simulations from Experiment 3 appear in Figure 3.2. These plots show the position, 

speed, and heading for the participant, 12 virtual neighbors, and the visual and behavioral 

models, with one trial for the perturbation of speed and another for perturbation of heading. 

 The mean final 2 seconds of speed and heading for each trial was computed to 

compare model performance to participant data. Results of participants and simulations by 

Figure 3.2. Representative trials from Experiment 3, plotting the time series of position, 

speed, and heading over time for the participants, the virtual neighbors, and the visual and 

behavioral models. Panels (a-c) demonstrates 9 perturbed neighbors slowing down in the 

far row. Panels (d-f) demonstrates 3 perturbed neighbors turning left in the near row. 
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number of neighbors perturbed and distance for speed and heading can be found in Figure 

3.3. The shaded regions are the 95% confidence intervals for participant means. While the 

behavioral model for near and far distances and both speed and heading (dotted curves) fall 

within the confidence interval of human data, the visual models (dashed curves) do not. 

Tests comparing the RMS error between participant final means and both models across 

speed change trials finds a significant difference of speed between models (t(18) = 2.244, 

p = 0.038), and across heading change trials finds a significant difference of heading 

between models (t(18) = 3.202 p = 0.005). These are found in Figure 3.4. Bayesian model 

comparison yielded a scaled JZS Bayes Factor of BF10 = 2.05 for speed, indicating 

anecdotal evidence for the speed component of the behavioral model, and a scaled JZS 

Bayes Factor of BF10 = 8.73 for heading, indicating substantial evidence for the heading 

component of the behavioral model. 

Figure 3.3. Mean final speed (a) and heading (b) of the last two seconds of participant data, 

and simulations using the visual and behavioral models, taken from Experiment 3. The 

shaded regions are the 95% confidence interval of participant means. Note that in both 

cases, the visual model does not capture participant behavior. 
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 Overall, these tests demonstrate the visual model does not explain following a 

crowd as well as the behavioral model. These results are opposite to what was found in 

Chapter 2 for following a single neighbor. While both models capture effects of distance 

in following of a single neighbor, the visual model appears to over-weight the influence of 

far neighbors in a crowd. This can be seen in Figure 3.3, in which the visual model 

overshoots the human response when far neighbors are perturbed (red), indicating they are 

weighted too strongly. Conversely, the visual model undershoots the human response when 

near neighbors are perturbed (blue), again indicating that (in this case, unperturbed) far 

neighbors are weighted too strongly. 

 There are two possible explanations for this phenomenon. One explanation for the 

performance of the behavioral model is that far neighbors are drifting outside the 

neighborhood (the maximal distance of influence of 5 m), and so only closer neighbors are 

influencing the behavioral model. In the case of visual model, the neighborhood has no 

maximal distance of the neighborhood, and so farther neighbors are still influencing that 

model, thus increasing their weight. This implies there might be a limited distance range 

Figure 3.4. Comparison of error measurements between the participant and each model: 

RMSE for speed, RMSE for heading and mean metric distance between participant position 

and model positions, for Experiment 3. 
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of interaction that the behavioral model captures, and the visual model does not. Another 

explanation is that the influence of far neighbors depends not only on distance, but also on 

occlusion. In Experiment 3, neighbors in the far row are not just at a farther distance, but 

as a consequence are also more likely to be partially or fully occluded by neighbors in the 

near row. This could be an instance of a more general rule about crowds: the farther the 

neighbor within a crowd, the greater the likely degree of occlusion by nearer neighbors. 

Partially occluded neighbors may have reduced influence on a pedestrian in a crowd. The 

absence of occlusion in the visual model could be causing the over-weighting of far 

neighbors in simulations of Experiment 3. Simulating the data of Experiment 4 will seek 

to differentiate these explanations. 

 

3.6 Experiment 4 - Effect of Distance to the Nearest Neighbor in a Crowd 

 Experiment 4 simulates data from the Honors Thesis of Emily Richmond (2016), 

reported in Wirth & Warren (2016). The experiment’s goal was to determine whether the 

radius of a pedestrian's neighborhood depends on distance to the nearest neighbor in the 

crowd, distance within the crowd, or both. Simulations of behavioral and visual models 

will help understand the role of neighbor distance in the visual model. 

Participants 

 12 participants were recruited at Brown University, 8 female and 4 male. None 

reported any visual or motor impairment. The research protocol was approved by Brown 

University’s Institutional Review Board, in accordance with the principles expressed in the 

Declaration of Helsinki. Informed consent was obtained from all participants, who were 

paid for their time. 
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Apparatus 

 The experimental apparatus was identical to Experiment 3, except for the HMD 

was an Oculus Rift DK2 (960 x 1080 pixels per eye, 100° field of view, 75 Hz frame rate, 

100% binocular overlap), which sports a larger field of view and higher frame rate. 

Procedure 

 Participants were instructed to "walk with" 12 virtual neighbors, and to “treat them 

as if they were real people”. To begin each trial, participants stood at a green start pole and 

faced a grey orienting pole. After 2 seconds, the virtual neighbors appeared in front of the 

participant. After 1 second, a verbal command “begin” was heard over a loudspeaker, and 

the virtual pedestrians began walking. When the participant had walked for 12 seconds, a 

second verbal command “end” signaled the end of the trial. The participant then began the 

next trial by walking to a new green start pole, which appeared near the stopping point of 

the previous trial. 

Display 

 The virtual neighbors appeared in three arcs (near, mid, far arcs), with 4 neighbors 

in each arc. The initial distance between the participant and the ‘near arc’ varied by 

condition (2 m, 4 m, 6 m) with the successive mid arc spaced 2 m beyond the near arc and 

the far arc spaced another 2 m beyond that (Figure 3.5). A manipulated arc was randomly 

chosen on each trial and the heading direction of all 4 neighbors in that arc was perturbed 

(±10° left / right). Participant response trajectory was recorded.  
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Design 

 Experiment 4 had a 3x3x3 factorial design: 3 directions of change (left, no change, 

right) x 3 distances to the near arc (2 m, 4 m, 6 m) x 3 perturbed arcs (near, mid, far), for a 

total of 27 conditions. There were 3 repetitions per condition, for a total of 81 trials per 

participant. 

Data processing 

 Data was processed using the same procedures from Experiment 3. Trials were 

simulated using the visual and behavioral models as before. 

 

3.7 Experiment 4 – Results 

 To quantify the results of Experiment 4, participant mean final heading was taken 

across the last two seconds of every trial in response to arc perturbations. The mean final 

heading was then collapsed across left / right turns (0°), and broken down by the distance 

to the near arc and the distance to the perturbed arc (Figure 3.6). This plot shows that as 

the distance to the near arc increases (comparing the first point of the near, mid, and far 

Figure 3.5. Diagram of near, mid, and far arcs by distance to near arc for Experiment 4. 
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arcs), response to perturbation decreases - this is the known effect of distance. However, 

as distance to the perturbed arcs increases within a crowd (comparing the second and third 

points in an arc to the first point), a sharp drop off is also found. Taken together, the 

participant results for Experiment 4 shows that influence of neighbors drops off gradually 

to the nearest neighbor, and then that influence drops off rapidly to neighbors within the 

crowd. Comparing the condition mean where the near arc is at 2 m (green curve) and the 

perturbed arc is at 6 m (the third point along the green curve) to the condition mean where 

the near arc is at 6 m (red curve) and is also the perturbed arc (the first point along the red 

curve), demonstrates this property. Both perturbed arcs are at the same distance (6 m), but 

when that is also the distance to the near arc, it produces the largest response in the 

participant. Results found a significant effect distance to the near arc (F(2, 81) = 5.91, p < 

0.01), and a significant effect of perturbed arc (F(2, 81) = 59.75, p < 0.001), with a 

significant interaction between the two (F(4, 81) = 2.622, p < 0.05). Taken together, these 

results are consistent with the hypothesis that influence of neighbors drops off gradually to 

Figure 3.6. Mean final heading of the last two seconds of participant data from Experiment 

4, broken down by the distance to the near arc and the distance to the perturbed arc. Results 

are consistent with the double decay effect of distance hypothesis. 
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the nearest neighbor, and then that influence drops off rapidly to neighbors within the 

crowd, as a double decay with distance influence. 

 

3.8 Experiment 4 – Model Simulations 

 To compare the behavioral and visual models, all trials in Experiment 4 were 

simulated using both models, taking the participant's initial conditions as input. The 

simulations were conducted in the same manner as the simulations for Experiment 3. 

Representative trials and simulations from Experiment 4 appear in Figure 3.7. These plots 

show the position, speed, and heading for the participant, 12 virtual neighbors, and the 

visual and behavioral models. Panels (a-c) show a trial in which the near arc is at 2 m, and 

Figure 3.7. Representative trials from Experiment 4, plotting position, speed, and heading 

for participants, virtual neighbors, and simulations of both models. 
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is also the perturbed arc, which turns right. Panels (d-f) show a trial in which the near arc 

is at 6 m, and the mid row is perturbed to turn left. 

 The mean final 2 seconds of speed and heading for each trial was computed to 

compare model performance to participant data. Results of participants and simulations 

broken down by distance to the near arc and the distance to the perturbed arc can be found 

in Figure 3.8. The shaded regions are the 95% confidence intervals for participant means. 

In simulations of Experiment 4, both models perform poorly, however in different 

condition sets. The visual model captures the participant data well when the near arc is also 

the perturbed arc, regardless of distance to the near arc (Figure 3.8, the first points on the 

green dashed (2 m), blue dashed (4 m) and red dashed (6 m) curves). However, in 

conditions where the mid or far arc was perturbed (second and third points on the dashed 

curves), the visual model overperforms and does not match the participant data. In the case 

of the behavioral model, it performs well when the near arc is at 2 m (green dotted curve), 

Figure 3.8. Mean final heading of the last two seconds of participant data, and simulations 

using the visual and behavioral models, taken from Experiment 4. The shaded regions are 

the 95% confidence interval of participant means. Note that neither model captures 

participant behavior. 
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likely because these neighbors fall within its established distance neighborhood. However, 

when the near arc is at 4 m (blue dotted curve) or 6 m (red dotted curve), the behavioral 

model underperforms in capturing participant response, likely because they fall outside the 

model’s maximal influence distance of 5 m.  

 Taking the RMS error between the participant’s and each model’s heading for the 

last two seconds across all trials finds no significant difference between models (t(18) = 

1.24, p = 0.23; Figure 3.9). Bayesian model comparison yielded a scaled JZS Bayes Factor 

of BF10 = 1.48 for heading, indicating anecdotal evidence for the behavioral model. This 

tests suggest that the visual model is not capturing human behavior any better than the 

behavioral model.  

 

3.9 Experiment 4 - Discussion 

 The failure of both models to simulate the human data from Experiment 4, and the 

differences in the simulation results, clarify why the visual model is not performing well 

Figure 3.9. Comparison of error measurements between the participant and each model for 

Experiment 4, demonstrating the visual model did not capture participant data better than 

the behavioral model. 
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at simulating crowds. The visual model overshoots the human data when the perturbed arc 

is beyond the near arc (the mid and far points of the dashed arcs, Figure 3.8). This is caused 

by an overweighting of farther neighbors. In behavioral results, it is shown that participants 

are only weakly influenced by neighbors that are within the crowd (beyond the near arc). 

This suggests that the effect of distance is not just driven by Euclid's law, but some other 

effect that causes influence to drop within the crowd. Without an additional component to 

explain this effect, the visual model will not be successful simulate the behavioral results 

of following in a crowd, as observed in Experiments 3 and 4.  

 Occlusion is a likely candidate for this component, as it could explain why 

pedestrians are less influenced by farther neighbors than the visual model along would 

suggest. 

 

3.10 Conclusion 

 Chapter 3 attempted to simulate following a crowd using the visual model. 

Unfortunately, as demonstrated by Experiments 3 and 4, the model does not perform as 

well as the behavioral model. However, the results from Experiment 4 demonstrate that the 

effect of distance is gradual to the nearest neighbors and rapid within the crowd beyond. 

Partial occlusion of far neighbors may explain this observation. Chapter 4 will investigate 

the role of occlusion in crowds and add it to the visual model, to better simulate human 

crowd behavior. 
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CHAPTER 4 

 

Visual Occlusion in Crowds 
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4.1 Introduction 

 Chapter 3 found that following a crowd cannot be successfully simulated using 

neither the visual model nor the behavioral model. The visual model performed poorly on 

simulations of empirical data from Experiments 3 and 4, and while the behavioral model 

reproduced Experiment 3, it also failed at Experiment 4. However, these findings suggest 

an important principle: the visual model failed because it over-weighted more distant 

neighbors, neglecting the possible effect of visual occlusion.  

 Experiment 4 found that influence decays gradually to the nearest neighbor in a 

crowd and that rapidly within the crowd itself. This work described a doughnut-shaped 

neighborhood in a crowd having a “double decay” rate with distance (Warren, 2018): 

gradual to the nearest neighbor and rapid within the crowd itself. This form of double decay 

cannot be captured by the visual model as implemented thus far. As found in the 

simulations of Experiment 4, the visual model successfully captured the results when the 

near arc was perturbed (the first, highest points of each of the three curves in Figure 3.8), 

regardless of the distance to the near arc. This gradual decay to the nearest neighbor can be 

explained by Euclid’s law of perspective: as a neighbor’s distance increases, their optical 

expansion and angular velocity deceases as an arctangent function, thereby reducing their 

influence on a follower (as described in Figure 2.3). However, this does not explain the 

more rapid decay of influence within the crowd beyond the nearest neighbor, as observed 

in Experiment 4, when the mid and far arcs were perturbed. 

 A possible explanation is the visual occlusion of far neighbors. As the distance to 

neighbors beyond the nearest neighbor increases, the likelihood of near neighbors visually 

occluding far neighbors increases for two reasons. First, Euclid’s law applies not just to 
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optical expansion and angular velocity, but to occlusion too. As the metric distance 

between a near neighbor and far neighbors increases, more neighbors are likely to be 

occluded, because the area of occlusion (the near neighbor’s “shadow”) increases with 

distance. Putting it the other way, the visibility of far neighbors decreases with their metric 

distance from near neighbors. Second, Second, as the topological distance of far neighbors 

increases, there are potentially more near neighbors who might occlude them. In other 

words, the number of potential occluders increases linearly with ordinal distance (“index”). 

This is a topological effect, but it combines with the metric effect of Euclid’s law. 

 Thus, the rapid decay within a crowd may be the combined effect of Euclid's law 

and topological occlusion. Incorporating occlusion into the visual model might account for 

the results of both Experiment 3 and Experiment 4. Critically, if true, this suggests that 

occlusion violates the normalized superposition principle for following in crowds, as the 

interactions between neighbor positions must be considered and are no longer independent 

from one another. 

 Chapter 4 will empirically test how visual occlusion factors into following, 

implement it within the visual model, and re-simulate the results of Experiments 3 and 4. 

 

4.2 Experiment 5 - Effect of occlusion in the crowd 

 Experiment 5 empirically tested how visual occlusion of neighbors in a virtual 

crowd influenced the heading responses of the participant. This was accomplished 

manipulating the initial positions of far neighbors, so they were either fully occluded by 

near neighbors, or fully visible, at the beginning of a trial. Degree of occlusion could vary 
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during trials, as participants or neighbors moved in the virtual environment. As such, the 

degree of occlusion measured as was participant behavior. 

Participants 

 12 participants were recruited at Brown University, 7 female and 5 male. None 

reported any visual or motor impairment. The research protocol was approved by Brown 

University’s Institutional Review Board, in accordance with the principles expressed in the 

Declaration of Helsinki. Informed consent was obtained from all participants, who were 

paid for their time. 

Apparatus 

 The experimental apparatus was identical to Experiment 4, with the exception that 

the head-mounted display was a Samsung Odyssey (1440 x 1600 pixels per eye, 110° field 

of view, 90 Hz frame rate, 100% binocular overlap) and participant position and rotation 

was recorded at 90 Hz. The Odyssey has inside-out position and rotation tracking, no 

longer requiring external systems for this tracking. 

Procedure 

 Participants were instructed to walk with a crowd of 8 virtual human avatars as 

naturally as possible, to treat the virtual humans as if they were real people, and to “walk 

with the crowd as if walking down the street with them”. On each trial, the participant 

walked to the start pole and faced the orienting pole. After 2 seconds, the poles disappeared, 

and the virtual crowd appeared; a verbal command (“Begin”) was played over headphones 

and the virtual crowd began walking. The display continued until the participant had 

walked about 12 m; and a verbal command (“End”) signaled the end of the trial. 
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Displays 

 The 8 virtual neighbors appeared in two arcs: a near arc and a far arc, with 4 

neighbors in each arc (near: 1.5 m distant, far: 2.5 m distant; jittering their initial positions 

by a uniform distribution of ±0.2 m). A perturbed subset (0, 2, 4, 6 neighbors) was 

randomly chosen from one of the two arcs, and those neighbors turned (±10°, leftward / 

rightward) after a random interval between 3-4 seconds after trial start. Neighbors moved 

at a speed of 1.0 m/s in all trials. Because there were 4 neighbors in the near arc and 4 in 

the far arc, when the subset size was 6, the extra 2 neighbors were randomly selected from 

the other arc. The initial positions of the neighbors in the far arc were selected so they were 

either fully occluded by the near arc neighbors, or fully visible, at trial onset (Figure 4.1).  

Design 

 Experiment 5 had a 4x3x2x2 factorial design: 4 subset sizes (0, 2, 4, 6) x 3 

perturbation directions (left, no change, right) x 2 perturbed row (near, far) x 2 occlusion 

positioning (occluded, visible) for a total of 48 conditions. There were 3 repetitions per 

condition, for a total of 144 trials per participant. 

 

Figure 4.1. Diagram of Experiment 5, showing the far arc visible vs occluded. 
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Data processing 

 Data was processed using the same procedures as in Experiment 4. 

 

4.3 Experiment 5 - Results 

 While the initial positions of the virtual neighbors in the far arc were controlled to 

be visible or occluded to the follower, it is possible the proportion of their occlusion was 

dynamic during a trial. This is because the proportion of occlusion of a given far neighbor 

is dependent on the motions of that neighbor, closer neighbors, or the participant’s own 

motion. For example, it is possible for the participant to adjust their position in relation to 

the crowd as to reduce or eliminate any occlusion between themselves and far neighbors. 

To measure the actual degree of occlusion during each trial, the mean proportion of 

occlusion across all far arc neighbors by all near arc neighbors was computed over time in 

the visible and occluded conditions (Figure 4.2). To calculate this, on each time step, two 

lines of sight are calculated from the participant to the silhouette (rim of the bounding 

Figure 4.2. Proportion of far arc occluded by the near arc for Experiment 5. Panel (a) shows 

how the proportion of occlusion is calculated. Panel (b) the mean proportion of occlusion 

across all far arc neighbors by all near arc neighbors, computed over time for the visible 

and occluded conditions. 
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contour) of the nearest neighbor, continuing in depth (red dashed lines on Figure 4.2, panel 

a). This creates a ‘shadow’ that describes the region in which a near neighbor can occlude 

any more distant neighbors. For each far neighbor, occlusion is calculated based on the 

proportion of the farther neighbor's visual angle that lies outside the near neighbor shadow. 

Any neighbor that falls completely within this shadow is fully occluded and their 

proportion of occlusion is 1. A neighbor that lies completely outside of the shadow is fully 

visible, and their proportion is 0. If they are partially occluded, their occlusion is calculated 

as the proportion of their visual angle (as calculated by Equation 1) that lies outside the 

shadow. This occlusion shadow is then calculated for the next nearest neighbor and so on, 

until all neighbors have been accounted for.  

 Panel (b) of Figure 4.2 plots the results for the far arc’s proportion of occlusion 

calculations for Experiment 5. Before perturbation, the far arc remained occluded in the 

occluded condition (demonstrating that participants did not deliberately move to a position 

made the far arc more visible). As neighbors in the occluded condition began to turn (post 

perturbation), they became visible when they moved out from behind the near arc. In the 

visible condition, the far arc’s occlusion level remained constant and low across all trials. 

The goal of creating a difference in the proportion of occlusion between conditions was 

met.  

 Representative trials from Experiment 5 appear in Figure 4.3. These plot the 

position, speed, and heading for the participant and eight virtual neighbors, in which 4 

neighbors in the near arc turns left, with one trial where the far neighbors are visible and 
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another where they are occluded. Figure 4.3, panels (a) & (d), present two conditions where 

the far arc was visible or occlude. In the heading time series (Figure 4.3, panels c & f), the 

effect of occlusion can be seen. When the far neighbors were visible (Figure 4.3, panels a-

c), the participant’s response to the perturbation was reduced compared to the occluded 

condition (Figure 4.3, panels d-f). This occurs because in the occluded condition, the 

participant is only influenced by the four perturbed near neighbors (as the four far 

neighbors are occluded), while in the visible condition, the participant is also influenced 

by the four unperturbed far neighbors. Because the participant's response is presumably 

controlled by averaging the optical variables of all neighbors, the response is greater when 

Figure 4.3. Representative trials from Experiment 5, plotting the time series of position, 

speed, and heading over time for the participants and the virtual neighbors. Both 

demonstrate 4 near neighbors turning left. Panels (a-c) show a far arc visible condition, 

while panels (d-f) shows a far arc occluded condition. The position plot is zoomed in to 

exhibit the differences between neighbor positions by condition. 
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averaging the four near neighbors in the occluded condition than all eight neighbors in the 

visible condition. 

 The mean time series of heading in the visible and occluded conditions appear in 

Figure 4.4, when the near arc was perturbed (panel a), and the far arc was perturbed (panel 

b). A repeated measures ANOVA comparing the mean participant headings across 2-5 

seconds after perturbation (shaded yellow region) found a significant difference between 

near and far arc perturbation (F(1, 44) = 249.79, p < 0.001), as well as far arc occlusion 

(F(1, 44) = 11.15, p < 0.002). Critically, there was also an interaction effect between the 

two (F(1, 44) = 92.07, p < 0.001). This demonstrates that the direction of this occlusion 

Figure 4.4. Panels (a-b) are the mean participant headings from Experiment 5, over time 

from perturbation, when the far row is visible or occluded by arc perturbed. Panels (c-d) 

are the mean headings taken across the shaded regions in panels (a-b) for comparisons. 
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effect reversed depending on whether the near or far arcs were perturbed. When the near 

arc was perturbed (Figure 4.4, panel a), there was a larger heading response if the far arc 

was occluded (red curve), because the participant was primarily influenced by the near arc, 

which turned (planned comparison; (t(11) = -7.30, p < 0.001). When the far arc was 

perturbed (Figure 4.4, panel b), the opposite occurred: the response was weaker if the far 

arc was occluded (red curve), because the participant was primarily influenced by the near 

arc, which continued walking straight (planned comparison; (t(11) = 5.62, p < 0.001). 

However, by five seconds after perturbation, the perturbed far neighbors emerged from 

behind the near neighbors, and the heading response converged with the visible condition 

(blue curves, panels a-b). 

 

4.4 Experiment 5 - Discussion 

 Experiment 5 demonstrated two important aspects of occlusion for a pedestrian 

embedded in a crowd while following. First, occlusion does play a role in the visual control 

of heading, over and above the previously observed decay with distance. Although the 

present experiment replicated a distance effect in the visible condition (compare blue 

curves in panels (a) and (b) of Figure 4.4), there was an additional effect of occluding far 

neighbors. This can be observed in the reversal of the occlusion effect in Figure 4.4. The 

role of occlusion potentially explains the doughnut decay hypothesis: decay with distance 

to the nearest neighbor is due to Euclid's law, while the faster decay within the crowd is 

due to the added effect of occlusion for farther neighbors in the crowd (which correlates 

with distance). Second, Experiment 5 also demonstrated that occlusion’s role in following 

a crowd is dynamic. While the far neighbors were initially occluded, as they turned (and 
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the participants responded) they became more and more visible, causing the participant’s 

response in the visible and occluded conditions to converge. Or to put it another way: the 

far neighbors in the occluded condition dynamically became visible. 

 Chapter 3 established that the visual model was insufficient to simulate the 

influence of multiple neighbors in a crowd. Experiment 5 reveals what was missing: visual 

occlusion. Having demonstrated that occlusion does play a role in following a crowd, I 

now turn to developing a model of dynamic occlusion in a crowd. 

 

4.5 Modeling occlusion 

 Given the results of Experiment 5, the influence of neighbors in a crowd appears to 

decay gradually to the nearest neighbor due to Euclid's law, and more rapidly within the 

crowd due to visual occlusion. The visual model captures the first effect; in order to 

simulate the second effect, a component of occlusion was added to the visual model. Figure 

4.5 provides a simple example of how this component works in the horizontal for 3 

timesteps. On each time step, two lines of sight are calculated from the model agent to the 

silhouette (rim of the bounding contour) of the nearest neighbor, continuing on in depth 

(red dashed lines on Figure 4.5). This creates a simulated ‘shadow’ that describes the region 

in which a near neighbor can occlude a far neighbor. For each far neighbor, a “visibility” 

weight that ranges from 0 to 1 is calculated based on the proportion of that neighbor's visual 

angle that lies outside the shadow. Any neighbor that falls completely within this shadow 

is fully occluded and their weight is set to 0. A neighbor that lies completely outside of the 

shadow is fully visible, and their weight is 1. If they are partially occluded, their weight is 

the proportion of their visual angel that lies outside the shadow; any value less that 0.15 is 
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assigned a weight of 0. This occlusion shadow is then calculated for the next nearest 

neighbor and so on, until all neighbors have been accounted for. Each neighbor's weight is 

equal to the proportion that remains visible, unoccluded by their nearer neighbors. The 

influence of those neighbors’ optical expansion and angular velocity is then modified by 

the value of their visibility weight. Of note, this position-dependent interaction between 

neighbors, causes breaks the principle of normalized superposition when following a 

crowd, as neighbors are no longer influencing the follower independent from one another. 

 This weighting allows for near neighbors to fully or partially occlude far neighbors, 

in order to capture the rapid decline of influence within a crowd as found in Experiment 4, 

as well as the effect of dynamic occlusion, as found in Experiment 5. With visual occlusion 

Figure 4.5. Simple example of how occlusion is simulated. On timestep 1, two straight 

lines (red dashed) are calculated from the position of the model (M), toward points laying 

on the two outward edges of the nearest neighbor (N1) and then those lines are continued 

out toward infinity. The area encompassed by the lines beyond the nearest neighbor (the 

grey shaded region) is the shadow of occlusion. The proportional weight applied to every 

neighbor depends on how much they are covered by the shadow. On timestep 1, N1 has a 

weight of 1, as it cannot fall in its own shadow. N2 has a weight of 0.4, as it is 40% visible 

and 60% occluded by N1. N3 has a weight of 0, as it is fully occluded by N1. After the 

occlusion shadow for N1 is calculated, similar shadows would be calculated for N2 and 

N3 (not shown). On timestep 2, N3 begins to move relative to M, becoming increasingly 

visible from behind N1, increasing the weight to 0.3. By timestep 3, N3 is fully visible and 

its weight is 1. These weights modify the influence of neighbor optical expansion and 

angular velocity in the model. 
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added to the visual model for following, I simulated Experiment 5 and re-simulated 

Experiments 3 and 4 to compare the previous model iteration (the visual model) to the new 

model iteration (visual + occlusion model). 

 

4.6 Experiment 5 - Model Simulations 

 To evaluate the performance of the models, the stimuli from Experiment 5 were 

inputted to the visual and visual + occlusion models and the output was compared to the 

mean time series of heading for the participants. Figure 4.6 shows the mean heading time 

series when the near arc was perturbed (panel a) and the far arc was perturbed (panel b). 

Blue curves are conditions in which the far arc was visible and red curves are conditions 

in which the far arc was occluded. Blue and red shaded areas represent the 95% confidence 

intervals about the mean human data. For the visual model (dashed curves), the difference 

between the visible and occluded conditions is negligible in both panels (a) and (b). 

Figure 4.6. Modeling the mean heading from Experiment 5, over time from perturbation, 

when the far arc was visible or occluded. The blue and red shaded areas are the 95% 

confidence interval of participant data, and the yellow shaded regions are where 

comparison means were taken. Dashed curves plot the visual model, dotted curves are the 

visual + occlusion model. 
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Without an occlusion component, the model is influenced by both near and far arcs in all 

conditions, and so the simulations are nearly equivalent. In contrast, with the addition of 

occlusion, the visual + occlusion model (dotted curves) distinguishes the visible and 

occluded conditions. When the near arc was perturbed (panel a), the occlusion of the 

unperturbed far arc caused the simulation to generate a larger turn in the five seconds after 

perturbation (red dotted curve). When the far arc was perturbed (panel b), the opposite 

effect was seen. With the far neighbors occluded, the model was primarily influenced by 

the unperturbed near neighbors, and thus generated a smaller turn (red dotted curve). 

 To compare the visual and the visual + occlusion models (Figure 4.7), the RMSE 

between each model and participant heading time series was computed between 2-5 

seconds after perturbation on each trial (yellow shaded region, Figure 4.6). When the near 

arc was perturbed, there was no significant difference between models when the far arc 

was visible (t(11) = 1.74, p < 0.11), but there was a significant difference when the far arc 

Figure 4.7. Comparisons of RMSE for heading between participant and the visual and 

visual + occlusion models across conditions for Experiment 5. 
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was occluded (t(11) = 17.33, p < 0.001). When the far arc was perturbed, there was again 

no significant difference between models when the far arc was visible (t(11) = 1.91, p < 

0.08), but as with the near arc being perturbed, there was a significant difference between 

models when the far arc was occluded (t(11) = 8.72, p < 0.001). Bayesian model 

comparison yielded a scaled JZS Bayes Factor of BF10 = 123190822646 for the near arc 

perturbed while the far arc is occluded, and a scaled JZS Bayes Factor of BF10 = 552091 

for the far arc perturbed while also occluded, each indicating decisive evidence for support 

for the visual + occlusion model. Taken together, these results demonstrate a critical 

property of the visual + occlusion model: when occlusion in a crowd is high, a component 

for occlusion is necessary to simulate following in a crowd, and that it serves as a strong 

candidate to model previously examined datasets. 

 

4.7 Re-simulating Experiments 3 and 4 

 Experiment 5 established that occlusion plays a strong role in following multiple 

neighbors in a crowd. Adding an occlusion component to the visual model significantly 

improved simulations of the human data. This finding also demonstrated that occlusion is 

dynamic and has transient influences on the participant. In this section, I test whether the 

visual + occlusion model generalizes to Experiments 3 and 4, where dynamic occlusion 

also occurred, and the visual model performed poorly. All trials in both experiments were 

simulated with both the visual and visual + occlusion models, and mean RMSEs for the 

two models were compared.  

 Figure 4.8 re-plots the mean final speed (panel a) and mean final heading (panel b) 

of simulations of the visual and visual + occlusion models from Experiment 3. As 
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previously observed in Figure 3.3, the visual model undershoots the data when the near 

row is perturbed (blue curves), and overshoots the data when the far row is perturbed (red 

curves). However, when occlusion is added to the visual model, results closely simulate 

the data. In the virtual crowd displays, the far neighbors were occluded by the near 

neighbors on numerous occasions, during which time their influence was reduced, and the 

participant was primarily influenced by near neighbors. A hypothesis raised in Chapter 3 

was that far neighbors fell outside a metric neighborhood, which the visual model failed to 

capture because it had an unlimited interaction distance. Here it is demonstrated that the 

visual + occlusion model performs just as well as the behavioral model (found in Figure 

3.3). 

 Tests comparing participant final means to models across all trials is found in 

Figure 4.9. The results for speed find the visual + occlusion model produces significantly 

less RMS error compared to the visual model (t(18) = -2.639, p = 0.017), and no significant 

difference in RMS error compared to the behavioral model (t(18) = -0.311, p = 0.759). A 

Figure 4.8. Mean final speed (panel a) and heading (panel b) of the last two seconds of 

participant data from Experiment 3, re-simulated using the visual and visual + occlusion 

models. The shaded regions are the 95% confidence interval of participant data, which the 

visual + occlusion model better captures. 
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Bayesian model comparison for speed between the visual + occlusion model and the visual 

model yielded a scaled JZS Bayes Factor of BF10 = 3.60, indicating substantial evidence 

for the visual + occlusion model, and a comparison between the visual + occlusion model 

and the behavioral model yielded a scaled JZS Bayes Factor of BF10 = 2.43, indicating 

anecdotal evidence favoring the visual + occlusion model when simulating speed in 

Experiment 3. 

 The results for heading find the visual + occlusion model produces significantly 

less RMS error compared to the visual model (t(18) = -3.455, p = 0.003), and no significant 

difference in RMS error compared to the behavioral model (t(18) = -0.891, p = 0.384). A 

Bayesian model comparison for heading between the visual + occlusion model and the 

visual model yielded a scaled JZS Bayes Factor of BF10 = 13.33, indicating strong evidence 

for the visual + occlusion model, and a comparison between the visual + occlusion model 

and the behavioral model yielded a scaled JZS Bayes Factor of BF10 = 1.90, indicating 

anecdotal evidence for the visual + occlusion model when simulating heading in 

Experiment 3. 

Figure 4.9. Comparisons of RMSE for speed and heading between participant and the 

visual and visual + occlusion models across conditions for Experiment 3. 
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 Taken together, these results show that the visual + occlusion model better captures 

the results of Experiment 3 compared to the visual model, and equally as well as the 

behavioral model. 

 Experiment 4 found neighbor influence decays gradually to the nearest neighbor 

and then rapidly within the crowd. Figure 4.10 re-plots the mean final heading of 

simulations of the visual and visual + occlusion models from Experiment 4, to determine 

whether occlusion explains this pattern of distance decay. As previously observed in Figure 

3.6, visual model did not accurately capture the human data. However, the visual + 

occlusion model is added to the model closely reproduces the data (dotted curves in Figure 

4.10). Each mean heading captures the double-decay with distance: gradual to the nearest 

neighbor and rapid within the crowd itself. 

 Tests comparing participant final mean heading to models across all trials is found 

in Figure 4.11. The results find the visual + occlusion model produces significantly less 

Figure 4.10. Mean final heading of the last two seconds of participant data, and simulations 

using the visual and visual + occlusion models, taken from Experiment 4. The shaded 

regions are the 95% confidence interval of participant means. 
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RMS error compared to the visual model (t(22) = 7.66, p < 0.001), and significantly less in 

RMS error compared to the behavioral model (t(22) = 7.18, p < 0.001). A Bayesian model 

comparison for heading between the visual + occlusion model and the visual model yielded 

a scaled JZS Bayes Factor of BF10 = 75938, indicating decisive evidence for the visual + 

occlusion model, and a comparison between the visual + occlusion model and the 

behavioral model yielded a scaled JZS Bayes Factor of BF10 = 5055725, also indicating 

decisive evidence in favor of the visual + occlusion model when simulating heading in 

Experiment 4. 

 The results clearly demonstrate that the results from Experiment 4, that describe a 

double-decay of influence with distance, are driven in part by occlusion, and that the visual 

+ occlusion model successfully captures this behavior. 

 

Figure 4.11. Comparisons of RMSE for heading between participant and the visual and 

visual + occlusion models across conditions for Experiment 4. 
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4.8 Conclusion 

 The results from Chapter 3 indicated that the visual model did not account for a 

pedestrian following a crowd because it failed to capture the double-decay with distance. 

One hypothesized explanation for this double-decay pattern was occlusion of far neighbors 

by nearer neighbors. Experiment 5 demonstrated that occlusion does indeed affect 

participant responses to neighbors, and provided the groundwork to improve the visual 

model to account for this optical variable. Re-simulating the human data from Experiments 

3 and 4 confirmed that accounting for occlusion is critical for modeling the influence of 

multiple neighbors and explains the doughnut-shaped neighborhood observed in 

Experiment 4. 

 The visual + occlusion model offers a robust model of the visual control of speed 

and heading for an individual agent following multiple neighbors. In Chapter 5, I will 

investigate the model in multi-agent simulations to test whether it also generates collective 

motion.  
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CHAPTER 5 

 

Multi-agent simulations and collective motion 
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5.1 Introduction 

 Chapter 4 demonstrated that adding a component for dynamic occlusion greatly 

improved the visual model at simulating human following a crowd. By including occlusion 

in the visual + occlusion model, it captured the previous observation of a doughnut-shaped 

neighborhood in a crowd: influence decays gradually to the nearest neighbor and rapidly 

within the crowd beyond. Chapter 5 will compare the visual model with the visual + 

occlusion model in crowd simulations. First, the model will be compared against 

observational data on crowds of real people, to test whether either version of the visual 

model can account for individual trajectories in real crowds. Second, we will test whether 

the models generate collective motion in a series of multi-agent simulations, and evaluate 

its robustness by varying initial conditions. 

 

5.2 Experiment 6 - Modeling human ‘swarms’ 

 To test the models in a more natural setting, we simulated individual pedestrians in 

previously collected motion capture data on a human ‘swarm’ scenario. Groups of 

participants were recorded walking together for periods of 2 minutes, at various initial 

interpersonal distances (IPD). Segments of trials were simulated using the visual model 

and the visual + occlusion model to assess the role of occlusion in real crowds. 

Participants 

 Participants were recruited at Brown University. One group of 10 participants (4 

female, 6 male), one group of 16 participants (6 female, 10 male) and one group of 20 

participants (10 female, 10 male) were tested in separate blocks. None reported any visual 

or motor impairment. The research protocol was approved by Brown University’s 
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Institutional Review Board, in accordance with the principles expressed in the Declaration 

of Helsinki. Informed consent was obtained from all participants, who were paid for their 

time. 

Apparatus 

 The groups were tested in a large hall (Brown University’s Sayles Hall) with a 

14x20 m tracking area marked on the floor with red tape. Each participant wore a bicycle 

helmet with a unique constellation of five reflective markers on 0.3-0.4 m stalks. Head 

position was recorded at 60 Hz with a 16-camera infrared motion capture system (Qualisys 

Oqus). 

Procedure 

 Participants were instructed to walk about the tracking area at a normal speed, 

veering randomly left and right, while staying together as a group. They began each trial 

in random positions in a 4x4 m (1 m IPD) or 7x7 m (2 m IPD) start box marked on the 

floor. At a verbal ‘go’ signal, participants started walking for 2 min, until a verbal ‘stop’ 

signal. 

Design 

 Experiment 6 had a 3x2 factorial design: 3 group sizes (10, 16, 20 people) x 2 initial 

interpersonal distances (1 m, 2 m), for a total of 6 conditions. There were 2 repetitions per 

condition, for a total of 12 trials. 

Data processing 

 Position and rotation for each participant was retrieved by finding the centroid of 

the five reflective markers on each participant’s headgear at each timestep. The time series 

of head position in the horizontal plane were filtered using a 4th-order low-pass 
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Butterworth filter with a cutoff frequency of 0.6 Hz. This was to remove tracker noise and 

reduce oscillations due to the step cycle. The first two seconds of every trial were removed, 

so that the participants were in steady-state walking for analysis and modeling. The last 

second of every trial was removed, to avoid any errors due to filtering at the edges of 

recorded data (see Howarth & Callaghan, 2009). Speed and heading of each participant 

were computed from the filtered position data as the displacement between successive time 

steps. Due to tracking loss of some participants for periods of time during a trial, the data 

were divided into 10 second segments, in which at least 75% of participants were always 

recorded for that 10 seconds of time. This yielded 35 segments with good tracking data, 

which ensured that most of the input to a modeled pedestrian was known. At the beginning 

of a given segment, the participant furthest back in the group was the one chosen for 

simulation (the “focal” participant). Of these modeled segments, 5 additional segments 

were removed due to limitations of the visual and visual + occlusion models. When 

simulating segments where the front of the crowd turns in a 180° arc (so they are walking 

toward the focal participant in the rear) it produces a large expansion rate from the 

viewpoint of that focal participant. Because the model has no function for determining the 

direction neighbors face, this large expansion causes the model to begin to move backwards 

(motion opposite the direction they are facing). This does not match human behavior, and 

produces large error, and so these 5 segments were removed. This leaves 30 segments for 

analysis (17 segments from the 1 m initial IPD condition, and 13 segments from the 2 m 

initial IPD condition). RMS error was computed between the focal participant and each 

model for both speed and heading.  
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5.3 Experiment 6 - Results 

 Two representative segments from Experiment 6 are seen in Figure 5.1. These plot 

the position over time, proportion of neighbors occluded, times series of speed, and time 

series of heading for the participants in the swarm and the visual model with and without 

occlusion. Segment 1 (Figure 5.1, panels a-d) was a 10 second segment of a 2 m initial IPD 

trial, with 16 total participants and 13 recorded across the segment. Segment 2 (Figure 5.1, 

panels e-h) was a 10 second segment of a 1 m initial IPD trial, with 20 total participants 

and 17 recorded across the segment. Simulations of Segment 1 do not differ between 

versions of the model (RMSE for speed, visual: 0.20 m/s, visual + occlusion: 0.19 m/s; for 

heading, visual: 16.7°, visual + occlusion: 17.0°). However, the simulations do differ for 
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Segment 2 (RMSE for speed, visual: 0.26 m/s, visual + occlusion: 0.13 m/s; for heading, 

visual: 42.8°, visual + occlusion: 10.1°). In this case, including occlusion in the model 

Figure 5.1. Representative trials from Experiment 6, plotting the time series of position, 

proportion of neighbors occluded, speed, and heading over time for the participants in the 

swarm, the visual model, and the visual + occlusion model. Segment 1 (panels a-d) is a 10 

second segment of a 2 m IPD trial. Segment 2 (panels e-h) is a 10 second segment of a 1 

m IPD trial. Comparing the proportion of neighbors occluded between trials (b, f) Segment 

2 has more occlusion over the trial. 
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produced a simulation that more closely matched the focal participant’s locomotor 

behavior. Comparing the proportion of occlusion over all neighbors between trials (Figure 

5.1, panels b & f) Segment 2 had more occlusion over the trial. When occlusion is high in 

the observed data, the visual model requires an occlusion component to capture the 

participant's trajectory.  

 Figure 5.2 compares the performance between the visual model and the visual + 

occlusion model for all 30 segments from Experiment 6. Across all measures, the visual + 

occlusion model performs better than the visual model. The results demonstrate that the 

visual + occlusion model generalizes to real-world data of swarming crowds. Tests 

comparing the participant each model’s over time shows there is no RMSE difference for 

speed, likely due to the lack of variation in participant speed across segments (t(58) = 0.76, 

p = 0.452), and significantly less RMSE for heading (t(58) = 2.81, p = 0.007) with the 

visual + occlusion model. A Bayesian model comparison for speed between the visual + 

Figure 5.2. Comparison of error measurements for the swarm segments, between the 

participant and the model with and without occlusion: mean metric distance between 

participant position and model positions, RMSE for speed, and RMSE for heading. 
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occlusion model and the visual model yielded a scaled JZS Bayes Factor of BF10 = 2.98, 

indicating anecdotal evidence for the visual + occlusion model for modeling speed, and for 

heading yielded a scaled JZS Bayes Factor of BF10 = 6.45, also indicating substantial 

evidence for support of the visual + occlusion model when simulating heading in 

Experiment 6. 

 

5.4 Multi-agent simulations 

 To this point, I have found that a model of the visual control laws for following a 

leader scale up to walking with multiple neighbors in a crowd, and can even predict 

individual trajectories in real crowds. The ultimate test of this bottom-up approach is 

whether the same "rules of engagement" yield collective motion, as often observed in 

pedestrian groups. The purpose of this section is to determine whether the visual model 

can generate self-organized collective motion in a set of mutually interacting agents, and 

to test the robustness of coherent motion under a range of initial conditions. 

Procedure 

 A set of initial conditions (initial interpersonal distance, speed, and heading) was 

generated for 20 simulated agents (0.2 m radius circles) in a 4x5 position grid. These were 

used as an input to the visual and visual + occlusion models. Each agent’s position was 

then jittered by a uniform distribution equal to ±25% of that set’s initial interpersonal 

distance. The movement of each agent and their interactions was governed by the models, 

with synchronous updating of all agents at each timestep. At the end of 30 seconds, the 

simulation was stopped, and the standard deviation of the final speed and heading was 

computed across all agents. This was repeated for 20 runs per initial condition set (with 
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only jitter varying between individual runs). The mean standard deviations of final speed 

and heading in each initial condition set characterized the degree of convergence for each 

model over time (the lower the standard deviation, the more the simulated crowd’s speed 

or heading converged across 30 seconds). This performance measure was used to compare 

the robustness of the visual motion model, the visual + occlusion model, the behavioral 

model, and the double-decay model (Warren & Dachner, 2018), across a wide range of 

initial conditions. 

Design 

 Given that varying initial speed primarily influences final speed, and the same is 

true for heading, these two variables were manipulated and analyzed separately. The initial 

conditions for the multi-agent simulations had a 10x2x9 factorial design: 10 initial 

interpersonal distances (ranging from 1 to 10 m, in steps of 1 m) x motion variables (agents 

were generated with varied initial speed or initial heading) x 9 variable ranges (in 

increments of ±0.1 m/s about 1 m/s, or ±10˚ about 0˚, respectively). Specifically, the mean 

initial mean speed of agents was 1.0 m/s. When speed was varied, each agent's initial speed 

was randomly selected from a uniform distribution ranging from 0.9 to 1.1 m/s in the first 

condition; from 0.8 to 1.2 m/s in the second condition; and so on up to a range of 0.1 to 1.9 

m/s in the ninth condition, in increments of ±0.1 m/s. The mean initial heading of agents 

was 0°. When heading was varied, each agent's initial heading was randomly selected from 

a uniform distribution ranging from -10˚ to +10˚ in the first condition; from -20˚ to +20˚ in 

the second condition; and so on up to a range of -90˚ to +90˚ in the ninth condition, in 

increments of ±10˚. Initial conditions were generated for each of 20 agents for 20 runs per 

condition. 
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5.5 Multi-agent Simulations - Speed Results 

 Three representative runs from the speed simulations appear in Figure 5.3, 

including paths to final positions (left column), time series of speed (middle column), and 

time series of heading (right column) for the generated agents in the swarm. The black 

curves are the visual model, the red curves are the visual + occlusion model, and the blue 

curve is the agent at the front of the simulated crowd. Because each agent had a FOV 

restricted to ±90° from the direction of motion an agent was not influenced by any 

neighbors outside this FOV. For the agent at the front of the crowd, no other agents were 

in their FOV and so its speed and heading remained constant from its initial conditions. 

This caused other agents align with the agent at the front (blue curve), making it the defacto 

leader of the crowd. Occlusion of neighbors had no effect on the lead agent and thus each 

model produced identical results for that agent only.  

 In the first row (Figure 5.3, panels a-c), the initial interpersonal distance was 1 m 

and the initial speed range was ±0.1 m/s. Because of the proximity of all neighbors and the 

low variation in initial speed, the simulations converged quickly and the differences 

between the models was negligible. Interestingly, position where the models diverged the 

most was at the rear of the crowd (see panel a). This is a demonstration of information 

transfer from the front of the crowd to the rear, and how occlusion weakens the influence 

of far neighbors, which slows information transfer because a pedestrian can't respond as 

early to far neighbors. In the second row (panels d-f) the initial interpersonal distance was 
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1 m and the speed range was ±0.9 m/s. The high variation in initial speed caused 

convergence to take longer, but the proximity allowed it to still occur. Note that the visual 

+ occlusion model took longer to cohere (red curves in panel e). Information transfer again 

flows from the front of the crowd to the rear, and is slowed by occlusion (panel d). In the 

Figure 5.3. Representative runs from the multi-agent simulations for speed. The black 

curves are the visual model, the red curves are the visual + occlusion model, and the blue 

line is the agent at the front of the simulated crowd. The black and red ‘o’s are to compare 

final position across models. Panels (a-c) is an IPD of 1 m and ±0.1 m/s variation in speed 

trial. Panels (d-f) is an IPD of 1 m and ±0.9 m/s variation in speed trial. Panels (g-i) is an 

IPD of 10 m and ±0.9 m/s variation in speed trial.  
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third row (panels g-i) the initial interpersonal distance was 10 m and the initial speed range 

was ±0.9 m/s. The large distance between agents and high variation in initial speed 

prevented either model from converging within 30 seconds. However, because the distance 

between agents was so great, occlusion was low across the run, causing both models to 

produce nearly identical results. Note the spike in heading between 10-15 seconds. This is 

caused by an agent moving fast enough to move into another agent’s FOV. For the visual 

model, eccentricity determines how the trade-off in optical expansion and angular velocity 

influence both speed and heading. By suddenly appearing in the FOV of another agent, it 

caused a spike in expansion that caused the agents to turn away from each other. 

 Heat maps of the standard deviation of final speed as a function of initial 

interpersonal distance by the range and the initial speed rate appear in Figure 5.4. The 

temperature (color) of each cell represents the standard deviation of the final speed across 

all agents generated, averaged across the set of 20 runs for each initial condition. The heat 

maps estimate the cohesion of the simulated swarm, where low standard deviations (warm 

colors) signify high speed cohesion and high standard deviations (cool colors) signify low 

speed cohesion. Figure 5.4 panel (a) is the heatmap of the speed cohesion for the behavioral 

model with its exponential decay with distance. Large initial interpersonal distances and 

initial speed ranges led to the lowest cohesion across all models. Panel (b) plots the heatmap 

for the behavioral model with the double decay with distance (Warren & Dachner, 2018). 

This flexible doughnut-shaped neighborhood extended the range of interaction, yielding 

increased cohesion at greater IPDs and speed ranges. Panel (c) presents the heatmap for the 

visual model (without occlusion). Its pattern closely resembles that of the doughnut model, 

but with more overall cohesion. Panel (d) plots the heatmap for the visual + occlusion 
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model. While generally cohesion is as high as the visual model, low values of initial 

interpersonal distance (1-3 m, which causes more occlusion) and high ranges of initial 

speed caused a notable decrease in cohesion. The patterns of these heatmaps will be 

discussed in more depth below. 

 

Figure 5.4. Heatmaps for the cohesion of speed across bulk simulations of crowds, plotting 

initial speed range by initial interpersonal distance, where each cell is the mean final 

standard deviation for speed across all generated agents across all trials in the set. Warm 

means that combination of initial conditions leads to higher cohesion (lower standard 

deviation) and cool means lower cohesion (higher standard deviation).  
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5.6 Multi-agent Simulations - Heading Results 

 Three representative trials from the heading simulations appear in Figure 5.5, 

including paths to final positions (left column), time series of speed (middle column), and 

time series of heading (right column) for the generated agents in the swarm. The black 

Figure 5.5. Representative trials from the multi-agent simulations for heading. The black 

curves are the visual model, the red curves are the visual + occlusion model, and the blue 

line is the agent at the front of the simulated crowd. The black and red ‘o’s are to compare 

final position across models. Panels (a-c) is a generated crowd with an IPD of 1 m and 

±10° variation in heading. Panels (d-f) is a generated crowd with an IPD of 1 m and ±90° 

variation in heading. Panels (g-i) is a generated crowd with an IPD of 10 m and ±90° 

variation in heading.  
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curves are the visual model, the red curves are the visual + occlusion model, and the blue 

curve is the agent at the front of the simulated crowd. 

 In the first row (Figure 5.5, panels a-c), the initial interpersonal distance was 1 m 

and the initial heading range was and ±10°. In the second row (Figure 5.5, panels d-f) the 

initial interpersonal distance was 1 m and the heading range was ±90°. In the third row 

(Figure 5.5, panels g-i) the initial interpersonal distance was 10 m and the initial heading 

range was ±90°. These trials produce similar patterns as seen with multi-agent simulations 

of varied initial speeds (Figure 5.3). Simulated crowd cohesion was highest when 

interpersonal distance and variation were low; high variation and low interpersonal 

distance caused high occlusion and thus the most differences between the models; and high 

variation and high interpersonal distance caused little to no cohesion. In addition, similar 

to varied speed simulations (Figure 5.3), varied heading simulations produce the largest 

differences between models when both variation is high and initial interpersonal distance 

is low, with information transferring from front to read of the simulated crowd. 

 Heat maps of the standard deviation of final heading as a function of initial 

interpersonal distance and the initial heading rate appear in Figure 5.6. The temperature 

(color) of each cell is the standard deviation of the final heading across all agents run, 

averaged across the set of 20 runs for each initial condition. The heat maps estimate the 

cohesion of the simulated swarm, where low standard deviations (warm colors) signify 

high heading cohesion and high standard deviations (cool colors) signify low heading 

cohesion. The heading variation on cohesion heatmaps have a similar pattern to those found 

for speed in Figure 5.4: the behavioral model with a single decay with distance struggled 

to reach coherence, the behavioral model with a double decay with distance and the visual 
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model were similar and cohere, and the visual + occlusion model did not cohere at low 

initial interpersonal distances and high heading variations. 

 

Figure 5.6. Heatmaps for the cohesion of heading across bulk simulations of crowds, 

plotting initial heading range by interpersonal distance, where each cell is the mean final 

standard deviation for heading across all generated agents across all trials in the set. Warm 

means that combination of initial conditions leads to higher cohesion (lower standard 

deviation) and cool means lower cohesion (higher standard deviation).  
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5.7 Multi-agent Simulations - Discussion 

 Taken together, the heatmaps for speed (Figure 5.4) and heading (Figure 5.6) reveal 

how distance and occlusion interact to govern self-organized collective motion. The 

behavioral model’s single exponential decay with distance eliminated neighbor influence 

at distances greater than 5 m. Beyond that distance, the model could not cohere beyond the 

initial speed range of ±0.3 m/s or the initial heading range of ±30°. The behavioral model 

with an exponential double decay with distance and the visual model both extended the 

range of interaction, and produced very similar results for both speed and heading. 

However, the reason is likely different for each model. In the behavioral model’s case, it 

captured the previous observation that influence decays gradually to the nearest neighbor 

and then rapidly within the crowd. For the visual model, the model did not have any 

maximal distance: it responded to neighbors regardless of distance, although far neighbors 

had a very small influence. Both these conditions produced similar patterns of cohesion 

across initial conditions. 

 A new pattern was observed for the visual motion + occlusion model, however. The 

component for occlusion only impacted the model when initial interpersonal distance was 

low and variation in initial speed or heading was high. In these circumstances, cohesion 

was less compared to mid-levels of interpersonal distance for a given initial speed or 

heading range. This makes a novel predication about the visual + occlusion model. Low 

interpersonal distances drive higher rates of occlusion within a given trial. When near 

neighbors occlude far neighbors in a crowd, a given agent can only align with their near 

neighbors instead of aligning with all members of the crowd. This serves to dampen far 

neighbor influence, restricting information transfer from the front to the rear of the crowd, 
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and increasing the time for a crowd coherence. However, low ranges of initial speeds or 

headings are too similar to reveal this effect, and once interpersonal distance increases, 

occlusion becomes less likely, and the crowd is faster to reach cohesion. 

 

5.8 Conclusion 

 Chapter 5 found that the visual model not only reproduced trajectories at the local 

level, but also generated collective motion at the global level. It demonstrated that the 

model accurately predicted individual trajectories in real crowds. Experiment 6 showed 

that individual trajectories are better simulated with a component for dynamic occlusion 

when interpersonal distances are low. Using these concepts, multi-agent simulations of 

crowds were conducted, to understand how self-organized collective motion depends on 

initial conditions. One important takeaway from these multi-agent simulations was that the 

visual model for following a crowd with dynamic occlusion produces a unique pattern of 

crowd cohesion, making a unique prediction about cohesion in crowds when interpersonal 

distance is low. These demonstrate that the rules of engagement for following a single 

leader not only explain individual trajectories in a crowd, but also generate collective 

motion in a set of interacting agents, further establishing the strength of a bottom-up 

approach to following a crowd. These finding encourage future work to empirical test if 

human behavior matches these predictions. 

 Thus far, this research has treated the visual variables of optical expansion and 

angular velocity as the only information governing collective motion. However, there are 

other sources of visual information that a follower could be taking advantage of. Chapter 
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6 will examine these other information sources and how they may play a role in following 

a crowd. 
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CHAPTER 6 

 

 The Role of Visual Information for Depth 
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6.1 Introduction 

 In Chapter 2, I reported that the speed and heading of a pedestrian follower are 

controlled by nulling the optical expansion and angular velocity of a single leader. In 

Chapters 3 and 4, I found that the same visual information plus occlusion closely simulate 

a pedestrian walking with a virtual crowd. However, the previous experimental work 

isolated 2D optical variables independent of other information that pedestrians may be 

using to guide their locomotion. Although Chapter 5 demonstrated that the visual + 

occlusion model reproduces individual trajectories in real crowds, additional visual 

information is available to humans in crowds. In this chapter, I will investigate the role of 

depth information and experimentally test the contribution of binocular and perspective 

information to pedestrian following. Two experiments were conducted. Experiment 7 

tested following a single neighbor and Experiment 8 tested following a in a crowd with 

multiple neighbors. In each experiment, the previous sources of information (optical 

expansion, angular velocity, occlusion) were put in conflict with standard sources of depth 

information (binocular disparity, vergance, declination angle from the horizon to the 

ground plane). This dissociated the contribution of traditional depth information and 

motion information in the control of speed and heading alignment. I will close with a 

discussion of how the visual + occlusion model may be expanded to include these sources 

of depth information. 

 

6.2 Experiment 7 - Depth information to following a single neighbor 

 To understand what visual information guides collective motion in crowds, the 

bottom-up approach begins by analyzing the information used to follow a single neighbor. 
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Once these visual "rules of engagement" are defined, they can be scaled up to crowd 

behavior. Experiment 2 demonstrated that optical expansion and angular velocity are 

sufficient visual information to control speed and heading alignment. However, in real 

scenes traditional depth information is also available, providing redundant visual 

information that a pedestrian could use to follow a leader. Experiment 2 eliminated 

binocular disparity and vergence by using synoptic displays, in which the same image is 

presented to each eye, corresponding to an optically infinite distance. In addition, 

perspective information was eliminated by removing a ground plane. In particular, this 

eliminated the declination angle from the horizon to the base of the target on the ground 

plane, which specifies egocentric distance. These sources of depth information would have 

been in conflict with the manipulated optical expansion, and may have led to different 

locomotor behaviors in participants. For example, when the target artificially expanded, 

this specified that the target slowed down relative to the participant. However, if binocular 

and perspective information were also available, the participant may have perceived the 

target as not changing speed, but as changing size at a constant distance. This may have 

elicited no speed change from the participant. In most circumstances in the real world, a 

followed neighbor does not change size in this way, but it is important to understand 

whether 3D depth information and 2D motion information both contribute to locomotor 

control, and if so, how they interact. The underlying issue is how the visual system uses 

information to control action. If the visual system helps build an internal 3D model of the 

world to control action, then “traditional” depth cues (e.g. binocular disparity, vergence, 

and perspective) are required so as to build a robust internal model to control action 

(Loomis & Beall, 2004). However, if the visual system maps any and all optical variables 
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to actions directly, then traditional depth cues are redundant (but not necessarily unused) 

and evidence against an internal 3D model of the world (Warren, 1998).  

 To empirically test whether depth information is used to control following, 

Experiment 7 was conducted with an identical structure to Experiment 2, but with binocular 

disparity, vergence, and a ground plane added. These results were then compared to 

Experiment 2 to evaluate three hypotheses: (1) if depth information plays no role in 

following a single neighbor, results of Experiment 7 should be identical to Experiment 2, 

(2) if depth information completely overrides optical expansion and angular velocity, 

following behavior should be the same in conditions were optical expansion is in conflict 

with depth information compared to control conditions where these information sources 

are in agreement, or (3) all sources of information are combined, yielding an intermediate 

response in the conflict condition. 

Participants 

 12 undergraduate students were recruited at Brown University, 6 female and 6 

male. None reported any visual or motor impairment. The research protocol was approved 

by Brown University’s Institutional Review Board, in accordance with the principles 

expressed in the Declaration of Helsinki. Informed consent was obtained from all 

participants, who were paid for their time. 

Apparatus 

 The experiment was conducted in the Virtual Environment Navigation Laboratory 

(VENLab) at Brown University. Participants walked in a 12 x 14 m tracking area while 

wearing a stereoscopic head-mounted display (HMD, Samsung Odyssey). Participant head 

position and orientation were recorded with the Odyssey’s inside-out tracking at 90 Hz. 
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Procedure 

 The procedure was identical to Experiment 2. Participants began each trial by 

facing toward orientation pole floating in space. After 3 seconds, the orientation pole 

disappeared and the target appeared within their field of view, moving away from the 

participant. Participants were instructed to “walk with the target as if walking down the 

street with it, while maintaining a consistent distance and orientation to the target”. 

Display 

 The target was a virtual pole (0.4 m diameter, 2 m tall), sitting on a ground plane. 

The target appeared at five initial eccentricities relative to the participant: -60˚ and -30˚ (to 

left of the participant), 0˚ (directly in front of the participant), and +30˚ and +60˚ (to the 

right of the participant) and at 2 distances (1 m, 4 m). Unlike Experiment 2 (which 

presented the pole at an infinite distance as to be synoptic), the target in Experiment 7 was 

presented at a defined location, providing distance information from disparity and 

vergence. The target pole would move away from the participant in a straight line at 0.8 

m/s. 4.5 seconds into the trial, the pole changed its rate of expansion (specifying a speed 

change of -0.2 m/s, no change, +0.2 m/s), angular velocity (specifying a turn -30˚ to the 

left, no change, turning +30˚ to the right), or both. Importantly, the target never actually 

changed its speed, only its size. While optical expansion in the absence of other information 

normally specifies changes in speed, in Experiment 7 it conflicted with depth information, 

which specified that the target remained at a constant distance and changed size. There was 

no such conflict in the control condition, when the target did not change size. After the 

participant traveled the length of the room, the trial would end, the target would disappear, 

and a new orientation pole would appear, signifying the beginning of the next trial. 
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Design 

 The experiment had a 5x2x3x3 factorial design: 5 initial target eccentricities (-60˚, 

-30˚, 0˚, +30˚, +60˚), 2 initial distances (1 m, 4 m), 3 optical expansion rates (-0.2 m/s, no 

change, +0.2 m/s), 3 changes in angular velocity (+30˚, no change, -30˚), for 90 trials. 

These was replicated twice over two blocks, for a total of 180 trials. 

Data processing 

 2160 trials were recorded across participants. Of those, 105 had to be discarded due 

to tracking errors with the Odyssey, leaving 2055 usable trials (95% of trials). Otherwise, 

the data processing was identical to Experiment 2. 

 Because the target could change size while remaining at a fixed distance from the 

participant, two target trajectories were calculated to compare with participant data. The 

first was the synoptic trajectory determined by the optical expansion, calculated by taking 

the distance specified by the visual angle of a 0.4 m object at the target’s eccentricity from 

the participant’s known position at every time step. The second was calculated by taking 

the distance specified by depth information (binocular disparity, vergence, and declination 

angle to the ground plane) and the target's eccentricity. 

 

6.3 Experiment 7 - Results 

 Representative trials from Experiment 7 are found in Figure 6.1. These plot 

position, speed, and heading of the participant (black curves) and the two target trajectories 

specified by optical expansion (red curves) and depth information (blue curves). In these 

trials, participants’ responses appear to be somewhere in between the two trajectories. To 

summarize this over all trials, Figure 6.2 plots the mean time series of participant speed 
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from Experiment 2 (solid curves) and Experiment 7 (dashed curves) to compare the 

magnitude of speed change. Experiment 2 showed expansion rate had a large influence on 

participant speed. When optical expansion conflicted with depth information in 

Experiment 7, participants still responded to the expansion, but that response was reduced. 

This suggests that participants combined conflicting information to control their walking 

speed. 

 Figure 6.3 plots the influence of optical expansion (collapsed across expansion and 

contraction) on mean speed for comparisons. A two-way ANOVA found a significant 

Figure 6.1. Representative trials from Experiment 7, plotting position, speed, and heading 

of the participant follower and the target. The target’s timeseries was separated into two 

sets: (1) the target’s synoptic motion specified by artificial optical expansion (red curves) 

and (2) the information specified by depth (blue curves). Panels (a-c) plots a 1 m distant at 

+60° eccentricity trial with added expansion (specifying slowing down). Panels (d-f) plots 

a 1 m distant at -30° eccentricity trial where the target and turns left while contracting 

(specifying speeding up). 
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difference between Experiment 2 and Experiment 7 (F(1, 44) = 16.53, p < 0.001), as well 

as between the presence of expansion and control conditions (F(1, 44) = 42.5, p < 0.001). 

Critically, there was also an interaction effect between experiments and conditions (F(1, 

44) = 8.31, p = 0.006). Post-hoc tests further found a significant difference between 

condition means for expansion alone and control for Experiment 2 (t(22) = 7.22, p < 0.001), 

Figure 6.2. Mean participant speed across Experiments 2 and 7. In the absence of any other 

information, the target expanding (red solid curve; Experiment 2) caused large changes in 

participant speed. When information conflicted (red dashed curve; Experiment 7), 

participants still changed speed, but to a lesser degree. 

Figure 6.3 Collapsed mean final speed for Experiments 2 and 7, suggesting that visual 

information is combined for following a single leader. 
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reiterating the findings from Chapter 2 that expansion alone is sufficient to control 

following. Critically, there was a significant difference between condition means for 

expansion in conflict with depth and control for Experiment 7 (t(22) = 2.40, p = 0.026), 

indicating that depth information does not completely override optical expansion. In 

addition, there was a significant difference between condition means for expansion alone 

from Experiment 2 and expansion in conflict with depth from Experiment 7 (t(22) = 4.90, 

p < 0.001), suggesting that expansion alone does not control following. These results 

together provide evidence for the hypothesis that visual information combines for 

following a single leader. 

   

6.4 Experiment 7 - Discussion 

 Comparing Experiment 7 to Experiment 2 demonstrates two important findings: 1) 

expansion influences following behavior and this occurs even when there are other sources 

of visual information that are in conflict, and 2) when information is conflicting, followers 

combine these sources of information. This shows that “traditional” depth sources (i.e. 

binocular disparity, vergence, and perspective to the ground plane) do play a role in 

following a single leader. 

 However, the results of Experiment 7 are not evidence that the visual system is 

building an internal 3D model for action. Experiment 2 provides evidence that expansion 

alone is sufficient for following. What Experiment 7 does provide is evidence that depth 

sources are used. Notably, these depth sources are formally related to optical expansion 

(Warren 1998; e.g. change in declination angle to the ground plane is just expansion of a 

contour in the vertical dimension). A control law could cancel change in declination angle, 

change in vergence, and change in disparity much like canceling optical expansion. This 
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suggests that these additional optical variables could be incorporated into the control laws 

that govern the visual model, allowing it to best account for the full range of optical 

information used to following a single leader. 

 An important question remains however: how these sources of depth information 

interact at the crowd level and if previously found principles of superposition hold true 

when information is in conflict. 

 

6.5 Experiment 8 - Information Conflict in Crowds 

 Crowd behavior emerges from the pairwise interactions among all members in the 

crowd. The bottom-up approach argues that the interaction rules for leader-follower pairs 

should scale up to all the interactions in a crowd. The purpose of Experiment 8 was to 

determine whether optical expansion is combined with depth information, as observed for 

a single neighbor (Experiment 7), when walking with multiple neighbors in a crowd. The 

present experiment thus included conditions in which optical expansion was isolated, was 

placed in conflict with binocular and/or ground plane information, was consistent with that 

information, as well as a no-change control condition. In short, the question was whether 

the combination of motion and depth information would generalize from a single leader to 

a crowd. 

Participants 

 12 undergraduate students were recruited at Brown University, 8 female and 4 

male. None reported any visual or motor impairment. The research protocol was approved 

by Brown University’s Institutional Review Board, in accordance with the principles 
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expressed in the Declaration of Helsinki. Informed consent was obtained from all 

participants, who were paid for their time. 

Apparatus 

 The experiment was conducted in the Virtual Environment Navigation Laboratory 

(VENLab) at Brown University. The apparatus was the same as in the previous experiment. 

Participant head position and orientation were recorded with the Odyssey’s inside-out 

tracking at 90 Hz. 

Procedure 

 Participants began each trial by orientating toward a target sitting on the ground 

plane. After 3 seconds, the orientation target disappeared and a group of 12 target poles to 

be followed appeared within the participant’s field of view. Participants were instructed to 

“walk with the poles as if walking down the street with them, while maintaining a 

consistent distance and orientation to them”.  

Displays 

 Each target was a virtual pole (0.4 m in width, 2 m in height). The targets appeared 

on two arcs: near and far. The near arc was 2 m distant, with 5 poles equally spaced along 

a 100° arc. The far arc was 3.5 m distant, with 7 poles along a 120° arc. Poles were 

randomly jittered in every trial by a uniform distribution of ±0.25 m. The target poles 

initially moved away from the participant in a straight line at 1.0 m/s. After a random 

interval of 3-5 seconds nine of twelve or all twelve poles changed their speed (-0.2 m/s, no 

change, +0.2 m/s), or rate of expansion (specifying -0.2 m/s, no change, specifying +0.2 

m/s). After a 3 second perturbation, the target poles returned to 1.0 m/s speed or ceased to 

have artificial expansion, dependent on condition. In half of all trials, the poles could be 
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presented synoptically or with disparity to manipulate binocular information about the 

distance of the poles. This was cross-balanced with a ground plane present or removed, to 

vary declination angle information about the distance of the targets, and to find if this 

information interacted with binocular information. After the participant traveled the length 

of the room, the trial ended, the target poles disappeared, the ground plane reappeared if it 

had been removed, and a new orientation target appeared, signifying the beginning of the 

next trial.  

Design 

 The experiment had a 2 x 2 x 2 x 2 x 2 + 4 factorial design: 2 information conditions 

(optical expansion, speed change), x 2 specified speed perturbations (-0.2, +0.2 m/s), x 2 

perturbed subsets (9, 12 targets), x 2 ground plane conditions (ground, no ground), x 2 

binocular conditions (synoptic, disparity), plus 4 no-change control trials (one in each 

ground plane x binocular condition). This was replicated 4 times, presented in random 

order, for a total of 144 trials.  

Data processing 

 1728 trials were recorded across participants. Of those, 41 had to be discarded due 

to tracking errors with the Odyssey, leaving 1687 usable trials (97.6% of trials). Trials were 

processed using the same methods from Experiment 7. 

  

6.6 Experiment 8 - Results 

 Representative trials from Experiment 8 appear in Figure 6.4. The top row (panels 

a-c) presents a trial with binocular disparity and a ground plane, in which 9 of 12 targets 

increased their speed, so motion and depth information were consistent. The participant 
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sped up in response. The second row (panels d-e) presents a trial with disparity and a 

ground plane in which all 12 targets optically expanded, creating a conflict between 

expansion information (red curves) and depth information (black curves). The participant 

slowed down in response. Because the targets expanded, those with higher eccentricities 

also appeared to turn toward the participant.  

 To find how conflicting information influences participant speed, Figure 6.5 plots 

expansion change trials for two condition sets: no conflicting information (e.g. targets 

presented synoptically and without a ground plane) and conflicting information (e.g. targets 

Figure 6.4. Representative trials from Experiment 8. Panels (a-b) is a trial in where 9 of 12 

targets sped up (so there was no information conflict), with a ground plane and binocular 

disparity. Panels (c-d) is a trial where all 12 targets expanded, causing a conflict between 

information sources. 
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presented binocularly and with a ground plane). Walking with a crowd showed effects 

similar to walking with a single neighbor (Experiment 7), where non-conflicting 

information (solid red curve) causes a large change in participant speed, while conflicting 

information (dashed red curve) causes a change in speed, but to a reduced effect. In these 

circumstances, participants used both sources of information. 

 Figure 6.6 plots the influence of optical expansion on mean speed across 1-3 

seconds after perturbation (yellow shaded region in Figure 6.5), by information conflict, 

for comparisons. A two-way ANOVA found a significant difference between expansion 

change and control (F(1, 44) = 9.97, p = 0.003), but no significant difference between no 

conflict and conflict conditions (F(1, 44) = 0.47, p = 0.495), and no interaction (F(1, 44) = 

0.1, p = 0.749). Post-hoc tests found a significant difference between expansion changed 

Figure 6.5. Mean participant speed from Experiment 8 by whether the information was conflicting 

or not conflicting. 
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and control for the no conflict conditions (t(22) = 2.10, p = 0.047) and for the conflict 

conditions (t(22) = 2.32, p = 0.030), but no difference between no conflict and conflict 

when expansion changed (t(22) = 0.23, p = 0.821). 

 

6.7 Experiment 8 - Discussion 

 These results provide evidence that expansion change is used for the control of 

speed not just with following a leader, but following multiple neighbors. This provides 

further evidence for the superposition hypothesis for following in a crowd. The results also 

demonstrate that expansion’s influence on a pedestrian is equivalent, regardless if the 

expansion information is conflicting with depth cues or not, when following a crowd. 

Experiment 7 found this not to be the case, that no conflicting information is more 

influential than conflicting. Potential explanations are that when increasing the number of 

neighbors to follow, it not only reduces the influence of expansion information alone, but 

reduces the influence of depth cues as well (that are also formally related to optical 

expansion). In addition, expansion specifies different motion changes in neighbors, 

Figure 6.6. Mean participant speed from Experiment 8, across 1-2 seconds after perturbation, by 

whether the information was conflicting or not conflicting. 
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dependent on eccentricity. When following a single leader, those changes can specify speed 

or heading change. With multiple neighbors, given their structure in Experiment 8, it 

provides conflicting information about the crowd. This is, if the two neighbors at farthest 

and opposite sides of the crowd expand, it specifies they are both turning toward the 

participant (as seen in Figure 6.4, panel c). This conflict of information may also be 

contributing to the reduced influence of expansion seen in Experiment 8. Further study is 

necessary to find why this difference occurs in following a crowd. 

 

6.8 Conclusion 

 The findings from Experiment 7 and Experiment 8 demonstrated that multiple 

sources of visual information are used for following a single neighbor and following a 

crowd. When these sources were in conflict (for example, when a neighbor was changing 

size while also maintaining disparity, Experiment 7; or when multiple neighbors are 

exhibiting conflicting expansion, Experiment 8) the information is combined, reducing the 

effect of optical expansion. 

 While the visual model for following a crowd currently only uses optical expansion, 

angular velocity, and occlusion information for simulation purposes, an improved model 

could account for these other sources as well. Change in declination angle to where a 

neighbor rests on the ground is functionally identical to change in optical expansion along 

the vertical dimension. While the visual model currently only calculates change in the 

horizontal dimension (as it is normally locked to change in the vertical), adding a 

component to the model for vertical change would function as capturing change in the 

declination angle along the ground plane. Disparity could receive the same form of 
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treatment: treat the angle of each eye to a neighbor as different model inputs and null that 

change in angle difference. 

 By definition, the model’s control laws nulls any changes in visual information. 

Separating out changes in declination angle or disparity into its component changes in 

visual angles provides a means to model these within the visual model framework. This 

would allow the model to continue to function without an explicit recovery of distance, 

while accounting for circumstances where expansion and depth information are in conflict 

(as rare as they may be). 
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CHAPTER 7 

 

 Conclusion 
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7.1 Discussion 

 Crowd collective motion is inherently complex. The presented work does address 

how pedestrians locomote in all manner of crowds (i.e. walking to a goal or collision 

avoidance), nor the final answers on the information they use, nor the ultimate method by 

which to model them. These are questions that will be asked and examined for decades to 

come, as the layers of collective motion and visual information are peeled away. 

 What this research does provide is a strong foundational work on the role of visual 

information in collective motion and a powerful method by which to model it, that relies 

on empirically grounded studies of how information controls following. Chapter 2 explored 

the visual information provided by optical expansion and angular velocity, as control 

variables for following a single neighbor. Based on the laws of optics for these variables, I 

it derived the visual model, a visual control law that describes the "rules of engagement" 

for a leader-follower pair. Model parameters were fit to data from Experiment 1, and 

successfully predicted human responses in Experiment 2. The results demonstrated that 

these optical variables are sources of information used to control walking speed and 

heading when following a leader. Chapter 3 attempted to scale up this model to following 

in crowds. I applied the visual control law for following a single neighbor to walking with 

multiple neighbors, on the assumption that these pairwise interactions could be linearly 

combined (the superposition principle). However, simulations of previous experimental 

data on a participant walking with a virtual crowd found that the visual model failed to 

generalize to some conditions, and did not always perform as well as the previous 

behavioral model. I hypothesized that dynamic occlusion of some far neighbors might 

reduce their influence on the participant, and a visual occlusion component was missing 
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from the model. Chapter 4 experimentally tested the effect of visual occlusion when 

following a virtual crowd. The results showed that occlusion reduced the influence of far 

neighbors. Occlusion was added to the visual model, instantiating the visual + occlusion 

model, by computing each neighbor's occlusion and weights their influence by the 

proportion of visibility. Re-simulating the experimental data showed that adding the 

occlusion component significantly improved the fit of the visual model, and was even 

better than the behavioral model for dense crowds at farther distances. Chapter 5 took the 

visual model out of the laboratory, to test whether it generalized to crowds in more 

naturalistic settings. Results showed that the model with dynamic occlusion accounted for 

individual trajectories of participants in a "swarm". Moreover, multi-agent simulations 

showed that the model converges to collective motion over a wide range of initial 

conditions, demonstrating that visual control laws for alignment are sufficient to generate 

robust collective motion. Chapter 6 recognized that optical expansion, angular velocity, 

and dynamic occlusion may not be the only visual information that governs collective 

motion. Experiments on walking with a single neighbor and a crowd found that declination 

angle to the ground plane and binocular disparity also played a role as control variables for 

walking speed. However, change in declination angle and change in disparity are analogous 

to optical expansion. Thus, the visual model might be expanded, in principle, by adding 

components that null these variables as well. 

 Taken together, the combined work of this dissertation provides the first 

experimental evidence on how visual information governs local interactions when walking 

with a crowd, giving rise to human collective motion. This research derived, tested, 
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explored, and experimentally validated the first model of coherent motion in crowds in 

which locomotion is controlled solely by visual information. 

 

7.2 Theoretical Conclusions 

 Examining the body of this research raises broader theoretically conclusions about 

crowd behavior and modeling approaches to it, that deserve discussion. A few of these are 

the following: that alignment-based neighbor interactions are sufficient for collective 

motion, that visual information provides a more parsimonious account compared to 

previous modeling frameworks, that bottom-up approaches successfully model collective 

motion, and that locomotor control can be explaining by a linear combination of visual 

control laws. 

 My work has shown that the alignment of locomotion behaviors between neighbors 

is by itself sufficient to make an account of collective motion. However, alternative models 

have supplemented alignment with additional components of interaction (i.e. the attraction 

and repulsion between neighbors; Couzin et al., 2002). So, while my work has shown 

alignment is sufficient, it does not show it is necessary. And conversely, does demonstrate 

that attraction and repulsion are not necessary, but it does not test if they are sufficient as 

well. It has been shown that attraction / repulsion models can generate collective motion 

by means of attraction to neighbors ahead and repulsion from neighbors behind, as in locust 

swarms (Romanuczk, et al., 2009). However, this work presumes agents with a panoramic 

field of view, whereas humans have a 180˚ field of view and only respond to neighbors 

ahead of them (Rio, Dachner, & Warren, 2018). This implies that attraction/repulsion is 

insufficient to generate collective motion in human crowds. 
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 An objection could be made that humans do not ordinarily follow each other or 

walk together in groups, but only walk to goals while avoiding collisions with moving 

neighbors or static obstacles. However, there is no evidence that pedestrians do not walk 

together in collective motion. By instructing participants to “follow” a leader or “walk 

with” a crowd, my goal was to test whether following and alignment of locomotor 

behaviors are sufficient to generate and explain collective motion. This work has 

demonstrated this to be the case. 

 Nearly all previous models of collective motion have been “behavioral” models, 

based on a bird’s-eye view of physical variables (e.g. the input speed, heading, and distance 

directly into the model). The major contribution of my thesis demonstrates that a model 

that uses visual information, based on an embedded view and optical variables 

accomplishes the following functions: it accounts for a wide range of collective motion 

data, it accounts for some aspects of the data more accurately compared to behavioral 

models (e.g. asymmetries of relative direction of motion and distance), it is more 

parsimonious (by accounting for behavioral asymmetries by using asymmetries in 

information), it functions without an explicit distance term (instead relying on Euclid’s 

laws), and, finally, it provides a causal/mechanistic explanation of locomotor control (as 

opposed to a phenomenological description). 

 Phenomenological models only describe behavior, and assume that physical 

variables somehow influence the agent without showing how. Mechanistic models, like the 

visual model I have presented here, provide a causal mechanism by showing how visual 

information influences the agent’s behavior. 
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 Next, my work demonstrates that the bottom-up approach works: by beginning with 

the study and modeling of interactions in leader-follower pairs, I could scale up to model 

interactions with multiple neighbors, and show that multi-agent simulations of the model 

generate collective motion based on the same interaction rules that govern pairwise 

interactions. 

 There is one critical point to be made on this however: scaling up by using the 

principle of superposition (that interactions between multiple neighbors are the sum or 

average of pairwise interactions) has limits: although the behavioral model and visual 

model obey superposition, the visual + occlusion model does not. This form of the visual 

model violates a primary rule of superposition when it considers the position of an occluded 

neighbor in reference to other neighbors. This breaks superposition because it forces the 

consideration of interactions between neighbors, instead only considering the interactions 

between a follower and their neighbors. This violation of superposition has implications 

for other senses, too, e.g. in fish, pressure waves sensed by the lateral line organ will be 

affected by the bodies of “occluding” fish; in bats, returning echoes will suffer interference 

from the emissions of other bats, etc. 

 To close out theoretical conclusions, thus far, it should be noted that my research 

has demonstrated that locomotor control can be explained by the linear combination of 

visual control laws (e.g. acceleration of speed or heading is calculated by nulling change 

in angular velocity, horizonal expansion, declination angle (vertical expansion), and 

disparity. This is different from the linear combination of visual depth cues to form a 

consistent 3D model (or percept) of the environment, which is then used to control 

locomotion, for example, by keeping a constant distance from neighbors, or a constant 
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position in the 3D configuration of neighbors. Instead, I have demonstrated the information 

for alignment in collective motion comes from the nulling and combination of visual 

motion. 

 

7.3 Future Directions 

 Further work remains to be done to develop the visual model of collective motion. 

It would serve to compare this model to other contemporary models of crowd behavior. 

The multi-agent simulations in Chapter 5 make novel predictions about the conditions for 

collective motion. The experimental results of Chapter 6 imply that additional sources of 

information need to be incorporated into the model. Finally, a successful visual model of 

collective motion open questions about visual information transfer in complex systems 

such as human crowds. 

 With the inclusion of occlusion into the visual model, the visual + occlusion model 

is robust at simulating following a single neighbor and following a crowd. However, as 

noted in Chapter 1, there are many other contemporary models of crowd behavior. A very 

important next step for the visual + occlusion model would be to compare it to these 

competing models in the literature. Importantly, to test if the same data of following in 

human crowds presented here can be explained by: models with only attraction and 

repulsion components from neighbors (e.g. Romanczuk, et al., 2009), models in which each 

agent is attracted to its own goal and avoids collisions with neighbors (e.g. Moussaid, et 

al., 2011), or the Social Force Model (e.g., Helbing, et al., 1995). Further, model 

comparisons need to be done to find which models best simulate following in a crowd. 
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 Chapter 5 explored how the visual model generates collective motion at larger 

scales in multi-agent simulations. One important find was that the visual model + occlusion 

model produces a unique pattern of crowd cohesion compared to previous physical and 

behavioral models, and makes a unique prediction about the conditions for collective 

motion. Other models predict that when crowd density is high, the crowd will quickly 

converge to cohesive motion regardless of the variation in initial conditions. However, the 

visual model with dynamic occlusion predicts that at high densities (between 1-3 m IPD), 

increased occlusion results in slower convergence and less cohesive motion when the 

variation initial conditions is large. These findings encourage future work to empirical test 

if human behavior matches this prediction. One means to test this is by using the framework 

from Experiment 6 and expanding it through variations in crowd density and higher 

magnitudes of variations in neighbor behavior. 

 As found in Chapter 6, in addition to optical expansion, angular velocity, and 

dynamic occlusion, two other sources of information contribute to the control of walking 

speed: binocular disparity and declination angle. However, the model does not currently 

take these variables into account. One potential option to improve the model is for it to 

treat horizontal optical expansion and vertical change in declination angle as separate 

variables, and add a term that nulls change in the declination angle. With objects in the real 

world, however, horizontal and vertical expansion are highly correlated, as rigid objects 

optically expand in all directions when they are approached. Thus, another option would 

be to treat the change in declination angle as the vertical component of expansion. This 

question might be investigated experimentally by isolating vertical expansion and 

declination angle and testing whether they have a similar influence on speed control. 
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Binocular information might be incorporated into the model by adding terms that null the 

change in disparity and the change in vergence angle. 

 Taking the model further, it can be understood that angular velocity and optical 

expansion and contraction are composed of local optical flow vectors. Future versions of 

the visual model could incorporate a "front end" that senses the local motion of points on 

the surface of objects, and derive higher-level properties such as region velocity and 

expansion rate to drive the model. This is doubly important when it is considered that 

individual neighbors within crowds in the real world are complex-shaped objects. 

Changing the visual model to use optic flow as and binocular disparity input could help 

generalize the model to real-world crowds.  

 Finally, crowds are complex dynamic systems. Collective motion in any system 

poses the question of the means and rate at which state information is transferred among 

the individuals within the group. For example, bird flocks have been shown to have a rapid 

rate of transfer, allowing for individual birds to move in response to a predator so that the 

whole flock is cohesive (Bialek et al., 2014). Large human crowds with many neighbors 

may be studied and modeled to investigate information transfer. In particular, multi-agent 

simulations can be used to test the effect of neighborhood size and time delays on the rate 

of information propagation through the crowd from front to rear. Occlusion and field of 

view are also likely to constrain these properties, further analysis is needed to 

understanding information transfer. 

 This future work taken together would lead to a more accurate, robust, and 

ecologically valid model of the visual control of locomotion in crowds. The model has 

significant applications to areas of society including urban planning, evacuations, and 
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architectural design, in addition to improving our basic understandings of human vision 

and crowd behavior. 
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