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Preface 

This dissertation takes the form of three publishable manuscripts (Chapters 2-4). This 

document was formatted in accordance with the requirements of the Graduate School at Brown 

University. 

 Chapter 1 is an introduction of the significance, rationale, and specific aims of the 

research conducted in the following chapters.  

 Chapter 2 is a version of the manuscript titled “Maternal Bacterial Infection during 

Pregnancy and Offspring’s Risk of Psychoses: Variation by Severity of Infection and Offspring 

Sex,” that is currently under revision at the American Journal of Psychiatry.  

 Chapter 3 is a version of the manuscript titled “Effects of Prenatal Bacterial Infection on 

Cognitive Performance in Early Childhood: Joint Inverse Probability Weighted Adjustment for 

Treatment and Censoring.” This manuscript is currently in preparation for submission.   

 Chapter 4 is a version of the manuscript titled “Neurodevelopmental Impact of Prenatal 

Immune Activation on Memory Circuitry Structure in Early Midlife Using Structural Covariance 

Modeling Approach.” This manuscript is also in preparation for submission. This project was 

supported by the Carney Institute for Brain Science at Brown University. 
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Chapter 1: Introduction 
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Across studies that use household-based survey samples, clinical diagnostic interviews, 

and medical records, estimates of the life-time prevalence of schizophrenia and related psychotic 

disorders in the U.S. range are approximately 3% (1). Despite their relatively low prevalence, 

psychotic disorders are associated with significant health, social, and economic burden. 

Approximately half of individuals with schizophrenia have co-occurring mental conditions 

including anxiety, depression, and addiction (2) as well as medical conditions including heart 

disease, liver disease, diabetes, and premature mortality (3). For this reason, financial costs 

associated with schizophrenia and related psychoses are disproportionately high relative to other 

chronic mental and physical illnesses (4).  

Schizophrenia and related psychoses are characterized by delusions, hallucinations, 

disorganized speech, motor impairment, and cognitive impairments (5). Although symptoms 

typically start in late adolescence or early adulthood, psychotic illnesses are often viewed from a 

developmental perspective. In its simplest form, this model postulates that genes involved in 

neurodevelopment and environmental insults in early life lead to disruptions in brain 

development, which in turn predisposes to the later onset of psychosis (6,7). For example, subtle 

cognitive impairment and unusual behaviors sometimes appear in childhood, and persistent 

presence of multiple symptoms represent a later stage of the disorder (8–10). This perspective 

fuels the hope that early interventions will improve or prevent the course of psychotic disorders 

which are often severely disabling if left untreated.  

Among a very limited number of potentially modifiable risk factors for psychotic 

disorders, maternal infection during pregnancy has been repeatedly associated with increased 

risk for schizophrenia (11).While epidemiologic and preclinical studies have repeatedly 

documented maternal viral infection during pregnancy as a putative risk factor, there is a relative 
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paucity of research on bacterial infection. In fact, bacterial infections are highly prevalent as a 

result of physiological changes and immune suppression during pregnancy, yet they are often 

left untreated in antenatal care settings due to their lack of apparent symptoms (12). However, 

such infections can pose a significant threat to pregnancy and healthy fetal development (13,14). 

Moreover, they may lead to severe neurodevelopmental consequences—such as mental 

retardation (15,16). Despite a plethora of research on the immediate impact of gestational 

bacterial infection on perinatal health, long-term neuropsychiatric consequences remain unclear. 

The first chapter of this dissertation evaluates the potential etiologic relationship 

between prenatal bacterial infection and adult psychosis in adulthood—which may vary by 

severity of infectious exposure and offspring sex. These findings could be an important first step 

to motivating large-scale national register investigation of this type of research question and 

raise awareness of the potential neurodevelopmental consequences of prenatal bacterial 

infection. If replicated, they would also call for public health and clinical efforts that focus on 

preventing and managing bacterial infection among pregnant women and ultimately lower the 

burden of neurodevelopmental disorders across the lifespan.  

The second chapter replicates and expands the findings from the first chapter by 

assessing the harmful effects of prenatal bacterial infection on cognitive outcomes in childhood 

that may precede the onset of psychotic illness. With this outcome, we had opportunities to 

address an additional potential etiologic component—such as gestational timing of exposure—

and refine our etiologic model connecting prenatal bacterial infection and subsequent 

neurodevelopmental disorders. Furthermore, we address the concerns of potential confounding 

and selection bias that are inherent to non-randomized, longitudinal follow-up studies using a 
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combination of inverse probability of treatment and censoring weights and demonstrate the 

utility of this analytic technique when examining long-term outcomes of prenatal insults.   

The third chapter utilizes a covariance modeling approach with structural magnetic 

resonance imaging (sMRI) scans to explore the putative link between prenatal bacterial infection 

and adult psychosis. Neurobiological research on schizophrenia and related psychoses used to 

focus on single brain regions that were thought to contain the cognitive and emotional functions 

disrupted by the disease. The focus has since shifted to the interactions between specific brain 

areas and, more recently, to the possibility of a global pathology affecting connections across the 

brain. Among several methods that have been proposed to investigate structural brain networks 

(17,18), techniques based on covariance modeling have been found particularly useful in several 

brain disorders (19–27). Included in this literature were recent publications of our group that 

used covariance modeling approach to examine abnormal connectivity within the working 

memory circuitry (28,29). We first replicate our group’s previous findings of abnormal 

connectivity in brain regions supporting working memory functions among psychotic cases 

compared to healthy controls. To substantiate the possible etiologic link suggested in the first 

chapter, we then explored whether disturbances in the same network of brain regions would be 

observed upon prenatal exposure to bacterial infection.  

Collectively, results from the three dissertation chapters would further scientific 

knowledge by clarifying the effects of prenatal bacterial infection that can contribute to the 

development of psychosis in adulthood. This specific knowledge would help fill gaps in the 

current understanding of the way in which bacterial infection during pregnancy increases 

offspring’s risk for cognitive impairments in childhood as well as psychotic illnesses in 

adulthood. Findings in schizophrenia research suggests that reducing the occurrence of 
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gestational infection—especially among persons with a family history of psychosis or other 

serious mental disorder—could bring about a decline in the incidence of schizophrenia and 

related psychoses (11). Therefore, interventions aimed at preventing prenatal acquisition of 

bacterial infection and decreasing its severity may serve to lower the burden of psychosis in the 

United States and across the world. Such interventions may also aid in disrupting the 

transmission of social disparities in these neurodevelopmental disorders across generations if 

they target families experiencing greater socioeconomic disadvantages and thus having an 

increased risk for contracting infections during pregnancy. 



 

6 
 

Chapter 2: Maternal Bacterial Infection during Pregnancy and Offspring’s 

Risk of Psychoses: Variation by Severity of Infection and Offspring Sex 
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2.1 Abstract 

Objective. Previous studies suggest that prenatal immune challenges may elevate offspring’s risk 

of schizophrenia and related psychoses, yet there has been limited research focused on bacterial 

infection.  

Method. This study analyzes prospectively collected data of 15,421 pregnancies enrolled 

between 1959 and 1966 in the study sites in Boston, Massachusetts and Providence, Rhode 

Island through the Collaborative Perinatal Project. The sample included 116 offspring with 

confirmed psychoses and 15,305 unaffected offspring. We estimated associations between 

maternal bacterial infection during pregnancy and psychosis risk over the subsequent 40 years, 

stratified by offspring sex and presence of reported parental mental illness, with adjustment for 

covariates.  

Results. Maternal bacterial infection during pregnancy was strongly associated with psychosis in 

offspring (adjusted odds ratio [aOR]: 1.8, 95% confidence interval [CI]: 1.2-2.7, p=0.002), which 

varied by severity of infection and offspring sex. The effect of multi-systemic bacterial infection 

(aOR: 2.9, 95% CI: 1.3-5.9, pexact=0.01) was nearly twice the effect of less severe localized 

bacterial infection (aOR: 1.6, 95% CI: 1.9-2.3, p=0.03). Males were significantly more likely to 

develop psychosis following maternal exposure to any bacterial infection during pregnancy than 

females (p=0.02).  

Conclusions. This study suggests that maternal bacterial infection during pregnancy is associated 

with an elevated risk for psychoses in offspring, an association that also varies by infection 

severity and offspring sex. These findings call for additional investigation and, if replicated, 

potentially public health and clinical efforts that focus on preventing and managing bacterial 

infection among pregnant women.  
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2.2 Introduction 

Epidemiologic and preclinical studies have identified maternal viral infection during 

pregnancy as a putative risk factor for schizophrenia (11). However, there is a relative paucity of 

research on bacterial infection (30–32). Bacterial infections—such as urinary tract infection and 

bacterial vaginosis—are highly prevalent as a result of physiological changes and immune 

suppression during pregnancy (12). Often asymptomatic, bacterial infections are largely 

overlooked and left untreated in antenatal care settings. However, such infections can pose a 

significant threat to pregnancy and healthy fetal development (13,14). Further, if untreated, they 

have been associated with severe neurodevelopmental disorders in offspring (15,16).  

Despite a plethora of research on the immediate impact of gestational bacterial infection 

on perinatal health, long-term neuropsychiatric consequences remain unclear. There have been 

only two prior prospective cohort studies that specifically investigated bacterial infection in 

relation to offspring’s risk for psychoses. One study reported that maternal sinusitis, tonsillitis, 

pneumonia, cystitis, pyelonephritis, or bacterial venereal infection was associated with a more 

than 2-fold increase in schizophrenia risk (30). This was replicated in another study specific to 

pyelonephritis (33). We previously reported that maternal immune dysregulation in general was 

associated with significantly higher risk of offspring psychoses (34,35), although this was not 

specifically tied to bacterial infection.  

Animal studies have provided robust experimental evidence explaining how maternal 

bacterial infection during pregnancy may cause lasting changes in the structure and function of 

the fetal brain (36,37). For example, murine embryos exposed to the bacterial cell wall exhibited 

abnormal proliferation of neuronal precursor cells, permanently altering their brain architecture 

(38). After birth, exposed offspring displayed behavioral, neurochemical and neurophysiologic 
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abnormalities consistent with observations in people with psychotic illness (38). Taken together, 

these experimental studies provide a strong rationale to test the hypothesis that maternal bacterial 

infection during pregnancy disrupts fetal neurodevelopment consistent with subsequent risk for 

psychoses using epidemiologic samples. Thus, we hypothesized that maternal bacterial infection 

during pregnancy increases offspring’s risk of psychoses in adulthood, and that the magnitude of 

this association varies as a function of severity of infectious exposure.  

Earlier studies, including by our group, reported associations between gestational 

immune disruption and heightened risk of psychoses among males to a greater extent than 

females (35,39–41). To replicate these findings, we hypothesized that the effect of maternal 

bacterial infection during pregnancy on the risk of psychoses would be greater among male than 

female offspring. In addition to sex differences, numerous studies have reported on strong 

heritability of psychotic illnesses (42), with a substantial overlap with other psychiatric disorders 

(43). In fact, previous studies have demonstrated the utility of family history as a proxy of 

genetic liability (42,44), and one of them has specifically investigated synergistic effects of 

familial liability to psychosis and prenatal bacterial infection on subsequent risk for 

schizophrenia (33). These findings were substantiated by a more recent study that the impact of 

parental history of mental disorder was not confined to concordant parental mental disorders but 

rather offspring are at increased risk of a wide range of mental disorders (43). Taken together, we 

hypothesized that the association between maternal bacterial infection during pregnancy and 

psychosis risk would be greater among offspring with parental history of mental illness than 

among those without.  
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2.3 Methods 

2.3.1 Study Population  

There were 16,188 live births enrolled between 1959 and 1966 at the Boston and 

Providence sites of the Collaborative Perinatal Project (CPP), currently known as the New 

England Family study (NEFS). The CPP was initiated over 50 years ago to investigate 

prospectively the prenatal and familial antecedents of pediatric, neurological, and psychological 

disorders of childhood (45). Details of the CPP and NEFS methodology are reported in previous 

publications (34,46–49). As shown in Figure 2.8.1, we excluded offspring who did not survive to 

the period of risk for psychosis (n=467), who had entirely missing record for infectious disease 

during pregnancy (n=44), who had prenatal infection of unknown etiology (n=156). In a series of 

follow-up studies of the NEFS participants, we identified those with psychoses among the 

original parents and offspring, now adults in their 50s (34,46–49). To minimize false positive 

cases of psychoses in offspring, we further excluded those who had a treatment history for 

organic or substance-induced psychoses (n=100). The final analytic sample included a total 

number of 15,421 participants. 

2.3.2 Collection and Processing of the Exposure Data 

Collection of the exposure data were jointly conducted by trained non-physician 

interviewers and physicians beginning at the time of registration for prenatal care at intervals of 

four weeks during the first 7 months of pregnancy, every two weeks at 8 months, and every week 

thereafter, using standardized protocols, forms, manuals, and codes (49). Throughout the initial 

and repeat prenatal visits, interviewers were responsible to collect of reproductive and 

gynecological history, recent and past medical history, and family health and genetic history. 

They were also responsible to conduct infectious disease and system review at the initial visit or 
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as soon thereafter as possible. Physicians were responsible to review and medically edit the data 

collected by the interviewer, collect further details on past and recent medical history, complete 

initial prenatal examination and observations, and record the date and list any diagnoses 

unrelated to prenatal care that comes to his or her attention. Medical and lay editing was 

subsequently carried out in conjunction with participant’s complete hospital records by the 

obstetric coordinator or a board-qualified obstetrician. Lastly, the entire study record was 

summarized together with complete hospital record no later than 6 months after termination of a 

given pregnancy. 

2.3.3 Ascertainment of Exposure Status  

The primary exposure variable included all bacterial infections that occurred during 

pregnancy, defined as the time period between the estimated date of conception and the end of 

the third stage of labor. Infections that pertained to more than one major organ system were 

defined as multi-systemic infections (e.g., sepsis), whereas those specifically affecting one 

system (e.g., vaginitis) were defined as localized infections. There were a total of 399 multi-

systemic and 3,201 localized infections during pregnancy. Localized bacterial infections 

included: tuberculosis (n=8), pneumonia (n=83), syphilis (n=66), gonorrhea (n=15), kidney, 

ureter, and bladder (KUB) infection (n=1,203), and vaginitis (n=2,136).  

2.3.4 Assessment of Offspring with Schizophrenia and Related Psychoses 

Cohort members with psychosis were identified between the ages of 32 and 39 through a 

systematic follow-up of the entire New England cohorts of the CPP from 1997 to 2003. The 

parents and offspring with history of psychiatric hospitalization and/or possible psychotic and 

bipolar illness were identified from the following sources: (a) record linkages with public 

hospitals, mental health clinics, and the Massachusetts and Rhode Island Departments of Mental 
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Health; (b) several follow-up and case-control studies nested within the larger New England 

cohort involving direct interviews; (c) reports from participants in these interview studies of  

family members with a history of psychotic or bipolar symptoms or diagnosis. Adult offspring 

with major psychoses within the New England cohorts were identified through a 2-stage 

diagnostic assessment procedure. In stage 1, 249 individuals with possible psychotic illness were 

identified through systematic follow-up and subsequently diagnosed through administration of 

the Structured Clinical Interview for DSM-IV Axis I Disorders (50) (n=173) or review of 

medical charts alone (n=76). Based on interview data and medical record review, trained PhD- 

and MD-level diagnosticians then completed best-estimate consensus diagnoses according to 

DSM-IV criteria for life time prevalence of psychotic and other psychiatric disorder (51). A total 

of 116 adult offspring were determined to have a non-organic psychotic disorder including 

schizophrenia disorders (n=52; schizophrenia, schizoaffective depressed type), affective 

psychoses (n=53; schizoaffective bipolar, bipolar with psychotic features, major depressive 

disorder with psychosis), and other non-affective psychoses (n=11; delusional disorder, brief 

psychosis, non-affective psychoses type not specified) (34). Human subject’s approval was 

granted by institutional review boards at Harvard University, Brown University, and local 

psychiatric facilities. Written consent was obtained from all interviewed subjects, and they were 

compensated for their participation. 

2.3.5 Covariates  

Covariates included maternal race/ethnicity, study site, years of maternal education, 

parental socioeconomic index, and year and season of birth. A socioeconomic index, which as 

adapted from the Bureau of the Census and derived from the education and occupation of the 

head of household along with household income was assigned to each pregnancy; this 
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continuous measure was later categorized based on quartiles (52). We further adjusted for 

reported parental history of mental illness (when we did not test for its effect modification) as a 

known risk factor for schizophrenia (43) that has also been found to be associated with infections 

(53). Previously, our group has reported that psychiatric history of both parents may 

independently predict offspring’s risk for psychoses (54). In this study, we operationalized 

genetic susceptibility to psychiatric disorder by aggregating the information collected from the 

mothers about their own as well as their spouse’s history of nervous problem requiring 

hospitalization, psychiatric treatment, or other therapy (i.e., clinically significant nervous 

problem) at two timepoints: during pregnancy and the offspring’s age 7 visit. The overall rate of 

reported parental history of mental illness was 11%. Additionally, we adjusted for maternal 

exposure to viral infection during pregnancy to address potential confounding by concomitant 

viral infection. Lastly, we controlled for offspring’s participation in the final follow-up of the 

Collaborative Perinatal Project study—conducted at offspring’s age of 7—given its strong 

relationship with the likelihood of being identified as a psychotic case in adulthood.   

2.3.6 Statistical Analyses  

We used Chi-square and t-tests (2-sided) to compare the demographic and perinatal 

characteristics of: (a) the exposed and unexposed mothers, and (b) the cases and non-cases. 

Logistic regression analyses were used to estimate odds ratios of psychoses for maternal 

exposure to any and localized bacterial infections during pregnancy. Logistic regression models 

were adjusted for maternal neurologic/psychiatric conditions during pregnancy, maternal 

education, socioeconomic index, maternal race/ethnicity, study site, season and year of birth, 

parental history of mental illness, study participation at age 7, and concomitant viral infection 

during pregnancy. Exact logistic regression analyses were used to estimate the effects of multi-
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systemic bacterial infection given the small number of cases exposed to this type of infection. In 

these models, we could only adjust for few covariates that are reported to be key confounders in 

the hypothesized relationship and had strong statistical associations with both the exposure and 

outcome in the analytic sample (see Tables 1 and 2). Lastly, we examined effect modification of 

the hypothesized associations by offspring sex alone and presence of parental mental illness 

alone using Wald statistics. All analyses were conducted using SAS version 9.4 (55). 

2.3.7 Sensitivity Analyses  

Given that instances of maternal bacterial infection during pregnancy were not all 

serologically confirmed, some may have been misclassified (i.e., false positive). If a reported 

instance of bacterial infection was accompanied by any antibacterial treatment (e.g., 

chloramphenicol, erythromycin, furadantin, penicillin, streptomycin, tetracycline) and/or a 

physician’s diagnosis, we defined this as confirmed and conducted analyses considering only 

confirmed instances of bacterial infection. Out of 15,421 cohort mothers included in the analytic 

sample, 15,327 (99.4%) had at least one of these two sources of information available to confirm 

their exposure status. We assessed the robustness of our findings to potential misclassification of 

exposure by replicating the main effects (reported in Table 2.7.3) with the confirmed instances of 

bacterial infection.  

2.4 Results  

2.4.1 Descriptive Results 

Mothers who had bacterial infections during pregnancy were more likely to be non-white, 

non-married, younger, less educated, have lower socioeconomic status, reside in Providence, 

have neurologic-psychiatric conditions during pregnancy, and report their own or their spouse’s 
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history of clinically significant nervous problems compared to mothers who had no bacterial 

infection during pregnancy (see Table 2.7.1).  

When examined with respect to psychosis status in adulthood, cases were more likely to 

have at least one parent with a clinically significant mental illness and to have participated in the 

study at the age of 7 than non-cases (see Table 2.7.2). Mothers of cases were more likely to be 

non-white, reside in Providence, have neurologic-psychiatric conditions during pregnancy, and 

be less educated than mothers of non-cases.  

2.4.2 Main Results  

Out of 15,421 cohort mothers in the analytic sample, 3,499 (23%) of them had bacterial 

infection; 399 (3%) had systemic infection, 3,191 (21%) had localized infections, and 91 (<1%) 

had both. As depicted in Table 2.7.3, maternal bacterial infection during pregnancy was 

significantly associated with psychotic illnesses among adult offspring (adjusted odds ratio 

[aOR]: 1.8, 95% confidence interval [CI]: 1.2-2.7). Multi-systemic bacterial infection was more 

strongly associated with later development of psychosis (aOR: 2.9, 95% CI: 1.3-5.9) than 

localized bacterial infection (aOR: 1.6, 95% CI: 1.1-2.3).  

As shown in Table 2.7.4, the association between prenatal exposure to any bacterial 

infection and subsequent psychosis was significantly modified by offspring sex. Males offspring 

were nearly three times more likely to develop psychoses following maternal bacterial infection 

during pregnancy whereas female offspring showed no difference in the likelihood by the 

exposure status (males: aOR: 2.6, 95% CI: 1.6-4.2; females: aOR: 1.0, 95% CI: 0.5-1.9; 

p=0.018). Similarly, males were more than twice as likely to develop psychoses compared to 

females following maternal exposure to localized bacterial infection (males: aOR: 2.1, 95% CI: 

1.2-3.4; females: aOR: 1.0, 95% CI: 0.5-1.9; p=0.084). Since there was only one female case 
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exposed to multi-systemic bacterial infection, we reported results specific to males without 

evaluating statistical significance of effect modification. Males who were prenatally exposed to 

multi-systemic infection had five times the odds of developing psychoses relative to unexposed 

males (aOR: 5.0, 95% CI: 2.0-10.7).  

As presented in Table 2.7.5, we observed somewhat greater magnitude of hypothesized 

associations among offspring with reported parental mental illness compared to those without but 

with no statistical support for effect modification. 

2.4.3 Sensitivity Analyses 

Of the 3,499 reported instances of bacterial infection, 1,785 (51%) were confirmed based 

upon treatment with antibiotics and/or medical diagnosis. Of the 399 reported instances of multi-

systemic bacterial infection, 357 (89%) were confirmed. Of the 3,191 instances of localized 

bacterial infection, 1,513 (47%) were confirmed. Using the confirmed instances of bacterial 

infection, we were able to replicate the same patterns of associations from the main analyses. As 

expected, the magnitude of the hypothesized associations was slightly increased in the sensitivity 

analyses—potentially due to the reduction of potential misclassification of exposure (see Table 

2.9.1 through Table 2.9.3). 

2.5 Discussion 

Maternal bacterial infection during pregnancy was significantly associated with 

subsequent development of schizophrenia and related psychoses among offspring. While 

localized bacterial infection predicted a 1.6-fold increase in the odds of developing psychoses in 

adulthood, multi-systemic bacterial infection predicted a nearly 3-fold increase in the odds. 

Furthermore, maternal bacterial infection was more strongly associated with the likelihood of 

developing psychosis among male than female offspring and this effect modification was 
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statistically significant for any bacterial infection (p=0.018) and nearly significant for localized 

bacterial infection (p=0.084). However, these findings need to be interpreted with caution given 

the overlapping confidence intervals of sex-specific estimates. In addition, we found no 

statistical evidence for the hypothesized effect modification by reported parental mental illness, 

possibly because our measure of parental mental illness is a limited indicator of genetic risk.  

Findings in this study underscore the potential role of maternal bacterial infection during 

pregnancy in the etiology of psychotic disorders. Maternal bacterial infection during pregnancy 

has been found to induce the production of cytokines by the maternal immune system, placenta, 

or the fetus itself (56). Our group and others found significant associations of prenatal levels of 

pro-inflammatory cytokines with offspring’s risk of schizophrenia and related psychoses 

(34,57,58) which, in a direct test, differed by sex (34). Others suggested that the effects of 

bacterial infection may not be specific to the prenatal period but that these findings implicate a 

generally increased familial susceptibility to infections—both during and outside pregnancy (59). 

Although we cannot this hypothesis this hypothesis with the CPP, future studies may examine 

the effects of bacterial infection occurring before, during, and after pregnancy and ascertain their 

temporal specificity on psychosis risk.  

2.5.1 Sex Difference in Schizophrenia and Related Psychoses  

 Our findings suggest that maternal bacterial infection during pregnancy may 

differentially affect the development of schizophrenia and related psychoses dependent on 

offspring sex. This is consistent with the long history from our group (34,60,61) and from others 

(62) investigating sex differences in psychoses relating disease risk, course, and outcome. Some 

have suggested the role of the placenta, in that the placenta of females may possess greater 

ability to adapt to fluctuating in utero environmental conditions (such as prenatal immune 
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challenges) compared with that of males (63). However, the mechanisms underlying a male-

specific vulnerability remain uncertain. Perhaps these effects could be due to reduced maternal-

fetal compatibility for male fetuses which may need to up-regulate immune-associated 

transcripts to resist an attack by the maternal immune system (64). In a study of healthy fetuses, 

males had higher levels of cytokines indicative of a Th1-type (i.e., pro-inflammatory) response 

and expression of genes involved in the immune system and inflammation (65). In contrast, 

females had higher levels of cytokines indicative of Th2-type (i.e., anti-inflammatory) response 

and expression of genes involved in immune regulation. Upon stimulation with bacterial 

endotoxin, levels of IL-1 and IL-6 were significantly higher in male fetal blood samples than in 

female fetal blood samples (66), consistent with our previous findings in maternal sera related to 

psychosis risk in males (34). Given that these pro-inflammatory cytokines have long been 

implicated in schizophrenia and related psychoses, these findings further elucidate a potential 

pathway explaining male vulnerability to psychoses with regard to maternal bacterial infection 

during pregnancy.  

2.5.2 Strengths and Limitations  

The major strength of this study is that reports of bacterial infection were obtained during 

pregnancy, and clinical diagnoses of schizophrenia and related psychoses among offspring were 

systematically gathered based on chart diagnoses and in-person structured interviews with 

participants, allowing us to investigate prospective relationships between maternal bacterial 

infection during pregnancy and offspring’s risk of psychoses.  

Our study also had some limitations. The first limitation is related to case identification 

procedures in the current study and the resulting case series. The 116 cases (0.7% of cohort) may 

not include all instances of schizophrenia and related psychoses among this cohort. In fact, our 
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group was primarily seeking to enroll the most severe cases of psychoses and the anticipated 

prevalence of this subset of psychoses was 2.4% (1). In the study design phase, we excluded 

those who had organic or substance-induced psychosis to minimize false positive cases of 

psychoses. In the analytic phase, we adjusted all statistical models for the effect of participation 

in the follow-up assessment at offspring’s age of seven—which was a strong predictor of being 

identified as a psychotic case in adulthood. Based on our previous examination of study 

participants, we conclude that this likely impacts the statistical power, but would not expect the 

completeness of ascertainment to differ in relation to prenatal infections. Owing to the limited 

power, we were not able to formally test effect modification for multi-systemic bacterial 

infection and determine whether the findings are specific to schizophrenia, non-affective 

psychosis, or other classes of psychoses.  

Nevertheless, it is important to note that cases identified through our record linkages with 

tertiary public hospitals tend to over-represent persons with greater severity of conditions, and 

lower socioeconomic status, and under-represent high-functioning cases without hospitalization. 

In contrast, cases identified through our direct follow-up and interview studies tend to over-

represent those with greater residential stability, levels of independent functioning, and 

socioeconomic status as described in our earlier publication (67). Given our use of various 

methods of case ascertainment, we do not expect extreme bias towards persons of higher or 

lower severity as both poles of psychosis severity spectrum may have been slightly over-

represented in the current study. Based on our group’s previous analyses of the considerable 

amount of information available from this longitudinal study (35), it does not seem that the 

ascertained cases differ considerably from expectations, for instance in terms of gender 

distribution, socio-economic level or family history of mental illness.   
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Another limitation pertains to the potential misclassification of exposure. Most previous 

studies have determined maternal bacterial infection during pregnancy based on maternal self-

reports or clinical records (30–32). Similarly, we also used clinical records as the primary source 

of exposure information. Since the most prevalent types of bacterial infection are often 

asymptomatic, it is likely that some occurrences were not recorded and/or more severe instances 

were included (15). Several population-based studies have employed antibiotic use as a proxy of 

bacterial infection (68). They demonstrated that a focus on antibiotic prescription and utilization 

allows for an ascertainment of a wide range of bacterial infections with different severity and 

potentially reduces false negatives. Inspired by this approach, we identified a subset of reported 

instances of bacterial infection that had corresponding medical diagnosis and/or treatment history 

with antibacterial medications and conducted sensitivity analyses. Possibly due to the reduction 

of non-differential misclassification of exposure, the estimated effects of prenatal bacterial 

infection from the sensitivity analyses were slightly greater in magnitude than those from the 

main analyses.  

Lastly, it is essential to note the possibility of other mechanisms that may interact with 

the biological mechanism that was examined in the current study. In our analytic sample, 

prenatal bacterial infection was associated with several socioeconomic covariates, highlighting 

the importance of social factors in determining the occurrence of exposure. In fact, our group has 

previously reported that socioeconomic disadvantages during pregnancy—measured by parental 

education, income, occupation, and family structure—may significantly increase the risk for 

neurological abnormalities in offspring (69). In the subsequent study, we reported that this 

association could be partially explained by socioeconomically driven variations in gestational 

immune activity—which was quantified using archived maternal sera collected during pregnancy 
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(70). In future studies, we may investigate the joint contribution of bacterial infection and 

socioeconomic disadvantage during pregnancy and potentially delineate a more comprehensive 

etiologic mechanism for schizophrenia and related psychoses. 

2.6 Conclusions  

There is considerable evidence that gestational viral infections during pregnancy have 

adverse consequences in offspring (11). Our study was consistent with this and extended 

previous work by demonstrating significant impact of maternal bacterial infection during 

pregnancy on later risk for schizophrenia and related psychoses, which was particularly 

dependent on the severity of infection and offspring sex. These findings could be an important 

first step to motivating large-scale national register investigation of this type of research 

question. Larger samples would provide opportunities to address some of the crucial components 

on the etiologic pathway from prenatal bacterial infection and psychosis, such as gestational 

timing of exposure, sex-specific transmission of psychotic illness, specific subtypes of psychosis, 

and finer categorization of infectious exposure. If replicated, they would also call for public 

health and clinical efforts that focus on preventing and managing bacterial infection among 

pregnant women. It is crucial to evaluate both short- and long-term consequences associated with 

different types of bacterial infection and antibacterial medication to avoid untoward effects on 

the mother and fetus (38,71).  
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2.7 Tables  

Table 2.7.1 Descriptive statistics by maternal bacterial infection during pregnancy. 

Characteristics Exposed Unexposed p 

Total N (%) 3,499 (22.7) 11,922 (77.3)  

Offspring sex    

  Male 1,755 (22.3) 6,101 (77.7) 
0.52 

  Female 1,743 (23.0) 5,819 (77.0) 

Maternal race/ethnicity     

  White 2,931 (22.0) 10,365 (78.0) 
<0.0001 

  Non-white 568 (26.7) 1,557 (73.3) 

Maternal marital status    

  Married 3,015 (21.9) 10,755 (78.1) 
<0.0001 

  Non-married 484 (29.4) 1,165 (70.6) 

Maternal neurologic-psychiatric  

conditions during pregnancya    

  Present 619 (28.7) 1,541 (71.3) 
<0.0001 

  Not present 2,859 (23.7) 9,197 (76.3) 

Parental history of mental illness (PMI)     

  Present 480 (27.5) 1,266 (72.5) 
<0.0001 

  Not present 2,964 (22.1) 10,410 (77.9) 

Season of birth    

  Spring  856 (22.6) 2,927 (77.4) 
0.92 

  Summer/Fall/Winter 2,955 (22.7) 8,995 (77.3) 

Study site    

  Boston 2,576 (22.1) 9,096 (77.9) 
0.0012 

  Providence 923 (24.6) 2,826 (75.4) 

Participation in the last follow-up of the Collaborative Perinatal Project study 

Yes 2,714 (22.8) 9,173 (77.2) 
0.44 

No  785 (22.2) 2,749 (77.8) 

Socioeconomic index    
 

1st quartile (Lowest) 1,033 (25.4) 3,027 (74.6) 

<0.0001 
2nd quartile 967 (23.7) 3,089 (76.3) 

3rd quartile 731 (21.7) 2,635 (78.3) 

4th quartile (Highest) 670 (19.9) 2,697 (80.1) 

Viral infection during pregnancy     

Present 238 (24.8) 721 (75.2) 
0.10 

Not present  3,291 (22.6) 11,201 (77.4) 

Maternal age, mean (sd) 24.9 (5.9) 25.2 (5.9) 0.017 

Years of maternal education, mean (sd) 11.1 (2.5) 11.4 (2.5) <0.0001 

Year of birth, mean (sd) 1962.8 (1.9) 1962.6 (1.9) <0.0001 
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Table 2.7.2 Descriptive statistics by adult psychosis. 

Characteristics Psychotic Non-psychotic p 

Total N (%) 116 (0.8) 15305 (99.2)  

Offspring sex    

  Male 68 (0.9) 7,788 (99.1) 
0.25 

  Female 48 (0.6) 7,514 (99.4) 

Maternal race/ethnicity     

  White 89 (0.7) 13,207 (99.3) 
0.0029 

  Non-white 27 (1.3) 2,098 (98.7) 

Maternal marital status    

  Married 104 (0.8) 13,666 (99.2) 
0.98 

  Non-married 12 (0.7) 1,637 (99.3) 

Maternal neurologic-psychiatric  

conditions during pregnancy    

  Present 26 (1.2) 2,134 (98.8) 
0.017 

  Not present 85 (0.7) 11,971 (99.3) 

Parental history of mental illness (PMI)    

  Present 27 (1.6) 1,719 (98.4) 
<0.001 

  Not present 88 (0.7) 13,277 (99.3) 

Season of birth    

  Spring  27 (0.7) 3,756 (99.3) 
0.75 

  Summer/Fall/Winter 89 (0.8) 11,549 (99.2) 

Study site    

  Boston 78 (0.7) 11,594 (99.3) 
0.033 

  Providence 38 (1.0) 3,711 (99.0) 

Participation in the last follow-up of  

the Collaborative Perinatal Project study  

 

Yes 101 (0.9) 11,786 (99.1) 
0.010 

No  15 (0.4) 3,519 (99.6) 

Socioeconomic index   
 

1st quartile (Lowest) 33 (0.8) 4,027 (99.2) 

0.063 
2nd quartile 37 (0.9) 4,009 (99.1) 

3rd quartile 30 (0.9) 3,336 (99.1) 

4th quartile (Highest) 14 (0.4) 3,351 (99.6) 

Viral infection during pregnancy     

Present 7 (0.7) 952 (99.3) 
0.93 

Not present  109 (0.8) 14,353 (99.2) 

Maternal age, mean (sd) 25.2 (5.9) 25.1 (5.9) 0.83 

Years of maternal education, mean (sd) 10.7 (2.0) 11.4 (2.5) 0.0029 

Year of birth, mean (sd) 1962.4 (2.0) 1962.7 (1.9) 0.10 
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Table 2.7.3 Associations between maternal bacterial infection during pregnancy and 

offspring’s risk for schizophrenia and related psychoses in adulthood. 

Exposure type ncase
 

Unadjusted   Adjusted   

OR (95% CI) p OR (95% CI) p 

Any bacterial infection 43 2.0 (1.4-3.0) <0.001 1.8 (1.2-2.7)a 0.002 

Localized bacterial infection 36 1.7 (1.1-2.5) 0.012 1.6 (1.1-2.3)a 0.027 

Multi-systemic bacterial infection 9 3.2 (1.4-6.4)b 0.006 2.9 (1.3-5.9) b,c 0.011 

Abbreviations: OR, odds ratio; CI: confidence interval. 

 

                                                           
 Number of psychotic cases exposed to a given type of bacterial infection during pregnancy.  
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Table 2.7.4 Stratified analyses by offspring sex. 

Exposure type 
ncase

 Unadjusted OR (95% CI) Adjusted OR (95% CI) 

Male Female Male Female p Male Female p 

Any bacterial infection 31 12 2.9 (1.8-4.8) 1.1 (0.6-2.1) 0.019 2.6 (1.6-4.2)a 1.0 (0.5-1.9)a 0.018 

Localized bacterial infection 25 11 2.2 (1.4-3.7) 1.1 (0.5-2.1) 0.085 2.1 (1.2-3.4)a 1.0 (0.5-1.9)a 0.084 

Multi-systemic bacterial infection  8 1 5.3 (2.2-11.3)b - - 5.0 (2.0-10.7)b,c - - 

Abbreviations: OR, odds ratio; CI: confidence interval.  

 

Table 2.7.5 Stratified analyses by parental history of mental illness (PMI). 

Exposure type 
ncase* Unadjusted OR (95% CI)  Adjusted OR (95% CI)c 

PMI+ PMI- PMI+ PMI- p PMI+ PMI- p 

Any bacterial infection 13 29 2.5 (1.2-5.3) 1.7 (1.1-2.7) 0.73 2.3 (1.1-5.0)a 1.6 (1.0-2.6)a 0.42 

Localized bacterial infection 11 24 2.1 (1.0-4.6) 1.4 (0.9-2.3) 0.41 2.0 (0.9-4.5)a 1.4 (0.9-2.2)a 0.41 

Multi-systemic bacterial infection 4 5 4.5 (1.5-13.4)b 2.4 (1.0-6.0)b 0.63 4.6 (1.5-13.8)b,c 2.4 (1.0-5.9)b,c 0.58 

Abbreviations: OR, odds ratio; CI: confidence interval; PMI, parental mental illness. 

 

  

                                                           
 Number of psychotic cases exposed to a given type of bacterial infection during pregnancy.  
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2.8 Figures  

Figure 2.8.1 Selection of analytic sample from the New England (NE) cohorts of the Collaborative Perinatal Project (CPP). 
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n=15,305 
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2.9 Supplementary Materials 

Table 2.9.1 Sensitivity analysis for the hypothesized associations using confirmed instances of bacterial infection. 

Maternal exposure during 

pregnancy  

  Unadjusted Adjusted 

ncases
 OR (95% CI) p OR (95% CI) p 

Any bacterial infection 26 2.4 (1.5-3.7) <0.001 2.1 (1.3-3.2)a 0.002 

Localized bacterial infection 19 1.9 (1.1-3.1) 0.016 1.7 (1.0-2.8)a 0.056 

Multi-systemic bacterial infection 9 3.6 (1.6-7.2) 0.003 3.3 (1.4-6.5)b 0.006 

Abbreviations: OR, odds ratio; CI: confidence interval; PMI, parental mental illness. 

 

Table 2.9.2 Sensitivity analyses for the stratified analyses by offspring sex. 

Maternal exposure during 

pregnancy 

ncases* Unadjusted OR (95% CI) Adjusted OR (95% CI) 

Male Female Male Female p Male Female p 

Any bacterial infection  20 6 3.2 (1.8-5.7) 1.1 (0.4-2.6) 0.037 2.9 (1.6-5.2)a 0.9 (0.4-2.3)a 0.034 

Localized bacterial infection 14 8 2.3 (1.2-4.3) 1.0 (0.4-2.7) 0.18 2.0 (1.1-3.9)a 0.9 (0.4-2.4)a 0.18 

Multi-systemic bacterial infection 8 1 6.1 (2.5-13.1) - - 5.4 (2.2-11.8)b - - 

Abbreviations: OR, odds ratio; CI: confidence interval. 
 

Table 2.9.3 Sensitivity analyses for the stratified analyses by parental mental illness (PMI). 

Maternal exposure during 

pregnancy 

ncases* Unadjusted OR (95% CI)  Adjusted OR (95% CI) 

PMI+ PMI- PMI+ PMI- p PMI+ PMI- p 

Any bacterial infection 7 18 2.5 (1.0-6.2) 2.0 (1.1-3.4) 0.70 2.2 (0.9-5.6)a 1.9 (1.1-3.2)a 0.75 

Localized bacterial infection 5 13 1.8 (0.7-5.1) 1.6 (0.8-2.9) 0.79 1.7 (0.5-4.6)b 1.5 (0.8-2.8)b 0.86 

Multi-systemic bacterial infection 4 5 5.0 (1.2-15.2) 2.7 (0.9-6.7) 0.41 5.3 (1.3-16.4)b 2.7 (0.8-6.6)b 0.36 

Abbreviations: OR, odds ratio; CI: confidence interval; PMI, parental mental illness. 

 

                                                           
 Number of psychotic cases exposed to a given type of bacterial infection during pregnancy.  
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Chapter 3: Effects of Prenatal Bacterial Infection on Cognitive Performance 

in Early Childhood: Joint Inverse Probability Weighted Adjustment for 

Treatment and Censoring 
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3.1 Abstract  

Background. Long-term effects estimated from observational studies are susceptible to biases 

due to confounding and loss to follow-up; however, analytic techniques available to 

simultaneously mitigate both biases remain underutilized. We demonstrate the joint use of 

inverse probability treatment and censoring weights to evaluate the effects of prenatal bacterial 

infection on postnatal cognitive performance.  

Methods. We applied inverse probability weighting for both treatment and censoring to estimate 

the causal effects of maternal bacterial infection during pregnancy on IQ scores measured using 

the Wechsler Intelligence Scale for Children at age 7. Participants (n=15,670) were members of 

a population-based pregnancy cohort recruited in the Boston and Providence sites of the 

Collaborative Perinatal Project between 1959 and 1966. We calculated Average Treatment 

Effects (ATE) and Average Treatment effects on the Treated (ATT) using propensity weights 

estimated via generalized boosted models.  

Results. ATE- and ATT-weighted mean IQ scores were lowest among offspring exposed to 

multi-systemic bacterial infection during pregnancy and highest for those unexposed. The effects 

of maternal bacterial infection were greater among male offspring, particularly on performance 

IQ scores. Offspring who were exposed to multi-systemic bacterial infection in the third 

trimester had the largest decreases in full-scale, verbal, and performance IQ scores at age 7 

compared to those unexposed.  

Conclusions. Our study suggests causal links between prenatal bacterial infection and childhood 

cognitive impairments, which depend on severity and gestational timing of infectious exposure 

as well as offspring sex. Public health intervention targeting bacterial infection among pregnant 

women may have the potential to enhance the cognitive development of offspring.  
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3.2 Introduction 

The enduring effects of prenatal insults have long been known, perhaps best illustrated by 

the adverse effects of prenatal exposure to toxic agents—such as infection—on postnatal 

physical, behavioral, and neurocognitive outcomes (72–74). Pregnant women with low levels of 

socioeconomic status and education, and of single marital status, are disproportionately exposed 

to such effects as a result of their high levels of  psychosocial stress, high-risk sexual activity 

patterns, and limited access to health care resources (75,76). Socioeconomically disadvantaged 

individuals are also more likely to drop out from long-term follow-up studies (77). For this 

reason, exposure effects in neurodevelopmental trajectories observed in nonrandomized studies 

are subject to bias due to both measured and unmeasured confounding as well as selection bias 

(78–80). In the current study, we addressed some of these concerns using a combination of 

inverse probability treatment and censoring weights and demonstrated the utility of this analytic 

approach when examining postnatal consequences of prenatal exposures (seeSupplementary 

Figure 3.10.1).  

Bacterial infections, including urinary tract infection and bacterial vaginosis, are highly 

prevalent during pregnancy due to physiological changes and immune suppression (12). Often 

asymptomatic, these infections may be overlooked and left untreated in antenatal care settings, 

potentially posing a significant threat to pregnancy and healthy fetal development (13,14). In 

particular, prenatal bacterial infections have been associated with severe neurodevelopmental 

disorders such as autism, and psychosis (30–33,81,82). While a hallmark feature shared by these 

neurodevelopmental disorders is the presence of childhood cognitive deficits, the relationship 

between cognitive function and prenatal bacterial infection remains unclear. Hence, we sought to 

examine whether the presence of maternal bacterial infection during pregnancy is associated with 
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lower cognitive performance at age 7, and also whether the strength of this association varies as 

a function of the severity of infectious exposure. Given the previous findings of our group 

(83,84) and others (85) on sexually dimorphic cognitive abilities in healthy and psychotic 

individuals, we hypothesized that the effects of gestational bacterial infection on cognitive 

deficits at age 7 are more pronounced among males than females.   

There is accumulating epidemiologic as well as preclinical evidence suggesting that 

vulnerability to infection-mediated disturbances in fetal brain development and postnatal 

psychopathology varies with gestational timing of infectious exposure (86,87). First, the 

physiological changes experienced by the mother during pregnancy can influence the pattern of 

immune response (88,89). Second, it is expected that the vulnerability of the fetus to infection-

mediated neurodevelopmental abnormalities critically depends on the stage of fetal development. 

In relation to schizophrenia, there is a debate over the suggestion that the second trimester 

exposure confers the maximal risk in offspring. To evaluate if this applies to earlier and less 

severe outcomes, such as cognitive deficits in childhood, we examined exposure to bacterial 

infection in which trimester of pregnancy would predict the greatest impairment in childhood 

cognition.  

3.3 Methods  

3.3.1 Participants 

Participants were offspring of 15,670 singleton pregnancies enrolled during pregnancy 

(1959-1966) in the Massachusetts and Rhode Island cohorts of the Collaborative Perinatal 

Project (CPP), known as the New England Family Study (NEFS). Study psychologists evaluated 

these offspring’s neurocognitive function at ages 4, 8, and 12 months, and 4 and 7 years using a 
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strict protocol and extensive quality controls (90). Details of the CPP and NEFS methodology 

are reported in previous publications (34,46–48,52).  

3.3.2 Exposure Assessment Procedures 

Collection of the exposure data were jointly conducted by trained non-physician 

interviewers and physicians beginning at the time of registration for prenatal care at intervals of 

four weeks during the first 7 months of pregnancy, every two weeks at 8 months, and every week 

thereafter, using standardized protocols, forms, manuals, and codes (49). Throughout the initial 

and repeat prenatal visits, interviewers were responsible for collection of reproductive and 

gynecological history, recent and past medical history, and family health and genetic history. 

They were also responsible to conduct infectious disease and system review at the initial visit or 

as soon thereafter as possible. Physicians were responsible for reviewing and medically editing 

the data collected by the interviewer, collecting further details on past and recent medical history, 

completing initial prenatal examination and observations, and recording the date and list any 

diagnoses unrelated to prenatal care that comes to his or her attention. Medical and lay editing 

was subsequently carried out in conjunction with the participant’s complete hospital records by 

the obstetric coordinator or a board-qualified obstetrician. Lastly, the entire study record was 

summarized together with the complete hospital record no later than 6 months after termination 

of a given pregnancy. 

The primary exposure variable included all bacterial infections that occurred during 

pregnancy, defined as the time period between the estimated date of conception and the end of 

the third stage of labor. Infections that pertained to more than one major organ system were 

defined as multi-systemic infections (e.g., sepsis), whereas those specifically affecting one 

system (e.g., vaginitis) were defined as localized infections. There were a total of 399 multi-
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systemic and 3,201 localized infections during pregnancy. Localized bacterial infections 

included: tuberculosis (n=8), pneumonia (n=83), syphilis (n=66), gonorrhea (n=15), kidney, 

ureter, and bladder (KUB) infection (n=1,203), and vaginitis (n=2,136).  

Data on the timing of infection were available for multi-systemic bacterial only. We 

identified women with multi-systemic bacterial infections that took place in the first, second, and 

third trimester. Considering those who were exposed across multiple trimesters, we counted the 

earliest exposure to multi-systemic bacterial infection for a given pregnancy.  

3.3.3 Variables in Propensity Score Model  

The following measures were included in the propensity score model based on their 

demonstrated association with prenatal exposure to bacterial infection and/or childhood cognitive 

development: offspring sex, maternal age, maternal marital status, maternal race/ethnicity, 

socioeconomic index, and parental mental illness. Socioeconomic index in the CPP is an index 

based upon education-level of the head of household, occupation of head of household, and total 

family income (52). Parental mental illness was defined as having maternal or paternal history of 

treated psychiatric, substance, or neurological disorders (reported by mothers on their enrollment 

and at offspring’s age of seven in the CPP). 

3.3.4 Outcome Measures 

At age 7, seven subtests from the Wechsler Intelligence Scale for Children (WISC) were 

administered and used to derive a full-scale IQ estimate. The vocabulary, comprehension, 

information, and digit span subtests were used to derive a verbal IQ estimate. The picture 

arrangement, block design, and digit symbol coding subtests were used to derive a performance 

IQ estimate. The full-scale IQ was calculated based on a combination of these two scores. The 

IQ data have been presented previously (67,69,91,92).  
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3.3.5 Statistical Analyses  

We summarized the proportion of participants that were exposed to either localized, 

multi-systemic, or no bacterial infection during pregnancy and examined differences in baseline 

demographic and parental psychiatric history characteristics by exposure status. One-way 

ANOVA was used to test for differences in continuous variables. Chi-square tests were used to 

test for differences in categorical variables, one factor level at a time.  

3.3.6 Propensity Score Modeling  

Differences in crude IQ scores by exposure status do not account for unequal probability 

of being exposed to different types and gestational timing of bacterial infection during pregnancy 

(93). Inverse Probability of Treatment Weighting (IPTW) corrects raw IQ scores for participants’ 

differential propensity to be exposed to certain type of bacterial infection at different timing of 

pregnancy, with the intent of approximating a randomized experiment (94). More than one 

weighting scheme is possible, each leading to different causal estimates (95).  

One reweighting approach focuses on estimating Average Treatment Effects (ATEs) for 

all subjects, regardless of their actual exposure level (96). For example, the ATE of localized 

bacterial infection (hereafter, localized) versus no bacterial infection at all (hereafter, none) is the 

difference in mean IQ scores of the entire sample had all of its members been exposed to 

localized bacterial infection during pregnancy versus no bacterial infection at all. Estimating this 

effect requires weighting the members of the localized and none groups, so that their covariate 

distributions resemble that of the whole sample. After weighting, each group has similar 

propensity to be exposed to bacterial infection during pregnancy. The weighted differences in 

mean IQ scores between the two exposure groups then serve as estimates of the ATE of localized 

infection. We estimated these weights non-parametrically using Generalized Boosted Model 
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(GBM) as implemented in the GBM package (97), thus gaining robustness to possible 

misspecification of the propensity score model.  

A second reweighting approach is based on estimating Average Treatment Effects on the 

Treated (ATTs) separately for each exposure group (96). When multivalued treatments are 

involved, it is recommended that separate GBMs be fit to each pair of groups involved in the 

comparison of interest, ignoring any remaining groups (95). Unit weights are assigned to target 

group members, while those in the reference group have their mean IQ scores weighted by the 

odds that they would have exhibited the target behavior. Individuals in the reference group with 

covariate values common in their own group alone are down-weighted, whereas those with 

values common in the target group are up-weighted.  

Weighted estimates calculated under an ATT approach allow one to make group-specific 

inferences and to gauge the effect of moving study participants from one exposure group to 

another. However, the findings may not apply to all participants involved in a pairwise 

comparison, as near-zero propensity scores would imply that certain subjects are unlikely to ever 

experience the target exposure. Near-zero propensity scores correspond to near-infinite weights 

and have the potential to drastically reduce the effective sample size of the reference group 

involved in each comparison, defined as the size of a simple random sample with same standard 

error as the ATT-weighted mean. For example, the ATT of localized bacterial infection versus 

no bacterial infection at all in the localized group is the difference between (i) the actual mean IQ 

score of the localized group, and (ii) the mean IQ score of this same group, had none of its 

member been prenatally exposed to bacterial infection at all. Estimating this effect requires 

weighting the none group, so that its covariate distribution resembles that of the localized group; 

the mean IQ score in the weighted none group then serves as an estimate for the mean IQ of the 
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localized group under no exposure. For both ATE and ATT analyses, individual GBM fits were 

weighted combinations of  up to 10,000 trees of depth two, capturing both main effects and 2-

way interactions in model covariates (98). A shrinkage parameter of 0.01 was used for 

smoothing, and absolute standardized bias was used for selecting the number of trees providing 

the best covariate balance.  

 Given the longitudinal nature of the NEFS, the dropout rate at age 7 was 23.2%—which 

created a large number of missing observations in the outcome variables. Inverse Probability of 

Censoring Weighting (IPCW) adjusts raw IQ scores for selection bias and dropout in the context 

of longitudinal follow-up study. It inversely weights regression analyses by the probability of not 

dropping out and effectively inflates the impact of underrepresented participants (99–101). This 

way, we can observe associations that would have been observed if all participants had stayed in 

the study. We estimated the final inverse probability weights by multiplying IPCW with IPTW 

(102). 

3.3.7 Outcome Modeling  

At age 7, seven subtests from the Wechsler Intelligence Scale for Children (WISC) were 

administered and used to derive a full-scale IQ estimate. The vocabulary, comprehension, 

information, and digit span subtests were used to derive a verbal IQ estimate. The picture 

arrangement, block design, and digit symbol coding subtests were used to derive a performance 

IQ estimate. The full-scale IQ was calculated based on a combination of these two scores. The 

IQ data have been presented previously (67,69,91,92).  
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3.4 Results  

3.4.1 Description of the Study Sample 

Among 15,670 study participants, 12,113 (77.3%) were exposed to no bacterial infection, 

3,155 (20.1%) were exposed to localized bacterial infection, and 402 (2.6%) were exposed to 

multi-systemic bacterial infection (see Table 1). Prenatal exposure to these three levels of 

bacterial infection defines groups of interest in this study: None, Localized, and Multi-systemic. 

Of note, 91 participants who were exposed to both localized and multi-systemic bacterial 

infection are classified under the Multi-systemic group. Among 402 participants who were 

exposed to multi-systemic bacterial infection, 122 (30.3%) were exposed in the first trimester, 

137 (34.1%) were exposed in the second trimester, and 143 (35.6%) were exposed in the third 

trimester (see Table 3.9.2).  

Table 3.7.1 shows between-group differences in demographic and family history 

variables used as potential confounders in our propensity scores model. Offspring whose mother 

was non-married, non-white, younger, and had low socioeconomic status were more likely to 

have been exposed to multi-systemic bacterial infection during pregnancy. In contrast, offspring 

whose mother was married, white, older, and had high socioeconomic status, were most likely to 

have been unexposed to bacterial infection during pregnancy. Parental history of mental illness 

was most prevalent among offspring exposed to multi-systemic bacterial infection (17.3%) and 

more prevalent among those exposed to localized bacterial infection (13.5%) compared to those 

unexposed (10.8%). The unweighted means of full-scale, verbal, and performance IQ scores 

differed significantly across the exposure categories defined by severity of infectious exposure, 

being highest among those unexposed and lowest among those exposed to multi-systemic 

bacterial infections. Similarly, the unweighted means in the IQ measures were highest among 
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those unexposed to multi-systemic bacterial infection and lowest among those exposed in the 

third trimester. Of note, patterns of missingness in the IQ measures did not differ by severity or 

gestational timing of infectious exposure.  

3.4.2 Weighting and Balance Diagnostics 

Improvements in covariate balance were assessed based on change in absolute 

standardized bias measures (103,104). For continuous covariates, these were between-group 

mean differences before and after weighting, divided by the unweighted standard deviation of the 

full sample or the target exposure group. For categorical variables, separate standardized bias 

measures were calculated for each covariate level, based on between-group differences in 

proportions. In addition, differences in spread were assessed by examining between-group ratio 

of variances before and after weighting. Formal significance testing was avoided in assessing 

covariate balance (105). Rather, absolute bias measures smaller than 0.25 standard units and 

variance ratios in the interval [4/5,5/4] were deemed indicative of successful balancing 

(106,107). Once a propensity model was deemed adequate, weights (i.e., the product of IPTW 

and IPCW) were fed from the GBM package into the SURVEY package (108) and used to 

calculate point and interval estimates of differences in weighted mean IQ scores by exposure 

status.  

Estimated probabilities of observing the actual exposure to bacterial infection with 

varying severity of exposure during pregnancy were in the ranges of 0.45-0.93 for no exposure, 

0.09-0.56 for localized infection, and 0.02-0.15 for the multi-systemic infection. As a result, 

reductions in the effective sample size of the reference group in ATT analyses were in the 20-

30% range for the two pairwise comparisons involving multi-systemic bacterial infection, but 
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remained below 9% for comparisons involving localized bacterial infection and no exposure (see 

Table 3.9.2).  

Estimated probabilities of observing multi-systemic bacterial infection occurring at 

different stage of pregnancy were in the ranges of 0.79-0.99 for no exposure, 0.01-0.08 for first 

trimester exposure, 0.01-0.15 for second trimester exposure, and 0.01-0.06 for third trimester 

exposure. As a result, reductions in the effective sample size of the reference group in ATT 

analyses were in the 45-60% range for the three pairwise comparisons involving no exposure, 

but remained below 36% for other comparisons. Balance diagnostics for variables in Tables 1 

and 2 showed that all absolute bias measures fell below 0.25 standard units after weighting (see 

Figure 3.10.2 (a)-(c) and Figure 3.10.3 (a)-(d)). 

3.4.3 Unweighted Analyses 

Compared to unexposed offspring, those exposed to localized or multi-systemic bacterial 

infection had lower mean full-scale IQ scores at age 7. Offspring who were exposed to multi-

systemic bacterial infection had significantly lower IQ scores than those exposed to localized 

bacterial infection, thus establishing an inverse relationship of mean IQ scores at age 7 with the 

severity of infectious exposure during pregnancy (see Figure 3.4.1). Similar patterns of 

association were observed for all IQ measures examined. In general, the effect sizes were greater 

among males than females (see Figure 3.8.2 and Figure 3.8.3). Offspring who were exposed in 

the third trimester had significantly lower mean IQ scores. They also had significantly lower 

mean IQ scores relative to those exposed in the first or second trimester for all types of IQ 

measures examined (see Figure 3.8.4).  
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3.4.4 ATE-Weighted Analyses 

ATE-weighted mean IQ scores differ from observed scores due to a reweighting scheme 

that brings group-specific covariate distributions closer to those of the overall sample. ATE 

findings are bidirectional and apply to the entire sample. For example, the expected 2.47-point 

decrease in mean IQ had the entire sample had multi-systemic bacterial infection instead of no 

bacterial infection is equal in magnitude and opposite in sign to the 2.47-point increase in mean 

IQ if the entire sample had localized bacterial infection instead of systemic bacterial infection. 

Thus, only 3 out of 6 possible comparisons are presented in Supplementary Table 3.9.4 through 

Supplementary Table 3.9.6). 

Compared to the unweighted analyses, we observed a general reduction in the magnitude 

of effects in the ATE-weighted analyses; however, the findings were consistent in terms of the 

interpretation. For example, multi-systemic bacterial infection during pregnancy had a greater 

effect on mean full-scale, verbal, and performance IQ scores than did localized bacterial 

infection, indicating that the effects were dependent upon severity of infectious exposure (see 

Figure 3.8.1 and Supplementary Table 3.9.4).  

As in the unweighted analysis, we observed generally stronger effects of prenatal 

bacterial infection on mean IQ scores in the male stratum than in the unstratified sample; the 

effects were particularly strong on performance IQ among male offspring (see Figure 3.8.2 and 

Supplementary Table 3.9.5). In contrast, we observed no effect of prenatal bacterial infection on 

any IQ measures among female offspring (see Figure 3.8.3 and Supplementary Table 3.9.6). 

For all types of IQ measures examined, offspring who were exposed in the third trimester 

had significantly lower mean IQ scores compared to exposed in the first or second trimester, as 

well as those unexposed (see Figure 3.8.4 and Supplementary Table 3.9.7). 
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3.4.5 ATT-Weighted Analyses 

ATT-weighted mean IQ scores are shown in Table 2 and differ from observed scores due 

to a reweighing scheme that brings the covariate distributions of severity and gestational timing 

of each infectious exposure closer to that of a target exposure group, rather than to the sample as 

a whole. They supplement ATE findings and permit unidirectional predictions for all 6 possible 

pairwise comparisons.  

Had unexposed offspring been prenatally exposed to multi-systemic or localized bacterial 

infection, their mean full-scale, verbal and performance IQ scores would have decreased (see 

Figure 3.8.1 and Supplementary Table 3.9.4). Conversely, offspring exposed to multi-systemic 

infection would have had increased mean full-scale, verbal and performance IQ scores had they 

been unexposed or exposed to less severe, localized bacterial infection. These ATT-weighted 

effects were much reduced for localized bacterial infection, thus indicating that they are 

dependent on severity of infectious exposure. In general, these ATT-weighted effects are nearly 

twice as large in the male stratum, but failed to attain statistical significance in the female 

stratum (see Figure 3.8.2 -  Figure 3.8.3 and Supplementary Table 3.9.5 - Supplementary Table 

3.9.6). 

Had unexposed offspring been exposed to multi-systemic bacterial infection in the third 

trimester, there would have been a substantial decrease in their mean full-scale, verbal, and 

performance IQ scores (see Figure 3.8.4 and Supplementary Table 3.9.7). Conversely, offspring 

exposed in the third trimester would have had much higher mean full-scale, verbal, and 

performance IQ scores had they been unexposed or exposed in earlier trimesters. Similarly, 

offspring exposed in second trimester would have had significantly lower mean full-scale and 

verbal IQ scores had they been exposed in the third trimester; however, none of the IQ scores 
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would have changed had they been exposed in the first trimester. These ATT-weighted results 

indicate that the effects of multi-systemic bacterial infection are dependent upon gestational 

timing of exposure, with late gestational exposure being more harmful than early or mid-

gestational exposure. 

3.5 Discussion 

To our knowledge, this study is the first to attempt to estimate the causal impact of 

bacterial infection during pregnancy for childhood cognitive deficits using methods to jointly 

account for measured confounding and selection bias due to loss to follow-up using propensity 

weights.  

Unweighted data analyses for severity of infection suggested that both localized and 

multi-systemic bacterial infection reduced mean IQ scores at age 7 over no exposure to bacterial 

infection during pregnancy, and ATE weighted analyses applied to the entire analytic sample 

strengthened this conclusion. ATT weighted analyses applied separately by group reaffirmed 

findings of harmful effects of multi-systemic bacterial infection on fetal cognitive development 

at age 7. In contrast, ATT estimates of the effects of exposure to localized bacterial infection 

were largely attenuated, with only a small reduction in mean IQ scores expected as a result of 

exposure among previously unexposed offspring. There was also a small increase in mean IQ 

scores of previously exposed offspring under the counterfactual condition of no exposure to any 

bacterial infection during pregnancy. Similar overall patterns of effects, but of even greater 

magnitude, were observed among male offspring. 

Unweighted analyses for gestational timing revealed that only third trimester exposure to 

multi-systemic bacterial infection significantly reduced mean IQ scores at age 7 up to 7 points 

over no exposure to this type of infection. ATE-weighted analyses strengthened this conclusion, 
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yielding overall reduction in full-scale, verbal, and performance IQ scores by 4.45 points, 4.13 

points, and 3.25 points. ATT weighted analyses potentially identified third trimester as the 

gestational timing during which multi-systemic bacterial infection might be most harmful for the 

cognitive development of offspring (i.e., sensitive period), with a dramatic reduction in mean IQ 

scores of unexposed offspring under third trimester exposure, and a large increase in mean IQ 

scores of offspring exposed in the third trimester under no prenatal exposure to this type of 

infection.   

The current study provides epidemiologic evidence that identifies third trimester (i.e., late 

pregnancy) as the sensitive period for cognitive abnormalities in early childhood. In fact, the 

timing of prenatal immune challenge seems to determine phenotypic specificity of inflammation-

mediated brain and behavioral pathology. For example, early to mid-gestational immune 

challenges are reported to affect the development of central dopaminergic system and lead to a 

more global deterioration of brain function (109,110). In contrast, late gestational challenges are 

reported to interfere especially with the refinement of connections through pruning (111,112), 

the long-term consequences of which may specifically lead to selective and mild cognitive 

impairments (87). Our findings are in full agreement with these preclinical findings and readily 

suggest that late gestational exposure to bacterial infection might precipitate cognitive 

disturbances emerging in later life, as early as the age of seven.  

3.5.1 Sex Differences in Cognitive Deficits during Early Childhood   

  Our findings suggest that maternal bacterial infection during pregnancy may affect 

postnatal cognitive functioning primarily among male offspring. Some have suggested the role of 

the placenta in mediating this effect, in that the placenta of females may possess greater ability to 

adapt to fluctuating environmental conditions compared to that of males (63). However, the 
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mechanism underlying a male-specific vulnerability remains uncertain. Perhaps these effects 

could be due to reduced maternal-fetal compatibility for male fetuses which may need to up-

regulate immune-associated transcripts to resist an attack by the maternal immune system (64).  

In fact, our group has recently reported male-specific effects of maternal bacterial 

infection during pregnancy on psychosis risk (81). One possible implication is that the cognitive 

deficits in early childhood may mediate the relationship between prenatal bacterial infection and 

the pathogenesis of such neurodevelopmental disorders in a sex-dependent manner. Studies of 

subjects at high risk for schizophrenia have identified significantly more premorbid 

abnormalities among boys than among girls in cognition and attention (113,114). These studies 

and our group’s earlier work (115) suggest that these sex differences in early developmental 

deficits may persist into adulthood, potentially explaining why psychotic men may have more 

severe neurocognitive consequences than psychotic women.  

3.5.2 Strengths and Limitations  

Compared to our estimates, prior findings in the literature imply more harmful effects of 

prenatal infection that also appear to be statistically significant. It is hard to compare our results 

directly with those of prior studies because we have based our analysis on propensity-weighted 

models. Estimates of the effect of exposure to bacterial infection from unweighted analyses are 

potentially biased due to confounding and loss to follow up. In contrast, we expect that 

parameters from our propensity models to be unbiased estimates of the causal relations between 

the prenatal infectious exposures and cognitive development in offspring, under the assumption 

of no unmeasured confounders and correct specification of the propensity model (99). As our 

GBM estimation approach is non-parametric, model mis-specification issues are unlikely to be 

very impactful. Although we cannot be certain about the untestable assumption of no 
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unmeasured confounding, we have included in the propensity model all those factors that we 

regarded as potentially confounding the exposure-to-outcome relationship. Therefore, we expect 

our estimates to be less biased than those derived from studies that failed to account for 

differential probability of being exposed to bacterial infection during pregnancy and of dropping 

out during follow up. 

Our study also had a limitation that pertains to the potential misclassification of exposure. 

Most previous studies have determined maternal bacterial infection during pregnancy based on 

maternal self-reports or clinical records (30–32). Similarly, we also used clinical records as the 

primary source of exposure information. Since the most prevalent types of bacterial infection are 

often asymptomatic, it is likely that some occurrences were not recorded and/or more severe 

instances were included. Nevertheless, we demonstrated the validity of our exposure 

measurement in the previous investigation through cross-validation with alternative sources of 

information including medical diagnosis by physician and treatment history with antibacterial 

medications (81). 

3.6 Conclusions  

 In summary, we applied propensity modeling to explore causal relationships of bacterial 

infection during pregnancy and measures of cognitive performances at age 7. We examined 

whether the hypothesized effects of prenatal bacterial infection on mean IQ scores would vary as 

a function of severity and gestational timing of exposure. We discovered that the more severe 

type of bacterial infection (i.e., multi-systemic) resulted in a greater reduction in mean IQ scores 

at age 7, especially among male offspring. We also found that third trimester exposure to multi-

systemic bacterial infection predicted greater childhood cognitive deficits than exposures in 

earlier trimesters. Findings in this study underscore the potential role of maternal bacterial 
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infection during pregnancy in the developmental trajectory of cognitive functions in offspring. 

They call for additional investigation and, if replicated, potentially public health and clinical 

efforts that focus on preventing and managing bacterial infection among pregnant women. It is 

crucial to evaluate both short- and long-term consequences associated with different types of 

bacterial infection and antibacterial medication to avoid untoward effects on the mother and 

fetus.  
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3.7 Tables  

Table 3.7.1 Demographic and family history characteristics by severity of bacterial 

infection during pregnancy. 

 Maternal bacterial infection during pregnancy   

  None Localized  Multi-systemic p 

Total N (%) 12113 (77.3) 3155 (20.1)a 402 (2.6)  

Categorical variables, n (%)         

Offspring sex    0.67 

Male 6189 (51.1) 1585 (50.2) 202 (50.2)  

Female 5915 (48.8) 1568 (49.7) 199 (49.5)  

Maternal marital status    <0.001 

Married 10925 (90.2) 2726 (86.4) 339 (84.3)  

Non-married 1186 (9.8)  429 (13.6)  63 (15.7)  

Maternal race/ethnicity    <0.001 

White 10526 (86.9) 2647 (83.9) 333 (82.8)  

Black 1387 (11.5) 469 (14.9) 63 (15.7)  

Oriental 112 (0.9) 20 (0.6) 1 (0.2)  

Puerto Rican 24 (0.2) 6 (0.2) 2 (0.5)  

Other 64 (0.5) 13 (0.4) 3 (0.7)  

Socioeconomic index (quartiles)    <0.001 

1st quartile (Lowest) 3069 (26.5) 906 (29.7) 142 (36.5)  

2nd quartile 3123 (26.9) 867 (28.4) 104 (26.7)  

3rd quartile 2657 (22.9) 674 (22.1) 65 (16.7)  

4th quartile (Highest) 2746 (23.7) 603 (19.8) 78 (20.1)  

Parental history of mental illness     

Present 1295 (10.9) 419 (13.6) 68 (17.2) <0.001 

Not present 10535 (89.1) 2673 (86.4) 328 (82.8)  

Missing full-scale IQ at age 7 2874 (23.7) 723 (22.9) 88 (21.9) 0.47 

Missing verbal IQ at age 7 2938 (24.3) 743 (23.5) 92 (22.9) 0.61 

Missing performance IQ at age 7 2936 (24.2) 743 (23.5) 92 (22.9) 0.62 

Continuous variables, mean (sd)         

Maternal age 25.2 (5.9) 24.9 (5.9) 24.7 (5.7) 0.031 

Full-scale IQ  102.1 (14.2) 100.8 (14.2) 98.8 (15.0) <0.001 

Verbal IQ  100.3 (14.0) 99.0 (14.1) 97.4 (14.5) <0.001 

Performance IQ  104.2 (14.3) 103.2 (14.1) 101.5 (15.1) <0.001 

Abbreviations: IQ, intelligence quotient. 
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3.8 Figures  

Figure 3.8.1 Full-scale intelligence quotient (IQ) estimates and corresponding 95% confidence intervals by severity of 

bacterial exposure. 
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Figure 3.8.2 Male-specific full-scale intelligence quotient (IQ) estimates and corresponding 95% confidence intervals by 

severity of bacterial exposure. 
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Figure 3.8.3 Female-specific full-scale intelligence quotient (IQ) estimates and corresponding 95% confidence intervals by 

severity of bacterial infection. 
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Figure 3.8.4 Full-scale intelligence quotient (IQ) estimates and corresponding 95% confidence intervals by gestational timing 

of exposure to multi-systemic bacterial infection before and after propensity score weighting. 
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3.9 Supplementary Tables 

Table 3.9.1 Demographic and family history characteristics by gestational timing of 

exposure to multi-systemic bacterial infection during pregnancy.  

  Trimester of exposure to multi-systemic bacterial infection 

  None  First Second Third p 

Total N (%) 15118 (97.4) 122 (0.8) 137 (0.9) 143 (0.9) <0.001 

Categorical variables, n (%)  

Offspring sex <0.001 

Male 7702 (50.9) 61 (50.0) 73 (53.3) 68 (47.6)  

Female 7414 (49.0) 61 (50.0) 63 (46.0) 75 (52.4)  

Maternal marital status 0.093 

Married 1604 (10.6) 19 (15.6) 20 (14.6) 24 (16.8)  

Non-married 13512 (89.4) 103 (84.4) 117 (85.4) 119 (83.2)  

Maternal race/ethnicity 0.27 

White 13043 (86.3) 102 (83.6) 113 (82.5) 118 (82.5)  

Non-White 2075 (13.7) 20 (16.4) 24 (17.5) 25 (17.5)  

Socioeconomic index (quartiles) <0.001 

1st quartile (Lowest) 3957 (26.2) 36 (29.5) 40 (29.2) 66 (46.2)  

2nd quartile 3971 (26.3) 31 (25.4) 40 (29.2) 33 (23.1)  

3rd quartile 3312 (21.9) 25 (20.5) 21 (15.3) 19 (13.3)  

4th quartile (Highest) 3300 (21.8) 28 (23.0) 29 (21.2) 21 (14.7)  

Parental history of mental illness 0.014 

Present 13111 (86.7) 101 (82.8) 107 (78.1) 120 (83.9)  

Not present 1703 (11.3) 20 (16.4) 26 (19.0) 22 (15.4)  

Missing full-scale IQ  3492 (23.1) 24 (19.7) 35 (25.5) 29 (20.3) 0.59 

Missing verbal IQ  3575 (23.6) 24 (19.7) 36 (26.3) 32 (22.4) 0.63 

Missing performance IQ  3573 (23.6) 24 (19.7) 36 (26.3) 32 (22.4) 0.63 

Continuous variables, mean (sd)  

Maternal age 25.1 (5.9) 24.3 (5.4) 24.9 (5.6) 24.9 (6.0) 0.44 

Full-scale IQ  101.8 (14.2) 101.4 (15.2) 100.3 (14.3) 95.3 (15.0) <0.001 

Verbal IQ  100.0 (14.0) 99.8 (14.4) 98.5 (15.0) 94.3 (13.7) <0.001 

Performance IQ  104.0 (14.3) 102.9 (15.8) 102.6 (15.1) 99.3 (14.2) 0.004 

Abbreviations: IQ, intelligence quotient. 
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Table 3.9.2 Nominal and effective sample sizes by severity of bacterial infection under ATT weighting.  

 

 

 

 

 

 

Table 3.9.3  Nominal and effective sample sizes by gestational timing of multi-systemic bacterial infection under ATT* 

weighting. 

  

                                                           
 ATT, average treatment effect among treated. 

 Target Group 

Reference Group Nominal None Localized Multi-systemic 

None 12113 - 11314 8518 

Localized 3155 3010 - 2506 

Multi-systemic 402 367 384 - 

 Target Group 

Reference Group Nominal None First Second Third 

None 15118 - 8138 6308 6823 

First 122 117 - 99 97 

Second 137 112 100 - 88 

Third 143 118 112 108 - 
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Table 3.9.4 Mean intelligence quotient (IQ) estimates at age 7 by severity of bacterial exposure during pregnancy in the full 

analytic sample.   

 
Full-Scale IQ Verbal IQ Performance IQ 

∆Mean (95% CLs)† ∆Mean (95% CLs)† ∆Mean (95% CLs)† 

Unweighted analyses  

Localized vs. None -1.32 (-2.04, -0.61) -1.37 (-2.07, -0.66) -1.08 (-1.80, -0.36) 

Multi-systemic  vs. None -4.09 (-5.87, -2.31) -3.54 (-5.3, -1.78) -3.67 (-5.47, -1.88) 

Multi-systemic  vs. Localized -2.77 (-4.71, -0.82) -2.18 (-4.11, -0.25) -2.59 (-4.56, -0.63) 

ATE weighted analyses 

Localized  vs. None -0.71 (-1.42, 0.00) -0.71 (-1.41, -0.01) -0.62 (-1.33, 0.10) 

Multi-systemic  vs. None -2.47 (-4.18, -0.76) -2.27 (-3.98, -0.56) -2.04 (-3.83, -0.25) 

Multi-systemic  vs. Localized -1.76 (-3.55, 0.029) -1.56 (-3.36, 0.23) -1.42 (-3.29, 0.45) 

ATT weighted to match "None" 

Localized  vs. None -0.73 (-1.44, -0.03) -0.72 (-1.41, -0.03) -0.63 (-1.34, 0.08) 

Multi-systemic  vs. None -2.28 (-3.99, -0.56) -2.12 (-3.83, -0.41) -1.80 (-3.60, -0.01) 

ATT weighted to match "Localized"  

None vs. Localized 0.67 (-0.09, 1.43) 0.76 (0.02, 1.50) 0.59 (-0.16, 1.34) 

Multi-systemic  vs. Localized -2.03 (-3.85, -0.21) -1.69 (-3.52, 0.15) -1.76 (-3.66, 0.13) 

ATT weighted to match "Multi-systemic"  

None vs. Multi-systemic 2.88 (1.16, 4.59) 2.21 (0.45, 3.97) 2.75 (0.87, 4.62) 

Localized  vs. Multi-systemic 2.15 (0.31, 3.99) 1.51 (-0.36, 3.39) 2.09 (0.09, 4.09) 

Abbreviations: CL, confidence limit; ATE, average treatment effect; ATT, average treatment effect among treated. 

† Differences are calculated as 1st group - 2nd group, where pairs are expressed as "1st group vs. 2nd group." 
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Table 3.9.5 Mean intelligence quotient (IQ) estimates at age 7 by severity of bacterial exposure during pregnancy among 

male offspring. 

 
Full-Scale IQ Verbal IQ Performance IQ 

∆Mean (95% CLs)† ∆Mean (95% CLs)† ∆Mean (95% CLs)† 

Unweighted analyses  

Localized vs. None -1.60 (-2.63, -0.56) -1.54 (-2.54, -0.54) -1.38 (-2.42, -0.34) 

Multi-systemic  vs. None -5.46 (-8.08, -2.85) -4.63 (-7.14, -2.12) -5.75 (-8.38, -3.13) 

Multi-systemic  vs. Localized -3.86 (-6.61, -1.12) -3.08 (-5.79, -0.38) -4.37 (-7.16, -1.58) 

ATE weighted analyses 

Localized  vs. None -0.72 (-1.71, 0.26) -0.70 (-1.66, 0.27) -0.68 (-1.69, 0.34) 

Multi-systemic  vs. None -4.09 (-6.53, -1.64) -3.58 (-6.12, -1.04) -4.26 (-6.85, -1.67) 

Multi-systemic  vs. Localized -3.37 (-5.92, -0.81) -2.89 (-5.53, -0.25) -3.58 (-6.28, -0.88) 

ATT weighted to match "None" 

Localized  vs. None -0.66 (-1.63, 0.32) -0.66 (-1.61, 0.30) -0.61 (-1.61, 0.40) 

Multi-systemic  vs. None -3.68 (-6.13, -1.24) -3.31 (-5.84, -0.78) -3.78 (-6.34, -1.22) 

ATT weighted to match "Localized"  

None vs. Localized 1.01 (-0.06, 2.07) 0.91 (-0.14, 1.95) 1.00 (-0.07, 2.07) 

Multi-systemic  vs. Localized -3.10 (-5.69, -0.50) -2.53 (-5.19, 0.13) -3.58 (-6.37, -0.80) 

ATT weighted to match "Multi-systemic"  

None vs. Multi-systemic 4.48 (2.07, 6.89) 3.59 (1.03, 6.15) 4.91 (2.17, 7.64) 

Localized  vs. Multi-systemic 4.06 (1.51, 6.61) 3.17 (0.49, 5.86) 4.51 (1.63, 7.39) 

Abbreviations: CL, confidence limit; ATE, average treatment effect; ATT, average treatment effect among treated. 

† Differences are calculated as 1st group - 2nd group, where pairs are expressed as "1st group vs. 2nd group." 
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Table 3.9.6 Mean intelligence quotient (IQ) estimates at age 7 by severity of bacterial exposure during pregnancy among 

female offspring.  

 
Full-Scale IQ Verbal IQ Performance IQ 

∆Mean (95% CLs)† ∆Mean (95% CLs)† ∆Mean (95% CLs)† 

Unweighted analyses  

Localized vs. None -0.93 (-1.92, 0.06) -1.11 (-2.10, -0.12) -0.65 (-1.63, 0.33) 

Multi-systemic  vs. None -2.60 (-5.00, -0.19) -2.37 (-4.81, 0.07) -1.50 (-3.90, 0.92) 

Multi-systemic  vs. Localized -1.67 (-4.50, 1.07) -1.26 (-4.04, 1.52) -0.84 (-3.60, 1.92) 

ATE weighted analyses 

Localized  vs. None -0.40 (-1.39, 0.60) -0.52 (-1.52, 0.48) -0.26 (-1.24, 0.72) 

Multi-systemic  vs. None -0.93 (-3.58, 1.72) -0.98 (-3.53, 1.57) 0.11 (-2.55, 2.78) 

Multi-systemic  vs. Localized -0.53 (-3.29, 2.23) -0.46 (-3.12, 2.21) -0.37 (-2.40, 3.14) 

ATT weighted to match "None" 

Localized  vs. None -0.42 (-1.40, 0.56) -0.53 (-1.52, 0.46) -0.30 (-1.26, 0.66) 

Multi-systemic  vs. None -0.80 (-3.45, 1.86) -0.90 (-3.48, 1.68) 0.25 (-2.42, 2.91) 

ATT weighted to match "Localized"  

None vs. Localized 0.47 (-0.61, 1.55) 0.68 (-0.39, 1.74) 0.21 (-0.16, 0.58) 

Multi-systemic  vs. Localized -0.77 (-3.62, 2.08) -0.43 (-3.10, 2.24) -0.05 (-1.07, 0.98) 

ATT weighted to match "Multi-systemic"  

None vs. Multi-systemic 0.88 (-1.54, 3.29) 0.65 (-1.76, 3.06) 0.16 (-2.29, 2.60) 

Localized  vs. Multi-systemic 0.68 (-1.91, 3.27) 0.23 (-2.34, 2.81) 0.03 (-2.60, 2.65) 

Abbreviations: CL, confidence limit; ATE, average treatment effect; ATT, average treatment effect among treated. 

† Differences are calculated as 1st group - 2nd group, where pairs are expressed as "1st group vs. 2nd group." 
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Table 3.9.7 Mean intelligence quotient (IQ) estimates at age 7 by gestational timing of 

multi-systemic bacterial infection. 

 Full-Scale IQ Verbal IQ Performance IQ 

∆Mean (95% CLs)† ∆Mean (95% CLs)† ∆Mean (95% CLs)† 

Unweighted analyses 

1st vs. None -1.56 (-4.75, 1.63) -0.93 (-4.06, 2.2) -2.52 (-5.71, 0.67) 

2nd vs. None -1.63 (-4.76, 1.49) -1.70 (-4.77, 1.37) -1.51 (-4.63, 1.62) 

3rd vs. None -7.40 (-10.35, -4.44) -6.41 (-9.35, -3.47) -5.86 (-8.86, -2.86) 

2nd   vs. 1st -0.07 (-4.22, 4.07) -0.77 (-5.11, 3.58) 1.01 (-3.35, 5.38) 

3rd vs. 1st -5.84 (-9.88, -1.80) -5.48 (-9.58, -1.38) -3.34 (-7.86, 1.18) 

3rd vs. 2nd -5.76 (-9.64, -2.04) -4.71 (-8.68, -0.75) -4.35 (-8.71, 0.01) 

ATE weighted analyses 

1st vs. None -1.00 (-4.15, 2.15) -0.50 (-3.66, 2.67) -1.94 (-5.21, 1.34) 

2nd vs. None -1.46 (-4.26, 1.35) -1.50 (-4.42, 1.43) -1.25 (-4.29, 1.80) 

3rd vs. None -4.45 (-7.09, -1.81) -4.13 (-6.85, -1.41) -3.25 (-6.10, -0.40) 

2nd vs. 1st -0.46 (-4.66, 3.74) -1.00 (-5.29, 3.29) 0.69 (-3.76, 5.14) 

3rd vs. 1st -3.45 (-7.54, 0.64) -3.63 (-7.79, 0.52) -1.31 (-5.63, 3.01) 

3rd   vs. 2nd -2.99 (-6.82, 0.84) -2.63 (-6.60, 1.34) -2.00 (-6.15, 2.15) 

ATT weighted to match “None”  

1st vs. None -1.01 (-4.16, 2.14) -0.51 (-3.67, 2.66) -1.95 (-5.22, 1.33) 

2nd vs. None -1.50 (-4.36, 1.35) -1.84 (-4.80, 1.12) -1.00 (-4.14, 2.15) 

3rd vs. None -4.31 (-6.96, -1.66) -4.09 (-6.83, -1.35) -3.08 (-5.91, -0.25) 

ATT weighted to match “1st trimester” 

None vs. 1st 1.13 (-2.00, 4.26) 0.34 (-2.85, 3.54) 2.27 (-0.95, 5.49) 

2nd vs. 1st 0.10 (-4.18, 4.38) -0.25 (-5.11, 4.61) 0.69 (-3.66, 5.05) 

3rd vs. 1st -3.81 (-8.14, 0.53) -3.56 (-7.91, 0.78) -1.62 (-6.20, 2.96) 

ATT weighted to match “2nd trimester” 

None vs. 2nd 0.93 (-1.84, 3.70) 1.00 (-1.99, 3.99) 0.91 (-2.08, 3.89) 

1st vs. 2nd -1.07 (-5.60, 3.47) -0.68 (-5.24, 3.88) -1.72 (-6.68, 3.23) 

3rd vs. 2nd -4.50 (-8.42, -0.57) -4.21 (-8.17, -0.25) -3.05 (-7.49, 1.38) 

ATT weighted to match “3rd trimester” 

None vs. 3rd 5.65 (3.00, 8.30) 4.49 (1.83, 7.15) 4.57 (1.39, 7.74) 

1st vs. 3rd 4.57 (0.59, 8.55) 4.18 (0.37, 7.99) 2.18 (-2.50, 6.86) 

2nd vs. 3rd 4.08 (0.35, 7.81) 2.73 (-1.61, 7.08) 3.41 (-0.72, 7.54) 

Abbreviations: CL, confidence limit; ATE, average treatment effect; ATT, average treatment effect 

among treated; 1st, first trimester; 2nd, second trimester; 3rd, third trimester. 

† Differences are calculated as 1st group - 2nd group, where pairs are expressed as "1st group vs. 2nd 

group." 
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3.10 Supplementary Figures  

Figure 3.10.1 Conceptual framework for inverse probability weighting: directed acyclic 

graphs (DAGs)  

(a) Standard regression adjustment 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Inverse probability weighting 

 

 

 

 

 

 

 

 

 

 

 

 

C: measured covariates, U: unmeasured covariates, L: any short-term outcomes of prenatal 

bacterial infection (e.g., preterm birth, low birthweight), IPTW: inverse probability weighting for 

treatment, IPCW: inverse probability censoring weighting.
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Balance for “Localized” against others  

Balance for “Multi-systemic” against others  

Balance for “None” against others  (a) 

(c) 

(b) 

Figure 3.10.2 Standardized effect size plots for estimating the propensity scores to generate inverse probability weights for 

severity of bacterial infection.  
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Balance for “2nd trimester” against others  

Balance for “None” against others  

Balance for “3rd trimester” against others  

Balance for “1st trimester” against others  (a) (b) 

(c) (d) 

Figure 3.10.3 Standardized effect size plots for estimating the propensity scores to generate inverse probability weights for 

gestational timing of multi-systemic bacterial infection. 
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Chapter 4: Neurodevelopmental Impact of Prenatal Bacterial Infection on 

Memory Circuitry Structure in Early Midlife 
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4.1 Abstract 

While there is an emerging body of literature suggesting an etiologic role of prenatal 

bacterial infection on psychosis risk in adulthood, limited attempt has been made to examine this 

link using neuroimaging data. Using structural magnetic resonance imaging scans, we aimed to 

explore variation in average gray matter volumes involved in working memory circuitry as a 

function of adult psychosis and prenatal bacterial infection. Subjects included 79 men and 89 

women from the New England Family Study (NEFS) who were scanned using a high-resolution 

T1 sequence on a 1.5 T whole body scanner. Brain regions of interest (ROIs) included 

dorsolateral prefrontal cortex (DLPFC), hippocampus (HIPP), parahippocampus (paraHIPP), 

inferior parietal lobule (iPAR), superior parietal lobule (sPAR), and caudal anterior cingulate 

cortex (cACC). Using the Box’s M test, we observed overall differences in the covariance 

matrices by adult psychosis and region-specific abnormalities in HIPP, paraHIPP, sPAR, and 

DLPFC among psychotic cases. We also found overall differences in covariance matrices by 

prenatal exposure to bacterial infection and region-specific abnormalities in HIPP, paraHIPP, 

and cACC. If replicated, these findings may suggest the potential role of subcortical volumetric 

abnormalities—involving HIPP and paraHIPP—in explaining the etiologic connection between 

prenatal bacterial infection and development of psychotic illness in adulthood.   
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4.2 Introduction 

Previous studies have found structural changes throughout the brain in psychotic patients 

compared to non-psychiatric controls. Among these studies, volumetric abnormalities in brain 

regions involved in working memory function are among the most replicated structural 

anomalies found in schizophrenia research (116–118). Further, studies of individuals who are in 

the prodrome of schizophrenia also have identified multiple structural brain changes, suggesting 

that brain disturbances associated with the disorder may precede full disease occurrence and 

have neurodevelopmental origins (119,120). Despite these findings, few investigations have 

sought to examine the contributions of environmental risk factors to neuroanatomic 

abnormalities found in schizophrenia.  

Among the possible environmental contributors, maternal infection during pregnancy has 

been repeatedly linked to an elevated risk for schizophrenia and related psychoses in adulthood 

(11), with a growing recognition of the etiologic role of bacterial infection (30,31,81). However, 

limited effort has been made to explore the suggested link between prenatal immune challenges 

and psychosis risk using neuroimaging data (121). For example, Ellman and colleagues found 

that fetal exposure to elevated levels of pro-inflammatory cytokine (e.g., interleukin-8) predicted 

significant structural alterations among schizophrenia cases but not among healthy controls. Like 

many other neurobiological studies, they examined volumetric abnormalities in individual brain 

regions rather than a network of brain regions (122).  

The focus has shifted to the interactions between specific brain areas and more recently to 

the possibility of a global pathology affecting connections across the brain. Several methods for 

structural imaging have been proposed to investigate associations between regions within and 

between brain networks (17,18). Among them, techniques based on covariance modeling have 
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been found to be particularly useful in several brain disorders (19–27). Included in this literature 

were publications of our group that investigated differences in the covariance of regions within 

working memory circuitry by schizophrenia (123), and more recently, by sex and reproductive 

status (29). In the present study, I examined covariation between the same brain regions assessed 

in these studies using a “Box’s M test” (124). An underlying assumption in this analytic method 

is that morphometric features of brain regions within the subjects are correlated with each other 

due to shared neurodevelopmental and functional processes. While cortical thickness would be a 

more sensitive measure to gyral level differences (125), I studied gray matter volume in order to 

examine subcortical structures such as hippocampus and parahippocampus.  

Lastly, most neuroimaging studies concerning schizophrenia and other psychotic 

disorders have drawn participants from the treated population that may not be representative of 

the general population (126). Only a few existing imaging studies, such as that of Cannon et al. 

(123) and Ellman et al. (121,127) have used epidemiologically principled population-based 

strategies to select study participants. In the present study, I aimed to explore whether there are 

volumetric abnormalities associated with prenatal infection that are known or suspected to be 

related to psychosis using a population-based sample of men and women in early midlife. Based 

on our group’s previous work (81), I hypothesized that the network of brain regions supporting 

working memory function would differ significantly by adult psychosis and prenatal bacterial 

infection. In addition, I sought to identify volumetric abnormalities in specific brain regions that 

would drive the overall differences detected by the Box’s M test. Volumetric alterations that are 

jointly displayed by individuals with psychosis and those prenatally exposed to bacterial 

infection might suggest their potential role in explaining the relationship between the two 

conditions (30,81). 
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4.3 Methods  

4.3.1 Description of the Cohort 

Participants were selected from 17,741 pregnancies that constitute the New England 

Family Study (NEFS), a Boston-Providence subsidiary of the Collaborative Perinatal Project. 

The NEFS is a prospective study initiated over 50 years ago to investigate prenatal and familial 

antecedents of pediatric, neurological, and psychological disorders of childhood (45). Pregnant 

women, recruited between 1959 and 1966, were representative of patients receiving prenatal care 

in the Boston-Providence area. Many types of assessments, including psychological 

examinations, were conducted on offspring up to 7 years of age, when the study officially ended 

in 1973. In a series of studies over the last 20 years, we followed the offspring of these 

pregnancies to investigate the fetal programming of adult phenotypes and sex differences therein. 

The current study investigated the fetal programming of adult psychosis and potential role of 

structural abnormalities in early midlife. The NEFS offspring were recruited at the time of 46-53 

years of age and completed clinical, cognitive, and neuropsychological assessments and 

functional and structural magnetic resonance imaging (fMRI/SMRI/DTI). 

4.3.2 Ascertainment of Adult Psychosis 

Adult offspring with major non-organic psychoses (including schizophrenia, 

schizoaffective disorder, delusional disorder, brief psychosis, psychosis NOS, bipolar disorder 

with psychotic features, and major depressive disorder with psychosis) within NEFS cohorts 

were identified approximately 30 years later through a two-stage diagnostic assessment 

procedure between 1996 and 2007. The investigators were blind to prior assessments of these 

subjects during this follow-up. NEFS parents and offspring with a history of psychiatric 

hospitalization and/or possible psychotic and bipolar illness were identified from the following 
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sources: (a) record linkages with public hospitals, mental health clinics, and the Massachusetts 

and Rhode Island Departments of Mental Health; (b) several follow-up and case-control studies 

nested within the larger NEFS cohort, involving direct interviews with approximately 20% of the 

cohort; and (c) reports from participants in these interview studies of a family member with a 

history of psychotic or bipolar symptoms or diagnosis. Controls were selected from families 

participating in the control arm of a NEFS high-risk study in which the control population was a 

random stratified sample of parents selected from the entire NEFS cohort, with no known history 

of psychosis or other major Axis I disorders. Thus, the NEFS sample of psychotic cases and 

controls is a representative community sample of subjects. 

4.3.3 Ascertainment of Prenatal Exposure to Bacterial Infection 

Collection of the exposure data were jointly conducted by trained non-physician 

interviewers and physicians beginning at the time of registration for prenatal care at intervals of 

four weeks during the first 7 months of pregnancy, every two weeks at 8 months, and every week 

thereafter, using standardized protocols, forms, manuals, and codes (49). Throughout the initial 

and repeat prenatal visits, interviewers were responsible to collect of reproductive and 

gynecological history, recent and past medical history, and family health and genetic history. 

They were also responsible to conduct infectious disease and system review at the initial visit or 

as soon thereafter as possible. Physicians were responsible to review and medically edit the data 

collected by the interviewer, collect further details on past and recent medical history, complete 

initial prenatal examination and observations, and record the date and list any diagnoses that 

comes to his or her attention. Medical and lay editing was subsequently carried out in 

conjunction with participant’s complete hospital records by the obstetric coordinator or a board-

qualified obstetrician. Lastly, the entire study record was summarized together with all available 
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hospital records no later than 6 months after termination of a given pregnancy. In the current 

study, we included all bacterial infections that occurred during pregnancy, defined as the time 

period between the estimated date of conception and the end of the third stage of labor.

4.3.4 Inclusion and Exclusion Criteria 

Exclusion criteria for all adult participants were a history of neurological disease, 

traumatic brain injury, medical illness or alcohol-related disease with documented cognitive 

sequelae, major sensory impairments (e.g. deafness), IQ<65 in adulthood or inability to 

understand the procedures, <6 years of formal education and severe substance abuse within the 

past 6 months (128). All psychotic cases were living in the community when assessed. On the 

other hand, controls had to be free of any known lifetime history of psychosis or other major 

Axis I disorders, and their parents, parents’ siblings, and grandparents had to be free of any 

known lifetime history of psychosis, bipolar, schizotypal, recurrent MDD, suicide attempts or 

psychiatric hospitalizations.  

From the NEFS, 114 psychotic cases were identified through the case ascertainment 

procedure described in Section 4.3.2. As depicted in Figure 4.3.1, structural MRI scans were 

collected from a total number of 179 participants through four case-control MRI studies (129–

132). In the current study, three subjects were excluded given an incomplete or noisy T1-

weighted scan, and additional eight subjects were excluded given missing information on 

prenatal exposure to bacterial infection. The goal of the current case-control study was to explore 

altered volumetric connections in working memory circuitry in relation to adult psychosis and 

prenatal bacterial infection. I conducted two separate sets of analyses in which I divided the final 

sample of 168 participants into two groups based on psychosis status (case vs. control) and 

exposure status (exposed vs. unexposed), respectively. In each set of analyses, I explored if 
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patterns of overall covariances and region-specific correlations differed between the two groups 

being compared. Human subjects’ approval was granted by Partners Health Care and Brown 

University. All volunteers gave written informed consent and were paid for their participation.

4.3.5 Regions of interest (ROIs) 

We restricted the network to areas that demonstrate: (a) involvement in working memory 

across all tasks and methods found in a PubMed (National Center for Biotechnology 

Information, U.S. National Library of Medicines, Bethesda, Maryland) search of studies 

reviewing the use of representative methods for studying the cognitive neuroscience of memory 

(133–147); (b) anatomical abnormalities found in schizophrenia (117,118,148–151). These 

criteria yielded a network of hippocampus (HIPP), parahippocampus (paraHIPP), superior 

parietal cortex (sPAR), inferior parietal cortex (iPAR), caudal anterior cingulate cortex (cACC), 

and dorsolateral prefrontal cortex (DLPFC) regions. 

4.3.6 Structural Magnetic Resonance Imaging 

The analytic sample including 168 participants consists of four sub-samples, which 

originate from four case-control MRI studies of the NEFS. For a first sub-sample including 76 

participants, T1-weighted structural scans (TE = 3.31ms; TI = 1000ms; TR = 2730ms; Flip angle 

= 7°; FOV = 25.6cm; Spatial resolution = 1.0 x 1.0 x 1.33mm; matrix = 256 x 256mm; Slice 

acquisition direction = sagittal) were acquired on a 1.5 Tesla Siemens Avanto scanner using a 4-

channel head coil. For a second sub-sample including  65 participants, T1-weighted structural 

scans (TE = 3.39ms; TI = 1000ms; TR = 2730ms; Flip angle = 7°; FOV = 25.6cm; Spatial 

resolution = 1.0 x 1.0 x 1.33mm; matrix = 256 x 256mm; Slice acquisition direction = sagittal) 

were collected on a 1.5 Tesla Siemens Sonata scanner using a CP coil. For a third sub-sample 

including 23 participants, T1-weighted structural scans were acquired also on a 1.5 Tesla 
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Siemens Sonata scanner (TE = 4.3ms; TI = 8ms; TR = 11.8ms; Flip angle = 8°; FOV = 25.6cm; 

Spatial resolution = 1.0 x 1.0 x 1.5mm; matrix = 256 x 256mm; Slice acquisition direction = 

sagittal, CP head coil). For a fourth sub-sample including 4 participants, T1-weighted structural 

scans were collected on a 1.5T GE Genesis Signa scanner (TE = 1.6ms; TI = 300ms; TR = 

6.7ms; Flip angle = 25°; FOV = 24cm; Spatial resolution = 0.94 x 0.94 x 1.5mm; matrix = 256 x 

256mm; Slice acquisition direction = sagittal, CP head coil).  

Images were checked visually for possible movement artifacts. To correct for head tilt, 

each MRI scan was realigned, horizontally to the anterior commissure-posterior commissure 

line, and vertically to the sagittal sulcus. Automatic brain masking was conducted using Multi 

Atlas Brain Segmentation (152). Segmentation of the scans was executed using FreeSurfer 5.3 

(153), and quality of segmentations was determined by visual inspection. Based on visual 

inspection, all FreeSurfer segmentations were included in further analysis. Gray matter volumes 

for memory circuitry (HIPP, paraHIPP, iPAR, sPAR, rACC, and DLPFC) were calculated using 

FreeSurfer segmentation. Regarding the hippocampus, HIPP represents a conservative definition 

of the hippocampal formation as per Caviness, Meyer, Makris, and Kennedy (17) and Makris et 

al. (154), including cornu amonis, dentate gyrus, subiculum, presubiculum, and parasubiculum 

(but not the entorhinal cortex), a terminology that has been adopted by the FreeSurfer 

parcellation system (153). 

4.3.7 Statistical Analyses  

To explore abnormal volumetric connections within working memory circuitry, I 

employed a three-stage analytic approach. In the first stage, I compared covariance matrices by 

(a) psychosis status and (b) prenatal bacterial infection using Box’s M test which tests for the 

equality of covariance matrices between groups. If there were significant or borderline 
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significant overall differences in Box’s M test, I moved on to the second stage in which I 

compared pairwise correlation coefficients among the six ROIs; the goal of this analysis was to 

identify specific regions that might have contributed to the overall differences in the Box’s M 

test. In the final stage of analysis, I compared the list of pairwise correlations and identified the 

regions that were jointly implicated in prenatal bacterial infection and adult psychosis. In the 

main analysis, I examined the effect sizes for average volume of the ROIs. To explore potential 

lateralization of structural abnormalities, I additionally performed the same sets of analyses using 

hemisphere-specific volume of the ROIs. 

Following Abbs et al. (28) and Seitz et al. (29), covariance patterns were analyzed 

between predefined working memory networks (i.e., HIPP, paraHIPP, iPAR, sPAR, rACC, and 

DLPFC), and covariance structures were compared between groups. I first compared those with 

psychosis against those without. Following this, I compared those prenatally exposed to bacterial 

infection and those unexposed. For comparison of covariance patterns, I employed the Box’s M 

test using the following statistic (124,155):  

𝑀 = (𝑛 − 𝑇) ln|𝐶| − ∑(𝑛𝑖 − 1)

𝑇

𝑖=1

|𝐶𝑖| 

𝐶 =
1

𝑛 − 𝑇
∑(𝑛𝑖 − 1)

𝑇

𝑖=1

|𝐶𝑖| 

where 𝐶𝑖 is the variance-covariance matrix calculated from the group 𝑖, 𝑇 is the number of 

subgroups for which equality of matrices is tested, and 𝑛𝑖 is the sample size of each group 𝑖. 

The Box’s M test statistic can be approximated by an F statistic, whereas the rejection of 

the null hypothesis on a significance level of p < 0.05 is interpreted as the overall covariance 

pattern between two groups being different from one another. The Box’s M tests allow for the 
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comparison of covariance matrices, rather than looking at single brain volumes or multiple 

correlations (and hence protects for issues of multiple comparison). If the Box’s M test results 

were significant (p < .05) or trended toward significance (p < .10), correlation coefficients for 

each pair of regions of interest (ROIs) between the two groups were compared. I would argue 

that the more liberal threshold of p < .10 for trend significance is justified given that the Box’s M 

test already protects against multiple comparison errors. Furthermore, a more liberal threshold 

also protects against Type II error, likely to occur in correlation comparisons with rather small 

sample sizes.  

In cases where Box’s M test results are significant, it is still unclear whether they 

represent differences in correlations, differences in variances, or both. To address this issue, I 

additionally employed the Jennrich (J) test using the following formula (156):  

𝐽 =  ∑ {
1

2
𝑡𝑟(𝑍𝑖

2) − (𝑍𝑑)′𝑊−1𝑍𝑑}

𝑚

𝑖=1

 

where 𝑍𝑖 = √𝑛𝑖𝑅̅
−1(𝑅𝑖 − 𝑅̅), 𝑅𝑖 is the i-th sample correlation, 𝑅̅ is the average of all sample 

correlation matrices, 𝑊 = 𝐼𝑝 + 𝑅̅ ∗ 𝑅̅−1 (* is the Hadamard product of two matrices), 𝑍𝑑 is a 

diagonal of 𝑍𝑖, and 𝐼𝑝 is the identity matrix of size (𝑝 × 𝑝).  

Correlation coefficients were converted to a normal distribution using Fisher’s Z 

transformation, and Z values were used to test for differences between groups. Additionally, 

given the relatively low number of participants in each group, bootstrapping (number of 

iterations = 100,000, 95% bias-corrected accelerated confidence intervals) was performed for 

these correlation coefficients (157,158). Bootstrapping is a method to assign accuracy to sample 

estimates by resampling with replacement from the original data. By looking not only at single 

value (in this case correlation coefficient) but rather at a confidence interval, one can control and 
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check the stability of original results. All statistical analyses were conducted using R version 

3.5.3 (159).  

It has sometimes been assumed in brain volumetric studies that deviations in regional 

brain size in clinical samples are directly related to abnormal neurodevelopment or pathogenesis. 

However, this assumption may be incorrect as it is often unclear to what extent such volumetric 

differences may be attributable to individual differences in overall dimension (e.g., head 

circumference, body size, brain volume). There are three most commonly used statistical 

methods to adjust for allometric contributors to volume differences (160): the proportion, 

generalized linear models-analysis of covariance (GLM/ANCOVA), and residual approaches. 

The proportion approach uses as its numerator the volume of an ROI for an individual and as its 

denominator a volumetric measure of brain size of that individual (e.g., volume of total brain or 

of some large structure of which the ROIs are components); volume is not expressed as a 

quantity (e.g., cubic centimeters), but a ratio, fraction, or proportion. The GLM/ANCOVA 

approach adopts the raw volume of an ROI as the outcome variable and analyzes it using a linear 

regression model with relevant covariates as predictors. In the residual approach, the raw ROI 

volume is regressed on the intracranial volume as well as other covariates (161). The predicted 

volumes are subtracted from the observed volumes for each subject in the dataset. The resulting 

values are the residuals for each subject, which represent the deviation of an individual subject’s 

volume from the ROI volume predicted using the subject’s specific values for each covariate 

(e.g., age, sex, intracranial volume). While the proportion and GLM/ANCOVA methods are more 

widely used than the residual method, Mathalon et al. (162) argues that the former is inherently 

less reliable because a proportion has two sources of measurement error: one from the numerator 

measure (i.e., ROI volumes) and the other from the denominator measure (i.e., intracranial 
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volume). Therefore, in the current study, all ROI volumes were corrected for total intracranial 

volume (ICV) as well as relevant covariates using the residual approach. The covariates included 

offspring’s sex, offspring’s year of birth, offspring’s age at MRI scan, study site, maternal 

race/ethnicity, parental socioeconomic index, and length of maternal education.  

4.4 Results  

4.4.1 Sample Demographics  

Summary statistics on demographic and clinical characteristics are tabulated in Table 

4.7.1 and Table 4.7.2. Participants in psychotic and control groups were well matched in terms of 

offspring sex, maternal race/ethnicity and education, season of birth, parental history of mental 

illness and socioeconomic status, and age at MRI scan. With respect to prenatal exposure to 

bacterial infection, exposed mothers were significantly more likely to be non-white than 

unexposed mothers. Participants in the exposed and unexposed groups were comparable in terms 

of offspring sex, study site, season of birth, maternal education, parental socioeconomic index, 

and age at MRI scan. 

4.4.2 Descriptive Results: Hippocampal and Parahippocampal Volume  

There was evidence for significant lateralization of hippocampal and parahippocampal 

volumes. Right hippocampus was generally larger than left, whereas left parahippocampus was 

larger than right (seeSupplementary Table 4.9.3). When we compared volumetric differences by 

adult psychosis and offspring sex, male cases had significantly smaller hippocampus than did 

male controls and female cases. On the other hand, male controls had significantly larger 

hippocampus and slightly smaller parahippocampus than did female controls. With respect to 

prenatal exposure to bacterial infection, exposed individuals had larger hippocampus compared 

to those unexposed, especially in the right hemisphere. However, these volumetric differences 
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did not reach the level of statistical significance. This finding was consistent with previous 

findings that fetal exposure to pro-inflammatory cytokine is associated with greater hippocampal 

size in the right hemisphere (121).

4.4.3 Analytic Results: Adult Psychosis 

Analysis of mean volumes. Comparison of covariance matrix of the working memory 

circuitry using the Box’s M test (124) trended toward significant differences by adult psychosis 

(χ2 = 30.90, df = 21, p = 0.08). These results were replicated using the Jennrich’s test 

(seeSupplementary Table 4.9.1). Posthoc analyses of the correlation coefficients comparing 

individuals with psychosis and those without revealed that overall covariance differences by 

adult psychosis were driven by differences in three relationships involving HIPP, paraHIPP, 

DLPFC, and sPAR (see Table 4.4.3 and Figure 4.8.3). Psychotic cases showed moderate positive 

correlations involving these regional volumes while controls did not.  

Analysis of hemisphere-specific volumes. We observed statistically significant 

differences in the right hemisphere (χ2 = 39.46, df = 21, p = 0.01) by psychosis status, but no 

significant differences in the left hemisphere (χ2 = 24.70, df = 21, p = 0.26). These results were 

also replicated using the Jennrich’s test (seeSupplementary Table 4.9.1). In the exploratory 

analyses of the correlation coefficients in the right hemisphere, we found that overall covariance 

differences by adult psychosis were driven by differences in two relationships involving HIPP, 

paraHIPP, and iPAR (seeSupplementary Table 4.9.4). Among psychotic cases, the average 

volume of iPAR showed a strong negative correlation with that of paraHIPP and a moderate 

positive correlation with the volume of HIPP. 
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4.4.4 Analytic Results: Prenatal Exposure to Bacterial Infection 

Analysis of mean volumes. Comparison of covariance matrix of the working memory 

circuitry trended toward significant differences by prenatal bacterial infection (χ2 = 31.70, df = 

21, p = 0.06). These results were replicated using the Jennrich’s test (seeSupplementary Table 

4.9.1). Posthoc analyses of the correlation coefficients comparing exposed individuals and those 

unexposed revealed that overall covariance differences were driven by two relationships 

involving HIPP, paraHIPP, and cACC (and Figure 4.8.4). Exposed individuals showed moderate 

negative correlations involving these regional volumes, while controls did not.  

Analysis of hemisphere-specific volumes. We observed significant differences by 

prenatal bacterial infection in the left hemisphere (χ2= 40.09, df = 21, p = 0.01); however, the 

differences were no longer significant in the Jennrich’s test (seeSupplementary Table 4.9.1). 

While the differences in the right hemisphere were marginally significant in the Box’s M test 

(29.11, df = 21, p = 0.11), they reached the level of statistical significance in the Jennrich’s test 

(χ2 = 27.30, p = 0.03). In the exploratory analyses of the correlation coefficients in the right 

hemisphere, overall covariance differences by prenatal bacterial infection were driven by two 

relationships involving paraHIPP, sPAR, and DLPFC (seeSupplementary Table 4.9.5). Among 

exposed individuals, the volume of paraHIPP showed a moderate positive association with that 

of sPAR and a strong negative association with the volume of DLPFC, whereas unexposed 

individuals did not.  

4.5 Discussion  

Covariance analysis assumes that brain areas of a functional network are connected 

through shared neurodevelopmental processes (28), and thus, suitable to analyze the regions as a 

network, as distinct from independent regions. Using this method, I explored volumetric 
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abnormalities within working memory circuitry and the co-relationships, or covariances, in early 

midlife in relation to adult psychosis and prenatal bacterial infection. In this case-control study, 

covariance patterns in working memory circuitry regions significantly differed comparing (a) 

psychotic cases and controls, and (b) exposed and unexposed. These findings may imply the 

potential role of structural abnormalities within working memory circuitry in the etiologic link 

between prenatal bacterial infection and adult psychosis.  

While these analyses are not traditionally thought of as a connectivity analysis, brain 

regions studied in the current study are known to have direct or indirect anatomical connections 

(142,163). For example, HIPP is connected with iPAR and DLPFC (164) as well as with ACC 

(165,166). Additionally, iPAR is directly connected with DLPFC and ACC (146,167), and 

paraHIPP is connected with HIPP and other cortical areas (146). Since the HIPP provides 

important input to the DLPFC (142) and because neonatal HIPP lesions induce post-pubertally 

manifested changes in prefrontal cortex (173) mimicking aspects of schizophrenic 

pathophysiology, it has been hypothesized that the interaction between these two regions might 

be particularly disturbed in this disorder (174–176). While it is highly implausible that this 

complex and heterogenous disorder can be reduced to a single causal chain, this formation may 

help guide further research in suggesting a study of impaired HIPP-DLPFC interactions in 

individuals with schizophrenia and preclinical models of this disorder. 

It is also becoming evident that persons suffering from depression and post-traumatic 

stress disorder display structural brain anomalies and aberrant functional coupling within the 

HIPP-DLPFC circuit (177). Considering that these disorders involve varying degrees of 

cognitive impairment and emotional dysregulation, dysfunction in the HIPP-DLPFC pathway 

might therefore be the common element of their pathophysiology (178,179). In consequence, the 
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HIPP- DLPFC pathway is a potentially crucial element of the pathophysiology of several 

psychiatric diseases, and it offers a specific target for therapeutic intervention, which is 

consistent with the recent emphasis on reframing psychiatric diseases in terms of brain circuits.  

In the current study, individuals prenatally exposed to bacterial infection displayed 

alterations in volumetric connections involving HIPP and paraHIPP—potentially suggesting 

their neurodevelopmental origins. These findings are consistent with previous literature that 

subcortical structures including HIPP and paraHIPP are particularly vulnerable to both genetic 

and environmental insults occurring during the perinatal period (180,181) including pregnancy 

complications (182), infection (183), and stress (184). For instance, it has been suggested that 

early developmental insults to the hippocampus might lead to impaired connections between 

HIPP and DLPFC. They might also induce maturational deficits in DLPFC circuitry and 

ultimately DLPFC dysfunction, which accounts for the core neuropsychology of several 

psychiatric disorder including, but not limited to, psychosis.  

Alternatively, it is also possible that early insults to paraHIPP could secondarily affect 

HIPP. For example, a disturbed architecture of entorhinal cortex neurons could lead to abnormal 

connections with HIPP (186), as in Alzheimer’s disease (187,188), and some form of epilepsy 

(112), in which the initial pathology is located in the parahippocampal subregions. Given that 

psychotic cases in the present study also displayed region-specific abnormalities in HIPP and 

paraHIPP, the findings may offer a potential explanation for epidemiologic evidence linking 

psychotic disorders to early neurodevelopmental disturbances. Nevertheless, it remains unclear 

how much clinical significance these findings may have given the modest effect sizes. Future 

investigations incorporating data on cognitive test performance (e.g., California Verbal 
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Language Test Trial 5) would help elucidate the functional significance of the differences in 

covariance among working memory regions observed in the present study.  

There were several limitations in the present study that should be noted. Given the 

multiple tests conducted in this study, it is possible that spurious findings arose from Type I 

error. It appears unlikely, however, that our results are entirely due to chance, as they are 

consistent with many previous studies in clinical and preclinical studies of schizophrenia. 

Nevertheless, we have used the Box’s M test which allows for protection of multiple testing for 

the simple correlations. The weak power associated with a modest sample size indicated the 

possibility of Type II error. Therefore, we adjusted the threshold to protect against this error in 

order to view any trends in the data; however, threshold selection ultimately did not impact the 

main findings involving HIPP and paraHIPP.   

To operationalize the degree of linkage between brain regions, our study employed 

structural connectivity—which is based on covariance. Limitations arise because neuronal 

interactions need not be linear, and linear correlation does not imply causality. However, much 

neuroimaging evidence suggests that linear correlations do capture an important aspect of 

neuronal interactions across different scales. It would be of interest to extend the present data 

using analytic methods that allow the investigation of directional interactions and models of 

causal relationships—such as effective connectivity (191).   

In addition, the sample was limited to slightly more than 22% of 116 psychotic cases 

identified in the original NEFS cohort, raising the potential for selection bias. However, 

psychotic cases who participated in the MRI study and cases who did not participate did not 

differ with regard to several demographic variables and prenatal exposure to bacterial infection 

(see Table 4.9.2). Therefore, it is unlikely that case ascertainment bias accounts for our findings. 
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Bias would be also mitigated by the fact that the sample was derived from the population-based 

study, in contrast to many clinical imaging studies that draw upon hospital or clinic-based 

samples. 

Like most existing neuroimaging studies of psychotic disorders, our study was also cross-

sectional in design. However, as with detecting dementia, it is possible that structural brain 

change over time could be one of the most important indicators of impending onset of psychosis. 

For example, Pantelis et al. (120) compared volumetric changes in frontal, temporal, and parietal 

gray matter before and after the onset of psychosis and found significant reduction among 

participants who transitioned to psychosis but not among those who did not. These findings have 

been replicated by Borgwardt et al. (192) and substantiated by Prasad et al. (193) that also 

considered the putative effects of immune activation on the longitudinal changes in gray matter 

volumes. Thus, future studies are encouraged to collect multiple scans over time and monitor the 

neuroanatomic changes to better inform the underlying mechanism for these changes and assess 

their utility as potential metrics for the development of psychosis.  

4.6 Conclusions 

There were overall covariance differences by adult psychosis and prenatal bacterial 

infection in average volumes of six brain regions supporting working memory functions. Posthoc 

analyses of region-specific correlations indicated that the overall differences by the two 

conditions might be primarily attributable to the altered anatomical connections involving 

hippocampus and parahippocampus. If replicated, this may suggest the potential roles of 

subcortical volumetric abnormalities in explaining the link between prenatal immune challenges 

and adult psychosis.
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4.7 Tables 

Table 4.7.1 Demographic characteristics by offspring sex and adult psychosis status. 

    Male  Female   

    Control Case   Control Case p 

Categorical variables, n (%) 

Sample size  64 (38.1) 15 (8.9)   79 (47.0) 10 (6.0)  

Maternal race/ethnicity Non-white 3 (4.7)  2 (13.3)   6 (7.6)  2 (20.0)  .31 

 White 61 (95.3)  13 (86.7)   73 (92.4)  8 (80.0)   

Study site Boston 45 (70.3)  11 (73.3)    56 (70.9)  6 (60.0)  .90 

  Providence 19 (29.7)  4 (26.7)    23 (29.1)  4 (40.0)    

Season of birth Summer-Fall 46 (71.9)  13 (86.7)   59 (74.7)  7 (70.0)  .68 

 Winter-Spring 18 (28.1)  2 (13.3)   20 (25.3)  3 (30.0)   

Prenatal bacterial infection Exposed 14 (21.9) 5 (33.3)  12 (15.2) 1 (10.0) .31 

 Unexposed 50 (78.1) 10 (66.7)  67 (84.8) 9 (90.0)  

Parental mental illness Present 19 (29.7) 2 (13.3)  23 (29.1) 1 (10.0) .35 

 Absent 45 (70.3) 13 (86.7)  56 (70.9) 9 (90.0)  

Continuous variables, mean (sd)  

Birth year    1962.6 (1.9) 1962.3 (2.4)   1962.6 (2.0) 1963.2 (1.9) .72 

Maternal education  11.5 (2.4) 11.0 (2.3)  11.5 (2.2)   11.9 (1.7) .80 

Parental socioeconomic status   5.8 (1.3) 5.7 (1.1)   5.7 (1.0) 4.8 (2.4) .13 

Age at MRI scan   41.6 (3.6) 41.6 (4.2)   42.0 (3.1) 40.4 (3.1) .56 

Abbreviations: MRI, magnetic resonance imaging. 

  



 

81 
 

Table 4.7.2  Demographic characteristics by prenatal exposure to bacterial infection. 

    Prenatal bacterial infection   

    Unexposed  Exposed p 

Categorical variables, n (%) 

Sample size  136 (81.0) 32 (19.0)  

Sex Female 76 (55.9)  13 (40.6) .17 

 Male  60 (44.1)  19 (59.4)   

Maternal race/ethnicity Non-white 7 (5.1)  6 (18.8)  .03 

  White 129 (94.9)  26 (81.2)    

Study site Boston 98 (72.1)  20 (62.5)  .40 

 Providence 38 (27.9)  12 (37.5)   

Season of birth Summer-Fall 102 (75.0)  23 (71.9)  .89 

  Winter-Spring 34 (25.0)  9 (28.1)    

Continuous variables, mean (sd) 

Birth year   1962.6 (2.0) 1962.6 (2.0) .93 

Maternal education   11.6 (2.3) 11.0 (2.2) .19 

Parental socioeconomic status  5.7 (1.2) 5.5 (1.5) .47 

Age at MRI scan   41.8 (3.5) 41.3 (3.1) .44 

Abbreviations: MRI, magnetic resonance imaging. 
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Table 4.7.3 Pearson correlation coefficients between average volumes of the regions of interest (ROIs) among psychotic 

cases and controls.  

  Adult psychosis 
 

  Case Control Test statistic 

Pearson correlation and 95% bias-corrected and accelerated (BCa) bootstrap confidence interval 

HIPP-paraHIPP -.15 (-.57, .27) .10 (-.03, .21) Z = 1.10, p=.27 

HIPP-sPAR .19 (-.24, .67) -.14 (-.28, .01) Z = 1.45, p=.15 

HIPP-iPAR -.24 (-.65, .25) .11 (-.06, .29) Z = 1.55, p=.12 

HIPP-cACC -.27 (-.64, .09) .06 (-.10, .20) Z = 1.45, p=.15 

HIPP-DLPFC .37 (.03, .72) -.12 (-.24, .01) Z = 2.19, p=.03 

paraHIPP-iPAR -.39 (-.58, -.10) -.06 (-.18, .07) Z = 1.53, p=.13 

paraHIPP-sPAR .37 (.00, .62) -.07 (-.20, .06) Z = 2.00, p=.05 

paraHIPP-cACC -.21 (-.61, .41) -.08 (-.24, .07) Z = .55, p=.58 

paraHIPP-DLPFC -.52 (-.70, -.27) -.18 (-.31, -.03) Z = 1.72, p=.09 

sPAR-iPAR .23 (.04, .43) -.11 (-.24, .04) Z = 1.48, p=.14 

sPAR-cACC .24 (-.05, .48) -.10 (-.27, .07) Z = 1.52, p=.13 

sPAR-DLPFC .39 (-.36, .85) -.14 (-.31, .05) Z = 2.41, p=.02 

iPAR-cACC .17 (-.34, .63) -.07 (-.22, .08) Z = 1.08, p=.28 

iPAR-DLPFC -.19 (-.49, .13) -.20 (-.31, -.07) Z = .00, p=1.00 

cACC-DLPFC -.06 (-.42, .43) .00 (-.12, .11) Z = .26, p=.79 

Abbreviations: HIPP, hippocampus; paraHIPP, parahippocampus; sPAR, superior parietal cortex; iPAR, 

inferior parietal cortex; cACC, caudal anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex.  
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Table 4.7.4 Pearson correlation coefficients between average volumes of the regions of interest (ROIs) among exposed and 

unexposed individuals. 

  Prenatal bacterial infection   

  Exposed Unexposed Test statistic 

Pearson correlation and 95% bias-corrected and accelerated (BCa) bootstrap confidence interval 

HIPP-paraHIPP .20 (-.18, .58) .05 (-.07, .18) Z = .74, p=.46 

HIPP-sPAR .03 (-.40, .46) -.10 (-.22, .02) Z = .66, p=.51 

HIPP-iPAR .05 (-.48, .65) -.10 (-.28, .10) Z = .75, p=.46 

HIPP-cACC -.37 (-.69, -.05) .07 (-.09, .22) Z = 2.24, p=.03 

HIPP-DLPFC -.19 (-.47, .25) -.10 (-.26, .07) Z = .44, p=.66 

paraHIPP-iPAR -.01 (-.30, .34) -.12 (-.27, .01) Z = .55, p=.58 

paraHIPP-sPAR .23 (-.03, .48) -.09 (-.23, .05) Z = 1.54, p=.12 

paraHIPP-cACC -.41 (-.76, .10) .03 (-.27, .27) Z = 2.27, p=.02 

paraHIPP-DLPFC -.22 (-.42, .07) -.27 (-.42, -.08) Z = .23, p=.82 

sPAR-iPAR .00 (-.41, .41) -.09 (-.23, .07) Z = .46, p=.64 

sPAR-cACC -.04 (-.29, .25) -.13 (-.25, -.03) Z = .48, p=.63 

sPAR-DLPFC -.26 (-.71, .18) -.13 (-.34, .09) Z = .68, p=.50 

iPAR-cACC .01 (-.33, .27) -.12 (-.25, .01) Z = .64, p=.52 

iPAR-DLPFC -.18 (-.51, .33) -.20 (-.35, -.06) Z = .09, p=.93 

cACC-DLPFC .12 (-.13, .32) .01 (-.15, .15) Z = .55, p=.58 

Abbreviations: HIPP, hippocampus; paraHIPP, parahippocampus; sPAR, superior parietal cortex; iPAR, 

inferior parietal cortex; cACC, caudal anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex. 
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4.8 Figures 

Figure 4.8.1 Selection of analytic sample from the New England (NE) cohorts of the Collaborative Perinatal Project (CPP). 
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Figure 4.8.2 Schematic overview of analytical procedures. 
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Figure 4.8.3 Associations between dorsolateral prefrontal cortex (DLPFC) and hippocampus (HIPP)/superior parietal cortex 

(sPAR).  
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Figure 4.8.4 Associations between caudal anterior cingulate cortex (cACC) and hippocampus (HIPP)/parahippocampus 

(paraHIPP).  
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4.9 Supplementary Tables 

Table 4.9.1 Box’s M and Jennrich’s tests for overall differences in covariance and correlation matrices by adult psychosis 

and prenatal bacterial infection. 

  Box's M   Jennrich 

  χ2 p   χ2 p 

  Adult psychosis 

Average 30.90 0.08  33.74 0.00 

Left hemisphere 24.70 0.26  22.76 0.09 

Right hemisphere 39.46 0.01  38.70 0.00 

  Prenatal bacterial infection 

Average 31.70 0.06  22.24 0.10 

Left hemisphere 40.09 0.01  19.84 0.18 

Right hemisphere 29.11 0.11   27.30 0.03 
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Table 4.9.2 Comparison of demographic characteristics by participation in the magnetic resonance imaging (MRI) studies 

of the New England Family Study (NEFS) participants with psychoses (n=116).   

  Participation in the MRI study  

  Participant Non-participant p 

Sample size  26 (22.4) 90 (77.6)  

Categorical variables, n (%) 

Sex Female 11 (42.3) 53 (58.9) .91 

 Male 15 (57.7) 37 (41.1)  

Maternal race/ethnicity Non-white 5 (19.2) 22 (24.4) .58 

 White 21 (80.8) 68 (75.6)  

Study site Boston 17 (65.4) 61 (67.8) .82 

 Providence 9 (34.6) 29 (32.2)  

Season of birth Summer-Fall 21 (80.8) 68 (75.6) .58 

 Winter-Spring 5 (19.2) 22 (24.4)  

Continuous variables, mean (sd) 

Birth year  1962.62 1962.28 .45 

Maternal education  11.19 (2.2) 10.5 (2.0) .15 

Parental socioeconomic status  5.4 (2.3) 5.4 (1.9) .99 

Any prenatal bacterial infection Exposed 7 (26.9) 36 (40.0) .22 

 Unexposed 19 (73.1) 54 (60.0)  
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Table 4.9.3 Descriptive statistics for hippocampal and parahippocampal volumes (divided by total intracranial volume).  

    Hippocampus (mean ± sd)   Parahippocampus (mean ± sd) 

    Left Right Average   Left Right  Average 

All  .0180 ± .0023 .0185 ± .0020 .0091 ± .0010 .0099 ± .0013 .0093 ± .0011 .0048 ± .0005 

Male Psychotic .0173 ± .0022 .0181 ± .0017 .0089 ± .0009 .0098 ± .0013 .0090 ± .0010 .0047 ± .0005 

 Control .0188 ± .0029 .0193 ± .0026 .0095 ± .0013 .0095 ± .0012 .0096 ± .0011 .0048 ± .0004 

Female Psychotic .0184 ± .0021 .0187 ± .0019 .0100 ± .0013 .0100 ± .0013 .0094 ± .0010 .0049 ± .0005 

 Control .0172 ± .0024 .0176 ± .0026 .0098 ± .0013 .0098 ± .0013 .0091 ± .0013 .0047 ± .0006 

Prenatal  

bacterial 

infection 

Exposed .0181 ± .0031 .0188 ± .0022 .0092 ± .0012 .0100 ± .0014 .0093 ± .0010 .0048 ± .0004 

Unexposed .0179 ± .0021 .0184 ± .0019 .0091 ± .0010 .0099 ± .0013 .0093 ± .0011 .0048 ± .0005 
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Table 4.9.4 Pearson correlation coefficients between right hemisphere volumes of regions of interests (ROIs) among 

psychotic cases and controls. 

  Adult psychosis   

  Case Control Test statistic 

Pearson correlation and 95% bias-corrected and accelerated (BCa) bootstrap confidence interval 

HIPP-paraHIPP .19 (-.23, .57) .11 (-.05, .25) Z = .38, p=.70 

HIPP-sPAR -.11 (-.47, .27) -.11 (-.24, .03) Z = .02, p=.98 

HIPP-iPAR .57 (.25, .77) .04 (-.14, .20) Z = 2.70, p=.01 

HIPP-cACC .27 (-.19, .64) .01 (-.18, .17) Z = 1.19, p=.23 

HIPP-DLPFC .26 (-.26, .64) .03 (-.14, .19) Z = 1.03, p=.30 

paraHIPP-iPAR -.69 (-.86, -.44) -.05 (-.21, .09) Z = 3.55, p=.00 

paraHIPP-sPAR .01 (-.37, .49) -.02 (-.17, .15) Z = .16, p=.87 

paraHIPP-cACC -.14 (-.44, .10) -.08 (-.25, .09) Z = .26, p=.79 

paraHIPP-DLPFC .09 (-.50, .55) -.19 (-.35, -.03) Z = 1.26, p=.21 

sPAR-iPAR -.18 (-.50, .23) -.08 (-.24, .09) Z = .44, p=.66 

sPAR-cACC .24 (-.16, .57) -.14 (-.27, .01) Z = 1.69, p=.09 

sPAR-DLPFC -.17 (-.63, .38) -.08 (-.26, .13) Z = .41, p=.68 

iPAR-cACC .27 (.00, .57) -.11 (-.27, .09) Z = 1.73, p=.08 

iPAR-DLPFC .07 (-.51, .56) -.09 (-.23, .05) Z = .71, p=.48 

cACC-DLPFC -.07 (-.35, .30) .01 (-.13, .15) Z = .35, p=.73 

Abbreviations: HIPP, hippocampus; paraHIPP, parahippocampus; sPAR, superior parietal cortex; iPAR, 

inferior parietal cortex; cACC, caudal anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex. 
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Table 4.9.5 Pearson correlation coefficients between right hemisphere volumes of regions of interests (ROIs) among exposed 

and unexposed individuals. 

  Prenatal bacterial infection   

  Exposed Unexposed Test statistic 

Pearson correlation and 95% bias-corrected and accelerated (BCa) bootstrap confidence interval 

HIPP-paraHIPP .09 (-.32, .41) .04 (-.12, .19) Z = .26, p=.80 

HIPP-sPAR .05 (-.36, .52) -.14 (-.28, .01) Z = .91, p=.36 

HIPP-iPAR .17 (-.38, .55) -.01 (-.20, .19) Z = .87, p=.38 

HIPP-cACC -.26 (-.58, .08) .00 (-.17, .17) Z = 1.32, p=.19 

HIPP-DLPFC -.05 (-.40, .34) .05 (-.16, .20) Z = .50, p=.62 

paraHIPP-iPAR .22 (-.12, .56) -.07 (-.26, .09) Z = 1.44, p=.15 

paraHIPP-sPAR .41 (.05, .67) -.09 (-.22, .04) Z = 2.54, p=.01 

paraHIPP-cACC .02 (-.37, .44) -.09 (-.28, .09) Z = .52, p=.60 

paraHIPP-DLPFC -.76 (-.86, -.57) -.16 (-.33, .03) Z = 4.04, p=.00 

sPAR-iPAR .04 (-.23, .35) -.08 (-.23, .08) Z = .56, p=.57 

sPAR-cACC -.06 (-.36, .26) -.07 (-.21, .07) Z = .05, p=.96 

sPAR-DLPFC -.22 (-.52, .22) -.19 (-.36, -.01) Z = .11, p=.91 

iPAR-cACC -.08 (-.30, .24) -.15 (-.28, .00) Z = .32, p=.75 

iPAR-DLPFC -.34 (-.60, .05) -.06 (-.19, .08) Z = 1.42, p=.15 

cACC-DLPFC -.03 (-.45, .31) .03 (-.12, .17) Z = .29, p=.77 

Abbreviations: HIPP, hippocampus; paraHIPP, parahippocampus; sPAR, superior parietal cortex; iPAR, 

inferior parietal cortex; cACC, caudal anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex 
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4.10 Supplementary Figures  

Figure 4.10.1 Associations between inferior parietal cortex (iPAR) and hippocampus (HIPP)/parahippocampus (paraHIPP).  
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Figure 4.10.2 Associations between parahippocampus (paraHIPP) and superior parietal cortex (sPAR)/dorsolateral prefrontal 

cortex (DLPFC).  
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