
Abstract of “Electrokinetic Current Driven by a Viscosity Gradient” by Benjamin Wiener, Brown

University, May 2019.

Gradients of voltage, pressure, temperature, and salinity can transport objects in micro- and nanoflu-

idic systems by well known mechanisms. Relatively little experimental work has previously been

done to explore the behavior of particles in a viscosity gradient. This thesis presents observation,

analysis, theory, and simulation of a new nanofluidic transport phenomenon whereby a gradient in

liquid viscosity causes an ionic current to flow inside a glass nanofluidic channel.

We studied ionic transport inside nanofluidic devices in which we set up a controlled viscosity

gradient by pumping fluids of known viscosity past either end of a channel with no applied voltage,

pressure, or salinity gradient. We measured currents on the order of 10 to 100 pA flowing in the

direction of lower viscosity through the 200 µm-long and 150 µm-wide channels using fluids with vis-

cosities that varied from 1 to 5 mPa s. The nanofluidic devices enabled us to thoroughly characterize

the current’s dependence on experimental parameters like the viscosities of the liquids, the length of

the channel, the surface charge density, and the bulk salinity. The currents increased linearly with

the gradient of the inverse viscosity and the channel’s surface charge density, but were insensitive

to the bulk salinity. We propose a simple model of these viscosity-driven currents in which mobile

counterions screening the channels’ surface charge drift with a speed equal to the gradient in their

diffusivities. This model describes our data well and explains the microscopic origin of the effect.

Drift in a viscosity gradient is a consequence of multiplicative (state-dependent) noise, which refers

to the dependence of a particle’s thermal fluctuations on its position. The mathematical Itô-

Stratonovich dilemma arises because one must choose whether the size of each stochastic step

corresponds to the viscosity at the beginning of the step (Itô convention), the middle of the step

(Stratonovich convention), the end of the step (isothermal convention), or somewhere in between.

This seemingly insignificant choice has measurable consequences, as only the isothermal convention

explains the existence and direction of the currents we measured. We present simulations which

illuminate this surprising fact and show how the drift of ions arises from particles taking larger

average steps when they move in the direction of decreasing viscosity.
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Chapter 1

Introduction

In this thesis, we present the measurement, theory, and analysis of a new nanofluidic transport

process: ionic current driven by a gradient of liquid viscosity. The main set of experiments we will

discuss are straightforward in concept. Inside a fluidic channel, we allowed two liquids of different

viscosities to interdiffuse, creating a viscosity gradient. Then, we electrically measured the movement

of ions in the channel as an electric current. Our experiment, conducted in a nanofluidic environment,

relied on electrokinetic effects that are dominant at tiny scales. The theory we used to analyze and

explain our data is based on a simple model of random motion which incorporates some concepts

from stochastic calculus. Here, we will provide basic information about these topics, as well as some

historical context.

1.1 Electrokinetic phenomena

Electrokinetics refers to a set of phenomena that occur in liquids near charged surfaces. In 1809,

the German scientist Ferdinand Friedrich Reuss observed the first electrokinetic phenomena. Using

a silver-zinc battery, he applied an electric potential to a U-shaped tube that contained a clay plug

[6, 7]. The migration of tiny clay particles he noticed constituted the first recorded instance of

what we now call electrophoresis, the electric-field-driven motion of a charged particle through a

liquid. It was clear to Reuss that the clay particles carried charge, though he did not know the

origin of that charge. He also noticed that the level of the water rose on one side of the tube in

response to the battery. We now know this to be caused by a closely-related electroknetic effect

1
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called electro-osmosis, the motion of fluid dragged by electrophoresing charged particles.

Half a century later, in 1859, the physicist Georg Qunicke performed the reverse experiment,

pushing liquid through a tube and measuring the resulting electric current [8, 7]. This effect, the

development of an electric current by charges being advected by fluid flow, is now called streaming

current and is known to originate in charges on surfaces.

The symmetrical relationship where ionic current can cause electro-osmotic fluid flow and fluid

flow can cause electrical streaming current did not escape Uno Saxén, a Finnish student studying

electrokinetics in the late 1880s. The reciprocal relationships he identified, caused by viscous coupling

between the fluid and charge carrying ions, are now referred to as Saxén’s laws [9, 7]. Today, these

are seen as a special case of the Onsager reciprocal relations, which more generally require equality

between related cross terms connecting generalized forces to disparate generalized flows [10, 7].

Work on this topic, performed here at Brown University, earned Lars Onsager the Nobel Prize in

Chemistry in 1968 [11].

Electrophoresis, electro-osmosis, and streaming current are sometimes called the classical elec-

trokinetic effects [7]. More recently, others have been discovered. In 1947 Boris Derjaguin observed

diffusiophoresis, the motion of colloidal particles in response to the concentration gradient of an elec-

trolyte [12, 7]. Thermophoresis, also known as the Soret effect, is an older but less well-understood

phenomenon which under most conditions results in particles fleeing areas with higher temperature

as higher thermal energy causes less effective chemical solvation [13].

In this thesis, we will describe and analyze currents measured in fluidic channels where there was

no gradient in electric potential, no gradient in pressure, no gradient in solute concentration, and no

gradient in temperature, only a gradient in liquid viscosity. Compared to the other electrokinetic

effects described above, relatively little experimental work has previously been done to explore the

behavior of particles in a viscosity gradient.

1.2 Applications and micro- and nanofluidics

Of all the electrokinetic effects, electrophoresis is the best known because of its many technological

applications. The 1948 Nobel prize in chemistry was awarded to Arne Tiselius for his work analyzing

proteins using electrophoresis [11]. Today, it famously plays a central role in gel electrophoresis, a

technique used for analyzing DNA and other charged particles. A mixture of particles to be analyzed
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Figure 1.1: An illustration of a simplified DNA restriction mapping experiment using electrophoresis.
a) The whole molecule moves a short distance. b) The molecule is cut in one place. The pieces
move farther because they are smaller. c) The molecule is cut in a different place. The short piece
moves farther. d) The molecule is cut in three places. Gel electrophoresis example image from a
Washington University teaching lab [1].

is loaded into a viscous medium. Often a gel is used, among other reasons, to prevent advection like

that caused by diffusio-osmosis [7]. In its simplest form, the particles are subjected to an electric

field which causes them to migrate at a speed determined by their charge and shape, though the

picture gets more complicated for polymers like DNA. Over time, the particles migrate at different

speeds and separate into bands. The particles are then visualized with a dye, for example, so that

the bands can be analyzed.

In one application called DNA restriction mapping, one can create a DNA fingerprint useful

for determining if two samples of DNA are likely to have contained the same sequence. Molecules

called restriction enzymes break DNA in particular places. Different mixtures of these enzymes are

used on samples of the DNA, creating sets of fragments that depend on the specific sequence of

the polymer [14]. When analyzed using gel electrophoresis, different DNA sequences will result in

different characteristic patterns of bands. Figure 1.1 illustrates this for three different restriction

enzymes which cut the same example DNA sequence in different places. In figure 1.1a, the strand

is unbroken and travels the least distance of all. In figures 1.1b and 1.1c, the DNA is cut by the

enzyme in one place. In figure 1.1d, the DNA is cut in four places. In all cases, the smaller fragments
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travel farther.

Many more applications of electrokinetics exist in micro- and nanofluidic systems. In a 1959

speech at Caltech, Richard Feynman famously declared “there is plenty of room at the bottom” [15].

He was poetically expressing his belief that the micro- and nanoscale world held great potential for

science and technology. Feynman was right. Today, nanoscale technologies are commonplace. One

example is MEMS (microelectromechanical systems), tiny machines with a wide variety of uses from

measuring acceleration to harvesting energy. Microfluidic chips, fluidic systems with micrometer-

sized linear dimensions, are another example of the opportunities available at small scales. In

these chips, carefully designed channels and other structures are cut into silicon or glass. In the

1970s an early microfluidic system was developed, shown in figure 1.2 [16]. This miniaturized gas

chromatography system was integrated into a five centimeter wide wafer and included a spiral-shaped

1.5 m long column along with micro-scale controls and detector [2, 16]. Lab-on-a-chip instruments

like this have been able to achieve high resolution while requiring very small samples [17]. Soon,

pumps, mixers, sensors, and filters could all be found in tiny fluidic chips. At tiny scales, pressure

driven flow can be impractical, due to its strong dependence on channel size, so other mechanisms

like electro-osmosis can be used as a micro-scale pump [16]. In similar systems, streaming current

can be used a means to harvest energy by turning fluid flow into electricity [18]. It took until the

1990s for a microfluidic system to achieve wide commercial success when the inkjet print head, which

uses a MEMS to create a tiny fluid jet, was developed [16]. More recently, nanofluidics extended

this technology to a still smaller length scale [19].

1.3 Brownian motion

The smaller the length scales, the more important the fundamental thermal motion of particles

becomes. This apparently random motion of small particles in a fluid is called Brownian motion.

The name comes from its discoverer, Robert Brown, a botanist who in 1827 noticed the inexplicable

motion of pollen on the surface of a liquid [20]. Brown naturally assumed a living organism must be

behind the motion. However, tests on lifeless systems, as well as the fact that the motion did not

slow down or stop over time, forced him to conclude that the origin of the motion was not living [21].

By the middle of 19th century, a connection between Brownian motion and temperature had been

established, and theories were being developed to explain the connection. Still, by the turn of the
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Figure 1.2: Miniature gas chromatograph on a wafer. a) Carrier gas inlet. b) Sample gas inlet and
outlet. c) Sample injection valve. d) 1.5 m separating column. e) Detector channel. f) Gas outlet.
Image from James B. Angell et. al. [2].

century, the theory that all matter is made up of small discrete particles and that theory’s connection

to Brownian motion were not universally accepted in the scientific community [21]. Existing related

theories, like those surrounding the ideal gas law, hinted at the atomic nature of matter, but did

not constrain the size of these particles. Moreover, how tiny particles would be capable of causing

visible motion of much larger particles was a mystery. In 1905, Einstein proposed a solution: that

even tiny random bumps from interactions with fluid particles can occasionally combine to produce

noticeable displacements. Within a few years, experiments had confirmed his intuition [22, 23].

The simple analogy of a random walk helps explain how this is possible and will be a useful

starting point for the more complicated models to come [21]. Imagine playing a game where you

repeatedly flip a fair coin. With every ’heads’ you take one step to the right and with every ’tails’

you take one step to the left. After two coin flips, there are even odds that you are at your starting

position. Figure 1.3a shows the potential results of these two coin flips.

Now, say a friend watches you play this game from far away. Because of the distance, the friend

cannot tell which direction you move in each individual step. After the two coin flips, they can detect

no movement. After one thousand coin flips, the chance that you are exactly where you started is

small, about 2.5%, because it is difficult to flip exactly five hundred heads and five hundred tails.

More importantly, there is a 73% chance that you are more than ten steps from your starting point.

Your friend can likely notice your movement. Figure 1.3b shows an example of a one thousand flip
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Figure 1.3: Illustration of the coin-flip random walk. The walker holds a red flag for visibility. a)
Close up, individual steps are discernible. b) Far away, only the motion resulting from multiple steps
in the same direction can be seen.

path where individual steps are not visible, but overall motion is obvious. After one million flips, the

chance that you are exactly at your starting point is infinitesimal and you are almost certain (> 99%)

to be more than ten steps from the starting point. This game shows how many unobservable and

uncorrelated interactions can add up to significant motion.

In addition to establishing the molecular nature of matter and explaining Brownian motion,

Einstein’s 1905 paper also recognized the fundamental connection between viscous drag and random

diffusive motion [24, 25]. The same random bumps that cause Brownian motion also randomize the

motion of a drifting particle and eventually bring it to rest. For a particle in a fluid, this connects

the diffusivity of that particle with the viscosity of the fluid. This connection is an early example

of a more general concept called the fluctuation-dissipation theorem, which relates random behavior

with dissipation in some systems.

1.4 Stochastic processes

In 1923, Norbert Wiener proved that it was possible to formulate a rigorous continuous time version

of the random walk, now called the Wiener process [26, 27]. The Wiener process is a collection of
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random variables that can be viewed as a rescaled small-step limit of the random walk [27]. Wiener’s

work is the basis for many ideas in the field of stochastic processes. Beyond describing Brownian

motion, it is used in mathematical finance to develop the Black-Scholes model for pricing options,

among other things [28]. The Wiener process exhibits the interesting property of self-similarity [29].

Zooming in on a Wiener process with the right scaling reveals another Wiener process. The random

bumpiness does not disappear on any scale.

In the 1940s and early ’50s, the Japanese mathematician Kiyosi Itô invented a method for

integrating stochastic processes like the Wiener process [30, 26]. He generalized the well known

Riemann-Stieltjes integral, where one divides a function into tiny intervals and sums the area under

the curve based on the value of the function in each interval. A smooth function can be sampled

anywhere within the interval because the possible choices all converge to the same value in the limit

of small intervals. However, because Brownian motion is not smooth at any scale, no matter how

small the interval, the integral depends on the arbitrary choice of where within each interval one

evaluates the function. Itô’s integral sums the value of the function evaluated at the beginning of

each interval [5, 31].

Later, others like Ruslan Stratonovich, Donald Fisk, and Peter Hänggi developed alternatives to

Itô’s integral, each giving a different but completely self-consistent formulation of stochastic calculus.

The Stratonovich integral evaluates the function in the middle of each interval and preserves the

chain rule of ordinary calculus, while the isothermal (or Hänggi) integral evaluates the function at

the end of each interval.

The differences between the integration conventions are physically meaningful in the case of a

Brownian particle moving in a gradient of liquid viscosity where that particle’s stochastic step size

depends on its viscosity, and hence on its location. A particle will exhibit no average drift in a

viscosity gradient if it obeys Itô’s calculus, since its steps will have the same size regardless of the

direction. If it evolves according to the isothermal convention, it will drift toward lower viscosity as

it takes larger average steps in that direction [5].

Recent theoretical work by Hänggi, Lubensky, and others, recognizes that there is actually a

continuum of different formulations of stochastic calculus, depending on the position, inside each of

the integral’s intervals where the function is evaluated.

From another perspective, the question of integration convention boils down to how one should

generalize Fick’s Law of diffusion, J = −D∇P (x), in cases where a particle’s diffusivity, D, varies



8

in space [32]. One option, sometimes called the Fokker-Planck generalization, is to put the gradient

operator outside the diffusivity and write J = −∇(D(x)P (x)). This results in an explicit flux term

proportional to the diffusivity gradient, J = −P (x)∇D(x). Another, the Fick generalization, is

to leave the gradient operator inside the diffusivity and write J = −D(x)∇P (x). This results is

no explicit flux dependence on the diffusivity gradient. In chapter 2, we will show that the former

option connects to the Itô convention, while the latter connects to the isothermal.

Regardless of which perspective we take, it is important to know which law governs a given

system. Do particles in a liquid viscosity gradient drift? If so, which direction do they drift? These

questions can be addressed experimentally and could have important consequences.

1.5 Previous Experiments

1.5.1 Diffusion in diffusivity gradients based on distance from a diffusion-

inhibiting surface

A few experiments have attempted to measure the effect of a viscosity gradient on the motion of a

diffusing particle and resolve the ambiguities discussed above. Some of these experiments have used

creative mechanisms to create an effective viscosity gradient. Particles diffusing in the vicinity of

solid surfaces are known to exhibit lower diffusivity due to hydrodynamic coupling with the surface

[33, 34, 35]. Figure 1.4a shows a particle with radius r, diffusing a distance z from the surface. The

blue curve in figure 1.4b shows a model for the diffusivity as a fraction of bulk diffusivity plotted

against the distance from the wall in terms of particle radii [34, 35]. This function increases steeply,

and once the particle is a few radii away from the surface, the function flattens out as D(x) ≈ Db.

Because the diffusion stifling effect decreases with the distance from the surface, there is an effective

diffusivity gradient normal to the surface for any particle diffusing nearby. The range of this effect

is limited to a few radii of the diffusing particle. The orange curve in figure 1.4 shows the gradient

in the diffusivity as a fraction of the bulk diffusivity, which is already nearly flat at z ≈ r.

A couple of experiments have used this effect to measure the diffusivity-gradient induced drift of

colloidal particles [36, 3, 4]. One such experiment, performed by Lançon et al., optically observed

the motion of colloidal particles in a wedge-shaped fluidic domain defined by a curved glass lens

pressed against a flat disk [3]. Figure 1.5 shows their experimental setup. Areas near the point
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Figure 1.4: a) A diagram of a particle of radius r diffusing a distance z from a surface. b) Diffusivity
in units of bulk diffusivity as a function of distance from the solid surface in units of particle radii
(blue). The gradient of the diffusivity in units of bulk diffusivity as a function of distance from the
solid surface in units of particle radii (orange).

Figure 1.5: Cross-section of the cell showing the colloidal suspension confined between the spherical
lens and the flat disk, separated by an elastic O-ring. The left view shows an enlargement of the
center of the cell with the circular excluded volume and the observation frame (65× 100µm2). The
round inset explains the two contributions to the change in diffusion coefficient when a particle
moves a distance dx. Image and caption by Lançon et al. [3].

of the wedge region are closer to surfaces on average, and particles there tend to experience lower

diffusivity. This means there is an effective diffusivity gradient away from the point of the wedge, or

away from the center when viewed from above. The group tracked the motion of 1µm polystyrene

beads in the plane parallel to the flat disk with an optical microscope and measured radial outward

drift along the effective viscosity gradient, but a flux-less and uniform particle distribution in steady

state. These results were consistent with the isothermal integration convention.

In a comment, B lawzdziewicz and Bhattacharya [37] questioned the origin of the flux measured

in the experiment by Lançon et al [3]. They contended that the drift of the particles could be

explained by an entropic effect caused by the increased confinement of the particles near the point

of the wedge-shaped region.

Volpe et al. performed a different experiment that also used the diffusivity suppressing effect

of nearby surfaces. They measured diffusion of colloidal particles in the dimension normal to a

glass surface and parallel to gravity. Near the surface, there was an effective diffusivity gradient
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Figure 1.6: The top half shows the five experiments, consisting of flat vessels on a glass plate that
were scanned on a flatbed scanner. Image scanned about 8 h after the start of the experiment. Note
the sharp colour intensity difference between the top and the bottom half in experiments B and D,
where the bottom half has a lower diffusion rate than the top half (the x-coordinate referred to in
the text is upward in this picture). The colour intensity boundary is blurred in experiments C and
E, where concentrations were different at the start of the experiment, but diffusion rates the same in
top and bottom half. Bottom image series shows experiment D at different time intervals, showing
the progressive diffusion of food colouring towards the slow diffusion gelatinous bottom half. Image
and caption by van Milligen et al. [4].

which competed with gravity, while away from the surface, only gravity acted. Using total internal

reflection microscopy (TIRM), a technique which relies on the evanescent field near a reflecting

interface to accurately measure an object’s distance from that interface, the group was able to

detect the spurious drift created by the diffusivity gradient by comparing the measured particle

distribution with the distribution expected for gravity alone. The results of Volpe et al. are also

consistent with the isothermal integration rule.

1.5.2 Diffusion in diffusivity gradients caused by gelatin

Van Milligen et al. performed an experiment using gelatin to control viscosity and food coloring

to visualize particle concentration [4]. They filled a centimeter-scale vessels with liquids containing

different concentrations of both gelatin and food coloring, and measured the distribution of food
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coloring over time using a flatbed scanner. Figure 1.6 shows some of these experiments, labeled with

their starting conditions. Here, n = 0 means no food coloring, n = 1 means 1 mL L−1, and n = 2

means 2 mL L−1.

In their main trial, where initially uniform food coloring distribution straddled a step function

diffusivity profile (Exp D in figure 1.6), van Milligen’s group saw a peak develop on the low dif-

fusivity (gelatinous) side [4]. This group did not approach the problem from the perspective of

stochastic calculus, and did not comment on integration convention. However, their analysis sug-

gested that the evolution of the concentration profiles in their experiment were more consistent with

the Fokker-Planck generalization of Fick’s law, since the Fick generalization predicts no flux when

the concentration is constant [4]. This experiment is therefore consistent with the Itô convention.

1.5.3 Simulated diffusion in a viscosity gradient

A paper by Hendrick de Haan and Gary Slater [38] inspired us to take on this topic. They simulated

a polymer which initially straddles a nano-scale hole called a nanopore, which separates two regions

with different viscosities. Figure 1.7a shows the initial conditions, with half of the polymer on the

cis side of the pore, and half on the trans side.

They used two different stochastic simulation techniques. One was a full Langevin dynamics

simulation, where particles move according to the equation

m~̈r = −∇U(~r)− ζ(~r)~v + ~R(t), (1.1)

where ~r is the particle’s position, U(~r) is the sum of any conservative potential function, ζ is a drag

coefficient related to the viscosity by ζ = 6πηa, a is the particle’s radius, and ~R(t) is a random force

which represents interactions with the solvent molecule. In the full Langevin dynamics simulation,

the molecule was found to preferentially drift toward the low viscosity side of the pore.

The second simulation used an overdamped form of the Langevin equation,

ζ(~r)~v = −∇U(~r)− ~R(t). (1.2)

Here, momentum is ignored and the velocity of each particle is set randomly for each step, with no

correlation between steps.
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Figure 1.7: a) A polymer straddles a nanopore separating two regions with different viscosities.
b) Using overdamped Brownian dynamics, the polymer tends to move toward the side with higher
viscosity. Using full Langevin dynamics, where momentum is included, the polymer tends to move
toward the lower viscosity side. Image by deHaan and Slater.

De Haan discussed the connection between these two simulation schemes and the Itô-Stratonovich

dilemma. In the overdamped equation, each step a particle takes depends on the initial value of

ζ(~r).

d~r = ~vdt = −∇U(~r)

ζ(~r)
dt−

~R(t)

ζ(~r)
dt. (1.3)

This corresponds to the Itô integration rule, since the increment in position only depends on the

state before the jump.

To see how the full Langevin equation fits in, consider a step that starts at position ~r and time

t, and ends at ~r′ and time t′, caused by a random force ~R(t). For equation 1.1, the motion caused

by ~R(t) will partially be determined by the viscosity there, ζ(~r). However, because of inertia, some

of the effect of that force will be retained in the next step, which starts at ~r′. Thus, some of the

motion from the original force at ~r will be determined by ζ(~r′), the end point of the original jump.

Because the effects of ~R(t) are determined partially by the starting position, ~r, and partially by the

ending position, ~r′, the full Langevin equation simulates something more like the Stratonovich rule

or even the isothermal rule, depending on the strength of the inertia effect which is set by ζ/m.

These simulations introduced us to the potentially measurable consequences of diffusion in a

viscosity gradient. They also sparked the idea that we could use nanopores as a tool to measure the

effects of a viscosity gradient on a diffusing particle.
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1.6 Outline of the dissertation

This work is broken into six chapters.

In the second chapter, we discuss the theoretical background for diffusion in a medium where

the viscosity can change as a function of position. We present a simple random walk model of

homogeneous diffusion. Next, we discuss the main complication that stems from allowing viscosity

to vary with position: that the size of each step in a random walk depends on the local viscosity,

which itself varies over the length of the step. We connect this to the Itô-Stratonovich dilemma

of stochastic calculus. We explain some essential and basic electrokinetic phenomena and related

experimental methods. Finally, we discuss an early but flawed experiment we performed to measure

electrokinetic current driven by a viscosity gradient.

In the third chapter we report the discovery, experimental characterization, and theoretical

analysis of a transport effect driven by viscosity gradients, which cause an ionic current to flow

inside a glass nanofluidic channel. Measurements of the current are well described by a simple

model wherein counterions in the electric double layers near the surfaces drift in the direction of

decreasing viscosity with a drift speed equal to the gradient of the ions’ local diffusivity. Drift in

a viscosity gradient is a consequence of multiplicative (state-dependent) noise, which results from

a particle’s thermal fluctuations depending on its position. This surprisingly large effect, measured

in a highly controlled nanofluidic environment, reveals fundamental behavior that is relevant to a

broad range of systems.

In the fourth chapter, we discuss the physical mechanisms of diffusion in a viscosity gradient.

First, we use simulations to show how the different stochastic rules used to integrate random motion

affect the steady state particle distribution in a diffusivity gradient. Importantly, we illuminate the

role that the boundary conditions play, disallowing steady-state flux when the boundary conditions

mimic those of a closed container, and allowing flux when they mimic electrodes. We connect the

results of the simulations back to our experiments. Finally, we discuss an alternate interpretation

of the ionic currents we measured in our experiments.

In the fifth chapter, we present work toward a new experiment for optically measuring particles

diffusing in a gradient of liquid viscosity. We introduce quantum dots into a nanofluidic chip like

the ones discussed in chapter 3, measure their time-dependent paths, and deduce their diffusivities

from these paths. We discuss factors that have prevented us from proceeding with this experiment.
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This experiment would allow us both to measure the viscosity profile by measuring diffusivities at

different points in the channel and to detect any drift caused by a viscosity gradient.

The sixth and final chapter is a conclusion.



Chapter 2

Theoretical and experimental

foundations

The viscosity of a liquid and the diffusivity of a particle within it are fundamentally related be-

cause both are manifestations of the microscopic interactions between the particle and the liquid’s

molecules [24, 39]. Because it is impractical to know the details of these innumerable interactions,

one commonly models them in aggregate as noise, and the Brownian motion as a random process

whose scale is set by the noise magnitude. Thus, when a liquid’s viscosity varies with position, so

does the noise magnitude and the step size of a particle’s random walk. As we will show, the physical

model is incomplete until one specifies the rule for adding up the random steps. A mathematical

ambiguity, often called the Itô-Stratonovich dilemma, arises in stochastic models where the noise is

state-dependent (or multiplicative). Depending on whether one evaluates the steps’ sizes based on

the noise magnitude at the beginning of each step, at the end, or somewhere in between, the particle

will either drift or not drift [32, 5, 31, 40]. Experiments must resolve the dilemma.

First, we present a simple theory which we will use to analyze particle motion in a viscosity

gradient. Then, we present some basic concepts and results related to electrokinetics and fluidic

systems, which serve as background for our experiments in this and later chapters.

15
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2.1 Theoretical background on Brownian motion and stochas-

tic processes

2.1.1 Random walk

We will start with a familiar model of diffusion, the one dimensional random walk. This will serve

as the basis for a more general description using stochastic calculus. In its simplest version, the

random walker always steps a constant length, has an equal probability of stepping left or right,

and has no step-to-step correlation. In each step, the walker’s position, x, changes by a small but

fixed amount, L, in either the positive or negative direction, ∆xi = riL. The random variables ri

represent the choice of direction and have values of either −1 or 1 with equal probability. This leads

to a simple equation of motion,

xn =

n∑
i=0

∆xi =

n∑
i=0

riL, (2.1)

Where xn is the position of the random walker after n steps. It is simple to calculate the average

behavior of the random walker,

〈xn〉 = L

n∑
i=0

〈ri〉 = 0 (2.2)

Quantities inside angled brackets represent averages over different realizations of that random vari-

ables. Since ri = ±1 with equal probability, their average value is zero, 〈ri〉 = 0 and the average

position of the walker is zero. The average of the square of the displacement is not zero.

x2
n = L2

n∑
i,j=0

rirj (2.3)

〈
x2
n

〉
= L2

n∑
i,j=0

〈rirj〉 (2.4)

Because ri are uncorrelated and have values of only 1 or −1,

〈rirj〉 = δij ≡


1 if i = j

0 if i 6= j

(2.5)
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where δij is known as the Kronecker delta. Now, we can rewrite equation 2.4 as,

〈
x2
n

〉
= L2

n∑
i,j=0

δij = L2
n∑
i=0

1 = nL2 (2.6)

If each step happens in a time ∆t, the total time is t = n∆t and

〈
x2
n

〉
=
tL2

∆t
= 2Dt (2.7)

where D ≡ L2

2dt . D is known as the diffusivity or the diffusion coefficient.

Going forward, we will model diffusion with a stochastic differential equation,

dx = xt+dt − xt =
√

2DdWt, (2.8)

where dx is the displacement of a particle over the interval starting at time t and ending at t+ dt.

Wt is a Wiener process, a continuous random process based on the random walk. Its increments,

dWt = Wt −Wt+dt, have a Gaussian distribution with mean 〈dWt〉 = 0 and variance
〈
dW 2

t

〉
= dt

[21]. It is common and convenient tosimplify equation 2.8 by replacing
√

2D with σ, which directly

represents the magnitude of the noise term,

dx = xt+dt − xt = σdWt. (2.9)

If σ is constant in space, it is easy to analyze this equation. Taking the expectation value gives

no displacement,

〈xt+dt〉 = 〈xt〉+ σ 〈dWt〉 = 0, (2.10)

but a mean squared displacement that increases linearly with time,

〈
x2
t+dt

〉
=
〈
x2
t

〉
+ σ2

〈
dW 2

t

〉
=
〈
x2
t

〉
+ σ2dt. (2.11)

2.2 Multiplicative noise and the Itô-Stratonovich Dilemma

What happens, then, to a particle diffusing in a medium whose viscosity varies with position? For

some, it seems intuitive that viscosity should cause no net motion of a diffusing particle, because
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viscosity does not change the potential energy of a particle, and therefore should not lead to a force.

For others, a particle ought to drift toward higher viscosity, getting stuck in the mud. Still, others

feel a particle will escape into regions of low viscosity where mobility is higher. It turns out that

each of these possibilities corresponds to subtly different theories, each mathematically valid.

When the diffusivity varies with position, i.e. D = D(x) and σ = σ(x), the system is driven by

multiplicative noise – noise whose magnitude is multiplied by a function of the system’s state [5].

Equation 2.9 becomes,

dx = xt+dt − xt = σ(x)dWt. (2.12)

This raises a mathematical difficulty. To calculate this increment dx, we need to choose a value of

σ, but which one is correct? The value at the beginning or the increment, σ(xt), the value at the

end of the increment, σ(xt+dt), or some other value of σ? As we will show below, this choice has

physical consequences.

This problem is sometimes called the Itô-Stratonovich dilemma: Different rules for summing

the stochastic displacements in equation 2.12, each one mathematically valid, result in different

dynamics and therefore amount to subtly different models of Brownian motion.

The Itô integration rule (Fig. 2.1a) determines each displacement based on the value of σ at the

origin of the displacement, i.e. σ(xt). This results in displacements that are the same regardless

of the direction of dWt, so individual particles do not drift preferentially in either direction. The

Stratanovich rule (Fig. 2.1b) evaluates displacements at the midpoint, i.e. based on σ(xt+ 1
2 ∆t).

Finally, the isothermal (or Hänggi) rule bases the step size on the end point, i.e. it uses σ(xt+∆t)

(Fig 2.1c) [41, 42]. In this case, particles take larger average steps in the direction of increasing σ,

resulting in mean drift toward lower viscosity.

We can analyze the effect of the integration rule analytically. Starting with equation 2.9 with

σ = σ(x),

dx = σ(x)dWt, (2.13)

we can introduce α to parameterize the choice of integration convention.

dx = σ(x+ αdx)dWt (2.14)

The parameter α runs continuously from 0 to 1. The Itô, Stratonovich, and isothermal rules are
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special cases of equation 2.14, represented by α = 0, α = 1/2, and α = 1, respectively. The influence

of the integration convention on the dynamics of the Brownian walker is revealed by expanding

σ(x+ αdx),

dx = σ(x)dWt + α
dσ

dx
dxdWt

= σ(x)dWt + α
dσ

dx
σ(x)dW 2

t . (2.15)

Reinserting D(x) gives,

dx =
√

2D(x)dWt + α
dD(x)

dx
dW 2

t . (2.16)

Finally, taking the expectation value,

xt+dt = xt +
〈√

2D(x)
〉
〈dWt〉+ α

〈
dD(x)

dx

〉〈
dW 2

t

〉
〈xt+dt〉 = 〈xt〉+ α

〈
dD(x)

dx

〉
dt. (2.17)

or

〈ẋ〉 = α

〈
dD(x)

dx

〉
(2.18)

This drift, which occurs under the isothermal integration rule (α = 1) but not under the Itô inte-

gration rule (α = 0), is sometimes called noise-induced drift or spurious drift [43, 5].

2.3 Connection to Fick’s law

In the above sections we view diffusion from the perspective of individual particles. Another approach

is to consider the evolution of the distribution of a group of particles. Fick’s first law relates the

diffusive flux of particles to their distribution, ρ(x), in a system with constant diffusivity D,

J = −Ddρ

dx
. (2.19)



20

But what happens when D varies with space? There are two straightforward ways to generalize

equation 2.19. We can put D(x) outside the derivative or inside it,

J = −D(x)
dρ

dx
. (2.20)

J = −d(Dρ)

dx
. (2.21)

Of course, both equations reduce to equation 2.19 when the diffusivity is constant. Equation 2.20

is often called the Fick generalization of Fick’s law and equation 2.20 is called the Fokker-Planck

generalization. It turns out that these options correspond to the different integration rules defined

in section 2.2.

Starting with the results of section 2.2, we can connect equation 2.20 to the isothermal integration

rule and equation 2.21 to the Itô rule. We can demonstrate this by returning to a random walk

model based on the Itô rule and considering particles that hop right (in the positive direction) and

hop left (negative direction) separately. We will estimate flux by counting the difference in the

number of particles we expect to hop past a test point x′ in each direction. For a particle that hops

to the right and arrives at x′,

x′ = x− +
√

2D(x−)dt, (2.22)

where x− is the starting point. The number of particles that will cross x′ from the left will be half

the number of particles between x′ and x−. We can approximate D(x−) with a expansion of D(x)

about the point x′,

x′ − x− ≈

√
2

[
D(x′)− dD

dx
(x′ − x)

]
dt. (2.23)

Solving for x′ − x− gives,

x′ − x− ≈
√

2D(x′)dt− dD

dx
dt (2.24)

Now we can approximate the number of particles that will cross x′ from below as,

n+ ≈
1

2

[√
2D(x′)dt− dD

dx
dt

]
ρ, (2.25)

where ρ is the particle density at x′. We get similar results when considering particles passing x′
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from the right,

x+ − x′ ≈
√

2D(x′)dt+
dD

dx
dt (2.26)

n− ≈
1

2

[√
2D(x′)dt+

dD

dx
dt

]
ρ, (2.27)

Subtracting the number crossing x′ in each direction gives the flux for α = 0,

J = (n+ − n−)/dt = −ρdD
dx

(2.28)

In the case of α 6= 1, we need to add the flux due to the drift in equation 2.18, J ≈ ρv = ραdDdx . In

the general case then,

J = −(1− α)ρ
dD

dx
(2.29)

If there is a concentration gradient, this adds a flux governed by Fick’s first law,

J = −(1− α)ρ
dD

dx
−Ddρ

dx
(2.30)

When α = 0, equation 2.30 reduces to

J = −d(Dρ)

dx
. (2.31)

When α = 1 , equation 2.30 reduces to

J = −Ddρ

dx
. (2.32)

These correspond to equations 2.20 and 2.21.

2.4 Experimental background – Electrokinetics and microflu-

idics

Several fluidic and electrokinetic concepts are relevant in later sections. Here, we will describe

pressure-driven flow in a channel, surface charge and the accompanying screening layer, electrophore-

sis, electro-osmosis, and streaming current. Then we will discuss an early experiment we performed

to measure ionic motion driven by a viscosity gradient. This experiment shares some key features

with the experiment we will describe in chapter 3.
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Figure 2.1: Stochastic displacement models. Illustrations show leftward and rightward steps of
random walks corresponding to (a) the Itô, (b) the Stratonovich rule, and (c) the isothermal rule.

2.4.1 Flow in a pipe or channel

Because of non-linearities in the Navier-Stokes equations, few closed-form solutions for fluid flows

are known [44]. Poiseuille flow, steady-state pressure driven flow in a long pipe or wide rectangular

channel, is one of these known solutions. Viscous shear forces originating at the boundaries balance

the force of pressure, so the flow speed increases with distance from the nearest wall. The result is

the parabolic flow profile illustrated in figure 2.2 [44]. For a wide rectangular channel, the solution

is

u(y) = − y

2η

∆P

L
(h− y) , (2.33)

where u(y) is the flow speed a distance y from the bottom of the channel, ∆P
L pressure drop per

unit length, η is the fluid viscosity, h is the height of the channel. Integrating equation 2.33 across

in y and z, gives the flow rate,

Q =
wh3

12η

∆P

L
. (2.34)
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Figure 2.2: Poiseuille flow in a wide channel.

A similar equation describes the flow rate in a cylindrical pipe,

Q =
πr4

8η

∆P

L
. (2.35)

My website contains a demo of two dimensional Poiseuille flow 1 [45].

2.4.2 Surface chemistry and surface charge of glass

Surfaces are essential to electrokinetic phenomena. A relatively simple model by Behrens and Grier

explains the behavior of a glass well [46]. At the surface of a piece of glass, which has the chemical

formula SiO2 in the bulk, are terminal chemical groups called silanol [46]. The acid dissociation

constant of these chemical groups is estimated to be about pKa = 7.5 [46], meaning the glass surface

has the properties of a weak acid. Figure 2.3a shows the chemical structure of the glass before and

after the introduction of basic and acidic solvents. Before dissociation, the terminal O H groups

are generally intact. The introduction of a basic solution pulls many protons off of the glass, leaving

a negatively charged glass surface with a high charge density. The introduction of a weakly acidic

solution pulls fewer protons off of the glass, and leaves a sparsely charged surface.

This negative charge attracts a cloud of positive mobile counterions into the vicinity [21]. Fig-

ure 2.3b shows the distribution of these ions. Electrostatics draw the ions toward the surface, while

thermal energy keeps them away. The linearized Poisson-Boltzmann equation, d2φ
dx2 = 2c0e

2

εε0kBT
φ, can

be used to approximate this system. Its solution in one dimension,

φ(x) = φ0e
−κx, (2.36)

is called the Poisson-Boltzmann distribution. It has a characteristic decay length known as the

1http://www.benwiener.com/physics/poiseuille.html

http://www.benwiener.com/physics/poiseuille.html
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Figure 2.3: Glass surface schematic. a) Chemical diagram of an ideal glass surface. Before dissocia-
tion, terminal silanol groups are protonated. When the pH of the solution is high, protons are in low
concentration. Many protons dissociate from the glass surface, leading to a highly charged surface.
When the pH is low, fewer protons dissociate, leaving a less charged solution. b) A cloud of positive
counterions screening a negatively charged glass surface. Plotted line shows the electric potential,
φ(x). This equilibrium is a balance between electrostatic forces drawing counterions toward the
surface and thermal energy.

Debye length [21],

λd = κ−1 =

√
εε0kBT

2c0e2
. (2.37)

A monovalent salt concentration of 200 mM gives a Debye length of about one nanometer [21].

The surface chemistry of glass, therefore, results in a cloud of positive and mobile counterions.

The layer of surface charges and the attracted counterions are often called the electric double layer

or EDL.

2.4.3 Electrophoresis

In an electric field, charged particles like those in the EDL experience a force proportional to the

electric field, ~E, and the charge, q, equal to ~FE = q ~E. This force drags the ions through the

surrounding fluid, accelerating them until viscous drag matches the electric force. Solving the

Navier-Stokes equations for a spherical particle in viscous flow at low Reynolds number gives the

viscous force as a function of drift speed, vd, as Fv = 6πηrvd, where r is the particle’s radius and η

is the viscosity of the fluid [47, 21]. Applying this to our drifting ions by modeling them as spheres
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Figure 2.4: a) An electric field drives the electrophoretic motion of charged particles in a channel.
The charged particles exert a viscous force on the fluid and cause electro-osmotic flow. b) Hydrostatic
pressure pushes fluid through a channel. The flow carries charged particles in the EDL, causing a
streaming current.

and equating the electric and viscous forces, we get an electrophoretic drift speed,

vd =
qE

6πηr
, (2.38)

where r is now an effective hydrodynamic radius for the charged particle. Note that oppositely

charged particles drift in opposite directions. Figure 2.4a illustrates electrophoresis, showing charged

particles drifting with balanced electric and viscous forces.

2.4.4 Electro-osmosis

The viscous force that the fluid exerts on the charged particle is matched by an equal and opposite

force on the fluid. This force causes a fluid flow called electro-osmotic flow. In the bulk, positive and

negative charges, which move in opposite directions in an electric field, exist in equal concentration

and cause no net force on fluid. Within a Debye length of a charged surface, where net positive

charge resides in the EDL, the fluid experiences a net drag from ions. In this surface region, the

force exerted by the ions is balanced by viscous shear forces. This means that the shear rate and



26

the force of the electric field on the ions must balance,

η
∂2ux
dy2

+ ρE = 0, (2.39)

where ux is the flow speed parallel to the wall, ρ is the density of net charge. The result is a flow

profile which is flat in the bulk where no stress exists and falls to zero inside the EDL to conform

with the no-slip condition. Figure 2.4a illustrates an electro-osmotic fluid flow profile. If the Debye

length is small, outside of the EDL, the bulk electro-osmotic flow velocity is related linearly to the

electric field, E,

vbulk = −εζ
η
E, (2.40)

where η is the fluid viscosity and ε is the dielectric constant [19, 48]. The last parameter, ζ, represents

the zeta potential, which is the electric potential slightly away from a surface, where the first layer

of mobile fluid molecules sits [19, 48], and is approximately equal to φ0 in equation 2.36.

2.4.5 Streaming current

Similarly, a pressure driven flow can cause an electric current called streaming current. Figure 2.4b

illustrates pressure driven flow inside a channel with charged surfaces. The ions are advected by

the flow and move with a speed that corresponds to the local fluid flow speed. In the bulk, equal

positive and negative charges exist, so no current results from the flow. Near surfaces, the motion

of the net positive charge in the EDL results in current. We can write this current as [48],

I = w

∫ h

0

ρ(y)ux(y)dy. (2.41)

My website contains an interactive demo of streaming current 2 [49]. If the Debye length is small,

the flow profile can be taken as linear near the wall and the streaming current can be approximated

[19, 48],

I =
εζ

η
wh

∆P

L
. (2.42)

2http://www.benwiener.com/physics/streaming_current.html

http://www.benwiener.com/physics/streaming_current.html
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2.4.6 Generalized forces and flows

The effects described above can be written in a neat form,

 I
Q

 =

Ge kef

kfe Gf


∆V

∆P

 (2.43)

where I is the electric current, Q is the flow rate, ∆V is a voltage difference, ∆P is a pressure

difference, Ge is the electrical conductance, Gf is the fluidic flow conductance. The off-diagonal

cross-terms kef and kfe represent the strength of the streaming current and electro-osmotic flow

effects, respectively, and are required by Onsager’s reciprocal relations to be equal [19]. Reviewing

equations 2.40 and 2.42, we see that kef = kfe = εζ
η
A
L

2.5 Measuring drift in a viscosity gradient using glass nanocap-

illaries

Nanopores can take a variety of forms, but their essential characteristic is a nano-scale opening.

Most commonly, a tiny hole is bored into a flat silicon nitride membrane, forming a solid state

nanopore. All of the current that goes through a nanopore needs to pass through a tiny space. This

makes them electronic tools that are sensitive to nano-scale effects. We used a different kind of

nanopore, a pulled glass nanocapillary with a nano-scale opening at the end, to detect the motion

of ions in a viscosity gradient. We wondered if it would be possible to put liquids with different

viscosities inside and outside the capillary and electronically measure the motion of ions in response

to a viscosity gradient as an electric current.

Figure 2.6a illustrates the experimental setup. We filled a pulled glass nanocapillary with a

liquid, and dipped the tip into a bath of a different liquid. We inserted the electrodes into the

capillary and into the bath. At the tip of the capillary, a gradient forms between the two liquids.

For this experiment, we used binary mixtures of water and glycerol. The higher the glycerol fraction,

the higher the viscosity.

Figure 2.5a shows how we made these capillaries using a Sutter P-97 micropipette puller. They

start as a 1 mm outer diameter, 0.5 mm inner diameter glass tube. The machine heats the middle

of the tube with a tungsten filament and pulls on both ends. When the middle of the tube nears its
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Figure 2.5: Pulled glass nanocapillaries. a) The method used by the Sutter P-97 Micropipette Puller.
b) A composite microscope image of a nanocapillary. c) An scanning electron microscope image of
the opening of a nanocapillary

melting point, it softens and stretches into a roughly conical shape. Figure 2.5b shows a composite

microscope image of a pulled nanocapillary. Figure 2.5c shows a scanning electron microscope image,

which reveals that the tube tapers to a final inner diameter of less than 200 nm.

2.5.1 Detecting drift using surface counterions

Our strategy was to take advantage of the surface charge of glass to electronically measure drift

driven by a viscosity gradient in a nanocapillary. As explained in section 2.4.2, glass is generally

negatively charged in solution, and it attracts a cloud of positive counterions to screen it. A nanoscale

channel made of glass will have a high ratio of surface area to volume, and will therefore have a

significant excess of positive ions. Any systematic drift of these excess ions would constitute an

ionic current, which we could measure electronically. The drift of ions in the bulk would not be

measurable, because each of these ions is countered by another of opposite charge.

We used Ag\AgCl electrodes in our experiments. To prepare them, we started with silver wire,

sanded off any oxidation on the outside, and submerged them in chlorine bleach for fifteen minutes.

This had the effect of creating a AgCl coating on the surface of the electrode. The chemical half-

reaction AgCl(s) + e– Ag(s) + Cl– allows the electrode to either emit a chloride ion via the

forward reaction or absorb one by the reverse. We used an Axopatch 200B to measure the ionic

currents generated within the chip.
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Figure 2.6: a) The tip of a glass nanocapillary inside a liquid with lower viscosity. Positive ions
screen the negatively charged surfaces. An ammeter detects and new motion of ions. b) Measured
current plotted against glycerol fraction from a capillary experiment.

2.5.2 Eletrokinetic rectification in glass nanocapillaries

While experimenting with electric measurements in nanocapillaries, we noticed diode-like rectifica-

tion in the I-V curves we measured. This is actually a well-known effect; conical nanopores like our

pulled nanocapillaries often exhibit this interesting current rectification property [28]. Figure 2.7a

shows solution conductivity-normalized I-V curves inside 200 nm inner diameter nanocapillaries. We

varied the NaCl concentration from 1 M to 0.1 mM. At 1 M, the I-V curve is linear, indicating normal

ohmic behavior. At lower salt concentrations like 0.1 mM, we saw diode-like rectification, where a

negative voltage drives much more current than the equivalent positive voltage. A simple qualitative

model explains this behavior [50]. Because of the negative charge on the walls, the thinnest part

of the capillary is partly permselective, meaning it is more permeable to positive ions than negative

ones. The lower the salt concentration, the weaker the screening of the surfaces and the greater the

permselectivity effect. When a positive voltage is applied, positive ions are depleted from the inside

of the capillary, decreasing its conductance. The confined geometry means that few positive ions

are available to replace the ones that are pushed out. When a negative voltage is applied, positive

ions are forced into the capillary, enhancing its conductivity.

The geometry of the capillary combined with electrokinetics explains the rectification effect we

saw, but similar rectification effects can be observed with different types of asymmetry. Differences

surface chemistry or salt concentration can also cause similar rectification effects [28].
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Figure 2.7: a) Current normalized by bulk conductivity plotted against applied voltage. b) When a
positive voltage is applied inside the capillary, the tip is partially depleted of positive ions, decreasing
the overall conductance. c) When a negative voltage is applied inside the capillary, the tip the
concentration of positive ions inside the tip is enhanced, increasing the overall conductance.

2.5.3 Flow rate through glass nanocapillaries

We developed a method for measuring the flow rate through these tiny capillaries. The concept was

simple: we filled the capillary with water and used it to blow a tiny water bubble into an immiscible

medium. Using a microscope with a 60× objective, we observed the size of the bubble over time and

inferred its volume from the radius of the circle it projected onto the image plane. By analyzing a

video recording of the growing bubble we were able to measure the flow rate of capillaries with radii

ranging from 60 nm to 500 nm. We were able to detect flow rates on the order of 1 pL per second.

For the immiscible medium, we used a somewhat visco-elastic silicone grease to prevent the bubbles

from floating away.

Figure 2.8 shows the flow rates of fifteen nanocapillaries with different inner diameters. The inset

shows an example bubble. We can use equation 2.35 to calculate the pressure drop, dP , over a short

length of tube, dL,

dP =
8η

πr4
dL. (2.44)

Then, we can integrate to estimate the pressure drop over a tube with a variable radius. We modeled

the nanocapillary as an infinite cone with an angle θ, truncated so that the small end has a radius
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Figure 2.8: The flow rate per unit pressure as a function of capillary inner diameter. Inset shows
the bubble used to measure the flow rate of one device. The yellow line shows the truncated cone
model. The less successful tube model will not be discussed here.

r. From this, we find,

Q =
3πr3 sin θ

8η
∆P. (2.45)

Figure 2.8 shows this model plotted against the data.

2.5.4 Ionic current in a viscosity gradient

Using these nanocapillaries, we performed our viscosity gradient experiment. We saw evidence of

current flowing from the more viscous side to the less viscous side. Figure 2.6b shows data from an

experiment with water on one side and water-glycerol mixtures on the other. The measured current

is plotted as a function of the glycerol fraction. This data was encouraging but hard to reproduce.

We found the experiment to be wildly inconsistent, producing currents with different magnitudes in

each trial. The tantalizing but unreliable results of this experiment prompted us to design a better

experiment.

The geometry of our capillary experiment was not ideal. It was easy to change the solution

outside of the capillary, but the solution inside was effectively stuck there. We worried about how

the viscosity profile would evolve over time in this somewhat complicated configuration. We also

identified an important asymmetry. Potassium chloride is much more soluble in water than in

glycerol. This means that the ions are chemically drawn toward higher water concentrations.

Our experiments with nanocapillaries led us to design an improved experiment that solved two

major problems with the capillary experiments. Instead of binary solutions of water and glycerol,
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which caused gradients in KCl solubility and generated unwanted currents, we used ternary mixtures

of water, glycerol, and formamide, which can be mixed to provide constant solubility. We also

designed a glass chip which made it easy to maintain a viscosity gradient of choice.

2.6 Conclusion

It is surprising that the rule used to integrate Brownian motion can have a real physical effect

which can be probed experimentally. More than one hundred years after the discovery of Brownian

motion, controversy still exists about relatively straightforward variations of the basic effect. So

far, measurements of particles diffusing in a viscosity gradient have been unsatisfying. Of the

two measurements based on the subtle diffusion stifling effect of a solid surface, one has had its

conclusions publicly questioned, and the other takes place over tiny length scales, confined to the

space within a few particle widths from a solid surface. A third experiment, using gelatin to control

viscosity, arrives at a different conclusion from the others. Meanwhile, two simulations with different

but reasonable implementations produce opposite results. Our first try at addressing this problem

experimentally was encouraging but flawed. We seek to provide a convincing experiment to quantify

the effect of a liquid viscosity gradient on diffusing particles.



Chapter 3

Electrokinetic Current Driven by a

Viscosity Gradient

Electrokinetic transport phenomena like electrophoresis, thermophoresis, and diffusiophoresis, which

arise from gradients in voltage, temperature, and solute concentration, respectively, play important

roles in biology, geology, and micro- and nanofluidic systems[51, 52, 19]. Could gradients in viscosity,

which are ubiquitous in nature and technology, also drive transport? Micro- and nanofluidic devices

have proven to be successful toy systems for probing electrokinetic effects. It is now easy to fabricate

these tiny but tightly-defined channels with well-known techniques. The small volume and high

aspect ratios achievable in these systems enhance the effects of surfaces and make subtle electrokinetic

effects observable. Here, we present the first electrokinetic measurement of viscosity-gradient driven

motion.

3.1 Experimental methods

We experimentally imposed a controlled viscosity gradient in the liquid filling a glass nanochannel

and measured the electrical current resulting from the drift of counterions in the electric double layers

near the nanochannel’s charged surfaces. Figure 3.1 illustrates the basic setup. The nanofluidic

device was a glass chip containing a 150 µm-wide, 50 nm-deep mixing channel that bridged two

parallel 0.5 µm-deep microchannels (Fig 3.1(b)).

33
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Figure 3.1: (a) Sketch of the mixing channel cross section showing counterions drifting in the
direction of lower viscosity. (b) 3D sketch of the nanofluidic chip indicating w and L. The equivalent
circuit diagram shows how Iv, modeled as a current source, is related to Im, Rm, RµL, and RµR.
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Figure 3.2: Chip fabrication. The masks used to expose the microchannels for chips with a)
100 and b) 400 µm long nanochannels. The masks used to expose the c) 50 and d) 150 µm wide
nanochannel. e) A 3D rendering of the finished chip.

We pumped miscible liquids with viscosities ηL and ηR through the left and right microchannels

past either end of the mixing channel, inside which the liquids interdiffused. The flow in the mi-

crochannels continuously refreshed the liquids at the left and right ends of the mixing channel, fixing

the viscosities there at ηL and ηR, respectively, and reaching steady state in between. We measured

the ionic current flowing through the device, Im, using an ammeter (Axon Axopatch 200B) with

Ag/AgCl electrodes immersed in liquid on either side.

3.1.1 Fabrication of chip-based fluidic devices

We made the chips by etching the fluidic channel pattern into glass wafers and then thermally

bonding a thin cover to enclose them. We started with fused silica wafers (Marc Optics), cut into

one-inch squares and thoroughly cleaned. The pattern required two stages of etching. First, we spun

about 2µm of S1818 photoresist onto the wafer and soft baked it. S1818 is a positive photoresist,

so areas exposed to sufficient UV radiation become soluble in the developer solution. We exposed

and developed the mixing channel first, using a pattern like in figure 3.2c, leaving bare glass in

the shape of the mask. Then, we used CF4 plasma to etch away about 50 nm of glass. We used

a profilometer to check the dimensions of this feature. Next, we spun on a new layer of resist and

repeated the process with the pattern for the microchannels in figure 3.2a, being careful to align

the two patterns. We removed all the resist and measured the key features using the profilometer.

We used an alumina powder blaster to cut holes into each of the square reservoirs. After one final

chemical etch in hydrofluoric acid, we bonded a thin cover and baked the chip overnight at 1000 ◦C.
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Figure 3.3: Exploded view of chuck. Shows the chip, which (when assembled) is sealed to the
chuck with o-rings and fastened to the chuck with an aluminum bracket and screws.

Figure 3.2e shows a rendering of the completed chip. Four holes in the chip give access to the

channels.

We made four chips in four separate runs. The first set of chips were used to collect most of the

data. They had mixing channels that were 200 µm long. The second run provided chips with mixing

channels half as long and twice as long as those in the first series. The third and fourth set of chips

were for followup experiments and for quantum dot experiments described in chapter 5.

3.1.2 Fluid flow control system

We designed a chuck to hold the chip in place, allow us to make electronic contact with the solutions

inside, apply pressures, and replace the solutions with new ones. Figure 3.3 shows an exploded view

of the chuck and chip assembly. The chip is sealed to the chuck with Viton o-rings and held in place

with an aluminum bracket. Electrodes are inserted through the top of the chuck, along with thin

tubing which allows us to flush old fluid out and replace it on the fly. These tubes were carefully

cut so that they reached all the way to the openings of the chips.

To start an experiment, we aligned the holes in the chips with the holes in the chuck and carefully

screwed the bracket in place. We then used the tubes in the top of the chuck to fill the areas sur-

rounding the openings with the experimental liquids. It was important to avoid introducing bubbles

into the openings of the chips because they are hard to remove and often result in unpredictable

behavior. We used a mechanical pump and regulator supply 0.5 bar to drive fluid through the chips.

After introducing a solution, we waited for the system to stabilize. Typically this took 10 to 30 min.
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3.2 Making the experimental liquids

We used ternary liquid mixtures composed of water, formamide, and glycerol, with potassium chlo-

ride added to increase conductivity. The viscosity of glycerol is much higher than that of formamide

(934 mPa s compared with 3.34 mPa s at 25 ◦C[53]), so by varying the ratio of those liquids with the

water content kept constant at 50% by volume, we could vary the viscosity of the mixture. We

achieved viscosities ranging from 1.4 to 6.1 mPa s. We first prepared a stock solution of water, KCl,

and a pH buffer. For this water stock, we always used a concentration of 10 mM for the buffers, and

200 or 1000 mM for the salt. We then made binary mixtures of glycerol and formamide: 100% glyc-

erol; 75% glycerol, 25% formamide; 50% glycerol, 50% formamide; 25% glycerol, 75% formamide;

and 100% formamide. We mixed the water stock solution with the various glycerol-formamide mix-

tures 1:1 by volume, halving the concentration of the salt. We then titrated the resulting solutions

to the target pH using either HCl or KOH.

We used water combined with mixtures of glycerol and formamide to minimize chemical potential

gradients in our nanochannel. KCl has very similar solubilities in glycerol and formamide, so chemical

effects that would draw ions into one solution or another are minimized. This effect is analyzed

quantitatively in section 3.7.1.

3.2.1 Controlling conductivity and pH

We wanted the liquids to be conductive so that any ionic current originating within the mixing

channel could be transmitted to the electrodes. We added KCl to the liquids to a concentration of

either 100 or 500 mM. This brought the conductivity to the range of 200 mS m−1, which was enough

for our experiments. We used a Hach EC-71 conductivity meter to measure the conductivity of each

liquid.

We also wanted to control the pH, because the pH has a strong influence on the surface charge

density[54]. We made liquids of pH 8 and 5. For our liquids at pH 8, we used tris as a buffer, which

has a pKa of 8.1[53]. For those at pH 5, we used a citric acid buffer, a triprotic acid with pKa

values of 3.13, 4.76, and 6.40 for its three carboxyl groups. We used a Denver Instruments UB-10

pH meter to monitor the pH. It took on the order of 30 µL of concentrated HCl or KOH to reach

the pH targets.

We observed that the conductivities of the liquids increased over time. Figure 3.4a shows the
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Figure 3.4: The conductivity of a solution of 50% water, 25% glycerol, 25% formamide with 100 mM
KCl over time. Line shows best fit of an exponential function, equation 3.1.

conductivity over time for a solution of 50% water, 25% glycerol, 25% formamide with 100 mM KCl.

The conductivity increases significantly on the timescale of a month. We modeled this conductivity

curve with an exponential function,

κ(t) = a+ be−ct. (3.1)

The line in figure 3.4a shows a best fit of this line and gives a time constant of 19.4 days.

3.2.2 Measuring liquid viscosity

We measured liquid viscosities using a ball-drop method[55]. We filled a small capillary (L = 10 cm,

r = 1.25 mm) with the liquid, and added a small (r = 500µm) steel ball. We measured the terminal

velocity of the ball in the liquid.

According to Stokes drag, the force on a sphere of radius r moving with velocity v through a

liquid of viscosity η is

f = 6πηrv. (3.2)

The gravitational terminal velocity of a ball falling through a liquid is therefore inversely proportional

to the liquid’s viscosity. We can then measure the viscosity of a liquid, η, by comparing the time, t,

for a ball to fall a constant distance with the time an identical ball takes to fall the same distance,

t0, in a different liquid of known viscosity, η0.

η = t
η0

t0
. (3.3)
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Figure 3.5: Dependence of the viscosity of a mixture of two liquids on the volume fraction of the
higher-viscosity component. Symbols show measured viscosity of a mixture containing 50 % water,
φg×50 % glycerol, and (1−φg)×50 % formamide. The solid line shows eq. 3.20, where ηf = 1.11 mPa s
and ηg = 5.96 mPa s.

We used water as as our liquid of known viscosity, η = 0.890 mPa s at 25 ◦C[53].

3.2.3 Dependence of the viscosity on the composition of the liquid mix-

tures

Predicting the viscosity of an arbitrary mixture of liquids of known viscosities is complicated, but

we found that our solutions fit a simple model,

η(φ) = η1−φ
a ηφb . (3.4)

which is well supported theoretically [56, 57]. Here, φ is the volume fraction of the liquid with viscos-

ity ηa, and ηb the viscosity of the other liquid. Figure 3.5 shows the measured relationship between

η and φ, where solution a is a 1:1 water/glycerol mixture, and solution b is a 1:1 water/formamide

mixture.
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3.3 Measuring surface charge density of nanofluidic channels

The surface properties of a nanofluidic channel are key to understanding any electrokinetic effect

occurring within them. In particular, the surface charge density of our chips sets the strength of any

viscosity-gradient-driven current. We estimated the surface charge density inside one of our glass

chips using a conductance saturation technique [54]. We measured the conductance of a glass chip

filled with solutions with KCl concentrations that varied from 10−1 mM to 101 mM in 50% water,

25% glycerol, 25% formamide. At higher salt concentrations, the conductance of the bulk dominated

the overall conductance of the device. Because of the electric double layer described in section 2.4.2,

there is always a cloud of counterions based on the magnitude of the surface charge. This means

that the conductance has a lower bound corresponding to the conductance contributed by the EDL.

Figure 3.6 shows the current at 200 mV plotted against the KCl concentration. The conductance

decreased with bulk conductivity and eventually leveled out when the KCl 1 mM.

3.3.1 Conductance model for rectangular nano- and microscale channels

We modeled the expected conductance using the measured bulk conductivity to estimate the bulk

conductance, and Stokes’ drag to estimate the contribution of the surfaces. Using these models,

we can estimate the conductance contributions of the bulk and of the surface and find the overall

conductance with G = Gbulk +Gsurface.

We can find the bulk resistance along a square channel of length L and cross-sectional area A

from the conductivity using

Gbulk =
1

Rbulk
= κ

A

L
, (3.5)

where κ is the conductivity of the bulk solution as measured by a conductivity meter. Combining

contributions of the micro and mixing channels gives

I = κV

(
Lm

wmhm
+

Lµ
wµhµ

)−1

, (3.6)

where wm and hm are the widths and heights of the mixing channels, and wµ and hµ are the widths

and heights of the microchannels.

We estimated the contribution of the surface charge using a model based on Stokes’ law which

gives the drift speed of a particle moving through a viscous medium at low Reynolds number as a
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function of the force on that particle. By applying this to charged particles in the EDL, we can

estimate the current due to the EDL as a function of the applied electric field.

According to Stokes’ law, the speed, v, of a particle with radius r moving through a fluid with

a viscosity η under a force F is

v =
F

6πηr
. (3.7)

For a particle with charge q in an electric field caused by a voltage difference ∆V dropping linearly

over a distance L, the force can be written

v =
∆V q

6πηrL
(3.8)

The charge screening the surfaces in a length of channel ∆L is the surface area inside multiplied

by the surface charge density,

∆Q = (2w + 2h)∆Lσ. (3.9)

If these ions are moving at a speed v, it takes a time ∆T = ∆L/v for this charge to move a distance

∆L and

I = ∆Q/∆T = (2w + 2h)σv. (3.10)

Plugging in equation 3.8 gives

I = (2w + 2h)σ
∆V q

6πηrL
. (3.11)

or

Gsurface =
1

Rsurface
=

(2w + 2h)σq

6πηrL
. (3.12)

Combining the contributions from the micro and mixing channels gives,

I =
6πηr

σq

(
2wm + 2hm

Lm
+

2wµ + 2hµ
Lµ

)
. (3.13)

Figure 3.6 shows plots of equations 3.13 and 3.6 in green and red respectively. We treated the

surface charge density, σ, as a free parameter, which we used to fit the model to the data. This

revealed a surface charge density of 200 mC m−2 in this device.
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Figure 3.6: Measured current as a function of bulk solution conductivity. Red dashed lines show
expected contributions from bulk ions, equation 3.6. Green dashed line shows expected contributions
from ions screening the surfaces, equation 3.13.

3.4 Width of the boundary layers at the ends of the mixing

channel

We used flows in the microchannels of our fluidic chips to refresh the solutions at either end of

the mixing channel and maintain a controlled viscosity gradient. Nevertheless, the inter-mixing of

the liquids in the channel and in the microchannels creates diffuse transition regions that increase

the effective length of the mixing channel. This effect can influence the magnitude of the viscosity

gradient. In this section, we theoretically calculate the width of the diffuse boundary layers at the

ends of the mixing channel.

We take the flows in the microchannels to be in the positive y direction with constant and

uniform speed u. Diffusion acts to transport molecules in the x direction. The interface between

a microchannel and the mixing channel is illustrated in figure 3.7. A molecule of the fluid with

diffusion coefficient D will diffuse a characteristic distance
√
Dt in a time t. The time it takes fluid

flowing in the microchannel to traverse the width, w, of the mixing channels is t = w/u. Therefore,

as fluid in a microchannel flows past the end of the mixing channel, diffusion creates a boundary

layer that grows in width as
√

∆y to a maximum value of
√
Dw/u at the far edge of the mixing
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Figure 3.7: Sketch of the mixing region extending into a microchannel.

channel. The mean width of the boundary layer over the width of the mixing channel is

∆Lm =
1

w

∫ w

0

√
Dl

u
dl =

2

3

√
Dw

u
, (3.14)

and this represents the effective extension of the mixing region.

The maximum flow rate inside a wide, flat rectangular channel is

u =
∆P

8η

h2

L
(3.15)

Combining equations 3.14 and 3.15 and the Stokes-Einstein equation (D = kBT
6πηr ) gives

∆Lm =
4

3

√
kBTwL

3π∆Prh2
. (3.16)

Here w, L, and h are the width, length, and height of the microchannel. Notice that eq. 3.16 does

not depend on the properties of the solution, only parameters that did not vary in our experiments.

Using the experimental values from our typical experiment, w = 150µm, L = 1.8 cm, h = 0.5 µm,

∆P = 100 kPa, and r = 1.25�A gives a ∆L of 27 µm. The boundary regions at the ends of the mixing

channel are relatively small compared with the length of the mixing channel itself. In our analyses,

we accounted for the small effective extension of the mixing channel due to diffusive mixing at the

ends by taking L = Lmixing+2×∆Lm, where Lmixing is the measured length of the mixing channel.
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Figure 3.8: Measuring viscophoresis in nanofluidic channels. Traces of (a) Iv and (b) ηL (orange
dashed) and ηR (blue) from a typical viscophoresis measurement.

3.5 Measurements of viscosity-driven currents in a nanoflu-

idic channel

3.5.1 Typical experiment

Figure 3.8a plots Im and Fig. 3.8b plots ηL and ηR during a typical experiment. After zeroing

the ammeter on a resistive dummy load, we pumped identical liquids with viscosities ηL = ηR =

2.6 mPa s through both microchannels. The homogeneous viscosity condition within the mixing

channel resulted in a stable current close to zero. Next, we imposed a viscosity gradient by flushing

the right microchannel with a liquid with a lower viscosity, ηR = 1.8 mPa s. A current began to

flow which settled at a stable value of Im = 38 pA after about 25 minutes. The polarity indicated

a flow of conventional (positive) current toward the right side. Next, we flipped the direction of

the viscosity gradient by flushing the right channel with a liquid of higher viscosity ηR = 3.6 mPa s,

and a current Im = −18 pA flowed, this time toward the left channel. Finally, we re-established the

homogeneous viscosity condition, and the flow of current halted.

The characteristic time for the system to reach steady state should roughly correspond to the

average time for a liquid particle to diffuse the length of the channel, t ≈ L2

2D ≈
3πηrL2

kBT
. For a 200µm

channel and a diffusivity corresponding to a 5�A particle diffusing in a liquid with viscosity 3 mPa s,

we get a characteristic time of 136 s. This looks roughly consistent with our data.
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Figure 3.9: a) Equivalent circuit representing the experimental device. The viscosity gradient
induced drift is treated as a constant current source. This current can fork back through the mixing
channel or through the ammeter via the micro-channels. b) The time evolution of the ratio of Im/Iv
assuming bulk conductivity evolves as shown in figure 3.4a, according to the models in section 3.3.1

3.5.2 Equivalent circuit and current forking ratio

The current that a viscosity gradient generates within the mixing channel, Iv, forks into two parts.

Im is the part that flows to the ammeter, but another part flows back through the mixing channel.

The forking ratio is determined by the relative electrical resistances of the mixing channel, Rm, the

left microchannel, RµL, and the right microchannel, RµR. The equivalent circuit shown in figure 3.9

gives the relationship Iv = Im
RµL+RµR+Rm

Rm
.

Fortunately, the conductivity variability described in section 3.2 does not cause the ratio Im/Iv

to change very much because it affects the conductivity of both the microchannels and the mixing

channel. The effect causes the forking ratio to vary by a maximum of 12%.

3.5.3 Dependence of Iv on ηR and ηL

Figure 3.10a shows the dependence of Iv on ηR for four fixed values of ηL. The magnitude of Iv

grew with the magnitude of the imposed viscosity difference. The current always flowed toward the

lower viscosity side. The data from the four sets of measurements collapse onto a single curve when

the product IvηL is plotted against the viscosity ratio ηR/ηL, as shown in Fig. 3.10b.

Figure 3.11a compares the dependence of Iv on ηR for two mixing channels of different lengths,

L = 100 and 400 µm, with ηL = 2.6 mPa s. The 400 µm mixing channel, which was four times longer

than the other, produced about a quarter the current.

Figure 3.11b compares measurements performed using liquids buffered at pH 5 with liquids

buffered at pH 8. The magnitude of Iv was approximately six times lower at pH 5 than at pH 8 for
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Figure 3.10: Experimental characteristics of viscophoresis. (a) Dependence of Iv on ηR for ηL = 1.1
(purple triangles), 1.5 (blue squares), 2.2 (red circles), and 3.4 mPa s (green diamonds) in a L =
200 µm channel. Lines show equation 3.29 with σ = 200 mC m−2. (b) Dependence of IvηL on ηR/ηL
for the same measurements. Line shows equation 3.29 rescaled by ηL.

Figure 3.11: The dependence of Iv on ηR is compared a) between channels with L = 100 (red
circles) and 400µm (blue squares); b) between measurements at pH 8 (red circles) and pH 5 (blue
squares) in a single L = 100µm channel; and c) between measurements at bulk KCl concentrations of
100 mM (red circles) and 500 mM (blue squares) in the same L = 100µm channel. In all cases ηL =
2.6 mPa s and the lines show fits of equation 3.29 to the data, which obtained a) σ = 400 mC m−2,
b) σ = 280 mC m−2 for pH 8 and σ = 50 mC m−2 for pH 5, and c) σ = 250 mC m−2. d) Dependence
IvηLL on ηR/ηL for measurements performed at pH 8 using various L and KCl concentrations, as
indicated. The line shows equation 3.29 rescaled by ηLL with σ = 200 mC m−2. The experimental
uncertainty in these figures is comparable to the size of the symbols.
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all viscosity gradients tested.

Figure 3.11c shows the dependence of Iv on ηR from measurements on the same device but with

two different KCl concentrations, 100 and 500 mM. The salt concentration had no discernible effect

on Iv.

Figure 3.11d shows data from a variety of different experimental conditions plotted on the same

rescaled axes. It includes data taken with 100 and with 500 mM KCl in four different devices. The

devices had mixing channels with lengths L = 100, 200, and 400 µm. The data all collapse when the

product IvηLL is plotted against the viscosity ratio ηR/ηL.

3.6 Discussion

These experiments indicate that the current originates in the motion of counterions in the electric

double layers near the mixing channel surfaces. Decreasing the pH of the liquid decreased the mag-

nitude of Iv because of the lower equilibrium surface charge density of the glass and the consequently

lower number of counterions. Changing the salt concentration caused no change in Iv because that

bulk property of the liquid does not significantly affect the surfaces [54].

Our measurements are well described by a stochastic model based on the isothermal rule. That

finding is consistent with previous measurements of colloidal particles and theoretical studies of

systems coupled to a heat bath [5, 36, 58], which also point to the applicability of the isothermal

rule. A particle obeying the isothermal rule drifts toward higher diffusivity with a drift speed

〈ẋ〉 =
dD(x)

dx
. (3.17)

The isothermal rule also leads to a generalization of Fick’s law in which the flux, J , is related

to the concentration profile, φ(x), by J(x) = −D(x)dφ(x)
dx [31]. Thus, a uniform distribution of

particles exhibits no net flux. However, the electrochemical currents we measured involve the arrival

and absorption of ions at one electrode and the accompanying release of ions from the other. As

explored further in chapter 4, that process shifts the distributions of ions away from uniformity and

allows a flux in the steady state.

To provide intuition for the existence of drift and the absence of flux that the isothermal rule

predicts in equilibrium, an analogy with sedimenting particles is sometimes invoked [58]. Particles
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sedimenting in a container have a net drift due to gravity but reach a flux-less equilibrium supported

by a concentration gradient. However, the boundary condition for a particle arriving at the bottom

of a closed container differs fundamentally from that of an ion arriving at an electrode. For a closer

analogy, a sedimenting particle should be absorbed by the bottom and a new particle released from

above. That system would clearly exhibit a steady state flux related to the drift speed and mean

density of the particles, ρ̄, as J = 〈ẋ〉ρ̄.

3.6.1 Deriving a model of Iv

We found that the currents we measured are well described by a simple model in which the positive

surface counterions drift uniformly according to equation 3.17. For a uniform charge density on the

walls of the rectangular mixing channel, this leads to

Iv = σ(2w + 2h) 〈ẋ(t)〉 , (3.18)

where 〈ẋ〉 is the counterion drift speed, w and h are the width and height of the channel, and −σ is

the average surface charge density of the channel. Using equation 3.17 along with the Stokes-Einstein

relation gives,

Iv = −σ(w + h)
kBT

3πr

1

η2

dη(x)

dx
. (3.19)

Now, we need to find η(x).

Viscosity profile inside the nanofluidic mixing channel

We calculated η(x) based on two assumptions: First, we presume, as in section 3.2.2, that the

viscosity of a mixture of two liquids obeys

η(φ) = η1−φ
L ηφR, (3.20)

where φ is the volume fraction of the liquid with viscosity ηg, and ηf the viscosity of the other liquid.

Second, we assume that as the molecules that comprise the liquids intermix, they execute Brow-

nian motions with an isothermal integration rule, i.e. they obey the same equations of motion as

the counterions whose currents we have measured. We showed that isothermal integration rule also
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corresponds to the “Fick” generalization of the diffusion equation [59]

∂φi
∂t

=
∂

∂x
Di(x)

∂φi
∂x

, (3.21)

where φi is the volume fraction of diffusing species i, and Di(x) is its local diffusion coefficient. This

says that in steady state D(x)∂φ∂x = D(x)∂φ∂η
∂η
∂x is constant for each species. Since D ∝ 1/η according

to the Stokes Einstein equation,

1

η(x)

∂φ

∂η

∂η

∂x
= const, (3.22)

Next, we can invert equation 3.20 to find

φ(η) =
ln η/ηf
ln ηg/ηf

. (3.23)

Now we can calculate,

∂φ

∂η
=

1

η

1

ln ηg/ηf
(3.24)

Combining this with equation 3.22 gives,

1

η2

∂η

∂x
= const. (3.25)

Integrating this and applying the boundary conditions η = ηL at x = 0 and η = ηR at x = L leads

to the theoretical viscosity profile inside the mixing channel

η(x) =

[
1

ηL
− x

L

(
1

ηL
− 1

ηR

)]−1

. (3.26)

Iv as a function of ηL and ηR

Returning to equation 3.18, since 1
η2

∂η
∂x is constant, we can use its value anywhere. At x = 0, the

value is,

1

η2

∂η

∂x
=

1

η2
L

∂η

∂x

∣∣∣∣
x=0

=
1

L

(
1

ηL
− 1

ηR

)
(3.27)

Combining equation 3.26 with equation 3.18 gives

Iv = −kBTσ
3πr

w + h

L

(
1

ηL
− 1

ηR

)
. (3.28)
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For our mixing channel, w � h so we can write

Iv = −kBTσ
3πr

w

L

(
1

ηL
− 1

ηR

)
. (3.29)

Equation 3.29 agrees quantitatively with the data in Fig 3.10(a) with no adjustable parame-

ters; we measured σ = 200 mC m−2 in a separate conductance saturation experiment described in

section 3.3 and obtained r = 1.25�A from measurements of conductivity and viscosity using the

Stokes-Einstein equation. Equation 3.29 also predicts the observed L-dependence in Fig 3.11(a)

using σ = 400 mC m−2 for those devices, which were fabricated together. In Fig 3.11(b) we fit

equation 3.29 to pH-dependent data using σ as a fitting parameter and found σ = 280 mC m−2 for

pH 8 and σ = 50 mC m−2 for pH 5. As expected, the more acidic conditions lowered the surface

charge density of the glass nanochannel. Equation 3.29 also predicts that Iv is independent of KCl

concentration, consistent with the data in Fig 3.11(c). The data collapse in Fig 3.10(b) follows

directly from equation 3.29, which gives

IvηL = −kBTσ
3πr

w

L

(
1− ηL

ηR

)
(3.30)

when rescaled by ηL. Similarly, rescaling by ηLL gives

IvηLL = −kBTσ
3πr

w

(
1− ηL

ηR

)
, (3.31)

consistent with the data in Fig 3.11(d).

3.7 Other sources of current

We have excluded the possibility that the currents we measured in the above experiments result

from a chemical potential gradient due to the composition of our experimental liquids, the streaming

current driven by a pressure imbalance across the mixing channel, or the Bernoulli effect resulting

from the differential flow speeds in our microchannels.
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3.7.1 Chemical potential gradient

A gradient in the chemical potential of ions can drive a current. To eliminate this as a possible

explanation for the current that we measured, we estimated the effect of a chemical potential gradient

arising from the inhomogeneous solvent.

Ions in the bulk liquid

If an ion has a different solvation energy in glycerol/water than in formamide/water, there will be

a chemical force acting to drive it toward a lower chemical potential and resulting in an electrical

current. In particular, if K+ has a lower solvation energy in glycerol than in formamide, a net

current of these ions could flow toward regions of higher glycerol concentration. Similarly, if Cl− has

a lower solvation energy in formamide than glycerol, a net current of these ions could flow toward

regions of higher formamide concentration. Furthermore, we expect a chemically-driven current to

grow with the magnitude of the viscosity gradient because the viscosity gradient reflects the gradient

in the chemical composition of the liquid. Therefore, a chemical potential gradient could generate

a current similar to the one we have measured and attributed to the viscosity gradient. However,

such a current would scale linearly with the bulk salt concentrations. In contrast, we found that the

bulk KCl salt concentration had almost no effect on the measured current, so we can rule out bulk

ion transport due to chemical potential gradients as the cause of the current we measured.

Surface

The bulk argument presented above does not rule out the possibility that chemical potential gradients

give rise to currents in the electric double layers near surfaces. There can exist a gradient in the

chemical potential of K+ that drives it in the direction of increasing formamide content; the absence

of a bulk ionic current only implies that the chemically driven motion of K+ must be offset by an

equivalent motion of Cl− in the same direction. In the electric double layers, there is an excess of

K+, so the motion of that ion will no longer be offset by Cl−. We know from the absence of a bulk

ionic current that K+ and Cl− experience the same chemical potential differences between glycerol

and formamide, and we can estimate those chemical potential differences based on KCl solubilities.

The change in free energy associated with the dissolution of KCl (KCl −→ K+ + Cl−) in solvent
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i, ∆Gi, is

∆Gi = µK+

0,i + µCl−

0,i − µKCl
0,i + kBT log(CK+

i CCl−

i ), (3.32)

where µx0,i is the standard chemical potential of species x in solvent i, and CK+

i and CCl−

i are the

concentrations of K+ and Cl−, respectively. When the concentrations of K+ and Cl− are constant

and equal to each other, as they are in our experiments, the change in free energy as KCl moves

from glycerol to formamide, ∆Gg→f , is

∆Gg→f = µK,g0 + µCl,g0 − µK,f0 − µCl,f0 . (3.33)

We can relate eq. 3.33 to the solubilities of KCl in glycerol and formamide. We begin by noting that

at the saturation concentration, Ci,sat = CK+

i = CCl−

i , dissolving additional KCl does not lower the

free energy, and ∆Gi = 0 in eq. 3.32 implies

µK+

0,i + µCl−

0,i − µKCl
0,i = −kBT log[(Ci,sat)

2]. (3.34)

Combining eqs. 3.33 and 3.34 obtains

∆Gg→f = µKCl
0,f − µKCl

0,g − 2kBT log

(
Cf,sat
Cg,sat

)
. (3.35)

Because KCl is a solid, its chemical potential cannot depend on the solvent. Therefore, µKCl
0,f = µKCl

0,g ,

and eq. 3.35 simplifies to

∆Gg→f = 2kBT log

(
Cg,sat
Cf,sat

)
. (3.36)

The free energy change in eq. 3.36 occurs over the length of the mixing channel, so the effective

force F that it exerts on salt ions inside the mixing channel is

F =
2kBT

L
log

(
Cg,sat
Cf,sat

)
. (3.37)

If we model the viscous drag on the ions with Stokes’ drag on a sphere of radius r, the resulting

drift speed is

v =
F

6πηr
=

kBT

3πηrL
log

(
Cg,sat
Cf,sat

)
. (3.38)

The drift of ions can result in a net current where there is an imbalance in the density of positive
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and negative ions, namely, in the electric double layers near the channel surfaces. For a channel with

w � L, we can neglect edge effects and approximate the current as I = 2σwv, which is combined

with eq. 3.38 to obtain

I =
F

6πηr
=

2

3
kBT

σ

πηr

w

L
log

(
Cg,sat
Cf,sat

)
. (3.39)

The saturation concentrations for KCl in glycerol and formamide are 1106 mM and 939 mM,

respectively [60, 61]. Using pure formamide and glycerol concentrations and typical parameters

from our experiment (w = 150µm, L = 200µm, r = 1.25�A), and the measured viscosity of an equal

glycerol-formamide mixture, η = 21.2 mPa s, gives only 8 pA. Our liquids always contained 50%

water, so this represents conditions more extreme than those found in our experiments. Further,

KCl is more soluble in glycerol than in formamide, meaning this effect would tend to pull ions toward

the high viscosity side, opposite from what we saw in our experiments. Therefore, we conclude that

chemical forces cannot account for more than a small fraction of the currents we measured.

3.7.2 Streaming current

Streaming currents are a potential alternative explanation for the currents we have measured. How-

ever, we have found that the currents do not immediately die when the microchannel flows are

turned off. This observation is not consistent with streaming current.

Further, estimates of streaming current show the effect to be far too small. A measurement of

streaming current in a similar glass mixing channel gives a good estimate of the magnitude. The

Dekker group found a current of less than 10 pA of streaming current driven by 1 bar of pressure in

a water-filled mixing channel 4.5 mm long, 50 µm wide, and 100 nm tall. Our mixing channel is 22.5

times shorter and three times wider. This results in more streaming current. It is also half as tall

and has at least double the viscosity. Based on scaling, this leads to an estimate of 84 pA bar−1. This

means that even 100 mbar across our mixing channel could only drive 8.4 pA. This is not enough to

explain the effect we have measured.

3.7.3 Bernoulli effect

The liquid viscosities in the two microchannels are different, so the flow rates through them are

also different. This introduces the possibility of a pressure difference developing across the mixing

channel due to the Bernoulli effect. Again, this effect would stop as soon as flow stops, but the



54

current we have measured persists.

An estimate of the magnitude of this effect also shows it to be far too small. Bernoulli’s principle

says

P +
ρv2

2
= const (3.40)

Comparing the points at either end of the nanochannel,

PL +
ρRv

2
L

2
= PR +

ρRv
2
R

2
(3.41)

PL − PR =
1

2

(
ρRv

2
R − ρLv2

L

)
(3.42)

The maximum flow rate in a rectangular channel of width w, height h, and length l, where

w >> h is

umax =
h2Pa
8ηl

, (3.43)

where Pa is the pressure applied to the microchannels, and η is the viscosity.

The pressure arising as a result of Bernoulli’s principle is,

PL − PR =
Pa
128

h4

l2

(
ρR
η2
R

− ρL
η2
L

)
(3.44)

This amounts to about 5× 10−11 bar. Using the above estimate of 84 pA bar−1 gives a minuscule

current of 4.2× 10−9 pA

3.8 Conclusion

We designed a glass nanofluidic system sensitive to a viscosity gradient driven drift which allowed

us to vary the viscosity profile and net charge concentration in various ways. We concluded liquid

viscosity gradients drove the surprisingly large ionic currents we measured inside our nanofluidic

channels. The microscopic mechanism is the noise-induced drift of counterions obeying the isother-

mal rule. The electrodes also play an essential role by permitting a finite, steady-state flux in a

system that would otherwise reach a homogeneous and flux-less equilibrium. This conclusion will

be expanded upon in chapter 4. Transport in a viscosity gradient evidently uses the free energy of
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mixing to drive transport, in contrast with other forms of noise-driven motion, like Brownian motors,

which consume chemical energy to rectify thermal noise [62]. We speculate that the effect we have

measured could cause significant motion within and between cells, across synthetic membranes, and

within nanofluidic devices, where viscosities can vary by orders of magnitude over short distances

[63]. Furthermore, even viscosity gradients over large distances might influence the distributions

of hydrocarbons, sediments, and other small particles in geological systems over long timescales.

Finally, the simple picture of drifting counterions we presented describes our measurements well,

despite neglecting the full behavior of co- and counterions, the electro-neutrality condition, and

possibly other complications. Computational methods can account for such details in biological,

chemical, and other liquid systems where viscosity gradients naturally arise. It is important that

they apply the isothermal rule or miss real and potentially large effects [38, 40].



Chapter 4

The mechanisms of diffusion in a

viscosity gradient

We posited that the current we measured in our experiments originates in the drift of ions toward low

viscosity, which is expected if the ions obey the isothermal rule. But how does that drift translate

into a measurable current? That turns out to be a surprisingly subtle question because the flux

of particles obeying the isothermal rule is not directly linked to the viscosity gradient. We used

simulations to understand the connections between flux, drift, and viscosity.

In section 2.3, we showed the connection between the integration conventions and the general-

izations of Fick’s law. In chapter 3 we showed that a model based on the isothermal convention,

which predicts drift according to 〈ẋ〉 = dD(x)
dx , agrees nicely with our data. However, the theory

based on the isothermal convention has a feature that was initially confusing. The Fokker-Planck

generalization of Fick’s law, which corresponds to the Itô convention, explicitly predicts flux which

depends on the diffusivity gradient,

J = − d

dx
D(x)ρ(x) = −ρdD(x)

dx
−Ddρ(x)

dx
. (4.1)

However, the predicted flux goes toward lower diffusivity, opposite of what we saw in our experiments.

The other generalization of Fick’s law,

J = −D(x)
dρ(x)

dx
, (4.2)

56
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has no diffusivity gradient term. The presence of explicit dD
dx in equation 4.1 but not in equation 4.2

led me to initially believe I might have reversed the leads on the ammeter, or in some other way

inverted the current. Instead, as we will show below, it is possible to find flux without explicit

diffusivity gradient term in equation 4.2.

The key to explaining the sustained currents in our experiments lies in the boundary conditions.

Commonly, simulations of inhomogeneous diffusion are performed inside some closed domain which

particles cannot enter or leave. Closed boundary conditions like this require a flux-less steady-state.

Periodic conditions, which effectively connect the boundaries, have no such restriction.

4.1 Simulation design

We studied diffusion in a viscosity gradient with a simple model for the motion of particles. The

basis for our model was a paper by Volpe and Wehr, which uses the stochastic differential equation

[5],

dxt =
√

2D(x)dWt ≡ σ(x)dWt, (4.3)

where dxt = xt − xt′ is the change in position between times t and t′, D is the diffusivity, dWt =

Wt −Wt′ is a random variable with mean zero and variance t − t′. In these simulations, we break

the continuous path of a particle into discrete steps, xn, occurring with a regular time interval ∆t.

It is convenient to use σ(x) ≡
√

2D(x), which represents the size of each random step. We will use

a discrete form of equation 4.3,

∆x = xn+1 − xn = σ(x)(±
√

∆t). (4.4)

The random variable dWt in equation 4.3 has been represented in equation 4.4 by a discrete random

variable ±
√

∆t (where the ± represents the random choice), which has variance ∆t. We set ∆t = 1

and used a spatial domain 100 units wide. Typically, in simulations like this one, when a particle

would pass through a boundary at x = 0 or x = 100, it is instead reflected back into the domain [5].

Figure 4.2a shows a diagram of a particle whose final position would have sent it past the boundary

by a distance a. Instead, the particle is placed a distance a inside the domain. This rule is known

as a reflective boundary condition [5].

For a system without a diffusivity gradient, the application of equation 4.4 is uncomplicated. We
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Figure 4.1: Simulated diffusion of 105 particles with reflective boundary conditions and spatially-
constant diffusivity. a) Five sample particle trajectories. b) The distribution of particles after 10,
100, and 1000 time steps. Dashed lines show theoretical expectation according to equation 4.5.

simply generate a random choice, either
√

∆t or −
√

∆t, multiply it by σ, add the result to xn, and

repeat.

4.1.1 Constant diffusivity

Figure 4.1a shows five sample trajectories for particles with D = 1. Particles are just as likely to go

in either direction. The particles start tightly clustered but spread out over time. By 1000 steps,

they look randomly distributed. The purple trajectory in figure 4.1a shows a particle bumping

against the wall at x = 0.

Figure 4.1b shows the distributions of 105 particles with uniform diffusivity D = 1 after 10, 100,

and 1000 time steps. The particles were released from an initially Gaussian distribution centered at

x = 50 with a standard deviation 1. The sharply peaked distribution spreads symmetrically about

x = 50, relaxing to a half-max width of about 10 after 10 time steps and 35 after 100 steps. By step

1000, the distribution was nearly flat. We compared the simulated distributions with the analytic

solution for point-source free diffusion: a Guassian function whose width increases with time,

ρ(x, t) =
N√

4πDt
e−x

2/4Dt, (4.5)
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where N is the number of particles [21]. Our simulation matches equation 4.5 well after 10 and

100 steps, but shows an overabundance of particles everywhere after 1000 steps. This is because

equation 4.5 is a solution for diffusion in free space, but our simulation will not let particles leave

the domain.

4.1.2 Diffusivity gradient

Introducing a diffusivity gradient complicates the model in an important way. Each particle begins

a step at a position xn and ends at xn+1 so we have to choose where in that interval to evaluate

function σ(x); any location from xn to xn+1 is equally valid. We could use the Itô convention,

evaluating the diffusivity at the beginning of the step:

xn+1 = xn ± σ(xn)
√

∆t. (4.6)

We could use the Stratonovich convention, evaluating the diffusivity in the middle of the step:

xn+1 = xn ± σ
(
xn+1 + xn

2

)√
∆t. (4.7)

Finally, we could use the isothermal convention, evaluating it at the end:

xn+1 = xn ± σ(xn+1)
√

∆t. (4.8)

The Itô convention, represented by equation 4.6, is the easiest to implement in a simulation

because we know the current position of each particle and can straightforwardly computer the value

of σ(xn). Equations 4.7 and 4.8 present an apparent catch-22. They require us to know where the

particle will land to find the step size, but, of course, we must know the step size to compute where

the particle will land. We will show how to find xn+1 in a self-consistent manner by first noting that

equations 4.6, 4.7, and 4.8 can be expressed as special cases of a more general equation in which a

continuous parameter α represents the choice of where to evaluate σ(x),

xn+1 = xn ± σ(xn + α∆x)
√

∆t. (4.9)

The parameter α runs from 0 to 1, and equations 4.6, 4.7, and 4.8 are special cases with α = 0,
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1/2, and 1 respectively. We Taylor expand equation 4.9 to first order about the point xn to find an

equation for xn+1 based on xn and the gradient in the diffusivity,

σ(xn + α∆x) ≈ σ(xn) + α
dσ(x)

dx
∆x. (4.10)

Substituting in equation 4.4 gives

σ(xn + α∆x) ≈ σ(xn)± ασ(xn)
dσ(xn)

dx

√
∆t (4.11)

and applying to equation 4.9 gives a way to calculate xn+1 in terms of xn for any value of α,

xn+1 = xn + ασ(xn)
dσ(xn)

dx
δt± σ(xn)

√
δt. (4.12)

In terms of D(x), this would be,

xn+1 = xn + α
dD(xn)

dx
δt±

√
2D(xn)δt. (4.13)

Consider a step subject to the isothermal rule as given by equation 4.9 with α = 1. The diffusive

third term in equation 4.9 updates the position based on σ(xn), as prescribed by the Itô convention.

By adding the second term, sometimes called the spurious or noise-induced drift, we recover the

results of the isothermal convention [32, 5, 31]. In other words, a trajectory in the isothermal

convention is equivalent to one in the Itô convention with an added drift term [5, 31].

4.2 Results of simulations with diffusivity gradients

4.2.1 Using reflective boundary conditions

Our first goal was to replicate Wehr and Volpe’s simulations [5]. In their paper, they studied

the Itô, Stratonovich, and isothermal integration conventions using simulations and demonstrated

how this choice affects the steady-state particle distribution, finding a monotonically decreasing

particle density when using the Itô convention, and a flat one when using the isothermal convention.

Figure 4.4, from Volpe and Wehr’s paper, shows σ(x) (a,d,g), a sample particle trajectory (b,e,h),

and the time evolution of the particle distributions (c,f,i) they simulated for different values of α.
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Figure 4.2: a) A particle hopping into a reflective boundary condition. b) A particle hopping into a
boundary condition designed to emulate an electrode.

Figure 4.3: Simulated diffusion of 105 particles with reflective boundary conditions using different
integration conventions. Evolution of the particle distribution using a) the Itô convention and b)
the isothermal convention. c) Diffusivity as a function of x.
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Figure 4.4: Evolution of the random walker with multiplicative noise for various values of α. (a)
For α = 0, the amplitude of each random step is a function of the initial state and is therefore
symmetrically distributed; (b) example of a trajectory in state space; (c) probability density of
the distributions at selected times. The corresponding results for α = 0.5 and α = 1 are shown
in ((d)–(f)) and ((g)–(i)), respectively. In all cases, reflecting boundary conditions are imposed at
x = 0 and x = 100. Note that the steady-state probability distribution is uniform only in the α = 1
case, while in the other two cases it is peaked in the low-noise (small σ(x) ) region. The steady-state
probability distributions are calculated from 100 000 simulated trajectories. Figure and caption by
Volpe and Wehr [5].
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Figure 4.5: Simulated equilibrium particle densities in the a) Itô convention and b) isothermal
convention. Dotted lines show the farthest positions, x+ and x−, from which particles can cross a
test point, x′, from the left and right respectively. The areas of the shaded regions below the curve
are proportional to the approximate number of particles that can cross x′ from the left (orange) and
the right (blue) in one step.

We set all simulation parameters to match those of Volpe and Wehr’s [5]. Importantly, we used

the same reflective boundary condition shown in figure 4.2 that Volpe and Wehr did. The simulation

contains 105 particles with an initial Gaussian distribution with mean 50 and standard deviation 1

at intervals up to 106 time steps, enough to reach steady state. Figure 4.3c shows the diffusivity

function used in the simulation. It corresponds to σ(x) = 0.2 + 0.02x, a formula estimated from

figures 4.4a, d, and g [5].

Our results closely match Volpe and Wehr’s. Figure 4.3a shows the distribution of particles in

a simulation of diffusion using the Itô convention. After 10 and 100 steps, the initial distributions

widened and skewed slightly to the left. By t = 103, the tails of the distribution reached the

boundaries, and the distribution is skewed noticeably left. It is clear the system has reached steady

state by 104 steps because no further change is visible by 105 steps. Particles have piled up against

the left boundary. Once the steady state was reached, we measured no significant flux across x = 50.
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Likewise, the figure 4.3b simulates diffusion under the α = 1 or isothermal convention. The dis-

tributions look roughly Gaussian until step after 101 and 102 steps. After 103 steps, the distribution

has reached the boundary at x = 100, but not the one at x = 0. By 104 steps, the system reached

a steady state with a flat ion distribution and no significant flux through x = 50.

The lack of flux in these cases is not a surprise. In a closed container like the one simulated

here, flux cannot exist anywhere in steady state. This constraint, along with spatial differences in

hop length, allows us to understand the asymmetric steady state distribution resulting from the Itô

rule in figure 4.3a, as well as the flat distribution resulting from the isothermal rule in figure 4.3b.

Figure 4.5a shows, for an arbitrary test point x′, the farthest points to the left and right from which

particles are capable of hopping to or past x′ for the Itô convention. The region on the right is always

larger than that on the left because the diffusivity increases toward the right so hops originating from

that direction are longer. Figure 4.5a also shows the equilibrium particle distribution, as calculated

by our simulation and shown in figure 4.3a. The regions under the ρ curve shaded with orange and

blue and are proportional to the number of particles that can possibly pass x’ from the left and

right respectively. Since particles jump left and right with equal probabilities in our model, the

areas of these regions are proportional to the average number of particles that will cross x’ in each

direction in a given time step. Any difference in these areas indicates that a net flux will flow away

from the larger region. The system must reach an equilibrium where the particle distribution always

decreases toward the right in a way that compensates for the difference in hop length and brings the

shaded areas into equality.

Figure 4.5b again shows the region to the left and right of an arbitrary point x′ inside which

particles are capable of hopping past x′, but this time for the isothermal rule. The hop lengths are

based on the hop’s end position, so the size of these regions is equal. In this closed system, the flux

must eventually reach zero everywhere. For the shaded regions to be equal for every choice of x′, the

equilibrium distribution must be flat, which is what we see in figure 4.3b. Equation 4.12 suggests

another perspective from which to view the isothermal convention of stochastic motion. As hopping

with hop-length determined by the starting position, with a superimposed drift proportional to the

gradient in the diffusivity.

In this simulation, we have drift but no flux. The situation is analogous to particles sedimenting

in a closed container. Each particle experiences a net downward drift due to gravity. The drift

causes a flux until a reverse concentration gradient builds up, matching gravity with a statistical
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Figure 4.6: Simulated equilibrium particle density in the isothermal convention with electrode bound-
ary conditions. a) Dotted lines show farthest positions from which particles can reach or cross a test
point, x′, from the left and right. The areas of the shaded regions are proportional to the number
of particles that can reach or cross x′ from the left (orange) or right (blue) in one step. b) Dotted
lines show the farthest positions from which particles can reach or cross the boundaries at L = 0
and L = 100. Area of the shaded regions is proportional the number of particles with a chance to
hit the boundary at x = 0 (orange) or x = 100 (blue) in one step.

upward migration. Here, the drift is not countered by a concentration gradient, but instead by a

gradient in hop length.

4.2.2 Using electrode boundary conditions

The reflective boundary conditions used above are a poor model for our experiment, where electrodes

at either end of the mixing channel can absorb and emit ions instead of reflecting them. When an ion

in a nanochannel arrives at an electrode it can be absorbed and effectively re-emitted at the opposite

electrode. This wraps the domain into a circle and breaks the requirement that the flux be zero. We

studied the following boundary condition to better model electrodes. Any particle that would pass a

boundary in the simulation is counted and moved to the opposite boundary. Figure 4.2b illustrates
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Figure 4.7: Simulated diffusion of 105 particles with electrode boundary conditions using the isother-
mal convention. a) Evolution of the particle distribution. b) Diffusivity as a function of x.

a particle that would hop past the boundary instead being placed inside the domain at the opposite

boundary. The result is a steady state flux and a non-uniform particle distribution.

Figure 4.7a shows the evolution of the simulated particles distribution using the isothermal

convention. This simulation was the same as the one in figure 4.3b, but with the electrode boundary

conditions described above. Figure 4.7b shows the diffusivity function used in the simulation. By

step 104, the system reached steady state. This time, the distribution is not flat. The concentration

is highest on the left and decreases monotonically to the right. Figure 4.6a illustrates the regions

in which particles can reach or pass x’ in one step, along with the distribution of particles found in

the isothermal experiment with electrode boundary conditions. The left shaded region under the

curve is larger than the right shaded region, meaning that we expect net right-ward flux. In steady-

state, this flux must be constant for every choice of x′, including at the boundaries. This constraint

determines the magnitude of the flux. Figure 4.6b shows the regions inside which particles can reach

the boundaries at L = 0 and L = 100. The difference in the areas of these regions represents the

flux through the boundary, which must be equal to the flux everywhere else in steady state.

Returning to the sedimentation analogy, isothermal diffusion with electrode boundary conditions

is like sedimentation in an infinite container. The concentration gradient doesn’t build up and

steady-state flux can exist.
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4.3 Mathematical analysis of the toy model

The toy model represented in this simulation is simple enough that we can analytically approximate

ρ(x) for the isothermal rule. We can estimate the flux through a point x′ by calculating the number

of particles on the left and right with a chance to hop past x′. Turning this into a differential

equation, we can solve for the steady-state particle distributions with the reflective and electrode

boundary conditions.

We can estimate the flux in the isothermal convention by looking at figure 4.6a,

J =
1

2
[ρ(x′ − σl/2)σl − ρ(x′ + σr/2)σr] , (4.14)

where ρ(x) is the particle density at x. The length of a hop arriving at x′, σ(x′), is also the width of

the regions to the left and right where particles can pass x′, and ρ(x′−σ(x′)/2) and ρ(x′+σ(x′)/2) are

midpoint estimates of the particle densities there. Multiplying the width by ρ gives the approximate

number of particles that can pass x′ from either side, and the factor of 1
2 reflects the fact that only

half of the particles that can cross x′ will because the other half will hop in the wrong direction. We

can insert the finite difference approximation

dρ

dx
=
ρ(x+ σ/2)− ρ(x− σ/2)

σ
(4.15)

and obtain the same generalization of Fick’s law shown in equation 4.2,

J = −σ
2

2

dρ

dx
= −Ddρ

dx
. (4.16)

It is nice to see the toy model replicate this.

Inserting a linear function (like the one used by Volpe and Wehr [5]), σ(x) = σ0 + xσ′, we can

solve for the particle density profile, ρ(x). We get a differential equation,

dρ

dx
= − 2J

σ0 + xσ′
. (4.17)
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In steady state, J should be constant in space. This leads to a solution,

ρ(x) =
2J

σ′(σ0 + xσ′)
+ c. (4.18)

The flux should also be consistent at the boundaries. The number of particles exiting at the right

less the number exiting on the left should equal J . With reflective boundary conditions, J must be

zero, and ρ(x) must be constant:

ρ(x) =
N

L
, (4.19)

where N is the number of particles in the simulation and L is the size of the domain of the simulation.

With electrode boundary conditions, the numbers exiting right and left will depend on the

densities ρ(0) and ρ(L), and the hop lengths σ(0) and σ(L). We can express this as

J =
1

2
[ρ(L)σ(L)− ρ(0)σ(0)] . (4.20)

Combining equation 4.18 and equation 4.20 gives,

J =
1

2
cLσ′. (4.21)

This lets us replace the constant in equation 4.18,

ρ(x) =
2J

σ′(σ0 + xσ′)
+

2J

Lσ′
. (4.22)

We can apply a normalization to find J as a function of the number of particles, N . Defining,

∫ L

0

ρ(x)dx = N, (4.23)

we get,

ρ(x) =
N

L

σ′(L+ σ(x))

σ(x)(ln(σ(x)/σ0) + σ′)
(4.24)

Figure 4.8 shows the simulation plotted in figure 4.7a, along with equation 4.24. The solution we

found has a similar shape to the steady state distribution from the simulation but predicts a higher

density near x = 0 than we found. We have not yet found a good explanation for this discrepancy.
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Figure 4.8: a) Simulated distribution of 105 particles relaxing from peaked distribution to steady
state distribution using the isothermal convention and electrode boundary conditions. Dashed line
shows

4.4 Comparison with experiment

Our simulations show the effects of integration convention and boundary conditions, but how do they

compare to our experiments? We performed simulations to qualitatively match our experiments.

In those experiments, we varied the viscosity on both sides of our nanochannel, the length of our

nanochannel, the pH of the solution, and the bulk salt concentration.

In the simulations that follow, we tried to match the features of our experiments more closely.

We only used the isothermal integration rule and electrode boundary conditions. In the simulations

discussed above, we used linear functions for σ(x) to match the conditions used by Volpe and Wehr

[5]. In the simulations presented below, we match the steady state viscosity profile we found in

equation 3.26, which corresponds to a linear diffusivity gradient. We used a flat initial particle

distribution to hasten the arrival at steady state.

The result, we noticed, was that the simulator would immediately register flux at the boundaries,

but no flux at the center. After a long delay, the flux at the center would catch up. Figure 4.9a shows

the evolution of a flat particle distribution toward steady state. The initially flat distribution at

x = L/2 explains the lack of flux there. The gradient in ρ(x) seems to build in from the boundaries.

Figure 4.9b shows the absolute difference between the center and boundary fluxes (as a fraction of the

boundary flux) for a range of times as the system approaches steady state. Two different simulations
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Figure 4.9: a) The evolution of an initially flat particle distribution with the isothermal rule and
electrode boundary conditions. b) The fractional absolute difference in flux at the center and at the
boundaries for simulations with domain sizes of 100 and 200.

are shown, with domain sizes of 100 and 200. At first, the fractional absolute flux difference is 1,

because all of the flux is at the boundary. At about step 2000 for the L = 100 simulation and step

10 000 for the L = 200 simulation, the difference starts to drop. Eventually, the difference becomes

negligible as the fluxes converge to the same number, once the system is in steady state. We used

analysis like this to guide the lengths of our simulations.

To compare with our viscosity-varying experiments, we performed simulations with a variety of

diffusivity profiles. We simulated 105 particles according to the isothermal rule for 2× 105 times

steps, counting flux for the last 5× 104 steps. Once the system reached equilibrium, we started

counting the flux at the boundaries and at x = L/2, where L is the size of the simulation domain.

Figure 4.10a shows the simulated flux as a function of the inverse diffusivity at x = L with the

viscosity at x = 0 fixed at η(x = 0) = 10. Figure 4.10b shows the diffusivity profiles used for each

data point. We have used inverse diffusivity as the independent variable here to represent viscosity

and make the plot easily comparable to figure 3.10a. The similarities are clear: ions flow toward

lower viscosity with the curve flattening out at higher values of ηR or η(x = L).

Figure 4.11a shows the simulated flux as a function of the simulation domain size. The the

particle number density, N/L, and diffusivities at the boundaries, D(x = 0) and D(x = L) were

kept constant. Figure 4.11b shows the diffusivity gradients used, where the color corresponds to the

color of the data points in figure 4.11a. As the domain gets longer, the gradient decreases and so

does the drift speed. The dotted line in figure 4.11a shows the expected flux dependence, 1/L. This
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Figure 4.10: Flux in simulations with several diffusivity ratios using the isothermal rule and electrode
boundary conditions. a) Dependence of flux on D(x = L)−1. b) Diffusivity profiles, color coded to
match points in (a).

Figure 4.11: Flux in simulations with several domain lengths using the isothermal rule and electrode
boundary conditions. a) Dependence of flux on L. b) Diffusivity profiles, color coded to match
points in (a).
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dependence matches equation 3.29.

4.5 Alternate derivation of η(x) and interpretation of drift

At present, we have not measured the viscosity profile between the two ends of the channel. In

section 3.2.3, we presented a model for η(x), which we used to build a quantitative theoretical model

of the viscosity gradient driven ionic current. Here, we present a more sophisticated model which

arrives at the same results and suggests an alternate interpretation of the ionic currents we measured

and described in chapter 3. In chapter 5, we will discuss an experiment which could in the future

provide a measurement of the viscosity profile.

The Maxwell-Stefan theory of diffusion applies to systems with n components of any concentra-

tion [57]. Thermodynamic interactions for each species i, represented by a gradients in a chemical

potential, ∇µi, are balanced by friction with each other species, j, based on the velocity difference,

~vi − ~vj and the mole fractions of those species, φj ,

φi
kBT

∇(T,p)µi =

n∑
j=1

Γij∇φj = −
n∑
j=1

φiφj
Dij

(~vi − ~vj). (4.25)

Here, kBT is the thermal energy, Dij are the Maxwell-Stefan diffusivities which can be interpreted as

inverse of the drag coefficients between species i and j, and Γij is related to the activity coefficients

γi by Γij = δij + φi
∂ log γi
∂φj

.

Here, the chemical potential gradients could include contributions from the chemical interactions

between the species. In our experiments, we took steps to minimize enthalpic chemical potential

gradients for salt ions within our channels, so that only the entropic free energy of mixing would be

important. We also used miscible solvents that we approximate to be an ideal mixture, with activity

coefficients all equal to 1. In this idealized, one-dimensional situation, equation 4.25 simplifies to

n∑
j=1

∂φi
∂x

= −
n∑
j=1

φiφj
Dij

(~vi − ~vj). (4.26)

Considering a channel filled with a binary mixture of liquids A and B, where the composition at

the ends of the channel are maintained at pure A and pure B. The diffusivities of the pure liquids A

and B are DA and DB , respectively. We will use the same simple model for diffusivity as a function
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of composition as we did in section 3.2.3 [56, 64]

DAB(φA, φB) = (DA)φA(DB)φB . (4.27)

Now, we can write equation 4.26 for each equation,

dφA
dx

= −φAφB
DAB

(vA − vB)

dφB
dx

= −φAφB
DAB

(vB − vA) (4.28)

The continuity condition for each component gives

d

dx
(φAvA) = 0→ φAvA = JA

d

dx
(φBvB) = 0→ φBvB = JB (4.29)

where JA and JB are the steady-state fluxes of species A and B, respectively. The conservation of

total liquid inside the channel also gives a condition

φA + φB = 1

Now using equation 4.27 with equations 4.28 gives

dφA
dx

= − φAφB

DφA
A DφB

B

(vA − vB)

dφB
dx

= − φAφB

DφA
A DφB

B

(vB − vA)

Using the continuity equations and the conservation of total liquid equations, we can eliminate the

velocities and φB to give

dφA
dx

= −φA(1− φA)

DφA
A D1−φA

B

(
JA
φA
− JB

1− φA

)
.

Simplifying,

DφA
A D1−φA

B

dφA
dx

= (JA + JB)φA − JA.

In the equation above, J0 ≡ JA + JB is the net flow of fluid in the channel. Considering the
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situation where there is no flow,

DφA
A D1−φA

B

dφA
dx

= −JA.

We can solve this equation by first taking the logarithm of both sides

φA logDA + (1− φA) logDB + log
dφA
dx

= log−JA

Simplifying,

φA log
DA

DB
+ log

dφA
dx

= log
−JA
DB

Making the replacement α ≡ log DA
DB

and exponentiating gives,

eαφA
dφA
dx

= − JA
DB

We can integrate the above expression and solve for φA

∫
eαφAdφA = − JA

DB

∫
dx

1

α
eαφAdφA = C − JA

DB
x

φA =
1

α
log

(
αC − αJA

DB
x

)
We will use the boundary conditions φA(0) = 1 and φA(L) = 0,

1 =
1

α
log (αC)→ αC =

DA

DB
,

0 =
1

α
log

(
DA

DB
− αJA
DB

L

)
→ αJA =

DA −DB

L

Now, we have the steady-state concentration profile

φA(x) =
1

log DA
DB

log
(
DA −

x

L
(DA −DB)

)
− 1

log DA
DB

logDB .

We can use equation 4.27 to translate this into a diffusivity profile. It is helpful to start by taking
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the logarithm of equation 4.27,

logDAB(x) = φA logDA + (1− φA) logDB

logDAB(x) = φA log
DA

DB
+ logDB

Now inserting the solution for φA and simplifying gives

logDAB(x) = log
(
DA −

x

L
(DA −DB)

)

DAB(x) = DA −
x

L
(DA −DB)

To convert the diffusivity profile into the viscosity profile η(x), we use Stokes-Einstein relation D ∝ η

η(x) =

[
1

ηA
− x

L

(
1

ηA
− 1

ηB

)]−1

.

This is the same expression for the viscosity profile that we found in section 3.2.3.

This picture suggests another interpretation of the currents we described in chapter 3, as the

result of differential drag from the intermixing glycerol and formamide. In the Maxwell-Stefan

theory, particles feel a drag force from each species. As the glycerol and formamide intermix, they

flow in opposite directions in the mixing channel. The positive counterions feel different drag forces

from these two species. The drag forces on them will equal zero only when the drift speed of the

ions, vi, satisfies

φf
Dfi

(vi − vf ) =
φg
Dgi

(vi − vg). (4.30)

In this interpretation, there is no mystery where the energy to drive the current comes from: It

comes from the free energy of mixing.

4.6 Conclusion

Toy models and simulations have illuminated the mechanisms of diffusion in a gradient of liquid

viscosity. The boundary conditions turned out to be essential. The reflective boundary conditions

simulate a closed container and make it impossible for steady-state flux to exist. The electrode

boundary conditions simulate electrodes which can absorb and re-emit ions, and allow steady-state
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flux. Using the isothermal convention, particle drift toward lower viscosity leads to a flux, which

qualitatively matches those in our experiments. A second approach to calculating η(x) agreed with

our calculation in section 3.2.3 and suggested an alternate interpretation of the current.



Chapter 5

Optical measurements of the drift

of quantum dots

5.1 Introduction

Tracking particles in fluidic systems is a common technique [65]. Modern imaging systems and data

analysis tools make it possible to configure a microscope to resolve small particles, identify them in

images, and reconstruct their time-dependent paths. Single DNA molecules, for example, can be

stained with a fluorescent dye and easily tracked in microfluidic systems [66]. Methods like this,

sometimes called particle tracking velocimetry (PTV) or just single particle tracking (SPT), can be

a powerful tool for quantifying diffusive systems [66, 67]. By analyzing the path of a particle, it is

possible to calculate its diffusivity and detect any systematic drift in its motion [68].

In chapter 1, we reviewed several experiments which used optical means to attack the problem of

diffusion in a diffusivity gradient. One used total internal reflection microscopy (TIRM) to measure

motion normal to a solid surface, while another measured motion parallel to the surface [3, 36]. In

both of those, the experimenters observed the drift particles with diameters of about 1µm in the

steep but short range gradient in effective diffusivity caused by viscous coupling to a solid surface.

Another experiment used a flatbed scanner to track the evolution of the distribution of dye, which is

composed of organic molecules [4]. Individual dye molecules are not resolvable on a flatbed scanner,

so only the collective behavior was obtained.

77
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Figure 5.1: An illustration of a fluorescing quantum dot, imaged by a microscope drifting in a liquid
viscosity gradient.

Quantum dots, tiny crystals on the 10 nm scale which fluoresce when exposed to ultraviolet light,

provide some benefits over micron-sized colloidal particles and dye molecules. They are tiny, smaller

than some molecules, which means they diffuse rapidly. Unlike dye molecules, however, they can be

made to fluoresce. This means that they can be detected individually by a microscope despite the

fact that their size is below the diffraction limit of visible light.

We thought quantum dots could be the basis for an experiment to complement the ones presented

in chapter 3. Figure 5.1 shows the basic outline of such an experiment. Inside a chip similar to the

ones used in chapter 3, a liquid viscosity gradient is established and quantum dots are added. A

microscope is used to track the motion of the dots. By analyzing the trajectories of these particles,

it is possible to pick out any drift. We decided to attempt such an experiment.

An optical experiment has several appealing features. First, by measuring the diffusivity and

drift speeds of particles at different points in the mixing channel, we can measure D(x). Because

of the connection between D(x) and η(x), this will allow us to check the accuracy of our model for

η(x), equation 3.26. Second, it allows us to directly measure 〈ẋ〉 without a model connecting drift

speed to ionic current. Seeing is believing; directly observing the action inside the mixing channel

can be more convincing than an electrical measurement.
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5.2 Feasibility of measuring the drift of quantum dots driven

by a viscosity gradient

Quantum dots are promising tools, but they present several challenges. Their small size means that

they are not as bright as other fluorescing particles like DNA [67]. Discerning them from noise can

be difficult. Further, they diffuse rapidly, meaning that longer exposures spread their light over more

pixels. The high diffusivity that makes them appealing as tools to measure viscosity-driven motion

also means that they readily diffuse out of the focal plane or drop-out [67]. They also intermittently

blink, and stop emitting photons for a period of time [67]. Overall, it can be difficult to obtain long

and accurate particle trajectories.

5.2.1 Drift speed compared to diffusion

The drift speed of a quantum dot with radius r = 10 nm should be appreciable. Assuming this

quantum dot is diffusing in a 200 µm long mixing channel with ηL = 2 mPa s and ηR = 6 mPa s,

〈ẋ〉 =
dD

dx
≈ kBT

6πrL

(
1

ηL
− 1

ηR

)
, (5.1)

suggests a drift speed of about 35 nm s−1. For commonly used optical microscopes, this would result

in the dot drifting by one pixel every few seconds.

However, while the particle is drifting, it is also diffusing. For the drift to be easily detectable, it

should be at least of the same magnitude as the random motion. We expect the particle to diffuse

according to, 〈
x2
〉

= 4D∆t. (5.2)

Since the random motion scales with
√

∆t and the drift scales with ∆t, we expect random motion

to dominate at short timescales and drift to dominate at long timescales. The magnitudes of the

random motion and the drift are approximately equal when,

4D∆t = 〈ẋ〉2 ∆t2. (5.3)

A particle like the one described above diffusing in a liquid with viscosity 4 mPa s (four times that

of water) has a diffusivity of 5.3× 10−12 m2 s−1. Solving for ∆t gives about 8500 s. This is a long
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time, but by accumulating statistics over multiple molecules, it may be possible to detect the drift

of these particles.

5.2.2 Number of photons expected at the CCD from a single quantum

dot

Assuming a decay rate of γ = 10 ns from the excited state, an ideal single quantum dot can emit 108

photons per second under perfect illumination [67, 69]. With 100 ms exposure, we have 107 photons

to work within each frame for a single dot.

A typical imaging system using a 100× 1.49 NA oil immersion objective can collect light that is

off of the optical axis by an angle [70],

θ = sin−1

(
NA

n

)
. (5.4)

Using immersion oil with a refractive index of 1.52, we get θ = 78.6°. This corresponds to a solid angle

of SA = 4π sin θ2 = 5.05, or about 40% of the unit sphere. If the dot emits photons isotropically,

we can collect 40% of the photons emitted.

These photons are not all focused onto a single pixel. Using equation 5.3, and the diffusivity

mentioned above, we expect a diffusing dot to be localized to about 1 µm2 in one 100 ms frame. For

a typical imaging system, this could mean about 40 pixels. Collecting these terms, an estimate of

the number of photons per pixel per frame is,

n = γ−1∆t
SA

4π
Npixels, (5.5)

where ∆t is the exposure time. This means an ideal signal of about 105 photons hitting each pixel in

each frame. This neglects imperfect illumination, sources of photon loss like reflections, the efficiency

of the CCD to convert photons into charge and measure it, the quantum efficiency of the dots, and

blinking, among other things. Overall, we found the detectability of the dots to be a problem.

5.2.3 Drop-out and blinking

Two factors that can make quantum dots hard to track are drop-out and blinking [67]. Drop-out

refers to when a particle moves normal to the focal plane, goes out of focus, and becomes impossible
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to detect. For diffusing particles, this can be especially problematic because the motion cannot be

predicted. The depth of field, the distance about the focal plane of an optical system in which an

object remains in focus, is critical because it says roughly how far a particle can diffuse without

becoming untrackable. The depth of field of a microscope objective can be approximated,

DOF =
λn

NA2
+

n

M ×NA
e, (5.6)

where λ is the wavelength of light, NA is the numerical aperture of the objective, n is the index

of refraction of the immersion medium, and e is the size of the smallest feature resolvable with the

detector [67]. For a typical microscope used in tracking small fluorescent particles, the two terms in

equation 5.6 are comparable and the depth of field is about 500 nm.

We expect a typical quantum dot diffusing in free space to remain within two depths of field for

about 100 ms on average. Imaging quantum dots inside a microchannel thinner than the depth of

field, however, would force dots to remain in focus and eliminate this problem.

Quantum dots are also known to blink, or cease fluorescing for an unpredictable period of time

lasting milliseconds to hundreds of seconds [71]. The mechanism for blinking is complicated, but

the effect is an added challenge for tracking. One silver lining is that blinking can be useful for

differentiating individual dots from aggregates, as a large group of uncorrelated dots will rarely

blink at the same time [67].

5.3 Experimental methods

We used a Nikon inverted microscope with a 60× 1.2 NA water immersion objective. Connected to

the microscope was an Andor iXon 978 CCD camera and a 120 W EXFO X-Cite 120 UV illumination

source. The width of the 512× 512 CCD was 8.2 mm, and the depth of field was about 0.5 µm. We

generally used an exposure time of 100 ms.

The chips we used in the electrokinetic chip experiments outlined in chapter 3 were very similar

to (and in fact based on) chips used for fluorescent DNA experiments [66]. They are designed to

mount on a microscope and have particles inside excited by UV light. This made it relatively simple

to convert our electrokinetic experiment into an optical particle tracking one.

We used CdSe quantum dots (Ocean Nanotech QSH-525) which were carboxyl functionalized
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Figure 5.2: Quantum dots in a droplet of water. a) 8 nM, b) 8 pM.

and had fluorescence peaks at 525 nm. Including the acidic shell, these dots had a radius of about

10 nm. We prepared solutions ranging from the picomolar to nanomolar range. We introduced KCl

and tris buffer to control the screening length of surfaces and the pH of the solutions. To minimize

the problem of quantum dot aggregation, we generally made solutions with pH in the range of 8. At

this pH, many of the carboxyl groups on the surfaces of the dots should have been deprotonated,

leaving the dots negatively charged. In theory, this caused mutual repulsion among the particles. In

practice, we still saw evidence of aggregation.

Using this setup to image a solution of quantum dots, it was possible to distinguish bright

objects from the background. Figure 5.2 shows typical images of quantum dots in droplets of water.

However, we questioned whether these objects were individual quantum dots or aggregates for two

main reasons. First, the number density was lower than expected. Second, the diffusivity was less

than expected. The next two sections will outline these observations.

5.4 Number density

Most obvious, the number density of the objects seemed too low. We expected the number of visible

dots to be roughly,

Napparent =
n×DOF × w2

CCD

mag2
(5.7)
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Figure 5.3: a) A frame of video with a single quantum dot identified and circled. Red line shows
the particle’s trajectory. b) The mean squared displacement as a function of lag time. Red line
shows is a power law fit.

where n is the number density of particles in the bulk solution, DOF is the depth of field of the

imaging system, wCCD is the width of the CCD, and mag is the magnification. For a 10 pM solution

of quantum dots, we expected to see about 500 dots. In a situation like this, we would routinely see

less than 50. Figure 5.2b shows 8 pM quantum dots. Less than 10 are clearly visible.

5.5 Tracking quantum dots and measuring diffusivity

Another clue that the objects we were resolving were quantum dot aggregates came when we tracked

the particles’ trajectories and obtained diffusivities which seemed too low. We used two independent

methods to track quantum dots in images and calculate diffusivities. The first, we wrote ourselves. It

relied on OpenCV, a computer image analysis toolbox for Python [72]. We subtracted the average

brightness of all pixels in the video from each pixel to eliminate background, and we applied a

Gaussian blur with a width of five pixels to decrease noise. Then, we applied a threshold to find

bright objects in the image. To start, a user clicks on the location of a bright object in a frame. In

each subsequent frame, the positions of pixels that pass a brightness threshold and were close to a

bright object in the previous frame were recorded.

The second method used TrackPy [73], a particle tracking software package for Python. Both

methods produced similar results, but we found TrackPy was more reliable and easier to use. Both

systems produced a list of each particle’s position in each frame.
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Figure 5.4: a) A frame of video with quantum dots identified and circled. b) The ensemble mean
squared displacement as a function of lag time. The blue line shows is a power law fit. Points in
blue are included in the fit.

5.5.1 Measuring quantum dot diffusivity by tracking individual particles

With the trajectory of an individual dot, it is straightforward to find the diffusivity. In two di-

mensions, the expected mean squared displacement of a random walker is proportional to the time

[21], 〈
x2
〉

= 4Dt. (5.8)

We calculated the mean squared displacement as a function of time using,

〈
∆x2

〉
l

=
1

N

N∑
i=0

(xil − xi0)
2
, (5.9)

where N is the number of particles, l is the lag time or the length of time over which the squared

displacements are measured. This is a naive approach which does not use the available data optimally

because each particle trajectory actually contains many shorter subtrajectories. Therefore, using the

same data, we can get better statistics for mean squared displacement of lag time l by averaging the

squared displacements of all subtrajectories of length l,

〈
∆x2

〉
l

=
1

N

N∑
i=0

1

M − l

M−l∑
j=0

(
xi(l+j) − xij

)2
. (5.10)
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Here, j is the offset of the subtrajectory from the full trajectory, and M is the number of steps in

the full trajectories. Allowing for trajectories of different lengths requires a small change,

〈
∆x2

〉
l

=
1

NMi≥l

N∑
i=0|Mi≥l

1

Mi − l

Mi−l∑
j=0

(
xi(l+j) − xij

)2
, (5.11)

where Mi is now the number of steps in trajectory i and NMi≥l is the number of trajectories with

lengths longer than l.

Figure 5.3a shows the trajectory of a single quantum dot tracked by our software. The path

shows no obvious systematic drift over time. Figure 5.3b shows the mean squared displacement of

the particle as a function of the lag time, with a linear fit. The width of the blue region shows the

standard error whose width increases with lag time as the number of independent subtrajectories

decreases. The mean squared displacement increases linearly, as expected. The slope of the fitted

line suggests an effective radius of 27.4 nm.

Figure 5.4a shows several dots identified by the TrackPy software. Figure 5.4b shows the ensemble

mean squared displacement of the dots as a function of the lag time, again with a linear fit. The

slope of the fitted line suggests an effective radius of 27.1 nm.

The two particle tracking methods produced similar results. Both show particle radii nearly

three times larger than expected. This suggests that all or many of the particles we observed were

aggregates composed of approximately nine quantum dots.

5.5.2 Measuring ensemble quantum dot diffusivity

In another experiment, we observed quantum dots near the mouth of the 50 nm tall mixing channel

using 8 nM dots in water with only 10 mM tris buffer and no other added electrolyte. When we

applied pressure to direct fluid flow through the mixing channel, the flow trapped the dots against

the mouth of the channel in a sharply peaked distribution, instead of pushing them into the channel.

Figure 5.5a shows the dots trapped against the edge of the mixing channel.

Once the flow was turned off, the dots would diffuse freely and the distribution would relax away

from the edge, widening with time. Figures 5.5b and c show the state of the quantum dots after 10

and 40 frames.

Electrostatic repulsion explains why the dots did not enter the channel. At with low salinity,

the Debye length (described in section 2.4.2) was large. A 10 mM solution of KCl has a Debye
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Figure 5.5: Frames from a video of fluorescing quantum dots in a glass chip. Before frame 1, a
fluid flow pressed the dots against an electrostatic boundary at x = 0 a) The fluid flow is turned off
and the dots can freely diffuse. They start in a sharply peaked distribution at x = 0. The red line
shows the average pixel brightness. The green line shows equation 5.12 b) and c) The dots relax
into a wider distribution. d) The brightness as a function of position for several different frames. e)
The brightness as a function of position predicted by equation 5.12.
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length of about 3 nm [21]. Since tris is a weak acid which does not fully dissociate in water, the ion

concentration would have been lower than for the equivalent concentration of KCl, and the Debye

length would have been longer than 3 nm. With the positively charged glass surfaces ineffectively

screened, the like-charged quantum dots were electrostatically excluded from the mixing channel.

To analyze this video quantitatively, we used OpenCV again. The red lines overlayed on the

microscope images in figure 5.5 show the pixel brightnesses, averaged by column. Figure 5.5d shows

the brightness data for several frames. After subtracting the average background brightness from

each pixel, we used the average column brightness as an analog for fluorescent particle density as a

function of x. We analyzed each frame of the video in this way.

Particles diffusing from an initial sharply peaked distribution is the same as the system we

simulated in section 4.1.1. Accordingly, we will fit this two dimensional data with an equation

similar to equation 4.5,

b(x, t) =
N√

4πD(t− t0)
e−(x−x0)2/4D(t−t0) + bg. (5.12)

Here, N is a fitting parameter representing the total number of particles, t0 and x0 are fitting

parameters representing offsets in position and time, and bg is a manually set parameter that

represents the background brightness far from the edge of the mixing channel. The final fitting

parameter, D, is the one we care about. The green lines in figure 5.5 show the results of the fit,

D = 11.7 µm2 s−1. Based on the Stokes-Einstein equation, this corresponds to an average particle

radius of 20 nm. Figure 5.5e shows the results of the fit for several frames. This is larger than the

10 nm from the product specification. However, in the video there are clearly larger clumps which

are being averaged into this measurement. These would drag the average up.

5.6 Conclusion

The above calculations reveal that the radii of the particles we have been able to resolve are about

three times greater than expected. This suggests that the particles we were observing were aggregates

of multiple quantum dots. Returning to the calculations of section 5.2.1, tripling the radius of the

particles triples the time scale at which drift overcomes diffusion. The expected time needed to

measure the drift reaches 25 000 s or nearly seven hours. This measurement would require a lot of
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data. Finding a way to avoid quantum dot aggregation is important.

A bigger problem was the overall difficulty of consistently producing videos with trackable quan-

tum dots. We have presented results here that featured some individually resolved fluorescing

particles, but these were not the norm. In practice we were able to resolve clear individual objects

in our fluidic chips only intermittently. We believe this problem could be partly mitigated with

an imaging system specifically built to track quantum dots. Objectives are available with higher

magnification and higher numerical apertures than the ones we used. We will continue to work on

these experiments.



Chapter 6

Conclusion

We have examined diffusion in a gradient of liquid viscosity from several different angles. First,

we discussed some background and historical context. We reviewed existing experiments in the

area. These experiments have significant drawbacks and come to conflicting conclusions. We also

discussed some simulation work which, with slight twists on the basic model, produced different

results, demonstrating the need for a solid experiment. These simulations led us to design our own

experiments.

We developed some theoretical and experimental background and described an early experiment

in which we used pulled glass nanocapillaries to attempt to electronically measure current driven by

a viscosity gradient. This experiment’s flaws led us to design a new experiment inside a purpose built

nanofluidic chip. We described the methods of this nanochannel-based electrokinetic experiment,

and analyzed the data, finding good agreement with a simple model. In summary, we showed

evidence that counterions screening the glass surfaces drifted toward lower viscosity, resulting in an

ionic current. This experiment gave us fine control over viscosity profile, allowing us to vary its

parameters in a way never possible before. We also analyzed alternate explanations for the currents

we measured, and concluded that they cannot explain our results.

We used a simulation to help explain the mechanisms behind drifting particles and flux and

explore the problem with access to properties only reachable in a computer. The boundary conditions

of our simulation turned out to be fundamentally important. Boundary conditions designed to

simulate electrodes produced qualitatively similar results to our experiments.

Finally, we outlined an ongoing experiment using optical particle tracking in place of electronic

89
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current detection. We explore the merits of this experiment, and explained why it has not worked

so far.

Viscosity gradients can be seen as a new tool to drive transport for a variety of purposes in

nanofluidics and membrane technology. It could also have unappreciated effects in other contexts.

For example, viscosity gradients can drive motion within and between cells, where viscosities are

known to vary by orders of magnitude [38]. It may also have effects in geology, causing significant

changes in the distributions of hydrocarbons, sediments, or other small particles to build up over

extremely long timescales. Our work also has important implications for computer simulations of

biological, chemical, or other liquid systems, where spatially-varying viscosities naturally arise. In

these, a position on the Itô-Stratonovich dilemma must (consciously or unconsciously) be taken, and

there was previously no experimental guidance.
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