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Chapter 1

Introduction

“Scene understanding” requires identifying the component objects of a scene in relationships to their

surroundings,e.g., car, lamp-post, human,etc. in relation to road, sidewalk,etc.These components

have to be meaningful and complete for the task in hand. This segmentation of a scene into objects

is required for various applications such as traffic monitoring, surveillance activities like tracking

and identifying a target, as well as inputs to more generic computer-vision algorithms such as object

recognition, object tracking, and object detection.

Figure 1.1: This figure shows the segmentation of the figure on the left using implementation based
on [75, 65]. Note how the segmentation is far from the desired segmentation as the whole van.

The segmentation of a scene into objects from a single image in a generic, not application

specific setting, has not been successful because objects in general do not satisfy any coherent cues

for segmentation,e.g. “intensity”, “color” and “texture”. Rather, portions of the object may have

coherent intensity, texture, color,etc., but that cannot be expected to hold for the entire object.

Thus, image-based segmentation algorithms,e.g., [75], only can segment images into regions with

1
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low variation of intensity and texture, and this is not likely to result in a segmentation of the full

object in a realistic setting, Figure 1.1. The alternative approach to this bottom-up approach is to use

top-down model matching where several models of every object category are searched in the whole

image. These methods are in general computationally infeasible as there exists tens of thousands

of object categories, each requiring multiple prototypes to represent in this category variations. The

limited success of bottom-up and top-down segmentation of single images motivates the use of a

sequence of imagesin the segmentation, in our case the segmentation of several adjacent frames of

a video sequence.

Figure 1.2: The goal of motion segmentation is the delineation of objects relative to a background.
The image on the right shows the segmentation of the scene on the left in different colors.

A video clip with moving objects, moving camera, or both, provides information about different

views of the same object. Since the object in the world is the same, the new views of the same

object offer redundant information about the object. Of course new views can only be related

to previous views if the camera projection matrices can be related, but these unknowns are few

compared to the extent of new information provided by the additional views. Observe that while

it is unreasonable to expect an object in its entirety to share single frame cues such as intensity,

color, and texture, it is often the case that the full object has the same motion. The use ofcommon

motion cuefor segmentation cue defines the problem of “motion segmentation” as the delineation

of image into regions with coherent motion attributes, Figure 1.2. Specifically, the problem is

one of segmenting independently moving objects which is specifically useful in applications for

compression, initialization for tracking, input for recognition of the target and others.

The existing approaches for motion segmentation can be broadly classified into two classes,

namely(i) feature-based approachesand (ii) dense image flow-based approaches. Both sets

of approaches estimate the correspondence of features or pixels respectively, followed by stage of

grouping these according to a motion model, discussed below. Each of the classes of approaches
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Figure 1.3: This figure shows the motion segmentation using features. The left image shows track-
ing of features and the right shows segmentation of features into different motions shown in different
colors namely green, red, and blue.

has fundamental drawbacks. First, features such as KLT/SIFT are typically sparse and insufficient

to estimate motion models (and hence the segmentation) unless the object is rich in texture. This

is especially an issue for man-made artifacts,e.g., the office environment, and for low resolution

images,e.g., aerial images, Figure 1.3.

Figure 1.4: This figure shows the motion segmentation using dense-flow computed on pixels . The
left image shows dense flow estimated on each pixel and the right shows segmentation of regions
based on their flow into different motions shown in different colors namely green, pink, and orange.

Second, the pixel-wise dense computation of flow is ambiguous/erroneous mainly because tech-

niques using brightness constancy have a very low signal to noise ration at low-gradient regions im-

ages which comprises a significant portion of the image,i.e., the pixels away from edges. The pixels

near or on the edge have higher signal to noise ratio and provide a better estimation of flow. The

main difficulty is these approaches is that it is not clear when flow estimation is reliable, Figure 1.4.

In this thesis it is argued that these fundamental limitations can be addressed by using curves/edges
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are denser than sparse features and also make clear places where flow can be reliably estimated,

Figure 1.5 as elaborated below.

Figure 1.5: This figure shows the motion segmentation using curves . The left image shows curves
and the right shows segmentation of curves into different motions shown in different colors namely
green, blue , and red. The black color curves do not belong to any group.

Edges are typically detected as local maxima of the gradient magnitude of the image along the

gradient direction of the image. Curvefragments are obtained by linking these edges in a local

neighborhood. We now discuss the merits of using curves/edges in relation to using sparse features

and dense 2D pixels in estimating motion. Given that a pair of curves bounds a region and the

curve-set inherently has access to the regions as shown in “visual fragments” representation of [90].

We argue a curve-based motion segmentation is most effective in further correlating results over

disparate views of the same object.

Features Pixels Curves
Correspondence unambiguous ambiguous ambiguous along the

curve
Computational Complexity Low High Medium
Illuminationchanges moderately invari-

ant
variant moderately invariant

Segmentationresults Sparse 2D cloud of
points

connected set of
pixels (region)

Collection of curve
fragments.

Nature ofObjects Objects rich in tex-
ture

should not be ho-
mogeneous

have boundaries and
reflectanceedges

Table 1.1: This table compares three types of representations, features, pixels, and curves in terms
of properties such as density, correspondence estimation, robustness to illumination changes and the
delineation of the object boundaries.

First, in comparing the quality of correspondence offeatures, pixelsandcurves/edges, observe

that the features are spatially localized and sparse so that a correspondence is often unambiguous.
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In contrast, a dense correspondence between the two sets of 2D region pixels faces two dimensions

of ambiguity. The correspondence of curves/edges, on the other hand is ambiguous in the direction

along the curve but is unambiguous in direction transversal to it. Second, in comparing the com-

putational complexity of working with features, pixels, and curves/edges, observe that features are

sparse and significantly fewer than the significantly high number of pixels in an image, while curves

have an in-between complexity. Third, in comparing the segmentation result of methods using these

representations, observe as in Figure 1.6(c) that feature-based methods result in a sparse 2D cloud

of points, dense flow methods result in regions, Figure 1.6(d), while curve-based methods present a

collection of curves. Finally, the curves/edges show a greater degree of invariance to illumination

changes [47] as compared to features. On the other hand dense flow based estimation is typically

affected by illumination changes. These comparisons are summarized in Table 1.1. A central tenant

of this thesis is to propose that curves provide a middle-ground representation in between features

and pixels and act as complimentary representation in regard to features and pixels as most of the

features (mainly corners) lie on the curves and a pair of curves do contain the regions of pixels.

(a) (b)

(c) (d)

Figure 1.6: The feature-based segmentation of a moving vehicle from a video of sequence of frames
one of which is shown in (a) gives a sparse representation in (c) in contrast to curve-based segmen-
tation using the methods of this thesis (b). On the other hand the pixel-based approach gives a dense
segmentation than both (b) and (c) but misses a lot of regions due to ambiguous flow in regions of
uniform intensity.
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The work proposed in this thesis uses curves for motion segmentation for a moving camera or a

moving object. The thesis examines the relationship between a 3D curveΓ(s, t), and its projection

γ(s, t) under a video sequence,i.e.,

Γ(s, t) = ρ(s, t)γ(s, t)

wheres is the parameterization along the curve andt is the time index andρ is the depth, Figure

1.7(a). The one-parameter family of curvesγ(s, t) can be examined in a single central frame, Figure

1.7(b). For example, consider the moving truck Figure 1.8 (a) whose edge maps are superimposed

to give rise to this one-parameter family of curves, where each color denotes a separate time sample,

Figure 1.8(b) and a zoomed area in Figure 1.8(c).

(a)

(b)

(c)

Figure 1.7: This figure shows the 2D curves obtained from a moving 3D curve or moving camera.
(a)Γ(s, t) is a 3D stationary curve shown in green and non-stationary curve shown in red and its
projectionγ(s, t), (b) projections of a 3D curve onto different frames which is shown in (c).

In this approach, we focus on a camera moving with respect to an object with rotationR(t)

and translationT (t) such that in a few local frames. this can be approximated usingΩ(t) = dR(t)
dt

andV (t) = dT (t)
dt . The shape of the 3D curveΓ(s, 0) can also be locally described using a point

Γ0, tangent~T , normal ~N , speed of parameterizationG, and curvatureK. Clearly, the desirable

unknown are the 3D shape of the curve{Γ0, ~T , ~N,G,K} and the 3D motion of the curve{Ω,V }.
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SinceΓ(s, t) = ρ(s, t)γ(s, t) we can also describe these unknowns in terms of the local form of the

depth atρ0, {ρs, ρt} and{ρss, ρst, ρtt} and the local form ofγ(s, t). The one-parameter family of

curvesγ(s, t) can be first described as curve evolution in an intrinsic framework,i.e.,

γ(s, t) = α(s, t)t(s, t) + β(s, t)n(s, t)

whereα andβ are tangential and normal velocities, respectively. A local second-order description

of this family thus requires a point{γ0, t,n, α, β} as well as{κ, αs, βs, βt, αt}.

We can now discuss which of the unknowns is observable. The depth is not directly observable.

Similarly, γ(s, t) is only observed as a trace so that the parameterization is not directly observable

from the shape of the curves (unless intensity correlation is used). We will show that onlyβ, βt, βs

are observable whileα, αt, αs are not. The shape unknownsγ0, t,n, andκ are also observable.

these are summarized in Table 1.2.

(a)

(b) (d)

Figure 1.8: This figure shows an example of local one-parameter family of curves obtained by
projection of a local 3D curve. (a) A video sequence of moving truck whose edge maps are shown
in the same frame in different colors in (b). A zoomed in image of local window is shown in (c)
which is sample of one-parameter family of curves.

Two approaches are now possible. First, common motion cue in 3D for compact objects implies

common 2D motion (although the converse is not true). Thus estimating the missing tangential

velocity α(s, t) can be used to group points for motion segmentation. Second, since the above

approach fails for elongated objects moving towards the camera, where common 3D motion trans-

lating into a diverse range of 2D motion, we follow the approach of estimating 3D motion. We will

show that for translating objects (Ω = 0), the velocity of the object can be written as

V = −ρ

[
α(ακ+ βs) + βt

2β
γ + γt

]

. (1.1)
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Unfortunately, the computation is sensitive for estimatingVz. We also show that the ratio ofV xV y
remains a powerful cue for motion segmentation. The general overview of our approach is described

next.

ProjectionModel
3D curve Γ(s, 0)
3D motion R(t), T (t)

γ(s,t)
dγ(s,t)
dt = αt+ βn

One-parameter family
of curves

Depthρ(s, t)

DifferentialGeometry

3D curve Γ(s, 0)

Γ0, ~T , ~N,G,K

3D motion R(t), T (t)

Ω = dR(t)
dt , V = dT (t)

dt

point γ0
tangent t,n
flow α, β

κ, αsβs, αt, βt

ρ0
ρs, ρt

ρss, ρst, ρtt

Observable None

Theorem:

2D shape γ0, t,n, κ
Normal β, βs, βt
flow

None

Unknowns
shape Γ0, ~T , ~N,G,K
motion Ω,V

tangential α, αs, αt
flow

depth ρ0
gradient ρs, ρt
Hessian ρss, ρst, ρtt

Table 1.2: This table summarizes the relationship between 2D and 3D motion and shape parameters
and clearly demarcates between shape and motion as well as unknowns and observable.

General Overview: This work uses the following assumptions:(i) rigidity , which implies objects

to be rigid so as to ensure the coherent motion for all parts of the object and(ii) objects arenot too

closeto the camera so as to ensure a valid approximation of 3D motion by 2D parameteric models.

The approach proposed in this thesis comprises of two stages as shown in Figure 1.9. The first stage

is to obtain segmentation from a single/two views and different approaches are discussed for case

of stationary camera and moving camera. The second stage uses redundancy of segmentation from

multiple frames to enhance the true positive and suppress the false positives. For the case of mov-

ing camera of stage one, the correspondence of the curves extracted from two views using a notion

of similarity. Since the true corresponding pair of curves originate from a moving 3D curve, the

similarity metric is computed by minimizing the motion of the 3D curve along the depth as well as

the extent of the curve along the depth. This gives the alignment between two curves The approach

proposed in this thesis comprises of two stages as shown in Figure 1.9. The first stage is to obtain

segmentation from a single/two views and different approaches are discussed for case of station-

ary camera and moving camera. The second stage uses redundancy of segmentation from multiple
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Figure 1.9: Flow of the Approach for using curves and edges to do motion segmentation and enrich
the segmentations with a second stage Multiple frame consistency approach.
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frames to enhance the true positive and suppress the false positives. For the case of moving camera

of stage one, the correspondence of the curves extracted from two views using a notion of similar-

ity. Since the true corresponding pair of curves originate from a moving 3D curve, the similarity

metric is computed by minimizing the motion of the 3D curve along the depth as well as the extent

of the curve along the depth. This gives the alignment between two curves as well as a similarity

metric. This alignment for the correct pair of corresponding curve is used to fit a 2D parameteric

model such as affine or similarity and the curves with similar parameteric models are grouped to

obtain segmentation. Such segmentations are obtained for the whole video sequences using adja-

cent frames. For the case of stationary camera, the position and orientation of sub-pixel edges of

the background are modeled and any deviation from this model is detected as foreground. Since the

edges moving objects are different from the background edges, the moving edges are detected as

foreground. This modeling of edges compared to traditional intensity based approaches is more ro-

bust to sudden changes in illumination and are more selective in distinguishing between foreground

and background. The segmentation obtained in these two cases still have spurious curves/edges and

some portions missing.

The second stage of this approach overcomes these impoverished segmentations by using mul-

tiple frame consistency. First , edges of the segmentations from different frames typically 5 or 7 are

aligned on a central frame. This alignment is obtained by estimating the parameters of Thin Plate

Spline (TPS) model. Due to the object being locally planar and far from the camera, the image flow

is modeled locally by a linear flow and the minimization of the second order flow gives TPS as the

solution. After the edge maps have been aligned, the edges with the notion of geometric consistency

in fewer frames are pruned which leads to throwing away of noise and filling in the gaps. This has

also been useful to overcome significant occlusions. One limitation of the above proposed work is

that it is unable to segment objects with significant motion along depth.

In order to overcome the above limitation, this work also shows a theoretical study and analysis

to estimate 3D translation. The analysis shows infeasibility to obtain reasonable estimate of 3D

translation as well as shows a bias in the estimation of 3D translation direction towards optical axis.

This shows an unsuccessful attempt to estimate 3D motion. This thesis shows the use of geometry

of curves as the complimentary representation for motion segmentation and also lays the founda-

tion for a unifying theory of curves in 3D and 2D for motion segmentation. as well as a similarity

metric. This alignment for the correct pair of corresponding curve is used to fit a 2D parameteric

model such as affine or similarity and the curves with similar parameteric models are grouped to

obtain segmentation. Such segmentations are obtained for the whole video sequences using adja-

cent frames. For the case of stationary camera, the position and orientation of sub-pixel edges of

the background are modeled and any deviation from this model is detected as foreground. Since the
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edges moving objects are different from the background edges, the moving edges are detected as

foreground. This modeling of edges compared to traditional intensity based approaches is more ro-

bust to sudden changes in illumination and are more selective in distinguishing between foreground

and background. The segmentation obtained in these two cases still have spurious curves/edges and

some portions missing.

The second stage of this approach overcomes these impoverished segmentations by using mul-

tiple frame consistency. First , edges of the segmentations from different frames typically 5 or 7 are

aligned on a central frame. This alignment is obtained by estimating the parameters of Thin Plate

Spline (TPS) model. Due to the object being locally planar and far from the camera, the image flow

is modeled locally by a linear flow and the minimization of the second order flow gives TPS as the

solution. After the edge maps have been aligned, the edges with the notion of geometric consistency

in fewer frames are pruned which leads to throwing away of noise and filling in the gaps. This has

also been useful to overcome significant occlusions. One limitation of the above proposed work is

that it is unable to segment objects with significant motion along depth.

In order to overcome the above limitation, this work also shows a theoretical study and analysis

to estimate 3D translation. The analysis shows infeasibility to obtain reasonable estimate of 3D

translation as well as shows a bias in the estimation of 3D translation direction towards optical axis.

This shows an unsuccessful attempt to estimate 3D motion. This thesis shows the use of geometry

of curves as the complimentary representation for motion segmentation and also lays the foundation

for a unifying theory of curves in 3D and 2D for motion segmentation.

The rest of the chapter is organized by first laying out the notations used throughout this work in

Section 1.1 and the notations are summarized in Table 1.3. This is followed by discussion of theory

of curves in Section 1.2. This section discusses the relationship of curves in 3D to the curves in 2D.

Then a detailed overview of an approach is discussed in Section 1.3. This chapter is concluded by

discussing the contributions of this work.

1.1 Notation

Let Γ(s) = [X(s), Y (s), Z(s)] be a curve in a scene on surfaceM, wheres is the parame-

terization of the curve. The perspective projection of this 3D curve on an image is denoted by

γ(s) = [ξ(s), η(s), 1] where(ξ(s), η(s)) are the image coordinate whose focal-length is normal-

ized to 1 ands is arc-length parameterization is given by

Γ(s) = ρ(s)γ(s)
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whereρ(s) is the depth of the object. This could be further extended for moving camera or moving

curve given by

Γ(s, t) = ρ(s, t)γ(s, t)

wheret is the time.γ(s, t) is aone-parameter family.

Definition 1.1. One-parameter family of curves,γ(s, t), represents an evolving curve wheres is

the length parameter andt is the time.

γ(s, t) a one-parameter family of a curve is defined by∂γ(s,t)
∂s = g(s, t)t(s, t) whereg(s, t) =

‖∂γ(s,t)∂s ‖ is the parameterization speed along the constant curve andt = ∂γ(s,t)
∂s /‖∂γ(s,t)∂s ‖ is the

tangent andn is the vector perpendicular tot in the image plane evolving by the following model

∂γ(s, t)

∂t
= α(s, t)t(s, t) + β(s, t)n(s, t), (1.2)

whereα andβ are the component of image velocities along tangent and normal respectively, which

determines the parameterization of the family of curves.

Let us assume a differential model of a camera, centered at(0, 0, 0) at t = 0 given by rotation,

R(t) and translationT (t) wheret is the time. Let us denoteΩ×(t) =
dR(t)
dt R>(t) andV (t) = dT (t)

dt

where

Ω =







Ωx

Ωy

Ωz





 , Ω× =







0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0





 and V =







V x

V y

V z





 . (1.3)

R(t) andT (t) can be written as

{
R(t) = I +Ω×(0)t+

1
2([Ω×]t(0) + Ω

2
×(0))t

2 +O(t3) where Rt(0) = Ω×(0)

T (t) = V (0)t+ 12V t(0)t
2 +O(t3) where Tt(0) = V (0).

Γ(s) in the coordinate frame of camera at timet is given by

Γ(s, t) = R(t)Γ(s, 0) + T (t) (1.4)

Similarly a 3D curve moving byΓw(s, t) with moving camera is given by

Γ(s, t) = R(t)(Γ(s, 0) + Γw(s, t)) + T (t) (1.5)

Note that theR(t) andT (t) are motion of the camera andΓw(s, t) is the motion of the curve. Under

the assumption of linear translation the above equation simplifies to

Γ(s, t) = Γ(s, 0) + Γw(s, t) + V t (1.6)
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The motion of the 3D curve can be decomposed into two: one due to translation of the surfaceM

on which the curve resides and second due to its own deformation. The translation of the surface

M can be combined withV of the camera as the goal is to distinguish between different motions.

From now onV will be regarded as translational velocity of the curve relative to the camera. Rest

of the notation is tabulated in Table 1.3.

1.2 Theory On Curves

1.2.1 Different Types of Curves

In order to understand the challenges associated with using curves for motion segmentation, the

process of formation of different types of curves is discussed. The formation of curves is classified

into four categories which is sufficient for the scope of this work. The four categories are:

1. Surface reflectance discontinuity: This curve arise due to discontinuity of reflectance coeffi-

cient on the same surface which leads to discontinuity in the intensity of the image, shown in

green color in Figure 1.10. This curve is a function of the surface reflectance.

2. Surface normal discontinuity: This curve arises due to sharp discontinuity in the normal of

the surface which means sharp bending of the surface so that the angle of light direction with

the surface normal varies a lot and hence, leads to discontinuity in the intensity of the image,

shown in black color in Figure 1.10. This curve is a function of the surface.

3. Depth discontinuity: This curve arises when a viewing ray is tangent to a surfaceM and

this means that depth is discontinuous along the viewing ray, shown in blue color in Figure

1.10. This curve in 3D is different depending on the viewpoint. It slides on the surface as the

viewpoint changes. This curve is a function of the viewpoint.

4. Highlights: This curve arises due to the surface being a mirror-like and projection of sur-

rounding objects on-to the surface, shown in red color in Figure 1.10. This curve is a function

of the surrounding objects if the surface is mirror-like.

Note that last category depends on the surrounding objects and would vary as the object is

moving and hence has nothing to do with the object itself. It means that the same object in a different

surrounding will produce different highlights. This work treat these curves as outliers. Since the

first and second categories of curves are property of the surface and remain fixed to the surface are

classified as “stationary contours”. The third-category is a function of viewpoint so it changes as the

camera or the object moves. Unlike highlights, these curve are structural and needs to be retained.
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Notation Meaning
Γ a 3Dpoint
s arc-length parameter of a curve
t time index

Γ(s, t) a deforming or moving 3D curveΓ(s) as function oftime
γ0, γ(s, t) image point, evolving 2D curveγ(s) as function oftime
ρ, ρ(s, t) depth of a 3D point, moving 3D curveΓ(s) as function oftime
t, t(s, t) tangent of the image curve at a single point, at anypoint
n, n(s, t) normal of the image curve at a single point, at anypoint
κ, κ(s, t) curvature of the image curve at a single point, at anypoint
U1(s, t) γ(s, t)× t(s, t)
U2(s, t) γ(s, t)× n(s, t)
M local piece of surface in3D
β normal displacement in theimage
α tangential displacement in theimage

βs, βt spatial and temporal derivatives of normal image velocity
αs, αt spatial and temporal derivatives of tangential image velocity
g,G speed of parameterization of image curve and 3D curve respectively
ρs, ρt first-order spatial and temporal derivatives of depthρ

ρss, ρst, ρtt second-order spatial and temporal derivatives of depthρ
~T , ~N tangent and normal of the 3D curve
K curvature of the 3D curve

Table 1.3: Notations

They are classified as ”non-stationary contours”. But these curves pose a correspondence problem

as the curve in 3D itself changes. This problem is handled by assuming epipolar correspondence

between the cameras similar to work proposed in [20]. The classification has been simplified to two,

(i) stationary contours and(ii) non-stationary contours.

1.2.2 Image curves: one-parameter family of curves

Consider a local piece of curve fragmentΓ(s, t) that is observed in several frames of a video se-

quence, Figure 1.11(a). For simplicity, we can consider this curve evolving in a common frame,

Figure 1.11(b). From a geometric perspective this is a one parameter family of curves, withtimein-

dexing the family of curves. The observations however, are not directly geometric curves, but rather

a set of unorganized edges in each of the frame, which are sampled from an underlying curve as

shown in Figure 1.11(c). These observations are indexed by time and are spatially ordered to form

curves. The key ingredient underlying the spatial organization and temporal tracking of these edge

segments is in that of spatial and temporal continuity in the above family of curves. The issue here

is whether temporal continuity can be captured in the form of groups of individual edge elements.



15

Figure 1.10: This figure classifies curves into different categories into(i) reflectance curve (green)
due to reflectance discontinuity,(ii) occluding contour (blue) due to depth discontinuity,(iii) high-
light contours (red) and(iv) ridges due to surface discontinuity.

One-parameter family of
curvesγ(s, t)

= Trace of One-parameter
family of curves

+ Parameterization giving the
correspondence

Evolution Model
{
γt = αt+ βn
γ(s, 0) = γ0(s)

= Trace is given by

γt = βn

+ Parameterization is given by
αt

Second order model given
by γ0, t,n, β, α, κ, βs, αs,
βt, αt

= Trace defined from second
order model is given by
γ0, t,n, β, κ, βs, βt

+ Parameterization for second
order model is given by
α, αs, αt

Table 1.4: Visual description of one-parameter family of curves. The one-parameter family of
curves have two notions(i) trace and(ii) parameterization. The parameters corresponding to each
of the above two notions are segregated.
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(a)

(b)

(c)

(d)

(e)

Figure 1.11: (a) Projection of a 3D curve onto different frames under the camera motionc(t). (b)
combined into a single frame.The curves represent our geometric model and the cyan curve is the
reference frame and other curves are superimposed from the neighboring frames. (c) The edges
represent ”trace” (d,e) arbitrary parameterization of family of curves.

The challenge is relating group of edges to some idealized model of continuously moving curves.

There are a couple of notions that need to be distinguished for curves in different frames,

1. parameterized modelγ(s, t), which defines the parameterization of this one-parameter family

of curves.

2. ”trace” of a one-parameter family of curves, Figure 1.11(c): this is what we get from our

video sequence, namely, a set of points for each time.

The process of obtaining the parameterized modelγ(s, t) is complicated because a parame-

terized model has aninherent ambiguityin parameterizing the family of curves. Specifically, one

ambiguity arises because it is not clear how a given point on one curve (in one time frame) is as-

signed to a point on the next curve (time frame incremented), Figure 1.11(e, f). Formally, letγ(s, t)

denote the family of curves. Then, the vector∂γ
∂t points to the direction of its corresponding point.

Figure 1.11(e,f) show different parameterizations. Since two different parameterizationsγ(s, t) and

γ(s̃, t̃) can give identical family of curves, there is an inherent freedom which can cause ambiguity

in the various parameters when comparing two family of curves or when fitting samples to a one

parameter family of curves. This is akin to the case of sampling a curve byγ(s) orγ(s̃), where am-

biguity can be avoided by selecting arc-length parameterization. Each curve can be parameterized

by arc length, but given that for an edge only normal velocity is typically measurable (the aperture

problem) flow is associated only along the normal direction. This can be formally shown by the

following proposition.
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Proposition 1.2. For a one-parameter family of curvesγ(s, t) defined by the evolutionary model

by {
∂γ
∂s (s, t) = g(s, t)t(s, t)
∂γ
∂t (s, t) = α(s, t)t(s, t) + β(s, t)n(s, t).

whereg(s, t) is defined as speed of parameterization, then the trace ofγ(s, t) is given by

∂γ

∂t
(s, t) = β(s, t)n(s, t). (1.7)

Proof. For proof, see Appendix A.1 �

The above proposition shows thatβ,n is observed from the trace where asα is not as tabulated

in Table 1.4. Next, this distinction of trace and parameterized model is extended to second-order.

The one-parameter family of curves,γ(s, t), is expressed up-to second-order derivatives in terms of

its spatial and temporal derivatives using Taylor expansion in a local-neighborhood.

γ(s, t) = γ(s0, t0)+
∂γ

∂s
(s−s0)+

∂γ

∂t
(t−t0)+

1

2
(
∂2γ

∂s2
(s−s0)

2+
∂2γ

∂s∂t
(s−s0)(t−t0)+

∂2γ

∂t2
(t−t0)

2)

(1.8)

Note that these derivatives needs to be computed in order to determine the one-parameter family

of curves. The following proposition enlists the unknowns required to estimate the one-parameter

family of curves.

Proposition 1.3. For a one-parameter family of curvesγ(s, t) defined by the evolutionary model

by {
∂γ
∂s (s, t) = g(s, t)t(s, t)
∂γ
∂t (s, t) = α(s, t)t(s, t) + β(s, t)n(s, t).

whereg(s, t) is defined as speed of parameterization,then the second order derivatives∂2γ
∂s2

, ∂2γ
∂s∂t

and ∂2γ
∂t2

are given by





∂2γ
∂s2

= gst+ g
2κn

∂2γ
∂s∂t = (αs − βgκ)t+ (αgκ+ βs)n
∂2γ
∂t2

= (αt − β(ακ+
βs
g ))t+ (α(ακ+

βs
g ) + βt)n.

(1.9)

Furthermore, assuming arc-length parameterization att = 0, i.e., g(s, 0) = 1 andgs(s, 0) = 0, the

second order-derivatives are given as





∂2γ
∂s2

= κn
∂2γ
∂s∂t = (αs − βκ)t+ (ακ+ βs)n
∂2γ
∂t2

= (αt − β(ακ+ βs))t+ (α(ακ+ βs) + βt)n.

(1.10)
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Proof. For proof, see Appendix A.2 �

The above proposition definesγ(s, t) in terms of its second-order spatial and temporal deriva-

tives. The unknowns that determine the family up-to second order areγ(s0, t0), t,n, κ, α, β, αs, βs, αt, βt.

Note that only some of the unknowns describe the trace ofγ(s, t) but rest define the parameteriza-

tion of the family of curves. The following proposition shows which of the above parameters are

obtained from the trace and which define the parameterization.

Proposition 1.4. Given a 1-parameter family of curves under an arbitrary regular parameterization

γ(s, t) where‖∂γ∂s (s, 0)‖ = 1, there are two first-order intrinsic measure (invariant to parameteri-

zation), {
I = ∂γ

∂s = t

II = ∂γ
∂t ∙ n

(1.11)

and three second-order intrinsic measures





III = γss ∙ n,

IV = γst ∙ n− κγt ∙ t,

V = (γst ∙ n)
2 − κγtt ∙ n,

(1.12)

wheret andn represent the unit tangent and normal, respectively. In other words, the remaining

degrees of freedom from the first-order derivative∂γ∂t ∙ t, and from the second-order derivatives,
∂2γ
∂s∂t ∙ t and ∂2γ

∂t2
∙ t are dependent on the choice of parameterization.

The correspondence of these images curves across frames need to be computed. The corre-

spondence across image curves is formulated as estimating the parameterizationγ(s, t) of the trace

observed in different frames. The trace ofγ(s, t) is given by unorganized edges in different frames,

Figure 1.11 (c) which is observed. The parameterization giving the correspondence is unknown.

Proposition 1.2 shows that numerous parameterizations,α, can give the same trace as shown in

Figure 1.11 (d,e) and the one which is desiredα = w gives the truecorrespondencerelated to the

same 3D point in the case of stationary contour or epipolar correspondence in case of non-stationary

contours.

Proposition 1.3 shows thatγ0, t,n, κ, α, β, αs, βs, αt, βt are required to estimateγ(s, t) up-to

second order. But all of them cannot be obtained from observation and Proposition 1.4 further

shows thatγ0, t,n, κ, β, βs, βt can be computed from the trace and rest of theα, αs, αt cannot be

observed and would determine the parameterizations, as summarized in Table 1.4.
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1.2.3 3D curves under Motion

One of the assumptions of this work is that the curve in moving with linear translation for an in-

finitesimal small amount of time. This assumption of constant translation refers to high frame rate

of video as compared to the motion so that the trajectory of the curve can be modeled locally by

linear motion. The stationary curve can be modeled as

Γ(s, t) = Γ(s, 0) + V t.

whereV is the constant velocity of the object relative to the camera and the non-stationary curve is

modeled by

Γ(s, t) = Γ(s, 0) + V t+ Γw(s, t). (1.13)

whereΓw(s, t) represents the motion of the curve due to the sliding of the curve on the surface

due to change in viewpoint andV is the 3D motion of the object on whichΓ resides. The general

equation for moving 3D curve relative to the camera is given by

Γ(s, t) = Γ(s, 0) + V t+ Γw(s, t).

whereΓw(s, t) = 0 for stationary curve.

1.2.4 Relation of Image Curves to 3D Scene

Since the correspondence of the image curves is unknown asα, αs, αt cannot be observed, addi-

tional constraints are required. The curves in 3D moving relative to the camera is given by:

Γ(s, t) = Γ(s, 0) + V t+ Γw(s, t).

Proposition 6.1 shows that the time derivatives of one-parameter family of curves can be expressed

in terms ofV






γt = 1
ρ(V − V zγ)

γst = (V zγ − V )
ρs
ρ2
− V zρ γs

γtt =
(−2V z)

ρ γt +
e>3 (Γ

w
t )

ρ γt

(1.14)

whereV z = e>3 V . Note that effect of motion of occluding contour plays a role only inγtt. It is

important to note that, occluding contours do not need to be specially treated for first-order motion

but only second order derivativeγtt. Further [30] shows thatΓwt is given by

Γwt =
V ∙ U1

ρKt‖U1‖‖γ‖2
γ (1.15)
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whereKt is the transversal curvature ofΓ(s, t) on surfaceM. The second term ofγtt becomes

e>3 (Γ
w
t )

ρ
γt =

V ∙ U1
ρ2Kt‖U1‖‖γ‖2

(e>3 γ)γt. (1.16)

Note the degenerate case when the viewing ray is along a low curvature surface, then the curve can

move significantly. But otherwise, for far way objects

|
e>3 (Γ

w
t )

ρ
| << |

(−2V z)

ρ
|.

Therefore,

γtt =
(−2V z)

ρ
γt

for fixed curves as well as far way objects. Under the assumption of far-away objects the occluding

curves behave like fixed curves up-to second-order. With this theoretical background, the work in

this paper is discussed further.

1.3 Detailed Overview of Approach

The work in this thesis presents a novel paradigm to use curves/edges for segmentation of objects

in a monocular sequence obtained by a moving camera. This paradigm consists of two stages:

Stage I This stage uses curves/edges to segment different objects based on motion from two or less

views. This stage handles two cases differently:

(a) Segmentation using curves from two-views.

(b) Segmentation using edges using model for background edges.

Stage II Use multiple frame consistency on segmentations from Stage I to improve the segmentation

from Stage I.

1.3.1 Stage I(a): Segmentation based on curves from two views

This work is based on finding correspondence of the extracted contour fragments on every image,

in contrast to traditional approaches which rely on feature points, regions, and unorganized edge

elements. Consider curve fragments extracted in two views which are of the order of several hun-

dred. Each curve in one image can potentially match to any other curve in the image. This could

lead to combinatorial explosion. So therefore the potential candidates for a match in the next frame

are pruned by(i) considering curves with in certain neighborhood of the curve under consideration

and(ii) if the color along the one of the two sides of the curves are not very different. There are two
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tasks: one to find the correct curve-to-curve match and to find the correspondence of the samples

on the curves. If the two curves,γ(s, t0) andγ(s, t1) from different framest0 andt1 respectively

match,γ(s, t1) can be written as

γ(s, t1) = γ(0, t0) + γs(s) + γt(t1 − t0) +
1
2(γsss

2 + 2γsts(t1 − t0) + γtt(t1 − t0)
2)

= γ(s, t0) + γt(t1 − t0) +
1
2(2γsts(t1 − t0) + γtt(t1 − t0)2)

(1.17)

Note that theγt andγtt are global 2D transformation for the whole curve. Since the alignment

is independent of these two terms, the alignment or correspondence between the two curves is given

by minimizing theγst as

min
s1

∫

s

|γ(s1, t1)− γ(s, t0)| = min
s1

∫

s

|γst(s− s0)(t1 − t0)| (1.18)

wherel is the length of the curve. This minimization given below is implemented using dynamic

programming as in [77]. ∫

s

|γst|ds =
∫

s

|gtt+ gθtn|ds (1.19)

This notion of similarity between pairs of curve fragments appearing in two adjacent frames is

developed and used to find the curve correspondence. This notion of similarity minimizes

1. the extent of a curve along the depth, and

2. the displacement of the curve along the depth.

The curve fragments undergo transitions from one frame to another such as breaking of a curve

into two or forming a T-junction. The algorithm in [77] is modified in order to handle these transi-

tions. But these transitions could explode combinatorially if the edge-linking is unstable which can

be due to poor resolution of the video or the linker itself. This limits the matching of the curves

to adjacent frames rather than extending it to multiple frames. Top row of Figure 1.12 shows the

results of curve matching from frame to another. The retrieved curve correspondence is then used to

estimate the transformation either affine or similarity. This transformation is good for small motion

of far away objects and the model is then used group curves in each frame into clusters based on the

pairwise similarity of how they transform from one frame to the next. Results on video sequences

of moving vehicles show that using curve fragments for tracking produces a richer segregation of

figure from ground than current region or feature-based methods. This yields a performance rate of

85% correct correspondence on a manually labeled set of frame pairs. The main advantage of this

approach is rich and well delineated object segmentation. The limitations of this approach are(i)

would decompose the segmentation when the object is moving along the depth,(ii) the segmenta-

tions based on two frames can be spurious and(iii) requires good quality videos.
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Figure 1.12: Top row shows the matched curves using adjacent frame. Note that the same colors
denote the correct match and for a curve which didn’t find any match is colored black. The bottom
row shows the motion segmentation from the matches of the top row. Observe how the segmentation
is missing few curves due to spurious matching.

The first limitation is discussed in Chapter 5. The second limitation is handled in stage II

where multiple frames are used to enrich the pair-wise segmentation and a partial solution (only for

static/registered low quality video) to the third limitation is discussed next.

1.3.2 Stage I(b): Segmentation based on edges in a registered/static scene

The curve extraction is unstable for aerial videos where the object of interest is small in size. This

instability refers to numerous transition taking place from one frame to another. The curve linkers

tend to link largely different edges in each frame and resulting in very different curves. The approach

discussed in previous section would fail due to numerous transitions. This motivates use of edges

for such aerial videos. This work describes an approach of detecting foreground edges by modeling

the registered/static background edges. The aerial videos are easier to register as compared to the

rest as the background can be modeled largely by a plane [70] or in case of non-planar scene, [24]

could be used to register.

Methods for the analysis of moving objects in video sequences obtained from stationary cam-

eras,e.g., for surveillance and monitoring, typically model the stationary background and detect

moving objects as those pixels which do not fit this model. Background modeling using multiple

distributions is used to handle images with slowly moving objects, slight lighting variations, and

repetitive object movements [86, 51, 74, 57, 63]. The most popular schemes use the Mixture of



23

Figure 1.13: Top row shows an aerial video sequence and its edge map is shown in the middle row.
The foreground detections are shown in the last row.

Gaussian (MoG) model for each pixel. The intensity at each pixel is modeled using a fixed number

of Gaussians which are updated on every observation. Any pixel which is unlikely to come from

the MoG is classified as foreground. A key limitation of intensity and intensity gradient background

models is that background models do not take spatial interactions into account. Alternatively, edge

maps tag those background pixels which maximize local gradient in a neighborhood of pixels. Mod-

eling of sub-pixel edges is robust to sudden illumination changes and as well as it is more selective

and hence uses fewer frames as compared to intensity based approaches. It is shown in Section 4.2

that edges are least variant to illumination changes.

The sub-pixel edges are modeled by a mixture of 3D Gaussianχ(x, y, θ). Here(x, y) are the

sub-pixel positions of the edges andθ is the orientation of these edges. Butθ is modeled only for

[0, 2π). Extra care has been taken to ensure the circular nature of the rangei.e., distance between 0

and2π is zero. Another important thing to note is that the since edges are sub-pixel, the indexing for

MoG’s is lost. Therefore, the MoG’s for a sub-pixel edge are stored on the four neighboring pixels
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of the edge.The qualitative results shows the superiority of using edges over intensity and gradient

which is also evident in the ROC curve shown in Figure 1.14. Figure 1.13 shows the foreground

Figure 1.14: ROC curve obtained for foreground detection using Intensity (Black), Gradient (Pink),
Pixel Edges (Yellow) and Subpixel Edges (Red) for sequence Figure 4.6

detection of edges from a video scene. The limitations of this approach are(i) detections of spurious

edges and missing gaps and(ii) requires static background. The first limitation is handled by the

Stage II which is discussed next but the second will remain.

1.3.3 Stage II: Multiple-frame consistency

The detection of curves/edges belonging to the foreground can be very challenging due to the transi-

tions of curves, blending of foreground with background, inter-reflections from surrounding objects,

partial occlusions,etc., leading to missing edges, spurious edges from background, highlights, and

missing edges due to partial occlusion,etc. This renders the segmentation of curves and edges,

Figure 1.12 and Figure 1.13, unreliable and unusable. This work proposes an approach to this prob-

lem by integrating information across multiple adjacent frames (typically 5 or 7 frames). The input

to the approach in this work was obtained from the segmentation sequence using curve-based seg-

mentation [48] and edge-based segmentation [47]. Note the detections from individual frames are

generally successful in obtaining the object to a good extent. However, there are also spurious edges

and missing gaps due to the factors mentioned previously. These problems are even more signifi-

cant for low-resolution imagery. There are couple of assumptions required for this work:(i) small
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(a)

(b)

Figure 1.15: (a) Top rows of (a) and (b) shows the alignment of neighboring edge-maps from
segmentation shown in Figure 1.12 and Figure 1.13 respectively onto each frame. Bottom rows
of (a) and (b) shows the pruned edge-maps using geometric consistency. Note the difference in
segmentation obtained after multiple-frame consistency.
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inter-frame motion and the object is not too close to the camera and(ii) the surface of the object

is considered to piecewise planar. The second assumption is a relaxed version of the assumption

of each curve being planar to the object being piecewise planar. The above two assumptions are

necessary to assume an affine flow which is a linear model in a local neighborhood in the image

given by

χ(ξ, η) =

[
a b

c d

][
ξ

η

]

+

[
e

f

]

. (1.20)

where(ξ, η) are the image coordinates and

[
a b

c d

]

,

[
e

f

]

are the affine parameters. Some of the

object would consists of multiple planes in case of boxy looking objects and some of the objects

with smooth surfaces would be modeled by a number of local planar surfaces. The image flow for

the object then consists of multiple local linear models. In order to obtain a common transformation

consisting of local linear models the functional given by ,

∫∫

(ξ,η)

(
∂2χ

∂ξ2

)2
+ 2

(
∂2χ

∂ξ∂η

)2
+

(
∂2χ

∂η2

)2
∂ξ∂η. (1.21)

is minimized. The solution to this minimization is given by Thin Plate Spline[11]. This spline

model has two parts, one is affine and second component is number of radial basis function with

kernel of the formr2 log r, wherer is the distance between two points. This spline model gives us

a transformation from one frame to another .

First step is to align the edge-maps onto the central frameI(t) to form a “spatio-temporal”

compound edge-map. . A moving window of sizen ( n is typically 5 or 7 frames) is considered at

each frame. This means at framet, the edge-maps from{I(t− n), I(t− n+ 1), ..., I(t− 1), I(t+

1), ..., I(t + n)} are considered. The alignment of the edge-maps is done by estimating the thin

plate spline model between pair of fames. This enables us to “transport” temporal information into

the central frame. This superimposed map behaves as a voting space for all the edges. The spurious

structure or noise would inconsistent and less voted and missing gaps in the frame would be filled

in by other frames.

Second step is to use geometric consistency from [92] of these spatio-temporal edges to distin-

guish structural from spurious edges. This geometric consistency forms local grouping of edges,

calledcurvelet bundle, with constant curvature curve model typically over a neighborhood of7× 7

pixels. These curvelet bundles would consist of edges from different frames and the number of

the frames contributing to these local groupings. The higher number of frames contributing to a

curvelet bundle, the more likely it would be classified as structure. Note that spurious edges would

be ruled out during the formation of curvelet bundles. The curvelet bundles with edge from fewer
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frames are pruned and an enriched edge-map of the object is obtained. Due to the immense diffi-

culty of obtaining ground truth to quantify the performance of the proposed approach, a synthetic

sequence is used to provide quantitative analysis which shows significant improvement over single

frame segmentations in Figure 1.16. The qualitative comparisons on real video data shows that the

resulting composite edge map is significantly better.

Figure 1.16: ROC curve for comparing figure edge-maps after using multi-frame consistency
(shown in Pink) with raw figure-edge maps (shown in blue).

After this stage the limitation remaining is that the object moving along the depth close to the

camera cannot be segmented properly. This limitation can be redeemed by estimating 3D motion of

the objects and grouping is based on 3D motion.This is further discussed in the next section.

1.3.4 Extension to 3D motion

Since the above system uses motion models in 2D as approximation to 3D motions, they suffer

from limitation of breaking up an object close to the camera moving along the depth into different

segments. The inevitable solution to this problem would be estimating 3D motion.

The work in this thesis studies the feasibility of the extension of motion model to 3D. First,

3D motion and geometry estimation of curves from in terms of the second-order derivatives of the

one-parameter family of curves,γ(s, t), which has also been derived by Faugeras[31].γ(s, t) is

assumed to observed for a rigidly translating fixed curve relative to the camera which suffices for

the scope of this work The magnitude of the translation is not constrained due to unknown depth.

The 3D translation direction is estimated as one-parameter family at each edge,γ0, and its local

grouping of edgesγ(s, t).

At-least two such edges are needed to estimate translation direction. And definitely each object

has many more edges available. The lower bound for error in translation direction is estimated

as a function of error in measurements. This lower bound was plotted for some typical values of
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the system. The plots show high amount of errors rendering unreliable estimation of translation

direction and hence, unreliable segmentation. This limitation of estimating 3D motion shows that

the failure to segment close by objects moving along the depth.

1.4 Contribution

The contributions of this work are

1. Given a high-resolution high frame-rate video sequence of multiple moving objects and a

moving camera, segments the objects using curve correspondence across frames and common

motion cues, Figure 1.12. This work appeared in Computer Vision And Image Understanding,

2007, [48].

2. Developed a notion of edge-map background model which for the first time used(i) edges,

and(ii) their orientation and(iii) sub-pixel position in training the background model from

videos of stationary cameras or registered video images. The resulting background model is

adaptable to changes in the scene as it can be trained with significantly fewer frames and is

substantially more robust to a wide range of illumination changes. This has partially appeared

in International Conference on Image Processing, 2007, [47].

3. Developed a multi-frame integration framework to enrich single-frame motion segmentation

results, which are typically incomplete with spurious structure due to limitation of motion

segmentation algorithms, occlusions, highlights, and other visual transforms. The enrichment

is based on the consistency of local differential geometry, based in tangent and curvature of

curve bundles at each edge, in several adjacent frames: if the same local structure appears in

a majority of frames, the structure is considered non-accidental. This requires a registration

of edges in adjacent frames based on a local planarity assumption of 3D structure which is

formally shown to lead to a thin plate spline registration scheme so that the curvature can

be compared. The resulting enriched motion segmentation eliminates spurious structure and

completed gaps, as shown in Figure 4.10.

4. Showed that 3D motion segmentation is required for objects with motion along the depth

relative to the depth. It is further show that it is infeasible to recover the full 3D motion of the

object.
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1.5 Organization of the thesis

Chapter 2 discusses the existing approaches for motion segmentation and discusses their merits and

the limitations. The first component of Stage I, motion segmentation using curves, is discussed in

Chapter 3 followed by second component of Stage I, foreground detection using edges, in chapter

4. This is followed by discussion of Stage II approach in Chapter 5. Each of these chapters dis-

cusses the approach and performance of each of these stages individually. An attempt to extend the

approach to use 3D motion is discussed in Chapter 6.



Chapter 2

Related Work

2.1 Static Camera

Under the simplistic assumption of static camera, the solution to the above problem in the literature

exists by modeling the static background and identifying any deviation from the model as the fore-

ground [86, 51, 74, 57, 63]. These approaches are based on modeling intensity of the background

and detects the moving object as foreground if its intensity is different from the background. These

approaches are robust to gradual change in illumination but misfires due to sudden change in the

illumination. This idea of background modeling has been extended to the case of moving camera

but requires knowledge of the intrinsic as well as extrinsic parameters [72].

(a) (b) (c)

Figure 2.1: The segmentation of object viewed from a static camera using [86]. (a) shows a typical
background frame and (b) shows image (a) with a moving object and the segmentation of the moving
object is shown in (c) (in black color).

30
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Algorithm 1 : Motion segmentation based on dense image flow

1: Compute Dense flow using optical flow approaches.
2: Fit a parameteric model (typically affine model) to the optical flow in local regions.
3: Define the affinity between different regions based on the model as well as other cues.
4: Use a region-growing or graph based approach to merge the regions.

Algorithm 2 : Motion Segmentation based on Factorization of trajectories of features.

1: W2F×N ← trajectories ofN features overF frames using KLT/SIFT/any other feature.
2: W has a rank of4n wheren is the number of different motions (typically affine).
3: Different approaches for segmentingW in this 4D manifold.

2.2 Non-static camera: Dense flow based

Since numerous approaches use optical flow to segment independently moving objects, optical flow

techniques are briefly reviewed.

2.2.1 Optical Flow

Let I(ξ(t), η(t), t) be the intensity of a 3D pointΓ at timet, where(ξ, η) are the image coordinates,

projection ofΓ. The total derivative ofI(ξ(t), η(t), t) is given by

d

dt
I(ξ(t), η(t), t) =

∂I

∂ξ

∂ξ

∂t
+
∂I

∂η

∂η

∂t
+
∂I

∂t
= ∇I.γt +

∂I

∂t
(2.1)

whereγ(t) is the image velocity ofΓ. In order to get a constraint, the intensity is assumed to be con-

stant over infinitesimal range of time,i.e., I(ξ(t), η(t), t) ' I(ξ(0), η(0), 0) or d
dtI(ξ(t), η(t), t) =

0. This leads to the constraint equation also known as brightness constancy equation given by

∇I.γt +
∂I

∂t
= 0. (2.2)

But the above equation has two unknownsγt and only one constraint. The component ofγt along

the gradient∇I is called normal velocity, denoted byγnt can be recovered, using

∇I.γt = γ
n
t = −

∂I

∂t
/‖∇I‖ (2.3)

The second component ofγt perpendicular to the gradient direction, denoted byγtt is still free.

This is the well-known “aperture problem”. This shows that the second componentγtt of image

velocity cannot be computed without additional information or assumptions. The flow obtained

using brightness constancy is called optical flow which approximates the true motion field in an

image. An important note is that the brightness constancy assumption holds only for translating
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Lambertian surface as discussed in [31]. The mainstream solution given in the literature is to resort

to smoothness constraints. This assumption of smooth motion field does not hold at the boundary

between objects which are either at different depths or moving differently or both. The motion fields

can be very different at such boundaries and smoothing leads to the deviation from the actual motion

field. The optical flow computation techniques relevant to the scope of this work can be categorized

based on their assumptions as(i) smoothness-based,(ii) parameteric models-based and(iii) contour

-based.

Smoothness-based: Lucas-Kanade [61] approach also calledlocal approachconsists in assuming a

windowW moving uniformly,i.e., all pixels within the window are assumed to have thesameflow

vector, so that an over-constrained system is obtained in two unknowns. A least-squares problem is

solved minimizing brightness constancy residual over all pixels of the window.

∑

x∈R

W 2(ξ, η)(∇I(ξ, η, t).γt + It(ξ, η, t))
2 (2.4)

whereW (x) is the window function,R is the neighborhood andv is estimated in a close form. This

least-squares problem is reduced to a linear system of equations but the data matrix can be singular

if Ix = 0 or Iy = 0 (aperture problem) or both (homogeneous region). The problem with the above

approach is that a simple motion like translation along optical axis would give widely varying flow

vectors and the assumption of flow vector in a window would break down. [14] assumes first-order

variation in flow over a small neighborhood and few other variations of the above approach are

[98, 17, 84] . These local assumptions fail in presence of multiple motions within the neighborhood.

The Horn-Schunk approach [43] also calledglobal approachtries to find a smooth fieldγt(ξ, η)

over the image whose component along the direction of the image gradient is as close as possible to

the measured optical flowγnt . This can be expressed mathematically as the following minimization

problem [31]

min
γt

∫ ∫ {

(γt ∙
∇I
‖∇I‖

− γnt )
2 + λtr[Dγt(Dγt)

>]

}

dξ dη, (2.5)

whereD is the differential of the functionγt(ξ, η) given byD =
[

∂γt
∂ξ

∂γt
∂η

]
. The criterion (2.5)

is the sum of two terms: the first term imposes that the component of the “invented” field alongn

is as close as possible to the measurements, and the second term controls its smoothness through

the parameterλ. This approach is only applicable for scenes with no discontinuities in depth and

smooth motion which is not true for a wide range of videos.

Parameteric models-based: Instead of using smoothness constraint several approaches assume the

nature of the surface of the objects in the scene such as planar surface or curved surface which

gives a parametric model valid in a neighborhood of normal velocities as proposed in [97, 101, 67,



33

8]. Bergenet al.[8] shows image flow to be second order polynomial under the assumption of a

planar surface and also extends the model to rigid motion. [101] extends the work of [8] further by

assuming the scene to be a quadric surface and fits a cubic polynomial to the motion fieldγt(ξ, η).

Contour-based: Another interesting class of optical flow methods computed flow on the edges

or along contours due to high gradient values and hence higher SNR. Hildreth [42] proposes a

smoothness constraint along the contour given by minimizing the following integral
∫
[(
∂γt
∂S
)2 + (γt ∙ n− β)

2]dS (2.6)

whereγt is the image velocity along the contourS. This idea is similar to [43] except that flow

is computed only along the contour and The constraint in Equation 2.5 is applied along a contour

so as to avoid problems of low gradient overwhelmed by noise. Another approach in [13] applies

spatio-temporal filters to edge-maps in order to measure image velocity. Although they provide

better accuracy due to high gradient but the motion field is very sparse.

Longuet-Higginset al.[60] do not assume brightness equation but provide relationship between

scene geometry, motion of the camera relative to the object and the image flow under the assumption

of rigidity,

γt =
V

ρ
−
V z

ρ
γ +Ω×γ − (e

>
3 Ω×γ)γ, (2.7)

whereV andΩ are the first order derivatives of translation and rotation of the scene,ρ is the depth

andγt is the image velocity. Nagel [69] further showed the difference between optical flow and

image flow. But the above approach requires knowledge about 3D scene which is not available gen-

erally. Faugeras [31] altogether discards brightness constancy equation and constrain the image flow

using second order derivatives of the image and 3D model parameters. The brightness constancy

holds for objects with Lambertian surface translating parallel to the image plane which is only an

approximation to the true motion field.

2.2.2 Motion Segmentation based 2D Motion

The motion field is further used by numerous approaches to segment images based on their motion

into different object. These approaches fit parameteric models to 2D optical flow and group the

pixels that best fits a model. Such group of pixels are labeled as a ”layer”. The assumption here is

that each ”layer ” would give a different object which is definitely false. It is unclear what is the

nature of such segmentation as it breaks down in usual cases like when an object is moving along

the depth, dynamic scene with independently moving objects,etc. Such algorithms either try to find

dominant motionand then fit the outliers with different motion model or fit different motion models

simultaneously.



34

(a) (b) (c)

(d) (e)

Figure 2.2: (a) frame from ”Wallflower” sequence, (b) segmentation results from [4],
(c)segmentation results from [6] and (d, e) segmentation result from [85].

In[85], the number of different motions,n to be segmented is known and typicallyn = 2. The

authors fit one of then 2D affine models to every edge using an EM optimization. Each edge is

assigned probability of belonging to each motion model. The region bounded by edges are labeled

based on their collective likelihood of belonging to one of the motion models and are depth-ordered

in a Bayesian framework. Similarly [94] fits at most two motion models in each fixed size block

or colour based segmented image regions. These regions are grouped according to the similarity of

motion models and also their depth ordering is resolved based on the magnitude of motion. [9] uses

regions from watershed segmentation. These methods work generally when the objects are not only

planar but fronto-parallel as the results shown in Figure2.2 (d,e).

[66] proposes a region-merging algorithm based on spatial and temporal similarity. The regions

are obtained from an over-segmented image and connected through a weighted and directed graph.

The weights represent spatio-temporal similarity. The clustering is done by first clustering cycles

in this graph followed by greedy grouping of the remaining nodes. This algorithm does not need to

know about number of motions but instead has a threshold which has a similar effect. Another graph

based algorithm proposed [82] forms an undirected weighted graph where weights are the temporal

similarity between different regions. N-cuts is used to partition into salient regions recursively. This

requires the knowledge of number of motions beforehand .

In [6] the authors estimates multiple motions per region and merges the region with similar

model parameters. The approach does not require prior knowledge of number of motions or a
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threshold but instead a scale parameter which decides the granularity of regions. In effect it scale

parameter has to be known. In [4] Adelson and Wang fit 2D affine models in fixed size windows

in the image and group the regions which have same 2D affine parameters. This results in segmen-

tation of images based on 2D motion which is deceptive as the whole scene might have the same

motion but is segmented into different layers as they had different depths, Figure 2.2. All the above

approaches described above do not segment objects moving differently but the segmenting based on

the projections of their motion. This leads to a lot of ambiguity as different motions in 3D could lead

to similar projections and hence the problem becomes ill-posed. In order to avoid such ill-posedness

the scene should be segmented based on their 3D motion.

2.3 Non-static camera: Factorization based

Multibody factorization is referred to motion segmentation from trajectories of tracked features

of different moving objects. Specifically, ifN features,p = 1, ...., N are tracked inF frames

f = 1, ...., F as denoted byx ∈ R2, and these features are projection of pointsXp, p = 1, ..., N on

a rigidly moving object, then under the affine projection model

xfp = AfXp,

whereAf is the affine camera matrix at framef which in matrix form gives

W =MS, W = [xfp]2F×N , M =












A1

.

.

.

AF












2F×4

, S = [X1, ......, Xp]4×N ,

whereS is thestructure matrixandM is themotion matrix. [93] and [12] showed that the rank of

W is less than or equal to four. This means the trajectories of features per rigidly moving object span

a 4D manifold. This idea was further applied to segmenting multiple moving objects by segmenting

the trajectories in these 4D manifolds. In case of multiplen objectsW has a rankr = 4n which is

decomposed using SVD as

W = UΣV >.

Since the rank ofW is 4n the matrixΣ has4n non-zero entities. The columns of the matrixV

corresponding to the4n largest values inΣ is denoted asV1 andshape interactionmatrixQ given

byQ = V1V >1 . The elements of this matrixQ has the following property

Qij = 0 if i andj belong to different motions. (2.8)
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The approach proposed in [23] thresholdsQ to cluster these subspaces for motion segmentation .

This threshold is quite sensitive to noise as shown in [37]. An algebraic frameworkGPCA [95,

96] casts the problem in a high-degree nonlinear space, but the number of required sample points

grows exponentially with the number of subspaces, thus is not suitable for a large number of non-

rigid objects or non-rigid motion. Numerous other approaches attempt to find independent motions

but are approximated by affine motions in the image which fails miserably, Figure 6.3, when the

variation of motion over the object is not affine.

The limitations posed by the dense-flow based approaches as well as the feature-based ap-

proaches motivates motion segmentation based on 3D motion.



Chapter 3

Segmentation using Curves

This chapter presents a method for segmentation of moving objects from monocular video sequences

using curves. The approach is based on tracking extracted contour fragments, in contrast to tradi-

tional approaches which rely on feature points, regions, and unorganized edge elements. Specifi-

cally, a notion of similarity between pairs of curve fragments appearing in two adjacent frames is

developed and used to find the curve correspondence. This similarity metric minimizes the extent

of the curve along the visual ray and the motion along the depth and in addition takes into account

both a novel notion of transitions in curve fragments across video frames. This yields a performance

rate of 85% correct correspondence on a manually labeled set of frame pairs. Color/Intensity of the

regions on either side of the curve is also used to reduce the ambiguity and improve efficiency of

curve correspondence. The recovered curve correspondence is the basis of figure-ground segrega-

tion. The main assumption is that curves belonging to the same object transform from one frame to

another more similarity to each other than to curves from other objects or background. Specifically,

from the inter-frame correspondence between each pair of curves a similarity transformation is re-

covered and a notion oftransform similarityis defined between two pairs of curves in a common

frame based on how they transform in the next frame. This transform-induced similarity matrix is

then converted into clusters which define objects and background in an image. The results on video

frames of moving vehicles are very encouraging, as previewed in Figure 3.1, and are illustrated on

a number of video sequence of moving vehicles. Results on video sequences of moving vehicles

show that using curve fragments for tracking produces a richer segregation of figure from ground

than current region or feature-based methods.

37
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Figure 3.1: The contour fragments of a moving vehicle are segregated from the background using
only the two adjacent frames shown.

3.1 Related Work

The approaches for motion segmentation can be loosely organized by the primary spatial dimen-

sion of the tracked feature,i.e. points [64, 40, 25, 81], curves [53, 44, 35, 45, 29, 36] or re-

gions [56, 39, 71, 22, 33]. Point-based features are typically used in the context of 3D recon-

struction, where points are matched across frames on the basis of Euclidean distance and image

correlation in a local neighborhood around matching pairs. The epipolar constraint is used to elim-

inate erroneous matches using robust fitting algorithms such as RANSAC [41]. More recently,

there has been considerable interest in regions, where affine invariance derived from intensity op-

erators [58] is used to define salient patches that can be recovered from multiple views of the same

surface feature. Theseaffine patchescan be used for tracking as well as recognition.

There seems to be little work on using geometry of connected edgel chains directly for mtoion

segmentation.The edgel chains can be obtained by linking edges obtained from an edge-detector as

in [76] or iso-intensity contours [68] with non zero gradient along the contour which are claimed to
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be robust to illumination changes and do not require any fixed threshold. The closest work is that of

Foltaet al.[35], where they use edge curve matching to form the outlines of moving objects, the key

objective of this paper. The algorithmic approach in this chapter is closest to that of Freedman [36]

who considered curve tracking as a problem of optimum geometric alignment of detected intensity

edges. A key difference from this paper is that Freedman assumes amodelcurve, which is supplied

by hand initialization or by learning from a hand-picked set of example curves.

No such assumption is made in the current approach where curves, as segmented, are tracked

across frames. In this regard, the tracking process is similar to that for points,e.g., Harris corners,

but in addition we exploit theorder andcontinuityprovided by segmented edgel chains. A key

reason that edgel curves have not received much attention is that it is difficult to define local cor-

respondences between smooth curve segments. The approach of this work relies on the following

key observation: if each extracted curve fragment is sufficiently distinct from other extracted curves

in the same frame, and if the inter-frame deformation for each curve fragment is small enough as

compared to intra-frame curve differences, then the similarity between curve pairs in the two frames

provides a basis for the recovery of curve correspondence by solving an assignment problem. Here

the correspondence problem is solved by minimizing the spatial extent of the curve along the visual

ray and the motion of the curve along the depth direction using dynamic programming [77]. The

choice of similarity metric is discussed further.

3.2 Alignment between two curves

The general form of under linear translation motion equation for a 3D curve both stationary and

non-stationary is given by Equation1.13 as

Γ(s, t) = Γ(s, 0) + V t+ Γw(s, t)

generates one-parameter family of curves in the image given byγ(s, t). Theγ(s, t) can be locally

expanded to second order expansion given by

γ(s, t) = γ(s0, t0)+
∂γ

∂s
(s−s0)+

∂γ

∂t
(t−t0)+

1

2
(
∂2γ

∂s2
(s−s0)

2+2
∂2γ

∂s∂t
(s−s0)(t−t0)+

∂2γ

∂t2
(t−t0)

2)

(3.1)

wheres0 is the reference point in the reference framet0. The image curve in the next frame,t1, is

given by

γ(s, t1) = γ(s0, t0)+γs(s−s0)+γt(t1−t0)+
1

2
(γss(s−s0)

2+2γst(s−s0)(t1−t0)+γtt(t1−t0)
2)

(3.2)
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and since the curve in framet0 can be locally expanded toγ(s, t0) = γ(s0, t0) +
∂γ
∂s (s − s0) +

1
2
∂2γ
∂s2
(s− s0)2, the above equation can be rewritten as

γ(s, t1) = γ(s, t0) + γt(t1 − t0) + γst(s− s0)(t1 − t0) +
1

2
γtt(t1 − t0)

2. (3.3)

Note that the above equation shows that the transformation between curves in two different

frames has a global transformation shared by all the points of the curve in the image,γt(t1 − t0) +
1
2γtt(t1− t0)

2, and local transformation given byγst(s−s0)(t1− t0). The global transformation is

dependent only on the motion of the 3D curve but the local transformation is a function of the both

motion and geometry of the curve. The local correspondence or alignment of the curve is given by

this local transformation as

γ(s, t1) = γ(s, t0) + γst(s− s0)(t1 − t0). (3.4)

In absence of any other information, the correspondence,s1(s) is given by minimizing the difference

betweenγ(s, t) andγ(s1, t1) which means minimizingγst given by

min
s1

∫

s

|γ(s1, t1)− γ(s, t0)| = min
s1

∫

s

|γst(s− s0)(t1 − t0)| (3.5)

wherel is the length of the curve. Proposition 1.3 shows thatγst is given bygtt + ϕtn wheregt

is the change in the speed of parameterization (stretching energy) andϕt is the change in the angle

of the tangent of the curve (bending energy).gtΔt is given by|dsds −
ds1
ds | wheres is the arc-length

parameterization in framet0. Without loss of generality,s0 = 0 can be assumed. Therefore,

min
s1

∫

s

|γst(s− s0)(t1 − t0)| =
∫

s1

[

|1−
ds1

ds
|+ |ϕtΔt|

]

ds (3.6)

This minimization gives the the alignment between two curves and once the alignment is known

the transformation is computed. This minimization is implemented using dynamic programming

as in [77]. To understand the implications of this minimization on 3D motion and structure of the

curve, consider expression ofγst related to the 3D shape and motion of the curve. Proposition []

gives

γst = (V zγ − V )
ρs

ρ2
−
V z

ρ
γs

whereρs = Ge>3
~T , i.e., third component of 3D tangent of the curve. Minimizingγst implicates

curves with smaller extent along the depth as wellV z smaller motion along the depth relative to the

depth of the object. Note that this approximation is good for adjacent frames for faraway objects.

The above minimization holds for both stationary and non-stationary curves.
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3.3 Curves Transitions

One of the issues of using image curves is their inter-frame transitions such as a curve is split into

two curves or vice versa. Numerous transitions are observed from frame to frame which have been

illustrated in Figure 3.2. Numerous curves do change their shape slightly which is referred to curve

deformation, Figure 3.2(a). And the transitions are classified into simple, Figure 3.2 (b,c,d) and

complex transitions Figure 3.2 (e,f,g). The complex transitions are combination of multiple simple

transitions. The transitions can be listed as below:

Simple Transitions

(b) A curve splits into two or two curves join into one. This happens mainly due to noise or

falling of detection below threshold.

(c) A curve is split into two because of another curve forming a T-junction.

(d) A curve disappears in the next frame due to falling below detection threshold or occlusion.

Complex Transitions

(e) A curve splits into more than two fragments which can be treated as multiple steps of simple

transition (b).

(f) When a T-junction curve into 3 pieces of curves and different combination of merging of these

pieces causes this transition. This can be modeled as a combination of simple transitions (b)

and (c).

(g) This transitions occurs for closed curve as the endpoints are ambiguous. This transition is

seen as two steps of (b) by first breaking a curve into two and then merging the two curves

resulting in different end-points.

3.4 Curve Tracking via Transition-based Elastic Matching

In this section we describe a similarity-based method for finding the correspondence between con-

tour fragments in two video frames. Specifically, we first describe how contour fragments are

extracted from each frame, then describe how a correspondence is obtained from a pairwise elastic

similarity of these curve fragments, and finally describe three modifications to induce the notion of

transitions and the vanishing point constraint.
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(a) (b)

(c) (d)

NULL

(e)

(f) (g)

Figure 3.2: Typical changes in curve fragments extracted from two frames of a video sequence
using the topologically-driven edge operator [76] are illustrated for two frames of the UHAUL se-
quence. Typically, about half of curve fragments change smoothly as illustrated in (a). However,
the remaining half can be expected to undergo abrupt changes as classified into sixtransitions: (b)
a curve fragment can be split into two, or two can be joined into one. (c) The formation or disap-
pearance of a T-junction. (d) The complete disappearance or appearance of a curve. (e) Compound
fragmentation when two curve fragments join and split differently, a combination of two transitions
of type “b”. (f) Compound T-junction, a combination of transitions “c” and “b”. (g) Compound
fragmentation of closed curves, a combination of two transitions of type b.
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3.4.1 Extracting Contours

The contour detector used in these experiments is based on a modification of the Canny algo-

rithm [15] as proposed in [76]. As is well known, the performance of the original Canny step

edge detector is poor near corners and junctions. The algorithm developed in [76] focuses on ex-

tending the edgel chains at corners and junctions so that better topological connections are achieved

by relaxing the constraints of the step edge model and searching for paths with the greatest intensity

variation. The edges are located to sub-pixel accuracy using weighted parabolic interpolation with

respect to the edge direction. Examples of these contour fragments are shown in Figure 3.2.

3.4.2 From a similarity metric to curve correspondence:

The similarity metricSnm which is computed between curve fragmentCn in the first image and

curve fragmentCm in the second frame as described further below. The resulting similarity matrix

Snm is converted into anassignmentin a greedy best-first fashion: The highest similarity ranked

pair in the matrix is made into a correspondence, and the remaining items in the corresponding row

and column are removed to retain a one-to-one mapping. Furthermore, a second similarity metric is

used as an additional check to veto those curve pairs which are not sufficiently similar. Specifically,

this second metric is based on the Hausdorff distance after the curves have been aligned by the

optimal alignment-based similarity transformation between the curves. The process of selecting

the most likely corresponding curve pairs eliminates the corresponding rows and columns. This

continues until either no rows or no columns remain. This greedy approach can be potentially further

improved by achieving a globally optimal assignment,e.g., by using graduated assignment [38, 80],

but this is not the focus of this paper.

3.4.3 Transition-sensitive elastic Matching:

We begin with an elastic curve-matching algorithm [78, 105] which minimizes an elastic energy

functional over all possible alignments between two curvesC andC̄, by using analignment curve

α mediating between the two curves, Figure 3.3,

α(ξ) = (h(ξ), h̄(ξ)), ξ ∈ [0, L̃], α(0) = (0, 0), α(L̃) = (L, L̄), (3.7)

whereξ is the arc-length along the alignment curve,h andh̄ represent arc-lengths onC andC̄, re-

spectively,L andL̄ represent lengths onC andC̄, respectively, and̃L is the length of the alignment

curveα. The alignment curve can be specified by a single function, namely,ψ(ξ), ξ ∈ [0, L̃], where
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Figure 3.3: From [78] Thealignment curve(left) represents a correspondence between two curves
(right). The notion of an alignment curve allows for predicting correspondences mapping an entire
interval to a point; This aspect of the correspondence is crucial here as it does occur in the context
of transitions. The optimal alignment curveα is efficiently found by dynamic programming [78].

ψ denotes the angle between the tangent to the alignment curve and thex-axis. The arc-lengths of

C andC̄ can then be obtained by integration fromψ,

h(ξ) =

∫ ξ

0
cos(ψ(η))dη, h̄(ξ) =

∫ ξ

0
sin(ψ(η))dη, ξ ∈ [0, L̃]. (3.8)

The optimal alignmentα between the curves can be found by minimizing an energy functionalμ,

μ[ψ] =

∫
[| cos(ψ)− sin(ψ)|+R1|κ(h) cos(ψ)− κ̄(h̄) sin(ψ)|]dξ (3.9)

whereκ andκ̄ are the curvatures of the curves. The first term describes differences in the arclength

as defined in Eq 3.8 and thus penalizes “stretching”. The second term is the difference in the angular

extent associated with each infinitesimal pair of corresponding curve pieces and thus penalizes

“bending” andR1 relates the two terms. The “edit distance” between the curvesC andC̄ is defined

as the cost of the optimal alignment given byd(C, C̄) = minψ μ(ψ) which is found by dynamic

programming [78].

When this similarity metric is used to rank-order all curves in a frame with respect to a curve

in another frame, the top ranking curve typically (72% for our database) yields the right correspon-

dence when only gradual changes are involved. The overall curve correspondence performance is

defined as

curve correspondence(%) =
No of correctly assigned curvepairs
Total no of corresponding curve pairs

× 100 (3.10)
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which is measured after the greedy assignment described earlier on a set of four manually labeled

pairs of video frames. The overall curve-correspondence performance is 48% with errors arising

mainly because transitions mislead the similarity metric, especially when a portion of one curve is

matched to an entire curve of which it is a fragment, Figure 3.4(a,d),e.g., as occurs in the fragmen-

tation transition, Figure 3.2(b).

(a) (b) (c)

(d) (e) (f)

Figure 3.4: (a,d) The elastic curve matching alignments are incorrect in the presence of a transition
but modifying the energy function to allow for such cases corrects the alignment (b,e) and further-
more recovers the fragmented “tail”. The alignment when excluding the tail is then used to define a
geometric transform (similarity) between the two curves, which in turn is used to find and recover
the broken curve fragment (c,f).

Observe, however, that in such cases there often remains sufficient shape similarity information

in the remaining portion to correctly identify it as a sub-curve of the other curve. This requires

that the energy cost be appropriately modified to allow for the possibility of such transitions. The

removal or addition of a contour segment during the match is represented as a vertical or horizontal

segment in the beginning or in the end of the alignment curve, since eitherh is constant and̄h is

varying, or vice-versa. To avoid discouraging such alignments, the elastic energy on these segments

is diminished by a factorν (ν = 0.3 for all our experiments). Figure 3.4(b,e) illustrates that the

alignment is correctly identified from a sub-curve to an entire curve, and this is typically the case

when the fragment has sufficient structure on it. The significance of the above modification is

twofold. First, the elastic energy arising from the new corrected alignment results in a corrected

similarity measure which more often points to the correct corresponding curve. Second, it allows

for a more precise similarity transformation since in the corrected alignment the “tails” mapping

an entire segment to a point are discarded from the Hausdorff distance computation, which is more
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sensitive to the presence of “tails”. This modification of the energy functional aimed at handling

sub-curve matching increases the performance from 48% to 56%.

3.4.4 Explicit handling of transitions:

The above modification works well for sub-curves which have sufficient shape content but not so

well for smaller sub-curves. Thus, in stage two we incorporate transitions,e.g., as a single curve in

one frame breaks into two sub-curves in the second frame, in the matching process. Specifically,

assuming that the first stage has been successful in identifying the right correspondence between

the original curve and one of the resulting sub-curves involved in the transition, the existence of

a “tail” in the alignment is flagged (as shown in Figures 3.4(b,e)) as an indicator that a transition

has likely occurred. Recall that the similarity transformation between the two curve fragments is

obtained in the verification step without involving the initial “tail”. We now transform the “tail”

accordingly in search of a mate in the other frame. If a third curve (the second sub-curve) exists

that is sufficiently similar, the two sub-curves in frame two are merged and identified as a single

curve. While this can be done iteratively for multiply fragmented curves, Figure 3.2(c, e, f, g), our

current implementation only joins two curve fragments. With this improvement correspondence

performance increases from 56% to about 68%.

(a) (b)

Figure 3.5: The stage two similarity metric fails to identify the corresponding pair when multiple
similar structures exist (a) or when curves do not depict significant structure (b).

3.5 Use of Epipolar constraint to reduce ambiguity:

The above transition-sensitive shape-based similarity fails in two cases. First, when numerous sim-

ilar structures are present, as in the seven rectangles in the front grill of the vehicle in Figure 3.5(a),

the alignment between any pair of curve fragments is excellent and of low energy, so that the in-

trinsic nature of this shape metric does not significantly differentiate them to rank-order matches
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according to extrinsic placement. The second case involves contours which do not have significant

“shape content”, as in the straight lines on the pavement in Figure 3.5(b), so that there are numer-

ous curve fragments with nearly equivalent alignments and energies. In such cases it is useful to

introduce an extrinsic measure, namely, theepipolar constraint. We assume that within a limited

neighborhood of frames, the motion of the object giving rise to the curve can be approximated as

a translation, requiring the alignments between projected curves to pass through an epipolee, Fig-

ure 3.6. This epipole is either available as a vanishing point of the scene or it can be estimated

together with the alignment between a pair of curves. In our experiments the camera was fixed, so

the edges on the road are used to find the vanishing point manually.

Figure 3.6: Epipolar lines through the sample points of the first curve should pass closely to the
corresponding sample points on the second point, and vice versa. The distances between these
corresponding points and the lines through he original sample points indicate deviation from the
epipolar constraint and is used as an addition clue towards finding the correct curve correspondence.

The epipolar constraint is incorporated in the curve energy using an epipolar term. Consider a

point of the alignment curve relating pointP1 on the first curve to the pointP2 on the second curve,

Figure 3.6. Then distance of the pointP2 from the epipolar line passing throughP1 is computed

along the tangent direction ofP2. The tangential distancede is estimated from the perpendicular

distanced usingde = d
cosφ , whereφ is angle between the tangent at pointP2 and the perpendicular

line to the epipolar line as shown in Figure 3.6. Similarly a second estimate ofde is computed with

the role of the points basedP1 andP2 reversed and the maximum is used as the values ofde.

The modified energy then takes the form

μ[ψ] =

∫
[| cos(ψ)− sin(ψ)|+R1|κ(h) cos(ψ)− κ̄(h̄) sin(ψ)|+R2|(de)

p/(1 + (de)
p)|]dξ,

where p = 10 in our experiment. The performance after this stage increases from 68% to 85%.
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3.6 Use of color and intensity to reduce ambiguity

Another powerful cue which can drastically reduce ambiguity and improve efficiency is color/intensity.

Recall that imposing a maximum speed constraint reduces the number of potential matching curve

pairs in two frames by a factor of 10-20 (for example, 35 curve matches may remain out of 700

curves in a second frame). Despite this drastic reduction in number of potential matches, the size

of the remaining pool is large enough that the likelihood of a pair of non corresponding curves with

similar shapes is not negligible. We now suggest that the use of continuity of color/intensity over

time (frames) leads to improved efficiency and reduced ambiguity. The central assumption is that

the color/intensity of a narrow region surrounding a curve changes only slightly from one frame

to the next, on one side of the curve if it is an occluding contour, and on both sides of the curve

otherwise. Figure3.7(a,b) illustrates this point.

(a)

(b)

Figure 3.7: The curveC(s) is shown in blue whileC+(s) andC−(s) are show in red and green, re-
spectively. The remaining contours encode other information and should be ignored in this context.
(a) non-occluding curve and (b) occluding curve

In the continuous domain, each point on the curve is attributed by color values in some color

space, one for the left and one for the right side of the curve. We chose the HSV color space

because of its ability to separate intensity from color in an intuitive fashion. Thus, each point on

the curveC(s) is attributed with(H+(s), S+(s), V +(s)) and(H−(s), S−(s), V −(s)) where H is
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Figure 3.8: The attributes at pointp are computed atC+p andC−p neighborhoods as indicated.

hue(color), S is saturation and V is value(intensity) as defined by the conversion in [34], and where

+/− denote the intensity to the immediate left and the immediate right of the curve respectively. In

practice, since a large number of edges are not step edges and the transition across an edge may be

gradual, we opt to define






H±(s) = H(C±(s))

S±(s) = S(C±(s))

V ±(s) = V (C±(s)),

(3.11)

whereC±(s) = C(s) ± δN(s), N(s) is the normal to the curve, andδ is a fixed constant. See

Figure 3.8. Observe care should be taken that in case of close-by curves thatδ does not exceed the

space between curves. Thus, the signed distance transform is used to detect whenδ exceeds this

limit in which no value is assigned to such points. In addition, to reduce the effect of noise we use

the HSV values of a smoothed image by applying a Gaussian kernel to each of the components of

HSV space individually.

These new attributes of a curve can now be used to discard unlikely matches,e.g., a curve

separating say red and green region in one frame cannot be a match for a curve separating blue and

brown regions (we can also use these attributes in the alignment process itself which is work under

progress). We propose to summarize the HSV attributes in a coarse fashion using the 3D histogram.

S(r, z, θ) where the heightz represents “value”, the radiusr indicates “saturation” and the angleθ

represents “hue” as shown in Figure 3.10(a). The bins are defined with spacing along radius and
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value to give equal volume bins.

(a) (b)

Figure 3.9: (a) The set of curves in an image and, (b) the distance transform indicating the largest
possible distance from each curve.

The three-dimensional histogramg(θ, r, z) can be used to coarsely compare two curves. We use

the Bhattacharya distance to compute the dissimilarity measure between two histograms,

dg(g1, g2) = − ln(
∑

r,θ,z

g1(r, θ, z)g2(r, θ, z)) (3.12)

Since an occluding contour may have only one matching side and since the orientation of each curve

is arbitrary, we compare four possibilities and assign the minimum dissimilarity as the distance

between the two curves

dB(C1, C2) = min(dg(g
+
1 , g

+
2 ), dg(g

−
1 , g

+
2 ), dg(g

+
1 , g

−
2 ), dg(g

−
1 , g

−
2 )) (3.13)

whereg+1 , g+2 are the histograms for right side of the curvesC1 andC2, respectively, andg−1 ,

g−2 are the histograms for left side of the curvesC1 andC2, respectively. The Bhattacharya distance

between coarse HSV histogram of regions flanking a pair of matching candidate curves can then be

used to discard unlikely matches by thresholding the distance,i.e., two curves for which

dB(C1, C2) < τB (3.14)

for some thresholdτB will be considered further for measuring fine scale shape similarity. We

select a very conservative threshold which ensures zero error in our ground truth database (τB =

0.45). The improvement in efficiency even with such a very conservative estimate is drastic: about

43% of the matching candidates are discarded. The reduction in ambiguity when using only the

maximum speed constraint is roughly 10% improvement in the correct correspondence rate. These
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(a) (b)

Figure 3.10: (a) The HSV color space representation, (b) Binning for building a 3D histogram

measurements were not repeated for the epipolar constraint as the latter constraint already removes

much ambiguity. However, in cases where this constraint is not expected to hold, the more generic

inter-frame continuity plays a significant role.

Results:Figure 3.11 shows several examples of the final curve correspondence for adjacent frames

taken from several video sequences. In order to formally evaluate the curve correspondence algo-

rithm, a database of ground truth consisting of four image pairs was manually created. Along with

this, a curve is also labeled as foreground or background for verification of results in Section 3.7.As

tabulated in Table 3.6, 80%-90% of correspondences are correct in these four frames which, as we

shall see in the next section, is sufficiently high to enable reliable figure-ground segregation. We

also expect significant improvements when several other constraints are utilized in the similarity

measure, including a measure of intensity and color match for each alignment, use of 3D geometric

reconstruction, imposing spatial order among the curve fragments to disambiguate correspondences,

and in particular when compound transitions are also explicitly handled.

3.7 Transformation-Induced Figure-Ground Segregation

In this section we describe a figure-ground segregation method based on the Gestalt cue ofcommon

fate. Specifically, since the curve correspondence has established how each curve transforms form
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Figure 3.11: Matched curves in a pair of video frames (top and bottom, on the left) and correspond-
ing zoomed areas on the right. Corresponding curve fragments are shown in the same color.

one frame to another, curves with distinctly similar transforms should be grouped. These trans-

forms are characterized in the domain of an expected geometric transform, in our case the similarity

transform, although affine or projective transformations can also be used.

While it is tempting to measure the similarity between two transforms by measuring the distance

between the parameter vectors describing each transform, it is much more meaningful to measure

similarity not in the parameter space, but in the observation space. Specifically, consider a transform

T1(T1x, T1y, θ1, λ1) where(T1x, T1y) are translation coordinates andθ1 is the angle of rotation, and

λ1 is scaling is defined by an inter-frame curve pair(C1, C̄1) and similarlyT2(T2x, T2y, θ2, λ2) is

defined for the(C2, C̄2) pair. Rather than rely on differences between the parameter describingT1

Image-pair %correct

SUV67-68 73

Police-car16-17 80

Police-car21-22 85

Minivan65-66 86

Table 3.1: Overall curve performance for four pair of video frames.
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Figure 3.12: Green curves in frame 2 are modeled similarity transformations of the red curves in
frame 1 while blue curves are the actual curves in frame 2.

andT2, we define the similarity ofT1 andT2 by the extentT1C2 is similar as a curve tōC2, and

analogously,T2C1 is similar toC̄1, Figure 3.12,

dT (C1, C2) = max{dH(T1C2, C̄2), dH(T2C1, C̄1)}. (3.15)

wheredH is the Hausdorff metric between two curves.

This pairwise measure defines the degree by which two curves in one frame have “common fate”

with respect to the second frame and is represented by anm x m matrix wherem is the number

of curves in the first frame. Ideally, a moving object on a stationary background would lead to two

distinct clusters in this matrix. However, since background curves can also shift in a wide range

of movements resembling some of those on the object,e.g., tree branches moving in the wind, this

distinction is smeared.

We adopt a simple clustering technique to determine cluster boundaries, namely, the seeded

region growing method used for segmentation of intensity images [3]. Each curve is initialized as a

cluster. The distance between two clusters is defined as the median of pairwise distances between

their members. An iterative procedure then merges the two closest clusters into one until either

the closest distance between clusters exceeds some threshold or the number of clusters falls below a

minimum number of expected clusters. An additional spatial constraint is used to rule out clustering

of curves which are far in Euclidean space. The clusters only for which inter-cluster Euclidean

distance is less than thresholdτs are considered for clustering.

Figure 3.13 depicts the clusters associated with the foreground for two distinct frame pairs. Fig-

ures 3.14 show results for four subsequent frames, in three different videos. Note that the figure

ground segregation only based on adjacent pair of frames only. As tabulated in Table 3.7 the seg-

regation includes few non-object contours (5%-10%) for our four ground-truth frame pairs, while

capturing a significant collection of the curves on the object.
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Image-pair object curves false segregation correctly segre-
gated curves

SUV67-68 84 5 51
Police-car16-17 38 3 18
Police-car21-22 31 5 16
Minivan65-66 65 3 29

Table 3.2: Performance of segregating curves in four pair of video frames.

The computational complexity of the approach depends on a number of factors including the

number of curves and the number of sample points on each curve. There are generally 600-700

curve fragments per frame. The number of sample points on each curve varies from 40 to 200.

The complexity of matching a pair of curve segments isO(n2) wheren is the number of sample

points on curve segments but multi-scale approaches can be used to speed this up. The complexity

for matching curves in two frame isO(M2n2) whereM is the number of curves in a frame. The

overall analysis takes approximately 2 to 2.5 minutes to process a frame on a Pentium 4, 2 GHz

machine.

3.7.1 Comparisons:

We have compared the segmentation of the figure results using our approach with 3 different ap-

proaches. First we compare it with the KLT tracker [81], in which robust feature points are tracked.

Our segregation is richer than the above technique as evident in Fig 3.15(b,c). Next, we compare it

to an optical-flow based approach. The optical flow is computed for the image and the pixels with

velocity above a certain threshold are considered as figure. Note that the optical flow segmentation

is not robust to noise in the background and also it suffers from the well known aperture prob-

lem in uniform regions. As a result the segmentation has holes as shown in Fig 3.15(d). Last, we

compare our results with active-contour based tracking methods. A contour in the first frame has

been manually initialized which is then snapped onto the object using the geodesic active contour

approach [16, 54]. A constant velocity model is then used to propagate the contour to the following

frames and used the active contour approach is again applied.

We also tested our approach for performance under occlusion by blocking a portion of the video

sequence. As illustrated in Fig 3.16, curves in the non-occluded part of the object are not affected

by the occlusion and the resulting figures is a rich description of object.

We emphasize that these results while already very encouraging are only using pairwise com-

parison of frames and can be potentially significantly improved further. Observe in Figure 3.14

how each frame pair gives a segmentation that has many common curve fragments with its nearby
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frame pairs, but also feature novel curves not seen before. We have not yet utilized thismulti-frame

regularity which should lead to a dense and complete segmentation after a few frames. Also, the

emphasis has not been on using a sophisticated clustering method, although the use of one would

certainly improve the results. We expect that the addition of regional motion information will also

significantly improve the results. As the comparison in Figure 3.14 shows our curve-based approach

is a promising direction for figure-ground segregation and tracking in a wide range of applications.

3.8 System parameters:

A list of parameters for the approach and their effects are given in Table 3.3.
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Parameter Description Effect
τ edge detector threshold for

contrast.
increasing the value will increase the se-
lectivity of the detector and reduce the
number of edgesdetected.

e initial estimate of the epipole
obtained by extrapolating
sides of the roads in the
scene

rough estimate of epipole isneeded

R1 & R2 constants used in the elas-
tic matching cost function
which were estimated empir-
ically

R1 weighs the bending term andR2
weighs the epipolar term.R1 = 10 and
R2 = 3 is used for all the experiments.

ν energy factor reduction at the
end of the curve to enable the
sub-curve matching and han-
dle transitions

lower values favor sub-curvematching.

N initial number of clusters for
clustering curves with simi-
lar transformation

larger number than expected number of
objects would increase the fragmenta-
tion (overfitting) of the figures and fewer
number (underfitting) would result in op-
posite.

dmin minimum inter-cluster dis-
tance in agglomerative clus-
tering

large values would lead to conservative
clustering

τs threshold for clustering
curves which are spatially
closer to each other based on
their Euclideandistance

the value should be adjusted to the ex-
pected size of the object. As increasing
the value would allow more false alarms
in the segregation.

δ used in computing{H,S,V}
values at each point on the
curve atδ distance from the
curve

should be around 2-3 pixel. If its really
large we would cross over into regions of
other curves and if its really small the in-
tensities would be from the edge region.

τB threshold for comparing
curves based on their color
values

lower values would be more conservative
and higher values would lead to increased
number ofmisses.

Table 3.3: System parameters are listed along with their sensitivities and effects.



57

Figure 3.13: Results of Figure-ground segregation based on two adjacent frames for a Van (first
frame shown on the left) and an SUV(first frame shown on the right). The top row shows the
original image, the second row shows the contours extracted and last row shows the segmented
object.
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Figure 3.14: Two-frame segregation of moving vehicles in two subsequent video sequences. Ob-
serve how our segregation produces a rich description of the figure which can than be used for
recognition.
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(a)

(b)

(c)

(d)

(e)

Figure 3.15: (a) original video sequence, (b) segmentation of curves using our approach, (c) seg-
mentation using KLT tracker [81], (d) region-based segmentation using optical flow and (e) edge
based tracking using geodesic active contours, which requires a periodic manual initialization.
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(a)

(b)

(b)

Figure 3.16: (a) original video sequence with an occlusion, (b) edge maps of the above video
sequence, and (c) segregation of curves using our approach.



Chapter 4

Edge-based Segmentation of Moving

Objects in Videos from Stationary

Camera or Registered Images

The curves obtained from aerial videos where size of the objects is small are unstable leading to

poor matching of contours across the frames to allow segmentation of objects. Such class of videos

are acquired in surveillance applications,e.g., aerial videos where objects of interest like vehicles

are way smaller than the background objects. Since the size of the objects is small, the contour

detectors do not provide consistent linking throughout the frames and thus the approached described

in Section3 would fail to segment objects. But the edge-maps across the frames are stable. The aerial

videos are different as they have large background and small foreground objects. This allows the

videos to be registered with respect to the background in case of planar scenes [70] as well as in case

of non-planar scene [24]. Once the video is registered, background is stationary and then anything

moving is detected. This idea of modeling stationary background and detecting everything deviant

from the model as a moving object has been widely used for various applications. But most of these

approaches model intensity of the background.

4.1 Introduction

Methods for the analysis of moving objects in video and other time sequences obtained from sta-

tionary cameras,e.g., for surveillance and monitoring, typically model the stationary background

and detect moving objects as those pixels which do not fit this model. Averaging frames over time

61
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is a simple method of constructing a background model which is effective if objects move contin-

uously over the scene and lighting does not change rapidly. Background modeling using multiple

distributions is effectively used to handle images when the following conditions are met:(i) with

slowly moving objects,(ii) slight lighting variations, and(iii) repetitive object movements such as

leaves moving because of wind [86, 51, 74, 57, 63]. The most popular schemes use the Mixture of

Gaussian (MoG) model for each pixel. The intensity at each pixel is modeled using a fixed number

of Gaussians which are updated on every observation. Any pixel which is unlikely to come from

the MoG is classified as foreground.

(a) (b) (c) (d)

Figure 4.1: The effect of sudden illumination change on intensity-based background modeling .
(a,b) a pair of typical background images,(c) a frame when the illumination has changed and (d)
the corresponding foreground detection. Observe that the foreground, the pedestrian, has not been
identified and a large part of the background is labeled as the foreground.

Methods formodeling background intensitytypically suffer from three limitations. First, they

are susceptible to sudden changes in illumination, either global changes,e.g., due to the sun coming

out of the clouds, or local changes,e.g., due to partial reflection from a brightly colored objects

passing nearby,etc. Handling different illumination sources requires either a broader distribution

model or adding a new distribution to the mixture, both of which reduce the sensitivity to figure

segmentation. Second, these models are susceptible to changes in the camera model. For example,

automatic gain control can change the overall intensity distribution as a bright object enters the field

of view as illustrated,e.g. in Figure 4.5. The third drawback of the intensity-based methods is that

numerous observation frames are required for learning the background model, especially (i) when

the illumination is changing and (ii) the scene is constantly occupied with moving objects or when

objects are moving slowly.

An alternative to modeling background intensities is to model thebackground intensity gra-

dient. Jabriet al. [46] augments the traditional intensity background model with models of the

intensity gradient magnitude as captured by the Sobel operator responses. Large changes in either

intensity or in edges indicate the presence of foreground. While the use of intensity gradients While
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the use of intensity gradient is diagnostic to detect foregrounds, retaining the use of intensities also

retains the sensitivity to sudden changes in illumination. In contrast, Javedet al. [49] require signif-

icant changes inboth the intensity and intensity gradient to declare pixel as foreground. However,

intensity gradients arising from large illumination changes can still signal a figure when none exists,

Figure 4.6(b).

A key limitation of intensity and intensity gradient background models is that background mod-

els do not takespatial interactionsinto account: Each pixel is classified independent of its neigh-

boring pixel, without regard to the local geometry of the image. A step in this direction of using the

local geometry is to use edges in the modeling of the background. Edge maps tag those background

pixels which maximize local gradient in a neighborhood of pixels. The edge-maps are sparse as

compared to intensity and gradient map but still contains the same amount of information about the

shape of the object as it is shown that image can be constructed from the information available on

edges in [28]. Yang and Levine [103] modeled background edge-maps as a spatial binary map using

robust statistics on the strength of the edges where the edges diagnosed as outliers correspond to the

foreground edges. This approach is not adaptive to changes in the scene as it requires a background

map as input and is susceptible to changes in strength of the edge when illumination changes. Kim

and Hwang [55] detect the edges of current frame as well as of the difference image of consecutive

frames. They compare the edge-locations of both maps with a background edge-map and detect

foreground edges for each of the maps individually. The edges common to the two foreground

edge-maps are output as foreground edges.

Modeling pixel-level binary edge-maps has two main drawbacks. First, the discretization errors

in pixel-based binary edge maps lead to unnecessarily broad background models: a background

edge halfway between the pixels will require both pixels modeled as background, thus unnecessar-

ily “blurring” the background model, which in turn reduces sensitivity to detecting figures. Second,

edges in previous works are considered as points with spatial coordinates, while they also capture

theorientationof a local image patch. Discarding orientation information in the background model

has the undesirable effect that when a foreground edge happens to fall on a pixel with a declared

background edge, it would be misclassified as background. The use of orientation in background

modeling would drastically reduce such misclassifications to the case when both position and ori-

entation of a foreground edge match that of a background edge, a much less significant event.

This work proposes a background model based onsub-pixeledge-maps where sub-pixel posi-

tion (x, y) and subsample orientationθ of edges are modeled. This work also shows that sub-pixel

edge-map background models attain high precision and accuracy in addition to being invariant to

illumination changes and accommodates small translations easily. Another advantage is that the
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algorithm requires fewer frames to build the background model even in case of slow moving ob-

jects and busy scene. The advantage of modeling sub-pixel edges becomes evident in scenes with

cluttered backgrounds where edges from a figure can share the same pixel as well as the same

orientation as shown in Figure 4.3.

This paper is organized as follows. First, the effect of illumination changes on edges is shown to

smaller when compared to intensity and gradient in Section 4.2 . Second, the conventional approach

to model the background by MoG is discussed in Section 4.3. The observation variables for model-

ing sub-pixel edges and modifications to the above approach are discussed in Section 4.4 followed

by qualitative and quantitative experimental results in Section 4.5.

4.2 Effect of illumination change

Figure 4.2: This figure shows an image formed by two surfacesS1 andS2 and light sourceL

We now compare the effect of change in illumination on(i) intensity,(ii) intensity gradient and

(iii) edges. Consider a local area in a scene with two Lambertian surface patchesS1 andS2 with

normalsN1 andN2, and albedosa1 anda2, respectively, are mapped to adjacent patch in the images

separated by an edge, as shown in Figure 4.2. The surface patches need not be adjacent, as in the
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case of occluding contours. They also need to have distinct normals as in the case of reflectance

edge on a smooth surface patch. The image intensities in each patch,I1 andI2 are given by

{
I1 = a1N1.L+ Lε

I2 = a2N2.L+ Lε
(4.1)

whereL is a point illumination source andLε is the ambient light.

1. Intensity: The differential change in intensity,ΔI due to a change in illumination of the light

sourceΔL is given by {
ΔI1 = a1N1.ΔL

ΔI2 = a2N2.ΔL.
(4.2)

2. Gradient: The intensity gradient at its peak is computed pixel by using the two adjacent

pixels with intensitiesI1 andI2,

|∇I| =
1

Δx
|I1 − I2| =

1

2
|a1N1.L− a2N2.L| (4.3)

whereΔx = 2 is the distance between the two adjacent pixels. The differential change in the

gradient with respect to an illumination changeΔl is given by

Δ|∇I| = 1
2 |a1N1.ΔL− a2N2.ΔL|

≤ 1
2 |a1N1.ΔL|+

1
2 |a2N2.ΔL|

≤ 1
2(ΔI1 +ΔI2)

(4.4)

Clearly,Δ|∇I| ≤ ΔI. In other words, the correlation effect of illumination change on pixels

intensities is mostly canceled in the gradient process, leaving behind a much reduced effect.

3. Edges: Edges are obtained by localizing at the extrema of gradient and thresholding the

gradient,i.e., if |∇I| > τ , whereτ is the edge contrast threshold. The illumination change

has two potential effects. First, it changes the location of the edge slightly. The position of

edges are not affected by the change in the magnitude of the illumination, e.g., clouds hiding

the sun. However, the position of edges changes due to change in illumination direction, e.g.,

sun changing position from morning to evening. Second, the change in illumination may

change the classification of an edge to a non-edge and vice-versa. Fortunately, the majority of

edges are typically sufficient above the threshold such that a slight illumination change would

not affect them. Those pixels whose strength is close to threshold could change the status if

the illumination change acts in an opposite manner to classification,i.e., if the pixel gradient

is above threshold, it remains an edge if the illumination change is positive and may change
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status if the illumination change is negative and it is sufficiently strong to reduce the gradient

below threshold,i.e., if

∇I −Δ|∇I| < τ (4.5)

or if ΔL satisfies

∇I −
1

2
|a1N1.ΔL− a2N2.ΔL| < τ. (4.6)

Similarly, for a non-edge pixel the change in illumination must be positive and must be suffi-

ciently strong to change the status of the pixel,i.e.,

ΔI +
1

2
|a1N1.ΔL− a2N2.ΔL| > τ.

In summary, an illumination changeΔL affects two sets of pixels, edge points who switch

labels,
(i) ∇|ΔI|.∇I> = 0

(ii) |∇I| > τ

(iii) ∇I − 12 |a1N1.ΔL− a2N2.ΔL| < τ.

and non edge points which becomes edges requiring

(i) ∇|ΔI|.∇I> = 0

(ii) |∇I| < τ

(iii) ∇I − 12 |a1N1.ΔL− a2N2.ΔL| > τ.

Clearly, edge maps are by far less sensitive to illumination changes.

From the above study, it is clear that edges are the least susceptible representation to change in

illumination while intensity is the most susceptible. The edges can handle the sudden change in

magnitude of illumination. However in order to handle the gradual changes in illumination direction

which changes the edge position, the background modeling technique in [86, 51], is used as it can

adapt to gradual changes. This technique is further discussed in the next section.

4.3 Mixture of Gaussians Background Model

The Mixture of Gaussians (MoG) background model uses a Mixture of Gaussians to model the

distribution ofχ, anD random variable representing observations over many frames. Each of the

components of MoG is a Gaussian distribution,ηi, with a meanμi and covarianceΣi given by

ηi(χ, μi,Σi) =
1

(2π)
n
2 |Σi|

1
2
e−

1
2
(χ−μi)TΣ

−1
i (χ−μi). (4.7)
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The probability of observingχ = X0 is given by

P (χ = X0) =
N∑

i=1

ωiηi (X0, μi,Σi) (4.8)

wherewi are the weights of each of the individual component of MoG and their sum is 1,i.e.,
∑N

i=1wi = 1.

Updating the MoG: Consider a MoG model of a scene at time timek described by{(wki , μ
k
i ,Σ

k
i ), i =

1, 2, ..., N}, whereN is the number of Gaussian distributions. A new observation,χk+1, affects the

existing MoG model in that each of the Gaussian components of the mixture as well as their weight

needs to be updated to include the new observation in the model. There exists many variants of the

updating rule [51, 86]; in this work the update rule described in [51] is used, namely, the new MoG

model{(wk+1i , μk+1i ,Σk+1i ), i = 1, 2, ..., N} is computed using






wk+1i = wki + δw
k+1
i

μk+1i = μki +
δwk+1i

δwk+1i +wki
(χk+1 − μki )

Σk+1i = Σki +
δwk+1i

δwk+1i +wki

[(χk+1 − μki )
>(χk+1 − μki )− Σ

k
i ]

(4.9)

whereδwk+1i is computed as

δwk+1i =
ηi(χ

k+1)

L
, (4.10)

whereL is the number of ”training” frames typically set toLmax = 20. When the number of

observed frames are less thanL thenL = k, i.e., L = min(k, Lmax). The use of a maximum

number of frameLmax allows for the model to adapt to gradual changes,i.e. by taking account only

a moving window of say the last 20 frames. These updated weightswi are normalized to ensure
∑N

i=1wi = 1. TheN components of the mixture are sorted by the ratiowi/|Σi|. This ratio is ex-

pected to have a high value for the frequently observed distributions which have a lower covariance.

The components corresponding to higher ratios are considered to be background as they have been

seen very often. Thus the firstNb components having sum of weights greater than a thresholdτw

(set toτw = 0.5) are defined as the background components.

Foreground Detection: Given an observationχk+1, at a pixelp, p will be classified as foreground

if χk+1 does notlie within d standard deviations of any one of theNb components,i.e,
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(χk+1 − μi)Σ
−1
i (χ

k+1 − μi)T > d2 ∀i ∈ Nb (4.11)

where typicallyd is 2.5. On the one hand, if the observation belongs to one of the components then

it updates that particular component. On the other hand if it is a foreground then a new Gaussian

distribution is initialized with meanχk+1 and a default covariance and weight is initialized to0.1.

And this new distribution replaces the distribution with the lowest ratiowi/|Σi| if the number of

distributions of MoG isN and is just added if the number of distributions is less thanN .

Behavior of components of MoG: Each of the components of MoG represents one class of ex-

pected views together with a group of variations in the observations arising from noise or small

variations and quantified by the variance. Observe that by design each component cannot handle

large variations since as the variance increases, the rank of the distribution component goes down

according towi/|Σi| which is then eventually discarded.

The MoG model is initialized at each point of the image grid with zero components and the first

image updates this model. Note that the model is continuously updated but generally it takes several

frames to build the model and to get reliable foreground detection. The observations for intensity,

gradient and edges are discussed below.

4.4 Different variations of Observations

The above machinery for the MoG background modeling is the same whetherχ represents intensity,

intensity gradient, or edges. We consider four possibilities below.

Intensity: In order to model gray-scale intensities,χ at each pixel is a 1-d variable given by

χ = I(x, y) ∈ [0, 255]. (4.12)

Gradient Map : Gradients map are obtained by convolving gray-scale image with a 1D derivative

of Gaussian filter. The image is convolved along the rows to obtainIx and along the columns to

obtainIy. Then the gradient magnitude is obtained by‖∇I‖ =
√
I2x + I

2
y . Therefore,χ is a 1-d

variable at each pixel(x, y) is given by

χ = ‖∇I‖(x, y) ∈ [0, 255] (4.13)

Pixel edges with orientation: Pixel edge maps are computed by non-max suppression on the thresh-

olded gradient map. The pixel edge map is a binary map and has an orientation associated with it, if
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: This figure compares the accuracy of background modeling using pixel and sub-pixel
edge maps. (a) One of the background images, (b) latest observed image, (c) Pixel-edge foreground
detection, (d) Sub-pixel edge foreground detection, (e) zoomed image of (c), (f) zoomed image of
(d). Note how the roof of the car disappears in the case of pixel-edge modeling as the railing behind
the car has the same orientation as of the roof edges. Another example with a jeep against the railing
with output based on (g) pixel edges and (h) sub-pixel edges.
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the edge is on. The orientation is computed as the normal direction to the gradient,∇I. In this case,

χ at a pixel location(i, j)models the orientation of the edgeθ ∈ [0, π) if (i, j) is an edge otherwise

χ is assigned a predefined constant outside the range ofθ

χ =

{
θ ∈ [0, π) (i, j) is an edge

−100 (i, j) otherwise.
(4.14)

Note thatθ needs to be circular,i.e., 0 and2π are the same. Sinceθ lies on a circle, the maximum

distance should beπ. Therefore, the values closer to2π are closer to zero but a simple difference

gives a huge value. This motivates to change the difference function for two variablesχ1 andχ2

belonging to[0, 2π)

χ1 − χ2 =

{
χ1 − χ2 for |χ1 − χ2| ≤ π

χ1 − χ2 −
χ1−χ2
|χ1−χ2|

2π for |χ1 − χ2| > π
(4.15)

So, when|χ1 − χ2| > π, there can be two cases:(i) for χ1 > χ2, it becomes(χ1 − 2π) − χ2 =

χ1 − χ2 − 2π and(ii) for χ1 < χ2, it becomesχ1 − (χ2 − 2π) = χ1 − χ2 + 2π.

Due to the discretization errors during non-max suppression of pixel edge maps lead to un-

necessary broad background models: a background edge halfway between the pixels will require

both pixels modeled as background, thus unnecessarily “blurring” the background model, which in

turn reduces sensitivity to detecting figures. Instead, a background model based on edge-maps with

sub-pixel position of the images is proposed.

Figure 4.4: CovarianceΣx,y (green ellipse) for an edge distribution and four red dots shown repre-
sents the sites for the edge under consideration. Any edge which lies in the distribution is considered
to be background.

Sub-pixel edges with orientation: Sub-pixel edge-maps attains high precision and accuracy in

addition to being invariant to illumination changes and accommodates small translations easily.
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The advantage of modeling sub-pixel edges becomes evident in scenes with cluttered backgrounds

where edges from a figure can share the same pixel as well as the same orientation as shown in

Figure 4.3. Figure 4.3(c) shows output based on pixel edge-maps. Note the roof of the car aligns

with the rail in the background and both of them have similar orientation. Since localization of the

position for pixel-edge maps is poor, it detects the roof as background. But by modeling sub-pixel

edge-maps most of such cases can be resolved and thus, increasing the true positives. However, it

becomes difficult to model sub-pixel position as it is no longer fixed to the grid. The authors propose

an approach to overcome this problem which is discussed below.

Sub-pixel edge-maps are obtained on a video sequence using a modified Canny edge detector

which computes third-order derivatives [88] as represented by a set(x, y, θ) for each edge, where

x, y ∈ R are the sub-pixel positions andθ ∈ [0, 2π) is the orientation. Since the edges are sub-

pixel, we associate each edge to its corresponding“sites” (neighboring pixels) as illustrated by red

dots in Figure 4.4. Note “sites” acts as a placeholder for the distribution ofχ. χ(x, y, θ) is a 3D

variable in this case. It allows for sub-pixel accuracy for modeling the distribution of edges across

frames. Each of the sites,s, has a MoG forχ(x, y, θ) in which ith Gaussian component would have

a covarianceΣsi and a meanμsi . The current edge observationχ(x, y, θ) belongs to the foreground

if ∀s ∈ S, Equation 4.11 holds,

(χk+1 − μsi )Σ
s−1
i (χk+1 − μsi )

T > d2 ∀i ∈ Nb ∀s ∈ S (4.16)

whereS are the four sites. Most of the edges except spurious ones are samples of a curve in the

image, Figure 4.4. Since an edge can slide along the curve, one would expect a large variance in the

tangential direction and small variation along normal as shown in Figure 4.4. Empirically, larger

variation along the curve was observed.

Parameter Meaning DefaultRange
τ threshold for edge detection 1.5 0-100
N # of components of MoG 4 1-inf
L moving window size of history of observations 20 1-inf
τw threshold for declaring the components to back-

ground
0.5 0-1

d maximum Mahalanobis distance allowed 2.5 0-inf

Table 4.1: System parameters
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(a) (b) (c) (d)

Figure 4.5: The effect of change in the gain of the camera is depicted for different background
modeling schemes. Top Row: a background input image, and its (b) gradient-map, (c) edge-map
and (d) sub-pixel edge-map. Middle row: (a) a new input image with a change in the gain of camera,
and (b) intensity gradient, (c) edge map and (d) sub-pixel edge-map. Bottom row: Foreground
detection results based on (a) intensity, (b) intensity gradient, (c) pixel edge map and (d) sub-pixel
edge-map. Observe that the extent of the spurious responses reduces from left to right.
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(a) (b) (c) (d)

Figure 4.6: The effect of sudden illumination change on different background modeling schemes is
illustrated. First and Second row: a pair of typical (a) background images, and their (b) gradient
maps, (c) edges and (d) sub-pixel edges. Third row: (a) a frame when the illumination has changed
and its (b) intensity gradient, (c) edge map and (d) sub-pixel edgemap. Fourth row: Foreground
detection using (a) intensity, (b) intensity gradient, (c) edge map and (d) sub-pixel edgemap.
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(a)

(b)

Figure 4.7: A comparison on standard video sequence (a) “Akiyo” and the (b) “occluded pedestrian”
video sequence. The first column shows a typical frame and its sub-pixel edgemap used for the
background model, the second column shows a new frame for which a figure needs to be segregated
and the last column shows the foreground detection. It is clear in all cases the sub-pixel edge is
more selective.
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Figure 4.8: Plot of detection rate versus number of frames to build the model on sequence in Fig-
ure 4.3 for intensity and sub-pixel edges based method.

4.5 Experiments & Results

The four background models based on:(i) intensity,(ii) gradient,(iii) pixel edges, and(iv) sub-pixel

edges were compared qualitatively and quantitatively.Qualitatively,observe the differences among

foreground detected by these models in Figures 4.6 and 4.5. Figure 4.6 shows results on video

sequence undergoing sudden illumination change due to clouds in the sky and Figure 4.5 shows

results on video sequence undergoing sudden illumination change due to change in the gain of the

camera. Figure 4.10 shows results of edges and intensity based modeling on different frames of a

video under illumination change. The results on a widely used video sequences Akiyo in multimedia

are shown in Figure 4.7. Observe in this sequence that the foreground occupies most of the scene

and its very slowly moving, so it becomes really difficult to model the intensity of the background

for the video sequence. The sub-pixel edge based method is able to detect foreground as compared

to the intensity based methods. The last sequence shows how robust the method is in images with

trees and bushes.

Intensity-based methods require a lot of frames to learn the background model especially when a

foreground object is moving slowly like Figure 4.7. This happens because of homogeneous regions

moving slowly so that a pixel might observe the same intensity for a long duration and model it as
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a background. But edges have an advantage as they are very sparse. The edges might face a similar

problem. A simple example would be a checker-board pattern moving with the displacement equal

to the width of each square. Definitely such cases are rarely occur than the situation described for

intensity based approaches.

Quantitatively, ROC curve in Figure 4.9(b), quantify the differences in the performance of the

four approaches on the sequence shown in Figure 4.6. Ground truth was marked for each of the four

methods manually for 5 frames, Figure 4.9(a) . The ground truth is a binary image of foreground

object. The false positives and true positives were recorded by varying the detection thresholdτ

for each of the approaches. An important thing to note is if a video with constant illumination is

considered then intensity-based approach and the approach proposed in this work would performing

similarly. The scenarios with constant illumination would be mainly indoor and have non-shiny

surfaces as shiny surfaces can act as a light source. But for outdoor scenes where illumination

changes quite a lot the proposed method outperforms intensity-based approach.

The experiment to compare number of frames required to build a background model for intensity

based approach versus edge-based approach shows the edge based approach requires fewer frames

to build a background model. A video sequence with no sudden illumination change was used for(i)

intensity and(ii) edges. ROC curves for each of the frames were computed individually and the area

under these curves were plotted versus the frame number as shown in Figure 4.8. This plot shows

that edge-based model attains high performance in fewer frames than intensity based methods.

The limitation of the approach proposed is that edges detected as foreground do not give a region

or boundary where as in case of intensity pixels of a foreground object are often contiguous. But

the edges can be linked but due to misdetections or false alarms it might not output a closed shape.

But the approach described in?? shows how to enrich these segmentation as well as provide local

linking of these edges.

4.6 Conclusion

In this work, a novel idea of using edges with their sub-pixel position and intensity to model the

background to detect moving objects. This work shows edges are least susceptible to illumination

changes and the background modeling technique introduced by [86, 51] requires fewer frames to

model the background using edges as compared to intensity.
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(a)

(b)

Figure 4.9: (a) An example of the ground truth image. (b) ROC curve obtained for foreground
detection using Intensity (Black), Gradient (Pink), Pixel Edges (Yellow) and Subpixel Edges (Red)
for sequence Figure 4.6
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Frame # Image Intensity Our approach

1

17

33

41

45

50

Figure 4.10: This figure shows the results of our approach and intensity based approach on multiple
frames of a video sequence where illumination changes at frame 37.
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Figure 4.11: Two additional examples highlight the effectiveness of background modeling of edges.
Figure and background edges are colored in green and red, respectively. First row: The mouse video
is obtained from psychology department at our university where they want to do a behavioral study
of the mouse by tracking its head. Second row: a moving person (note the reflections of the person
from the window and table are captured).



Chapter 5

Multi-Frame Enrichment of Motion

Segmentations

5.1 Introduction

Numerous computer vision applications such as surveillance, automated vehicles navigation, and

robotics, among others, require segregated moving objects. However, motion segmentation of ob-

jects in real scenes can be challenging due to factors such as changes in illumination, limitation

of motion models, the presence of, multiple objects, occlusion, blending of foreground into back-

ground,etc. These factors result in poor segmentations of moving objects as shown in Figures 5.1

and 5.2 which depicts missing spurious structures from other objects and have some missing struc-

tures. These degradations of motion segmentations hold for segmentation using regions, curves,

edges or features. We observe, however, that the degradations of missing, and spurious and deform-

ing structures are not consistent over adjacent frames, mainly because they are not structural but

only due to temporary alignment or combination of 3D spatial configurations. As these configura-

tions are altered, so are the type and extent of the degradation. What remains invariant is the 3D

structure of the objects and the background. The goal of this work is to integrate information from

several adjacent frames to improve the quality of segmentation.

Existing approaches for motion segmentation use different representation to establish the corre-

spondence between adjacent frames namely,(i) regions (connected set of pixels),(ii) features like

corners or SIFT, and(iii) curves or edges. In all these representations the correspondence required

for motion segmentation can break down due to factors such as change in illumination, occlusions,

blending of objects,etc. Feature-based approaches mainly suffer from instability of feature from

frame-to-frame. This instability is caused due to change in viewpoints, specular reflections and

80
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(a) (b)

(c) (d)

Figure 5.1: This synthetic video illustrates some of the problems of motion segemtnation in a con-
trolled setting. (a) A single frame of a video of a truck moving to the right. (b) A single frame
of a video of the same truck moving to the right, but now embedded in a rich scene. (c) The seg-
mentation of the truck in (a) using background modeling of edges [47]. (d) The same approach
applied to (b) shows gaps, missing edges, due to partial occlusion, spurious edges, highlight edges
due to inter-reflections,etc. While the segmentation in (c) can be used for recognition, tracking,
etc. that in (d) represents a greater challenge. Realistic videos show an even greater degree of com-
plexity of interaction and therefore greater deviation from expected models and a greater degree of
degradation.
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(a)

(b)

(c)

(d)

Figure 5.2: This figure shows the motion segmentations from different approaches. (a) Three frames
of an outdoor video sequence and the motion segmentation of this video sequence using (b) KLT
features based segmentation, (c) region based segmentation and (d) its curve-based object segmen-
tation [48] is shown. Note how all these segmentation have noise and missing gaps.
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occlusions and hence poor segmentations, as shown in Figure 5.2(d). For the case of regions, the

correspondence between pixels is error-prone due to changes in illumination and inter-reflection

from other objects, Figure 5.2(f). A comparison segmentations obtained using edges [47] in a scene

with no background and illumination effects, Figure 5.1(a), versus segmentations obtained in a re-

alistic scenes with illumination effects, Figure 5.1(b). Similarly, in the case of segmentation using

curves, the curves have wrong correspondences due to transitions of the curves from one frame to

another,e.g., breaking of a curve into two in the next frame. This wrong correspondence result in

segmentations with missing curves and some curves of different objects as shown in Figure 5.2 (b).

Thus, segmentations on a single frame can be noisy and incomplete but they are complimentary

over adjacent frames and hence can be used toenricheach other.

We now discuss an approach to use multiple adjacent frames to enrich the segmentations by

integrating and fusing information across multiple adjacent frames (typically 5 or 7 frames). Note

that this does not increase the resolution of the data, rather it enriches the segmentations. The

proposed approach requires edge-maps of segmentations of objects from a video sequence as input

and output an enriched figure edge/curve map for each frame of the video. The edge maps of

the objects are computed from the motion segmentations using regions and features whereas the

output of algorithms based on curves/edges [47, 48, 85] is directly feed into our approach. The

choice of edges is motivated by(i) sparser than pixels in the region but richer than the points/SIFT

which provides efficiency yet enough correspondences to find the alignment,(ii) robustness of edges

to illumination changes and(iii) edges enables geometric consistency as compared to regions or

features.

An overview of approach can be organized into several steps. First, the edge maps from neigh-

boring frames are aligned onto a central frame so as to obtain a compound edge-map. The alignment

which “transports” the temporal information into a common reference is based on a view of an edge

as a sample of an underlying curve arising from a local planar patch. This assumption allows to use

a Thin Plate Spline model to align the adjacent edge maps onto the central frame. The edge-maps

are brought into alignment by minimizing(i) the distance between the edges and(ii) higher order

derivatives of image flow.

Second, the edges from multiple frames need to be integrated. An edge from one frame can

fill a gap in another or it can add to the spurious edges content. The decision as to whether an

edge is spurious or adds to the geometric content is the notion ofgeometricconsistency: an edge

that together with other edges can arise from a local curve model ( a circular arc in our case) has

geometric support and is therefore structural. All other edges are spurious. This retains the edges

which are consistent spatially as well as temporally and thereby removing some spurious edges and

filling-in some gaps. Quantitative comparisons on synthetic video and qualitative comparisons on
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real video data shows that the resulting enriched composite edge map is significantly better both on

synthetic and on real data.

This work is organized as follows: A brief review of related work is discussed in Section 5.2.

The geometric alignment of edge map is presented in Section 5.3 and the geometric consistency is

presented in Section??. The experimental results are described in Section 5.4.

5.2 Existing Approaches

To the best of our knowledge, the idea of using edge maps both for the alignment or registration of

frames and as a main feature for fusion across frames is novel. However, the idea of integrating edge

information to fuse image or edge-maps from multiple sensors has been proposed earlier. Abidi and

Delcroix [2] proposed an approach to fuse range and intensity edge-maps. They employ two ideas:

(i) principle of token corroboration: an edge in the final fused edge-map is retained if it is supported

by either range and intensity edge-map, and(ii) principle of belief enhancement/withdrawal: edge

in the final edge map is weighted depending on how similar the edge content in the two edge-

maps are. Yocky [104] proposes fusion of multi-sensor images using wavelet transform. The idea

is to fuse data which has compression along complementary datasets,e.g., an image with high

spatial resolution but low resolution color information and another image with low spatial resolution

but high color information. The authors enhance an image from a sensor using high frequency

components from the other sensor image.

The work by Yang and Blum [102] proposes a method using multiple neighboring frames for

fusion of multi-sensor images. The approach is to use a statistical model for image formation

whose parameters, and the final fusion image are unknown. An EM-based iterative algorithm is

employed to solve for the parameters and the fused image iteratively. The temporal information

or the neighboring frames add a constraint through consistency of parameters. The authors claim

temporal information improves the fusion results.

Numerous approaches uses edges for registration of two images. The work by Stewartet al.[87]

uses edges to register two images. The algorithm uses very high confidence matches as initializa-

tion and employs a region growing algorithm. The model selection is allowed from simple image

translation to quadratic transformations. This implies that the objects need to be planar which is

definitely not the case in general.
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(a)

(b)

(c) (d)

Figure 5.3: (a) A central frame with 3 frames following it; we do not show the 3 preceding frames
for clarity of presentation. (b) The edge map of the central frame is red followed by three other edge
maps. (c) The composite edge map show superimposition of all the registered edges on a central
frame and(d) show consistent edges retained. Observe how most of the gaps are completed and the
spurious edges are removed.

5.3 Alignment of Edge-Maps

The first stage of our approach aligns the motion segmentation edge maps in the neighboring frames

onto a singlecomposite edge mapin the central frame under consideration. Typically the neigh-

borhood window is 5 or 7 frames and each of these frames is individually registered to the central

frame using pairwise alignment between each of the neighboring frames and the central frame. The

pairwise alignment between two frames requires a transformationχ(ξ, η) for all (ξ, η) belonging

to the object in the central frame, whereχ is a vector field. Note that some points may have good

correspondence in the other frames which are used to compute the completeχ. Similarly, the point

(ξ, η) in the central frame is aligned with the point(ξ̄, η̄) in an adjacent frame,i.e.,

[
ξ̄

η̄

]

= χ(ξi, ηi) +

[
ξi

ηi

]

.

Since, the measurements of the motion segmentation of an objects are edge maps, consistency of

any alignment vector fieldχ(ξ, η) with data is only at edges. Let{ei, i = 1, ...., L} and{ēj , j =

1, ...., L̄} represent the edges in the central and adjacent frames respectively. The transformation

χ(ξ, η) is constrained by the minimizing the following difference

dc(ei, êj) = d(ei, χ(êj) + êj) (5.1)
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whereēj = χ(êj)+êj andd(ei, ēj) represents the consistency of two edges in the composite map, to

be defined in Section 5.3.1. Since the above constraint is spare, it is not sufficient to estimateχ and

additional assumptions are required so that can be densely estimated. A first-order approximation

of object surfaces as locally planar implies thatχ(ξ, η) is a piecewise linear flow, leading to the

minimization of second-order derivatives,i.e.,

min
χ

∫∫

(ξ,η)

[

|
∂2χ

∂ξ2
|2 + 2|

∂2χ

∂ξ∂η
|2 + |

∂2χ

∂η2
|2
]

dξdη, (5.2)

which is justified below in Section 5.3.2. Finally, the optimization to findχ using the above data

term and regularization is based on the iterative annealing method of Chui and Rangarajan [19],

which is discussed in Section 5.3. We discuss each in turn.

5.3.1 Similarity Between Two Edges

We now discuss the degree of consistency of an edgeei from one frame with an edgēei from another

frame, when superimposed on the central composite edge map,i.e., whereēi has been laid out as

χ(ēi) + ēi. In order to understand the relationship between two edgesei andχ(ēi) + ēi, consider a

2D curveγ(s, t) moving and deforming from one frame to another, wheres is the parameter along

a curve at constantt wheret is the time index. This curveγ(s, t) is sampled differently in different

frames giving rise to distinct spatial locations for edges in different frames. Thus, when the two

edge maps are aligned in the central edge map, the correspondence between edges is no longer one

to one: an edge from one curve (red samples) comes from a sample of the same curve in a different

frame that is no longer present. This forces a many to many mapping, which is also not accurate,

Figure 5.4(a). A Euclidean distance representing “point to point” distancedp(i, j) = ||pi − pj ||

can lead to multiple correspondences and erroneous distance estimates. We propose to estimate the

point to curve distance instead. Since the underlying curveγ(s, t) is unavailable and only the trace

is available, the best estimate, namely the line extension of the edge, or when curvature information

is available a circle is used. Thus, the distance of an edgeei to the transported edge from another

frameej is the distancebetweenej and the line or circle extendingei, Figure 5.4(b).

This algorithm works well in general but (i) it sometimes produces erroneous correspondence

due to variation in sampling across curves and (ii) is computationally expensive. We now discuss our

modification to address these problems. Specifically, let the edge position ofei bepi = (xi, yi) and

its tangentti = (cos θi, sin θi) and similarly forēi. Then, the distance function between two edges

then comprises three terms: (i) the perpendicular distance of an edge to the tangent of the other edge

d⊥(i, j) = |(pi − p̄j)× ti|, (ii) The difference between orientation of edgesdθ(θi, θ̄j) = |θi − θ̄j |π

and (iii) the Euclidean distance between position of edgesde(pi, p̄j) = ||pi − p̄j || to define a local
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(a)

(b)

(c)

Figure 5.4: This figure illustrates the advantage of using point to curve distance. (a) Point to point
distance would be problematic as the sampling of the curve is different as shown in red and blue
edges. (b) an estimate of point-curve distance and (c) point to curve distance allows the samples
from other frames (red) to align with the underlying curve (shown in green).

neighborhood over which the computation is meaningful. Then the similarity between two edges is

represented by

de(ei, ēj , σe, σθ, σ⊥) = e
−
||pi−p̄j ||

2

2σ2e e
−
|θi−θ̄j ||

2

2σ2
θ e

−
|(pi−p̄j)×ti|

2

2σ2⊥ , (5.3)

whereσθ, σp andσe are the uncertainties associated with each of the distances and are typically

assigned as equal toσ⊥ = 2.0 pixels,σθ = π/6 radians andσe = 5.0 pixels, Table 5.1.
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5.3.2 Choice of Transformation

The objects generally considered for the scope of this work are assumed to be locally planar and far

from the camera (high frame-rate). The following proposition shows thatχ is given by piecewise

linear flow using the above two assumptions.

Proposition 5.1. The image motion for a locally planar point far from the camera can be approxi-

mated by linear flow model.

Proof. Without loss of generality assume a simple camera model with unit focal length. Let(ξ, η)

be the image coordinate of the 3D point(X,Y, Z) which can be related by
{
ξ = X

Z

η = Y
Z

(5.4)

Differentiating the above equations with time,
{
ξ̇ = ZẊ−XŻ

Z2
= Ẋ

Z −
X
Z
Ż
Z =

Ẋ
Z − ξ

Ż
Z

η̇ = ZẎ−Y Ż
Z2

= Ẏ
Z −

Y
Z
Ż
Z =

Ẏ
Z − η

Ż
Z

(5.5)

Since(X,Y, Z) lies on a plane, it satisfies a plane equation given byaX + bY + cZ = 1. This

constraint can be rewritten to obtain1Z ,

1

Z
= a

X

Z
+ b

Y

Z
+ c = aξ + bη + 1 (5.6)

Since the object is far, the camera will have a small angle of view and large focal length and thus

ξ � 1 andη � 1. The assumptions of small motion and object far from the camera givesξ ŻZ �
Ẋ
Z

andη ŻZ �
Ẋ
Z . Equation 5.5 can be simplified to

{
ξ̇ = Ẋ

Z

η̇ = Ẏ
Z

(5.7)

Substituting Equation 5.6 in Equation 5.7,

{
ξ̇ = (aξ + bη + 1)Ẋ

η̇ = (aξ + bη + 1)Ẏ
(5.8)

Therefore the above equation is linear in image coordinates. Hence, the proof. �

The above proposition shows the flow is locally linear. Since the object is piecewise planar, the

flow, χ is piecewise linear. The work by Blake & Zisserman [10] showed that the piecewise linear

flow, χ is obtained by minimizing the second-order derivatives ofχ. The functional is given by

I[χ] =

∫∫

(ξ,η)

[(
∂2χ

∂ξ2

)2
+ 2

(
∂2χ

∂ξ∂η

)2
+

(
∂2χ

η2

)2]

∂ξ∂η, (5.9)
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whose Euler Lagrange equation is:

∂4χ

∂ξ4
+ 2

∂4χ

∂ξ2∂η2
+
∂4χ

∂η4
= 0. (5.10)

This is the well-known bi-harmonic equation,i.e.,

Δ2χ = 0,

which has several particular solutions including,

Ar2 ln(r) +Br2 + C ln(r) +D,

where

r =
√
(ξ − ξ0)2 + (η − η0)2 = ‖(ξ, η)− (ξ0, η0)‖

and whereA, B, C, D, ξ0 andη0 are arbitrary parameters. Among theseφ(r) = r2 ln(r) gives a

solution.

χ(ξ, η) = r2 ln(r) = [(ξ − ξ0)
2 + (η − η0)

2] ln(
√
(ξ − ξ0)2 + (η − η0)2),

which is the radial basis function used in finding solutions when it is constrained by a boundary

condition

(ξ̄0, η̄0) = (ξ0, η0) + χ(ξ0, η0),

which leads to the Thin Plate Spline approach discussed next.

5.3.3 Thin Plate Spline

The biharmonic equation has been used in the Thin Plate Spline (TPS) methodology, introduced in

the context of geometric design by Duchon [26] where a thin membrane is bent so that certain con-

trol points are moved to a desirable location and where the rest of the plate complies by minimizing

its bending energy. This bending energy is exactly of the form of Equation 5.9. Thus, the thin plate

spline satisfies control point condition (boundary point condition) while minimizing the bending

energy. That the solution has a closed form and has lead to its use in a variety of setting, including

image alignment [18, 19] and shape matching [7]. We now use this methodology for edge-based

image alignment. where a series of boundary conditions or otherwise known as control points , are

given as an edge in one frame at(ξi, ηi) mapping to an edge at another frame at(ξ̄i, η̄i)

(ξ̄i, η̄i) = (ξi, ηi) + χ(ξi, ηi) i = 1, 2, ....., N, (5.11)
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Then, since each radial basis function centered at(ξi, ηi)

φ(|(ξ, η)− (ξi, ηi)|)

is a solution to the biharmonic equationΔ2χ, so is

χ(ξ, η) = ΣNi=1wiφ(|(ξ, η)− (ξi, ηi)|).

Since a linear function also satisfies the biharmonic equation, and since this allows for a global

affine transformation we can include this to get a more general solution

χ(ξ, η) = ΣNi=1wiφ(|(ξ, η)− (ξi, ηi)|) + b
> +B(ξ, η)> (5.12)

whereb> = (ξ0, η0) and the spatial warping affine matrixB is a2 × 2 matrix that enables global

scaling, shearing and rotation . The free parameters are the weightswi, i = 1, ...N and the six

parameters inb andB for a total of2N + 6 parameters. Restricting the solution space to have

square integrable second derivatives leads to

N∑

i=1

wi = 0
N∑

i=1

wiξi = 0
N∑

i=1

wiηi = 0. (5.13)

which provides 6 constraints in addition to the 2N boundary conditions of Equation 5.11. This set

of linear equations can be solved in closed form. Specifically, letΦ be aN ×N matrix defined as

Φij = φ(|(ξ,ηi)− (ξj , ηj)|)

and let

X =















(ξ1, η1)

(ξ2, η2)

.

.

.

(ξN , ηN )















, X̄ =















(ξ̄1, η̄1)

(ξ̄2, η̄2)

.

.

.

(ξ̄N , η̄N )















, W =















w>1

w>2

.

.

.

w>N















so that the Equation 5.12 can be written as

χ(ξj , ηj) = b
> +B(ξj , ηj)

> +

N∑

i=1

wiΦij

or in matrix form

X̄ −X = 1N×1.b
>
1×2 +XB

> +ΦW,

This can be merged with Equation 5.13 so that it can be written in block form
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(X̄ −X)N×2

02×2

01×2












=












ΦN×N XN×2 1N×1

X>2×N 0 0

11×N 0 0























WN×2

B>2×2

b>1×2












This matrix equation can be inverted to solve forW , B andb. More generally, however, since the

enforcement of control pointsexactlypassing through the desired point has rather harsh implications

on the smoothness of the resulting mappingχ, we obtain a smoother solution by allowing the control

points to pass near the desired points with some cost in a traditional regularization framework,

leading to a minimization of

E(W, b,B) =
∑N

i=1 ‖(ξ̄i, η̄i)− ((ξi, ηi) + χ(ξi, ηi))‖
2+

λ
∫∫ [
|∂
2χ
∂ξ2
|+ 2| ∂

2χ
∂ξ∂η |+ |

∂2χ
∂η2
|
]
dξdη,

(5.14)

whereλ is the regularization coefficient balancing the data term and the smoothness term. We use

λ = 0.2 throughout this paper. Now, functions of the form in Equation 5.12 which solve exactly the

biharmonic equation are retained to minimizeE(W, b,B) which after substituing leads to

E(W, b,B) =
∑N

j=1 ‖(ξ̄j , η̄j)− b−B(ξj , ηj)
> −

∑N
i=1wiφij‖

2

+λTr(W>ΦW ),
(5.15)

which can be minimized by solving






















(X̄ −X)N×2

02×1

01×1























=























(Φ− λI) XN×2 1N×1

X>2×N 0 0

11×N 0 0













































WN×2

B>2×2

b>1×1























This matrix equation can be solved in a closed form by a QR decomposition of

[XN×2 1N×1] = [Q
1
N×3 Q2N×(N−3)]

[
R3×3

0N−3×3

]

which gives [19]
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W = Q2(Q
>
2 ΦQ2 + λIN−3)

−1Q>2 [X̄ 1]








B b

0 1









= R−1(Q>1 [XN×2 1N×1]− φW ).

(5.16)

5.3.4 Representing Correspondence by Softassign

The previous section assumed that the correspondence between(ξi, ηi) and(ξ̄i, η̄i) is known. How-

ever, finding this correspondence is part of the problem. We adopt Chui and Rangarajan’s point set

matching approach where the correspondence is represented by a matrixM whose elements repre-

sent the degree a point on one image matches a point another image. The energy is optimized based

on this correspondence which then updatesM . The process is repeated to convergence.

The algorithm of [19] is extended/modified for aligning edges by replacing pairwise point-point

distance to point-curve distance. The correspondence is represented by a matrixM where rows

represent edges in the first edge-mape = {ei = (ξi, ηi), i = 1, ...., L} and columns represent

edges in the secondedge-mape = {ej = (ξ̄j , η̄j), j = 1, ...., L}. Note that we are not assuming

thatL = L̄ as in the last section. As in the softassign approach of [19] an additional column and

an additional row are also added to represent outliers and missing edges, respectively. This extra

column/row takes care of edges which do not have a match. The correspondence matrix has then

dimension of(L+ 1)× (L+ 1). As a permutation matrix, only one element in each row and each

column would be one, indicating a one-to-one correspondence between the edges, that is if the one

is not in the last column/row, or otherwise a spurious edge or missing edge, respectively. The matrix,

however can accommodate a non-binary fuzzy representation when it is doubly stochastic [19]. This

fuzzy correspondence is particularly important in corresponding edges since an edge is a sample of

a curve and its true correspondence in another frame typically falls between two edges. Given a

correspondence matrix M, a transformationχ can be obtained. Since each edgeei map to all other

edges to various degrees, an average correspondenceêi is computed by a weighted average

êi =
∑

j=1

Mij ēi =MX̄ (5.17)

The optimal transformationχ for the correspondences(ei, êi), i = 1, ..., N in the form of Equation

5.12 is then obtained by solving Equation 5.16 for weightsW , b andB. Given a transformationχ, an

updated correspondence matrixM can then be obtained. Specifically, each edgeei is transformed to
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Figure 5.5: This figure shows the plot ofK(r) = −r2 log r from [11].

ẽi = ei + χ(ei). The extent each edgeei is similar toẽigives the updated degree of correspondence

betweenei andēi. We use the similarity distance of Equation 5.3 to determineMij as

Mij = de(ei + χ(ei), ej , Tσe, Tσθ, Tσ⊥),

whereT is the temperature for annealing. The updatedM is converted into a doubly stochastic

matrix by iterative row and column normalization.

(a) (b)

Figure 5.6: (a) The correspondence between two edge maps is shown as green lines connecting
corresponding edge points (red and blue) for two frames of an image sequence. (b) zoomed in (a).
Observe that the majority of outliers are correctly deleted.

Initially, at a high temperature the elements of matrixM are assigned uniform values which

implies all the pair-correspondences{ei} × {ej} are equally likely. As the temperature is lowered,
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M becomes non-uniform. Eventually it approaches a permutation matrix which ensures one-to-one

correspondence. The output of this algorithm gives us mapping of{e} to edgemap{ē}. Figure 5.6

shows the correspondence between two edge maps, where green lines connect points from one

edge set (in red) to another edge set (in blue). Observe that in contrast to point-matching, the

orientation of the edge allows for a higher degree of selectivity. This optimal correspondenceM

and its associated transformationχ are used to align edge maps from several frames to form a

composite edge map as discussed earlier.

5.3.5 Efficient Alternative for the TPS Model

The closed form solution of the TPS, Equation 5.16, has complexityO(N3) whereN is the number

of edges. This can be prohibitive for larger images which can have ten of thousand edges. This

motivates search for a more efficient scheme for findingχ without necessarily affecting the perfor-

mance. We have found that the Clough-Tocher implementation [21] which uses piecewise cubic

patch is used to speed up the computation toO(N logN) does not degrade the resulting transform

χ.

The optimal transformation between two frames is now used to transform one edge map onto

the other. Specifically, we for each frame we consider a neighborhood of 5 or 7 frames (2 or 3 frame

before and after the central frame), and compute the optimal transformationχ between the central

frame with every neighboring frame, and transform these edge maps onto a central frame to form

a composite edge map. Figure 5.3 illustrates this process for a central frame whose edge map is

shown in red and3 subsequent frames following it (we do not show the previous frames for clarity

of presentation), each with edge maps of different color. Figure 5.3(c) shows the composite edge

map where the edge map of each frame is transported onto the central frame with the corresponding

optimal transformation. Other examples of composite edge maps are shown in Figure 5.11(d) and

5.12(d). a comparison of edge maps and composite edge maps shows that composite edge maps are

Figure 5.7: Multiple groupings or curvelet bundles from [92] shown in pink and green for an edge
(blue circle). Each edge can have multiple groupings.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.8: A synthetic simulation of a sequence of 5 adjacent frames which are samples from an
ideal edge map (a), but where some edges are removed (20%) and where noise is added in the form
of random edges (300%). Each of these five edge maps in shown in a different color (b-f). The
composite edge map where all five edge maps are aligned and superimposed is shown in (g). The
collection of all curve bundles is shown in (h). The edges not participating in the local curve models
are labeled as spurious and removed, leaving behind only the structural edges of these only those
with significant temporal presence are kept as shown in (i).

significantly richer in structure in that many gaps are appropriately filled. However, it is also evident

that the composite edge map inherits the union of all edge maps spurious edges and is significantly

noisier. The key to delineating spurious edges is geometric consistency.

Specifically, we define three classes of edges in the composite edge map. First, an edge that

is a sample observation of a curve, which may not have been observed in the previous or in the

following frames, but which is consistent with a curve constructed from edge samples form the

other frames of from the same frame, Figure??(a). This is called astructural edge. Second, an

edge may not have spatial support, but rather has temporal support in that it is consistently observed

when the image motion has been taken into account by aligning images into a central frame. This is

called afrequent edge. Third, an edge that satisfies neither of these constraints is aspurious edge,

??(b). The determination of a structural edge requires that all possible local curves through edges

potentially interacting edges from all frames be identified.

While the enumeration of all possible curves through a discrete set of edges is known to be
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intractable, it was proposed in [89] that a notion of geometric consistency tames the combinatorial

explosion. Specifically, given expected edge location and measurement noise, pairs of edges is a

small (5 × 5) or (7 × 7) neighborhood define a bundle of curves in a low-order geometric Taylor

Expansion of curves, typically a circular arc or the Euler Spiral. Pair of pairs edges can potentially

form a triplet of geometrically consistent edges if their curve bundles intersect, and so on to n-

tuplets, which in our casen = 6 or n = 7. In this way, the vast majority of discrete combination

of edges are discarded early in the process, retain only geometrically, meaningful local groupings,

Figure 5.7 illustrates the two septuplet curve bundles formed for a given edge.

Spatiotemporal consistency of edges in multiple frames then translates into discovering geomet-

ric consistency in a composite edge map. All edges participating in a viable curve bundle has the

potential to have arisen from a curve whose samples are disturbed spatially and/or temporally and as

such are structural edges. The remaining edges if they are not temporally consistent are labeled as

spurious edges. This idea is demonstrated on a simple circular structure, Figure 5.8. The simulation

assumes that the ideal image, Figure 5.8(a), is viewed with a process that generates gaps by elimi-

nating20% of the edges and introduces spurious edges (100%), as shown in the five sample frames

Figure 5.8(b-f), each shown in a distinct color. The pairwise optimal transformation, as described in

Section 5.3.2 is used to generate a composite edge map, Figure 5.8(g). The curve bundles for each

edge in the composite edge map are drawn in green in Figure 5.8(h).

(a) (b)

Figure 5.9: The two types of edges in the composite map: (a) structural edge: an edge form a
frame is supported by edges from other frames is that it can be considered as a sample of curve. (b)
spurious edge: an edge is spurious when it is neither structure or frequent.

Aside from frequent edges, there can be three scenarios(i) edges not participating in any curve

bundles;(ii) edges with curve bundles which do not have sufficient temporal presence,i.e., the
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participating edges are from a few frames only. In our system, curve bundles formed from fewer

thanτ = 50% of frames are structural but do not have significanttemporal presence; (iii) edges

which are structural and which have temporal presence beyondτ frames, figure 5.8(i). We refer to

the latter set of edges theenriched edge map.

5.4 Experimental Results

The results of our approach on several synthetic and real videos are demonstrated both qualitatively

and quantitatively. Figures 5.11(c) and 5.12(c) represent individual frame edge maps while Fig-

ures 5.11(e) and 5.12(e) depict enriched edge maps, respectively. Observe how gaps in individual

frames are filled in and how spurious edges are discarded. Figures 5.11(d) and 5.12(d) show the ge-

ometric consistency of structural edges in that contours representing the object appear multicolored

implying successful integration is possible across frame as validated in Figure 5.11(e) and 5.12(e)

respectively. On the other hand, non-interacting edges are successfully discarded.

Observe in particular the success of this approach in dealing with partial occlusion where a

vehicle is temporarily occluded by a pole, Figure 5.12(a). In individual frame, the figure edge-

map is incomplete and incorrect as it contains edges of the occluding object, Figure 5.12(c). Note

how the occluded regions are filled-in and how the enriched edge maps gives a complete figure

which remains stable across video frames. Another important observation is that occluder’s edges

are discarded as the motion of the object and the occluder are different. The proposed approach

provides amore reliable and more completeforeground edge-maps. Figure 5.16 further shows the

comparison of raw figure edge-maps and the enriched edge-maps in detail.

In addition to the above qualitative comparisons, the quantitative performance of our approach

is also evaluated. The task is to compare enriched edge maps to the raw edge maps as compared

Parameters Meaning Default Range
σ⊥ standard deviation allowed for perpendicular

distance
2.0 0.0-inf

σe standard deviation allowed for Euclidean
distance

5.0 0.0-inf

σθ standard deviation allowed for difference be-
tween orientations

π/6 0.0-π

λ weight parameter between data term and reg-
ularization term.λ = 0 uses all data term

0.1 0-inf

τ threshold for no of frames participating in
the geometric consistency (%)

50 40-80%

Table 5.1: System Parameters
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Figure 5.10: The composite edge map top left and curve bundles top right. this is magnified to show
how the enriched edge map edges are selected.

to a ground truth edge map. Since it is nearly impossible to manually define a ground truth edge

map for a realistic video sequence, we use a controlled rendering approach where an ideal edge map

of an object in perfect viewing condition undergoes corruption from illumination changes, inter-

reflections from surrounding objects, blending of the object into background and occlusion in some

cases. This allows us to control the extent of various factors and the extent by which an ideal edge

map, the ground truth, is ”corrupted” by realistic factors.

Specifically, a fairly realistic looking synthetic video is rendered using the 3D rendering soft-

ware POVRAY [73]. Two video sequences are rendered,(i) a vehicle moving along a white back-

ground with a simple ambient light model, Figure 5.13(a), and(ii) the same vehicle with a complex

background with a lighting model allowing for inter-reflections, Figure 5.13(b) . The first video

gives us a figure edge-map which is not corrupted by the external factors and is considered to be

the ground truth edge map shown in Figure 5.14(b). The edge map of Figure 5.13(b) are shown in

Figure 5.14(d). The approach described here is applied against the edge map of the video in Fig-

ure 5.13(b) which is magnified in Figure 5.14(d). The enriched edge maps using our multi-frame

consistency approach are shown in Figure 5.14(f). These are then compared against the ”ground

truth” edge map which is the set of edge maps in Figure 5.14(b). The ROC comparing the two

sets is shown in Figure 5.15. Figure 5.16 shows the magnified comparison between single frame
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(a)

(b)

(c)

(d)

(e)

Figure 5.11: Results of our approach on a video sequence. (a) four frames from a video sequence
and, (b) corresponding subpixel edge-map of (a) using [91], (c) Foreground edge-map determined
by [?], (d) the composite edge map is formed by superimposing edge-maps of 5 frames for each
frame, (e) the enriched edge map is the set of consistent edges which are retained. Observe the
significant difference between the original edge maps in (c) and the enriched edge maps in (e).
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(a)

(b)

(c)

(d)

(e)

Figure 5.12: Results of our approach on a video sequence. (a) four frames from a video sequence
and, (b) corresponding subpixel edge-map of (a) using [91], (c) Foreground edge-map determined
by [?], (d) the composite edge map is formed by superimposing edge-maps of 5 frames for each
frame, (e) the enriched edge map is the set of consistent edges which are retained. Observe the
significant difference between the original edge maps in (c) and the enriched edge maps in (e).
Observe that when the vehicle undergoes an occlusion an individual frame is severely affected, in
contrast to the enriched edge map which is stable and retains the occluded structure.
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(a)

(b)

Figure 5.13: This figure shows our synthetic video rendered using a 3D rendering software [73].
(a) shows a vehicle moving against a simple background with ambient light source. (b) The vehicle
moving in a scene with a more complex background, with a more complex light source model.
The scene contains multiple objects, fences, posts,etc. to make it more realistic and model some
of the factors like blending of objects into background, inter-reflections, occlusion,etc. which
are responsible for degradation of the figure edge-maps. Figure 5.1 shows in greater detail the
degradation of an ideal edge map under these conditions.

segmentations and the enriched segmentations using our approach.

In order to plot the performance, the threshold to detect the figure edge-maps for background

modeling approach [47] was varied. A lower threshold would give many false positives and true

positives and as the threshold increases both of these quantities decrease. The comparison between

two edge-maps is evaluated over such a variation. The false positives and true positives for both

set of edge-maps were plotted in a ROC curve, Figure 5.15. Note that the enriched edge-maps have

outperformed the original single frame edge maps, as consistent with the qualitative impressions.

5.5 Conclusion

We have developed an approach for constructing an enriched edge map by integrating the edge

maps of several adjacent frames. The methodology brings these frames into register and then uses

a notion of geometric consistency to discard spurious edges. The resulting enriched edge map has

demonstrated clear qualitative and quantitative advantages over single frame edge maps, which is

expected to present a significant advantage for object recognition, object tracking and other higher-

level tasks. We can identify two drawbacks of our approach are (i) the method breaks down in low

frame rate video if the object undergoes significant change of viewpoint in the adjacent frames,

violating an assumption clearly stated earlier (ii) the algorithm is computationally expensive as it

takes 30 sec on an Intel Xeon 3.2GHz processor to process one object (approx. 700 edges) with the

standard TPS implementation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: This figure shows the sequence used for the experiment out on synthetic video to
evaluate our approach quantitatively. (a) image and (b) its edge map of the object in simple setting,
(c) cropped image and (d) its edge map of the object in more realistic conditions, (c) Foreground
edge-detection using [?], (d) Enriched edge maps corresponding to edge-map (c).
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Figure 5.15: ROC curve for comparing figure edge-maps after using multi-frame consistency
(shown in Pink) with raw figure-edge maps (shown in blue).
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Figure 5.16: This figure shows the zoom in on the results from Figures 5.11, 5.12 and 5.14. The left
column shows the single frame foreground detections and the right column shows the multi-frame
composite map.



Chapter 6

3D Motion Estimation

6.1 Introduction

A fundamental limitation of motion segmentation approaches which rely on grouping based on

common image motionis that the object with a significant depth variation project to a range of im-

age motions and can therefore be grouped into multiple segments, some of which may as a result

prefer to image with background regions. This is especially true when the elongation is along the

optical axis and when the motion has a non-negligible component in depth. This limitation holds

regardless of whether dense flow, isolated features, or edges/curves are initially used to establish

correspondence as Figure 1.1 illustrates. It reflects a violation of an implicit assumptions; namely,

that “objects with similar motion have similar image motions”. Rather, common 3D motioncan

lead to a distinct 2D motion either due to a non-negligible component in depth of the object or due

to significant component of velocity along the optical axis or both. This motivates an examination

of the extent aspects of 3D motion, can be directly estimated and used for motion segmentation.

Among the three categories of motion-based segmentations, namely, those based on(i) dense flow,

(ii) features, and(iii) curves/edges, the latter give the richest, most representative 2D motion seg-

mentations. Each of the classes of approaches has a fundamental drawback. First, features such as

KLT/SIFT are typically sparse and insufficient to estimate motion models (and hence the segmen-

tation) unless the object is rich in texture. This is especially an issue for man-made artifacts,e.g.,

the office environment, and for low resolution images,e.g., aerial images, Figure 1.1(c-d). Second,

the pixel-wise dense computation of flow is ambiguous/erroneous mainly because techniques using

brightness constancy have a very low signal to noise ration at low-gradient regions images which

comprises a significant portion of the image,i.e., the pixels away from edges. The pixels near or on

the edge have higher signal to noise ratio and provide a better estimation of flow. The main difficulty
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is these approaches is that it is not clear when flow estimation is reliable, Figure 1.4. In contrast the

curve/edge-based representation avoid these fundamental limitations. Figures 1.1, 6.1 and 6.2 clerly

shows that the curve/edge-based 2D motion segmentation are more selective and more representa-

tive of the object structure. Table 6.1 compares the three representations in more detail. We now

argue that the curve/edge based representations is also more suitable for 3D motion segmentation

while compared to the feature-based and dense-flow based representations. First, observe that the

although the correspondence in a feature-based method is typically reliable mainly due toisolated

features, grouping based on 3D motion would be unreliable precisely because assuming common

3D motion for sparse, isolated features is risky. Even when there are a sufficient number of features,

only few remain satisfying the criterion. feature-based methods are therefore not our candidate of

choice as representation for 3D motion segmentation.

Second, while in contrast to the sparse feature-based estimation dense flow estimation provides a

dense set of correspondences over which the assumption of common 3D motion can be safely made,

the correspondence itself is not as reliable as feature-based correspondence due to the low-SNR at

low gradient regions of the image. Optical flow methods overcome this by assuming a smooth

motion field planar/quadric models. The lack of precise localization (as present in an edge/curve)

present two dimensions of ambiguity.

Features Pixels Curves
Correspondence unambiguous ambiguous ambiguous along the

curve
Computational Complexity Low High Medium
Illuminationchanges moderately invari-

ant
variant moderately invariant

Segmentationresults Sparse 2D cloud of
points

connected set of
pixels (region)

Collection of curve
fragments.

Nature ofObjects Objects rich in tex-
ture

should not be ho-
mogeneous

have boundaries and
reflectanceedges

Table 6.1: This table compares three types of representations, features, pixels, and curves in terms
of properties such as density, correspondence estimation, robustness to illumination changes and the
delineation of the object boundaries.

The use of curves/edges as a representation for 3D motion estimation represents a middle ground

between feature-based and dense-flow based representation, as Table 6.1 suggests. Specifically,

consider a moving 3D curve, an occluding contour, reflectance discontinuity, a sharp ridge,etc.

represented by aΓ(s, t) projecting toγ(s, t) in a video sequence. In this paper we examine the

relationship between the 3D motion ofΓ(s, t) and the observations capturee byγ(s, t) as moderated
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(a) (b)

(c) (d)

Figure 6.1: The feature-based segmentation of a moving vehicle from a video of sequence of frames
one of which is shown in (a) gives a sparse representation in (c) in contrast to curve-based segmen-
tation using the methods of this thesis (b). On the other hand the pixel-based approach gives a dense
segmentation than both (b) and (c) but misses a lot of regions due to ambiguous flow in regions of
uniform intensity.

by

Γ(s, t) = ρ(s, t)γ(s, t)

wheres is the parameterization along the curve andt is the time index andρ is the depth, Figure

1.7(a). The one-parameter family of curvesγ(s, t) can be examined in a single central frame, Figure

1.7(b). For example, consider the moving truck Figure 1.8 (a) whose edge maps are superimposed

to give rise to this one-parameter family of curves, where each color denotes a separate time sample,

Figure 1.8(b) and a zoomed area in Figure 1.8(c).

In this approach, we focus on a camera moving with respect to an object with rotationR(t)

and translationT (t) such that in a few local frames. this can be approximated usingΩ(t) = dR(t)
dt

andV (t) = dT (t)
dt . The shape of the 3D curveΓ(s, 0) can also be locally described using a point

Γ0, tangent~T , normal ~N , speed of parameterizationG, and curvatureK. Clearly, the desirable

unknown are the 3D shape of the curve{Γ0, ~T , ~N,G,K} and the 3D motion of the curve{Ω,V }.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: The goal of motion segemtnation is the delineation of moving objects relative to a
background from the sequences of frames in a video. A frame of a video is shown in (a) and
the ideal results are depicted in (b). (c) dense optical flow estimation and (d) segmentation into
component based on fitting a paramteric 2D motion model, shown in pink, green and orange. (e)
KLT features and (f) factorization based segmentation shown in red, green and blue.(g) curves
superimposed on the image and (h) segmentation based on affine motion model where distinct
groups are identified in green, blue, and red with black curves are not grouped. Observe how
curve-based motion segmentation provides a rich representation of objects contrast to dense-flow
based and feature-based methods.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: (a) A frame from the movie “Groundhog Day” with optical flow superimposed on it.
(b) the frame can then be segmented based on 2D parametric motion models and the resulting
segmentation. This clearly shows the van is divided into two pieces. Similarly the tracked KLT
features of the same frame are shown in (c) and a factorization-based segmentation of these features
is shown in (d), where each color represents a different group. Clearly, the van’s features are grouped
in the different segments, one of which shares features from background. Finally, the curves on the
van (e) are tracked and segmented based on the similarity of 2D motion using an affine model. The
resulting segmentation in (f) clearly shows that the van is segmented into two regions.
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(a) (b) (c)

Figure 6.4: (b) Curve-based segmentation of moving objects of original sequence in (a) and compare
it with sparser set of KLT features segmented.

This work aims at estimating 3D translation from the local groupings of edges called “one-

parameter family of curves” and analyzes the lower bound of the uncertainty estimation of trans-

lation direction as a function of the uncertainty of measurements. This uncertainty is plotted for

system values of a typical system and shown the errors are too high to estimate 3D motion for

segmentation of objects. First, 3D motion and geometry estimation of curves from in terms of the

second-order derivatives of the one-parameter family of curves,γ(s, t), which has also been derived

by Faugeras[31].γ(s, t) is assumed to observed for a rigidly translating fixed curve relative to the

camera which suffices for the scope of this work The magnitude of the translation is not constrained

due to unknown depth. The 3D translation direction is estimated as one-parameter family at each

edge,γ0, and its local grouping of edgesγ(s, t). At-least two such edges are needed to estimate

translation direction. And definitely each object has many more edges available. The lower bound

for error in translation direction is estimated as a function of error in measurements. This lower

bound was plotted for some typical values of the system. The plots show high amount of errors

rendering unreliable estimation of translation direction and hence, unreliable segmentation. The

main contribution of this work is to show quantitatively the instability of computation of 3D motion

form a video sequence. Before this work is discussed in detailed, existing attempts to recover 3D

motions and their qualitative observations which match are quantitative results are discussed.

6.2 3D motion based approaches

The problems associated with computation of 3D motion parameters are two-folds,(i) Ambiguities

in computing 3D motion due to multiple moving objects [5], and(ii) fundamental bias in computa-

tion of the translation direction [52, 62, 27, 99, 32, 50, 59, 79].

The work by Wenget al. [99] uses motion between two frames computed using a stereo match-

ing algorithm [100] to estimate the 3D motion parameters which is rotation and translation,R and
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(a)

(b)

(c)

Figure 6.5: This figure shows the 2D curves obtained from a moving 3D curve or moving camera.
(a)Γ(s, t) is a 3D stationary curve shown in green and non-stationary curve shown in red and its
projectionγ(s, t), (b) projections of a 3D curve onto different frames which is shown in (c).

T respectively . First, the essential matrix is computed from the correspondences and then the es-

sential matrix is decomposed intoR andT . Second, the authors showed large errors in estimation

in direction ofT for small inter-frame motion. Also, qualitative observations for which the the esti-

mations are are reasonable were reported, which are as follows:(i) the scene should be closer to the

camera and yield large displacement and(ii) translation orthogonal to the image plane allows stable

computation. Liuet al.[59], overcomes the problem of uncertainty in motion parameters by as-

suming object of relatively constant depth which is only valid for applications like face and gesture

recognition unlike our framework of general segmentation of independently moving objects. Adiv

[5] shows the ambiguities of motion field arising from two independently objects can be projected

by a single object. The author also shows the SNR is high for the estimation of motion parameters

as well as 3D structure for a planar surface.

The survey in [27] summarizes, analyzes and compares three approaches [52, 62, 50] proposed

to overcome the bias in the estimation of translation direction. The above three approaches derives

a linear constraintγt × γ.V = 0. Thenτ i = γit × γ
i at different positionsi gives us direction of

V . The direction ofV corresponds to the minimum eigenvalue eigenvector ofD whereD is given
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ProjectionModel
3D curve Γ(s, 0)
3D motion R(t), T (t)

γ(s,t)
dγ(s,t)
dt = αt+ βn

One-parameter family
of curves

Depthρ(s, t)

DifferentialGeometry

3D curve Γ(s, 0)

Γ0, ~T , ~N,G,K

3D motion R(t), T (t)

Ω = dR(t)
dt , V = dT (t)

dt

point γ0
tangent t,n
flow α, β

κ, αsβs, αt, βt

ρ0
ρs, ρt

ρss, ρst, ρtt

Observable None

Theorem:

2D shape γ0, t,n, κ
Normal β, βs, βt
flow

None

Unknowns
shape Γ0, ~T , ~N,G,K
motion Ω,V

tangential α, αs, αt
flow

depth ρ0
gradient ρs, ρt
Hessian ρss, ρst, ρtt

Table 6.2: This table summarizes the relationship between 2D and 3D motion and shape parameters
and clearly demarcates between shape and motion as well as unknowns and observable.

by

D ≡
n∑

i=1

τ iτ i′.

In the case of noisy measurements ofγt andγ, D̃ is given by

D̃ ≡
n∑

i=1

(τ i + δτ i)(τ i + δτ i)′.

[50] shows the covariance of̃D is flat alongγ than along the other directions and has explained this

as the reason for bias in the estimation of translation direction.

First, Jepsonet al.[50] proposes addition of extra noise alongγ direction. This requires the

knowledge of noise variance and would minimize the bias but also allow for more error especially

when the motion is along or near theγ direction. Second, Kanatani [52] computes the statistical

bias by assuming isotropic noise in the flow vectorsγt and subtracts it from covariance ofD̃ which

removes the bias completely. But this requires estimation of noise at each point accurately which is

not practical. Third, MacLeanet al.[62] overcomes the problem of Kanatani by transforming theD̃

to different space where it is independent of noise variance and then transform its eigenvector back

to original space. But the transformation back requires a normalization process which introduces

another bias. The results compiled in [27] on a synthetic data shows the effectiveness of the above
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approaches. The direction of motion considered had a dominant component alongz and the results

on different motion directions have not been shown. The bias is maximum for motions parallel to

the image plane which is shown in the current work.

6.3 Differential 3D structure and motion of a fixed curve from ob-

served differential trace.

This sections shows how to obtain 3D motion and geometry can be obtained from the set of obser-

vations of one-parameter family of curves. One important thing to note is that this work considers

case of stationary or fixed curves as they suffice for the scope of this work. A second-order local

model of a 3D fixed curveΓ(s, t), wheres is the parameterization of the curve andt is the different

instances of the 3D curve due to motion, is given by

Γ(s, t) = Γ(0, 0) + Γs(0, 0)s+ Γt(0, 0)t+
1

2
Γss(0, 0)s

2 + Γst(0, 0)st+
1

2
Γtt(0, 0)t

2. (6.1)

This implies if the quantitiesΓ(0, 0),Γs(0, 0),Γt(0, 0),Γss(0, 0),Γst(0, 0) andΓtt(0, 0) are known

then the 3D structure and motion of the curve can be recovered. Using the notation,Γs = G~T and

Γss = GK ~N , where ~T and ~N are tangent and normal to the curve in 3D andG is the speed

of parameterization. These exhibit the local geometry of the curve. The termsΓt,Γst,Γtt show

variation ofΓ due to motion. But only the projection of this 3D curve in multiple frames,γ(s, t) is

observable. The projection equation of 3D curve is given by

Γ(s, t) = ρ(s, t)γ(s, t)

Therefore all the local derivatives ofΓ(s, t) can be expressed in terms of local derivatives ofρ(s, t)

andγ(s, t) as shown below. The first order derivatives ofΓ are given as

{
Γs = ρsγ + ργs

Γt = ρtγ + ργt
, (6.2)

and the second order derivatives are given by





Γss = ρssγ + 2ρsγs + ργss

Γst = ρstγ + ρsγt + ρtγs + ργst

Γtt = ρttγ + 2ρtγt + ργtt

. (6.3)
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Second order Model
of 3D curve and mo-
tion Γ(s, t) is given by
Γ0, ~T ,G, ~N,K,Γt,Γst,Γtt

=
Second order Model
of γ(s, t) is given by
γ0, t,n, β, α, κ, βs, αs, βt, αt

+
Second order Model
of ρ(s, t) is given by
ρ0, ρs, ρt, ρss, ρst, ρtt.

Curve
Geometry
Γ0, ~T ,G, ~N,K

+ Motion
Γt,Γst,Γtt =

Geometry
Observed γ0, t,n, κ

Unobserved ρ0, ρs, ρss

+

Motion
Observed β, βt, βs
Unobserved(2D) α, αt, αs
Unobserved(3D) ρt, ρst, ρtt

Table 6.3: Visual description of segregation of 3D Structure and Motion parameters into 2D observ-
ables and 2D and 3D unobservables. The first row shows the unknowns of 3D structure and motion
can be split into unknowns of one-parameter family of curves and derivatives of depthρ.

Now the unknownsΓ(0, 0), Γs(0, 0), Γt(0, 0),Γss(0, 0), Γst(0, 0) andΓtt(0, 0) translates into

ρ andγ and their derivatives. Therefore,{ρ, ρs, ρt, ρss, ρst, ρtt} and{γ,γs,γt,γss,γtt,γst} de-

termines a general second-order local model of curve and its motion. The first set of variables

is unobserved in the image but few components of the variables in the second set are observ-

able in the images. Proposition 1.3 shows{γ,γs,γt,γss,γtt,γst} can be expressed in terms of

γ0, t,n, κ, α, β, αs, αt, βs, βt. Out of theseγ0, t,n, κ, β, βs, βt are observable andα, αs, αt are

free. Therefore,{ρ, ρs, ρt, ρss, ρst, ρtt} and{α, αs, αt} are free parameters need to determine 3D

curve and its motion. In other words, given these nine parameters the 3D curve and its motion can

be determined. Equation 6.2 and 6.3 can be rewritten in terms ofγ0, t,n, κ, α, β, αs, αt, βs, βt.

The first-order derivatives are given by

{
Γs = ρsγ + ρt

Γt = ρtγ + ρ(αt+ βn)
, (6.4)

and the second order derivatives are given by





Γss = ρssγ + 2ρst+ ρκn

Γst = ρstγ + ρs(αt+ βn) + ρtt+ ρ(αs − βκ)t+ ρ(ακ+ βs)n

Γtt = ρttγ + 2ρt(αt+ βn) + ρ[(αt − β(ακ+ βs))t+ (α(ακ+ βs) + βt)n]

. (6.5)

This relation of 3D unknowns to 2D observable and unknowns are summarized in Table 6.3.

This is true under any condition which can be subjected to constraints. In this work, the motion

of the curve is assumed to constant translation,V . Note that the motion of the object can be

approximated as piecewise constant translation for an infinitesimal amount of time. This assumption

of constant translation constrains the unknowns as shown in the following proposition.
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Proposition 6.1. Given a measurable quantitiesγ0, t,n, κ, β, βs, βt of a trace upto second order

for a fixed 3D curve moving with constant velocityV ,

Γ(s, t) = Γ(s, 0) + V t (6.6)

the local structure of the curve{ρs, ρt, ρst, ρtt} and{αs, αt} can be estimated as a function ofρ

andα and the observable.

Proof. First order derivatives ofΓ(s, t) under first-order translation constraint of Equation 6.6 are

given by {
Γs(s, t) = Γs(s, 0)

Γt(s, t) = V
(6.7)

and the second-order derivatives are given by





Γss(s, t) = Γss(s, 0)

Γst(s, t) = 0

Γtt(s, t) = 0

. (6.8)

Using the relations from Equation 6.4 and 6.5 to constrain the quantities{ρ, ρs, ρt, ρss, ρst, ρtt} and

{α, αs, αt}

{
Γs(s, 0) = ρsγ + ρt

V = ρtγ + ρ(αt+ βn)
, (6.9)

and the second order derivatives are given by





Γss(s, 0) = ρssγ + 2ρst+ ρκn

0 = ρstγ + ρs(αt+ βn) + ρtt+ ρ(αs − βκ)t+ ρ(ακ+ βs)n

0 = ρttγ + 2ρt(αt+ βn) + ρ[(αt − β(ακ+ βs))t+ (α(ακ+ βs) + βt)n]

.

(6.10)

There are a total of 15 equations. Now each of the vector equation of Equation 6.9 and 6.10 can

be split into 3 equations. First, the first-order derivatives can be split into three components each.

Taking the dot product ofΓs(s, 0) = ρsγ + ρt with e3 andt is given by

e3 ∙ Γs = ρs

Γs ∙ t = ρsγ + ρ
(6.11)

Taking the dot product ofΓt(s, 0) = ρtγ + ρ(αt + βn) with e3, U1 = γ × t andU2 = γ × n is

given by

V ∙ e3 = ρt

V ∙ U1 = ρβn.U1 = ρβ

V ∙ U2 = ραt.U2 = −ρα

(6.12)
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Now moving on to second-order derivatives and taking the dot products withe3, t andn. First

with e3 gives 




Γss(s, 0) ∙ e3 = ρss

0 = ρst

0 = ρtt

. (6.13)

Second the dot product witht gives and usingρst = 0 andρtt = 0,





Γss(s, 0) ∙ t = ρssγ ∙ t+ 2ρs

0 = ρsα+ ρt + ρ(αs − βκ)

0 = 2ρtα+ ρ(αt − β(ακ+ βs))

. (6.14)

The above equations provides
{
αs =

1
ρ(−ρsα− ρt) + βκ

αt = −2ρtαρ + β(ακ+ βs)
(6.15)

Third, the dot product withn gives and usingρst = 0 andρtt = 0,





Γss(s, 0) ∙ n = ρssγ ∙ n+ ρκ

0 = ρsβ + ρ(ακ+ βs)

0 = 2ρtβ + ρ(α(ακ+ βs) + βt)

. (6.16)

The above equations provides
{
ρs =

−ρ
β (ακ+ βs)

ρt = − ρ
2β (α(ακ+ βs) + βt)

. (6.17)

Therefore the set of unknowns can be expressed in terms of two unknownsα andρ and the observ-

able as follows
ρst = 0

ρtt = 0

ρs = −ρ (ακ+βs)β

ρt = −ρα(ακ+βs)+βt2β

αs = βκ+ α(ακ+βs)+βt
2β + (ακ+βs)β α

αt = β(ακ+ βs) +
α(ακ+βs)+βt

β

(6.18)

ρss is not constrained and henceΓss cannot be obtained from this second order model. AlsoV can

be written in terms of unknownsα andρ as

V = −ρ[
α(ακ+ βs) + βt

2β
γ + γt] (6.19)

�



117

The above proposition shows that 3D structure and motion, exceptρss or γss, can be recovered

if α andρ are known at every point. Since it is impossible to obtain such information at every

individual point, a global variableV is estimated as it is the same for all the points of an object.

ThereforeV from the above proposition has three constraints inα andρ given as





V .e3 = −ρα(ακ+βs)+βt2β

V .U1 = ρβ

V .U2 = −ρα

(6.20)

SinceV is a 3-vector, there are5 unknowns and 3 constraints. By eliminatingρ, the constraints are

further reduced to {
V .e3 = −V .U1β

α(ακ+βs)+βt
2β

V .U1
V .U2

= −β
α

(6.21)

One important thing to note is that by eliminatingρ, the magnitude ofV is also eliminated. This

is because only depth could determine how fast or slow an object is moving,e.g., a slowly moving

object far-away and fast moving object near by can give rise to same projection on the image. This

leads to 3 unknowns, 2 for direction ofV denoted byV̂ and one forα. ThereforeV̂ can be

expressed as one-parameter family of solutions which is derived in the following proposition.

Proposition 6.2. The direction of first order translation̂V = (cos θ cosφ, cos θ sinφ, sin θ) where

−π/2 ≤ θ ≤ π/2 and−π ≤ φ ≤ π of relative motion of the camera is constrained by spatial and

temporal derivatives ,t,n, β, βs, βt, κ andγ = [ξ, η, 1]





tan θ = r√
[2β(αty+βtx)−rη]2+[2β(αtx−βty)−rξ]2

(sinφ, cosφ) =
(2β(αty+βtx)−rη,2β(αtx−βty)−rξ)√
[(αty+βtx)2β−rη]2+[2β(αtx−βty)−rξ]2

(6.22)

wherer = αβs + βt + α2κ andα is a free parameter.

Proof. U1 andU2 can be computed as

U1 = γ × t = [−ty, tx, ξty − ηtx]

U2 = γ × n = [−tx,−ty, ξtx + ηty]
(6.23)

Now rewritingα = −V.U2
V.U1

β asαV̂ .U1 + βV̂ .U2 = 0, it can be expanded as

−αtyV̂ x + αtxV̂ y + α(ξty − ηtx)V̂ z − βtxV̂ x − βtyV̂ y + β(ξtx + ηty)V̂ z = 0.

Collecting coefficients of̂V x, V̂ y andV̂ z,

(−αty − βtx)V̂ x + (αtx − βty)V̂ y + [α(ξty − ηtx) + β(ξtx + ηty)]V̂ z = 0. (6.24)
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Equation?? is given by

2V̂ zβ
2 + (−tyV̂ x + txV̂ y + (ξty − ηtx)V̂ z)[αβs + βt + α

2κ] = 0, (6.25)

with r = αβs + βt + α2κ,

−tyV̂ x + txV̂ y + (
2β2

r
+ (ξty − ηtx))V̂ z = 0 (6.26)

The two constraints are given by
{
(−αty − βtx)V̂ x + (αtx − βty)V̂ y + [α(ξty − ηtx) + β(ξtx + ηty)]V̂ z = 0. = 0

−tyV̂ x + txV̂ y + (
2β2

r + (ξty − ηtx))V̂ z = 0

(6.27)

Let l = 2β2

r , eliminatingVz we get

[α(ξty − ηtx) + β(ξtx + ηty)]
l + (ξty − ηtx)

=
(−αty − βtx)Vx + (wtx − βty)Vy

−tyVx + txVy
(6.28)

which is expanded as

−[α(ξty − ηtx) + β(ξtx + ηty)]tyVx + [α(ξty − ηtx) + β(ξtx + ηty)]txVy =

(−αty − βtx)(l + (ξty − ηtx))Vx + (αtx − βty)(l + (ξty − ηtx))Vy

The above equation is simplified to

[−η + (αty + βtx)
l

β
]Vx = [(αtx − βty)

l

β
− ξ]Vy (6.29)

SinceV̂ x = cos θ cosφ andV̂ y = cos θ sinφ andl = 2β2/r,

tanφ =
2β(αty + βtx)− rη
2β(αtx − βty)− rξ

(6.30)

or,

(sinφ, cosφ) =
(2β(αty + βtx)− rη, 2β(αtx − βty)− rξ)√
[2β(αty + βtx)− rη]2 + [2β(αtx − βty)− rξ]2

(6.31)

Now, V̂ z is given by

V̂ z = −
(−αty − βtx)V̂ x + (αtx − βty)V̂ y

α(ξty − ηtx) + β(ξtx + ηty)
=
(αty + βtx)V̂ x − (αtx − βty)V̂ y

α(ξty − ηtx) + β(ξtx + ηty)
(6.32)

and withV̂ x = cos θ cosφ , V̂ y = cos θ sinφ andV̂ z = sin θ,

tan θ = −
(αty + βtx)[2β(αtx − βty)− rξ]− (αtx − βty)[2β(αty + βtx)− rη]

α(ξty − ηtx) + β(ξtx + ηty)
√
[2β(αty + βtx)− rη]2 + [2β(αtx − βty)− rξ]2

(6.33)
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or,

tan θ = −
−(αty + βtx)rξ + (αtx − βty)rη

[α(ξty − ηtx) + β(ξtx + ηty)]
√
[2β(αty + βtx)− rη]2 + [2β(αtx − βty)− rξ]2

(6.34)

tan θ =
r

√
[2β(αty + βtx)− rη]2 + [2β(αtx − βty)− rξ]2

. (6.35)

Hence, the proof. �

This proposition giveŝV as function ofα given the trace at every point.̂V (α) is a1-d trajectory

in (θ, φ) space. This requires at least two such trajectories to intersect and hence at-least two points

and their trace is required to obtain a solution ofV̂ . And more points would make the estimation

robust.

6.4 Numerical Estimation of Observable from the trace.

This section describes the algorithm to compute all the observable from a sequence of images.

Typically , five or seven frames are considered for measurement of one set of observable. Five

frames will be used for illustration throughout this section. Consider an image sequence as shown

in Figure 6.7(a).

The third-order edge-detector developed by Tamrakaret al.[88] is used to compute edges which

provides sub-pixel position,γ = (ξ, η), and the orientation,t, with sub-pixel accuracy, Figure

6.7(b). The tangentt = (cosϕ, sinϕ) also gives the normal which is given byn = (cosϕ, sinϕ).

The motivation of using [88] is to obtain a better estimate of orientation of edges as the stability

of estimation depends on all the observable, which will be further studied in Section6.5. Figure

6.6 shows the better accuracy of orientation of edges (green) of [88] against the one obtained using

traditional operator.

Figure 6.6: The third-order edge [88] detector (shown in green) provides a better estimate of edge-
orientation as compared to traditional operators (shown in red).
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Figure 6.7: Top Row: Shows the image sequence, Middle Row: edge-maps of the above image
sequence and Bottom Row: zoomed in edge-maps of neighborhood of7× 7.

The edge-maps are not enough as there are spurious edges and there is no ordering to them

which is required to obtain a trace. Figure 6.7(c) shows zoomed in edge-maps and clearly the edges

do not have any order. In order to obtain ordering of edges in a local window, Tamrakaret al.[88]

approach of fitting a circular arc to a local neighborhood of edges is employed to obtain(i) curvature,

κ, and(ii) local groupings of edge, Figure6.8. This method fits a local circular arc model at an edge

e with position(ξ, η) and tangentt = (cosϕ, sinϕ) andn = −(sinϕ, cosϕ) given by

γ(s) = e+ st+
1

2
κs2n (6.36)

wheres is the arc-length parameterization. If the model is supported or passes through some number

of edges (typically 7), then the model is kept and the grouping is called “curvelet bundle”. The

circular arc model provides curvature. At each edge there can be multiple groupings but mostly

there is one grouping per edge. This givesγ0, t,n, κ and local trace of curve in each frame. In

order to obtain trace of one-parameter family curve, these local traces in each frame needs to be

grouped.

Consider one of the curvelet-bundlesC0 in the central frame,t = 0 . A temporal window of five

framest = {−2,−1, 1, 2} is considered and the curvelet-bundles in each of these frame within a

neighborhood of sizevmaxt aroundγ0 are considered. This spatio-temporal window in each frame

is centered aroundγ0 and its dimension is given byvmaxt. Note that it is possible to get more

than one groupings in each of these windows in each frame. But the assumption is that motion

between frames is less than the spacing between two groupings which is sufficient for the scope of
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(a) (b)

Figure 6.8: This figures shows the pre-processing step for computing the spatial and temporal
derivatives. (a) shows edge-map and (b) shows curvelet-map of of (a). Different colors show differ-
ent local groupings.

Figure 6.9: Top row: shows curvelet bundles computed on edge-maps of Figure 6.7(b) and bottom
row shows the local grouping of edges in different frames.

this work. Definitely, this assumption can be violated but does not affect the result of this work.

This groupings considered together gives a trace of one-parameter family of curves, Figure 6.10(b).

Now the remaining observables,β, βs, βt, can be computed on the trace of one-parameter family of

curves as described below, anchored atγ0.

Definition 6.3. Forwardβ-map is a discrete normal field where normal-velocities are computed at

discrete position of edges in the current frame to local curve models in the next frame.

Definition 6.4. Backwardβ-map is a discrete normal field where normal-velocities are computed

from local curve models in the previous frame to discrete position of edges in the current frame.

frame.

The idea is to compute trajectory ofβ for the anchorγ0. This requires computation offorward
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(a) (b)

Figure 6.10: (a) shows edge-maps from five consecutive frames (in different colors) in a single
frame and (b) shows a local window of edge-maps from different frames.

β-mapandbackwardβ-map. Fromγ0, the normal velocity to the next frame is computed and the

head of this velocity vector acts as a point in the trajectory, Figure 6.11(a). Similarly normal velocity

from this new point is computed to its next frame and so on. This normal velocity from a point to a

local grouping is called forwardβ. For the frames previous toγ0, normal velocity from the grouping

in previous frame toγ0 is computed and the tail of this velocity is added to the trajectory, Figure

6.11(b). Similarly, normal velocity to this new point from the grouping in previous frame is called

backwardβ. Description of computation of both forward and backwardβ is discussed below:

1. Computation of forwardβ-map: From an edge in a frame,t, eti(pi, ti,ni), the intersection of

the normal ray with curvelet bundle of an edge,et+1j (pj , tj ,nj) and curvatureκj in thet+ 1

frame is given by

s{1,2} =
−(tj × ni)±

√
|(tj × ni)|2 + 2κj(nj × ni)((pi − pj)× ni)

κ(nj × ni)
(6.37)

the smaller ofs1 ands2 is chosen andβ is computed as

β = (pj − pi).ni + tj .nis+
1

2
κjnj .nis

2. (6.38)

β is computed at each of the edges in the central frame, Figure6.11(a) . The point of intersec-

tion, s, is added to the trajectory andβ’s for these added points are computed in framet = 1

using framet = 2, which gives us forward chain of normal velocity, Figure6.11, and so on.

2. Computation of backwardβ-map: This requires computation of normal displacement from

a curvelet bundle of an edgeet−1j to an edgeeti which is nothing but closest distance of a

point to a circular arc, Figure6.11(e). Therefore, backwardβ is computed at each edge for the

central frame using framet = −1. Similar to the case of forwardβ computation, the points

on the curve ofe−1j are added to the trajectory and backwardβ’s for these added points are

computed using framet = −2.
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(a) (b)

(c)

(d)

(e)

Figure 6.11: The local edge grouping in the central frame,t = 0, is shown in magenta. Note the
forward normal velocity (a) is computed from edges to local grouping, where as backward normal
velocity (b) is computed from a local grouping to an edge. (c) shows backwardβ-map computed
for t < 0 frames and forwardβ-map computed fort > 0 frames. (d) shows computation of forward
β and (e) backwardβ.

At each edge in the current frame we obtain a chain ofβ’s as shown in Figure6.11(c). Then an

interpolation scheme known as ENO [83] implemented in VXL [1] was used to findβ at the central

frame and its derivativeβ∗t at t = 0. This interpolation provides robustness to the computation ofβ

andβ∗t . This gives usβ andβ∗t at every edge.

After β is known at every edge of the curvelet bundle in the central frame, same scheme as

above to compute derivative along the curvelet bundle is used,e.g., β’s along the magenta curve in

Figure6.11(c), and the first derivative at the central frame edge givesβs.

6.5 Stability of V̂ as a Function of Observable.

This section discusses the stability of estimation ofV̂ as function of the measurements. Analyt-

ically, Proposition6.2 giveŝV (α) in terms of measurements,Φ, as one parameter curve in(θ, φ)

space. So at-least two such one parameter curves in(θ, φ) space at two different points are required

to obtain a solution. This meanŝV needs to be computed for different values ofα and would inter-

sect at the right̂V
∗

with the other trajectory. In this section we analyze the stability ofV̂ assuming
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a givenα with respect to the error in measurements. The error inV̂ is estimated as the first-order

variation ofV̂ with respect to the measurements. This error would be computed for any givenα and

would be shown to be invariant by the value ofα. The following proposition gives us a minimum

bound on the uncertainty of̂V .

Theorem 6.5. The lower bound of uncertainty in the estimation ofV̂ =







cos θ cosφ

cos θ sinφ

sin θ





 in terms

of the uncertainty of the measurements is given as

δV̂ ≥
√
A2 +B2 + C2 (6.39)

where

A = (cos2 θ(1+l tan θ cos(φ−μ)) sin θ cosφ)2+(l sin(φ−μ) cos θ sinφ)2√
r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)

B = (cos2 θ(1+l tan θ cos(φ−μ)) sin θ sinφ)2+(l sin(φ−μ) cos θ cosφ)2√
r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)

C = cos3 θ(1+l tan θ cos(φ−μ))√
r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)

(6.40)

Proof. DifferentiatingV̂ (θ, φ) =







cos θ cosφ

cos θ sinφ

sin θ





 with respect to(θ, φ) gives

∂V̂
∂θ =







− sin θ cosφ

− sin θ sinφ

cos θ







∂V̂
∂φ =







− cos θ sinφ

cos θ cosφ

0





 . (6.41)

Next differentiateθ andφ, from Proposition 6.2 w.r.t zeroth-order measurementsξ andη, first-order

measurementsβ andφ (orientation of the tangent of the edge) and second-order measurements

βs, βt andκ. Note that Sincer = w2κ + wβs + βt has all the second order quantities, it will

be considered as one variable andV̂ will be differentiated with respect tor. The derivatives w.r.t

zeroth-order measurements give

{
∂θ
∂ξ = sin2 θ cosφ ∂φ

∂ξ = tan θ sinφ
∂θ
∂η = sin2 θ sinφ ∂φ

∂η = − tan θ cosφ
, (6.42)

and the derivatives w.r.t first-order measurements are given as






∂θ
∂β =

−2 cos θ sin θ(sinφ(wty+2βtx)+cosφ(wtx−2βty))√
[2β(wty+βtx)−rη]2+[2β(wtx−βty)−rξ]2

∂φ
∂β =

cosφ(2wty+4βtx)+sinφ(2wtx−4βty)√
[2β(wty+βtx)−rη]2+[2β(wtx−βty)−rξ]2

∂θ
∂ϕ =

−2β cos θ sin θ((wtx−βty) sinφ+(−wty−βtx) cosφ)√
[2β(wty+βtx)−rη]2+[2β(wtx−βty)−rξ]2

∂φ
∂ϕ =

(2β(wtx−βty) cosφ+2β(−wty−2βtx) sinφ)√
[2β(wty+βtx)−rη]2+[2β(wtx−βty)−rξ]2

,

(6.43)
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and the derivatives w.r.t second-order measurements are given as

{
∂θ
∂r = cos2 θ(1+tan θ(sinφη+cosφξ))√

[2β(wty+βtx)−rη]2+[2β(wtx−βty)−rξ]2
∂φ
∂r = − cosφη+sinφξ√

[2β(wty+βtx)−rη]2+[2β(wtx−βty)−rξ]2
.

(6.44)

Substituting(ξ, η) = l(cosμ, sinμ), (w, β) = v(cos ν, sin ν) andt = (cosϕ, sinϕ) in Equations

6.42, 6.43 and 6.44,





∂θ
∂r = cos2 θ(1+l tan θ cos(φ−μ))√

r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)

∂φ
∂r = l sin(φ−μ)√

r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)
∂θ
∂β = − sin 2θ(v sin(φ+ϕ+ν)+β sin(φ−ϕ))√

r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)

∂φ
∂β = 2v cos(φ+ϕ+ν)+2β cos(φ+ϕ))√

r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)
∂θ
∂ξ = sin2 θ cosφ ∂φ

∂ξ = tan θ sinφ
∂θ
∂η = sin2 θ sinφ ∂φ

∂η = − tan θ cosφ
∂θ
∂ϕ = −βv sin 2θ sin(φ−ϕ−ν)√

r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)

∂φ
∂ϕ = 2βv cos(φ+ϕ+ν)√

r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)

(6.45)

Now error inδθ andδφ can be expressed as a linear combination of the uncertainties in the mea-

surement and is given as
{
(δθ)2 = (∂θ∂r )

2(δr)2 + ( ∂θ∂β )
2(δβ)2 + (∂θ∂ξ )

2(δξ)2 + ( ∂θ∂η )
2(δη)2 + ( ∂θ∂ϕ)

2(δϕ)2

(δφ)2 = (∂φ∂r )
2(δr)2 + (∂φ∂β )

2(δβ)2 + (∂φ∂ξ )
2(δξ)2 + (∂φ∂η )

2(δη)2 + ( ∂φ∂ϕ)
2(δϕ)2

. (6.46)

Due to extensive calculations for each of the derivatives, the error due to second-order measurements

are studied. Note that this does not affect the result of the proposition as the lower bounds need to

be estimated. So theδθ andδφ with respect to second-order measurements is given as
{
(δθ)2 ≥ (∂θ∂r )

2(δr)2

(δφ)2 ≥ (∂φ∂r )
2(δr)2

. (6.47)

The error in the direction of translation̂V as

δV̂ = ‖
∂V̂

∂θ
δθ +

∂V̂

∂φ
δφ‖ =

√
(δV̂ x)2 + (δV̂ y)2 + (δV̂ z)2 (6.48)

whereV̂ x, V̂ y andV̂ z represents the three components ofV̂ and their uncertainties are given by

δV̂ x = (∂V̂ x∂θ )δθ + (
∂V̂ x
∂φ )δφ

δV̂ y = (
∂V̂ y
∂θ )δθ + (

∂V̂ y
∂φ )δφ

δV̂ z = (∂V̂ z∂θ )δθ

(6.49)

Substituting values ofδV̂ x, δV̂ y andδV̂ z in Equation 6.48 gives

δV̂ =

√
[(∂V̂ x∂θ )δθ + (

∂V̂ x
∂φ )δφ]

2 + [(
∂V̂ y
∂θ )δθ + (

∂V̂ y
∂φ )δφ]

2 + [(∂V̂ z∂θ )δθ]
2

=

√
(∂V̂ x∂θ )

2(δθ)2 + (∂V̂ x∂φ )(δφ)
2 + (

∂V̂ y
∂θ )

2(δθ)2 + (
∂V̂ y
∂φ )

2(δφ)2 + (∂V̂ z∂θ )
2(δθ)2

(6.50)
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and further substitutingδθ andδφ from Equation 6.47

δV̂ ≥ δr

√
(∂V̂ x∂θ )

2(∂θ∂r )
2 + (∂V̂ x∂φ )(

∂φ
∂r )
2 + (

∂V̂ y
∂θ )

2(∂θ∂r )
2 + (

∂V̂ y
∂φ )

2(∂φ∂r )
2 + (∂V̂ z∂θ )

2(∂θ∂r )
2

(6.51)

where

(∂V̂ x∂θ )
2(∂θ∂r )

2 + (∂V̂ x∂φ )
2(∂φ∂r )

2 = (cos2 θ(1+l tan θ cos(φ−μ)) sin θ cosφ)2+(l sin(φ−μ) cos θ sinφ)2

r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)

(
∂V̂ y
∂θ )

2(∂θ∂r )
2 + (

∂V̂ y
∂φ )

2(∂φ∂r )
2 = (cos2 θ(1+l tan θ cos(φ−μ)) sin θ sinφ)2+(l sin(φ−μ) cos θ cosφ)2

r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)

(∂V̂ z∂θ )
2(∂θ∂r )

2δr = cos3 θ(1+l tan θ cos(φ−μ))
r2l2+4β2v2−4βvrl sin(ϕ+μ+ν)

(6.52)

Hence, the proof. �

Corollary 6.6. The minimum bound forδV̂ can be further simplified to

δV̂ ≥ δr
√
A21 +B

2
1 + C

2
1 (6.53)

where

A1 =
(cos2 θ(1+l tan θ cos(φ−μ)) sin θ cosφ)2+(l sin(φ−μ) cos θ sinφ)2

||rl|+|2βv||

B1 =
(cos2 θ(1+l tan θ cos(φ−μ)) sin θ sinφ)2+(l sin(φ−μ) cos θ cosφ)2

||rl|+|2βv||

C1 =
cos3 θ(1+l tan θ cos(φ−μ))

||rl|+|2βv||

(6.54)

Proof. Now, consider the denominators ofA, B andC,
√
r2l2 + 4β2v2 − 4rlβv sin(ϕ+ μ+ ν)

is bounded by

||rl| − |2βv|| ≤
√
r2l2 + 4β2v2 − 4rlβv sin(ϕ+ μ+ ν) ≤ ||rl|+ |2βv|| (6.55)

Hence, the proof. �

The lower bound onδV̂ is function ofr, l, β, v, θ, φ, δr. Since these are too many variables and

the variation ofδV̂ with respect tôV and position in the image are more interesting and meaningful,

rest of the variables need to be eliminated. This motivates estimation of bounds onr, β, l, v.

Bounds onr, β, l, v, δr: The image velocityγt has to be small of the order of few pixels as the

differential quantities likeβ, βt, βs would not hold over large motions. Let us denote maximum

value ofγt by vmax. This impliesβ andw are also bounded byvmax. Sinceγtt is given by

γtt =
−2V z

ρ
γt (6.56)
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Figure 6.12: This figure shows the relationship between focal length (f ), angle of view (θ) and the
dimension of the image (l).

γtt is bounded

γtt ≤ 2|
V z

ρ
|max|γt|

max = 2|
V z

ρ
|maxvmax (6.57)

sincer = γtt.n,

r ≤ γmaxtt = 2|
V z

ρ
|maxvmax (6.58)

The imaging sensor has typically an angle of view less than60◦. This means dimension of the

sensor2l is bounded bylmax ≤ f tan 30◦ wheref is the focal length. Let the error in position of

an edge beδγ. In the computation ofβ and its derivatives, the edge in the central frame can be

assumed to have zero position error along normal direction but the edges in the neighboring frame

would have an error ofδγ. Therefore error inβ can be bounded by

δβ ' δγ

and similarly,δβt ' 2δγ andδβs ' 2δγ. With r = 2wβs + w2κ + βt, r is linear inβs, βt, κ, the

error can be estimated by

δr2 = (2wδβs)
2 + w4(δκ)2 + (δβt)

2 ≥ (δβt)
2 (6.59)

Corollary 6.7. The minimum bound forδV̂ can be further simplified to

δV̂ ≥ |δβt|
√
A22 +B

2
2 + C

2
2 (6.60)

where

A2 =
(cos2 θ(1+l tan θ cos(φ−μ)) sin θ cosφ)2+(l sin(φ−μ) cos θ sinφ)2

||rmaxl|+|2(vmax)2||

B2 =
(cos2 θ(1+l tan θ cos(φ−μ)) sin θ sinφ)2+(l sin(φ−μ) cos θ cosφ)2

||rmaxl|+|2(vmax)2||

C2 =
cos3 θ(1+l tan θ cos(φ−μ))
||rmaxl|+|2(vmax)2||

(6.61)
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Proof. Note thatr, β andv occur in the denominator and

||rl|+ |2βv|| ≤ ||rmaxl|+ |2βmaxvmax|| = ||rmaxl|+ |2(vmax)2||. (6.62)

Further,δr ≥ δβt. Hence, the proof. �

Note that minimum bound of error has been further simplified and is independent ofα and only

depends onθ, φ, l, which are varied to computeδV̂ in the next section.

6.6 Analysis and Experiments

In this section, the minimum error is computed by varying the values ofl from a typical video

acquisition system and is varied also for differentφ andθ. The image velocity is assumed to be

maximum ofvmax = 3 pixels/frame on an image of dimensions512×512 . The maximum velocity

of an object w.r.t to the camera is assumed to be108 Km/h. The distance of the object from the

video is assumed to be minimum6 meters. The bound forγtt is then

γtt ≤ 2×
1

6
× 3 = 1 pixels

This impliesrmax = 1. With normalized focal lengthf = 1, lmax = 0.57. For high-resolution

images the error in localization of edge positions has been observed to beδγ = 0.25 pixels. This

implies δβt ≥ 0.5, using Equation 6.59. The rmax, δβt, vmax need to be normalized. Since the

image size is512 which is equal tolmax. Therefore, normalized values for rmax, δβt, v
max are

given by






rmax = 1 ∗ lmax/512

δβt = 0.5 ∗ lmax/512

vmax = 3 ∗ lmax/512

(6.63)

Substituting the values ofrmax, δβt, vmax in Corollary 6.7 gives

δV̂ ≥ 0.5
√
A23 +B

2
3 + C

2
3 (6.64)

where

A3 =
(cos2 θ(1+l tan θ cos(φ−μ)) sin θ cosφ)2+(l sin(φ−μ) cos θ sinφ)2

||lmaxl|+|0.035(lmax)2||

B3 =
(cos2 θ(1+l tan θ cos(φ−μ)) sin θ sinφ)2+(l sin(φ−μ) cos θ cosφ)2

||lmaxl|+|0.035(lmax)2||

C3 =
cos3 θ(1+l tan θ cos(φ−μ))
||lmaxl|+|0.035(lmax)2||

(6.65)
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The uncertaintyδV̂ depends on(θ, φ), l andμ. μ is the tangent angle which could be assumed

to be zero without loss of generality. Therefore,δV̂ is plot against the variation of(θ, φ) and l.

Figure 6.13 (a) shows the plots for the uncertainty for different samples of 3D motion and for three

different positions in the image(i) near the optical center,l = 0.05, (ii) in the middle of the image

l = 0.25 and (iii) at the periphery of the image,l = lmax. Another set of binary plots, Figure

6.13 (in blue and maroon), shows the motion direction(θ, φ) for which the error is more than one

(in maroon). These area shows that estimation of motion direction for these(θ, φ) is merely up to

chance. The observations are as follows:

1. Note that thêV for all (θ, φ) decreases asl is varied from the center of the image periphery

of the image. The error for pixel position near the center of the image is huge. Also, note

the area covered in maroon in second plot of Figure 6.13 (b) forl near the optical axis. It

covers almost the entire range of motion direction. Similarly, it covers more than half for

l = lmax/2and at-least one third forl = lmax.

2. δV̂ is always maximum forθ near or equal to zero. This means that the when the motions

are merely parallel to the image plane, they exhibit higher error than when the motion is

perpendicular to the plane.

The above observations make it clear that the direction of the motion cannot be estimated for

general cases. [100] concluded that the angle of view should be increased which means increase

lmax. But angle of view cannot be increased in practice for a typical acquisition system. This

limitation of high error inV̂ renders segmentation based on 3D motion unsolved from a monocular

video sequence.

Recovery of some aspects of̂V : Figure 6.14 shows the plots ofδV̂ x, δV̂ y andδV̂ z. Note that the

error inδV̂ z is higher than error inδV̂ x andδV̂ y. Further, theδV̂ x andδV̂ y does not have large

error and hopefully can be recovered. The ratio ofδV̂ y/δV̂ x is given bytanφ which is

tanφ =
2β(αty + βtx)− rη
2β(αtx − βty)− rξ

. (6.66)

This above ratio might be recovered and used for segmentation. Note that this is different from

using 2D motion,γt = αt+ βn as shown in Equation 6.66.
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Figure 6.13: Left column shows the plots ofδV̂ for all (θ, φ) for (a)near the optical center,l = 0.05,
(c) in the middle of the imagel = lmax/2 and(e) at the periphery of the image,l = lmax. Right
column shows a binary map of the plots of the left column where blue represents error less than 1
and maroon represents error equal to or greater than 1.
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Figure 6.14: This figure shows the plots ofx, y andz components ofδV̂ for all (θ, φ) for (a) near
the optical center,l = 0.05, (c) in the middle of the imagel = lmax/2 and(e) at the periphery of
the image,l = lmax. Note that the errors inδV̂ x andδV̂ y is not large.



Appendix A

Evolution of curves: trace and

parameterization

Proposition A.1. For a one-parameter family of curvesγ(s, t) defined by the evolutionary model

by {
∂γ
∂s (s, t) = g(s, t)t(s, t)
∂γ
∂t (s, t) = α(s, t)t(s, t) + β(s, t)n(s, t).

whereg(s, t) is defined as speed of parameterization,then the trace ofγ(s, t) is given by

∂γ

∂t
(s, t) = β(s, t)n(s, t). (A.1)

Proof. Consider a different parameterizationγ1(s, t) = γ(s, t), wheres = s(s, t). Differentiating

both sides ofγ(s, t) = γ1(s, t) with respect tot we have

∂γ
∂t = ∂γ1

∂s .
∂s
∂t +

∂γ1
∂t

αt+ βn = g1t1
∂s
∂t +

∂γ1
∂t .

(A.2)

Now to relatet1 to t, differentiateγ1(s(s, t)) = γ(s, t) with respect tos so that

∂γ
∂s = ∂γ

∂s .
∂s
∂s ,

gt = g1t1
∂s
∂s ,

(A.3)

which gives {
t1(s, t) = t(s, t)

g1(s(s, t))
∂s
∂s(s(s, t)) = g(s, t)

(A.4)

and also

n1(s(s, t)) = n(s, t)

132
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Substituting these into Equation A.2 we have

αt+ βn = gt
∂s
∂t
∂s
∂s

+ ∂γ1
∂t , (A.5)

or rearranging,
∂γ1
∂t
= (α− g

∂s
∂t
∂s
∂s

)t+ βn.

Now, chooses such thatα∂s∂s = g
∂s
∂t , we have

∂γ1
∂t
= β(s, t)n(s, t).

which shows that the trace can be obtained by the above equation. Hence, the proof. �

Proposition A.2. For a one-parameter family of curvesγ(s, t) defined by the evolutionary model

by {
∂γ
∂s (s, t) = g(s, t)t(s, t)
∂γ
∂t (s, t) = α(s, t)t(s, t) + β(s, t)n(s, t).

whereg(s, t) is defined as speed of parameterization,then the second order derivatives∂2γ
∂s2

, ∂2γ
∂s∂t

and ∂2γ
∂t2

are given by






∂2γ
∂s2

= gst+ g
2κn

∂2γ
∂s∂t = (αs − βgκ)t+ (αgκ+ βs)n
∂2γ
∂t2

= (αt − β(ακ+
βs
g ))t+ (α(ακ+

βs
g ) + βt)n.

(A.6)

Furthermore, assuming arc-length parameterization att = 0, i.e., g(s, 0) = 1 andgs(s, 0) = 0, the

second order-derivatives are given as





∂2γ
∂s2

= κn
∂2γ
∂s∂t = (αs − βκ)t+ (ακ+ βs)n
∂2γ
∂t2

= (αt − β(ακ+ βs))t+ (α(ακ+ βs) + βt)n.

(A.7)

Proof. First, lets compute derivatives oft andn, wheret = (cos θ, sin θ) andn = (− sin θ, cos θ)

which are given by

ts = (− sin θ, cos θ)θs = θsn

ns = (− cos θ,− sin θ)θs = −θst

tt = (− sin θ, cos θ)θt = θtn

nt = (− cos θ,− sin θ)θt = −θtt

(A.8)
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and computing the second order derivatives by differentiating the Equation??we get

γts = (gt)s

= gst+ gts

= gst+ g
2κn

γst = (αt(s, t) + βn(s, t))s

= αst+ αts + βsn+ βns

= αst+ αgκn+ βsn− βgκt

= (αs − βgκ)t+ (αgκ+ βs)n

(A.10)

γst = (gt)t

= gtt+ gtt

= gtt+ gθtn

(A.11)

Now, due to symmetryγts = γst

gtt+ gθtn = (αs − βgκ)t+ (αgκ+ βs)n (A.12)

which gives {
gt = αs − βgκ

gθt = αgκ+ βs.
(A.13)

Computingγtt,

γtt = (αt+ βn)t

= αtt+ αtt + βtn+ βnt

= (αt − βθt)t+ (αθt + βt)n

(A.14)

Substitutinggθt in γtt

γtt = (αt − β(ακ+
βs
g ))t+ (α(ακ+

βs
g ) + βt)n (A.15)

Now, for g = 1 andgs = 0

γss = κn

γst = (αs − βκ)t+ (ακ+ βs)n

γtt = (αt − β(ακ+ βs))t+ (α(ακ+ βs) + βt)n

(A.16)

Hence, the proof.

�
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Proposition A.3. Given a 1-parameter family of curves under an arbitrary regular parameteriza-

tion γ(s, t) where‖∂γ∂s (s, 0)‖ = 1, there are two first-order intrinsic measure (invariant to param-

eterization), {
I = ∂γ

∂s = t

II = ∂γ
∂t ∙ n

(A.17)

and three second-order intrinsic measures





III = γss ∙ n,

IV = γst ∙ n− κγt ∙ t,

V = (γst ∙ n)
2 − κγtt ∙ n,

(A.18)

wheret andn represent the unit tangent and normal, respectively. In other words, the remaining

degrees of freedom from the first-order derivative∂γ∂t ∙ t, and from the second-order derivatives,
∂2γ
∂s∂t ∙ t and ∂2γ

∂t2
∙ t are dependent on the choice of parameterization.

Proof. Denote the parameter indexing the curves into this family of curves ast. Let γ(s, t) and

γ1(w, t) be two arbitrary parameterizations with the constraint that for the curve att = 0 boths and

w are arc-length parameters, ,‖∂γ1∂w (w, 0)‖ = 1. Thus, for each timet we can writes as a function

of w, ,

s = f(w, t). (A.19)

Then it is clear that

γ1(w, t) = γ(f(w, t), t), (A.20)

since the traces implied by each coincide. Taking the derivatives of (A.20) with respect tot andw

and using the chain rule, we have:
{

∂γ1
∂w = ∂γ

∂s
∂f
∂w at (f(w, t), t)

∂γ1
∂t = ∂γ

∂s
∂f
∂t +

∂γ
∂t at (f(w, t), t)

(A.21)

Evaluating now att = 0 gives
{

∂γ1
∂w = t, andfw = 1 at t = 0
∂γ1
∂t = ft t+

∂γ
∂t at t = 0

(A.22)

The first equation impliesthat
∂γ1
∂w
=
∂γ

∂s
(A.23)

and

f(w, 0) = w. (A.24)
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The second equation implies that the velocity measurements in the two parameterizations, ,∂γ1
∂t and

∂γ
∂t differ by a tangential component which is arbitrary. Thus, the only invariant measurement is
∂γ
∂t ∙ n, ,

∂γ1
∂t
∙ n =

∂γ

∂t
∙ n (A.25)

Now, taking second-derivatives of (A.20), and usingfw(w, 0) = 1 andfww(w, 0) = 0, we have:






∂2γ1
∂w2

= ∂2γ
∂s2

(
∂f
∂w

)2
+ ∂γ

∂s
∂2f
∂w2

,

∂2γ1
∂w∂t =

∂2γ
∂s2

∂f
∂w

∂f
∂t +

∂γ
∂s

∂2f
∂w∂t +

∂2γ
∂s∂t

∂f
∂w ,

∂2γ1
∂t2

= ∂2γ
∂s2

(
∂f
∂t

)2
+ 2 ∂

2γ
∂s∂t

∂f
∂t +

∂2γ
∂t2
+ ∂γ

∂s
∂2f
∂t2

.

(A.26)

Evaluating att = 0 wherefw(w, 0) = 1 we have





∂2γ1
∂w2

= ∂2γ
∂s2
= κn

∂2γ1
∂w∂t = fwt t+ ft κn+

∂2γ
∂s∂t ,

∂2γ1
∂t2

= ftt t+ f
2
t κn+ 2ft

∂2γ
∂s∂t +

∂2γ
∂t2

.

(A.27)

It is clear thatγ1ww is invariant toparameterization.

∂2γ1
∂w2

=
∂2γ

∂s2
(A.28)

It is also clear that sincefwt andftt are arbitrary, the two measurement pairs (∂γ1
∂w∂t and ∂2γ

∂s∂t ) and

(∂
2γ1
∂t2

and ∂2γ
∂t2

) can differ arbitrarily along the tangent direction. We therefore explore a relation

along the normal direction by taking the dot product withn, but only need the last two equations

since there are no unknowns in the first.
{

∂2γ1
∂w∂t ∙ n = ft κ+

∂2γ
∂s∂t ∙ n,

∂2γ1
∂t2
∙ n = f2t κ+ 2ft

∂2γ
∂s∂t ∙ n+

∂2γ
∂t2
∙ n.

(A.29)

Observe thatft = (
∂γ1
∂t −

∂γ
∂t ) ∙ t from Equation A.22. Thus,

∂2γ1
∂w∂t

∙ n = (
∂γ1
∂t
∙ t−

∂γ

∂t
∙ t)κ+

∂2γ

∂s∂t
∙ n, (A.30)

or arranging it in a symmetricform,

∂2γ1
∂w∂t

∙ n− (
∂γ1
∂t
∙ t)κ =

∂2γ

∂s∂t
∙ n− (

∂γ

∂t
∙ t)κ (A.31)
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This is clearly an invariant measure! Similarly, the last equation needs to haveft substituted in and

arranged in a symmetric form. We rewrite the last equation as

∂2γ1
∂t2

∙ n = ft(ftκ+
∂2γ

∂s∂t
∙ n) + ft

∂2γ

∂s∂t
∙ n+

∂2γ

∂t2
∙ n (A.32)

= ft(
∂2γ1
∂w∂t

∙ n) + ft
∂2γ

∂s∂t
∙ n+

∂2γ

∂t2
∙ n. (A.33)

Now, usingκft =
∂2γ1
∂w∂t ∙ n−

∂2γ
∂s∂t ∙ n from the first equation, we have

k
∂2γ1
∂t2

∙ n = (
∂2γ1
∂w∂t

∙ n−
∂2γ

∂s∂t
∙ n)(

∂2γ1
∂w∂t

∙ n+
∂2γ

∂s∂t
∙ n) + κ

∂2γ

∂t2
∙ n (A.34)

=

[

(
∂2γ1
∂w∂t

∙ n)2 − (
∂2γ

∂s∂t
∙ n)2

]

+ κ
∂2γ

∂t
∙ n (A.35)

Arranging this in a symmetric form, we have

(
∂2γ1
∂w∂t

∙ n)2 − κ
∂2γ1
∂t2

∙ n = (
∂2γ

∂s∂t
∙ n)2 − κ

∂2γ

∂t
∙ n , (A.36)

which represents another invariant measurement. �

Corollary A.4. (Geometric interpretation of invariant measures)





I = t and n

II = β

III = κ

IV = βs

V = ακβs + β
2
s − κβt

(A.37)

Proof. SinceI = ∂γ
∂s = t. This meansn is also invariant as it is perpendicular tot. Proposition1.3

gives ∂γ∂t ∙ n = β, ∂
2γ
∂s2
∙ n = κ, ∂2γ

∂s∂t ∙ n− (
∂γ
∂t ∙ t)κ = ακ+ βs − ακ = βs and

V = (γst ∙ n)
2 − κγtt ∙ n (A.38)

= (ακ+ βs)
2 − κ(α2κ+ αβs + βt) (A.39)

= ακβs + β
2
s − κβt (A.40)

�

Corollary A.4 gives thatβ, βt, κ are parameterization independent and can be computed from

the trace. Note thatβt is not an invariant.βt can be expressed as

κβt = ακβs + β
2
s − V
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Now, for normal parameterization,α = 0, V = β2s − κβ
∗
t . Therefore,

κβt = ακβs + β
2
s − β

2
s + κβ

∗
t

or,

κβt = ακβs + κβ
∗
t

This gives us

βt = αβs + β
∗
t (A.41)

Since,β∗t can be measured without knowledge of parameterization.
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