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Abstract of “High Order Numerical Methods: Entropy Stability and Deterministic
Solvers of Stochastic PDEs”, by Tianheng Chen, Ph.D., Brown University, May 2019

This thesis consists of two diverse topics on high order numerical methods for time-

dependent partial differential equations (PDEs).

In the first part, we develop a unified framework of entropy stable Discontinuous

Galerkin (DG) type methods for systems of hyperbolic conservation laws. The well-

known cell entropy inequality of classic DG method (Jiang and Shu (1994) [60]) is

limited to the square entropy and assumes exact integration. Our framework over-

comes such limitation by designing DG method satisfying entropy inequalities for

any given single entropy function, through suitable numerical quadrature rules. The

one-dimensional methodology is based on Legendre Gauss-Lobatto quadrature. The

main ingredients are discrete operators with summation-by-parts (SBP) property,

the flux differencing technique, and entropy stable fluxes at cell boundary. We then

extend the methodology to higher space dimensions by constructing SBP operators

for simplicial meshes with Gauss-Lobatto type quadrature points. The further ex-

tension to more general quadrature points is achieved through careful modification

of boundary terms. A local discontinuous Galerkin (LDG) type treatment is also in-

corporated to enable the generalization to convection-diffusion equations. Extensive

numerical experiments are performed to validate the accuracy and shock capturing

capability of these entropy stable DG methods.

In the second part, we explore the polynomial chaos expansion method for

distribution-free stochastic partial differential equations (SPDEs). So far the the-

ory and numerical practice of SPDEs have dealt almost exclusively with Gaussian

noise or Lévy noise. Recently, Mikulevicius and Rozovskii (2016) [78] proposed a

distribution-free Skorokhod-Malliavin calculus framework that is based on general-

ized polynomial chaos (gPC) expansion, and is compatible with arbitrary driving



noise. We will analyze these newly developed distribution-free SPDEs. We obtain

an estimate for the mean square truncation error in the linear case. The convergence

rate is exponential with respect to polynomial order and cubic with respect to num-

ber of random variables included. Numerical experiments are conducted to exhibit

the efficiency of truncated polynomial chaos solutions in approximating moments and

distributions. The theoretical convergence rate is also verified by numerical results.
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2

Time-dependent partial differential equations (PDEs), whose evolving functions

are of the form u(t,x) with (t,x) ∈ [0,∞) × Rd, are ubiquitous in science and

engineering. Since analytical solutions of these PDEs are rarely available, numeri-

cal methods have to be designed to solve them. Most numerical schemes follow the

method of lines principle; that is, we first perform spatial discretization with suitable

basis functions and test functions, and transform the problem into a system of ordi-

nary differential equations (ODEs). Then standard ODE solvers (e.g. Runge-Kutta

time stepping) can be adopted. Numerical methods are usually classified according

to the choice of basis functions and test functions. For example, spectral methods use

orthogonal polynomials or trigonometric polynomials as basis function [50], and the

implementation of spectral methods is often accomplished with Galerkin approach

(where test functions are the same as basis functions) or collocation approach (where

test functions are Dirac-δ functions at grid points).

Convergence is undoubtedly a major goal for numerical schemes. The numerical

solution should approach the exact solution as we refine the resolution. The well-

known Lax equivalence theorem [65] states that for a well-posed linear problem,

convergence is guaranteed by consistency and stability. A method is said to stable if

the numerical solution is uniformly bounded under certain norm, which is typically

related to the well-posedness of the PDE itself. The most widely used type of norm

is the L2 norm. For linear PDEs with periodic boundary condition, Fourier analysis

serves as a powerful tool to prove L2 stability [45]. On the other hand, consistency

requires the truncation error, i.e. the error induced by numerical approximation on a

smooth solution of the PDE, to converge to zero. The order of method measures the

convergence rate of truncation error, mostly in terms of characteristic mesh size h.

Given stability (and linear assumption), high order convergence of truncation error

implies high order convergence of numerical solution, and proving consistency is in
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general much easier than proving convergence directly. In this dissertation, we will

focus on two diverse topics concerning high order numerical methods:

1. Entropy stable Discontinuous Galerkin (DG) type methods for systems of hy-

perbolic conservation laws.

2. Polynomial chaos expansion method for stochastic partial differential equations

(SPDEs) driven by arbitrary type of noise.

The first topic handles systems of conservation laws, which encompass applica-

tions in oceanography (shallow water equations), aerodynamics (Euler equations),

plasma physics (MHD equations) and structural mechanics (nonlinear elasticity) [31].

Entropy conditions, where we require the total amount of a set of convex entropy

functions to be non-decreasing, play an essential role in the well-posedness of hy-

perbolic conservation laws. Therefore, it is natural to seek numerical schemes that

satisfy a discrete version of entropy conditions, i.e., entropy stable schemes. Discon-

tinuous Galerkin (DG) methods [17, 16, 15, 19], due to their high order accuracy,

local conservation, great parallel efficiency and flexibility for dealing with unstruc-

tured meshes, are a popular category of numerical schemes for solving hyperbolic

conservation laws. Jiang and Shu [60] proved that the semi-discrete DG schemes

satisfy a discrete entropy inequality for the square entropy for scalar conservation

laws (i.e., L2 stability), which is extended to symmetric systems by Hou and Liu

[55]. However, these results are limited to the square entropy function only, and all

integrals in the DG formulation are assumed to be evaluated exactly, which can be

costly or even impossible to implement. In practice one often uses quadrature rules

and stability might be affected.

In recent years, there have been rapid developments on entropy stable DG type

methods directly built upon numerical integration. DG schemes can be recast into



4

the nodal formulation after quadrature [62, 51]. These nodal DG forms are often

named as Discontinuous Galerkin Spectral Element methods (DGSEM) in the lit-

erature. In [29, 7], Carpenter, Fisher, Nielsen and Frankel established the entropy

stable DGSEM framework on Gauss-Lobatto quadrature points for one-dimensional

conservation laws. The main ingredients are the summation-by-parts (SBP) property

[27] of operators derived by Gauss-Lobatto nodes, flux differencing with Tadmor’s

entropy conservative fluxes [95, 96], and Tadmor’s entropy stable fluxes at cell inter-

faces. The entropy stable DGSEM methodology is then generalized to higher space

dimensions on unstructured meshes by Chen and Shu [13]. Several generalizations

to non Gauss-Lobatto type nodes are also recommended in [9, 10, 21, 1]. As we will

see in later chapters, these generalizations all have some drawbacks and trade-off,

and we are certainly not at the end of story.

The second topic embraces the realm of SPDEs, which essentially describe func-

tions u(t,x, ω) with an extra random dimension ω. SPDEs have found a broad type

of applications, including mathematical biology, financial engineering and nonlinear

filtering, to quantify the intrinsic uncertainty in these models [72]. The most popular

numerical approach to solving SPDEs is the Monte Carlo method, which generates

independent random sample paths via direct discretization [80, 115] or averaging

over characteristic lines [79]. However, it is well known that Monte Carlo simulation

suffers from slow rate of convergence and often requires millions of samples to reach

a desired accuracy level. Would it be possible to get rid of sampling? The answer

lies in the method of lines principle. In the stochastic polynomial chaos expansion

approach, we first construct a complete set of L2 orthogonal basis functions, called

polynomial chaos basis functions, for the underlying probability space. By expanding

u as a series of polynomial chaos basis functions, we separate the stochastic part and

the deterministic part. These expansion coefficients will in turn satisfy a system de-
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terministic PDEs, called propagator [69]. Then deterministic numerical solvers can

be applied to the propagator system. The polynomial chaos expansion approach is

often recognized as stochastic Galerkin method [105] due to its evident resemblance

with spectral Galerkin method.

Traditionally, polynomial chaos expansion approach is well suited for SPDEs

driven by Wiener process, or Gaussian white noise [54, 25]. Gaussian white noise

can be represented by a series of i.i.d standard Gaussian random variables. The cor-

responding polynomial chaos expansion is also known as Hermite chaos or Wiener

chaos in the literature. Due to multiple Itô integral formula [59], the stochastic

integral is equivalent to the Wick product [103] with white noise, which is written

in terms of expansion coefficients. Hence we can easily derive the propagator sys-

tem. The efficiency of Wiener chaos expansion has been validated by the numerical

examples in [116, 118, 56, 73]. Such methodology also works for Lévy randomness

[54, 25], and Liu [67] presented some numerical results of SPDEs driven by Poisson

noise.

Although the stochastic polynomial chaos expansion is mostly restricted to Gaus-

sian and Lévy random noise, the extension towards arbitrary type of noise has been

explored over the last two decades. Xiu and Karniadakis [106, 107] constructed the

correspondence between types of random variables and orthogonal polynomials in

the Askey scheme [2]. Their generalized polynomial chaos (gPC) technique was very

successful for problems with random initial/boundary condition and/or random co-

efficients [107, 108, 105]. However, gPC expansion is not naturally compatible with

stochastic integrals due to the lack of some vital connections, e.g., Wick product,

Skorokhod integral [92] and Malliavin calculus [74]. Recently, Mikulevicius and Ro-

zovsky built the distribution-free Skorokhod-Malliavin calculus framework [78] upon

gPC expansion, giving rise to a new family of SPDEs under their arbitrary noise
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paradigm. Then Chen, Rozovsky and Shu [12] studied the numerical aspects of

these distribution-free SPDEs. The authors proved that for linear problems, the

convergence rate of the mean square error is exponential with respect to polynomial

order and cubic with respect to number of random variables included, improving the

truncation error estimate in [68].

The rest of this dissertation is organized as follows. Part I provides an incre-

mental and unified framework of entropy stable nodal DG schemes for systems of

hyperbolic conservation laws. We will discuss the basic one-dimensional method-

ology in Chapter 1, the generalization to higher space dimensions in 2, and some

possible directions towards general set of nodes in Chapter 3. Part II deals with the

polynomial chaos expansion method for distribution-free SPDEs. We concentrate

on gPC expansion and distribution-free stochastic analysis in Chapter 4, and the

truncation error estimate and numerical analysis in Chapter 5. Concluding remarks

will be given in the ending part of dissertation. A few technical details can be found

in the appendix. We remark that each part will contain its own set of notations.

The same symbol might stand for different concepts in two parts.



Part I

Entropy Stable DG Methods for

Systems of Hyperbolic

Conservation Laws

7



Chapter One

One-Dimensional Methodology on

Gauss-Lobatto Nodes
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In this chapter, we will analyze numerical approximations of systems of conservation

laws in one space dimension. The equation is of the form

∂u

∂t
+
∂f(u)

∂x
= 0, (t, x) ∈ [0,∞)× R, (1.1)

where u = [u1, · · · , up]T denotes the vector of state variables taking values in a

convex set Ω ∈ Rp, and f = [f 1, · · · , fp]T is called the flux function. Define the

Jacobian matrix

f ′(u) := {∂f
i

∂uj
(u)}1≤i,j≤p.

Then the system (1.1) is called hyperbolic if f ′(u) has p real eigenvalues and a com-

plete set of eigenvectors for all u ∈ Ω. We shall only consider hyperbolic conservation

laws from now on. The name conservation law follows from the fact the total amount

of u is conserved. Formally integrating the equation (1.1) in space, and assuming u

is compactly supported, we come up with the identity

d

dt

∫
R

u(t, x)dx = 0. (1.2)

Particularly, for p = 1, we have the simple case of scalar conservation law

∂u

∂t
+
∂f(u)

∂x
= 0, (t, x) ∈ [0,∞)× R. (1.3)

Obviously scalar conservation laws are always hyperbolic.

It is well known that shock waves or contact discontinuities might develop at

finite time even for smooth initial condition. Hence we have to interpret (1.1) in the

sense of distribution and search for weak solutions. However, weak solutions are not

necessarily unique. We need some admissibility criterion to single out the “physically

relevant” solution among all weak solutions. Entropy conditions turn out to be the
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adequate criterion.

This chapter consists of following sections. In Section 1.1 and Section 1.2, we

introduce entropy analysis for one-dimensional hyperbolic conservation laws, and

briefly demonstrate existence and uniqueness of entropy solution, especially in the

scalar case. Entropy stability is well developed for first order methods, which will

be discussed in Section 1.3. We bring into the concepts of entropy conservative flux

and entropy stable flux , proving that for scalar conservation laws, monotone fluxes

[20, 48] are entropy stable with respect to all entropy functions, and for systems,

Godunov type fluxes [49] are entropy stable. In Section 1.4, we review the classic

cell entropy inequality [60, 55] for DG method, and explain why it only works for

the square entropy function. Then we move to the construction of one-dimensional

entropy stable nodal DG method [29, 7]. In Section 1.5, we present summation-by-

parts matrices and the DGSEM formulation on Gauss-Lobatto nodes. In Section 1.6,

we describe the flux differencing trick to achieve entropy balance within an element.

Just like classic DG method, we can apply a TVD/TVB limiter and / or a bound-

preserving limiter to control oscillations and enhance robustness. In Section 1.7, we

will see that these limiters do not violate entropy stability. Finally in Section 1.8,

we will report numerical results of both smooth accuracy tests and discontinuous

shock-capturing tests.

1.1 Entropy function and entropy variables

Let us first define convex entropy functions.

Definition 1.1. A convex function U : Ω → R is called an entropy function for

(1.1) if there exists a function F : Ω→ R, called entropy flux, such that the following
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integrability condition holds

U ′(u)f ′(u) = F ′(u), (1.4)

where U ′(u) and F ′(u) are viewed as row vectors.

In the scalar case, any convex function U is an entropy function, associated with

the entropy flux F (u) =
∫ u

U ′(s)f ′(s)ds. For more general systems, finding entropy

function - entropy flux pairs that satisfy (1.4) is much more difficult. The existence

of entropy function is a special property of the system. However, in almost all

systems we encounter in practice, we are able to find entropy functions with physical

meaning.

Define entropy variables v := U ′(u)T . If we further assume that U is strictly

convex, v′(u) = U ′′(u) is symmetric positive-definite, and the mapping u 7→ v is

one-to-one and can be regarded as a change of variables. Setting g(v) := f(u(v)),

we rewrite (1.1) in terms of entropy variables

u′(v)
∂v

∂t
+ g′(v)

∂v

∂x
= 0. (1.5)

The following theorem tells us that the existence of entropy function is equivalent to

the symmetry of u′(v) and g′(v) [41, 81].

Theorem 1.1. U is a strictly convex entropy function if and only if u′(v) is sym-

metric positive-definite, and g′(v) is symmetric. (1.5) is called the symmetrization

of (1.1).

Proof. We only prove the “only if” part. The “if” part is then straightforward as all

arguments hold in both directions. By strict convexity, u′(v) = (U ′′(u))−1 is sym-
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metric positive-definite. The integrability condition (1.4) suggests that U ′(u)f ′(u) is

a gradient, which is equivalent to the symmetry of

(U ′(u)f ′(u))′ = U ′′(u)f ′(u) + U ′(u)f ′′(u).

The second term, being a linear combination of symmetric matrices (f i)′′(u), 1 ≤

i ≤ p, is also symmetric. Hence U ′′(u)f ′(u) is symmetric. Since

g′(v) = f ′(u)u′(v) = f ′(u)(U ′′(u))−1 = (U ′′(u))−1(U ′′(u)f ′(u))(U ′′(u))−1

is congruent with U ′′(u)f ′(u), we prove the symmetry of g′(v).

Remark 1.1. Moreover, f ′(u) = g′(v)v′(u) is similar to v′(u)
1
2 g′(v)v′(u)

1
2 , which

is another symmetric matrix. Therefore all eigenvalues of f ′(u) are real and f ′(u) is

diagonalizable. In other words, existence of entropy function implies hyperbolicity.

Now since u′(v) and g′(v) are both symmetric, there exist functions φ(v) and

ψ(v), called potential function and potential flux, such that

φ′(v) = u(v)T , ψ′(v) = g(v)T (1.6)

It is easy to verify that

φ(v) = u(v)Tv − U(u(v)), ψ(v) = g(v)Tv − F (u(v)) (1.7)
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1.2 Existence and uniqueness of entropy solution

Given entropy function U , in smooth regions, the integrability condition (1.4) leads

to an extra conservation law for U

∂U(u)

∂t
+
∂F (u)

∂x
= 0. (1.8)

However, at shock waves, we require the entropy to dissipate, which leads to the

following definition of entropy solution.

Definition 1.2. A weak solution u of (1.1) is called an entropy solution if for all

possible entropy functions U , we have

∂U(u)

∂t
+
∂F (u)

∂x
≤ 0, (1.9)

in the sense of distribution.

Formally integrating the entropy condition (1.9) in space, and assuming u is

compactly supported, we obtain the bound

d

dt

∫
R
U(u)dx ≤ 0. (1.10)

That is, the total entropy is non-increasing with respect to time. If we further assume

that U is uniformly convex, the above bound indeed implies an a priori L2 bound of

the entropy solution [49].

The existence of entropy solution follows from the limit of vanishing viscosity
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approximations. Consider the viscous perturbation of (1.1)

∂uε
∂t

+
∂f(uε)

∂x
= ε

∂2uε
∂x2

, ε > 0. (1.11)

By applying U ′(uε) to (1.11),

∂U(uε)

∂t
+
∂F (uε)

∂x
= ε
(∂2U(uε)

∂x2
− ∂uTε

∂x
U ′′(uε)

∂uε
∂x

)
≤ ε

∂2U(uε)

∂x2
.

Sending ε→ 0+ we recover the entropy condition (1.9). For some physical problems

(e.g. compressible Navier-Stokes equations), it is necessary to look at the more

general form of viscous perturbation

∂uε
∂t

+
∂f(uε)

∂x
= ε

∂

∂x

(
C(vε)

∂vε
∂x

)
, (1.12)

where vε := v(uε) and C(vε) is a symmetric semi-positive-definite p × p matrix.

Applying U ′(uε) = vTε to (1.12) gives us

∂U(uε)

∂t
+
∂F (uε)

∂x
= ε
( ∂
∂x

(
vTε C(vε)

∂vε
∂x

)
− ∂vTε

∂x
C(vε)

∂vε
∂x

)
≤ ε

∂

∂x

(
vTε C(vε)

∂vε
∂x

)
.

Then the vanishing viscosity approach works as well. Such heuristic can be made

rigorous under smoothness and compactness assumptions. Proof of the following

theorem is provided in [39].

Theorem 1.2. Let {uε} be a sequence of sufficiently smooth solutions of (1.11) such

that {uε} converges boundedly and a.e. to some function u as ε → 0+. Then u is

an entropy solution of (1.1).

Conditions of uniform boundedness and a.e. convergence are satisfied by the

scalar case, so that the existence of entropy solution is established. In fact, {uε} is
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bounded in both L∞([0,∞)×R) and W 1,1
loc ([0,∞)×R), which allows us to extract an

a.e convergent subsequence approaching an entropy solution. For general systems,

we may only have an L∞ bound, and additional assumptions are required. Glimm

[38] proved the existence result for systems using his random choice method, under

the assumption of initial data with sufficiently small total variation. Alternative

proof relying on vanishing viscocity approach was revealed by Bianchini and Bressan

[4].

Entropy solution is unique for scalar conservation laws, due to the abundance of

entropy functions. Kruzhkov [63] proved the uniqueness result using the following

family of entropy function - entropy flux pairs,

U(u) = |u− k|, F (u) = sgn(u− k)(f(u)− f(k)), k ∈ R. (1.13)

We have obtained the well-posedness of entropy solution for scalar conservation laws

as a result of existence and uniqueness. In the following theorem, we see that the

entropy solution actually behaves well in many aspects [39].

Theorem 1.3. If u(0, ·) ∈ L∞(R), then (1.3) has a unique entropy solution u ∈

L∞((0,∞]× R). The solution satisfies

1. Maximum principle: ‖u(t, ·)‖L∞ ≤ ‖u(0, ·)‖L∞ for almost all t ≥ 0.

2. Order preservation: if u and v are both entropy solutions, then

u(0, ·) ≥ v(0, ·) a.e. ⇒ u(t, ·) ≥ v(t, ·) a.e.

3. L1 contraction: if u and v are both entropy solutions, such that u(0, ·) and
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v(0, ·) belong to L1(R), then

‖u(t, ·)− v(t, ·)‖L1 ≤ ‖u(0, ·)− v(0, ·)‖L1 for almost all t ≥ 0.

4. Total variation diminishing (TVD): if we assume u(0, ·) has finite total varia-

tion, then

TV(u(t, ·)) ≤ TV(u(0, ·)) for almost all t ≥ 0,

where TV is the abbreviation for total variation.

If we restrict ourselves to uniformly convex flux functions, then a single strictly

convex entropy function is sufficient to determine the entropy solution [84].

Theorem 1.4. Consider the scalar conservation law (1.3). Assume that f is uni-

formly convex. If u ∈ L∞([0,∞) × R) is a weak solution satisfying the entropy

condition (1.9) with respect to a strictly convex entropy pair (U, F ), then u is the

entropy solution.

For systems, we may not have enough entropy functions, and the question of

uniqueness is very challenging except for some special cases. We refer the readers to

[23, 40] and the references therein for more details on the theory of entropy solutions.

Before proceeding to numerical methods, we present some examples of hyperbolic

conservation laws, together with their entropy function - entropy flux pairs and

potential function - potential flux pairs.

Example 1.2.1. The linear symmetric system is of the form

∂u

∂t
+
∂(Au)

∂x
= 0, (1.14)
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where A is a constant symmetric matrix. The standard energy U = 1
2
uTu serves as

an entropy function. Then v = u and

F =
1

2
uTAu, φ =

1

2
uTu, ψ =

1

2
uTAu. (1.15)

Example 1.2.2. A prototype of scalar conservation laws is the inviscid Burgers

equation

∂u

∂t
+
∂(u2/2)

∂x
= 0, (1.16)

equipped with the square entropy U = 1
2
u2. Then v = u and

F =
1

3
u3, φ =

1

2
u2, ψ =

1

6
u3. (1.17)

Here f is uniformly convex and U is strictly convex. By Theorem 1.4, if a weak solu-

tion satisfies the entropy condition with respect to (U, F ), it is the entropy solution.

Example 1.2.3. The shallow water equations model water flows with a free surface

under the influence of gravity. The governing equations (with flat bottom) are

∂

∂t

 h

hw

+
∂

∂x

 hw

hw2 + 1
2
gh2

 = 0. (1.18)

Here h and w are the water depth and velocity, and g stands for the gravity ac-

celeration constant. In the absence of dry bed, the water depth is always positive

and

Ω = {u ∈ R2 : h > 0}. (1.19)

The total (kinetic and potential) energy U = 1
2
hw2 + 1

2
gh2 is a convex function of
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u ∈ Ω and serves as an entropy function with

v =

gh− 1
2
w2

w

 , F =
1

2
hw3 + gh2w, φ =

1

2
gh2, ψ =

1

2
gh2w. (1.20)

Example 1.2.4. The Euler equations of gas dynamics are

∂

∂t


ρ

ρw

E

+
∂

∂x


ρw

ρw2 + p

w(E + p)

 = 0. (1.21)

Here ρ, w and p are the density, velocity and pressure of the gas. E is the total

energy. In the case of polytropic ideal gas, the equation of state is

E =
1

2
ρw2 +

p

γ − 1
, (1.22)

where γ is ratio of specific heats. γ = 5/3 for monatomic gas and γ = 7/5 corresponds

to diatomic molecules. Assume that there is no vacuum. Then density and pressure

need to be positive and

Ω = {u ∈ R3 : ρ > 0, p > 0} = {u ∈ R3 : ρ > 0, (γ − 1)(E − (ρw)2

2ρ
) > 0}. (1.23)

We can verify that Ω is a convex set and (1.21) is hyperbolic in Ω. The physical

specific entropy is s = log(pρ−γ). Harten [46] proved that there exists a family of

entropy pairs that are related to s:

U = −ρh(s), F = −ρwh(s). (1.24)
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To make U convex, h can be any function such that

h′(s)− γh′′(s) > 0, h′(s) > 0. (1.25)

However, by regarding Euler equations as the vanishing viscosity limit of compress-

ible Navier-Stokes equations, we need to make sure that C(vε) in (1.12) is symmetric

semi-positive-definite. The only choice of entropy pair is (see [57])

U = − ρs

γ − 1
, F = − ρws

γ − 1
. (1.26)

The corresponding entropy variables and potential function-potential flux pair are

v =


γ−s
γ−1
− ρw2

2p

ρw
p

−ρ
p

 , φ = ρ, ψ = ρw. (1.27)

1.3 Review of first order methods

In this section, we start to look into the numerical aspects of one-dimensional con-

servation laws. We will mostly conduct semi-discrete analysis, i.e., we investigate the

system of ODEs derived via method of lines principle, and temporal discretization is

not taken into account. For spatial discretization, suppose that we have a computa-

tional interval Γ = [xL, xR], equipped with periodic boundary condition, and divided

into cells {Ii}Ni=1 such that

xL = x1/2 < x3/2 < · · · < xN+1/2 = xR, Ii = [xi−1/2, x1+1/2], ∆xi := xi+1/2−xi−1/2,
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and h := max1≤i≤N is the characteristic mesh size. The first order (finite volume)

method simulates the evolution of cell averages. Let ui(t) := 1
∆xi

∫
Ii
u(t, x)dx. Inte-

grating (1.1) in Ii, we have the integral form

dui(t)

dt
+

1

∆xi
(f(u(t, xi+1/2))− f(u(t, xi−1/2))) = 0. (1.28)

Then the first order scheme reads

dui
dt

+
1

∆xi
(f̂i+1/2 − f̂i−1/2) = 0, (1.29)

where f̂i+1/2 = f̂(ui,ui+1), and f̂(uL,uR) is some consistent two-point numerical flux

function such that

f̂(u,u) = f(u). (1.30)

Scheme (1.29) is conservative, in the sense that if we define uh(t, x) :=
∑N

i=1 ui(t)1Ii ,

d

dt

∫
Γ

uh(t, x)dx =
d

dt

( N∑
i=1

∆xiui

)
=

N∑
i=1

(f̂i−1/2 − f̂i+1/2) = 0.

Entropy stability of (1.29) is thoroughly studied by Tadmor in [95, 96]. For an

entropy function U , the rate of change of the total entropy is

d

dt

∫
Γ

U(uh(t, x))dx =
d

dt

( N∑
i=1

∆xiUi

)
=

N∑
i=1

vTi (f̂i−1/2−f̂i+1/2) =
N∑
i=1

(vi+1−vi)
T f̂i+1/2,

(1.31)

where we use the short hand notation Ui := U(ui) and vi := v(ui). This motivates

us to define the concepts of entropy conservative flux and entropy stable flux.

Definition 1.3. A bivariate numerical flux function fS(uL,uR) is called entropy

conservative with respect to some entropy function U if it is consistent, symmetric,
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and

(vR − vL)T fS(uL,uR) = ψR − ψL, (1.32)

where we again set vL,R := v(uL,R), ψL,R := ψ(vL,R), and ψ is the potential flux

defined in (1.7).

Definition 1.4. A bivariate numerical flux function f̂(uL,uR) is called entropy stable

with respect to some entropy function U if it is consistent, and

(vR − vL)T f̂(uL,uR) ≤ (ψR − ψL). (1.33)

Recall (1.31). If f̂ is entropy stable,

d

dt

∫
Γ

U(uh(t, x))dx ≤
N∑
i=1

(ψi+1 − ψi) = 0

We accordingly say that (1.29) is entropy stable with respect to U . In addition, we

can define the numerical entropy flux

F̂ (uL,uR) :=
1

2
(vL + vR)T f̂(uL,uR)− 1

2
(ψL + ψR). (1.34)

It is consistent as F̂ (u,u) = v(u)T f(u) − ψ(v) = F (u). Let F̂i+1/2 = F̂ (ui,ui+1).

We get the cell entropy inequality

dUi
dt

+
1

∆xi
(F̂i+1/2 − F̂i−1/2)

=
1

2
((vi+1 − vi)

T f̂i+1/2 + (vi − vi−1)T f̂i−1/2 − (ψi+1 − ψi−1)) ≤ 0,

(1.35)

which corresponds to the integral form of entropy condition (1.9). Similarly, if f̂ is

entropy conservative, the total entropy does not change and the scheme is said to be

entropy conservative. All inequalities above become equalities.
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The importance of conservation and entropy stability resides in the well-known

Lax-Wendroff [64] theorem. Proof is a direct application of dominated convergence

theorem. Notice its evident resemblance with Theorem 1.2. Actually taking the

limit of numerical methods is another way to prove the existence of entropy solution.

Theorem 1.5. If {uh(t, x)} converges boundedly and a.e. to some function u(t, x)

as h → 0+, then u is a weak solution of (1.1). Furthermore, if f̂ is entropy stable

with respect to all entropy functions, u is an entropy solution.

In the scalar case, the entropy conservative flux is uniquely determined

fS(uL, uR) =


ψR−ψL
vR−vL

uL 6= uR

f(uL) uL = uR

. (1.36)

For systems, (1.32) is underdetermined and fS(uL,uR) is not unique. A generic

choice of entropy conservative flux is the following path integration [96].

fS(uL,uR) =

∫ 1

0

g(vL + λ(vR − vL))dλ, (1.37)

which may not have an explicit formula and can be computationally expensive.

Fortunately, for many systems we are able to derive explicit entropy conservative

fluxes that are easy to compute. Let us revisit the examples in Section 1.2.

Example 1.3.1. For linear symmetric system (1.14), the entropy conservative flux

is simply the arithmetic mean

fS(uL,uR) =
1

2
(AuL + AuR). (1.38)
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Example 1.3.2. For Burgers equation (1.16),

fS(uL, uR) =
1

6
(u2

L + uLuR + u2
R). (1.39)

is conservative with respect to the square entropy function.

Example 1.3.3. For shallow water equations (1.18), an explicit entropy conservative

flux is

fS(uL,uR) =

 1
2
(hLwL + hRwR)

1
4
(hLwL + hRwR)(wL + wR) + 1

2
ghLhR

 . (1.40)

Example 1.3.4. For Euler equations (1.21), Ismail and Roe [58] suggested the

following affordable entropy conservative flux

f 1
S = z2(z3)log,

f 2
S =

z3

z1
+
z2

z1
f 1
S,

f 3
S =

1

2

z2

z1
(
γ + 1

γ − 1

(z3)log

(z1)log
+ f 2

S),

(1.41)

where

z :=


z1

z2

z3

 =

√
ρ

p


1

w

p

 .
zs and (zs)log are the arithmetic mean and the logarithmic mean

zs :=
1

2
(zsL + zsR), (zs)log :=

zsR − zsL
log zsR − log zsL

, s = 1, 2, 3.

Another entropy conservative flux, which also preserves kinetic energy, was recom-
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mended by Chandrashekar in [11]:

f 1
S = (ρ)logw,

f 2
S =

ρ

2β
+ wf 1

S,

f 3
S =

( 1

2(γ − 1)(β)log
− 1

2
w2
)
f 1
S + wf 2

S,

(1.42)

where β := ρ
2p

.

The construction of entropy stable fluxes can be divided into two categories. In

[58, 11, 7, 31], the authors build f̂ by adding some numerical dissipation operators,

of Lax-Friedrichs type or Roe type, to the entropy conservative flux, so that the

amount of entropy dissipation can be precisely determined. On the other hand, it

has been known for decades that the widely used upwind numerical fluxes, including

monotone fluxes for scalar conservation laws and Godunov-type fluxes for general

systems, are entropy stable. Here we will follow the latter approach because of other

desirable properties of upwind fluxes (e.g. maximum principle and TVD).

Most popular numerical fluxes rely on Riemann solvers, which exactly compute

or approximate the solution of the Riemann problem



∂u
∂t

+ ∂f(u)
∂x

= 0

u(x, 0) =


uL x ≤ 0

uR x > 0

. (1.43)

The solution of the Riemann problem is self-similar. We assume that our Riemann

solver also has self-similar structure and is denoted by q(x/t; uL,uR). Let λL and
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λR be the leftmost and rightmost wave speed such that

q(r; uL,uR) =


uL r ≤ λL

uR r ≥ λR

. (1.44)

The Riemann solver should maintain conservation. For any SL ≤ min{λL, 0} and

SR ≥ max{λR, 0}, integrating along the rectangle [SL, SR]× [0, 1] yields

∫ SR

SL

q(r; uL,uR)dr − (SRuR − SLuL) + (fR − fL) = 0. (1.45)

Definition 1.5. Let q(x/t; uL,uR) be a self-similar Riemann solver that satisfies

(1.45). û(uL,uR) is called a Godunov-type flux [49] if

f̂(uL,uR) = fR +

∫ SR

0

q(r; uL,uR)dr − SRuR = fL −
∫ 0

SL

q(r; uL,uR)dr − SLuL.

(1.46)

The idea follows from integration along [0, SR]× [0, 1] or [SL, 0]× [0, 1].

Theorem 1.6. For an entropy function U , assume that the Riemann solver also sat-

isfies the entropy condition such that for any SL ≤ min{λL, 0} and SR ≥ max{λR, 0},

∫ SR

SL

U(q(r; uL,uR))dr − (SRUR − SLUL) + FR − FL ≤ 0 (1.47)

Then the corresponding Godunov-type flux is entropy stable with respect to U .

Proof. By (1.46) and Jensen’s inequality,

∫ SR

0

U(q(r; uL,uR))dr ≥ SRU(
1

SR

∫ SR

0

q(r; uL,uR)dr) = SRU(uR+
1

SR
(f̂(uL,uR)−fR)),

∫ 0

SL

U(q(r; uL,uR))dr ≥ −SLU(− 1

SL

∫ 0

SL

q(r; uL,uR)dr) = −SLU(uL+
1

SL
(f̂(uL,uR)−fL)).
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Summing them up and applying (1.47) gives

SR(U(uR+
1

SR
(f̂(uL,uR)−fR))−UR)−SL(U(uL+

1

SL
(f̂(uL,uR)−fL))−UL)+FR−FL ≤ 0.

We send SR → ∞ and SL → −∞. The first term converges to vTR(f̂(uL,uR) − fR)

and the second term converges to vTL(f̂(uL,uR)−fL). The inequality above simplifies

to

vTR(f̂(uL,uR)−fR)−vTL(f̂(uL,uR)−fL)+FR−FL = (vR−vL)T f̂(uL,uR)−(ψR−ψL) ≤ 0,

which is exactly the condition (1.33).

Example 1.3.5 (Godunov flux). The Riemann problem can be solved exactly for

scalar problems, as well as shallow water equations and Euler equations. The result-

ing numerical flux is called Godunov flux. Since the exact solutions satisfy all entropy

conditions, Godunov flux is entropy stable with respect to all entropy functions.

Example 1.3.6 (HLL flux). The computation of exact Riemann solver often requires

several Newton-Raphson iteration steps. Practically we resort to approximate Rie-

mann solvers to reduce computational cost. A commonly used approximate Riemann

solver is the HLL Riemann solver [46], which assumes a constant middle state. We

first prescribe values of λL and λR. Then

q(r; uL,uR) =


uL r ≤ λL

uR r ≥ λR

λRuR−λLuL−(fR−fL)
λR−λL

λL < r < λR

. (1.48)
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Inserting (1.46), we obtain the HLL flux

f̂(uL,uR) =


fL λL ≥ 0

fR λR ≤ 0

λRfL−λLfR+λLλR(uR−uL)
λR−λL

λL < 0 < λR

. (1.49)

The HLL flux in entropy stable provided we approximate λL and λR properly.

Corollary 1.1. If λL is not larger than the true leftmost wave speed and λR is

not smaller than the true rightmost wave speed, the HLL flux is entropy stable with

respect to all entropy functions.

Proof. It suffices to prove that for all entropy functions, (1.47) is satisfied by the

HLL Riemann solver. Since the approximate wave fan is larger than the true wave

fan and the middle state is constant, the HLL Riemann solver is simply an average

of the exact Riemann solver. Another application of Jensen’s inequality completes

the proof.

Example 1.3.7 (Lax-Friedrichs flux). The local Lax-Friedrichs flux is written as

f̂(uL,uR) =
1

2
(fL + fR)− λ

2
(uR − uL), (1.50)

for some λ > 0. It is a special case of HLL flux with λL = −λ and λR = λ. Hence

local Lax-Friedrichs flux is entropy stable with respect to all entropy functions if λ

is not smaller than the true maximum wave speed (in terms of absolute vale).

The computation of λL and λR is, however, not trivial. Simplistic approxima-

tion usually fails to bound the true wave speeds. Toro [98, 99] recommends the

two-rarefaction approximation, and Guermond and Popov [44] prove that the two-
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rarefaction approximated wave speeds indeed provide the correct bounds for Euler

equations with 1 ≤ γ ≤ 5/3. We can also prove the similar result for shallow water

equations. The details of two-rarefaction approximation will be given in Appendix

A.

In the scalar case, it is more convenient to examine the monotonicty of flux.

Definition 1.6. A consistent numerical flux function f̂(uL, uR) is called monotone if

it is a a non-decreasing function of its first argument and a non-increasing function

of its second argument.

Theorem 1.7. Monotone fluxes are entropy stable with respect to all entropy func-

tions.

Proof. For any entropy function U and its entropy variable v, since ψ′(v) = g(v) =

f(u), there exists ṽ between vL and vR such that

ψR − ψL = (vR − vL)g(ṽ) = (vR − vL)f(u(ṽ)).

Due to the convexity of U , u(v) is an increasing function, and u(ṽ) is also between

uL and uR. By the monotonicity of f̂ we have

(uR − uL)(f̂(uL, uR)− f(u(ṽ))) ≤ 0. (1.51)

Consequently

(ψR − ψL)− f̂(uL, uR)(vR − vL) = (vR − vL)(f(u(ṽ))− f̂(uL, uR)) ≥ 0.

We remark that (1.51) is exactly the characterization of the E-flux by Osher [82].
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Example 1.3.8 (Godunov flux, revisited). The Godunov flux in the scalar case has

an explicit expression

f̂(uL, uR) =


min

u∈[uL,uR]
f(u) if uL ≤ uR

max
u∈[uR,uL]

f(u) if uR ≤ uL

. (1.52)

It is obviously monotone.

Example 1.3.9 (Lax-Friedrichs flux, revisited). Recall the local Lax-Friedrichs flux

f̂(uL, uR) =
1

2
(fL + fR)− λ

2
(uR − uL). (1.53)

It is monotone provided that λ ≥ max{|f ′(uL)|, |f ′(uR)|}, i.e., not smaller than the

maximum wave speed.

Example 1.3.10 (Engquist-Osher flux). The numerical flux built by Eugquist and

Osher [26] is

f̂(uL, uR) = f(0) + f+(uL) + f−(uR), (1.54)

where

f+(u) :=

∫ u

0

max{f ′(s), 0}ds, f−(u) :=

∫ u

0

min{f ′(s), 0}ds. (1.55)

f̂ is monotone as f+ is non-decreasing and f− is non-increasing.

Besides entropy stability, numerical solutions of first order method (1.29) with

monotone flux also share the discrete version of the well-posedness properties of the

entropy solution in Theorem 1.3.

Theorem 1.8. Suppose that {ui(t)}Ni=1 and {vi(t)}Ni=1 are both numerical solutions

of the semi-discrete scheme (1.29) for some scalar conservation law, where f̂ is
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monotone and Lipschitz continuous of both arguments. Then we have the following

properties:

1. Maximum principle: max
1≤i≤N

{ui(t)} ≤ max
1≤i≤N

{ui(0)}.

2. Order preservation: ui(0) ≥ vi(0),∀1 ≤ i ≤ N ⇒ ui(t) ≥ vi(t),∀1 ≤ i ≤ N

3. L1 contraction:
N∑
i=1

∆xi|ui(t)− vi(t)| ≤
N∑
i=1

∆xi|ui(0)− vi(0)|.

4. Total variation diminishing (TVD):
N∑
i=1

|ui+1(t)− ui(t)| ≤
N∑
i=1

|ui+1(0)− ui(0)|.

We recheck the conditions in the Lax-Wendroff theorem. Maximum principle

implies uniform boundedness, and TVD property leads to a a.e. convergent sub-

sequence of {uh(t, x)}. Since monotone flux is entropy stable with respect to all

entropy functions, the subsequence converges to the entropy solution. Moreover, by

the uniqueness of entropy solution and a sub-subsequence argument (every subse-

quence has a sub-subsequence approaching the entropy solution), the whole sequence

{uh(t, x)} converges to the entropy solution. We obtain the “ultimate theorem” for

first order methods.

Theorem 1.9. Let uh(t, x) =
∑N

i=1 ui(t)1Ii. If f̂ is monotone and globally Lipschitz

continuous of both arguments, then {uh(t, x)} converges a.e. to the unique entropy

solution.

Remark 1.2. All theorems in the chapter are still valid for the fully discrete first

order scheme, where we use Euler forward time discretization (see e.g. Chapter 3 of

[39]).
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1.4 Review of classic DG method

Although first order methods have a bunch of desirable properties including provable

entropy stability, the convergence rate is quite slow. There are mainly two direc-

tions towards high order methods for systems of conservation laws. In high order

finite volume methods, we maintain cell averages, and the numerical flux depends

on a wider stencil of cells with some reconstruction technique; while in discontin-

uous Galerkin (DG) methods, we keep locality and the two-point numerical flux,

and evolve high order polynomials in cells. When designing high order methods, we

hope to recover some (if not all) of the properties in Theorem 1.8 without affecting

high order accuracy. People have developed various types of modifications, such as

TVD/TVB limiters [88], bound-preseving limiter [112, 113], ENO method [47], and

WENO method [90], to achieve that goal. However, in general entropy stability for

all entropy functions can not be accomplished in high order schemes. It is shown

in [48, 82] that both monotone fluxes and E-fluxes are at most first order accurate,

and Osher and Tadmor proved [83] that E-flux is in fact necessary for stability with

respect to all entropy functions. Therefore we have to make a compromise. In the

literature, one usually seeks entropy stability with respect to a single entropy func-

tion. Let us remark that Bouchut, Bourdaris and Perthame [5] gave a second order

scheme that satisfies all entropy inequalities. It does not contradict the argument by

Osher and Tadmor since their scheme was not written in the standard conservative

form.

In the realm of finite volume methods, a major result of entropy stable high order

method is the TeCNO scheme, proposed by Fjordholm, Mishra and Tadmor [31] as

a version of ENO schemes. The authors used the high order linear combinations

of entropy conservative fluxes in [66], along with the sign property of ENO recon-
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struction [32]. The TeCNO scheme is only stable with respect to a given entropy

function, as entropy conservative fluxes are specific to entropy functions. A second

order generalization to higher dimensional unstructured meshes is presented in [87].

The story is similar for DG methods. Let us start with the classic DG method

developed by Cockburn and Shu in their series of papers [17, 16, 15, 19]. We still

assume periodic boundary condition and domain decomposition {Ii}Ni=1. Given poly-

nomial degree k ≥ 0, we define the DG space of piecewise polynomials

Vk
h = {wh : wh|Ii ∈ [Pk(Ii)]p, 1 ≤ i ≤ N}. (1.56)

We seek uh ∈ Vk
h such that for each wh ∈ Vk

h and 1 ≤ i ≤ N ,

∫
Ii

∂uTh
∂t

whdx−
∫
Ii

f(uh)
T dwh

dx
dx = −f̂Ti+1/2wh(x

−
i+1/2) + f̂Ti−1/2wh(x

+
i−1/2), (1.57)

where

f̂i+1/2 = f̂(uh(x
−
i+1/2),uh(x

+
i+1/2)) (1.58)

for some consistent two-point numerical flux function f̂ . (1.57) is usually called the

weak form of DG method as it approximates the weak problem

∫
R

∂u(t, x)T

∂t
w(x)dx−

∫
R

u(t, x)T
dw(x)

dx
dx = 0, (1.59)

for all smooth and compactly supported w. In the case that k = 0, the DG space

contains piecewise constants and (1.57) reduces to the first order method (1.29). The

strong form of DG method is obtained after a simple integration by parts

∫
Ii

(∂uh
∂t

+
f(uh)

∂x

)T
whdx = (f(uh(x

−
i+1/2))− f̂i+1/2)Twh(x

−
i+1/2)

− (f(uh(x
+
i−1/2))− f̂i−1/2)Twh(x

+
i−1/2),

(1.60)
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which corresponds to the equation (1.1) itself. The classic DG method is conservative

(by taking wh = 1), high order accurate, and L2 stable if we have a square entropy

function, e.g. in scalar problems and linear symmetric systems.

Theorem 1.10. If U = 1
2
uTu is an entropy function of (1.1), and f̂ is entropy

stable with respect to U , then the DG scheme (1.57) and (1.60) is L2 stable in the

sense that

d

dt

∫
Γ

U(uh)dx =
d

dt

(1

2
‖uh‖2

L2

)
≤ 0. (1.61)

Proof. Since U = 1
2
uTu, v = u, ψ = uT f −F , and ψ′(u) = f(u). We set wh = uh in

(1.57) and get

d

dt

(1

2
‖uh‖2

L2

)
=

N∑
i=1

∫
Ii

∂uTh
∂t

uhdx =
N∑
i=1

(∫
Ii

f(uh)
T ∂uh
∂x

dx− f̂Ti+1/2u
−
i+1/2 + f̂Ti−1/2u

+
i−1/2

)
=

N∑
i=1

(ψ−i+1/2 − ψ
+
i−1/2 − f̂Ti+1/2u

−
i+1/2 + f̂Ti−1/2u

+
i−1/2)

=
N∑
i=1

(
f̂Ti+1/2(u+

i+1/2 − u−i+1/2)− (ψ+
i+1/2 − ψ

−
i+1/2)

)
≤ 0,

where we use the short hand notation u±i+1/2 := uh(x
±
i+1/2) and ψ±i+1/2 := ψ(u±i+1/2).

The last inequality results from the entropy stability of f̂ .

Remark 1.3. In [60, 55], the L2 stability is characterized by the cell entropy in-

equality

d

dt

∫
Ii

U(uh)dx+ F̂i+1/2 − F̂i−1/2 ≤ 0, (1.62)

where F̂i+1/2 := 1
2
(u−i+1/2 + u+

i+1/2)T f̂i+1/2 − 1
2
(ψ−i+1/2 + ψ+

i+1/2).

The stability result is limited to the square entropy function. For a general

entropy U , the mapping u 7→ v is nonlinear, and v(uh) does not live in the piecewise

polynomial space Vk
h. We can not use v(uh) as the test function. One possible
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remedy is to approximate v directly. We evolve vh ∈ Vk
h such that for each wh ∈ Vk

h

and 1 ≤ i ≤ N ,

∫
Ii

∂u(vh)
T

∂t
whdx−

∫
Ii

g(vh)
T dwh

dx
dx = −f̂Ti+1/2wh(x

−
i+1/2)+f̂Ti−1/2wh(x

+
i−1/2), (1.63)

This approach, initiated by Hughes, Franca and Mallet [57], is entropy stable for

any given entropy function. The proof is exactly the same as Theorem 1.10. It has

the drawback that nonlinear solvers are required at each time step, even for explicit

time discretization. Hence, people are in favor of space-time DG formulation [3, 53].

The entropy stable DG type method we are going to discuss does not incur

nonlinear solvers. It is based on quadrature points and nodal formulation, so that

we can perform nonlinear mapping freely. Actually, quadrature rules are necessary

for the implementation of DG method. If the flux function f has a convoluted form

(e.g. in Euler equations), it is costly or even impossible to evaluate the second

integral in (1.57) exactly. There are two technical challenges related to the nodal

form. We need discrete versions of integration by parts and chain rule, which are

crucial to the proof of Theorem 1.10. In the next two sections, we will address the

following ideas:

1. The summation-by-parts property on Gauss-Lobatto nodes is the discrete ana-

logue of integration by parts (see Section 1.5).

2. Identity (1.32) satisfied by entropy conservative fluxes is the discrete analogue

of chain rule f(u)∂v
∂x

= ∂ψ(v)
∂x

. The flux differencing technique, which can be

thought as linear combination of entropy conservative fluxes (but different than

the construction in [66]), is the key to entropy balance within cells (see Section

1.6).

3. The numerical flux f̂ at cell interfaces should be entropy stable (see Section



35

1.6).

1.5 Gauss-Lobatto quadrature and summation-

by-parts

The discontinuous Galerkin spectral element method (DGSEM) is developed by ap-

plying quadrature rules to the two integrals in (1.57), and evolving nodal values

at these quadrature points. We are going to choose the Legendre-Gauss-Lobatto

quadrature rule. Consider the reference element I = [−1, 1] associated with Gauss-

Lobatto quadrature points

−1 = ξ0 < ξ1 < · · · < ξk = 1,

and quadrature weights {ωj}kj=0. Let (·, ·) and (·, ·)ω denote the continuous and

discrete inner product

(u,v) :=

∫ 1

−1

uTvdξ, (u,v)ω :=
k∑
j=0

ωju(ξj)
Tv(ξj) for u,v ∈ (L2(I))p,

and define the Lagrangian (nodal) basis polynomials

Lj(ξ) =
k∏
l=0
l 6=j

ξ − ξl
ξj − ξl

,

such that Lj(ξl) = δjl.

Now we bring forth the vector notation of nodal functions, and some discrete
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operators (matrices) of nodal functions. For a function u on I,

−→u :=

[
u(ξ0) · · · u(ξk)

]T

represents the vector of values of u on quadrature points. The mass matrix M and

boundary matrix B are set to be

M := diag{ω0, · · · , ωk}, (1.64)

B := diag{τ0, · · · , τk} = {−1, 0, · · · , 0, 1}. (1.65)

B corresponds to a (zero-dimensional exact) quadrature rule on the boundary such

that for u, v ∈ L2(I),

−→u TM−→v =
k∑
j=0

ωjuivj = (u, v)ω,
−→u TB−→v = u(1)v(1)− u(−1)v(−1) = uv |1−1 .

The indication of B will be more clear in higher space dimensions. The difference

matrix is set to be

D := {L′l(ξj)}0≤j,l≤k (1.66)

Then D is exact for polynomial functions. If u ∈ Pk(I), u(ξ) =
k∑
l=0

u(ξl)Ll(ξ), and

(D−→u )j =
k∑
l=0

L′l(ξj)u(ξl) = u′(ξj).

In particular, since the derivative of constant function vanishes,

D
−→
1 =

−→
0 , (1.67)

where
−→
0 and

−→
1 are the vector of 0s and 1s.
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Theorem 1.11 (summation-by-parts property). Set the stiffness matrix S := MD.

Then we have

B = S + ST = MD +DTM, (1.68)

which is a discrete analogue of integration by parts.

Proof. The stiffness matrix satisfies

Sjl = ωjL
′
l(ξj) =

k∑
s=0

ωsLj(ξs)L
′
l(ξs) = (Lj, L

′
l)ω = (Lj, L

′
l), (1.69)

where we use the fact that Gauss-Lobatto quadrature is exact for polynomials of

degree 2k − 1. Hence

Sjl + Slj = (Lj, L
′
l) + (Ll, L

′
j) = LjLl |1−1= δkjδkl − δ0jδ0l = Bij.

Remark 1.4. Recall (1.67). We immediately deduce that

S
−→
1 = MD

−→
1 =

−→
0 , ST

−→
1 = B

−→
1 =

[
−1 0 · · · 0 1

]T
. (1.70)

In order to incorporate vector-valued functions, we introduce the extended vector

of nodal values

−→u :=


u(ξ0)

...

u(ξk)

 ,
and the kronecker products

M = M ⊗ Ip, D = D ⊗ Ip, S = S ⊗ Ip, B = B ⊗ Ip.
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Then

−→u TM−→v = 〈u,v〉ω, −→u TB−→v = uTv |1−1 .

We still have the SBP property

B = S + ST = MD + DTM, (1.71)

and the Kronecker product versions of (1.67) and (1.70)

D
−→
1 = S

−→
1 =

−→
0 , ST

−→
1 = B

−→
1 . (1.72)

On a local cell Ii, we also need to consider the change of variables between Ii and

the reference element I = [−1, 1],

xi(ξ) =
1

2
(xi−1/2 + xi+1/2) + Jiξ,

where Ji = ∆xi
2

is the Jacobian factor of mapping. The local quadrature points are

{xi(ξj)}kj=0, and the local discrete operators are scaled as

Mi = JiM, Di =
1

Ji
D, Si = S, Bi = B

Specific to the DG form (1.57), let −→ui and −→wi denote the values of uh and wh at

Gauss-Lobatto points

−→ui :=


uh(xi(ξ0))

...

uh(xi(ξk))

 , −→wi :=


wh(xi(ξ0))

...

wh(xi(ξk))

 ,

and −→vi be the short hand notation of the nodal values of v(uh). Likewise we can
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define
−→
fi and

−→
Ui. We also put the numerical fluxes into a vector

−→
f∗i :=



f̂i−1/2

0

...

0

f̂i+1/2


.

Using the vector notations and matrices above, we are able to derive the DGSEM

in a compact matrix vector formulation. After applying Gauss-Lobatto quadrature

the both integrals of (1.57), we have the approximation

−→wi
TMi

d−→ui
dt
− (Di

−→wi)
TMi

−→
fi = −−→wi

TBi

−→
f∗i .

Since −→wi can be arbitrary, we arrive at the weak DGSEM formulation [62, 51]

Mi
d−→ui
dt
− STi

−→
fi = −Bi

−→
f∗i . (1.73)

Using the SBP property (1.68), we can deduce another equivalent characterization,

corresponding to the strong form (1.60).

Mi
d−→ui
dt

+ Si
−→
fi = Bi(

−→
fi −

−→
f∗i ),

i.e.,

d−→ui
dt

+ Di

−→
fi = M−1

i Bi(
−→
fi −

−→
f∗i ). (1.74)

It is closely related to the spectral collocation method with penalty type boundary
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treatment in [50]. We can also use global operators to describe (1.73) and (1.74)

JiM
d−→ui
dt
− ST

−→
fi = −B

−→
f∗i , (1.75)

Ji
d−→ui
dt

+ D
−→
fi = M−1B(

−→
fi −

−→
f∗i ). (1.76)

These DGSEM forms do not satisfy any entropy condition (even L2 stability that is

satisfied by the classic DG method) due to the lack of chain rule. In the next section,

we will make them entropy stable through the flux differencing trick.

Remark 1.5. Since the algebraic degree of accuracy is 2k − 1, the Gauss-Lobatto

quadrature is not exact for the first integral (1.57). Such technique is typically

termed mass lumping. On the other hand, it is exact for the second integral if f is

linear.

1.6 Flux differencing

In the flux differencing technique, we replace the difference term in (1.76) with

difference operation on entropy conservative fluxes. The modified DGSEM reads

Ji
d−→ui
dt

+ 2D ◦ FS(−→ui ,−→ui)
−→
1 = M−1B(

−→
fi −

−→
f∗i ), (1.77)

where ◦ denotes the Hadamard (pointwise) product of vectors and matrices, and

FS(·, ·) is the matrix of entropy conservative fluxes

FS(−→uL,−→uR) :=


diag(fS(uL,0,uR,0)) · · · diag(fS(uL,0,uR,k))

...
. . .

...

diag(fS(uL,k,uR,0)) · · · diag(fS(uL,k,uR,k))

 .
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We can demystify involved flux differencing term the by writing down the evolution

of nodal values

Ji
dui,j
dt

+ 2
k∑
l=0

DjlfS(ui,j,ui,l) =
τj
ωj

(fi,j − f∗i,j). (1.78)

Before proving the main result of this chapter, we first give a lemma indicating local

conservation and local entropy balance of (1.77).

Lemma 1.1. If fS is consistent and symmetric, then for the DGSEM form (1.77),

d

dt
(Ji
−→
1 TM−→ui) + f̂i+1/2 − f̂i−1/2 = 0. (1.79)

If we further assume that fS is entropy conservative with respect to some entropy

function U , then

d

dt
(Ji
−→
1 TM

−→
Ui) + (vTi,k f̂i+1/2 − ψi,k)− (vTi,0f̂i−1/2 − ψi,0) = 0. (1.80)

Proof. Since M is diagonal, M(D ◦ FS(−→ui)) = S ◦ FS(−→ui), and by symmetry of fS,

FS(−→ui ,−→ui) is a symmetric matrix. Then

d

dt
(Ji
−→
1 TM−→ui) = −2

−→
1 TS ◦ FS(−→ui ,−→ui)

−→
1 +
−→
1 TB(

−→
fi −

−→
f∗i )

= −−→1 T (S + ST ) ◦ FS(−→ui ,−→ui)
−→
1 +
−→
1 TB(

−→
fi −

−→
f∗i ) (by symmetry of fS)

= −−→1 TB ◦ FS(−→ui ,−→ui)
−→
1 +
−→
1 TB(

−→
fi −

−→
f∗i ) (by SBP property)

= −−→1 TB
−→
f∗i = −(f̂i+1/2 − f̂i−1/2),
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where we use the identity that

B ◦ FS(−→ui ,−→ui)
−→
1 =



−fS(ui,0,ui,0)

0

...

0

fS(ui,k,ui,k)


=



−f(ui,0)

0

...

0

f(ui,k)


= B
−→
fi . (1.81)

As for internal entropy balance,

d

dt
(Ji
−→
1 TM

−→
Ui) = Ji

d

dt

( k∑
j=0

ωjUi,j

)
= Ji

( k∑
j=0

ωjv
T
i,j

dui,j
dt

)
= −→vi TM

d−→ui
dt

= −2−→vi TS ◦ FS(−→ui ,−→ui)
−→
1 +−→vi TB(

−→
fi −

−→
f∗i )

= −→vi T (ST − S−B) ◦ FS(−→ui ,−→ui)
−→
1 +−→vi TB(

−→
fi −

−→
f∗i ) (by SBP property)

= −→vi T (ST − S) ◦ FS(−→ui ,−→ui)
−→
1 −−→vi TB

−→
f∗i (by (1.81)).

The second terms equals vTi,k f̂i+1/2 − vTi,0f̂i−1/2, and we simplify the first term

−→vi T (ST − S)FS(−→ui ,−→ui)
−→
1 =

k∑
j=0

k∑
l=0

vTi,j(Slj − Sjl)fS(ui,j,ui,l)

=
k∑
j=0

k∑
l=0

Slj(vi,j − vi,l)
T fS(ui,j,ui,l) (by symmetry of fS)

=
k∑
j=0

k∑
l=0

Slj(ψi,j − ψi,l) (by entropy conservation of fS)

=
−→
ψi

T (ST − S)
−→
1 =

−→
ψi

TB
−→
1 = ψi,k − ψi,0 (by (1.70)).

Notice that the entropy conservation of fS plays a similar role to the chain rule.

We are ready to provide the main theorem, which states that the scheme (1.77)

is conservative and entropy stable, and maintains high order accuracy.
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Theorem 1.12. Assume that all mappings and bivariate fluxes (such as v(u), ψ(v),

fS(uL,uR), f̂(uL,uR), etc) are smooth and Lipschitz continuous. If fS is consistent

and symmetric and f̂ is consistent, then (1.77) is conservative in the sense that

d

dt

( N∑
i=1

Ji
−→
1 TM−→ui

)
= 0, (1.82)

and high order accurate in the sense that for all i, j and smooth solution u of (1.1),

the local truncation error

dui,j
dt

+ 2
k∑
l=0

Di,jlfS(ui,j,ui,l)−
τj
Jiωj

(fi,j − f∗i,j) = O(hk). (1.83)

If we further assume that fS is entropy conservative and f̂ is entropy stable with

respect to some entropy function U , then (1.77) is also entropy stable with respect to

U in the sense that

d

dt

( N∑
i=1

Ji
−→
1 TM

−→
Ui

)
≤ 0. (1.84)

Proof. Conservation: given Lemma 1.1,

d

dt

( N∑
i=1

Ji
−→
1 TM−→ui

)
=

N∑
i=0

(f̂i−1/2 − f̂i+1/2) = 0.

Accuracy: u is single-valued at cell interfaces. By the consistency of f̂ , f̂i+1/2 = fi,k =

fi+1,0, and the last term in (1.83) vanishes. Since u is a smooth solution of (1.1), it

suffices to prove that

2
k∑
l=0

Di,jlfS(ui,j,ui,l)−
∂f(u)

∂x
(xi(ξj)) = O(hk).

Let f̃S(x, y) := fS(u(x),u(y)) and f̃(x) := f(u(x)). Then f̃S is also symmetric and
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consistent such that f̃S(x, x) = f̃(x). Therefore

∂ f̃

∂x
(x) =

∂ f̃S
∂x

(x, x) +
∂ f̃S
∂y

(x, x) = 2
∂ f̃S
∂y

(x, x).

Due to the approximation property of local difference matrix Di,

2
k∑
l=0

Di,jlfS(ui,j,ui,l) = 2
k∑
l=0

Di,jlf̃S(xi(ξj), xi(ξl)) = 2
∂ f̃S
∂y

(xi(ξj), xi(ξj)) +O(hk)

=
∂ f̃

∂x
(xi(ξj)) +O(hk) =

∂f(u)

∂x
(xi(ξj)).

Entropy stability: again by Lemma 1.1 and entropy stability of f̂ ,

d

dt

( N∑
i=1

Ji
−→
1 TM

−→
Ui

)
=

N∑
i=1

(
(vTi,0f̂i−1/2 − ψi,0)− (vTi,k f̂i+1/2 − ψi,k)

)
=

N∑
i=1

(
(vi+1,0 − vi,k)

T f̂i+1/2 − (ψi+1,0 − ψi,k)
)
≤ 0.

Remark 1.6. Along the lines of [29], the entropy stable DGSEM (1.78) can be

written in the finite volume manner

dui,j
dt

+
1

Jiωj
(fi,j+1/2 − fi,j−1/2) = 0, (1.85)

where

fi,j+1/2 =



f̂i−1/2 j = −1

f̂i+1/2 j = k

2
j∑
l=0

k∑
r=j+1

SlrfS(ui,l,ui,r) 0 ≤ j ≤ k − 1

. (1.86)
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The entropy stability is also transformed into the local entropy inequality

dUi,j
dt

+
1

Jiωj
(Fi,j+1/2 − Fi,j−1/2) ≤ 0, (1.87)

where

F i
j+1/2 =



1
2
(vi−1,k + vi,0)T f̂i−1/2 − 1

2
(ψi−1,k + ψi,0) j = −1

1
2
(vi,k + vi+1,0)T f̂i+1/2 − 1

2
(ψi,k + ψi+1,0) j = k

j∑
l=0

k∑
r=j+1

Slr((vi,l + vi,r)
T fS(ui,l,ui,r)− (ψi,l + ψi,r)) 0 ≤ j ≤ k − 1

.

(1.88)

The Lax-Wendroff type argument (Theorem 1.5) will yield that, if the sequence of

numerical solutions converges boundedly and a.e. to some function u, then u is a

weak solution of (1.1) supporting the entropy condition with respect to U . According

to Theorem 1.4, such single entropy condition is enough to determine the entropy

solution of scalar conservation laws with uniformly convex flux function.

We finish this section by examining the entropy stable DGSEM (1.77) for exam-

ples of conservation laws and their corresponding entropy functions. We will find

that flux differencing is equivalent to splitting in some cases.

Example 1.6.1. For linear symmetric system (1.14), fS(ui,j,ui,l) = 1
2
(f(ui,j) +

f(ui,l)) is the arithmetic mean. Then

2D ◦ FS(−→ui ,−→ui)
−→
1 = (D

−→
1 ) ◦

−→
fi + D

−→
fi = D

−→
fi (by (1.72)),

and the scheme (1.77) reduces to the original DGSEM (1.76).

Example 1.6.2. For Burgers equation (1.16) with square entropy function, inserting

the entropy conservative flux fS(uL, uR) = 1
6
(u2

L+uLuR+u2
R) into the flux differencing
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term yields

2D ◦ FS(−→ui ,−→ui )
−→
1 =

2

3
D
−→
fi +

1

3
(D−→ui ) ◦ −→ui +

2

3
(D
−→
1 ) ◦

−→
fi =

2

3
D
−→
fi +

1

3
−→ui ◦ (D−→ui ).

The method (1.77) turns into

Ji
d−→ui
dt

+
2

3
D
−→
fi +

1

3
(D−→ui ) ◦ −→ui = M−1B(

−→
fi −

−→
f ∗i ).

This is the DGSEM discretization of the skew-symmetric form [30, 34]

∂u

∂t
+

1

3

∂(u2)

∂x
+

1

3
u
∂u

∂x
= 0, (1.89)

a well-known splitting technique for Burgers equation to improve stability. One may

check [94] for the link between entropy stability and skew-symmetric splitting.

Example 1.6.3. For shallow water equations (1.18), the entropy conservative flux

(1.40) also leads to a flux difference term equivalent to the DGSEM discretization of

∂h

∂t
+
∂(hw)

∂x
= 0, (1.90a)

∂(hw)

∂t
+

1

2

∂(hw2)

∂x
+

1

2
w
∂(hw)

∂x
+

1

2
hw

∂w

∂x
+ gh

∂h

∂x
= 0. (1.90b)

We obtain the skew-symmetric form of (1.90b) by subtracting (1.90a) multiplied by

w/2.

1

2
(
∂(hw)

∂t
+ h

∂w

∂t
) +

1

2
(
∂(hw2)

∂x
+ hw

∂w

∂x
) + gh

∂h

∂x
= 0, (1.91)

which corresponds to the splitting procedure in [36].

Example 1.6.4. For Euler equations (1.21), both the Ismail-Roe entropy conser-

vative flux (1.41) and the Chandrashekar entropy conservative flux (1.42) include
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logarithmic mean. Then the flux differencing is no longer equivalent to any kind of

splitting.

Remark 1.7. Semidiscrete analysis is a crucial assumption. Fully discrete entropy

stability analysis is available for implicit time integration [66] and space-time DG

methods. The entropy stability of high-order schemes with explicit time integration,

such as strong stability preserving (SSP) Runge-Kutta methods [42, 90], is still an

open problem. There are positive results for the L2 stability of the Runge-Kutta DG

discretization of linear advection equation [110], but the nonlinear (in the sense of

both flux function and entropy function) analogue is difficult to prove.

1.7 Compatibility with limiters

As in the classic DG method, it is possible to design TVD/TVB limiter and /

or bound-preserving limiter as an extra stabilizing mechanism. Limiters tend to

squeeze the data towards the cell average, and hence make total entropy smaller.

We formulate such intuition in the following lemma.

Lemma 1.2. Suppose αj > 0,uj ∈ Ω for 0 ≤ j ≤ k with
k∑
j=0

αj = 1. Define the

average u :=
k∑
j=0

αjuj. We modify these values without changing the average. Let

ũj := u + θj(uj − u), 0 ≤ θj ≤ 1,

such that
k∑
j=0

αjũj = u. Then for any convex entropy function U , we have

k∑
j=0

αjU(ũj) ≤
k∑
j=0

αjU(uj). (1.92)
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Proof. Since
k∑
j=0

αjũj =
k∑
j=0

αj(u + θj(uj − u)) = u,

k∑
j=0

αj(1− θj)uj = (
k∑
j=0

αj(1− θj))u.

By the convexity of U ,

U(ũj) ≤ θjU(uj) + (1− θj)U(u), (
k∑
j=0

αj(1− θj))U(u) ≤
k∑
j=0

αj(1− θj)U(uj).

Hence

k∑
j=0

αjU(ũj) ≤
k∑
j=0

αj(θjU(uj) + (1− θj)U(u)) =
k∑
j=0

αjθjU(uj) + (
k∑
j=0

αj(1− θj))U(u)

≤
k∑
j=0

αjθjU(uj) +
k∑
j=0

αj(1− θj)U(uj) =
k∑
j=0

αjU(uj).

The bound-preserving limiter was developed by Zhang and Shu in [112, 113] to

maintain the physical bound Ω of numerical approximations, such as the maximum

principle for scalar conservation laws and positivity of density and pressure for Euler

equations. This technique is constructed on Gauss-Lobatto nodes, so that it perfectly

matches our nodal DG scheme. We will clarify the theoretical issues of bound-

preserving limiter in Appendix B. In a nutshell, we compute the cell average ui :=
k∑
j=0

ωj
2

ui,j and perform a simple linear limiting procedure with some 0 ≤ θi ≤ 1 such

that ũi,j := ui + θ(ui,j − ui) ∈ Ω. Clearly, we have the following entropy stability

result due to Lemma 1.2.

Theorem 1.13. Bound-preserving limiter does not increase entropy.
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Bound-preserving limiter helps enhance robustness, but the solution profile may

still contain oscillations. The TVD/TVB limiter is well suited for damping oscilla-

tions. For scalar conservation laws, the TVD type limiting procedure can be defined

as

ũi,0 := ui−m(ui−ui,0, ui+1−ui, ui−ui−1), ũi,k := ui+m(ui,k−ui, ui+1−ui, ui−ui−1),

ũi,j := ui + θ(ui,j − ui) for 1 ≤ j ≤ k − 1, where θ :=
(ũi,0 − ui) + (ũi,k − ui)
(ui,0 − ui) + (ui,k − ui)

.

We set θ such that cell average does not change. The minmod function m is

m(a, b, c) :=


smin{|a|, |b|, |c|} if s = sign(a) = sign(b) = sign(c)

0 otherwise

.

The TVB (total variation bounded) limiter is devised by replacing m with the mod-

ified minmod function m̃ [88].

m̃(a, b, c) =


a if |a| ≤Mh2

sign(a) max{|m(a, b, c)|,Mh2} if |a| > Mh2

,

where M is a parameter that has to be tuned appropriately.

Theorem 1.14. For scalar conservation laws, the TVD/TVB limiter mentioned

above does not increase entropy.

Proof. We only focus on the TVD limiter. The proof for the TVB limiter is exactly

the same. Without loss of generality we assume that ui = 0. According to Lemma

1.2, we only need to show that 0 ≤ ũi,j/ui,j ≤ 1 for each 0 ≤ j ≤ k. By the definition
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of minmod function,

ũi,0
ui,0

= −m(−ui,0,−ui−1, ui+1)

ui,0
∈ [0, 1],

ũi,k
ui,k

=
m(ui,k,−ui−1, ui+1)

ui,k
∈ [0, 1].

It remains to prove that 0 ≤ θ ≤ 1. If ui,0 and ui,k have the same sign, it is

obvious. Otherwise we assume that ui,0 < 0, ui,k > 0 and ui,0 + ui,k ≥ 0. Then

ũi,0 = −min{−ui,0, u−i−1, u
+
i+1} and ũi,k = min{ui,k, u−i−1, u

+
i+1}. It is easy to verify

that 0 ≤ ũi,0 + ũi,k ≤ ui,0 + ui,k. Other cases can be proved in a similar fashion.

Remark 1.8. In general the TVD/TVB limiter for systems is not guaranteed to

be entropy stable. The reason is that different components or characteristics are

limited independently, which does not satisfy the assumption of Lemma 1.2 and the

influence on total entropy is undecided. Certainly we could come up with a limiter

that squeeze all components to the same degree, but it might be too restrictive.

Remark 1.9. There is a still a gap in our result: entropy stability relies on semi-

discrete analysis, while limiters can only be applied to fully discrete schemes. If we

assume the fully discrete version of (1.77) is entropy stable, since limiters do not

increase total entropy, the scheme modified by limiters is also entropy stable.

1.8 Numerical experiments

In this section, we test the performance of the entropy stable DGSEM (1.77) for

one-dimensional systems of conservation laws. All tests are performed on uniform

grids. The schemes are integrated in time with third order SSP Runge-Kutta method

(given in Appendix B). Godunov flux will be employed at cell interfaces. For Euler

equations, the ratio of specific heat γ is taken to be 7/5, and the entropy conservative

flux (1.42) will be used.
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We first test problems with smooth solutions to validate the accuracy of the

method. We would like to compute with k = 2, 3, 4. If k = 2, we set the CFL

number to be 0.15; otherwise we will let ∆t = CFL · h(k+1)/3, so that time error will

be dominated by space error.

Example 1.8.1. We solve the linear advection equation

∂u

∂x
+
∂u

∂t
= 0, x ∈ [0, 2π],

with periodic boundary condition and initial data u(0, x) = sin4(x). The exact

solution is u(t, x) = sin4(x− t). The entropy function in this case is the exponential

function U = eu, and the entropy conservative flux is given by

fS(uL, uR) =
(uR − 1)euR − (uL − 1)euL

euR − euL
, if uL 6= uR.

When |uL − uR| is small, such formula suffers from round-off effect. Instead, we

should use Taylor’s expansion to approximate the numerator and the denominator.

Numerical errors and orders of convergence of the entropy stable DGSEM with k =

2, 3, 4 are listed in Table 1.1. The scheme is evolved up to t = 2π. We observe

optimal (k + 1)-th order convergence for all values of k.

Example 1.8.2. Next we consider the Burgers equation

∂u

∂t
+
∂(u2/2)

∂x
= 0, x ∈ [0, 2π],

with periodic boundary condition and initial data u(0, x) = 0.5 + sinx. The exact

solution can be obtained by tracing back characteristic lines. We choose square

entropy function U = u2/2. Then the entropy stable DGSEM is equivalent to the

skew-symmetric splitting. In Table 1.2, we present the errors at t = 0.5 when the

solution is still smooth. It is evident that the convergence rate is below optimal,
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Table 1.1: Example 1.8.1: accuracy test of the linear advection equation associated
with initial data u(x, 0) = sin4(x) and exponential entropy function at t = 2π.

k N L1 error order L2 error order L∞ error order
2 20 7.030e-2 - 3.347e-2 - 2.688e-2 -

40 5.363e-3 3.712 2.669e-3 3.649 2.340e-3 3.522
80 4.575e-4 3.551 2.205e-4 3.598 1.846e-4 3.664
160 4.414e-5 3.374 2.230e-5 3.305 2.582e-5 2.838
320 4.745e-6 3.218 2.595e-6 3.103 3.626e-6 2.832
640 5.485e-7 3.113 3.181e-7 3.028 4.794e-7 2.919

3 20 3.097e-3 - 1.514e-3 - 1.890e-3 -
40 1.675e-4 4.208 8.672e-5 4.126 1.359e-4 3.798
80 1.053e-5 3.993 5.372e-6 4.013 8.928e-6 3.928
160 6.571e-7 4.002 3.354e-7 4.001 5.664e-7 3.978
320 4.107e-8 4.000 2.096e-8 4.000 3.553e-8 3.995

4 10 2.608e-2 - 1.178e-2 - 8.580e-3 -
20 8.325e-4 4.969 3.763e-4 4.969 3.497e-4 4.617
40 2.623e-5 4.988 1.179e-5 4.997 9.860e-6 5.149
80 8.170e-7 5.004 3.683e-7 5.000 3.084e-7 4.999
160 2.553e-8 5.000 1.151e-8 5.000 9.454e-9 5.028

especially for the L∞ error and even values of k.

Table 1.2: Example 1.8.2: accuracy test of the Burgers equation associated with
initial data u(0, x) = 0.5 + sin x and square entropy function at t = 0.5.

k N L1 error order L2 error order L∞ error order
2 40 1.320e-3 - 1.178e-3 - 3.269e-3 -

80 2.071e-4 2.672 2.284e-4 2.366 7.923e-4 2.045
160 3.162e-5 2.711 4.316e-5 2.404 2.078e-4 1.931
320 4.724e-6 2.743 7.979e-6 2.435 5.100e-5 2.026
640 6.911e-7 2.773 1.450e-6 2.460 1.290e-5 1.983
1280 9.930e-8 2.799 2.606e-7 2.477 3.209e-6 2.008

3 40 4.344e-5 - 4.566e-5 - 1.658e-4 -
80 3.348e-6 3.698 3.703e-6 3.624 1.610e-5 3.364
160 2.344e-7 3.836 2.771e-7 3.740 1.306e-6 3.624
320 1.577e-8 3.894 1.950e-8 3.829 9.301e-8 3.812
640 1.036e-9 3.928 1.336e-9 3.868 6.252e-9 3.895

4 20 6.782e-5 - 6.319e-5 - 1.525e-4 -
40 2.630e-6 4.688 2.849e-6 4.471 1.126e-5 3.760
80 1.067e-7 4.624 1.374e-7 4.375 7.149e-7 3.977
160 4.203e-9 4.666 6.385e-9 4.427 4.342e-8 4.041
320 1.576e-10 4.737 2.858e-10 4.481 2.620e-9 4.050
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Remark 1.10. The suboptimal convergence is probably due to the fact that the

Gauss-Lobatto quadrature is exact for polynomials of degree only up to 2k − 1. In

order to maintain optimal convergence, the algebraic degree of accuracy should be

at least 2k (see [15]). In linear problems, the Gauss-Lobatto quadrature is exact for

the linear convective part, and we still get optimal convergence.

Example 1.8.3. We solve Euler equations with initial condition

ρ(0, x) = 1− 0.5 sinx, w(0, x) = p(0, x) = 1, x ∈ [0, 2π],

with periodic boundary condition. The exact solution is

ρ(t, x) = 1− 0.5 sin(x− t), w(t, x) = p(t, x) = 1.

Errors and orders of convergence of the density variable at t = 1 are given in Table

1.3. Here the convergence rate of entropy stable DGSEM is also optimal. It should

be related to the linear behavior of the exact solution.

Then we provide discontinuous test problems to illustrate shock-capturing capa-

bility. We will only show the numerical solutions with k = 2 and CFL number 0.15.

The bound-preserving limiter can be added to make the entropy stable DGSEM more

robust. However, for Euler equations, due to the lack of entropy stable TVD/TVB

limiter, there are still some oscillations in test results.

Example 1.8.4. We consider the following Riemann problem of Buckley-Leverett

equation

∂u

∂t
+

∂

∂x

( 4u2

4u2 + (1− u)2

)
= 0, u(0, x) =


−3 if x < 0

3 if x ≥ 0

.
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Table 1.3: Example 1.8.3: accuracy test of one-dimensional Euler equations associ-
ated with initial data u(0, x) = 0.5 + sinx at t = 1. Results of density are tabulated.

k N L1 error order L2 error order L∞ error order
2 20 9.019e-04 5.216e-04 6.653e-04

40 1.105e-04 3.029 6.537e-05 2.996 8.253e-05 3.011
80 1.363e-05 3.018 8.175e-06 2.999 1.028e-05 3.006
160 1.694e-06 3.009 1.022e-06 3.000 1.282e-06 3.003
320 2.110e-07 3.005 1.278e-07 3.000 1.601e-07 3.002
640 2.633e-08 3.002 1.597e-08 3.000 2.000e-08 3.001

3 20 1.560e-05 9.882e-06 2.517e-05
40 9.951e-07 3.970 6.280e-07 3.976 1.718e-06 3.873
80 6.223e-08 3.999 3.928e-08 3.999 1.084e-07 3.987
160 3.890e-09 4.000 2.455e-09 4.000 6.772e-09 4.000
320 2.432e-10 4.000 1.534e-10 4.000 4.233e-10 4.000

4 10 1.097e-05 9.013e-06 2.279e-05
20 2.980e-07 5.203 2.384e-07 5.240 7.351e-07 4.954
40 9.620e-09 4.953 7.880e-09 4.919 2.297e-08 5.000
80 2.871e-10 5.066 2.488e-10 4.985 7.669e-10 4.905
160 8.885e-12 5.014 7.692e-12 5.015 2.402e-11 4.997

The exact entropy solution contains two shock waves connected by a flat rarefaction

wave that is close to 0. For such a non-convex flux function, the choice of entropy

function will affect the performance of numerical method substantially. We first test

the scheme with square entropy function U = u2/2. The computational domain is

[−0.5, 0.5] and the end time t = 1. We also apply the bound-preserving limiter with

Ω = [−3, 3]. The numerical solution on 80 cells is plotted in the left panel of Figure

1.1. Evidently it does not agree with the entropy solution. Then we try an ad hoc

entropy function U =
∫

arctan(20u)du. The entropy variable v = arctan(20u), which

emphasizes the states near u = 0. In fact it can be viewed as a mollified version of

the Kruzhkov’s entropy function U = |u| (see (1.13)). The numerical solution with

the same setting is depicted in the right panel of Figure 1.1. The result is quite

satisfactory thanks to the carefully chosen entropy function.

Example 1.8.5 (Sod’s shock tube). It is a classical Riemann problem of Euler
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(a) U = u2/2
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x

−3

−2

−1
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1
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u

(b) U =
∫
arctan(20u)du

Figure 1.1: Example 1.8.4. Numerical solution of the Riemann problem of Buckley-
Leverett equation at t = 1 with the square entropy function and an ad hoc en-
tropy function. Computational domain [−0.5, 0.5] is decomposed into N = 80 cells.
Bound-preserving limiter is used. The solid line represents the exact entropy solution
and the triangle symbols are cell averages.

equations. The computational domain is [−0.5, 0.5] and the initial condition is

[
ρ w p

]T
=


[
1 0 1

]T
if x < 0[

0.125 0 0.1

]T
if x ≥ 0

.

The exact solution contains a left rarefaction wave, a right shock wave and a middle

contact discontinuity. The classic DG method tends to blow up due to emergence

of negative density or negative pressure unless we apply bound-preserving limiter

or TVD/TVB limiter. The entropy stable DGSEM, on the other hand, can be

evolved without any limiter. Figure 1.2 illustrates the profiles of density, velocity

and pressure at t = 0.13 with 130 cells. All waves are resolved correctly despite some

slight oscillations at the right shock wave. Entropy stability contributes to a more

robust scheme for this test problem.

Example 1.8.6 (Sine-shock interaction). This benchmark test problem of Euler

equations was given by Shu and Osher in [91]. The solution has complicated structure



56

−0. 5 0 0. 5

x

0. 2

0. 4

0. 6

0. 8

1

ρ

(a) density

−0. 5 0 0. 5

x

0

0. 2

0. 4

0. 6

0. 8

1

w

(b) velocity

−0. 5 0 0. 5

x

0. 2

0. 4

0. 6

0. 8

1

p

(c) pressure

Figure 1.2: Example 1.8.5: Numerical solution of Sod’s shock tube problem at t =
0.13 with 130 cells. We do not apply any limiter. The solid line represents the exact
entropy solution and the triangle symbols are cell averages.

in that it contains both strong and weak shock waves and highly oscillatory smooth

waves. The computational domain is [−5, 5] and the initial condition is

[
ρ w p

]T
=


[
3.857143 2.629369 10.3333

]T
if x < −4[

1 + 0.2 sin(5x) 0 1

]T
if x ≥ −4

.

We compute the reference solution using a first order scheme on a very fine mesh

with 80000 cells. Once again the classic DG method suffers from negative pressure

or negative density, while the entropy stable DGSEM works without any limiter.
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The plots of density, velocity and pressure at t = 1.8 with 150 cells are displayed in

Figure 1.3. The scheme performs well despite some minor oscillations.
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(b) velocity
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(c) pressure

Figure 1.3: Example 1.8.6: Numerical solution of sine-shock interaction test problem
at t = 1.8 with 150 cells. We do not apply any limiter. The solid line represents
the reference solution computed with 80000 cells and the triangle symbols are cell
averages.



Chapter Two

Generalization to Higher Space

Dimensions
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In this chapter, we move on to systems of conservation laws in arbitrary space di-

mensions

∂u

∂t
+

d∑
m=1

∂fm(u)

∂xm
= 0, (t,x) ∈ [0,∞)× Rd (2.1)

For a normal vector n ∈ Rd, let fn(u) :=
d∑

m=1

nmfm(u). (2.1) is called hyperbolic if

f ′n(u) has p real eigenvalues and a complete set of eigenvectors, for any u ∈ Ω and

n ∈ Rd. We always assume hyperbolicity.

The one-dimensional entropy stable DGSEM framework in Chapter 1 can be di-

rectly applied to multi-dimensional Cartesian meshes through tensor product. How-

ever, for problems with complex geometry, it is often desired to consider numerical

methods that work on unstructured meshes. Inspired by [52], we construct of multi-

dimensional discrete operators with summation-by-parts property. With the SBP

operators and flux differencing technique at hand, we are able to develop the en-

tropy stable DG type method on unstructured meshes. We remark that another way

to discretize domains with complex geometry is to use curvilinear Cartesian meshes.

See [35] for the survey of entropy stable DGSEM on curvilinear meshes.

This chapter consists of the following sections. In Section 2.1, we briefly review

the entropy analysis and numerical discretization of systems of hyperbolic conserva-

tion laws. Most materials are essentially the same as the one-dimensional counterpart

in Section 1.1 – Section 1.4. We only go through some key concepts. In Section 2.2,

we design the multi-dimensional SBP operators, mainly on simplicial elements, but

the general idea works for any polygonal element. In Section 2.3, we introduce the

multi-dimensional high order entropy stable DGSEM. In Section 2.4, we discuss a

specific topic of practical importance, i.e., the entropy stability of wall boundary con-

dition for two-dimensional Euler equations. In Section 2.5, we consider convection-

diffusion equations, for which an entropy stable local discontinuous Galerkin (LDG)
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type method [18, 8] will be included to handle the diffusive term. Finally in Section

2.6, we will perform numerical experiments on some two-dimensional test cases.

2.1 Preliminaries

Similar to one-dimensional problems, we define the convex entropy function and

entropy solution for multi-dimensional systems of conservation laws.

Definition 2.1. A convex function U : Ω→ R is called an entropy function for (2.1)

if there exist functions {Fm(u)}dm=1, called entropy fluxes, such that the following

integrability condition holds

U ′(u)f ′m(u) = F ′m(u), 1 ≤ m ≤ d. (2.2)

Definition 2.2. A weak solution u of (2.1) is called an entropy solution if for all

possible entropy functions U , we have

∂U(u)

∂t
+

d∑
m=1

∂Fm(u)

∂xm
≤ 0, (2.3)

in the sense of distribution.

For an entropy function U , let v := U ′(u) be the entropy variables and gm(v) :=

f(u(v)). Then the symmetrization of (2.1) is

u′(v)
∂v

∂t
+

d∑
m=1

g′m(v)
∂v

∂xm
= 0. (2.4)
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We also define the potential function and potential fluxes

φ(v) := u(v)Tv − U(u(v)), ψm(v) := gm(v)Tv − Fm(u(v)), 1 ≤ m ≤ d, (2.5)

so that φ′(v) = u(v)T and ψ′m(v) = gm(v)T . For a normal vector n ∈ Rd, we set

Fn :=
d∑

m=1

nmFm and ψn :=
d∑

m=1

nmψm.

Theorem 2.1. U is a strictly convex entropy function if and only if u′(v) is sym-

metric positive-definite, and g′m(v) is symmetric for each 1 ≤ m ≤ d. Moreover, if

U is a strictly convex entropy function, then (2.1) is hyperbolic.

In the scalar case, any convex function is an entropy function, and there ex-

ists a unique entropy solution satisfying the well-posedness properties in Theorem

1.3. However, for general systems, there are very few global existence results, and

Chiodaroli, De Lellis and Kreml [14] even found an counterexample showing the

non-uniqueness of entropy solution. It is conjectured that measure-valued solutions

might be the correct paradigm to describe multi-dimensional systems [33].

We now turn to numerical discretization. Suppose that we have a polygonal

computational domain Γ ∈ Rd with periodic boundary condition. Let Kh := {Ki}Ni=1

be some domain decomposition of Γ, and h is the characteristic length of Kh. For the

sake of simplicity, we assume that all elements are simplices, and there is no hanging

node in the mesh. The first order finite volume method is given by

dui
dt

+
1

|Ki|

( ∑
γ∈∂Ki

|γ |̂fn(ui,u
γ,out
i )

)
= 0, (2.6)

where n is the outer normal vector, f̂n is some directional numerical flux function

corresponding to the directional Riemann solver with fn, and uγ,out
i denotes the nu-

merical solution from the opposite that of γ. The finite volume method approximates
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the following integral form of (2.1):

d

dt

(∫
Ki

udx
)

+

∫
∂K

fn(u)dS = 0. (2.7)

Entropy stability of (2.6) is again specified by entropy conservative fluxes and (di-

rectional) entropy stable fluxes.

Definition 2.3. For 1 ≤ m ≤ d, a numerical flux function fm,S(uL,uR) in the m-th

space dimension is called entropy conservative with respect to some entropy function

U if it satisfies the following conditions:

1. Consistency: fm,S(u,u) = fm(u).

2. Symmetry: fm,S(uL,uR) = fm,S(uR,uL).

3. Entropy conservation: (vR − vL)T fm,S(uL,uR) = ψm,R − ψm,L.

Given entropy conservative fluxes in all space dimensions, we also set

fn,S(uL,uR) :=
d∑

m=1

nmfm,S(uL,uR)

Definition 2.4. A directional numerical flux function f̂n(u,uout) is called entropy

stable with respect to some entropy function U if it satisfies the following conditions:

1. Consistency: f̂n(u,u) = fn(u).

2. Conservation (single-valuedness): f̂n(u,uout) = −f̂−n(uout,u).

3. Entropy stability: (vout − v)T f̂n(u,uout) ≤ ψout
n − ψn.

Since entropy conservative are specific to each space dimension, and entropy

conservative fluxes are specific to each normal vector, they can be derived in the
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same manner as in Section 1.3. As a consequence, the upwind numerical fluxes

(monotone fluxes for scalar problems and Godunov type fluxes for general systems)

are still entropy stable. In the scalar case, the finite volume method (2.6) with

monotone fluxes at element interfaces also satisfies the well-posedness properties in

Theorem 1.8, and the sequence of numerical solutions will converge to the unique

entropy solution.

Example 2.1.1. Consider the two-dimensional Euler equations

∂

∂t



ρ

ρw1

ρw2

E


+

∂

∂x1



ρw1

ρw2
1 + p

ρw1w2

w1(E + p)


+

∂

∂x2



ρw2

ρw1w2

ρw2
2 + p

w2(E + p)


= 0. (2.8)

Here, w =

[
w1 w2

]T
is the velocity field. The equation of state is

E =
1

2
ρ(w2

1 + w2
2) +

p

γ − 1
. (2.9)

The Euler equations are rotationally invariant. Under the change of coordinates

(x1, x2) 7→ (xn, xn⊥), where n ∈ R2 is a normal vector, xn := n1x1 + n2x2, and

xn⊥ := n2x1 − n1x2, (2.8) are converted into

∂

∂t



ρ

ρwn

ρwn⊥

E


+

∂

∂xn



ρwn

ρw2
n + p

ρwnwn⊥

wn(E + p)


+

∂

∂xn⊥



ρwn⊥

ρwnwn⊥

ρw2
n⊥ + p

wn⊥(E + p)


= 0. (2.10)

We also set wn := n1w1 + n2w2 and wn⊥ := n2w1 − n1w2. With the physical specific

entropy is s = log(pρ−γ), U = − ρs
γ−1

is still an entropy function of (2.8), such that
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the entropy fluxes are F1 = −ρw1s
γ−1

and F2 = −ρw2s
γ−1

. The entropy variables, potential

function and potential fluxes are given by

v =



γ−s
γ−1
− ρ(w2

1+w2
2)

2p

ρw1

p

ρw2

p

−ρ
p


, φ = ρ, ψ1 = ρw1, ψ2 = ρw2. (2.11)

Both the Ismail-Roe entropy conservative flux and the Chandrashekar entropy con-

servative flux have the two-dimensional version. The Chandrashekar’s construction

is

f 1
1,S = (ρ)logw1, f 1

2,S = (ρ)logw2,

f 2
1,S =

ρ

2β
+ w1f

1
1,S, f 2

2,S = w1f
1
2,S,

f 3
1,S = w2f

1
1,S, f 3

2,S =
ρ

2β
+ w2f

1
2,S,

f 4
1,S =

( 1

2(γ − 1)(β)log
− w2

1 + w2
2

2

)
f 1

1,S + w1f
2
1,S + w2f

3
1,S,

f 4
2,S =

( 1

2(γ − 1)(β)log
− w2

1 + w2
2

2

)
f 1

2,S + w1f
2
2,S + w2f

3
2,S.

(2.12)

By rotational invariance, the Godunov flux and HLL flux for one-dimensional Euler

equations can be directly used to build directional entropy stable fluxes.

The L2 stability result of classic DG method can also be extended to higher space

dimensions. In the DG method with polynomial degree k, numerical solutions and

test functions both live in the space

Vk
h = {wh : wh|Ki ∈ [Pk(Ki)]

p, 1 ≤ i ≤ N}. (2.13)
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We seek uh ∈ Vk
h such that for each wh ∈ Vk

h and 1 ≤ i ≤ N ,

∫
Ki

∂uTh
∂t

whdx−
d∑

m=1

∫
Ki

fm(uh)
T dwh

dxm
dx = −

∫
∂Ki

f̂n(uh,u
out
h )TwhdS. (2.14)

The strong DG form is

∫
Ki

(∂uh
∂t

+
d∑

m=1

∂fm(uh)

∂xm

)T
whdx =

∫
∂Ki

(fn(uh)− f̂n(uh,u
out
h ))TwhdS. (2.15)

Theorem 2.2. If U = 1
2
uTu is an entropy function of (2.1), and f̂n is entropy stable

with respect to U , then the DG scheme (2.14) and (2.15) is L2 stable in the sense

that

d

dt

∫
Γ

U(uh)dx =
d

dt

(1

2
‖uh‖2

L2

)
≤ 0. (2.16)

2.2 Multi-dimensional summation-by-parts oper-

ators

The summation-by-parts operators on simplicial meshes can be established in two

steps. We first need to find a special Gauss-Lobatto type quadrature rule that also

contains some boundary quadrature points. The algebraic degree of accuracy is at

least 2k − 1 in the element, and at least 2k over the boundary. Then the difference

matrices have to be carefully designed to achieve the SBP property. Without loss of

generality, we only need to work on the reference simplex K with global coordinates

ξξξ ∈ Rd, such that Ki is the image of K under some affine mapping ξξξ 7→ xi(ξξξ). One

example of the global reference simplex is

K =
{
ξξξ : ξm ≥ 0 for each 1 ≤ m ≤ d,

d∑
m=1

ξm ≤ 1
}
, (2.17)
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Given polynomial degree k, the dimension of Pk(K) is

NP,k :=

(
k + d

d

)
.

Suppose that there is a degree 2k− 1 quadrature rule on K, associated with NQ,k ≥

NP,k nodes {ξξξj}
NQ,k
j=1 , and positive weights {ωj}

NQ,k
j=1 . Some quadrature points should

be on ∂K, and these points form a degree 2k quadrature rule over the boundary,

with positive weights {τj}
NQ,k
j=1 . We also let nj be the outer normal vector at ξξξj. If

ξξξj /∈ ∂T is an interior point, we require that τj = nj = 0. The continuous and

discrete inner product on K and ∂K are defined as

(u,v) :=

∫
K

uTvdx, (u,v)ω :=

NQ,k∑
j=1

ωju(ξξξj)
Tv(ξξξj) (2.18)

〈u,v〉 :=

∫
∂K

uTvdS, 〈u,v〉τ :=

NQ,k∑
j=1

τju(ξξξj)
Tv(ξξξj) (2.19)

Discrete operators are based on nodes {ξξξj}
NQ,k
j=1 . The vector notation of nodal

function is again adopted. The restriction of function u on quadrature points is

denoted by

−→u :=

[
u(ξξξ1) · · · u(ξξξNQ,k)

]T
.

We define mass matrix M and boundary matrix B

M := diag{ω1, · · · , ωNQ,k}, B := diag{τ1, · · · , τNQ,k}, (2.20)

such that

−→u TM−→v = (u, v)ω,
−→u TB−→v = 〈u, v〉τ ,
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and the diagonal matrices of outer normal vectors

Nm := diag{n1,m, · · · , nNQ,k,m}, 1 ≤ m ≤ d. (2.21)

Let {pl(ξξξ)}
NP,k
l=1 be a set of basis functions of Pk(K). The NQ,k ×NP,k Vandermonde

matrix V consists of columns of nodal values of basis functions

V := {pl(ξξξj)}1≤j≤NQ,k,1≤l≤NP,k . (2.22)

Since NQ,k ≥ NP,k, the Vandermonde matrix is not always invertible. We still have

its pseudo-inverse under norm M , i.e., the quadrature-based projection matrix into

Pk(K)

P := (V TMV )−1V TM. (2.23)

Derivatives of polynomials in Pk(K) still belong to Pk(K). We set the (modal)

NP,k ×NP,k differentiation matrices D̂m for 1 ≤ m ≤ d, such that

∂pl
∂ξm

(ξξξ) =

NP,k∑
r=1

D̂m,rlpr(ξξξ).

Hence

(V D̂m)jl =

NP,k∑
r=1

pr(ξξξj)D̂m,rl =
∂pl
∂ξm

(ξξξj).

In other words, V D̂m is the Vandermonde matrix of the m-th partial derivative of

basis functions. The existence of nodal difference matrices with the SBP property

will be clarified in the following theorem.

Theorem 2.3. We compute the NQ,k × NQ,k difference matrices Dm for each 1 ≤

m ≤ d, using the formula

Dm :=
1

2
M−1(I + V P )TBNm(I − V P ) + V D̂mP. (2.24)
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Then these difference matrices satisfy the two properties below:

1. Exactness: if u ∈ Pk(K), Dm
−→u contains nodal values of ∂u

∂ξm
; that is,

DmV = V D̂m. (2.25)

2. Summation-by-parts: set the stiffness matrix Sm := MDm. Then we have

BNm = Sm + STm = MDm +DT
mM. (2.26)

Remark 2.1. By the exactness property and SBP property,

Sm
−→
1 = Dm

−→
1 =

−→
0 , STm

−→
1 = BNm

−→
1 . (2.27)

Proof. Since PV = I, (I − V P )V = 0, and

DmV = V D̂m = V D̂mPV = V D̂m.

As for the SBP property,

Sm = MDm =
1

2
(I + V P )TBNm(I − V P ) +MV D̂mP

=
1

2
BNm +

1

2
(P TV TBNm −BNmV P ) +

(
MV D̂mP −

1

2
P TV TBNmV P

)
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Let us check the entries of V TBNmV :

(V TBNmV )lr =

NQ,k∑
j=1

τjnj,mpl(ξξξj)pr(ξξξj) = 〈pl, prnm〉τ = 〈pl, prnm〉

=
(
pl,

∂pr
∂ξm

)
+
( ∂pl
∂ξm

, pr

)
=
(
pl,

∂pr
∂ξm

)
ω

+
( ∂pl
∂ξm

, pr

)
ω

=

NQ,k∑
j=1

ωjpl(ξξξj)
∂pr
∂ξm

(ξξξj) +

NQ,k∑
j=1

ωj
∂pl
∂ξm

(ξξξj)pr(ξξξj)

= (V TMV D̂m + D̂T
mV

TMV )lr,

where we use integration by parts, and the algebraic degree of accuracy of (·, ·) and

〈·, ·〉. Therefore

Sm =
1

2
BNm +

1

2
(P TV TBNm −BNmV P ) +

(
MV D̂mP −

1

2
P T (V TMV D̂m + D̂T

mV
TMV )P

)
=

1

2
BNm +

1

2
(P TV TBNm −BNmV P ) +

1

2
(MV D̂mP − P T D̂T

mV
TM),

due to the identity (V TMV )P = V TM . Summing Sm and its transpose, the first

term becomes BNm, and the second and third term will vanish. This completes our

proof.

Remark 2.2. For one-dimensional Gauss-Lobatto quadrature rule, NP,k = NQ,k =

k+ 1 and V is invertible. We simply take Dm = V −1V D̂m. In general we need more

than NP,k nodes to accomplish the quadrature rule, which complicates the derivation

of difference matrices.

Discrete operators for nodal values of vector-valued functions are again under-

stood as Kronecker products

M = M ⊗ Ip, Dm = Dm ⊗ Ip, Sm = Sm ⊗ Ip, B = B ⊗ Ip, Nm = Nm ⊗ Ip.

For a local simplex element Ti ∈ Th, let Ji := det(x′i(ξξξ)) be the global-to-local
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Jacobian factor, and Gi := ξξξ′(xi) be the inverse of Jacobian matrix. J bi,j denotes the

Jacobian factor of face mapping at ξξξj such that J bi,j = 0 for ξξξj /∈ ∂K, and

Jbi := diag{J bi,1, · · · , J bi,NQ,k} ⊗ Ip.

Then the local discrete operators are

Mi = JiM, Di,m =
d∑
r=1

Gi,rmDr, Bi = JbiB. (2.28)

These geometric factors satisfy the following identity [9].

Ji

( d∑
r=1

Gi,rmnj,r

)
= J bi,jni,j,m, (2.29)

where ni,j is the j-th outer normal vector on Ki. Hence we still have the local SBP

property

BiNi,m = Si,m + STi,m = MiDi,m + DT
i,mMi, 1 ≤ m ≤ d. (2.30)

Remark 2.3. Conceptually, the SBP framework can be further generalized to ar-

bitrary polygonal meshes without any difficulty. We stick to simplicial meshes for

practical purposes. We only need to store one set of discrete operators, and the local

operators are acquired through the global-to-local mapping. This is efficient in terms

of space complexity, especially for meshes with a large number of elements.

The remaining part of this section is devoted to the implementation of SBP op-

erators on two-dimensional triangular meshes. We need to find the two-dimensional

quadrature rule that achieves interior and boundary accuracy simultaneously. For

boundary accuracy, we put k + 1 Legendre-Gauss points along each edge. Let us

summarize the prerequisites of the quadrature rule:
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1. It is symmetric so that adjacent elements can be glued together.

2. The quadrature weights should be positive to make M positive-definite.

3. It is exact for polynomials up to degree 2k − 1.

4. The quadrature points include k + 1 Legendre-Gauss points on each edge.

Quadrature rules that meet these requirements are investigated in the literature.

We use the software presented in [109] to obtain the rules of order k = 1, 2, 3 and

41. The distribution of quadrature points are illustrated in Figure 2.1. We call

them B-type quadrature rules. The letter B indicates the restriction that these

quadrature rules must contain boundary quadrature points. For reference, we also

list the coordinates of quadrature points and their weights in Appendix C.

(a) k = 1,NQ,k = 6 (b) k = 2,NQ,k = 10 (c) k = 3,NQ,k = 18 (d) k = 4,NQ,k = 22

Figure 2.1: B-type quadrature rules on triangles with k = 1, 2, 3, 4. We use equilat-
eral triangles to emphasize symmetry. Dots are quadrature points for the triangle,
and circles are quadrature points for the edges. The symbols overlap because bound-
ary nodes play both roles.

Remark 2.4. The same requirements also arise in [114] where the authors tried to

implement bound-preserving limiter on triangular meshes. They proposed a generic

quadrature rule based on three warped transformation from a unit square to triangles.

However, NQ,k = 3k(k + 1) for such technique, which is unnecessarily large.

Then we compute the entries of difference matrices according to 2.24. We use

the orthonormal set of polynomials on triangles [61] as basis functions. It is not an

1http://lsec.cc.ac.cn/phg/download/quadrule.tar.bz2
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orthonormal basis under (·, ·)ω as the quadrature rule is not exact for polynomials of

degree 2k. However, the condition number of the Vandermonde matrix will be small

enough to prevent large rounding error. For k = 1, 2, it is possible to use symbolic

computation software to obtain the exact values of difference matrices.

2.3 Multi-dimensional entropy stable DG method

For clarity of notations, we explain the entropy stable DGSEM on the reference

element and omit the subscript i. Numerical solution collocated at the NQ,k quadra-

ture points will be evolved. −→u denotes the numerical solution, and
−→
f∗n stands for the

vector of directional fluxes on element interfaces such that

f∗n,j =


f̂n(uj,u

out
j ) ξξξj ∈ ∂T

0 ξξξj /∈ ∂T
.

We develop the multi-dimensional entropy stable DGSEM by doing flux differencing

in each space dimension:

d−→u
dt

+ 2
d∑

m=1

Dm ◦ Fm,S(−→u ,−→u )
−→
1 = M−1B(

−→
fn −

−→
f∗n ), (2.31)

where

Fm,S(−→uL,−→uR) :=


diag(fm,S(uL,1,uR,1)) · · · diag(fm,S(uL,1,uR,NQ,k))

...
. . .

...

diag(fm,S(uL,NQ,k ,uR,1)) · · · diag(fm,S(uL,NQ,k ,uR,NQ,k))

 .
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The component-wise form of (2.31) is

duj
dt

+ 2
d∑

m=1

NQ,k∑
l=1

Dm,jlfm,S(uj,ul) =
τj
ωj

(fn,j − f∗n,j) (2.32)

The main properties of the (2.31) are outlined in the following theorem.

Theorem 2.4. Assume that the sequence of meshes {Th}, parameterized by h, is

uniform, and all mappings are bivariate fluxes are smooth and Lipschitz continuous.

If fm,S is entropy conservative for each 1 ≤ m ≤ d, and f̂n is entropy stable, then the

scheme (2.31) is high order accurate in the sense that for all i, j and smooth solution

u of (2.1), the local truncation error

dui,j
dt

+ 2
d∑

m=1

k∑
l=0

Di,m,jlfm,S(ui,j,ui,l)−
J bi,jτj

Jiωj
(fi,n,j − f∗i,n,j) = O(hk), (2.33)

and conservative and entropy stable in the sense that

d

dt

( N∑
i=1

−→
1 TMi

−→ui
)

= 0,
d

dt

( N∑
i=1

−→
1 TMi

−→
Ui

)
≤ 0. (2.34)

Proof. We only present the sketch of proof as it is almost the same as the proof of

Theorem 1.12. For accuracy, we use the approximation property on uniform meshes

to show that

2
k∑
l=0

Di,m,jlfm,S(ui,j,ui,l)−
∂fm(u)

∂xm
(xi(ξξξj)) = O(hk).

As for conservation and entropy stability, we have the same local conservation and

entropy balance result as in Lemma 1.1

d

dt
(
−→
1 TM−→u ) = −−→1 TB

−→
f∗n = −

NQ,k∑
j=1

τj f̂n(uj,u
out
j ), (2.35)
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d

dt
(
−→
1 TM

−→
U ) =

−→
ψn

TB
−→
1 −−→v M

−→
f∗n =

NQ,k∑
j=1

τj(ψn,j − vTj f̂n(uj,u
out
j )). (2.36)

Then at a boundary node ξξξj ∈ ∂T , since f̂n(uj,u
out
j ) and f̂−n(uout

j ,uj) cancel out,

we prove the global conservation. The entropy production rate at ξξξj is

τj(ψn,j + ψout
−n,j − vTj f̂n(uj,u

out
j )− (vout

j )T f̂−n(uout
j ,uj))

=τj(ψn,j − ψout
n,j − (vj − vout

j )T f̂n(uj,u
out
j )) ≤ 0.

Therefore we also have entropy dissipation.

Remark 2.5. The multi-dimensional bound-preserving limiter is again a simple

linear scaling procedure ũj := u + θ(uj − u). It can be imposed naturally without

affecting entropy stability. However, it is very challenging to design entropy stable

TVD/TVB limiters.

Remark 2.6. The link between the entropy stable DGSEM and the classic DG

method looks vague due to the fact that the degree of freedom (NQ,k) is larger

than the dimension of the underlying polynomial space (NP,k). These issues will be

addressed in Section 3.2 and in Section 3.7.

2.4 Entropy stability of wall boundary condition

So far we have always assumed periodic boundary condition. There is a need to

investigate the solid wall boundary condition of two-dimensional Euler equations

(2.8). We will prove that the commonly used mirror state treatment is entropy

stable. This section extends the one-dimensional analysis in [93].
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At the wall boundary, we prescribe the no penetration condition; that is,

wn = w1n1 + w2n2 = 0 (2.37)

Suppose that we have a numerical state u on the solid wall. In order to weakly

impose the no penetration condition, we have to provide an artificial state uout on

the other side of the interface, and compute the numerical flux f̂n(u,uout). The

reflecting technique introduces a mirror state such that

ρout = ρ, pout = p, wout
n = −wn, wout

n⊥ = wn⊥ . (2.38)

The following theorem affirms the entropy stability of the reflecting technique.

Theorem 2.5. If f̂n(u,uout) is Godunov flux or HLL flux where uout is taken to be

the mirror state (2.38), then such boundary treatment is entropy stable.

Proof. According to (2.36), we need to prove that the entropy production rate at

the interface

ψn − vT f̂n(u,uout)

is non-positive. By rotational symmetry, it it enough to consider the vertical wall

x1 = 0. Then n =

[
1 0

]T
and

u =

[
ρ ρw1 ρw2 E

]T
, uout =

[
ρ −ρw1 ρw2 E

]T
.

The numerical flux simply solves the Riemann problem in the first dimension. The

exact Riemann solver will give a middle state u∗ such that w∗1 = 0. Hence the

Godunov flux is

f̂n(u,uout) = f1(u∗) =

[
0 p∗ 0 0

]T
. (2.39)
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For the HLL Riemann solver, the two-rarefaction approximation yields λL = −λ and

λR = λ. Then we actually have the local Lax-Friedrichs flux

f̂n(u,uout) =
1

2
(f1(u) + f1(uout))− λ

2
(uout − u) =

[
0 p+ λρw1 0 0

]T
. (2.40)

In both cases only the second component of f̂n is nonzero. On the other hand, since

v =

[
γ−s
γ−1
− ρ(w2

1+w2
2)

2p
ρw1

p
ρw2

p
−ρ
p

]T
, ψn = ρw1,

vout =

[
γ−s
γ−1
− ρ(w2

1+w2
2)

2p
−ρw1

p
ρw2

p
−ρ
p

]T
, ψout

n = −ρw1,

we can easily verify that

ψn−vT f̂(u,uout,n) = (vout)T f̂(u,uout,n)−ψout
n =

1

2
((vout−v)T f̂(u,uout,n)−(ψout

n −ψn)).

It is non-positive due to the entropy stability of Godunov flux and HLL flux.

2.5 Convection-diffusion equations

In this section, we add viscous diffusive terms to the hyperbolic conservation law

(2.1). The convection-diffusion equations are given by:

∂u

∂t
+

d∑
m=1

∂

∂xm
(fm(u)−

d∑
r=1

Cmr(v)
∂v

∂xr
) = 0, (2.41)

where v is the entropy variable of some entropy function U , and Cmr(v) are p × p

matrix-valued functions. One typical examples is the compressible Navier-Stokes

equations. Recall the vanishing viscosity approach in Section 1.2. We assume that
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the matrix 
C11(v) · · · C1d(v)

...
. . .

...

Cd1(v) · · · Cdd(v)


is symmetric semi-positive-definite. Then (2.41) supports the entropy condition with

respect to U . The convective part will be handled by (2.31). For the diffusive part,

we present a nodal version of the LDG method of Cockburn and Shu [18], with

provable entropy stability. We recast (2.41) into the mixed formulation

∂u

∂t
+

d∑
m=1

∂

∂xm
(fm(u)− qm) = 0, qm =

d∑
r=1

Cmr(v)θθθr, θθθr =
∂v

∂xr
. (2.42)

The LDG type method evolves the nodal discretization of u and {θθθr}dr=1 simulta-

neously. The coupling between adjoining elements are achieved by f̂n(u,uout) and

single-valued numerical fluxes of v and qn:

v̂ := v̂(v,vout), q̂n := q̂n(v,vout,qn,q
out
n ). (2.43)

Once again −→u and
−→
θθθ r denote the nodal values of numerical solutions in the reference

element. We further define

Cmr := diag{Cmr(v1), · · · , Cmr(vNQ,k)},
−→qm :=

d∑
r=1

Cmr

−→
θθθr .

Additionally, we also let
−→
v∗ and

−→
q∗n describe the vectors of corresponding numerical

fluxes. Then the LDG method is

d−→u
dt

+ 2
d∑

m=1

(
Dm ◦ Fm,S(−→u ,−→u )

−→
1 −Dm

−→qm
)

= M−1B
(

(
−→
fn −

−→
f∗n )− (−→qn −

−→
q∗n)
)
,

(2.44a)
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−→
θθθr −Dr

−→v = −M−1BNr(
−→v −

−→
v∗), 1 ≤ r ≤ d. (2.44b)

Such scheme is entropy stable for carefully chosen fluxes of v and qn.

Theorem 2.6. Given parameters α ≥ 0 and β ∈ R, if we use the LDG fluxes

v̂(v,vout) =
1

2
(v + vout) + β(v − vout),

q̂n(v,vout,qn,q
out
n ) =

1

2
(qn + qout

n )− β(qn − qout
n )− α(vj − vout

j ),

(2.45)

then (2.44) is entropy stable.

Proof. We left multiply (2.44a) by −→v TM and (2.44b) by −→qrTM, and sum them

up. The convective part is already entropy stable according to Theorem 2.4. The

remaining terms are

d∑
r=1

(
−−→qrTM

−→
θθθr +−→v TMDr

−→qr +−→qrTMDr
−→v
)
−−→v TB(−→qn −−→qn

∗)−−→qn
TB(−→v −

−→
v∗)

=−
d∑
r=1

−→qrTM
−→
θθθr + (−→v TB

−→
q∗n +−→qn

TB
−→
v∗ −−→v TB−→qn).

The first sum is the interior contribution, it is non-positive since

−
d∑
r=1

−→qrTM
−→
θθθr = −

NQ,k∑
j=1

ωj

( d∑
r=1

qTr,jθθθr,j

)
= −

NQ,k∑
j=1

ωj

( d∑
m=1

d∑
r=1

θθθTm,jCmr(vj)θθθr,j

)
≤ 0.

The boundary contribution reduces to

NQ,k∑
j=1

τj

(
vTj q̂n(vj,v

out
j ,qn,j,q

out
n,j ) + qTn,jv̂(v,vout)− vTj qn,j

)
:=

NQ,k∑
j=1

τjAj.

If ξξξj ∈ ∂T , we add the corresponding terms from the other side of the interface. The
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contribution at ξξξj is

Aj + Aout
j = (vj − vout

j )T q̂n(vj,v
out
j ,qn,j,q

out
n,j )

+ (qn,j − qout
n,j )

T v̂(vj,v
out
j )− (vTj qn,j − (vout

j )Tqout
n,j ).

Due to the identity

vTj qn,j − (vout
j )Tqout

n,j =
1

2
(vj + vout

j )T (qn,j − qout
n,j ) +

1

2
(vj − vout

j )T (qn,j + qout
n,j ),

plugging (2.45) yields

Aj + Aout
j = −α(vj − vout

j )T (vj − vout
j ) ≤ 0.

Hence the boundary contribution is also non-positive and our nodal LDG method is

entropy stable.

Remark 2.7. Both α and β may depend on j. We can also replace α by a symmetric

positive-definite p× p matrix.

2.6 Numerical experiments

We will perform numerical tests for two-dimensional systems of conservation laws

on unstructured triangular meshes generated by Gmsh2 [37]. The discrete SBP

operators are built on the B-type quadrature points in Section 2.2, with k = 1, 2, 3, 4.

Basic settings are the same as in one-dimensional numerical experiments. We take

k = 2, 3, 4 for smooth test problems, and only k = 2 for discontinuous test problems.

For Euler equations, we still use the Chandrashekar’s entropy conservative flux (2.12),

2http://gmsh.info/
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and the local Lax-Friedrichs flux will be considered at boundary for problems with

strong shocks, due to the reason that the exact Riemann solver might contain vacuum

state.

Example 2.6.1. The first smooth test example is the two-dimensional linear advec-

tion equation

∂u

∂t
+

∂u

∂x1

+
∂u

∂x2

= 0, x ∈ [0, 1]2,

with periodic boundary condition and initial data u(0,x) = sin(2πx1) sin(2πx2), and

square entropy function U = u2/2. The exact solution is u(t,x) = u(0, x1− t, x2− t).

We test the two-dimensional entropy stable DGSEM on a hierarchy of unstructured

triangular meshes. Errors and orders of convergence at t = 0.2 are shown in Table

2.1. Same as the one-dimensional linear advection equation, we obtain optimal

convergence.

Table 2.1: Example 2.6.1: accuracy test of the two-dimensional linear advection
equation associated with initial data u(0,x) = sin(2πx1) sin(2πx2) and square en-
tropy function at t = 0.2.

k h L1 error order L2 error order L∞ error order
2 1/8 3.380e-3 - 6.000e-3 - 6.890e-2 -

1/16 5.032e-4 2.748 9.868e-4 2.604 1.809e-2 1.930
1/32 6.170e-5 3.028 1.213e-4 3.024 2.292e-3 2.981
1/64 7.916e-6 2.962 1.551e-5 2.967 3.387e-4 2.758
1/128 9.890e-7 3.001 1.926e-6 3.010 4.419e-5 2.938
1/256 1.244e-7 2.991 2.414e-7 2.996 5.929e-6 2.898

3 1/8 2.329e-4 - 4.375e-4 - 8.752e-3 -
1/16 2.114e-5 3.461 3.536e-5 3.629 8.228e-4 3.411
1/32 1.790e-6 3.562 2.810e-6 3.654 6.194e-5 3.731
1/64 1.429e-7 3.647 2.210e-7 3.668 4.310e-6 3.845
1/128 1.063e-8 3.748 1.658e-8 3.737 3.183e-7 3.759
1/256 7.341e-10 3.856 1.160e-9 3.838 2.194e-8 3.859

4 1/8 1.295e-5 - 2.230e-5 - 6.184e-4 -
1/16 4.534e-7 4.837 9.969e-7 4.483 6.627e-5 3.222
1/32 1.528e-8 4.891 2.824e-8 5.141 1.401e-6 5.564
1/64 4.923e-10 4.956 8.940e-10 4.982 6.046e-8 4.535
1/128 1.547e-11 4.992 2.773e-11 5.011 1.897e-9 4.994
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Example 2.6.2. We consider the two-dimensional Burgers equation

∂u

∂t
+
∂u2

∂x1

+
∂u2

∂x2

= 0, x ∈ [0, 1]2,

with periodic boundary condition and initial data u(0,x) = 0.5 sin(2π(x1 + x2)),

and square entropy function U = u2/2. Exact solution follows from the solution

of one-dimensional Burgers equation in the direction η = x1 + x2. The entropy

stable DGSEM is evolved up to t = 0.05 when the solution is still smooth. Errors

and orders of convergence are displayed in Table 2.2. The results are similar to its

one-dimensional counterpart. Convergence rate is below optimal.

Table 2.2: Example 2.6.2: accuracy test of the two-dimensional Burgers equation
associated with initial data u(0,x) = 0.5 sin(2π(x1+x2)) and square entropy function
at t = 0.05.

k h L1 error order L2 error order L∞ error order
2 1/16 1.354e-3 - 3.275e-3 - 5.954e-2 -

1/32 2.394e-4 2.500 7.046e-4 2.217 1.646e-2 1.855
1/64 3.900e-5 2.618 1.406e-4 2.325 4.894e-3 1.750
1/128 5.773e-6 2.756 2.456e-5 2.518 1.269e-3 1.948
1/256 8.431e-7 2.776 4.109e-6 2.579 2.413e-4 2.394

3 1/16 1.890e-4 - 6.252e-4 - 1.968e-2 -
1/32 2.482e-5 2.929 1.058e-4 2.563 4.859e-3 2.018
1/64 2.327e-6 3.415 1.106e-5 3.258 7.311e-4 2.733
1/128 2.065e-7 3.494 1.158e-6 3.255 1.195e-4 2.613
1/256 1.898e-8 3.444 1.236e-7 3.229 1.299e-5 3.202

4 1/16 3.740e-5 - 1.454e-4 - 6.039e-3 -
1/32 2.787e-6 3.746 1.427e-5 3.349 1.068e-3 2.500
1/64 1.348e-7 4.370 7.651e-7 4.221 8.839e-5 3.595
1/128 5.566e-9 4.598 3.722e-8 4.362 6.398e-6 3.788
1/256 2.293e-10 4.602 1.696e-9 4.456 3.059e-7 4.387

Example 2.6.3 (Isentropic vortex). The last smooth test case is the isentropic

vortex advection problem for the two-dimensional Euler equations, taken from Shu

[89]. The computational domains is [0, 10]2 and the initial condition is given by

w1(0,x) = 1− (x2 − y2)φ(r), w2(0,x) = 1 + (x1 − y1)φ(r),
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T (0,x) = 1− γ − 1

2γ
φ(r)2, ρ(0,x) = T

1
γ−1 , p(0,x) = T

γ
γ−1 ,

where (y1, y2) is the initial center of the vortex and

φ(r) = εeα(1−r2), r =
√

(x1 − y1)2 + (x2 − y2)2.

The parameters are ε = 5
2π

, α = 0.5 and (y1, y2) = (5, 5). The vortex will be advected

in the diagonal direction and the exact solution is u(t,x) = u(0, x1 − t, x2 − t). We

use the exact solution to prescribe boundary conditions. Table 2.3 summarizes errors

and orders of convergence of the density at t = 1. Here the convergence rate is also

slightly below optimal, but better than Burgers equation.

Table 2.3: Example 2.6.3: accuracy test of isentropic vortex problem for two-
dimensional Euler equations at t = 1. Results of the density are tabulated.

k h L1 error order L2 error order L∞ error order
2 10/8 2.299e-1 - 6.053e-2 - 8.735e-2 -

10/16 4.204e-2 2.451 1.223e-2 2.307 2.957e-2 1.563
10/32 6.598e-3 2.671 1.918e-3 2.673 5.162e-3 2.518
10/64 9.330e-4 2.822 2.688e-4 2.835 1.064e-3 2.279
10/128 1.273e-4 2.873 3.609e-5 2.897 1.717e-4 2.631
10/256 1.652e-5 2.947 4.779e-6 2.917 2.280e-5 2.913

3 10/8 4.344e-2 1.160e-2 2.960e-2
10/16 3.976e-3 3.450 1.155e-3 3.327 4.271e-3 2.793
10/32 3.632e-4 3.453 1.030e-4 3.487 2.652e-4 4.009
10/64 3.041e-5 3.578 8.538e-6 3.593 4.557e-5 2.541
10/128 2.536e-6 3.584 7.148e-7 3.578 3.793e-6 3.587
10/256 1.990e-7 3.672 5.670e-8 3.656 2.720e-7 3.802

4 10/8 7.754e-3 - 2.136e-3 - 8.836e-3 -
10/16 3.941e-4 4.298 1.308e-4 4.030 5.582e-4 3.985
10/32 1.546e-5 4.672 4.858e-6 4.750 2.549e-5 4.452
10/64 5.620e-7 4.782 1.806e-7 4.749 1.680e-6 3.923
10/128 2.020e-8 4.798 6.433e-9 4.812 8.998e-8 4.223

Example 2.6.4 (two-dimensional Riemann problem). We solve the Riemann prob-
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lem of the two-dimensional Burgers equation

∂u

∂t
+
∂u2

∂x1

+
∂u2

∂x2

= 0, x ∈ [0, 1]2,

subject to the initial condition

u(x, 0) =



0.25 if x1 < 0.5 and x2 < 0.5

−0.1 if x1 < 0.5 and x2 ≥ 0.5

0.4 if x1 ≥ 0.5 and x2 < 0.5

−0.5 if x1 ≥ 0.5 and x2 ≥ 0.5

.

The exact solution for t > 0 is as follows [101, 43]

u(x, t) =



0.25 if x1 <
1
2
− 3t

5
and x2 <

1
2

+ t
30

−0.1 if x1 <
1
2
− 3t

5
and x2 ≥ 1

2
+ t

30

0.25 if 1
2
− 3t

5
≤ x1 <

1
2
− t

4
and x2 <

−8x1

7
+ 15

14
− 15t

28

−0.5 if 1
2
− 3t

5
≤ x1 <

1
2
− t

4
and x2 ≥ −8x1

7
+ 15

14
− 15t

28

0.25 if 1
2
− t

4
≤ x1 <

1
2

+ t
2

and x2 <
x1

6
+ 5

12
− 5t

24

−0.5 if 1
2
− t

4
≤ x1 <

1
2

+ t
2

and x2 ≥ x1

6
+ 5

12
− 5t

24

2x1−1
4t

if 1
2

+ t
2
≤ x1 <

1
2

+ 4t
5

and x2 < x1 − 5
18t

(x1 + t− 1
2
)2

−0.5 if 1
2

+ t
2
≤ x1 <

1
2

+ 4t
5

and x2 ≥ x1 − 5
18t

(x1 + t− 1
2
)2

0.4 if x1 ≥ 1
2

+ 4t
5

and x2 <
1
2
− t

10

−0.5 if x1 ≥ 1
2

+ 4t
5

and x2 ≥ 1
2
− t

10

.

We choose the square entropy function U = u2/2 and run the entropy stable DGSEM

up to t = 0.5 on a triangular mesh with h = 1/128. The bound-preserving limiter
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with Ω = [−0.5, 0.4] is also imposed. The numerical result is shown in the left panel

of Figure 2.2, and the absolute value error is also plotted in the right panel where

we use logarithmic scale and values less than 10−16 are transformed to 10−16. The

scheme successfully captures the correct profile. Error is very small unless near shock

waves.
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(a) numerical solution
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(b) absolute value of error

Figure 2.2: Example 2.6.4: Numerical solution and error of a Riemann problem
of two-dimensional Burgers equation at t = 0.5 on a mesh with h = 1/128. En-
tropy function is U = u2/2 and bound-preserving limiter is used. Error is shown in
logarithmic scale.

Example 2.6.5 (double Mach reflection). This famous test problem of two-

dimensional Euler equations was proposed by Woodward and Colella in [104] and

has been intensively studied in the last few decades. It involves a Mach 10 shock

which makes a 60◦ angle with a reflecting wall. The undisturbed air ahead of the

shock has a density of 1.4 and a pressure of 1. Usually people solve the problem with

rectangular computational domain and horizontal wall. Here we use the flexibility of

unstructured triangular mesh to consider the original physical problem with a hori-

zontally moving shock and a wall inclined with a 30◦ angle (e.g. [97]).We illustrate

the computational domain and the unstructured mesh with h = 1/20 in Figure 2.3.

Initially the shock is positioned at x1 = 0. Inflow/outflow boundary conditions are



85

prescribed for the left and right boundaries, and at the top boundary the flow values

are set to describe the exact motion of shock.

(− 0. 1, 0) (0, 0)

(2. 7, 0. 9
√

3)

(2. 7, 2)(− 0. 1, 2)

wall

Figure 2.3: Example 2.6.5: illustration of the computational domain and the un-
structured mesh with h = 1/20.

The entropy stable DGSEM is implemented with bound-preserving limiter (called

positivity-preserving limiter as the density and pressure are kept positive) and local

Lax-Friedrichs flux. The plots of density and pressure at t = 0.2 with mesh size

h = 1/240 are given in Figure 2.4. Similar to the observations in [111], the solution

is more oscillatory than results obtained via WENO scheme or DG scheme with

TVD/TVB limiter, but it also catches some interesting features such as the small roll-

ups due to Kelvin-Helmholtz instability, which indicates low numerical dissipation

of our scheme.

Example 2.6.6 (shock diffraction). A shock wave diffracting at a sharp corner is

another popular test problem for two-dimensional Euler equations. In [19, 113] the

results of a Mach 5.09 shock diffracting at a 90◦ edge are presented. Here we would

like to study a Mach 10 shock diffracting at a 120◦ degree [114]. The computational
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(b) pressure

Figure 2.4: Example 2.6.5: profiles of density and pressure at t = 0.2 on a mesh with
h = 1/240. 40 equally spaced contour levels are used for both plots.

domain and the triangular mesh with h = 1/4 are demonstrated in Figure 2.5. The

shock is initially located at x1 = 3.4 and 6 ≤ x2 ≤ 11, moving into undisturbed air

with a density of 1.4 and a pressure of 1. Boundary conditions are inflow at the

left/top boundary (in accordance with the exact shock motion), and outflow at the

right/bottom boundary.
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(0, 0) (13, 0)

(13, 11)(0, 11)

(0, 6) (2
√

3 , 6)wall

wall

Figure 2.5: Example 2.6.6: illustration of the computational domain and the un-
structured mesh with h = 1/4.

We still use positivity-preserving limiter and local Lax-Friedrichs interface flux.

The contour plots of density and pressure at t = 0.9 with mesh size h = 1/40 are

depicted in Figure 2.6. The result is comparable to the one in [114] despite some

oscillations and overshoots near the shock wave.
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(b) pressure

Figure 2.6: Example 2.6.6: profiles of density and pressure at t = 0.9 on a mesh with
h = 1/20. 40 equally spaced contour levels are used for both plots.



Chapter Three

General Set of Nodes
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The entropy stable DGSEM established in previous chapters depends on Gauss-

Lobatto type quadrature points, i.e., the internal quadrature and the boundary

quadrature share the same set of nodes. However, we also notice some drawbacks

related to these Gauss-Lobatto type nodes:

1. The internal quadrature rule is only of degree 2k − 1. We detect suboptimal

convergence rate in nonlinear test problems.

2. In higher space dimensions, the local degree of freedom (NQ,k) is much larger

than the dimension of polynomials (NP,k), which makes the scheme more ex-

pensive than the classic DG method, in terms of both space complexity and

time complexity.

Therefore, it is worthwhile to consider more general set of nodes, i.e., the internal

quadrature and the boundary quadrature have separate sets of quadrature points.

In one space dimension, the Legendre-Gauss quadrature rule is of degree 2k+ 1. For

two-dimensional triangular element, quadrature rules of degree 2k with k = 1, 2, 3, 4

are illustrated in Figure 3.1. We call them A-type quadrature rules, where the letter

A means arbitrary distribution of quadrature points. The coordinates of quadrature

points and the quadrature weights are also given in Appendix C. Compared to the

B-type quadrature rules in Figure 2.1, the A-type quadrature rules achieve better

algebraic accuracy with fewer number of nodes. This is the benefit of removing

Gauss-Lobatto type constraint.

We would like to extend the entropy stable DGSEM to general set of nodes.

Flux differencing can still be used to ensure internal entropy balance, while the main

difficulty lies in boundary treatment. Under the generalized summation-by-parts

paradigm [27, 28] for general set of nodes, the boundary matrices are dense, and

identities such as (1.81) are no longer valid. Then we have to alter the boundary
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(a) k = 1,NQ,k = 3 (b) k = 2,NQ,k = 6 (c) k = 3,NQ,k = 12 (d) k = 4,NQ,k = 16

Figure 3.1: A-type quadrature rules on triangles with k = 1, 2, 3, 4. Dots are quadra-
ture points for the triangle, and circles are quadrature points for the edges.

penalty term (called simultaneous approximation term in the SBP community). Sev-

eral approaches have been proposed to overcome this issue, and we will dig into them

in this chapter.

This chapter consists of the following sections. In Section 3.1, we develop dis-

crete operators with the generalized SBP property. The main new ingredient the

extrapolation matrix that maps data to boundary nodes. In Section 3.2, we apply

quadrature rules to the classic DG method (2.14) and deduce DGSEM formulations.

Because of the mismatch of NP,k and NQ,k, there are two related but non-equivalent

formulations, i.e., the modal formulation (evolving polynomial coefficients) and the

nodal formulation (evolving point values). In Section 3.3, we reinterpret the entropy

stable DGSEM by Chan in [9, 10]. The key trick is a skew-symmetric boundary

correction term. In Section 3.4, we review an alternative entropy stable boundary

treatment by Crean et al in [21]. The authors replaced the bivariate interface flux

with an extrapolation of entropy conservative fluxes. The resulting scheme is entropy

conservative, and additional entropy dissipation can be added to element interfaces.

In Section 3.5, we cover the “brutal force” type approach by Abgrall in [1]. We ana-

lyze the original DGSEM, which is not entropy stable due to aliasing error. Then a

simple linear correction procedure will help eliminate the aliasing error. In Section

3.6, we will see that for convection-diffusion equations, the LDG discretization in

Section 2.5 also works perfectly on general set of nodes. In Section 3.7, we try to
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derive modal versions of entropy stable DGSEM formulations. Finally in Section

3.8, we will examine the accuracy (i.e., whether optimal convergence is recovered) of

these schemes on two-dimensional Burgers equation.

3.1 Generalized summation-by-parts operators

We still consider the reference simplex K ⊂ Rd. Suppose that we have a degree

2k−1 internal quadrature rule with NQ,k ≥ NP,k nodes {ξξξj}
NQ,k
j=1 and positive weights

{ωj}
NQ,k
j=1 , and a degree 2k boundary quadrature rule with NB,k nodes {ξξξbs}

NB,k
s=1 and

positive weights {τs}
NB,k
s=1 . Let {ns}

NB,k
s=1 be the collection of outer normal vectors at

boundary nodes. We define

M := diag{ω1, · · · , ωNQ,k}, B := diag{τ1, · · · , τNB,k}, (3.1)

and

Nm := diag{n1,m, · · · , nNB,k,m}, 1 ≤ m ≤ d. (3.2)

We also set the Vandermonde matrix and the boundary Vandermonde matrix:

V := {pl(ξξξj)}1≤j≤NQ,k,1≤l≤NP,k , V b := {pl(ξξξbs)}1≤s≤NB,k,1≤l≤NP,k , (3.3)

as well as the projection matrix

P := (V TMV )−1V TM. (3.4)

Since the internal nodes and the boundary nodes do not overlap, we need some com-

munication mechanism between them. We construct an NB,k × NQ,k extrapolation
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matrix R that is exact for all polynomials in Pk(T ). In other words,

RV = V b. (3.5)

A simple choice of the extrapolation matrix is R = V bP . For a function u, the

vectors of internal nodal values and boundary nodal values are defined as:

−→u :=

[
u(ξξξ1) · · · u(ξξξNQ,k)

]T
,
−→
us := R−→u .

Difference matrices with generalized SBP property will be provided in the following

theorem.

Theorem 3.1. Assume that we have an extrapolation matrix R with the exactness

property (3.5). Then the difference matrices, given by the formula

Dm :=
1

2
M−1(R + V bP )TBNm(R− V bP ) + V D̂mP, (3.6)

satisfy the two properties below:

1. Exactness: DmV = V D̂m.

2. Generalized summation-by-parts: Em = Sm + STm, where Sm := MDm and

Em := RTBNmR.

Remark 3.1. By exactness of R and Dm, and the generalized SBP property,

R
−→
1 =

−→
1b , Sm

−→
1 = Dm

−→
1 =

−→
0 , STm

−→
1 = Em

−→
1 = RTBNm

−→
1b , (3.7)

where
−→
1b is the length-NB,k vector of 1s.

The proof is the same as Theorem 2.3. Here Em denotes the generalized boundary
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matrix, such that for functions u and v,

−→u TEm
−→v =

(−→
ub
)T
BNm

−→
vb =

NB,k∑
s=1

τsns,mu
b
sv
b
s

still approximates the boundary integral
∫
∂K
uvnmdS. Notice that Em is dense, which

makes boundary treatment more involved in entropy stable DG type methods.

Similar to Section 2.2, we can use Kroncker products to generate discrete opera-

tors for vector-valued functions, and Jacobian factors to compute discrete operators

on local elements.

Remark 3.2. We would like to highlight some special cases of extrapolation matrix

and difference matrices.

1. If NP,k = NQ,k (e.g. one-dimensional Legendre-Gauss quadrature and Gauss-

Lobatto quadrature), R = VbV
−1 and Dm = V D̂mV

−1.

2. If R = VbP , the first term of (3.6) vanishes, and Dm = V D̂mP .

3. In Gauss-Lobatto type quadrature, ξξξbs = ξξξs for each 1 ≤ s ≤ NB,k, and we can

choose R =

[
INB,k 0

]
. Then we recover the difference matrices in (2.24).

3.2 DGSEM: from modal formulation to nodal

formulation

Recall the classic DG method for systems of conservation laws (on the reference

element K):

∫
K

∂uTh
∂t

whdξξξ −
d∑

m=1

∫
K

fm(uh)
T dwh

dξm
dξξξ = −

∫
∂K

f̂n(uh,u
out
h )TwhdS. (3.8)
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We expand uh and wh under the basis {pl(ξξξ)}
NP,k
l=1 :

uh =

NP,k∑
l=1

ûlpl(ξξξ), wh =

NP,k∑
l=1

ŵlpl(ξξξ).

Define

−→
û :=


û1

...

ûNP,k

 , −→
ŵ :=


ŵ1

...

ŵNP,k

 .

Then −→u = V
−→
û ,
−→
ub = Vb

−→
û . We use the internal quadrature rule to approximate

the left hand side of (3.8), and the boundary quadrature rule to approximate the

right hand side. The resulting scheme is

(
V
−→
ŵ
)T

M
(
V
d
−→
û

dt

)
−

d∑
m=1

(
VD̂m

−→
ŵ
)T

M
−→
fm = −

(
Vb−→ŵ

)T
B
−→
f∗n ,

where f∗n,s = f̂n(ubs,u
b,out
s ). Since

−→
ŵ can be arbitrary, we obtain

(VTMV)
d
−→
û

dt
−

d∑
m=1

(VD̂m)TM
−→
fm = −(Vb)TB

−→
f∗n , (3.9)

i.e.,

d
−→
û

dt
−

d∑
m=1

(VTMV)−1(VD̂m)TM
−→
fm = −(VTMV)−1(Vb)TB

−→
f∗n . (3.10)

This is called modal DGSEM formulation as we evolve the vector of polynomial

expansion coefficients. Applying the Vandermonde matrix V to (3.10), we come up

with the nodal formulation that describes the evolution of −→u :

d−→u
dt
−

d∑
m=1

M−1(VD̂mP)TM
−→
fm = −M−1(VbP)TB

−→
f∗n . (3.11)
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Here we use the relation V(VTMV)−1 = M−1PT . It is a special case of the more

general nodal DGSEM formulation

d−→u
dt
−

d∑
m=1

M−1STm
−→
fm = −M−1RTB

−→
f∗n , (3.12)

by choosing R = VbP and Dm = VD̂mP. According to generalized SBP property,

we also deduce the strong version of (3.12):

d−→u
dt

+
d∑

m=1

Dm

−→
fm = M−1

( D∑
m=1

Em

−→
fm −RTB

−→
f∗n

)
= M−1RTB

( d∑
m=1

Nm

−→
f bm −

−→
f∗n

)
= M−1RTB

(−→
f bn −

−→
f∗n

)
.

(3.13)

On the other hand, we can recover the modal formulation by applying projection to

(3.12), and setting d
−→
û
dt

= P
−→u
dt

:

d
−→
û

dt
−

d∑
m=1

PM−1STm
−→
fm = −PM−1RTB

−→
f∗n .

This reduces to (3.10) due to the exactness properties:

PM−1DT
m = (VTMV)−1(DmV)T = (VTMV)−1(VD̂m)T ,

and

PM−1RT = (VTMV)−1(RV)T = (VTMV)−1(Vb)T .

To conclude, by taking interpolation, the modal formulation implies a specific nodal

formulation (with particular choices of R and Dm). However, by taking projection,

all nodal formulations (with any R and Dm satisfying exactness properties and

generalized SBP property) lead to the modal formulation. The reason for such

asymmetric relation is the fact that NQ,k ≥ NP,k.
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3.3 Approach 1: skew-symmetric boundary cor-

rection

We start to analyze the entropy stable DGSEM in [9, 10] by Chan. We still modify

(3.13) by replacing Dm

−→
fm with the flux differencing term 2Dm◦Fm,S(−→u ,−→u )

−→
1 . Using

the proof of Lemma 1.1, we can show that

−→
1 TM

(
2Dm ◦ Fm,S(−→u ,−→u )

−→
1
)

=
−→
1 TEm ◦ Fm,S(−→u ,−→u )

−→
1 ,

and

−→v TM
(

2Dm ◦ Fm,S(−→u ,−→u )
−→
1
)

= −→v TEm ◦ Fm,S(−→u ,−→u )
−→
1 −

−→
ψ TEm

−→
1 .

Since Em is dense, it is difficult characterize Em ◦ Fm,S(−→u ,−→u )
−→
1 . A natural step is

to replace M−1Em

−→
fm with M−1Em ◦ Fm,S(−→u ,−→u )

−→
1 , which gives us the scheme

d−→u
dt

+2
d∑

m=1

Dm◦Fm,S(−→u ,−→u )
−→
1 = M−1

( d∑
m=1

Em◦Fm,S(−→u ,−→u )
−→
1 −RTB

−→
f∗n

)
. (3.14)

Then (3.14) will achieve local conservation and entropy balance:

d

dt
(
−→
1 TM−→u ) =

(−→
1b
)T

B
−→
f∗n ,

d

dt
(
−→
1 TB

−→
U ) =

(−→
ψbn

)T
M
−→
1b −

(−→
vb
)T

B
−→
f∗n . (3.15)

We also have global conservation due to the cancellation of numerical fluxes from

both sides of element interface. However, unlike flux differencing, the boundary

modification in (3.14) violates accuracy. Besides, the entropy production rate at ξξξbs

is

(vb,out
s − vbs)

T f̂n(ubs,u
b,out
s )− (ψb,out

n,s − ψbn,s).
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The sign is undecided as ubs 6= u(vbs) and ψbs 6= ψ(vbs). i.e., extrapolation does not

commute with function evaluation. We solve the latter issue by resorting to entropy

extrapolations. Set
−→
ũb and

−→
ψ̃b such that ũbs = u(vbs), ψ̃

b
m,s = ψm(vbs). The interface

flux also depends on entropy-extrapolated values, such that f∗n,s = f̂n(ũbs, ũ
b,out
s ). In

order to maintain high order accuracy, we add a skew-symmetric correction term,

and build the following scheme:

d−→u
dt

+ 2
d∑

m=1

Dm ◦ Fm,S(−→u ,−→u )
−→
1 = M−1

( d∑
m=1

Em ◦ Fm,S(−→u ,−→u )
−→
1 −RTB

−→
f∗n

+
d∑

m=1

(
RTBNm

(
R ◦ Fm,S

(−→
ũb,−→u

))−→
1 −RT ◦ Fm,S

(−→
ũb,−→u

)T
BNm

−→
1b
))
,

(3.16)

where

Fm,S

(−→
ũb,−→u

)
=


diag(fm,S(ũb1,u1)) · · · diag(fm,S(ũb1,uNQ,k))

...
. . .

...

diag(fm,S(ũbNB,k ,u1)) · · · diag(fm,S(ũbNB,k ,uNQ,k))

 .

The component-wise form of (3.16) is

duj
dt

+ 2
d∑

m=1

NQ,k∑
l=1

Dm,jlfm,S(uj,ul) =

NB,k∑
s=1

Rsj
τs
ωj

(NQ,k∑
l=1

Rslfn,S(uj,ul)

− f̂n(ũbs, ũ
b,out
s ) +

NQ,k∑
l=1

Rslfn,S(ũbs,ul)− fn,S(ũbs,uj)
)
.

(3.17)

Theorem 3.2. Assume that the sequence of meshes {Th} is uniform, and that all

mappings and bivariate fluxes are smooth and Lipschitz continuous. If fm,S is entropy

conservative for each 1 ≤ m ≤ d, and f̂n is entropy stable, then the scheme (3.16) is
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high order accurate in the sense that for all i, j and smooth solution u of (2.1),

dui,j
dt

+ 2
d∑

m=1

NQ,k∑
l=1

Di,m,jlfm,S(ui,j,ui,l)−
NB,k∑
s=1

Rsj

J bi,sτs

Jiωj

(NQ,k∑
l=1

Rslfn,S(ui,j,ui,l)

− f̂n(ũbi,s, ũ
b,out
i,s ) +

NQ,k∑
l=1

Rslfn,S(ũbi,s,ui,l)− fn,S(ũbi,s,ui,j)
)

= O(hk),

(3.18)

and conservative and entropy stable in the sense that

d

dt

( N∑
i=1

−→
1 TMi

−→ui
)

= 0,
d

dt

( N∑
i=1

−→
1 TMi

−→
Ui

)
≤ 0. (3.19)

Proof. Since the flux differencing is high order accurate, and the Jacobian factors

have the scales Ji = Θ(hd) and J bi,s = Θ(hd−1) (as a result of uniform mesh), it

suffices to show that

NQ,k∑
l=1

Rslfn,S(ui,j,ui,l)−f̂n(ũbi,s, ũ
b,out
i,s )+

NQ,k∑
l=1

Rslfn,S(ũbi,s,ui,l)−fn,S(ũbi,s,ui,j) = O(hk+1).

By the approximation property of extrapolation and Lipschitz continuity,

vbi,s − v(xi(ξξξ
b
s)) = O(hk+1), ũbi,s − u(xi(ξξξ

b
s)) = O(hk+1).

We check each component separately:

NQ,k∑
l=1

Rslfn,S(ui,j,ui,l) = fn,S(ui,j,u(xi(ξξξ
b
s)) +O(hk+1),

f̂n(ũbi,s, ũ
b,out
i,s ) = fn(u(xi(ξξξ

b
s)) +O(hk+1),

NQ,k∑
l=1

Rslfn,S(ũbi,s,ui,l) = fn,S(ũbi,s,u(xi(ξξξ
b
s)) +O(hk+1) = fn(u(xi(ξξξ

b
s)) +O(hk+1),

fn,S(ũbi,s,ui,j) = fn,S(u(xi(ξξξ
b
s),ui,j) +O(hk+1).
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Hence the truncation error of boundary terms is also of high order. For conservation

and entropy stability, we identify the effect of the skew-symmetric correction term:

−→
1 T
(
RTBNm

(
R ◦ Fm,S

(−→
ũb,−→u

))−→
1 −RT ◦ Fm,S

(−→
ũb,−→u

)T
BNm

−→
1b
)

=
(−→

1b
)T

BNm

(
R ◦ Fm,S

(−→
ũb,−→u

))−→
1 −−→1 TRT ◦ Fm,S

(−→
ũb,−→u

)T
BNm

−→
1b = 0,

and

−→v T
(
RTBNm

(
R ◦ Fm,S

(−→
ũb,−→u

))−→
1 −RT ◦ Fm,S

(−→
ũb,−→u

)T
BNm

−→
1b
)

=
(−→
vb
)T

BNm

(
R ◦ Fm,S

(−→
ũb,−→u

))−→
1 −−→v TRT ◦ Fm,S

(−→
ũb,−→u

)T
BNm

−→
1b

=

NQ,k∑
j=1

NB,k∑
s=1

τsns,mRsj(v
b
s − vj)fm,S(ũbs,uj) =

NQ,k∑
j=1

NB,k∑
s=1

τsns,mRsj(ψ̃
b
m,s − ψm,j)

=
(−→
ψ̃bm

)T
BNmR

−→
1 −

−→
ψm

TRTBNm

−→
1b =

(−→
ψ̃bm −

−→
ψbm

)T
BNm

−→
1b .

Recall (3.15). We see that

d

dt
(
−→
1 TM−→u ) =

(−→
1b
)T

B
−→
f∗n ,

d

dt
(
−→
1 TM

−→
U ) =

(−→
ψ̃bn

)T
B
−→
1b −

(−→
vb
)T

B
−→
f∗n . (3.20)

The skew-symmetric correction term reduces to zero when multiplied by constant

vector, and contributes to entropy-extrapolated values of ψn when multiplied by −→v .

As a result, conservation is obvious, and the entropy production rate at ξξξbs is:

(vb,out
s − vbs)

T f̂n(ũbs, ũ
b,out
s )− (ψ̃b,out

n,s − ψ̃bn,s) ≤ 0,

which clinches entropy stability.

Remark 3.3. Constructing bound-preserving limiter and TVD/TVB limiter is

highly non-trivial due to the nonlinear entropy extrapolation. We also have such

difficulty in the other two schemes in this chapter. Compatibility with limiters is a

notable advantage of Gauss-Lobatto type nodes.
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Although the boundary penalty term in (3.16) looks very complicated, it can be

greatly simplified in some particular situations. In the following examples, we will

study the effect of boundary treatment.

Example 3.3.1. For Gauss-Lobatto type nodes with R =

[
INB,k 0

]
, Em is diago-

nal, and
−→
ũb =

−→
ub. Then Em ◦ Fm,S(−→u ,−→u )

−→
1 = Em

−→
fm, and

RTBNm

(
R ◦ Fm,S

(−→
ũb,−→u

))−→
1 = RTBNmR

−→
fm = Em

−→
fm,

RT ◦ Fm,S

(−→
ũb,−→u

)T
BNm

−→
1b = (RTBNm) ◦ Fm,S

(−→
ũb,−→u

)T−→
1b

= RTBNm

−→
f bm = Em

−→
fm.

We use the identity X ◦ (YZ)T
−→
1 = diag(XYZ) = (XY) ◦ZT−→1 herein. Notice that

all three components equal Em

−→
fm, and (3.16) reduces to

d−→u
dt

+2
d∑

m=1

Dm◦Fm,S(−→u ,−→u )
−→
1 = M−1

( d∑
m=1

Em

−→
fm−RTB

−→
f∗n

)
= M−1RTB

(−→
fn−
−→
f∗n

)
.

Therefore, the entropy stable DGSEM (2.31) is a special case of (3.16).

Example 3.3.2. For the linear symmetric system (1.14) in one space dimension

with fS(uL,uR) = 1
2
(f(uL) + f(uR)), the one-dimensional version of (3.16) is

d−→u
dt

+ 2D ◦ FS(−→u ,−→u )
−→
1 = M−1

(
E ◦ FS(−→u ,−→u )

−→
1 −RTB

−→
f∗

+ RTB
(
R ◦ FS

(−→
ũb,−→u

))−→
1 −RT ◦ FS

(−→
ũb,−→u

)T
B
−→
1b
)
,

(3.21)

where B = diag{−1, 1}. We have already shown in Section 1.6 that flux differenc-

ing term equals D
−→
f , i.e., the unmodified difference term in (3.13). The boundary

components are recast into:

E ◦ FS(−→u ,−→u )
−→
1 =

1

2
E
−→
f +

1

2
(E
−→
1 ) ◦

−→
f =

1

2
RTB

−→
f b +

1

2

(
RTB

−→
1b
)
◦
−→
f ,
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RTB
(
R ◦ FS

(−→
ũb,−→u

))−→
1 =

1

2
RTBR

−→
f +

1

2
RTB

(
(R
−→
1 ) ◦

−→
f̃ b
)

=
1

2
RTB

−→
f b +

1

2
RTB

−→
f̃ b ,

RT ◦ FS

(−→
ũb,−→u

)T
B
−→
1b = (RTB) ◦ FS

(−→
ũb,−→u

)T−→
1b =

1

2
RTB

−→
f̃ b +

1

2

(
RTB

−→
1b
)
◦
−→
f .

The resulting boundary penalty term is M−1RTB
(−→

f b −
−→
f∗
)

. We also recover the

unmodified boundary term in (3.13).

Example 3.3.3. For the Burgers equation (1.16) with fS(uL, uR) = 1
6
(u2

L + uLuR +

u2
R). Since we have square entropy function, u = v and

−→
ũb =

−→
ub . In Section 1.6 we

revealed that flux differencing is equivalent to the skew-symmetric splitting. As for

the boundary penalty term,

EFS(−→u ,−→u )
−→
1 =

1

3
E
−→
f +

1

6
(E−→u ) ◦ −→u +

1

3
(E
−→
1 ) ◦

−→
f

=
1

3
RTB

−→
f b +

1

6

(
RTB

−→
ub
)
◦ −→u +

1

3

(
RTB

−→
1b
)
◦
−→
f ,

RTB
(
R ◦ FS

(−→
ũb ,−→u

))−→
1 =

1

3
RTBR

−→
f +

1

6
RTB

(
(R−→u ) ◦

−→
ub
)

+
1

3
RTB

(
(R
−→
1 ) ◦

−→
f̃ b
)

=
1

3
RTB

−→
f b +

2

3
RTB

−→
f̃ b, where

−→
f̃ b =

1

2

−→
ub ◦
−→
ub ,

RT ◦ FS
(−→
ũb ,−→u

)T
B
−→
1b = (RTB) ◦ FS

(−→
ũb ,−→u

)T−→
1b

=
1

3
RTB

−→
f̃ b +

1

6

(
RTB

−→
ub
)
◦ −→u +

1

3

(
RTB

−→
1b
)
◦
−→
f .

After summing them up, the method (3.21) turns into

d−→u
dt

+
2

3
D
−→
f +

1

3
−→u ◦ (D−→u ) = M−1RTB

(2

3

−→
f b +

1

3

−→
f̃ b −

−→
f ∗
)
.

Hence the boundary adjustment also corresponds to some splitting procedure (this

is exactly the entropy stable DGSEM in [86]).
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3.4 Approach 2: replacing bivariate interface flux

The second entropy stable DGSEM was found by Crean et al in [21]. We still try

to modify the scheme (3.14). Instead of plugging correction terms, we implement

element coupling in a different way by replacing vector
−→
f∗n . Suppose that K has

NE faces, and {γe}NEe=1 is the collection of faces of K. There are NF,k boundary

quadrature points on each face so that NB,k = NENF,k. Furthermore,

B = diag{B1, · · · ,BNE}, Nm = diag{N1
m, · · · ,NNEm },

where Be and Ne
m are NF,k ×NF,k blocks corresponding to the face γe. The extrap-

olation matrix is also decomposed as

R =


R1

...

RNE

 .

For each face γe, let Ke,out be the adjacent element on the other side of γe, and
−−−→
ue,out be the solution vector at Ke,out. Define 1 ≤ σ(e) ≤ NE such that γe is the

σ(e)-th face of Ke,out (by considering the affine mapping between K and Ke,out).

The extrapolated values on both sides of γe are given by

−→
ub,e := Re−→u ,

−−−−→
ub,e,out := Rσ(e)

−−−→
ue,out.

Then
−→
ub and

−−−→
ub,out are concatenations of these block vectors:

−→
ub =


−→
ub,1

...
−−−→
ub,NE

 , −−−→
ub,out =


−−−−→
ub,1,out

...
−−−−−→
ub,NE ,out

 .
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We also set

Ee
m := (Re)TBeNe

mRe, Ee,out
m := (Re)TBeNe

mRσ(e), 1 ≤ e ≤ NE. (3.22)

Clearly Em =
NE∑
e=1

Ee
m. By designing a new coupling term Ee,out

m ◦Fm,S

(−→u ,−−−→ue,out
)−→

1 ,

we produce the following entropy conservative DGSEM:

d−→u
dt

+ 2
d∑

m=1

Dm ◦ Fm,S(−→u ,−→u )
−→
1

= M−1
( d∑
m=1

NE∑
e=1

(
Ee
m ◦ Fm,S(−→u ,−→u )

−→
1 − Ee,out

m ◦ Fm,S

(−→u ,−−−→ue,out
)−→

1
))
,

(3.23)

with the component-wise representation

duj
dt

+ 2
d∑

m=1

NQ,k∑
l=1

Dm,jlfm,S(uj,ul)

=

NE∑
e=1

NF,k∑
r=1

Rsj
τs
ωj

(NQ,k∑
l=1

Rslfn,S(uj,ul)−
NQ,k∑
l=1

R
σ(e)
rl fn,S(uj,u

e,out
l )

) (3.24)

where s = (e− 1)NF,k + r.

Theorem 3.3. Under the same assumptions as in Theorem 3.2, scheme (3.23) is

high order accurate, conservative and entropy conservative.

Proof. For accuracy, we only need to prove that for all i, j and smooth solution u,

NQ,k∑
l=1

Rslfn,S(ui,j,ui,l)−
NQ,k∑
l=1

R
σi(e)
rl fn,S(ui,j,u

e,out
i,l ) = O(hk+1).

By the approximation property of extrapolation,

NQ,k∑
l=1

Rslfn,S(ui,j,ui,l) = fn,S(ui,j,u(xi(ξξξ
b
s))) +O(hk+1),
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NQ,k∑
l=1

R
σi(e)
rl fn,S(ui,j,u

e,out
i,l ) = fn,S(ui,j,u(xi(ξξξ

b
s))) +O(hk+1).

Then the boundary truncation error is of high order. For conservation and entropy

conservation, Dm ◦ Fm,S(−→u ,−→u )
−→
1 and Em ◦ Fm,S(−→u ,−→u )

−→
1 cancel with each other,

we are left with

d

dt
(
−→
1 TM−→u ) = −

d∑
m=1

NE∑
e=1

−→
1 TEe,out

m ◦ Fm,S

(−→u ,−−−→ue,out
)−→

1 ,

d

dt
(
−→
1 TM

−→
U ) =

NE∑
e=1

(−→
ψb,en

)T
Be
−→
1b,e −

d∑
m=1

NE∑
e=1

−→v TEe,out
m ◦ Fm,S

(−→u ,−−−→ue,out
)−→

1 .

On a face γ(e), the corresponding contributions from Ke,out are

−
d∑

m=1

−→
1 T (Rσ(e)Be(−Ne

m)Re)◦Fm,S

(−−−→
ue,out,−→u

)−→
1 =

d∑
m=1

−→
1 T (Ee,out)T◦Fm,S

(−→u ,−−−→ue,out
)T−→

1 ,

and

−
(−−−−→
ψb,e,out
n

)T
Be
−→
1b,e +

d∑
m=1

(−−−→
ve,out

)T
(Ee,out)T ◦ Fm,S

(−→u ,−−−→ue,out
)T−→

1 .

Conservation is obvious, and entropy conservation results from

d∑
m=1

((−−−→
ve,out

)T
(Ee,out)T ◦ Fm,S

(−→u ,−−−→ue,out
)T−→

1 −−→v TEe,out
m ◦ Fm,S

(−→u ,−−−→ue,out
)−→

1
)

=
d∑

m=1

NQ,k∑
j=1

NQ,k∑
l=1

Ee,out
m,jl (ve,out

l − vj)
T fm,S(uj,u

e,out
l ) =

d∑
m=1

NQ,k∑
j=1

NQ,k∑
l=1

Ee,out
m,jl (ψe,out

l − ψj)

=
d∑

m=1

(−→
ψ TEe,out

m

−→
1 −−→1 TEe,out

m

−−−→
ψe,out

)
=
(−−−−→
ψb,e,out
n −

−→
ψb,en

)T
Be
−→
1b,e.

Remark 3.4. The coupling term Ee,out
m ◦Fm,S

(−→u ,−−−→ue,out
)−→

1 requires the nodal values

of all neighboring elements. This affects the locality of DG type formulation, and

makes the implementation of non-periodic boundary conditions (inflow, outflow, solid
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wall, etc) very difficult. We can not simply prescribe values of
−−−−→
ub,e,out.

Remark 3.5. For one-dimensional linear symmetric system (1.14),

Ee ◦ FS(−→u ,−→u )
−→
1 =

1

2
(Re)TBe

−→
f b,e +

1

2

(
(Re)TBe

−→
1b,e
)
◦
−→
f ,

Ee,out ◦ FS(−→u ,
−−−→
ue,out)

−→
1 =

1

2
(Re)TBe

−−−→
f b,e,out +

1

2

(
(Re)TBe

−→
1b,e
)
◦
−→
f ,

The boundary penalty term is

NE∑
e=1

1

2
(Re)TBe

(−→
f b,e −

−−−→
f b,e,out

)
=

1

2
RTB

(−→
f b −

−−→
f b,out

)
= RTB

(−→
f e −

−→
f∗
)
,

where
−→
f∗ = 1

2

(−→
f e +

−−→
f e,out

)
. Hence (3.23) also reduces to the unmodified DGSEM

(3.13), by using the entropy conservative interface flux:

f̂(uL,uR) = fS(uL,uR) =
1

2
(f(uL) + f(uR)).

In order to make (3.23) an entropy stable scheme, we define the entropy stable

dissipation function d̂n(u,uout). It is essentially the dissipative part of entropy stable

flux f̂n(u,uout).

Definition 3.1. A bivariate function d̂n(u,uout) serves as an entropy stable dis-

sipation function with respect to an entropy function U if it satisfies the following

conditions:

1. Consistency: d̂n(u,u) = 0.

2. Conservation: d̂n(u,uout) = −d̂−n(uout,u).

3. Entropy stability: (vout − v)T d̂n(u,uout) ≤ 0.
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For example, the Lax-Friedrichs type dissipation function is commonly used:

d̂n(u,uout) = λn(u,uout)(uout − u). (3.25)

λn(u,uout) ≥ 0 is the maximum wave speed. It can be the largest absolute eigenvalue

in f ′n(u) and f ′n(uout), or the two-rarefaction approximated wave speed in Appendix

A. Lax-Friedrichs type dissipation function is entropy stable in that

λn(u,uout)(v − vout)T (uout − u) = λn(u,uout)(u− uout)Tv′(ũ)(uout − u) ≥ 0,

where ũ is some value on the line segment connecting u and uout. We generate en-

tropy stable DGSEM by adding entropy dissipation to (3.23). Let
−→
d∗n be the vector of

entropy dissipation terms, such that the arguments are entropy-extrapolated values:

−→
d∗n :=


d̂n(ũb1, ũ

b,out
1 )

...

d̂n(ũbNB,k , ũ
b,out
NB,k)

 .

The entropy stable scheme reads

d−→u
dt

+ 2
d∑

m=1

Dm ◦ Fm,S(−→u ,−→u )
−→
1 = M−1

( d∑
m=1

NE∑
e=1

(
Ee
m ◦ Fm,S(−→u ,−→u )

−→
1

− Ee,out
m ◦ Fm,S

(−→u ,−−−→ue,out
)−→

1
)
−RTB

−→
d∗n

)
.

(3.26)

The proof of high order accuracy, conservation, entropy stability follows respectively

from the consistency, conservation and entropy stability of d̂n.

Corollary 3.1. Under the same assumptions as in Theorem 3.2, if d̂n is an entropy

stable dissipation function, then the scheme (3.26) is high order accurate, conserva-

tive and entropy stable.
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3.5 Approach 3: eliminating aliasing error

In [1], Abgrall recommended a simple “brute force” type approach that enforces

entropy stability. It is written in the residual distribution framework. We will the

apply the idea to the DGSEM formulations. We start with the original DGSEM

(3.13), using entropy conservative flux at element interface:

f∗n,s = fn,S(ũbs, ũ
b,out
s ), 1 ≤ s ≤ NB,k.

Notice that the arguments are again entropy-extrapolated values. We also set
−→
F ∗n to

be the vector of bivariate entropy flux functions:

F ∗n,s = Fn,S(ũbs, ũ
b,out
s ) :=

1

2
(vbs + vb,out

s )T fn,S(ũbs, ũ
b,out
s )− 1

2

(
ψ̃bn,s + ψ̃b,out

n,s

)
.

The aliasing error of (3.13) is defined as:

E :=
d

dt
(
−→
1 TM

−→
U ) +

(−→
1b
)T
B
−→
F ∗n = −→v T

(
−

d∑
m=1

Sm
−→
fm + RTB

(−→
f bn −

−→
f∗n

))
+
(−→

1b
)T
B
−→
F ∗n

=
d∑

m=1

−→v TSTm
−→
fm −

(−→
vb
)T

B
−→
f∗n +

(−→
1b
)T
B
−→
F ∗n.

Since

(vbs)
T fn(ũbs, ũ

b,out
s )−Fn(ũbs, ũ

b,out
s ) =

1

2
(vbs−vb,out

s )T fn,S(ũbs, ũ
b,out
s )+

1

2

(
ψ̃bn,s+ψ̃

b,out
n,s

)
= ψ̃bn,s,

We obtain

E =
d∑

m=1

−→v TSTm
−→
fm −

(−→
1b
)T
B
−→
ψ̃bn. (3.27)

We will demonstrate that for smooth solutions, the aliasing error is of high order.

Theorem 3.4. Assume that the sequence of meshes {Th} is uniform, and that all
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mappings and bivariate fluxes are smooth and Lipschitz continuous. Then for each

1 ≤ i ≤ N and smooth solution u, the local aliasing error Ei = O(hk+d).

Proof. (3.27) describes the discretization error of Green’s formula:

∫
Ki

d∑
m=1

∂vT

∂xm
fm(u)dx =

∫
Ki

d∑
m=1

∂vT

∂xm
gm(v)dx =

∫
∂Ki

ψn(v)dS.

By the approximation property of difference and extrapolation matrix, and algebraic

accuracy of internal and boundary quadrature rule,

∫
Ki

d∑
m=1

∂vT

∂xm
fm(u)dx =

d∑
m=1

NQ,k∑
j=1

Jiωj
∂vT

∂xm
(xi(ξξξj))fi,m,j +O(h2k+d)

=
d∑

m=1

(Di
−→vi)TMi

−→
fi,m +O(hk+d) =

d∑
m=1

−→vi TSTi,m
−→
fi,m +O(hk+d),

∫
∂Ki

ψn(v)dS =

NB,k∑
s=1

J bi,sτsψn(v(xi(ξξξ
b
s))) +O(h2k+d) =

NB,k∑
s=1

J bi,sτsψn(vbi,s) +O(hk+d)

=
(−→

1b
)T
Bi

−−→
ψ̃bi,n +O(hk+d).

Hence Ei =
∑d

m=1
−→vi TSTi,m

−→
fi,m −

(−→
1b
)T
Bi

−−→
ψ̃bi,n = O(hk+d).

To neutralize the aliasing error, a simple linear correction term will be introduced

to (3.13), resulting in the following entropy conservative DGSEM.

d−→u
dt

+
d∑

m=1

Dm

−→
fm = M−1RT

(−→
f bn −

−→
f∗n

)
− αM−1−→vo, (3.28)

where

α =
E(−→

vo
)T−→

vo
,
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and
−→
vo is the vector of normalized values:

voj = vj − v, v :=
1

NQ,k

NQ,k∑
j=1

vj.

Theorem 3.5. If fm,S is entropy conservative for each 1 ≤ m ≤ d, then the scheme

(3.28) is conservative and entropy conservative.

Proof. For conservation,

d

dt
(
−→
1 TM−→u ) = −

(−→
1b
)T

B
−→
f∗n − α

−→
1 T−→vo = −

(−→
1b
)T

B
−→
f∗n .

as
−→
1 T−→vo = 0. For entropy conservation, by the definition of E ,

d

dt
(
−→
1 TM

−→
U ) = −

(−→
1b
)T
B
−→
F ∗n + E − α−→v T−→vo = −

(−→
1b
)T
B
−→
F ∗n.

We use the relation

α−→v T−→vo = E
∑NQ,k

j=1 vTj (vj − v)∑NQ,k
j=1 (vj − v)T (vj − v)

= E
∑NQ,k

j=1 vTj vj −NQ,kvTv∑NQ,k
j=1 vTj vj −NQ,kvTv

= E .

Due to the symmetry of fn,S and Fn,S,

f−n,S(ũb,out
s , ũbs) = −fn,S(ũbs, ũ

b,out
s ), F−n,S(ũb,out

s , ũbs) = −Fn,S(ũbs, ũ
b,out
s ),

which implies conservation and entropy conservation.

Remark 3.6. In numerical implementation, we should take

α =
E(−→

vo
)T−→

vo + ε

to avoid division by zero, where ε is positive and close to machine precision.
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Remark 3.7. Although we have proved that Ei is of high order, this does not

guarantee high order accuracy of (3.28). The main reason is that
−→
voi = O(h), and

we are not able to control the order of αi = O(hk+d)/O(h2).

Similar to Section 3.4, we make (3.28) entropy stable by attaching the dissipation

vector
−→
d∗n:

d−→u
dt

+
d∑

m=1

Dm

−→
fm = M−1RT

(−→
f bn −

−→
f∗n −

−→
d∗n

)
− αM−1−→vo, (3.29)

Corollary 3.2. If fm,S is entropy conservative for each 1 ≤ m ≤ d, and d̂n is

an entropy stable dissipation function, then the scheme (3.29) is conservative and

entropy stable.

3.6 Convection-diffusion equations

Recall the mixed form of convection-diffusion equations

∂u

∂t
+

d∑
m=1

∂

∂xm
(fm(u)− qm) = 0, qm =

d∑
r=1

Cmr(v)θθθr, θθθr =
∂v

∂xr
.

We use
−→
L
(−→u ;

{−−−→
ue,out

}NE
e=1

)
to represent the generic form of entropy stable discretiza-

tion of the convective part, including (3.16), (3.26) and (3.29). For the diffusive part,

the extension to general set of nodes is much easier. We just keep the LDG type

formulation:

d−→u
dt

+
−→
L
(−→u ;

{−−−→
ue,out

}NE
e=1

)
−

d∑
m=1

Dm
−→qm = −M−1RTB

(−→
qbn −

−→
q∗n

)
, (3.30a)

−→
θθθr −Dr

−→v = −M−1RTBNr

(−→
vb −

−→
v∗
)
, 1 ≤ r ≤ d, (3.30b)
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where v∗s = v̂(vbs,v
b,out
s ) and q∗n,s = q̂n(vbs,v

b,out
s ,qbn,s,q

b,out
n,s ). We can still establish

the entropy stability of (3.30) with LDG fluxes. The proof is exactly the same as in

Theorem 2.6.

Theorem 3.6. Given parameters α ≥ 0 and β ∈ R, if we the LDG fluxes

v̂(v,vout) =
1

2
(v + vout) + β(v − vout),

q̂n(v,vout,qn,q
out
n ) =

1

2
(qn + qout

n )− β(qn − qout
n )− α(vj − vout

j ),

(3.30) is entropy stable.

3.7 Back to modal formulation

We have only considered nodal entropy stable DGSEM formulations up to now. In

this section, we will recover the corresponding modal formulations in a straightfor-

ward manner. Here in order to maintain entropy stability, we have to make sure

that the nodal values of v live in the polynomial space, which brings us the idea of

entropy projection.

On the reference element K, suppose that uh(ξξξ) :=
NQ,k∑
l=1

ûlpl(ξξξ) is the numerical

solution function,
−→
û is the vector of polynomial coefficients, and −→u = V

−→
û is the

vector of nodal values. For entropy variables v, we define the projected polynomial:

−→
v̂ := P−→v , vh(ξξξ) :=

NQ,k∑
l=1

v̂lpl(ξξξ),

as well as the entropy-projected values
−→
ṽ and

−→
ũ , such that

−→
ṽ := V

−→
v̂ = VP−→v , ũj = v(ṽj), 1 ≤ j ≤ NQ,k.
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Now given the generic nodal DGSEM formulation

d−→u
dt

+
−→
L
(−→u ;

{−−−→
ue,out

}NE
e=1

)
= 0, (3.31)

the modal formulation is derived through projection (recall Section 3.2) and inserting

entropy-projected values:

d
−→
û

dt
+ P
−→
L
(−→

ũ ;
{−−−→

ũe,out
}NE
e=1

)
= 0. (3.32)

Theorem 3.7. If (3.31) is conservative and entropy stable, then the modal formu-

lation (3.32) is also conservative and entropy stable, in the sense that

d

dt

( N∑
i=1

∫
Ki

uh(x)dx
)

=
d

dt

( N∑
i=1

−→
1 TMi

−→ui
)

= 0,
d

dt

( N∑
i=1

−→
1 TMi

−→
Ui

)
≤ 0. (3.33)

Proof. The evolution of nodal values is

d−→u
dt

+ VP
−→
L
(−→

ũ ;
{−−−→

ũe,out
}NE
e=1

)
= 0.

Since MVP = MV(VTMV)−1VTM = PTVTM,

d

dt
(
−→
1 TM−→u ) = −−→1 TMVP

−→
L
(−→

ũ ;
{−−−→

ũe,out
}NE
e=1

)
− (VP

−→
1 )TM

−→
L
(−→

ũ ;
{−−−→

ũe,out
}NE
e=1

)
= −−→1 TM

−→
L
(−→

ũ ;
{−−−→

ũe,out
}NE
e=1

)
,

and

d

dt
(
−→
1 TM

−→
U ) = −−→v TMVP

−→
L
(−→

ũ ;
{−−−→

ũe,out
}NE
e=1

)
= −(VP−→v )TM

−→
L
(−→

ũ ;
{−−−→

ũe,out
}NE
e=1

)
= −
−→
ṽ TM

−→
L
(−→

ũ ;
{−−−→

ũe,out
}NE
e=1

)
.

Then from the conservation and entropy stability of (3.31), we see that (3.32) is also
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conservative and entropy stable.

Entropy projection will not affect high order accuracy. For a smooth solution u

and 1 ≤ i ≤ N , the projection error
−→
ṽi −−→vi = O(hk+1), and

−→
ũi −−→ui = O(hk+1). We

can easily prove that for both (3.16) and (3.26),

−→
Li

(−→
ũi ;
{−−−→

ũe,out
i

}NE
e=1

)
−
−→
Li

(−→ui ;{−−−→ue,out
i

}NE
e=1

)
= O(hk).

Hence the local truncation error of the modal formulation is also O(hk). Moreover,

by using entropy-projected values, we achieve a better estimate for the local aliasing

error in Section 3.5.

Theorem 3.8. Under the same assumptions as in Theorem 3.4, if we replace −→v

with entropy-projected values
−→
ṽ , the local aliasing error

Ei =
d∑

m=1

−→
ṽi

TSTi,m
−→
f̃i,m −

(−→
1b
)T
Bi

−−→
ψ̃bi,n = O(h2k+d). (3.34)

Proof. Since the extrapolation is exact for polynomials, vbi,s = vh(xi(ξξξ
b
s)). We can

consider the Green’s formula for vh:

∫
Ki

d∑
m=1

∂vTh
∂xm

gm(vh)dx =

∫
∂Ki

ψn(vh)dS,

such that the discretization error only comes from quadrature:

∫
Ki

d∑
m=1

∂vTh
∂xm

gm(vh)dx =
d∑

m=1

−→
ṽi

TSTi,m
−→
f̃i,m +O(h2k+d),

∫
∂Ki

ψn(vh)dS =
(−→

1b
)T
Bi

−−→
ψ̃bi,n +O(h2k+d).
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Hence Ei = O(h2k+d).

3.8 Accuracy test

We test the numerical convergence rates of entropy stable nodal DGSEM (3.16),

(3.26) and (3.29) on the two-dimensional Burgers equation. Discrete operators are

built on the A-type quadrature points with t = 1, 2, 3, 4. The settings will be the

same as in Example 2.6.2. All three schemes are evolved up to t = 0.05. Here we

consider two different entropy functions: the square entropy function U = u2

2
and

the hyperbolic entropy function U = cosh(u).

Numerical errors and orders of convergence of scheme (3.16) are presented in

Table 3.1 (for square entropy function) and Table 3.2 (for hyperbolic cosine entropy

function). The corresponding numerical results of scheme (3.26) are listed in Table

3.3 and 3.4, and the results of scheme scheme (3.29) are listed in Table 3.5 and 3.6.

Since the internal quadrature rule is of degree 2k and the boundary quadrature rule

is of degree 2k + 1, it might be possible to recover the optimal (k + 1)-th order

convergence (recall Remark 1.10). We do achieve optimal convergence in (3.16) and

(3.29), despite the fact that the truncation error of (3.29) is not fully understood.

However, the convergence is still below optimal in scheme (3.26). The change of

entropy function has relatively little impact. For a given scheme, and the convergence

orders with two entropy functions are almost the same, and the numerical error with

hyperbolic cosine entropy function is slightly smaller.
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Table 3.1: Accuracy test of the two-dimensional Burgers equation at t = 0.05:
scheme (3.16) and square entropy function.

k h L1 error order L2 error order L∞ error order
2 1/16 2.388e-04 - 4.924e-04 - 6.618e-03 -

1/32 3.683e-05 2.697 8.852e-05 2.476 1.431e-03 2.210
1/64 4.821e-06 2.933 1.182e-05 2.905 1.873e-04 2.934
1/128 6.340e-07 2.927 1.726e-06 2.775 3.270e-05 2.518
1/256 8.354e-08 2.924 2.483e-07 2.797 6.024e-06 2.440

3 1/16 5.966e-05 - 2.064e-04 - 3.278e-03 -
1/32 5.006e-06 3.575 2.081e-05 3.310 5.757e-04 2.510
1/64 3.397e-07 3.881 1.508e-06 3.787 3.352e-05 4.102
1/128 2.187e-08 3.957 1.027e-07 3.876 3.931e-06 3.092
1/256 1.459e-09 3.906 6.922e-09 3.891 3.300e-07 3.574

4 1/8 1.617e-04 - 5.139e-04 - 6.596e-03 -
1/16 1.209e-05 3.741 4.902e-05 3.390 1.231e-03 2.422
1/32 5.545e-07 4.446 2.877e-06 4.091 1.243e-04 3.308
1/64 1.741e-08 4.993 8.684e-08 5.050 5.782e-06 4.426
1/128 5.561e-10 4.969 2.819e-09 4.945 1.766e-07 5.033

Table 3.2: Accuracy test of the two-dimensional Burgers equation at t = 0.05:
scheme (3.16) and hyperbolic cosine entropy function.

k h L1 error order L2 error order L∞ error order
2 1/16 2.244e-04 - 4.597e-04 - 6.226e-03 -

1/32 3.391e-05 2.726 8.188e-05 2.489 1.367e-03 2.187
1/64 4.386e-06 2.951 1.074e-05 2.931 1.793e-04 2.931
1/128 5.717e-07 2.939 1.557e-06 2.786 2.992e-05 2.583
1/256 7.511e-08 2.928 2.238e-07 2.798 5.511e-06 2.440

3 1/16 5.445e-05 - 1.913e-04 - 3.067e-03 -
1/32 4.526e-06 3.589 1.921e-05 3.316 5.347e-04 2.520
1/64 3.019e-07 3.906 1.365e-06 3.815 3.096e-05 4.110
1/128 1.920e-08 3.975 9.184e-08 3.894 3.538e-06 3.130
1/256 1.275e-09 3.913 6.148e-09 3.901 2.941e-07 3.589

4 1/8 1.476e-04 - 4.757e-04 - 6.202e-03 -
1/16 1.092e-05 3.757 4.482e-05 3.408 1.132e-03 2.454
1/32 4.984e-07 4.454 2.637e-06 4.087 1.150e-04 3.300
1/64 1.528e-08 5.028 7.728e-08 5.093 5.355e-06 4.424
1/128 4.818e-10 4.987 2.472e-09 4.966 1.641e-07 5.028
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Table 3.3: Accuracy test of the two-dimensional Burgers equation at t = 0.05:
scheme (3.26) and square entropy function.

k h L1 error order L2 error order L∞ error order
2 1/16 5.589e-04 - 1.417e-03 - 1.480e-02 -

1/32 7.520e-05 2.894 2.264e-04 2.646 2.942e-03 2.331
1/64 9.540e-06 2.979 3.179e-05 2.832 4.968e-04 2.566
1/128 1.159e-06 3.042 4.063e-06 2.968 9.024e-05 2.461
1/256 1.449e-07 2.999 5.328e-07 2.931 1.510e-05 2.579

3 1/16 8.852e-05 - 2.776e-04 - 4.435e-03 -
1/32 9.359e-06 3.242 3.815e-05 2.863 9.120e-04 2.282
1/64 8.005e-07 3.547 3.835e-06 3.314 1.521e-04 2.584
1/128 6.294e-08 3.669 3.702e-07 3.373 2.543e-05 2.581
1/256 5.182e-09 3.602 3.689e-08 3.327 3.160e-06 3.008

4 1/8 2.135e-04 - 6.078e-04 - 6.544e-03 -
1/16 1.920e-05 3.475 7.180e-05 3.082 1.661e-03 1.978
1/32 1.216e-06 3.981 5.972e-06 3.588 2.215e-04 2.906
1/64 4.846e-08 4.649 2.767e-07 4.432 1.829e-05 3.598
1/128 1.670e-09 4.859 9.917e-09 4.802 1.061e-06 4.108

Table 3.4: Accuracy test of the two-dimensional Burgers equation at t = 0.05:
scheme (3.26) and hyperbolic cosine entropy function.

k h L1 error order L2 error order L∞ error order
2 1/16 5.300e-04 - 1.367e-03 - 1.451e-02 -

1/32 7.057e-05 2.909 2.154e-04 2.666 2.813e-03 2.366
1/64 8.973e-06 2.975 3.028e-05 2.831 4.761e-04 2.563
1/128 1.089e-06 3.042 3.872e-06 2.967 8.605e-05 2.468
1/256 1.363e-07 2.998 5.082e-07 2.930 1.447e-05 2.572

3 1/16 8.324e-05 - 2.611e-04 - 4.398e-03 -
1/32 8.824e-06 3.238 3.621e-05 2.850 8.565e-04 2.361
1/64 7.546e-07 3.548 3.655e-06 3.308 1.463e-04 2.550
1/128 5.944e-08 3.666 3.537e-07 3.370 2.444e-05 2.581
1/256 4.908e-09 3.598 3.530e-08 3.325 3.024e-06 3.015

4 1/8 1.945e-04 - 5.587e-04 - 6.280e-03 -
1/16 1.768e-05 3.459 6.770e-05 3.045 1.607e-03 1.966
1/32 1.123e-06 3.977 5.577e-06 3.602 2.089e-04 2.943
1/64 4.482e-08 4.648 2.583e-07 4.432 1.709e-05 3.612
1/128 1.549e-09 4.855 9.283e-09 4.798 9.867e-07 4.114
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Table 3.5: Accuracy test of the two-dimensional Burgers equation at t = 0.05:
scheme (3.29) and square entropy function.

k h L1 error order L2 error order L∞ error order
2 1/16 2.423e-04 - 4.972e-04 - 6.534e-03 -

1/32 3.695e-05 2.713 8.831e-05 2.493 1.421e-03 2.201
1/64 4.829e-06 2.936 1.181e-05 2.903 1.865e-04 2.930
1/128 6.345e-07 2.928 1.725e-06 2.775 3.245e-05 2.523
1/256 8.357e-08 2.925 2.482e-07 2.797 5.993e-06 2.437

3 1/16 6.369e-05 - 2.222e-04 - 3.553e-03 -
1/32 5.322e-06 3.581 2.234e-05 3.314 6.373e-04 2.479
1/64 3.541e-07 3.910 1.587e-06 3.816 3.607e-05 4.143
1/128 2.251e-08 3.975 1.066e-07 3.896 4.092e-06 3.140
1/256 1.491e-09 3.916 7.121e-09 3.904 3.434e-07 3.575

4 1/8 1.821e-04 - 5.807e-04 - 7.067e-03 -
1/16 1.336e-05 3.768 5.422e-05 3.421 1.358e-03 2.379
1/32 5.991e-07 4.480 3.120e-06 4.119 1.348e-04 3.332
1/64 1.834e-08 5.030 9.209e-08 5.082 6.217e-06 4.439
1/128 5.771e-10 4.990 2.945e-09 4.967 1.901e-07 5.032

Table 3.6: Accuracy test of the two-dimensional Burgers equation at t = 0.05:
scheme (3.29) and hyperbolic cosine entropy function.

k h L1 error order L2 error order L∞ error order
2 1/16 2.321e-04 - 4.779e-04 - 6.456e-03 -

1/32 3.456e-05 2.748 8.407e-05 2.507 1.431e-03 2.173
1/64 4.432e-06 2.963 1.088e-05 2.950 1.888e-04 2.923
1/128 5.748e-07 2.947 1.566e-06 2.797 3.105e-05 2.604
1/256 7.532e-08 2.932 2.244e-07 2.803 5.511e-06 2.494

3 1/16 6.136e-05 - 2.201e-04 - 3.608e-03 -
1/32 5.050e-06 3.603 2.199e-05 3.323 6.367e-04 2.503
1/64 3.266e-07 3.951 1.513e-06 3.861 3.610e-05 4.141
1/128 2.031e-08 4.007 9.928e-08 3.929 3.837e-06 3.234
1/256 1.330e-09 3.933 6.533e-09 3.926 3.184e-07 3.591

4 1/8 1.787e-04 - 5.778e-04 - 7.072e-03 -
1/16 1.298e-05 3.783 5.361e-05 3.430 1.356e-03 2.382
1/32 5.751e-07 4.497 3.081e-06 4.121 1.346e-04 3.334
1/64 1.693e-08 5.086 8.712e-08 5.144 6.191e-06 4.442
1/128 5.198e-10 5.026 2.711e-09 5.006 1.902e-07 5.024
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This chapter is a brief tutorial of the distribution-free stochastic analysis in [78]. We

first describe the generalized polynomial chaos (gPC) expansion for an uncorrelated

sequence of random variables in Section 4.1. Then we bring into the ideas of driv-

ing noise, Wick product and Skorokhod integral in Section 4.2 and 4.3. These are

basically generalizations of Gaussian white noise and Itô integral.

4.1 Generalized polynomial chaos expansion

Suppose that Ξ = {ξk}∞k=1 is a sequence of uncorrelated random variables within

some probability space (Ω,F ,P), such that E[ξk] = 0 and E[ξ2
k] = 1 for each k. We

also assume F = σ(Ξ) is the σ-algebra generated by {ξk}∞k=1.The term distribution-

free arises from the fact that each random variable can be of any distribution. They

are not required to be identically distributed or independent. We aim to construct

an orthogonal basis of L2(Ω), under the notation of multi-indices.

Definition 4.1. Let α = (α1, α2, · · · ) be an multi-index whose length is denoted by

|α| :=
∞∑
k=1

αk. J stands for the set of multi-indices of finite length:

J = {α = (α1, α2, · · · ) : αk ≥ 0 for each k, |α| <∞}.

The polynomials and factorials of multi-indices are defined as:

ξα :=
∞∏
k=1

ξαkk , α! :=
∞∏
k=1

αk!.

Moreover, ε0 is the multi-index whose entries are all zero, and εk is the multi-index

such that its k-th entry is 1 and all other entries are zero, for each k ≥ 1.
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Each multi-index α with |α| = n can be uniquely identified by its characteristic

set Iα = (i1α, i
2
α, · · · , inα), which is a vector of length n and given by

imα = k if and only if
k−1∑
j=1

αj < m ≤
k∑
j=1

αj, for each 1 ≤ m ≤ n.

For instance, if α = (0, 1, 0, 2, 3, 0, · · · ), Iα = (2, 4, 4, 5, 5, 5). Particularly, we let

d(α) := inα, the position of the rightmost nonzero entry in α. We impose the following

two assumptions on Ξ.

A1. For each finite dimensional random vector (ξi1 , ξi2 , · · · , ξid), the moment

generating function E[exp(θ1ξi1 + θ2ξi2 + · · ·+ θdξid)] exists for all (θ1, θ2, · · · , θd) in

some neighborhood of 0 ∈ Rd.

A2. We have an orthogonal set of polynomials {Kα, α ∈ J } such that for each

n ≥ 1,

span{Kβ, |β| ≤ n} = span{ξβ : |β| ≤ n} := Pn,

and for each |α| = n+ 1,

Kα = ξα − projectionPnξ
α.

The generalized polynomial chaos basis functions {Φα, |α| ∈ J } are scaled ver-

sions of {Kα, |α| ∈ J }:

Φα := cαKα, so that E[ΦαΦβ] = δαβ(α!) (4.1)

Obviously Φε0 = 1 and Φεk = ξk. Under assumptions A1 and A2, {Φα, α ∈ J } (and

hence {Kα, α ∈ J }) forms a complete Cameron-Martin [6] type orthogonal basis.
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The following theorem is proved in [78].

Theorem 4.1. Assume A1 and A2 hold. Then {Φα, α ∈ J } is a complete set

of orthogonal basis functions of L2(Ω). For each η ∈ L2(Ω), its polynomial chaos

expansion is

η =
∑
α∈J

ηαΦα, ηα =
E[ηΦα]

α!
,

and the Parseval’s identity holds:

E[η2] =
∑
α∈J

(α!)η2
α.

In this way we separate the stochastic part (Φα) and the deterministic part (ηα).

In the special case where {ξk}∞k=1 are independent identically distributed (i.i.d.)

random variables, A1 and A2 can be simplified into the two assumptions below.

B1. The moment generating function E[exp(θξk)] exists for all θ in some neigh-

borhood of 0.

B2. There exists an orthogonal set of univariate polynomials {ϕn(ξ)}∞n=0 such

that E[ϕn(ξk)ϕm(ξk)] = δmnn!, and the gPC basis functions are simply tensor prod-

ucts of {ϕn(ξ)}∞n=0:

Φα =
∞∏
k=1

ϕαk(ξk). (4.2)

Corollary 4.1. Suppose that {ξk}∞k=1 is a sequence of i.i.d random variables with

zero mean and unit variance, and assumptions B1 and B2 hold. Then {Φα, α ∈ J }

given by (4.2) is a complete set of orthogonal basis functions of L2(Ω).

Table 4.1 shows the orthogonal polynomials for some common random distribu-

tions (see e.g. [106]). It may be necessary to shift and scale the distribution to
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achieve zero mean and unit variance.

Table 4.1: Correspondence between random distribution and orthogonal polynomials
for an i.i.d. sequence of random variables.

Distribution of ξk Orthogonal polynomials
Continuous Gaussian Hermite

Gamma Lagurre
Beta Jacobi
Uniform Legendre

Discrete Poisson Charlier
Binomial Krawtchouk
Negative binomial Meixner
Hypergeometric Hahn

Remark 4.1. We use the weaker assumption of uncorrelated random variables to

incorporate Lévy randomness, whose gPC basis functions are not polynomials of

simple random variables. We will always consider i.i.d. random variables in the

numerical tests in Section 5.3.

4.2 Driving noise

Now we take the time variable into account. Let [0, T ] be some time interval and

H := L2([0, T ]) .We define the following driving noise Ṅ (t):

Ṅ (t) =
∞∑
k=1

mk(t)ξk =
∞∑
k=1

mk(t)Φεk , (4.3)

and the stochastic process

N (t) =

∫ t

0

Ṅ (s)ds =
∞∑
k=1

(∫ t

0

mk(s)ds
)
ξk, (4.4)
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where {mk(t)}∞k=1 is a complete orthonormal basis of H. Then N (t) is a process

with zero mean, and the covariance function

E[N (t1)N (t2)] =
∞∑
k=1

(∫ t1

0

mk(s)ds
)(∫ t2

0

mk(s)ds
)

=
∞∑
k=1

(1[0,t1],mk)H(1[0,t2],mk)H

= (1[0,t1], 1[0,t2])H = min{t1, t2}.

In other words, N (t) has uncorrelated increments, such that for 0 ≤ t1 ≤ t2,

E[(N (t2)−N (t1))N (t1)] = E[N (t2)N (t1)−N (t1)2] = t1 − t1 = 0.

Two specific examples of Ṅ (t) and N (t) are provided below.

Example 4.2.1. If {ξk}∞k=1 are i.i.d. standard Gaussian random variables, N (t) is

a Gaussian process with independent increments (zero correlation implies indepen-

dence for jointly Gaussian random variables). One can easily show that

E[(N (t2)−N (t1))4] = 3(t2 − t1)2

Then by Kolmogorov continuity theorem, we can find a version of N (t) with con-

tinuous path. This is indeed standard Wiener process W (t), and the driving noise

Ṅ (t) is the Gaussian white noise Ẇ (t). As for gPC basis functions, {ϕn(ξ)}∞n=0 are

probabilists’ Hermite polynomials {Hen(x)}∞n=0.

Example 4.2.2. If {ξk}∞k=1 are i.i.d. uniformly distributed on [−
√

3,
√

3], the driving

stochastic process N (t) is non-Gaussian as its characteristic function is

E[iθN (t)] = E
[

exp
(
iθ

∞∑
k=1

(∫ t

0

mk(s)ds
)
ξk

)]
=
∞∏
k=1

sin
(√

3θ
( ∫ t

0
mk(s)ds

))
√

3θ
( ∫ t

0
mk(s)ds

) .

As for gPC basis functions, {ϕn(ξ)}∞n=0 are the scaled versions of Legendre polyno-
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mials {Ln(x)}∞n=0:

ϕn(ξ) =
√

(2n+ 1)n!Ln

( ξ√
3

)
, (4.5)

such that E[ϕn(ξk)
2] = n!.

4.3 Wick product and Skorokhod integral

In this section briefly explains the languages to construct distribution-free stochastic

integrals. For the opposite direction, i.e. the stochastic (Malliavin) derivative, we

refer interested readers to [78] for more details. Let E be some given Hilbert space.

We will work on the space of generalized random variables written as formal chaos

expansion series:

D′(E) :=
{
u =

∑
α∈J

uαΦα : uα ∈ E
}
,

and the space of square integrable general random variables:

D(E) :=
{
u =

∑
α∈J

uαΦα : uα ∈ E, E[‖u‖2
E] =

∑
α∈J

α!‖uα‖2
E <∞

}
,

For instance, if E = H = L2([0, T ]), D′(H) consists of generalized stochas-

tic processes u = u(t) =
∑
α∈J

uα(t)Φα such that each uα ∈ L2([0, T ]); while

D(H) = L2([0, T ] × Ω), the subspace of square integrable stochastic processes in

D′(H).

We first introduce Wick product �, a convolution type binary operator on chaos

expansion coefficients:

Φα � Φβ = Φα+β, u � v =
∑
α∈J

∑
β∈J

uαvβΦα+β for u, v ∈ D′(R).
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Then for u = u(t) ∈ D′(H), its Skorokhod integral δ(u) ∈ D′(R) is denoted by

δ(u) :=

∫ T

0

u(t) � Ṅ (t)dt =
∑
α∈J

∞∑
k=1

(uα,mk)HΦα+εk =
∑
α∈J

(∑
εk≤α

(uα−εk ,mk)H

)
Φα.

(4.6)

The Skorokhod integral can be better characterized in terms of multiple integrals.

For n ≥ 0, let Hn := L2([0, T ]n) and H̃n be the family of symmetric functions in

Hn. We use t(n) as the short hand notation of (t1, t2, · · · , tn). For each multi-index

α with |α| = n, we set

Eα(t(n)) =
∑
σ∈Gn

mi1α
(tσ(1))mi2α

(tσ(2)) · · ·minα(tσ(n)), (4.7)

where Gn is the permutation group on {1, 2, · · · , n}. Then {Eα, |α| = n} is a complete

orthogonal basis of H̃n, and ‖Eα‖2
Hn = n!α!. For each f ∈ H̃n, we have the expansion

and the Parseval’s identity

f =
∑
|α|=n

fαEα, fα =
(f, Eα)Hn
n!α!

, ‖f‖2
Hn =

∑
|α|=n

n!α!f 2
α.

The multiple integral In is a linear operator from H̃n to L2(Ω), such that

In(f) := n!
∑
|α|=n

fαΦα, f ∈ H̃n (4.8)

for each f ∈ H̃n, and

E[In(f)2] =
∑
|α|=n

α!(n!fα)2 = n!‖f‖2
Hn

Therefore, In (to be more rigorous, In/
√
n!) defines an isometric embedding. The

connection between Skorokhod integral and multiple integral is pointed out in the

following theorem.



127

Theorem 4.2. Suppose that u = u(t) = In(f(t, t(n))) ∈ L2([0, T ]× Ω), and f(t, ·) ∈

H̃n for each t ∈ [0, T ]. Then δ(u) = In+1(f̃) ∈ L2(Ω). Here for g ∈ Hn, g̃ is standard

symmetrization of g:

g̃(t(n)) :=
1

n!

∑
σ∈Gn

g(tσ(1), tσ(2), · · · , tσ(n)). (4.9)

Proof. We denote the expansion of f(t, ·) by:

f(t, t(n)) =
∑
|α|=n

fα(t)Eα(t(n)).

By the definition of In and δ,

u(t) = n!
∑
|α|=n

fα(t)Φα, δ(u) = n!
∑
|α|=n

∞∑
k=1

(fα,mk)HΦα+εk .

Since u ∈ L2([0, T ]× Ω),

‖f‖2
Hn+1 =

∫ T

0

‖f(t, ·)‖2
Hn =

1

n!

∫ T

0

E[u(t)2]dt <∞.

Hence f ∈ Hn+1, and f̃ ∈ H̃n+1, with expansion:

f̃ =
∑
|α|=n

f̃αEα =
∑
|α|=n

∞∑
k=1

(fα,mk)Hm̃kEα =
1

n+ 1

∑
|α|=n

∞∑
k=1

(fα,mk)HEα+εk .

Comparing the expansions of δ(u) and f̃ , we draw the conclusion that δ(u) =

In+1(f̃) ∈ L2(Ω).

As a special case, if n = 0 and f = f(t) ∈ H, I0(f) = f is deterministic, and the
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Skorokohd integral of f is:

δ(f) =
∞∑
k=1

(f,mk)Hξk =
∞∑
k=1

(f, Eεk)HΦεk = I1(f) = I1(f̃). (4.10)

In other words, δ(f) = I1(f) is an isometric embedding from H to L2(Ω). If we

also assume that f is continuous, δ(f) is limit of discrete sums in Itô’s sense. Hence

Skorokhod can be regarded as the generalization of classic Itô integral.

Theorem 4.3. Suppose f = f(t) ∈ C([0, T ]). Consider the partition of [0, T ]:

∆ = {[ti−1, ti] : 1 ≤ i ≤ N∆, t0 = 0, tN∆
= T}, |∆| := min

1≤i≤N∆

(ti − ti−1).

As ‖∆‖ →= 0, the Itô type discrete sum
N∆∑
i=1

f(ti−1)(N (ti)−Ni−1) converges to δ(f)

in L2(Ω).

Proof. Since

N (t) =
∞∑
k=1

(∫ t

0

mk(s)ds
)
ξk =

∞∑
k=1

(1[0,t],mk)Hξk = δ(1[0,t]),

the discrete sum equals

N∆∑
i=1

f(ti−1)(N (ti)−Ni−1) = δ(f∆), f∆(t) :=

N∆∑
i=1

f(ti−1)1[ti−1,ti)(t).

By uniform continuity of f and isometric property of δ, as |∆| → 0, f∆ converges

uniformly to f (which implies convergence in H), and thus δ(f∆) converges to δ(f)

in L2(Ω).

Furthermore, in the case that {ξk}∞k=1 are i.i.d. standard Gaussian variables, we

have seen in Example 4.2.1 that Ṅ (t) = Ẇ (t) is the Gaussian white noise, and we
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will demonstrate that Skorokhod integral is equivalent to Itô integral for adapted

processes. Let us first provide the definition of adapted processes.

Definition 4.2. For u = u(t) ∈ L2([0, T ]×Ω), we can write down its chaos expansion

with regard to multiple integrals:

u(t) =
∞∑
n=0

In(fn(t, t(n))), fn(t, t(n)) :=
1

n!

∑
|α|=n

uα(t)Eα(t(n)).

u is called adapted if

supp fn(t, ·) ∈ [0, t]n, for each t ∈ [0, T ].

Theorem 4.4. Suppose that u = u(t) ∈ L2([0, T ] × Ω) is adapted. Then δ(u) ∈

L2(Ω), and we have the Itô-Skorokhod isometry:

E[δ(u)2] =

∫ T

0

E[u(t)2]dt. (4.11)

If we further assume that {ξk}∞k=1 are i.i.d. standard Gaussian variables, δ(u) coin-

cides with the Itô integral:

δ(u) =

∫ T

0

u(t) � Ẇ (t)dt =

∫ T

0

u(t)dW (t). (4.12)

Proof. By Theorem 4.2, for u = u(t) =
∞∑
n=0

fn(t, t(n)),

δ(u) =
∞∑
n=0

In+1(f̃n), E[δ(u)2] =
∞∑
n=0

(n+ 1)!‖f̃n‖2
Hn+1 .

Since fn(t, t(n)) is symmetric with respect to t(n), f̃n = 1
n+1

n∑
i=0

fn,i(t, t
(n)), where

fn,0(t, t(n)) = fn(t, t(n)), fn,i(t, t
(n)) := fn(ti, t1, · · · , ti−1, t, ti+1, · · · , tn) for 1 ≤ i ≤ n.
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From the definition of adaptedness, {fn,i}ni=0 have disjoint supports, which gives us

‖f̃n‖2
Hn+1 =

1

(n+ 1)2

n∑
i=0

‖fn,i‖2
Hn+1 =

1

n+ 1
‖fn‖2

Hn+1 .

Then we are able to prove the Itô-Skorokhod isometry:

E[δ(u)2] =
∞∑
n=0

n!‖fn‖2
Hn+1 =

∫ T

0

( ∞∑
n=0

n!‖fn(t, ·)‖2
Hn

)
dt =

∫ T

0

E[u(t)2]dt.

If {ξk}∞k=1 are i.i.d. standard Gaussian variables, for each |α| = n, we have the

multiple Itô integral formula (see [25]):

n!

∫ T

0

∫ tn

0

· · ·
∫ t2

0

Eα(t(n))dW (t1) · · · dW (tn−1)dW (tn) = n!Φα = In(Eα). (4.13)

Hence

u(t) =
∞∑
n=0

In(fn(t, t(n))) =
∞∑
n=0

n!

∫ T

0

∫ tn

0

· · ·
∫ t2

0

fn(t, t(n))dW (t1) · · · dW (tn−1)dW (tn),

and

∫ T

0

u(t)dW (t)

=
∞∑
n=0

n!

∫ T

0

(∫ T

0

∫ tn

0

· · ·
∫ t2

0

fn(t, t(n))dW (t1) · · · dW (tn−1)dW (tn)
)
dW (t)

=
∞∑
n=0

n!

∫ T

0

∫ t

0

∫ tn

0

· · ·
∫ t2

0

fn(t, t(n))dW (t1) · · · dW (tn−1)dW (tn)dW (t)

=
∞∑
n=0

(n+ 1)!

∫ T

0

∫ t

0

∫ tn

0

· · ·
∫ t2

0

f̃n(t, t(n))dW (t1) · · · dW (tn−1)dW (tn)dW (t)

=
∞∑
n=0

In+1(f̃n) = δ(u).

The last two equalities follow from adaptedness. We use the fact that if fn(t, t(n)) is

nonzero, then t ≥ ti for each 1 ≤ i ≤ n, and f̃n(t, t(n)) = 1
n+1

fn(t, t(n)).



Chapter Five

Error Estimate and Numerical

Results



132

In this chapter, we will look into the polynomials chaos expansion approach to

distribution-free SPDEs. Let Γ ∈ Rd denote some smooth finite domain. The

stochastic solution function u(t,x) lives in the space L2([0, T ]× Γ×Ω), represented

as gPC expansion

u(t,x) =
∑
α∈J

uα(t,x)Φα, uα ∈ L2([0, T ]× Γ).

Then we are left with the propagator system, i.e. the system of deterministic PDEs

satisfied by {uα(t,x), α ∈ J }. For linear SPDEs, the propagator system has lower

triangular and sparse dependency [75, 68, 76, 69], and is independent of the type

of noise involved. However, for nonlinear problems, the propagator system is fully

coupled [56, 73], and varies from one kind of noise to another. The Wick-Malliavin

approximation was proposed in [77] as a decoupling technique. Numerical simula-

tions of Wick-Malliavin approximation can be found in [102, 100].

In practice, a finite truncation of {uα(t,x), α ∈ J } is always necessary. For

K,N ≥ 0, define the truncated multi-index set

JN,K := {α ∈ J : |α| ≤ N, d(α) ≤ K}, #(JN,K) =

(
N +K

N

)
.

That is, JN,K contains multi-indices whose polynomial order is no more than N , and

number of random variables is no more than K. The size of JN,K grows exponentially

with respect to both N and K. Then we compute the truncated solution

uN,K(t,x) :=
∑

α∈JN,K

ûα(t,x)Φα,

where {ûα, α ∈ JN,K} satisfies some truncated propagator system. Notice that due

to aliasing error, ûα might not be the same as uα.
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This chapter consists of the following sections. In Section 5.1, we derive the

propagator systems for two model problems. We will take a linear parabolic SPDE

as the linear model problem, and stochastic Burgers equation as the nonlinear model

problem. In Section 5.2, we analyze the approximation error induced by the trun-

cation of index set, proving that for linear problems, the convergence rate of mean

square error is actually exponential with respect to N , and cubic with respect to K.

In Section 5.3, we carry out numerical experiments on linear and nonlinear SPDEs.

We will study numerical orders of convergence, and the error estimate in Section 5.2

is verified.

5.1 SPDE model problems

Example 5.1.1. Consider the following homogeneous linear parabolic SPDE:

∂u

∂t
(t,x) = Lu+Mu � Ṅ (t), (t,x) ∈ (0, T ]× Γ,

u(0,x) = u0(x), x ∈ Γ,

(5.1)

where

L =
d∑
i=1

d∑
j=1

aij(x)
∂2

∂xj∂xj
+

d∑
i=1

bi(x)
∂

∂xi
+ c(x), M =

d∑
i=1

αi(x)
∂

∂xi
+β(x). (5.2)

If {ξk}∞k=1 are i.i.d. standard Gaussian variables, according to Theorem 4.4, (5.1) is

equivalent to the Itô type SPDE

du(t,x) = Ludt+MudW (t), (5.3)
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and the Stratonovich type SPDE

du(t,x) = L̃udt+Mu ◦ dW (t), (5.4)

where L̃ = L− 1
2
MM. We assume that the coefficients in L andM are smooth and

bounded, L̃ is uniformly elliptic, and the initial condition u0(x) is deterministic and

bounded. These assumptions are sufficient for a unique square integrable solution

u ∈ L2([0, T ] × Γ × Ω) (see [76, 70]). As we will see later, the propagator system

is independent of the type of noise. Therefore these well-posedness requirements

remain the same in the distribution-free setting.

Recall the definition of the Skorokhod integral (4.6). We come up with the

propagator system by comparing the expansion coefficients on both sides of (5.1):

∂uα
∂t

(t,x) = Luα +
∑
εk≤α

Muα−εkmk(t), uα(0,x) = u0(x)1{α=ε0}. (5.5)

It is a system of linear parabolic deterministic PDEs, with a lower-triangular and

sparse structure, i.e., a multi-index of order n only talks to itself and multi-indices of

order n− 1. As a result, the system is not affected by the truncation of multi-index

set, and the truncated solution is

uN,K(t,x) =
∑

α∈JN,K

uα(t,x)Φα.

Parallelization is also possible as coefficients of the same order can be updated si-

multaneously. Moreover, the propagator system does not depend on the type of

randomness involved. It is solved once and for all, the computational overhead from

changes of noise is almost negligible.

From numerical perspective, we follow the method of lines principle to discretize
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(5.1) and (5.5). After some suitable spatial discretization with M degrees of freedom,

L andM turn into M×M difference matrices A and B, and (5.1) reduces to a linear

system of SODEs

u′(t) = Au(t) +Bu(t) � Ṅ (t), t ∈ (0, T ]

u(0) = u0,

(5.6)

where u(t) ∈ RM is the vector u(t,x) evaluated at those degrees of freedom. The

corresponding propagator system is

u′α(t) = Auα(t) +
∑
εk≤α

mk(t)Buα−εk(t), uα(0) = u01{α=ε0}, (5.7)

and the truncated solution of (5.7) is

uN,K(t) =
∑

α∈JN,K

uα(t)Φα.

Example 5.1.2. Consider the one-dimensional stochastic Burgers equation with

additive noise and periodic boundary condition [56]:

∂u

∂t
(t, x) +

1

2

∂u2

∂x
= µ

∂2u

∂x2
+ σ(x)Ṅ (t), (t, x) ∈ (0, T ]× Γ,

u(0, x) = u0(x), x ∈ Γ,

(5.8)

where µ is a positive constant and σ(x) is a periodic forcing function. The corre-

sponding Itô type SPDE in the case of i.i.d standard Gaussian noise is

du(t, x) =
(
µ
∂2u

∂x2
− 1

2

∂u2

∂x

)
dt+ σ(x)dW (t). (5.9)

By assuming that u0(x) is deterministic and σ, u0 ∈ L2(Γ), we make sure that (5.8)

has a unique square integrable solution (see [22]). However, such result does not
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generalize to the distribution-free setting as the propagator system varies for different

driving noises.

In order to figure out the propagator system, we have to expand u2 into gPC

series:

u2 =
∑
α∈J

(∑
β∈J

∑
p∈J

B(α, β, p)uβup

)
Φα, (5.10)

where

B(α, β, p) =
E[ΦαΦβΦp]

E[Φ2
α]

=
E[ΦαΦβΦp]

α!
(5.11)

are interaction coefficients. Hence the propagator equations are

∂uα
∂t

(t, x) +
1

2

∑
β∈J

∑
p∈J

B(α, β, p)
∂(uβup)

∂x
= µ

∂2uα
∂x2

+ σ(x)
∞∑
k=1

1{α=εk}mk(t),

uα(0, x) = u0(x)1{α=ε0}.

(5.12)

It is a fully coupled system of nonlinear PDEs, whose interaction coefficients

B(α, β, p) depend on the type of driving noise. Compared with the linear case,

(5.12) lacks sparsity, and must be recalculated each time we change distribution.

Both features make the nonlinear problem much more expensive to simulate. For a

truncated multi-index set JN,K , we need to solve the truncated propagator system

∂ûα
∂t

(t, x) +
1

2

∑
β∈JN,K

∑
p∈JN,K

B(α, β, p)
∂(ûβûp)

∂x
= µ

∂2ûα
∂x2

+ σ(x)
∞∑
k=1

1{α=εk}mk(t).

(5.13)

Notice that ûα is not uα, because the evolution of uα depends on multi-indices that

do not belong to JN,K . In Appendix D we will present the generic procedure to

calculate interaction coefficients, as well as explicit formulas for some special types

of distribution.

Remark 5.1. In principle, the propagator system can be determined explicitly as
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long as we only have polynomial nonlinearity. We expand power functions as tensor

products in a way that is similar to (5.10). The expansion of nonpolynomial functions

is much more challenging. Several methods are presented in [24] to perform general

function evaluations on polynomial chaos series.

5.2 Error estimate

For the sake of simplicity, we will focus on the truncation error analysis of the linear

SODE system (5.6), and its propagator system (5.7):

u′α(t) = Auα(t) +
∑
εk≤α

mk(t)Buα−εk(t), t ∈ [0, T ]

uα(0) = u01{α=ε0},

where u ∈ (L2([0, T ] × Ω))M , A and B are constant M ×M matrices. The reason

for such simplification is twofold. Since (5.6) is the spatial discretization of (5.1), it

is the equation we are actually dealing with in numerical simulations. Besides, all

arguments in this section can be generalized to (5.1) with more technical considera-

tions. We simply replace the Euclidean norm with appropriate Sobolev norms and

impose regularity assumptions on L and M (see [118]).

Theorem 5.1. Suppose that {mk}∞k=1 is the trigonometric basis

m1(t) =

√
1

T
, mk(t) =

√
2

T
cos
((k − 1)πt

T

)
, k ≥ 2. (5.14)

Let λA := ‖A‖2 and λB := ‖B‖2 be the matrix norms. Then the mean square error
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of the truncated solution uN,K(T ) is bounded by the estimate

E[|uN,K(T )−u(T )|2] ≤ e(2λA+λ2
B)T
((λ2

BT )N+1

(N + 1)!
+

16λ2
Aλ

2
BT

3

π4(K − 1
2
)3

(5+3λ2
AT

2+6λ4
BT

2)
)
|u0|2.

(5.15)

Remark 5.2. From (5.15), we conclude that the mean square truncation error con-

verges at an exponential rate with respect to N , and at a cubic rate with respect to

K. We improve the error estimate in [68] where the authors only proved linear rate

with respect to K. Cubic convergence result can also be found in [56] for a special

example of stochastic Burgers equation. However, the approximation error increases

exponentially in time. Long time simulation might be impractical. At least more

expansion coefficients are required to compensate error growth.

The proof is primarily along the lines in [68]. We first prove a lemma to extract

the analytical solution of (5.7).

Lemma 5.1. Suppose {uα(t), α ∈ J } solves the propagator system (5.7). For each

n ≥ 0 and α ∈ J with |α| = n, the explicit formula of uα(t) is

uα(t) =
1

α!

∫ (t,n)

Fn(t, t(n))Eα(t(n))dt(n), (5.16)

where Eα(t(n)) is from (4.7) and

Fn(t, t(n)) := e(t−tn)ABe(tn−tn−1)AB · · ·Bet1Au0,

∫ (t,n)

g(t(n))dt(n) :=

∫ t

0

∫ tn

0

· · ·
∫ t2

0

g(t(n))dt1 · · · dtn−1dtn.

Proof. We prove by induction on n. If n = 0, uε0(t) = etAu0. (5.16) is obviously

correct. Now for n ≥ 1 and |α| = n, we assume that (5.16) holds for all β ∈ J with
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|β| < n. By Duhamel’s principle,

uα(t) =

∫ t

0

e(t−s)A
(∑
εk≤α

mk(s)Buα−εk(s)
)
ds

=
1

α!

∫ t

0

e(t−s)A
(∑
εk≤α

αkmk(s)B

∫ (s,n−1)

Fn−1(s, t(n−1))Eα−εk(t
(n−1))dt(n−1)

)
ds

=
1

α!

∫ (t,n)

Fn(t, t(n))
(∑
εk≤α

αkmk(tn)Eα−εk(t
(n−1))

)
dt(n)

=
1

α!

∫ (t,n)

Fn(t, t(n))Eα(t(n))dt(n),

where we use the identity

Eα(t(n)) =
∑
εk≤α

αkmk(tn)Eα−εk(t
(n−1)).

Hence (5.16) is satisfied by any α.

Proof of Theorem 5.1. According to Parseval’s identity, we decompose the trunca-

tion error as

E[|uN,K(T )− u(T )|2] =
∞∑

n=N+1

∑
|α|=n

α!|uα(T )|2 +
∞∑

k=K+1

N∑
n=1

∑
|α|=n
d(α)=k

α!|uα(T )|2.

We only need to show the two inequalities below:

∞∑
n=N+1

∑
|α|=n

α!|uα(T )|2 ≤ e(2λA+λ2
B)T (λ2

BT )N+1

(N + 1)!
|u0|2, (5.17)

∞∑
k=K+1

N∑
n=1

∑
|α|=n
d(α)=k

α!|uα(T )|2 ≤ e(2λA+λ2
B)T 16λ2

Aλ
2
BT

3

π4(K − 1
2
)3

(5 + 3λ2
AT

2 + 6λ4
BT

2)|u0|2.

(5.18)

As for (5.17), setting F̃n(T, ·) to be the standard symmetrization of Fn(T, ·) (Fn is
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extended with zero value outside the simplex {t(n) : 0 ≤ t1 ≤ · · · ≤ tn ≤ T}), we

have

uα(T ) =
1

α!

∫ (T,n)

Fn(T, t(n))Eα(t(n))dt(n) =
1

α!

∫
[0,T ]n

F̃n(T, t(n))Eα(t(n))dt(n).

Since {Eα, |α| = n} is an orthogonal basis of H̃n,

∑
|α|=n

α!|uα(T )|2 =
∑
|α|=n

1

α!

∣∣∣ ∫
[0,T ]n

F̃n(T, t(n))Eα(t(n))dt(n)
∣∣∣2

= n!‖F̃n(T, ·)‖2
Hn = (n!)2

∫ (T,n)

|F̃n(T, t(n))|2dt(n)

=

∫ (T,n)

|Fn(T, t(n))|2dt(n).

(5.19)

For any given t(n),

|Fn(T, t(n))| ≤ eλA(T−tn)λBe
λA(tn−tn−1) · · ·λBeλAt1|u0| = eλATλnB|u0|.

Plugging this into (5.19) yields

∞∑
n=N+1

∑
|α|=n

α!|uα(T )|2 ≤
( ∞∑
n=N+1

e2λAT (λ2
BT )n

n!

)
|u0|2 ≤ e(2λA+λ2

B)T (λ2
BT )N+1

(N + 1)!
|u0|2,

which exactly recovers (5.17). Here we use the mean-value form of the remainder

term of Taylor’s expansion:

∞∑
n=N+1

xn

n!
= eθx

xN+1

(N + 1)!
for some θ ∈ [0, 1].



141

Proof of (5.18) is more involved. For any α with |α| = n and d(α) = k,

∫ (T,n)

Fn(T, t(n))Eα(t(n))dt(n)

=
n∑
j=1

∫ (T,n−1) (∫ tj+1

tj−1

Fn(T, t(n))mk(tj)dtj

)
Eα−εk(t

(n\j))dt(n\j)

=
n∑
j=1

∫ (T,n−1) (∫ tj

tj−1

Fn(T, t(n\j,s))mk(s)ds
)
Eα−εk(t

(n−1))dt(n−1),

(5.20)

where t(n\j) is the short hand notation of (t1, · · · , tj−1, tj+1, · · · , tn) and t(n\j,s) is the

short hand notation of (t1, · · · , tj−1, s, tj, · · · , tn−1). We also adopt the convention

t0 = 0, tn+1 = T . Define

M1
k (t) :=

∫ t

0

mk(s)ds =

√
2T

(k − 1)π
sin
((k − 1)πt

T

)
,

M2
k (t) :=

∫ t

0

M1
k (s)ds =

√
2T 3

(k − 1)2π2

(
1− cos

((k − 1)πt

T

))
,

and

Fj
n(T, t(n)) :=

∂Fn

∂tj
(T, t(n))

=e(T−tn)AB · · · e(tj+1−tj)A(BA− AB)e(tj−tj−1)A · · ·Bet1Au0,

Fjj
n (T, t(n)) =

∂2Fn

∂t2j
(T, t(n))

=e(T−tn)AB · · · e(tj+1−tj)A(A2B +BA2 − 2ABA)e(tj−tj−1)A · · ·Bet1Au0.

The following estimates are right at hand:

|Fj
n(T, t(n\j,s))| ≤ 2eλATλAλ

n
B|u0|, |Fjj

n (T, t(n\j,s))| ≤ 4eλATλ2
Aλ

n
B|u0|, (5.21)

M1
k (T ) = 0 , |M2

k (T )| ≤
√

8T 3

(k − 1)2π2
,

∫ T

0

(M2
k (t))2dt =

3T 4

(k − 1)4π4
. (5.22)

Then we perform integration-by-parts twice on the inner integral of (5.20) and
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obtain

∫ (T,n)

Fn(T, t(n))Eα(t(n))dt(n) :=

∫ (T,n−1)

Gn,k(T, t
(n−1))Eα−εk(t

(n−1))dt(n−1).

where

Gn,k(T, t
(n−1)) := G1

n,k(T, t
(n−1)) + G2

n,k(T, t
(n−1)) + G3

n,k(T, t
(n−1)),

and

G1
n,k(T, t

(n−1)) =
n∑
j=1

(
Fn(T, t(n\j,s))M1

k (s)
∣∣∣s=tj
s=tj−1

)
,

G2
n,k(T, t

(n−1)) = −
n∑
j=1

(
Fj
n(T, t(n\j,s))M2

k (s)
∣∣∣s=tj
s=tj−1

)
,

G3
n,k(T, t

(n−1)) =
n∑
j=1

(∫ tj

tj−1

Fjj
n (T, t(n\j,s))M2

k (s)ds
)
.

Since M1
k (T ) = 0 and Fn(T, t(n\j,s); s = tj) = Fn(T, t(n\(j+1),s); s = tj) for 1 ≤ j ≤

n−1, G1
n,k(T, t

(n−1)) = 0. By (5.21) and (5.22), the other two terms are bounded by

|G2
n,k(T, t

(n−1))| ≤ 2eλATλAλ
n
B|u0|

(
2
n−1∑
j=1

|M2
k (tj)|+ |M2

k (T )|
)

≤ 4eλATλAλ
n
B|u0|

( n−1∑
j=1

|M2
k (tj)|+

√
2T 3

(k − 1)2π2

)
,

|G3
n,k(T, t

(n−1))| ≤ 4eλATλ2
Aλ

n
B|u0|

(∫ T

0

|M2
k (t)|dt

)
≤ 4eλATλ2

Aλ
n
B|u0|

√
T

∫ T

0

(M2
k (t))2dt

= 4eλATλ2
Aλ

n
B|u0|

√
3T 5

(k − 1)2π2
.
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Similar to the idea in (5.19),

∑
|α|=n,d(α)=k

α!|uα(T )|2 =
∑

|α|=n,d(α)=k

1

α!

∣∣∣ ∫ (T,n)

Fn(T, t(n))Eα(t(n))dt(n)
∣∣∣2

=
∑

|α|=n,d(α)=k

1

α!

∣∣∣ ∫ (T,n−1)

Gn,k(T, t
(n−1))Eα−εk(t

(n−1))dt(n−1)
∣∣∣2

≤
∑
|β|=n−1

1

β!

∣∣∣ ∫ (T,n−1)

Gn,k(T, t
(n−1))Eβ(t(n−1))dt(n−1)

∣∣∣2
=

∫ (T,n−1)

|Gn,k(T, t
(n−1))|2dt(n−1) ≤

∫ (T,n−1) (
|G2

n,k(T, t
(n−1))|+ |G3

n,k(T, t
(n−1))|

)2

dt(n−1)

≤16e2λATλ2
Aλ

2n
B

∫ (T,n−1) ( n−1∑
j=1

|M2
k (tj)|+

√
2T 3

(k − 1)2π2
+ λA

√
3T 5

(k − 1)2π2

)2

dt(n−1)

≤48e2λATλ2
Aλ

2n
B

∫ (T,n−1) (
(n− 1)

( n−1∑
j=1

(M2
k (tj))

2
)

+
2T 3

(k − 1)4π4
+ λ2

A

3T 5

(k − 1)4π4

)
dt(n−1).

The remaining part of proof is clear. Since
∑n−1

j=1 (M2
k (tj))

2 is a symmetric function,

∫ (T,n−1) ( n−1∑
j=1

(M2
k (tj))

2
)
dt(n−1) =

1

(n− 1)!

∫
[0,T ]n−1

( n−1∑
j=1

(M2
k (tj))

2
)
dt(n−1)

=
n− 1

(n− 1)!

3T n+2

(k − 1)4π4
.

Therefore

∑
|α|=n,d(α)=k

α!|uα(T )|2 ≤ 48e2λATλ2
Aλ

2n
B

(n− 1)!(k − 1)4π4

(
3(n− 1)2T n+2 + 2T n+2 + 3λ2

AT
n+4
)
.
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Summing over n and k yields:

∞∑
k=K+1

N∑
n=1

∑
|α|=n,d(α)=k

α!|uα(T )|2

≤e2λAT
48λ2

A

π4

( ∞∑
k=K+1

1

(k − 1)4

)( N∑
n=1

λ2n
B (3(n− 1)2T n+2 + 2T n+2 + 3λ2

AT
n+4)

(n− 1)!

)
|u0|2

≤e(2λA+λ2
B)T 16λ2

Aλ
2
BT

3

π4(K − 1
2
)3

(5 + 3λ2
AT

2 + 6λ4
BT

2)|u0|2,

where we use the inequalities

∞∑
k=K+1

1

(k − 1)4
≤

∞∑
k=K

∫ k+ 1
2

k− 1
2

1

x4
dx =

∫ ∞
K− 1

2

1

x4
dx =

1

3(K − 1
2
)3
,

N∑
n=1

xn−1

(n− 1)!
≤

∞∑
n=0

xn

n!
= ex,

N∑
n=1

(n− 1)2xn−1

(n− 1)!
= x+

N−3∑
n=0

(n+ 2)xn+2

(n+ 1)!
≤ x+

∞∑
n=0

2xn+2

n!
≤ ex(1 + 2x2).

We have finished the proofs of (5.17) and (5.18). Then (5.15) immediately follows.

Remark 5.3. The proof of (5.17) is independent of the choice of {mk}∞k=1, the

convergence rate with respect to N is always exponential. The proof of (5.18) relies

on the trigonometric basis assumption. The crucial property is (5.22), which enables

cubic convergence. In fact, the proof will work for any orthonormal basis such that

M1
k (T ) = 0, M2

k (T ) = O(k−2), ‖M2
k‖H = O(k−2), ∀k ≥ 2.

For example, consider the scaled Legendre basis

mk(t) =

√
2k − 1

T
Lk−1

(2t

T
− 1
)
. (5.23)
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We are able to show that

M1
k (t) =

1

2

√
T

2k − 1

(
Lk

(2t

T
− 1
)
− Lk−2

(2t

T
− 1
))
,

M2
k (t) =

1

4(2k + 1)

√
T 3

2k − 1

(
Lk+1

(2t

T
− 1
)
− Lk−1

(2t

T
− 1
))

− 1

4(2k − 3)

√
T 3

2k − 1

(
Lk−1

(2t

T
− 1
)
− Lk−3

(2t

T
− 1
))
,

where Lk is taken to be 0 for negative k. Then M1
k (T ) = 0 for any k ≥ 2 and

M2
k (T ) = 0 for any k ≥ 3. We also have ‖M2

k‖H = O(k−2). Therefore for Legendre

basis, the convergence rate with respect to K is still cubic.

Remark 5.4. If A and B commute such that AB = BA, then

Fn(T, t(n)) = e(T−tn)Ae(tn−tn−1)A · · · et1ABnu0 = eTABnu0

is a constant vector that does not depend on t(n). Consequently, for any |α| = n,

uα(T ) =
eTABnu0

α!

∫ (T,n)

Eα(t(n))dt(n) =
eTABnu0

n!α!

∫
[0,T ]n

Eα(t(n))dt(n)

=
eTABnu0

α!

∫
[0,T ]n

mi1α
(t1) · · ·minα(tn)dt(n) =

eTABnu0

α!
M1

i1α
(T ) · · ·M1

inα
(T ).

For trigonometric basis (and Legendre basis), M1
k (T ) = 0 for any k ≥ 2. That is,

uα(T ) = 0 whenever d(α) = inα ≥ 2. It is enough to fix K = 1 and only consider the

truncation on N . The resulting error estimate is simply

E[|uN,1(T )− u(T )|2] ≤ e(2λA+λ2
B)T (λ2

BT )N+1

(N + 1)!
|u0|2. (5.24)
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5.3 Numerical experiments

We first introduce some post-processing techniques for the numerical solution written

as polynomial chaos expansion:

uN,K(t,x) =
∑

α∈JN,K

ûα(t,x)Φα.

Moments can be computed directly, the first and second moments are

E[uN,K ] = uε0 , E[u2
N,K ] =

∑
α∈JN,K

α!û2
α,

and The third and fourth moments are given by

E[u3
N,K ] =

∑
α∈JN,K

α!ûα

( ∑
β∈JN,K

∑
p∈JN,K

B(α, β, p)ûβûp

)
,

E[u4
N,K ] =

∑
α∈J2N,K

α!(
( ∑
β∈JN,K

∑
p∈JN,K

B(α, β, p)ûβûp

)2

.

In the computation of fourth moment, we use the fact that the expansion order of

u2
N,K(t, x) is at most 2N . For linear problems, the first two moments remain the

same for all kinds of noises, while higher moments always depend on the type of ran-

domness (due to the emergence of B(α, β, p)). Other statistics can be computed via

random sampling. We simply generate L i.i.d. realizations of (ξ1, · · · , ξK), denoted

by {ξ(l)
1 , · · · , ξ(l)

K } for each 1 ≤ l ≤ L. The sample points of uN,K(t,x) are:

u
(l)
N,K :=

∑
J∈JN,K

ûαΦα(ξ
(l)
1 , · · · , ξ(l)

K ).

Then for any function f , the expectation E[f(uN,K)] is approximated by a sample

mean. We can also plot the normalized histogram of these sample points to visualize
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empirical distribution.

In this section, we always assume that {ξk}∞k=1 are i.i.d. random variables. To be

more specific, we will test three types of randomness: Gaussian noise with Hermite

chaos (Example 4.2.1), uniform noise with Legendre chaos (Example 4.2.2), and

Beta(1
2
, 1

2
) noise with Chebyshev chaos. In the last situation, {ξk}∞k=1 are supported

on [−
√

2,
√

2] with probability density function

ρ(ξ) =

√
2− ξ2

1

2π
, ξ ∈ [−

√
2,
√

2].

The univariate gPC basis functions are scaled Chebyshev polynomials {Tn(x)}∞n=0:

ϕ0(ξ) = 1, ϕn(ξ) =
√

2n!Tn

( ξ√
2

)
, n ≥ 1. (5.25)

Now we proceed to solve distribution-free linear and nonlinear SPDEs numeri-

cally. Propagator systems are integrated in time with a fourth order Runge-Kutta

method. Time step size is small enough so that error from temporal discretization is

negligible. Here {mk(t)}∞k=1 is taken to be the trigonometric basis (5.14). The results

of the scaled Legendre basis (5.23) are almost indistinguishable from trigonometric

basis and will not be reported. We will conduct comparisons with reference solu-

tions, and among different types of driving noise. Several techniques are adopted to

compute reference solutions.

1. Moment equations: the ODE of first few moments, available to linear Itô type

SPDEs.

2. Fokker-Planck equation: the PDE of probability density function, available to

low-dimensional Itô type SODEs.

3. Monte Carlo simulation: the most commonly used and least restrictive ap-
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proach, available to additive noise and/or Itô type SPDEs. The main bottle-

neck is high computational cost and low accuracy.

The first two methods are free from sampling error, and will be selected whenever

possible. Monte Carlo simulation serves as a backup option.

Example 5.3.1 (Linear SODE). Suppose that u = u(t) ∈ L2([0, T ] × Ω) satisfies

the following linear SODE

u′(t) = u(t) + 1 + u(t) � Ṅ (t), t ∈ [0, T ],

u(0) = 1.

(5.26)

For Gaussian noise, it is equivalent to the Itô type SODE

du(t) = (u(t) + 1)dt+ u(t)dW (t). (5.27)

By Itô’s formula, we are able to derive its moment equations

dE[u(t)]

dt
= E[u(t)] + 1,

dE[u2(t)]

dt
= 3E[u2(t)] + 2E[u(t)],

dE[u3(t)]

dt
= 6E[u3(t)] + 3E[u2(t)],

dE[u4(t)]

dt
= 10E[u4(t)] + 6E[u3(t)].

(5.28)

The analytical solution to (5.28) is

E[u(t)] = 2et − 1,

E[u2(t)] =
7

3
e3t − 2et +

2

3
,

E[u3(t)] =
37

15
e6t − 7

3
e3t +

6

5
et − 1

3
,

E[u4(t)] =
38

15
e10t − 37

15
e6t +

4

3
e3t − 8

15
et +

2

15
.

(5.29)
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We can also find out the probability density function of u(t), denoted by ρ(u, t). The

governing PDE of ρ(t, u), i.e. Fokker-Planck equation is:

∂tρ(t, u) = −∂u((u+ 1)ρ) + ∂2
u

(u2

2
ρ
)
, (t, u) ∈ (0, T ]× (0,∞),

ρ(0, u) = δ(u− 1), u ∈ (0,∞),

(5.30)

where δ is the Dirac delta function. Substituting v = log u, we simplify (5.30) and

get

∂tρ(t, v) =
(1

2
− e−v

)
∂vρ+

1

2
∂2
vρ, ρ(0, v) = δ(v). (5.31)

(5.31) is a standard convection-diffusion equation, which can be solved by the LDG

method. The computational domain is [−7, 7] with zero boundary condition, and

divided into 501 quadratic elements. For uniform and Beta noise, we do not have

derive moment equations or Fokker-Planck equation. The first and second moments

will be the same, as a result of linearity.

We evolve the propagator ODE system up to end time T = 1 with time step size

δt = 10−4. In order to examine the convergence rates of mean square truncation

error, ideally we should compute E[|uN,K − u∞,K |2] to single out the error induced

by N , and E[|uN,K − uN,∞|2] to single out the error induced by K. In practice we

use u20,K to approximate u∞,K , and uN,50 to approximate uN,∞. Figure 5.1 contains

the semi-log plot of E[|uN,K(1) − u20,K(1)|2] versus N with K = 1, and the log-log

plot of E[|uN,K(1) − uN,50(1)|2] versus K with N = 1, 2, 3. The numerical rate of

convergence with respect to N is evidently exponential. The plot with respect to K

has a zigzag shape (especially for N = 1), but the average slope is close to 3. The

cubic convergence rate is more clearly seen in Table 5.1, where we only compare even

values of K to average out the zig-zag profile.

Next we compute moments of the truncated solution. Table 5.2 lists the first
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Figure 5.1: Example 5.3.1: Plots of mean square truncation error with respect to N
and K. Left panel shows the semi-log plot of E[|uN,1(1) − u20,1(1)|2] versus N for
N = 1, · · · , 10. Right panel shows the log-log plot of E[|uN,K(1)− uN,50(1)|2] versus
K for N = 1, 2, 3 and K = 1, · · · , 12.

Table 5.1: Example 5.3.1: Values and numerical convergence orders of eN,K :=
E[|uN,K(1) − uN,50(1)|2] for N = 1, 2, 3 and K = 2, 4, · · · , 12. The orders are given
by log(

eN,K
eN,K+2

)/ log(K+2
K

).

K
N = 1 N = 2 N = 3

error order error order error order
2 7.997e-3 - 2.080e-2 - 2.677e-2 -
4 9.659e-4 3.049 2.201e-3 3.241 2.831e-3 3.241
6 2.816e-4 3.040 6.102e-4 3.164 7.799e-4 3.180
8 1.173e-4 3.044 2.480e-4 3.129 3.158e-4 3.143
10 5.939e-5 3.050 1.238e-4 3.114 1.572e-4 3.126
12 3.398e-5 3.062 7.018e-5 3.113 8.895e-5 3.123

four central moments of uN,K(1) with all three types of randomness, by taking N =

K = 4, N = K = 6 and N = K = 8. For Gaussian noise, moments of u(1) are

also included according to (5.2). Two conclusions can be drawn from the table.

Comparing the central moments of uN,K(1) and u(1), we see that the variance can

be approximated well with relatively few chaos expansion terms, but more terms

are needed to resolve higher moments. Comparing among types of driving noise, we

notice the large discrepancy in third and fourth moments, despite the fact that they
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share the same mean and variance. It is probably related to the kurtosis of different

distributions. The fourth moment of ξ1 is 3 for standard Gaussian distribution, 9
5

for

uniform distribution, and 3
2

for Beta(1
2
, 1

2
) distribution. Higher kurtosis in {ξk}∞k=1

leads to higher kurtosis in uN,K .

Table 5.2: Example 5.3.1: Comparison of central moments of uN,K(1) and u(1). We
take N = K = 4, N = K = 6 and N = K = 8. Higher moments of u(1) are only
available to Gaussian noise.

Type of noise Type of moment u(1) u4,4(1) u6,6(1) u8,8(1)
Gaussian Variance 22.413 22.313 22.410 22.413

Third central moment 565.548 487.838 558.223 565.138
Fourth central moment 41759.97 22914.36 37479.48 41233.50

Uniform Variance 22.413 22.313 22.410 22.413
Third central moment - 208.415 220.604 221.203
Fourth central moment - 3080.52 3446.20 3474.01

Beta Variance 22.413 22.313 22.410 22.413
Third central moment - 150.739 159.566 160.011
Fourth central moment - 1789.49 1957.34 1970.63

Empirical distribution is a more intuitive way to describe random variables. Fig-

ure 5.2 demonstrates the empirical probability densities of u4,4(1), u6,6(1) and u8,8(1)

for all three types of randomness. All densities are estimated by normalized his-

tograms with 103 bins out of 107 i.i.d samples of uN,K(1). For Gaussian noise, the

numerical solution of Fokker-Planck equation at t = 1 is also displayed in Figure 5.2.

The empirical densities of u4,4(1) and u6,6(1) slightly deviates from the Fokker-Planck

solution, and the empirical density of u8,8(1) agrees with the Fokker-Planck solution

very well. As for the comparison among three types of noise, their density patterns

are qualitatively different. The distributions with Gaussian noise spread out and

have long tails. The density profiles with Beta(1
2
, 1

2
) noise are mostly constrained

in a narrow region, and the density profiles with uniform noise lie somewhere in

between. This also explains the difference of higher moments in Table 5.2.
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Figure 5.2: Example 5.3.1: Normalized histograms of uN,K(1) out of 107 i.i.d samples.
We take N = K = 4, N = K = 6 and N = K = 8. For Gaussian distribution,
the black dashed line represents the numerical solution of Fokker-Planck equation
(5.31). Values larger than 20 are discarded. Number of bins is 103.

In summary, in this example we study a very simple linear SODE so that reference

solutions of moments and density function can be acquired without much effort.

By linearity, we only need to solve the propagator once and save the expansion

coefficients for post-processing. The mean square truncation error results in Figure

5.1 and Table 5.1 indicate exponential convergence with respect to N and cubic

convergence with respect toK, as predicted by Theorem 5.1. Table 5.2 and Figure 5.2

highlight the contrast of higher moments and empirical distributions with different
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noises. We also observe that although the mean square error converges rapidly, high

order chaos expansion terms are beneficial to the approximation of higher moments

and distribution.

Example 5.3.2 (Linear parabolic PDE). We solve the linear parabolic PDE in

Example 5.1.1. Consider the one-dimensional space region Γ = [0, 2π] with periodic

boundary condition. The initial data is u0(x) = cosx. Differential operators L and

M are set to be [117, 118]

L = 0.145
∂2

∂x2
+ 0.1 sinx

∂

∂x
, Mu = 0.5

∂

∂x
.

Fourier collocation method with M = 32 collocation points is used for spatial

discretization. Let {xi}Mi=1 be the set of equidistant collocation points such that

xi = 2π(i−1)
M

. Then u(t, ·) is identified by the length-M vector u(t). We only need to

work on the linear SODE system (5.6). For Gaussian noise, it is possible to obtain

moment equations of (5.6). Direct application of Itô’s formula yields

dE[uiuj]

dt
=

M∑
l=1

(AilE[ujul] + AjlE[uiul]) +
M∑
l=1

M∑
r=1

BilBjrE[ulur], 1 ≤ i, j ≤M.

(5.32)

It is a M2-dimensional ODE system describing the evolution of covariance matrix.

Higher moment equations are written in a similar fashion, but they are computation-

ally formidable in that for d-th moment, we have to tackle the full tensor product

system with Md dimensions. Solving Fokker-Planck equation is also not feasible, as

it depends on M spatial variables. We will use Monte Carlo simulation to approxi-

mate higher moments and density function. Let up be the sample of u at p-th time

step. The update rule of the second order weak scheme is (see Chapter 2 of [80])

up+1 = up + δtAup +
δt2

2
A2up +

√
δtζpBup +

δt

2
(ζ2
p − 1)B2up +

√
δt3

2
ζp(AB+BA)up,
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where ζp are i.i.d. standard Gaussian random variables.

The propagator system is run up to T = 5 with Runge-Kutta time step size

δt = 10−3. Figure 5.3 depicts the mean square truncation error with respect to N

and K. Same as in the previous example, we compute E[‖uN,K(5, ·)− u20,K(5, ·)‖2
l2 ]

as the proxy of error induced by N , and E[‖uN,K(5, ·) − uN,50(5, ·)‖2
l2 ] as the proxy

of error induced by K, where the discrete L2 norm for v ∈ H is defined by

‖v‖2
l2 :=

2π

M

M∑
i=1

v(xi)
2.

Once again, the N -version convergence shows exponential rate, and the K-version

convergence shows cubic rate.
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Figure 5.3: Example 5.3.2: Plots of mean square truncation error in discrete l2 norm
with respect to N and K. Left panel shows the semi-log plot of E[‖uN,1(5, ·) −
u20,1(5, ·)‖2

l2 ] versus N for N = 1, · · · , 10. Right panel shows the log-log plot of
E[‖uN,K(5, ·)− uN,50(5, ·)‖2

l2 ] versus K for N = 1, 2, 3 and K = 1, · · · , 12.

The first four central moments of uN,K(5, ·) with all three noises are plotted in

Figure 5.4. We consider N = 4, 8 and K = 4. Variance of u(5, ·) is also exhibited as

reference by solving the moment equation (5.32) through fourth order Runge-Kutta
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method with time step size δt = 10−3. For Gaussian noise, third and fourth central

moments of the Monte Carlo solution with 106 sample paths and time step size

δt = 10−3 are also shown in Figure 5.4. We observe that both u4,4 and u8,4 predict

the variance sufficiently well, but only u8,4 succeeds in resolving higher moments.

As for the comparison among three types of noise, their third central moments have

different structures. Fourth central moments look similar in shape but different in

magnitude.
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Figure 5.4: Example 5.3.2: Central moments of uK,N(5, ·). We take N = 4, 8 and
K = 4. Black dashed lines are reference solutions. Variance is computed via moment
equation (5.32) (for all types of noise), and higher moments are approximated by
Monte Carlo method with 106 samples (only for Gaussian noise).



156

Empirical distributions at the second collocation point x2 are illustrated in Figure

5.5. For Gaussian noise, we plot normalized histograms of u4,4(5, x2) and u8,4(5, x2)

out of 107 samples in the left panel, as well as the histogram of 106 Monte Carlo

samples for reference. Number of bins is 103. We underline that the distribution of

u(5, x2) is supported in [−1, 1], as a result of averaging over characteristic lines [79].

The empirical distribution of Monte Carlo sampling is indeed inside [−1, 1] and highly

rightly skewed. Almost all samples of u4,4(5, x2) and u8,4(5, x2) fall into [−1, 1] as

well. We discard the few outlier samples in the figure. The empirical density function

of u4,4 underestimates the position of right peak, and the empirical density function

u8,4 is almost on top of the reference solution. For uniform noise and Beta(1
2
, 1

2
)

noise, we plot the empirical density functions of u10,4(5, x2) and u12,4(5, x2) in the

right panel. The profiles of u10,4 and u12,4 nearly coincide with each other, which

suggests that we achieve reasonable approximations of the true density functions.

These density patterns look dramatically different from the Gaussian noise case,

in that they are neither supported in [−1, 1] nor rightly skewed. Such distinction

is consistent with Figure 5.4, where the skewness (third central moment) at x2 is

negative for Gaussian noise, and positive for other two noises.

In this example, we analyze a one-dimensional linear parabolic SPDE with rel-

atively long evolution time. Here solving moment equations is only practical for

the second moment. We resort to Monte Carlo simulation to produce other refer-

ence solutions. Our observations are roughly parallel to the previous example. The

truncation error of the second moment converges at rates predicted by Theorem 5.1.

Higher moments and empirical distributions are more difficult to characterize, and

highly depend on the type of underlying randomness.

Example 5.3.3 (Passive scalar equation). We move on to two-dimensional linear

transport type SPDE. Consider the following distribution-free passive scalar equa-
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Figure 5.5: Example 5.3.2: Normalized histograms of uN,K(5, x2) out of 107 i.i.d
samples. In the left panel, we take N = 4, 8 and K = 4. Values outside [−1, 1] are
discarded, and the black dashed line represents the normalized histogram of Monte
Carlo simulation with 106 samples. In the right panel, we take N = 10, 12 and
K = 4. Number of bins is 103.

tion, driven by two independent noises Ṅ1(t) and Ṅ2(t), and equipped with periodic

boundary condition on Γ = [0, 2π]2.

∂u

∂t
(t, x, y) =

1

2
(M2

1 +M2
2)u+M1u � Ṅ1(t) +M2u � Ṅ2(t),

u(0, x, y) = sin(2x) sin(y),

(5.33)

where

M1 = cos(x+ y)
( ∂
∂x
− ∂

∂y

)
, M2 = sin(x+ y)

( ∂
∂x
− ∂

∂y

)
.

For Gaussian noise, (5.33) reduces to the passive scalar equation in Stratonovich

version [71, 116].

du(t, x, y) =M1u ◦ dW1(t) +M2u ◦ dW2(t). (5.34)

Since there are two driving noises, we need to introduce the Cartesian product of
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multi-index sets:

J 2 := {α = (α1, α2) : α1, α2 ∈ J }, J 2
N,K := {α = (α1, α2) : α1, α2 ∈ JN,K}.

The polynomial chaos basis functions are

Φα :=
∞∏
k=1

ϕα1
k
(ξ1
k)
∞∏
k=1

ϕα2
k
(ξ2
k).

Under the extended nomenclature, the gPC expansion and the truncated solution

are still defined as

u =
∑
α∈J 2

uαΦα, uN,K :=
∑

α∈J 2
N,K

uαΦα.

It is easy to verify that M1 and M2 commute with each other, so that they also

commute with 1
2
(M2

1 +M2
2). By Remark 5.4, K = 1 is enough for the truncation,

and we can only adjust the value of N . In fact, for Gaussian noise, we are able to

work out the analytical solution based on tracing back characteristic lines [79] of

(5.34). u(T, x, y) has the following representation

u(T, x, y) = u0(Xx,y(0), Yx,y(0)), (5.35)

where Xx,y(t) and Yx,y(t) satisfy the system of backward (characteristic) SODEs

dXx,y(t) = cos(Xx,y + Yx,y)
←−−
dW1(t) + sin(Xx,y + Yx,y)

←−−
dW2(t), t ∈ [0, T ]

dYx,y(t) = − cos(Xx,y + Yx,y)
←−−
dW1(t)− sin(Xx,y + Yx,y)

←−−
dW2(t), t ∈ [0, T ]

Xx,y(T ) = x, Yx,y(T ) = y.

(5.36)

The definition of backward Itô integral
←−−
dW (t) can also be found in [79]. Summing
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the two equations, we realize that Xx,y(t) + Yx,y(t) is constant over time. Therefore

Xx,y(0) = x− cos(x+ y)W1(T )− sin(x+ y)W2(T ),

Yx,y(0) = y + cos(x+ y)W1(T ) + sin(x+ y)W2(T ).

Then the analytical solution is

u(T, x, y) = sin(2(x− cos(x+ y)W1(T )− sin(x+ y)W2(T )))

cos(y + cos(x+ y)W1(T ) + sin(x+ y)W2(T )).

(5.37)

Notice that the distribution of u is again supported in [−1, 1], and u just depends

on W1(T ) =
√
Tξ1

1 and W2(T ) =
√
Tξ2

1 . Monte Carlo sampling of (5.37) is triv-

ial. Moments of u(T, x, y) can be computed very accurately through Gauss-Hermite

quadrature rule. We pick 50 quadrature points in each dimension.

We employ Fourier collocation method with M = 64 collocation points in each

dimension for the spatial discretization of the propagator system. Equidistant col-

location points are denoted by xi = yi = 2π(i−1)
M

. The propagator system is then

computed up to T = 0.2 with time step size δt = 5 × 10−4. The N -version con-

vergence of mean square truncation error is displayed in Figure 5.6. We plot values

of E[‖uN,1(0.2, ·, ·) − u(0.2, ·, ·)‖2
l2 ] in logarithm scale for N = 1, · · · , 10, where the

discrete L2 norm is

‖v‖2
l2 :=

4π2

M2

M∑
i=1

M∑
j=1

(v(xi, yj))
2.

The convergence rate is clearly exponential.

Next we fix N = 8 and pay attention to higher moments. Figure 5.7 presents

contour plots for the third and fourth central moments of u8,1(0, 2, ·, ·). For Gaus-

sian noise, we also provide third and fourth central moments of u(0.2, ·, ·) using
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Figure 5.6: Example 5.3.3: Semi-log plot of mean square truncation error
E[‖uN,1(0.2, ·, ·)− u(0.2, ·, ·)‖2

l2 ] for N = 1, · · · , 10.

Gauss-Hermite quadrature. The agreement between the truncated solution and the

reference solution is quite satisfactory. For uniform noise and Beta(1
2
, 1

2
) noise, the

corresponding contour plots have different patterns, especially for the third central

moment.

We also detect the impact of driving noise by checking empirical distributions.

In Figure 5.8 we demonstrate normalized histograms of uN,1 at the collocation point

(x6, y6) out of 107 samples. For Gaussian noise, we choose N = 4, 8, together with the

reference distribution generated by 107 samples of (5.37). Samples outside [−1, 1] are

discarded. Similar to Figure 5.8, u8,1 outperforms u4,1 in approximating the highly

rightly skewed true distribution. For uniform noise and Beta(1
2
, 1

2
) noise, we consider

N = 8, 10. The empirical density functions of u8,1 and u10,1 are mostly overlapping,

so that they can be thought as credible approximations. Once again we notice the

fact that different driving noises lead to strikingly different empirical density profiles.

Example 5.3.4 (Stochastic Burgers equation). We consider the stochastic Burgers

equation in Example 5.1.2. The space region is D = [0, 1] with periodic boundary
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Figure 5.7: Example 5.3.3: Third and fourth central moments of u8,1(0.2, ·, ·). First
two plots are reference solutions with Gaussian noise. 30 equally spaced contour
levels are used for all plots.
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Figure 5.8: Example 5.3.3: Normalized histograms of uN,1(0.2, x6, y6) out of 107 i.i.d
samples. In the left panel, we take N = 4, 8. Values outside [−1, 1] are discarded,
and the black dashed line represents the normalized histogram of 107 Monte Carlo
samples of (5.37). In the right panel, we take N = 8, 10. Number of bins is 103.

condition. The parameters are µ = 0.005 and σ(x) = 1
2

cos(4πx), and the initial

data is u0(x) = 1
2
(e(2πx) − 1.5) sin(2π(x + 0.37)). We apply the Fourier collocation

method with M = 128 collocation points for spatial discretization. The end time is

set to be T = 0.8 with Runge-Kutta time step size δt = 10−3.

For such additive noise, Monte Carlo simulation is well suited for any type of

distribution. We generate sample paths of Ṅ (t) by truncating the infinite sum up

to K = 50. For a fixed sample path, we solve the resulting deterministic Burgers

equation using Fourier collocation method and fourth order Runge-Kutta time step-

ping, with M = 128 collocation points and time step size δt = 10−3. Moments and

empirical distributions of Monte Carlo samples will be chosen as reference solutions.

We take 106 sample paths.

The convergence of mean square truncation error is given in Figure 5.9. We

again plot E[‖uN,K(0.8, ·)− u20,K(0.8, ·)‖2
l2 ] to represent N -version convergence, and

E[‖uN,K(0.8, ·)− uN,50(0.8, ·)‖2
l2 ] to represent K-version convergence. Due to nonlin-
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earity, these truncation errors rely on the underlying randomness. For the N -version

convergence, we only plot results with uniform and Beta(1
2
, 1

2
) noise as the interaction

coefficients of Hermite polynomials grow exponentially with respect to N , causing

the numerical computation to blow up for large N . For the K-version convergence,

the plots are nearly identical for three noises, so that we only present the plot with

Gaussian noise. We emphasize that the numerical convergence rate is still exponen-

tial with respect to N and cubic with respect to K, even though Theorem 5.1 is only

proved for the linear case.
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(b) Convergence with respect to K

Figure 5.9: Example 5.3.4: Plots of mean square truncation error in discrete l2 norm
with respect to N and K. Left panel shows the semi-log plot of E[‖uN,1(0.8, ·) −
u20,1(0.8, ·)‖2

l2 ] versus N with uniform and Beta(1
2
, 1

2
) noise for N = 1, · · · , 10. Right

panel shows the log-log plot of E[‖uN,K(5, ·)− uN,50(5, ·)‖2
l2 ] versus K with Gaussian

noise for N = 1, 2 and K = 1, · · · , 12.

Then we fix K = 8. Third and fourth central moments of u2,8(0.8, ·) and

u5,8(0.8, ·) are drawn in Figure 5.10. As the profiles with different noises are close

to each other, we only show the zoomed-in view between the 21-st collocation point

and the 50-th collocation point. Central moments of Monte Carlo solution are also

plotted for comparison. We note that for all noises, u2,8 results in inaccurate approx-

imations, and u5,8 leads to much better performance. The plots of empirical density
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functions of u2,8 and u5,8 out of 107 samples at x30 are provided in Figure 5.11. From

the figure we can also see how u5,8 is superior to u2,8 in agreeing with the reference

distributions.
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Figure 5.10: Example 5.3.4: Third and fourth central moments of uN,K(0.8, ·) be-
tween x21 and x50. We take N = 2, 5 and K = 8. Dashed lines are reference solutions
computed by Monte Carlo simulation with 106 samples.
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Figure 5.11: Example 5.3.4: Normalized histograms of uN,K(0.8, x30) out of 107 i.i.d
samples. We take N = 2, 5 and K = 8. Black dashed line represents the normalized
histogram of Monte Carlo simulation with 106 samples. Number of bins is 103.
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This dissertation is mainly based on the work in [13, 12]. In Part I, we construct

high order entropy stable DG type methods for systems of hyperbolic conservation

laws. These DG methods can be stable with respect to an arbitrary entropy function.

Therefore we circumvent the limitations of the Jiang-Shu L2-stability result for the

classic DG method. The methodology is based on quadrature rules, and applies

from one-dimensional Gauss-Lobatto nodes all the way to general set of nodes on

multi-dimensional simplicial meshes. The entropy stability is guaranteed by three

main ingredients:

1. Discrete operators with the summation-by-parts property. This is straightfor-

ward if NP,k (dimension of modal space) is the same as NQ,k (dimension of

nodal space). In the general case, we need to work out the difference matrices,

which are given in equations (2.24) and (3.6).

2. Flux differencing technique , i.e., a high order linear combination of entropy

conservative fluxes that ensures entropy balance within an element. The same

goal can also be achieved by the “brute force” type method in Section 3.5.

3. Entropy stable boundary penalty term. For Gauss-Lobatto type nodes, simply

inserting entropy stable fluxes at element interfaces is enough. For general set

of nodes, some extra effort is required, and two possible boundary treatment

approaches are established in Section 3.3 and 3.4.

Our entropy stable DG framework has great flexibility in that it enables reflecting

wall boundary condition (Section 2.4), generalization to convection-diffusion equa-

tions (Section 2.5 and Section 3.6), and the transformation between nodal and modal

formulation (Section 3.7). For Gauss-Lobatto type nodes, we can also impose entropy

stable bound-preserving limiter and (one-dimensional scalar) TVD/TVB limiter. On

the other hand, the main advantage non Gauss-Lobatto type nodes is their better
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algebraic accuracy with smaller degrees of freedom.

We perform a large number of numerical tests whose results are comparable to

other existing schemes. In smooth test problems, the numerical orders of conver-

gence are usually suboptimal on Gauss-Lobatto type nodes. We are able to recover

optimal convergence by using the method on general set of nodes. In discontinu-

ous test problems, our scheme shows the potential of better robustness (Example

1.8.5 and Examp 1.8.6) and computing physically correct solution (Example 1.8.4).

However, for problems with strong shocks (Example 2.6.5 and Example 2.6.6), only

entropy stabilization is not enough. The numerical solution profiles contain evident

oscillations. In our future study, we would like to research further on the combi-

nation of entropy stabilization and other types of stabilization mechanism, such as

bound-preserving limiters on general set of nodes, TVD/TVB limiters for systems,

and the introduction of artificial viscosity.

In Part II, we explore the polynomial chaos expansion approach method for

distribution-free SPDEs. We generalize the definition of Wick product and Sko-

rokhod integral to arbitrary driving noise. Then the resulting SPDEs are not limited

to Gaussian or Lévy randomness. More importantly, for linear SPDEs, the propaga-

tor system, and even the first two moments or the solution, are the same for different

noises. The computational burden of solving the propagator system is purely off-

line. The only on-line work is post-processing. However, the propagator system of

nonlinear SPDEs changes with noise as interaction terms come into play.

Analysis of the mean square truncation error is carried out for linear problems.

We prove exponential convergence with respect to polynomial order, and cubic con-

vergence with respect to the number of random variables. The cubic rate arises

from repeated integration-by-parts and special properties of the orthonormal basis
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{mk(t)}∞k=1. We need to assume trigonometric basis or Legendre basis.

We conduct systematic investigation on numerical results of linear and nonlinear

SPDEs with different driving noises. Numerical rates of convergence are consis-

tent with our theoretical analysis. Higher moments and density function can also

be approximated effectively with sufficiently many expansion terms. However, we

recognize some drawbacks and unsolved problems, which gives hints on our future

research.

1. To the best of our knowledge, the limiting procedure of distribution-free Sko-

rokohd integral is unclear. Theorem 4.3 is only for deterministic processes, and

Theorem 4.4 is only for Gaussian (and Lévy) noise. Further work is required

for better understanding of the distribution-free stochastic analysis.

2. We do not focus on long time integration in this paper, but the exponential

growth of error with respect to time is seen both theoretically and numerically.

Proper techniques should be devised to mitigate the impact of time evolution.

We remark that direct generalization of the multi-stage methodology in [68,

67, 118] is incorrect as the driving process N (t) may not have independent

increments.

3. The propagator system usually consists of PDEs of the same type but with

different data. It can be expected that for a large number of expansion terms,

the application of reduced basis method [85] may significantly reduce the com-

putational cost while maintaining desired accuracy.
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Two-rarefaction Approximation
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For Euler equations, the solution of the Riemann problem consists of three charac-

teristic waves. The left wave and right wave are either rarefaction fans or shocks,

and the middle wave is a contact discontinuity. The pressure is continuous across

the contact discontinuity and thus constant in the middle region, denoted by p∗. We

find the exact value of p∗ by solving the following equation.

ϕ(p∗, pL, ρL) + ϕ(p∗, pR, ρR) + wR − wL = 0 (A.1)

where

ϕ(p∗, p, ρ) =


ϕr(p

∗, p, ρ) = 2a
γ−1

((p
∗

p
)(γ−1)/2γ − 1) if p∗ ≤ p (rarefaction wave)

ϕs(p
∗, p, ρ) = p∗−p√

(ρ((γ−1)p∗+(γ+1)p)/2
if p∗ > p (shock wave)

(A.2)

and a =
√
γp/ρ is the sound speed. ϕ is a continuous, strictly increasing and concave

function of p∗ (see [99]), so that we can use Newton-Raphson iteration to find the

unique root. Once we have p∗, the leftmost and rightmost wave speeds are given by

λL = wL − aLq(p∗, pL), λR = wR + aRq(p
∗, pR) (A.3)

such that

q(p∗, p) =


1 if p∗ ≤ p√

1 + γ+1
2γ

(p
∗

p
− 1) if p∗ > p

(A.4)

The following inequality is proved in [44].

Theorem A.1. If 1 < γ ≤ 5/3, ϕs(p
∗, p, ρ) ≥ ϕr(p

∗, p, ρ) for p∗ > p.
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Proof. Substitute x = (p∗/p)(γ−1)/2γ. Then

ϕr(p
∗, p, ρ) =

2a

γ − 1
(x− 1), ϕs(p

∗, p, ρ) =
a

γ

x2γ/(γ−1) − 1√
(γ − 1)/2γ + ((γ + 1)/2γ)x2γ/(γ−1)

Let α = 2γ/(γ − 1) ∈ [5,∞). We need to show that

(
xα − 1

x− 1
)2 ≥ α + α(α− 1)xα, for x > 1

Rearranging the term yields

(
xα − 1

x− 1
− 1

2
α(α− 1)(x− 1))2 ≥ α2 +

1

4
α2(α− 1)2(x− 1)2 (A.5)

By Taylor’s expansion

xα − 1

x− 1
≥ α +

1

2
α(α− 1)(x− 1) +

1

6
α(α− 1)(α− 2)(x− 1)2

Inserting this inequality, we have

(
xα − 1

x− 1
− 1

2
α(α− 1)(x− 1))2 ≥ (α +

1

6
α(α− 1)(α− 2)(x− 1)2)2

≥ α2 +
1

3
α2(α− 1)(α− 2)(x− 1)2

Since α ≥ 5, (α − 2)/3 ≥ (α − 1)/4 and so (A.5) is valid. We note that in most

physical applications γ does fall into the range (1, 5/3] (5/3 for monatomic gas and

7/5 for diatomic gas).

Invoking Newton-Raphson iteration during all flux computations can be time-

consuming. The two-rarefaction approximation assumes that the left wave and the

right wave are both rarefaction waves, and provides an explicit formula of p∗, λL and

λR. Thanks to Theorem A.1, the approximated wave speeds bound the true wave
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speeds. Then we can take these wave speeds to construct entropy stable HLL flux

(or local Lax-Friedrichs flux).

Theorem A.2. The two-rarefaction approximation solves the equation

ϕr(p
∗
tr, pL, ρL) + ϕr(p

∗
tr, pR, ρR) + wR − wL = 0 (A.6)

The explicit solution is

p∗tr = (
aL + aR + (γ − 1)(wL − wR)/2

aL/p
(γ−1)/2γ
L + aR/p

(γ−1)/2γ
R

)2γ/(γ−1) (A.7)

The approximated wave speeds are

λtr,L = wL − aLq(p∗tr, pL), λtr,R = wR + aRq(p
∗
tr, pR) (A.8)

Then q∗tr ≥ q∗, λtr,L ≤ λL and λtr,R ≥ λR.

Proof. By Theorem A.1, ϕr ≤ ϕ for all p > 0. As both ϕ and ϕr are strictly

increasing, p∗tr ≥ p∗. q is also an increasing function of p∗. Hence λtr,L ≤ λL and

λtr,R ≥ λR.

The same argument also works for shallow water equations. We will omit the

details, only giving the key inequality without proof. The exact Riemann solver

reduces to the equation

ϕ(h∗, hL) + ϕ(h∗, hR) + wR − wL = 0 (A.9)
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where

ϕ(h∗, h) =


ϕr(h

∗, h) = 2(
√
gh∗ −

√
gh) if h∗ ≤ h

ϕs(h
∗, h) = (h∗ − h)

√
1
2
g h
∗+h
h∗h

if h∗ > h

(A.10)

When h∗ > h, it is easy to prove that

ϕs(h
∗, h) ≥ ϕr(h

∗, h) (A.11)

Therefore two-rarefaction approximation will produce proper wave speeds.
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The bound-preserving limiter is designed for fully discrete schemes. For the sake

of simplicity we shall assume uniform grid size ∆x and uniform time step ∆t. Let

λ := ∆t/∆x. We start with the first order method for one-dimensional conservation

laws, using first order finite volume spatial discretization (1.29), and Euler forward

time stepping.

un+1
i = H(uni−1,u

n
i ,u

n
i+1;λ) := uni − λ(f̂(uni ,u

n
i+1)− f̂(uni−1,u

n
i )). (B.1)

Definition B.1. Scheme (B.1) is called bound-preserving if for some λ0 > 0,

uni−1,u
n
i ,u

n
i+1 ∈ Ω and λ ≤ λ0 will imply un+1

i = H(uni−1,u
n
i ,u

n
i+1;λ) ∈ Ω.

Theorem B.1. In the scalar case, if f̂ is monotone and Lipschitz continuous of both

arguments, and Ω = [m,M ] for m,M ∈ R, then (B.1) is bound-preserving (usually

called maximum-principle-preserving).

Proof. Since f̂ is monotone, H is non-decreasing with respect to un−1
i and un+1

i . Let

L be the Lipschitz constant of f̂ . Then H is also a non-decreasing function of uni

provided that λ ≤ 1
2L

. Now if uni−1, u
n
i , u

n
i+1 ∈ [m,M ],

un+1
i ≥ H(m,m,m;λ) = m, un+1

i ≤ H(M,M,M ;λ) = M.

We see that H is bound-preserving with λ0 = 1
2L

.

Theorem B.2. For general systems, if the exact Riemann solver is bound-preserving

(e.g. no dry bed for shallow water equations or no vacuum for Euler equations), and

f̂ is Godunov flux or HLL flux with suitable wave speed estimates, then (B.1) is

bound-preserving.

Proof. Since Ω is a convex set, the HLL Riemann solver, as an average of the exact
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Riemann solver, is also bound-preserving. When λ is small enough such that waves

of Riemann solvers at different cell interfaces do not intersect, the first order method

(B.1) can be regarded as another averaging procedure of Riemann solvers. Hence it

is also bound-preserving.

High order spatial discretization is generally not bound-preserving in the sense of

Definition B.1. However, we can still prove a weaker argument, i.e. the cell average

at next time step is in Ω. The next theorem paves the path for high order bound-

preserving limiter. It can be formulated in a more general manner, but we stay

within the context of entropy stable DGSEM.

Theorem B.3. For the fully discrete version entropy stable DGSEM (1.77)

−−→
un+1
i =

−→
uni − 2λ

(
2D ◦ FS(

−→
uni ,
−→
uni )
−→
1 −M−1B(

−→
fni −

−→
fn,∗i )

)
(B.2)

Assume that the underlying first order method is bound preserving under the CFL

condition λ ≤ λ0. If uni,j ∈ Ω for each 1 ≤ i ≤ N and 0 ≤ j ≤ k, then un+1
i ∈ Ω

provided that λ ≤ ω0

2
λ0.

Proof. By local conservation (1.79),

un+1
i = uni − λ(f̂(uni,k,u

n
i+1,0)− f̂(uni−1,k,u

n
i,0))

=
k∑
j=0

ωj
2

uni,j − λ(f̂(uni,k,u
n
i+1,0)− f̂(uni−1,k,u

n
i,0))

=
k−1∑
j=1

ωj
2

uni,j +
ω0

2
H
(
uni−1,k,u

n
i,0,u

n
i,k;

2λ

ω0

)
+
ω0

2
H
(
uni,0,u

n
i,k,u

n
i+1,0;

2λ

ω0

)

If λ ≤ ω0

2
λ0, the last two terms are in Ω. Then un+1

i ∈ Ω as it is a convex combination

of elements in Ω.
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The bound-preserving limiter is a simple linear scaling procedure ũni,j = uni +

θni (uni,j − uni ) to enforce ũni,j ∈ Ω. It can be enforced as long as uni ∈ Ω. Roughly

speaking, for each 0 ≤ j ≤ k we compute

θni,j := max{s ∈ [0, 1] : uni + s(uni,j − uni ) ∈ Ω}

Then we simply let θni := min
0≤j≤k

θni,j. A combination of mathematical induction and

Theorem B.3 tells us that we can apply such limiter at each time step, leading to

a robust scheme whose numerical solution never goes out of Ω. For implementation

details and the proof that bound-preserving limiter is genuinely high order accurate,

one may check the papers by Zhang and Shu [112, 113]. The positivity-preserving

limiter is generalized to higher space dimensions in [114].

Finally, the magic of SSP time discretization enables us to go beyond Euler

forward time stepping. In this paper, we use the third order SSP Runge-Kutta

method. For an ODE system du
dt

= Lu, the three stages at the n-th time step are

u(n,1) = un + ∆tL(un) (B.3a)

u(n,2) =
3

4
un +

1

4
(u(n,1) + ∆tL(u(n,1))) (B.3b)

un+1 =
1

3
un +

2

3
(u(n,2) + ∆tL(u(n,2))) (B.3c)

Since it is a convex combination of Euler forward steps, all the previous analyses are

still valid.
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Quadrature Rules on a Triangle



181

As indicated in [109], we group the quadrature points into symmetry orbits. The

orbit S3 only includes one point, the barycenter of the triangle. The three points in

S21 are determined by a single abscissa, and the six points in S111 are determined by

two abscissas. Table C.1 shows the idea of symmetry orbits. The B-type quadrature

rules in Chapter 2 are listed in Table C.2, and the A-type quadrature rules in Chapter

3 are provided in Table C.3. In both tables, the quadrature weights are scaled so

that the sum of them is 1.

Table C.1: Symmetry orbits on a triangle.

orbit barycentric coordinates # of points
S3(1

3
) (1

3
, 1

3
, 1

3
) 1

S21(α) permutation of (α, α, 1− 2α) 3
S111(α, β) permutation of (α, β, 1− α− β) 6

Table C.2: B-type quadrature rules on a triangle with k = 1, 2, 3, 4.

(a) k = 1,NQ,k = 6

orbit abscissas weight
S111 (0, 0.211324865405187) 1

6

(b) k = 2,NQ,k = 10

orbit abscissas weight
S3

1
3

9
20

S21
1
2

1
10

S111 (0, 0.112701665379258) 1
24

(c) k = 3,NQ,k = 18

orbit abscissas weight
S111 (0, 0.330009478207572) 0.04045654068298998
S111 (0, 0.0694318442029737) 0.0150990148725656
S111 (0.1870738791912771, 0.5841571139756569) 1

9

(d) k = 4,NQ,k = 22

orbit abscissas weight
S3

1
3

0.09109991119771334
S21

1
2

0.01853708483394977
S21 0.4384239524408185 0.1247367322897736
S21 0.1394337314154536 0.1054293296208443
S111 (0, 0.230765344947159) 0.02053045968042896
S111 (0, 0.046910077030668) 0.006601315081001616
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Table C.3: A-type quadrature rules on a triangle with k = 1, 2, 3, 4.

(a) k = 1,NQ,k = 3

orbit abscissas weight
S21

1
6

1
3

(b) k = 2,NQ,k = 6

orbit abscissas weight
S21 0.09157621350977073 0.1099517436553219
S21 0.4459484909159649 0.2233815896780115

(c) k = 3,NQ,k = 12

orbit abscissas weight
S21 0.219429982549783 0.171333124152981
S21 0.480137964112215 0.08073108959303098
S111 (0.1416190159239681, 0.01937172436124079) 0.04063455979366066

(d) k = 4,NQ,k = 16

orbit abscissas weight
S3

1
3

0.1443156076777872
S21 0.1705693077517602 0.1032173705347182
S21 0.4592925882927231 0.09509163426728465
S21 0.05054722831703097 0.03245849762319808
S111 (0.2631128296346381, 0.008394777409957609) 0.027230314174435
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Interaction Coefficients B(α, β, p)
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We assume that {ξk}∞k=1 are i.i.d. random variables. Then the interaction coefficient

B(α, β, p) can be decomposed into

B(α, β, p) =
E[ΦαΦβΦp]

α!
=
∞∏
k=1

E[ϕαk(ξk)ϕβk(ξk)ϕpk(ξk)]

αk!
:=

∞∏
k=1

b(αk, βk, pk). (D.1)

It suffices to compute b(i, j, l) for any i, j, l ≥ 0. According to orthogonality,

ϕj(ξ)ϕl(ξ) =
∞∑
i=0

E[ϕi(ξ)ϕj(ξ)ϕl(ξ)]

i!
ϕi(ξ) =

∞∑
i=0

b(i, j, l)ϕi(ξ). (D.2)

Hence b(i, j, l) is the i-th expansion coefficient of ϕj(ξ)ϕl(ξ) in terms of {ϕn(ξ)}∞n=0.

In particular, for the three types of noises and corresponding orthogonal polynomials

considered in Section 5.3, there are explicit formulas for these expansion coefficients.

Example D.1. For Gaussian noise and Hermite chaos. ϕn(ξ) = Hen(ξ). Since

Hej(x)Hel(x) =

min{j,l}∑
r=0

j!l!

(j − r)!(l − r)!r!
Hej+l−2r(x), (D.3)

we have

b(i, j, l) =


j!l!

(j−r)!(l−r)!r! if i = j + l − 2r and r ≤ min{i, j}

0 otherwise

. (D.4)

Example D.2. For uniform noise and Legendre chaos, ϕn(ξ) =
√

(2n+ 1)n!Ln(ξ/
√

3).

Define

λn :=
Γ(n+ 1/2)

n!Γ(1/2)
=

∏n−1
m=0(m+ 1/2)

n!
.

Then the expansion of Lj(x)Ll(x) is

Lj(x)Ll(x) =

min{j,l}∑
r=0

2(j + l − 2r) + 1

2(j + l − r) + 1

λrλi−rλj−r
λi+j−r

Lj+l−2r(x). (D.5)



185

Thus

b(i, j, l) =


√

(2i+1)(2j+1)(2l+1)

2(j+l−r)+1

√
j!l!
i!

λrλi−rλj−r
λi+j−r

if i = j + l − 2r and r ≤ min{i, j}

0 otherwise
.

(D.6)

Example D.3. For Beta(1
2
, 1

2
) noise and Chebyshev chaos, ϕn(ξ) =

√
cnn!Tn(ξ/

√
2)

where c0 = 1 and cn = 2 for n ≥ 1. Since Chebyshev polynomials are essentially

cosine functions,

Tj(x)Tl(x) =
1

2
Tj+l(x) +

1

2
T|j−l|(x). (D.7)

Thus

b(i, j, l) =


1 if i = j, l = 0 or i = l, j = 0

1
2

√
cjcl
ci

√
j!l!
i!

if j, l > 0 and i = j + l or i = |j − l|

0 otherwise

. (D.8)

Here the expansion coefficients have a sparse pattern. For fixed j and l, there are at

most two values of i such that b(i, j, l) is nonzero.

In general, we compute b(i, j, l) by matching the monomial coefficients on the

both sides of (D.2) (see [119]). Suppose that

ϕn(ξ) =
n∑

m=0

Pm,nξ
m.

According to (D.2), for i > j + l, b(i, j, l) = 0, and {b(i, j, l) : 0 ≤ i ≤ j + l} satisfies

the following linear system

j+l∑
i=0

b(i, j, l)Pm,i =

min{i,j}∑
r=max{0,i−l}

Pr,jPi−r,l. (D.9)
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It is easy to solve (D.9) directly as {Pm,n}j+lm,n=0 is a upper triangular matrix. This

procedure is applicable to any set of orthogonal polynomials.
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Ghanem, and O. P. Le Maı tre, Numerical challenges in the use of polyno-
mial chaos representations for stochastic processes, SIAM journal on scientific
computing, 26 (2004), pp. 698–719.



189

[25] G. Di Nunno, B. K. Øksendal, and F. Proske, Malliavin calculus for
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