
Lifting Arc Diagrams Under Branched

Covers: An Inverse Problem and its

Algorithmic Solution

by

Cyrus A. Peterpaul

AB Dartmouth College, 2010

MS CUNY Graduate Center, 2016

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the

Department of Mathematics at Brown University

Providence, Rhode Island

May, 2019



c© Copyright 2019 by Cyrus Peterpaul.

ii



This dissertation by Cyrus A. Peterpaul

is accepted by the Department of Mathematics

as satisfying the dissertation requirement

for Doctor of Philosophy.

Date

Jeremy Kahn, Advisor

Recommended to the Graduate Council

Date

Katherine Mann, Reader

Date

Thomas Goodwillie, Reader

Approved by the Graduate Council

Date

Andrew G. Campbell, Dean of the Graduate School

iii



Curriculum Vitae

Cyrus Peterpaul was born in Virginia in 1988. He attended Dartmouth

College, where he received an AB in 2010. After graduation, he began gradu-

ate school at the City University of New York Graduate Center. He received

his MS in mathematics from the CUNY Graduate Center in 2016, before

coming to Brown University to work under Jeremy Kahn.

Cyrus has taught a wide range of mathematics in many settings. He

taught precalculus and calculus I as an adjunct professor at Brooklyn College

from 2012-2013. During the 2016-2017 academic year, he tutored prisoners in

Rhode Island in elementary and GED mathematics. Cyrus taught calculus II

at Brown University as a teaching fellow in fall 2017, was a TA for calculus I

in spring 2018, and taught multivariable calculus for physicists and engineers

in fall 2018.

iv



Acknowledgements

I would like to thank my advisor, Jeremy Kahn, for all of his input and

guidance on this project. He showed me how to ask the right questions, and

in so doing made me an immensely better mathematician. Special thanks

also go to Peter Ozsvath for explaining Heegaard Floer homology to me.

I must credit Alex, Brian, Milen, Josiah, and many other colleagues over

the years for countless conversations that shaped the way I think about this

problem and problems generally.

I also want to thank Casey for her unwavering support these past years.

I couldn’t have done it without you.

I will be forever grateful to the friends and family who put up with all

my nonsense. Mom, Dad, Carol, Henry, Owen, Nick, Bret, Dave, Amber,

James, Kevin, Elise, Brian, Andrew, Alex, and my many friends here in the

Brown math department, as well as many others shamefully omitted, kept

me some semblance of sane while I finished this dissertation. Without their

support, this project would have foundered many times.

v



Contents

1 Introduction 1

2 Definitions and Notation 4

3 Lifting and Realizability 11

4 Homonymous Recursion 17

5 Heteronymous Arcs 24

6 General Maximal Diagrams 36

vi



List of Figures

3.1 A subdiagram consisting of 2 distinct arcs sharing endpoints

must have genus greater than 0. Bold lines represent the

boundary of the surface, fine lines represent arcs. The dashed

arc can be added to the diagram, meaning it is non-maximal. . 14

4.1 An outer arc c. ∆(c) is bounded by a, b, and c. The dashed

arc c′ is the dual arc of c. . . . . . . . . . . . . . . . . . . . . . 18

4.2 Before and after a one seam reduction by c. . . . . . . . . . . 18

5.1 A typical sheet of a maximally heteronymous diagram. . . . . 25

5.2 A maximal, maximally heteronymous diagram on the bigon.

A heteronymous arc separates each pair of homonymous arcs. 26

6.1 Cutting along the homonymous arc a. . . . . . . . . . . . . . . 37

6.2 Each Bi is a maximal, homonymous subdiagram. . . . . . . . 37

vii



Chapter 1

Introduction

Arc diagrams are simple, combinatorial objects associated to surfaces with

boundary. They consist of homotopy classes of disjoint curves, and can be

thought of as embedded graphs on suitably marked surfaces. This disser-

tation examines the behavior of weighted arc diagrams, that is, diagrams

with nonnegative real numbers assigned to each arc, under branched cov-

ering maps. The lift of an arc under a branched covering map is an arc.

Therefore, we can interpret a branched covering map as inducing a map on

weighted arc diagrams by lifting.

We are interested in the inverse problem: when can a weighted arc dia-

gram be realized by lifting the arcs of a diagram under a suitable branched

cover? This dissertation solves the problem in the case of a maximal diagram

covering a disk with two marked boundary points, called a bigon. I present

an algorithm which decides whether a given maximal, weighted arc diagram

1



may be realized by lifting a weigthed arc diagram on the bigon, and which

produces a branched cover and weighted arc diagram on the bigon which

realize this diagram by lifting.

The motivation for the work in this dissertation came from Heegaard

Floer homology. Heegaard Floer homology is a topological invariant of closed,

orientable 3-manifolds, introduced by Ozsvath and Szabo in [2]. It is built

on top of what is known as a Heegaard diagram. Detailed information on

Heegaard diagrams can be found, for example, in [3]. In brief, a Heegaard

splitting of a 3-manifold M is a decomposition of M into two handlebodies

H1 and H2. One may reconstruct M by gluing together ∂H1 and ∂H2 by a

homeomorphism. It turns out that enough data to specify this gluing up to

isotopy is encoded in what is called a Heegaard diagram. Let Σ be a surface

of genus g homeomorphic to ∂H1 and ∂H2. A Heegaard diagram on Σ is

a choice, up to homotopy, of 2g closed curves on Σ, g of which are labeled

as coming from H1 and the rest of which are labeled as coming from H2.

Each set of g curves with the same labels must be linearly independent as 1

dimensional homology classes.

Heegaard Floer homology uses unordered g-tuples of intersection points

of H1 curves with H2 curves as the generators of the Heegaard Floer chain

complex. Computing the boundary map requires, among other things, count-

ing structures known as Whitney disks. A Whitney disk, as defined in [2],

can be thought of as a pair of homotopy classes of maps on a surface with

boundary Σ′. One map is an immersion φ : Σ′ → Σ which sends ∂Σ′ to the
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labeled curves on Σ. The other is a branched cover f taking Σ′ to the unit

disk with two marked points p1 and p2 on its boundary. For i = 1, 2, we

must have that φ(f−1(pi)) is an intersection point of an H1 and an H2 curve

for each point in f−1(pi).

To compute the Heegaard Floer boundary map, one must count the num-

ber of holomorphic representatives of these Whitney disks. Holomorphic, in

this case, means that for a choice of complex structure on Σ, the complex

structure on Σ′ one gets by pulling back the complex structure on Σ under

φ is the same as the complex structure on Σ′ one gets by pulling back the

standard complex structure on the unit disk under f .

We ultimately wish to simplify this computation by using a more combi-

natorial version of a Whitney disk, which is based on a so-called degenerate

complex structure. A degenerate complex structure is something like a mea-

sured lamination, which can be pulled back under immersions and branched

covers, and which can be encoded, in the right circumstances, using an arc

diagram. This disseratation consists of the first step in this program. It is

hoped that the algorithm presented here will be useful in a new method for

computing Heegaard Floer homology.
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Chapter 2

Definitions and Notation

We first need to define a particular kind of marked surface with boundary,

which we will call a substrate.

Definition 1. Let Σ be a surface with boundary. Let V be a finite set of

distinct points on the boundary of Σ which we call vertices. A 2-coloring is

a map V → {α, β} so that no two neighboring vertices are assigned the same

value.

Definition 2. A substrate is a surface Σ with boundary equipped with a set

MΣ of marked points in the interior of Σ, a set of vertices VΣ, and a 2-coloring

CΣ : Vσ → {α, β}. Each boundary component of Σ must contain at least 2

vertices. Call the componenets of ∂Σ\VΣ boundary edges.

The set MΣ will typically be empty except for bigons, which will be

defined shortly. Substrates are the homes of arc diagrams.
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Definition 3. Let Σ be a substrate and p : [0, 1] → Σ be a simple path

with p(0), p(1) ∈ VΣ, and p(t) 6∈ MΣ for all t. An arc is the homotopy class

relative to {0, 1} of such a path through paths disjoint from MΣ.

We will simply say homotopic to mean homotopic rel endpoints through

paths disjoint from MΣ in the context of arcs. An arc is called trivial if it

is homotopic to a path in the boundary of Σ which intersect VΣ only at its

endpoints. Otherwise, it is called nontrivial. In particular, an arc which is

homotopic to a vertex is trivial. An arc is called homonymous if CΣ takes

the same value at both of its endpoints; that is, if its endpoints are the same

color. Otherwise, an arc is called heteronymous.

Definition 4. Two arcs a and b are noncrossing if there are paths repre-

senting a and b that are disjoint except at their endpoints. Otherwise, a and

b cross.

Definition 5. An arc diagram on a substrate Σ is a set of mutually non-

crossing arcs on Σ.

We will call an arc diagram clean if it contains no trivial arcs. An arc

diagram D is maximal if any nontrivial arc not already in D crosses at

least one arc in D. An arc diagram is fully homonymous if it contains only

homonymous arcs. The arcs of a diagram may also be assigned weights.

Definition 6. A weighted arc diagram is an arc diagram D equipped with

a map wD : D → [0,∞).
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Definition 7. A weighted arc diagram E extends a weighted arc diagram D

if D ⊂ E and wE = wD on the arcs of D. E is also called an extension of D.

We will also need the notion of branched cover of substrates. First, recall

the definition of a branched covering map.

Definition 8. Let X and Y be surfaces. A continuous map f : X → Y

is called a branched covering map if there is a finite set ∆ ⊂ Y so that f

restricted to f−1(Y \∆) is a covering map, and it meets the following regu-

larity condition. For each p ∈ X there are open neighborhoods Up of p and

Vf(p) of f(p) with charts ψ : Vf(p) → Z and φ : Up → Z, where Z is an open

neighborhood of 0 in C, so that the map ψ ◦ f ◦ φ−1 : C→ C is the complex

function z → zn. Note that we are not requiring that X or Y have a complex

structure, only that they are topological 2-manifolds.

The smallest such ∆ is called the singular set, and its elements are singular

values. Y \∆ is called the regular set and its elements likewise called regular

values. For each p ∈ X, the number n so that f is z → zn in local coordinates

around p and f(p) is called the local degree of f at p, deg f(p). A point p

where deg f(p) > 1 is called a branch point.

A branched covering map is called simple if the local degree of f is 2 at

each branch point and the fiber over any singular value contains a unique

branch point.

Definition 9. Let Σ and Σ′ be substrates. A branched cover of Σ′ by Σ is

a branched covering map f : Σ → Σ′ which takes VΣ to VΣ′ , whose set of
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singular values is MΣ′ and which commutes with the 2-coloring. That is, for

all vertices v of Σ, CΣ(v) = CΣ′(f(v)). We say that Σ is a branched cover of

Σ′ if there exists such a branched covering map.

We are particularly interested in branched covers of bigons.

Definition 10. A topological disk equipped with the structure of a substrate

is a polygon. A polygon with 2 vertices is a bigon.

Arcs which share an endpoint are naturally ordered, a property we will

use shortly. Suppose D is an arc diagram on substrate Σ. Orient each

boundary component of Σ so that the interior of Σ is on the left. Choose a

set of smooth, disjoint, simple paths realizing D. The arcs incident on a given

vertex may now be ordered left to right by the angle of their inward-pointing

tangent vectors at v. We call this the canonical order at each vertex.

Proposition 1. Suppose f : Σ → B is a simple branched cover. Let s ∈ MB

be a singular value, and s̃ the branch point in the fiber over s. If p is a simple

path connecting s to v, the union of the two lifts of p which pass through

s̃ are a path representing a nontrivial homonymous arc. No other union of

lifts of p represents an arc.

Proof. The preimage of p is a collection of paths in Σ, each of which connects

a point in the fiber over s to a vertex which matches the color of v. Each

path has an endpoint on a distinct vertex of Σ. Two of these paths, a and b,

will contain s̃ as an endpoint; the rest will have endpoints on distinct points
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of the fiber over s. Therefore, only a and b join together into a path between

vertices of Σ; none of the rest of the paths fit together into a representative

of an arc.

Now it remains to show that a∪b represents a nontrivial arc. Since a and

b will have endpoints on distinct vertices of Σ, a ∪ b is not a loop. The only

trivial, homonymous arcs are loops, so a ∪ b represents a nontrivial arc.

Suppose f : Σ → B is a branched cover of a bigon by a substrate.

Choose simple, disjoint paths connecting each point of MB to a vertex of

B. By Proposition 1, each path p may be asociated with a unique, nontriv-

ial, homonymous arc p̃ on Σ, which we call a branching arc. We call the set of

these arcs a branching diagram for f . If we change these paths by homotopy

rel endpoints and through paths disjoint from MB, the branching diagram

remains constant.

Definition 11. Let D be a branching diagram on Σ for the branched cover

f . A component of Σ\D is called a sheet.

Proposition 2. Every sheet s of a simple branched cover f : Σ→ B is simply

connected, and f is a homeomorphism on the interior of s.

Proof. The restriction of f to the interior of s is a covering map which sends

interior of (s) to the open set
∫

(B) with the images of the branching arcs in

∂s deleted. This is a simply connected open set. Since f is injective on the

fundamental group of int(s), s must be simply connected.
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Since s is simply connected, χ(s) = 1. This implies that, since f |int(s) is

a covering map, 1 = χ(s) = dχ(f(s)) = d, where d is the degree of f |int(s).

Hence, d = 1 and f |int(s) is a homeomorphism.

An important consequence of Proposition 2 is that each sheet of a simple

branched cover contains exactly two boundary edges of Σ.

Conversely, one can use a branching diagram together with an additional

choice of order to specify a simple branched cover of the bigon. Call an arc

diagram D ordered if there is a total order on the arcs of D which agrees

with the canonical order at each vertex.

Proposition 3. Let Σ be a substrate, and D be an ordered arc diagram on

Σ containing n = |VΣ|/2 − χ(Σ) homonymous arcs so that each component

of Σ\D is simply connected and contains two of Σ’s boundary edges. Then

there exists a simple branched cover f : Σ→ B which has D as its branching

diagram.

Proof. Let d1, . . . , dn be the arcs ofD, and number the points ofMB m1, . . . ,mn.

For 1 ≤ i ≤ n, connect mi to the vertex which matches the color of the end-

points of di by a simple path pi so that the canonical order at each vertex

agrees with the order of the pi’s. Let φ : ∂Σ∪D → B which sends ∂Σ→ ∂B,

sends vertices to vertices of the same color, and which sends di to pi.

For each sheet s, choose a homeomorphism φs : int(s)→ B\φ(∂s) so that

the map fs : s → B defined by fs = φs on int(s) and φ on ∂s is continuous.

Define f to be fs on each sheet s.
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An arc on the bigon will have the same lifts under any branched cover

with the same ordered branching diagram, so we will consider branched covers

with the same ordered branching diagram equivalent.

Remark 1. Here is an equivalent definition of substrates and arcs, which is

sometimes convenient. Instead of 2-coloring the vertices of the substrate Σ,

we can instead 2-color its boundary edges. An arc is now the homotopy class

of a simple path disjoint from MΣ with each endpoint on a boundary edge,

through paths disjoint from VΣ and MΣ which have their endpoints on ∂Σ.

That is, We allow the ends of the arc to slide along along a boundary edge,

but not into a vertex. All other definitions and results about arc diagrams

may be used with straightforward modifications.
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Chapter 3

Lifting and Realizability

Suppose Σ and B are substrates, and B is a weighted arc diagram on B. Let

f : Σ→ B be a branched cover of substrates. Since f is an ordinary covering

map in the complement of MB, for any arc a ∈ B we may choose a path â

representing a and lift â to a set of deg(f)-many paths in Σ. The homotopy

classes of these paths form a set of arcs called the lifts of a. Some of these

may be trivial arcs. We denote the set of nontrivial lifts of a by L(a).

The branched cover f : Σ → B together with the weighted arc diagram

B determines a clean, weighted arc diagram B̃ on Σ in the following way.

The set of arcs in B̃ is the union of nontrivial lifts

⋃
b∈B

L(b)
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of arcs in B. For an arc b̃ ∈ B̃, define the weight by

wB̃ (̃b) =
∑

{b∈B |̃b∈L(b)}

wB(b) (3.1)

That is, the weight of an arc in B̃ is the sum of the weights of all arcs which

lift to it.

Definition 12. B̃ is the lift of B under f . We also say B lifts to B̃.

Definition 13. A lifting picture is a quintuple (Σ, C,≺,B, B) consisting of

a substrate Σ, a branching diagram C, an order ≺ on C, a bigon B, and an

arc diagram B on B.

By Proposition 3, C,≺ determines a branched cover Σ→ B.

Definition 14. Let L = (Σ, C,≺,B, B) be a lifting picture, and D an arc

diagram on Σ. L realizes D if B lifts under f to D. D is realizable if there

exists a lifting picture which realizes D.

This raises the question: can one determine if a given arc diagram is

realizable, and how many ways can it be realized if so? To this end, it is

convenient to treat arcs with weight zero as essentially trivial. So we impose

the following equivalence relation.

Definition 15. Arc diagrams D and D′ are equivalent if they differ only

on weight zero arcs. That is, if a ∈ D\D′, then wD(a) = 0, and likewise if

a ∈ D′\D, then wD′ = 0.
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Any weighted arc diagram D can be extended into a maximal weighted

arc diagram by the addition of some number of weight zero arcs, but not

uniquely. Liekwise, given a lifting picture (Σ, C,≺,B, B) which realizes D,

we may extend B into a maximal diagram B′ by adding weight 0 arcs. B′

lifts under f to a maximal diagram extending and equivalent to D.

Proposition 4. A clean, maximal arc diagram D on a substrate Σ with MΣ =

∅ defines a triangulation of Σ, and contains N − 3χ(Σ) arcs, where N is the

cardinality of VΣ and χ(Σ) denotes the Euler characteristic.

Proof. D defines a cell decompostition C of Σ as follows: the set of vertices

V of C is VΣ, the set of edges E contains the arcs of D and the boundary

edges of Σ, and the set of 2-cells F consists of the closures of the components

of Σ\E. To see this is a triangulation, suppose there is a 2-cell C that is not

a triangle. If the boundary of C contains at least 4 vertices, then any non-

adjacent pair of vertices in ∂C can be connected by an arc which is disjoint

from D (as it lies in the interior of C) and not already in D. This contradicts

maximality of D. If the boundary of C contains only 1 or 2 vertices, then the

interior of C must have genus greater than zero; otherwise, the boundary of

C would collapse under homotopy. In that case, once again one can add an

arc to the diagram, contradictiong maximality. This is illustrated in Figure

3.1.

By Euler’s formula, χ(Σ) = |V | − |E| + |F |. N = |V |. Since C is a

triangulation, 2|D| + #{∂ edges} = 3|F |, where |D| is the number of arcs
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in D. Since there are the same number of vertices as boundary edges, and

|E| = |D| + #{∂ edges}, the equation reduces to χ(Σ) = N − |D| − N +

(2/3)|D|+ (1/3)N , and therefore |D| = N − 3χ(Σ).

...

Figure 3.1: A subdiagram consisting of 2 distinct arcs sharing endpoints must
have genus greater than 0. Bold lines represent the boundary of the surface,
fine lines represent arcs. The dashed arc can be added to the diagram,
meaning it is non-maximal.

We now prove some useful facts about lifting arcs from a bigon under a

simple branched cover.

Proposition 5. Let (Σ, C,≺,B, B) be a lifting picture, and b an arc in B. Let

S be a sheet of the cover. Then b has a unique lift b̃ in S. If b is homonymous

then b̃ is nontrivial if and only if b encloses a singular value v such that the

branch point ṽ in the fiber over v is contained in the boundary of S. If b

is heteronymous, then b̃ is nontrivial if and only if b separates two critical

values v and w.

Proof. Since f restricted to the interior of S is a homeomorphism onto an

open set in B which contains b, b has a unique lift in S.
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Suppose b is homonymous. First assume b̃ is nontrivial. Since S is simply

connected, either b̃ is a branching arc in ∂S or b̃ divides S into two nonempty

components. If b̃ is a branching arc containing branch point u, then b is an

arc which encloses f(b). If b̃ divides S into two components, then one of those

must contain a branch point u, and the other contains the boundary edges

of Σ present in ∂S. Therefore, b must separate f(u) from ∂B and hence b

encloses a singular value. Now, assume b encloses a singular value v, whose

associated branch point ṽ is in ∂S. Then since b separates v from ∂B, b̃ must

either separate ṽ from ∂Σ ∩ ∂S, or be the branching arc containing ṽ. In

either case, b̃ is nontrivial.

Now, suppose b is heteronymous. First, assume b̃ is nontrivial. Then b̃

separates S into two components. If one of them contains no branch points,

and hence no branching arcs, then it must contain only ∂Σ ∩ ∂S and points

of int(S). But since ∂S only contains two boundary edges of Σ, then b̃ must

be homotopic to one of them, which contradicts nontriviality. So b̃ must

separate two branch points, and hence b separates two singular values whose

branch points are in S. Finally, assume b separates two singular vaules whose

branch points are in S. Then b̃ must separate those corresponding branch

points in S, and hence b̃ is nontrivial.

Corollary 1. Let (Σ, C,≺,B, B) be a lifting picture, and b a homonymous arc

in B which encloses exactly one singular value v. Then b the only nontrivial

lift of b is the branching arc b̃ containing the branch point in the fiber over

b, and b lifts b̃ twice.

15



Proof. There are exactly two sheets whose boundary contains b̃, and b lifts

to b̃ on each. By the proposition above, b will lift trivially on every other

sheet.
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Chapter 4

Homonymous Recursion

In this chapter, we will show how to decide whether a fully homonymous

weighted arc diagram is realizable, and how to count the ways of realizing it

if so. First, we will define some operations on arc diagrams and substrates

which will be required in the decision algorithm.

Definition 16. A homonymous arc is outer if it forms a triangle, called an

outer triangle δ(c) with two adjacent boundary edges; c is said to enclose

δ(c). If it is also of minimal weight among outer arcs, it is called least outer.

If there are also arcs a and b in D which bound a triangle with c which

contains no other arcs of D, then that triangle is unique and called the inner

triangle ∆(c). In particular, every outer arc in a maximal diagram has an

inner triangle. An inner triangle is called homonymous is it is bounded only

by homonymous arcs.

An outer arc c with an inner triangle has a dual arc c′, which is the
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c

a b
... ...

c'

Figure 4.1: An outer arc c. ∆(c) is bounded by a, b, and c. The dashed arc
c′ is the dual arc of c.

unique nontrivial arc crossing c and connecting a vertex of δ(c) to a vertex

of ∆(c). The dual arc is used to define an operation on a substrate with an

arc diagram we call one seam reduction.

Definition 17. One Seam Reduction: Let Σ be a substrate with an arc

diagram D, and suppose c is an outer arc with homonymous inner triangle

∆(c). Cut Σ along the homonymous dual arc c′; that is choose a simple

representative p′ of c′, and let Σ′ be the closure of Σ\c. The one seam

reduction by c is the new diagram and substrate pair (Σ′, D\c).

c

a b
... ...

c'
a

... ...b

Figure 4.2: Before and after a one seam reduction by c.

By performing a one seam reduction, you get a new arc and (possibly

18



disconnected) substrate with a new, maximal diagram containing one fewer

arc. Two components of the substrate which were separated by a one seam

reduction performed on a triangle T are said to meet at T . Since the two

legs of T are both incident on a vertex, one is to the left of the other in the

canonical order. If components Σ′ and Σ′′ meet at T and Σ′ contains the left

leg of T , then Σ′ meets Σ′′ on the left at T ; otherwise, it meets Σ′′ on the

right at T .

Call the reverse operation a one seam join.

Algorithm 1. Homonymous Recursion:

INPUT: A substrate Σ with a fully homonymous arc diagram D.

OUTPUT: A lifting picture L realizing D if one exists.

PROCEDURE: The base case is when Σ is a square. D has only one arc d,

with weight w and color c. Let B be a bigon with MB containing a single

point p. Let B be an arc diagram consisting of a single homonymous arc b

with color c enclosing p, and with weight w/2. The branching diagram is

just D. Return the lifting picture (Σ, D,B, B).

Suppose Σ is not a square. Let O(D) be the set of least outer arcs of

D, which all have weight wO. Perform a one-seam reduction along each

element of O(D). If the resulting substrate is connected, return that D is

not realizable. Order the components of the resulting substrate Σ1, . . . ,Σk

so that if Σi meets Σj on the left anywhere, then i < j. If no such order

exists, return that D is not realizable. One may find this order using, for

example, a depth first search. This is a special case of a topological sort, and
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can be done in linear time; see section 22.4 of [1]. Perform this procedure

recursively on each Σi.

If none of these return that the diagram is not realizable, then they re-

turn lifting pictures L1, . . . , Lk. Let B be the diagram containing diagrams

B1, . . . , Bk as subdiagrams arranged in order, with one extra arc of weight

wO enclosing all of them. The branching diagram C is the union C1∪ . . .∪Ck

from L1, . . . , Lk. The order ≺ on C is defined by requiring it to extend each

≺i on Ci; and if c ∈ Ci, c′ ∈ Cj, i < j, then c ≺ c′. Return the lifting picture

(Σ, C,≺,B, B).

Lemma 1. Let (Σ, C,≺,B, B) be a lifting picture, and suppose b ∈ B is a

homonymous arc of color c which encloses every singular value. If Σ is not a

square, then the set of lifts of b is the set of outer arcs of color c in Σ. If Σ

is not a square, then b lifts to each one once.

Proof. Each sheet S contains a unique outer arc ω(S) whose outer triangle is

contained in S. Equivalently, ω(S) separates the branching arcs in ∂S from

∂Σ∩ ∂S. By Proposition 5, b has a unique nontrivial lift b̃ on every sheet S.

Since b separates all singular values from ∂B, b̃ separates the branching arcs

of ∂S from ∂Σ ∩ S, so b̃ = ω(S).

If Σ is not a square, then no two sheets S, S ′ can have ω(S) = ω(S ′).

Theorem 1. Let D be a maximal, homonymous diagram on substrate Σ.

Homonymous recursion returns a lifting picture realizing D if and only if D

is realizable.
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Proof. Suppose the lifting picture L = (Σ, C,≺,B, B) is the result of per-

forming homonymous recursion on D. We must show that L realizes D.

We proceed by induction on the number of arcs |D| in D. Suppose |D| = 1.

Then Σ must be a square. It follows from Proposition 5 and its corollary that

L as returned by the base case of homonymous recursion realizes D. Now,

assume that for any maximal, homonymous arc diagram D with |D| < N for

some N , that if homonymous recursion returns a lifting picture, then that

lifting picture realizes D. Suppose D is a maximal, homonymous diagram

with |D| = N .

Let O be the set of least weighted outer arcs of D, and let wO be the

weight of any one of these arcs. Let D′ be D\O with the weights of all outer

arcs reduced by wO, and define Σ1, . . . ,Σk to be the components resulting

from performing a one seam reduction along each arc in O. We then have

maximal diagrams D1, . . . , Dk which are the restriction of D′ to each Σi.

Since homonymous recursion finishes when applied to D, that means that

k ≥ 2 and we have lifting pictures Li = (Σi, Ci,≺i,Bi, Bi), 1 ≤ i ≤ k. By

the inductive assumption, Li realizes Di, since |Di| < N .

We now must show C = C1 ∪ . . . ∪ Ck is a valid branching diagram. By

construction, and using the assumption that homonymous recursion success-

fully terminated, the order of Σ1, . . . ,Σk is compatible with the canonical

order at each vertex. Therefore, by induction, the order on C extends the

canonical order at each vertex, as it must. It remains to show that each

component of Σ\C is simply connected and contains two edges of ∂Σ. Let
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S be a component of Σ\C. If S is contained in some Σi, then it is a valid

sheet by the inductive hypothesis. Otherwise, S is the result of performing

one seam joins on sheets in various Σi’s. But since a sheet of any Σi contains

a unique outer arc along which to perform a one seam join, S must be the

result of performing a one seam join on two sheets, meaning that S is simply

connected and has the correct boundary. So C is a valid branching diagram.

Now we must show that L realizes D. If bi is an arc in Bi ⊂ B, then by

prop 5 all nontrivial lifts will be in Σi, since the branch points mapped to

the singular values enclosed by bi are all contained in Σi. Therefore, Bi lifts

to Di in the combined lifting picture L. Then the lift of B1∪ . . .∪Bk = B\ω,

where ω is the unique arc in B which encloses all of MB, is D1∪. . .∪Dk = D′.

Since ω lifts to every outer arc once by the lemma, L realizes D.

Finally, suppose D is a realizable, maximal, homonymous weighted arc

diagram on Σ. We need to show that homonymous recursion returns a lifting

picture when applied to D. Suppose R = (Σ, CR,≺,B, BR) is a lifting picture

which realizes D. Let ω be the arc in B which encloses MB, and consider the

set A of nontrivial arcs in B which cross ω and which are disjoint from the

rest of B. The set of nontrivial lifts of arcs in A is exactly the set of dual

arcs of the least outer arcs of D. Since the arcs of A divide B into multiple

components, and these arcs are disjoint from the singular values, the set

of lifts of these arcs must divide Σ into at least 2 components, and these

components will have a consistent left-right orientation as required in the

algorithm. Therefore, one seam reduction will take place, and the algorithm
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will recurse onto the components. Finally, we need only observe that each

component Σi will have fewer boundary marked points than Σ, so therefore

this process must terminate, and homonymous recursion thus returns a lifting

picture.
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Chapter 5

Heteronymous Arcs

To address the question of realizability for more general arc diagrams, we

will first treat another special case.

Definition 18. A maximal arc diagram on a substrate Σ is maximally het-

eronymous if it contains exactly |VΣ|/2− χ(Σ) homonymous arcs.

A maximally heteronymous diagram has only one possible choice of branch-

ing diagram. The only freedom is in choosing a total order. As in the

homonymous case, each sheet imposes an ordering on the branching arcs

which form its boundary. A sheet of a maximally heteronymous diagram will

be of the form shown in Figure 5.1. For each color c, the canonical order at

vertices orders the branching arcs of color c in a sheet S. If D is also maximal,

then the heteronymous arcs contained in S impose a canonical order on all

branching arcs in ∂S. Globally fix a color c. Orient each heteronymous arc

so it points out of its c-colored endpoint. Each heteronymous arc separates
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... ...

Figure 5.1: A typical sheet of a maximally heteronymous diagram.

S into two components, and with the orientation one of these will be on the

left, and the other on the right. Define an order <c, on the homonymous

arcs bounding S by requiring x <c y if x comes before y in the canonical

order at a common endpoint; or if there exists a heteronymous arc h so that

x is on the left of h and y is on its right. Since D is maximal, every pair

of homonymous arcs in S is separated by at least one heteronymous arc, so

this is a total order on the branching arcs which bound S. Note that if we

choose the opposite color c′, then x <c y if and only if y <c′ x.

Proposition 6. Let D be a maximal, maximally heteronymous arc diagram

on a substrate Σ. If the lifting picture (Σ, C,≺,B, B) realizes D, then the

order ≺ on C extends <c.

Proof. Assume to the contrary that ≺ does not extend <c. Then on some

sheet S there is a pair of branching arcs, x and y, and a heteronymous arc h,
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such that x is left of h and y is on the right, but y ≺ x. If x and y have the

same colored endpoints, then this reverses the canonical order at a vertex,

so (Σ, C,≺,B, B) doesn’t define a branched cover. Otherwise, since y ≺ x,

there is no arc in B which separates the singular values vx from vy associated

with x and y, respectively, and puts vx to the left of vy. Therefore, no arcs

in B can lift to h, and therefore (Σ, C,≺,B, B) does not realize D.

If a maximal, maximally heteronymous diagram D is realizable, then it

must be realized by a maximal, maximally heteronymous diagram, which on

the bigon has the following form. Suppose that a is a heteronymous arc in

...

Figure 5.2: A maximal, maximally heteronymous diagram on the bigon. A
heteronymous arc separates each pair of homonymous arcs.

D, and let f : Σ→ B be a branched cover. a is inside a sheet S bounded by

branching arcs, which have canonical order <c. a divides the branching arcs

in ∂S into two sets X and Y , with X <c Y . Let x be the greatest element
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of X and y be the least element of Y . All the hetermonymous arcs between

f(x) and f(y) will lift to a.

Therefore, to realize a maximal, maximally hetermonymous diagram D

is to find a total order on the homonymous arcs of D which agrees with <c

on each sheet and apportions weight to the heteronymous arcs of a diagram

on the bigon of the form shown in Figure 5.2 so that the total weight in the

bigon between any arc and its successor in a given sheet is exactly the weight

of the heteronymous arc upstairs which separates them on that sheet. We

will build this procedure from several more elementary algorithms.

We can represent a sheet S by a list of the form

b0, w1, b1, w2, b3, . . . , wk, bk (5.1)

where the bi are the branching arcs in canonical order, and wi is the weight

of the heteronymous arc between wi−1 and wi.

Algorithm 2. Free Merge.

INPUT: Lists X = wX1 , x1, . . . , w
X
m, xm and Y = wY1 , y1, . . . , w

Y
n , yn of the

form in eq. 5.1 with {x1, . . . , xm} ∩ {y1, . . . , yn} = ∅.

OUTPUT: A list wZ1 , z1, . . . , w
Z
m+n, zm+n.

PROCEDURE: The algorithm is defined recursively. The base case is when

X or Y is empty. In that case, return the nonempty list.

If X and Y are both nonempty, let wZ1 = min{wX1 , wY1 }. If wX1 < wY1 ,

then let X ′ = wX2 , . . . , xm, Y ′ = wY1 −wX1 , y1, . . . , yn, and z1 = x1. Otherwise,
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let X ′ = wX1 − wY1 , x2, . . . , xm, Y ′ = wY2 , y2, . . . , yn, and z1 = y1. Return

Z = wZ1 , z1||FreeMerge(X ′, Y ′) where || denotes concatenation.

Proposition 7. Algorithm 2, when applied to lists X = wX1 , x1, . . . , w
X
m, xm

and Y = wY1 , y1, . . . , w
Y
n , yn returns a list Z = wZ1 , z1, . . . , w

Z
m+n, zm+n satis-

fying the following properties:

1. {z1, . . . , zm+n} = {x1, . . . , xn} ∪ {y1, . . . , ym}

2. If zi = xa and zj = xb, then a < b implies i < j; likewise if zi = ya and

zj = yb, then a < b implies i < j.

3. wX1 =
∑k

i=1 w
Z
i , where zk = x1. Similarly, wY1 =

∑k
i=1w

Z
i , where

zk = y1.

4. For each 1 ≤ i ≤ m, let za = xi and zb = xi+1. Then wXi+1 =
∑b

j=aw
Z
j ,

and likewise for za = yi−1 and zb = yi.

Proof. First, observe that this algorithm always terminates after no more

than m + n steps of the recursion. This is because we remove the first 2

elements of either X or Y to make X ′ and Y ′, so at most we can only do this

m times to X and n times to Y .

Z trivially satisfies properties 1-4 when X or Y is empty. To show this in

general, we will induct on the combined length of the lists, n+m. The base

case, n + m = 1, is a special case of X or Y being empty. Assume Z has

properties 1-4 when n + m ≤ N for some N , and suppose n + m = N + 1.

Let X ′ and Y ′ be as described in algorithm 2.
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We need to check that the list Z = wZ1 , z1||Z ′, where Z ′ = FreeMerge(X ′, Y ′),

has the properties above. Properties 1 and 2 follow from the definitions of z1,

X ′, and Y ′, and the assumption that these properties hold for FreeMerge(X ′, Y ′).

To show Z has property 3, WLOG assume that wZ1 = wX1 and z1 = x1; other-

wise, just switch the roles of X and Y . Let zk = y1. Then using the inductive

hypothesis it suffices to show that

wY1 =
k∑
j=1

wZj

Now,
∑k

j=1 w
Z
j = wX1 +

∑k
j=1 w

Z′
j . By definition wY

′
1 = wY1 − wX1 and by

the inductive hypothesis, wY
′

1 =
∑k

j=1w
Z′
j . So

∑k
j=1w

Z
j = wX1 + wY

′
1 = wY1 .

Property 4 now also follows.

Now we will treat merging lists of the form in eq. 5.1 with x0 = y0 and

xm = yn so that the result also satisfies a result like Proposition 7.

Algorithm 3. Constrained Merge.

INPUT: Lists X = x0, w
X
1 , x1, . . . , w

X
m, xm and Y = y0, w

Y
1 , y1, . . . , w

Y
n , yn of

the form in eq. 5.1 with x0 = y0 and xm = yn, and such that

m∑
i=1

wXi =
n∑
j=i

wYi

OUTPUT: A list Z = z0, w
Z
1 , z1, . . . , w

Z
m+n, zm+n.
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PROCEDURE: Let z0 = x0. Compute

Z ′ = FreeMerge(wX1 , x1, . . . , w
X
m, xm, w

Y
1 , y1, . . . , w

Y
n , yn)

The last 2 terms of Z ′ will be 0, xm or 0, yn. Let Z ′′ be Z ′ with the last 2

terms deleted. Return Z = z0||Z ′′.

Proposition 8. Algorithm 3, when applied to lists X = x0, w
X
1 , x1, . . . , w

X
m, xm

and Y = y0, w
Y
1 , y1, . . . , w

Y
n , yn satisfying the assumptions in algorithm 3 re-

turns a list Z = z0, w
Z
1 , z1, . . . , w

Z
m+n, zm+n satisfying the following properties:

1. {z1, . . . , zm+n} = {x1, . . . , xn} ∪ {y1, . . . , ym}

2. If zi = xa and zj = xb, then a < b implies i < j; likewise if zi = ya and

zj = yb, then a < b implies i < j.

3. For each 1 ≤ i ≤ m + n, let za = xi−1 and zb = xi. Then wXi =∑b
j=aw

Z
j , and likewise for za = yi−1 and zb = yi

Proof. Property 2 is automatic given prop 7. Property 1 follows from the

fact that the homonymous arcs z′1, . . . , z
′
k in

Z ′ = FreeMerge(wX1 , x1, . . . , w
X
m, xm, w

Y
1 , y1, . . . , w

Y
n , yn)

will be the disjoint union of the arcs in the arguments of FreeMerge. Since

the total weight in both lists is equal, the last 2 terms of Z ′ will be either
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0, xm or 0, ym. Therefore, after discarding the spurious last 2 terms of Z ′,

property 1 holds, and property 3 also follows from that fact and prop 7.

We now generalize to all lists of the form in eq. 5.1. Now, we allow any

number of arcs in the two lists to coincide.

Algorithm 4. General Merge.

INPUT: Lists X = x0, w
X
1 , x1, . . . , xm and Y = y0, w

Y
1 , y1, . . . , yn of the form

in eq. 5.1.

OUTPUT: A list Z = z0, w
Z
1 , z1, . . . , zk of the form in eq. 5.1.

PROCEDURE: Compute the set of arcs A which appear in both X and Y .

Define index functions σ, η by, for each arc a ∈ A, xσ(a) = a and yη(a) = a.

For each pair a, b of arcs in A, with σ(a) < σ(b), first check that η(a) < η(b).

Otherwise, raise an exception. Next, check that

σ(b)∑
i=σ(a)+1

wXi =

η(b)∑
j=η(a)+1

wYj

If that equation is not satisfied, raise an exception.

Now, let A = {a1, . . . , ak}. Partition X into sublists

X0 = x0, w
X
1 , . . . , xσ(a1)−1, wσ(a1),

X1 = xσ(a1), . . . , xσ(a2)

. . .
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Xk = wXσ(ak)+1, xσ(ak)+1, . . . , xm

Partition Y into sublists Y0, . . . , Yk in the same way. Define Z ′ to be

(FreeMerge(X∗0 , Y
∗

0 ))∗||ConstrainedMerge(X1, Y1)|| . . . ||FreeMerge(Xk, Yk)

where ∗ denotes reindexing in opposite order. Concatenating ConstainedMerge(Xi, Yi)

with ConstainedMerge(Xi+1, Yi+1) results in duplicate, adjacent ai. Remove

all these duplicates from Z ′ and call the resulting list Z. Return Z.

Now, as an immediate corollary of propositions 7 and 8, we have

Proposition 9. If algorithm 4 does not raise an exception when applied to lists

X = x0, w
X
1 , x1, . . . , w

X
m, xm and Y = y0, w

Y
1 , y1, . . . , w

Y
n , yn satisfying the as-

sumptions in algorithm 4, then it returns a list Z = z0, w
Z
1 , z1, . . . , w

Z
m+n, zm+n

satisfying the following properties:

1. {z1, . . . , zm+n} = {x1, . . . , xn} ∪ {y1, . . . , ym}

2. If zi = xa and zj = xb, then a < b implies i < j; likewise if zi = ya and

zj = yb, then a < b implies i < j.

3. For each 1 ≤ i ≤ m + n, let za = xi−1 and zb = xi. Then wXi =∑b
j=aw

Z
j , and likewise for za = yi−1 and zb = yi

We can now define the algorithm for realizing a maximal, maximally

heteronymous arc diagram.
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Algorithm 5. Heteronymous Realization.

INPUT: A maximal, maximally heteronymous weighted arc diagram D on a

substrate Σ.

OUTPUT: A lifting picture L = (Σ, C,≺,B, B).

PROCEDURE: Let C be the set of homonymous arcs in D. Check that

each component of the complement of C is simply connected; if not, raise

an exception. Check that ∂C contains 2 edges of ∂Σ; otherwise, raise an

exception.

For each component S of the complement of C, compute the list X(S) =

x0, w1, x1, . . . , wn, xn, where x0, . . . , xn are the arcs of C bounding S, and

wi is the weight of the heteronymous arc between xi−1 and xi. Choose a

component T0 of Σ\C. Let Z0 = X(T0). Choose a component U adjacent to

T0. Let T1 = T0 ∪ U . Compute Z1 = GeneralMerge(Z0, X(U)). If T1 = Σ,

then we are done. Otherwise, choose a component U to T1. Let T1 = T0∪U ,

and compute Z1 = GeneralMerge(Z1, X(U)). Continue in this fashion until,

for some k, Tk = Σ.

The order in which each arc of C appears in Zk defines the order ≺ on C.

Construct B as follows. Zk = z0, w1, z1, . . . , wn, zn. For 0 ≤ i ≤ n, enclose

mi ∈ MB by a homonymous arc with endpoints the same color as those of

zi. Assign it half the weight of zi. Place a heteronymous arc between zi and

zi+1, and assign its weight to be wi. Return (Σ, C,≺,B, B).

Theorem 2. Let D be a maximal, maximally heteronymous weighted arc

diagram on a substrate Σ. Then algorithm 5 returns a lifting picture if and
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only if D is realizable, and the lifting picture it returns realizes D.

Proof. Suppose that Algorithm 5 returns L = (Σ, C,≺,B, B) when applied

to D. It follows from Proposition 5 that L realizes D as an unweighted

diagram; it remains to show that each arc of D gets the correct weight. It

follows from Proposition 5 that the homonymous arcs all get the correct

weight. Let h ∈ D be a heteronymous arc. It is contained in some sheet S.

Let ck, c` be the pair of arcs which flank h in S, where the indices indicate

their index in C under ≺. Again by Proposition 5, the heteronymous arcs in

B between critical values mk and m` will lift to h. The weights of those arcs

are wk+1, . . . , w`. By Proposition 9,
∑`

i=k+1wi is equal to the weight of h, so

L realizes D.

Now, suppose D is realizable. We want to show that Algorithm 5 finishes

without throwing an exception. Since D is realizable, there exists a branched

cover f : Σ → B and a weighted arc diagram B on B, so that B lifts to D

under f . There is a unique up to homotopy set of branch cuts disjoint from

and parallel to the homonymous arcs of B which connect the critical values

MB to the vertices of B. Therefore, we can assume that the branch cuts lift

to the homonymous arcs C of D. That implies that there are no cycles in C;

that each component of D\C is simply connected, as these are sheets of a

branched cover of a disk; and that the canonical order of homonymous arcs

bounding each sheet extends to a total order on C. Finally, we need to show

that when we merge a sheet with a connected union of sheets, the condition

on sums of weights in Algorithm 4 is satisfied. This follows from Proposition
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5 and Lemma 2.

Lemma 2. Let A,B,C be lists of the form required by Algorithm 4. Then

M(M(A,B), C) =M(M(A,C), B).

Proof. Let X =M(M(A,B), C) and Y =M(M(A,C), B), where M per-

forms algo 4. Delete the arcs of C not appearing in A or B from Y and

add any weights which are now adjacent; call the result Z. On one hand,

Z =M(A,B). On the other hand, clearly M(Z,C) = Y , so X = Y .
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Chapter 6

General Maximal Diagrams

We now put the results of the previous sections together to decide whether

any maximal arc diagram is realizable. A generic maximal diagram is com-

posed of connected, maximal, fully homonymous subdiagrams separated by

heteronymous arcs. On a bigon, a generic diagram has the form shown in

Figure 6.2.

Definition 19. A homonymous clump is a maximal, connected, homony-

mous subdiagram.

Let H1, . . . , Hn be the set of homonymous clumps in D. Each Hi has a

boundary consisting of homonymous arcs which are side of a triangle with a

heteronymous arc. Call these arcs outer to Hi. We may cut Σ along each

of these arcs and paste in triangles as shown in Figure 6.1. Let Σi be the

component of the resulting surface which contains Hi.

Each component of the complement of Σ1 ∪ . . . ∪ Σn is either an outer
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a
a a

Figure 6.1: Cutting along the homonymous arc a.

...

B1

B2

B3

Bk

Figure 6.2: Each Bi is a maximal, homonymous subdiagram.

triangle bounded by 2 edges of ∂Σ and a homonymous arc, or a region of the

form shown in Figure 5.1 which we will call a heteronymous ladder.

Definition 20. Let D be an arc diagram. A heteronymous ladder is a region

of Σ bounded by homonymous arcs of D which contains only heteronymous

arcs in its interior.

This all suggests that to realize a diagram D, one can perform homony-

mous recursion to realize each homonymous clump individually, and then
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use a version of Algorithm 5 to order these Hi and assign weights to the the

heteronymous arcs separating the diagrams which realize each Hi downstairs.

Definition 21. Let (Σ, C,≺,B, B) be a lifting picture realizing a diagram

D on Σ, and E be a maximal, connected homonymous subdiagram of B.

We say that E has connected branching if the set of branching arcs whose

critical points are enclosed by arcs of E all are contained in a single connected,

homonymous subdiagram of D.

A maximal diagram consists of honomyous clumps and heteronymous

ladders. Each heteronymous ladder can be given a canonical total order, just

as in the case of the sheets of a maximally heteronymous diagram. We now

show that, in essence, clumps lift to clumps. For this we’ll need a procedure

we call weight rebalancing.

Definition 22. Let D be an arc diagram, (Σ, C,≺,B, B) be a lifting picture

realizing D, and h ∈ B a homonymous arc. The branching of h is the set

of arcs in C whose critical points are mapped into the region enclosed by h.

We say h has connected branching if the branching of h is contained in one

homonymous clump of D. Otherwise, h has disconnected branching.

Definition 23. Let D be an arc diagram, (Σ, C,≺,B, B) be a lifting picture

realizing D, and h ∈ B a homonymous arc. A new lift of h is an arc in D

which is not a lift of any arc in B enclosed by h.

If a homonymous arc has no new lifts, then we may perform the following

opertaion on B without changing its lift.
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Definition 24. Pushing down weight. Let (Σ, C,≺,B, B) be a lifting picture,

wB be the weight function onB, and h ∈ B a homonymous arc. Let h1, . . . , hk

be the outermost arcs enclosed by h; that is, each hi is enclosed by h and

not by any other arc enclosed by h. Define Ph(B) to be B with h deleted

and with wPh
(hi) = wB(hi) + wB(h). We say that we have pushed down the

weight of h to make (Σ, C,≺,B, Ph(B)).

Lemma 3. Let D be a weighted arc diagram, and suppose that (Σ, C,≺,B, B)

realizes D. If h is a homonymous arc in B with no new lifts, then the diagram

(Σ, C,≺,B, Ph(B)) also realizes D.

Proof. Let h1, . . . , hk be the outermost arcs enclosed by h. By assumption ev-

ery lift of h is also a lift of some hi. Therefore, (Σ, C,≺,B, Ph(B)) still realizes

D as an unweighted diagram. Furthermore, since wPh
(hi) = wB(hi)+wB(h),

the weight previously contributed by h to the lifts of hi is not contributed di-

rectly by hi, so (Σ, C,≺,B, Ph(B)) also realizes D as a weighted diagram.

Proposition 10. If D is a maximal, realizable weighted arc diagram, then D

is realized by a lifting picture where every homonymous arc has connected

branching.

Proof. Suppose (Σ, C,≺,B, B) realizes D. If there is an arc h with no new

lifts, push down the weight of h. repeat this until every arc has new lift. Call

the resulting lifting picture (Σ, C,≺,B, B′). By Lemma 3, (Σ, C,≺,B, B′)

realizes D.
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Define ε(a) be the number of critical values enclosed by homonyous arc

a. Let h ∈ B′ be the arc with the smallest ε(h) such that h has disconnected

branching. We know that h must have a new lift. Let h1, . . . , hk be the

homonymous clumps enclosed by h. Each hi has connected branching. Since

h has a new lift, there must be clumps ha, hb so that ha ∪ hb has connected

branching. On the other hand, if hi, hj are such that hi∪hj have disconnected

branching, then we may switch their order without affecting the lift.

Using this, we may choose a new order h′1, . . . , h
′
k so that if h′i ∪ h′j has

connected branching, then there is no h` with i < ` < j such that hi∪h`∪hj

has disconnected branching. That is, we can push together all the clumps

under h which lift to the same homonymous clump upstairs. Add a weight

zero homonymous arc enclosing each maximal collection of h′is whose union

has connected branching. Call these arcs α1, . . . , αn. Now, h has no new lifts:

it always lifts parallel to the lifts of α1, . . . , αn. Call this diagram B′′. Pass

to Ph(B
′′). The lifting picture (Σ, C,≺,B, Ph(B′′)) still realizes D. Since

each of the arcs αi introduced this way have connected branching, B′′ has

fewer arcs with disonnected branching than B′. If B′′ still has an arc with

disconnected branching, choose the arc h such that h has the smallest ε(h)

among arcs with disconnected branching, and eliminate it in the same way.

Repeat this process until the resulting lifting picture (Σ, C,≺,B, B†) has the

property that all homonymous arcs of B† have connected branching. Since

B′′ has only finitely many arcs, and each step of this process reduces the

number of arcs with disconnected branching, this process terminates after
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finitely many steps. By Proposition 3, B† still realizes D.

Finally, add weight zero heteronymous arcs separating each homonymous

clump of B†. Call the resulting diagram Bmax. It follows from Lemma 3 and

Lemma 5 that these heteronymous arcs have no nontrivial lifts which are not

also lifts of heteronymous arcs already in B†, so indeed Bmax still realizes

D.

Lifting pictures where all homonymous arcs have connected branching

are useful, because in such lifting pictures, each homonymous clump lifts

nontrivially to a unique homonymous clump.

Lemma 4. Let D be a maximal arc diagram on a substrate Σ. Suppose

(Σ, C,≺,B, B) realizes D, and all homonymous arcs in B have connected

branching. Then each homonymous clump in B lifts nontrivially to a unique

homonymous clump in D.

Proof. Let H be a homonymous clump in B, and h ∈ H. Since h has

connected branching, all its nontrivial lifts are on sheets bounded by one or

more branching arc in a single homonymous clump H̃ in D. If S is a sheet

completely bounded by arcs in H̃ then clearly any nontrivial lifts of h on

that sheet are arcs of H̃. On the other hand, if S is bounded by some arcs of

H̃ and some arcs from another homonymous clump, then the lift of at least

one heteronymous arc in B separates the lift of h from the lifts of any arcs in

any other homonymous clump in B. So H lifts nontrivially only to H̃.
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Lemma 5. LetD be a realizable, maximal arc diagram, and S a heteronymous

ladder in D.

1. S is simply connected.

2. Each homonymous arc bounding S is contained in a different homony-

mous clump.

Proof. Every branching arc lies in some homonymous clump. So S is con-

tained in a single sheet of the cover, and is therefore simply connected. To

prove statement 2, observe that S is contained in a sheet S ′. If multiple

arcs of the same homonymous clump K are in ∂S, then at least 2 branching

arcs a, b in K are in ∂S ′. Since the diagram is maximal and S ′ is simply

connected, there is a heteronymous arc in S which separates a from b in S ′.

But this cannot be the lift of any arc on the bigon, as by Lemma 4 no het-

eronymous arc on the bigon can separate two critical points from the same

homonymous clump.

This allows us to represent a heteronymous ladder S as a list of the

form needed to input into Algorithm 4. The homonymous arcs of S can be

canonically ordered just as in the maximally heteronymous case. Represent

S as a list s0, w1, s1, . . . , wn, sn where si is the homonymous clump which

contains the ith homonymous arc bounding S, and wi is the weight of the

heteronymous arc separating si−1 and si in S.

Algorithm 6. Maximal Diagram Realization.

INPUT: A maximal, weighted arc diagram D on a substrate Σ.
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OUTPUT: A lifting picture (Σ, C,≺,B, B) realizing D.

PROCEDURE: For each homonymous clump K, perform homonymous re-

cursion (that is, Algorithm 1) on K, to get a lifting picture LK = (Σ, CK ,≺

,BK , BK).

For each heteronymous ladder S, represent S as a list L(S). Choose a

heteronymous ladder T0, and let Z0 = L(T0). If this is the only heteronymous

ladder, we’re done. Otherwise, choose another heteronymous ladder U . Let

T1 = T0∪U . Compute Z1 = GeneralMerge(Z0, L(U)). Continue in this fash-

ion until all heteronymous ladders are merged. Let Z = z0, w
Z
1 , z1, . . . , wn, zn

be the resulting list.

Now construct the lifting picture. LetK be the set of homonymous clumps

in D. The set C of branching arcs is ∪K∈KCK . The order ≺ is given by the

order on each CK and the ordering on K provided by Z. The bigon diagram

B consists of the homonymous subdiagrams Bz1 , . . . , Bzn computed in the

first part of the procedure. Bzi and Bzi+1
are separated by a heteronymous

arc with weight wZi . Return (Σ, C,≺,B, B).

Theorem 3. Let D be a maximal weighted arc diagram on a substrate Σ.

Then D is realizable if and only if algorithm 6 finishes without raising an

exception, and if it returns L = (Σ, C,≺,B, B), then L realizes D.

Proof. Suppose Algorithm 6 returns L = (Σ, C,≺,B, B). Then by Lemma

4, each maximal homonymous subdiagram B′ of B lifts to a unique homony-

mous clump D′ in D. Since the algorithm finished without error, it follows

43



from Theorem 1 that B′ realizes D′. It now follows from the proof of The-

orem 2 and Lemma 5 that the heteronymous arcs of B lift to exactly the

heteronymous arcs of D, and that they get the correct weight.

Now, suppose that D is realizable. By Proposition 10, we may assume D

is realized by a lifting picture with connected branching. Then by Lemma 4,

each homonymous clump of D is realizable as a homonymous diagram in its

own right, so homonymous recursion will succeed on each clump. Similarly,

it follows from the proof of Theorem 2 that GeneralMerge must succeed in

merging all the heteronymous ladders of D. So algorithm 6 finishes without

error when applied to D.
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