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 Pressure-shear plate impact (PSPI) experiments have been performed on a polymer-

bonded energetic material simulant and its constituents – a simulant crystal sucrose and an 

elastomeric binder HTPB. Dynamic response of each of the constituents is first investigated 

under a range of normal stresses (3-10 GPa) and high shear strain-rates (105 − 106 𝑠−1). Shear 

strength of HTPB shows a highly pressure-dependent behavior, with the strength increasing 

from 120 MPa to 470 MPa as the normal stress increases nominally from 3 GPa to 9 GPa. Peak 

shear strength of sucrose, on the other hand, shows a relatively weak dependence on normal 

stress, with its shear strength increasing merely from an average value of 410 MPa to 465 MPa 

as the normal stress increases from 2.9 GPa to 9.5 GPa. Sucrose also exhibits pronounced strain 

softening under shear after reaching a peak value. A quasi-linear viscoelastic model with a 

pressure-dependent instantaneous elastic response is used to model HTPB. A thermodynamic 

framework is presented for constitutive modeling of sucrose. A finite deformation thermo-

mechanical model, incorporating a complete Mie-Gruneisen equation of state, is used to model 

sucrose. Simulations show that the dramatic drop in shear strength of sucrose is a result of 

localized deformation in the form of adiabatic shear bands. PSPI experiments on the 

sucrose/HTPB composite show that the peak dynamic shearing resistance of the composite 

increases from 176 MPa to 453 MPa as the normal stress increases nominally from 3 GPa to 

9.75 GPa. The shearing resistance builds up to a peak value before decreasing to a smaller non-

zero value. Such a drop could be due to multiple factors like fracture of sucrose and/or HTPB, 
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delamination of HTPB from sucrose crystals, adiabatic shear band localization in the HTPB 

binder or sucrose crystals and friction between fractured surfaces.  

  

 Once a strong foundation for material response of constituents of a polymer-

bonded simulant is laid, in-situ quantitative experimental investigation of deformation fields and 

mechanisms of hot-spot formation is desired. A high-speed microscopic imaging system, with a 

temporal resolution of 250 ns and a sub-micron spatial resolution has been built in pursuit of 

this goal.  
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Chapter 1  

 

Introduction 
 

1.1 Background and M otivation 

An energetic material is one with a large amount of stored chemical energy that can be 

released over a very short duration of time. Energetic materials have their origins in gunpowder, 

which can be traced back to 9th century China. Gunpowder was accidentally developed by the 

Chinese monks in their search for a life-enhancing elixir. Gunpowder played an important role in 

military for several centuries until further developments in the explosive technology by Ascanio 

Sobrero and Alfred Nobel. In 1867, Alfred Nobel, the man behind instituting the famous Nobel 

prize, created an alternative to gunpowder, named dynamite. However, major developments in 

energetic materials have been made in the 20th century with the invention of several energetic 

crystals such as RDX (1,3,5-Trinitro-1,3,5-triazinane), HMX (1,3,5,7-Tetranitro-1,3,5,7-

tetrazoctane), TATB (1,3,5-Triamino-2,4,6-trinitrobenzene) and many more.  

 

Even though energetic materials have found their primary application in military for a long 

time, today, they serve an important role in space applications and civil engineering. Energetic 

materials are routinely employed as a solid fuel in rocket propellants and in mining and 

construction. Shaped charges made out of conventional explosives are used to focus the explosive 

energy and find numerous applications such as perforating wells in the oil and gas industry. 
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Based on their applications, energetic materials can be classified as explosives, pyrotechnics and 

propellants. Explosives can be made in several forms like pressings of explosive crystals, casting 

and polymer-bonded explosives. The attention here is restricted to polymer-bonded explosives. 

 

Polymer-Bonded Explosives (PBXs) are composites of energetic crystals held together by a 

very small fraction (usually 5-10% by weight) of a polymeric binder. These granular composites 

are widely used in military explosives, rocket propulsion and mining. Some of the commonly 

used energetic crystals are HMX, RDX and PETN (2,2-Bis[(nitroxy)methyl] propane-1,3-diyl 

dinitrate). Hydroxy-terminated polybutadiene (HTPB), Estane and Viton form the majority of 

polymeric binders used in PBXs. Using an elastomeric binder in a PBX reduces the sensitivity of 

these explosives to accidental detonation, thus making them ideal candidates for insensitive 

explosives (IE). The development of insensitive explosives has been a major undertaking of the 

U.S. Army after the unfortunate 1966 Palomares and 1968 Thule accidents. Following these 

accidents, the Los Alamos National Laboratory developed Insensitive High Explosives (IHEs) 

which preserve their effectiveness but reduce sensitivity to impact, thus making them safer. The 

reduced shock sensitivity of PBXs allows for safer transportation and minimizes the probability 

of accidental events such as sympathetic detonations. PBXs also have other desirable features 

like machinability and castability, which further enhance their role for IHEs. Most of the 

deformation in a PBX is taken up by the binder which prevents inter-granular friction between 

the crystals, thereby reducing the sensitivity of the PBX to external mechanical stimuli. 

Accurate prediction of the sensitivity of IHEs to imposed dynamic mechanical loading is 

essential but has been highly challenging. Since the impact sensitivity of the PBXs is closely 
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related to their mechanical behavior, composition and microstructure, it is imperative to study 

the mechanical response of PBXs and their constituents under loading scenarios of interest. 

 

From the perspective of performance and safety, it is important to study ignition 

mechanisms in explosives. It is generally accepted that ignition in explosives begins in localized 

regions of high temperature, called ‘hot-spots’ (Bowden and Yoffe (1958), (1985) ). These 

regions of high temperature are formed when localized mechanical energy is converted to heat. 

Consider the case of a shock wave passing through an explosive material. Material or geometric 

heterogeneities in the system are expected to lead to localization of energy and hot-spot 

formation. Once these hot-spots turn critical (i.e. can cause ignition), self-sustaining dissociation 

reaction fronts emanate from them, resulting in ignition. The exothermic chemical reactions lead 

to a thermal runway, melting and formation of gaseous products, resulting in a rapid increase in 

local pressures. Shock waves emanate from these spots, cause more hot-spots to form and 

ultimately an avalanche of hot-spots results in a detonation front being formed (Sewell and 

Menikoff (2004) ). Ultimately, the detonation front surpasses the shock front at the Shock to 

Detonation Transition (SDT). Thus, in order to accurately model the response of energetic 

crystals to a shock stimulus, it is important to understand mechanisms leading to the initial hot-

spot formation. 

 

In the study of PBXs, energetic crystals like HMX and RDX are often replaced by simulant 

crystals such as sucrose, melamine and acetaminophen to prepare mock explosives. A simulant 

crystal is a molecular crystal that closely resembles an energetic crystal in terms of one or more 

relevant attributes such as crystal structure, density and mechanical properties. Due to their 
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inert nature simulants provide a safer way to investigate the mechanical behavior, making them 

suitable for laboratory settings. Another major advantage of studying energetic simulants is that 

they allow decoupling of mechanical and chemical responses of energetic crystals. Consequently, 

one can understand the dynamics of energy localization phenomenon such as pore collapse, 

adiabatic shear localization, fracture, granular friction, etc. (which together are known as “hot-

spot mechanisms”) without the additional complexity introduced by the associated chemical 

reactions in an actual energetic crystal.  

 

A great deal of work has been done over the past few decades to understand the compressive 

response of PBXs (Funk et al. (1996), Gray III et al. (1998), Idar et al. (1998) ) and their 

polymer-bonded simulants (PBSs) (Funk et al. (1996), Idar et al. (1998), Williamson et al. 

(2006), Siviour et al. (2008), Liu et al. (2011), Hu et al. (2015), Kendall and Siviour (2015) ). It 

has been shown through quasi-static and split-Hopkinson bar testing that the compressive 

strength of the polymer-bonded composites of energetic/simulant crystals increases with 

increasing strain-rates and decreasing temperatures (Funk et al. (1996), Gray III et al. (1998), 

Drodge et al. (2007), Siviour et al. (2008) ). For example, it was shown by Gray III et al. 

(1998)  that the peak stress of PBX 9501, under nominal uniaxial stress loading, increases from 

a value of ~9 MPa at 10-3 s-1 and 27 0C to ~60 MPa at 2000-2500 s-1 and 17 0C. Similarly, the 

peak stress decreases from a value of ~125 MPa at -40 0C to ~35 MPa at 55 0C for a strain-rate 

in the range of at 2000-2500 s-1. It is expected that the polymer binder being the more compliant 

component in a PBX would take up most of the strains and result in a dramatic dependence of 

compressive strength of the PBX on the strain rate and temperature. Wiegand and Reddingius 
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(2005), Ravindran et al. (2016), (2017)  provide a quantitative validation of the fact that most 

of the strains are indeed concentrated in the binder regions of the composite.  

 

It is observed that in quasi-static and high strain-rate testing, the compressive stress drops 

after reaching a peak and exhibits strain softening. The mode of failure changes with strain-rate 

and temperature. Siviour et al. (2008)  show, through in-situ X-ray tomography, that for quasi-

static loading rates, debonding between sucrose crystals and the binder is the reason behind the 

loss in mechanical strength of the composite. Ravindran et al. (2016), (2017)  and carried out 

high-strain rate experiments in which deformation was imaged through in-situ digital image 

correlation (DIC) at the meso-scale. It was shown that deformation localizes in polymer-rich 

regions, resulting in failure primarily through binder fracture or binder delamination. Similarly, 

the failure mode of PBX 9501 and other composites under high strain-rate loading is found to 

change from a combination of binder debonding and trans-granular fracture of the explosive 

crystals (HMX in this case) at  20 0C to brittle trans-granular cracking of HMX and glassy 

fracture of the binder at -40 0C. This transition from a ductile to brittle failure occurs when the 

temperature of the PBX is decreased to a value below the glass transition temperature of the 

binder. Therefore, it can be concluded that strain-rate and temperature are important external 

Funk et al. (1996)  parameters influencing the compressive stress-strain response and failure 

mechanisms of PBXs. Deformation behavior of PBXs is shown to depend on intrinsic factors as 

well, such as the particle size of the energetic/simulant crystals (Balzer et al. (2004), Siviour et 

al. (2004) ), loading density (weight fraction of explosive crystals in the composite) and ageing 

of the polymer binder (Fuente and Rodríguez (2003) ). Strength of the composite is shown to 

vary inversely with the square root of the particle size (Balzer et al. (2004) ), i.e. larger crystal 
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size leads to a weaker PBX. Similarly, a larger crystal size is associated with larger impact 

sensitivity. It is demonstrated by Armstrong et al. (1990)  that the drop-height for 50% 

probability of initiation of RDX crystals varies linearly with the inverse of the square root of 

particle size. Ageing of the polymer has been shown by Fuente and Rodríguez (2003)  to reduce 

the damping capacity of HTPB-based rocket propellants, effectively reducing their service life. 

 

It should be noted that in all the studies referenced above, PBXs/PBSs are subject to 

uniaxial stress testing, i.e. compression without any confinement. A lack of confinement results 

in very low pressures which may not be representative of the loading scenarios in several 

applications. Wiegand and Reddingius (2005)  explored the effect of confinement on elastic and 

plastic behavior of polymer bonded simulants at quasi-static strain rates. They showed that the 

Young’s modulus of PBS 9501 increases from 1.5 GPa at a confinement pressure of 0.1 MPa to 

~7.5 GPa at a pressure of 138 MPa. Similarly, the flow stress is reported to increase from 8 

MPa to ~65 MPa as the pressure is increased from 0.1 MPa to 138 MPa. It is shown that the 

primary mode of failure for an unconfined composite is fracture and debonding whereas it is 

plastic flow under confinement pressure.  However, the range of pressures explored by Wiegand 

and Reddingius (2005)  is very limited and the pressure values are very small. More generally, 

there has been a lack of experimental effort on studying the high-pressure, high strain-rate 

response of PBXs under these conditions  

 

Plate impact has been a key experimental technique in attaining high pressures and high 

strain-rates simultaneously. Pressures ranging from a few GPa to hundreds of GPa and strain-

rates of the order of 105-107 s-1 can be attained using plate impact techniques (See Figure 1.1 for 
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comparison with other techniques). Another advantage with plate impact experiments is the 

uniaxial strain loading as opposed to uniaxial stress in the Kolsky bar type experiments. An 

important class of plate impact techniques is the Pressure-Shear Plate Impact (PSPI) 

experiment. Pioneered by Clifton and Klopp (1985)  at Brown University, PSPI experiments 

allow investigation of the shearing response of materials under high pressures, high shear strain-

rates and high shear strains. The PSPI technique is described in detail in the next section. 

While plate impact techniques have been used for a long time to study the shock response of 

explosive crystals, no significant work has gone into studying the strength behavior under high 

pressures. This also holds true for PBXs. It is to be noted that the shear strength behavior of 

PBXs and their components is extremely critical in modeling their overall mechanical behavior 

under dynamic loading conditions. Accurate models incorporating shearing resistance are 

important to adequately model localization behavior like shear bands or phenomena like pore 

collapse, which lead to hot-spots, which provides strong motivation for PSPI experiments on 

PBXs. In the present work, dynamic shearing resistance measurements have been made on 

HTPB (elastomeric binder), sucrose (an energetic material simulant of 𝛽-HMX) and their 

composite, at pressures of 3-10 GPa and shear strain rates of 105-106 s-1. The experimental 

results are described in Chapters 2, 3 and 6 respectively. To the best of our knowledge, these 

shear strength measurements are reported for the first time. Since HTPB and sucrose are vastly 

different types of materials, understanding their response to mechanical loading is imperative to 

lay a strong foundation for constitutive modeling of their composite. Therefore, PSPI 

experiments on the composite are preceded by PSPI experiments on HTPB and sucrose. It 

should also be noted at this point that the shear strength measurement of explosive 

crystals/simulants are extremely important to understand hot-spot formation for weak shocks 
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(i.e. the range of pressures considered here) and accidental impact. Initiation of hot-spots from 

weak shocks requires dissipative mechanisms in addition to shock heating (Sewell and Menikoff 

(2004) ). Such a mechanism is provided by material heterogeneities and the strength 

considerations of the explosive become important. 

 

Figure 1.1 Experimental techniques for material testing at different strain rates 

 

 Considerable research effort has been spent towards studying the mechanisms behind 

hot-spot formation and propagation. A list of these mechanisms is provided by Field (1992), 

Field et al. (1992) : 

(i) Formation of regions of large shear stresses, resulting in heating through plastic 

deformation. One such example is localization through formation of adiabatic shear 

bands (Winter and Field (1975), Field et al. (1992), Coffey and Sharma (2001), 

Sharma et al. (2001), Jaramillo et al. (2007), Cawkwell et al. (2008) ).  

(ii) Fracture in the bulk of explosive crystals or the binder, or debonding at 

binder/crystal interface. 
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(iii) Friction between explosive crystals or between fractured surfaces (Bowden and Yoffe 

(1985) ). 

(iv) Localized melting and subsequent viscous heating of the molten region. 

(v) Pore-collapse, leading to adiabatic compression of trapped gas (Chaudhri and Field 

(1974), Bowden and Yoffe (1985), Dear et al. (1988) ) and/or phenomena like jetting 

(Dear et al. (1988) ). 

These mechanisms have been studied in detail, primarily through numerical techniques and a 

few experimental techniques. On the experimental front, drop-weight impact, miniaturized 

Hopkinson bar, edge-on plate impact and micro-particle impact on explosive crystals have been 

utilized to study initiation and propagation of hot-spots. A variety of in-situ diagnostics have 

been used in these experiments. Since events like hot-spot formation occur over microsecond 

time-scales (Bowden and Yoffe (1958), (1985) ), high-speed imaging is necessitated. In-situ high 

speed imaging in the visible spectrum and heat sensitive films have been used to capture the 

formation of features like adiabatic shear bands (Field et al. (1992) ) and pore-collapse (Dear 

and Field (1988), Dear et al. (1988), Bourne and Field (1991), Swantek and Austin (2010) ).  

 

Bowden and Yoffe (1958), (1985)  showed that for Deflagration to Detonation transition 

(DDT) to occur, hot spots should have sizes of 0.1-10 𝜇𝑚, durations of 10-5-10-3 s and 

temperatures >700 K. Performing quantitative in-situ measurements of mesoscale deformation 

and temperature fields, at sub-micron spatio-temporal resolutions, during impact experiments 

has remained a challenge. Ravindran et al. (2016), (2017)  made quantitative measurements of 

deformation fields in a polymer-bonded sugar, using in-situ imaging at spatial and temporal 
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resolutions of 20 𝜇𝑚 and 10 𝜇𝑠 respectively. Kannan et al. (2018)  have reported a 

comparatively finer spatial resolution of 10 𝜇𝑚 at frame rates of 5 million frames per second, to 

capture twinning in Magnesium. However, achieving micron scale spatial resolutions at such 

high framing rates remains a major challenge.  Owing to the important need for high resolution 

in-situ measurements, a high-speed microscopic imaging system with sub-micron spatial and 

sub-microsecond temporal resolutions is developed in this work. The capability of the system is 

demonstrated by quantitative measurements of displacement and strain fields in and around a 

highly localized region of shear band in polycarbonate. Chapter 7 details the development of this 

experimental method and measurements of kinematic fields associated with shear band initiation 

under edge-on impact of a notched plate of polycarbonate.  

 

At the same time, measurements of highly heterogeneous temperature fields have been 

lagging in the experimental literature. Such measurements are harder to make as there are 

hardly any high-speed thermal imaging systems that achieve the necessary time resolution. 

Zehnder et al. (2000)  developed an infra-red high-speed camera to visualize the formation of 

adiabatic shear bands ahead of a crack-tip in Kalthoff-like (Kalthoff (1990) ) impact 

experiments. Quantitative measurements of temperature fields were reported by (Guduru, 

Ravichandran, et al. (2001), Guduru, Rosakis, et al. (2001) ). More recently, Keyhani et al. 

(2019)  have reported simultaneous measurements of deformation fields of a sucrose aggregate in 

the visible and infrared spectra using high-speed imaging. At the same time, high-speed X-ray 

diagnostics are also emerging to capture deformations during dynamic loading. Escauriza et al. 

(2020)  investigate the pore-collapse process in PMMA using X-rays. Such developments 
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highlight the recent drive towards capturing highly heterogenous two-dimensional deformation 

fields during high strain-rate experiments.   

 

1.2 Introduction to Pressure Shear Plate Impact (PSPI) 

experiments 

Pressure-Shear Plate Impact (PSPI) experiments have been used to study the dynamic 

behavior of materials under high pressures (~20 GPa), high shear strain rates (105-107 s-1) and 

large shear strains (100-200%). Recently, the PSPI technique has been extended to pressures up 

to 50 GPa by Kettenbeil et al. (2020) . A variety of materials have been tested using this 

technique, for example, metals (Gilat and Clifton (1985), Tong et al. (1992), Frutschy and 

Clifton (1998), Grunschel (2009) ), ceramics (Espinosa (1995), Sundaram (1999) ), polymers 

(Clifton and Jiao (2015) ), lubricants (Ramesh and Clifton (1987) ) and glasses (Sundaram 

(1999) ). In these experiments, a flyer plate impacts the target plate at an angle, 𝜃 generating 

both compressive longitudinal and shear waves. The angle, 𝜃 is usually kept below 200  to ensure 

that no slip occurs at the impact face. A 2.5” gas gun at the plate impact facility at Brown 

University is used for most experiments. The gun barrel has a keyway which facilitates oblique 

impact. One of the most common test configurations is a sandwich configuration as shown in 

Figure 1.2. In this configuration, a thin sample (typically 10-200 𝜇𝑚) is sandwiched between two 

hard elastic plates, hereafter, referred to as the front target plate and the rear target plate. The 

flyer and target plates are made from a hard material, like pure tungsten carbide or high 

strength steel, that remains elastic (or nearly so) in the range of loading pressures and strain 

rates reported herein. Upon impact of the flyer, a one-dimensional plane-wave loading is 
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obtained. This is one of the key advantages of PSPI experiments as it allows for an easy 

interpretation of stress-state achieved inside the specimen. 

 

 

Figure 1.2 PSPI Experimental Set-up. The projectile is typically a light-weight fiberglass tube. 

A flyer plate is glued to an aluminum plate bonded to the front of the projectile. A flat step is 

made on the aluminum front plate perpendicular to the impact direction.  This step is used to 

short out the pins of the velocity sensor that is used to measure the velocity of the projectile. 

The velocity sensor consists of five pins, placed at an angle of ~1100 to the impact direction. 

Rotation of the projectile is prevented by a key, attached to the projectile and sliding in a 

keyway in the gun barrel. The flyer plate and the target assembly are aligned for impact of 

parallel plates with an angle, 𝜃, between the normal to the impact plane and the direction of 

approach. Plane compressive and shear waves are generated at the impact face.  A thin 

specimen, sandwiched between two hard elastic plates (target plates), is loaded by the forward 

propagating plane waves emanating from the impact plane. Particle velocities at the free surface 

are measured using a combined normal and transverse displacement interferometer (NDI & 

TDI).  Measured transverse displacements are made possible by using interference of beams 

diffracted symmetrically by a diffraction grating deposited on the free surface of the rear target 

plate 

 

The t-X plot for a typical PSPI experiment with sandwich configuration is shown in 

Figure 1.3. The impact occurs at X=0 and t=0, where X refers to the spatial coordinate along 

the thickness direction (as shown in Figure 1.2) in a reference configuration and t represents 

time. On impact, longitudinal and shear waves are sent through the front target plate and the 
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flyer. Due to low acoustic impedance of the specimen, these waves reverberate through the 

specimen before the stress state rings-up to a uniform value. Note that the thickness of the front 

target plate is chosen so that the compressive stress in the specimen has rung-up to a uniform 

value before the arrival of the shear wave. This facilitates he measurement of shear strength of 

the specimen at a state of constant normal stress.  

 

 

Figure 1.3 A typical t-X plot for a PSPI experiment. Solid red lines represent the longitudinal 

wave characteristics and dashed green lines represents the shear wave characteristics. Blue lines 

represent characteristics for either longitudinal or shear waves. Point 0 and Point 1: Before the 

arrival of longitudinal wave (𝜎0 = 𝜏0 = 0, 𝑢0 = 𝑉0 𝑐𝑜𝑠(𝜃) , 𝑣0 = 𝑉0 𝑠𝑖𝑛 (𝜃) and 𝜎1 = 𝜏1 = 𝑢1 =

𝑣1 = 0). Point A: Front Target/Specimen interface. Point B: Rear Target/Specimen interface. 

Point fs: Traction-free surface of Rear Target plate (𝜎𝑓𝑠 = 𝜏𝑓𝑠 = 0) 
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The time window of shear loading at a constant normal stress is cut short by the unloading 

wave from the free surface of the rear target plate, as shown in Figure 1.3. The thickness of the 

rear target plate and the flyer are chosen to maximize the shear window. Typically, a shear 

window of 0.75-1 𝜇𝑠 is achieved, which allows large shear strains of 1-10 for shear strain rates of 

106-107 s-1. On impact, cylindrical unloading waves are generated at the circumference of the 

plates due to traction-free boundary conditions. When these waves reach the point being 

monitored on the free surface of the rear target plate, displacements can no longer be 

interpreted as caused by easily interpretable one-dimensional plane waves and the record is 

discarded beyond this point. 

 

If the flyer and target plates respond elastically, velocities and tractions at the 

sample/rear target plate interface can be inferred from the free surface velocity measurements 

made on the rear target plate. For such a case, normal and shear stresses in the sample can be 

obtained using a characteristic analysis for one-dimensional elastic wave propagation. From 

Figure 1.3, the characteristic equations at the front-target plate/specimen interface are: 

 𝜎𝐴 − 𝜌0𝑐𝐿𝑢𝐴 = −𝜌0𝑐𝐿𝑢0 (1.1) 

 𝜏𝐴 − 𝜌0𝑐𝑆𝑣𝐴 = −𝜌0𝑐𝑆𝑣0 (1.2) 

Here, 𝜎 and 𝜏 represent normal and shear stress respectively, 𝑢 and 𝑣 represent normal and 

transverse velocities, 𝑐𝐿 and 𝑐𝑆 are longitudinal and shear wave velocities and 𝜌0 is initial 

density of the target plate and flyer material. 𝑢0 = 𝑉0 cos (𝜃) and 𝑣0 = 𝑉0 sin (𝜃) where 𝑉0 is the 

impact velocity. Note that a similar analysis can be carried out for plates made from different 

materials. Similarly, the characteristic equations satisfied at the specimen/rear-target plate 

interface are: 
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 𝜎𝐵 + 𝜌0𝑐𝐿𝑢𝐵 = 0 (1.3) 

 𝜏𝐵 + 𝜌0𝑐𝑆𝑣𝐵 = 0 (1.4) 

 𝜎𝐵 − 𝜌0𝑐𝐿𝑢𝐵 = −𝜌0𝑐𝐿𝑢𝑓𝑠 (1.5) 

 𝜏𝐵 − 𝜌0𝑐𝑆𝑣𝐵 = −𝜌0𝑐𝑆𝑣𝑓𝑠 (1.6) 

 

After a sufficient number of reverberations through the thickness of the specimen, a nominally 

uniform of stress is obtained in the sample, i.e.  𝜎𝐴 = 𝜎𝐵 = 𝜎𝑠𝑝, 𝜏𝐴 = 𝜏𝐵 = 𝜏𝑠𝑝 and the normal 

velocity at the front and rear of the specimen is also the same, i.e. 𝑢𝐴 = 𝑢𝐵 = 𝑢𝑠𝑝. The subscript 

‘sp’ stands for specimen and denotes the steady state. Combining equations (1.1) to (1.6), the 

following relations are obtained for a steady state: 

 𝜎𝑠𝑝 = −
𝜌0𝑐𝐿𝑢𝑓𝑠

2
 (1.7) 

 𝜏𝑠𝑝 = −
𝜌0𝑐𝑆𝑣𝑓𝑠

2
 (1.8) 

 2𝑢𝑆 = 𝑢𝑓𝑠 = 𝑢0 (1.9) 

 𝑣𝐵 =
𝑣𝑓𝑠

2
; 𝑣𝐴 = 𝑣0 − 𝑣𝐵 (1.10) 

Figure 1.4 depicts the reverberations inside the sample. After the ring-up is complete, the 

normal stress reaches a peak value of 𝜎𝑠𝑝 = −
𝜌0𝑐𝐿𝑢0

2
 as given through equations (1.7) and (1.9). 

However, the shear stress may nor ring up to the peak value of  𝜏𝑠𝑝 = −
𝜌0𝑐𝑆𝑣0

2
 if the sample 

deforms plastically in shear. Then, the velocity difference between the front and back of the 

specimen leads to a shear strain rate given as: 

 �̇� =
𝑣𝐴 − 𝑣𝐵
ℎ

=
𝑣0 − 𝑣𝑓𝑠

ℎ
 (1.11) 
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The expression for strain rate in equation (1.11) is valid only after the specimen has reached a 

state of constant shear stress as shown in Figure 1.4 (b). The shear strain rate is integrated to 

yield the shear strain: 

 
𝛾(𝑡) = ∫ �̇�(𝜏)𝑑𝜏

𝑡

0

 
(1.12) 

 

The above analysis assumes an ideal condition of perfectly parallel impacting surfaces. 

However, there is always a finite amount of tilt between the flyer and the target plate. It is 

important to keep the tilt as low as possible, typically a value below 2 mrad is desired.  In order 

to achieve such low tilt angles, an extremely precise alignment technique was invented by 

Kumar and Clifton (1977) . Alignment of the flyer to the sandwich consists of two steps: a 

coarse alignment step and a fine alignment step. In the coarse-alignment step, the flyer and the 

sandwich are brought in contact and the degrees of freedom of the sandwich adjusted to ensure 

no gaps and a complete overlap of the impacting surfaces. This is followed by a fine alignment 

step that uses a partially-mirrored, 900 precision prism. The procedure is described in detail in 

Kumar and Clifton (1977) . It should be noted that an alignment precision as small as 0.02 

mrad is achieved using this method.  
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Figure 1.4 Stress- particle velocity plots for normal and shear waves. (a): Solid black lines with a 

slope equal to +(𝜌0𝑐𝐿)𝑊𝐶 represent the allowable states for normal particle velocity and normal 

stress that can be achieved at the interface between the sample and the rear target plate, as 

characterized by equation (1.3). Solid black line with a slope equal to −(𝜌0𝑐𝐿)𝑊𝐶 represent the 

allowable states for normal particle velocity and normal stress that can be achieved at the 

interface between the sample and the front target plate, as characterized by equation (1.1). The 

state of normal stress and normal particle velocity within the sample, which has a lower acoustic 

impedance than the target plates, is given by solid red lines with slopes ±(𝜌0𝑐𝐿)𝑠𝑝, and is shown 

to ring up to the peak normal stress value of −𝜎 = (𝜌0𝑐𝐿)𝑊𝐶𝑢𝑓𝑠/2. (b) A similar description, as 

for normal stress and normal velocity, holds true for the shear stress versus transverse particle 

velocity. If the sample responds elastically under shear, the shear stress rings up to the peak 

value of −𝜏 = (𝜌0𝑐𝑠)𝑊𝐶𝑣𝑓𝑠/2. However, if the sample does not respond elastically up to the peak 

value of shear stress and deforms plastically, the transverse particle velocity is not uniform 

across the sample. A case where the difference between the transverse particle velocities at the 

front and back of the sample becomes constant, leading to a constant shear strain-rate, is shown 
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Figure 1.5 Optical set-up for NDI and TDI. A collimated laser beam (𝜆 = 532 𝑛𝑚) is aligned to 

fall normally on the diffraction grating on the back of the rear target. Lens L1, with a focal 

length of 500 mm, focuses the collimated beam to a focal spot of size ~100 𝜇𝑚 on the grating. 

The reflected 0th order beam is directed to beam-splitter BS2, where it interferes with the 

incident laser beam, to generate the NDI fringes. Two NDI photo-detectors (NDI Detector-1 and 

NDI Detector-2), each with a bandwidth of 1 GHz, are used to capture the fringe pattern. The 

reflected +1 and -1 order beams are directed to beam-splitter BS3, where they interfere to give 

TDI fringes. Two TDI photo-detectors (TDI Detector-1 and TDI-detector-2), each with a 

bandwidth of 350 MHz, are used to capture the TDI fringe pattern. Signals from the photo-

detectors are captured by high bandwidth (≥ 1 GHz) and high sampling rate oscilloscopes (≥

2.5 GSa/s)   
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In order to confirm if a shot is valid, tilt measurement during the experiment is 

necessary. Four tilt pins flush with the impact surface measure the times of contact at different 

points on the circumference of the sandwich. Klopp and Clifton (1990)  provide a detailed 

analysis of tilt in PSPI experiments. A program was written in Mathematica to calculate the 

closure velocity, 𝑉𝑐𝑙 and the closure angle, Ω (see Figure 2b in Klopp and Clifton (1990) ) from 

contact times of the four tilt pins. The tilt angle, 𝛼 can then be obtained as: 

 
sin(𝛼) =

𝑉0 cos (𝜃)

𝑉𝑐𝑙
≈ 𝛼 

(1.13) 

A combined Normal Displacement Interferometer (NDI) and Transverse Displacement 

Interferometer (TDI) is used to measure rear surface velocities (more details by Kim et al. 

(1977) ). The optical set-up for NDI and TDI is shown in Figure 1.5. The interferometers are 

facilitated by a diffraction grating deposited on the free surface of the rear target plate using 

photolithography. A diffraction grating with 625 lines/mm is used. It is important to have a 

good quality diffraction grating to get a TDI signal with adequate signal to noise ratio (see 

Appendix B in Frutschy (1997) ). Normal and transverse displacement sensitivities obtained 

using the diffraction gratings are: 

 
Δ𝑈 =

𝜆

2
 

(1.14) 

 
Δ𝑉 =

𝑑

2𝑛
 

(1.15) 

Where ΔU and ΔV are normal and transverse displacements per fringe respectively, 𝜆 is the 

wavelength of laser light used, d is the spacing between lines in the grating and n is the 

diffraction order. For λ = 532 nm, d = 1.6 µm and n = 1, ΔU = 0.266 µm/fringe and ΔV = 0.8 

µm/fringe are obtained.  
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Displacements are obtained from phase change information of the interferometric 

records. The phase of an amplitude-corrected trace of a record is given as: 

 Δ𝜓(𝑖) = 2𝜋𝑚 + 𝜋(𝛼 + 1) − 𝛼 cos−1(𝑦(𝑖)) − 𝜓0 (1.16) 

where Δ𝜓(𝑖) is the change in phase at the 𝑖𝑡ℎ data point, 𝑚 is an integer that is updated by 1 

after every fringe, 𝑦(𝑖) ∈ [−1,1] is the trace value at the 𝑖𝑡ℎ data point and 𝜓0 is the initial 

phase. 𝛼 = 1 for a positive slope 𝛼 = −1 for a negative slope of the trace. Hence, the normal and 

transverse displacements are given as: 

 

𝑈(𝑖) =
𝑑𝑈

𝑑𝜓
× Δ𝜓𝑛𝑜𝑟𝑚𝑎𝑙(𝑖) =

𝜆
2
2𝜋

× Δ𝜓𝑛𝑜𝑟𝑚𝑎𝑙(𝑖) 

(1.17) 

 

𝑉(𝑖) =
𝑑𝑉

𝑑𝜓
× Δ𝜓𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒(𝑖) =

𝑑
2𝑛
2𝜋

× Δ𝜓𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒(𝑖) 

(1.18) 

Differentiating the displacements yields velocities. Consider an example of interferometric 

records for shot PM1603 on sucrose. Figure 1.6 shows the NDI trace while Figure 1.7 shows the 

TDI trace. Note that the amplitude of the traces does not remain constant. Hence, an 

amplitude-correction step is incorporated before extracting the phase information from the trace. 

Figure 1.8 shows the normal and transverse velocity profiles obtained from these traces. 
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Figure 1.6 NDI trace for shot PM1603. The arrival of the normal wave at the free surface is 

marked by a sudden change in slope of the trace, at 1.78 𝜇𝑠, which is shown clearly in the inset 

 

 

Figure 1.7 TDI trace for shot PM1603. The shear wave arrives at 2.3 𝜇𝑠 as shown by the arrow. 

The arrival of shear wave is usually indicated by a sudden change of slope in the TDI trace. The 

portion of the trace before the arrival of shear wave is a result of tilt  

Arrival of shear wave 
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Figure 1.8 Normal and transverse velocity profiles for shot PM1603 on sucrose. The arrival of 

unloading longitudinal wave is indicated by the arrow. The velocity profiles are not considered 

beyond this time 

 

1.3  Organization of Thesis 

The thesis is divided into 8 chapters. Literature on polymer-bonded explosives and their 

mechanical behavior has been reviewed in the first chapter, followed by an introduction to the 

PSPI experimental technique of measuring dynamic behavior of materials. Chapters 2-5 are 

dedicated to PSPI experiments on the binder, HTPB and the energetic simulant, sucrose, and 

their constitutive modeling. All PSPI experiments are performed at large pressures (3-10 GPa), 

large shear strain-rates (105-106 s-1) and large shear strains (0.25-2). Dynamic shear behavior of 

HTPB and its pressure dependence are explored through PSPI experiments in Chapter 2. A 

quasi-linear viscoelastic model is used to simulate such a behavior of the elastomeric binder. 

This is followed by three chapters on sucrose. The results of PSPI experiments on sucrose are 

Unloading 
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reported in Chapter 3, with focus on the shearing behavior. Chapter 4 lays the foundation of a 

thermodynamic framework for modeling a solid undergoing large deformation. A complete Mie-

Gruneisen equation of state is derived, which allows for an adequate representation of the 

mechanical response of an energetic or simulant crystal subject to impacts and shocks. The 

thermodynamic framework is very generic and allows for the incorporation of large elastic 

deformations through higher order elastic constants, thermoelastic heating and thermo-

viscoplasticity. The model is implemented in ABAQUS through a user-subroutine and the 

results are compared with experimental observations in Chapter 5. Chapter 6 details the PSPI 

experiments on the sucrose/HTPB composite for a given composition. Using the models for 

sucrose and HTPB developed in prior chapters, ABAQUS simulations are carried out on one-

dimensional canonical microstructures and compared with experimental data. Chapters 2-6 lay a 

strong foundation for capturing material behavior of HTPB, sucrose and their composite, which 

sets the stage for exploring the mechanical response of the highly heterogeneous polymer-bonded 

simulants and their explosive counterparts. Since the eventual goal is to enable an 

understanding of the mechanisms leading to the formation of hot-spots in PBXs, a high-speed 

microscopic imaging capability is developed, with the necessary spatio-temporal resolution. 

Chapter 7 details the construction of such an imaging system and demonstrates its capability in 

capturing kinematic fields associated with adiabatic shear band formation in polycarbonate. At 

last, a summary of the work is presented in Chapter 8 and future work is described.   
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Chapter 2  

 

HTPB: Experiments and Constitutive 

M odeling  
 

2.1 Introduction 

 Hydroxy-terminated polybutadiene (HTPB) is one of the most widely used polymeric 

binders in Polymer-Bonded Explosives (PBXs) (Bourne and Milne (2004), Milne et al. (2007), 

Williams et al. (2013) ) and solid rocket propellants. The main role of a polymer binder in a 

PBX is to cushion the explosive crystals from mechanical insults like shock and friction. At the 

same time, the binder improves the processability and provides tailorable properties while 

maintaining performance. In some cases, the binders also contribute to the explosive efficiency, 

like in the case of energetic binders with nitro and azido groups. HTPB has also been the most 

common binder for mock explosives, especially polymer-bonded sugars (PBSs) (Siviour et al. 

(2008), Hu et al. (2015), Kendall and Siviour (2015) ). HTPB is also used in several other 

products like adhesives, foam insulation, bushings, surface coatings, elastomeric wheels and tires. 

The application of interest in this study is the role of a binder played by HTPB in PBXs and 

PBSs.  

 

 One of the key advantages of a polyurethane binder like HTPB is the ease with which its 

mechanical properties can be manipulated by varying the relative amounts of its constituents. 

Mechanical properties like Young’s modulus, tensile strength, % elongation at break, loss 

tangent, storage and loss moduli can be altered in a controlled fashion by changing the type of 
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polyols or di-isocyanates and their relative fractions. Such behavior has been studied in detail by 

Jain et al. (1993), Desai et al. (2000), Sekkar et al. (2000) and Wingborg (2002) . Such a tuning 

capability makes HTPB an attractive choice as a binder. Wingborg (2002)  shows that tensile 

strength of curable polyurethanes can be increased by use of symmetrical and rigid di-

isocyanates in the hard-segments. It is demonstrated by Sekkar et al. (2000)  that increasing the 

R-ratio (ratio of equivalent weights of -NCO and -OH groups) in an HTPB/Toluene Di-

isocyanate (TDI) polyurethane increases the cross-link density, which further leads to an 

increase in Young’s modulus and tensile strength and a decrease in % elongation at break. 

Similar results are obtained by Jain et al. (1993)  by changing the polyol fraction. The glass 

transition temperature (Tg), however, is shown to remain unaffected by the R-ratio (Sekkar et 

al. (2000) ). Another important knob for controlling binder stiffness is the amount of plasticizer. 

Jordan et al. (2016)  show that increasing the fraction of plasticizer reduces the mechanical 

strength and also decreases the glass transition temperature. Change in Tg has implications on 

the working temperature range of the binder and hence the PBX/rocket propellant. Another 

property of concern is the pot life of the constituent mixture of a binder, especially from the 

perspective of sample preparation for propellants. Aliphatic di-isocyanates give a higher pot life 

than aromatic di-isocyanates and hence, are preferred for casting propellants.  

 

There are only a limited number of studies on characterizing the mechanical behavior of 

HTPB. Cady et al. (2006)  showed an increase in flow stress with increasing strain-rate and 

decreasing temperature. They also reported an increase in the apparent glass transition 

temperature, Tg with increasing strain-rate. The drop in flow stress with increasing temperature 

is also reported by Siviour et al. (2008)  at strain rates of ~3000 s-1 through Kolsky bar 
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experiments. Such a drop in the flow stress is drastic around the glass transition temperature, 

falling from above 100 MPa at -80 0C to below 10 MPa at -40 0C. However, under shock 

loading, Meziere et al. (2004) and Millett et al. (2004) report that no changes occur in the Tg, 

decomposition temperature or crosslink density, as indicated by the Hugoniot measurements. It 

should be noted that these studies used different compositions of HTPB. Different compositions 

can result in very different mechanical behavior and hence varied results. Jordan et al. 

(2016)  demonstrate such a variation in high strain-rate and shock properties of different 

compositions of HTPB. It is shown that increasing the plasticizer content reduces the strength, 

Tg and shock velocity in HTPB since an increased amount of plasticizer helps with a smoother 

movement of polymer chains.  

 

While the normal response of the elastomeric binder is important and has been measured 

under uniaxial stress and uniaxial strain loading, it is crucial to characterize its shear strength. 

None of the prior studies have measured the shear strength of HTPB under high pressures and 

high shearing rates. Such measurements are critical for accurate modeling of the constitutive 

response of HTPB as well as prediction of localization and failure phenomena in PBXs. Shear 

strength measurements have been made for other polymers. For example, Clifton and Jiao 

(2015)  report a comprehensive experimental study of polyurea, using PSPI experiments to 

determine its shear strength under a range of pressures and shear strain rates. It is shown that 

the shear strength of polyurea is highly pressure dependent and increases almost linearly with 

applied normal stress for normal stresses beyond ~3 GPa. Experimental measurements on 

polyurea further emphasize the importance of measuring shear behavior at high pressures. Apart 

from the PSPI experiments, shear strength has been measured for various polymers in normal 
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impact experiments through normal and lateral stress measurements. While most of the 

polymers like PMMA (Millett and Bourne (2000) ), Estane, Kel-F-800 (Bourne and Gray III 

(2005) ) and epoxy resin (Millett et al. (2002) ) show an increasing shear strength with 

increasing normal stress, there exist deviations from this behavior as well. For example, 

polychloroprene exhibits an elastic-perfectly plastic behavior above a normal stress of 1 GPa. 

These lateral stress measurements also help identify the Hugoniot Elastic Limit (HEL) of the 

material. The present study uses one-dimensional plane wave pressure-shear plate impact (PSPI) 

experiments to measure the shearing resistance of HTPB under different pressures. To the best 

of our knowledge, these are the first measurements of the dynamic shear strength of HTPB. 

 

There has also been a limited effort on constitutive model development of binder 

elastomers in polymer-bonded systems. Most of the studies use a strain-rate and temperature 

dependent linear viscoelastic formulation. For example, Barua and Zhou (2011)  employ a 

generalized Maxwell model approach through a Prony series to model the viscoelastic relaxation 

of shear response while the volumetric response is modeled through a constant bulk modulus. 

The time and temperature dependence of the shear moduli are usually accounted for through the 

time-temperature superposition principle, with the assumption of a thermo-rheologically simple 

material. Similar modeling efforts employing the Prony series approach have been made byMas 

et al. (2002), Wang et al. (2016) and Hu et al. (2017) . However, such an approach is adequate 

for small to moderate strain ranges where linear viscoelasticity holds. For applications of interest 

where large normal and shear deformations are expected, non-linear hyperelasticity-based 

formulations are more effective. Many of these finite deformation viscoelastic and viscoplastic 

models are based on a Kroner-type decomposition of deformation gradient into elastic and 
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viscous/plastic parts, i.e. 𝑭 = 𝑭𝒆𝑭𝒗 and involve complicated formulations of the stress tensor 

(Bergström and Boyce (1998), Cho et al. (2013) ). Most of such models also involve a large 

number of material parameters, which are difficult to determine especially in high strain-rate 

and high-pressure regimes due to the lack of experimental data. Another major drawback of 

these models is their inability to adequately capture the pressure-dependence of shear response 

of elastomers under dynamic loading conditions. It is shown, in this study, and for polyurea by 

Clifton and Jiao (2015) , that the Lagrangian shear wave speeds in an elastomer are highly 

pressure-dependent. The shear strength of polymers as discussed above, is also a strong function 

of pressure. To incorporate such a dependence of shear wave speed and shear strength on 

pressure, Clifton and Jiao (2015)  propose a multiplicative decomposition of free energy density 

into dilatational and distortional terms. A quasi-linear viscoelastic framework is developed to 

relax the instantaneous pressure and deviatoric stresses separately. In the present work, such a 

quasi-linear viscoelastic formulation is used in order to capture the measured pressure-

dependence of the shear strength of HTPB. 

  

2.2 Specimen Preparation 

The binder material of interest in this investigation consists of the following components: 

(a) HTPB prepolymer, (b) a plasticizer, (c) an anti-oxidant, (d) a curing agent, and (e) a 

catalyst, mixed in specific proportions to achieve a desired binder stiffness. Each component 

plays an integral role in the resulting properties of the binder and the polymer-bonded 

composite. The plasticizer reduces the stiffness of the binder and provides rubbery character to 

the binder/energetic crystal composite. The plasticizer also reduces viscosity for ease of casting 
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and enables higher loading (i.e. fraction) of solid components in the composite. An antioxidant 

inhibits the oxidation of the binder which results in higher cross-linking and hence a stiffer 

binder. The catalyst determines the curing time, reducing it from days to hours. Some of the 

other components used in a binder are wetting agents and cross-linkers. These components are 

excluded from the present study. Note that addition of these components will likely alter the 

mechanical properties of the binder to some extent; however, no loss of generality of the 

experimental measurements is expected from their inclusion. 

 

As noted by Millett et al. (2004) and Jordan et al. (2016) , it is important to specify the 

composition of the individual components used in preparing the polymeric binder for a useful 

comparison of mechanical behavior with other studies. The composition of the HTPB binder 

studied here is shown in Table 2.1. The weight fractions are based on the work by Williams et 

al. (2013)  . However, unlike Williams et al. (2013) , no bonding agent is used. The composition 

is very similar to that employed in PBXN-110 (88% HMX and 12% HTPB by weight) as 

reported by Blumenthal et al. (2002), Cady et al. (2006) . HTPB resin from CrayValley (a 

brand of Total Petrochemicals) with the commercial name, Poly bd® R-45HTLO, is used in this 

study. More information on the specifications of the product can be found in Appendix A. The 

rest of the binder components are bought from Sigma Aldrich. The stiffness of the binder  can 

be changed easily by changing the relative fractions of the plasticizer Jordan et al. (2016)  or 

curing agent or both. The resulting elastomeric binder is a block co-polymer with hard and soft 

domains (see Figure 2.1). The isocyanate (-NCO) on IPDI reacts with the hydroxyl (-OH) group 

on HTPB to form a urethane (-NHCOO) linkage, which cross-links with other urethanes using 

hydrogen bonds to form hard domains, as illustrated in Figure 2.1. The urethane linkages form 
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the hard domains while the long carbon chains of the polyol (HTPB pre-polymer) form the soft 

domains that give the binder its high elasticity. For a given amount of plasticizer, the NCO:OH 

ratio determines the stiffness of the resulting polymer; higher the ratio, stiffer the polymer 

Haska et al. (1997), Sekkar et al. (2000) . An NCO:OH ratio of 1.05 is used in the present study.  

 

Table 2.1 Composition of the HTPB binder used in the present study 

Component Chemical used % by weight 

Pre-polymer Hydroxyl-terminated polybutadiene (HTPB) 47.380 

Plasticizer Dioctyl adipate (DOA) 47.300 

Antioxidant 2,2’-methylene-bis-(4-methyl-tert-butylphenol (AO-2246) 0.635 

Catalyst Dibutyltin dilaurate (DBTDL) 0.095 

Curing Agent Isophorone diisocyanate (IPDI) 4.632 

 

For preparing a thin layer of the HTPB binder for the plate impact experiments, the 

components listed in Table 2.1 are mixed and degassed for 10 minutes. Since extremely small 

amounts of some components are involved, larger quantities of the mixture (usually more than 

60 grams) are prepared for consistency of experimental results. The front target plate, binder 

and rear target plate sandwich is prepared inside a vacuum chamber. Specimen thickness is 

controlled using shims. The sandwich is cured on a hot-plate at 60 0C for 12-16 hours, until a 

Shore A hardness in the range of 3-5 is obtained. See Appendix A for a detailed description of 

the steps involved in sample preparation and the chemical reactions involved in the curing 

process. Since there is range of Shore A hardness that is chosen and due to the inherent 

stochasticity involved in sample fabrication, a mild variation in normal and shear response of 

HTPB is expected across different experiments. 
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Figure 2.1 (a): Hard and soft domains of the elastomeric binder (a polyurethane); secondary 

hydrogen bonds enable cross-linking rather than the typically encountered covalent bonds. (b): 

Visualization of hard (red ellipses) and soft domains (zig-zag lines) 

 

2.3  Experimental Results 

A summary of the four shots conducted on HTPB is given in Table 2.2. Note that three 

different types of anvil materials are used: (a) WC504, (b) WC and (c) D2 Steel (heat treated to 

62 HRC). WC504 is a commercial grade of tungsten carbide (obtained from Valenite) cemented 

with a cobalt binder. WC, procured from Basic Carbide Corporation, Lowber, PA has a lower 

percentage of the cobalt binder (~3%) and is hence, stiffer than WC504. Material properties of 

each of the anvil materials are presented in Table 2.3. While WC504 and WC are used for 

attaining higher normal stresses, D2 Steel is used for tests at lower normal stresses due to its 

lower yield strength. Impact velocities for each of the material are selected so that the normal 

stress is lower than the Hugoniot Elastic Limit (HEL) for the anvil material, except for WC. 

HEL for WC lies around 7 GPa, as shown by Kettenbeil et al. (2020)  using symmetric PSPI 

experiments. Maximum normal stress attained using WC anvil plates is ~9 GPa (Table 2.2). 

Since the HEL of WC is very close to the maximum longitudinal stress imparted on the anvil 

plates, the deviation from elastic behavior for the range of normal stresses considered here is 
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minimal and an elastic wave characteristic analysis is therefore employed to obtain stresses in 

the sample from rear surface velocity measurements, as described in Chapter 1. In an ideal case, 

the constitutive response of the anvil material needs to be characterized beyond the elastic limit 

and an inverse analysis used to infer velocities and stresses at the sample/rear target plate 

interface from the experimentally measured free surface velocities at the rear target plate. Such 

an inverse analysis has been carried out by Clifton and Song (2019) .  

 

Table 2.2 Summary of PSPI shots on HTPB 

Shot 

No. 

Target 

M aterial 
𝒉𝑺  
(𝝁𝒎) 

𝒉𝑭  
(𝒎𝒎) 

𝒉𝑭𝑻  
(𝒎𝒎) 

𝒉𝑹𝑻  
(𝒎𝒎) 

Shore

- A 
𝜽 

𝑽𝟎 
(𝒎/𝒔) 

Tilt 

(mrad) 
𝝈𝒎𝒂𝒙 
(𝑮𝑷𝒂) 

𝝉𝒎𝒂𝒙 
(𝑮𝑷𝒂) 

�̇� (𝒔−𝟏) 

PM1601 WC504 237.6 4.065 4.039 4.045 4-5 00 191.7 3 9.1 NA NA 

PM1602 WC 108 6.417 2.929 5.856 4-5 180 175 0.4 8.84 470 0.38x106 

PM1806 WC 130 6.432 2.886 5.967 3-4 180 126.75 2.43 6.32 360 0.24x106 

PM1805 D2 Steel 145 6.902 2.946 6.388 5-6 180 132.48 1.03 2.84 120 0.23x106 

ℎ𝑆: sample thickness ℎ𝐹: flyer thickness, ℎ𝐹𝑇: front target plate thickness, ℎ𝑅𝑇: rear target plate thickness, 𝜃: angle of impact, 𝑉0: 

impact velocity, 𝜎𝑚𝑎𝑥: peak normal stress, 𝜏𝑚𝑎𝑥: peak shear stress, �̇�: average shear strain-rate 

 

Table 2.3 Elastic material properties of different anvil materials used in PSPI shots 

M aterial WC 504 WC D2 Steel 

Density (g/cm3) 13.800 15.400 7.787 

Poisson’s Ratio 0.22 0.2 0.29 

Young’s Modulus (GPa) 575 650 210 

Longitudinal Wave Speed (mm/𝜇s) 6.897 6.848 5.945 

Shear Wave Speed (m/s) 4.132 4.193 3.233 

 

Normal and transverse velocity profiles for the experiments are plotted in Figure 2.2 and 

Figure 2.3 respectively. The corresponding normal and shear stress profiles are plotted in Figure 

2.4 and Figure 2.5 respectively. Note that in all the plots in this chapter, the velocity and stress 

profiles have been shifted in time and the beginning of a normal or transverse velocity/stress 
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profile does not indicate the time of arrival of longitudinal/shear wave. Since the acoustic 

impedance of HTPB is much lower than that of the target plates, normal stress profiles show 

distinct steps early-on as the normal velocity rings-up to the peak value. The steps in the 

normal velocity profiles are used to obtain normal stress-dependent Lagrangian longitudinal 

wave speeds in HTPB. The height of each step indicates the stress level while the step width 

indicates the transit time. Therefore, the Lagrangian wave speed is given as 2h0/t, where h0 is 

the initial specimen thickness and t is the transit time.  

 

 

Figure 2.2 Normal velocity profiles for PSPI shots on HTPB. The arrival of the unloading wave 

at the sample/rear-plate interface is marked with dots 
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Figure 2.3 Transverse velocity profiles for PSPI shots on HTPB. The arrival of the unloading 

wave is marked with dots.  

 

 

Figure 2.4 Normal stress profiles for PSPI shots on HTPB. The arrival of the unloading wave is 

marked with dots 
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Figure 2.5 Shear stress profiles for PSPI shots on HTPB. The arrival of the unloading wave is 

marked by with dots 

 

 

Figure 2.6 Lagrangian longitudinal wave speeds in HTPB as a function of normal stress. A 

Lennard Jones (LJ) potential is fit to the experimental wave speeds (𝐴 = 0.4 𝐺𝑃𝑎,𝑀 = 6,𝑁 = 3) 

 

In Figure 2.6, the longitudinal wave speeds are plotted as a function of the normal stress. 

It can be observed that there is a pronounced stress-dependence of longitudinal wave velocity. 
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Also note that due to a small uncertainty associated with the weight ratios of some of the 

components of the binder mixture, some variation in specimen stiffness is expected across 

different shots. This results in some variability in the longitudinal wave speeds depicted in 

Figure 2.6. 

 

During the ring-up process, the longitudinal wave can be regarded as a weak shock 

reverberating through the sample. Since the change in entropy across a weak shock wave is 

proportional only to pressure cubed (Davison et al. (2008) ), the ring-up process can be 

considered as quasi-isentropic. The quasi-isentrope can be found by integrating the following 

stress-strain relation: 

 𝑑𝜎 = 𝜌0𝑐
2(𝜎)𝑑𝜖 (2.1) 

where 𝜎 is the normal stress, 𝜌0 is the initial density, 𝜖 is the normal strain and 𝑐(𝜎) is the 

Lagrangian wave speed as a function of normal stress. An equation of state with a form similar 

to Lennard-Jones potential has been proposed for block co-polymers by Porter (1995) , based on 

the concept of group interaction modeling of polymers. Pressure, P is related to the volume ratio 

(J=v/v0) through the following expression: 

 𝑃 = −𝐴(𝐽−𝑁−1 − 𝐽−𝑀−1) (2.2) 

where M = 6, N = 3 and A is a constant chosen to fit the experimental longitudinal wave speed 

data, as shown in Figure 2.6. The quasi-isentrope for HTPB is plotted for A = 0.4 GPa in 

Figure 2.7. Note that the values of these constants obtained from such a fit of wave speeds using 

the Lennard-Jones potential are only preliminary and serve as a good starting point to fit 

experimental velocity profiles using the constitutive model described in the next section. It can 
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be observed from Figure 2.7 that large compressive strains, of the order of 0.4, are expected 

under a normal stress of about 10 GPa. 

 

 

Figure 2.7 Quasi-isentrope of HTPB based on Lennard-Jones (LJ) potential 

 

 

Figure 2.8 Dynamic shear stress vs shear strain plots for HTPB at a nominally similar shear 

strain rate of 2 × 105 − 4 × 105 𝑠−1and three different normal stresses: 2.84 GPa for PM1805, 

6.32 GPa for PM1806 and 8.84 GPa for PM1602. The profiles are drawn for times before the 

arrival of unloading waves.  
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Figure 2.9 Shear strain-rate vs time plots for different PSPI shots on HTPB. The mean shear 

strain-rate values for each shot are indicated by the light-colored dotted lines 

 

 

Figure 2.10 Saturation shear strength of HTPB as a function of normal stress, at a nominally 

similar shear strain rate of 2 − 4 × 105 𝑠−1. The dashed line indicates a linear fit to the 

experimental data. The equation to the linear fit is displayed on the top left.  

 

 Figure 2.8 shows the dynamic shear stress vs shear strain curve of HTPB plotted at a 

nominally constant shear strain rate of ~2 × 105 − 4 × 105 𝑠−1 (the shear strain-rates and their 
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mean values are plotted in Figure 2.9) and three different normal stresses. The shear stress is 

found to saturate to a steady value after the start of shearing deformation. The shear strength 

of HTPB is 120 MPa at a normal stress of 2.84 GPa and reaches as high as 470 MPa at a 

normal stress of 8.84 GPa. The saturation shear strength versus normal stress is plotted in 

Figure 2.10 and a linear fit through the experimental data indicates that the shearing resistance 

increases by approximately 59 MPa for every 1 GPa increase in normal stress. For comparison, 

shear strength behavior as a function of normal stress is compared for several polymers in Figure 

2.11. It is evident that the shear strength of polyurea at various normal stresses closely resemble 

that of HTPB, suggesting polyurea as another potential candidate for a binder if similar shear 

strength properties are desired. Estane is another common binder and shows shear strength 

values very close to those of HTPB. Teflon and PMMA, on the other hand, show higher values 

for shear strength compared to those measured for HTPB. Shear strength of PMMA increases 

steeply with normal stress as compared to the rest of the polymers considered. 

 

 

Figure 2.11 Shear Strength of various polymers as a function of normal stress. HTPB: Present 

work, Estane and Teflon: Bourne and Gray III (2005) , PMMA: Millett and Bourne (2000)  and 

Polyurea: Clifton and Jiao (2015) . Linear equations have been fit to the experimental data  
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2.4 Constitutive M odeling 

In this section, a quasi-linear viscoelastic model for an isotropic elastomeric binder is 

described. The model is based on the description by Clifton and Jiao (2015) .  

 

2.4.1 Finite Deformation Kinematics for PSPI 

As discussed in Chapter 1, the wave propagation is assumed to be in the X1-direction 

while shearing deformation takes place in the X2-direction, where X1 and X2 are coordinates in 

the undeformed configuration. The coordinates in the deformed configuration can be written as: 

 

𝑥1 = 𝜆(𝑡)𝑋1 

𝑥2 = 𝑋2 − 𝜅(𝑡)𝑋1 

𝑥3 = 𝑋3 

(2.3) 

where (𝑥1, 𝑥2, 𝑥3) are deformed configuration coordinates of point (𝑋1, 𝑋2, 𝑋3) at time t. 𝜆(𝑡) and 

𝜅(𝑡) represent stretch and shear respectively. The deformation gradient can therefore be written 

as: 

 𝑭 = 𝛁𝒙 = [
𝜆(𝑡) 0 0
−𝜅(𝑡) 1 0
0 0 1

] (2.4) 

where the gradient, 𝛁 is taken with respect to the undeformed coordinates, 𝑿. The Green-

Lagrange strain tensor is then defined as: 

 𝑬 ≡
𝑭𝑻𝑭 − 𝑰

2
=
1

2
[
𝜆2 + 𝜅2 − 1 −𝜅 0

−𝜅 0 0
0 0 0

] (2.5) 
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2.4.2 Instantaneous Elastic Response 

The instantaneous elastic response of an isotropic hyper-elastic material is specified 

through a strain energy density function, 𝑊 as a function of the invariants (𝐼1, 𝐼2, 𝐼3) or 

equivalently, (𝐼1̅, 𝐼2̅, 𝐽) of the left Cauchy-Green tensor, 𝑩 ≡ 𝑭𝑭𝑇. The invariants are defined as:   

 

𝐼1 ≡ 𝑡𝑟(𝑩) = 𝜆
2 + 𝜅2 + 2 

𝐼2 ≡
1

2
[(𝑡𝑟(𝑩))

2
− 𝑡𝑟(𝑩2)] = 2𝜆2 + 𝜅2 + 1 

𝐼3 ≡ 𝐽
2 = det(𝑩) = 𝜆2 

(2.6) 

 

𝐼1̅ ≡ 𝐽
−
2
3 𝐼1 = λ

4
3 + λ−

2
3𝜅2 + 2λ−

2
3 

𝐼2 ≡ 𝐽
−
4
3 𝐼2 = 2𝜆

2
3 + 𝜆−

4
3𝜅2 + 𝜆−

4
3 

𝐽 ≡ det(𝑭) = 𝜆 

(2.7) 

𝐽 represents ratio of current volume to initial volume and encompasses the volumetric behavior 

completely. 𝐼1̅ and 𝐼2̅ have constant values of 3 under dilatational deformation. Therefore, (𝐼1̅ −

3, 𝐼2̅ − 3 ) completely represent distortional deformation while (𝐽 − 1) represents volume change. 

Using these invariants allows the separation of free energy density into volumetric and 

distortional terms. 

 

A typically used form of free energy density is a generalized Mooney-Rivlin model 

Mooney (1940), Rivlin and Saunders (1997) : 

 �̅�(𝐼1̅, 𝐼2̅, 𝐽) = ∑ 𝐶𝑖𝑗

𝑁

𝑖=𝑗=0

(𝐼1̅ − 3)
𝑖(𝐼2̅ − 3)

𝑗 +∑𝐷𝑝(𝐽 − 1)
2𝑝

𝑃

𝑝=1

 (2.8) 

where the first term corresponds to the distortional response and the second term describes the 

volumetric response. However, the above additive decomposition fails to capture the pressure-



42 

 

dependence of longitudinal and shear wave speeds. In order to adequately capture the pressure-

dependence, the following multiplicative decomposition of free energy density is proposed: 

 �̅�(𝐼1̅, 𝐼2̅, 𝐽) = 𝑓(𝐽) �̂�(𝐼1̅, 𝐼2̅) (2.9) 

where �̂�(𝐼1̅, 𝐼2̅) is the distortional free energy and 𝑓(𝐽) is a pre-factor based on the modified 

Lennard-Jones potential suggested by Porter Jordan et al. (2016)  such that 𝑓(1) = 1 and 𝑁 =

𝑀/2: 

 𝑓(𝐽) = (𝐽−𝑀 − 2𝐽−𝑁) + 2 (2.10) 

The first term of the generalized Mooney-Rivlin model in equation (2.8) is chosen to represent 

the distortional strain energy, �̂�(𝐼1̅, 𝐼2̅): 

 �̂�(𝐼1̅, 𝐼2̅) = 𝐶00 + [𝐶10(𝐼1̅ − 3) + 𝐶01(𝐼2̅ − 3)] (2.11) 

Since the symmetric 2nd Piola-Kirchhoff (P-K) stress is the energy conjugate of Green strain, the 

2nd P-K stress can be written as a derivative of free energy density with respect to the Green 

strain. 

 𝝉 =
𝑑�̅�(𝐼1̅, 𝐼2̅, 𝐽)

𝑑𝑬
=
𝜕�̅�

𝜕𝐼1̅

𝜕𝐼1̅
𝜕𝑬
 +
𝜕�̅�

𝜕𝐼2̅
 
𝜕𝐼2̅
𝜕𝑬

+
𝜕�̅�

𝜕𝐽
 
𝜕𝐽

𝜕𝑬
 (2.12) 

The derivatives of the invariants with respect to the Green strain tensor can be found to be 

 

𝜕𝐼1̅
𝜕𝑬

= −
2

3
𝐼1̅𝑪

−𝟏 + 2𝐽−2/3𝑰 

𝜕𝐼2̅
𝜕𝑬

= 2𝐼1̅𝐽
−2/3𝑰 − 2𝐽−

4
3𝑪 −

4𝐼2̅
3
𝑪−𝟏 

𝜕𝐽

𝜕𝑬
= 𝐽𝑪−𝟏 

(2.13) 

where 𝑪 = 𝑭𝑇𝑭 is the right Cauchy-Green tensor. Thus, substituting the relations in equation 

(2.13) into equation (2.12) gives a general expression for the 2nd P-K stress for any free energy 

density function. The Cauchy stress, 𝑻 can then be written as: 
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𝑻 ≡
1

𝐽
(𝑭𝝉 𝑭𝑇) =

2

𝐽5/3
(
𝜕�̅�

𝜕𝐼1̅
+ 𝐼1̅

𝜕�̅�

𝜕𝐼2̅
)𝑩 − (

2

𝐽
7
3

𝜕�̅�

𝜕𝐼2̅
)𝑩2

+
1

𝐽
(−

2

3
𝐼1̅
𝜕�̅�

𝜕𝐼1̅
−
4𝐼2̅
3

𝜕�̅�

𝜕𝐼2̅
+ 𝐽

𝜕�̅�

𝜕𝐽
) 𝑰 

(2.14) 

A simplified form for the Cauchy stress can be obtained for PSPI, as shown in Appendix B. 

 

2.4.3  Quasi-Linear Viscoelasticity 

The instantaneous elastic stress response of the elastomeric binder to a steep change in 

strain is expected to relax to a lower state of stress. Consider a simple one-dimensional 

relaxation model based on work by Pipkin and Rogers (1968)  and Fung (1972) , where the 

relaxed stress, �̅�(𝑡) is related to the instantaneous elastic response, 𝜎𝑒(𝑡) through a reduced 

relaxation function, 𝑅(𝑡): 

 �̅�(𝑡) = 𝜎𝑒(𝑡) + ∫ 𝜎𝑒(𝑡 − 𝑡′) 
𝑑𝑅(𝑡′)

𝑑𝑡′
 𝑑𝑡′

𝑡

0

 (2.15) 

where the sample is loaded from 𝑡′ = 0 to 𝑡′ = 𝑡. For the Kelvin representation of a standard 

linear solid, the reduced relaxation function, 𝑅(𝑡) has the following form: 

 𝑅(𝑡) ≡
𝐸(𝑡)

𝐸(0)
=
1 + 𝑆0𝑒

−𝑡/𝑡𝑅

1 + 𝑆0
 (2.16) 

where 𝐸(𝑡) is the relaxation function at time t, 𝑡𝑅 is the relaxation time and the constant 𝑆0 =

𝐸0

𝐸∞
− 1. 𝐸0 is referred to as the short-time glassy modulus and 𝐸∞ is referred to as the long-time 

rubbery modulus. Instead of having one relaxation time, 𝑡𝑅, we assume a continuous distribution 

of relaxation times and replace 𝑆0 with a distribution, 𝑆(𝑡′). 𝑆(𝑡′) is a weighting function for 

relaxation times between (𝑡′, 𝑡′ + 𝑑𝑡′). The reduced relaxation function can then be expressed 

as: 
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 𝑅(𝑡) =
1 + ∫ 𝑆(𝑡′)𝑒

−
𝑡
𝑡′𝑑𝑡′

∞

0

1 + ∫ 𝑆(𝑡′)𝑑𝑡′
∞

0

 (2.17) 

For the case of 𝑆(𝑡′) = 𝛿(𝑡′ − 𝑡𝑅), the standard linear solid case (equation (2.16)) can be 

recovered. The following form for the continuous spectrum of relaxation times has been used by 

Fung (2013) and Becker and Foppl (1928) .: 

 𝑆(𝑡𝑅) = {

𝑐

𝑡𝑅
       𝑡1 < 𝑡𝑅 < 𝑡2

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.18) 

where 𝑐 is a constant and 𝑡1, 𝑡2 are lower and upper limits on the relaxation times considered. 

Hence, there is no relaxation for 𝑡𝑅 < 𝑡1 or 𝑡𝑅 > 𝑡2. Such a choice can be justified on the basis 

that for relaxation times below 𝑡1, the response is instantaneous elastic and relaxation times 

above 𝑡2 are insignificant for the dynamic loading under PSPI. In this distribution, the shorter 

time scales are weighed heavier than the larger time scales, as investigated in detail by Neubert 

(1963) . Cut-offs (𝑡1 and 𝑡2) are placed keeping in mind the application of interest. Combining 

equations (2.17) and (2.18), the reduced relaxation function is given as: 

 𝑅(𝑡) =

{
 
 

 
 1                                                              𝑡 = 0

1 + 𝑐 [𝐸1 (
𝑡
𝑡2
) − 𝐸1 (

𝑡
𝑡1
)]

1 + 𝑐 𝑙𝑛 (
𝑡2
𝑡1
)

                 𝑡 ≥ 0
 (2.19) 

where 𝐸1(𝑧) = ∫
𝑒−𝑡

𝑡
𝑑𝑡

∞

𝑧
 is the exponential integral function. Therefore, in the above formulation, 

the constants (𝑐, 𝑡1, 𝑡2) characterize the relaxation response. The effect of each of these constants 

is explored in Appendix C. The derivative of relaxation function needs to be substituted into 

equation (2.15) for the relaxed stress response and is calculated as: 

 
𝑑𝑅(𝑡)

𝑑𝑡
= [

𝑐

1 + 𝑐 𝑙𝑛 (
𝑡2
𝑡1
)
](
𝑒−𝑡/𝑡1 − 𝑒−𝑡/𝑡2

𝑡
) (2.20) 
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Relaxation of instantaneous deviatoric stresses and pressure is treated with separate 

relaxation constants. Using equations (2.15) and (2.20), the deviatoric stress and pressure in an 

isotropic, quasilinear viscoelastic material are given as: 

 

𝑠𝑖𝑗(𝑡) = 𝑠𝑖𝑗
𝑒 (𝑡) + ∫ 𝑠𝑖𝑗

𝑒 (𝑡 − 𝑡′) 
𝑑𝑅𝑑(𝑡

′)

𝑑𝑡′
 𝑑𝑡′

𝑡

0

 

= 𝑠𝑖𝑗
𝑒 (𝑡) +

𝑐𝑑

1 + 𝑐𝑑  𝑙𝑛 (
𝑡𝑑2
𝑡𝑑1
)
∫ 𝑠𝑖𝑗

𝑒 (𝑡 − 𝑡′) (
𝑒−𝑡

′/𝑡𝑑1 − 𝑒−𝑡
′/𝑡𝑑2

𝑡′
)  𝑑𝑡′

𝑡

0

 

(2.21) 

 

𝑝(𝑡) = 𝑝𝑒(𝑡) + ∫ 𝑝𝑒(𝑡 − 𝑡′) 
𝑑𝑅𝑝(𝑡

′)

𝑑𝑡′
 𝑑𝑡′

𝑡

0

= 𝑝𝑒(𝑡) +
𝑐𝑝

1 + 𝑐𝑝 𝑙𝑛 (
𝑡𝑝2
𝑡𝑝1
)
∫ 𝑝𝑒(𝑡 − 𝑡′) (

𝑒−𝑡
′/𝑡𝑝1 − 𝑒−𝑡

′/𝑡𝑝2

𝑡′
)  𝑑𝑡′

𝑡

0

 

(2.22) 

where 𝑠𝑖𝑗(𝑡) is the deviatoric stress and 𝑝(𝑡) is pressure. Subscript 𝑑 represents deviatoric, subscript 𝑝 

represents pressure and superscript 𝑒 indicates the instantaneous elastic behavior. A set of 6 constants 

(𝑐𝑑 , 𝑡𝑑1, 𝑡𝑑2, 𝑐𝑝 , 𝑡𝑝1, 𝑡𝑝2) describes the relaxed response. 

 

2.5 Finite Element Simulations 

Finite element simulations are carried out in ABAQUS/Explicit to simulate the behavior of 

HTPB subject to PSPI loading. 4-noded bilinear plane strain quadrilateral elements with 

reduced integration and hourglass control (CPE4R) are used. Mesh size and time increment are 

chosen adequately to satisfy the CFL condition, i.e. the time increment should be smaller than 

the minimum element size divided by the longitudinal wave speed: 

 Δ𝑡 ≤ min(
𝐿𝑚𝑖𝑛
𝑐𝐿
) (2.23) 
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For a mesh size of 10 𝜇𝑚 and longitudinal wave speeds up to 10,000 m/s, the time-step should 

be smaller than 1 ns. A time-step of 0.1 ns is used to err on the side of caution. The mesh for 

simulation of shot PM1601 is shown in Figure 2.12.The quasi-linear viscoelastic model is 

implemented in a VUMAT, a user-subroutine.  

 

 

Figure 2.12 Mesh for simulation of shot PM1601. The HTPB sample, shown in the middle, has a 

mesh size of 10 𝜇𝑚 while the target plates on either side have a mesh size increasing linearly 

from 20 𝜇𝑚 (at the sample/target interface) to 75 𝜇𝑚 (at the other end) 

 

Table 2.4 Material parameters for quasi-linear viscoelastic model 

𝝂 𝑴 𝒄𝟏  
(𝑚𝑚/𝜇𝑠) 

𝝆𝟎 
(𝑘𝑔/𝑚3) 

𝑪𝟎𝟎 
(𝐺𝑃𝑎) 

𝑪𝟏𝟎 
(𝐺𝑃𝑎) 

𝑪𝟎𝟏 
(𝐺𝑃𝑎) 

𝒄𝒅 𝒕𝒅𝟏 
(ns) 

𝒕𝒅𝟐  
(𝝁𝒔) 

𝒄𝒑 𝒕𝒑𝟏 

(ns) 

𝒕𝒑𝟐  

(𝝁𝒔) 

0.42 5 1750 1000 0.2 0.106 0.106 2 50 1 0.1 1 2 

 

Table 2.4 lists the materials parameters used for the simulations. 𝑐1 is the elastic 

longitudinal wave speed at zero pressure and is obtained from the intercept of the longitudinal 

wave speed versus normal stress plot in Figure 2.6. This value closely matches with the 

longitudinal wave speed derived from Hugoniot measurements of HTPB by Millett et al. (2004) . 

The value of 𝑀 is chosen in such a way that the longitudinal wave speeds can be simulated to 
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match the experimental results, especially at high pressures. The Poisson’s ratio, 𝜈 which is a 

measure of the change in shear strain relative to normal strain, is chosen to best fit the normal 

and shear velocity profiles obtained through the PSPI experiments.  The first four material 

parameters in Table 2.4 characterize the instantaneous elastic response of HTPB. The 

parameters (𝐶00, 𝐶10, 𝐶01) in the Mooney-Rivlin model can be derived from the bulk modulus, 𝐾 

and shear modulus, 𝐺 through the following relations: 

 𝐾 = (𝑀2 − 2𝑁2)𝐶00 (2.24) 

 𝐺 = 2(𝐶01 + 𝐶10) (2.25) 

where the bulk and shear moduli can be found using (𝜌0, 𝑐1, 𝜈). However, the experimental data 

are inadequate to determine the difference between 𝐶10 and 𝐶01. So, the two moduli are taken to 

be the same and equal to 𝜇/4. The viscoelastic relaxation parameters are given in the last 6 

columns. (𝑡𝑑1, 𝑡𝑑2) and (𝑡𝑝1, 𝑡𝑝2) indicate cut-offs on relaxation times for deviatoric stresses and 

pressure respectively. As shown in Appendix C, it is found that decreasing the cut-off of 

relaxation times on either end generates a quicker relaxation response and to a lower equilibrium 

stress state. The extent of relaxation of deviatoric stresses and pressure responses is also 

controlled by the pre-factors, 𝑐𝑑 and 𝑐𝑝 respectively. Note that the values for relaxation 

parameters are based on a limited search through the parameter space. A more comprehensive 

study based on the minimization of least squared errors can be undertaken for each parameter. 

Since our aim is to demonstrate the capability of the proposed constitutive model in capturing 

the viscoelastic behavior of HTPB, we restrict our search for relaxation parameters to a narrow 

range. It should also be kept in mind that the relaxation constants will vary with specimen 

composition and hence will require an update if a binder with a composition different than the 
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one used here is simulated. Even though pressure relaxation is included, the effect of relaxation 

on deviatoric stresses is much larger than that on pressure, with the relaxed stress values at 𝑡2 

for a unit step input to be 𝑅(𝑡𝑑2) = 0.206 for the deviatoric stresses and 𝑅(𝑡𝑑2) = 0.581 for 

pressure.  

 

Figure 2.13 shows a comparison of experimental and simulated normal stress profiles for 

a constant set of material parameters. It is evident that the simulations can exactly replicate the 

normal stresses for the 2.84 GPa (PM1805) and 6.32 GPa (PM1806) shots. The agreement for 

the high-pressure shots (PM1601 and PM1602) is also very good. The slight discrepancy at high 

pressures can be explained by the fact that the anvil material (WC) reaches its Hugoniot elastic 

limit around 7 GPa, leading to a slight deviation in the experimental normal stress profile. 

Similarly, the agreement between the experimental and simulated shear stress profiles, as shown 

in Figure 2.14 is good. The shear stress values for the low and high-pressure shots (PM1805 and 

PM1602 respectively) agree very well. However, the simulation predictions for the intermediate 

shear stress levels fall below the experimentally determined values. Stress-strain behavior under 

simple shear when HTPB is subject to high pressures is shown in Figure 2.15. It should be noted 

that determining the exact shear strain from transverse velocity profiles in a sandwich 

configuration is not possible for the initial times when the shear stress has not yet equilibrated. 

Higher shearing rates are expected during the shear wave ring-up as compared to the 

equilibrium shear strain rate. 
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Figure 2.13 Comparison of experimental and simulated normal stress profiles for shots on HTPB 

 

 

Figure 2.14 Comparison of experimental and simulated shear stress profiles for shots on HTPB 
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Figure 2.15 Comparison of experimental and simulated shear stress vs shear strain behavior of 

HTPB under dynamic loading 

 

In Figure 2.16 and Figure 2.17, simulated stress profiles are compared with the 

experimental results (solid lines) for two cases: (a) Simulations without relaxation, i.e. 

instantaneous elastic response only (dotted lines), and (b) simulations with relaxation (dashed 

lines). For the case of normal stress, the instantaneous elastic response predicts higher levels of 

stress at each step, which is relaxed to match the experimental curves (see Figure 2.16). As 

mentioned above, simulations of quasi-linear viscoelasticity include a smaller amount of pressure 

relaxation compared to deviatoric stress relaxation. Since the shear stresses are extremely small 

when the specimen is loaded by the normal wave only, the effect of relaxation on normal stresses 

is minimal. Majority of the effect of relaxation can be observed in shear stress profiles in Figure 

2.17. It can be observed that the instantaneous elastic response predicts much larger shear 

stresses than observed experimentally. The simulated shear stresses without relaxation also 

exhibit large steps which are not seen in experimental profiles. Another caveat of not including 
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relaxation is that the shear stresses continue to increase and do not show any signs of a plateau 

for the time scales of interest here. Therefore, a correct simulation of shear stresses under 

dynamic loading of the binder requires the inclusion of visco-elastic stress relaxation in the 

material model.    

 

 

 

Figure 2.16 Comparison of normal stress profiles obtained from experiments and simulations, 

with and without relaxation. Relaxation leads to a closer agreement of simulations with 

experiments. ‘NR’ implies no relaxation 
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Figure 2.17 Comparison of shear stress profiles obtained from experiments and simulations, with 

and without relaxation. Simulations without relaxation lead to an always increasing shear stress 

profile and higher shear stress values than experimentally observed. Relaxation leads to a closer 

agreement of simulations with experiments. ‘NR’ implies no relaxation 

 

Figure 2.18 Contour plot of fast wave speed (in km/s) as a function of longitudinal compression, 

𝜆 and shear, 𝜅. Loading contour of simulations of different PSPI shots are also plotted. Note 

that the smallest value on the colorbar on the right is 1.75 km/s 

 

PM1602 

PM1806 

PM1805 
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Figure 2.19 Contour plot of fast wave speed (in km/s) as a function of longitudinal compression, 

𝜆 and shear, 𝜅. Loading contour of simulations of different PSPI shots are also plotted. 

  

It is important to ensure that the Lagrangian elastic wave speeds remain real and 

positive for the range of deformations encountered in the simulations. In order to ensure that, a 

wave analysis similar to the one in  Clifton and Jiao (2015)  is carried out. Contour plots of fast 

and slow wave speeds for material parameters given in Table 2.4 are drawn in Figure 2.18 and 

Figure 2.19. It can be observed that the fast wave speed (in this case, the normal wave speed) 

increases both with increasing compression (i.e. 𝜆) and increasing shear (i.e. 𝜅). The fast wave 

speed remains positive for the range of 𝜆 and 𝜅 inspected. The slow wave speed (in this case the 

shear wave speed), however, increases with increasing compression and decreases with increasing 

shear. There is also a limitation on the values of 𝜆 and 𝜅 beyond which the shear wave speed 

becomes imaginary, i.e. the wave equations no longer remain hyperbolic. The loading contours of 

simulated PSPI shots are plotted on the Lagrangian wave speed contour plots. It can be 

PM1602 

PM1806 

PM1805 
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observed that the 𝜆 and 𝜅 values for the simulations are far away from the region of zero wave-

speeds, ensuring that the elastic wave speeds indeed remain real and positive for the range of 

deformations explored here. 

 

2.6 Discussion 

Dynamic shearing resistance measurements of HTPB, a common binder in PBXs and rocket 

propellants, are carried out using pressure-shear plate impact experiments. The experiments 

spanned a normal stress range of 3-9 GPa and nominal shear strain rates of 2x105 – 4x105 s-1. 

Longitudinal wave speeds are shown to increase non-linearly with increasing normal stress. The 

wave speeds are fit to a Lennard-Jones type potential, which enables the prediction of a quasi-

isentrope for the material. It is found that the shearing strength of HTPB is highly pressure-

dependent. Pressure-dependence of the binder is typically ignored in the material models used in 

energetic materials simulations in the literature. However, accounting for the large pressure-

dependence reported here is expected to have important consequences in the prediction of energy 

localization mechanisms and hot-spots in PBXs. In this study, a quasi-linear viscoelastic model 

with pressure-dependent shear wave speeds and shearing resistance is used to describe the 

experimentally observed dynamic response of HTPB. The model consists of an instantaneous 

elastic response and a viscoelastic relaxation of the elastic response. Simulated profiles of normal 

and shear response are compared with experimental results and a good agreement is seen for a 

suitable choice of material parameters. The shear response of HTPB is compared with other 

elastomers and engineering polymers and is observed to be similar to that of polyurea.  
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2.7 Appendix A: HTPB sample preparation 

The following steps are followed to prepare a binder mixture: 

1. Decide on the total weight of the final polymer mixture. Usually more than 60 grams is 

prepared for consistency across different batches. This is because the fraction of curing 

agent (di-isocyanate) required is extremely small and even small percentage errors in 

pipetting can cause large changes in binder stiffness. 

2. Wear a lab coat, disposable nitrile gloves and safety goggles. Keep a respirator and 

chemical resistant neoprene gloves ready for use when handling the catalyst, DBTDL 

and the curing agent, IPDI. All the chemicals must be stored inside the fumehood when 

being used and all operations should be performed inside the fumehood. DBTDL and 

IPDI are extremely hazardous (read Material Safety Data Sheets before use), so they 

should be handled carefully.  

3. Take a plastic cup with a volume at least 3 times the volume of final mixture (assume 

the density of the final mixture to be ~1g/cm3). This is because degassing the mixture in 

the subsequent steps causes the polymer mixture to flow out of the cup. Place the cup on 

a weighing scale inside the fumehood. 

4. Take out the required amount of HTPB (see Table 2.5 for component fractions) using a 

glass rod, into the plastic cup. HTPB resin is a clear, thick viscous liquid. Close lid of 

the HTPB container right after use to prevent oxidative reactions and ageing of HTPB 

resin. 

5. Use a plastic disposable pipette to take out the plasticizer, DOA. DOA is a clear liquid, 

thinner than the HTPB resin. Do not mix yet. 
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6. Weigh the oxidizing agent, AO-2246 using Mettler Toledo balance, in a separate plastic 

cup. Keep it aside. 

7. Put on the respirator and neoprene gloves. 

8. Carefully open the DBTDL (catalyst) bottle and pour in the exact volume using a micro-

pipette. Close the DBTDL bottle tightly and keep back in the pink tray in the 

fumehood. 

9. Take out the curing agent, IPDI from the steel box and carefully pipette out the exact 

amount. Do not forget to change the disposable plastic pipettes every time you take out 

the liquid from the bottle. 

10. Put in the AO-2246 powder. Mix well using a plastic/Teflon spoon. 

11. Degass the mixture in a vacuum chamber for ~10 minutes until almost all the bubbles 

have died out.  

12. Pour the required amount of degassed HTPB on the front target plate. Before beginning 

the sample preparation procedure, the front plate should be ready with shims on its 

periphery. The rear target plate should be stuck to a movable piston, whose height can 

be adjusted from outside the vacuum chamber. The remaining HTPB is then transferred 

in a rectangular plastic box and is used later as a reference to measure the Shore-A 

hardness of cured HTPB.  

13. Degass again for ~2-3 minutes and slowly lower the rear target plate using the movable 

piston. Squeeze out the excess HTPB. Place a weight on top of the piston and keep for 

5-10 minutes. 

14. Detach the piston from the rear target plate and vent the vacuum chamber. Take out 

the sandwich (which is placed on a large steel substrate) and keep in the oven at 60 0C 
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for 12-16 hours. Place the rectangular box with excess HTPB under same conditions in 

the oven. 

15. After 12 hours, check the Shore-A hardness of the excess HTPB sample. Heat for a 

longer time if needed. 

16. After placing the sandwich in the oven, clean up the workspace. Put the disposable 

gloves, plastic cups, pipettes, etc. into a glass box. Close the glass box tightly and put an 

orange hazardous waste label on it. 

 

Chemical Reactions involved 

The two main components of the binder are: HTPB resin and the curing agent. HTPB is 

an oligo-polyol, i.e. it is an oligomer of butadiene terminated with a hydroxyl group (-OH) at 

each end of the chain (see Figure 2.20). IPDI is an aliphatic non-symmetric di-isocyanate, i.e. it 

has two isocyanate groups (-NCO) (see Figure 2.20). 

 

Figure 2.20 Chemical structure of HTPB and IPDI 

 

The basic reaction involved in the curing process is that between an isocyanate and an alcohol 

to give a urethane Ionescu (2005) , as shown below in Figure 2.21.  

 

HTPB IPDI 
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Figure 2.21 Reaction between an isocyanate and an alcohol leads to the formation of a urethane. 

The nucleophilic center of the alcohol (oxygen atom) attacks the electrophilic site of the 

isocyanate (carbon atom). The hydrogen atom on the alcohol adds on to the nitrogen atom of 

the isocyanate. The reaction is exothermic and generates a heat of 24 kcal/mol (Ionescu (2005) ) 

 

To understand how to calculate the weight fractions of each component in the HTPB 

mixture, it is important to first define the following quantities.  

1. Functionality (f): Number of hydroxyl groups per molecule of oligo-polyol.  

2. Number average M olecular Weight (M n): Number average molecular weight of a 

polymer is defined as: 

 𝑀𝑛 =
∑ 𝑛𝑖𝑀𝑖𝑖

∑ 𝑛𝑖𝑖
 (2.26) 

where 𝑛𝑖 is the number of moles of 𝑖𝑡ℎ molecule and 𝑀𝑖 is the molecular weight of 𝑖𝑡ℎ 

molecule.  

3. Weight average M olecular Weight (M w): Weight average molecular weight of a 

polymer is defined as: 

 𝑀𝑛 =
∑ 𝑛𝑖𝑀𝑖

2
𝑖

∑ 𝑛𝑖𝑀𝑖𝑖
 (2.27) 

4. Polydispersity Index (PDI)/M olecular Weight Distribution (M WD): PDI is 

the measure of heterogeneity of molecule sizes in a polymer and is defined as: 

 𝑃𝐷𝐼 =
𝑀𝑤
𝑀𝑛

 (2.28) 
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5. Hydroxyl Number (OH #): Milligrams of KOH equivalent for 1 gram of the sample 

(mg KOH/g). 

 𝑂𝐻# =
𝑓 × 56100

𝑀𝑛
 (2.29) 

where 𝑀𝑛 is the number average molecular weight of the sample (g/mol) and 56100 𝑚𝑔 is 

the equivalent weight of KOH.  

6. Equivalent Weight (EW): Equivalent weight is defined as: 

 𝐸𝑊 =
𝑀𝑛
𝑓
=
56100

𝑂𝐻#
 (2.30) 

1 equivalent weight of polyol reacts with one equivalent weight of the di-isocyanate. 

 

Table 2.5 Material parameters for Poly bd R-45HTLO from the data sheet 

Hydroxyl functionality 2.4-2.6 

Number average molecular weight 2800 g/mol 

Polydispersity Index 2.5 

Hydroxyl number 47.1 mgKOH/g 

Specific gravity (23 0C) 0.901 g 

Glass Transition Temperature -75 0C 

 

Case Study 1: For a simple 2-component system of a polyol and an isocyanate, percentage of 

each component required is: 

 % 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =
𝐸𝑊𝑖
∑ 𝐸𝑊𝑖𝑖

 (2.31) 

Consider a polymer bonded explosive with 10% binder content.  It is given that DOA content is 

5%, AO content is 0.01% and NCO:OH ratio is 1:1. Assuming no bonding agent, what is the % 

of HTPB (R-45 HT) and % of IPDI by weight? First, find the percentage of curatives (%C): 

 %𝐶 = 10 − 5 − 0.01 = 4.99 (2.32) 
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Now, to proceed further, the equivalent weights of HTPB and IPDI are required. 𝐸𝑊𝐻𝑇𝑃𝐵 =

1191 is obtained from equation (2.30) by substituting the value of hydroxyl number (OH#) 

from Table 2.5. Similarly, with a molecular weight of 222 g/mol and a functionality of 2, the 

equivalent weight of IPDI is found to be 111. Therefore, the percentages of HTPB and IPDI 

are: 

 %𝐻𝑇𝑃𝐵 =
1191

1191 + 111
× 4.99 = 4.56% (2.33) 

 % 𝐼𝑃𝐷𝐼 = 4.99 − 4.56 = 0.43% (2.34) 

 

Case Study 2: Consider an NCO:OH ratio of 1.2 in Case Study 1. This implies that there are 

1.2 equivalents of IPDI for every equivalent of HTPB. Let the % of HTPB be x. Therefore, 

 𝑥 + 1.2𝑥 = 4.99 (2.35) 

 % 𝐻𝑇𝑃𝐵 =
1 𝐸𝑊 𝐻𝑇𝑃𝐵

1 𝐸𝑊 𝐻𝑇𝑃𝐵 + 1.2 𝐸𝑊 𝐼𝑃𝐷𝐼 
× (%𝐶) =

1191

1191 + 1.2 × 111
× 4.99 = 4.49% (2.36) 

 % 𝐼𝑃𝐷𝐼 = 8.6 − 7.81 = 0.5% (2.37) 

Note that in the above case studies, HTPB resin and the IPDI curing agent are the only 

curatives. However, if other compounds like a cross-linking agent or bonding agent (for example 

Dantocol in Williams et al. (2013) ) contribute to the NCO:OH ratio, they need to be accounted 

for in the curatives percentage as well. 

 

2.8 Appendix B: Cauchy Stress for  PSPI 

The left Cauchy-Green tensor, 𝑩 = 𝑭𝑇𝑭 can be found from the definition of 𝑭 using equation 

(2.4): 
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 𝑩 = [
𝜆2 −𝜅𝜆 0
−𝜅𝜆 𝜅2 + 1 0
0 0 1

] (2.38) 

Substituting the above expression in equation (2.14), the Cauchy stress is expressed below: 

 

𝑻 = 2𝑓(𝜆) [
𝐶10
𝜆5/3

+
𝐶01𝐼1̅
𝜆5/3

]𝑴𝟏 −
2𝐶01

𝜆
7
3

𝑓(𝜆)𝑴𝟐

+ {[𝐶00 + 𝐶01(𝐼2̅ − 3) + 𝐶10(𝐼1̅ − 3)]𝑓
′(𝜆) −

𝑓(𝜆)

𝜆
[
2𝐶10𝐼1̅
3

+
4𝐶01𝐼2̅
3

]} 𝑰 

(2.39) 

where 𝑰 is the identity tensor and the tensors 𝑴𝟏 and 𝑴𝟐 defined below: 

 𝑴𝟏 = [
𝜆2 −𝜅𝜆 0
−𝜅𝜆 𝜅2 + 1 0
0 0 1

] (2.40) 

 𝑴𝟐 = [
𝜆2(𝜆2 + 𝜅2) −𝜅𝜆(1 + 𝜅2 + 𝜆2) 0

−𝜅𝜆(1 + 𝜅2 + 𝜆2) (1 + 𝜅2)2 0
0 0 1

] (2.41) 

For a linear elastic response, the constants (𝐶00, 𝐶01, 𝐶10) can be related to the bulk modulus, K 

and shear modulus, 𝜇: 

 𝐾 = (𝑀2 − 2𝑁2)𝐶00 (2.42) 

 𝜇 = 2(𝐶01 + 𝐶10) (2.43) 

Assuming 𝐶01 = 𝐶10 =
𝜇

4
, equation (2.39) can be further simplified: 

 

𝑻 =
2𝑓(𝜆)𝐶10

𝜆
5
3

(1 + 𝐼1̅)𝑴𝟏 −
2𝐶10

𝜆
7
3

𝑓(𝜆)𝑴𝟐

+ {[𝐶00 + 𝐶10(𝐼1̅ + 𝐼2̅ − 6)]𝑓
′(𝜆) −

2𝑓(𝜆)

3𝜆
𝐶10(𝐼1̅ + 2𝐼2̅)} 𝑰 

(2.44) 
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2.9 Appendix C: Effect of relaxation constants on the 

relaxation function 

From the figure below, it can be concluded that increased stress relaxation is observed 

with larger c, smaller 𝑡1 and smaller 𝑡2 for the range of time intervals considered here. 

 

Figure 2.22 Effect of relaxation constants (𝑐, 𝑡1, 𝑡2) on the relaxation function, R(t) for 0 ≤ 𝑡 ≤

2 𝜇𝑠 
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Chapter 3   

 

Sucrose: Experiments 
 

3.1 Introduction 

An energetic simulant crystal is a molecular crystal that matches with an actual 

energetic crystal such as HMX, RDX, PETN, etc. in terms of one or more attributes that 

include crystal structure, density and mechanical properties. Several energetic simulant crystals 

have been explored in the past, such as, sucrose, acetaminophen and melamine. Sucrose and 

acetaminophen are simulants for HMX due to their similar monoclinic crystal structure. 𝛽-HMX 

crystals have 𝑃21/𝑐 (𝑃21/𝑛) symmetry with cell dimensions of 𝑎 = 6.54 Å, 𝑏 = 11.05 Å, 𝑐 =

8.70 Å, 𝛽 = 124.30 (Miller and Garroway (2001) ). Sucrose also belongs to the 𝑃21 space group 

with cell dimensions of 𝑎 = 10.89 Å, 𝑏 = 8.69 Å, 𝑐 = 7.77 Å, 𝛽 = 1030 (Beevers et al. (1952) ). 

Sucrose has also been shown to have mechanical behavior similar to that of HMX, RDX and 

PETN under drop-weight impact (Heavens and Field (1974) ) and a similar shock Hugoniot as 

HMX (Sheffield et al. (1998) ). These similarities have resulted in sucrose being widely used as 

an energetic material simulant. Sucrose has not only been used as a mock energetic crystal in 

the energetic materials industry, but also finds an important application in the pharmaceutical 

industry as a model material to study compaction processes (Duncan‐Hewitt and Weatherly 

(1990) ). Use of sucrose offers insights into fracture in chipping, capping and delamination in 

such compaction processes. 
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Due to their inert nature, energetic simulants provide a safe and cost-effective way to 

test the mechanical behavior of real energetic crystals, which makes them suitable for laboratory 

settings. Another major advantage of studying energetic simulants is that they allow decoupling 

of mechanical and chemical behaviors of energetic crystals so that one can understand the 

mechanical signatures of phenomena such as pore collapse, adiabatic shear localization, fracture 

and granular friction independent of the effects of the accompanying chemical reaction in an 

actual energetic material. Sheffield et al. (1998)  showed how the dissociation reaction in HMX 

crystals affects particle velocity waveforms at the front and the rear ends of the sample and how 

the waveforms compare to an inert simulant (sucrose). This allowed them to visualize how 

waveforms in HMX would have looked if no chemical reaction took place. Moreover, it should be 

noted that several properties of energetic crystals are not adequately known, some of which are: 

(a) melt curve as a function of pressure, (b) thermal conductivity of the solid phase as a 

function of temperature and pressure, (c) specific heat capacity of the liquid phase as a function 

of pressure and temperature, (d) viscosity in the liquid phase as a function of pressure and 

temperature, and (e) anisotropy of yield surface. Some of these properties are hard to measure 

experimentally because of the onset of chemical decomposition and a subsequent reaction under 

extreme conditions. However, all the above properties are important for accurate modeling of 

mechanical behavior of energetic crystals under large deformations and accurate prediction of 

ignition from hot-spot formation. Simulant crystals like sucrose offer an opportunity to provide 

reference values and trends for relevant material properties of real energetic crystals. 

 

Due to their mechanical and chemical fragility, characterization of molecular crystals 

using traditional testing methods is very difficult. Brittle molecular crystals such as RDX, HMX, 
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PETN, sucrose, etc. fracture prematurely because they cannot endure large strains. Moreover, 

characterization methods such as electron microscopy are difficult to use on these materials for 

quantitative assessment as they chemically dissociate under an electron beam. Hence, not much 

is known about the deformation behavior of molecular crystals and the underlying deformation 

mechanisms. As a result, researchers have been left with only a handful of experimental methods 

to characterize these materials at the quasi-static limit. Nano-indentation and atomic force 

microscopy (AFM) have been used to extract elastic moduli and hardness of sucrose on different 

planes. Ramos and Bahr (2007)  have used nanoindentation on single crystals of sucrose and 

reported an elastic modulus of 38 GPa on the (100) planes and 33 GPa on the (001) planes. 

They found a hardness of ~1.5 GPa, suggesting a bulk yield strength of 500 MPa. Duncan-

Hewitt and Weatherly (1989)  report a hardness of 645 MPa using micro-indentation while 

Masterson and Cao (2008)  report a value of 1.8-2.4 GPa using AFM nanoindentation. Hardness 

measurements suggest there is a significant variation in the results using different measurement 

techniques. Fracture toughness values of sucrose in the range of 0.07-0.1 MPa √𝑚 were reported 

by Duncan-Hewitt and Weatherly (1989) . Apart from mechanical and chemical fragility, 

molecular crystals are difficult to analyze and characterize experimentally because of other 

unfavorable features such as anisotropy and phase transformations. For example, 𝛽-HMX has a 

monoclinic crystal structure with 13 elastic constants which have been measured experimentally 

by Zaug (1998)  and Stevens and Eckhardt (2005) . Similar measurements of elastic constants of 

RDX by Haussühl (2001), Schwarz et al. (2005), Haycraft et al. (2006)  show large anisotropy of 

elastic properties along different orientations. Anisotropy in crystallographic slip results in 

varying mechanical response when shocked in different orientations. Dick et al. 
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(2004)  demonstrate the anisotropy in strength and elastic precursor decay of 𝛽-HMX single 

crystals when shocked in different orientations. The inelastic mechanisms of deformation are also 

shown to vary with orientation. Similarly, Hooks et al. (2006)  show that elastic wave speeds, 

Hugoniots and plastic wave relaxation rates are highly anisotropic for shocked RDX single 

crystals. Such a large anisotropy in elastic and plastic properties of energetic crystals requires 

extensive experimental characterization for reliable constitutive models.  

 

The mechanical response of molecular crystals such as HMX and RDX has been studied 

in sufficient detail under uniaxial strain through normal compression impact experiments (Dick 

et al. (2004), Hooks et al. (2006) ). However, a systematic characterization of the shear strength 

of energetic crystals and their simulants such as sucrose has not been done so far. Trott et al. 

(2007)  investigated the response of granular sugar under shock compression for different sample 

thicknesses, impact velocities and particle size distributions. A shock Hugoniot has also been 

reported by Sheffield et al. (1998) . However, these studies are insufficient to model the strength 

response of sucrose as a function of pressure and strain-rate. A detailed anisotropic elastic-

viscoplastic model is not possible to build at this stage due to absence of sufficient experimental 

data. It is difficult to develop even a sufficiently robust isotropic model for polycrystalline 

sucrose or a sufficiently large aggregate of sucrose grains, which can adequately model large 

deformations under high pressures and high strain rates. The absence of any shear strength 

measurements makes it difficult to perform realistic simulations of deformation and phenomena 

such as pore-collapse, shear localization and friction that lead to hot-spot formation. Granularity 

of the specimen further hinders the ability to probe bulk material response of sucrose. The effect 

of granular nature of the specimen is brought out through very different normal velocity profiles 
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for same impact velocities observed by Trott et al. (2007) . For these reasons, we employ the 

PSPI technique in the present work to measure the material response of a uniform sucrose layer 

to normal and shear loading.  

 

To add to the complexity of mechanical behavior of molecular solids, it has been 

reported that under high pressures, temperatures and shear strains, molecular solids can undergo 

phase transformations. Patyk et al. (2012)  and Ciezak-Jenkins and Jenkins (2018)  report an 

isostructural phase transformation in sucrose at a pressure of ~5 GPa, using a diamond anvil 

cell. Ciezak-Jenkins and Jenkins (2018)  subject sucrose samples to large shear strains at high 

pressures using a rotational diamond anvil cell and show that amorphization occurs under such 

loading conditions. However, the diamond anvil cell studies do not quantify the shear strains 

and rates of loading and hence do not provide the necessary quantitative information to develop 

material models. Therefore, in the present work, we lay an experimental foundation using the 

PSPI experiments for the constitutive modeling of sucrose. In addition to being the first 

undertaking to study high pressure, high strain-rate strength of sucrose, the experimental results 

also reveal the propensity of sucrose to undergo shear localization. Such findings beg for more 

experimental effort on real energetic crystals such as HMX and RDX under PSPI loading.  

 

3.2 Specimen Preparation 

A uniform thin layer of crystalline sucrose is prepared on the front target plate by using 

spin-coating a super-saturated solution of sucrose in de-ionised water. Pure sucrose from Sigma 

Aldrich is used rather than commercial variety of sugar. An 80% w/w solution of sucrose in 
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water is prepared and degassed. The solution is spin-coated on the substrate at 4000 rpm. The 

substrate is placed on a hot plate at ~60 0C for ~12-16 hours until all water has evaporated and 

sucrose has crystallized. As shown in Figure 3.1, it is important to stay above the metastability 

limit (in Zone III) for crystallization to occur. Moist environment and rough substrate are found 

to favor grain nucleation and growth.  

 

 

Figure 3.1 Sucrose concentration (% weight of solid) vs temperature (Shastry and Hartel 

(1996) ). Zone I: Under-saturated solution, Zone II: Meta-stable solution, Zone III: Labile 

solution, Zone IV: Amorphous state. Sucrose crystallization begins above the metastability limit. 

So, for a solution heated at 60 0C, a starting solution concentration of 80% is chosen 

 

A sample obtained by following the above preparation process is shown in Figure 3.2. 

The sample thickness is measured using a Dektak profilometer. A sucrose layer of 10-20 𝜇𝑚 in 

thickness can be obtained by this method, which facilitates large shear strain rates of the order 

of 106 s-1. Note that the specimens are not perfectly flat and have a surface roughness of the 

order of a micron. On cooling, cracks are observed on the sample, as shown in Figure 3.2 (b) 

and (c), due to a large mismatch between the coefficient of thermal expansion of the substrate 
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and that of sucrose. However, the width of these cracks is extremely small as indicated by the 

scale bar and would not be significant in the PSPI experiments. Another critical issue of interest 

is the crystallinity of the sucrose layer. To ensure that the sucrose layer prepared by the spin-

coating method is crystalline, X-Ray Diffraction (XRD) studies are carried out on powdered 

crystalline sucrose and spin-coated sucrose layer (see Appendix A). An overlap of XRD peaks of 

the crystalline specimen and that of crystalline powdered sugar shows that the spin-coating 

method indeed yields a crystalline layer. Figure 3.2 (d) depicts a polycrystalline layer of a 

sucrose specimen with a grain size of the order of a few microns. 

 

 

Figure 3.2 (a) WC front target plate (diameter = 50 mm) with a 15 𝜇𝑚 thick uniform layer of 

sucrose spin-coated on top. (b), (c) magnified views of a spot on the sample, (d) a stitched 

version of microscope images indicating sucrose grain boundaries 

(b) (a) 

(d) 

Cracks 

(c) 
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3.3  Experimental Results 

A total of 7 PSPI shots have been conducted on sucrose. A summary of the shots is 

provided in Table 3.1. D2 steel is used as the anvil material for the low normal stress (nominally 

3 GPa) shots, while WC is used for the high normal stress (nominally 9.5 GPa) shots. Shear 

strain rates of the order of 106 s-1 are obtained as a result of using extremely small sample 

thicknesses of 10-20 𝜇𝑚.  

 

Table 3.1 Summary of PSPI shots on sucrose 

Shot 

No. 

Target 

M aterial 
𝒉𝑺  
(𝝁𝒎) 

𝒉𝑭  
(𝒎𝒎) 

𝒉𝑭𝑻  
(𝒎𝒎) 

𝒉𝑹𝑻  
(𝒎𝒎) 

𝜽 
𝑽𝟎 

(𝒎/𝒔) 

Tilt 

(mrad) 
𝝈𝒎𝒂𝒙 
(𝑮𝑷𝒂) 

𝝉𝒎𝒂𝒙 
(𝑮𝑷𝒂) 

�̇� (𝒔−𝟏) 

PM1802 D2 Steel 12.05 6.915 2.978 6.511 180 132.06 1.21 2.82 0.382 1.95x106 

PM1803 D2 Steel 12.63 6.94 2.951 6.522 180 134 NA 2.9 0.442 1.7x106 

PM1804 D2 Steel 16.97 6.965 2.944 6.571 180 133.46 1.02 2.93 0.404 1.55x106 

PM1603 WC 17.6 6.443 2.886 5.872 180 187 0.5 9.1 0.460 2.9x106 

PM1701 WC 16.91 6.324 2.855 5.986 180 194.5 0.8 9.75 0.288 3.1x106 

PM1702 WC 13.58 6.369 2.937 5.934 180 191.9 0.37 9.64 0.580 3.98x106 

PM1801 WC 18.24 6.335 2.914 5.940 180 188.52 0.97 9.47 0.530 2.95x106 

ℎ𝑆: sample thickness ℎ𝐹: flyer thickness, ℎ𝐹𝑇: front target plate thickness, ℎ𝑅𝑇: rear target plate thickness, 𝜃: angle of impact, 𝑉0: 

impact velocity, 𝜎𝑚𝑎𝑥: peak normal stress, 𝜏𝑚𝑎𝑥: peak shear stress, �̇�: average shear strain-rate 

 

Figure 3.3 and Figure 3.4 show the normal and transverse velocity profiles for the low-

pressure shots on sucrose. The normal and transverse velocity profiles for the high-pressure shots 

are plotted in Figure 3.5 and Figure 3.6 respectively. The normal velocity profiles show an 

elastic precursor as shown by the initial step. Following the elastic precursor, the normal 

velocity for the low-pressure shots rises steeply to the plateau, with a rise time of approximately 

86 ns. For the high-pressure shots, the initial rise after the elastic precursor is steep but a bend 

is observed at a normal velocity of 120 m/s, which could be a result of the anvil material, WC 
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reaching its HEL. Moreover, no steps are observed in the normal velocity profiles despite the 

large acoustic impedance mismatch between anvil material and sucrose because sucrose layers 

are extremely thin. Instead, the normal velocity rises steeply to the saturation value. Normal 

stress profiles for low and high-pressure cases are plotted in Figure 3.7 and Figure 3.9 

respectively. Saturation normal stresses of ~3 GPa and ~9.5 GPa are obtained nominally for the 

low and high velocity shot categories. Note that in all the plots in this chapter, the velocity and 

stress profiles have been shifted in time and the beginning of a normal or transverse 

velocity/stress profile does not indicate the time of arrival of longitudinal/shear wave at the 

point on the free surface of the rear target plate where velocity measurements are made. 

 

 

Figure 3.3 Normal velocity vs time profiles for low pressure shots conducted on sucrose. The 

arrival of unloading wave at the sample/rear-plate interface is indicated by dots. Note that the 

noise in the velocity profile of PM1803 is caused as a result of small NDI signal 
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Figure 3.4 Transverse velocity vs time profiles for low pressure shots conducted on sucrose. The 

unloading longitudinal wave arrives at the sample/rear-plate interface later than the range of 

times plotted 

 

Figure 3.5 Normal velocity vs time profiles for high pressure shots on sucrose. Arrival of 

unloading wave at the sample/rear-plate interface is indicated by dots 
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Figure 3.6 Transverse velocity vs time profiles for high pressure shots on sucrose 

 

Similarly, the shear stress profiles are plotted in Figure 3.8 and Figure 3.10 for the low 

and high-pressure shots respectively. The shear behavior offers more interesting insights into the 

mechanical behavior of sucrose under high pressures and high shear strain-rates (>106 s-1). The 

shear stress rises to a peak value followed by a pronounced strain softening. Under these loading 

conditions, sucrose loses its shearing resistance after accumulating a certain amount of shear 

strain. For the low-pressure case, the shear stress profiles are very repeatable. For the high-

pressure case, two shots (PM1603 and PM1801) show almost identical shear behavior. However, 

for shot PM1701, the peak shear strength is much smaller than the other two shots and shows a 

complete loss in shear strength. Transverse velocity and shear stress profiles for PM1702 are not 

plotted since the data for that shot is very noisy due to the low TDI signal to noise ratio. 

Overall, the high-pressure shots exhibit more variability in the shear stress data as compared to 
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the low-pressure shots. However, both the cases show qualitatively similar behavior. Also note 

that as the transverse velocity reduces to a very small value after shear strain-softening, the 

transverse velocity and shear-stress profiles become noisy due to the low signal to noise ratio of 

TDI signal thereafter. 

 

Normal stress profiles for all shots on sucrose are plotted in Figure 3.11. High and low-

pressure shots are laid on top of each other for a better comparison and to demonstrate the 

consistency of the normal behavior across different shots. Similarly, shear stress profiles for all 

shots on sucrose are plotted in Figure 3.12. 

 

The dramatic drop in shear strength of sucrose can be attributed to a thermo-

viscoplastic instability leading to localized shearing deformation and possibly melting in the 

sucrose sample. Such behavior is modeled using an appropriate constitutive model in Chapter 4. 

A simple calculation of the amount of plastic work due to shear converted to heat (= ∫ 𝛽 𝜏𝑑𝛾) 

suggests a significant increase in temperature. Here ∫ 𝜏𝑑𝛾 is the amount of plastic work due to 

shearing deformation and 𝛽 is the fraction of plastic work converted to heat. For example, 

assuming homogeneous deformation across the specimen in shot PM1603, 𝛽 = 0.9 and ambient 

values of specific heat (1244 𝐽/𝑘𝑔𝐾) and density of sucrose (1580.5 𝑘𝑔/𝑚3), a temperature 

increase of approximately 286 ℃ is expected. The thermal softening eventually overtakes the 

strain and strain-rate hardening, leading to localized deformation. Such localized failure through 

the formation of adiabatic shear bands has been observed in molecular solids like RDX by 

Sharma and Coffey (1996), Sharma et al. (1996), Coffey and Sharma (2001) . Sharma and 



75 

 

Coffey (1996)  and Sharma et al. (1996)  use Atomic Force Microscopic (AFM) imaging to 

illustrate the lattice and molecular deformations in RDX resulting from drop-weight loading. 

AFM images of an RDX single crystal subject to an aquarium shock of 12.9 GPa magnitude by 

Sandusky et al. (1993)  are shown in Coffey and Sharma (2001) . AFM images of recovered 

samples shows shear bands with width of several tens of microns form along crystal slip planes 

and extend for hundreds of microns. It is also shown that RDX melts locally within the shear 

bands, flows out of the bands and solidifies on the crystal surface. Molecular dynamics studies of 

shock-loaded HMX (Jaramillo et al. (2007) ) and RDX (Cawkwell et al. (2008) ) also show the 

formation of nano-shear bands at 450 to the direction of impact. However, quantitative 

measurements of peak shear stress at which shear bands form are not made in any of the above 

studies.  

 

 

Figure 3.7 Normal stress vs time profiles for low pressure shots on sucrose 
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Figure 3.8 Shear Stress vs time profiles for low pressure shots on sucrose 

 

Figure 3.9 Normal stress vs time profiles for high pressure shots on sucrose 
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Figure 3.10 Shear stress vs time profiles for high pressure shots on sucrose 

 

Figure 3.11 Normal stress vs time profiles for all shots on sucrose. Solid lines show the high-

pressure shots while dotted lines show low-pressure shots.  
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Figure 3.12 Shear stress vs time profiles for all shots on sucrose. Solid lines show the high-

pressure shots while dotted lines show low-pressure shots. High and low-pressure shots are laid 

on top of each other for a better comparison and to demonstrate consistency of shear behavior 

across different shots 

 

Peak shear stresses in sucrose exhibit some variability for a given normal stress. The 

variability is low for the low normal stress cases. However, in general, the peak shearing 

resistance of sucrose seems to be very weakly dependent on normal stress, as shown in Figure 

3.13. In contrast, as presented in Chapter 2, the shearing resistance of HTPB is heavily 

pressure-dependent. 
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Figure 3.13 Peak shear stress of sucrose vs normal stress, at a nominally similar shear strain 

rate. The dashed line indicates a linear fit to the experimental data. The equation to the linear 

fit is displayed above the trendline. Note that the slope of the curve is very small  (
𝑑𝜏

𝑑𝜎
= 0.008) 

as compared to that for HTPB (
𝑑𝜏

𝑑𝜎
= 0.059). Since substantial temperature increase is expected 

due to normal compression, peak shear stress is expected to depend on temperature as well. The 

plot therefore shows the coupled effect of normal stress and temperature rather than normal 

stress alone 

 

 Shear strain-rate curves are plotted for low and high-pressure shots on sucrose in Figure 

3.14 and Figure 3.15 respectively. Mean shear strain-rate values for the low-pressure shots lie in 

the ~1.5 × 106 − 2 × 106 𝑠−1 range while the mean shear strain-rates for high-pressure shots are 

slightly higher (~3 × 106 𝑠−1). The shear strain-rate values calculated here should be taken with 

caution as they assume that deformation in the specimen is homogeneous and the shear stress 

has equilibrated. Due to the extremely small thickness of the specimen, shear stress equilibrium 

can be attained fairly quickly, However, strain localization is suspected inside the specimen after 

the fall in shear strength. For such inhomogeneous deformations, the shear strain-rate plots 

shown here do not represent the true dynamic stress-strain inside the specimen. So, the shear 

strain-rate and shear strain values are only nominal proxies of actual values. Shear stress versus 
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nominal shear strain behavior is plotted in Figure 3.16 and Figure 3.17 for low and high pressure 

shots respectively. It can be observed that shear stress falls around a nominal shear strain of 

~0.2 for the low-pressure shots while the critical shear strain for high pressure shots is ~0.5, 

signalling the role of pressure in suppressing the onset of instability. Moreover, note that the fall 

in shear strength is faster in low-pressure shots compared to high-pressure shots, which again 

indicates that a superposed pressure slows the catastrophic failure caused by the onset of 

adiabatic shear localization. 

 

 

Figure 3.14 Shear strain-rates for low-pressure shots. The mean shear strain-rate values for each 

shot are indicated by the light-colored dotted lines 
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Figure 3.15 Shear strain-rates for high-pressure shots. The mean shear strain-rate values for each 

shot are indicated by the light-colored dotted lines 

 

Figure 3.16 Shear stress vs shear strain for low pressure shots 
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Figure 3.17 Shear stress vs shear strain for high pressure shots 

 

3.4 Discussion 

The shear strength of an energetic crystal simulant, i.e. sucrose has been investigated 

through pressure-shear plate impact experiments. To the best of our knowledge, this is the first 

investigation of its kind. Experiments have been performed at two different nominal normal 

stress values: 3 and 9.5 GPa, with nominal shear strain-rates of 1.5 − 2 × 106 𝑠−1 and 

3 × 106 𝑠−1 for the low and high-pressure cases respectively. Normal stress shows an initial 

elastic precursor, followed by a sharp rise to the plateau. Unlike the HTPB experiments, no 

reverberations are picked up in the normal velocity profiles, due to extreme thinness of the 

samples. The shear strength of sucrose shows a peak value followed by a dramatic drop after 

reaching a critical strain. The peak shear stress and the shear stress drop are consistently 

observed at both low and high pressures, although the critical strain at which the drop occurs 
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varies with pressure. Such softening of the shear response of sucrose may be attributed to 

thermo-viscoplastic instabilities such as adiabatic shear bandings, which results in localized 

deformation of the specimen. It is worth noting that formation of adiabatic shear bands is a key 

mechanism of hot-spot formation in energetic crystals. The reported measurements on sucrose 

motivate the need to study the shear strength behavior of actual energetic crystals under high-

pressures and strain-rates. It should also be noted that peak shear strength of sucrose is not very 

pressure-sensitive, which is in stark contrast to the HTPB binder. Moreover, the shear strength 

of HTPB is equivalent to that of sucrose at a nominal normal stress of 9 GPa and is expected to 

exceed that of sucrose for higher normal stresses, making sucrose softer of the two phases. Such 

a change in relative pressure-sensitivity of the two phases of a PBX can have potential 

implications for a change in deformation mechanisms, localization behavior and formation of 

hot-spots.    

 

3.5 Appendix A: X -Ray diffraction studies of sucrose 

specimen 

To make sure that the sucrose layer obtained using the spin-coating method is 

crystalline, an X-Ray Diffraction (XRD) study is conducted as shown in Figure 3.18. Figure 3.18 

(a) shows that XRD intensity peaks for different spin-coated samples overlap, indicating 

consistency across different samples and different spots on the samples. It is evident from Figure 

3.18 (b) that the spin-coated sample shows most of the peaks corresponding to powdered sucrose 

although with lower relative intensities. So, it is reasonable to believe that spin-coating gives a 

crystalline sample. 
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Figure 3.18 (a) XRD intensity plot for spin-coated sucrose samples. The agreement between the 

intensity peaks is good. (b) XRD intensity plot for WC, a melt sucrose sample, a spin-coated 

sucrose sample and sucrose powder. Spin-coated sample shows most of the peaks displayed by 

the crystalline sucrose powder, although at a lower intensity. Note that the thickness of sucrose 

for the spin-coated sample is ~18 𝜇𝑚 while that for the melt sample is ~400 𝜇𝑚. Therefore, the 

spin-coated sample might show some peaks corresponding to the WC substrate 

 

 

 

(a) 

(b) 
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Chapter 4  

 

Sucrose: Constitutive M odeling 
 

4.1 Introduction 

Energetic crystals such as HMX, RDX and PETN and their simulants such as sucrose are in 

general complex molecular crystals, characterized by anisotropic crystal structures and complex 

molecular arrangements. As a result, the response of such molecular crystals to mechanical 

loading is inherently complex. However, in order to model the material response and capture the 

physics behind phenomena such as pore collapse and subsequent chemical reactions, it is 

imperative to retain maximum features of a most generalized model albeit at the expense of 

complexity and computational resources expended. A general material model for such molecular 

crystals should incorporate: (a) a finite deformation framework, (b) non-linear anisotropic 

thermo-elasticity, i.e. have anisotropic elastic moduli which are dependent on pressure and 

temperature in general, and the ability to handle finite non-linear elastic deformations under 

large pressures through a complete equation of state, (c) plastic anisotropy, typically modeled 

using the crystal plasticity approach, and (d) thermo-elastic heat generation and plastic 

dissipation.  

 

Multiple researchers have taken up the task of including one or more of the above-

mentioned features into constitutive modeling of materials subject to extreme dynamic 

environments. Since the applications of interest involve large deformations, only finite 
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deformation models are reviewed here. Barton et al. (2009)  employ an anisotropic thermo-

elastic model coupled with crystal plasticity to model pore collapse in HMX although pressure 

and temperature-dependent moduli are not used and a constant specific heat capacity is 

assumed. Austin et al. (2015)  extend the model by Barton et al. (2009)  to incorporate 

temperature-dependent specific heat and couple chemical kinetics to simulate pore-collapse and 

consequent shear band formation. The effect of including crystal anisotropy and a rate-

dependent model on shear band formation are analyzed and it is shown that a rate-independent 

model does not  lead to shear band formation in the pore-collapse process, thus altering the 

mechanical signatures and subsequent chemical decomposition reactions. Use of pressure-

dependent elastic moduli by Becker (2004), Luscher et al. (2013), Wang et al. (2016)  enables 

them to capture large volumetric strains and evolution of shocks from steep pressure gradients. 

All the above references use crystal-plasticity to model the anisotropic plastic response. Clayton 

(2014)  presents a thermodynamics-driven approach to modeling large deformations in hard 

anisotropic materials such as sapphire, diamond and quartz and incorporates all the 

aforementioned features of a general constitutive model. However, validating such a model 

requires a large number of experimentally characterized material constants which may not be 

feasible for all materials. 

 

This chapter focuses on developing a thermodynamically consistent framework for finite 

deformation modeling of sucrose. The framework presented here is generic and can be used for 

any isotropic material subject to extreme dynamic environments involving high pressures, large 

strain-rates and strains, both in compressive and shear loading scenarios. In Section 4.2, a 

thermodynamics-based foundation for constitutive modeling of a solid is laid. This is followed by 
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a description of an isotropic thermoelastic, thermo-viscoplastic material model in section 4.3. An 

isotropic model of sucrose is presented for two main reasons, apart from its simplicity, (a) lack 

of characterization of anisotropic elastic constants of sucrose, and (b) use of polycrystalline 

samples in PSPI experiments. Logarithmic strains are employed in constitutive modeling 

because of its ease of additive decomposition of Cauchy stress into volumetric and deviatoric 

components even at finite strains, which is not possible with the Green-Lagrange strain tensor, 

as alluded to by Becker (2004) and Barton et al. (2008) . This makes it easier to handle 

volumetric and deviatoric responses separately and incorporate a complete equation of state into 

the framework. Since energetic crystals and their simulants are routinely subject to shock 

conditions, it is imperative to make material models that are able to faithfully represent 

mechanical and thermal behavior under these conditions. As a result, a complete Mie-Gruneisen 

equation of state, with a temperature-dependent specific heat capacity, is derived and 

implemented in section 4.4, to the lay a foundation for a temperature-coupled elastic behavior 

under large pressures. In section 4.2.5, it is shown that the temperature evolution equation 

involves two important terms, i.e. rate of thermo-elastic heating and rate of plastic dissipation, 

apart from thermal conduction. In section 4.5, an analytic expression for thermo-elastic heating 

is derived. Based on the complete equation of state, analytic expressions for different types of 

loading such as isothermal, isentropic and shock are derived without strength considerations in 

sections 4.6, 4.7 and 4.8 respectively and compared in section 4.9. The complete Mie-Gruneisen 

equation of state uses an isothermal 3rd-order Birch Murnaghan equation of state as its reference 

curve. Section 10 presents a derivation for the Birch-Murnaghan equation of state using 

logarithmic strains, consistent with the constitutive modeling. Using logarithmic strains also has 

advantages at high pressures as shown by Anand (1979), (1986), Poirier and Tarantola 
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(1998)  and Clayton (2014) . Note that the constitutive model for sucrose utilizes several 

material constants, not all of which are experimentally validated through PSPI experiments. 

Therefore, it is important to justify their choice based on experimental and theoretical 

observations of other researchers. The choice of material constants is discussed in detail in 

Chapter 5 where the results of simulations using material model laid out in this chapter are 

discussed. 

 

In addition to the above, it must be noted that molecular crystals such as RDX, HMX and 

sucrose undergo complicated transformations like phase change and chemical decomposition 

under extreme environments. Adequate representation of such complex behaviors requires 

consideration of additional physics and multi-phase models, which are not the focus of present 

work.   

 

4.2 Thermodynamics of a solid 

4.2.1 Kinematics 

Consider a body occupying a region of space, ℬ0 in the reference/undeformed 

configuration. The body is then subjected to a motion, 𝒙 = 𝝌(𝑿, 𝑡) so that it now occupies a 

region of space, ℬ𝑡 at time 𝑡 in the spatial/deformed configuration. The deformation gradient is 

then given as: 

 𝑭 = 𝛁𝝌 (4.1) 
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where 𝛁 denotes gradient with respect to the material coordinates, 𝐗 in the undeformed body. 𝑭 

can be multiplicatively decomposed into elastic and plastic parts, 𝑭𝒆 and 𝑭𝒑 respectively 

(commonly referred to as Kroner decomposition): 

 𝑭 = 𝑭𝒆𝑭𝒑 (4.2) 

Material coordinates are first transformed to an intermediate configuration by 𝑭𝒑 and then to 

the deformed configuration by 𝑭𝒆. It is assumed that only the elastic deformation can lead to a 

change in volume, i.e. 

 𝐽𝑒 ≡ 𝑑𝑒𝑡(𝑭𝒆) > 0 (4.3) 

and the plastic deformation is incompressible, i.e. 

 𝐽𝑝 ≡ 𝑑𝑒𝑡(𝑭𝒑) = 1 (4.4) 

The right Polar decomposition of 𝑭𝒆 is given as: 

 𝑭𝒆 = 𝑹𝒆𝑼𝒆 (4.5) 

where 𝑹𝒆 is the rotation tensor and 𝑼𝒆 is a symmetric positive-definite tensor, called the elastic 

right stretch tensor. The spatial velocity gradient, 𝑳 defined as: 

 𝑳 ≡ 𝒈𝒓𝒂𝒅 𝒗 = �̇�𝑭−𝟏 (4.6) 

where 𝒈𝒓𝒂𝒅 represents the gradient in with respect to the spatial point, 𝒙 in the deformed body. 

Substituting the Kroner decomposition of deformation gradient from equation (4.2) into 

equation (4.6), the velocity gradient can be decomposed as: 

 𝑳 = �̇�𝒆𝑭𝒆−𝟏 + 𝑭𝒆�̇�𝒑𝑭𝒑−𝟏𝑭𝒆−𝟏 = 𝑳𝒆 + 𝑭𝒆𝑳𝒑𝑭𝒆−𝟏 (4.7) 

with 𝑳𝒆 = 𝑭�̇�𝑭𝒆−𝟏  and 𝑳𝒑 = 𝑭�̇�𝑭𝒑−𝟏. The rate of stretching (𝑫) and spin (𝑾) components of 𝑳𝒆 

and 𝑳𝒑 are defined as: 

 

𝑫𝒆 ≡ 𝑠𝑦𝑚(𝑳𝒆) 

(4.8) 
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𝑾𝒆 ≡ 𝑠𝑘𝑤(𝑳𝒆) 

𝑫𝒑 ≡ 𝑠𝑦𝑚(𝑳𝑝) 

𝑾𝒑 ≡ 𝑠𝑘𝑤(𝑳𝑝) 

It is assumed that the plastic flow is irrotational, i.e. 

 𝑾𝒑 = 𝟎 (4.9) 

so that 𝑳𝒑 = 𝑫𝒑. 

 

4.2.2 First Law of Thermodynamics 

The First Law of Thermodynamics states that the change in internal energy of an 

isolated system is equal to the work done on the system plus the heat added to the system. In 

the reference configuration, the local form of first law is written as: 

 𝑒�̇� = 𝑻0: �̇� − 𝐷𝑖𝑣 (𝒒𝑹) + 𝑟𝑅 (4.10) 

where subscript ‘R’ indicates reference configuration. 𝑒𝑅 is the internal energy per unit volume, 

𝒒𝑹 is the heat flux vector and 𝑟𝑅 is the heat supply per unit volume. 𝑻𝟎 is the unsymmetric 1st 

Piola-Kirchhoff stress tensor and  𝑻𝟎: �̇� is the stress power. Stress power can also be written in 

terms of Cauchy stress as: 

 𝑻0: �̇� = 𝐽𝑻𝑭
−𝑻: �̇� = 𝐽𝑒𝑻: �̇�𝑭−𝟏 = 𝐽𝑒𝑻: 𝑳 (4.11) 

Hence, the first law can be re-written as: 

 𝑒�̇� = 𝐽𝑻: 𝑳 − 𝐷𝑖𝑣 (𝒒𝑹) + 𝑟𝑅 (4.12) 
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4.2.3  Second Law of Thermodynamics 

The Second Law of Thermodynamics states that the net entropy production of an 

isolated system is non-negative. Therefore, the local form of the second law in the reference 

configuration is written as: 

 𝛿R = �̇�𝑅 +𝐷𝑖𝑣 (
𝒒𝑹
𝜃
) −

𝑟𝑅
𝜃
≥ 0 (4.13) 

where 𝜂𝑅 is entropy per unit volume, δ𝑅 is entropy production rate per unit volume, and 𝜃 is 

the temperature. The first term on the right is the rate of change of internal entropy of the 

system and the second and third terms on the right add up to the entropy flow into the system. 

 

4.2.4 Free-energy Imbalance 

The Helmholtz free energy is related to the internal energy and entropy through the 

following relation: 

 𝜓𝑅 = 𝑒𝑅 − 𝜂𝑅𝜃 (4.14) 

where 𝜓𝑅 is the Helmholtz energy per unit volume. Hence, the rate of change of free energy can 

be written as: 

 𝜓�̇� = 𝑒�̇� − 𝜂�̇�𝜃 − 𝜂𝑅�̇� (4.15) 

Substitute 𝑒�̇� from equation (4.12) and 𝜂�̇� from equation (4.13) into equation (4.15): 

 𝜓�̇� + 𝜂𝑅�̇� − 𝐽𝑻: 𝑳 +
1

𝜃
𝒒𝑹. 𝛁θ = −𝜃𝛿𝑅 ≤ 0 (4.16) 

Equation (4.16) is called the local free-energy imbalance inequality. 𝜃δ𝑅 represents dissipation 

per unit volume and the free-energy imbalance states that dissipation is non-negative. 
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Two new stress measures are derived from the Cauchy stress tensor, T. Consider the 

stress power term 𝐽𝑻: 𝑳. Using equation (4.7), the stress power can be decomposed into elastic 

and plastic terms: 

 𝐽𝑻: 𝑳 = 𝐽𝑻: 𝑳𝒆 + 𝐽𝑻:𝑭𝒆𝑳𝒑𝑭𝒆−𝟏 = 𝐽𝑻:𝑫𝒆 + 𝐽𝑭𝒆𝑻𝑻𝑭𝒆−𝑻: 𝑳𝒑 (4.17) 

Since the strains are defined in the reference configuration in terms of U , 𝑫𝒆 is found in terms 

of 𝑼𝒆̇  or 𝑪�̇�. Consider the time derivative of the Right Cauchy Green tensor, 𝑪�̇�: 

 𝑪�̇� = 𝑭𝒆𝑻𝑭𝒆̅̅ ̅̅ ̅̅ ̅̅̇ = 𝑭𝒆
𝑻
(𝑳𝒆 + 𝑳𝒆

𝑻
)𝑭𝒆 = 2𝑭𝒆

𝑻
𝑫𝒆𝑭𝒆 (4.18) 

 ⟹𝑫𝒆 =
1

2
𝑭𝒆−𝑻𝑪�̇�𝑭𝒆−𝟏 (4.19) 

Substituting 𝑫𝒆 from (4.19) into (4.17), we have: 

 𝐽𝑻: 𝑳 = (𝐽𝑭𝒆
−𝟏𝑻𝑭𝒆−𝑻):

𝑪𝒆

2

̇
+ (𝐽𝑭𝒆

𝑻𝑻𝑭𝒆−𝑻): 𝑳𝒑 (4.20) 

At this juncture, two new stress measures are defined: 

 𝑻𝒆 = 𝐽𝑭𝒆−𝟏𝑻𝑭𝒆−𝑻 (4.21) 

 𝑴𝒆 = 𝐽𝑭𝒆𝑻𝑻𝑭𝒆−𝑻 = 𝑪𝒆𝑻𝒆 (4.22) 

where 𝑻𝒆 is the symmetric elastic 2nd Piola-Kirchhoff stress, and 𝑴𝒆 is the Mandel stress. Hence, 

the stress power can be re-written as: 

 𝐽𝑻: 𝑳 = 𝑻𝒆:
𝑪�̇�

2
+𝑴𝒆: 𝑳𝒑 (4.23) 

Re-writing the first law from equation (4.12) in terms of the two new stress measures introduced 

above: 

 𝑒�̇� = 𝑻
𝒆:
𝑪�̇�

2
+𝑴𝒆: 𝑳𝒑 − 𝐷𝑖𝑣 (𝒒𝑹) + 𝑟𝑅 

(4.24) 

The constitutive laws for 𝑒𝑅, 𝜓𝑅, 𝑻
𝒆, 𝑴𝒆 are assumed to be functions of the same set of 

variables (𝑪𝒆, 𝜃, 𝛁𝜃, 𝝃) where 𝝃 represents the list of internal state variables. 
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𝑒𝑅 = �̂�𝑅(𝑪
𝒆, 𝜃, 𝛁𝜃, 𝝃) 

𝜓𝑅 = �̂�𝑅(𝑪
𝒆, 𝜃, 𝛁𝜃, 𝝃) 

𝜂𝑅 = �̂�𝑅(𝑪
𝒆, 𝜃, 𝛁𝜃, 𝝃) 

𝑻𝒆 = 𝑻�̂�(𝑪𝒆, 𝜃, 𝛁𝜃, 𝝃) 

𝑴𝒆 = 𝑴�̂�(𝑪𝒆, 𝜃, 𝛁𝜃, 𝝃) 

(4.25) 

Taking the time derivative of the free energy, 

 𝜓�̇� =
𝜕�̂�𝑅
𝜕𝑪𝑒

: 𝑪�̇� +
𝜕�̂�𝑅
𝜕𝜃

�̇� +
𝜕�̂�𝑅
𝜕𝛁𝜃

. 𝛁𝜃̅̅ ̅̇̅ +
𝜕�̂�𝑅
𝜕𝝃

∗ �̇� (4.26) 

where ‘∗’ denotes the appropriate scalar product considering the order of 𝝃. Using equation 

(4.16), the rate of change of free energy can also be written as: 

 𝜓�̇� = 𝑻
𝒆:
𝑪�̇�

2
+𝑴𝒆: 𝑳𝒑 − 𝜂𝑅�̇� −

1

𝜃
𝒒𝑹. 𝛁𝜃 − 𝜃𝛿𝑅 

(4.27) 

Combining equations (4.26) and (4.27),  

 
(
𝜕�̂�𝑅
𝜕𝑪𝑒

− 𝑻𝒆) : 𝑪�̇� + (
𝜕�̂�𝑅
𝜕𝜃

+ 𝜂𝑅) �̇� +
𝜕�̂�𝑅
𝜕𝛁𝜃

. 𝛁𝜃̅̅ ̅̇̅ + (
𝜕�̂�𝑅
𝜕𝝃

∗ �̇� +
1

𝜃
𝒒.𝛁𝜃 −𝑴𝒆: 𝑳𝒑 + 𝜃𝛿R)

= 0 

(4.28) 

Using the Coleman-Noll procedure, one can deduce the following definitions for stress and 

entropy: 

 𝑻𝒆 = 2
𝜕�̂�𝑅
𝜕𝑪𝑒

 (4.29) 

 𝜂𝑅 = −
𝜕�̂�𝑅
𝜕𝜃

 (4.30) 

 𝜕�̂�𝑅
𝜕𝛁𝜃

= 𝟎 (4.31) 

In view of the above relations, the second law reduces to: 

 
𝜕�̂�𝑅
𝜕𝝃

∗ �̇� +
1

𝜃
𝒒𝑹. 𝛁𝜃 −𝑴

𝒆: 𝑳𝒑 = −𝜃𝛿R ≤ 0 (4.32) 
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4.2.5 Temperature Evolution Equation 

In this section, a partial differential equation that dictates the evolution of temperature 

during a thermally-coupled mechanical deformation is derived. Consider the time derivative of 

internal energy and use the thermodynamic relations derived in equations (4.29) and (4.30).  

 

�̇�𝑅 = �̇�𝑅 + 𝜃�̇�𝑅 + �̇�𝜂𝑅 

�̇�𝑅 =
𝜕�̂�𝑅
𝜕𝑪𝑒

: 𝑪�̇� +
𝜕�̂�𝑅
𝜕𝜃

�̇� +
𝜕�̂�𝑅
𝜕𝝃

∗ �̇� − 𝜃
𝜕�̂�𝑅
𝜕𝜃

̅̅ ̅̅ ̅̅̇

+ �̇�𝜂𝑅 

�̇�𝑅 =
𝑻𝒆

2
: 𝑪�̇� +

𝜕�̂�𝑅
𝜕𝝃

∗ �̇� −
𝜃

2

𝜕𝑻𝒆

𝜕𝜃
: �̇�𝒆 − 𝜃

𝜕2�̂�𝑅
𝜕𝜃2

�̇� − 𝜃
𝜕2�̂�𝑅
𝜕𝝃𝜕𝜃

∗ �̇� 

�̇�𝑅 =
𝑻𝒆

2
: 𝑪�̇� −

𝜃

2

𝜕𝑻𝒆

𝜕𝜃
: �̇�𝒆 + (

𝜕�̂�𝑅
𝜕𝝃

− 𝜃
𝜕2�̂�𝑅
𝜕𝝃𝜕𝜃

) ∗ �̇� − 𝜃
𝜕2�̂�𝑅
𝜕𝜃2

�̇� 

(4.33) 

Substituting �̇�𝑅 from the first law (equation (4.24)) and rearranging terms, 

 
−𝐷𝑖𝑣 (𝒒𝑹) + 𝑟𝑅 + (

𝜃

2

𝜕𝑻𝒆

𝜕𝜃
: �̇�𝒆)

⏟        
�̇�𝑒

+ [𝑴𝒆: 𝑳𝒑 − (
𝜕�̂�𝑅
𝜕𝝃

− 𝜃
𝜕2�̂�𝑅
𝜕𝝃𝜕𝜃

) ∗ �̇�]
⏟                    

�̇�𝑝

= −𝜃
𝜕2�̂�𝑅
𝜕𝜃2

�̇�
⏟      

𝑐𝑅�̇�

 (4.34) 

 −𝐷𝑖𝑣 (𝒒𝑹) + 𝑟𝑅 + �̇�
𝑒 + �̇�𝑝 = 𝑐𝑅�̇� (4.35) 

where �̇�𝑒 is rate of heating due to thermo-elasticity, �̇�𝑝 represents rate of inelastic heating and 

𝑐𝑅 is the referential specific heat capacity, defined at constant strain and constant internal 

variables. More specifically, 𝑐𝑅 is specific heat capacity times the reference density. Equation 

(4.34) is the evolution equation for temperature. The first term in the expression for �̇�𝑝, i.e. 

𝑴𝒆: 𝑳𝒑 represents rate of plastic work while the remainder of �̇�𝑝 represents the rate of change of 

internal energy of cold work ((
𝜕�̂�𝑅

𝜕𝝃
− 𝜃

𝜕2�̂�𝑅

𝜕𝝃𝜕𝜃
) ∗ �̇�) (Rosakis et al. (2000) ). A parameter, 𝛽, is 

defined as follows which quantifies the amount of plastic work converted to heat, i.e. 

 
𝛽 =

𝑞�̇�
𝑴𝒆: 𝑳𝒑

 (4.36) 
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 𝛽 is often called the Taylor-Quinney coefficient. 𝛽 is dependent on the evolution of internal 

variables that describe density of defects such as dislocations. Trial experiments on metals by 

Hodowany et al. (2000)  show that 𝛽 increases with increasing plastic strain and becomes 

constant after a saturation is achieved in dislocation density. However, due to difficulty of 

experimental characterization of 𝛽, a constant value is typically assumed in literature.  

 

A new measure of thermomechanical coupling, called the Gruneisen tensor, is defined: 

 𝚪R = −
1

𝑐𝑅
(
𝜕𝑻𝒆

𝜕𝜃
)
𝑪𝒆,𝝃

 (4.37) 

Fourier’s Law of heat conduction gives the following relation between heat flux and temperature 

gradient: 

 𝒒𝑹 = −𝑘𝜵𝜃 (4.38) 

where 𝑘 is the thermal conductivity. Ideally, the thermal conductivity is a tensor dependent on 

temperature. However, thermal isotropy and no dependence of thermal conductivity on 

temperature are assumed, which may be justified for moderate temperature changes.  

 

 Substituting relations from equations (4.36), (4.37) and (4.38) into equation (4.34) and 

ignoring the heat supply term (i.e. 𝑟𝑅 = 0), 

 𝑘∇2𝜃 −
𝑐𝑅𝜃

2
𝚪R: �̇�

𝒆 + 𝛽𝑴𝒆: 𝑳𝒑 = 𝑐𝑅�̇� (4.39) 

Assuming plastic irrotationality (equation (4.9)), we have 𝑳𝒑 = 𝑫𝒑. Using a co-directional flow 

rule, the plastic stretch-rate, 𝑫𝒑 can be written as: 

 𝑫𝒑 =
3

2
 𝜖̅̇𝑝

𝑴𝟎
𝒆

�̅�
 (4.40) 
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where 𝑴𝟎
𝒆 is the deviatoric portion of Mandel stress, 𝜖̅̇𝑝 is the effective plastic strain rate and  �̅� 

is the effective stress, defined below: 

 𝜖̅̇𝑝 = √
2

3
|𝑫𝒑| (4.41) 

 �̅� = √
3

2
 |𝑴0

𝒆| (4.42) 

Hence, the rate of plastic work can be simplified as: 

 𝑴𝒆: 𝑳𝒑 = 𝑴𝒆:𝑫𝒑 = �̅�𝜖̅̇𝑝 (4.43) 

The temperature evolution can then be put into a simplified form below: 

 𝑘∇2𝜃 −
𝑐𝜃

2
𝚪R: �̇�

𝒆 + 𝛽�̅�𝜖̅̇𝑝 = 𝑐𝑅�̇� (4.44) 

If the first and second laws of thermodynamics are expressed spatially, the temperature 

evolution equation can be derived to be the following expression: 

 −𝒅𝒊𝒗 (𝒒) + 𝑟 + (
𝜃

2𝐽

𝜕𝑻𝒆

𝜕𝜃
: �̇�𝒆)

⏟        
�̇�𝑒

+ [
1

𝐽
𝑴𝒆: 𝑳𝒑 − 𝜌(

𝜕𝜓

𝜕𝝃
− 𝜃

𝜕2𝜓

𝜕𝝃𝜕𝜃
) ∗ �̇�]

⏟                      
�̇�𝑝

= −𝜌𝜃
𝜕2𝜓

𝜕𝜃2
�̇�

⏟      
𝜌𝑐�̇�

 (4.45) 

where 𝒒 is the heat flux, 𝑟 is the heat supply per unit volume, 𝜓 is the Helmholtz free energy 

per unit mass and 𝑐 is the specific heat in J/kg K. All the quantities are expressed spatially. 𝒅𝒊𝒗 

represents divergence in spatial coordinates. Using Fourier’s Law (𝒒 = −𝑘 𝒈𝒓𝒂𝒅𝜃), the 

temperature evolution equation can be re-written as: 

 𝑘 𝒈𝒓𝒂𝒅2𝜃 + 𝑟 + �̇�𝑒 + �̇�𝑝 = 𝜌𝑐�̇� (4.46) 
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4.3  Constitutive M odeling 

The constitutive model is defined in terms of a logarithmic strain in the intermediate 

configuration. It is defined below, in terms of the right stretch tensor, 𝑼𝒆. 

 𝑬𝒆 ≡ 𝑙𝑛(𝑼𝒆) (4.47) 

Logarithmic strains are used because they facilitate an additive decoupling of volumetric and 

deviatoric strains under large pressures which is not possible with Green-Lagrange Strains. 

Furthermore, with the use of a correct invariant basis, the stress terms can also be decomposed 

into pressure and deviatoric response terms, as shown below. Such a decomposition is very 

helpful in a direct incorporation of a complete equation of state, which is typically measured 

through a separate set of experiments. Moreover, logarithmic strains require fewer higher order 

constants to fit the experimental data under high pressures, as shown by Poirier and Tarantola 

(1998) and Clayton (2014) . 

 

Assuming that the material is isotropic, the constitutive response of sucrose is defined 

though an elastic free energy per unit volume, 𝜓𝑅. In general, 𝜓𝑅 is a function of the elastic 

Right Cauchy-Green tensor, 𝑪𝒆 and temperature, 𝜃 but for an isotropic material, the free energy 

can be represented in terms of 3 principal stretches (𝜓𝑅 = �̃�𝑅(𝜆1
𝑒 , 𝜆2

𝑒 , 𝜆3
𝑒 , 𝜃)) or 3 principal 

invariants of 𝑪𝒆, (𝜓𝑅 = �̃�𝑅(𝐼1, 𝐼2, 𝐼3, 𝜃)) where 𝐼1 = 𝑡𝑟𝑪
𝒆, 𝐼2 = 0.5[(𝑡𝑟𝑪

𝒆)2 + 𝑡𝑟𝑪𝒆2] and 𝐼3 =

det 𝑪𝒆 = 𝐽𝑒2. Note that the dependence of free energy on internal variables is not considered as 

the elastic response does not typically depend on the history of plastic response, as is the case 

with metals. With the (𝐼1, 𝐼2, 𝐼3) principal invariant based free energy, it is not possible to isolate 

the effect of each invariant due to the non-orthogonality of different stress response terms, i.e. 



98 

 

𝜕𝐼𝑖

𝜕𝑪𝒆
:
𝜕𝐼𝑗

𝜕𝑪𝒆
≠ 0 for 𝑖, 𝑗 = 1,2,3 and 𝑖 ≠ 𝑗.  Therefore, the free energy density is written in terms of a 

new set of logarithmic strain invariants (𝐾1, 𝐾2, 𝐾3), as proposed by Criscione et al. (2000) . 

With each of these invariants, one can associate specific aspects of deformation and isolate the 

effect of each. The first invariant, 𝐾1, defined below represents the volume change.  

 𝐾1 = 𝑡𝑟(𝑬
𝒆) = ln(𝐽𝑒) (4.48) 

where the superscript ‘e’ represents elastic. The second invariant, 𝐾2 represents the distortional 

response of the material under constant volume and is defined as the magnitude of deviatoric 

portion of logarithmic strain. 

 𝐾2 = |𝑬𝟎
𝒆| (4.49) 

Since, 𝑬𝒆 =
𝐾1

3
𝑰 + 𝑬𝟎

𝒆, a tensorial direction can be associated with this deviatoric strain 

invariant: 

 𝑵 =
𝜕𝐾2
𝜕𝑬𝒆

=
𝑬𝟎
𝒆

|𝑬𝟎
𝒆|

 (4.50) 

where 𝑵 is a unit tensor. Hence, the strain can be written as 𝑬𝒆 =
𝐾1

3
𝑰 + 𝐾2𝑵. The third 

invariant, 𝐾3 represents the mode of distortion and is defined below: 

 𝐾3 = 3√6 det (𝑵) (4.51) 

It can be noted that 𝐾1 > 0 for dilatation and 𝐾1 < 0 under compression. 𝐾2 ≥ 0 always holds 

whereas −1 ≤ 𝐾3 ≤ 1. 𝐾3 = 1 in simple tension, 𝐾3 = −1 in simple compression and 𝐾3 = 0 in 

simple shear. 

 

Let �̃�𝑅(𝐾1, 𝐾2, 𝐾3, 𝜃) be the free energy density. It can be shown that Mandel stress and 

logarithmic strain in the intermediate configuration are power conjugates. Hence, 
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 𝑴𝒆 =
𝜕�̃�𝑅
𝜕𝑬𝒆

= (
𝜕�̃�𝑅
𝜕𝐾1

𝜕𝐾1
𝜕𝑬𝒆

+
𝜕�̃�𝑅
𝜕𝐾2

𝜕𝐾2
𝜕𝑬𝒆

+
𝜕�̃�𝑅
𝜕𝐾3

 
𝜕𝐾3
𝜕𝑬𝒆

) = (
𝜕�̃�𝑅
𝜕𝐾1

𝑰 +
𝜕�̃�𝑅
𝜕𝐾2

𝑵+
𝜕�̃�𝑅
𝜕𝐾3

𝒀) (4.52) 

 𝒀 = 3√6𝑵𝟐 − √6𝑰 − 3𝐾3𝑵 (4.53) 

Since the tensors, 𝑪𝒆 and 𝑻𝒆 coaxial, i.e. have the same principal directions, Cauchy stress can 

be found using the definition of Mandel stress in equation (4.22), 

 𝑻 =
1

𝐽
𝑹𝒆𝑴𝒆𝑹𝒆𝑻 =

1

𝐽
(
𝜕�̃�𝑅
𝜕𝐾1

𝑰 +
𝜕�̃�𝑅
𝜕𝐾2

𝑵′ +
𝜕�̃�𝑅
𝜕𝐾3

𝒀′) (4.54) 

where 𝑵′ = 𝑹𝒆𝑵𝑹𝒆
𝑻
 and 𝒀′ = 𝑹𝒆𝒀𝑹𝒆

𝑻
. Note that 𝑵′: 𝑰 = 𝟎,𝒀′: 𝑰 = 𝟎 and 𝑵′: 𝒀′ = 𝟎, i.e. the 

Cauchy stress is composed of three mutually orthogonal terms and each term is dependent on 

derivative of a different stress invariant. This is facilitated by using a logarithmic strain measure 

and an appropriate set of invariants for logarithmic strain. So, it is possible to easily isolate the 

three response terms by contracting with 𝑰, 𝑵′ and 𝒀′. Specifically, the first term in (4.54) 

corresponds to the pressure term while the other two terms add up to give the deviatoric stress. 

 
𝑻: 𝑰

3
= −𝑃 =

1

𝐽

𝜕�̃�𝑅
𝜕𝐾1

 (4.55) 

So, the pressure term can be isolated from the deviatoric response easily, while retaining the its 

dependence on all three invariants and temperature, i.e. 𝑃(𝐾1, 𝐾2, 𝐾3, 𝜃).  

  

The free energy density, �̃�𝑅(𝐾1, 𝐾2, 𝐾3, 𝜃) can be additively decomposed into three parts: 

(a) purely volumetric, 𝑓1(𝐾1, 𝜃),  (b) purely distortional, 𝑓2(𝐾2, 𝐾3, 𝜃) and (c) coupled-

volumetric/distortional, 𝑓3(𝐾1, 𝜃)𝑓4(𝐾2, 𝐾3, 𝜃),  where the temperature dependence is retained in 

each portion of the free energy density. 

 �̃�𝑅(𝐾1, 𝐾2, 𝐾3, 𝜃) = 𝑓1(𝐾1, 𝜃) + 𝑓2(𝐾2, 𝐾3, 𝜃) + 𝑓3(𝐾1, 𝜃)𝑓4(𝐾2, 𝐾3, 𝜃) (4.56) 

For the purpose of modeling sucrose, consider a simple form of free energy of the following form: 
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 �̃�𝑅(𝐾1, 𝐾2, 𝐾3, 𝜃) = 𝑓1(𝐾1, 𝜃) + 𝐺(𝐾1, 𝜃)𝐾2
2 (4.57) 

where 𝐺(𝐾1, 𝜃) is the temperature and volumetric strain-dependent shear modulus. The 

dependence of free energy on 𝐾3 is dropped for simplicity. The first term in the free-energy 

expression leads to pressure through 𝑃(𝐾1, 𝜃) = −
1

𝐽

𝜕𝑓1

𝜕𝐾1
−
1

𝐽

𝜕𝐺

𝜕𝐾1
𝐾2
2. Pressure is found through a 

complete equation of state as described in section 4. Generally, the contribution of shear-induced 

pressure (−
1

𝐽

𝜕𝐺

𝜕𝐾1
𝐾2
2) is very small due to small elastic distortional strains and can therefore be 

ignored. Therefore, the Mandel stress and Cauchy stress for such a free energy density function 

can be calculated as: 

 𝑴𝒆 = −𝑃(𝐾1, 𝜃)𝐽𝑰 + 2𝐺(𝐾1, 𝜃)𝐾2𝑵 (4.58) 

 𝑻(𝐾1, 𝐾2, 𝜃) = −𝑃(𝐾1, 𝜃)𝑰 +
2

𝐽
𝐺(𝐾1, 𝜃)𝐾2𝑵′ (4.59) 

 

 Typically, the shear modulus is written as a function of pressure and temperature, i.e. 

𝐺(𝑃, 𝜃). One of the most commonly used forms of shear modulus is a linear variation with both 

pressure and temperature, as described by Steinberg et al. (1980) : 

 𝐺(𝑃, 𝜃) = 𝐺0 +
𝜕𝐺

𝜕𝑃

𝑃

(
𝜌
𝜌0
)
1/3
+
𝜕𝐺

𝜕𝜃
(𝜃 − 𝜃0) (4.60) 

where 𝐺0 is the shear modulus at ambient pressure and temperature. The derivatives of shear 

modulus with respect to pressure and temperature, i.e. 
𝜕𝐺

𝜕𝑃
 and 

𝜕𝐺

𝜕𝜃
 respectively are assumed to be 

constant by Steinberg et al. (1980)  for fitting experimental data of several metals. However, the 

shear modulus behaviour near melt is not very well known, especially for energetic materials. It 

is expected that the shear modulus drops to zero after melt. A drastic drop in shear modulus at 

melt is observed through shear wave measurements by Nadal and Le Poac (2003) . The 
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Steinberg model in equation (4.60) doesn’t necessarily give a zero shear modulus at melt and 

does not consider the variation of the slope of the shear modulus-temperature curve, i.e. 
𝜕𝐺

𝜕𝜃
 with 

pressure, near the melting point. These issues are addressed by Nadal and Le Poac (2003)  who 

propose the following form of shear modulus based on Lindemann theory at the melting point: 

 𝐺(𝑃, 𝜃) =
1

ℑ(𝜃/𝜃𝑚)

[
 
 
 
 

𝐺0 +
𝜕𝐺

𝜕𝑃

𝑃

(
𝜌𝑆
𝜌𝑆0
)

1
3

 (1 −
𝜃

𝜃𝑚
) +

𝜌𝑆
𝐶𝑚 

𝑘𝜃

]
 
 
 
 

 (4.61) 

 ℑ(
𝜃

𝜃𝑚
) ≡ 1 + exp [

𝜃
𝜃𝑚
− 1

𝜁 {1 −
𝜃

𝜃𝑚(1 + 𝜁)
}
] ;
𝜃

𝜃𝑚
∈ [0,1 + 𝜁] (4.62) 

where the pre-factor ℑ(
𝜃

𝜃𝑚
) allows fulfilment of the condition that 𝐺 = 0 for 𝜃 = 𝜃𝑚(1 + 𝜁). 𝜁 ≪

1 is a material parameter, 𝜌𝑠 is the density in solid state, 𝑘 is the Boltzman constant, 𝑚 is 

atomic mass, 𝐶 =
(6𝜋2)

2/3

3
𝑓2 and 𝑓 is the Lindemann constant. The linear drop in pressure and 

temperature away from melting point, as originally proposed by Steinberg et al. (1980)  is 

retained in this model. The material constants in the model can be determined by shear wave 

velocity measurements at different pressures and temperatures.  

 

Since 𝑳𝒑 = 𝑫𝒑 and 𝑳𝒑 = 𝑭�̇�𝑭𝒑−𝟏, the evolution of plastic distortion, 𝑭𝒑 is given through 

the following equation: 

 �̇�𝒑 = 𝑫𝒑𝑭𝒑 (4.63) 

The plastic stretching, 𝑫𝒑 is then given through a codirectional flow rule, 𝑫𝒑 =
3

2
 𝜖 ̅̇𝑝

𝑴𝟎
𝒆

�̅�
 

(equation (4.40)). The effective plastic strain-rate and the equivalent stress are related through a 

strain-rate and temperature-dependent constitutive law. The Johnson-Cook model is used here: 
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 �̅� = [𝐴 + 𝐵(𝜖̅𝑝)𝑛] [1 + 𝐶 ln(
𝜖̅̇𝑝

𝜖̅0̇
)] (1 − 𝜃𝑚) (4.64) 

where (𝐴, 𝐵, 𝑛, 𝐶, 𝜖̅0̇, 𝑚) are material parameters, 𝜃 is a function of temperature, 𝜃 and pressure, 

𝑃 defined below: 

 𝜃 =
𝜃 − 𝜃𝑟𝑒𝑓

𝜃𝑚(𝑃) − 𝜃𝑟𝑒𝑓
 (4.65) 

𝜃𝑟𝑒𝑓 is the reference temperature (usually taken to be the room temperature) and 𝜃𝑚 is the melt 

temperature.  

 

Since high pressures are applied in the experiments and temperatures are expected to go 

beyond melting, the dependence of melting temperature on pressure is taken into account. 

Moreover, the melting point of large organic molecules such as HMX and sucrose is highly 

dependent on pressure. Numerical simulations of deformation of energetic crystals widely use the 

Lindemann Law of melting: 

 𝜃𝑚 = 𝜃𝑚0 exp [2𝛤0(1 − 𝐽) +
2

3
𝑙𝑛(𝐽)] (4.66) 

where 𝜃𝑚0 is melting temperature at ambient pressure, 𝛤0 is the Gruneisen parameter at 

ambient pressure and temperature, and 𝐽 =
𝑣

𝑣0
 is the compression ratio. 𝑣 is the final specific 

volume and 𝑣0 is the initial specific volume. At times, a linearized version of the Lindemann 

Law in volume, called the Kraut-Kennedy relation is also used. 

 𝜃𝑚 = 𝜃𝑚0  (1 + 𝑎
𝛥𝑣

𝑣0
) (4.67) 

where Δ𝑣 is the reduction in specific volume under compression and 𝑎 is a constant defined as: 

 𝑎 = 2(Γ0 −
1

3
) (4.68) 



103 

 

However, molecular dynamics simulations on HMX (Kroonblawd and Austin (2020) ) indicate 

that the Lindemann Law grossly underestimates the melting point as a function of temperature. 

An alternative empirical form obtained by Simon and Glatzel (1929)  is then used: 

 𝜃𝑚 = 𝜃𝑚0 (1 +
𝑃 − 𝑃𝑟𝑒𝑓

𝑃0
)
1/𝑑

 (4.69) 

where (𝑃𝑟𝑒𝑓 , 𝑃0, 𝑑) are fitting parameters. The consequences of making a choice between the two 

forms of melt curve are discussed in detail in Chapter 5. 

 

 For completeness of the continuum model, two more issues need to be addressed: (a) 

phase transition from solid to liquid, and (b) constitutive model of the liquid. One way to model 

the solid-liquid phase transition is by introducing an order parameter, i.e. a phase-field 

parameter, as done by Fried and Gurtin (1993) . The stress response of the liquid phase can be 

decomposed into pressure and deviatoric stress components. While the pressure of the fluid can 

be described through an appropriate equation of state, the deviatoric stress now depends on the 

strain-rate through a pre-factor, called the shear viscosity of the liquid. The shear viscosity of 

the liquid phase is generally a function of pressure and temperature. Both phase transitions and 

material model for the liquid phase are not a part of the current work but are however 

important for the prediction of chemical reactions in melt. Since the yield strength in the 

material model drops rapidly at melt, the strain-rates tend to climb exponentially and become 

unreasonably large. In the present framework, the shear strain-rates after melt are set to reach 

an upper limit beyond which they are assumed to stay constant, as done by Grunschel (2009) . 

See Chapter-5 for more details. The focus of present work remains on the solid phase and its 
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constitutive modelling. Next, we consider the development of a complete equation of state for 

the solid.  

 

4.4 Complete M ie-Gruneisen Equation of State 

The Mie-Gruneisen equation of state has been one of the most commonly used forms of an 

equation of state for a solid subjected to shock loading. It is often encountered in hydrocodes, 

for solids under pressures up to a few megabar. In this section, a derivation of a complete 

equation of state is presented, i.e. with a temperature dependent specific heat capacity, on line 

with the work by Menikoff (2016) . It should be noted that the equation of state is derived in 

the spatial/deformed configuration as opposed to the intermediate configuration used in Section 

2 and Section 3. In deriving the equation of state, a state of purely volumetric deformation is 

assumed. 

 

The Gruneisen model can be derived from the definition of the Gruneisen parameter, Γ: 

 Γ ≡ 𝑣 (
𝜕𝑃

𝜕𝑒
)
𝑣
 (4.70) 

where the Gruneisen scalar parameter defined above is the volumetric part of the spatial 

Gruneisen tensor, i.e. Γ =
1

3
𝑡𝑟(𝚪). The spatial Gruneisen tensor is defined below: 

 𝚪 = −
𝑣

𝑐
(
𝜕𝑻

𝜕𝜃
)
𝑪𝒆,𝝃

 (4.71) 

𝑻 is Cauchy stress and 𝑐 is the specific heat capacity. If the Gruneisen parameter is assumed to 

be independent of pressure and specific internal energy, equation (4.70) can be integrated to 

obtain the usually encountered form of Mie-Gruneisen equation of state. 
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 𝑃 − 𝑃𝑟𝑒𝑓 =
Γ

𝑣
(𝑒 − 𝑒𝑟𝑒𝑓) (4.72) 

where 𝑃𝑟𝑒𝑓 and 𝑒𝑟𝑒𝑓 lie on a reference curve.  

 

To specify a complete equation of state, consider the thermodynamic variables like 𝜂, 𝑒, 𝜓 

and 𝑃 as functions of 𝑣 and 𝜃, i.e.  

 

𝜂 = 𝜂(𝑣, 𝜃) 

𝑒 = 𝑒(𝑣, 𝜃) 

𝜓 = 𝜓(𝑣, 𝜃) 

𝑃 = 𝑃(𝑣, 𝜃) 

(4.73) 

Starting with an initial state characterized by the set of thermodynamic variables 

(𝑣0, 𝜃0, 𝜂0, 𝑒0, 𝜓0, 𝑃0). Let the final thermodynamic state be represented by (𝑣, 𝜃, 𝜂, 𝑒, 𝜓, 𝑃). Since 

a complete equation of state should be independent of the thermodynamic path connecting the 

initial and final states, we choose a path shown in Figure 4.1. The path consists of 2 segments: 

an isotherm at 𝜃 = 𝜃0 followed by an isochore at 𝑣 = 𝑣.  

 

 

Figure 4.1 A thermodynamic path connecting the initial and final states. 
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A differential change in entropy can be written as: 

 𝑑𝜂 = (
𝜕𝜂

𝜕𝑣
)
𝜃
𝑑𝑣 + (

𝜕𝜂

𝜕𝜃
)
𝑣
𝑑𝜃 (4.74) 

where subscripts denote the independent variables that are held constant when partial 

derivatives are taken. The partial derivatives of entropy can be written in terms of 

known/measurable thermodynamic quantities, Γ and 𝑐𝑣. The specific heat capacity, 𝑐𝑣 is defined 

as: 

 𝑐𝑣 = (
𝜕𝑒

𝜕𝜃
)
𝑣
 (4.75) 

From the first law of thermodynamics, we have, 

 𝑑𝑒 = −𝑃𝑑𝑣 + 𝜃𝑑𝜂 (4.76) 

If (𝑣, 𝜂) are taken as independent variables, then the differential of specific internal energy, 𝑒 =

𝑒(𝑣, 𝜂), can be written as: 

 𝑑𝑒 = (
𝜕𝑒

𝜕𝑣
)
𝜂
𝑑𝑣 + (

𝜕𝑒

𝜕𝜂
)
𝑣

𝑑𝜂 (4.77) 

Since 𝑑𝑣 and 𝑑𝜂 are arbitrary, pressure and temperature can be defined in terms of partial 

derivatives of specific internal energy, from equations (4.76) and (4.77). 

 𝑃 = −(
𝜕𝑒

𝜕𝑣
)
𝜂
 (4.78) 

 𝜃 = (
𝜕𝑒

𝜕𝜂
)
𝑣

 (4.79) 

If (𝑣, 𝜃) are instead chosen as free variables, the differential of specific internal energy and 

specific entropy can be written as: 

 𝑑𝑒 = (
𝜕𝑒

𝜕𝑣
)
𝜃
𝑑𝑣 + (

𝜕𝑒

𝜕𝜃
)
𝑣
𝑑𝜃 = (

𝜕𝑒

𝜕𝑣
)
𝜃
𝑑𝑣 + 𝑐𝑣𝑑𝜃 (4.80) 
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 𝑑𝜂 = (
𝜕𝜂

𝜕𝑣
)
𝜃
𝑑𝑣 + (

𝜕𝜂

𝜕𝜃
)
𝑣
𝑑𝜃 (4.81) 

Substituting 𝑑𝜂 from (4.81) into (4.77), 

 𝑑𝑒 = [−𝑃 + 𝜃 (
𝜕𝜂

𝜕𝑣
)
𝜃
] 𝑑𝑣 + [𝜃 (

𝜕𝜂

𝜕𝜃
)
𝑣
] 𝑑𝜃 (4.82) 

Comparing (4.80) and (4.82), 

 (
𝜕𝑒

𝜕𝑣
)
𝜃
= [−𝑃 + 𝜃 (

𝜕𝜂

𝜕𝑣
)
𝜃
] (4.83) 

 𝑐𝑣 = 𝜃 (
𝜕𝜂

𝜕𝜃
)
𝑣
 (4.84) 

Using Maxwell’s relations, we have 

 (
𝜕𝜂

𝜕𝑣
)
𝜃
= (

𝜕𝑃

𝜕𝜃
)
𝑣
 (4.85) 

From equations (4.70), (4.84) and (4.85), one can show that 

 Γ𝑐𝑣 = 𝑣 (
𝜕𝑃

𝜕𝜃
)
𝑣
= 𝑣 (

𝜕𝜂

𝜕𝑣
)
𝜃
 (4.86) 

Substituting the above relation into equation (4.83), it can be shown that 

 (
𝜕𝑒

𝜕𝑣
)
𝜃
= [−𝑃 +

Γ𝑐𝑣𝜃

𝑣
] (4.87) 

 

Now, the aim is to find a differential change in entropy from equation (4.81) in terms of 

measurable quantities. Substituting expressions for partial derivatives from equations (4.84) and 

(4.86) into (4.81): 

 𝑑𝜂 =
Γ𝑐𝑣
𝑣
𝑑𝑣 +

𝑐𝑣
𝜃
𝑑𝜃 (4.88) 

Integrating the above equation along the thermodynamic path in Figure 4.1, entropy at the final 

state can be written as: 
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 𝜂(𝑣, 𝜃) = 𝜂0 +∫
Γ(𝑣′, 𝜃0)𝑐𝑣(𝑣

′, 𝜃0)

𝑣′
𝑑𝑣′

𝑣

𝑣0

+∫
𝑐𝑣(𝑣, 𝜃′)

𝜃′
𝑑𝜃′

𝜃

𝜃0

 (4.89) 

where the Gruneisen parameter, Γ and specific heat capacity, 𝑐𝑣 are considered as functions of 

(𝑣, 𝜃). Similarly, consider specific Helmholtz free energy, 𝜓(𝑣, 𝜃). Differential change in free 

energy is given as: 

 𝑑𝜓 = −𝑃𝑑𝑣 − 𝜂𝑑𝜃 (4.90) 

where  

 𝑃 = −(
𝜕𝜓

𝜕𝑣
)
𝜃
 (4.91) 

 𝜂 = −(
𝜕𝜓

𝜕𝜃
)
𝑣
 (4.92) 

Integrate equation (4.90) and substitute the expression for entropy, 𝜂(𝑣, 𝜃) from equation (4.89). 

 

𝜓(𝑣, 𝜃) = 𝜓0 −∫ 𝑃(𝑣′, 𝜃0)𝑑𝑣
′

𝑣

𝑣0

−∫ [𝜂0 +∫
Γ(v′, 𝜃0)𝑐𝑣(𝑣

′, 𝜃0)

𝑣′
𝑑𝑣′

𝑣

𝑣0

+∫
𝑐𝑣(𝑣, 𝜃

′′)

𝜃′′
𝑑𝜃′′

𝜃′

𝜃0

] 𝑑𝜃′
𝜃

𝜃0

 

(4.93) 

Integrating the last term in equation (4.93) by parts, one can obtain a general expression for 

specific free energy: 

 

𝜓(𝑣, 𝜃) = 𝜓0 − 𝜂0(𝜃 − 𝜃0) − ∫ [𝑃(𝑣′, 𝜃0) + (𝜃 − 𝜃0)
Γ(v′, 𝜃0)𝑐𝑣(𝑣

′, 𝜃0)

𝑣′
] 𝑑𝑣′

𝑣

𝑣0

−∫
(𝜃 − 𝜃′)

𝜃′
𝑐𝑣(𝑣, 𝜃

′)𝑑𝜃′
𝜃

𝜃0

 

(4.94) 

Pressure can be obtained from specific free energy, using equation (4.91): 

 𝑃(𝑣, 𝜃) = −(
𝜕𝜓

𝜕𝑣
)
𝜃
= 𝑃(𝑣, 𝜃0) + (𝜃 − 𝜃0)

Γ(𝑣, 𝜃0)𝑐𝑣(𝑣, 𝜃0)

𝑣
+ ∫

(𝜃 − 𝜃′)

𝜃′
𝜕𝑐𝑣(𝑣, 𝜃

′)

𝜕𝑣
𝑑𝜃′

𝜃

𝜃0

 (4.95) 
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Compatibility condition: The Gruneisen coefficient and specific heat are not fully 

independent. They must obey the thermodynamic compatibility equation derived below.  

 
𝜕

𝜕𝑣
(
𝜕2𝜓

𝜕𝜃2
) =

𝜕

𝜕𝜃
(
𝜕2𝜓

𝜕𝜃𝜕𝑣
) (4.96) 

To move further, a few thermodynamic identities need to be proved. Internal energy can be 

written in terms of specific free energy as: 

 𝑒 = 𝜓 + 𝜃𝜂 (4.97) 

Therefore, the specific heat is given as (using equation (4.84)): 

 𝑐𝑣 = [
𝜕(𝜓 + 𝜃𝜂)

𝜕𝜃
]
𝑣

= (
𝜕𝜓

𝜕𝜃
)
𝑣
+ 𝜂 + 𝜃 (

𝜕𝜂

𝜕𝜃
)
𝑣
 (4.98) 

Using the definition of entropy from equation (4.92), equation (4.98) can be re-written as: 

 𝑐𝑣 = −𝜃
𝜕2𝜓

𝜕𝜃2
 (4.99) 

Substituting the definition of entropy from equation (4.92) into equation (4.86), 

 Γ𝑐𝑣 = −𝑣
𝜕2𝜓

𝜕𝜃𝜕𝑣
 (4.100) 

Using relations in (4.99) and (4.100), the compatibility condition in equation (4.96) takes the 

following form. 

 𝑣
𝜕𝑐𝑣
𝜕𝑣

= 𝜃
𝜕(Γ𝑐𝑣)

𝜕𝜃
 (4.101) 

Equation (4.101) is called the compatibility condition and relates specific heat to the Gruneisen 

coefficient.  

 

Using the compatibility condition, the third term in the expression for pressure in (4.95) 

can be simplified. 
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 ∫
(𝜃 − 𝜃′)

𝜃′
𝜕𝑐𝑣(𝑣, 𝜃

′)

𝜕𝑣
𝑑𝜃′

𝜃

𝜃0

= ∫
(𝜃 − 𝜃′)

𝑣

𝜕[Γ(𝑣, 𝜃′)𝑐𝑣(𝑣, 𝜃
′)] 

𝜕𝜃′
𝑑𝜃′

𝜃

𝜃0

 (4.102) 

Apply integration by parts to equation (4.102), 

 

∫
(𝜃 − 𝜃′)

𝜃′
𝜕𝑐𝑣(𝑣, 𝜃

′)

𝜕𝑣
𝑑𝜃′

𝜃

𝜃0

= {
(𝜃 − 𝜃′)

𝑣
 Γ(𝑣, 𝜃′)𝑐𝑣(𝑣, 𝜃

′)}
𝜃0

𝜃

+∫
Γ(𝑣, 𝜃′)𝑐𝑣(𝑣, 𝜃

′)

𝑣
 𝑑𝜃′

𝜃

𝜃0

 

                                                   = −(𝜃 − 𝜃0)
Γ(𝑣, 𝜃0)𝑐𝑣(𝑣, 𝜃0)

𝑣
+ ∫

Γ(𝑣, 𝜃′)𝑐𝑣(𝑣, 𝜃
′)

𝑣
 𝑑𝜃′

𝜃

𝜃0

 

(4.103) 

Substitute (4.103) into equation (4.95) to get a simplified form for pressure: 

 𝑃(𝑣, 𝜃) = 𝑃(𝑣, 𝜃0) +
1

𝑣
∫ Γ(𝑣, 𝜃′)𝑐𝑣(𝑣, 𝜃

′) 𝑑𝜃′
𝜃

𝜃0

 (4.104) 

Equation (4.104) is called the complete equation of state and has been obtained without any 

assumptions so far. To find pressure from this relation, knowledge of the following three items is 

required: 

(1) Isotherm at 𝜃0, i.e. 𝑃(𝑣, 𝜃0) 

(2) Gruneisen parameter, Γ(𝑣, 𝜃) 

(3) Specific heat, 𝑐𝑣(𝑣, 𝜃) 

 

Equation (4.104) can be further simplified if an assumption on the form of Gruneisen 

parameter, Γ(𝑣, 𝜃) is made. Let us assume that the Gruneisen parameter is a function of specific 

volume only, Γ = Γ(𝑣). As mentioned by Grady (2017) , “Both theoretical arguments and 

experience suggest that Γ is not sensitive to reasonable excursions of internal energy, E for 

many materials, and is usually assumed to be a volume-dependent only function, Γ(𝑣).” For such 

a class of materials, the compatibility relation in (4.101) can be written as a hyperbolic partial 

differential equation in 𝑐𝑣: 
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 𝑣
𝜕𝑐𝑣
𝜕𝑣

= 𝜃Γ(𝑣)
𝜕𝑐𝑣
𝜕𝜃

 (4.105) 

Therefore, the characteristic curves for the above PDE are a solution to the following ODE: 

 𝑑𝜃

𝑑𝑣
= −

Γ(𝑣)𝜃

𝑣
 (4.106) 

The characteristic curve that passes through the initial state (𝑣0, 𝜃0) is 𝜃 = 𝜃0𝜙(𝑣) and 

corresponds to an isentrope (shown in section 4.6 below), where the integrating factor, 𝜙(𝑣) is 

given as: 

 𝜙(𝑣) = exp(−∫
Γ(𝑣′)

𝑣′
𝑑𝑣′

𝑣

𝑣0

) (4.107) 

Specific heat capacity is constant along the characteristic curve, i.e. 

 𝑐𝑣(𝑣, 𝜃) = 𝑐𝑣(𝑣0, 𝜃0) = 𝑐𝑣 (𝑣0,
𝜃

𝜙(𝑣)
) = 𝑐�̃� (

𝜃

𝜙(𝑣)
) = 𝑐�̃�(�̃�) (4.108) 

where the tilde signifies the scaled temperature, �̃� =
𝜃

𝜙(𝑣)
. Hence, for the class of materials with 

Γ = Γ(𝑣), specific heat is a function of single scaled temperature. Therefore, a further simplified 

form of pressure can be written as: 

 𝑃(𝑣, 𝜃) = 𝑃(𝑣, 𝜃0) +
Γ(𝑣)𝜙(𝑣)

𝑣
∫ 𝑐�̃�(�̃�

′) 𝑑�̃�′
�̃�

�̃�0

 (4.109) 

The derivative of the integrating factor in equation (4.108) is: 

 𝑑𝜙(𝑣)

𝑑𝑣
= −

𝜙(𝑣)Γ(𝑣)

𝑣
 (4.110) 

Substituting (4.110) into (4.109), 

 𝑃(𝑣, 𝜃) = 𝑃(𝑣, 𝜃0) −
𝑑𝜙(𝑣)

𝑑𝑣
∫ 𝑐�̃�(�̃�

′) 𝑑�̃�′
�̃�

�̃�0

 (4.111) 

Expressions for other thermodynamic quantities are derived for the case of Γ = Γ(𝑣). Entropy 

can be re-written using equation (4.89): 
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 𝜂(𝑣, 𝜃) = 𝜂0 +∫
Γ(𝑣′)𝑐�̃�(�̃�0)

𝑣′
𝑑𝑣′

𝑣

𝑣0

+∫
𝑐�̃�(�̃�′)

�̃�′
𝑑�̃�′

�̃�

�̃�0

 (4.112) 

Now, the expressions for Helmholtz specific free energy and specific internal energy can be 

simplified to the following relations: 

 

𝜓(𝑣, 𝜃) = 𝜓0 − 𝜂0(𝜃 − 𝜃0) − ∫ [𝑃(𝑣′, 𝜃0) + (𝜃 − 𝜃0)
Γ(𝑣′)�̃�𝑣(�̃�0)

𝑣′
] 𝑑𝑣′

𝑣

𝑣0

−𝜙(𝑣)∫
(�̃� − �̃�′)

�̃�′
�̃�𝑣(�̃�

′)𝑑�̃�′
�̃�

�̃�0

 

(4.113) 

 

𝑒(𝑣, 𝜃) = 𝜓(𝑣, 𝜃) + 𝜃𝜂(𝑣, 𝜃)

= 𝑒0 −∫ [𝑃(𝑣′, 𝜃0) − 𝜃0
Γ(v′)𝑐�̃�(�̃�0)

𝑣′
] 𝑑𝑣′ + 𝜙(𝑣)∫ 𝑐�̃�(�̃�′) 𝑑�̃�

′
�̃�

�̃�0

𝑣

𝑣0

 

(4.114) 

where 𝑒0 = 𝜓0 + 𝜃0𝜂0.  

 

At this juncture, it is worth noting that if 𝑇0 = 0𝐾 is chosen as the reference 

temperature, specific heat and entropy go to zero, i.e. 𝑐𝑣(𝑣, 𝑇0) → 0 and 𝜂0 = 0. The expressions 

above then simplify to: 

 𝑃(𝑣, 𝜃) = 𝑃𝑐(𝑣) −
𝑑𝜙(𝑣)

𝑑𝑣
∫ 𝑐�̃�(�̃�

′) 𝑑�̃�′
�̃�

0

 (4.115) 

 𝜂(𝑣, 𝜃) = ∫
𝑐�̃�(�̃�′)

�̃�′
𝑑�̃�′

�̃�

0

 (4.116) 

 𝜓(𝑣, 𝜃) = 𝜓0 −∫ 𝑃𝑐(𝑣
′)𝑑𝑣′

𝑣

𝑣0

− 𝜙(𝑣)∫
(�̃� − �̃�′)

�̃�′
�̃�𝑣(�̃�

′)𝑑�̃�′
�̃�

0

 (4.117) 

 𝑒(𝑣, 𝜃) = 𝑒0 −∫ 𝑃𝑐(𝑣
′)𝑑𝑣′ + 𝜙(𝑣)∫ 𝑐�̃�(�̃�′) 𝑑�̃�

′
�̃�

0

𝑣

𝑣0

 (4.118) 
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Even though using the cold curve isotherm makes the expressions for thermodynamic entities 

compact, relations (4.111)-(4.114) are preferred for ease of obtaining material properties at 

temperatures other than the absolute zero.  

 

4.5 Thermoelastic H eating 

Heating due to severe elastic deformation is important in applications where a material is 

subject to impacts and shocks. Large pressures of the order of several GPa can be generated 

under such loading conditions in a very short amount of time, typically tens of nanoseconds. 

Therefore, adiabatic conditions combined with large compressibility of several materials can 

result in a significant temperature increase. Such an increase is especially important in the case 

of fragile molecular crystals like the energetic materials whose mechanical and chemical behavior 

is extremely temperature sensitive. Moreover, the melting points of energetic materials and their 

simulants are relatively low, compared to metals, which means that not a lot of thermal heating 

is required to melt. Therefore, it is important to accurately assess temperature of such materials 

under dynamic loads. In the PSPI experiments, normal compression can significantly raise the 

temperature and affect the strength of the material under subsequent shear loading. So, it is 

important to quantify the thermo-elastic heating. 

 

In section 2.5, it was shown that the rate of heat generation due to elastic processes is given 

as: 

 �̇�𝑒 = (
𝜃

2

𝜕𝑻𝒆

𝜕𝜃
: �̇�𝒆) (4.119) 

The above relation can be written in terms of Mandel stress: 



114 

 

 �̇�𝑒 =
𝜃

2
 𝑪𝒆

−𝟏
 
𝜕𝑴𝒆

𝜕𝜃
: �̇�𝒆 =

𝜃

2
  
𝜕𝑴𝒆

𝜕𝜃
: 𝑪𝒆

−𝑻
�̇�𝒆 (4.120) 

From equation (4.58), the derivative of Mandel stress with respect to temperature can be 

calculated as: 

 
𝜕𝑴𝒆

𝜕𝜃
= −

𝜕𝑃

𝜕𝜃
𝐽𝑒𝑰 + 2

𝜕𝐺

𝜕𝜃
𝑬𝟎
𝒆 (4.121) 

Let us consider writing the right Cauchy-Green tensor in the right principal basis, 

(𝒓𝟏
𝒆⨂𝒓𝟏

𝒆 , 𝒓𝟐
𝒆⨂𝒓𝟐

𝒆 , 𝒓𝟑
𝒆⨂𝒓𝟑

𝒆) in terms of right elastic stretches, (𝜆1
𝑒 , 𝜆2

𝑒 , 𝜆3
𝑒). 

 𝑪𝒆 =∑(𝜆𝑖
𝑒)2 𝒓𝒊

𝒆⨂𝒓𝒊
𝒆

3

𝑖=1

 (4.122) 

The term 𝑪𝒆−𝑻�̇�𝒆 in equation (4.120) can then be simplified as: 

 𝑪𝒆
−𝑻
�̇�𝒆 =∑

2𝜆𝑖
�̇�

𝜆𝑖
𝑒  𝒓𝒊

𝒆⨂𝒓𝒊
𝒆

3

𝑖=1

 (4.123) 

Similarly, the deviatoric part of elastic logarithmic strain tensor can be expressed in the right 

principal basis: 

 𝑬𝟎
𝒆 = 𝑬𝒆 −

𝑡𝑟(𝑬𝒆)

3
𝑰 =∑ln(𝜆𝑖

𝑒) 𝒓𝒊
𝒆⨂𝒓𝒊

𝒆

3

𝑖=1

−
ln(𝐽𝑒)

3
𝑰 (4.124) 

Thus, from equations (4.120), (4.121), (4.123) and (4.124), thermoelastic heating can be written 

in matrix form as: 
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�̇�𝑒 = 𝜃
𝜕𝐺

𝜕𝜃

[
 
 
 
 
 
 ln [

𝜆1
𝑒

(𝐽𝑒)1/3
] 0 0

0 ln [
𝜆2
𝑒

(𝐽𝑒)1/3
] 0

0 0 ln [
𝜆3
𝑒

(𝐽𝑒)1/3
]
]
 
 
 
 
 
 

:

[
 
 
 
 
 
 
 2
𝜆1
�̇�

𝜆1
𝑒 0 0

0 2
𝜆2
�̇�

𝜆2
𝑒 0

0 0 2
𝜆3
�̇�

𝜆3
𝑒]
 
 
 
 
 
 
 

−
𝜃

2

𝜕𝑃

𝜕𝜃
𝐽𝑒 [
1 0 0
0 1 0
0 0 1

] :

[
 
 
 
 
 
 
 2
𝜆1
�̇�

𝜆1
𝑒 0 0

0 2
𝜆2
�̇�

𝜆2
𝑒 0

0 0 2
𝜆3
�̇�

𝜆3
𝑒]
 
 
 
 
 
 
 

 

(4.125) 

 ⟹ �̇�𝑒 = 𝜃
𝜕𝐺

𝜕𝜃
 ∑ln [

𝜆𝑖
𝑒

(𝐽𝑒)
1
3

] (2
𝜆𝑖
�̇�

𝜆𝑖
𝑒)

3

𝑖=1

−
𝜃

2

𝜕𝑃

𝜕𝜃
𝐽𝑒∑(2

𝜆𝑖
�̇�

𝜆𝑖
𝑒)

3

𝑖=1

 (4.126) 

Since 𝐽𝑒 = 𝜆1
𝑒𝜆2
𝑒𝜆3
𝑒 and hence, 

𝐽�̇�

𝐽𝑒
= ∑

𝜆𝑖
�̇�

𝜆𝑖
𝑒 

3
𝑖=1 , we have: 

 �̇�𝑒 = 𝜃
𝜕𝐺

𝜕𝜃
 ∑ln [

𝜆𝑖
𝑒

(𝐽𝑒)
1
3

](2
𝜆𝑖
�̇�

𝜆𝑖
𝑒)

3

𝑖=1

− 𝜃
𝜕𝑃

𝜕𝜃
𝐽�̇� (4.127) 

The first term in equation (4.127) requires knowledge of principal elastic stretches and stretch 

rates in all 3 principal directions. However, due to small deviatoric elastic strains, the 

contribution of the first term to the thermoelastic heat generation is small and can therefore be 

neglected. The second term, on the other hand, is easy to compute from the complete equation 

of state given through equation (4.111). The derivative of pressure with respect to temperature 

is given through a simple expression as follows: 

 𝜕𝑃

𝜕𝜃
= −

𝑑𝜙

𝑑𝑣

𝑑�̃�

𝑑𝜃
 𝑐�̃�(�̃�) =

Γ(𝑣)

𝑣
𝑐�̃�(�̃�) 

(4.128) 

It is easy to verify that equation (4.127) holds for the special case of linear thermo-elasticity. 
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In the next few sections, analytic expressions for different thermodynamic curves such as 

the isentrope, isotherm and Hugoniot are derived using the complete equation of state. Plotting 

these curves for sucrose is expected to provide insights into material behavior under different 

types of loading. 

 

4.6 Isentrope 

The normal loading under pressure-shear plate impact can be considered as being close 

to an isentrope, i.e. the PSPI experiments load the specimen quasi-entropically. Pressure along 

an isentrope can be found using the Mie-Gruneisen EOS in (4.72) in terms of the reference 

curve: 

 𝑃(𝜂)(𝑣) − 𝑃𝑟𝑒𝑓(𝑣) =
Γ(𝑣)

𝑣
[𝑒(𝜂)(𝑣) − 𝑒𝑟𝑒𝑓(𝑣)] (4.129) 

where the superscript 𝜂 specifies quantities along the isentrope. However, the specific internal 

energy, 𝑒(𝜂)(𝑣) remains unknown. If 𝑒 = 𝑒(𝑣, 𝜂), pressure is defined as (equation (4.78)): 

 𝑃(𝑣, 𝜂) ≡ −(
𝜕𝑒

𝜕𝑣
)
𝜂
= −

𝑑𝑒(𝜂)

𝑑𝑣
 (4.130) 

Substitute (4.130) into (4.129) to obtain an ODE in 𝑒(𝜂)(𝑣): 

 
𝑑𝑒(𝜂)(𝑣)

𝑑𝑣
+
Γ(𝑣)

𝑣
𝑒(𝜂)(𝑣) = − [𝑃𝑟𝑒𝑓(𝑣) −

Γ(𝑣)

𝑣
𝑒𝑟𝑒𝑓(𝑣)] (4.131) 

Using the integrating factor 𝜙(𝑣) defined in equation (4.107), the ODE can be written as: 

 
𝑑

𝑑𝑣
(
𝑒(𝜂)(𝑣)

𝜙(𝑣)
) = −

1

𝜙(𝑣)
[𝑃𝑟𝑒𝑓(𝑣) −

Γ(𝑣)

𝑣
𝑒𝑟𝑒𝑓(𝑣)] (4.132) 

So, the internal energy associated with an isentrope passing through the initial state (𝑣0, 𝑒0) is 

given as: 
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 𝑒(𝜂)(𝑣) = 𝜙(𝑣) {𝑒0 −∫
1

𝜙(𝑣′)
[𝑃𝑟𝑒𝑓(𝑣′) −

Γ(𝑣′)

𝑣′
𝑒𝑟𝑒𝑓(𝑣′)]

𝑣

𝑣0

𝑑𝑣′} (4.133) 

Substituting the above expression for specific internal energy into equation (4.129), the 

expression for pressure along an isentrope can be obtained.  

 

 Since the temperature change during normal loading, which precedes the shear loading in 

a PSPI experiment, influences the shear strength of the material, it is necessary to calculate the 

temperature change during isentropic loading. Consider an alternative definition of the 

Gruneisen parameter: 

 Γ ≡ 𝑣 (
𝜕𝑃

𝜕𝑒
)
𝑣
= −

𝑣

𝜃
(
𝜕𝜃

𝜕𝑣
)
𝜂
 (4.134) 

The second relation in equation (4.134) can be obtained from equations (4.84) and (4.86). 

Integrating the above relation gives the temperature variation along an isentrope as a function 

of specific volume. 

 𝜃(η) = 𝜃0 exp(−∫
Γ(𝑣′)

𝑣′
𝑑𝑣′

𝑣

𝑣0

) = 𝜃0𝜙(𝑣) (4.135) 

Since equation (4.135) represents a characteristic curve for the hyperbolic PDE in equation 

(4.105), it implies that 𝑐𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 along any isentrope. This is a consequence of the 

assumption that Gruneisen parameter is a function of specific volume only. The calculated 

isentrope for sucrose is plotted in Figure 4.2. It is assumed that 
Γ(𝑣)

𝑣
=
Γ0

𝑣0
 where Γ0 = Γ(𝑣0). A 3rd 

order Birch-Murnaghan equation of state is chosen as the reference curve:  

 𝑃 = 𝐾𝜃0 (
𝑣0
𝑣
) ln (

𝑣0
𝑣
) [1 +

𝐾𝜃0
′ − 2

2
ln (

𝑣0
𝑣
)] (4.136) 
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where 𝐾𝜃0 and 𝐾𝜃0
′  are elastic bulk modulus and the first derivative of elastic bulk modulus with 

respect to pressure respectively. The derivation of this equation of state is presented in section 

10. The material properties of sucrose used for plotting the curves are given in Table 4.1.  

Table 4.1 Material parameters for sucrose 

𝜌0 Initial density 1580.5 kg/m3 

Elastic Parameters 

𝐺0 Shear Modulus at ambient 8.58 GPa 

𝐺𝜃 Temperature coefficient of shear modulus 0 

𝐺𝑃 Pressure coefficient of shear modulus 0 

𝜈 Poisson’s ratio 0.25 

𝐾𝜃0 Isothermal bulk modulus at ambient 14.3 GPa 

𝐾𝜃0
′  

Derivative of Bulk modulus with respect to 

pressure 
3.75 

Γ0 Gruneisen parameter at ambient 1.09 

Thermal parameters 

𝑐𝑝
∗ Specific heat capacity at ambient 1244 J/kgK 

𝑘 Thermal conductivity 0.486 W/mK 

𝛼 Coefficient of thermal expansion 0.486 W/mK 

𝑐0 Specific heat capacity, 

𝑐𝑣(𝜃) =
𝜃3

𝑐0 + 𝑐1𝜃 + 𝑐2𝜃
2 + 𝑐3𝜃

3
 

7.095 x 103 kgK4/J 

𝑐1 2.230 x 101 kgK3/J 

𝑐2 4.180 x 10-3 kgK2/J 

𝑐4 3.050 x 10-4 kgK/J 

𝑎1 ∫ 𝑐𝑣(𝜃)𝑑𝜃
𝜃

0

≈ (𝑎1𝜃 + 𝑎2𝜃
2)
𝐽

𝑘𝑔
 

−133.647 J/kgK 

𝑎2 2.082 J/kgK2 
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Figure 4.2 Isentrope curves for sucrose. Initial state is characterized by 𝑣0 = 1/𝜌0, 𝑃0 = 0, 𝜃0 =

298 𝐾 and 𝑒0 = 0, where 𝜌0 is the initial density of sucrose 

 

4.7 Isotherm 

Pressure along an isotherm can be obtained from equation (4.111) by substituting the 

isotherm temperature, 𝜃 = 𝜃𝑖. 

 𝑃(𝑣, 𝜃𝑖) = 𝑃(𝑣, 𝜃0) −
𝑑𝜙(𝑣)

𝑑𝑣
∫ 𝑐�̃�(�̃�

′) 𝑑�̃�′
𝜃�̃�

�̃�0

 (4.137) 

Similarly, the expressions for specific internal energy, specific free energy and specific entropy 

can be obtained by substituting the isotherm temperature in equations (4.112)-(4.114). The 3rd 

order Birch-Murnaghan equation of state is chosen as the reference isotherm.  The values for 

(a) (b) 

(c) 



120 

 

these constants can be found in Table 4.1. Figure 4.3 shows isotherms for sucrose at different 

temperatures. 

 

  

Figure 4.3 Isotherms for sucrose at different temperatures. 𝜃0 = 298 𝐾. 

 

4.8 Hugoniot 

One of the problems of interest to the energetic materials community is the ability to 

predict detonation in energetic material aggregates when subjected to a shock wave. Consider 

the case of a shock wave traveling through a solid that subjects the material to a high pressure. 

Under such high pressures, the shear strength of the solid is negligible with respect to the 

pressure applied. So, the normal stress jump across the shock wave can be approximated to be 

equal to the pressure jump. Then, the specific internal energy of the solid for shock compression 

from an initial state of (𝑒0, 𝑃0, 𝜃0, 𝑣0) is given through the following Rankine-Hugoniot relation: 

 𝑒(𝐻)(𝑣) = 𝑒0 +
1

2
(𝑃(𝐻)(𝑣) + 𝑃0)(𝑣0 − 𝑣) (4.138) 
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Pressure along a Hugoniot requires another piece of information. Usually, that is provided in 

terms of a shock speed-particle speed relation (example 𝑢𝑠 = 𝑐0 + 𝑠𝑢𝑝). Another way to find the 

pressure on a Hugoniot is by using a reference curve and then substituting into the complete 

equation of state, which is represented in the present case as the Mie-Gruneisen equation of 

state.  

 𝑃(𝐻)(𝑣) − 𝑃(𝑣, 𝜃0) =
Γ(𝑣)

𝑣
[𝑒(𝐻)(𝑣) − 𝑒(𝑣, 𝜃0)] (4.139) 

Internal energy along an isotherm can be found from equation (4.114): 

 𝑒(𝑣, 𝜃0) = 𝑒0 −∫ [𝑃(𝑣′, 𝜃0) − 𝜃0
Γ(v′)𝑐�̃�(�̃�0)

𝑣′
] 𝑑𝑣′

𝑣

𝑣0

 (4.140) 

Substituting the expressions for internal energy from equations (4.138) and (4.140) into equation 

(4.139), pressure along a Hugoniot can be written as: 

 
𝑃(𝐻)(𝑣) =

Γ(𝑣)
𝑣 𝑃0(𝑣0 − 𝑣) + 𝑃(𝑣, 𝜃0) +

Γ(𝑣)
𝑣 {∫ [𝑃(𝑣′, 𝜃0) − 𝜃0

Γ(v′)𝑐�̃�(𝜃0̃)
𝑣′ ]  𝑑𝑣′

𝑣

𝑣0
}

1 −
Γ(𝑣)
2𝑣

(𝑣0 − 𝑣)
 

(4.141) 

 

Consider internal energy as a function of volume and entropy, 𝑒(𝑣, 𝜂). Change in internal 

energy can be written using the first law of Thermodynamics (equation (4.76)) as 𝑑𝑒 = −𝑃𝑑𝑣 +

𝜃𝑑𝜂. Consider 𝜂 = 𝜂(𝑣, 𝜃). From equation (4.88), change in entropy can be written as 𝑑𝜂 =

Γ𝑐𝑣

𝑣
𝑑𝑣 +

𝑐𝑣

𝜃
𝑑𝜃. Hence, the first law of thermodynamics can be written as: 

 𝑑𝑒 = (−𝑃 +
Γ𝑐𝑣𝜃

𝑣
)𝑑𝑣 + 𝑐𝑣𝑑𝜃 (4.142) 

In a differential form, equation (4.142) can be written as: 

 𝑑𝑒(𝐻) =
1

2
(𝑣0 − 𝑣)𝑑𝑃

(𝐻) −
1

2
(𝑃(𝐻) + 𝑃0) 𝑑𝑣 (4.143) 
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Equating right hand sides of equations (4.142) and (4.143): 

 (−𝑃(𝐻) +
Γ𝑐𝑣𝜃

(𝐻)

𝑣
)𝑑𝑣 + 𝑐𝑣𝑑𝜃

(𝐻) =
1

2
(𝑣0 − 𝑣)𝑑𝑃

(𝐻) −
1

2
(𝑃(𝐻) + 𝑃0) 𝑑𝑣 (4.144) 

A first-order ODE in 𝜃(𝐻) is obtained by rearranging the terms, 

 𝑐𝑣
𝑑𝜃(𝐻)

𝑑𝑣
+
Γ𝑐𝑣
𝑣
 𝜃(𝐻) =

1

2
(𝑣0 − 𝑣)

𝑑𝑃(𝐻)(𝑣)

𝑑𝑣
 +
1

2
(𝑃(𝐻)(𝑣) − 𝑃0) ⏟                          

ℎ(𝑣)

 (4.145) 

The right hand side of equation (4.145) is a function of specific volume and can be abbreviated 

into a function ℎ(𝑣). 𝑃(𝐻) can be substituted from equation (4.141). The derivative of the scaled 

temperature, �̃� = 𝜃/𝜙(𝑣), with respect to 𝑣 is given by: 

 𝜙(𝑣)
𝑑�̃�

𝑑𝑣
=
𝑑𝜃

𝑑𝑣
+
Γ(𝑣)

𝑣
𝜃 (4.146) 

Substitute equation (4.146) into equation (4.145): 

 𝑐�̃�(�̃�
(𝐻))

𝑑�̃�(𝐻)

𝑑𝑣
=
ℎ(𝑣)

𝜙(𝑣)
 (4.147) 

Equation (4.147) gives temperature change along a Hugoniot. In its most generic form, the 

temperature relation above is a non-linear ODE and needs to be solved numerically. The special 

case of a constant specific heat can be solved easily. Hugoniot curves for sucrose are shown in 

Figure 4.4. 
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Figure 4.4 Hugoniot curves for sucrose. 

 

4.9 Comparison of the Thermodynamic Curves 

At this point, it is instructive to compare the pressure-volume-temperature (𝑃, 𝑣, 𝜃) response 

under different types of commonly encountered loading. Figure 4.5 shows a three-dimensional 

surface of a complete Mie-Gruneisen equation of state for sucrose in the (𝑃, 𝑣, 𝜃) space. An 

isotherm, an isentrope and a Hugoniot are plotted simultaneously. Figure 4.5 clearly illustrates 

the substantial difference between the three curves along the temperature axis.  

 

(a) (b) 

(c) 
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Figure 4.5 Pressure-Volume-Temperature curve for a complete Mie-Gruneisen equation of state 

for sucrose (Orange grid). Blue: Isotherm, Black: Isentrope and Red: Hugoniot, all passing 

through the initial state, 𝑃0 = 0, 𝑣0, 𝜃0 = 298𝐾. 

 

For more illustrative comparison, the thermodynamic curves are compared on two-

dimensional plots. Figure 4.6 shows that in the pressure, 𝑃 vs compression ratio, 𝑣/𝑣0 ratio, the 

Hugoniot lies at the top and the isotherm lies at the bottom of the three curves. However, for 

the volume compression ratios considered here, the difference between the curves is relatively 

modest. The main difference between the isotherm, the isentrope and the Hugoniot lies in the 

temperature response of the material, as shown in Figure 4.7 and Figure 4.8. While the 

temperature rise along an isentrope is almost linear with volume compression ratio, temperature 

along the Hugoniot quickly diverges from the isentrope and leads to a much higher temperature 

rise. It is to be noted that while the temperature rise along an isentrope slows down with 

increasing pressure (Figure 4.8), the temperature rise along a Hugoniot quickens with increasing 
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pressure as indicated by the concave up curve. These differences in the material response to 

different types of thermodynamic loading has far reaching consequences for energetic materials. 

For example, a ramp wave with an isentropic pressure loading is much less likely to cause hot 

spots as compared to a shock wave. 

 

 

Figure 4.6 Pressure, 𝑃 vs compression ratio, 𝑣/𝑣0 plots for sucrose, for a Hugoniot, an isentrope 

and an isotherm, all passing through the same initial point, i.e. 𝑃0 = 0,
𝑣

𝑣0
= 1, 𝜃0 = 298 𝐾 

 

 

Figure 4.7 Temperature, 𝜃 vs compression ratio, 𝑣/𝑣0 plots for sucrose, for a Hugoniot and an 

isentrope 
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Figure 4.8 Temperature, 𝜃 vs pressure, 𝑃 plots for sucrose, for a Hugoniot and an isentrope 

 

 From the preceding discussion, it is worth highlighting the importance of using a 

complete equation of state with a temperature dependent specific heat. As noted by Menikoff 

and Sewell (2002), Sewell and Menikoff (2004) , incorporating temperature dependence of 

specific heat in an equation of state is extremely important to accurately predict hot-spot 

temperatures and hence the consequent chemical reaction kinetics. Let us compare the 

thermodynamic response of sucrose for two cases: (a) Temperature dependent specific heat, and 

(b) Constant specific heat capacity, evaluated at 𝜃 = 𝜃0. Figure 4.9 shows that the choice of 

temperature-dependent vs temperature-independent specific heat does not have a substantial 

effect on the pressure-volume response of sucrose, for all the three kinds of loading.  
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Figure 4.9 Pressure-volume response of sucrose for a temperature-dependent specific heat 

capacity (solid lines) vs temperature-independent specific heat capacity evaluated at 𝜃 = 𝜃0 

(dashed lines) 

 

 

Figure 4.10 Effect of specific heat capacity on temperature rise along a Hugoniot and an 

isentrope with increasing compression, for sucrose. The pressure-dependent melt curve for 

sucrose is also shown. Note that the melt curve is based on Lindemann Law which is discussed 

in detail in Chapter 5  

 

 Figure 4.10 shows the difference arising in the temperature response due to the form of 

specific heat chosen. As expected, the temperature along the isentrope should be unaffected by 
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the choice of specific heat capacity because the specific heat capacity remains constant along an 

isentrope. However, there is a substantial difference in the temperature rise along a Hugoniot. 

Using the temperature-dependent specific heat, 𝑐𝑣(𝜃) results in a lower temperature increase 

with compression as compared to using a constant specific heat, 𝑐𝑣(𝜃0), with the difference 

between the two cases increasing as the compression ratio increases. Such a comparison 

emphasizes the role played by the choice of specific heat capacity for shock wave loading of 

explosive/simulant crystals. Thus, proper representation of the temperature dependence of 

specific heat has consequences for accurately simulating the mechanical, thermal and chemical 

response of energetic materials. For example, the comparison of the Hugoniots in Figure 4.10 

with the pressure-dependent melt curve for sucrose shows that beyond a compression ratio of 

~0.67, the Hugoniot with a constant specific heat capacity predicts melting while using a 

complete equation of state does not. Such differences have a potentially significant impact on 

the accuracy of predicting deformation localization and formation of hot-spots due to adiabatic 

shear bands and the likelihood of such hot-spots turning critical, leading to ignition.  

 

 At this juncture, one may pose the following question: If a constant specific heat were to 

be used for simplicity, in a material model for sucrose, at what temperature should it be 

evaluated?  To answer this question, the temperature along a Hugoniot is plotted for constant 

specific heat (dashed curves) at different temperatures and compare them with the case of 

temperature-dependent specific heat (solid curve). From Figure 4.11, it becomes clear that for 

the range of pressures considered, 𝑐𝑣 = 𝑐𝑣(1.5𝜃0) works the best in this scenario. 
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Figure 4.11 Temperature along a Hugoniot for sucrose for different specific heat capacities. Note 

that the melt curve shown above is based on the Lindemann Law which is discussed in detail in 

Chapter 5 

 

(a) 

(b) 
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4.10 Derivation of 3 rd order Birch-Murnaghan equation of 

state 

A 3rd order free-energy function is used to derive an isothermal equation of state. Note 

that the final form of the equation of state depends on the strain measure used. The 𝑃 − 𝑣 

relation based on the Euler-Almansi strain is the most commonly encountered form in shock 

physics and geophysics applications and is as follows: 

 𝑃 =
3

2
𝐾𝜃0 [(

𝑣0
𝑣
)

7
3
 − (

𝑣0
𝑣
)

5
3
] [1 +

3

4
(𝐾𝜃0

′ − 4) {(
𝑣0
𝑣
)

2
3
− 1}] (4.148) 

However, since the constitutive model is built using logarithmic strains, it is important to be 

consistent and use the same strain measure. 

 

 Consider a cube of an isotropic material subjected to pressure. The deformation gradient 

for such a deformation is given below: 

 𝑭 = 𝜆𝑰 (4.149) 

Volumetric logarithmic strain is given as: 

 𝐸𝑣 = 𝑡𝑟(𝑬
𝒆) = ln(𝜆3) = ln (

𝑣

𝑣0
) (4.150) 

Now consider a polynomial expansion of Helmholtz free energy per unit volume in the reference 

configuration, as a function of magnitude of volumetric strain: 

 𝜓𝑅(𝐸𝑣) = 𝐴0 + 𝐴1𝐸𝑣 + 𝐴2𝐸𝑣
2 + 𝐴3𝐸𝑣

3… (4.151) 

Pressure inside the solid is given as: 

 𝑃 = −
𝑡𝑟(𝑻)

3
= −

1

𝜌0

𝜕𝜓𝑅
𝜕𝑣

 (4.152) 
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where 𝑻 is the Cauchy stress. Assume that the free energy and pressure are zero in the reference 

configuration, i.e. 𝐴0 = 0 and 𝐴1 = 0. Then the expression for pressure can be simplified in terms 

of 𝐴2 and 𝐴3: 

 𝑃 = −
1

𝜌0

𝜕𝜓𝑅
𝜕𝑣

= −
1

𝜌0

𝜕𝜓𝑅
𝜕𝐸𝑣

𝜕𝐸𝑣
𝜕𝜆

𝜕𝜆

𝜕𝑣
= −𝐸𝑣 (

2𝐴2 + 3𝐴3𝐸𝑣
𝜆3

) (4.153) 

Constants 𝐴2 and 𝐴3 need to be expressed in terms of measurable material parameters such as 

the isothermal bulk modulus, 𝐾𝜃0 and its first pressure derivative, 𝐾𝜃0
′ . The subscript ‘0’ refers 

to the reference state of (𝑣0, 𝑃0 = 0, 𝜃0 = 298 𝐾). 𝐾𝜃0 and 𝐾𝜃0
′  are defined below: 

 𝐾𝜃0 = −𝑣
𝜕𝑃

𝜕𝑣
 (4.154) 

 𝐾𝜃0
′ =

𝜕𝐾𝜃0
𝜕𝑃

 (4.155) 

Using equations (4.153), (4.154) and (4.155), 𝐴2 and 𝐴3 can be found in terms of 𝐾𝜃0 and 𝐾𝜃0
′ : 

 𝐴2 =
𝐾𝜃0
2

 (4.156) 

 𝐴3 =
𝐾𝜃0
6
(2 − 𝐾𝜃0

′ ) (4.157) 

Substituting the above relations into equation (4.153), the 3rd-order Birch-Murnaghan equation 

of state in terms of logarithmic strains (Poirier and Tarantola (1998) ) is written as: 

 𝑃 = 𝐾𝜃0 (
𝑣0
𝑣
) ln (

𝑣0
𝑣
) [1 +

𝐾𝜃0
′ − 2

2
ln (

𝑣0
𝑣
)] (4.158) 

A comparison of the 3rd order Birch-Murnaghan EOS using the 3 different strain measures is 

shown in the plot below (Figure 4.12). Derivation of the EOS for the Green-Lagrange and Euler-

Almansi strain tensors is given in Appendix A. It is evident that the Green-Lagrange strain 

leads to the most compliant behavior at the same volumetric compression while the Euler-

Almansi form leads to the stiffest behavior. The Birch-Murnaghan forms for the logarithmic 
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strain and Euler-Almansi strain are in extremely close approximation of each other even for 

finite volumetric strains. All the 3 forms show excellent agreement at small strains which is to 

be expected. 

 

 

Figure 4.12 3rd order Birch-Murnaghan equation of state using 3 different strain measures 

 

4.11 Discussion 

Molecular crystals such as HMX, RDX and sucrose are complex materials to model under 

quasi-static and dynamic loads. The complexity arises on several fronts: (a) anisotropic elastic 

properties, (b) thermo-elastic coupling, (c) complex thermo-viscoplastic response, (d) low 

melting points, (e) strong dependence of material properties on temperature and pressure, such 

as the elastic moduli, specific heat, melt curve and viscosity of molten fluid to name a few, and 

(d) the added complexity of chemical reactions. Moreover, lack of experimental data on melt 

curves and temperature and pressure-dependencies of shear viscosities of melt for energetic 

crystals makes determination of material parameters an arduous task.  
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In this chapter, a thermodynamic framework for thermo-mechanical modeling of sucrose is 

presented, with focus on the solid phase before melting takes place. A complete Mie-Gruneisen 

equation of state is derived with the incorporation of a temperature-dependent specific heat 

capacity. The complete equation of state requires the knowledge of a reference isotherm, which 

is fulfilled through the derivation of a third-order Birch Murnaghan equation of state. It is 

shown that it is important to have a temperature dependent specific heat capacity for accurate 

prediction of deformation behavior and hot-spot formation in energetic crystals.  

 

The framework also allows the incorporation of higher order elastic constants with 

dependencies on pressure and temperature. Plasticity is modeled using the Johnson-Cook Model 

which accounts for strain-hardening, strain-rate hardening and thermal softening. The pressure 

dependence of yield strength is brought out indirectly using the pressure-dependence of the melt 

temperature, unlike the usual approach of using a pre-factor of temperature dependent shear 

modulus (𝐺/𝐺0). Melt curve and its implications are discussed in detail in Chapter 5. Due to 

low melting points of molecular crystals such as energetic materials and their temperature-

sensitive mechanical and chemical properties, temperature is an important thermodynamic 

variable in constitutive modeling. Therefore, temperature changes due to conduction, elasticity 

and plasticity are all accounted for. An explicit expression for thermoelastic heating is derived 

and its importance further highlighted in Chapter 5. Since a solid to liquid phase transition is 

expected under large shear strains that the sucrose specimen is subject to under PSPI 

experiments, constitutive behavior of molten sucrose needs to be considered. However, the 
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current thermodynamic framework does not allow for solid-solid or solid-liquid phase transitions, 

which remains a task for the future.   
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Chapter 5  

 

Sucrose: Simulations 
 

5.1 Introduction 

The constitutive model for sucrose described in Chapter 4 is implemented in the commercial 

Finite Element software, ABAQUS, through a VUMAT (user-subroutine for an Explicit 

analysis). This chapter details the results of the simulations and draws comparisons with 

experimental observations. The VUMAT algorithm is laid out in detail in Appendix A.  

 

The flyer, target plates and the sandwiched specimen are modeled using four-noded two-

dimensional plane strain elements with thermal coupling. Since shear localization is expected, 

mesh size of the specimen is kept smaller than the expected shear band width. Without the 

knowledge of expected temperature rise and shear strain-rates expected within the band, the 

shear band width can be estimated through the following equation: 

 𝛿𝑏𝑎𝑛𝑑 ≈ 2√𝐷𝑡 (5.1) 

where 𝐷 = 𝑘/𝜌𝑐 is thermal diffusivity and 𝑡 is the expected duration of loading. Using material 

constants listed in Table 5.1. and variation of specific heat discussed in Appendix B, the thermal 

diffusivity of sucrose can be calculated to vary between 94 × 10−9 𝑚2/𝑠 and 247 × 10−9 𝑚2/𝑠. 

For a loading duration of about 1 𝜇𝑠, the shear band width is expected to lie between 0.61 𝜇𝑚 

and 1 𝜇𝑚. Therefore, a mesh size of 0.25 𝜇𝑚, which is sufficiently smaller than the expected 

band width, is chosen to err on the side of caution (see Figure 5.1). For stability of the 
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numerical scheme, time-step is dictated by the longitudinal wave speed in sucrose and the time-

scale of thermal diffusion. 

 
Δ𝑡 < min(

Δ𝑥

𝑐𝐿
,
(Δ𝑥)2

2𝐷
) 

(5.2) 

where 𝑐𝐿 is the longitudinal wave speed and Δ𝑥 is mesh size. For a mesh size of 0.25 𝜇𝑚, a time-

step of 10−11𝑠 obeys the stability criteria in equation (5.2) with sufficient margin for error. 

Simulations are carried out using a dynamic, temperature-displacement, explicit time-step. 

Thermal conduction is modeled even though its effects are negligible, as demonstrated below. 

 

Figure 5.1 Mesh for simulation of shot PM1804. The sucrose specimen has a finer mesh size of 

0.25 𝜇𝑚 (middle of the figure) than the target plates on either side which have a mesh size 

increasing linearly from 0.5 𝜇𝑚 (at the target/specimen interface) to 50 𝜇𝑚 (at the other end) 

 

5.2 Comparison of velocity profiles 

Experimental and simulated velocity profiles at the sample/rear target plate interface are 

compared. The material constants used in simulations are detailed in Table 5.1. The choice of 

material constants is justified in Appendix B. While some of the material constants, have been 

obtained from literature, others have been fit to experimental data. Material parameters for the 

Johnson-Cook model are based on a modest search of parameter values and better fits to 

experimental data might be possible using a more rigorous parameter optimization approach 

based on minimization of least squared errors between experimental and simulated velocity 

profiles.  
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 Figure 5.2 shows experimental and simulated normal velocity profiles for low-pressure shots 

while Figure 5.3 shows the same for high-pressure shots. Nodal values of the simulated velocity 

profiles are plotted on the rear surface of the specimen and multiplied by a factor of 2 to obtain 

free surface velocities at the rear target plate. Since compaction of the initial surface roughness 

of the sucrose specimen is not modeled in simulations, the initial step observed in the 

experiments is not seen in simulations. The rise of normal velocity to the plateau agrees very 

well with the experiments. For the high-pressure shots, a slight deviation from the simulated 

profiles is observed for normal velocities above 0.12 mm/µs, due to loading of the anvil WC 

plates beyond their Hugoniot Elastic Limit.   

 

Simulated transverse velocity profiles for low and high-pressure shots are compared with 

experimental velocities in Figure 5.4 and Figure 5.5 respectively. It is shown that the choice of a 

single set of material constants can fit the transverse velocities under different experimental 

conditions reasonably well. Simulated profiles can capture the drop in shearing resistance of 

sucrose, which results when thermal softening overtakes hardening due to increasing strains and 

strain-rates. The rising portion of simulated transverse velocity is steeper than that observed in 

the experiments which indicates that the actual shear modulus value upon the arrival of shear 

wave is smaller than the quasi-static shear modulus value used here. As discussed in Chapter-4, 

shear modulus varies with temperature and pressure and such a variation is easy to incorporate 

into the user-subroutines. However, due to the lack of experimental data on variation of shear 

modulus with temperature and pressure, a constant value is employed. Good agreement between 

the experiments and the simulations is seen for the peak value of transverse velocities, hence the 

shear stresses, especially for the case of low pressures. Due to small variations in experimentally 
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observed shear behavior under similar set of conditions, simulated transverse velocity profiles fit 

some shots better than the others. The drop in shear strength is also captured very well through 

simulations.  Simulated profiles for low-pressure experiments show a slightly delayed drop.  

 

Table 5.1 Material constants for sucrose 

𝜌0 Initial density 1580.5 kg/m3 

Elastic Parameters 

𝐺0 Shear Modulus at ambient 8.58 GPa 

𝐺𝜃 Temperature coefficient of shear modulus 0 

𝐺𝑃 Pressure coefficient of shear modulus 0 

𝜈 Poisson’s ratio 0.25 

𝐾𝜃0 Isothermal bulk modulus at ambient 14.3 GPa 

𝐾𝜃0
′  Derivative of Bulk modulus with respect to pressure 3.75 

Γ0 Gruneisen parameter at ambient 1.09 

Johnson-Cook parameters 

𝐴 Static yield strength 500 MPa 

𝐵 Strain-hardening coefficient 500 MPa 

𝑛 Strain-hardening exponent 0.1 

𝐶 Strain-rate hardening coefficient 0.01 

𝜖̅0̇ Effective plastic strain-rate  1 s-1 

𝑚 Thermal softening exponent 0.5 

𝜃𝑡𝑟 Reference temperature 298 K 

𝜃𝑚0 Melt temperature at ambient pressure 459 K 

𝜖̅�̇�𝑖𝑚
𝑝

 Limiting strain-rate 107 s-1 

Thermal parameters 

𝑐𝑝
∗ Specific heat capacity at ambient 1244 J/kgK 

𝑘 Thermal conductivity 0.486 W/mK 

𝛼 Coefficient of thermal expansion 0.486 W/mK 

𝑃𝑟𝑒𝑓 Reference pressure in Simon-Glatzel melt relation 0 

𝑃0 Parameter in Simon-Glatzel melt relation 0.3 GPa 

𝑑 Parameter in Simon-Glatzel melt relation 3.25 

*Simulations use the temperature-dependent specific heat capacity rather than the constant 

value mentioned here. 
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Figure 5.2 Normal velocity profiles of low-pressure shots on sucrose. Experimental profiles are 

shown using solid lines while the simulated profiles are represented using dashed lines 

 

 

Figure 5.3 Normal velocity profiles of high-pressure shots on sucrose. Experimental profiles are 

shown using solid lines while the simulated profiles are represented using dashed lines 
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Figure 5.4 Transverse velocity profiles of low-pressure shots on sucrose. Experimental profiles 

are shown using solid lines while the simulated profiles are represented using dashed lines 

 

 

Figure 5.5 Transverse velocity profiles of high-pressure shots on sucrose. Experimental profiles 

are shown using solid lines while the simulated profiles are represented using dashed lines 
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5.3  Adiabatic Shear Localization 

A drop in the shear strength of sucrose as shown by experiments and simulations is 

indicative of the development of localized deformation in the form of adiabatic shear bands. 

Temperature profiles across the specimen for a low and high-pressure case each are plotted in 

Figure 5.6 and Figure 5.7 respectively. Shots PM1804 and PM1603 are chosen as representative 

shots for low and high-pressure cases. As the specimen is compressed by the normal wave, the 

temperature of the specimen rises uniformly due to elastic and plastic work; the contribution of 

each to temperature rise is discussed further in section 5.4.1. There is a small drop in 

temperature at each specimen interface due to heat conduction to the bounding anvil plates. 

However, the temperature drop at the interfaces is so small that thermal conduction effects are 

practically negligible and the temperature increase in the specimen can be assumed to be the 

result of a purely adiabatic process. After the arrival of the shear wave, adiabatic shear 

localization is observed in both low and high-pressure cases. A shear band of ~3.5 𝜇𝑚 width 

forms for the low-pressure case while the band width for the high-pressure case is ~4.3 𝜇𝑚, as 

shown in Figure 5.6 and Figure 5.7 respectively.  

 

 For the low-pressure case, the shear wave arrives at the left specimen interface at 0.86 𝜇𝑠 

and shear localization begins at 1.16 𝜇𝑠. Shear localization is characterized by a sudden and 

steep increase in temperature and a drop in shear stress, as shown at the middle of the shear 

band in Figure 5.8. Normal and shear stress profiles for the element are also plotted to provide a 

perspective on the timeline of events. It is observed that the temperature increases initially to 

370 K following the arrival of the normal wave. When the normal stress has plateaued, the 
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temperature in the middle of the band remains constant. After the shear wave arrives, there is a 

modest increase in temperature initially followed by a rapid rise after localization begins. 

Temperatures as high as 1136 K are predicted at the end of 2 𝜇𝑠.  

 

 

Figure 5.6 Temperature profile for shot PM1804 (low-pressure shot) plotted in deformed 

coodinates. The span of the specimen is indicated by green arrows. A small portion of D2 anvil 

steel plates on either side is also plotted to demonstrate that negligible heat conduction takes 

place at the specimen interfaces for the time duration considered. Note that the temperature 

values are plotted at integration points of each element. Temperatures are plotted at 8 different 

time instants from 0.25 𝜇𝑠 to 2 𝜇𝑠. Time of impact is 0 𝜇𝑠. Normal wave arrives at the left 

interface of the specimen at 0.45 𝜇𝑠 while the shear wave arrives at 0.86 𝜇𝑠. A uniform increase 

in temperature is observed across the specimen initially. A little while after the arrival of shear 

wave, between 1 and 1.25 𝜇𝑠, temperature begins to localize in a shear band. The band width is 

measured to be roughly 3.5 𝜇𝑚. Temperatures as high as 1136 K are expected within the band 

at 2 𝜇𝑠 

 

Similarly, stress and temperature profiles are plotted in  Figure 5.9 for the high-pressure 

shot, in the middle of the shear band. In this case, normal compression increases the 

Specimen 

Shear Band (3.5 𝜇𝑚) 
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temperature substantially to a value of 594 K from the ambient, as compared to a value of 370 

K for the low-pressure shot. A larger increase is expected with increasing pressure due to 

increase in both thermo-elastic work and thermo-viscoplastic work. It is also observed that the 

time duration between the arrival of shear wave and formation of shear band is only 0.11 𝜇𝑠 

compared to 0.3 𝜇𝑠 for the low-pressure case. Therefore, localization begins earlier in time at 

higher pressures in PSPI experiments. However, as is the case with the low-pressure shot, the 

steep increase in temperature coincides with the drop in shear stress.  

 

 

Figure 5.7 Temperature profile for shot PM1603 (high-pressure shot) plotted in deformed 

coordinates. The span of the specimen is indicated by green arrows. A small portion of WC anvil 

steel plates on either side is also plotted to demonstrate that negligible heat conduction takes 

place at the specimen interfaces for the time duration considered. Note that the temperature 

values are plotted at integration points of each element. Temperatures are plotted at 8 different 

time instants from 0.25 𝜇𝑠 to 2 𝜇𝑠. Time of impact is 0 𝜇𝑠. Normal wave arrives at the left 

interface of the specimen at 0.38 𝜇𝑠 while the shear wave arrives at 0.65 𝜇𝑠. A uniform 

temperature increase is observed across the specimen after the arrival of the normal wave. 

However, right after the arrival of shear wave, there are signs of localized temperature rise 

Specimen 

Shear Band 

(4.3 𝜇𝑚) 
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between 0.75 𝜇𝑠 and 1 𝜇𝑠, close to the left interface of the specimen. A shear band with a width 

of 4.3 𝜇𝑚 eventually forms. Temperatures as high as 1634 K are expected within the shear band 

at 2 𝜇𝑠 

 

Figure 5.8 Normal and shear stress profiles at the middle of the shear band for shot PM1804 

(low-pressure shot). Shear stress is scaled by a factor of 5 for better visualization. The stresses 

are shown on the left y-axis. Temperature profile is also plotted at the same location and its 

values indicated on the right y-axis. All values are plotted at the integration point of the 

element in the middle of the shear band. Temperature is observed to rise steeply at 1.16 𝜇𝑠 

which coincides with a drop in shear stress, indicating the onset of localization (shown using a 

vertical dashed black line) 

 



145 

 

 

Figure 5.9 Normal and shear stress profiles at the middle of the shear band for shot PM1603 

(high-pressure shot). Shear stress is scaled by a factor of 10 for better visualization. The stresses 

are shown on the left y-axis. Temperature profile is also plotted at the same location and its 

values indicated on the right y-axis. All values are plotted at the integration point of the 

element in the middle of the shear band. Temperature is observed to rise steeply at 0.76 𝜇𝑠 

which coincides with a drop in shear stress, indicating the onset of localization (shown using a 

vertical dashed black line) 

 

5.4 Discussion 

The constitutive model of sucrose presented in Chapter-4 is implemented in ABAQUS to 

model the PSPI experiments. Even though sucrose has been used as an energetic simulant for a 

long time, material models of sucrose have not been characterized for their shearing behavior 

under different pressure ranges. In this chapter, a material model of sucrose with a complete 

equation of state and a thermo-viscoplasticity model for strength is shown to adequately capture 

the experimentally observed shearing response. The model can be extended to simulate more 

complex phenomena like pore collapse or shear band formation under complex loading scenarios. 

Simulations show that the fall in the shear strength of sucrose is a result of a thermo-

viscoplastic instability in the form of adiabatic shear bands. It is also shown that normal 
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compression can lead to significant temperature increase, especially at higher pressures. The 

contribution of thermoelastic heating to this temperature increase is significant and can affect 

the shearing response upon arrival of the shear wave, as discussed below. Therefore, for accurate 

determination of temperatures and shearing behavior under PSPI loading, a complete equation 

of state with a temperature-dependent specific heat capacity is required. If the constant specific 

heat capacity at the ambient conditions were used, much larger temperatures would be 

expected. It is shown that melting eventually occurs in the shear bands leading to a drop in the 

shearing resistance. The choice of the melt curve can significantly affect the shearing behavior, 

as discussed below. Accurate modeling of material behavior beyond melt requires consideration 

of solid-liquid phase transition, latent heat of melting and a constitutive relation for the molten 

liquid, especially the shear viscosity of the liquid. Lack of experimental data for molten energetic 

crystals or their simulants makes it difficult to validate the material models for the melt. 

Modeling the liquid phase, especially the pressure and temperature dependent shear viscosity, is 

important in simulations of phenomena such as pore-collapse. However, the attention of this 

study is limited to the solid phase before melt. It is assumed that beyond melt, the solid loses its 

strength completely while maintaining a constant limiting shear strain-rate. Such an assumption 

can be relaxed when better models of the phase transition to the liquid phase and shear 

resistance of the melt phase become available. 

 

5.4.1 Thermoelastic work 

A significant temperature increase is expected from elastic compression of sucrose, as 

predicted by the isentropic temperature increase in Figure 6.1 of Chapter 4. It is important to 

accurately model this temperature for the PSPI experiments as it significantly impacts the 
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subsequent material response upon the arrival of the shear wave. Some plastic work is also 

expected during normal compression which leads to an additional temperature rise. However, 

separating the thermo-elastic and thermo-viscoplastic temperature changes during normal 

loading a priori is not possible due to the non-linear coupling of the two effects. Since explicit 

expressions for heat generation due to thermo-elastic and thermo-viscoplastic effects are known, 

it is possible to separate the two effects in the numerical scheme. Assuming the specific heat to 

be constant for a given time-step, the temperature increase due to thermo-elasticity can be 

calculated by using equation (5.3). Such an assumption is valid for the small time-steps used 

here. An infinitesimal time step ensures infinitesimal changes in temperature and volume and 

hence infinitesimal changes in the specific heat. Therefore, the temperature change due to 

thermoelastic work for a time-step can be found to be: 

 
Δ𝜃 =

Δ𝑞𝑒

𝜌𝑐𝑣(𝜃)
 

(5.3) 

where the thermo-elastic heat increment, Δ𝑞𝑒 = �̇�𝑒Δ𝑡 is calculated in the deformed configuration. 

The simulated predictions are compared with the theoretical predictions for isentropic 

hydrostatic compression of a single 3D element. Perfect agreement is seen between analytical 

and computational results (see Figure 5.10) validates the method for separating temperature 

increase due to elastic and viscoplastic deformations  
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Figure 5.10 Simulated (green open circles) and theoretical (red dashed line) temperature profiles 

of a single 3D element subjected to a ramp volumetric strain. A minimum compression ratio (=

𝑣/𝑣0 = 1 - volumetric strain) of 0.73 is imposed to decrease linearly over a duration of 1 ns 

followed by a linear increase to the original state over a duration of another ns.  

 

 Temperature increase is plotted at the middle of shear band for low and high-pressure 

cases as a function of pressure in Figure 5.11 and Figure 5.12 respectively. Simulated 

thermoelastic temperature profiles agree well with theoretical predictions. For the low-pressure 

shot, the overall increase in temperature due to normal compression is 72 K; thermoelastic work 

contributes 42 K increase while the rest is due to viscoplastic work. For the case of large-

pressure shot, thermoelastic work contributes a temperature increment of 124 K in a total 

increase of 296 K during normal compression. It is clear from these figures that thermo-elastic 

temperature increase is a significant portion of the total temperature change and hence an 

important component that should be included in a thermo-mechanically coupled model for 

energetic materials and their simulants. 
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5.4.2 M elt Curve 

Yield strength of sucrose is a strong function of the specimen temperature and its melt 

temperature, which is accounted for by the (1 − 𝜃𝑚) factor in the Johnson-Cook model for yield 

strength. However, melting point of sucrose is itself a function of pressure (thus making the 

shear strength of sucrose dependent on pressure). Since the thermal factor in the Johnson-Cook 

model is responsible for thermal softening and hence a fall in the shear strength, it is important 

to consider the pressure-dependence of the melting point of sucrose so that its shear behaviour 

can be simulated consistently for different pressures. Accurate representation of melt curve is 

also important for prediction of hot-spot formation. Shearing resistance of the energetic crystal 

drops to zero at melt, shear viscosity of the molten fluid takes over and results in a significantly 

reduced thermal dissipation. Hence, the melt curve dictates the amount of dissipation and hence 

peak hot-spot temperatures during localization. Formation of hot-spots and their transition to 

ignition is highly temperature-sensitive under weak shocks which emphasizes the importance of 

accurate prediction of melting point as a function of pressure. However, measurement of melting 

point for energetic crystals is difficult to measure due to associated dissociation reactions. 

Therefore, experimentally measured melt curves are typically replaced by empirical laws. One 

such law is the Lindeman Law Lindemann (1910), Ross (1969), Poirier (2000) , as discussed in 

Chapter-4: 

 
𝜃𝑚 = 𝜃𝑚0 exp [2Γ0(1 − 𝜈) +

2

3
ln (𝜈)] 

(5.4) 

where subscript ‘0’ indicates ambient temperature and pressure. 𝜃𝑚 is the melt temperature, Γ0 

is the Gruneisen parameter at ambient conditions, 𝜈 =
𝑣

𝑣0
=
𝜌0

𝜌
 is the relative volume and 𝜌 

represents the density of the solid. Sometimes, the Lindeman Law is linearized in volume 
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(Kraut-Kennedy relation) or in pressure Menikoff and Sewell (2002) . However, as discussed in 

Menikoff and Sewell (2002)  and Appendix B, the use of linearized versions for higher pressures 

are not very accurate. However, molecular dynamics simulations on HMX Kroonblawd and 

Austin (2020)  show that the Lindemann Law grossly underestimates the melt temperature 

whereas the following Simon-Glatzel relationship (equation (5.5)) fits the molecular dynamics 

data very well.  

 
𝜃𝑚 = 𝜃𝑚0 (1 +

𝑃 − 𝑃𝑟𝑒𝑓

𝑃0
)
1/𝑑

 
(5.5) 

Here (𝑃𝑟𝑒𝑓, 𝑃0, 𝑑) are fitting parameters. Due to the lack of experimental data on the melt curve 

of sucrose as a function of pressure, parameters for the Simon-Glatzel fit used for HMX by 

Kroonblawd and Austin (2020)  are employed here for sucrose. Figure 5.13 shows a comparison 

between the shear stress profiles based on the Simon-Glatzel melt relation and the Lindemann 

melt curve for low and high-pressure cases. Other material parameters are kept the same for 

both cases. Using the Lindemann Law results in a much smaller shear strength than that 

observed experimentally. This is expected since a lower melt temperature, as predicted by the 

Lindemann Law results in earlier melting and hence an earlier fall in shear strength. 

Additionally, it results in a lower overall temperature due to decreased dissipation after melt, 

affecting the predictions of strength and temperature. On the other hand, the Simon-Glatzel 

melt relation captures the experimental data much better. 
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Figure 5.11 Simulated temperature profiles as a function of pressure, plotted at the middle of 

the shear band for shot PM1804 (low-pressure shot). 𝜃 (solid red line) shows the simulated 

profile using the Simon-Glatzel melting relation. A modest increase in temperature is observed 

as the pressure increases under compressive loading. After the pressure saturates, the 

temperature increases steeply due to shear loading. 𝜃(𝑒) (solid black line) shows thermoelastic 

temperature increase as predicted by simulations and 𝜃(𝜂) (dashed blue line) shows isentropic 

temperature increase predicted by theoretical calculations for the same increase in pressure. 𝜃𝑚 

(dashed green line) shows the melt curve for Lindemann Law and 𝜃𝑚 (dashed orange line) shows 

the melt curve for Simon-Glatzel relation. The Lindemann Law predicts melting at 557 K while 

the Simon-Glatzel curve predicts melting at a much higher temperature of 947 K, at the same 

saturation pressure of 2.95 GPa 

 

A comparison between the two melting relations is also plotted at the middle of shear 

bands for the low and high-pressure cases in Figure 5.11 and Figure 5.12 respectively. It is 

observed that for the same pressure, Lindemann Law predicts a much lower melt temperature 

than the Simon-Glatzel relation. 
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Figure 5.12 Simulated temperature profiles as a function of pressure, plotted at the middle of 

the shear band for shot PM1603 (high-pressure shot). 𝜃 (solid red line) shows the simulated 

profile using the Simon-Glatzel melting relation. A substantial increase in temperature is 

observed as the pressure increases under compressive loading. After the pressure saturates, the 

temperature increases steeply due to shear loading. 𝜃(𝑒) (solid black line) shows thermoelastic 

temperature increase as predicted by simulations and 𝜃(𝜂) (dashed blue line) shows isentropic 

temperature increase predicted by theoretical calculations for the same increase in pressure. 𝜃𝑚 

(dashed green line) shows the melt curve for Lindemann Law and 𝜃𝑚 (dashed orange line) shows 

the melt curve for Simon-Glatzel relation. The Lindemann Law predicts melting at 677 K while 

the Simon-Glatzel curve predicts melting at a much higher temperature of 1325 K, at the same 

saturation pressure of 9.45 GPa 
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Figure 5.13 Shear stress vs time for shot (a) PM1804 (low-pressure shot), and (b) PM1603 

(high-pressure shot). A comparison is drawn between the shear stress profiles obtained using 

Simon-Glatzel melt relation and the Lindemann melt curve, keeping all other material 

parameters for sucrose the same 

 

5.5 Summary 

PSPI experiments on sucrose have been simulated using the constitutive model developed in 

Chapter-4. For an appropriate choice of material parameters (shown in Table 5.1), simulated 

transverse velocity profiles fit the experimentally measured values reasonably well for both low 

and high-pressure shots. Adiabatic shear localization results in a fall in the shear strength of 

sucrose. Simulations predict peak temperatures as high as 1136 K and 1634 K within the shear 

band for nominal pressures of 3 GPa and 9.5 GPa respectively. Such high temperatures go 

beyond the melting point of sucrose at corresponding pressures. It is shown that the choice of 

the melt curve, i.e. melting temperature as a function of pressure, plays a significant role in 

deciding the shearing response of sucrose. The most widely used melting relation for energetic 

crystals -Lindemann law, is shown to largely under-estimate the melting point required for a 

good fit of simulated shear stresses to experimental observations. Therefore, an alternative melt 

curve given by the Simon-Glatzel relation is employed. The contributions of thermoelastic work 

and thermo-viscoplastic work to the total increase in temperature during normal compression 

(a) (b) 
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are separated numerically in the VUMAT sub-routine and validated for a simple case of a single 

3D element. Thermo-elastic work due to normal compression causes significant temperature 

increase and is found to influence the response of sucrose specimen under subsequent shear 

loading. Overall, it can be concluded that it is very important to characterize the shear strength 

behavior, melt curve and shear viscosity of the molten phase to accurately model hot-spot 

temperatures of energetic crystals and their simulants. While shear strength measurements on 

sucrose have been made in the present study, experimental measurements of the melt curve and 

shear viscosity remain a missing link in the validation of its deformation behavior under high-

pressures and high strain-rates. Such measurements are expected to increase confidence in 

simulations of complex phenomena like pore-collapse and the resulting temperature changes. 

 

5.6 Appendix A: VUM AT Algorithm 

Given: (𝑭𝑛+1, 𝑭𝑛
𝑝
, 𝑫𝑛

𝑝
, 𝑻𝑛, 𝜃𝑛+1), find 𝑻𝑛+1. 

1. If 𝑡 = 0 (dummy elastic step), there is no plastic flow, i.e. 
 𝑭𝑛+1

𝑝
= 𝑰 

𝑫𝑛+1
𝑝

= 𝑫𝑛
𝑝
 

(5.6) 

a. Elastic deformation gradient is the overall deformation gradient. 
 𝑭𝑛+1

𝑒 = 𝑭𝑛+1 (5.7) 

b. Polar Decomposition of elastic deformation gradient: 
 𝑼𝑛+1

𝒆 = √(𝑭𝑛+1
𝑒 )𝑇𝑭𝑛+1

𝑒  

𝑹𝑛+1
𝑒 = 𝑭𝑛+1

𝑒 (𝑼𝑛+1
𝑒 )−1 

(5.8) 

c. Find logarithmic strain and elastic compression ratio: 
 𝑬𝑛+1

𝑒 = ln(𝑼𝑛+1
𝑒 ) 

𝐽𝑛+1
𝑒 =

𝑣𝑛+1
𝑣0

= det (𝑭𝒏+𝟏
𝒆 ) 

(5.9) 

d. The logarithmic strain is calculated from the eigenvalues of 𝑼𝒆 using the relation: 
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𝑬𝒆 =∑ln(𝜆𝑖

𝑒) 𝒓𝒊⨂𝒓𝒊

3

𝑖=1

 
(5.10) 

e. Find Mandel stress and Cauchy Stress: 
 𝑴𝑛+1

𝒆 = 2𝐺𝑬𝑛+1
𝒆 + 𝜆 𝑡𝑟(𝑬𝑛+1

𝑒 )𝑰 

𝑻𝑛+1 =
1

𝐽𝑛+1
𝑒  𝑹𝑛+1

𝒆 𝑴𝑛+1
𝒆 (𝑹𝑛+1

𝒆 )𝑻 

(5.11) 

f. Update state variables. Find effective stress from deviatoric Mandel stress. Effective 

plastic strain remains constant in an elastic step and the effective plastic strain-rate is 

zero. 
 

𝜎𝑛+1̅̅ ̅̅ ̅̅ = √
3

2
 |𝑴0,𝑛+1

𝒆 | 

𝜖𝑛+1 
𝑝̅̅ ̅̅ ̅̅ = 𝜖𝑛

𝑝̅̅ ̅ 

𝜖𝑛+1
𝑝̅̅ ̅̅ ̅̅̇ = 0 

(5.12) 

 

2. Else (Plastic Step). 

a. For an explicit step, freeze plastic plow, i.e. assume  
 

𝑫𝑛+1
𝑝

= 𝑫𝑛
𝑝
=
3

2
𝜖𝑛
𝑝̅̅ ̅̇ 𝑴0,𝑛

𝒆

𝜎𝑛
 

(5.13) 

If 𝜎𝑛̅̅ ̅ = 0, 𝑫𝑛+1
𝑝

= 0, else 𝑫𝑛+1
𝑝

=
3

2
𝜖𝑛
𝑝̅̅ ̅̇𝑴0,𝑛

𝒆

�̅�𝑛
 

b. Find the plastic deformation gradient using a Forward Euler scheme for a discretized 

version of �̇�𝒑 = 𝑫𝒑𝑭𝒑 
 𝑭𝑛+1

𝑝
= (𝑰 + 𝑑𝑡 ∗ 𝑫𝑛+1

𝑝
)𝑭𝑛

𝑝
 (5.14) 

c. Since 𝑭 = 𝑭𝒆𝑭𝒑, find the elastic deformation gradient: 
 𝑭𝑛+1

𝑒 = 𝑭𝑛+1(𝑭𝑛+1
𝑝
)
−1

 (5.15) 

d. Polar decompose the elastic deformation gradient: 
 𝑼𝑛+1

𝒆 = √(𝑭𝑛+1
𝑒 )𝑇𝑭𝑛+1

𝑒  

𝑹𝑛+1
𝑒 = 𝑭𝑛+1

𝑒 (𝑼𝑛+1
𝑒 )−1 

(5.16) 

e. Find logarithmic strain and elastic compression ratio: 
 𝑬𝑛+1

𝑒 = ln(𝑼𝑛+1
𝑒 ) 

𝐽𝑛+1
𝑒 =

𝑣𝑛+1
𝑣0

= det (𝐹𝑛+1
𝑒 ) 

(5.17) 
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f. Find pressure using complete equation of state. First, calculate isothermal pressure using 

the 3rd order logarithmic Birch-Murnaghan equation of state: 
 

𝑃𝐵𝑀 = −
𝐾𝜃0
𝐽𝑛+1
𝑒 𝑙𝑛(𝐽𝑛+1

𝑒 ) [1 −
𝐾𝜃0
′ − 2

2
𝑙𝑛(𝐽𝑛+1

𝑒 )] 
(5.18) 

g. Find the integral of specific heat capacity: 
 

∫ 𝑐𝑣(𝜃)𝑑𝜃
𝜃

𝜃0

= 𝑎0(𝜃 − 𝜃0) + 𝑎1(𝜃
2 − 𝜃0

2) 
(5.19) 

h. Find pressure from the complete equation of state: 
 

𝑃𝑛+1 = 𝑃𝐵𝑀 −
𝑑𝜙

𝑑𝑣
∫ 𝑐�̃�(�̃�)𝑑�̃�
�̃�

�̃�0

= 𝑃𝐵𝑀 + 𝜙(𝑣)
Γ0
𝑣0
∫ 𝑐�̃�(�̃�)𝑑�̃�
�̃�

�̃�0

= 𝑃𝐵𝑀 +
𝛤0
𝑣0
∫ 𝑐𝑣(𝜃)𝑑𝜃
𝜃

𝜃0

 
(5.20) 

i. Find Mandel stress and Cauchy Stress: 
 𝑴𝑛+1

𝒆 = 2𝐺𝑬𝟎,𝑛+1
𝒆 − 𝑃𝑛+1𝐽𝑛+1

𝑒 𝑰 

𝑻𝑛+1 =
1

𝐽𝑛+1
𝑒  𝑹𝑛+1

𝒆 𝑴𝑛+1
𝒆 (𝑹𝑛+1

𝒆 )𝑻 

(5.21) 

j. Update state variables. Find effective stress from deviatoric Mandel stress. In an explicit 

analysis, effective plastic is calculated using the effective plastic strain-rate from the 

previous increment. 
 

𝜎𝑛+1̅̅ ̅̅ ̅̅ = √
3

2
 |𝑴0,𝑛+1

𝒆 | 

𝜖𝑛+1 
𝑝̅̅ ̅̅ ̅̅ = 𝜖𝑛

𝑝̅̅ ̅ + 𝜖𝑛
𝑝̅̅ ̅̇Δ𝑡 

(5.22) 

k. To update the effective plastic-strain rate, the value of melting temperature at the 

current pressure is required. This is done through the Simon-Glatzel relation: 
 

𝜃𝑚,𝑛+1 = 𝜃𝑚0 (1 +
𝑃𝑛+1 − 𝑃𝑟𝑒𝑓

𝑃0
)
1/𝑑

 
(5.23) 

l. If 𝜃𝑛+1 > 𝜃𝑚,𝑛+1, the temperature term in the Johnson-Cook Model is zero and the 

material loses all its shear strength, i.e. 𝜃 = 1. Find effective plastic strain-rate using the 

Johnson-Cook Model: 
 

(𝜖𝑛+1
𝑝̅̅ ̅̅ ̅̅̇ )

𝐽𝐶
= 𝜖0̇ exp(

1

𝐶
 (

𝜎𝑛+1̅̅ ̅̅ ̅̅

(𝐴 + 𝐵(𝜖𝑛+1
𝑝̅̅ ̅̅ ̅̅ )

𝑛
) (1 − �̂�𝑛+1

𝑚 )
− 1)) 

(5.24) 

m. Find the effective plastic strain-rate which is limited by a constant value through the 

following relation: 
 1

𝜖𝑛+1
𝑝̅̅ ̅̅ ̅̅̇

=
1

(𝜖𝑛+1
𝑝̅̅ ̅̅ ̅̅̇ )

𝐽𝐶

+
1

𝜖𝑙𝑖𝑚
𝑝̅̅ ̅̅ ̅̇

 
(5.25) 

n. Calculate increment in plastic work converted to heat: 
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(Δ𝑞𝑝)𝑛+1 = 𝛽𝑻:𝑫

𝒑 =
𝛽

𝐽𝑛+1
𝑒 𝑴𝒆: 𝑫𝒑 =

𝛽

𝐽𝑛+1
𝑒 𝜎𝑛+1𝜖𝑛+1

𝑝̅̅ ̅̅ ̅̅̇ Δ𝑡 
(5.26) 

Note that the factor of (
1

𝐽𝑛+1
𝑒 ) is required to convert the heat generated due to plastic 

work, from the structural configuration to the deformed configuration. Since the inelastic 

heat fraction is accounted for through 𝛽 in the VUMAT, it should not be doubly 

imposed through the ABAQUS input file.  

o. As a first step towards calculating thermoelastic work, find the specific heat the current 

time instant. 
 

𝑐𝑣,𝑛+1 =
𝜃𝑛+1
3

𝑐0 + 𝑐1𝜃𝑛+1 + 𝑐2𝜃𝑛+1
2 + 𝑐3𝜃𝑛+1

3  
(5.27) 

p. Find 𝜕𝑴𝒆/𝜕𝜃 assuming no temperature dependence of the shear modulus: 
 

(
𝜕𝑃

𝜕𝜃
)
𝑛+1

= Γ0𝜌0𝑐𝑣,𝑛+1 
(5.28) 

 
(
𝜕𝑴𝒆

𝜕𝜃
)
𝑛+1

= −(
𝜕𝑃

𝜕𝜃
)
𝑛+1

𝐽𝑛+1
𝑒  𝑰 

(5.29) 

q. Find 𝑪�̇�: 
 𝑭𝑛

𝒆 = 𝑭𝑛(𝑭𝑛
𝒑
)
−1
  (5.30) 

 𝑪𝑛 
𝒆 = (𝑭𝑛

𝒆)𝑇𝑭𝑛
𝒆   (5.31) 

 𝑪𝑛+1 
𝒆 = (𝑭𝑛+1

𝒆 )𝑇𝑭𝑛+1
𝒆  (5.32) 

 
𝑪𝑛+1
𝒆 ̇ =

𝑪𝑛+1 
𝒆 − 𝑪𝑛 

𝒆

Δ𝑡
 

(5.33) 

 Where 𝑭𝑛
𝒆 is available as defgradOld, 𝑭𝑛+1

𝒆  as defgradNew and 𝑭𝑛
𝒑 through state 

variables, stateOld.  

r. Find thermoelastic work increment: 
 

(Δ𝑞𝑒)𝑛+1 =
1

𝐽𝑛+1
𝑒

𝜃𝑛+1
2
(
𝜕𝑴𝒆

𝜕𝜃
)
𝑛+1

∶ (𝑪𝑛+1
𝒆 )−𝑻�̇�𝑛

𝒆Δ𝑡 
(5.34) 

 Add (Δ𝑞𝑒)𝑛+1 to the plastic work increment. 

s. Calculate thermoelastic temperature change: 
 

𝜃𝑛+1
𝑒 = 𝜃𝑛

𝑒 +
(Δ𝑞𝑒)𝑛+1
𝜌𝑐𝑣

= 𝜃𝑛
𝑒 +

𝐽𝑛+1
𝑒 (Δ𝑞𝑒)𝑛+1

𝜌0𝑐𝑣
 

(5.35) 
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3. Update the specific internal energy and dissipated inelastic specific energy 

 

 

5.7 Appendix B: Material Constants for Sucrose  

5.7.1 Elastic Constants 

5.7.1.1 Bulk M odulus 

Bridgman made measurements of compression ratios of sucrose under pressures up to 3 

GPa (see Table V in Bridgman (1949) ). The bulk modulus and elastic modulus (assuming 

Poisson’s ratio, 𝜈 = 0.25) are shown in the table below: 

 

Table 5.2 Elastic moduli of sucrose measured at different pressures. Bulk moduli and volumetric 

changes are calculated based on Table V in Bridgman (1949) .  

Pressure 

(kg/cm2) 

Pressure 

(GPa) 

Δ𝑉

𝑉0
 

Bulk Modulus 

(GPa) 

Young’s Modulus 

(GPa) 
Shear Modulus  

5,000 0.5 0.03151 15.868 23.802 9.521 

10,000 1 0.05518 18.122 27.184 10.873 

15,000 1.5 0.07434 20.178 30.266 12.107 

20,000 2 0.09074 22.041 33.061 13.225 

25,000 2.5 0.10552 23.692 35.538 14.215 

30,000 3 0.11866 25.282 37.923 15.169 

 

 

Figure 5.14 Linear fit to experimental data for isothermal bulk modulus of sucrose 
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Figure 5.14 indicates the pressure dependence of bulk modulus for sucrose. 𝐾𝜃0 = 14.3 𝐺𝑃𝑎 and 

𝐾𝜃0
′ = 3.75 are obtained using a linear fit to the experimental data. 𝐾𝜃0 is the isothermal bulk 

modulus at ambient temperature and pressure while 𝐾𝜃0
′  is the first derivative of bulk modulus 

with respect to pressure at ambient temperature and pressure. These values are very close to the 

data obtained from Bridgman (1933) . 

 

5.7.1.2  Poisson’s Ratio and Young’s M odulus 

Trott et al. (2007)  use a Poisson’s ratio of 0.25 for sucrose. Using 𝐾𝜃0 = 14.3 𝐺𝑃𝑎 and 𝜈 = 0.25, 

𝐸 = 21.45 𝐺𝑃𝑎 is obtained. 

 

5.7.2 Thermal Constants 

5.7.2.1 Coefficient of Thermal Expansion 

A mean volumetric coefficient of thermal expansion of 140.1 × 10−6 ℃−1 is reported by 

Bridgman (1933)  over a temperature range of 30 0𝐶 to 75 0𝐶.  

 

5.7.2.2  Specific Heat 

Specific heat capacity at constant pressure, 𝑐𝑝 is reported by Anderson Jr et al. (1950)  over a 

temperature range of 25 0𝐶 to 90 0𝐶. The experimental data is given in Table 5.3. In order to 

derive specific heat capacity at constant volume, 𝑐𝑣 the following thermodynamic relation can be 

used: 

 𝑐𝑝 − 𝑐𝑣 = 𝑣𝜃𝛼
2𝐾𝜃 (5.36) 
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where 𝑣 = 𝑉/𝑚 is specific volume, 𝛼 is the coefficient of thermal expansion and 𝐾𝜃 is the 

isothermal Bulk Modulus. It can be noted that the difference in 𝑐𝑝 and 𝑐𝑣 values is extremely 

small. 

  

Table 5.3 Specific heat capacities of sucrose. 𝑐𝑝 values are direct experimental measurements 

while 𝑐𝑣 values are derived from thermodynamic constraints 

Temp 

(K) 
𝑐𝑝 (

𝐽

𝑘𝑔 𝐾
) 

(Experimentally Measured) 
𝒄𝒗 (= 𝑐𝑝 − 𝑣𝜃𝛼

2𝐾𝜃)  

275.6 1137.98 1087.331 

281.9 1167.32 1115.513 

289.7 1200.32 1147.079 

296.2 1255.32 1200.885 

296.8 1234.54 1179.995 

296.9 1238.21 1183.646 

299.4 1250.43 1195.407 

301.2 1250.43 1195.076 

302.8 1263.88 1208.232 

313 1313.99 1256.467 

320.3 1351.89 1293.026 

342.4 1476.56 1413.634 

362.7 1581.68 1515.024 

 

 Fitting to Debye Relation 

Using a complete equation of state requires temperature dependent specific heat 

capacity. However, experimentally measured values are not available for the entire temperature 

range of interest. So, specific heat capacity is fit to the well-known Debye model of specific heat 

capacity. 

 
𝑐𝑣 =

9𝑁𝑘

𝑀
(
𝜃

𝜃𝐷
)
3

∫
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

𝜃𝐷/𝜃

0

= 3𝐴 (
𝜃

𝜃𝐷
)
3

∫
𝑥4𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

𝜃𝐷/𝜃

0

 
(5.37) 
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where 𝑁 is the number of atoms, 𝑘 is the Boltzmann constant, 𝑀 is the molecular mass, 𝜃𝐷 is 

Debye temperature and 𝐴 =
3𝑁𝑘

𝑀
. At 𝜃 → 0, 𝑐𝑣 → 0 and 𝜃 → ∞, 𝑐𝑣 → 𝑓𝑅0/𝑀 where the latter 

asymptotic limit is referred to as the Dulong-Petit limit. 𝑅0 = 8.314
𝐽

𝐾 𝑚𝑜𝑙
 is the universal gas 

constant and 𝑀 is the molecular mass in 𝑘𝑔/𝑚𝑜𝑙. 𝑓 represents the degrees of freedom 

contributing to specific heat. For a monoatomic molecule, 𝑓 = 3. However, for complex 

polyatomic molecules like HMX and sucrose, the number of degrees of freedom is very large. For 

any non-linear molecule, the total degrees of freedom is 3𝑁 (3 translational, 3 rotational and 3N-

6 vibrational) where 𝑁 is the number of atoms in the molecule. Hence, the Dulong-Petit limit of 

specific heat should be 𝜃 → ∞, 𝑐𝑣 → 3𝑁𝑅0/𝑀. However, as is noted in Menikoff and Sewell 

(2002) , some of the vibrational degrees of freedom corresponding to C-H bond stretching in 

HMX do not contribute to the specific heat capacity (as the vibrational frequencies of C-H 

bonds are very high and these modes are not very highly populated). Therefore, for HMX, the 

Dulong-Petit limit is expected to be 𝜃 → ∞, 𝑐𝑣 → (3 × 28 − 8)𝑅0/𝑀, where number of atoms in 

HMX is 28 and number of C-H bonds is 8. However, no such information is available about the 

vibrational frequencies C-H bonds in sucrose. So, to begin with, a conservative limit for specific 

heat of sucrose is assumed, i.e. as 𝜃 → ∞, 𝑐𝑣 →
135𝑅0

𝑀
= 3279

𝐽

𝑘𝑔 𝐾
 (𝑀 = 342.3 𝑔/𝑚𝑜𝑙).  

Aside: Dulong-Petit limit for monoatomic solids specifies 

 lim
𝜃→∞

𝑐𝑣,𝑚𝑜𝑙𝑎𝑟 = 3𝑅0 (5.38) 

where 𝑅0 is the universal gas constant and the molar specific heat capacity, 𝑐𝑣,𝑚𝑜𝑙𝑎𝑟 is given 

below: 

 
𝑐𝑣,𝑚𝑜𝑙𝑎𝑟 =

𝐶𝑣
𝑛

 
(5.39) 
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where 𝐶𝑣 is the heat capacity and 𝑛 = 𝑚/𝑀 is the number of moles, 𝑚 is mass and 𝑀 is 

molecular mass. However, the commonly used form of specific heat is defined below: 

 
𝑐𝑣 =

𝐶𝑣
𝑚
=
𝐶𝑣
𝑛

1

𝑀
=
𝑐𝑣,𝑚𝑜𝑙𝑎𝑟
𝑀

 
(5.40) 

Hence, the Dulong-Petit limit can be re-written as: 

 
lim
𝜃→∞

𝑐𝑣 =
3𝑅0
𝑀

 
(5.41) 

 

 

Figure 5.15 Debye model fit to experimental data for specific heat capacity at constant volume 

for sucrose 

 

In the form for Debye model above, 𝑐𝑣 → 𝐴 𝑎𝑠 𝜃 → ∞, hence A is the Dulong-Petit limit. 

There are two unknown constants for a fit to experimental data in the Debye form of specific 

heat, i.e. 𝐴 and 𝜃𝐷. The Debye expression is fit to the experimental specific heat data for sucrose 

assuming 𝐴 = 3279
𝐽

𝑘𝑔 𝐾
 as shown below in Figure 5.15. It can be noted that since the 

experimental data for sucrose is available only for a small range of temperatures, it would help 
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to know a more accurate Dulong-Petit Limit (A) for a better prediction at higher temperatures 

(θ >400K). 

 

Fitting to an Empirical form: 𝒄�̃�(�̃�) =
�̃�𝟑

𝒄𝟎+𝒄𝟏�̃�+𝒄𝟐�̃�
𝟐+𝒄𝟑�̃�

𝟑 

In order to provide a simpler expression to calculate the specific heat and enable the 

integration of the Debye form, the specific heat is fit to an empirical form shown below, as done 

for HMX by Sewell and Menikoff (2004) : 

 
𝑐�̃�(�̃�) =

�̃�3

𝑐0 + 𝑐1�̃� + 𝑐2�̃�
2 + 𝑐3�̃�

3
 

(5.42) 

where (𝑐0, 𝑐1, 𝑐2, 𝑐3) are constants. Such a form is chosen as it obeys the asymptotic limits at the 

two temperature extremes, i.e. 𝑐�̃�(𝜃) → 𝜃3 𝑎𝑠 𝜃 → 0 and 𝑐�̃�(𝜃) →
3𝑅0

𝑀
=

1

𝑐3
𝑎𝑠 𝜃 → ∞ (Dulong-Petit 

Limit). A fit to the Debye relation for specific heat capacity using the empirical form is shown in 

Figure 5.15. It can be seen from the plot that the empirical relation fits the Debye Model very 

well. The following set of parameters are used for this fit: 

 

𝑐0 = 7.095 × 10
3
𝑘𝑔𝐾4

𝐽
 

𝑐1 = 2.230 × 10
1
𝑘𝑔𝐾3

𝐽
 

𝑐2 = 4.180 × 10
−3
𝑘𝑔𝐾2

𝐽
 

𝑐3 = 3.050 × 10
−4
𝑘𝑔𝐾

𝐽
 

(5.43) 

An explicit expression for the integral of specific heat capacity with temperature is still hard to 

evaluate using the empirical relation for specific heat. Therefore, the integral is calculated 
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numerically and a quadratic polynomial is fit, as shown in Figure 15. A simple quadratic 

polynomial is able to fit the data very well. 

 

 

Figure 5.16 ∫ 𝐶𝑣(𝜃)𝑑𝜃
𝜃

0
 is evaluated numerically (thick black curve) and fit to a quadratic 

function (thin red curve) 

Therefore, the approximation is given as: ∫ 𝐶𝑣(𝜃)𝑑𝜃
𝜃

0
≈ 𝑓(𝜃) = (−133.647 × 𝜃 + 2.082 × 𝜃2)

𝐽

𝑘𝑔
 . 

So, the complete Mie-Gruneisen EOS (equation (5.44)) can now be written as: 

 
𝑃(𝑣, 𝜃) = 𝑃(𝑉, 𝜃0) −

𝑑𝜙(𝑣)

𝑑𝑣
𝑓 (

𝜃

𝜙(𝑣)
) 

(5.44) 

 

5.7.2.3  Thermal Conductivity 

A thermal conductivity value of 0.486 W/m K is reported in Trott et al. (2007) .  

 

5.7.2.4  M elting Point/M elt Curve 

The melting point temperature of large organic molecules like HMX and sucrose is highly 

dependent on pressure. Melting is typically described by the Lindemann Law: 
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 𝜃𝑚 = 𝜃𝑚0 exp [2Γ0(1 − 𝜈) +
2

3
ln (𝜈)] (5.45) 

where subscript ‘0’ indicates ambient temperature and pressure. 𝜃𝑚0 is the melt temperature, Γ0 

is the Gruneisen parameter, 𝜈 =
𝑣

𝑣0
=
𝜌0

𝜌
 is the relative volume and 𝜌 represents the density of 

the solid. Lindemann Law can be linearized as follows: 

 

𝜃𝑚 = 𝜃𝑚0 exp [2Γ0(1 − 𝜈) +
2

3
ln(𝜈)] 

= 𝜃𝑚0 exp [2Γ0
Δ𝑣𝑐
𝑣0
 +
2

3
ln (1 −

𝛥𝑣𝑐
𝑣0
)] 

≈ 𝜃𝑚0 exp [2𝛤0
𝛥𝑣𝑐
𝑣0

−
2

3

𝛥𝑣𝑐
𝑣0
] 

= 𝜃𝑚0 + 2(Γ0 −
1

3
)
𝛥𝑣𝑐
𝑣0

 

= 𝜃𝑚0 + 𝑎
𝛥𝑣𝑐
𝑣0

 

(5.46) 

𝛥𝑣𝑐 represents compressive change in volume and 𝑎 = 2(Γ0 −
1

3
). This linearized relation is 

called the Kraut-Kennedy relation. Figure 5.17 shows a comparison between the Lindemann 

Law and Kraut-Kennedy relation and the agreement is very close for compressive strain ratios 

up to 0.2. 
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Figure 5.17 Comparison between Lindemann Law for sucrose and the linearized version (Kraut-

Kennedy relation)  

 

5.7.3  Yield Strength 

Nanoindentation measurements of sucrose by Ramos and Bahr (2007)  estimate a hardness of 

1.5 GPa suggesting a bulk yield strength of 500 MPa, which motivates the use of 𝐴 = 500 𝑀𝑃𝑎 

in the Johnson-Cook model. 

 

5.7.4 Gruneisen parameter 

The following functional form of Gruneisen parameter is assumed as noted by Grady (2017) : 

 
Γ(𝑣) =

Γ0
𝑣0
𝑣 

(5.47) 

The value of Γ0 is derived from the following thermodynamic relation to be consistent with 

values for other thermodynamic quantities: 

 Γ(𝑣)

𝑣
=
𝛼𝑣𝐾𝑇
𝑐𝑣

 
(5.48) 
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Using the above relations in equations (5.47) and (5.48), Γ0 = 1.09 is obtained which is very 

close to that for HMX (Γ0𝐻𝑀𝑋 = 1.1). The integrating factor, 𝜙(𝑣) in equation (4.107) can now 

be calculated explicitly: 

 𝜙(𝑣) = exp(−∫
Γ(𝑣′)

𝑣′
𝑑𝑣′

𝑣

𝑣0

) = exp(−∫
Γ0

𝑣0
𝑑𝑣′

𝑣

𝑣0

) = exp(𝛤0 (1 −
𝑣

𝑣0
)) (5.49) 

 

5.8 Appendix E: Parametric Study of Johnson-Cook M odel 

A parametric study is carried out for two important Johnson-Cook parameters: (a) thermal 

softening coefficient, 𝑚 (Figure 5.18), and (b) strain-rate hardening coefficient, 𝐶 (Figure 5.19). 

These parameters influence the shear stress profile the most and the magnitude of their effects is 

not intuitively clear. In general, it can be concluded from the Johnson-Cook expression for yield 

strength that increasing 𝑚 and increasing 𝐶 would lead to an increase in the yield strength.  

 

Note that these parametric studies are done in the vicinity of a local minima for least 

squared errors, obtained for the parameters mentioned in Table 5.1. Only one parameter is 

varied at a time. Such a parametric study is helpful in establishing the trends quantitatively and 

putting bounds to the range of values to be considered for each parameter. Increasing the value 

of 𝑚 increases the peak yield strength and delays the fall in transverse velocity, especially at low 

pressures. For the high-pressure shot, however, the fall in transverse velocity for 𝑚 > 0.65 is 

quickened. This is expected because the melting event occurs at the peak of transverse velocity 

for the high-pressure shot while melting for the low-pressure shot occurs farther away from the 

peak, at some point along the falling region of the velocity profile. It can be said with confidence 

that an 𝑚 value in the 0.5-0.65 range is of interest at low and high-pressures. The strain-rate 
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hardening coefficient, 𝐶 has a much more dramatic effect for lower pressures. No drop in 

transverse velocity is observed for 𝐶 = 0.05 for the low-pressure case. However, for the high-

pressure case, the drop is still observed for 𝐶 = 0.05 although the melting event is slightly 

delayed. It can be concluded that 𝐶 = 0.01 is a good choice. 
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Figure 5.18 Effect of thermal softening exponent, m. (a): Low-pressure shot PM1804, (b) High-

pressure shot PM1603.  

(a) PM1804 

(b) PM1603 
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Figure 5.19 Effect of strain-rate hardening pre-factor, C (a): Low-pressure shot PM1804, (b) 

High-pressure shot PM1603. 

 

  

(b) PM1603 

(a) PM1804 
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Chapter 6  

 

Polymer-Bonded Sucrose: Experiments and 

Simulations  
 

6.1 Introduction 

A polymer-bonded explosive (PBX) is a composite of an explosive crystal (such as HMX, 

RDX, PETN, etc.) and a soft elastomeric binder (such as HTPB, Estane, etc.). PBXs are used 

in a wide range of civil and military applications such as mining, construction, as solid fuel in 

rocket propellants and as explosives. Usually, the PBX consists largely of explosive crystals with 

a very small fraction of binder (2-10% by weight). The elastic modulus of the binder is usually 

about four orders of magnitude smaller than that of the explosive crystal. Consequently, the 

binder absorbs most of the mechanical energy imparted to the composite Wiegand and 

Reddingius (2005), Ravindran et al. (2016), (2017) . Since the binder takes up much of the 

deformation in a PBX, including a soft elastomeric binder allows for low impact sensitivity, 

thereby making PBXs safer to manufacture, handle and transport, while maintaining the 

effectiveness of the explosives.   

 

One of the key problems confronted in the study of PBXs is the difficulty in predicting their 

initiation. Since the formation of hot-spots and hence the eventual initiation of PBXs is strongly 

related to the failure modes of PBXs, deformation and failure mechanisms of PBXs have been 

studied intensively for the past few decades. Due to the highly heterogenous nature of the 
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composite, combined with complex material behavior of the energetic crystals and the 

elastomeric binder, predicting the mechanical and chemical properties of PBXs has remained a 

major challenge. The factors affecting the deformation and failure of PBXs can be broadly 

categorized as external and internal. Internal factors include microstructure of the PBX, 

mechanical and chemical properties of the ingredients (explosive crystal and binder) and defects 

inside the crystal (such as voids, inclusions, impurities, dislocations and grain boundaries) or the 

binder. The microstructure of a PBX is further defined by characteristics such as loading density 

(i.e. the weight fraction of the crystals relative to the binder), crystal size, crystal morphology 

and distribution of crystals inside the binder matrix. The external factors comprise of the 

loading conditions used to deform the PBX. Loading conditions are typically described by 

strain-rate, pressure and temperature. 

 

To begin with the effect of internal factors, it should be noted that the strength of the 

composite has been  shown to vary inversely with the square root of the particle size Balzer et 

al. (2004) , i.e. larger crystal size leads to a weaker PBX. Similarly, a larger crystal size is 

associated with larger impact sensitivity. It is demonstrated by Armstrong et al. (1990)  that 

the drop-height for 50% probability of initiation of RDX crystals varies linearly with the inverse 

of the square root of particle size. Effect of crystal morphology, in particular the smoothness of 

grains, on shock sensitivity of PBXs of RDX and HMX has been studied by van der Heijden et 

al. (2004) . Numerical simulations by Barua and Zhou (2011)  have shown that a bimodal 

microstructure with spherical crystals has a larger loading capacity than microstructure with 

unimodal spherical or diamond-shaped crystals. For a given explosive crystal, the choice of a 

binder can have a significant impact on the overall mechanical behavior of the PBX. Swallowe 
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and Field (1982)  first demonstrated the effect of different binders on sensitization of PETN 

crystals using drop-weight impact testing. They concluded that softer polymers with a lower 

glass transition temperature were less likely to sensitize the explosive crystals while polymers 

with high strength and low specific heat capacity were more likely to fail catastrophically and 

ignite the PETN crystals.  

 

Effects of external factors such as strain-rate and temperature have been studied by several 

researchers. They have observed that in quasi-static and high strain-rate testing, the 

compressive stress drops after reaching a peak. Following the peak, the PBX exhibits strain 

softening. The mode of failure changes with strain-rate and temperature. It has been shown 

through quasi-static and split-Hopkinson bar testing that the compressive strength of PBXs 

increases with increasing strain-rates and decreasing temperatures Funk et al. (1996), Gray III 

et al. (1998), Drodge et al. (2007), Siviour et al. (2008) . In quasi-static and Kolsky-bar type 

tests, the dependence of the response of PBX to strain-rate and temperature comes primarily 

from the binder. Wiegand and Reddingius (2005)  explored the effect of confinement on elastic 

and plastic behavior of a polymer-bonded simulant, under quasi-static strain rates. They showed 

an increase in elastic modulus and flow stress with increasing pressure. The primary mode of 

failure was found to switch from fracture and debonding, as is the case with uniaxial stress 

loading, to plastic flow dominated failure. 

 

Failure of a PBX can take place in several ways, such as by fracture and by localization. 

Fracture can occur inside the bulk of either the crystal or binder phase, or at the interface of the 

binder and crystal. The latter failure is typically called delamination. At temperature above the 
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glass transition temperature of the binder, delamination between the binder and explosive 

crystals has been shown to be the primary failure mechanism in quasi-static and moderate 

strain-rate experiments with no confinement Siviour et al. (2008), Ravindran et al. (2016), 

(2017) . Fractured surfaces can rub against each other dissipating heat and resulting in localized 

temperature rise. If the temperature increase is sufficient, it may result in the formation of hot-

spots or even localized melting. Formation of localized regions of high shear strains through 

adiabatic shear banding in the binder or crystal phase can cause thermal softening and eventual 

failure of the PBX. Shear bands are usually associated with a large increase in temperature in 

narrow regions which can result in hot-spots. Therefore, it is important to incorporate such 

effects in numerical modeling and simulations of PBXs. Another mechanism that is important to 

incorporate into numerical models from the perspective of hot-spot formation is collapse of 

voids.  

 

Overall, an ideal numerical model of a PBX should be able to model: bulk fracture of the 

binder and energetic crystals, debonding, shear banding in either phase and pore collapse, while 

taking into account thermal dissipation associated with any deformation. Thermal dissipation 

can result from bulk inelasticity in the binder or crystal phase or due to friction between two 

sliding interfaces. Adequate thermo-mechanical models of the binder and energetic/simulant 

crystals need to be implemented in a finite-deformation setting. In case of shocks, it is important 

to account for finite elastic deformation and shock wave heating. Usually, fracture and 

delamination are implemented through cohesive zone modeling using suitable traction-separation 

laws. At the same time, it is important to model contact between grains in the undeformed 

microstructure and between the newly formed surfaces after fracture. Barua and Zhou 
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(2011)  present a coupled thermal-mechanical Lagrangian framework incorporating fracture and 

contact modeling to simulate deformation and failure of a given microstructure of a PBX.  

 

 While much has been done on studying the compressive response of PBXs, especially 

under uniaxial stress conditions, mechanical response under high-pressures and high shear-strain 

rates has not been examined so far. Herein, PSPI experiments have been described with the aim 

of informing constitutive models for PBXs under multi-axial loading. Experiments have been 

conducted for a given microstructure of a HTPB and sucrose composite subjected to large 

pressures and large shear strains. ABAQUS simulations for different one-dimensional canonical 

structures of PBS are described based on the constitutive models of HTPB and sucrose 

developed in the previous chapters. A critical review of the adequacy of such modeling is 

presented. 

 

6.2 Specimen Preparation 

In this section, the preparation of two different samples is described: (a) a composite of 

sucrose grains and HTPB, and (b) sucrose grains only. 

 

6.2.1 Preparation of composite specimen 

Our aim is to prepare a 90:10 (by weight) composite sample of pure sucrose grains and 

HTPB on a WC/steel substrate. Desired thickness range of the specimen is 100-200 𝜇𝑚. Pure 

sucrose grains (~2 mm) are ball-milled to a smaller size. The milled crystals are sieved to obtain 

the required size range. An additional step of cleaning the sucrose grains using methanol can be 
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added here to remove small crystallites from the faces of milled crystals. First, HTPB binder is 

prepared as described in Chapter 2. After different components of HTPB binder are mixed 

together, the mixture is degassed for ~10 minutes. Approximately 80 grams of HTPB mixture is 

prepared, 30 grams of which is mixed with 270 grams of sucrose grains. Since the fraction of 

HTPB in the composite is very small, a large quantity of composite mixture needs to be made 

for ease of mixing. Initial mixing is done with a scoopula, followed by mixing with hands, until a 

uniform consistency is obtained. Remaining 50 grams of HTPB are poured into a rectangular 

container, to be used later for measuring Shore A hardness of the cured polymer. The composite 

along with the remnant HTPB are kept in the oven at 60 0C for 2 hours for partial curing. This 

curing is followed by pressing the composite inside a steel split mold (see Figure 6.1). The split 

mold is used to allow for easy removal of sample and substrate after pressing. The aluminum 

plate in the split mold is replaced by a thin sheet of Teflon for preparation of the composite 

sample. It is important to spread the partially cured composite evenly inside the mold before 

pressing it. The composite mixture is pressed down to a final pressure of 50 MPa using an 

Instron machine. The load is ramped up gradually to 50 MPa at a rate of 5 MPa/min, held for a 

minute before decreasing it to zero at a rate of 25 MPa/min. The slow ramp up rate allows 

enough time for the sucrose crystals and polymer to move around and distribute uniformly on 

the substrate. Partial cure of the binder gives the composite a semi-solid consistency which is 

adequate to press without squeezing the binder out of the composite. After pressing, the 

composite mixture is cured for another 12-16 hours in the oven until a Shore A hardness of 3-5 

is obtained for the remnant HTPB polymer. This procedure results in a composite layer of ~2-3 

mm on the substrate. The sample is polished down to the required thickness using a lapping 

fixture as shown in Figure 6.2. The polishing sequence involves starting with a dry 120-grit 
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sandpaper, followed by a 320-grit size for the last few tens of microns and finally by a 600-grit 

size for a smooth surface. Polishing off the last few hundred microns is tricky as the layer starts 

to erode at the edges. So, a layer of epoxy is put on the periphery of the sample before starting 

the polishing step. The epoxy ensures that the edges of the specimen layer do not fracture and 

also helps in achieving a uniform sample thickness.  

 

6.2.2 Preparation of granular sucrose specimen 

One PSPI shot is also done on granular sucrose for comparison. For a granular sucrose 

sample, the aim is to make a 100-200 𝜇𝑚 thick layer of sucrose grains pressed together with 

minimum porosity. Two methods were chiefly employed in this pursuit: (a) pressing in a mold, 

and (b) Sucrose-Methanol Slurry (SMS) method. For the first method of pressing in the split-

mold as shown in Figure 6.1. Sucrose grains are pressed at pressures up to 5 MPa. An aluminum 

disc polished down to 3 𝜇𝑚 is introduced between the piston and sucrose layer to avoid sticking 

of sucrose to the piston. However, this method is not found to be effective for several reasons: 

(1) results in crushing of grains, (2) poor repeatability, as pockets of sucrose get stuck to the 

polished aluminum disc, and (3) a uniformly thick sample is hard to achieve. The uniformity of 

sucrose layer is found to depend on the initial spread of sucrose grains in the mold prior to 

pressing. While this method works well for making thicker layers of sucrose of the order of few 

mm, it is not suitable for making flat layers with a 100-200 𝜇𝑚 thickness as required for PSPI 

experiments. Therefore, a new method is invented for making an extremely thin and flat layer of 

sucrose grains.  
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Figure 6.1 Split- Mold fixture to prepare granular sucrose sample. Top: section view. Bottom: 

top view 

 

The new method is named ‘Sucrose-Methanol Slurry’ method as it involves making a 

slurry of sucrose grains in methanol. Just enough methanol is added to make a semi-solid slurry. 

The slurry is spread on the substrate and let dry for a few minutes (It is important to use a 

minimal amount of methanol and apply the slurry to the substrate as soon as the slurry is 

made). This methodology is needed to ensure that the methanol dissolves a minimal amount of 

sucrose. The sample is then loaded on a lapping fixture, shown in Figure 6.2. Excess thickness is 

polished off using the same polishing sequence as used in the preparation of the composite 

sample. A layer of epoxy is used on the periphery of the sample after the slurry dries. The epoxy 
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ensures that the edges remain intact in order to achieve extremely small thicknesses, down to 

100 𝜇𝑚. This method has several advantages: (a) sucrose layer adheres to the substrate much 

more strongly than for the split-mold method, allowing the sample to be polished down to a 

thickness as small as a hundred microns (not possible with split-mold pressing); (b) sucrose 

grains adhere to each other very strongly; (c) porosity is visibly lower; (d) minimal 

fracture/damage is induced prior to the actual experiment; (e) use of lapping fixture enables 

thickness control down to a 𝜇𝑚 and ensures uniformity of thickness; (f) samples as thin as 100 

𝜇𝑚 can be made with ease; and (g) this method has a much higher repeatability than attained 

for the split-mold method. 

 

 

Figure 6.2 Lapping fixture used to make the granular sucrose specimen for PSPI using the 

Sucrose-Methanol Slurry (SMS) method. The specimen is placed flat on the polishing paper and 

polished for a short time to get a flat sample. The fixture along with the sample is then placed 
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on a flat surface and reading dial brought flush with the outer cylinder. The dial is rotated to 

set the thickness of the sample to be removed and locked in place using the lock nut. The 

polishing sequence described in the text is followed. At the end of the polishing sequence, the 

sample is cleaned gently of the excess sucrose and HTPB dust using an acetone dipped wipe. 

Note that the plate above the substrate is ensured to be flat and bonded temporarily to the 

substrate using Kapton tape on the periphery. The hard tungsten carbide discs (dark grey) at 

the bottom of the fixture ensure flatness of the sample. Since the sample thicknesses prepared 

are extremely small, an epoxy layer on the periphery of the sample prevents erosion of the 

specimen at the boundaries and ensures flatness 

 

6.3  Experimental Results 

A total of 4 PSPI shots have been conducted on the sucrose/HTPB composite. A summary 

of shots is provided in Table 6.1. D2 steel is used as the anvil material for low normal stress 

(nominally 3 GPa) shots while WC is used for high normal stress (nominally 9.5 GPa) shots. 

Shear strain rates of the order of 105 s-1 are obtained. One shot (PM1902) is done on a granular 

sucrose sample at a normal stress of 2.90 GPa and a shear strain rate of 105 s-1. 

 

Table 6.1 Summary of PSPI shots on sucrose/HTPB composite and granular sucrose. Shot 

PM1902 is done on granular sucrose. Other shots are on the composite 

Shot 

No. 

Target 

M aterial 
𝒉𝑺  
(𝝁𝒎) 

𝒉𝑭  
(𝒎𝒎) 

𝒉𝑭𝑻  
(𝒎𝒎) 

𝒉𝑹𝑻  
(𝒎𝒎) 

𝜽 
𝑽𝟎 

(𝒎/𝒔) 

Tilt 

(mrad) 
𝝈𝒎𝒂𝒙 
(𝑮𝑷𝒂) 

𝝉𝒎𝒂𝒙 
(𝑮𝑷𝒂) 

�̇� (𝒔−𝟏) 

PM1901 D2 Steel 184 7.056 3.046 6.589 18
0
 133.46 1.74 2.93 167 1.78x10

5
 

PM2001 D2 Steel 203 7.056 2.967 6.989 18
0
 131.51 0.94 2.95 184.27 1.53x10

5
 

PM2002 Pure WC 114 6.554 3.020 6.252 18
0
 197.83 1.26 9.73 451 4.51x10

5
 

PM2003 Pure WC 195 6.559 2.900 6.442 18
0
 193.13 1.37 NA 454 2.53x10

5
 

            

PM1902 D2 Steel 129 7.062 2.977 6.525 18
0
 132.37 0.89 2.90 346 2.11x10

5
 

ℎ𝑆: sample thickness ℎ𝐹: flyer thickness, ℎ𝐹𝑇: front target plate thickness, ℎ𝑅𝑇: rear target plate thickness, 𝜃: angle of impact, 𝑉0: 

impact velocity, 𝜎𝑚𝑎𝑥: peak normal stress, 𝜏𝑚𝑎𝑥: peak shear stress, �̇�: average shear strain-rate 

 

 Normal and transverse velocity-time profiles for shots on the composite are shown in 

Figure 6.3 and Figure 6.4 respectively. Note that normal velocity for shot PM2003 is not plotted 
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since NDI trace could not be obtained for this shot. Normal velocity profiles of the low-pressure 

shot PM2001 and high-pressure shot PM2002 show steps before rising up to the plateau. 

However, another low pressure-shot, PM1901 does not show any such steps. The rise-times for 

shots under similar conditions (PM1901 and PM2001) are also very different (~575 𝑛𝑠 for 

PM1901 and ~875 𝑛𝑠 for PM2001). A rise-time of ~515 𝑛𝑠 is observed for the high-pressure 

shot, PM2002. Such variations are expected in a heterogeneous sample with extremely different 

properties.  

 

 

Figure 6.3 Normal velocity profiles of PSPI shots on the polymer-bonded sucrose composite. 

Arrival of unloading wave is marked with dots. Normal velocity profile for shot PM2003 is not 

available due to loss of the NDI trace for the shot 
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 Transverse velocity profiles for both low and high-pressure shots show similar qualitative 

behavior, i.e. the velocity rises to a peak value before dropping down to a smaller non-zero 

value. However, the transverse velocity profiles for the composite are not as clean as observed 

for the cases of HTPB and sucrose. This is primarily due to the extremely heterogeneous nature 

of the sample. The portion of transverse velocities after the fall are noisier than earlier segments 

due to low signal to noise ratio of the TDI trace in the latter part of the deformation.  

 

Figure 6.4 Transverse velocity profiles of PSPI shots on the polymer-bonded sucrose composite. 

Transverse velocities for low-pressure shots (PM1901, PM2001) are shown on the left and for 

high-pressure shots (PM2002, PM2003) on the right 

 

 Normal and shear stresses for the shots on the composite are plotted in Figure 6.5 and 

Figure 6.6. Saturation normal stress values of 2.93 GPa, 2.95 GPa and 9.73 GPa are obtained 

for shots PM1901, PM2001 and PM2002 respectively. Nominally, the shots can be labelled as 3 

GPa and 9.75 GPa shots. For the 3 GPa shots, peak shear strengths of 167 MPa and 184.27 
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MPa are obtained. Similarly, the peak shear strengths of the 9.75 GPa shots are 451 and 454 

MPa. Despite the heterogeneous nature of the sample, peak shear strength values are 

consistently repeatable and show smaller variation at larger pressures. It should also be noted 

that the shear strength is not completely lost after the drop as is observed in the case of sucrose. 

Such a loss in shear strength of the composite can have multiple complex failure mechanisms 

such as binder delamination, fracture and adiabatic shear band localization in the binder or 

sucrose. By contrast, for the case of monolithic sucrose the only suspected mode of failure is 

localization through shear bands.  

 

 

Figure 6.5 Normal stress profiles of PSPI shots on the polymer-bonded sucrose composite. 

Arrival of unloading waves is marked by dots. Normal stress profile for shot PM2003 is not 

available due to loss of the NDI trace for the shot 
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Figure 6.6 Shear stress profiles of PSPI shots on the polymer-bonded sucrose composite. Shear 

stresses for low-pressure shots (PM1901, PM2001) are shown on the left and for high-pressure 

shots (PM2002, PM2003) on the right 

 

 

Figure 6.7 Shear strain-rates for PSPI shots on the polymer-bonded sucrose composite 
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Figure 6.8 Shear stress vs shear strain plots for all PSPI shots on the polymer-bonded sucrose 

composite 

 

Figure 6.7 shows the shear strain-rate plots of different shots on the composite. Note 

that the shear strain rates are calculated assuming that the shear strain is uniform through the 

thickness of the sample. As a result, the shear strain-rates are indicative of nominal values only. 

Shear strain-rates in the range of ~1.5 × 105 − 4.5 × 105 𝑠−1 are obtained. Shear strains can be 

obtained by integrating the shear strain rate to obtain the shear stress versus shear strain 

behavior, as shown in Figure 6.8. The shear stress-strain profiles are quite repeatable for the two 

pressure levels. The low-pressure shots peak at a shear strain of approximately 0.05 while the 

high-pressure shots peak at a shear strain of about 0.1, indicating an increase in the critical 

failure shear strain with increasing pressures. Peak shear strength of the composite is also seen 

to increase with increasing normal stress, as shown in Figure 6.9. A linear fit to the 
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experimental data shows that an increase of 41 MPa in shear strength with every 1 GPa 

increase in normal stress. A comparison is drawn for shear strength of HTPB, sucrose and their 

composite. The pressure sensitivity of the shear strength of the composite is indicative of the 

dominant effect played by the binder in the composite. Also note that the shear strength of the 

composite is closer to that of the binder than that of sucrose even though sucrose comprises of 

90% of the composite by weight. Clearly, the rule of mixtures doesn’t apply in this case. 

 

 

Figure 6.9 Peak shear stress versus normal stress of polymer-bonded sucrose composite, at a 

nominally similar shear strain rate. The dashed line indicates a linear fit to the experimental 

data. The equation to the linear fit is displayed on the top left. Note that the slope of the curve 

(
𝑑𝜏

𝑑𝜎
= 0.041) lies between that of  sucrose (

𝑑𝜏

𝑑𝜎
= 0.008) and HTPB (

𝑑𝜏

𝑑𝜎
= 0.059) 

 

 A better way to bring out the role of the binder in determining the dynamic shear 

strength of the composite is a direct comparison with a specimen with no binder, i.e. a pressing 

of granular sucrose only. Such a comparison between compacted granular explosives and PBXs 

subjected to normal loading has been made by Wang et al. (2016)  using numerical simulations. 
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Average and localized stress and temperature fields are found to be higher for the granular 

explosives than for PBX. However, no analysis of shear response has been made. Moreover, 

there is a lack of experimental data for making direct comparisons between the shear response of 

granular explosives and PBXs. Therefore, a PSPI shot was done on compacted granular sucrose 

for the case of low normal stress. Figure 6.10 shows the normal and transverse velocity profiles 

of for the shot on granular sucrose. The corresponding normal and shear stresses are shown in 

Figure 6.11. It can be observed that the normal velocity shows an initial step corresponding to 

an elastic precursor, followed by a comparatively slow rise to the plateau. Shear strength of the 

granular pressing shows qualitatively similar behavior to that of sucrose and the composite. The 

shear stress rises to a peak and falls thereafter to a small but non-zero value. A mean shear 

strain-rate of 2.1 × 105𝑠−1 is obtained for the shot depicted in Figure 6.12. Figure 6.13 shows 

the shear stress versus shear strain behavior, with the shear stress rising to a peak value of 346 

MPa at a shear strain of ~0.05 before falling off to a lower value of ~80 MPa. The specimen is 

sheared to a strain of 0.15 before the arrival of an unloading wave from the free surface of the 

rear target plate. 
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Figure 6.10 Normal and transverse velocity profiles of the PSPI shot on granular sucrose 

 

 

Figure 6.11 Normal and shear stress profiles of the PSPI shot on granular sucrose 
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Figure 6.12 Shear strain-rate profile of shot on granular sucrose 

 

 

Figure 6.13 Shear stress versus shear strain plot of PSPI shot on granular sucrose 
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 Normal stress profiles of PSPI shots on all different materials for the same nominal 

values of normal stress of 3 GPa are shown in Figure 6.14. The rise times of the composite and 

granular sucrose are comparable to each other. While granular sucrose does not show any steps, 

the normal responses of the composite and granular sucrose are very close to each other. HTPB, 

on the other hand, shows a slightly quicker rise to the plateau since no compaction is involved, 

as is the case with the composite and granular sucrose. The uniform sucrose specimen shows the 

quickest rise-time but it should be kept in mind that the specimen thickness in that case is an 

order of magnitude less than in the other cases.  

  

 

Figure 6.14 Comparison of normal stress profiles of shots on HTPB, uniform sucrose sample, 

polymer-bonded sucrose composite and granular sucrose 
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Sucrose 

Granular 
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191 

 

 It is most instructive to compare the shear stress versus shear strain behavior of the 

polymer-bonded sugar with compacted granular sucrose. Such a comparison is presented in 

Figure 6.15. It is evident that introduction of just 10% HTPB binder into the granular pressing 

of sucrose can reduce its shear strength by half of its original value. The shear strength of the 

binder at the critical shear strain of the granular pressing of sucrose is 4 times lower than that 

of granular sucrose. The composite and granular sucrose exhibit a fall in shear strength at 

similar critical shear strain values of ~0.05. 

 

 

Figure 6.15 Comparison of shear stress versus shear strain behavior of granular sucrose, binder 

HTPB and their composite 
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6.4 Finite Element Simulations 

ABAQUS/Explicit simulations are carried out for a canonical one-dimensional case, with 

a vertical laminate geometry, as shown in Figure 6.16. Three different cases are explored for the 

low and high-pressure shots: 𝑛 = 2, 𝑛 = 5 and 𝑛 = 11, where 𝑛 is the number of sucrose grains. 

In each simulation, the relative weight fraction of sucrose and HTPB is kept at a constant value 

of 0.9. The results are shown for a low-pressure shot and a high-pressure shot in Figure 6.17 and 

Figure 6.18 respectively. 

 

 

Figure 6.16 A vertical laminate composite specimen geometry used in ABAQUS/Explicit 

simulations. Alternating layers of HTPB and sucrose are simulated. Sucrose grain size is 

indicated by the parameter 𝑑 while the number of layers of sucrose is 𝑛. Note that 𝑛 = 3 is 

shown here only for demonstration  

 

 It can be observed that the simulated normal stress profiles show steps which indicate 

the large impedance mismatch between the specimen and the bounding plates. These steps are 

observed in some experiments, but not observed in others because of the highly heterogeneous 

nature of the specimen. Shear stress predictions for the low-pressure shot do not match very well 

with the experimentally measured values. Simulations predict large shear peak shear stresses 

which fall off at much later times as compared to the experimental shear stress. The fall in 

simulated shear stresses is the result of shear band formation in one of the sucrose grains.  
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Figure 6.17 Comparison of simulated normal and shear stress profiles with experimental 

measurements for the low-pressure shot, PM1901 on sucrose/HTPB composite. Simulated 

results are plotted for 3 different grain sizes. The simulated normal stress profiles due not show 

any unloading due to the nature of geometry chosen (see Appendix A). Simulated shear stresses 

are much larger than experimentally measured 

 

However, the simulated peak shear stresses not only exhibit a closer match to the experimental 

values for the high-pressure shot simulations but also display a much earlier drop in shear stress 

compared to their low-pressure counterparts. Such a behavior hints at the presence of other 

strain softening and failure mechanisms such as fracture in the binder or crystals, delamination 

of the binder and adiabatic shear localization in the binder. Thermal softening due to friction 

between fractured surfaces is also expected to contribute to the drop in strength of the 

composite. None of these mechanisms have been considered in the simple one-dimensional 

vertical laminate microstructure studied here and should be accounted for in realistic modeling 

of the composite. The simulations of the vertical laminate also show grain size dependence of the 
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onset of localization and subsequent failure of the composite. Lower grain sizes result in an 

earlier drop in shear strength, with the grain size dependence being stronger for the low-pressure 

case. Thermal diffusivity of the binder phase is lower than that of sucrose, which results in 

quicker temperature rise for smaller grains and hence an earlier onset of adiabatic shear band 

instability. 

 

 

Figure 6.18 Comparison of simulated normal and shear stress profiles with experimental 

measurements for the low-pressure shot, PM2003 on sucrose/HTPB composite. Simulated 

results are plotted for 3 different grain sizes. The simulated normal stress profiles due not show 

any unloading due to the nature of geometry chosen (see Appendix A). Peak shear stresses are 

very close to experimentally measured values 

 

6.5 Discussion 

PSPI experiments are carried out on a 90:10 sucrose/HTPB composite by weight. Both 

normal and transverse velocity profiles display some variability under similar experimental 
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conditions, which is expected for such a highly heterogenous specimen. Peak shear strength of 

the composite exhibits dramatic normal stress dependence. Even though sucrose forms 90% of 

the composite, such a pressure-dependence of shear strength of the composite is closer to that of 

HTPB than sucrose. A comparison of shear behavior of the composite with that of granular 

sucrose highlights the role of the binder in determining the shearing response of the composite. 

It can be concluded that the binder effectively acts as a lubricant between sucrose crystals and 

is therefore, expected to reduce the number of hot-spots in a PBS as compared to a granular 

pressing of sucrose. 

 

Shear strength of the composite shows a dramatic drop to a smaller value after accruing a 

certain amount of critical shear strain. Such a drop can be a result of multiple failure 

mechanisms like adiabatic shear band localization in the binder and crystal phases, fracture of 

the binder of the crystal, delamination of the binder from the crystal or friction resulting from 

sliding between fractured surfaces. Shearing response of a one-dimensional vertical laminate 

shows a closer agreement with experimental measurements under high-pressures than lower-

pressures, thereby highlighting the need for including the above-mentioned failure modes into 

modeling. However, it should be noted that adequate experimental characterization of each 

failure mode is necessary before incorporating them into the modeling framework. 

 

6.6 Appendix A: Creating ABAQUS Input file using 

M ATLAB 

Carrying out simulations of two-dimensional geometries of the composite requires a large 

number of mesh elements. Since the simulations are run on a regular PC, it is desired to speed 
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up the calculations. Reducing the length of the target plates and removing the flyer with 

appropriate boundary conditions facilitates the reduction in number of mesh elements. Dashpot 

connector elements of the Cartesian type are used to apply the velocity boundary conditions. 

Consider the schematic in Figure 6.19. A small thickness of target plates on either side of the 

specimen is retained. Dashpot connector elements are employed on both the ends. Dashpots 

allow the implementation of characteristic equations (discussed in Chapter 1) as described 

through Figure 6.19. The characteristic equations between points 1 and A and points 2 and B 

can be written as: 

 𝜎1 = 𝜌0𝑐𝐿(𝑢1 − 𝑢0) 
(6.1) 

 𝜏1 = 𝜌0𝑐𝑠(𝑣1 − 𝑣0) 
(6.2) 

 𝜎2 = 𝜌0𝑐𝐿𝑢2 
(6.3) 

 𝜏1 = 𝜌0𝑐𝑠𝑣2 
(6.4) 

Using the above equations, the force transmitted by the dashpot elements and hence the 

damping coefficients can be calculated. The force transmitted by a dashpot is given as the 

damping coefficient multiplied by the difference in velocities at its two ends. For dashpot 1, the 

normal and shear forces can be given as 𝜎1𝑎 and 𝜏1𝑎 respectively. Similarly, for dashpot 1, the 

normal and shear forces can be given as 𝜎2𝑎 and 𝜏2𝑎 respectively. This justifies the use of 

dashpot elements as the equation of motion of dashpots represents the wave characteristic 

equations. Since the force in a cartesian dashpot connector element between two nodes 1 and 2 

is given as 𝐹𝑖 = ∑ 𝐶𝑖𝑗(𝑣𝑗1 − 𝑣𝑗2)𝑖 , the damping coefficients are then given as: 

 𝐶11 = 𝜌0𝑐𝐿𝑎 

𝐶22 = 𝜌0𝑐𝑠𝑎 

(6.5) 
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Figure 6.19 Schematic showing implementation of dashpot connector elements for simulating the 

composite behavior in PSPI experiments. Top figure: The flyer (brown) impacts the specimen 

(green) sandwiched between target plates (grey) with an impact velocity of 𝑢0 in the normal 

direction and 𝑣0 in the transverse direction. Wave characteristics between two pairs of points 

are shown as red solid lines. Since specimen behavior is not of interest after the arrival of 

unloading waves from the free surfaces, the flyer and rear target plate are assumed to extend to 

infinity. Bottom figure: A section of the sandwich is considered with only a portion of the target 

plates. The flyer is removed and replaced by a dashpot connector element on the left. Another 

dashpot is added to the right. Boundary conditions are applied to the reference points, RP1 and 

RP2. Nodes highlighted in red are all constrained to have same degrees of freedom in the X and 

Y directions. Vertically nearest node pairs on top and bottom faces are constrained to have 

same degrees of freedom in the X and Y directions. One such pair is highlighted in blue 

 

Since boundary conditions need to be applied uniformly to all nodes highlighted in red 

on each face, the displacements of the two node sets are constrained to be the same using 

equation constraints. The nodes on top and bottom faces (not highlighted) are also constrained 

in pairs to have the same displacements in X and Y-directions and zero rotations about the Z-

axis (for example, see the blue highlighted pair). However, it must be kept in mind that the 

nodes on the top and bottom faces need to be sorted before applying the equation constraints. 

∞ ∞ 
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Since ABAQUS does not generate a sorted set of nodes on its own, a MATLAB code needs to 

be written for this purpose. 

 

  Two time-steps are used, the first to apply normal velocity and the second to apply 

transverse velocity along with the normal velocity. The duration of each step is decided based 

on the difference between the arrival times of longitudinal and shear waves at the left 

specimen/target-plate interface. In time-step 1, the normal velocity is applied on the left 

reference point. In time-step 2, the transverse velocity is applied on the reference point while 

keeping the normal velocity same as in time-step 1. In both the time-steps, all the degrees of 

freedom of the right reference point are constrained.  

 

 Since equation constraints require sorted pairs of nodes, it is easier to generate the entire 

input file using MATLAB. Once the geometry is created using ABAQUS, a raw input file with 

information about nodal coordinates, element connectivity and raw node sets is fed into the 

MATLAB code. The code then generates an input file with the required connector elements, 

equation constraints, time-step definitions and output variables. Some parts of the code were 

written in guidance of Prof. David Henann.  
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Chapter 7  

 

H igh-Speed M icroscopy 
 

7.1 Introduction 

In this chapter, an experimental method is reported that can, simultaneously, image the 

deformation fields associated with dynamic failure events at high spatial and temporal 

resolutions. The method is demonstrated at a temporal resolution of 250 ns and a spatial 

resolution of ~1 µm, while maintaining a relatively large field of view (≈ 1.11 mm x 0.63 mm). 

As a demonstration, the method is used to resolve the deformation field near a notch tip during 

initiation of an adiabatic shear instability. An ordered array of 10 µm diameter speckles 

deposited on the specimen surface near the notch tip helps track evolution of the deformation 

field. The combination of high spatial and temporal resolutions has a broad range of applications 

such as the study of the role of microstructural heterogeneities on initiation and propagation of 

dynamic failure events. 

 

In-situ imaging of dynamic events has been of interest in experimental mechanics for a 

long time. High-speed imaging has been used in a wide range of disciplines to study a variety of 

events such as cavitation Estrada et al. (2018) , combustion Kohse-Höinghaus and Jeffries (2002), 

Aldén et al. (2011), Böhm et al. (2011), Sick (2013) , shock waves Rubino et al. (2017), Gori et 

al. (2018), Rubino et al. (2019) , adiabatic shear localization Hartley et al. (1987), Marchand and 

Duffy (1988), Zhou et al. (1996), Guduru, Ravichandran, et al. (2001), Guduru, Rosakis, et al. 
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(2001), Dodd and Bai (2012) , crack tip deformation fields Tippur and Rosakis (1991), Tippur et 

al. (1991), Mason et al. (1992) , twinning Kannan et al. (2018)  and dynamic friction Rubino et 

al. (2017), Gori et al. (2018), Rubino et al. (2019) .  Advancements in imaging of such dynamic 

events have been enabled by the rapid evolution of high-speed camera technologies over the past 

70 years and the high temporal resolution that they offer. At the same time, there are several 

dynamic phenomena that occur not only at small time-scales but also at small length-scales, 

examples of which include hot-spot mechanisms in energetic materials; dynamic failure of 

heterogeneous materials through crack propagation; adiabatic shear bands; twinning and dynamic 

friction; and cavitation. Imaging such events requires high temporal and spatial resolutions 

simultaneously, i.e., high-speed microscopy. The importance of high-speed microscopy in 

advancing our understanding of dynamic response and failure of materials has been highlighted in 

a recent National Research Council report Council (2011) . 

 

Significant progress has been reported in the recent literature on imaging at high spatial 

and temporal resolutions simultaneously. Rubino et al. (2019)  reported an investigation on 

laboratory earthquakes in which rupture of frictional interfaces was investigated by combining 

high speed imaging with the digital image correlation (DIC) technique. The combination allowed 

them to measure the deformation and stress fields associated with shear shock waves and evolution 

of dynamic friction coefficient at the interface.  Based on the imaging technology and magnification 

reported in their work, the spatial resolution of imaging can be inferred to be 27.8 m based on 

the Nyquist criterion (sensor pixel pitch p = 30 m, magnification =2.16). Kannan et al. 

(2018)  reported a study on dynamic twinning in single crystal magnesium by employing high-
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speed photography. They employed a 105 mm Nikon lens coupled with 2 teleconverter lenses and 

bellows in order to spatially resolve twin nucleation and propagation. Based on the numbers 

reported in their paper, imaging was done at a magnification of 5 m per pixel, which implies a 

pixel-limited spatial resolution of 10 m. Imaging at a temporal resolution of 200 ns, they measured 

twin tip velocities of the order of 1 km/s. Twin boundary growth values and twin tip velocities of 

second-generation twins that nucleate from boundaries of pre-existing twins were also reported. 

Estrada et al. (2018)  used micro-cavitation as a rheometer to measure viscoelastic properties of 

polyacrylamide gel under high strain rates. A pulsed laser was used to generate cavitation, which 

was imaged using a Phantom v2511 high-speed camera and bright-field illumination with a halogen 

lamp. Images of bubble generation, collapse, and subsequent oscillations were taken at a temporal 

resolution of 3.7 s. Combining bubble kinematics with a constitutive model allowed them to 

extract material properties of the gel in a minimally invasive manner. Ravindran et al. imaged 

polymer-bonded sugar (PBS) subject to high strain rate loading in order to identify deformation 

localization mechanisms Ravindran et al. (2016), (2017) . They employed Photron SAX2 high-

speed camera at 100,000 fps along with a Navitar extension tube. They appear to have achieved 

a pixel-limited spatial resolution of 20 m. Using Digital Image Correlation (DIC) to analyze the 

deformation field, they showed that large strain localization occurs in polymer-rich areas between 

crystal boundaries while the deformation of crystals is minimal.  

 

It is clear that there is a great deal of interest in measuring deformation fields at high 

spatial and temporal resolutions simultaneously in order to understand the deformation response 

and failure mechanisms in heterogeneous materials. Here a method is presented that offers such a 
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capability with a temporal resolution of 250 ns, spatial resolution of 1 m and a field of view of 

about 1.1 mm x 0.63mm. The following section presents the experimental setup.   

  

7.2 Experimental Setup 

A schematic of the experimental set-up is shown in Figure 7.1. The key components of the 

high-speed microscopy system are: (a) a high-speed camera, (b) imaging optics and (c) 

illumination. First, considerations that determined the choices made in assembling the 

experimental setup are described.  

 

7.2.1 High-speed camera 

Dynamic deformation and failure events such as adiabatic shear localization occur over times 

scales of a few microseconds, which necessitates a high-speed camera with framing rates of 106 s-1 

or higher. As will be explained below, imaging such events  also requires a sufficiently large 

sensor (i.e., pixel array size of 1000 x 1000 or greater) and a fine pixel pitch in order to image at 

an acceptable field of view combined with micron scale spatial resolution. In addition, low 

electronic noise of the camera is a requirement for measuring the kinematic fields through DIC 

or particle tracking, particularly for large deformations. Among the three most commonly used 

technologies for the present-day high-speed cameras are: (a) single CMOS sensor cameras, (b) 

gated-intensified cameras, and (c) rotating mirror cameras. 
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Figure 7.1 A schematic of high-speed microscope set up for imaging a sample impacted in a 

Kolsky bar. Key components of the system are: high-speed camera, microscope optics and the 

laser for illumination. Cable connections between various components are shown using arrows. 

The inset on the right shows the optical elements in detail. Illuminating rays are shown in blue 

and image forming rays in red 

 

The single-sensor in-situ storage cameras are the most popular high-speed cameras at 

present. These cameras use a CMOS (complementary metal-oxide semiconductor) sensor and on-

chip storage of all frames, which allows them to run at high frame rates. Depending on the read-

out mechanism, these sensors can offer varying resolutions at different frame rates. Typically, the 

sensor resolution decreases as the framing rates go up. This loss of resolution is due to limitations 

on read-out speeds, i.e. the speed at which an acquired image can be transferred to the memory. 
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However, certain cameras offer constant resolution at all frame rates. Among the best 

specifications for these commercial cameras are: sensor size of 400 x 250 pixels2, image acquisition 

rate of 5 million frames per second, and the number of frames collected of 128. These cameras 

tend to be lighter and more compact compared to the rotating mirror and gated-intensified 

cameras but usually have large pixel size (~30 m) and lower sensor resolution. The sensor chip 

architecture also leads to lower fill factors (~37%) which can cause aliasing and inability to resolve 

higher spatial frequency content. 

 

The gated-intensifier cameras consist of an image intensifier unit, coupling optics and a 

CCD sensor. The heart of these cameras is the image intensifier unit, which can amplify the 

incoming photons by a factor of over 1000. The intensification is achieved through a micro-channel 

plate (MCP) that amplifies the photoelectrons received from the photocathode and sends them to 

a phosphor screen for conversion back to photons. The intensifier comes with an added advantage 

of electronic gating which allows extremely small exposure durations – of the order of nanoseconds. 

These cameras can offer framing rates of up to a few hundred million fps with 200 ps exposures 

and up to 8 frames at these framing rates. However, these cameras suffer from larger noise, loss 

of contrast and loss of spatial resolution Tiwari et al. (2007), Pierron et al. (2011) ,  which are 

inherent to the intensification process and optical coupling in this design of high-speed cameras. 

As mentioned by Rubino et al. (2019) , extracting useful quantitative information like 

displacements and strains from images taken using an intensified CCD camera is not easy, 

especially to meet the stringent requirements of displacement, velocity and strain resolutions. Also, 
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the total number of frames is very small, which may not be sufficient for capturing the full 

evolution of dynamic events. 

 

Table 7.1 A comparison of six commercially available high-speed cameras with respect to their 

ability to capture images at a spatial resolution of 0.5 m. The parameters of interest are the 

minimum magnification required to achieve this spatial resolution and the corresponding field of 

view. The illumination wavelength is assumed to be 640 nm. N is the number of frames and m is 

the magnification for 𝑟𝑜𝑏𝑗 = 0.5 𝜇𝑚 

 Tech. 
M ax 

 fps 
N 

Sensor 

pixel array 

size 

Pixel 

pitch 

(m) 

M CP 

Res. 
m   

Field of 

View 

(mm 2) 

1 
Rotating 

Mirror 
4 million 78 1920x1080 7.4 - 44x 0.48x0.27 

2 

Single 

CMOS 

sensor 

5 million 180 924x768 30 - 120x 0.23x0.19 

3 

Single 

CMOS 

sensor 

5 million 128 400x250 30 - 120x 0.1x0.06 

4 
Image-

Intensifier 
200 million 8 2000x2000 7.4 

40 lp/mm 

or 25 m 
100x 0.15x0.15 

5 
Image-

Intensifier 
333 million 16 1360x1024 6.45 

50 lp/mm 

or 20 m 
80x 0.11x0.08 

6 
Image-

Intensifier 
200 million 8 1360x1024 6.7 28 m 112x 0.08x0.06 

 

Rotating mirror cameras consist of multiple independent CCD sensors arranged equally 

in two 1200 arcs, positioned radially with respect to a rotating mirror in the center. A light 

beam hitting the mirror is swept across each of the arcs and focused on the CCDs by relay 

lenses. A helium gas-turbine is used to drive the mirror at high speeds, which yields framing 

rates up to a few million fps. The advantage of the rotating mirror cameras is that the 

individual CCD sensors can be configured to have a large pixel array with a small pitch to 
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increase the spatial resolution (to be discussed below). On the other hand, these cameras are 

bulky and heavy; and their operation is much more complex than that of the other technologies.   

 

  High-speed microscopy, as the name suggests, requires integration of a high-speed camera 

and an optical microscope. The achievable temporal resolution of such a system is determined by 

the framing rate of the high-speed camera. All of the high-speed imaging technologies described 

above satisfy the time resolution requirements for imaging most dynamic events in solids, however 

they differ in the spatial resolution that can simultaneously be X achieved practically. The spatial 

resolution of any optical imaging system is limited either by the numerical aperture of the objective 

lens (diffraction limit) or the pixel size of the imaging detector (sampling limit). The former, 

known as the Rayleigh criterion, can be expressed as 

 
𝑟𝑜𝑏𝑗,𝑑 =

𝜆

2 𝑁𝐴
 

(7.1) 

where 𝜆 is the wavelength of the illuminating light and 𝑁𝐴 is the numerical aperture of the 

objective. On the other hand, pixel-limited spatial resolution of an imaging system can be defined 

using the Nyquist criterion as 

 
𝑟𝑜𝑏𝑗,𝑝 =

2𝑝

𝑚
 

(7.2) 

where 𝑟𝑜𝑏𝑗,𝑝 is the finest feature that can be resolved, 𝑝 is the pixel pitch and 𝑚 is the magnification 

of the optical imaging system. The spatial resolution of the system is given by the larger of 𝑟𝑜𝑏𝑗,𝑝 

and 𝑟𝑜𝑏𝑗,𝑑. There is a wide range of commercially available microscope objectives, which reduces 

the task of satisfying the Rayleigh criterion to one of proper optical design and integrating the 

microscopy optics with those of the high-speed camera. However, the characteristics of the imaging 

sensors in commercially available high-speed imaging cameras often set limits on imaging 
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resolution, minimum required magnification, and the field of view. Table 7.1 illustrates the trade-

offs for six different commercial high-speed cameras (company names are not shown). The table 

presents the minimum required magnification of the optics and the achievable field of view for a 

target spatial resolution of 0.5 m. Note that in the case of gated intensifier cameras, the resolution 

of the microchannel plate (MCP) can set the resolution limit instead of the sensor pixel pitch. 

From Table 7.1 it can be seen that the minimum optical magnification required for achieving a 

target spatial resolution and the corresponding field of view at that resolutions differ widely 

between the cameras considered. An optical system with a higher magnification has a 

correspondingly lower depth of field, which limits the allowable out of plane motion of the 

specimen during an experiment while still keeping it in focus. Moreover, a higher magnification 

objective tends to have a smaller working distance, requiring a working distance as close as a 

millimeter at high magnifications Such a small working distance could be impractical for the 

dynamically deforming specimen surfaces of interest. Thus, the combination of lowest required 

magnification and the largest field of view provides a practical criterion of choosing an appropriate 

high-speed camera.  

 

Based on these considerations, a rotating mirror camera has been chosen in this 

investigation despite the complexity of its technology, operation and maintenance. The Cordin 

560 rotating mirror high-speed camera employed in our setup consists of 78 independent CCD 

sensors. The mirror can rotate at a speed up to 16,667 revolutions per second, corresponding to 

framing rate of 4 million fps. Each CCD is a monochrome 14-bit sensor with a 1920 x 1080 pixel 

array and a pixel pitch of 7.4 m. The camera body has approximate dimensions of 24 in x 30 in 



208 

 

x 26 in and weighs about 100 kg. However, since it operates as a microscope, it is necessary to be 

able to move it at micron-scale precision for alignment and focusing purposes. A 6-degree of 

freedom stage has been custom-designed and built to meet these requirements with the camera 

mounted on it (Figure 7.2). 

 

 

Figure 7.2 High-speed microscope set-up at Brown University. The important components of the 

system are highlighted in the figure above: Cordin high-speed camera mounted on a 6-dof stage, 

microscope optics (highlighted in red box), microscope objective, pulsed laser, the liquid light 

guide that carries illumination pulses from the pulsed laser to the condenser lens for in-line 

illumination and the delay generator that serves as  the master clock to synchronize all events. The 

incident bar and sample holder with the sample are also shown 

 

In addition to the above considerations, since one is often interested in imaging dynamic 

events, there are additional constraints on the illumination system in order to minimize motion 
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blur and the need to make use of the available dynamic range of the imaging sensors.  Further 

details are discussed in the section on illumination.      

 

7.2.2 Optics  

The optical imaging system consists of a microscope that forms an image of the specimen 

surface on a prescribed plane at the entrance of the Cordin camera, from where it is relayed by 

the internal optics of the camera to the sensor plane via the rotating mirror. The microscope 

elements are shown in Figure 7.2. The main elements are an infinity-corrected long working 

distance objective and a tube lens. An in-line illumination arrangement is chosen, where the 

illumination light enters the optical train normal to the optical axis and is directed into the 

objective through a 50:50 beam splitter as shown. A liquid light guide feeds light from a laser 

illumination source to an aspheric condenser lens, the relative position of which with respect to 

the end of the light guide determines the illumination spot size on the specimen. A Koehler-type 

illumination can be achieved by adjusting the condenser lens position to form the image of the 

end of the light guide on the back focal plane of the objective. On the other extreme, a highly 

focused spot can be achieved by adjusting the condenser lens such that it collimates the light from 

the liquid light guide. In our experiments, an intermediate configuration is chosen such that the 

illumination spot size on the specimen surface is slightly larger than the field of view. Diffuse 

reflection from the specimen is collected by the objective (see inset in Figure 7.1) and a tube lens 

forms a real image on the prescribed plane near the entrance to the high-speed camera. A Nikon 

F-mount connects the microscope optics to the camera. The system has been configured for three 

long working distance microscope objectives: 10X, 20X and 50X. Table 7.2 shows the details of 

the objectives (make and model, NA and working distance), the combined magnification of the 
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microscope optics and the camera internal optics), spatial resolution, the limiting criterion that 

determines the spatial resolution (diffraction limited vs. sampling limited) and the field of view. 

Figure 7.3 demonstrates that the calculated spatial resolutions are indeed realized; it shows images 

of a resolution target with the 20X and the 50X objectives. The former is able to resolve 1 m 

features and the latter can resolve 0.5 m features. Microscope optics and illumination (described 

below) have been custom designed to serve the purpose of attaining large spatio-temporal 

resolutions simultaneously. The know-how has been shared with Cordin and the optics is now 

commercially available through Cordin. 

 

Table 7.2 Comparison of different objectives used in the optical train of the high-speed 

microscope. All objectives are long working distance objectives. As the magnification increases, 

the working distance decreases and the spatial resolution increases. The 50x objective gives the 

highest resolution of 0.58 𝜇𝑚. NOTE: 𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 × 2/3 

Objective NA 
Working 

Distance 
m total 

Spatial 

Resolution 

Limiting 

Criterion 

Field of 

View 

10x Plan Apo Infinity-

Corrected Long Working 

Distance Objective 

0.28 34 mm 6.67x 2.22 m 
Pixel-

Limited 

2.13x1.20 

mm2 

20x Plan Apo Infinity-

Corrected Long Working 

Distance Objective 

0.42 20 mm 13.33x 1.11 m 
Pixel-

Limited 

1.07x0.60 

mm2 

50x Plan Apo Infinity-

Corrected Long Working 

Distance Objective 

0.55 13 mm 33.33x 0.58 m 
Diffraction-

Limited 

0.43x0.24 

mm2 

 

7.2.3  lllumination 

The combination of high temporal and spatial resolutions places severe requirements on 

the illumination. Since the interest is in imaging dynamic events, image blur due to object motion 

must be minimized. As an example, consider the case of the characteristic particle velocity within 
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the field of view to be of the order of 100 m/s. In order to restrict the particle displacement during 

optical exposure (i.e. motion blur) to be within the imaging resolution (say 1 m), the illumination 

duration has to be no more than 10 ns for each frame. A pulsed laser is a convenient source for 

generating a sequence of such short illumination pulses. Another vital difference between normal 

high-speed imaging with a large field of view (of the order of a centimeter) and high-speed 

microscopy is that in the latter each pixel of the CCD sensor collects photons from a very small 

area of the specimen surface. In the system under consideration here, for a magnification of 20X, 

each pixel collects photons from an area of approximately 0.56 m  x 0.56 m. In order to make 

use of the dynamic range of the CCD pixels and obtain sufficient image contrast, the number of 

photons collected by each pixel multiplied by its quantum efficiency needs to be a significant 

fraction of the CCD full well depth, which in our case is 44,000 electrons. Based on this number, 

one can calculate the power requirement on the laser source by accounting for the losses along the 

optical path (e.g. losses in the light guide, passing through the beam splitter twice, diffuse 

reflectivity of the specimen surface, collection efficiency of the objective, etc.) and the finite 

illumination pulse width. Such a calculation, based on a pulse width of 10 ns, shows the required 

power to be a few hundred Watts. The Specialized Imaging LUX640 pulsed laser source was 

employed to illuminate the specimen, which is a 400W pulsed laser that emits a low coherence 

beam at a wavelength of 640±10 nm. It is shown schematically in Figure 7.1.  

 

7.3  Experimental Demonstration 

 The capability of the experimental system is demonstrated by imaging the initiation of an 

adiabatic shear band (ASB) from a notch tip in a polycarbonate specimen subjected to impact 
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loading in a Kolsky bar. ASBs are zones of intense plastic shear strain that are typically formed 

under high strain-rates when the increase in the strength of a material due to strain and strain-

rate hardening is offset by the decrease due to thermal softening (or other softening mechanisms). 

ASBs have been studied extensively in a variety of materials including metals, alloys, bulk metallic 

glasses and polymers. Since the primary aim here is a demonstration of the experimental method, 

it is not our intent to provide a comprehensive review of the literature on ASB; for a more 

extensive list of references, see Wright and Perzyna (2003)  and Dodd and Bai (2012) . However, 

in the context of real time imaging of ASB initiation and propagation, it is worth mentioning a 

few relevant reports from the literature. Broadly, there have been two streams of investigations: 

measurement of strain and stress fields in the vicinity of initiating and propagating ASBs 

Marchand and Duffy (1988), Kalthoff (1990), Ravi-Chandar (1995), Ravi-Chandar et al. (2000), 

Guduru, Rosakis, et al. (2001)  and measurement of the corresponding temperature fields Hartley 

et al. (1987), Zehnder et al. (2000), Guduru, Ravichandran, et al. (2001), Guduru, Rosakis, et al. 

(2001), Guduru (2001) . In the former, the dimension of the typical field of view was a few 

centimeters with very coarse spatial resolution; consequently, the measured far field stress and 

strain fields corresponded to those due to the mixed mode loading of the pre-existing notch. In 

the absence of information on the micron-scale processes near the notch tip, it was not possible to 

relate these processes to the far field stress/strain measurements to formulate a rational criterion 

for ASB initiation. For example, in the context of edge-impact of notched plate experiments 

Kalthoff (1990), Ravi-Chandar (1995), Zhou et al. (1996), Ravi-Chandar et al. (2000) , it was 

reported that a locally mode-I crack initiated for impact velocities below a critical impact velocity 

and an ASB initiated above a critical impact velocity. However, as reported by Guduru, Rosakis, 

et al. (2001), Guduru (2001) , a careful post-experiment microscopic investigation of the specimens 
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that failed in mode-I showed the presence of a small initiated and arrested ASB at the notch tip 

(the total length of the ASB was of the order of less than a mm). Further, the local mode-I crack 

that propagated at an oblique angle initiated from the notch tip, not from the arrested ASB tip. 

In other words, even at velocities below the so-called critical velocity, an ASB initiated at the 

notch tip, propagated and got arrested, before the reflected waves from the specimen boundary 

modified the notch tip stress field to force a crack to initiate in a different mode. The lack of 

micron-scale spatial resolution in imaging meant that the correct sequence of events was not 

captured experimentally and consequently escaped modeling efforts as well. These observations 

provide a motivation to resolve the local strain fields near a notch tip during initiation of an ASB.    

 

 

Figure 7.3 Demonstration of imaging resolution using a resolution target with groups of 2 μm, 1 

μm and 0.5 μm wide lines. The images are taken using a (a) 20X, and (b) 50X objective. For 

each magnification, a full resolution image is shown on the left while the region of interest is 

outlined in a dashed blue line and a magnified view shown right below the full image. The 

yellow curves are variations in intensity across a group of lines. As shown in Table 7.2, the 20X 

objective has a calculated resolution of 1 μm, which is demonstrated by its ability to resolve the 

1 μm and 2 μm wide lines. The 50X objective system has a calculated resolution of 0.58 μm, 

which is demonstrated by its ability to resolve the 0.5 μm wide lines. Note that the images have 

been cropped to show the area of interest and do not represent the entire field of view. The 

length of the scale bar is 50 μm in both images.   
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For the purposes of this study, the well-studied edge-notched plate configuration has been 

employed, which was impact loaded in a Kolsky bar. Polycarbonate has been chosen as the 

specimen material, partly motivated by a prior investigation of similar nature by Ravi-Chandar 

(1995) . However, a significant difference is that the specimen dimensions are much smaller than 

those used by Ravi-Chandar (1995)  and the impactor diameter is only 6.35mm. As a result, the 

state of stress near the notch tip during the experimental observation is expected to be more 

complex than what was observed by Ravi-Chandar (1995) . However, this shortcoming was 

deemed to be an acceptable compromise for the purposes of demonstrating the experimental 

capability, while deferring a more complete study of ASB initiation on larger sized specimens to 

a subsequent investigation. The experiments reported here are conducted with the 20X objective.  

 

 

Figure 7.4 (a) Edge-on impact on the polycarbonate specimen. The specimen is fixed on the 

bottom half at the back to prevent rigid translation. Fixing on the bottom face and bottom half 

of the front face impedes rigid rotation. Lateral confinement (not shown here) is provided on 

both sides of the specimen plate to minimize out of plane motion. The field of view with a 20X 

objective is shown. 10 𝜇𝑚sized Cu dots, spaced 20 𝜇𝑚 apart are used for particle tracking. (b) 

High-speed camera image of the specimen before the arrival of longitudinal compressive wave at 

the crack tip 
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Specimens are cut from a Lexan 9034 polycarbonate sheet and have the following 

dimensions: 19 mm x 9.53 mm x 1.5 mm (Figure 7.4 (a)). A pre-crack is made in the polycarbonate 

sample at the tip of the machined notch using a sharp razor. The specimen is constrained in a 

steel fixture to enforce the boundary conditions shown in Figure 7.4. An edge-on impact is carried 

out on the specimen using the incident bar of the Kolsky bar system. The incident bar is 6.3 mm 

in diameter, 61 cm in length and is made of C350 maraging steel. A striker of the same diameter 

and material, and a length of 15.24 cm, sends a 50 𝜇𝑠 compressive pulse through the incident bar. 

The deformation field can be measured through DIC or particle tracking. For this first 

investigation, particle tracking has been chosen. A grid of 10 𝜇𝑚 sized circular copper dots, with 

a pitch of 20 𝜇𝑚 in both directions, was deposited on the specimen at the notch tip (Figure 7.4). 

 

 

Figure 7.5 Steps for photolithography process, used to deposit Cu dots for particle tracking 
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The dots are deposited around the pre-crack tip using a lift-off photolithography process, 

as illustrated in Figure 7.5.  The polycarbonate sample is cleaned with isopropanol using 

sonication, especially to get rid of the debris that accumulates around the notch tip after a pre-

crack is made with a razor. Plasma ashing via Reactive-Ion Etching (RIE) is used to further clean 

the sample. The sample is spin-coated with LOR-5A photoresist followed by a hard-bake at 100 

0C in an oven. Another photoresist, AZ1505A, is spin-coated on top of the previous layer and soft-

baked at 95 0C. Since the glass transition temperature (Tg) of polycarbonate is very low (147 0C), 

baking temperatures are kept far from Tg to avoid any softening and specimen distortion. As a 

result, baking times have to be increased as compared to the standard baking times for silicon 

wafers. These temperatures and times are calibrated to yield best results. A maskless aligner, 

MLA150 from Heidelberg Instruments, is used to selectively expose the photoresists at a calibrated 

exposure intensity of 150 mJ/cm2. The use of a maskless aligner allows flexibility to make any dot 

pattern on the specimen down to a size of 1 𝜇𝑚 and avoid costs associated with making masks. 

The photoresist is developed using CD-26 (9 parts CD-26 and 1-part DI water) for 60 seconds, 

followed by a DI water rinse. An O2 plasma de-scumming process is performed before the metal 

deposition process. A 200 nm thin layer of Cu is deposited using an e-beam evaporator (Kurt 

J.Lesker). For the final lift-off step, methanol is used in a sonicator. Since the samples are small, 

it is possible to do the entire process in batches. 

 

The copper dots form a reflective foreground against the transparent polycarbonate 

background, providing good contrast. Even though particle tracking is used here, DIC can also be 

employed. DIC requires a speckle size of 3-5 pixels, that is 1.7-2.8 𝜇𝑚 speckles with a 20x 
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microscope objective. Features of these sizes can be easily achieved with photolithography with a 

fine control over speckle size, shape and distribution for optimal image correlation.  

 

 

Figure 7.6 A typical timing diagram at a frame rate of 4 million fps. The incident wave is taken 

to arrive at the strain gage at t=0.At this instant, the strain gage triggers the Delay Generator. 

At t = Δt1 (≈ 60 μs), the compressive incident wave arrives at the specimen impact face. A 5V 

TTL trigger is then sent to the camera at t = Δt1 + Δt2 where Δt2 accounts for the time delay 

between impact at specimen interface and the time when compressive wave first reaches the 

notch-tip. An Enable signal with a pulse-width of Δ𝑡3 is sent to the Laser Pulse Driver (a unit 

that controls synchronization of laser illumination pulses with input pulses from the camera) 

before the camera is triggered. There is a time gap of Δ𝑡4 between the TTL trigger to the 

camera and the alignment of the rotating mirror with the first CCD after the trigger signal is 

received. Due to the mirror rotation, optical exposure of each CCD is not uniform during one 

inter-frame time-period, which is depicted using triangular pulses. The optimal location of 

exposure lies at the peak of these pulses, whereby the rotating mirror is said to be aligned to the 

CCD. Illumination pulses need to be centered at these peaks. This is achieved by sending 

capture pulses from the camera to the Laser Pulse Driver in advance by a time duration of Δ𝑡5. 

Δ𝑡5 = 0.185 𝜇𝑠 is found to work well. Δ𝑡6 indicates the inter-frame time (=250 ns at 4 million 

fps). An illumination pulse width, Δ𝑡7 = 20 𝑛𝑠 is used in these experiments but this width can 

be brought down to 5 ns 
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Figure 7.7 “Practical” depth of field measurements for the optics with the 20X objective using a 

grid pattern of circular dots. The dots are 10 µm in diameter and spaced 20 µm apart. A sample 

with these dots is mounted on a translation stage and moved towards the objective, starting 

from the focused position in (a). In (b)-(f), the sample is moved in increments of 12.5 µm to a 

final position of 62.5 µm away from the focused position. At this point, the image becomes 

blurry and the neighboring dots begin to coalesce with each other. Note that the entire field of 

view is not shown. A scale bar of 100 µm length is shown in red at the bottom corner of each 

image 

 

7.4 Experimental Procedure 

The high-speed microscopy system is set-up in conjunction with the Kolsky bar, as shown 

in Figure 7.2. Experimental preparation consists of aligning the impact face of the specimen with 

the middle of incident bar cross-section, followed by focusing the camera on the area of interest 

on the specimen surface. Strain gage signal from the incident bar is used to trigger the camera. 

An important element of the experimental procedure is to ensure that the illumination pulses are 

synchronized with the optimal mirror positions with respect to the CCD sensors by accounting 

for signal delays at many interfaces in the system. The corresponding signal timing diagram is 

shown in Figure 7.6.  The signal from the strain gage amplifier is fed into a delay generator, which 

delays the signal by a known amount before sending an image acquisition trigger to the camera. 
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The camera sends out a sequence of capture pulses that correspond to alignment of the rotating 

mirror position with the CCD sensors. In practice, the capture pulses are advanced with respect 

to the optimal alignment by a predetermined time (t5 in Figure 7.6). The capture pulses are then 

used to trigger a sequence of laser pulses to coincide with the optimal alignment of the mirror 

positions with CCD sensors.   

 

As alluded to earlier, depth of field is an important consideration in any microscopy 

application, particularly in high-speed microscopy where out-of-plane movement of the specimen 

surface is unavoidable due to the deformation itself (i.e. the Poisson’s ratio effect). In the strict 

sense of microscopy, the depth of field of a microscope is determined by the numerical aperture of 

the objective, illumination wavelength and the sensor pixel pitch Kenneth R. Spring . For the 

setup with the 20X objective, the depth of field can be calculated to be approximately 6 m.  This 

small depth of field places severe restrictions on the maximum allowed specimen thickness.   It 

also requires that the specimen be constrained against for rigid translations in the out-of-plane 

direction. However, the present experimental situation is more forgiving since the need is to image 

the 10 m dots instead of features at the resolution limit of ~1 m.  From Figure 7.7, it can be 

seen that at an out-of-plane displacement of 25 µm does not result in a significant loss in  definition 

of the dots. At a displacement of 62.5 µm, some of the neighboring dots begin to coalesce with 

each other, although individual dots can still be distinguished. Consequently, 62.5 µm can be 

treated as the “practical” depth of field for the purposes of imaging the 10 m dot pattern.  
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Figure 7.8 Acquired images of the notched polycarbonate plate at different times: (a) t=6.18 𝜇𝑠, 

(b) t=9.79 𝜇𝑠, (c) t=12.88 𝜇𝑠, (d) t=15.19 𝜇𝑠, and (e) t=20.6 𝜇𝑠. The images were taken at a 

framing rate of 3,883,495 fps. As the deformation progresses, a zone of localized plastic 

deformation forms ahead of the crack tip. Particle tracking is performed until t=15.19 𝜇𝑠. By 

t=20.6 𝜇𝑠, the top half of the specimen has moved ahead of the lower half by ≈ 120 𝜇𝑚, 

indicating the development of a large shear strain 

 

7.5 Results and Discussion 

Figure 7.8 shows a sequence of images of the dot pattern when the striker impact speed is 

17.4 m/s. The images were acquired at a rate of 4 million frames/s. The sequence shows only a 

selected set of images, during the evolution of deformation from arrival of the loading wave and 

through subsequent initiation of ASB at the notch tip. A video of the event generated by collating 

the individual images is included in the supplemental material. Even without quantitative analysis, 

one can visualize the strain field evolution from the change in the slope of the lines connecting the 
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dots along vertical and diagonal directions in the undeformed configuration. The out of plane 

motion of the specimen within the notch tip plastic zone is evident through the appearance of 

dark regions and also through loss of focus of the dot pattern. The former can be improved by 

making the dots to be diffuse reflectors. The latter, which is due to the limited depth of field 

discussed above, can be tolerated in the present situation because it is still possible to identify the 

centroid of the dot through image processing.  

 

 

Figure 7.9 (a) Grid Pattern of circular dots used for CCD misalignment calibration. Constants 

for transformation matrix are shown in (b), (c) and (d). (d) shows translations in pixel 

coordinates 

 

The first step in extracting the displacement and strain field from the images is to correct 

for slight differences in the fields of view of successive images. As noted above, the Cordin camera 

consists of 78 different CCD sensors. Since light is relayed through a different optical path for the 

formation of each image, slight differences in the extent and orientation between successive images 
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are expected. For more details, see Kirugulige et al. (2007) . Since the particle tracking algorithm 

used here is sensitive to such misalignments, it is necessary to correct the images to set the same 

global coordinate axes on all images. The procedure followed here is similar to that employed by 

Kirugulige et al. (2007) . A camera calibration is performed by imaging a static sample with a 

grid pattern of 50 𝜇𝑚 circular dots, spaced 100 𝜇𝑚 apart (see Figure 7.9 (a)). All images are 

thresholded and binarized, followed by locating the centroids of the dots. One of the 78 CCD 

images is chosen as a reference and centroid locations in the rest of the frames are tracked with 

respect to this reference image. It is assumed that the optical distortion of the images can be 

modeled as a homogeneous deformation. Therefore, the coordinates in these images can be related 

to the coordinates in the reference image through a transformation of the form 

 (
𝑥𝑖
𝑦𝑖
) = [

𝑎 𝑏
𝑐 𝑑

] (
𝑥0
𝑦0
) + (

𝑒
𝑓) 

(7.3) 

where (𝑥𝑖, 𝑦𝑖) are coordinates of deformed images, (𝑥0, 𝑦0) are coordinates of the reference image, 

the matrix with (𝑎, 𝑏, 𝑐, 𝑑) constants corresponds to the assumed homogeneous deformation 

gradient, and the vector (𝑒, 𝑓) corresponds to in-plane rigid translation. The unknown constants 

are determined using least-squares minimization. A set of these unknowns is shown in Figure 7.9 

(b), (c) and (d). It can be seen that the diagonal components (a, d) of the deformation gradient 

differ from 1 by less than 1% and the off-diagonal components (b, c), which represent the shearing 

deformation, are less than 0.5% for the most part. However, the rigid translations 𝑒 and 𝑓 are 

significant. Hence, a set of static images is obtained just prior to each dynamic experiment, which 

is used to determine the correction constants for each experiment. All experimental parameters 

such as the frame rate, illumination settings and delays are kept identical between the static 
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imaging and the actual dynamic experiment that follows immediately. The correction constants 

are used to perform an inverse transform in order to align each image with the reference image.  

 

7.6 Particle Tracking 

Particle tracking has been used in this study to calculate the displacement field. This 

tracking involves 2 steps: (a) identifying positions of particles in each image, and (b) tracking 

trajectories of individual particles across all frames to deduce displacements. The first step can be 

carried out with a pixel-scale accuracy using Gaussian fitting Cheezum et al. (2001), Abraham et 

al. (2009), Small and Stahlheber (2014)  or radial symmetry methods Parthasarathy (2012), Liu 

et al. (2013) . Particles can then be tracked using nearest neighbor search, relaxation methods 

Baek and Lee (1996), Ohmi and Li (2000), Pereira et al. (2006) , feature vector-based methods 

Feng et al. (2014)  and topology-based methods Patel et al. (2018)  among several others. In 

general, average inter-particle distance is an important parameter in single particle tracking 

methods. It is not possible to resolve sinusoidal displacements with a period smaller than inter-

particle distance according to the Nyquist criterion. Therefore, to resolve high spatial frequency 

content, smaller inter-particle distance and hence higher particle density are favorable. However, 

with smaller inter-particle distance, it becomes difficult to resolve large displacements accurately 

due to ambiguity in assigning new positions to identical particles. An inter-particle distance of 20 

𝜇𝑚,  which was found to be satisfactory was used here.  

 

For the first step of locating the particles, all images are thresholded and binarized to 

extract regions corresponding to each particle/dot. The centroid of each particle is chosen as the 
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representative of its location. Due to intensity gradients across the image, a small subset of the 

particles cannot be thresholded in a few images. A GUI is written in MATLAB 2019a (The 

MathWorks Inc., Natick MA) to interactively allow for manual addition of approximate centroid 

locations for these particles.  More accurate centroid estimates are subsequently refined by 

Gaussian fitting. For the second step of particle tracking, an iterative tracking scheme is adopted, 

i.e. the image 𝐼𝑡+Δ𝑡 is correlated to image 𝐼𝑡 . A reference particle is chosen in all images. 𝐼𝑡+Δ𝑡 is 

translated and overlaid on top of 𝐼𝑡 so that the location of reference particles in the two images 

matches exactly. A nearest neighbor algorithm is then used to match particles. Since the 

displacement between consecutive frames is substantially less than the inter-particle distance, this 

simple scheme works well.  

 

 

Figure 7.10 Displacement, 𝑢1 plotted at (a) t=6.18 𝜇𝑠, (b) t=9.79 𝜇𝑠, (c) t=12.88 𝜇𝑠 and (d) 

t=15.19 s 
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Figure 7.11 Displacement𝑢2 plotted at (a) t=6.18 𝜇𝑠, (b) t=9.79 𝜇𝑠, (c) t=12.88 𝜇𝑠 and (d) 

t=15.19 𝜇𝑠 

  

7.7 Deformation Fields 

Displacements of particle centroids are determined by tracking their locations. These 

displacements are interpolated using a cubic, ℂ2 continuous, triangulation-based polynomial. Data 

points are obtained every 7 pixels (3.89 𝜇𝑚) from the interpolated polynomial. To be able to 

reliably calculate gradients from the noisy displacement data, a non-local means (NLM) filter 

Immerkaer (1996), Fuente and Rodríguez (2003), Buades et al. (2005)  is used for de-noising and 

smoothing the displacement fields. The NLM filter preserves sharp displacement gradients 

expected in and around the shear band region. The usual 'local' means filters smoothen a discrete 

field by taking the mean value of a group of neighboring values. This results in a lower noise level 

but at the cost of smoothing out sharp features. A 'non-local' means filter, on the other hand, 

calculates a weighted mean of field values within a search window Ω around the target location. 
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The weights are chosen based on the similarity of 𝑁 × 𝑁 neighborhoods within Ω, to the 𝑁 × 𝑁 

neighborhood of the target location. An exponentially decreasing function is typically used to 

assign weights, with the weight value decreasing with a decreasing degree of similarity. The degree 

of smoothing is controlled using a parameter ℎ𝑠 that controls the rate of decay of the weighting 

function. In this study, the NLM filter is applied to interpolated displacement fields. Here, 

parameters used in filtering are: search window size Ω=7x7,  data points (=81.6x81.6 𝜇𝑚2), 

neighborhood size 𝑁=7 data points (=27.2 𝜇𝑚),  degree of smoothing ℎ𝑠 = 0.5. The effect of NLM 

parameters on deformation fields is explored in detail in Appendix A and Appendix B.  

 

The extracted 𝑢1 and 𝑢2 displacement fields are shown in Figure 7.10 and Figure 7.11 

respectively, at four different instants of time. Note that all the deformation fields for this 

experiment are evaluated from t=1.55 µs to t=15.19 µs. The compressive wave first reaches the 

left edge of the field of view at 1.55 µs, i.e. the high-speed camera is triggered slightly in advance 

of the event of interest. Even though the images are recorded until t=20.6 µs, displacement field 

is calculated until 15.19 µs; for later times, the out of plane motion of the sample causes significant 

blurring of dots leading to difficulty in particle tracking, especially close to the crack-tip. It can 

be seen in Figs. 9and 10 that there is a pronounced concentration of displacement contours at the 

crack-tip which suggests large displacement gradients there, as expected. Note that u1 

displacements are significantly larger than the u2 displacements, characteristic of the 

predominantly mode II loading of the notch tip. At the same time, the small specimen dimensions 

result in boundary wave reflections, resulting in some crack opening displacement also during the 

observation time window.  
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Figure 7.12 Lagrangian shear strain, 𝐸12 plotted at (a) t=6.18 𝜇𝑠, (b) t=9.79 𝜇𝑠, (c) t=12.88 𝜇𝑠 

and (d) t=15.19 𝜇𝑠 

 

Strains are expressed in the form of a Green-Lagrange strain tensor, 𝑬, which is computed from 

the deformation gradient 𝑭 as follows: 

 𝑭 = 𝑰 + ∇𝒖 (7.4) 

 𝑬 =
1

2
[𝑭𝑇𝑭 − 𝑰] (7.5) 

where 𝒖 is the displacement field and 𝑰 is identity tensor. Displacement gradients are found by 

means of a finite-difference scheme. At the boundaries, forward or backward finite difference-

schemes are employed. At interior locations, a central finite-difference scheme is used. For 

example, the derivatives of 𝑢1 along the x-direction are given as: 

 
𝜕𝑢1
𝜕𝑥

(𝑖, 𝑗, 𝑘) =
𝑢1(𝑖 + 1, 𝑗, 𝑘) − 𝑢1(𝑖, 𝑗, 𝑘)

ℎ𝑥
 (7.6) 
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𝜕𝑢1
𝜕𝑥

(𝑖, 𝑗, 𝑘) =
𝑢1(𝑖, 𝑗, 𝑘) − 𝑢1(𝑖 − 1, 𝑗, 𝑘)

ℎ𝑥
 (7.7) 

 
𝜕𝑢1
𝜕𝑥

(𝑖, 𝑗, 𝑘) =
𝑢1(𝑖 + 1, 𝑗, 𝑘) − 𝑢1(𝑖 − 1, 𝑗, 𝑘)

2ℎ𝑥
 (7.8) 

where equations (7.6), (7.7) and (7.8) show forward, backward and central difference 

implementations respectively. The shear strain E12 is the most relevant quantity for studying 

shear localization; its evolution is plotted in Figure 7.12. As the notch tip gets loaded by the stress 

waves from the impact face, a plastic zone develops at the notch tip. When the loading rate is 

sufficiently high, the plastic zone transitions into an ASB. A precise criterion for predicting when 

the transition occurs in terms of local strain and strain rate parameters is very valuable. However, 

it is first necessary to identify when the instability begins. A complete characterization requires 

knowledge of the stress field information, which cannot be obtained directly from the kinematic 

fields being measured here. If the high strain rate constitutive response of the material is known, 

the stress field can be calculated from the measured strain field, which will be presented in a 

future publication. Here, the presentation is limited to examining the features of the displacement 

field that can indicate the potential onset of the instability.  At t = 6.18 µs, it can be seen that 

concentration of shear strain near the notch tip has already begun (Figure 7.12 (a)). The zone of 

intense plastic deformation evolves with time, leading to accumulation of shear strains as large as 

1.4 by t = 15.19 µs. 

 

In order to gain further insight into evolution of shear strain and possible localization near 

the notch tip, it is instructive to examine the deformation of dots along referential vertical lines 

(referred to as columns in the discussion below) at different distances from the notch tip, as 

illustrated in Figure 7.13 and Figure 7.14.  Deformation of columns closer to the initial crack tip, 
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i.e. columns 4 and 5 and a column farther away from the crack tip, i.e. column 13 are plotted, to 

encompass the region of large shear strain. Figure 7.14 shows 𝑢1 and 𝐸12  as a function of position 

along the vertical coordinate (y) for these columns and their evolution with time. Each line 

corresponds to a different time, which is color coded as shown.  Strictly, the experimental data 

gives the values at discrete points only. However, in Figure 7.14, a smoothed curve is fit along the 

discrete values using a method that employs local regression with weighted linear least squares 

and a 2nd degree polynomial model. Points that fall outside 6 standard deviations are assigned 

zero weights. The extent of smoothing is controlled by a fraction 𝑓 that indicates the fraction of 

the total number of points used for smoothing.  𝑓=0.8 is used for both 𝑢1 and 𝐸12. It is verified 

that this operation does not smooth out the evolution of localized band near the crack tip. Note 

that the smoothing is applied on top of the non-local means filter used to extract the   displacement 

fields. However, the smoothing is applied for each point in the temporal sense, i.e. the displacement 

fields at each location are smoothened over time to minimize the noise in Figure 7.14. This 

smoothing does not affect the displacement and strain fields but is required to extract strain rates 

in the localized region with excessive deformation.  
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Figure 7.13 Left: shear Strain, E12 field at t=15.19 𝜇𝑠 plotted on the reference undeformed 

image. Right: a zoomed in figure showing query locations for displacements, strains and strain 

rates. Deformation along columns c=4, c=5 and c=13 (vertical white lines) has been analyzed as 

a function of time. A straight line just ahead of the crack tip is probed for strains and strain 

rates, at 8 points (white circles with blue outline) labeled 𝑃4 to 𝑃11 . Location of this straight 

line is just below the initial crack plane and corresponds, approximately, to the region of 

maximum shear strain. 𝑃4 to 𝑃11  lie on columns of Cu dots from c=4 to c=11 
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Figure 7.14 (a), (b), (c): x-displacement, 𝑢1, profiles of columns 4, 5 and 13 respectively, from 

t=1.55 𝜇𝑠 to t=15.19 𝜇𝑠. (d), (e), (f): Lagrangian shear strain, 𝐸12, profiles of columns 4, 5 and 

13 respectively, from t=1.55 𝜇𝑠 to t=15.19 𝜇𝑠. The dots on shear strain profiles indicate the 

values measured at particle centroids. Note that the shear strain profiles are not drawn at all 

time instants captured, to allow for clarity in the figures. A localized region of plastic 

deformation is shown for columns 4 and 5 in (a), (b), (d) and (e) using dotted lines 
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Figure 7.15 (a) 𝐸12 vs time at point 𝑃4. A 5th order polynomial (blue line) is fit to the noisy data 

(green dots). (b) 𝐸12 polynomial fit curves for points  𝑃4 to 𝑃11. A distinct transition in the 

slopes for 𝑃4 and 𝑃5 is observed around 6 𝜇𝑠. A strain rate of ~− 0.9 × 105 𝑠−1 is observed for 

𝑃4 during ~7− 10 𝜇𝑠 

 

From Figure 7.14 (a), it can be clearly seen that as time evolves, the x-displacement of the 

4th column of dots (c=4) is localized in a band-like region of approximately 60 µm in width, as 

corroborated by the strain field shown in Figure 7.14 (d). The strain field also shows that the 

localized zone of intense plastic shear strain increases in width with time before the width reaches 

a plateau. A similar localization is observed in the adjacent column (c=5) (Figure 7.14 (b) and 

(e)), however with a slightly different localized bandwidth of ~75 µm and smaller peak shear 

strain. The width is found to increase slowly as one moves away from the notch tip until a diffused 

plastic zone is reached as in c = 13 (Figure 7.14 (c) and (f)). It is important to note that the 

accuracy of the strain values reported here is bound by the resolution limit posed by the 

discreteness of the measurement points (i.e., the dots). Further improvements in the resolution 

can be achieved by decreasing the dot diameter and the pitch.  
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                Figure 7.16 (a) 
1

2
 𝑢1,2 for points 𝑃4 to 𝑃11 as a function of time. (b) 

1

2
 
𝜕𝒖𝟏,𝟐

𝜕𝑡
(× 105 𝑠−1)  for points 𝑃4 to 𝑃11 as a function of time. A distinct change in strain rate is 

observed in both (a) and (b) at ~7.25 𝜇𝑠, as shown by the vertical dotted line 

 

Rate of shear strain is determined at several discrete points ahead of the crack tip, P4 – P11 as 

shown in Figure 7.15 by first plotting  E12 vs. time at each location. The data is noisy, 

particularly near the notch tip, due to errors in locating the centroids of the dots because of 

severe deformation as well as loss of image focus. A polynomial function is used to fit the data, 

which is differentiated to get the strain rate. As expected, it can be seen that points away from 

the crack-tip experience smaller strain-rates compared to points near the crack-tip. For P4, there 

is a sharp increase in the rate of shear strain at ~6 µs, beyond which a shear strain rate as high 

as 0.9x105 s-1 is observed. The transition can be seen better by plotting the shear strain rate. 

Since 𝑢1 and 𝑢1,2 are the dominant displacement and displacement gradients, the latter is 

plotted in Figure 7.16 (a). It can be seen in Figure 7.16 (a) that at around t = 7.25 𝜇𝑠, there is 

a sharp increase in the rate of change of 𝑢1,2, which is seen more clearly in Figure 7.16 (b), 

which shows the evolution of the time-derivative of 𝑢1,2 (The time-derivatives is found using a 

combination of forward, central and backward finite-difference schemes as described in Eq. 6-8). 
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The sharp increase in �̇�1,2 beyond 7.25 s is a possible kinematic signature of the onset of 

localization near the crack tip. Further, note that the transition to higher strain rates in Figure 

7.16 (b) at points farther away from the crack tip are progressively delayed, indicating the 

propagation of localization. Since all measurements reported here are kinematic in nature, the 

discussion is limited to kinematic signatures of the onset of the localization/instability. More 

definitive conclusions will have to await the calculation of the stress field and the shear traction 

on the crack plane from the measured kinematic fields. In Figure 7.16 (b), small bumps in strain 

rates are observed to begin at 4 and 6 𝜇𝑠, which correspond to the arrival of release waves from 

the specimen boundaries. An unloading wave from the rear surface of the specimen eventually 

unloads the specimen at ~9.5 𝜇𝑠. 

 

7.8 Summary and Conclusions 

An experimental technique capable of capturing dynamic failure events at high spatial and 

temporal resolutions simultaneously has been reported. The setup can capture images at rates of 

up to 4 million fps with a sub-micron spatial resolution. A commercial high-speed camera (Cordin 

560) is coupled with custom built optics and a high-power pulsed laser. The technique is 

demonstrated by imaging the deformation field near a crack tip subjected to dynamic loading to 

initiate an adiabatic shear band.  Pre-notched polycarbonate plates are impacted on the edge in 

a Kolsky-bar while measuring the evolution of displacement field through an array of copper 

micro-dot pattern deposited on the specimen surface. Displacement and strain fields indicate 

localization of deformation in a 60-75 𝜇𝑚 wide band near the crack-tip. A sharp increase in the 

shear strain rate appears to be a signature of the onset of localization. More broadly, it is 
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anticipated the technique reported here can help understand the role of micro-scale material 

heterogeneities in the mechanisms of fracture and failure during high strain rate loading of 

materials and structures.   
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Figure 7.17 Displacement and shear strain profiles of column c=4 at different spatial resolutions. 

(a), (b): original resolution; (c), (d): half of original resolution; (e), (f): quarter of original 

resolution. 
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7.9 Appendix A: Effect of NLM  filter  

In this section, the effect of NLM filter on displacement and strain fields is explored. 

Following experimental observations, a shear band of width, 𝑤𝑏 = 60 𝜇𝑚 is considered. A 

schematic of deformation is shown in Figure 7.18. A square block of 𝑎 × 𝑎 𝜇𝑚2 is subjected to 

shear stress, 𝜏. A shear band is assumed to form with the following displacement profile in the 

y-direction: 

𝑢1 = Δ𝑢1
tanh (

𝑦 − 𝑦𝑐
𝑎

) + 1

2
 

(1) 

 

 

Figure 7.18 A box of 𝑎 × 𝑎 𝜇𝑚2 subject to shear, leading to the formation of a shear band of 

width 𝑤𝑏 𝜇𝑚. Note that the number of grid data points shown here are just a representation, 

the actual numbers are different. 

 

where 𝑦𝑐 is the y-coordinate for the center of the shear band and 𝑎 is a parameter chosen to 

agree with maximum shear strain observed in experiments. Δ𝑢1 represents the displacement 

difference across the shear band. Note that data is available only at discrete points, as shown by 

blue dots in Figure 7.18. Since the interpolated displacements are sampled every 7 pixels for 
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experimental data, this corresponds to a data point every 3.885 𝜇𝑚. The shear strain for this 

assumed displacement profile is given as: 

 
𝐸12 =

1

2

𝜕𝑢1
𝜕𝑦

= Δ𝑢1
(sech (

𝑦 − 𝑦𝑐
𝑎

))
2

4𝑎
 

(7.9) 

Therefore, maximum shear strain inside the shear band is: 

 𝐸12𝑚𝑎𝑥 =
Δ𝑢1
4𝑎

 (7.10) 

From experiments, it is observed that 𝐸12𝑚𝑎𝑥 ≈ 1.1 and Δ𝑢1𝑚𝑎𝑥 = 75 𝜇𝑚 (at t=15.19 𝜇𝑠 for 4th 

column of particles) which gives 𝑎 = 17.05 =
𝑤𝑏

3.52
.  

 

The prescribed displacements are filtered using an NLM filter with different values for 

search window size (Ω), neighborhood size (N) and degree of smoothing (hs). The effect of these 

filter parameters is studied for different values of Δ𝑢1. Errors in displacement and shear strain 

are defined below: 

 𝑒𝑢1 =
1

𝑛
∑|𝑢1𝑖𝑓 − 𝑢1𝑖|

𝑛

𝑖=1

 ∀ |𝑦𝑖 − 𝑦𝑐| ≤ 𝑎 (7.11) 

 𝑒𝐸12 =
1

𝑛
∑|𝐸12𝑖𝑓 − 𝐸12𝑖|

𝑛

𝑖=1

 ∀ |𝑦𝑖 − 𝑦𝑐| ≤ 𝑎 (7.12) 

where 𝑒𝑢1 and 𝑒𝐸12 are errors in displacements and shear strains respectively, 𝑢1𝑓 and 𝐸12𝑓 

represent filtered values and 𝑢1 and 𝐸12 represent prescribed values. 

 

Figure 7.19 (a) and Figure 7.19 (b) show plots for 𝑒𝑢1 and 𝑒𝐸12 as a function of Ω for 

ℎ𝑠 = 0.25 and different values of 𝑁, for a given Δ𝑢1. On the same graph, the errors are also 

plotted for different values of prescribed Δ𝑢1. Variation of errors is explored for ℎ𝑠 = 0.5 and 
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ℎ𝑠 = 1 in Figure 7.19 (c)-(f). The following conclusions can be drawn from these graphs: (a) 

Displacement errors are always below 0.1 𝜇𝑚 for the range of parameters explored. This value is 

smaller than the spatial resolution of the system. Therefore, the effect of filtering on 

displacements is negligible. (b) Shear strain errors are small but finite and increase with 

increasing hs and Ω while decreasing with increasing N. (c) There is no clear dependence of 

displacement and shear strain errors on prescribed peak displacement value, Δu1.  
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Figure 7.19 Displacement and strain errors plotted with different NLM filter parameters. 

 

The effect of NLM filter is better illustrated through displacement and strain profiles 

along a vertical column of particles/points in the y-direction, as shown in Figure 7.20. The effect 

of search window, Ω and prescribed peak displacement, Δu1 is explored while keeping hs = 0.5 

and N = 7 fixed. It has been shown above that absolute errors (as quantified in equation (4) and 

(5) and plotted in Figure 7.19) are independent of Δ𝑢1. However, it is evident from Figure 7.20 
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that as the peak displacement/strain increases, errors relative to the peak values decrease, i.e. 

for a given set of NLM parameters, the filtered displacement and strain profiles look closer to 

the prescribed profiles for larger Δu1. It can also be seen from Figure 7.20 that Ω = 7, N = 7 and 

hs = 0.5 should work adequately for the problem at hand. This is made clear in the next section 

on the effect of filtering on experimental data. 

 

 

Figure 7.20  Displacement and strain contours plotted with different NLM filter parameters. (a) 

and (b): contours for Δ𝑢1 = 10 𝜇𝑚, (c) and (d): contours for Δ𝑢1 = 75 𝜇𝑚. 

 

7.10 Appendix B: Effect of filtering on experimental data 

Real experimental data is probed for the effect of NLM filtering. For brevity, the effect is 

displayed on 𝑢1, 𝑢2 and 𝐸12 contours at two time instants, 𝑡 = 6.18 𝜇𝑠 and 𝑡 = 15.19 𝜇𝑠. At 
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these time instants, displacements and shear strains are very close to the cases considered in 

Fig. S4 in the previous section. A value of 0.5 is found adequate for the degree of smoothing 

(ℎ𝑠). Search window size (Ω) and neighborhood size (𝑁) are varied from 7 to 15. 2D contours for 

some of the representative parameter combinations are given in Figure 7.21, Figure 7.22 and 

Figure 7.23 and compared with the unfiltered case.  

 

 

Figure 7.21 Displacements in x-direction, 𝑢1 plotted with different NLM filter parameters at 

different times. (a)-(c): at time 6.18 𝜇𝑠, (d)-(f): 15.19 𝜇𝑠 

 



243 

 

 

Figure 7.22 Displacements in y-direction, 𝑢2 plotted with different NLM filter parameters at 

different times. (a)-(c): at time 6.18 𝜇𝑠, (d)-(f): 15.19 𝜇𝑠 

 

 

Figure 7.23 Lagrangian shear strain, 𝐸12 plotted with different NLM filter parameters at 

different times. (a)-(c): at time 6.18 𝜇𝑠, (d)-(f): 15.19 𝜇𝑠 

 

It can be concluded from Figure 7.21, Figure 7.22 and Figure 7.23 that the NLM filter, for the 

values of parameters explored here, doesn’t lead to any smoothing of strain gradients across the 
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shear band. However, it does help eliminate the noise associated with uncertainty of locating 

particle centroids.  
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Chapter 8  

 

Summary and Future Work 
 

Pressure shear plate impact experiments have been performed on a polymer-bonded 

energetic material simulant and its constituents - a simulant crystal sucrose and an elastomeric 

binder HTPB. Dynamic response of each of the constituents is first investigated under a range 

of normal stresses (3-10 GPa) and high shear strain-rates (105 − 106 𝑠−1). Shear strength of 

HTPB shows a highly pressure-dependent behavior, with the strength increasing from 120 MPa 

to 470 MPa as the normal stress increases nominally from 3 GPa to 9 GPa. Peak shear strength 

of sucrose, on the other hand, shows a relatively weak dependence on normal stress, with its 

shear strength increasing merely from an average value of 410 MPa to 465 MPa as the normal 

stress increases from 2.9 GPa to 9.5 GPa. Such different pressure-sensitivities of the two phases 

of a PBS can result in a change of its deformation mechanisms at increasing pressures. Sucrose 

also exhibits pronounced strain softening under shear after reaching a peak value and in some 

cases a complete loss in shear strength.  

 

Experimental effort on HTPB and sucrose is aimed at building suitable constitutive 

models to enable prediction of the constitutive response of their composite. A quasi-linear 

viscoelastic model with a pressure-dependent instantaneous elastic response is used to model 

HTPB. ABAQUS/Explicit simulation results show reasonable agreement with normal and shear 

stress profiles obtained from experiments. However, thermal effects are ignored in the current 

model, which prevents softening and localization the binder phase of a PBS. A 
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thermodynamically consistent framework incorporating thermo-viscoelastic effects is desired for 

the polymeric binder, which is a subject of future research.  

 

A thermodynamic framework is presented for constitutive modeling of sucrose. A finite 

deformation thermo-mechanical model is presented, which incorporates several features. 

Isotropic finite strain elasticity with higher order constants is employed along with consideration 

of thermoelastic effects. A rate-dependent thermally-coupled plasticity law is used. For accurate 

modeling of the volumetric response, a complete Mie-Gruneisen equation of state with a 

temperature-dependent specific heat capacity is derived and used in the model. Simulations 

show that the dramatic drop in shear strength of sucrose is a result of localized deformation in 

the form of adiabatic shear bands. Shear strain localization leads to a large increase in 

temperature and the simulations predict eventual melting of the material within the band. Thus, 

the experiments show that molecular crystals can undergo adiabatic shear localization, which is 

a potential hot-spot mechanism. These results motivate the study the dynamic shearing 

resistance of actual energetic crystals through PSPI experiments.   

 

Then, PSPI experiments are carried out on the sucrose/HTPB composite. Peak dynamic 

shearing resistance of the composite increases from 176 MPa to 453 MPa as the normal stress 

increases nominally from 3 GPa to 9.75 GPa. The shearing resistance builds up to a peak value 

before decreasing to a smaller non-zero value. Such a drop in the shear strength of the composite 

could be due to multiple factors like fracture of sucrose and/or HTPB, delamination of HTPB 

from sucrose crystals, adiabatic shear band localization in the HTPB binder or sucrose crystals 

and friction between fractured surfaces. However, exploring each of these mechanisms requires 
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an extensive experimental undertaking focused on studying each mechanism in isolation from 

others. Such an experimental effort can reveal physical insights that can inform computational 

simulations of the composite microstructures with realistic constraints. Such an effort is a 

fruitful research avenue for the future.   

 

PSPI experiments and constitutive modeling of HTPB and sucrose lay a foundation for 

studying mechanisms leading to the formation of hot-spots in PBXs. However, in-situ 

quantitative experimental investigation of deformation fields and mechanisms of hot-spot 

formation remains a challenging task, particularly due to the stringent requirements placed on 

imaging systems to adequately resolve micron-scale features at sub-microsecond temporal 

resolutions. A high-speed microscopic imaging system has been built in pursuit of this goal. The 

capability of the system is demonstrated by imaging adiabatic shear band formation in a 

notched polycarbonate plate, at a temporal resolution of 250 ns and a spatial resolution of ~1 

𝜇𝑚, while maintaining a large field of view (≈ 1.11 × 0.63 𝜇𝑚). 
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